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Abstract

The mining sector is crucial to Canada’s economy but faces challenges in transitioning to

sustainable practices amid increasing global energy demands and climate change. Depen-

dency on fossil fuels contributes to carbon emissions, while rising temperatures in northern

regions accelerate permafrost degradation, threatening critical infrastructure and mining op-

erations. Addressing these challenges requires innovative solutions and a deeper understand-

ing of physical phenomena in cold climates that are unique to Canada, such as solid-liquid

phase changes, to ensure the industry’s long-term sustainability.

This dissertation focuses on advancing our fundamental knowledge of solidification, in-

cluding both equilibrium and non-equilibrium processes, at multiple temporal and spatial

scales through theoretical and experimental analyses. It begins with a state-of-the-art re-

view of freezing processes, outlining recent progress from fundamental, methodological, and

applied perspectives. The thesis then addresses macro-scale equilibrium solidification by de-

veloping novel analytical solutions to two-phase Stefan problems via singular perturbation

and asymptotic analysis, which are both accurate and computationally efficient. These so-

lutions facilitate the thermal estimation of phase change materials (PCMs) for cold thermal

energy storage, as well as artificial ground freezing (AGF) for stabilizing ore deposits and

protecting permafrost.

The thesis advances to the study of multi-stage and multi-scale non-equilibrium solidifica-

tion, characterized by innovative laboratory experiments and unified mathematical models.

Specifically, it examines the five-stage solidification of pure substances and mixtures, includ-

ing stochastic heterogeneous nucleation, non-linear crystal growth, and coupled heat and
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mass transport with freeze-point depression. The multi-scale analysis captures temporal and

spatial phenomena using novel experimental and mathematical frameworks. Non-equilibrium

solidification significantly enhances the development of PCMs for cold thermal energy stor-

age, as well as spray freezing (SF) for heating, cooling, and decontaminating wastewater in

mines.

The combination of equilibrium and non-equilibrium solidification, investigated through

theoretical and experimental frameworks, contributes to our fundamental understanding of

complex phase-change processes. The developed analytical solution to two-phase Stefan

problems significantly reduces the computational time for equilibrium processes compared

to numerical methods. The novel multi-stage and multi-scale frameworks for both pure

substances and mixtures accurately characterize non-equilibrium behaviors (e.g., heteroge-

neous nucleation and non-linear crystal growth) that are otherwise difficult to obtain via

conventional approaches.

From an applied perspective, the freezing process (both at equilibrium and non-equilibrium)

is a key influential factor in the thermal estimation and design of AGF, PCMs, and SF. The

developed frameworks delineate practical parameters such as total freezing time, interface

movement, thermal storage capacity, freeze concentration, ice quality, and ice production.

Accurate analysis of freezing phenomena is of great importance in the innovation, develop-

ment, and integration of these cutting-edge clean technology solutions, tailored specifically

to the unique landscapes and environments of Canadian mines in today’s global energy

transition and climate crisis.
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Abrégé

Le secteur minier est essentiel à l’économie du Canada, mais il doit relever des défis pour

passer à des pratiques durables dans un contexte d’augmentation de la demande mondiale

d’énergie et de changement climatique. La dépendance à l’égard des combustibles fossiles

contribue aux émissions de carbone, tandis que la hausse des températures dans les régions

septentrionales accélère la dégradation du pergélisol, menaçant les infrastructures essentielles

et les opérations minières. Pour relever ces défis, il faut des solutions innovantes et une

meilleure compréhension des phénomènes physiques dans les climats froids qui sont uniques

au Canada, tels que les changements de phase solide-liquide, afin d’assurer la durabilité à

long terme de l’industrie.

Cette thèse se concentre sur l’avancement de nos connaissances fondamentales de la so-

lidification, y compris les processus d’équilibre et de non-équilibre, à de multiples échelles

temporelles et spatiales par le biais d’analyses théoriques et expérimentales. Elle commence

par une revue de l’état de l’art des processus de congélation, soulignant les progrès récents

d’un point de vue fondamental, méthodologique et appliqué. La thèse aborde ensuite la

solidification à l’équilibre à grande échelle en développant de nouvelles solutions analytiques

aux problèmes de Stefan à deux phases par perturbation singulière et analyse asympto-

tique, qui sont à la fois précises et efficaces sur le plan informatique. Ces solutions facilitent

l’estimation thermique des matériaux à changement de phase (MCP) pour le stockage de

l’énergie thermique froide, ainsi que la congélation artificielle du sol (AGF) pour la stabili-

sation des gisements de minerais et la protection du pergélisol.

La thèse porte sur l’étude de la solidification non-équilibrée en plusieurs étapes et à
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plusieurs échelles, caractérisée par des expériences de laboratoire innovantes et des modèles

mathématiques unifiés. Plus précisément, elle examine la solidification en cinq étapes de

substances pures et de mélanges, y compris la nucléation hétérogène stochastique, la crois-

sance cristalline non linéaire et le transport couplé de chaleur et de masse avec la dépression

du point de congélation. L’analyse multi-échelle saisit les phénomènes temporels et spati-

aux à l’aide de nouveaux cadres expérimentaux et mathématiques. La solidification hors

équilibre améliore considérablement le développement des MCP pour le stockage de l’énergie

thermique froide, ainsi que la congélation par pulvérisation (SF) pour le chauffage, le re-

froidissement et la décontamination des eaux usées dans les mines.

La combinaison de la solidification à l’équilibre et de la solidification hors équilibre,

étudiée dans des cadres théoriques et expérimentaux, contribue à notre compréhension

fondamentale des processus complexes de changement de phase. La solution analytique

développée pour les problèmes de Stefan à deux phases réduit considérablement le temps de

calcul pour les processus d’équilibre par rapport aux méthodes numériques. Les nouveaux

cadres multi-étapes et multi-échelles pour les substances pures et les mélanges caractérisent

avec précision les comportements hors équilibre (par exemple, la nucléation hétérogène et la

croissance cristalline non linéaire) qui sont autrement difficiles à obtenir par des approches

conventionnelles.

D’un point de vue appliqué, le processus de congélation (à l’équilibre et hors équilibre)

est un facteur d’influence clé dans l’estimation thermique et la conception des AGF, MCP

et SF. Les cadres développés délimitent des paramètres pratiques tels que la durée totale de

congélation, le mouvement de l’interface, la capacité de stockage thermique, la concentration

de gel, la qualité de la glace et la production de glace. L’analyse précise des phénomènes de

congélation est d’une grande importance pour l’innovation, le développement et l’intégration

de ces solutions technologiques propres de pointe, adaptées spécifiquement aux paysages et

environnements uniques des mines canadiennes dans le cadre de la transition énergétique

mondiale et de la crise climatique d’aujourd’hui.
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Chapter 1

Introduction
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1.1 Background

The mining sector is vital for our economy and a leader in the world, contributing $156 billion

to Canada’s Gross Domestic Product (GDP) and providing up to 22% of total merchandise

exports [4]. With increasing demand to produce minerals and metals for the global energy

transition, the mining industry is encountering technical, economic, and environmental issues

that need to be addressed to guarantee the sustainable growth of this cornerstone of our

economy in today’s changing climate and global energy transition.

One key challenge is that the industry is heavily dependent on fossil fuels for operations

(e.g., fleets), power supply, energy storage, and heating and cooling. While Canada has one

of the world’s cleanest electricity grids, carbon dependency remains intensive in mines that

are not connected to the electric grid or natural gas pipelines, and renewable alternatives

are still expensive. Additionally, heating demand is particularly high in mines located in

cold-climate regions, like Canada, and the cooling requirement is also significant for deep
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mines. This could take up to half of the total energy costs [1]. The most common practice

for air heating and cooling in mines is burning propane or natural gas or using diesel engines,

yet this results in a considerable amount of carbon emissions.

Another contemporary issue in the mining industry is related to the climate crisis. As

we look towards the future, it becomes evident that economic and regulatory factors will

necessitate the adoption of advanced and sustainable mining practices, particularly in the

pristine landscapes of Canada’s northern regions. Northern Canada, where mining makes

up a substantial portion of the economy, is now faced with the consequences of a changing

climate. The average temperature in this remote expanse has been rising at an alarming

rate, nearly three times faster than the global average, presenting a stark challenge in the

form of permafrost degradation. Permafrost, the frozen ground that underlies nearly half

of Canadian land, is currently at risk of thawing, unleashing a cascade of threats to the

built environment and infrastructure, including the crucial mining operations that are the

lifeblood of these northern communities [2, 3, 5].

The unique environment in Canada under today’s energy and climate crisis is hinged on

our fundamental understanding of the physical process of phase transitions in cold climates.

Specifically, it includes the phase change between liquid and solid (i.e., freezing and melting).

These phase transitions usually take place in pure substances (e.g., water/ice), mixtures (e.g.,

aqueous solution), and porous media (e.g., ground, permafrost); their transport phenomena

vary with spatial and temporal scales. Consequently, it is of utmost importance to foster the

development of the phase-change physics in different types of substances at multiple scales.

1.2 Objectives

The overarching objective of this doctoral dissertation is to advance our fundamental under-

standing of solidification and its applications in mine operations and energy systems under

the Canadian context. The applications include: (i) phase change materials (PCMs) for cold
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thermal energy storage in northern mines; (ii) artificial ground freezing (AGF) for stabilizing

intricate uranium ore deposits and thawing permafrost; and (iii) spray freezing (SF) tech-

nology to produce ice stopes for mine heating/cooling and decontaminate mine wastewater.

Canadian mines that have adopted or will soon utilize these technologies are the Giant Mine

(Northwest Territories), Cigar Lake Mine (Saskatchewan), Frood-Stobie Mine (Ontario), and

LaRonde Mine (Québec). To achieve the main objective, the following two sub-objectives

can be specified:

1. Develop a fast-to-compute and mathematically rigorous analytical model for equilib-

rium solidification in pure substances and porous media at the macro-scale, which can

provide a rule-of-thumb estimation of the freezing processes in PCMs and AGF for

cold thermal energy storage and ground support; and

2. Characterize and predict the non-equilibrium solidification in pure substances and

mixtures through experimental and mathematical frameworks that involve multi-stage

and multi-scale phenomena, which can be utilized in PCMs and SF for cold thermal

energy storage and mine heating, cooling, and wastewater pre-treatment.

1.3 Thesis organization

This doctoral dissertation is structured into four parts with nine chapters, as shown in

Fig. 1.1.

• Part I introduces the background, objectives, and outline of this thesis in Chapter 1.

It also conducts a comprehensive literature review on the freezing process from the

fundamental, methodological, and applied aspects in Chapter 2.

• Part II focuses on the equilibrium solidification at the macro-scale through the so-called

Stefan problem. Chapter 3 employs the singular perturbation method to characterize
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two temporal scales and its application to AGF in porous media. Chapter 4 utilizes

the asymptotic analysis and solves a two-phase Stefan problem with multiple spatio-

temporal scales (i.e., three temporal and four spatial scales). Chapter 5 incorporates a

similar asymptotic analysis yet to a more general Stefan problem subject to a realistic

convective boundary, where four temporal and five spatial scales are studied.

• Part III investigates the non-equilibrium solidification through experimental and math-

ematical approaches. Chapter 6 establishes an experimental system and a unified

mathematical model on the non-equilibrium five-stage solidification of PCM for cold

thermal energy storage. Chapter 7 extends the five-stage solidification framework into

the non-equilibrium freezing of binary mixtures, which facilitates the development of

SF for mine heating, cooling, and wastewater decontamination. Chapter 8 conducts

multi-scale analysis of PCM through experimental and hybrid analytical-numerical ap-

proaches, where the growth and morphology of crystals are thoroughly characterized.

• Part IV provides general discussion and key conclusions of this thesis along with po-

tential directions of future work in Chapter 9.
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2.1 Introduction

Freezing, the transformation of a liquid into a solid state, represents one of the fundamental

phase transitions ubiquitous on Earth. Typically instigated by a decrease in temperature or

cooling, this phase transition requires surpassing the fusion point of the material, thereby

initiating the phase change from a liquid to a solid state. While appearing ostensibly straight-

forward, freezing exhibits distinctive fundamental characteristics such as latent heat release,

supercooling degree, crystal growth, and interfacial dynamics, among others. Moreover,

when the material is impure, such as in solutions or colloids, the freezing process introduces

an additional layer of complexity, manifesting in phenomena like freezing-point depression

and solute segregation. The scholarly discourse surrounding the topic of “freezing” has wit-

nessed remarkable growth since the mid-20th century, as evidenced by a notable surge in

publications, exemplified in Fig. 2.1. This burgeoning interest demonstrates the growing

significance of freezing within the academic community, indicative of its multifaceted nature

and pervasive relevance.

Beyond its fundamental complexity, the burgeoning field of freezing has spurred the de-

velopment of innovative methodologies and diverse applications aimed at both predicting

and harnessing this process. In the 19th century, J. Stefan pioneered a mathematical formu-

lation to analyze the temperature distribution and motion of the solid-liquid interface during

water solidification, thereby formulating what is now known as the Stefan problem [6]. This

mathematical problem, characterized by partial differential equations and a moving bound-

ary condition, has captivated applied mathematicians owing to its intriguing nonlinearity.

Concurrently, various other methodologies, including the enthalpy method, level-set method,

and phase field method, have been extensively explored in the realms of applied mathematics

and computation, enriching our understanding of the freezing phenomenon. Fundamental

studies on the freezing process have been comprehensively summarized in several classic texts

[73, 78, 115, 113].
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Figure 2.1: Number of published articles over time in the Scopus database from 1950 to
2022. The keywords in the search are “(freez*) OR (solidify*) OR (solidification)”.

Freezing finds extensive applications across diverse natural and engineering domains, as

depicted in Fig. 2.2. From atmospheric occurrences such as snow [105] and freezing rain [62]

to geological phenomena like permafrost [11], the ramifications of freezing are far-reaching.

With the exacerbation of climate change and the escalation of extreme weather events, the

prevalence of freezing phenomena is expected to intensify, which needs a deeper understand-

ing of its implications in both atmospheric and subsurface environments. Additionally, the

distinctive attributes of freezing, including the conversion of fluidic substances into stable

solids and the liberation of latent heat, have been exploited across a spectrum of engineering

applications. These applications span from the storage of cold thermal energy using phase

change materials [144] to mine heating systems [2] and the preservation of agricultural and

pharmaceutical products through spray freezing [81], revealing the versatile utility of freezing

processes.

Given the progressive evolution and burgeoning interest surrounding freezing phenomena,

it is imperative to conduct a comprehensive review of existing literature and provide critical
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Figure 2.2: Published articles categorized based on the main subjects from 1950 to 2022
with the same criteria as Fig. 2.1.

insights for future research endeavors. The overarching objectives of this review are outlined

as follows:

1. To comprehensively summarize key fundamental knowledge, methodologies, and ap-

plications pertaining to the freezing process.

2. To critically analyze and compare various understandings and approaches to freezing,
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offering nuanced insights for both emerging and established scholars.

3. To delineate future research directions aimed at advancing the field of freezing while

addressing contemporary challenges such as climate change and the energy crisis.

This review embarks on a systematic exploration, commencing with an elucidation of

fundamental aspects of the freezing process, with particular emphasis on the key physical

phenomena observed in both pure substances and mixtures. Subsequently, an overview of

diverse methodologies spanning experimental, theoretical, and computational approaches is

presented, accompanied by a nuanced discussion of their respective advantages and limi-

tations. Furthermore, notable freezing-related applications across natural and engineering

domains are summarized, highlighting the significance and implications of freezing phenom-

ena within each context. Finally, the review culminates with a synthesis of major achieve-

ments and advancements across fundamental, methodological, and applied dimensions of the

freezing process, while concurrently charting potential future research trajectories in each

realm.

2.2 Fundamental aspect

2.2.1 Freezing in pure substances

When considering the freezing process in pure substances (e.g., solutions or metals without

any impurity), it can be either stable or unstable [84], which is also referred to as the

mechanisms without or with crystallization. Most pure liquids freeze by crystallization that

is unstable. This mainly implies that the liquid is firstly supercooled or undercooled below

its freezing point, resulting in a thermodynamically unstable (or metastable) state. In this

case, there are five distinct solidification stages: (i) supercooling of liquid, (ii) nucleation, (iii)

recalescence or crystal growth, (iv) equilibrium freezing, and (v) subcooling of solid. The five

stages occur in the freezing of pure substances. However, some of the stages will be changed
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or combined when freezing non-pure substances, including binary mixture and porous media.

The non-pure systems will be discussed thoroughly in the subsequent sub-section.

The stable process does not involve crystallization. The liquid cools till its freezing

point and starts to form a solid portion right afterward. As a result, there are only three

solidification stages: (i) pre-cooling of liquid, (ii) equilibrium freezing, and (iii) subcooling

of solid. The nucleation and recalescence stages in the unstable freezing process do not

occur here. That is, the effects of thermodynamics and kinetics are absent in the stable

process. An alternative way to distinguish between the stable and unstable processes can be

the ambient or surrounding temperature that prompts the solidification. If the surrounding

temperature is lower or much lower than the supercooling temperature, unstable freezing will

likely occur. Otherwise, the stable freezing process will happen. This finding was implicitly

shown in Sebastiao et al.’s experimental data [164] along with Hindmarsh et al.’s results [75]

on the solidification of pure water and sucrose aqueous droplets. A conceptual diagram for

the freezing curves of the stable and unstable processes is schematically shown in Fig. 2.3.

Stable or equilibrium process

The stable process is often referred to as the equilibrium process or macro-scale solidification

due to the absence of nucleation and recalescence happening at micro- and meso-scales. The

first stage is pre-cooling, where the liquid’s temperature drops down to the freezing point by

sensible heat without any formation of the solid phase. Once the temperature goes below its

fusion, the solid phase starts to form and both phases coexist within the domain, known as

the (equilibrium) freezing stage. During equilibrium freezing, a large amount of latent heat

is released due to the phase transition that is substantially higher than the sensible heat.

Depending on the material properties (e.g., specific heat) and operating temperatures, the

effect of sensible heat can even be neglected when predicting the freezing process [198]. A

moving interface also occurs between the solid and liquid phases, in which the latent and

sensible heats are the driving mechanisms. Lastly, the subcooling stage takes place after no
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Figure 2.3: Conceptual diagram of the stable/equilibrium and unstable/non-equilibrium
processes in terms of the temperature over time graphs (or freezing curves). The abbrevi-
ations “sol.” and “liq.” denote the solid and liquid phases, respectively. Roman numerals
represent the solidification stages: in (a), (i) pre-cooling of liquid, (ii) equilibrium freezing,
and (iii) subcooling of solid; in (b), (i) supercooling of liquid, (ii) nucleation, (iii) recales-
cence, (iv) equilibrium freezing, and (v) subcooling of solid.
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liquid remains in the domain. The solid’s temperature subcools by sensible heat and then

reaches an equilibrium point that is often the ambient temperature.

Unstable or non-equilibrium process

Unstable or non-equilibrium freezing happens due to the material and its thermal condi-

tion. There are two main categories of solids based on their crystal structures, namely

amorphous and crystalline solids. Most solids are crystalline, implying that their particles

(atoms, molecules, or ions) arrange themselves in a repetitive lattice structure that extends

over substantial distances in atomic terms. In this context, atoms can be analogous to

spheres with diameters ranging from 2 to 6 Angstroms (1 Angstrom = 10−10 meters) [6].

The formation of a crystal might necessitate the movement of atoms into the solid lattice

structure. Consequently, it is possible that the material’s temperature is reduced without

the solid formation taking place. The liquid at a temperature that is below its fusion is

called supercooled liquid, which is considered to be thermodynamics metastable.

When looking into the nucleation stage after supercooling, the creation of a small nu-

cleus happens by surpassing Gibbs free energy, constituting a spontaneous and stochastic

nucleation phenomenon occurring at a microscopic level. There are two types of nucleation

– homogeneous and heterogeneous nucleation. Homogeneous nucleation means the spon-

taneous formation and growth of small nuclei in the new phase, while the new phase is

prompted by a foreign agent (e.g., a particle or a surface) in heterogeneous nucleation [85].

The theoretical examination of nucleation traces its origins to the 1920s with Max Volmer, a

German physical chemist, who delved into the undercooling phenomenon observed in liquids

[189]. Volmer elucidated an energy barrier that a new phase must overcome for its creation

within the bulk phase. This new phase or nucleus holds less stability compared to the bulk

phase due to surface tension. Later, classical nucleation theory (CNT) was developed, con-

sisting of a cluster of nucleating particles and the bulk liquid; the kinetic process of the

nucleating particles is governed by the macroscopic principles [48]. By incorporating the ef-
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(a)

(b)

Figure 2.4: (a) Conceptual diagrams of crystal growth: Nuclei; small dendrites begin to
develop from the nuclei; dendrites continue to develop; and grain boundaries without any
dendrites (reprinted from [146]), and (b) Morphology diagram of snow crystals as a function
of temperature and water vapor supersaturation (reprinted from [105]).

fect of impurity or foreign agents on the probability of nuclei formation, both homogeneous

and heterogeneous nucleation can be predicted through the CNT.

The temperature quickly returns to the freezing point after nucleation. The stage from the

nucleation temperature to the freezing point is referred to as crystal growth or recalescence.

A crystalline interface is formed, which is non-linear and non-equilibrium [100]. The growth
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rate of this interface can be mainly influenced by three factors: thermal (or diffusive), kinetic,

and surface curvature (or Gibbs-Thompson) effects [85, 3]. A conceptual diagram for the

time evolution of crystal growth during the solidification of a pure substance, specifically

metal, is illustrated in Fig. 2.4. As can be seen, the nuclei define the origin of dendritic

growth, and the morphology changes over time. It is noted that the crystal morphology

can have a variety of shapes, including plates, needles, columns, and prisms, which are not

limited to dendrites [104, 139].

The solid phase starts to form right after the temperature returns to the freezing point,

where both solid and liquid phases coexist in the domain, known as equilibrium freezing.

The transport phenomena at this stage are the same as the above-mentioned second stage

during the stable process. A solid-liquid interface also exists that can be either sharp or

diffusive; both sensible and latent heats are released at this stage. Once all the domain

becomes solid, the subcooling stage occurs identical to the one in the stable freezing process

mentioned in Section 2.2.1.

2.2.2 Freezing in mixtures

The most significant difference between freezing in mixtures and pure substances arises from

the inclusion of solutes, altering the stages and dynamics of solidification. As depicted con-

ceptually in Fig. 2.5, freezing in mixtures (comprising binary or multi-component systems)

also involves five solidification stages, each with distinct attributes. Fundamentally, three

key aspects differentiate these processes: the degree of supercooling (or nucleation temper-

ature), freezing point, and equilibrium freezing stage. Firstly, in mixtures, the degree of

supercooling is relatively smaller compared to pure materials, resulting in a higher nucle-

ation temperature. This discrepancy occurs due to solute addition, acting as an impurity in

the supercooled liquid, thus stimulating the nucleation mechanism. Secondly, the freezing

point of mixtures is reduced compared to their corresponding pure substances, a phenomenon

termed freezing-point depression (FPD). Lastly, the depressed freezing temperature leads to
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a declining trend in the equilibrium freezing stage, illustrating the influence of solute con-

centration during the phase transition. This curvature reflects how the solute concentration

impacts the freezing process.

Temp.

Time

FPD

Pure substance

Binary mixture

(i)

(ii)

(iii)
(iv)

(v)

Figure 2.5: Conceptual diagram of solidification of pure substances and binary mixtures in
terms of the temperature over time graphs (or freezing curves). Roman numerals represent
the solidification stages (modified from [74]).

Solute segregation

When binary or multi-component systems reach equilibrium, one phase usually has a dif-

ferent composition compared to the others. At true equilibrium, there are no composition

differences within each phase, meaning their composition is consistent and matches the cor-

rect temperature. It is nevertheless rare to achieve such balance in practice because the true

equilibrium requires an extremely long-time duration even after the solid is formed. As a re-

sult, the segregation process of solutes is commonly investigated during phase change. Solute

segregation can contribute to the formation of non-equilibrium new phases and non-uniform
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concentration within the pre-existing phase, which in turn facilitates materials exhibiting

non-uniform thermo-physical and mechanical properties [13].

Segregation can be directly predicted by making assumptions, such as the existence of

true equilibrium (namely Lever Rule) and uniform local composition of solid (namely Scheil

equation) [63]. However, the basic phenomenon is the mass diffusion of solutes during freez-

ing, where solute concentration varies in the solid and liquid phase changes over time and

space. It is noted that solutes may not always be solvable in the solid phase. For instance,

in the case of freezing sucrose aqueous solution, sucrose is not soluble in ice. This implies

that the solute will be trapped in the liquid phase, as the solid propagates during freez-

ing. Moreover, segregation is an influential factor for many freezing phenomena, including

constitutional supercooling, heterogeneous nucleation, and crystallization or crystal growth

rate.

Freezing-point depression

When a nonvolatile solute, one that does not readily vaporize, is dissolved in water or other

solvents, it consistently lowers or depresses the freezing point of the solvent [33]. This

occurrence is known as freezing-point depression (FPD). For instance, while the freezing

point of water is 0◦C, the addition of sugar or salt causes the freezing point to drop below

0◦C. The degree of FPD is influenced by the solute type and concentration. During the

equilibrium freezing stage, as the concentration in the liquid phase changes over time, the

FPD also alters, resulting in a downward trend in the temperature profile, as illustrated in

Fig. 2.5. This represents a significant difference between solidification in pure substances and

binary mixtures. Figure 2.6 shows four examples of solutes, including sucrose, salt, glucose,

and hydrogen chloride, and their corresponding FPD at different concentrations.
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Figure 2.6: A graph of freezing-point depression over composition concentration for four
solutes: sucrose C12H22O11, sodium chloride or salt NaCl, α-D-glucose C6H12O6, and hydro-
gen chloride HCl (data extracted from [106]).

Water activity in aqueous systems

Both temperature changes and the addition of a solute disrupt the water structure, modifying

the nature and extent of hydrogen bonding [101]. Introducing solutes generally diminishes

mass transfer from aqueous liquid or solid phases by reducing the equilibrium vapor pressure.

This phenomenon of water interaction with solutes is commonly referred to as water activity

[50]. In the freezing process, water activity holds significance in assessing convective mass

transfer interactions with the surroundings. For instance, when an aqueous solution freezes

in ambient air, water activity measures the impact of evaporation and sublimation.
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2.3 Methodological aspect

2.3.1 Experimental methods

Experimental setup at a laboratory scale for solidification usually includes three main com-

ponents: cooling equipment, measuring instruments, and data acquisition. Firstly, cooling

equipment is essential for all solidification experiments to initiate the freezing process by

lowering the temperature. The equipment typically includes thermoelectric cooling devices

(e.g., Peltier [118]) or chillers (e.g., water-ethylene glycol bath, liquid nitrogen bath [77]),

which are employed to cool down the temperature of the substrate plate or air in contact

with the sample that needs to be solidified.

Measuring instruments are required to accurately quantify the temperature, nucleus,

crystal growth, morphology, and so on. The most common instrument for temperature

measurement is thermocouples. Standard calibration of thermocouples is mandatory be-

fore testing by identifying the device’s error margin, and the accuracy of thermocouples

varies significantly with their type (e.g., T-type, K-type) and material. Further correction

or calibration was also conducted to consider effects like thermal inertia induced by the

thermocouple [119]. Thermal cameras are also used in some experiments where the spatial

variation of temperature is of great interest. The thermal cameras are generally not as ac-

curate as thermocouples, but they preserve the sample without making any contact that

could influence solidification, e.g., to prompt heterogeneous nucleation [76]. In cases where

the characterization of nucleation and crystal evolution are important, high-speed cameras

with sufficient lighting are used for optical measurements [145]. It is noted that image data

captured by high-speed cameras may still demand significant processing, especially at meso-

and micro-scale levels. As regards data acquisition systems, data loggers and computers are

the standards for recording measurements and facilitating further analysis and visualization.

Experimental designs for solidification can be categorized based on the geometry or con-
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Table 2.1: A list of works on experimental studies based on geometry since 2000.

Category Ref.
Cartesian enclosed cavity [79, 194, 95, 67, 31, 68, 22, 129, 111, 159]

film [161]
channel [177, 190, 136]

Cylindrical inward [137, 14, 152, 61, 59]
outward vertical [108, 107]

horizontal [112, 65, 109]
inclined [175]
finned [82, 88]

Spherical suspended [77, 74, 90, 119, 207, 205]
sessile [191, 39, 86, 118, 202, 206, 208, 87, 145, 46, 37, 38, 47]
encapsulated [34, 36, 35, 180, 210, 184]

figuration of the samples: rectangular, cylindrical, and spherical geometries. The rectan-

gular configuration is a frequently investigated geometry, commonly explored within a fully

or partially enclosed cavity or channel featuring inlet and outlet flows. The solidification of

metallic alloys is often assessed within a rectangular cavity that enforces thermal gradients

from two opposing ends. Investigations may extend to include the influence of natural and

forced convection [194, 68, 159]. In the context of the freezing process in a flow channel,

this simulation mirrors various engineering applications, including metallic systems [177],

direct reactor auxiliary cooling systems [190], and crystallizers for desalination [136]. While

these typical rectangular setups can examine solidification with natural and forced convec-

tion concerning temperatures, they may fall short in the examination of crystal growth and

morphology. Recent studies addressing this limitation have reduced the liquid volume, trans-

forming it into a thin film [161, 200]. This not only stabilizes heat transfer but also facilitates

the visualization of interfacial motion at different scales, particularly during the recalescence

stage.

Solidification occurring within cylindrical or hollow geometries may exhibit either inward

or outward directions. Inward solidification is often conducted within a tube vertically placed
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into a cold water bath [137, 14, 152, 61, 59]. Challenges in such experiments may arise from

the impact of natural convection from the top and bottom, as well as mechanical vibrations

from the water bath or chiller. Outward solidification in a hollow cylinder can occur in various

orientations, including vertical [108, 107], horizontal [112, 65, 109], and inclined [175]. Some

studies also introduce fins in the hollow cylinder to enhance thermal performance [82, 88].

Experiments employing a spherical geometry represent a common approach due to their

simplicity and thermal stability, resulting in less disturbance from other machinery and

easier control and stabilization of the surrounding or substrate. Generally, three methods are

employed for droplet placement: suspending a droplet by a thermocouple, placing it sessile

on a cold surface, and encapsulating it in a spherical shell. Freezing a suspended droplet

offers advantages such as maintaining an overall spherical shape, visualizing the solidification

process (especially crystal growth through high-speed cameras [77, 74]), and studying volume

expansion during freezing. However, this method has limitations in examining different

droplet volumes and nucleation sites due to the influence of the thermocouple. Meng and

Zhang [119] recently attempted to control the nucleation site by hanging the droplet through

a copper ring.

Considerable research has been dedicated to freezing sessile droplets. By placing a droplet

on a flat [39, 86, 202, 208, 87, 46, 37, 38], patterned [206, 145], or inclined [191, 47] cold plate,

researchers can study the entire freezing process at various spatiotemporal scales, volume

expansion, wettability, and surface roughness. While the hemispherical shape of the droplet

may not always be practical for certain applications, such as cloud development and spray

freezing, it is particularly effective for aircraft icing and anti-/de-icing technologies, as the

experimental setup considers the effects of surfaces. In addition to freezing suspended and

sessile droplets, pure substances and mixtures in their liquid state can be encapsulated in a

spherical capsule or shell and exposed to cold media [34, 36, 35, 180, 210, 184], allowing for

well-controlled volume and uniformity of surface conditions (either in temperature or heat

flux).
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2.3.2 Theoretical and computational methods

Macro-scale models

The macro-scale model overlooks the impacts of supercooling, nucleation, and crystal growth,

focusing instead on transport phenomena at a macroscopic level. Typically, the macro-scale

models fall into two primary categories: explicit and implicit methods. The explicit method,

also referred to as the front-tracking method, explicitly monitors the movement of the solid-

liquid boundary during the freezing process. This boundary movement is determined through

an energy balance that accounts for both sensible and latent heat.

ρLv︸︷︷︸
latent heat

=

[
q⃗ · n⃗

]liquid
solid︸ ︷︷ ︸

sensible heat

, (2.1)

where ρ, L, v, q⃗, n⃗ are the mass density, latent heat, interface velocity, and heat flux at the

interface, respectively. By utilizing the solid-liquid moving boundary alongside the heat

equation in the solid and liquid phases, one can establish a partial differential equation

problem involving a moving boundary, often termed the Stefan problem. Exact solutions to

the Stefan problem are attainable in some semi-infinite domains under specific combinations

of boundary conditions, yet they are limited. Approximate solutions are of great interest,

which can be derived by assuming either a polynomial approximation (known as the heat-

balance integral method) or an asymptotic expansion (referred to as the perturbation method

or asymptotic analysis).

The heat-balance integral method (HBIM) involves three primary steps: (i) Introduction

of a heat penetration depth, beyond which temperatures are disregarded. (ii) Assumption of

an approximate polynomial expression for temperature, allowing determination of unknown

coefficients based on the heat penetration depth through application of boundary conditions.

(iii) Integration of the partial differential equation (PDE) over the heat penetration depth,

reducing it to an ordinary differential equation (ODE) often solvable analytically. Initially
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proposed by Goodman [64], the HBIM has undergone modifications and improvements in

contemporary literature, such as the refined integral method and combined integral method.

Caldwell and Kwan [26] provided a concise review of Stefan problems that incorporated

HBIM. Subsequently, Mitchell and Myers [124] conducted a comprehensive review specifically

focusing on HBIM’s application in solving one-dimensional Stefan problems under various

boundary conditions. The research conducted on HBIM for Stefan problems post-2020 is

summarized in Table 2.2, highlighting the current advancements in this field.

Another widely utilized and efficient approximate technique is the perturbation method,

also referred to as asymptotic analysis or the method of asymptotics. The concepts of

asymptotics trace their origins back to the eighteenth and nineteenth centuries, offering both

a mathematically formal and heuristic approach for approximating differential and integral

equations in cases where exact solutions are not available [132]. Within the scope of the

Stefan problem, this method capitalizes on the substantial latent heat released or absorbed

during phase transitions, often significantly outweighing sensible heat. Mathematically, the

Stefan number (Ste), the ratio of sensible to latent heat, is assumed to be small and much less

than unity. Consequently, an asymptotic solution is formulated in the form of a perturbation

series, with the Stefan number acting as the small perturbation parameter. For example,

the dimensionless temperature θ is represented as an asymptotic expansion:

θ ∼ θ0 + Steθ1 + Ste2θ2 + Ste3θ3 + ..., (2.2)

where θ0, θ1, θ2, and θ3 represent the zeroth, first, second, and third orders of θ, respectively.

Following the asymptotic assumption, the Stefan problem can be solved order by order,

breaking down the unsolvable problem into subproblems at each order of the asymptotic

expansion that are readily solvable. In the zeroth or leading order, particularly, the time

derivative(s) in the governing equation are omitted, resulting in a quasi-steady-state approx-

imation of the Stefan problem. Prof. James M. Hill comprehensively presented perturbation
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solutions for one-dimensional one-phase Stefan problems in his book [73]. Recent advance-

ments in asymptotic methods applied to various types of Stefan problems are cataloged in

Table 2.2.

Numerical schemes, particularly those founded on the Stefan problem and similar explicit

methodologies, necessitate an accurate tracing of the solid-liquid moving boundary. Despite

advancements [52, 154], this requirement for numerical front tracking inherently demands

finer time steps and spatial meshes to ensure precision. This renders a substantial need for

computational power and time in most existing numerical schemes. Consequently, implicit

methods, which do not explicitly trace the moving interface, have garnered significant atten-

tion in recent decades. These implicit schemes are also referred to as diffusive methods since

the resulting interface is not a sharp surface but rather a diffusive one with certain widths.

Among these schemes, commonly implemented in macro-scale models, are the apparent heat

capacity, enthalpy, volume-of-fluid, and level set methods.

The apparent heat capacity method involves an implicit representation of the phase

change interface by solving a single heat equation for both phases using effective thermo-

physical properties. This approach incorporates the abrupt changes between phases by

employing effective thermal conductivity while introducing a new term termed the “appar-

ent heat capacity” to account for the latent heat of fusion during freezing. Mathematically,

the general expression of the apparent heat capacity cp,app is the sum of the equivalent heat

capacity ceq and latent heat distribution cL(T ) [126, 174, 12]:

cp,app = ceq + cL(T ) =
1

ρ

[
ϕhcmρscp,s + (1 − ϕ)ρlcp,l

]
+ L

dϕ

dT
, (2.3)

where ϕhcm is the solid fraction. On the other hand, the enthalpy method (also known as the

enthalpy-porosity method) transforms the governing heat transfer equations into a unified

energy conservation equation in terms of enthalpy H:

∂H

∂t
= ∇ · (k∇T ), (2.4)
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where H is expressed as:

H = (1 − ϕem)

∫ T

Tsolidus

ρcp,sdT + ϕem

∫ T

Tliquidus

ρcp,ldT + ϕemρL. (2.5)

The enthalpy method was initially established by Voller and his co-workers [187, 188]. The

presence of liquidus and solidus temperatures (i.e., Tliquidus and Tsolidus) defines a mushy zone

between the liquid and solid phases, resulting in an implicit algorithm that predicts interface

motion alongside temperature distributions.

The traditional level set method (LSM) constructs a level set function ϕlsm that denotes

the signed distance function from the interface. In this representation, ϕlsm is positive in the

liquid phase and negative in the solid phase, which is mathematically described as:

ϕlsm =


+d, in the liquid phase

0, at the interface

−d, in the solid phase

(2.6)

where d is the distance from the solid-liquid interface. The objective of LSM is to appropri-

ately advance ϕlsm with the speed v at the interface, thereby implicitly storing the new front

position in ϕlsm and updating field variables (e.g., temperature T ) accordingly [43]. Similarly,

the volume-of-fluid (VOF) approach also employs a scalar function ϕvof , often termed the

fraction function, to differentiate between the phases and interface. This function can be

expressed as:

ϕvof =


0, in the liquid phase

(0, 1), at the interfacial cells

1, in the solid phase

(2.7)

It is noted that the scalar function can also be used in the level set method, which is called
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the conservative LSM [142, 143]. A transport equation is then introduced as:

∂ϕvof

∂t
+ u⃗ · ∇ϕvof = 0 (2.8)

Despite the fact that the VOF method has been widely employed for predicting interfacial

flows using fixed grids [160], it is commonly coupled with interfacial reconstruction techniques

for solidification problems, e.g., the piecewise linear interface calculation [114]. In addition

to the previously discussed implicit schemes, the phase field method (PFM) provides another

means to implicitly address interfacial dynamics. However, it is worth mentioning that the

PFM incorporates considerations of free energy density and non-equilibrium thermodynamics

[19, 58]. This method is frequently applied in situations involving unstable freezing processes,

specifically in the context of crystal growth, which will be further detailed in the following

section.

Nucleation models

Nucleation, based on a probabilistic event of the formation of the critical nucleus, is highly

stochastic. In most cases, direct observation of the critical nucleus is feasible in experi-

ments, and gathering detailed information about its size or structure is challenging [163].

Although many multi-stage works in the literature take the nucleation temperature as a pri-

ori [44, 77, 74, 49, 181], it is of paramount importance to estimate the nucleation temperature

and time for accurate predictions of freezing processes. Primarily, there are two modeling

approaches for predicting nucleation: thermodynamic and kinetic methods [45]. The ther-

modynamic approach assesses nucleation conditions, specifically overcoming the free-energy

barrier, employing the classical nucleation theory (CNT). In contrast, the kinetic approach

delves into cluster dynamics and explores particle/molecule interactions based on conser-

vation laws. While the CNT and cluster dynamics can be interconnected and yield similar

results, the vast majority of multi-stage and multi-scale solidification models in the literature
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opt for the CNT under the thermodynamic approach due to its simplicity.

The CNT, whether applied to homogeneous or heterogeneous nucleation, begins by esti-

mating the nucleation rate. Subsequently, it establishes the nucleation time and temperature

based on specific criteria. The nucleation rate is mathematically represented by an Arrhenius

equation, comprising a prefactor and an exponential factor:

J(T ) = J0 exp

[
− J1(T )

]
= J0 exp

[
− ∆G∗

kBT

]
(2.9)

In cases where experimental data is available (e.g., nucleation time and temperature), one can

directly correlate the prefactor and exponential factor and develop an empirical equation for

a specific material [75, 164]. This method is effective and practical, albeit lacking a physical

foundation. Alternatively, a physics-based approach involves expanding the terms in the

equation. Thus, the prefactor can be expressed as [183, 178]:

J0 = nZf = n

√
2σ/(πkBT )

3i∗2/3︸ ︷︷ ︸
homogeneous
part of Z

√
4

2 + ζhet︸ ︷︷ ︸
heterogeneous
part of Z

Ai∗2/3n4/3D︸ ︷︷ ︸
f

(2.10)

and the free-energy barrier with the critical nucleus is written as [131]:

∆G∗ =
16πσvmol

3(kBT lnS)2
(2.11)

Once the nucleation rate over temperature or time is known, the determination of the oc-

currence of nucleation—referred to as the nucleation criterion—becomes imperative. Within

existing literature, two prevalent forms of the nucleation criterion have been employed. As-

sessing the cumulative probability Pn is more broadly applicable based on the cooling rate

β, which is expressed as [166, 167]:

Pn = 1 − exp

[
− 1

β

∫ T

T̃=Tf

J(T̃ )dT̃

]
(2.12)
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When the cooling rate is not extremely high, theoretical studies also suggest that the number

of critical nuclei should be 1 [178]. In this case, quantifying the count of critical nuclei is

more practical to implement; that is,

NV =

∫ t

t̃=0

(V0 − V ∗)J(t̃)dt̃ (2.13)

While CNT is capable of predicting the supercooling degree or nucleation temperature, the

Arrhenius equation cannot demonstrate the nucleation site(s), i.e., spatial variation of J

caused by the microstructure inhomogeneities is missing. One solution to address this issue

is the use of the phase field method (PFM). PFM describes phases through continuum

fields, and spatiotemporal evolution is driven by differential equations, such as the Allen-

Cahn equation (without solute diffusion) and Cahn-Hilliard equation (with solute diffusion)

[19]. It is primarily used for crystal growth, which will be discussed later in this subsection,

but it can incorporate CNT to consider phase inhomogeneities and some works have been

done in the fields of binary alloys [169, 195, 168].

Recalescence models

The growth rate, morphology, and spacing of crystals heavily depend on the behavior of

the tip region [56]. Both temperature and concentration fields can influence the diffusion

process at the tip, making the undercooling temperature and shape of the tip particularly

significant. Papapetrou [80] proposed a parabolic dendrite tip representing a steady-state

shape. Subsequently, Ivantsov [83] mathematically proved Papapetrou’s theory using a com-

plex Stefan problem with an isothermal interface (i.e., Ti ≡ Tf). This verification produced

a valid steady-state solution, demonstrating the thermal effect of the undercooling temper-

ature ∆T = Tf − Tnuc. Ivantsov’s solution is commonly known as the Ivantsov function

Iv(Pe):

Iv(Pet) = Pet exp(Pet)Ei(Pet) (2.14)
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where the thermal Peclet number is Pet = vR/(2α) In addition to the thermal field, kinetics,

surface curvature, and composition can also impact undercooling. The general expression of

the total undercooling, applicable to both pure substances and mixtures, is as follows:

∆T = ∆Tt + ∆Tk + ∆Tσ + ∆Tc (2.15)

While the thermal undercooling is calculated by the Ivantsov function, i.e., ∆Tt = Iv(Pe)L/cp,

the kinetic undercooling is the temperature difference between the fusion and interfacial

temperatures, i.e., ∆Tk = Tf − Ti. This can be analyzed based on the assumption of linear

attachment kinetics given by v/µ, where µ is the kinetic undercooling parameter [130]. The

linear assumption might not be universally applicable to all substances, as evidenced by stud-

ies using molecular dynamics (MD) simulations on materials like Lennard-Jones liquids [24]

and silicon [66]. These simulations have revealed inconsistencies in the interfacial velocity.

A more precise representation for kinetic undercooling, known as the Wilson-Frenkel model,

is present in the current literature. This model aligns well with the temperature-dependent

interfacial velocities identified through MD simulations [157]. The Wilson-Frenkel model is

written as [85, 193]:

v =
6d0D(Ti)

2ασ∗σk

[
exp

(
− Lmol/NA

kBTf

)
− exp

(
− Lmol/NA

kBTi

)]
. (2.16)

With the total undercooling expression in Eq. (2.15), v and Ti can be numerically found

based on the two algebraic equations. Regarding undercooling caused by surface curvature,

the normal fusion point along a curved interface is depressed compared to that on a planar

surface, meaning that the undercooling diminishes for flat interfaces. Owing to the Gibbs-

Thomson effect, it can be mathematically represented as [130]:

∆Tσ =
1

R

σsl

∆S
(2.17)
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where ∆S is the entropy of fusion per unit volume. The tip radius R can be further elu-

cidated using the Mullins-Sekerka instability length [3]. Lastly, constitutional undercooling

arises from the gradient in solute concentration affected by the initial solute composition c0,

solute partition coefficient k, and equilibrium liquidus slope m [179, 76]. Its mathematical

representation is as follows:

∆Tc = (Ti − T∞) −m(ci − c0) = mc0
(k − 1)Iv(Pec)

1 − (k − 1)Iv(Pec)
(2.18)

where Pec is the compositional Peclet number given by vR/(2D). In the literature, the

thermal undercooling is often called the LMK model established by Langer and Muller-

Krumbhaar [100, 99]. The complete undercooling formulation with solutes is known as the

LKT model analyzed by Lipton, Kurtz and Trivedi [179].

While employing the total undercooling for calculating crystal growth velocity proves

effective, it lacks the ability to provide spatial insight into dendritic growth during the

recalescence stage. Modeling approaches (explicit and implicit schemes) designed for macro-

scale freezing can be adapted for crystal growth by adjusting the interface to simulate th

evolution of the dendritic tip. Jaafar et al. [84] conducted a comprehensive review of numer-

ical simulations concerning dendritic growth during solidification. The phase field method

(PFM) stands out as the most popular numerical framework. PFM utilizes a scalar order

parameter or phase field variable, ϕpfm to represent the crystal, supercooled liquid, and in-

terfacial transition, in a similar fashion as the VOF’s fraction function in Eq. (2.7). This

order parameter enables the formulation of a free energy function expressed as:

F =

∫
V

[
f(ϕpfm, c, T ) +

ε2ϕ
2
|∇ϕpfm|2 +

ε2c
2
|∇c|2

]
dV (2.19)

Here, f(ϕpfm, c, T ) is the free energy density, while ε2ϕ and ε2c are the gradient energy coeffi-

cients related to the interface and solute. The effects of anisotropy and supercooling degree

can also be incorporated into these gradient energy coefficients. There are two primary
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formulations of PFM based on the presence of solutes [19]:

∂ϕpfm

∂t
= −Mϕ

[
∂f

∂ϕpfm

− ε2ϕ∇2ϕpfm

]
(2.20)

∂c

∂t
= ∇ ·

[
Mcc(1 − c)∇

(
∂f

∂c
− ε2c∇2c

)]
(2.21)

where Mϕ and Mc represents the mobilities for ε2ϕ and ε2c . It is noted that Eq. (2.20) and

Eq. (2.21) are known as the Allen-Cahn and Cahn-Hilliard equations, respectively. The

computation of PFM is rather straightforward compared with other models, as it neither

tracks the nonlinear interface explicitly nor requires a fine approximation of mesh elements.

Back in 1990s, Kobayashi developed finite-difference schemes to numerically solve the phase

field equations in 2D [92] and 3D [93]. A systematic guideline for programming PFM was

recently provided in Biner’s book [17].

Multi-stage and multi-scale models

While multi-stage models can effectively simulate three-stage stable freezing processes em-

ploying macro-scale methods, they are more commonly associated with five-stage unstable

freezing, which includes supercooling, nucleation, and crystal growth at multiple scales.

The two sensible heat stages, i.e., liquid supercooling and solid subcooling, can be modeled

through the heat equation or energy balance without accounting for the significant release

of latent heat. Furthermore, explicit or implicit schemes within macro-scale models can

simulate the equilibrium freezing stage and predict the interfacial motion. However, special

attention is needed for accurately modeling the nucleation and recalescence stages at the

micro- and meso-scales, respectively.

Several notable contributions on the multi-stage and multi-scale solidification models were

summarized in Table 2.3. Hindmarsh et al. [77] pioneered a multi-stage model for freezing

water droplets, establishing a numerical model based on heat balance and the Stefan con-

34



T
ab

le
2.

3:
A

li
st

of
w

or
k
s

on
m

u
lt

i-
st

ag
e

an
d

m
u

lt
i-

sc
al

e
so

li
d

ifi
ca

ti
on

fr
am

ew
or

k
s

si
n

ce
20

00
.

R
e
f.

P
ro

b
le
m

F
ra

m
e
w
o
rk

S
o
lv
e
r

A
c
c
u
ra

c
y

H
in
d
m
a
rs
h
et

a
l.
[7
7]

In
w
ar
d

so
li
d
ifi
ca
ti
on

o
f

a
su
sp
en

d
ed

w
at
er

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

h
ea
t
b
al
an

ce
an

d
0D

cr
y
st
al

gr
ow

th
N
u
m
er
ic
al

A
ll

fi
ve

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
p
er
im

en
ts
.

H
in
d
m
a
rs
h
et

a
l.
[7
4]

In
w
ar
d

so
li
d
ifi
ca
ti
on

of
a

su
sp
en

d
ed

su
cr
os
e

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

h
ea
t
b
al
an

ce
an

d
S
ch
ei
l
eq
u
at
io
n

N
u
m
er
ic
al

E
q
u
il
ib
ri
u
m

fr
ee
zi
n
g

an
d

so
li
d

su
b
co
ol
in
g

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
p
er
im

en
ts
.

D
eh

gh
a
n
i-
S
a
n
ij
et

al
.
[4
9]

In
w
a
rd

so
li
d
ifi
ca
ti
on

of
a
sa
li
n
e
d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

h
ea
t
b
al
an

ce
w
it
h
S
te
fa
n
co
n
d
it
io
n
an

d
em

-
p
ir
ic
al

fr
ee
zi
n
g
p
oi
n
t

H
y
b
ri
d

an
al
y
ti
ca
l-

n
u
m
er
ic
al

A
ll
st
ag

es
w
er
e
va
li
d
at
ed

ag
ai
n
st

ex
-

it
in
g
ex
p
er
im

en
ts

[7
7]
.

M
en

g
a
n
d
Z
h
a
n
g

[1
1
9
]

In
w
ar
d

so
li
d
ifi
ca
ti
on

o
f

a
su
sp
en

d
ed

w
at
er

d
ro
p
le
t
(a
tt
ac
h
ed

w
it
h

a
co
p
p
er

ri
n
g
)

M
u
lt
i-
st
ag

e
v
ia

3D
en
th
al
p
y

m
et
h
o
d

an
d

C
N
T
-b
as
ed

h
et
-

er
og

en
eo
u
s
n
u
cl
ea
ti
on

N
u
m
er
ic
al

A
ll

fi
ve

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
p
er
im

en
ts

at
d
iff
er
en
t
op

-
er
at
in
g
co
n
d
it
io
n
s.

S
eb

as
ti
a
o
et

a
l.
[1
64

]
In
w
a
rd

so
li
d
ifi
ca
ti
on

of
a
su
cr
o
se

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

0D
h
ea
t
b
al
-

an
ce

m
o
d
el

an
d
F
P
D

N
u
m
er
ic
al

A
ll

fi
ve

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
p
er
im

en
ts

at
d
iff
er
en
t

co
n
ce
n
tr
at
io
n
s
[7
4]
.

C
ar
va
lh
o
et

a
l.
[3
2]

In
w
ar
d

so
li
d
ifi
ca
ti
on

of
a
p
u
re

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

1D
h
ea
t
eq
u
a-

ti
on

w
it
h
S
te
fa
n
co
n
d
it
io
n
an

d
0D

cr
y
st
al

gr
ow

th

H
y
b
ri
d

an
al
y
ti
ca
l-

n
u
m
er
ic
al

A
ll

fi
ve

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
is
ti
n
g
ex
p
er
im

en
t
[7
7]
.

V
an

d
er

S
m
a
n
et

a
l.
[1
81

]
S
ol
id
ifi
ca
ti
on

of
a

sl
ab

w
it
h
su
cr
o
se

so
lu
ti
on

M
u
lt
i-
sc
al
e
v
ia

2D
h
ea
t
eq
u
a-

ti
on

an
d
P
F
M

fo
r
re
ca
le
sc
en

ce
N
u
m
er
ic
al

2D
cr
y
st
al

m
or
p
h
ol
og

y
w
as

ve
ri
fi
ed

w
it
h
th
eo
re
ti
ca
l
d
at
a.

A
k
h
ta
r
et

a
l.
[3
]

In
w
ar
d

so
li
d
ifi
ca
ti
on

o
f

a
su
sp
en

d
ed

w
at
er

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

1D
h
ea
t
eq
u
a-

ti
on

w
it
h

S
te
fa
n

co
n
d
it
io
n
,

C
N
T
-b
as
ed

h
et
er
og

en
eo
u
s

n
u
cl
ea
ti
on

,
an

d
1D

cr
y
st
al

gr
ow

th

S
em

i-
an

al
y
ti
ca
l

A
ll

fi
ve

st
ag

es
w
er
e

va
li
d
at
ed

ag
ai
n
st

ex
is
ti
n
g
ex
p
er
im

en
ts

at
d
if
-

fe
re
n
t

op
er
at
in
g

co
n
d
it
io
n
s

[7
7,

11
9]
.

M
en

g
a
n
d
Z
h
a
n
g
[1
2
0]

In
w
a
rd

so
li
d
ifi
ca
ti
on

o
f
a

m
ic
ro
-s
iz
ed

w
at
er

d
ro
p
le
t

M
u
lt
i-
st
ag

e
v
ia

3D
en
th
al
p
y

m
et
h
o
d

an
d

C
N
T
-b
as
ed

h
et
-

er
og

en
eo
u
s
n
u
cl
ea
ti
on

N
u
m
er
ic
al

E
ff
ec
t
of

si
n
gl
e
an

d
d
ou

b
le

n
u
cl
e-

at
io
n
si
te
s
w
as

ex
p
lo
re
d
.

35



Figure 2.7: Flowchart of a semi-analytical, five-stage solidification framework for droplet
freezing (reprinted from [3]).

dition. They validated their predictions against experimental data, capturing four distinct

solidification stages. Later, their model was extended to simulate sucrose droplets, account-

ing for freezing-point depression via the Scheil equation, which was in good agreement with

experimental results across different concentrations [74]. Meng and Zhang [119] presented
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a 3D numerical simulation for droplet solidification using the enthalpy method, considering

heterogeneous nucleation based on CNT. Their model was validated against experiments

under various operating conditions, and an extension for freezing micro-sized droplets was

explored, studying the effects of single and double nucleation sites [120].

Akhtar et al. [3] developed a semi-analytical, five-stage solidification model incorporat-

ing heterogeneous nucleation, interface kinetics, and surface curvature effects. They utilized

exact solutions to 1D heat equations and perturbation solutions to one-phase Stefan prob-

lems. Validation against multiple experiments was conducted, followed by gradient-based

optimization of the Arrhenius-type equation and modified Wilson-Frenkel model for recales-

cence [5]. The computation of Akhtar et al.’s multi-stage framework is shown in Fig. 2.7.

Much less time has been spent on comprehensive multi-scale solidification frameworks in the

literature. Van der Sman [181] developed a numerical framework encompassing both macro-

scopic and mesoscopic scales, utilizing the PFM (specifically the Cahn-Hilliard equation) to

simulate solidification. They incorporated scale separation and cellular automaton rules to

address solute trapping for freezing sucrose solutions, which showed close agreements with

the theoretical finger profile to the dendritic tip.

2.4 Applied aspect

2.4.1 Applications to natural sciences

Atmospheric icing

Freezing occurs naturally in the atmosphere due to temperature differences across the fusion

point. This phenomenon, collectively termed atmospheric icing, has been extensively studied

in the literature.

• Frost accumulates when moist air contacts a cold surface below the water triple point

and air dew point. Experimental setups like direct-flow and circulation-flow air tunnels
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face challenges in accurately controlling air temperature and humidity [173]. The

literature details theoretical models and empirical correlations, particularly for flat

surfaces, summarized by Leoni [102].

• Snow and freezing rain are also types of atmospheric icing. Snow, whether dry or

wet, comprises ice/snow crystals falling in symmetrical patterns, influencing various

environmental and meteorological aspects [104]. Freezing rain occurs when the snow

melts into rain in an above-freezing layer of air, then turns into supercooled freezing

rain upon descending into sub-freezing temperatures [15].

• In-cloud icing, which includes soft and hard rimes as well as glaze [147], happens when

an unheated substance is exposed to supercooled water droplets at temperatures below

freezing. It is prevalent in elevated mountainous regions, lasting for days or even weeks,

often accompanied by strong winds [140]. The ice accumulation can lead to instabilities

and damage to infrastructure, such as power networks [55], wind turbines [98], and

aircraft [30].

Permafrost

Approximately a quarter of the Northern Hemisphere and around 17% of the Earth’s exposed

land surface is covered by permafrost, frozen ground that maintains temperatures at or below

0°C for a minimum of two consecutive years [18]. Within permafrost regions, the upper

layer, known as the active layer, undergoes seasonal thawing in summer and refreezing in

winter, ranging from several decimetres to over a meter in depth [53]. Figure 2.8 provides an

illustrative schematic depicting seasonal temperature profiles within permafrost areas. The

expansion of the active layer due to climate warming significantly impacts the carbon and

nutrient cycles within permafrost soils. This can lead to the permafrost carbon feedback,

potentially releasing greenhouse gases upon permafrost thawing, thus exacerbating global

warming [162, 182].
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Figure 2.8: Conceptual diagram of vertical temperature profiles in permafrost, including
both summer and winter seasons (reprinted from [182]).

While a widely used simple model predicts active layer thickness using a solution derived

from a 1D Stefan problem [96], accurate forecasts require a fundamental understanding of

the interactions between various physical processes: freeze-thaw cycles, fluid flow, structural

changes, and carbon emissions within porous media. Current research within the literature

extensively employs multi-physics models in porous media, such as thermo-hydro-mechanical

(THM) models [51, 69]. These frameworks also play a critical role in developing thermal

energy systems designed to prevent permafrost from thawing under today’s changing climate,

notably artificial ground freezing, discussed further in subsequent subsections.

39



2.4.2 Applications to engineering

Phase change materials

Phase change materials (PCMs) undergo the solid-liquid phase transition, a.k.a., the freeze-

melt cycle, within a specific temperature range. When transitioning from liquid to solid,

PCMs release a significant amount of latent heat to the surroundings and reorganize into a

solid form. Conversely, during the melting process, they absorb energy from their surround-

ings and loosen the atomic bounds for liquid [57]. These materials can be classified into

three main categories: organic PCMs (e.g., paraffins and fatty acids), inorganic PCMs (e.g.,

salt hydrates and metallic), and eutectic PCMs (e.g., mixtures of organic and/or inorganic

PCMs) [153].

Over the past decades, PCMs have shown promise in latent thermal energy storage

(LTES). In comparison to the commonly used sensible thermal energy storage using mate-

rials like water or rock beds, LTES are not heavy and bulky in size, offering higher energy

storage density within a smaller temperature interval. Despite great advantages, there are

practical hurdles arise when applying LTES using PCMs, such as low thermal conductivity,

density/volume changes, segregation, and supercooling during phase transition [54]. Conse-

quently, understanding and simulating the intricate multiphysics and multiscale behaviors

of solid-liquid phase changes, including solidification, becomes imperative.

Spray freezing

Spray freezing involves the atomization of water into a sub-zero air environment, leading to

the solidification of liquid water into ice. This process finds applications in various domains,

including food [81] and pharmaceutical [165] drying, seawater desalination [110], mine waste

water decontamination [16], mine heating [2, 125], and ice slurry production [60]. For in-

stance, Figure 2.9 depicts a schematic illustrating the role of a droplet in the spray freezing

process. The substantial release of latent heat during solidification warms the incoming

40



Figure 2.9: Conceptual diagram of a droplet during the spray freezing process (reprinted
from [4]).

sub-arctic air, resulting in warmer outlet air suitable for mine heating. In regions with cold

climates and a need for heating, spray freezing proves to be an effective, economical, and

sustainable solution.

To enhance and optimize spray freezing technology, a comprehensive understanding of

droplet solidification in both pure substances and mixtures is crucial [1]. Existing literature

predominantly focuses on experimental studies involving the freezing of suspended droplets

[77, 76, 119], capturing the five-stage freezing process [49, 3]. Furthermore, multi-stage mod-

els for droplet solidification have been developed for various solutions (e.g., pure water and

aqueous solution [197]), while assuming a perfect spherical shape without volume expansion.

Artificial ground freezing

Artificial ground freezing (AGF) is a geotechnical support method used to create a frozen

area around freezing pipes. This process enhances and stabilizes the ground structure while

restricting groundwater flow. It can prevent shaft sinking [209], groundwater seepage [196],

hazardous wastes [9], soil contamination [103], and permafrost thawing [7]. Generally, AGF

operates by cooling the ground below the groundwater’s freezing point via freezing pipes,

which, compared to other geotechnical methods, offers versatility across project scales and
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Figure 2.10: Conceptual diagram of a representative elementary volume during the AGF
process: (a) contains sand particles, water, ice, and a mushy zone for the solid-liquid inter-
face; (b) shows different forms of liquid fractions for the mushy zone (reprinted from [10]).

ground types. Meanwhile, it does not introduce any hazardous substances to the environment

[10].
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The AGF process exhibits complex transport phenomena across multiple and interac-

tive physical fields, including heat transfer, hydraulic flow, structural changes, and species

diffusion. The primary focus lies on understanding freezing in porous media. Figure 2.10

demonstrates a representative volume during AGF involving sand particles, water, ice, and a

mushy zone representing the solid-liquid interface, along with various liquid fractions within

the mushy zone. While most experiments in the literature consisted of an insulated tank

filled with soil and freezing pipes installed in the center [186, 8, 211], modeling freezing in

porous media often assumed local thermal equilibrium and volume-averaged thermophysical

properties [150, 185, 8, 199].

2.5 Conclusion

In this review, we presented an in-depth examination of the contemporary advancements in

the freezing process, including fundamental physical phenomena, experimental and math-

ematical methodologies, and diverse applications in both natural sciences and engineering

domains. Despite its ostensibly simple nature as a phase transition from liquid to solid,

freezing unveils complex transport phenomena with substantial implications in various sci-

entific and engineering contexts, making it a focal point of current research endeavors in the

past decades. Some major contributions to the freezing process and directions of future work

are summarized in the following subsections.

2.5.1 Fundamentals

The fundamental understanding of freezing on both pure substances and mixtures has been

expounded upon, elucidating stable and unstable processes, solidification stages at macro-,

meso-, and micro-scales, and the influence of impurities or solutes on freezing dynamics.

Key concepts such as supercooling degree, nucleation mechanisms, crystal growth velocity,

undercooling at the dendritic tip, freeze-point depression (FPD), water activity, and solute
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segregation have been investigated in the literature.

Recent research has concentrated on unfolding meso- and micro-scale phenomena during

unstable freezing, specifically focusing on crystal growth, nucleation, and temperature/con-

centration changes in pure solutions and mixtures. While advancements in these phenomena

have primarily centered around temperature/freezing curves and solute concentrations over

time, multi-scale analyses with spatiotemporal effects, despite the establishment of theories

like Classical Nucleation Theory (CNT), remain recondite. Addressing temporal and spatial

effects, such as the location and number of nucleation sites and crystal morphology, and

their impact on temperature and concentration fields, necessitates further exploration.

2.5.2 Methodology

Laboratory experiments, theoretical analyses, and computational frameworks have been in-

strumental in characterizing and predicting the freezing process. Despite the extensive efforts

in experimental setups of varying geometries, each design is inherently limited in capturing

specific aspects of freezing dynamics. The choice of methodology, therefore, requires careful

consideration aligned with the research purpose.

Mathematical frameworks such as the Stefan problem, apparent heat capacity method,

enthalpy method, level set Method (LSM), volume-of-fluid (VOF), and phase field method

(PFM) have been developed for tracking the solid-liquid interface, offering macro-scale pre-

dictions, mostly on iterative implicit models facilitate estimations. Computationally efficient

models are still in great demand, particularly in cylindrical geometries. Additionally, nu-

cleation and crystal growth present daunting challenges, with CNT being fundamental but

entailing advancements to address stochastic, temporally, and spatially dependent events.

Non-uniform crystal morphology with a non-linear growth rate also requires further explo-

ration.
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2.5.3 Applications

The applications of freezing extend across atmospheric phenomena, from frosting to in-cloud

icing and from snow to freezing rain, influencing climatic conditions and atmospheric or

underground events. With the increasing global temperatures and heightened possibilities

of extreme weather events, integrating the freezing process into regional climate models is

recommended for enhanced resolution and forecasting capabilities.

Beyond natural sciences, freezing plays a pivotal role in the energy sector through the

engineering of novel materials and thermal systems such as phase change materials (PCMs),

spray freezing, and artificial ground freezing (AGF). PCMs and spray freezing technologies

leverage latent heat release for effective energy storage and heating systems, while AGF

employs ground freezing for hydraulic sealing in geotechnical support. All these engineering

applications have shown their effectiveness and utilities in mining and civil projects. The

utilization of cold energy in northern regions, where cold temperatures are abundant and

renewable, holds particular promise for promoting sustainability. However, the technologies

related to cold energy are nascent without sufficient pilot projects to prove the concept,

which grants numerous opportunities for future research and industrial development in the

energy sector.
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[183] H. Vehkamäki, A. Määttänen, A. Lauri, I. Napari, and M. Kulmala. The heterogeneous

zeldovich factor. Atmospheric Chemistry and Physics, 7(2):309–313, 2007.

[184] M. P. Vikram, V. Kumaresan, S. Christopher, and R. Velraj. Experimental studies

on solidification and subcooling characteristics of water-based phase change material

(pcm) in a spherical encapsulation for cool thermal energy storage applications. Inter-

national Journal of Refrigeration, 100:454–462, 2019.

[185] M. Vitel, A. Rouabhi, M. Tijani, and F. Guérin. Modeling heat transfer between
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Chapter 3

Development of analytical solution for a two-
phase Stefan problem in artificial ground freez-
ing using singular perturbation theory
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Preface (Bridging Text)

Artificial ground freezing (AGF) is a geotechnical support method that has been widely uti-

lized due to its reliability and compatibility with a broad range of ground types. In mining

engineering, AGF can be applied to stabilize ore deposits, protect underground infrastruc-

ture, seal hazardous waste, and prevent permafrost from thawing. In Canada, AGF has

been implemented in the Cigar Lake Mine, a large high-grade underground uranium mine

in Saskatchewan.

The process of AGF involves complex transport phenomena that are fundamentally re-

lated to macro-scale solidification in porous media. The literature is rife with numerical

modeling of AGF; the two commonly used methods are the apparent heat capacity and

enthalpy methods. The two-phase Stefan problem is one of the few analytical methods for

macro-scale solidification, which implicitly tracks the solid-liquid moving boundary during

phase transition. However, the analytical solutions are limited for two-phase Stefan prob-

lems, particularly in cylindrical coordinates, but they can rapidly estimate the non-linear

moving interface and temperature profile.

In this chapter, we developed an analytical solution for understanding macro-scale equi-

librium solidification in porous media, providing insights into estimating the freezing front

and ground temperature in AGF. By employing the singular perturbation method, a two-

phase Stefan problem within an annulus was solved; two temporal scales were constructively

separated. Additionally, the method of volume averages was utilized to characterize the

effective thermophysical properties of the porous media.

The outcome of this chapter provided a rule-of-thumb thermal prediction of AGF without

any requirements for computational power and software expertise, which in turn facilitated

the industrial design and optimization of AGF in mines. Meanwhile, from a fundamental

aspect, this research contributed a singular perturbation solution to two-phase Stefan prob-

lems in cylindrical coordinates. The findings and discussions in this chapter were published
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in the peer-reviewed journal article mentioned below.

M. Xu, S. Akhtar, A. F. Zueter, V. Auger, M. A. Alzoubi, and A. P. Sasmito. De-

velopment of analytical solution for a two-phase Stefan problem in artificial ground

freezing using singular perturbation theory. Journal of Heat Transfer, 142(12):122401,

2020.

Abstract

Artificial ground freezing (AGF) has historically been used to stabilize underground struc-

ture. Numerical methods generally require high computational power to be applicable in

practice. Therefore, it is of interest to develop accurate and reliable analytical frameworks

for minimizing computational cost. This paper proposes a singular perturbation solution

for a two-phase Stefan problem that describes outward solidification in AGF. Specifically,

the singular perturbation method separates two distinct temporal scales to capture the sub-

cooling and freezing stages in the ground. The ground was considered as a porous medium

with volume-averaged thermophysical properties. Further, Stefan number was assumed to

be small, and effects of a few site-dependent parameters were investigated. The analytical

solution was verified by numerical results and found to have similar conclusions yet with

much lesser computational cost.

Keywords: artificial ground freezing, Stefan-like problems, singular perturbation, porous me-

dia, outward solidification

68



3.1 Introduction

Artificial ground freezing (AGF) is a construction technique in underground mines and tun-

nelling projects to provide temporary support for underground structures through freezing

saturated soil, making it less susceptible to water seepage [35, 5]. There has been grow-

ing interest in exploring the complex phenomena in AGF by using either experiments or

mathematical modeling over the past decades. Recently, many researchers have conducted

laboratory-scale experiments [25, 4] and validated numerical models [2, 3, 34, 45, 33]. These

experimental and numerical frameworks can be time-consuming and computationally ex-

pensive. Consequently, applying experimental and numerical methods cannot offer rapid

assessment and rule-of-thumb decision making in AGF. Analytical models, on the other

hand, are complicated to establish due to the nonlinear moving boundary that describes

phase change. However, corresponding solutions are straightforward to compute after com-

prehensive mathematical formulations.

Many analytical approaches of freezing problems are taken by assuming that the solid

phase is initially at the fusion temperature, namely one-phase Stefan problems. The prob-

lems with semi-infinite domains often exist similarity solutions [11, 1] and those with finite

domains can be approximated by perturbation series [18, 26] and heat balance integral

method [17, 40, 10, 27]. Over the past decades, there had also been considerable analytical

frameworks in two-phase Stefan problems, where the domain does not start at the fusion tem-

perature. Singular perturbation theory uses two or more asymptotic expansions to capture

the initial condition of two-phase problems [31]. According to this theory, many problems

were solved by assuming small Stefan numbers in rectangular [38, 8], inward spherical [22]

and inward cylindrical solidification [19, 21]. Moreover, Kummer’s function (also known as

confluent hypergeometric function) were applied on semi-infinite domains with variable la-

tent heat in two-phase problems [43, 6] extended from one-phase solutions [37, 36, 44]. Apart

from the aforementioned fully analytical frameworks, alternative approaches are to partially
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utilize numerical schemes on the nonlinear moving interface [12, 29] or to build multiple

thermal layers coupled with iterations [24]. In addition, analytical solutions on these Ste-

fan problems have also been vastly applied in other engineering fields, such as solidification

of binary alloys [16, 8], thermal management of lithium-ion batteries [23, 42], heaters for

additive manufacturing [13], nanoparticles [41, 15] and tissue engineering [28, 30].

To date, very few studies have been published in the literature that developed analytical

solutions to a two-phase Stefan problem of porous media in finite annular domains. Jiji

and Weinbaum’s work [19] applied singular perturbation theory for the inward solidification

process on a set of boundary-fixing equations. However, some of these boundary-fixing for-

mulations were complicated such that less information was extracted in the final solution. It

is therefore vital to refine this work and extend it to porous media that practically facilitates

thermal design and operations of AGF.

This paper proposes an asymptotic solution for a two-phase Stefan problem that models

outward solidification process in porous media over a finite annular region using singular

perturbation theory. The singular perturbation theory incorporates two distinct temporal

scales with physical scaling analysis, which in turn describe both subcooling and freezing

stages during phase change. Specifically, the initial (i.e., not at the fusion temperature) and

quasi-steady state behaviors were captured in the asymptotic solution by assuming small

Stefan number. Since the ground in AGF is considered as porous media, this assumption

of small Stefan number naturally appears. Consequently, thermophysical properties of the

ground can be obtained by the method of volume averaging. Furthermore, a numerical model

based on the enthalpy method in porous media is also conducted to verify the presented

analytical solution.
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Figure 3.1: Schematic diagram: a) A three-dimensional view of AGF system with magnified
frozen and unfrozen ground, and b) A cross-sectional view of AGF system. Additionally,
three materials are shown in the magnified view of frozen and unfrozen ground: sand particles
in brown, water in peach fade, and ice in blue.

3.2 Analytical modeling

In this section, a new analytical framework of a two-phase Stefan problem was developed in

the concept of AGF. The two-phase Stefan problem was firstly formulated. Corresponding

thermophysical properties were then calculated based on the method of volume averaging

in porous media. Lastly, singular perturbation theory was applied in two temporal scales to

forge an asymptotic solution to the problem.

3.2.1 Formulation

The outward freezing problem considered is schematically shown in Figure 3.1. The ground

body (i.e., the annular space) is initially filled with unfrozen ground and starts at a uniform

temperature Tinit, which is higher than the fusion temperature Tf . Consequently, the un-

frozen ground is at liquid state in the beginning. A freeze pipe located at the inner surface

r = b is suddenly activated at time t = 0. The coolant temperature Tb is then maintained
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for time t > 0. Therefore, the unfrozen ground starts to solidify from r = b, and a frozen

ground (i.e., at solid state) is now involved in the domain. An axially symmetric interface

that separates the unfrozen and frozen grounds moves in the positive r direction and stays

at the fusion temperature Tf . This formulation can also be described as a classical two-

phase Stefan problem, where the system ends once the moving interface reaches the outer

radius ri = a in finite domains. Physically, the classical two-phase Stefan problem interprets

subcooling and freezing stages during phase change.

For the purpose of mathematical simplification, the following assumptions are made: i)

The thermophysical properties in each phase are uniform and remain constant; ii) There is

no energy generation as the heat conducts; iii) Volumetric change due to changes in density

is negligible; and iv) Natural convection in the unfrozen phase is also negligible because of

low Rayleigh number and Darcy number in porous media.

The heat conduction equations for the frozen and unfrozen phases are

∂Ts

∂t
= αs

(
∂2Ts

∂r2
+

1

r

∂Ts

∂r

)
, b < r < ri(t), t > 0;

∂Tℓ

∂t
= αℓ

(
∂2Tℓ

∂r2
+

1

r

∂Tℓ

∂r

)
, ri(t) < r < a, 0 ≤ t < tc,

(3.1)

where T , α, r, and t are the temperature [K], thermal diffusivity [m2/s], radial coordinate

[m], and time [s], respectively. a and b are the outer and inner radii [m]. The subscripts s

and ℓ represent the frozen ground (solid phase) and unfrozen ground (liquid phase). tc is

the critical time when the ground completes freezing [s], also referred as the total freezing

time of the ground. Further, the moving boundary interface is described based on the energy

balance from the frozen and unfrozen control volumes. In this energy balance, both sensible

and latent heat are considered. This condition at the moving boundary interface, also known

as the Stefan condition, is

ks
∂Ts

∂r

∣∣∣∣
r=ri(t)

− kℓ
∂Tℓ

∂r

∣∣∣∣
r=ri(t)

= ρsL
dri
dt

, 0 ≤ t < tc, (3.2)
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where k, ρ, L, and ri are the thermal conductivity [W/(m·K)], mass density [kg/m3], latent

heat of fusion [J/kg], and solid-liquid interface location [m], respectively. The boundary

conditions are

Ts(r = b, t) = Tb,

Ts(r = ri(t), t) = Tf ,

Tℓ(r = ri(t), t) = Tf ,

∂Tℓ

∂r

∣∣∣∣
r=a

= 0,

(3.3)

where Tb and Tf are the coolant temperature [K] and fusion temperature [K], respectively.

The insulated (or no-flux) boundary condition is applied at the outer radius, because the

dimension of freeze pipe is substantially small compared with the outer dimension affected

in the field of AGF, which can be assumed as boundary independent. Same assumption has

also been used in laboratory-scale experiments, where the working tank filled with soil was

adequately insulated at the wall [4, 45]. Moreover, the temporal conditions are

ri(t = 0) = b,

Tℓ(r, t = 0) = Tinit,

ri(t = tc) = a,

(3.4)

where Tinit is the initial temperature [K]. The last equation in Eqn. (3.4) can be seen as a

terminal condition for the freezing stage.

3.2.2 Method of volume averaging

Apart from the freezing physics, the ground in AGF is also considered as a porous medium

at the macroscopic scale. Specifically, the porous ground consists of sand particles and voids

filled with either ice or water. It is therefore necessary to define two types of voids as the

frozen and unfrozen phases. In this subsection, thermophysical properties of the frozen and
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unfrozen are calculated based on the method of volume averaging [39].

The aforementioned frozen and unfrozen phases satisfy the criteria of local thermal equi-

librium, as shown in [4, 45]. This local thermal equilibrium implies that the local temperature

difference between the phases are negligible compared with the one at the pore level [20].

Consequently, the method of local volume averaging can be applied to the thermophysi-

cal properties. The effective mass density, ρe [kg/m3], thermal conductivity, ke [W/(m·K)],

and volumetric heat capacity, (ρcp)e [J/(K·m3)], are obtained by the local volume averaging

method

ρe = ϵρvoid + (1 − ϵ)ρsand,

ke = ϵkvoid + (1 − ϵ)ksand,

(ρcp)e = ϵ(ρcp)void + (1 − ϵ)(ρcp)sand,

(3.5)

where the subscripts void and sand are the corresponding properties of void and sand par-

ticles, respectively. ϵ represents the porosity of the ground. In this case, the void can be

changed by either ice or water for frozen or unfrozen phase. The effective specific heat, cp,e

[J/(kg·K)], is then calculated by

cp,e =
(ρcp)e
ρe

. (3.6)

Moreover, the effective latent heat of fusion is volume-averaged by multiplying the porosity

[20]. Table 3.1 shows numerical values of thermophysical properties in plain media (i.e.,

sand, ice, water) and volume averaged properties in porous media (i.e., frozen, unfrozen),

taken the fact that the porosity is 40%. These thermophysical properties include thermal

conductivity, mass density, and specific heat. Note that the effective latent heat of fusion is

133600 [J/kg] in this scenario.
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Table 3.1: Thermophysical properties of pure and porous media (e.g., sand, ice, water,
porous frozen phase and porous unfrozen phase) when the porosity is 40% for porous media
[4]. Specifically, the thermophysical properties including thermal conductivity, k [W/(m·K)],
mass density, ρ [kg/m3], and specific heat, cp [J/(kg·K)]. Additionally, the effective latent
heat of fusion is 133600 [J/kg].

Pure Media Porous Media
Sand Ice Water Frozen Unfrozen

k 3.73 2.30 0.579 3.16 2.47
ρ 2634 918.9 999.7 1948 1980
cp 946 2000 4200 1145 1603

3.2.3 Singular perturbation analysis

An asymptotic solution of the freezing process is established in the subsection. To begin with

the asymptotic analysis, general scalings and dimensionless numbers are firstly introduced.

The scalings of thermophysical properties and geometry are defined as

α =
αs

αℓ

, k =
ks
kℓ
, cp =

cp,s
cp,ℓ

, ρ =
ρs
ρℓ
, β =

b

a
. (3.7)

The dimensionless spaces and temperatures are

ξ =
r

a
, ξi =

ri
a
, θs =

Ts − Tf

Tinit − Tf

, θℓ =
Tℓ − Tf

Tinit − Tf

, (3.8)

where a is also referred as the characteristic length and (Tinit − Tf ) is the liquid-based

temperature scaling that has been consistently used in this paper. Further, the dimensionless

numbers are defined as

Foℓ =
αℓt

a2
, Steℓ =

cp,ℓ(Tinit − Tf )

L
, (3.9)

where cp is the specific heat at constant pressure [J/(kg·K)]. Foℓ and Steℓ are the Fourier and

Stefan numbers. In this paper, we scaled the Fourier and Stefan numbers by the unfrozen
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phase to characterize subcooling and freezing stages in AGF.

The exact solution to this problem is nearly impossible. However, singular perturbation

method can be applied to find an approximate analytical solution. This solution can also

be referred to as an asymptotic or singularly perturbed solution. There are two distinct

scales implemented in this problem and they are related to the nature of subcooling and

freezing stages in the AGF. Mathematically, this two-phase Stefan problem is decoupled into

two temporal scales by asymptotic analysis. The first scale (i.e., subcooling stage) aims

to capture the initial state, where the entire domain is at unfrozen phase with a uniform

temperature above fusion. The temperature profile for the unfrozen phase is then found at

the leading order. Following the initial scale, a quasi-steady scale (i.e., freezing stage) can

be introduced by assuming that the Stefan number approaches zero, and thus the initial

conditions will be abandoned. The problem is then reduced to a one-phase Stefan problem,

where the interface location and frozen phase solution can be obtained.

Inner solution (subcooling stage)

To capture the subcooling behaviour and initial condition of the unfrozen phase, the dimen-

sionless time at the initial scale is

tℓ = Foℓ. (3.10)

Re-scaling the interface variable, we get:

ξi = β + Ste
1
2
ℓ ξ̃i, (3.11)

where ξ̃i is the newly scaled variable of the dimensionless interface motion. The power of

the Stefan number in this scaling is 1
2
, which relates to the exact solution of classical Stefan

problems with semi-infinite domains. The mathematical stability of this type of scaling has

been proved by Brosa Planella et al [7] and has applied in the Cartesian [8] and spherical
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coordinates [22, 9]. With the re-scaled interface the spatial domain of frozen phase becomes

β < ξ <

(
β + Ste

1
2
ℓ ξ̃i

)
(3.12)

and the frozen phase vanishes at the leading order. The unfrozen phase, on the other hand,

exists at the leading order (i.e., β < ξ < 1) and the problem reduces to a transient heat

conduction problem:

∂θℓ,0
∂tℓ

=

(
∂2θℓ,0
∂ξ2

+
1

ξ

∂θℓ,0
∂ξ

)
, β < ξ < 1, (3.13)

subject to the fixed boundary condition

θℓ,0(β, tℓ) = 0,
∂θℓ,0
∂ξ

∣∣∣∣
ξ=1

= 0, θℓ,0(ξ, 0) = 1. (3.14)

It is worthy to mention that the moving boundary will not appear at the leading order,

because only one phase exists. Since both boundary conditions are homogeneous, the method

of separation of variables can be applied directly. We find the exact solution

θℓ,0 =
∞∑
n=1

Cn

[
J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)

]
exp(−λ2

ntℓ), (3.15)

where Jn and Yn are the Bessel functions of the first and second kinds of order n, and in this

case order 0 (n = 0). The eigenvalues λn are obtained by the transcendental equation

J1(λn)Y0(λnβ) − J0(λnβ)Y1(λn) = 0, n = 1, 2, 3, ... (3.16)
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and corresponding coefficients Cn are found by substituting the initial condition and applying

orthogonality

Cn =

∫ 1

ξ=β
ξ[J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)]dξ∫ 1

ξ=β
ξ[J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)]2dξ

. (3.17)

The unfrozen temperature θℓ is approximated by its leading order as seen in Eqn. (3.15)

from the inner expansion. The next order will not be solvable due to the complexity of

this solution at the leading order. As a result, this temporal scale for the inner expansion

only yields a fairly short-time solution, which implies that the evolution of moving interface

cannot be captured. Another time scale is therefore required and will be presented in the

following outer solution at the freezing stage.

Outer solution (freezing stage)

Following the subcooling stage, the ground starts to freeze. Recall that the ground is assumed

to be porous media, which leads to an intrinsically small Stefan number. The time scale can

then be assumed at quasi-steady state, where the Stefan number is less than unity

τℓ = SteℓFoℓ. (3.18)

The dimensionless temperatures are the same as ones at the initial scale, i.e., θs and θℓ. As

a result, the heat conduction equations and the Stefan condition are written as

α

(
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

)
= Steℓ

∂θs
∂τℓ

,

∂2θℓ
∂ξ2

+
1

ξ

∂θℓ
∂ξ

= Steℓ
∂θℓ
∂τℓ

,

k

α

∂θs
∂ξ

∣∣∣∣
ξ=ξi

− ∂θℓ
∂ξ

∣∣∣∣
ξ=ξi

= ρ
dξi
dτℓ

.

(3.19)
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The problem at its leading order becomes

α

(
∂2θs,0
∂ξ2

+
1

ξ

∂θs,0
∂ξ

)
= 0,

∂2θℓ,0
∂ξ2

+
1

ξ

∂θℓ,0
∂ξ

= 0,

k

α

∂θs,0
∂ξ

∣∣∣∣
ξ=ξi,0

− ∂θℓ,0
∂ξ

∣∣∣∣
ξ=ξi,0

= ρ
dξi,0
dτℓ

,

(3.20)

subject to the dimensionless boundary conditions

θs,0(β, τℓ) = θb, θs,0(ξi,0, τℓ) = 0,

θℓ,0(ξi,0, τℓ) = 0,
∂θℓ,0
∂ξ

∣∣∣∣
ξ=1

= 0.
(3.21)

Thus, the temperature profiles can be readily obtained from these boundary conditions

θs,0 = θb + θb
ln ξ/β

ln β/ξi,0
, θℓ,0 = 0. (3.22)

Since the unfrozen phase solution is zero, the problem reduces to a one-phase Stefan problem.

Further, the interface motion can be implicitly calculated by substituting the temperature

solution into the interface equation. After integrating from 0 to τℓ, we find

τℓ =
ρα

4kθb

(
ξ2i,0 − β2 + 2ξ2i,0 ln

β

ξi,0

)
. (3.23)

The total freezing time can then be obtained by setting ξi = 1 = ξi,0

τℓ(ξi,0 = 1) =
ρα

4kθb

(
1 − β2 + 2 ln β

)
. (3.24)

Consequently, the interface motion ξi and frozen temperature θs are obtained in this outer

solution.
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3.2.4 Computation of analytical solution

To compute temperature profile of the ground (i.e., consisting both frozen and unfrozen

phases), the eigenvalues λn and corresponding coefficients Cn in Eqn. (3.15) are firstly ob-

tained. Particularly, a FOR loop can be used by guessing λn with a fine precision (e.g.,

10−4). If any neighboring guess value changes its sign, it will be recorded as an eigenvalue.

The number of terms of eigenvalues n depends, but it must be checked if computing N

number of terms where N > n still gives the same unfrozen phase solution. In this case, 50

eigenvalues were used and it had been confirmed that the solution remained the same when

100 eigenvalues were computed. On the other hand, the undetermined coefficients are solved

by numerical quadrature with a relative tolerance of 10−14. Since the eigenvalues and their

coefficients depend on β only, they can be stored for future use, rather than computing them

for each scenario (e.g., Locations I, II, III, IV in Section 3.4).

The frozen phase solution is then solved by Eqn. (3.22) from the outer expansion. In

AGF, the temperature profile over time at a fixed location is often desired to examine the

energy consumption, temperature distribution or other practical analysis. Consequently, the

interface solution can be utilized to determine whether the unfrozen or frozen temperature

is used. The interface solution given by Eqn. (3.23) is in an implicit form, where time is a

function of interface location. Since the range of dimensionless interface location is between

β and 1, corresponding time from this range can be computed. For each time step, the

temperature is calculated from the unfrozen phase if the examined location is smaller than

interface (i.e., the ground is not frozen yet). Otherwise, the frozen phase temperature will

be used.

3.3 Numerical modeling

A numerical model that discretizes and solves the energy equation has been developed to

verify the accuracy of the analytical solution. Energy flow within the computational domain
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in the cylindrical coordinates is governed by heat conduction

∂H

∂t
=

1

r

∂

∂r

(
k
∂T

∂r

)
, (3.25)

where H is the enthalpy [J/m3]. The enthalpy represents the total energy of fluid, which

can be linearized by the following function [14]:

H =


ρscp,s(T − Tsolidus) , T < Tsolidus

ρcp(T − Tsolidus) + γρℓL , Tsolidus ≤ T ≤ Tliquidus

ρℓcp,ℓ(T − Tliquidus) + ρcp∆Tmushy + ρℓL , T > Tliquidus,

(3.26)

where Tsolidus and Tliquidus are the solidus and liquidus temperatures [K], respectively. ∆Tmushy

is defined as the temperature difference of the mushy zone, i.e., ∆Tmushy = Tliquidus − Tsolidus.

ρcp is the average properties for the product of mass density and specific heat defined as

(ρscp,s + ρℓcp,ℓ)/2. γ is the liquid fraction which can be obtained from a piecewise function

based on the liquidus and solidus temperatures

γ =


0 , T < Tsolidus;

T−Tsolidus

∆Tmushy
, Tsolidus ≤ T ≤ Tliquidus;

1 , T > Tliquidus.

(3.27)

Further, the initial and boundary conditions are consistent with the analytical model in

Section 3.2.1. Volume-averaged thermophysical properties for frozen and unfrozen phases

are also used as shown in Section 3.2.2.

The temporal and spatial terms of the energy equation, presented in Eqn. (3.25), has

been discretized using first and second order schemes, respectively. The discretized point
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form equation can be written as

di(H
j
i −Hold

i ) = ci−1T
j
i−1 + ciT

j
i + ci+1T

j
i+1, (3.28)

where the subscript i and superscript j represent the i-th node and the j-th iteration. The

symbols c and d are the coefficients of discretized equation. A robust and efficient linearized

enthalpy algorithm, developed by Swaminathan and Voller [32], is adapted to solve for the

temperature field. The main idea behind this algorithm is to linearize the energy equation

by using a truncated Taylor series to express Hj
i as a function of T j

i as

Hj
i = Hj−1

i +

(
∂H

∂T

)j−1

i

(T j
i − T j−1

i ), (3.29)

where ∂H/∂T is the slope of Eqn. (3.26) calculated using the second-order accurate finite-

difference method. The linearized system of equation can now be obtained by substituting

the enthalpy expression in Eqn. (3.29) into Eqn. (3.26) as

di

[
Hj−1

i +

(
∂H

∂T

)j−1

i

(T j
i − T j−1

i ) −Hold
i

]
= ci−1T

j
i−1 + ciT

j
i + ci+1T

j
i+1, (3.30)

where the terms T j−1
i and Hj−1

i are known from the previous iteration level. According to

the above equations, the iterative scheme is given as follows:

1. In the first iteration, the enthalpy and temperature fields are assumed to be equal to

the enthalpy and temperature fields of the previous time step;

2. ∂H/∂T and corresponding coefficients in Eqn. (3.30) are evaluated;

3. The temperature field in Eqn. (3.30) is solved implicitly using the LU decomposition

method;

4. The enthalpy field is updated according to Eqn. (3.26); and
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5. Repeat Steps 2-4 until convergence is achieved. The convergence criterion is met when

the maximum difference of the temperature fields of two successive iterations drop to

below 10−5 [◦C]. This implies that the temperature field is consistent with the enthalpy

fields.

This numerical scheme has been firstly verified with a commercial solver, ANSYS Fluent

2019R3, which has been validated against a laboratory-scale experiment. Further details on

this laboratory-scale experiment can be found in the paper [45].

3.4 Model verification

As mentioned in the previous section, a numerical model was built via MATLAB software

program to verify the newly developed analytical model. This numerical model implemented

the linearized enthalpy algorithm to solve the energy equation. Since the enthalpy method

considered the freezing interface as a mushy zone, the mushy-zone width (i.e., the tem-

perature difference ∆Tmushy) was minimized to facilitate the verification of the analytical

framework based on a sharp interface. In other words, as the mushy-zone width is greatly

minimized, the mushy zone in the enthalpy method acts as a sharp interface in the Stefan

problem. In addition, the volume averaged properties were taken as input in both numerical

and analytical model to represent the porous ground.

Figure 3.2 shows temperature profiles to compare the numerical results with analytical

solution at a laboratory scale that has been used in [45]. To ensure this verification, transient

temperature distribution at four equally spaced locations throughout the domain are shown

in subplot. At this laboratory scale, the spatial dimensions are chosen to be 21.126 [inch]-

diameter ground with 1.25 [inch]-diameter freezing pipe, i.e., a = 0.2683 [m] and b = 0.0159

[m]. Further, ground temperature is initially set to be 20 [◦C], while the coolant temperature

remains at -20 [◦C]. Thermophysical properties are volume averaged by 40% porosity as listed

in Table 3.1.
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Figure 3.2: Comparisons of numerical model versus presented analytical model in terms of
temperature profiles at four equally spaced locations: a) Location I is the first quarter over
the domain, i.e., r = b+0.25(a−b); b) Location II is the second quarter, i.e., r = b+0.5(a−b);
c) Location III is the third quarter, i.e., r = b+ 0.75(a− b); and d) Location IV is the outer
surface, i.e., r = a.

It is rather clear that the analytical solution captures the initial ground temperature and

has a strong agreement with the numerical model at a longer time scale. This longer time

scale is fairly essential in practical applications to estimate the thickness and temperature

of frozen body. In other words, this verification indicates that both subcooling and freezing

stages can be predicted over the entire domain in the presented analytical model with much

lesser computational cost. The analytical temperature profiles at the freezing stage are

generally underestimated. This is mainly because the small Stefan number assumption used

in the singular perturbation method leads to a quasi-steady approximation, which slightly

overestimates the solid-liquid interface. This overestimation of the interface reflects a lower
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Table 3.2: Design parameters for effects of coolant temperature and ground porosity.

Coolant Temperature Ground Porosity
-10 [◦C] 20%
-20 [◦C] 40%
-30 [◦C] 100%

temperature profile after the fusion temperature, which in turn gives an overall error of

11.03% on average. In typical civil/mining application of AGF, the growth of frozen body is

usually around 2 [m] in thickness from the freeze pipe (i.e., ri = 2 [m]). This indicates that

Locations I and II are in the range of interest at a laboratory scale, which has a much lesser

average error of 5.56% and such error is more than sufficient for the practical application of

AGF.

3.5 Results and discussion

Followed by the verification of analytical model, a few practical parameters were investigated

in the concept of AGF. These parameters were often site-dependent and essential to the

thermal design and operation of AGF. For a more practical demonstration, a field-scale

dimension is used and consequently the freezing time will be much longer than the one in

previous section, where a laboratory scale was examined for verification purposes.

3.5.1 Effect of coolant temperature

Coolant temperature is an imposed boundary contributed to the outward freezing process in

AGF. Therefore, it is essential to investigate this parameter in different values corresponded

to practical scenarios. As explained previously, the mathematical formulations of the coolant

temperature, Tb, is the inner boundary condition. In AGF, the coolant temperature often

varies from -10 to -30 [◦C] depending on specific sites while the ground temperature can be

assumed to be 10 [◦C] on average in Canada. Consequently, three cases were examined based
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on the ranges: i) Tb = −10 [◦C], ii) Tb = −20 [◦C], and iii) Tb = −30 [◦C], as Tinit = 10 [◦C].

Figure 3.3 shows temperature distributions for three coolant temperatures; field-scale

dimensions of AGF are used. The freezing pipe diameter is 0.127 [m] (equivalent to 5 [inch])

and outer diameter is 100 [m], i.e., b = 0.0635 [m] and a = 5 [m]. This 0.127-meter-diameter

pipe can be set up of brine freezing pipes and the 100-meter-diameter outer boundary can be

reasonably assumed to have no heat flux. Additionally, the temperature profile is recorded at

a distance of 1 meter away from the pipe center. As can be observed in the figure, the initial

ground temperature is well captured in the presented analytical model, in particular the

inner solution. This initial temperature is often referred as unfrozen state above the fusion

temperature in AGF applications. Since the inner expansion sketches the time scale to satisfy

the initial condition, the unfrozen temperature profile can be characterized. Therefore, this

developed analytical solution serves classical two-phase Stefan problems, rather than one-

phase problems where no unfrozen or liquid state exists.

As for the frozen temperature distributions, it can be seen from Figure 3.3 that a quasi-

steady temperature is reached after 600 days in all cases of coolant temperatures. According

to the variation on temperature intervals, the quasi-steady temperature is found to be higher

when the coolant temperature increases. That is, the quasi-steady temperature for Tb = −10

[◦C] is higher than the ones for Tb = −20 [◦C] and Tb = −30 [◦C]. The temperature interval

can also be a good indicator of the energy required to freeze the ground, also called freezing

demand. It is therefore concluded that as the quasi-steady temperature increases, the coolant

temperature also rises, which leads to a lower freezing demand and less energy consumption

and cost.

3.5.2 Effect of ground porosity

Another study is to explore the effect of ground porosity in AGF since ground porosity is a

site-dependent parameter. The ground in AGF is intrinsically porous and the pore size lies

within a fairly large range. Such large range of porosity can be determined by soil texture,
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Figure 3.3: Comparisons of three different coolant temperatures: Tb = −10 [◦C] in black,
Tb = −20 [◦C] in red, and Tb = −30 [◦C] in blue.

like the percentages of sand or silt or clay. In the context of analytical modeling, volume-

averaging method is applied by assuming local thermal equilibrium in the porous structure.

That is, the local temperature difference between the frozen and unfrozen phases is negligible

compared with the difference at the pore level. Specifically, the thermophysical properties

are recalculated from ground porosity as mentioned in Section 3.2.2. This ground porosity

in AGF lies from 20% to 40% in practice.

Figure 3.4 illustrates the effect of porosities and corresponding temperature distributions

are plotted. Particularly, three ground porosities were used in the analytical model: ε = 20%,

ε = 40% and ε = 100%. Spatial dimensions and the point of evaluation are based on a

typical field scale consistent with the previous subsection. The initial ground temperature

and coolant temperatures are set to be 20 [◦C] and −20 [◦C], respectively. It is rather clear to

see that the temperature profile has a positive proportionality to the ground porosity, which

means that the overall temperature increases with porosity. This is because the thermal

diffusivity of unfrozen phase reduces from 1.09×10−6 to 1.38×10−7 [m2/s] when the porosity

increases. Recall that the thermal diffusivity measures the rate of heat transfer and bundles
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Figure 3.4: Comparisons of three different ground porosities: ε = 20% in red, ε = 40% in
black, and ε = 100% in blue.

the mass density, specific heat and thermal conductivity since all of them have changed

after volume averaging. Consequently, it can be explained that the heat conducts faster in

the high-porosity ground than low-porosity ground. It is also worthwhile to mention that

the temperature profile becomes more parabolic as the ground porosity decreases. In other

words, the temperature profile at a low ground porosity offers similar behaviour to the one

without latent heat or phase change. This parabolic behaviour implies that the latent heat

of fusion has been proportionally reduced by the porosity and a very low value of latent heat

gives fairly similar results to heat conduction only. That is, the phase change phenomenon

is not conspicuous.

3.6 Conclusions

A singular perturbation solution for a two-phase Stefan problem was developed in the context

of examining thermal performance of AGF. This problem described an outward solidifica-

tion process through porous media in a finite annular space. Physical scaling parameters and
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volume averaging method were also used. Small Stefan number, which naturally appears in

porous media, was assumed to serve the singular perturbation analysis. Singular perturba-

tion theory was applied to split this two-phase Stefan problem into two distinct temporal

scales: a transient heat conduction for the unfrozen phase and a one-phase Stefan problem

to obtain the frozen phase and interface solutions. This analytical solution agrees fairly well

with the numerical results in terms of the temperature profile for both phases yet with much

lesser computational cost.
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Nomenclature

Letters

a Outer radius [m]
b Inner radius [m]
cp Specific heat [J/(kg·K)]
Fo Fourier number
H Enthalpy [J/m3]
k Thermal conductivity [W/(m·K)]
L Latent heat of fusion [J/kg]
r Radial coordinate [m]
ri Interface location [m]
Ste Stefan number
T Temperature [K]
Tb Coolant temperature [K]
Tf Fusion temperature [K]
Tinit Initial temperature [K]
∆Tmushy Mushy-zone temperature difference [K]
t Time [s]
tc Critical freezing time [s]

Greek symbols

α Thermal diffusivity [m2/s]
β Ratio of inner over outer radii
γ Liquid fraction
ε Porosity
θ Dimensionless temperature
λ Eigenvalues
ξ Dimensionless radial coordinate
ξi Dimensionless interface location
ρ Mass density [kg/m3]
τ Dimensionless time

Superscripts and subscripts

¯ Average value of frozen and unfrozen phases˜ Newly scaled variable

e Effective (volume-averaged) property

ℓ Unfrozen phase

liquidus Liquidus state

mushy Mushy zone

s Frozen phase

sand Sand particle
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solidus Solidus state

void Void space
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Preface (Bridging Text)

Conventional artificial ground freezing (AGF) circulates a heat transfer fluid as a refrigerant,

such as brine, in a closed loop, which requires a mechanical refrigeration plant to cool down

the fluid. The refrigeration plant is often energy-intensive and associated with a large amount

of carbon footprints. A more environmentally friendly alternative is to utilize passive heat

exchangers like thermosiphons and transfer heat between the cold air above the surface and

the ground. In Canada, thermosiphons have been implemented in the Giant Mine, a gold

mine located in the Northwest Territories, for remediation purposes.

A major drawback of thermosiphons is their diminishing efficiency during warm seasons

when the air is not cold enough, especially when there is relatively low wind speed. As a

result, thermal energy storage units, such as phase change materials (PCMs), are in high

demand to store cold energy during winter and supply it to thermosiphons in summer without

using mechanical plants that could harm the environment. PCMs are particularly effective

and inexpensive in northern climates, where abundant cold energy can be extracted during

the winter.

In the previous chapter, a singular perturbation solution was derived for a two-phase

Stefan problem in a hollow cylinder, capturing phenomena across two temporal scales and

a two-stage freezing process. The solution successfully and efficiently predicts the cooling

of liquid and equilibrium freezing for macro-scale solidification in porous media, which is

particularly applicable to AGF. It is noted that macro-scale solidification possesses a third

stage that describes the cooling of solids. The third stage may not be of special interest in

AGF, as the total freezing time, i.e., the end of equilibrium freezing, is sufficient in practice.

However, it is important to predict the entire freezing cycle or charging cycle for PCM energy

storage, which fundamentally involves multiple temporal and spatial scales.

In this chapter, we investigated the development of analytical solutions to two-phase

Stefan problems by utilizing systematic asymptotic analysis, aiming to simulate all three so-
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lidification stages and enhance spatiotemporal resolution for the application of cold thermal

energy storage with phase change materials (PCMs). A thorough scaling analysis was con-

ducted to characterize three temporal and four spatial scales and subsequently solve them.

Furthermore, an application to outward solidification in PCMs was highlighted by examining

the impact of geometric ratios, thermophysical properties, and Stefan numbers. The insights

and discussions presented in this chapter were published in the peer-reviewed journal article

listed below.

M. Xu, S. Akhtar, A. F. Zueter, M. A. Alzoubi, L. Sushama, and A. P. Sasmito.

Asymptotic analysis of a two-phase Stefan problem in annulus: Application to out-

ward solidification in phase change materials. Applied Mathematics and Computation,

408:126343, 2021.

Abstract

Stefan problems provide one of the most fundamental frameworks to capture phase change

processes. The problem in cylindrical coordinates can model outward solidification, which

ensures the thermal design and operation associated with phase change materials (PCMs).

However, this moving boundary problem is highly nonlinear in most circumstances. Exact

solutions are restricted to certain domains and boundary conditions. It is therefore vital to

develop approximate analytical solutions based on physically tangible assumptions, e.g., a

small Stefan number. A great amount of work has been done in one-phase Stefan problems,

where the initial state is at its fusion temperature, yet very few literature has considered

two-phase problems particularly in cylindrical coordinates. This paper conducts an asymp-

totic analysis for a two-phase Stefan problem for outward solidification in a hollow cylinder,

consisting of three temporal and four spatial scales. The results are compared with the en-

thalpy method that simulates a mushy region between two phases by numerical iterations,
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rather than a sharp interface in Stefan problems. After studying both mathematical models,

the role of mushy-zone thickness in the enthalpy method is also unveiled. Moreover, a wide

range of geometric ratios, thermophysical properties and Stefan numbers are selected from

the literature to explore their effects on the developed model with regards to interface mo-

tion and temperature profile. It can be concluded that the asymptotic solution is capable of

tracking the moving interface and evaluating the transient temperature for various geometric

ratios and thermophysical properties in PCMs. The accuracy of this solution is found to be

affected by Stefan number only, and the computational cost is much less compared with the

enthalpy method and other numerical schemes.

Keywords: Phase change, two-phase Stefan problems, outward solidification, analytical solu-

tion, asymptotic analysis, phase change material (PCM)

4.1 Introduction

Outward solidification in a long hollow cylinder or an annular geometry have various applica-

tions in ground freezing [6, 67, 8], permafrost stabilization by thermosyphons [65, 24, 64], and

phase change materials (PCMs) in thermal and cold energy storage [4, 44, 52]. It is therefore

essential to explore mathematical models to describe such phase change process. There has

been a great amount of mathematical frameworks for phase change in the literature, such

as Stefan problems [28, 25], enthalpy method [56, 57], volume of fluid method [35, 60], level

set method [45, 34], and phase field method [49, 17]. A recent review of all these models

can be found in [29]. Stefan problems are among the only formulation that can be treated

analytically, whereas other frameworks are mostly solved by numerical iterations associated

with relatively high computational time and power. Stefan problems are considered as a

front-tracking formulation that models the solid-liquid interface by an energy balance equa-

tion, also known as Stefan condition. Since the Stefan condition has high nonlinearity, exact
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solutions are limited to semi-infinite domains subjected to particular boundary conditions

[15, 26], which gives the driving force to develop approximate analytical solutions.

One of the approximate analytical methods for solving Stefan problems is the heat balance

integral method (HBIM). The main thrust of this method is to introduce an approximate

function (often a polynomial) as the temperature profile and integrate the governing partial

differential equation over a suitable interval. As a result, the partial differential equation

is reduced to an ordinary differential equation which may often be solved analytically. The

HBIM was firstly developed by Goodman [23] and then summarized in many texts [28, 25,

15]. Many modifications of the HBIM have also been studied extensively in the modern

literature to improve its accuracy of approximation, such as the refined integral method

(RIM) [41, 9, 50] and combined integral method (CIM) [39, 42]. Mitchell and Myers [40]

made a comprehensive comparison between the standard HBIM and RIM for solving one-

dimensional Stefan problems subjected to different boundary conditions.

Another approximate analytical method is the use of asymptotic analysis to obtain an

asymptotic or perturbation solution. In asymptotic analysis, a small perturbation parameter

(often the Stefan number defined by the ratio of sensible heat over latent heat) is used to

expand into a power series, namely a perturbation series solution or an asymptotic solu-

tion. The vast majority of studies have been focused on one-phase Stefan problems, where

the initial temperature is assumed to be at fusion temperature. Pedroso and Domoto [47]

introduced a perturbation solution to a one-phase Stefan problem for inward spherical so-

lidification. Later, perturbations solutions for other coordinates and solidification directions

[51, 53] as well as convective and radiative boundary conditions [46, 55] were also stud-

ied. A systematic derivation and review of these perturbation solutions in one-dimensional

one-phase Stefan problems can be found in Hill’s text [28]; a few two-dimensional Stefan

problems have also been investigated through asymptotic analysis in spite of their geometri-

cal complexity [58, 36]. Meanwhile, the framework of asymptotic analysis has recently been

extended to a number of Stefan problems with non-Fourier heat conduction [21, 13, 27, 14].
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Much less time has been spent on two-phase Stefan problems, where the initial temper-

ature is not at fusion temperature. In modern literature, the two-phase Stefan problems

are often further categorized into classical and extended two-phase Stefan problems. The

classical two-phase Stefan problem relaxes the assumption of initial fusion temperature in

one-phase problems, and thus the liquid phase has to be considered. On the other hand,

extended two-phase problems incorporate constitutional supercooling, which in return con-

sists of heat and mass transport phenomena. This framework is particularly applicable for

solidification of binary alloys. For the classical two-phase Stefan problems, Weinbaum and

Jiji [59] applied the singular perturbation theory (specifically, two temporal scales) along

with the boundary-fixing technique in a finite slab. Same analytical approach has been used

for inward spherical solidification [1] as well as inward [30] and outward [62, 63] cylindrical

solidification. McCue et al. [37] established four temporal scales and defined the asymptotic

limits of both small time and slow thermal diffusion around a small Stefan number. In

contrast, a large Lewis number (defined by the ratio of thermal diffusivity over mass diffu-

sivity) is usually assumed in extended two-phase Stefan problems. Feltham and Garside [19]

developed asymptotic and numerical solutions to an extended Stefan problem after using

the boundary-fixing technique for inward solidification of a binary melt. Brosa Planella et

al. [10] recently introduced four temporal and ten spatial scales in their asymptotic analysis

for an extended Stefan problem in a finite planar geometry, and then further studied the

same problem in the spherical coordinates [11]. The moving boundary in Stefan problems

had also been modified by incorporating the Gibbs-Thomson relation to study the phase

change behaviors of nanoparticles [38, 61, 22, 20]. While the asymptotic solutions are re-

vealed, some numerical schemes on Stefan problems have been explored in recent literature

[32, 33]. Further, approximation of modified error function is also proved to be effective in

Stefan problems with temperature-dependent thermal conductivity [16].

A recent work by Khalid et al. [31] applied the separation of variables and eigenfunction

expansion method to solve a two-phase Stefan problem in cylindrical domains. Nonetheless,
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the method of eigenfunction expansion used in their analysis could yield imaginary eigen-

values; specific heat was assumed to be the same in solid and liquid phases; and the results

were verified at a relatively low time resolution. Asymptotic solutions, on the other hand,

are more reliable in terms of producing real and stable series solutions to Stefan problems.

Another solution to such cylindrical two-phase Stefan problem was lately established from

our previous work by using singular perturbation theory for artificial ground freezing [63].

This framework expanded two leading-order perturbation series around a small Stefan num-

ber from two distinct temporal scales, thus characterizing the subcooling and freezing stages

of solidification. However, spatial variables were not scaled and the third temporal regime

was not well captured because of its methodology. These deficiencies omitted a few physical

aspects of solidification: i) thermal contribution of solid phase during subcooling; ii) sensible

heat at equilibrium freezing; and iii) cooling stage after the domain is completed frozen.

To date, asymptotic analysis with multiple spatial and temporal scales have been de-

veloped in the Cartesian [10] and spherical [37, 11] domains, yet none of such asymptotic

analysis has been conducted in the cylindrical coordinates. As a result, the aim of this

study is to develop an accurate asymptotic solution to a two-phase Stefan problem based

on multiple scales, particularly four spatial and three temporal scales, with phase-dependent

thermophysical properties (e.g., thermal conductivity, specific heat, and thermal diffusivity).

Comparisons between the presented solution and numerical results by enthalpy method are

made: i) to verify the asymptotic solution; and ii) to investigate the role of mushy zone thick-

nesses regarding the interface motion, temperature profile, and total freezing time. Moreover,

a broad range of geometric ratios and thermophysical properties in PCMs are chosen to ex-

plore their effects and ensure the accuracy of asymptotic solutions against numerical data.

The outline of this paper is as follows. In Section 4.2, we formulate a two-phase Stefan

problem which models outward solidification for PCMs in cylindrical coordinates. Then, the

problem is solved by asymptotic analysis in Section 4.3, where three temporal (regimes) and

four spatial (layers) scales are considered. In Section 4.4, the enthalpy method is applied
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to solve the phase change problem numerically by introducing a mushy region between

two phases. Section 4.5 verifies the developed asymptotic solution against the numerical

results. In Section 4.6, effects of geometry, thermophysical properties and Stefan numbers

in the asymptotic solution are then investigated along with corresponding numerical results.

Lastly, the main findings of this study are summarized in Section 4.7.

4.2 Mathematical model

4.2.1 Formulation

In this mathematical framework, a few assumptions will be made: i) The solidification

process is assumed to occur at the macroscale level, i.e., nucleation and recalescence are not

present; ii) Thermophysical properties in each phase are uniform and remain constant; iii)

Mass densities are prescribed to be equal in both phases implying that volume changes are

negligible. This is justified since the inner and outer radial surfaces are mostly fixed by walls

in PCM applications; iv) Effect of natural convection is ignored, because the Richardson

number is much less than 1 for most freezing problems; v) The solid-liquid interface is

modeled as a sharp line, rather than a mushy zone; and vi) The amount of sensible heat

contributed during phase change is much smaller than the one of latent heat, and thus the

Stefan number is less than unity.

Consider an annular domain or a long hollow cylinder with inner radius b and outer radius

a, as schematically shown in Figure 4.1. The domain is initially at the liquid state of a PCM,

and thus the initial temperature Tinit is higher than the fusion temperature Tf . A constant

temperature Tb < Tf on the inner surface r = b is prescribed for time t ≥ 0. Consequently,

the liquid-state PCM starts to solidify from r = b and a solid phase will appear in the

domain. An axially symmetric interface, which separates the liquid and solid phases, moves

in the positive r-direction and stays at the fusion temperature Tf . Thus far, this analysis can

be described as a classical two-phase Stefan problem in the cylindrical coordinates, where
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Figure 4.1: Schematic diagram of outward solidification in a PCM, consisting of solid and
liquid phases separated by a moving boundary. The solid phase is in light blue, whereas the
liquid phase is in light red.

the solidification terminates once the moving interface reaches the outer radius ri = a in a

finite domain.

From a physical point of view, the classical two-phase Stefan problem interprets the

subcooling and freezing stages in solidification. However, a third stage, so-called cooling (or

solid subcooling), starts right after the interface vanishes, i.e., only the solid phase exists at

this stage. As a result, an extension of the classical Stefan formulation needs to be considered,

with respect to a new set of boundary and time conditions to capture the cooling stage.

In this paper, a Stefan problem in the cylindrical coordinates is studied to describe

multistage cooling and freezing for outward solidification at macroscale. The following heat

conduction equations for solid and liquid phases are used as the governing equations of this
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problem:

∂Ts

∂t
= αs

(
∂2Ts

∂r2
+

1

r

∂Ts

∂r

)
, b < r < ri(t), t > 0; (4.1)

∂Tℓ

∂t
= αℓ

(
∂2Tℓ

∂r2
+

1

r

∂Tℓ

∂r

)
, ri(t) < r < a, 0 ≤ t < tc, (4.2)

where T , α, r, and t are the temperature [K], thermal diffusivity [m2/s], radial coordinate

[m], and time [s], respectively. a and b are the outer and inner radii [m]. The subscripts s

and ℓ represent the solid and liquid phases. Additionally, tc is the critical time when the

entire annular domain is solidified [s].

Recall that Stefan problems are categorized as a front-tracking formulation, which involve

calculation of the moving front from an energy balance between solid and liquid control

volumes. Both sensible and latent heats are taken into account. This expression of the

moving front is also known as the Stefan condition:

ks
∂Ts

∂r

∣∣∣∣
r=ri(t)

− kℓ
∂Tℓ

∂r

∣∣∣∣
r=ri(t)

= ρL
dri
dt

, 0 ≤ t ≤ tc, (4.3)

where k, ρ, L, and ri are the thermal conductivity [W/(m·K)], mass density [kg/m3], latent

heat of fusion [J/kg], and solid-liquid interface location [m], respectively. Apart from the

moving boundary condition, the fixed boundary conditions are defined as:

Ts(r = b, t) = Tb,

Ts(r = ri(t), t) = Tf ,

Tℓ(r = ri(t), t) = Tf ,

∂Tℓ

∂r

∣∣∣∣
r=a

= 0,

(4.4)

where Tb and Tf are the prescribed temperature [K] at the inner surface and fusion temper-
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Table 4.1: Non-dimensional scaling parameters and variables.

Type Scaling Expression

Geometry/coordinate
β b/a
ξ r/a
ξi ri/a

Thermophysical property
α̃ αs/αℓ

k̃ ks/kℓ
c̃p cp,s/cp,ℓ

Temperature
θs (Ts − Tf )/(Tf − Tb)
θℓ (Tℓ − Tf )/(Tf − Tb)
θinit (Tinit − Tf )/(Tf − Tb)

Dimensionless number
Fo αst/a

2

Ste cp,s(Tf − Tb)/L

ature [K]. Lastly, the time conditions are given by:

ri(t = 0) = b,

Tℓ(r, t = 0) = Tinit,

ri(t = tc) = a,

Ts(r, t = tc) = f(r).

(4.5)

where Tinit is the initial temperature [K]. f(r) is the temperature distribution [K] at the total

freezing time tc, which provides the initial condition of the cooling stage after freezing. The

last time conditions in Eqn. (4.5) are not usually considered in classical Stefan problems;

however, they are important constraints that mathematically capture the transition from

freezing to solid cooling stage. As for the cooling stage, the formulation will be reduced into

a linear finite-extent heat conduction problem from tc < t < ∞.

4.2.2 Scaling analysis

The presented dimensional problem can be non-dimensionalized prior to asymptotic analysis.

The scaling parameters and variables are listed and categorized in Table 4.1. Particularly, the
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geometry and radial coordinates are scaled by the outer radius a such that the entire domain

is non-dimensionlized from β to 1. The outer radius is also considered as a characteristic

length. The thermophysical properties are scaled as the ratio of solid over liquid phase.

Further, the dimensionless temperatures in both phases are defined as:

θs =
Ts − Tf

Tf − Tb

, θℓ =
Tℓ − Tf

Tf − Tb

, and θinit =
Tinit − Tf

Tf − Tb

. (4.6)

All temperature variables are scaled by the solid-based temperature interval, and thus the

imposed constant temperature at the inner radius Tb is non-dimensionalized into −1. Here

we introduce two dimensionless numbers: Fourier number (Fo) and Stefan number (Ste).

The Fourier number is the ratio of thermally diffusive transport rate over heat storage rate,

whereas the Stefan number is the ratio of sensible heat over latent heat. It is worthwhile to

mention that some research apply the inverse ratio as Stefan number; however, to neglect

the contribution of sensible heat by the asymptotic of Ste → 0 makes more physical sense

in this work due to its application in PCMs. The dimensionless time will be defined in

the following section by either the Fourier number or the combination of Fourier and Stefan

numbers to capture different temporal scales. In this study, these two dimensionless numbers

are consistent with the temperature scaling which uses the solid-based temperature interval.

Before conducting the asymptotic analysis, the dimensional model without any additional

spatial and temporal scalings can be expressed as:

∂θs
∂τ

=
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

, β < ξ < ξi; (4.7)

∂θℓ
∂τ

=
1

α̃

(
∂2θℓ
∂ξ2

+
1

ξ

∂θℓ
∂ξ

)
, ξi < ξ < 1, (4.8)

subject to the moving boundary condition

∂θs
∂ξ

∣∣∣∣
ξ=ξi

− 1

k̃

∂θℓ
∂ξ

∣∣∣∣
ξ=ξi

=
1

Ste

dξi
dτ

, (4.9)
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Table 4.2: Summary of asymptotic analysis based on each stage of solidification. Note that
the tilde notion (∼) is used when a new scaling variable is introduced.

Stage Regime Layer
Variable

τ ξ ξi

Subcooling I
A Fo ξ β + Ste

1
2 ξ̃i

B Fo β + Ste
1
2 ξ̃ β + Ste

1
2 ξ̃i

Freezing II C Ste−1τ̃ ξ ξi
Cooling III D τc + τ̃ ξ −

and fixed boundary conditions

θs(β, τ) = −1, θs(ξi, τ) = 0, θℓ(ξi, τ) = 0,
∂θℓ
∂ξ

∣∣∣∣
ξ=1

= 0, (4.10)

along with the time conditions

θℓ(ξ, 0) = θinit, ξi(0) = β, ξi(τc) = 1, θs(ξ, τc) = f(ξ). (4.11)

4.3 Asymptotic analysis

The exact solution to this Stefan problem is not known and difficult to be obtained due

to its high nonlinearity of the moving boundary. Consequently, asymptotic analysis can be

applied to find an approximate analytical solution, as conceptually illustrated in Fig. 4.2.

According to freezing physics, macroscale solidification happens in three stages: subcooling,

freezing and cooling. These stages can reflect three distinct temporal scales implemented

in the asymptotic analysis, namely Regime I, Regime II and Regime III. Further, one or

more spatial scales called “layers” can also be presented in each regime. The terminology of

regimes and layers for temporal and spatial scales have been previously introduced in Stefan-

like problems by Brosa Planella et al. [10, 11]. In this paper, we will also use “regime” and

“layer” as temporal and spatial scales.
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Figure 4.2: Conceptual diagram of asymptotic analysis: a) Temperature profile of outward
solidification with three regimes and four layers; and b) Corresponding schematic diagram
in each regime with layers.

As can be seen in Table 5.3, Regime I is the first temporal scale that aims to capture

the subcooling stage of solidification. This temporal scale is a small-time expansion, which

characterizes the initial state of the simulated domain and satisfies the initial condition

Tℓ(r, t = 0) = Tinit. In this regime, two spatial scales are also specified in reference to the

moving boundary, namely Layer A (an outer layer far from the moving boundary) and Layer

B (an inner layer near the moving boundary). Both layers will be evaluated asymptotically
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and then matched at the leading and first orders. Following by the subcooling stage, a freez-

ing stage is described in Regime II. Regime II is at quasi-steady state, where the temporal

scale is stretched by the Stefan number. This problem will be reduced to a one-phase Stefan

problem, since the temperature in the liquid phase is at its fusion temperature. Interface

motion and solid-phase temperature profile can be obtained. Lastly, the solid-liquid inter-

face stops at the outer surface (i.e., the liquid phase vanishes) and a conduction scale is then

performed in the solid phase. Consequently, the moving boundary condition of the solid

phase will become an insulated boundary condition. Note that the dimensionless time to

complete freezing is denoted as τc = αstc/a
2.

4.3.1 Regime I

In this regime, two spatial layers are firstly found and the undetermined variables are then

found by the method of matched asymptotic expansions. This treatment has been previ-

ously used for inward solidification of a sphere by McCue et al. [37]. However, there are

two main differences between McCue et al.’s work and this study: i) An outward solidifica-

tion problem in cylindrical coordinates (specifically, an annular region) is considered in this

study, whereas McCue et al. [37] studied inward solidification in spherical coordinates. The

difference in freezing direction and coordinates will lead to the variation in spatial scalings

and asymptotic solutions between the two works; and ii) The definitions of Stefan number

and non-dimensionalized scalings for thermophysical properties are inversed between two

analyses. Thus, the asymptotic limit taken in the matching part is zero in this study, rather

than infinity in McCue et al.’s work.
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Layer A

Layer A represents an outer region which is far away from the moving boundary by rescaling

the interface variable as:

ξi = β + Ste
1
2 ξ̃i. (4.12)

The solid and liquid temperatures are assumed to have the following asymptotic expansions:

θs(ξ, τ; Ste) ∼ θs,0 + Ste
1
2 θs,1 + O(Ste); (4.13)

θℓ(ξ, τ; Ste) ∼ θℓ,0 + Ste
1
2 θℓ,1 + O(Ste). (4.14)

At the leading order, the solid phase vanishes and the problem reduces to transient heat

conduction in a finite domain:

1

α̃

(
∂2θℓ,0
∂ξ2

+
1

ξ

∂θℓ,0
∂ξ

)
=

∂θℓ,0
∂τ

, β < ξ < 1,

θℓ,0(β, τ) = 0,

∂θℓ,0
∂ξ

∣∣∣∣
ξ=1

= 0,

θℓ,0(β, 0) = θinit.

(4.15)

The exact solution for θℓ,0 can be found by separation of variables:

θℓ,0 =
∞∑
n=1

Cn

[
J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)

]
exp(−λ2

n

α̃
τ), (4.16)

where the eigenvalues λn can be determined term by term in the following transcendental

equation:

J1(λn)Y0(λnβ) − J0(λnβ)Y1(λn) = 0, n = 1, 2, 3, ... (4.17)
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and the corresponding coefficients are given by:

Cn =

∫ 1

ξ=β
θinitξ[J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)]dξ∫ 1

ξ=β
ξ[J0(λnξ)Y0(λnβ) − J0(λnβ)Y0(λnξ)]2dξ

. (4.18)

Layer B

Layer B is an inner region near the moving boundary and can be characterized by rescaling

the radial coordinate and interface variable as:

ξ = β + Ste
1
2 ξ̃ and ξi = β + Ste

1
2 ξ̃i. (4.19)

Therefore, the heat conduction equations for both phases become:

βSte
∂θ̃s
∂τ

+ Ste
3
2 ξ̃

∂θ̃s
∂τ

= β
∂2θ̃s

∂ξ̃2
+ Ste

1
2 ξ̃

∂2θ̃s

∂ξ̃2
+ Ste

1
2
∂θ̃s

∂ξ̃
, 0 < ξ̃ < ξ̃i; (4.20)

βSte
∂θ̃ℓ
∂τ

+ Ste
3
2 ξ̃

∂θ̃ℓ
∂τ

=
1

α̃
β
∂2θ̃ℓ

∂ξ̃2
+

1

α̃
Ste

1
2 ξ̃

∂2θ̃ℓ

∂ξ̃2
+

1

α̃
Ste

1
2
∂θ̃ℓ

∂ξ̃
, ξ̃ > ξ̃i, (4.21)

where θ̃s and θ̃ℓ are the newly scaled temperatures in this layer. These temperatures along

with the interface are assumed to be in the following asymptotic forms:

θ̃s(ξ̃, τ; Ste) ∼ θ̃s,0 + Ste
1
2 θ̃s,1 + O(Ste); (4.22)

θ̃ℓ(ξ̃, τ; Ste) ∼ θ̃ℓ,0 + Ste
1
2 θ̃ℓ,1 + O(Ste); (4.23)

ξ̃i(τ; Ste) ∼ ξ̃i,0 + Ste
1
2 ξ̃i,1 + O(Ste). (4.24)

At the leading order, the heat equations are

∂2θ̃s,0

∂ξ̃2
= 0, 0 < ξ̃ < ξ̃i,0, θ̃s,0(β, τ) = −1, θ̃s,0(ξ̃i,0, τ) = 0; (4.25)

∂2θ̃ℓ,0

∂ξ̃2
= 0, ξ̃ > ξ̃i,0, θ̃ℓ,0(ξ̃i,0, τ) = 0, θ̃ℓ,0(∞, τ) ∼ ã0(τ)ξ̃, (4.26)
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where ã0(τ) is a matching variable to unify Layer A (outer solution) with Layer B (inner

solution). The solutions of θ̃s,0 and θ̃ℓ,0 are found to be

θ̃s,0 = −1 +
ξ̃

ξ̃i,0
and θ̃ℓ,0 = ã0(τ)(ξ̃ − ξ̃i,0). (4.27)

At the first order, the heat equations become:

β
∂2θ̃s,1

∂ξ̃2
+ ξ̃

∂2θ̃s,0

∂ξ̃2
+

∂θ̃s,0

∂ξ̃
= 0, (4.28)

∂θ̃s,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

ξ̃i,1 + θ̃s,1(ξ̃i,0, τ) = 0, (4.29)

θ̃s,1(0, τ) = 0; (4.30)

β
∂2θ̃ℓ,1

∂ξ̃2
+ ξ̃

∂2θ̃ℓ,0

∂ξ̃2
+

∂θ̃ℓ,0

∂ξ̃
= 0, (4.31)

∂θ̃ℓ,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

ξ̃i,1 + θ̃ℓ,1(ξ̃i,0, τ) = 0, (4.32)

θ̃ℓ,1(∞, τ) ∼ ã0(τ)ξ̃2 + ã1(τ)ξ̃, (4.33)

where ã1(τ) is also a matching variable which will be found in the subsequent matching

section. Similar to the leading order, solutions of θ̃s,1 and θ̃ℓ,1 can be found as:

θ̃s,1 = − 1

2βξ̃i,0
ξ̃2 +

(
1

2β
− ξ̃i,1

ξ̃2i,0

)
ξ̃, (4.34)

θ̃ℓ,1 = ã0(τ)

(
− 1

2β
ξ̃2 +

1

2β
ξ̃i

2

,0 − ξ̃i,1

)
+ ã1(τ)

(
ξ̃ − ξ̃i,0

)
. (4.35)

The method of matched asymptotic expansions

As can be seen in Sections 4.3.1 and 4.3.1, the variables ã0(τ) and ã1(τ) in the liquid temper-

ature have not been defined yet. These variables will be determined by applying the method

of matched asymptotic expansions in this section. Specifically, the outer region (Layer A)

solution is firstly written in terms of the inner region (Layer B) variables (ξ̃, τ). A limit is
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then taken as Ste → 0 to obtain an asymptote as ξ̃ → ∞, which subsequently matches the

outer region with the inner one.

At the leading order, the outer region solution can be rewritten in terms of the inner

variables (ξ̃, τ) as follows:

θℓ,0(ξ̃, τ) =
∞∑
n=1

Cn

{
J0

[
λn(β + Ste

1
2 ξ̃)

]
Y0(λnβ)

− J0(λnβ)Y0

[
λn(β + Ste

1
2 ξ̃)

]}
exp(−λ2

n

α̃
τ),

(4.36)

The leading-order matching solution θℓ,0(ξ̃, τ) can then be found by taking the limit as

Ste → 0:

θℓ,0(ξ̃, τ) = lim
Ste→0

θℓ,0(ξ̃, τ)

=
∞∑
n=1

Cn

[
J0(λnβ)Y0(λnβ) − J0(λnβ)Y0(λnβ)

]
exp(−λ2

n

α̃
τ) = 0.

(4.37)

Similarly, the first-order matching solution θℓ,1(ξ̃, τ) is found by rewriting the variables

(ξ̃, τ) and taking the limit as Ste → 0:

θℓ,1(ξ̃, τ) = lim
Ste→0

Ste−
1
2

∞∑
n=1

Cn

{
J0

[
λn(β + Ste

1
2 ξ̃)

]
Y0(λnβ)

− J0(λnβ)Y0

[
λn(β + Ste

1
2 ξ̃)

]}
exp(−λ2

n

α̃
τ).

(4.38)

This limit has an indeterminate form by direct substitution, and thus the L’Hôpital’s rule

can be applied. We find the first-order matching solution θℓ,1 as:

θℓ,1(ξ̃, τ) =
∞∑
n=1

Cnλnξ̃

[
J0(λnβ)Y1(λnβ) − J1(λnβ)Y0(λnβ)

]
exp(−λ2

n

α̃
τ). (4.39)

Since the liquid-phase solution in the inner region (Layer B) was assumed to be in the
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form of:

θ̃ℓ,0 ∼ ã0(τ)ξ̃, θ̃ℓ,1 ∼ ã0(τ)ξ̃2 + ã1(τ)ξ̃, (4.40)

the undetermined variables ã0 and ã1 can be readily found by matching:

ã0(τ) = 0, (4.41)

ã1(τ) =
∞∑
n=1

Cnλn

[
J0(λnβ)Y1(λnβ) − J1(λnβ)Y0(λnβ)

]
exp(−λ2

n

α̃
τ). (4.42)

As a result, the liquid-phase solution at the leading and first orders in the inner region (Layer

B) can be written as:

θ̃ℓ,0 = 0, θ̃ℓ,1 =

(
ξ̃ − ξ̃i,0

) ∞∑
n=1

Dn exp(−λ2
n

α̃
τ), (4.43)

where Dn is defined for simplification as follows:

Dn = Cnλn

[
J0(λnβ)Y1(λnβ) − J1(λnβ)Y0(λnβ)

]
. (4.44)

The interface solution in Layer B can be therefore solved at the leading and first orders:

∂θ̃s,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

− 1

k̃

∂θ̃ℓ,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

=
dξ̃i,0
dτ

, ξ̃i,0(0) = 0; (4.45)

∂θ̃s,1

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

− 1

k̃

∂θ̃ℓ,1

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

=
dξ̃i,1
dτ

, ξ̃i,1(0) = 0. (4.46)

Substituting the solid and liquid temperature solutions at the leading and first orders, we

find the interface motion as:

ξ̃i,0 =
√

2τ, ξ̃i,1 = − τ

3β
+

1

k̃

∞∑
n=1

Dn

[
α̃e−λ2

nτ/α̃

λ2
n

− α̃
3
2π

1
2 erf(α̃

1
2λnτ

1
2 )

2λ3
nτ

1
2

]
. (4.47)
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4.3.2 Regime II

Following the subcooling stage in Regime I, Regime II aims to characterize the freezing stage

of solidification by introducing a new temporal scale. At this scale, the liquid phase is found

to remain at the fusion temperature, and thus the two-phase Stefan problem reduces to a one-

phase problem. Recently, this reduced one-phase Stefan problem has directly been considered

as the equilibrium freezing stage, while modeling each solidification stage separately [2]. For

mathematical simplification, the transformed one-phase problem is firstly rewritten such

that (ξ, ξi) are the independent variables and (θ̃s, τ̃) are the dependent variables. Then,

asymptotic solutions of dimensionless solid temperature and time are found at leading and

first orders.

This temporal scale is also referred as a quasi-steady state or quasi-analytical solution

or quasi-stationary approximation for Stefan-like problems [28, 3, 25]. In two-phase Stefan

problems, the perturbation series solution of this scale is often viewed as an “outer solution”,

which has been previously studied by applying singular perturbation theory in Cartesian [59],

spherical [1] and cylindrical [30, 62] coordinates. The singular perturbation method often

incorporates boundary-fixing technique to immobilize the moving boundary, and the initial

condition of liquid phase is abandoned. Some works have been done without giving up the

initial condition by using the method of composite asymptotic expansions in Cartesian [43]

and spherical [37] coordinates. Due to the general form of composite asymptotic expansions,

the obtained liquid-phase solution is expected to contribute exponentially small terms to

the interface motion, as proved in [37]. Once again, the two-phase Stefan problem will be

reduced to a one-phase case. As a result, we directly reduce the problem into a one-phase

Stefan problem based on the fixed boundary conditions in this study.

116



Layer C

Rescaling the temporal variable τ̃ = Steτ, the heat equations for both phases become:

Ste
∂θ̃s
∂τ̃

=
∂2θ̃s
∂ξ2

+
1

ξ

∂θ̃s
∂ξ

, Ste
∂θ̃ℓ
∂τ̃

=
1

α̃

(
∂2θ̃ℓ
∂ξ2

+
1

ξ

∂θ̃ℓ
∂ξ

)
, (4.48)

subject to the moving boundary condition

∂θ̃s
∂ξ

∣∣∣∣
ξ=ξi

− 1

k̃

∂θ̃ℓ
∂ξ

∣∣∣∣
ξ=ξi

=
dξi
dτ̃

, (4.49)

and fixed boundary conditions

θ̃s(ξ = β, τ̃) = −1, θ̃s(ξ = ξi, τ̃) = 0, θ̃ℓ(ξ = ξi, τ̃) = 0,
∂θ̃ℓ
∂ξ

∣∣∣∣
ξ=1

= 0. (4.50)

It is rather clear that the liquid phase temperature subjected to fixed boundary condi-

tions is found to be 0 at any order of asymptotic expansions. This is because the condition of

initial temperature is abandoned and the two boundary conditions give the solution of 0 (i.e.,

the fusion temperature). The two-phase Stefan problem therefore reduces to a one-phase

problem. Further, the dimensionless time τ̃ can be expressed as a function of the dimen-

sionless interface ξi. This re-formulation will significantly simplify the solution procedure,

since it is lengthy to find an explicit form of the interface solution. After re-formulating the

equations, the problem becomes:

∂2θ̃s
∂ξ2

+
1

ξ

∂θ̃s
∂ξ

= Ste
∂θ̃s

∂ξ̃i

(
∂θ̃s
∂ξ

∣∣∣∣
ξ=ξi

)
,

dτ̃

dξi

(
∂θ̃s
∂ξ

∣∣∣∣
ξ=ξi

)
= 1, (4.51)

subject to boundary and initial conditions

θ̃s(ξ = β, τ̃) = −1, θ̃s(ξ = ξi, τ̃) = 0, τ̃(ξi = β) = 0. (4.52)
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Then, we approach the asymptotic solutions to be in the form of:

θ̃s(ξ, ξi; Ste) ∼ θ̃s,0 + Steθ̃s,1 + O(Ste2); (4.53)

τ̃(ξi; Ste) ∼ τ̃0 + Steτ̃1 + O(Ste2). (4.54)

At the leading order, the heat equation and moving boundary are

∂2θ̃s,0
∂ξ2

+
1

ξ

∂θ̃s,0
∂ξ

= 0,
dτ̃0
dξi

(
∂θ̃s,0
∂ξ

∣∣∣∣
ξ=ξi

)
= 1, (4.55)

subject to the following boundary and initial conditions

θ̃s,0(ξ = β) = −1, θ̃s,0(ξ = ξi) = 0, τ̃0(ξi = β) = 0. (4.56)

Therefore, we find the dimensionless solid temperature and time as follows:

θ̃s,0 =
ln ξi − ln ξ

ln β − ln ξi
, τ̃0 =

1

4

(
β2 − ξ2i + 2ξ2i ln

ξi
β

)
. (4.57)

Similar to the leading order, the first-order problem becomes:

∂2θ̃s,1
∂ξ2

+
1

ξ

∂θ̃s,1
∂ξ

=
∂θ̃s,0
∂ξi

(
∂θ̃s,0
∂ξ

∣∣∣∣
ξ=ξi

)
,

dτ̃0
dξi

(
∂θ̃s,1
∂ξ

∣∣∣∣
ξ=ξi

)
+

dτ̃1
dξi

(
∂θ̃s,0
∂ξ

∣∣∣∣
ξ=ξi

)
= 0, (4.58)

subject to the boundary and initial conditions

θ̃s,1(ξ = β) = 0, θ̃s,1(ξ = ξi) = 0, τ̃1(ξi = β) = 0. (4.59)
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Thus, the first-order solutions are found to be

θ̃s,1 =
(ξ2i − ξ2)(ln β − ln ξ − ln ξi + 1) ln β

4ξ4i (ln β − ln ξi)4
(4.60)

+
(ξ2 − β2) ln ξi + [β2 − ξ2i + (ξ2i − ξ2) ln ξi] ln ξ

4ξ4i (ln β − ln ξi)4
, (4.61)

τ̃1 =
1

4

(
β2 + ξ2i +

β2 − ξ2i
ln ξi − ln β

)
. (4.62)

The interface motion in this regime gives the time evolution of moving boundary except its

initial state, because ln(0) in the τ̃ expression is undefined. This implies that the interface

breaks down as time approaches 0, which is the reason why the interface has been studied

in the first temporal scale by satisfying the initial condition.

It is also of interest to obtain a final expression of total freezing time τc in an explicit

form. Here, the total freezing time is calculated by setting the interface to its terminal value

(i.e., ξi = 1), and thus

τc ∼
1

4Ste

(
β2 − 1 + 2 ln

1

β

)
+

1

4

(
β2 + 1 +

1 − β2

ln β

)
. (4.63)

There could be an additional term for a second-phase correction by solving the liquid phase

problem in this regime, as demonstrated in the spherical coordinates [37]. However, it

is inevitable for the additional term to be exponentially small because of the method of

composite expansions in the liquid phase problem. Due to its lengthy calculation, a detailed

proof of liquid phase contribution to moving interface has been presented in 4.7, which

quantitatively identifies the term. For practical purposes of PCMs in this study, it is therefore

safe to omit the exponentially small second-phase correction.

4.3.3 Regime III

Regime III is the last temporal scale to capture the cooling stage of solidification and only

one spatial scale (Layer D) exists. This regime starts as the moving boundary stops at the
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outer surface, and thus a new temporal scale can be found by a linear shift with regards to

the total freezing time τc. Both liquid phase and interface vanish in this regime, and exact

solution of the solid phase can be found by using the method of superposition and separation

of variables.

Layer D

Applying a new temporal scale τ̃ = τ − τc, the two-phase Stefan-like problem reduces to a

finite-extent heat conduction problem for the solid phase only:

∂2θ̃s
∂ξ2

+
1

ξ

∂θ̃s
∂ξ

=
∂θ̃s
∂τ̃

,

θ̃s(ξ = β, τ̃) = −1,

∂θ̃s
∂ξ

∣∣∣∣
ξ=1

= 0,

θ̃s(ξ, τ̃ = 0) = f(ξ).

(4.64)

Even though the heat equation is a homogeneous partial differential equation, the boundary

conditions are not both homogeneous. Therefore, the method of superposition is required

prior to separation of variables. After a linear shift of temperature to remove the non-

homogeneity, the exact solution is expressed as:

θ̃s = −1 +
∞∑
n=1

C̃n

[
J0(λ̃nξ)Y0(λ̃nβ) − J0(λ̃nβ)Y0(λ̃nξ)

]
exp(−λ̃2

nτ̃), (4.65)

where the eigenvalues can be determined term by term based on the two boundary conditions

by solving the following transcendental equation:

J1(λ̃n)Y0(λ̃nβ) = J0(λ̃nβ)Y1(λ̃n), (4.66)
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and the corresponding coefficients can be found by the initial condition:

C̃n =

∫ 1

β

[
f(ξ) + 1

]
ξ
[
J0(λ̃nξ)Y0(λ̃nβ) − J0(λ̃nβ)Y0(λ̃nξ)

]
dξ∫ 1

β
ξ
[
J0(λ̃nξ)Y0(λ̃nβ) − J0(λ̃nβ)Y0(λ̃nξ)

]2
dξ

. (4.67)

4.4 Numerical analysis

There has been a variety of numerical methods developed to model solidification, as men-

tioned in Section 4.1. Among all, the enthalpy method is a versatile and computationally

efficient framework, even for higher dimensions with irregular topology [29, 54]. In this

section, a general implicit source-based enthalpy method is used to model a mushy region

between two phases, rather than a sharp-interface in the Stefan-like problem. This enthalpy

method will further facilitate the verification against the developed asymptotic solution in

Section 4.3.

4.4.1 Enthalpy method

The enthalpy method considers a heat conduction equation in terms of enthalpy as the

governing equation [54]:

∂H

∂t
=

1

r

∂

∂r

(
k
∂T

∂r

)
, (4.68)

where H is the enthalpy that represents the total thermal energy of fluid. The enthalpy is

primarily calculated by integrating heat capacity with respect to temperature [54] but it can

also be linearized by the following function [18]:

H =


ρcp,s(T − Tsolidus) , T < Tsolidus

ρcp(T − Tsolidus) + γρL , Tsolidus ≤ T ≤ Tliquidus

ρcp,ℓ(T − Tliquidus) + ρcp∆Tmushy + ρL , T > Tliquidus

(4.69)
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where Tsolidus and Tliquidus are the solidus and liquidus temperatures [K], respectively. ∆Tmushy

is defined as the temperature difference of the mushy zone, i.e., ∆Tmushy = Tliquidus − Tsolidus.

cp is the average specific heat in the mushy zone defined as (cp,s + cp,ℓ)/2. It is worthwhile to

mention that this linearization of enthalpy assumes a relatively small mushy zone, where the

change in latent heat is much larger than the change in sensible heat. Since the verification

against the analytical model also requires such small mushy region, the linearization is a

valid assumption in this study. Meanwhile, the liquid fraction, γ, is also assumed to change

linearly with temperature in the mushy zone:

γ =


0 , T < Tsolidus

T−Tsolidus

∆Tmushy
, Tsolidus ≤ T ≤ Tliquidus

1 , T > Tliquidus

(4.70)

The boundary conditions and initial conditions are

T (r = b, t) = Tb,
∂T

∂r

∣∣∣∣
r=a

= 0, T (r, t = 0) = Tinit. (4.71)

4.4.2 Discretization scheme

The governing equation expressed in Eqn. (4.68) can be firstly discretized term by term. The

unsteady term (left hand side of the equation) is discretized by a first-order scheme, while

the diffusive term (right hand side of the equation) is done by a second-order scheme. The

transformed discretized equation is written as:

di(Hi −Hold
i ) = ci−1Ti−1 + ciTi + ci+1Ti+1, (4.72)

where the subscript i represents the i-th node and the notation “old” means the previous

time step. The symbols c and d are the coefficients of discretized equation.
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Applying a first-order Taylor series approximation, the enthalpy Hj
i can be obtained:

Hj
i = Hj−1

i +
∂H

∂T

∣∣∣∣j−1

i

(T j
i − T j−1

i ), (4.73)

where the j-th iteration is denoted by the superscript j. The enthalpy equation can then be

linearized by substituting Eqn. (4.73) in Eqn. (4.72) as follows:

di

[
Hj−1

i +
∂H

∂T

∣∣∣∣j−1

i

(T j
i − T j−1

i ) −Hold
i

]
= ci−1T

j
i−1 + ciT

j
i + ci+1T

j
i+1. (4.74)

Figure 4.3 demonstrates the numerical solution algorithm of the enthalpy method. This

algorithm begins with the initialization of enthalpy and temperature. Then, the enthalpy and

temperature are iterated by solving the linearized enthalpy equation shown in Eqn. (4.74)

until convergence. The convergence criteria signifying the tolerance between the current and

previous iterations, is set to be well below 10−5 [K] in temperature. If the given convergence

condition is not met, then another iteration of solving the linearized enthalpy equation

will be required. Once the solution is converged, the next time step will be started. The

algorithm ends when the convergent solutions to all the prescribed time steps are obtained.

In addition, a mesh independence study is conducted in 4.7 on five different numbers of mesh

elements for selecting the optimal mesh count, thus setting a reference for the subsequent

model comparisons on computational cost.

4.5 Model verification

As mentioned in Section 4.1, the solid-liquid interface can be either simulated by a sharp

line or a mushy zone, where the mushy-zone model is usually solved by numerical schemes

(e.g., enthalpy method). To verify the presented analytical model governed by the sharp

interface, the enthalpy method was utilized based on various mushy-zone thicknesses (i.e.,

∆Tmushy = Tliquidus − Tsolidus). It is expected that the enthalpy method approaches sharp
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Figure 4.3: Numerical algorithm for the enthalpy method. Convergence criterion is pre-
scribed as 10−5 [K] in temperature between two neighboring iterations.

interface model as the mushy-zone thickness decreases. Here the mushy-zone thickness is

a numerical parameter of a fixed temperature interval for defining the piecewise function

of enthalpy as shown in Eqn. (4.69) and it relies on the liquidus and solidus temperatures.

The physical mushy-zone thickness in units of length between the solid and liquid phases,

nonetheless, depends on other parameters and often requires experimental observations which

will not be discussed in this work. In this section, the analytical model was compared and

verified by the enthalpy method. Both interface motion and temperature profiles at various

locations were plotted and discussed in details.
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Figure 4.4: Comparisons between the sharp-interface (analytical) and mushy-region (nu-
merical) models with different mushy-zone thicknesses in terms of interface motion for the

case: k̃ = c̃p = 1.0, β = 0.1, θinit = 1, Ste = 0.01. The analytical solution is given by the
solid line, while numerical results at liquid and solid temperatures are given by the dotted
and dashed lines.

Figure 4.4 compares the analytical model with numerical results in terms of interface

motion. Dimensionless interface location over dimensionless time was plotted based on the

analytical solution and numerical model with three mushy-zone thicknesses. Specifically, the

mushy-zone thicknesses were considered as 0.001, 0.010, and 0.100 [K]; the interface locations

at both liquidus and solidus temperatures were recorded for each thickness. According to

these numerical models with different mushy-zone thicknesses, a few notable results can be

observed. First, the mushy-zone thickness has a direct impact on the difference between

the interface at the liquidus temperature and the one at the solidus temperature. The

decrease in mushy-zone thickness minimizes difference between the two interfaces, which

results in the tendency to a nearly sharp interface model (e.g., ∆Tmushy = 0.001 [K]). This

observation facilitates verification to the analytical model, where a perfectly sharp interface

is assumed. Secondly, the total freezing time at the solidus temperature is roughly the same

among different mushy-zone thicknesses. In other words, the interfaces of three thicknesses

125



Table 4.3: Total freezing time in the analytical and three numerical results calculated based
on different temperature references. Deviations among these results are also listed.

Total freezing time, ᾱtc/a
2 Deviation

∆Tmushy Analytical (tc) Tliquidus (tc,1) Tsolidus (tc,2)
tc,1−tc,2

tc,2

tc−tc,2
tc,2

10−3 [K] 90.52 86.00 90.80 −5.29% −0.31%
10−2 [K] 90.52 76.60 90.80 −15.64% −0.31%
10−1 [K] 90.52 39.20 90.80 −56.83% −0.31%

terminate at similar times when ri = a. The interface motion at the solidus temperature

can therefore be a reasonable indicator to determine the total freezing time. The liquid

temperature, however, offers different freezing times for each mushy region. This finding can

be practical in many engineering applications on PCMs concerned with the total freezing or

melting time.

Additionally, many researchers have been focusing on the end-behavior of interface mo-

tion in Stefan problems by introducing a fairly short temporal scale in the asymptotic

analysis [51, 37, 10, 11]. Based on our comparisons, the curved end-behavior is seemingly

caused by the thickness of mushy zone, rather than other physical phenomena. For in-

stance, the end-behavior can be observed at ∆Tmushy = 0.100 [K], but it is barely seen at

∆Tmushy = 0.001, 0.010 [K]. It is also worthy to note that the total freezing time remains the

same with or without such end-behavior. As a result, the end-behavior can be safely ignored

in sharp-interface models from a physical standpoint.

The total freezing times of the asymptotic solution and three mushy-zone results are

expressed in a dimensionless form (i.e., ᾱtc/a
2) listed in Table 4.3. Particularly, the numerical

values of total freezing times are calculated as the times when interfaces arrives the outer

surface; that is, ξi = 1. The deviation between the liquidus and solidus temperatures is

firstly examined. Then, the total freezing time for solidus temperature is set as a reference

to calculate the deviation between the asymptotic and numerical solutions. As can be seen,

this deviation between liquidus and solidus temperatures enlarges greatly from −5.29% to
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Figure 4.5: Comparisons between the sharp-interface (analytical) and mushy-region (nu-
merical) models with different mushy-zone thicknesses in terms of temperature profile. The
temperature profile is recorded at four locations: a) 25%, b) 50%, c) 75%, and d) 100% of
the entire domain away from inner boundary. The analytical solution is given by the solid
line, while numerical solution is given by the dashed lines.

−56.83%, while the thickness of mushy zones increases. However, the discrepancy remains

the same at 0.31% between asymptotic and numerical (for solidus temperature) solutions in

all mushy-zone thicknesses.

Figure 4.5 shows dimensionless temperature profile for the same comparison as in Fig-

ure 4.4. To verify the temperature profiles, four locations were chosen equally over the

domain: a) 25%, b) 50%, c) 75%, and d) 100% of the domain away from the inner cylinder.

As can be seen in Fig. 4.5, temperature distributions on three thicknesses of mushy zone

were almost the same and overlapped with each other. This is because the interfaces on

solidus temperature move in similar speeds as explained in Fig. 4.4. Recall that the solidus
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Table 4.4: Comparisons between analytical and numerical solutions in regard to the com-
putational time of total freezing time, interface motion, and temperature profile.

Computational time
Analytical [minute : second] Numerical [minute : second]

Total freezing time instantaneously 01 : 39.78
Interface motion 00 : 00.69 01 : 39.78

Temperature profile 00 : 01.65 01 : 39.78

temperature is more crucial for interface tracking in freezing problems since the latent heat

is fully contributed at this temperature. It can be concluded that mushy-zone thickness

does not have much influence on the temperature when other parameters are fixed. Overall,

the presented analytical solution has a strong agreement with numerical results in terms of

temperature distributions, especially at the freezing stage.

With regards to computational cost, the numerical algorithm implemented in MATLAB

(R2020a) computer programming language takes approximately 1 minute and a half for com-

puting the total freezing time, interface motion, and temperature profile. The workstation

has 2 cores, 4 logical processors, and 8GB of RAM; the optimal number of mesh elements is

used as chosen in Section 4.7. Under the same computing environment, the analytical model

takes well below 2 seconds for temperature and less than 1 second for the interface. This is

because an explicit form of total freezing time has been obtained in the asymptotic analy-

sis that can be computed instantaneously. Specific values of these computational times are

recorded to compare the analytical and numerical models in Table 4.4, which illustrates the

advantage of the analytical framework further. Moreover, the numerical time will increase

along with number of mesh elements and time steps. Numerical instability will also occur

as the thickness of mushy zone decreases. However, the only influential factor for analytical

computation is the number of eigenvalues; in this case, the first five terms of eigenvalues

guarantee convergence. Thus, it can be concluded that the computational time of analytical

solution is less than 3% of the numerical algorithm.
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Figure 4.6: Dimensionless interface location over dimensionless time at three different
geometric ratios: β = 0.01, 0.10, 0.50 in red, black and blue lines, respectively. The analytical
solution is given by the solid lines, while numerical solution is given by the dashed lines.

4.6 Results and discussion

4.6.1 Effect of geometry

The moving boundary interface location over time at three different spatial dimensions is

shown in Fig. 4.6. That is, three geometric ratios of inner radius over outer radius are taken

into account (i.e., β = 0.01, 0.10, 0.50). These spatial dimensions are particularly chosen

for typical engineering applications of artificial ground freezing [7, 5, 66] and thermal/cold

energy storage systems [44]. As can be seen in Fig. 4.6, all analytical solutions agree very

well with numerical results and the geometry is insensitive to the accuracy of analytical

solution. The geometric ratio represents the relative size of inner boundary compared with

the outer boundary. This ratio is found to have a negative influence on the moving interface.

Therefore, it takes shorter time to freeze/melt the domain for a larger geometric ratio.

Figure 4.7 provides the dimensionless temperature profile at four evenly distributed points

for the analytical and numerical solutions under the selected spatial dimensions. As explained
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Figure 4.7: Dimensionless temperature profile at three different geometric ratios: β =
0.01, 0.10, 0.50 in red, black and blue lines, respectively. The temperature profile is recorded
at four locations: a) 25%, b) 50%, c) 75%, and d) 100% of the entire domain away from
inner boundary. The analytical solution is given by the solid lines, while numerical solution
is given by the dashed lines.

by Fig. 4.5, the analytical results of temperature profile is consistent numerical solutions at

all locations. It can be summarized that the accuracy of our asymptotic solution affects

neither the interface motion nor temperature distributions. The temperature experiences a

temporal delay as the geometric ratio decreases. This effect is particularly intensive during

the freezing and cooling stages which leads to a longer total freezing time as illustrated in

Fig. 4.6.
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Table 4.5: Ratios of thermophysical properties in typical PCMs: organic, inorganic salts
hydrates, and eutectic compounds [12, 48]. LH2O is the latent heat of fusion for pure water.

k̃ = ks/kℓ c̃p = cp,s/cp,ℓ ρ̃ = ρs/ρℓ L/LH2O

Organic 1.09 − 2.21 0.56 − 1.50 1.05 − 1.18 0.47 − 1.15
Inorganic 1.21 − 2.62 0.48 − 0.83 1.06 − 1.13 0.37 − 1.00
Eutectic Compound 0.92 − 2.22 0.62 − 1.24 0.95 − 0.98 0.25 − 1.11
Overall 0.92 − 2.62 0.48 − 1.50 0.95 − 1.18 0.25 − 1.15

4.6.2 Effect of phase-dependent thermophysical properties

Thermophysical properties of phase change materials (PCMs) have been studied extensively

and experimental measurements of these properties are thoroughly documented in the liter-

ature. According to the reviews [12, 48], the ratios of solid phase over liquid phase in terms

of thermal conductivity, specific heat, and mass density are calculated and categorized by

organic, inorganic salt hydrate, and eutectic compounds PCMs, as listed in Table 4.5. These

ranges of property ratios will be the guideline for making a realistic modeling in the sub-

sequent analysis. It is worthwhile to notice that the ratio of mass density varies within a

rather small range in PCMs (from 0.95 to 1.18). The effect of density change can be studied

by a dual moving boundary problem [22, 3], which would incorporate the motion of the free

surface due to density difference in the phases. However, this effect cannot be incorporated

in the current setup since the radial surfaces in the annular PCMs (e.g., freeze pipes, heat

exchangers) are immobilized by the bounding walls. The density difference would cause me-

chanical stresses in the frozen phase, but it is beyond the scope of our investigation. Further,

the ratio of latent heat of fusion is divided by the latent heat for pure water (LH2O) as a

reference. The effect of latent heat along with the temperature difference will be studied

in Section 4.6.3 because this will be one of the most influential parameters on the Stefan

number.
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Figure 4.8: Dimensionless interface location over dimensionless time at four different thermal
conductivity ratios: k̃ = 1.0, 1.5, 2.0, 2.5 in black, red, green and blue lines, respectively. The
analytical solution is given by the solid lines, while numerical solution is given by the dashed
lines.

Thermal conductivity

As can be seen in Table 4.5, the ratio of thermal conductivity of solid over liquid phase

varies from 0.92 to 2.62 for most PCMs. Therefore, four ratios of thermal conductivity

can be chosen within this calculated range (i.e., k̃ = ks/kℓ = 1.0, 1.5, 2.0, 2.5) to investigate

the effect of thermal conductivity. Since the mass density and specific heat are sometimes

assumed to be the same in both phases, similar ratio range has also been used for thermal

diffusivity, which is the thermal conductivity divided by mass density and specific heat.

However, in this study, the thermal conductivity and specific heat are phase-dependent and

analyzed separately to extract more insights.

Figures 4.8 & 4.9 are the non-dimensionalized interface location and temperature profile

for these ratios of thermal conductivity, respectively. Thermal conductivity gives a quan-

titative measure of a material’s ability to conduct heat. The ratio of thermal conductivity

of solid over liquid phase is therefore an implication of how fast the solidification process
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Figure 4.9: Dimensionless temperature profile at three different thermal conductivity ratios:
k̃ = 1.0, 1.5, 2.0, 2.5 in black, red, green and blue lines, respectively. The temperature profile
is recorded at four locations: a) 25%, b) 50%, c) 75%, and d) 100% of the entire domain
away from inner boundary. The analytical solution is given by the solid lines, while numerical
solution is given by the dashed lines.

occurs, i.e., the interface speed. The interface moves faster at a higher ratio of thermal

conductivity, and consequently the temperature decays more rapidly as shown in Fig. 4.9.

For example, when the ratio of thermal conductivity is doubled from k̃ = 1 to k̃ = 2, the

interface and temperature are reduced by roughly 20%. It is worthy to mention that the

agreement between the analytical and numerical results still holds under different thermal

conductivities.

133



Figure 4.10: Dimensionless interface location over dimensionless time at various a) specific

heat ratios (c̃p), b) latent heat of fusion ratios (L̃), and c) temperature intervals (∆T ). Solid
lines are analytical solutions and dashed lines are numerical results.
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Specific heat

Figure 4.10a demonstrates dimensionless interface location over dimensionless time at various

ratios of specific heat. As can be seen in Fig. 4.10a, three ratios of specific heat (i.e.,

c̃p = cp,s/cp,ℓ = 0.5, 1.0, 1.5) are selected from a variety of PCMs listed in Table 4.5. Recall

that the specific heat (capacity) is defined by the amount of heat required for a unit mass to

increase one unit in temperature. If a material has a higher specific heat, then the material

is more capable to raise its temperature per unit mass. In the context of solidification, the

solid phase is dominant for the interface motion; a higher specific heat in the solid implies

a faster interface motion (i.e., a shorter total freezing time). This expectation is consistent

with the results in Figure 4.10a, since the ratio of specific heat is proportional to the solid

specific heat.

4.6.3 Effect of Stefan numbers

Stefan number is a ratio of sensible heat over latent heat, i.e., Ste = cp∆T/L. Consequently,

all of the three parameters (averaged specific heat, total temperature interval and latent heat

of fusion) need to be considered. It is expected that the discrepancy between analytical and

numerical solutions may not be identical because the Stefan number governing the accuracy

of the analytical solution varies. Since the difference between two solutions could not be

apparent in the interface plots, a quantitative analysis on their deviations will be shown in

the end.

First, the ratio of latent heat of a PCM over pure water (i.e., L/LH2O) is studied as seen

in Fig. 4.10b, and a series of values is examined within the range between 0.25 and 1.00

while maintaining the other parameters. The discrepancy between two solutions is fairly

minimal, despite the fact that the Stefan number has been dropped from 0.08 to 0.02 as

L̃ rises. Secondly, several values of total temperature interval (i.e., ∆T = Tinit − Tb) are

investigated from 10 to 40 [K], as depicted in Fig. 4.10c. Since it takes more time for a lower
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Figure 4.11: A graph of absolute deviation of the asymptotic solution in total freezing time
over global Stefan number. This deviation is defined as |(tc − tc,2)/tc,2| × 100%, where tc,2 is
the total freezing time at solidus temperature.

temperature differential to freeze the domain, it is expected that the total freezing time

decreases with the temperature interval. The developed asymptotic solution still agrees very

well with numerical results in these temperature intervals.

Lastly, all the aforementioned data on specific heat, latent heat and total temperature

interval are bundled together as a global Stefan number, cp(Tinit−Tb)/L. This global Stefan

number considers the average specific heat (i.e., cp = (cp,s + cp,ℓ)/2) and total temperature

interval between two phases. A plot of absolute deviation of asymptotic solution in total

freezing time over global Stefan number is shown in Fig. 4.11. Despite the fact that specific

heat, temperature interval, and latent heat can all influence the precision of asymptotic

solution, the global Stefan number is an overall indicator of solution’s accuracy. As the

global Stefan number increases, the deviation of asymptotic solution also increases, which

could return a less accurate solution. It is found that the accuracy varies linearly (e.g., from

0.2% to 1.2%) for the Stefan number below 0.1, as illustrated in Fig. 4.11. The dominance

of Stefan number to asymptotic solution is inevitable due to the truncation of asymptotic
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expansions in the analysis. However, for applications of PCMs, the small Stefan number

approximation is intrinsic and offers a quite accurate solution (less than 1.2% deviation from

numerical results).

4.7 Conclusion

An asymptotic solution to a two-phase Stefan problem in a hollow cylinder was developed to

model outward solidification in phase change materials (PCMs). The approximate analytical

solution was verified against numerical results by enthalpy method, and different mushy-zone

thicknesses were investigated to reveal the differences between two mathematical frameworks

of phase change (i.e., Stefan problems and enthalpy method). Further, a range of geometries,

thermophysical properties and Stefan numbers were explored based on the PCMs measured

in the literature. It can be therefore concluded that:

1) The asymptotic solution yielded by four spatial and three temporal scales (a.k.a., four

layers and three regimes) can characterize the subcooling, freezing and cooling stages

during solidification. This framework provides a guideline for solving other variations

of Stefan problems by reflecting on the physical phenomenon;

2) The developed solution to Stefan problem modeled the same temperature profile (yet

not interface motion) while comparing different mushy-zone thicknesses by enthalpy

method. These comparisons between the Stefan problem and enthalpy method could

have a significant impact on choosing a phase change model for the purpose of verifi-

cation and validation;

3) The accuracy of the presented asymptotic solution is solely affected by the Stefan

number due to its asymptotic limit. That is, the accuracy is not sensitive to geometry or

thermal conductivity. As a result, this study offers an accurate and reliable asymptotic

solution, particularly in the applications of PCMs; and
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4) The presented model greatly reduces the computational time in enthalpy method, and

the deviations between the asymptotic solution and numerical results are acceptable

within the field of PCMs studied in the literature.

This study focused on the asymptotic analysis of a one-dimensional two-phase Stefan

problem in a hollow cylinder subjected to a Dirichlet boundary condition. Higher dimensions,

complex geometries and other boundaries (e.g., Neumann, Robin) could be investigated by

conducting a similar asymptotic analysis in the future. Other recommendations for future

studies include: modifying the parabolic heat equations into hyperbolic ones for non-Fourier

heat conduction; adding mass diffusion equations to form an extended Stefan problem; and

redefining the moving boundary to incorporate nonequilibrium interface kinetics.

Appendix A. Proof of liquid phase contribution to moving interface

in Regime II Layer C

The liquid phase problem is

Ste
∂θ̃ℓ
∂τ̃

=
1

α̃

(
∂2θ̃ℓ
∂ξ2

+
1

ξ

∂θ̃ℓ
∂ξ

)
, ξi(τ̃) < ξ < 1, (4.75)

θ̃ℓ(ξi(τ̃), τ̃) = 0, (4.76)

∂θ̃ℓ
∂ξ

∣∣∣∣
ξ=1

= 0, (4.77)

θ̃ℓ(ξ, 0) = θinit. (4.78)

This problem was firstly solved by the method of composite asymptotic expansions in the

Cartesian coordinates by Nayfeh [43], and similar method has also been applied to a sphere

[37]. Here, we will closely follow the analytical procedure documented in [43].

Applying the method of composite expansions, we assume that θ̃ℓ has a uniformly valid
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asymptotic expansion of the form

θ̃ℓ(ξ, τ̃; Ste) =
∞∑
n=0

Stenfn(ξ, τ̃) + exp

[
− g(τ̃)

Ste

] ∞∑
n=0

Stenhn(ξ, τ̃), (4.79)

where the special function exp[−g(τ̃)/Ste] along with g(τ̃) → τ̃ as τ̃ → 0 characterizes the

initial behavior. This treatment is required, because the time derivative is multiplied by the

perturbation parameter which cannot satisfy the initial condition.

For n = 0:

Ste

{
∂f0
∂τ̃

− g′(τ̃)

Ste
exp

[
− g(τ̃)

Ste

]
h0 + exp

[
− g(τ̃)

Ste

]
∂h0

∂τ̃

}
=

α

{
∂2f0
∂ξ2

+ exp

[
− g(τ̃)

Ste

]
∂2h0

∂ξ2
+

1

ξ

∂f0
∂ξ

+
1

ξ
exp

[
− g(τ̃)

Ste

]
∂h0

∂ξ

}
.

Equating the coefficients of Ste0 and Ste0 exp[−g(τ̃)/Ste], we have

∂2f0
∂ξ2

+
1

ξ

∂f0
∂ξ

= 0 (4.80)

∂2h0

∂ξ2
+

1

ξ

∂h0

∂ξ
+ α̃g′(τ̃)h0 = 0 (4.81)

subject to

f0(ξi(τ̃), τ̃) = 0,
∂f0
∂ξ

∣∣∣∣
ξ=1

= 0, h0(ξi(τ̃), τ̃) = 0,
∂h0

∂ξ

∣∣∣∣
ξ=1

= 0. (4.82)

and

f0(ξ, 0) + h0(ξ, 0) = θinit. (4.83)

Firstly, the solution to f0 is f0 = 0. Then, the equation for h0 has a nontrivial solution if
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and only if g′ is one of the eigenvalues

g′k =
1

α̃

[
kπ

ξi(τ̃)

]2
, k = 1, 2, 3, ... (4.84)

Substituting these eigenvalues, we find

h0 = a0(τ̃)χk(ξ, τ̃), (4.85)

where the eigenfunction, χk, can be found by

χk = Ck

[
J0(kπ)Y0

(
kπξ

ξi

)
− J0

(
kπξ

ξi

)
Y0(kπ)

]
, (4.86)

and ξi is determined by the following transcendental equation

J1

(
kπ

ξi

)
Y0(kπ) − J0(kπ)Y1

(
kπ

ξi

)
= 0, for ξi ̸= 0. (4.87)

Note that the undetermined variable, a0(τ̃), will be proved to be a constant after analyzing

the equation for h1 by orthogonality. Similar to the analysis in Nayfeh [43], this constant

will be merged into the coefficient Ck in χk. Substituting the solutions of f0 and h0 into θ̃ℓ,

we can write the leading order solution for the eigenvalue term k = 1:

θ̃ℓ(ξ, τ̃; Ste) ∼
∞∑
k=0

Ck

[
J0(kπ)Y0

(
kπξ

ξi

)
− J0

(
kπξ

ξi

)
Y0(kπ)

]
exp

[
− k2π2

α̃Ste

∫ τ̃

0

1

ξi(ζ)2
dζ

]
+ O(Ste),

where ξi is determined by the following transcendental equation (4.87) and Ck is given by
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applying the initial condition

Ck =

∫ ξi
ξ=0

ξθinit

[
J0(kπ)Y0

(
kπξ
ξi

)
− J0

(
kπξ
ξi

)
Y0(kπ)

]
dξ

∫ ξi
ξ=0

ξ

[
J0(kπ)Y0

(
kπξ
ξi

)
− J0

(
kπξ
ξi

)
Y0(kπ)

]2
dξ

. (4.88)

Its derivative at the interface becomes

∂θ̃ℓ
∂ξ

∣∣∣∣
ξ=ξi

∼
∞∑
k=0

Ck
kπ

ξi

[
J1(kπ)Y0(kπ) − J0(kπ)Y1(kπ)

]
exp

[
− k2π2

α̃Ste

∫ τ̃

0

1

ξi(ζ)2
dζ

]
∼

∞∑
k=0

2Ck

πξi
exp

[
− k2π2

α̃Ste

∫ τ̃

0

1

ξi(ζ)2
dζ

]
.

As can be seen, the liquid phase is now proved to have an exponentially small contribution

to the interface motion as Ste → 0. Same conclusions have been drawn in the Cartesian [43]

and spherical [37] coordinates.

Appendix B. Mesh independence study

Five different numbers of mesh elements (Nnode) are studied under same scenario (as shown in

Figure 4.4) and computational environment. The objectives of this mesh independence study

are: i) to select the optimal number of nodes; and ii) to use the optimal mesh as a reference

to compare the computational time against analytical solution. Figure 4.12 demonstrates the

dimensionless interface motion measured on the solidus and liquidus temperatures among

five mesh counts. It is quite evident that the fourth and fifth mesh counts (i.e., Nnode =

6× 102, 1× 103) yield similar results, which implies that the number of mesh elements is no

longer dependent when Nnode > 6 × 102. The fourth mesh count is therefore chosen for the

model verification and parametric studies.
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Figure 4.12: Comparisons among various node numbers in regard to interface motion mon-
itored on the solidus and liquidus temperatures for the case: k̃ = c̃p = 1.0, β = 0.1, θinit =
1, Ste = 0.01, ∆Tmushy = 10−2 [K]. Solid lines are for interfaces on solidus temperature and
dashed lines are for the ones on liquidus temperature.
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Chapter 5

Asymptotic analysis of a two-phase Stefan prob-
lem in an annulus with the convective bound-
ary
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Preface (Bridging Text)

In Chapter 4, phase change materials (PCMs) were modeled with a fast-to-compute and easy-

to-implement analytical solution, which facilitated the thermal estimation of cold thermal

energy storage with thermosiphons for mining in the North. Specifically, an asymptotic

solution to a two-phase Stefan problem was derived, encompassing multiple spatial and

temporal scales, which extended the spatiotemporal resolution of the singular perturbation

theory in the previous chapter.

Nevertheless, a major assumption in the problem formulation is that the solid-liquid in-

terface will move instantaneously with time, rendering a relatively ideal isothermal condition.

A more realistic scenario in practice would be a convective one that depends on the thermal

and flow conditions of the heat transfer fluid, as well as its response to climatic conditions,

such as wind speed, which could significantly affect energy storage. In this case, the interface

would not be assumed or required to move instantly; instead, the pre-cooling time should

depend on the heat transfer fluid and climatic conditions.

In this chapter, a Robin or convective boundary for the two-phase Stefan problem was

explored. This introduced significant complexity to the mathematical problem and asymp-

totic analysis, as the interface did not move instantaneously with time. Through systematic

asymptotic analysis, four temporal and five spatial scales were identified and resolved. Fur-

thermore, the impact of Biot and Stefan numbers was investigated, which fundamentally

govern the solidification process.

The outcome of this study, from the applied aspect, characterized the effect of climatic

conditions, including wind velocity and air temperature, through the convective heat trans-

fer at the PCM’s surface (which was fundamentally quantified as the Biot number). This

provided a realistic and computationally efficient estimation of PCM energy storage in terms

of charging time, temperature profile, and interface motion. The insights and discussions

presented in this chapter were published in the peer-reviewed journal article listed below.
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M. Xu, S. Akhtar, M. Mohit, A. F. Zueter, and A. P. Sasmito. Asymptotic analysis of

a two-phase Stefan problem in an annulus with the convective boundary. International

Journal of Thermal Sciences, 196:108744, 2024.

Abstract

The Stefan problem (whether in its classical form or not) has assumed that the interface

moves instantaneously with time as a prescribed initial condition. This assumption is valid

in the problems subjected to an isothermal boundary. Yet, it may not represent the physics

for a convective boundary since a certain amount of time is needed to cool or melt the con-

vective surface to its fusion depending on the heat transfer coefficient (or Biot number in a

dimensionless way). In this study, we formulate a two-phase Stefan problem in an annulus

for outward solidification subjected to a convective or Robin boundary condition while not

assuming that the interface moves right away at time t = 0. A comprehensive asymptotic

analysis is performed by expanding around a small Stefan number; four spatial and five

temporal scales are characterized based on the Stefan problems involving a convective sur-

face. The method of property averaging is also employed at the scale where the equilibrium

freezing occurs. The developed asymptotic solution is verified with numerical data generated

by the enthalpy method at various Biot and Stefan numbers. The results demonstrate the

significance of abandoning the initial assumption (i.e., the interface does not move imme-

diately with time), especially towards small Biot numbers. Further, it is found that the

presented asymptotic solution considerably extends the valid range of the Stefan number

when compared with the conventional asymptotic technique.

Keywords: Stefan problem, Robin boundary condition, asymptotic analysis, solidification,

phase change heat transfer
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5.1 Introduction

A fundamental understanding of phase change heat transfer between solid and liquid states

(also referred to as melting and freezing) can facilitate many applications. These applications

include but are not limited to thawing and degradation of permafrost soils [35, 13, 39],

melting process in polymer and metal 3D printing [26, 24, 16, 25], droplet and spray freezing

[3, 2, 12], freeze-drying technology of biological materials [38, 11, 14], artificial ground freezing

for stabilization [55, 61, 4], continuous casting of binary alloys [48, 49], and (cold) thermal

energy storage systems using phase change materials (PCM) [37, 29, 56]. There are a variety

of mathematical modeling approaches, such as the front-tracking method, enthalpy method,

heat capacity method, level set method, and phase field method. The front-tracking method,

in particular, has been historically studied since the establishment of the so-called Stefan

problem by G. Lamé and B.P. Clapeyron in 1831 [28], but it still perplexes mathematicians

and natural scientists. The problem introduces an energy balance of sensible and latent heat

at the interface between the two phases, namely the Stefan condition. The general form of

this Stefan condition can be expressed as

ρLv︸︷︷︸
latent heat

=

[
q⃗ · n⃗

]liquid
solid︸ ︷︷ ︸

sensible heat

, (5.1)

where ρ, L, v, q⃗, n⃗ are the mass density, latent heat, interface velocity, heat flux, and normal

vector, respectively. However, the Stefan condition can also have an alternative form that

takes into account the Gibbs-Thomson effect, implying that the freezing or equilibrium

temperature at the curved surface is higher than that at the planar surface [52, 15, 18].

Some Stefan problems possess self-similar solutions that are exact. By introducing a sin-

gle similarity variable such as x/t
1
2 , the spatial and temporal independent variables (i.e., x

and t, respectively) are merged, thus obtaining an exact solution. However, self-similar solu-

tions only apply to idealized situations, restricting the domain, coordinate(s), and boundary
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conditions into specific combinations. Most of these self-similar solutions can be found in

the texts [20, 19] and references thereinafter. New development of self-similar solutions in-

cludes: power-type latent heat problems with Kummer functions [60, 5, 59, 6, 58], fractional

Stefan problems for extreme diffusion behaviors [45, 27, 36], and problems with non-linear

diffusivities or thermal conductivities [7, 44, 10].

When the exact solution cannot be found or does not exist, approximate analytical or

semi-analytical methods are largely employed. The perturbation method, also referred to as

asymptotic analysis, is the primary approximate technique for solving the Stefan problems,

which often uses the intrinsically small Stefan number (i.e., Ste ≪ 1) as the asymptotic limit

to assume an asymptotic expansion. The complex Stefan problem with the partial differen-

tial equation (PDE) and the non-linear moving boundary is then broken down into several

ordinary differential equations (ODEs) that are comparatively easy to solve. Hill’s book [20]

summarized perturbation solutions to one-dimensional one-phase classical Stefan problems

with Dirichlet and Robin boundaries that are time-independent. Recent development em-

phasizes perturbation solutions to the problems with a time-dependent temperature [9] or

heat flux [33, 22], thus taking into account the periodic charging-discharging behavior in

energy storage. When the second phase is not assumed to be at its fusion/melting point,

the Stefan problem becomes a two-phase one, making the Stefan condition for the moving

interface more non-linear than before. Weinbaum and Jiji applied the singular perturbation

method along with the boundary-fixing technique to a finite planar domain and captured

the subcooling behavior by introducing a shorter temporal scale (a.k.a., inner solution),

while the unstretched scale (a.k.a., outer solution) reduced to a one-phase problem [51].

Similar methodologies were also used to solve inward [23] and outward solidification [53] in

an annular domain, and inward solidification in spheres [1, 3]. Recently, Wang et al. [50]

developed an asymptotic solution for the solidification of nano-capsules, incorporating the

Gibbs-Thomson effect and a convective term during phase change. It is noted that all the

studies mentioned above considered two temporal scales.
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McCue et al. [30] analyzed four temporal scales along with small-time and slow (thermal)

diffusion limits for inward solidification in spheres. Xu et al. [54] performed an asymptotic

analysis of a two-phase Stefan problem in a hollow cylinder, characterizing three distinct

temporal and four spatial scales. The classical two-phase Stefan problems can also be coupled

with mass diffusion equations for both phases, namely extended Stefan problems [19]. These

problems were recently studied by asymptotic analysis for modeling the solidification of

binary alloys in finite planar [8], and spherical domains [34]. Nevertheless, it is worthwhile

mentioning that the asymptotic solutions to these two-phase problems are mostly subjected

to a constant temperature boundary.

Most studies on analytical solutions to two-phase Stefan problems focus on formulating a

Dirichlet or first-type boundary condition with a constant temperature. The consideration of

realistic boundaries based on Newton’s law of cooling, also known as the convective, mixed,

or third-type boundary condition, is still missing. Tarzia and Turner studied the pre-cooling

time for a heat flux condition or a convective boundary in the one-dimensional Cartesian

[42] and spherical [43] coordinates. A time-dependent convective boundary condition in a

one-dimensional semi-infinite domain was investigated in [41]. Nevertheless, the convective

boundary in the cylindrical coordinates has profound practical applications, such as the

outward freezing of a circular pipe. As a consequence, the asymptotic solution to a two-

phase Stefan problem in an annulus with a convective boundary condition can be in great

demand.

Another research gap is on the approach to finding the moving interface for two-phase

Stefan problems in asymptotic analysis. To our knowledge, most solutions of interface motion

for two-phase problems in the literature have been primarily obtained by reducing them into

one-phase problems. Though some effort was made to match the start and end behaviors

with the one-phase interface, the overall evolution of the interface is still dominated by one

phase. Hence, it lacks information of the second phase when both phases exist and can

vastly overestimate the interface motion as the Stefan number increases. In this study, we
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perform an asymptotic analysis for a two-phase Stefan problem subjected to a convective

boundary in an annulus for outward solidification. The analysis consists of four distinct

temporal scales (called regimes) and five spatial scales (called layers) and includes regular

and matched asymptotic expansions based on a small Stefan number limit as well as the

method of property averaging for larger Stefan numbers. The developed solution applies

to small Stefan numbers and all Biot numbers. Further, the result of interface motion also

takes account of both phases during freezing owing to the property averaging.

The paper is structured as follows. Section 5.2 begins with the mathematical formula-

tion of the Stefan problem (including governing equations, boundary conditions, and time

conditions) along with assumptions. The problem is then nondimensionalized, and key di-

mensionless numbers (such as Stefan and Biot) are introduced. Section 5.3 demonstrates

the asymptotic analysis performed to solve the Stefan problem. Every regime and layer are

solved mathematically with physical insights. A well-established numerical scheme is briefly

presented in Section 5.4 to be used to verify the presented analytical solution in the following

section. Section 5.5 shows the effect of Stefan and Biot numbers on the asymptotic solution

with the numerical results. Section 5.6 concludes this work’s main findings and importance

and summarizes some potential future research directions for Stefan problems.

5.2 Mathematical modeling

We consider a commonly used annulus PCM with a realistic convective boundary at the inner

surface due to a heat transfer fluid (HTF) or refrigerant operating inside. On the other hand,

an insulated outer surface is prescribed, as schematically illustrated in Fig. 5.1(a). The PCM

is initially at its liquid state, i.e., at a constant temperature higher than its fusion, but the

colder HTF makes the PCM freeze as time passes. Figure 5.1(b) shows the freezing stages

in chronological order. Here, the key assumptions are listed as follows:

1) Heat conduction prevails over other modes of heat transfer and physical fields within
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the PCM which is the domain of the problem.

2) The freezing process of this PCM is considered to happen in a one-dimensional cylin-

drical coordinate and at the macro-scale. That is, there are no meso- and micro-scale

phenomena (such as the crystal growth and nucleation [2, 56] as well as microstructures

[21]).

3) The effect of density change is negligible for the solid and liquid phases. The change in

density causes an increase or decrease in volume, which then turns into a dual-moving

boundary problem [17].

5.2.1 Formulation

In this problem, the heat conduction equation for the solid phase is expressed as

1

αs

∂Ts

∂t
=

∂2Ts

∂r2
+

1

r

∂Ts

∂r
, b < r < ri(t), t0 < t < ∞, (5.2)

and the one for the liquid phase is given by

1

αl

∂Tl

∂t
=

∂2Tl

∂r2
+

1

r

∂Tl

∂r
, ri(t) < r < a, 0 < t < tc, (5.3)

where T (r, t) is the temperature depending on the radial coordinate r and time t, and ri(t)

is the time-dependent solid-liquid moving interface location. The parameters a, b, α are

the outer radius, inner radius, and thermal diffusivity (determined by dividing the thermal

conductivity by the mass density and specific heat, i.e., k/(ρcp)), respectively. The subscripts

s and l stand for the solid and liquid phases. It is also noted that the time interval for each

phase varies: the solid starts at t0 (when the interface starts to move) and continues to exist,

while the liquid begins at t = 0 and ends at tc (when the whole domain is solidified).

There are two fixed boundary conditions located at the inner and outer surfaces. The
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inner surface is subjected to a convective boundary based on Newton’s law of cooling

−k
∂T

∂r

∣∣∣∣
r=b

= h

[
T∞ − T (r = b, t)

]
, (5.4)

and the outer surface is thermally insulated given by

∂T

∂r

∣∣∣∣
r=a

= 0, (5.5)

where h is the convective heat transfer coefficient and T∞ is the surrounding temperature,

presumably lower than the material’s fusion point Tf. It is noted that the convective (Robin)

boundary is the most realistic condition among others. However, if a constant temperature

(Dirichlet) [54] or heat flux (Neumann) [31, 32] boundary is needed, the heat transfer coeffi-

cient can be adjusted to a very high or low value. Moreover, the moving boundary conditions

are

ks
∂Ts

∂r

∣∣∣∣
r=ri(t)

− kl
∂Tl

∂r

∣∣∣∣
r=ri(t)

= ρL
dri
dt

, r = ri(t), t0 < t < tc, (5.6)

and

Ts(r = ri(t), t) = Tl(r = ri(t), t) = Tf, r = ri(t), t0 < t < tc. (5.7)

The first moving boundary condition in Eq. (5.6) in particular represents the energy balance

at ri(t) in which the release of latent heat is caused by the difference in heat fluxes from

two phases; the second condition in Eq. (5.7) indicates that the interface is at the material’s

fusion temperature. As for the time conditions, the material is initially in its liquid state

with a uniform initial temperature that is above the fusion temperature

Tl(r, t = 0) = Tinit, b < r < a, t = 0, (5.8)

while the solid-liquid interface moves from the inner to outer surface, implying an outward
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(convection)

Outer surface

(insulation)

Moving 

boundary

(isothermal)

I II

IIIIV

Figure 5.1: Schematic diagram of computational geometry along with the coordinate and
boundary conditions, as shown in (a); Characterization of the interface motion over time
into four stages/regimes (denoted by I, II, III, IV) demonstrated in (b).

solidification during the time interval [t0, tc]

ri(t = t0) = b, ri(t = tc) = a. (5.9)

5.2.2 Nondimensionalization

Table 5.1 introduces a list of scalings (including geometry, temperature, and time) used in

the nondimensionalization. Mainly, the geometric scaling consists of the ratio of inner to

outer radii β, dimensionless radial coordinate ξ, and dimensionless interface location ξi. Since

each of these is calculated by dividing the outer radius a, the interval for ξ and ξi is given by

[β, 1]. As for the temperature, the difference in reference temperature ∆T is defined by the

fusion and surrounding temperature Tf−T∞, and thus this difference is used to calculate the

temperature in both phases as well as the initial temperature, i.e., θs, θl, and θinit. Lastly,

the dimensionless time is calculated through αst/a
2.
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Table 5.1: List of geometric, temperature and time scalings used in the nondimensionaliza-
tion.

Type Name Expression

Geometric
β b/a
ξ r/a
ξi ri/a

Temperature

∆T Tf − T∞
θs (Ts − Tf)/∆T
θl (Tl − Tf)/∆T
θinit (Tinit − Tf)/∆T

Time τ αst/a
2

As a consequence of the scalings, some dimensionless thermophysical properties and

dimensionless numbers can be introduced listed in Table 5.2. Three scaling parameters of

thermophysical property (e.g., α̃, k̃, c̃p) are determined by the ratio of solid to liquid phases.

There are also two dimensionless numbers in this mathematical model:

Bi =
ha

ks
, Ste =

cp,s∆T

L
. (5.10)

The convective heat transfer from the surface of the body to its interior is quantified by the

Biot number (Bi), while the proportion of sensible to latent heat during a phase change is

considered in the Stefan number (Ste). It is noted that the two dimensionless numbers and

the dimensionless time are evaluated primarily by the solid phase, as it is the more dominant

phase in terms of solidification.

The dimensional mathematical model (5.2)–(5.9) is therefore nondimensionalized as fol-
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Table 5.2: List of dimensionless parameters involved in the nondimensionalization.

Type Name Expression

Thermophysical property
α̃ αs/αl

k̃ ks/kl
c̃p cp,s/cp,l

Dimensionless number
Bi ha/ks
Ste cp,s∆T/L

lows:

∂θs
∂τ

=
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

, β < ξ < ξi(τ), τ0 < τ < ∞, (5.11)

∂θl
∂τ

=
1

α̃

(
∂2θl
∂ξ2

+
1

ξ

∂θl
∂ξ

)
, ξi(τ) < ξ < 1, 0 < τ < τc, (5.12)

−∂θ

∂ξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θ(ξ = β, τ)

]
, (5.13)

∂θ

∂ξ

∣∣∣∣
ξ=1

= 0, (5.14)

∂θs
∂ξ

∣∣∣∣
ξ=ξi(τ)

− 1

k̃

∂θl
∂ξ

∣∣∣∣
ξ=ξi(τ)

=
1

Ste

dξi
dτ

, ξ = ξi(τ), τ0 < τ < τc, (5.15)

θs(ξ = ξi(τ), τ) = θl(ξ = ξi(τ), τ) = 0, ξ = ξi(τ), τ0 < τ < τc, (5.16)

θl(ξ, τ = 0) = θinit, ξi(τ = τ0) = β, ξi(τ = τc) = 1. (5.17)

5.3 Asymptotic analysis

This section presents a solution to the two-phase Stefan problem using the asymptotic

method by expanding around a small Stefan number. The Stefan number is defined as

the product of two terms, namely, the ratio of the specific heat to the latent heat, cp/L,

and the temperature gradient, ∆T . The former is a material property, while the latter is

an operational variable. The small Stefan number assumption, required for the asymptotic

analysis, is often valid in engineering applications of phase change materials. The asymptotic
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Table 5.3: Summary of scalings used in the asymptotic analysis categorized by the regimes
and layers. Note that the tilde notion (∼) is used when introducing a new scaling variable.

Regime Layer
Variable Temperature

τ ξ ξi(τ) θs(ξ, τ) θl(ξ, τ)
I A τ ξ β − θl(β, τ)

II
B τ̃ + τ0 ξ β + Ste

1
2 ξ̃i − θl,0

C τ̃ + τ0 β + Ste
1
2 ξ̃ β + Ste

1
2 ξ̃i − θl,0 + Ste

1
2 θl,1

III D (Ste−1τ̃ + τ0)avg ξ ξi θs,0 + Ste
1
2 θs,1 −

IV E τ̃ + τc ξ 1 θs −

analysis comprises four temporal and five spatial scales referred to as regimes and layers,

respectively. Figure 5.2 is a conceptual diagram of the asymptotic analysis concerning tem-

perature profile and solid-liquid interface motion, while Table 5.3 summarizes each regime

and layer used in the asymptotic analysis. In summary, the established regimes correspond

to four solidification stages subjected to a convective boundary: (i) a pre-cooling stage when

the interface does not move yet; (ii) a cooling stage in which the interface begins to move

and a slight piece of solid is formed, but most of the domain is still dominated by the liquid;

(iii) a freezing stage when both phases co-exist in the domain; and (iv) a sub-cooling stage in

which the entire domain is solid and the heat only conducts through the sensible heat. It is

worth mentioning that the first stage is unique to problems with a non-isothermal boundary

(e.g., a heat flux [31, 32] or convective boundary here), since the solid-liquid interface does

not move instantaneously. In the subsequent sub-sections, every regime and layer will be

explained in detail from physical and mathematical perspectives.

5.3.1 Regime I

Regime I includes a single spatial layer, namely Layer A; at this spatial-temporal scale,

the solid phase is not formed since the inner surface has not cooled down to the fusion

temperature by the convective boundary. The scaling for Regime I Layer A therefore forces
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Temperature

(a)

Time

(b)

Interface location

Time

I II III IV

I II III IV

B

C

A D E

D

E

B

C

A

Liquid phase

Solid phase

Property-averaged liquid phase

Property-averaged solid phase

Figure 5.2: Conceptual diagram of the regimes (denoted by I, II, III, IV) and layers (denoted
by A, B, C, D, E) in the asymptotic analysis: (a) Temperature θ over time τ taken at the
domain’s midpoint; and (b) Solid-liquid interface location ξi over time τ . Note that the
proportion of every regime and layer could depend on the prescribed parameters, such as Bi,
Ste, k̃, α, and θinit.
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the moving boundary to be at the inner surface

ξi = β, (5.18)

and the time is then restricted between 0 and τ0 owing to the absence of a solid. The re-scaled

problem turns into finite-extent transient heat conduction in a hollow cylinder subjected to

a convective boundary

∂θl
∂τ

=
1

α̃

(
∂2θl
∂ξ2

+
1

ξ

∂θl
∂ξ

)
, β < ξ < 1, 0 < τ < τ0,

−1

k̃

∂θl
∂ξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θl(ξ = β, τ)

]
,

∂θl
∂ξ

∣∣∣∣
ξ=1

= 0,

θl(ξ, τ = 0) = θinit.

(5.19)

Since the problem is separable, an exact solution can be found using the method of separation

of variables. The exact solution to a general form of the above-mentioned problem with the

convective-insulated boundaries is derived in Appendix A. 1. Here, we directly write down

the final solution as follows

θl(ξ, τ) = −1 −
∞∑
n=1

cnRn(λn, ξ) exp

(
− 1

α̃
λ2
nτ

)
,

Rn(λn, ξ) = −J0(λnξ)

[
BiY0(λnβ) +

1

k̃
λnY1(λnβ)

]
+ Y0(λnξ)

[
BiJ0(λnβ) +

1

k̃
λnJ1(λnβ)

]
,

−J1(λn)

[
BiY0(λnβ) +

1

k̃
λnY1(λnβ)

]
+ Y1(λn)

[
BiJ0(λnβ) +

1

k̃
λnJ1(λnβ)

]
= 0,

cn =

{[
− 1 − θinit

] ∫ 1

ξ̃=β

ξ̃Rn(λn, ξ̃)dξ̃

}/{∫ 1

ξ̃=β

ξ̃R2
n(λn, ξ̃)dξ̃

}
,

(5.20)

where λn and cn are the eigenvalues and corresponding eigencoefficients, respectively. Jn

and Yn represent the Bessel functions of order n of the first and second kinds, respectively.
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It is noted that this spatial-temporal scale is decoupled with the adjacent Regime II Layer

B in terms of: (i) the temperature for θ(ξ ̸= β, τ > τ0), and (ii) the interface location for

ξi(τ > τ0). However, it offers information on τ0 (the time when the interface starts to move),

θl(ξ, 0 ≤ τ ≤ τ0) (the liquid temperature before the interface moves), and ξi(0 ≤ τ ≤ τ0) = β

(the static period of the interface before it moves).

5.3.2 Regime II

The solid develops from the inner surface of the annulus when the solid-liquid interface

begins to move. Regime II is the time scale during which most of the domain is still liquid,

and only a tiny piece of it is solid. Though the inclusion of both phases with a non-linear

interface makes this scale particularly complicated, the spatial domain can be broken down

into two layers called Layer B and Layer C as described below.

Layer B

Firstly, Layer B is an outer layer far away from the moving boundary after τ > τ0, which

can also be seen as a boundary layer at the outer surface right after the interface moves.

From a physical perspective, this layer considers the liquid phase that occupies the bulk of

the domain since the solid only begins to develop at the inner surface. To capture this, we

re-scale the following dimensionless variables

τ = τ̃ + τ0, ξi = β + Ste
1
2 ξ̃i. (5.21)

Then, we can expand θl as

θl ∼ θl,0 + Steθl,1 + O(Ste2),

θs ∼ θs,0 + Steθs,1 + O(Ste2),

ξi ∼ ξi,0 + Steξi,1 + O(Ste2).

(5.22)
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At the leading order O(1), the solid phase is eliminated. The Stefan condition is also removed

due to Ste
1
2 in ξi, thus leaving θl,0(ξ = β, τ̃) = 0 as the inner surface boundary. The problem

is then reduced to heat conduction in the liquid phase only with a constant temperature

boundary at the inner wall

∂θl,0
∂τ̃

=
1

α̃

(
∂2θl,0
∂ξ2

+
1

ξ

∂θl,0
∂ξ

)
,

θl,0(β, τ̃) = 0,

∂θl,0
∂ξ

∣∣∣∣
ξ=1

= 0,

θl,0(ξ, τ̃ = 0) = f(ξ),

(5.23)

where f(ξ) is given by the temperature profile at τ = τ0. The exact solution for θl,0 can be

found by the method of separation of variables, and the detailed derivation is demonstrated

in Appendix A. 2. The final solution is therefore expressed as

θl,0 =
∞∑
n=1

c̃nR̃n(λ̃n, ξ) exp(− 1

α̃
λ2
nτ̃),

R̃n(λ̃n, ξ) = J0(λ̃nξ)Y0(λ̃nβ) − J0(λ̃nβ)Y0(λ̃nξ),

J1(λ̃n)Y0(λ̃nβ) − J0(λ̃nβ)Y1(λ̃n) = 0,

c̃n =

{∫ 1

ξ̃=β

ξ̃f(ξ̃)R̃n(λ̃n, ξ̃)dξ̃

}/{∫ 1

ξ̃=β

ξ̃R̃2
n(λ̃n, ξ̃)dξ̃

}
.

(5.24)

Layer C

Another spatial scale in this regime is Layer C which is close to the moving boundary (also

can be seen as an inner layer of Regime II ). This layer, in contrast to Layer B, focuses on a

smaller portion of the domain around the interface, considering both phases and the interface

at a higher spatial resolution. Specifically, the radial coordinate and moving interface are

re-scaled as

τ = τ̃ + τ0, ξ = β + Ste
1
2 ξ̃, ξi = β + Ste

1
2 ξ̃i, (5.25)
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and we seek asymptotic solutions

θs ∼ θ̃s,0 + Ste
1
2 θ̃s,1 + O(Ste),

θl ∼ θ̃l,0 + Ste
1
2 θ̃l,1 + O(Ste),

ξ̃i ∼ ξ̃i,0 + Ste
1
2 ξ̃i,1 + O(Ste).

(5.26)

Then, the heat equations become

βSte
∂θs
∂τ̃

+ Ste
3
2 ξ̃

∂θs
∂τ̃

= β
∂2θs

∂ξ̃2
+ Ste

1
2 ξ̃

∂2θs

∂ξ̃2
+ Ste

1
2
∂θs

∂ξ̃
, 0 < ξ̃ < ξ̃i,

βSte
∂θl
∂τ̃

+ Ste
3
2 ξ̃

∂θl
∂τ̃

=
1

α̃
β
∂2θl

∂ξ̃2
+

1

α̃
Ste

1
2 ξ̃

∂2θl

∂ξ̃2
+

1

α̃
Ste

1
2
∂θl

∂ξ̃
, ξ̃ > ξ̃i,

(5.27)

subject to the moving boundary condition

∂θs

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i

− 1

k̃

∂θl

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i

=
dξ̃i
dτ̃

, (5.28)

and fixed boundary conditions

−∂θs

∂ξ̃

∣∣∣∣
ξ̃=0

= Ste
1
2 Bi

[
− 1 − θs(0, τ̃)

]
,

θs(ξ̃i, τ) = 0,

θl(ξ̃i, τ) = 0,

∂θl

∂ξ̃

∣∣∣∣
ξ̃=Ste−

1
2 (1−β)

= 0,

(5.29)

as well as time conditions

ξ̃i(0) = 0, θl(ξ̃, 0) = f(ξ̃). (5.30)

At the leading order,

∂2θ̃s,0

∂ξ̃2
= 0, 0 < ξ̃ < ξ̃i,0;

∂2θ̃l,0

∂ξ̃2
= 0, ξ̃ > ξ̃i,0, (5.31)
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subject to

∂θ̃s,0

∂ξ̃

∣∣∣∣
ξ̃=0

= 0, θ̃s,0(ξ̃i,0) = 0, θ̃l,0(ξ̃i,0) = 0, θ̃l,0(∞) ∼ ã0(τ̃)ξ̃, (5.32)

where ã0(τ) will be defined by the matching part. Therefore, the solutions of θ̃s,0 and θ̃l,0

can be found as

θ̃s,0 = 0, θ̃l,0 ∼ ã0(τ̃)(ξ̃ − ξ̃i,0). (5.33)

At the first order,

β
∂2θ̃s,1

∂ξ̃2
+

∂θ̃s,0

∂ξ̃
= 0, 0 < ξ̃ < ξ̃i,0; β

∂2θ̃l,1

∂ξ̃2
+

∂θ̃l,0

∂ξ̃
= 0, ξ̃ > ξ̃i,0, (5.34)

subject to

−∂θ̃s,1

∂ξ̃

∣∣∣∣
ξ̃=0

= Bi

[
− 1 − θ̃s,0(0, τ̃)

]
,

∂θ̃s,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

ξ̃i,1 + θ̃s,1(ξ̃i,0, τ̃) = 0,

∂θ̃l,0

∂ξ̃

∣∣∣∣
ξ̃=ξ̃i,0

ξ̃i,1 + θ̃l,1(ξ̃i,0, τ̃) = 0,

θ̃l,1(∞, τ) ∼ ã0(τ̃)ξ̃2 + ã1(τ̃)ξ̃,

(5.35)

where ã1(τ̃) will also be defined by the matching part. Similar to the leading order, we can

find the solutions of θ̃s,1 and θ̃l,1

θ̃s,1 = Bi(ξ̃ − ξ̃i,0), θ̃l,1 = ã0(τ)

(
− 1

2β
ξ̃2 +

1

2β
ξ̃2i,0 − ξ̃i,1

)
+ ã1(τ)

(
ξ̃ − ξ̃i,0

)
. (5.36)
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Matching

The liquid phase solution from Layer B can be written into inner variables (ξ̃, τ̃) to match

with the inner region (Layer C )

θl(ξ̃, τ̃) =
∞∑
n=1

c̃n

{
J0

[
λn(β + Ste

1
2 ξ̃)

]
Y0(λnβ) − J0(λnβ)Y0

[
λn(β + Ste

1
2 ξ̃)

]}
exp(− λ̃2

n

α̃
τ̃).

(5.37)

Then, a limit as Ste → 0 can be taken to approach outer variables at the leading order

θl,0(ξ̃, τ̃) = lim
Ste→0

θl(ξ̃, τ̃)

=
∞∑
n=1

c̃n

[
J0(λnβ)Y0(λ̃nβ) − J0(λ̃nβ)Y0(λ̃nβ)

]
exp(− λ̃2

n

α̃
τ̃)

= 0,

(5.38)

where the overhead bar (−) is denoted as matching solutions after taking the limit. Similarly,

the first-order liquid phase solution can be expressed as

θl,0(ξ̃, τ̃) + Ste
1
2 θl,1(ξ̃, τ̃) = lim

Ste→0
θl(ξ̃, τ̃),

θl,1(ξ̃, τ̃) = lim
Ste→0

Ste−
1
2

∞∑
n=1

c̃n

{
J0

[
λ̃n(β + Ste

1
2 ξ̃)

]
Y0(λ̃nβ)

− J0(λ̃nβ)Y0

[
λ̃n(β + Ste

1
2 ξ̃)

]}
exp(− λ̃2

n

α̃
τ̃).

(5.39)

Therefore, the limit can be evaluated by applying L’Hôpital’s rule:

θl,1(ξ̃, τ̃) =
∞∑
n=1

c̃nλ̃nξ̃

[
J0(λ̃nβ)Y1(λ̃nβ) − J1(λ̃nβ)Y0(λ̃nβ)

]
exp(− λ̃2

n

α̃
τ̃). (5.40)

Since the liquid-phase solution in the inner region (Layer C ) was assumed to be in the form

of

θ̃l,0 ∼ ã0(τ̃)ξ̃, θ̃l,1 ∼ ã0(τ̃)ξ̃2 + ã1(τ̃)ξ̃, (5.41)
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the undetermined variables ã0 and ã1 can be readily found by matching

ã0(τ̃) = 0, ã1(τ̃) =
∞∑
n=1

c̃nλ̃n

[
J0(λ̃nβ)Y1(λ̃nβ) − J1(λ̃nβ)Y0(λ̃nβ)

]
exp(− λ̃2

n

α̃
τ̃). (5.42)

Thus, the liquid-phase temperature in Layer C is expressed as:

θ̃l,0(ξ̃, τ̃) = 0,

θ̃l,1(ξ̃, τ̃) =

(
ξ̃ − ξ̃i,0

) ∞∑
n=1

c̃nλ̃n

[
J0(λ̃nβ)Y1(λ̃nβ) − J1(λ̃nβ)Y0(λ̃nβ)

]
exp(− λ̃2

n

α̃
τ̃).

(5.43)

5.3.3 Regime III

The asymptotic solutions up until this point have primarily focused on the liquid temperature

over a comparatively short time interval; however, as the interface moves, the solid will

rapidly prevail over the liquid for a significantly more extended period with the release of

latent heat. This, in turn, necessitates a re-scaling in the time scale that characterizes

both the phase change and the existence of two phases. Therefore, a new temporal scale is

introduced as

τ̃ = Ste(τ − τ0), (5.44)

and the two-phase Stefan problem can be reduced into a one-phase one as follows

Ste
∂θs
∂τ̃

=
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

,

−∂θs
∂ξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θs(β, τ̃)

]
,

∂θs
∂ξ

∣∣∣∣
ξ=ξi

=
dξi
dτ̃

,

θs(ξi, τ̃) = 0,

ξi(0) = β.

(5.45)
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It is noted that previous work done by McCue et al. [30] and Xu et al. [54] demonstrated

the rationale for the abandonment of the thermal contribution of liquid phase using the

method of composite asymptotic expansions, proving an exponential decay in the liquid

temperature that leads to minimal effect on the Stefan condition. Despite the fact that one-

phase reduction has been employed in many works [30, 40, 8, 34, 3, 54], its main shortcoming

is that the interface motion is insensitive to the liquid phase. In other words, the sensible

heat contribution from the liquid to the interface is ignored. To resolve this issue, the method

of property averaging is employed to account for the existence of the liquid phase during

freezing. The following scalings are introduced

τ = Ste

(
αt

a2
− τ0

)
, Ste =

cp∆T

L
, (5.46)

where α = αs+αl

2
and cp =

cp,s+cp,l
2

. Thereby, the reduced one-phase Stefan problem is

converted into a property-averaged Stefan problem while rewriting it with respect to θs(ξ, ξi)

and τ(ξi)

Ste
∂θs
∂ξi

(
dτ

dξi

)−1

=
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

,

−∂θs
∂ξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θs(β, τ)

]
,

∂θs
∂ξ

∣∣∣∣
ξ=ξi

=

(
dτ

dξi

)−1

,

θs(ξi, ξi) = 0,

τ(β) = 0.

(5.47)

Then, we can approach the asymptotic solutions to θs and τ as follows

θs ∼ θs,0 + Steθs,1 + O(Ste
2
),

τ ∼ τ 0 + Steτ 1 + O(Ste
2
).

(5.48)
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At the leading order O(Ste
0
)

d2θs,0
dξ2

+
1

ξ

dθs,0
dξ

= 0,

−dθs,0
dξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θs,0(β)

]
,

dτ 0
dξi

(
dθs,0
dξ

∣∣∣∣
ξ=ξi

)
= 1,

θs,0(ξi) = 0,

τ 0(β) = 0.

(5.49)

The solutions for solid phase and moving boundary are

θs,0 =
Biβ(ln ξ − ξi)

1 + Biβ(ln ξi − ln β)
,

τ 0 =
1

4

{
(βBi − 2)(β2 − ξ2i )

βBi
+ 2ξ2i (ln ξi − ln β)

}
.

(5.50)

At the first order O(Ste
1
)

d2θs,1
dξ2

+
1

ξ

dθs,1
dξ

=
dθs,0
dξi

(
dτ 0
dξi

)−1

,

−dθs,1
dξ

∣∣∣∣
ξ=β

= −Biθs,1(β),

θs,0(ξi) = 0,

dτ 1
dξi

(
dθs,0
dξ

∣∣∣∣
ξ=ξi

)
+

dτ 0
dξi

(
dθs,1
dξ

∣∣∣∣
ξ=ξi

)
= 0,

τ 1(β) = 0.

(5.51)
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The solutions for solid phase and moving boundary are

θs,1 =

−β3Bi

{
Bi

[
β(βBi − 2) − Biξ2i

]
+ 2

}[
βBi(ln β − ln ξ) − 1

]
4ξ2i

[
βBi(ln ξi − ln β) + 1

]4

+

β2Bi

{
− 2β2Bi + β3Bi2 + β(2 − Bi2ξ2) + Bi(ξ2 − ξ2i ) − βBi2(ξ2 − ξ2i )(ln β − ln ξ)

}
4ξ2i

[
βBi(ln β − ln ξ) − 1

]3 ,

(5.52)

τ 1 =
β(βBi − 2) + Biξ2i

4Bi
+

β

[
Bi(2β − β2Bi + Biξ2i ) − 2

]
4Bi

[
βBi(ln β − ln ξi) − 1

] . (5.53)

5.3.4 Regime IV

The domain is completely frozen and absent of any liquid when the moving interface reaches

the outer surface. A new regime is established after this, namely Regime IV. The scaling of

this regime describes the time after the total freezing time without any interface motion

τ = τ̃ + τc, ξi = 1, (5.54)

where τc is the dimensionless total freezing time. The problem is therefore reduced into a

finite-extent heat conduction problem in the solid without any phase change

∂θs
∂τ̃

=
∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

,

−∂θs
∂ξ

∣∣∣∣
ξ=β

= Bi

[
− 1 − θs(ξ = β, τ̃)

]
,

∂θs
∂ξ

∣∣∣∣
ξ=1

= 0,

θs(ξ, 0) = g(ξ).

(5.55)
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An exact solution exists by using the method of separation variables (same as Regime I Layer

A with the full derivation in Appendix A. 1. The final solution is expressed as

θ̃s(ξ, τ̃) = −1 −
∞∑
n=1

c̃nR̃n(λ̃n, ξ) exp(−λ̃2
nτ̃),

R̃n(λ̃n, ξ) = −J0(λ̃nξ)

[
BiY0(λ̃nβ) + λ̃nY1(λ̃nβ)

]
+ Y0(λ̃nξ)

[
BiJ0(λ̃nβ) + λ̃nJ1(λ̃nβ)

]
−J1(λ̃n)

[
BiY0(λ̃nβ) + λ̃nY1(λ̃nβ)

]
+ Y1(λ̃n)

[
BiJ0(λ̃nβ) + λ̃nJ1(λ̃nβ)

]
= 0,

c̃n =

{∫ 1

ξ̃=β

ξ̃

[
− 1 − g(ξ̃)

]
R̃n(λ̃n, ξ̃)dξ̃

}/{∫ 1

ξ̃=β

ξ̃R̃2
n(λ̃n, ξ̃)dξ̃

}
.

(5.56)

5.3.5 Computation

Though the asymptotic analysis can produce a set of solutions at distinct temporal and

spatial scales, it is also crucial to compute these solutions in a coherent and efficient way.

In this sub-section, a succinct computation procedure of the asymptotic solutions is listed.

An example is also made to illustrate every asymptotic scale and the unified solution about

interface motion and temperature profile. The following is a breakdown of every step of the

computation on the asymptotic solutions in terms of dimensionless variables and parameters.

1) Prescribe input parameters with respect to the geometry (β), thermophysical properties

(k̃, c̃p, α̃), initial temperature (θinit), dimensionless time (τ), and dimensionless numbers

(Bi, Ste);

2) Compute τ0 and ξi(0 < τ ≤ τ0) via Regime I Layer A by setting ξ = β. Specifically, if

θl(β, τ) = 0 in Eq. (5.20), then τ = τ0. Hence, ξi(0 < τ ≤ τ0) = β;

3) Compute θl(ξ, 0 < τ ≤ τ0) via Regime I Layer A by setting ξ to be the value of interest;

4) Compute τ , ξi, and θs in the time domain (τ0, τc] via Regime III Layer D using

Eq. (5.48). Since ξi is the dependent variable for both τ and θs, we input an array of

ξi within [β, 1] in order to obtain the corresponding τ and θs.
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Figure 5.3: Solutions of separate regimes and layers, as well as a unified solution on dimen-
sionless interface motion and temperature profiles at various locations, under the condition
that θinit = 1, β = 0.1, Bi = 1, Ste = 0.0629, k̃ = 4, c̃p = 0.5, α̃ = 8. Note that “R” and
“L” are regime and layer, respectively. The dimensionless parameters are determined based
on the ice-water thermosphyical properties listed in Table 5.4.

5) Compute the liquid temperature from τ0 to the time when θl(τ, ξ) = 0. This requires

the computation of both Regime II Layer B and Regime II Layer C in Eq. (5.24) and

Eq. (5.43), respectively. If the point of interest ξ is at the convective (inner) boundary,

then this regime will be substantially short; if ξ is at the insulated (outer) boundary,

then it will be considerably long, and Regime III will be a single point at τc; and

6) Compute τ̃ , ξi, and θs in the time domain (τc,∞) via Regime IV Layer E using

Eq. (5.56). The variable ξi will be equal to 1 at all times since the interface is stationary

at the outer boundary.

Figure 5.3 shows an example of the dimensionless interface motion and temperature

profile using different regimes and layers (abbreviated to “R” and “L,” respectively) as
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well as the unified solution. The following dimensionless parameters are prescribed for this

scenario: θinit = 1, β = 0.1, Bi = 1, Ste = 0.0629, k̃ = 4, c̃p = 0.5, α̃ = 8. Note that

the dimensionless values are calculated based on Table 5.4. The dimensionless interface

is depicted in Fig. 5.3 (a), where R1LA, R3LD, and R4LE are combined into a unified

asymptotic solution (in the solid red line). It is noted that Regime II does not have to

contribute to the interface motion as there has also been a property-averaged consideration

in Regime III. Figure 5.3 (b,c,d) demonstrates the dimensionless interface at the convective

(inner) surface, middle of the domain, and insulated (outer) surface, i.e., ξ = β, β + (1 −

β)/2, 1. As can be seen, the presence of each scale could, to a great extent, vary based on the

location of interest. At the inner surface, the liquid temperature is prevailed by R1LA till τ0

because the interface will only start to move when the surface reaches its fusion. After τ0,

the dimensionless temperature will be below 0 at R3LD for the coexistence of both phases;

it is then followed by pure heat conduction without phase change when τ > τc at R4LE.

However, when standing at the midpoint of the domain (as shown in Fig. 5.3 (c)), Regime

II will be presented after τ0. This is because liquid still passes at the midpoint after the

interface moves from the convective surface. At the outer surface, Regime III will vanish in

the temperature profile, and R3LD will solely serve to terminate R2LC using τc. Its solid

temperature is, therefore, the consequence of pure heat conduction after phase change in

Regime IV.

5.4 Numerical method

Outward solidification in an annulus can be solved numerically using the enthalpy method,

in addition to the two-phase Stefan problem presented in Section 5.2.1. One of the pio-

neers employing the fixed-grid approach to solve the enthalpy formulation is Voller (and

his coworkers) [46, 47], later referred to as enthalpy method. The method implements an

arbitrary area in between the two phases (called mushy zone) to take account for the release
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of latent heat and adapt/smooth the abrupt transition during phase change, which in a way

removes the non-linearity of the phase change problem. The mushy zone is also physically

tangible, and its evolution during melting and freezing can be captured using a high-speed

charged-coupled device (CCD) camera [57]. This study uses the enthalpy method to verify

the developed asymptotic solution based on the two-phase Stefan problem.

The governing equation of the enthalpy method has the general form

∂H

∂t
= ∇ · (k∇T ), (5.57)

where H is the enthalpy that can be expressed as a function of temperature T

H = (1 − γ)

∫ T

Tsolidus

ρcp,sdT + γ

∫ T

Tliquidus

ρcp,ldT + γρL, (5.58)

and γ is the liquid fraction given by

γ =


0 , T < Tsolidus

T−Tsolidus

∆Tmushy
, Tsolidus ≤ T ≤ Tliquidus

1 , T > Tliquidus

, (5.59)

The variables Tsolidus, Tliquidus, and ∆Tmushy are the solidus temperature, liquidus tempera-

ture, and temperature range for the mushy zone (i.e., Tliquidus − Tsolidus), respectively. The

discretization scheme is consistent with and documented in great detail in our previous work

[54].

Two main aspects can support the accuracy of the numerical results by the enthalpy

method: (i) the independency on the numbers of time steps Nt and mesh elements Nr;

and (ii) the temperature range for the mushy zone ∆Tmushy. Comparisons for different

numbers of time steps and mesh sizes with respect to temperature profiles and interface

motion are made in Figure 5.4. Particularly, five variations of time-step and mesh counts are
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considered (Nt = Nr = 100, 200, 400, 800, 1000) while fixing the rest of the variables, such as

∆Tmushy,Bi, Tinit, T∞, b, a, r, and thermophysical properties, as listed in Table 5.4. It is rather

clear to see that the temperature curves in (a,b) converge for finer meshes and time steps; the

cases of Nt = Nr = 800, 1000 provide acceptable outcomes with great consistency. Similarly,

the interface motion for liquidus (c) and solidus (d) also draw the same conclusion. As can be

observed in the zoomed-in interface location at ri = 1, the total freezing time can be varied

by around 3.1% between the coarser and finest mesh counts and time-step sizes. Hence,

Nt = Nr = 800 is selected to be the accurate and reliable number of time steps and mesh

elements in this model. In addition, the effect of the mushy-zone temperature range ∆Tmushy

is also an influential factor in the numerical results. Since the Stefan problem assumes a

sharp interface between the two phases, the equivalent mushy-zone temperature range is zero,

i.e., ∆Tmushy = 0. Previous study [54] has proven that the interface motion (specifically, the

solidus and liquidus interfaces) could change drastically for different temperature ranges for

the mushy zone, but the temperature curve remains the same; as ∆Tmushy → 0, the deviation

between the solidus and liquidus interfacial motion becomes minuscule. As a consequence,

∆Tmushy = 0.001◦C is chosen to be the temperature range for the mushy zone to circumvent

the effect of the mushy zone and make an equal comparison with the Stefan problem.

5.5 Results and discussion

5.5.1 Effect of Biot number

The Biot number (Bi) appears in the dimensionless problem due to the convective boundary.

Traditionally, for conduction problems without phase change, the Biot number implies how

significantly the temperature within the domain varies with the heat flux at its surface over

time. When considering a phase-change problem governed by heat conduction, the signifi-

cance of variation between the body temperature and surface heat flux will be subjected to

the phases and stages being undergone. A few results generated by the developed asymptotic
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Figure 5.4: Comparisons of temperature profile (a,b) and interface motion (c,d) for var-
ious numbers of time steps Nt and mesh sizes Nr, under the condition that ∆Tmushy =
0.001◦C, Bi = 1, Tinit = 10◦C, T∞ = −10◦C, b = 0.1 m, a = 1.0 m, r = 5.5 m, and
ice-water thermophysical properties (See Table 5.4).

Table 5.4: List of thermophysical properties for ice-water PCM.

Property Value Unit
Ice
Mass density, ρs = ρ 1000 kg m−3

Specific heat, cp,s 2100 J kg−1 K−1

Thermal conductivity, ks 2.22 W m−1 K−1

Thermal diffusivity, αs 1.06 × 10−6 m2 s−1

Water
Mass density, ρl = ρ 1000 kg m−3

Specific heat, cp,l 4200 J kg−1 K−1

Thermal conductivity, kl 0.555 W m−1 K−1

Thermal diffusivity, αl 1.32 × 10−7 m2 s−1

Phase change
Latent heat of fusion, L 3.34 × 105 J kg−1
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solution are presented and discussed to elaborate the effect of Biot numbers in the Stefan

problems Numerical data using the enthalpy method is also used to verify the developed

asymptotic solution.

Figure 5.5 shows the comparison of the dimensionless interface motion between the

asymptotic solution and numerical results by the enthalpy method at various Biot num-

bers: Bi = 0.01, 0.1, 1, 10, 100, 1000. As is evident from Fig. 5.5, the Biot number increases

with the interface velocity, reducing the total freezing time τc. For large Biot numbers (i.e.,

when the Biot number exceeds 100), neither the interface velocity nor the freezing time

change substantially. This happens because the large Biot number leads to an extremely

high heat flux, which eventually turns into an isothermal boundary; that is, Eq. (5.4) be-

comes T (r = b, t) = T∞. The isothermal boundary with a two-phase Stefan problem in an

annulus was previously studied in [54] using the asymptotic method, which was also verified

with the numerical data using the same enthalpy method. Compared with the past work

with an isothermal boundary [54], the solid-liquid interface does not move right away. This

can be clearly observed in relatively small Biot numbers, e.g., Bi = 0.01, 0.1. Meanwhile, the

asymptotic solution with the convective boundary continues to have a rather slight overes-

timation on the interface than the numerical one. This is because the asymptotic expansion

assumes Stefan number as its asymptotic limit to be extremely small (i.e., ignoring the con-

tribution of the sensible heat, especially in the liquid phase), which to some extent omits

the second term that slows down interface velocity in the Stefan condition as expressed in

Eq. (5.6).

Figure 5.6 demonstrates the effect of Biot numbers with respect to dimensionless tem-

perature profiles under the condition θinit = 1, Ste = 0.0126, ξ = 1, k̃ = 4, c̃p = 0.5, α̃ = 8,

in which the thermophysical properties are based on an ice-water PCM listed in Table 5.4.

Both low and high Biot numbers are compared in Fig. 5.6(a) and (b), respectively. Increasing

the Biot number is expected to enhance the heat conduction inside the PCM, contributing

to a shorter freezing time. Some discrepancies are found in the liquid temperature, mainly
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Figure 5.5: Comparisons of dimensionless interface motion between asymptotic and numer-
ical (both solidus and liquidus) results for various Biot numbers under the condition that

θinit = 1, β = 0.1, Ste = 0.0126, k̃ = 4, c̃p = 0.5, α̃ = 8.

in high Biot numbers. Since the time interval of liquid temperature for the cooling stage is

relatively short compared to the freezing stage, it plays a less significant role in the entire

temperature profile. It also has no considerable difference among the Biot numbers. Another

slight deviation is the total freezing time that leads to the difference in Regime IV due to

the small Stefan number approximation in the analysis. From a physical standpoint, it is the

disregard for sensible heat while undergoing the phase transition. However, such variation
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Figure 5.6: Effect of Biot number on the dimensionless temperature profile under the
condition that θinit = 1, Ste = 0.0126, ξ = 1, k̃ = 4, c̃p = 0.5, α̃ = 8.

shall become smaller as the Stefan number approaches zero, i.e., Ste → 0, shown in the

following sub-section.

In addition, a particular study on the dimensionless pre-cooling and freezing times (τ0

and τc) for Biot numbers is conducted in Fig. 5.7. Both asymptotic and numerical solutions

are plotted. It is rather clear to observe that the pre-cooling and freezing times may seem

insignificant at Bi = 1, but it is exponentially higher as Bi → 0. When computing Bi = 0.01,

τ0 and τc are almost two orders of magnitude higher than the ones at Bi = 1. The results

indicate the importance of abandoning the assumption that the solid-liquid interface will be

moved right away at τ = 0. Even though the assumption is valid in the Stefan problems with

an isothermal boundary [30, 8, 34, 3, 54], it would limit the validity range of the asymptotic

solutions to a convective boundary. The consistency between the asymptotic and numerical

results also proves the accurate analysis in Regime I.

5.5.2 Effect of Stefan number

Another unique dimensionless parameter in the Stefan problems is the Stefan number (Ste),

the ratio of sensible over latent heats, expressed as cp∆T/L. The paramount presumption in

the asymptotic analysis is the Stefan number approaches 0, which is valid in many engineering

applications involving PCMs with respect to the specific heat cp and latent heat L. The third
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Figure 5.7: Effect of Biot number on dimensionless pre-cooling and freezing times under
the condition that θinit = 1, Ste = 0.0126, k̃ = 4, c̃p = 0.5, α̃ = 8.

part of Ste is the temperature interval in the sensible heat ∆T = Tf−T∞; this term, however,

depends on the operational environment. A high-temperature interval could result in Stefan

numbers in the order of Ste = O(0.10), which would violate the asymptotic limit Ste → 0

using the traditional asymptotic technique.

Figure 5.8 compares the asymptotic and numerical solutions concerning the dimension-

183



less interface profile at various Stefan numbers. In this study, the Stefan numbers are varied

based on the temperature difference ∆T in the sensible heat, as an example. Though the

specific heat cp and latent heat L in the Stefan number can also alter its magnitude, previ-

ous study has found minimal difference between the asymptotic and numerical results when

changing ∆T , cp or L for the same magnitude of Ste [54]. Four Stefan numbers of 0.0063,

0.0126, 0.0629, and 0.0943 are assumed that correspond to the ambient air temperatures of

-1, -2, -10, and -15 ◦C, respectively, according to the data given in Table 5.4. As can be

seen in Fig. 5.8, the significance of the overestimation of the interface location accelerates

as the Stefan number increases. The asymptotic limit is often not greater than 0.01; that

is, Ste ≤ 0.01. When Ste = 0.0629 in Fig. 5.8(c), for instance, the asymptotic solution has

a noticeable difference with the numerical data. There will inevitably be an overestimation

of the conventional asymptotic expansion unless other techniques are introduced. In the

analysis, the method of property averaging is utilized to compensate for the deviation for

Stefan numbers greater than 0.01. The result shows that using the averaged thermophysical

properties at the freezing stage can, to some extent, minimize the error in the asymptotic

analysis for ignoring sensible heat in both phases. Hence, the validity range of the developed

asymptotic solution can be enlarged to almost 0.10 as indicated in Fig. 5.8(c,d). Figure 5.9

demonstrates the corresponding dimensionless temperature profiles for the same Stefan num-

bers in Fig. 5.8, i.e., Ste = 0.0063, 0.0126, 0.0629, 0.0943. The freezing time shortens with

increasing Stefan numbers, giving the same tendency as the interface velocity. As a con-

sequence, it can be concluded that the asymptotic solution with averaged thermophysical

properties can enlarge the small Stefan number limit from 0.01 to 0.1, making it practical

for more applications in thermal sciences.
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Figure 5.8: Comparisons of dimensionless interface motion between asymptotic and numer-
ical (both solidus and liquidus) results for various Stefan numbers Ste, under the condition

that θinit = 1, β = 0.1, Bi = 1, k̃ = 4, c̃p = 0.5, α̃ = 8.

5.6 Conclusion

In this research, we formulated a two-phase Stefan problem in the annulus for outward

solidification subjected to a convective or Robin boundary condition. Compared with the

traditional formulation of Stefan problems, we did not make the assumption that the solid-

liquid interface moves immediately with time, which provided a better representation of

the phase change phenomenon initiated by a convective surface. A systematic asymptotic

analysis was conducted based on four temporal and five spatial scales, and the property-

averaging method was also employed. The following remarks can be concluded:

1) The asymptotic solution can predict the solid-liquid moving interface motion as well

as the temperature profile at any point of the domain in a unified manner;
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Figure 5.9: Effect of Stefan number on the dimensionless temperature profile under the
condition that θinit = 1, Bi = 1, ξ = 1, k̃ = 4, c̃p = 0.5, α̃ = 8. Note that Ste =
0.0063, 0.0126, 0.0629, 0.0943 are in the red, green, blue, and grey lines, respectively. The
asymptotic solution is in the solid line, while the numerical result is in the dashed line.

2) The developed solution was verified with the enthalpy method that can simulate the

same phase change problem through numerical discretization;

3) The Biot number is not influential to the accuracy of the asymptotic solution. For

large Biot numbers, the pre-cooling time becomes exponentially apparent, which has

been properly captured in the asymptotic analysis as a distinct scale;

4) Less accurate results could be found in large Stefan numbers due to the assumption of

the asymptotic analysis; however, it was observed that the presented solution coupled

with the method of property averaging was more accurate than the one using traditional

asymptotic techniques.

It is recommended that future studies could investigate the extension to other Stefan prob-

lems with a convective boundary, such as Cartesian or spherical coordinates, different direc-

tions of the interfacial motion, incorporation of the convective term in the heat equations,

and corresponding melting problems. Also, while the present study considers the motion of
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a sharp interface, the proposed method can be extended to model phase change problems

where there exists a physical mushy region. Another potential research direction can be the

correction of higher-order perturbation solutions, especially on the moving interface. Since

it is inevitable to have diverged or extremely small higher-order terms when continuing to

solve the asymptotic expansion, it would be more effective to have a correction term using

advanced optimization methods or statistical analyses to minimize the difference between

the asymptotic and true values.
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Appendix A. Derivation of the exact solution to a cylindrical heat

conduction problem using the separation of variables

A.1. Convective-insulated boundary conditions

Consider the following problem

1

α

∂T

∂t
=

∂2T

∂r2
+

1

r

∂T

∂r
, b < r < a, t > 0,

−k
∂T

∂r

∣∣∣∣
r=b

= h

[
T∞ − T (b, t)

]
,

∂T

∂r

∣∣∣∣
r=a

= 0,

T (r, 0) = Tinit.

(5.60)

First, we linearly scale the temperature as T̃ = T∞ − T to remove the non-homogeneity in

the convective boundary and the problem becomes

1

α

∂T̃

∂t
=

∂2T̃

∂r2
+

1

r

∂T̃

∂r
,

k
∂T̃

∂r

∣∣∣∣
r=b

= hT̃ (b, t),

∂T̃

∂r

∣∣∣∣
r=a

= 0,

T̃ (r, 0) = T∞ − Tinit.

(5.61)

Second, the newly scaled temperature variable can be separated into R(r) and Γ(t) as

follows

T̃ (r, t) = R(r) × Γ(t). (5.62)

Thus, the governing equation is now expressed as

R′′ + 1
r
R′

R
=

1
α

Γ′

Γ
= −λ2, (5.63)
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and

R′′ +
1

r
R′ = −λ2R, kR′(a) = hR(b), R′(a) = 0,

1

α
Γ′ = −λ2Γ, Γ(0) = T∞ − Tinit.

(5.64)

For the spatial part R(r), it becomes a Sturm-Liouville problem with the general solution

R(r) = c1J0(λr) + c2Y0(λr). (5.65)

Substituting the first boundary condition, we find

c1 =
−c2[hY0(λb) + λkY1(λb)]

hJ0(λb) + λkJ1(λb)
. (5.66)

Thus,

R(r) = c2

{
− hY0(λb) + λkY1(λb)

hJ0(λb) + λkJ1(λb)
J0(λr) + Y0(λr)

}
(5.67)

= c3

{
J0(λr)

[
hY0(λb) + λkY1(λb)

]
− Y0(λr)

[
hJ0(λb) + λkJ1(λb)

]}
. (5.68)

Substituting the second boundary condition, we find the eigenvalues can be found by [62]

−J1(λa)

[
hY0(λb) + λkY1(λb)

]
+ Y1(λa)

[
hJ0(λb) + λkJ1(λb)

]
= 0. (5.69)

For the temporal part Γ(t), the general solution to Γ(t) is

Γ(t) = c4 exp(−αλ2t). (5.70)
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Lastly, the exact solution is forged by combining the two separated parts

T̃ (r, t) =
∞∑
n=1

cn

{
J0(λnr)

[
hY0(λnb) + λnkY1(λnb)

]
− Y0(λnr)

[
hJ0(λnb) + λnkJ1(λnb)

]}
exp(−αλ2

nt)

=
∞∑
n=1

cnRn(λn, r) exp(−αλ2
nt),

(5.71)

where cn can be found by the initial condition

cn =

{∫ a

b

r̃(T∞ − Tinit)Rn(λn, r̃)dr̃

}/{∫ a

b

r̃[Rn(λn, r̃)]2dr̃

}
=

{
(T∞ − Tinit)

∫ a

b

r̃Rn(λn, r̃)dr̃

}/{∫ a

b

r̃[Rn(λn, r̃)]2dr̃

}
.

(5.72)

A.2. Isothermal-insulated boundary conditions

Consider a similar problem yet with an isothermal boundary at the inner surface

1

α

∂T

∂t
=

∂2T

∂r2
+

1

r

∂T

∂r
, b < r < a, t > 0,

T (r = b, t) = Tb,

∂T

∂r

∣∣∣∣
r=a

= 0,

T (r, 0) = Tinit.

(5.73)

First, a linear temperature shift is made using T̃ = T − Tb and the problem becomes

1

α

∂T̃

∂t
=

∂2T̃

∂r2
+

1

r

∂T̃

∂r
,

T̃ (r = b, t) = 0,

∂T̃

∂r

∣∣∣∣
r=a

= 0,

T̃ (r, 0) = Tinit − Tb.

(5.74)
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Second, the newly scaled temperature variable is separated into R(r) and Γ(t) in the

same way as the previous problem and thus

R′′ +
1

r
R′ = −λ2R, R(b) = 0, R′(a) = 0,

1

α
Γ′ = −λ2Γ, Γ(0) = Tinit − Tb.

(5.75)

For the spatial part R(r), the general solution is

R(r) = c1J0(λr) + c2Y0(λr). (5.76)

Substituting the first boundary condition, we find

c1 =
−c2Y0(λb)

J0(λb)
. (5.77)

Thus,

R(r) = c2

{
− Y0(λb)

J0(λb)
J0(λr) + Y0(λr)

}
= c3

{
J0(λr)Y0(λb) − Y0(λr)J0(λb)

}
.

(5.78)

Substituting the second boundary condition, we find the eigenvalues can be found by [54]

−J1(λa)Y0(λb) + Y1(λa)J0(λb) = 0. (5.79)

For the temporal part Γ(t), the general solution to Γ(t) is

Γ(t) = c4 exp(−αλ2t). (5.80)
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Lastly, we combined the two separated parts as a unified solution

T̃ (r, t) =
∞∑
n=1

cn

{
J0(λr)Y0(λb) − Y0(λr)J0(λb)

}
exp(−αλ2

nt)

=
∞∑
n=1

cnRn(λn, r) exp(−αλ2
nt),

(5.81)

where cn can be found by the initial condition

cn =

{∫ a

b

r̃(Tinit − Tb)Rn(λn, r̃)dr̃

}/{∫ a

b

r̃[Rn(λn, r̃)]2dr̃

}
=

{
(Tinit − Tb)

∫ a

b

r̃Rn(λn, r̃)dr̃

}/{∫ a

b

r̃[Rn(λn, r̃)]2dr̃

}
.

(5.82)
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[28] G. Lamé and B. Clapeyron. Mémoire sur la solidification par refroidissement d’un globe

liquide. In Annales Chimie Physique, volume 47, pages 250–256, 1831.

[29] D. Mazzeo and G. Oliveti. Thermal field and heat storage in a cyclic phase change

process caused by several moving melting and solidification interfaces in the layer. In-

ternational Journal of Thermal Sciences, 129:462–488, 2018.

[30] S. W. McCue, B. Wu, and J. M. Hill. Classical two-phase Stefan problem for spheres.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

464(2096):2055–2076, 2008.

[31] S. L. Mitchell and M. Vynnycky. On the numerical solution of two-phase Stefan problems

with heat-flux boundary conditions. Journal of Computational and Applied Mathemat-

ics, 264:49–64, 2014.

195



[32] S. L. Mitchell and M. Vynnycky. On the accurate numerical solution of a two-phase

Stefan problem with phase formation and depletion. Journal of Computational and

Applied Mathematics, 300:259–274, 2016.

[33] M. Parhizi and A. Jain. Solution of the phase change stefan problem with

time-dependent heat flux using perturbation method. Journal of Heat Transfer,

141(2):024503, 2019.

[34] F. B. Planella, C. P. Please, and R. A. Van Gorder. Extended Stefan problem for the

solidification of binary alloys in a sphere. European Journal of Applied Mathematics,

32(2):242–279, 2021.

[35] D. Riseborough, N. Shiklomanov, B. Etzelmüller, S. Gruber, and S. Marchenko. Recent

advances in permafrost modelling. Permafrost and Periglacial Processes, 19(2):137–156,

2008.

[36] S. D. Roscani, D. A. Tarzia, and L. D. Venturato. The similarity method and explicit

solutions for the fractional space one-phase Stefan problems. Fractional Calculus and

Applied Analysis, pages 1–27, 2022.

[37] R. D. Santiago, E. M. Hernández, and J. A. Otero. Constant mass model for the liquid-

solid phase transition on a one-dimensional stefan problem: Transient and steady state

regimes. International Journal of Thermal Sciences, 118:40–52, 2017.

[38] I. B. Sebastião, B. Bhatnagar, S. Tchessalov, S. Ohtake, M. Plitzko, B. Luy, and A. Alex-

eenko. Bulk dynamic spray freeze-drying part 1: modeling of droplet cooling and phase

change. Journal of Pharmaceutical Sciences, 108(6):2063–2074, 2019.

[39] S. Stepanov, D. Nikiforov, and A. Grigorev. Multiscale multiphysics modeling of the

infiltration process in the permafrost. Mathematics, 9(20):2545, 2021.

[40] S. Tabakova, F. Feuillebois, and S. Radev. Freezing of a supercooled spherical droplet

with mixed boundary conditions. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 466(2116):1117–1134, 2010.

[41] D. A. Tarzia. Relationship between neumann solutions for two-phase lamé-clapeyron-
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Chapter 6

Experimental and unified mathematical frame-
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Preface (Bridging Text)

Macro-scale equilibrium solidification was explored in depth through the framework of the

two-phase Stefan problem from Chapters 3 to 5. Computationally efficient perturbation and

asymptotic solutions were derived for various conditions, contributing to the rule-of-thumb

thermal predictions of artificial ground freezing (AGF) for stabilizing mining infrastructure as

well as phase change materials (PCMs) for cold thermal energy storage in mine remediation.

The developed solutions not only filled research gaps in the literature of two-phase Stefan

problems and analytical modeling of freezing processes, but also provided accurate, fast-to-

compute, and easy-to-implement evaluations for mining applications involving solidification

at a macro-scale level.

At meso- and micro-scale levels, the freezing phenomena lean towards a non-equilibrium,

five-stage process, where supercooling, nucleation, and crystal growth must be considered

in addition to the macro-scale behaviors. Moreover, when freezing mixtures, unique char-

acteristics such as freeze-point depression and freeze concentration are also required for an

accurate thermal prediction. In mining engineering, non-equilibrium processes can be par-

ticularly essential for the design of PCMs for cold thermal energy storage as well as spray

freezing technology for mine heating, cooling, and decontamination.

In this chapter, the realm of non-equilibrium solidification was examined, with five dis-

tinct stages unfolding. A novel experimental system and a unified mathematical framework

were established to capture the phase change process, effectively characterizing the multi-

stage non-equilibrium solidification. A few key parameters were highlighted, including geom-

etry, initial PCM temperature, heat transfer fluid temperature, and heat transfer coefficient

(i.e., convective heat transfer at the PCM’s surface), which in turn expedited the thermal de-

sign of PCMs for cold thermal energy storage in mines located in northern and remote areas.

The insights and discussions presented in this chapter were published in the peer-reviewed

journal article listed below.
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M. Xu, Y. Gao, F. Fang, S. Akhtar, B. A. Chaedir, and A. P. Sasmito. Experimental

and unified mathematical frameworks of water-ice phase change for cold thermal energy

storage. International Journal of Heat and Mass Transfer, 187:122536, 2022.

Abstract

Cold thermal energy storage (CTES) is a process that supplies cold thermal energy to a

medium for storage and extracts it whenever is needed. The storage medium is phase change

material (PCM), which makes great use of the large quantity of latent heat released during

solidification or melting. However, some key fundamental and applied issues have not yet

been resolved: how do we overcome the thermal interference in PCMs from unstable mi-

croscopic crystallization and external mechanical forces? Are there any unified and robust

models to predict the whole time evolution of phase change accurately and rapidly? To

fulfill these research gaps, we firstly establish a novel, well-controlled experimental system

for PCMs that mitigates the thermal disturbance over a medium to large volume during

solidification, capable of measuring transient temperature data and characterizing freezing

stages at both macro- and micro-scale. We also develop in detail a unified semi-analytical

mathematical framework to model the solidification of PCMs, consisting of five subsequent

stages: liquid supercooling, nucleation, recalescence, equilibrium freezing, and solid subcool-

ing. The modeling results yield a good agreement with our experimental data in several

scenarios, particularly the nucleation temperature and time as well as the total freezing time

are accurately predicted. Lastly, we extend our study to investigate the thermal effects of

various radial positions, geometries, initial temperatures, heat transfer fluid temperature,

and heat transfer coefficients in the context of CTES system.

Keywords: Cold thermal energy storage, CTES, phase change material, PCM, solidification,

freezing, nucleation, recalescence
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6.1 Introduction

The increasing demand for cooling has led to significant energy consumption and emissions.

According to the International Energy Agency (IEA), space cooling contributed almost 8.5%

of total electricity consumption in 2019 and about 1 GtCO2 emissions. Cold energy storage

technology is an effective means to relieve the gap between energy supply and demand, and

reduce energy consumptions. Its effect on load shifting from on-peak hours (daytime) to

off-peak hours (nighttime) is an important measure to improve energy savings.

Ice thermal energy storage (ITES) is one of the most commonly used types of cold

energy storage not only for its excellent economic performance [14], but also for its ability

to reduce fluctuations of energy flow occurred in renewable energy system such as solar

and wind energy, or electric grid in general. Ice (or solid phase change material (PCM))

is stored at off-peak periods (during the night) when electricity tariff is low. During day-

time, this stored ice PCM can be employed to meet the cooling demands or vice versa in

the case of solar energy. The application of this technology for cooling has been proven to

have economical and environmental benefits by lowering electricity consumption and CO2

emissions. Rismanchi et al. [7] investigated the feasibility of employing ice thermal storage

systems for office buildings cooling in Malaysia, showing that full storage strategy can reduce

annual costs associated with air conditioning system by up to 35%. Sanaye and Shirazi [34]

performed thermal modeling of an ice storage air-conditioning system to analyze the thermo-

economic and environmental aspects of the system. Rahdar et al. [33] indicated that power

consumption of ITES and PCM systems are 4.59% and 7.58% lower than the conventional

system, respectively.

The literature is rife with experimental, analytical, and numerical studies on ice stor-

age system and its performance. Abdelrahman [1] investigated experimentally the thermal

performance of an ice storage system using twin concentric helical coil. Jannesari and Abdol-

lahi [22] compared using numerical and experimental methods two heat transfer enhancement
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methods for ice formation in thermal storage system: usage of thin rings and annular fins

around coils. El-Ghnam et al. [11] reported experimental results of study on the heat trans-

fer during freezing and melting of water inside a spherical capsule. The heat transfer fluid

used in the study is aqueous solution of 35 w.t.% ethylene glycol. The proposed device by

Liu et al. [9] showed fast thermal response and efficient heat transfer performance during

solidification and melting processes.

With regard to mathematical modeling, most studies used numerical algorithms and

iterative processes to simulate phase change due to the complexity of an inherent moving

interface between two phases. However, the expensive computational resources as well as

the expertise in computational fluid dynamics (CFD) generated from numerical modeling

become the main drawbacks. To overcome these, analytical and approximate analytical

frameworks typically offer a closed-form solution that can be computed instantaneously. Xu

et al. [47] developed an asymptotic solution to outward solidification in cylindrical PCMs,

which was verified with numerical results, yet with much less computational cost In addition,

asymptotic solutions for inward solidification of a spherical domain were also available in the

literature subjected to a constant temperature [26] and convective [4] boundary conditions.

Apart from the classical Stefan formulation, the Stefan problem has also been modified into

other forms to incorporate the Gibbs-Thomson effect [10, 36], size-dependent thermophysical

properties [13], and size/velocity-dependent phase change temperatures [29].

Erek and Dincer [12] developed a new heat transfer correlation by simulating a series

of 120 numerical experiments to study the heat transfer behavior in an encapsulated ITES

system and downstream. Shirazi et al. [38] developed a framework on an ice thermal en-

ergy storage system for gas turbine cycle inlet air cooling to perform energetic, exergetic,

economic, and environmental analyses of the system. A novel dynamic model derived using

population balance equation approach for the charging process of a cold energy thermal stor-

age was proposed by Wu et al [44]. Xie and Yuan [45] evaluated numerically the impact of

different parameters of thin layer ring on ice formation in a rectangular space. In addition,
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a numerical approach to analyze the phase changes of a full-scale vertical ice-on-coil latent

thermal energy storage tank was proposed by Sang et al [35] based on the sample and inter-

polation (SI) method. The effects of tube arrangement and fins on improving ice formation

in ice-on-coil thermal storage systems were studied numerically by Hamzeh and Miansari [17]

using finite volume method. Pourakabar and Darzi [32] studied numerically the effects of

different shell shapes and inner tubes arrangements on charging and discharging of PCMs

inside cylindrical container. Mahdi and Nsofor [25] introduced a method to improve the

PCM solidification rate in thermal storage systems by using nanoparticle-metal foam com-

bination approach along with triplex-tube heat exchanger. A novel organic paraffin-based

PCM mixture was employed as the energy storage material in the study conducted by Shao

et al [37]. Zhang et al. [49] developed an unsteady model of the solidification process of water

in a shell-tube ice storage (STIS) unit which was verified by a solidification experiment in a

finned STIS unit. Yu et al. [48] focused their study on the role of metal foam in heat trans-

fer enhancement of the cold thermal energy storage (CTES) system with a two-dimensional

model. Vogel and Thess [42] developed a validated volume-of-fluid (VOF) CFD simulation

and a simplified model based on the Boussinesq approximation to evaluate and visualize the

influence of natural convection in a CTES system.

The fundamentals of icing nucleation dynamics and phenomena such as dendritic growth

through desublimation, kinetic behaviors of droplets upon freezing, etc. were reviewed com-

prehensively by Zhao et al. [50]. Akhtar et al. [5] introduced a sensitivity analysis using

the Monte-Carlo method to identify the influence of interface kinetics and curvature effects

during the dendritic growth, and then optimized them by the minimization of the sum of the

least-squares method. Further, a comprehensive review on cold energy storage technologies

with PCMs and their applications in air conditioning was conducted in [24]. Despite the

fact that there have been plentiful investigations on CTES system, few place emphases on

microscopic behavior of the solidification (i.e., nucleation, recalescence/dendritic growth).

These micro-scale behaviors can have significant influence on the supercooling degree and in
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turn affect total effective latent heat, and thus thermal storage capacity.

Recently, Akhtar et al. [3] developed a semi-analytical framework which accurately pre-

dicts the stages of droplet freezing and conducted a one-dimensional five-stage analysis. This

droplet solidification framework was then extended to a spray configuration to examine the

thermodynamics of spray freezing on a system level [2]. However, a great amount of exergy

can still be found from this work: i) the one-dimensional five-stage analysis was sequential

without a unified set of governing equations for multi-dimensional problems; and ii) the as-

sumptions of linear temperature profile in recalescence and small Biot number limit in solid

subcooling can be removed and resolved by a more versatile mathematical framework.

Another research gap in the literature lies on experimental control of PCM (particularly

in large quantity of volume) during liquid supercooling and nucleation stages. Many factors

can significantly influence the supercooling of PCM according to the physical mechanisms

of crystallization, such as magnetic field, agitation, friction, electric field, shock waves or

ultrasonic vibration [51]. These external perturbances affect the size and perfection of the

crystal by increasing the nucleation density and adjusting the orientation and arrangement

of the molecular chains in the melt [6]. In the cases of a very small volume quantity (e.g., a

suspended water droplet [19, 27]), they were well controlled from the perturbances; however,

to our best knowledge, there have not been any existing experimental setups to mitigate

such external disturbance.

Inspired by these research gaps, the novelty of this study is in threefold:

i) Establish a novel, well-controlled experimental system for PCMs to attain the freezing

curve, contact angle, and measured natural convection heat transfer coefficient;

ii) Formulate and analytically solve a rigorous two-dimensional unified mathematical

model for PCMs, capable of capturing the five solidification stages at micro- and macro-

scales with the effective latent heat storage; and

iii) Study a wide array of key operational parameters in CTES system after comprehensive
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model validations.

The outline of the paper is as follows. In Section 6.2, we present the experimental setup

and methodology built in our laboratory. Measurements of temperature and contact angle

as well as determination of heat transfer coefficient are explained in details. In Section 6.3,

we establish a two-dimensional unified mathematical framework for inward cylindrical so-

lidification of PCMs. A semi-analytical solution to this model is then developed by the

employment of superposition, separation of variables, bisection, and perturbation methods.

This newly established mathematical model is validated against our experimental results at

various initial and heat transfer fluid temperatures in Section 6.4. In Section 6.5, we study

the temperature profiles over radial coordinates, and the effects of initial temperature, heat

transfer fluid temperature, and heat transfer coefficients based on CTES system. Lastly, we

conclude our work by highlighting the usefulness of results in this study as well as the impact

to the research community.

6.2 Experiments

Experiments were performed to measure the transient profile, determine contact angle and

heat transfer coefficient of pure (deionized) water. This section begins with a summary

of the experimental setup and measuring machines used in this work. Then, experimen-

tal methodology is documented in details from the measurements of temperature and heat

transfer coefficient to contact angle.

6.2.1 Experimental setup

Figure 6.1(a) shows the experimental setup used in this study. The system consists of the

test apparatus and data acquisition system. A long thin-walled cylinder test tube of radius

a = 8.75 mm and height H = 193.60 mm filled with deionized water was immersed in a

water bath. Three thermocouples were employed to monitor the stability of surrounding
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Figure 6.1: Schematic diagrams: (a) The experimental apparatus; and (b) The PCM con-
tainer (the inset shows an inwardly moving boundary highlighting the solidification process
during a time, tnuc < t < tcrit).

temperature and determine the heat transfer coefficient. Data acquisition was performed

by a data collector (THTZ Multiplex recorder) connected to a workstation computer. The

water bath thermostat was also used with an agitator for cooling down the refrigerant to

its desired temperature. Due to external shock and vibration caused by the agitator and

potential turbulent flow, a PCM container was designed and placed in between the water

bath and test tube. The PCM container also circumvented the strong impact of temperature

fluctuations generated by the heat exchange with the outside environment.

As shown in Fig. 6.1(b), the thermocouples were placed in three different locations: first

thermocouple was placed inside the test tube, second thermocouple was placed adjacent to

the test tube wall in the PCM container, and the third thermocouple was placed far from

the test tube in the PCM container. Their temperatures are denoted as Ttc,1, Ttc,2, and Ttc,3,

respectively. Dimensions of test tube and thermocouple as well as the first thermocouple’s

location are listed in Table 6.1.
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Table 6.1: Dimensions of the test tube and thermocouple along with locations.

Property Value Unit
Test tube
Radius, a 8.75 mm
Length, H 193.60 mm
Thermocouple
Radius, atc 2 mm
Length, Htc 23 mm
Location of the 1st thermocouple
Radial distance to the center, rtc 7 mm
Depth from the bottom surface, ztc 96.80 mm

6.2.2 Experimental methodology

Temperature profile in each solidification stage is of great interest to be examined experi-

mentally despite challenges of thermal interference during crystallization and measurements

of heat transfer coefficient. In this subsection, a novel experimental method for temperature

measurement and determination of heat transfer coefficient. This method designs an ex-

tra layer between the PCM and coolant with an additional thermocouple, thus significantly

minimizing thermal disturbance during phase change and increasing the accuracy of ther-

mal measurements. The methodology to evaluate contact angle of deionized water is also

established to facilitate the subsequent mathematical modeling.

Temperature measurement

A test tube was filled with liquid sample (i.e. deionized water) at its required initial tem-

perature (Tinit). The water bath thermostat was kept at constant temperature that is well

below the nucleation temperature of liquid sample and expected surrounding temperature

(T∞). 40 vol.% ethylene glycol (CH2OH)2 aqueous solution was used as the refrigerant. A

separate container, the PCM container, was filled with ethylene glycol aqueous solution and

placed into the water bath. Volume fraction of the solution varies with expected T∞. The

agitator in the water both was activated for a period when a large amount of solid forms
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in the PCM container and Ttc,3 stays at expected T∞. The prepared test tube filled with

liquid sample was then placed into the PCM container and Ttc,1 and Ttc,2 were recorded until

the desired time duration. Throughout the experiment, Ttc,3 was monitored to ensure that

its temperature remains unchanged. Temperature transition over time was recorded every 1

second with accuracy within 0.1◦C. The experiment was repeated five times for each testing

scenario (i.e., a specific combination of Tinit and T∞) for reliability and reproducibility.

Determination of heat transfer coefficient

As liquid water solidifies in the test tube, heat transfer coefficient varies with time and

solidification stages denoted as hj. The superscript j represents the j-th time interval. In

this study, the time-dependent heat transfer coefficient is determined by a heat balance

model with the temperature measurements of three thermocouples.

At each stage, two energy balances are set based on the inner and outer surface of the

steel wall. The inner surface equates the energy coming in from the first thermocouple to

the inner wall with the energy coming out from the inner wall to the second thermocouple.

On the other hand, the outer surface balances the heat conduction inside the steel wall with

the convection subjected to the coolant temperature, as schematically shown in Fig. 6.1(b).

Thus, two algebraic equations are formulated at every solidification stage. Specifically, during

liquid supercooling stage, we find:


kℓ

T j
tc,1−T j

wall,calc

∆r
− ksteel

T j
wall,calc−T j

tc,2

∆rwall
= 0,

ksteel
T j
wall,calc−T j

tc,2

∆rwall
+ hj(T j

tc,2 − T∞) = 0.

(6.1)

In the equilibrium freezing stage, we have:


kℓ

T j
tc,1−T j

wall,calc

∆r
− ksteel

T j
wall,calc−T j

tc,2

∆rwall
= 0,

ksteel
T j
wall,calc−T j

tc,2

∆rwall
+ hj(T j

tc,2 − T∞) = 0.

(6.2)
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Lastly, at the solid subcooling stage, we find:


ks

T j
tc,1−T j

wall,calc

∆r
− ksteel

T j
wall,calc−T j

tc,2

∆rwall
= 0,

ksteel
T j
wall,calc−T j

tc,2

∆rwall
+ hj(T j

tc,2 − T∞) = 0.

(6.3)

k, cp,∆rwall are the thermal conductivity, specific heat, and wall thickness, respectively.

The subscripts ℓ, s, steel represent liquid state, solid state, and stainless steel, respectively.

In all stages, the two unknown variables are the calculated wall temperature T j
wall,calc and

heat transfer coefficient hj at the j-th time interval. As a result, the time-dependent heat

transfer coefficient can be calculated based on the measurements of three thermocouples in

our experimental setup.

Contact angle measurement

To measure the contact angle of deionized water, a droplet of liquid sample was placed on a

flat surface made of 304 stainless steel, as shown in Fig. 6.2a. A contact angle tester ZJ-6900

(Shenzhen Zhi Jia Equipment Co., Ltd., China) was employed for measurements. Care was

taken to remove any foreign agent on the surface of stainless steel. Prior to each testing,

the stainless-steel surface was cleaned by ethyl alcohol and deionized water, and dried. As

shown in Fig. 6.2b, contact angle of each end of the droplet was measured and an average

value was calculated. This measurement was repeated six times. Images of the contact angle

measurements were also collected.

6.3 Mathematical modeling

The domain is considered as a vertical cylinder of radius a and height H. The top and bottom

ends of the cylinder are perfectly insulated, i.e., no flux conditions at z = 0 and z = H. The

cylinder is initially at a spatially uniform temperature T = Tinit; the outer surface r = a is

then subjected to convection with a heat transfer coefficient h and a surrounding temperature
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(a) (b)

1 mm

𝜙𝑙𝑒𝑓𝑡 𝜙𝑟𝑖𝑔ℎ𝑡

Figure 6.2: Measurement of the contact angle: (a) An image of the apparatus; and (b) A
diagram of contact angle measured. The contact angle is obtained by the average value of
the measurements from both sides, i.e., ϕ = (ϕleft + ϕright)/2.

T∞ for t > 0. This solidification problem contains five distinct stages at both macro- and

micro-scale levels: liquid supercooling, nucleation, recalescence, equilibrium freezing, and

solid subcooling. For mathematical simplification, the following assumptions are made:

i) Phase-dependent thermophysical properties are constant and uniform in each phase;

ii) Volumetric change in the liquid phase due to density is assumed to be negligible;

iii) Effect of natural convection in the liquid phase is neglected because the Richardson’s

number Ri = Gr/Re2 ≫ 1. Gr and Re are the Grashoff number and Reynolds number,

respectively; and

iv) A semi-infinite problem is assumed in the axial direction, and thus the solid-liquid

interface during phase change is considered to be sharp and varied in the radial coor-

212



dinate only. That is, the two-dimensional (2-D) problem reduces to a one-dimensional

(1-D) Stefan problem at the equilibrium freezing stage.

In this study, we present a unified solidification model, capable of capturing the five solid-

ification stages at both macroscopic and microscopic scales. This unified model is governed

by a 2-D heat conduction equation with an internal heat generation:

1

α

∂T

∂t
=

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2
+

g0
k
, 0 < r < a, 0 < z < H, t > 0, (6.4)

subject to the following fixed and moving boundary conditions:

For r = 0 : T (r = 0, z, t) ⇒ finite, (6.5)

For r = a : −k
∂T

∂r

∣∣∣∣
r=a

= heq

[
T (r = a, z, t) − T∞

]
, (6.6)

For r = ri(t) : k
∂T

∂r

∣∣∣∣
r=ri(t)

= ρL
dri
dt

, T (r = ri(t), z, t) = Tf , (6.7)

For z = 0 :
∂T

∂z

∣∣∣∣
z=0

= 0, (6.8)

For z = H :
∂T

∂z

∣∣∣∣
z=H

= 0. (6.9)

The time conditions are given by:

T (r, z, t = 0) = Tinit,

T (r, z, t = tnuc) = Tnuc,

T (r, z, t = trec) = Tf ,

T (r, z, t = tcrit) = Tcrit(r),

ri(t = trec) = 0,

ri(t = tcrit) = a.

(6.10)

T, r, z, t are the temperature, radial coordinate axial coordinate and time, respectively.
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α, k, ρ, L, heq, g0 are the thermal diffusivity, thermal conductivity, mass density, latent heat

of fusion, equilibrium heat transfer coefficient and internal heat generation, respectively.

The subscripts i, f, init, nuc, rec, crit represent the solid-liquid interface, fusion state, initial

state, nucleation, recalescence and critical state (a.k.a., total freezing state), respectively. In

particular, trec is the time when recalescence stage is completed and the temperature jumps

back to the fusion temperature; tcrit is the time when the entire domain becomes solid,

which can also be seen as the end of equilibrium freezing. The internal heat generation, g0,

is expressed as a piece-wise function to capture the recalescence stage at a micro-scale level:

g0 =


mcp(Tf−Tnuc)

(trec−tnuc)V
, if tnuc < t < trec,

0, elsewhere,

(6.11)

where m and tnuc the mass (kg) and nucleation time (s), respectively. V is the volume of the

cylindrical domain (m3), which can be obtained by V = πa2H. Further, the thermophysical

properties are also given by a time-dependent piece-wise function:

[k, cp, ρ,m] =


[kℓ, cp,ℓ, ρℓ,mℓ], if 0 < t < trec,

[ks, cp,s, ρs,ms], elsewhere.

(6.12)

It is noted that Akhtar et al. [3] developed a semi-analytical framework on droplet solid-

ification and conducted a similar five-stage analysis. Compared with Akhtar et al.’s work,

this presented unified model has the following physical and mathematical differences and

advancement: i) the current model studies a 2-D cylinder (except a 1-D assumption on the

interface), while Akhtar et al. examined a 1-D sphere; ii) this framework unified the five

stages by a single partial differential equation problem (including the internal heat gener-

ation) with a set of fixed and moving boundary conditions, but Akhtar et al. performed

separate analyses for each stage; iii) The recalescence stage in this model is triggered by a

heat equation with the internal heat generation that is not linear; however, Akhtar et al.
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simplified this transient process by a linear line depending on the recalescence time; and

iv) There is no small Biot number assumption throughout all the stages of this framework,

while Akhtar et al. assumed a small Biot number in the solid subcooling stage.

6.3.1 Liquid supercooling stage

This stage solves a 2-D finite-extent transient heat conduction problem of the liquid phase

subjected to a convective boundary without any heat generation:

1

αℓ

∂Tℓ

∂t
=

∂2Tℓ

∂r2
+

1

r

∂Tℓ

∂r
+

∂2Tℓ

∂z2
, (6.13)

subjected to the boundary conditions:

Tℓ(r = 0, z, t) ⇒ finite, (6.14)

−kℓ
∂Tℓ

∂r

∣∣∣∣
r=a

= heq

[
Tℓ(r = a, z, t) − T∞

]
, (6.15)

∂Tℓ

∂z

∣∣∣∣
z=0

= 0, (6.16)

∂Tℓ

∂z

∣∣∣∣
z=H

= 0. (6.17)

and the initial condition:

Tℓ(r, z, t = 0) = Tinit. (6.18)

An exact solution can be found by firstly applying the method of superposition and split-

ting into two sub-problems: transient and steady-state parts. The transient part is solved

by separation of variables, while the steady-state part reduces to an ordinary differential

equation without any axial dependency. Elaborate analytical treatments for this problem

with an internal heat generation term are documented in the text [16]. The final analytical
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Table 6.2: Thermophysical properties of water and ice.

Property Value Unit
Water
Mass density, ρℓ 999.84 kg m−3

Specific heat, cp,ℓ 4219.40 J kg−1 K−1

Thermal conductivity, kℓ 0.56109 W m−1 K−1

Ice
Mass density, ρs 916 kg m−3

Specific heat, cp,s 2050 J kg−1 K−1

Thermal conductivity, ks 2.22 W m−1 K−1

solution is expressed as:

Tℓ(r, z, t) =
∞∑
n=0

∞∑
m=1

[
CnmJ0(βmr) cos(ηnz)e−αℓλ

2
nmt

]
+ T∞, 0 < t < tnuc, (6.19)

where the eigenvalues, βm, ηn, and λnm, are defined as:

aβmJ1(aβm) = BiℓJ0(aβm), for m = 1, 2, 3, ...

ηn =
nπ

H
, for n = 0, 1, 2, ...

λ2
nm = β2

m + η2n.

(6.20)

J0 and J1 are the Bessel functions of the first kind with orders zero and one, respectively. Biℓ

is the Biot number of the liquid phase given by Biℓ = heqa/kℓ. This thermal conductivity

kℓ is for the liquid phase here yet will be hinged on the domain of interest later. The

thermophysical properties of pure water and ice are listed in Table 6.2. On the other hand,

the corresponding eigencoefficients are determined by:

Cnm =

∫ H

z=0

∫ a

r=0
r(Tinit − T∞)J0(βmr) cos(ηnz)drdz∫ a

r=0
rJ2

0 (βmr)dr
∫ H

z=0
cos2(ηnz)dz

. (6.21)
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6.3.2 Nucleation stage

The nucleation rate for heterogeneous nucleation is defined as the product of pre- and expo-

nential factors:

J(t) =D
Aw

3
n

7
3
ℓ

√
Awσℓs

πkBTℓ

√
4

2 + ζf

× exp

{
− [Awσℓs/(kBTℓ)]

3(2 + cosϕ)(1 − cosϕ)2

27[ln(pℓ/ps)]2

}
,

(6.22)

where the pre-factor includes: the self-diffusion coefficient of supercooled water D (m2 s−1),

surface area of a water molecule Aw (m2), number of density of molecules in the liquid

particle nℓ (m−3), interfacial surface tension σℓs (J m−2), Boltzmann constant kB (J K−1),

and a coefficient in the heterogeneous Zeldovich factor ζf (-). The coefficient ζf is defined

as:

ζf =
(1 −X cosϕ)[2 − 4X cosϕ− (X2 cos2 ϕ− 3)]

(1 − 2X cosϕ−X2)
3
2

, (6.23)

where X is the ratio of radii between nucleating particle and critical embryo (-); ϕ is the

contact angle (◦). Furthermore, the exponential factor has: the contact angle ϕ (◦), satu-

ration pressure of water pℓ (Pa), and saturation pressure of ice ps (Pa). These saturation

pressures are temperature-dependent functions given in [28]. Definitions and formulations

for each term are documented in the work [3] and listed in Table 6.3 based on this proposed

model.

The parameter σℓs in Eqn. (6.22) is a critical factor in determining accuracy of the

model as demonstrated in our previous study [3]. It is hypothesized in recent literature

studies [41, 27] that σℓs is a strong function of droplet’s water temperature and takes the

form of the expression

σℓs = σ0 + (Tℓ − 273.15) × 10−4 (6.24)

where σ0 is the baseline interfacial surface tension at the equilibrium freezing temperature
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Table 6.3: Thermophysical and molecular parameters used at nucleation and recalescence
stages.

Property Value Unit Ref.
Self-diffusion coefficient of water, D(T ) 1.5 × 10−6 exp(−2045/T ) m2 s−1 [27]
Surface area of water molecule, Aw 4πr20 m2 [27]
Mean particle separation distance, r0 [3Mw/(4πNAρℓ)]

1/3 m [31]
Molar mass of water, Mw 18.05 g mol−1 [31]
Avogadro number, NA 6.022 × 1023 mol−1 [31]
Number density of molecules in liquid, nℓ NAρℓ/Mw m−3 [31]
Universal LM-K stability constant, σ∗ 0.0253 - [23]
Interfacial kinetics factor, σk 6.1 × 10−11 m [43]
Interfacial surface tension, σℓs(T ) σ0 + (T − 273.15) × 10−4 J m−2 [3, 8]
Radii ratio in the term ζf , X Rp/r

∗ - [3]
Radius of nucleating particle, Rp 25.4 × 10−6 m [19]
Radius of critical embryo, r∗(T ) 2σℓs/{ns[kBT ln(pℓ/ps)]} m [3]
Number density of molecules in liquid, ns NAρs/Mw m−3 [31]
Boltzmann constant, kB 1.38064 × 10−23 J K−1 [31]
Volume of critical embryo, V ∗ 4π(r∗)3/3 m3 [3]

(J m−2). Considerable discrepancy is observed in the experimental measurements of σ0

ranging from 0.025 - 0.044 (J m−2) has been reported [15]. In our recent study [46] we

hypothesize that this variation is a result of dependence of σ0 on other factors such as

surrounding temperature or purity of the liquid. To include this dependence in our model,

we used a simple optimization search algorithm based on the gradient method to estimate

the σ0.

Following the determination of nucleation rate, the nucleation temperature can be exam-

ined by locating numbers of critical nuclei Nv, expressed as [40, 3]:

Nv =

∫ t

t̃=0

(Vinit − V ∗)J(t̃)dt̃, (6.25)

where Vinit and V ∗ are the volumes of initial state and crystal embryo (presumably spherical),

respectively. t̃ is an arbitrary time variable for integration purposes. If the number of

critical nuclei reaches 1, then the liquid is deemed as its nucleation temperature. This
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nucleation criterion has been proved to be accurate for low and medium cooling rates (around

0.1− 50◦C/s) [40], which represents this current study. Consequently, the time of nucleation

is also known by settling the nucleation time during liquid supercooling. Such coupling

of stages between the liquid supercooling and nucleation renders a solidification framework

which accounts for both macroscopic and microscopic behaviors.

6.3.3 Recalescance stage

In the process of dendritic growth, there are three driving mechanisms for the total un-

dercooling of the interface: steady-state thermal field, kinetic undercooling, and curvature

effect, expressed as [5, 21]:

Tf − Ti = ∆Tth + ∆Tk + ∆Tσ, (6.26)

where ∆Tth,∆Tk,∆Tσ are thermal, kinetic and curvature undercoolings, respectively. This

formulation can be further expressed in terms of interfacial temperature Ti and dendritic

growth velocity v:

cp(Ti − Tnuc)

L
= Iv

(√
d0v

2αsσ∗

)
+

cp(Tf − Ti)

L
+

cpσℓsTf

LLv

√
vσ∗

2d0αs

, (6.27)

where Iv(x) is the well-known Ivantsov’s exact solution [20]. d0, σ
∗, Lv are the capillarity

length (m), universal LM-K stability constant (-), and volumetric latent heat (J m−3), re-

spectively. The velocity of dendritic growth v, on the other hand, is defined based on the

Wilson-Frenkel’s work [43]:

v =
6d0D(Ti)

2αsσ∗σk

[
exp

(
− Lm/NA

kBTf

)
− exp

(
− Lm/NA

kBTi

)]
, (6.28)

where D, σk, Lm, NA, kB are the self-diffusion coefficient of water (m2 s−1), interfacial kinetics

factor (m), latent heat of fusion per unit mole (J mol−1), Avogadro constant (mol−1), and
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Boltzmann constant (J K−1), respectively. From the two algebraic equations (6.27) and

(6.28), the two unknown variables (v, Ti) can be solved by a numerical scheme. Here, a

bisection method was used.

Once the velocity of dendritic growth v is obtained from the algebraic equations (6.27)

and (6.28), the time interval of recalescence stage (i.e., trec − tnuc) can be calculated from

the ratio of diameter over velocity: trec − tnuc = 2a/v. As a consequence, the internal heat

generation term g0 representing the dendritic growth is known. To examine the temperature

profile during recalescence, a 2-D transient heat conduction is solved in a similar manner to

the liquid supercooling stage, yet with a non-zero internal heat generation g0 in Eq. (6.11):

1

αℓ

∂Tℓ

∂t
=

∂2Tℓ

∂r2
+

1

r

∂Tℓ

∂r
+

∂2Tℓ

∂z2
+

g0
kℓ
, (6.29)

subjected to the boundary conditions:

Tℓ(r = 0, z, t) ⇒ finite, (6.30)

−kℓ
∂Tℓ

∂r

∣∣∣∣
r=a

= heq

[
Tℓ(r = a, z, t) − T∞

]
, (6.31)

∂Tℓ

∂z

∣∣∣∣
z=0

= 0, (6.32)

∂Tℓ

∂z

∣∣∣∣
z=H

= 0. (6.33)

and the initial condition

Tℓ(r, z, t = tnuc) = Tnuc. (6.34)

The exact solution can also be obtained by the methods of superposition and separation of

variables as follows:

Tℓ(r, z, t) =
∞∑
n=0

∞∑
m=1

[
DnmJ0(βmr) cos(ηnz)e−αℓλ

2
nmt

]

+
ag0
2heq

+
g0
2kℓ

(a2 − r2) + T∞, tnuc < t < trec,

(6.35)
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where the eigenvalues remain the same as determined in Eq. (6.20). The corresponding

eigencoefficient is defined as:

Dnm =

∫ H

z=0

∫ a

r=0
r(Tnuc − T∞ − ag0

2heq
− g0

4kℓ
(a2 − r2))J0(βmr) cos(ηnz)drdz∫ a

r=0
rJ2

0 (βmr)dr
∫ H

z=0
cos2(ηnz)dz

. (6.36)

6.3.4 Equilibrium freezing stage

A 1-D classical one-phase Stefan problem in a finite cylindrical domain is formulated to

govern this stage [18]. Since a portion of solid has been developed in the form of crystal

during dendritic growth, the latent heat needs to be firstly re-scaled for equilibrium freezing,

i.e., L ⇒ Leff . This effective latent heat is derived from the energy balance and given by

[39, 3]:

Leff =

(
1 − cp,ℓ

cp,s
Stenuc

)
L, (6.37)

where Stenuc is a local Stefan number for nucleation defined as Stenuc = cp,s(Tf − Tnuc)/L.

It is worthwhile to mention that this effective latent heat has barely been introduced in the

literature for modeling energy storage. The involvement of nucleation temperature in the

local Stefan number Stenuc requires the consideration of nucleation theory at micro-scale

level, in which most works are limited to macroscopic behaviors without taking into account

nucleation and dendritic growth.

Exact solution to the Stefan problem does not exist because of its finite domain and

convective boundary. An approximate analytical solution can be therefore forged by pertur-

bation method [18, 30]. The merit of this approximation technique is that the perturbation

series forces the complex problem to resort to solvable terms. Prior to the perturbation

method, the problem is non-dimensionalized by the following variables:

θs =
Ts − Tf

Tf − T∞
, ξ =

r

a
, ξi =

ri
a
, (6.38)
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and dimensionless numbers:

Fos =
αs(t− trec)

a2
, Bis =

heqa

ks
, Stes =

cp,s(Tf − T∞)

Leff

. (6.39)

The dimensionless time is therefore defined as τ = StesFos. To construct a perturbation

series solution in an explicit form, the dimensionless problem is also reformulated with respect

to θs(ξ, ξi) and τ(ξi) as follows:

∂2θs
∂ξ2

+
1

ξ

∂θs
∂ξ

= Stes
∂θs
∂τ

,

Bisθs(ξ = 1, ξi) = −∂θs
∂ξ

∣∣∣∣
ξ=1

,

∂θs
∂ξ

∣∣∣∣
ξ=ξi

dτ

dξi
= 1,

θs(ξ = ξi, ξi) = 1,

τ(ξi = 1) = 0.

(6.40)

One seeks to find the approximate analytical solutions valid for Stes ≪ 1 in forms of regular

perturbation expansions; that is,

θs(ξ, ξi;Stes) ∼ θs,0 + Stesθs,1 + Ste2sθs,2 + ...,

τ(ξi;Stes) ∼ τ0 + Stesτ1 + Ste2sτ2 + ...,

(6.41)

where the subscripts 0, 1, 2 represent the order of perturbation expansion. The zeroth-order

solution can be found as follows:

θs,0 =
−1 + Bis ln ξ

−1 + Bis ln ξi
,

τ0 = −(2 + Bis)(−1 + ξ2i )

4Bis
+

1

2
ξ2i ln ξi.

(6.42)

222



6.3.5 Solid subcooling stage

As the phase change interface reaches the center, the whole cylinder is solidified. The

frozen cylinder continues to cool down until equilibrium depending on the prescribed ambient

temperature. This solid subcooling stage is modeled by a 2-D finite-extent pure conduction

problem similar to the liquid supercooling process. Compared with the supercooling, this

subcooling stage is in the solid phase instead of liquid. After the same analytical treatments,

the exact solution is given by the text [16]:

Ts(r, z, t) =
∞∑
n=0

∞∑
m=1

[
EnmJ0(βmr) cos(ηnz)e−αsλ2

nmt

]
+ T∞, t > tcrit. (6.43)

While the eigenvalues remain identical to the ones in the liquid supercooling as expressed in

Eq. (6.20), the eigencoefficients are determined as:

Enm =

∫ H

z=0

∫ a

r=0
r(Tcrit(r) − T∞)J0(βmr) cos(ηnz)drdz∫ a

r=0
rJ2

0 (βmr)dr
∫ H

z=0
cos2(ηnz)dz

, (6.44)

where Tcrit(r) is the temperature distribution at the critical time when the entire cylinder

becomes solid in the previous stage.

6.3.6 Computational algorithm

The unified mathematical model is a sequential framework to solve the five solidification

stages, where the terminal conditions (including both temperature and time conditions) of

one stage will be the initial conditions of the following stage. The computational algorithm

of this sequential model is outlined in a form of a flowchart, as shown in Fig. 6.3. The

threshold temperature and time are also indicated at each solidification stage.

First of all, the liquid temperature Tℓ at the liquid supercooling stage is calculated by

Eq. (6.19) starting from the initial temperature Tinit and time t = 0. Second, the nucleation

temperature Tnuc and time tnuc are found by the nucleation rate J(t) in Eq. (6.22) and
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Stage 5:

Solid

Subcooling

Stage 4:

Equilibrium

Freezing

Stage 3:

Recalescence

Stage 2:

Heterogeneous

Nucleation

Stage 1:

Liquid

Supercooling

Start

Calculate the liquid temperature 

𝑇ℓ(𝑟, 𝑧, 𝑡) in Eq. (19)

Calculate the nucleation rate 𝐽(𝑡)
in Eq. (22)

Calculate the number of critical 

nuclei 𝑁𝑣 in Eq. (25)

Locate the nucleation temperature 

𝑇𝑛𝑢𝑐 and time 𝑡𝑛𝑢𝑐 , from 𝑇ℓ by 

setting 𝑁𝑣 = 1

Calculate the interfacial 

temperature 𝑇𝑖 and dendritic 

growth velocity 𝑣 in Eq. (27-28)

Calculate the recalescence 

temperature 𝑇ℓ(𝑟, 𝑧, 𝑡) in Eq. (35)

Calculate the dimensionless 

temperature 𝜃𝑠 and time 𝜏 in Eq. 

(42)

Calculate the solid temperature 

𝑇𝑠(𝑟, 𝑧, 𝑡) in Eq. (43)

End

𝑇𝑖𝑛𝑖𝑡; 0

𝑇𝑛𝑢𝑐 ; 𝑡𝑛𝑢𝑐

𝑇𝑓; 𝑡𝑟𝑒𝑐

𝑇𝑐𝑟𝑖𝑡(𝑟); 𝑡𝑐𝑟𝑖𝑡

𝑇∞;∞

Thresholds

𝑇 K ; 𝑡 [s]

Figure 6.3: Flowchart to demonstrate the computational algorithm of the five-stage mathe-
matical framework. The threshold column on the right shows the time t and temperature T
bound for each solidification stage.

number of critical nuclei Nv in Eq. (6.25). When Nv = 1, Tnuc and tnuc can be located

from Tℓ in the previous stage. Third, the recalescence temperature profile is calculated
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by Eq. (6.35) after numerically solving the interfacial temperature Ti and dendritic growth

velocity v in Eq. (6.27-6.28). Recall that the recalescence finishes at the time trec (found by

the relation trec − tnuc = 2a/v) and at the fusion temperature Tf . Further, the temperature

profile during equilibrium is calculated by the dimensionless form θs in Eq. (6.42), and this

stage terminates at the total freezing time tcrit as the solid-liquid interface reaches the center

of the cylinder. Last, the solid temperature Ts during solid subcooling is obtained from

Eq. (6.43) until it reaches the surrounding temperature T∞.

6.4 Model validation

To validate the numerical model, six different cases were carried out with various Tinit and

T∞ values. Specific values of Tinit and T∞ in each case are listed in Table 6.4 along with

calculated heat transfer coefficient at every time interval: h1, h2, h3 in liquid supercooling,

h4 in equilibrium freezing, and h5 in solid subcooling. In addition to the heat transfer

coefficients, the effective latent heat are also tabulated for each case. The coefficient of

interfacial surface tension σ0 was calibrated to be 0.0175 (J/m2) in all scenarios; the freezing

behavior for each case was determined by measuring the temperature for a period of time

(particularly, 2000 s). It should be emphasized that the effective latent heat varies as the

initial or surrounding temperature changes, mainly because of the difference in Tnuc from

Eq. (6.37) for each scenario. The thermal predictions from the semi-analytical model are

qualitatively and quantitatively validated with the experimental measurement, as shown in

Fig. 6.4.

Figure 6.4 shows that for all cases the numerical model was able to capture the different

solidification stages throughout the experiment, i.e., liquid supercooling and nucleation, re-

calescence, equilibrium freezing, and solid subcooling stages. Overall, the model predictions

agree well with the experimental measurements with an acceptable range of accuracy. The

initial condition and the decay of the temperature profile during the liquid supercooling
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Table 6.4: Parametric studies with calculated five heat transfer coefficients (W m−2 K−1)
and effective latent heat (J kg−1) for different ambient and initial temperatures (◦C).

Case Tinit T∞ h1 h2 h3 h4 h5 Leff

1 20 -17 212.97 112.56 75.66 95.32 20.67 295189.3
2 20 -14 313.85 124.23 87.37 77.25 46.58 295258.8
3 20 -11 301.71 159.42 79.35 65.07 42.57 295332.9
4 15 -14 276.20 109.47 77.51 73.26 41.22 295214.4
5 10 -14 399.17 203.04 94.55 87.25 16.41 295245.7
6 5 -14 151.03 199.57 86.82 62.76 24.88 295259.7

stage is well captured, and there is slight discrepancy in nucleation temperature between

the model prediction and experimental values with an average accuracy of 16.33% for all six

cases. Another thing to note here is that there is a discontinuity between the equilibrium

freezing and subcooling curves as these stages are modeled separately. Nevertheless, the

good agreement between numerical prediction and experimental results validates the use of

the model in this study.

6.5 Results and discussions

6.5.1 Temperature distribution over radial coordinates

The spatial variation of temperature inside a cylinder is studied by plotting the dimensionless

temperature against dimensionless radial coordinates, as shown in Fig. 6.5. Dimensionless

radial coordinate of zero represents the center of the cylinder while -1 and 1 represent the

convective boundary conditions. Dimensionless temperature value of above zero denotes

liquid phase while below zero denotes solid phase.

Figure 6.5 shows the temperature plot as a function of radial coordinates at different time

for four solidification stages: liquid supercooling, nucleation and recalescence, equilibrium

freezing, and solid subcooling. In the liquid supercooling stage, heat conduction occurs from

the sides of the cylinder to the center, demonstrated by the parabolic profile of temperature
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Figure 6.4: Model validation of temperature profiles in six scenarios.

curves (Fig. 6.5a). As time progresses, temperature goes down (cooling) at a faster rate

on the sides than at the center. Next timescale is when nucleation and recalescence occurs
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Figure 6.5: Temperature distribution over the radial coordinate in a) liquid supercooling, b)
nucleation and recalescence, c) equilibrium freezing, and d) solid subcooling.

(Fig. 6.5b). The temperature cools down further as nucleation takes place and increases on

the sides when recalescence starts to occur. The temperature at the center of the cylinder

goes down as time goes by. It is also worth noting that during this stage and the next

stage (equilibrium freezing), a mirrored temperature profile is observed on the two sides of

the cylinder, which points to the symmetry of this setup. Once recalescence is completed,

temperature increases to fusion temperature (Tf = 0) and stays at this Tf before water

freezes completely. Again, the sides of the cylinder cool down faster than the center, as

shown in Fig. 6.5c where the center is still at Tf while the sides start to demonstrate solid

subcooling behavior. Finally, solid subcooling takes place from t = 1200 s (Fig. 6.5d). The

phenomenon taking place at this stage is heat conduction. In this stage, temperature profile

is not parabolic as in the liquid supercooling stage, due to nucleation and recalescence that

took place. Nevertheless, the same behavior is observed: temperature on the sides of the

cylinder is lower than that of the center.

228



0 20 40 60 80 100

Time, t (hr)

-20

-15

-10

-5

0

5

10

15

20

T
e
m

p
e
ra

tu
re

, 
T

 (
°
C

)

a = 0.05 m

a = 0.10 m
a = 0.20 m

Figure 6.6: Temperature profile for various geometrical scenarios at a radius of a = 0.05,
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6.5.2 Effects of geometry

The dimension of CTES system plays a crucial role in the total freezing time of PCM,

which in turn affects thermal performance and efficiency of CTES system. It is therefore

an important design consideration for CTES system. To study the effect of geometry on

solidification, radius (a) of the cylindrical pipe is varied. Three values are chosen: a = 0.05

m, 0.1 m, and 0.2 m. It can be inferred from Figure 6.6 that smaller domain, as reflected by

smaller radius, results in faster nucleation and freezing time. Nucleation time are 3.45 hr,

7.59 hr, and 17.66 hr, for radius of 0.05 m, 0.1 m, and 0.2 m, respectively, while nucleation

temperature stays approximately the same. In other words, nucleation takes longer by 4.14

hr and 10.07 hr when the radius is increased from 0.05 m to 0.1 to 0.2 m. Total freezing

time also increases significantly as the domain is increased; at 0.05 m radius, total freezing

time is 13.89 hr, at 0.1 m radius the total freezing time is increased to 30.62 hr, and jumps

to 72.22 hr for radius of 0.2 m.
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Figure 6.7: Temperature profile for various initial temperatures: Tinit = 5, 10, 15◦C.

6.5.3 Effects of initial temperature

Another essential design consideration is the temperature of PCM at its initial state. Ac-

cording to the geological location of CTES system, it is possible to have a wide range of

initial temperatures. In this study, the effect of initial water temperature on the freezing

behavior is analyzed by varying three different values 5◦C, 10◦C, and 15◦C while all other

parameters are kept constant. As shown in Fig. 6.7, all three cases display the same behavior

with slightly delayed timescale as the initial temperature is increased.

Nucleation time, i.e., time to reach the nucleation temperature is longer for higher initial

temperature owing to higher sensible heat. However, the increase in time to reach nucleation

temperature is not significant; 6.01 hr to 7.59 hr to 8.95 hr when the initial fluid tempera-

ture is increased from 5◦C to 10◦C to 15◦C. This represents an average of 22.17% per 5◦C

increase. Total freezing time, defined as the sum of time of each stages up until equilibrium

freezing stage ends, i.e., when the entire domain is frozen, is longer due to the additional

sensible heat resulted from increased initial temperature. The delay in total freezing time
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is approximately 5%. An important thing to note here is that while its effect on nucleation

time is more apparent, initial temperature has minuscule effect on nucleation temperature,

with only about 0.16% difference under the investigated range. This is because in this case

the surrounding (heat transfer fluid) temperature is fixed at −20◦C. Related to application

of cold storage, it can be observed that more total energy can be stored with higher initial

temperature. This is reflected by the larger area under the curve for higher temperature.

6.5.4 Effects of heat transfer fluid temperature

HTF temperature is also critical to the phase change process in CTES system, in which the

HTF temperature represents the surrounding temperature (T∞). To examine the effect of

HTF temperature, T∞ is varied from −10◦C to −20◦C to −30◦C. Figure 6.8 shows that T∞

significantly influences the freezing curve behavior and time. In general, colder temperature

results in faster cooling. Liquid supercooling/nucleation time decreases by 245.79% and

70.62% as T∞ is decreased from −10◦C to −20◦C and from −20◦C to −30◦C, respectively.

Total freezing time is delayed by 57.65% between −10◦C and −20◦C and 35.34% between

−20◦C and −30◦C. This is owing to the fact that the heat flux with the surrounding is

higher as T∞ is lowered. The nucleation temperature is −9.134,−9.120,−9.0126◦C for T∞ =

−10,−20,−30◦C, respectively. Insights to the effect of heat transfer fluid temperature is

useful in real world application for temperature adjustment based on the desired charging

time. For faster charging, lower (colder) heat transfer fluid temperature is recommended.

6.5.5 Effects of heat transfer coefficient

Most importantly, the heat transfer coefficient of any CTES system influences the rate of

solidification and the overall thermal efficiency. In this study, three values of heat transfer

coefficients (W m−2 K−1) were studied to determine the effect of heat transfer coefficients h

on solidification behavior: 10, 50, and 100 (W m−2 K−1). The heat transfer coefficient was

previously denoted as heq in the model development which varied from one stage to another,
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Figure 6.8: Temperature profile for various heat transfer fluid temperatures: T∞ = −10,
−20, −30◦C.

but for simplicity a constant value was used here to better demonstrate the influence on

the entire evolution. Higher heat transfer coefficient (for e.g., 500 or 1000 (W m−2 K−1))

were also considered. However, no significant changes from the 100 (W m−2 K−1) case

were observed from employing high coefficients. Hence, the highest coefficient plotted in

Fig. 6.9 is the case for 100 (W m−2 K−1). From Fig. 6.9, it can be observed that high heat

transfer coefficients correlates to faster solidification. This is expected as high coefficients

induces high heat transfer rate which in return leads to stronger cooling rate. Nevertheless,

the significance of the difference in total freezing time varies. It seems that enhancement

in cooling rate is more significant at lower heat transfer coefficient. Increasing the heat

transfer coefficient from 10 to 50 (W m−2 K−1) reduces the nucleation time by 67.03% and

total freezing time by 65.72%, while increasing the coefficient from 50 to 100 (W m−2 K−1)

reduces the nucleation time by 25.56% and total freezing time by 23.99%.
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6.6 Conclusion

This paper firstly built up a novel experimental apparatus for the thermal analysis of PCMs,

particularly evaluating transient temperature profile during inward solidification of a cylinder

along with contact angle measurement. This apparatus employed additional care between

the water bath and test tube to mitigate any internal influence from crystallization and

external disturbance caused by machine vibration and coolant fluid flow. Since the heat

transfer coefficient varies significantly among solidification stages, a comprehensive procedure

to determine the heat transfer coefficient based on energy balance at each time interval was

introduced. This experimental system should readily extend to other geometrical domains

of interest, thus providing guidelines to further experimental research on phase change heat

transfer.

A rigorous two-dimensional mathematical framework was also established to unify all the

solidification stages from micro- to macro-scale. Specifically, this framework consisted of one
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set of governing partial differential equations subjected to a number of fixed and moving

boundaries with time conditions. An accurate and fast-to-compute semi-analytical solution

to this problem was developed and validated against experimental results. Future modeling

works could center around the other boundary conditions, geometries, and considerations of

volume shrinkage or expansion during phase change.

Lastly, we studied a number of important design and operational considerations in CTES

system, including temperature distribution over radial coordinates, operational domain, ini-

tial temperature, heat transfer fluid temperature, and heat transfer coefficient. These inves-

tigations not only proved the reliability and robustness of our modeling framework in CTES

system, but also shed light on the thermal design and operation of CTES system.
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Nomenclature

Letters

a Cylinder radius
H Cylinder height
V Cylinder volume
V ∗ Critical embryo volume
A Surface area
T Temperature
t Time
r Radial coordinate
z Axial coordinate
ri Interface location
L Latent heat of fusion
Leff Effective latent heat of fusion
Lm Latent heat of fusion per unit mole
Lv Volumetric latent heat of fusion
k Thermal conductivity
kB Boltzmann constant
h Heat transfer coefficient
cp Specific heat
p Saturation pressure
J Nucleation rate
D Self-diffusion coefficient
d0 Capillarity length
n Number density of a molecule
NA Avogadro constant
Nv Number of critical nuclei
X Radii ratio between nucleating particle and critical embryo
g0 Internal heat generation
Mw Molar mass of water
m Mass
v Dendritic growth velocity
r0 Mean particle separation distance
r∗ Critical embryo radius
Ste Stefan number
Bi Biot number
Fo Fourier number
Gr Grashoff number
Re Reynolds number
Ri Richardson number
J0 Bessel function of the first kind with order zero
J1 Bessel function of the first kind with order one
C,D,E Eigencoefficients
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Greek symbols

α Thermal diffusivity
ρ Mass density
ϕ Contact angle
σℓs Interfacial surface tension
σ0 Baseline interfacial surface tension
σ∗ Universal LM-K stability constant
σk Interfacial kinetics factor
ζf Heterogeneous Zeldovich factor
β, λ, η Eigenvalues
θ Dimensionless temperature
ξ Dimensionless radial coordinate
ξi Dimensionless interface location
τ Dimensionless time

Superscripts and subscripts

tc Thermocouple
ℓ Liquid or water
s Solid or ice
f Fusion
init Initial
i Interfacial
∞ Surrounding
j j-th time interval
wall Tube wall
calc Calculated
steel Steel material
nuc Nucleation
rec Recalescence
crit Critical or total freezing
eq Equilibrium
w Water molecule
th Thermal
k Kinetic
σ Curvature
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Chapter 7

Development of a multi-stage model for freez-
ing of a suspended binary solution droplet
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Preface (Bridging Text)

Spray freezing (SF) is a renewable energy-based and cost-effective technology for mine heat-

ing and cooling (e.g., in the Frood-Stobie Mine, Ontario) as well as decontamination of mine

wastewater (e.g., in the Colomac Mine, Northwest Territories). Similar to phase change

materials (PCMs), SF also exploits cold energy and the solid-liquid phase change. For ex-

ample, in decontamination, SF can reject contaminated particles from the ice during freezing,

thereby separating purified water in the ice from contaminants as a wastewater pre-treatment

method.

In Chapter 6, experimental and unified mathematical frameworks were developed for

multi-stage non-equilibrium solidification in pure substances, such as ice/water phase change.

A thorough investigation was conducted on the five-stage solidification process and its ap-

plication to PCMs for cold thermal energy storage. However, non-pure substances such as

mixtures have a wide range of applications, including the decontamination of wastewater

using SF. Freezing mixtures undergo a similar five-stage solidification process but with more

complex phenomena such as freeze concentration, freeze-point depression (FPD), as well as

unique nucleation and recalescence stages.

In this chapter, multi-stage non-equilibrium solidification in mixtures was explored, which

encompasses coupled heat and mass transport along with FPD. Such phenomena are not ex-

hibited by pure substances. Specifically, a novel five-stage solidification model for binary

mixtures was established using a hybrid analytical-numerical method. Stochastic nucleation

behavior with mass concentration is characterized through gradient-based optimization. Su-

crose aqueous solution droplets were studied and examined in this chapter because sufficient

experimental data were available in the literature to quantify the stochastic nature through

optimization. Nevertheless, the framework and results can be applied to contaminated chem-

icals such as arsenic and zinc, which are commonly found in mine wastewater. The insights

and discussions presented in this chapter were published in the peer-reviewed journal article
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listed below.

M. Xu, S. Akhtar, M. Mohit, and A. P. Sasmito. Development of a multi-stage model

for freezing of a suspended binary solution droplet. International Journal of Heat and

Mass Transfer, 221:125115, 2024

Abstract

The importance of developing spray freeze-drying technology for extending the shelf life of

biological and pharmaceutical materials has never been greater, given the increasing food

shortage and the strong demand for pharma processes. In particular, the best thermal de-

sign and application of spray freeze-drying technologies now depend on the estimation of

nucleation behavior for droplet solidification (especially the droplets of binary mixtures).

Although earlier nucleation models could estimate the nucleation rate and temperature of

solidifying droplets, few considered extreme environmental factors, such as extremely low am-

bient temperatures below −60◦C. To ensure the preservation and storage of biological and

pharmaceutical products, such as vaccines and protein drugs, these conditions are extremely

important. Hence, developing an accurate and trustworthy mathematical framework for sim-

ulating nucleation is paramount. In this study, a multi-stage, hybrid analytical-numerical

model for droplet solidification is developed while coupled with a gradient-based optimization

algorithm. Specifically, the five-stage solidification of binary mixtures is simulated (includ-

ing supercooling of liquid, nucleation, recalescence, equilibrium freezing, and subcooling of

solid), which captures the dynamic behaviors of temperature and composition or solute con-

centration during phase change. The heterogeneous nucleation of a binary-mixture droplet

in a frigid environment is predicted and validated against a series of experiments on single

suspended droplets at a wide range of ambient temperatures between −20 and −160◦C.

The freezing curves of different solute concentrations are also validated against experimental
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data. It is found that significant variations in interfacial tension lead to abrupt changes in

nucleation temperature for extremely cold environments. Further, the effects of the concen-

tration, contact angle, droplet size, and heat transfer coefficient are also investigated.

Keywords: Nucleation, optimization, droplet freezing, solidification, phase change

7.1 Introduction

The study of droplet freezing or solidification is of fundamental importance in understanding

the physics of phase change heat transfer, which has a variety of practical applications in

both nature and industry. Specifically, droplet freezing can be exploited in lyophilization (or

freeze-drying) for food [14, 12] and pharmaceutical products [56, 27], production of ice slurry

using spray freezing technology [18, 19], frosting and defrosting (or anti-icing) applications

[28, 41, 49], and spray freezing for underground mine heating [1, 50] to mention but a few.

The solidification process, not limited to a droplet, is a multi-scale, multi-stage, and multi-

physics phenomenon. It generally undergoes supercooling, freezing, and subcooling at the

macroscale, crystal growth at the mesoscale, and nucleation at the microscale. Though heat

transfer dominates the phase change process due to the release of latent heat, the mass

diffusion of solute, change in volume (mechanically), and effect of pressure (hydraulically)

could also influence solidification.

In accordance with the material, there are two distinct kinds of droplet freezing: one is

the solidification of a droplet with pure substance, while another involves freezing a binary

solution droplet. Extensive time in the literature has been spent on droplet solidification

filled with pure substances, especially water. Traditional frameworks, such as the Stefan

problem [35, 3], can be implemented to model droplet solidification. However, most of them

failed to capture the transport phenomena at the meso- and micro-scales, i.e., nucleation

and crystal growth. Hindmarsh et al. [26] captured the temperature transition of freezing a
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suspended water droplet through experiments and validated the experimental data against

a heat balance model solved numerically. The results were accurately measured and pre-

dicted, demonstrating four distinct solidification stages (i.e., supercooling, recalescence or

crystal growth, freezing, and cooling). Meng and Zhang [36] performed a similar laboratory

experiment of suspending a water droplet. However, compared with Hindmarsh et al.’s setup

a copper ring was included around the droplet’s top surface for a more straightforward ac-

tivation of heterogeneous nucleation. Meanwhile, a three-dimensional numerical model was

built using the enthalpy method to simulate each solidification stage. Akhtar et al. [2] devel-

oped a semi-analytical, five-stage solidification model that incorporated the heterogeneous

nucleation between the supercooling and recalescence stages as well as the effects of interface

kinetics and surface curvature during crystal growth. The sensitivity of the Arrhenius-type

equation and modified Wilson–Frenkel model (for the heterogeneous nucleation and crystal

growth, respectively) were then statistically studied and optimized using the Monte-Carlo

method [4].

A significantly less time has been spent on freezing a droplet filled with impure substance,

e.g., a binary mixture. Compared with pure solution, the addition of solute in the binary

solution has a direct impact on the freezing curve. Specifically, the mass transfer happens

concurrently with the solidification, resulting in variations of the nucleation temperature,

fusion point, and solid-liquid interface motion [17, 13]. The freeze point depression (the

decrease in the fusion point) and freeze concentration (the downward temperature curve

during the freezing stage) were systematically studied experimentally and numerically in

[22] for freezing a suspended sucrose droplet. The nucleation phenomena (categorized as

surface- and volume-based) for these sucrose droplets with different concentrations were

explored in [24]. Sebastião et al. [45, 46] developed theoretical models (using the energy

balance and computational fluid dynamics) to investigate the dynamics of the spray freeze-

drying technology from the solidification of a sucrose droplet. Their modeling results were

validated against several experimental data in the literature. The sucrose aqueous solution
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has risen particular attention in food and pharmaceutical; this is because it is commonly used

as a cryoprotectant in protein formulations, and the stability of proteins can be affected by

the freeze concentration of sucrose [54, 15]. In addition to sucrose droplets, the solidification

of a droplet filled with salts [11, 29], a spherical binary melt [42, 16], and mannitol solution

[7] are also of practical interest in frosting/anti-icing, metal/alloy, and vacuum freeze-drying

applications.

When looking into the nucleation stage of solidification, the formation of an ice embryo by

overcoming the Gibbs free energy is a stochastic process that occurs at a microscopic level.

The nucleation temperature (also referred to as the supercooling degree), along with the

instantaneous time, plays a significant role in the temperature transition of droplet freezing.

Theoretically, incorrect nucleation temperature and time will bring forward or postpone the

subsequential solidification stages, thus leading to a wrong freezing time that miscalculates

the thermal performance. The Cryo Scanning Electron Microscope (Cryo-SEM) images

results of freezing a sucrose droplet have demonstrated a significant correlation between the

nucleation temperature and the crystal size distribution and microstructure [23]. In-depth

investigations on the nucleation temperature have also been made by conducting extensive

experimental tests on suspended [44] and sessile droplets [61, 60].

Thus far, there are still a few research gaps that need to be filled in the context of freezing

a binary droplet solution:

i) The mathematical model based on the classical nucleation theory (CNT) has been

developed for pure water droplets [36, 2], but not for binary solutions. The alternation

of corresponding microscopic properties (e.g., interfacial tension, contact angle, self

diffusivity) and thermophysical properties has not yet been clarified.

ii) Considerable studies have been carried out with an ambient temperature higher than

−40◦C, thus limiting the range of applications. Ultra-low environmental conditions

have been proven to be useful in the storage of food and pharmaceutical products [44].
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iii) There is also a lack of accurate modeling of heterogeneous nucleation that captures its

spontaneous nature. Most studies have either neglected the randomness or calibrated

it into the uncertainty of the prefactor or exponential factor in the CNT.

In light of these research gaps, this study proposes a gradient-based optimization framework

coupling with a multi-stage model for droplet solidification. Remarkably, the interfacial

tension in a heterogeneous model is optimized at various air temperatures (from −20◦C to

−160◦C). The randomness during nucleation is considered based on the analysis of experi-

mental data and incorporated in the optimized framework, while all solidification stages are

well captured in the multi-stage model for freezing a binary droplet. Moreover, the effects

of solute concentration, contact angle, heat transfer coefficient, and droplet size are also

studied.

7.2 Methodology

7.2.1 Multi-stage modeling

In this subsection, a hybrid multi-stage droplet solidification model for binary solutions is

developed, capable of predicting the nucleation dynamics and freeze concentration. The

assumptions are summarized as follows:

• Volume change during solidification (also referred to as the effect of density change) is

considered negligible to the temperature transition of droplet freezing.

• Effect of natural convection inside the droplet is not included, assuming a Richardson

number less than unity Ri ≪ 1.

• The concentration gradient during equilibrium freezing only occurs in the solid phase

but not in the liquid (the assumption of Scheil equation).
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• The crystal growth velocity (also referred to as tip velocity) is assumed to be constant

in the recalescence stage.

The computational domain is schematically shown in Fig. 7.1, where a sucrose solution

droplet is suspended by a thermocouple under a cold environment. The solidification process

undergoes five stages: liquid supercooling, heterogeneous nucleation, recalescence, freezing,

and solid subcooling. Though the solidification stages are similar to the water droplet, the

mass transfer of sucrose plays a crucial effect in each and every stage. Figure 7.2 demonstrates

the temperature-composition phase diagram of amorphous sucrose and sucrose solutions

based on experimental data [43]. The diagram categorizes four phases: solution, supersatu-

rated solution, ice & freeze-concentrated solution/glass, and glass. In the scope of this study,

solution and ice & freeze-concentrated solution are of particular interest representing the liq-

uid and solid phases, respectively. The boundary between these phases is the so-called freeze

point depression (FPD) which can not exceed the maximum freeze-concentrated composi-

tion Cg,max. In the context of sucrose aqueous solution, it is approximately 80% depending

on the specific correlation used.

Liquid supercooling

The heat transfer inside the liquid droplet during supercooling is governed by

∂2Tℓ

∂r2
+

2

r

∂Tℓ

∂r
=

1

αℓ

∂Tℓ

∂t
(7.1)

where T, r, t, α are the temperature (K), radial coordinate (m), time (s), and thermal diffu-

sivity (m2 s), respectively. The subscript ℓ represents the homogenized liquid phase. The

liquid droplet is subjected to a convective boundary at the outer surface without any heat
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Figure 7.1: Schematic diagram of a suspended droplet subjected to a cold environment and
corresponding temperature T and solid volume fraction fs.

flux in the center (also referred to as a symmetry condition)

−kℓ
∂Tℓ

∂r

∣∣∣∣
r=a

= heq

[
Tℓ(a, t) − T∞

]
(7.2)

∂Tℓ

∂r

∣∣∣∣
r=0

= 0 (7.3)

and the initial condition is prescribed as

Tℓ(r, t = 0) = Tinit (7.4)

where k, heq, T∞(t), Tinit are the thermal conductivity (W m−1 K−1), equivalent heat transfer

coefficient (W m−2 K−1), surrounding temperature (K), and initial temperature (K), respec-
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Figure 7.2: Temperature-composition phase diagram of sucrose (adopted from [43, 45]).

tively. The equivalent heat transfer coefficient calculated by multiple influential mechanisms

will be discussed at the end of this sub-section.

The partial differential equation (PDE) with the boundary conditions is separable and

an exact solution can be obtained by using the method of separation of variables. Due to

the lengthy derivation, the analytical treatment used is demonstrated in Appendix A. Here,

we can directly write down the final solution

T (r, t) = T∞ +
1

r

∞∑
n=1

Cn sin(λnr) exp(−αℓλ
2
nt)

λn cot(λna) =
1

a
− heq

kℓ

Cn =
4(Tinit − T∞)[λna cos(λna) − sin(λna)]

λn[sin(2λna) − 2λna]

(7.5)

Despite the fact that the temperature at the droplet’s center T (r = 0, t) cannot be found

directly using Eq. (7.5), the limit at r → 0 exists. Employing the L’Hôpital’s rule at
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Table 7.1: A list of thermophysical properties for water, ice, sucrose, and sucrose aqueous
solutions.

Property Material Value Note/Ref.

Thermal conductivity, k (W ·m−1 ·K−1)

kwater 0.555 [2]
kice 2.22 [2]
ksucrose 0.164 [33]
kℓ (1− Cℓ)kwater + Cℓksucrose weighted average
ks (1− Cs)kice + Csksucrose weighted average

Mass density, ρ (kg ·m−3)

ρwater 999.8 [2]
ρice 916.2 [2]
ρsucrose 1588 [20]
ρℓ (1− Cℓ)ρwater + Cℓρsucrose weighted average
ρs (1− Cs)ρice + Csρsucrose weighted average

Specific heat, cp (J · kg−1 ·K−1)

cp,water 4200 [2]
cp,ice 2100 [2]
cp,sucrose 1252 [20]
cp,ℓ [(1− Cℓ)(ρcp)water + Cℓ(ρcp)sucrose]/ρℓ weighted average
cp,s [(1− Cs)(ρcp)ice + Cs(ρcp)sucrose]/ρs weighted average

limr→0 T (r, t), the exact solution at the center is expressed as

T (r = 0, t) = T∞ +
∞∑
n=1

Cnλn exp(−αℓλ
2
nt) (7.6)

The temperature transition at the droplet’s center is of particular interest, because a great

number of experiments used a suspended droplet approach for measurements. In addition,

the thermophysical properties of the pure water, ice, sucrose, and sucrose aqueous solution

are listed in Table 8.4. It is noted that the method of weighted averaging is applied for the

aqueous solution based on the weighted concentration of sucrose, C (w.t.%).

Heterogeneous nucleation

The solid phase in a liquid droplet starts with an ice embryo seen as a cluster of ice molecules.

The process of forming a new phase is broadly defined as “nucleation”, regardless of the

type of phase transformation. Theoretical analysis of nucleation dates back to the 1920s,

when Max Volmer (a German physical chemist) studied the reason behind the undercooling

behavior of liquids [57]. Volmer identified an energy barrier that the new phase has to

overcome for its formation in the bulk phase. The new phase (here, the ice embryo) is less

stable than the bulk phase due to the surface tension. As a result, the change in free energy
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∆G is expressed as

∆G = −4πr3

3
∆GV︸ ︷︷ ︸

formation of the new phase

+ 2πr2σ︸ ︷︷ ︸
surface tension

(7.7)

where the first term is the decreasing free energy due to the formation of the new phase.

The second term is to quantify the free energy caused by the surface tension, and σ is the

(interfacial) surface tension per unit length. The subscript V is denoted as the volumetric

or bulk phase. A critical radius r∗ exists based on Eq. (7.7), providing the maximum change

in the free energy (denoted as ∆G∗). This is the free-energy barrier that the new phase

has to overcome. Moreover, the new phase is assumed to be spherical with a radius r, and

the isolated-sphere assumption is known as the “Volmer-Weber model” that originates the

classical nucleation theory [10].

The classical nucleation theory (CNT) considers a sharp interface between the new (solid)

phase consisting of a cluster of ice molecules and the bulk liquid, and the kinetic process of

the nucleating particles is governed by the macroscopic principles [9]. Owing to the CNT,

the nucleation rate is quantified by an Arrhenius equation

J = J0 exp

(
− ∆G∗φhet

kBTℓ

)
(7.8)

where the prefactor J0 is proportional to the number of ice molecules (i.e., monomers) per

unit volume of the liquid phase from which the nucleating cluster is form. The exponential

factor, on the other hand, measures the chance of reaching the (homogeneous) free-energy

barrier ∆G∗ with the critical radius of R∗. kB is the Boltzmann constant; φhet is the

heterogeneous factor that corrects the homogeneous energy barrier ∆G∗ using the contact

angle. Specifically, the prefactor J0 is calculated by

J0 = nℓZf (7.9)

where nℓ is the number density of molecules in the bulk liquid. Z is the Zeldovich factor
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expressed as [55]

Z =

√
Aσ/(πkBTℓ)

3i∗2/3︸ ︷︷ ︸
homogeneous part

×
√

4

2 + ζhet︸ ︷︷ ︸
heterogeneous correction

(7.10)

where the heterogeneous factor ζhet is given by

ζhet =
(1 −Xm)[2 − 4Xm− (X2m2 − 3)]

(1 − 2Xm + X2)3/2
(7.11)

X is the radius ratio of the nucleating particle (or the droplet) R over critical nucleus R∗;

m = cos θ based on Young’s equation, where θ is the contact angle between the nucleating

cluster and the surface of the pre-existing (liquid) phase. The attachment rate of liquid

molecules to a critical nucleus with the size i∗ is denoted as f ; that is,

f = Ai∗2/3n
4/3
ℓ Dℓ (7.12)

where A and Dℓ are the surface area and self-diffusivity of the liquid phase. In addition, the

energy barrier for nucleating an ice embryo from the bulk liquid in Eq. (7.7) at the critical

radius R∗ can be rearranged into [39]

∆G∗ =
16πσ3vm,s

2

3(kBTℓ lnS)2
(7.13)

where S is the saturation ratio with respect to the ice (solid phase); that is, S = Pℓ/Ps, where

P is the saturation vapor pressure [40]. Moreover, the heterogeneous factor that considers

the reduction of ∆G∗ due to the foreign surface is written as [39]

φhet =
(2 + m)(1 −m)2

4
(7.14)

The chemical and physical properties mentioned above are listed in Table 7.2 for predicting

the solidification of a sucrose aqueous droplet. It is worth mentioning that the saturation ra-
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Table 7.2: A list of physical and microscopic properties during nucleation.

Property Value Note/Ref.

Molar mass of water, Mwater (kg ·mol−1) 18.02× 10−3 [37]
Avogadro’s number, NA (mol−1) 6.022× 1023 [37]
Boltzmann’s constant, kB (J ·K−1) 1.3806× 10−23 [37]
Saturation vapor pressure of water, Pwater (Pa) 610.94× exp {[17.625(T − 273.15)]/(T − 30.11)} [5]
Saturation vapor pressure of ice, Pice (Pa) 611.21× exp {[22.587(T − 273.15)]/(T + 0.71)} [5]
Self diffusivity of sucrose, Dsucrose (m2 · s−1) 3.367× 10−13T 2 − 1.544× 10−10T + 1.781× 10−8 fitted from [62]

tio S remains the same for the phase change of ice-water and sucrose aqueous solution. Gen-

erally, the saturation pressure of the mixture can be calculated by Pmixture = χsolventPsolvent

by Raoult’s law [37], where χ is the mole fraction. Since the mole fractions of water and

ice are approximately the same, the saturation ratios of pure ice-water and aqueous solution

stay unchanged.

After calculating the rate of heterogeneous nucleation J , it is essential to determine

when the nucleation will occur, namely the nucleation criterion. Thus far, two forms of

the nucleation criterion have been commonly used in the literature: one is to quantify the

number of critical nuclei, and another is to evaluate the cumulative probability of nucleation.

First, the number of critical nuclei Nv is expressed as [53, 2, 59]

Nv =

∫ t

t̃=0

[
V0 − V ∗(t̃)

]
J(t̃)dt̃ (7.15)

where V0, V
∗ are the initial droplet’s volume and the volume of the critical nucleus with the

radius r∗, respectively. At certain combinations of the cooling rate and the droplet size, the

nucleation occurs when Nv reaches 1. On the other hand, a more general criterion is to

determine the cumulative probability Pn [47, 48, 44]; that is,

Pn = 1 − exp

(
− 1

β

∫ T

T̃=Tf

J(T̃ )dT̃

)
(7.16)

where β is the cooling rate. It is noted that this form of Pn assumes a statistically in-

homogeneous Poisson process; other statistical assumptions could also be applied, such as
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homogeneous Poisson, homogeneous non-Poisson, and pair-correlation [47]. In this study,

the nucleation criterion using the cumulative probability given in Eq. (7.16) is utilized since

the cooling rate can be incorporated without any limitation.

Recalescence

The recalescence stage is referred to as the time when the ice crystal or dendrite propagates

from its nucleus form to the entire domain. From the thermal aspect, the temperature

rises from the nucleation temperature Tnuc to the freezing point Tf . Since the freezing

point changes with the solute concentration in a binary mixture, it implies the point at its

initial concentration, i.e., C0. To capture the recalescence stage, a direct approach is first to

calculate the crystal growth velocity v and then find the recalescence time by ∆trec = R/v. It

is noted that this growth velocity (also known as the tip velocity) is assumed to be constant

for simplicity.

While the tip velocity has been proven to be a power-type function of supercooling or

undercooling degree for pure substances (such as in ice-water phase change [2, 44]), the

velocity for binary mixtures also requires the consideration of solute concentration. In this

study, the dendritic growth velocity is expressed as

v = p1 ×
(

∆Tsupercool

µs

)p2

(7.17)

where p1, p2 are constants listed in Table 7.3, and µs is the dynamic viscosity of the crystal

or solid phase. The dynamic viscosity has dependencies on both the temperature and con-

centration; in the case of sucrose aqueous droplets, it can be found by Génotelle’s equation

[31, 34]

log

(
µs

µ∗

)
= a1 + a2χsucroseΦ(b1 + b2χ

n
sucrose) (7.18)

where a1, a2, b1, b2, n are constants and Φ is the reduced temperature summarized in Table 7.3.

µ∗ is the reference viscosity with the value of 10−3 (Pa · s). χsucrose is the mole fraction
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Table 7.3: A list of properties and constants during recalescence.

Property/Constant Value Note/Ref.
p1; p2 1.468× 10−10; 2.186 Fitted in Fig. 7.3
a1; a2; b1; b2; n −0.1245; 22.452; 1.095; 46.39; 1.303 [31]
Reference kinetic viscosity, µ∗ (Pa · s) 10−3 [31]
Reduced temperature, Φ (−) (303.15− T )/(T − 182.15) [31]

Molar mass of sucrose, Msucrose (kg ·mol−1) 342.3× 10−3 [34]

calculated by the ratio of the amount of sucrose in moles (nsucrose) over the total amount of

sucrose and water in moles (ntotal)

χsucrose =
nsucrose

ntotal

=
C0/Msucrose

C0/Msucrose + (1 − C0)/Mwater

(7.19)

where M is the molar mass and the initial solute concentration C0 is assumed to be in the

crystal during recalescence.

In this study, several experimental datasets on the tip velocity of sucrose aqueous solution

are selected and then correlated using the power-type expression shown in Eq. (7.17). The

selection of experimental data is restricted to the studies which indicated the quantities

of the crystal growth velocity, solute concentration, and supercooling degree, albeit many

more experiments are available in the literature. This is because v, C0,∆Tsupercool are of the

utmost importance for the crystal growth model. Figure 7.3 demonstrates the influence of the

growth rate over ∆Tsupercool/µs for the sucrose aqueous solutions. Four experimental studies

[52, 32, 38, 25] are chosen at various solute concentrations (5.6 − 80.3%) and supercooling

degrees (5− 13.5K), which in turn indicates the validity range of the developed model. It is

found that the crystal growth velocity can be predicted using Eq. (7.17), where the constants

are calibrated as p1 = 1.468 × 10−10 and p2 = 2.186 with an R-squared (or the coefficient of

determination) of 0.9828.
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Figure 7.3: A graph of the crystal growth velocity v over ∆Tsupercool/µs for sucrose aqueous
droplets. Both experimental data (in dots) and the correlation (in the line) are plotted.

Equilibrium freezing

The overall heat balance for the freezing and subcooling stages considers the latent heat in

the solid phase and the total heat transfer rate

Leff
dms

dt
= qtotal (7.20)

where Leff is the effective latent heat that takes into account the supercooling degree [51, 3]

Leff =

(
1 − cp,ℓ

cp,s
Stenuc

)
L (7.21)

Stenuc is the local Stefan number based on the supercooling degree; that is, Stenuc = cp,s(Tf−

Tnuc)/L. ms is the mass of the solid phase that can be calculated as ms = mtotalfs, where

mtotal, fs are the total mass of the droplet and solid volume fraction, respectively. Since the

mass is conserved (i.e., dm/dt = 0), the droplet’s mass can be found by its initial state with

258



mtotal = 4/3πR3ρℓ. For the right-hand side of the heat balance, the total heat transfer rate

qtotal sums up the heat transfers due to convection, mass transfer, radiation, and heat loss

from the thermocouple during measurements

qtotal = qc + qm + qr + qtc = heqA(T − T∞) (7.22)

The subscripts c,m, r, tc represent convection from the surrounding air, mass transfer, radi-

ation, and heat loss from the thermocouple, respectively. heq is the equivalent heat transfer

rate that unified all the heat transfer rates. Each local heat transfer rate per unit area is

calculated as

q̇c =
qc
A

= hc(T − T∞)

q̇m =
qm
A

= Leffhm(awρv/d,s − ρv/a)

q̇r =
qr
A

= εσsb(T
4 − T∞

4)

(7.23)

where aw, ρv/d,s, ρv/a, ε, σsb are the water activity, mass density for the vapor-droplet in the

solid state, emissivity, and Stefan–Boltzmann constant, respectively. The local heat transfer

coefficients hc and hm are given by the empirical correlations from the Nussult and Sherwood

numbers [6]

Nu =
2Rhc

ka
= 2 + 0.6Re

1
2 Pr

1
3

Sh =
2Rhm

Dv/a

= 2 + 0.6Re
1
2 Sc

1
3

(7.24)

where Re,Pr, Sc are the Reynolds, Prandtl, and Schmidt numbers expressed as

Re =
2Rρava

µa

, Pr =
µa

ρaαa

, Sc =
µa

ρaDv/a

(7.25)

µa, αa, Dv/a are the air viscosity, thermal diffusivity of the air, and vapor-air diffusivity,

respectively.
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To couple the solid volume fraction fs with the mass diffusion (i.e., sucrose concentration

C), Scheil equation is employed

Cℓ

C0

=
1

(1 − fs)(1−k∗e )
(7.26)

where Cℓ, C0 are the sucrose concentration at the liquid phase and initial state. k∗
e is the

equilibrium partition coefficient calculated by the sucrose concentration’s ratio of solid over

liquid phases at equilibrium, i.e., C∗
s/C

∗
ℓ . Since sucrose is nearly insoluble in ice, C∗

s ≈ 0

leads to k∗
e = 0 for sucrose aqueous solution. It is noted that the Scheil equation assumes no

concentration gradient in the liquid phase, and the solidification is at its equilibrium con-

dition. Moreover, since the coupling method requires the relationship between the freezing

point and concentration, it is essential to introduce the freezing point depression (FPD);

that is, the difference in temperature between the mixture’s freezing point Tf and water’s

freezing point 273.15 (K). In the case of sucrose aqueous solution, the following correlation

is employed based on the experimental data [30]

FPD = 33.744Cℓ
3 − 0.8979Cℓ

2 + 6.0822Cℓ (7.27)

which is valid for 0.5w.t.% ≤ Cℓ ≤ 40w.t.% [22].

Solid subcooling

For solidifying pure substances (e.g., a pure water droplet), the solid subcooling stage starts

when the entire material is frozen [26, 2]. However, it is different when freezing binary

mixtures. The solute’s presence results in some solutes being trapped in the liquid phase

due to the insolubility with the ice, which makes it impossible for the material to fully

transform into a solid. In other words, the solid volume fraction fs can never reach 1.

Therefore, the subcooling criterion for freezing a water droplet cannot be used for freezing

an aqueous sucrose droplet. An alternative method is to evaluate the criterion based on the
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temperature; that is, if the droplet’s temperature reaches the surrounding air temperature

T∞, then the equilibrium freezing ends, and the solid subcooling stage begins. This allows

the calculation of the previous equilibrium freezing stage continues because the droplet’s

temperature will no longer be changed after T∞. So do the solute concentration in the liquid

phase Cℓ and solid volume fraction fs. The maximum values for Cℓ and fs are obtained in

the solid subcooling, namely Cℓ,max and fs,max, respectively. It is noted that Cℓ,max in this

case is equivalent to the maximal freeze-concentrated solution Cg,max mentioned in the phase

diagram (Fig. 7.2).

Computation

The multi-stage solidification model for freezing a droplet filled with a binary mixture has

different formulations and methods at each stage. It is therefore vital to compute them

logically and effectively. In this sub-section, a concise computation process of the multi-

stage model is listed as follows.

i) The liquid supercooling stage is computed based on the analytical solution (that is

exact), as expressed in Eq. (7.5) for a general location r or Eq. (7.6) at the droplet’s

center r = 0.

ii) The heterogeneous nucleation stage first calculates the nucleation rate J in Eq. (7.9)

and then find the cumulative probability Pn in Eq. (7.16) using the the trapezoidal

rule. The numerical approximation of the integral is given by

∫ T

T̃=Tf

J(T̃ )dT̃ ≈ ∆T̃

2

N∑
n=1

[
J(T̃n−1) + J(T̃n)

]
(7.28)

where N is the total number of discretized element and ∆T̃ = (T −Tf )/N . At Pn = 1,

the time and temperature are at their nucleation, i.e., tnuc and Tnuc.

iii) The equilibrium freezing stage is solved in an iterative fashion, where the solid volume
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Figure 7.4: A hypothetical example of solidifying a sucrose aqueous droplet under the
following condition R = 0.75 (mm), C0 = 20 w.t.%, Tinit = 10 (◦C), T∞ = −20 (◦C), heq =
100 (W m−2 K−1), β = 20 (◦C s−1), σ0 = 0.025 (J m−2), θ = 70 (◦).

fraction at the i-th time step is given by

f i
s = f i−1

s + qtotal
i−1 ti − ti−1

Leffmtotal

(7.29)

Here, the superscript i− 1 stands for the quantity at the previous time iteration.

iv) The solid subcooling stage continues the iteration of equilibrium freezing. It starts when

the droplet’s temperature reaches the surrounding air temperature, i.e., T = T∞.
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7.2.2 Gradient-based optimization

The presented mathematical model for solidifying binary mixtures can capture the physics of

phase change. However, this physics-based model is insufficient for the nucleation stage due

to the spontaneous and random nature of nucleation. Recent experimental data have shown

that the nucleation temperature of a water droplet can vary widely from −5◦C to −20◦C

under the same cooling rate; it also continues to change as the droplet is surrounded by

ultra-cold environments, e.g., T∞ = −140◦C [44]. Hence, the stochastic process of nucleation

brings the motivation to incorporate a statistical model into the physics-based framework.

Among all the microscopic variables in the heterogeneous nucleation model, most properties

depend on the material itself (such as self-diffusivity, the number density of molecules, droplet

size, and saturation pressure), which shall exclude from the statistical analysis. Nevertheless,

the contact angle θ and interfacial tension σ could physically be different in each solidification

process. Both of them contribute to the prefactor and exponential factor in the Arrenhenius

equation (7.9) that defines the nucleation rate. Since a consistent experimental setup is

usually applied when measuring the droplet’s temperature (i.e., a thermocouple placed in

the droplet’s center), the contact angle between the nucleation site and pre-existing liquid

phase remains constant. For this reason, an optimization method is established for the

interfacial tension or energy σ in the nucleation model.

When considering ice-water phase change, the interfacial tension, σ (J m−2), is given by

[53, 36]

σ(Tℓ) = σ0 + (Tℓ − 273.15) × 10−4, (7.30)

where σ0 is 0.025 (J m−2) [8], and Tℓ is the droplet’s temperature governed by the liquid su-

percooling stage before nucleation in Kelvin. It is found that Eq. (7.30) does not change the

nucleation temperature as significantly as the experimental data indicated in [44], especially

when the air temperature is below −40 ◦C. To incorporate the effects of the surround-

263



ing temperature and solute concentration into the surface tension, a modified equation for

solidifying binary mixtures is proposed as

σ(Tℓ, T∞, C0) = σ0(T∞, C0) + (Tℓ − 273.15) × 10−4 (7.31)

where σ0(T∞, C0) is a function with respect to the surrounding temperature T∞ and intial

solute concentration C0.

The gradient-based optimization algorithm is structured as follows. First, let the fnuc(σ0)

be a function to find the nucleation temperature based on the aforementioned physics-based

model; it includes both the calculation of the heterogenous nucleation rate (Eq. (7.9)) and

the nucleation criterion to determine Tnuc and tnuc using the cumulative probability

Tnuc := fnuc(σ0) (7.32)

It is noted that σ bundles with the surrounding temperature and initial solute concentration.

Other thermophysical properties and the droplet’s temperature are also changed accordingly.

Second, single-variable minimization has the form

minimize
σ0

∣∣fnuc(σ0) − Tnuc
expt

∣∣ subject to T∞, C0

where Tnuc
expt is the nucleation temperature based on the experimental data. In this way, a

set of optimized σ0 is obtained by the optimization, and polynomial-based correlations can

be found for each initial solute concentration C0. In this study, the benchmark experimental

data for Tnuc
expt are taken from Sebastião et al. [44].
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Figure 7.5: Influence of the air temperature T∞ on the nucleation temperature Tnuc for
various initial sucrose concentrations C0: (a) 5%, (b) 10%, (c) 20%, and (d) 30%. Both
experimental data (in dots) and correlations (in solid lines) are plotted.

7.3 Model validation

Figure 7.5 shows the influence of the air temperature over the nucleation temperature for

various initial sucrose concentrations C0, including (a) 5%, (b) 10%, (c) 20%, and (d) 30%

sucrose droplets. In particular, three primary experimental data on these sucrose droplets

are plotted [44, 22, 24]. Xu et al. [58] attempted to correlate Sebastião et al.’s data set [44]

with an averaged polynomial fit. Since the nucleation temperatures are scattered over differ-

ent air temperatures for all the sucrose droplets (reflecting the random nature of nucleation),

a single correlation could not represent or predict nucleation. As a result, three correlations

that cover the whole range of nucleation temperatures (i.e., maximum, minimum, and aver-
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aged) are proposed in Fig. 7.5. Generally, as the air temperature decreases, the nucleation

tends to increase for all the sucrose concentrations. A colder environment implies a higher

thermal gradient between the droplet’s surface and the ambient air, thus triggering the ice

embryo to form faster than usual. This is the primary reason why the nucleation temper-

ature approaches 0◦C in ultra-cold environments. In a warmer environment, on the other

hand, the nucleation temperature also gets higher. This tendency is associated with the

energy conservation that the nucleation temperature cannot be lower than the surroundings.

Hence, this constraint is applied to the correlations is Tnuc ≮ T∞. In addition, the initial

concentration of sucrose is found to impact the relationship between Tnuc and T∞. That is,

the 30% sucrose aqueous droplets seem to have a more linear tendency when compared with

the 5% droplets. The trend of pure water droplets is also noted to be more non-linear than

any sucrose aqueous droplets [44, 58].

Figure 7.6 demonstrates the relationship of the air temperature on the surface tension

coefficient σ0 for the above-mentioned four initial concentrations of sucrose aqueous droplets.

The surface tension coefficient is firstly optimized based on the three correlations of Tnuc over

T∞ through Eq. (7.2.2) as shown in dots in Fig. 7.6, and then the optimized values of σ0 are

correlated based on T∞. Recall that the surface tension coefficient of ice-water phase change

is 0.025 (J ·m−2) [8]; however, σ0 varies from 0 to 0.025 (J ·m−2) in sucrose aqueous droplets

over the range of −160◦C ≤ T∞ ≤ −15◦C. It is interesting to observe that the linearity of the

σ0 correlation is consistent with the one for the nucleation temperature, which indicates a

relatively linear relationship between the Tnuc and σ0 on different T∞. Meanwhile, the surface

tension coefficient decreases with the decrease in the ambient air temperature. Though the

decline in the surface energy at the solid-liquid interface results in a weaker nucleation rate,

the significant temperature drop Tℓ is more dominant for the probability nucleation, thereby

leading to relatively immediate nucleation.

With an accurate range of the surface tension coefficient for various sucrose concen-

trations, the heterogeneous nucleation can be predicted systematically and reliably. It is
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Figure 7.6: Influence of the air temperature T∞ on the surface tension coefficient σ0 for
various initial sucrose concentrations C0: (a) 5%, (b) 10%, (c) 20%, and (d) 30%. Both
optimized results (in dots) and correlations (in solid lines) are plotted.

therefore important to apply the multi-stage solidification model coupled with optimiza-

tion and validate against the experimental data. Hindmarsh et al. [22] measured the tem-

perature transition of a suspended sucrose aqueous droplet for various initial concentra-

tions. Figure 7.7 shows the comparison between the experimental (in red circles) and simu-

lated results (in blue lines) at the above-mentioned four sucrose concentrations, particularly

C0 = 5%, 10%, 20%, 30%. It is noticed that these initial concentrations were not exact in

the experiments because uncertainty exists during the preparation of the sucrose droplets

[22]. Another indicator is the measured freezing point right after the recalescence stage, in

which they are not matched with the universal correlation (expressed in Eq. (7.27)) when

Cℓ = C0. For this reason, a correction is firstly made based on the freezing point to find

the actual C0 using Eq. (7.27) at each scenario. After that, the temperature profile at the
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Figure 7.7: Comparisons of temperature profiles between the experimental (in circles) and
modeling data (in the solid lines) for various initial sucrose concentrations C0: (a) 5%, (b)
10%, (c) 20%, and (d) 30%.

droplet’s center is predicated on the newly developed correlation on σ0. As shown in Fig. 7.7,

the simulated temperature at every solidification stage is well-validated against the exper-

imental data. Specifically, the nucleation temperature was not taken as an a priori in the

solidification framework, making it more versatile to be applied in predicting the thermal

behavior of droplet solidification filled with binary mixtures. It is noted that the effect of

initial concentrations will be discussed in the subsequent section.

7.4 Parametric studies

In this section, a few key parameters in the presented multi-stage solidification model are

studied. First and foremost, the effect of initial concentration is investigated by continuing
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Figure 7.8: Effect of the sucrose aqueous droplet’s initial concentration with respect to: (a)
temperature profile, (b) cumulative probability over supercooling degree, (c) concentration
in the liquid phase, and (d) solid volume fraction, under the condition of R = 0.75 mm and
θ = 70◦. The solidification of water droplet (i.e., C0 = 0 w.t.%) is also plotted in the dotted
line as a reference using the model from [2].

the validated scenarios from Section 7.3. The sensitivity of the contact angle to the hetero-

geneous nucleation and the overall temperature transition is then analyzed. Lastly, various

heat transfer coefficients and droplet sizes are evaluated, underlying their significance in

spray freezing-related technologies.

7.4.1 Effect of solute concentration

Four different sucrose aqueous concentrations are displayed in Fig. 7.8, including 10%, 20%,

30%, and 40%. The case of freezing a pure water droplet is also graphed as a benchmark

using the multi-stage solidification framework established by Akhtar et al. [2]. As shown in
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Fig. 7.8(a), the temperature transitions of the liquid supercooling are consistent in all con-

centrations. However, each concentration indicates a different nucleation temperature/time

(or supercooling degree) and recalescence time, making it further in the subsequent stages.

Compared with the pure water droplet, the sucrose aqueous droplets (regardless of the con-

centration) have a smoother transition between the freezing and subcooling stages due to the

freeze concentration and FPD. In other words, the temperature or freezing point declines

as the concentration increases in the liquid during solidification. Since there is no change

in concentration for the water droplet, the temperature remains at its fusion temperature.

However, once the freezing is completed and the entire droplet is frozen, the sensible heat

dominates the heat transfer at the subcooling stage. In addition, the nucleation is found to

be different among the droplets, as can be observed in Fig. 7.8(b). The cumulative probabil-

ity reaches one at various supercooling degrees ∆Tsupercool, resulting in different nucleation

times under similar cooling environments. Specifically, a higher concentration gives rise to

a lower supercooling degree. In the scenario of the water droplet, the supercooling degree is

the highest, leading to the lowest nucleation temperature.

Figure 7.8(c) shows the sucrose concentration in the liquid phase Cℓ over time t. It is

clear to see that the concentration stays the same at its initial state before nucleation and

begins to increase during phase change. This implies that the sucrose (as a solute) starts

to diffuse after the nucleation occurs. The increase in the solute concentration stops at the

end of phase change; that is, the droplet’s temperature reaches the ambient air temperature.

It is noted that the solute concentration will not exceed 100 w.t.% in the sucrose aqueous

droplets, because there will always be a certain amount of sucrose traps in the solid phase,

making it impossible to be transferred into the liquid. The maximum solute concentration

Cℓ,max is found to be the same (almost 80 w.t.%) for all the sucrose droplets. The value of the

maximum point is also reflected by the temperature-composition phase diagram of sucrose

given by Fig. 7.2. Moreover, the solid volume fraction fs over time t is plotted in Fig. 7.8(d).

The solid volume fraction has a similar tendency compared with the solute concentration.
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Figure 7.9: Effect of the contact angle during nucleation with respect to: (a) Zeldovich
factor, (b) free-energy barrier, (c) cumulative probability over supercooling degree, and (d)
temperature profile, under the condition of R = 0.75 mm and C0 = 20 w.t.%.

It first remains unchanged before nucleation and then increases during the phase transition.

Nevertheless, the solid volume fractions for different concentrations begin at 0, and their

maximum values vary with the initial concentrations. This is because sucrose is insoluble

in ice (i.e., k∗
e = 0) and it will be trapped in the liquid phase regardless the heat transfer

between the droplet and the air. The initial amount of sucrose in the droplet, therefore, has

a direct influence on the maximum ice content (also can be seen as fs,max).

7.4.2 Effect of contact angle

When revisiting the influential factors in the heterogeneous nucleation (particularly, the nu-

cleation rate J(t) and probability of nucleation Pn), the interfacial tension σ and contact

angle θ are the parameters that are independent of the thermophysical and/or chemical
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properties of the droplet. The quantitative study on the interfacial tension has been con-

ducted through the gradient-based optimization in Sections 7.2.2 and 7.3, while respecting

a consistent angle due to the experimental setup. In this sub-section, the effect of contact

angle is investigated by fixing the other parameters, including the interfacial tension.

The nucleation rate J(t) (as expressed in Eq. (7.8)) consists of the pre-factor and expo-

nential factor, in which the contact angle appears in both parts. Specifically, the Zeldovich

factor inside pre-factor (in Eq. 7.10) depends on the contact angle. Figure 7.9(a) shows the

Zeldovich factor over supercooling degree for three contact angles: θ = 70◦, 80◦, 90◦. No

significant difference among the contact angles is found in the Zeldovich factor. However,

when evaluating the free-energy barrier ∆G∗φhet in Fig. 7.9(b), the change is more intensive

than the one for the Zeldovich factor. The Gibbs free energy is much higher as the contact

angle increases. This implies that it requires more energy to surpass the barrier for larger

contact angles, which in turn delays the time of nucleation. Moreover, Figure 7.9(c) graphs

the cumulative probability of nucleation over supercooling degree. The probability is calcu-

lated from both the nucleation rate J(t) and the cooling rate β, as expressed in Eq. (7.16).

Under the same cooling rate, the probability of nucleation reaching 1 (i.e., the moment the

nucleation occurs) happens at a higher ∆Tsupercool for a larger contact angle. Hence, the

nucleation temperature decreases with the increase of the contact angle. Lastly, the temper-

ature profiles of the three contact angles are shown in Fig. 7.9(d). The rise of the contact

angle postpones the nucleation time and reduces the nucleation temperature, which shifts

the freezing curve during phase change. The total freezing time, therefore, becomes longer

for a larger contact angle.

7.4.3 Effect of heat transfer coefficient

The heat transfer coefficient indicates the strength of the heat transfer toward the droplet’s

surface. This is particularly important for spray freezing-related applications because it cul-

tivates the effect from the ambient air to the droplet. In this study, the equivalent heat
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Figure 7.10: Effect of the heat transfer coefficient (a,b) and droplet’s radius (c,d) on the
probability of nucleation and temperature, under the condition of C0 = 20 w.t.% and θ = 70◦.

transfer coefficient heq considers the convection from the ambient air, mass transfer, radia-

tion, and heat loss due to the thermocouple. Figure 7.10(a) demonstrates the probability

of nucleation for three heat transfer coefficients: heq = 50, 100, 200 (W · m−2 · K−1). It can

be seen that heq does not have a significant effect on the supercooling degree (and thus the

nucleation temperature). This can be explained by the fact that the heat transfer coeffi-

cient, Though the heat transfer coefficient has a direct influence on the liquid temperature,

it affects the nucleation rate (for both the pre-factor and exponential factor) to a minimal

extent. However, the temperature gradient of the liquid varies greatly as can be observed

in Fig. 7.10. The higher the heat transfer coefficient is, the faster the liquid cools down to

its nucleation. Since the nucleation temperature does not change much, shorter nucleation

times can be seen. In addition to the liquid temperature, the solid temperature will also
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drop faster for a higher heq, which implies a more rapid freezing point depression during

the phase transition. This finding can be beneficial when requiring more ice production,

such as ice slurry production using spray freezing [18]. Increasing the heat transfer coef-

ficient (e.g., rising air velocity) can improve production without compensating energy for

nucleation dynamics.

7.4.4 Effect of droplet size

Apart from the heat transfer coefficient, the droplet’s volume is also a sensitive parameter,

especially in a spray. In the spray, a wide range of droplet size distribution can be found

depending on the spray’s level; larger droplets are seen near the nozzle, while smaller ones are

away from the nozzle. Figure 7.10(c,d) shows the probability of nucleation and temperature

profiles for three droplet radii: R = 0.55, 0.75, 0.95 (mm). It is found that the supercooling

degree does not change much within the three droplet sizes, but the freezing curves shift

linearly. Particularly, a smaller droplet size has a shorter nucleation time but with a similar

nucleation temperature. This finding can be applied in the same way as the heat transfer

coefficient in order to satisfy specific freezing demands. For instance, if a system aims to

produce more ice, then a smaller particle size distribution should be more preferable, which

can be achieved by modifying the flow rate or spray nozzle. It is also noted that the conclusion

here may not be drawn when the difference of droplet size is in orders of magnitude or in

different spatial scales.

7.5 Conclusion

In conclusion, we presented a novel multi-stage mathematical framework coupled with the

gradient-based optimization algorithm to predict the droplet solidification filled with the

binary mixture, capable of considering the randomness of heterogeneous nucleation. Due to

the spontaneous and random nature of nucleation, it is inevitable to experimentally observe
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multiple values of nucleation temperature under the same surrounding environment. Hence,

it is necessary to model the range of nucleation temperatures rather than a single value.

Our modeling results were first validated against experimental data in the literature and

then performed parametric studies on various parameters in the model, including the solute

concentration, contact angle, heat transfer coefficient, and droplet size. The main findings

of this paper are summarized as follows.

i) The universal interfacial tension coefficient (σ0 = 0.025 (J · m−2)) cannot accurately

predict nucleation for ultra-cold environments (esp., < −60◦C). Based on the gradient-

based optimization method, σ0 in sucrose aqueous droplets could vary from 0 to

0.025 (J · m−2) over the range of −160◦C ≤ T∞ ≤ −15◦C.

ii) The solute concentration was seen to have a direct impact on the nucleation. The

higher the solute concentration is, the lower the nucleation temperature will be.

iii) The contact angle was found to be rather sensitive to the nucleation temperature and

time, especially the Gibbs free energy barrier in the nucleation rate. A higher contact

angle leads to a higher energy barrier and thus less chance to activate nucleation (which

implies a lower nucleation temperature).

iv) The heat transfer coefficient and droplet size did not affect the nucleation as signifi-

cantly as the solute concentration and contact angle. Nevertheless, major differences

were captured in terms of the temperature profile, particularly the rates of supercool-

ing and freezing curves (that is, the transient temperature transitions for the liquid

and solid phases).

It was recommended that future work could investigate the effect of the crystal growth

rate in the binary solution droplets using empirical correlations or physics-based modeling,

explore the formulations and methodologies to track the solid-liquid interface under both

heat and mass transfer, and perform droplet solidification experiments on different solutes
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to understand the nucleation, freezing point depression, and freeze concentration on these

droplets.
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Appendix A. Derivation of the exact solution to a spherical heat

conduction problem using the separation of variables

The PDE problem is given by

∂2Tℓ

∂r2
+

2

r

∂Tℓ

∂r
=

1

αℓ

∂Tℓ

∂t

−kℓ
∂Tℓ

∂r

∣∣∣∣
r=a

= heq

[
Tℓ(a, t) − T∞

]
∂Tℓ

∂r

∣∣∣∣
r=0

= 0

T (r, 0) = Tinit

(7.33)

First of all, a new temperature variable is introduced as T̃ℓ = r(Tℓ − T∞) to make the Robin

boundary homogeneous and simplify the governing equation. Thus, the problem becomes

∂2T̃ℓ

∂r2
=

1

αℓ

∂T̃ℓ

∂t

∂T̃ℓ

∂r

∣∣∣∣
r=a

+

(
heq

kℓ
− 1

a

)
T̃ℓ(r = a, t) = 0

T̃ℓ(r = 0, t) = 0

T̃ℓ(r, t = 0) = r(Tinit − T∞)

(7.34)

It is then transformed into the problem in the text [21] on pages 194–197 and derived

therein. Note that the insulated boundary at the droplet’s center can be changed into a finite

temperature condition when the singularity appears as r = 0; that is, T (r → 0, t) ⇒ finite.

After separating the new temperature variable into R(r) and Γ(t) as

T̃ (r, t) = R(r) × Γ(t) (7.35)
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and substituting the boundary/initial conditions into it, the exact solution is given by

T̃ (r, t) =
∞∑
n=1

Cn sin(λnr) exp(−αℓλ
2
nt) (7.36)

The eigenvalues λn are determined by the following transcendental equation

λn cot(λna) =
1

a
− heq

kℓ
(7.37)

while the corresponding eigencoefficients Cn are found by

Cn =

∫ a

r=0
r(Tinit − T∞) sin(λnr)dr∫ a

r=0
sin2(λnr)dr

= (Tinit − T∞) × 4[λna cos(λna) − sin(λna)]

λn[sin(2λna) − 2λna]
(7.38)
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Nomenclature

Letters

T Temperature (K)
t Time (s)
P Saturation pressure (Pa)
J Nucleation rate (m−3 s−1)
G Gibbs free energy (J)
m cos θ (−)
D Self-diffusion coefficient (m2 s−1)
V Volume (m3)
R Radius (m)
X Ratio of radii with respect to the critical nucleus, R/R∗ (−)
i Dimensionless size (−)
Z Zeldovich factor (s−1)
kB Boltzmann constant (J K−1)
n Number density of molecules (m−3)

Greek symbols

σ Interfacial tension (J m−2)
φ, ζ Factors in nucleation (−)
θ Contact angle (◦)
µs Dynamic viscosity of sucrose aqueous solution (Pa · s)
µ∗ Reference dynamic viscosity of water (Pa · s)

Superscripts and subscripts

∗ Critical
s Solid
ℓ Liquid
het Heterogeneous
m Molecular or molar
V Volumetric or bulk
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Preface (Bridging Text)

Chapters 6 and 7 presented multi-stage frameworks for solidifying pure substances and mix-

tures during the non-equilibrium process. The multi-stage approach was based on a time-

sequential method, which did not include spatial resolution. The effect of spatial scales could

be particularly vital for understanding crystal morphology and nucleation sites, thus ben-

efiting the design and optimization of applications involving non-equilibrium solidification.

For mining applications, crystal characterization with spatiotemporal considerations could

impact energy storage via phase change materials (PCMs) and the quality of ice production

using spray freezing (SF).

In this chapter, non-equilibrium solidification was investigated from a multi-scale perspec-

tive, departing from the sequential multi-stage approach used in the previous two chapters.

This multi-scale analysis facilitated a temporally and spatially coupled framework at macro-

, meso-, and micro-scale levels while still capturing the five stages of solidification. Novel

laboratory experiments and mathematical modeling were developed, with a particular focus

on the characterization of crystal growth and morphology using state-of-the-art image anal-

ysis and phase field method. The phase field model was validated against the experimental

observations via image analysis. The results clearly indicated a non-linear crystal growth

rate with complex morphology in non-equilibrium solidification.

The outcome of this multi-scale analysis provided a useful guideline for designing PCMs

for cold thermal energy storage, particularly coupling the PCM size and charging conditions.

The spatial effect of crystal growth can influence the thermal performance of PCMs during

meso-scale solidification. In addition, the crystal growth also affected the ice quality of SF,

which is a key component of the ice stope production of mine heating and cooling. This

framework offered a multi-scale physical prediction of the non-equilibrium freezing process,

capable of estimating multiple temporal and spatial scales in the phase change process. The

insights and discussions presented in this chapter were published in the peer-reviewed journal
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article listed below.

M. Xu, Y. Hanawa, S. Akhtar, A. Sakuma, J. Zhang, J. Yoshida, M. Sanada, Y.

Sasaki, and A. P. Sasmito. Multi-scale analysis for solidification of phase change

materials (PCMs): Experiments and modeling. International Journal of Heat and

Mass Transfer, 212:124182, 2023.

Abstract

We present a multi-scale solidification framework for pure substances using laboratory ex-

periments and mathematical modeling. The multi-scale phenomena of solidification are ex-

perimentally captured by the state-of-the-art thermal control chamber and optical devices.

In particular, the transient temperature over five solidification stages is observed under var-

ious cooling rates, while the nucleation site and crystal evolution are captured and further

processed via image analysis. A unified mathematical model is also formulated to examine

the solidification process at three scales quantitatively: (i) the supercooling, freezing, and

subcooling stages with a time-dependent boundary at the macroscale are analytically solved

by Duhamel’s theorem and perturbation method; (ii) the two-dimensional (2D) dendritic

growth at the mesoscale is computed by the Allen-Cahn equation through phase field mod-

eling; and (iii) the heterogeneous nucleation at the microscale is numerically simulated. The

results demonstrated that the experimental data and modeling were in close agreement for

the freezing curve, nucleation temperature, nucleation time, 2D crystal evolution, and freez-

ing time.

Keywords: Solidification, multi-scale, phase change heat transfer, crystal growth, phase field,

experiment, mathematical model
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8.1 Introduction

The word “solidification” or “freezing” means a phase-change process when a liquid turns

into a solid due to its relatively lower temperature below the fusion point. Fundamental

research on solidification to understand and predict the complex phase-change process can

facilitate diverse applications – spray freeze-drying for biological materials (both pharmaceu-

tical [51, 52, 50] and food [22, 13] products), sublimation drying of semiconductors to prevent

the collapse of nanostructure [44, 49, 20], solidification of metallic alloys to improve the effec-

tiveness of continuous casting [60, 10, 45], artificial ground freezing as a geotechnical-support

method in civil and mining projects [6, 7, 65], phase change materials (PCMs) for cold en-

ergy thermal storage [43, 58, 41], and utilization of ice slurry as a secondary refrigerant in

cooling systems [42, 16, 15], and spray-freezing technology for sustainable mine heating [1, 2]

to name a few.

Though transport phenomena of solidification vary with materials, solidifying pure liq-

uids to crystalline solids has been found to undergo five distinct stages in many experimental

studies regardless of the geometry or ambient conditions [38, 24, 36, 64]. The five solidifica-

tion stages are briefly described as follows.

1) Supercooling of liquid : The pure liquid is cooled from its initial temperature to one

even below the fusion temperature. Forming crystalline solids requires atoms to move

into a solid lattice structure, thus reducing the temperature below fusion [5]. The

supercooled liquid is at a thermodynamically stable state [11, 57].

2) Nucleation: The initial formation of a new phase (here, the solid) usually demands an

energy barrier (i.e., Gibbs energy). Nucleation happens spontaneously and assists the

supercooled liquid to overcome the barrier, thus creating the first ice embryo, a solid

cluster of hexagonal molecules for ice-water phase change [27].

3) Recalescence (also known as crystal growth): Followed by the formation of the first
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ice nucleus, ice crystal propagates in the melt, and the supercooled temperature rises

rapidly back to its equilibrium freezing point (i.e., fusion temperature) due to the

release of latent heat. The kinetics of crystalline interface along with its morphology

is non-linear and non-equilibrium [33, 32, 26, 55, 34]. The growth rate of the interface

can be influenced by thermal (or diffusive), kinetic, and curvature (or Gibbs-Thompson

effect) [27, 3].

4) Freezing : The phase-change process when solid and liquid phases coexist in the do-

main is commonly referred to as “freezing” at a macroscopic level. Both sensible and

latent heats drive the solid-liquid interface between the two phases (mathematically

formulated by the well-known “Stefan condition” [59, 48]).

5) Subcooling of solid : Once no more liquid exists in the melt and no latent heat remains,

the solid phase subcools or cools down to a steady-state temperature through the

sensitive heat only.

In the case of non-pure liquids (for instance, binary mixtures), the phase-change process and

solidification stages would alter due to freezing point depression and freeze concentration

[22]. Mass diffusion is therefore needed to be considered, while the phase-change process

takes place. Nevertheless, the scope of this study is the fundamental research on solidifying

PCMs of pure substances through experiments and mathematical modeling.

A variety of mathematical models have been established to examine the phase-change

process at a macroscopic level with three distinct stages, where the nucleation and recales-

cence stages are absent and the liquid PCM only cools down to its fusion temperature (i.e.,

without supercooling). The three-stage macro-scale solidification can be modeled using the

formulation of Stefan problems. Due to the nonlinearity in the Stefan condition (a moving

boundary condition), exact solutions are restricted to 1D semi-infinite domains and simple

boundaries [19]. When the self-similar solutions are no longer tangible, approximate analyt-

ical methods are employed with certain assumptions (e.g., a small Stefan number, Ste ≪ 1).
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Table 8.1: Summary of some approximate analytical methods used in Stefan problems.

Method Reference
Heat balance integral Goodman [17], Mitchell and Myers [37]
Regular perturbation Hill [21]
Singular perturbation Riley et al. [47], Weinbaum and Jiji [62, 29], Tabakova et al. [56]
Asymptotic analysis McCue et al. [35], Planella et al. [10, 45], Xu et al. [63]

These methods, including the heat balance integral, regular perturbation, singular perturba-

tion, and asymptotic analysis, are briefly summarized in Table 8.1; detailed descriptions of

the methods can be found in the referred works and references therein. In addition, iterative

techniques, sometimes known as hybrid numerical-analytical solutions, have also received

much attention in recent years [39, 12, 28, 13].

Very few of the existing frameworks attempted to capture all the five stages of solidifi-

cation. Hindmarsh et al. [24] developed a numerical model for freezing a suspended water

droplet to predict the temperature transition for all the five stages. Their numerical model

included a one-dimensional (1D) heat conduction equation and heat balances with a moving

boundary. Akhtar et al. [3] formulated and solved a semi-analytical five-stage framework for

droplet solidification, while incorporating heterogeneous nucleation and non-linear interface

kinetics at the nucleation and recalescence stages. 1D finite-extent transient heat equations

and a one-phase Stefan problem were solved using the method of separation of variables and

perturbation series, respectively; on the other hand, the crystal growth velocity (including

the Wilson-Frenkel model) was approximated numerically. Further, two-dimensional (2D)

solidification model with five stages in a hollow cylinder was also established for cold thermal

energy storage system in a similar approach, yet with a 2D space and an improvement of

implementing recalescence as an internal heat generation in the heat equation [64].

In the present paper, we establish a multi-scale solidification framework through exper-

iments and mathematical modeling, capable of predicting the thermal behavior of PCM

at macro-, meso-, and micro-scales. Compared with above-mentioned works in the liter-
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ature, the following research gaps are addressed herein: (i) temperature distribution and

crystal growth evolution are measured experimentally through state-of-art equipment (e.g.,

high-precision thermocouples and high-speed cameras) as well as thorough image analysis;

(ii) the mathematical model is formulated and solved based on space and time scales, i.e.,

multi-scale analysis (rather than solidification stages), even though all the stages are also

captured via the multi-scale framework; and (iii) 2D evolution of crystal growth along with

the temperature profile of PCM is simulated and validated against experiments. It is also

noted that since the presented multi-scale framework characterizes and couples various spa-

tial and temporal scales during solidification, it offers a more versatile and rigorous study for

experimentation and modeling compared to the existing multi-stage approaches analyzed in

temporal/chronological order.

This paper is comprised of five sections. We begin in Section 8.1 (as discussed here)

with a brief introduction to the transport phenomena during solidification and the research

gaps to be filled in this work. In Section 8.2, we present the experimental setup used as

well as measurements of temperature and crystal evolution. The instrumentation precision

and image analysis are also explained in detail. In Section 8.3, we formulate the multi-scale

solidification frameworks and then solve the problem at each scale using both analytical

and numerical methods. In Section 8.4, we compare and validate the predicted temperature

distribution, nucleation, and crystal growth of PCM with experimental data. Some cooling

rates are also studied to explore a variety of cooling environments for PCMs. Lastly, our

study is summarized, and the key contributions are concluded with recommendations for

future work.

292



8.2 Experiments

8.2.1 Experimental setup

Experiments were conducted at the research laboratory in SCREEN Holdings Co., Ltd.,

(Japan) in collaboration with Kyoto Institute of Technology (Japan) and McGill University

(Canada). The objectives of the experiments are twofold: (1) measure the temperature

profile over time of the PCM sample at various cooling rates using thermocouples; and (2)

capture the 2D structure of rapid crystal growth on the top layer of the sample using a

high-speed camera.

The experimental setup is schematically demonstrated in Fig. 8.1. Two samples (i.e.,

both deionized water (N2 saturated: 15 ∼ 16 ppm, dissolved O2: 20 ppb, specific resistance:

18 MΩcm)) were placed in a thermally controlled chamber: one was used for observation,

and another one was for temperature measurement. The observation and temperature mea-

surement samples were placed on their respective sides and cooled down, and then solidified

by the cooling plate located at the bottom. The temperature of the cooling plate was con-

trolled by Peltier (Sensor Controls CHP-77HI Revision). Thermocouples are put down in

temperature measurement samples and used to measure temperature over time.

At the same time, a ring-shaped light-emitting diode (LED) light (CCS LDR2-170SW2-

LA) and a high-resolution, high-speed camera (GoPro10) were installed at the top of the

chamber for optical measurements. The time precision of the camera is 0.0042 s; that is, the

imaging data can be updated every 0.0042 s. Moreover, two thermocouples are placed on

the top layer of the temperature measurement samples, and a third one is connected to the

cooling plate. It is noted that the height of the PCM samples is 500 µm, so it is difficult to

place the thermocouples at an exact location with such a thin depth. However, temperature

discrepancies were not found as long as the thermocouple’s tip was on the top surface of the

PCM. The precision of the thermocouples is ±2.5◦C. The time precision of the temperature
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Figure 8.1: Experimental facilities are used to measure temperature and crystal growth.

measurement is 0.1 s. During observation, N2 (dew point −50◦C or less) flowed into the

chamber at 1 (L min−1) or less to prevent condensation. All experiments were performed

in the class 30 (0.3 µm) FED-STD 209D clean room (temperature: 23 ± 1◦C, humidity:

50 ± 1%, differential pressure from outside: 30 to 50 Pa).

8.2.2 Temperature measurements

Prior to the freezing process, the sample solution (i.e., distilled water) and the substrate

were prepared through a cautious procedure. The substrate is firstly cut from a new clean

bare Si-water (Si(100) surface, P-type (B-doped, 1-100ωcm)) of 300 mm in diameter by

approximately 2 cm2 (t0.775 mm). Then, after debris on the substrate is removed by an air

blow gun, organic matter on the substrate surface is removed by UV (ultraviolet) cleaning,

allowing minimal thermal contact resistance between the substrate and water. At the UV

cleaning, a Si oxide film (approximately 2 nm thick) is formed on the substrate surface. The

distilled water (about 250 µL) is placed on the top of the substrate in the control chamber;

it then waits until a steady temperature is reached, which is seen as the initial temperature
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of the PCM, Tinit.

Once the sample is ready, the cooling plate is set to be a desired cooling rate β by Peltier,

and the temperature of the PCM begins to be recorded by a data logger (Keyence NR-600).

The temperature measurement terminates when the entire PCM is frozen and reaches its

steady state temperature. Moreover, the temperature of the cooling plate is also monitored

in the same time frame, which facilitates the determination of a time-dependent boundary

condition in the following mathematical model.

This study carried out four cooling rates: 100, 30, 10, 3◦C min−1. For these cooling rates,

the time duration of experiments varied from 5 to 12.5 minutes, and the initial temperature

has a range between 5.65 and 7◦C. It was found that the ambient air in the control chamber

had a negligible effect on either the PCM or cooling plate because of the well-insulated space

and minimal airflow.

8.2.3 Image analysis for crystal growth

Apart from the temperature measurements of PCM, the evolution of crystal growth is also

examined as a novelty of this experimental study. Videos with a constant sampling rate are

photographed during the crystallization for each cooling rate. The following steps are taken

to obtain the transient interfacial location and crystal velocity:

1) Place a standard ruler in the luma image so that the locations can be defined with

an objective pixel-length to millimeter conversion by summarizing and analyzing its

Discrete Cosine Transformation (DCT) data. This procedure defines the x- and y-

coordinates that capture the interfacial location at each time frame;

2) The video data Lx(t) is then normalized by

Yx(t) =
Lx(t) − minLx(t)

max[Lx(t) − minLx(t)]
(8.1)

From this relatively normalized information Yx(t), the contour image of time-anchor
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tx is defined by removing data out of the measurement limit, as demonstrated in

Figure 8.2(a,c);

3) Since the sample boundary may be disturbed during the experiments, the crystal front

can be approximated by fitting all the distribution of time-anchor into a conic surface

as shown in Figure 8.2(b,d);

4) The distribution of time-anchor of each two frames can also be fitted using the approx-

imated conic surface. This indicates the change in crystal velocity (approximated by

the gradient of conic surface), as illustrated in Figure 8.3.

8.3 Mathematical modeling

8.3.1 Multi-scale framework

Solidification of a PCM made of a pure substance undergoes five distinct stages, as explained

in Section 8.1: (1) supercooling (of liquid), (2) nucleation, (3) recalescence, (4) (equilibrium)

freezing, and (5) subcooling (of solid). These stages are viewed as physically occuring at

all macro-, meso-, and micro-scales. A conceptual diagram is illustrated in Fig. 8.4 to

characterize and differentiate each solidification scale. More specifically, the macro-scale

solidification includes the liquid supercooling, equilibrium freezing, and solid subcooling; a

liquid PCM cools down to its fusion temperature, encounters the coexistence of solid and

liquid phases (i.e., freezing), and further subcools till the steady-state temperature is reached.

The meso-scale solidification deals with the recalescence stage when ice crystals propagate in

the PCM before the solid phase appears and initiates the freezing process. Lastly, nucleation

stages are captured at the microscale, where the liquid PCM undercools below the fusion

temperature to the nucleation temperature; that is, the relatively small ice embryos appear

within the PCM in a stochastic way by overcoming the Gibbs-free energy.
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Figure 8.2: Image analysis of crystal growth on the transient interfacial location at (a,b)
β = 30 (◦C min−1) and (c,d) β = 100 (◦C min−1). (a,c) are the observed crystal evolution
using a self-adaptive limit of measurement; (b,d) are the approximated crystal evolution
with the conic fitting.

In the following subsections, mathematical formulations of this multi-scale framework

are presented scale by scale based on the geometry and boundaries of the PCM in the

experiments. A schematic diagram of the PCM in both 3D and 2D plane views along

with the boundary conditions are illustrated in Fig. 8.5. Assumptions are also made at

each solidification scale; however, some general assumptions for this framework are given as

297



Figure 8.3: Image analysis of crystal growth on the interfacial velocity at (a) β =
30 (◦C min−1) and (b) β = 100 (◦C min−1).

Time Scale

Length Scalemmmµm

s

ms

µs

Macro-scale

Meso-scale

Micro-scale

Solid Liquid

Ice Embryo

Figure 8.4: Conceptual diagram of the multi-scale solidification framework based on length
and time scales.
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Figure 8.5: Schematic diagram of the 3D and 2D plane views of the PCM.

follows:

1) The PCM is assumed to be a pure substance (here, initially water) without any impu-

rity;

2) The computational domain of PCM is a rectangular cuboid. The bottom side is con-

nected to a programmed cooling plate (which is assumed to be a time-dependent bound-

ary condition), while the other sides are exposed to thermally controlled ambient air

(which are assumed to be no-flux boundary conditions);

3) The effect of volume change due to density during the solidification process is considered

to be negligible; and

4) The phase-dependent thermophysical properties of PCM are considered.

Macro-scale model

The macro-scale model assumes the solidification of a homogeneous material for the 2D

PCM, which reduces the model dimension to 1D; the freezing front also moves towards only
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one coordinate (here, z-coordinate). Liquid supercooling, equilibrium freezing and solid

subcooling stages are captured at the macroscale.

The 1D heat conduction problem that governs this macro-scale model is expressed as:

∂

∂z

(
k
∂T

∂z

)
= ρcp

∂T

∂t
, 0 < z < H, t > 0 (8.2)

where z, k, T, ρ, cp, t, H are the z-coordinate (m), thermal conductivity (W m−1 K−1), tem-

perature (K), mass density (kg m−3), specific heat (J kg−1 K−1), time (s), and height of the

sample (m), respectively. k, ρ, cp can also be bundled into thermal diffusivity α (m2 s−1), as-

suming these thermal diffusivities are independent of space and temperature (yet dependent

of phase), where α = k/(ρcp). It is noted that the dependent variable is a function of the

z-coordinate and time without the x- and y-coordinates, i.e., T (z, t). The PCM is in contact

with the substrate (seen as a perfect conductor) next to a cooling plate. The cooling plate

is then a boundary condition for the PCM as follows:

T (z = 0, t) = Tplate(t), t > 0 (8.3)

where Tplate(t) is the time-dependent temperature of the cooling plate (K). On the other

hand, the initial condition of the PCM is assumed to be uniform as follows:

T (z, t = 0) = Tinit (8.4)

where Tinit is the initial temperature of the PCM (K).

After the liquid PCM is supercooled, nucleation and recalescence rapidly occur at the

meso- and micro-scale, which prompts a crystallized PCM at its fusion temperature Tf . The

crystallized PCM (still considered as the liquid phase) then undergoes equilibrium freezing,

where both solid and liquid phases coexist in the domain. As a result, a mathematical

expression is required to describe the dynamically changing phases, and a moving boundary
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condition is implemented to track the solid-liquid interface:

ks
∂Ts

∂z

∣∣∣∣
z=zi(t)

= ρsL
dzi
dt

, 0 < z < H, t1 < t < t2 (8.5)

where zi(t) and L are the interface location in the z-coordinate (m) and latent heat of fusion

(J kg−1), respectively. The subscript s is denoted as the solid phase. t1 and t2 are the times

to start and complete the (equilibrium) freezing process (s), respectively. It is also noted that

two governing equations (i.e., Eq. (8.2)) are presented for each phase during the equilibrium

freezing stage.

Meso-scale model

The meso-scale model aims at simulating the 2D crystal growth in the recalescence stage.

In this study, a 2D heat conduction problem with a time-dependent source term based on

the crystal’s solid fraction, ϕ, is first considered in the thermal field. The solid fraction’s

motion in the source term (i.e., ∂ϕ/∂t) is then described from the free energy function using

the so-called Allen-Cahn equation (a.k.a., the phase-field model) to predict the anisotropic

crystal growth in the continuum field.

First of all, the thermal equation (assuming the heat conduction is dominant) is written

as:

α
∂2T

∂x2
+ α

∂2T

∂y2
+

L

cp

∂ϕ

∂t
=

∂T

∂t
(8.6)

where x, ϕ are the x-coordinate (m) and solid fraction or order parameter (−), respectively.

Apart from the diffusion and transient terms for sensible heat based on Fourier’s law, the sec-

ond term on the left-hand side is a source term which takes the latent heat during solidifica-

tion into account. Previously, Xu et al. [64] also incorporated a source term ∆Tsupercool/∆trec

by assuming a constant crystal growth velocity, where ∆Tsupercool is the supercooling degree

calculated by the difference between the fusion and nucleation temperatures (see the detailed

derivation in Appendix A. The main improvement in this study is that the velocity of crystal
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growth varies with time, in which acceleration will occur.

Prior to the introduction of the phase-field equation, it is essential to non-dimenionalize

the 2D heat equation (Eq. (8.6)) using the following dimensionless variables:

T̃ =
T − Tnuc

Tf − Tnuc

, t̃ =
αt

ε̄2
, x̃ =

x

ε̄
, ỹ =

y

ε̄
, Ste =

cp(Tf − Tnuc)

L
(8.7)

where Tnuc is the nucleation temperature that will be coupled with the micro-scale model,

and ε̄ is the (isotropic) interfacial width. Here, Tnuc and ε̄ can be overlooked as arbitrary

constants for the scaling purpose, but they will be scaled back when the dimensionless

solution is dimensionalized. It is noted that the dimensionless time t̃ is also known as the

Fourier number characterizing the transient heat conduction [25]. As a consequence, the

dimensionless heat equation is expressed as:

∂2T̃

∂x̃2
+

∂2T̃

∂ỹ2
+

1

Ste

∂ϕ

∂t̃
=

∂T̃

∂t̃
(8.8)

The non-dimensional heat equation has the same form with the literature [30, 61]. The

inverse Stefan number is often referred to as a dimensionless parameter that is proportional

to latent heat while inversely proportional to sensible heat. All the thermophysical properties

used here are based on the solid, since it prevails over the liquid during recalescence.

Employing the Allen-Cahn equation, the time derivative of solid fraction in Eq. (8.6) can

also be expressed as [46]

τ
∂ϕ

∂t̃
= −δF

δϕ
(8.9)

This is known as the time-dependent Ginzburg–Landau equation, where τ is the characteris-

tic (or relaxation) timescale and F is the Ginzburg–Landau type free energy. The relaxation

timescale plays an important role in the interfacial kinetics which is proportional to the

inverse Stefan number, but one shall quantify τ and 1/Ste separately due to their difference

in the fields. Here, the free energy is considered to be dependent of the order parameter ϕ
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and dimensionless temperature T̃ :

F =

∫
V–

[
1

2
|ε∇ϕ|2 + f(ϕ, T̃ )

]
dV– (8.10)

where ε is the gradient energy coefficient (equivalent to interfacial thickness) and f(ϕ, T̃ ) is

the bulk free energy or free energy density which can be then described as the combination

of a free energy in each phase and an energy hump [9]. For instance, in Kobayashi’s works

[30, 31] the bulk free energy is calculated by:

f(ϕ, T̃ ) = ϕ(1 − ϕ)(ϕ− 1

2
+ m) (8.11)

Here, m is the thermodynamic driving force parameter that is defined as m = N
π

tan−1[γ(1−

T̃ )],m ∈ (−1
2
, 1
2
), where N, γ are the positive constant satisfying N < 1 and dimensionless

parameter corresponding to the supercooling temperature, respectively. It is rather clear to

observe the three solutions: ϕ = 0, 1, 1
2
, where the two former solutions are stable yet the

latter is not [31].

As a consequence, the functional derivative in a 2D Cartesian coordinate can be written

as [30]:

τ
∂ϕ

∂t̃
=

∂

∂ỹ

(
ε
∂ε

∂θ

∂ϕ

∂x̃

)
− ∂

∂x̃

(
ε
∂ε

∂θ

∂ϕ

∂ỹ

)
+ ∇ · (ε2∇ϕ) + ϕ(1 − ϕ)(ϕ− 1

2
+ m) (8.12)

where θ is the angle between the tip velocity and positive x-direction. It is worth mentioning

that the first two terms on the right-hand side of the equation are owing to the introduction

of anisotropy, in which ϕ is a non-constant and depends on θ. These parameters are defined
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as follows:

ε = ε̄

{
1 + δ cos

[
j(θ − θ0)

]}
(8.13)

θ = tan−1

(
∂ϕ/∂ỹ

∂ϕ/∂x̃

)
(8.14)

where δ, j, θ0 are the strength of anisotropy, mode number of anisotropy, and initial offset

angle, respectively. It is noted that ε = ε̄ represents an isotropic case, in which the first two

terms in Eq. (8.12) will become zero. In this study, the 2D domain is perpendicular to the

solidification direction and exposed to the ambient air. Since the air is static, the convective

heat transfer coefficient with the PCM is considered to be extremely small, which results

in no-flux boundaries. Hence, the no-flux or insulated conditions are prescribed around the

boundaries of the 2D domain; that is,

∂T̃

∂x̃

∣∣∣∣
x̃=0

=
∂T̃

∂x̃

∣∣∣∣
x̃=1

=
∂T̃

∂ỹ

∣∣∣∣
ỹ=0

=
∂T̃

∂ỹ

∣∣∣∣
ỹ=1

= 0 (8.15)

Micro-scale model

Nucleation occurs at the micro-scale, where a critical nucleus overcomes the Gibbs free

energy and turns into an ice embryo. Nucleation can be categorized based on its cause,

either homogeneous or heterogenous; however, it is mostly heterogeneous in reality, in which

a foreign substance initiates the nucleus site. The nucleation rate J(t) for the heterogeneous

nucleation is written as [3, 64]

J(t) = D
Aw

3
n

7
3
ℓ

√
Awσℓs

πkBTℓ

√
4

2 + ζf
× exp

{
− [Awσℓs/(kBTℓ)]

3(2 + cos Φ)(1 − cos Φ)2

27[ln(pℓ/ps)]2

}
,

(8.16)

where the pre-factor includes: the self-diffusion coefficient of supercooled water D (m2 s−1),

surface area of a water molecule Aw (m2), number density of molecules in the liquid particle

nℓ (m−3), interfacial surface tension σℓs (J m−2), Boltzmann constant kB (J K−1), and a
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Table 8.2: A list of physical and microscopic properties during nucleation.

Property Value Ref.
Self diffusivity of water, D (m2 · s−1) 1.5× 10−6 exp(−2045/T ) [36]
Surface area of water molecule, Aw (m2) 4πr20 = 4π[3Mw/(4πNAρℓ)]

2/3 [36]

Molar mass of water, Mw (kg ·mol−1) 18.02× 10−3 [40]

Avogadro’s number, NA (mol−1) 6.022× 1023 [40]
Number density of molecules in liquid, nℓ (m−3) NAρℓ/Mw [18]
Interfacial surface tension, σℓs (J ·m−2) 0.025 + (T − 273.15)× 10−4 [3, 14]
Boltzmann’s constant, kB (J ·K−1) 1.3806× 10−23 [40]
Ratio of nucleating over critical particles in ζf , R (−) H/r∗ = H/(2σℓs/{ns[kBT ln(pℓ/ps)]}) [3]
Number density of molecules in liquid, ns (m−3) NAρs/Mw [18]
Contact angle, Φ (◦) 72− 76 [3]
Saturation vapor pressure of water, pℓ (Pa) 610.94× exp {[17.625(T − 273.15)]/(T − 30.11)} [4]
Saturation vapor pressure of ice, ps (Pa) 611.21× exp {[22.587(T − 273.15)]/(T + 0.71)} [4]

coefficient in the heterogeneous Zeldovich factor ζf (−). The coefficient ζf is defined as:

ζf =
(1 −R cos Φ)[2 − 4R cos Φ − (R2 cos2 Φ − 3)]

(1 − 2R cos Φ −R2)
3
2

, (8.17)

where R is the ratio of radii between nucleating particle and critical embryo (−); Φ is

the contact angle (◦). Furthermore, the exponential factor has the contact angle Φ (◦)

and saturation pressure p (Pa), respectively. These saturation pressures are temperature-

dependent functions given in [4]. Definitions and formulations for the above-mentioned terms

also are documented in the works [3] and [64]. For the completeness of this work, the physical

and microscopic properties used in the heterogeneous nucleation are listed in Table 8.2.

To quantitatively measure the nucleation criterion is defined by the cumulative proba-

bility factor Pn [54, 50], rather than the number of nuclei in [3, 64] to incorporate the effect

of cooling rate. The cumulative probability of nucleation Pn depends on the instantaneous

cooling rate β = dT/dt and temperature T ; this dependency is taken the assumption that

the random nucleation events are governed by statistically inhomogeneous Poisson processes

(i.e., the nucleus positions are statistically independent from each other yet characterized by

the Poisson distribution on any scale [53]). The cumulative probability Pn(β, T ) is therefore
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expressed as:

Pn(β, T ) = 1 − exp

(
− 1

β

∫ T

T ′=Tinit

J(T ′)dT ′
)

(8.18)

where T ′ is the temperature integration variable.

8.3.2 Solution methods

Analytical solution

Exact solutions exist during the macroscale solidification, where the liquid PCM cools down

from Tinit before freezing and the solid PCM subcools after freezing, namely the liquid

supercooling and solid subcooling stages. In these stages, a partial differential equation

based on transient heat conduction without any phase change can be formulated in the 1-D

domain:

∂2T

∂z2
=

1

α

∂T

∂t
(8.19)

T (z = 0, t) = Tplate(t) (8.20)

T (z → ∞, t) → finite (8.21)

It is noted the temperature and thermophysical properties will be based on either liquid or

solid PCM. For the liquid PCM, the exact solution to Tℓ, subjected to an initial condition

(Eq. (8.4)), can be solved analytically by the Duhamel’s theorem [19]; the final solution is

written as:

Tℓ(z, t) = Tinit +
z√

4παℓ

∫ t

t′=0

f(t′)

(t− t′)3/2
exp

[
− z2

4αℓ(t− t′)

]
dt′ (8.22)

where f(t) = Tplate(t) − Tinit and t′ is the time integration variable. At a macro-scale, Tℓ

will end at t1 after reaching the fusion temperature Tf . However, when combined with the

micro-scale solidification for nucleation, the temperature of the liquid PCM will terminate
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at t = tnuc, indicating that the PCM has supercooled below Tf to its nucleation temperature

Tnuc and the first ice embryo has been formed within the domain.

During phase change at the macro-scale, a non-linear moving boundary is prescribed

at the solid-liquid interface as expressed in Eq. (8.5), also known as the Stefan condition.

Therefore, the problem becomes a classical one-phase Stefan problem over a semi-infinite

Cartesian domain:

∂2Ts

∂z2
=

1

αs

∂Ts

∂t
, z > 0, t1 < t < t2 (8.23)

Ts(z = 0, t) = Tplate(t) ≈ T̄plate (8.24)

Ts(z → ∞, t) → finite (8.25)

Ts(z, t = t1) = Tf (8.26)

ks
∂Ts

∂r

∣∣∣∣
z=zi(t)

= ρsL
dzi
dt

(8.27)

Here, we use an average of the time-dependent plate temperature as T̄plate because of the

assumption that the temperature deviation for t1 ≤ t ≤ t2 is much smaller than the ones for

t < t1 and t > t2. The exact solution can be obtained by introducing the similarity variable

[21]. Thus, the moving interface is

zi(t) = 2λ
√
αst (8.28)

where λ is found by the transcendental equation

λ exp(λ2)erfc(λ) =
1√
π

Stes =
1√
π

cp,s(Tf − T̄plate)

L
(8.29)

where Stes is the Stefan number based on the solid phase given by Stes = cp,s(Tf − T̄plate)/L.

After the entire PCM is frozen, the solid PCM subcools with pure conduction in a similar

fashion as the above-mentioned liquid supercooling. However, the initial condition is taken
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as Ts(z, t = t2) = Tf rather than Tinit. The exact solution is then derived using the same

methodology as Eq. (8.22):

Ts(z, t) = Tf +
z√

4παs

∫ t

t′=0

g(t′)

(t− t′)3/2
exp

[
− z2

4αs(t− t′)

]
dt′ (8.30)

where g(t) = Tplate(t) − Tf .

Numerical solution

Numerical algorithms are implemented in the meso-scale and micro-scale models, since it is

difficult to seek for analytical solutions while coupling two differential equations. The finite

difference method and numerical integration are used in the meso-scale and micro-scale

models, respectively. The dimensionless 2D heat equation (8.8) and Allen-Cahn equation

(8.9) are coupled and solved using the finite difference algorithm. The 2D space is meshed

using uniform square grids and the spacial derivatives are approximated through five-point

stencil; for instance

(∇ϕ)i,j ≈
ϕi+1,j − 2ϕi,j + ui−1,j

(∆x̃)2
+

ϕi,j+1 − 2ϕi,j + ui,j−1

(∆ỹ)2
(8.31)

where the subscripts i, j are the node number in the dimensionless x- and y-directions,

respectively. ∆x and ∆y are the uniform mesh size in the dimensionless x- and y-directions,

respectively. On the other hand, the temporal terms are explicitly discretized by the Euler

method; for example,

∂ϕ

∂t
≈

ϕn+1
i,j − ϕn

i,j

∆t̃
(8.32)

where the superscript n represents the n-th time step and ∆t̃ is the dimensionless time step

size. The numerical implementation for the phase field model can also be found in the text

[8]. It is noted that the seed (or nucleus) location is random within the 2D domain due to the

stochastic nature of nucleation. However, the location would not affect the crystal growth
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rate or the time interval of recalescence, which will be elaborated in detail in Section 8.4.2.

As regards the micro-scale model, the objective is to calculate the nucleation tempera-

ture and time (Tnuc and tnuc) based on heterogeneous nucleation from the Arrhenius-type

equation as written in Eq. (8.16) and inhomogeneous Poisson process given in Eq. (8.18). A

numerical algorithm is programmed here without much computational time and power. The

nucleation rate J(t) is computed from time t which corresponds to liquid temperature solved

by Eq. (8.22), mainly focusing on the supercooled temperature (i.e., Tℓ < Tf ). The criterion

to terminate the supercooling is prescribed when the cumulative probability Pn reaches 1 in

Eq. (8.18). The right-hand side of the equation involves a temperature integral which can

be numerically integrated by a straightforward trapezoidal rule. It is noted that a finer time

step ∆t is carried out to obtain a finer temperature ∆T , thus providing a more accurate

approximation of the numerical integration.

8.4 Results and discussion

In this section, the temperature profile (also referred as “freezing curve”), freezing time,

crystal growth evolution, and cumulatively probability of nucleation are examined by the

above-mentioned experimental and modeling frameworks. Four cooling rates are studied

to explore the effect of ambient environments on the PCM; corresponding mathematical

functions to each cooling rate in terms of the time-dependent plate temperature Tplate is

listed in Table 8.3. Both experimental and simulated results are compared and validated for

each cooling rate.

8.4.1 Macro-scale: Freezing curve and freezing time

The four cooling rates, β, examined in the experiments are recorded and measured in terms

of the plate temperature, Tplate. Table 8.3 lists the interpolated temperature distribution of

Tplate for each β using a sum of (two) sine functions; that is, Tplate(t) ≈
∑2

i=1 Ai sin(Bit+Ci).
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Table 8.3: Temperature distribution of the four cooling rates examined.

Cooling rate Temperature of the cooling plate
β (◦C min−1) Tplate (◦C)

3 19.22 sin(0.002862t + 2.848) + 0.5511 sin(0.01618t− 2.356)
10 22.33 sin(0.006459t + 2.771) + 4.638 sin(0.01454t− 2.584)
30 −13.72 exp(0.0007817t) + 19.09 exp(−0.01765t)
100 −16.23 exp(0.0007384t) + 21.26 exp(−0.01978t)

Table 8.4: A list of geometrical and macro-scale thermophysical properties of PCM used in
the multi-scale model.

Property Value Unit
Geometry
Length, X 2.0 × 10−2 m
Width, Y 2.5 × 10−2 m
Height, H 5.0 × 10−6 m
Ice
Mass density, ρs 916 kg m−3

Specific heat, cp,s 2050 J kg−1 K−1

Thermal conductivity, ks 2.22 W m−1 K−1

Thermal diffusivity, αs 1.18 × 10−6 m2 s−1

Water
Mass density, ρℓ 1000 kg m−3

Specific heat, cp,ℓ 4219 J kg−1 K−1

Thermal conductivity, kℓ 0.56 W m−1 K−1

Thermal diffusivity, αℓ 1.33 × 10−7 m2 s−1

The freezing curves of the PCM are also measured using the thermocouple at the top surface

of the PCM, z = H, to test the effect of cooling rate and subsequently be used for the

purpose of model validation. Meanwhile, the multi-scale model is developed based on the

geometrical and macro-scale thermophysical properties of the PCM, as listed in Table 8.4,

at an initial temperature 7◦C. As for the micro-scale thermophysical properties in Eq. (8.16)

and Eq. (8.17), the values are consistent with Akhtar et al.’s work [3] and the references

therein.

Figure 8.6 demonstrates freezing curves of the PCM at different cooling rates, β =

3, 10, 30, 100 (◦C min−1). It is rather clear to see that the cooling rate has direct influences on
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Figure 8.6: Model validation of temperature profile of the PCM at four different cooling
rates: (a) β = 3 (◦C min−1); (b) β = 10 (◦C min−1); (c) β = 30 (◦C min−1); and (d)
β = 100 (◦C min−1). The experiment is in the red solid line, while the model is in the blue
dotted line.

the freezing curve concerning the macro-scale solidification, i.e., the supercooling, freezing

and subcooling stages. First of all, the diffusive behavior due to heat conduction during

supercooling becomes much more linear for lower cooling rates, especially at β = 3◦C min−1,

thus rendering a longer time period for supercooling. This is because lower cooling rates

gives a smaller thermal gradient from the cooling plate, which requires more time for the

PCM to cool down till nucleation. It is also noted that the nucleation temperatures are

approximately −14◦C in all the cooling rates; more physical insights for the heterogeneous

nucleation will be discussed in the sub-section 8.4.3, as it is a micro-scale phenomenon.

Second, the freezing time (i.e., ∆tfreezing = t2 − t1) has a moderate influence on the

examined cooling rates from both experimental and modeling perspectives. Since the ther-
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mocouple was placed on the top surface of PCM, the freezing time is considered for the

duration when the temperature remains at the fusion temperature. It is found that the

freezing time varies within the range of 7 ∼ 13 seconds, and as β is increased by order of

magnitude (e.g., from 3 to 30◦C min−1), the freezing time is roughly shortened by a half.

It is worth mentioning the anisotropic solidification during the freezing stage mostly likely

occurred in the experiment for all cooling rates. The anisotropy begins in the recalescence

stage (which will later be presented in the sub-section 8.4.2 for meso-scale results), thereby

making the PCM freeze in a non-uniform and anisotropic manner. Owing to the analyti-

cal solution developed for the moving boundary expressed in Eq. (8.28), the dimensionless

freezing time Fos,freezing = αs∆tfreezing/H
2 can be calculated by

Fos,freezing ∼
1

4λ2
=

1

4
×
[
f(Stes)

]−2
(8.33)

after scaling the z-coordinate as z̃ = z/H. Recall that the Stefan number depends on the

specific heat, latent heat, and temperature difference between its fusion and cooling plate.

As a consequence, the change in cooling plate temperature (in the order of 100 or 101) is

much less efficacious compared with the massive amount of latent heat released during phase

change (in the order of 106), which elucidates the reason why the cooling rate has a relatively

minimal effect on the freezing time. Lastly, the subcooling portion of the freezing curves has

a steep temperature gradient after the entire PCM is frozen. This stage is independent of

others (due to the absence of phase change) and the temperature rapidly cools down to be

consistent with the cooling plate.

8.4.2 Meso-scale: Crystal growth

As can be seen in Fig. 8.4, the meso-scale solidification separates from the aforementioned

macro-scale freezing, concentrating on the propagation of crystal growth. The meso-scale

behavior decouples from the macro-scale freezing stages because of the temporal and spatial
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scale, so the freezing curve shown in Fig. 8.6 can no longer analyse the transport phenomenon

for crystal growth. As a result, 2D experiment images and 2D phase field model are used to

capture the meso-scale solidification.

Figure 8.2 demonstrates the ice crystal propagation at β = 30, 100 (◦C min−1) via the

image analysis explained in the sub-section 8.2.3. It is clear to observe that the ice crystal

instantaneously formed around the boundaries of the domain, because the ice embryo or the

first nucleus (that triggers crystal growth) is most favourably appeared when a great amount

of ambient air as a foreign agent is in contact. The ice crystal inside the PCM domain is

immediately formed and propagated; its location as seen in the figure, however, depends on

the nucleation happening at the microscale. In order to quantify the crystal propagation

without the influence from the boundaries, the image size is reduced by 2 ∼ 3 mm from

each end, which evaluates the front of ice crystal.Contour plots for ice crystal interface and

velocity are then approximated in Fig. 8.3 by assuming the crystal is isotropic. It is found

that the total time of crystal propagation drops by about 21% from β = 30 to 100 (◦C min−1),

while the velocity is surged, nearly four times and to be seeming with respect to the cooling

rate. Though the duration of recalescence and the velocity of crystal growth take place

in meso-scale, they are essential to be considered in many practical applications, as faster

crystal growth leads to higher mechanical force and quicker heat release, and vice versa.

For example, the sublimation of semi-conductors may be beneficial for low cooling rates to

preserve the micro- or nano-structure from collapsing during freezing, similar to the freezing

of foods and biological products to protect essential nutrients. On the other hand, cold

thermal energy storage systems would prefer a higher cooling rate so that the charging and

discharging cycles could be shortened.

Model validation

Figure 8.7 shows the validation of the 2D phase field model against the experiments at two

cooling rates: β = 30, 100 (◦C min−1) in the subplots (a,b,c) and (d,e,f), respectively. Three
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different time frames are selected for each cooling rate; both measured (in the black dots) and

approximated (in the red dots) experimental data are presented, in which the approximated

results are given by the image analysis explained in the sub-section 8.2.3. On the other

hand, the modeling outputs are demonstrated in terms of the order parameter ϕ, physically

implying the interfacial width during recalescence. Prior to the comparisons between the

modeling and experimental data, the following dimensionless parameters are implemented in

the phase field model: T0 = −15◦C, Tf = 0◦C, ε̄ = 0.01 (mm), Ste−1 = 10.86, j = δ = θ0 = 0,

N = 0.9, γ = 10. It is noted that the thermophysical properties to calculate the dimensionless

time t̃ and Stefan number Ste are consistent with the values listed in Table 8.4 with a latent

heat of L = 334, 000 (J kg−1) for ice-water phase change. Though the above-mentioned

parameters remain the same in both cooling rates, the relaxation timescale τ alters and

corresponding calibrations are also applied, specifically τ = (3.4 ± 0.6) × 10−4 for the lower

cooling rate and τ = 2.5 × 10−4 for the higher one. It is expected that higher cooling rates

can shorten the phase change process, thus leading to a smaller relaxation timescale.

For the lower cooling rate, the ice nucleus initiates at the top right corner of the PCM, and

the coordinates are assumed to be at (x = 19 mm, y = 23.75 mm) based on the experimental

observation. As can be seen in Fig. 8.7 (a), the crystal develops rapidly from its seed location

in an isotropic fashion; the crystal propagation finishes at slightly over 0.1 s as most of the

PCM domain covers by the ice crystal indicated in Fig. 8.7 (c). On the other hand, the case

with a higher cooling rate grows the ice crystal at a different location, at the left bottom of

the domain (x = 9.11 mm, y = 6.75 mm) owing to the experiment. Compared with the lower

cooling rate at the same time frame t = 0.021 s (i.e., compare Fig. 8.7 (d) with (a)), the

ice crystal is approximately doubled to tripled in size with a similar isotropic behavior. The

time period to complete recalescence for the higher cooling rate is about 0.08 s, which is more

than 20% faster than the lower cooling rate. It can be concluded that the 2D meso-scale

model using phase field can well simulate the ice crystal observed experimentally at different

cooling rates and seed locations. Incorporating 2D phase field into the multi-scale framework
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Figure 8.7: Model validation of crystal evolution of the PCM over time at two cooling
rates: (a,b,c) β = 30 (◦C min−1); and (d,e,f) β = 100 (◦C min−1). The color bar indicates
the phase-field (or order) parameter ϕ. The measuring data is in the black dots, and the
approximated or averaged one is in the red dots.

facilitates the observations on crystal morphology and investigations on the effect of seed

location, in which the commonly-used Langer and Muller-Krumbhaar (LM-K) [33, 32] is

unable to do. In addition, the location of the ice nucleus (or seed) is taken as a priori for

the validation purpose, but a separate analysis on the effect of seed locations is conducted

in Appendix B. The results show that the seed location does not change the velocity and

time period of the crystal growth, albeit the stochastic nature on the origin of the nucleus.

Effect of anisotropy

Figures 8.8 and 8.9 display the modeling results using the phase field model for β = 30 and

100 (◦C min−1), respectively; both order parameter ϕ and temperature T̃ are plotted for
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every time frame (with four in total). Moreover, the effect of directional solidification (i.e.,

isotropic v.s. anisotropic) is also explored for each cooling rate. Table 8.5 lists the properties

related to the phase field model consistent with [30]; two mode numbers of anisotropy,

j = 0, 6 are studied to compare the effect of anisotropy. It is interesting to note that

the location of the ice nucleus along with the boundaries has a considerable influence on

the crystal evolution regardless anisotropy. This impact is particularly obvious in Fig 8.8,

since the nucleus appears at the right corner of the PCM and very close to the top and right

boundaries. When the crystal has not been propagated much near the boundaries in the first

time frame (a,e,i,m), the front of ϕ and T̃ remain at its prescribed morphology. However,

as the ice crystal grows nearly half of the boundaries in the later times, the morphology

alters and the crystal accumulates at the boundaries. In the end, the front of ice crystal is

dominated by the boundaries, rather than the mode number of anisotropy defined in the first

place. This observation, nevertheless, is not lucid in Fig. 8.9 because the nucleus location

is relatively further from the boundaries than the one in Fig. 8.8. It is inevitable that the

boundaries will eventually affect the crystal propagation as can be seen in Fig. 8.9 (c,d),

but the pre-defined anisotropy remains its characteristics for most of the time, which is

independent of the cooling rate. As regards anisotropy, the phase-field results indicate that

the mode number only affects the morphology along with some minor thermal gradient near

the crystal front, but the crystal velocity and the recalescence time are approximately the

same.

8.4.3 Micro-scale: Nucleation and probability

Nucleation is a spontaneous event in which the first nucleus (an ice embryo) can be formed

anywhere in the PCM, as can be observed experimentally in Figs. 8.2 and 8.3 The most

favorable site for the nucleus is near the PCM boundaries adjacent to the ambient air. This

is because a relatively massive amount of foreign material (here, air) is in contact with

the PCM and prompts the heterogeneous nucleation. This circumstance is also referred as
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Figure 8.8: 2D contour of crystal growth at meso-scale for β = 30 (◦C min−1) in terms of

order parameter ϕ and temperature T̃ . Each column represents a time frame, with a total
of four time frames; the first two rows are for the isotropic case, while the last two are
anisotropic with j = 6. The numerical simulation is at an equally spaced time from t̃ = t̃nuc
to t̃ = t̃nuc + Nt̃ × ∆t̃, where Nt̃ = 800 and ∆t̃ = 5 × 10−4.

“surface nucleation” [23]. In contrast, “volume nucleation” is defined due to the nucleation

event that happened within the volume of PCM, in which the nucleation site can hardly

be predicted, but the nucleation time and temperature can, e.g., via the Arrhenius-type
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Figure 8.9: 2D contour of crystal growth at meso-scale for β = 100 (◦C min−1) in terms

of order parameter ϕ and temperature T̃ . Each column represents a time frame, with a
total of four time frames; the first two rows are for the isotropic case, while the last two are
anisotropic with j = 6. The numerical simulation is at an equally spaced time from t̃ = t̃nuc
to t̃ = t̃nuc + Nt̃ × ∆t̃, where Nt̃ = 800 and ∆t̃ = 5 × 10−4.

Eq. (8.16). Table 8.6 summarizes the nucleation time tnuc and temperature Tnuc obtained

from experiments and mathematical modeling at different cooling rates β.

The nucleation time varies with cooling rate in a significant manner, yet the nucleation
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Table 8.5: A list of properties used in the phase field model at the mesoscale.

Property Value Unit Note/Ref.

Relaxation timescale, τ 3.0× 10−4 - Calibrated by cooling rates
Interfacial width, ϵ̄ 0.01 mm Arbitrary but greater than the mesh size
Mode number of anisotropy, j 0, 6 - Change with crystal morphology
Initial offset angle, θ0 0 ◦ Change with crystal morphology
Strength of anisotropy, δ 0.1 - [30]
Positive constant in m, N 0.9 - [30]
Parameter for supercooling in m, γ 50 - [30]

Table 8.6: Comparison between experimental and modeling results on nucleation events for
different cooling rates at micro-scale.

Cooling rates Nucleation time Nucleation temp.
β (◦C min−1) tnuc (s) Tnuc (◦C)

expt. model % dev. expt. model % dev.
3 458 459.6 0.35 -15.45 -14.76 4.47
10 282 279.3 0.96 -16.15 -16.34 1.18
30 153 151.5 0.98 -13.80 -13.69 0.80
100 148 145.5 1.69 -14.00 -13.99 0.07

temperature does not. From a theoretical point of view, the nucleation temperature depends

on the micro-scale properties of the PCM that remain the same for different cooling rates.

Another influential factor for Tnuc was revealed to be the surrounding temperature in a

recent work [50]; however, in this study, the ambient air temperature is well controlled and

equal for all cooling rates. As β increases to an order of magnitude higher, from 3 to 30

and from 10 to 100 (◦C min−1), tnuc is found to be reduced by approximately 64% and

48% in the experiments. Moreover, the deviation between the experimental and theoretical

results on tnuc is well within 1.7% for all circumstances. As discussed in the macro-scale

results, the cooling rate is directly associated with the temperature gradient of the cooling

plate, which is the gradient of the PCM during supercooling. Adjusting and toning the

cooling rate can either accelerate or delay the nucleation event, therefore fitting the specific

need for each thermal application. With regards to the nucleation temperature, an average
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value can be found to be −14.85◦C based on all the cooling rates studied, with less than

±1.3◦C deviation. Compared with the modeling results, the average error is roughly 1.63%

in terms of the nucleation temperature. It can be therefore concluded that the developed

multi-scale solidification model can predict the micro-scale phenomenon of pure PCM using

the heterogeneous nucleation analysis.

8.5 Conclusion

In this research, multi-scale solidification of pure PCM was studied experimentally and

theoretically, capable of capturing transport phenomena during phase change at the macro-

, meso-, and micro-scale. Owing to the spatial and temporal differences in these scales,

separate laboratory tools (e.g., thermocouples, high-speed camera) and techniques (e.g.,

data logger, image analysis) were utilized in the experiments so that all the solidification

scales were measured. On the other hand, the multi-scale framework was firstly forged at

individual scales and then coupled with each other; both analytical numerical approaches

were implemented depending on the complexity of the problem.

In the experiments, freezing curves were recorded for different cooling rates; both macro-

scale stages and micro-scale nucleation were observed. It was found that the cooling rates had

a significant effect on the supercooling and nucleation time, whereas a minimal influence on

the freezing time and nucleation temperature was seen. Moreover, 2D image analysis allowed

us to disclose the evolution of crystal growth with complex morphology during recalescence.

Though the initial crystal site was shown as a random event, the interfacial font and velocity

were approximately through imaging techniques.

As regards the multi-scale solidification model, it was validated against the experimental

results at each scale. The macro-scale model with the Stefan condition solved analytically

(e.g., the Duhamel’s theorem and similarity solution) was proved to be an accurate and

computationally friendly approach, particularly for the prediction of diffusive stages like su-
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percooling and subcooling as the tracking of the moving boundary. The meso-scale model

using the phase field method could simulate the morphology of ice crystals with the consid-

eration of anisotropy during recalescence, while the micro-scale framework was based on the

nucleation rate through heterogeneous nucleation. It was concluded that the influence on

anisotropy was much weaker than the nucleus site; when the site is near the boundaries, the

crystal growth would be governed by the boundary effect.

It is recommended that future work on multi-scale solidification should explore in the

following directions: solidification of non-pure PCMs, such as binary mixtures and porous

media; moving towards multi-physics and multi-scale analysis by incorporating other phys-

ical fields, e.g., mechanical, hydraulic, and chemical fields; and study on three-dimensional

solidification models at the macro- and meso-scale to seek for higher resolution results.

Appendix A. Comparison between the previous work from Chap-

ter 6 and this study concerning the source term

The unified formulation during the recalescence stage in [64] was given by

1

α

∂T

∂t
= ∇2T +

g0
k

(8.34)

where g0 = (mcp∆Tsupercool)/(V– ∆trec) and ∆Tsupercool = Tf − Tnuc. Compared with the

formulation in Eq. (8.6), the equivalent source term is

g0
k
α =

mcp∆Tsupercool

V– ∆trec

α

k
=

mcp∆Tsupercool

V– ∆treccpρ
=

∆Tsupercool

∆trec
(8.35)

Hence,

L

cp

∂ϕ

∂t
≡ ∆Tsupercool

∆trec
(8.36)

if assuming that the velocity of crystal growth is constant throughout the recalescence stage.
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Figure 8.10: Comparison of various seed locations at β = 3 (◦C min−1) at four time frames.
The color bar indicates the phase-field (or order) parameter ϕ.

Appendix B. Effect of seed location

As discussed in Section 8.4.2, the seed locations for the validation cases are taken as a priori

due to the randomness of nucleation. Here, we demonstrate other possible locations of the

nucleus. It is noted that at the cooling rate β = 3 (◦C min−1) the seed appears at the top

right corner of PCM, and leading to a recalescence time of ∆trec ≈ 0.1 s. Owing to the

symmetry of the no-flux boundaries, the nucleus could also grow from other four possible

sites: (1) the top middle, (2) a diagonally quarter away from the top right corner, (3) the

middle of the domain, and (4) the right of the center. Hence, Figure 8.10 simulates the above-

mentioned four seed sites to capture the potential evolution of crystal growth with the same

cooling conditions and properties used in the phase field model. When evaluating the time

period for recalescence for the four locations along with the one shown in Fig. 8.7(a,b,c), the

difference is minor with an order of 0.01 s. This reveals that the random nucleus site can

affect the evolution of the crystal growth, but it does not have a significant influence on the

recalescence time. As a consequence, in the case when the seed site location is unknown, then

the model would still offer a relatively accurate and reliable prediction with some certainty

that can be pre-defined, e.g., 0.1 s.
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Nomenclature

Letters

Ste Stefan number (−)
t Time (s)
x x-coordinate (m)
y y-coordinate (m)
z z-coordinate (m)
X Length of PCM (m)
Y Width of PCM (m)
H Height of PCM (m)
v Velocity (m · s−1)
T Temperature (K)
k Thermal conductivity (W · m−1 · K−1)
cp Specific heat (J · kg−1 · K−1)
L Latent heat of fusion (J · kg−1)
F Ginzburg–Landau type free energy (−)
f Bulk free energy (−)
V– Volume (m3)
m Thermodynamic driving force parameter (−)
N Positive constant in m (−)
j Mode number of anisotropy (−)
J Nucleation rate (m−3 · s−1)
D Self-diffusion coefficient (m2 · s−1)
n Number density of molecules (m−3)
Aw Surface area of a water molecule (m2)
kB Boltzmann constant (J · K−1)
R Ratio of radii between nucleating and critical particles (−)
p Saturation pressure (Pa)
Mw Molar mass of water (kg · mol−1)
NA Avogadro’s number (mol−1)
r0 Mean inter-particle distance (m)
Pn Cumulative probability of nucleation (−)
Fo Fourier number (−)

Greek symbols

β Cooling rate (K · s−1)
ρ Mass density (kg · m−3)
α Thermal diffusivity (m2 · s−1)
ϕ Crystal’s solid fraction (−)
ε Gradient energy coefficient (−)
γ Dimensionless parameter for supercooling (−)
τ Characteristic timescale (−)
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δ Strength of anisotropy (−)
θ0 Initial offset angle (◦)
θ Angle between tip velocity and x-coordinate (◦)
σℓs Interfacial surface tension (J · m−2)
ζf Coefficient in the heterogeneous Zeldovich factor (−)
Φ Contact angle (◦)
λ Eigenvalues (−)

Superscripts and subscripts

plate Cooling plate
init Initial
f Fusion
i Interfacial
s Solid phase
ℓ Liquid phase
supercool Supercooling
rec Recalescence
nuc Nucleation
freezing Freezing
¯ Isotropic or averaged˜ Dimensionless
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Chapter 9

Scholarly discussion of all the findings

9.1 Overview

This dissertation advances our fundamental understanding of solidification processes, includ-

ing both equilibrium and non-equilibrium phenomena across various temporal and spatial

scales. The original frameworks and investigations presented herein contribute significantly

to state-of-the-art technological development and optimization in mining engineering. These

contributions include advancements in phase change materials (PCMs) for energy storage,

artificial ground freezing (AGF) for protecting and stabilizing ore deposits, and spray freez-

ing (SF) for mine heating, cooling, and decontamination purposes. The applications are

not limited to mining; they also extend to the storage and processing of biological materi-

als (e.g., foods and vaccines), manufacturing semiconductors using sublimation drying, and

latent heat thermal energy storage via PCMs for buildings and greenhouses across multidis-

ciplinary domains.

The development of frameworks also provides original knowledge and findings from fun-

damental aspects. In the equilibrium process, the perturbation and asymptotic solutions to

the two-phase Stefan problems have not been fully explored prior to this thesis, particularly

in an annulus that could be applied in a variety of engineering designs. The established

systematic asymptotic analysis for the classical two-phase Stefan problem is the first work

conducted in cylindrical coordinates subject to both Dirichlet and Robin boundaries. In the
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non-equilibrium process, experimental and unified mathematical frameworks have not been

explored for inward solidification, while stochastic nucleation and crystal growth were also

unclear at multiple spatiotemporal scales. The 2D unified mathematical framework, multi-

stage solidification of binary solutions, and 2D crystal characterization via experiments and

modeling are at the forefront of the literature. More detailed discussions are provided in the

following subsections.

9.2 Equilibrium process

Extensive research in the literature has predicted the equilibrium process of solidification

through numerical approaches. These approaches often prescribe a diffusive solid-liquid

interface with an implicit tracking scheme, such as enthalpy formulation and the volume-of-

fluid method, as reviewed in Part I. However, these numerical models are usually associated

with high computational costs and software expertise, making them difficult to apply in

practice. Taking AGF as an example, it is inefficient to numerically examine days of operation

with porous ground tens or hundreds of meters in radius.

In the second part of this dissertation, approximate analytical solutions were developed

for two-phase Stefan problems within a hollow cylinder through rigorous mathematical analy-

ses. These solutions were verified against numerical algorithms such as the enthalpy method,

demonstrating accuracy, reliability, and computational efficiency. The cylindrical geometry

ensures applicability to various engineering technologies, including PCMs, AGF, heat ex-

changers, and thermosiphons. With the assumption of a small Stefan number, these ana-

lytical solutions accurately predict nonlinear phase change phenomena, including transient

temperature changes in both phases, solid-liquid interfacial motions, and total freezing time,

within seconds on a standard two-core workstation. Additionally, expertise in numerical

simulations or independent studies on mesh elements and time steps was not required for

these analytical solutions. One can directly apply the solutions for total freezing/charging
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time, interface movement, and temperature profiles in any desired computational tools (e.g.,

Excel, Matlab, Python).

9.2.1 Discussion of Chapter 3

The prevailing physical phenomenon of AGF is the freezing process. Transient temperature,

freezing front, and total freezing time are the key parameters for the design and operation

of AGF [3]. The developed singular perturbation solution can analytically approximate the

Stefan problem with a highly nonlinear moving boundary, even at its leading order. The

analytical solution has a significant computational advantage over conventional numerical

simulations. Conventional numerical simulations are usually associated with long computa-

tional times and high computational power. This is because the ground size can be in the

orders of 101 to 102 meters while the freezing time is in weeks or months operating for years

in underground tunnels [4]. When considering the complex structure of soils with nonlinear

phase change as demonstrated in Fig. 2.10, it would be quite time-consuming to predict the

thermal performance.

Employing the method of volume averaging, it was found that the sophisticated porous

soil structure could be simplified into a homogenized material with effective thermophysical

properties. Utilizing the Stefan number (i.e., the ratio of sensible to latent heats) that

is intrinsically small in the freezing process, perturbation series solutions to a cylindrical

Stefan problem can be found in both long- and short-time scales at the leading order. As a

result, the numerically verified analytical solution could produce a rapid and rule-of-thumb

approximation of the AGF process, in terms of the total freezing time, freezing front, and

transient temperature. It is noted, however, that the Stefan number, as a perturbation

parameter in a perturbation series, cannot exceed 0.01, which is the major limitation of this

method.

The developed analytical solution to AGF has the potential to be implemented as a

fundamental computing algorithm in software for industrial use. Since the computational
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cost is rather minimal, it can be compiled into an application for existing programming

software, e.g., MATLAB Apps, Python Library Application Programming Interface (API),

and commercial mine design software, or new and stand-alone software that can be quickly

installed in any operational systems.

In AGF, the ground porosity and operational conditions could affect the effective specific

heat, latent heat, initial temperature, and coolant temperature, resulting in a relatively large

Stefan number. In such scenarios, the developed asymptotic solutions that assume a small

(less than unity) Stefan number may not be accurate for engineering purposes. It could be

interesting to develop a correction term after the leading and first-order terms, thus providing

a more versatile solution for all ground types. Similar approaches can be applied to PCMs,

as the material types and storage conditions may also vary.

9.2.2 Discussion of Chapter 4

AGF has been widely employed in permafrost-rich areas for the safety of underground mines,

as mine operations are vulnerable to permafrost degradation [2]. In extreme scenarios, catas-

trophic consequences would be experienced leading to the collapse of underground tunnels

and failure of waste management systems. Conventional AGF systems require high energy

input associated with a large number of carbon footprints, and thus renewable energy-based

solutions are in great demand in their efforts to adapt to today’s changing climate. A com-

mon approach of the renewable energy-based AGF is the use of thermosiphons which are

passive heat exchangers to transfer heat between the cold air and the ground. Case stud-

ies have been conducted in the Giant Mine Remediation Project; however, storage systems

were needed to store cold energy during winters and supply it in summers [13], as shown in

Fig. 9.1. Chapter 4 addressed the quantification of cold thermal energy storage using PCM

via asymptotic methods.

When comparing singular perturbation with asymptotic analysis, both methods con-

struct perturbation series solutions or asymptotic expansions through an intrinsically small
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Figure 9.1: Conceptual diagram of renewable energy-based artificial ground freezing with
PCMs as cold thermal energy storage.

parameter, e.g., the Stefan number in classical Stefan problems. It was found that the latter

approach can be more systematic in reducing orders at both temporal and spatial scales.

The former one, however, is often limited to order reduction for time scales. Overall, the

asymptotic methods were shown to be quite effective in generating approximate analytical

solutions to Stefan problems, and spatiotemporal scales can be directly related to freezing

physics. In macro-scale solidification, it will be a three-stage equilibrium process, including

pre-cooling of liquid, equilibrium freezing, and subcooling of solid.

An alternative approach to solving the Stefan problems is the use of heat balance integral

that is conducted based on a polynomial approximation of the temperature profile [10].
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Higher-order polynomials are seemingly more accurate than the lower-order ones; however,

higher-order approximations can also be oscillatory, making them difficult to evaluate the

accuracy. Unlike the heat balance integral methods, the main advantage of the asymptotic

methods is that accuracy only depends on the small perturbation parameter. While studying

the effect of the Stefan number on the solution’s accuracy in Chapter 4, a rather linear

behavior was observed; however, more comprehensive evaluations should be conducted with

a wider range of Stefan numbers to draw a more convincing conclusion on such an effect.

It is also noted that the error analysis could also facilitate the development of a correction

term for relatively high Stefan numbers as mentioned in the previous sub-section.

In the asymptotic analysis, the leading (or zeroth-) and first-order solutions have been

found. One may consider continuing to solve higher-order solutions since the sub-problems

in each order are often ordinary differential equations and analytical solutions can be quickly

found. Despite the lengthy derivation and analysis at the higher orders, one would not be

able to guarantee the convergence. This is because the perturbation series are power series

that may converge slowly and in some cases might diverge. As a result, it is more efficient

and practical to only consider the solutions in the first one or two orders and evaluate their

accuracy in specific applications.

In the field of PCMs, three major categories, namely organic, inorganic salt hydrates,

and eutectic compounds, were compared and analyzed, particularly in terms of the geometry,

phase-dependent thermophysical properties, such as thermal conductivity and specific heat,

and Stefan number. From this fundamental comparison, the PCM storage or charging time

was found significantly related to the thermal conductivity. While the inherent thermal

conductivity of the PCM is crucial during the selection of energy storage, adding a small

amount of highly conductive additives like nanoparticles [7] and metals (in the form of foams

[5]) can be quite effective.
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9.2.3 Discussion of Chapter 5

As climatic conditions such as wind speed and air temperature affect PCM storage, especially

when coupled with thermosiphons to extract and store cold energy, the original Dirichlet (or

isothermal) boundary [12] was replaced with a more realistic Robin (or convective) boundary,

enhancing versatility for practical applications. The convective boundary abandons the

assumption that the interface moves instantaneously with time, which was common in solving

two-phase Stefan problems. With a systematic asymptotic analysis, new spatial and temporal

scales were introduced to capture the pre-cooling or pre-charging time when the solid-liquid

interface has not moved.

The climatic effect was fundamentally characterized through the Biot number, a dimen-

sionless parameter characterizing convective heat transfer from the surface to PCM’s interior.

From the applied aspect, a higher wind speed gives a higher Biot number and vice versa.

When using PCM as a cold thermal energy storage unit for thermosiphons, the wind speed

could vary drastically over time, particularly under today’s changing climate. In addition,

the motion of heat transfer fluid inside the thermosiphon which is often characterized by

mass flow rate also influences the heat transfer coefficient in the convective boundary, thus

altering the Biot number. It was found that the total energy storage time decreased with

the rise of the Biot number, while both the pre-cooling time and storage time increased

exponentially at small Biot numbers.

Regarding the methodology, since the asymptotic solutions to Stefan problems may in-

clude infinite series for heat equations (e.g., exact solution to Sturm–Liouville problems), it is

essential to have a sufficient number of terms with eigenvalues and corresponding eigencoeffi-

cients to ensure convergence. This is perhaps the most important component when comput-

ing asymptotic solutions. It is rather difficult to provide a universal number for eigenvalue

terms, so the sensitivity analysis on the number of eigenvalues is required. Nonetheless, the

independence of eigenvalues is far more effortless than that of mesh elements and time steps
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in numerical models.

9.3 Non-equilibrium process

The equilibrium process of freezing at the macro-scale level has been studied in Part II

through the development of analytical solutions (using singular perturbation and asymp-

totic analysis), which in turn facilitates the rule-of-thumb, fast-to-compute, and easy-to-

implement thermal prediction to AGF for stabilizing uranium ore deposits, PCM for cold

thermal energy storage, and thermosiphons for mine remediation. In the third part of this

dissertation, the non-equilibrium freezing process was explored by considering multiple tem-

poral and spatial scales for pure substances and binary mixtures. Specifically, both multi-

stage and multi-scale frameworks using mathematical modeling and laboratory experiments

have been conducted for cold thermal energy storage with PCM as well as mine heating,

cooling, and wastewater treatment via SF.

In the multi-stage frameworks, there are five distinct stages: liquid supercooling, hetero-

geneous nucleation, recalescence, equilibrium freezing, and solid subcooling. Well-controlled

thermal systems were established by adding a PCM casing outside the testing material to

minimize flow disturbances. Unified and computationally efficient mathematical models were

developed and solved using semi-analytical methods. Furthermore, mass/solute diffusion was

included in phase change heat transfer through the Scheil equation, and stochastic nucle-

ation phenomena were characterized over various ambient temperatures. In the multi-scale

frameworks, crystal growth and morphology were carefully examined through laboratory

experiments and predicted by the phase field model under multi-scale analysis, covering

solidification in Cartesian, spherical, and cylindrical coordinates.
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9.3.1 Discussion of Chapter 6

When utilizing PCMs for cold thermal energy storage, annular PCMs can be used as ther-

mal enhancements for many cylindrical heat exchangers or pipes. Analyzing non-equilibrium

freezing in PCMs is particularly crucial at the micro- and meso-scale levels related to nucle-

ation and recalescence. Nucleation supercools the liquid PCM below its freezing point and

affects the latent heat of fusion. Recall that the effective latent heat is expressed as [11, 1]:

Leff =

(
1 − cp,l

cp,s
Stenuc

)
L (9.1)

where Stenuc = cp,s(Tf − Tnuc)/L. Taking the ice-water phase change as an example, the

effective latent heat can be reduced by 19% compared with its original value. This will

significantly influence the capacity of energy storage using PCM, not to mention that the

spatial effects may result in possible mechanical changes that will be discussed further in

Chapter 8.

In the sixth chapter of this thesis, the 2D unified multi-stage analysis provided an accurate

and useful guideline for examining the charging time, temperature, and solid/liquid fraction

during non-equilibrium processes. The literature includes many frameworks on 1D non-

equilibrium analysis via experiments and modeling, particularly on droplets. The present

2D analysis enabled non-equilibrium freezing in both radial and axial coordinates, capable

of predicting five-stage solidification.

From the experimental aspect, the design of ethylene glycol solution between the water

bath and test sample allowed an accurate characterization of the supercooling, nucleation,

and crystal growth during solidification while minimizing disturbances from machinery vibra-

tion. It is noted that the experimental disturbances from the machinery may not necessarily

occur when freezing a small volume of PCM, e.g., freezing a droplet and forming a snowflake.

As the volume increases, the control of crystallization becomes significantly more challenging

at the meso-scale level. Nevertheless, the addition of ethylene glycol around the test sample
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was found particularly effective in preserving the crystalline structure. The five-stage freez-

ing process was successfully captured with the thermocouple inside the test sample, while the

convective heat transfer coefficient was calculated through the thermocouples in the ethylene

glycol and water bath. Other encapsules with different geometries and material types could

also be implemented in a similar experimental design.

From the modeling aspect, the semi-analytical modeling approach was computationally

efficient and easy to implement with non-equilibrium phenomena (e.g., supercooling, hetero-

geneous nucleation, and crystal growth) that could not be simulated in conventional software

using computational fluid dynamics (CFD). The conventional CFD approach requires the

energy balance between neighboring nodes. Taking the heat flux as an example, the heat

flux coming out of the left node should be equal to the one coming inside the right node.

However, this is not the case for nucleation events when an ice nucleus spontaneously occurs

at a random location in the computational domain, leading to a fast release of latent heat.

Even if one could manage to incorporate such phenomena, the time step and mesh element

must be reconstructed at a much higher resolution, thus increasing the computational cost.

As a result, the multi-stage, semi-analytical method offered in-depth physical insights into

the thermal design, operation, and optimization of PCMs for cold thermal energy storage

with minimal computational cost.

One may wonder about the discharge process of PCMs after energy storage, which is

related to the melting phenomenon. The melting process can also be predicted by the

developed asymptotic solutions with rescaled temperature. However, the influence of natural

convection in the liquid phase may need to be considered. This effect can be quantified by

Richardson’s number, the ratio of buoyancy to flow shear. When natural convection prevails,

from the modeling point of view, a convective or advective term must be incorporated into

the governing heat equations. The experimental investigation into natural convection may

take into account the effect of gravity on the PCM configuration.
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9.3.2 Discussion of Chapter 7

For SF, non-equilibrium freezing can reject contaminated particles into the liquid water,

leaving purified water in its ice form. This is also referred to as cryopurification. The mining

industry produces a significant amount of wastewater with contaminants such as arsenic and

zinc, which are often discharged into the environment. SF utilizes the unique environmental

conditions in Canada to freeze mine wastewater for decontamination.

In Chapter 7, the developed multi-stage droplet solidification framework for binary solu-

tions can directly contribute to the prediction of freezing wastewater via SF at the droplet

level. Particularly, the transient movement of solute or freeze concentration was predicted

by coupling the energy balance with the Scheil equation. The quantities of the solid frac-

tion, liquid concentration, and temperature can be rapidly estimated with the multi-stage

framework. Unfortunately, the literature lacks experimental data on the solidification of con-

taminated droplets; sucrose solution is one of the few examples available. Even though the

analysis was not specifically conducted for mine-impacted water, the principles, phenomena,

and results of sucrose droplets remain the same.

Figure 9.2 demonstrates the solute concentration over the radial coordinate using the

same data shown in Fig. 7.4. As can be seen, the initial concentration of solute is at 20%;

after the ice (or solid phase) forms, the solute is being concentrated or rejected towards the

droplet’s center. Purified water with 0% solute concentration can be observed in the solid

phase. The maximum solute concentration is reached when the liquid is at its saturation.

As a consequence, freezing aqueous solution can significantly concentrate the solutes in the

liquid phase while keeping the solid phase as pure ice, without any chemical or greenhouse

gas emissions.

With the above-mentioned findings on droplet solidification, one may investigate a wide

range of contaminants in mines (e.g., arsenic, sodium, chloride, magnesium) with various

concentrations and operational points (e.g., air temperature, droplet diameter). Owing to
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Figure 9.2: A graph of solute concentration over the radial coordinate of a droplet with the
same dataset in Figure 7.4.

the location and origin of the mine water, the optimal strategy will be developed at specific

mine sites. In Canada, with long winter seasons and cold temperatures, SF is a cost-effective

and efficient approach to pre-treat mine wastewater instead of adding chemicals. There is

no need for a refrigeration system to lower the air temperature as cold air is abundant in

northern regions. The only two main energy inputs for the SF process are to pump water

or wastewater into the air and to separate the contaminants from purified via drying or

crushing methods.

Although droplet dynamics and spray atomization may largely influence the performance

of SF for mine heating and cooling, spraying contaminated mine water in an open space might

have minimal impact on fluid dynamics. However, it is also crucial to investigate the pumping

power and particle sizes in the field for optimizing the SF performance. One may also look

into the separation of purified ice and contaminated liquid after spraying wastewater into

cold air. In cases where drinking water is needed, further purification can also be applied.
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9.3.3 Discussion of Chapter 8

The most significant contribution to the development of multi-scale analysis in Chapter 8 over

the multi-stage frameworks was the spatiotemporal influence on the non-equilibrium freezing

process, particularly in heterogeneous nucleation and recalescence. With the assumption of

a uniform, parabolic crystal growth rate, one would not be able to characterize the impact

of crystal and nucleus (the origin of the crystal) on PCM energy storage and the ice quality

produced by SF.

It was found that the crystal growth velocity can be highly nonlinear with complex

morphology depending on the cooling rate. The cooling rate also influenced the supercooling

degree. This is particularly important because the amount of energy stored in PCM and the

heating capacity in SF are based on the latent heat and the effective value during the non-

equilibrium process requires the nucleation temperature or supercooling degree. Without

considering the non-equilibrium process, one would not be able to accurately evaluate the

performance of PCM and SF.

From experimental results, the exact nucleation site could not be found consistently since

heterogeneous nucleation is a stochastic and spontaneous event. The nucleation site was

therefore taken as a priori in the multi-scale modeling. When studying the effect of nucleation

sites under the same cooling rate using the validated multi-scale model, it was clear that the

period of recalescence was minimally affected. However, the location of nucleation and its

corresponding crystal growth may affect the structure of PCM devices and the ice quality of

SF at the meso- or smaller scales.

For the PCM devices, structural design may be included to ensure mechanical support

and/or thermal enhancement (e.g., metal foams mentioned in the discussion of Chapter

4). As heterogeneous nucleation usually occurs in practice originating from a foreign agent,

the crystal propagation may exert additional force on the structure. Research on micro- or

nano-structure devices like semiconductors has shown a significant impact on their structures
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[8, 9]. The effect of density change in solidifying droplets with nanoparticles was found to

be around 15% at macro-scale [6]. The interaction between the thermal and mechanical

fields during non-equilibrium solidification centers around the crystal growth velocity and

morphology that have been captured in the multi-scale framework.

Regarding the ice quality in SF, the produced ice could be either in a block or slurry form,

depending on crystal propagation. Though block ice demonstrates complete utilization of

solidification and release of latent heat, concerns may arise about the removal of the ice in

the SF system. Ice slurry, on the other hand, may not undergo a full solidification process;

however, it is much easier to remove and utilize for the cooling process. The multi-scale

analysis systematically evaluates solidification at different spatiotemporal scales with both

equilibrium and non-equilibrium processes, which in turn accurately quantifies the ice quality

for the practical use of SF technology.
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Chapter 10

Original contributions and future work

10.1 Contributions to the original knowledge

This dissertation makes significant contributions to our understanding of macro-scale equi-

librium and multi-stage/multi-scale non-equilibrium solidification processes. These contri-

butions are summarized from both fundamental and applied perspectives.

In macro-scale equilibrium solidification, key fundamental contributions include:

• Systematic singular perturbation and asymptotic analysis to reduce the orders of clas-

sical two-phase Stefan problems using a small Stefan number.

• Development of singular perturbation and asymptotic solutions for cylindrical two-

phase Stefan problems with Dirichlet (isothermal) and Robin (convective) boundaries.

• Comparisons between analytical solutions from Stefan problems and numerical simu-

lations using the enthalpy method in terms of computational time and the impact of

the mushy-zone temperature range.

From the applied perspective, the macro-scale equilibrium process contributed to our under-

standing through:

• Development of easy-to-compute, quick-to-compute, and mesh-free solutions for the

thermal assessment of macro-scale freezing processes in pure substances and porous

media.
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• Rule-of-thumb estimations of AGF with various soil types, including total freezing

time, interface motion, and transient temperature, thus offering fast thermal analysis,

design, and optimization of AGF systems for ground integrity.

• Computationally efficient thermal predictions of PCMs for cold thermal energy storage,

including charging time, temperature profiles, and interface movement.

For multi-stage and multi-scale non-equilibrium solidification, the main fundamental contri-

butions are:

• Development of a novel unified multi-stage solidification model in 2D with hetero-

geneous nucleation and non-equilibrium interfacial kinetics, validated by laboratory

experiments.

• Creation of a fully coupled multi-stage framework for freezing binary solutions through

energy balance and Scheil’s equation, as well as a gradient-based optimization method

for heterogeneous nucleation.

• Multi-scale analysis of solidification with 2D non-linear crystal characterization at

meso-scale through laboratory experiments and mathematical modeling.

Key applied contributions on the non-equilibrium process include:

• Accurate thermal estimation of PCMs for cold thermal energy storage at non-equilibrium

using semi-analytical schemes to ensure computational efficiency.

• Physics-based analysis of solute concentration, nucleation, crystal growth, and FPD

in binary solutions for decontamination of wastewater through SF by concentrating

contaminants in the liquid phase and leaving purified water in the ice form.

• Incorporation of spatial scales in multi-scale frameworks, capturing intricate phenom-

ena such as non-linear crystal growth and morphology for PCM energy storage and ice

quality in SF.
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10.2 Recommendations for future work

It is recommended that future studies in the field of solidification could include the following.

First, the effect of density change in the macro-scale equilibrium process was assumed to be

negligible in this dissertation. In some cases, the density difference in the solid and liquid

phases may lead to a visible change in volume, resulting in a dual-moving boundary problem.

One moving boundary is between the solid and liquid phases, while another is at the outer

boundary, which will move due to the volume change. Although the volume change could

be roughly estimated by the mass density, the dynamic interactions between the solid-liquid

interface and the moving boundary during the phase change process would not be captured.

In addition to the volume change, another improvement in the equilibrium process could

be the addition of mass diffusion, which is then mathematically categorized as the extended

Stefan problem. Both thermal and concentration fields will be included, leading to four

governing partial differential equations (PDEs) and two moving boundaries in a two-phase

problem. The dual-moving boundary and extended Stefan problems will result in a more

complex asymptotic analysis due to the non-linearity in more moving boundaries and the

additional PDEs. However, numerical simulations would lead to even higher computational

costs because of the convergence of more conservation equations and moving meshes. The

successful development of asymptotic solutions would greatly improve the understanding of

new physical phenomena, including volume and concentration changes, with a relatively low

computational cost.

Regarding non-equilibrium solidification, the spontaneous heterogeneous nucleation phe-

nomenon was captured using the classical nucleation theory, and the effect of ambient tem-

perature was also studied extensively. However, future work could consider the stochastic

process of nucleation through other approaches, such as the phase field method, stochas-

tic modeling, and physics-informed neural networks. It may not be possible to predict the

exact site of heterogeneous nucleation, but one could analyze the impact of heterogeneous
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nucleation originating in certain areas of the domain. When designing PCMs with com-

plex structures, such as composite PCMs with metal foams for thermal enhancement, the

consideration of nucleation and its subsequent phenomenon on crystal growth can prevent

structures or patterns from deforming. In fact, such thermomechanical effects have already

been observed in semiconductor manufacturing during sublimation drying.

Meanwhile, the material type for crystal characterization in the multi-scale analysis was

limited to ice and water. Other substances and mixtures applicable to certain applica-

tions should also be explored. For example, investigating non-equilibrium solidification of

binary mixtures with contaminants such as arsenic, zinc, and brine can be an interesting

research topic in the future while advancing our applied knowledge of the performance of

mine wastewater treatment via SF. It is expected that different material types will demon-

strate unique solute concentrations and freeze-point depressions, indicating varying levels of

contaminant removal. One may also be interested in optimizing contaminant removal by

carefully controlling the cooling condition and droplet/particle size.

Lastly, the advancement of equilibrium and non-equilibrium solidification at multiple

temporal and spatial scales has proven the concept’s applicability in mining, including PCMs

for energy storage, geotechnical support, and mine heating and cooling. Nevertheless, for

each specific application, there is still industry-oriented research to be conducted. This

includes optimizing the material type and size of PCMs for cold thermal energy storage,

studying hydraulic and mechanical aspects of AGF, and analyzing atomization dynamics

of SF for mine heating and cooling. For instance, the temperature variations in AGF will

influence the permeability and groundwater flow, which require hydraulic considerations.

The temperature and flow pressure from the thermal and hydraulic aspects will also affect

the mechanical behavior of the ground, such as stress and strain, which could be particularly

intensive for porous ground.
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[177] A. Kumar, Rajeev, and J. Gómez-Aguilar. A numerical solution of a non-classical ste-

fan problem with space-dependent thermal conductivity, variable latent heat and robin

374



boundary condition. Journal of Thermal Analysis and Calorimetry, 147(24):14649–

14657, 2022.

[178] A. Kumar, M. J. Walker, S. Sundarraj, and P. Dutta. Grain floatation during equiaxed

solidification of an al-cu alloy in a side-cooled cavity: Part i—experimental studies.

Metallurgical and Materials Transactions B, 42:825–836, 2011.

[179] B. L. Kurylyk. Discussion of ‘a simple thaw-freeze algorithm for a multi-layered soil

using the Stefan equation’ by Xie and Gough (2013). Permafrost and Periglacial

Processes, 26(2):200–206, 2015.

[180] J. Kyselica, P. Guba, and M. Chudjak. Recalescence dynamics and solidification of a

supercooled melt in a finite domain. International Journal of Heat and Mass Transfer,

159:120048, 2020.

[181] L. S. Lam, K. R. Sultana, K. Pope, and Y. Muzychka. Effect of thermal transport on

solidification of salt and freshwater water droplets on marine surfaces. International

Journal of Heat and Mass Transfer, 153:119452, 2020.

[182] G. Lamé and B. Clapeyron. Mémoire sur la solidification par refroidissement d’un

globe liquide. In Annales Chimie Physique, volume 47, pages 250–256, 1831.

[183] F. Lamraoui, G. Fortin, R. Benoit, J. Perron, and C. Masson. Atmospheric icing

impact on wind turbine production. Cold Regions Science and Technology, 100:36–49,

2014.

[184] J. Langer. Dendritic sidebranching in the three-dimensional symmetric model in the

presence of noise. Physical Review A, 36(7):3350, 1987.

[185] J. Langer and H. Müller-Krumbhaar. Theory of dendritic growth—i. elements of a

stability analysis. Acta Metallurgica, 26(11):1681–1687, 1978.

[186] J. Langer and J. Müller-Krumbhaar. Stability effects in dendritic crystal growth.

Journal of Crystal Growth, 42:11–14, 1977.

[187] J. Langer, R. Sekerka, and T. Fujioka. Evidence for a universal law of dendritic growth

rates. Journal of Crystal Growth, 44(4):414–418, 1978.

[188] M. Le Maguer. Mechanics and influence of water binding on water activity. In Water

Activity, pages 1–25. Routledge, 2017.

375



[189] J. Lee and G. Son. A sharp-interface level-set method for compressible bubble growth

with phase change. International Communications in Heat and Mass Transfer, 86:1–11,

2017.
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