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Abstract 
We review the lore of effective field theories as a background to hierarchy 

problems in general and the cosmological constant problem in particular. We 
outline sorne of the attempted four-dimensional solutions to the cosmological con­
stant problem and conclude that ones based upon the usual assumptions of four­
dimension al field theory typically do not work. We argue that one way to relax the 
assumptions is to seek solutions to the cosmological constant problem which rely 
on the presence of extra dimensions. We explicitly exhibit that standard compact­
ification techniques fail to solve the cosmological constant problem because they 
reduce the problem to a four-dimensional one. 

We argue that brane-world models may be helpful in solving the cosmological 
constant problem because standard model loops contribute to the tension and 
not to the vacuum energy directly, and can fulfill our stated aim of constructing 
a model which uses the extra dimensions to mitigate the cosmological constant 
problem. We identify necessary (not sufficient) properties a theory must possess 
to successfully use this observation. These properties are: a scaling symmetry 
encoded in a dilaton-like scalar, and bulk supersymmetry. 

We therefore investigate supersymmetric six-dimensional brane-world models. 
Our models are imbedded within a 6D supergravity that has many of the features 
of realistic string models. We explicitly show that the compactification of the 6D 
theory has many of the same features as string compactifications, including flat 
four-dimensional space, chiral fermions, moduli, moduli-stabilisation using fluxes, 
and gluino condensation. We show that by calculating the non-perturbative cor­
rection to the superpotential and loop-corrections to the Kahler function that a 
meta-stable deSitter vacuum can be found. The vacuum energy can be tuned to 

be rv 10-6 
Mtlanck. 

We find that all solutions of the supergravity equations of motion, under a 
symmetry ansatz, have flat branes. This implies that this pro pert y is independent 
of sorne of the details of the branes, such as their tensions. The source of the 
branes' flatness is the required classical scaling symmetry of the action. 

We consider whether this class of models may provide a solution to the cos­
mological constant problem within the large extra dimensions scenario, in which 
the radius r rv O.Imm, and in which the standard-model fields are trapped on 
a 3-brane. We conclude that it may be possible to pro duce naturally a cos-

" mological constant that is of order r-4 
rv (1O-3e V) 4 "due to loops because the 

supersymmetry-breaking scale in the bulk is Msusy rv r- 1, although there re­
mains a great deal of work to be done. We comment on recent extensions to 
cosmological backgrounds. 

Further work within these models is outlined, including higher-dimensional 
models, use of effective field-theory techniques in theories with sharp boundaries, 
and the treatment of quantum corrections. 
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Resumé 

Nous passons en revue les théories effectives des champs en tant que toile de fond 
pour les problèmes des hiérarchies en général, et plus particulièrement pour le 
problème de la constante cosmologique, arrivant à la conclusion que celles qui 
sont basées sur les suppositions habituelles pour les théories des champs en quatre 
dimensions ne fonctionnent pas. Nous argumentons qu'une manière de relaxer 
ces suppositions consiste en la recherche de solutions au problème de la constante 
cosmologique qui font appel à la présence de dimensions supplémentaires. Nous 
démontrons de manière explicite que les méthodes standard de compactification 
ne résolvent pas le problème puisqu'elles ne font que le transcrire en un langage 
quadri-dimensionnel. 

Nous faisons l'argument que les modèles branaires peuvent aider à résoudre le 
problème de la constante cosmologique puique les boucles provenant du Modèle 
Standard contribuent à la tension et non pas directement à l'énergie du vide. Ils 
peuvent donc remplir l'objectif enoncé qui est de construire un modèle qui fait 
usage de dimensions supplémentaires pour atténuer le problème de la constante 
cosmologique. Nous identifions des propriétés nécessaires (mais non suffisantes) 
que doit posséder une théorie pour être en mesure de faire usage de cette observa­
tion. Ces propriétés sont: une symétrie d'échelle encodée dans un champ scalaire 
de type dilaton, ainsi que la supersymétrie dans le volume total. 

Nous étudions donc des modèles branaires supérsymétriques en six dimensions. 
Nos modèles sont plongés dans une théorie de la supergravité en six dimensions qui 
possède plusieurs des caractéristiques des modèles réalistes en théorie des cordes. 
Nous démontrons explicitement que la compactification de la théorie à six dimen­
sions partage plusieurs aspects avec les compactifications en théorie des cordes, 
notamment un espace quadri-dimensionnel plat, des fermions chiraux, des moduli, 
la stabilisation des moduli à l'aide de flux, et la condensation des gluinos. Nous 
montrons par un calcul non-perturbatif de la correction au superpotentiel et des 
corrections des boucles à la fonction de Kahler qu'un vide deSitter meta-stable 
peut être realisé. L'énergie du vide peut être ajustée pour donner rv 10-6 Mtlanck' 

Nous trouvons que toutes les solutions des équations du mouvement de la 
supergravité, sous un certain ansatz symétrique, ont une géométrie branaire plane. 
Ceci implique que cette dernière propriété est indépendente des détails de la brane, 
telles que sa tension. La planarité de la brane provient de la symétrie d'échelle de 
l'action. 

Nous considérons si ce type de modèle peut mener à une solution au problème 
de la constante cosmologique dans le contexte d'un scénario comportant des grandes 
dimensions supplémentaires, dont le rayon r rv O.Imm, et dans lesquels les champs 
du Modèle Standard sont restreints sur une 3-brane. Nous arrivons à la conclusion 
qu'il peut être possible de produire de fa con naturelle une constante cosmologique 
de l'ordre de r-4 

rv (1O-3eV)4 grâce aux boucles puisque l'échelle à laquelle la 
supersymétrie est brisée dans le volume total est Msusy rv r- 1 , quoiqu'il reste en­
core bien du travail à accomplir. Nous commentons certaines extensions récentes 
à un contexte cosmologique. 

Nous décrivons des pistes de travail additionnel dans le contexte de ces modèles, 
incluant des modèles avec un nombre plus élevé de dimensions, l'utilisation des 
techniques des théories des champs effectives dans des théories possédant des con­
ditions aux frontiéres hautement définies, ainsi que le traitement des corrections 
quantiques. 
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As it began, so it ends: 

The physicist does not study nature because it is useful, 

he studies it because it is beautiful. 

If nature were not beautiful, it would not be worth studying, 

and if nature were not worth studying, 

life would not be worth living. 

-Henri Poincaré 
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Chapter 1 

The Rise and Fall of the 
Standard Madel 

The standard model of particle physics [1] is the most successful and compre­

hensive model of particle interactions ever constructed, and has been tested 

to unprecedented accuracy. Our understanding of the standard model un­

derpins our understanding of nearly every aspect of modern physics [2]. 

In addition to being the means for understanding particle physics, the 

standard model also underpins our understanding of non-gravitational par­

ticle interactions throughout the entire history of the universe after it cooled 

below about a TeV. The standard model reproduces the correct light-element 

abundances (nucleosynthesis) from a single input parameter, the baryon den­

sity at the big bang; it correctly describes the conversion of these light ele­

ments into heavier elements in stars; and it correctly describes the supernova 

explosions that are responsible for distributing these heavy elements through­

out the galaxy, and which are ultimately responsible for providing the correct 

conditions for life (please see [65] and references therein). 

Despite the standard model's phenomenal success, it is known to be in-
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complete [1981. This is not to say that the standard model is incorrect, in fact 

it is almost certainly correct at low energies-given the degrees of freedom 

and their charge assignments, the standard model (without the symmetry­

breaking sector) is the unique theory describing the interactions of three 

families of leptons and three families of quarks interacting through the gauge 

group U(l) x SU(2) x SU(3) spontaneously broken to U(l) x SU(3) [198]. 

Furthermore, our knowledge of the standard model's limitations doesn't 

imply that we know precisely how it will fail, for then we would know a 

great deal about physics beyond the standard model. What we do know 

is that the standard model is provisional in a particular, very well-defined 

sense: there is an energy, Mnewphysics, above which the standard model is no, 

longer an accurate description of physics. The standard model is an effective 

description of physical phenomena at energies far below this scale [198]. 

What value Mnewphysics takes is the subject of a great deal of the research 

being done at the forefront of modern theoretical physics. Everyone seems 

to agree that Mnewphysics is almost certainly below MPlanck, the scale at which 

the quantum effects of gravit y become important [53]. It is believed by 

the majority of the theoretical physics community that at or below energies 

O(MPlanck) standard field-theoretic descriptions of physics break down, and 

a new theory, string theory, provides a valid description, but this scale is so 

impossibly high that direct measurement at a particle accelerator is beyond 

the reach of any currently-conceivable teehnology. Nevertheless, by being the 

only viable theory of quantum gravit y, string theory has forced the physies 

eommunity to challenge seemingly obvious assumptions, sueh as the four­

dimensionality of space-time [53]. 
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There is hope, however, for finding new physics below the Planck scale; 

there is compelling evidence that the standard model is replaced or mod­

ified at energies as low as a few Te V- within the range of experiments 

planned to begin at the LHC in a few years. The most obvious and pop­

ular contender for a modification of the standard model at this scale is 

weak-scale supersymmetry [3], but it is now possible to construct string­

like models (including the brane-models in the mix) with Mstring rv O(TeV) 

[66, 67, 136, 176, 177, 178, 180]. 

Of course, no argument for a particular extension of the standard model 

will be perfect, since we currently have very few ways of experimentally differ­

entiating between extensions (an unhappy circumstance that wilLhopefully 

change once the LHC begins taking data). The best 1 hope to do in this intro­

ductory chapter and in the next is to explain why we believe so fervently that 

the method of effective field theories, and in particular the standard model, is 

almost certainly correct, and how we have come to the conclusion that there 

is likely new physics on the horizon, with Mnewphysics rv TeV. We will see that 

the major theoretical motivation for new physics is the presence of hierarchy 

problems in the standard model, and this will help explain why theoretical 

physicists have taken the drastic steps of introducing supersymmetry, extra 

dimensions, and branes. 1 

1 A brief explanation for the time being: A brane is a 3 + I-dimensional submanifold of 
a higher-dirnensional space (like a piece of paper ftoating in the middle of a room, except 
infinite in extentf Branes find their original motivation in string theory but have an 
independent phenomenological existence in brane-world models. A supergravity is a way 
of coupling general relativity to a particular kind of particle physics, . and supergravities are 
low-energy approximations to string theories. The 'super' in supergravity cornes from the 
supersymmetry of the theory. Supersymmetry is a symmetry that ties together the bosons 
and fermions in a theory in a particular way that softens their ultra-violet behavior. 
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During our discussion of the hierarchy problem we will see that hierarchies 

have traditionally been solved by postulating (and subsequently verifying the 

existence of) new symmetries. This will set the stage for the cosmological 

constant problem, for which no four-dimensional solution is known: no pos­

tulated four-dimensional symmetry is known which is both consistent with 

observations and which successfully explains the small size of the cosmolog­

ical constant. Following a review of Weinberg [122] l catalogue sorne of the 

main contenders for four-dimension al solutions and explain briefly why none 

of them are adequate. The conclusion to draw from this study may weIl 

be that, regardless of how weIl effective four-dimensional field theories have 

served us to date, perhaps the ideas embodied therein simply don't apply to 

the cosmological constant problem. 

This thesis takes what may be considered a relatively conservative view: 

we preserve the tenets of effective field theories and the usual vacuum­

selection criteria, but we exp and our space of allowed theories to extra­

dimensional theories with branes. This is a hypothesis, born of string theory, 

that has a great deal of currency in the theoretical physics community. The 

main point of this thesis will be the presentation of a class of models, which, 

while preliminary, seem to have the relevant features for an extra-dimensional 

solution to the cosmological constant problem. It must be emphasised: these 

are preliminary models, and much can yet go wrong with them (as has with 

every other proposaI for a solution to date). There are marry usual suspects, 

which have been the downfall of many solutions to the cosmological constant 

problem, and a large part of the work involved is in the results of these in­

terrogations. These are presented in Chapter 6, the punchline being that 
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this class of models have passed many nontrivial checks and warrant further 

study. (But see [205].) 

1.1 Effective Field Theories and the Standard 
Madel 

The standard model is an effective theory of non-graviational particle physics 

at energies below a few hundred GeV. It represents the culmination in an 

extremely successful model of a way of thinking about particle physics, be­

gun by Gell-Mann and Low [18], and developed further by many authors, 

prominent among them Weinberg and Wilson [13, 14, 197, 16, 17]. 

Quantum field theories are the natural way t; describe low-energy, quantum­

mechanical, Lorentz-invariant particle interactions. 

The reason such broad, general statements can be made is that quantum 

field theories are based on a set of 'motherhood principles' [197], each of 

which is extremely well-tested, at least at lowenergies. Effective field theories 

such as the standard model are quantum field theories which arise from the 

passage to a low-enegy approximation from an underlying, more fundamental 

theory. Because they are quantum field theories they rest on the strength 

of the motherhood principles, which makes them extremely general; because 

they are effective theories they are simplified descriptions of only the relevant 

degrees of freedom. The usefulness of effective field theories lies in our ability 

to perform calculations with controlled theoretical errors, even when we don't 

know the underlying theory from which the effective theory is derived. 

The extension of the idea of quantum field theories to the concept of 

effective field theories explained the prominence of renormalisable quantum 
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field theories, and, even more importantly, showed how one could reliably 

calculate loop-corrections to non-renormalisable theories [12]. 

Effective field theories are understood to be expansions in powers of en­

ergy over sorne higher mass scale E / M. Once one picks the accuracy with 

which a given calct4ation needs to be performed, one may keep the appro­

priate numbers of operators in order to achieve this accuracy [8], whether 

or not corrections are made to higher-order operators. In this way sensible, 

controlled calculations can be made with non-renormalisable theories [197, 

§12.3]. 

In the next few sections l will present sorne of the principles on which 

are based our belief in quantum field theories in general, and effective field 

theories in particular. l will work through three examples, each of which 

illustrates different features of the effective field theory picture. The first 

example proves in a matter of a few lin es that the sky is blue. This example 

prominently displays the ease with which conclusions may be drawn using 

effective field theories, and simultaneously shows that the methods may be 

used in reallife situations. The second example illustrates the direct calcula­

tion of an effective field theory through the 'integrating out' of heavy degrees 

of freedom. This process will naturally exhibit the two hierarchy problems in 

. the standard model, the stabilisation of scalar masses and the cosmological 

constant problem. The last ex ample is an exhibit in the strength of symme­

tries in effective field theories; it showshow hierarchy problems can be solved 

through the use of symmetry. 
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1.2 Quantum Fields 

Quantum field theory is a general framework for describing the interactions of 

quantum particles in situations where particle number is not conserved. The 

apparatus of quantum field theory is general enough to be applied equally 

well to thermal systems and to relativistic high-energy particle interactions. 

One quick way to get to quantum fields is to use electrodynamics as 

a jumping-off point. This is a field theory and one may wonder how one 

should quantise such things. Using this as a template, we guess that a typical 

quantum field theory contains fields, such as scalars, cjJ( x), spinors, X( x) and 

vectors, VIL(x), all interacting through a hamiltonian density, e.g., 
, .\4 

Hint(x) = gcjJXX + VIL X1 IL X + 4f cjJ4 +... (1.1) 

The hamiltonian is constructed as an integral of this density, 

H = J d3xH(x). (1.2) 

In order to promote this theory to a quantum field theory we should pro-

mote the fields, cjJ, X and VIL to operator-valued functions which act on a Fock 

space. The properties of these fields are most easily derived in the canonical 

formalism, in which one posits a Lorentz-invariant lagrangian density and 

adapts the usual Poisson-bracket ~ commutator quantisation trick to a field 

theory: Let 1:( cjJ, ~) be a lagrangian density for a field theory of a collection 

of fields, {cjJ}. The canonical momentum is given by 

II(x) = B~ 
BcjJ 

and we assume the equal-time canonical commutation relations, 

[II(t, y), cjJ(t, x)] = i 03(X - y). 
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It is often convenient to re-write the fields and the canonical momentum 

in terms of creation and annihilation operators which are arbitrary (operator­

valued) coefficients in the solution to the linearised equations of motions aris­

ing from the lagrangian. For a real scalar field, for example, this expansion 

would take the form 

(1.5) 

The coefficients are chosen to make the Lorentz-transformation properties of 

a and a* simple. After applying eq. 1.4, we find that a and a* satisfy the 

Heisenberg algebra: 

(1.6) 

This is enough to construct states, to do perturbation theory, and to ask 

questions about scattering of particles. While this presentation works, it is 

hardly illuminating. 

Below l will present a different point of view, due primarily to Wein­

berg [197], which clearly expresses the inevitability of the framework of quan­

tum fields for describing physical phenomena. This point of view shows that 

quantum field theory is the expression of a set of motherhood principles which 

are so well-tested as to be nearly certainly true, at least at energies that are 

currently accessible to us. 

1.2.1 Motherhood Principles 

The apparatus of quantum field theory is based on 'motherhood' princi-

pIes [197]: 

• Quantum Mechanics 
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• Locality 

• Poincaré Invariance 

• Cluster Decomposition 

Quantum Mechanics 

Quantum mechanics sets the stage, in terms of a Hilbert space to be popu­

lated with states and acted on by a unitary evolution operator: 

(1.7) 

Locality 

Locality of the interaction implies that particles interact at a single space­

time point. Under this assumption, the hamiltonian must be written as the 

integralover space of a hamiltonian density, 1i(x), 

(1.8) 

Lorentz Invariance 

The theory is Lorentz-invariant if the same unitary operators perform Lorentz 

transformations on both 'in' and 'out' states; this is what we me an by a 

Lorentz-invariant S-matrix. This condition is guaranteed if (but not only if) 

1i forms a scalar in the following sense: 

U(A, a)1i(x)U-1(A, a) = 1i(Ax + a), (1.9) 

and if in addition 

[1i(x),1i(x')] = 0 for (x - X')2 > O. (1.10) 
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(Although this may look incorrect at first glance it is. Consider for example 

H(x) = ~(80<p)2 + ~8i<p8i<P,: 

U(A)H(x)U-1(A) = ~(8~<p(x')? + ~8~<P(x')8~<p(x') = H(x'), (1.11) 

where x' = Ax. Similarly, if H = iij}(x) ({o8o + hi8i) 'lj;, and D is the spinor­

representation of the Lorentz group, then 

U(A)HU-1(A) iD'lj;(x') ({o8o + 1i8i) D'lj;(x') 

iij}(x') ({j1A~8o + 1j1Ar8i) 'lj;(x') 

iij}(x') (108h + 1i8D 'lj;(x').) (1.12) 

The last requirement ab ove , that the hami1t,9nian densities commute for 

space-like separations ensures the Lorentz invariance of the time-ordering 

operator that arises in the manifestly covariant (modern) perturbative ex­

pansion. It can also be shown that these conditions guarantee Lorentz in­

variance non-perturbatively [197, § 3.5]. (It is usually easier to construct a 

Lorentz-invariant lagrangian density 

U(A, a).c(x)U -1(A, a) = .c(Ax + a) (1.13) 

and to derive the hamiltonian density from it.) 

Lorentz invariance (or covariance) is also used to define particles. Define 

a single-particle state as a state of definite momentum which furnishes an 

irreducible representation of the Lorentz group. . 

U(A, a)\p, p) = D(A, a)/'\p, p') (1.14) 

where p is a composite index enumerating the spin states and where D(A, a) 

is a finite-dimensional (and therefore non-unitary) matrix representation of 
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the Lorentz group: 

D(A',a')D(A,a) = D(A'A,A'a+a') (1.15) 

Sinee energy and mass are interchangable in a Lorentz-invariant theory, 

single-particle quantum mechanics is not an adequate description in this 

setting. We require a Fock spaee constructed of the tensor product of all 

n-particle states: 

(1.16) 

where 1in represents the Hilbert spaee of n-particle states. Multi-particle 

(free) states transform as the tensor product of single-particle states under 

Lorentz transformations. 

We may define creation and annihilation operators, which move one be­

tween the different Hilbert spaees in the Fock space. An annihilation operator 

destroys a particle: 

(1.17) 

where (J is a composite label enumerating dis crete states such as spin and 

particle type as well as continous labels such as momentum, and Œi me ans 

(Ji has been removed from the list. 2 The vacuum is defined as the state for 

which 

't/(J (1.18) 

Creation operators do the opposite: they add a particle to the list: 

(1.19) 

2We are assuming for simplicity that aU the particles are bosons. Additional minus 
signs are necessary to correctly treat fermions. 
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Equivalently, creation and annhilation operators can be defined in terms of 

the Heisenberg algebra, 

(1.20) 

where the <5 includes discrete as well as continuous labels. 

Any hamiltonian density may be constructed from creation and annhilia­

tion operators. This is because an operator is defined by its matrix elements 

between states and any value can be ascribed to any matrix element by a 

suit able choice of coefficient in a sum of terms such as 

(1.21 ) 

Cluster Decomposition 

Cluster decomposition is the property of well-separated experiments becom­

ing uncorellated (in the absence of EPR-like [71] corellations). In terms of 

the S-matrix, we require the position-space S-matrix to satisfy 

(1.22) 

as the distance between the clusters {Xl' X2,'" ,xd and {Xk+1" .. xn} be­

cornes infinite. 

Requiring the clustering of the S-matrix implies that the coefficient of 

every term such as eq. 1.21 have one and only one delta function, a delta 

function that ensures Jllomentum conservation. If PUi is the momentum vari­

able associated with the compound index ai, then the coefficient G in 

H= (1.23) 
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must be of the form 

Gala2000TlOOOTm ex 53(Pal + Pa2 + ... - PTl - ... - PTm) 

xgaloo·Tm , (1.24) 

with 9 free of delta functions. This techincal-seeming requirement ensures 

that the coordinate-space S-matrix factorises as the difference of particle co­

ordinates, Xi, becomes large. If additional delta functions ofp's were present 

in galoooTm, then new combinations of moment a would be conserved. Since mo­

mentum conservation is equivalent to translational invariance, changing this 

linear combinat ion of coordinat es would therefore not affect the S-matrix. 

But since ther~ is a new translation invariance in this combinat ion .of coordi­

nates, moving this cluster of coordinates away from others will not ensure the 

clustering of the S-matrix. Therefore only the overall momentum-conserving 

delta function is allowed. 

Already, therefore, we have particles, cluster decomposition and interac­

tions which are developed based on sound principles. This goes a long way 

toward explaining the inevitability of quantum field theory, except that we 

still don't have any fields. In order to finish the presentation, we need to 

know how to guarantee the Lorentz invariance of H. 

Fields 

To see how to guarantee Lorentz-invariant theories, note that by ta~ing ap­

propriate linear combinat ions of products of creation and annihilation op­

erators, a Poincaré-invariant density in the sense of eqs. 1.9, 1.10 can be 

constructed. But how do we construct such a scalar in detail? It is here that 

fields really come into their own. Fields are a particular linear combinat ion 
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of creation and annihilation operators, 

(1.25) 

which have simple Lorentz transformation properties. The field 'lj;(x) trans­

forms under a fini te-dimension al representation of the Lorentz group (such 

as the Dirac or vector representations), while a(T) a; transform under the uni­

tary, infinite-dimensional representation of the Lorentz group. u and v are 

Clebsh-Gordon coefficients for accomplishing this translation. For a scalar 

field, for example, 
1 

u=v=--
J2ifi' 

(1.26) 

which ensures that the measure d3p/ -I2ift is Lorentz i:6.variant, while for a 

Dirac fermion, 

[ip+m]u= [-ip+m]v=O (1.27) 

is the C-G condition. We thus see that the Dirac equation is the condition 

for projecting the infinite-dimensional unitary spin-l/2 representation onto 

the finite-dimensional pseudo-unitary spinor representation. 

Fields are combinations of creation-annihilation operators that transform 

sim ply under Lorentz trasformations and which therefore make simple the 

construction of invariants (such as lagrangians and hamiltonians) out of ir­

reducible representations of the Lorentz group. 

Tp.e conclusion of aIl of this machinery is the same as the usual conclusion 

in field theory: in order to perform computations of scattering amplitudes or 

of transition probabilites or anything else, the fastest way is to construct a 

Lorentz-invariant lagrangian density and to quantise canonically (or to use 

the path integral). The reason the canonical approach is a good description of 
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a vast array of natural phenomena, however, rests on the shoulders of the four 

principles of field theory: quantum mechanics, locality, cluster decomposition 

and Lorentz invariance. 3 

1.3 Effective Theories 

Effective field theories are theories that are valid only up to sorne other 

fundamental mass scale. They are understood to arise from the 'integrating 

out' (a terminology arising from path integrals) of heavy degrees of freedom. 

The virtue of an effective field theory is that it focusses attention on the 

relevant degrees of freedom. If one is interested only in low-energy scattering 

of particles one should not need to worry about the excitation of high-energy 

particles. 

This separation of scales is what makes physics comprehensible. In order 

to understand the scattering of light from particulate matter (in order to 

explain why the sky is blue) one does not need to know that the particles are 

made of leptons and quarks and that the leptons interact through the elec­

troweak interactions, and that the electroweak symmetry is spontaneously 

broken at rv 300GeV, etc. ad nauseam. In order to explain why the sky is 

blue one needs only focus on the relevant degrees of freedom: uncharged, 

heavy particles that can Rayleigh-scatter light [21, 24] 

The effective field theory programme is to 

30ne important property of quantum field theories hasn't been demonstrated here. 
The analyticity properties of the S-matrix are vital to a correct description of particle 
interactions. It seems that quantum field theory is a general set of rules for easily con­
structing S-matrices that are Lorentz invariant, are local, that cluster and that have the 
correct analyticity properties [12]. 
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1. Identify the degrees of freedom, 

2. Write every term allowed under the assumed symmetries, and 

3. To organise these terms in order of increasing mass-dimension, the 

higher mass-dimension terms being of lower order in the low-energy 

expanSIOn. 

1.3.1 Brief Prelude on Effective Lagrangians 

The modern view of renormalisation allows us to reasonably consider non­

renormalisable lagrangians, and to use them in controlled, predictive ways. 

This is a radical departure from t,he 'old' view in which only renormalis­

able lagrangians could be used to make reasonable physical predictions. In 

this section 1 briefly outline the modern view and its justification, as it fig­

ures prominantly in interpreting quantum corrections to theories containing 

gravity. 

When trying to calculate any quantity in a quantum field theory beyond 

lowest order, infinities are encountered when integrating over moment a of 

virtual particles in internaI lines of Feynman diagrams. These infinities are 

dealt with by absorbing them into parameters in the lagrangian. Because only 

the combinat ion ofthe original parameter and all of these infinite 'corrections' 

is ever measured in any experiment this problem can essentially be ignored; 

one simply measures the parameter in an experiment and assigns this value to 

the fully 'corrected' one. The renormalisable theories are t!IOSe for which this 

programme can be carried out without adding new operators and parameters 

to the original lagrangian. According to the interpretation given in this 
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paragraph there seems no way to reasonably extract information from non­

renormalisable lagrangians, since we need to keep adding infinite terms to 

the lagrangian. 

On the other hand it was well-known [23, 197J that non-renormalisable 

lagrangians could be the consequence of renormalisable ones. In the ref­

erence cited ab ove , Euler and Heisenberg found that photon-photon scat­

tering could be described at energies far below the electron mass by the 

non-renormalisable interactions 

(1.28) 

for sorne pure numbers Cl and C2. These terms arise from integrating out a 
, , 

single electron loop in the box diagram. 

The idea of taking such phenomenological lagrangians seriously, and of 

calculating loop-corrections within them seems to have only taken hold much 

later [13J. The acceptance of such theories arose partly from attempts to 

quantise general relativity, which is non-renormalisable [197], partly from 

the deeper understanding of the content of renormalisation arising from 

renormalisation-group arguments [12, 14, 16, 17, 18], and partly from ex­

perience with phenomenological pion lagrangians [13J. 

AlI of this experience showed that indeed non-renormalisable lagrangians 

can be used to systematically calculate corrections to any order in the loop 

expansion, as long as on.e simultaneously performs an expansion in energy 

over sorne heavy scale. This reorganisation of perturbation theory allows 

calculations to be performed systematically to any order in loops and in 

derivatives, since operator-mixing which requires higher-order operators to 

be included to 'soak up' the infinities encountered in lower graphs only affects 
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operators higher-order in derivatives. 

The philosophical adjustment required to fully appreciate the power of 

effective lagrangian techniques was not small; it required abandoning the 

idea of a fundamental quantum field-theoretic description of phenomena. 

Quantum fields become merely a very convenient way of describing quantum 

mechanical many-body physics, and the lagrangian formulation serves merely 

to efficiently encode symmetries and motherhood principles [197] such as 

quantum mechanics, locality and cluster decomposition. This seems to be 

enough to encode the analytic structure required in the S-matrix, and seems 

sufficiently general to allow the expression of phenomena as wide-ranging as 

superconductivity, QCD and general relativity, to name a few w.ell-tested, 

disparate applications which can be understood in this way. 4 

If quantum fields only encode symmetries and motherhood principles, 

then there seems no reason to include only the renormalisable terms in the 

effective theory. It turns out, in fact, that these are the only operators that 

are not 'irrelevant' (in a sense made precise by the renormalisation group) 

at low energies. In this way the justification for considering renormalisable 

lagrangians arises more naturally as a good approximation, not a new fun­

damental principle of nature. 

The effective lagrangian programme, then, is to decide upon the accuracy 

to which one wishes to describe phenomena and to include only operators of 

the required order in the action. These terms all incur additional unknown 

constants in the theory which must be measured. Once these are measured 

4There seem to be some theories that do not have lorentz-invariant lagrangian formu­
lations although there is nothing wrong with the degrees of freedom. This seems to be a 
limitation in the lagrangian formulation of the theory, not of quantum mechanics [43]. 
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an unlimited number of predictions may be made. It is in this sense that non­

renormalisable theories are predictive, and thus these are no less a predictive 

than renormalisable theories. 

1.3.2 Mass Dimension 

Given a set of degrees of freedom (say the electron and photon), one must 

decide on the form of H. There will in general be an infinite number of 

terms satisfying the Lorentz-invariance property eq. 1.9. One may restrict 

the operators under consideration, however, based on power-counting rules, 

which state that the most relevant operators at low energies are those with 

the lowest mass-dimension (in units with h = c = 1). The mass-dimension 

of fields is worked out by requiring that the action be dimensionless (since 

h = 1), and (usually) by requiring a canonical kinetic term. Therefore for 

scalars we have 

1 J N )2 S = - 2" d x (ocjJ + ... (1.29) 

and since 0 rv (mass), 

[cjJ] = (mass)N/2-1 (1.30) 

while for spinors we have 

J N -S = - d x1/JÇJ1/J + ... (1.31) 

so that 

[1/J] = (mass)(N-l)/2 (1.32) 

The mass-dimension of an operator is the product of the mass-dimension 

of all of the fields and derivatives: (ocjJ )2ijJ1/J has mass-dimension 7 in four 
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dimensions. In N dimensions, an operator of mass-dimension D requires a 

coefficient of mass-dimension N - D to keep the action unitless. 

The notion of the mass-dimension of operators is important because it 

allows controllable approximations in energy to be performed. Suppose that 

all of the mass scales appearing as coefficients in the interactions in a theory 

are of the same order, M to sorne power. In this case, in order to make the 

dimensions work out in the amplitude, the effects of operators of high mass 

dimension D (which are the complicated operators with many products, e.g. 

the mass-dimension 7 operator above) are suppressed by powers of (E/M)D, 

where E is the typical interaction energy of the process. As long as E / M « 
1, we can safely perform a perturbative expallsion in high mass-dimension 

operators. Therefore restricting oneself only to low mass-dimension operators 

entails a controllable approximation. 

1.3.3 Why the Sky is Blue: An Effective Field Theory 
Analysis 

For the scattering of light by nonrelativistic, neutral particles, our degrees of 

freedom are the photon, AJL' and a nonrelativistic particle given by a complex 

wavefunction, X, describing an uncharged field. The symmetries we require 

are: 

• Gauge invariance: This allows terms to be constructed only from 

FJLv, Since X is not charged, we can't construct terms of the form 

• Rotational invariance: Every term in the lagrangian must be a ro­

tational scalar. 
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• Parity invariance: The lagrangian must be invariant under the ac­

tion: 

x ---+ -x 

B ---+ B 

E ---+ -E (1.33) 

The mass dimension of the operators are identified from the kinetic terms, 

which we canonically normalise. We also require unitarity, which implies 

the reality of the lagrangian, so that each term needs as many xs as X*s. 

We may now write the most general gauge-invariant interaction of light with 

nonrelativistic, parity-invariant, unéharged matter, 

. *8 * \72 1 F FIJ,V 
-'lX tX - X 2M X - '4 /l-V 

a E 2 X*X - b B 2 X*X + ... , (1.34) 

where the dots indicate operators of higher mass-dimension which are fur­

ther suppressed by powers of energy.5 Dimensional analysis shows that the 

mass dimension of F = dA (and therefore E and B) is 2, and that of X is 

3/2. This implies that a and b are (mass)-l. Since low-energy light (E « 
the excitation energies of the atoms) cannot penetrate the structure of the 

particulate matter, a and b are on the order of the size of the particles, rv ao, 

the Bohr radius. 6 Working out the scattering of light using this interaction 

5Because this is a nonrelativistic theory there are also relativistic corrections in v / c, in 
addition to corrections in E / M. 1 ignore these corrections here, but they can be worked 
out straightforwardly [24]. 

6 a and b receive contributions from aIl masses in the high-energy description, but these 
aIl appear as l/M so the smaIlest mass dominates. This explains why we don't need to 
understand quarks to understand the blueness of the sky. 
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shows that the cross-section for a photon of energy E')' is 

(1.35) 

which shows that high-energy radiation scatters more frequently than low­

energy radiation, and through the usual argument this explains the blueness 

of the sky. Of course this expression is not valid to arbitrarily high energies. 

In particular it is not valid at energies near the binding energy of the electrons 

to the nuclei. A new low-energy theory is valid at these energies, accounting 

for atomic excitations. 7 

This example vividly displays the strength of the effective field theory 

technique, albeit in a nonrelativistic setting. The full calculation of the 

Rayleigh scattering rate beginning with the hydrogenic wavefunction is a 

long, arduous process, requiring many delicate cancellations [21, 22]. It is 

only when one passes to the low-energy limit that massive simplifications 

occur. In the effective field theory method one passes to the low energy limit 

immediately, bypassing the complicated intermediate steps, all of the effects 

of which are encoded in the numerical coefficients of ao in a and b. One may 

choose any combinat ion of experiment or calculation one wishes in order to 

obtain a and b. Once they are in hand any number of calculations can be 

performed, such as the scattering calculation outlined ab ove , or one can use 

the above lagrangian to calculate the electric polarisability of the atmosphere: 

the Maxwell equations fr0!ll above give (when coupled to a classical source, 

bL = -AfJ,JfJ,), 

\7 . [E(l + ax*x)] = JO. (1.36) 

7There are also very low-energy rotational resonances that one can worry about. These 
couple to quadrupole radiation and are further derivative-suppressed, not affecting our 
conclusion in the visible. 
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Since D = E + P, 

P = ax*x. (1.37) 

(This would be one way of measuring a, for example.) 

By following the programme of effective field theories: identifying the 

relevant degrees of freedom, identifying the symmetries, and by using the 

derivative expansion, we were able to obtain highly nontrivial results with 

very litt le work. This is the main practical lesson of effective field theories: 

life is simpler and the physics more transparent when the correct degrees of 

freedom are chosen.8 The standard model is an effective field theory in the 

same sense. It is the correct description of the relevant low-energy degrees 

of freedom. 

1.4 The Standard Madel is a Low-Energy Ef­
fective Theory 

The standard model is a particular low-energy effective theory. It is the 

most general renormalisable theory of three families of quarks and leptons 

invariant under the gauge group SU(3) x SU(2) x U(l) (with particular 

charges)9 which is spontaneously broken to the subgroup SU(3) x U(l). 

8This is an example of Weinberg's second law of theoretical physics: You can choose 
any coordinates Vou like, but if Vou choose the wrong ones Vou 'll be sorry [12]. 

9 The charges in the standard model can actually be almost entirely fixed (up to an 
overall scale) by requiring anomaly cancellation. Requiring the canceilation of gravita­
tional anomalies (the trace of the U(I)s) as weil as the traces of the cubes of the charges 
(the gauge anomalies) family-by-family constrains the hypercharge assignments (in the 
absence of any assumption regarding the symmetry-breaking sector) to one of: chiral elec­
tromagnetism, in which the left- and right-handed components of the quarks have different 
charges; a theory in which the right-handed electron is chargeless; and the standard model 
charge assignments. [19] 
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By the standard model it is usually meant the renormalisable interactions 

of the quarks and leptons supplemented by at least one Higgs (a scalar par­

ticle which spontaneously breaks the symmetry). The fact that the standard 

model is an effective theory me ans that we can reliably calculate the effects of 

adding higher-order operators which parametrise the effects of higher-energy 

physics. For example by parametrising beyond-the-standard model effects 

through dimension-six operators of the form [39] 

1 -
M2 duijL 

1 
M2 ijqill (1.38) 

which violate baryon and lepton number we can put bounds on the high mass 

scaJe N! by puting bounds on the proton lifetime. (Baryon nonconservation 

leads to proton decay.) 10 The proton lifetime will be given by 

(1.39) 

Since the proton lifetime is known to be greater than 1021 years [72], M ~ 

1018 Ge V (under the assumption that the unitless coefficients are rv 0 (1) ). 

This is very close to both the Planck scale and to the GUT scale. The 

Planck scale is the scale at whieh the quantum effeets of gravit y become 

important, while the GUT seale (Grand Unified Theory) is the scale at which 

the product group SU(3) x SU(2) x U(l) is conjectured to unify into a larger 

group. This conjeetured unification is based on the running of the strong, 

weak "and electromagnetic couplings; within a large class 'of models [70] the 

eouplings an unify at a seale around lO16Ge V. This is one example of indirect 

evidence of physies beyond the standard model. In the next section l will 

lOIn eq. 1.38 Land q are the lepton and quark doublets, while u, d and lare, respectively, 
the up-type, down-type and leptonic SU(2) singlets. 
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discuss this possibility within the context of observational evidence and of 

the hierarchy problems. 

1.5 Beyond the Standard Madel 

The evidence pointing to new physics at a scale Mnewphysics, not-too-far above 

a few Te V, is based on a mix of theoretical and observational evidence. 

1.5.1 Observational Evidence: Precision Cosmology 

Besides neutrino masses, an of the direct observational evidence for physics 

beyond the standard model is a result of precision cosmological tests that 

, have been performed recently; this evidence seems 'to point unequivically to 

the existence of cold dark matter and to dark energy, which together form 

95% of the mass-energy of the universe. Only 5% is composed of the baryonic 

matter and leptons which are described by the standard model. This evidence 

is robust and multi-faceted [190J: 

• Measurements of the cosmic microwave background radiation, the light 

emitted just before the universe became transparent to light, are best 

fit by a universe with 73% dark energy, 23% dark matter and 4% normal 

(baryonic) matter [63J . 

• High-redshift supernovae give a velo city profile of the universe in the 

past, and suggest that the acceleration of the universe is best fit by a 

universe which is composed of roughly rv 75% dark energy, 23% dark 

matter and 5% baryonic matter[64J. 
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• Dark matter has been known to be needed since the early 70s when 

Rubin and Freeman performed observations of galactic rotation curves 

[61]. The objects at the edge of all the galaxies surveyed have a much 

higher velocity than a simple count of the objects in it would suggest. 

Thus 'dark' matter is needed to make up the missing mass and allow 

the objects to have higher orbital velocities. 

• Simulation of mass clustering and galaxy formation in the early universe 

suggest that galaxies would not have formed without dark matter to 

provide additional gravitational pull in regions of high density, lending 

further credence to the existence of dark matter. 

• Nucleosynthesis correctly predicts the light element abundances. It 

predicts a baryonic mass density rv 5%, in agreement with the other 

methods, and leaves open the composition of the rest of the energy 

density of the uni verse. 

(For an excellent review with references, please see [191].) 

This evidence seems convincingly to require the existence of two addi­

tional constituents in the universe beyond what is predicted by the standard 

model: the universe seems to be dominated by dark matter and dark energy, 

which are only observed through their gravitational effects. Dark matter and 

dark energy differ in the way their energy densities scale as the universe ex­

pands: as the radius of a given region in the universe expands from T to aT 

the energy density of the dark matter falls as 1/01.3
: it behaves like a fiuid of 

cold massive particles. Dark energy behaves like a cosmological constant: as 

the uni verse expands, its energy density stays constant. 
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1.5.2 Theoretical Arguments: Hierarchies and Natu­
ralness 

The theoretical evidence for the incompleteness of the standard model is in 

the form of arguments about naturalness, and it is here that opinions (and 

estimates for the sc ale of Mnewphysics) diverge. A theory, or a parameter in a 

theory, is unnatural if extreme fine-tuning is required between independent 

parameters in order to pro duce a given result. An example of a finely-tuned 

theory is a condensed-matter system near its critical point; in a theory near 

its critical point correlations become arbitrarily long (which corresponds to 

a particle becoming nearly massless). This theory will appear unnatural 

because the natural scale for such a system is set by its density, p, the tem!: 

perature, T, or the inverse lattice spacing, a-l, while the mass of physical, 

propagating particles can be several orders of magnitude smaller. 

In a classical theory one is able to introduce two widely-separated scales 

and be done with it; while one may feel uncomfortable in doing so, it is 

hardly a disaster (buildings and ants are enormously different in scale). This 

issue of scales becomes a naturalness problem, however, when the stability 

of the hierarchy is threatened by quantum (or, in the critical theory ab ove , 

thermal) corrections. Thermal and quantum corrections tend to introduce 

the fundamental scales, corresponding to the lattice spacing and the like, 

into particle masses through renormalisation. Therefore in order to maintain 

the hierarchy not only does the large ratio of scales have to be introduced 

initially, it must be maintained, order-by-order, in perturbation theory. 

The fine tunings in the standard model coupled to gravit y are very severe. 

In the Higgs sect or retaining a Higgs mass rv Te V requires fine-tunings of 
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one part in rv 1015 and measurements of the cosmological constant put it at 

rv (1O-3eV)4, while the natural value for it is rv (l018GeV)4, a fine-tuning of 

one part in rv 1030 in energy. 

Higgs-Mass Hierarchy 

The fine-tuning of the Higgs mass arises because we believe there are phys­

ical propagating particles beyond those in the standard model at energies 

» Te V. We believe this is true because the standard model does not unify 

gravitational interactions, and, while it is possible to sensibly perform cal­

culations of general relativity coupled to the standard model, this theory is 

not UV co~plete. We believe there is a sequence of effective ~eld theories 

starting at or below the Planck scale which reduce at energies E « MPlanck 

to the standard model. 

As a toy-model of the Higgs-mass hierarchy problem, consider a scalar 

field, cp, of mass m coupled to another scalar, 'lj; of mass M » m: 

.c = _! (BCP? _ m
2 

cp2 _ ~ cp4 
2 2 4! 

_! (B'lj;)2 _ M
2 

'lj;2 _ .!L'lj;4 
2 2 4! 

_E. ('lj;cp)2 
2 

(1.40) 

We are going to integrate out the particle of heavy mass to obtain a low­

energy description valid at energies E « M, and we will see that doing so 

'destablises' .the mass of the cp: under renormalisation 6m2 
rv 1112

, so that 

in order to retain the hierarchy m « M between the masses a fine-tuning 

of the bare cp mass must be performed: m6 rv M 2 + m~hyS; to ensure that 

the physical cp mass is much smaller that M 2 the bare mass must have a 

piece much larger than mphys' If, e.g., M/m rv 1000 then ma must be tuned 
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to 1/10th of one percent. As stated ab ove , the hierarchy problem is that 

MPlanck/mHiggs rv 1015
. 

In or der to see this it is enough to calculate the effective potential for 

<jJ, whose effective mass is M 2 + p<jJ2, so that the effective potential after 

integrating out 'IjJ fluctuations is given by 

1 
-_ (M2 + p<jJ2)2 log [(M2 + p<jJ2)/ /1] 

647r2 

- - 64
1
7r2 [1 + 2 log M 2 / /12] M 2 <jJ2 + ... , (1.41 ) 

(we ignore powers of g). This shows that even if the bare masses of <jJ and 'IjJ 

are arranged so that m « M, quantum effects will tend to make m rv M. The 

problem with this is that in order to have physical masses m « M we must 

tune the bare parameters in the lagrangian order-by-order in perturbation 

theory so that mbare rv M, but with corrections on the order of mphys/ M that 

survive the caneellation. 

As we will describe later in more detail, supersymmetry (see appendix B) 

can mitigate this problem if is unbroken at energies above a Te V. Supersym­

metry imposes equality between masses of particles of opposite statistics. 

Sinee opposite-statistic particles enter into the effective potential with op­

posite signs, a caneellation is possible in the ab ove calculation, 'stabilising' 

the Higgs mass. Supersymmetry can be broken and still protect the Higgs 

mass sinee at very high energies supersymmetry-breaking is irrelevant. Thus, 

weak-scale supersymmetry (in which supersyrpmetry is still a good symmetry 

at energies much larger than the weak sc ale ) is the most popular candidate 

for a phenomenological theory valid at just-above-standard-model energies, 

sinee it allows higher-than-weak-scale energies to caneel in the effective po-­

tential, while hiding the superpartners from collider experiments by virtue 
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of their Te V -scale masses. 

While it is certainly possible [47] for the standard model to be finely 

tuned and to remain successful (once the parameter under question, like the 

Higgs mass, is measured no explanatory power is lost), or for supersymmetry­

breaking to be far above the weak scale, there is a wealth of circumstantial 

evidence that suggests that fine-tunings are the hallmark of new physics~ 

experience has taught that explanations do exist for the appearance of small 

numbers. The only known ways of taming hierarchies is through the intro­

duction of new symmetries. 

1.5.3 The Cosmological Constant Problem 

We will have much to say about the cosmological constant problem later in 

this thesis, but it is appropriate to pause here to describe it briefly in the 

context of hierarchy problems. 

The cosmological constant is a term in the gravitationallagrangian which 

is not forbidden by symmetry: 

(1.42) 

The cosmological constant, A, receives contributions from every mass scale 

in the problem as it is integrated out, 

(1.43) 

and sinee it is measured to be '" (10-3eV), much smaller than any other mass 

sc ale in physics, every naive quantum correction to it makes it unacceptably 

large. 
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The quantum cosmological constant problem and the Higgs-mass hier­

archy problem are actually (formally) related, both arising from the super­

renormalisability of the operators encoding the quantities in question; since 

both the Higgs mass operator and the vacuum energy are positive mass­

dimension operators, renormalisation introduces positive powers of the cutoff 

in the counterterms associated with them. For a cutoff on the order of any 

sc ale above the electroweak symmetry breaking scale (such as the G UT scale 

rv lO16GeV or the Planck scale rv l018GeV) a fine-tuning problem develops. 

This fine-tuning problem is a requirement that the counterterms be 'tuned' 

to the right value, order-by-order in perturbation theory (to one part in 

rv 1082 in the worst-case scenario) in order to achieve a physically acceptable 

cosmological constant. (The cutoff need not have anything to do with the 

size of expected quantum corrections from higher-energy physics; one should 

instead speak of integrating out out masses of heavy particles [7, 6]. This use 

seems to be standard in this context and is harmless here, since the masses 

of heavy particles really will be on the order of the cutoffs being described, 

as the cutoffs are physical cutoffs having to do with the introduction of new 

physical degrees of freedom.) 

1.5.4 Symmetry and Fine Tuning 

One does not have to look far to see fine-tunings. For example, the masses 

of the photon and graviton are zero. Their masses are nominally subject 

to the same difficult-to-tame corrections as the Higgs, and so it is a puzzle 

why they remain massless. The resolution here is that a symmetry protects 

the masses; gauge invariance forbids the appearance of mass terms for these 
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particles, ensuring the canceIlation of aIl contributions to their masses. 

The pion mass is another example of an apparently finely-tuned dimen­

sionful parameter l1
. The pion mass is rv 100MeV, while the QCD scale (be­

low which quarks condense into mesons like the pions), is rv 500Ge V. This 

(relatively mild) fine-tuning of order one part in 103 is also explained through 

symmetry arguments: The pion is a pseudo Goldstone boson of the nearly 

massless u and d quarks; a risidual approximate chiral symmetry protects 

the pion mass from aquiring arbitrarily large quantum contributions [198]. 

In the next section an example is presented in which a hierachy between 

a massive and massless scalar occurs. As in the case of the pion system, this 

hierarchy is stable (natural) because of a symmetry. The massless mode is 

acutaIly a Goldstone boson of a broken symmetry. The symmetry protects 

the G B from receiving mass-corrections to aIl orders in perturbation the­

ory. This exhibits clearly the relationship between symmetries and natural 

hierarchies in effective field theories. 

1.6 The Strength of Symmetries 

The only known ways to tame hierarchies with standard four-dimensional 

effective field theory techniques is through symmetries. In this section we 

present an example of a symmetry controlling a hierarchy, and briefiy present 

sorne symmetries that have been used to try to solve hierarchy problems in 

the standard model. 

llThe pion is a condensate of quark-antiquark pairs. It is the lightest particle in low­
energy QCD, and is thus ubiquitous. The explanation for its small mass [2], especially 
within the framework of field theory [5], remains one of the crowning acheivements of field 
theory, and represented a significant step towards the modern understanding of effective 
or phenomenological lagrangians. 
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Figure 1.1: Tree-Ievel graphs contributing to a-a scattering in the full theory. 
Solid lines are as and dashed lines are ps. 

1.6.1 An Example 

In this section we present a model in which there is a hierarchy between a 

massless field and a massive one that is maintained to aIl orders in pertur­

bation theory because the massless field is a Goldstone boson. 

Consider a very simple model [8] with a single complex scalar field, cP, of 

mass m, which enjoys a symmetry under cP ---+ ë J cP 

(1.44) 

One may exp and this in the two real degrees of freedom about the semiclas­

sical minimum of the potential, cP = (v + p /.J2) + ia / .J2: 

.c = 1 2 1 )2 -2(OP) - 2(oa 

À ( 1 )2 4 V2vp + 2(p2 + a2! (1.45) 

which shows that the p-mass is Àv2
, and that classically the a is massless. 

The calculation of a-a scattering at tree-level in this theory requires the 

computation of the three diagrams in fig. 1.1. After computing the amplitude, 

and after expanding in powers of momentum over the p-mass, M = Àv2
, we 
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Figure 1.2: Examples of one-Ioop graphs for (J-(J scattering, including the 
exchange of (JS and ps in the full theory. In this channel there are a total of 
8 graphs. Taking into account crossings gives 24 graphs total. 

find that the amplitude goes like P6M' where PCM is the centre-of-mass energy. 

In fact if one proceeded to compute loop- diagrams such as those in fig. 1.2 

one would find the same behavior to aIl orders in perturbation theory. At 

low energies the scattering of (J particles is always suppressed by powers of 

momentum over M. 

This is quite a general statement, but it is not at aIl easy to see in the 

present setup. The reason that this general statement is so hard to see is the 

presence of the extraneous p degrees of freedom. Since we are only asking 

about pro cesses with (J particles in the 'in' and 'out' states, and since we are 

only asking questions far below the mass of the p, it should be possible to 

parametrise the effects of p particles in an effective low energy theory. 

One way to proceed is to write the most general lagrangian for (J fields 

with arbitrary coefficients in front of each of the operators. We are allowed 

ta write terms which are local, which are Lorentz-invariant, and which are 
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polynomial in fields 12
: 

(1.46) 

The powers of Mare inserted to ensure that the coefficients ai, bi and Ci are 

pure numbers. 

It turns out that our tree-Ievel calculation of the amplitude, above, is 

enough to simplify the lagrangian, to order p4 / M 2 , to only the following 

terms: 

(1.47) 

Notice that an = 0 for n < 4. We find this out the hard way by calculating a­

a scattering with this lagrangian and mat ching coefficients to the amplitude 

calculated with the full lagriangian. If we did not have access to the full 

lagrangian to begin with, but knew that we were interested in low-energy a 

scattering, we would start with 1.46 and perform experiments to obtain the 

values of the coefficients. 

Any calculation of àn odd number of as scattering will find the amplitude 

to be zero. This is because the high-energy theory enjoys a symmetry under 

12 We are assuming that a is close to being a free-field, as it was in the original theory, 
eq. 1.44. For small fluctuations, and away from singularities in field variables, one may 
always expand in fields about the semi-classical minimum, in which case the quadratic, 
free-field part remains the most relevant part at low energies. 
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a -----+ -a, and this symmetry is not broken by integrating out p, and so 

survives to the low-energy theory. Given this additional piece of information 

at low energies the lagrangian ansatz can be simplified: 

(1.48) 

This can then be further reduced (more straightforwardly) to eq. 1.47 through 

experiment or comparison with the full calculation. 
, , 

Now we are able to see the enormous power of effective field theories. By 

knowing only about a discrete symmetry of as along with Lorentz-invariance, 

we were able to restrict the form of the lagrangian to the much simpler 

eq. 1.48. There are a number of puzzles in the formulation presented above, 

however . 

• Why is the a massless? Does it remain so even after including loop­

corrections due to as? We saw above that hierarchies between scalar 

masses are difficult to maintain. Why is the a mass much smaller than 

the p mass? 

• How do we see that all the anS are zero? The all-orders result quoted 
.. . 

in the previous section suggests that no non-derivative couplings of a 

are allowed. 

We can exhibit both of these properties in general: there exists a massless 

degree of freedom in the originallagrangian 1.44, to all orders. This massless 
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degree of freedom couples only through derivative interactions, to all orders. 

Both of these results are due to (and are protected from quantum correc­

tions by) a symmetry [5]. We can exhibit them by explicitly representing the 

symmetries of the original lagrangian in the fields. The original lagrangian 

contained a U(l) symmetry which was broken by the vacuum (the semi­

classical expansion of fields included a constant part, v). We therefore split 

the field into a degree of freedom which carries the broken U (1) symmetry 

explicitly, and one which is orthogonal: 

<p = r(x)ei8(x) (1.49) 

Thi~ choice of field variables is guaranteed to succeed d1fe to the Goldstone 

theorem [5]. O(x) explicitly carries the U(1) symmetry through 0 ---+ O+const. 

The original lagrangian in these field variables becomes 

.c = -0/-Lro/-Lr - r2o/-LOo/-LO - ~ (v2 _ r2)2. 
4 

(1.50) 

Even once we expand r about its semiclassical minimum r = v, 0 only ever 

appears accompanied by derivatives. Since this implies the symmetry 0 ---+ 

o + const, integrating out the r-field (of mass M) has no effect on this. 

Therefore the effective theory of Os can only contain terms 

Since 

n 

a 
0= arctan--, 

v+p 

(1.51) 

(1.52) 

every instance of a is accompanied by a derivative. This proves that a is 

massless and that it decouples at low energies, its interactions being sup­

pressed by powers of momentum. 
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As promised, the number of terms that one keeps, in this example, is 

governed entirely by the accuracy with which one wishes to calculate (J-(J 

scattering. Assuming in rv 0(1), and for energies up to E M, one would 

achieve O(é) accuracy in (J-(J scattering with only the (8(J)4 term. higher­

order scattering can be computed as weIl; if one wanted to also account for 3-(J 

scattering one could include the terms (8(J)6, (J2(8(J)4, (J4(8(J)2. These terms 

would allow corrections to (J-(J scattering to be calculated in the form of loops 

of internaI (JS, entirely within the low-energy theory. In this way the effects of 

loops form high-energy phenomena, the ps, is completely incorporated in the 

low-energy theory, while the low-energy loops of (JS remains to be performed. 

* * * 
This example shows how powerful the knowledge of symmetries is in re­

stricting the kinds of terms that are allowable in an effective theory. Similarly 

powerful results can be had for real-world situations, such as electrodynamics 

and general relativity. 

In the modern view of quantum field theories, in which they are expres­

sions of symmetry principles on field content to derive S-matrices with the 

correct analyticity properties, it is a simple exercise to write down electro­

dynamics (and general relativity), and to justify their form [15]. 

Suppose we wish to write a theory for a massless spin-1 particle. It turns 

out that the tensor representations of the spin-1 fields are the self- and anti­

self-dual twoforms: 

p(+) 
{LV 

and p(-) 
{LV (1.53) 

Parity invariance requires them to be joined into a single two-form P. If one 

tries to construct a theory of such a field one finds that the forces exchanged 
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by Fare not long-ranged and do not correspond to any known force. There 

exists a pseudo-representation of the spin-1 field, however, in terms of a 

vector field, Aw Under Lorentz transformations, 

(1.54) 

for sorne function w constructed form the polarisation vectors and creation/ annihilation 

operators making up A. Therefore, under a Lorentz transformation, A un-

der go es a gauge transformation. The only way to salvage Lorentz invariance 

in this theory is to again construct a two-form, but this time in terms of the 

underlying A field: 

F=dA (1.55) 

and to make the whole theory gauge invariant. The lowest-order gauge­

invariant couplings of A are 

,C = -~ FJ-lvpiJ,v - AJ-lJJ-l 
4 

where JJ-l is required to satisfy 

(1.56) 

(1.57) 

in order for the theory to be gauge invariant. Variation of the above la­

grangian with respect to A yields the Maxwell equations. A similar (but 

more involved) analysis for a massless spin-2 particle yields general relativ-

ity [15]. 

1.6.2 Symmetries and the Higgs-Mass Hierarchy Prob­
lem 

The experience with symmetry's control of hierarchies, as exhibited in the 

toy-model ab ove , has led to extensions of the standard model through the 
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addition of symmetry, a few of which are listed below. The essence of these 

extensions are that either the Higgs field is not a fundamental scalar, so 

. that its dynamics are radically different at high energies (thereby protecting 

the scalar mass by unasking the question), or it is a fundamental scalar (at 

least at energies a few times a Te V) and there are symmetries amongst other 

particles that cancel the contributions to the Higgs mass from UV particles 

(supersymmetry, as mentioned already, do es this) . 

• Technicolor. Technicolor theories [49] do not have a Higgs field to 

break the electroweak symmetry group. These theories depend on 

an additional confining gauge group, added to the standard model, 

which dynamically breaks 8U(2) x U(1) --+ U(1). Dynamical symme- ' 

try breaking occurs when an asymptotically free theory runs to low 

energy, the symmetry breaking occuring when the coupling becomes 

rv 0(1). Since the running of the coupling is logarithmic, exponential 

hierarchies between the electroweak and GUT (or Planck) scales can 

easily be accomodated . 

• Weak-scale supersymmetry. Supersymmetry is a symmetry which 

relates the bosons and fermions in a theory. As described in ap­

pendix B, supersymmetry seems to be the most general notion of sym­

metry which is consistent with the idea of a scattering matrix and the 

'motherhood' principJes of quantum mechanics. Supersymmetry can 

help stabilise the weak scale because the relations it imposes between 

fermions and bosons ensures that their contributions in loops cancel. 

Weak-scale supersymmetry [3] enforces relations amongst the masses 

and couplings of fermions, at scales above the weak scale, ensuring 
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the cancellation of their contributions at high energies to the Higgs 

mass, thus relating the supersymmetry-breaking and the electroweak 

symmetry-breaking scales and stabilising the Higgs mass . 

• Little Higgs mechanism. The litt le Higgs mechanism [48] uses 

a large number of gauge groups to mock up a fifth dimension whose 

'radion' is the Higgs (the Higgs remains light because it is a pseudo 

Goldstone boson); 

• Extra-dimensional models. Extra-dimensional models are special 

because they do not solve the hierarchy problem through symmetries 

(at least directly). They solve the hierarchy problem by lowering the 

fundamental gravitational scale, which is extra-dimensional, to close to 

the four-dimensional weak scale. The usual four-dimensional Planck 

sc ale is reproduced through geometrical effects. 

These models come in two varieties. Warped extra dimensions mod­

els [66, 67] solve the hierarchy problem by introducing an exponential 

metric function, allowing the four-dimensional Planck scale and the 

weak scale to be exponentially related without the direct addition of 

artificially large numbers. Large extra dimensions models [136] relate 

the extra-dimensional Planck scale and the four-dimensional Planck 

scale through a very large geometrical volume factor arising from the 

compactification e.g. from six dimensions to four. 

Each of these proposaIs for extending the standard model has strengths 

and weaknesses. It seems that technicolor theories are probably strongly 

disfavoured because the simplest models have fiavour-changing neutral cur-
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rents, and models which don't are so complicated as to lose much of their 

initial motivation [198]. Little Higgs theories are an exciting new direction 

for study and remain viable, testable extensions of the standard model. We 

will not have any more to say about them, however, and the reader is re­

ferred to the extensive literature for further information [48]. One other 

large body of literature with a great deal of interesting work about which 

1 will have little or nothing to say is the literature associated with Grand 

Unified Theories (GUTS) [69]. These theories are typically supersymmetric 

(but see [70]), but are always based on a group like 50(10) or 5U(5) which 

has as a subgroup the standard model gauge group 5U(3) x 5U(2) x U(l). 

The fundamental gauge group is broken at sorne higher scale (the GUT scale 

rv 1Q16GeV) to 5U(3) x 5U(2) x U(l). These theories are motivated by the 

convergence of the three running couplings in the supersymmetric standard 

model at this energy. Please see [69] for modern reviews and references. In 

the next two subsections 1 briefly de scribe weak-scale supersymmetry and 

brane-world models as solutions to the hierarchy problem. 

1.6.3 Weak-Scale Supersymmetry 

One of the most actively studied extensions of the standard model is weak­

scale supersymmetry, or the supersymmetric standard models. A search for 

citations of the paper in ref. [42] alone showed over 2600 results on the high 

energy 'physics abstract service, SPIRES 13. This particularextension of the 

standard model is popular because a relatively simple statement of symmetry 

has far-reaching and beautiful consequences (see appendix B for a briefreview 

13http:j jwww.slac.stanford.edujspiresjhep 
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and a presentation of my notation), and because supersymmetry seems to be 

an integral part of a fundamental theory of gravit y (string theory) [53, 54]. 

For an excellent review with references, please see [3]. 

The primary reason for the popularity of weak-scale supersymmetry is 

that it stabilises the Higgs mass. The supersymmetric standard model seems 

to come with a price, however, since in it one loses the natural explanations 

for baryon and lepton conservation, and the supersymmetric standard model 

has problems with flavour-changing neutral currents; in the standard model 

the suppression of baryon, lepton and FCNCs all arise as consequences of 

accidentaI symmetries. This can be fixed by imposing an additional discrete 

R-parity, which in addition provides a stable dark matter candidate which is 

lacking in the standard model. There are, however, a litany of other prob­

lems with the standard weak-scale supersymmetry picture, including large 

dimension-five operators of the form qqijl, which contribute to proton decay, 

new flavour violations in the dimension-four gaugino-sfermion interactions, 

and large superpartner contributions to (g - 2)J-t and b ----+ 8"'(. [47]. Of course, 

these problems can also be viewed as an opportunity, since experiment has 

begun to severely constrain the parameter-space of the supersymmetric stan­

dard model, and the LHC is likely to verify or exclude it entirely in the next 

few years. 

1.7 Strings, Branes and Extra Dimensions 

Partly due to the problems of weak-scale supersymmetry as a method of sta­

bilising the Higgs mass, partly due to the influence of string theory, and partly 

sim ply to explore the possible solutions to the problem, extra-dimensional 
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models were proposed and a fiurry of activity on them began in 1998-1999. 

These are the models with which, for the most part, the rest of this thesis is 

coneerned. 

Extra dimensions were not new; string theory had been known to require 

26 dimensions (the bosonic string [53]) or 10 dimensions (the supersymmetric 

string [54]) for a number of years. These were usually hidden through the 

compactification of the extra dimensions. The extra dimensions beyond the 

usual four were made small, of radius r rv 1/ MPlanck. Sinee an energy on the 

order of MPlanck is required to probe this distance, the extra dimensions are 

effectively hidden from any future experiments. 

The bulk of the work on compactification of string models occured in 

attempting to construct vacua of string theory (solutions to the string equa­

tions of motion) containing N = 1 supersymmetry, so that the supersym­

metric standard model was reproduced at energies « Mplanckinheriting the 

problems of the supersymmetric standard model, the major problem the 

community seemed to have with this programme was the apparently infi­

nite number of suit able vacua, and that, although one could come very close 

to finding the standard model particle content in the low-energy models, 

no concrete solution with SU(3) x SU(2) x U(l) spontaneously breaking to 

SU(3) x U(1) and with three families of leptons and three families of quarks 

was found. It seems that the seeming arbitrariness of the solutions found 

le ft no hope of finding an explanation -for three families and the particular 

pattern of standard model symmetries in any case. 

(It can be proved [56] that the only solutions to the superstring equations 

of motion which result in fiat four-dimensional N = 1 supersymmetric spaee 
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were solutions with constant dilaton, no fiux and a product manifold M4 x 

CY3, where CY3 is a Calabi-Yau three-fold, a three complex-dimensional 

manifold of SU(3) holonomy which is Ricci fiat. There are an infinite number 

of Calabi-Yau manifolds, but only a few known metrics. This doesn't hamper 

string model-building much since the particle content, Yukawa couplings and 

coupling constants depend only on topological quantities of the CY like the 

Dirac index and the Betti numbers [11].) 

1. 7.1 D-branes and Brane-Worlds 

String theory, and string model-building experienced a revolution upon the 

discovery of D-branes [52]_ within the spectrum of string theory. D-branes 

are, nominally, surfaces describing the position at which Dirichlet boundary 

conditions are satisfied by open strings; a D-brane is a place where open 

strings end. The fundamental insight of ref. [52] (see also [50, 51] for ear­

lier work on extended objects by the same author) was that these objects 

carry Ramond-Ramond charge, thus explaining the source for these hereto­

fore mysterious gauge fields, and that these objects are dynamical, despite 

their origins as static boundary conditions. 

D-branes carry on their world volume a supersymmetric gauge theory, the 

Chan-Paton degrees of freedom (gauge fields) at the end of the strings. Thus, 

from one point of view, particles are trapped on a brane, with only closed­

string (gravitational) degrees of freedom able to probe the space between 

D-branes. 

Brane-world models abstract the ide~ of a D-brane away from the partic­

ular string theory context. These surfaces carry tension, thus sourcing the 
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Einstein equations, and are assumed to trap the standard model particles on 

them. 

D-Branes 

A p-brane is a p + I-dimensional submanifold with p spatial directions on 

which open strings can end with Dirichlet boundary conditions. Open strings 

carry at their ends gauge degrees of freedom which induce a (super) Yang­

Mills theory on the world-volume of the brane as the ends move tangentially 

along the brane. In this way the D-brane 'traps' a Yang-Mills theory on its 

world-volume. 

Because string theory is a dynamical theory of gravit y (read geometry) the , , 

D-brane does not remain static, but aquires dynamics of its own. Accounting 

also for the Yang-Mills string-ends, one obtains the Dirac-Born-Infeld action, 

(1.58) 

where WV me ans the world-volume of the brane, X M are the coordinat es 

of the brane, F is the field-strength of the Yang-Mills field, <P is the dilaton, 

which controls the string coupling strength, and the dots mean extra terms 

which we will not worry about here. (For very nice reviews with references 

the reader is invited to read refs. [55].) Expanding the action using log det = 

tr log, we get 

(1.59) 

We see that we obtain the bosonic part of a Yang-Mills action. String models 

can be made which add matter of various sorts [59]. 
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D-brane actions have a second part, their coupling to Ramond-Ramond 

(RR) charges. 14 RR fields are p + 1-forms, and couple to branes in the same 

way the electromagnetism couples to particles-by coupling to the branes' 

worldvolumes: 

S = -q f Cp+} (1.60) 
Jwv 

lndeed the RR charges provided the first clue that D-brane-like objects should 

exist in string theory; it was a mystery to what RR charges coupled for sorne 

time [52]. 15 This coupling is analogous to the electromagnetic coupling to 

a particle, 

J 
dXM 

S = -q dTAM(X(T))~dT (1.61 ) 

where X (T) is the world-line of the charged particle. 

D-Branes have been instrumental in understanding the basic structure of 

string theory. lndeed, the use of the singular (string theory, instead of string 

theories) in the previous sentence is due to D-branes; before the 'second string 

revolution' [58] there were five string theories which seemed to have no real 

connection to each other. D-branes allowed the discovery of dualities between 

these five theories; the current understanding is that each of these string 

theories represents a perturbative description around a particular vacuum of 

14This repetition is not merely a communal stutter in the string community; open strings 
have two ends, each of which may have either of two conditions imposed on them. These 
two conditions were discovered by Ramond and by Naveau & Schwarz, so strings can be 
RR, NS-NS, and chiral strings can be R-NS or NS-R. 

15For the indicially challenged, the above action is giveu. by 

where TJ.L are coordinates on the D-brane,0J.L == O/OTJ.L, gind is the induced metric 
gMN0J.LXMoVXN, and E is a tensoT'. 
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a single background-independent theory, which has been given the monicker 

'M-theory' .16 

The construction of true D-brane models within string theory has ex­

perienced huge advances; there are intersecting D-brane models that can 

come very close to producing the standard model degrees of freedom [59]. 

The huge leap forward for extra-dimensional model building, however, oc­

cured with the introduction of brane-world models, in which the idea of 

a submanifold on which the (non-gravitational) standard-model degrees of 

freedom could be trapped was abstracted away from the very specific string 

setting; these objects, termed branes, do not necessarily share any of the 

very special properties of real D-branes, such as partially broken supersym­

metry [50, 51, 55], sourcing Ramond-Ramond fields [52], or having a super­

Yang-Mills theory [53, 54] on their world volume, they are simply surfaces in 

spacetime on which particles may be trapped. 

1. 7.2 Brane Worlds 

The discovery of branes in string theory was enormously liberating to phe­

nomenologists and to theorists looking to explain the peculiarities of the 

standard model. For many years the only really viable extensions of the 

standard model were GUTs, the MSSM and compactifications of various 

stripes, which, while very rich and promising subjects, as described above 

had many problems of their own-; The most notable amongst these problems 

for the present discussion is the problem of naturalness or hierarchies, about 

16'M' is a very versatile letter in English: 'Meta', 'Mother', 'Matrix' and many other 
words have been used when the occasion seems appropriate. The author reserves judge­
ment on the profundity of the choice of 'M' until such profundity can be proved to be 
language-independent. 
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which we have already said much. Brane world models' raison d'etre is to a 

large extent to solve the hierarchy problems. 

Brane-world models use a geometry consisting of standard model parti­

des trapped on a three-brane (a three-spatial-dimensional submanifold which 

sweeps out a 3+1-dimensional world volume). The simple st braneworld mod­

els will have an action of the form 

s = r v=gM;+n R + other bulk fields + L Ii r (i)J-gind (1.62) 
J~~ i J~ 

where gravit y and possibly other bulk fields can propagate in the bulk. A 

specifie brane-world model solves the equations of motion arising from this 

lagrangian and deriv.es the effective four-dimensional description. 

There are two quite different fiavours of braneworld models: those em­

ploying warped internaI dimensions (Randall-Sundrum [66, 67] models) and 

those employing large extra dimensions ('ADD' [136] models), although there 

exist hybrid models. Both types of model employ the geometry of the 'bulk' 

(the directions in space perpendicular to the foliations in which the branes 

are embedded) to help solve the hierarchy problems on the 'branes', where 

the standard model is trapped. 

The simple st warped models are five-dimensional [66, 67] 

(1.63) 

and exploit the exponential met rie factor (the 'warp factor') 

W rv exp [-klyl]' (1.64) 

induced by the Israel junction conditions in the presence of a brane-like 

singular sources at y = 0, 1. Because it is the induced metric that sets 
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the scale for masses, the mass sc ales at the y = 1 brane are exponentially 

suppressed relative to their bare values: 

-k 
mphys = e mbare (1.65) 

Therefore the fundamental (extra-dimensional) mass scale can be the Planck 

mass, 1Q19GeV, with a 'TeV' brane positioned at y = 1. The hierarchy 

between the Planck mass and the weak scale in this picture is a result of 

the exponential form of the warp-factor, and no large numbers are required, 

making the hierarchy 'natural'. This mechanism is exhibited in detail in 

section 4.2 

Large extra dimensions models [136] solve the hierarchy problem by hav­

ing very large-volume (possibly even fiat) internaI dimensions. Upon com­

pactification the lower-dimensional Planck scale, MPlanck, is related to the 

fundamental (higher-dimensional) scale of gravit y, M fund , through the geo­

metric relation 

M 2 VM2+n 
Planck = fund (1.66) 

where n is the number of extra dimensions and V is the volume of the extra 

dimensions. If V M fund » 1 then the fundamental scale of gravit y can be 

much lower than the observed (effective) four-dimensional Planck-scale. We 

will develop these models more fully in section 4.3. 

1.8 Roadmap 

In the rest of this thesis we develop the point of view that if we retain the 

principles of effective field theories, and if we account for evidence from string 
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theory that there are extra dimensions, then we are led to construct brane­

world models to try to explain the cosmological constant problem. 

We will de scribe sorne of the failed four-dimensional attempts to solve 

the cosmological constant problem, and present sorne posited solutions to 

the cosmological constant problem which are from without the standard ef­

fective field theory paradigm. Restricting ourselves to effective field-theory 

descriptions forces us to consider extra-dimensional theories. We show that 

standard compactifications of extra-dimensional theories are not helpful in 

solving the cosmological constant problem because the compactification sc ale 

is too high. 

We then describe brane-world models and show that if such a model were 

to contain a certain set of properties (a dilaton-like scalar coupled confor­

mally), then these solutions can naturally pro duce fiat-space solutions. The 

rest of the thesis explores models for doing so, and tries to identify the fea­

tures such a solutions would need to possess. 

As we will see in the next chapter, there have been many failed attempts 

to solve the cosmological constant problem. Sorne of the failures have been 

relatively subtle. It is not the purpose of this thesis to provide a final answer 

to the cosmological constant problem, but to explore one possibility, and to 

point out that this ide a has not failed in at least sorne of the ways in which 

it could have. The cosmological constant problem is sufficiently hard that 

this, in my opinion, is already progress. 
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Chapter 2 

The Cosmological Constant 
Problems 

The effective the ory philosophy can also be used to understand gravitation 

even though it is nonrenormalisable [13, 15, 19, 20, 9]. Because gauge in­

variance and masslessness are so closely related in quantum field theory, the 

assumption of a massless spin-two boson implies general covariance of the 

theory. General covariance in turn can be used to construct the relevant 

invariants [15], showing that the theory must be constructed from the cur­

vature tensors of a metric function. This guarantees that the usual rules 

for constructing the Einstein-Hilbert lagrangian and for coupling matter to 

gravitation by covariantising derivatives is generally valid, and that the usual 

power-counting arguments allow us to parameterise low-energy gravitational 

effects [9]. 

In order to construct the Einstein-Hilbert lagrangian, therefore, we write 

down an of the invariants that can be constructed from the metric and its 

derivatives, organising terms by their derivative-suppression: 
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where a{ are dimensionless couplings for terms with i derivatives, and M 

is the relevant mass-scale of gravitation. As is usual, terms with the least 

derivatives are the most relevant at low energies, so we expect to obtain a 

good approximation to low-energy gravitational dynamics with the Einstein­

Hilbert lagrangian. Performing the matching to the Newtonian case est ab­

lishes M 2 
- M~lanck = 8nG N, where G N is the usual gravitational constant, 

so M t'V 1018GeV: 

(2.2) 

All of our experience with effective field theory-techniques suggests that ao '" 
, , 

0(1). The cosmological constant problem is that ao rv 10-12°. 
As discussed previously, there are two aspects to any fine-tuning prob­

lem: the initial imposition of the finely-tuned relationship, and the running 

of this relationship with energy. The cosmological constant is tuned in both 

of these senses: semi-classically it must be very finely-tuned to ensure can­

cellations between different contributions to the vacuum energy (e.g. from 

various particle-physics phase transitons), and quantum mechanically the 

cosmological constant is a disaster because running to low energies destroys 

any fine-tuning peformed at high energies. This last observation, that the 

cosmological constant problem is essentially a failure of dimensional analysis 

at very low en~rgies-energies even below the electron mass-is w4at makes 

the cosmological constant problem so difficult. In the absence of symmetries 

such as supersymmetry, if there is any interesting physics at all at energies 

of the order of m, then the cosmological constant receives a contribution of 

the or der of m 4 , rendering even the electron a catastrophe. 
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There have been many attempts at solving the cosmologie al constant 

problem, all of which seem essentially to fall into one of five categories, the 

original four identified by Weinberg [27, 122], plus a few new ide as which 

involve modifying gravit y at extremely low energies. 

1. Self-tuning mechanisms. Adjustment mechanisms, or 'self-tuning' 

mechanisms, couple scalar fields to gravit y in such a way as to cancel the 

cosmologie al constant when the scalars are at the equilibrium value of 

their potential. Weinberg gave a sort of 'no-go' theorem [122] in which 

he showed that this mechanism cannot work in four dimensions without 

fine-tuning of sorne sort, and in any case is invariably destroyed by any 

four-dimensional quantum corrections. 

2. 'Deep symmetries', such as supersymmetry [199], which constrain 

or control the contributions to the cosmological constant from the 

usual catastrophic sources [40]. These models seem either to contradict 

particle-physics experiments because the symmetry is unbroken at the 

milli-electron-volt scale, or, if the symmetry is broken at a phenomeno­

logically viable energy, do not pro duce a sufficiently small cosmologie al 

constant [122]. 

3. Quintessenece. The quintessence field couples to gravit y and matter 

in such a way as to make the cosmologie al constant small at late times 

because it tracks the matter energy-density [118, 119, 120, 121]. Thus 

quintessence attempts simultaneously to solve the 'old' cosmologie al 

constant problem, of why the cosmologie al constant is so small, and the 

'new' cosmological constant problem, of why the vacuum energy den-
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sity and the matter energy-density are the same now [27]. Quintessence 

models tend to suffer the same catastrophic contributions from quan­

tum corrections as a plain vacuum energy density [122]. 

4. Anthropic Considerations. The anthropic principle states that the 

values of the constants of nature are preconditioned by the critereon 

that someone exist to measure them. Anthropic models of the cos­

mological constant focus on various ways of instantiating a probabilis­

tic framework, either through vacuum-to-vacuum transitions through 

wormholes [31], by using a four-form field to soak up the vacuum en­

ergy [35, 34], or through the string 'landscape' [32] (and many more­

see the references in [32, 34] for other attempts). In any case, by 

conditioning the value of the cosmologie al constant on the observation 

that galaxies have formed, it has been estimated that the probability 

for the occurrence of the present value of the cosmological constant to 

be on the order of 10% - 15% [29]. 

5. Infrared Modifications of Gravit y are generally new ideas, inspired 

by the likes of holography /black hole entropy [25] and extra dimen­

sions [147]. These proposaIs hinge on lowering the cutofffor the relevant 

gravitational physics to rv 1O-3eV so that the cosmologie al constant is 

naturally of the observed order. 

2.1 Statement of the Problem 

There are actually two 'old' cosmological constant problems, the problem of 

why the cosmologie al constant is classically fine-tuned to be small, and the 
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problem of how this fine-tuning is maintained in the presence of quantum 

corrections. (There is also the iwhy now' problem of why the cosmological 

constant vacuum energy is just now approximately the same as the matter 

energy density in the universe. We will briefly mention this problem in 

relation to our model and quintessence in a later chapter.) 

2.1.1 Classical Fine-tuning 

The classical cosmological constant problem is a fine-tuning problem, re­

quiring extraordinary cancellations between completely unrelated contribu­

tions to the vacuum energy. Consider the contribution of the electroweak 

symmetry-breaking transition to the vacuum energy. The gravity-Higgs ac-

tion is given by, 

(2.3) 

but the cosmological constant which affects cosmic evolution is not Ao, it is 

the cosmological constant obtained by integrating out all fields with masses 

greater than the Hubble scale, since this is the relevant scale for cosmology. 

Semiclassically, the correct low-energy cosmological constant is obtained by 

evaluating the Higgs-part of the action at its minimum, 1"Çb12 = /12/,\, so that, 

ignoring fluctuations in 4;, 

J [M; ( 1 /14)] s= ~ -R- Ao--- . .. 2 2 ,\ 
(2.4) 

An enormous fine-tuning is required between the bare cosmological constant, 

Ao, and the vacuum energy of the higgs background to pro duce Ao - /14 /2,\ ~ 

(lO-3eV)4. Since the Higgs mass is /12/,\ rv (lQOGeV)2, we require Ao -
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~ (100GeV)4 t'V (l0-3eV)4, representing a fine-tuning of order one part in 

,).1/41014 of the required valued of Ao. 

This problem is exacerbated by the many such phase transitions in the 

history of the universe, each of which contributes to the bare vacuum energy 

to produce the low-energy cosmological constant that we observe; there is 

presumably a contribution from QCD hadronisation, which occurs at AQCD t'V 

500GeV, from supersymmetry-breaking if such a thing occured, at Msusy ;::: 

Te V, from baryogenesis, etc. Each of these transitions contributes to the 

cosmological constant, so that 

A t'V Ao ± A~CD ± Mtusy + ... , (2.5) 

which either requires Ao to be very large in the ultraviolet-and to have 

precisely the right value to cancel all of these contributions--or requires the 

individu al contributions to (at least partially) cancel with alternating signs. 

If only the classical fine-tuning described above was required to explain 

the smallness of the cosmological constant then perhaps it would not present 

such a difficult puzzle. The further problem with the cosmological constant is 

its enormous sensitivity to the details of quantum ultra-violet physics which 

destabilises any classical fine-tunings one attempts to impose. It turns out 

that even if all of the phase transitions are somehow cancelled, physics at the 

electron mass which is well-understood ruins the finely-balanced value of the 

cosmological constant. 

2.1.2 Quantum Corrections 

The cosmological constant problem is difficult because it is a low-energy 

problem, and it is a low-energy problem because even if the cosmological 
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constant is made small at sorne high scale, it do es not remain small as we 

descend to lower scales. For example, let us consider the very well-understood 

physics of the electron, muon and photon. Even if we manage to explain the 

smallness of the cosmological constant just below the muon mass, integrating 

out the electron to one loop leads to a cosmological constant too large by a 

factor of 1036 . 

Consider the Wilsonian effective action for a particle-physics model (for 

simplicity a scalar field of mass m « MPlanck) coupled to gravit y and valid for 

energies below a cutoff Auv with m « Auv « MPlanck. Imagine integrating 

out physics above sorne scale J1 with m « J1 « Auv and fine-tuning param­

et ers to ensure that the mass continues to satisfy m « Auv, and to ensure 

that the renormalised vacuum energy A «Atv. This renormalisation step 

cancels all contributions to the cosmological constant from energies between 

J1 and Auv· 

Now let us pass to very low energies by integrating out the scalar field 

entirely, to be left with an effective low-energy theory of gravit y alone. Be­

cause we have renormalised away the contributions to the vacuum energy 

from energies between J1 and Auv, only sc ales between J1 and m contribute. 

But now integrating out particles of spin Si with NJi) degrees of freedom 

leads to a contribution [40] 

8V = ~ N(i) (- )28i m110g m; 
~ d 641[2 t J12 ' 

t 

(2.6) 

where i runs over particles, of spin Si and mass mi, and Nd i
) counts the 

number of real degrees of freedom. Thus, the vacuum energy receives a 
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contribution 

(2.7) 

from integrating out particles of mass m. Regardless of what renormalisation 

and fine-tuning we performed at high scales, low sc ales contribute to the 

cosmologie al constant. 

This shows vividly what a problem the calculation of the vacuum energy 

density is: even the electron-a very low-energy particle by particle-physics 

standards-gives a contribution to the vacuum energy density that is too 

large by a factor of (109)4. Since we believe we understand law energyelectro­

dynamics very well, this is an enormous failure; even if we somehow solve the 

problem at high energies where we can 'add new, as-yet unmeasured physics 

to our heart's content, we cannot materially change electromagnetism in the 

infrared! 

2.2 Deep symmetries 

The essence of deep-symmetry-type solutions to the cosmologie al constant is 

to impose a relationship between different particles or different sectors in a 

theory to cancel the quantum contribution to the cosmologie al constant in 

2.6. The best-studied such symmetry is supersymmetry (see appendix B). 

The important feature of supersymmetry for the cosmologie al constant prob­

lem is the relationship between the couplip.gs and masses of particles of differ­

ent spins: each bosonic particle has a fermionic partner with the same mass. 

Since the number of propagating degrees of freedom are given by Ndi
) = 1(2) 

for real (complex) scalars, Ndi
) = 2 for Dirac spin-half particles, photons 

and gravitons, and Ndi
) = 3 for massive vectors and Ndi

) = 2(4) for mass-
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less (massive) Rarita-Schwinger (spin-3/2) fields, we see from eq. 2.6 that 

equal masses between bosons and fermions can cleanly cancel the unwanted 

contribution to the cosmological constant: 

The problem with all such symmetry-arguments is that these symmetries 

contradict other observations and therefore must be broken (usually quite 

badly). In the case of supersymmetry, no supersymmetric partners of the 

same mass as the standard model particles are seen, implying that super­

symmetry, if true, is broken at a scale at least on the order of a Te V to 

ensure that msuperpartner ~ mSM + Te V and remain unseen. But this in turn 

ruins the delicate cancellations in eq. 2.8. 

In order for supersymmetry (or Ïndeed any four-dimensional symmetry) 

to be a solution to the cosmological constant problem it generically must 

be unbroken until cv 1O-3eV. If a symmetry does remain unbroken to this 

scale, it is difficult to construct models which obey the symmetry but which 

nonetheless correctly reproduce well-known physics. If, on the other hand, 

the symmetry is broken at phenomenologically acceptable energies » 1O-3eV 

in order to recover standard phenomenology, the scale of the cosmological 

constant gets raised to the symmetry-breaking scale, ruining the solution. 

2.3 Anthropic Arguments 

The anthropic principle is often stated as 'The constants of nature are mea­

sured to be what they are because if they were different we would not be 

here to measure them.' This is not a completely content-free statement if 
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and only if there is a probabilistic framework in which to phrase the question 

of the values of the various constants [27]. 

Before Newton's theory of gravitation the explanation of the earth-sun 

distance was a question of fundamental significance. Kepler attempted to 

explain the earth-sun distance using nested Platonic solids [27]. Following 

these efforts it is not surprising that Newton's theory of gravitation was met 

with disappointment; it did not predict the earth's orbit uniquely. (If only 

one solar system is known, it is a miracle that the earth is precisely the 

right distance away from the sun to allow water to exist in liquid form. Of 

course we now understand the earth's finely-balance orbit to be an historical 

accident; there is an ensemble of solar systems from which we may sample 

in order calculate the number of habitable planets in the milky way (rv 4 X 

1011 [38]).) 

The probability of the observation of a particular value of the cosmological 

constant is preconditioned by the requirement that there exist observers to 

measure the vacuum energy. The existence of observers is dependent on 

a sufficient density of baryons condensing into galaxies to form stars and 

solar systems. Let pv be the the observed vacuum energy and let S be 

the event that stars form. Let P(pv) dpv be the a priori probability of the 

occurance of a vacuum energy between pv and Pv + dpv, and let P(S) be 

the probability that sufficient number of baryons condense into galaxies to 

form stars. Further; let P(XIY) represent the contingent probability of-the 

occurance of X, given that Y has occured, then 

P(Pv&S) 
P(PvIS)dpv = P(S) dpv, 
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using Bayes' rule for contingent probabilities. Since P(Pv&S) = P(S&pv), 

P(Pv&S) = P(Pv) P(S\Pv) (2.10) 

so we can re-write 2.9 as 

P( \S)d = P(S\Pv) P(pv) d 
pv pv P(S) PV· (2.11) 

The probability that the cosmological constant is small given that stars 

formed is given by P(S\pv), the probability that stars form given the small 

value of the cosmological constant, multiplied by the a priori probability dis­

tribution for the cosmological constant, and normalised by P(S), the a priori 

probability for stars to form. 

We do not know how to calculate either P(S) or P(pv)dpv, but we can 

calculate P(S\pv) with reasonable astrophysical assumptions [29], and since 

some value of pv is seen P(S) can be subsumed into a normalisation constant 

for the probability distribution function through 

J dpvP(pv\S) = 1. (2.12) 

Finally, the a priori calculation of P(pv) can be circumvented because P(S\pv) 

is very sharply peaked around very small (by particle-physics standards) val­

ues of pv [29], so in this range P(pv) can be taken to be constant. 1 Under 

these assumptions it can be shown [29] that 

(2.13) 

More recent contributions to the anthropic proposaI invoive counting 

vacua in string compactifications [32]: a typical compactifying manifold has 

1 This is not a trivial assumption, but there exist a large class of models in which it is 
satisfied [28] (but see Garriga and Vilenkin [37]). 
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several hundred cycles around which fluxes can be wrapped, leading to es­

timates for the number of string theory vacua rv x 100 . These proposaIs are 

usually coupled to an idea like eternal inflation that allows the space of these 

vacua to be populated. 

Despite the analogies between the earth-sun distance and the unlikely 

value of the physical constants of nature, and despite the seeming simplicity 

of anthropic solutions, they remain controversial for two reasons. The first 

reason is that it is difficult to do anything but estimate the variety and 

number of vacua in string theory since a full formulation is still lacking. 

Another criticism argues that an anthropic explanation is tantamount to a 

retœat from the standard ontological framework of science, since it rejects 

a predictive basis for the basic structure of the universe. (See [33] for an 

historical review of anthropic reasoning with references.) 

l will not have anything more to say about the ongoing debate regarding 

the anthropic principle in this thesis. It seems safe to say that an anthropic 

vacuum-selection mechanism requires a new, additional structure to be im­

posed on physical theories that is not well-tested, but that it may offer sorne 

insight to the cosmological constant problem. In short, the author remains 

firmly agnostic on this issue. 

2.4 Quintessence 

Quintessence models can provide the right equation of state for dark energy, 

w_p/prv-1 (2.14) 
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because 

w = (K - V)j(K + V) (2.15) 

in these models, where K the kinetic, and V the potential energy. For slowly­

varying fields, K « V, and thus w ~ -1. 

Quintessence theories naturally have 'tracker' solutions [118] in which the 

quintessence field's energy tracks the local matter energy-density. As long as 

this tracking holds, we expect the vacuum energy to be rv 1O-3eV, since this 

is the scale of matter energy-density. The smallness of the matter energy 

density, in turn, is explained by the age of the universe. 

It is difficult to make quintessence models behave appropriately in four 

dimensions, since the scalar potential suffers from the same instability as the 

Higgs potential. In essence, these models do not address the cosmologie al 

constant problem at aIl, since quantum corrections tend to lift the quinessence 

field's mass to be of the same order as aIl of the other standard model masses. 

If the quintessence field is very heavy, it cannot hope to track very-low matter 

energy-densities. Four-dimensional quintessence seems not to help essentially 

with the fundamental cosmological constant problem [122]. It is worth noting 

that in higher dimensions, however, viable quintessence models can, in fact 

be constructed [119, 120, 121]. 

2.5 Infrared Modifications of Gravit y 

One class of these models-inspired by the Bekenstein-Hawking bound on 

entropy-lowers the effective cutoff for the cosmologie al constant by ensuring 

that the vacuum energy density of the space within the Hubble horizon, 

L rv 1O-33eV, is less than the Schwarzschild mass for the same length-scale, 
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M~lanck L (a proxy for the requirement that the universe not collapse to a 

black hole) [25]: 

(2.16) 

so that the cutoff, 

(2.17) 

These models seem to suffer from an incorrect equation of state, however [26] 

since if the cosmological constant scales as A rv L -2 then because L rv a3/ 2 (t), 

where a(t) is the scale factor, 

(2.18) 

implying that it has the equation of state of co Id dark matter, which is ruled 

out by WMAP [63]. 

The proposaI for the cosmological constant presented in this thesis hinges 

on lowering the cutoff relevant for the cosmological constant problem, but 

does so through a combinat ion of large extra dimensions and supersymmetry. 

2.6 Summary 

Observations from supernovae and from measurements of the CMB seem 

unequivocally to require dark energy of sorne sort, and that the value of the 

cosmological constant has been approximately 1O-3eV since photon-matter 

decoupling. Within classical generar relativity the cosmological constant is 

simply another parameter, consistent with the assumed coordinate invariance 

of the theory, that must be included in the low-energy lagrangian; it must 

sim ply be measured and then used to make other predictions. 
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The cosmological constant gets elevated to the level of a problem, however, 

when we couple gravit y to theories of particle physics because it is a relevant 

parameter in the IR. Almost any physics of any sort which occurs at a scale 

M contributes to the cosmological constant an amount 

(2.19) 

This makes even the well-understood physics of electrodynamics problematic 

for the cosmological constant, because the cosmological constant must be 

tuned, order by order in perturbation theory to ensure that it remains small 

despite electron loops, rv m!. 
Four-dimensional attempts to solve the cosmological constant are rife­

with problems of princip le and with observational problems. In the rest of 

this thesis we explore extra-dimensional solutions to the cosmological con­

stant problem. As we will explain in the next chapter, extra dimensions are 

expected to be a part of a theory of gravity. However, standard compactifi­

cations of higher-dimensional gravities do not materially change the analysis 

presented in this chapter because the compactification scale is so high. This 

willlead us to consider other higher-dimensional theories which allow a lower 

compactification scale which is compatible with the scale of the cosmological 

constant, rv 1O-3eV. 
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Chapter 3 

Extra-Dimensional Theories 
and Compactifcation 

We have seen that it is difficult to solve the cosmological constant ptoblem in 

the standard four-dimensional effective field theory framework. In the first 

chapter we made the case that the effective field theory programme is based 

on 'motherhood principles': quantum mechanics, locality and cluster decom­

position. Given the difficulty in solving the cosmological constant problem 

under a given set of assumptions it may be worthwhile to relax sorne stan­

dard assumptions. In this chapter l present motivation for abandoning the 

assumption that the universe is essentially four-dimensional and will present 

sorne of the basic tools used to analyse the four-dimensional consequences of 

extra-dimensional theories. 

As discussed in previous chapters, string theory seems to be the most 

promising candIdate at present for a quantum theory of gravity. Hisforically, 

the quest for a consistent quantum theory of gravit y has been a story of 

enlarging the space of possible solutions to the problem. As an example, 

it was recognised very early that string theory is only consistent in 26 di-
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mens ions (bosonic) or 10 or 11 dimensions (supersymmetric), requiring the 

development of mechanisms to hide these extra dimensions. The methodol­

ogy for hiding these extra dimensions become a topic of research aIl its own, 

acquiring the monicker 'compactification.' Compactification, which we will 

describe in sorne detail in the early sections of this chapter, describes making 

the extra dimensions which are unwanted very sm aIl (compact) so as to be 

unobservable. 

As we will see, any string-like theory that compactifies from higher di­

mensions to four fails to solve the cosmological constant problem, even if 

the compactification is to fiat four-dimensional space. We will provide an 

explicit example in which the compactification is in fad (uniquely) to fiat 

four-dimensional space, but in which the cosmological constant problem nev­

ertheless rears its ugly head. 

3.1 String Theory and String-Inspired Mod­
els 

Depending on her background, the reader may weIl wonder why it is reason­

able to enlarge the search for theories of particle physics to extra-dimensional 

theories. After aIl, it is clear the three spatial and one time dimension is aIl 

we have ever se en and that these are prefectly adequate for describing aIl 

physics ever measured in a laboratory. 

As with many things in modern particle theory, this enlargement of the 

space of possible theories was hard-won, after a perceived failure to find 

solutions within the standard framework. The loosening of the ties to four­

dimensional physics was very heavily dependent on the progress being made 
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in string theory, and indeed nearly an extra-dimensional theories are 'string­

inspired', if not true string models. Strings are regarded as being the most 

viable path towards a quantum theory of gravit y, but have the peculiar fea­

ture of being consistent only in 26, 10 or 11 dimensions, depending on the 

particular fiavour (not a technical word) of string [53, 54]. 

The consistency of the superstring in 10 dimensions (or of the bosonic 

string in 26 dimensions) arises as a conditon for anomaly cancellation. The 

super string has a local conformaI symmetry whose anomaly is given by the 

trace of the worldsheet stress tensor and is proportional to the number of 

sigma-model fields (the number of coordinates of spacetime) minus 10 [56]1: 

(3.1) 

The eleven-dimensional description of string theory arises from dualities. An 

of the string theories are believed to be equivalent to each other under var­

ious of these dualities, and to be particular vacua of M-theory. One of the 

low-energy representations of M-theory is the unique ll-dimensional super­

gravity. 

Much of the string-theory model-building literature over the past twenty 

years has focused on ways of hiding these extra dimensions in ways satis­

factory to experimental and phenomenological constraints [4]. The usual 

method for compactification is to begin with one of the supergravities which 

describes the low-energy string degrees of freedôlh, and to seek viable classi­

cal background solutions, around which one can quantise. The bosonic sector 

1 This statement is true for the free string in a fiat background spacetime. In other, 
more complicated spacetimes the critical dimension can be difIerent. See for example the 
linear dilaton spacetimes in ref. [60]. These configurations are unstable to decay to the 
supersymmetric fiat-space configurations. 
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of the supergravities is typically of the form 

M s 1 -24> -4> 

[ J
_1 10 2 e 2 e 2 -g 2.c = -R- -(8cjJ) - -GMNP - -FMN + ... 

2 2 12 4 ' 
(3.2) 

where MIO is the ten-dimensional Planck scale, G = dB + F 1\ A + w 1\ R, and 

the dots indicate higher-derivative terms required for anomaly caneellation. 

One seeks an N = 1 supersymmetric four-dimensional vacuum 2 By making 

the most general metric and field ansatz consistent with maximally symmetric 

four-dimensional space: 

ds 2 W 2 (y) gJ1,vdxJ1,dxV + gmn(y)dymdyn 

F Fmn(Y) dym 1\ dyn 

G Gmnp dym}\ dyn 1\ dyP 

cjJ(y) cjJ(y) (3.3) 

where x/-L and ym are the four-dimensional and extra-dimensional coordinates, 

respectively, and the curvature calculated from g/-LV alone, RJ1,v(g/-Lv) = A4g/-Lv, 

the equations of motion become equations for the metric and field-strength 

functions. The most phenomenologically favourable compactifications are 

those to fiat space gJ1,V = 'f]J1,V and which have one supersymmetry. 

The conditions which imposes N = 1 4D supersymmetry impose a num­

ber of conditions, which amount to 

gJ1,V = AdS or Minkowski, (3.4) 

(we impose the further constraint that gJ1,V = 'f]J1,v sinee we definitely don't 

live in Anti-de Sitter spaee) , 

W = const (3.5) 

2More supersymmetry doesn't allow complex representations for the fermions, and it 
wasJis still believed that weak-scale supersymmetry is good phenomenological thing. 
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(no warping) 

Rmn =0 (3.6) 

(Ricci-flatness of the internaI manifold), 

8cjJ = G = 0, (3.7) 

and a particular non-zero F. The internaI manifolds, gmn have an addi­

tional interesting property (if the spin connection is embedded in the gauge 

connection) that they are manifolds of 5U(3) holonomy, which means that 

spinors parallel-transported around a closed path come back to an 5U(3)­

transformed version of themselves 3 [56, 54]. 

There are many generalisations of the above methods to more complex, 

spacetimes, but aIl realistic string models in 4D share backgrounds for which 

the spacetime is 4D Minkowski times an internaI 6D manifold, and they 

have chiral fermions in 4D with spectrum close to the Standard Model. The 

simplest models also have important unsolved issues such as supersymmetry 

breaking and the presence of moduli fields such as the dilaton [73]. Several 

ideas have been put forward to deal with these issues, including nonpertur­

bative effects, such as gaugino condensation [74], and the introduction of 

fluxes of antisymmetric tensor fields [75]. Furthermore brane/antibrane sys­

tems and intersecting branes have been considered both to obtain realistic 

models with broken supersymmetry [76] and for the possibility of generating 

cosmological inflation [77, 78]. 

3This condition arises because the condition for one intact four-dimensional supersym­
metry is equivalent to the condition that there be a covariantly constant spinor. Requiring 
N = 1 4D supersymmetry requires Rmnpqrpqç = 0 (r are the lO-dimensional Dirac matri­
ces and ç is the supersymmetry-variation parameter) to leave one component of ç invariant 
(so that not aIl the supersymmetry is broken). The subgroup of 80(6) (the internaI space's 
tangent group) which accomplishes this is SU(3). 
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However, there is at the moment not a single model that can achieve 

all the successes simultaneously. For instance, to get inflation it is needed 

to assume that sorne of the moduli have been fixed by an unknown mech­

anism. Fluxes of Ramond-Ramond fields have been used to fix sorne mod­

uli but not all of them. Supersymmetric models have to face the breaking 

of supersymmetry, and gaugino condensation and other nonperturbatively 

generated superpotentials usually lead to runaway potentials [74, 79]. Non­

supersymmetric models such as brane/ antibrane systems at singularities or 

intersecting brane models tend to be unstable, with the corresponding scalar 

potential not under controL 

One of the aims of this chapter is the development of a six-dimensional 

toy-model of string compactifications which can lead to a simpler setting in 

which to investigate sorne of these issues. Before doing so, however, com­

pactification is more fully developed in the next few sections. 

3.2 A Detailed Example of Compactification 

In this section we perform the compactifcation of a very simple model in sorne 

detail to exhibit the physical and mathematical characteristics of the proce­

dure. The main points are that by making the internaI dimensions small, we 

decompose one higher-dimensional degree of freedom into an infinite tower 

in a specific way. The tower of modes have characteristic mass rv 1/ R, where 

R is the typical size of the compactified dimensions. Therefore, at low ener­

gies, E « 1/ R, the theory looks entirely four-dimensional. We will see that 

the four-dimensional theory thus obtained may have additional characteris­

tics beyond those naively expected from the higher-dimensional theory, and 
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we will see that these can nevertheless be understood in terms of additional 

symmetries of the underlying compactifying manifold. 

Consider a complex scalar field in five dimensions, 

(3.8) 

where the five dimensions are chosen to be M4 x 8 1, four-dimension al Minkowski 

space times a circle of radius R.4 We wish to demonstrate that for energies 

small compared to the inverse radius, E « 1/ R, the theory looks like a four­

dimensional scalar field theory. For higher energies a tower of higher-mass 

states will appear, revealing the extra dimension through normal-mode os­

cillations of the field in the extra dimension. We denot-e by M, N, . .. indices 

in the full five dimensions, by M, v, . .. indices in four dimensions and by z 

and x, respectively, coordinates in aIl five and in four dimensions. If we refer 

only to the fifth-dimensional coordinate, we use y. 

In the path integral, correlation functions and amplitudes are calculated 

by summing over aIl configurations of cjJ(z). This can be done in any num­

ber of ways, for example by latticising the spactime in which the cjJ's live. 

Another way to do the path integral is to expand the functions in normal 

modes of the quadratic operator in the lagrangian, effectively diagonlising 

the gaussian integration. This latter method provides a means of regular­

ising high-energy contributions in a way specifically tied to the size of the 

extra dimensions, allowing us to ask questions about tbe extra dimensions 

naturally, particularly simplifying the discussion of the low-energy effective 

theory. 

4This choice is for now arbitrary and is made for simplicity. In the supergravity theory 
that is presented below the background metric is a solution to the equations of motion. 
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Any function of the five-dimensional coordinates, z, can be expanded as 

(3.9) 
n 

where X(y) are any set of complete modes in the fifth dimension. If X(y) are 

eigenfunctions of the extra-dimensional quadratic operator, 

(3.10) 

with eigenvalues Àn, then the lagrangian 3.8 will be given by 

L = - L [~3tt<P~(X)3tt<Pm(x)x~(Y)Xm(Y) - ~n <P~(X)<Pn(X)x~Jx)xn(x)] 
m,n 

(3.11) 

Since the mass operator, eq. 3.10 is self-adjoint, 

(3.12) 

the action is given by 

S = L J d4x -13tt<Pn(x)12 - Ànl<Pn(x)12 + ... 
n 

(3.13) 

where the dots represent terms in V in eq. 3.8 arising from inserting eq. 3.9. 

We see that the single (free) five-dimensional scalar field has decomposed into 

a tower of four-dimension al scalar fields, each mode representing a possible 

normal-mode oscillation of the field in the extra dimension. (This is simply 

a result of E = mc2
, the vibrational energy in the extra dimension being 

translated into rest-mass energy in four dimensions.) 

The dots in 3.13 represent interactions. For example, a five-dimensional 

interaction term such as 

(3.14) 
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becomes 

(3.15) 

where 

gmnpq = 9 J dYX:nX~XpXq(Y) (3.16) 

Let us consider in detail the particular case of a circle of radius R (so 

that y is periodic with period 27r R), where the eigenfunctions are given by, 

(3.17) 

and the corresponding eigenvalues are 

(3.18) 

and which give the mass of the purely four-dimensional mode cPn. 

The lowest-energy modes are those with n = 0, and it is these modes 

which appear in the low-energy theory. In order to pass to the low-energy 

limit we must account for the effects of the massive modes with n > o. We 

may do so classically by solving the equations of motion for cPn with n > 0 in 

terms of cPo and inserting the result back into the action. As we will show, 

in this particular case cPn = 0 is a minimum of the potential, so that the 

truncation of the theory to the n = 0 modes is consistent. This is not always 

the case. 5 

5The term consistent truncation is .llsed in the supergravity literature to mean any 
trucation of the lower-dimensional fields such that a solution of the lower-dimensional 
equations of motion is also a solution of the higher-dimensional equations of motion. 
Since in supergravity one is usually interested in lifting solutions exactly back to the 
higher-dimensional theory and not necessarily the scattering of particles, one is often 
more interested in consistent truncations. In low-energy effective descriptions we must 
integrate out the massive modes to correctly incorporate the effects of heavy modes in the 
light modes. 
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Let us see that c/Yn = 0 for n > 0 is a minimum of the potential arising 

from V = i4c/Y4(Z). After substituting the expansion for c/y, eq. 3.9 into V and 

integrating over y, we get 

L4 = -18c/YoI2 - I: 18c/Ym12 - m
21c/Yo12 - I: Àmlc/Yml 2 

m m 

2: R [4 ~ 1 1>ml'l1>o l' + ~ 1>,.1>-,. (1);)' + ~ 1>:. 1>~m (4)0)' 

+ 2 I: c/Ymc/Ync/Y':n+nc/Y~ + 2 I: c/Y':nc/Y~c/Ym+nc/YO 
mn mn 

+ I: c/Y':nc/Y~c/Ypc/Ym+n-p + lc/YoI4] (3.19) 
mnp 

Because of the appearance of Xn rv einy/R with every occurrence of c/Yn, a 
, , 

conservation condition has arisen, in which c/Yn carries n units of an abelian 

charge. This is directly related to the U(1) isometry of the compactifying 

manifold, SI, and is a general feature of compactifications: isometries of the 

underlying compactified manifold express themselves as symmetries of the 

compactified theory. When we consider the compactification of gravitational 

phenomena the global symmetry gets gauged, as we will see in the super­

gravit y ex ample presented later in this chapter. In the next section l will 

prove both of these assertions. 

Clearly c/Yn = 0 is an extremum. To see that it is stable (a minimum) we 

show that the second derivative of the c/Ym mass matrix is always positive­

definite at c/Ym = O. Writing c/Ym in terms of its real and imaginary parts, 

(3.20) 

we find that 

Vquad 
1 

m
21c/Yo12 +"2 I: Àm(P~ + (}~) 

m 
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+ ~ (~: r M(~:) (3.21) 

Œ_m Œ_m 

where 

M= (~ ~) (3.22) 

and 

A = (21~12 
21:a12) 

B = (0 POŒO) 
POŒO 0 D = (21CPo12 -R -R) 

21CPol2 , 
(3.23) 

where 

R = (p6 - (5) (3.24) 

is the real part of CP6. Since the term 2::m Àm (p~ + Œ~) is minimised at 

CPm = 0, in order to show that CPm = 0 is a minimum it is enough to show 

that it is a minimum of the term containing M. To do this, note that 

~ (A B) detM = det C D = [detA] [det (D - CA-1 B)] . (3.25) 

Since detA = detD, and A-1 = D/detA, it's easy to show that 

detM = [detA] [detD] det [(1 - detB/detA)]. (3.26) 

Now, since 

(3.27) 

and since 

detB = P6Œ5, (3.28) 

we have that at 

detM 2: 0, (3.29) 
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with equality iff c/Jo = o. Therefore the low-energy effective action, valid for 

energies « m + 1/ R is given by 

where 

).=-g-
27fR 

(3.30) 

(3.31) 

is the effective four-dimensional coupling.6 The U(l) charge that is carried 

by c/Jo is not the U(l) charge arising from the extra dimensions, and which 

was carried in n units by the nth modes-c/Jo carries no units of this charge, it, 

along with aIl the higher modes, carries the original U(l) charge conserved 

by the five-dimensional action, eq. 3.8. 

Let us now recap what occured in the previous example, with an eye to 

generalising what we can: 

• Each higher-dimensional mode results in a tower of lower-dimensional 

modes. If aIl of these modes are kept, no information is lost. 

• We may pass to the low-energy limit by accounting for the effects of 

the tower of four-dimensional higher-mass states. ClassicaIly we may 

do so by solving the equations of motion for the higher modes in terms 

of the light modes. 

• The lower-dimensional modes are or.ganised by symmetry: Any of the 

original symmetries of the theory that are unbroken by the background 

_ 6This action is most easily (and is often) obtained by making the ad hoc ansatz ljJ(z) = 
ljJ(x), in which the five-dimensional field is independent of the fifth coordinate. This trick 
only works for toroidal and other fiat geometries in the absence of gauge fields. The 
framework we present is the general one. 
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help to organise the lower-dimensional theory. In addition, new sym­

met ries may arise as a result of isometries of the background solution 

about which we are expanding. 

As a result the most efficient way to achieve the compactified low-energy 

theory is to first identify the symmetries and to count the massless modes that 

are protected by such symmetries. Examples include any gauge fields whose 

four-dimensional gauge symmetry is unbroken by the background. Next, one 

counts the new symmetries arising from the background and organises the 

states in multiplets of these symmetries. This information is usually enough 

to severly constrain the theory, reducing the problem of compactification to 

the calculation of a few parameters. 

* * * 
It is not always the case that we may set the massive fields to zero. 

As an example consider the most general two-field four-dimensional scalar 

potential, given by 

V(1j;, </J) 

(3.32) 

The stationary point with respect to 1j; is given by 

(3.33) 

who se perturbative solution (the solution that is analytic in aIl the non­

quadratic parameters) is given by 

(3.34) 

91 



Plugging this back into the potential gives 

(3.35) 

Clearly the effect of integrating out 'ljJ is nontrivial, the cubic term linear in 

'ljJ being the culprit. 

Decoupling seems to hold in the above potential, as, when M -+ 00 aU of 

the effects of the high-mass particle drop out. Decoupling can fail, however, 

when jL = aM, since then 

(3.36) 

This is problematic because the two methods for obtaining the action do ' 

not agree in the M -+ 00 limit. One must always integrate out as opposed 

to trucate for valid low-energy descriptions. (This issue can be important, 

for example, in compactifications of the superstring on Calabi-Yau back-

grounds [11].) 

3.3 Isometries and Symmetries 

Let .c be a lagrangian in 4+n dimensions depending on fields which we coUec­

tively caU 4>, and which may or may not include the metric. We continue to 

use the notation of the previous section: M, N, P, ... refer to indices running 

over the fuU 4 + n dimens~ons, z referes to coordinates in 4 + n dimensions, 

while xJ.L and jL, v, p, . .. are coordinates and indices in four dimensions and 

ym and m, n, p, . .. are coordinat es and indices in the extra n dimensions. 

Let 

< 4> >= cp(y) (3.37) 
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be the background values of the fields, and let them be invariant under an 

isometry 

(3.38) 

where Zi are hermitian differential operators encoding the isometry group of 

the background: 

(3.39) 

(In a gravitational theory the Zi would be the Killing vectors and the bracket 

in eq. 3.38 would refer to the Lie derivative in the Killing direction. For the 

metric with Killing vectors Çi we would have 

(3.40) 

so 

generates eq. 3.40 through 

(3.42) 

The same isometry acting on a scalar takes the much simpler form 

(3.43) 

In the example in the previous section, of a five-dimensional field reduced on 

a circle to M4, we would have a single generator of isometries, 

(3.44) 
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The Zi naturally organise the four-dimension al fields. Since by assump­

tion the group of isometries is compact there exist a complete set of functions, 

Xn(Y), which furnish a representation of the isometry group: 

(3.45) 

where only a finite number of elements of 3 are non-zero; in other words 

we may construct finite-dimensional irreducible representations of the group, 

the representations being labeled bye, say, such that 

[z. X(C)] = 3(C) x(C) 
2' n nm m (3.46) 

with m, n = 1 ... N for an N -dimensional representation. (The reader should 
, 

keep in mind the spherical harmonies as a prototypical example, with the 

Zi the three differential angular momentum operators, and 3 given by the 

appropriate represenation's matrices.) We may exp and any 4+n-dimensional 

function in terms of the x: 

cp(X,y) = cp(y) + LX(Y)CP(x). (3.47) 

Let Zi be the quantum operators that act on the Hilbert space. Then, 

but also, 

[Zi, cp(x, y)] 

[Zi' cp] + L CPn(X) [Zi' Xn] 

L CPn(x)3nmXm 

Since the X(y) are linearly independent, we learn that 
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That is, the 4>n fill out representations of the isometry group. 

If the field being compactified is not a spacetime scalar, we must also 

account for its covariance with respect to coordinate changes. This additional 

complication is easily dealt with by generalising the expansion 3.47 to include 

tensorial or spinorial eigenfunctions. For example, a vector V M (z) would 

exp and as 

V{!(x, y) 

Vm(x, y) 

L vyl (X)X(i l (y) 

L V(il(x)x~(y) (3.51 ) 

where X(il are the usual scalar eigenfunctions and X(iln(y) are spacetime­

vector eigenfunctions. 7 

This proves that compactifying on an internaI manifold with isometries 

yields a lower-dimensional theory which represents the isometries as internaI 

symmetries on the fields, since Zi are coordinate transformations and .c, the 

lagrangian is invariant under Zi: [Zi,.cl = o. 
The previous treatment is independent of whether or not we are perform­

ing the compactification in a gravitational theory. It is clear, however, that 

on a non-fiat manifold derivatives of fields will not transform simply under 

the isometries. It turns out that the covariant derivative, which ensures co­

ordinate invariance, also ensures that the charges carried by the Zs, above, 

remain conserved. The symmetry is lifted from a global symmetry to a local 

symmetry due to the local coordinate invariance of the theory, with the gauge 

7The eigenfunctions with more complicated spacetime transformation properties can 
be constructed straightforwardly by constructing the appropriate differential operators Z 
which encode isometries on these objects and by solving the resulting Laplace-like equation 
that arises from the quadratic Casimir, l:i z'f = À. The appropriate 3i are given by the 
Lie derivative of the objects in the Killing direction, or, equivalently, by requiring the 
form-invariance of the object under the isometry. 
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fields arising from the mIL components of the metric-the metric components 

with one index in the extra dimensions (an index that is a four-dimensional 

spacetime scalar but which transforms as a vector under the isometries of 

the internaI manifold) and an index in the four dimensions. 

We only show the gauge symmetry encoded in the massless modes, a 

very small subgroup of the full higher-dimensional diffeomorphism group. As 

shown for example in [44], there exists an infinite tower of lower-dimensional 

gauge symmetries which are Higgsed by the compactification procedure. 

Gravit y and Gauged Isometries 

In order to show that the isometries of the internaI manifold become encoded , , 

as gauge symmetries in the lower-dimensional theory we will look at the 

transformation properties of the various components of the vielbein, E~ (see 

appendix A). This will lead to an ansatz for the vielbein which correctly 

encodes the gauge symmetry in a four-dimension al vector field A(i) Il' and 

correctly describes the massless gravitational degrees of freedom in a four­

dimensional vierbein, e~. 1 adopt the convention for tangent-space indices to 

match the world index conventions: A, B, . .. correspond to the full 4 + n­

dimension al tangent space, a, b, . .. correspond only to the internaI tangent­

space directions, while 0:, /3, ... correspond to the four-dimension al tangent 

space. 

We assume that 

(E~)) = (e~(x) 0) 
(E::n) 0 ec:n(y) 

(3.52) 

where e~ (x) is the vierbein for the observable four dimensions and ec:n (y) is an 
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invariant vector under the isometries encoded by the Killing vectors ç(i)m(y): 

(3.53) 

which for infinitessimal transformations, y' = y + é(i)ç(i), becomes 

(3.54) 

We assume that the Killing vectors form an isometry group with structure 

functions C k 
ij 

(3.55) 

We wish for the four-dimensional gravitational interactions to be encoded 
, , 

in the vielbein, so we expect the graviton to make an appearance in the four-

four components of the vielbein 

E~ rv e~(x). (3.56) 

(Usually this is accompanied by a prefactor, rS(x), the volume modulus to 

sorne power. This can be included in the analysis which follows with no 

changes to the conclusions, but clutters the equations so we leave it out.) 

N ow let us perform a local transformation, 

(3.57) 

on E~: 

(3.58) 

97 



Examining the components separately, we find that 

bEŒ 

J.L 
a E(i) ç(i)n E Œ 

J.L n (3.59) 

bEa 
J.L 

E(i) ç(i)n a E a + a E(i) ç(i)n E a 
n J.L J.L n (3.60) 

bEŒ 
m E(i) [ç(i)n anE~ + amç(i)n E~] (3.61 ) 

bEa 
m E(i) [ç(i)nanE! + amç(i)n E~] = 0 (3.62) 

The E~ may be set to zero self-consitently, since E~ transform amongst 

themselves, which in turn implies that bE~ = O. Now inspection of 

(3.63) 

shows that they transform as vector-fields charged under a non-abelian sym­

metry generated by the Killing vectors ç(i), and which satisfy eq. 3.55. We 

make the ansatz 

(3.64) 

which, upon repeated use of eq. 3.55 shows that 

(3.65) 

This implies that A is a four-dimensional gauge field transforming in the 

adjoint of the group represented by the algebra eq. 3.55. Four-dimensional 

general covariance and this, new, gauge-invariance together imply that the 

degrees of freedom expressed in E~ in the ansatze 

e~(x) dxJ.L, (graviton) 

ç(i)a A~)(x) dxJ.L (gauge field) (3.66) 
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can be expressed more simply and naturally than by the full extra-dimensional 

Einstein-Hilbert lagrangian, 

(3.67) 

These symmetries imply that 3.67 can be written as 

(3.68) 

where 92 is the coupling constant for the gauge field and can be calculated 

as an integral over the extra dimensions, y of the Killing vectors, R( e) is 

the Ricci scalar constructed only from the four-dimensional vierbein, and 

F = dA + A 1\ A is the usual non-abelian field-strength for the gauge field 

A [148]. 

In the example considered in detail in this section, of the compactifi­

cation of six-dimensional supergravity to four dimensions, we will see this 

phenomenon explicitly. The internaI manifold in this compactification is a 

two-sphere which has an SO(3) isometry. This leads to the existence of an 

effective four-dimensional, confining, non-abelian gauge theory and to inter­

esting consequences. 

* * * 

3.4 An Example of a String-like Compactifi­
cation 

Our aim is to explore the cosmological constant problem within a string 

context. In order to fully explore the cosmological constant problem within 

string theory, a compactification of it to four dimensions must be specified. 
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Any solution to the string equations of motion which daims to be a solution 

to the cosmological constant problem must simultaneously solve the problem 

of producing the correct four-dimensional partide physics, four-dimensional 

cosmology, and probably also a viable inflationary model. 

In this section we show that most of these issues can be investigated in 

a setting that is much simpler than the explicit string constructions and yet 

shares the relevant properties of those models. The starting point is mini­

mal 6D gauged supergravity coupled to at least one U(l) vector multiplet. 

This model was studied in [146], who considered compactification on a two­

sphere stabilized by a nonvanishing magnetic flux through the sphere for the 

U(l) gauge field. This compactification was found to lead to a chiral N = 1 

supersymmetric model in flat 4D spacetime at sc ales lower than the compact­

ification scale. We here reconsider this model and study its consequences in 

more detail. We may see this as a first attempt to extract phenomenological 

implications to gauged supergravity potentials that are being derived recently 

in string theory. In this section we concentrate only on general issues con­

cerning the model's low-energy effective action, supersymmetry breaking and 

moduli stabilization. We investigate how the introduction of branes changes 

the implications of this 'bulk' physics in subsequent chapters. (We also show 

in these later chapters in which we consider much more general compacti­

fications that the particular compactification considered here is the unique 

supersymmetric vacuum that has the topology M4 x M2.) 

The model has several stringy properties, such as the presence of the 

standard Sand T moduli fields of string compactifications, and we use these 

to address the issue of lifting the vacuum degeneracy. Furthermore, the 
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low-energy theory has a Fayet-Iliopoulos term which is generated by the 

Green-Schwarz anomaly-cancelling mechanism. We find this induces a D­

term potential in the low-energy theory that can naturally fix the field T, 

leaving only the 8 direction fla:t to aIl orders in perturbation theory. 

The nonabelian 80(3) symmetry associated to the isometries of the two­

sphere is asymptotically free and so generates a nonperturbative potential 

for 8 through the gaugino condensation mechanism. Together with the tree­

level Kahler potential, this leads to a runaway potential for the dilaton field 

8. This kind of scenario, with fixed T and with runaway 8, could provide 

a natural way for the model to realize inflation, along the lines suggested 

in ref. [78J. We further argue that if certain perturbative corrections to 

the Kahler potential arise, then the gaugino-condensation potential need not 

generate a runaway, and could be used to stabilize 8. As is expected on 

general grounds, this minimum arises at the margins of what can be computed 

using semiclassical methods. 

We will show that the matter content of the resulting theory after com­

pactification is a supersymmetric 80(3) x U(l) gauge model with two chiral 

multiplets, 8 and T. The expectation value of T is fixed by the classical 

potential, and 8 describes a flat direction to aIl orders in perturbation the­

ory. We consider possible perturbative corrections to the Kahler potential in 

inverse powers of Re 8 and Re T, and find that under certain circumstances, 

and when taken- together with low-energy gaugino condensation, th-ese can 

lift the degeneracy of the flat direction for Re 8. The resulting vacuum breaks 

supersymmetry at moderately low energies in comparison with the compact­

ification scale, with positive cosmological constant. FinaIly, it is argued that 
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the 6D model might itself be obtained from string compactifications, giving 

rise to realistic string compactifications on non Ricci fiat manifolds. Possible 

phenomenological and cosmological applications are briefiy discussed. 

The next section gives a brief review of the relevant features of 6D gauged 

supergravity, and its supersymmetric compactification to 4D on a sphere. 

Section (3.4.2) then derives the low-energy 4D super gravit y which describes 

the low-energy limit of this compactification, as well as discussing its likely 

vacuum. The fiat directions of the low-energy the ory are the topic of Section 

(3.4.4), where it is shown that all are lifted. This section shows that sorne 

moduli are stabilized at finite values, while others may be stabilized, or run 

to infinity, depending on the details of the corrections to,the model's Kahler 

function. For a review of superpotential, Kahler functions and for the most 

general N = 1 4D super gravit y in standard form, see appendix B. 

The main results of this section are to show that the six-dimensional 

supergravity presented is a rich string-theory toy-model, and that, as it shares 

other features of string compactifications, it also shares the cosmological 

constant problem of string models. In the next chapter we discuss extensions 

of the compactifications of this model to ones including branes in order to 

address the cosmological constant problem within a stringy context. 

3.4.1 The 6D Salam-Sezgin Model 

We begin by recapping the Salam-Sezgin compactification ofthe six-dimensional 

supersymmetric Einstein-Maxwell system [144, 145, 146]. 
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The Model 

The field content of the theory consists of a supergravity multiplet - which 

comprises a metric (gMN), antisymmetric Kalb-Ramond field (BMN), dilaton 

(<p), gravitino ('l/J M) and dilatino (X) - coupled to a U (1) gauge multiplet -

containing a gauge potential (AM) and gaugino (>\). 

The fermions are aIl complex Weyl spinors - satisfying r 7'l/JM = 'l/JMl 

r7À = À and r 7X = -X - and they an transform under the U(l) gauge 

symmetry. For instance, the gravitino covariant derivative is 

DM'l/JN = (OM -lwMABr AB - i9AM) 'l/JNl (3.69) 

where WM AB denotes the spin connection. Here 9 denotes the 6D U(1) 

gauge coupling, which in fundamental units (fi = c = 1) has the dimen­

sion (mass)-l. 

The field strength for BMN contains the usual supergravity Chern-Simons 

contribution 

(3.70) 

where FMN = oMAN-oNAM is the usual abelian gauge field strength. Notice 

that the appearance of AM in this equation implies BMN must also transform 

under the U(l) gauge transformations, since invariance of G MNP requires 

(3.71) 

This transformation allows the gauge anomalies due to the chiral fermions 

to be cancelled by a Green-Schwarz mechanism, as must happen if this su­

pergravity emerges as a low-energy compactification of string theory (more 

about this below). 
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The bosonic part of the classical 6D supergravity action iS:8 

1 1 -2cp -cp 
-1 M e MNP e MN 2 cp e LB = - -R - -8MrP8 rP - - GMNPG - - FMNF - 2g e 

2 2 12 4 ' 
(3.72) 

where we choose units for which the 6D Planck mass is unit y: K;~ = 87fG6 = l. 

As usual e = IdeteMAI = -j-detgMN. 

The part of the action which is bilinear in the fermions is 

1 - MNP M - M 
e- LF = -'l/JMr DN'l/JP - Xr DMX - Àr DMÀ 

1 (NM - MN) -28MrP Xr r 'l/JN + 'l/JNr r X 

e-CP -R MNP S - MNP R ( + 12V2 G MNP ( -'l/J r[Rr , rSj'l/J + 'l/JRr r X 3.73) 

- XrRrMNP'l/JR + XrMNPX - ..xrMNPÀ) 
-cp/2 

- ~ FMN (~QrMNrQÀ + ..xrQrMN'l/JQ - XrMNÀ + ..xrMNX) 

+ige#2 (1]JM r M À + ..xrM'l/JM + XÀ - ..xX), 

where the completely antisymmetric products of Dirac matrices are defined 

by r MN = ~ (rMrN - rNrM), r MNP = i (rMrNrp ± permutations) and 

so on. 

The 6D supersymmetry transformations which preserve the form of this 

SOur metric is 'mostly plus' and like aIl right-thinking people we follow Weinberg's 
curvature conventions [80]. 
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action are 

oe~ ~ (ErA'lj;M - ~MrAE) 

ocjJ - ~ (EX + XE) 

(3.74) 

where the supersymmetry parameter is complex and Weyl: r7E = E. 

Global and Approximate Symmetries 

Besides supersymmetry, the U(l) gauge symmetry and the Kalb-Ramond 

symmetry, oB = dA, the model also has a few other symmetries (and approx­

imate symmetries) which are useful to enumerate here for later convenience. 

First, if the background spacetime admits an harmonie 2-form, D, then 

because B only enters the action through dB the background has a global 

symmetry oB = cD, where c is the constant symmetry parameter. Because 

D =f- dA for any globally-defined 1-form this symmetry can be regarded as 

independent of the Kalb-Ramond gauge symmetry. 

Second, the field equations obtained from this action have a classical 
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symmetry under the following constant rescaling of the fields: 

9MN --7 (J 9MN, 

(3.75) 

with no other fields transforming. This is just a symmetry of the equations 

of motion, rather than a bona fide symmetry because it does not leave the 

action invariant, but rather rescales it according to .c --7 (J2.c. This symmetry 

refiects the possibility of performing redefinitions to write the Lagrangian 

density as .c = e-2<jJ .cinv , with .cinv a function only of the invariant 'string­

frame' quantities 9MN = e<jJ 9MN, 'l/JM = e<P/4 'l/JM, xS = e-<jJ!4 X, .xs = e-<jJ!4.x 

and aM</;. In general, since only the dilaton transforms under the scaling 

symmetry in the string frame, the .e-string-Ioop contribution to the action 

sc ales as .cc --7 (J2-2C .cc. 

Anomaly Cancellation 

As mentioned ab ove , the fermion content of the 6D model as described so 

far has anomalies, which must be cancelled if the theory is to make physical 

sense. In particular, they must cancel if the model is to be considered as the 

low-energy limit of an underlying consistent theory, such as string theory, at 

still higher energies. The anomaly cancellation conditions for 6D supergravity 

coupled to a single tensor- plus nv vector- and nH hyper-multiplets are well 

understood, so we simply summarize here several features which are used 

below. 

These anomaly-cancelling conditions are significant for two separate rea­

sons. First, they provide new nontrivial constraints on the kinds of particles 

which must appear in the 6D theory. In particular they require the existence 
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of many more 6D matter supermultiplets than are considered above. Second, 

they show the necessity for specific higher-derivative corrections to the above 

supergravity lagrangian without reference to any specific, more microscopic, 

theory like string theory. As we shall see, the neglect of these corrections 

when using the above 6D supergravity lagrangian ultimately requires for 

consistency the conditions 

1/r2 « ecf> « 1 , (3.76) 

with r defined in terms of the volume of the extra dimensions using the 

Einstein-frame metric. 

, 

The 6D Green-Schwarz Mechanisrn 

Six-dimensional anomalies are described by an 8-form constructed from the 

gauge and gravitational field strengths [81]. In order for anomalies to be 

cancelled by a Green-Schwarz type mechanism [82] - involving the shifting 

of a bosonic field in the theory - this anomaly form must factorize into the 

wedge product of pairs of lower-dimension forms. 9 In general this imposes 

a strong set of conditions in six dimensions, sorne features of which we now 

summarize [83, 84]. 

To describe the anomaly cancellation conditions we must first generalize 

the above field content to potentially include nv gauge multiplets, as weIl as 

nH matter 'hyper-' multiplets which involve 6D scalars and fèrmions whose 

helicity satisfies r 7 = -1. 6D supersymmetry requires the scalars within 

these hypermultiplets to take values in a quaternionic manifold, and precludes 

9If several bosonic fields are involved then the anomaly 8-form can be the sum of such 
products, one for each of the bosonic fields. 
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them from appearing in the gauge kinetic terms or in the kinetic term for 

the dilaton field cp [86]. 

A necessary condition for the factorizing of the anomaly 8-form is the 

vanishing of the coefficient of the tr( R4) term. With nv gauge multiplets 

and nH hypermultiplets, this is assured by the condition nH = nv + 244, 

which determines the number of hyper-multiplets in terms of the dimension 

of the 6D gauge group, nv = dimG [83]. For simple gauge groups whose 

quartic casimir invariant is linearly independent of those at lower orders, 

there is another condition which amounts to requiring the vanishing of the 

tr( p4) term. 

If the only gauge group is the U(l) considered above, we have nv = 1 

and so nH = 245 hyper-multiplets are required to cancel anomalies. (For our 

purposes more general gauge groups may also be possible, provided that the 

compactification solution we introduce in the next section remains a solution 

to the equations of motion.) In this case anomaly cancellation through a 

shift in the field BMN requires the anomaly 8-form to be 

18 = k(tr R2 - VP2) (tr R2 - VP2) , (3.77) 

where the trace is over the fundamental representation of 80(5, 1) and mul­

tiplication represents the wedge product. Here the numbers k, v and v are 

calculable given the precise fermion content of the 6D theory. 

An anomaly of this form may be cancelled by adding the Green-Schwarz 

term 

(3.78) 

provided the transformation rule, eq. (3.71), for BMN is modified to oB = 

-w P + aLlv where daL = OWL gives the transformation property of the 
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gravitational Chern-Simons form, WL, which is in turn defined by the condi­

tion dWL = tr R 2. Invariance of the field strength, GMNP , then requires its 

definition be modified to G = dB + AF - WL/V. 

The anomaly-cancelling term and the modifications to Gare linked by 

supersymmetry to one another, and to other higher-derivative terms in the 

6D action beyond those described ab ove. For instance in the Einstein frame 

the U(l) gauge kinetic functions get modified to [87, 88] 

(3.79) 

As we see in more detail once the compactification to four dimensions is 

described below, aH of these new terms are suppressed relative to the ones 

discussed in the previous sections in the sense that they involve higher powers 

of either 1/(ér2) or ecjJ /r2 (or both). 

The Compactification 

The equations of motion for the bosonic fields which foHow from the action, 

eq. (3.72), are: 

1 1 
o </J + - e-2<p G MNP GMNP + - e-cjJ FMNFMN - 2g2e<p = 0 

6 4 

DM (e-
2cjJ GMNP

) = 0 (3.80) 

DM (e-cjJ F
MN

) + e-
2cjJ GMNP 

F MP = 0 

1 -2cjJ PQ _cjJ P 1 
RMN + 8M CP8N CP +"2 e GMPQ ~N + e FMPFN +"2 (o</J) gMN = O. 

The compactification is found by searching for a solution to these equa­

tions which distinguishes four of the dimensions - x/-L, Il = 0, 1, 2~ 3 - from 

the other two - ym, m = 4, 5. The Salam-Sezgin solution is obtained by con­

structing this solution subject to the symmetry ansatz that the spacetime 
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be separately maximally symmetric in the first four and last two dimensions. 

This leads to the following Freund-Rubin-type ansatz [89] for the solution: 

qy = constant and 

9 
_ (g/w(x) 

MN- a and (3.81) 

where 9J.tv is a maximally-symmetric Lorentzian metric (i.e. de Sitter, anti-de 

Sitter or fiat space) , and gmn is the metric on the two-sphere, 82 . Maximal 

symmetry implies the gauge field strength is proportional to the sphere's 

volume form, Emn, and so 

Fmn = J Emn, (3.82) 

where J is a constant. All other fields vanish. 

The gauge potential, Am, which gives rise to t?is field strength is the 

potential of a magnetic monopole. As such, it is subject to the condition that 

the total magnetic fiux through the sphere is quantized: 9 f82 B d2y = 27rn, 

with n = 0, ±1, ... This requires the normalization constant, J, to be: 

J=_n_ 
2gr2 

where r is the radius of the sphere. 

(3.83) 

As is easily verified, the above ansatz solves the field equations provided 

that the following three conditions are satisfied: RJ.tv = 0, FmnFmn = 8 g2e2<f; 

and Rmn = - e-<f; Fmp FnP = - j2e-<f; gmn' lO These imply the four dimen­

sional spacetime is fiat, the monopole number is n = ±1 and the sphere's 

radius is related to qy by 

(3.84) 

lOIn reference [83] the authors construct a similar solution by embedding the monopole 
in an E6, also achieving fiat four-dimensional space. The solution in [83] breaks super­
symmetry. 
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Useful intuition about this result can be obtained by constructing the 

scalar potential for r and cf; which is obtained by substituting our assumed 

background solution into the classical action. One finds in this way three 

contributions, coming from the Einstein-Hilbert term, the Maxwell kinetic 

term for Am and the explicit dilaton potential. In order to eliminate mixing 

between these scalars and the fiuctuations of the 4D metric, it is necessary to 

perform a Weyl rescaling to ensure the 4D Einstein-Hilbert action remains 

r-independent. We take, then: ll 

gMN= (
r-2 gf1V 20 ) 

o r gmn 
(3.85) 

and find the followirig potential: 

f' 1 2 rp ( )2 V = _ ~ = 2g e 1- 1 
e r 2 4 2 erpr2 ' 4 no derivatives 9 

(3.86) 

where e4 = vi -detgf1v, From this we see how eq. (3.84) emerges as the mini­

mum of the scalar potential for rand cf;. Because this potential is minimized 

at V = 0 we also see why the 4D metric must be fiat. Finally, we see that the 

combination erp / r 2 parameterizes a fiat direction, since its potential vanishes 

identically once erpr2 = 1/4g2 has been chosen. 

The existence of the fiat direction parameterized by r 2 
/ erp may be also 

inferred from the scaling symmetry of the supergravity equations of motion, 

eq. (3.75). Since s := r 2 /erp transforms under this transformation while 
_. _. 

t := erp r 2 does not, s plays the role of the dilaton for this symmetry. Since 

this scaling transformation is only a symmetry of the classical equations, and 

11 We implicitly change units when performing this rescaling, switching to the choice 
K;~ = 81fG4 = 1, rather than the same condition for the 6D quantity, K;~. 
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not of the action, the potential for s need not be exactly fiat if we go beyond 

the classical approximation when computing the low-energy theory. 

In the present case it happens that the fiat direction with vanishing 4D 

cosmologie al constant is not lifted order-by-order in perturbation theory, as 

may be seen because the solution leaves one 4D supersymmetry unbroken. 

This may be seen by substituting the solution into the right-hand-side of 

eqs. (3.74) and checking that the result vanishes for a supersymmetry param­

eter which is independent of the 2D coordinates, ym. Equivalently, spinors on 

32 which are constants are Killing spinors for this solution. Their existence 

is a consequence of the choice n = ±1 for the monopole number, sinee this 

ensures the cancellation of the gauge and spin connections in the covariant 

derivative, DJ.Lé [146]. 

Sorne consistency conditions need be borne in mind if we regard this 

field configuration as a low-energy solution in string theory. In this case 

the approximation of weak string coupling requires we take e1 « 1 and the 

approximation of using a low-energy field theory similarly requires r » l. 

Both of these requirements imply small values for the combinat ion e1 /r2. 

Low-Energy Fluctuations 

Fluctuations about this background may be organized into four-dimensional 

fields according to the usuai Kaluza-Klein procedure, with the generic mode 

having a mass which is at least of order l/r. We wish to identify the effective 

four-dimensional theory which governs the physics below this scale. 

Symmetries 
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As a preliminary to the identification of the light particle content of the 

4D theory, we first identify how the background fields transform under the 

model's symmetries. Given the background fields of present interest -

9 I.LV' gmn and F mn - these are: 

• Unbroken 4D Poincaré invariance, as given by the isometries of 4D 

Minkowski space: 

(3.87) 

These symmetries ensure the masslessness of the 4D graviton. 

• Unbroken SO(3) invariance from t,he isometries of the internaI metric, 

(3.88) 

which ensures the masslessness of three 4D spin-one particles. 

• Broken local U(l) invariance, broken because of the transformation 

(JB) = w(F). (3.89) 

From this we draw two conclusions. First, the 4D gauge field AJL is not 

exactly massless. Second, we see that in the Kaluza-Klein expansion 

Bmn(x, y) = bémn + ... (where émn is the 2D volume form) the field b 

mixes with the Goldstone Boson for the U(l) gauge symmetry breaking. 

• Unbroken 4D Kalb-Ramond symmetry 

(3.90) 

for constant Vw 
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• Because the 2-sphere's volume form, Emn, is harmonie, the action has a 

global symmetry, bBmn = C Emn, and this is superficially broken by the 

background, since (bBmn) =J. O. However because (Fmn) = f Emn, there 

is a linear combination of this global symmetry and the U(l) gauge 

symmetry which is unbroken by the background fields: 

(3.91 ) 

provided C = - f w. This shows that in the Kaluza-Klein expansion 

Bmn = b Emn, the field b becomes massless in the limit when either f or 

the U(l) gauge coupling vanish. 

Particle Content 

On symmetry grounds we expect the following bosonic particle content of 

the effective theory weIl below the sc ale l/r. (The corresponding fields are 

also given up to mixing due to the nonzero background flux (Fmn)). 

No. 
1 
4 
4 

Spin 
2 
1 
o 

Field 
gfLV(X) 

A~(x), 3 combinations of gmfL(x, y) 
BfLV(X), <jJ(X) , r(x), Bmn = b(x) Emn/e2 

where we count here real scalar fields. 

This counting arises as follows: 

• The massless spin-2 particle follows as the gauge particle for the un­

broken 4D Lorentz invariance of the background metric. 

• The three massless spin-1 particles which arise as combinat ions of gfLn 

are the gauge bosons for the 80(3) group of isometries of the 2-sphere. 
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• The field B/l-v dualizes to a massless scalar, a, according to the definition 

3/l-a = e-2cf;E/l-vÀpGvÀP /e4. The symmetry a -+ a+constant can be broken 

by anomalies, which can arise after dualization due to the appearance 

of the Chern Simons terms in the field strength G/l-vÀ . 

• The fields b and AIL are not massless. The gauge field is not massless 

because the background field Fmn =1= 0 breaks the U(l) gauge symmetry, 

with an expectation value which is of order f = ±1/(2gr2
) in size. The 

covariant derivative for bis 3/l-b+ f A/l-' indicating that b is the Goldstone 

boson which is eaten by the gauge boson. 12 

• The combination t ;= ecf;r2 is also not massless since it is not a modulus , 

of the background configuration, being fixed by the condition (3.84).13 

We shaH see that this scalar's mass is also suppressed by powers of ecf; 

and so can appear in the low-energy theory below 1/ r. 

• The orthogonal combinat ion s := r 2e-</> is massless in the classical 

approximation, as we saw from the scalar potential, eq. (3.86). 

Light Boson Masses 

To see why the masses of the fields AIL and t = r 2 ecf; are suppressed by powers 

of ecf;, we must compute their kinetic terms in addition to their mass terms. 

For instance, for the gauge field, AIL' the mass term arises from the square of 

the term F mnAIL which appears in the Kalb-Ramond kinetic term. Keeping 

12The possibility that these fields get a mass appears to have been missed in ref. [146], 
but was recognised in ref. [83] in a similar context. 

13The possibility that fluxes could freeze geometric moduli has been noted previously 
in [115]. 
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in mind the Weyl rescaling of the 4D metric this gives a mass term of order 

C 1 -~ 
mass ___ -2<jJ C cmnfL -2<jJ D F mn A AfL _e_ A AfL - 4 e mnfL rv e r mn fL rv 2 2 fL , 

e4 e2 9 r 
(3.92) 

where e2 = y'detgmn . By contrast, the kinetic term is 

Ckin __ ~ -<jJ F FfLV 4 -<jJ F FfLV - e fLV rv r e fLV 
e4 e2 4 

(3.93) 

Comparing these gives a gauge boson mass of order: 

(3.94) 

where we have used the condition g2 r2 e<P = 0 (1), t = r2 e<jJ and s = r2 j e<jJ. 

The mass for' t is found in an identical way. The kinetic term for r arises 

from substituting the ansatz, eq. (3.85), into the 6D Einstein-Hilbert term. 

Together with the explicit q; kinetic term this leads to the following kinetic 

terms for t and s: 

(3.95) 

In terms of sand t the potential, eq. (3.86), becomes 

v = 2g
2 (1- _1_)2 

s 4g2 t ' 
(3.96) 

and so d2Vjdt21 .' = 4g2 j(st2). Comparing with the kinetic term gives a 
mm 

mass which is of the same order as was found above for m~: 

(3.97) 
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For the purposes of comparison, it is worth also recording here the generic 

size of Kaluza-Klein masses. For instance, given a massless 6D scalar field, 

<I>(x, y), and keeping in mind the metric rescaling, eq. (3.85), we may write 

gMNV M V N<I> = (r2 gfLl/V fL V 1/ + :2 gmnv m V n ) <I>, (3.98) 

from which we see mKK rv 1/r2. 

Light Fermions 

A similar calculation can be made for the spectrum of light fermions, and 

leads to the following light fermion spectrum: 

No. 
1 
6 

Spin 
3/2 
1/2 

Field 
'l/JfL(X) 

X(x), >.(x), 4 combinat ions of 'l/Jm(x, y) 

For our purposes it is fruit fuI to determine how these fields assemble into 

multiplets of the unbroken 4D supersymmetry. The identification of these 

multiplets may be explicitly obtained by using the supersymmetry transfor­

mations of eq. (3.74) - such as by following the arguments of ref. [92] - and 

leads to the following: 

• The massless gravitino required by the unbroken supersymmetry is the 

partner of the graviton. 

• Three massless gauginos arise as partners of the 80(3) gauge bosons. 
_. -

These fermions come from the higher-dimensional gravitino due to the 

simultaneous existence of a Killing spinor and three Killing vectors. 

• A massless fermion combines with s and a into a massless chiral mul­

tiplet, whose complex scalar part may be written 8 = ~(s + ia). 
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• Two fermions, with masses m 2 
rv g2 / s, join t and AM + 8Mb/ f to fill 

out a massive spin-l multiplet. This massive multiplet can be regarded 

as the result of a massless spin-l multiplet 'eating' the chiral multiplet 

who se complex scalar part is T = ~(t + ib) via the Higgs mechanism. 

Once the fermions are chosen to transform in the standard way under 

N = 1 4D supersymmetry, they do not carry the U(I) gauge charge, even 

though the 6D fermions did - cf eq. (3.69). In detail this happens because 

the 4D supersymmetry eigenstates are related to the 6D fermions by powers 

of the scalar eib , which cancel the 6D fermions' transformation properties. 

Only the gauginos of the low-energy theory transform nontrivially under the 

SO(3) gauge symmetry. 

3.4.2 The 4D Effective Theory 

Since the low-energy theory has an unbroken N = 1 supersymmetry, it must 

be possible to write it in the standard N = 1 supergravity form. From the 

previous section we see that the matter superfields in terms of which the 

action below the compactification scale is expressed are the massless chiral 

multiplet, S and the three massless gauge multiplets, Aa, a = 1,2,3. 

Since our interest is in exploring the shape of the scalar potential as a 

function of both r and cP, it is useful to extend the effective action to also 

include the massive chiral field, T, and the massive U(I) gauge multiplet, A, 

which is related to it by the Higgs mechanism. The effective theory obtained 

in this way is not a bona fide Wilsonian action when evaluated along the fiat 

direction, however. It is not because the mass ofthese fields are m; rv g2 é /r2 

and mi rv e-<f; /(g2r6), which are the same order of magnitude as the generic 
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Kaluza-Klein mass, mkK f"V 1/r4
, when evaluated along the trough of the 

potential (along which g2r2e<p f"V 0(1)).14 We may nevertheless choose to 

'integrate in' these modes in the spirits of refs. [100, 99], with the idea that 

parametrically their masses depend differently on rand e<P, and so there can 

be regions of field spaee away from the bottom of the potential's trough for 

which they are systematically light compared to mKK. 

In order to completely specify aH of the terms of the 4D supergravity 

action, it suffiees to identify the Kahler function, K(S, S*, T, T*, A, Aa), the 

gauge kinetic functions, H 3 (S, T) and H1(S, T) for the SO(3) and U(l) gauge 

groups, the superpotential, W(S, T), and the Fayet-Iliopoulos term, ç [93, 

94]. 

The Lowest-Order Action 

In this section we determine these functions classically, by comparison with 

the direct truncation of the 6D action [91, 92], followed by a discussion of 

the kinds of corrections which may be expected for the result [92, 96]. 

The Kahler Function 

An important constraint on K arises because b is eaten by the U(1) gauge 

field, AJ-L, sinee this implies its derivatives can only enter .c through the gauge­

invariant combinat ion oJ-Lb + f Aw One infers from this that the superfields 

T and A must enter the Kahler function only through the combination T + 
T* + cA, for a real constant c to be determined below. Similarly, the shift 

symmetry a -7 a+ (constant) implies K can depend on S only through the 

14We thank G. Gibbons and C. Pope for correcting an error concerning the relative sizes 
of mKK and mt, mA in the original version of this paper. 
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combination 8 + 8* . 

The form for K is most easily read off from the scalar kinetic terms, which 

in the Einstein frame must take the form .ckin = _Kij*OJ-tZiOJ-tzj* for generic 

complex scalar fields, Zi. (As usual subscripts here denote derivatives of K 

with respect to the relevant scalar field, evaluated with aIl fields except the 

scalars vanishing.) Comparing this with the direct truncation calculation of 

the kinetic terms for rand cjJ, eq. (3.95), gives the result 

Ktr = -log ( 8 + 8*) - log (T + T* + cA). (3.99) 

The Gauge Kinetic Functions 

The gauge kinetic functions are more constrained than is the Kiihler fun ct ion 

since they must depend holomorphically on their arguments. They may be 

read off from the gauge boson kinetic terms, which must have the general 

form .ckin = - ~ [(Re Hl) FJ-tvF1W + (Re H3 ) F:vF;:V]. Alternatively, for 

sorne purposes they may be more simply obtained from the related terms 

.co = - ~ [(lm Hl) FJ-tvFJ-tv + (lm H3 ) F:vF;:v] , since the imaginary parts of 

8 and T appear in more restricted ways in the reduction of the 6D action. 

Comparing these with the direct truncation of the 6D action gives the 

result: ReHI = e-c!> r 2 = s = 2 Re 8, from which we find Hl = 28. (That 

the leading contribution to Hl must be proportional to 8 follows from the 

recognition that Hi scales like Hl ---+ CJ2 Hl under the classical transforma­

tion, eq. (3.75), together with the transformations S ---+ a 2 Sand T ---+ T.) 

The higher-derivative corrections of eq. (3.79) which follow from anomaly 
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cancellation correct this result to give 

Hl = 2 (5 + ~ T) . (3.100) 

A similar direct dimensional reduction for the 50(3) gauge fields is more 

involved, since the massless mode is a linear combinat ion of the fields Ait (x, y) 

and 9Itn (X, y) [95J. (The necessity for mixing between Ait and 9ltn may 

be seen by performing a local 50(3) transformation corresponding to the 

general coordinate transformation ym -t é,m(x, y) = wa(x) K;::(y) , where 

K;::(y) , a = 1,2,3 are the three Killing vectors which generate the 50(3) 

isometries of the sphere. Under this transformation the massless 4D gauge 

potenti,al must transform as 6A~ = 81t w
a + .... ) Consequ;ntly, the 50(3) 

gauge kinetic function acquires contributions from both the 6D Einstein­

Hilbert and Maxwell terms of the action. 

For our purposes the details of this reduction are not necessary in order 

to conclude that H3 is given by an expression very much like eq. (3.100): 

H3 = 2(a5 + (3T), (3.101) 

for constants a and (3 which are given in terms of the anomaly coefficients 

k, v and v. This conclusion is most easily established by considering Lo and 

recognizing that for the 50 (3) fields these terms are linear in a = 2 lm 5 and 

b = 2 lm T. This is most easily seen from the contribution of the Lorentz 

Chern-Simons term in GMNP GMNP and from the Green-Schwarz anomaly 
~. . ~. 

cancelling term, eq. (3.78). Linearity in a is as expected from the scaling 

property, eq. (3.75), together with the transformation properties of 5 and T. 

The Scalar Potential 
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The constant c in the Kahler potential, the superpotential, W, and the Fayet 

Iliopoulos term, ç, are fixed by considering the scalar potential, eq. (3.96). 

This must agree with the general supergravity form V = VD + VF , where 

(3.102) 

where Da and D are the auxiliary fields for the two factors of the gauge 

group, which we have not yet integrated out (henee the potential's unusual 

sign). Here, as usuaI, (K-l )ij * denotes the inverse of the matrix of second 

derivatives, K ij*. 

Given that neither 8 nor T carry 80(3) gauge ,quantum numbers, we see 

that Da = 0 must be used when comparing with the truncated 6D action. 

Sinee T do es transform under U(l), D can be nonzero and, from the Kahler 

and gauge kinetic functions found above, the U (1) D terms of the low-energy 

action arise from the following terms: 

LD = 8 (
Iv 1 2) ( BK 1 ) - 4 F/-tvF/-t +"2 D + D ç + BA A=ü 

= 8 (
Iv 1 2) ( c) - - F F/-t + - D + D ç - . 
4 /-tV 2 T + T* 

(3.103) 

Here ç is the Fayet-Iliopoulos term, which is permitted only for U(l) gauge 

fields. N otiee that consistency requires we use only the lowest-order expres­

sion Hl = 28 when comparing with the action given above. 

Integrating out D implies the saddle-point condition 

D = - ~ (~- T : T*) , (3.104) 

and so leads to the potential 

VD = + 2
1
8 (~- ~r (3.105) 
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Comparing this with eq. (3.96) we read off: 

~ = ±2g and 
1 

c=±-. 
2g 

(3.106) 

This appearance of Fayet-Iliopoulos terms when the fermion content has a 

gauge anomaly is discussed in more general terms in ref. [97]. 

Since this completely accounts for the scalar potential and supersymmetry 

is unbroken, we conclude that the superpotential vanishes: 

w=o. (3.107) 

Perturbative Corrections 

The above expressions for K, W, Hl, H3 and ~ are derived by classically trun­

cating 6D supergravity, and so in principle they only apply strictly in the 

limit that r -+ 00 and e<P -+ 0, since it is only in this limit that the correc­

tions to truncation vanish. In this way we see that the truncation results are 

approximations to the full expressions which work for the region s, t -+ 00 of 

the space of moduli. 

For sufficiently large sand t - both of which are large if 1/r2 « e<P « 1 

- the corrections to the truncation may be computed order-by-order in a 

low-energy, weak-coupling expansion in powers of 1/ sand l/t. (Sorne of 

these corrections have already been computed for the gauge kinetie functions 

above.) Fortunately, the interplay of 6D and 4D supersymmetry strongly 

restricts the form which such corrections may take [92, 96]. As usual, these 

implications are stronger for the holomorphie functions Hl, H3 and W than 

they are for K and so we discuss these two cases separately. 

Holomorphie Functions 
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We first discuss the form which perturbative corrections may take for the 

holomorphie functions of the supergravity action. For the superpotential, 

W, as has been known for a long time [98], holomQrphy completely forbids 

perturbative corrections from arising within perturbation theory [98], leading 

to the complete absence of correction to W to aIl orders in l/T and 1/ S 

[92, 96]. This leaves eq. (3.107) as the complete prediction to aIl orders. 

Perturbative corrections to Hl and H3 do arise at one loop, and are 

given by the S-independent terms in eqs. (3.100) and (3.101). No further 

corrections beyond these are allowed to aIl orders in perturbation theory, 

however. This may be seen from the symmetry under shifts in lm S, which is 

broken only by the Chern-Simons terms in the field strength for BM N, since 

these determine the gauge transformation properties of BMN, eq. (3.71). As 

we have seen, these Chern-Simons terms are themselves related to the Green­

Schwarz action which cancels the gauge anomaly of the 6D fermions, and this 

connection with the anomaly precludes there being additional terms of this 

form which are generated beyond one loop. We see that expressions (3.100) 

and (3.101) are therefore the complete predictions ~ up to the additions of 

S- and T-independent constants ~ for Hl and H3 to aIl orders in 1/ Sand 

1/T. 15 

Perturbative corrections are necessarily concentrated into the Kahler func­

tion, and it is to a discussion of these that we now turn. These come in two 

forms. 

15 As has been noted elsewhere, sinee this argument relies on holomorphy it strictly 
applies only to the Wilson action, and not necessarily to the generator of 1PI vertices 
[99, 100]. 
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Kaher Function: Powers of l/t 

Corrections to the Kiihler function can arise, and do so independently as 

powers of l/t and 1/ s, sinee these have roots in the more microscopic the­

ory as inde pendent expansions in powers of e<P and 1/ r. This may be seen 

explicitly by considering two types of corrections to the lowest-order action 

in the 6D theory, as we now do. We start with powers of l/t, which play an 

important role in what follows, and which we now argue correspond to the 

contributions under dimensional reduction of higher-derivative corrections to 

the 6D effective theory. 

The simplest way to identify corrections to K is to compute the correc­

tions to the Kiihler metric by examining the kinetic terms of the scalars r 

and <p in the 4D effective action. Examples of higher-derivative corrections 

to these kinetic terms are the contributions of higher-curvature terms to 

the radion kinetic energy. For instance a higher-curvature correction to the 

Einstein-Hilbert action (in the string frame) in six dimensions 

becomes, in the Einstein frame 

.cEP cv R + kne-(n-l)<P Rn, 
e6 

(3.108) 

(3.109) 

due to the .rescaling gMN ---+ e<PgMN which is required to remove <p from in 

front of the Einstein-Hilbert part of the action. On dimensionally reducing 

we extract one factor of the 4D Ricci tensor, R,w ex: op, r Ov r / r 2
, from Rn, wi th 

the remaining factors being proportional to the two-dimensional curvature: 
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T T 

Figure 3.1: One-Ioop diagram contributing to the kinetic term of the field T. 
The internallines are also T and/or the U(l) gauge field. 

(3.110) 

For instance, in string theory such corrections could arise from sigma-model 

corrections at string tree level. 

Kaher Function: Powers of 1/ s 

Powers of 1/ scan arise due to loops within the 4D theory itself. For instance, 

consider the one-Ioop correction to the kinetic term for T which is induced 

by the graph of Fig. (3.1). Since the 4D loop integrals diverge (quadratically) 

in the ultraviolet, they are insensitive to the masses of the multiplets in the 

loop and we can ignore the mixing between the T multiplet and the U(l) -. _ .. 

gauge multiplet. If we take aH internaI lines in Fig. (1) to be T fields, then 

the vertices are of order 8 3 K / 8t3 
rv 1/ t 3 , while each propagator contributes 

[KTT*(p2 + m;}l-l with KTT* rv 1/t2. Taking the 4D ultra-violet cutoff to 
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be m'iK rv 1/r4 
rv M;/(st), we estimate: 

(3.111) 

Alternatively, if one of the internaI lines of Fig. (1) is a U (1) gauge mul­

tiplet, then the coupling between V and T, given by the lowest order Kahler 

function K = - 10g(T + T* + cV), is of order [P K / av aTaT* rv cl t 3 , and we 

see that each vertex of Fig. (1) contributes a factor c/t3 . Taking s » t the 

gauge propagator contributes a factor of 1/ s, so we estimate: 

8KTT·(T- Vloop) rv (4:)~~; c~r (t:) rv (47r);s2t4 ' (3.112) 

w here we use the lowest-order condition t ::v 1/ g2 rv c2 . 

Kaher Function: Logarithms of 1/ s 

Having seen how powers of l/t and 1/ s control the modifications to K, 

we next consider the possibility that more subtle types of corrections arise, 

which depend logarithmically on 1/ s. lndeed, logarithmic dependence on 

coupling constants is known to arise in 4D physics if the energies of sorne 

low-Iying states, El, are suppressed by powers of coupling constants, g, rel­

ative to higher-energy states, Eh: El ex: gn Eh, In this case logarithms of 

couplings can arise as logarithms of energy ratios: 10g(Eh/ El) rv n 10g(1/ g). 

The most well-known example of this type is perhaps the QED prediction 

for the Lamb shift, which involves a famous factor of 10g(1/o:) [101]. The 

potential for these kinds of logarithms exists in the low-energy 4D theory 

arising from the 6D supergravity compactification considered above because 

of the existence of hierarchies of mass scales. For instance if string states 
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have masses Ms rv Mp then these are very different from typical compacti­

fication scales, m'iK rv 1/r4 
rv M;/(st), which are suppressed by powers of 

the small quantity l/(st). If logarithms of such ratios arise they can give 

rise to logarithms of s and t, of the form 

log ( ~; ) rv log(s t), 
mKK 

an of which are similar in size when evaluated along the bottom of the scalar 

potential. 

Sorne of these logarithms can arise in the four dimensional theory due to 

the appearance of large logarithms in the running of the couplings, and if so 

their appearance can be understo'od (and often re-summed) using standard 

renormalization-group arguments [102, 103]. To this end imagine running the 

4D effective theory within the 4D theory, where the running of the inverse 

couplings, Hl (S, T) and H 3 (S, T), is given by 

HI(S, T)IJl + bl log (p2

2 ) 
o Po 

H3 (S, T)IJl + b3 log (p2

2 ) 
o Po 

(3.114) 

with bl and b3 are the standard supersymmetric one-Ioop beta-function co­

efficients for the U(l) and SO(3) gauge groups, respectively. Using the ex­

pressions (3.100) and (3.101), we may solve for the running of sand t 

s(p2
) = sa + bs log (P:) , 

. Po 
aIid 2 (p 2

) t(p ) = ta + bt log P6 ' (3.115) 

where, as long as the equations are non-singular, bs and bt are linear com­

binations of bl and b3 depending on the coefficients of Sand T in Hl and 

H3' 
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The dependence of large logarithms on masses, m, sm aller than mKK 

may then be traced by running these 4D couplings down to 11 = m from 

110 = mKK · This gives logarithms of the form log(mkK/m2), such as 

log (~f ) rv log (g2t) + constant, (3.116) 

which are large if t » 1/ g2 (away from the bottom of the potential). 

We see from these considerations that the existence of logarithms of sand 

t in the corrections to K are not unlikely. Without performing a more sophis­

ticated calculation it is difficult to pin down the precise power of s and/or t 

which appears inside the logarithm. This is because low-energy logarithms 

like log(miK/m~) can in principle combine with other large logarithrp.s which 

arise purely from the high-energy theory, such as log(M;/miK) to give new 

logarithms like log(M;/m~). We therefore parameterize this possibility by 

writing the resulting full RG-improved Kahler function as 

K = -log [s - bs log (sta) + ks] -log [t - bt log (sta) + kt + cA] , (3.117) 

where a, ks and kt are order-unity constants. 

Notice that expanding eq. (3.117) in powers of 1/ sand l/t gives the cor­

rections to K to leading order in l/t and 1/ s, but to all orders in (1/ s) log(sta ) 

and/or (l/t) log(sta ). This observation will become important later when we 

find minima for the scalar potential. 

3.4.3 Nonperturbative Effects in 4D 

Given the ab ove semiclassical approximation to the functions K, H, Hab and 

W, we may use general knowledge of 4D N = 1 supersymmetric theories to 

understand the physics at energies much below the compactification scale. 
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In particular, our interest is in the existence of any other mass scales at very 

low energies which might lift the degeneracy of the fiat direction described 

by 8. 

It is useful to re-instate the Planck mass and to identify the mass sc ales 

which arise in the low-energy 4D supergravity. These are: 

• The 4D Planck mass: Mi; = 1 / ~~ = 1/ (87rG 4)' as defined by the 4D 

graviton couplings . 

• The 4D cutoff: mKK rv 1/r2 rv Mpj(st)1/2, which defines the scale 

above which the theory is no longer efficiently described by a 4D la­

grangian. 

To these semiclassical mass scales should be added a new, nonpertur­

bative one: A rv fJ exp [-(vs(fJ) + Àt(fJ))/3], where v and À are positive 

constants which are related to the renormalization-group coefficients for s 

and t by the condition that A be independent of renormalization point fJ. 

Using eqs. (3.115) this implies 

3 
v bs + Àbt = 2"' (3.118) 

This new scale arises because the low-energy theory's 80(3) gauge the-

ory is asymptotically free, with A defining the confinement scale where its 

effective coupling becomes strong. At this scale the gauginos of the 80(3) 

the ory. condense [100], and because of this condensation (~()gether with the 

absence of matter fields carrying approximate global chiral symmetries) the 

80(3) gauge sect or acquires a gap in its spectrum which is of order A. The 

massive energy eigenstates which result are the 80(3)-singlet bound states 

of the gluons and gluinos. 
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As is weIl known, this condensation dynamically generates a superpoten­

tial in the low-energy theory [74, 100], which is of order A3 : 

w = Wo exp[-v 8 - À T], (3.119) 

for sorne constant Wo rv /13 . 

This superpotential contributes to the scalar potential for sand t by 

generating a nonzero VF , which was absent semiclassically. It is this new 

term which is responsible for the qualitatively new features of the low-energy 

theory: the lifting of the fiat direction for s. 

3.4.4 Dynamics of the Flat Directions 

We have se en that the strongly-coupled 80(3) gauge couplings dynamically 

generate a superpotential at low energies, and so the two terms, VD and VF 

confiict in what they would like the fields t and s to do. The semiclassical 

term, VD , is minimized when t rv 1/ g2, while the nonperturbative term, VF , 

is minimized when t -----+ 00. These cannot be simultaneously minimized and 

so a compromise must be struck for which at least one of VF or VD is nonzero. 

We find that the vacuum to which this competition between VF and VD leads 

depends in a crucial way on the form of the corrections to K discussed above. 

Dilaton Runaway 

As a first approximation to the shape of this potential, we consider the super­

potential, eq. (3.119), but ignore all corrections to the leading semiclassical 

Kahler function, eq. (3.99), and gauge kinetic functions. This leads to a 

scalar potential of the form V = VD + VF , where VD may be read off from 
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eq. (3.96), and VF is given by: 

VF(s, t) = 1:~12 e-vs->..t [(1 + LI S)2 + (1 + >.t)2 - 3] . (3.120) 

If A « Mp we have Wo « 1 and the minimum for t is close to the zero of 

VD : l/t = 492 + 0(lwoI2). To linear order in Iwol2 the potential for s then 

becomes Veff(S) ~ VF(l/t = 492
), and so 

Veff(s) = 4g2~Vo12 e-v ,-:";(49') [(1+VS)2+ (1+ 4~2r -3]. (3.121) 

We find that the potential for s which is generated in this approximation 

does not have any minima for positive s besides the runaway solution for 

which s ---t 00. This is the familiar dilaton runaway, with the 80(3) gauge 

coupling generically driven to zero as s runs off to infinity. 

Dilaton Stabilization 

The weak part of the previous analysis is the use of the lowest-order Kiihler 

function, eq. (3.99), despite using a nonperturbative expression for the su­

perpotential. We now show that using the renormalization-group-improved 

expression, eq. (3.117), can generate a potential for s which can have other 

minima besides the dilaton runaway. 

We begin with the Kiihler function, 

K(s, t) = _ log [s + ~ log ( s~a) ] _ log [t + ; log ( s~a) ] 
o (log(sta/q) log(sta/ q)) 

+ \. S2 ' t2 ' 

- log sa - log ta + 0 (l~;, 1;2g) , (3.122) 

where a and q are constants, and where sa, ta are the fields evaluated at the 

high scale. Notice that changing from sa, ta to s, tin K (and then constructing 
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the scalar potential V) is not sim ply the same as performing a trivial change 

of variables on the potential V itself. It is not, because this change is not a 

holomorphie redefinition of Sand T. 

Under the assumption that Iwol « 1 we may compute the effective po­

tential as before, by first minimizing VD(s, t) to obtain t = t(s) and then 

examining Veff(S) ~ VF[s, t(s)]. The minimum of VD occurs when 

KT+E = 0, (3.123) 

where E is a constant which is of order g2 and 

KT = BK ~ _ ~ _ ~ (~bt + ~ bs ) 

BT ~ 2 t~ s~ 
(3.124) 

In the case where a = ° (3.123) can be solved analytically, so that VD is 

minimized for t( s) satisfying 

1 1 
to - t + "2 bt log(s/q) ~ ~. (3.125) 

Solving this for t(s) and using the result in VF[s, t(s)] gives Veff(S). The 

computation of VF requires the inverse matrix: 

(K-1)SS* 

(K-1fT* 

(K-1 )ST* (3.126) 

where IIKII is the determinant of the matrix Kw. To this order in the Kahler 

function we may ignore the difference between sand So and t and to after 

taking derivatives, so that 

1 
KTT* ="2" 

to 
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1 ( 2 2) Kss* = 2" 1 + f3t + f3t + 3f3s + f3s 
sa 

f3t 
KST* =­

soto 

IIKII = 21t2 (1 + f3t + 3f3s + f3s 2) , 
sa a 

(3.127) 

where f3s = ~bs/ sa, f3t = ~bt!to ~Ebt. We also have the Kahler derivatives 

DsW Ws+KsW 

-[v+ ~l W 

DTW WT+KT W 

- (À+E)W, 

where both-results are evaluated at t = t(s) and we have used ~3.118), and 

0" = 2 G + f3t + f3s). 

One finds in this way the expression for Veff(S) = VF[s, t(s)]: 

where 

with 

Veff(S) = Iwo
t

l2 
N(so, ta) e-2vso-2>.to, 

80 a 

and 

(3.128) 

(3.129) 

(3.130) 

Notice that tJüs reduces to the previous runaway potential in the)imit bt ~ 

0, bs ~ 0, as long as we also set 0" = 1 (the conditions (3.118) do not apply 

in this limit). f3s and 0" are both 80-dependent quantities. 

This potential is drawn in Fig. (3.2) for the choice, in (3.101), 0: = f3 = 

1/800, and with v/v = -9/4, q = 100, b1 = -1/10, b3 = 6/(41T)2, V = 0.005 
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Figure 3.2: The effective potential for s computed using the renormalization­
group improved potential. Parameters are chosen as described in the main 
text. 
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and E = .28. À is determined in terms of these by the condition v bs + À bt = 

3/2, while bt and bs are determined from b1 and b3 . For these choices the 

potential is minimized by the field values s = 34 and t = 8.6, corresponding 

to to = l/E ~ 3.6 and So = 23. 

It remains to be shown that values this small for a and /3 can be obtained 

from realistic string models. The above discussion nonetheless suffices to 

make our main point that the renormalization-group-improved Kahler func­

tion can pro duce nontrivial minima for the modulus s. We have also found 

minima having larger values of a and /3 (lai, 1/31 rv 0(0.1)), albeit for small 

values of sand t which lie at the limit of what can be understood pertur­

batively in powers of 1/ sand l/t. The generic existence of such minima 

can be seen by observing that as long as the potential has a maximum, and 

increases as one approaches the origin (s = t = 0) from the right, then a 

minimum must exist in between (barring the existence of new singularities 

in this regime). In the present case of the larger values of a and /3, maxima 

exist for sand t well within the perturbative regime, allowing us to infer the 

existence of the minima at much smaller field values: s, t rv 0(0.1). 

The quantities parameterizing the strength of the supersymmetry break­

ing are given by the vev of the potential, Veff( s) Imin' as well as the expectation 

values of the auxiliary fields: 

M (3.131) 

where i runs over Sand T. The mass of Sis approximately given by 

(3.132) 
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For the minimum described numerically above, we find (V) ~ 7 X 10-15 , 

V" ~ 9 X 10-17 , Fs ~ -9 X 10-8 , Ft ~ -2 X 10-6 , M ~ 2 X 10-7 and 

m; ~ 7 x 10-15 , all in Planck units. The supersymmetry-breaking scale is 

therefore seen to be quite low, compared to, say, the compactification scale 

mKK rv Mp/(st)1/2 rv Mp/10. 

Summary 

We now summarize our results, and outline sorne of their potential applica­

tions. 

We have revisited the Salam-Sezgin compactification of gauged N = 1 

6D supergravity, and have c?mputed the N = 1 4D supergravity to which 

it leads at low energies. The low-energy field content to which we are led is 

supergravity coupled to a supersymmetric U(l) x 80(3) gauge theory plus 

several chiral multiplets which describe the compactification's moduli. The 

low-energy theory has the following properties: 

• The U(l) multiplet 'eats' one of the chiral multiplets via the Higgs 

mechanism at the classical level giving these fields masses which are 

comparable to the Kaluza-Klein mass scale, mKK rvrv 1/r2, when eval­

uated along the trough at the bottom of the classical scalar potential. 

This scalar potential arises from the 4D point of view through a Fayet­

Iliopoulos term for the U(l) gauge group. 

• One combinat ion of scalars parameterizes a fiat direction which remains 

massless to all orders in a semiclassical expansion, and supersymmetry 

remains unbroken along this fiat direction. 
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• The nonabelian 50(3) gauge multiplet is asymptotically free and once 

its coupling becomes large its gauginos condense and generate a non zero 

superpotential. The scalar potential which results from this superpo­

tential competes with the U(l) D-term potential and lifts the degener­

acy of the fiat direction. 

• The vacuum to which the theory tends depends on the precise form of 

the perturbative corrections to the Kahler potential. Using the lowest­

order result, K = -log s + ... , leads to the standard dilaton runaway, 

in which the massless field parameterizing the fiat direction runs off to 

infinity. In this limit the 50(3) gauge coupling vanishes and super­

symmetry remains unbroken. 

• If we instead use the renormalization-group-improved version of K, 

then the runaway can be stabilized for sorne choices of the parameters. 

In this context the significance of the present analysis is to identify a 

type of logarithmic dependence of K on s which would be sufficient to 

stabilize the runaway. Of course, we do not know yet whether the re­

quired parameters can actually arise for low-energy perturbations about 

a real string vacuum. However, we regard the potential rewards of their 

discovery to provide sufficient motivation for taking a proper look. 

At first sight, this last item appears to run contrary to a standard ar-
.... ~. 

gument by Dine and Seiberg against the possibility of fixing the dilaton at 

weak string coupling [105]. This argument essentially states that if the po­

tential is a series in 1/ s, then any minimum ~ besides the runaway s -----+ 00 

~ must balance different terms in this series against one another, and so be 
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incalculable within the context of perturbation theory. 

Despite this, we are able to find nontrivial minima in our analysis for two 

reasons. First, given that t and s are large at the minimum, but (lit) log s is 

0(1), we see that the Dine-Seiberg argument is correct inasmuch as it states 

that the potential is required to aIl orders in (lit) log s in order to determine 

its minima. Fortunately, this form is known by virtue of the renormalization­

group re-summation. 

Second, one may ask how t and s could be large at the minimum in the 

first place if there are no large parameters in the potential. Although we have 

not exhaustively searched parameter space for other solutions, it appears that 

we only..obtain large values for sand t when we choose small values for the 

parameters CI: and (3, and so this may explain the origin of the nontrivial 

minima within perturbation theory. To the extent that the appearance of 

these extra parameters which can be tuned to get weak coupling are required, 

our analysis would be similar to the older racetrack scenarios [106]. 

ln the end, it may be that realistic string models do not provide CI: and (3 of 

the required magnitude. We regard the artifice of exploring the consequences 

of their being small nonetheless to be of sorne value, because it allows us to 

infer sorne evidence for the existence of minima in the strong-coupled regime 

even in the cases where CI: and (3 are larger. In this case the minima we find 

would be pushed into the strong-coupling region for which our calculational 

methods do not directly apply. Nevertheless the existence of-these minima 

still follows from the existence of a maximum for larger values of s and t, 

together with the general property that the potential is positive and diverging 

as s, t -t O. Indeed, the existence of the maxima within the perturbative 
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regime can be inferred for a wider range of values for Cl: and f3 than can the 

existence of the minima, leaving only the existence of the singularity of the 

potential at small s, t to be established using more robust arguments. 

Supersymmetry Breaking 

If the runaway is stabilized the effective 4D model dynamically breaks su­

persymmetry at a scale which can be naturally very small compared with 

the compactification scale. If electroweak symmetry breaking occurs at the 

supersymmetry-breaking scale, and if fundamental scales like Ms and mKK 

are chosen near the Planck or G UT scales, then this would provide a Kaluza-

, Klein realization for using dynamical supersymmetry breaking to naturally 

generate the electroweak gauge hierarchy, along lines initially proposed sorne 

time ago [107]. 

The low-energy implications of such a model may be inferred by regarding 

the entire theory considered here to be the hidden supersymmetry-breaking 

sector to which standard-model particles are coupled [108]. As is easily ver­

ified, the large hierarchy s » t which the stabilization mechanism predicts 

ensures that the auxiliary field for S is the largest supersymmetry-breaking 

v. e. v.. This makes the phenomenological implications of this kind of su­

persymmetry breaking the same as for a dilaton-dominated scenario. This 

has the virtue of being among the most predictive kinds of string-motivated 

supersymmetry-breaking scenarios, with definite relations predicted for the 

spectrum of superpartners [108]. 
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3.5 Discussion: The Cosmological Constant 

The particular six-dimensional theory we have considered in this chapter 

has many features in common with realistic string compactifications, such 

as 4D N = 1 supersymmetry, moduli, fiat directions, Fayet-Iliopoulos terms 

and supersymmetry-breaking through gaugino condensation. It has the ad­

vantage, however, of being much simpler than its 10-dimensional cousins, 

particularly in its compactification to four dimensions; the compactificaton 

proeeeds on an internaI two-sphere, as opposed to the Calabi-Yau three folds 

required in supersymmetric string compactifications. 

As this model illustrateed, one of the most difficult tasks of any theory 

which includes gravit y is to produee a small cosmological constant. The par­

ticular six-dimensional model that we discussed, in common with string com­

pactifications, compactifies the internaI dimensions with fiat four-dimensional 

space, which seems naïvely to solve the cosmological constant problem; also 

in common with string compactifications, however, the breaking of supersym­

metry is a four-dimensional phenomenon, and therefore naturally introduces 

a hierarchy problem. 

Supersymmetry-breaking introduees a hierarchy in all known four-dimensional 

supersymmetric models. As discussed in previous chapters, the reason super­

symmetry is considered an important feature in many models is that if the 

supersymmetry-breaking scale is rv Mweak then the Higgs mass is stablised, 

solving one hierarchy problem. Supersymmetry also has the merit that the 

cosmological constant is protected from corrections, but this is only valid 

at scales much larger than the supersymmetry-breaking scale. Sinee super­

symmetry is broken in the real world, the cosmological constant typically 
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becomes on the order of MSUSy2 MPlanck 2 or MSUSY 4 (it need only go to zero 

as Msusy -t 0). Even if supersymmetry was not imposed to solve the Higgs 

hierarchy problem, sinee in a supersymmetric context the standard model 

particles are embedded in supermultiplets, the couplings of superpartners 

is on the order of standard model self-couplings. The absenee of observed 

superpartners requires Msusy ~ TeV [3], which gives an unaceeptable cos­

mological constant in any case. The basic trouble with any such scheme (and 

aU such string-inspired compactifications of which 1 am aware) is that they 

effectively reduee the cosmological constant to a four-dimensional problem; 

the introduction of extra dimensions provides no additional insight or control. 

EssentiaUy, sinee the compactification scale in these models is rv MPlanck, and 

since the cosmological constant problem is a low-energy problem, the four­

dimensional cosmological constant problem persists in these models. 

ln the next chapter we turn to another class of extra-dimensional mod­

els, brane-world models, which have several features that make them more 

attractive from the point of view of trying to solve the cosmological constant 

problern. These models lower the effective higher-dimensional Planck scale by 

employing one of several techniques that will be outlined in the next chapter, 

and sequester the standard model from the gravitational sect or. We can see 

immediately the benefit of achieving these two aims: if the standard-model 

sector is sequestered from the gravitational sector, then standard modelloops 

may not contribute to the macroscopic cosmological constant, disentangling 

the problems of supersymmetry-breaking, electroweak symmetry-breaking 

and the QCD scale from questions of cosmology; and second, lowering the 

natural scale of gravitational physics will, in this case, lower the scale at which 
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a cosmological constant is produced. In the next chapter we will outline the 

ways in which this sequestering can be accomplished and made physically 

reasonable, and will give evidence that the gravitational scale may be as low 

as the weak scale, which may, we will argue, naturally pro duce a cosmological 

constant of the right order of magnitude rv 1O-3eV. 
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Chapter 4 

Brane-Worlds, the 
Cosmological Constant, and 
Supergravity 

We have seen that there seems currently to be no viable four-dimensional 

solution to the cosmological constant problem. We argued that string theory 

requires extra dimensions, but that compactification does not substantially 

change the methods of solution available. In this chapter we will present 

'brane-world models,' which are alternatives to compactification. We here 

argue that the combinat ion of a large extra dimensions brane-world scenario 

and bulk supersymmetry can provide a way to control the cosmological con­

stant. In the next chapter we explicitly construct a class of supersymmetric 

large extra dimensions models. 

Brane-world models are another class of string-in~pired models incor­

porating extra-dimensional gravitational physics to try to understand four­

dimensional puzzles. A brane-world model assumes that the standard-model 

fields are trapped on a four-dimensional surface in a higher-dimensional 

spacetime. Gravit y and other 'bulk' fields propagate in aIl directions. Brane-
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world models are inspired by the properties of D-branes, which, in string 

theory, trap Yang-Mills fields (and can trap charged matter) on their surface 

and interact with each other via gravity. 

Brane-world models, as opposed to bona fide D-brane models, do not use 

the specifie and special properties of D-branes embedded within a particular 

string realisation for model-building. There are a number of motivations 

for attempting to extend the space of theories under consideration at high 

energies, but without necessarily tying the details to a particular realisation 

arising from string theory: 

• It is believed that each of the string theories is a perturbative descrip­

tion around a different vacuum of UV-complete, fundamentai gravita­

tionai physics [53, 54]. Any detailed model based on one of the string 

theories makes an assumption about the vacuum structure of string 

theory, something about which we are collosally ignorant [32]. 

• If string theory is correct in any measure there are likely dimensions 

beyond the usual four. As discussed earlier, there seems no satisfactory 

way to compactify string theory in the standard way (at least the hope 

that a unique compactification would be found that was 'the solution' 

to the string equations of motion seems less and less plausible [32]), so 

seeking extensions of the methods by which four-dimensional physics 

is achieved from higher-dimensional physics seems prudent. 

• Prior to brane-world models, the only viable solution to the hierarchy 

problem was sorne version of a supersymmetric standard model [199]. 

There is no direct evidence of supersymmetry at present (we aIl await 
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the LHC eagerly), and alternative solutions should be investigated by 

aU means as a contingency against the non-observation of supersym-

metry. 

• Even if string theory is wrong, there is no reason to believe that ex­

tended objects will play no role in a quantum theory of gravity. Explor­

ing the effects of these objects on low-energy, four-dimensional physics 

can help to guide the work being done at the more fundamentallevel, 

helping to shape the requirements of a theory of gravity. 

Braneworld models have also been used to study alternative formulations 

of inflation [129], cosmology [127, 128], dark matter [130], quintessence [121], 

and much more. However, the primary goal of the earliest brane-world models 

was to replace supersymmetry as a solution to the hierarchy problem. (But 

see [169].) 

4.1 Higgs-Mass Hierarchy as a Motivation for 
Brane-Worlds 

Recall that the hierarchy problem exists because both the weak sc ale rv 

103GeV and the Planck scale rv 1018GeV are considered to be fundamen-

tal scales. The sensitivity of super-renormalisable operators to high-scale 

physics (if unconstrained by symmetries) then introduces a hierarchy be-
o. 

cause MPlanck »Mweak ' In this picture the standard model is an effective 

theory (perhaps one in a long string of such low-energy theories) vaUd below 

the Planck scale, and corrections to the standard model can be computed in 

powers of E / MPlanck « 1, perhaps providing insight into gravitation al phe-
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nome na and their interactions with standard model- and standard model-like­

fields. This programme is already effective in the calculation of corrections 

to electroweak processes which can be computed in powers of E / M weak . 

There are two broad classes ofbrane-world models which were constructed 

to address the hierarchy problem, the Randall-Sundrum (warped) models [66, 

67] and the large extra dimensions (LED) models [136]. A broad categori­

cal difference between the two classes of model is their interpretation of the 

hierarchy problem; the warped models assume that the Planck mass is fun­

damental and that the explanation lacking is the small size of the weak mass, 

while the large extra dimensions models take the fundamental scale of gravit y 

to be low rv M weak , and try to explain the apparent anomolously large value 

of MPlanck with a large internaI-dimension volume. 

4.2 Warped Models 

Warped models [66,67] try to solve the hierarchy problem (specifically posed 

as the 'exponentially' large discrepency between MPlanck and M weak ), by using 

exponential functions in the metric to suppress the apparent masses on the 

branes, and thus the Higgs mass and the electroweak scale. The metric in 

models of this sort takes the form 

( 4.1) 

with z E [-2,2) periodic. The periodicity of z and the discontinuity of the 

derivative of z at z = 0, 2 ensure the existence of one brane at each of these 

positions. 

The hierarchy is solved in this model because the standard model is 10-
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cated on the brane at z = z and the standard model action is constructed us­

ing the induced metric GJ-Lv(z = z) = e-2klzlgJ-Lv. To see why an exponentially­

damped metric can solve the hierarchy problem, consider a scalar-field la­

grangian with scalar field mass m. When transformed to canonical form, we 

see that the physical mass is exponentially-damped from its bare value, m: 

SSM = -~ r V-GGJ-LV (OJ-LcPovcP+m2qi) (4.2) 
JM4 

-~ r v-g4e-2klzlgJ-Lv0J-LcPovcP + e-4klzlm2cP2 (4.3) 
JM4 

-~ J V-g4gJ-LV0J-LifJ8JP + (me-klzl?ifJ2 (4.4) 

where cP = ek1z1ifJ. This solves the hierarchy problem because the effective 

Planck mass is obtained by integrating the bulk Einstein action over the z 

coordinate: 

J dZJ-G5M~R(5) 
J dzv-g4e-2klzIM5R(4) 

M 2 ~R(4) 
Planck V -gJ-LV , 

so that 

M 2 - Ml (1 -2klzl) 
Planck - 2k - e . 

( 4.5) 

(4.6) 

(4.7) 

(4.8) 

(We have assumed that the non-standard model brane [the Planck brane] is 

located at z = O.) In detail, by choosing kz rv 50 we may. introduce a hierar­

chy of 20 orders of magnitude between the physical higgs mass, mcklzl/2 and 

the the four-dimensional Planck mass, MPlanck rv M5 rv m. This solves the 

hierarchy problem because high-energy contributions are five-dimensional, 

and so involve integrating out masses on the order of M5 (the largest scale 
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in this theory). Since the bare mass is already m rv M5, no fine-tuning is 

required, and no unnaturally small numbers are introduced. 

4.3 Large Extra Dimensions Models 

Another extra-dimensional mechanism for solving the hierarchy problem is 

to construct a brane-world scenario in which the volume of the extra di­

mensions is very large [136]. We argued in the previous chapter that it 

was imperitive that the extra dimensions be small so as to ensure an effec­

tive four-dimensional description valid at tested energies. Since experiments 

have been conducted to rv Te V scales, naïvely it seems impossible to make 

the extra dimensions larger than this. 

In fact, only non-graviational interactions have been tested at energies 

high enough to rule out deviations from the standard paradigm of four­

dimensional general relativity cou pIed to the standard model. If only gravit y 

were to propagate in large extra dimensions, the extra dimensions can be as 

large as a tenth of a millimeter [131] because short-range graviational phe­

nomena are very-po orly measured. 1 A very-large extra-dimensional model of 

this sort can be constructed using branes, since this is precisely what branes 

do: they localise the Yang-Mills degrees of freedom on the brane, making 

them effectively four-dimensional, while allowing the gravitational degrees of 

freedom to propagate in all directions. 

To see why large extra dimensions can solve the Higgs-mass hierarchy 

problem, imagine the simple situation of dimensionally reducing a higher-

1 In fact other fields can propagate in the 'bulk,' it is imperative that 'bulk' fields couple 
weakly to standard-modelfields. 
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dimensional theory (with d total dimensions) on torii to four dimensions. The 

gravitational action (where we use our old notation: z are the coordinat es 

of the full space, x of our usual four dimensions and y are of the internaI 
~ 

dimensions and R is the Ricci scalar of the total space and R that of the four 

dimensions) reduces as 

J Md-2 J J M
d

-
2 J VM

d
-

2 

dzTR= dx dYTR= dx 2
d R (4.9) 

where V = J dy is the volume of the extra dimensions. This implies that the 

effective four-dimensional Planck-scale is given by 

M
2 - "\1 l M(d-2) ( ) (d-4) M(d-2) 
4 - vO X d rv 7rrc d' (4.10) 

where reis the compactification radius. The hierarchy problem is solved if 

the higher-dimensional Planck mass is TeV, since this would in turn imply 

that the sc ale at which the Higgs receives corrections is a TeV, eliminating 

the fine-tuning required to have a TeV-scale Higgs. 

One way to intuitively understand what is happening is to use the extra­

dimensional flux law for the potential for a pair of test-masses, 111, 112 obtained 

from Gauss' law: 

V rv 111112 _1_ (4.11) 
M d - 2 r d- 3 

d 

(because the area of a sphere rv r d - 2 ). As r increases to the size of the extra 

dimension, r c, the above l~w saturates, yielding 

(4.12) 

recovering the mass formula eq. 4.10. 
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d r(m) r(m) 
t=l t = 10 

5 2 X 1012 7 X 1O11 

6 2 X 10-4 5 X 10-5 

7 7 X 10-10 2 X 10-10 

8 2 X 10-12 3 X 10-13 

9 4 X 10-14 8 X 10-15 

10 3 X 10-15 6 X 10-16 

11 6 X 10-16 1 X 10-16 

Table 4.1: Table listing the radii of large extra dimensions for different total 
numbers of dimensions and for the two cases in which the fundamental scale 
of gravitational physics is 1 or 10 TeV. 

What size extra dimensions do we need if we required the extra-dimensional 

Planck-mass to be tTeV? If we choose t not-too-different from 1 we have, 

r(d-4)/(d-2) 
(-7fr) '"" 1032/(d-4)-19 m (4.13) 

2 

For t = 1 and t = 10 we list the values of the radius for various dimensions 

in table 4.1 

Experimental tests of short-range gravitational effects search for devi­

ations from Newton's Law (or Gauss' Law) (force '"" 1/r2) [131] by fitting 

extremely fine-tuned measurements of the forces between solid objects placed 

very closely together to the more general relation 

(4.14) 

These measurements are notoriously difficult due to Casimir effects, thermal 

noise and even local inhomogeneities in the Earth's crust [131]. Nevertheless, 

the best current bounds place 

À ~ 200 {lm (4.15) 
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assuming Ct = 1 (for gravitational-strength tests), thus bounding the size of 

large extra dimensions of to be less than O(O.lmm). because in these models 

it is the KK modes of mass rv m that alter short-distance gravitation~this 

part of brane-world physics works as described for normal compactifications 

in the previous chapter. At very short distances we expect to recover the 

extra-dimensional fiux law rv 1/ rn+2.) 

To summarise, because these models localise aH of the very weH-measured 

interactions on a four-dimensional brane, standard model predictions are very 

easy to retain. Only gravit y sees the extra dimensions, and, even though the 

fundamental scale of gravit y and the other forces is the same, gravit y is 

made .very weak because it is diluted in a large internaI space to which the 

standard model forces have no access; it is possible to make models with a 

radius rv J1m, and which satisfy aH current experimental bounds. (There are 

additional astrophysical bounds from the emission of very light Kaluza-Klein 

modes, m rv l/r rv 1O-3eV, in supernovae. This problem can be regarded as 

a constraint to be imposed on specifie models within this framework, however, 

as opposed to a brush with which to tar the whole paradigm; it is likely much 

easier to make detailed models satisfying particular supernova bounds than 

to solve the hierarchy problem [179, 180].) 

4.4 The Cosmological Constant and Brane­
.World Models 

Brane-world models as presented above do not provide solutions to the cos­

mological constant problem, they simply assume the existence of fiat 3-branes 

(and therefore a zero effective four-dimension al cosmological constant). In-
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deed, as we will see, these extra-dimensional models require fine-tunings in 

order to ensure the vanishing of the effective four-dimensional cosmological 

constant; the tensions in the manifold are related to each other through 'con­

sistency conditions' [172]. Because the topology of the underlying manifold 

is fixed, and because the delta-function singularities induced by branes con­

tribute to the curvature and therefore the Euler number, the tensions of the 

branes must be related. In the Randall-Sundrum two-brane scenarios, for 

example, the internaI manifold is a circle, so the the sum of the tensions 

must vanish for the total curvature to vanish. (Additional curvature in the 

four-dimensional spacetime is required to alleviate the fine-tuning, thus ty­

ing the effective cosmologicai constant to the c.ancelling of tensions [109].) 

Similar conditions hold in the ADD scenario. 

Nevertheless, as outlined in the next section, brane-world models have 

one extremely attractive feature from the perspective of the cosmological 

constant problem, and incorporating this attractive feature into a model 

which naturally contains fiat branes is the purpose of the rest of this thesis. 

We will find that static solutions with fiat branes can be made to arise nat­

urally (equivalently, a theory can be constructed which produces naturally 

fiat branes for arbitrary tensions, if the branes in question are pure tension.) 

4.5 Tension and Standard Model Vacuum-Energy 

The observation on which the rest of the work in this thesis rests is that 

it may be easier to solve the cosmological constant problem in brane-world 

models than in models without branes. The reason for this is that, since 

standard model particles are trapped on a brane, purely st andard-model 
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loops do not contribute directly to the cosmological constant, but to the 

tension of the brane on which they reside. 

Recall that the cosmological constant problem had two aspects: the prob­

lem of making the cosmological constant small at some scale, and the problem 

of retaining the smallness of the cosmological constant as the theory is run 

down from high to low energies. In particular, all standard model loops, in­

c1uding low-energy loops involving only the electron, destroy any fine-tunings 

imposed to make the cosmological constant small at energies rv Me V. We 

here argue that the running of the cosmological constant as standard-model­

scales are intergrated out can be rendered innocuous by brane-world models. 

We will furthermore argue that supersymmetry can be used to set the cosmo­

logical constant to a small value at sorne high scale, thus naturally allowing 

a small cosmological constant at all scales. 

To see in detail that brane loops do not directly affect the cosmological 

constant, consider the following simple model, consisting of a brane con­

taining the standard model fields coupled to gravit y in the usual way and a 

bulk action, consisting of gravit y and any other fields which propagate in all 

directions, 

s= r dDXLbulk+ r d4xLsm (4.16) 
JMD JM4 

Now imagine integrating out all standard model fields exactly in the path 

integral. Since the contributions from these fields are localised on the brane 
.. 

the entire result is a potential for the bulk fields which is localised on the 

brane: 

s = r dDx Lbulk + r d4x (T4V-g4 + ... ) 
JMD JM4 

( 4.17) 

where the first term is what would have been the troublesome cosmological 
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constant-term, and the extra terms are couplings of bulk fields to the brane. 

Therefore, standard-modelloops do not directly contribute to the cosmological 

constant in brane-world models. 

The ways in which this idea fails in actual models is manifold, but the 

most obvious way is for the brane tension to set the scale for all of the cur­

vatures in the problem, inducing TeV-scale curvatures everywhere, including 

in the observable four dimensions. 

4.6 Fine-Tuning in Randall-Sundrum 

To see an example of such a failure, consider again the Randall-Sundrum 

model discussed above. This model requires a fine-tuning between the brane 

tensions, the bulk cosmological constant, A and the five-dimensional Planck­

mass, M in order to ensure fiat three-branes on which we may live, and 

therefore does not provide a satisfactory explanation for the smallness of the 

effective four-dimensional cosmological constant. 

To see this conclusion in detail let us construct the Randall-Sundrum 

solution. The ansatz for the metric is the most general one consistent with 

maximally symmetric four-dimensional slicings, 

(4.18) 

with z E [-2,2) periodic, gJ1,v(x) is onlya function of the four-dimensional 

coordinat es x, and RJ1,v, the curvature constructed only from gJ1,V(X) , is given 

by 

(4.19) 

(that is, we assume gJ1,V describes deSitter, Minkowski or AdS space). We 
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assume that the action to be minimized is five-dimensional GR coupled to 

two three-branes 

S J 5 r-::::: [M3 

'" A] J 4 "'" r-;;;) = d Z V -g T R + - d x ~ V -gi'nd~· 
t 

( 4.20) 

Varying this action and setting À = 0 for fiat four-dimensional slices yields 

the equations of motion from the J1V and the 55 components of the Einstein 

equations, respectively, 

(/' 

6( O"'? 
~ b(x - xi)TdM3 

A/M3 

(4.21) 

( 4.22) 

(::rhere must be two branes for topological reasons siI)ce we take z periodic, 

as we will see.) 

Choose Xl = 0, X2 = 2. Integrating the first (J1v) Einstein equation over 

the whole interval implies that 

and the differential equation itself implies that 

with 

0" = {klZ for Z E [0,2) 
k2 Z for z E [-2,0) 

and the 55 equation shows that 

Tl = -T2 = V6!3. 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

The important point from the point of view of the cosmological constant is 

that the tensions are rigidly related to a parameter in the bulk lagrangian, 
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and that this relation is neither the result of, nor results in, a symmetry: The 

tensions and the Planck mass need not have anything to do with each other, 

since the precise values of the tensions are the minima of four-dimensional 

effective potentials. 2 

This solution is therefore 'fine-tuned,' because in order to have a fiat so­

lution we must impose 4.26 and there is no good reason to do so [126]. 3 This 

fine-tuning makes this setup sensitive to the same issues as four-dimensional 

theories of particle physics and regular compactifications of higher-dimensional 

theories: 

1. In order to pro duce a small cosmological constant, we must tune unre-
, 

lated bare parameters in the lagrangian with no apparent increase in 

symmetry to protect this tuning. 

2. Once we perform quantum corrections the fine-tuning is completely 

ruined, and must be imposed order-by-order. In other words, none of 

the fine-tunings are perturbatively stable to quantum corrections-a 

familiar circumstance from Higgs physics. 

This last point arises here because even if we believe bulk physics can be 

sequestered from the brane cosmological constant problem (bulk physics is 

clearly disastrous, since it lives at scales rv MPlanck), brane loops are rv TeV, 

which induce a TeV-scale cosmological constant. 

2 We can also see the topological explanation, promised above, for two branes: There 
must be two branes because é z cannot be made continuously differentiable on a circle. 

3More generally, it can be shown [128] that assuming an FRW universe with matter 
and a 'cosmological constant' (tension) on the branes, we must impose eq. 4.26 to replicate 
the usual matter-dominated expansion of the universe. 
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However, if we can find a mechanism by which fiat branes exist for any 

choiee of brane tensions, the quantum problem would seem to be fixed, sinee 

we can then daim that four-dimensional geometry is independent of the 

details of how the electroweak phase trasition occurred. (Without this, the 

cosmological constant is sensitive to the precise scale at which the EWSB 

transition occured at the level of 1 part in 1012
.) 

This is what we wish to explore in the remainder of this thesis: a mech­

anism that will embed arbitrary-tension branes in naturally-fiat slicings of 

four-dimensional space. 

4.7 Self-Tuning anq Naturally Flat Branes 

In this section we show that fiat four-dimensional sliees are natural in higher­

dimensional dilaton-gravity systems. As long as there is a dilaton in the 

system-a scalar that has a shift symmetry which encodes a rescaling: 

(4.27) 

for a fixed constanta w, depending on the dimensionality, which we will derive 

below, ansatze of the form 

(4.28) 

naturaly yield 

RfJ,V = 0, (4.29) 

where RfJ,v is computed from gfJ,v(x) alone. That is, dilaton-gravity sys­

tems in higher dimensions naturally yield fiat four-dimensional slicings. This 
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wouldn't be interesting except that the relation (D /2 - l)w = -2 precisely 

reproduces the scaling that naturally occurs in supergravity theories. 

This statement requires the following three results: 

1. That the ansatze 4.28 is the most general possible if we assume maximally­

symmetric four-dimensional slices (we do not allow FRW-with-matter 

cosmological ansatze). This theorem is proved, for example in [80]; 

2. That metrics of the form 4.28 allow the higher-dimensional curvature, 
~ 

R, to be expressed simply in terms of the lower-dimensional curvature. 

In particular, we will show that if we define vielbeins according to 

E%(x, y) = W(y) e~(x), E~Jx,y) = e':n(y) ( 4.30) 

such that 

(4.31 ) 

(a and 8: refer to the same range of indicies but refer to the different 

tangent-spaces implied by E~ and E~), that 

Ra(3 1 2 n 
W2 - Il Wn v W T/a(3 

Rab - W Va VbW bmn , ( 4.32) 

where R&/3 is the Ricci tensor calculated from the vielbeins E~ and 

restricted to the index-range 8:, S, and Ra(3 is the Ricci tensor calcu­

lated pur~ly from the subspace vielbeins e~ (and similarly for .Rab and 

Rab- we make no distinction between these indices because there is no 

confusion in this case), and where here n = b~ is the number of dimen­

sions in 9J.Lv(X) (taken to be four here, but le ft general for cosmological 

applications outlined in the future directions); and 
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3. Finally, that the equations of motion for systems satisfying eq. 4.27 and 

under the ansatz 4.28 take the form 

( 4.33) 

where R/-LV is computed from the full metric and Ô is the full d'Alembertian 

computed from ds2 in eq. 4.28. 

In the previous, D is the total spacetime dimension, fJ, v = O .. n - l, m, n, = 

n ... D - 1. We will eventually be interested in D = 6, n = 4. A hat over a 

quantity will denote that it is the full D- or six-dimensional quantity. 

Let us assume the above and show that R/-Lv = O. Beginning with eq. 4.33, 

we exp and the D-dimensional Ô as 

Ô 4J = jg8M ( 0JgMN 8N4J ) 

~4 V m (
w4vm4J)) (4.34) 

where V m is the covariant derivative operator constructed from gmn- We can 

also write the first of eq. 4.32 as 

R&{3 = ~2 Ra{3 - ~n V m (wnvm log W) 'f/Œ{3, (4.35) 

so that eq. 4.33 becomes 

( 4.36) 

Integrating over dy shows that 

(4.37) 

which was to be shown, as long as the internaI manifold is compact without 

boundary. 
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In appendix C we show that the curvatures can be expressed in the form 

claimed under the assumptions made. We proceed to prove that scaling 

in certain scalar-tensor theories of gravit y ensures fiat branes if we assume 

maximal symmetry.4 

Scaling and Gravity-Dilaton Equations of Motion 

We now show that under relatively mi Id assumptions, 

(4.38) 

To begin, we assume that the total lagrangian for the system is of the form 

and that the 'matter' lagrangian, .c has the scaling property 

We further assume the ansatz of the form 4.28. 

The gravitational equations of motion are given by 

~ 

Tracing and substituting for the Ricci scalar, R gives 

where ~ = D/2 - 1 and 

1 âL 
TMN = y'gâgMN 

~MN 
T = 9 TMN· 

( 4.39) 

(4.40) 

(4.41 ) 

( 4.42) 

( 4.43) 

4Recently it has been shown that more care must be taken if cosmological FRW-type 
ansatze are allowed. See [205]. 
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By taking the derivative of the scaling relation eq. 4.40 with respect to c and 

evaluating at c = 0 we find that 

F ~ a12 o = -w y 9 T + 212 - -
acjJ 

Substitution into eq. 4.42 yields 

~ 1 ~ 1 [ ~ a12] RMN +2TMN--9MN- 212-- =0. 
~w yffj BcjJ 

(4.44 ) 

( 4.45) 

We now show that when restricted to the four-dimensional sub-manifold, 

M = jL, N = v, eq. 4.45 reduces to eq. 4.38, by arguing that when evaluated 

on the ansatz, 

(4.46) 

which will complete the pro of of eq. 4.40, since w~ = -2 ensures that 

( 4.47) 

by the cjJ equations of motion, 

( 4.48) 

which was to be shown. As it turns out, w = - (DILi) is precisely the scaling 

relation in supergravities which allows us to go from the Einstein to the string 

frame, so there is no dirth of theories which naturally satisfy this constraint. 

To see that eq. 4.4§. is true we must recall the maximal symmetry wit~ 

respect to the four-dimensional coordinates. The only possible maximally­

symmetric and index-symmetric two-tensor in four dimensions is proportional 

to the met rie tensor, which implies that (BEjagJ.LV)jyffj ex 9J.Lv, with a pro­

portionality that is independent of x. To see that the proportionality is 
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constant as claimed we consider that the matter lagrangian is a function of 

various form-fields. The only maximally-symmetric ansatze for form-fields 

of dimensionality less than four in four dimensions are the constant (for the 

zero-form) and zero forms (for 2- and 3-forms ): 

F(2) = G(3) 

(const), 

o 

A(4) - (vol) ( 4.49) 

Therefore, as long as the lagrangian contains no four-forms (which may be 

proportional to the volume form in four dimensions), 3Lj3g/hl/ evaluated on 

the ansatz evaluates to the term which results from the variation of the overall 

vg: 
(4.50) 

4.8 Bulk Loops and Supersymmetry 

We have seen that self-tuning can make brane loops irrelevant for the cos­

mological constant problem. This is already a significant improvement, if 

such a model can be constructed. Another crucial ingredient to the success 

of the self-tuning large-extra-dimensions scenario for solving the cosmologi­

cal constant problem is that bulk loops not destroy the scaling form of the 

potential. Supersymmetry, as we have seen, can significanly soft en ultravi-
_. _. 

olet divergences and can ensure non-renormalisation of potentials. In this 

section we will argue that supersymmetric models may provide a means of 

controlling bulk loops. 

As discussed in previous chapters, loops induce divergent contributions 

163 



of the form, 

(ex + (3 e<P + ... )M6 + M 4 (al + a2 e<P + ... ) R 

+ M 2 (b l + b2 e<P + ... ) R2 

+ log(jL2/M2) (b l + b2 e<P + ... ) R4 + ... (4.51 ) 

with M the relevant UV seale, which we take to be rv Mweak in a LED 

scenario [180]. (It is e<P that appears in the perturbation series here because 

it appears as the gauge coupling constant'c rv e-<PFMNFMN .) 

Let us deal with each of these terms: 

• The terms of order M 6
, are clearly a disaster, as they will source all of 

the Einstein equations and make all curvatures rv O(M). This is the 

old cosmological constant problem in a six-dimensional context~this 

is a renormalisation of the six-dimenisonal cosmological constant. 

• The terms of order M 4 are a renormalisation of Newton's constant in 

six dimensions, and so are not problematic for the usual reasons. 

• Terms of order M 2 when evaluated on the equations of motion, where 

we expect curvatures rv 1/r2 rv (l0-3eV)2 yield 

( 4.52) 

• Terms of order MO R4 provide the correct cosmological constant: 

( 4.53) 

If we can use supersymmetry to ensure the cancellation of ultraviolet con­

tributions to the operators with positive mass-dimension-coefficients, we ean 

pro duce a naturally-small cosmological constant. 
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We expect compactifications with branes to typically break any supersym­

metry present in the model, but the supersymmetry-breaking scale in such a 

compactification would be the compactification scale Ms rv Mc rv 1O-3eV. 

• Supersymmetry forbids M 6 terms because bosons and fermions pre­

cisely cancel in the calculation of the vacuum energy. 

• In calculations performed to date it also seems that the M 4 terms cancel 

in 6D supergravity [203], although as we have mentioned, these are not 

dangerous. 

• Terms of order M 2 seem not to cancel in the simplest chiral supergrav­

ities, but in 6D theories obtained from the compactification of 10D s'u­

pergravity the field-content is just right to cancel these terms [180, 203]. 

These terms are analogues of the dangerous M 2 M§USY terms in four 

dimensions. 

• Terms of order MO continue to give the correct cosmological constant 

when supersymmetry breaks. 

Here we see the full power of extra-dimensional covariance being utilized. 

These same corrections are difficult to organise in four dimensions~indeed 

a naive four-dimensional analysis would have reached the same (negative) 

conclusion as reached for 4D field-theoretic solutions to the cosmological con-
_. ~. 

stant obtained in chapter 2. Large extra-dimenisonal theories allow us to use 

extra-dimensional coordinate invariance to simplify and to organise the bulk 

corrections, while trapping the standard model on a brane and employing 

self-tuning can nullify the dangerous standard model contributions. 
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4.9 Supergravity Braneworlds 

In this section we make the case that the six-dimension al supergravity theory 

considered in chapter 3 naturally furnishes the scaling symmetry required to 

self-tune the four- dimensional effective cosmological constant. Although 

this model does not contain the multiplet structure to gaurantee control of 

the M 2 corrections mentioned in the previous section, it provides a simple 

testing-ground in which to test the self-tuning ide as proposed. This will be 

the focus of the rest of this thesis. In the next chapter we explicitly exhibit aIl 

of the solutions satisfying a warped-product metric ansatz with maximaIly­

symmetric four-dimensional slicings, analysed in a previous section. This step 

is crucial, as we have said, because it is important to exhibit the smoothness 

of the solutions. 

Recall the lagrangian for the six-dimensional Salam-Sezgin supergravity, 

whose bosonic and fermionic parts are given in eqs. 3.72 and 3.73, which we 

reproduce here 

1 1 -2<jJ -<jJ 
-1 M e MNP e MN 2 <jJ e .cB = - -R - -8M tjJ8 tjJ - -- GMNPG - - FMNF - 2g e 

2 2 12 4 ' 
( 4.54) 
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and 

-I.e e F 
- MNP M - M -'l/JMr DN'l/Jp - Xr DMX - Àr DMÀ 

1 (NM - MN) -28MCP Xr r 'l/JN + 'l/JNr r X 

e-</> - R MN P S - MN P R + j() GMNP(-'I/J r[Rr rSj'I/J +'l/JRr r X (4.55) 
12v2 

- XrRrMNP'l/JR + XrMNPX - ..xrMNPÀ) 
-</>/2 -T FMN (~QrMNrQÀ + ..xrQrMN'l/JQ - XrMNÀ + ..xrMNX) 

+ige</>/2 (~MrMÀ + ..xrM'l/JM + XÀ - ..xX), 

This lagrangian co-varies under the sealing transformation given in eq. 3.75, 

whieh allows the lagrangian to be, written in the string frame. Restrieting 

these trasformations to only the bosonie seetor reveals precisely the sealing 

transformation required. It is easy to see that the bosonie part seales as 

claimed: Rand 8MCP8Mcp both seale as gMN, and eaeh extra factor of in­

verse met rie in F 2 and G2 is aeeompanied by an extra factor of e-</>, while 

the potential term g2 e</> has an extra e</> to eompensate for its laek of gM N 

eompared to Rand 8MCP8M cp. Aeeounting also for the e = --19, we see that 

under 

the bosonie action seales as 

(reeall that we showed that gMN -> eWc gMN where 

-2 
w = ~ = -1). 
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( 4.58) 

( 4.59) 



We now show that ansatze of the form asumed in this chapter ensure fiat 

four-dimensional slicings. We will exhibit explicit solutions of the bosonic 

equations of motion, and will describe how to implement the self-tuning 

idea. In the final chapter we will discuss the issues of quantum corrections 

and further work. 
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Chapter 5 

Supergravity Solutions 

We have argued that, despite the many four-dimensional attempts to reduce 

the sensiti';'"ity of the cosmological constant to physics at all sC§Lles, they all 

fail in essentially the same way: these attempts require sorne new low-energy 

physics which, when directly manifested tames the cosmological constant, 

but which is required to be hidden in sorne way by phenomenological consid­

erations of other sorts. Supersymmetry can tame the cosmological constant, 

but four-dimensional supersymmetry must be broken at f"V Te V because we 

don't see superpartners; the quintessence field must be very light, essentially 

recasting the cosmological constant problem as a Higgs-mass-type stability 

problem; and IR modifications of four-dimensional gravit y are difficult to 

match to existing cosmological knowledge. 

We have also argued that standard compactifications do not essentially 

change the approach to the cosmological constant problem because the com­

pactification happens at a scale high enough to render irrelevant the addi­

tional diffeomorphism invariance of the extra dimensions. 

Brane world models, however, have a distinct advantage over any of the 
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above methods because they allow extra dimensions as large as O.lmm. When 

expressed as an energy, this just happens to be rv (10-3eV)-1- precisely the 

right scale for the cosmological constant. 

We have argued that, as long as fiat-brane solutions exist for any choice 

of brane tensions, brane-world scenarios of this sort can solve the standard­

model-part of the quantum cosmological constant problem. Because standard­

model-loops contribute only to the brane tension, the details of how the QCD 

phase transition, or how the EWSB transition occurred are irrelevant for the 

fiatness of our four dimensions. 

We argued that the most popular brane-world models did not naturally 

produce fiat branes. We showed that a higher-dimensional self-tuning mech­

anism furnished by a dilaton-like scalar could provide a mechanism by which 

to ensure fiat branes. 

We finally argued that bulk supersymmetry would be important to ensure 

that the scaling symmetry remained correctly-represented to low energies. 

Bulk supersymmetry can ensure this because, if the compactification scale 

rv 1O-3e V is also the supersymmetry-breaking scale, corrections to the scalar 

field potential will be protected above this scale. Below this sc ale we do not 

care what happens, because the cosmologie al constant is rv 1O-3eV. 

These arguments point directly toward considering warped-product com­

pactifications of 6D supergravity theories. We have analysed one such 6D 

supergravity in chapter 3, where we constructed its four-dimensional super­

symIhetric reduction. In this chapter we will present brane-world solutions 

to this same supergravity. Finding explicit solutions is important because 

earlier attempts at finding realisations of the extra-dimensional self-tuning 
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idea were unsuccessful because of the singularity-structure of the solutions so 

realised [141, 142, 143]. In particular, five-dimensional self-tuning solutions 

exhibited naked singularities which resisted attempts to tame them [142]. 

The solutions we will present are well-behaved and exhibit the specific 

form of self-tuning argued for in the previous chapter, namely, that for any 

given tension, a solution with fiat four-dimensional slicings exists, and, among 

aU maximaUy-symmetric slicings, only fiat slicings exist. 1 

Yet another motivation for seeking warped solutions to higher-dimensional 

supergravities is that, although higher-dimensional models have a long his­

tory within supersymmetric theories, there has been less exploration within 

supergravity theories of the low-energy implications of warped compactifi­

cations [169, 170]. This is by contrast with nonsupersymmetric models, de­

scribed ab ove , for which warped compactifications have been explored in 

sorne detail in five spacetime dimensions [66, 67], and in six dimensions 

[171, 172, 173]. The reason for this difference is partly due to the point 

of view taken by workers on the 5D models, for whom part of the basic mo­

tivation was to provide an approach to the hierarchy problem which is an 

alternative to supersymmetric models. 

In the end Nature may not feel the need to choose to solve the hierarchy 

problem using only supersymmetry or only warping. Warping may play a 

role in the hierarchy problem in addition to supersymmetry, rather than in 

competition with it. In any case, in order to decide whether supersymmetry 

is a useful for either the cosmological constant or for the hierarchy prob­

lem in warped models requires a better theoretical exploration of what 1S 

1 More general metrics are considered in ref [205]. 
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possible. Certainly if string theory proves to be the correct theory of very­

short distances warping is only likely to play a role at low-energies within a 

supergravity framework. 

From the purely model-building point-of-view, six dimensions are also 

attractive for constructing brane world models with compact internaI spaces 

since the gravitational back-reaction problem for 3-branes (codimension two 

objects) is soluble in terms of 6-function curvature singularities [174]. Warped 

examples of this type have been constructed [172, 173], based on the AdS 

soliton solution [171] to the Einstein equations with negative cosmological 

constant. Unwarped brane-world solutions have also been constructed, both 

for nonsupersymmetric [175] and for supersymmetric [176] systems 2. 

With these two motivations, then, we forge ahead in this chapter to ex­

hibit the solutions to the Salam-Sezgin model described in chapter 3. 

Roadmap 

In the following sections we present both unwarped and a warped-compactification 

solutions of the Salam-Sezgin six-dimensional supergravity. These solutions 

can be considered to be a proof of the existence of solutions free of excessively­

singular points. We discuss possible sources of fine-tuning in these solutions. 

The warped solutions we present are actually the full set of solutions under 

a particular symmetry ansatz and a restriction to only conical singulari-

ties [184, 178] .. 

We construct these solutions by explicitly solving the 6D cou pIed Einstein-

2Codimension two warped solutions of type IIB string theory have also been considered 
[170], with supersymmetry broken by a global cosmic brane of finite extent. 
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Maxwell-dilaton equations of the Salam-Sezgin supergravity[144, 145, 146] 3 

The· non-warped solution provides a very simple ex ample a 'football' [175] 

or rugby-ball compactification, but permits any tensions whatsoever at the 

poles, although the two tensions must be equal. 

This naturally raises the interesting question of whether the equal-tension 

constraint may be loosened further by considering warped solutions. In order 

to investigate this, we proceed to construct warped solutions. We see that 

in these solutions although there is substantial liberty in choosing the two 

tensions, there remains a relation between the two tensions. We will comment 

breifly on even more general solutions found recently which guarantee a flat­

brane solution for any two choices of tension, although at the expense of 

more singular metric and dilaton configurations. 

In an of these solutions the warping of the 4D metric goes hand in hand 

with a nontrivial dilaton configuration, and so these solutions generalize the 

simpler product-space spherical compactifications of the Salam-Sezgin model 

[146, 150, 147, 176, 161] presented previously. Unlike the spacetime curva­

ture, the dilaton and electromagnetic fields in our solution ansatz are nonsin­

gular at the positions of the 3-branes, and so the solutions can only de scribe 

the fields due to 3-branes which do not couple to these fields. 

The warped compactifications we present are generalizations of the Randall­

Sundrum (RS) warped brane world to codimension two and to a supersym­

metric context, which is of interest even divorced from the cosmological con­

stant problem. Warped compactifications have been extensively-studied in 

five dimensions but not in higher-dimensional spacetimes, so these solutions 

3These solutions are analytical continuations of the solutions recently found in [183]. 
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can be considered a first effort in seeking more complex brane-world com­

pactifications in codimensions higher than one. 

In the warped-compactifiction solutions the dilaton varies over the ex­

tra dimensions, and this makes the electroweak hierarchy only power-Iaw 

sensitive to the proper radius of the extra dimensions (as opposed to being 

exponentially sensitive as in the RS model). The electroweak hierarchy does 

not depend exponentially on the size of the internaI dimensions in these solu­

tions because the solutions are not asymptotically anti-de Sitter, a property 

which can be seen to arise from the positivity of the scalar potential. Because 

the electroweak hierarchy is not exponential we find that sorne dimensionless 

combinat ions of brane tensions and couplings must be chosen to be very large 

if the hierarchy is to be sufficiently big. Warping changes the phenomenol­

ogy of these models because the Kaluza-Klein gap can be much larger than 

the internaI space's inverse proper radius. These solutions break aIl of the 

supersymmetries of the model. 

We organize our presentation as follows. The next section describes the 

unwarped solution to the Salam-Sezgin supergravity presented in chapter 3. 

This is requires a simple surgery on the spacetime to place branes at the two 

poles of the internaI two-sphere. It is explicitly shown that the branes are fiat 

and the spacetime so constructed well-behaved. We then proceed to finding a 

family of warped solutions to the supergravity. These solutions are actually 

aIl of the solutions exhibiting conical deficits at the brane positions 'with 

maximally-symmetric four-dimension al slicing [184, 178]. We then examine 

how low-energy features (such as the electroweak hierarchy) depend on the 

physical properties of the branes involved. The nature of the cosmological-
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constant self-tuning is then described for both models (see also appendix C). 

FinaIly, our conclusions are summarized. 

5.1 The Model 

Recall that the field content of Salam-Sezgin supergravity consists of a supergravity­

tensor multiplet consisting of a metric (gMN), antisymmetric Kalb-Ramond 

field (B MN, with field strength G M NP), dilaton (cp), gravitino ('l/Jk) and di­

latino (Xi). The fermions are aIl real Weyl spinors, satisfying r 7'l/JM = 'l/JM 

and r 7X = -x and so the model is anomalous unless it is coupled to an 

appropriate matter content [81]. The appropriate chiral 6D matter consists 

of a coinbination of gauge multiplets, containing gauge poténtials (AM) and 

gauginos (,Ài ) , and n H hyper-multiplets, with scalars <pa and fermions wâ . 

The index i = 1,2 is an Sp(1) index, â = 1, ... , 2nH and a = 1, ... , 4nH • The 

gauge multiplets transform in the adjoint representation of a gauge group, 

G. The Sp(l) symmetry is broken explicitly to a U(I) subgroup, which is 

gauged. 

The matter fermions are also chiral, r 7 À = À and r 7 wâ 

the anomalies can be cancelled via the Green-Schwarz mechanism [82], for 

specifie gauge groups and hypermultiplets [150, 84]. An explieit example 

[150] of an anomaly-free ehoice is G = E6 X E7 x U(I), with the hyper­

multiplet sealars living on the noneompaet quaternionic Kahler manifold 

M = Sp(456, l)j(Sp(456) x Sp(I)). 

The bosonic part of the classical 6D supergravity action is: 

-Ir e '--'B = 
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1 -2'" . MNP 1 '" MN A. - - e 'f' GMNPG - - e-'f' FŒ F - e'f'v(<I>X5 1) 12 4 MN Œ • 

Here the index ex = 1, ... , dim( G) runs over the gauge-group generators, 

Gab(<I» is the metric on M and Dm are gauge and Kahler covariant deriva­

tives whose details are not important for our purposes. We only require the 

dependence on cp of the scalar potential for <I>a = 0, w hich is V ( cp, <I» = 2 gi ec/J. 

The coupling gl denotes the U(I) gauge coupling. 

When the hypermultiplets and all but one of the gauge multiplets are set 

to zero then the supersymmetry transformations reduce to 

(5.2) 

b,À = 

where the supersymmetry parameter is complex and Weyl: r7E = E. 

5.2 Unwarped Compactification 

The previous sections outline a mechanism which relates a small 4D vacuum 

energy to brane properties at higher energies E rv Mw, and can explain why 
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this vacuum energy remains small as the modes between Mw and 1/r are 

integrated out. It remains to see if an explicit brane configuration can be 

constructed which takes advantage of this mechanism to really give such a 

small cosmological constant. 

In this section we take the first steps in this direction, by constructing a 

simple two-brane configuration within the 2-sphere compactification of the 

Salam-Sezgin model described earlier, taking into account the back-reaction 

of the branes. Since our construction also has a constant dilaton field, it 

furnishes an explicit example of a model for which the classical contributions 

to Peff precisely cancel. 

Our attempt is not completely successful in one sense, however, because 

our construction is built using a non-supersymmetric compactification of 6D 

supergravity. As such, our general arguments as to the absence of quantum 

corrections may not apply, perhaps leading to corrections which are larger 

than 1/r4 • The model has the great virtue that it is sufficiently simple to 

explicitly calculate quantum corrections, and so to check the general argu­

ments, and such calculations are now in progress4
. 

5.2.1 Branes on the Sphere 

The great utility of the spherical compactification of Salam-Sezgin supergrav­

ity is the simplicity with which branes can be embedded into it, including 

their back-reaction onto the bulk gravitational, dilaton and Maxwell fields. 

Because the solution we find has a constant dilaton, our construction of these 

brane solutions turns out to closely resemble the analysis of the Maxwell-

4 D. Hoover and C. P. Burgess, In progress 
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Einstein equations given in ref. [133]. 

The field equations of 6D supergravity have a remarkably simple solution 

(when the dilaton do es not couple to the branes) for the special case of 

two branes having equal tension, T, located at opposite poles of the two­

sphere. In this case the solution is precisely the same as obtained before 

in the absence of any branes, but with the two-dimensional curvature now 

required to include a delta-function singularity at the position of each of 

the branes. More precisely, the only change implied for the solution by the 

brane sources cornes from the two-dimensional components of the Einstein 

equation, which now requires that the two-dimensional Ricci scalar can be 

written R2 = R2illth + R~ing, where R2illth satisfies precisely the same equations 

as in the absence of any branes, and the singular part is given by 

R~ing = _ 2 T L b2 (y - Yi) , (5.3) 
e2 . 

~ 

where as before e2 = yi detgmn . 

The resulting solution therefore involves precisely the same field configu­

rations as before: cp = (constant), gp,v = TJp,v, gmn dym dyn = r 2 (d(J2 + sin2 
() dcp2) 

and ToF~n = Q f Emn, for a U(l) generator, Q, embedded within the gauge 

group. As before the parameters ofthe solution are related by r 2 el.{! = 1/(4gi) 

and f = n/(2g1 r2
) where n = ±l. The singular curvature is then ensured by 

sim ply making the coordinate cp periodic with period 27r( 1 - E) rather than 

period 27r - thereby introducing a conical singularity at the branes' positions 

at the north and south poles. The curvature condition, eq. (5.3), is satisfied 

provided that the deficit E is related to the brane tension by E = 4 G6 T. 

The 'rugby-ball' geometry5 so described corresponds to removing from 

5We use the name rugby-ball to resolve the cultural ambiguity in the shape meant by 
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Identify 

North Brane 

South Brane 

Figure 5.1: The effect of two 3-branes at the antipodal points in a 2-sphere. 
The wedge of angular width 21f1: is removed from the sphere and the two 
edges are identified giving rise to the rugby-ball-shaped figure. The deficit 
angle is related to the branes tensioJJ~assumed equal) by é = 4G6T. 



the 2-sphere a wedge of angular width 27r E, which is bounded by two lines 

of longitude running between the branes at the north and south poles, and 

then identifying the edges on either side of the wedge [154, 153, 125, 133]. 

The delta-function contributions to R2 are then just what is required to keep 

the Euler characteristic unchanged, since 

(5.4) 

The singular contribution precisely compensates the reduction in the con­

tribution of the smooth curvature, R~mth, due to the reduced volume of the 

rugby-baIl relative to the sphere. 

Finally, the above configuration also satisfies the equations of motion for 

the branes, which state (for constant cp or vanishing .\) that they move along 

a geodesic according to 

··m + r m . p • q - 0 y pqY y - , (5.5) 

where r~ is the Christoffel symbol constructed from the 2D metric, 9mn. 

Consequently branes placed precisely at rest anywhere in the two dimensions 

will remain there, and this configuration is likely to be marginally stable due 

to the absence of local gravitational forces in two spatial dimensions. 

5.2.2 Topological Constraint 

We now show that the above solution is further restricted by a topological 

argument. This will exclude for instance the possibility of the supersymmet­

ric Salam-Sezgin compactification in which the monopole background is fully 

'football', which was used previously in the literature [133]. The name 'periodic lune' has 
also been used [153]. 
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embedded into the explicit U(l) gauge group factor. But it allows other em­

beddings, in particular the E6 embedding of [84] that is non-supersymmetric. 

In order to make this argument we write the electromagnetic field strength 

obtained from the field equations as 

n 
F = -2 sin 0 dO A d</>, 

91 
(5.6) 

where n = ±l. The gauge potential corresponding to this field strength can 

be chosen in the usual way to be 

n 
A± = - [±1- cos 0] d</>, 

291 
(5.7) 

where t~e subscript '±' denotes that the configuration is ~esigned to be 

nonsingular on a patch which respectively covers the northern or southern 

hemisphere of the rugby-baIl. 

Now cornes the main point. A+ and A_ must differ by a gauge trans­

formation on the overlap of the two patches along the equator, and this -

with the periodicity condition </> ~ </> + 27f (1 - E) - implies A± must satisfy 

9A+ - 9A- = N d</>/(l- E), where N is any integer and 9 denotes the gauge 

coupling constant which is appropriate to the generator Q. In particular 

9 = 96 if Q lies within the E6 subgroup, as is in ref. [150], or 9 = 91 if Q 

corresponds to the explicit U(l) gauge factor, as in ref. [146]. Notice that 

this is only consistent with eq. (5.7) if 9 and 91 are related by 

9 

91 

N 
n(l-E) . 

(5.8) 

In particular, 9 cannot equal 91 if E =1= 0, and so we cannot choose Q to lie 

in the explicit U(l) gauge factor, as for the supersymmetric Salam-Sezgin 

compactification. 
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A deeper understanding of this last condition can be had if the 3-brane 

action is generalized to include the coupling, of the Maxwell field to the 

background Maxwell field since in this case the 3-brane acquires a delta­

function contribution to the magnetic flux of size Q ex: q. Denoting the flux 

at the position of each brane by Q±, eq. (5.7) generalizes to 

A± = - + -(±1- cose) dc/>. [
Q± n ] 
21f 2g1 

(5.9) 

The same arguments as above then lead to the following generalization of 

formula (5.8) 
Q+ - Q_ n N ---- + - = ----:-----,-

21f gl g(l-E)' 
(5.10) 

, which relates the difference, Q+ - Q-, to the integers n and N. This shows 

that the constraint we are obtaining is best interpreted as a topological condi­

tion on the kinds of magnetic fluxes which are topologically allowed in order 

for a solution to exist (much like the condition that the tensions on each to 

the two 3-branes must be equal or, in another context, to the Gauss' Law re­

quirement that the net charge must vanish for a system of charges distributed 

within a compact space). Within this context eq. (5.8) expresses the condi­

tions which are required in order to have a solution with Q+ = Q_. Given 

its topological (long-distance) character, such a condition is very likely to be 

preserved un der short-distance corrections, and so be stable under renormal­

ization.6 

Although the choice Q+ = Q_ precludes a solutIon with 9 = gl, it do es 

allow solutions where Q lies elsewhere in the full gauge group, such as the 

E6 embedding above. This model has the great virtue of simplicity, largely 

6Note added: This stability is easier to see for the single-brane solutions of ref. [164], 
where it is very much like the usual quantization of monopole charge. 
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due to the constancy of both the dilaton and the magnetic flux over the two­

sphere. It has the drawback that this simple embedding of the monopole 

gauge group breaks supersymmetry, and so may allow larger quantum cor­

rections than would be allowed by the general arguments of the previous 

sections. On the other hand, the choice 9 = gl may be possible if Q± are not 

equal, and if so would allow a solution with unbroken bulk supersymmetry 

as in the original Salam-Sezgin model. 

It clearly would be of great interest to find an anomaly-free embedding 

that also preserves sorne of the supersymmetry, since any such embedding 

would completely achieve precisely the scenario we are proposing with a nat­

urally small cosmological constant. However, although supersymmetry was 

required to eliminate the contributions of curvature squared terms, which 

contribute to Peff an amount of order M;;)r2
, we see that even without super­

symmetry this model achieves a great reduction in the cosmological constant 

relative to the mass-splittings, Mw, between observable particles and any of 

their superpartners. A full study of monopole solutions and their quantum 

fluctuations is presently being investigated. 

5.2.3 Conclusions 

Even though our scenario has a number of attractive features, it leaves a 

great many questions unanswered. 

First, our attempt to realize the self-'-tuning in an explicit solution to 

the 6D equations led to a topological constraint that appears to require a 

relationship between the brane tension and other (gauge) couplings in the 

bulk action. It remains to be seen whether this condition is an artifact 
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of the simplicity of our solution (such as being due to our requiring the 

dilaton and Maxwell fields to be nonsingular at the brane positions) or if it is 

actually unavoidably required in order to obtain fiat 3-branes. In particular, 

we argue that the topological relation is better interpreted as a constraint on 

what magnetic fiuxes which may be carried by the branes given the topology 

of the internaI space. As such it might be expected to be stable under 

renormalization, in much the same way as is the condition that the net 

electric charge vanish for a configuration of charged particles in a compact 

space. 

In the next section we display a more general class of solutions for which 

the topological constraints are changed, but not removed. For further dis­

cussions along this line, and an extensions of this analysis to FRW metrics, 

see ref. [205]. 

Note Added: There have been several interesting developments since this 

paper appeared on the arXiv, which we briefiy summarize here. 

Ref. [161] provide an interesting analysis ofthe Salam-Sezgin model with­

out branes, in which they verify the topological condition, eq. (5.8) (as also 

did ref. [165]), and show that if the Kaluza-Klein scale is of order 10-3 eV, 

then the 4D gauge coupling of the bulk gauge fields must be g4 rv 10-31 (as 

opposed to the value of 10-15 which is obtained in the absence of a dilaton 

[136].). Since this follows direct!y from the large size of the extra dimensions, 

its explanation rests with whatever physics stabilizes the size of the extra di­

mensions, and does not represent an additional fine tuning beyond this. The 

physics of radius stabilization at such a large value remains of course an open 
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question. 7 

Ref. [164] finds the general nonsingular solution to the Salam-Sezgin equa­

tions having maximal symmetry in the noncompact 4 dimensions, for arbi­

trary monopole number. These solutions nicely illustrate many of the ar­

guments made here, since the noncompact 4 dimensions are always fiat, as 

our general self-tuning arguments predict. The 4D curvature which the field 

equations require for non-constant dilaton is in this case provided by warping 

in the extra dimensions. Furthermore, the solutions with monopole number 

greater than 1 provide examples whose topological constraints are very plau­

sibly stable against renormalization inasmuch as they closely resemble the 

standard monopole quantization condition. 

Progress towards embedding our picture into string theory has also been 

made. Ref. [166] finds a higher-dimensional derivation of a new supergravity 

which shares the bosonic part of the Salam-Sezgin theory. Ref. [167] ob­

tains exactly the Salam-Sezgin supergravity, by consistently reducing type 

Ijheterotic supergravity on the non-compact hyperboloid H 2,2 times SI. 

Ref. [168] provides an explicit recent one-loop string calculation of the 

vacuum energy within a supersymmetry-breaking framework similar to that 

considered here. They find a result which is of order 1 j r 4 , in agreement with 

our arguments and with previous calculations [151]. 

We next discuss warped solutions to the super gravit y equations of motion. 

We find in this case, too, a topological condition relating the tensions of the 

branes to each other. We then comment on recent developments on the 

7Notational point: We adopt in this paper a slightly different metric convention than 
we did in ref. [147] since we here do not work in the 4D Einstein frame. Consequently in 
this paper KK masses are of order l/r instead of being of order gecP / 2 /r cv 1/r2, as they 
are in ref. [147], and as is shown explicitly in ref. [161]. 
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warped solutions. 

5.3 Warped Compactification 

In this section we present warped compactifications which are solutions of 

the Salam-Sezgin chiral six-dimensional supergravity-supermatter system. 

For our purposes we may set all gauge fields to zero exeept for a single 

gauge potential, A, and we also set <I>a = o. We der ive a warped brane-world 

solution by continuing a related nontrivial solution for the same system which 

was found in ref. [183]. The solution in [183] is given by 

2 

ds~ = -h(p) dT
2 + ~p) dp2 + p2dx~,4' 

c/J(p) = -2 lnp, (5.11) 

Â 
FTP = 5ETP' 

P 

where dxo 4 denotes a fiat 4-dimensional spatial sliee, and , 

2M gî p2 Â2 
h(p)=----+-. 

p2 4 16 p6 
(5.12) 

This function has only a single zero for real positive p, and M and Â are 

integration constants which can be positive or negative. This is not a brane­

world solution sinee the point where h vanishes corresponds to a null Cauchy 

horizon of the geometry. 

A warpèd brane-world solution may be obtained from this onèby perform-

ing a suit able analytic continuation, in which we first redefine the coordinate 
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r = ~ p2 SO that the previous solution takes the form 

2 2 dr
2 

[2 2 1 dS6 = -h(r) dT + h(r) +2rdx1 +dXO,3 , 

q;(r) = -ln(2r), (5.13) 

Â 
FTT = 8 r 3 ETT , 

with 

(5.14) 

Here we redefine the integration constant according to M = - 2M, in antici­

pation of our later choice M < O. The new solution is obtained by performing 

the analytic continuation 

T-+iO, .Â 'A - -+1, 
8 ' 

in which case the it becomes: 

with 

2 2 2 2 dr2 

dS6 = 2 r[-dt + dx3l + h(r) dO + h(r) , 

q;(r) = -ln(2r), 

A 
For = -3EOr, 

r 

h(r) = 2M _ gî r _ A
2 

. 

r 2 2r3 

This is the desired solution whose properties we now explore. 

5.3.1 Singularities and Supersymmetry 

(5.15) 

(5.16) 

(5.17) 

Eq. (5.16) describes a Lorentzian-signature solution provided h(r) > 0, and 

so it is useful to enumerate the zeroes of h(r), which occur at 

2 2M [ r±=-2- 1± 
gl 

1- (;1: r] (5.18) 
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Since h(r) < 0 when r -+ 00 and r -+ 0, the regime of interest for a brane­

world solution is the interval r _ < r < r +. This interval is not empty 

provided M > ~lglAI > 0, a condition which we henceforth assume. 

The geometry pinches off at the points r = r ±, at each of which it gener­

ically has conical singularities. We therefore place a 3-brane at each of these 

points when constructing a brane-world model. 

The deficit angles associated with a conical singularity can be obtained 

either by Taylor expanding the metric in the vicinity of the point and com­

paring to the canonical form of the metric (rescaling r if necessary): 

(5.19) 

where 27TE is the conical deficit angle, or by comparing the radius and the 

circumference of a small circle about that point: 

(Circumference) = 27T(1 - E)r. (5.20) 

We find that the conical defect at r = r ± is given by 

c = 1 - 1 h' (r ±) 1 = 1 _ gî (r2 _ r2 ) 
± 2 2ri + - (5.21 ) 

This last equality is obtained by writing h(r) = -~ (gî/r3 )(r2 
- r!)(r2 

- r~). 

These conditions show that the defect angles are completely determined 

by the two quantities r _ / r + and gl' In particular, one of the conical defects 

can be smoothed over if r _ / r + is chosen appropriately. We find 

r 2 2 r 2 2 
c+ = 0 ::::} ....:::.. = 1 - - and c_ = 0 ::::} --± = 1 + - (5.22) r! gr r:' gr . 

Notice that the condition for the removal of the singularity at r + requires a 

large coupling gl > V2, and so is only of doubtful validity in a perturbative 

calculation such as ours. 
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Supersymmetry 

This solution generically breaks supersymmetry, as is most easily seen by 

specializing the X supersymmetry transformation to it, with the result 

(5.23) 

This clearly cannot vanish because OMCP =1- o. 

5.3.2 Brane Worlds 

In this section we examine the properties of the brane-world scenario con­

structed from the warped solution given above. In this case the construction 

requires two 3-branes, respectivély located at the conical singularities r = r ±, 

allowing us to interpret these singularities as the gravitational back-reaction 

due to the presence of the branes. 

Electroweak Hierarchy 

In the present instance the warp factor is w (r) = 2 rand so the expression 

for the effective 4D Planck mass becomes 

(5.24) 

where x = glAj(2M). For comparison, the physical mass of a particle local­

ized on the 3-brane located at r = r ± is 

(5.25) 

where the particle action is assumed to be proportional to gJ1>V 0/1,Xovx+1-4x2
• 
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The hierarchy between these scales is therefore 

(5.26) 

so a large hierarchy can be achieved, for example, if aIl dimensionful quan­

tities are the same order of magnitude, except, say, M, which we take to be 

much larger. The hierarchy is then controlled by x « 1, or 91A « 2M, and 

in this case the previous formulae for r ± reduce to 

and (5.27) 

and so r _/r + ~ x/2. Clearly this does not really provide a satisfactory 

explanation for the electroweak hierarchy, since the desired scales are simply 

inserted into the higher-dimensional solution. 

If the gauge coupling e4>(r_) is assumed small, then the solution guarantees 

the gauge coupling to be even sm aller at r = r + by an amount e4>(r+) /e4>(r_) = 

r _/r +. 

5.3.3 Brane Boundary Conditions 

To understand what the previous choices for A and M mean physically it is 

necessary to connect these integration constants to brane properties. 

The counting of boundary conditions proceeds as follows. The smoothness 

of the dilaton field at the 3-brane positions precludes these branes from di­

rectly coupling to the dilaton. Because this is also the choice which preserves 

the bulk scale invariance, the metric condition at each 3-brane only involves 
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the scale-invariant ratio A/M, implying a topologie al constraint which re­

lates the two tensions to one another. The Maxwell boundary conditions at 

each 3-brane then lead to contradictory conditions on the gauge potentials, 

which imply a final topological restriction, also involving only the ratio A/M. 

We are therefore led in this case to three kinds of constraints. The vanish­

ing of the 3-brane / dilaton charge is accomplished by ensuring the smoothness 

of the dilaton and by setting the coupling of the dilaton to the brane in the 

Einstein frame to zero. Flux-quantization can be satisfied by adjusting the 

background gauge coupling, g, in terms of the coupling, gl, appearing in the 

scalar potential. The third restriction, relating the 3-brane tensions, arises 

because of the compactness of the internaI two dimensions. (This constraint 

is the analog of the condition of equal tensions which arises in the unwarped 

case in a previous section and in reference [176].) In summary, we are led 

in this model to a picture which is very similar to what was encountered 

elsewhere for the unwarped solutions to Salam-Sezgin supergravity. 

Boundary Conditions and Tensions 

In order to relate the tensions to parameters in the solutions, we write dilaton 

and metric couplings in the brane action as 

(5.28) 

Here the induçed met rie is related to the 6D metric, gMN, and th.e 3-brane 

position, XM(ç), by"(p,v = gMNBp,xMBvXN. For coordinates çp, = xP" this 

becomes "(p,v = gp,v + gmnBp,xmBvxn, where /1>,1/ = 0, ... ,3 and m, n = 4,5. For 

a brane at rest at T = T3 we also have xm = O. The quantities T3 and À3 are 

the physical3-brane properties which we wish to relate to the bulk geometry. 
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This action adds source terms to the dilaton and Einstein equations, 

eqs. (3.80). If the three brane is located at position x~\ the source terms are 

of the form 

04>+(···) 

(5.29) 

where e2 = vi detgmn , and the sum over i is over the branes and their posi­

tions, Xi. These 6-function sources imply nontrivial boundary conditions for 

the bulk fields at the brane position, as may be determined by integrating 

the field equations over a small volume of infinitesimal proper radius about 
, , 

the 3-brane position. Assuming the metric, dilaton and Maxwell fields to be 

continuous at the brane position, we learn how the dilaton derivative and the 

curvature behave there. 

The dilaton derivative at the 3-brane positions, r ±, becomes: 

(5.30) 

which should be read as a condition relating 4> and 4>' at the brane positions, 

given the known couplings T± and À±. Since 4>' = l/r is bounded as r -+ r ±, 

in the solution of interest, and since h(r ±) = 0, the rhs vanishes, so 

(5.31 ) 

Since we do not wish to allow either T± or Œ± = e<!>(r±) to vanish, we take 

this last condition to require À± = o. 

A similar argument applied to the curvature singularity implies the stan­

dard relation between the conical defect angle and the 3-brane tension [174], 
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which from eq. 5.21 becomes: 

21TE± 

21T [1 - Ih/~ ±)Il 

21T [1 - 2g!~ (r! - r~) 1 (5.32) 

from which we see that positive tensions imply that the radii r ± must satisfy 

(r+/L)2 < 1 + 2/gî, or in terms of x = glA/(2M): x2 > 1- (gi + 1)-2. 

Notice that large r +, r + » r _, therefore clearly requires gl « l. 

These last two brane boundary conditions determine only one of the two 

integration constants, M and A, (or equivalently of r + and r _) because 

they depend on the ratio r _ / r +, and so can -Dnly determine the combinat ion 

x = glA/(2M). The fact that the two tensions are both determined by the 

single variable x implies the existence of a constraint relating these tensions. 

Eliminating r _Ir + from eq. (5.32) gives 

T+ - T _ _ ~ (1- T+) (1- T
21T
-) = o. 

21T gi 21T 
(5.33) 

This is the analogue of the condition that the two 3-brane tensions be equal, 

which obtains for the unwarped 2-sphere solution [176]. 

Gauge Fields 

A similar condition applies at the position of each brane, which follows from 

the nature of the brane coupling to the baçkground Maxwell field. The 

branes considered here carry no flux, and so the flux through a small patch 

of infinitesimal radius lé about each brane position must vanish in the limit 

lé --+ O. This condition applied to both branes leads to a topological constraint 

which the parameters of our solution must satisfy. 

193 



To see this, notiee that the gauge potential for the magnetic field strength, 

F = (A/r3) dr 1\ de may be written 

A = (c-~) de 
2r2 ' 

(5.34) 

where c is an integration constant. The condition that F not contain delta­

function contributions at r = r ± requires A to vanish at these two positions, 

and this imposes contradictory constraints on c: c = c± = A/(2 r~). Conse­

quently F can only be nonsingular at bath r = r + and r = r _ if eq. (5.34) 

holds separately for two overlapping patches, P ±, each of which includes only 

one of r + or r _. 

Although the gauge potential-can take different values (A = A± distin­

guished by constants c±) on each of these patches, A+ - A_ must be a gauge 

transformation. Periodicity of the coordinate e on the overlap then requires 

c+ - L = n/ g, wher~ 9 is the gauge coupling appropriate for the background 

gauge field which has been turned on. Combined with the expressions for c± 

we find the requirement 

A ( 1 1) 2M 
2 r~-r~ =---::4 

n 

9 
(5.35) 

For the case of large, r + » r _, this condition simplifies to 2M / A;::::; n/ g, and 

so L/r+ ;::::; glA/(4M) ;::::; ggd(2n) « 1. Sinee the ratio r_/r+ is already 

fixed given T+ or T_, we instead read eq. (5.35) as a condition relating 9 to 

Sinee aIl of these conditions only fix the ratio A/ M and none separately 

determine A or M, the overall scale of the extra dimensions (say, its volume) 

remains undetermined. As described in detail in the next section, this is 
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consistent with the scale invariance of the bulk equations which is not broken 

by the 3-brane. Consequently A parameterizes a fiat direction, for which we 

expect a classically massless modulus in the low-energy 4D theory. This 

behavior is in contrast to that of nonsupersymmetric versions of this model, 

lacking the dilaton, where the volume of the extra dimensions is automatically 

stabilized in the presence of nonvanishing gauge fiux [175]. 

5.4 Self-Tuning in Six Dimensions 

We here present the details of the self-tuning mechanism for the solutions pre­

sented. We keep the presentation concise since the arguments are a particular 

case of the more general arguments for self-tuning presented in sec. 4.7. 

For two parallel 3-branes positioned at y = Y± in the internaI dimensions 

the effective 4D vacuum energy in Salam-Sezgin supergravity is 

(5.36) 

w here w (r ) = 2 r is the warp factor, and M denotes the internaI two­

dimensional bulk manifold. As before the subscript 'cl' indicates the evalu­

ation of the result at the solution to the classical equations of motion. 

Using the Einstein equation to eliminate the metric gives 

2 a b 4> 1 4> 2 2 '""" 2( R6 = -(8<jJ) - GabDiP DiP - 3v(iP) e - 4 e- F - - ~ Ti 8 y - Yi), 
e2 i=± 

(5.37) 

and using this in Peff gives 

Peff = r d2y e2 w2 [~e-24> G2 + ~ e-4> F 2 - ~ v( iP) e4>] 1 . 

} M 12 8 2 cl cl 
(5.38) 
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The dilaton equation of motion now reads 

which gives when inserted into eq. (5.38) 

Peff = 

(5.40) 

where we evaluate total derivative using the boundary surface aMi, consisting 

of an infinitesimal region surrounding the 3-brane positions. For the solution 

considered above this consists of an infinitesimal circle surrounding the brane 

positions at r = r ±. 

The two contributions to Peff therefore vanish when evaluated at the so­

lutions derived in earlier sections. The first term vanishes because we have 

already seen that the solution described above requires À± = 0, and the sec­

ond likewise vanishes because <p' is bounded but nM aM <p = ~ <P' = Vh <p' 

vanishes at the brane positions, r = r ±. 

5.5 Discussion 

We constructed explicit unwarped and warped, axisymmetric solutions to 

the dilaton-Einste~n-Maxwell field equations arising the Salam-Sezgin ~uper­

gravit y in six dimensions. We identified the circumstances under which they 

may be interpreted as being generated by simple 3-brane sources, and what 

geometrical features are required in order for the resulting brane systems 

to be used as brane-world models having a realistic electroweak hierarchy. 
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Since aIl of the solutions have fiat 4-dimensional sections regardless of the 

values of the tensions and couplings on the various branes, we examined in 

more detail how self-tuning of the 4D cosmological constant arises in these 

particular solutions. This allows us to identify sorne of the issues which must 

be addressed in order to promote these features into a real solution to the 

cosmological constant problem. 

The warped solution to Salam-Sezgin supergravity can have either one 

or two conical defects, which we interpreted as the position of one or two 

3-branes. The number of boundary conditions is larger than the number of 

integration constants, so the bulk solutions are only produced by the assumed 

braneSl if their couplings are adjusted in particular ways. ' 

Nonsingularity of the dilaton requires vanishing dilaton 3-brane couplings: 

À± = O. Furthermore, the 3-brane tensions are subject to a topological 

condition which generalizes the condition found in the unwarped case (for 

which the tensions must be equal). FinaIly, we found a topological condition 

on the total magnetic fiux through the space, whose satisfaction requires the 

adjustment of one of the couplings, such as the background gauge coupling, 

g. 

Since the required dilaton couplings preserve the classical scale invariance 

of the bulk theory there is at least one classically fiat direction corresponding 

to the overall volume of the internaI dimensions. 

Brane-world models based on this solution can have Rcceptable elec­

troweak hierarchies, but apparently only by inserting the required hierarchies 

by hand into the 6D theory. Again, this can be chosen to be along the fiat di­

rection, pending an understanding of modulus stabilization in this direction. 
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Unlike the unwarped example, there does not seem to be any compelling nu­

merology which relates the required extra-dimensional sizes to the observed 

electroweak or cosmological constant hierarchies. 

5.6 Open Issues 

Our discussion suggests sever al directions for further exploration. Most no­

table among these is the solution to the general problem of finding the back 

reaction of simple 3-brane configurations in six dimensions without the ne­

glect of dilaton or electromagnetic couplings. Given the general configuration 

it would be possible to identify whether the brane-coupling choices we make 

play an important role in the low-energy properbes and with the self-tuning 

of the 4D cosmological constant. Sorne progress toward this has been made 

recently. In ref [178] it was shown that the warped solutions presented here 

are in fact identical to all of the solutions catalogued in ref. [184] which have 

conical singularities at the brane positions. 

More generally, in ref [178] it was shown that the other solutions, which 

have branes with dilaton sources, have non-conical singularities, but also pro­

vide a mechanism to explain any pair of brane tensions. That is, for any brane 

tensions, Tl, T2 , there exists a fiat solution with branes ofthese tensions. Fur­

thermore, as discussed in detail elsewhere, these are the only solutions under 

the assumption of maximally-symmetric four-dimensional slices. 

In ref. [205] more general four-dimensional metrics than maximally-symmetric 

ones were considered. In order to consistently find solutions, matter on the 

branes was considered. A different class of solutions which are seemingly dis­

connected from the fiat-brane static solutions presented here were found. In 
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these cosmological solutions self-tuning does not tune away the cosmological 

constant. The general results we have proved in previous sections do not 

apply to their result because they employa different ansatz and allow a more 

general equation of state on the branes. 

An equally important issue to be addressed is the extent to which bulk ra­

diative corrections change our results. In particular one would like to address 

the extent to which supersymmetry helps protect the electroweak hierarchy 

and 4D cosmological constant, given that these are chosen to be acceptably 

small at the classical level. We have discussed in the previous chapter that 

the field content of this supergravity seems not to be sufficiently similar to 

the 10D supergravity multiplets to ensure cancellation of the dangerous M 2 

terms [203]. Construction of solutions within more general supergravities 

would be interesting. 

To this end, it would be useful to know how our solutions may be em­

bedded into a still-higher-dimensional theory like 10D supergravity or string 

theory. At present this connection can be made more explicit for Romans' 

supergravity - such as for the explicit lift to ten dimensions described in 

the appendix (section 6) of ref. [177] - because it is known how to ob­

tain this theory by consistent truncation from higher dimensions. Similar 

constructions for Salam-Sezgin super gravit y are presently being developed, 

[189], [167].8 

One of the biggest obstacles to taking this setup seriously as a possible in­

road to the cosmological constant problem is Weinberg's old objection [122] to 

8 Ref. [167] obtains an embedding of Salam-Sezgin supergravity by performing a con­
sistent Pauli reduction of llD /10D supergravity on the non-compact hyperboloid H 2,2 

times Si. 
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self-tuning solutions. In his objection, he noted that self-tuning is equivalent 

to a dilaton-gravity system in which the dilaton encodes a scaling symmetry, 

something we have noted. As we will show in the next chapter, he also 

showed that this does not solve the cosmological constant problem in four 

dimensions because if the scaling symmetry is broken to allow particle masses, 

it revives the old cosmological constant problem. In the next chapter we 

outline Weinberg's argument and show why it can help with the cosmological 

constant problem in a six-dimensional setup. 
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Chapter 6 

Weinberg's Theorem and 
Self-Tuning 

In chapter 1 1 oütlined the argument that there exists a scale, Mne~physics, 

above which the standard model is no longer a complete description of parti­

de interactions. This argument was based partly on the existence of hierar­

chies and fine-tunings, and 1 presented evidence that fine-tunings are typically 

solved by symmetries. In chapter 2 1 outlined the many failed attempts to 

solve the cosmological constant problem using four-dimensional symmetries. 

These attempts aH ultimately fail because the cosmological constant problem 

is a low-energy problem; new four-dimensional low-energy symmetries such 

as supersymmetry and scale-invariance seem to be excluded, unnatural or 

useless. This led me to extend the assumptions underlying the analysis to 

indude extra-dimensional theories, motivated primarily by string theory. 

In chapter 3 1 made the case that string compactifications to four dImen­

sions are doomed to fail, precisely because they do not exploit any of the 

properties of the extra dimensions to solve the cosmological constant prob­

lem, and the four-dimension al cosmological constant problem is knawn ta be 
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difficult to solve (chapter 2). 

In chapter 5 I made the case that six-dimensional supersymmetric large 

extra-dimensional theories with branes have an attractive numerology asso­

ciated with them that makes this a perfect playground for new attempts to 

solve the cosmological constant problem, and there I presented a class of six­

dimension al supergravity models that seem naturally to 'tune' the effective 

four-dimensional cosmologie al constant to zero. 

In this chapter I try to confront one of the major criticisms of this model. 

This, first and foremost criticism, is to ask what is happening from a four­

dimensional point of view: if the contention is that four-dimensional physics 

is inadequate for solving the cosmological constant probltlm, then superfi­

cially there appears to be a contradiction: surely effective field theory tech­

niques work here, and we may analyse the purported solution from a four­

dimensional point of view. The most pressing such criticism is to deal with 

Weinberg's theorem, which excludes four-dimensional self-tuning solutions. 

The resolution to this criticism will be that the six-dimension al models relyon 

Weinberg's theorem to solve the cosmologie al constant problem, but because 

of the existence of the very large two-dimensional bulk of size O(O.lmm), 

the scales in the six-dimensional model are different, allowing a reasonable 

solution. 

The second and third major criticisms regard explaining the large size 

of the extra dimensions and controlling the quantum corrections, both of 

which are key to making this a successful model of the cosmologie al constant. 

Although a full treatment of these two issues is still lacking and beyond 

the scope of this thesis, I present preliminary evidence that both of these 
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issues can be addressed: the size of the extra dimension can be explained 

naturally by making the six-dimensional radion a quintessence field along 

the lines of [121], and the dangerous quantum corrections can be controlled 

by judiciously selecting appropriate (and well-motivated) field content in the 

bulk. Further important points are cosmological questions regarding over­

production of bulk modes during the early universe and imbedding inflation 

into the model, tasks l leave to future work. 

l breifly discuss more general matter content on the branes in the last 

chapter. 

6.1 Weinberg's Theorem 

Weinberg has presented a very general argument against self-tuning mech­

anisms in four dimensions [122], a criticism which any solution to the cos­

mological constant problem using an 'adjustment mechanism' must address. 

Weinberg's theorem isolat es a classical scale invariance as the underlying 

mechanism for self-tuning, something we have already identified as impor­

tant in the solutions to the six-dimension al supergravity equations of motion. 

The essential criticism in Weinberg's no-go theorem is that sc ale invariance, 

if an exact symmetry does solve the cosmological constant problem, but at 

the expense of placing the theory at a scale-invariant point. Scale invari­

ance is clearly badly broken in the real world since particles have masses. 

In the presence of non-zero masses, quantum corrections ruin classical sc ale 

invariance, with 

(6.1) 
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where M is a typical particle mass, reviving the old cosmological constant 

problem. 

The key difference between six-dimensional manifestations of self-tuning 

and others is that in six-dimensional models the scale at which scale-invariance 

is broken can be very low, 0(10-3eV), something which is phenomenologi­

cally impossible in purely four-dimensional models. 

Let us proceed with Weinberg's theorem [122]. Consider any four-dimensional 

gravitational theory coupled to scalar degrees of freedom. We wish to analyse 

a scenario in which the the excess vacuum energy is 'tuned' away by a scalar 

degree of freedom. We require that 

R,u/ - ~ g/U/ R' = T,U/(<p) - 0, (6.2) 

when the other fields, collectively denoted by <p, are evaluated on solutions 

to the equations of motion. Consider the case in which there is only one 

extra degree of freedom, <p. 1 For TJ1,1/ to vanish naturally on the equations 

of motion it must be a linear combination of the equations of motion for <p, 

(6.3) 

Since we seek conditions for zero cosmological constant we can seek space­

time-independent solutions to the equations of motion with <p = con st so 

eq. 6.3 is equivalent to 

(6.4) 

N aively it seems that as long as the <p equations of motion are satisfied, 

RJ1,1/ = 0 is guaranteed. The problem with this argument is that requiring 

1 For an extension to multiple fields see [122]. Aside from a technical requirement that 
a certain change of coordinates be non-singular, multiple fields do not materially change 
the argument. 

204 



6.3 to be satisfied is equivalent to requiring there to be a scaling symmetry 

which guarantees that 

(6.5) 

for sorne Lo a function of the other fields. This is a problem because 6.5 

has no stationary point unless Lo is tuned to be zero and furthermore, even 

if Lo = 0, quantum corrections will break the symmetry and ensure that 

Lo rv M 4 for sorne too-large mass scale, M. This last problem can be dealt 

with, too, but at the expense of placing the entire quantum theory at a scale­

invariant point, which is phenomenologically unacceptable. For these reasons 

four-dimension al self-tuning mechanisms are disfavoured. 

To see these conclusion, 'we restate the trace of eq. 6.3 as a symmetry 

condition 6L = 0 under 

6cjJ = -E f(cjJ) (6.6) 

for constant E. (The trace is the only important part if we only seek maximally­

symmetric solutions.) By performing the field-redefinition 

[
1 J<p dcjJ] 

<I> = exp 2" f(cjJ) , (6.7) 

we can re-write the symmetry condition as 

6<I> = -E. (6.8) 

This easily exponentiates to imply that 

(6.9) 

which for constant fields implies that 

(6.10) 

205 



where Lü is independent of <I>, as was to be shown. This shows that when 

the equations of motion are strictly of the form 6.3 either Lü must be tuned 

to zero or <I> cannot be stabilised. 

In order to provide a viable self-tuning solution to the cosmologie al con­

stant, we must find a way to make Loé<I> rv (10-3eV)4 in eq. 6.10. This 

is impossible in four dimensions for the same reasons that the cosmological 

constant cannot be made that size in four dimensions. 

6.2 Weinberg's Theorem in SLED 

Supersymmetric large extra dimensions use Weinberg's theorem to help solve 

the cosmologie al constant problem. We have seen that a scaling symmetry 

between a dilaton and the graviton is crucial to the self-tuning idea, and that 

self-tuning is destabilised by quantum corrections. The SLED proposaI helps 

with this problem because the relevant quantum corrections occur in the bulk, 

and, there, supersymmetry protects contributions above the supersymmetry­

breaking scale. This means that operators relevant for breaking the scaling 

symmetry and inducing a cosmologie al constant are naturally suppressed 

by the small supersymmetry-breaking scale, 1O-3eV. This may allow Lü rv 

(l0-3eV)4. 

N aively it seems that brane loops continue to make unacceptable contri­

butions to the vacuum energy, since 

(6.11) 

when standard model particles of mass Mare integrated out. As we have 

seen, this is a contribution to the brane tension, however, in the large extra 
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dimensions scenario, and need not induce a concomitantly large cosmological 

constant. Indeed, any operators originating on the brane, such as standard 

model particles, contribute only locally and therefore remain brane-based op­

erators [204]. These operators therefore contribute only to the brane tension, 

which we have argued is irrelevant for the fiatness of the four-dimensional 

slices. The only quantum corrections which can ruin fiatness are bulk loops, 

which need not be small in the SLED scenario. 

To correctly gauge the size of the high-energy contributions to bulk loops, 

and therefore the vacuum energy, we must account for the additional symme­

tries afforded by the six-dimensional covariance of the theory at scales above 

a milli-eV. The higher-order bosonic operators that can appear are organ­

ised in the derivative expansion, as discussed previously, with the dangerous, 

divergent contributions given by 

(6.12) 

The first term is a renormalisation of Newton's constant and is irrelevant for 

the cosmological constant problem. the other terms, when evaluated on the 

equations of motion and integrated over the internaI dimensions of volume 

r 2 , yield 

(6.13) 

If we could argue that the first term was zero we would have precisely the 

correct size for the four-dimensional cosmological constant for r rv O.lmm 

(6.14) 

Although this is work in progress, it seems that the dangerous term pro-
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portional to r-2 naturally vanishes in theories with enough supersymmetry: 

in six-dimensional theories whose field-content is that of a dimensionally­

reduced 10-dimensional supergravity the divergent contributions to the six­

dimensional term M 2 R2 vanish, ensuring a perturbatively stable small cos­

mological constant [203]. 2 

6.3 Stability 

Finally, we must address the issue of stability. We have argued that the 

'cosmological constant' is really a scalar potential of the form 

(6.15) 

with m rv 1O-3eV, but does this in fact provide a solution to the vacuum 

energy problem? 

As long as the coefficient of the term M 2 
/ r 2 in the four-dimensional po­

tential, described ab ove , is zero, and the scalar potential really is of the 

form 6.15, this represents a particular model of evolving dark energy and 

makes a definite prediction for the mass of the relevant scalar mass, rv 

1O-3eV. Whether such a model can be constructed that passes cosmolog­

ical tests is an interesting future direction to pursue. See also section 7.2.3. 

6.4 Discussion 

In conclusion, in this chapter we have presented Weinberg's no-go theorem 

regarding four-dimensional self-tuning solutions to the cosmological constant 

2Since the mass-dimension of F, Gand oq; are aIl 3/2 in 6D corrections involving these 
operators are suppressed at very low energies, and they are zero because of supersymmetry 
at very high energies. 
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problem, and showed how it may be possible for extra-dimensional theories 

to use a self-tuning mechanism to generate a small cosmological constant. We 

showed that the reason scalar-tensor self-tuning mechanisms do nat work in 

four-dimensions is that they rely on a scaling symmetry which is broken by 

quantum corrections. Because of the usual particle-physics arguments, this 

scaling symmetry gets broken in the worst possible way, leading to the usual 

cosmological constant problem in which the cosmological constant becomes 

the largest scale in the problem to the fourth power. The difference between 

large-extra-dimensional and four-dimensional scenarios, however, is that the 

scale at which the scaling symmetry is broken can be very small in LED 

scenarios, possibly as low as 1O-3eV, implying that the breaking of scale 

invariance by quantum corrections need not be catastrophic. 
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Chapter 7 

Discussion and Future 
Directions 

In this chapter we summarize ar1d discuss the presentation and explore a few 

avenues for future work. 

7.1 Summary 

We presented evidence that the standard model is incomplete. This evidence 

cornes from observations (dark matter, dark energy), and from theoretical 

evidence (running of the couplings, hierarchies). Focusing on hierarchies, we 

saw that experience with effective field theories suggests that hierarchies are 

the hallmarks of new physics. 

We focussed, in chapter 2, on the cosmological constant problem, which 

is a hierarchy problem having to ,do with the very high sc ale of gravit y rel­

ative to the size of the vacuum energy observed. We discussed sorne of the 

attempts to solve the cosmological constant problem within the standard 

four-dimensional effective field theory paradigm, and argued that none are 

successful. Sorne solutions outside of this paradigm have had more success, 
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such as an anthropic argument for the small size of the cosmological constant. 

We discussed that string theory (the most promising theory for quantum 

gravit y) seems to require extra dimensions beyond the four we see. We 

suggested that in order to solve the cosmological constant problem, perhaps 

a conservative view is to retain the principles of effective field theories as 

they stand, and to enlarge the space of solutions sought to include extra­

dimension al solutions. 

We showed with an explicit example that standard compactifications, 

whether supersymmetric or not, cannot help with the cosmological constant 

problem, because phenomenology requires the compactification scale to be 

very high. The cosmological constant problem is therefore reduced to a four­

dimensional problem, which we know is difficult to solve. 

In chapter 4 we described brane-world models which can have a very 

low compactification scale. These models trap standard model particles on 

branes, and allow gravit y to propagate in the bulk, which severely weakens 

bounds on the size of extra dimensions. We discussed that in a large extra­

dimensional scenario with two extra dimensions, the extra dimensions can 

be as large as O.lmm rv (lO-3eV)-1. 

The novel thing about brane-world models, from the point of view of the 

cosmological constant problem, is that standard modelloops are sequestered 

on the brane, and so only indirectly affect the bulk geometry. We concluded 

that if a theory could -be constructed which allowed fiat four-dimensionsal 

slicings for arbitrary tensions, this may provide insight into the cosmological 

constant problem. We showed that a general class of models with scalar fields 

can naturally have fiat branes, under the assumption of maximal symmetry 
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of the four-dimensional slicings. 

We also discussed the importance of supersymmetry for controlling the 

bulk loops. We argued that with sufficient supersymmetry in the bulk, bulk 

loops would not only preserve the small curvature of the four-dimension al slic­

ings, but because of the numerology of six-dimensional brane-worlds 1/r '" 

1O-3e V, these loops could naturally produce a cosmological constant with 

precisely the right size rv (lO-3eV)4. 

The two considerations of having a dilaton-like scalar and supersymmetry 

led us to consider the six-dimensional Salam-Sezgin supergravity. This the­

ory do es not have the right field-content to control aH of the dangerous bulk 

corrections.(namely the O(M2
) discussed in chapter 6), but provides a great 

testing-ground for the self-tuning ideas, where we require fiat solutions to ex­

ist (and only such solutions to exist) for any brane tensions. We constructed 

unwarped and warped solutions to the equations of motion, and, citing work 

done in refs. [184, 178], we argued that these were the most general solutions 

with conical singularities at the brane positions. 

We found in each case that there was a topological constraint relating the 

tensions of the different branes embedded in the spacetime. Further work in 

this direction, in ref. [178], shows that if we consider branes which couple to 

the dilaton, we can find a fiat-brane solution for any choices of tension. These 

solutions are more severely singular at the brane positions, the singularities 

there not being conicaI. 

The most serious criticism of the self-tuning portion of this ide a is an 

old criticism of Weinberg's [122]. He showed that self-tuning solutions do 

not work in four dimensions. The essence of his argument is that self-tuning 
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requires a scale-invariance, which, if unbroken, yields a zero cosmologie al 

constant, but, which when broken by particle masses, reproduces the old 

cosmologie al constant problem. 

This provides a puzzle for the extra-dimensional self-tuning models, since 

it seems that an effective field theoretic, four-dimensional description dis­

favours this mechanism. The way in which brane-world self-tuning models 

circumvent this criticism is because the scaies are different, and because the 

standard model is trapped on a brane. Standard model particles can have 

masses without disturbing the scaling of the lagrangian as a whole, because 

we may integrate out the entire standard model before performing our anal­

y.sis. Brane loops do not destroy self-tuning (as long as there is enough 

supersymmetry) because the UV cutoff in the bulk theory is 1O-3eV. 

7.2 Discussion 

The major out standing questions remaining to be answered in this scenario 

regard the robustness of the self-tuning idea, and controlling the bulk loops 

which can ruin the correct size of the cosmologie al constant. A further press­

ing problem is to explain the large size of the extra dimension. 

7.2.1 Self-Tuning 

In deriving our results it was important that we made a symmetry-ansatz; 

this restricted the dilaton from having any space-time dependence except 

on the internaI dimensions, and allowed us to prove that the Ricci tensor 

contstructed from the four-dimensional met rie was zero, assuming only the 

scaling symmetry of the lagrangian. 
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The physical question to ask is whether, if one of the tensions changes due 

to a phase transition, the bulk is able to adjust to maintain fiat branes. Be­

cause of the result that in the more general solutions of ref. [178], fiat-brane 

solutions exist for any pair of tensions, and these tensions fix the boundary 

conditions for the dilaton and hence the warp factor, we can imagine a sce­

nario in which there is sorne intermediate transient behaviour lin king the two 

fiat-brane solutions. 

In ref. [205] more general, time-dependent, solutions were sought to try 

to answer this question. It was found that in order to accomodate the extra 

stress-energy associated with the variation, new sources of matter must be 

added to the branes. The solutions so found do not seem to exhibit self­

tuning. An understanding of this phenomenon in the context of the work 

presented here is currently under investigation. 

7.2.2 Quantum Corrections 

As we have already discussed, in or der to fully control the bulk loops, we 

must consider six-dimensional theories with the field-content arising from 

compactifications of 10D supergravities [203]. 

7.2.3 Size of Extra Dimensions 

The large size of the extra dimensions would seem to imply another hier ar­

chy problem, that between the fundamental scal€s and the compactification 

radius. However, six-dimensional quintessence models can be constructed 

which behave in precisely this way. It is important to note that the cosmo­

logical constant produced in these brane-world models is not a constant, but 
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depends on the radion 

(7.1) 

This is actually a potential for the radion, the kinetic piece arising from the 

Einstein equations. Loop corrections to the radion potential pro duce terms 

of the form 

(7.2) 

This is the same result as was obtained in six dimensions from considering 

bulk loop-corrections to the gravitational action. By the same arguments 

presented there, the dangerous terms are the constant piece, C, and the 

term proportional to M 2
. With sufficient supersymmetry, the M 2 piece can 

be controlled, and models with a logaritmic potential of the form 

(7.3) 

were discussed first in refs. [119, 120, 121], and can naturally explain the 

large size of the extra-dimension al radius. 

7.3 Future Directions 

7.3.1 Neglect of Higher-Order Operators 

The existence of singularities in the manifold is problematic from the effective 

field theory point of view, since it seems to violate the assumptions underlying 
o· 

the derivative expansion. The resolution of this criticism lies in recasting the 

problem as a boundary-value problem so that we may stay as far away from 

the singularity as necessary to ensure small enough derivatives (curvatures) 

and field values. 
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It is useful to begin with an electromagnetic analogy, and to try to an­

swer the following question: In electrodynamics (an effective field theory of 

photons and charged particles).what do we mean by the well-known equation 

\7 . E = !L 83 (x)7 
47f 

After aIl, the lagrangian for electrodynamics, 

L = - ~ FJ.tvFJ.tv - jJ.t AJ.t + Lmatter 

(7.4) 

(7.5) 

is valid only in an expansion in fields and derivatives, and is augmented by 

addition al terms at higher orders in this expansion. In four dimensions, for 

example, 

(7.6) 

are the next set of gauge- and lorentz-invariant operators that one may write 

down. Why is it then that we can make any sensible predictions based on 

the the delta function approach in 7.4 without including higher-order such 

as those in 7.67 

An Electromagnetic Example 

Expressed more generaIly, the idea is to try to describe the radiation due to a 

moving charge as a boundary-value problem, instead of as a sourced-radiation 

problem. We replace 

S = d x - -FMNF - AM(x)J (x ~ 1 N- 1 MN M ) 

M 4 
(7.7) 

with an action defined on a new manifold with boundary, which encircles 

the source. We place a current on the surface that exactly reproduces the 

solution to the problem with sources away from the boundary. 
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In other words, we seek an appropriate surface, aM, and surface current, 

js, such that the EOMS arising from 

S = r dNx - ~FMNFMN - r AMj~ 
lM 4 lÔM (7.8) 

give the same solution away from the boundary as the solutions to the equa­

tions arising from 7.7. 

The equations of motion with source j (x) are 

(7.9) 

The equations of motion in the presence of a boundary, with boundary cur­

rent are given by 7.9 away from the boundary, but integration by parts when 

performing variations of the fields localised on the boundary yields the fol­

lowing boundary condition 

(7.10) 

We wish to describe the boundary operators for a surface enclosing a 

point-charge moving with an arbitrary trajectory X(T), so we take the action 

to be 

s 

(7.11) 

Matching 

We first perform the matching calculation to get a fiavour of how the calcu­

lat ion in gravit y should go. We expect to be able to replace 7.11 by 

S = -- FMNF - Lô(A, -) 11 MN 1 dX 
4 M ~ dT 

(7.12) 
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with Lô a series in derivatives and fields on the boundary that will reproduce 

the solution order-by-order. We fix the boundary action by requiring that 

for a configuration of sources JM (x) for which the solution FMN is known, 

the boundary conditions 

(7.13) 

are satisfied. 

We choose 

dX dXM dXM dXM 
Lô(A, dT) = aAM(Y)~ + bAM(y)nM + cnM ~ + e ~nNFMN + ... 

(7.14) 

for sorne a, b . .. as the most general polynomial function, to first order in 

A and second-order in derivatives. In the above equation nM is the normal 

to the surface ~ c M which encloses the trajectory, and where each of the 

~~ is evaluated at sorne T(Y) which we must compute. Because we are doing 

a derivative expansion about the static case we can choose T(Y) to be the 

solution to minIXM(T) - yMI or to XO(T) = yO, assuming that the trajectory 

is timelike. These two perscriptions differ in the coefficients of the higher­

derivative terms, but once fixed give the same physical answers. We will 

choose to fix the time-slicing, XO(T) = yO, sinee it make matching to the 

static case easy. 

Gauge-invariance tells us immediately that b = 0, while we can ignore 

the tém involving c, since it is irrelevant for the electromagnetic field; this 

term corresponds to the interaction of the particle with the boundary. We 

are therefore left with 

(7.15) 
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The lowest-ordest order coefficient, a is most easily found from the static 

configuration 

(7.16) 

with solution, 
i 

F iO X 
-q--
- 41f x 3 ' 

(7.17) 

We choose the surface ~ to be a sphere of radius r enclosing the static charge. 

The boundary condition reads 

q d:f° 
-4 2 +a-

d 
=0, 

1fr T 
(7.18) 

which in the restframe gives F 

-q 
a=-

41f 
(7.19) 

so that, to lowest-order, the boundary action is given by 

-q d:fM 

.ca = --AM--
41f r 2 dT 

(7.20) 

The next-order term depends on the second derivative of the particle trajec­

tory (the acceleration). 

Extension to Gravit y 

A similar exercise, if carried out in the case of gravit y could help to deal 

with the highly singular solutions with non-conical curvature-singularities. 

An effective expansion on the boundary would include terms with both the 

intrinsic and the extrinsic curvature of the boundary: 

.caM = T + aK + caR + ... (7.21) 

where K is the extrinsic curvature and a R is the intrinsic curvature of the 

boundary. 
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7.3.2 Brane Motion 

In our models the positions of the branes are fixed, and they are not allowed to 

move. When considering fully time-dependent solutions, the brane positions 

should also be allowed to change. Analysing these more general solutions 

involves including the full DBI-type action arising from broken translational 

invariance [50, 51] for the branes: 

(7.22) 

where X are the positions of the branes. 

Accounting for brane motions as well as for the other equations of motion 
, 

means varying the above lagrangian with respect to X, as well as the usual 

boundary variation of the metric. It would be very interesting to understand 

the possilbe implications of performing such a calculation in the complicated 

backgrounds presented in this thesis. 

7.3.3 String Theory Derivation? 

It is an interesting challenge to derive the 6D theory we started with from 

string theory. First we note that typically 6D, N = 2 supergravity is ob­

tained from K3 compactifications of type I or heterotic strings. However the 

supergravity theory obtained in this way is ungauged, whereas ours is gauged 

supergravity that includes a nontrivial potential rv ge-</J. 

Recently it has been realized that massive 10D and gauged supergravities 

in lower dimensions can be obtained either from string compactifications on 

spheres [111] 1 or toroidal and related compactifications, such as K3, in the 

1 We thank C. Pope for many discussions on these points. 
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presence of RR or NS-NS fluxes. In the latter case, typically a p-form Fp 

integrated around non-trivial cycles of the compact space rp can be different 

from zero, Ir Fp =1- O. The form Fp can be expanded in terms of harmonie 
p 

forms w~: 

(7.23) 

where the coefficients vi will correspond to the fluxes. In particular these 

fluxes give rise to potentials precisely of the form we started with, the flux 

being identified with the gauge coupling constant of the effective gauged su­

pergravity theory. In this way several maximal gauged supergravity theories 

have been obtained from toroidal compactifications with fluxes [112]. Aiso 

compactifications on K3 x T2 have been considered with fluxes in both K3 

and T2 . Furthermore, fluxes have also been shown in type lIB and M theory 

to freeze geometric moduli [115], just as the T field in the present model is 

frozen. 

We have to recall that the general N = 2 6D supergravity has a more 

complicated spectrum of scalar fields than the one we used, since the gauge 

group can be much larger than the simplest U(1) that we considered [113]. 

In that case the potential is quadratic in the hypermultiplet scalars, with 

overall factors of e-cf;, a natural outcome of the fluxes in string theory. It is 

not completely clear to us how to derive precisely the Salam-Sezgin action 

from this class of backgrounds yet, although it looks very suggestive . 
.. 

Furthermore, string compactifications on spheres and related geometries 

have also been successful in deriving gauged supergravities. In particular the 

maximal6D supergravity was derived from an S4 string compactification and 

a detailed comparison of the potential was achieved with the N = 4 gauged 
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supergravity of Romans [114J.2 We leave as an open question the possible 

derivation of our N = 2 action from this construction as weIl as any possible 

relationship with the K3 backgrounds with fluxes. If such a construction 

is found then it will be interesting since it will give rise to realistic string 

compactifications on manifolds which are not Ricci flat (since at least the 

2-sphere is not), contrary to standard beliefs. 3 

2 After completing this work it was pointed out to us that fluxes over pl (C) = 8 2 were 
considered in ref. [117] in Heterotic and Type II compactifications. 

3 After finishing this article we became aware of earlier [115] and new [116] work pre­
senting examples of this type. It may be interesting to unravel any connection between 
these constructions and our work. 
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Appendix A 

Notation and Conventions 

Unfortunately there is no universal choice for the various conventional signs 

that app~ar in definitions of the metric and curvature, nor for, the numerous 

choices of basis available in defining spinors. 1 record the conventions used 

in this thesis in this appendix. 

A.l Metric and Curvature 

1 use the 'mostly-plus' metric, 

7]MN = diag( -1,1,··· ,1) 

The Christoffel symbols are defined through 

The curvature corresonds to MTW [62] and Wald [46] conventions: 

[V' M, V' N]Vp = RMNPQVQ 

with 
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(A.2) 
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(A.4) 



(Weinberg's [80] conventions are opposite because he chooses to represent 

covariant derivatives using the semicolon notation; the order of indices is 

reversed relative to the differential operator notation.) 

1 also use spin-connections and vielbeins: in n dimensions there always 

exist n one-forms, EA = EtrdzM , called the vielbein, which square to the 

metric (E~ is the inverse, in the sense given by the equation below, to Etr), 

E1f E BM = T/AB· (A.5) 

The letters A, B, . .. from the beginning of the alphabet are used to la­

bel tangent-space indices, while M, N, . .. are used to label world indices . 

. The E A represent a non-coordinate, orthonormal basis which can be used 

to exp and objects on a manifold. In particular, we can exp and tensors in 

'tangent-space indices': 

(A.6) 

Tangent-space indices are raised and lowered using the flat-space metric, 

T/MN· 

The spin connection is defied as 

(A.7) 

and enters the covariant derivative as 

(A.8) 

where JAB is a representation of the lorentz group appropriate to the field 

being differentiated. For a vector we have 

(A.9) 
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while in the conventions given below for spinors, 

(A. la) 

ln this language the curvature can be thought of as a two-form field-strength 

with 'gauge indices' in the tangent space: 

(A.ll) 

A.2 Dirac Aigebra and Spinors 

The Pauli matrices are given by 

1 = (a 1) 
a 1 a (A.12) 

and we will have occation to use the antisymmetric two-by-two matrix 

. (a e = 'la2 = -1 ~) (A.13) 

and 

E = (~ ~) (A.14) 

1 use the gamma-matrix conventions of Weinberg, which is chiral basis. 

A spinor is written as a four-component column vector, 

(A.15) 

and its covariant conjugate is given by 

(A.16) 
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The Dirac matrices are given by him in his books as 

o _ '(3 . (0 1) Î = -1, = -1, 1 0 (A.17) 

(A.18) 

Î5 = (~ ~1) (A.19) 

The Majorana conditions is given this basis as 

(
0 -e) u* = -(3q5U = e 0 u (A.20) 

80 that a Majorana spinor can be written as 

(A.21 ) 
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Appendix B 

Supersymmetry and 
Supergravity 

In this appendix l briefly present an overview of supersymmetry and super-" 

gravit y as used in this thesis. This is not meant as a pedagogical introduction, 

for which the reader is referred to the many excellent texts (see eg, [199]) 

and review articles (see eg, [41]). This appendix is included to fix notation 

and present sorne context, but l do out li ne what l regard to be sorne of the 

most compelling theoretical evidence (as opposed to phenomenological evi­

dence, which was presented in chapter 1) for supersymmetry. In particular, 

l depart from a purely superficial description of supersymmetry by present­

ing a brief introduction to the Coleman-Mandula and the Haag-Lopusanski­

Sohnius theorems. l do so because they provides a slightly different moti­

vation for supersymmetry than that quoted sever al places in the rest of this 

thesis, the prevaling quoted motivation being to stabilise the electroweak 

hierarchy or the cosmological constant. 

The Coleman-Mandula theorem along with the Haag-Lopuszanski-Sohnius 

theorem come very close to definitively showing that supersymmetry is the 
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unique extension of the notion of symmetry consistent with the notion of a 

scattering matrix. 

B.I Overview 

Supersymmetric theories are those that are invariant under a Z2-graded Lie 

algebra. Graded Lie algebras are exactly like regular Lie algebras except that 

there are different kinds of commutators for different classes of objects which 

have different gradings. The grading of a product of two objects is the sum 

of the gradings (mod 2 in the case of SUSY algebras). 

More formally, there are two types of things which are called "bosons" 

and "fermions" and which are attributed grading 0 and 1 respectivly. The 

grading of objects A, B is G(A), G(B), and we define a generalised bilinear 

commutator r,·l (no longer strictly antisymmetric), such that 

{A, Bl = AB - (- )G(A)G(B) BA, (B.l) 

and 

G ({A, Bl) = G(A) + G(B) mod 2 (B.2) 

That is, if either A or B is a boson we recover the usual commutator {A, Bl = 

AB - BA, while if both are fermions we recover the usual anticommutator: 

{A, Bl = AB + BA. We define the hermitian adjoint of operators, A*, to 

retain the grading of the originaL Operators also satisfy the "super-Jacobi 

identity" : 

0= (- )G(A)GCC) { {A, Bl, Cl + (- )GCB)G(A){ {B, Cl, Al + (- )G(C)GCB){ {C, Al, Bl 

(B.3) 
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A supersymmetry algebra satisfies commutation relations which look like 

the ordinary commutation relations of Lie algebras: Let ta be a set of graded 

operators. ta form a super-Lie algebra if 

(BA) 

with the following properties: 

• Consistency of grading 

(B.5) 

• Consistency of complex-conjugation 

Cc * Cc ab =- ba (B.6) 

(Note the order of indices: (AB)* = B*A*.) 

Just as Lie algebras correspond locally to Lie groups through the expo­

nential map, super-Lie algebras correspond to super-Lie groups through a 

generalisation of the exponential map. Separate the ta into fermionic gener­

ators Qa, of grading 1, and bosonic generators, Ba, of grading o. Then the 

super-Lie group elements generatred by the algebra are given by 

(B.7) 

where the ys are real coordinates on the group manifold and the es are 

(anticommuting) coordinates on a Grassman manifold. (For theorems and 

rigourous definitions, please see ref [194].) 
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As we shall see, while this seems like one particular generalisaton of the 

concept of symmetry, it is in fact the only one possible. Under reasonable 

assumptions two theorems can be proved which together restrict the possi­

ble linearly represented symmetries furnished by theories to supersymmetries 

and the ordinary Lie symmetries. In the next section 1 will discuss the unique­

ness of the supersymmetry algebras, introducing the Coleman-Mandula and 

Haag-Lopuszanski-Sohnius theorems, which show why supersymmetry is !or­

mally a natural extension of symmetry. l'll then go on to present my super­

space conventions, describe F and D terms, and quote the supersymmetric 

nonrenormalisation theorem which is used for many arguments throughout 

this thesis. 1 will follow this with the lagrangian for the most general N = 1 

four-dimensional supergravity action, which, if ill-motivated in the context 

of this appendix alone (it is a very long business deriving it), should at least 

be comprehensible given the notation set out in the rest of this appendix. 

B.2 Uniqueness 

The formaI significance of this particular extension of the notion of symmetry 

to supersymmetry is twofold: 

1. Supersymmetry is the most general possible extension of the notion of 

symmetry compatible with the notion of a scattering operator. 

2. Supersymmetry ties together the bosonic and fermionic degrees of free­

dom in a theory. A supersymmetric variation rotates fermions into 

bosons and vice versa. 
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There are very few theorems in high energy physics, but the first item 

above is one of them. It comes in two parts: first, the Coleman-Mandula the­

orem [195] states that the only Lie algebras (not superalgebras) which leave 

the S-matrix invariant, and which have the Poincare group as a subalgebra, 

are direct sums of the Poincaré group with sums of compact semi-simple Lie 

algebras and U(I)s. This means that the only bosonic symmetries of the 

S-matrix are the ones we already know about; there cannot be new, exotic 

ones that mix particles of different spins. 

The second part of the theorem is the Haag-Lopuszanski-Sohnius the­

orem [196]. This theorem states that under the same assumptions as the 

Coleman-Mandula theorem, if we. additionally allow fermionic, symmetry 

generators, i.e. symmetry-generators of grading 1, the only possible such 

generators are spin-l/2. It moreover goes on to fix the form of the super­

algebra completely. (It should be mentioned that although these two parts 

together form a very compelling picture of exhaustiveness, loopholes are no­

toriously difficult to spot in "theorems" in physics. lndeed supersymmetry 

itself is a loophole to the Coleman-Mandula theorem. This loophole was 

found by people doing entirely independent research in string theory, and 

seemingly having no contact with the Coleman-Mandula theorem [199].) 

Poor Person's Coleman-Mandula 

Here is a version of one part of the Coleman-Mandula argument, due to 

Weinberg[199], which is presented here in a simplified form. This simple 

argument will exhibit why simply putting particles of different spin in a 

multiplet and requesting them to rotate into each other under a semi-simple 
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Lie group like SU(N) won't work. 

Let BA be bosonic, hermitian generators of a semi-simple compact sym­

metry of the hamiltonian, so that 

(B.8) 

and 

(B.9) 

We will assume BA has a nontrivial transformation under the Lorentz group 

(allowing it to mix spins of different kinds), and will show that this contra­

dicts the noncompactness of the Lorentz group. 

We will need two facts, from group theory: 

1. Compact semi-simple algebras have real structure constants Cc ab from 

which can be formed a real, positive-definite me tric 

(B.I0) 

and the existence of such a real, positive-definite me tric is equivalent 

to the property of being compact for Lie algebras. 

2. The only invariant two-tensor of the Lorentz group (in more than two 

dimensions) is the metric tensor TJaf3. 

The Bs transform nontrivially under the Lorentz group, so 

(B.ll) 

where U(A) is unitary operator of Lorentz transformations associated with 

the Lorentz matrix A and D is the representation of the Lorentz group fur­

nished by the Bs: 

D(A1)D(A2 ) = D(A1A2 ) 
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It is easy now show that the metric for the algebra of Bs is an invariant 

tensor with respect to the Ds. This is because the structure constants are 

invariant tensors of the transformation and the metric is constructed from the 

structure constants according to B.lO. The structure constants are invariant 

tensors since the commutation relations of the Bs take the same form both 

before and after a Lorentz transformation. That this is a problem can be 

seen immediately, sinee the only invariant tensors of the Lorentz group are 

the metric T/a{3 and the totally antisymmetric tensor Ea {3-yD' Since T/ is not 

positive definite, this contradicts B being a semisimple compact group.1 2 

ln order to finish the argument we must justify the restriction to compact 

groups. 1 will show in the next few paragraphs why linearly repr€!-sented 

internaI symmetries must be compact. 

There are various lines of argument against noncompact internaI sym­

metry groups, which make them unfavourable. First, noncompact groups, 

if represented in a theory, must be global symmetries sinee the gauge-field 

hamiltonian is positive-definite if and only if the metric of the corresponding 

lie algebra, constructed from the structure functions, as in eq. B.lO, is positive 

definite (which is equivalent to the compactness of the group) [198]. Second, 

global symmetries, if non-compact, must be represented nonlinearly. The 

1 Here ref. [199] goes on to explicitly construct a finite-dimensional, unitary representa­
tion of the Lorentz group, and then invokes the following fact about groups to prove the 
theorm: Noncompact groups su ch as the Lorentz group have no finite-dimensional unitary 
representations, thus ~chieving the desired contradiction. This construction is unnec.essary 
as we have seen. 

2The restriction to dimensions large than two is actually necessary, since in D ::; 2 
the connection between spin and statistics is unclear; in D 2: 2 there are only two kinds 
of statistics possible, fermionic (anticommuting) and bosonic (commuting), having to do 
with the triviality of all one-cycles in the puctured space. Since this is not true in fewer 
dimensions, more general statistics ("para-statistics") are possible [197]. 
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pro of l present rests on the fact that there exist no finite-dimensional, uni­

tary representations of noncompact groups as linear transformations. Here is 

the proof. Since the S-matrix must be invariant (not covariant) with respect 

to internaI symmetry transformations, we must either have an infinite num­

ber of particle types or a loss of unitarity. Let T be the transformation of the 

states <Pi and <Po which commutes with the S-matrix. Then the scattering 

element is given by 

(T<Po, ST<Pi) 

(<po, TtST<Pi) 

(<po, S (TtT) <Pi) (B.13) 

Now, either TtT = 1 and T is infinite-dimensional, or T is finite-dimensional 

and S is not invariant. Therefore T must generate a compact group of 

symmetry transformations. 3 4 

The only ex amples of which l am aware in which theories succesfully in­

corporate noncompact internaI symmetry groups without violating uni tarit y 

3Problems also arise in the effective description of the theory: If low-energy degrees of 
freedom furnish a linear representation of a noncompact group the hamiltonian does not 
stay bounded from below. Consider the construction of the free part of the hamiltonian: 
we assume there exists a non-compact group of transformations T(o:), acting linearly on 
a set of fields, <Pi and we wish to find a tensor gij such that 

(B.14) 

where IIi = 8Cj8o<Pi is the canonical momentum conjugate to <Pi, and gij is the inverse of 
gij. It can be shown [198] that for lie groups, the only invariant two-tensor is the metric 
constructed as in eq. B.lO, and that this metric is positive-definite iffthe group is compact. 
Since the group is not compact the hamiltonian unbounded from below. 

4The lorentz transformations do not suffer from this restriction because unitary, infinite­
dimensional representations are used for the quantum operators. This does not lead to 
infinite particle types because the non-compact part generates boosts, and boosted parti­
cles are not considered different. (The particle types are generated from the litt le groups 
of rotations.) 
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are theories which represent noncompact groups nonlinearly on their scalar 

manifold, as supergravities do [200, 201]. The symmetries thus represented 

within these theories aH involve shifts of scalar fields (in an appropriate choice 

of field coordinates) and have nothing to do with symmetries of one-particle 

states which are symmetries of the S-matrix5
• 

In any case, under the assumption of linearly represented symmetries, 

which are what we are concerned with here, internaI symmetries must be 

compact, and therefore faH under the assumptions of the Coleman-Mandula 

theorem. 

This argument against bosonic symmetries which mix particles of differ­

ent spins misses the second (and much harder) part of the theorem, that the 

only possible bosonic generators are the Poincaré generators, PI},) JJlI/ plus 

the usual internaI symmetry generators, but it shows why simple gues ses like 

trying to put mesons of different spins in a vector furnishing a unitary sym­

metry is doomed to failure in relativistic theories, but not in nonrelativistic 

ones; the pro of by contradiction hinges on the noncompactness of the Lorentz 

group. 

Haag-Lopuszanski-Sohnius 

The HLS theorem uses the Coleman-Mandula theorem to prove that fermionic 

generators of symmetries must be spin-l/2, and must square to give the 

.hamiltonian. According to this theorem, aH supersymmetry algebras take 

the same form, and l will present my notation for the "standard N = 1 

5These symmetries are now well-understood to arise from symmetries of compactifi­
cations from higher-dimensional supergravities, or to encode dualities between different 
theories[202]. 
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form" of the SUSY algebra. 1 will again present the fiavour of the HLS 

argument without presenting the details, which can be found in books and 

reviews on SUSY. 

The ide a of the HLS theorem is to take super-commutators, {·,·l of sorne 

fermionic generators of symmetries Q (JO and analyse them under the action of 

the Lorentz group. We will use the Coleman-Mandula theorem repeatedly 

to restrict the right-hand-sides of the commutators, which themselves must 

be symmetry-generators. 

To see how this works, consider the commutator {Q~, Qbl, where there are 

unknown Lorentz indices of sorne sort hanging off the Qs, which belong to the 

(A, B) representation of the Lorentz group. (Recall that the four-dimensional 

Lorentz group can be analysed in terms of two sets of independent SU(2) 

generators 
1 . 

A = -(J +zK) 
2 

1 
B = -(J - iK) 

2 
(B.15) 

where Ji = EijkJjk, Ki = J Oi are the Hermitian generators of rotations and 

boosts, respectively. Any object that transforms under the Lorentz group can 

be classified by its transformations (and therefore its representation) under 

the operators A and B.) Since the right-hand-side of the commutator of two 

Qs is also a symmetry generator and is bosonic, it must belong to the set of 

generators allowed by the Coleman-Mandula theorem: PJt, JJtv and TA. In 

this notation, PJt is (1/2,1/2), since it furnishes a spin-l/2 representation for 

both of A and B, while JJtv is (1,0) EB (0, 1) and TA is (0,0). In this way the 

problem of finding the transformation properties of the commutator of Qs 

becomes the problem of the coupling of two independent spins corresponding 

to A and B. With a litt le work we can show that A + B :::; 1/2, which proves 
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that the Q is (0,1/2), while Q* is (1/2,0). 

Now that we know the Qs are spin-1/2 it is easy to see what their com­

mutator is. [Q, Q*] is (1/2,1/2), a vector, and the only one available, by 

the Coleman-Mandula theorem, is the momentum operator, Pw We use 

the Clebsh-Gordon coefficients for coupling spinors and vectors, the Pauli 

matrices, to write the commutator of Q with its complex conjugate, Q* as 

(B.16) 

where 8 is the usual Kronecker delta. (We have redefined the Qs through 

a linear transformation to diagonalise the matrix to the unit matrix on the 

right-hand side.) 

Similar reasoning shows that the Qs commute with PJ-l' and restricts the 

commutator of Q with itself to be a bosonic internaI symmetry generator 

(a 'central charge', since it is the centre of the algebra, commuting with 

everyone), Z. Once converted from two-component notation using Pauli 

matrices to four-component notation using Dirac matrices (the translation 

is in appendix A), we find the four-dimensional suprsymmetry algebra in 

standard form: 

(B.17) 

where "IL = (1 + "(5)/2, "IR = (1 - "(5)/2 are the projectors onto left and right 

helicity. When there is only ône supersymmetry generator, we have N = 1 

supersymmetry and no Zs: 

(B.18) 
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Higher supersymmetries, such as N = 2,4 etcwill not be used in this the­

sis except very briefly in our discussion of the breaking of six-dimensional 

supersymmetry to four dimensions. 

B.3 Representation on Fields and Lagrangians 

Now that we have the supersymmetry algebra constructing representations of 

the algebra is easy. We will start with the construction of the simple st (and 

for our purposes most useful) representation, the chiral multiplet, which con­

sists of a single scalar and Weyl fermion, followed by a brief discussion of the 

vector multiplet, which contains vector fields and from which supersymmetric 

gauge theories are built. 

In order to construct the representation of the chiral multiplet it is easiest 

to work first with the two-component supersymmetry algebra, eq. B.16, then 

present the fields and algebra in four-component form. We work in N = 1 

supersymmetry. 

Begin with a complex scalar field, <p. We wish the supersymmetry vari­

ation of <p to give a new field of spin 1/2, 'ljJ, but for <p to be the lowest 

component of the representation. The generator Q is a spin-lowering op­

erator, being (0,1/2), and its complex-conjugate is a spin-raising operator. 

Therefore, we require 

(B.19) 

where the indices are two-component spinor indices. The second commuta­

tor must be proportional to antisymmetric two-tensor eab (see appendix A) 

because it is eabQ'b which transforms under the (1/2,0) representation of the 
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Lorentz group. The super-Jacobi identity gives 

(B.20) 

so that 

(B.21) 

Continuing in this manner, and continuing to use the HLS theorem and 

Lorentz-invariance yields the (off-shen) N = 1 supersymmetry transforma­

tions for the chiral multiplet: 

V2(ER'ljJd 

V2 ~cjJE R + V2F EL 

V2(ŒL~'ljJR) 

(B.22) 

(B.23) 

The complex-conjugate of a chiral multiplet is called an anti-chiral multiplet 

(or right-chiral multiplet). Anti-chiral multiplets satisfy the same variations 

as those given in B.22, with the interchange L +--+ R. 

The direct construction of the particle content of a representation of 

N = 1 supersymmetry containing a spin-O particle as its lowest component 

results in a multiplet with a complex spin-O particle and a Weyl spin-l/2 

particle. The appearance of the additional scalar, F, is a result of the off­

shell nature of the algebra. F is an auxiliary field (non-propagating) which 

is always expr~ssed in terms of other fields in the lagrangian after )mposing 

the equations of motion. The lagrangian so constructed, called on-shell, will 

only be supersymmetric when the fields satisfy their equations of motion. Su­

permultiplets, whether on-shen or off-shen, always contain the same number 

of bosonic and fermionic components: off-shen, 'ljJL has two complex degrees 
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of freedom, which equals the two complex bosonic degrees of freedom in <p 

and F; on-shell, 'lf;L only has one complex degree of freedom (the Dirac equa­

tion relates the components of the spinor), which matches the single complex 

propagating degree of freedom in <p. 

Two things make F a very important quantity: if F gets a vev supersym­

metry is broken, and the variation of the auxiliary component (the F-term) 

of a chiral multiplet is always a total derivative (as seen in the last varia­

tion in B.22). There are specific multiplication rules for chiral multiplets, 

with the result that the product of two chiral multiplets (but not a chiral 

and an anti-chiral multiplet) is again a chiral multipet. A supersymmetric 

lagrangian can always be constructed by taking the F ..... term of an arbitrary 

function of chiral superfields: 

(B.24) 

A similar statement holds for anti-chiral fields. The function W is conven-

tionally called the superpotential, and gives mass terms and interactions. 

The scalar potential due to a superpotential is given by 

(B.25) 

(where W is evaluated at <il = <p, the scalar-field component of the chiral 

superfield) . 

rhe product of a chiral and anti-chiral field yields ~ general superfield. 

General superfields have more complex variations than those given in B.22. 

The auxiliary field which is the field of highest-weight, and which transforms 

to a total derivative is conventionally called a D-term. Since the supersym-

metric variation of a D-term is a total derivative, supersymmetric actions 
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can also be constructed from them: 

'cD-term = [K(<1>*, <1»b (B.26) 

All F-terms can be written as D-terms, but not all D-terms can be written as 

F-terms. D-terms tend to give the kinetic parts of actions, and the function 

K is conventionally called the Kahler function. The simplest Kahler function, 

K = <1>*<1>, gives the free kinetic terms for the chiral multiplet: 

[<1>*<1>]D = -3cj;3cj;* -1jJfJ1jJ + F* F (B.27) 

F-terms are very special, due to their dependenee on either only chrial 

or only anti-chiral fields. Considering chiral fields as complex coordinates, 

F-terms are purely holomorphic or purely anti-holomorphic. This restriction 

provides a very strong constraint on the kinds of corrections that can appear 

in supersymmetric theories. 80 strong is this restriction, in fact, that the 

superpotential is not renormalised to any order in perturbation theory as long 

as supersymmetry remains unbroken. D-terms enjoy no such protection, and 

are corrected in more-or-less arbitrary ways. A special case in which D-terms 

are afforded sorne protection from corrections are those D-terms that can also 

be written as F-terms. These tend only to reeeive one-loop corrections. 

The non-renormalisation of the superpotential means that the scalar po­

tential B.25 also does not reeeive any corrections. This is one way to see that 

the cosmological constant is not renormalised ip. supersymmetric theories; the 

effective potential for the fields do es not change. (It is also interesting that 

the scalar potential is non-negative sinee it is a perfect square.) The stabili­

sation of the Higgs mass is also clear in this context, sinee scalar-field masses 

also arise from the superpotential. All of these results can be seen easily and 
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explicitly by computing the one-Ioop effective potential for a supermultiplet; 

the bosonic and fermionic degrees of freedom cancel. The advantage of the 

present method is that it is true to aU orders in perturbation theory (and 

sometimes even nonperturbatively). 

There is one final type of field that is of interest for the supersymmetric 

arguments made in this thesis, the linear (or vector) superfield. This is the 

superfield from which Yang-Mills interactions are constructed. The kinetic 

terms of the Yang-Mills multiplets turn out to be one of the special class of 

objects that can be written both as the D-term of a general superfield and 

the F-term of a chiral superfield. It is for this reason that gauge couplings 

only receive one-Ioop corrections (if at aU) in supersymmetric theories. 

The D-term of a vector superfield, if itself gauge-invariant (if and only if 

the vector carries an abelian charge), can provide a supersymmetric term in 

the action caUed a Fayet-Iliopoulos term 

.cFI = Ç-[V]D (B.28) 

These terms turn out to also enjoy a non-renormalisaton theorem (the quan­

tum correction to the term is proportional to the trace of aU the U(l) genera­

tors, which is guaranteed to vanish in the absence of gravitational anomalies). 

FI terms can also give rise to scalar potentials, as is shown explicitly in chap­

ter 3. 

The four-dimension al supergrav:ity multiplet is constructed by using yet 

another kind of superfield. The very interesting thing about supergravity is 

that it is the unique extension of global supersymmetry to a gauge symme­

try. Because the square of a supersymmetry transformation is a translation, 

gauging supersymmetry is equivalent to gauging the Poincare group, giv-
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ing a fully diffeomorphism-invariant theory. The discussion or constructon 

of N = 1 supergravity is lengthy and unilluminating. The terminology set 

out in this chapter is adequate to understand the most general N = 1 su­

pergravity lagrangian, given in [45], and whose bosonic part is reproduced 

here, 

~R 
2 
~Re+ FaFfLVb_~Im+ éLVuPFaF b 4 J ab 1.lV 4 J ab IJ,V up 

KW DJl</YiDJlcjJ; 

~Ref-l Da D*b 
2 ab 

eK ((Wi + KiW) (Wj* + Kj*W*)Kij* - 31W12) (B.29) 

where DJl is a covariant derivative, Da represents the on-shell value of the 

vector-multiplet D-term, Ki = 8K(cjJ, cjJ*) j8cjJi , and Kj* = 8K(cjJ,cjJ*)j8cjJi*, 

while KW is the inverse of the matrix 

8K 
KW = 8cjJi8cjJ*j (B.30) 

fab are the gauge-kinetic funtions. They are holomorphie functions of the 

chiral superfields, cjJi and give the inverse of the coupling-constant matrix. 

The last line of the lagrangian B.29 is called the F-term scalar potential, 

while the line directly above it is called the D-term scalar potential, due to 

their origins as the on-shell vevs of the F and D auxiliary fields. The non­

renormalisation theorems quoted above for global supersymmetry continue 

to hold in supergravities: the superpotential is not (perturbatively) renor­

malised, FI terms are not renormalised in non-anomolous theories, gauge 

couplings are only corrected to one-loop, but the Kahler function receives 

general corrections. 
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Appendix C 

Warped Metrics and 
Conditions for Flat Branes 

Consider an 'extra-dimensional theory of gravit y cou pIed to sorrîe bulk and 

brane matter: 

(C.l) 

where we make no assumptions about the structure of the matter lagrangian: 

it may contain delta-function sources (branes) as well as bulk contributions. 

We seek solutions with maximally-symmetric four-dimensional slices (which 

we hope to make fiat), fibred over internaI dimensions (which will contain 

branes at various points). The most general possible me tric under these 

assumptions can be written as 

where y are the internaI coordinates, x are our usual four dimensions, 9J.Ll/ is 

one of dS, AdS or Minkowski space (so that the Ricci curvature computed 

from 91),1/ is given by RJ.Ll/ = À 9J.Ll/ with À positive, negative or zero, respec­

tively). In a following section we show that the Ricci curvatures calculated 
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from this met rie ansatz are given by 

(C.3) 

(C.4) 

where R is the eurvature ealculated from the full metric gMN, R,w = À9/l-v 

and Rmn are, respeetively the eurvatures ealculated solely from 9/l-v and 9mn, 

and \7 m is the eonneetion ealculated solely from the internaI met rie 9mn. 

The Einstein equations arising from eq. C.I are 

(C.5) 

where 

(C.6) 

~ 

Traeing eq. C.5 to replace R gives 

(C.7) 

where T - Tfj and 

~ = D/2-1. (C.8) 

Substituting eq. C.3 into the ab ove , simplified Einstein equations gives 

2 _ 2 2 [ W
2

] l 2 4 W R/l-v=W (Y)À9/l-v(x)=-2W T/l-V-T2~9/l-v +4\7 w. (C.g) 

We will say a brane-world scenario gives a naturally fiat solution if, given 

the above assumptions and ansatze, À = 0 is possible for any ehoiee of brane 
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tensions. 1 A necessary and sufficient condition for À = a is for 

r 2 [ W
2

] l r 2 4 1M2 W TJ-Lv - T 2~ gJ-LV +"4 1M2 \7 W gJ-LV = O. (C.IO) 

where the integration is performed only over the internaI manifold, M2' given 

by the metric gmn(Y) (not an integration over y with respect to the me as ure 

J9). If, in addition we assume that the internaI manifold is compact and 

complete, so that 

(C.11) 

where n is the unit normal to the boundary, 8MJi) 2, we may impose the 

condition on the matter lagrangian that 

(C.12) 

We now evaluate eq. C.12 in the simplest brane-worlds. 

Randall-Sundrum 

We have D = 5, 

(C.13) 

with 

(C.14) 

lOur assumptions expressly exclude FRW-with-matter-type evolutions of the four­
dimensional metric, and therfore general matter distributions on the brane with separate 
pressures and energy densities. For a recent analysis in which this is question is addressed, 
see [205]. In this paper the authors claim that self-tuning does not work when more 
general matter than pure tension is placed on the branes. We will discuss this in our 
concluding chapter. 

2We include boundary contributions because, as is familiar from electromagnetism, 
delta functions can be recast as boundary conditions on infinitesimal circles surrounding 
the singularity-a recasting of the problem that is often convenient. 
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so that 

TMN = -~ 9MN A - ~ L Tib(y - Yi) b~ brv 9/w, (C.15) 
i 

and 

(C.16) 

implying that eq. C.lO becomes 

J dyW
4 [A - ~ LTi <5(y - Yi)] (C.17) 

Similarly analysing the mn components yields the second equation 

(C.18) 

Together, when W = e-k1zl is used, the~e equations give the relation between 

tensions and A derived in section 4.6. 

C.I Curvatures for Warped-Product Metrics 

In this section we will develop a method for deriving the equations of motion 

in theories of gravit y in which the metric takes the 'warped product' form. In 

order to solve the equations of motion, we reduce D-dimensional derivatives 

and curvatures to quantities computed only in terms of the metrics and 

derivatives of the subspaces, without needing to make detailed ansatz for the 

form of the underlying metrics: we wish to calculate the curvature, RMN of 

the D-dimensional me tric 
o. 

ds2 = 9MNdzMdzn = W(y)2gJtv(x)dxJtdxv + gmn(y)dymdyn (C.19) 

in terms of covariant derivatives and curvatures constructed only from gJtv 

and gmn, which we denote by \7 Jt and \7 m, respectively. The covariant deriva­

tive constructed from the full metric, 9 is denoted by V M, the D-dimensional 
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tanget frames are denoted by upper-case letters, E, and the subspace tangent­

frames are given bye. (We only use the â notation when confusion is likely 

to arise, or if both tangent spaces are being used in the same formula.) 

The spin connection, 0, is given by 

(C.20) 

and 

(C.21) 

(refer to appendix A for further details). So, in terms of the spin connection 

(where underlined R is Reimann tensor as a two-form), the curvature is, 

Spheres are positively curved. 

Define a tangent frame, 

where 

Spin Connection 

Clearly 

ea(y) = e~dym 

W(y)eŒ(x) = W(y)e~dxJ1. 

gmn 
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(C.22) 

(C.23) 

(C.24) 

(C.25) 



where W ab is the spin connection for ea mdym, so 

and is not affected by the presence of the rest of the metric. 

dEŒ dW 1\ eŒ + Wde Œ 

- (eŒ (Om W ) E;:) 1\ Ea + WWŒ~ 1\ e~ 

- (eŒ (om W) E;:) 1\ Ea + WŒ~ 1\ E ~ 

- (eŒva ) 1\ E a + WŒ~ 1\ Ef3' 

where 

We therefore have 

where WŒ~ is the spin connection for eŒ
• 

Reimann Curvatures 

(C.30) 

_dnab + naD 1\ n Db 

_dwab + wad 1\ wl + 0 

Rab 

where Ris the Reimann curvature calculated from 9mn(X). 
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(C.26) 

(C.27) 

(C.28) 

(C.29) 



Similarly, 

ÎifjI3 -dOa/3 + oaD 1\ OD/3 

-dwŒf3 + WŒD 1\ wl + ( -eŒVd) 1\ (vd
ef3) 

RŒf3 _ VdVd eŒ 1\ ef3. 

The off-diagonal piece is 

Rab _dOab + oaD 1\ ODb 

where 

d( eŒvb) + oaS 1\ oi + oad 1\ Odb . 

_eŒ 1\ Dvb• 

is the usual tangent-frame covariant derivative for é. 

Ricci Curvatures 

(C.31) 

(C.32) 

(C.33) 

Now we get the Ricci tensors in the tangent frame. We will use the following 

representation of the Ricci tensor in tangent indices, 

(C.34) 

where 

(C.35) 

is the inverse to the tangent one-form: 

(C.36) 

So, 
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(C.37) 

where Rab is the Ricci tensor for the spacetime described by ea mdym alone. 

Here, 

(C.39) 

is the covariant derivative constructed from Ea m alone. Transforming from 

the tangent-frame to world-indices proves eq. 4.32. 

251 



Bibliography 

[1] S. Weinberg, "A Model Of Leptons," Phys. Rev. Lett. 19, 1264 (1967); 

S. L. Glashow, "Partial Symmetries Of Weak Interactions," Nucl. Phys. 

22,579 (1961); A. Salam, in Elementary Particle Theory, N. Svartholm 

(Almqvist and Wiksell), Stockholm, 1969, p. 367. 

[2] S. Eidelman et al. [Particle Data Group], "Review of particle physics," 

Phys. Lett. B 592, 1 (2004). 

[3] D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, J. Lykken and 

L. T. Wang, "The soft supersymmetry-breaking Lagrangian: Theory 

and applications," arXiv:hep-phj0312378. 

[4] K. R. Dienes, "String Theory and the Path to Unification: A Re­

view of Recent Developments," Phys. Rept. 287, 447 (1997) [arXiv:hep­

th/9602045]. J. de Boer, "String theory: An update," Nucl. Phys. Proc. 

Suppl. 117, 353 (2003) [arXiv:hep-thj0210224]. 

[5] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962). 

[6] D. London and C. P. Burgess, "Loop calculations with anomalous gauge 

boson couplings," [arXi v: hep-ph/9209211]. 

252 



[7] C. P. Burgess and D. London, "On anomalous gauge boson couplings 

and loop calculations," Phys. Rev. Lett. 69, 3428 (1992). 

[8] C. P. Burgess, arXiv:hep-phj9812470. 

[9] C. P. Burgess, "Quantum gravit y in everyday life: General rela­

tivity as an effective field theory," Living Rev. Rel. 7, 5 (2004) 

[arXiv:gr-qc/0311082]. 

[10] C. P. Burgess and D. London, "Light spin one particles imply gauge 

invariance," [arXi v: hep-ph/9203215] . 

[11] C. P. Burgess, A. Font al).d F. Quevedo, "Low-Energy Effective Action 

For The Superstring," Nucl. Phys. B 272, 661 (1986). 

[12] S. Weinberg, "Why The Renormalization Group Is A Good Thing," In 

*Cambridge 1981, Proceedings, Asymptotic Realms Of Physics*, 1-19. 

[13] S. Weinberg, "Phenomenological Lagrangians," PhysicaA 96, 327 

(1979). 

[14] S. Weinberg, "New Approach To The Renormalization Group," Phys. 

Rev. D 8, 3497 (1973). 

[15] S. Weinberg, "Photons And Gravitons In Perturbation Theory: Deriva­

tion Of Maxwell's And Eipstein's Equations," Phys. Rev. 138, B988 

(1965). S. Weinberg, "Photons And Gravitons In S Matrix Theory: 

Derivation Of Charge Conservation And Equality Of Gravitational And 

Inertial Mass," Phys. Rev. 135, B1049 (1964). S. Weinberg, "Infrared 

Photons And Gravitons," Phys. Rev. 140, B516 (1965). 

253 



[16] K. G. Wilson and J. B. Kogut, 'The Renormalization Group And The 

Epsilon Expansion," Phys. Rept. 12, 75 (1974). 

[17] K. G. Wilson, "The Renormalization Group: Critical Phenomena And 

The Kondo Problem," Rev. Mod. Phys. 47, 773 (1975). 

[18] M. Gell-Mann and F. E. Low, "Quantum Electrodynamics At Small 

Distances," Phys. Rev. 95, 1300 (1954). 

[19] A. Dobado, A. Gamez-Nicola, A. L. Maroto and J. R. Pelaez, "Effec­

tive Lagrangians for the Standard Model," Springer Berlin Heidelberg 

(1997). 

, 

[20] J. F. Donoghue, "General relativity as an effective field theory: 

The leading quantum corrections," Phys. Rev. D 50, 3874 (1994) 

[arXiv:gr-qc/9405057], 

J. F. Donoghue, "Introduction to the Effective Field Theory Description 

of Gravit y," [arXi v: gr-qc/9512024] . 

[21] B. R. Holstein, "Blue skies and effective interactions," Am. J. Physics, 

67, 5 (1999) 

[22] B. R. Holstein, "Effective interactions and the hydrogen atom," 

Am. J. Physics, 72, 3 (2004) 

[23] W. Heisenberg ,and H. Euler, "Consequences Of Dirac's Theory ,Of 

Positrons," Z. Phys. 98, 714 (1936); For a modern treatment see, e.g., 

Y. Aghababaie and C. P. Burgess, "Two neutrino five photon scat­

tering at low energies," Phys. Rev. D 63, 113006 (2001) [arXiv:hep­

phj0006165], and references therein. 

254 



[24] D. B. Kaplan, "Effective field theories," [arXi v: nucl-th/9506035] ; 

[25] A. G. Cohen, D. B. Kaplan and A. E. Nelson, "Effective field theory, 

black holes, and the cosmological constant," Phys. Rev. Lett. 82, 4971 

(1999) [arXiv:hep-th/9803132]. 

[26] S. D. H. Hsu, "Entropy bounds and dark energy," Phys. Lett. B 594, 

13 (2004) [arXiv:hep-thj0403052]. 

[27] S. Weinberg, "The cosmological constant problems," 

[arXiv:astro-ph/0005265]. 

[28] S. Weinberg, "A priori probability distribution of the cosmological con­

stant," Phys. Rev. D 61, 103505 (2000) [arXi v: astro-ph/0002387] . 

[29] H. Martel, P. R. Shapiro and S. Weinberg, "Likely Values 

of the Cosmological Constant," Astrophys. J. 492, 29 (1998) 

[arXiv:astro-ph/9701099]. 

[30] S. Weinberg, "Theories of the cosmological constant," 

[arXiv:astro-ph/9610044]. 

[31] S. R. Coleman, "Why There Is Nothing Rather Than Something: A 

Theory Of The Cosmological Constant," Nucl. Phys. B 310, 643 (1988). 

[32] L. Susskind, "The anthropic landscape of string theory," arXiv:hep­

th/0302219. 

[33] S. Bettini, "Anthropic reasoning in cosmology: A historical perspec­

tive," arXiv:physicsj0410144. 

255 



[34] R. Bousso and J. Polchinski, "Quantization of four-form fluxes and dy­

namical neutralization of the cosmological constant," JHEP 0006, 006 

(2000) [arXiv:hep-thj0004134]. 

[35] S. W. Hawking, "The Cosmological Constant ls Probably Zero," Phys. 

Lett. B 134, 403 (1984). 

[36]. S. Weinberg, "Anthropic Bound On The Cosmological Constant," Phys. 

Rev. Lett. 59, 2607 (1987). 

[37] J. Garriga and A. Vilenkin, "On likely values of the cosmological con­

stant," Phys. Rev. D 61, 083502 (2000) [arXi v: astro-ph/9908115] . 

[38] S. Franck, W. von Bloh, C. Bounama, M. Steffen, D. Schonberner 

and H.-J. SChellnhuber, "Determination of habitable zones in extraso­

lar plnetary systems: Where are Gaia's sisters?" J. Gephys. Res., 105, 

1651-1658 (2000); 

S. Franck, W. von Bloh, C. Bounama, I. Garrido and H.-J. Schellnhu­

ber, "Planetary habilitability: ls Earth commonplace in the Milky 

Way?" Naturwissenschaften, 88, 416-426 (2001); 

[39] S. Weinberg, "Baryon And Lepton Nonconserving Processes," Phys. 

Rev. Lett. 43, 1566 (1979). 

F. Wilczek and A. Zee, Phys. Rev. Lett, 43, 1571 (1979). 

See als'o S. Weinberg, Phys. Rev. D22, 1694 (1980). 

[40] B. Zumino, "Supersymmetry And The Vacuum," Nucl. Phys. B 89, 535 

(1975). 

256 



[41] M. F. Sohnius, "Introducing Supersymmetry," Phys. Rept. 128, 39 

(1985). 

[42] H. E. Haber and G. L. Kane, "The Search For Supersymmetry: Probing 

Physics Beyond The Standard Model," Phys. Rept. 117, 75 (1985). 

[43] N. Marcus and J. H. Schwarz, "Field Theories That Have No Manifestly 

Lorentz Invariant Formulation," Phys. Lett. B 115, 111 (1982). 

[44] M. J. Duff, B. E. W. Nilsson and C. N. Pope, Phys. Rept. 130, 1 (1986). 

[45] H. P. Nilles, "Supersymmetry, Supergravity And Particle Physics," 

Phys. Rept. 110, 1 (1984). 

[46] R. M. Wald, "General Relativity", Chicago, Usa: Univ. Pro (1984) 491p 

[47] N. Arkani-Hamed and S. Dimopoulos, "Supersymmetri Unification 

Without Low Energy Supersymmetry And Signatures for Fine-Tuning 

at the LHC," [arXiv:hep-th/0405159]. 

[48] Please see M. Schmaltz and D. Tucker-Smith, [arXiv:hep-ph/0502182.] 

for a review with references. 

[49] L. Susskind, Phys. Rev. D 20, 2619 (1979); S. Weinberg, Phys. Rev. D 

13, 974 (1976). 

[50] J. Hughes and J. Polchinski, Nucl. Phys. B 278, 147 (1986). 

[51] J. Hughes, J. Liu and J. Polchinski, "Supermembranes," Phys. Lett. B 

180, 370 (1986). 

257 



[52] J. Polchinski, "Dirichlet-Branes and Ramond-Ramond Charges", Phys. 

Rev. Lett., 75, pp 4724-4727, (1995) [arXiv:hep-th/9510017]. 

[53] J. Polchinski, "String theory. Vol. 1: An introduction to the bosonic 

string," SPIRES entry 

[54] J. Polchinski, "String theory. Vol. 2: Superstring theory and beyond," 

SPIRES entry 

[55] For an excellent comprehensive review see the online reVlew article 

C. V. Johnson, "D-brane primer," [arXiv:hep-th/0007170], and the 

book by the same author which is an expansion of the notes, C. V. John­

son, "D-branes," Cambridge University Press (2003), 548pp SPIRES en­

try; 

[56] 

See also, C. V. Johnson, "Etudes on D-branes," arXiv:hep-thj9812196. 

C. V. Johnson, "Introduction to D-branes, with applications," Nucl. 

Phys. Proc. Suppl. 52A, 326 (1997) [arXiv:hep-thj9606196]. 

J. Polchinski, S. Chaudhuri and C. V. Johnson, "Notes on D-Branes," 

ar Xiv: hep-thj9602052. 

[57] M. B. Green, J. H. Schwarz and E. Witten, "Superstring Theory. Vol. 1: 

Introduction," SPIRES entry M. B. Green, J. H. Schwarz and E. Wit­

ten, "Superstring Theory. VoL 2:- Loop Amplitudes, Anomalies And 

Phenomenology," SPIRES entry 

[58] J. H. Schwarz, "The second superstring revolution," arXiv:hep­

thj9607067. 

258 



[59] For a recent review with references see, D. Lust, "Intersecting brane 

worlds: A path to the standard model?," Class. Quant. Grav. 21, S1399 

(2004) [arXiv:hep-thj0401156]. See also, M. Cvetic, "Supersymmetric 

particle physics from intersecting D-branes," SPIRES entry Prepared 

for 10th International Conference on Supersymmetry and Unification of 

Fundamental Interactions (SUS Y02) , Hamburg, Germany, 17-23 Jun 

2002; 

D. Bailin, G. V. Kraniotis and A. Love, "Standard-like models from 

intersecting D4-branes," Phys. Lett. B 530, 202 (2002) [arXiv:hep­

thjOl08131]; 

D. Bailin, G. V. Kraniotis and A. Love, "New standard-like models 

from intersecting D4-branes," Phys. Lett. B 547, 43 (2002) [arXiv:hep­

thj0208103]. C. Kokorelis, "New standard model vacua from intersecting 

branes," JHEP 0209, 029 (2002) [arXiv:hep-thj0205147]. C. Kokorelis, 

"Exact standard model compactifications from intersecting branes," 

JHEP 0208, 036 (2002) [arXiv:hep-thj0206108]. C. Kokorelis, "Exact 

standard model structures from intersecting D5-branes," Nucl. Phys. B 

677, 115 (2004) [arXiv:hep-thj0207234]. 

[60] S. Hellerman, "On the landscape of superstring the ory in D 

l. 10," [arXiv:hep-th/0405041]; S. Hellerman and X. Liu, 

"Dynamical Dimension Change in Supercritical String Theory," 

[arXiv:hep-th/0409071]. 

[61] See, e.g., P. J. E. Peebles, "The Emergence Of Physical Cosmology," 

IASSNS-AST-90-41 and references therein. 

259 



[62] Charles W. Misner, Kip Thome, John Wheeler, "Gravitation", Worth 

Publishers Inc (1973) 1279p 

[63] M. R. Nolta et al., "First Year Wilkinson Microwave Anisotropy Probe 

(WMAP) Observations: Dark Energy Induced Correlation with Radio 

Sources," Astrophys. J. 608, 10 (2004) [arXiv:astro-phj0305097]. 

[64] R. A. Knop et al., "New Constraints on OM, OA, and w from an Inde­

pendent Set of Eleven High-Redshift Supernovae Observed with HST," 

[arXiv:astro-phj0309368]. 

[65] G. Steigman, arXiv:astro-phj0501591. 

[66] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) 

[arXiv:hep-thj9906064]. 

[67] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) 

[arXiv:hep-phj9905221]. 

[68] W. D. Goldberger and M. B. Wise, "Modulus stabilization with bulk 

fields," Phys. Rev. Lett. 83, 4922 (1999) [arXiv:hep-phj9907447]. 

[69] S. L. Glashow, Nucl. Phys. B22, 529 (1961); 

S. Weinberg, Phys. Rev. Lett 19 (1967); 

A. Salam, Proc. of Nobel Symposium, 1968; 

J. Patti and A. 'Salam, Phys. Rev. DIO, 275 (1974); 

H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974); 

(For a modern review and extensive references see also Marc Sher, 

"Grand Unification, Higgs Bosons, and Baryogenesis," in "Strings, 

260 



Branes and Extra Dimensions, Proceedings of TASI 2001," Eds. Steven 

S. Gubser and Joseph D. Lykken.) 

[70] H. Georgi, H. R. Quinn and S. Weinberg, Phys. Rev. Lett. 33, 451 

(1974). 

[71] A. Einstein, B. Podolsky and N. Rosen, "Can Quantum Mechanical 

Description Of Physical Reality Be Considered Complete?," Phys. Rev. 

47, 777 (1935). 

[72] S. Eidelman et al., Physics Letters B 592 1 (2004). 

[73] See f9r instance: F. Quevedo hep-th/9603074 and referenç;es therein. 

[74] J.-P. Derendinger, L.E. Ibanez and H.P. Nilles, Phys. Lett. B155 (1985) 

65; M. Dine, R. Rohm, N. Seiberg and E. Witten, Phys. Lett. B156 

(1985) 55. 

[75] S. B. Giddings, S. Kachru and J. Polchinski, hep-th/0105097; S. Kachru, 

M. B. Schulz and S. Trivedi, hep-th/0201028. 

[76] G. Aldazabal, L. E. Ibanez and F. Quevedo, JHEP 0001 (2000) 031 [hep­

th/9909172]; JHEP 0002 (2000) 015 [hep-ph/0001083]; G. Aldazabal, 

L. E. Ibanez, F. Quevedo and A. M. Uranga, "D-branes at singularities: 

A bottom-up approach to the string embedding of the standard model," 

JHEP '0008 (2000) 002 [hep-th/0005067]; R. Blumenhagen, L. Goer­

lich, B. Kors and D. Lüst, "Noncommutative compactifications of type 1 

strings on tori with magnetic background flux," JHEP 0010 (2000) 006 

[hep-th/0007024]; G. Aldazabal, S. Franco, L. E. Ibanez, R. Rabadan 

261 



and A. M. Uranga, "Intersecting brane worlds," JHEP 0102 (2001) 047 

[hep-phj0011132]; J. Math. Phys. 42 (2001) 3103 [hep-thj0011073]. 

[77] G. Dvali and S. H. H. Tye, Phys. Lett.450199972 [hep-phj9812483]; 

C.P. Burgess, D. Nolte, M. Majumdar, F. Quevedo, G. Rajesh and R­

J. Zhang, JHEP 07(2001)047 [hep-thj0105204]; 

G. Dvali, S. Solganik and Q. Shafi, (unpublished) [hep-thj0105203]; 

C. Herdeiro, S. Hirano and R Kallosh, JHEP 0112(2001)027 [hep­

thj0110271]; 

J. Garcia-Bellido, R Rabadan and F. Zamora, JHEP 0201(2002)036 

[hep-thjOl12147] ; 

R Blumenhagen, B. Korrs, D. Lüst and T. Ott, [hep-thj0202124]. For 

a recent review with many refrences see: F. Quevedo, [hep-thj0210292]. 

[78] C.P. Burgess, P. Martineau, G. Rajesh, F. Quevedo and R-J. Zhang, 

JHEP 0203 (2002) 052, hep-thj0111025. 

[79] For recent discussions see: M. Dine and Y. Shirman, "Remarks on the 

racetrack scheme," Phys. Rev. D 63 (2001) 046005 [hep-thj9906246]; 

S. A. Abel and G. Servant, "Dilaton stabilization in effective type 1 

string models," Nucl. Phys. B 597 (2001) 3 [hep-thj0009089]; A. Font, 

M. Klein and F. Quevedo, "The dilaton potential from N = 1*," 

Nucl. Phys. B 605 (2001) 319 [hep-thjOlO1186]; R Ciesielski and 

Z. Lalak, "Racetrack models in theories from extra dimensions," [hep-

phj0206134]. 

[80] S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972. 

262 



[81J L. Alvarez-Gaumé and E. Witten, Nue!. Phys. B234 (1984) 269. 

[82J M.B. Green and J.H. Schwarz, Phys. Lett. B149 (1984) 117. 

[83J S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, Phys. Lett. 

BI5I (1985) 351. 

[84J M.B. Green, J.H. Schwarz and P.C. West, Nue!. Phys. B254 (1985) 327; 

J. Erler, J. Math. Phys. 35 (1994) 1819 [hep-th/9304104J. 

[85J J.H. Schwarz, Phys. Lett. B37I (1996) 223 hep-th/9512953; 

M. Berkooz, R.G. Leigh, J. Polchinski, J.H. Schwarz, N. Seiberg and E. 

Witten, Nue!. Phys. B475 (1996) 11,5 hep-th/9605184; 

N. Seiberg, Phys. Lett. B390 (1997) 169 [hep-th/9609161J. 

[86J B. de Wit and J. Louis, [hep-th/9801132]. 

[87J A. Sagnotti, Phys. Lett. B294 (1992) 196. 

[88J M. J. Duff, R. Minasian and E. Witten, Nucl. Phys. B 465 (1996) 413 

[hep-th/9601036J; G. Aldazabal, A. Font, L. E. Ibanez and F. Quevedo, 

Phys. Lett. B 380 (1996) 33 [hep-th/9602097J; N. Seiberg and E. Witten, 

Nu cl. Phys. B47I (1996) 121 [hep-th/9603003J. 

[89J P.G.O. Freund and M.A. Rubin, Phys. Lett. B97 (1980) 233. 

[90J J.J. Halliwell, Nue!. Phys. B286 (1987) 729. 

[91] E. Witten, Phys. Lett. B155 (1985) 151. 

[92J C.P. Burgess, A. Font and F. Quevedo, Nucl. Phys. B272 (1986) 661. 

263 



[93] E. Cremmer, B. Julia, J. Seherk, S. Ferrara, L. Girardello and P. van 

Nieuwenhuizen, Nu cl. Phys. Bl47 (1979) 105. 

[94] E. Witten and J. Bagger, Phys. Lett. Bl15 (1982) 202. 

[95], S. Randjbar-Daemi, A. Salam and J. Strathdee, Nuel. Phys. B214 

(1983) 491. 

[96] M. Dine and N. Seiberg, Phys. Rev. Lett. 57 (1986) 2625. 

[97] M. Dine, N. Seiberg and E. Witten, Nu cl. Phys. B289 (1987) 589. 

[98] M. Grisaru, M. Rocek and W. Siegel, Nu cl. Phys. Bl59 (1979) 429. 

[99] K. A. Intriligator and N. Seiberg, Nuel. Phys. Proe. Suppl. 45BC (1996) 

1 [hep-th/9509066]; M. A. Shifman, Prog. Part. Nuel. Phys. 39 (1997) 

1 [hep-th/9704114]. 

[100] C.P. Burgess, J.P. Derendinger and F. Quevedo and M. Quiros" Ann. 

Phys. 250 (1996) 193 hep-th/9505171; Phys. Lett. B348 (1995) 428, 

hep-th/9501065. 

[101] S. Weinberg, The Quantum Theor'y of Fields II Cambridge University 

Press (1996). 

[102] S. Weinberg, "Why The Renormalization Group Is A Good Thing," In 

*Cambridge 1981, Proceedings; Asymptotic Realms Of Physics*, 1-19. 

[103] For an application of these arguments in another eontext see: C.P. 

Burgess and A. Marini, Phys. Rev. D45 (1992) 17. 

264 



[104] J.A. Casas, Nu cl. Phys. Proc. Suppl. 52A (1997) 289 hep-thj9608010; 

T. Banks and M. Dine, Phys. Rev. D50 (1994) 7454. 

[105] M. Dine and N. 8eiberg, Phys. Lett. B 162 (1985) 299. 

[106] N.V. Krasnikov, Phys. Lett. B193 (1987) 37. 

[107] E. Witten, Nu cl. Phys. B188 (1981) 513. 

[108] For a review with references see: A. Brignole, L.E. Ibanez and C. 

Munoz, in Perspectives on Supersymmetry, ed. by G.L. Kane, 1997, pp. 

125 hep-phj9707209. 

[109] N. Kaloper, "Bent domain walls as braneworlds," Phys. Rev. D 60~ 

123506 (1999) [arXiv:hep-thj9905210]. 

[110] J. W. Chen, M. A. Lut Y and E. Ponton, "A critical cosmological con­

stant from millimeter extra dimensions," JHEP 0009 (2000) 012 hep­

thj0003067; F. Leblond, R. C. Myers and D. J. Winters, "Consistency 

conditions for brane worlds in arbitrary dimensions," JHEP 0107 (2001) 

031 hep-thj0106140. 

[111] 8ee for instance: M. Cvetic, H. Lu and C. N. Pope, "Gauged six­

dimensional supergravity from massive type lIA," Phys. Rev. Lett. 83 

(1999) 5226 [hep-thj9906221]; M. Cvetic, H. Lu and C. N. Pope, "Con­

sistent warped-spac~ Kaluza-Klein reductions, half-maximal gauged su- . 

pergravities and CP(n) constructions," Nucl. Phys. B 597 (2001) 172 

[hep-thj0007109]; M. Cvetic, H. Lu, C. N. Pope, A. 8adrzadeh and 

T. A. Tran, "8(3) and 8(4) reductions of type lIA supergravity," Nucl. 

Phys. B 590 (2000) 233 [hep-thj0005137], and references therein. 

265 



[112J See for instance: I. Antoniadis, E. Gava, K. S. Narain and T. R. Tay­

lor, "Duality in superstring compactifications with magnetic field back-

grounds," Nucl. Phys. B 511 (1998) 611 [hep-thj9708075J; T. R. Taylor 

and C. Vafa, "RR flux on Calabi-Yau and partial supersymmetry break­

ing," Phys. Lett. B 474 (2000) 130 [hep-thj9912152J; S. Gukov, C. Vafa 

and E. Witten, "CFT's from Calabi-Yau four-folds," Nucl. Phys. B 584 

(2000) 69 [Erratum-ibid. B 608 (2001) 477J [hep-thj9906070]; P. Mayr, 

"On supersymmetry breaking in string theory and its realization in 

brane worlds," Nucl. Phys. B 593 (2001) 99 [hep-thj0003198J; G. Curio, 

A. Klemm, D. Lust and S. Theisen, "On the vacuum structure of type 

II string; compactifications on Calabi-Yau spaces with H-fluxes," Nucl. 

Phys. B 609 (2001) 3 [arXiv:hep-thj0012213J; J. Louis and A. Micu, 

"Type II theories compactified on Calabi-Yau threefolds in the presence 

of background fluxes," Nucl. Phys. B 635 (2002) 395 [hep-thj0202168]; 

D'Auria, S. Ferrara and S. Vaula, "N = 4 gauged supergravity and a 

lIB orientifold with fluxes," New J. Phys. 4 (2002) 71 [hep-thj0206241J; 

L. Andrianopoli, R. D'Auria, S. Ferrara and M. A. Lledo, "Dualityand 

spontaneously broken supergravity in flat backgrounds," Nucl. Phys. B 

640 (2002) 63 [hep-thj0204145J. 

[113J H. Nishino and E. Sezgin, "Matter And Gauge Couplings Of N=2 Su­

pergravity In Six-Dimensions," Phys. Lett. B 144 (1984) 187; Nucl. 
~ .... 

Phys. B 278 (1986) 353; Nucl. Phys. B 505 (1997) 497 [hep-thj9703075J. 

[114J L. J. Romans, "The F( 4) Gauged Supergravity In Six-Dimensions," 

Nucl. Phys. B 269 (1986) 691. 

266 



[115] K. Dasgupta, G. Rajesh and S. Sethi, "M theory, orientifolds and G­

flux," JHEP 9908, 023 (1999) [hep-thj9908088]. 

[116] S. Gurrieri, J. Louis, A. Micu and D. Waldram, "Mirror symme­

try in generalized Calabi-Yau compactifications," [hep-thj0211102]; 

S. Kachru, M. B. Schulz, P. K. Tripathy and S. P. Trivedi, "New super­

symmetric string compactifications," [hep-thj0211182]. 

[117] G. Curio, A. Klemm, B. Kors and D. Lust, "Fluxes in heterotic and 

type II string compactifications," Nucl. Phys. B 620, 237 (2002) [hep­

thjOl06155]. 

[118r A. Albrecht and C. Skordis, "Phenomenology of a réalistic accelerating 

universe using only Planck-scale physics," Phys. Rev. Lett. 84 (2000) 

2076 astro-phj9908085. 

[119] A. Albrecht, C.P. Burgess, F. Ravndal and C. Skordis, Phys. Rev. D65 

(2002) 123505 hep-thj0105261. 

[120] A. Albrecht, C.P. Burgess, F. Ravndal and C. Skordis, Phys. Rev. D65 

(2002) 123507 astro-phjOl07573. 

[121] For a recent review see: C.P. Burgess, in the proceedings of Dark 2002, 

edited by H. Klapdor-Kleingrothaus, astro-phj0207174. 

[122] For a review, including a no-go theorem, see S. Weinberg, Rev. Mod. 

Phys. 61 (1989) l. 

[123] S. Perlmutter et al., Ap. J. 483 565 (1997) [astro-phj9712212]; A.G. 

Riess et al, Ast. J. 116 1009 (1997) [astro-phj9805201]; N. BahcaU, 

267 



J.P. o striker , S. Perlmutter, P.J. Steinhardt, Science 284 (1999) 1481, 

[astro-ph j 9906463]. 

[124] For a recent summary of experimental bounds on deviations from 

General Relativity, see C.M. Will, Lecture notes from the 1998 SLAC 

Summer Institute on Particle Physics [gr-qcj9811036]; C.M. Will [gr­

qc j 01 03036]. 

[125] F. Leblond, Phys. Rev. D 64 (2001) 045016 [hep-phj0104273]; 

F. Leblond, R. C. Myers and D. J. Winters, JHEP 0107 (2001) 031 

[hep-thj0106140]. 

[126] J. M. Cline, C. Grojean and G. Servant: "Cosmological expansion in 

the presence of extra dimensions," Phys. Rev. Lett. 83, 4245 (1999) 

[ arXiv:hep-phj9906523]. 

[127] See, eg, C. P. Burgess, F. Quevedo, S. J. Rey, G. Tasinato and I. Zavala, 

"Cosmological spacetimes from negative tension brane backgrounds," 

JHEP 0210, 028 (2002) [arXiv:hep-thj0207104]. 

[128] J. M. Cline and J. Vinet, "Order rho**2 corrections to Randall­

Sundrum 1 cosmology," JHEP 0202,042 (2002) [arXiv:hep-thj0201041]; 

[129] N. Barnaby, C. P. Burgess and J. M. CJine, "Warped reheating in 

brane-antibrane inflation," arXiv:hep-thj0412040; 

C. P. Burgess, J. M. Cline, H. Stoica and F. Quevedo, JHEP 0409, 033 

(2004) [arXiv:hep-thj0403119]; 

J. M. Cline, "Inflation from string theory," arXiv:hep-thj0501179. 

268 



[130] See, eg, T. Kajino, F. K. Ichiki, P. M. Garnavich, G. J. Mathews and 

M. Yahiro, "Dark matter and dark radiation in brane world cosmology 

and its observational test in the BBN, CMB and supernovae," Nucl. 

Phys. Proc. Suppl. 138, 82 (2005). 

[131] E. G. Adelberger, B. R. Heckel and A. E. Nelson, "Tests of the grav­

itational inverse-square law," Ann. Rev. Nucl. Part. Sci. 53, 77 (2003) 

[arXiv:hep-phj0307284]. 

[132] J.-W. Chen, M.A. Lut Y and E. Pontôn, [hep-thj0003067]. 

[133] S.M. Carroll and M.M. Guica, [hep-thj0302067]; 1. Navarro, [hep­

thj0302129]. 

[134] J. M. Cline, J. Descheneau, M. Giovannini and J. Vinet, [hep­

thj0304147]. 

[135] D. Atwood, C.P. Burgess, E. Filotas, F. Leblond, D. London and 

1. Maksymyk, Physical Review D63 (2001) 025007 (14 pages) [hep­

phj0007178]. 

[136] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429 

(1998) 263 hep-phj9803315; Phys. Rev. D59 (1999) 086004 [hep­

phj9807344]; 1. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and 

G. R. Dvali, "New dimensions at a millimeter to a Fermi and super­

strings at a TeV," Phys. Lett. B 436 (1998) 257 '[hep-phj9804398]. 

[137] Real graviton emission is discussed in G. F. Giudice, R. Rattazzi 

and J. D. Wells, Nucl. Phys. B544, 3 (1999) [hep-phj9811291]; 

269 



E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Lett. 82, 

2236 (1999) [hep-ph/9811337]; T. Han, J. D. Lykken and R. Zhang, 

Phys. Rev. D59, 105006 (1999) [hep-ph/9811350]; K. Cheung and W.­

Y. Keung, Phys. Rev. D60, 112003 (1999) [hep-ph/9903294]; S. Cullen 

and M. Perelstein, Phys. Rev. Lett. 83 (1999) 268 [hep-ph/9903422]; 

C. Bahizs et al., Phys. Rev. Lett. 83 (1999) 2112 [hep-ph/9904220]; L3 

Collaboration (M. Acciarri et al.), Phys. Lett. B464, 135 (1999), [hep­

ex/9909019], Phys. Lett. B470, 281 (1999) [hep-ex/9910056]. 

[138] Virtual graviton exchange has also been widely studied, although the 

interpretation of these calculations is less clear due to the potential con­

fusion of the results ~ith the exchange of higher-mass particles [139]. 

For a review, along with a comprehensive list of references, see K. Che­

ung, talk given at the 7th International Symposium on Particles, Strings 

and Cosmology (PASCOS 99), Tahoe City, California, Dec 1999, [hep­

ph/0003306]. 

[139] E. Dudas and J. Mourad, Nucl. Phys. B 575 (2000) 3 [hep-th/9911019]; 

E. Accomando, 1. Antoniadis and K. Benakli, Nucl. Phys. B579, 3 

(2000) [hep-ph/9912287]; S. Cullen, M. Perelstein and M. E. Peskin, 

[hep-ph/0001166]. 

[140] S. Cullen and M. Perelstein, Phys. Rev. Lett. 83 (1999) 268 [hep­

ph/9903422]; C. Hanh~rt, D.R. Phillips, S. Reddy, M.J. Savage, Nucl. 

Phys. B595 (2001) 335 [nucl-th/0007016]. 

[141] N. Arkani-Hamed, S. Dimopoulos, N. Kaloper and R. Sundrum, "A 

small cosmological constant from a large extra dimension," Phys. Lett. 

270 



B 480 (2000) 193, [hep-thj0001197]; 

S. Kachru, M. B. Schulz and E. Silverstein, "Self-tuning fiat do main 

walls in 5d gravit y and string theory," Phys. Rev. D 62 (2000) 045021, 

[hep-thj0001206]. 

[142] S. Forste, Z. Lalak, S. Lavignac and H. P. Nilles, "A comment on self­

tuning and vanishing cosmological constant in the brane world," Phys. 

Lett. B 481 (2000) 360, hep-thj0002164; JHEP 0009 (2000) 034, [hep­

thj0006139]. 

[143] J.M. Cline and H. Firouzjahi, "No-Go Theorem for Horizon-Shielded 

Self-Tuning. Singularities" Phys. Rev. D65 (2002) 043501, [hep­

thj0107198]. 

[144] N. Marcus and J.H. Schwarz, Phys. Lett. 115B (1982) 111. 

[145] H. Nishino and E. Sezgin, Phys. Lett. 144B (1984) 187; "The Complete 

N=2, D = 6 Supergravity With Matter And Yang-Mills Couplings," 

Nucl. Phys. B 278 (1986) 353. 

[146] A. Salam and E. Sezgin, Phys. Lett. 147B (1984) 47. 

[147] Y. Aghababaie, C.P. Burgess, S. Parameswaran and F. Quevedo, "Su­

persymmetry Breaking and Moduli Stabilization from Fluxes and Six­

Dimensional Supergravity" JHEP 0303 (2003) 032 [hep-thj0212091]. 

[148] P. Candelas and S. Weinberg, "Calculation Of Cauge Couplings And 

Compact Circumferences From Selfconsistent Dimensional Reduction," 

Nucl. Phys. B 237, 397 (1984). 

271 



[149] S. Randjbar-Daemi, A. Salam and J. Strathdee, "Spontaneous Com­

pactification In Six-Dimensional Einstein-Maxwell Theory," Nucl. Phys. 

B 214 (1983) 491. 

[150] S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, Phys. Lett. 

B151 (1985) 351. 

[151] See for instance: I. Antoniadis, K. Benakli, A. Laugier and T. Maillard, 

Nucl. Phys. B 662 (2003) 40 [arXiv:hep-phj0211409]; M. Klein, Phys. 

Rev. D 67 (2003) 045021 [arXiv:hep-thj0209206]. 

[152] J. Scherk and J.H. Schwarz, Phys. Lett. B82 (1979) 60. 

[153] J.S. Dowker, [hep-thj9906067]. 

[154] S. Deser, R. Jackiw and G. 't Hooft, Annais Phys. 152 (1984) 220; 

S. Deser and R. Jackiw, Annals Phys. 153 (1984) 405. 

[155] T. Eguchi, P. B. Gilkey and A. J. Hanson, Phys. Rept. 66 (1980) 213. 

[156] D. V. Volkov and V. P. Akulov, Phys. Lett. B 46 (1973) 109. J. Wess 

and J. Bagger, "Supersymmetry And Supergravity," Princeton Univer­

sity press (1992). 

[157] See for instance: H. P. Nilles, M. Olechowski and M. Yamaguchi, 

Nuçl. Phys. B 530 (1998) 43 [hep-thj9801030]; E. A: Mirabelli and 

M. E. Peskin, Phys. Rev. D 58 (1998) 065002 [hep-thj9712214]; E. Du­

das and J. Mourad, Phys. Lett. B 514 (2001) 173 [hep-thj0012071]; 

G. Pradisi and F. Riccioni, Nucl. Phys. B 615 (2001) 33 [arXiv:hep­

thj0107090]; I. Antoniadis, K. Benakli and A. Laugier, Nucl. Phys. B 

272 



631 (2002) 3 [hep-thj0111209]; M. Klein, Phys. Rev. D 66 (2002) 055009 

[hep-thj0205300]; Phys. Rev. D 67 (2003) 045021 [hep-thj0209206]; 

c. P. Burgess, E. Filotas, M. Klein and F. Quevedo, "Low-energy brane­

world effective actions and partial supersymmetry breaking," [hep­

th/0209190]. 

[158] N. Arkani-Hamed, L. J. Hall, C. F. Kolda and H. Murayama, Phys. 

Rev. Lett. 85 (2000) 4434 [astro-phj0005111]. 

[159] E. Witten, [hep-thj9409111]; [hep-thj9506101]. 

[160] C. P. Burgess, R. C. Myers and F. Quevedo, "A naturally small cos­

mological constant on the brane?," Phys. Lett. B 495 (2000) 384, 

[hep-thj9911164]. For similar string constructions see also: 1. Anto­

niadis, E. Dudas and A. Sagnotti, "Brane supersymmetry breaking," 

Phys. Lett. B 464 (1999) 38 [hep-thj9908023]; G. Aldazabal and 

A. M. Uranga, "Tachyon-free non-supersymmetric type lIB orientifolds 

via brane-antibrane systems," JHEP 9910 (1999) 024 [hep-thj9908072]. 

[161] G. W. Gibbons and C. N. Pope, arXiv:hep-thj0307052. 

[162] N. Arkani-Hamed, L. Hall, D. Smith and N. Weiner, Phys.Rev. D62 

105002 (2000) [hep-phj9912453]. 

{163] A. Dabholkar and C. Hull, [hep-thj0210209]. 

[164] G.W. Gibbons, R. Güven and C.N. Pope, [hep-thj0307238]. 

[165] 1. Navarro, [hep-thj0305014]. 

273 



[166J J. Kerimo and H. Lü, [hep-thj0307222J. 

[167] M. Cvetic, G.W. Gibbons and C.N. Pope, [hep-thj0308026]. 

[168J C. Angelantonj and 1. Antoniadis, [hep-thj0307254J. 

[169J See, however A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, 

"Heterotic M-theory in five dimensions," Nucl. Phys. B 552 (1999) 246 

[hep-thj9806051]; B. A. Ovrut, "Lectures on heterotic M-theory," [hep­

thj0201032J; G. Lopes Cardoso, G. Dall'Agata and D. Lust, "Curved 

BPS domain wall solutions in five-dimensional gauged supergravity," 

JHEP 0107 (2001) 026 [hep-thj0104156]; A. Falkowski, Z. Lalak and 

S. Pokorski, "Four dimensional supergravities from five dimensional 

brane worlds," Nucl. Phys. B 613 (2001) 189 [hep-thj0102145]; Phys. 

Lett. B 491 (2000) 172 [hep-thj0004093]. 

[170] P. Berglund, T. Hubsch and D. Minic, "Exponential hierarchy from 

spacetime variable string vacua," JHEP 0009, 015 (2000) [arXiv:hep­

thj0005162]; "de Sitter spacetimes from warped compactifications of IIB 

string theory," Phys. Lett. B 534, 147 (2002) [arXiv:hep-thj0112079]; 

"Relating the cosmological constant and supersymmetry breaking in 

warped compactifications of IIB string theory," Phys. Rev. D 67, 041901 

(2003) [arXiv:hep-thj0201187]. 

. .. 
[171] G. T. Horowitz and R. C. Myers, "The AdSjCFT correspondence and 

a new positive energy conjecture for general relativity," Phys. Rev. D 

59 (1999) 026005 [hep-thj9808079]. 

274 



[172] J.-W. Chen, M.A. Lut Y and E. Ponton, [hep-thj0003067]. F. Leblond, 

"Geometry of large extra dimensions versus graviton emission," Phys. 

Rev. D 64 (2001) 045016 [hep-phj0104273]; F. Leblond, R. C. Myers 

and D. J. Winters, "Consistency conditions for brane worlds in arbitrary 

dimensions," JHEP 0107 (2001) 031 [hep-thj0106140]. 

[173] C. P. Burgess, J. M. Cline, N. R. Constable and H. Firouzjahi, "Dy­

namical stability of six-dimensional warped brane-worlds," JHEP 0201 

(2002) 014 [hep-thj0112047]. 

[174] S. Deser, R. Jackiw and G. 't Hooft, "Three-Dimensional Einstein 

Gravit y: Dynamics Of Flat Space," Annals Phys. 152 (1984) 220; 

S. Deser and R. Jackiw, "Three-Dimensional Cosmological Gravit y: Dy­

namics Of Constant Curvature," Annals Phys. 153 (1984) 405. 

[175] J.S. Dowker, "Magnetic Fields and Factored Two-Spheres" [hep­

thj9906067]; S.M. Carroll and M.M. Guica, [hep-thj0302067]; I. 

Navarro, [hep-thj0302129]. J. M. Cline, J. Descheneau, M. Giovan­

nini and J. Vinet, "Cosmology of codimension-two braneworlds," JHEP 

0306, 048 (2003) [arXiv:hep-thj0304147]. 

[176] Y. Aghababaie, C. P. Burgess, S. L. Parameswaran and F. Quevedo, 

"Towards a naturally small cosmological constant from branes in 6D 

supergravity," Nucl. Phys. B 680, 389 (2004) [arXiv:hep-thj0304256]. 

[177] Y. Aghababaie et al., "Warped brane worlds in six dimensional super­

gravit y," JHEP 0309, 037 (2003) [arXiv:hep-thj0308064]. 

275 



[178] C. P. Burgess, F. Quevedo, G. Tasinato and L Zavala, "General ax­

isymmetric solutions and self-tuning in 6D chiral gauged supergravity," 

JHEP 0411, 069 (2004) [arXiv:hep-thj0408109]. 

[179] C. P. Burgess, J. Matias and F. Quevedo, "MSLED: A minimal su­

persymmetric large extra dimensions scenario," Nucl. Phys. B 706, 71 

(2005) [arXiv:hep-phj0404135]. 

[180] C. P. Burgess, "Towards a natural theory of dark energy: Super­

symmetric large extra dimensions," AIP Conf. Proc. 743, 417 (2005) 

[arXiv:hep-thj0411140]. 

[181] L.J. Romans, Nuel. Phys. B269 (1986) 691-711. 

[182] C. Nunez, LY. Park, M. Schvellinger and T.A. Tran, "Supergravity 

Duals of Gauge Theories from F(4) Gauged Supergravity in Six Dimen­

sions" [arXi v: hep-th/0103080] . 

[183] C.P. Burgess, C. Nunez, F. Quevedo, G. Tasinato and L Zavala, [hep­

thj0305211]. 

[184] G.W. Gibbons, R. Güven and C.N. Pope, [hep-thj0307238]. 

[185] For a recent summary of experimental bounds on deviations from 

General Relativity, see C.M. Will, Lecture notes from the 1998 SLAC 

Summer Institute on Particle Physics (gr-qcj9811036); C.M. Will (gr- .. 

qcjOl03036). 

[186] For a review see, for example, C.P. Burgess, Phys. Rep. C330 (2000) 

193 (hep-thj9808176). 

276 



[187] G. W. Gibbons and S. W. Hawking, "Action IntegraIs And Partition 

Functions In Quantum Gravit y," Phys. Rev. D 15 (1977) 2752. 

[188] 1. Antoniadis, K. Benakli, A. Laugier and T. Maillard, "Brane to 

bulk supersymmetry breaking and radion force at micron distances," 

Nucl. Phys. B 662 (2003) 40 [hep-phj0211409]; M. Klein, "Loop­

effects in pseudo-supersymmetry," Phys. Rev. D 67 (2003) 045021 [hep­

thj0209206]; C. Angelantonj and 1. Antoniadis, [hep-thj0307254]. 

[189] J. Kerimo and H. Lü, [hep-thj0307222]; 

[190] M. Fukugita and P. J. E. Peebles, "The cosmic energy inventory," 

astro-ph/0406095. 

[191] P. J. E. Peebles and B. Ratra, "The cosmological constant and dark 

energy," Rev. Mod. Phys. 75 (2003) 559-606, astro-ph/0207347. 

[192] R. H. Brandenberger and C. S. Lam, "Back-reaction of cos­

mological perturbations in the infinite wavelength approximation," 

hep-th/0407048. 

[193] S. Weinberg, "WH Y THE RENORMALIZATION GROUP IS A 

GOOD THING,". In *Cambridge 1981, Proceedings, Asymptotic 

Realms Of Physics*, 1-19. 

[194] P. G. O. Freund, "INTRODUCTION TO SUPERSYMfvÎETRY,". 

Cambridge, Uk: Univ. Pr. ( 1986) 152 P. ( Cambridge Monographs 

On Mathematical Physics). 

277 



[195] S. R. Coleman and J. Mandula, "ALL POSSIBLE SYMMETRIES OF 

THE S MATRIX," Phys. Rev. 159 (1967) 1251-1256. 

[196] R. Haag,J. T. Lopuszanski, and M. Sohnius, "ALL POSSIBLE GEN­

ERATORS OF SUPERSYMMETRIES OF THE S MATRIX," Nucl. 

Phys. B88 (1975) 257. 

[197] S. Weinberg, "The Quantum theory of fields. Vol. 1: Foundations,". 

Cambridge, UK: Univ. Pr. (1995) 609 p. 

[198] S. Weinberg, "The quantum theory of fields. Vol. 2: Modern applica­

tions,". Cambridge, UK: Univ. Pro (1996) 489 p. 

[199] S. Weinberg, "The quantum theory of fields. Vol. 3: Supersymmetry,". 

Cambridge, UK: Univ. Pr. (2000) 419 p. 

[200] E. Cremmer, J. Scherk, and S. Ferrara, "SU(4) INVARIANT SUPER­

GRAVITY THEORY," Phys. Lett. B74 (1978) 61. 

[201] E. Cremmer and B. Julia, "THE N=8 SUPERGRAVITY THEORY. 

1. THE LAGRANGIAN," Phys. Lett. B80 (1978) 48. 

[202] P. C. West, "Hidden superconformal symmetry in M theory," JHEP 

08 (2000) 007, hep-th/0005270. 

[2031 C. P. Burgess and D. Hoover, in preparation 

[204] Y. Aghababaie and C. P. Burgess, "Effective actions, boundaries and 

precision calculations of Casimir energies," Phys. Rev. D 70, 085003 

(2004) [arXiv:hep-thj0304066]. 

278 



[205] J. Vinet and J. M. Cline, "Codimension-two branes in six-dimensional 

supergravity and the cosmological constant problem," arXiv:hep­

thj0501098; J. Vinet and J. M. Cline, "Can codimension-two branes 

solve the cosmological constant problem?," Phys. Rev. D 70, 083514 

(2004) [arXiv:hep-thj0406141]. 

279 


