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ABSTRACT 

A method was developed to determine the particle size distribution of 

colloidal particles suspended in a fl\.lid pased on light transmittance mea~ . 

surements at various wavelengths. This method requires that the nature of 

the particle size distribution be assumed a priori. 

A technique to determine the orthokinetic coalescence efficiency of 

polydisperse emulsion droplets in simple shear flow was developed. The 

technique is based on comparing results of experimentally measured and 

theoretically calculated light transmittance intensities. The orthokinetic 

coalescence efficiency was assumed to be a function of the colliding drop­

lets radius ratio and their surface potential which determines the maximum 

radius above which the orthokinetic coalescence efficency is zero. 

The effects of electrolytes, surface active agents, presence of solid 

particles at the water/oil interface, interfacial tension and shear rate on 

the orthokinetic coalescence efficiency were studied. 

The coalescence process was mathematically simulated using a Monte 

Carlo method. The change in droplet size distribution as the number of 

collisions between the emulsion droplets proceeds was calculated. The 

self-preserving form hypothesis was tested. It was found that the distri­

butions studied were all of this form. 
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RESUME 

Une methode a ete developpee pour determiner la repartition de 

diametres de particules d'une suspension colloidale dans un milieu liquide, 

en mesurant la transmittance emise a differentes longueurs d'ondes. Cette 

methode necessite qu'un type de repartition ou de distribution soit suppose 

au depart. 

Une methode fut developpee afin de determiner l'efficacite des 

collisions orthocinetiques d' une emulsion polydisperse dans un flux de 

cisaillement simple. Cette technique s' appuie sur la comparaison de 

resultats experimentaux avec ceux calcules theoriquement a partir de 

l'intensite de la lumiere transmise. Comme hypothese de depart, 

l'efficacite de la coalescence orthocinetique fut supposee varier en 

fonction du rapport des rayons des gouttes entrant en collision, ainsi que 

de leur potentiel de surface, definissant le rayon maximum au-desses duquel 

l'efficacite de la collision orthocinetique est nulle. 

L' influence d' electrolytes, d' agents surfactants, de la presence de 

particules solides a !'interface eaulhuile, de la tension de surface, ainsi 

que de la vitesse de cisaillement fut etudiee. 

Une simulation mathematique du procede de coalescence fut obtenu a 

l'aide de la methode de Monte Carlo. Des modifications de la repartition 

du diametre des gouttes furent calculees selon le nombre de collisions 

s'effectuant entre les gouttes de !'emulsion. 

L'hypothese de la "self-preserving form", ou un type initial de 

repartitlon est conserve, fut testee. Les resultats indiquent que les 

repartitions etudiees furent toutes de ce type. 
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INTRODUCTION 
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GENERAL REMARKS 

Emulsions are defined as multiphase systems, where at least one liquid 

phase is dispersed in another 1 iquid phase in the form of droplets. 

Thermodynamically, emulsions are unstable systems. Their stability is a 

very crucial point for many industrial processes. For example, all cosmet-

ic, food and pharmaceutical emulsions are required to be very stable for a 

long period of time. On the other hand, in the production of crude oil 

from tar sands, the oil is produced as a water in oil emulsion (1,2). 

Hence it is necessary to separate the water phase from the oil phase before 

it is processed. 

Emulsions are usually stabilized by adding surfactants, fine solids and 

various sorts of additives (3,4). In the presence of these stabilizers the 

repulsive forces, which keep the droplets apart and prevent coalescence, 

dominate the attraction forces. The coalescence process requires that the 

droplets collide with each other and coalesce. This raises the question: 

what is meant by a collision? Consider a droplet of radius a approaching 
1 

another droplet of radius aJ due to the presence of a shear flow of gradi­

ent G. The appropriate coordinate system in this case is a Cartesian coor-

dinate system which is drawn such that its center coincides with the center 

of droplet aJ (see Fig. la). The collision cross section for these drop-

lets is a sphere whose radius is a + 
1 

According to Smoluchowski, if 

the center of the droplet a passes through the capture cross section then l 

a collision will occur. If a
1 

is captured by aJ the collision is termed 

successful (Fig. lb), otherwise the collision is not successful (Fig. le). 

Thus one can define a collision or coalescence efficiency, «, as 
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Fig. 1 

c 

The collision process between two droplets approaching each other 

in simple shear flow is shown. 

(a) If the center of sphere a
1 

does not pass through the 

collision sphere shown by a sphere of 

collision occurs. If sphere 

sphere then a collision occurs. 

a passes 
J 

radius a + a then no 
l J 

through the collision 

(b) If sphere a is captured by the central sphere then the 
J 

collision is termed successful and leads to coalescence. 

(c) If sphere a collides with the central sphere and is still 
J 

not captured, then the collision is termed unsuccessful and no 

coalescence occurs. 
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(a) 

c 
'I 

no collision 

(b) 

(c) 

approach 

c 

Ux=Gz 

capture 
(successful collision) 

no capture 
(unsuccessful collision) 

__ recession 



c number of collisions leading to coalescence 
a = total number of collisions [ l. ] 

The collision efficiency is a function of many variables such as: The 

viscosity of the continuous medium, its dielectric constant, the surface 

potential of the droplets, the Hamaker constant of the system, the radii of 

the colliding droplets, the shear rate and the interfacial tension. 

The collision beteen two emulsion droplets can be caused by the action 

of a shear flow. In this case the collision efficiency is termed orthokin-

etic collision efficiency and will be denoted throughout the thesis by a . 
0 

If the collision is caused by Brownian motion of the droplets then the 

collision efficiency is called perikinetic collision efficiency and will be 

denoted by a . In the following section the orthokinetic collision effici­
p 

ency will be discussed in more detail. 

The Orthokinetic Collision Efficiency 

Consider a droplet of radius ai at the center of a Cartesian coordin-

ate system. This sphere is called the central or reference sphere. A 

sphere of radius ai+ aj around the reference sphere is called the collision 

sphere (see Fig. 2). A quadrant of the projection of the collision sphere 

is shown in Fig. 2. The flux of droplets, J, through any section of this 

quadrant is 

J = u n 
X 

[2] 

where n is the number of droplets per unit volume and u is the x-component 
X 

of the velocity. The total flux, J, is 

4 
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Fig. 2 

' 0 

A central sphere of radius a and a collision sphere of radius a 
l l 

+ a are shown. The center of both spheres is the center of a 
j 

Cartesian coordinate system. A sphere of radius a approach­
J 

ing a from m in simple shear flow is also shown. 
l 

If a passes 
l 

through the quadrant shown in the figure, then it will collide 

with the central shere. 
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J = 4 J jdA 
A 

[3] 

Note that the integral is multiplied by 4 because there are 4 quadrants. 

Substituting Eq. [2] in Eq. [3] and noting that u = Gz, Eq. [3] becomes 
X 

J = 4Gn J zdA 
A 

The rate of change of n with time, t, is nJ/2, or 

dn 

dt 
- 2Gn

2 
J zdA 
A 

[ 4] 

[5] 

The minus sign appearing in Eq. [5] is to indicate that the number of part-

icles decreases with time due to coalescence. 

Taking into account the interaction forces between colloidal part-

icles, Smoluchowski' s coagulation equation, which describes the rate of 

change of n particles of radius a with time, was corrected by introducing 

the collision efficiency as (5) 

dn 16 2 3 
--Gnaa. -= 

dt 3 0 

Comparing Eq. [5] with Eq. [6] shows that a. can be expressed as 
0 

3 
a. =-JzdA 

0 8 3 
a A 

6 
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For a particular system the magnitude of « can be derived from the exact 
0 

form of the boundary (z) of the capture cross section. 

Several authors (5-7) have calculated the boundaries of the capture 

cross section by solving the trajectory equations of particles in shear 

flow written as (8) 

F C(r,q) 
dr - aGA(r,q)sin29sin2~ + __ co_l_I ____ __ dt -

3l)f..la 

d9 1 dt = 4 GB(r,q)sin29sin2~ , 

d~ = ! G (1 + B(r,q)cos2~) , dt 2 

[Sa] 

[8b] 

[Bel 

where q is the radius ratio of the colliding droplets and (r,9,~) are the 

polar coordinates. For hard spheres, A, B and C are known functions of r 

and q. F is the net colloidal force acting on the droplets, t• = Gt is 
coli 

the dimensionless time and a =(a + a )/2. For the case where the electri-
1 2 

cal repulsive forces are negligible and for equal size particles, van de 

Yen and Mason (5) showed that « can be expressed by 
0 

« = f(A) Co.la 
0 lt. 

where c,. and A are dimensionless variables given by 

A c =--­
lt. 

7 

[9] 
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i\ = [11 1 

i\ being the London wavelength. C represents the ratio of the attrac­
A 

tion forces to the hydrodynamic forces. 

In the presence of repulsive forces, the picture is different. As the 

shear rate increases o: decreases until a critical shear rate is reached 
0 

where it drops rapidly. A further increase in G causes o: to increase 
0 

until another critical G is reached, after which it decreases upon further 

increase in G. 

In the case of particles with unequal radii, Adler (9) and Shinoda et 

al. (10) showed qualitatively the same results obtained earlier by van de 

V en and Mason ( 5) . Fig. 3 shows a qualitative dependence of o: on the 
0 

parameter CA. The parameter C appearing in Fig. 3 is a measure of the 
R 

repulsive forces to that of the hydrodynamic forces and is given by 

2 
2££ "' C = __ o-:--

R -2 
31!Ga 

[ 121 

where e and e are the permittivity of the suspending fluid and free space, 
0 

respectively, 1/J is the surface potential of the sphere and ll is the vis­
o 

cosity of the continuous medium. It has recently been shown that the tra-

jectory equations [Sa-c] are incomplete, since electroviscous forces aris-

ing from a coupling between electrostatics and hydrodynamics are omitted 

(11). 

It should be noted that, in general, o: for two particles of equal 
0 

radius is higher than that of particles of unequal radius, i.e. usually 

homocoagulation is favored over heterocoagulation. However, under certain 

8 
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Fig. 3 

0 

The dependence of « on the dimensionless number C where the di-o A 

mensionless number C is a parameter is qualitatively shown. In R 

the absence of repulsion forces (CR = 0). « increases as c 
0 A 

increases. In the presence of repulsive forces (C > 0) « R 0 

-1 
through a minimum and maximum consecutively. versus log(CA ) goes 
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Increasing CA 
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c 
conditions the opposite can be true (9). The reason for this is that the 

trajectories of two particles in shear flow, resulting from solving Eqs. 

[8] can be divided into open trajectories, closed trajectories and limiting 

trajectories. In the absence of colloidal interaction forces and Brownian 

movement, a particle can never approach closer than a minimum distance 

d . This minimum distance can be defined as the minimum distance of mln 

approach between a particle which is located on the limiting trajectory and 

the central particle, as can be seen from Fig. 4. d is a strong func-
aln 

tion of the radius ratio (12). As the radius ratio increases (the maximum 

value of the radius ratio is 1 when the two colliding droplets have equal 

radii) d is small and the effect of colloidal forces is more pronounced. mln 

Therefore the orthokinetic collision efficiency is high. As the radius 

ratio approaches zero, a approaches zero as well, since in that limit d o mln 

is much larger than the distance over which colloidal forces are acting. 

One of the objectives of this thesis is to investigate the collision 

efficiency and its dependence on the radius ratio of the emulsion droplets. 

An approximate relation for such dependence will be proposed based on the 

observations of (5), (9) and (12). 

Orthokinetic Collision Efficiency in Various Shear Flows 

In this section we discuss the effect of various forms of shear on the 

orthokinetic collision efficiency. 

1. Flow in a tube: 

Consider a tube of radius R. The velocity distribution as a function 

of the radial distance, r, is 

V = V [1 - (r/R)
2

] , 
r max [13] 

10 
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Fig. 4 The trajectories of a sphere a approaching another sphere a in 
2 1 

simple shear flow is shown. These trajectories can be divided 

into open trajectories and closed trajectories. The two types of 

trajectories are separated by a limiting trajectory. The minimum 

distance, d , a can approach a is also shown. 
mln 2 1 

0 

11 
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Closed trajectory Limitin9 traj~ctory· 

0 



c 

0 

and the shear rate G = ldv /drl can be obtained by taking the derivative of 
r 

Eq. [13] with respect to r. This yields 

G = 
2v r 

max 

The average shear rate in the tube, <G>, is 

since 

<G> =!!GdA= 
A A 

v = 2<v> 
max = 2Q 

4nv R 4v 
max 2 aax 
!rdr-~, 
0 

then <G> takes the following form 

<G> = 

[14] 

[15] 

[16] 

In the above equations v is the maximum velocity at the center of the 
max 

tube, <v> is the average velocity, Q is the volumetric flow rate and R is 

the radius of the tube. Substituting Eq. [16] into Eq. [6] we obtain 

dn 
dt = 

128Q 3 2 ---ana: 
9nR

3 0 

12 

[17] 
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2. Flow between two coaxial cylinders 

Consider two coaxial cylinders where the outer cylinder is stationary 

and the inner one rotates at an angular velocity 0. Let the radius of the 

outer cylinder be R and the inner one R . Solving the Navier-Stokes equa-
o l 

tion leads to the following dependence of the velocity in the a-direction, 

v
9

, on r 

OR2R 
v

9
= to [(riR>-(R/r)] 

R2 _ R2 o o 
[18] 

1 0 

Again the shear rate G is ldv9/drl and from Eq. [18] one obtains: 

[19] 

The average shear is 

[ 
2R2 l 1 + 0 ln (R /R ) . 

R2 _ R2 o 1 
0 l 

[20] 

Substituting Eq. [20] in Eq. [6], the rate of change of n with time becomes 

dn _ 
dt - [21] 

In the case where the inner cylinder is stationary and the outer one 

13 



is rotating at an angular velocity C, the rate of change of n is given by 

dn 
dt = ln(R IR )] ex 

0 l 0 
[22) 

We should note that Eqs. [17), [21.] and [22] were derived assuming that ex 
0 

is constant, i.e. independent of the shear rate. In general this 

assumption is not true since ex is a function of G. 
0 

In this case <G>ex 
0 

should be replaced by <Gcx >, or JrG(r)ex (r)drl!rdr. However over a certain 
0 0 

range of shear rates where ex is independent or weakly dependent on G the 
0 

above analysis can be used. In Chapter 4 of this thesis the effect of G on 

ex will be discussed from an experimental and theoretical point of view. 
0 

Smoluchowski's Coagulation Equation for Polydisperse Systems 

Eq. [6] was derived for two equal particles. When the system is poly-

disperse the equation can be rewritten, taking the following considerations 

into account. Let us divide the initial distribution into classes i with 

radius and number of particles a and n , respectively. Upon coagulation, 
l l 

the concentration of particles with small radii decreases. On the other 

hand, the number of particles that belong to a class with larger radius 

increases. If coagulation is solely due to shear flow the rate of change 

of the number of droplets, n
1

, is given by 

dn 
l 

dt = 
j=I 

_! G [-2
1 L L nkn (ak + a )

3 
ex - n L n (a + a )

3
ex ] , 

3 j+k=l J J Jk l J=l J l J lj 

[23] 

where I is the total number of classes. The first term on the right hand 

14 
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side of Eq. [23] is the production term and the second term corresponds to 

the depletion term of n ; a is the is the collision efficiency for a l lj 

collision between a particle of radius a and one of radius a . 
l j 

Ultrasonic Emulsification 

Ultrasonic emulsification is the employment of ultrasonic waves at the 

interface between two liquids. Dispersion of one liquid into the other one 

is a result of one or a combination of any of the following mechanisms 

(13,14): (1) cavitation, (11) interfacial instability, (iii) microstream-

ing, and (iv) transverse oscillation of the walls of the vessel in which 

emulsification is taking place. There is a great disagreement in the lit-

erature about which one of the above mechanisms is the cause for emulsifi-

cation, but it is widely accepted that both cavitation and interfacial 

instabilities are the main causes of emulsification. 

Cavitation is the subsequent growth and collapse of bubbles in 

liquids. Therefore the presence of dissolved gases is essential for 

cavitation to occur (15). Cavitation does not take place until the liquid 

pressure has become sufficiently negative to overcome the surface tension 

forces. The cavitation intensity is a function of the frequency, bubble 

radius, pressure of the liquid and the pressure inside the bubble (16,17). 

It increaes as the bubble radius, the pressure of the liquid, and the pres-

sure inside the bubble increase. Conversely, it decreases as the frequency 

increases. Everything being equal, there is a limiting bubble size below 

which cavitation cannot occur because surface tension forces prevent it 

from growing. Moreover, there are minimum and maximum threshold values 

below and above which cavitation does not occur (18). At a certain pres-

sure, as the frequency increases, the upper threshold for cavitation ap-

15 



c preaches the lower one until it coincides with it. At a higher frequency, 

cavitation no longer ~ccurs. The physicochemical properties of the emul­

sion components have a considerable effect on the emulsification process. 

These properties are: viscosity ratio, density difference, interfacial 

tension, presence of dissolved gases and surface active agents. They 

affect the values of the threshold intensity and_the emulsification rate. 

The second important mechanism by which dispersion of liquids takes 

place is the occurrence of instabilities set up at the interface between 

two liquids. Rayleigh-Taylor instabilities and Kelvin-Helmoltz instabili­

ties are examples of such instabilities. A Rayleigh-Taylor instability 

occurs when acceleration of the lighter liquid to the heavier liquid takes 

place. Due to this the interface becomes unstable and disruption of the 

interface happens. A Kelvin-Helmoltz instability is the result of a tan­

gential velocity difference at the interface. 

Whether cavitation or surface instabilities are the reasons for emul­

sification, the dispersion of one liquid in the other proceeds as follows 

(19). When the ultrasonic waves are applied at the interface between two 

liquids, masses of one liquid penetrate in the other. These masses grow in 

size and eventually break from the main interface forming droplets. These 

large droplets, in turn, serve as a new interface which continues to break. 

The breaking off of the large droplets is usually accompanied by formation 

of much smaller droplets called satellite droplets. In light of this, 

formation of a polydisperse emulsion is expected. This process is schemat­

ically depicted in Fig. 5. 

Fogler (20) and Neduzhii (21) claimed that if enough ultrasonification 

time is applied, a limiting droplet size will eventually be reached. Many 

attempts have been made to correlate the droplet radius to the working 
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parameters of the ultrasonic waves, such as the frequency of the sound 

waves, its. amplitude and intensity, etc. No attention will be given here 

to the results of these attempts, but one can refer to (22-24) for more 

details about this point. 

For the purpose of the research reported in this thesis, ultrasonic 

emulsification was used to prepare the emulsions. The frequency, intensity 

and the power input were all fixed and they are properties of the ultrason­

ic bath that was used. This assures that all the emulsions prepared for 

the purposes of the experiments discussed throughout the thesis are prepar­

ed in the same manner. This does not imply that the emulsions prepared 

were the same. In fact it was found from the transmitted light intensity 

measurements that every time an emulsion is prepared, a different droplet 

radius distribution is produced. Determination of the initial droplet 

radius distribution by conventional methods was found to be impossible. 

The reasons for this are discussed in Chapter 2. Thus a new technique had 

to be developed to determine the droplet size distribution. This technique 

is based on measuring transmitted light intensity through the emulsion as a 

function of wavelength of the light beam. The method was tested in various 

ways and it was concluded that it is successful in obtaining the size dis­

tribution. Although we succeeded in determining the radius distribution of 

the emulsion droplets, it was a very difficult task to do before every 

shear-induced coalescence experiment. This is due to the fact that the two 

experimental set-ups were placed in two different buildings and it was 

feared that the initial droplet radius distribution would change due to the 

elapsed time necessary to perform the size distribution experiment and to 

the changes that might take place while transferring the emulsion to the 

testing cell. 

17 



Fig. 5 The process of forming a droplet by applying ultrasonic waves at 

the interface between two immisible liquids is depicted. 

(a) The two phases before the application of the ultrasonic 

waves. 

(b) Mass of liquid I penetrates liquid 11 upon the application 

of ultrasonic waves. 

(c) Formation of a large droplet followed by small sattelite drop-

lets. 

18 



-'-' 

0 

Ca) 

t=O 
liquid D 

/IT@!!/ I 1111111 Ill/ 17 liquid I 

(b) 

Ccl 

mass of liquid I 
penetrating liquid D 

main droplet 

1171 !I Ill!! 111111 11!11 /Ill I Ill 

ultrasonic 
waves 



c The solution to this problem is discussed in detail in Chapter 3. It 

was found, within a certain droplet size range, that the orthokinetic col­

lision efficiency is a weak function of the initial droplet radius distri­

bution. These results were deemed sufficient and thus repeated determina­

tion of the initial droplet radius distribution was unnecessary. 

In Chapter 4 the effect of addi t1 ves such as surface active agents, 

solid particles, electrolytes, the effect of the applied shear rate and the 

interfacial tension were discussed. It was found that emulsions can be 

stabilized, or the coalescence efficiency can be decreased by (1) adding 

solid particles, (ii) decreasing the interfacial tension by adding surfac­

tants, electrolytes, etc., and (iii) working under a certain range of shear 

rate. 

In Chapter 5 a Monte Carlo simulation method was used to simulate 

coalescence of emulsion droplets in shear flow. The self-preserving form 

hypothesis was tested. 

The chapters of the thesis are written such that they are completely 

independent of each other. Every chapter has its own abstract, introduc­

tion, theory, results, conclusions, references, nomenclature and appen­

dices. Special care was made such that the nomenclature utilized are the 

same in all chapters. Thus every chapter of this thesis is a complete work 

and serves as a paper ready for submission to a scientific journal. 
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NOMENCLATURE 

- radius of the colloidal particles, m. 
2 -area, m. Constant used in Eqs. [8], dimensionless Hamaker 

constant, J .. 

-constant used in Eqs. [8], dimensionless. 

-constant used in Eqs. [8], dimensionless. 

- ratio of attraction forces to hydrodynamic forces given in Eq. 

[10], dimensionless. 

- ratio of repulsive forces to hydrodynamic forces given in Eq. 

[12], dimensionless. 

- colloidal force, N. 

-1 - shear rate, s . 

-1 -2 - flux of particles, s m . 

-1 - total flux of particles, s . 

- number of particles per unit volume, m 

- particle radius ratio, dimensionless. 

3 - volumetric flow rate, m /s. 

-3 

- r-component of the polar coordinate system, m. 

- radius of a tube, R : inner radius, R : outer radius, m. l 0 

- time, s. 

- x-component of the velocity, m/s. 

- r-component of the velocity. v 
max 

maximum velocity at the 

- center of the tube, <v>: average veelocity, m/s. 

- x-component of a Cartesian coordinate system, m. 

- y-component of a Cartesian coordinate system, m. 

- z-components of a Cartesian coordinate system, m. 
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Greek 

« - collision efficiency, dimensionless. 

c - permittivity of the suspending fluid, dimensionless. 

c
9 

- permittivity of free space, Farad/m. 

~ - ~-component of the polar coordinate system. 

~ - London wavelength, m. 

~ - dimensionless London wavelength given in Eq. [11]. 

~ - viscosity of the medium, Pas. 

~ -surface potential of the'sphere, V. 

9 - a-component of the polar coordinate system. 

Q - angular velocity, rad/s. 

c 
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CHAPTER 2 

TURBIDIMETRIC DETERMINATION OF PARTICLE SIZE DISTRIBUTIONS 
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ABSTRACT 

A method was developed to determine the particle size distribution of 

an emulsion or a dispersion which applies equally to monodisperse and 

highly polydisperse colloidal systems. The method is based on measuring 

the intensity of the light transmitted through the colloidal system as a 

function of wavelength. A suitable form of the particle size distribution 

that can represent the colloidal system must be assumed. The method was 

tested on both monodisperse and bimodal distributions of latex particles 

and on polydisperse water in oil emulsions. These tests showed that the 

method is simple, highly accurate and reliable. By making various guesses 

about the form of the actual distribution, 1. e. log normal, Gaussian, 

gamma, bimodal, etc., one can select the distribution that best fits the 

actual distribution by minimizing the difference between experimentally 

measured and either theoretically calculated turbidity ratios or light 

transmitted intensities. This method is extremely fast, accurate and 

requires less experimental effort than other methods. It eliminates many 

experimental problems which could alter the particle size distribution of 

the colloidal system to be tested. 
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INTRODUCTION 

Many techniques are available in the literature to determine the part-
icle size distribution of colloidal systems. Experimental limitations, 
cost, and the nature of the assumptions involved, make the application of 
many of these methods difficult. A nice review of the different problems 
encountered in the classical methods for the determination of the particle 
size distribution can be found in refs. (l, 2). Brill et al. (3) and 
Letcher and Schmidt (4) used a small angle X-ray scattering method applic-
able to particles below 0.1 ~m. Thomas (5) applied dynamic light scatter-
ing (photon correlation spectroscopy or PCS) to determine log normal part-
icle size distributions. He found that the method is good only for small 
particles (< 0.5 ~m) and for narrow distributions. Beyer (1) and Bowen et 
al. (6) described an optical pulse particle size analyzer based on measur-
ing the scattered light intensity as the particles pass through a light 
beam. This method is very expensive to use and requires that the system 
to be tested is highly diluted which is not suitable for systems whose 
stability could be altered by dilution. 

One example to which all of the above techniques of the particle size 
determination cannot be applied is a water in oil emulsion. Microscopic 
analysis of the size of the emulsion droplets may be inaccurate either 
when the droplets are below 1 ~ in diameter or when the refractive index 
difference between the two phases of the emulsions is small, which is the 
case, e.g., for water/silicone oil emulsions. In any of these cases the 
emulsions droplets cannot be clearly seen under the microscope. When the 
continuous medium of the emulsion is very viscous, the Brownian motion of 

0 
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the suspended droplets is too small to allow detection by PCS and, there­

fore, obtaining the mean radius of the distribution by this method is not 

feasible. Furthermore, PCS can find the standard deviation reliably only 

when the colloidal system has a narrow size distribution. Water/oil and 

oil/water emulsions formed by ultrasonics are usually highly polydisperse 

due to the random nature of the break-up of the interface between the oil 

and the water phases (7). 

All of the above difficulties, as well as many others in determining 

particle size distributions, lead us to think of other ways to obtain the 

droplet size distribution. 

Hiemenz and Vold (8) developed a method for obtaining the relative 

sizes of floes of carbon black dispersions based on measuring specific 

optical densities and the wavelength exponent. Their method is useful for 

cases where the Hie theory, which describes the scattering from a single 

spherical particle, is inadequate. Furthermore, their method requires 

that the size of the individual particles is known from some other tech­

nique. Gledhlll (9) and Melik and Fogler (10) developed similar methods 

for the determination of the particle size distribution by turbidimetry. 

The methods are based on measuring the specific turbidity and the logar­

ithmic slope which Melik and Fogler called the wavelength exponent. The 

two methods are similar except for the analysis to estimate the particle 

size distribution. A brief discussion of the method will be given in the 

section dealing with comparison of our method with other turbidimetric 

methods. 

In this chapter a method is developed similar to that of (9) and (10), 

based on comparing either experimentally measured and theoretically calcu-
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c lated light transmitted intensities or turbidity ratios at various wave-
lengths passing through the colloidal system. It differs from other tur-
bidimetric methods in that it eliminates the need for a logarithmic slope 

or a wavelength exponent which requires very tedious mathematical calcula-

tions and a long computation time. The need for the logarithmic slope was 
replaced by an extra turbidity measurement at a different wavelength in 

the case where turbidity ratios were used. Thus, at least three turbidity 
measurements at three different wavelengths are required. 

The technique was applied to a highly polydisperse water/oil emulsion 
and tested experimentally on suspensions of monodisperse and bimodal dis-

tribution of latex particles and on experimental data obtained from (9). 

It is very simple and quick to apply. It involves only one assumption 
regarding the nature of the distribution governing the colloidal system, 
i.e. log normal, Gaussian, etc. In some cases, more than one type of 
distribution can reasonably describe the colloidal system. In this case 
the method allows one to choose between different types of distributions 
by choosing the one which gives the minimum error. 

THEORY 

Let I be the intensity of the incident light which passes through a 0 

colloidal system. Some of this light will be either scattered or absorbed 
by the particles and the rest will be transmitted. The law of conserva-

tion of energy requires that the sum of the intensities of the transmitted 

light, I , the scattered ight, I , and the absorbed light, I , must be t s abs 
equal to that of the incident light 
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I = It + I
8 

+ I 
o abs 

The ratio I /I is given by (11) 
t 0 

2 
I /I = exp(- nlN ~ n*Q a ) 
t o 1 ext, 1 l 

If the colloidal system does not absorb light, then 

Q = Q • 
ext,1 s,1 

[1] 

[2] 

[3] 

Here 1 is the path length a light beam travels through the colloidal 

system, n* i = n/N = f (a,cr) is the fraction of the i th class particles 

whose radius is a and scattering efficiency Q . 
l s,l 

Q is the 1 ight 
ext 

extinction coefficient, N is the total number of particles per unit vol-

ume, er is the standard deviation and a is the mean particle radius, i.e. 

the value below which 50% of the population falls. 

The scattering efficiency, Q , is a function of particle radius, the 
s,1 

ratio, m, of the refractive index of the particles to that of the continu-

ous medium and the wavelength of light, ~-

scattering theory (12-14) 

where 
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Q can be calculated from Mie 
• 

[4] 



0 

X = 2na/;\ 
med 

[5] 

A (y)I/J (X) - mi/J' (X) 
n n n [6] 

a = A (y)~ (X) m~· (y) • n n n n 

mA (y)I/J (X) - 1/J' (X) 
b 

n n n [7] 
= mA (y)~ (X) ~·(X) • 

n n n n 

y = mX • 
[8] 

A (y) = 1/J' (y)/1/J (y) • 
n n n 

[9] 

1/J and~ being Ricatti-Bessel's functions and Hankel's functions, respec-
n n 

tively. The prime denotes the first derivative with respect to the argu-

ment. ;\ is the wavelength in the medium which is equal to ;\/n where 
med 

med 

n is the refractive index of the continuous medium. Plots of Q versus 
med 

s 

X for different values of m are shown in Fig. 1. The functions 1/J and ~ 
n n 

expressed in terms of spherical Bessel functions and the subroutine MISCAT 

that was written to calculate Q are shown in detail in Appendix 2-A and 
s 

Appendix 2-B, respectively. The validity of the subroutine MISCAT was 

checked by inputting values for which results were reported previously 

(15). 

In order to estimate the particle radius distribution of a colloidal 

system, one of the following procedures can be followed: 

Procedure I 

This procedure is based on comparing results of experimentally measur-

ed and theoretically calculated turbidity ratios as a function of the 
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Fig. 1 

0 

Calculated values of the scattering efficiency versus the dimen­

sionless variable X for various values of the refractive 

index ratio m. 
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wavelength. The advantage of this procedure is that it eliminates the need 

for the total number of colloidal particles, which is very difflcul t to 

obtain. Therefore it can be used for systems of unknown volume fraction or 

for systems where the total number of particles change with time. To elim-

inate the total number of particles in Eq. [2] from the calculations we 

adopted the following procedures. Taking the natural logarithm of Eq. [2] 

yields, 

T = ln (I /I ) 
n t o 

2 = - wlN L n• Q (~ )a 
l s,l n l 

[10] 

where (I /I ) is the ratio of the transmitted light to that of the inci­
t o n 

dent light measured at wavelength ~ . For measurements that are done at 
n 

~ and ~ we can write 
n ID 

T 
ID 

:E n*Q (~ )a 
2 

l •• l • l 

n*Q (~ )a
2 

l s, l n l 

[11] 

This ratio no longer depends on the total number of particles N. 

The disadvantage of this procedure, since it is based on the turbidity 

ratio, is that one can find an infinite number of distributions which give 

the same turbidity ratio as the experimentally measured one, but which does 

not necessarily yield the correct individual turbidities. For example, if 

we assume that the turbidities measured at ~ and ~ are 5 and 10, respec-
t 2 

tively, then the turbidity ratio would be 0.5. One can find an infinite 

number of values such as 4, and 8, 3 and 6, etc., which all have a turbid!-

ty ration equal to 0.5, but not the experimentally measured turbidities. 
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Thus one might obtain a set of distributions for which the difference be-

tween experimental and theoretical turbidity ratios (see Results and Dis-

cussion section), yet none of these distributions is close to the real one. 

For some unfortunate cases (e.g. the water/oil emulsion tested here) the 

distribution closest to the actual one might give a larger error compared 

to some other sets which can lead to incorrect conclusions. This possibil-

i ty was not considered in previous work (8-10). Therefore we recommend 

procedure 11 to avoid this ambiguity. 

Procedure 11 

This procedure is based on comparing experimentally measured and the-

oretically calculated light transmittance intensities. This procedure can 

be safely used if the volume fraction of the colloidal system is precisely 

known and for cases where the colloidal system is stable and no change in 

its number of particles occurs. 

Particle Size Distributions 

The first procedure was applied to a dispersion of monodisperse latex 

particles for which the volume fraction was not precisely known. The 

second procedure was applied to a bimodal distribution of latex particles 

and polydisperse water/oil emulsion. 

Asuming a suitable form of the particle size distribution and dividing 

it into classes, the fraction of particles in each class can be calculated. 

The calculation of n* for a log normal distribution will be illustrated 
l 

below. For a log normal distribution the probability distribution function 

is given by 
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P(a) = 1 ex~- [ln(a/a)] 2/2cT2 ~ • 

cral2i 

The fraction of particles having a radius between a
1 

and a
1

+
1 

is 

a 
1+1 

n* = s P(a)da = 
l a 

l 

where 

z = ln(a/a)/(cn'2l 
l 

Note that 

I: n* = 1. 0 . 
l 

1 
2 [erf(Z ) - erf(Z )] • 1+1 1 

[12) 

[13) 

[14] 

[15) 

We should note that any other form of the distribution can be chosen as 

well, if that describes the particle distribution better. In such a case 

Eqs. [12)-[14] should be modified to suit the new distribution. Appendix 

2-C shows the results for a Gaussian and a gamma distribution. 

If the particles not only scatter light, but also absorb it, then the 

refractive index is a complex number, written as 

n• = n - ik , [16] 

where n and k are the real and the imaginary part of the refractive index, 

respectively, and i = ~. Hence the extension coefficient becomes 

Q = Q + Q 
ext s abs 

[17] 
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where Q is the light absorption efficiency. In this case Eqs. [10] and 
abs 

[11] can be used by substituting the appropriate expessions for Q and Q 
s abs 

(16). 

EXPERIMENTAL PART 

The experimental apparatus is a Hewlet Packard 8451A DIOD ARRAY spec-

trophotometer. A white light beam passing through the sample falls on a 

grating which disperses the light onto a photodiode array. Each diode 

measures the transmitted light intensity at a certain wavelength. The beam 

first passes through the reference material, placed in a square cuvette (1 

cm x 0.4 cm x 5 cm), and the intensity at different values of ~ varying 

from 190 nm to 820 nm is measured and stored in the memory of the computer 

as I 
0 

Then the sample is placed in the beam and the transmitted light 

intensity at the same values of ~ is measured as I . The ratio I ti (~) is 
t t 0 

calculated and displayed on a computer monitor which can then be plotted. 

The effect of forward scattering on I /I was estimated from the distance 
t 0 

of the photodiode from the scattering suspension and its diameter and found 

to be > ± 0.3Y.. The temperature of the reference material or the colloidal 

system throughout the experiment is kept constant via a thermal control 

unit. Fig. 2 shows a schematic diagram of the experimental setup. 

Three colloidal systems were studied. The first one was a dispersion 

of latex particles whose mean particle radius and standard deviation are 

0.273 J.Uil and 0.0041 J.UD, respectively. The second system was a bimodal 

latex suspension obtained by mixing a suspension of particles with radius 
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Fig. 2 

0 

Schematic diagram of the experimental apparatus. L - light 

source. S - sample holder surrounded by a jacket of flowing 

water. T - Temperature control bath. CU - cuvette with sample 

or reference material. G - grating. D - photodiode-array. 

C computer. P - plotter. 
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0.241 ~ and stardard deviation 0.0025 ~with a second one for which a= 
0.595 ~ and v = 0.027 ~. respectively. The two latex suspensions were 

mixed in such a way that the number of particles of the first suspension 

constituted 99.8~ of the final suspension. The suspension was diluted such 

that the volume fraction was smaller than 0.03~. The third system, studied 

for its high polydispersity and undefined distribution, was a water/sill-

cone oil emulsion of 0.1 v/v~. This volume fraction was chosen to avoid 

multiple scattering. The emulsion was formed by shaking 0.05 ml distilled 

deionized water and 50 ml silicone oil (84 mPas) for 1 minute and then 

ultrasonicating the two phases for 15 minutes. The optical properties of 

the different materials involved in the experiments are shown in Table 1. 

TABLE 1: LIST OF REFRACTIVE INDICES OF WATER, 
0 

SILICONE OIL AND LATEX AT 25 C. 

MATERIAL 

WATER 

SILICONE OIL 

LATEX 

REFRACTIVE INDEX 

1. 333 

1.402 

1.581 

RESULTS AND DISCUSSION 

Measured values of I /I versus A for the aqueous latex dispersions 
t 0 

and the water/silicone oil emulsion are shown in Fig. 3. Assuming a suit-

able size distribution, theoretical values of (I /I ) or (T /T ) 
t o theor m n theor 

at two wavelengths, A and A , can be computed using eqs. [2], [10] and 
m n 

[ 11]. Comparing this to an experimentally measured (I /I ) or (T /T ) 
t oexp m nexp 

calculated from Fig. 3, one can define the difference between 
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Fig. 3 Experimentally observed change of I /1 with wavelength for 
t 0 

water/silicone oil emulsion, monodisperse latex dispersion and 

bimodal latex dispersion. 
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the experimental and the theoretical values of (I /1 ) or (T /T ), 6, as 
t o m n 

6 = (T /T ) - (T /T ) 
m n exp 11 n theor 

[18a] 

or 

6 = J(l /I ) -(I /1 ) }(~) 
1 t o exp t o theor 

[18b] 

For other pairs of ~ and ~ in the case of Eq. [18a] or other values of ~ 
• n 

in the case of Eq. [18b], the same procedures can be followed and hence 

other values of 6 can be obtained. The error, £, resulting from all calcu-

lated values of 6 is given by 

[19] 

lni tially the emulsion droplets were assumed to follow a log normal 

size distribution. Eqs. [12] and [13] show that there are 4 parameters to 

consider in choosing the distribution that can best describe the emulsion 

droplets. These parameters are, a, CT, the minimum radius, a , and the 
mln 

maximum radius, a 
max 

For given values of a and CT, the choice of a and 
mln 

a affects the calculated values of the turbidity ratio and the transmit­
max 

ted light intensity. The effect of a on the calculated values of 
•ln 

(T /T ) and (I /I ) decreases as a becomes smaller. 
m n t o mln 

This effect van-

ishes as a reaches a certain value. This value of a was found to be 
mln mln 

0. 01 J.Uil. To generalize the computer program, a much lower value of a 
mln 

was chosen in such a way that no underflow errors arise in the computer 

calculations. 
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Unfortunately the same could not be done for a 
max 

The reason for 

this is that, according to tpe theory, scattering from large particles is 

much more important than from small ones. Therefore a computer program was 

developed to integrate the suitable particle size distribution for a given 

a and a- from a to many different values of a such that l:n • ranges 
mln max l 

from 0.98 to 0.999 by an increment of 0.002. Computer results showed that 

l:n • does not go below 0.98 for the range of a chosen. The error defin-
l max 

ed by Eqs. [18] and [19] was calculated for each value of a and the set 
max 

(a,a-, a ) , which gives the smallest error, was chosen. 
max 

The same proce-

dures were repeated for other values of a and a- and hence another set of 

(a,a-,a ) was obtained. 
max 

Among these sets the distribution which best 

describes the emulsion droplets is the one which give the minimum error. 

It was hoped that £ would decrease until a minimum value was reached, 

beyond which it would increase again. In this case the minimum value of £ 

would be chosen to represent the emulsion. Instead, the error kept de-

creasing and no minimum was found. This leads to the conclusion that the 

emulsion droplets cannot be represented by a log normal distribution. We 

confirmed this conclusion by implementing Melik and Fogler's method. Their 

method also indicated that the emulsion cannot be represented by a log 

normal distribution. 

According to Sherman (7) and Li and Fogler (17), when ultrasonic waves 

are applied at the interface between two liquids, fingers of one liquid 

penetrate the other liquid and eventually break up into droplets. Upon the 

break-up process, the main droplets are accompanied by smaller ones called 

sattellte droplets. This argument suggests that the emulsion might be 

described by a bimodal distribution. Theoretically, a bimodal distribution 
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can be formulated by adding two log normal distributions with different 

proportions of on~ to the other. Therefore such a distribution has 5 par-

ameters, namely a ' a ' 0' ' 0' and x. a1 and 0'1 are the mean radius and the 
1 2 1 2 

standard deviation of the first log normal distribution, and a and 0' are 
2 2 

the mean radius and the standard deviation of the second distribution, and 

x is the ratio of droplets in the first distribution and to the total num-

ber of droplets .. 

The theoretical values of (I /I ) were compared to the experi-
t. o t.heor 

mentally measured ones by inputting various values of the above 5 parame-

ters. The range of the parameters inputted was made wide enough to ensure 

that the final result is within this range. The range of the parameters 

was 0.05 to 0.6 for 0'1, 0.05 ~m to 1.0 ~ for both al and a2, 0.5 to 1.2 

for 0'
2 

and 0.95 to 1.0 for X. The values of 0'
1

, 0'
2

, a1 
and a

2 
were incre­

mented by 0. 05 and x was incremented by 0. 004. The error as calculated 

from Eqs. [18] and [19] initially decreased and at some point it started to 

increase. The minimum value of the error indicated that the actual part­

icle radius distribution can be best fitted by (a ,0' ,a ,er ,x) = (0.23 ± 
1 1 2 2 

0.02 ~m. 0.25 ± 0.05, 0.30 ± 0.05 ~. 0.85 ± 0.05, 0.992 ± 0.002). The 

minimum error calculated from Eqs. [18] and [19] was 0.50 ± 0.04%. A some-

what better result could have been found if a smaller increment had been 

used, but because of the long computational time the increments mentioned 

above were deemed sufficient. A comparison between the experimentally 

measured and the theoretically calculated (I /1 ) values can be seen in 
t. 0 

Fig. 4. 

It should be mentioned that besides log normal and bimodal distribu-

tions, Gaussian and gamma distributions were also checked. The results 
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Fig. 4 

c 

Comparison between the experimental and theoretical values of 

(I /I ) for the bimodal latex dispersion and the water/silicone 
t 0 

oil emulsion. In the figure the solid lines and the symbols re-

present the theoretical and experimental values, respectively. 
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c indicated that the emulsion cannot be described by these distributions 

either. 

In interpreting the experimental data for the latex suspension in 

which the particles have a narrow size distribution, the particle size dis-

tribution was assumed to be Gaussian. Eqs. [12] and [13] were reformulated 

accordingly (see Appendix 2-C). The result obtained by comparing experi-

mentally measured and theoretically calculated turbidity ratios is 

(a,cr,a ,e)= (0.247 ± 0.001 IJm, 0.0041 ± 0.002 IJm, 0.262 ± 0.001 1Jm, IDaX 

0.0108 ± 0.0001). The comparison with data provided by the supplier is 

shown in Table 2. The experimentally measured and theoretically calculated 

values of (T IT ) are compared in Table 3. It should be mentioned here • n 

that although three turbidity measurements at three wavelengths are requir-

ed to estimate the particle radius distribution, all the measurements shown 

in Table 3 were used to obtain better statistical results. 

TABLE 2: COMPARISON BETWEEN THE EXPERIMENTAL RESULTS FOR LATEX 
DISPERSION AND THE ONES PROVIDED BY THE SUPPLIER. 

DATA PROVIDED 

BY SUPPLIER THIS METHOD X ERROR 

a (IJIII) 0. 273 0.247 9.5 

0" (f.lm) o. 0041 0.0040 2.4 

The parameters, a
1

, cr
1

, a
2

, cr
2 

and X, for the bimodal latex dispersion 

were estimated by comparing experimental and theoretical values of (I /I ). 
t 0 

The bimodal distribution for this case was theoretically generated by add-

ing two Gaussian distributions since the suspension was prepared from two 

narrow size distributions. The minimum error calculated from Eqs. [18] and 
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[19] indicated that (a
1

,er
1
,a

2
,er

2
,x) = (0.245 ± 0.005 J.Uil, 0.0025 ± o.ooo5 

~. 1:55 ± 0.05 J.Uil, 0.013 ± 0.008 ~. 0.998 ± 0.0004). The value of the 

error as calculated from Eqs. [18] and [19] is 1.4 ± 0.4%. The comparison 

between these results and the ones obtained from the supplier is shown in 

Table 4. The comparison between the experimentally measured and the theor-

etically calculated (I /I ) can be seen in Fig. 4. 
t 0 

TABLE 3: LIST OF EXPERIKEHTALLY MEASURED AHD THEORETICALLY 

CALCULATED VALUES OF (T IT ) AT THE WAVELDIGTHS 

INDICATED IH COUOOf 1 rBR ¥H£ KOHODISPERSE LATEX­

WATER SUSPEHSIOM. 

;\ . ;\ (T /T ) (T IT ) X ERROR 

ID n ID n exp • n lheor 

0.80, 0.75 o. 8720 0.8651 0.79 

0.80, 0.70 o. 7573 0.7474 1. 31 

0.80, 0.65 0.6422 0.6375 0.73 

0.80, 0.60 o. 5390 0.5350 0.74 

0.80, 0.55 0.4559 0.4469 1.97 

0.80, 0.50 o. 3771 0.3712 1.56 

0.70, 0.65 o. 8480 0.8520 -0.47 

0.70, 0.60 0.7118 0.7159 -0.58 

o. 70, 0.55 0. 6021 0.5980 0.68 

0. 70, 0.50 0.4980 0.4967 0.26 

0.60, 0.55 0.8459 0.8353 1.25 

0.60, 0.50 0. 6997 0.6938 0.84 

TABLE 4: COMPARISON BETWEEN THE EXPERIMENTAL RESULTS FOR 

LATEX DISPERSIONS AND THE ONES PROVIDED BY THE 

SUPPLIER. 

a er a:2<J.Uil> er X 
1 1 2 

(as prepared) 

SUPPLIER 0.241 .0025 1.595 0.024 0. 998 

OUR METHOD 0.245 .0025 1. 55 0.013 0.998 

X ERROR 1.6 0 2.8 52 0 
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COMPARISON VIlli OTIIER 'IURBIDIMETRIC METHODS 

The method was further tested on data obtained from ref. (9). 

Gledhill has described a method to determine the particle size distribution 

by turbidimetry. His method is based on measuring the specific turbidity, 

(T/~) and the logarithmic slope, S, defined as 
0 

S = - (8lnT/8lnA) 
a 

[20] 

where T is the turbidity and ~ is the volume fraction of the particles. 

Hence 

= - [8(T/~)/8lnA] a 

[21] 

Assuming a particle size distribution, (T/~) and (ST/~) can be the-
o 0 

oretically calculated. The particle size distribution can then be obtained 

by comparing the theoretical values of (T/~) and (ST/~) with the experi-
o 0 

mental ones. Our method, which is also based on comparing experimental and 

theoretical values of the turbidity ratio, eliminates the need for the 

logarithmic slope or the wavelength exponent which requires very tedious 

mathematics and a long computation time, especially when the nature of the 

distribution is not known and different types of distribution are to be 

tried. Furthermore, our method does not require a knowledge of the volume 

fraction ~. 

Data points of T/~ versus ~ for dispersion number 4 were read from Fig. 

4 in Gledhill's paper. The refractive index of this dispersion is 1.166. 
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These data were analyzed by our method, assuming a log normal distribution 

with the result (a.~.a ,£) = (0.123 ± 0.001 ~. 0.336 ± 0.003, 0.347 ± 
max 

0.001 ~. 6.3 ± 0.1Y.). These results are compared to those of Gledhills's 

in Table 5. 

An F-test on these results (18) shows that there is no real difference 

between the results obtained by the electron microscope and by this method. 

(a) 
TABLE 5: COMPARISON BETWEEN THE RESULTS OF GLEDHILL , 

ELECTRON MICROSCOPY, EM, AND THIS METHOD. 

X ERRPR BASED 

METHOD GLEDHILL EH THIS METHOD OH EH's RESULTS 

a (f.lm) 0 • 129 0.124 0.123 -0.8 

(b) 
~ 0. 304 0.297 0.336 13.1 

NOTES: (a) Results are taken for dispersion #4 in ref. (9). 

(b) Gledhill defines the loq normal distribution as 

1 - 2 2 
---- exp {- [loq(d/d)) /[2loq (~))} 

dm loq~ 
-

where d is the diameter and d the mean diameter. 

CONCLUDING REMARKS 

The particle size distribution of a colloidal system can be estimated 

by measuring the intensity of the transmitted light at various values of 

wavelength. For a given particle size distribution and by using the Mie 

theory for light scattering, several values of turbidity ratio at various 

wavelengths can be calculated. The selection of the parameters that char-

acterize the particle size distribution that can best describe the colloid-

al system, is achieved by choosing the distribution for which the differ-

ence between several experimental and theoretical values of the turbidity 
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ratio and the light transmitted intensity is minimum. 

The procedure that is based on the turbidity ratio is applicable to 

samples of unknown volume fraction provided that the system is dilute so 

that there is no multiple scattering. However, one should be extremely 

careful in analyzing the data since an infinite number of distributions can 

give the same turbidity ratio. For this reason we recommend that one uses 

the procedure that is based on light transmittance data. It is also very 

important that the refractive indices of the particles and the continuous 

medium are precisely known. The method is also applicable for the case 

where particles scatter and absorb light simultaneously.· The major advant­

ages of the method are: it is extremely fast and accurate, easy to use and 

can be applied to highly polydisperse colloidal systems. 

Finally, it should be stated that the test which was done on 

Gledhill' s results together with the tests done on the latex suspensions 

are clear indications of the validity of this method. 
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a 
n 

A 
n 

b 
n 

I .I.I.I 
aba o a t 

1 

m 

n• 
1 

N 

p 

X 

X 

y 

z 

Greek 

i\ 

NOMENCLATURE 

- radius of the particle. m. 

-function given by Eq. (5). dimensionless. 

-function given by Eq. (8), dimensionless. 

- function given by Eq. (6). dimensionless. 

intensities of the absorbed, incident. scattered and 

transmitted light. respectively. dimensionless. 

- path length. m. 

- ratio of the refractive index of the particle to that of 

the continuous media. dimensionless. 

- fractions of particles of class i,dimensionless. 

-3 
- total number of particles per unit volume. m . 

- probability distribution function. 

- scattering. absorption and extinction cross section effici-

encies. respectively. dimensionless. 

- fraction. dimensionless. 

-variable given by Eq. (4). dimensionless. 

- variable given by Eq. (7). dimensionless. 

-variable given by Eq. (12). dimensionless. 

- parameter of the gamma distribution. 

- parameter of the gamma distribution. 

- error defined by Eq. (15). 

- particle volume fraction. dimensionless. 

- wavelength of the light beam. m. 
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c - standard deviation. its dimension depends on the nature of 

the distribution. 

- Ricatti-Bessel•s function and its derivative. 

- Hankel•s function and its derivative. 

- the difference between experimental and theoretical values 

of (I /I ) or (T /T) defined by Eq. [14]. dimensionless. 
t o • n 

Script 

X - the fraction of one latex dispersion to the whole system. 

c 
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APPENDIX 2-A 

MATIIEKATICAL REPRESENTATION OF Q IN TERMS OF SPHERICAL 
s 

BESSEL FUNCTIONS OF ORDER (n + !.) . 
2 
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c The Hie scattering efficiency coefficient, Q • is given by 
• 

where 

X = 2na/;\ , 
med 

A (y)~ (X) - m~· (X) 
n n n 

an = A (y)~ (X) - m~· (X) • 
n n 

mA (y)~(X) - ~· (X) 
n n 

bn = mA (y)~· (X) - ~·(X) 
n n n 

A (y) = ~· (y)/~ (y) • 
n n n 

y = mX • 

~· (y) = d~ (y)/dy • 
n n 

[l-A] 

[2-A] 

[3-A] 

[4-A] 

[S-A] 

[6-A] 

[7-A] 

~ (X) and ~ (X)can be written in terms of the Bessel function of the first 
n n 

kind of order (n + ~) by using the definitions of spherical Bessel 

functions 
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1/J (X) 
n 

= (nX) 112 J (X) 
2 n+1/2 • 

[8-A] 

~ (X) 
n 

= (nX) 112 [J (X) + ( _ 1 )ni J (X)] • 
2 n+1/2 -n-112 

[9-A] 

,,,.(X) = di/J(X) = _ (nX) 112 [J (X) + ~ J ] 
., n dx 2 -n+1/2 X -n-112 • 

[10-A] 

t• (X) = d~(X) = (nX) 112 {J (X) _ ~ J (X) 
.,. dX 2 n-112 X n+112 • 

- (- l)ni [J (X) + ~X J (X)] 
-n+1/2 -n-1/2 

[11-A] 

substitution of Eqs. [8-A]-[10-A] and [11-A] in [3-A] and [4-A] gives 

(dropping the arguments for simplicity) 

[(A ) l n n 
-+- J -J 
m X n+112 n-1/2 

a = -----------------------------------------------------
n 

[12-A] 

0 
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[h + ~) J Jn-112] n+l/2 

b = 
n 

J -n-1/2) J-n+1/2) (mA + ~) (J + (- l)ni - (J - (- l)ni 
n n+1/2 n-1/2 

[ 13-A] 

The recurring formula is 

w (X) = Zn - 1 w (X) - w (X) , 
n X n-1 n-2 

[ 14-A] 

with 

w (X) = 
0 

sinX - icosX = (wzX) 112 [J (X) + i J (X] ' 
1/2 -1/2 

Note that Bessel functions are related to each other by the following 

formula (Hand Book of Mathematical Functions, pp.390 and 457): 

1. J (X) = 2n J (X) - J (X) . 
n+1 X n n-1 

2. j (x) = (!....) 112 J 
n 2X n+l/2 · 

Therefore 

c 
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fi[X"2x [J 112 i J -112] ,ff [J - i J (X)] 
= .f 2 x- + -x- - -u2 112 . 

Applying property number 1 we can write 

J 
1/2 

1 
= - X J -t/2 - J -3/2 

1 
J3/2 = - J - J X 112 -112 (n = ~) 

using the above expressions for J
112 

and J
312

, w
1 

becomes 

= (nX) 112 (J + i J 1 
2 3/2 -3/cl • 

in the same way 

= (nX) 112 (J _ i J 1 . 
w 2 2 512 -5/cl 

In general 
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w (X) = (nX) 112 [J (X) + (- 1)ni J (X)] . 
n 2 n+1/2 -n-112 

[15-A] 

Going back to Eq. [12-A], the numerator contains the terms J and 
n+l/2 

J By comparing J to w (X) we can write 
n-1/2 n+1/2 n 

J = Re[wn(X)/(nX/2) 1/q 
n+l/2 J 

J = R [w (X)/(nX/2) 1/q 
n-1/2 e n-1 J 

where R indicates the real part of the expression. The denominator is 
e 

simply w vnX/2 and w /vnX/2. Therefore the Hie coefficient, a (X), can 
n n-1 n 

be written as 

a = ~-----~------------------------
[16-A] 

n 

[~· • x] w (X) - w (X) 
n n-1 

In the same way 

(mA + n/X)R (w (X)) - R (w 
n e n e n-1 

b = --------------------~~~-----n 

+ (X)) 
[ 17-A] 

w (X) - w (X) 
n n-1 
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The factor A (y) (where y = mX) can be either a real or a complex number 
n 

depending on the refractive index. The following treatment is valid for 

both real and complex y 

A (y) 
1/J~(y) J-n+112(y) + ~ J-n-1/2(y) 

= "' ( y) = ----'"'----:J;---........:....,r-y~--..L.. 
n 

n n+1/2 

let n = n- 1 in [18-A], we can write 

or, 

J 
n-3/2 

A 
n-1 

= -;---
J 

n-1/2 

n - 1 
y 

A = 
n-1 

A 
n-1 

[ (2n - 1 )/y] J - J 
n-1/2 n+l/2 

n 
y 

J 
n+1/2 

J 
n-1/2 

-J--
n-1/2 

combining [19-A] and [18-A] to get 

A (y) = - !! + (!! - A (y)) - 1 
, 

n y y n~ 

note that A (y) = cot(y). 
0 

n - 1 
y 

Therefore the final formulas to be solved are 

59 

J 
_ n-112 n 
- -J-- y 

n+l/2 

[18-A] 

[19-A] 

[20-A] 

[21-A] 



0 

A (y) 
n + !!X R (w (X)) - R (w 

1
(X)) 

m e n e n-

an = A (y) 

n + !! w (X) - w (X) 
n X n n-1 

where 

and 

with 

w (x) = (wX) 1/2 (J (X) + (- l)ni J (X)] , 
n 2 n+l/2 -n-1/2 

w (X) = (wX)u2 (J (X) + (- l)n-11 J (Xl] , 
n-1 2 n-112 -n+1/2 

A (y) 
n 

= r~ -A (y)J- 1 
Y n-1 

A (y) = cot(y) . 
0 

n 
y 

To be able to solve for Q , the following must be noted: 
B 

let 

z = p + iq , 

60 

[22-A] 

[23-A] 

[24-A] 

[25-A] 

[26-A] 

[27-A] 
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then 

and 

R (z) = P 
e 

z conjugate = Z = p - iq. 

Therefore 

A 
_n + ~ 
m X 

J - J 
n+1/2 n-1/2 

a = ~------------L-----~~--------------r---------------------------~ n 

[:· • x] J - J 
n+t/2 n-1/2 [:· • x] J + J 

-n-1/2 -n+l/2 

note that - (- 1)
0

-
1 = + (- 1)

0
• 

The next step is to multiply both the numerator and the denominator by 

the conjugate of the denominator, which is 

J _ J ] _ i( _ 1 )n [[An + ~J 
n+l/2 ~1/2 n X 

multiply this conjugate with both the numerator and the denominator leads 

to the following: 

1 . Numerator 

so 

Let A /m + niX = H 
n 

(HJ - J ) {[HJ - J ] - 1(- 1)
0 [HJ + J ]} 

n+t/2 n-1/2 n+l/2 n-1/2 -n-1/2 -n+l/2 
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c 

[ (HJ - J )(HJ - J ) ] 
n+1/2 n-1/2 n+1/2 n-1/2 

- 1 [(- l)n(HJ - J ) (HJ + J )] . 
n+1/2 n-1/2 -n-1/2 -n+1/2 

2. Denomenator 

(HJ - J ) 2 + [ (- 1 )n (HJ + J ) 12 

n+112 n-1/2 -n-112 -n+112 

Therefore a becomes 
n 

then 

(HJ - J ) 2 
n+1/2 n-112 

a = -----------------------------------------------------
n (HJ _ J )2 + [ ( _ l)n (HJ + J ) ] 

n+112 n-1/2 -n-1/2 -n+1/2 

- 1 
(HJ - J )2 

n+1/2 n-1/2 

J )(HJ + 
n-1/2 -n-112 

+ [(- l)n(HJ 
-n-1/2 

la I n 
= ~{Real part)2 + (Imaginary part) 2 

. 

J ) 
-n+1/2 

+ J )]2 
-n+1/2 

In the same way lb I can be found 
n 

- J 
n-112 

[28-A] 

[29-A] 

b = 
n (- l)ni J ) _ (J + 1(- l)n-1 J ) 

-n-1/2 n-1/2 -n+112 

let C = (mA +niX) in the above equation to get 
n 

62 



0 

CJ - J 
n+1/2 n-1/2 

b = --------------------------~------------------------~---------
n (CJ - J ) + i (C- 1)n CJ - (- l)n-1 J ) ' 

n+1/2 n-1/2 -n-1/2 -n+1/2 

or 

CJ - J 
n+1/2 n-1/2 

b = ------------------------------------------
n (CJ - J ) + 1(- 1 )n (CJ + J ) 

n+1/2 n-1/2 -n-1/2 -n+1/2 

multiply both the numerator and the denomenator by the conjugate of the 

denomenator to get 

(1) Numerator 

(CJ - J ) [ (CJ - J ) - 1(- 1 )n (CJ + J ) ] 
n+1/2 n-1/2 n+1/2 n-1/2 -n-1/2 -n+1/2 ' 

which can be rewritten as 

(CJ - J )2 
- 1[ (- l)n (CJ - J )(CJ + J ) ] . 

n+1/2 n-1/2 n+1/2 n-1/2 -n-1/2 -n+1/2 

- Denomenator 

(CJ _ J )2 + [(- l)n(CJ + J )]2 • 
n+1/2 n-1/2 -n-1/2 -n+1/2 

so b becomes 
n 

(CJ - J ) 
2 

n+1/2 n-1/2 
b = --------------------------------------------

n (CJ -J )2+[(-1)n(CJ + 
n+1/2 n-1/2 -n-1/2 

J )]2 
-n+1/2 
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[ (- 1 )n (CJ - J ) (CJ + 
_ i n+l/2 n-1/2 -n-1/2 

(CJ - J )2 + [(- 1)n(CJ 
n+ 1/2 n-1/2 -n-1/2 

J )) 
-n+1/2 

+ J ) 12 
-n-1/2 

and lb I = J{Real part)2 + (Imaginary part) 2 

n 

Bessel Functions 

Bessel functions of order n are the solution of the differential 

equation 

They can be expressed by the following formula: 

J (X) 
n 

(X/2)n 

= ;:;r'( n-+:----.1"T) 
(XI2)n+2 (XI2)n+4 

1!f(n + 2) + 2!r(n + 3) ..... for all n ~ 0 

in a series form, this equation can be written as 

CD 

J (X) = E 
n k! r(n + k + 1) 

for all n ~ 0 

k=1 

where "f" denotes the Gamma function. 

The following equations apply to various Bessel functions: 

1. J
112

(X) = v2/(wX) sinX 
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2. 

3. 

4. 

J (X) = i2/(xX) cosX 
-1/2 

J (X) = i2/(xX) (sxinX - cosx) 
3/2 

J (X) = i2/(xX) (cxosX + sinX) 
-3/2 

5. In general 

J 
n+1 

(X) =- 2n J (X) - J (X) • 
X n n-1 

As mentioned before, the scattering efficiency, Q is given by 
s 

Q = 
s 

where a and b includes J , J , J and J 
n n n+1/2 n-1/2 -n+1/2 -n-112 

these become, respectively, J and J 
-1/2 -3/2 

and J for n = 2 and so on for n = 3, 4, etc. 
-5/2 

For n = 1 

The subroutine MISCAT listed in Appendix 2-B calculates the Bessel 

functions for n ranging from - 60 to + 60, and spherical Bessel's 

functions for n rangingfrom - 121/2 to + 121/2. 

Bessel functions) are used to calculate Q . 
s 
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APPENDIX 2-B 

A LISTING OF THE FORTRAN SUBROUTINE MISCAT WHICH VAS USED TO 

CALCULATE THE SCATTERING EFFICIENCY OF DISPERSED COLLOIDAL 

PARTICLES 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE MISCAT 

Subroutine MISCAT to calculate the scattering efficiency, 

Q, using the general Mie theory. 

In this program needs the following data 

RINDEX = ratio of the refractive index of the particles 

to that of the continuous medium. 

The parameter Z is defined as 

c z 
c 

= 2.0*PI*RADIUS/WAVE 

c 
c 
c 
c 

RADIUS 
WAVE 
PI 

= particle radius 
= wavelength of the light in the continuous medium 

= 3.1415927 

IMPLICIT REAL*S(A-H,O-Z) 
DIMENSION AN(70),BES(130),SPBES(130),F(l30) 

c 
c If the value of Z is > 57 use Van de Hulst equation to 

c calculate Q 
c 

c 

IF(Z.LT.57.) GO TO 7 
R0=2.*Z*(RINDEX-l.O) 
QSCA=2.0-4.0/RO*DSIN(R0)+4.0/(RO*RO)*(l.O-DCOS(RO)) 

GO TO 997 

C In this section Bessel's and spherical Bessel's functions 

c are calculated 
c 

7 F(60)=0.0DO 
F ( 61) =1. ODO/Z 
F(62)=l.ODO/(Z*Z) 
DO 2 N=62,121 
Sl=DBLE(N)-61.0DO 
VA=(2.0DO*S1+l.ODO)/Z 
F(N+l)=VA*F(N)-F(N-1) 

2 CONTINUE 
DO 3 K=2,60 
NK=62-K 
S2=l.ODO-DBLE(K) 
VU=(2.0DO*S2+1.0DO)/Z 
F(NK-l)=VU*F(NK)-F(NK+l) 

3 CONTINUE 
L=1 
DO 4 NN=61,121 
VR=((-1.0DO)**NN)*F(NN-L) 
SPBES(NN)=F(NN)*DSIN(Z)+VR*DCOS(Z) 
VX=DSQRT(1.570796326/Z) 
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c 

BES(NN)=SPBES(NN)/VX 
L=L+2 

4 CONTINUE 
NU=1 
DO 5 LN=1,60 
L0=61-LN 
XVX=((-1.0DO)**LO)*F(LO+NU) 
SPBES(LO)=F(LO)*DSIN(Z)+XVX*DCOS(Z) 
VF=DSQRT(1.570796326/Z) 
BES(LO)=SPBES(LO)/VF 
NU=NU+2 

5 CONTINUE 

c In this section the scattering efficiency is calculated 

c 

c 

Q=O.ODO 
Y=RINDEX*Z 
AN(1)=DCOS(Y)/DSIN(Y) 
DO 103 J=2,60 
JJ=J-1 
VB=(DBLE(JJ)/Y)-AN(JJ) 
AN(J)=(1.0DO/VB)-(DBLE(JJ)/Y) 
H=(AN(J)/RINDEX)+(DBLE(JJ)/Z) 
ANUM=(H*BES(J+60)-BES(J+59))**2 
PR= ( -1. ODO) **JJ 
PX=H*BES(61-J)+BES(62-J) 
ADEN=(PR*PX)**2 
A1=ANUM/(ANUM+ADEN) 
PE=DSQRT(ANUM*ADEN) 
A2=PR*PE/(ANUM+ADEN) 
A=A1*Al+A2*A2 
C=RINDEX*AN(J)+DBLE(JJ)/Z 
BNUM=(C*BES(J+60)-BES(J+59))**2 
PY=C*BES(61-J)+BES(62-J) 
BDEN=(PR*PY)**2 
Bl=BNUM/(BNUM+BDEN) 
UX=DSQRT(BNUM*BDEN) 
B2=PR*UX/(BNUM+BDEN) 
B=B1*Bl+B2*B2 
Q=Q+(2.DO*DBLE(JJ)+1.DO)*(A+B) 

c The value of A and B converges to zero, therefore the 

C calculation is terminated when A and B become < 1.0E-10 

c 
IF((A.LE.1.0D-10).AND.(B.LE.1.0D-10)) GO TO 99 

103 CONTINUE 
99 QSCA=(2.DO/(Z*Z))*Q 
997 CONTINUE 
101 CONTINUE 

RETURN 
END 
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APPENDIX 2-C 

MATHEMATIC DERIVATION OF n• AS A FUNCTION OF a AND ~ FOR A 
l 

GAUSSIAN AND A GAMMA DISTRIBUTION FUNCTION 
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For a Gaussian distribution the probability distribution function is 

given by 

1 - 2 2 P(a) = -- exp{- (a - a) /(2cr } . [ 1-C) 

crl2i 

The fraction of particles between radii a and a is given by Eq. 
l 1+1 

[12] with Z
1 

defined as 

[2-C] 

For a gamma distribution function the probability distribution 

function is given by 

ex > 0 {3 > 0 • [3-C] 

ex and {3 being the distribution parameters; r(ex) is the gamma distribution 

function. The mean radius and the standard deviation are related to ex and 

{3 by 

a = {3(ex + 1) • [4-C] 

er = {3V(ex + 1) [5-C] 

0 
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If ex is a positive integer, the number of particles between a
1 

and 

a 
1+1 

is 

n* =- { ~ [exp(- (a /~))(a /~)ex-J 
1 1+1 1+1 

ex-j - exp(- (a /~))(a/~) ](ex- j)!)} . 
1 1 

[6-C) 

If ex is a positive real number the integration of Eq. [3-C] from a to a 
1 1+1 

leads to 

n* = - {~ [exp(- (a /~))(a /~ex-J 
1 1+1 1+1 

- exp(- (a /~))(a /~)ex-J)](l/(ex- j)!)} 
1 1 

a 
1+1 

- 1/(~xf(x)) S axexp(- (a/~)) da [7-C] 
a1 

where x = 1/2, 1/3, ..... 1/n depending on the value of ex. For example if 

ex is 4.5 then x- 1/2 and if ex is 19/3 then x = 1/3 ..... , etc. 
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CHAPTER 3 

STABILITY OF VATER IN OIL EMULSIONS IN SIMPLE SHEAR FLOV 

1. DETERMINATION OF THE ORTHOKINETIC COALESCENCE EFFICIENCY 
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ABSTRACT 

A method to estimate the orthokinetic coalescence efficiency of polydis-

perse droplets in a water/oil emulsion is developed. The method is based 

on comparing results of experimentally measured and theoretically calculat-

ed light transmittance intensities. The experimental values were found by 

measuring the signal through a water/oil emulsion sheared in a microcouette 

apparatus. The evolution of the number of droplets with time is followed 

by solving numerically Smoluchowski's equation. The number of droplets and 

their radii, as well as the optical properties of the emulsion, were used 

to calculate the light transmitted intensities as a function of time. 

The orthokinetic coalescence efficiency was assumed to be a function 

of the droplets radius ratio. The model assumes that the orthokinetic coa-

lescence efficiency is maximum when the radius ratio is 1 and that there 

exists a limiting size, a , above which no coalescence occurs. The effect 
c 

of a and hence the surface potential of the droplets on the orthokinetic 
c 

coalescence efficiency was investigated. A very weak dependence on a for 
c 

a polydisperse system and no dependence for uniform distributions was 

found. The model contains a parameter C which is expected to be between 1 

and 6. For C ~ 6 the coalescence efficiency is found to depend weakly on 

c. 

The effect of the initial droplet size distributions on the orthokin-

etic coalescence efficiency was examined. For the water in oil emulsions 

we studied, it was found that the orthokinetic coalescence efficiency is a 

weak function of the initial droplet size distribution. 
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INTRODUCTION 

Unlike the case of two hard spheres in a simple shear flow, the ortho-

kinetic coalescence efficiency has not been determined for two liquid drop-

lets. The problem arises from the complexity of the equations governing 

the trajectories of the droplets due to drop deformation and circulation of 

the fluid inside the droplets. 

Curtis and Hocking (1) studied the collision efficiency of a monodis-

perse polystyrene latex dispersion by looking at the change in the number 

of particles with time. They used the following equation derived from 

Smoluchowski' s equation to relate the orthokinetic collision efficiency, 

« , to the change in the total number of particles 
0 

ln(n(t)/N) = - 4« ~t/Gn 
0 

[1] 

where ~ is the volume fraction, N is the total number of particles at time 
0 

t = 0 and G is the shear rate. Hazlet and Schechter (2,3) followed a simi-

lar way to study the stability of a polydisperse ternary system (a meth-

anol-water-methyl-methacrylate emulsion) sheared between two cylinders with 

the inner one rotating at a rotational speed Q and the outer one station-

ary. They developed a method to determine the collision efficiency from a 

plot of experimentally measured values of n/N versus time which can be 
0 

related to the experimental variables by 

d(n/N ) 
0 

dt (t = 0) = - ~: [1 + 3 exp(- 2 ln2cr
0

)] , [2] 
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0 

where ~ is the standard deviation of a log normal radius distribution at t 
0 

= 0 and W is the stability ratio which is the inverse of the collision 

efficiency (W = 1/« ). 
0 

In these methods, counting the number of particles is the main key of 

estimating « . Emulsions which are usually polydisperse systems may con­
o 

tain small droplets below the optical detection limit. When the number of 

these droplets is very high compared to large droplets (which is usually 

the case due to their small radius), then this will introduce some error in 

the estimated values of « . 
0 

Many authors have used light transmittance techniques to study coagul-

ation phenomena. Oster (4) used light transmittance to study polymeriza-

tion and coagulation of monodisperse particles which were small compared to 

the wavelength of light (Rayleigh scatterers). He derived the following 

equation describing the change of turbidity, T, of coagulating particles 

[3] 

where ~ is the viscosity of the continuous medium, p is the density of 
0 p 

the particles, Q is the light extinction coefficient, k is the Boltzmann 
ext 

constant, T is the absolute temperature and w is the weight fraction of the 

particles. Timasheff (5) extended Oster' s treatment to a region beyond 

Rayleigh scattering (the Hie scattering region). He described a method for 

obtaining from turbidimetric measurements an estimate of the rate of 

particle growth with time as an indication of coagulation based on a theory 

derived by La Mer et al. (6-8). However as particles grow in size, the 
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scattering from these particles changes from the Rayleigh to the Hie 

region. This change can be indicated by a change in the value of an 

arbitrary exponent which varies from 4.0 (Rayleigh scattering) to - 2.2 

(Hie scattering). Therefore to implement the theory of La Mer, 

measurements of turbidities at various values of wavelengths must be 

performed to determine the change of the exponent with time. This 

difficulty was solved by Ottewill and Shaw (9), who investigated the 

stability of monodisperse latex particles and their coagulation by 

turbidimetry. 

So far all the available methods for estimating the orthokinetic 

collision efficiency of either solid spherical particles or emulsion 

droplets in shear flow or for estimating the perikinetic collision 

efficiency (coagulation of particles in the absence of shear flow) is 

either based on counting the particles or based on turbidimetry. As a 

criterion of coagulation, one usually assumes that all the collisions 

between particles of the same and different radii are equal. Hence the net 

value of « obtained is an average value of all possible collision 
0 

efficiencies between the colliding particles. 

In this chapter a method based on measuring light transmittance 

intensity through water/oil emulsions as a function of time is described. 

We assume that « is a function of the radius ratio of the colliding 
0 

droplets. This dependence will be discussed later in the section that 

deals with the method for estimating the orthokinetic coalescence 

efficiency. The orthokinetic coalescence efficiency is estimated from a 

direct comparison of measured and calculated values of the light 

transmittance intensities. Theoretical calculations of the light 
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transmittance intensities with time were made possible by evaluating the 

change in the number of droplets by numerically solving Smoluchowski' s 

equation by a fourth order Runga-Kutta integration method (10). This 

method has several advantages: first, light transmittance is extremely 

sensitive to any changes in the size distribution of the droplets and, 

second, it is sensitive to all available sizes of the droplets. This 

eliminates the problem associated with the minimum size that cannot be seen 

under the microscope, which the methods that are based on counting the 

number of droplets cannot avoid. Furthermore, this method eliminates the 

difficulties that are present in counting the number of droplets in the 

emulsion and, finally, the measurements are continuous and there is no need 

to withdraw a sample from the emulsion for analysis under the microscope. 

On the other hand, the disadvantage of this method is that it can only be 

applied to systems where the continuous phase is transparent. 

THEORETICAL ANALYSIS 

Emulsions are thermodynamically unstable systems. Suspended droplets 

tend to coalesce to form bigger droplets which sediment or cream, depending 

on the density difference between the dispersed and the continuous phases. 

The rate at which these droplets coalesce is related to the different 

forces acting on them. These forces can be a gravitational force, F • a 
q 

Brownian force, F • a van der Waals attraction force, F • repulsive forces 
b a 

due to the interaction of the electrical double layers around the droplets, 

F • and external forces, F • such as hydrodynamic forces, forces due to 
r ext 

the presence of magnetic or electrical fields, etc. In mathematical form, 
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0 

the net force, F , can be expressed as 
net 

[4] 

If the droplets are neutrally buoyant and Brownian motion is negligible, 

which is true for media of high viscosity, then F + F ~ 0, in which 
q b 

case Eq. [4] reduces to 

F = F + F + F = 0 
net a r ext 

[5] 

The first attempt to describe the rate at which droplets coalesce was 

made by Smoluchowski (11). Assuming that the hydrodynamic interaction and 

the colloidal forces acting on the droplets are negligible except when they 

make contact, he derived the following equation for the rate of coalescence 

of a monodisperse colloidal system of spheres of radius a subjected to a 

simple shear flow of gradient G (12), 

dn 
dt= 

16 G 2 3 - na 3 
[6] 

where n is the total number of particles per unit volume and t is the time. 

The minus sign in front of the term on the right hand side of Eq. [6] is to 

indicate that the number of particles decreases with time. 

During a collision between two particles, the particles experience the 

presence of hydrodynamic and colloidal forces that might exist, e.g. repul-

sion or attraction forces. Taking these forces into account, van de Ven 

and Mason (13) corrected Eq. [6] by introducing a factor they called the 
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orthokinetic coalescence efficiency, 

dn = dt 
16 G 2 3 - na« 
3 0 

a:. 
0 

Eq. [6) then takes the form 

[7) 

From Eqs. [6) and [7] the orthokinetlc coalescence efficiency represents 

the ratio of the actual coalescence rate to Smoluchowski' s coalescence 

rate. 

In general, colloidal systems are polydisperse and one can divide the 

particles into classes, each of a certain radius a and a concentration n . 
l l 

The rate of change of n
1 

can be written as a difference between a produc-

tion term and a depletion term, or 

[8] 

where the first term on the right hand side of Eq. [8) represents the pro-

duction of n
1 

due to coalescence of smaller sized droplets giving rise to 

n
1

, and the second term represents the depletion of n
1 

due to its coales­

cence with itself and with other droplets. 

The orthokinetic coalescence efficiency, « is a function of many 
o,am 

parameters such as the viscosity, ll , and the dielectric constant, c, of 
0 

the continuous medium, the surface potential of the particles, 1/J , the 
p 

Hamaker constant of the system, A, the radii of the particles, the shear 

rate G and the interfacial tension, r. 

expressed as 
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c « = f(£,~ .~ .~.A,a ,a ,G) . 
0 0 p l J 

For a specific system the physical properties are constant and, further-

[9] 

more, if the applied shear rate is constant then one can write Eq. [9] as 

« = const. f(a ,a ) . 
0 l J 

[10] 

Theoretical and experimental studies on coagulation of solid spherical 

particles in shear flow (14-16) have shown that coagulation between two 

particles of equal radius (homocoagulation) is favored over coagulation 

between two unequal radius spheres (heterocoagulation) except under specif-

le conditions (17). The reason can be explained as follows. In the ab-

sence of interparticle interactions, the minimum distance (the gap width 

between a particle in simple shear flow located on a limiting trajectory 

and the central particle (see Fig. 1)) to which two particles can approach 

each other is a strong function of the radius ratio (18-21). This suggests 

that the coalescence efficiency is maximum when the two droplets are of 

equal radii or the radius ratio is 1.0 and decreases as the radius ratio 

deviates from 1.0. Van de Yen and Mason (13) showed that for a suspension 

of monodisperse colloidal particles with constant surface potential, the 

orthokinetic collision efficiency decreases as the radius of the particles 

increases and at a critical value of the radius, the orthokinetic collision 

efficiency suddenly drops to 0. Thus, based on the above discussion, we 

assume the following dependence of « on the radius ratio q (= a /a ) 
0 lj l J 

0 
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Fig. 1 Trajectories of two spheres of radii a and a in simple shear 1 2 

flow. The central particle is located at the center of a 

Cartesian coordinate system. The flow is characterized by open 

trajectories and closed trajectories, separated by limiting tra-

jectories. In the absence of colloidal forces between the part-

icles, the minimum distance d , particle a can approach a is mln 2 1 
defined as the minimum distance between a particle on a limiting 

trajectory in the equatorial plane and the reference particle. 
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<Ji, I 

0 

r 4q·~ r a < a 
(1 + qlj )2 

c 

ex = ex 
[ 11] 

0 c 

ex =0 a > a 
0 c 

where ex is the orthokinetic coalescence efficiency coefficient which is a 
c 

function of G, c , ~ , ~ , a and t. C is a constant and a is a critical 
0 0 0 c c 

radius above which ex is 0. Fig. 2 depicts the dependence of ex on q 
c 

0 lj 

calculated from Eq. [11] for various values of the constant C and for a = 
c 

2.0 ~· Fig. 2 shows that values of C ranging between 1 and 6 look the 

most reasonable since one expects a change over from low to high values of 

ex when q = .!.. The effect of the value of C on ex will be discussed in 
0 lj 2 

c 

later sections. 

We define the following dimensionless variables 

n• = n /N 
1 l 0 

a• = a /a 
j 

16 -3 
t• = --3 GN a ex t , 

0 c 

= a la 
l j 

[12] 

[13] 

[14] 

[15] 

where N is the total number of particles per unit volume at t = 0 and a is 
0 

the mean radius of the particles. In dlmensionless form and for a value of 

C = 1.0, Eq. [8] becomes 
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Fig. 2 

0 

The dependence of ex /ex on q for different values of the 
0 c lj 

constant Cas given by Eqs. [11]. 

curve is symmetric and q = 1/q 
lj lj 
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dn, 1 3 

dt* = 2 LL n•kn;(1 + qJk)qJka• 
J k 

J+k=l 

[16] 

A list of the FORTRAN subroutine that was used to integrate Eq. [8] or 

Eq. [16] (COALESCE) is given in Appendix 3-A. 

A METHOD FOR ESTIMATING TilE ORTIIOKINETIC COALESCENCE EFFICIENCY 

Let I be the incident light intensity passing through the emulsion 
0 

between two plates a distance 1 apart. I will undergo some extinction due 
0 

to scattering and absorbing of some of its intensity by the emulsion drop-

lets. The rest will be transmitted. If the absorbance is negligible then 

the transmitted It and the incident light intensities are related by the 

following equation (22): 

I /I = exp[- 1rl 
t 0 

[17] 

where Q is the scattering cross section which is a function of the 
s,l 

radius of the droplets, the ratio of the refractive index of the droplets 

to that of the continuous medium and the wavelength of the incident light 

beam (23). 

where 

The dependence of Q on these parameters is given by (24) 
s,l 
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and 

with 

and 

X = 2na/A 
med 

A (y)~(X) - m~· (X) 
n n 

an = ..,...A-(r-y-.-)=~"T:(X':"<)--m-::~:-:-, -r(y""""{'") • 
n n 

mA (y)~ (X) - ~· (X) n n n 
bn = mA (y)~ (X) - ~·(X) • 

n n n 

y = mX • 

A (y) = ~· (y)/~ (y) • n n n 

[19) 

[20) 

[21) 

[22) 

[23) 

~n being Ricatti-Bessel•s function and ~n is related to Hankel•s function 

of the second order. The prime denotes the first derivative with respect 

to the argument. A is the wavelength of the incident light in the 
med 

medium which is equal to A/n , n being the refractive index of the 
med med 

continuous medium. The dependence of Q on X for different values of m is 
s 

given in Chapter 2. 

The method is based on measuring the change in light transmittance 

intensity experimentally, (I /1 ) . 
t o exp 

This is compared to calculated 

values of (I /1 ) from Eq. [17). Accordingly, the calculated values of 
t o cal 

(I /I ) as a function of time required knowledge of the change of n* 
t o cal l 

with time. Given the initial droplet radius distribution of the emulsion, 

n;. the distribution at any time can be calculated by solving Eq. [16). At 
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Fig. 3 Illustration of the method used to estimate the orthokinetic col-

llsion efficiency. At any time t*, the value of t at which 

(I /1 ) = (I /1 ) can be read from which a. can be estim-
t o exp t o ea 1 c 

ated. 

c 
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0 

any time t, the value of t• at which (I /I ) = (I /I ) is found from 
t o cal t o exp 

a figure like the one shown schematically in Fig. 3. Since t• = 

16N a3G« t/3 then the value of « can be estimated. 
0 c c 

The procedure used to estimate the orthokinetic coalescence efficiency 

discussed in the previous paragraph, can be summarized as follows: 

1. 

2. 

3. 

4. 

Eq. [16] is solved numerically from which n• at any dimensionless time 
l 

t• is known. 

Knowing n• values of (I /I ) at any dimensionless time t• can also 
l t o cal 

be computed from Eq. [17]. 

At any dimensionless time t•, the real time t at which (I /I ) = 
t o cal 

(It/I ) can be read from a figure like Fig. 3. o exp 

The orthokinetic coalescence efficiency coefficient, 

timated from the following equation: 

3t• 
ex = ----

c 16GN a3 t 
• t • 0 . 

0 

ex , is 
c 

then es-

[24] 

The parameters G, N and a occurring in Eq. [24] are known from the initial 
0 

experimental conditions. 

Eq. [24] is only applicable at t > 0. To estimate the value of « at 
c 

t = 0 the following procedure was followed: taking the derivative of Eq. 

[17] with respect to t and evaluating the result at t = 0 yields (see Ap-

pendix 3-B) 

d(l /I ) 
t 0 

dt et = oJ = - Ct6/3lGN
2
1a Ka3o /I 1 

0 c t 0 t=O 

00 

r 
1=1 

[Q a 2 (dn*/dt*)] 
s,l l l 

[25] 
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c The sum on the right hand side of Eq. [25] can be calculated numerically. 

It should be noted that Eq. [25] is valid not only at t = 0 but also at any 

t > 0. 

Another way to estimate a at t = 0 is to extrapolate the curve that 
c 

results from plotting a versus t or t• to t = 0. 
c 

EXPERIMENTAL DETAILS 

Experimental Apparatus 

The experimental setup is a microcouette apparatus that consists of 

two parallel plates. The plates are made parallel to an accuracy within ± 

20 ~ which corresponds to 1.0% of the gap width between the two plates. 

This is achieved by means of a dial indicator whose accuracy is 2. 5 f..tm. 

The plates are made of special optical glass. The diameters of the top and 

bottom plates are 15.2 cm and 15.8 cm, respectively, and the thickness is 

4.0 mm. The lower plate can rotate clockwise or counter-clockwise with an 

adjustable rotational speed by means of a motor. The upper plate is sta-

tionary, yet it can move up or down to achieve the required gap width be-

tween the two plates. To avoid any instability at the onset of rotation 

and to achieve constant rotational speed right from the beginning, the 

motor is connected to a clutch which prevents the bottom plate from rota-

tion until the desired rotational speed is reached. 

A He-Ne laser (Uniphase, model 1105P, serial number 202052) of 633 nm 

wavelength passing through a pinhole (3.2 mm) falls on the emulsion con-

tained between the two plates. The intensity of the transmitted light is 

measured by a photodlode from which the signal is sent to a power meter 
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(Coherent Radiation Laboratory model 212). the output of the power meter is 

received by a data acquisition system (Fluke 525033, 8500 A digital multi-

meter) and then by a microcomputer for storage and data handling. The 

fluctuation of the laser light is < 0.4r.. A schematic diagram of the exper-

imental apparatus is portrayed in Fig. 4. A photograph of the experimental 

setup can be seen in Appendix 3-C. 

Prior to the light transmittance measurements through the emulsion, 

100r. light transmittance, I , was measured. 50 ml of the continuous medium 0 

(this quantity is equal to the amount of the emulsion being sheared) is 

placed between the two plates and the intensity of the light passing 

through is measured. The emulsion is then placed in the cell and the 

transmitted light through the emulsion is recorded. Due to the presence of 

the glass plates, the transmittance through the continuous medium and the 

emulsion has to be corrected to obtain I and I , respectively. The cor-o t 

rection due to the presence of the glass plates is done as follows (see 

Fig. 5): the experimental values of (I /I ) that are needed to be com-t o exp 

pared to the theoretical values of (I /I ) are the values of I measured t o cal t 

at position 3, Fig. Sb, and the value I measured at position 2, Fig. Sa. 
0 

From Fig. Sa the attenuation due to the presence of the upper plate 

and the lower plate is equal to (I - I ) , where I and I are both 1 4,a 1 4,a 

measurable quantities. Assuming that the two plates are identical, then 

the attenuation due to each plate is equal to (I - I )/2. I
0 

= I
2 

is 1 4, a 

the intensity of the light at position 2 which is equal to I
1 

- (1
1 

-

I )/2. From Fig. Sb the transmitted light through the emulsion which is 4,a 

equal to (I - I ) where I is the amount of the scattered light due 4,b s,3 s,3 

to the air-glass and glass-oil interfaces at position 3. Then (I /I ) = 
t o exp 
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Fig. 4 Schematic diagram of the experimental apparatus used in this 

study. L is a laser light source, P is a pinhole, M is a 

mirror, MC is a microcouet te apparatus which consists of two 

plates. The upper one is stationary and the lower one rotates at 

an adjustable rotational velocity n. The plates are separated by 

a distance 1 and the distance from the center of the plates to 

where the laser passes through the cell is r. PH is a 

photodiode, PM is a photomultiplier, DAS is a data acquisition 

system and PC is a personal computer. 
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Fig. 5 Illustration of the procedure used to correct for the scattering 

due to the glass/oil and glass/air interfaces. 

(a) The case when pure silicone oil is present. 

(b) The case when the emulsion is present in the cell. 
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[2. O(l b 

'· 
+ I

4
,a)] is the quantity to be compared to 

I are all measurable quanti ties and I 4,b s,3 
(I /I ) 

1
• 

t o ea 
I and 
4,a can 

be computed from knowing both I and I . 
1 4,a 

The effect of forward scattering on (I /I ) was estimated from the 
t o exp 

aperture of the photodiode and its distance from the scattering sample. It 

was found that this effect is less than 1.0%, which is negligible compared 

to the signal of the transmitted light. 

The applied shear rate is calculated by solving the equation of motion 

and the continuity equation for this geometry (Fig. 6). 

[~ (! ~ (rv l)] ar r ar a [27] 

[28] 

The solution of these equations employing the appropriate boundary condi-

tions and for Re = p v81/~ << 1.0 (see Appendix 3-D) results in 
0 0 

G _ 2mlr 
--1- [29] 

where 0 is the rotational velocity, r is the radial distance from the 

center of the plates at which the light falls and 1 is the gap width be-

tween the two plates. In the experiments performed 1 was 2. 3 mm. The 

value of r is chosen large enough such that 1/r << 1.0, yet smaller than 

the radius of the plates to avoid end effect problems. 
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Fig. 6 The flow pattern in the system of two plates where the upper one 

is stationary and the lower one rotates at an angular velocity Q 

for the case where Re = p v91/~ << 1.0. 
0 0 
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Material 

The emulsion tested is a water/silicone oil emulsion of 0. 2 v/vY.. 

This concentration was chosen to avoid multiple scattering and many-body 

interactions. According to Fogler et al. (25), 0.2 v/vY. for their system 

was the limit beyond which multiple scattering would take place. The 

refractive index difference of the system they used (m= 1.16) is larger 

than water/silicone oil (m = 0.95), therefore the concentration chosen to 

study this system is far below the concentration at which multiple 

scattering occurs. Water is distilled, deionized and filtered through a 

0.22 ~m filter. The oil is Dow Corning 200 silicone oil of 100.0 cs (vis-

cosity = 97 mPas). 

The emulsions were prepared by adding 50.0 ml of silicone oil to 0.1 

ml water and then mechanically shaken (Burrell PGH. PA mechanical shaker) 

for 1 minute. The two phases are then ul trasonicated for 15 minutes 

(Branson ultrasonic cleaner B-220). The viscosity was measured by a Bohlin 

rheometer VOR system and the interfacial tension (28 mN/m) measurement was 

done by the pendent drop method (26). All the measurements were done at 

0 
room temperature (22 C ± 1). 

Cleaning of the Glassware 

Great care should be taken in cleaning the glassware. Earlier studies 

in this lab showed that if proper cleaning procedures are not followed a 

lyophilic or lyophobic medium on the wall of the flask in which the 

emulsion is prepared may be created. Therefore the following cleaning 

procedures were followed to ensure that the wall of the flask has the same 

nature in all the experiments performed. The flask is washed first with a 
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cleaning solution and then ultrasonicated with a new quantity of cleaning 

solution for a few minutes. The flask is then washed and filled with a 

chromic acid for a few hours. The chromic acid is washed off and then the 

flask is ultrasonicated for a few minutes and finally washed with distilled 

water. 

RESULTS AND DISCUSSION 

Fig. 7 shows experimentally measured changes in light transmitted 

intensity versus time for a water/silicone oil emulsion sheared at 10 s-1
. 

The change in the signal is only due to orthokinetic coagulation, i.e. due 

to the presence of shear. To check this claim, I /I as a function of time 
t 0 

in the absence of rotation or at G = 0.0 was studied and the result is por-

trayed in Fig. 8. It can be seen from Fig. 8 that perikinetic coagulation 

is negligible compared to an orthokinetic one. This can also be seen by 

estimating the Peclet number, Pe, for this system, which is a measure of 

the importance of orthokinetic coagulation to perikinetic coagulation, i.e. 

Pe _ Orthokinetic coagulation rate 
- Perikinetic coagulation rate > 53 · 

[30] 

The orthokinetic and perikinetic coagulation rates were estimated from 

Smoluchowski's kinetics using a mean particle radius of 0.5 ~m. 

Eq. [16] was solved numerically. The dependence of « on the droplet 
0 

radius ratio was taken as given by Eqs. [11] with a value of C = 1.0. The 

integration of Eq. [16] was done using a constant size integration step. 

The integration step was chosen as follows: a certain integration step, 
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Fig. 7 
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Experimentally measured I /I versus time for water/silicone oil 
l 0 

emulsion sheared at 10 s-1
. 
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Fig. 8 

c 

Experimentally measured I /I versus time for water/silicone oil 
t 0 

emulsion in the absence of shear (G = 0.0). 
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0 

t , was chosen and the light transmitted intensities as a function of time 
1 

were calculated. A smaller integration step, say t , is then chosen and 
2 

the light transmittance intensities were again calculated. At any time t, 

if the percent difference between the light intensities calculated at the 

two integration steps, ~. is greater than 0.01X (i.e. ~ = I [(I /I ) -
t 0 tl 

(1 /I ) ]/{I /I ) ll x 100), then a smaller integration step is chosen 
t 0 t2 t 0 tl 

until the percent difference is < 0.01X. In fact, the integration step 

used in these calculations yields a value of ~ much smaller than 0.01X. 

The initial droplet radius distribution was divided into classes such 

that the volume of class i is made of i number of primary particles whose 

volume is V , i.e. V = iV . Therefore the radius of class i is related to 
0 l 0 

a by this formula; 
0 

[31] 

If a is chosen to be 0. 1 f.Uil and if a is 2. 0 f.Uil then, according to Eq. 
0 c 

[31], the distribution should be divided to 16000 classes. To solve 

Smoluchowski's equation where the number of classes is 16000 takes a huge 

memory and a very long computation time. Thus we expand the size of each 

class by rewriting Eq. [31] in this form; 

[32] 

where x is an arbitrary number > 1. Eq. [32] says that the classes are 

1/3 
(x) bigger than the size of the class results from using Eq. [31]. In 

other words, a in the case of Eq. [32] is (x) 1
/

3 larger than a in the 
0 

0 
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case of Eq. [31]. The value of x = 10 was chosen in the integration of Eq. 

[16]. The effect of x on the accuracy of the integration was tested by 

solving Eq. [16] using x = 5. The difference between the results obtained 

at x = 10 and those obtained at x = 5 varied only by < 1%. This tolerance 

is acceptable when the savings in the computation time are considered. 

The solution of Eq. [16] requires that the initial droplet radius 

distribution be known. The initial droplet radius distribution was deter-

mined by the method described in Chapter 2. The results showed that the 

initial droplet radius distribution can be best fit by a bimodal distribu-

tion with the following parameters: ea .~ ,a .~ .x>= co.23 ~. o.25, o.3 
1 1 2 2 

~m. 0.85, 0.992). The bimodal distribution was theoretically formulated by 

adding two log normal distributions whose mean radii and standard devia-

tions are a . a and ~ and ~ • respectively. The two log normal distribu-
1 2 1 2 

tions were added such that the number of droplets that belong to the first 

log normal distribution constitute 99.2% of the total number of droplets. 

It should be mentioned here that although all the experimental conditions 

were kept similar (same silicone oil, equal sonification time, etc.), in 

spite of this we did not succeed in preparing emulsions with identical 

initial droplet radius distributions because of the random nature of the 

breakage of the interface between the water and the oil (27-29). Therefore 

the above distribution represents an average droplet radius distribution. 

We shall see in the following section that the orthokinetic coalescence 

efficiency, for some typical particle radius range, is a rather weak func-

tion of the initial droplet radius distribution. Thus, although an identi-

cal initial droplet radius distribution was impossible to prepare, the 

radii of all the emulsions prepared fall within the same range. This was 
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confirmed by looking at the droplets under the microscope for different 

emulsions where it was found that the radius of the largest droplets ranged 

between 6 and 7 ~· 

Preliminary calculations of a for different initial log normal radius 
0 

distributions showed that, at least for the system under consideration, a 
0 

is a rather weak function of the initial distribution. Hence we assume 

that the orthokinetic coalescence efficiency is independent of the initial 

droplet radius distribution. Proof of this assumption will be discussed in 

detail below, but first we will show the results obtained for a using the 
c 

parameters of the bimodal distribution mentioned above. Fig. 9 shows a 
c 

plotted versus the dimensionless number Gt. Comparing these results to 

different log normal distributions which have the same range of droplet 

sizes shows that the above assumption is valid. 

The ratio I /I for all the experiments performed (see Chapter 4) 
l 0 

ranges between 0.23 to 0.32. Therefore theoretical values of I /I for 
l 0 

many log normal radius distributions of a wide range of mean radius, a, and 

standard deviation, er, and having a maximum radius of 6.5 ~. were calcu-

lated. To expand the range of possible log normal distributions, all the 

distributions which gave I /I between 0.2 and 0.4 where chosen for further 
l 0 

analysis of a • The range of i and er tried is 0.01-1.0 with an increment 
0 

of 0.01. Values of i and er beyond this range do not give calculated values 

of It/I
0 

between 0.2 and 0.4. A plot of er versus i for the distributions 

which give I /I between 0.2 and 0.4 is shown in Fig. 10. 
l 0 

If the proposed independence of a on the initial distribution is 
0 

correct, then a plot of a versus Gt should be independent of the distribu­
o 

tions (a,er) = (0.34 ~. 0.01), (0.57 ~. 0.01), (0.01 ~. 0.70) and (0.3 ~m. 
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Fig. 9 

c 

A plot of « versus the dimensionless number Gt for water/sili­
c 

cone oil emulsion sheared at 10.0 s- 1
. The value of the criti-

cal radius, a , above which « = 0. 0 is 2. 0 J.Lm. e. o, ll and A 
c 0 

correspond to (a,cr) = (0.34, 0.01), (0.57, 0.01), (0.11, 0.70) 

and (0.30, 0.35), respectively. The curve shown by c is the 

result obtained for a bimodal distribution. 
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0 

0.35), which correspond to points a, b, c and d, respectively, in Fig. 10. 

Moreover, if the calculated values of a for the distributions indicated by 
0 

a, b, c and d in Fig. 10 are close within an order of magnitude then the 

actual radius distribution will give values of a similar to the values of 
0 

a estimated for these distributions. The results of the above-mentioned 
0 

distributions compared to the results of the actual one are compared in 

Fig. 9. It can be clearly seen that a is a weak function of the initial 
c 

droplet radius distribution. 

a was also estimated for G = 199 1/s for the distributions mentioned 
c 

above and the results are shown in Fig. 11 where the weak dependence of a 
c 

on the initial droplet radius distribution can also be noticed. 

Preparing a number of emulsions and measuring I /I versus T for each 
t 0 

emulsion, the value of I /1 versus t were found to be reproducible by 
t 0 

about 4%. This affects the estimated values of a by about 20%. 
c 

Here we would like to expand more on the statement that a is a weak 
c 

function of the initial droplet radius distribution. From Fig. 9, and at 

Gt = 0, a is equals 0.22, 0.18 and 0.12 for the distributions (a,cr) = 
c 

(0.11, 0.7), (0.34, 0.01) and (0.57, 0.01), respectively. This means that 

among 100 collisions, 22, 18 and 12 were successful or led to coalescence. 

In other words, a = 0.17 ± 0.05 which corresponds to approximately 29% 
c 

error. At first sight this appears to be a large error, but one should 

bear in mind that these points represent the most extreme cases. If a 

narrower range for I /1 and hence the distribution is used, a much smaller 
t 0 

error in a will be obtained. 
c 

For example, comparing the above average 

value of acto the one obtained for the actual bimodal distribution (0.19), 

or to the one obtained for point d (0.16), shows that the error is approxi-
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Fig. 10 A plot of standard deviation, ~. versus the mean radius, a, for 

log normal distributions whose maximum radius is 6.5 ~and which 

give a range of I /I between 0.2 and 0.4. Points a, b, c and d t 0 

correspond to (a.~)= (0.34, 0.01), (0.57, 0.01), (0.11, 0.70) 

and (0.3, 0.35), respectively. 
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Fig. 11 A plot of a versus the dimensionless number Gt for water/sili­c 

cone oil emulsion sheared at 199 s- 1
• The value of the critical 

radius, a above which « = 0 is 2. 0 f.Lm. + .• , • and V corre-c 0 

spond to (a,cr) = (0.34, 0.01), (0.57, 0.01), (0.11, 0.71) and 

(0. 3, 0. 35), re~pectively. The curve shown by • corresponds to 

the results obtained for the bimodal distribution. 
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0 

mately 8:1.. These results clearly delineate the weak dependence of a on 
c 

the initial droplet radius distribution. Since the value for the bimodal 

distribution is the most accurate one, we estimate that a = 0.19 ± 0.03. 
c 

Effect of a on a 
c c 

Eq. [16] was solved for the cases where a is 1.5 ~ and 2.5 ~· For c 

solid particles in simple shear flow, a drops to 0 after a = 1.5 ~m and 
0 c 

2.5 ~if their surface potentials are 75 mV and 43 mV, respectively, (13). 

We believe that emulsion droplets behave qualitatively in a similar manner. 

Furthermore, this range of a represents a wide range of surface potentials c 

which many colloidal particles have. 

A plot of a versus Gt for the earlier-mentioned initial droplet c 

radius distributions is shown in Fig. 12. For the distributions (a.~) = 
(0.34, 0.2) and (0.57, 0.01) the results of a are identical, which is not c 

surprising because the distributions are highly uniform. For the 

distribution (a.~) = (0.11, 0.7) the dependence of a on a is very weak c c 

and, on average, does not exceed ± 4:1.. It should be mentioned that this 

dependence on a becomes more important as the polydispersity increases. c 

In the previous figures (Figs. 9, 11 and 12), a decrease in the value 

of a with time can be noticed. c As coalescence proceeds, the emulsion 

droplets grow in radius and thus they can be more readily deformed (since 

the capillary number increases, Ca = Ga~7, which is a measure of the shear 

forces to the surface tension forces). Deformation has a considerable 

effect on the coalescence efficiency. It is lower when the droplets are 

more deformable (see Chapter 4). Another reason for the slight decrease in 

a , perhaps, is the migration of some impurities that may exist in the oil c 
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Fig. 12 

0 

A plot of « versus the dimensionless number Gt for water/sili­e 

cone oil emulsions of a log normal distribution (a.~) = (0.34, 

0.01), (0.57, 0.01) and (0.11, 0.70) and having a maximum size of 
-1 6.5 ~ sheared at 199 s for the cases where a is 1.5, 2.0 and e 

2.5 ~· • and V are for the cases where (a,~) = (0.34, 0.01) and 

(0.57, 0.01), respectively, where no dependence of « on a was 
e e 

found. , V and are for (a.~) = (0.11, 0.70) for a = 1.5, 2.0 
e 

and 2.5 ~. respectively, where dependence within ± 2% of a on 
e 

a can be observed. e 
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0 
phase to the water oil interface. These impurities lower the interfacial 
tension as well as the surface potential. The decre~se in the interfacial 
tension makes the emulsion droplets more deformable and hence decreases the 
value of a with time. 

c 

Effect of the Value of C on a 
c 

The effect of the value of the constant C on a was tested by solving c 
Smoluchowski's equation (Eq. [8]) written in dimensionless form for differ-
ent values of C. As the value of C increases the dependence of ac on q

1
J, 

as can be seen from Fig. 2, becomes more symmetric around q = 1. Fig. lj 
13 shows calculated values of a versus C at t• = 0 for values of C ranging c 

-1 between 0 and 100 for water/silicone oil emulsion sheared at G = 10 s . 
It can be seen that a increases as the value of C increases and goes to c 

infinity as the value of C becomes ~. The reason for this is that when C 
increases only the droplets with q close to unity are allowed to coal­IJ 
esce. This means that the number of collisions per unit time decreases and 
reaches zero when C approaches ~. Hence the value of a tends to infinity, c 
to allow a finite change in the number of droplets. 

A large value of C or C ~ ~ (which indicates that only droplets of 
equal radius can coalesce) is physically not reasonable because coalescence 
between particles of unequal radius has been observed experimentally. The 
value of a for C = 0 differs only by ± 3.0% from that calculated for C = c 

6. A value of C = 0 is also not possible for reasons discussed earlier in 
the theoretical section. 

From Fig. 13 the following conclusion can be drawn regarding the 
effect of the constant C on a . For values of C ranging between 1 and 6, c 
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Fig. 13 The effect of the value of the constant C on the coalescence 

efficiency coefficient. For values of C between 0 and 6. a 
c 

changes with ± 2~. The values of a were calculated for (a.~) = c 
-1 (0.30 p.m. 0.35) and G = 10 s . 
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c 
« depends weakly on C and, therefore, the recommended value of C is be­e 

tween 1 and 6 where « varies by ± 2~. which is much smaller than the ex­c 

perimental error in« (- 8~). 
c 

CONCLUDING REMARKS 

The coalescence efficiency between emulsion droplets is an indication 
of their stability. In this chapter a method to investigate the 
orthokinetic coalescence efficiency based on comparing experimentally 
measured (in a microcouette apparatus) and theoretically calculated light 
transmittance intensities was described. Based on theoretical calculations 
of solid spheres of equal and different sizes, as well as studying their 
trajectories in simple shear flow, the orthokinetic coalescence efficiency 
was assumed to be a function of the droplets radius ratio. Moreover, the 
theory of coagulation of solid particles in shear flow showed that for 
particles of certain surface potential, the orthokinetic coalescence 
efficiency is zero when the radius of the particle exceeds a certain value. 
Therefore, a critical radius, a , above which the orthokinetic coalescence c 

efficiency is equal to zero was incorporated in the function that describes 
the dependence of the orthokinetlc coalescence efficiency on the radius 
ratio. 

It was assumed that the orthokinetic coalescence efficiency is weakly 
dependent on the initial droplet radius distribution. The effect of the 
initial droplet radius distribution, as well as the value of the critical 
radius a and the exponent C, were discussed. From the above we can draw c 

the following conclusions: 
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1. Estimating the orthokinetic coalescence efficiency is possible by di-

rect comparison of experimental and theoretical values of light 

transmittance intensities. 

2. For the system in question, the orthokintic coalescence efficiency 

found in this way is a weak function of the initial droplet radius 

distribution, the critical radius above which a is zero and the 
c 

value of the exponent C between 1 and 6, which describes the form of 

the dependence of a on the radius ratio. 
c 
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NOMENCLA11JRE 

a - radius, m. 

a - mean radius. 

a - critical radius above which« = 0. 
c 

c 

a -parameter given by Eq. [20]. 
n 

a*- dimensionless radius defined by Eq. [10]. 

A - Hamaker constant, J. 

A -constant defined by Eq. [23}, dimensionless. 
n 

b -parameter given by Eq. [21], dimensionless. 
n 

C -constant used in Eq. [Sa], dimensionless. 

d - minimum distance between the closed and limiting trajectories, 

mln 

F 

G 

I 

m 

m. 

- force, N. 

- F -van der Waal's attraction forces. 
e. 

- F - Brownian forces. 
b 

- F - external forces. 
ext 

- F - gravitational forces. 
q 

- F - net forces. 
net 

- F - electrostatic repulsive forces. 
r 

-1 
- shear rate, s . 

2 
- light intensity, J/m . 

- Bessel's function of first order. 

0 

- Boltzmann constant, J/ K-molecule. 

k
1
,k

2
,k

3 
and k

4
: constant used in Eq. [D-Sa]. 

- refractive index ratio, dimensionless. 
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c 

n• - fraction of droplets, dimensionless. 

n - refractive index of the continuous medium, dimensionless. 
med 

3 

N - total number of droplets at t = 0, particle/m . 
0 

2 
p - pressure, N/m . 

q
1
J - droplets radii ratio, dimensionless. 

Q - light extinction coefficient, dimensionless. 
exl 

Q - light scattering coefficient, dimensionless. 
B 

r - distance from the center of the plates at which the laser light 

R 

t 

t• 

T 

V 

V 

w 

w 

X 

y 

yl 

Greek 

a 
c 

a 
0 

falls, m. 

- radius of the plates, m. 

- time, s. 

- dimensionless time defined by Eq. [11). 

OK. - aboslute temperature, 

- velocity, m/s. 

3 
- volumle, m . 

- weight fraction, dimensionless. 

- stability ratio, dimensionless. 

-parameter defined by Eq. [19). 

-parameter defined by Eq. [22), dimensionless. 

- Bessel's function of first order. 

- orthokinetic coalescence efficiency coefficient, dimensionless. 

- orthokinetic coalescence efficiency, dimensionless. 

- surface tension, N/m. 

- difference between experimentally measured and theoretically 

calculated I /1 , dimensionless. 
t 0 
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£ 
0 

~0 

p 

Script 

1 

- permittivity of vacuum, Farad/m. 

-function related to Hankel's functions of second order. 

- wavelength of light, m. 

- viscosity of the continuous media, Pas. 

3 
- density, kg/m . 

- standard deviation, dimensionless. 

-turbidity, m-1
• 

- surface potential, V. 

- Ricatti-Bessel's functions. 

-1 
- angular velocity, s . 

- distance between the two plates, m. 
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APPENDIX 3-A 

A LISTING OF TilE FORTRAN SUBROUTINE COALESCE TIIAT INTEGRATES 

SHEAR INDUCED SMOLUCHOVSKI'S COALESCENCE EQUATION 
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c 

SUBROUTINE COALESCE 

c 
C THIS SUBROUTINE CALCULATES THE EVOLUTION OF PARTICLES 

C WITH THE DIMENSIONLESS TIME, T*=4*G*TN*ALPHAC*AM**3*TJ3. 

C WHERE 
C G = SHEAR RATE 

C TN = TOTAL NUMBER OF DROPLETS PER UNIT VOLUME 

COLLISION EFFICIENCY COEFFICIENT 
C ALPHAC = 
CAM 
c 

= MEAN DISTRIBUTION RADIUS 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

IT ALSO CALLS THE FOLLOWING SUBROUTINES 

1. SUBROUTINE LOGNORM TO CALCULATE THE INITIAL LOG 

NORMAL DROPLET RADIUS DISTRIBUTION. 

2. SUBROUTINE MISCAT TO CALCULATE THE SCATTERING 

CROSS SECTION. 

3. SUBROUTINE TIMEINC TO INCREASE THE TIME. 

4. SUBROUTINE RUNGKUT TO INTEGRATE SMOLUCHOWSKI 

EQUATION USING RUNGA-KUTTA FOURTH ORDER METHOD. 

THE PROGRAM NEEDS THE FOLLOWING DATA AS INITIAL 

CONDITIONS 

DT 
AM 
SIG 
RMAX 
c 
JMAX 

INTEGRATION STEP 
: MEAN RADIUS OF THE 

STANDARD DEVIATION 

THE MAXIMUM RADIUS 

: THE EXPONENT 
THE NUMBER OF THE 

IMPLICIT REAL*8(A-H,O-Z) 

DISTRIBUTION 

ABOVE WHICH ALPHA=O. 

INITIAL CLASSES 

DIMENSION DN(6000) 

COMMON/CINT/T,DT,JS,JN,DXA(6000),XA(6000),IO,JS4,JMAX 

COMMON/SCAT/QSCA(6001),AP(6001),QZ(6001},TN 

C****** INITIATION SECTION ***** 

c 

c 

DATA PI,TMAX/3.1415927,0.3/ 

W=1.j3. 
DO 988 IA= 1,6000 
AP(IA)=.l*((DBLE(IA)*10.0}**W) 

988 CONTINUE 
CALL LOGNORM(SIG,AM,lO.O} 

CALL MISCAT(l,JMAX) 

C DROPLET ABOVE CERTAIN CLASS, !START, DO NOT COALESCE. 

C THIS PORTION OF THE PROGRAM CALCULATES !START. THIS HELPS 

C IN SAVING A LOT OF COMPUTATION TIME. 
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c 

c 

c 

TAIL=O.ODO 
VOL2=0.0DO 
ISTART=2*IDINT(((10.0*RMAX)**3)/10.0) 

DO 13 I=ISTART+1,JMAX 
TAIL=TAIL+QSCA(I)*QZ(I)*(AP(I)**2) 

VOL2=VOL2+(AP(I)**3)*QZ(I) 

13 CONTINUE 

C THIS PORTION OF THE PROGRAM CALCULATES THE TOTAL NUMBER 

C OF DROPLETS USING THE INITIAL VOLUME FRACTION 

c 
VOL3=0.0DO 
DO 15 I=1,ISTART 

15 VOL3=VOL3+(AP(I)**3)*QZ(I) 
TN=4.77464D8/(VOL2+VOL3) 

c 
C****** DERIVATIVE SECTION ******* 

c 
102 VARAN=O.DO 

c 
C STOP THE PROGRAM WHEN THE REQUIRED TIME, TMAX IS REACHED. 

c 

c 

IF (T.GT.TMAX) GO TO 120 
V=O.ODO 
SUM=O. 
TNP=O.ODO 
CVOL=O.ODO 
TCNP=O.ODO 

C CALCULATE dn/dt* FOR ALL CLASSES. 

c 
DO 104 I=1,JMAX 
WA=O.ODO 
WH=O.ODO 
IF(QZ(I) .LT. 1.0D-100 )QZ(I)=O.ODO 

TURBID=QZ(I)*QSCA(I)*(AP(I)**2) 

VARAN=VARAN+TURBID 
DO 105 J=1,JMAX 
IF (AP(J) .GE. RMAX) GO TO 106 

IF (AP(I) .GE. RMAX) GO TO 107 

RSTAR=(AP(I)/AP(J)) 
IF((RSTAR .LT. 0.1) .OR. (RSTAR .GT. 10.0)) GO TO 107 

BNEW1=(4.0*RSTAR/((l.O+RSTAR)**2))**C 

BNEW=BNEW1*((1.0+RSTAR)**3)*QZ{J)*QZ{I)*(AP(J)/AM)**3 

WH=WH+BNEW 
107 KI=DABS(I-J) 

IF (AP(KI) .GE. RMAX ) GO TO 105 

IF ((KI+J) .NE. I) GO TO 105 

IF (KI .EQ. 0 ) GO TO 105 

RSTAR=(AP(KI)/AP(J)) 
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c 

105 
106 

104 
c 

IF((RSTAR .LE. 0.1) .OR. (RSTAR .GE. 10.)) 

CNEW1=(4.0*RSTAR/((1.0+RSTAR)**2))**C 

CNEW=CNEW1*((1.0+RSTAR)**3)*QZ(KI)*QZ(J)* 

+(AP(J)/AM)**3 
WA=WA+CNEW 
CONTINUE 
FNEW=WA/2.DO 
DN(I)=(FNEW-WH) 
SUM=SUM+DN(I)*(AP(I)**2)*QSCA(I)*1.0D-8 

TCNP=TCNP+DN(I) 
CVOL=CVOL+(AP(I)**3)*DN(I)*1.D-12 

V=V+(AP(I)**3)*QZ(I) 
TNP=TNP+QZ(I)*TN 
CONTINUE 

GO TO 105 

C CALCULATES THE TRANSMITTANCE AND THE VOLUME OF THE 

C DROPLETS TO CHECK THAT THE MASS IS CONSERVED, AT ANY 

C TIME=T. 
c 

c 

TRAN=DEXP(-PI*0.23*TN*1.0D-8*(VARAN+TAIL)) 

V=4.*PI*(V+VOL2)*TN*1.D-12*50./3. 

C****** INTEGRATION SECTION ****** 

c 

c 

116 CALL TIMEINC(T,DT,4) 
DO 118 L0=1,JMAX 
CALL RUNGKUT(QZ(LO),DN(LO)) 

118 CONTINUE 

C CONTINUE FOR ANOTHER VALUE OF T CALCULATED BY THE 

C SUBROUTINE TIMEINC. 
c 

GO TO 102 
c 
C **** FORMAT SECTION **** 

c 

c 
c 
c 

120 RETURN 
END 

SUBROUTINE TIMEINC(TD,DTD,IOD) 

IMPLICIT REAL*8(A-H,O-Z) 
COMMON/CINT/T,DT,JS,JN,DXA(6001),XA(6001),IO,JS4,JMAX 

IO=IOD 
JN=O 
GO TO (6,5,1,1),IO 

6 JS=2 
GO TO 7 

5 JS=JS+1 
IF (JS .EQ. 3) JS=1 
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c 

c 
c 

c 

IF (JS .EQ. 2) RETURN 
7 DT=DTD 
3 TD=TD+DT 

T=TD 
RETURN 

1 JS4= JS4+1 
IF (JS4 .EQ. 5)JS4=1 
IF (JS4 .EQ. 1) GO TO 2 

IF (JS4 .EQ. 3) GO TO 4 

RETURN 
2 OT=DTD/2. DO 

GO TO 3 
4 TD=TD+DT 

DT=2.DO*DT 
T=TD 
RETURN 
END 

SUBROUTINE RUNGKUT(X,DX) 

IMPLICIT REAL*S(A-H,O-Z) 

COMMON /CINT/T,DT,JS,JN,DXA(6001),XA(6001),IO,JS4 

JN=JN+1 
GO TO (9,8,3,3),IO 

9 X=X+DX*DT 
RETURN 

8 GO TO (1,2),JS 
1 DXA(JN)=DX 

X=X+DX*DT 
RETURN 

2 X=X+(DX-DXA(JN))*DT/2.00 

RETURN 
3 GO TO (4,5,6,7),JS4 
4 XA(JN)=X 

DXA(JN)=DX 
X=X+DX*DT 
RETURN 

5 DXA{JN)=DXA(JN)+2.DO*DX 
X=XA(JN)+DX*DT 
RETURN 

6 DXA(JN)=DXA(JN)+2.DO*DX 
X=XA(JN)+DX*DT 
RETURN 

7 DXA(JN)=(DXA(JN)+DX)/6.00 

X=XA(JN)+DXA(JN)*DT 
RETURN 
END 

C **SUBROUTINE TO CALCULATE THE INITIAL SIZE DISTRIBUTION** 

c 
SUBROUTINE LOGNORM(SIG,AM,BMULT) 
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c 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION ERF(6001) 
COMMON/SCAT/QSCA(6001),AP(6001),QZ(6001),TN 

COMMON/CMAX/JMAX 
COMMON/HASAN1/ER 
FROFPA=O. 
W=l./3. 

C INTEGRATES THE PROBABILITY DISTRIBUTION FUNCTION OVER THE 

C SIZE OF EVERY CLASS STARTING BY - 0. 

c 

c 

XSTART=1.00-200 
X1=(DLOG(XSTART/AM)/(1.4142136DO*SIG)) 

C THE SUBROUTINE ERROR CALCULATES THE EROR FUNCTION OF THE 

C ARGUMENT WHICH IS NEEDED TO CALCULATE THE FRACTION OF THE 

C PARTICLES IN EVERY CLASS AS MENTIONED IN CHAPTER 2. 

c 

c 
c 
c 

CALL ERROR { X1) 
ERN=ER 

669 HINDEX=BMULT/2.0DO 
DO 13 IEG=1,6000 
HINDEX=HINDEX+BMULT 
RK1=0.1*(HINDEX)**W 
X1=(DLOG{RK1/AM)/(1.4142136DO*SIG)) 

CALL ERROR(X1) 
ERF(IEG)=ER 
IF {IEG .NE. 1) QZ(IEG)=.5*(ERF(IEG)-ERF(IEG-1)) 

IF (IEG .EQ. 1) QZ(IEG)=.5*(ERF(IEG)-ERN) 

FROFPA=FROFPA+QZ(IEG) 
13 CONTINUE 
14 JMAX=IEG 

RETURN 
END 

C***** SUBROUTINE TO CALCULATE THE ERROR FUNCTION ***** 

c 
SUBROUTINE ERROR(X) 
IMPLICIT REAL*S(A-H,O-Z) 
COMMON/HASAN1/ER 
Z1=DABS(X) 
IF (X .GT. 26.5) ER=1. 
IF (X .LT. -26.5) ER=-1. 
IF ((X .GT. 26.5).0R. (X.LT.-26.5)) RETURN 

T=1./(1.+.5*Z1) 
23 ERFCC=T*DEXP(-Z1*Z1-1.26551223+T*(1.00002368+T* 

+(.37409196+T*{.09678418+T*(-.18628806+T* 

+(.27886807+T*(-1.13520398+T*(1.48851587+T* 

+(-.82215223+T*.17087277))))))))) 
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IF (X.LT.O.) ERFCC=2.-ERFCC 
ER=l.-ERFCC 
RETURN 
END 
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APPENDIX 3-B 

MATHEMATICAL DERIVATION WHICH ILLUSTRATES THE ESTIMATION OF 

ex at t = 0. 
c 
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Differentiation of Eq. [17] with respect to t gives 

CO 

d(l /I )dt 
t 0 

= - (I /1 )nlN d/dt ( E n*Q 
t 0 0 1 

1 

2 a ) . 
• ' 1 1 

[B-1] 

The derivative of the summation on the right side of Eq. [B-1 1 can be 

written as 

d _ 2 CO d 2 CO 2 2 

dt - (tn*Q a ) = E dt (n*Q a ) = E n*d(Q a )/dt + Q a dn*/dt) 
1 1 1 1 s,1 1 1 1 1 s,1 1 1 

1 1 

[B-2] 

but d/dt(Q n*) = 0, since the initial distribution and the droplets that 
s' 1 1 

might appear due to the coalescence process are divided into classes each 

of fixed a · hence a and Q are not functions of time. Moreover, 
1' 1 1 

t• = 16 
GN a3« t [B-3] 

3 0 c 

hence, combining Eqs. [B-1,2,3] gives 

d(l /1 ) 
__ t-:-:-_o_ = - 316 N2a3Gn« 1 (I /I ) 

dt 0 c t 0 

CO 

E (Q a 2dn*/dt*) 
s' l l l 

[B-4] 

To estimate « , the above variables should be calculated at t = 0. 
c 
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0 

APPENDIX 3-C 

PHOTOGRAPH OF MICROCOUETIE APPARAlUS USED TO INDUCE SHEAR COALESCENCE 

THE LASER LIGHT SOURCE, SPEED MOTOR, GLASS PLATES, PHOTODIODE, 

DATA ACQUISITION SYSTEM AND COMPUTER CAN BE SEEN 
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0 

APPENDIX 3-D 

SOLUTION OF THE CONTINUITY EQUATION AND THE NAVIER-STOKES EQUATION 

FOR FLO'W IN THE MICROCOUETTE APPARATUS 
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c 

For a cylindrical coordinate system, the r, a and z components of the 

equation of motion are: 

r-component: 

2 - pv a --r 

a-component: 

= 8p 
8r 

8 
2 

8 8 va 
(! -- (rv l) + = 0 . 

8r r 8r a 8z2 

z-component: 

8p 
8z + pgz = 0 . 

[D-la] 

[D-lb] 

[D-lc] 

where va is the velocity in the a direction, p is the pressure and gz is 

the constant of gravity. 

In the creeping flow regime where Re = pv91/~ << 1.0, the r-component 

of the equation of motion reduces to 8p/8r = 0 or p is only a function of 

z. In fact, p = - pgz as the z-component of the equation of motion indi-

cates. Then we are lift with the a-component to solve. We postulate that 

the velocity distribution will be of the form 

va = f(r)g(z) . [D-2] 
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0 

Upon substitution of Eq. [D-2] in Eq. [D-1b], we obtain 

! d
2
f + !__ df - !_ = 

f d 2 rf dr 2 r r 

1 d 2 
-~ 
g dz2 

[D-3] 

2 We can let both sides of Eq. [D-3] be equal to ~ . Therefore we can write 

[D-4] 

and 

[D-5] 

The solution of Eqs. [D-4] and [D-5] for any value of ~ > 0, respectively, 

is 

f(r) = C I (~r) + C K (~r) [D-6] 
1 1 2 1 

g(z) = C cos(~z) + C sin(~z) , [D-7] 
3 4 

where I
1 

and K
1 

are modified Bessel's functions of order 1. The velocity 

va = f(r)g(z) then takes the following form: 

v9 = k I (~r)cos(~z) + k K (~r) cos(~z) + k I (~r)sin(~z) 
1 1 2 1 3 1 

+ k K (~r)sin(~z) , 
4 1 
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and C C , respec-
4 2 

tively. Since this solution is valid for any value of i\ > 0, we can 

rewrite Eq. [D-8] as 

00 

v
9 

= lim J [k I (i\r)cos(i\z) + k K (i\r)cos(i\z) + k I (i\rsin(i\z) 1 1 2 1 3 1 £~ £ 

+ k K (i\r)sin(i\z)] di\ . 
4 1 

[D-8b] 

For the case where i\ = 0 the solution of Eqs. [D-4] and [D-5], respective-

ly, yields 

f(r) = [D-9] 

g(z) = c z + c 
7 8 [D-10] 

and the resultant solution for the case i\ = 0 is 

v
9 = k

5
rz + k r + k z/r + k /r [D-11] 6 7 8 

Hence the general solution becomes, 

00 

v9 = lim J [k I (i\r)cos(i\z) + k K (i\r)cos(i\z) + k I (i\r)sin(i\z) + 1 1 2 1 3 1 

k K (i\r)sin(i\z)] di\ + k rz + k r + k z/r + k /r 4 1 5 6 7 8 

[B-12] 

The following boundary conditions can be applied to determine the constants 

in Eq. [D-7] for the case where 1 << R, 
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c at r = 0, v9 = 0 for all value of 0 $ z $ 1 , [D-13a] 

at z = 1, v
9 

= 0 for all values of 0 $ r $ R , [D-13b] 

at r = R, v
9 

= OR for all 0 $ z < 1 , [D-13c] 

at z = 0, v
9 

= Or for 0 $ r $ R . [D-13d] 

We shall consider the following cases. First we shall assume no 

singularity so that the terms containing 1/r are all zero and, second, the 

case where ~ = 0, hence we are left with 

v = k rz + k r [B-14] 9 5 6 

with Eqs. [D-13b] and D-13d] as boundary conditions. Upon applying these 

boundary conditions, ve becomes 

v
9 

= Or(1 - z/1) . [D-15] 

In fact this is the solution which one would get by letting v
9 

= rg(z). 

The shear rate G = - 8v9/8z is 

G = Or/1. [D-16] 
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CHAPTER 4 

STABILITY OF VATER IN OIL EMULSIONS IN SIMPLE SHEAR FLOV. 

II. THE EFFECTS OF ADDITIVES ON THE ORTHOKINETIC COALESCENCE EFFICIENCY 
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ABSTRACT 

The effect of electrolytes, solid particles, interfacial tension and 

the effect of shear rate on the orthokinetic coalescence efficiency of 

aqueous emulsion droplets suspended in oil was investigated. It was found 

that, for a given shear rate, lowering the interfacial tension lowers the 

coalescence efficiency. The effect of electrolytes is mainly to lower the 

interfacial tension of the water/oil interface, electrostatic forces play a 

minor role. AlCl is more effective in lowering the interfacial tension 3 

than KCl, resulting in more stable emulsions in the presence of AlC1
3

• 

This trend is opposite to that in oil/water emulsions. 

The emulsions were found to be most stable at intermediate shear rates. 

At low and high shear rates the emulsions stability is minimum. The depen-

dence of the coalescence efficiency on the shear rate is determined by the 

ratio of the attractive (van der Waals) and the repulsive forces to the 

hydrodynamic forces, mainly arising from drop deformation. 

Similar to oil/water emulsions, the presence of solid particles at the 

water/oil interface plays an important role in the stability of the emul-

sions. It was found that the emulsions are more stable in the presence of 

colloidal gold particles. 
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c INTRODUCTION 

In Chapter 3 we outlined a method to determine the orthokinetic co­

alescence efficiency of water/silicone oil emulsions subjected to a simple 

shear flow. In this chapter we extend the previous work to study the 

effects of the presence of electrolytes, solid particles, surface active 

agents on the orthokinetic coalescence efficiency. Furthermore, the 

effects of shear rate and the interfacial tension between the water and the 

oil phases on the orthokinetic coalescence efficiency will be examined. 

In most commerical emulsions the phases of the emulsions usually are 

not pure. They may contain additives so that the emulsions can be utilized 

for many purposes and for a long time. Therefore it is essential to study 

the stability of emulsions in the presence of additives. 

EXPERIMENTAL DETAILS 

1. Experimental Apparatus 

Details of the experimental apparatus used were described in Chapter 

3. For the sake of completeness, we summarize here the experimental setup 

briefly. It consists of a system of two parallel plates made out of a 

special optical glass. The upper plate cannot rotate, but it can move up 

or down to achieve the required gap width between the two plates. The 

lower plate, on the other hand, cannot move up or down but it can rotate at 

an adjustable angular velocity. A laser light beam (He-Ne, ~ = 0.633 ~) 

is allowed to pass through the emulsion contained between the plates. The 

transmitted light intensity as a function of time is detected via a photo-
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c 
diode whose output can be seen on the display of a power meter. The signal 

from the power meter is sent to a data acquisition system, the output of 

which is received by a personal computer for further handling of the data 

(see Fig. 4, Chapter 3). 

2. Preparation of the Emulsion 

The procedures for preparing the emulsion were discussed in Chapter 3. 

In the case where the emulsions contain additives, the emulsion prepara-

tion was done by dissolving the additive in the water phase first and the 

rest of the procedures are as discussed in Chapter 3. 

The following additives were used in this study: KCl of concentra-
-3 tions 13.4xl0 , 0.67, 1. 34 M, AlC1

3 
of 7. 5 mM, sodium dodecyl sulfate 

(SDS) of 3.5 mM. The concentration of SDS was chosen such that it is below 

the CMC (8 mM) to avoid micelle formation (1). Also, spherical gold sols 

particles whose mean radius is 5 nm and concentration of 0.05 g gold per 

liter were used. The gold sols studied were the same as the ones studied 

by Schumacher and van de Ven (2) and prepared according to the procedures 

discussed in (3). The effect of the interfacial tension on the orthokinet-

le coalescence efficiency was also studied. For this purpose olive oil 

having the same v1scos1 ty as the silicone oil (90 mPas) but a different 

interfacial tension was used. The interfacial tension between the oil and 

the water was measured by the pendent drop method (4). The effect of shear 

rate on the orthokinetic coalescence efficiency was investigated by shear­

ing the emulsion at shear rates ranging from 0 to 250 s-1
• Table 1 lists 

the physical properties of each system studied. 
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c TABLE 1: LIST OF THE REFRACTIVE INDEX RATIO OF THE DROPLETS 
TO THAT OF THE CONTINUOUS MEDIUM, •• AND THE INTER-
FACIAL TENSION BETWEEN THE TWO PHASES OF THE EMUL-
SIONS MEASURED AT 23 C. 

REFRACTIVE INTERFACIAL 
INDEX TENSION 

MATERIAL RATIO IIIN/m 

1. SILICONE OIL (97 mPas) 

DISTILLED DEIONIZED WATER 0.9515 28.2 

13.4 mM ICCI 0.9515 13.9 

7.5 mM AIC1
3 

0.9515 10.2 

3.5 mM SDS 0.9515 15.4 

0.67 M ICCI 0.9550 17.4 

1.34 M ICCI 0.9596 11.8 

50 9 gold/L o. 28-2.221 

2. OLIVE OIL (90 DIPas) 

DISTILLED DIONIZED WATER 0.9093 13.2 

RESULTS AND DISCUSSION 

Some typical experimental results of (I /I ) for a water/silicone t o exp 
-1 oil emulsion sheared at 18 s , a water/silicone oil emulsion where the 

water phase contains 1.34 mM KCl sheared at 10 s-1
• and for a water/olive 

oil emulsion sheared at 10 s- 1 are shown in Figs. 1-3, respectively. The 

analysis of the experimental data was performed as described in Chapter 3. 

At time = 0, every system has an ini tlal experimental value of 

(I /1 ) which depends on the value of the refractive index ratio, m, of t o exp 

the droplets to that of the continuous medium and the initial droplet rad-

ius distribution. All other parameters such as the wavelength of the 
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Fig. 1 The change in experimentally measured light transmittance inten-

slty, (I /1 ) , versus time for water/sllicone oll emulsions 
t o exp 

sheared at G = 18 s-1
• The viscosity of the silicone oil is 97 

mPas. 
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Fig. 2 

0 

The change in the experimentally measured light transmittance in-

tensity, (1 /1 ) , versus time for water/silicone oil emulsion 
t o exp 

sheared at G = 10 s-1
• The water phase contains 1.34 M KCl. The 

viscosity of the silicone oil is 97 mPas. 
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Fig. 3 The change in the experimentally measured light transmittance in-

tensity, (I /I ) , versus time for water/olive oil emulsion 
t. o exp 

-1 
sheared at 10 s . The oscillations appearing in the figure are 

due to imperfect adjustment of the plates. 

c 
139 



() 

1.0~---------------------
---------------~ 

0.8 

0.6 
shear started 

0.4 / 

0.2 

0.0+-------+-------~--
----~------~----~ 

0 100 200 300 400 500 

Time, s 



0 

light, the concentration of the dispersed phase, etc., are kept constant. 

Because the orthokinetic coalescence efficiency is a weak function of the 

initial droplet radius distribution (see Chapter 3), different log normal 

distributions of a wide range of mean radius, a, and standard deviation, ~. 

which give a transmitted light intensity (I /1 ) , such that 
t o cal 

(I /I ) - Et $ (I /1 ) $ (I /I ) + E
2 

t o exp t o cal t o exp 

were searched, Et and E
2 

are arbitrary numbers that were chosen such that 

the values of (I /I ) lie within the range given by the above equation. 
t o exp 

For example, if (I /1 ) is 0.25 then all log normal distributions which 
t o exp 

give (I /I ) between 0.2 and 0.3 were searched. In this case E and E 
t o cal 

t 2 

are 0. OS each. These log normal distributions form approximately a tri-

angle whose corners are named a, b and c, as can be seen in Fig. 10 of 

Chapter 3. All the calculations were done for the log normal distribution 

designated by point d, which is the closest one to the actual distribution 

based on turbidimetric and optical microscopy analysis, as discussed in 

Chapter 2. Although the real droplet size distribution is closer to a 

bimodal than a log normal one, we showed that the coalescence efficiency 

obtained does not depend strongly on the precise choice of the 

distribution. For computational convenience we approximate here the 

distribution by a log normal one. 

system studied, (I /I ) - E 
t o exp t' 

are listed in Table 2. 

Values of (I /I ) at t = 0 for every 
t o exp 

(lt/1 ) + E , the points a, b, c and d 
o exp t 
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0 
TABLE 2: A LIST OF THE VALUES OF (l/1) FOR THE SYSTEMS SHOWN Ill 

t o exp 

COLUNN 1, THE APPLIED SHEAR RATE, (1 /I ) -Et' (I /I ) 
t o exp t o exp 

+ E ' 2 •• b, c and d • 

a b c d 

-1 
(I /I ) (1 ) (I /I J (a Jla,tr) (a Jta,tr) (a Jta,tr) (a Jta,O') 

SYSTEM G,s /I - E +E 

l o exp t 0 exp 1 t o exp 2 

(d£:pe~sed (t = 0) 
p •• 

~sfJUr, 
YbiiY:IFwA~ 0 0.232 0.2 0.4 (0.34,0.01) (0. 57. o. 01) (0.11, o. 7) (0. 3, o. 35) 

" " 10 0.244 0.2 0.4 (0. 34, o. 01) (0. 57. o. 01) (0.11, o. 7) (0. 3, o. 35) 

" " 136 0.314 0.2 0.4 (0.34, 0.01) (0. 57. o. 01) (0.11,0.7) (0.3,0.35) 

" " 199 0.218 0.2 0.4 (0.34,0.01) (0. 57. o. 01) (0.11, 0. 7) (0.3,0.35) 

" 11 245 0.273 0.2 0.4 (0.34,0.01) (0. 57. o. 01) (0.11,0.7) (0.3, o. 35) 

WATER CONTAIN- 10 0.288 0.2 0.4 (0. 34, o. 01) (0. 57. o. 01) (0.11, o. 7) (0. 3, o. 35) 

ING 13.4 IIM 135 0.332 0.2 0.4 (0. 34, o. 01) (0. 57. o. 01) (0.11,0. 7) (0. 3, o. 35) 

,... (0. 34, o. 01) (0.11,0.7) (0. 3, 0. 35) 

~ ICCl 238 0.238 0.2 0.4 (0. 57. o. 01) 

,... 

WATER CONTAIN- 127 0.325 0.2 0.4 (0. 34, o. 01) (0. 57. o. 01) (0.11, 0. 7) (0. 3, 0. 35) 

ING 7.5 aM 135 0.281 0.2 0.4 (0.34, 0.01) (0. 57. o. 01) (0.11, 0. 7) (0. 3, o. 35) 

A1Cl
3 

195 0.355 0.2 0.4 (0.34,0.01) (0.57,0.01) (0.11, 0. 7) (0. 3, 0. 35) 

241 0.275 0.2 0.4 (0. 34, o. 01) (0. 57. o. 01) (0.11,0.7) (0.3,0.;J5) 

WATER CONTAIN- 0 0.133 0.09 0.1 (0.68,0.01) (0.88, o. 01) (0.5, o. 38) 

ING 3. 5 IlK SOS 1.0 0.1 0.09 0.1 (0. 68, o. 01) (0. 88. o. 01) (0.5, 0. 38) 

f~EH.~~A~~i 
10 0.548 0.5 0.6 (0.24,0.01) (0.3, 0.01) (0.02. 0. 87) (0.16. o. 35) 

WATER CONTAIN- 0 0.690 0.6 0.75 (0.22, 0.1) (0. 28 • 0. 01) (0.02,0. 87) (0.1,0.35) 

ING 1. 34 M ICCl 10 0.723 0.6 0.75 (0.22,0.1) (0. 28. o. 01) (0.01,1. 0) (0. 2, 0. 36) 

W~EDoCONTAfN-I 9 90 d/L 
10 0.333 0.3 0.4 (0. 28, o. 01) (0. 36. o. 01) (0.01, 1. 0) (0. 2, 0. 36) 

-------- ------------------------------ ------ ------- ------ - -- -

CQts~7§I~ 

DISTILLED DE- 0 0.355 0.3 0.4 (0.14, o.ou (0.16. o. 01) (0.1,0.09) (0.1,0.34) 

IONIZED WATER 10 0.352 0.3 0.4 (0.14, o. 01) (0.16. o. 01) (0.1, o. 09) (0.1,0.34) 



0 

Values of (I /1 ) were calculated from (5) 
t. o cal 

[ 1. ] 

where N is the total number of droplets per unit volume at t = 0, 1 is the 

0 

gap width the light beam travels through the emulsion, n~ is the fraction 

of droplets in class i whose radius is a , and Q is the scattering cross 
l s,l 

section efficiency of the droplets of class 1. Q is a function of the 
s,l 

refractive index ratio of the droplets to that of the continuous media, the 

wavelength of the light beam and the radius of the droplets. 

The values of ni at t = 0 for a given log normal distribution charac­

terized by a and ~ which can be expressed as 

were calculated from 

n• 
l 

where 

a 
l+t 

= J 
a 

l 

P(a,cr)da = 

ln(a /a) 
l z =----

l crv'2i 

[2] 

0.5 [erf(Z ) - erf(Z )] , 
l+t l 

[3) 

[4] 
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Once n• at t = 0 is calculated, then the change of n• with time can be fol-
l 

l 

lowed by solving Smoluchowski's equatio~ written in dimensionless form as 

dn• 
l 

dt* = 
1 
2 rr n•n•(a/a)(1 + q )3 (a./a. l 

k J J lj 0 c 
- n• 

l 
r n•(a/a)(1 +q )3 (a./a.) 

l J lj 0 c 

where 

J+k=l 

n• = 
l 

n/N 
l 0 

= a /a 
l J 

and a. la. is given by the following function 
0 c 

a. la. = 
0 c 

0 

a < a 
c 

a > a 
c 

J=l 

[5] 

[6] 

[7] 

[8] 

[9] 

In the above equation a. is the coalescence efficiency coefficient, a is 
c 

c 

the maximum size above which coalescence between droplets does not occur, 

and C is an adjustable parameter. The significance of a and C and their 
c 

effect on a. was discussed in Chapter 3 where it was found that a. is a 
c 

c 

weak function of a and C ranges between 1 and 6. 
c 
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c 

The coalescence efficiency coefficient, « is a function of the 
e 

interfacial tension between the water phase and the oil phase, 7, the 

surface potential of the droplets, ~. the Hamaker constant of the system, 

A, the viscosity and the density of the continuous medium, J.L
0 

and p
0

, 

respectively, the dielectric constant of the continuous medium, £, and the 

applied shear rate. 

1. Effect of the Shear Rate on « 
e 

The orthokinetic coalescence efficiency was calculated for point d of 

Fig. 10 in Chapter 3 which corresponds to (a,cr) = (0. 3 J.Lm, 0. 35). The 

estimated values of « versus the dimensionless number Gt for water/sili­
e 

cone oil emulsion are shown in Fig. 4. It can be seen that « depends on 
e 

the value of G. To illustrate the dependence of « on G, « is plotted 
e e 

against G at t• = 0. The results are depicted in Fig. 5. Early work of 

van de Ven and Mason (6) showed a similar dependence of « on G (cf. Fig. 3 
e 

of Chapter 1). They investigated the collision efficiency as a function of 

shear rate for two hard spheres of equal radius in the presence of both van 

der Waals attractive forces and electrical repulsive forces. They found 

that the collision efficiency decreases as the shear rate increases until a 

critical shear rate is reached. Beyond this critical shear rate the colli-

sion efficiency decreases as G increases. This relationship continues 

until a second critical shear rate is reached where the collision efficien-

cy increases as the shear rate increases. 

The reason for the behavior shown in Fig. 5 can be explained as 

follows. In the presence of shear, hydrodynamic forces, shear forces and 
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Fig. 4 

0 

The coalescence efficiency coefficient versus Gt for water/ 

silicone oil emulsion subjected to various shear rates calculated 

for C = 1.0 and a = 2.0 ~· The viscosity of the silicone oil 
c 

is 97 mPas. 
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Fig. 5 

0 

The coalescence efficiency coefficient versus G for water/sill-

cone oil emulsion at t• = 0. Calculated for C = 1.0 and a = 
c 

2.0 ~m. Tpe viscosity of the silicone oil is 97 mPas. 
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deformation of droplets become important. The shear forces and the hydrody 

namic resistance are expressed by the following equations (7) 

F 
hyd 

= 3w1Jau 
C(r,q) ' 

[10] 

[ 111 

where a = (al + a2)/2, al and a2 being the radii of the colliding droplets, 

g(r,q) is a known function of the separation r and q, C(r,q) is a 

correction factor for Stokes law taking into account the presence of the 

second droplet, and u is the relative droplet velocity. The shear forces 

tend to increase the coalescence efficiency between the emulsion droplets. 

The hydrodynamic resistance and the deformation of the droplets, on the 

other hand, tend to decrease the coalescence efficiency. At any shear 

rate, if the shear forces and van der Waals attraction forces dominate the 

hydrodynamic resistance, the deformation effect and the repulsive forces, 

then an increase in the coalescence efficiency results or vice versa. 

As the shear rate increases, the hydrodynamic resistance between the 

droplets increases too. As a result of this the chance for the droplets to 

coalesce decreases and so a decreases. 
c 

In addition to this, the 

deformation of the droplets (even if it is very small) due to the shearing 

action becomes very important. Thus the time it takes for two droplets to 

coalesce becomes longer, which reflects in a lower collision efficiency. 

However as the shear rate exceeds a certain value, the shear forces are 

large enough that the droplets can jump over the energy barrier and 

coalesce. 

147 



0 

-1 
Fig. 5 indicates that at a low shear rate (G < 100 s ) the attraction 

forces between droplets overcome the repulsive and hydrodynamic resistance 

forces and hence ex is high. 
c 

-1 
At a high shear rate (G > 200 s ), the re-

pulsive forces become negligible compared to that of the shear forces. 

Also, the shear forces dominate the hydrodynamic resistance and the deform-

ation effect and, therefore, the value of ex is high. Increasing the shear 
c 

rate further will cause more deformation and, therefore, ex will decrease 
c 

to zero, similar to the hard sphere case but more rapidly. On the other 

hand, at a moderate shear rate (100 < G < 200 s-1
), the hydrodynamic resis-

tance, the electrostatic repulsive forces and the deformation effects are 

stronger than van der Waals attraction forces and the shear forces, and so 

the coalescence efficiency is low. The shear rate is related to the capil-

lary number ea = (aG~7) and a figure relating the qualitative dependence 

of ex on e where ea is a parameter similar to that shown in Fig. 2, ehap-
o A 

ter 1, where eR is a parameter is depicted in Fig. 6. 

The effect of G on ex was also studied in the presence of 13.4 mM Kel, 
c 

7.5 mM Alel and 3.5 mM SOS. The emulsions where Kel and Alel are present 
3 3 

in the water phase have the same range of (I /I ) as that of the pure 
t o exp 

water case (note that the presence of the additives does not change the 

refractive index of the water, see Table 1). Therefore the calculations of 

ex were done for the same initial droplet size distribution (a.~) = 0.3 ~. 
c 

0.35). In the case of SOS, the initial transmittance light intensity rang-

ed between 0.09 and 0.15. Therefore all possible log normal droplet radius 

distributions which give (I /1 ) between 0. 09 and 0. 15 were searched. 
t o cal 

These distributions form a triangle similar to the one shown in Fig. 10, 

Chapter 3. The corners of this triangle, represented by a, b, and c, are 
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Fig. 6 The dependence of a on the dimensionless C number where the o A 

dimensionless number Ca is a parameter is qualitatively shown. 
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Increasing Ca 



c 
shown in Table 2. The calculations of ex were done for point d at the c 

center of the triangle which corresponds to (a,cr) = (0.5 J.l.lll, 0.38) (see 

Table 2). Calculated values of ex versus Gt for KC!, AlCl and SOS are c 3 

presented in Figs. 7, 8 and 9, respectively. The dependence of ex on G at 
c 

t• = 0 for these cases is shown in Figs. 10, 11 and 12. From these plots 

one can see the effects of shear on ex , as discussed earlier. The effects c 

of electrolytes on ex will be discussed in the next section. c 

2. Effect of the Presence of KCl, AlCl and SDS on ex 
3 c 

The effects of KCl, AlCl and SOS on the orthokinetic coalescence 3 

efficiency coefficient can be seen from Figs. 10-12. It can be noticed 

that at low and high shear rates these additives stabilize the emulsions 

since ex is lower. At a moderate shear rate the effect is just the oppo­c 

site, they seem to destabilize the emulsions. A possible reason for this 

is as follows. Besides changing the initial droplet radius distribution, 

the presence of these additives also changes the surface potential of the 

droplets as well as the interfacial tension (Table 1). The change of the 

surface potential changes the ratio of the repulsive forces to the attrac-

tion forces. Note that since the additives are dissolved in the water 

phase, the main changes possibly take place in the water phase and the 

possible changes that might take place in the continuous phase (oil phase) 

are not known. However these additives decrease the interfacial tension 

between the water and the oil phases. Hence the droplets become more de-

formable and ex , in the case of additives, is smaller than that of the pure c 

water case. The change in the ratio of the attractive forces to that of 
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c 

Fig. 7 The collision efficiency coefficient versus Gt for water/silicone 

oil emulsion subjected to various shear rates calculated for C = 
1.0 and a = 2.0 ~· The water phase contains 13.4 mM KCl. The c 

viscosity of the silicone oil is 97 mPas. 
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0 

Fig. 8 The collision efficiency coefficient versus Gt for water/silicone 

oil emulsion subjected to various shear rates calculated for C = 
1.0 and ac = 2.0 ~m. The water phase contains 7.5 mM A1Cl

3
• The 

viscosity of the silicone oil is 97 mPas. 

152 



,, 
0 

0.10 
(J 

-1 ~ OG=127 s • +' -1 c: •G=135 s Q) ·- -1 0 
6G=195s ·-

== Cl) 

•G=241 s- 1 0 
(.J 

~ 
0 0.05 c 
Q) ·-0 ·--... -... 

LaJ 
c 
0 ·-en ·---0 

(.) 
0.00 • • • 

100 1000 1E4 

Gt 



c 

Fig. 9 The coalescence efficiency coefficient versus Gt for water/sll-

!cone oil emulsion subjected to various shear rates calculated 

for C = 1.0 and a = 2.0 ~m. The water phase contains 3.5 mM c 

SOS. The viscosity of the silicone oil is 97 mPas. 
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0 

Fig. 10 The coalescence efficiency coefficient versus G for water/sili­

cone oil emulsion at t* = 0 calculated for C = 1.0 and a = 2.0 
c 

~m. The water phase contains 13.4 mM KCl. The viscosity of the 

silicone oil is 97 rnPas. 
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Fig. 11 

0 

The coalescence efficiency coefficient versus G for water/sill-

cone oil emulsion at t* = 0 calculated for C = 1.0 and a = 2.0 
c 

J.lm. The water phase contains 7.5 mM AlCl . 
3 

the silicone oil is 97 mPas. 
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Fig. 12 

0 

The coalescence efficiency coefficient versus G for water/sill-

cone oil emulsion at t* = 0 calculated for C = 1.0 and a = 2.0 
c 

~m. The water phase contains 3.5 mM SDS. The viscosity of the 

sill cone oil is 97 mPas. 
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c 
the repulsive forces also results in a different critical shear rate at 

which « starts to increase as G increases. 
c 

It is of interest to note that the stability of a water/oil emulsion 

is larger when AlCl is used as an electrolyte as compared to KCl. This is 
3 

contrary to aqueous dispersions for which the opposite is true. The reason 

is that for water/oil emulsions the electrolyte is inside the emulsion 

droplet, not around them in diffuse ionic double layers. 

Another interesting observation that can be noticed in Fig. 12 is the 

dependence of « on G for the SOS case. The coalescence efficiency coeffi­
c 

cient remains zero until a critical value of G is reached, beyond which it 

starts to increase. Such critical shear rates beyond which orthokinetic 

coagulation occurs are also found in other systems (8). 

3. Effect of the Concentration of KCl on « 
c 

The orthokinetic coalescence efficiency coefficient was calculated 

from experimental transmittance data for the case where the concentration 

of KCl is 13.4x10-3 M, 0.67 M and 1.34 M. The calculations were done for 

(a,cr) = (0.3 J.Uil, 0.35), (0.16 J.Uil, 0.35) and (0.1 J.Uil, 0.35) for [KCl] = 
-3 13.4x10 M, 0.67 M and 1.34 M, respectively. (Notice that the average 

size of the emulsion droplets formed by ul trasonification decreases with 

increasing salt concentration.) The results, « versus time, for these 
c 

three concentrations are compared to the case [KCl] = 0 and are shown in 

Fig. 13. As can be seen from this figure, the presence of KCl has a sub-

stantial effect on « . The values of « decrease in the presence of KCl. 
c c 

The main reason is probably that the presence of KCl decreases the interfa-

cial tension between the water and the oil phases (cf. Table 1). Hence the 
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Fig. 13 

0 

The effect of the concentration of KCl on the coalescence effici-

ency coefficient as a function of Gt for water/silicone oil emul­

sion sheared at G = 10 s-1
• The calculations were done for C = 

1. 0 and a = 2. 0 J.Ull. 
c 

mPas. 

The viscosity of the silicone oil is 97 
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c 

0 

droplets become more deformable which makes the time it takes for two drop-

lets to coalesce longer, resulting in smaller values of «. The reason is 
c 

probably that, although increasing the concentration of KCl alters the 

nature of the electrical double layer, this change takes place only inside 

the droplets and no changes occur outside the droplets because the oil is a 

non-conductive medium. Since the effect of the concentration on the inter-

facial tension is minor, only a weak dependence of « on the concentration 
c 

of KCl was found (for [KCl] > 13 mM). The effect of the concentration of 

KCl on « can also be seen by plotting « versus the concentration of KCl 
c c 

at t* = 0, as shown in Fig. 14. For comparison, the values of r (the in-

terfacial tension between oil and water plus KCl) are shown as well. It 

can be seen that there is a strong correlation between « and r. suggesting 
c 

that changes in r are the main cause for changes in « . 
c 

forces appear to have only a minor effect. 

4. Effect of the Interfacial Tension on « 
c 

Electrostatic 

To test the effect of the interfacial tension on « two systems were 
c 

chosen. The first one was a water/silicone oil emulsion and the second a 

water/olive oil emulsion. The silicone oil and the olive oil both have 

very similar vlscoslties, - 90 mPas, but different interfacial tensions. 

The interfacial tensions of water/silicone oil and water/olive oil are 28 

and 13 mN/m, respectively. The optical and the physical properties for 

these systems are listed in Table 1. 

Values «~f « versus time were calculated from the experimental data 
c 

and the results are shown in Fig. 15. It can be seen from this figure that 

the values of « for the water/olive oil emulsion are much smaller than 
c 
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c 

Fig. 14 

c 

The experimentally obtained coalescence efficiency coefficient at 

t• = 0 versus the concentration of KCl for water/silicone oil 

emulsions sheared at G = 10 
-1 

s The calculations were done 

for C = 1.0 and a = 2.0 ~m. For comparison, interfacial ten­
c 

sions are shown as well. 
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c 

Fig. 15 The coalescence efficiency coefficient versus Gt for water/ 

silicone oil and water/olive oil emulsions -1 sheared at 10 s . 

The calculations were done for C = 1.0 and a= 2.0 ~m. 
c 
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0 

those of the water/silicone oil emulsion. The reason can be explained as 

follows. The coalescence process between two drops can be divided into 

three stages (9-10). The first step is bringing two droplets together, due 

to the shearing action, to a distance where the colloidal forces are import-

ant. The second step is thinning the film between the droplets. The in-

terfacial tension plays an important role in thinning the film. When the 

interfacial tension is small, the rate at which the film thins is slow. 

When the droplets are forced against each other, forcing out the liquid in 

the gap between the droplets, the surfaces of the droplets deform to coun-

teract this force. The degree of deformation is a function of the interfa-

cial tension. When the interfacial tension is small, the droplet deforms 

more and, hence, the rate at which the liquid in the gap is forced out is 

slower. The third step of the coalescence episode is the rupture of the 

film which leads to coalescence of the two droplets. The coalescence time 

is the time it takes for these three stages to take place. The longer the 

coalescence time the more stable is the emulsion. Experimental results of 

Dickenson et al. (10) on the coalescence stability of emulsion-sized drop-

lets at a planar oil/water interface confirm these findings. Our data on 

water/oil emulsions containing KCl also show the same trend. 

5. Effect of the Presence of Solid Particles on « 
c 

Similar to oil/water emulsions, solid particles also stabilize water/ 

oil emulsions. Gold particles with a radius of 5 nm, much smaller than the 

radius of the water droplets (200 nm), were chosen to study the effects of 

solid particles on coalescence. The number of gold particles per ml water 
14 is 5. 86 x 10 particles. In a 0. 2 f.U11 water droplet the number of gold 
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particles is - 19 particles. Assuming that all the gold particles migrate 

to the water/oil interface then the gold particles cover - 1Y. of the drop-

let surface. The optical properties of gold are listed in Table 1. The 

total light extinction from the system, I , is due to the scattering a, total 

of light by the emulsion droplets I and due to the scattering and s,droplets 

the absorption of light by the gold particles, (I + I ) ; 
s, abs gold 

I =I +(I +I ) . 
s, total a, droplets s a ba gold 

[12] 

Therefore Eq. [1] for this case is rewritten as 

1t _ 2 2 
-1 - exp{- nl [ (N :En*Q a ) + (NtQexta )gold]} t 1 s, 1 1 water [13] 

0 

where Q is the light extinction coefficient of the gold particles. In ext 

general the extinction coefficient of any material whose refractive index 

can be written as n• = n- ik is given by the following equation (11) 

Q ext 

X = 

F = 
1 

F = 2 

F = 
3 

F = 
4 

2na/i\ 

(n2 + k2)2 2 + 4(n -

20 nk 
3F 

2 

k2) + 

4(n2 + k2)2 + 12(n2 - k2) 

7(n2 + k2)2 2 2 + 4(n - k -

4 

- 9 

5) 

[ (n2 + k2)2 + (n2 - k2 - 2)]2 
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In the above equations n and k are the real and the imaginary part of the 

refractive index, ~ is the wavelength of the light beam and i is the i~ag­

inary number = ~. 
For gold particles in water and at ~ = 0.6 ~ the values of n and k alr 

are 0.28 and 0.22 respectively. Q for this case is given by (12) ext 

Q = 1. s1x + 9. ssx4 
ext 

X < 0.3 [15] 

-For gold particles used in this experiment, a = 5 nm and ~ = 633 nm, 

therefore X = 0.05 < 0.3. 

the gold particles. 

Hence Eq. [13] can be used to calculate Q of 
ext 

Light transmittance intensity through a water/silicone oil emulsion 

where the water contains 50 g gold per !iter is - 0.36. Therefore all log 

normal radius distributions which give (I /I ) between 0.3 and 0.4 were t o exp 

searched. The resulting distributions representing points a, b and c are 

listed in Table 2. The calculations of « were done for point d, listed in c 

Table 2, which also corresponds to (a,v) = (0.2 ~. 0.36). These values of 

« are compared to the case where the emulsion is pure water/silicone oil c 

in Fig. 16. The results show that the coalescence efficiency coefficient 

in the presence of gold is smaller than the pure water case. The reason 

for this is that the gold particles migrate to the water oil interface 

(measured contact angle for the system water/silicone oil/gold is 66° ± 2°) 

due to Brownian motion or due to possible attraction forces between the 

gold particles and the water/oil interface. At the interface, gold part-

icles prevent the water droplets from coming closer than a distance in the 

order of their diameter, hence they prevent the droplets from coalescence. 

164 



c 

Fig. 16 The coalescence efficiency coefficient versus Gt for water/sill-

cone oil and water contains 50 g gold particles/L - silicone oil 

-1 emulsions sheared at 10 s . The calculations were done for C = 

1.0 and a = 2.0 ~m. 
c 
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Besides, the water droplets experience an additional repulsive force due to 

the repulsion forces between gold particles in every droplet. These two 

reasons result in a lower value of the coalescence efficiency. 

Similar results were found by Thompson et al. (13). They found that 

the presence of waxes and associated solids in crude oil exerted consider­

able stability upon the emulsion. They also found that removing these 

solids by heating or by centrifugation decreases considerably the stability 

of the emulsion. They also stated that the radius of the solid particles 

plays an important role in the stability of the emulsion. In fact the 

above observation is called the "Pickering" effect, studied in detail by 

Levin et al (14). 

CONCLUDING REMARKS 

Shear forces, hydrodynamic resistance, and the ratio of the van der 

Waals attractive forces to that of the interfacial tension forces play an 

important role in the stability of an emulsion. Changing any of these 

forces results in a different degree of emulsion stability. These forces 

can be altered by altering the shear rate or adding additives to the emul­

sions. The effects of the shear rate and the additives were studied. The 

following tentative conclusions can be drawn: 

1. Lowering the interfacial tension stabilizes the water/oil emulsions. 

This can be achieved by adding surfactants or electrolytes to the 

water phase. 

2. In the presence of shear, the emulsions are least stable at intermed-

late shear rates, similar to hard sphere dispersions. However for 
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water droplets in oil, the repulsive force arises mainly from drop de­

formation rather than electrostatic repul~ion. 

The effect of solid particles at the water/oil interface was also 

tested. The results showed that solid particles increase the emul­

sion stability, similar to an oil/water emulsion. 
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NOMENCLATURE 

- radius of the droplets, m. 

- Hamaker constant, J. 

- arbitrary parameter, dimensionless. 

-correction factor to Stoke's law, dimensionless. 

- arbitrary numbers, dimensionless. 

- force, N. 

- function of r and q, dimensionless. 

-1 
- shear rate, s . 

- ratio of the transmitted light to that of the incident light, 

dimensionless. 

- imaginary part of the refractive index, dimensionless. 

- ratio of the refractive index of the particles to that of the 

continuous media, dimensionless. 

- real part of the refractive index, dimensionless. 

- probability distribution function, dimensionless. 

- ratio of the radius of the colliding droplets, dimensionless. 

- scattering efficiency, dimensionless. 

- time, s. 

- velocity, m s -1 

- dimensionless variable defined in Eq. 14. 

- parameter defined by Eq. 14. 

- coalescence efficiency, dimensionless. 

- permittivity of free space, Farad/m. 
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- wavelength of the light. ~· 

r 
-1 

- interfacial tension. N m . 

-3 
- density. kg m . p 

Scripts 

1 - path length that light travels. m. 

Superscripts 

• - used to define a dimensionless parameter . 

- used to define average value of a parameter. 

Subscript 

c - coefficient of 

exp - used to define the experimentally measured value of a param-

eter. 

0 
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CHAPTER 5 

SHEAR INDUCED COALESCENCE OF WATER IN OIL EMULSION DROPLETS 

SIMULATED BY A MONTE CARLO METHOD 
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ABSTRACT 

Simulation of shear-induced coalescence of emulsion droplets by a 

Monte Carlo method is described. The approach is based on generating a 

droplet from a given droplet radius distribution and a second droplet from 

the corresponding frequency distribution. A collision is considered suc­

cessful if a generated random number is smaller than the orthokinetic coa­

lescence efficiency coefficient, which is assumed to be a function of the 

radius ratio of the colliding droplets. 

The self-preserving form hypothesis was tested. It was found that the 

radius distribution of the emulsions that were examined is self-preserved. 
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INTRODUCTION 

There are a countless number of papers in the literature dealing with 

Brownian- and shear-induced coagulation of colloidal particles. Whether 

these investigations were experimental, theoretical or both, most of them 

had to deal with a numerical solution of Smoluchowski's coalescence equa-

tion. For monodisperse and uniform distributions of particles, the numeri-

cal solution of Smoluchowski's equation presents no problems and the needed 

amount of computing memory is not excessive. However, the computation time 

and memory grow larger as coagulation proceeds, since the distribution 

becomes more polydisperse. Besides the increase in polydispersi ty, the 

solution becomes inadequate for long coagulation times. 

Many attempts have been made to resolve these problems. Kobraei and 

Duncan (1) suggested two approximations (infinite tail approximation and 

polynomial solution) to avoid long computation time and memory. In the 

polynomial approximation, the kernel in the depletion term of 

Smoluchowski's equation is approximated by a constant value. This 

approximation gives accurate results if and only if the fluctuation of the 

kernel around its average value is small. In the infinite tail 

approximation, however, they assumed that the kernel in the depletion term 

is constant froJil a certain point in the distribution to infinity. They 

claim that these approximations are remarkably accurate for long 

coagulation times. Assuming that the distribution can be divided into 

classes whose radii are related by a = a (1)
113

, where a is the minimum 
l 0 0 

radius of the distribution, Suzuki, Ho and Higuchi (2) studied the particle 

radius distribution changes in emulsions and suspensions. In their 

0 
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analysis they avoided long computation times and large memory by 

arbitrarily choosing a maximum value of 1. Simon ( 3) showed that a 

separable particular solution exists for the coagulation equation if a 

source term exists with a time variation of the form (t - t)-2
• In his 

0 

mathematical analysis, Simon assumed that the source term and the particle 

radius distribution were both separable functions of volume and time. 

Mulholland and Mountain (4) numerically studied the applicability of 

Smoluchowski' s equation with a constant kernel to coalescence. Their 

analysis is valid only for short coalescence times before complicating 

effects due to droplet coalescence become important. They modified 

Smoluchowski's Brownian coagulation equation by including a transient term 

in which a self diffusion constant of the particles was used. In their 

comments on Mulholland and Mountain's paper, Marqusee and Mulholland (5) 

suggested that the self diffusion constant is inappropriate to use and a 

better agreement with the direct solution of Smoluchowski's equation can be 

attained by replacing it with a relative diffusion constant. Williams (6) 

and Warszynski and Czarnecki (7) showed that coagulation kinetics can be 

described by a set of approximate equations for time evolution of moments. 

They stated that the results of the moments method agree very well with 

those obtained from direct solution of Smoluchowski's equation and that the 

method reduces the computation time by two orders of magnitude. 

In this paper we follow the time evolution of emulsion droplets in 

simple shear by using Monte Carlo simulation (8-12). This method elimin-

ates the need for huge computer memory that forced people working on this 

problem to limit their analysis to a certain radius. It also eliminates 

the worry about the adequacy of the solution of Smoluchowski's equation at 
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long coagulation time. Moreover, it requires much less computation time 

compared to the direct solution of Smoluchowski's equation and it has the 

advantage that it is more accurate and can be used for an arbitrary depen-

dence of the coalescence efficiency on radius ratio, particle size and 

other variables. 

THEORETICAL ANALYSIS 

Consider an emulsion whose initial droplet radius distribution is 

divided into classes as shown in Fig. 1. Let us randomly choose a droplet 

from class i of radius a
1

• Upon shearing the emulsion, this droplet, in 

essence, can collide with any other droplet in the emulsion. The collision 

frequency of a droplet from class i with any class j whose number of drop-

lets per unit volume is n is given by Smoluchowski (13) as 
j 

F 4G ~ 
lj = 3 I.J 

j=l 

[1] 

If the number of droplets in class i is n
1 

then the collision frequency 

between class i and j is 

I I 
F _ 4G ~ 

- 3 I.J 
1=1 j=l 

[2] 

where G is the shear rate and I is the total number of classes the distri-

bution has. 

176 



Fig. 1 

0 

Initial log normal droplet radius distribution divided into 

classes. The mean radius and the standard deviation are 0.3 ~m 

and 0.35, respectively. 
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Plotting the collision frequency, F versus a will give a frequency 
lj J 

distribution function, ~s can be seen in Fig. 2, for the case where G = 10 

-1 
--

s , and for a log normal distribution with mean radius a = 0. 3 f.Lm and 

a standard deviation~= 0.35. This distribution will be skewed to the left 

3 

compared to the radius distribution because nJ is multiplied by aJ, as can 

be seen from Eq. [1]. The probability that a droplet i will collide with 

another droplet k is proportional to F
1
k. Therefore a droplet k randomly 

chosen from the frequency distribution function is allowed to collide with 

droplet i. The collision efficiency between droplet i and droplet k is re-

lated to their radius ratio, as discussed in Chapters 3 and 4. An approxi-

mate expression is given by the following equation 

ex = ex 
lk c 

0, a 

a < a 
c 

a > a 
c 

[3] 

where ex is the orthokinetic coalescence efficiency coefficient, q -
c 

ik -

a /a , is the radius ratio of the colliding droplets, a is a critical 
i k 

c 

radius above which ex
1
k = 0 and C is an exponent whose value, in general 

varies from 1 to 6. As discussed in Chapter 3, the dependence of ex on C. 
c 

ranging from 1 to 6 varies within ± 2~. Therefore a value of C = 5 was 

used. 

After ex
1
k is calculated, a random number R is generated via a random 

number generator (14). The values of R vary between 0 and 1. If R > ex 
ik 

then the collision is considered inefficient, i.e. the collision does not 

lead to coalescence, otherwise the collision is efficient and coalescence 
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Fig. 2 The collision frequency, F between a droplet of radius a and 
lj 

1 

droplet in class j calculated by Eq. [ 11. The droplet radius 

distribution is log normal i = 0.3 ~m and ~ = 0.35. The value 

of a = 0.345 ~· 
l 
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between droplet i and droplet k occurs. If the collision is inefficient 

then another droplet i is chosen and the above procedures are repeated. If 

the collision is efficient then the number of droplets in class i and class 

k will be less by one droplet each and class i + k, provided that V
1 

+ Vk = 

Vl+k' where V is the volume, will increase by one droplet. Another droplet 

i is chosen and the above steps are repeated. Since the number of colli-

sions (the number of times a droplet i is created) is proportional to the 

shearing time, the above steps are repeated until a desired shearing time 

is achieved or the total number of droplets has fallen to a required value. 

The above procedures are summarized below: 

1. From a known initial droplet radius distribution, a droplet from class 

i whose radius and volume are a and V is randomly chosen. 
l l 

2. The collision frequency of this droplet with other droplets is calcu-

lated from Eq. [ 1 l. Hence a frequency distribution function is ob-

tained. 

3. A droplet from class k of the frequency distribution function whose 

radius and volume are a and V is also randomly selected and allowed 
k k 

to collide with droplet i. 

4. The orthokinetic coalescence efficiency is then calculated from Eq. 

5. 

[3]. 

A random number R (o s R s 1) is generated. If R > ex then the col­
lk 

lision is inefficient. If R < ex then the collision is successful 
lk 

and coalescence between i and k takes place. 

6. If the collision is inefficient then steps 1 through 5 are repeated 

for another collision. If the collision is successful then 
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= n - 1 
l 

nk = nk - 1 

n = n + 1, provided that V
1 

+ Vk = V 
l +k l +k 

l+k 

7. Procedures 1 through 6 are repeated for another collision and so on. 

It should be pointed out that when a successful collision takes place 

the distribution is changed and, therefore, new classes appear. Whenever 

the above procedures are repeated the change in the droplet radius distri-

bution, and hence the frequency distribution, should be taken into account. 

The subroutine MOCARLO, which was used to carry out the above simulation 

procedures, is shown in Appendix 5-A. 

Generation of a Random Droplet 

If the droplet radius distribution shown in Fig. 1 is replotted as a 

cumulative radius distribution, In /N , versus a , then the result will be 
l l l 

as shown in Fig. 3. The cumulative size distribution will vary from 0 to 

1. Generating a random number, R will also have a value ranging from 0 to 

1. The value of the random number is read from the y axis of Fig. 3. A 

straight line from R parallel to the x axis will intersect the cumulative 

curve at a point P. The location of point P on the cumulative curve will 

determine the class from which a droplet should be chosen. If this way of 

randomly choosing a droplet is correct, then one should be able to regener-

ate the droplet radius distribution. In Fig. 4 the initial droplet radius 

distribution shown with open circles is compared to the distribution gener-

ated by the above method shown by a solid line. A thousand random numbers 

were used for this purpose. One can see from Figs. 3 and 4 that this 
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Fig. 3 The cumulative droplet radius distribution for the log normal 

distribution given in Fig. 1. A point P on the figure determines 

a random choice of class i. 
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Fig. 4 

0 

The initial droplet radius distribution given in Fig. 1, shown 

by open circles, is compared to a randomly obtained distribution, 

shown by the solid line. 1000 random classes were used to re­

generate the initial distribution. 
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method is an accurate way of choosing a random droplet from a given droplet 

radius distribution. 

The same procedures were followed to choose a droplet from the fre-

quency distribution function. In this case the frequency F
1
k was normaliz­

ed by dividing it by F and the random number R ranges between zero and 

l:F /F. 
lk 

RESULTS AND DISCUSSION 

As the number of collisions proceed, and hence the shearing time, the 

droplet radius distribution changes. Due to coalescence the number of 

droplets decreases in some classes and increases in others. The larger the 

number of collisions, the larger the change in the droplet radius distribu-

tion. To relate the number of collisions to the different parameters of 

the system we define the following parameters. Let ;t:: be the number of 

collisions the computer generates and F be Smoluchowski's collision fre­
o 

quency at time t = 0. A dimensionless parameter ~ can be defined as 

1J = 
;t::N Ga 

0 c 
F 

[4) 

0 

where N is the total number of droplets at time t = 0. The shearing time 
0 

is related to 1J by the following equation: 

1J 
Ga t 

c 
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where Nt and Ft are the total number of droplets and collision frequency at 

any time t. 

Fig. 5 shows the change in an initially log normally distributed 

emulsion with a = 0.3 ~ and ~ = 0.35. The values of C, a and a were 
c c 

chosen to be 5.0, 1.0 and 2.0 ~m. respectively. It can be seen from Fig. 5 

that as ~ increases, the shearing time and the number of droplets, of which 

size there are many, change faster than those for which the number 

concentration is low. The reason for this is that the probability of 

choosing a droplet from the former is higher than the latter. Hence the 

former decreases more rapidly than the latter. In fact, the classes which 

contain a small number of droplets and whose radius is larger than 0.48 ~ 

increase their number of droplets with time due to the coalescence of 

smaller droplets. Whereas droplets below 0. 16 ~m show no change because 

either there are no smaller droplets which give rise to them, or the chance 

for them to coalesce with others is very low since the coalescence 

efficiency is too small. 

The effect of the parameter C on the change of the distribution was 

tested. For this purpose, values of C ranging from 0 to 100 were examined. 

The change in the droplet radius distribution for the case where C = 0 is 

shown in Fig. 6. A value of C = 0 means that a = 1 and thus all collisions 

are efficient and lead to coalescence. The rate of depletion of droplets 

whose number is large is faster for C = 0 than for C = 5. The change in 

the total number of droplets plotted as N* = (N 
0 

N )/N versus C for 
t 0 

various values of~ is shown in Fig. 7. The following can be observed 

from this figure. First of all, as C ~ ~. N* ~ 0. Secondly, as C ~ 0, N* 
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Fig. 5 Changes in the droplet radius distribution as collisions proceed. 

The values of a, ~. a and C are 0.3 ~m. 0.35, 2.0 ~m and 5, re­
c 

spectively. 
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Fig. 6 

0 

Changes in the initial droplet radius distribution as collisions 

proceed. The values of a, ~. a and C are 0.3 pm, 0.35, 2.0 pm 
c 

and 0, respectively. 
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Fig. 7 

c 

The change in (N - N )/N versus C for various values of ~. The 
0 t 0 

droplet radius distribution is as given in Fig. 1. 

188 



0 

0.10 -r-------------------.. 

0.08 

0.06 

0.04 

0.02 

\ 

' ' '-, -- ....... 

-f1=2.33x1 08 

-f1=1.87x108 

--f1=1.17xto8 

8 
· · · ·11=0. 70x 10 

', ~---------=::::::::::J ----.. ---... ------.... ---. ...... -------. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 

O.OOT----~-------+------~------+-
----~ 

0 20 40 60 80 100 

c 



c 
attains a certain value which is a function of ~ and, finally, as ~ ~ 0 for 

any value 9f C, N• ~ 0. The above observations can be described by the 

following formula which describes N• as a function of C and ~ 

-k ~ -k vc 
N• = ( 1 - e 1 

) e 2 
[6a] 

The values of N• obtained from the numerical results obtained by the 

above method are fitted to the above equation from which the values of the 

constants k
1 

and k
2 

were found to be (4.35 ± 0.01)x10-10 and 0.150 ± 0.004, 

respectively. For the case where N• changes by < 10X the above equation 

can be replaced by 

N• = k TJ e 
4 

[6b] 

where k
4 

is (4.19 ± 0.01)x10-10 and k
2 

has the same value as above. 

The effect of polydispersity was also investigated. A log normal 

distribution with a value of v = 0.6 was chosen. The mean radius is kept 

the same as in the previous test (0.3 ~). The change in the droplet radi-

us distribution is portrayed in Fig. 8. 

The change in the total number of droplets as the number of collisions 

increases was calculated by the Monte Carlo simulation and by numerically 

solving the coagulation equation of Smoluchowski (13). The results of 

N /N versus F /F are depicted in Fig. 9. F /F is the ratio of the col-t 0 t 0 t 0 

lision frequency calculated from Eq. [2] at any time t to the collision 
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Fig. 8 

0 

Changes in the initial droplet radius distribution as collisions 

proceed. The values of a, ~. a and c are 0.3 pm, 0.6, 2.0 ~m. 
c 

and 5, respectively. 
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Fig. 9 Comparison between N /N versus F IF obtained by direct solution 
l 0 l 0 

of Smoluchowski's equation and Monte Carlo method. 

0 
191 



0 

1.00~---------------
-------------------~

 

0.95 
Smoluchowski 

0 z 
~ 0.90 

Monte Carlo 

z 

0.85 

0.80+-------~-----
---~--------+-----

--~ 

0.80 0.85 0.95 1.00 



frequency at t = 0. The slope of N /N versus F IF for the direct solution 
t 0 t 0 

of Smoluchowski's equation and the Monte Carlo simulation are 0.76 and 

0.94, respectively. A comment must be made here about the comparison that 

is shown in Fig. 9. The slopes of the Monte Carlo and the numerical solu-

tions of Smoluchowski's equation seem to be different by- 20X. Actually, 

it was noticed that the slope is extremely sensitive to the numerical solu-

tion of the coagulation equation. 

1.0 - 0.987 
1.0 - 0. 983 = 0.76 

The slope (AN/AF ) of Smoluchowski is 
t 

whereas the slope of the Monte Carlo is 

1.0 - 0. 985 
1.0 - 0. 984 = 0.94 . 

This shows how sensitive the slopes are to the numerical solution of 

Smoluchowski's equation. In the numerical solution of Smoluchowski's 

equation, the classes were divided according to a
1 

= (xi)
113 where x = 5.0 

was chosen. Because of the finite memory of the computer and the 

computation time limitation, a smaller value of x could not be tried. 

Therefore improvement of the above result can still be done at the expense 

of increasing the computer time. From this one can conclude that the 

results of the Monte Carlo method are much more accurate than that of the 

results of the numerical solution of Smoluchowski's equation. 

In the previous chapter the coalescence efficiency was calculated from 

experimental data using the numerical solution of Smoluchowski' s set of 
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differential equations. Calculating ex from Monte Carlo simulations in­
c 

stead results in a difference of about SY., well below the experimental 

error of about SY.. 

SELF-PRESERVING FORM DISTRIBUTIONS 

Rajagopal (15) showed that the course of the coalescence process can 

be described by the time variation of a droplet radius distribution. Swift 

and Friedlander (16) extended Rajagopal' s idea and used a mathematical 

procedure called "similarity transformation" to solve the full shear eo-

alescence equation of Smoluchowski, the similarity transformation method 

transforms Smoluchowski's equation to a total differential equation. Swift 

and Friedlander also proposed a self-preserving hypothesis written in the 

form, where V is the volume and N is the total number of droplets per unit 
t 

volume, 

[7] 

and showed that Eq. [7] is a solution of the similarity transformed form of 

Smoluchowski's equation. In Eq. [7] p(V,t) is the probability distribution 

function and ~ is the volume fraction. The mathematical analysis of the 

similarity transformation will not be shown here, but the reader is re-

ferred to the original paper by Swift and Friedlander. 

The results of the similarity transformation hypothesis indicate that 

if the cumulative fraction of particles, In IN , (1 - I(n IN ) in Swift and 
l t l t 
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Friedlander• s work) is plotted against the dimensionless parameter ~ = 

VN /~ and if the plot gives a unique curve then the distribution is self­

t 

preserved. 

Ali and Zollars (17) examined the self-preserving particle radius 

distribution hypothesis during shear coagulation. They concluded that the 

particle size distribution that evolves during shear coagulation appears to 

be a self-preserving distribution. They also concluded that "claims that 

the shear coagulation of dispersions with good Brownian stability does not 

yield self-preserving distributions are in error and a distribution is a 

self-preserved one as long as the coagulation process is dominated by shear 

coagulation whether the initial distribution is stable to Brownian coagula-

tion or not". A similar conclusion was obtained by Meesters and Ernst 

(18). who numerically evaluated the self-preserving form in Smoluchowski•s 

coagulation equation. 

In this chapter we plot the cumulative radius distribution as a 

function of ~ to check the self-preserving hypothesis put forward by Swift 

and Friedlander. The results are depicted in Fig. 10 where l:(n IN ) is 
l t 

plotted versus ~ and ~ as a parameter. The values of c. a and ~ that are 

used to calculate the change in the total number of droplets are 5.0. 0.3 

~ and 0.35. respectively. It can be seen that the self-preserving 

hypothesis is satisfied during the coalescence process. A similar plot was 

obtained for the case where c = s.o. a = 0.3 ~m and ~ = 0.6. The results 

are shown in Fig. 11. It should be noted that the same plots are valid for 

any value of C since the initial radius distributions are the same in both 

cases. 
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Fig. 10 

0 

The cumulative droplet radius distribution given in Fig. 1 versus 

~ for all values of ~. The results are applicable for any value 

of C. The difference is within the thickness of the line. The 

figure shows that the distribution is self-preserved. 
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Fig. 11 

0 

The log normal cumulative droplet radius distribution of a = 0.3 

~ and ~ = 0.6 versus ~ for all values of ~ and C. The differ­

ence is within the thickness of the line. The self-preserving 

form can be seen from the above curves. 
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CONCLUSIONS 

An approach to simulate shear-induced coalescence of emulsion droplets 

by Monte Carlo simulation has been described. The evolution of the droplet 

radius distribution, the change in the total number of droplets and the 

collision frequencies were calculated. Comparison of these results with 

those obtained from numerical solution of Smoluchowski's equation was 

performed. It was found that the results are very sensitive to the 

numerical solution of Smoluchowski's equation. The effect of the parameter 

C on the evolution of the droplets was examined. 

The self-preserving form distribution hypothesis was tested. It was 

found that the distributions that were tested in this chapter satisfy the 

self-preserving form hypothesis. 
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a 

c 

F 

G 

n 

N 

p 

q 

t 

V 

Greek 

NOMENCLATURE 

- droplet radius, ~· 

- exponent parameter, dimensionless. 

-3 -1 
- collision frequency, m s 

-1 
- shear rate, s . 

-3 
- number of droplets per unit volume, m . 

-3 
- total number of droplets per unit volume, m . 

- probability distribution function, dimensionless. 

- droplets radii ratio, dimensionless. 

- time, s. 

3 
- droplet volulme, m . 

a - orthokinetic coalescence efficiency, dimensionless. 

~ - number of collisions which the computer generates. 

' - volume fraction, dimensionless. 

~ -parameter given in Eq. [4], dimensionless. 

~ - ratio of droplet volume to the average droplet volume, dimension-

less. 
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APPENDIX 5-A 

THE SUBROUTINE MOCARLO ntAT SIMULATES THE SHEAR INDUCED 

COALESCENCE OF EMULSION DROPLETS BY A MONTE-CARLO METHOD 
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SUBROUTINE MOCARLO 

THIS SUBROUTINE SIMULATES THE COALESCENCE PROCESS BETWEEN 

TWO EMULSION DROPLETS. FIRSTLY, IT DIVIDES ANY GIVEN 

LOG NORMAL DISTRIBUTION INTO CLASSES AND THEN IT 

CALCULATES THE NUMBER OF DROPLETS IN EACH CLASS. 

SECONDLY, FROM A CERTAIN CLASS IT RANDOMLY CHOSES A 

DROPLET AND CALCULATES THE COLLISION FREQUENCY BETWEEN 

THIS DROPLET AND THE REST OF THE CLASSES. FINALLY, IT 

CHOSES A DROPLET FROM THE FREQUENCY DISTRIBUTION. 

A RANDOM NUMBER R IS GENERATED. IF R<ALPHA THEN THE 

COLLISION IS EFFICIENT AND COALESCENCE OCCURS OTHERWISE 

THE COLLISION DOES NOT LEAD TO COALESCENCE AND THE 

ABOVE PROCEDURE SHOULD BE REPEATED. 

IF THE COLLISION IS EFFICIENT THEN EACH OF THE ABOVE 

CHOSEN CLASSES LOOSE A DROPLET EACH AND THE CLASS WHOSE 

VOLUME IS EQUAL TO THE VOLUIME OF THE ABOVE CLASSES 

GAINS A DROPLET. THE ABOVE PROCEDURES ARE REPEATED AND 

SO ON. 

THIS SUBROUTINE CALLS THE FOLLOWING SUBROUTINES 

1. SUBROUTINE LOGNORM TO DIVIDE THE LOG NORMAL 

DISTRIBUTION INTO CLASSES AND CALCULATES THE 

NUMBER OF DROPLETS IN EACH CLASS. THIS SUBROUTINE 

INTERN CALLS SUBROUTINE ERROR TO CALCULATE THE 

ERROR FUNCTION. 

2. SUBROUTINE MISCAT TO CALCULATE THE LIGHT 

SCATTERING EFFICIENCY. 

3. SUBROUTINE DET TO DETERMINE TO WHICH CLASS A 

RANDOMLY GENERATED NUMBER R BELONG IN THE SIZE 

DISTRIBUTION. 

4. SUBROUTINE DETFREQ TO DETERMINE TO WHICH CLASS A 

RANDOMLY GENERATED NUMBER R BELONG IN THE 

FREQUENCY DISTRIBUTION. 

5. SUBROUTINE RAN1 TO GENERATE A RANDOM NUMBER R 

RANGING BETWEEN 0 AND 1. THIS SUBROUTINE WAS 

COPIED FROM REFERENCE 14 IN CHAPTER 5. 

THIS SUBROUTINE REQUIRES THE FFOLLOWING DATA AS INPUT 

1. AM=MEAN RADIUS OF THE LOG NORMAL DISTRIBUTION. 

2. SIG=STANDARD DEVIATION OF THE LOG NORMAL 

DISTRIBUTION. 
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c 
c 
c 
c 
c 

c 

3. C=THE VALUE OF THE EXPONENT APPERS IN EQN. [3] IN 

CHAPTER 5. 

COMMON /CMAX/JCLASS,K1,SUM(2001),SUMFREQ(2001) 

COMMON/SCAT/AP(2001),QZ(2001),FREQ(2001),TN,JCLASS 

DIMENSION QSCA(2001) 

C****** INITIATION SECTION ***** 

c 

c 

AM=0.3 
SIG=0.35 
C=5.0 
ALFAC=1.0 
W=l. 0/3.0 
PI=3.1415927 
AP(1)=.015 
PEOFPA=0.999 
IDUM=O 
NTOTAL=O 
YINIT=RAN1(IDUM) 
DO 988 IA= 2,2000 
AP(IA)=AP(IA-1)+.03 

988 CONTINUE 
CALL LOGNORM(SIG,AM,PEOFPA) 

CALL MISCAT 

C CALCULATE THE COLLISION FREQUENCY AT TIME=O.O 

c 

c 

SMOL=O.O 
DO 5 L6=1,JCLASS 
DO 5 L7=1,JCLASS 
SMOL=SMOL+QZ(L7)*QZ(L6}*((AP(L7)+AP(L6))**3) 

5 CONTINUE 
SMOL=SMOL*4.0*1.0E-9/3.0 

C NTRIAL=NUMBER OF COLLISIONS ONE WOULD LIKE TO CREATE 

c 
C !PRINT IS CHOSEN TO PRINT DATA AFTER !PRINT NUMBER OF 

C COLLISIONS. 
c 

TUR=O.O 
DO 7 L9=1,JCLASS 
TUR=TUR+QSCA(L9)*QZ(L9)*AP(L9)**2 

7 CONTINUE 
TRANS=EXP(-PI*2.3*TUR*1.0E-6) 

DO 1 I=1,NTRIAL 
IF (MOD(I,IPRINT) .NE. 0) GO TO 8 

TUR=O.O 
DO 15 L10=1,JCLASS 
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c 

c 

TUR=TUR+QSCA(L10)*QZ(L10)*AP(L10)**2 

15 CONTINUE 
TRANS=EXP(-PI*2.3*TUR*1.0E-6) 

FEQ=O.O 
DO 48 L11=1,JCLASS 
DO 48 L12=1,JCLASS 
FEQ=FEQ+4.0*QZ(L11)*QZ(L12)*((AP(L11)+ 

+AP(L12))**3)/3.0 
48 CONTINUE 

C GENERATING A RANDOM DROPLET FROM THE INITIAL DISTRIBUTION 

c 
8 P1=RAN1 ( IDUM) 

c 
C CALL SUBROUTINE DET TO DETERMINE TO WHICH CLASS THIS 

C DROPLET BELONG 
c 

c 

CALL DET ( P1) 
KA=K1 

C IF THE DROPLET BELONG TO A CLASS WHICH IS ALREADY 

C DEPLETED THEN CREATE ANOTHER DROPLET 

c 

c 

IF (QZ(KA) .LE. 0.0) GO TO 8 
SIZE1=AP(KA) 

C CALCULATE THE FREQUANCY AT WHICH THE ALREADY CHOSEN 

C DROPLET COLLIDE WITH THE OTHER EXISTING DROPLETS = 

C 4*QZ(J)*1.0*(SIZE1+AP(J))**3/3.0 

c 
DO 9 KK=1,JCLASS 
FREQ(KK)=(4.0*QZ(KK)*(SIZE1+AP(KK))**3)/3.0 

IF (KK .EQ. 1) SUMFREQ(1)=FREQ(1) 

IF (KK .NE. 1) SUMFREQ(KK)=SUMFREQ(KK-1)+FREQ(KK) 

9 CONTINUE 
6 P2=SUMFREQ(JCLASS)*RAN1(IDUM) 

CALL DETFREQ(P2) 
KB=K1 
IF (QZ(KB) .LE. 0.0) GO TO 6 
SIZE2=AP{KB) 

22 QIJ=SIZE1/SIZE2 
ALFA=ALFAC*(4.0*QIJ/((1.0+QIJ)**2))**C 

IF({SIZE1 .GT. 2.0) .OR. (SIZE2 .GT. 2.0)) GO TO 1 

c 
C IF CHANCE < ALFA THEN THE COLLISION IS SUCCESSFULL HENCE 

C CREATE ANOTHE ORIGINAL DROPLET, IF NOT CREATE ANOTHER 

C DROPLET 
c 

CHANCE=RAN1(IDUM) 
IF (CHANCE .GT. ALFA) GO TO 1 

NSUC=NSUC+1 
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c 

QZ(KA)=QZ(KA)-1.0 
QZ(KB)=QZ(KB)-1.0 
ASIZE=((AP(KA)**3)+(AP(KB)**3))**W 
HK=O.O 
DO 43 L3=1,JCLASS 
HK=HK+.03 
IF (ASIZE .LT. HK) GO TO 44 

43 CONTINUE 
44 QZ(L3)=QZ(L3)+1.0 

TN=O.O 
DO 2 L1=1,JCLASS 
TN=TN+QZ(L1) 

2 CONTINUE 
SUM(1)=QZ(1)/TN 
DO 3 L2=2,JCLASS 
SUM(L2)=SUM(L2-1)+QZ(L2)/TN 

3 CONTINUE 
1 CONTINUE 

RETURN 
END 

C *** SUBROUTINE DETERMIN *** 
c 

c 

SUBROUTINE DET(PP) 
COMMON /CMAX/JCLASS,K1,SUM(2001),SUMFREQ(2001) 
DO 2 I1=1,JCLASS 
A=SUM(I1) 
IF (A .LT. PP) GO TO 2 
K1=I1 
RETURN 

2 CONTINUE 
K1=JCLASS 
RETURN 
END 

C *** SUBROUTINE TO CHOOSE A PARTICLE FROM THE FREQUANCY 
C DIDTRIBUTION 
c 

c 

SUBROUTINE DETFREQ(PP) 
COMMON /CMAX/JCLASS,K1,SUM(2001),SUMFREQ(2001) 
DO 3 I1=1,JCLASS 
A=SUMFREQ(I1) 
IF (A .LT. PP) GO TO 3 
K1=I1 
RETURN 

3 CONTINUE 
K1=I1 
RETURN 
END 

C *** FUNCTION SUBPROGRAM TO GENERATE A RANDOM NUMBER *** 

http:HK=HK+.03


0 c 
FUNCTION RAN1(IDUM) 
DIMENSION R(97) 
PARAMETER(M1=259200,IA1=7141,IC1=54773, 

+RM1=3.8580247E-6) 
PARAMETER (M2=134456,IA2=8121,IC2=28411, 

+RM2=7.4373773E-6) 
PARAMETER (M3=243000,IA3=4561,IC3=51349) 
DATA IFF /0/ 
IF (IDUM.LT.O.OR.IFF.EQ.O) THEN 
IFF=1 
IX1=MOD(IC1-IDUM,M1) 
IX1=MOD(IA1*IX1+IC1,M1) 
IX2=MOD(IX1,M2) 
IX1=MOD(IA1*IX1+IC1,M1) 
IX3=MOD(IX1,M3) 
DO 11 J=1,97 
IX1=MOD(IA1*IX1+IC1,M1) 
IX2=MOD(IA2*IX2+IC2,M2) 
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1 

11 CONTINUE 
IDUM=1 
END IF 
IX1=MOD(IA1*IX1+IC1,M1) 
IX2=MOD(IA2*IX2+IC2,M2) 
IX3=MOD(IA3*IX3+IC3,M3) 
J=1+(97*IX3)/M3 
IF(J.GT.97.0R.J.LT.1)PAUSE 
RAN1=R(J) 
R(J)=(FLOAT(IX1)+FLOAT(IX2)*RM2)*RM1 
RETURN 
END 
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CHAPTER 6 

GENERAL CONCLUSIONS 
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CONCLUSIONS 

The following are certain observations and conclusions that summarize 

the research described in this thesis. 

1. The particle radius distributions of colloidal systems of various de­

grees of polydispersi ty can be determined from light transmittance 

measurements at various wavelengths of light. 

2. The orthokinetic coalescence efficiency between emulsion droplets in 

simple shear flow can be estimated by comparing experimentally measur­

ed and theoretically calculated light transmittance intensities. 

3. The orthokinetic coalescence efficiency, for a given system, depends 

on the colliding droplets radius ratio and their surface potential and 

can be expressed approximately in the form given by Eq. [11] in Chap­

ter 3. 

4. Changing any of the following: surface potential, interfacial tension 

and shear rate, alters the orthokinetic coalescence efficiency. 

5. Adding electrolytes to the water phase of the emulsion results in a 

more stable emulsion in a certain shear rate range and a less stable 

emulsion in some other range of the shear rate. The higher degree of 

stability can be mainly attributed to a lowering of the interfacial 

tension. 

6. When the interfacial tension decreases, indicating that the droplets 

can be more readily deformed, the orthokinetic coalescence efficiency 

decreases and, hence, the emulsion becomes more stable. 

7. The presence of solid particles at the water/oil interface decreases 

the orthokinetic coalescence efficiency and thus stabilizes the emul-
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si on. 

8. The orthokinetic coalescence efficiency as a function of shear rate 

goes through a minimum and a maximum consecutively. 

9. It is possible to simulate the coalescence of the emulsion droplets by 

a Monte Carlo method. This has the advantage of eliminating huge corn-

puter memory and decreases considerably the time that is needed for 

the solution of Smoluchowski's coagulation equation. 

10. Applying Monte Carlo simulation to shear-induced coalescence over-

comes the problems that arise from numerically solving Smoluchowski's 

coagulation equation. 

11. Plotting the results presented in special dimensinless form In /N 
1 t 

versus ~ = VN /,, shows that the distributions studied theoretically 
t 

in this thesis are of the self-preserving form. 

CLAIMS FOR ORIGINAL RESEARCH 

We believe that the following are original contributions made by this 

research: 

1. A quick, accurate and simple method to determine the particle radius 

distributions of colloidal systems of various ranges of polydlsperslty 

has been developed. 

2. A method to estimate the orthokinetic coalescence efficiency has been 

developed. 

3. An equation describing the dependence of the orthokinetic coalescence 

efficiency on the colliding droplets radius ratio and their surface 

potentials has been proposed. 
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c 4. The effects of the shear rate, presence of solid particles at the 

water oil interfaces, electrolytes, surface active agents and inter­

facial tension on the orthokinetic coalescence efficiency has been 

investigated. 

effects of 

efficiency. 

This is the first experimental study to determine the 

various additives on the orthokinetic coalescence 

5. The shear-induced coalescence of emulsion droplets has been simulated 

using a new Monte Carlo method. 

RECOMMENDATIONS FOR FUroRE VORK 

The dependence of the orthokinetic coalescence efficiency on the col­

liding droplets radius ratio was given in Eq. [11], Chapter 3. This equa­

tion has three parameters. Determining these parameters with a polydis­

perse system is a very difficult task. Therefore it is recommended to 

develop a method to produce monodisperse emulsions. This study will not 

only be useful to colloid scientsits, but it is also of great importance to 

biotechnologists. A technique to do this is already available in (1), but 

the rate of droplets produced by the method explained in (1) is very small 

compared to the number of emulsions droplets necessary in most applica­

tions. 

Doing this would enable one to check the importance of every parameter 

and its effect on the orthokinetic coalescence efficiency. 

The rheology of emulsions has been investigated by many authors (2,3). 

The effect that coalescence of emulsion droplets has on the rheological 

properties of the emulsions have not been investigated thoroughly. There-
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fore it is necessary to study this area in more detail, especially the many 

body interaction terms that appear in the statistical mechanical theory for 

viscosity. 

-1 In the microcouette apparatus shear rates higher than 250 s were not 

possible to apply due to some design problems. A modification of the de-

sign such that higher shear rates can be applied is recommended. 
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