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Abstract 

The application of transmit diversity techniques such as Space-Time Block Coding (STBC) to 

the downlink of multiuser wireless communications systems has received considerable attention. 

The main advantage of such an approach is its ability to provide diversity gains through the use 

of multiple antennas only at the transmitting side without significantly increasing the complexity 

at the receiving end. Among the many multiple access techniques proposed, Multi-Carrier (MC) 

and Direct Sequence (DS) Code Division Multiple Access (CDMA) techniques are known as the 

most promising candidates for future broadband mobile communication networks. In MC and 

DS-CDMA systems or combination thereof, employing transmit diversity, the spatial diversity 

gains can only be realized if the underlying channels are accurately acquired at the receiver. 

Furthermore, such systems suffer from high computational complexity which should be properly 

addressed for practical implementations. 

Motivated by these observations, in the first part of this dissertation, we introduce the chip-

level ST block coding scheme for DS-CDMA systems. For this scheme, we address the problems 

of single-user detection as well as blind channel estimation, and we show that chip-level coding 

does not suffer from antenna order ambiguity. Moreover, we demonstrate that chip-level schemes 

exhibit low decoding delay and allow for the design of adaptive single-user detectors with improved 

short data-record performance characteristics compared to their symbol-level counterparts. 

In the second part of this dissertation, we present a novel transmission scheme for the downlink 

of MC-CDMA systems with transmit diversity that is based on chip-level Space-Frequency (SF) 

block coding. For this scheme, we investigate the problem of blind channel estimation when 

the received signal processing is done (i) pre-Fast Fourier Transform (FFT); and (ii) post-FFT. 

We propose two blind channel estimation algorithms based on subspace and Minimum Variance 

Distortionless Response (MVDR) principles. Moreover, we present an analytical performance 

analysis of the proposed algorithms by investigating the bias as well as the finite data record mean-

square error of the channel estimates. Our analysis shows that SFBC MC-CDMA systems do not 

suffer from antenna order ambiguity. In addition, to benchmark the accuracy of our estimation 

algorithms, we derive the corresponding Cramer-Rao bounds (CRB) based on a novel approach 

that assumes the knowledge of only the spreading code of the desired user. Our approach has the 

advantage of providing lower bounds which are tighter than the CRBs with known signatures. 

We also study the problem of single user detection for downlink transmissions to address the 

issue of multiuser interference. In the case of the post-FFT approach, we take advantage of the 

SFBC-induced signal structure to derive linear single-user detectors with improved performance in 

short data-record situations. Finally, in order to address the issue of computational complexity, we 

exploit the structure of the covariance matrix of the received signal to simplify the computations 
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involved in estimating the channel, and forming the detector. 
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Abrege 

Le sujet des techniques de la transmission en diversite, tel que celui du STBC applique au canal 

descendant des telecommunications sans fil a usagers multiples, a regu une attention considerable. 

Ici, le gain de diversite obtenu en utilisant de multiples antennes pour la transmission, tout en 

minimisant la complexite du recepteur, est le principal avantage. Parmi les nombreuses methodes 

d'acces multiples, l'utilisation des techniques multiporteuses (MC) et du DS-CDMA, apportent 

des solutions les plus prometteuses en ce qui concerne le futur des communications mobiles a haut 

debit. Seuls ou combines, les systemes MC et DS-CDMA ne peuvent creer des gains de diversite 

d'espace que si le recepteur obtient fidelement les canaux sous-jacents. De plus, la complexite 

computationelle est un obstacle a surmonter avant la mise en pratique de tels systemes. 

Motives par ces observations, nous presentons, dans la premiere partie de cette dissertation, 

la technique du codage spatiotemporel (ST) en bloc au niveau de la puce, pour systemes DS-

CDMA. A cette fin, nous soulevons les problemes de la detection a usagers simples ainsi que de 

l'estimation aveugle du canal. Notamment, nous faisons remarquer que le codage au niveau de 

la puce n'est pas affecte par l'ambigui'te d'ordre d'antenne. De plus, nous demontrons que les 

methodes, au niveau de la puce, font preuves de decodage rapide et permettent la conception de 

detecteurs adaptatifs a usagers multiples. Face a leurs homologues au niveau du symbole, ces 

detecteurs demontrent une performance amelioree pour de courts enregistrements de donnees. 

Dans la seconde partie de cette dissertation, nous presentons une nouvelle methode de trans­

mission pour le canal descendant des systemes MC-CDMA. Cette derniere consiste enune diversite 

de transmission basee sur le codage bloc spatiofrequentiel (SF) au niveau de la puce. C'est ainsi 

que nous abordons le probleme de l'estimation aveugle du canal avec traitement du signal fait (i) 

avant FFT, et (ii) apres FFT. Nous proposons deux algorithmes d'estimation aveugle fondes sur 

les bases de sous-espace et de reponsesa variance minimale sans deformation (MVDR). Par sur-

croit, nous faisons part de notre travail analytique pour la performance de nos algorithmes en nous 

penchant sur le biais ainsi que sur l'erreur quadratique moyenne des estimations du canal avec des 

enregistrements de donnees finies. Notre travail demontre que les systemes SFBC MC-CDMA ne 

sont pas affectes par Pambiguite d'ordre d'antenne. D'autre part, afin de coter la performance de 

nos estimations, nous obtenons les bornes de Cramer-Rao (CRB) grace a une methode originale 

qui ne prend en consideration que le code d'etalement de l'usager desire. Notre approche permet 

de resserrer les limites du type CRB deja connues. 

Nous abordons egalement le probleme de l'utilisation, pour transmissions descendantes, de 

detecteurs a usagers simples afin de combattre l'interference multiusager. Quant a l'approche apres 

FFT, nous utilisons la structure du signal reliee au SFBC afin d'obtenir des detecteurs lineaires 

a usagers simples qui demontrent des performances superieures en situations d'enregistrements 
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de donnees courts. Pour terminer, nous traitons le cas de la complexite computationelle. Nous 

montrons qu'en exploitant la structure de la matrice des covariances du signal regu, il est possible 

de simplifier les calculs necessaires pour 1'estimation du canal ainsi que pour definir le detecteur. 
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Chapter 1 

Introduction 

1.1 Background and Literature Review 

The next generation of broadband wireless communication systems is expected to provide 

high bit rates and to increase system capacity in order to cope with the increasing demand 

for wireless broadband services and applications such as high speed Internet access, cellular 

base stations, streaming video, mobile computing, wireless IPTV, distance learning and 

digital cinema, among many others. However, there are probably many critical performance 

limiting obstacles that must be overcome before this goal can be attained. The co-channel 

interference and mobile-radio channel impairments, such as multipath fading and Doppler 

spread, are among the factors with destructive impact on the performance of any wireless 

communication system. In general, high rate transmission in the wireless channels can be 

achieved by applying one or a combination of the following techniques [1]: 

• Increase transmission power: Power is a key issue for mobile wireless applications. 

In fact, increasing transmission power in mobile clients significantly reduces battery 

life, increases the co-channel interference, and more importantly, increases the non-

desirable effects of the nonlinearity of power amplifiers. Regarding the latter, the high 

power amplifiers must be driven as close to their saturation point as possible but still 

within their linear region in order to make their operation power efficient. Among the 

conventional approaches to address this problem are to back-off the operating point 

of the nonlinear amplifier or to use a linear amplifier. However, both schemes achieve 

linear operation at the expense of power efficiency. 

• Increase transmission bandwidth: Due to the significant costs and limitations associ-
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ated with bandwidth expansion, this technique is probably the most inefficient way 

to increase the transmission rate. Indeed, bandwidth is an expensive commodity and 

wireless service providers generally have to pay in order to be authorized to exploit 

a segment of the radio spectrum. This is in addition to the regulatory issues which 

further limits the availability of communications bandwidth. Besides, increasing the 

bandwidth of the signal relative to the coherence bandwidth of the wireless channel 

could increase the intersymbol interference (ISI). 

• Use of spectrally efficient modulation schemes: The primary objective of this tech­

nique is to maximize the bandwidth efficiency (i.e., to increase data throughput for 

a given channel bandwidth) by designing algorithms which can be readily extended 

to large constellations or to signals of high dimension. However, this approach leads 

to increased susceptibility to the channel noise and interference, and consequently, to 

performance degradation. 

• Use of multiple transmit and/or receive antennas: Exploiting the spatial dimension, 

Multiple-Input Multiple-Output (MIMO) wireless systems can significantly increase 

(depending on the application) the data rate by spatially multiplexing independent 

data streams, provide spatial diversity and array gains for improved link reliability, 

and combat co-channel interference in multiple-access environments. 

Should the complexity and the cost issues of MIMO implementation be overcome, among all 

the above-mentioned techniques, the MIMO systems seem to be among the most promising 

methods in supporting reliable, high-data-rate transmissions [2]. The high implementation 

cost of MIMO systems are due to the requirement for multiple RF chains, extra hardware 

and sophisticated receiver algorithms associated with multiple antennas. Spatial diversity 

techniques constitute a particular implementation of multiple-antenna communications sys­

tems. These techniques can mitigate channel fading without necessarily sacrificing band­

width resources and significantly increase the capacity over Single-Input Single-Output 

(SISO) systems. Depending on whether the multiple antennas are deployed at the trans­

mitter or at the receiver, two types of spatial diversity can be configured: transmit-antenna 

diversity and receive-antenna diversity. Conventional maximum ratio combining (MRC) is 

probably the most widely applied receive antenna diversity technique. In this method, the 

multiple receive antennas collect and coherently combine separate replicas of the trans­

mitted signals to mitigate channel fading by maximizing the received signal-to-noise ratio. 
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However, due to the size/complexity limitations at the mobile units, transmit-antenna di­

versity appears to be more favorable than receive-antenna diversity for the downlink (from 

base-station to mobile) transmissions. In addition, transmit-antenna diversity schemes have 

the advantage of transferring complexity from the receiver to the transmitter. Among all 

the transmit diversity schemes, orthogonal Space-Time Block Coding (STBC) [3], [4] is of 

particular interest because of its attractive features1. More specifically: 

• It does not require channel state information (CSI) at the transmitter. This feature 

eliminates the need for a potentially unreliable feedback link in fast time-varying 

environments. 

• It achieves maximum diversity gain at full transmission rate for any (real or complex) 

signal constellation when employing only two antennas at the transmitter and one 

antenna at the receiver2. 

• Due to its orthogonal code structure, decoding and detection require only low-complexity 

linear processing at the receiver. 

Transmit diversity in the form of STBC proposed by Alamouti [3] has already found its 

way into a number of wireless standards including 3G/WCDMA, WiMax/IEEE 802.16e and 

WiFi/IEEE 802.lln.; thus, one would expect it to be an integral part of future broadband 

communications systems. 

Although offering attractive features, there are two major obstacles associated with 

practical STBC implementations. First, since STBC was initially designed for flat fading 

scenarios, its successful implementation over frequency-selective channels requires a care­

fully designed mechanism to overcome Inter-Symbol Interference (ISI) effects. Indeed, as 

shown in [6], an error floor occurs when ST encoded signals are transmitted over frequency-

selective fading channels unless one incorporates a carefully designed equalizer at the re­

ceiving side. Previous research efforts that have successfully addressed this problem can be 

categorized into three major approaches: 

• Time-Reversal (TR) STBC [7]: This method applies STBC at the block level instead 

of the symbol level and can effectively deals with ISI through zero padding (ZP) 

of the transmitted blocks. The technique involves time reversal of symbols at both 

xFor a detailed survey of space-time coding please see [5]. 
2We note that in [4], full-diversity orthogonal STBC schemes are designed for more than two transmit 

antennas. However, the resulting rates are less than one. 
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transmitter and receiver which implies that the input-output relationship involves a 

time-reversal of the channel taps. However, it requires complex receiver equalization. 

• Single-Carrier Frequency-Domain-Equalized (SC FDE) STBC [8], [9]: This scheme 

combines the advantages of the Alamouti scheme with the low complexity property 

of frequency domain equalizers to effectively combat ISI. 

• Orthogonal Frequency Division Multiplexing (OFDM) STBC [10]: In this scheme, 

OFDM is employed to convert the frequency selective channels into a set of parallel 

independent flat fading sub-channels; STBC is then applied to each sub-channel. This 

method is particularly attractive due to its decoding simplicity. 

The second major problem related to the use of STBC in practice, can be attributed to 

the single-user communication assumption [11], [12]. In fact, ST coding transmitter diver­

sity impairs the system's interference suppression ability in a multiuser situation because it 

generates multiple signals that appear independent at the receiver. To cope with multiuser 

interference (MUI), the use of a robust multiple access scheme along with an interference 

rejection method is among the best solutions. Addressing the above mentioned issues is 

key to bringing the STBC techniques into the practical arena of wireless communications. 

Since its initial proposal, considerable research efforts have aimed at bringing the space-

time coding advantages to multiple access systems by integrating transmit diversity tech­

niques into multiple access schemes [12], [13]. Among the many multiple access techniques 

proposed, direct-sequence code-division-multiple-access (DS/CDMA) has emerged as the 

predominant multiple access technique for third-generation (3G) cellular systems. These 

systems principally rely on the orthogonality of the spreading codes pre-assigned to each 

active user at the transmitter to separate the different user signals at the receiver. By 

far, the most common approach in DS/CDMA systems employing STBC is to perform ST 

block coding either at the symbol level or at the block level while DS/CDMA is used for 

the transmission of the resulting ST encoded signals [12], [14]. However, this approach 

has several drawbacks. First, the corresponding receivers have a decoding delay of at least 

M information symbol intervals (where M is the number of transmit antennas). Second, 

linear joint ST decoding and multiuser detection algorithms (as the one in [15]) require the 

use of very long filters (of length at least equal to M x L where L is the system process­

ing gain). More importantly, however, performing ST block coding at the symbol level or 

at the block level requires the assignment of M CDMA signatures to each user if blind 

4 



channel estimation without ambiguity is to be performed [16], [15]. It is worthwhile noting 

that antenna order ambiguity (also known as permutation ambiguity) arises in any multi­

channel blind estimation problem and reflects the fact that a system employing multiple 

antennas cannot distinguish between the subchannels (i.e., the communications channels 

between the multiple transmit and receive antennas). In DS/CDMA systems with transmit 

diversity, this ambiguity can be resolved either by assigning different spreading codes (one 

for each transmit antenna) to each user or by transmitting a training sequence, though 

both approaches come with the penalty of requiring extra resources. Indeed, in the former 

case, the assignment of more than one signature to each user severely limits the maximum 

number of users that can be accommodated in the system, whereas the latter case results 

in an inefficient use of bandwidth. Finally, they cannot be used with fast fading channels 

where the channel may vary during one symbol period. Indeed, because of the quasi-static 

channel assumption of the employed ST block codes, symbol-level schemes require that 

the channel remains constant over many information symbol periods. This requirement 

becomes an even greater limitation for block-level schemes as the number of symbols per 

block increases. 

Despite its wide deployment in the 3G cellular wireless communications systems, DS-

CDMA is not the technology of choice for future broadband transmissions. The time-

dispersive nature of the multipath channel destroys the orthogonality among the users' 

signatures for high chip rates, giving rise to Multi-User Interference (MUI), which dramat­

ically deteriorates the performance. This type of interference is even more severe in the 

presence of transmit diversity, as multiple independent signals are transmitted. Due to the 

above mentioned limitation of DS/CDMA systems, Multi-Carrier Code Division Multiple 

Access (MC-CDMA) is emerging as one of the most promising candidates for the downlink 

of future broadband wireless communications systems as it exploits the advantages of both 

OFDM multicarrier modulation and Direct-Sequence Spread Spectrum (DSSS) techniques. 

As opposed to DS/CDMA systems that do not make full use of the received signal energy 

scattered in the time domain due to the multi-path effect, the MC-CDMA systems have 

the advantage of collecting all the received signal energy scattered in the frequency domain. 

This can be attributed to the fact that an MC-CDMA system employs the frequency do­

main spreading and despreading of the data symbols to exploit the frequency-selectivity of 

the channel. Moreover, thanks to its multicarrier origin, MC-CDMA can substantially com­

bat the adverse effects of multipath fading channels, while maintaining high transmission 

rates. 
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To enable an additional dimension, namely, frequency domain, in MC-CDMA systems 

block coding can be performed across the spatial and the frequency dimension instead of the 

temporal dimension. This approach is called Space-Frequency Block.Coding (SFBC) and 

its application to OFDM systems has been well studied in the past [17]- [18]. Compared to 

STBC OFDM systems which show performance degradation in the mobile wireless channel 

environment SFBC-OFDM systems have the clear advantage of being robust in such an 

environment. There are, however, a number of drawbacks associated with the traditional 

SFBC OFDM approach3. First, this scheme fails to exploit the frequency diversity available 

in a time-dispersive MIMO channel [19]. Therefore, we cannot achieve the maximum 

theoretically achievable diversity order in the MIMO multipath channels which is quantified 

by the product of the number of transmit antennas, the number of receive antennas, and 

the number of delay paths. One approach to achieve higher diversity order in such systems 

is the design of a completely new SF code [19]. Among the schemes which have recently 

been proposed to achieve multipath diversity in an OFDM-based framework are the works 

in [18] and [20]. In [20], a class of SF codes for an OFDM system was provided which 

achieves full spatial and frequency diversity at the expense of the bandwidth efficiency. 

Later, in [18], a simple mapping scheme was proposed for transforming any full-diversity 

ST code into a full-diversity SF code but still the resulting SF codes cannot achieve full rate. 

From a system performance point of view, both aforementioned methods involve some kind 

of tradeoff between the diversity order and the coding rate or the symbol rate. The second 

shortcoming of the SFBC OFDM systems is their susceptibility to the channel nulls caused 

by deep fades in wireless channels. In fact, symbol recovery (in the case of detection) and 

channel identifiability (in the case of blind channel estimation) are not guaranteed when 

the channel has nulls on (or close to) some subcarriers [10], [21]. To increase robustness 

against channel nulls, the authors of [21] and [22] suggested transceiver designs based on 

the redundant transmitter precoding at the expense of loss in-bandwidth efficiency. Finally, 

SFBC OFDM suffers from channel order ambiguity. 

Motivated by the aforementioned problems that are inherent to the symbol/block level 

ST coding approach, in the first part of this thesis, we consider a chip-level ST block cod­

ing scheme for downlink transmissions in DS/CDMA systems. For this method, we apply 

STBC at the chip level (after code spreading) rather than the symbol-level. We show that 

the application of this scheme can alleviate most of the aforementioned shortcomings of 

3 We note that traditional approach refers to the extension of the Alamouti STBC [3] to a space-frequency 
block coding architecture. 
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symbol/block level ST coding schemes. Then, as an alternative to SFBC OFDM methods, 

we focus on a SFBC MC-CDMA scheme in the second part of this thesis. This technique 

which can be regarded as the extension of our chip-level approach to the frequency-selective 

channels enjoys all the advantages that had previously been reserved for chip-level scheme. 

Moreover, in the case of the MC-CDMA this scheme enables us to extract frequency diver­

sity without any additional redundancy or bandwidth expansion by spreading the original 

data stream over different subcarriers in the frequency domain using a spreading code. 

We show that, due to the inherent structure imposed by spreading codes and SFBC, the 

SFBC MC-CDMA schemes assure symbol recovery and blind channel estimation regardless 

of channel zeros locations and without utilizing extra resources such as spreading codes or 

bandwidth. 

We note that even compared with their STBC MC-CDMA counterparts [13], [23], there 

are several unique features associated with the SFBC MC-CDMA approach. For instance, 

SFBC MC-CDMA is inherently resistant against permutation ambiguity even when a single 

spreading code is assigned to each user, while STBC MC-CDMA requires that, for each 

user, a distinct signature being used corresponding to each transmitting antenna. More­

over, STBC MC-CDMA is only applicable under the assumption that the channel remains 

quasi-static over several consecutive OFDM symbol durations. Consequently, the latter 

suffers from the severe time selectivity of the wireless mobile fading channel. On the other 

hand, the SFBC MC-CDMA approach requires that the neighboring subcarriers experience 

highly correlated channels. Nevertheless, the undesirable effects of frequency-selectivity of 

the channel can be effectively overcome in SFBC MC-CDMA by increasing the frequency 

resolution (i.e., increasing the FFT size) whereas the spatial diversity gain in STBC MC-

CDMA is severely reduced for rapidly fading channels and there is no straightforward 

solution for this shortcoming of STBC MC-CDMA. 

1.2 Thesis Contribution 

The main objective of our research is to investigate efficient schemes which exploit trans­

mit diversity in wireless communication systems. In particular, we introduce two transmit 

diversity-assisted receiver structures for DS/CDMA and MC-CDMA systems, respectively, 

which we believe have the potential to outperform most of the widely used receivers with 

transmit diversity in terms of performance or computational complexity. For these schemes, 

we try to address the problem of detection and channel estimation along with the cor-
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responding analytical performance analysis. The main results and contributions can be 

summarized as follows: 

• We introduce a combined STBC CDMA scheme in which ST block coding is per­

formed at the chip level, i.e., after code spreading. The receiver structures based on 

the proposed chip-level STBC CDMA scheme provide the following advantages over 

their symbol-level counterparts for a two-antenna receiver in the downlink transmis­

sion: 

— They exhibit a decoding delay of only one information symbol period which is 

about half that of symbol-level implementations. 

— By performing the decoding operation within one symbol, they only require 

about half of the decoder memory needed for the symbol-level schemes. This 

property results in lower complexity at the receiver. 

— Since the decision variables are completely determined within one symbol period, 

the channel variations between successive symbol periods do not degrade the 

performance. This is in contrast to the symbol-level schemes whose performance 

heavily relies on the channel to remain constant over several symbol periods. 

For the proposed chip-level STBC CDMA scheme, we develop and analyze so called 

disjoint and joint ST block decoding and information bit detection algorithms that 

utilize linear interference suppression structures based on matched, decorrelating-type 

and Minimum-Variance-Distortionless-Response (MVDR)-type filtering criteria and 

we show that: 

— For the case of joint receiver, a linear filter of length almost equal to the process­

ing gain is needed which is about half the length of that required by symbol-level 

schemes. This leads to a lower computational complexity. 

— The joint detector based on the decorrelating filtering criterion exhibits similar 

performance to that of the symbol-level approach for the case of flat fading 

channels. This suggests that the advantages of the proposed approach do not 

come at the expense of performance degradation. 

— The linear detectors based on MVDR filtering criterion provide superior perfor­

mance for the same data record size over their symbol-level counterparts. This 

is principally due to the fact that the autocorrelation matrix used by the MVDR 
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algorithm in symbol-level schemes is twice the size of that needed for chip-level 

techniques. 

— The joint and disjoint receivers based on decorrelating-type filtering criteria 

exhibit identical performance for the case of flat fading channels. 

Furthermore, exploiting the signal structure imposed by the chip-level ST block cod­

ing, we establish that blind channel multipath estimation (with only a scalar ambi­

guity) is feasible, even with the assignment of a single code vector to each user. This 

leads to significant user capacity improvements in systems with limited available sig­

natures. 

• To extend the application of our chip-level approach to ISI channels, transmit di­

versity in the form of SFBC for the downlink of MC-CDMA systems is considered. 

When compared with STBC MC-CDMA systems, the proposed SFBC MC-CDMA 

approach possesses all the advantages of chip-level STBC CDMA systems. Further­

more, when compared to SFBC OFDM, the proposed scheme has several advantages 

including: 

— The SFBC MC-CDMA systems are capable of enhancing receiver performance 

by providing multipath diversity gain in frequency selective channels, unlike 

SFBC OFDM systems that fail to exploit frequency diversity. 

— Symbol recovery and blind channel estimation are always feasible in SFBC MC-

CDMA systems, even in the situations where the channel nulls are located on the 

subcarriers. This is not the case for SFBC OFDM systems which are extremely 

susceptible to channel nulls. 

— In SFBC MC-CDMA systems, blind channel estimation can be performed with­

out permutation ambiguity while SFBC OFDM schemes rely on pilot signals or 

differential modulation for resolving such an ambiguity. 

For the proposed SFBC MC-CDMA scheme, we consider two scenarios, namely, a 

pre-FFT approach and a post-FFT approach. The former refers to manipulation of 

the received signal in the time domain whereas the latter takes the frequency-domain 

received signal for processing. For each scenario, we develop: 

— A linear formulation for the complex modulated received signals which reduces 
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the multichannel estimation problem to a single-input single-output (SISO) 

problem. 

— Linear single-user decoding and detection algorithms that exhibit low complex­

ity, low decoding delay and enhanced performance for frequency-selective fading 

channels compared to that of the STBC MC-CDMA schemes. 

— Two alternative second-order statistics-based blind channel estimation tech­

niques including: (i) a MVDR-type channel estimator, and (ii) a subspace-based 

channel estimator. 

— Identifiability conditions for each estimator along with the necessary and suffi­

cient conditions under which the channel estimates are unique (within a complex 

scalar ambiguity). 

— Analytical closed-form expressions for the bias and mean-square-error (MSE) of 

each estimator. 

— Novel formulations of the Cramer-Rao bounds (CRBs) for both unbiased and 

biased estimators in the downlink transmissions which provide tighter bounds 

on their corresponding channel MSEs than the conventional CRBs. 

— A novel closed form bias expression caused by the additive noise for MVDR 

channel estimator that unlike the traditional approaches [24] does not rely on 

the existence of the noise subspace and accurately approximates the actual bias 

regardless of the system setup (e.g. in the case of heavy system loading or small 

processing gain). 

We also establish that 

— The presented blind channel estimators do not suffer from antenna order ambi­

guity (also known as permutation ambiguity). 

— Channel identifiability is always guaranteed, regardless of the channel zeros lo­

cation (within a complex scalar ambiguity). 

— As opposed to its pre-FFT channel estimator counterpart, the post-FFT ap­

proach has the advantage of fully exploiting the inherent structure imposed by 

SFBC to further improve the performance and lower the computational com­

plexity required for practical systems. 
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— Unlike the subspace approach, the MVDR-type estimator is applicable to medium 

or highly loaded systems. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. In Chapter 2, a combined STBC CDMA 

scheme in which ST block coding is performed at the chip level is introduced. For this 

scheme, we develop and analyze so called disjoint and joint ST block decoding and infor­

mation symbol detection algorithms as well as blind channel estimation algorithms. In 

Chapter 3, the design principles of the proposed chip-level ST block coded CDMA systems 

is first extended to MC-CDMA systems to obtain a novel chip-level Space-Frequency Block 

Coded (SFBC) MC-CDMA scheme for downlink transmissions. Then, we investigate the 

problem of blind channel estimation and single-user symbol detection for SFBC MC-CDMA 

systems. Chapter 4 is focused on more efficient techniques for blind channel estimation and 

symbol detection for SFBC MC-CDMA systems by fully exploiting the inherent structure 

imposed by SFBC to improve the performance and lower the computational complexity 

required for practical systems. Also in Chapters 4 and 5, a comprehensive performance 

analysis of the presented blind channel estimation algorithms is provided. Finally, Chapter 

5 includes a concluding discussion and topics for future work. 

1.4 Published Work 

The contents of this thesis have been partly published in journals and presented at a num­
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Chapter 2 

Chip-Level Space-Time Block Coded 

D S / C D M A systems 

2.1 Introduction 

In recent years, space-time block coding (STBC) [3], [4], has emerged as a practical way 

to mitigate channel fading and increase the capacity in wireless communications without 

necessarily sacrificing bandwidth resources. When deployed with CDMA systems, STBC 

techniques will allow us to realize increased data rates and improved coverage to satisfy 

the ever growing demands of multimedia services and applications [12], [13]. The common 

characteristic of all schemes presented by far in the literature is that ST block coding is 

performed either at the symbol level or at the block level while DS/CDMA is used for 

the transmission of the resulting ST encoded signals [12], [14]. One major assumption in 

STBC schemes is that the channel remains static over the length of the entire codeword. 

However, the so-called "quasi-static channel" assumption may potentially limit the practical 

use of symbol-level space-time codes in fast fading environments. On the other hand, 

the frequency selectivity of the channel severely limits the performance of STBCs in high 

data rate wireless communications where delay spread of the channel generally exceeds 

the symbol duration [25]. Other shortcomings of the symbol-level approach are that the 

corresponding receivers have a long decoding delay and that the linear joint ST decoding 

and multiuser detection require the use of very long filters. Alternatively, we may attempt to 

apply space-time coding at the chip-level, thus alleviating many of the limitations associated 

with the symbol-level approach as we will demonstrate in this thesis. 
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In this chapter, we develop and analyze single-user detection and blind channel estima­

tion algorithms for a chip-level scheme that employs the popular and well-studied orthog­

onal STBCs. More specifically, we develop so called disjoint and joint ST block decoding 

and information bit detection algorithms for flat fading and frequency-selective channels, re­

spectively. The proposed algorithms utilize linear interference suppression structures based 

on matched, decorrelating-type and Minimum-Variance-Distortionless-Response (MVDR)-

type filtering criteria. All the proposed filters have a length almost equal to the processing 

gain (as suggested in [26], short-data-record situations favor the use of short filters) and 

have a decoding delay of only one information symbol period. We also present an analyt­

ical performance comparison between the symbol-level STBC decorrelator of [15] and the 

proposed chip-level STBC decorrelator. We show that there is no performance loss due to 

the chip-level ST block coding. In addition, we show analytically that the proposed joint 

and disjoint decorrelating-type detectors exhibit identical performance. These results sug­

gest that the advantages of the proposed receivers do not come at the expense of detection 

performance. 

Furthermore, in the multipath fading channel subspace-based channel estima­

tion algorithm is proposed. We address the issue of channel identifiability and we derive 

necessary and sufficient conditions under which the channel estimate is unique. It is also 

shown that unlike their symbol-level counterparts which require more than one signature 

to be assigned to each user for blind channel estimation without antenna order ambiguity, 

for the chip-level schemes the channel can be uniquely identified even in the case when 

there is only one signature assigned to each user. 

It is acknowledged that, in independent works parallel to this work1, the authors in [27] 

and [28] have also studied the application of chip-level ST block coding to the downlink 

of wideband CDMA system. In [27], considerable diversity gain and performance improve­

ments in time-varying flat fading channel due to the use of chip-level ST block coding 

were reported. In [28], the combination of channel chip equalization and STBCs (at both 

chip-level and symbol-level) was considered. However, in contrast to the present work, 

both [27] and [28] consider only matched-filter-type multiuser detectors and assume perfect 

knowledge of the channel state information. 

The rest of this chapter is organized as follows. In Section 2.2, we introduce the com-

xMuch of Chapter 2 was presented at the Conference on Information Sciences and Systems (CISS 
2003), Johns Hopkins Univeristy, Baltimore, MD, March 2003, and at the 58th IEEE Vehicular Technology 
Conference (VTC 2003-Fall), Orlando, Florida, September 2003. 
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bined chip-based STBC/CDMA scheme. Linear single-user joint and disjoint ST block 

decoding and detection algorithms are investigated in Section 2.3. A blind channel estima­

tion algorithm is developed and analyzed in Section 2.4. Also in Section 2.4, a comparison 

between the proposed chip-level scheme and the traditional symbol-level scheme is pre­

sented. Finally, Section 2.5 contains simulation studies. 

2.2 System Description 

We consider the downlink of a wireless system with K synchronous2 mobile users where the 

base station is equipped with two antennas and each mobile user with a single antenna3. 

Downlink transmissions take place using the combined chip-level STBC and DS/CDMA 

scheme depicted in Fig. 2.1 and described herein. The information bit bk € {±1} to 

be transmitted to the kth user, k = 1 , . . . , K, is first spread using the pre-assigned code 

signature vector s^ given by4 

sk=[sk[l],sk[2],...,sk[L]]T, (2.1) 

where L is the system processing gain, and sk[i] E { ± l / v L } . The vectors {sk}k=i,...,K a r e 

assumed to be linearly independent. After spreading, the composite vector x is formed as 

follows 
K 

x = ^ 6 f c s f c = [x[l],x[2],...,x[L}]T, (2-2) 
fc=i 

and then is transmitted using the orthogonal STBC scheme of Alamouti [3]. More specif­

ically, x is divided into L/2 blocks cL = [x[2l - l],x[2l]] , I = 1 , . . . , L/2, of length5 2. 

Each block Q , I = 1 , . . . , L/2, is transmitted over two chip intervals. During the first chip 

interval, the elements x[2l — 1] and x[2l] are transmitted from transmit antenna 1 (Txl) 

and transmit antenna 2 (Tx2), respectively. During the second chip interval, the elements 

2 Unlike uplink transmissions, the downlink transmissions are typically coordinated, which lead to syn­
chronous DS/CDMA systems. 

3Our preliminary studies show that extension to multiple receive antennas and more than two transmit 
antennas is feasible. 

4In this thesis, (-)T> (-)H, (•)*> (')*>tr(')> and ® denote transpose, Hermitian, conjugate, pseudo-inverse, 
trace, and Kronecker product, respectively. 

5We assume that L is an even number. Cases where L is an odd number can be treated in a straight­
forward manner (e.g., constructing an even number by appending a +1). 
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—x[2l]* and x[2l - 1]* are transmitted from Txl and Tx2, respectively.6 

The communication channel consists of 2 parallel, independent, multipath Rayleigh 

fading sub-channels. The sub-channels between the pth antenna and the single receive 

antenna are modeled as finite impulse response (FIR) filters with J distinct paths with an 

impulse response given by 

hP(t) = J2hpJS(t-jTc), p=l ,2 . (2.3) 
i = i 

In (2.3), hpj, p= 1,2, j• = 1 , . . . , J, is the complex path coefficient of the j t h path of the pth 

subchannel, S(.) denotes the kronecker delta function, while Tc is the chip duration. The 

path coefficients, hPtj, are assumed to be independent, complex Gaussian random variables 

with zero mean and variance a2
c. 

From the perspective of each individual mobile user, signals from all users pass through 

6We note that the transmitted symbol as well as the user codes are assumed to be real in this chapter; 
therefore, we can ignore the complex conjugation operation during the second chip interval. 
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the same channel in the downlink. At the mobile, after chip-matched filtering and chip rate 

sampling, the discrete-time received signal that corresponds to a single transmitted symbol 

for each user and composed of the L/2 transmitted blocks is given in vector form by 

K K 

r = [r[l], r [ 2 ] , . . . , r[L + J - 1]] =J^ &fcSfch + n = ] T bkgk + n, (2.4) 
fc=i fc=i 

where h = [hlfl,..., hltJ, h2ji,..., h2<j]T is the composite channel vector, n is additive white 

Gaussian noise (AWGN) with zero-mean and covariance matrix cr2IL+j_i. In addition, the 

(L + J — 1) x 2 J matrices S&, fc = 1 , . . . , K are defined by 

Sfe 

3*[1] 

~**[2] 

sfc[L - 1] 

sk[L] 

0 

G 

0 

-Sfc[2] '• 

a f c [ L - l ] •• 

-sk[L] '• 

0 

0 

•• sfc[l] 

•• -«fc[2] 

s f c [ L - l ] 

• -Sfc[L] 

s*[2] 

sfc[l] 

«*[^] 

Sfc[L - 1] 

0 

0 

0 

sk[2] 

sk[l] ' 

Sk[L] 

sk[L-l] • 

0 

0 

•• sfc[2] 

•• s*[l] 

Sfc[̂ ] 
.. s f c[L-l] 

and 

gfc = S f c h = [gk[l],gk[2],...,gk{L + J - 1]]J 

(2.5) 

(2.6) 

Since the maximum delay spread of the channel is usually small compared to the symbol 

period, we assumed that the channel order is much less than the processing gain, i.e., 

J < t . Thus, we can safely assume that the inter-symbol interference (ISI) is very small 

compared to the multiple-access interference (MAI) [29]. For this reason and for simplicity 

in presentation, we will ignore ISI in the presentation of the theoretical developments and 

we will only consider the dominant MAI. However, in the simulation results presented in 

Section 2.5 we consider a realistic DS/CDMA system where ISI is explicitly taken into 

account. 
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2.3 Single-User Detection Algorithms 

At the kth mobile, the receiver's ultimate task is to perform single-user detection, i.e., 

to detect the transmitted bit bk given the received vector r without any knowledge of the 

other users' signatures. In this section, we investigate two single-user detection approaches. 

The first one, called disjoint ST decoding and information bit detection, is to perform the 

exact inverse of the transmission scheme in Fig. 2.1. As a result, detection algorithms 

that follow this approach consist of two stages. The first stage performs the ST block 

decoding of the transmitted blocks while the second stage performs the despreading and 

information bit detection. With respect to the second stage, we focus on linear structures 

that consist of a linear filter followed by a sign detector. Due to the well-known limitations 

of the orthogonal ST block codes, we assume that the channels are flat, i.e., h = [hi, h-^. 

The second approach, called joint ST decoding and information bit detection, merges the 

decoding and detection stages into a single one through the use of a linear filter. In 

contrast to disjoint algorithms, joint decoding and detection algorithms implicitly equalize 

the received signal and, therefore, can handle frequency selective channels. 

Throughout this section the only quantities assumed known to the receiver are the 

spreading code associated with the user of interest and the channel vector h. Algorithms 

for channel estimation will be considered in the next section. 

2.3.1 Disjoint ST Decoding and Symbol Detect ion 

Without loss of generality, we will assume that the user of interest is k = 1. The disjoint 

receiver structure is shown in Fig. 2.2(a). The received signal due to the Zth transmitted 

block c/, / = 1 , . . . , L/2, can be written in vector form as 

" n[i]" 

. rM . 
'hi 

h2 

h2 

-hi 

' Q[l] " 

. Cl® . 
+ ' n,[l] " 

_ m[2] _ 

where ni[p], p = • 1,2 denotes additive white Gaussian noise (AWGN) with zero-mean and 

variance a2. 

Then, the corresponding soft output of the STBC decoder is cj = [q[l] ,q[2]] \where[3] 

Q[1] = h*n[l] + h2r;[2] (2.8) 

q[2] = h*2n[l} - hir;[2}. (2.9) 
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Fig. 2.2 Receiver structure (a) Disjoint ST block decoding and single-user 
detection, (b) Joint ST block decoding and single-user detection. 

T IT By stacking L/2 decoder output blocks, we obtain the decoded vector x = [cf,. . . , c|\2] 

which can be written as 

x = (| hi |2 + | h2 | 2 )x + fi 
K 

(2.10) 
fc=i 

where £? = (| hi |2 + | h2 | 2 ) , and fi ~ A/"(0, Ea2lL). We observe that the decoded vector x 

has the form of a DS/CDMA signal. Hence, the transmitted bit 61 can be detected using 

a linear filter w of length L as follows: 

&i=sgn[Re(w H x)] . (2.11) 

For the linear filter w we consider the following alternatives: 

1. Matched Filter 

The spreading code of the desired user si can be chosen as the weight vector of a 

filter matched to the signal of interest, i.e., 

w m / = si. (2.12) 

2. Minimum-Variance-Distortionless-Response (MVDR) Filter 
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The MVDR filter wmvdr minimizes the variance/energy E{ | w ^ d r r |2} at its output 

while being distortionless in the direction of the signal of interest Si, i.e., w^„drSi = 1. 

It is given by [24] 
R j . Si . 

sfR-^! 

In (2.13), Hx = E{xx H } is the autocorrelation matrix of the input vector x. In prac­

tice, the autocorrelation matrix R^ is not known and it is sample-average estimated 

from M received vectors x(z), i = 1 , . . . , M, as follows: 

1 M 

R* = ] ^ £ * ( * ) * ( ' ) * • (2.14) 

Substituting R^ in place of R x in (2.13), we obtain sample-matrix-inversion (SMI) 

estimate of wmvdr, \fmvdr: ^ 

Wmvdr = _-^ . • ( 2 - 1 5 ) 

3. Decorrelating Filter 

The decorrelating filter Wdec aims at completely eliminating the MAI, and is given by 

w f a = S R ; 1 e 1 . (2.16) 

where S = [si,S2, •••,SK] denotes the signature matrix and e! = [1,0, . . . ,0 ] r G TZK. 

In (2.16), R s = S r S is the signature cross-correlation matrix which is assumed to be 

nonsingular. We note that alternative implementations of the decorrelating detector 

can be employed that do not require the prior knowledge of the interferers' signature 

waveforms [30], [31], [32]. Under the assumption of perfectly known input statistics 

the decorrelating structures in [30] and [31] perform identically to the filter in (2.16). 

The same holds true upon convergence for the algorithm in [32]. However, for sim­

plicity in presentation, we chose to define the decorrelator using the expression in 

(2.16) even though the latter requires knowledge of the interfering users' signatures. 

The following lemma identifies the performance of the decorrelating detector. 
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Lemma 1 The probability of detection error of the decorrelator in (2.16) is given by 

Pe(wdec) = Q[—^=) (2.17) 

where [H'1]^ is the (l,l)-element o/R"1 . 

Proof: The output of the decorrelating filter is 

z = w$BCk = Ebl+v (2.18) 

where v = wj^fi ~ A/̂ O, Ea2 \\ wdec | |2). 

Therefore, the probability of detection error for the proposed scheme can be computed 

as 

Pe(wdec) - P(Re{*} < 0 | h = 1) 

= P(ReM < -E) = Q ' ^ * 
o- wdec 

• «UsW 
Comparing (2.19) with Eq. (32) in [15], we see that the decorrelator in (2.13) and the 

disjoint decorrelator of [15] have the same performance. Therefore, there is no performance 

loss incurred by chip-level ST block coding compared to symbol-level scheme. 

2.3.2 Joint ST Decoding and Symbol Detection 

The proposed joint scheme is illustrated in Fig. 2.2(b). To perform single-user detection 

in multipath fading channels, we first form the modified received vector f as follows 

K 

[r[l],r*[2],...,r[L + J-2] , r*[L + J - l ] ] i 

K 

&igi + J^fcgfc + n, (2.20) 
fe=2 
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where h = [n[l],n*[2],...,n[L + J — 2], n*[L + J — 1]] is a noise vector with the same 

statistics as the noise vector n in (2.4). In (2.20), gfc is the effective signature of the fcth 

user, k = 1 , . . . , K, formed by conjugating the even numbered elements of the vector g^ 

(given by (2.6)), i.e., 

gk=[gk[llgt[2},...,gklL + J-2},gtlL + J-l]]T. (2.21) 

The first term in (2.20) represents the desired signal while the second term represents the 

multiple access interference (MAI). 

In the proposed methods, the transmitted bit bx is recovered from the received signal f 

by means of a linear filter w of length L + J — 1. The estimate of the transmitted bit bi of 

the user of interest can be found as 

Si =sgn[Re(w"?)]. (2.22) 

Similarly to the disjoint algorithms, we consider the following alternatives for the linear 

filter w: 

1. Matched Filter 

w r o / = g1. (2.23) 

2. Minimum-Variance-Distortionless-Response (MVDR) Filter 

Wmvdr = 1* & . (2.24) 
g f R ^ g i 

In (2.24), Ft = E{ ffH} is the autocorrelation matrix of the input vector f. As before, 

since the autocorrelation matrix R is not known in practice, it is sample-average 

estimated from M received vectors f (n), n = 1, . . . , M. 

3. Decorrelating Filter 

wdec = G X - V (2.25) 

In (2.25), G = [gi,g2, •••jgx] denotes the effective signature matrix, X = G H G the 

effective signature cross-correlation matrix, and ei = [1,0, ...,0]T € 1ZK. Here, it is 
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assumed that the matrix X is invertible, which requires that the matrix G be full 

column rank, i.e. Rank(G) = K. 

We next examine the performance of the disjoint decorrelating detector versus the joint 

one. Lemma 2 below shows the relationship between the joint and disjoint decorrelating 

detector weight vectors for flat fading channels. Note that the joint decoding and detection 

algorithm for flat fading channels is the special case of the algorithm presented in the 

previous subsection with J — 1. 

Lemma 2 For a 2-antenna system, the weight vector of the joint decorrelating detector 

Wdec is related to that of the disjoint detector w<iec by 

™dec = „ ~ I I O(IL/2 ® H)wd e c . (2.26) 

II h I I 2 

where H = [h, h], h = [hi, h2]
T, h = [h2, — ̂ * ] T , and ® denotes the Kronecker product. 

Proof: It is straightforward to verify that the matrix G in (2.25) can be written as 

G = (IL/2 <g> H)S (2.27) 

Now, we may rewrite (2.25) as 

wdec = G K G ^ G ) " ^ ! 

= [(IL/2®I$S]([(IL/2®lVS]H[(IL/2®H)S]y1e1 

= [ ( I J / 2 ® H ) S ] ( S / r ( I L / 2 ® H i f ) ( I L / 2 ® H ) S ) ~ 1 e 1 

= ^ [ ( ^ ^ ^ ^ ( s ^ s ) - 1 ^ 
II " II 

1 ( I ^ a H ^ S ^ S ) - 1 ^ ] 

- ( I L / 2 8»H) W ( i e c (2.28) 

II " II 
which concludes the proof. H 

Using the above result, the following proposition compares the performance of joint and 

disjoint decorrelating detectors. 

Proposition 1 For a 2-antenna system, the probability of detection error for the joint 

decorrelator is equal to that of disjoint decorrelator. 

h | | 2 

1 
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Proof: From Lemma 2 we have 

Wdec f = w£cWdec 

= p n u w £ c ( I V 2 ® H)H(IL / a ® H)wdec 

= iJX|iw^c(ll h ||2 I ^ w ^ 

= ^ l l ^ e d l 2 (2.29) 

or equivalently 
~ || " 'dec /,-. O A \ 

Wdec ||= , - • (2.30) 

The output of the decorrelating filter for the joint scheme is 

£ = w £ c f > & 1 + u , (2.31) 

where u — w£cf ~ .<V(0, a2 || wdec ||2). Therefore, the probability of detection error can be 

evaluated as 

Pe(wdec) = P(Re{z} < 0 | bx = 1) 

= P(Re{u} < -1) = Q ( ^ ) . (2.32) 
ycr II wdec || y 

Comparing (2.32) with (2.19), it is seen that both detectors have identical performance. • 

The single-user detection algorithms presented in this section assume knowledge of the 

channel vector h. In practice, the channel state information is not known and has to be 

estimated. In the next section, we consider exactly this problem. 

2.4 Blind Channel Estimation 

In this section, we develop subspace-type channel estimation algorithms that require knowl­

edge of only the code vector Si of the user of interest, the total number of users K, and the 

channel order J. As such, the proposed algorithms are blind, i.e., they do not require the 

transmission of a known training sequence. However, when it comes to the blind channel 

estimation, it would be insightful to first identify the main feature of the chip-level scheme 
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introduced in this thesis compared with its traditional symbol-level counterpart [15] which 

is discussed next. 

2.4.1 Symbol-level vs . Chip-level S T B C 

To keep the notation simple and the discussion brief we will focus on single-user trans­

missions over flat fading channels. Specifically, we consider a system where the user of 

interest (user 1) transmits a block of two information symbols &i(l),&i(2) € {±1} over a 

flat fading channel using the symbol-level scheme described in [15]. Denoting by si € 7tL 

the code vector assigned to user 1, the 2L-long discrete-time received signal over a time 

period spanning two information symbol periods can be written as [15] 

r' = MU m +M2) T + " (2-33) 

where n ~ CJ\f(0, cr2I2jr,). In (2.33), hp, p — 1,2, is the single path coefficient of the 

pth subchannel, i.e., the channel vector is h = [/ii,/i2]r- Furthermore, in the case when 

h = [h,2, — hi]T the received vector is given by 

r« = M l ) ( * * ) + 6 l ( 2 ) ( - * ' S ' ) + „ . (2.34) 

Next, to shed some light on the statistical properties of the received vectors r' = [r'(l), r '(2)]T 

and r" = [r"(l),r"(2)]T , we examine the probability density function (pdf) of each received 

vector. More specifically, the conditional probability density function (pdf) of the received 

signals r ' and r" are given by 

p{r'\huh2M(l)M(2)) = ^ - L ^ e x p ^ - ^ j , (2.35) 

and 

p(v"\huh2M(X)M{2)) = ̂ 3 ) I « P ( - 0 ) . (2-36) 
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respectively, where 

Mi (2.37) 

M2 = (2.38) 

and 

' r"( l) \ _ ( *i 0 \ ( h 2 ~hi\( 6i(l) ' 

r"(2) J \ 0 S l / \ - h -h2 ) \ 6i(2) y 

It is now easy to verify that since r"( l ) = r'(2) and r"(2) = —r'(l), we have: /Xi = y 2̂; 

therefore, the probability density functions (pdfs) of the received vectors r ' and r" in (2.33) 

and (2.34) are identical. Based on the above observation, we conclude that it would be 

impossible for a blind receiver to distinguish between the two cases, namely the channel 

h being [/ii,/i2]T or [/i2, — /ii]T, which implies that no blind channel estimation algorithm 

can provide a unique channel estimate. This inability to uniquely estimate the channel 

in a symbol-level STBC system is commonly referred to as the channel order or channel 

ambiguity problem. 

We can arrive at a different (but equivalent) interpretation of this problem by rewritting 

(2.33) as 

h 
6i(l)si \ 

-6 1(2)s 1 ) 

/iix'j + /i2x'2 + n, 

+ h2 
6i(2)s! 

M l ) s i 
+ n 

(2.39) 

where x'x and x'2 are the discrete time signals transmitted from antenna 1 and antenna 2, 

respectively. In the case when the transmitted block is &i(2), — &i(l) the received vector is 

given by 

= h 
*i(2)si \ 

. 6i(i)s! ; 

= /iiXj + /i2x2' + n. 

ho 
-&i(l)si 

6i(2)s! 
+ n 

(2.40) 

where, as before, x '̂ and x2 are the discrete time signals transmitted from antenna 1 and 

antenna 2, respectively. Clearly, x" = x 2 and x2 = —x'x which imply that the pdf of the 

signal transmitted from the 1st (2nd) antenna when the transmitted bits are &i(l), &i(2) 

is the same to the pdf of the signal transmitted from the 2nd (1st) antenna when the 
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transmitted bits are &i(2), — h(l). In other words, a blind channel estimator that does 

not have knowledge of the transmitted bits can not differentiate the signals transmitted 

from the two antennas and will be unable to distinguish between the two cases of h being 

[hi,h2]
T or [/i2,-/ii]T-

In the case when the chip-level scheme is employed, the L-long received vector r due to 

the transmission of a single bit &i (1) is given by 

r = M>i(l)si + /i2&i(l)si + n, (2.41) 

where §1 = [si[l], -S i [2 ] , . . . ,si[L - l ] , -5 i [L] ] r and §1 = [ s ^ s ^ l ] , . . . , s ' i [L] , s i [L-

l ] ] r . We observe that the antennas transmit signals with distinct pdfs which implies that 

it is possible to differentiate between the two transmit antennas and the corresponding 

subchannels and thus avoid the channel ambiguity problem. Motivated by this observation, 

we develop in the next subsection a blind subspace-based channel estimation method and 

identify necessary and sufficient conditions for the unique identification of the channel. 

2.4.2 Subspace-based Channel Estimation Algorithms 

Let us denote as G the (L + J — 1) x K matrix whose columns are the K vectors g i , . . . , g/r, 

i.e., 

G = [gi g2 ••• EK). (2.42) 

We recall that gfc = Sfch, k — 1 , . . . , K where S^ is given by (2.5). The autocorrelation 

matrix, R, of the received vector r in (2.4) can now be expressed as 

R = GGH+o2IL+J-1. (2.43) 

Let the eigenvalue decomposition (ED) of R be R = QAQ H , where A = diag(Alt A2, 

• • • , ^L+J-I), Ai > • • • > XK > XK+I =•••• = XL+J-I = cr2, are the eigenvalues of R in 

descending order, and Q = [qi, • • •, q i+ j - i ] is the matrix of the corresponding eigenvectors. 

Finally, let 

Qn = hL+j-K, • • • , qL+j-i], (2.44) 

where qL+j-K, • • • ,<IL+J-I are the eigenvectors that span the noise subspace. 

The orthogonality between the noise subspace and the signal subspace implies that for 

the user of interest (user 1), gi is orthogonal to all the vectors C\,L+J-K, • • • , q^+j-i that 
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span the noise subspace. Thus, we have 

Q^gi = Q ^ h = 0 (2.45) 

Equivalently, we can write 

h H f t h = 0, (2.46) 

where 

n = S f Q n Q ^ S 1 . (2.47) 

Therefore, the desired user can estimate the channel vector h as the eigenvector that 

corresponds to the zero eigenvalue of the 2 J x 2 J matrix Q in (2.47), provided that the 

rank of Q is 2J — 1. 

The following theorem presents sufficient and necessary conditions that guarantee unique 

identifiability (within a scalar ambiguity) of the channel vector h. 

T h e o r e m 1 The sufficient and necessary conditions for the channel vector h in (2.^6) be 

identifiable with a scalar ambiguity are as follows 

• (Sufficient) The matrix [Si g2 g3 • • • g^] has full column rank 

• (Necessary) L > J + K. 

Proof: It suffices to show that there does not exist h' linearly independent from h such that 

g' G Q s , where g' = Sih', and Q s = [qi, • • • , q#] is the matrix formed by the eigenvectors 

that span the signal subspace. Similarly to [24], we will prove the sufficient condition by 

contradiction. Let the matrix [Si g2 g3 • • • EK] be full column rank and both Sih € Q s 

and Sih ' G Q s for h' ^ h. Since span{Q s} = span{G}, there exist parameters a and (3 

such that 

Sih ' = [g2 . . . gK]<* + Pgi. (2-48) 

Substituting gi = S ih in (2.48), we obtain 

S i h = [ g 3 . . . g * K (2.49) 

where h = (h' — /3h). If h and h ' are linearly independent, then h / 0, and (2.49) 

contradicts the full rank assumption of the matrix [Si g2 g3 . . . g#-]. 
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To prove the necessary condition, we use the fact that the channel is identifiable only 

if the 2J x 2 J matrix fi in (2.47) be rank deficient by one. Then, there exists only one 

eigenvector that corresponds to the one zero eigenvalue. Therefore, we should have 

Rank(ft) = Rank(Sf QnQ^Sj) = 2 J - 1. (2.50) 

For any matrix A € C m X n with rank r, we have 

Range(A) = Range(AA^), (2.51) 

Rank(A) = Rank(AA^) = r, (2.52) 

Hence, we may write 

Range(S[Q nQ^S!) = Range(Sf Qn) . (2.53) 

Using (2.50) - (2.53), it follows that 

Rank(O) = Rank(Sf Qn) = 2 J - 1. (2.54) 

Since Sf Q n is a 2 J x (L + J — 1 — K) matrix, the result in (2.54) suggests that 

min(2J, L + J - 1 - K) > 2J - 1, (2.55) 

or equivalently 

L>J + K. (2.56) 

• 
The above theorem reveals that due to the signal structure imposed by the chip-level ST 

block coding the channel can be uniquely identified even in the case when there is only one 

signature assigned to each user. On the other hand, in symbol-level schemes identifiability 

can only be guaranteed if each user is assigned a total number of signatures equal to the 

number of transmit antennas. As a result, use of chip-level ST block coding can lead to 

significant user capacity improvements compared to symbol-level block coding. 

In practice, R is not available and is estimated through sample-averaging over M re-
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Fig. 2.3 Normalized cross-correlation between the channel vector h and the 
channel estimate h as a function of the data record size M. 

ceived vectors r ( l ) , . . . , r (M) . The sample average estimate R is given by 

M 

R = ^ £ r ( n ) r ( n ) " . (2.57) 
n=\ 

In this case, the channel vector h is obtained as the eigenvector that corresponds to the 

smallest eigenvalue of the matrix f2 = Sf Q n Q ^ S i , where Q n is the (L + J — 1) x (L + J — 

K — 1) matrix whose columns are the eigenvectors that correspond to the L + J — K — 1 

smallest eigenvalues of R. 

2.5 Simulations Studies 

As a representative case study, we consider a DS-CDMA system with 25 users utilizing 

code sequences of length7 32. All interfering users are assumed to have SNR of 10 dB. 

7Constructed from Gold sequences of length 31 by appending a +1. 
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Fig. 2.4 Bit-error-rate of disjoint single-user detection algorithms as a func­
tion of the SNR of the user of interest for flat fading channels. 

The transmitter and the receiver are equipped with 2 and 1 antennas, respectively, while 

the STBC employed is the real orthogonal block code of [3] explained in Section 2.2. For 

the multipath case, we have considered a channel with 3 paths. Each path coefficient has 

variance a\ = 1. The presented results are averages over 100 independent experiments. 

In Fig. 2.3, we plot the normalized cross-correlation of the channel vector estimate h 

and the actual channel vector h as a function of the number of received vectors M used to 

form the autocorrelation matrix estimate in (2.57). In this study, the SNRs of all users in 

the system including the user of interest is fixed at 10 dB. 

The performance of the disjoint single-user detection algorithms for flat fading channels 

described in Section HI is given in Fig. 2.4. For comparison, Fig. 2.4 also includes the 

BER curves of the detectors that use the channel estimate instead of the actual channel. 

Here, the estimation of the channel vector and the MVDR filter is based on M = 400 

received vectors. In all cases, the performance of the ideal receiver is almost equivalent to 

that of their counterparts employing the channel estimate. In Fig. 2.5, we plot the BER 
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Fig. 2.5 Bit-error-rate of joint single-user detection algorithms as a function 
of the SNR of the user of interest for rnultipath fading channels. 

of the joint single-user detection algorithms for frequency-selective fading channels, as a 

function of the SNR of the user of interest. As before, the estimation of the channel vector 

and the sample average estimate of R is based on M = 400 received vectors. We see that 

in the rnultipath scenario since the number of received samples taken to form the sample 

average estimate of R is not sufficient (for perfect channel estimation), the performance of 

the detectors using the channel estimate is a few dB away from that of the ideal receiver. 

Finally, the BER performance of the joint algorithms versus number of the received 

samples for rnultipath fading channels is illustrated in Fig. 2.6. The SNRs of all users 

including the user of interest are fixed at 10 dB. As can be seen from this experiment, by 

increasing the data record size, there is a considerable improvement on the performance of 

the detectors using the channel estimate. 
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Fig. 2.6 Bit-error-rate of joint single-user detection algorithms for frequency 

selective fading channels as a function of the number of the samples for channel 

estimation and the sample average estimate. 
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Chapter 3 

Space-Frequency Block Coded 

MC-CDMA: A Pre -FFT Approach 

3.1 Introduction 

Among the many multiple access techniques proposed, Multi-Carrier Code Division Mul­

tiple Access (MC-CDMA) is one of the most promising candidates for the downlink of 

future wireless communications systems as it exploits the advantages of both Orthogonal 

Frequency Division Multiplexing (OFDM) multicarrier modulation and Direct-Sequence 

Spread Spectrum (DSSS) techniques. In fact, the combined scheme allows different users 

share the same bandwidth at the same time by applying different user specific spreading 

codes (thanks to the spread spectrum mechanism); whereas offers the advantage of reducing 

the amount of ISI by lowering the symbol rate (thanks to the multicarrier modulation). 

In MC-CDMA systems with cyclic prefix (CP) or zero-padding (ZP) [33], a frequency-

selective fading channel is transformed into a number of parallel flat-fading channels. There­

fore, ST block coding techniques, which were originally designed for flat fading channels, 

can effectively be applied to MC-CDMA systems to combat fading and achieve coding gains 

even in the case of multipath fading channels with large delay spreads. Alternatively, in 

MC-CDMA systems, block coding can be performed across the spatial and the frequency 

dimension instead of the temporal dimension. This approach is called Space-Frequency 

Block Coding (SFBC) and can provide significant performance improvements over STBC 

in situations where the channel is time-varying [34]. In fact, the STBC MC-CDMA systems 

are generally designed under the assumption that the channel is static over the duration 
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of a ST codeword. Consequently, they are very sensitive to the high time selectivity of the 

wireless mobile fading channel. One potential application of SFBC MC-CDMA could be 

in the emerging mobile broadband standards such as IEEE 802.16e and IEEE 802.20 in 

which the quasi-static channel assumption is no longer valid. 

Examples of some recent research activities that focus on combining the benefits of 

STBC and MC-CDMA include [23], [13], [35], and [36]. In [23], the orthogonality property 

of STBC and the multicarrier modulation of MC-CDMA have been exploited to design a 

low complexity optimal multiuser receiver under a Bayesian framework. Iterative receiver 

structures for joint semiblind multiuser detection and decoding in a STBC MC-CDMA 

system have been presented in [13]. The bit-error rate (BER) performance and capacity of 

asynchronous STBC MC-CDMA systems in the presence of carrier frequency offset (CFO) 

between the transmitter and receiver oscillators have been studied in [35]. 

The common characteristic of the schemes in [23], [13], [35], and [36] is that ST block 

coding is performed at the information symbol level while MC-CDMA is used for the 

transmission of the resulting ST encoded symbols. However, this approach suffers from 

the exact same drawbacks as its DS-CDMA counterpart discussed in Chapter 2. First, the 

corresponding receivers have a decoding delay of at least Mt information Symbol intervals 

(where Mt is the number of transmit antennas). Second, linear joint ST decoding and 

multiuser detection algorithms (as the one in [13]) require the use of very long filters (of 

length at least equal to Mt x L where L is the system processing gain). More importantly, 

however, performing ST block coding at the information symbol level requires the assign­

ment of Mt CDMA signatures to each user if blind channel estimation without ambiguity 

is to be performed [16], [15]. The assignment of more than one signature to each user 

severely limits the maximum number of users that can be accommodated in the system. 

Finally, they cannot be used over fast fading channels where the channel may vary during 

one symbol period. Indeed, because of the quasi-static channel assumption of the employed 

ST block codes, symbol-level schemes require that the channel remains constant over many 

information symbol periods. 

In this chapter, in an attempt to alleviate all of the aforementioned shortcomings, we 

apply the design principles of chip-level ST block coded CDMA systems developed in Chap­

ter 2 to MC-CDMA systems and we obtain a novel chip-level Space-Frequency Block Coded 

(SFBC) MC-CDMA scheme for downlink transmissions. For this scheme, we develop so 

called disjoint and joint SF block decoding and information symbol detection algorithms 

for frequency-selective fading channels. The proposed joint algorithms utilize linear inter-
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ference suppression structures based on matched, and Minimum-Variance-Distortionless-

Response (MVDR)-type filtering criteria. Both proposed filters have a length equal to the 

processing gain plus the size of zero padding (as suggested in [26], short filters exhibit 

superior performance in short data-record situations) and have a decoding delay of only 

one OFDM block. 

Since coherent detection/decoding of SFBC MC-CDMA transmissions require channel 

state information (CSI) at the receiver, channel estimation algorithms are also studied in 

this chapter. The diversity and coding gains that are possible in MC-CDMA systems with 

transmit diversity can only be realized if the underlying channels are accurately acquired at 

the receiver. Indeed, it is shown in [37], [38] that in the case of imperfect channel estimation, 

the performance of systems employing transmit diversity techniques is severely degraded. 

This motivates our effort to develop reliable channel estimation algorithms for MC-CDMA 

systems with transmit diversity. Examples of methods that exploit STBC for blind channel 

estimation in a multicarrier framework include the ones found in [10], [39], [23] and [36]. For 

example in [36], a subspace-based blind channel identification algorithm and the associated 

identifiability conditions for STBC MC-CDMA has been investigated. However, to our 

best knowledge, no channel estimation algorithm has been proposed or analyzed for SFBC 

MC-CDMA in the literature. 

In this chapter1, as a first step in filling that gap, we also investigate the problem of 

blind channel estimation for SFBC MC-CDMA systems. We utilize a system model for 

complex modulation schemes (such as QAM) that enables us to treat the links between 

the multiple transmit antennas and the single receive antenna as a single channel and, 

thus, reduces the multichannel estimation problem to a single-input single-output (SISO) 

problem. This allows us to develop two second-order-statistics-based channel estimation 

methods, namely, a subspace-based channel estimator and a Minimum Variance Distortion­

less Response (MVDR)-type channel estimator. For these methods, we address the issue 

of channel identifiability and we investigate the necessary and sufficient conditions under 

which the channel estimates are unique (within a complex scalar). Our studies reveal two 

interesting properties of SFBC MC-CDMA systems: First, unlike STBC-based systems 

that suffer from antenna order ambiguity unless a different spreading code is assigned to 
1 Chapter 3 was presented in part at the IEEE Wireless and Mobile Computing, Networking and Com­

munications Conference (WiMob 2005), Montreal, QC, Aug. 2005, at the 39th IEEE Asilomar Conference 
on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 2005, and at the IEEE Wireless Communi­
cations and Networking Conference (WCNC 2006), Las Vegas, NV, Apr. 2006. 
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each user for each transmit antenna, the signal structure imposed by the SFBC removes 

such an ambiguity even though only one code is assigned to each user. Hence, we maintain 

the same total number of spreading codes available in the system as in a single transmit 

antenna case. Second, channel identifiability is guaranteed, regardless of the channel zeros 

location. 

Moreover, we investigate the performance of the aforementioned algorithms in the case 

where only a finite number of received data vectors are available to perform the estimation 

of the channel. More specifically, we first establish the unbiasedness of the subspace-based 

channel estimator and the biasedness of the MVDR-type channel estimator and then we 

derive the analytical closed-form expressions for the variances of the channel estimates 

based on the eigenvalue decomposition (EVD) of the autocorrelation matrix of the received 

signal. As numerical studies verify, this approach provides analytical expressions for the 

mean-square-errors (MSEs) that are closer approximations to their corresponding actual 

MSEs in low SNRs than expressions based on the singular-value decomposition (SVD) 

(see [40], [41]). 

Finally, to benchmark the accuracy of our estimation algorithms we also derive the 

Cramer-Rao bounds (CRBs) for both unbiased and biased channel estimators for the down­

link of MC-CDMA systems. In [42], [43], the CRB was derived under the assumption of 

knowledge of all users' spreading codes. However, this assumption is not valid for down­

link transmission where the signature waveform of only the desired user is available at the 

receiver. Therefore, the corresponding CRB cannot be adopted as a valid benchmark for 

the error variance of estimators of the forward channel. In this thesis, by treating the 

interfering users' signature waveforms as unknown deterministic quantities, we provide the 

CRBs which are tighter than the CRB with known signatures. 

The rest of this chapter is organized as follows. In Section 3.2, we describe the com­

bined SFBC MC-CDMA system model. Linear single-user SF block decoding and detection 

algorithms are investigated in Section 3.3, followed by presenting a subspace-based blind 

channel estimation algorithm in Section 3.4. Also in Section 3.4, we analyze the perfor­

mance of the derived channel estimation algorithm by providing the MSE and the CRB. 

Finally, in Section 3.5 we present a MVDR-type blind channel estimation scheme along 

with its comprehensive performance analysis. 
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3.2 System Model 

We consider the downlink of a wireless system with K synchronous mobile users where the 

base station is equipped with two antennas and each mobile user with a single antenna2. 

The communication channel consists of 2 parallel, independent, multipath Rayleigh fading 

sub-channels. The sub-channels between the pth antenna, p = 1,2, and the single receive 

antenna are modeled as finite impulse response (FIR) filters with J distinct paths whose 

impulse responses are given by 

M O = ] C hpJ6(l ~ -?Tc)' p = 1,2. (3.1) 

In (3.1), hpj, p — 1,2, j = 1 , . . . , J, is the complex path coefficient of the jth path of 

the pth subchannel, £(•) denotes the Kronecker delta function, and Tc is the chip duration. 

The path coefficients, hpj, are assumed to be independent, complex Gaussian random 

variables with zero mean and variance u2
c. We will denote the pth subchannel vector as 

h P = [ / ip, i , . . . , / ip, j ]T , p = 1,2. 

Downlink transmissions take place using the combined SFBC and MC-CDMA scheme 

depicted in Fig. 3.1 and described herein. The complex QPSK data symbol bk to be trans­

mitted to the kth user, k — 1,...,K, is first spread using the preassigned code signature 
2 Based on our preliminary studies extension to multiple receive antennas and more than two transmit 

antennas is feasible. 
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vector Sfc given by 

sk=[sk[l],sk[2],.:.,sk[L]]T, (3.2) 

where L is the system processing gain and sk[i] € {±^Ek/L} with Ek denoting the symbol 

energy of fcth user. The vectors {sk}k=i,...,K are assumed to be linearly independent. After 

spreading, we form the complex vector x as follows 

K 

^ = J2bksk=[x[l],x[2],...,x[L]]T, (3.3) 
fc=i 

on which we apply an Alamouti-type [3] orthogonal SF block encoding technique. More 

specifically, at any given symbol period, the encoded blocks sent to the transmit antenna 

1 (Txl) and transmit antenna 2 (Tx2) are xx = [x[l], —x*[2],... ,x[L — 1], — x*[L]] , and 

x2 = [x[2], x*[l],..., x[L], x*[L — 1]] , respectively. Finally, at each antenna, each encoded 

block is multicarrier modulated by applying the Inverse Fast Fourier Transform (IFFT) of 

size equal to the processing gain L and then zero-padded with a block of Z trailing zeros. 

In this work, we make the common assumption that Z has to be longer than the multipath 

channel spread J to completely eliminate the inter-block interference (IBI) [33]. 

From the perspective of each individual mobile station, signals from all users pass 

through the same channel in the downlink. At the mobile user, the discrete-time P x 1 

(P = L + Z) received vector due to the transmission of x in (3.3) is given by 

r = H i F * x i + H 2 F " x 2 + n, (3.4) 

where Hi and H 2 are the P x L channel Toeplitz matrices with their first column as 

[h\,\, • • •, hltJ, 0 , . . . , 0 ] r , and [/i2)1,..., h2,j, 0 , . . . , 0]T , respectively, FH is the L x L IFFT 

matrix whose (m, n)th entry is equal to exp{j27r(m — l)(n — l)/L}/y/~L, and n is additive 

white Gaussian noise (AWGN). 

It is worthwhile noting that the maximum diversity order that can be achieved with 

optimal SFBC MC-CDMA transceiver design in rich scattering environments is JMtMr 

where Mt (Mr) is the number of transmit (receive) antennas, and J is the number of taps 

corresponding to each FIR channel. Alternatively, the same transmit diversity order can 

be achieved by using STBC (see Fig. 3.2). In STBC MC-CDMA systems, the ST block 

encoder first maps each user's incoming symbol stream into multiple ST-coded streams. 
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Next, each of the ST-coded streams is spread by a distinctive spreading code and sub­

sequently multiplexed into L parallel substreams (where L is the number of subcarriers). 

Finally, the IFFT of the spread signal is computed (to perform OFDM modulation) which 

after CP insertion or zero-padding produces the transmitted signal. 

3.2.1 Equivalent S ingle- Input -Single-Output Represen ta t ion 

To explicitly express the received vector in terms of the unknown channel vector h that we 

wish to estimate, we rewrite r in (3.4) by separating the real and imaginary components 

of each user's transmitted symbol. The received vector r in (3.4) can be expressed as 

K 

fc=i 
K 

(3.5) 
fc=i 

where h = [hf, h^]7 = [hiti,..., hltJ, /i2ji, • • •, ^2, j ] r is the channel vector3, ^H(bk) and $s(bk) 

indicate the real and imaginary parts of &&, respectively, and Sfcir and S^j are the P x 2 J 

3For the rest of this thesis, the channel vector will be assumed to be normalized (i.e., ||hj| = 1). 
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matrices defined by 

Sfc,r[l] 0 Sfc,P[l] 

hAL\ ''• ° hAL\ ''• ° 
0 '•• Sfc,r[l] 0 '•• afciP[l] 

Sfc,» 
A 

0 

SkA1] 

h,i[L] 

0 

0 

*l,r[i] 0 

0 5fc>i[l] 

vW 

0 5fc)i[L] ••. 0 

with 

• • • 5fc)j[L] 

= F^D l S f c ) 

0 ... skti[L\ J 

sfc>r = Jb"JJisfc, sfc,i = PHD2Sfc, 

sfc,r = FHD3s f c , s M = F i /D4s f c . 

In (3.8), the L x L precoding matrices Di , D 2 , D 3 , D4 are given by 

Di = ( I M / 2 ® A ) ; A = 

D 2 = jIM, 

D 3 = ( I M / 2 ® B ) ; B = 

D 4 = ( I M / 2 ® C ) ; C = 

1 0 

0 - 1 

0 1 

1 0 

0 j 

-3 0 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

In (3.5), the vectors gh,r = Sfc>rh and gk,i — S ^ h are the effective signatures of the fcth 

user, k = 1 , . . . , K, corresponding to the real and imaginary parts of its transmitted symbol, 

respectively. As we can see, the real and imaginary parts of bk modulate different effective 

signatures which is exactly what led us to treat them separately in (3.5). By closely 
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examining the SFBC-imposed structures of the signature matrices S^r and S^j defined 

by (3.6) and (3.7), respectively, it can be seen that for a given k, the spreading code s^ is 

transformed to a set of linearly independent vectors §fcir, s^j, Sfe>r, and Sfĉ . The vectors §fcjr, 

Sfc)r are used for the transmission of the real part of && from antenna 1 and 2, respectively. 

The vectors s^j, Sk,i are used for the transmission of the imaginary part of b^ in a similar 

manner. Since these vectors are distinct, the receiver is able to distinguish the signals 

transmitted from each antenna and, therefore, can perform blind channel estimation with 

no order/permutation ambiguity. This is perhaps the most distinctive feature of SFBC MC-

CDMA systems compared to their STBC counterparts. In STBC systems, blind channel 

estimation with no order ambiguity is only possible if each user is assigned two spreading 

codes4 (one for each transmit antenna). 

The main advantage of representing the received signal as in (3.5) is that it reduces 

the problem of multi-channel estimation to a single-input single-output (SISO) channel 

estimation problem by treating the links between multiple transmit antennas and single 

receive antenna as a single channel. 

3.3 Single-User Detection 

At the A;th mobile, the receiver's ultimate task is to detect the transmitted symbol && given 

the received vector r without any knowledge of the other users' signatures. One way to 

perform single-user detection is to follow the exact inverse of the transmission scheme in 

Fig. 3.1. In Chapter 2, we called this technique which is shown in Fig. 3.3 as disjoint 

SF decoding and symbol detection. In other words, at the first stage, one may apply the 

overlap-add technique on the received vector to transform the linear convolution of the 

channel into circular convolution. As the second stage, FFT can be used to transform a 

frequency-selective fading channel into a number of parallel flat-fading channels. Then, 

space-frequency block decoding is performed followed by a single-user detector. 

An alternative approach is joint SF decoding and information symbol detection which 

merges all the steps including multicarrier demodulation, SF decoding and single-user de­

tection stages into a single one through the use of a linear filter. This technique which 

intuitively, the basic DS/CDMA system is a natural special case of MC-CDMA with FFT size equal 
to one. Thus, our discussion on channel order ambiguity in Section 2.4.1 is valid for a MC-CDMA scenario 
as well. 
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conceptually is similar to the one presented in Chapter 2 implicitly equalizes the received 

signal and, therefore, can handle frequency selective channels in situations where the length 

of trailing zeros is less than the delay spread of the dispersive channel (i.e., J > Z). In 

that case, disjoint algorithms cannot cope with the ISI and Inter-Carrier Interference (ICI) 

caused by multipath channels and use of (potentially complex) equalizers are necessary. 

In what follows, first we give a brief overview of the disjoint scheme and then the joint 

technique is presented. 

Throughout this section the only quantities assumed known to the receiver are the 

spreading code associated with the user of interest and the channel vector h. Algorithms 

for channel estimation will be considered in the next section. 

3.3.1 Disjoint SF Decoding and Symbol Detection 

Without loss of generality, we will assume that the user of interest is k — 1. The disjoint 

receiver structure is shown in Fig. 3.3. To transform the linear convolution of the chan­

nel into circular convolution and thus facilitate diagonalization of the associated channel 

matrix, we apply the widely used overlap-add technique on the received vector. In this 

method, the last Z samples of the received vector are added to the first ones to form the 

modified received vector r, as shown by 

- A r 
r = r„ + 0(L-Z)X1 

= HjF^X! + H 2 F " x2 + n, (3.13) 

where ru and r; represent the upper L x 1 part and the lower Z x 1 part of the received 

vector r in (3.4), respectively; n denotes the L x l AWGN vector. Finally, Hi and H 2 are 

the L x L circulant matrices corresponding to the channel matrices H i and H2 , respectively, 
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given by 

Hi = C i r c i ( / i 1 , 1 O . . . O V - - - M » (3-14) 

H2 = CirC i(/i2 ) 10...0/i2 ) J . . . / i2 ,2). (3.15) 

where Circi(i') denotes a square circulant matrix of size L with u as its first row. 

In principal, the circulant matrices can be diagonalized by pre-multiplication and post-

multiplication by the FFT and IFFT matrix, respectively. Therefore, pre-multiplying r in 

(3.13) by the L x L FFT matrix F we get 

y = FHiF^xi + FH2FHx2 + Fn, 

= Aixi + A2x2 + Fn, (3.16) 

where Ai and A2 are the L x L diagonal matrices with vectors hi = VLF[hlti,..., hitj, 

0, . . . , 0]T and h2 = vLF[/i2,i,. • •, h2>j, 0 , . . . , 0]T as their diagonal, respectively. 

Let x0 and xe be two L/2 vectors denoting the odd and the even component vectors of 

x, i.e., 

Xo = [x[l],:r[3],...,a;[L-l]]T
J (3.17) 

x e = [x[2},x[4},...,x[L]]T. (3.18) 

Assuming the channel vectors are known at the receiver, the space-frequency block decoder 

output provides the soft estimates of x0 and xe as [3] 

Xo = Ati0y0 + A2)eye*, (3.19) 

xe = A5 iOy0-A l iCy:, (3.20) 

where A l o , A l e , A2o , A2)6, denote the odd and the even diagonal submatrices of A! and A2, 

respectively, and y0 and ye are the odd and the even component vectors of y, respectively. 

Adopting the principle assumption of STBC MC-CDMA systems wherein the channel is 

assumed to be approximately constant during two consecutive OFDM symbol durations, we 

assume that the channel is approximately constant over two neighboring OFDM subcarriers, 
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single-user detection. 

i.e., Ai)0 = AiiC and A2;0 = A2,e, we obtain 

x0 = (| Ai i0 |2 + | A2,0 |2)x0 + z0, 

x e = (| A1>e |2 + | A v |2)x e + ze, 

(3.21) 

(3.22) 

where z0 and ze are the odd and the even component vectors of the AWGN noise vector z. 

Equivalently, we may write the output of the decoder as 

x = (| Ax |2 + | A2 |2)x + z, 
K 

(|A1 |2 + |A2 |2)^6 f es f c + z. 

(3.23) 

(3.24) 
fc=i 

Clearly, the decoded vector x in (3.24) has the form of a DS/CDMA signal. Hence, the 

transmitted symbol &i can be detected using a single-user detector such as matched filter, 

decorrelator or MVDR-type filter as explained in section 2.3.1. 

3.3.2 Joint SF Decoding and Symbol Detection 

The proposed joint scheme is illustrated in Fig. 3.4. To perform single-user detection, the 

real and imaginary parts of the complex transmitted symbol b\ are separately recovered 

from the received signal r in (3.5) by means of two different linear filters w r and w$ of length 

P. In other words, the estimate of the complex data symbol b\ of the user of interest is 

obtained as 

k = sgn [3?(wf r)] + jsgn [5R(wf r ) ] . (3.25) 
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In the sequel, we present two alternative choices for the linear filters w r and w,: 

1. MATCHED FILTER 

The effective signatures of the desired user g l r and gi^ can be chosen as the tap 

weight vectors of two filters matched to the real and imaginary parts of the signal of 

interest, respectively, i.e., 

wmf,r =• Sfc.r and w m f i = g M . (3.26) 

2. MINIMUM-VARIANCE-DISTORTIONLESS-RESPONSE (MVDR) FILTER 

The conventional matched filter receivers suffer from the multiple access interference 

(MAI) and inter-symbol interference (ISI). Alternatively, we may use the MVDR 

filters wmV]7. and wmVij that minimize the variance/energy at their outputs, while 

being distortionless in the direction of the real and imaginary parts of the signal of 

interest, respectively. They are given by 

w n v , r = ^ - S i f c ' r • ( 3 - 2 7 ) 

and 

where R = E{ rvH} is the autocorrelation matrix of the input vector r. In practice, 

the autocorrelation matrix R is not known and it is sample-average estimated from 

iV received vectors r(i), i — 1 , . . . , N, as follows: 

Substituting R in place of R in (3.28), we obtain sample-matrix-inversion (SMI) 

estimates of w m V r and wmv>i: 

Wmv,r = f - , ^ > (3-3 0) 
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and ^ 

*™,i= fy* • (3.3i) 

As can be seen from the presented joint detection/decoding algorithms, in SFBC MC-

CDMA schemes the transmitted blocks xi and x2 are being multiplexed simultaneously 

across all subcarriers. Following are the key observations regarding such an approach. 

• The scheme performs SF decoding within one OFDM symbol, therefore there is a 

decoding delay of only one symbol and it only requires half of the decoder memory 

needed for STBC MC-CDMA of the same block size. 

• The decision variables in a SFBC detector are completely determined from a single 

received block hence the corresponding detector requires a shorter filter for detection 

and performs better than STBC in fast fading channels [34]. 

• There is no need for the channel to remain constant for more than one symbol dura­

tion. Instead, the scheme requires that two adjacent subcarriers experience the same 

channel [19] (we note that this requirement can be easily satisfied by increasing the 

FFT size). 

• A similar approach can be followed to design a MVDR filter for the STBC MC-CDMA 

receivers. However, the autocorrelation matrix used by the MVDR algorithm in the 

SFBC MC-CDMA scheme is half the size of the one needed for the STBC MC-CDMA 

implementation. This can be attributed to the fact that the latter requires the re­

ceived vector to be comprised from two consecutive OFDM symbols. This increases 

complexity and reduces the accuracy of the STBC-based SMI MVDR filter estimator. 

We demonstrate this important issue later in our numerical studies. 

3.3.3 Simulat ions S tudies 

As a representative case study, we consider a MC-CDMA system with 15 users utilizing 

code sequences of length5 32 which is assumed to be equal to the number of subcarriers. 

We used zero padding of length 8 which is l /4 th of the FFT size. Five of the interfering 

5 Constructed from Gold sequences of length 31 by appending a +1. 
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Fig. 3.5 Bit-error-rate of both chip-level and symbol-level detection algo­
rithms as a function of the SNR of the user of interest. 

users are assumed to have SNR 6 of 10 dB, five have SNR of 15 dB and the rest of them 

have SNR of 20 dB. The transmitter and the receiver are equipped with 2 and 1 antennas, 

respectively, while the SFBC employed is the orthogonal block code of [3]. Each multipath 

channel hp, p = 1,2, consists of 3 paths where each path coefficient is modeled as a complex 

Gaussian random variable with zero mean and variance of a\ = 1. In what follows, the 

presented results are averages over 100 independent channel realizations. 

Fig. 3.5 and 3.6 depict the BER performance of the joint MVDR receivers versus the 

SNR of the user of interest and the number of samples used to form the autocorrelation 

matrix estimate in (3.29), respectively, for both chip-level and symbol-level schemes. The 

BER performance of the corresponding MF receivers is also shown as a reference. The 

SNR of the desired user in Fig. 3.6 is fixed at 10 dB. From these experiments, we infer 

that the use of chip-level technique leads to significant performance gains for short data 

records. In fact, in Fig. 3.5, we have considered a data record of 500 received samples, but 

6The SNR of the fcth user is defined as Ek/a
2, k = l,...,K. 

48 

1 ! 

n o . 0 

s = $ 6 6- A I»I 
i» —e-»^_^ v v v •• o 

"" - * ^ ~ ~ ^ B — ^ _ ^ 
" ^ ^ ^ - ^ 

~* * , . ^ ^ - - ^ n 

- * . ^ 
- * 

— e — MF (chip-level) 

V ' ivivuK (symDoi leveij 
— u M V U K ^cmp""ieveij 
- * - MVDR (actual R) 

1 1 

— o 0 — ^ 0 <> 

^^^"^-.^ 

" * ^ 3 ^ ^ _ x ^^ra^ 
x ^^~-.^^ 

* 1 ' 
•̂  v 

s 

X 



500 1000 
Number of samples 

1500 

Fig. 3.6 Bit-error-rate of both chip-level and symbol-level detection algo­
rithms as a function of the number of the samples used for estimating the 
autocorrelation matrix. 

the chip-level method still affords a significant gain compared to the symbol level one. 

3.4 Subspace-based Blind Channel Estimation 

Among the many blind multichannel estimation algorithms (see [44] and references therein), 

subspace-based estimation algorithms are particularly attractive due to their accuracy and 

simplicity (they require only second-order statistics of the received signal). In the rest of 

this section, we derive and analyze a simple intuitive subspace-based channel estimation 

algorithm. We understand that more sophisticated channel estimation algorithms for SFBC 

MC-CDMA systems may be derived but this is not the purpose of this section. Instead, we 

aim at a comprehensive study and performance evaluation of the algorithm derived herein. 

These studies identify important properties of SFBC MC-CDMA systems and also provide 

useful performance benchmarks for future developments. 
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For the derivation of the subspace channel estimation algorithm presented in this sec­

tion the only parameters assumed known are: (i) the spreading code of the user of interest 

(assumed to be user 1); (ii) the total number of users K, and (iii) the channel order J. 

Knowledge of the last two parameters allows accurate signal and noise subspace separation 

and it is a common assumption for many subspace channel identification methods [45]. If 

the number of users K needs to be estimated, this can be done through the use of infor­

mation theoretic criteria as in [46]. Similarly, the channel length J can also be estimated 

by applying a rank test criterion to the received signal autocorrelation matrix as in [47]. 

Under the assumption that each user's information symbols are independent and iden­

tically distributed (i.i.d.) and the symbol streams of the users are independent, the auto­

correlation matrix R of the received vector r in (3.5) can be written as 

R = E{ vrH} = GG^ + (72IF, (3.32) 

where the P x 2K matrix G is the effective signature matrix given by 

G = [ g l , r S2,r ••• gK,r gl , i g2,z ••• gtf.i]- (3.33) 

Applying the eigenvalue decomposition (EVD) to the autocorrelation matrix R we obtain 

R - Q A Q H = [Q, Qn] 
A, 0 

0 A„ 
Of (3.34) 

where A = diag[As An] = diag(Ax, A2, • • • , AP), Ai > • • • > X2K > ^2K+i = • • • = Ap = a2 

contains in its diagonal the eigenvalues of R in descending order, and Q = [Qs Qn] is the 

matrix of the corresponding eigenvectors. In (3.34), the columns of Q s = [qi , . . . , qp-^jr] 

span the signal subspace, whereas the columns of Qn = [qp-2/c+ij • • • > qp] span the noise 

subspace. 

The orthogonality between the noise subspace and the signal subspace gives rise to a 

special property of the channel vector h identified in the following Proposition. 

Proposition 2 Let Si>r and Si^ be defined by (3.6) and (3.7), respectively, with k = 1. 

Then, the channel vector h satisfies 

hHflssh = 0, (3.35) 
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where ttss is the 2J x 2J matrix given by 

nss = S j r Q n Q * S l i r + S ^ Q n Q ^ S M . (3.36) 

Proof: Due to the orthogonality between the noise subspace and the signal subspace, both 

effective signatures of the desired user g l r and gi : i are orthogonal to the columns of Q n = 

[<IP-2K+I, • • • JQP] that span the noise^ subspace. Therefore, we have 

HQ^gi , r | | 2 + | | Q f g M | | 2 = 0 . (3.37) 

Moreover, since both real and imaginary parts of the complex transmitted symbol are 

passing through the same channel filter, the latter equation is equivalent to 

h / f Sj r Q n Q^S 1 , r h + h H S 5 Q n Q ^ S l i i h = 0. (3.38) 

or 

h" (Sf rQ„Q^S 1 > r + S%QnQ^Sw) h = 0. (3.39) 

• 
The above proposition implies that the channel vector h can be identified as the eigen­

vector that corresponds to the zero eigenvalue of the matrix fiss in (3.36), provided that 

this eigenvector is unique, i.e., the rank of n s s is 2 J — 1. The identifiability conditions of 

the channel estimator are discussed next. 

3.4.1 Identifiability 

The following theorem presents sufficient and necessary conditions for the unique identifi­

ability (always with a scalar ambiguity) of the channel vector h. 

Theorem 2 Under the assumption that the effective signature matrix G has full column 

rank, sufficient and necessary conditions for the channel vector h in (3.35) to be uniquely 

identifiable up to an unknown complex scalar are as follows 
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• (Sufficient) The following matrix has full column rank: 

Si,r G 0 

Si,* 0 G 

where 

G ± [g2,r gAT.r gl . i 

G = [gl,r g2,r • • • gk.r g2,« 

g/C,t]. 

g*,«]-

(3.40) 

(3.41) 

(3.42) 

(Necessary) P> J + 2K -1. 

Proof: The unique identifiability of the channel vector h in (3.35) can be guaranteed only 

if the equation 

*HK SfJ h = 0, (3.43) 
Q n Q ^ 0 S l i r 

0 QnQ£ J [ SXii 

has a unique solution. Correspondingly, for (3.43) to have a unique solution, we should 

show that r in (3.40), or equivalently, the matrices Tr = [Si)t. G] and I \ = [S^j G] have 

full column rank. Without loss of generality, we focus on r r . Similarly to [24], we will 

prove the sufficient condition by contradiction. Hence, it suffices to show that there does 

not exist h ' linearly independent from h such that SiiT.h' € Q s . Let the matrix T r be full 

column rank and both Si>rh G Qs and Si ) rh' e Q s for h' ^ h. Since span{Q s} = span{G}, 

there exist parameters a and (5 such that 

S l , r h ' = [g2,r • • • gK,r gl , i g2,» • • - gAT.t]" + flgl,r-

Substituting gi>r = Si ] rh in (3.44), we obtain 

S l . r h = [g2,r • • • gtf.r gl , i g2,i • • • gK,i]ot, 

(3.44) 

(3.45) 

where h = (h' — /5h). If h and h ' are linearly independent, then h ^ 0, and (3.45) 

contradicts the full rank assumption of the matrix T r . 

To prove the necessary condition, we use the fact that the channel is identifiable only 

if the 2 J x 2 J matrix Qss in (3.36) is rank deficient by one. Then, there exists only one 
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eigenvector that corresponds to the one zero eigenvalue. Therefore, we should have 

Rank(ftss) = 2 J - 1. (3.46) 

For any two matrices A, B G C m x n , we have 

Rank(A + B) < Rank(A) + Rank(B). (3.47) 

Therefore, we may write 

Rank(ftss) < Rank(S£ rQ„Q^S f e , r) + Rank(Sg iQnQ*S f c ) i). (3.48) 

Also, we have 

Range(Sg rQnQ^S f c , r) = Range(S£rQn), (3.49) 

Range(S&QnQ?SM) = Range(S^Q„). (3.50) 

Using (3.46) - (3.50), it follows that 

Rank(n s s )<Rank(Sg rQn ) + Rank(Sj iQn). (3.51) 

Since both S ^ Q n and S%rQn are 2J x (P — 2K) matrices, the result in (3.51) suggests 

that 

2 J - 1 < m i n ( 2 J , P - 2 / 0 + m i n ( 2 J , P - 2 / 0 , (3.52) 

or equivalently 

P>J + 2K-1/2>J + 2K-1. (3.53) 

• 
An interesting observation from the above theorem is that channel identifiability is 

guaranteed, regardless of the channel zeros location as long as the sufficient conditions 

hold. This property does not apply to OFDM systems, in which channel identifiability is 

not guaranteed when the channels have nulls on the subcarriers [39]. In fact, as opposed to 

the OFDM systems for the channel to be identifiable in MC-CDMA systems, the channel 

matrix [Hi H2] need not full rank, instead, the full rank condition should be satisfied for 

the matrix T in (3.40). 
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It is also worth noting that the necessary condition P > J + 2K — 1 imposes the upper 

bound (P—J+1)/2 on the number of active users in the system. This limitation, which is a 

direct consequence of the complex modulation scheme employed (QPSK), can be overcome 

by using a real modulation scheme (e.g., BPSK). In the case of real modulation schemes 

the received signal in (3.5) can be written as: 

K 

r' = J>'fcgfc,r + n. (3.54) 
fc=i 

Consequently, the channel vector h can be identified as the zero eigenvector of 

« » = S f r Q ; q ; f f S 1 ) r , (3.55) 

where Q^ contains as its columns the eigenvectors of R' = E{ r 'r ' } that span the noise 

subspace. The following proposition identifies necessary and sufficient conditions for the 

identifiability of h. The proof is similar to the proof of Theorem 2 and is thus omitted. 

Propos i t ion 3 Under the assumption that the effective signature matrix G' = [gi)t. 

• • • SK,r] has full column rank, sufficient and necessary conditions for the channel vector 

h in (3.55) to he uniquely identifiable up to an unknown complex scalar are as follows 

• (Sufficient) The matrix [Sii7. g2,r • • • EK,A has full column rank. 

• (Necessary) P>2J + K-1. • 

The above proposition implies that in SFBC MC-CDMA systems that employ blind channel 

estimation and have a limited number of available spreading codes, the user capacity can be 

increased by switching to a real modulation scheme at the expense of bandwidth efficiency. 

We note that since e^h , <ft € [0,2ir) is also an eigenvector of ft8S the channel can only 

be identified within a complex scalar ambiguity. This ambiguity is inherent to any second-

order statistics-based approach for blind channel identification and can be resolved either 

by choosing Differential ST modulation schemes, e.g., [48]- [49], or by transmitting a very 

short training sequence. For the rest of this chapter, we assume that the complex scalar 

ambiguity is compensated by multiplying the estimates by the appropriate scaling factor. 
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3.4.2 SFBC vs. STBC 

In STBC MC-CDMA systems (as in [36]), after overlap-adding (or CP removal) and apply­

ing the L-point Fast Fourier Transform (FFT), the discrete-time frequency-domain L x l 

received vectors over two information symbol periods can be written as 

K 

f [1] = ^ ( M 1 ^ ^ + 6fc[2]SfcFh2) + n i ) 

fc=i 
K 

?[2] = X>;[ l ]S f cFh 2 - 6*[2]SfcFhx) + n2, 

(3.56) 

(3.57) 
k=i 

where bk[l] and bk[2] are the kth user data symbols over a STBC block, F denotes the 

matrix formed by the first J columns of \/LF, ni ,n2 ~ CAf(Q, <r2lL) are the noise vectors 

for the two symbol periods, Sfc = diag{sfc} and Sfc = diag{§fc} with Sfc and §& denoting the 

L x 1 spreading codes assigned to the kth. user. 

Then, the orthogonality between the noise and signal subspace implies that 

Q^SfeFh! = 0 

Q^SfcFh2 = 0 

(3.58) 

(3.59) 

where Qn spans the noise subspace of R = E{fr }. 

The channel vector h can now be identified as the zero eigenvector of a block diagonal 

matrix O, which can be written as 

n^ fti o 
o n2 

(3.60) 

where $7i and 0 2 are square matrices of identical dimensions given by 

Hi 

and 

fii = F SfcQnQn SfcF, 

0 2 = FHSfcQnQ^SfcF. 

(3.61) 

(3.62) 

As can be seen from (3.61) and (3.62), the values of Qi, X72 depend on the users' spreading 

codes but, most importantly, they are equal if the user of interest transmits from each 
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antenna using the same code. Clearly, if fix = fi2 then the vector [h^, hJ]T is also a zero 

eigenvector of Q, (in addition to h = [hj, hf]T) . Therefore, the uniqueness of the solution 

can only be guaranteed if (7i ^ fl2 which, in turn, necessitates that two different spreading 

codes be assigned to the desired user for each transmitter antenna. This requirement 

severely limits the number of users that can be accommodated in a STBC MC-CDMA 

system that employs blind channel estimation. 

3.4.3 Finite Data Record Performance Analysis 

As we pointed out, in practice, the ensemble average of the received signal autocorrela­

tion matrix R is not known and is sample-average estimated using iV received vectors 

as in (3.29). Then, the channel vector estimate h s s is obtained as the eigenvector that 

corresponds to the smallest eigenvalue of the matrix flss given by 

Oss = S* .Q n Q?S 1 ] r + S j Q n Q " S M , (3.63) 

where Q n is the P x ( P — 2K) matrix whose columns are the eigenvectors that correspond 

to the P — 2K smallest eigenvalues of R. In other words, 

h s s = arg min h^flgsh. (3.64) 
h, ||h||=l 

Clearly, for finite N, flss will be a perturbed version of £2SS, i.e., S7SS = ttsg + 8flS8. The 

perturbation 5QSS will cause, in turn, an error in the estimated channel h s s . In the rest 

of this section, we study the behaviour of the estimator in (3.64) for a finite data record 

size N. Specifically, by applying the small perturbation analysis technique, we show that 

the estimator is unbiased and we derive a closed form expression for its mean-square-errpr 

(MSE) performance. 

Mean-Square-Error Performance 

The MSE for subspace-based channel estimation algorithms under a general framework 

has been investigated in [40], [41]. The derivations, however, are based on the Singular 

Value Decomposition (SVD) of R. In this work, we base our analysis in the context of 

SFBC MC-CDMA systems on the EVD of R. This approach is not only consistent with 

the EVD-based channel estimation algorithms presented at the beginning of this section 

but also provides an analytical expression for the MSE that is closer approximation to its 
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corresponding actual MSE in low SNR than expression based on the SVD as is demonstrated 

in our simulation studies. The following theorem investigates the channel estimator bias 

and provides an analytical expression for its MSE under a small perturbation assumption. 

Theorem 3 Let Shss — h — hss be the estimation error of the estimator in (3.64)- Then, 

we have 

(i) E{Shss} = 0, i.e., the estimator is unbiased. 

(it) The mean-square-error (MSE) E{||5hss||
2} is 

E{||5hss||
2} ~ ^(p r , r ir{S rSf} + prjtriErV?} + / v M ^ E f } + / ^ { E ^ f }), 

where S r •= $7J,aSfrQn, E$ = fj|sSfjQn and the scalars pr,r,pT,i> Pi,r, and piti are, respec­

tively, given by 

pr>r = h ^ S g r t R T t S i A pr,i = h ^ S g T t R T t S i A 

Pi,r = h H S£TtRTtS 1 ) r h, Pi,i = h^S^TtRYtSj^h. (3.65) 

mf/iT = Q s(A s-(72I)Qf. 

Proof: Due to finite data samples, the imperfect estimation of R introduces an estimation 

error 5H in R, i.e., R = R + <5R. This, in turn, results in perturbations of the estimated 

subspace Qn and the channel vector. In [50], it is shown that the first-order perturbation 

expansion can be used to get a linear approximation to the perturbations in the noise 

subspace and channel estimate, respectively, as 

5Qn ~ - T ^ R Q n , (3.66) 

5hss = hss - h ~ -nls5Qssh, (3.67) 

where 

T t QS(AS - a2I)Qf. 

According to (3.36), a perturbation in estimating Qn results in perturbation of fiss equal 

to 

5nsa ~ Sf r(5QnQ^ + Q„<JQ^)Si,r + S£(<JQnQ* + Q^Q^)S1 , i . (3.68) 
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Substituting (3.66) into (3.68), and (3.68) into (3.67), and noticing that 

Q^S l i rh = Q£SMh = 0, 

we obtain 
5hss ~ J4SJ.QnQ?$RTtS l i rh + n^SjOnQ^^RTtS!,^. (3.69) 

From (3.69), we can see that 6hss is linearly related to <5R. Considering the fact that R is 

an unbiased estimate of R, i.e., E{£R} = 0, (3.69) implies that the bias of the estimated 

channel vector is zero: E{d>hSs} = 0. This proves part (i) of the Theorem. 

To prove part (ii), we first evaluate the covariance of <5hss. To keep the notation brief, 

we will define two matrices: 

S r = fi|sSfrQn (3.70) 

s, = n^s&Qn.- (3.7i) 

Then, the covariance of <5hss can be written as 

E{£hss5hfJ ~ S rQ^E{5RT tS 1 , rhh i ?Sf rTUR}Q nSf 

+E rQ^E{5RTtS1 , rhh / fSf iYtSR}Qn£f 

+£ i Q^E{SRr tS M hh i f S£ r TUR}Q n £? 

+S iQ^E{5RTtS l i ihhHSf iT
t
<5R}Q„Sf. (3.72) 

For a multirate CDMA system, it is shown in [51] that the expectation of the quantity 

<$RZ<5R for an arbitrary matrix Z can be evaluated. Applying the results in [51] to (3.72), 

we obtain the following closed form expression for the MSE: 

2 

E{||5hss||
2} ~ ^r ( P 7 , r t r{£ r £f} + p r i i t r{S rEf} + ^ t r ^ E f } + / ^ t r ^ H f }), (3.73) 

where pr>r, pr>i, pi>r, and ptj are scalars defined in (3.65). • 

The unbiasedness of the estimator implies that the MSE given by (3.65) will be lower 

bounded by the CRB [52] that we derive next. 
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3.4.4 Cramer-Rao Bound 

Most existing literature on the CRB for channel estimation in CDMA systems relies on 

the knowledge of all the users' spreading codes [42], [43]. Obviously, this assumption is 

not valid in the downlink where the receiver has no knowledge of any other active user's 

signature in the system but his own. In this subsection, we are interested in deriving a 

CRB for the channel estimation error which makes no assumption on the spreading codes 

and treats them as deterministic unknown quantities. This approach is especially useful 

for the downlink transmissions and provides a tighter bound than the CRB derived under 

the assumption of known spreading codes. In fact, the Cramer-Rao Bound (CRB) can be 

viewed as a measure of how difficult the corresponding estimation problem is. For example, 

in the problem of blind and supervised (i.e., under the assumption of known transmitted 

symbols) channel estimation one would expect the CRB in the first case to be higher than 

in the second case. This is due to the fact that the use of the training sequence results 

in an "easier" problem since a channel estimation algorithm would not have to deal with 

the uncertainty on the transmitted symbols but instead could incorporate the knowledge of 

their exact values to improve the estimation performance. Similarly, the knowledge of all 

the spreading sequences results in an "easier" estimation problem in the sense that it can 

lead to improved performance compared to the case when only a single spreading sequence 

is known. Therefore, we would expect that knowledge of all the spreading sequences should 

yield a lower CRB which would be a looser bound for algorithms that assume knowledge 

of only one spreading sequence compared to a CRB derived under the same assumption. 

Finally, we note that our derivation is based on a deterministic model for the transmitted 

symbols. This latter assumption leads to a CRB that is less tight than that obtained under 

a stochastic assumption on the transmitted symbols. However, the difference between the 

deterministic model versus the stochastic model is not considerable [53]. 

Treating the transmitted symbols as nuisance parameters, the likelihood and log-likelihood 

functions for iV consecutive received blocks are, respectively, given by 

L(r ( l ) , . . . , r (7V);0) = ( ^ 2 ) - P ; V e x P ( - ^ f ; r(n)-

K 

^ ( s f c , r h ^ ( 6 f c ( n ) ) + Sfciih9(6fc(n))) 
fc=i 

(3.74) 
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and 

1 N 

£ t lnL(r(l) , . . . , r(JV); 6) = -PN\n{ira2) - — £ r(n) 

K 

£(s*,rhH(&fc(n)) +Sfciih3(6fc(n))) 
fc=i 

(3.75) 

where 0 = [0jf, 0 j , 0)[]T, is a real vector ollength 2KN + 4 J + (K - 1)L and denotes the 

set of unknown deterministic parameters with 

b(n) = [61(n))62(n))...,6^(n)]T,n = l,2,... ,iV; 

»fc = [3?(h1)r^(h1)r,^(h2)T^(h2)T; 
06 ^ [^(b(l)) J ,^(b(l)) J , . . . ,3J(b(iV)) i ,9(b(iV)) i]T ; 
a ^ r T T lT 
" s — ls2 ) • • • i °K\ v (3.76) 

Denoting by 0 any unbiased estimator of the vector 6, the CRB provides a lower bound 

on the variance of the unbiased 9 estimate, i.e., 

E {(0 - 0)(0 - 0)T} > CRB(0) = diag(J^)-1 , (3.77) 

where 3 00 is the Fisher information matrix (FIM) for the parameter vector 0 given by 

J-H(* dc\T 

de) 

Jbb Jbs Jbh 

V T 
^bs J s s 

»sh 
T T T T T J b h J s h J h h 

(3.78) 

In oder to evaluate the elements of the FIM in (3.78), we first compute the partial derivatives 

of log-likelihood function in (3.75) with respect to 0 to obtain 

9C(r) 
de 

' d£(r) V ( dC(r) Y (d£(r)\T (d£(r)\T (d£(r)\ 
-lT 
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where 

acfr) 
dSt(b(p)) 

9C(T) 

S9f(b(p)) 

0£(r) 
d3(h) 

dC(v) 
dsk 

= -3J(Gfn(p) ) , 

= ^ * ( G ? n ( p ) ) , 

N K 

EE^^NP))-
p = l fc=l 

N K 

= iEE^-^WMp)), 
P=I fc=i 

^£»(Tfc(p)*n(p)) A; = 2 , . . . , K, 

(3 

(3 

(3 

(3 

(3 
P=I 

with 

Tfc(p) = (H1FffD1+H2FffD3)5R(6fe(p)) + (H1FffD2 + H2F
HD4)Q(6fc(p)), 

€?*(p) = SJfe,r»(6fc(p))+SMa(6fc{p)), 

G r = [gl,r g2,r ••• gA",r]> 

Gj = [gl,i g2,i • • • gtf.i], 

S = ^ . . . . . S j f ] . 

The elements of the FIM can then be calculated as 

T' 

E 
dC(v) ( dCjv) A _ 

m(b(p)) \du{b(q))J 

f dC(r) ( dC(v) V 
|9»(b(p)) ^ ( b ^ 

d£(r) / 0£(r) 
'a9f(b(p)) \ ^ ( b ( g ) ) 

= — » ( G ^ G r ) = 7fr<Jp. 

^ ( G f G ^ T f ^ 

r^ 

> = —3? ( G f G r ) = TTi8Ptq 

a* 

E 
dC(r) I d£(r) 

33(b(p)) I d3(b(</)) = -3?(GfG,)=M>: 

(3 

(3 

(3 

(3 
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E 

E 

E 

E 

E 

E 

[dSt{b(p)) 

I dC(T) 
[aof(b(p)) 

dCjv) 
dU(b(P)) 

dC(r) 
dU(h(P)) 

dC(r) 
33(b(p)) 

dC(r) 
aof(b(p)) 

8C(r) (8C{v) 
dsk 

dC(r) 
dsk 

A 
-2U (Gf %{p)) £ 2>fc,r(p) 
0" 

2 A 
= -5R (Gf rfc(P)) ^ ^ M ( P ) 

E 

[ dsk 

d£(r) 
^ dsk 

[ osk 

E (ftfr) 
\$ft(h) 

\d$ft(h) 

F / 5 £ ( r ) 

E \5§(hy 

F / d c { r ) 

\dStOx)) 

/ ^ ( r ) \ r > 

> 

faC(r)\T> 

d£(r) 

K 

±Y;x(G?gk(P))^uP) 
a 

2 
(7 

<7' 

fe=l 

K 

E*(G^*(P))=6(P) 
fc=l 

A : 

= ^£*(J ' G ?&(P)) = 6(P) 
fc=i 
iV 

^3?(r f c(p)^r f c ,(P))^<s f c , f c , 

d£(r)\T^ 
dU(h)J 

d£(r)\T^ 
d^s(h)J 

P=i 
N 

p=\ 
N 

a 

2 

N K 

= ^EER(^w^w)=^ 
TV K" 

l££»Cift(p)"&(p)) = * 

E E s ( f t ( A w ) ^ 

_2 
a5 

2 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

(3.92) 

(3.93) 

(3.94) 

(3.95) 

(3.96) 

(3.97) 

(3.98) 

(3.99) 

(3.100) 

P = I fe=i 
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Let us define the following block matrices: 

n^ 7Tr 7\ 

7fj Ti 

•r A 

r 

i 
,V(P) = 

r f r ) ••• 

i(p) ••• 

T 

VKAP) 

' 4> f 

,S(n) 

,s± 

A fr(") lr(w) 

52,2 • • • S2,K 

$K,2 • • • SK,K 

. (3.101) 

Assembling the equations (3.84)-(3.101) results in the following FIM: 

J00 
A 

n 0 
0 n 

0 0 .. 

T>T(1) VT{2) .. 

_ S r ( l ) S r(2) .. 

0 

0 

n 
. T>T(N) 

. ST(N) 

2>(1) 

2>(2) 

T>(N) 

S 
q,r 

3(1) ' 
S(2) 

S(N) 

* 

$ 

(3.102) 

Finally, the submatrices Jbt>, Jbs, Jbh, Jss, Jsh, and Jhh in (3.78) have dimensions 2KN x 

2KN, 2KN x(K- \)L, 2KN x 4J, (K - 1)L x (K - \)L, (K - \)L x 4J, AJ x 4J , 

respectively, and are defined as 

A 
3hs~[D(l)T,...,V(N)T, 

A Jbh = [ 3 ( l f , . . . , 3 ( i V f r , 

T A T o 
J bb — Aw <& n, 7 - <? 

J h h = * , 
(3.103) 

Using the block matrix inversion formula and forming the Schur complement of matrix 

Jhh in (3.78), we obtain the following expression for the inverse CRB matrix of channel 

estimation: 

A 
J(h) = J h h - [Jb h 3ih] 

Jbb Jbs 

7 T T 
J b s J s s 

- 1 
Jbh 

Jsh 
CRB-^h). (3.104) 

In general, since the blind channel estimation is only possible up to a scalar factor, it is 

expected that the matrix in the RHS of (3.104) to be singular. To regularize the channel 

estimation problem, a set of constraints should be imposed on the channel. In this work, 

instead of applying constraints on the channel, we choose to form the CRB by taking 
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Fig. 3.7 The MSE as a function of the SNR. 

the Moore-Penrose-inverse of the FIM. The latter corresponds to the application of the 

minimum number of independent constraints [54]. Then, we have 

CRB(h) = J h h - [31 bh JshJ 
J b b 

J b s 

J b s 

" s s 

J b h 

J s h 
(3.105) 

3.4.5 Simulations Studies 

We consider a MC-CDMA system with 6 users utilizing code sequences of length7 32 which 

is also the number of subcarriers. We use zero padding of length 8 which is l /4 th of the 

FFT size. A data record of N = 200 samples is used for estimating the autocorrelation 

matrix. The transmitter and the receiver are equipped with 2 and 1 antennas, respectively, 

while the SFBC employed is the orthogonal block code of [3]. Each subchannel has 3 paths 

each with a variance of a\ — 1. In what follows, the presented results are averages over 

Constructed from Gold sequences of length 31 by appending a +1. 
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Fig. 3.8 The MSE as a function of the number of samples used for estimating 
the autocorrelation matrix. 

100 independent channel realizations. 

Fig. 3.7 depicts the MSE performance versus the SNR of all users (assumed to be the 

same). From Fig. 3.7, we infer that for high SNR values the analytical expressions provide 

good approximations to the actual MSE's obtained from simulation. Also in Fig. 3.7, we 

included the theoretical MSE performance based on the SVD (see [40], [41]). It can be seen 

that in low SNRs our MSE expression based on the EVD provides a closer approximation to 

the actual MSE than SVD-based expressions. In Fig. 3.8, we examine the effect of the data 

record size used to form the autocorrelation matrix estimate in (3.29) on the performance 

of the subspace-based method. The SNRs of all users in the system are fixed at lOdB. In 

both Figs. 3.7 and 3.8, we also plot the CRB along with the analytical and experimental 

MSE curves. As can be seen from Fig. 3.8, by increasing the data record size, there is 

a considerable improvement in estimation error. This was expected because the subspace 

algorithms rely heavily on the good estimate of the autocorrelation matrix. 

In order to examine whether the subspace algorithm is able to approach the CRB in 
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Fig. 3.9 The MSE as a function of the SNR of the desired user. 

large SNRs, we plot in Fig. 3.9 the MSE performance versus the SNR of the desired user. 

For this experiment, all other users in the system are assumed to have a SNR of 10 dB. 

As can be seen from Figs. 3.7, 3.8, 3.9, the CRB which incorporates the knowledge of 

spreading codes of all users in the system always provides a looser bound than the CRB 

which assumes no knowledge of the interfering users' signatures. However, as it is shown in 

Fig. 3.9, in high SNRs both CRBs are almost identical. This can be attributed principally 

to the fact that as the SNR of the desired user increases the effect of the MAI and in turn 

the assumption of the knowledge of the interfering users' signatures becomes less significant. 

Finally, to demonstrate the appropriateness of the use of the CRB with unknown signa­

tures (i.e., providing a tighter bound on the MSE) in high interference situations, the MSE 

versus the number of active users is shown in Fig. 3.10, while in Fig. 3.11 the MSE perfor­

mance is studied in near-far situations. The near-far situation arises when the signals from 

the interfering users arrive at the receiver with higher power than that of the desired one. 

For Fig. 3.11, the near-far ratio is defined as the ratio of the power of interfering users to 

the power of the desired user. The SNR of the desired user is fixed at lOdB. Figs. 3.10 and 
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Fig . 3.10 The MSE as a function of the number of users in the system. 

3.11 show that the CRB which assumes the knowledge of all signatures is a monotonically 

decreasing function of interference. The decreasing behaviour also illustrates that this CRB 

is not a meaningful benchmark for the downlink channel estimation performance. This is 

expected since the other users' signals are not treated as interference and are assumed to 

be explicitly utilized for channel estimation. On the other hand, the CRB that treats the 

interfering users' spreading codes as unknown deterministic quantities becomes flat for high 

interference levels. Also from Fig. 3.11, we see that the MSE performance of the channel 

estimation algorithm in insensitive to the near-far ratio. In other words, subspace-based 

channel estimation algorithms are near-far resistant. 

3.5 MVDR-type Blind Channel Estimation 

In the previous section, we studied subspace-based algorithms for blind channel identifica­

tion in SFBC MC-CDMA systems. Unfortunately, the application of subspace methods is 

limited to the favorable communication systems such as those with light loading or mild 
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Fig. 3.11 The MSE as a function of the Near-Far Ratio. 

multipath distortion. In this section, as a closely related method, we present MVDR-

type channel estimation algorithms which are built on MVDR beamforming principles. As 

we will show, the technique significantly outperforms the subspace method in the case of 

medium to heavy system loading. This stems from the fact that unlike subspace approaches 

which rely on subspace decomposition, the MVDR algorithms are based on subspace ap­

proximation. Therefore, they avoid rank estimation and show robustness to system loading 

and other imperfectness such as channel order mismatch [55]. 

Consider a filterbank W = [wmv, r wmv,j] whose design is based on the MVDR ap­

proach, i.e., it is designed to minimize the sum of the variance at the output of each filter 

while at the same time imposes a constraint of unit-response to gi>r and gi,; [24], i.e., 

W m j n = arg min t rCW^RW), subject to 

w£v,rgi,r = 1 and w£v,igi,t = 1 (3.106) 

It can be shown that the minimum overall output power of the filterbank as a function of 
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the channel vector h is given by 

V(h) - ( h ^ R ^ S ^ h ) - 1 +-(h f fS([ iR-1S1 , ih)-1 . (3.107) 

In the MVDR method we estimate the channel vector h by maximizing the overall output 

variance in (3.107). Note that V(h) in (3.107) is a nonlinear function of h. Therefore, 

rather than maximizing (3.107), we follow the common approach of solving the following 

minimization problem [16]: 

h m v = arg min ^ ( S ^ R ^ S i r + S f i R " 1 S l i ) h . (3.108) 
h, | | / i | |= l ,r 

In particular, the estimated channel vector is identified as the eigenvector that corresponds 

to the minimum eigenvalue of the 2 J x 2 J matrix O m v given by 

Qmy = S^ .R-%, , . + S ^ R - % , ; . (3.109) 

The issue of existence and uniqueness of the MVDR-type channel estimate has been 

addressed in [24], [16]. The following theorem states a sufficient condition for the problem 

under consideration which guarantees the channel vector to be identifiable up to a complex 

scalar. The proof is similar to that of Theorem 2. 

T h e o r e m 4 A sufficient condition for the channel vector hmv in (3.108) to be uniquely 

identifiable up to an unknown complex scalar is that the following matrix has full column 

rank: 

where 

G = [g2,r ••• gK,r gl.i &,» ••• gtf.i], (3.111) 

G = [gl,r g2,r ••• &K,r g2,i ••• gtf.t]- (3.112) 

• 

The above theorem implies that since T in (3.110) is a 2P x 2(J + K — 1) matrix, for 

the sufficient condition to be satisfied, we should have K < (P — J + l ) /2 . However, 

Theorem 4 does not imply that the channel is not identifiable for K > (P — J + l ) / 2 . In 

Si,P G 0 

Si,* 0 G 
(3.110) 
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fact, simulation studies presented later show that the MVDR estimator can provide reliable 

channel estimates even for K > (P — J + l)/2. This is in contrast to the subspace approach 

in which for K > (P — J.+ l ) /2 the noise subspace does not exist at all and the subspace 

algorithm is not applicable. Another advantage of the MVDR algorithm is that unlike 

subspace methods, there is no need for the number of users to be estimated. 

As we mentioned, in practice, the ensemble average of the received signal autocorrelation 

matrix R is not known and is replaced by R. Then, the channel vector estimate h is 

obtained as the eigenvector that corresponds to the smallest eigenvalue of the matrix O m v 

given by 

^mv = S l r R ~ Si i r + S j j R - S^j. (3.113) 

In other words, 

h m v = arg min hH£lmvh. (3.114) 

3.5.1 Performance Analysis 

It is expected that in practical scenarios the performance of the MVDR channel estimator, 

as for many other blind channel estimation techniques, to be subject to various sources 

of degradation such as background noise, finite data samples, unknown channel order, 

etc. Thus, performance prediction under those errors is necessary to better evaluate the 

robustness of the method. In this subsection, we study the performance of the MVDR-

based channel estimation techniques under sufficiently large data record size and small 

noise assumptions which result in small perturbations to R. More specifically, we first 

evaluate the bias of the estimator due to the noise assuming that perfect knowledge of R 

is available. Then, we study the variance of the estimator caused by replacing R with its 

sample average estimate R. 

The following theorem presents a closed form expression for the channel estimation error 

due to noise only. The proof is an extension of the perturbation analysis presented in [24] 

and is thus omitted. 

Theorem 5 Let Si ir and S^; be defined by (3.7) with k = 1. Then, under small noise 

assumptions, the channel estimation bias Ah is given by 

A h m v = hmv - h ~ -a 2 AJ,Aih, (3.115) 
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where 

A 0 = S f r Q n Q^S 1 > r + S % Q n Q ^ S M , (3.116) 

Ax = S j r Q a A 7 1 Q ? S l i P + S 5 Q s A ; 1 Q f S 1 , i . (3.117) 

Next, we study the behaviour of the estimator in (3.114) for a finite data record size 

N. Clearly, for finite JV, fimv in (3.113) will be a perturbed version of ftmv, i.e., flmv = 

fimv+<^mv- The perturbation <5fimv will cause, in turn, an error in the estimated channel, 

i.e., h m v = h m v + <5hmv. The following theorem investigates the channel estimation error 

between h m v and h m v due to finite data record size and provides an analytical expression 

for its variance under a small perturbation assumption. 

"Theorem 6 Let Shmv — hmv — hmv and 5R = R — R be the perturbation to the channel 

estimator hmv in (3.114) and the sample-average estimate R in (3.29) due to finite data 

samples assumption, respectively. Then, we have 

(i) 
E{6hmv} = E{nlvSnmvhmv} = 0, (3.118) 

where 5flmv = S ^ R - ^ R R ^ S ^ + S f t R r M R R ^ S i . i . 

(ii) The variance of an estimate hmv is given by 

EiWShmvW2} ~ tr{^E{SRTrrSR}tr} + tr[E^E{SRrriSR}%} 

+tr{tfE{5RrirSR}tr} +«r{X3fE{<JRTii<yR}Si}, (3.119) 

where for an arbitrary matrix Z, E{SRZSR} = (tr{RZ}R-G(lQGHZG)GH)/N, S r = 

R-1Si,rOmw> ^ i = R_1Si,jf2|raw, and the matrices Trr,Tri, T j r ; and Yu are, respectively, 

given by 

l r r = R b l r I l m j ; J l m t ; b 1 ] r R , 

T r j = R hitrhmvnrnvoliR , 

l j r = R oitih.mvu.mvolrR , 

Tjj = R S'i jthmi;hmt;S1)iR . (3.120) 
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Proof: According to (3.109), the matrix fimv is a function of R_1 , therefore, the imperfect 

estimation of R due to finite data samples introduces a perturbation on Om v . This, in turn, 

results in perturbation of the estimated channel vector hm v . 

Using the first-order Taylor expansion, we have 

(R + J R ^ - R - ' - R ^ R R - 1 . (3.121) 

Substituting (3.121) into (3.109), we obtain the following expression for the perturbation 

of flm v 

Snmv = -(Sj rR-1«JRR-1S1 , r + S^R-MRR-^Li ) . (3.122) 

In [50], it is shown that the first-order perturbation expansion can be used to get a linear 

approximation to the perturbation in the channel estimate as 

"hmv = "mv — Wmy — _ " m v ^ ' m v % v i (3.123) 

Substituting (3.122) into (3.123), and noticing the fact that both fimv and R~x are Her-

mitian matrices, we obtain 

«5hmv = (XJ^RR-^Lr + IJf <JRR_1SM)hmv, (3.124) 

where E r = R _ 1 Si j r n m v , and Sj = R~1Siijfimv. 

From (3.124), we can see that Shmv is linearly related to SH. Considering the fact that 

R is an unbiased estimate of R, i.e., E{£R} = 0, (3.124) implies that: E{£hmv} = 0. This 

proves part (i) of the Theorem. 

To prove part (ii), we first evaluate the covariance of 8hmy given by 

E{6h5hH} ~ S f E{«JRTrr«JR}Sr + S f E{^RY r i5R}S i 

+ S f E{<JRTir«JR}EP + S f E{«JRT««JR}Ei, (3.125) 
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where the matrices T r r , T r i , T i r , and T,j are, respectively, given by 

X r r = Jrl h i ) r h m v h m v b l r r { , , 

X rj = r t bi)T.hmv"niv"i,i-':*' ' 

Xj r = H, hi^hnivhinv^i^-"- > 

Tjj = R _ S i ^hmvh jnyS!^ - . (3.126) 

Finally, taking the trace of the covariance matrix in (3.125), we get the expression for 

E{| |£hm v | |2} given by (3.119). • 

Combining the results from Theorem 5 and 6, the MSE for the MVDR channel estimator 

is given by 

E { | | h m v - h | | 2 } = E { | | ( h m v - h ) + ( h m v - h m v ) | | 2 } 

= E{(Ah m v + 8hmY)H(AhmY + Shmy)} 

= | |Ah m v | | 2 +E{ | |<m m v | | 2 } . (3.127) 

In the derivation of (3.127), we have used the fact that A h m v is deterministic which in 

conjunction with the result from the part (i) of Theorem 6 implies Ah^lvE{Shmv} = 

E{#h^ v }Ah m v = 0. The first term in the RHS of (3.127) represents the contribution to 

the MSE of the bias of the estimate hmv- This is in contrast to the subspace approach 

which provides unbiased estimates. It is worth noting that at sufficiently high SNR, since 

the squared norm of the bias is proportional to a4, the first term in (3.127) can be considered 

negligible and as a —* 0, the MSE converges to E{| |Jhm v | |2}. 

3.5.2 Cramer-Rao Bound 

From (3.127), we see that the MVDR method is a biased estimator, therefore, the corre­

sponding MSE cannot be compared to the traditional CRB which is valid only for unbiased 

estimators [52]. In the following, we will derive the CRB for biased SFBC MC-CDMA 

channel estimators under the assumption that transmitted symbols, channel and spreading 

codes are all unknown deterministic quantities. 

The CRB on the covariance of a biased estimator is given by [56] 

E {(« - E{9})(fl - E{9}f} > M£> J - ^ f , (3.128) 
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where 

dE{0} 
80 

dE{0b} dE{0b} dE{0b} 
~ffl, W, ml 

dE{6s} dE{0s\ dE{0s\ -dsr ~&r ~wr 
dE\eh\ dE{0h\ dE{0h} 

ddb dO. dOh j 

(3.129) 

Recognizing the fact that the channel bias expression in (3.115) is not a function of the 

transmitted data symbols 0b, we may readily conclude that —AV h> — 0. Moreover, since 

our channel estimator is not tied up to a code signature estimator, we may make the 

assumption that the code signature vectors are estimated by an unbiased estimator, i.e., 

—A s> = 0. Therefore, the CRB on the covariance of the MVDR channel estimator is 

given by 

E | ( h m v - E{hmv})(hmv - E { h m v » T } 

> ^ l M T j t ( h ) 
aE{h m v } \ T t . u .9E{h m v } 

ddh dOh 
= BCRB(h), (3.130) 

where J(h) is the Schur complement of matrix Jhh in (3.78) defined by (3.104). 

In (3.130), E{hmv} = h + Ahm v = (hj - a2AjAi)h, and 

with 

aE{hmv} 
d0h 

^ E { h m v } \ T (dE{\xmv) 
ast(h) J ' \̂  93(h) 

n T 

(3.131) 

dE{hmv} _ / 2 t \ 

Finally, the lower bound on the overall mean-squared channel estimation error can be 

obtained as 

mv||2. (3.132) E{||hmv - h||2} > tr{BCRB(h)} + ]|Ah: 
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Fig . 3.12 The MSE as a function of the number of users in the system. 

3.5.3 Simulations Studies 

We consider a MC-CDMA system with 6 users utilizing code sequences of length8 32 which 

is also the number of subcarriers. We use cyclic prefix of length 8 which is l /4th of the FFT 

size. Unless otherwise specified, a data record of iV = 100 samples is used for estimating 

the autocorrelation matrix. The transmitter and the receiver are equipped with 2 and 1 

antennas, respectively, while the SFBC employed is the orthogonal block code of [3]. Each 

subchannel has 4 paths with a variance equal to a\ — 1. In what follows, the presented 

results are averages over 100 independent channel realizations. 

To show the merit of the MVDR channel estimator versus its subspace counterpart for 

an overloaded system we show in Fig. 3.12 the experimental MSEs for both algorithms 

versus the number of active users. For this experiment, all interfering users are assumed 

to have a SNR of 10 dB while the SNR of the desired user is fixed at 20 dB. As can be 

seen from Fig. 3.12, for 10 < K < 20 the MVDR method substantially outperforms the 
8 Constructed from Gold sequences of length 31 by appending a +1. 
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Fig. 3.13 The MSE as a function of the SNR. 

subspace approach while for K > 20 the latter is not applicable anymore. 

In the following studies, we examine the accuracy of the MSE expression in (3.127) and 

we compare the MSE performance of the MVDR algorithm to the lower bound in (3.132). 

We also examine the accuracy of the bias expression in (3.115). Fig. 3.13 shows the MSE 

performance of the MVDR channel estimator as a function of the input SNR. From Fig. 

3.13, we infer that for the relatively high SNRs the analytical expressions of the bias and 

the MSE provide good approximations to their corresponding actual values obtained from 

simulations. In Fig. 3.14, we examine the effect of the data record size used to form the 

sample estimate R on the performance of the MVDR algorithm. The SNRs of all users in 

the system are fixed at 10 dB. As can be seen from this experiment, by increasing the data 

record size, there is a considerable improvement in the MSE. This was expected because 

the MVDR algorithm, as any other second-order statistics-based method, relies heavily on 

a good estimate of the autocorrelation matrix. 

Finally, in Fig. 3.15, the MSE performance is studied in near-far situations. The near-

far situation arises when the signals from the interfering users arrive at the receiver with 
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Fig. 3.14 The MSE as a function of the data record size. 

higher power than that of the desired one. For this experiment, the near-far ratio is defined 

as the ratio of the power of interfering users to the power of the desired user. The SNR 

of the desired user is fixed at 20 dB. From Fig. 3.15, we see that the MVDR channel 

estimation algorithms are near-far resistant. 
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Chapter 4 

Space-Frequency Block Coded 

MC-CDMA: A Pos t -FFT Approach 

4.1 Introduction 

In the previous chapter, we introduced blind channel estimation and detection schemes for 

SFBC MC-CDMA systems that combine the advantages of SFBC with those of MC-CDMA 

to alleviate some of the shortcomings of SFBC-OFDM or those of STBC MC-CDMA sys­

tems. Our approach, however, was to exploit the covariance matrix of the time-domain 

received vector (i.e., before overlap-adding (or CP removal) and FFT operation). In this 

chapter, we extend our scope of interest and expose yet another very interesting property of 

the SFBC MC-CDMA systems which is a structured covariance matrix at the output of the 

Fast Fourier Transform (FFT). In fact, as will be illustrated, for the post-FFT approach the 

entries of covariance matrix which form alternating subdiagonals of the corresponding ma­

trix are zero. Our study reveals that, as opposed to their pre-FFT counterparts presented 

in the previous chapter, the channel estimation and detection schemes obtained using the 

post-FFT approach have the advantage of fully exploiting the inherent structure imposed 

by SFBC on the covariance matrix to yield improved performance at lower computation 

complexity. The price to be paid for these achievements is some loss in the degrees of 

freedom of the estimators (i.e., fewer users can be supported by the channel estimator) for 

an overloaded system, where the number of active users is relatively large compared to the 

FFT size and the length of the channel. 

In general, there exist different strategies in designing blind channel estimators for dif-

79 



ferent communication scenarios. Many of these blind schemes are designed using either the 

sample data covariance matrix directly or its eigencomponents. However, there are two 

major design considerations associated with such blind algorithms. First, they require the 

collection of sample records that are sufficiently long to ensure the accurate estimation of 

the sample covariance matrix. Second, they tend to have a computational complexity that 

is normally cubic in the length of the received vector. All these issues become even more 

problematic when multiple antennas are involved on either or both sides of the transmis­

sion ends. This stems from the fact that the length of the received vector of the resulting 

multiple-antenna implementation increases as the number of antennas is increased. A longer 

received vector in turn implies the collection of longer sample records and higher compu­

tational complexity. Those provide the motivation for computationally efficient methods 

requiring relatively short data records such as those presented in this work. Particularly, 

as in Chapter 3, we formulate two methods that rely on the second-order properties of 

the frequency-domain FFT-processed received blocks, namely: (i) a Minimum Variance 

Distortionless Response (MVDR)-type channel estimator, and (ii) a subspace-based chan­

nel estimator. For these methods, we address the issue of channel identifiability and we 

investigate the necessary and sufficient conditions under which the channel estimates are 

unique (within a complex scalar). Our studies reveal that unlike subspace methods the 

MVDR algorithms can be employed in medium to highly loaded systems; besides, they are 

more advantageous in systems with severe multipath distortion, small FFT size, or small 

processing gain. 

In practice, the channel is estimated from the received signals, and those estimates 

coincide with the true channel only when the number of received samples becomes infi­

nitely large. Therefore, channel estimators show performance degradation when there is 

insufficient number of data samples. In this chapter, with the aid of the analytical studies 

in [51] and [55], we investigate the performance of the aforementioned algorithms under 

finite sample size. More specifically, we derive the analytical closed-form expressions for the 

bias and the MSE of each estimator under small perturbations assumptions, and we show 

that, unlike their subspace counterparts, the MVDR algorithms are asymptotically biased. 

In the derivation of the asymptotic bias expression (i.e., the bias due to the noise) for the 

MVDR methods, we suggest a new approach based on the Newton-Raphson criterion that 

is robust to the number of active users in the system. It should be noted that the bias 

expressions presented in [24] for the MVDR-type channel estimators are based on the noise 

components of the received signal covariance matrix and are not applicable to the system 
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under consideration for which the noise subspace may not exist at all in the medium to 

heavy loaded systems. Finally, to benchmark the accuracy of our estimation algorithms we 

also derive the Cramer-Rao bounds (CRBs) for both biased and unbiased estimators which 

are exclusively designed for the downlink transmissions. 

The rest of this chapter is organized as follows. In Section 4.2, we describe the com­

bined SFBC MC-CDMA system model. The second-order statistics (SOS)-based blind 

channel estimation algorithms are presented in Section 4.3. In Section 4.4, we provide 

some modifications of the presented algorithms to enhance their performance and lower 

their computational complexity. The issue of channel identifiability is also addressed in 

4.4. In Section 4.5, we analyze the performance of the derived algorithms by providing 

the channel estimators' MSE. The analytical expressions of the CRB for both biased and 

unbiased estimators are derived in Section 4.6. The MVDR-based linear joint SF block 

decoding and detection algorithms are investigated in Section 4.7, followed by simulation 

studies in Section 4.8. 

4.2 System Model 

We consider a wireless system where downlink transmissions take place using the combined 

SFBC and MC-CDMA scheme described in Chapter 3. However, in this chapter, we take a 

different approach for representing the received vector, namely, we define the discrete-time 

frequency-domain L x l received vector after removing the CP and applying the L-point 

Fast Fourier Transform (FFT). In this case, the received vector r is given by 

r = FHxF^X! + FHaF^Xa + n, (4.1) 

where Hi and H 2 are Lx L circulant channel matrices defined in (3.14) and (3.15), respec­

tively; F is the Lx L FFT matrix whose (m, n)th entry is equal to exp{— j2n{m — l)(ra — 

l)/L}/v/I; and n ~ CN(0,a2IL) is additive white complex Gaussian noise. 

4.2.1 Equivalent Single-Input-Single-Output Representation 

To explicitly express the received vector in terms of the unknown channel vector h that we 

wish to estimate, we rewrite r in (4.1) by separating the real and imaginary components 
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of the transmitted symbols to obtain 

K 

r = ]T(3fJ(6fc)Sfc,rh + 3(6 fc)SMh) + n, (4.2) 
fe=i 

where 3fJ(6fc) and ^s(bk) indicate the real and imaginary parts of bk, respectively, and Sfcir 

and Sk,i are L x 2 J matrices given by 

°fc,r — Dj D a SfcF and Sk>i D , D 2 ^ 4 SfcF, (4.3) 

respectively. In (4.3), Sfc = diag(sfc), F is the matrix formed by the first 2J columns of 

VLF , and Di , D 2 , D 3 , D 4 are L x L precoding matrices defined by 

D i = I i / 2 

D s ^ I L/2 

" 1 0 
0 - 1 

" 0 1 ' 
1 0 

5 

A 
, D 2 = j I L , 

D 4 ^ I L/2 
o j 

-3 0 

(4.4) 

As we can see from (4.2), the real and imaginary parts of bk, k = 1 , . . . , K, modulate two 

different effective signatures gk,r = Sfc>rh and gk,i — Sfc^h, respectively. However, due to 

the SF block coding performed at the receiver the vectors gfc>r and gk,% exhibit a special 

structure and relationship as identified in the following lemma. 

L e m m a 3 Let gk,r and gk,i be the effective signatures corresponding to the real and imag­

inary parts, respectively, of the kth user transmitted symbol, k = 1 , . . . , K. Then 

i) gfc,t = jDig fc, r, where Di = I L / 2 

ii) K(gftgfc,r) = 0 

1 0 

0 - 1 

Proof: In view of (4.2)-(4.4), we first express the effective signatures as 

gfc,r = D^fcFhj + D3S fcFh2, 

gfcii = DaSfcFhj + D4S fcFh2. 

(4.5) 

(4.6) 
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Then, by noticing that D 2 = j D i D i and D4 = JD1D3, we conclude that gfc,, — jDigk,r-

Now, we may use this relationship to write 

g £ g * , r = - i g ^ D l g f c . r •= Sk,rSk,i = - ( g & g f c . r ) * 

which implies that 5R(g^gfc,r) = 0. • 

4.3 Second-Order-Statistics-based Channel Estimation Methods: 

Background and Simplifications 

In this section, we present two SOS-based channel estimation algorithms for SFBC MC-

CDMA systems, namely MVDR and subspace. The quantity assumed known for the im­

plementation of both channel identification methods is the signature of the user of interest 

(assumed to be user 1). Furthermore, for the subspace method, we make the additional 

assumption that the total number of users K is known. We note that the knowledge of 

K allows accurate signal and noise subspace separation and, in practice, can be obtained 

through the use of information theoretic criteria as in [46]. 

The first step in developing such blind algorithms is to identify the special structure of 

the covariance matrix of the received signal which is summarized in the following Lemma. 

L e m m a 4 Under the assumption that each user's information symbols are independent 

and identically distributed (i.i.d) with zero mean and unit variance, and that the symbol 

streams of the users are independent, the L x L covariance matrix R — E{ r r H } of the 

received vector r in (4-2) has the following form: 

R = [RPA " KP m o d 2 ' V m o d 2)]I<P,</<£> (4-7) 

where 8(m, n) denotes the Kronecker delta function1. 

Proof: By expressing the matrix R in terms of the effective signatures gfc>r and g^j, 

k — 1 , . . . , K, we obtain 

K 

R- = J ^ S ^ e f r + gjMg&) + o-2IL. (4.8) 
fc=l 

1S(p, q) is equal to one if p = q, and zero if p ^ q: 
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We proceed by using the result from Lemma 3 to rewrite R in (4.8) as 

K 

R = £(gfc , rg£. + D i g ^ g ^ D x ) + a2IL. (4.9) 
fc=i 

It can be verified2 that owing to the structure of the matrix D x , as defined in (4.4), from 

(4.9) the matrix R has the form in (4.7). • 

An interesting observation from Lemma 4 is that the elements of R which form al­

ternating subdiagonals of the corresponding matrix are zeros (i.e., the main diagonal is 

nonzero and the subdiagonals on either side of the main diagonal are alternatively zero). 

For example, for L = 4 the matrix R has the following form: 

R = 

J2i,i 0 i2 l i3 0 

0 #2,2 0 #2,4 

#1,3 0 #3,3 0 

0 #24 0 #4,4 

with # n , . . . , Ru ^ 0. (4.10) 

The covariance matrix R can also be expressed in terms of the noise and signal subspaces 

derived from an eigenvalue decomposition (EVD) of R [44], i.e., 

R = Q A Q " = [QS Qn] 
As 0 

0 A„ 
(4.11) 

A 
= • • • = Xr. = a* 
A 

where A = diag[As An] = diag(Ai, A2, • • • , XL), Ax > • • • > X2K > X2K+I 

contains in its diagonal the eigenvalues of R in descending order, and Q = [Qs Qn] is the 

matrix of the corresponding eigenvectors. In (4.11), the columns of Qs = [qi,- • • ,q2/c] 

span the signal subspace, whereas the columns of Q n = [q2.s:+i, • • • , q^] span the noise 

subspace. 

Lemma 4 allows us to establish the following lemma. 

2As a representative example, for L = 2 we have gk,rgf?r = xi,i x l j 2 
x l , 2 x2,2 

and Djgfc^g^Di = 

Xl,l -X i ,2 
- x l , 2 X2,2 
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Lemma 5 Let Di and R be defined as in (4-4) o,nd (4-7), respectively. Then, we have 

(i) R = D 1 R D 1 , (4.12) 

(it) R _ 1 = D 1 R - 1 D 1 , (4.13) 

(Hi) QnQn = VlQnQn E>1, (4.14) 

where Qn = [q2K+i, • • • > QL] span the noise subspace. 

Proof: Part (i) follows easily from (4.9) after premultiplication and postmultiplication 

by the unitary matrix Dx i.e., DiD^ — I). Part (ii) follows from part (i) by taking 

the inverse of both sides of part (i) and noticing that Di is an orthonormal matrix (i.e., 

DiD,;1 = I). Finally, to prove part (iii) we first note that the matrix Q = QnQn n a s a 

similar structure as that of R indicated in (4.7) (i.e., the subdiagonals on either side of the 

main diagonal are alternatively zero). Then, noticing that due to the special structure of 

Di the premultiplication and postmultiplication by Di do not affect the nonzero elements 

of Q, we arrive at the third identity in (4.14). • 

4.3.1 MVDR Channel Estimator 

As it was shown in Chapter 3, in MVDR-based channel estimation methods, the channel 

vector h is estimated by solving the following minimization problem: 

hm v = arg min ^ ( S ^ R ^ S i r + Sf iR-1Si i)ft, (4.15) 
h, \\h\\=l 

More specifically, we estimate the channel vector as the eigenvector that corresponds to 

the minimum eigenvalue of the 2J x 2J matrix fim v given by 

Om v = S j .R-^ i , , . + S ^ R ^ S M . (4.16) 

But from Lemmas 3 and 5 we can see that 

S^R-%, ; = JC-jOSj.DiR^DiSx,,. = Sft.R-1^,,., (4.17) 

which implies that (4.16) reduces to 2SfrR~1Si)7.. Thus, we proved the following proposi­

tion. 

Proposition 4 Let S1;r and R be defined by (4-3) and (4-V> respectively, with k = 1. 
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Then, the matrix flmv in (4-16) reduces to 

nmv = 2S^ rR-1S1, r. (4.18) 

In practice, the ensemble average of the received signal covariance matrix R is not 

known and is replaced by its sample-average estimate R using N received vectors r(z), 

i = 1, . . . , N, given by 

R = ^ !>«*•«" (4-19) 

We note that, in general, if R in (4.18) is replaced by R, the expressions in (4.16) and 

(4.18) are not equivalent anymore. This stems from the fact that the estimation error 

in R is likely to be propagated differently in the first and second terms of (4.16) (i.e., 

Sj /
rR

_1Si ) r ^ Sf iR
-1Si ii). In this case, we obtain the channel vector estimate hm v as the 

eigenvector that corresponds to the smallest eigenvalue of the matrix Om v given by 

fimv = Sj.R-X,. + S^R-%,,. (4.20) 

4.3.2 Subspace Channel Estimator 

The starting point in the development of the subspace algorithms is to use the orthogonal­

ity between the noise subspace and the signal subspace which gives rise to the following 

statement: 

IIQ^gi,r | |2=HQ^gMl|2=0. (4.21) 

Since both real and imaginary parts of the complex transmitted symbol are passing through 

the same channel filter, the equation (4.21) is equivalent to 

gfrQnCfcr + g£QnQ?gl,i = 0. (4.22) 

From (4.3), we can see that the channel vector h satisfies 

h^ftssh = 0, (4.23) 

86 



where Oss is the 2 J x 2 J matrix given by 

fiM = S Jr Q„Q*Slfr + S5QnQ^SM. (4.24) 

Similar to the MVDR algorithms, the special structure inherent to SFBC MC-CDMA 

systems allows a simplification of the expression of Clss in (4.24). The result is expressed 

in the following proposition. 

Proposition 5 Let S1]r be defined by (4-3) with k = 1. Then, the matrix ttss in (4-24) 

reduces to 

nss = 2SfrQnQ?Si>r, (4.25) 

where Qn span the noise subspace. 

Proof: To show (4.25), it suffices to show that 

SSQ„Q?S M = Sf rQBQ?S l i r . (4.26) 

Using Lemma 3, we first write the expression of fiss in (4.24) as 

ttss = Sf r Q n Q? S1>r + Sft.DxQnQ^DiSx,,.. (4.27) 

Then, the expression in (4.25) easily follows using Lemma 5. • 

It should be noted that, similar to the MVDR algorithms, the above result is not valid 

when Qn in (4.24) is replaced, by an estimate. In this case, it is preferable to estimate the 

channel as the eigenvector that corresponds to the smallest eigenvalue of the matrix Qss 

given by 

Oss = S*.Q„Q£S l i r + S £ Q n Q " S M , (4.28) 

where Q„ is the L x (L — 2K) matrix whose columns are the eigenvectors that correspond 

to the L — 2K smallest eigenvalues of R. In other words, 

h s s = arg min hHflssh. (4.29) 
h, \\h\\=l 

4.4 Improved Blind Channel Estimation Algorithms 

The performance of blind channel estimation methods employing the received signal co-

variance matrix depends heavily on the accuracy of the covariance matrix estimate. A 
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common approach for increasing the accuracy of the covariance matrix estimate is to col­

lect longer data records. The purpose of this section is to take advantage of the special 

structure imposed by SFBC on the true covariance matrix R to improve the corresponding 

sample average estimate R and, at the same time, reduce the computational complexity. 

The idea, as expressed in the following proposition, is to enforce the matrix R to have the 

same structure as that of R. 

Propos i t ion 6 Let R = | ( R + D j R D i ) where Di and R are defined as in (4-4) and 

(4-19), respectively. Then, R is a more accurate estimate o / R compared to that o / R , in 

the sense that 

| | R - R | | F < | | R - R | | F , (4.30) 

where \\ • \\F denotes the Frobenius norm. 

Proof: Let 5R = R — R, 5R = R — R, and P be the N x N permutation matrix 

representing a single right cyclic shift given by 

0 . . . 0 1 

p = i o ••. o 

0 1 0 

Without loss of generality, we express ||#R|| as the sum of the 2-norm squared of the main 

diagonal of the shifted versions of the matrix 5H to obtain 

N/2 

£||diag(5RP*)||2 
i=0 

N/2 N/2 

J2\\diag(8RP*)\\l + ^||diag(5RP2i+1)||^ (4.32) 

where || • ||2 denotes the 2-norm. 

Obviously, the second term in (4.32) is zero, since it corresponds to the sum of the 

2-norm squared of the main diagonal of those shifted versions of R which have zero 

entries on their main diagonal. Now, using <5R = f (#R + Di<5RDi) and noticing that 

(4.31) 

\SR\\i = 
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| |diag(5RP2i)||;; = | |diag(D15RD1P2i)|]2, we may express the first term in (4.32) as 

N/2 N/2 N/2 

^||diag(5RP2i)K < J]||diag(5RP2i)||' + X;||diag(5RP2i+1)||^ ||5R||^ 
i=0 i=0 i=0 

thereby completing the proof of the proposition. • 

The purpose of the above modification on the sample average estimate is to annihilate 

all the entries of the matrix R which correspond to the zero elements of R. 

We now turn our attention on using the structure of R to simplify the computations 

involved in estimating the channel through the simplification of the cost functions to be 

minimized. As we mentioned before, since S f r R
_ 1 S 1 ] r ^ SfjR_ 1Sfj for MVDR estimators, 

in general, the channel vector estimate h m v is obtained as the eigenvector that corresponds 

to the smallest eigenvalue of the matrix f2mv in (4.20). On the other hand, when R is 

replaced by R in (4.20), it can be verified that 

S l r R _ S i ) r = SX)jR" S M . (4.33) 

Thus, the result presented in Proposition 4 is now applicable and the channel vector esti­

mate h m v is obtained as the eigenvector that corresponds to the smallest eigenvalue of the 

matrix fimv = S^ r R
_ 1 Si j r , i.e., 

h m v = arg min hHflmvh. (4.34) 
h, \\h\\=l 

Following a similar approach, it can be shown that for subspace algorithms, we have 

Si , rQnQn Si,r = S M Q n Q n Si,i, (4.35) 

where Q n is the L x (L — 2K) matrix whose columns are the eigenvectors that correspond 

to the L — IK smallest eigenvalues of R. 

In this case, the channel vector estimate h s s is obtained as the eigenvector that corre­

sponds to the smallest eigenvalue of the matrix O s s given by 

(4.36) st s s — al7.(4nWn ^ l,r-
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The use of matrix R has yet another important practical implication which leads to 

further reduction of the computational complexity. First, let us express the objective 

function in the MVDR method to be minimized as 

2 < r R - X g l , r = 2g£ r 

A 0 

0 B 
gl,r (4.37) 

where A = [R(2P-i),(2q-i)]i<p,g<L/2 and B = [R2P,2q]i<P,q<L/2 are the L/2 x L/2 matrices 

associated with the odd and even rows and columns of R, respectively, and gi>r is the L x 1 

vector formed by augmenting the odd elements of gi ] r by their even counterparts. Then, 

using the inversion property of a block diagonal matrix, we rewrite (4.37) as 

Sg^R-W »l,r 
A-1 

0 
0 

B-1 gl,r (4.38) 

Note that R is twice the size of A or B; therefore, by calculating the inverse of the matrices 

A and B in (4.38) which involves 0( (L/2) 3 ) flops each, compared to that of R that 

requires 0(L3) flops, we significantly reduce the computational complexity of the MVDR 

estimator. Similarly, the complexity of subspace-based methods which mainly comes from 

the eigendecomposition can be reduced by applying EVD on smaller size matrices. 

4.4.1 Identifiabil i ty 

Inherent to all MISO blind channel identification problems without side information are 

permutation and scalar ambiguities [57]. The former, also know as antenna order ambi­

guity, arises when a system employing multiple antennas cannot distinguish between the 

subchannels, while the scalar ambiguity corresponds to the complex scale factor indeter­

minacy associated with the channel estimates. Generally, in an OFDM system these two 

ambiguities are resolved by sending known symbols from all transmitting antennas [10], but 

at the expense of a loss in bandwidth efficiency. In a CDMA system, on the other hand, the 

permutation ambiguity can be resolved by assigning distinct spreading codes to each user 

at each antenna [36], [15], [16]. However, such an approach again comes at the expense of 

extra resources, namely, the prohibitive penalty of requiring more than one spreading code 

per user. It is notable that in any CDMA-based system, the total number of active users 

that can be supported at any time is limited by the number of available spreading codes 
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(the length of the spreading factor). As can be seen from our system model, a significant 

advantage of the SFBC MC-CDMA systems compared to the above mentioned schemes is 

its ability to transform the spreading code s^ for a given A; to a set of linearly independent 

vectors. This can be interpreted as assigning each user different spreading codes (one for 

each transmit antenna). In other words, due to the signal structure imposed by SFBC, the 

SFBC MC-CDMA systems do not exhibit antenna order ambiguity. 

In order to guarantee the unique identifiability of the channel estimates the conditions 

described by the following theorems have to hold. 

Theorem 7 The sufficient condition for the channel vectors hmv in (4-15) or h in (4-23) to 

be uniquely identifiable up to an unknown complex scalar is that the matrix F — [Si>r ga,r 

• • • gK,r -gi.i g2,i • • • gK,i] be full column rank. 

Proof: See Theorem 2 in Chapter 3 for a similar proof. • 

Theorem 8 The necessary condition for the channel vector h in (4-23) to be uniquely 

identifiable up to an unknown complex scalar is that L > 2 J + 2K — 1. 

Proof: Using the fact that the channel is identifiable only if the 2 J x 2 J matrix flss in 

(4.25) is rank deficient by one, i.e., Rank(Oss) = 2,7 — 1, it follows that there exists only 

one eigenvector that corresponds to the one zero eigenvalue. Moreover, since Rank(f&ss) = 

Rank(S^ rQn) , we must have 2J — 1 < min(2J, L — 2K), or equivalently, L > 2J + 2K — 1. 

• 
Theorem 7 implies that since T is a L x (2J+2K — 1) matrix, for the sufficient condition 

to be satisfied, we should have K < (L — 2J + l ) / 2 = K'. However, this does not imply 

that the channel is not identifiable for K > K'. In fact, as the simulation studies presented 

later show, the MVDR estimator is capable to provide reliable channel estimates even for 

K > K'. This is in contrast to the subspace approach in which the necessary condition 

imposes a hard upper limit, K', on the number of users. More specifically, in the case of 

K > K', the noise subspace does not exist at all and the subspace algorithm is therefore 

not applicable. 

Another interesting observation from Theorem 7 is that compared to the pre-FFT sub-

space channel estimator presented in Chapter 3 where the necessary condition imposes the 

upper bound (L + l ) /2 on the number of active users, the post-FFT approach suffers from 

some loss in the degrees of freedom. In other words, the former would be able to support 

J users more than the post-FFT approach in the same system. 
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4.5 Performance Analysis 

In this section, we provide a theoretical performance analysis of the modified channel esti­

mation methods described above under small perturbations assumptions. More specifically, 

we first evaluate the bias of each estimator followed by the derivation of closed form expres­

sions for the corresponding mean-square-error (MSE) performance. In the next section, we 

develop the Cramer-Rao bounds (CRBs) on the error variance of any unbiased or biased 

channel estimator for SFBC MC-CDMA systems. 

4.5.1 M V D R Algorithm Mean-Squared Error Performance 

In [24] under a small noise assumption, an analytical expression for the asymptotic bias of 

the MVDR estimators is derived which involves the noise subspace Q n and is given by 

A h m v = h m v - h ~ - V A ^ n , (4.39) 

where 

A 0 = 2 S £ r Q n Q f S l i r , (4.40) 

Ax = 2Sf r Q s A; 1 QfSi , r - (4.41) 

The major shortcoming of this approach lies on the fact that in SFBC MC-CDMA systems 

for medium to highly loaded cases where L < 2 J + 2K — 1 (see Theorem 8) the noise 

subspace does not exist. In this subsection, we will present an alternative approach to 

derive a closed form expression for the asymptotic bias of the MVDR channel estimator 

that does not suffer from the shortcomings of the traditional approach. The presented 

analysis is particularly attractive in situations where the size of noise subspace is small, 

namely, systems with medium to heavy loading, severe multipath distortion, small FFT 

size, or small processing gain. In essence, the expression in (4.39) typically requires a 

sufficiently large noise subspace in order to accurately estimate the asymptotic bias. The 

proposed approach is based on the multivariate first-order Taylor series expansion of the 

Lagrangian function corresponding to the constraint optimization problem in (4.15). 

Theorem 9 Let hmv be the solution to the minimization problem in (4-15). Then, the 
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asymptotic channel estimation bias A h m v = hmv — h is given by 

A h ™ ~ ( ( h ^ n ^ h ) - 1 ^ - ^ - i 2 J ) h, 

where flmv = 2S£ rR-1Si,P . 

(4.42) 

Proof: Let f(h) = 2 / i H Sf r R
 lSi>rh be the function to be minimized subject to the 

constraint c{h) = hHh — 1. The asymptotic biased channel estimate h m v satisfies 

where 

V F ( h m v , A) = 0, 

F(h, A) = 2hHSftrR~1Shrh - \{hHh- 1), 

(4.43) 

(4.44) 

is the augmented Lagrangian function with A as the Lagrange multiplier. Thus, by consid­

ering the multivariate first-order Taylor series expansion of VF(/ i , A) around [h r , 0 ] r and 

retaining terms up to the second order, we can write 

VF(h, A) ~ VF(h, 0) + V 2 F(h , 0) 
h-h 

A 
(4.45) 

where 

V 2 F(h ,0) = 

VF(h ,0) = 

n M 
MH 0 

" AT ' 
c(h) _ 

In (4.46), 

and 

AnaF(fo,A) 

^ ~z dh* 
= 4Sf rR"1S1 , r .h = 2ftmvh e C 2 J x l 

ft=h,A=0 

H 
A d2F(h,X) 

dhdhH = 4SfrR-islir = 2nmv e c 2JX2J 

(4.46) 

(4.47) 

(4.48) 
ft=h,A=0 
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are the gradient and the Hessian, respectively, of VF(/i, A) evaluated at h — h and A = 0 

and 

= 2h G C2Jxl (4.49) 
h=h 

Mt2dcW 
dh* 

is the gradient of the constraint c(h) evaluated at h = h. For h — h m v and A = A, we can 

write 
Ahmv VF(hm v , A) ~ VF(h, 0) + V2F(h, 0) 

from which we obtain the following system 

A 
(4.50) 

7iAhm v + MA ~ -Af, (4.51) 

M H A h m v ~ -c(h). (4.52) 

Solving for Ahm v we obtain 

Ahmv - -W"1 (A/* + M(MHH-1M.y1(c(h) - MHH-lM)) , (4.53) 

which using (4.47)-(4.49) and the constraint expression results in (4.42). We note that 

since Rr 1 is positive definite and both matrices Sfc and F have full rank, Jlm v is positive 

definite and, therefore, invertible. • 

Since Ahm v = hm v — h, the theorem above immediately implies the following corollary. 

Corollary 1 The channel estimate hmv can be approximated by 

u ~ "nw" (4.54) 
" " I T I D " 

The above theorem presents the channel estimation error due to the noise only, however, 

the performance of the MVDR estimator is also affected by finite received data samples. 

By adapting the results presented in [55] to the system under consideration and assuming 

that the size of collected data samples is sufficiently large such that perturbation technique 

is applicable, we obtain the following theorem which provides an analytical expression for 

the MSE between hm v and hm v . 

Theorem 10 Let 5hmv = h ^ — hmv be the estimation error of the MVDR estimator in 
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(4-34). We have 

(i) Shmv = S ^ ^ R R 1Si i rhm w , where ~Emv = R ^i^fiJnv and 5R — R — R. 

(ii) E{||<mmv | |2} ~ tr(i;gvE{8RZ8R}Vmv), where Z = R - ^ i ^ h ^ h ^ S ^ R " 1 , and 

E{5RZ8R} = (tr(RZ) R - G(I 0 GHZG)GH)/N. (4.55) 

Proof: See Theorem 5 in Chapter 3 for a similar proof. • 

Combining the results from Theorems 9 and 10, we obtain the following Corollary. 

Corollary 2 The overall mean-squared channel estimation error of the MVDR estimator 

is given by 

E{\\hmv-h\\2} = E { | | ( h m v - h ) + ( h ™ - h m v ) | | 2 } 

= \\Ahmv\\
2+E{\\6hmv\\

2}. (4.56) 

• 
In the derivation of (4.56), we have used the fact that A h m v is deterministic which in 

conjunction with the result from the part (i) of Theorem 10 (i.e. E{5h m v } = 0) implies 

that Ah£ v E{£h m v } = E{5h£ v }Ah m v = 0. Note that the first term in the RHS of (4.56) 

represents the contribution to the MSE of the asymptotic bias of the estimate hm v . 

4.5^2 Subspace Algorithm Mean-Squared Error Performance 

The statistical performance of the subspace-based channel estimation algorithms in terms 

of channel MSE has been investigated in [40], [41]. Those works, however, are based on the 

Singular Value Decomposition (SVD) of R. In this subsection, using a method similar to 

that used in Chapter 3, in which the bias and MSE for conventional subspace are found in 

terms of the eigenvalue decomposition (EVD) of R, we have the following results. 

Theorem 11 Let 5hss — h — hss be the estimation error of the subspace based estimator. 

Then, the bias and the MSE of the estimator are, respectively, given by 
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(i) 5hss ~ n^S^QnQ^iJRTtSi^h, 

where T = QS(A, - a2I)Qf and 5R = R - R. 

(ii)E{\\8hss\\*}^^tr{Xfsi;ss), 

where S s s = Q ^ S ^ f t L andp = h"Sf rTtRTtSi> rh. 

Proof: See Theorem 3 in Chapter 3 for a similar proof. • 

A direct implication of the above theorem is that unlike the MVDR estimator, the 

subspace estimator is asymptotically unbiased (i.e., E{£hss} = 0) even in the presence 

of noise. Therefore, the MSE given by the part (ii) of the above theorem will be lower 

bounded by the classical CRB [52] which is derived next. 

4.6 Cramer-Rao Bounds 

In this section, we derive the CRBs for both unbiased and biased estimators, wherein the 

spreading codes of the interfering users and the transmitted symbols are treated as unknown 

deterministic quantities. We start by deriving the bound for unbiased estimators. 

Let us define the set of unknown deterministic parameters 6 as 

where 

eh t .|»(h1)r,»(h2)T
>9(h1fl9i(ha)

r]r, 

@s — l s 2 > • • • J SK1 ' 

0b t [SR(b(l))T,Q(b(l))T,...,5R(b(iV)f,»(b(iV))r]r, 

with b(n) = [bi(n), b^n),..., bK(n)]T, n = 1,2,..., N. The CRB provides a lower bound 

on the covariance of any unbiased estimate 6 of the parameter vector 6, i.e., 

E {(0 - 0)(0 - 0)T} > DiagCJee)-1 = CRB(0), (4.58) 
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where Jog is the Fisher information matrix (FIM) given by 

'-••{(£)(§)' 
Jbb Jbs Jbh 

«bs " s s «sh 

JL 
(4.59) 

'bh J s h J h h J 

with C denoting the log-likelihood function for N consecutive received blocks defined by 

1 JV K 

C = - L i v i n g 2 ) - — J2 r(n) - ^(s f c , rM?(& f c(n)) + Sk>im(bk(n))) 
n = l fc=l 

(4.60) 

Applying the same approach as in Chapter 3, we compute the elements of the FIM in (4.59) 

by first taking partial derivatives of log-likelihood function in (4.60) with respect to 0 to 

obtain 

dO 
f dc \T f oc \T f dc Y ( dc Y (?£\ 

where 

dC 
] M m = ^(Gfnfe)) , 

dC = ~»(Gfn(p)), 
33(.b(p)) 

dC 

dC 

N K 

^ ^ S ( & ( p N p ) ) , 
p = l fe=l 

N K 

5553 = ?EE»(-aw'ip)). 
v ' p = i fc=i 

JV 

f = £E*(T.CP)»»M) 
p = l 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

k = 2,...,K, (4.65) 

with 

%(p) = (FHjF^Dx + FH 2F"D 3)^(6 f c(p)) + ( F H 1 F i / D 2 + FH2F
HDA)<3(bk(p)). 

Qk(p) = Sk,r^(bk(p))+SkiiQ(bk(p)), 
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Gr = [gl,r g2,r ••• gjf.r], 

Q = [gl,i g2,t ••• gK,i], 

S = [s 2 , . . . - ,s j K - ] , 

The elements of the FIM can then be calculated as 

E 1 9 £ 

a*(b(p)) 

E 

fed)] = >(W))̂ ,f(p) (4 
E {A &} = £ Is (G?ftW)"&(p) (4 

E {« j (^ ) ) r } = !E»(W))^(P) (4 

98 



dC f dC V N 

o< 

EIJ£_(^L.\ 
P = I fc=i 

AT K 

8R(h) (^)j) = ^EE^W&M)-* 
AT i f 

E Ml) (s|)) = * E E * HftM'ftW) ^ -* a ' P = I fc=i 
JV A -

E ^ ( ^ ) = sSEXftw^w)-' 
P = I fe=i 

Let us define the following block matrices: 

n^ 7T 7T 

—7T 7f 
.*>(?) = 

X>2)r(p) • • • T>K,r{P) 

V2ti(p) ... VK<i(p) 
,P (n) = 

£r(n) £r(n) 
&(n) &(n) 

* ^ v& ... V L 
vc* ... vK,i 

,<£ 
0 </> A 

<->2.2 • • • O' 

>K,2 

2,K 

>JfC,JftT 

Assembling the equations (4.66)-(4.83) results in the following FIM: 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

(4.82) 

. (4.83) 

Jee 
A 

n o . 
o n 

0 0 

T>T(1) 2>T(2) . 

_ S r ( l ) 3T(2) . 

0 
0 

n 
. T>T(N) 

. 3T(N) 

X»(l) 
£>(2) 

T>(N) 

S 

* r 

3(1) " 

2(2) 

3(N) 

* 

* 

Finally, we have 

J b s = [D(1)T,..., V(N)T]T, Jbb = IN<E>U, J S S = 5 , 
A 

Jsh = * , Jhh = * , 

(4.84) 

(4.85) 

Since we are interested in the covariance matrix of the channel estimate, we may use the 
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block inversion formula to form the Schur complement of matrix Jhh in (4.59) as 

J (h) = J h h - [J£h J^J 

- i - i 
•bs Jbh 

Jsh 
(4.86) 

Consequently, the CRB on the error covariance of any unbiased channel estimator is given 

by CRB(h) = J(h) t . We note that, for this problem, in order to regularize the channel 

estimation problem without imposing any additional constraint on the channel, we chose to 

form the CRB by taking the pseudo-inverse of J (h) in (4.86). This approach corresponds to 

the application of the minimum number of independent constraints [54]. Moreover, in the 

derivation of the CRB, due to the downlink application of the presented channel estimator, 

we assumed the knowledge of only the spreading code of the desired user. As is shown 

in Chapter 3, the latter results in a tighter bound than the CRB derived based on the 

knowledge of all users' spreading signatures including those presented in [42], [43]. More 

specifically, by treating the interfering users spreading codes as deterministic unknown 

quantities, the additional terms JbS, Jss and JSh have to be determined for evaluation of 

the FIM. 

A bound of the form developed above is only valid for unbiased estimators. However for 

the biased estimators, such as the MVDR estimators, the variance of the estimates cannot 

be bounded by the classical CRB. In such cases, it is shown in [56] that the total variance 

of any estimator with a given bias is bounded by the biased CRB (BCRB), which is an 

extension of the CRB for unbiased estimators. In the following, we derive the BCRB for 

the MVDR channel estimator. 

Following similar approach as in Chapter 3, the covariance of h m v must satisfy 

E {(hmv - E{h m v }) (h m v - E { h m v } ) T } 

> ^ E { h m v } \ g
j t ( h ) ^ E { h m v } = B C R B ( h ) ) (4.87) 

where E{h m v } = h + A h m v , and 

dE{h m v } 9 E { h m v } \ / d E { h m v } 

d5R(h) 93(h) 
(4.88) 
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Indeed, from (4.42) we obtain 

E { h m v } = r £ ^ r . (4.89) 

After some algebraic manipulations, it can be shown that 

dE{hmvy _ (h"ftmih)n-v - 2S(n^h)rna,hiaj e c W x„ 
<93£(h) (h^fimVh)2 

5E{hmv} _ j(h"n^Yh)n^v - 29(^mVh)rn-Vhi2J ^ ^2Jx2J 

59(h) (h^n^Vh)2 

Finally, the lower bounds on the overall mean-squared channel estimation error of the 

subspace estimator and the MVDR estimator can, respectively, be obtained as 

E { | | h s s - h | | 2 } > tr(CRB(h)), (4.92) 

E { | | h m v - h | | 2 } > tr(BCRB(h)) + | |Ahm v | |2 . (4.93) 

4.7 Detection Algorithms 

In this section, we extend the results of the previous sections to develop a linear joint SF 

block decoding and detection scheme based on the MVDR approach which offers lower 

computational complexity and improved performance. 

In the MVDR-based receiver, a filterbank W = [wr Wj] is designed such that the 

variance at the output of each filter is minimized while at the same time multiple constraints 

in the direction of the desired signal are imposed [24], i.e., 

W m i n = arg min t r ( W H R W ) , 
wec^x2 

subject to 

wfg1 > r = l and wfg l > i = l. (4.94) 
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Solving the optimization problem in (4.94) while enforcing the constraints yields 

w r = ( g ^ R - 1 ^ , , . ) - 1 ! * - 1 ^ , , . , (4.95) 

w< = ( g j R - ^ i . O - ' R - ' g i . i . (4.96) 

The estimate of the complex symbol &i of the user of interest can now be obtained from 

the received signal r as follows 

h = sgn[sR(wf r)] + jsgn[9fc(wf r)]. (4.97) 

Thanks to the inherent signal structure imposed by SF coding, we may establish the fol­

lowing proposition which eventually leads to further simplification at the receiver. 

Proposition 7 Let the linear filters w r andv/i be defined by (4-95) and (4-96), respectively. 

Then, 

(i) w i = j D 1 w r , (4.98) 

(it) 3£ (W"[ g l , r g M ] ) = L (4.99) 

Proof: By substituting (4.95) into (4.98) we obtain 

w,= ^ J r > V (4-100) 
g£rR ^ 

Meanwhile, from Lemmas 3 and 5 it is easy to verify that 

g ^ R - ' g M = j ( - j ) g f r D l R ~ l D l & . r = g ? r R _ 1 g l , r . 

Part (i) of the proposition then easily follows from part (i) of Lemma 3 by noticing that 

D i R - 1 = R _ 1 D i . Correspondingly, part (ii) follows from part (ii) of Lemma 3 and con­

sidering the facts that w ^ g l i r = 1 and wf^gi^ = 1. • 

An immediate result following from part (i) of Proposition 7 is that we only need to 

evaluate one of the linear filters since the other filter can easily be constructed using the 

identity in (4.98). Furthermore, according to part (ii), the MVDR receiver is immune to 

self-interference, i.e., interference caused by signals of the same user. In fact, each one of 
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the linear filters w r or Wj is distortionless in the direction of only one of the two signal 

components of the desired user while canceling the interference caused by the other signal 

component. 

In practice, the estimate of the linear filters in (4.95) and (4.96) can be obtained by 

replacing the ensemble average of the received signal covariance matrix R by its sample-

average estimate R. However, using the same approach as described for channel estimation, 

one may use R instead of R to achieve better performance, i.e., 

Wr = ( g ^ R - V r r ^ g l . r * (4-101) 

w< = ( g f t i r ^ O ^ R - W (4-102) 

4.8 Simulations Studies 

We consider a MC-CDMA system with 6 users utilizing code sequences of length3 32 which 

is also the number of subcarriers. The cyclic prefix has length 4 samples which is l /8 th 

of the FFT size. The transmitter and the receiver are equipped with 2 and 1 antennas, 

respectively, while the SFBC employed is the orthogonal block code of [3] with a QPSK 

constellation. Each subchannel has 4 paths each randomly generated following a complex 

Gaussian distribution with zero-mean and unit-variance. Unless otherwise mentioned, the 

SNRs of all users in the system including the user of interest are fixed at 10 dB while a data 

record of N = 40 samples is used for estimating the covariance matrix. In what follows, 

the presented results are averages over 100 independent channel realizations. 

We first verify the performance gains attained utilizing the proposed channel estimation 

methods compared to conventional methods by plotting the MSE performance versus the 

SNR of all users (assumed to be the same). In Fig. 4.1, the simulated performance of 

the MVDR algorithm is depicted while the performance of the subspace method is shown 

in Fig. 4.2. As expected, the proposed algorithms utilizing the improved sample matrix 

estimate offer better performance than the conventional methods wherein the actual sample 

estimate is employed. Also in Figs. 4.1 and 4.2, we include the analytical results obtained 

in Section 4.5. From these experiments, we infer that for sufficiently high SNR the actual 

MSEs of the proposed methods obtained from simulation provide good approximations to 

the analytical expressions even for the case of a short data record size N = 40. In order to 

examine whether the MSE of each channel estimator is able to approach the corresponding 

3Constructed from Gold sequences of length 31 by appending a +1. 
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Fig. 4.1 The MVDR method MSE performance as a function of the SNR. 

lower bound in large SNRs, the MSE performances of the MVDR and the subspace methods 

versus the SNR of the desired user are plotted in Figs. 4.3 and 4.4, respectively. These 

two figures further validate the accuracy of the performance lower bounds developed in this 

chapter. 

We next examine the effect of the data record size used to form the sample matrix 

estimate on the performance of the channel identification methods. Fig. 4.5 shows the 

MSE performance as a function of the data length N for both MVDR and subspace algo­

rithms. The proposed methods again exhibit their superior performance in the short data 

record sizes, whereas a severe performance loss is observed for conventional schemes due to 

insufficient observations. However, as can be seen from this experiment, by increasing the 

data record size, both approaches converge for each estimator. 

The effect of the number of active users in the system is considered next. In Fig. 4.6, the 

MSE versus the number of active users is shown. The SNR of the desired user in the system 

is fixed at 20 dB. As can be seen from Fig. 4.6, the subspace method performance degrades 

dramatically for K > 10. However, for heavily loaded systems, the MVDR method still 
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Fig . 4.2 The subspace method MSE performance as a function of the SNR. 

is able to achieve satisfactory performance. This result can be justified by noticing that 

there is a theoretical limit on the number of users can be accommodated by the system 

when subspace methods are employed for channel parameter estimation as we mentioned 

in Section 4.4.1. 

The next simulation experiment investigates the blind algorithms performance in near-

far situations. The near-far problem arises when the signals from the interfering users 

arrive at the receiver with higher power than that of the desired one. Fig. 4.7 illustrates 

the MSE performance as a function of the near far ratio. The near-far ratio is defined 

as the ratio of the power of interfering users to the power of the desired user. The SNR 

of the desired user is fixed at lOdB. We see that the MSE performance of the channel 

estimation algorithms is insensitive to the near-far ratio. In other words, the presented 

channel estimation algorithms are near-far resistant. 

Finally, the overall performance of the MVDR-based receiver is illustarted in Fig. 4.8. 

Fig. 4.8 illustrates the bit-error-rate (BER) performance as a function of the SNR. As 

was the case for the channel estimator, the proposed modification offers a considerable 
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performance improvement in the detection task. 
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Chapter 5 

Conclusions and Future Research 

In the first part of this thesis, we considered a non-conventional transmission scheme for 

the downlink of space-time block coded DS/CDMA systems that is based on ST block 

coding at the chip level. For this scheme, we developed both joint and disjoint space-time 

decoding and single user detection algorithms. The proposed single-user detectors require 

only filters of length approximately equal to the processing gain. As a result, the chip-

level ST block coding scheme allows the receiver exhibit low decoding delay and improved 

performance characteristics in short data record adaptation structures compared to its 

symbol-level counterpart. We have also developed a blind channel estimation technique, 

and we derived necessary and sufficient conditions for channel identifiability with only a 

scalar ambiguity. In contrast to symbol-level ST coding transmission schemes where each 

user is assigned a different signature for each transmit antennas, in our scheme, each user 

only needs a single spreading code for all transmit antennas. Analytical expressions for the 

BER performance of decorrelator-type receivers show that these do not come at the expense 

of detection performance. However, the presented algorithms suffer from the inter-symbol 

interference (ISI) due to multipath dispersion. This, in turn, increases the effect of multiple 

access interference (MAI) in a multiuser environment, specially when transmit diversity is 

involved. 

To mitigate the effects of ISI, and consequently MAI, in the second part of this disser­

tation, we considered a novel transmission scheme for the downlink of MC-CDMA systems 

with transmit diversity that is based on SF block coding at the chip level. For this scheme, 

we first developed both disjoint and joint space-frequency decoding and single user de­

tection algorithms. We showed that the joint single-user detectors require only filters of 
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length approximately equal to the processing gain. As a result, the chip-level SF block 

coding scheme allows the design of receiver structures that exhibit low decoding delay and 

improved performance characteristics in short data record compared to their STBC coun­

terparts. Then, we presented a comprehensive study and performance evaluation of two 

second-order-statistics-based blind channel estimation methods for the downlink of SFBC-

MC-CDMA systems. For this purpose, we followed two different approaches for blind 

channel estimation: (i) a pre-FFT approach (ii) a post-FFT approach. For each approach, 

we derived necessary and sufficient conditions for channel identifiability with only a scalar 

ambiguity. Our studies identified two important properties of SFBC MC-CDMA systems: 

First, the identifiability of the channel is independent of the channel zeros location as long 

as the sufficient conditions hold. Second, the system is insensitive to antenna order ambigu­

ity (also known as permutation ambiguity) even when there is only one signature assigned 

to each user. Besides, we showed that the post-FFT approach has the advantage of fully 

exploiting the inherent structure imposed by SFBC to improve the performance and lower 

the computational complexity required for practical systems where only an estimate of the 

received signal covariance matrix is available. The price to be paid for these achievements 

compared to the pre-FFT approach is some loss in the degrees of freedom of the estimators. 

Furthermore, we investigated the bias, and MSE under a finite data record size assump­

tion for each estimator. We also showed that the MSE performance derived based on the 

EVD of autocorrelation matrix of the received signal provides a closer approximation to the 

actual MSE than SVD-based expressions in low SNRs. Finally, we formulated the CRBs 

for both unbiased and biased channel estimators that treat the interfering users' spreading 

codes as unknown deterministic quantities and we demonstrated that for downlink trans­

missions they always provide tighter bounds than the CRBs which assume the knowledge 

of all spreading codes. 

5.1 Future Research 

The research described in this thesis leads naturally to several extensions including: 

• In chapters 3 & 4, we employed different strategies in designing linear detectors. As 

it was shown, in practice, the MVDR approach, as a data-based detector, shows 

performance degradation due to insufficient number of data samples. Moreover, in 

the presence of multipath distortion, channel parameters are estimated and result­

ing unavoidable errors that furthermore affect detectors performance. Thus, joint 
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performance analysis of detectors and channel estimators for SFBC MC-CDMA sys­

tems appears an interesting problem. As for the channel estimators presented in this 

thesis, perturbation technique can be applied to analyze the effect of finite samples 

on the performance of the MVDR detector. Specifically, after applying the statis­

tics of sample-based estimated covariance, the expression for Signal-to-Noise-and-

Interference Ratio (SINR) or Bit-Error-Rate (BER), as the performance criterion 

for our analysis, can be derived as a function of the sample size and other system 

parameters. 

• In this thesis, we presented a blind detector, namely, the MVDR scheme, which em­

ploys the sample data covariance matrix directly. However, as an alternative, one 

may design blind detectors using eigen-components of the sample data covariance 

matrix. In particular, by applying eigenvalue decomposition (EVD) on the data co-

variance matrix and invoking orthogonality between the signal subspace and noise 

subspace, an equivalent blind subspace MMSE detection method can be employed. 

As for the blind channel estimators presented in this thesis which in practice their 

performance are commonly affected by various factors and each has its own limi­

tations, the detectors that directly or indirectly employ the data covariance matrix 

could potentially involve similar challenges. Thus, the analytical results presented 

for each blind channel estimator in this work can to some extend be applied to its 

detector counterpart. 

• In Chapter 4, we identified a unique structure for the covariance matrix of the re­

ceived signal for SFBC MC-CDMA systems and we applied this structure to develop 

more efficient SOS-based channel estimation and detection algorithms. Future work 

can be done to extend the application of our results to other SOS-based channel es­

timation techniques. In fact, all sample data-based processing algorithms suffer from 

covariance estimation error due to finite sample effect. Therefore, the certain struc­

ture of the covariance matrix in SFBC MC-CDMA systems identified herein plays 

an important role in improving the performance and lowering the complexity of such 

algorithms. 

• In the derivation of the blind channel estimation algorithms presented in this thesis, 

we assumed precise knowledge of the channel order at the receiver. In the absence 

of channel order information, a common approach in practice is to overestimate it. 
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Thus, it will be interesting to study the robustness of the presented blind channel 

estimation algorithms to channel order overestimation. More specifically, one could 

investigate the contribution to the total MSE of the subspace and MVDR channel 

estimators due to the estimation error caused by channel order overestimation. 
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