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Abstract

Coordinated misinformation campaign - the malicious and coordinated use of online so-

cial media for manipulation has become a pressing global problem. It aims to distort

information space to confuse and distract the public, disseminate propaganda and disin-

formation to foster divisions, and paralyze the decision making abilities of individuals.

The ultimate goals or motives of such coordinated misinformation campaigns might be

hard to interpret, but their negative influence on public opinion, democracy and elections

is significant.

We propose algorithmic solutions that aim to detect coordinated misinformation cam-

paign on social media, and conduct case studies on real-world Twitter data. Specifically,

we propose the Embed-Cluster-Rank framework, a three-stage algorithmic pipeline that

learns low-dimensional representations for each user on a social network, clusters these

representations into user clusters, and finally ranks these clusters in terms of the sus-

piciousness of engaging in coordinated information campaigns. We then propose three

instantiations of the Embed-Cluster-Rank framework based on different embedding com-

ponents - joint autoencoder, linear projection and aggregation, and tensor decomposition.

We report experimental results on synthetic data, real-world Twitter data related to the

2019 Canadian Federal Election, and case studies that reveal interesting and important

findings on the information landscape as well as suspicious user groups impacting the

political dialog.
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Abrégé

Campagne de désinformation coordonnée - l’utilisation malveillante et coordonnée des

médias sociaux en ligne à des fins de manipulation est devenue un problème mondial

pressant. Elle vise à déformer l’espace d’information pour semer la confusion et distraire

le public, à diffuser de la propagande et de la désinformation pour favoriser les divi-

sions, et à paralyser les capacités de prise de décision des individus. Les objectifs ou les

motifs ultimes de ces campagnes de désinformation coordonnées peuvent être difficiles

à interpréter, mais leur influence négative sur l’opinion publique, la démocratie et les

élections est importante.

Nous proposons des solutions algorithmiques qui visent à détecter les campagnes de

désinformation coordonnées sur les médias sociaux, et réalisons des études de cas sur des

données Twitter réelles. Plus précisément, nous proposons le cadre Embed-Cluster-Rank,

un pipeline algorithmique en trois étapes qui apprend des représentations en basse di-

mension pour chaque utilisateur sur un réseau social, regroupe ces représentations en

grappes d’utilisateurs et classe finalement ces grappes en fonction de la suspicion de

s’engager dans des campagnes d’information coordonnées. Nous proposons ensuite trois

instanciations du cadre Embed-Cluster-Rank basées sur différents composants d’intégration

- auto-codeur commun, projection linéaire et agrégation, et décomposition des tenseurs.

Nous présentons des résultats expérimentaux sur des données synthétiques, des données

Twitter réelles liées aux élections fédérales canadiennes de 2019 et des études de cas qui
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révèlent des conclusions intéressantes et importantes sur le paysage de l’information ainsi

que sur les groupes d’utilisateurs suspects ayant un impact sur le dialogue politique.
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Chapter 1

Introduction

The earliest form of social networks emerged shortly after the invention of the World

Wide Web, such as Theglobe.com (1995), Geocities (1994) and Tripod.com (1995), where

people are brought together through chatrooms and encouraged to share personal infor-

mation via personal web-pages - the earliest form of user profiles. In the next two decades,

waves of social network sites popped up with significant improvements on suggesting,

managing and expanding friends list. In 2004, Facebook was founded and soon became

the largest social network platform in the world. Social media has since then become an

indispensable part of social life for most people.

The meteoric rise of social media fundamentally impacted people’s everyday life. An

increasing number of individuals are relying on social media to fulfill various personal

and social needs. More relevant to our work, increasing amount of people around the

world utilise social networking sites as an alternative news source [89]. A 2015 study

estimated 63% of U.S users of Facebook or Twitter consider these networks to be their

main source of news, especially political ones [7]. Such widespread usage of social media

for obtaining news contributed to new forms of abusive communication - polarized online

debate, political violence and abuse, misinformation - false or inaccurate information.
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More specifically, coordinated misinformation campaign - the malicious and coordi-

nated use of online social media for manipulation has become a pressing global problem.

In fact, the most important geopolitical events of the 21st century (the rise of ISIS, the

Russian occupation of Crimea, and the election of President Trump) all involve heavy use

of social media for propaganda and misinformation purposes. The impact of such serious

and malicious mass manipulation through social media incurs exponential marginal so-

cial cost when information circulates rapidly through social networks. Such manipulation

of online discourse through social media is a pressing global concern [87]. Recently, the

Special Counsel for the U.S. Department of Justice published their investigation into Rus-

sian “Active Measures” social media campaign, which confirmed an organized attempt at

the state level to sow discord into the U.S. political system through social media [63]. As

an example, Twitter reported possible engagement of 1.4 billion users with the suspected

“trolls” from the Russian government funded Internet Research Agency (IRC) [69], and it

is believed that this interference has swayed the 2016 US Presidential Election [5]. Such

activities aim to distort information space to confuse and distract voters, disseminate pro-

paganda and disinformation to foster divisions, and paralyze the decision making abili-

ties of individuals [100]. The ultimate goals or motives of these operations might be hard

to interpret, but their effect on public opinion, democracy and elections is clear [9,57]. The

severity and scale of such operations motivated the social media giants like Twitter and

Facebook to update their site policies [25,76]. These updated policies aim at tackling Infor-

mation Operations - the suit of methods used to influence others through the dissemination

of propaganda and disinformation [76,100], and Coordinated Inauthentic Activities - groups

working together to mislead people about who they are and what they are doing [25].

With the popularization of social media as a news source, organized misinformation

is becoming one of the most significant problems brought by technology advances in 21st

century. How can we monitor the information space proactively, identify such coordi-
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nated activities at an early stage, to ensure a healthy democratic society? Our work fo-

cuses on fighting against these organized misinformation campaigns on social media - de-

liberate and strategic attempt to spread misinformation. Specifically, we present Embed-

Cluster-Rank framework as a solution to this problem. It consists of modular components

to study the activity in complex social media space and identify groups that are impact-

ing the information space in an organized manner. In extreme cases, bots generated from

the same script behave in an almost identical or highly correlated manner [13], and trolls

or sockpuppets, who are being operated by the same person behind the scenes, exhibit

lock-step behavior [48]. More generally, Embed-Cluster-Rank framework detects orga-

nized groups, members of which amplify each others’ voice and boost each others’ influence,

unlike what is the norm among typical users. These are suspicious groups that need to be

further investigated by a human as detecting trolls is not a trivial task [71] and political cam-

paigns or activist groups might exhibit similar coordinated behaviour. Our framework

makes this subsequent investigation efficient by providing a group level summarization

and characterization, organized as the following.

1.1 Thesis Organization

This thesis is organized as follows:

• Chapter 2: Related Works and Background

This chapter provides a high-level overview and context of our work. First, it in-

troduces the history of the emergence of social networks, its implication for how

people consume news and make sense of reality, and the looming problem of online

misinformation. Next, it formalizes how data on social networks can be represented

as networks and summarizes existing approaches for combating online misinfor-

mation. Finally, it zooms in on our Embed-Cluster-Rank approach to coordinated
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misinformation, and introduce related literature on network anomaly detection and

representation learning for relational data.

• Chapter 3: Methodology

This chapter provides a formal formulation of the problem of detecting coordinated

misinformation campaigns on social media, as well as details of our algorithmic

contributions in the embedding phase of the Embed-Cluster-Rank pipeline. It first

provides core assumptions behind the data generating process of social media data

using examples of Twitter. Then it details our main contribution in the embedding

phase - three embedding methods to learn low-dimensional representations from

social networks. These are joint autoencoder, linear projection and aggregation, and

tensor decomposition. Finally, it summarizes the clustering and ranking phase.

• Chapter 4: Results and Discussions

This chapter goes into details of the results from each of our embedding method

along with corresponding clustering and ranking components. It covers the exper-

imental results on synthetic data, real-world Twitter data related to the 2019 Cana-

dian Federal Election, and also case studies that reveal interesting and important

findings on the information landscape and potential foreign interference on Cana-

dian election.

• Chapter 5: Conclusion

This chapter wraps up by summarizing the core contribution of our work - the

Embed-Cluster-Rank framework, and propose interesting future research directions

such as automating more parts of misinformation detection using natural language

processing, as well as merging the three-stage processes into one end-to-end differ-

entiable pipeline.
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Chapter 2

Related Works and Background

In this section, we first introduce social networks, misinformation on social network, and

then introduce approaches for combating coordinated misinformation on social media in

the context of network anomaly detection. Finally, we cover works related to the specific

embedding approaches adopted in this work.

2.1 Social Networks and Social Media

A social network is the various connections people form with each other via a social net-

work platform, and social media is the content shared by people on the platform. In this

work we use both terms inter-changeably since content and connection on social network

platforms are indispensable of each other: social connections create the context for social

media and content shared by people on the network evolves the network itself. Formally

we represent social media as temporal heterogeneous networks that consists of entities

and relations of different types, evolving through time. For example, a static slice of this

network on Twitter typically contains interactions among users in terms of following and

interactions between users and hashtags. To build up to the definition of such a complex

data structure, we start by introducing the basics of graph.
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Graph

In graph theory, a graph G(V , E) is a set of objects in which some pairs of objects are “re-

lated”. The objects are called vertices or nodes - V , and the relations are called edges - E .

In the case of social networks, nodes typically refer to users and edges refer to relations

among them. Edges can be directed or undirected. For example, a relation such as being

friends on Facebook is undirected since A being friend of B implies B being a friend of

A and vice versa. On the other hand, a relation such as following an account on Twitter

is directed since A following B does not imply the reverse to be true. The former type of

graph is called undirected graph, and the latter is called directed graph. Graphs are typi-

cally represented by an adjacency matrix, a 2-D matrix A ∈ {0, 1}n×m where the indices of

rows and columns represent left-hand side and right-hand side nodes respectively from

sets of cardinality n andm, and the value on the ith row and jth column represent the edge

going from node i to node j. The left-hand side and right-hand side nodes could be either

elements from the same set or different sets. In the latter case, if the sets are disjoint we

refer to the graph as a bipartite graph since the edges all go from one set to a different set

of elements. In the simple scenario, edge value is either 1, indicating existence of an edge,

or 0, indicating the lack thereof. In more complex scenario, it can take on real values,

indicating various properties of the relation between node i and j.

Multi-relational Graph

A multi-relational graph has multiple types of edges and is typically represented by a

tensor T ∈ {0, 1}r×n×m, with r types of edges, n left-hand side nodes and m right-hand

side nodes. TR,:,: is a slice of T at edge type R ∈ {1 . . . r}, and stores the adjacency matrix

of edge type R. In more complex cases, T could take on real values.

As a reminder, a tensor is a multidimensional array [42]. First order tensor is a vec-

tor, second order tensor is a matrix, and tensor with three or higher orders are called
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higher order tensor. Tensor T ∈ Rd1×···×dn having n modes, is a geometric object that can

be thought of as higher order generalizations of matrices or as multidimensional arrays.

Each element of T can be indexed by a tuple (i1 ∈ [d1], . . . , in ∈ [dn]). T can also be

reshaped into vectors or matrices. Vectors and matrices can also be reshaped back into

tensors. The jth-mode matricization of T is a matrix X ∈ Rdj×
∏

k∈[1,...,j−1,j+1,...,n] dk . We can

take jth mode product between tensor T ∈ Rd1×···×dn and matrix X ∈ Rdj×m, denoted

T×j X. The resulting tensor of shape Rd1×...dj−1×m×dj+1×···×dn . This is equivalent to taking

a normal matrix multiplication between the transpose of jth mode matricization of T and

X, and then reshape the resulting matrix back to tensor form.

Heterogeneous Graph

A heterogeneous graph not only has multiple edge types but also multiple node types and

can be represented by either a tensor or a set of coupled matrix tensors. If represented by

a tensor, the left-hand / right-hand side nodes include all types of left-hand / right-hand

side nodes and edge types include all types across interactions among different node

types, therefore leading to significantly larger and sparser tensor than coupled matrix

tensors representation. On the other hand, coupled matrix tensors representation repre-

sent each interaction type as a matrix or tensor, and have a one-to-one correspondence

between corresponding rows / columns to match the nodes that refer to same entities.

To clarify with an example of Twitter data, we have two types of nodes (users, hashtags)

and two types of relations (user-follow-user, user-use-hashtag), then the coupled matrix

tensors representation of the data contain two matrices A ∈ {0, 1}n×n, X ∈ {0, 1}n×d with

n users and d hashtags, such that each row in both matrix refer to the same user, thus

“coupled”. On the other hand, representing the data as one large tensor would result

in T ∈ {0, 1}2×(n+d)×(n+d) with the two slices representing user-follow-user and user-use-

hashtag relations, thus being significantly sparser. While the latter representation is fre-
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quently used in knowledge graph literature due to lack of clear node type definitions,

this is not the case in social network data. Social network data has clear definition of

node types, such as users and hashtags. Therefore, we use coupled matrix tensors repre-

sentation in this work. Extending binary values to real values is straightforward.

Coupled Matrix Tensor

A set of coupled matrix tensors are induced from multiple typed sets of nodes and typed

sets of relations. The relation could be either pairwise (between two nodes) or higher-

order, acting on more than two nodes. Pairwise relation that act on two sets of nodes

induces a matrix. Higher-order relation induces a tensor. Relation could act on the same

set, for example user-follow-user relation is a pairwise relation from the user set to the

user set. It could also act on different sets, for example user-use-hashtag relation is from

the user set to the hashtag set. In the higher-order case, user-use-hashtag-at-time relation

acts on the set of timestamps, users and hashtags, indicating at what time user uses a

hashtag. In the simple case of only pairwise relations, coupled matrix tensors are a set of

adjacency matrices.

Temporal Heterogeneous Graph

A temporal heterogeneous graph represents an evolving set of typed relations acting on

a set of typed nodes or entities. In the most general sense, more typed sets of relations

or entities can be added, and the cardinality of each typed set of entities or relations can

grow. In this work, we limit to the case where the no new types are created, typed sets of

entities are fixed and the only changes through time is typed relations by being created

and deleted among existing entities. Furthermore, instead of tracking real-time chain of

relation addition and deletion, we take an aggregate view of the data as slices through

time at different timestamp. Therefore we add a new typed entity - timestamps, and re-
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formulate pairwise relations between two entity sets as higher-order relations among the

two entities as well as timestamp at which the interaction was observed. This is repre-

sented using a set of coupled matrix tensors introduced above. For example, an evolving

Twitter dataset that involves user-follow-user, user-use-hashtag-at-time relations can be

represented by user-user adjacency matrix A ∈ {0, 1}n×n coupled with time-user-hashtag

tensor T ∈ {0, 1}t×n×d on the user axis, with n users, t timestamps and d hashtags. Ex-

tending binary values to real values is straightforward.

2.2 Misinformation on Social Media

Misinformation is false or inaccurate information that is communicated whether the in-

tention is to deceive or not. Propagation of misinformation on social media tend to elicit

fear and suspicion among a population [14]. Disinformation is one of the most important

types of misinformation. It has an element of deliberate deception, such as malicious hoax

(fabricated falsehood disguised as truth), phishing (fraudulent attempt to obtain sensi-

tive information) and online propaganda (persuasion to further hidden agenda). Such

malicious manipulation are usually highly organized. Facebook uses the term Coordi-

nated Inauthentic Behaviour and Twitter uses the term Information Operations to refer

to such organized disinformation efforts. Furthermore, these coordinated disinformation

on social media are often sponsored by state actors, and caused significant damage to

democracy through erosion of social trust. A notable example was Russian government

funded Internet Research Agency (IRC) that interfered and swayed the 2016 US Presiden-

tial Election. Clearly, combating online misinformation, especially organized disinforma-

tion, before it causes further widespread damage is an urgent and important problem of

this century.
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2.2.1 Information Operations

Information operations are activities that attempt to undermine information systems and

manipulate public discourse [100]. They have existed for centuries under different names

such as ‘information warfares’ [4], ‘information dominance’ [3], ‘psychological opera-

tions’ [54]. Information operations operate on many forms: shaping strategic narra-

tive [61], orchestrating and sustaining online collaborative work [67,88], distorting public

political sentiment [40]. The popularization of social networks such as Facebook and

Twitter, lowers the barrier for implementing information operations and makes it more

effective [95]. Specific strategies involved in information operations have attracted abun-

dant research attention in recent years: controlled spread of misinformation [32], deploy-

ment of botnet [91], online trolls [23]. One fruitful line of research in this regard applies

network science to understand the online information space and dynamics, and aims to

detect network anomalies that engage in malicious activities [1, 77]. Our work follows

this line of research and aims at creating tools to aid public understanding of information

space and defend against malicious actors.

2.2.2 Detecting Misinformation Online

Many recent works [5, 62, 100] analyze the vulnerabilities of social media to information

operations and coordinated inauthentic activities, and relate them to the clustering of

politicized online information spaces. This phenomenon, defined as ”echo-chambers”,

describes the gathering of like-minded individuals on online communities. As illustrated

by Marwick et al [57], the defiance toward traditional media from part of the population

leads to the emergence of alternative (possibly biased or fake) news sources. Bovet et

al. [9] showed that Twitter trolls tend to form small, politically biased groups that propa-

gate misleading information to normal users. Stewart et al [90] identified trolls as polar-

ising elements of echo-chambers, distorting the information space. Most past works on
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online misinformation detection are largely limited to classifying user-generated content

or users, based on their activities [84, 85, 105, 106].

Unlike these supervised techniques, we take a novel unsupervised approach that

jointly analyzes content and user connections to detect organized groups, inspired by

successful application of unsupervised techniques in anomaly and fraud detection set-

tings, for example, to detect fake reviewers posted to artificially boost product ratings on

E-commerce sites [34]. The lockstep behavior exhibited by agents who engage in infor-

mation operations induces dense subgraphs within the larger graph that represents the

connections among users or between users and content they engage with, hence this is

related to general dense block and anomaly detection algorithms, introduced in the next

section.

2.2.3 Organized Groups on Social Media

Both U.S. Department of Justice’s investigation into IRA and major tech companies’ up-

dated site policy reveal that hostile mass manipulation of online discourse on social media

often involves what we call Polluting Group - small set of densely connected social me-

dia accounts that aim to increase their influence through following each other and broad-

casting similar set of messages. Accounts in organized groups often form subgraphs of

much higher empirical edge probability than the background for both the followership

network and the bipartite network between accounts and messages, which can be cap-

tured by artifacts such as hashtags on Twitter, keywords on Facebook, etc. This is similar

to strategies used by fake reviewers to artificially boost product ratings on E-commerce

sites [34]. Furthermore, these organized groups are much smaller in size than naturally

formed network communities, and our interest is to recover exactly these tiny clusters,

instead of the global community structure of the network. We adopt a similar notion of

tiny clusters as in [64], which refer to clusters of sizeO(nε) where n is the size of the graph
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and ε > 0. To build up to the definition of tiny dense subgraph, we will introduce ba-

sic definition of subgraph and its connection in the broader context of network anomaly

detection literature in the next section.

2.3 Network Anomaly Detection

The original definition of an anomaly or outlier is given by Douglas M. Hawkins: “An

outlier is an observation that differs so much from other observations as to arouse suspi-

cion that it was generated by a different mechanism.” [31]. Traditional anomaly detection

techniques aim to sport anomalies in unstructured set of multi-dimensional points. Net-

work anomaly detection takes into regard the relational structure of these data points,

and identify anomalies on a network. To illustrate the distinction of traditional versus

network anomaly detection, we use the example of Twitter: the extent a user is suspi-

cious of engaging in disinformation depends on her/his usage of a set of hashtags as well

as how other users use the same set of hashtags, and how users relate to each other. We

can not detect anomalies here by only looking at a single user without considering the

inter-dependencies among users and between users and hashtags.

Broadly speaking, different network anomaly detection techniques can be applied to

different types of graphs such as unsupervised / (semi-)supervised, static / dynamic,

and attributed / plain graphs, and return different graph structures such as nodes, edges

and subgraphs. We first focus on unsupervised detection of anomalous subgraphs on

static, attributed graphs. As network anomaly detection is application specific, there is no

universal criteria to evaluate the quality of detected anomalies. Because we are interested

in tightly connected social media groups that broadcast similar content, thus suspicious

of engaging in coordinated misinformation, we focus on empirical evaluations on real

world data such as rate of user suspension, as well as on synthetic data by inspecting
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subgraph density. We are also interested in qualitative evaluations such as real-world

data case studies.

In the context of social networks, anomalies could mean fraudulent groups that boost

each other’s influence by forming highly interconnected sub-regions [68], important and

influential individuals [16, 55, 79], malicious and predatory activities [12, 22]. The data

used for these anomaly detection could be static or dynamic, labelled or unlabelled [77].

Works directly related to applying social network anomaly detection to detect informa-

tion operations or influence campaigns have been a recent establishment [56, 60].

While anomaly detection is a well researched problem, many techniques fail to be

applicable on the extremely sparse graphs with a large set of nodes which character-

izes most modern social networks. ODDBALL [2] is a classical approach that defines

several metrics surrounding the density, weight, rank and eigenvalues associated with

anomalous subgraphs, and computes these measures to identify anomalous blocks. An-

other approach is presented in [70] which detects persistent patterns, called EigenSpokes,

which are found in large sparse social graphs. By plotting the singular vectors of these

graph against each other (called EE-plots), clear, separate lines or spokes that often align

with axes (EigenSpokes) are detected. EE-plots are indicative of fundamental clustering

structures within these graphs. Alternatively, matrix factorization approaches have been

extremely prolific in anomaly detection literature. For example, Tong and Lin [92] adapt

non-negative matrix factorization (NMF) by enforcing constraints to identify anomalies in

the residual graph after typical factorization, thereby capturing anomalies in the original

whole graph. In line with recent advances involving deep learning, a major contribution

in anomaly detection follows from DeepFD, an architecture developed by Wang et al [96]

based on graph embeddings of both attributed and topological graphs. Their work pre-

serves graph structure and user behavior in order to improve adversarial robustness to

fraudsters within networks of interest. With the popularization of graph neural networks,
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graph convolutional autoencoder that encodes and decodes both adjacency and attribute

matrix is used to rank nodes in terms of anomaly score, indicated by node reconstruction

error [19].

A distinct type of network anomaly is especially relevant to detecting coordinated

misinformation campaign: lockstep behavior - groups of users acting together. Such be-

havior induces dense blocks on data, and thus dense block detection methods have been

designed for this type of anomaly and fraud detection [80–82]. Anomalous agents are

usually camouflaged within the larger modular structure of the graph and thus detecting

them can be a difficult task. Dense subgraph discovery is well-studied and there are dif-

ferent types of dense subgraphs, such as clique, quasi-clique, K-core, K-plex, Kd-clique,

and K-club. Due to the combinatorial nature of graphs, detecting these structures is chal-

lenging, for instance finding exact cliques and quasi-cliques is shown to be NP-hard [51].

Classical solutions for the clique problem can be categorized as exact enumerations [72],

fast heuristic enumerations [47] and bounded approximation algorithms [11], most of

which have runtime at least polynomial to the size of graph. Fraudar [34] is a notable

example of scalable dense subgraph detection methods that finds subgraphs with large

average degree in the context of fraud/anomaly detection. Our work takes a similar

notion of dense subgraph but focuses on finding subgraphs with large empirical edge

probability in multiple graphs simultaneously: user connection graph and user content

bipartite graph. Various extensions of dense subgraph detection include dense sub-tensor

detection [81,82], online dense sub-tensor detection [83], hierarchical dense subgraph de-

tection [104]. These methods are defined in a single mode whereas our method detects

coupled blocks which enforce dense substructures in coupled matrices/graphs as dis-

cussed later in detail.

Dense block/subgraph detection for detecting anomalies on networks is also related

to community detection and tiny cluster detection on graphs. It is well-known that tra-

14



ditional community detection techniques such as modularity optimization fail to identify

clusters smaller than a scale [24]. This resolution limit depends on the size of the network

and the interconnectedness of the clusters. Few works try to discover clusters of small

size in graphs [52, 101]. Notably, pcv method [64] considers bipartite stochastic block

models and formally defines tiny cluster to be clusters of size O(nε), ε > 0 where n is the

size of the graph (right-side nodes), and finds tiny clusters with theoretical guarantees.

Our work takes a similar notion of tiny cluster, but in a more general case of coupled ma-

trices as explained later. This combining of the different sources of information is proven

to be a necessity for better recovery of community structure in contextual stochastic block

models [18], which applies non-rigorous cavity method from statistical physics to prove

the information theoretical necessity of for better recovery of community structure in con-

textual stochastic block models and utilizes both the graph and node attributes for dis-

covering them. This is motivated by prior work in [18], which applies cavity method

from statistical physics to prove the information theoretical necessity of combining the

different sources of information for better recovery of community structure in contextual

stochastic block models. M-Zoom [81] is a classical approach to this problem, which itera-

tively finds and removes dense blocks to prevent duplicate block querying. Shin et al [82]

take an offline approach to the task in D-Cube, facilitating distributed, fast detection of

dense blocks with provable guarantees on the accuracy of identifying blocks.

Dense subgraph detection is closely related to graph clustering or community detec-

tion, which identifies clusters of densely connected nodes [38,102]. We want to emphasize

dense block/subgraph detection for detecting anomalies on networks is related to but

different from discovering intrinsic structure of the network. Community detection in

networks is a task that involves finding the underlying modular structure of the graphs.

In particular, the problem involves finding a grouping of nodes that attempt to ascer-

tain an underlying clustered, segmented and relatively dense structure within a graph.
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Two widely-used community detection algorithms include Louvain [8], based on mod-

ularity optimization and Infomap [75], based on information compression. Traditional

approaches like modularity maximization, which measures the number of edges in iden-

tified communities in relation to the expected number of edges in an unorganized graph,

suffer from small-resolution communities and do not scale well to contemporary social

networks [49]. More recent research has identified the need for combining both the un-

derlying structure of the nodes within the network as well as their inherent attributes [53],

providing motivation for . Liu et al [53] adopt the paradigm that a network graph results

from interactions among nodes, and introduce the idea of content and influence propaga-

tion via random walks, analyzing the stable structure of this dynamical system to identify

communities. Jia et al [37] enhance node attributes by running k-nearest neighbors on the

graph a priori and append this information to node representations, demonstrating that

this alleviates graph sparsity issues and improves performance of community identifica-

tion algorithms. Thus, our formulation in is a natural extension of this idea. Most recently,

graph neural networks (GNNs) extend the convolutional neural network framework to

graph structures by leveraging affine transformations of graph operators and node-wise

or edge-wise activation functions. Chen et al [15] introduce a new family of GNNs which

rely on a non-backtracking graph operator defined on the line graph of edge adjacencies,

facilitating scalable inference of communities on large, sparse graphs. A separate line of

work aims to detect tiny communities. Neumann proposed an elegant and simple algo-

rithm for provably finding community of size O(nε) in a bipartite graph generated by

bipartite stochastic blockmodel, by first clustering left-side nodes based on similarity of

their neighbors, and then recover right-side partition based on degree thresholding [64].
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2.4 Representation Learning for Relational Data

With the popularization of representation learning on graphs, new techniques have been

developed to learn graph structures and detect network anomalies. Network embed-

ding techniques aim to map nodes or subgraphs onto Euclidean space through possibly

learned functions on graphs. The most notable graph embedding techniques are unsuper-

vised GraphSAGE [30], node2vec [28] and attri2vec [103]. We show in our experiments

that these methods fail to recover tiny clusters effectively. This type of learning is inher-

ently difficult as graphs are combinatorial structures with discretized nodes and edges.

Thus, conventional learning modalities like neural networks often fail for these learn-

ing tasks as they rely on continuous representations of data. In particular, unsupervised

graph representation learning is interesting as most graphs are not fully specified; connec-

tions between nodes within our data are often hidden or unknown, particularly in large

scale graph structures such as social media networks. To this end, Kipf and Welling [41]

develop the variational graph autoencoder that uses a graph convolutional network as an

encoder which parameterizes a Gaussian latent distribution. A decoder network then re-

constructs the full graph, and the authors demonstrate that such reconstruction from the

latent embeddings predicts unseen or masked links in the original network with good ac-

curacy. Moreover, their framework can be trained end to end through classical variational

inference. More recently, Hamilton et al. [30] demonstrate greatly improved performance

through their more general GraphSAGE approach. GraphSAGE is able to perform induc-

tive learning and generate node embeddings for previously unseen graphs. Critically,

even in settings where node attributes are not made explicitly available, the GraphSAGE

is extendable by computing additional node features such as degree from the network

topology and substituting these as the node attributes.

In the case of heterogeneous networks where there are multiple types of nodes and

edges, coupled matrix tensor decomposition can be used to learn useful representations
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for each node. The most popular tensor decompositions are: CP [39,45,46] and Tucker [94]

decompositions which can be considered as higher-order generalizations of matrix singu-

lar value decomposition (SVD) and principle component analysis (PCA). CP decomposes

a tensor as outer product of factor matrices for each mode, and Tucker decomposes a

tensor as a core tensor and factor matrices for each mode. Besides CP and Tucker, more

recent establishments include Tensor Train decomposition [66], coupled matrix tensor

decomposition (CMTF) and multi-way clustering on graphs [6], and structured data fu-

sion [86] which inspired our work. Particularly, which made optimizing SCG-map’s ob-

jective possible with the size of our real-world data, builds upon stochastic optimization

methods [43] for generalized CP decomposition [33].
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Chapter 3

Methodology

We propose a unified three-stage pipeline for identifying organized groups on social me-

dia, consisting of embedding, clustering and ranking, shown in Figure 3.1. The embed-

ding phase learns low-dimensional representations of social media users. The clustering

phase groups these representations into user clusters. The ranking phase ranks the most

suspicious user groups that likely engages in coordinated information campaigns to help

human experts detect strategic online misinformation. Our key insight is that, by repre-

senting social media users in a low-dimensional space, traditional clustering algorithms

can be exploited to discover similarly behaving groups. Furthermore, groups that not

Figure 3.1: Embed-Cluster-Rank pipeline
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only behave similarly, but also have much denser connections within the group relative

to the background, are suspicious ones needed to be vetted by humans for whether they

engage in coordinated misinformation campaign.

More specifically, we represent social media contents and connections as temporal

heterogeneous networks that consists of entities and relations of different types, evolving

through time. For example, typical Twitter dataset contains follower and retweet net-

work, as well as how users engage with contents which can be abstracted as a bipartite

graph between users and hashtags. Thus this heterogeneous network contains entities

such as users and hashtags, and relations such as follow, retweet and hashtag-usage. Fur-

thermore, there could be multiple snapshots of this network through time.

First, we apply dimensionality reduction techniques to obtain low-dimensional em-

beddings for entities to be investigated, which in most cases are social media users. The

literature on dimensionality reduction is vast, and one of our core contributions is adapt-

ing, modifying and scaling up techniques from very different spectrum to solve a high-

impact social problem. Next, once we have low-dimensional embeddings for users, we

apply clustering algorithm to further break users into groups. In principle, any clustering

algorithm can be used in this step, but we empirically identified density-based cluster-

ing to yield best detection performance. Finally, we designed simple and interpretable

heuristics to rank the resulting clusters to surface up suspicious user groups for human

to verify whether they are involved in misinformation campaigns.

In the following subsections, we will introduce the problem formally, and focus on

explaining in depth our contributions in step one of the pipeline while covering the basics

of step two and three. We propose three methods: joint autoencoder, linear projection and

aggregation, and coupled tensor factorization. The first two handle simple static dataset,

and the third handles both simple static and complex dynamic dataset as explained in the

following section.
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3.1 Problem Formulation

We define Organized Group to be a small set of densely connected social media accounts that

aim to increase their influence which are related to each other and broadcast a similar set of mes-

sages. The first criteria regarding the small size of the network is motivated by the report

of U.S. Department of Justice’s investigation into Russian interference in the 2016 U.S.

Presidential election: ”Dozens of IRA employees were responsible for operating accounts

and personas on different U.S. social media platforms; A number of IRA employees as-

signed to the Translator Department served as Twitter specialists; IRA specialists oper-

ated certain Twitter accounts to create individual U.S. personas” [63]. Evidence suggests

that the size of the organized group is small and operationalized, and the total number

of employees operating the social media accounts is limited by hiring capacity of the un-

derlying organization. The second criteria regarding mutual influence boosting through

following or other ways of relating to each other on social media is motivated by the in-

vestigation lead by the Special Counsel for the United States Department of Justice into

Russian ”Active Measures” Social Media Campaign. Through this campaign, Internet Re-

search Agency, LLC (IRA), a Russian State sponsored organization was capable of reach-

ing millions of U.S. citizens through their social media accounts on Facebook, Instagram,

Tumblr, YouTube, and Twitter, by the end of the 2016 U.S. election [63]. More specifically,

IRA created inauthentic social media accounts operated by a small team of employees

as well as automated bots starting as early as 2014, in the names of U.S. citizens, ficti-

tious U.S. organizations and grassroots groups, in order to garner followers and influence

in online discourse and broadcast messages with hidden political agenda. Employee-

operated IRA social media accounts attracted massive followers: ”United Muslims of

America” Facebook group had over 300,000 followers; @jenn abrams - a Twitter account

claiming to be a Virginian Trump supporter had over 70,000 followers. Bot-operated net-
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work of accounts also gained considerable influence during the election (approximately

1.4 million people on Twitter) [63].

For clarity, we will introduce the problem in its simple static case with a Twitter dataset

that only contains follower graph and user hashtag graph, and then introduce more gen-

eral formulation of complex dynamic case using a temporal Twitter dataset that further

contains retweet and mention graphs with multiple snapshots through time. The task

of interest is to identify organized groups from both these datasets in an interpretable

and scalable fashion. Though we use Twitter datasets to introduce the problem, it easily

extends to other social platforms. For notation, we use Boolean matrices and tensors to

represent graphs, temporal graphs and affiliation matrices.

3.1.1 Simple Static Case

Given a simple static Twitter dataset of follower graph A ∈ {0, 1}n×n and user hashtag

bipartite graph X ∈ {0, 1}n×d with the set of users |U| = n and set of hashtags |H| = d,

we consider organized groups as small sets of accounts that aim to increase their influ-

ence through following each other and broadcasting similar messages, mostly through

using distinct sets of hashtags frequently. The connections among these users form sub-

graphs of A with much higher edge probability than the background. Similar subgraphs

are induced by these groups on X with corresponding sets of hashtags. Furthermore,

these organized groups are usually much smaller in size than naturally formed network

communities, and our interest is to recover these tiny clusters, instead of the global com-

munity structure of the network.

We formally define organized groups on A and X by extending Latent Block Model

[27], a probabilistic framework for co-clustering, to handle multiple sources of data. We

first assume both A and X can be modelled by grids of Bernoulli random variables, whose

distributions are specified through latent groups on the rows and columns of A and X.
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Figure 3.2: Probability factorization of simple-static case

These latent groups are specified through affiliation matrices Z and W. Let user affili-

ation matrix Z ∈ {0, 1}n×g :
∑g

k=1 Zik = 1 encode hard partition of n users into g non-

overlapping latent groups, and hashtag affiliation matrix W ∈ {0, 1}d×m encode hard

partition of d hashtags into m possibly overlapping latent groups. The constraint of each

row of Z having exactly 1 nonzero reflects the fact that we are grouping users into unique

non-overlapping groups.

The mean parameters for the grids of Bernoulli random variables on A and X are

stored in core matrices P ∈ [0, 1]g×g and Q ∈ [0, 1]g×m. Pkk′ represents the probability

of having an edge between two nodes belonging to latent node groups k and k′. Qkl

represent the probability of having an edge between user group k and hashtag group l.

Assuming A and X are conditionally independent given latent variables Z,W,P,Q, the

probability of conditionally observing A and X can be factorized by (Figure 3.2):
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P (A,X|Z,W,P,Q) = P (A|Z,P)P (X|Z,W,Q)

=
∏
ii′kk′

f(Pkk′ ,Aii′)
ZikZi′k′

∏
ijkl

f(Qkl,Xij)
ZikWkl

where f(a, b) = ab(1− a)1−b and i, i′ ∈ U ; j ∈ H; k, k′ ∈ {1, . . . , g}; l ∈ {1, . . . ,m}

(3.1)

Given such a latent variable model we define an organized group to be a small user

group k with corresponding hashtag groups {l} that induces high edge probability on

A and X, essentially high Pkk and Qkl and low
∑

i Zik compared to the background or

naturally occurring network communities. In practice, given A and X, we aim to return

a list of user groups ranked by how likely it is organized.

3.1.2 Complex Dynamic Case

Consider a complex dynamic Twitter dataset of a static follower graph A ∈ {0, 1}|U|×|U|,

a temporal user hashtag bipartite graph X ∈ {0, 1}|T |×|U|×|X |, temporal retweet graph

R ∈ {0, 1}|T |×|U|×|U| and temporal mention graph M ∈ {0, 1}|T |×|U|×|U|, with the set of

users U , hashtags H, and timestamps T for which data snapshots were taken. Thus,

extending from previous section, an organized group not only densely follow each other,

frequently use distinct set of hashtags, but also densely retweet or mention each other, and

do so in some temporal snapshots of the data. Therefore, organized groups induce dense

subgraphs on A, and dense sub-blocks on X,R,M. Similarly, these organized groups are

assumed to be much smaller than naturally formed network communities.

We similarly extend Latent Block Model to handle multiple tensors. Assume A,X,R,M

can be modeled by Bernoulli random variable grids, whose distributions are specified

through latent groups on sets of users, hashtags and timestamps.
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We denote these groups GU ,GH ,GT , which are encoded through affiliation matrices

FU ∈ {0, 1}|U|×|GU |, FH ∈ {0, 1}|H|×|GH |, and FT ∈ {0, 1}|T |×|GT |. Furthermore, we set∑
i∈U ,j∈GU FU = 1 to enforce non-overlapping user groups.

The mean parameters for the grids of Bernoulli random variables on A, X, R and M

are stored in core matrices or tensors CA ∈ [0, 1]|GU |×|GU |, CX ∈ [0, 1]|GT |×|GU |×|GH |, CR ∈

[0, 1]|GT |×|GU |×|GU | and CM ∈ [0, 1]|GT |×|GU |×|GU |. CXijk represents the probability of having

an edge among group i ∈ GT , j ∈ GU , k ∈ GH . We similarly assume A, X, R and M are

conditionally independent given latent variables FU , FH , FT , CA, CX , CR, CM , thus the

probability of conditionally observing A, X, R and M can be factorized by:

P (A,X,R,M|FU ,FH ,FT ,CA,CX ,CR,CM)

= P (A|FU ,CA)P (X|FT ,FU ,FH ,CX)P (R|FT ,FU ,CR)P (M|FT ,FU ,CM)

(3.2)

For clarity, we only expand P (X|FT ,FU ,FH ,CX) into product of individual terms:

P (X|FT ,FU ,FH ,CX)

=
∏

t∈T ,u∈U ,h∈H,gt∈GT ,gu∈GU ,gh∈GH

f(Cgtgugh ,Xtuh)

where f(a, b) = ab(1− a)1−b

(3.3)

Given such a latent variable model we extend the definition of organized group from

previous section to be a small user group u ∈ GU with corresponding timestamp groups

{t ∈ GT} and hashtag groups {h ∈ GH} that induce high edge probability on A, X, R

and M, essentially high CAuu, CXtuh, CRtuu, CMtuu and low
∑

i∈U Fiu compared to the

background or naturally occurring network communities. Similarly, in practice, given A,

X, R and M, we aim to return a list of user groups ranked by how likely it is organized.
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3.2 Embedding Phase

Given a simple static or complex dynamic Twitter dataset defined in previous section,

we propose the following three methods to embed users in low-dimensional Euclidean

space. The first two methods: joint autoencoder, linear projection and aggregation only

handle simple static case, while the third method: coupled tensor factorization is more

general and can handle both cases. We use the same symbols as previous section: in

simple static case, we use A for user follower graph and X for user hashtag graph; in

complex dynamic case, we use A for static follower graph, X for temporal user hashtag

graph, R for temporal user retweet graph and M for temporal user mention graph.

3.2.1 Joint Autoencoder

Our joint autoencoder architecture is inspired by [97], where we extend their loss func-

tions to deal with multiple data sources. The architecture is shown in Figure 3.3 which

consists of φeA, φ
e
X, φ

e
J, φ

d
A, φ

d
X where φ can be a function represented by a single layer of

neural network or composition of multiple layers, φe is encoding function and φd is de-

coding function. Subscripts of φ : A,X,J denote the information φe encodes from or φd

decodes into, where A and X are input graphs, and J is concatenated latent representa-

tion for users using information from both graphs: concat(φeA(A), φeX(X)). Decoders φdA

and φdX transform joint latent representation J to approximation of A,X : Â, X̂.

The joint reconstruction error weighted by hyperparameters wA and wX, with atten-

tion weights WA
att and WX

att is calculated by

H = φeJ(J) (3.4)

LA
recon = ||(φdA(H)−A)�WA

att||2F (3.5)

LX
recon = ||(φdX(H)−X)�WX

att||2F (3.6)
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φeA φeX

A X

J

H

φeJ

X̂Â

φdA φdX

Figure 3.3: Joint Autoencoder Architecture

Lrecon = wALA
recon + wXLX

recon (3.7)

Besides reconstruction loss, we define similarity loss as the discrepancy between pair-

wise Euclidean distance of H and pairwise Jaccard distance of A and X, weighted by

the same wA and wX. In order to compare these 2 different distance metrics, we apply a

logit transformation on the pairwise Euclidean distance to compress its range to [0, 1], the

same as the range of pairwise Jaccard distance. Let SX
Jar be the pairwise Jaccard distance

of rows of X, similarly SA
Jar for A, and SH

Euc be the pairwise Euclidean distance for latent

vectors H, and choose λ ≥ 0:

LA
sim = ||exp(−λSH

Euc)− SA
Jar||2F (3.8)

LX
sim = ||exp(−λSH

Euc)− SX
Jar||2F (3.9)

Lsim = wALA
sim + wXLX

sim (3.10)

The joint loss to minimize is weighted combination of reconstruction loss and similar-

ity loss with weights wrecon and wsim, plus L2 regularization loss at every layer:
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Figure 3.4: Linear projection and aggregation

Ljoint = wreconLrecon + wsimLsim + Lreg (3.11)

In practice, we train on sampled batches instead of the entire data matrix. For each

epoch, we select node vi ∈ V uniformly at random, and sample set of nodes {vj : vj ∈

{V − vi}} according to some distribution D related to the similarity between vi and vj .

Finally, the learned embedding matrix H in Equation 3.4 is the user embedding.

3.2.2 Linear Projection and Aggregation (SCG)

Our linear projection and aggregation method (SCG) is inspired by [64], where we extend

their method to deal with additional data sources through message passing. Our method

is based on two fundamental building blocks: low-rank approximation of matrix denoted

by linear projection operator ΠK , where K specifies the resulting dimension after projec-

tion; and message passing on A denoted by operator MA. The variants of our method

differ in the order with which to apply ΠK and MA:

φ(A,X) = MA(ΠK(X))

ψ(A,X) = ΠK(MA(X))

(3.12)
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In this work, we chose ΠK to project input matrix on its first K left singular vectors, and

chose MA to use summation aggregator for graph message passing. Applying φ or ψ on

input data matrices results in user embedding H.

The motivation for our choice of projection operator stems from [64], where it prov-

ably finds tiny clusters of size O(nε>0) given a random bipartite graph of size n in the

presence of high noise, whereby previous algorithms were only capable of Ω(
√
n). The

core step of the algorithm is to project each row of the biajacency matrix onto its first

K left singular vectors, and then apply K-Means clustering to identify clustering on the

rows. This operation is conjectured to give the same theoretical guarantees as Mitra’s al-

gorithm [26], which leads to the provable recovery of tiny clusters of sizeO(nε>0). Our ΠK

projection operator is identical to that of [64], and shares the same guarantee of detecting

tiny clusters in the hashtag graph that are otherwise hard to detect, especially given the

amount of high destructive noise in real-world data.

The motivation for our aggregation operator is motivated by message passing algo-

rithms on graphs, including graph convolution networks and label propagation

3.2.3 Coupled Tensor Factorization

Our coupled tensor decomposition method is inspired by [44], where we modified the

stochastic gradient to handle coupled Tucker decomposition instead of just single-tensor

CP decomposition. Our aim is to apply coupled tensor factorization to compress input

data matrices and tensors into products of factor matrices and core tensors, thus reveal-

ing intrinsic structure in data and obtaining informative Euclidean embeddings for each

entity set in input data.

Given A, X, R, M, we aim to learn latent variables in the form of factor matrices and

core tensors FU , FH , FT , CA, CX , CR, CM that reflect exactly our definition of organized

groups in previous section. Note that to be able to use stochastic gradient that scales to
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Figure 3.5: Coupled tensor factorization

large dataset, we relax all Boolean and left-stochastic constraints on learnable parameters.

We use mean squared loss:

L = ||A−CU ×1 FU ×2 FU ||2 + ||X−CX ×1 FT ×2 FU ×3 FH ||2+

||R−CR ×1 FT ×2 FU ×3 FU ||2 + ||M−CM ×1 FT ×2 FU ×3 FH ||2
(3.13)

We learn the latent parameters using stochastic gradient descent, and the resulting

user embedding H is the factor matrix FU shown in Figure 3.5. Note that in this decom-

position scheme, user metadata and followership are static because based on our analysis

of collected data, these information about users rarely change over time. However, tem-

poral generalization of these data sources is trivial under our framework.
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3.3 Clustering and Ranking Phase

Given user embedding H from embedding phase, we first apply clustering to discover

latent user groups GU , and then rank them according to how likely it is organized.

Given user embedding matrix H ∈ Rn×d, we apply centroid-based or density-based

clustering algorithms to obtain indicator vector c ∈ {1 . . . K}n, where K is number of

clusters and ci indicates the cluster index of user i.

The most popular centroid-based clustering algorithm is K-Means clustering, whereK

is heuristically chosen and then K random centroid vectors are initialized and iteratively

updated to minimize the distances between centroids and nearby data points. This can

be equivalently viewed as an optimization problem - constrained matrix decomposition:

MinimizeU,V||H−UV||22

subject to ∀i ∈ {1 . . . n} : ||Ui,:||2 = 1, ||Ui,:||0 = 1

(3.14)

The data matrix is approximated by the multiplication of representation matrix U ∈

{0, 1}n×K and archetype matrix V ∈ RK×d using squared loss. U is constrained to be

binary and have exactly one nonzero on each row i, with the index of the nonzero corre-

sponding to its corresponding cluster index ci. V stores K centroid vectors as rows. The

iterative update procedure above termed as EM (Expectation Maximization) is equivalent

to alternate minimization, where at each step, either U or V is fixed and the other is up-

dated to reach minimum loss. It is known that alternate minimization does not guarantee

global optima. Therefore, in practice, multiple runs with different random initialization

is used, and cluster index corresponding to the lowest loss is used. The elbow heuristic is

typically used to choose appropriate K, finding a balance between minimal K that yield

low enough loss. To scale K-Means to larger data, a batch update algorithm has been

proposed where the same procedure is repeated on random sub-samples of the data until
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convergence [78]. K-Means clustering scales linearly or sub-linearly (sampling-based) to

the data size in time complexity and does not require additional storage for intermediate

data structures, thus it is scalable to large social media dataset. However, it sometimes

fail to capture high-density regions since it cannot differentiate region densities. It is also

biased to find equal-sized clusters of spherical shapes, and also assigns a cluster index to

each data point, which is not always compatible with our use case - finding tiny dense

clusters in high dimensional data.

Therefore, we also use density-based clustering when the data is small enough to have

reasonable runtime and memory usage. The most popular density-based clustering algo-

rithm is DBSCAN [20], where nearby data points in dense regions are grouped incremen-

tally into clusters and points far away from any dense regions are categorized as noise.

There are three types of data points in DBSCAN: core points, edge points and noise points,

where only core and edge points form clusters. Initially, all points are initialized as noise

points. Two key hyperparameters control how to flip some of the noise points into core

points and edge points with corresponding cluster labels: epsilon is the largest distance

two points can be to be considered neighbors; min samples is the minimum number of

neighbors a point has in order to become core point. Specifically, if a point has more

neighbors than min samples, it becomes a core point and becomes a cluster. Then all its

neighbors get grouped into the same cluster. Next, each of the neighbors will be checked

if they can be core point. if so, the same procedure is recursively applied; otherwise, it is

an edge point. Such procedure is applied for all data points until all points are visited.

Given user cluster labels c ∈ {1 . . . K}n, we create a suspicious score for each cluster

to rank the most suspicious one on top for human experts to verify whether the cluster of

users indeed engages in coordinated misinformation. Empirically we found the empirical

edge probability in cluster-induced subgraph on the follower network to an effective and

easy-to-calculate suspicious score. It is defined as the observed number of edges over all
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possible edges among a set of users. In directed graphs such as the follower network, all

possible number of edges for a cluster of n users is n2.
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Chapter 4

Results and Discussions

In this section, we go through both synthetic and real-world data experiments’ results for

each method described in previous section. More details for joint autoencoder and linear

projection and aggregation (SCG) are available at [98, 99].

4.1 Joint Autoencoder

We first conduct synthetic experiments to choose the best set of hyperparameters for ex-

ploratory analysis on real data, as well as to demonstrate the effectiveness of joint autoen-

coder on binary attributed graph dense sub-block detection compared to FRAUDAR [35],

a classical baseline for dense sub-block detection with only adjacency matrices, and DOM-

INANT [19], a Graph Convolutional Network (GCN) based approach that utilizes both

adjacency and attribute matrices. We then create a joint “fingerprint” of identified clusters

based on both the graph topology of cluster-induced subgraph, and attributes of nodes in

the cluster, which could potentially be used to identify Information Operations in Cana-

dian 2019 Federal Election. We also manually inspect the nodes in the three clusters with

highest cluster-induced network density, and find some suspicious accounts that might

have engaged in Information Operations.
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4.1.1 Data Collection

The dataset comprises of 38,498 tweets from 7,298 distinct Twitter users, collected be-

tween August and October 2019. The tweets were collected using the Twitter Streaming

API, using the following hashtags - #Trudeau, #TrudeauMustGo, #cdnpoli, #TrudeauRe-

sign, #LavScam, #SNCgate, #StandWithTrudeau. We also collected the list of followers

for each of the 7,298 users in our dataset to construct a follower network, resulting in a

total of 474,459 connections. The hashtags are further formulated as a vector of size 3,047

to represent the attributes of each node or user, denoting whether the user used a cer-

tain hashtag in the dataset. We represent the entire data as concatenated adjacency and

attribute matrix as shown in Figure 4.1.

User
Adjacency

Hashtag
Attribute

Tom Jerry Kay #YES #NO

1 1Tom

Jerry

Kay

Tom

Jerry

Kay

0 1

0

0

1 0 0

0 1

1 0

1 1

Tom Jerry

Kay

{ #YES }

{ #YES, #NO }

{ #NO }

follows

fo
llo

w
s

follow
s

fo
llo

w
s

Figure 4.1: Concatenated Adjacency and Attribute Matrix

4.1.2 Hyper-Parameter Tuning

We inject artificial dense sub-block anomalies into our Twitter data in order to tune our

algorithm to perform well for the unsupervised anomaly detection task. With the injected

data, we conduct a random search of the hyperparameter space and identify the best

hyperparameter option by F-1 score, with labels being anomaly or non-anomaly. Then

we use it to identify interesting dense clusters on the real data without dense sub-block
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injection. We show that our method outperforms both baselines across all injected sub-

block densities in Figure 4.2.

Figure 4.2: Synthetic Experiment Performance

Synthetic Data Generation

For adjacency matrix, we inject dense subgraph by injecting random dense graph with

a specified density and size at sub-block indices. For attribute matrix entries, we create

an empirical distribution of hashtag usage indicating how likely a random person from

a sub-block would use certain hashtags, and apply add-k smoothing on this empirical

distribution. Next, we sharpen the distribution by applying an exponential factor to it:

exp(λ ·) where λ controls for how concentrated the transformed distribution is. By sam-

pling a certain number of hashtags from this distribution, we simulate the presence of

Information Operations, where a group of highly connected users tweet a subset of hash-

tags. Finally we inject the bipartite graph with the specified density at these sub-block

and attribute indices. For our experiment, we inject 3 dense sub-blocks of size 500, and
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use the same network density for both adjacency matrix and attribute matrix, from 0.1 to

0.5 with 0.05 interval.

Figure 4.3: Hashtag Fingerprint: Per-cluster relative usage frequency for popular hash-

tags

4.1.3 Results

Using the best hyperparameter option, we create 10 clusters from the real-world data. For

each cluster and its corresponding induced sub-graph of follower network, we generate

hashtag fingerprint, which reflects user attribute information, as well as clustering fin-

gerprint, which reflects key network topology information. We put our focus on 2 of the

densest clusters (#9, #1), and report interesting exploratory findings.

For each cluster, we define hashtag fingerprint as the relative usage frequency of pop-

ular hashtags within cluster. Note that usage here refers to whether a hashtag is used or

not in the dataset for a given user, and frequency refers to the number of users in a cluster

using certain hashtag. A high relative usage frequency corresponds to highly used hash-
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tag in a cluster. Hashtag fingerprints for cluster #9 and #1, and a randomly sampled set

of users are shown in Figure 4.3.

By analyzing the hashtag fingerprint we note that cluster #9 exhibits interesting spikes

on hashtags related to diverse locations: Alberta (#ableg), British Columbia (#bcpoli),

Quebec (#polqc), Toronto (#topoli), Saskatchewan (#skpoli), New Brunswick (#nbpoli),

Manitoba (#mbpoli) and Ottawa (#ottpoli). This is counter-intuitive; we normally assume

people engage with each other locally, but we clearly see multi-regional cluster of users

in close contact with each other.

For cluster #1, the hashtag usage centers around a recently heated political scandal re-

lated to government and corporate corruption (#LavScam), and a few prominant political

parties: the Liberal Party of Canada (#lpc), the Conservative Party of Canada (#cpc), and

the New Democratic Party (#ndp). This reflects the fact that an emergent cluster of users

related to different political parties are talking about the recent scandal.

The hashtag fingerprint for both clusters identified through our algorithm reveals in-

teresting insights that would otherwise be hard to obtain by going through the tweets

manually. On the other hand, the hashtag fingerprint of a random sample is highly cen-

tered around the most popular hashtags and cannot yield much insight into the user

group.

Sample User

We finally manually inspect the Twitter profile page of users in top 3 densest clusters (#8,

#9, #1), and for each cluster, we visualized its cluster-induced subgraph and per-node

HITS authority score. We use darker green gradient to denote nodes with higher HITS

authority score.

Shown in Figure 4.4, we identify one Twitter account highlighted with a dotted red

line that exhibits behaviors suspicious of Information Operations. The suspicious user
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Figure 4.4: Sample Memes used by Suspicious Anomalous User in Cluster #8 and its

Follower Network Location

account was created in August 2017. Since December 2017, the user started consistently

creating and spreading divisive tweets and memes that demote Justin Trudeau and his

administration. A sample of the political memes deployed by this user is shown in Fig-

ure 4.4. Furthermore, this user changed it user handle twice from mid-April to mid-May.

Such high frequency of changing user handles might be related to malicious intent [36].

Both the identified user’s posted content and behavior are suspicious of engaging in In-

formation Operations.

4.2 Linear Projection and Aggregation (SCG)

In this section, we first verify the effectiveness and scalability of SCG (Spotting Coordi-

nated Groups), consisting of linear projection and aggregation. This is done through a set
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of synthetic experiments with builtin ground-truth, which approximate the real-world

problem and enable us to provide a quantitative evaluation. Next, we discuss the obser-

vations provided by applying the method on scraped real-world Twitter data and provide

several pieces of evidence on the effectiveness and interpretability of the it in unveiling

the dynamics of organized groups around the 2019 Canadian federal election. We used

user followership as user connection graph, and hashtag usage as user attribute graph.

Due to time and budget constraints, we focus our analysis on data scraped from Twitter

around this particular event. Incorporating other social media platforms and other events

is part of the future works planned for this study.

4.2.1 Validation on Synthetic Data

Based on observation of our scraped dataset, real-world graphs are large, sparse and have

high-dimensional node attributes. To approximate real-world data that has ground truths

for organized groups, we generate synthetic attributed graphs with similar characteristics

but with injected organized groups that serve as the ground truth. We compare different

methods on how well they are able to recover these injected organized groups.

Parameter Settings: We generate eight organized groups with 20 nodes and 20 attributes

on differently sized graphs (2,000 to 30,000 nodes/attributes) to test the effectiveness and

scalability of our method. This gradually decreases the ratio of coordinated nodes from

8% to 0.5% of the original graph size, thus making the detection progressively more chal-

lenging.

Baselines: Literature on unsupervised detection of organized groups is relatively sparse,

thus we carefully select unsupervised baselines from related literature: Infomap [75]

and Louvain [8] from community detection; Fraudar [34] and pcv [64] from dense sub-

graph or tiny cluster detection; node2vec [28], attri2vec [103] and unsupervised Graph-
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SAGE [30] from network embedding. pcv baseline only considers content, the Infomap,

Louvain, Fraudar and node2vec only consider connections, and the other baselines incor-

porate both content and connections. For a subset of baselines (node2vec, graphSAGE,

attri2vec), we only run them on graphs with size up to 18,000 nodes due to time and

hardware constraints.

Evaluation: To evaluate partitions (how well organized groups are separated from the

background and each other), we use Quality score used in [64], given k ground-truth

clusters U1...k and s inferred clusters Ũ1...s, and J(·, ·) as the Jaccard similarity between two

sets, the Quality score is:

Q =
1

k

k∑
i=1

max
j=1,...,s

J(Ui, Ũj) ∈ [0, 1] (4.1)

To evaluate the ability to classify nodes as belonging to a organized group or not, we

use the F1 score. We generate two instances of synthetic attributed graph for each size,

and do two runs on each instance and report the mean performance across all four runs.

Performance Analysis: Figure 4.5 illustrates that principal components of our method

embeddings for normal versus organized nodes are better separated compared to the

other embeddings methods. This is an example embedding on synthetic graph of size

12,000. Table 4.1 reports the full results for all the baselines and settings. We can see that

our method outperforms baselines significantly, especially when the organized groups

only occupy a small fraction of the graph (0.5%). This indicates that the general com-

munity detection or clustering methods are not appropriate for this setting as they are

designed with different assumptions, e.g. balanced clusters. The pcv baseline which is

specifically designed for detecting tiny clusters fails as it is not able to incorporate the

connections and only operates on one mode of the data, user contents. Furthermore, as

shown in Figure 4.6, the runtime of our method is more than 10,000 times faster than
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some baseline. We can show that our method scales linearly with the number of nonzero

entries in A and X given some assumptions.
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Figure 4.5: our method scg provides better separation for normal versus coordinated

nodes.

4.2.2 Results on Real-World Data

Data Collection: Since April 2019, we started collecting tweets related to the 2019 Cana-

dian federal election through the Twitter streaming API filtered by a seed hashtag set

based on significant political events in Canada (list of the hashtags used and details are

provided in the supplementary materials). We collected sampled tweets between April

Figure 4.6: our method is significantly faster than most baselines: more than 10,000 times

faster than node2vec when graph size is 18,000. The inset plot shows the same compari-

son focused on the scalable algorithms.
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and October 2019 and developed custom scraping pipeline to scrape all followers for

Twitter users who used these hashtags. For each user, we tracked all hashtags usage in

his or her sampled tweets and created an attribute vector where each entry is the fre-

quency of using a specific hashtag. For cross validation, we also tracked whether users

been suspended between April and October, and collected their Botometer [17] score from

a commonly used API. This API measures the extent to which a Twitter account exhibits

similarity to the known characteristics of social bots based on user-generated meta-data,

activities, and content, without structural information about his or her follower network.

For more details, please refer to the supplementary materials.

Data Representation and Preprocessing: We filter out users who do not have any fol-

lowers or followees, and obtain a directed attributed graph G that has n = 69, 709 nodes,

|E| = 3, 480, 145 edges and d = 1, 329, 385 unique hashtags as node attributes. Let J de-

note set of all hashtags in our data (|J | = d), and I denote the set of all users (|I| = n).

We create adjacency matrix A ∈ {0, 1}n×n from user followership and attribute matrix

X ∈ Nn×d from user hashtag usage. In the following sections, we consistently use n to

denote the number of users and d the number of attributes. We apply doubly-normalized

TF-IDF to give more significance to uncommon hashtags, because entries of X are highly

skewed:

X∗ij =
n∑

i′∈I X
b
i′j

0.5 + 0.5Xij

maxj′∈J Xij′
(4.2)

where Xb = X > 0 is a binarized attribute matrix.

Results Overview A total of 13 organized groups are detected by our method in our

collected data. We visualize them in Figure 4.7, which show a clear block structure for

both A and X on indices induced by these groups. This indicates the ability for our

method to discover tightly connected user groups, each engaging with similar sets of

hashtags.
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Figure 4.7: our method finds organized groups of users exhibiting block-diagonal struc-

ture in both the adjacency (left) and attribute matrix (right) on the twitter data.

Figure 4.8: our method puts users of the same political creed (related group creeds) close

together. Here nodes are the individual users, size of each node corresponds to its indi-

vidual engagement in the Canadian politics. Nodes are colored the same if they belong

to the same cluster.

Comparing with Baselines We compare our method with Fraudar and pcv, which are

the only baseline methods that scale to our data size given our time and hardware con-

straints. Since no ground truth of organized groups is available for real-world data, we

compare the suspension index and bot influence index of detected organized groups as

a proxy; which are defined below. Given s ∈ {0, 1}n to where si = 1 if user i has been

suspended between April and October, and 0 otherwise, we define Suspension Index fS of

a set of user accounts Ic to measure the concentration of suspended accounts in this set
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Suspension Index Bot Influence Index
Fraudar 1.297 1.645

SCG 4.472 1.905
pcv 1.625 1.890

Random 1 0.918

Table 4.2: our method detects users in organized groups that have the highest suspension

index and bot influence index.

relative to the background, :

fS(Ic) =

∑
i∈Ic si/|Ic|∑
i∈I si/|I|

(4.3)

Given b ∈ Rn containing collected Botometer scores and f ∈ Zn containing number of

followers for users in our dataset, we define Bot Influence Index fB of a set of user accounts

Ic to measure their average level of estimated bot influence, :

fB(Ic) =

∑
i∈Ic bi log(1 + fi)

|Ic|
(4.4)

As shown in Table 4.2, all methods perform better than uniformly sampling a set of

users to be organized, but our method is the clear winner. It detected organized nodes

that are over four times likely to be suspended than a random sample and has the highest

bot influence index, which is directly related to our definition of organized groups - set

of users that boost their influence in an inauthentic fashion. Although both metrics are

not designed from ground-truth knowledge of existing organized groups, they show that

our method finds interesting groups for further study, some of which we investigated

in Figure 4.11. Note in the figure that such high concentration of accounts that contain

suspended users, posting politically one-sided (anti-Trudeau), and potentially offensive

content right before the Canadian election in 2019 is intriguing.

Discussions and Main Observations Figure 4.8 visualizes our method node embed-

dings for users in our dataset using UMAP [58]. The sizes of the points in the figure corre-
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spond to their individual engagement in discussions around Canadian politics (Equation

4.6). Background nodes, those that reside in the largest cluster are plotted as grey with a

lighter shade. Overlayed on each colored cluster of users is the group creed created by

our method.

More specifically we define the significance of hashtag j ∈ J denoted by fS , as the

mean doubly-normalized TF-IDF value across all users, :

fS(j) =

∑
i∈I X

∗
ij

n
(4.5)

We set 1,000 hashtags with the highest significance be the set of Significant Hashtags JS .

The overlap of this set and our seed hashtag set (and their variants by changing the case

of letters) gives the set of Significant Canadian Hashtags, which we denote by JC . We also

define Individual Engagement - each user’s engagement with Canadian politics, denoted

by fe, as the ratio of (at-least-once) usage of hashtags in JC by that user, :

∀i ∈ I : fe(i) =

∑
j∈JC X

b
ij

|JC |
(4.6)

We observe that our method embeds groups with similar group creeds close to each other,

thus forming an informative map of Twitter: top middle occupied by American conservative

groups indicated by #KAG; the center by international groups signified by #Chinese, #Ira-

nian, #Paris; top right by pro-Scheer (#Scheer4PM) and anti-Trudeau (#TrudeauMustGo)

groups; the middle right by anti-Scheer (#ScheerWeakness) groups; the middle left by

climate activist groups, evidenced by #climate and #AmazonRainforest.

The adjacency matrix with block-diagonal structure induced by the detected orga-

nized groups is visualized in Figure 4.9, where we observe siloed groups as well as in-

teracting ones, which are likely American conservative groups. Another observation is

that the potential American conservative group signatured by #WWG1WGA (Where We
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Figure 4.9: Our method detects 13 organized groups in the 2019 Canadian Federal Elec-

tion including multiple #MAGA groups.

Go One, We Go All) which contains suspended users interacts with two smaller groups

with the hashtag signatures of #LavScam and #Scheer4PM, which are likely Canadian

anti-Trudeau and pro-Scheer groups. This interaction could be considered a potential foreign

involvement on the Canadian 2019 Election, which is discovered independently by other re-

searchers after our study [73,74]. Studying the impact/influence of these groups is one of

our planned future studies.

Figure 4.10 illustrates the detected organized groups, plotted as red, and non-organized

clusters that are not the background are plotted as colored points. The sizes of these points

are proportional to their cluster engagement (Equation 4.7). We can see that the organized
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Figure 4.10: Our method summarizes Twitter dynamics of 69,709 accounts around

2019 Canadian Election, providing a bird’s eye view of how detected organized groups

(marked red) engage in the overall discourse.

groups are highly engaged with Canadian politics, evidenced by their node sizes, and are close

to each other in the embedding space. Specifically, we define Cluster Engagement with

Canadian politics for a set of users, Ic, as their scaled average individual engagements

with Canadian politics, :

fE(Ic) = log(|Ic|)
∑

i∈Ic fe(i)

|Ic|
(4.7)

We have observed that within these organized groups, the empirical likelihood of

being suspended between April and October is over four times more likely compared to a

random sample. Many users in these organized groups are highly similar to those sus-

pended accounts. We observe that the content posted by these groups are mostly offensive.

In Figure 4.11 for example, in the large connected component in one of our detected or-

ganized group, we identified several accounts (colored black) that generated politically

one-sided and potentially offensive content similar to suspended accounts (colored red):

some sampled content from these accounts are appended to the figure. While our method
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Figure 4.11: Verification with external indicators: our method detects an intriguing orga-

nized group: 3 suspended users and multiple other unsuspended users simultaneously

tweet politically one-sided (anti-Trudeau) and potentially offensive content.

spot these users who are behaving similarly to the suspended users, these accounts were

still active at the time of our analysis.

Looking at the the group creed (signature hashtag) for each group on the Twitter maps

in Figure 4.8 and 4.10 discovered by our method, we get a concise characterization of the

results and explains the complex structure through which these groups are engaged in

Canadian politics. Furthermore, group creeds for organized groups highly overlap with

clusters that exhibit the highest ratio of suspended users, including #Iranian, #KAG2020,

#notAbot, #TrudeauMustGo, and #Scheer4PM. This makes our method a useful tool for
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spotting suspicious messages on social platforms that could have been manipulated by

organized groups. We also verify that two of these hashtags discovered by our method (#no-

tAbot, #TrudeauMustGo) are later confirmed to be linked to misinformation campaigns [59, 65].

These two hashtags have so far been the primarily used hashtags against the 2019 Cana-

dian election, and both have been detected before mainstream media coverage. This

makes our method a powerful tool to assist in detecting trending misinformation cam-

paigns before they make a significant mark.

Our method quantifies the strength of the connection between all pairs of clusters, and

thus enables the study of their potential influence. In Figure 4.10, the link between two

clusters is plotted with line width proportional to their interaction; those that are con-

nected to the detected 13 organized groups are colored red, and other links are plotted as

green. We observe from Figure 4.10 that two sets of clusters have observable interactions

(manifested as lines among points) among them. They are respectively represented by

two sets of group creeds: (1) #KAG (Keep America Great), $AmericaFirst, #WWG1WGA

(Where We Go One, We Go All) and their variants which are related to American con-

servative politics; and (2) #Scheer4PM, #TrudeauMustGo, #LavScam and their variants

which are related to Canadian election politics. Future studies will focus on the expand-

ing this group-level study of detected organized clusters.

A less concerning but still interesting observation is that our method identifies one

out of four groups signatured by #Iranian, where two out of the four groups exhibit the

highest suspension index. However, no significant connections are going outside of these

three groups to other parts of the graph. Inspection of the users’ tweets in these clusters

reveals that the accounts in these groups are primarily concerned with immigration is-

sues and are mostly created in February 2019, right before the passing of Bill 21, a Bill in

Quebec that sets out a framework for values test for skilled workers, which impacts immi-
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gration. The observed strong connection within a set of groups but weak or no connection

to other parts of a graph could be a sign of a failed amplifying strategy.

4.3 Coupled Tensor Factorization

In this section, we evaluate the performance of our method. The main objective for syn-

thetic experiments is to understand how well our method can recover ground truth parti-

tions on the primary typed entity set (users) when varying the contrast with background,

i.e. p and q. As the data size is small in synthetic case, we use nonlinear least squares

detailed in [86] instead of gradient-based approach for optimization. We use popular

cluster metrics: normalized mutual information for evaluation. We are interested in how

our method performs against baselines that do not utilize all available information jointly.

We then move on to real-world Twitter dataset related to 2019 Canadian federal election,

and then quantify and qualitatively explore the political creed, engagement and influence

of identified organized groups.

Algorithms. For synthetic experiments, our method was compared with the pcv algo-

rithm by Neumann [64], which uses only metadata matrix; SCG algorithm by Wang, et

al. [98], which uses both followership matrix and metadata matrix; heuristic which un-

folds tensor on user axis and then apply pcv, which only uses retweet tensor. We use the

same rank R = 5 of decomposition to compare all algorithms.

4.3.1 Validation on Synthetic Data

We generate synthetic coupled multidimensional array block model as defined in Equa-

tion ??, and simulates collected Twitter data, thus having the same typed entity sets and

couplings, with the primary type as user. To focus on parameters of interest, we fix the

cardinality of each typed entity set (700 users, 200 hashtags, 200 metadata items, 200
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Figure 4.12: Our method compares favorably against baselines across different p, and is

able to recover ground-truth partition in the presence of dominant noise.

timestamps), background entry probability q = 0.005, rank of decomposition R = 5, sizes

of clusters for primary typed set (20, 20, 30, 40, 30 and the rest) and vary cluster probabil-

ity p. Whenever needed, the algorithm is provided with k, p, q.

We analyze the sensitivity of the algorithms in regards to background noise. We sweep

p = .01, .05, .1, .2, .3, .4, .5 and fix q = 0.005. The result is presented in Figure 4.12. our

method performs competitively across different choices of p, thus robust to background

noise. This is likely due to the fact that it utilizes all information sources jointly.

4.3.2 Results on Real-World Data

As the data size is prohibitive, we use stochastic gradient descent for optimizing our

method objective. We then apply popular density-based clustering algorithm HDBSCAN

[10] to the user embedding to obtain clusters. Next we apply our method to rank orga-

nized clusters and visualize top few clusters using our method.
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Data Our Twitter data is from 2019/06/01 to 2019/09/25 discretized by day, tracking

activities of users engaged with Canadian 2019 election politics - who tweeted at least

once one of hashtags in Table 4.3 in this time frame. We scrape and construct the follow-

ership network of these users where each nonzero entry signifies that the user at column

index follows the user at row index. We also create retweet and hashtag tensor that en-

code temporal usage of hashtags and retweet. Finally we extract hashtags that are used

inside user self-description and users’ self-revealed location as metadata items, where a

nonzero means user’s self description contains a certain hashtag or location. In the end,

|U| = 69709, |M| = 27930, |T | = 117, |H| = 1152.

#cdnpoli #canpoli
#cpc #SenCA
#cdnleft #pttory
#ptbloc #gpc
#crtc #goc
#BlackFaceTrudeau #TrudeauMustResign
#BlackFace #BrownFace
#ScheerLies #elexn43
#NotasAdvertised #TrudeauTheHyprocrite
#ptlib #lpc
#ndp #lavscam
#ptndp #ptgreen
#cdnsen #cpac
#CdesCom #TrudeauBlackFace
#BrownFaceTrudeau #TrudeauWorstPM
#Scheer #Andysresume
#elxn43 #elxn19

Table 4.3: Hashtags used for crawling the data which are related to Canadian politics and

the 2019 federal election.

Method We sequentially apply our method to obtain Figure 4.15, which provides an

overview of the information landscape regarding 2019 Canadian Federal election. For

our method, we select embedding dimension to be 5. Instead of random initialization, we

initialized some of the factor matrices as SVD of flattened data matrices (user factor from

55



Figure 4.13: Cluster size distribution induced by MiniBatch KMeans clustering on our

method user embedding

follower matrix, metadata item factor from metadata matrix, hashtag factor from flattened

hashtag tensor). This has shown to speed up the training significantly. The positive and

negative sample sizes for both training and evaluation are set to 1,000. We train our

method until adjusted loss calculated from the fixed evaluation sample of positive and

negative entries drops close to 0. This takes less than 1 hour on a normal laptop, therefore

a significant improvement compared to methods in [86] since it cannot even run with

non-stochastic optimizer due to prohibitive use of memory. We use the optimized factor

matrix for user as user embedding, and apply MiniBatch KMeans clustering [78] to obtain

the partition of users. We use the classical elbow method to obtain the number of clusters

to use - 400 clusters. Figure 4.13 shows the cluster size distribution of obtained partition,

where many tiny clusters are identified on the scale logarithmic to the total size of users.

Next we apply our method to complete Figure 4.15. Note that in the visualization, we

avoid showing generic hashtag by filtering out any word with ”poli” in it. Less heuristic

approach can be used by modifying the ranking stage of our method, which we leave for

future work.

Analysis We first explore results summarized in Figure 4.15 by comparing with weak

labels: suspension records, whether user has been suspended in the past 6 months; and
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Botometer scores [17], an API that applies natural language processing to gauge the like-

lihood of a Twitter user exhibiting bot behavior. In the top 13 organized clusters which

comprise 641 users, 13 have record of being suspended at least once in the past 6 months,

which is 4 times more likely than a random sample of users (calculated from total of 429

suspended in the pool of 69,709 users). In these groups, the average Botometer score of

0.286 is over 80% higher than the average of a random sample of users (population av-

erage is 0.156). Next, from Figure 4.15, we observe that the majority of top 13 organized

groups are signified by the hashtag #TrudeauMustGo, and more intriguingly 2 groups

signified by the hastag #MAGA are nested within multiple #TrudeauMustGo groups.

Looking into the metadata of these #TrudeauMustGo groups, we found that the major-

ity of them contain users that explicitly use #MAGA hashtag in their self description. The

word cloud for hashtags in dense blocks identified using our method for top 13 organized

groups and all groups are shown in Figure 4.14: #TrudeauMustGo and #blackface espe-

cially stand out against the background. More detailed group-level analysis is left for

future work that pinpoints connection between #MAGA and #TrudeauMustGo groups

and their influence over the network.

(a) Top 13 organized groups (b) All groups

Figure 4.14: Word cloud for top 13 organized groups vs. all groups
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Figure 4.15: our method embeds users onto Euclidean space, marks top 13 organized

clusters as red, and assigns descriptive hashtag to top 13 organized as well as randomly

sampled clusters
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Chapter 5

Conclusion

We have proposed the Embed-Cluster-Rank framework to help detect organized informa-

tion campaign on social media. We have presented three instantiations of this framework:

joint autoencoder, linear projection and aggregation, and tensor decomposition. Our em-

pirical results on synthetic data verified our methods’ ability to pick out dense subgraphs

from large heterogeneous networks, which are likely to engage in coordinated activities.

Our application of these methods on real-world Twitter data collected during the 2019

Canadian Federal Election revealed interesting and important results on the information

landscape of Twitter regarding the election politics, as well as potential interference of

foreign groups on the election.

Our framework is modular, interpretable, scalable and general. Each component of

our three-stage approach can be upgraded with improving state-of-the-art, for example,

the embedding phase could be extended to use deep graph neural network, the cluster-

ing phase could incorporate end-to-end deep clustering, and the ranking phase could use

human-in-the-loop feedback. Because the framework learns low-dimensional represen-

tation for social media users as well as other entities in the data, tools such as interactive

visualization can be developed to help experts understand what the model learns and

whether there is bias in the model’s results. All our methods scale linearly or sub-linearly
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to the data size in runtime and memory usage, and are able to handle terabyte-scale social

media data. Lastly, our framework handles data beyond Twitter, and can in principle be

applied to any social media data where both the content and connections need to be taken

into regard to understand the information landscape.

5.1 Directions for Future Work

The Embed-Cluster-Rank framework presented in this work facilitates detection of sus-

picious groups of users likely engaging in coordinated information campaigns on social

media. However it is indispensable that human experts verify the user groups returned

by our methods and check whether they indeed engage in spreading misinformation in

a strategic manner. In some cases, it could be that the user groups is simply an interest

group sharing content among themselves. Therefore, it is a promising direction to de-

sign applied natural language processing tools that can help human experts verify the

truthfulness of information highly shared within or propagated from a user group. This

could entail re-purposing open-domain question answering systems such as ORQA to

achieve open-domain fact verification [50]. It is also an interesting direction to apply neu-

ral multi-hop reasoning to supply human experts with explicit reasons why certain facts

are not true on social media [29].

On the other hand, our three-stage pipeline can be improved. For example, the em-

bedding and clustering phase could be merged to enable end-to-end clustering using

techniques such as deep graph neural network [93]. Furthermore, the truly end-to-end

training would involve merging all three stages - embedding, clustering and ranking into

a differential pipeline, where feedback from humans experts can directly affect all com-

ponents of the pipeline. An example of such attempt is a deep reinforcement learning

system developed at Facebook AI Research - Reinforced Integrity Optimizer (RIO) that

catches hate speech [21].
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In conclusion, our algorithmic contribution and practical real-world findings advance

the technical toolkit we have to fight against one of the most pressing problem of 21st cen-

tury - online misinformation. Our proposal of a simple three-stage Embed-Cluster-Rank

framework can provide a foundation for further development of tools against online mis-

information. We believe that with the rapid advance of Artificial Intelligence technolo-

gies, such effort will keep the bad actors away and bring back trust, transparency and

understanding to online communities.

61



Bibliography

[1] ADEWOLE, K. S., ANUAR, N. B., KAMSIN, A., VARATHAN, K. D., AND RAZAK,

S. A. Malicious accounts: dark of the social networks. Journal of Network and Com-

puter Applications 79 (2017), 41–67.

[2] AKOGLU, L., MCGLOHON, M., AND FALOUTSOS, C. Oddball: Spotting anoma-

lies in weighted graphs. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining (2010), Springer, pp. 410–421.

[3] ALBERTS, D., AND HAYNES, R. The realm of information dominance: Beyond

information war. In First International Symposium on Command and Control Research

and Technology (1995).

[4] AYRES, R., BULLOCK, P., OKELLO, F., HARDING, B., PERDIGAO, A., AYRES, M. R.,

BULLOCK, M. P., ERHILI, B., HARDING, M. B., AND PERDIGAO, M. A. Information

warfare: Planning the campaign.

[5] BADAWY, A., FERRARA, E., AND LERMAN, K. Analyzing the digital traces of

political manipulation: The 2016 russian interference twitter campaign. In 2018

IEEE/ACM International Conference on Advances in Social Networks Analysis and Min-

ing (ASONAM) (2018), IEEE, pp. 258–265.

62



[6] BANERJEE, A., BASU, S., AND MERUGU, S. Multi-way clustering on relation

graphs. In Proceedings of the 2007 SIAM international conference on data mining (2007),

SIAM, pp. 145–156.

[7] BARTHEL, M., SHEARER, E., GOTTFRIED, J., AND MITCHELL, A. The evolving role

of news on twitter and facebook. Pew Research Center 14 (2015), 1–18.

[8] BLONDEL, V. D., GUILLAUME, J.-L., LAMBIOTTE, R., AND LEFEBVRE, E. Fast un-

folding of communities in large networks. Journal of statistical mechanics: theory and

experiment 2008, 10 (2008), P10008.

[9] BOVET, A., AND MAKSE, H. A. Influence of fake news in twitter during the 2016

us presidential election. Nature communications 10, 1 (2019), 7.

[10] CAMPELLO, R. J., MOULAVI, D., AND SANDER, J. Density-based clustering based

on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery

and data mining (2013), Springer, pp. 160–172.

[11] CHARIKAR, M. Greedy approximation algorithms for finding dense components

in a graph. In International Workshop on Approximation Algorithms for Combinatorial

Optimization (2000), Springer, pp. 84–95.

[12] CHAU, D. H., PANDIT, S., AND FALOUTSOS, C. Detecting fraudulent personalities

in networks of online auctioneers. In European Conference on Principles of Data Mining

and Knowledge Discovery (2006), Springer, pp. 103–114.

[13] CHAVOSHI, N., HAMOONI, H., AND MUEEN, A. Identifying correlated bots in

twitter. In International Conference on Social Informatics (2016), Springer, pp. 14–21.

[14] CHEN, X., SIN, S.-C. J., THENG, Y.-L., AND LEE, C. S. Why students share mis-

information on social media: Motivation, gender, and study-level differences. The

journal of academic librarianship 41, 5 (2015), 583–592.

63



[15] CHEN, Z., LI, X., AND BRUNA, J. Supervised community detection with line graph

neural networks. arXiv preprint arXiv:1705.08415 (2017).

[16] CHENG, A., AND DICKINSON, P. Using scan-statistical correlations for network

change analysis. In Pacific-Asia Conference on Knowledge Discovery and Data Mining

(2013), Springer, pp. 1–13.

[17] DAVIS, C. A., VAROL, O., FERRARA, E., FLAMMINI, A., AND MENCZER, F.

Botornot: A system to evaluate social bots. In Proceedings of the 25th international

conference companion on world wide web (2016), pp. 273–274.

[18] DESHPANDE, Y., SEN, S., MONTANARI, A., AND MOSSEL, E. Contextual stochastic

block models. In Advances in Neural Information Processing Systems (2018), pp. 8581–

8593.

[19] DING, K., LI, J., BHANUSHALI, R., AND LIU, H. Deep anomaly detection on at-

tributed networks.

[20] ESTER, M., KRIEGEL, H.-P., SANDER, J., XU, X., ET AL. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd (1996), vol. 96,

pp. 226–231.

[21] FAIR. Training AI to detect hate speech in the real world, 2020 (accessed December 15,

2020).

[22] FIRE, M., KATZ, G., AND ELOVICI, Y. Strangers intrusion detection-detecting

spammers and fake profiles in social networks based on topology anomalies. Hu-

man Journal 1, 1 (2012), 26–39.

[23] FLORES-SAVIAGA, C. I., KEEGAN, B. C., AND SAVAGE, S. Mobilizing the trump

train: Understanding collective action in a political trolling community. In Twelfth

International AAAI Conference on Web and Social Media (2018).

64



[24] FORTUNATO, S., AND BARTHELEMY, M. Resolution limit in community detection.

Proceedings of the national academy of sciences 104, 1 (2007), 36–41.

[25] GLEICHER, N. How We Respond to Inauthentic Behavior on Our Platforms: Policy Up-

date, 2019 (accessed January 29, 2020).

[26] GLEICHER, N. A simple algorithm for clustering mixtures of discrete distributions, ac-

cessed February 29, 2020.

[27] GOVAERT, G., AND NADIF, M. Clustering with block mixture models. Pattern

Recognition 36, 2 (2003), 463–473.

[28] GROVER, A., AND LESKOVEC, J. node2vec: Scalable feature learning for networks.

In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discov-

ery and data mining (2016), ACM, pp. 855–864.

[29] HAMILTON, W., BAJAJ, P., ZITNIK, M., JURAFSKY, D., AND LESKOVEC, J. Embed-

ding logical queries on knowledge graphs. Advances in Neural Information Processing

Systems 31 (2018), 2026–2037.

[30] HAMILTON, W., YING, Z., AND LESKOVEC, J. Inductive representation learning on

large graphs. In Advances in Neural Information Processing Systems (2017), pp. 1024–

1034.

[31] HAWKINS, D. M. Identification of outliers, vol. 11. Springer, 1980.

[32] HOFSTETTER, C. R., BARKER, D., SMITH, J. T., ZARI, G. M., AND INGRASSIA, T. A.

Information, misinformation, and political talk radio. Political Research Quarterly 52,

2 (1999), 353–369.

[33] HONG, D., KOLDA, T. G., AND DUERSCH, J. A. Generalized canonical polyadic

tensor decomposition. arXiv preprint arXiv:1808.07452 (2018).

65



[34] HOOI, B., SONG, H. A., BEUTEL, A., SHAH, N., SHIN, K., AND FALOUTSOS, C.

FRAUDAR: bounding graph fraud in the face of camouflage. In KDD (2016), ACM,

pp. 895–904.

[35] HOOI, B., SONG, H. A., BEUTEL, A., SHAH, N., SHIN, K., AND FALOUTSOS, C.

Fraudar: Bounding graph fraud in the face of camouflage. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(2016), ACM, pp. 895–904.

[36] JAIN, P., AND KUMARAGURU, P. On the dynamics of username changing behavior

on twitter. In Proceedings of the 3rd IKDD Conference on Data Science, 2016 (New York,

NY, USA, 2016), CODS ’16, ACM, pp. 6:1–6:6.

[37] JIA, C., LI, Y., CARSON, M. B., WANG, X., AND YU, J. Node attribute-enhanced

community detection in complex networks. Scientific reports 7, 1 (2017), 2626.

[38] KELLEY, S., GOLDBERG, M., MAGDON-ISMAIL, M., MERTSALOV, K., AND WAL-

LACE, A. Defining and discovering communities in social networks. In Handbook of

Optimization in Complex Networks. Springer, 2012, pp. 139–168.

[39] KIERS, H. A. A three–step algorithm for candecomp/parafac analysis of large data

sets with multicollinearity. Journal of Chemometrics: A Journal of the Chemometrics

Society 12, 3 (1998), 155–171.

[40] KIM, Y. M., HSU, J., NEIMAN, D., KOU, C., BANKSTON, L., KIM, S. Y., HEINRICH,

R., BARAGWANATH, R., AND RASKUTTI, G. The stealth media? groups and targets

behind divisive issue campaigns on facebook. Political Communication 35, 4 (2018),

515–541.

[41] KIPF, T. N., AND WELLING, M. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308 (2016).

66



[42] KOLDA, T. G., AND BADER, B. W. Tensor decompositions and applications. SIAM

review 51, 3 (2009), 455–500.

[43] KOLDA, T. G., AND HONG, D. Stochastic gradients for large-scale tensor decom-

position. arXiv preprint arXiv:1906.01687 (2019).

[44] KOLDA, T. G., AND HONG, D. Stochastic gradients for large-scale tensor decom-

position. SIAM Journal on Mathematics of Data Science 2, 4 (2020), 1066–1095.

[45] KROONENBERG, P. M. Three-mode principal component analysis: Theory and applica-

tions, vol. 2. DSWO press, 1983.

[46] KRUSKAL, J. B. Three-way arrays: rank and uniqueness of trilinear decomposi-

tions, with application to arithmetic complexity and statistics. Linear algebra and its

applications 18, 2 (1977), 95–138.

[47] KUMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., AND TOMKINS, A. Trawling the

web for emerging cyber-communities. Computer networks 31, 11-16 (1999), 1481–

1493.

[48] KUMAR, S., CHENG, J., LESKOVEC, J., AND SUBRAHMANIAN, V. An army of me:

Sockpuppets in online discussion communities. In Proceedings of the 26th Interna-

tional Conference on World Wide Web (2017), International World Wide Web Confer-

ences Steering Committee, pp. 857–866.

[49] LANCICHINETTI, A., AND FORTUNATO, S. Limits of modularity maximization in

community detection. Physical review E 84, 6 (2011), 066122.

[50] LEE, K., CHANG, M.-W., AND TOUTANOVA, K. Latent retrieval for weakly super-

vised open domain question answering. arXiv preprint arXiv:1906.00300 (2019).

67



[51] LEE, V. E., RUAN, N., JIN, R., AND AGGARWAL, C. A survey of algorithms for

dense subgraph discovery. In Managing and Mining Graph Data. Springer, 2010.

[52] LIM, S. H., CHEN, Y., AND XU, H. A convex optimization framework for bi-

clustering. In International Conference on Machine Learning (2015), pp. 1679–1688.

[53] LIU, L., XU, L., WANGY, Z., AND CHEN, E. Community detection based on struc-

ture and content: A content propagation perspective. In 2015 IEEE International

Conference on Data Mining (2015), IEEE, pp. 271–280.

[54] LORD, C. Political Warfare and Psychological Operations: Rethinking the US Approach.

DIANE Publishing, 1989.

[55] MALM, A., AND BICHLER, G. Networks of collaborating criminals: Assessing the

structural vulnerability of drug markets. Journal of Research in Crime and Delinquency

48, 2 (2011), 271–297.

[56] MARCELLINO, W., SMITH, M. L., PAUL, C., AND SKRABALA, L. Monitoring social

media. Lessons for Future Department of Defense Social Media Analysis in Support of

Information Operations, Rand, Santa Monica (2017).

[57] MARWICK, A., AND LEWIS, R. Media manipulation and disinformation online.

New York: Data & Society Research Institute (2017).

[58] MCINNES, L., HEALY, J., AND MELVILLE, J. Umap: Uniform manifold approxima-

tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).

[59] MCINTOSH, E. A fake justin trudeau sex scandal went viral. canada’s election-

integrity law can’t stop it. News, Politics, Canada’s National Observer.

[60] MESNARDS, N. G. D., AND ZAMAN, T. Detecting influence campaigns in social

networks using the ising model. arXiv preprint arXiv:1805.10244 (2018).

68



[61] MISKIMMON, A., O’LOUGHLIN, B., AND ROSELLE, L. Strategic narratives: Commu-

nication power and the new world order. Routledge, 2014.

[62] MITCHELL, A., GOTTFRIED, J., KILEY, J., AND MATSA, K. E. Political polarization

and media habits. Pew Research Center (Oct 2014).

[63] MUELLER, R. S., AND CAT, M. W. A. Report on the investigation into Russian inter-

ference in the 2016 presidential election, vol. 1. US Department of Justice Washington,

DC, 2019.

[64] NEUMANN, S. Bipartite stochastic block models with tiny clusters. In Advances

in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018,

pp. 3867–3877.

[65] ORR, C. A new wave of disinformation emerges with anti-trudeau hashtag. Election

Integrity Reporting Project, Canada’s National Observer.

[66] OSELEDETS, I. V. Tensor-train decomposition. SIAM Journal on Scientific Computing

33, 5 (2011), 2295–2317.

[67] PALEN, L., AND LIU, S. B. Citizen communications in crisis: anticipating a future of

ict-supported public participation. In Proceedings of the SIGCHI conference on Human

factors in computing systems (2007), ACM, pp. 727–736.

[68] PANDIT, S., CHAU, D. H., WANG, S., FALOUTSOS, C., AND FALOUTSOS, C. Net-

probe: a fast and scalable system for fraud detection in online auction networks.

In Proceedings of the 16th international conference on World Wide Web (2007), ACM,

pp. 201–210.

[69] POLICY, T. P. Update on twitter’s review of the 2016 us election. Retrieved April 15

(2018), 2018.

69



[70] PRAKASH, B. A., SRIDHARAN, A., SESHADRI, M., MACHIRAJU, S., AND FALOUT-

SOS, C. Eigenspokes: Surprising patterns and scalable community chipping in large

graphs. In PAKDD (2) (2010), vol. 6119 of Lecture Notes in Computer Science, Springer,

pp. 435–448.

[71] RACHEL SANDLER, B. I. Twitter CEO Jack Dorsey reportedly shared at least 17 tweets

from a Russian troll, 2018 (accessed June 8, 2020).

[72] REGNERI, M. Finding all cliques of an undirected graph. In Seminar current trends

in IE WS jun (2007).

[73] RHEAULT, L., AND MUSULAN, A. Investigating the role of social bots during the

2019 canadian election. Available at SSRN 3547763 (2020).

[74] ROBERTO ROCHA, C. N. Researchers found evidence of Twitter troll activity in the last

week of the federal election, 2019 (accessed June 8, 2020).

[75] ROSVALL, M., AND BERGSTROM, C. T. Maps of random walks on complex net-

works reveal community structure. Proceedings of the National Academy of Sciences

105, 4 (2008), 1118–1123.

[76] ROTH, Y. Information operations on Twitter: principles, process, and disclosure, 2019

(accessed January 29, 2020).

[77] SAVAGE, D., ZHANG, X., YU, X., CHOU, P., AND WANG, Q. Anomaly detection in

online social networks. Social Networks 39 (2014), 62–70.

[78] SCULLEY, D. Web-scale k-means clustering. In Proceedings of the 19th international

conference on World wide web (2010), pp. 1177–1178.

70



[79] SHETTY, J., AND ADIBI, J. Discovering important nodes through graph entropy the

case of enron email database. In Proceedings of the 3rd international workshop on Link

discovery (2005), ACM, pp. 74–81.

[80] SHIN, K., ELIASSI-RAD, T., AND FALOUTSOS, C. Corescope: graph mining using k-

core analysis—patterns, anomalies and algorithms. In 2016 IEEE 16th International

Conference on Data Mining (ICDM) (2016), IEEE, pp. 469–478.

[81] SHIN, K., HOOI, B., AND FALOUTSOS, C. M-zoom: Fast dense-block detection in

tensors with quality guarantees. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases (2016), Springer, pp. 264–280.

[82] SHIN, K., HOOI, B., KIM, J., AND FALOUTSOS, C. D-cube: Dense-block detection

in terabyte-scale tensors. In Proceedings of the Tenth ACM International Conference on

Web Search and Data Mining (2017), ACM, pp. 681–689.

[83] SHIN, K., HOOI, B., KIM, J., AND FALOUTSOS, C. Densealert: Incremental dense-

subtensor detection in tensor streams. In Proceedings of the 23rd ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining (2017), pp. 1057–1066.

[84] SHU, K., CUI, L., WANG, S., LEE, D., AND LIU, H. defend: Explainable fake

news detection. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (2019), pp. 395–405.

[85] SHU, K., SLIVA, A., WANG, S., TANG, J., AND LIU, H. Fake news detection on

social media: A data mining perspective. ACM SIGKDD Explorations Newsletter 19,

1 (2017), 22–36.

[86] SORBER, L., VAN BAREL, M., AND DE LATHAUWER, L. Structured data fusion.

IEEE Journal of Selected Topics in Signal Processing 9, 4 (2015), 586–600.

71



[87] STARBIRD, K. Disinformation’s spread: bots, trolls and all of us. Nature 571, 7766

(2019), 449.

[88] STARBIRD, K., AND PALEN, L. Voluntweeters: Self-organizing by digital volunteers

in times of crisis. In Proceedings of the SIGCHI conference on human factors in computing

systems (2011), ACM, pp. 1071–1080.

[89] STATISTA. Usage of social media as a news source worldwide 2020, 2020 (accessed

September 2, 2020).

[90] STEWART, L. G., ARIF, A., AND STARBIRD, K. Examining trolls and polarization

with a retweet network.

[91] STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT, B., SZYDLOWSKI, M.,

KEMMERER, R., KRUEGEL, C., AND VIGNA, G. Your botnet is my botnet: analy-

sis of a botnet takeover. In Proceedings of the 16th ACM conference on Computer and

communications security (2009), ACM, pp. 635–647.

[92] TONG, H., AND LIN, C.-Y. Non-negative residual matrix factorization with ap-

plication to graph anomaly detection. In Proceedings of the 2011 SIAM International

Conference on Data Mining (2011), SIAM, pp. 143–153.

[93] TSITSULIN, A., PALOWITCH, J., PEROZZI, B., AND MÜLLER, E. Graph clustering
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