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ABSTRACT

We study in this thesis the Characteristic Mapping (CM) framework and its ap-
plication in various scientific computing problems involving transported quantities.
The CM framework is a novel numerical approach for general transport equations;
it consists in discretizing the deformation map generated by the transport flow in-
stead of the transported quantities themselves. This computation yields the solution
operator of the advection equation, called the characteristic map, which can then
be used to transport any quantity evolving under the same transport flow. The
CM method is distinguished by several unique numerical properties made possible
by its geometric approach: any number of transported quantities can be simulta-
neously and coherently evolved using the same characteristic map, the evaluation
of advected fields through map pullbacks guarantees relabelling symmetry and thus
eliminates artificial viscous dissipation, the group structure of the characteristic maps
can also be used to decompose long-time maps into a number of short-time submaps
allowing for efficient coarse grid computations. The resulting numerical method is
efficient, accurate and well-suited for multiscale problems such as the simulation of
incompressible inviscid fluids. We will first motivate the CM approach from the linear
advection equation. We will also study the some underlying theory and preliminaries
on which the CM method is built, in particular, we will examine relevant differential
calculus concepts which allow us to formulate the characteristic map as the solution
operator to the Lie-advection equation. As a first application, we study the use of
the CM method for the problem of equiareal surface parametrization in the context
of passively advected surfaces. In this case, the CM method is used to produce a
redistribution map on the parametric space which, when composed with the evolving
parametrization, yields an equiareal parametrization of the surface. Next, we apply
the CM method to the simulation of perfect fluids, first through the incompressible
Euler equations in two-dimensional space, and then extending the method to the
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three-dimensional case. In two-dimensions, the characteristic map is used to evolve
the advected scalar vorticity field; the velocity field used for the vorticity transport
is obtained from the Biot-Savart law. This allows for a non-dissipative transport
of the vorticity resulting in an arbitrary spatial resolution for the solution. In the
three-dimensional case, the vorticity vector field is no longer a scalar advected quan-
tity, instead using the Kelvin circulation theorem, we reformulate the equation as
the Lie-advection of the vorticity field expressed as a differential 2-form. The time t
vorticity field can then be constructed from the initial vorticity via pullback by the
characteristic map. Error estimates are derived for these methods, in particular, a
more geometric analysis in the three-dimensional case demonstrates the advective
nature of the error as one can show that the numerical vorticity is related to the
true vorticity through pullback by an error map. Numerical convergence tests are
also performed and comparisons with results obtained using other current methods
are made. Finally, we conclude by examining some promising directions for future
investigation.
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ABRÉGÉ

La matière à l’étude dans cette thèse est le cadre mathématique de la méthode
de l’Application Caractéristique (AC) ainsi que son application aux divers problèmes
de nature advective dans le domaine du calcul scientifique. La méthode de l’AC con-
stitue une approche numérique nouvelle destinée aux équations de transport; elle
consiste à discrétiser l’application de déformation générée par l’écoulement lié au
transport au lieu de discrétiser les quantités transportées elles-mêmes. Le produit de
cette discrétisation est l’opérateur de solution nommé l’application caractéristique,
celle-ci peut être utilisée pour évoluer toute quantité transportée par le même écoule-
ment. La méthode de l’AC se distingue par plusieurs propriétés numériques uniques
grâce à son approche géométrique: toute quantité transportée peut être évoluée
par la même application de façon simultanée et cohérente, l’évaluation des champs
transportés comme étant l’image réciproque de la condition initiale par l’application
caractéristique garantie la préservation de la symétrie de «réétiquetage» et prévient
ainsi la dissipation visqueuse artificielle, la structure de groupe des applications carac-
téristiques permet aussi la décomposition des applications de long-terme en plusieurs
sous-applications de court-terme, ces dernières pouvant être efficacement calculées
sur des maillages de basse résolution. La méthode numérique qui en résulte est ef-
ficace, précise, et bien adaptée aux problèmes multiéchelles telle la simulation des
fluides incompressibles et non visqueux. Nous motivons premièrement l’approche de
l’AC par l’exemple de l’équation d’advection linéaire. Nous étudions aussi les théories
et les notions préliminaires sur lesquelles cette méthode est bâtie, en particulier, les
notions pertinentes du calcul différentiel nous permettant de formuler l’application
caractéristique comme étant l’opérateur de solution pour une équation d’advection
de Lie seront étudiées. Comme premier exemple, nous examinons l’utilisation de la
méthode de l’AC au problème de l’uniformisation des surfaces paramétrées, évolu-
ant passivement sous l’influence d’un écoulement. Dans ce contexte, la méthode
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de l’AC est utilisée pour générer sur le domaine paramétrique une application de
redistribution qui, une fois composée avec la fonction de paramétrage, produit un
nouveau paramétrage authalique de la surface. Ensuite, nous employons la méthode
de l’AC à la simulation des fluides parfaits au moyen des équations d’Euler, d’abord
dans le cas bidimensionnel, puis au cas tridimensionnel en apportant les extensions
nécessaires à la méthode. En deux dimensions, l’application caractéristique est util-
isée pour transporter le champ de vorticité scalaire; le champ de vitesse associé à ce
transport provient de la loi de Biot-Savart. Cet approche permet un transport non
dissipatif de la vorticité et une résolution spatiale arbitraire de la solution. Dans le
cas tridimensionnel par contre, le champ de vorticité n’est plus une quantité scalaire
advectée, plutôt, par le théorème de Kelvin sur la conservation de la circulation de la
vitesse, nous reformulons l’équation de l’évolution de la vorticité en tant qu’advection
de Lie du vecteur vorticité exprimé comme forme différentielle de degré 2. La vor-
ticité à temps t peut alors être calculé via l’image réciproque de la vorticité initiale
par l’application caractéristique. Nous présentons des estimations d’erreurs pour ces
méthodes. Notamment, une analyse plus géométrique dans le cas tridimensionnel dé-
montre la nature advective de l’erreur, puisque la vorticité obtenue numériquement
est liée à la vorticité exacte à travers une application de transport. Nous effectuons
des tests de convergence ainsi que des comparaisons avec les résultats obtenus util-
isant d’autres méthodes actuelles. Finalement nous concluons avec une examination
des directions potentielles pour les recherches futures.
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CHAPTER 1
Introduction

The advection equation plays an important role in many scientific and industrial
applications; many physical phenomena are modelled using evolution equations which
often involve an advected quantity. For instance, the advection-diffusion-reaction
equation is used to model the behaviour of solute particles, densities or other physical
properties evolving due to diffusion and reaction while being passively transported
by an ambient velocity field. In the study of optimal transport, it is also possible to
generate a transport map by advecting a probability density. In fluid dynamics, the
Navier-Stokes and the Euler equations are used to model the behaviour of viscous
and inviscid fluids; in these equations, the non-linear “self-advection” of the fluid
velocity plays a central role.

The ubiquity of the advection equation and its wide range of applications moti-
vated a great number of mathematical investigations in particular in the design and
analysis of efficient numerical methods. Current methods can be roughly divided
into two approaches, namely using the Lagrangian or the Eulerian descriptions of
the flow. This duality is in fact a central theme in the framework presented in
this thesis. These two approaches differ in the reference frame used to describe the
fluid motion. Whereas Lagrangian methods aim at discretizing material parcels, for
which the time 0 space can be used as reference frame to label each particle, Eulerian
methods represent quantities on a fixed spatial domain, using the time t space as
reference frame. Each approach leads to a set of unique numerical properties with
their advantages and disadvantages. Lagrangian methods are generally less dissipa-
tive and computationally efficient while Eulerian methods have a more controlled
spatial resolution and convenient numerical representation at the cost of higher ar-
tificial dissipation which must be reduced using larger computationally demanding
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discretizations. The Characteristic Mapping (CM) method studied in this thesis is a
novel numerical framework which aims at exploiting the advantages of both the La-
grangian and Eulerian approaches; this is done by discretizing the backward flow map
of the transport, called the characteristic map. This map is in fact the Eulerian to La-
grangian coordinate transformation and allows for a semi-Lagrangian discretization
of the transport while keeping an Eulerian spatial representation of all transported
quantities. The resulting scheme is non-dissipative, preserves all scales and provides
arbitrary resolution of the solution at the cost of fast coarse grid computations.

We will study the application of the CM method to several problems in computa-
tional sciences involving a transport equation. The starting point of this investigation
is the linear advection equation

∂tφ+ (u · ∇)φ = 0, (1.1)

φ(x, 0) = φ0(x), (1.2)

where φ is a scalar advected quantity and u is a given advection velocity field. This
equation models the passive transport of a quantity φ under the flow generated by
u. For instance, φ can represent a solute density or temperature field of a fluid,
the equation then models the evolution of these fields when diffusion is negligible.
The advection equation is hyperbolic in nature and has a characteristic structure
which defines a domain of dependence for the solution at each specific point in time
and space. It is therefore a stability requirement that the domain of dependence
of the numerical scheme contains the true domain of dependence. Classical Eule-
rian schemes for the linear advection equation include the Courant-Isaacson-Rees
upwind schemes [33], and the Lax-Wendroff and Lax-Friedrich methods. The size
of the time steps in explicit Eulerian schemes are typically restricted by a Courant-
Friedrichs-Lewy (CFL) condition, this condition guarantees that at each step, the
exact characteristic curves of the solution at each grid point do not exit the domain
of dependence of the numerical scheme. These schemes are based on low order spatial
representations, indeed, as illustrated by Godunov’s order barrier theorem, higher
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order linear schemes suffer from stability issues due to the formation of spurious
oscillations near a discontinuity or high-gradient feature of the solution. The Essen-
tially Non-Oscillatory [57] (ENO) schemes and its weighted variant [69,80] (WENO)
as well as their corresponding formulations on unstructured meshes [44, 63] are a
popular family of methods for cases where solutions may contain discontinuities; a
thorough overview of these methods is given in chapter 5 of [9]. These methods
achieve higher order convergence by using wide adaptive stencils which are spatially
biased according to local smoothness of the solution in order to avoid discretizing a
discontinuity. As a result, the ENO and WENO methods yield uniformly high order
accurate solutions while resolving discontinuities and high gradients without generat-
ing spurious oscillations. These numerical properties make the methods suitable for
solving hyperbolic equations where regions of discontinuities mix with smooth struc-
tures of the solution. For instance, the ENO and WENO schemes are used in the
numerical solution of incompressible [117,125] and compressible [46,109,110,126] Eu-
ler and Navier-Stokes equations. The non-oscillatory schemes have also been applied
to various advection dominated problems, and Hamilton-Jacobi equations [68, 93].
The ENO and WENO methods achieve high order convergence through the use of
wide stencils which need to be adapted to avoid discontinuities, other approaches
instead rely on compact stencils and achieve high accuracy using higher deriva-
tives information. For instance, high degree piecewise Hermite polynomials are used
in [2, 3, 56] to represent and evolve solutions of advection dominated and hyperbolic
PDEs, in these cases, the high degree of the interpolating polynomials increase ac-
curacy in smooth regions of the solution and the compact stencil and semi-norm
reducing properties of the scheme provide stability even in the case of non-smooth
solutions. The semi-Lagrangian gradient-augmented level-set (GALS) [89] and Jet
schemes [108] methods also employ a compact discretization stencil and achieve high
order accuracy by evolving a functional representation of the solution in higher reg-
ularity space. In particular, these methods use the characteristic structure of the
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advection equation to perform time evolution of the numerical solution and there-
fore have a natural upwinding property with an optimally local discretization and
a superconsistent scheme for evolving the solution in a finite-dimensional function
space. Additionally, the semi-Lagrangian structure imply that they are typically not
restricted by the CFL constraint. This approach has since then been extended for
adaptive multi-resolution grids [75] as well as for unstructured meshes [17]. The CM
framework studied in this thesis is based on these methods; it is novel in that the
discretized quantity is the backward-in-time flow map of the transport velocity which
serves as the Eulerian to Lagrangian coordinate transformation. For the linear scalar
advection equation, this has been studied in [74] and [84], where the time t solution
of the advection is obtained from the function composition of the characteristic map
with the initial condition. In particular, in [84], this approach was used to generalize
the level-set formalism [92] in order to evolve implicitly defined surfaces and general
spatial sets with arbitrary resolution using efficient coarse grid computations.

In this thesis, we study the application of the CM framework to more general
transport equations, in particular to the Lie-advection of differential forms. This
uses the fact that the characteristic map is the backward flow map of the transport
velocity, therefore, all forms which are Lie-advected by the velocity can be written as
the pullback of the initial condition by the map. The theoretical preliminaries for this
formulation will be studied in chapter 2. The notion of Lie-advection for differential
forms can be applied to various evolution equations arising from conservation laws.
For instance, a positive density field evolving under its continuity equation can be
seen as the Lie-transport of a volume-form. We will study this in chapter 3 in the
context of equiareal parametrizations for moving surfaces. In contrast to [84], the
surfaces in chapter 3 are defined explicitly through a parametrization function and
are represented using marker points obtained by sampling the parametric space. The
explicit representations can be useful in cases where the surface topology does not
admit an implicit representation, for instance for non-orientable surfaces. However,
due to the parametric nature of the approach, surface representation can deteriorate
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due to the ambient flow deformations and marker point density can become highly
uneven. The main idea of chapter 3 is to penalize the resulting changes in the
area-element of the parametrization by treating the surface area as a volume-form
on the parametric space. An equiareal redistribution on the parametric space is
then computed to uniformize the surface; in this case, a heat equation written as
a continuity equation is used to equidistribute the area element, the characteristic
map computed from the associated velocity field then acts as the redistribution map.
This is related to the optimal transport problem concerned with finding an optimal
mapping between two probability measures. In particular, the CM method uses
an approach similar to the fluid mechanics intepretation of the Monge-Kantorovich
problem studied in [12, 13] where a transport velocity is selected to generate the
redistribution map. The diffusion velocity used in chapter 3 can be compared with
the JKO scheme studied in [71], in this sense, the redistribution method studied here
can be seen as a penalization on changes in area-element through a Wasserstein-2
gradient descent of the Gibbs-Boltzmann entropy.

An important application of the CM framework is the numerical study of fluid
dynamics. Turbulence remains one of the oldest and most challenging research prob-
lems in both pure and applied science; the high Reynolds number limit of the Navier-
Stokes equations is of particular interest and developments in scientific computing are
useful in advancing the frontiers of our understanding of fluid dynamics in a highly
nonlinear regime. However the multiscale nature of incompressible inviscid fluids
requires the development of specialized algorithms. Among the Eulerian approaches
using a fixed computational grid, Fourier pseudo-spectral methods are very popular
due to their high accuracy and fast computational speeds [21,22,39,65,66,76,81,91].
However, purely Eulerian schemes are typically constrained by the CFL condition,
this implies that complexity of simulations with N grid points per spatial dimension
is proportional to N3 in 2D and N4 or even worse in 3D [106]. Furthermore, Eulerian
methods are often prone to artificial dissipation or require some viscous or hypervis-
cous regularization for stability (see e.g. discussion in [40]). Special care needs to
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be taken in the spatial resolution of the solution and when using spectral dealiasing;
spatial adaptivity and parallel implementation can play an important role in improv-
ing computational efficiency [55, 75, 85]. A comparative study of spatial discretiza-
tion and spectral dealiasing methods for the Euler equations can be found in [51].
Generally, high-resolution computational grids are needed to reduce the effects of
dissipation, currently pseudo-spectral simulations with up to 122883 grid points can
be performed [67]. On the other hand, Lagrangian and semi-Lagrangian methods do
not suffer from the time-step restrictions due to the CFL condition (see e.g. Staniford
and Côté [112]) and can be less computationally demanding for advection dominated
problems. Purely Lagrangian methods include the vortex blob [11,27,62,90], vortex
particle and vortex filament methods [30, 100, 101, 118]. These methods are charac-
terized by a particle-based discretization of the vorticity field; the motion of the fluid
is idealized as the transport of a collection of point vortices or compactly supported
vortex blobs and the velocity of each particle can be computed from vortices using
the Biot-Savart law. These methods are inherently spatially adaptive since the repre-
sentation of the vorticity field is reduced to a collection of point vortices concentrated
where the vorticity is important. Furthermore, they are more effective in avoiding
artificial viscous dissipation compared to their Eulerian counterparts. For instance,
Bowman, Yassaei and Basu [18] recently proposed a fully Lagrangian scheme based
on the relabelling symmetry of the advection problem, this scheme is characterised
by a non-dissipative transport of the solution and the conservation of all Casimir
invariants. Some drawbacks of the Lagrangian approach include the difficulty in
the representation and controlled resolution of Eulerian quantities. Methods for
transferring Lagrangian quantities to fixed Eulerian grids include the vortex-in-cell
methods [28,31,32,104] and the Cauchy-Lagrangian frameworks [97]. The approach
we study in this thesis uses the CM method as solution operator for the transport
of the vorticity field in the Euler equations. Indeed, through the Kelvin circulation
theorem, by writing the vorticity as a differential 2-form, the Euler equations can be
interpreted as the Lie-advection of the vorticity under the fluid velocity. This allows
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for the evaluation of the time t vorticity field using pullback by the characteristic
map. In the 2D case, for incompressible flows, the vorticity 2-form can be identified
with an advected scalar function and the method consists of a coupling of the CM
method for scalar advection and a Biot-Savart law yielding the velocity field from a
given vorticity. In the 3D case, the Lie-advection of the vorticity 2-form depends on
the local material deformation of the flow which involves the Jacobian matrix of the
characteristic map. In both cases, a key feature of this approach is that numerical
viscous dissipation is avoided since the vorticity is reconstructed by map pullback at
each step; we will show that the error is instead dispersive and the modified equa-
tion is related to the Euler-α equations. As a consequence of the CM approach, the
numerical solution preserves all fine scales and provides arbitrary spatial resolution
of the solution.

The remainder of this thesis is organized as follows. In chapter 2, we go over some
theoretical and numerical preliminaries needed for the formulation of the CM method
as well as its application to the linear advection equation previously studied in [84].
In chapter 3 we examine the application of the CM method to a density transport
problem in the context of generating equiareal parametrizations for a moving surface.
In chapter 4, we extend the CM method for linear advection to the incompressible
Euler equations in two-dimensional space. In its vorticity form, the 2D Euler equation
consists in a scalar vorticity advection under the corresponding velocity field obtained
from Biot-Savart law. In chapter 5, we study the extension of the CM method for
2D Euler equations to the 3D case where the vorticity is no longer an advected
scalar quantity. Instead, as a differential 2-form, the vorticity is Lie-advected as
consequence of the Kelvin circulation theorem. Lastly, chapter 6 contains some
concluding remarks and proposes potential directions for future research.

7



CHAPTER 2
Preliminaries

2.1 Mathematical formulation of the Characteristic Mapping method

In this section, we summarize some of the preliminary notions regarding the
Characteristic Mapping framework based on which the later chapters are built. The
starting point of the Characteristic Mapping (CM) framework is the linear advection
equation. We consider an advection equation on a domain U ⊂ Rd with a given
time-dependent velocity field u : U×R+ → Rd satisfying a no penetration boundary
condition u · n∂U = 0 on ∂U , where n∂U is the boundary normal. For most of
this thesis, the domain is simply assumed to be a periodic d-torus and no boundary
conditions apply. The linear advection equation under this velocity field is given by

(∂t + u · ∇)φ = 0, (2.1a)

φ(x, 0) = φ0(x), (2.1b)

for some initial condition φ0. In this case, φ is a transported quantity under the flow
of u.

Solutions to this linear advection equation can be expressed using the method
of characteristics. We consider characteristic curves γ : R+ → U satisfying the
following ODE

d

dt
γ = u(γ, t), (2.2a)

γ(0) = γ0, (2.2b)

for some initial position γ0 ∈ U .
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For a solution of equation (2.1), one can check that the advected quantity φ is
constant along characteristic curves, that is

d

dt
φ(γ(t), t) = 0, (2.3)

or equivalently

φ(γ(t), t) = φ0(γ0). (2.4)

We define the characteristic map X[t1,t2] associated with the velocity u to be
the solution operator for the characteristic curves in the interval [t1, t2], that is,

X[t1,t2](γ(t1)) = γ(t2) (2.5)

for all times t1, t2 and for all characteristic curves γ. One can check that, keeping t0
fixed, the characteristic map satisfies the following equations

∂tX[t0,t] = u(X[t0,t], t), (2.6a)

(∂t + u · ∇)X[t,t0] = 0. (2.6b)

The map X[t1,t2] can be thought of as a transformation of the space from time
t1 to t2 following the flow. There is no requirement that t1 < t2, if t1 < t2, the
map is forward in time and we will call it the forward map, if t1 > t2, we call it
the backward map. It is straightforward to check the following properties of the
characteristic maps:

X[t1,t2] ◦X[t0,t1] = X[t0,t2], (2.7a)

X−1
[t0,t1] = X[t1,t0], (2.7b)

X[t0,t0] = id, (2.7c)

for arbitrary t0, t1, t2. Indeed, for a given divergence-free velocity field u, the charac-
teristic maps X are elements of the Lie group of volume-preserving diffeomorphisms
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SDiff(U), with the space of divergence-free vector fields as its Lie algebra. For sim-
plicity of notation, we will denote the forward map X[0,t](x) by XF (x, t) and the
backward map X[t,0](x) by XB(x, t). As a function of t, we can formally see XF as
the integral curve of the time-dependent velocity field u on SDiff(U) starting from
the identity map; XB is the corresponding inverse element of the group for each
time t. In the context of the Euler equations, the treatment of incompressible invis-
cid flow as geodesic curves of the Lie group of volume preserving diffeomorphisms
can be found in the work of Arnold [4].
Remark 2.1.1. We note that the notation for the backward map X[t,0] or more gen-
erally, X[t2,t1] for t2 > t1 refers to a map going backward in time. The corresponding
interval in the subscript is therefore written in reverse order to remind the fact that
the map is backwards in time. For most of the methods in this thesis we will only
make use of the backward map in the numerical methods. The forward map would
correspond instead to a Lagrangian approach in contrast to the Eulerian and semi-
Lagrangian methods presented here.

The characteristic maps act as solution operators to the transport equations.
Consider the advection equation (2.1). From the method of characteristics, we know
that d

dt
φ(γ(t), t) = 0 for any characteristic γ given by (2.2). It follows that

φ(x, t) = φ0(X[t,0](x, t)). (2.8)

The above approach for solving the linear advection equation was studied in [84]
where it was applied to the linear advection of level-set surfaces as well as general
implicitly defined arbitrary sets.

As illustrated in figure 2–1, the time t values of the advected quantity (shown
in background colors) is obtained by picking the value of φ0 at the time 0 location
XB(x, t). Indeed, XB allows us to switch between Lagrangian and Eulerian frames.
One can think of XB as identifying the characteristic curve passing through x at
time t and returning the location of the corresponding particle in U at time 0 which,
by convention, we use as the Lagrangian reference space. In geometric terms, since
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φ is Lie-advected by u, i.e. (∂t + Lu)φ = 0, we have that φ is given by the pullback
XB

∗φ0. This is also called the relabelling symmetry or back-to-label map. Here, φ0

is a 0-form, however this is true for higher order forms and will be our main tool for
solving the linear and nonlinear transport equations in this thesis.

(a) Initial condition. (b) Domain
deformation from
characteristic map.

(c) Pullback of the
initial condition by

the map.

Figure 2–1: Evolution of the characteristic map acting on the initial condition.

The main approach of the CM framework is to use the fact that the pullback
action by the mapXB is the solution operation for the Lie-advection equation under
the velocity field u, in the sense that for any initial condition φ0, the solution φ to
(∂t+Lu)φ = 0 is given by the pullback XB

∗φ0. The numerical method then consists
in discretizing the evolution equation (2.6b) in order to approximate the map XB.
The numerical scheme is based on the group property (2.7a) which is discretized
according to the following general framework. Throughout this thesis, we will denote
by the script letter X the numerical approximation of the characteristic map in some
finite-dimensional function space, the superscript n on a variable will denote the
evaluation of said variable at time tn and the tilde indicates an approximation or
modified equation. The numerical framework comprises of the following parts:

1. A one-step map is approximated using a time-integration scheme: X̃[tn+1,tn](x) ≈
x − ∆tũn(x). In the case of linear advection ũn is provided, and in the case
of the Euler equations or nonlinear advection, ũn will be computed and will
depend on XB.
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2. A time update for the characteristic map based on the group property (2.7a).
The map X [tn+1,0] at time tn+1 will be given by

X [tn+1,0] = H
[
X [tn,0] ◦ X̃[tn+1,tn]

]
, (2.9)

using some spatial interpolation operator H which projects smooth function to
a discretization function space V . When V is the space of Hermite cubic splines,
equation (2.9) is the Gradient-Augmented Level-Set [89] (GALS) method.

The numerical solution to the advection problem (2.1) is then given by

φ̃n(x) = φ0(X [tn,0](x)). (2.10)

We can further use the group property (2.7a) to decompose the characteristic map.
For some fixed remapping times 0 = T0 < T1 < . . . < Tm = t, we have

X[t,0] = X[T1,0] ◦X[T2,T1] ◦ · · ·X[t,Tm−1], (2.11)

which we can use to define the following numerical solution

φ̃n = φ0 ◦X [T1,0] ◦X [T2,T1] ◦ · · ·X [t,Tm−1]. (2.12)

We note the difference between this decomposition and the time-stepping scheme in
(2.9): In (2.9) the group property is used to write the time stepping as the composi-
tion of a time t map with a one-step map over ∆t, the result of this composition is
immediately projected into a finite dimensional function space by interpolation. In
(2.12), each submap is a function in V , the composition is not projected, rather it is
kept in this expanded form to increase the numerical resolution. We will study this
in more details in chapter 4.

The numerical schemes for the methods presented in this thesis all follow the
above framework, the specific schemes used for defining the velocity and the one-step
map will be dependent on the needs of each problem. In all cases, the interpolation
operator H plays a central role, we examine this in detail in the next section.
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2.2 Hermite Interpolation

In this section, we summarize the Hermite cubic interpolation scheme in d-
dimensional space. For simplicity, we assume that the domain is the d-dimensional
torus, U = Td which is discretized using a Cartesian meshgrid denoted G. We label
the grid points of G by xi, with each xi located at the lower corner of the cell
Ci; i stands for the index vector i = (i1, i2, . . . , id). Given a grid G, we define the
Hermite cubic interpolation operator using piecewise smooth basis functions which
are d-cubic in each cell Ci. These basis functions are constructed by tensor product
of the 1D Hermite cubic basis functions Qj, with Q0 interpolating function value,
and Q1, the derivative:

q0(s) = (1 + 2|s|)(1− |s|)2, (2.13a)

q1(s) = s(1− |s|)2, (2.13b)

Qj(s) = qj(s)1[−1,1](s), (2.13c)

where 1 denotes the indicator function. The Q0 and Q1 functions, shown in figure
2–2, form the shape functions corresponding to the function value and derivative
interpolation on a 1D grid. They have the property that ∂aQb(s) = δab δ

0
s for a, b ∈

{0, 1} and s ∈ {−1, 0, 1}. The d-dimensional shape functions on the grid G are then
defined by the tensor product

Hi
a(x) =

d∏
m=1

Qam

(
xm − xmi

∆xm

)
(∆xm)am (2.14)

where x = (x1, x2, . . . , xd), i = (i1, i2, . . . , id) and a = (a1, a2, . . . , ad).
On grid points xr of G, these basis functions satisfy

∂bHi
a(xr) = δbaδ

i
r. (2.15)

The Hi
a functions are supported on the 2d cells surrounding the grid point xi,

they are d-cubic in each cell and are globally C1 with continuous mixed derivatives
of the form ∂b with bm ≤ 1 for m = 1, 2, . . . , d. We define the Hermite cubic
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Figure 2–2: 1D Hermite cubic basis functions.

interpolation operator for a smooth function f to be

HG[f ](x) =
∑

a∈{0,1}d

∑
s∈G

∂af(xi)H
i
a(x). (2.16)

The minimum regularity requirement for this to be well-defined is that ∂bf is con-
tinuous for all mixed partials involving at most one derivative in each Cartesian
coordinate. We denote K1(U) =

{
f ∈ C1(U) | ∂bf ∈ C0(U) for b ∈ {0, 1}d

}
, then

HG : K1(U) → K1(U) is a projection operator. Furthermore, for f ∈ C4(U), it is
known that

‖∂af − ∂aHG[f ]‖∞ . ∆x4−|a|‖f‖C4 , (2.17)

where |a| = a1 + a2 + · · ·+ ad.
Remark 2.2.1. The Hermite cubic interpolation is a special case of the degree 2m+1

piecewise Hermite interpolants. Higher order interpolants have a similar construction
to the Hermite cubic case and the interpolation error is given by

‖∂af − ∂aHG[f ]‖∞ . ∆x2m+2−|a|‖f‖C2m+2 , (2.18)

For the characteristic maps, X is given by d coordinate functions. We define
the discretization subspace V = (K1(U))

d and use coordinate-wise Hermite cubic
interpolation as interpolation operator for the evolution of the characteristic maps.
Here we note that V is not necessarily contained in SDiff(U) or even Diff(U) as there

14



is no a priori constraints on the determinant or invertibility of the interpolated
map. However, when interpolating a volume-preserving diffeomorphism, the error
on the Jacobian determinant is O(∆x3) and therefore, for sufficiently well-behaved
maps, the interpolant will be a diffeomorphism. For longer time simulations, the
characteristic map will develop strong small scale features which cannot be resolved
using a fixed grid, in those cases, a remapping method will be employed to decompose
the transformation; we will examine this in later chapters.

The time-stepping scheme for the characteristic map given in equation (2.9)
relies on the interpolation of a composition of one-step map X̃[tn+1,tn] with the X [tn,0]

map which is defined as a Hermite interpolant. The following lemma from [121]
for the general order 2m + 1 Hermite interpolation allows us to estimate the local
truncation error of this scheme.
Lemma 2.2.2. For f : U → R smooth and T : U → U a diffeomorphism with
T − I = O(ε), that is T is an order ε perturbation of the identity map. We have
that, in the limit of small ε,∥∥∂~α (HG[f ◦ T ]−HG[f ] ◦ T )

∥∥
∞ = O(ε∆x2m+1−|~α|) (2.19)

Proof. We write T as T (x) = x+ εv(x). We consider first the Taylor expansion of
f at x:

f(x+ εv(x)) = f(x) +
∑
i∈{1,2}

εvi(x)∂if(x) +
∑

i,j∈{1,2}

vi(x)vj(x)
ε2

2
∂i,jf(x) +H.O.T..

(2.20)

Applying HG to f ◦ T and to f , we get

HG[f ◦ T ] = HG[f ] +
∑
i∈{1,2}

εHG[vi∂if ] +
ε2

2
HG[vivj∂i,jf ] +H.O.T., (2.21a)

HG[f ] ◦ T = HG[f ] +
∑
i∈{1,2}

εvi∂iHG[f ] +
ε2

2
vivj∂i,jHG[f ] +H.O.T.. (2.21b)
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We omit the interpolation on (2.21a) for all order ε and higher terms as replacing
the interpolant with the interpolated function contributes a O(ε|~α|∆x2m+2), |~α| ≥ 1

term which we absorb in the higher order terms. Similarly, we can use a Taylor
expansion of HG[f ] in (2.21b) since the error incurred from extending an order |~α|
derivative of the Hermite interpolant outside a cell is of order ∆x2m+2−|~α| and hence
can also be absorbed in the higher order terms. Taking the difference of the two
equations in (2.21), we get

HG[f ◦ T ]−HG[f ] ◦ T = ε∂i(f −HG[f ])vi +
ε2

2
∂i,j(f −HG[f ])vivj +H.O.T..

(2.22)

In light of (2.18), we have that

HG[f ◦ T ]−HG[f ] ◦ T = O(ε∆x2m+1). (2.23)

and therefore ∥∥∂~α (HG[f ◦ T ]−HG[f ] ◦ T )
∥∥
∞ = O(ε∆x2m+1−|~α|) (2.24)

2.3 Tools from Differential Calculus

The CM method takes a geometric approach to the advection problem, the
central heuristic of the approach is to express conservation laws in evolution equations
as a Lie-advection under some velocity field. For this purpose, the language of
differential forms provides a powerful tool to simplify the formulation as well as to
make the intuition more apparent. We present in this section a short summary and
formal exposition of the differential calculus tools used in this thesis. Detailed study
of these notions can be found in standard textbooks (e.g. Lang [78]).

Differentiable Manifold: A differentiable manifold is a topological manifold
M endowed with an atlas of charts (Ui, φi) where i ∈ I, Ui ⊂ M open, form an
open cover of M . The charts φi : Ui → Rd are homeomorphisms mapping local
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patches of M to Euclidean space. A manifold is smooth if the transition functions
φi ◦ φ−1

j : φj(Ui ∩ Uj) ⊂ Rd → φi(Ui ∩ Uj) ⊂ Rd are smooth diffeomorphisms of the
corresponding subsets in Rd. In this thesis, the manifolds studied are either the flat
d-torus or subsets of Euclidean space, we will use an atlas comprising of a single
global chart (U, φ) with φ being the identity map (or inclusion map).

Tangent and Cotangent Spaces: For a point p ∈M , the tangent space TpM
at p is a vector space of tangent vectors. A tangent vectors at p is defined as an
equivalence class of differentiable curves passing through p; two curves are equivalent
if for all smooth functions f : M → R, the 1st derivative of f along the curve are the
same at p. In this thesis, the tangent spaces are identified with Rd. The dual space
of TpM , the space of linear functionals on the tangent space is the cotangent space
T ∗pM . A vector field assigns a vector to each point on the manifold, u : M → TM ,
u : p 7→ u(p) ∈ TpM is a section of the tangent bundle TM = ∪p∈M{p} × TpM .
Similarly, a 1-form assigns a covector to each point, η : M → T ∗M is a section of the
cotangent bundle. For an oriented curve Γ with parametrization γ : (0, 1)→ Γ ⊂M ,
a 1-form η can be integrated against Γ:∫

Γ

η =

∫ 1

0

η(γ̇)dt, (2.25)

which heuristically yields a “measurement” of the 1-dimensional oriented submanifold
Γ by η as this definition is parametrization-independent. The pairing η(γ̇) is also
denoted ιγ̇η where ι is the interior product.

Pushforward and Pullback: Given two manifolds M and N and a smooth
map F : M → N , the pushforward F∗ at p ∈M is a linear map F∗ : TpM → TF (p)N .
In coordinates this corresponds to left-multiplication by the Jacobian matrix of F .
The pullback F ∗ : T ∗F (p)N → T ∗pM is the dual map of F∗ given by

(F ∗η)(u) = η(F∗u). (2.26)

17



It follows that for a curve Γ, ∫
Γ

F ∗η =

∫
F (Γ)

η. (2.27)

k-forms: Point-wise, a 1-form is a linear functional on 1-vectors, similarly, a
k-form is a linear functional on k-vectors. One can see k-forms as the alternating
parts of general k-tensors in the sense that for a k-vector (u1,u2, . . . ,uk), the k-form
ω satisfies

ω(u1,u2, . . . ,uk) =
1

k!

∑
σ∈Sk

sgn(σ)ω(uσ(1),uσ(2), . . . ,uσ(k)). (2.28)

Let K be the oriented k-dimensional subspace of Rd spanned by {ui}ki=1 and Kσ

the oriented subspace spanned by {uσ(i)}ki=1, we note that sgn(σ) is the determinant
of the permutation matrix mapping K to Kσ, i.e. that the above alternating sum
removes all dependence on the ordering of the k vectors except the orientation of the
spanned subspace. This allows us to view k-forms as linear functionals on oriented
k-dimensional parallelograms Rd. Higher degree forms can be obtained from combi-
nations of lower degree forms, the operation which preserves the orientation property
above is the wedge product. The wedge product is bilinear and for given η a k-form,
and ω an l-form, the product η∧ω is a (k+ l)-form and satisfies η∧ω = (−1)klω∧η.
Generally, for arbitrary k and l-forms η and ω, we have

(η ∧ ω)(u1,u2, . . . ,uk+l)

=
∑

σ∈Sk,k+l

sgn(σ)η(uσ(1),uσ(2), . . . ,uσ(k))ω(uσ(k+1),uσ(k+2), . . . ,uσ(k+l)). (2.29)

The pullback integration also generalizes to k-forms, given a k-dimensional ori-
ented submanifold S, we have ∫

S

F ∗η =

∫
F (S)

η. (2.30)
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One can similarly deduce that pullback distributes through the wedge product:
F ∗(η ∧ ω) = F ∗η ∧ F ∗ω.

Exterior derivative: The exterior derivative d maps a k-form to a (k + 1)-
form. It satisfies the following axioms: For f a 0-form (scalar function), u a 1-
vector, df(u) = u(f). For arbitrary forms η and ω, d(dη) = 0 and d(η ∧ ω) =

dη ∧ ω + (−1)kη ∧ dω where k is the degree of η. A form η is called exact if there
exists a ω such that η = dω; η is called closed is dη = 0. The key result we will use
on the exterior derivatives is the generalized Stokes’ theorem:∫

S

dω =

∫
∂S

ω. (2.31)

This also gives a geometric interpretation for the commutativity of pullbacks and d:
F ∗dη = dF ∗η since F (∂S) = ∂F (S).

Lie derivative of k-forms: The Lie derivative allows us to compare quantities
at different locations on the manifold without a metric. Given a vector field u on
M , for a short time t, u generates a flow map Φt on M , Φt : M → M such that
d
dt

Φt(p) = u(p). The Lie derivative of a k-form ω under u (or the flow map Φt) is
given by

Luω =
d

dt
Φ∗tω. (2.32)

The Lie derivative is linear in u and ω with −Luω = L−uω = d
dt

Φ∗−tω. From
the definition by pullback, we also have that Lie derivatives commute with exterior
derivatives. If we consider a time-dependent k-form given by ωt = Φ∗−tω0 where Φ−t

is the −t flow of u, then we have ∂tω + Luω = 0; this gives us that the pullback by
the backward-in-time flow map is the solution operator for Lie advection. This is a
main idea of the characteristic mapping method, with the exception that u will also
be time-dependent.
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Cartan’s Homotopy Formula: The Cartan formula allows for the computa-
tion of a Lie derivative in terms of exterior derivatives and interior products:

Luω = ιudω + dιuω, (2.33)

where the interior product ιu maps k forms to (k − 1) forms by inserting u as first
vector of the k-vector the k-form will act on.

We sketch the idea of this formula from a geometric point of view (see Arnold [5],
section 36) as it shows some of the heuristics of the CM approach. Let ω be a k-
form, let S be a k-dimensional oriented submanifold in M . We consider the product
manifold N = M ×R and a (k+ 1)-dimensional submanifold S[0,ε] obtained from the
homotopy generated by Φt, the forward flow of u, that is, S[0,ε] = ∪t∈[0,ε]Φt(S)×{t}.
We can decomposed the boundary of S[0,ε] into the following parts:

∂S[0,ε] = (Φε(S)× {ε}) ∪ (S × {0}) ∪D,

whereD = ∪t∈[0,ε]Φt(∂S)×{t}, that is the top and bottom slices plus the “cylindrical”
boundary D generated by the homotopy of ∂S under the flow Φt.

Let π : N → M be the projection map π : (p, t) 7→ p. We have that π∗ω
is a k-form on N obtained by extending ω in the t dimension (constant in t). We
integrate the (k + 1)-form dπ∗ω on S[0,t] and use Stokes’ theorem to get∫

S[0,ε]

dπ∗ω =

∫
∂S[0,ε]

π∗ω =

∫
π(Φε(S)×{ε})

ω −
∫
π(S×{0})

ω +

∫
D

π∗ω. (2.34)

The t-dimension is the last dimension and is therefore the outer integral, we change
order of integration to write the above as an operator on S, changing the order
of integration corresponds to a permutation of the dimensions so the sign of the
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permutation is multiplied.∫
S[0,ε]

dπ∗ω = (−1)k
∫
S

∫ ε

0

ιudω = (−1)k
∫
S

(Φ∗εω − ω) + (−1)k−1

∫
∂S

∫ ε

0

ιuω

⇒
∫
S

(ιudω + dιuω) = lim
ε→0

1

ε

∫
S

(Φ∗εω − ω) =

∫
S

Luω, (2.35)

where the inner integral is parametrized using t 7→ (t,Φt(p)), and we used that the
tangent vector of this parametrization satisfies π∗( ∂∂t + ∂tΦt) = u to express the
integral using the interior product ιu.

In regard to the CM method, one key fact we notice is that the term dιuω

comes from the integral over π(D) which is the region “swept” by the boundary ∂S
under the flow of u. The integral over this region corresponds to the “net flux”
of ω though the moving boundary (the boundary term in the Reynolds transport
theorem). This suggest that if ω is closed, then it is Lie advected by u if u is
a “flux-cancelling” velocity field in the sense that dιuω = 0 (or dιuω = −∂tω in
time-dependent equations). This is in fact the initial motivation for the method
presented in chapter 3 where the volume form ρ evolving under the heat equation is
Lie-advected by the “flux-cancelling” or “flux-matching” velocity u = −∇ log(ρ).
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CHAPTER 3
Diffusion-driven Particle Management

The CM method for linear advection can be used for the evolution of implicitly
defined level-set surfaces through the advection of the level-set function, this was
studied in [84]. In this chapter, we will instead consider an explicit parametrized
representation of evolving surfaces.

The parametrization of a curve or surface has many applications in computer
graphics, computational geometry and geometric modelling. In scientific computing,
where physics modelling and simulation require solving surface PDEs, a parametric
representation is often useful for simplifying the surface equations or for generating
computational meshes. This parametrization is often time-dependent such as in the
case of fluid interfaces in multiphase flows, where the extensive deformation of the
surfaces can deteriorate their numerical accuracy. In this context, the numerical
resolution of the surfaces are of special importance since the simulation of interfacial
dynamics often relies on solving stiff, high order PDEs such as the Cahn-Hilliard
equations [47,48], where proper spatial resolution is crucial for capturing topological
transitions and for improving computational efficiency. In order to maintain a good
representation of a parametric surface, current research largely focus on two main de-
sirable properties for the parametrization: angle-preservation and area-preservation.

An angle-preserving, or conformal parametrization guarantees that the pulled
back metric on the parametric space differs from the flat metric only by a scalar
multiplicative factor. There has been extensive research in the field of conformal
maps and application to surface parametrization. Conformal parametrization of
genus zero surfaces and its application to patching more complicated surfaces has
been studied in [53, 54]. For a given surface, conformal parametrizations are not
unique and are generally not area-preserving. The area stretching will depend on
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the chosen conformal parametrization and on the intrinsic curvature of the surface; it
may even grow exponentially in protruding regions of the surface. This motivated [70]
to design a method which generates a global conformal parametrization minimizing
some chosen energy functional of the area element.

For curved surfaces, it is generally not possible to find a parametrization which
is both conformal and area-preserving. For certain applications such as surface sam-
pling, an equiareal parametrization is preferred as the density of the sample points
will be uniform over the surface. For many Lagrangian particle methods used in in-
terface tracking, appropriate particle redistribution and reinitialization methods are
necessary to maintain the accuracy of the surface representation and to prevent arti-
ficial topological changes [16,58]. Methods for computing equiareal parametrizations
include [7, 123], which propose a relaxation algorithm based on some stretch factor
computed from mesh point distances. Winslow’s rezoning algorithm [119] solves a
system of variable diffusion equations on the coordinate functions in order to pre-
scribe the Jacobian determinant. Many of these approaches can also be expressed in
the framework of adaptive moving mesh methods where a moving-mesh PDE is used
to evolved a numerical mesh in order to better resolve the different scales that a solu-
tion to an evolution equation may exhibit [64]. For instance, in [15], a moving-mesh
PDE was employed as a redistribution map to reinitialize sample point positions in
order to resolve the multiscale solutions generated from convection dominated flows.

In this chapter, we study the application of the CM framework to evolving
an advected surface while preserving the equiareal property of the parametriza-
tion. The approach comprises mainly of two parts: First, we will compute the
forward characteristic map of the velocity field in the ambient space. This gives a
Lagrangian description of the moving interface as points on the initial surface can
be mapped to their time t location using the map. From a parametric point of view,
the parametrization function of the time t surface is simply given by the composi-
tion of the initial parametrization with the forward map. Secondly, we will compute
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a deformation map of the reference space of the parametrization in order to redis-
tribute the sample points. In order to achieve this, we define a probability density
function on the parametric space, this density is a scalar multiple of the area element
associated to the surface parametrization and will be interpreted as the initial con-
dition of a diffusion equation whose solution will tend to the uniform distribution.
Our approach is then to compute the backward characteristic map associated to this
diffusion equation, written in conservation form; the resulting redistribution map is
then a transport map moving the initial density, i.e. the surface area-element, to a
uniform density. This redistribution map is pre-composed with the parametrization
function to generate an equiareal parametrization. Note that since the image space
of the parametrization is unchanged, this redistribution does not affect the accuracy
of the surface location but improves its numerical representation.

The idea of diffusion flows has been used extensively outside the context of
surface parametrization. For fluid simulations, the diffusion velocity method, as a
generalization to particle methods, has seen many applications in numerical simu-
lations of transport-dispersion and of viscous flows, for instance in [77, 88]. Further
extensive theoretical and numerical analysis for the blob-particle method for linear
and non-linear diffusion can also be found in [24]. It is well-known that the dif-
fusion equation can be viewed as the L2 gradient descent of the Dirichlet energy
functional, this allows for fast and robust methods that approximate an uniform
redistribution of the density. In the context of optimal transport, the diffusion equa-
tion can also be seen as a gradient descent of the Gibbs-Boltzmann entropy under
the Wasserstein-2 metric as analysed in [71]. There has been extensive research in
the field of optimal transport specifically concerning gradient descent and geodesic
flows [14, 14, 23, 25, 96]. Notably, the fluid mechanics interpretation of the Monge-
Kantorovich problem in [12,13] is most closely related to the CM framework presented
in this paper. An overview of the main concepts in optimal transport and gradient
flows in the space of probability densities can be found in [103] and more complete
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surveys in [1, 102, 116]. In the context of generating equiareal parametrization, the
optimal transport methods have also been investigated, for instance in [113,114,127].

The rest of this chapter is organized as follows. Section 3.1 presents the for-
mulation of the CM method for the transport of densities. Section 3.2 contains an
overview of the numerical implementation of the method along with some error es-
timates. We present in section 3.3 the application of this method for parametric
surface advection, and numerical results are presented in section 3.4. Finally, section
3.5 contains some concluding remarks.
3.1 Mathematical Formulation

3.1.1 Characteristic Mapping Method for Density Transport

We examine in this section the application of the CM method to the transport
of densities, that is, using the characteristic map as the solution operator for the Lie
transport of a volume-form. In this case, the assumption that the transport velocity
u is divergence-free is dropped since in the divergence-free case, the transport of
volume-forms will coincide with scalar advection.

For smooth, divergence-free velocity fields, the backward characteristic maps
given by (2.6b) are known to be diffeomorphisms for all times. Without the divergence-
free assumption on the velocity field, the diffeomorphism property is not guaranteed.
The evolution of the Jacobian determinant of the characteristic maps can be com-
puted along characteristic curves using Jacobi’s formula:

d

dt
det (∇XB(γ(t), t)) = tr

(
adj(∇XB)

d

dt
∇XB(γ(t), t)

)
(3.1)

= tr (−adj(∇XB) · ∇XB · ∇u(γ(t), t)) = − det(∇XB)∇ · u,

where adj denotes the adjugate matrix. That is

d

dt
log det(∇XB) = (∂t + u · ∇) log det(∇XB) = −∇ · u, (3.2)
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and the absence of finite-time blow-up of the time-integral of the divergence on all
characteristic curves is required for the characteristic maps to remain diffeomor-
phisms.

Under the assumption that the velocity u generates diffeomorphic characteristic
maps, we can extend the CM method to the density transport problem. Consider
the continuity equation

∂tρ+∇ · (ρu) = 0 ∀(x, t) ∈ U × R+, (3.3a)

ρ(x, 0) = ρ0(x). (3.3b)

For the purpose of particle management, we will restrict our attention to the
case of positive densities ρ bounded away from 0. That is, we assume there exists
some a > 0 such that ρ(x, t) ≥ a ∀(x, t) ∈ U × R+. We also assume that ρ0 is a
probability density, in particular, (3.3) implies that ρ will then remain a probability
density for all t.

The solution ρ(x, t) can then be obtained from the characteristic map as follows:

ρ(x, t) = ρ0(XB(x, t)) det∇XB. (3.4)

The submap decomposition (2.11) can also be applied to this pullback.
3.1.2 Density Redistribution

In this section we consider the deformation map XB in the context of measure
transport. Let m denote the uniform probability measure on U , that is, m(U) = 1

with constant density with respect to the Lebesgue measure. Let µ be the initial
probability measure continuous with respect to uniform with density ρ0dm. We
define µt as the pullback measure of µ by XB(·, t). That is, XB is a deterministic
coupling between the probability spaces (U,B, µ) and (U,B, µt). Throughout this
chapter, the subscript t following a variable will only denote the evaluation at time
t. From (3.3), we have that µt has density dµt = ρtdm.
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The characteristic map is generated from a chosen velocity field u. For instance,
one can use the Moser flow [34] given by

u(x, t) =
∇∆−1(ρ0 − ρ1)

(1− t)ρ0 + tρ1

, (3.5)

to generate a coupling between two strictly positive probability densities ρ0 and ρ1

such that X[1,0] moves the base density ρ1 to a target ρ0.
For the method presented here,XB will be a coupling between the target density

ρ0 and the uniform density. As a result, pullback byXB will “equidistribute” ρ0. For
parametrized curves and surfaces, ρ0 will correspond to the arclength or area-element
functions defined on U . Pre-composition of the parametrization with XB will then
yield an equiareal parametrization. We will examine this in further details in section
3.3.

The transport map is generated from a heat equation for the densities: ∂tρ =

ν∆ρ (with Neumann or periodic boundary condition, ν is the diffusion constant),
which we write as a continuity equation:

∂tρ+ ν∇ · (−∇ρ) = ∂tρ+∇ · (ρ · −ν∇ log ρ) = 0 ∀(x, t) ∈ U × R+, (3.6a)

∂nρ = 0 ∀(x, t) ∈ ∂U × R+, (3.6b)

ρ(x, 0) = ρ0(x). (3.6c)

The redistribution map is then obtained from:

ρ(x, t) = ρ0(XB(x, t)) det∇XB(x, t), (3.7a)

u(x, t) = −ν∇ log ρ(x, t), (3.7b)

∂tXB + (u · ∇)XB = 0. (3.7c)

The above flow has the property that ρ follows a heat equation, therefore, the
maximum principle guarantees that the density stays bounded away from zero at
all times. Furthermore, in the limit as t → ∞, we have that ρ tends to its average
ρ̄ = 1, and hence formally, XB maps the uniform density to the target ρ0. Lastly
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the diffusion flow consists of an L2-gradient descent of the energy or a W 2-gradient
descent of the entropy. In fact, an implicit Euler step is equivalent to a minimizing
movement scheme in the Wasserstein metric [71]. In this sense, the time-evolution of
the map can be seen as an iterative process which contracts to the desired transport
map.
3.1.3 Energy Estimates

The density ρ follows an L2-gradient descent of the Dirichlet energy with the
usual energy estimate:

E(t) =
1

2

∫
U

(ρ(x, t)− 1)2dx with
d

dt
E(t) = −

∫
U

ν |∇ρ|2 dx. (3.8)

Since ρ is a probability density, ρ− 1 has zero average for all t, so we can apply the
Poincaré-Wirtinger inequality ‖ρ− 1‖L2 ≤ C‖∇ρ‖L2 to get the exponential decay in
the L2 energy:

d

dt
E(t) ≤ −ανE(t), (3.9)

for some constant α.
In practice, we will compute the backward map to a sufficiently large time t to

obtain a transport map between ρ0 and a “close to uniform” distribution ρt. In terms
of random variables, we let Y and Yt be random variables taking value in U with
probability densities ρ0(x) and ρ(x, t) respectively. We have by construction that
X[t,0](Yt) has density ρ0. Therefore, trivially, the random variablesX[t,0](Yt) converge
in distribution to Y as t→∞. However, we are interested in the above convergence
when Yt is replaced by a fixed random variable with uniform distribution, as this
allows us to use XB to redistribute uniform random variables according to density
ρ0.
Theorem 3.1.1. Let Z be a random variable with uniform distribution on U and
also define Zt = X[t,0](Z) for each t. We have that Zt converges to Y in distribution
as t→∞.
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Proof. We have that Y has law µ. We also denote by νt the law of Zt, this is the
pushforward measure of m by X[t,0]. From definition we have

νt(A) = m(X−1
[t,0](A)) and µ(A) = µt(X

−1
[t,0](A)), (3.10)

where µt is the law of Yt and is the pullback measure of µ by X[t,0]. Therefore, we
have

|νt(A)− µ(A)| =
∣∣∣m(X−1

[t,0](A)
)
− µt

(
X−1

[t,0](A)
)∣∣∣ . (3.11)

Given that X[t,0] is a diffeomorphism on U , we have established that

Yt
d−→ Z ⇐⇒ Zt

d−→ Y, (3.12)

since the total variation norms ‖νt−µ‖TV and ‖µt−m‖TV are equal for any given t.
More precise estimates can also be obtained by looking at the measure densities

from taking a Radon-Nikodym derivative with respect to m. We have that the
measure densities are given by dνt = dνt

dmdm and dµ = dµ
dmdm, with

dµ
dm

= ρ0 = ρt(X
−1
[t,0]) det∇X−1

[t,0] and
dνt
dm

= det∇X−1
[t,0]. (3.13)

The L2 distance between the densities is then given by∥∥∥∥dνtdm
− dµ

dm

∥∥∥∥
L2

=

(∫
U

∣∣∣ρ0 − det∇X−1
[t,0]

∣∣∣2 dm) 1
2

=

(∫
U

∣∣∣ρt ◦X−1
[t,0] − 1

∣∣∣2 (det∇X−1
[t,0])

2dm
) 1

2

=

(∫
X−1

[t,0]
(U)

|ρt − 1|2(det∇X[t,0])
−1dm

) 1
2

≤ ‖ρt − 1‖L2‖(det∇X[t,0])
−1‖

1
2
L∞ . (3.14)

We can further bound (det∇X[t,0])
−1 using the maximum principle on ρt,

(det∇X[t,0])
−1 =

ρ0(X[t,0])

ρt(x)
≤ supU ρ0

infU ρt
≤ supU ρ0

infU ρ0

. (3.15)
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Using the decay rate (3.9), this effectively gives us an a priori estimate on
the L2 density error of

√
2 sup ρ0

inf ρ0
E(0) · e−ανt/2 as well as an a posteriori estimate√

sup ρ0
inf ρt

· ‖ρt − 1‖L2 .

3.2 Numerical Implementation

The numerical scheme used for the diffusion-driven characteristic mapping method
largely follows the framework outlined in section 2.1. We present in this section the
general approach using Hermite interpolation of order 2m + 1, the schemes in this
chapter will use m = 0 or 1, i.e. piecewise linear or cubic interpolation. We will
also make use of a staggered grid discretization, in this case, it is important to note
that the Hermite interpolation gains an order of accuracy on the 1st derivative when
evaluated at cell centers. Indeed, the leading order term in the error in the cell
[xi, xi+1] can be rewritten as

(
(x− 1

2
(xi + xi+1))2 − 1

4
∆x2

)m+1. At x = 1
2
(xi + xi+1)

this function has vanishing 1st derivatives for all m. In particular, this means that
evaluation of the gradient and first mixed derivatives of a Hermite cubic interpolant
is order O(∆x4) accurate and O(∆x2) for linear interpolants.
3.2.1 Diffusion Flow Velocity

The velocity u = −ν∇ log ρ is used to evolve the characteristic mapXB whereas
the density ρ is a volume form obtained from pullback by XB. For the numerical
method, we will use a staggered grids approach for the discretization of these two
quantities in order to obtain a spatially compact scheme. Similar primal-dual grids
approaches for solving hyperbolic and parabolic equations using Hermite interpola-
tion have been explored in [2,3,56] where the Hm+1-seminorm decreasing property of
Hermite interpolation was used to design stable methods with high order accuracy.

Here, we use the grid G for the definition of the characteristic map XB and the
velocity field u. We define D to be the staggered grid of G with grid points placed
at the cell centers of G, where the density at time tn is sampled. We define the grid
function ρnD to be the evaluation of the following function on the grid D:

ρn(x) = ρ0(X n
B(x)) det∇X n

B(x). (3.16)
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Since the evaluation of det∇X n
B(x) occurs at the cell centers of G, we gain an

order of accuracy on the gradient. Therefore, ρnD is accurate to order O(∆x2m+2)

when exact map values are provided. This staggered grid approach is similar in
spirit to the primal-dual grid method developed by Appelo et al. in [3] to solve the
scalar wave equation. In that method, a full time-step update of the displacement
function goes through two half-step integrations of the velocity function, where in
each half-step, the velocity function is computed on a grid dual to the one where the
previous displacement function was defined. In that case, the smoothing property of
the Hermite interpolation from primal to dual grid yielded stable schemes using very
high order interpolation.

In the method proposed here, the velocity field is defined from ρnD by taking the
log-gradient. In order to avoid the time step constraint of an explicit heat step, we
compute the velocity corresponding to an implicit Euler step of the heat equation.

ρ̃D = (I −∆tν∆)−1ρnD, (3.17a)

ũ(x) = −ν∇HD [log ρ̃D] . (3.17b)

Indeed, the velocity field −ν∇ log ρ extracted from the heat equation is stiff in
time and therefore the characteristic ODEs (2.2) are stiff. A fully implicit time-
stepping method would be complicated and costly due to the coupling of ρ and XB,
instead, we replace the true velocity u with the above constant-in-time implicit Euler
approximation. The approach can therefore be thought of as a time-regularization
of the characteristic ODEs using a relaxation which is consistent with the underlying
heat equation. As reference and clarification, we summarize redistribution algorithm
in the pseudocode Algorithm 1.

Using the velocity defined in (3.17), we have that the one-step map in has
O(∆t2 + ∆t∆x3) local truncation error for Hermite cubic interpolants and O(∆t2 +

∆t∆x2) for linear. Indeed, the Hermite grid data for the linear interpolation have
O(∆x2) error due to being evaluated at cell centres. For cubic interpolation, the
derivative data of the velocity field are only available to O(∆x2), hence the O(∆x3)
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Algorithm 1 CM method for the heat equation on the space of probability densities.

Input: Initial density ρ0, staggered grids G and D, time step ∆t, final time T
1: function HeatFlowMap(ρ0, ν, [0, T ])
2: Initialize t← 0, XB ← id . id is the identity map
3: while t < T do
4: ρnD ← [ρ0(XB) det∇XB]D . evaluation of (3.16) on D
5: ρ̃D ← (I −∆tν∆)−1ρnD
6: Define X [t+∆t,t](x) := x+ ∆tν∇HD [log ρ̃D] (x) . using (3.17)
7: XB ← HG

[
XB ◦X [t+∆t,t]

]
8: t ← t+ ∆t
9: end while
10: return XB

11: end function

spatial error for the one-step map. Given the accuracy of the above one-step maps,
we have from lemma 2.2.2 that the global truncation errors for ρD are O(∆t+ ∆x)

for linear interpolants, and O(∆t+ ∆x2) for cubics.
We apply the redistribution algorithm on a toy problem to illustrate the L2

energy decay. For this test, we take the domain U to be the flat torus [0, 1]× [0, 1].
The target density ρ0 is concentrated in a band of width w = 0.15 around a circle of
radius r = 0.25 centred at xc = (0.5, 0.5). The minimum density is set at 0.75.

ρ0(x) = 1 + 0.25η(x) (3.18a)

η(x) = c(η0(|x− xc| − r)− η̄0) (3.18b)

η0(s) = exp(−(1− (2s/w)2)−1) (3.18c)

Here, the constant η̄0 is the average of η0(|x − xc| − r) and c is chosen so that
minx η(x) = −1.

We test the CM method for density redistribution by running the algorithm
described in section 3.2 to time 1 with ν = 1, using Hermite cubic interpolation on
various grids of size N and tracking the decay of E , ∆t is chosen to be 0.1/N . The
results are shown in figure 3–1, the backward map deforms the domain to concentrate
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in the selected annulus, the residual energy also exhibits the exponential decay from
the diffusion equation.

(a) Domain deformation from X [1,0].
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(b) Decay of E for various grids.

Figure 3–1: Diffusion flow density redistribution using CM method.

3.2.2 Moving Initial Condition

The initial condition ρ0 is the density to be redistributed towards uniform. In
the context of surface reparametrization, ρ0 is the area element of the surface which
we try to uniformize. If the surface is moving, then ρ0 will be different at different
times. We consider the problem of redistribution of a “moving initial condition”, that
is, we let ρ0(x, t) be a function which also depends on t. We can apply the same
method as previously described, that is, defining

ρ(x, t) = ρ0(XB(x, t), t) det∇XB(x, t), (3.19a)

u(x, t) = −ν∇ log ρ(x, t). (3.19b)

In the implementation, we simply replace line 4 of 1 by ρnD ← [ρ0(XB, t) det∇XB]D.
Taking a time derivative of ρ(x, t), we see that the density evolving simultane-

ously from the moving initial condition and the diffusion by the redistribution map
satisfies the following inhomogeneous heat equation:

∂tρ = ν∆ρ+ ∂t log ρ0|XB
ρ. (3.20)

From this, we can view the diffusion flow as a relaxation to a source term introduced
by a moving initial condition. The diffusivity coefficient ν plays the role of balancing
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the strength of the source term and that of the diffusion. It can also be seen as a
ratio of the two time scales involved, that is, if the source term is strong, then the
diffusion must act on a faster time scale to control the growth in ρ. The form of the
source term will be subject to further constraints in the case of a moving surface,
a diffusion coefficient ν can then be picked accordingly to prevent growth in the
density. We will examine this in further details in the following section.
3.3 Application to Surface Advection

In this section, we apply the density transport method described above to the
advection of parametric curves and surfaces in 3-dimensional ambient space. The
density transport map will be used to maintain the proper sampling of the moving
surface as it stretches and shrinks during its evolution. The general idea is to de-
fine a reparametrization of the surface as the function composition of the original
parametrization with an area-redistributing map. The redistribution map will be
computed from the heat flow and the area element of the redistributed parametriza-
tion will follow the inhomogeneous heat description of section 3.2.2.
3.3.1 Evolution of Parametric Surfaces using the CM Method

We briefly describe here the algorithm used to evolve parametric surfaces under
a given velocity field in 3D.

Let Ω be a 3-dimensional domain. For simplicity we assume Ω = T3 the flat
3-torus. Let v : Ω × R+ → R3 be a given velocity field. Here we assume that v
is smooth and divergence-free so that the domain transformation it generates is a
smooth diffeomorphism of Ω for all times. We have the same characteristic structure
as described in section 2.1. We denote by ΦF and ΦB the forward and backward
characteristic maps, they satisfy the following equations:

∂tΦF (p, t) = v(ΦF (p, t), t) ∀(p, t) ∈ Ω× R+, (3.21a)

(∂t + v · ∇)ΦB(p, t) = 0 ∀(p, t) ∈ Ω× R+, (3.21b)

ΦF (p, 0) = ΦB(p, 0) = p ∀p ∈ Ω. (3.21c)
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The diffeomorphisms are the forward and backward flow-maps of the velocity
field v and have the characteristic structure

ΦF (γ(0), t) = γ(t), ΦB(γ(t), t) = γ(0) ∀t ∈ R+, (3.22)

for any characteristic curve γ satisfying

∂tγ(t) = v(γ(t), t). (3.23)

The forward and backward maps are inverse transformations for all times, i.e.

ΦF (ΦB(p, t), t) = ΦB(ΦF (p, t), t) = p ∀t ≥ 0. (3.24)

We denote by Φ[t1,t2] the forward map in the time interval [t1, t2] with ΦF :=

Φ[0,t], and we use Φ[t2,t1] to denote the backward map in the same time-interval, with
ΦB := Φ[t,0]. The notation ϕ is used for the numerical discretization of the Φ maps.
The time-stepping can be summarized as

ϕ[0,t+∆t] = HM
[
ϕ[t,t+∆t] ◦ϕ[0,t]

]
, (3.25a)

ϕ[t+∆t,0] = HM
[
ϕ[t,0] ◦ϕ[t+∆t,t]

]
. (3.25b)

for some grid M on Ω. The identity ϕ[t+∆t,t] = ϕ−1
[t,t+∆t] can be guaranteed to high

precision by employing higher order ODE integration schemes, and hence the error
on the property

ΦF ◦ΦB = ΦB ◦ΦF = id. (3.26)

stems mainly from the representation quality of the interpolation operator HM ,
which we will control using a dynamic remapping technique described below.

It is well-known that the flow-map possesses a group property which allows for
the decomposition of a long-time map into several submaps; this can be used to
achieve high resolution representation of the deformation using coarse grid computa-
tions. We use the same time-decomposition strategy as given in (2.11) to represent
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the global-time maps:

ϕF = ϕ[0,t] = ϕ[Tn−1,t] ◦ϕ[Tn−2,Tn−1] ◦ · · · ◦ϕ[0,T1], (3.27a)

ϕB = ϕ[t,0] = ϕ[T1,0] ◦ · · · ◦ϕ[Tn−1,Tn−2] ◦ϕ[t,Tn−1]. (3.27b)

The error on the inverse property (3.24) stems from the time-stepping and inter-
polation (3.25). This gives us an alternative a posteriori error estimate for choosing
the remapping times Ti. Here we use the following composition error as remapping
criterion.

ε = max
(
‖ϕ[Ti−1,t] ◦ϕ[t,Ti−1] − id‖∞, ‖ϕ[t,Ti−1] ◦ϕ[Ti−1,t] − id‖∞

)
. (3.28)

We then define Ti to be the first time t where the above error exceeds some chosen
threshold.

The forward and backward characteristic maps give us solution operators to the
advection problem. Let S0 ⊂ Ω be an initial curve or surface moving following the
velocity field v. Let St be the surface at time t. Using the characteristic maps, we
have two equivalent definitions for St, one implicit and the other, explicit:

St = {p ∈ Ω | ΦB(p, t) ∈ S0} , (3.29a)

or St = {ΦF (p, t) | p ∈ S0} . (3.29b)

Equation (3.29a) uses the same Eulerian definition as in level-set methods.
When S0 is expressed as the zero-level-set of a function ψ, we have that St is given by
the zero-level-set of the advected function ψ ◦ΦB. This approach is studied in [84],
a review of recent advances in level-set methods can be found in [49].

Equation (3.29b) is a Lagrangian definition, where surfaces are defined explicitly
through a parametrization function. This is suitable for curves and surfaces which
do not admit a level-set representation, for instance for open curves or non-orientable
surfaces. Let U be the parameter space and P0 : U → S0 ⊂ Ω, a regular parametriza-
tion of the surface at time 0, that is, we assume the mapping between U and S0 to
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be a diffeomorphism. The parametrization of St is then given by

Pt = Φ[0,t] ◦ P0. (3.30)

Numerically speaking this method evolves the parametrization function in time
using the solution operator ϕF . Compared to traditional methods where the sur-
face is sampled and sample points evolved individually, the CM method provides a
functional definition of the parametrization defined everywhere in U . Similar to the
backward map method in [84], this approach also provides arbitrary resolution of
the parametrization function Pt, and hence of St. The surface St can be arbitrarily
sampled at any time by evaluating the pushforward operator ϕF . In this case, the
numerical accuracy of the diffeomorphism ϕF is the determining factor in the accu-
racy of the surface markers. The accuracy of each marker point location is therefore
independent of the overall sampling, however, there is no guarantee on the overall
resolution of the surface since the ambient flow provides no control over the density
of the sample points along the surface throughout its evolution.
3.3.2 Equiareal Redistribution

A curve or surface St can be sampled by choosing sample points yi ∈ U and
evaluating pi(t) = Pt(yi) to represent St discretely. However, a uniform distribution
of yi in U does not necessarily lead to well-distributed marker points pi on St. Indeed,
as the surface stretches and deforms under the flow, some regions may expand and
become sparsely sampled. We can quantify this by evaluating the area-element At
from the first fundamental form It = ∇P T

t ∇Pt.

At =
√

det It =
√

det∇P T
0 ∇ΦT

F∇ΦF∇P0. (3.31)

We can compute the time-evolution of At. Using

∂tIt = ∇P T
t (∇vT +∇v)∇Pt, (3.32)
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and applying Jacobi’s rule for derivatives of matrix determinants. We have

∂tAt =
1

2
Attr

(
I−1∂tI

)
=

1

2
Attr

(
(∇P T

t ∇Pt)−1∇P T
t (∇vT +∇v)∇Pt

)
. (3.33)

Using the cyclic property of the trace operator, we can rewrite this as

∂tAt = Attr
(
∇Pt(∇P T

t ∇Pt)−1∇P T
t ∇v

)
= Attr (ΠSt∇v) = At div|Stv, (3.34)

where ΠSt = ∇Pt(∇P T
t ∇Pt)−1∇P T

t is the orthogonal projection operator onto the
tangent space of St. Therefore, the area-element grows exponentially at rate div|Stv
corresponding to the divergence of the flow along the tangent space of St.

The approach we take to control the growth of the area-element is to modify the
parametrization function Pt by applying a transformation on the parametric space
U . We take At as a probability density on U and apply the method described in
section 3.1.2 to obtain a mapping XB : U → U which pushes the uniform density to
the density At. The modified parametrization

Qt = Pt ◦X[t,0] : U → St ⊂ Ω (3.35)

should then have area-element
√

det I equal to a constant. That is to say, if the
points yi are uniformly distributed in U , then the sample points pi are uniform on
St. In practice, it’ll be wasteful to recompute a redistribution map at each time
t, instead, the advection and redistribution are evolved alongside each other. We
will apply the method of section 3.2.2 as a relaxation to any area-deformation that
occurs in one time step of advection. The evolution global-time redistribution X[t,0]

will be obtained by composing the one-step relaxation maps. This can be formalized
as follows:
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We define probability densities on U :

ρ0(x, t) =
1

ρA

√
det∇P T

t ∇Pt, (3.36a)

ρ(x, t) =
1

ρA

√
det∇QT

t ∇Qt, (3.36b)

with ρA(t) =

∫
U

√
det∇P T

t ∇Ptdx = |St|. (3.36c)

We note that both ρ0 and ρ are the area-elements corresponding to the parametriza-
tions P and Q normalized to a probability density since

ρA(t) =

∫
X−1
B (U)

√
det∇P T

t ∇Pt|XB
det∇XBdx =

∫
U

√
det∇QT

t ∇Qtdx. (3.37)

We have the following equations for their time evolution:

∂tρA(t) =

∫
U

div|Stv
√

det∇P T
t ∇Ptdx = ρA

∫
U

ρ0 div|Stvdx, (3.38a)

∂tρ0(x, t) =
1

ρA
div|Stv

√
det∇P T

t ∇Pt −
ρ0

ρA
∂tρA = ( div|Stv − ∂t log ρA) ρ0(x, t),

(3.38b)

ρ(x, t) = ρ0 (XB(x, t), t) det∇XB. (3.38c)

Using the results in section 3.1.2, we have that the pullback of ρ0 by XB gener-
ates a diffusion process in ρ. Therefore, the governing equation for the area-element
of the redistributed parametrization Qt is

∂tρ(x, t) = ν∆ρ(x, t) + ∂tρ0|XB
det∇XB = ν∆ρ(x, t) + λv(x, t)ρ(x, t), (3.39)

where λv(x, t) = ∂t log ρ0|XB
= ( div|Stv)(XB) −

∫
U
ρ0 div|Stvdx. The diffusion coef-

ficient ν in the redistribution step can be used to increase control over the growth of
area density from surface deformation. It effectively corresponds to accelerating the
time-scale of the diffusion-flow redistribution, thereby introducing the area-diffusion
as a fast time-scale relaxation.
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The method is summarized in pseudocode 2. The notation Pt implicitly assumes
the definition and computation of the non-redistributed time-dependent parametriza-
tion function (3.30) using the numerical characteristic map ϕF of the ambient advec-
tion. The computation of ϕF is given in(3.25a) and (3.27). In comparison with the
algorithm described in section 3.2.1, the redefinition of ρn at each tn at line 5 corre-
sponds to a source term λvρ in the density evolution arising from the deformation of
the surface. A typical energy argument for the reaction-diffusion equation provides
some estimates on the evolution of the density. Here we use the special structure of
the λv term to write a more specific estimate.

Algorithm 2 CM method for equiareal time-dependent surface parametrization
Input: Parametrization Pt, staggered grids G and D, diffusivity ν, time step ∆t,

final time T
1: function Reparametrization(Pt, ν, T )
2: Initialize t← 0 ,X [t,0] ← id . id is the identity map
3: while t < T do
4: Define Qt := Pt ◦X [t,0]

5: Define ρn(x) := 1
ρA(t)

√
det∇QT

t ∇Qt . from (3.36)
6: X [t+∆t,t] ← HeatFlowMap(ρn, ν, [0,∆t]) . subroutine 1 on local-time

problem
7: X [t+∆t,0] ← HG

[
X [t,0] ◦X [t+∆t,t]

]
8: t ← t+ ∆t
9: end while
10: return QT = PT ◦X [T,0]

11: end function

Remark 3.3.1. Line 6 of algorithm 2 allows for the HeatFlowMap one-step redistri-
bution and the ambient advection to be implemented using two different time step
sizes. This is not necessary, however it is useful if ν is large: The surface area diffu-
sion and the ambient advection would then essentially evolve on two different time
scales. In that case, shrinking the diffusion time steps is necessary to reduce numer-
ical error, the one-step redistribution map X [t+∆t,t] would then be computed over
several redistribution substeps.
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Theorem 3.3.1. Choosing ν large enough, the L2 distance between the area-element
of the Q parametrization and the uniform distribution can be controlled to order
O(ν−1).

Proof. The algorithm is consistent with the reaction-diffusion equation (3.39). We
have that the energy estimate in this case is

d

dt
E(t) =

d

dt
‖ρ− 1‖2

L2 = −ν‖∇(ρ− 1)‖2
L2 +

∫
U

(ρ− 1)2λvdx+

∫
U

(ρ− 1)λvdx

≤ −ν‖∇(ρ− 1)‖2
L2 + ‖λv‖∞‖ρ− 1‖2

L2 −
∫
U

λvdx, (3.40)

where
∫
U
ρλvdx vanishes since

∫
U
∂tρdx = 0 by construction and

∫
U

∆ρdx = 0 with
periodic or Neumann boundary conditions.

The λv term is the growth rate of the area density normalized so that the
density stays in the space of probability distributions. Implicit in this normalization
is a dependence of the integral

∫
U
λvdx on the current density:

−
∫
U

λvdx = −
∫
U

( div|Stv)(XB) dx+

∫
X−1
B (U)

ρ ( div|Stv)(XB) dx (3.41)

=

∫
U

(ρ− 1) ( div|Stv)(XB) dx ≤
∥∥∥( div|Stv)(XB)

∥∥∥
L2
‖ρ− 1‖L2 .

We obtain the following bound on the growth of the L2 norm:

d

dt
‖ρ− 1‖L2 ≤ 2(−αν + ‖λv‖∞)‖ρ− 1‖L2 + 2

∥∥∥( div|Stv)(XB)

∥∥∥
L2
, (3.42)

meaning that the L2 norm can be controlled by

‖ρ− 1‖L2 ≤ β

αν − ‖λv‖∞
+ c exp (−2t (αν − ‖λv‖∞)) , (3.43)

where β = maxt

∥∥∥( div|Stv)(XB)

∥∥∥
L2

and α, the constant from the Poincaré inequality.
Therefore, by choosing ν > α−1‖λv‖∞ sufficiently large, we can guarantee that

the L2 norm of the deviation from uniform of the Q area-element stays of order
O(ν−1) for all times.
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According to the governing equation (3.39), for larger enough ν, the diffusion
should limit the fine scale spatial features present in ρ and hence in the velocity field
−ν∇ log ρ. High frequency modes are generated by λv and hence it is sufficient to
compute the local-time deformation map on a grid fine enough to resolve the source
term. Similar to the advection problem where the local maps ϕ[Ti−1,Ti] are computed
on coarse grids which resolve well enough the local-time velocity field, the submaps
in the density transport map can also benefit from the computational savings of
coarser grids. All characteristic maps involved share the same semigroup structure
and can be decomposed into submaps in order to achieve higher spatial resolution
at low computational cost. We can therefore apply the above reparametrization
algorithm to each subinterval in the submap decomposition (3.27) and obtain the
full reparametrization as the composition of all redistribution maps. Combining
(3.27), (3.30) and (4.5), we have

Qt = ϕ[Tn−1,t] ◦ϕ[Tn−2,Tn−1] ◦ · · · ◦ϕ[0,T1] ◦ P0 ◦X [T1,0] ◦ · ◦X [Tn−1,Tn−2] ◦X [t,Tn−1].

(3.44)

Numerically, each submap is computed independently, sequentially using algorithm
2. To be consistent with the reinitialized problem, the input parametrization for the
i+ 1st map is defined to be ϕ[Ti,t] ◦QTi .
Remark 3.3.2. For the submap computations, the parametrization of the surface St
is given by ϕ[Ti,t] ◦QTi where QTi is given by (3.44). However, to save computational
time, for the purpose of computing the density ρ, it is sufficient to replace QTi by an
interpolant on a fine enough grid similar to the approach in [84]. This is because the
method maintains the sampling density of Q near uniform for all times and therefore
QTi can be accurately represented by interpolation.
Remark 3.3.3. The primary purpose of this method is to maintain an almost uniform
parametrization of the surface and to prevent growth in the density distribution of
the area-element. In this sense, this method is unique in that its computational
efficiency does not depend on the number of sample points. The algorithm computes
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a functionally defined parametrization, sampling is done by interpolation and has
linear complexity. The exact computational cost of the reparametrization will be
application dependent. For instance, if we require that the area distribution be
constant up to an L2 tolerance of E , then we would typically observe polynomial
complexity with respect to E−1. Indeed, according to the results in this section, the
L2 error is controlled by ν−1. Hence, roughly E−1 time steps of redistriubtion will be
required. Additional computational cost will be incurred for reducing the numerical
error of the algorithm below the desired threshold, this will be dependent on the
order of accuracy of the interpolation and time-stepping schemes.
3.4 Numerical Results

3.4.1 Density Redistribution on Flat Domains

Here we first show a simple numerical test of the density redistribution algorithm
for a moving initial condition on a flat 2D periodic domain, as described in section
3.2.2.

We define the following density ρ0:

ρ0(x, y, t) = 1 + 0.25 sin2 (1.5πt) η (x+ 0.25 sin (0.5πt) sin(2πy), y) , (3.45)

where η is defined in (3.18b).
This density is initially constant, it then concentrates around a circle of radius

0.25. The overall density is also advected by the volume preserving transformation

(x, y) 7→ (x+ 0.25 sin (0.5πt) sin(2πy), y).

The amplitude of the density is scaled by 0.25 sin2 (1.5πt).
We test the redistribution of this moving density in the time interval t ∈ [0, 3]

with various diffusion coefficients ν and with various grid sizes for the redistribution
map which we represent using piecewise linear interpolation. We ran convergence
tests of the maximum L2 error for t ∈ [0, 3] with respect to the grid size and ν. The
results are shown in figure 3–2. As expected, the maximum L2 norm of ρ−1 is linear
with respect to ∆x, ∆t and ν−1.
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(a) ν = 10, ∆t = ∆x/4.
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(b) ∆x = 1/768, ∆t = 1/2048.

Figure 3–2: L2 error with respect to ∆x, ∆t and ν.

3.4.2 Equidistributing Parametrizations of Curves and Surfaces

In this section, we apply the redistribution algorithm to the evolution of several
curves and surfaces in a 3D ambient flow. Starting from a given initial parametriza-
tion, we use the redistribution characteristic map to maintain an equiareal parametriza-
tion of the evolving curves and surfaces at all times during the simulations. For the
tests in this section, we use the following 3D ambient velocity taken from [79]:

v(x, t) =


2 cos

(
πt
P

)
(sin(πx))2 sin(2πy) sin(2πz)

− cos
(
πt
P

)
sin(2πx) (sin(πy))2 sin(2πz)

− cos
(
πt
P

)
sin(2πx) sin(2πy) (sin(πz))2

 (3.46)

defined on a periodic cube [0, 1]3, with x = (x, y, z)T . P is the period of the velocity
field, the deformation it generates reaches its maximum extent at t = P/2 then
returns to identity at t = P . For the following tests, we will choose P = 3.

The velocity field also has reflection symmetries across the planes z = y and
z = 1−y, the flow is planar along these two planes. We know therefore that the flow
will not cross these planes and will have mirror symmetric motion on either sides. It
follows that any initial curve or surfaces crossing these planes will undergo extensive
deformation. Without any maintenance on the parametrization function, one can
expect the resulting arclength and area elements to grow exponentially, resulting in
poor representation of the curves and surfaces.
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For all results in this section, we used a 643 grid with ∆t = 1/96 for the compu-
tation of the forward characteristic map in the 3-dimensional ambient space, we used
a 1282 grid for the computation of the 1D and 2D redistribution maps on the para-
metric space. The ambient map uses Hermite cubic interpolation and redistribution
maps use linear interpolation. The diffusion coefficient for all redistribution maps
were fixed at ν = 2. All characteristic maps use the submap decomposition method
and all curves and surfaces are pushed forward using the same forward ambient space
map. The computations were carried out on a laptop with an Intel i5-3210 duo-core
2.50 GHz CPU with 8 GB of RAM. The routines are implemented in Matlab with
C-Mex subroutines for the interpolation operations. As reference, the 3D ambient
characteristic maps was decomposed into 6 submaps in the interval [0, 1.5], each map
being stored on hard drive. The total computational time for calculating the ambient
characteristic map was 511 seconds.
3.4.3 Evolution of Curves

We apply the redistribution method in 1-dimensional parametric space to main-
tain an arclength parametrization of curves evolving under the flow given in (3.46).
We use 4 curves in this test, shown in figure 3–3.

(a) Curve 1 (b) Curve 2 (c) Curve 3 (d) Curve 4

Figure 3–3: Initial curves with random sampling.

To illustrate the effect of the redistribution, we show in figure 3–5 the final states
of the curves at various resolutions (the initial curves and their time evolution are
shown in Appendix A). In figure 3–5, the parametrization P as well as its redis-
tributed version Q are drawn using a piecewise linear interpolation on a gradually
refined grid from 32 equidistant grid points to 1024 grid points. As we can see, in
all cases, to capture the features of a given curve, the P parametrization requires a
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roughly 10× finer grid to obtain the same quality as the Q parametrization. More-
over, table 3–1 shows that interpolating the P parametrization yields and L∞ error
roughly an order of magnitude larger than that of Q. This is due to the high vari-
ations in the speed of the P parametrization. Indeed, the large distortions created
by the ambient flow cause some regions of the curves to undergo large stretching
whereas others are compressed. At t = 1.5, this results in high amplitude variations
in the distances between marker points that were equidistant at t = 0. This effect
can be clearly seen in figure 3–4 where the histogram of the cell lengths for the curves
are shown. As we can see, the cell lengths of the original parametrization P (shown
in blue) are rather spread out, with a majority of very short cells covering one part
of the curves and few very large cells covering the rest. In terms of sampling, this
is suboptimal since the marker points in the oversampled regions are redundant. In
contrast, the redistributed parametrizations Q (shown in red/orange) have a much
more uniform distribution of cell lengths: almost all cell lengths are concentrated
around the average, meaning that marker points are uniformly distributed along the
curve.

N P1 Q1 P2 Q2 P3 Q3 P4 Q4

32 1.32e-1 1.83e-2 4.38e-1 3.77e-2 2.58e-1 1.32e-2 3.87e-1 7.72e-2
64 5.64e-2 1.08e-2 3.43e-1 1.77e-2 1.81e-1 6.91e-3 1.74e-1 3.39e-2
128 1.60e-2 2.92e-3 2.23e-1 5.87e-3 1.03e-1 3.25e-3 6.96e-2 1.51e-2
256 4.14e-3 1.00e-3 8.52e-2 1.69e-3 4.19e-2 8.52e-4 1.83e-2 3.63e-3
512 1.05e-3 2.96e-4 2.39e-2 6.59e-4 1.18e-2 2.76e-4 4.91e-3 1.30e-3

Table 3–1: Error of linear interpolation for the parametrization functions at different
grid resolutions, using the N = 1024 tests as reference.

We can also measure the uniformity of the marker points distribution quantita-
tively: table 3–2 shows the standard deviation, i.e. ‖ρn − 1‖L2 , and the median of
the normalized area densities for each parametrization as well as the computational
time required for generating the redistribution map. Ideally, for a perfectly uniform
distribution, the median cell length should be 1 and the standard deviation 0. A
median closer to 1 and a smaller standard deviation in the Q case indicates that the
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(a) Curve 1 (b) Curve 2

(c) Curve 3 (d) Curve 4

Figure 3–4: Arclength distribution of the parametrizations P (blue) and Q (red).

arclength distance between two sample points are more uniform thereby avoiding the
undersampling of the more deformed parts of the curves or redundancy of markers
in compressed parts.
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Figure 3–5: P and Q parametrizations of curves 1 to 4 using gradually finer grids.
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Curves 1 2 3 4
σP 1.0479 0.8214 0.7088 0.8858
σQ 0.0195 0.0318 0.0248 0.0353

MP − 1 -0.5358 -0.3742 -0.2927 -0.4435
MQ − 1 0.0013 0.0012 -0.0002 0.0005

(a) Standard deviation (σ) and median (M) errors of the length density.

Curves 1 2 3 4
Evaluating Q 9.96 s 9.32 s 9.61 s 9.62 s
Defining ρn(x) 0.04 s 0.04 s 0.05 s 0.04 s
Updating XB 0.74 s 0.70 s 0.67 s 0.59 s

Number of remappings 2 3 3 3

(b) Total computation times for the evolution of the parametrization Q.

Table 3–2: Parametrizations P and Q at t = 1.5.

3.4.4 Evolution of Surfaces

We test the redistribution method on three different topologies for 2-dimensional
surfaces: rectangle, torus and cylinder. The parametric spaces are taken to be
U = [0, 1]2 with Neumann, periodic and mixed Neumann-periodic boundary con-
ditions respectively. These surfaces will move under the flow (3.46) and we will
compute the two parametrizations P and Q as in the 1D case. For each given time
t shown in figures 3–7 to 3–9, the parametrizations are represented by a linear in-
terpolation on a uniform mesh grid of 5122 points. For P the grid data is obtained
by solving the ODEs forward in time for each grid point, Q is obtained by evaluat-
ing the redistribution map, P0 and the forward ambient characteristic maps at grid
points on U . In order to illustrate the effect of the redistribution, we sample each
parametrization with 200 000 randomly generated marker points. The distributions
of these random points over the surfaces are expected to follow the random vari-
ables description in section 3.1.2. The initial surfaces with marker points are shown
in 3–6, the time evolution of each surface is shown in figures 3–7 to 3–9. We also
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show the standard deviation and median of the normalized area densities and the
computational times for the redistribution maps in figure 3–10 and table 3–3.

(a) Rectangle (b) Torus (c) Cylinder

Figure 3–6: Initial surfaces with uniformly distributed random sample points.

Figure 3–7: Comparison of the surface sampling of the evolved rectangle using the
original parametrization P (top images) and the redistributed parametrization Q
(bottom images).

Figure 3–7 shows a clear example of the benefits of the reparametrization method.
In this case, the initial rectangle is placed on one of the symmetry planes of the flow,
hence the deformation is applied fully on the tangential directions of the surface. At
t = 1.5, we see from the P parametrization that almost the entirety of the surface
is compressed in a thin sliver. The sample points distribution is unnecessarily dense
on the thin protrusion and very sparse on the rest of the surface. In fact, using a
5122 grid for the interpolation of P , we still see that the boundary of the surface is
jagged and visibly piecewise-linear as opposed to the smooth circular shape shown
by the same resolution interpolation of Q. Indeed, each line segment on the bound-
ary corresponds to a cell edge of length O(1/512) at time 0. This is an indication
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Figure 3–8: Comparison of the surface sampling of the evolved torus using the original
parametrization P (top images) and the redistributed parametrization Q (bottom
images).

that the large scale deformation the surface has undergone between t = 0 and 1.5

makes the P parametrization inefficient; the numerical difficulties from this defor-
mation are mitigated by the redistribution method resulting in a reparametrization
Q which provides an uniform sampling and a smooth, well-resolved surface interpo-
lation. Similar observations can be made in figure 3–8 where, at t = 1.5, a region
of the torus is essentially not sampled under the P parametrization. The clear de-
marcation line between the sampled and empty regions is in fact produced by the
perspective of the view angle on the hole of the torus after the flow deformation.
Hence, the P sampling indicates that the marker points failed to represent a handle
of the genus-1 surface; if a “pure” particles method were used, this can cause errors
in the topology of the evolved shapes. For the evolution of the cylinder in figure 3–9,
we also see the above issues in the P parametrization. At t = 1.5, the “top face”
of the surface, which consists of two diametrically opposite portions of the cylinder
that were brought close together by the flow, is poorly sampled by P . Without some
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Figure 3–9: Comparison of the surface sampling of the evolved cylinder using the
original parametrization P (top images) and the redistributed parametrization Q
(bottom images).

underlying interpolation of the parametrization, such undersampling could fail to
indicate the presence of two distinct pieces of surface. Furthermore, the protruding
arc-like part also exhibit poor resolution of the boundary. The piecewise linear in-
terpolation of P is jagged at the boundary, which indicates that P is not smooth
enough (in the sense of the growth in magnitude of the higher derivatives) to be
accurately represented on a 5122 grid. With the redistributed parametrization, the
marker points generated from Q are uniform and the interpolated surface, smooth.

We quantify the effect of the redistribution by plotting the histogram of the cell
area population in figure 3–10. In all cases, we see that the Q parametrization (in
red/orange) generates cells that have almost all the same area, concentrated at the
normalized average 1. The P parametrization (in blue) on the other hand, generates
large disparity between cell areas, evidential of a non-uniform, suboptimal distribu-
tion of marker points. In particular, for the rectangle, we see in figure 3–10a, that
the area distribution exhibits a Pareto distribution, where the large amount of the
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surface area is represented by a minority of the cells; this observation clearly reflects
the illustrations in figure 3–7. The reparametrizationQ is more uniform, with almost
all cells having the average area. These properties are also shown quantitatively in
table 3–3 where we’ve computed the sample standard deviation and median of the
cell areas. In all cases, the standard deviation from the Q parametrization is 1 to
2 orders of magnitude smaller than the one from P , and the median error about 3
to 4 orders of magnitude smaller. In all cases, these improvements came at a cost
of a roughly 20% increase over the computational time of the advection (given in
section 3.4.2); this reparametrization time includes the intermittent evaluation of
the full Q parametrization (as defined in (3.44)) which is also used to render the
surface. The computation of the redistribution map itself accounts for about 10%

of the total computation time. The resulting Q however, is a functionally defined
parametrization which offers arbitrary resolution at uniform area density.

(a) Rectangle (b) Torus (c) Cylinder

Figure 3–10: Area distribution of the parametrizations P (blue) and Q (red)
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Surfaces Rect. Torus Cyl.

σP 1.6749 0.8828 1.098
σQ 0.0094 0.0485 0.0321

MP − 1 -0.9722 -0.4754 -0.6718
MQ − 1 -0.0007 -0.0001 -0.0019

(a) Standard deviation (σ) and median
(M) errors of the length density.

Surfaces Rect. Torus Cyl.

Evaluating Q 47.94 s 64.68 s 54.57 s
Defining ρn(x) 9.15 s 9.36 s 9.25 s
Updating XB 68.86 s 44.29 s 49.06 s

Number of remappings 5 11 5

(b) Total computation times for the evolution
of the parametrization Q.

Table 3–3: Parametrizations P and Q at t = 1.5.

(a) Rectangle (b) Torus (c) Cylinder

Figure 3–11: The redistribution map on the parametric space for each surface at
t = 1.5.

Indeed, figure 3–11 shows the redistribution map on the parametric space for
each surface at full deformation. As we can see, since the surfaces undergo violent
deformations, the transport maps needed to redistribute evenly the area element
will also contain large deformations and small scale features: typically this would
require a fine grid to compute and resolve. Instead, we use the group structure of
the characteristic maps to carry out short-time computations on coarse grids, the
full time redistribution map is then obtained from the composition of submaps given
in (3.44). The advantage of using the decomposition method for the redistribution
map is two-fold: first, if we assume that at time Ti, the redistributed parametrization
QTi is close to equiareal, then the variations in ρ(x, Ti) are small and therefore can
be resolved on a coarse grid for the computation of X [Ti+1,Ti]. The resolution of this
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grid essentially acts as a frequency cut-off selecting the highest frequency in the area
element visible to the algorithm. Second, since the evolution of the area density
is unknown a priori and can grow in an arbitrary fashion, the semigroup property
of the map allows us to decompose the transformation into manageable short-time
maps and achieve arbitrary resolution in the global-time map obtained from the
composition. This permits the redistribution map to represent large deformations
and resolve small scale features in order to compensate for the arbitrary changes in
area element.

The numerical experiments in this section demonstrate several practical advan-
tages of representing a moving surface using an equiareal parametrization. Com-
pared to a particle-based method, the parametrization of a moving surface defined
by the push-forward of the initial parametrization by the ambient flow map pro-
vides a functional definition of the surface at all times. Therefore, resampling can
be done by simply evaluating the parametrization function at new sample points. In
particle methods, new sample points need to be generated by interpolation which
can affect the position of the surface whose accuracy will depend on existing sam-
ple points and the curvature of the surface. With the CM method, the accuracy of
the parametrization function in respect to the surface shape and location depends
only on the forward characteristic maps which we control separately. The precision
of the marker locations is therefore independent of existing sample points and of
the shape of the surface. Furthermore, coupled with the redistribution method, the
equiareal property of the parametrization function is maintained. This means that
the sampling density of the parameter space is directly mapped to that of the surface
without needing extra computation. Adaptive sampling methods based on the area
element of the surface may become inaccurate or inefficient when the variations in
area become large. In comparison, the method proposed in this paper maintains an
equiareal parametrization at all times, therefore there are no extra computations nec-
essary when computing an uniform sampling of the surface and area features above
a certain spatial scale as indicated in theorem 3.3.1 are guaranteed to be resolved.
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Remark 3.4.1. The redistribution generates an equiareal parametrization, from a
sampling point of view, the number of sample points per unit area on the surface
should be asymptotically constant. This does not directly translate to a property on
the distance between sample points. Indeed, the ratio between the geodesic radius of
a disk and its area on the surface is given by the scalar curvature. As a consequence,
an equiareal sampling of a surface will have sample points that are more distant from
each other where the surface has positive scalar curvature. One way to remedy this
would be to require that the equilibrium density of the diffusion be given by the
curvature of the surface:

∂tρ = ∆(ρ− ρκ) with u = −∇(ρ− ρκ)
ρ

, (3.47)

where ρκ is the target density given by the curvature. The redistribution will then
generate an L2-gradient descent on the difference between ρ and ρκ. However, since
we no longer have the maximum principle due to the source term, the solution of
the heat equation is not guaranteed to stay in the space of probability distributions
for all times as densities can temporarily become negative, potentially making the
redistribution map singular. So special consideration needs to be taken when the
initial and equilibrium densities are far. However, this should generally not be an
issue if the curvature changes gradually as the source term will be too small to
generate a singularity.
3.5 Concluding Remarks for Chapter 3

In this chapter, we have presented a method for computing an equiareal parametriza-
tion of a curve or surface. We have applied this method to the problem of surface
advection and presented an algorithm for evolving the parametrization of a time-
dependent moving surface while maintaining an uniform area distribution. The area
element of a surface is first pulled back to the parametric space in order to define a
density distribution. We define a diffusion process using this density as initial con-
dition and extract a velocity field from the continuity equation, flowing the initial
density towards the uniform density. The backward characteristic map generated
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from this velocity is used to equidistribute the area element of the surface in the
parametric space. In the context of optimal transport, this can be seen as a W 2-
gradient descent of the entropy landscape. We studied the mathematical construction
of the map in section 3.1.2 and demonstrated the convergence in distribution of the
random-variables generated from it. The evolution of the surface under a veloc-
ity field is obtained by computing the forward characteristic map in the ambient
space as studied in section 3.3. Combined with the redistribution method, we have
that the composition of the backward redistribution map on the parametric space
with the initial parametrization followed by the push-forward by the ambient space
forward map generates an equiareal parametrization for all times. We then tested
this method and provided numerical examples of evolving surfaces in 3D ambient
space in section 3.4. This method is unique in that the changes in the parametriza-
tion function are made by pre-composition with a deformation of the parametric
domain. As a consequence, the image space of the parametrization function is unaf-
fected and we preserve the correct position and shape of the surface. Furthermore,
the characteristic mapping method allows us to exploit the group structures of the
diffeomorphisms associated to the surface advection in the ambient space and the
density transport on the parametric space. This allows for the decomposition of both
maps into coarse grid submaps of smaller deformations, while maintaining high reso-
lution for the parametrization obtained from the composition. The resulting method
is able to track large deformations of the curves and surfaces in the ambient space
and equidistribute the resulting large variations in area density on the parametric
space.
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CHAPTER 4
Two-dimensional incompressible Euler Equations

The modelling of the movement of an ideal fluid by the Euler equations is one of
the most famous and important applications of the advection equation. In the two-
dimensional case, written in its vorticity form, the incompressible Euler equation
essentially states that the scalar vorticity is advected by the fluid velocity. In this
chapter, we study the application of the CM framework to the 2D incompressible
Euler equations. The content of this chapter contains joint work with Olivier Mercier
and Badal Yadav.

The study of the incompressible Euler equations in two-dimensional (2D) space
poses many challenges. It is well known that solutions of the 2D Euler equations,
although smooth, have fast growing gradients. The growth of the sup-norm of the
vorticity gradient can be bounded by a double exponential in time [124], this bound
was proven to be sharp in the case of smooth initial data on a disk [73]. Furthermore,
on a flat periodic 2-torus, it has been shown that for an arbitrary time interval,
there exists a vorticity field whose gradient exhibits exponential growth within the
chosen interval [37]. For a summary on the advances in mathematics for the Euler
equations, we refer to a 2013 review by Bardos and Titi [8]. These theoretical
results suggest that the spatial discretization for the numerical solution of the Euler
equations can be challenging. As the gradient of the solution grows, the numerical
resolution required to correctly capture the solution also increases. The resources
necessary to avoid excessive spatial truncation errors can thus become prohibitive
for long time simulations. On the other hand, allowing for spatial truncation errors
by undersampling the solution can generate numerical dissipation akin to a viscosity
term which qualitatively affects the simulation. In some cases, truncation errors
resonate with the solution, creating spurious oscillations and numerical instability.
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This phenomenon is analysed in detail by Ray et al. [99] in the case of a conservative
Fourier-Galerkin scheme, and a wavelet regularization technique has been proposed
by Pereira et al. in [95].

Many numerical solvers use a mix of Lagrangian and Eulerian descriptions
to exploit the advantages of each approach. For instance, Arbitrary Lagrangian-
Eulerian [38,59] methods use reference coordinates that are neither fully Lagrangian
nor fully Eulerian to describe the fluid configuration. Fully Lagrangian methods are
typically formulated to discretize the solution as a collection of Lagrangian particles,
these methods are characterized by a non-dissipative evolution of the solution. For
instance, the fully Lagrangian scheme proposed by Bowman, Yassaei and Basu [18]
achieves a non-dissipative transport of the solution and thus preserving all Casimir in-
variants. Another large family of numerical solvers are the semi-Lagrangian methods.
In these methods, relevant quantities are represented on an Eulerian frame, however,
the evolution equations are discretized from a Lagrangian description. Methods of
this type include the Cauchy-Lagrangian method [97] where the vorticity field is
evolved by transport along a moving mesh following the flow, the result is then peri-
odically projected back on an Eulerian grid. Level-set methods are another popular
semi-Lagrangian framework used for fluid simulation and implicit interface track-
ing, e.g. [92]. In these methods, characteristics are traced backwards in time and
Eulerian interpolation schemes are used to update the solution. Semi-Lagrangian
schemes have also been used to generate fast simulations intended for computer
graphics [43, 111]. One main property of the semi-Lagrangian approach is that it
tries to capture the characteristic structure of the equations. In particular, in 2D
inviscid flow, the vorticity field is transported along characteristic curves, hence ac-
curacy and stability can be improved by taking the geometric approach of following
these characteristic curves in order to propagate the solution in time.

The CM approach for solving the Euler equations in two-dimensional space con-
sists in splitting the evolution equations into the advection of the vorticity using the
CM method and the computation of the velocity through the Biot-Savart law. These
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two parts are connected in that the advection provides the vorticity field for the Biot-
Savart kernel, whose resulting velocity field is then used to advect the characteristic
map. In doing so we achieve a separation of scales: under the assumption that the
flow is governed by large scale features of the velocity field, the characteristic map
can be accurately evolved on a coarse grid. Furthermore, since the vorticity solution
is constructed through the pullback of the initial condition by the characteristic map,
the functional definition of the solution provides arbitrarily fine spatial resolution.

One main issue in inviscid fluid simulation is the artificial viscosity incurred
from the spatial truncations during the evolution of the solution. Some methods
such as [97] approach this problem by designing high order methods in order to take
extremely large time steps, hence minimizing the accumulation of the diffusive error.
Others employ an adaptive multi-resolution mesh refinement to efficiently resolve
fine scale features [35, 55, 75, 115]. One unique property of the CM method for 2D
Euler is that it eliminates artificial viscosity by never directly evolving a discretized
vorticity field: the vorticity changes as a consequence of the evolving characteristic
map used to compute the pullback. In particular, a straightforward consequence
is that the extrema of the vorticity field are conserved for all times. Additionally,
in order to correctly represent the arbitrarily fine scales generated by the flow, we
use a time decomposition of the characteristic map based on its group structure.
This allows the CM method to represent exponentially growing vorticity gradients
while only computing on a fixed coarse grid. The resulting scheme achieves arbitrary
subgrid resolution, high long term enstrophy conservation and is non-dissipative.

The rest of this chapter is structured as follows. In section 4.1 we lay out the
mathematical framework for the CM method and carry out some heuristic analysis
of its properties. In section 4.2, we present in detail the numerical implementation of
the method and provide some error bounds. Section 4.3 contains several numerical
tests and discussions on the accuracy and qualitative properties of the solutions.
Finally, we make some concluding remarks and propose future directions of work in
section 4.4.
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4.1 Mathematical Framework

The equations governing the motion of a perfect fluid in two-dimensional space
are:

∂tu+ (u · ∇)u = −∇p (x, t) ∈ U × R+, (4.1a)

∇ · u = 0, (4.1b)

u(x, 0) = u0(x), (4.1c)

where U is some fixed spatial domain, u is a vector field describing the instantaneous
velocity of a fluid element and p is the pressure. For this chapter, we assume for
simplicity that U is the flat 2-torus and hence there are no boundary conditions. In
general, for a boundary ∂U , the no penetration boundary condition for inviscid flow
is u · n = 0 on ∂U where n is the normal vector to the boundary. This will require
further extensions to the framework and is not covered in this work.

Define ω = ∇ × u the scalar vorticity of the fluid, and taking the 2D curl of
(4.1), we obtain the vorticity equations:

∂tω + (u · ∇)ω = 0 (x, t) ∈ U × R+, (4.2a)

∇ · u = 0, (4.2b)

ω(x, 0) = ω0(x). (4.2c)

Using the incompressibility assumption, u can be obtained from ω by solving a
Helmholtz-Hodge problem, u is then given by the Biot-Savart law

u = −∆−1∇× ω. (4.3)

From equation (4.2), we see that the scalar vorticity ω satisfies an advection
equation under the velocity field u. If we assume for now that the velocity field u is
given, then the ω can be computed using the CM method described in section 2.1,
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that is

ω(x, t) = ω0(X[t,0](x)), (4.4)

where X[t,0] is the time t backward characteristic map generated by u. The solution
of the Euler equations can be obtained by coupling the above vorticity pullback
definition with a Biot-Savart computation of the velocity field used to evolve the
map. This treatment of the Euler equations essentially reformulates the equations
as a geodesic flow on the Lie group of volume preserving diffeomorphisms SDiff (U)

on the domain U .
4.1.1 Group structure

The treatment of incompressible inviscid flow from the point of view of differen-
tial geometry and geodesic flow on the group of volume preserving diffeomorphisms
was examined by Arnold in 1966 [4]. The backward characteristic maps are the
inverse maps of the elements of the one-parameter semigroup of these volume pre-
serving forward flow maps parametrized by t. This allows for the time decomposition
of the characteristic map according to equation (2.7a).

Numerically, this group property allows us to adaptively adjust the numerical
resolution of the map. In particular, a backward characteristic map XB(·, t) for the
time interval [0, t] can be split into arbitrarily many submaps in the following way:

We subdivide the interval [0, t] into m subintervals [Ti−1, Ti] with 0 = T0 < T1 <

· · · < Tm = t. One can then check that the following decomposition holds:

XB(·, t) = X[t,0] = X[T1,0] ◦X[T2,T1] ◦ · · · ◦X[Tm−1,Tm−2] ◦X[t,Tm−1] (4.5)

Each of the submaps X[Ti,Ti−1] can be computed individually and stored. The global
time map is then defined as the composition of all the stored submaps. This decom-
position will provide several important numerical advantages which we will discuss in
section 4.2. In particular, each submap has the identity map as initial condition and
the subdivision allows for dynamic and adaptive spatial resolution without changing
the computational grid.
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In 2D incompressible Euler, the vorticity gradient can grow exponentially in
time. Using the characteristic map, we can write

ω(x, t) = ω0(XB(x, t)). (4.6)

We observe from this that the advection operator is responsible for the formation of
high vorticity gradient since

∇ω(x, t) = ∇ω0 · ∇XB(x, t). (4.7)

In cases where the vorticity gradient grows exponentially, we infer that∇X must also
grow exponentially. The semigroup decomposition is analogous to the exponential
function in one variable, where the natural instantaneous evolution is multiplicative
instead of additive in the sense that exp(c(t + ∆t)) ≈ (1 + c∆t) exp(ct) is more
natural than exp(c(t + ∆t)) ≈ exp(ct) + c∆t exp(ct) (the latter requiring tracking
an integrand which grows exponentially). Similarly, taking the gradient of equation
(4.5), we have

∇X[t,0] = ∇X[T1,0]∇X[T2,T1] · · · ∇X[Tm−1,Tm−2]∇X[t,Tm−1]. (4.8)

This means that an exponential growth in gradient can be achieved by the compo-
sition of submaps each having bounded gradient.
4.1.2 Advection-Vorticity Coupling

We use the backward characteristic map to rewrite the vorticity equation (4.2a)
as the following coupling of u, ω and XB:

ω(x, t) = ω0(XB(x, t)), (4.9a)

u = −∆−1∇× ω, (4.9b)

(∂t + u · ∇)XB = 0. (4.9c)

63



Equation (4.9b) is known as the Biot-Savart law and can be obtained from
∇ · u = 0 and the definition of the vector Laplacian:

∆F = ∇ (∇ · F )−∇× (∇× F ) (4.10)

for F a R2 → R2 vector field. We let u = F and commute ∆−1 and ∇× in (4.9b),
the velocity is then obtained from the stream function ψ:

ψ = −∆−1ω, u = ∇× ψ. (4.11)

The CM method for Euler equations then consists of numerically evolving X
in time using equation (4.9c); the velocity and vorticity are defined using (4.9a),
and (4.11). Additionally, if we employ the submap decomposition from the group
property, we would solve equation (4.9c) for the submaps X[t,Ti] for t ∈ [Ti, Ti+1] and
initial condition X[Ti,Ti](x) = x; the pullback (4.9a) would be computed from the
composition of all submaps.
4.1.3 Modified Equations

In order to qualify the properties of the numerical solution obtained from this
method, we look at the modified equations.

Let X n
B be the numerical characteristic map at time step tn. Let ωn = ω0(X n)

and let un be the velocity field associated to ωn. This velocity un is used to advance
the map to time tn+1 from which we obtain the velocity un+1 from pullback and
Biot-Savart; the process continues so on. Here, we look at the modified equation
which arises from replacing the true velocity u by some modified ũ which is better
approximated by the discrete evolution of the characteristic map.

We look at a modified velocity ũ defined at all times which approximates the
velocities un at discrete time steps tn. The corresponding modified equation for the
characteristic map is then

∂tX̃B + (ũ · ∇)X̃B = 0. (4.12)
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From here on, we will use the tilde notation for variables associated to the modified
equation. Discretized variables will be denoted by script letters with a superscript n
referring to the corresponding time step tn.

We will estimate the difference between the true solution XB and the solution
to the modified equation X̃B. This is a useful strategy as it will allow us to estimate
the error of the numerical solution XB using |XB−XB| ≤ |XB−X̃B|+ |X̃B−XB|.

Consider the evolution of XB and X̃B in some time interval [t0, t] (for t0 < t).
We can write XB and X̃B in integral form:

X[t,t0](x) = x+

∫ t0

t

u
(
X[t,r](x), r

)
dr, (4.13a)

X̃[t,t0](x) = x+

∫ t0

t

ũ
(
X̃[t,r](x), r

)
dr. (4.13b)

By Grönwall’s lemma, we have that∣∣∣X[t,t0](x)− X̃[t,t0](x)
∣∣∣ . C(t− t0)eC(t−t0)‖u− ũ‖∞, (4.14)

for some C ≈ ‖∇u‖∞.
Heuristically, we note from this that if a numerical solution XB approximates

well the solution X̃B of the modified equation generated by the discretized velocity
field ũ (or some approximation of it), that is, if the scheme is “self-consistent”, then
it is sufficient to control the difference between ũ and the true velocity u. This tool
makes the error analysis more straightforward and allows us to obtain better bounds
on the error in the conservation of various advected quantities. In particular, we can
write the modified equation approximated by the numerical vorticity solution:

∂t(ω0 ◦ X̃B) = ∇ω0 · ∂tX̃B = −∇ω0 · (ũ · ∇)X̃B = −(ũ · ∇)(ω0 ◦ X̃B). (4.15)

That is, the numerical vorticity approximates an advection equation under the mod-
ified flow generated by ũ, making the error “advective” rather than diffusive. The
exact nature of the modified equation is unclear and depends on the leading order
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term of u− ũ. In cases where spatial truncation errors dominate, we shall see that
this is closely related to the Lagrangian-Averaged Euler equations.
4.1.4 Multiscale Evolution

Due to the presence of different scales in the solution and to limited computa-
tional resources, we need to make choices on the degree of spatial truncation appro-
priate to each evolved quantity. In particular, the Biot-Savart law implies that u has
a faster decay in its Fourier coefficients compared to ω and XB. Therefore, it can be
represented on a coarser grid without incurring excessive L∞ error. In this method,
we make a similar assumption as in Lagrangian-Averaged Euler (LAE-α), that is,
that the low frequency features of the velocity dictate the global evolution of the
flow and high frequency small features do not need to be solved for exactly: it is suf-
ficient to resolve the coarse scales of the velocity field as long as the fine scale features
of the transported vorticity are not lost. With this assumption in mind, we design
a method where the representation of the instantaneous velocity as well as the short
time deformation map (by “short time”, we refer to the submaps in the decomposition
(4.5)) are done on a grid much coarser than the fine scales present in the vorticity
solution. However, since the vorticity is defined as the pullback/rearrangement by
XB, all scales in the vorticity are preserved and coherently transported under the
smoothed velocity field. Indeed, in the CM method, ω is defined as a function ω0◦XB

over the entire domain and evolves in time as a consequence of the changes in the
deformation map XB. The absence of a grid-based discretization of ω means that
we do not incur a dissipative error due to spatial truncation and preserve all small
scale features. As a result, the CM method can achieve arbitrary resolution on the
vorticity field and allows us to separate the scales involved in the problem: the large
scales are computed and accurately represented whereas small scales are preserved
and passively transported.

Here we make a parallel between the CM method and the LAE-α equations. The
LAE-α equations aim at modelling the flow of an incompressible inviscid fluid on a
spatial scale larger than α by taking a Lagrangian average of the velocity field. For
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more details on the LAE-α and LANS-α formulation, readers can refer to [82,83,87].
In its vorticity form, the LAE-α can be written as

∂tω + (u · ∇)ω = 0, (4.16a)

u = −∇×∆−1(1− α∆)−1ω. (4.16b)

The above equation also models the flow of a second-grade non-Newtonian fluid; an
analysis of the relation between second-grade non-Newtonian fluids, the vortex blob
method [27] and the LAE-α equations can be found in [90].

We see from (4.16) that the vorticity is transported by u and that u is obtained
from the Biot-Savart law on a smoothed vorticity field (1−α∆)−1ω. This smoothing
effect can also be achieved by a spatial filter during the same Biot-Savart computation
in CM, resulting in a smoothed modified velocity ũ (see section 4.1.3). The difference
is that the quantity of interest in LAE-α is the averaged velocity whereas in CM, we
are interested in the vorticity field which contains arbitrarily fine scales. It remains
that in cases where the sampling of the velocity in CM corresponds to the (1−α∆)−1

smoothing in LAE-α, the flow maps from both formulations are the same and hence
generate the same dynamics.
4.2 Numerical Implementation

The CM method for the 2D Euler equations uses the scheme presented in section
2.1 for the advection component. The definition of a velocity field in the interval
[tn, tn+1] as well as the numerical time-integration schemes are required to compute
the one-step map X[tn+1,tn] in (5.22). We will detail these in this section.
4.2.1 Spatial representation of the velocity field

In 2D Euler, the vorticity field solves a transport equation under the velocity u.
Assuming we have the global time characteristic map, XB(·, t), and that the initial
condition for the vorticity ω0 is given analytically, we have that the vorticity at time
t is given by

ω(x, t) = ω0(XB(x, t)). (4.17)
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This evaluation is necessary at every time step for the Biot-Savart law. Numer-
ically, the spatial resolution is limited by the grid’s Nyquist frequency resulting in
a spatial filter when defining the velocity u. This grid needs to be fine enough to
avoid Fourier aliasing from lack of resolution. Here we propose a sampling scheme
based on spatial filtering by defining a mollified velocity

uε = µε ∗ u, (4.18)

where µε is a mollifier supported in a neighbourhood of size ε. Commuting derivatives
and mollification, it is sufficient to compute the mollified vorticity. We pick ε to be
smaller than the cellwidth of V , the evaluation of the mollified vorticity at grid
points xi,j can then be expressed as the sum of the convolution integrals in all 4 cells
adjacent to xi,j:

(µε ∗ ωn)(xi,j) =
∑

r∈{−1,0}2

∫
Ci+r1,j+r2

µε(xi,j − y)ωn(y)dy. (4.19)

The integral in each cell is computed using numerical quadrature of sufficiently high
accuracy. The order of the quadrature could be in principle adapted in each cell; in
this chapter, quadrature order is fixed for simplicity. The resulting algorithm effec-
tively computes a mollified vorticity field where subgrid oscillations are filtered out,
by choosing an appropriate mollification scale, the V grid can resolve the mollified
vorticity without aliasing errors and the pointwise evaluation of µε ∗ ωn on V is
accurate as long as the sampling in each cell is sufficiently dense.
Remark 4.2.1. We only use this mollified vorticity to generate a mollified velocity,
the true numerical solution is still defined as ωn = ω0 ◦X n

B.
The velocity field can be obtained from ωnε through the stream function as in

equation (4.11). Numerically we will solve this using a spectral method with Fast
Fourier transforms. Let F denote the Discrete Fourier transform operator, we have:

ψnε := −F−1
[
∆−1F [ωnε ]

]
, (4.20)
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where the above ∆−1 solves the Poisson equation in Fourier space and is a diagonal
operator.

The divergence-free property of the velocity should be preserved in order for the
characteristic map to be volume preserving. Therefore un should be defined as the
curl of some scalar function. To achieve this, we use a grid V for the representation
of the velocity field and define

unε := ∇×HV [ψnε ]. (4.21)

This definition guarantees that unε ∈ curl(VV ) ⊂ {f ∈ C0(U)|∇·f ≡ 0}. Indeed,
un is C∞ in each cell and continuous across cell boundaries, its divergence is however
continuous everywhere and identically 0 due to the continuity of the mixed partials
∂(1,1)HV [ψnε ]. As a result, the numerical flow is also divergence-free which allows us
to control the error on the volume-preserving property of the characteristic map.
Remark 4.2.2. The grid V and the parameter ε used to represent the velocity field
are independent of the grid used for the evolution of XB, the interpolant is also
not restricted to Hermite cubics. Consequently, V can be made arbitrarily fine and
ε arbitrarily small such that unε approach the exact Biot-Savart velocity associated
to the numerical vorticity ωn = ω0 ◦ XB. Furthermore, it is important to have a
fine enough V so that the interpolation of ψnε does not create new extrema from
undersampling, as this can cause spurious oscillations and pollute the solution. In
fact, choosing a fine grid does not require large computational resources as it only
involves an inverse FFT of a zero-padded ψ̂nε .
4.2.2 Time Discretization

Section 4.2.1 gives us a discretization of the velocity field at time tn given the
characteristic map. In this section, we provide the time discretization for the evolu-
tion of the characteristic map based on this unε .
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The characteristic map can be evolved using the group property (2.7a). Let tn
be the discrete time steps, with ∆t = tn+1 − tn, we have

X[tn+1,0] = X[tn,0] ◦X[tn+1,tn]. (4.22)

In order to approximate the one-step map X[tn+1,tn], we extend the velocity unε
to the time interval [tn, tn+1] using an order p Lagrange polynomial in time. This is
similar to a multistep method. Let

ũ(x, t) :=

p−1∑
i=0

li(t)u
n−i
ε (x), (4.23)

where li are the Lagrange basis polynomials for time steps tn−i. We note that for
each fixed time t, ũ is a linear combination of un−iε . In particular, this implies that
if ∇ · un−iε = 0 then ∇ · ũ = 0.

The one-step map X[tn+1,tn] is then approximated from (4.13b) by a k-stage
Runge-Kutta integration of the velocity ũ along characteristic curves, for ∆t back-
ward in time:

X [tn+1,tn](x) = x−∆t
s∑
j=1

bjkj, (4.24)

with

kj = ũ

(
x−∆t

j−1∑
m=1

ajmkm, tn+1 − cj∆t

)
, (4.25)

and k0 := 0. The coefficients a, b, c are those of the Butcher tableau corresponding
to the explicit Runge-Kutta scheme.
Remark 4.2.3. The smoothness of ũ is required for the convergence of RK schemes.
However, the Hermite cubic definition of unε in section 4.2.1 is C0. Nonetheless, this
does not pose a problem since HV [ψnε ] is a piecewise polynomial approximation of
ψnε , which is smooth: the moduli of smoothness for unε scale with the cell width of
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V (in the limit of infinitely fine grid V , unε is smooth). Therefore, by appropriately
scaling V with ∆t the lack of smoothness does not affect the convergence.
4.2.3 Characteristic Mapping Method for 2D Incompressible Euler

We combine the time and space discretizations in the previous sections to gen-
erate the Characteristic Mapping method for 2D Euler. The evolution of X[t,0] at
discrete time steps tn is given by (4.22). We construct the numerical approximation
of XB by evolving a map in the space of Hermite cubic C1 diffeomorphisms in the
sense that each coordinate function is a piecewise Hermite cubic polynomial defined
on some grid M .

X n+1
B = HM

[
X n

B ◦X [tn+1,tn]

]
, (4.26a)

X 0
B(x) = x. (4.26b)

where the one step map X [tn+1,tn] is given in (4.23) and (4.24) and equation (4.26a) is
the Gradient-Augmented Level-Set [89] (GALS) time stepping scheme. The velocities
unε required to define the one step map are given by (4.19), (4.20) and (4.21). The
velocities un−iε at previous time steps used in (4.23) are stored until no longer needed
(for p steps where p is the order of the Lagrange polynomial chosen to represent ũ).
4.2.4 Error Estimates

We give some estimates on the characteristic map error:

En := ‖X(x, tn)−X n(x)‖∞. (4.27)

First, we consider some given numerical solutions X n for n = 0, 1, . . . N for some
unspecified N . The characteristic map at each time step tn generates a velocity field
unε . We take the velocity field ũ(x, t) given in (4.23) to be the velocity field of the
modified equation (4.12). We notice that the numerical solution X is exactly the
CM discretization of the advection operator X̃ for the velocity ũ (taking ũ as given).
That is X is a CM method approximation of the advection operator generated by
the modified velocity it engenders.
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Theorem 4.2.1. Using an s-stage explicit RK integrator with Hermite cubic spatial
interpolation, the numerical characteristic map X n(x) is consistent with X̃(x, tn) to
order

‖Dα(X̃(x, tn)−X n(x))‖∞ = O(tn(∆x2−|α|min(∆t,∆x2∆t−1) + ∆ts)), (4.28)

for α ∈ {0, 1}2.

Proof. Taking ũ as a fixed velocity, X is simply CM method applied to ũ. The
error estimates are given in [84]. It is a property of jet-schemes with Hermite cubic
interpolants that we lose one order of convergence for the first mixed derivative only
in the spatial error term. This is because time integration in jet-schemes computes
the function values and mixed derivatives of degree 1 in each dimension and all
functions evaluated in the method are at least everywhere C1.

We note that the velocity field ũ is smooth in space (see remark 4.2.3), however it
may be discontinuous in time at tn. This does not cause an issue as the smoothness of
the velocity is only required in the time step intervals [tn, tn+1]. The local truncation
error estimates still hold for the one-step maps X [tn+1,tn] and X̃[tn+1,tn]; the global
truncation error can be obtained from the composition and Hermite interpolation of
the one-step maps.

Remark 4.2.4. The above error bounds are valid within the stability requirements
that the modified velocity ũ remains regular and bounded independently of ∆x and
∆t. In the CM method for Euler equations, the spatial and time grids used to defined
ũ are in fact independent of those for the map X . It is possible stabilize the flow to
various degrees by choosing an appropriate spatial resolution and smoothing for unε
to control the numerical behaviour of ũ. Again, this is akin to the α-regularization
of the velocity in the LAE-α equations.
Corollary 1. The CM method for 2D incompressible Euler conserves enstrophy to
order O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)).

72



Proof. Since ũ is by definition divergence-free, we have that X̃ is a volume preserving
map, i.e. det(∇X̃) = 1. We get by a change of variable that, with U = X̃(U),∫
U

f(ω0(x)))dx =

∫
X̃(U)

f(ω0(X̃(x, tn))) det(∇X̃(x, tn))dx =

∫
U

f(ω0(X̃(x, tn)))dx,

(4.29)

for any measurable f . Therefore, we have∫
U

f(ω0(X n(x)))dx−
∫
U

f(ω0(x)))dx ≈
∫
U

∇(f ◦ ω0)(X n(x)− X̃(x, tn))dx

(4.30)

≤ ‖∇(f ◦ ω0)‖L2‖X n − X̃(·, tn)‖L2 = O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts))

In particular, taking f(ω) = ω2 gives us conservation of enstrophy, and for higher
order monomials, this implies that the moments of the vorticity are conserved, as
they are in the continuous setting.

To obtain a full error bound, it is sufficient to bound the difference between the
true characteristic map and the map from the modified equation. Let

Ẽn := ‖X(x, tn)− X̃(x, tn)‖∞. (4.31)

From theorem 4.2.1, we then have that

En ≤ Ẽn +O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)). (4.32)

Theorem 4.2.2. From the above error decomposition we can deduce that the global
truncation error for the characteristic map is

En = O
(
∆ts + ∆x2 min(∆t,∆x2∆t−1) + ∆tp

)
. (4.33)
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Proof. It is sufficient to control the evolution of Ẽn. We note thatX[tn,0] = X[tn−1,0]◦
X[tn,tn−1] and X̃[tn,0] = X̃[tn−1,0] ◦ X̃[tn,tn−1], hence

X[tn,0] − X̃[tn,0] = (X[tn−1,0] − X̃[tn−1,0]) ◦X[tn,tn−1] +O(X[tn,tn−1] − X̃[tn,tn−1]).

(4.34)

From our estimates in (4.14), we have that X[tn,tn−1] − X̃[tn,tn−1] = O(∆t‖u −
ũ‖∞). Given that ω(x, tn−1)− ωn−1(x) = O(En−1), we have

X[tn,tn−1] − X̃[tn,tn−1] = O(∆tEn−1 + ∆tp+1), (4.35)

where we incurred an extra order p+ 1 error from the Lagrange interpolation.
Therefore,

Ẽn ≤ Ẽn−1 +O(∆tEn−1 + ∆tp+1) (4.36)

= Ẽn−1 +O
(

∆tẼn−1 + ∆t(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)) + ∆tp+1
)
, (4.37)

which implies that

Ẽn = O
(
∆x2 min(∆t,∆x2∆t−1) + ∆ts + ∆tp

)
. (4.38)

Together with (4.32), we obtain the desired error estimate.

Remark 4.2.5. Equation (4.35) in fact omits a sampling error incurred when defining
unε , due to sampling the vorticity at discrete points. In this method, we define
ωnε by convolution with a pullback mollifier instead of directly evaluating ω0 ◦X n at
sample points. This allows us to justify a Fourier truncation at low number of modes,
however, we incur an error term which is second order in the width of the mollifier.
This is omitted from the analysis since the sampling grid for ωnε is independent of
the computational grid for the map, hence the sampling error can be controlled
separately.
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4.2.5 Convergence Tests

We provide here some numerical evidence for the error estimates derived above.
We will more extensively test the full method in section 4.3.

We use a standard four-modes initial condition (4.48) to test the convergence.
For the spatial error, we fix ∆t at 1/512 using third order Lagrange interpolation in
time and third order explicit Runge-Kutta for time-integration. We then vary the
spatial grid size between 32 to 512. To test the error in the time variable, we fix the
spatial grid at 1024 and vary ∆t between 1/8 and 1/128. This time, we test both
a second and third order Lagrange interpolant while keeping the same Runge-Kutta
scheme as before. This aims to show the independence of the conservation error from
the solution error. For all tests, we sample the vorticity on a 1024 grid and represent
the stream function as a piecewise Hermite cubic interpolant on a 2048 grid. We run
the simulation to time t = 1 and calculate the errors in the following quantities:

Map error := ‖X n −X(·, tn)‖∞, (4.39a)

Vorticity error := ‖ωn − ω(·, tn)‖∞, (4.39b)

Enstrophy conservation error := ‖ωn‖2
L2 − ‖ω0‖2

L2 , (4.39c)

Energy conservation error := ‖un‖2
L2 − ‖u0‖2

L2 , (4.39d)

where for the map error, the maximum error of the two coordinate functions is
recorded.

Conservation errors are calculated directly, the sup-norm map and vorticity
errors are estimated by comparing each result to the ∆x = 1/1024, ∆t = 1/512

test. The functions are evaluated on a 2048 grid, both the L∞ and L2 norms are
approximated by their discrete variants on this grid. The results are shown in figure
4–1.

Figures 4–1a and 4–1b are both time convergence plots, the difference is that one
uses a third order Lagrange interpolant for the definition of ũ and the other, second
order. We see that as expected, the enstrophy conservation error is independent of
the choice of Lagrange interpolation and is third order in both cases due to the use
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(a) Time convergence test,
3rd order Lagrange.
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(b) Time convergence test,
2nd order Lagrange.
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(c) Spatial convergence test,
3nd order Lagrange.

∆t = 1/512.

Figure 4–1: Map and vorticity error and conservation errors of enstrophy and energy
for the Characteristic Mapping method without remapping.

of RK3 integration for ũ. The error on the map values and vorticity however, do
depend on the accuracy of ũ and have third and second order convergence for the
respective tests.

Figure 4–1c shows the convergence with respect to ∆x. Our error estimates
suggest a convergence between O(∆t∆x2) and O(∆t−1∆x4). For a fixed ∆t, this
is between second and fourth order. This ambiguity comes from the GALS time
stepping scheme. The grid data at time tn+1 are obtained by evaluating the time tn
Hermite interpolants at X [tn+1,tn](xg) for xg a grid point; X [tn+1,tn](xg) is commonly
called the “foot-point”. The interpolation error depends on the location of the foot-
point relative to grids points. In each dimension, Hermite cubic interpolation errors
scales quadratically with both closest grid points. This implies that the interpolation
error is O(∆x2∆t2) if ∆t� ∆x and O(∆x4) otherwise. This is consistent with the
third order convergence we see in figure 4–1c.

The experiments in this section suggest that the CM method with Hermite
cubic spatial interpolation, third order Lagrange time interpolation and RK3 time
integration yields a globally third order method. This is to provide some support
for the error estimates in section 4.2.4. In practice, since a precise representation of
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fine scale features in the velocity field does not contribute very much to the global
dynamics and deformation of the domain, we use a coarse grid to represent short time
characteristic maps in order to improve efficiency. In this regard, the remapping step
presented in the next section will play an important role in maintaining an accurate
resolution of the fine scale features in the deformation map generated by long term
advection. We will then provide more numerical results and benchmark tests in
section 4.3.
4.2.6 Adaptive Remapping and Arbitrary Resolution

In the absence of a viscosity term, solutions of Euler equations tend to develop
arbitrarily small scale spatial features. As a result, a fixed grid for representing the
characteristic map is only valid for a limited amount of time before spatial resolution
needs to be increased. Changing the computational grid during simulations can be
cumbersome and adversely affect the speed of all computations thereafter. We use
instead a decomposition method based on the group property of the characteristic
map mentioned in section 4.1.1. Numerically, the time t characteristic map can be
constructed as the composition of several submaps of time subintervals:

XB(·, t) := X [T1,0] ◦X [T2,T1] ◦ · · · ◦X [Tm−1,Tm−2] ◦X [t,Ym−1], (4.40)

for some subdivision 0 < T1 < T2 < · · · < Tm−1 < t. Each of these submaps
are computed using the CM method described in previous sections. We initialize
X [t,Ti] with the identity map at t = Ti and evolved until a remapping time t = Ti+1

which can be determined dynamically. Once the remapping time is reached, we store
X [Ti+1,Ti] in memory and start computing the map for the next subinterval.

Heuristically speaking, each of the subintervals [Ti, Ti+1] should be short enough
such that the grid used to discretize X [Ti+1,Ti] can correctly represent the deformation
generated by the velocity ũ in this interval.

In this implementation, we use the error in the Jacobian determinant

endet := ‖ det∇X [tn,Ti] − 1‖∞ (4.41)
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as a measurement of the map quality, based on which we choose the remapping times.
We pick an error threshold δdet for the submaps. The ith submap is initialized with
the identity map. After each time step, we compute the Jacobian determinant of
X [Ti+n∆t,Ti] at off-grid sample points. If for some n, the Jacobian error exceeds δdet
for the first time, we define Ti+1 := Ti + n∆t and store X [Ti+1,Ti]. The same process
is repeated for the i+ 1st submap using Ti+1 as initial time.

Although ‖ det∇X [tn,Ti] − 1‖∞ < δdet does not constitute a proper bound on
the error in XB, we can use this as an approximate a posteriori error estimate for
the gradient of the map compared to that of the map from the modified equation.
Indeed, since ‖XB − X̃B‖∞ is the error from using the CM method on the velocity
ũ, it is globally third order when ∆x ∼ ∆t. Assuming that ∇XB −∇X̃B is small,
we can justify the following first order expansion

edet = ‖ det∇XB − det∇X̃B‖∞ ≈
∥∥∥tr(∇X̃−1

B (∇XB −∇X̃B)
)∥∥∥
∞

= O(‖∇XB −∇X̃B‖∞) (4.42)

Choosing the remapping times such that for each subinterval, we have edet < δdet

implies that each submap has O(∆xδdet) error with respect to X̃B and hence volume
preservation and enstrophy conservation error of the same order. In turn, since the
error is 0 at the initial time and we remap at the first time step where this threshold
is exceeded, we know that we can assume the error to be small enough to justify the
above first order expansion (at least for all previous time steps).

This remapping technique is key in the accurate, dissipation-free resolution of the
vorticity field. Qualitatively speaking, there are two types of errors in this method,
one is dissipative in nature, and the other, “advective”. Dissipative error refers to
artificial diffusion (or diffusion-like) terms that we incur from spatial truncation of
the solution. When we represent an evolving quantity on a fixed spatial grid, the high
frequency features of the solution, namely those above the grid’s Nyquist frequency,
are lost. When these spatial truncations are directly applied to the Euler equations,
we get artificial dissipation of ω or u resulting in loss of enstrophy or energy. In
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the case of Fourier-Galerkin truncation, the dissipative errors can resonate with the
solution resulting in numerical artefacts and spurious oscillations [99].

Due to the discrete nature of numerical computations, truncation errors are
inevitable. In the present method, the evolution of X n

B (and only X n
B) contains a

diffusive type error since at each GALS update step, the Hermite cubic interpolation
consists of a 4th order averaging of grid values. The leading order error is a 4th

order spatial derivative acting like a squared Laplacian. Over time, this accumulated
averaging error artificially smooths out the map and resists fine scale deformations
which might be present in the true solution. However, since ωn = ω0 ◦X n

B, the error
in the vorticity is not dissipative in nature. The vorticity is not directly obtained
from the previous step ωn−1 and there is no averaging involved. Instead, the error
occurs only at the evaluation of ωn and is produced by evaluating ω0 at a wrong
position. In fact, since XB and X n

B are both diffeomorphisms of U , there exists a
diffeomorphism Ψn = (X n

B)−1 ◦X[tn,0] such that

X[tn,0] = X n
B ◦Ψn, (4.43)

The error for ωn can then be seen as an advective error in the sense that

ω(x, tn) = ωn(Ψn(x)), (4.44)

where ω on the left-hand side refers to the true solution.
This means that qualitatively speaking, the global dynamics of the solution are

not obtained from a viscous approximation: the numerical fluid is still inviscid. We
make an error on the position of the vortices, controlled by the error of the charac-
teristic map. In particular, it is a straightforward consequence that the numerical
solution has the correct L∞-norm. Moreover, all Lp-norms for 1 ≤ p < ∞ are con-
trolled by ‖XB − X̃B‖∞. Essentially, the CM method places the inevitable diffusive
truncation error on the deformation map so that by composition with ω0, the dissi-
pative error in XB manifests itself in ω as an advective error, hence preserving the
inviscid quality of the numerical solution.
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Going back to the remapping routine, we apply the same principle. In limit-
ing the length of the submap intervals [Ti, Ti+1] by choosing a small δdet, we limit
the amount of artificial diffusion a single submap can accumulate. This prevents
the dissipative error from smoothing out the map and smearing out the fine scale
deformations generated by the advection: the global time map is constructed by
composition of the short time submaps, also resulting in an advection type error for
the map.

In practice, we can interpret the choice of δdet in several ways. On one hand,
since the use of a smoother unε velocity can be seen as coarse scale discretization of the
fluid velocity in the sense of the LAE-α and non-Newtonian fluid equations, we can
view the choices of the remapping threshold δdet as control on the artificial elasticity
of the numerical flow due to spatial truncations. In this sense, the CM method
does not make an error on the viscosity, rather it allows for some small controlled
elasticity in the fluid. On the other hand, δdet controls the error on the volume
preserving property of the map. The numerical deformation map is not exactly
volume preserving, hence the characteristic paths approximate those of a fluid that
is slightly compressible. Therefore, the CM method avoids numerical dissipation by
allowing for a small compressibility in particle paths. It is important to note however
that the vorticity field is still advected and is not stretched by the compressibility
relaxation of the characteristic map.

Lastly, one can also look at the spatial resolution of the remapping routine from
the point of view of the gradient of the represented quantities. Heuristically speaking,
the maximum gradient that can be accurately represented on a grid of cell width ∆x

is O(∆x−1), that is, the gradient scales roughly with N , the number of grid points
per dimension. It follows that for an exponentially growing vorticity gradient, the
required grid size to avoid excessive truncation errors grows exponentially also. For
methods where the evolution of ω is carried out additively, i.e. methods of the type

ωn+1 = ωn + ∆t∂tω
n, (4.45)

80



it implies that computations for ∂tωn must be carried out on an exponentially growing
grid.

On the other hand, ω is not evolved additively in the CM method, the gradient
is instead generated by the characteristic map:

∇ω(·, tn) = ∇ω0∇X [tn,0]. (4.46)

Here, the exponential quantity is ∇X n
B. This growth is however a natural property

of the characteristic map (the map being itself the exponential flow map of the
backward time velocity). In fact, the semigroup decomposition (4.8) is the intrinsic
generating process of the gradient just as multiplication is the generating process of
the exponential function. We have

∇X [t,0] =
m∏
j=1

∇X [τj ,τj−1], (4.47)

where the `2 operator norm ‖∇X [τj ,τj−1]‖2 of each submap gradient is expected to
scale exponentially with ∆τj = τj − τj−1. Therefore, by appropriately choosing the
remapping criterion, one can make ∆τ small enough that the gradient of each submap
is bounded of order O(1+∆τ), hence representable on a coarse grid. This means that
through the semigroup property, we can generate exponential growth in the vorticity
gradient without having to do computations on an exponentially growing grid. As
we shall see in the next section, this yields a computationally efficient method which
captures arbitrarily fine scales and arbitrarily large gradients in the solution.
4.3 Numerical Tests

The simulations in this section were carried out on Matlab on a computer with
an Intel Core i5-2320 3.00GHz 4 cores processor and 8GB of RAM. For the current
simulations, we have not used any parallelization routines. However, almost all the
computational time is spent on Hermite interpolations. Parallel and GPU implemen-
tation of these operations are standard and could drastically improve the speed of
the simulations. Parallelization and application of domain decomposition techniques
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may be of interest for future work. The larger computations in section 4.3.4 are
performed using a cluster computer.
4.3.1 “4-modes” test

We test the CM method for 2D incompressible Euler using the “4-modes” initial
condition. We use the tests performed in [97] as reference. The initial vorticity is
given by:

ω0(x, y) = cos(x) + cos(y) + 0.6 cos(2x) + 0.2 cos(3x), (4.48)

This flow can roughly be characterised as two vortices of opposite signs partitioning
a flat torus. The contour plot of ω0 and ∆ω0 are shown in figure 4–2, all contour
plots in this paper show 9 isolines at values uniformly distributed in the range of the
plotted data. For this flow, we used a 1282 grid for the evolution of the maps with
a 5122 grid to represent ũ. The time step ∆t was set at 1/32 and the remapping
determinant error threshold to 10−4. The simulation was run to times 3.5 and 4 for
the enstrophy spectrum plot in figure 4–14, and for several times until t = 8 for the
long time simulation in figures 4–3 an 4–4.

(a) ω0 (b) ∆ω0

Figure 4–2: Contour plot of the 4-modes initial vorticity and its Laplacian. Isolines
are shown for 9 values uniformly distributed in the range of each functions.

The same tests were performed in [97] up to time t = 5 using the Cauchy-
Lagrange method of various truncation order in time on spatial grids up to 81922.
This was necessary due to the presence of large high frequency components in the
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t 1 2 3 4 5 6 7 8
Number of remaps 1 4 14 30 47 65 88 105
Total CPU time 20 s 41 s 66 s 100 s 145 s 202 s 274 s 359 s

Table 4–1: Number of remaps and CPU times for the 4-modes test.

vorticity at large times and to the necessary anti-aliasing routines in Fourier pseudo-
spectral methods. On the other hand, one can justify using a coarser 1282 grid for
the submap evolution in the CM method since the submaps are remapped and reset
to identity before large high frequency features can form. Furthermore, these maps
are evolved using the velocity field ũ which, by the Biot-Savart law, has a faster
decay in its Fourier coefficients than the vorticity field.

Figures 4–3 and 4–4 show the contour plots of the vorticity and its Laplacian at
length 1 time intervals between 0 and 8. The characteristic maps are computed on a
coarse gird, we only use a fine grid sampling of the vorticity to generate the figures.
Table 4–1 shows the number of remaps and total computational times required to
reach the various plotting times.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Figure 4–3: Contour plot of the vorticity using 1282 grid for X n, 5122 grid for
representing ψn, ∆t = 1/32 and δdet = 10−4.
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Figure 4–4: Contour plot of the Laplacian of the vorticity using 1282 grid for X n,
5122 grid for representing ψn, ∆t = 1/32 and δdet = 10−4.

From figures 4–3 and 4–4, we see that for larger times, the flow forms very thin
vortex sheets where the two vortices meet. These regions have high vortex gradient
and present increasingly fine scale features. For methods employing a fixed grid to
represent the solution ωn, these fine features will eventually become smaller than
the grid resolution after which they are lost. This can be interpreted as numerical
diffusion or hyper-diffusion associated to the grid size and eventually destroys sharp
features of the solution. In the case of conservative high resolution methods such
as [97], the truncation of high frequency modes can provoke resonance in the solution
leading to a type of spurious oscillations called “Tygers”: essentially, for a given
spatial resolution the numerical solution will reach a time after which numerical
artefacts become visible and the solution becomes unstable.

The CM method circumvents this issue by obtaining the solution as a “rear-
rangement” of the initial condition using the backward map. The lack of spatial
resolution due to the discrete representation of the map does not result in a dissi-
pative error in the vorticity. This can be observed in figures 4–3 and 4–4 where we
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t 1 2 3 4
Enstrophy 1.35 · 10−6 2.75 · 10−6 4.39 · 10−6 6.13 · 10−6

Energy −3.21 · 10−8 −4.14 · 10−8 −5.17 · 10−8 4.66 · 10−8

t 5 6 7 8
Enstrophy 7.90 · 10−6 9.76 · 10−6 1.17 · 10−5 1.37 · 10−5

Energy −3.51 · 10−7 −1.64 · 10−6 −3.98 · 10−6 −7.51 · 10−6

Table 4–2: Conservation errors for the 4-modes test using the CM method.

can see that for large times, the solution still contains fine scale features and there
are no spurious oscillations. There is however some numerical dissipation in X akin
to an artificial elasticity term. From the point of view of vorticity, the effect of this
dissipation in the map is that the vorticity will be transported along a less violent
flow. This error is controlled by the remapping routine. Normally, if we evolve a
single characteristic map on a 1282 grid, the accumulated diffusive error will prevent
sharp deformations to form. Using the remapping method with δdet = 10−4 we limit
the amount of diffusive error in each submap. The global map is constructed from
the composition of the submaps and hence is able to represent large shears and the
formation of thin vortex sheets. Indeed, we can see from the results that the vor-
ticity develops scales much finer than the 1282 grid used for the submap evolution.
These scales were absent in the initial condition and are generated from the domain
deformation represented by the composition of several submaps.

Another advantage of the remapping routine is that it offers some control over
the growth of the enstrophy conservation error. Indeed, since each additional submap
transports the vorticity at the previous remapping time, we incur the conservation
error in corollary 1 with respect to the enstrophy at the previous remapping. This
means that the enstrophy error accumulates additively when remapping. The er-
ror from each submap is controlled through the choice of the remapping tolerance
δdet, thereby providing better long term conservation. The enstrophy and energy
conservation errors are shown in table 4–2.

Compared to a direct grid based representation of the vorticity, this growth is
much slower. Indeed, in [97], using the 8th order Cauchy-Lagragian method on a
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10242 grid, the enstrophy error increases from 10−14 to 10−12 to 10−6 for times 1, 3

and 5, whereas for the CM method, the enstrophy error seems to grow linearly with
time.

The remapping method combined with the functional representation of the char-
acteristic map offers the possibility of arbitrary spatial resolution of the solution.
Indeed, since the interpolation structure of the submaps implies that the global map
X [t,0] can be readily evaluated anywhere in the domain, it follows that the vorticity
of any quantity transported by the flow can also be evaluated anywhere. With the
accuracy control provided by the remapping method, this means that solutions can
be faithfully represented at an arbitrary resolution. We illustrate this property by
gradually zooming into the solution at times 4 and 8.
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Figure 4–5: Gradual 64× zoom on the vorticity at t = 4.
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Figure 4–6: Gradual 64× zoom on the Laplacian of the vorticity at t = 4.

Figures 4–5, 4–6, 4–7 and 4–8 demonstrate the arbitrary spatial resolution pro-
vided by the characteristic map. Each zoomed plot is sampled with the same number
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Figure 4–7: Gradual 64× zoom on the vorticity at t = 8.
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Figure 4–8: Gradual 64× zoom on the Laplacian of the vorticity at t = 8.

of sample points, providing the same image resolution on gradually smaller subdo-
mains. We observe that when we zoom in, we recover additional small scale features
not visible on the original plot. The undersampling from the [0, 1] × [0, 1] plot fails
to represent the complexity of the contour lines inside the thin vortex sheet (see
figures 4–7a v.s. 4–7d). These features are recovered when using a finer sampling.
This in fact shows that the solution provided by the CM method is not bound to
a fixed set of sample points. Whereas in most methods, once a grid is chosen, any
detail finer than this grid is lost, the CM method does not compute the solution on a
fixed grid, rather it provides an algorithm to sample the vorticity field ωn = ω0 ◦X n

defined as a function over the whole domain. This means that the solution can be
evaluated anywhere, providing arbitrary spatial resolution. In practice, in case ω0 is
given numerically, this implies that we maintain the same resolution as that of ω0

throughout the entire simulation: there is no loss of spatial features.
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4.3.2 Random initial conditions

In this section, we perform the same tests as in section 4.3.1 on a randomly
generated initial condition. The procedure to generate the random initial condition
is given in [99]. In short, the vorticity is defined in Fourier space, which is divided into
lattice shells, each containing all modes k = (k1, k2) such that

√
k2

1 + k2
2 ∈ [K,K+1).

The Kth shell contains N(K) modes, and for each of these modes, we assign a
vorticity Fourier coefficient ω̂k of fixed modulus 2K7/2 exp(−K2/4)/N(K) and a
phase picked randomly from [0, 2π) with uniform distribution. This guarantees that
the total vorticity in the Kth shell decays like 2K7/2 exp(−K2/4). Further, to ensure
that the vorticity is real, opposite wave vectors (i.e. ω̂k and ω̂−k) are given opposite
phases so that the resulting Fourier expansion is Hermitian. The same test was
performed in [97] until t = 1 using the Cauchy-Lagrange methods with 20482 spatial
Fourier modes.

(a) ω0 (b) ∆ω0

Figure 4–9: Contour plot of the random initial vorticity and its Laplacian.

Since the CM method does not work directly with the Fourier transform of the
initial vorticity, we defined our initial ω0 as follows: we first generate ω̂k as described
above, we then sample the Fourier series on a 5122 grid to obtain a Hermite cubic
interpolant which we use as ω0. We used total of 32 lattice shells, i.e. K = 0, 1, . . . 32;
in fact, due to the prescribed decay rate of the coefficients, |ω̂k| is already well below
machine precision for |k| = 32 and is below machine underflow for 64. Using more
shells would have no consequence on our ω0. The initial vorticity and its Laplacian
are shown in figure 4–9. We ran the CM method on this initial condition using a 2562
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t 0.5 1 1.5 2
Number of remaps 3 18 38 69
Total CPU time 233 s 499 s 822 s 1226 s

Table 4–3: Number of remaps and CPU times for the random initial condition test
using the CM method.

t 0.5 1 1.5 2
Enstrophy error −2.40 · 10−6 1.36 · 10−6 5.95 · 10−6 9.36 · 10−6

Energy error −7.74 · 10−7 −4.71 · 10−6 −3.79 · 10−5 −9.36 · 10−5

Table 4–4: Conservation errors for random initial condition test using the CM
method.

grid for the map, 10242 grid to represent ψn, ∆t = 1/64 and δdet = 10−4. Contour
plots of the vorticity field and of the its Laplacian are shown at 0.5 time intervals in
figures 4–10 and 4–11. The number of remaps and CPU times required are shown in
table 4–3.

(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Figure 4–10: Contour plot of the vorticity for the random initial condition test using
2562 grid for X n, 10242 grid for representing ψn, ∆t = 1/128 and δdet = 10−4.

As in the 4-modes test, we also observe slow growth in conservation errors for
the random initial data in table 4–4. In comparison, the enstrophy error for the
8th order, 20482 harmonics Cauchy-Lagrangian method grows from 10−14 to 10−13 to
10−8 for times 0.2, 0.6 and 1.
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(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Figure 4–11: Contour plot of the Laplacian of the vorticity for the random initial
condition test using 2562 grid for X n, 10242 grid for representing ψn, ∆t = 1/128
and δdet = 10−4.
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Figure 4–12: Gradual 64× zoom on the vorticity at t = 2.
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Figure 4–13: Gradual 64× zoom on the Laplacian of the vorticity at t = 2.
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4.3.3 Spatial resolution

The vorticity solutions in both tests in this section are observed to have increas-
ingly finer spatial features as time progresses. One way to quantify the evolution
of the spatial scales is through the Fourier expansion of the solution, in particular,
we look at the decay of the magnitudes of the high frequency coefficients. This can
be seen from the enstrophy spectrum obtained by integrating the square of vorticity
over circular shells in Fourier space. That is, let ω̂k be the k = (k1, k2) coefficient of
the Fourier transform of ω and denote |k| =

√
k2

1 + k2
2, we have

Eω(K) :=
1

2

∑
K≤|k|<K+1

|ω̂k|2. (4.49)

We compare the enstrophy spectrum from the CM method to that of Cauchy-
Lagrangian (CL8) method presented in [97]. Figure 4–14 shows the overlay of the
vorticity spectra obtained from both methods. The vorticity fields are sampled at
times 3.45 and 3.95 (due to the nature of the time step in the CL8 method, the times
presented in [97] did not land exactly on t = 3.5 and 4).

We see that in figure 4–14, the enstrophy spectra obtained from the CM method
matches almost exactly, up to double precision, the high-fidelity results obtained from
the 80962 harmonics Cauchy-Lagrangian simulation (The curves are on top of each
other. The plots are provided in vector-graphics format, zooming in the tail of the
spectrum shows some discrepancies between the two curves. This is in large part due
to the two simulations not having exactly the same final times). This suggests that
small time deformations can be accurately represented on a coarse 1282 grid and the
fine scale global time deformations can be reconstructed by the composition of the
submaps without loss of resolution.

One measurement of the asymptotic decay of the Fourier coefficients is the radius
of analyticity. The decay rate of the enstrophy spectrum at high frequency modes
indicates the spatial scales present in the solution. Asymptotically, the decay of the
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(a) t ≈ 3.5 (b) t ≈ 4

Figure 4–14: Decay in the enstrophy spectrum at times 3.5 and 41 .

enstrophy spectrum is typically

Eω(K) ∼ Kαe−2δK . (4.50)

The rate of the exponential, δ, is the radius of analyticity and governs the spatial
truncation error. For a grid which resolves a maximum frequency of kmax, the spatial
truncation error scales like e−δkmax .

Figure 4–15 shows the evolution of the radius of analyticity in time for both
numerical tests. The radius is estimated at various times by taking a least-squared fit
of the logarithm of the tail of the enstrophy spectrum log(Eω(K)) with respect to the
quantities log(K), K and 1; we extract δ from the fitted coefficient forK. We see that
the reduction in the radius of analyticity is exponential. This implies that in order
to maintain a certain level of spatial truncation, the maximum resolved frequency
kmax must grow exponentially. In particular, for the 4-modes test, at time 8, a

1 The Cauchy-Lagrangian method employs variable length time steps. The enstrophy spectrum
presented in [97] are computed at the last time step before reaching times 3.5 and 4. The final times
turned out to be approximately 3.45 and 3.95. In this figure, the final times for the CM method
are taken to be exactly 3.45 and 3.95.
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(a) 4-modes (b) Random initial condition

Figure 4–15: Radius of analyticity δ(t) vs time.

grid size of order 104 would be needed to properly resolve the solution. Carrying out
computations with traditional methods on such grids would be difficult on a personal-
use computer. We see that CM method allows us to evolve the solution for long times
without having to use such large grids: through the submap decomposition, only local
time coarse grids computations are required, the fine scale details can be recovered
by the composition of the submaps. The CM method in fact dynamically adapts
to the spatial resolution necessary to the problem. Through the remapping process,
the available numerical resolutions autonomously grows as the spatial features in the
solution increase.
4.3.4 Illustration of the Arbitrary Subgrid Resolution

Finally, in this section we provide an illustration of the power of the semigroup
decomposition approach in achieving high subgrid resolution of the solution. For
this, we simulate a 2 vortex merger problem. We use two identical Gaussian blobs of
variance 0.07 placed 0.3 apart in a periodic domain of width 1 (see figure 4–16). The
two vortices both have clockwise spins and are expected to start spinning around
each other and almost merge into a single vortex blob. Due to the lack of viscosity,
the vortices do not become a single vortex and will generate instabilities as time goes
on.
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Figure 4–16: Initial vorticity for the vortex merger simulation.

The fine scale features produced by this flow requires a high amount of spatial
resolution to evolve and represent. We performed the simulation using the CM
method on a 512 grid for the map with time step 1/128 until t = 20. The results are
shown in figures 4–17 and 4–18.

The final frame (figure 4–17) at time 20 is obtained using a composition of 605
submaps. This allows for the representation of a tremendous amount of fine scale
subgrid structures. To illustrate this, we take a gradual zoom towards the position
(x, y) = (13/32, 13/32) in the last frame. Figure 4–19 shows the zoomed view on the
t = 20 vorticity field. Each subfigure is obtained by evaluating the submap composi-
tions on the subdomain corresponding to the zoomed view. Since the characteristic
map has a functional definition, we can use the same number of sample points to
generate each picture, therefore obtaining high resolution images of arbitrarily small
regions in the domain. For instance, figure 4–19l shows the vorticity field in a region
of size 1/8192× 1/8192. The image is generated using 7682 sample points, providing
an accurate depiction of the details seen at the fine scale level.

The numerical experiments in section 4.3 showcase several advantageous prop-
erties of the CM method for the 2D incompressible Euler equations. Firstly, the

94



Figure 4–17: Vorticity field at time t = 20

submap decomposition using the group property of the characteristic map allows for
quick and accurate computations on a coarse grid, circumventing the usual require-
ment of increasing spatial resolution due to exponential vorticity gradient growth. As
evidence, solutions from a 1282 grid CM solver achieves the same enstrophy spectrum
as an 81922 grid direct vorticity solver (see figure 4–14). Furthermore, due to the
volume preserving property of the characteristic map, the CM method achieves high
accuracy enstrophy conservation for all times. Whereas other methods experience a
spike in enstrophy error when the vorticity fields becomes complicated, the enstro-
phy conservation in CM is independent of the current time vorticity and is a direct
result of volume preservation. This allows the enstrophy error to grow only linearly
in time, regardless of the complexity of the vorticity field. Lastly, the functional
definition of the numerical vorticity through composition with the backward map
allows for an arbitrary spatial resolution of the solution. Furthermore, the submap
decomposition generates the correct scales of gradients, ensuring that the increasing
fine scale features in the vorticity solutions are properly represented as the resolu-
tion increases. This property is evidenced in figures 4–5, 4–6, 4–7, 4–8 and more
thoroughly in 4–19 in section 4.3.4, where we zoom in on the solution to show the
arbitrary spatial resolution achieved by the CM method.
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(a) t = 2 (b) t = 4 (c) t = 6

(d) t = 8 (e) t = 10 (f) t = 12

(g) t = 14 (h) t = 16 (i) t = 18

Figure 4–18: Evolution of the vorticity field in the vortex merger simulation.
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(a) width = 2−2 (b) width = 2−3 (c) width = 2−4

(d) width = 2−5 (e) width = 2−6 (f) width = 2−7

(g) width = 2−8 (h) width = 2−9 (i) width = 2−10

(j) width = 2−11 (k) width = 2−12 (l) width = 2−13

Figure 4–19: Gradual zoom on the last frame, each subfigure is a 2× zoom on the
previous.
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4.4 Concluding Remarks for Chapter 4

In this chapter, we have presented the CMmethod for solving the 2D incompress-
ible Euler equations. This method is novel in that it solves for the deformation map
generated by the fluid flow and captures the geometry of the problem; all evolved
quantities of interest can be obtained from this transformation. As a result, this
scheme is characterized by the arbitrarily fine subgrid resolution it provides on the
solutions and a lack of artificial dissipation. Several key observations have lead to
the development of this method. Firstly, the arbitrarily fine scales typically gener-
ated by an inviscid flow motivated a functional representation of the vorticity field
through pullback by the characteristic map. This approach not only preserves fine
scales but more importantly avoids spatial truncations of the vorticity field, hence
eliminating artificial dissipation. These properties are demonstrated in the tests in
section 4.3, in particular in the zoomed view of the solutions. Secondly, the possible
exponential growth in the vorticity gradient lead to the use of the group structure of
the flow maps to decompose the characteristic map: exponential growth can be gen-
erated by a composition of maps of fixed resolution. Lastly, the assumption that the
dynamics of the fluid is mainly governed by the large scale low frequency features of
the velocity allowed us to carry out the characteristic map computations on a coarse
grid, improving the efficiency of the method. We drew a parallel between the use of
coarse scale velocity and the Lagrangian-Averaged Euler equations. The method in
this chapter relies heavily on the fact that the vorticity in 2D is a scalar function
satisfying a homogeneous advection equation under the velocity field u. This does
not generalize directly to the 3D case due to the extra vorticity stretching term. In
order to keep the numerical properties of the CM method for the 3D case, we need
to exploit the geometric structure of the Euler equations.
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CHAPTER 5
Three-dimensional incompressible Euler Equations

The study of three-dimensional incompressible perfect fluids through the Euler
equations is one of the oldest and most challenging problems in pure and applied
mathematics. In contrast to the 2D case where the global existence and unique-
ness of the solution have been shown [10], the question of finite-time blow-up in
the solutions of the 3D incompressible Euler equations with smooth initial data is a
notoriously difficult open problem and is related to the Clay institute Millenium prob-
lem on the Navier-Stokes equations [41]. Efficient and accurate numerical schemes
are useful for supporting our understanding of perfect fluids, and various methods
have been used to provide evidence of finite-time singularity [6,20,52,60,72,86,120]
or nonsingular super-exponential growth in the vorticity [19, 61, 98]. However, the
high-dimensionality and the rapid growth in the solution and its gradient increase
numerical difficulties and requires the use of specialized algorithms. In particular,
for Eulerian methods, the Courant-Friedrichs-Lewy (CFL) constraints the size of the
time steps with respect to the spatial discretization scales, effectively requiring a
computational complexity of no lower that N4 for simulations with N grid points
per spatial dimension. This is further compounded by the need for high-resolution
computational grids in order to limit the effects of artificial dissipation. With the
current computational technology, pseudo-spectral simulations with up to 122883

grid points have been performed [67].
In this chapter, we present a novel geometric method for the 3D incompress-

ible Euler equations in its vorticity form. This is based on the 2D incompressible
Euler equations using the Characteristic Mapping method in the previous chapter,
which we extend and generalize to the three-dimensional case. Compared to the 2D
equations, the 3D Euler equations presents several significant challenges. Firstly, the
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presence of an additional vorticity stretching term (w · ∇)u requires a more geo-
metric formulation of the CM method in order to be seamlessly incorporated in the
framework: a direct treatment of the vortex stretching term as a source term would
not conform to the characteristic structure of the method, nullifying its numerical
qualities. Secondly, due to the vortex stretching term, the L∞ norm of the vorticity
is no longer conserved. Indeed, in the 2D case, the scalar vorticity is an advected
quantity and small scale features appear from rapid growth in vorticity gradient. In
the 3D case, the question of finite-time blow-up of the vorticity is an open problem.
From a numerical point of view, the rapid growth in both |w| and |∇w| further
increase the difficulty in providing sufficient spatial resolution of the solution. For
the CM method, the dependence of w in the spatial deformations or rate of strain
tensor would then involve the Jacobian of the characteristic map in the computation
of the vorticity, thus increasing the regularity requirements on the method. Lastly,
the higher dimensionality further emphasizes on the computational efficiency of the
method and on high order accuracy.

We follow the same approach as in chapter 4: we evolve numerically the back-
ward characteristic map, i.e. the backward-in-time flow map generated by the fluid
velocity. From the Kelvin circulation theorem, the time t vorticity field written as
a differential 2-form can be computed as the pullback of the initial vorticity by the
characteristic map. A Biot-Savart law on the vorticity is then computed using Fourier
spectral methods to provide the velocity field needed to further evolve the map. This
allows for a non-dissipative computation of the vorticity field with arbitrary spatial
resolution. Compared to the 2D case where vorticity is advected, in the 3D case, it
will also be stretched and deformed by the material deformation induced by the flow.
A similar approach using the deformation map to evolve the solution can be found
in the work of Constantin [29] and a geometric approach to the Euler equations can
also be found in the work of Deng et al. [36] where a level-set advection formula-
tion combined with a generalized Clebsch variables expansion was used to show new

100



global existence results for the solutions of the 3D Euler and Lagrangian-Averaged
Euler equations under certain assumptions.

The rest of the chapter is organized as follows: in section 5.1 we generalize the
CM framework presented in chapter 4 to a geometric reformulation in the context
of the 3D incompressible Euler equations. In section 5.2, we provide some details
on the numerical implementation of the method together with some formal error
estimates supported by convergence tests. Section 5.3 contains some numerical tests
and discussions, in particular the anti-parallel axisymmetric perturbed vortex tubes
tests similar to the ones appearing in [72] and [61]. Finally, in section 5.4 we make
some concluding remarks.
5.1 Mathematical Formulation

We present here the Characteristic Mapping method for the incompressible Euler
equations in three-dimensional space. This work is the natural continuation of the
framework presented in [74,84] and extends the Characteristic Mapping method for
the 2D Euler equations in chapter 4 to the 3D case. The main challenge in the 3D
case is the inclusion of the vortex stretching term in a way that is compatible with the
CM method and preserves its arbitrary resolution and low-dissipation properties. For
this, we expand on the CM framework by including a more geometric formulation of
the problem in terms of differential forms. The basic formulation of the CM method
for advection and its numerical discretization follows the same approach as given in
chapter 2.
5.1.1 The Euler Equations

We consider the incompressible Euler equations on a three-dimensional domain
U , for simplicity, we take U to be the periodic cube T3.

∂tu+ (u · ∇)u =
1

ρ
∇p, (5.1a)

∂tρ+∇ · (ρu) = 0, (5.1b)
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where ρ is the scalar density and p is the pressure. For the incompressible equations,
the density is assumed to be constant, in which case the continuity equation (5.1b)
reduces to the divergence-free condition ∇ · u = 0.

We let w = ∇ × u be the vorticity vector field, which is divergence free by
construction. The vorticity equation can be expressed as follows

∂tw + (u · ∇)w = (w · ∇)u−w(∇ · u), (5.2a)

∇ · u = 0. (5.2b)

Since we take a geometric approach, it is convenient to express the vorticity
equation in terms of differential forms. Define the vorticity 2-form ω = ?(w[), where
[ and ] denote the lowering and raising of the tensor index and ? is the Hodge-star
operator (see Lang [78]). Formally, the 2-form ω performs linear measurements on
infinitesimal 2D surfaces by dot product of w with the surface normal; by definition
of curl, this yields the total circulation of u along the surface boundary. The vorticity
equation (5.2a) is equivalent to the Lie-transport of the vorticity 2-form:

∂tω + Luω = 0, (5.3a)

∂tρ+∇ · (ρu) = 0. (5.3b)

The Cartan formula for the Lie derivative: Lvφ = d(ιvφ) + ιvdφ, where ιv is the
interior product, is used to recover the original vorticity vector equation1 :

(? (∂tω + Luω))] = ∂tw + (?d(ιuω))] + (?ιudω)] = ∂tw +∇× (w × u)

= ∂tw +w(∇ · u)− (w · ∇)u+ (u · ∇)w = 0, (5.4)

1 Using the following identities:

(ιvφ)] = v · φ] when φ is a 1-form, (ιvφ)] = (?φ)] × v when φ is a 2-form,

(dφ)] = ∇φ when φ is a 0-form, and (dφ)] = ∇× φ] when φ is a 1-form.
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where w×u is the Lamb vector. This means that the vorticity 2-form is conserved,
i.e. it is Lie-advected or “frozen into” the flow. We note that this uses the general
barotropic compressible version of the vorticity equation. In principle, in the incom-
pressible case, the compression term w(∇ · u) vanishes, however, this would mean
that the Lie-advected vorticity would be allowed to intensify due to numerical errors
on the divergence-free condition.
Remark 5.1.1. One can alternatively check that with w evolving strictly under the
incompressible equations, the 2-form ρω is Lie-advected, that is

(? (∂tρω + Luρω))] = ρ(∂tw + (u · ∇)w − (w · ∇)u) = 0,

where ρ is still assumed to satisfy the continuity equation (5.1b) (in case the dis-
cretized u is not exactly divergence-free). Then the vorticity field can be obtained
from the Lie-advected ρω by scaling by ρ−1, this cancels any stretching of vortices
due to artificial volume compression from numerical errors in (∇ · u).

In the context of incompressible fluids, the above simply reduces to the statement
that the vorticity 2-form is Lie-advected by the velocity field. This gives us an
expression of the vorticity as the pullback of the initial condition by the characteristic
map:

ω(·, t) = X[t,0]
∗ω0, (5.5)

where the superscript asterisk denotes pullback. For a mapping F : U → U the
pullback F ∗ it is the dual operator to the pushforward operator denoted by the
subscript asterisk F∗. The pullback of a k-form η is defined by (F ∗η)(v) = η (F∗v)

where v is an arbitrary k-vector representing an infinitesimal k-dimensional oriented
parallelogram and the pushforward F∗v is its image under the mapping F . Hence,
for the 2-form ω, by the generalized Stokes’ theorem, equation (5.5) is equivalent
to the conservation of circulation along all closed curves transported by the forward
flow map.
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Equation (5.5) provides many simplifications both numerically and in the anal-
ysis mainly due to the fact that pullback commutes with exterior derivatives. For
instance, in the study of the Euler equations through Clebsch variables, one makes
the simplifying assumption that the initial velocity 1-form is given by fdg + dψ for
some scalar functions f , g and ψ. The initial vorticity is then given by df ∧ dg.
Applying (5.5) to this initial condition and commuting pullback and d, we get that
the vorticity 2-form at time t is given by

ω(·, t) = d
(
f ◦X[t,0]

)
∧ d
(
g ◦X[t,0]

)
, (5.6)

that is, it is sufficient to solve the advection equations for f and g and reconstruct the
vorticity by a cross product of their gradients. We note that the helicity scalar field is
defined as h = u ·w which corresponds to the volume form u[∧ω. This implies that
the Clebsch variable representation is limited to cases where h is exact, i.e. h = dφ

for some 2-form φ. It follows that total helicity is 0 for flows admitting Clebsch
variables, i.e. non-helical flows. A generalized version of the Clebsch approach has
been studied in [36], these Generalized Clebsch variables can be used to represent
any initial condition, including helical flows. In fact, the initial velocity expansion
(5.10) used in this paper can be seen as a special case of these variables.

For the numerical method described here, we proceed in the following general
setting. We assume that there exists closed 1-forms denoted (by abuse of notation)
dθ1, dθ2, . . . , dθn and scalar functions u1, u2, . . . , un such that the initial velocity 1-
form u[ can be expressed as

u[ =
n∑
k=1

ukdθk. (5.7)

Then, the initial vorticity form is given by

ω0 =
n∑
k=1

duk ∧ dθk. (5.8)
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This gives us a closed expression for the vorticity depending only on X[t,0]:

ω(·, t) =
n∑
k=1

d
(
uk ◦X[t,0]

)
∧X[t,0]

∗dθk. (5.9)

We do not require that the dθk 1-forms be exact, as long as the pullback is easy
to compute. In fact, for the algorithm implemented in this work, on the 3D torus,
the dθk forms, with n = 3, are simply the coordinate covectors (1, 0, 0), (0, 1, 0) and
(0, 0, 1), uk are the corresponding coordinate values of u0 and the pullbackX[t,0]

∗dθk

is given by ∂kX[t,0].
Using the following expansion for the initial velocity

u[0 = u1(1, 0, 0) + u2(0, 1, 0) + u3(0, 0, 1), (5.10)

we get that the vorticity vector at time t is given by

w(·, t) =
3∑

k=1

(
∇uk · ∇X[t,0]

)
×∇X[t,0], (5.11)

which further simplifies to

wi(·, t) = εijkεabcw
a
0∂jX

b
[t,0]∂kX

c
[t,0]. (5.12)

in summation notation, where ε are the Levi-Civita symbols.
Upon further inspection, the above expression is Cramer’s rule expansion of

w(·, t) = det
(
∇X[t,0]

) (
∇X[t,0]

)−1
w0(X[t,0]) =

(
∇X[t,0]

)−1
w0(X[t,0]), (5.13)

where the determinant factor can be omitted since the maps are volume preserving.
Remark 5.1.2. The basis 1-forms dθk are chosen here to express general initial condi-
tions on the torus. In specific cases, for instance in the presence of Clebsch variables,
the number of basis 1-forms can be reduced to improve computational performance.
That is, the computation of the characteristic map allows for a flexible framework
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where the vorticity at time t can be constructed by a pullback formula (5.9), not
limited to the formula in (5.13).
Remark 5.1.3. An equivalent formulation can be obtained from a Lagrangian per-
spective by considering the forward map. Following characteristic curves γ, we see
that the vorticity field satisfies

d

dt
w(γ(t), t) = ∇u ·w(γ(t), t). (5.14)

Noticing that the gradient of the forward map evolves according to ∂t∇XF = ∇u ·
∇XF , one can show that the vorticity field at XF is given by

w(XF , t) = ∇XF ·w0(x). (5.15)

This is Cauchy’s Lagrangian formula used in many Lagrangian particle approaches
[11, 29]. Composing the above equation with XB to return to Eulerian frame and
applying the inverse function theorem we get

w(·, t) = (∇XB)−1w0(XB). (5.16)

The factor det (∇XB) discrepancy with (5.13) does not show up in the incompressible
case since the transformations are volume preserving. In fact, using that ρω is Lie-
advected and ρ(x, t) = ρ0(XB) det (∇XB), isolating ω from ρω would remove the
determinant factor. Chapter 3 contains some investigations of the CM method for a
compressible flow in the context of diffusion-driven density transport.
Remark 5.1.4. The evolution of the vorticity 2-form through pullback by XB is the
infinitesimal expression of the Kelvin circulation theorem which states that the total
circulation along a closed curve passively carried by the fluid flow is constant. As
a matter of fact, equation (5.11) can be obtained directly by applying the Kelvin
circulation theorem to the definition of the curl operator. Formally, considering that
w ·n = lim|S|→0

1
|S|

∫
∂S
u ·ds for some infinitesimal surface S with unit normal n, we

apply the Kelvin circulation theorem to ∂S, moving it to its position and shape at
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time t = 0, to obtain w · n = lim|S|→0
1
|S|

∫
XB(∂S)

u0 · ds = lim|S|→0
1
|S|

∫
∂S
u0(XB) ·

dXB(s) which yields equation (5.11) after taking the limit.
This also relates the CM method to the Kelvin-filtered turbulence models which

can roughly be summarized by the vorticity equation

∂tw + (v · ∇)w = (w · ∇)v (5.17)

where v is a filtered version of the velocity field u, for instance v = (I − α2∆)−1u.
We refer to [42] for a review on the theory of these nonlinearly dispersive equations.
In the inviscid case, the vorticity is given through pullback by a modified flow map;
for the Kelvin filtered equations, the modified flow map is obtained from the filtered
velocity field v, in the CM framework, the modification on the flow map is a result
of a combination of filtering and numerical errors.
Remark 5.1.5. The pullback formulation allows us to quickly check the conservation
of total helicity. Indeed, given that the vorticity is the curl of the velocity, i.e.
du[ = ω, we have that by Helmholtz, there exists a 1-form η and a scalar ψ such that
u[ = η+ dψ and consequently, the vorticity can be written as ω = dη. Furthermore,
since ω = XB

∗ω0, we also have that there exists some η0 such that η = XB
∗η0

and dη0 = ω0. The local helicity is given by u ·w which corresponds to the 3-form
u[∧ω = η∧dη+dψ∧dη. Noting that dψ∧dη = d(ψdη) is exact and so has vanishing
total integral, we have∫

U

u[ ∧ ω =

∫
U

η ∧ dη =

∫
U

XB
∗(η0 ∧ dη0) =

∫
XB(U)

η0 ∧ dη0 =

∫
U

u[0 ∧ ω0. (5.18)

This property relies only on the fact that both η and ω evolve through pullback by
the same XB.

The derivations in this section allow us to express the evolution of the vorticity
field using the characteristic map. The evolution of the characteristic maps is in
turn given by the velocity field, which we compute from the vorticity field using the
Biot-Savart law u = −∆−1∇ × w. The fully coupled vorticity-characteristic map
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equations are as follows

(∂t + u · ∇)XB = 0 (5.19a)

w(·, t) = (∇XB)−1w0(XB) (5.19b)

u = −∆−1∇×w. (5.19c)

5.2 Numerical Implementation

The numerical approach of the CM method for the 3D Euler equations largely
follows the framework of the Gradient-Augmented Level-Set [89] and Jet-Scheme
methods [108]. In this section, we will first present the general numerical framework
for the CM method. We will then discuss the specific implementation details used
for the numerical experiments in this work.

The computational method is mainly based on the three equations in (5.19).
Numerically, this corresponds to evolving a characteristic map X [tn,0] in a finite
dimensional discretization space V approximating Diff (U), the space of diffeomor-
phisms on U . Then at every time step, the discretized vorticity w̃n and velocity ũn

will be reconstructed by pullback using X [tn,0]. For the rest of this chapter, we will
denote by the script letter X the approximation of the characteristic map X in V ,
the superscript n on a variable will denote the evaluation of said variable at time
tn and the tilde indicates an approximation or modified equation. The numerical
method comprises the three following parts:

1. A discretized velocity field ũn at time tn, (assuming the characteristic map
X [tn,0] is known). This is given by the Biot-Savart law

ũn = −∆−1∇×
(
(∇X [tn,0])

−1w0(X [tn,0])
)

(5.20)

computed using spectral Fast-Fourier transform methods.
2. A numerical approximation X̃[tn+1,tn] of the one-step map X[tn+1,tn]. For in-

stance, a first order approximation would give

X̃[tn+1,tn](x) ≈ x−∆tũn(x). (5.21)

108



In the current implementation, we use a third-order Runge-Kutta backward in
time integrator with a Hermite cubic time-interpolation of the velocity field. A
Hermite in time interpolation is used instead of the Lagrange interpolation in
chapter 4 to improve accuracy.

3. A time update for the characteristic map based on the group property (2.7a).
The map X [tn+1,0] at time tn+1 is given by

X [tn+1,0] = H
[
X [tn,0] ◦ X̃[tn+1,tn]

]
, (5.22)

for some interpolation operator H : Diff(U)→ V .
We will use the Hermite cubic spatial interpolation method described in chapter

2, the following subsections will examine in more details the velocity interpolation
and provide some error estimates.
5.2.1 Velocity Interpolation

Using the Hermite cubic interpolation in the previous section, the numerical
characteristic map X [tn,0] is defined as a diffeomorphism of the domain U . We define
the numerical vorticity w̃n through pullback by X [tn,0]:

w̃n(x) =
(
∇X [tn,0]

)−1
w0(X [tn,0](x)), (5.23)

where the gradient of X [tn,0] is directly evaluated from the interpolant. This defines
w̃n as a C0 vector field on U . The numerical velocity ũn is in turn computed from
the convolution of the Biot-Savart kernel with w̃n; we will do this using Fourier
spectral methods. We will discretize the velocity field on a grid V and denote by FV
the discrete Fourier transform computed by FFT on the grid V . Sampling w̃n on
V using (5.23) and applying a forward Fourier transform yields a truncated Fourier
series for the vorticity field. Computing the Biot-Savart kernel in frequency space
then gives us a Fourier series representation for the velocity. Finally, we define the
numerical velocity ũn as the Hermite interpolant of this truncated Fourier series;
this allows us to evaluate the velocity at arbitrary locations in the domain without
having to compute the inverse Fourier transform at non-uniform grid points. The
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definition of the numerical velocity at tn can be summarized as follows:

ũn(x) = HV
[
F−1
V

[
−∆−1∇×FV [w̃n]

]]
(x). (5.24)

In the above equation, it is understood that in order to define the Hermite cubic in-
terpolant for the velocity, the required mixed partial spatial derivatives are computed
directly from the Fourier series.

Similarly, from ∂tw = (w · ∇)u − (u · ∇)w, we can also discretize the time
derivative of u at tn:

∂tũ
n(x) = HV

[
F−1
V

[
−∆−1∇×FV [(w̃n · ∇)ũn − (ũn · ∇)w̃n]

]]
(x). (5.25)

The data ũn and ∂tũ
n at time steps tn allow us to locally approximate the

velocity using a 4-dimensional time-space Hermite cubic interpolant. For the one-
step map (5.21), we will define an approximate ũ in the interval [tn, tn+1] by extending
the interpolant obtained from the velocity data un−1 and un in the interval [tn−1, tn].
This gives the following definition for the numerical velocity field:

ũ(x, t) =
(
q0(t− tn−1)ũn−1(x) + q0(t− tn)ũn(x)

)
+ ∆t

(
q1(t− tn−1)∂tũ

n−1(x) + q1(t− tn)∂tũ
n(x)

)
for t ∈ [tn, tn+1),

(5.26)

using the Hermite basis functions given in (2.13). We note that since for each n,
ũn and ∂tũn are Hermite interpolants of divergence-free vector fields, the modified
velocity field ũ(x, t) is a linear combination of divergence-free velocity fields and is
also divergence-free at all time up to interpolation error. This error can be reduced
by refining the velocity interpolation grid which can be achieved by a zero-padding
in frequency space before taking the inverse Fourier transform.

The one-step map in the interval [tn, tn+1] is then obtained from the backward
in time flow of the approximate velocity field ũ. We define the numerical one-step
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map X̃[tn+1,tn] pointwise using a third order Runge-Kutta integration of ũ:

X̃[tn+1,tn] = x+

∫ tn

tn+1

ũ
(
X̃[τ,tn], τ

)
dτ. (5.27)

The one-step map is used in the time update of the characteristic map (5.22); it is
therefore only evaluated at grid points. However, in order to compute the chain rules
for the derivatives required to define the Hermite interpolant, we also need the mixed
partial derivatives of X̃[tn+1,tn] at grid points. This is done using a 4th order version
of the ε-difference scheme described in [26]. The ε-difference schemes introduce an
L∞ error of order ε4 + δ

∑3
k=0 ∆xkε−k where δ is the machine precision. For all

computations presented in this paper, we used ε = 2.5× 10−3 which corresponds to
an error term of at most 10−8 and effectively less than 10−11, if ∆x < 0.1.
Remark 5.2.1. Evaluating the extrapolation formula (5.26) at t = tn+1 would gen-
erally not give the same velocity as ũn+1 which is obtained by vorticity pullback
followed by the Biot-Savart law. Indeed, the extrapolation of the velocity in the
interval [tn, tn+1) is used only to evolve the characteristic map to time tn+1. The
velocity at tn+1 is then reconstructed using (5.23) and (5.24), similar to a predictor-
corrector approach. This also implies that numerical errors in the extrapolation are
not directly carried and amplified in the next time step.
5.2.2 Error Estimates

We will examine in this section the numerical error on the characteristic map and
its relation to the error on the vorticity field. We will try to characterize the nature
of the numerical error and provide some estimates. We use as starting assumption
that the numerical map XB is consistent with the exact map XB in the C1,α norm
for some α ∈ (0, 1), that is the error is o(1). This will allow us to estimate the global
C1,α error to third-order in time and space by omitting higher order terms in the
error. The consistency assumption is then implied for short-time since the initial
numerical map X [0,0] = x is exact. In order to preserve the advective structure of
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the error, we define the following error map:

E[0,tn] := X [tn,0] ◦X−1
[tn,0] = X [tn,0] ◦X[0,tn] = XB ◦XF , (5.28)

which measures by how much the diffeomorphism X [tn,0] differs from the inverse of
the exact forward flow mapX[0,tn]. Indeed, since the composition of the forward and
backward maps X[tn,0] ◦X[0,tn] = x gives the identity map, we have that

E[0,tn] = x+
(
X [tn,0] −X[tn,0]

)
◦X[0,tn], (5.29)

that is, the deviation of E[0,tn] from the identity map is the numerical error of the
map evaluated at the pushforward location. This is a Lagrangian representation of
the error since x − E[0,tn](x) essentially gives the time tn map error for a particle
starting at x at time 0. We also note that since XB is a C1 diffeomorphism by
construction, it follows that all maps considered here are also C1 diffeomorphisms.
Thus left and right inverses exist, are equal and are also diffeomorphisms.

We also define the auxiliary “modified map”

X̃[tn,0] := X̃[t1,0] ◦ X̃[t2,t1] ◦ · · · ◦ X̃[tn,tn−1], (5.30)

where X̃[tk,tk−1] is the one-step map given in (5.27) obtained from RK3 integration
on the numerical interpolated velocity field.

The full error map is decomposed as follows:

E[0,tn] = X [tn,0] ◦ X̃−1
[tn,0] ◦ X̃[tn,0] ◦X−1

[tn,0]. (5.31)

We let Φ[0,tn] = X [tn,0] ◦ X̃−1
[tn,0] and Ψ[0,tn] = X̃[tn,0] ◦X−1

[tn,0] and compute their
time-evolution as follows:

Φ[0,tn] = HM
[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
◦
(
X̃[tn−1,0] ◦ X̃[tn,tn−1]

)−1

= HM
[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
◦
(
X [tn−1,0] ◦ X̃[tn,tn−1]

)−1

◦X [tn−1,0] ◦ X̃−1
[tn−1,0]

= ξn ◦Φ[0,tn−1], (5.32)
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where we defined a one-step error ξn := HM
[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
◦
(
X [tn−1,0] ◦ X̃[tn,tn−1]

)−1

.
We note that ξn is the error due to Hermite interpolation since

ξn − x =
(
HM

[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
−X [tn−1,0] ◦ X̃[tn,tn−1]

)
◦ X̃−1

[tn,tn−1] ◦X
−1
[tn−1,0]

=
(
HM

[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
−X [tn−1,0] ◦ X̃[tn,tn−1]

)
◦ X̃−1

[tn,0] ◦Φ−1
[0,tn−1]. (5.33)

We define the following interpolation error

ϕn := HM
[
X [tn−1,0] ◦ X̃[tn,tn−1]

]
−X [tn−1,0] ◦ X̃[tn,tn−1], (5.34)

we then obtain that

Φ[0,tn] = (x+ (ξn − x)) ◦Φ[0,tn−1] = Φ[0,tn−1] +ϕn ◦ X̃−1
[tn,0] = x+

n∑
k=1

ϕk ◦ X̃−1
[tk,0].

(5.35)

A similar derivation gives us

Ψ[0,tn] = ηn ◦Ψ[0,tn−1], (5.36)

where ηn :=
(
X̃[tn−1,0] ◦ X̃[tn,tn−1]

)
◦
(
X̃[tn−1,0] ◦X[tn,tn−1]

)−1

. We note that η is the
velocity approximation error which gives the discrepancy between the true flow and
the flow obtained from the modified velocity ũ.

ηn − x =
(
X̃[tn−1,0] ◦ X̃[tn,tn−1] − X̃[tn−1,0] ◦X[tn,tn−1]

)
◦X−1

[tn,0] ◦Ψ−1
[0,tn−1]. (5.37)

We define the following modified flow error

ψn = X̃[tn−1,0] ◦ X̃[tn,tn−1] − X̃[tn−1,0] ◦X[tn,tn−1], (5.38)
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i.e. the map evolution error due to errors in the approximated velocity field; we note
that this term is approximately ∆t∇X̃[tn−1,0] · (ũ− u). This gives us

Ψ[0,tn] = (x+ (ηn − x)) ◦Ψ[0,tn−1] = Ψ[0,tn−1] +ψn ◦X−1
[tn,0] = x+

n∑
k=1

ψk ◦X−1
[tk,0].

(5.39)

This allows us to write the error map as

E[0,tn] =

(
x+

n∑
k=1

ϕk ◦ X̃−1
[tk,0]

)
◦

(
x+

n∑
k=1

ψk ◦X−1
[tk,0]

)
. (5.40)

We use the fact that for two C1,α diffeomorphisms, f and g, the composition
f ◦ g is also C1,α with ‖f ◦ g‖C1,α ≤ C‖f‖C1,α‖g‖1+α

C1,α , to estimate the norm of the
Lagrangian displacement error ε[0,tn] := x−E[0,tn]:

‖ε[0,tn]‖C1,α .
n∑
k=1

‖ψk‖C1,α +

(
1 +

n∑
k=1

‖ψk‖C1,α

)1+α n∑
k=1

‖ϕk‖C1,α , (5.41)

where the terms dependent on X[tn,0] have been absorbed in the constants of the
inequality; X̃[tn,0] is also approximated withX[tn,0] using the consistency assumption.
Here we use the notation A . B to denote that there exists some constant c such
that A < cB. In this section, the constant will depend on the dimension, the domain,
the constants involved in the norms, and the solution u as well as XB.

The ϕn error is an error pertaining the numerical resolution of XB, it can be
controlled as long as we can control the higher derivatives of X [tn−1,0]◦X̃[tn,tn−1]. The
stability analysis of a similar methods has been studied in [50].

The ψn error is a feedback between the map error and the velocity error (and also
numerical integration), with ψn ≈ ∇X̃[tn−1,0]∆t(ũ − u) and ‖ψn‖C1,α . ∆t‖ũn−1 −
un−1‖1+α

C1,α . We first bound the error on the vorticity which will require the Eulerian
version of the error map. Define

E[tn,0] := X−1
[tn,0] ◦X [tn,0] = X[0,tn] ◦E[0,tn] ◦X[tn,0], (5.42)
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here the conjugation exactly serves the purpose of changing the error from a La-
grangian frame to an Eulerian frame.

We note that

w(x, tn) = (∇XB)−1w0(XB) and w̃n(x) = (∇XB)−1w0(XB), (5.43)

So we have that, using XB = XB ◦EB and (∇XB)−1 = (∇EB)−1 (∇XB)−1|E−1
B

w̃n = (∇EB)−1wn(EB) i.e. ω̃n = EB
∗ωn. (5.44)

The numerical vorticity is the pullback of the exact vorticity by the error map.
This was expected since the exact map was decomposed into the composition of the
numerical map and the error map.

A first look at the velocity error, letting εB = x − EB assuming εB small, we
have to leading order terms

wn − w̃n ≈ (I − (∇EB)−1)wn(EB) +∇wn · (x−EB)

≈ ∇εBwn +∇wnεB. (5.45)

up to second order terms of O(‖εB‖2).
This gives us ‖wn − w̃n‖C0,α . ‖εB‖C1,α for some α ∈ (0, 1), which after Biot-

Savart, yields

‖un − ũn‖C1,α . ‖εB‖C1,α (5.46)

We use this to control the ψn error which is due to the difference between
the numerical and the exact velocities as well as the interpolation and integration
schemes both of which have 4th order local truncation error.

‖ψn‖C1,α . ∆t‖ε[tn−1,0]‖1+α
C1,α +O(∆t4). (5.47)

Since the Lagrangian and Eulerian error maps are related by conjugation by the
mapX[tn,0], we have that ‖ε[tn,0]‖C1,α . ‖ε[0,tn]‖1+α

C1,α and vice-versa. Therefore, we can
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write the following estimate for the Eulerian error, up to leading order terms, using
(5.41):

‖ε[tn,0]‖1/(1+α)

C1,α .
n∑
k=1

∆t‖ε[tk−1,0]‖1+α
C1,α +

n∑
k=1

‖ϕk‖C1,α . (5.48)

This can be majorized by the ODE by approximating the discrete sum of order ∆t

terms with the integral from 0 to t = n∆t and taking a time derivative.

ε̇B = (1 + α)ε
α/(1+α)
B (ε1+α

B + A), (5.49)

where A = O(∆t3)+ 1
∆t
‖ϕk‖C1,α , which is the CM advection C1 error and is O(∆t3 +

∆x2).
We note that the Hölder-α norm was introduced artificially to gain the full 2

degrees of regularity from the Poisson equation in the Biot-Savart law. We can
therefore pick α > 0 arbitrarily small, in which case, the map error estimate εB
in (5.49) solves a regularly perturbed 1st order linear ODE with a source term of
O(∆t3 + ∆x2). We recall that this is built on the assumption that the modified flow
map X̃[tn,0] is consistent withX[tn,0] so that higher order error terms can be omitted;
this is true since the initial X̃[t0,0] is exact and the time-evolution of the error is
third-order in ∆x and ∆t according to the above derivations. It is also assumed
that X [tn,0] ◦ X̃[tn+1,tn] is well represented by Hermite interpolation, i.e. that the
spatial resolution is high enough and that the grid data of X [ti,0] do not oscillate
unboundedly. This can be in part controlled by having high enough resolution and
also by a remapping method discussed in the following section. The stability of the
CM method was also discussed in [84, 89, 122] and convergence of similar methods
using Hermite interpolation was proven in [50]. Overall, the CM method should
have O(∆x2 + ∆t3) error in C1 norm which would translate to a 3rd order global
convergence in L∞ norm.

We provide here two numerical tests for the error estimates derived above. As a
sanity check, we test the method on the stationary Arnold-Beltrami-Childress (ABC)
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flow so that the numerical solution can be compared against a known exact solution.
We will also perform a second test using a standard Taylor-Green vortex initial
condition, numerical results will be compared against a high-resolution reference
test.

Both tests are performed on a periodic domain [−2π, 2π]3. The ABC flow initial
condition is given by

w0(x, y, z) =
1

2


cos(y) + sin(z)

cos(z) + sin(x)

cos(x) + sin(y)

 , (5.50)

and the Taylor-Green initial condition is given by

w0(x, y, z) =


cos
(
x
2

)
sin
(
y
2

)
sin (z)

sin
(
x
2

)
cos
(
y
2

)
sin (z)

− sin
(
x
2

)
sin
(
y
2

)
cos (z)

 . (5.51)

We run each test on increasingly finer grids of N cells per dimension for both
M and V and using N/12 time steps to reach the final time. In both cases, the final
time is Tf = 2, so that ∆x = 4π

N
and ∆t = 24

N
. For the ABC test, we measure the

vorticity error using the exact solution wn = w0 and for the Taylor-Green vortex
test, we measure the w, XB and ∇XB errors at grid points by comparing against
a reference higher resolution test with N = 216. We note that for both tests the
maximum velocity throughout the simulation is greater than 0.9 at all times so that
∆t exceeds the CFL condition. The maximum vorticity for the ABC test is constant
in time, for the Taylor-Green test, a 20% growth is observed over the [0, 2] time
interval. Figures 5–1 and 5–2 show the L∞ errors for both tests at Tf = 2; the errors
are computed directly from grid values and confirm the expected 3rd order error.
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Figure 5–1: L∞ vorticity error for the ABC test at Tf = 2. Numerical solution is
directly compared to the exact solution w(x, t) = w0(x).
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Figure 5–2: L∞ map, Jacobian and vorticity errors for the Taylor-Green Vortex test
at Tf = 2. Error is calculated by comparing results against a N = 216 test.
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5.2.3 Submap Decomposition and Vorticity Sampling

The error estimates in section 5.2.2 show that the error is advective in nature
since the numerical solution can be written as the pullback of the exact solution by an
error map; therefore, viscous and hyper-viscous type dissipation in the solution are
avoided. Indeed, by computing the characteristic map, the vorticity field is provided
functionally and can be evaluated anywhere on the domain by interpolating XB.
Instead of directly evolving the vorticity on some grid, in which case w̃n depends on
the grid values of w̃n−1, the vorticity in the CMmethod is in principle “reconstructed”
at every step using ω̃n = X [tn,0]

∗ω0. For traditional grid-based methods, w̃n is
obtained from grid values of w̃n−1 and typically carries a viscous or hyper-viscous
error of the form ε∆pw̃n−1, in the CM method, the error is instead advective with
w̃n = EB

∗wn, thus preventing the loss of subgrid scales due to artificial viscosity.
One implication is that the CM method can better avoid artificial merging of vortices
at the subgrid scale in particular in the study of vortex tube reconnection problems.
The error in this case is of elastic type. Indeed, since XB is evolved using the
GALS method, the leading order spatial errors on the map are of the form ε∆pXB.
This can be seen as an elasticity term which dampens extensive deformation of the
domain under the XB mapping. According to the error estimates in section 5.2.2,
the map error can be decomposed into two parts: the velocity error ψ and the map
interpolation error ϕ.

The ψ velocity representation error depend in part on the resolution of the V
grid used for the vorticity sampling. This grid needs to be fine enough to avoid
Fourier aliasing from lack of resolution. One possible solution would be to use a
dynamic sampling of the vorticity field such as through the use of oct-tree structured
meshgrids. Here we will consider another adaptive sampling method: we directly
evaluate a mollified version of the vorticity, that is defining w̃ = µh ∗wn where µh is
a mollifier supported in a neighborhood of size h, this approach was studied to some
extent in [122]. We pick h to be smaller than the cellwidth of V , the evaluation
of the mollified vorticity at grid points xi can then be expressed as the sum of the
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convolution integrals in all 8 cells Ci+r adjacent to xi:

(µh ∗wn)(xi) =
∑

r∈{−1,0}3

∫
Ci+r

µh(xi − y)wn(y)dy. (5.52)

For instance, in the tests in section 5.3.2, the mollifier µh is chosen to be a 3D tensor of
cos2(x/h) supported in the cells adjacent to xi. The integral in each cell is computed
using numerical quadrature and the number of quadrature points is then adapted to
the local oscillations of wn to ensure the accuracy of the mollification. The resulting
algorithm effectively computes a mollified vorticity field where subgrid oscillations are
filtered out, by choosing an appropriate mollification scale, the V grid can resolve the
mollified vorticity without aliasing errors and the pointwise evaluation of µh ∗wn on
V is accurate as long as the sampling in each cell is sufficiently dense. This approach
is also related to the Kelvin-filtered Euler equations. From the Kelvin circulation
theorem, total circulation along a closed curve evolving under the flow is conserved.
Both in the Kelvin-filtered equations and the CM method, circulation is conserved for
closed curves evolving under a modified flow; in the Kelvin-filtered case, the modified
flow arises from a filtered velocity field and in the CM case, the numerical flow map
is modified by the ϕ and ψ errors, of which ψ contains the velocity filtering. In
any case, the mollification of the transport velocity still deteriorates the accuracy of
the method and, although the vorticity evolves by pulllback, dispersion is introduced
in the form of a less energetic transport flow. The proper sampling of the vorticity
is still subject of our current work, and future directions may include the use of
adaptive meshes and wavelet transforms to reduce sampling errors.

The second main source of error is the map representation error ϕ, which de-
pends on the M grid and the regularity of the characteristic map XB. For Hermite
cubic interpolation, this error roughly scales with the 4th spatial derivative of XB.
At time t = 0, this error is 0 since X[0,0] is the identity map, then the error increases
with time as the characteristic map develops more complicated spatial features. We
limit the growth of this error by periodically reinitializing the characteristic map
using the group property of the flow maps. Indeed, a time t characteristic map can
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be decomposed as follows using (2.7a):

X[t,0] = X[T1,0] ◦X[T2,T1] ◦ · · · ◦X[Tm−1,Tm−2] ◦X[t,Tm−1], (5.53)

for 0 = T0 < T1 < · · · < Tm−1 < Tm = t. The Ti are remapping times, in each
interval [Ti, Ti+1], the evolution of the characteristic map is given by the Ti+1 − Ti
time flow of equations (5.19) with w(x, Ti) as initial condition.
Remark 5.2.2. Note that the Ti refer to the remapping times and tn are the time
steps of the scheme with tn− tn−1 = ∆t small, approximating the limit to 0. On the
other hand Ti − Ti−1 is O(1), its purpose is to subdivide the time interval [0, Tfinal]

into shorter subintervals where the characteristic maps are better behaved.
At any t, the vorticity is given by the following pullback using submap decom-

position:

w(x, t) =
(
∇X[t,Tm−1]

)−1 · · ·
(
∇X[T2,T1]

)−1 (∇X[T1,0]

)−1 (
w0 ◦X[T1,0] ◦ · · · ◦X[t,Tm−1]

)
.

(5.54)

Numerically, this means that we can compute each submap individually and use

w̃(·, t) =

(
m−1∏
i=0

(
∇X [Tm−i,Tm−i−1]

)−1

)
w0

(
X [T1,0] ◦ · · · ◦X [t,Tm−1]

)
(5.55)

to compute the pullback. Each submap will only perform the mapping in the time
subinterval [Ti, Ti+1] and remapping times can be either fixed or chosen dynami-
cally so that each submap can be well represented using the grid M . Indeed, after
each remapping, we essentially solve a separate Euler equation in the time interval
[Ti, Ti+1], the characteristic map is reinitialized with the identity map. This means
that the spatial representation of the current submap is again exact and will ac-
cumulate error over [Ti, Ti+1], until an error threshold is exceeded and remapping
is triggered. In terms of the error estimates in section 5.2.2, the remapping resets
the ϕ error of the ith submap to 0, which prevents further accumulation of spatial
interpolation errors due to the fixed resolution of the M grid. One can therefore

121



control the accumulation of the elasticity type error by changing the frequency of the
remapping. More frequent remapping reduces the effect that theM grid has on the
spatial features of the map; in the extreme case where remapping is done at every
time step, the ϕ error can no longer accumulate and numerical error is reduced to
ψ only. For the numerical experiments presented in this paper, we use the volume-
preservation error of the XB map as remapping criterion, that is, the remapping time
Ti is chosen to be the first time t such that the error | det∇X [t,Ti−1] − 1| is greater
than some chosen tolerance. On one hand, this serves as an a posteriori estimate
of the C1 error of the map and on the other hand, this allows us to guarantee that
the composition of all submaps yields a diffeomorphism and provides some control
on the overall volume-preserving property of the characteristic map.
5.2.4 Implementation Summary

The previous subsections contain the numerical tools for implementing the CM
method for the 3D incompressible Euler equations, we give here a short summary of
the method in pseudocode format. We note that the method uses two discretization
grids, a gridM for representing the numerical map X [tn,0] and a grid V for sampling
the numerical vorticity wn and computing the Biot-Savart law using Fourier spectral
methods. These two grids do not need to have the same resolution, in fact, using the
submap decomposition method described in the previous subsection, a short time
characteristic map can be represented on a coarse grid M . The V grid used to
represent the vorticity needs to be fine enough to avoid sampling errors. Indeed, as
the flow evolves, the vorticity can develop small scale features and high gradients.
If V is not fine enough to resolve wn, this can cause aliasing errors in the Fourier
transform. One way to reduce the effect of undersampling is to mollify wn in Fourier
space, however this also reduces the accuracy of the scheme. Other possibilities
for future investigation include the use adaptive mesh for the vorticity sampling
and wavelet methods for the computation of the Biot-Savart law [105,107]. The CM
method for 3D incompressible Euler equations can be summarized with the following
pseudocode algorithm.
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Algorithm 3 CM method 3D incompressible Euler equations.
Input: Initial vorticity w0, grids M and V , time step ∆t, final time Tf
1: Initialize n← 0, tn ← 0, m← 0, Tm ← 0.
2: while Tm < Tf do
3: X [tn,Tm] ← x (identity map)
4: while ‖det∇X [tn,Tm] − 1‖∞ < TOL do
5: Sample wn on grid points of V . . using (5.55)
6: FV [ũn] = −∆−1∇×FV [w̃n].
7: Compute ∂bũn for b ∈ {0, 1}3 in Fourier space. Define ũn(x). . using (5.24)
8: Compute (w̃n · ∇)ũn − (ũn · ∇)w̃n on V and define ∂tũn(x). . using (5.25)
9: Define ũ(x, t), by linear combination of spatial interpolants. . using (5.26)
10: Compute ∂bX̃[tn+∆t,tn] on M using RK3 integration of ũ. . using (5.27)

11: Update characteristic map X [tn+1,Tm] ← HM
[
X [tn,Tm] ◦ X̃[tn+∆t,tn]

]
.

12: tn+1 ← tn + ∆t, n← n+ 1.
13: end while
14: Tm+1 ← tn, m← m+ 1.
15: end while

Remark 5.2.3. Since the discrete vorticity evaluation at line 5 in algorithm 3 will
eventually produce aliasing errors from undersampling, we will usually introduce a
low-pass filter or a Fourier truncation at lines 6 and 8. This is the effective scale
cut-off of the velocity field governing the discrete flow. As a rule of thumb, we pick
this low-pass filter to be the coarsest scale in the discretization and the grid V to
be the finest scale with M at an intermediate scale. This is to ensure that the map
grid has enough resolution to represent a short-time deformation generated by the
filtered velocity field, and also that the V grid is fine enough so that the Hermite
interpolation of the filtered velocity is accurate and preserves the divergence-free
property.
5.3 Numerical Tests

In this section, we present several numerical tests computed using the CM
method for the 3D incompressible Euler equations. The algorithm is implemented
in C using OpenMP parallelization and Discrete Fourier transforms are performed
using the FFTW library [45]. The tests in this section are performed on a computer
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with an AMD Ryzen 7 4800H CPU with 8 cores (16 threads) and 16GB of RAM;
for these tests, a wallclock computation time is recorded. The larger FFT computa-
tions for the spectrum plots are performed on a cluster computer. The application of
spatial adaptivity was not studied in this work, however, the general formulation al-
lows for the use of adaptive grids; this has been studied for the Gradient-Augmented
Level-Set methods in [75] which should be straightforwardly extendable to the CM
methods.
5.3.1 Perturbed Antiparallel Vortex Tubes

The question of finite-time blow-up in the solution of the 3D incompressible Eu-
ler equations is an important open problem in mathematics. One extensively studied
initial condition for potentially generating a finite-time blow-up are the perturbed
antiparallel vortex tubes studied by Kerr in 1993 [72]. In the viscous case, for the
Navier-Stokes equations, this initial condition evolves into a vortex reconnection in
the process of which a topological change of the vortex cores occurs.

The initial condition can be constructed as the pullback of two antiparallel vortex
tubes by a shear-deformation of the [−2π, 2π]3 periodic domain. The initial vorticity
field is antisymmetric across the z = 0 plane with each half-space containing a
vortex tube of opposite orientation. We construct the initial condition w0 as follows.
Consider the unperturbed vortex tube in the z > 0 half given by

ϕ+(x, y, z) = exp

(
−r2

1− r2
+ r4(1 + r2 + r4)

)
0

1

0

 if r < 1, (5.56)

and is the zero vector if r ≥ 1. Here, r is the scaled distance from the vortex core
given by

r(x, y, z) = R−1
√

(x− x0)2 + (z − z0)2. (5.57)

This forms a vortex tube oriented in the y-direction centered at x = x0, z = z0

and supported in a tube of radius R. One can check that this initial condition is
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divergence-free and therefore a valid vorticity field on the flat 3-torus. The pair of
antiparallel vortex tubes is given by

ϕ(x, y, z) = ϕ+(x, y, z)−ϕ+(x, y,−z). (5.58)

The vortex tubes are perturbed by the following domain deformation:

T :


x

y

z

 7→

x+ δx cos

(
π
Lx
s(y)

)
y

z + δz cos
(
π
Lz
s(y)

)
 , (5.59)

where

s(y) = y + Lyδy2 sin (πy/Ly) + Lyδy1 sin (y + Lyδy2 sin (πy/Ly)) . (5.60)

The perturbed vortex tubes are then defined as the pullback (T−1)∗ϕ. A closed
form expression can be obtained using (T−1)∗ϕ = ∇T |T−1ϕ(T−1) and the fact that
T is a shear-deformation, and for a fixed y, T is simply a translation on the x-z
plane.

The initial vorticity w0 used in [61, 72, 120] is defined as a filtered and rescaled
version of the above perturbed vortex tubes given by

w0 = 8K ∗ (T−1)∗ϕ. (5.61)

The exact expression for the filter K might have been slightly different in refer-
ences [72] and [61], here we use the filter K defined in Fourier space by K̂(ξ) =

exp(−0.05(ξ4
1 + ξ4

2 + ξ4
3)) where ξi are the integer wave numbers. The specific pa-

rameters for the initial condition, taken from [61], are R = 0.75, δy1 = 0.5, δy2 =

0.4, δx = −1.6, δz = 0, x0 = 0, z0 = 1.57, Lx = Ly = 4π, Lz = 2π. Figure 5–3 shows
a level-set surface of the initial condition.

We first perform a low-resolution simulation using a laptop computer. The sim-
ulation is carried out on a M grid of 64 × 48 × 32 points and vorticity sampling is
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Figure 5–3: Initial vortex tubes for the Kerr initial condition [72]. The figure shows
the level-set surface of |w0| at 60% of the maximum value.

computed on a V grid of 96×72×48 points; here the z-direction is most finely sam-
pled as important higher frequencies are expected to be produced in that direction,
similarly, the y-direction has the coarsest representation. The resulting Fourier series
is truncated at a radius of 32, the time steps are fixed at 1/50 and the Jacobian de-
terminant error tolerance | det∇XB−1| for the remapping is set at 10−3. The initial
condition is defined on a 1283 grid, we then compute its mixed-partial derivatives in
Fourier space in order to define a Hermite cubic interpolant. The simulation is run
until time t = 17 requiring a total of 79 submaps, taking under an hour of wallclock
computation time. Figure 5–4 shows the evolution of the vortex cores throughout
the simulation and table 5–1 contains the energy and helicity conservation errors
as well as total enstrophy and maximum vorticity and velocity evaluated at regular
time intervals. The energy is defined as the squared L2 norm of the velocity in the
[−2π, 2π]3 domain ‖u‖2

L2 , the total enstrophy is ‖w‖2
L2 and the helicity is defined as

the L2 inner-product of the velocity and the vorticity, H := (u,w)L2 .
Remark 5.3.1. We note here that the Fourier truncation or filtering used in the
computation of the velocity field from the sampled vorticity is not related to the
2/3 rule typically used in Fourier pseudo-spectral methods, whose purpose is to
dealias spurious modes generated by the frequency convolutions when computing
the nonlinear term in physical space in each time step. In the CM method, there is
no direct time-stepping of the velocity and vorticity fields, at each step, the vorticity
is reconstructed by direct sampling of the functional expression in equation (5.55).
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(a) t = 3 (b) t = 6 (c) t = 9

Figure 5–4: Evolution of the vortex cores for the Kerr initial condition. We show
level-set surfaces of |w| at 60% of the maximum value. Figures are generated using
a 1283 grid.

Since all map computations are carried out on a coarse grid M , the purpose of
the filtering is to ensure that the velocity field defined from the sampled vorticity
is sufficiently band-limited so that the backward flow map it generates is regular
enough to be accurately represented onM . In the extreme cases where the vorticity
field exhibits important subgrid scales, essentially discontinuous from a numerical
point of view, this filtering can help prevent the Gibbs phenomenon from generating
spurious oscillations in the entire domain. Ultimately, the size of the truncation
would scale with the resolution of M to maintain consistency. This filtering is not
always necessary, without filtering, the effective truncation of the Fourier series for
the velocity will be the grid size of M as higher frequencies in the flow cannot
be represented on M . However, our numerical experiments suggest that a small
amount of smoothing generates better results with more accurate energy and helicity
conservation.
Remark 5.3.2. We note that the vorticity maxima ‖w‖L∞ shown in table 5–1 are
lower bounds since they are evaluated using a 2563 grid. The actual maximum
vorticity of the numerical solution is higher. Using the arbitrary resolution property
of the method, we can refine this computation by recursively refining the vorticity
sampling around the maxima. For instance, on a grid of N3 points, we can locate the
vorticity maximum on the grid and resample the vorticity in a region of size 3∆x,
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t ‖w‖2L2 ‖u‖2L2/‖u0‖2L2 − 1 H −H0 ‖w‖L∞ ‖u‖L∞ nmaps time (s)

0 67.2181 0.000 0.000 0.6691 0.7393 1 0
1 67.0990 1.341× 10−6 −5.619× 10−14 0.6666 0.7272 1 102
2 67.3909 1.744× 10−6 −1.717× 10−13 0.6715 0.7131 1 206
3 68.0925 1.989× 10−7 −2.849× 10−13 0.6841 0.7019 1 310
4 69.1954 −1.406× 10−6 3.333× 10−13 0.7387 0.7171 2 416
5 70.6844 −1.663× 10−6 5.680× 10−13 0.8181 0.7350 2 524
6 72.5405 −2.369× 10−6 8.913× 10−13 0.9059 0.7501 3 633
7 74.7460 −3.141× 10−6 1.129× 10−12 1.0046 0.7622 4 746
8 77.2912 −4.061× 10−6 1.218× 10−12 1.1179 0.7715 5 861
9 80.1845 −5.020× 10−6 −2.656× 10−12 1.2532 0.7785 6 981
10 83.4644 −6.245× 10−6 −7.347× 10−12 1.4181 0.7833 8 1108
11 87.2154 −7.793× 10−6 −4.307× 10−12 1.6296 0.7864 10 1240
12 91.5883 −1.012× 10−5 −3.304× 10−12 1.9121 0.7885 13 1382
13 96.8361 −1.246× 10−5 8.511× 10−12 2.2935 0.7920 18 1538
14 103.3978 −8.680× 10−6 3.923× 10−11 2.8495 0.8013 25 1719
15 112.1115 1.893× 10−5 4.295× 10−11 3.8549 0.8223 37 1935
16 124.5780 9.829× 10−5 −2.643× 10−11 5.6541 0.8545 56 2208
17 143.8254 2.633× 10−4 1.910× 10−10 9.1819 0.9052 79 2558

Table 5–1: Evolution of total enstrophy, energy conservation relative error (divided
by initial energy), helicity conservation error (initial helicity is 0), maximum vorticity
and velocity, number of remaps and wallclock computation time of the Kerr initial
condition using CM method for 3D Euler. Grid resolutions: 64 × 48 × 32 for M ,
96× 72× 48 for V , ∆t = 1/50, Fourier truncation at radius 32, remapping Jacobian
determinant tolerance at 10−3. All data in this table are evaluated using a grid of
resolution 2563.

again using a grid of N3 points. With N = 256, 3 iterations of the above procedure
allows us to estimate the vorticity maximum to 3.8618, 5.7674 and 9.5185 for times
15, 16 and 17 respectively. This shows reasonable agreement with the high resolution
reference computations performed in [61].

The functional definition of the vorticity field through the pullback by XB pro-
vides arbitrary resolution of the solution independently of the discretization grids.
This allows us to zoom in on the solution, in particular for larger times t where the
vorticity starts developing significant small scale features. Figure 5–5 shows zoomed
views of the vortex tubes and contour plots of the vorticity intensity across the sym-
metry plane y = 0. We note that the vertical length of the viewed domain is 0.25,
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(a) t = 14 (b) t = 15

(c) t = 16 (d) t = 17

Figure 5–5: Zoomed view of the vortex core from t = 14 to 17 and contour plot of
the vorticity strength |w| across the symmetry plane y = 0; 10 evenly distributed
isoline values are shown for times 14, 15, 16, and 17, respectively. Viewed domain:
[−5.5, 0]× [0, 1]× [0, 0.25]. Contour plots are generated using 5122 2D grids.

a bit more than the width of a single cell of the map grid M . The domain defor-
mation at time t = 17 cannot be represented properly using a single map on the M
grid, however, through the dynamic remapping method, the full deformation at time
t = 17 can be represented using the composition of 79 short-time submaps defined
on a coarse 64 × 48 × 32 grid. The vorticity field w̃ defined by pullback through
the 79 submaps is therefore able to exhibit small scale features and high gradients
as shown in figure 5–5.

As seen from table 5–1, the remapping routine is triggered more frequently as
the simulation approaches t = 17, meaning that the Jacobian determinant error
accumulates at an increasing rate in part due to a lack of spatial resolution. One
often used measurement of the smoothness of the solution is the isotropic spectrum
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Figure 5–6: Enstrophy and energy spectra at times t = 14, 15, 16 and 17. Dotted
black lines are the k−1 and k−3 curves, respectively. Successive finer sampling are
shown, red curves are obtained from 2563 sampling, blue curves from 10243 and black
curves from 15363 sampling. The highest resolution sampling for each time t is drawn
in full-line, coarser samplings for the same t are shown as dotted-lines.

of the Fourier series given by

E(k) =
1

2

∑
|ξ|∈[k− 1

2
,k+ 1

2
)

|F [w̃](ξ)|2 (5.62a)

Z(k) =
1

2

∑
|ξ|∈[k− 1

2
,k+ 1

2
)

|F [ũ](ξ)|2 (5.62b)

We plot the enstrophy and energy spectra of the solution at times t = 14 to 17 in
figure 5–6.

The spectrum plots in figure 5–6 demonstrate a key property of the CM method:
that the resolution scale of the map is not the dissipation scale of the vorticity solu-
tion, the vorticity field itself is not being dissipated in a viscous manner, and therefore
can be resolved to arbitrary resolution. Indeed, although all computations were car-
ried out on coarse grids and the Fourier support of the velocity field evolving the
map is only a ball of radius 32, we can reconstruct the vorticity field by computing a
fine grid pullback by evaluating the maps and applying equation (5.55). Figure 5–6
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shows that the vorticity and velocity fields obtained this way have the expected decay
in their Fourier transforms. These can be compared with Figs. 17 and 18 in [61] and
general agreement is found. The vorticity field wn =

(
∇X [tn,0]

)−1
w0(X [tn,0](x)),

defined functionally (i.e. XB evaluated by interpolation and w0 by direct function
evaluation), contains arbitrary fine scales until round-off errors dominate. The rea-
son for this arbitrary resolution is twofold: Firstly, since the discretized quantity
is the characteristic map, the pointwise definition of the vorticity field can in fact
be viewed as Lagrangian. Indeed, consider a particle starting at position y at time
t = 0, its position at time t is given by the forward map XF (y, t) and the vorticity
field at the particle location is given by w(XF (y, t), t) = ∇XF (y, t) ·w0(y). In order
to obtain the vorticity at an Eulerian point x at time t, we plug in y = XB(x, t) and
use the inverse property (2.7b) to get w(x, t) = (∇XB)−1w0(XB). This means that
by interpolating the discrete map XB at an Eulerian point x, we are approximat-
ing a particle path and the associated local material deformation of a Lagrangian
particle whose time t position is x; the time t vorticity is then directly constructed
from the initial condition by applying the material deformation. This can also be ex-
pressed using the error map studied in 5.2.2, where the numerical vorticity field can
be written as the pullback of the exact vorticity by an error map EB: w̃n = EB

∗wn.
Therefore, since EB is a C1 diffeomorphism, as long as the error is controlled, the
pullback EB

∗wn will not destroy small scales. The functional definition of w̃n by
pullback therefore allows us to oversample the vorticity on a 15363 grid even though
all computations were carried out on much coarser grids. For traditional Eulerian
methods, in order to preserve these small scales and prevent large artificial dissi-
pation, the vorticity field will have to be discretized and evolved on a 15363 grid
throughout the entire computation. With the CM method, these scales are not lost
to dissipation and can be obtained by a fine grid sampling. Secondly, the map error
can be controlled using the submap decomposition method made possible by the
group structure of the characteristic maps. Indeed, the map error EB arises in part
from the error in approximating SDiff (U) by a finite-dimensional interpolation space
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V . As the flow develops, the small scale features in XB not resolved in V increase,
adding to the EB error. Through the remapping method, this representation error
is reset to 0 for each submap since the initial condition for each new submap is the
identity map, which is represented exactly in V . Appropriate remapping therefore
guarantees that each submap X[Ti+1,Ti] can be well represented in V and that its
numerical error remains in the asymptotic regime, i.e. the omitted small scales are
not significant enough to pollute the large scale, lower frequency features which carry
most of the energy. The resulting global-time map XB is obtained as the composi-
tion of nmaps submaps; XB can be seen as an element of Vnmaps and therefore is able
to represent the small scales features generated by the long-time flow through the
composition of coarse grid maps.

Another feature of the CM method is that we have access to the solution oper-
ator XB of the advection under the velocity field u, this means that we can evolve
passively advected quantities at no additional computational cost. This has several
applications such as tracking passively transported fluid quantities or solute densities
or visualization of the fluid flow. As example we solve the following scalar advection
problem using the initial vorticity strength |w0| as initial condition:

(∂t + u · ∇)φ = 0 (5.63a)

φ(x, 0) = |w0(x)|. (5.63b)

From chapter 2, the solution to this advection equation is given by φ(x, t) = |w0 ◦
X[t,0]|. This gives us the evolution of the initial vortex strength as a passively ad-
vected quantity. In figure 5–7, we show a level-set surface of φ at 60% the maximum
value; this allows us the track the motion of the initial vortex core transported un-
der the fluid flow. We note that this does not correspond to the evolution of the
actual vortex core as the vortex stretching can play an important role in moving the
location of the vortex core.
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(a) t = 4 (b) t = 8 (c) t = 12 (d) t = 16

Figure 5–7: Transport of the initial vortex core. We show level-set surfaces of φ at
60% of the maximum value. Figures are generated using a 1283 grid.

5.3.2 Perturbed Perpendicular Vortex Tubes

Another test we performed is the merging of two perturbed perpendicular vortex
tubes inspired by the tests in [94]. The initial condition is constructed in a similar
fashion as in section 5.3.1. The unperturbed vortex tube is given by (5.56) with R =

0.5, x0 = 0, z0 = −1. We apply the perturbation transformations T : [−2π, 2π]3 →
[−2π, 2π]3 given by a sinusoidal shear deformation T : x 7→ x − 0.5 sin(0.5y) and a
reflection and translation map R : (x, y, z) 7→ (y, x, z+ 2). The two vortex tubes are
then defined as

ϕ = (T−1)∗ϕ+ + (R−1)∗(T−1)∗ϕ+, (5.64)

which corresponds to a sinusoidal vortex tube in the y-direction through (x, z) =

(0,−1) combined with a reflected tube in the x-direction through (y, z) = (0, 1).
The initial vorticity field is given as a scaled and filtered version of ϕ where the filter
is the same as the one used in section 5.3.1,

w0 = 24K ∗ϕ. (5.65)

Figure 5–8 shows a level-set surface of this initial condition.
These two vortex tubes will start rotating around each other, creating high vor-

ticity gradients and significant small scale features. In the viscous case, the vortices
are expected to collide at the intersection. Figure 5–9 shows the evolution of the
vortex tubes computed from a simulation using a 483 grid for both M and V , the
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Figure 5–8: Initial condition for the perpendicular vortex tubes test. The figure
shows the level-set surface of |w0| at 0.5402, which is 60% of the maximum value.

Hermite cubic interpolation of the velocity field uses a 963 grid to ensure sufficient
smoothness. The time step ∆t is fixed at 1/50, Fourier truncation radius at 32 and
the Jacobian determinant error tolerance at 10−3. Due to the significant localized
small scale features, the vorticity computation uses the adaptive sampling described
in section 5.2.3. The mollifier µh is given by a tensor product of a 1D function
cos2

(
πs
2h

)
in each cell. The cell integral (5.52) is computed by numerical quadrature

using equidistributed sample points in each cell. The number of sample points per
cell is at minimum 2 points per dimension and for each cell, this number is allowed
to increases adaptively depending on the range and total variation of w in each cell.
The total number of sample points is capped at 1923 at which point all cells have
their sample number rescaled down proportionally. The results of this test until time
t = 12 are presented in table 5–2. Figure 5–9 shows the evolution of the vortex cores
until time t = 9. To better visualize the flow, we also include in figure 5–10 the scalar
advection of the initial vorticity strength φ0 = |w0| as given by equation (5.63).

The small scale features that develop in the flow after t = 9 become very fine and
make 3D visualization difficult. We present instead three 2D contour plots on the
xy-, xz- and yz- planes, respectively. Figures 5–11 and 5–12 show zoomed views on
the lateral cuts of the vorticity magnitude and the advected initial vorticity strength.
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(a) t = 3 (b) t = 6 (c) t = 9

Figure 5–9: Evolution of the vortex cores for the perpendicular vortex tubes test.
We show the level-set surfaces of |w| at 60% of the maximum value. Figures are
generated using a 3243 grid.

(a) t = 3 (b) t = 6 (c) t = 9

Figure 5–10: Transport of the initial vortex core. We show level-set surfaces of φ at
60% of the maximum value. Figures are generated using a 3243 grid.

135



(a) Box width = π.

(b) Box width = π
16 .

Figure 5–11: Contour plot of vorticity strength |w| at time t = 12, centered at
(x, y, z) = (2.15, 1.5, 1.425); 10 isoline values evenly distributed in the range of each
frame are shown. From left to right, contours on: xy- plane, xz-plane and yz-plane.
Figures are produced using a 10242 2D grid.

(a) Box width = π.

(b) Box width = π
16 .

Figure 5–12: Contour plot of the transported initial vorticity φ at time t = 12,
centered at (x, y, z) = (2.15, 1.5, 1.42), 10 isoline values evenly distributed in the
range of each frame are shown. From left to right, contours on: xy- plane, xz-plane
and yz-plane. Figures are produced using a 10242 2D grid.
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t ‖w‖2L2 ‖u‖2L2/‖u0‖2L2 − 1 H/H0 − 1 ‖w‖L∞ ‖u‖L∞ nmaps time (s)

0 125.7910 0.000 0.000 0.9004 0.9684 1 0
1 126.9290 −7.816× 10−4 2.296× 10−3 0.9183 0.9644 1 187
2 130.3522 −3.043× 10−3 8.889× 10−3 1.0317 0.9478 1 381
3 136.0808 −6.604× 10−3 1.901× 10−2 1.1361 0.9331 2 586
4 144.1831 −1.117× 10−2 3.160× 10−2 1.2187 0.9431 3 801
5 154.8535 −1.636× 10−2 4.557× 10−2 1.2885 0.9794 4 1027
6 168.4914 −2.178× 10−2 5.988× 10−2 1.3653 1.0208 8 1568
7 185.7193 −2.707× 10−2 7.354× 10−2 1.4806 1.0495 14 2386
8 207.4032 −3.201× 10−2 8.561× 10−2 1.6472 1.0636 22 3380
9 234.9474 −3.648× 10−2 9.518× 10−2 2.0750 1.0697 30 4691
10 271.2813 −4.048× 10−2 1.015× 10−1 3.3802 1.0602 40 6442
11 322.7244 −4.403× 10−2 1.038× 10−1 6.7721 1.0433 51 8489
12 400.7262 −4.733× 10−2 1.024× 10−1 14.1254 1.0929 64 10391

Table 5–2: Evolution of total enstrophy, energy conservation relative error (divided
by initial energy), helicity conservation relative error (divided by initial helicity),
maximum vorticity and velocity, number of remaps and wallclock computation time
of the perturbed perpendicular vortex tubes initial condition using CM method for
3D Euler. Grid resolutions: 483 for M , 483 for V , ∆t = 1/50, adaptive sampling
with mollifier convolution is used for the vorticity, Fourier truncation at radius 32,
remapping Jacobian determinant tolerance at 10−3. All data in this table are evalu-
ated using a grid of resolution 2563.

The highest zoom shows a domain of width π/16 corresponding to 1/64 of the com-
putational domain, i.e. smaller than a single cell of the advection grid. In figure
5–11, we can see a presence of a high vorticity gradient at time t = 12 and the
formation of a vortex sheet. Figure 5–12 shows more clearly the material deforma-
tions which lead to this high gradient. Indeed, the advected initial vorticity shows
that two separate level-sets of the vorticity were pushed close together by the flow.
The yellow region squeezed between the blue curves in 5–12b was formed from the
flattening of the initial vortex tubes. However, the absence of a highly concentrated
vorticity peak in 5–11 in contrast to 5–12 suggests that the vorticity direction was
not fully aligned with the strain tensor eigenvector of the largest eigenvalue indicat-
ing that the vortex stretching term attenuated the vorticity gradient in this region.
This nicely illustrates that vortex stretching can be quantified locally.
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5.4 Concluding Remarks for Chapter 5

In this chapter, we extended the CM framework for the 2D Euler equations in
chapter 4 to the 3D case. For this purpose, we presented a geometric reformulation
of the framework based on the conservation of the vorticity 2-form. In doing so,
we were able to seamlessly incorporate the vorticity stretching term to compute the
evolving vorticity through pullback by the map, thus preserving the unique numerical
properties of the CM method for the linear advection and 2D Euler equations. In-
deed, we’ve shown in this chapter that the generalized method maintains an arbitrary
resolution of the solution, does not introduce artificial viscous dissipation and can
improve computational efficiency using the submap decomposition approach based
on the group structure of the characteristic maps. The error estimates based on ex-
pressing the true characteristic map as a composition of the numerical map with an
error map further clarify the advective nature of the vorticity error: the numerical
error does not arise from an artificial viscous or hyperviscous term, but rather from
modified characteristic trajectories. The numerical results in section 5.3 show that
due to the advective nature of the error, the fine scale features of the solution are
indeed preserved, since by successive fine sampling of the solution, the enstrophy
and energy spectra from the reconstructed velocity and vorticity fields contain the
expected higher frequency modes rather than a sharp decay symptomatic of grid-
scale viscous dissipation. This property, illustrated in figure 5–6, is a remarkable and
unique feature of the method; this not only sets the CM approach apart from others
but also warrants further investigation for a deeper understanding of this framework
in more general advection dominated problems.
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CHAPTER 6
Conclusion and Outlook

In this thesis, we studied the mathematical framework of the Characteristic
Mapping method and its application to various transport dominated equations. We
used the linear advection equation as starting point of our investigation and de-
veloped a more general framework through a geometric formulation of advection
dominated evolution equations. In particular, the use of the characteristic map as
the solution operator for the Lie-advection of differential forms allowed for solutions
to be expressed as the pullback of the initial condition by the map; this resulted
in a numerical method which provides a non-dissipative evolution of the solution at
arbitrary spatial resolution. The proof of concept in this thesis showed the novelty
and uniqueness of this method and revealed many interesting directions for future
research. Here, we make some preliminary investigations on two directions of interest
and conclude with some final remarks.
6.1 Outlook

The CM framework opens many interesting directions of future research. From a
numerical analysis point of view, the CM framework employs a new solution method
where the advected quantity is in fact never discretized, but defined in functional
form and can be evaluated at arbitrary locations through pullback by the map.
This approach may require new methods of analysis since numerical solutions do
not stay in the same finite-dimensional vector space at all times. From a scientific
computing point of view, the work presented here provides a proof of concept of
the CM method for the general transport and for the Euler equations. However,
many applications require the inclusion of source terms and boundary conditions;
this will require further extensions to the current framework. We present here a
short overview of these future outlooks for the CM method.
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6.1.1 Inhomogeneous Equations

The CM methods used for the Lie-advections in chapters 3 to 5 were all applied
to homogeneous equations of the form (∂t + Lu)φ = 0. Here, we make here a few
comments on the inclusion of source terms within the CM framework. Consider the
inhomogeneous linear advection equations with velocity u given:

(∂t + Lu)φ = ft, (6.1a)

φ(x, 0) = φ0(x), (6.1b)

for some time-dependent differential form ft of the same degree as φ. Here, the
subscript t on dependent variables denotes evaluation at time t. Using the solution
operator X[t,0] and Duhamel’s principle for linear equations, we have that solutions
are given by

φ(·, t) = X[t,0]
∗φ0 +

∫ t

0

X[t,s]
∗fsds. (6.2)

For general forcing terms ft, this breaks the characteristic mapping structure to
some degree as the solution is no longer obtained directly from pullback. Instead, the
presence of the time integral implies the need to discretize the “accumulated source
term” which we denote by F[t,0]:

F[t,0] :=

∫ t

0

X[t,s]
∗fsds. (6.3)

Numerically, X[t,0]
∗φ0 and F[t,0] do not arise from the same operations and errors

in F[t,0] depend on the source term as well as the velocity integration. Therefore,
incoherence between X[t,0] and F[t,0] may arise due to numerical errors reducing the
self-consistency of the method. In other words, without a source term, the modified
equation is obtained by modifying only the advection velocity u, whereas with the
above source term integration, error terms depending on ft will now emerge.
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Nonetheless, the submap decomposition method can still be applied to limit this
error. Indeed, we note that∫ T2

T1

X[t,s]
∗fsds = X[t,T2]

∗
∫ T2

T1

X[T2,s]
∗fsds. (6.4)

Following the previous notation, we denote the last integral above by F[T2,T1], this
gives us the following submap decomposition for the accumulated source term:

F[t,0] =
m∑
i=1

X[Tm,Tm−1]
∗ · · ·X[Ti+1,Ti]

∗F[Ti,Ti−1], (6.5)

for 0 = T0 < T1 < · · · < Tm = t. Numerically, this decomposition limits the interpo-
lation of the integrated source term to short-time subintervals, doing so prevents to
some extent the accumulation of numerical errors.

In each subinterval [Ti−1, Ti], F[t,Ti−1] obeys the inhomogeneous equation

(∂t + Lu)F[t,Ti−1] = ft, (6.6)

and the corresponding Gradient-Augmented Level-Set scheme is given by

F[t+∆t,Ti−1] = H
[
F[t,Ti−1] ◦ X̃[t+∆t,t]

]
+H

[∫ t+∆t

t

X̃∗[t+∆t,s]fsds

]
. (6.7)

The above describes a CM method for linear advection with an arbitrary source
term ft. For certain classes of source terms, in particular when ft can be in part ex-
pressed as an advected quantity, the approach can be further improved. We consider
the following Euler equations with a forcing term of fixed vertical direction dz scaled
by an advected 0-form ft as is in the case of the Boussinesq approximation with zero
viscosity and thermal conductivity.

∂tu+ (u · ∇)u = −∇p+ ft∇z, (6.8a)

∂tft + u · ∇ft = 0, (6.8b)

∇ · u = 0. (6.8c)
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The corresponding vorticity equation written in differential forms is

(∂t + Lu)ω = dft ∧ dz, (6.9a)

(∂t + Lu)ft = 0, (6.9b)

∇ · u = 0. (6.9c)

The Duhamel expansion of the solution gives the following vorticity at time t:

ωt = X[t,0]
∗ω0 +

∫ t

0

X[t,s]
∗(dft ∧ dz)ds. (6.10)

Using the fact that f is Lie-advected, i.e. fs = X[s,0]
∗f0, after commuting the

pullback with d and grouping terms, we get

ωt = X[t,0]
∗ω0 + d

(
X[t,0]

∗f0

)
∧
∫ t

0

d
(
X[t,s]

∗z
)
ds, (6.11)

where X[t,s]
∗z is just the z component of the map and can be integrated using the

same method as the map. This allows us to create a solution operator for the
accumulated forcing since the initial condition f0 has been factored out of the time-
integration; again, the numerical error results in a modified equation where only the
velocity field is changed. Hence the characteristic structure and arbitrary resolution
properties can be preserved by discretizing the “accumulated source term operator”
G[t,0]:

G[t,0] :=

∫ t

0

X[t,s]
∗zds, (6.12)

and the solution can be reconstructed as ωt = X[t,0]
∗ω0 + d

(
X[t,0]

∗f0

)
∧ dG[t,0].

The extension to more general forcing terms and other equations requires fur-
ther investigation. The inclusion of a viscosity term remains a challenge since the
Laplacian operator involves a metric and does not commute with pullbacks; the
Eulerian to Lagrangian change of coordinates produces instead a Laplace-Beltrami
operator bringing additional numerical difficulties. The diffusion-driven CM method
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in chapter 3 could be used as an alternative for including viscosity, however, its
implementation in three-dimensional space is likely to become impractical. The for-
mulation of the CM method for terms that are not Lie-advected and the involvement
of a metric remain important directions for future investigations.
6.1.2 Kelvin-Filtered Turbulence Models and the Euler-α Equations

The CM method is closely related to the Kelvin-Filtered turbulence models and
the Euler-α equations, also known as the three-dimensional Camassa-Holm equa-
tions. We refer to the review [42] on the Navier-Stokes-α equations for the theory
and analysis of this type of nonlinearly dispersive equations. The main idea behind
this dispersive approximation can be summarized as applying a regularization only
on the velocity field u which Lie-advects the vorticity field. We consider two velocity
fields: u, the true solution to the Euler-α equations, along with a regularized version
uε, often given by a filtering of the solution uε = µε ∗ u, where µε is some smooth
spatial filter. The equations can then be derived by requiring that the vorticity
w = ∇ × u satisfies the Kelvin circulation theorem under the regularized velocity
uε, that is

(∂t + Luε)ω = 0. (6.13)

Plugging in ω = du[ and commuting d with Lie-derivative, we get

d
(
∂tu

[ + Luεu[
)

= d
(
∂tu

[ + ιuεdu
[ + dιuεu

[
)

= 0. (6.14)

This means that ∂tu[ + ιuεdu
[ + dιuεu

[ is a closed 1-form, or in coordinates

∂tu+ (∇× u)× uε +∇(uTuε) = −∇p, (6.15)

for some scalar pressure p.
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We note that (ιuεdu
[)] = (∇×u)×uε = (uε ·∇)u− (∇uT )uε. Therefore, using

∇(uTuε) = (∇uT ) · uε + (∇uTε ) · u, the above simplifies to

∂tu+ (uε · ∇)u+ (∇uTε ) · u = −∇p. (6.16)

We note that when uε = u, the term (∇uTε ) · u becomes 1
2
∇(uTu) which is closed

and can be absorbed into the pressure term; in the Euler-α equations, this term is
required to correct errors in the conservation of circulation due to modifying the
advection velocity.

This advection modification also changes the energy conservation of the equation
as ‖u‖L2 is no longer conserved. Instead, assuming uε is divergence-free, we take an
L2 inner-product of the equation with uε:

(∂tu,uε)L2 +
(
(uε · ∇)u+ (∇uTε ) · u,uε

)
L2 = (∇p,uε)L2 = 0. (6.17)

We note that integrating by parts and assuming divergence-free, the trilinear form

B(v1,v2,v3) :=
(
(v2 · ∇)v1 + (∇vT2 ) · v1,v3

)
L2 (6.18)

can be rewritten as B(v1,v2,v3) = (∇v1,v2⊗v3−v3⊗v2)L2 , i.e. B is antisymmetric
in its last two entries. Therefore, we obtain

(∂tu,uε)L2 +B(u,uε,uε) = (∂tu,uε)L2 = 0. (6.19)

Lastly, assuming that uε is obtained from u through a linear, self-adjoint filtering
operator Kε, i.e. that (∂tu,uε)L2 = (∂tu, Kεu)L2 = (∂tKεu,u)L2 = 1

2
∂t(u,uε)L2 , we

get that the conserved “energy” is the L2 inner-product (u,uε)L2 .
This type of nonlinear dissipation is relevant to the CM method since the numer-

ical vorticity solution in the CM method is constructed by pullback, ω̃ = X [t,0]
∗ω0.

If the numerical characteristic map XB is indeed achieved by the backward-in-time
flow of some velocity field ũε, then we have that the numerical vorticity ω̃ is Lie-
advected by ũε. Equivalently, the corresponding velocity solution ũ with ω̃ = dũ[
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satisfies

∂tũ+ (ũε · ∇)ũ+ (∇ũTε ) · ũ = −∇p. (6.20)

It remains to see if the transporting velocity ũε is divergence-free and is related
to the transported solution ũ by a linear, self-adjoint filtering operator Kε. If this is
the case, numerically, this implies a more accurate energy conservation in the solution
since

‖ũ‖L2 = (ũε, ũ)L2 + (ũ− ũε, ũ)L2

= ‖u0‖L2 +O(‖(I −Kε)ũ‖L2‖ũ‖L2 + ‖(I −Kε)ũ0‖L2‖ũ0‖L2). (6.21)

Compared to the typical exponential decay of energy for linearly dissipative methods,
the energy conservation error here is a priori independent of time. Heuristically,
this indicates that loss of energy comes from the truncation of the small scales by
the operator Kε, i.e. from the inability to spatially resolve the fine scales of the
advection. The key assumption for equation (6.1.2) is that the advection velocity
ũε is divergence-free and is obtained from the solution ũ through an operator Kε

which is linear and self-adjoint. For of the CM method, this is not entirely the case.
Although the backward map is indeed evolved by a filtered version of the solution
ũ, the time-stepping for the map XB involves the projection HG[X [tn,0] ◦ X̃[tn+1,tn]]

which adds additional error terms to the effective advection velocity. Ultimately, the
numerical mapsX n

B are only computed at discrete time steps tn; it is unclear whether
there exists some velocity ũε(x, t) whose time tn backward flow map corresponds to
X n

B and whether the relation ũε = Kεũ can hold. However, we think that these
properties can be closely approximated and the error can be kept small if the spatial
resolution is high enough; therefore the CM method should also have controlled error
in energy conservation. The non-dissipative nature of the CMmethod is an important
property for future investigation and further analysis is needed to accurately evaluate
the energy conservation qualities of the method.
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6.2 Concluding Remarks

In this thesis, we studied the mathematical framework of the Characteristic
Mapping method and its application to various problems in scientific computing,
ranging from particle management and reparametrization of moving surfaces to the
solution of the incompressible Euler equations in two and three-dimensional space.
In chapter 2, we examined some preliminary notions required for the formulation
of the CM method and gave a brief outline of the method for the linear advection
equation. We also reviewed some differential geometry tools that we used for the
design and analysis of the CM methods presented in later chapters. In particular,
the relation between Lie-advection and conservation laws through Cartan’s homo-
topy formula allowed us to generalize the CM method to a wide family of evolution
equations. In chapter 3, we applied the CM method to a density redistribution
problem; by writing the diffusion equation on probability densities as a conservation
law, we obtained a Lie-advection equation. The characteristic map associated with
this transport equation then serves as a density redistribution map. We applied this
method to the evolution of parametrized surfaces; by composing the time-dependent
parametrization with the parametric space redistribution map, the area-element of
the surface is uniformized, yielding an equiareal parametrization of an evolving sur-
face. In chapter 4, we applied the CM method to the incompressible Euler equations
in two-dimensional space. In the 2D case, the scalar vorticity is an advected quantity,
the vorticity field at time t is obtained by function composition of the initial condition
with the characteristic map. The velocity field is obtained from the Biot-Savart law
and extended in time using a Lagrange interpolant. We also derived error estimates
for the method and drew a link between the corresponding modified equations and
the Euler-α models. These error estimates were supported by numerical convergence
tests. Furthermore, comparisons were made with the Cauchy-Lagrangian method
in [97] and a vortex merger test was also included to show the arbitrary spatial res-
olution provided by the functional representation and the submap decomposition.
This method was generalized to the three-dimensional case in chapter 5. In 3D, we
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took a geometric approach by representing the vorticity field as a differential 2-form.
According to the Kelvin circulation theorem, the vorticity 2-form is Lie-advected by
the velocity field and therefore can be computed as the pullback of the initial vor-
ticity by the characteristic map. This allowed us to include the vorticity stretching
term as an effect of material deformation rather than as a separate source term, thus
preserving the characteristic structure of the method. We performed error estimates
based on the group structure of the maps which further underlines the advective
rather than dissipative nature of the numerical error. The numerical tests in chapter
5 provide further evidence to the low-dissipation nature of the error as spectrum
plots of the reconstructed vorticity and velocity show that higher frequency modes
are preserved.

In summary, the CM framework brings a novel geometric approach to various
transport problems in scientific computing. This approach provides several unique
numerical properties to the method: The computation of a solution operator allows
for the coherent and simultaneous evolution of multiple transported quantities. The
functional discretization approach provides arbitrary resolution of the solution and
preserves the back-to-label symmetry. The submap decomposition, made possible by
the map’s group structure, allows for a non-dissipative evolution of all transported
scales using efficient coarse-grid computations. The resulting method is accurate
and efficient and shows significant potential for generalization and application to
other advection dominated problems. We believe that, with further research and
expansion, these unique features can make the CM method an indispensable new
tool in scientific computing.
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APPENDIX A
Time Evolution of 1D Curves

The curves used in section 3.4.3 are shown below; these figures show the time
evolution of the curve sampling. The initial curves are shown in figure 3–3, the curves
at times t = 0.6, 0.9 and 1.5 are shown in figure A–1. We sample each parametrization
function with 256 random marker points sampled from uniform distribution on U

which we draw as blue dots over the underlying exact curve in black.

(a) Curve 1 (b) Curve 2

(c) Curve 3 (d) Curve 4

Figure A–1: Comparison of the curves sampling using the original parametrization
P (top images) and the redistributed parametrization Q (bottom images).
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