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Abstract

This thesis add.esses the problem of how to determin . the opumum level ot mesh
discretization required to solve a magnetic device accurately and efficiently using
tinite elements. Currently, most fintte element packages require user intervention to
assure that the mesh density is appropriate for the device. This requires that the user

be knowledgable n finite-element analysis and magnetic device design.

The approach introduced here uses a neural network which is trained to recognize
sigmiicant geometric features and material properties trom the description of a
magnetic device.  Based on its knowledge of meshing rules the neural network
computes the mesh density required tor an optimum mesh of the device. The neural

network acquires this knowledge from examples of "ideal" meshes.

The system requires no user intervention and can be used either inde sendently or as

a preprocessor to an adaptive mesh refinement system.




Résumé

Le sujet de cette these est la détermination de Lo densité optimale de mallage d'un
composant magnétique requis pour une solution precise et ethicace par la methode
des éléments finis. Actuellement, la plupart des logiciels d’éléments fuus requerent
I'interveution de l'utilisateur pour s’assurer que la densit¢ du manllage est adéquate.
Ceci sous-entend, de la part de 'utilisateur, un niveau d'expertise en ¢léments fins

et en analyse magnétique.

L’approche suivie ici consiste en un réseau de ncurones qui a ¢1¢ exered a
reconnaitre, & partir de la description du composant magnétigue, les s
géometriques et les propriétés des matériaux signiicatits  Se basant sur sa
connaissance des regles de maillage, le réseau de neurones caleule T densite requse
pour un maillage optimal du composant. Le réseau de neurones agquiett ce savor i

partir d’exemples de maillages optimaux.

Le systtme ne requiert aucune intervention de Pudblisateur, et peut ¢tie utibse
indépendemment, ou comme préprocesseur a un systeme adaptateur de rathmement

de maillage.
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Chapter 1
Introduction

1.1 Problem Description

This thesis grew out of an investigation into the applications ot neural networks in
clectrical engineering design and analysis. The idea of using neural networks was Hrst
proposed as an alterpative to expert systems in a project involving the user intertace
to a magnetics analysis program. From the mvestigation came the concept of using
neural networks to ehimimate the need for user teraction i the mesh generation

stage of magnetic device analysis,

Currently the users of most magnetic device analysis packages must guide the mesh
generation phase to ensure that the mesh has the proper level ot discretization. This
requires knowledge about fimite element analysis, and about the properties of the
solution to the problem. Without this guidance the mesh may be too coarse to model
the solution accurately at certan critical points in the device domain, or over-
discretized, requinng @ large amount of computer time in soluton and post-

processing,

One approach which does not require user interaction uses an adaptive solver to
rehine an mmtial coarse mesh. The adaptive solver uses an error criterion to estimate
the error of the crude mesh, and retines it where the error is estimated to be large.
However this method starts out with essentially zero knowledge of meshing rules and

the problem solution,

The premuse of this thesis is that neural networks can learn the required knowledge,
and function with a mesh generator to gencerate meshes without requiring any user
mput. This prenuse is vahidated by creating a system which computes a good
approximaton to the wdeal mesh density, in the 2-D case and with hinear materials,

tor steady state problems. The meshes generated by this system can be used as-is,
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or they can be used as the imitial mesh for an adaptive solver (to give 1t a head start).

1.2 Original Contributicns
This thesis makes the folloving contributions to onginal reseanch:

1) The application of neural networks to deternune the hnte element
mesh density from the geometric specification and material properties

of a magnetic device.

2) A local representation for the put to a neural network ol a specitied

geometry for special symmetry conditions.

3) A general method of representing continuous real values for the output
of a neural network.
4) A method of estimating the ideal element size at any pomt i the

geometric domain of a magnetic device, based on the "exact” solution.

1.3 Literature Survey

This application of neural networks essentially bridges the gap between the tield ol
tfinite elements, and the field of neural networks. The relevant hiterature 1s reviewed

in the following sub-sections.
1.3.1 Neural Networks

From the held of neural networks an essential reference tor this apphcation s
[Rumelhart, 1986], which presents the architecture used in this apphcanon For an
introduction to various neural network architectures, [Caudill, T98Y] 1s o good source
The text: [Hecht-Nielsen, 1990] 1s indispensable tor developmg @ neural network

application. However no specitic examples of other applications resemblimg this one

t9
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could be tound.

In some ways this apphcation is similar to visual pattern recognition. Much ettort has
been tocused in this held; the tollowmg cover some of the more relevant material,
The neocognitron [Fukashima, 1982] is a network optimized tor character recognition.
Some special architectures for dealing with oy mimcinics have been developed by
B. Widrow, see, tor example, [Widrow, 19884].  Also an application ot neural
networks using Fourier-Mellin spatial tilters is described in [Leleune, 1989].
Unfortunately, the special teatures and properties of the mesh density problem make
most of these references inapphcable, as some results presented later will show. Also
visual pattern recognition is largely concerned with the problem ot noise. However,

i this application, noise 15 not an issue since the device geometry and properties are

typically specitied with great precision.

1.3.2 Mesh Generauon for Fimite Elements

From the hield of hinite element analysis there 1s practically no usetul Iiterature
Virtually all the relevant mesh generation research ([Jin, 1990]. [Fupita, 198S].
[Bachmann, 1987]) 1s focused on generating a mesh assuming that the desired mesh
density s specitied. Most of these papers expect the mesh generator to torm part of
the Toop mn an adaptive solver (the mesh density 1, in this case. determmed using an
error cnterion applied to an approximate solution from a crude mesh). This step n
the mesh generation process 1s also required by this system, but the difticult part 1
not generating a mesh based on density, but rather determining the proper density
in the tirst place. Therefore this system is based on the existence of density driven

mesh generators.

Other mesh generators use hard-coded rules (e.g., [Reichert, 1990], which, incidently,
does nor use eapert system methods as claimed). These rules are used to ensure

optimum grading and tnangle shape, and do not take nto account any properties ot

2]




the device or ol the solution.

Some knowledge about {inite element analysis of magnetic devices 18 used o this
application. However this knowledge is very general, and can be tound i any pood

text on finite elements for electromagnetics (e.g.. [Lowther, 1950]).
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Chapter 2
The Neural Network Approach

Recently neural networks have received increased attention because of their ability
to learn from examples and to generalize. While neural networks are conceptually
very simple, there are still many aspects that are poorly understood. This chapter
describes neural networks and gives a constructive interpretation of how they work.
Although much ot what is presented in this chapter appears elsewhere in the
Ierature ([Rumelbart, 1986], [Hecht-Nielsen, 1990]), it is included here for
completeness. Even so, this thesis is necessanly terse in the background of neural
networks. For a more thorough and readable introduction to neural networks, the
reader s encouraged to read [Rumelhart, 1986]. This will form the basis for the

system used to solve the mesh discretization problem.

2.1 General Definition of a Neural Network

Neural networks were inspired by biological computing systems as exemplified in
animal brains. However the neural network concept has evolved to include a much
broader range of computing systcms. The following definition is taken from

[Caudill, 1989]:

Detinition: A neural network 1s a computing system made up of a number of
simple, highly interconnected processing elements (nodes), which

processes information by its dynamic state response to external inputs.

Neural networks are characterized by their ability to generalize from examples, to
extract {eatures present in a set of inputs, and to tolerate uncertainty. Neural
networks are an mherently parallel computing architecture, and while some parallel
hardware implementations exist, most neural network applications are developed on

standard serial computers. This highlights the fact that the actual difference between




neural networks and conventional computing is the computing paradigm behind the

network structure.

2.1.1 The Neural Network Paradigm

The conventional procedural computing paradigm emphasizes above all ¢lse the
algorithm behind a data processing task. How data is represented plays o secondany

role compared to how the data is manipulated.

In the neural network computing paradigm, on the other hand, the "algonthm™ s
essentially the same for different apphcations (for a given neural network
architecture). The emphasis 1s nstead placed on representation. Using a neural
network paradigm, a data processing task is first reformulated in input/output terms.,
A representation is chosen for the | the possible inputs and outputs, and then, it the
representation 1s "good encugh', a mapping between mput and output can be
determined automatically. Exactly what this means will become clearer in the

following sections.

2.1.2 Neural Network Architectures

The previous statements apply to practically all neural network architectures. Many
sophisticated architectures exist such as Fukushima’s Neocognitron [FFukushima,
1982], Grossberg’s adaptive resonance network [Grossberg, 1983], and Kohonen's
associative map [Kohonen, 19¢4]; these architectures are surveyed i [Lippmann,
1987] and [Caudill, 1989]. For the application presented here one of the simpler and
more established architectures proved to be suitable: the hackpropagation network

The following analysis will focus on this network architecture.

6
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2.2 The Backpropogation Network

The backpropagation network is also
referred  to as the "ayered
feedforward network", and "the
mapping ncural network”.  As the
name suggests, the nodes in the
network are arranged in layers (see
Figure 1). The first layer consists of
input nodes; their values are set
externally  and  represent  the
information the network will use to

determine the output of the data

Figure 1 - A Small Backpropagation
Network

processing task. Each node in the following layers takes its input from the layer

previous to 1t, and computes an output which is a bounded monotonic function of the

weighted sum of these inpnts. The nodes in the last layer are called output nodes.

Once the computation of the node values has propagated through the layers, the

output nodes represent the solution to the data processing task for the input

presented to the input nodes.

2.2.1 Feedforward Mathematics

The following four equations express this mathematically:

8P = P glp-1)

(1)

o = £PsP), 1<i2N,

-
i

where:

oM

o'P s the (column) vector of node values of layer p, i.e.,




0fP" is the value of node i in layer p,

x is the vector of input node values,
¥ 18 the vector of output node values,
W' is the matrix of weights, Le.,

(p)

w;%  is the connection weight from node j in layer p-1 to node 7 in layer p.

also:
N, is the number of nodes m layer p,
M is the number of layers, and finally
fi(p) () is the node transter function.
A commonly used transfer function 1s:
1

f,(s,) = PSR (2)

where the superscript p has been dropped for clarity, and where a, is an adjustable
threshold parameter of the function. This parameter can be seen as a weight ona
connection to a node which has a constant value of 1: theretore this parameter
should be thought of as just another weight. Figure 2 shows the transter

characteristics 1n diagram form.

Ol(p—l)
(p) -
Vi1 T
o\ ~
(p-1) .
Oz - 7
\/
- |
. ( 1+ 1fl“”}-~»f o,
. \\ T '
(w(p) .
iN, , -
(p-1)
ONP_1

Figure 2 - Node Transter Function
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2.2.2 Network Topology

The topology ot a backpropagation network 1s the specification of the number of
layers, the number of nodes in each layer, and the form of the transter function of
cach node. The weights themselves are not considered to be part of the architecture,
and are mitially given random values (the final values for the weights are determined
through a process called traimng). The topology 1tself has no direct relationship to
the computational problems a given network is meant to solve (except tor fixing the
number of input and output nodes), although the topology will influe ice the
pertormance. There s, as of yet, no analytical method of determining the optimal
topology.  Since the topology is not moditied during learning, all the knowledge
acquired by the network about a certain data processing task is encoded in the

weights during the training phase.

2.3 Training the Backpropagation Network

The backpropagation network acquires its knowledge from a set of training examples.
The training examples are input-output pairs, where each pair consists of the input
values of one example and the corresponding target output values. During the
traimng phase, one of the inputs from the set of training examples (selected at
random) 1s presented to the network and the output values are computed. The
weights are then moditied to reduce the error between the actual output values and
the target output values.  This process 1s repeated untl the network response is
sufticiently close to the targets for all the examples in the training set. How close
depends on the application: however it may also happen that the network never
reaches a pomnt where the error is sutficiently small.  This phenomena can be

understood most easily from the numerical perspective presented in the next section.

9
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2.3.1 The Error Backpropagation Rule

The backpropagation network gets its name from the method used to train the
network, the error backpropagation nide. This rule was discovered independently by
several researchers including [Rumelhart, 1986]. In this traimmng scheme, the network
is trained by backward propagation of the error from the outputs to the mputs. This
algorithm defines the error of the neural network with respect to the A-th trammg
example as:

EW = |y gt (3)
where 5 is the output of the network when training input x5 apphed to the
inputs of the neural network, and €% s the target output tor that same trimng
input. The total error is then defined as £ = TE™W . The algonthm mimmuizes this

total error with respect to the weights using a gradient descent algonthm.

This algorithm was implemented exactly as described in [Rumelhart, 1986], using

these two equations:
Rk
3w (4)

17

Aw'® = aAwlk ™t + B

where a is a momentum parameter (approximately equivalent to the successive over-
relaxation parameter in relaxation terminology), and B is the "step size’ ot cach
update. Interested readers can refer to [Rumelhart, 1986] for more detanls on the

backpropagation algorithm.

The previous section mentioned the possibility that the network never attinns a
sufticiently small error.  The reason for this is due to the fact that the
backpropagation algorithm 1s a minimization algonithm, but the surface of the
function being minimized (the total error) does not have a single mimmum.  In fact
the error surface typically has many local minima which can be near or far trom the

global minimum. Since the backpropagation always travels "downhill” it 1s hable to

10
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get stuck in one of these mimima. The next section discusses this problem in terms

of other minimization methods.

2.3.2 Moditying the Backpropagation Algorithm

As mentioned in the previous paragraph, the backpropagation algorithm nininnzes
the error by gradient descent. Since it is well known that gradient descent methods
are mferior to other minimizotion algorithms in many apphcations, it is tempting to

try some of these superior algorithms to minimize the error of the neural network.

The comjugate gradient method 1s one such method; 1t is well documented in the
literature (c.g Section 10.6 of [Press, 1988]). and features quadratic convergence on
a certann class of problems. Also one apphication, [Lapedes, 1988}, uses the conjugate
gracdient method (demonstrating that it is workable), but without comparison to the
gradient descent method.  Accordingly the conmjugate gradient algorithm  was

implemented, and the results compared to the gradient descent algorithm.

The results were disappomnting; the conjugate gradient method did converge to a
minimum in many fewer iterations, but the mimmum it converged to was far trom
global. The gradient descent method, in general, inds much better minima. There
are several possible explanations tor this, First of all, the momentum parameter in
the weight update step allows the gradient descent algorithm to escape a local
mimmum n some cases by carrying 1t through the minimum. Secondly the fact that
the weight update occurs after each individual example means that the error
"landscape” changes at each teration. This means that what 1s a local mimmum tor
one example may not be for the next. Finally the order of the examples 1s chosen
at random; this adds a certiun amournt of "noise” to the direction taken, again so that
escape from local nminima is possible. Of course in theory these three tactors could
also cause 1t to escape from a better minimum to a worse one, but in practice this

does not happen often enough to impair the superior performance of the gradient

11
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descent algorithm.

Attempts at using other minimization methods such as simuliated anncahing [Press,
1988), and genetic algorithms [Montana, 1989] have also been attempted (but not by
this author) without much success. These methods are good tor nunimizing functions
with many local minima, however they have only limited usctulness beciuse they
converge much more slowly than even the gradient descent method (although the
minimum they find might be closer to a global nummum). The reason tor ths s that
each set of weights is chosen almost independently of the others. This means that
the chances of finding a good set of weights are almost vanishingly small. "To
illustrate this, consider a network of only 75 weights (a rather small network) It an
implementation of these algorithms tested one million weight matrices per second (a
figure only specialized parallel hardware could acheive), 1t would take one billion
years just to test one weight vector in ecach "quadrint™ of the weight space.
Considering that the estimated geological age of the earth s under five bilhon years,
it is clear that an exhaustive search ot this kind is quite mteasble. These
experimental results favour the standard backpropagation algorithm.  Also, although
no formal analysis on convergence properties has been carried out, the gradwent
descent method is the method of choice in practically all apphcations ot the

backpropagation neural network.

2.4 Numerical versus Knowledge Based Interpretation

The previous sections described neural networks m very mummal terms  The
description specified, in mathematical terms, the operation oi the network and the
method used to modity the weights during training. In principle this s suthaent 1o
implement a neural network, however 1t does not give much msght mto the

behaviour of the network as a whole.

This emergent behaviour is often described using difterent terms trom the artihiaal
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mtelligence hield such as pattern recognition, feature extraction, and generalization.
However, especially in this application, the emergent behaviour is best described from

a numerical analysis perspective.,

2.4.1 Emergent Behaviour: Numerical Perspective

The mathematies deseribing the neural network presented in the previous section
suggest that & neural network can be interpreted as a functional mapping between
the inputs and the outputs. In this type of mapping, the input space is thed,
dimensional space of input points, and the output space 1s the N,, dimensional space

of output paints. Specitically, a backpropagation neural network can be defined as

tollows:

Detinition: A backpropagation neural network is a multi-valued function of many
variables; the solution to a computing problem is tound by evaluating

this function at a specified point.

The "speafied point”" is the input to the neural network. and the values of the
function correspond to the output of the neural network (the solution to the
computing problem).  Using this definition, many ot the properties of the neural
network can be eaplained in terms deseribing tunctional mappings. In particular, the
ability of the network to generalize can been seen as inferpolation between the
traiming examples n the output space.  This has implications regarding input and

output representation, which is discussed in the next chapter.

2.4.2 Learnmng as Modelling

It the neural network is interpreted as a function, then the process of learning can
be mterpreted as modelling.  The weights can be seen as the pwameters of a

modelling tunction, and the traming examples as data points 1n the multi-dimensional




(input-output) space of this function. Then the error backpropagation rule s
identical to a least squares fit (minimized by gradient descent) of the neural network
"modelling function to these data pomts. Tlis puts neural networks on more tamiha
ground, and allows the large body of knowledge about modellg theory to be applhied

to neural networks.

2.4.3 Using Other Modelliiig Functions

If the neural network can be interpreted as a modelhng function, then it
appropriate to ask whether other modelling tunctions might not be more suitable tor
implementing the functional mapping between mputs and outputs. While no answet
to this question is presented here, some background information nught prove to be
illuminating. This question is addressed 1n two papers by ditferent authors. Both
papers describe a solution to the same problem, but each uses a ditferent approach.
The tirst paper. [Lapedes, 1988], implements a solution using neural networks The
second paper. [Farmer, 1988], uses an exphat interpolation function which s focal,
1.e., the output at a specified input point 1s determuned by mterpolating between the
output of the nearest neighbours to the input point. In this explicit scheme it turns
out that the way in which nearest neighbours are chosen has a significant impact on
the accuracy of the interpolation. Also the local interpolation scheme is superior to

several different types of global interpolation schemes attempted by the authors.

What is of interest here is that the neural network approach gives very simiar results
to the local interpolation scheme.  This suggests that in fact neural networks are
implementing some type of local interpolation scheme. This also suggests that when
the neural network learns the mput-output pairs, 1t also learns the teatures of the

input which are important in selecting the "best" nearest neighbours.

14




2.5 Summary

This chapter outlines the neural network computing paradigm. The system pre sented
in the following chapters 1s based on the backpropagation neural network

architecture. Four key facts about neural networks are introduced:
1) Methoad of computation: in parallel.
2) Intormation representation: real numbers.
3) Knowledge representation: in the connection weights.

4) Knowledge acqusition: learns from examples.
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Chapter 3
Input and Output Representation

The most difficult aspect ot developing a neural network appheation (not counting
the generation of traiming examples) is findmg a workable representaton tor the
input and output of the neural network. Thus most of the experimental work wis
aimed at determining appropriute representations. The results are the subject of thas

chapter; more is said on the simulations themselves in Chapter 5.

3.1 General Considerations

The only explicit constraint imposed by the neural network s the tormat: the mput
and the output must each be encoded as a set of real numbers. The size of the set
(the number of input or output nodes) is arbitrary. The range of cach value s so
arbitrary, though n practice the values are usually constramed to be in the interval
[0,1] or [-1,1]. However the principle on which the neural network operates, s
explained in Chapter 2, means that not all representations are equal  In tact the

representation chosen is critical to the success of a neural network appheation,

3.1.1 Rules tor Deriving Representations

Unfortunately, the field of neural networks 1s still very young, and there is as yet no
rigorous approach to finding a good representation (this applies to other aspects of
neural networks as well!). There 1s even an scarcity of general rules of thumb or
other guidelines to assist deveiopers of neural network apphcations ‘The previous
chapter, however, does give some idea of what the iput and output representation
must be capable of. Specifically, since generalization s equivalent to interpolation
between training examples, the mput and output representation must ke ths
interpolation possible. One implication of this is that the input and the output should

be encoded so that simular inputs produce similar outputs.

16
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One general question s should the input representation favour a simple encoding
using a large number of nodes, or a complex encoding using a small number of
nodes. In the appheation presented here, an example of the former - ssimple coding
using many nodes - would be a pisel 1mage ot the input geometry. An example of
the latter - complex coding using only a few nodes - would be an encoding based on
relationships between the ine segments making up each geometric object. The same

question apphes to the output.

The answers to these questions were found through sottware experiments. In the
process, msight was gained into the workings of back-propagation networks. From
this insight a set of gudelines was developed tor creating input and output
representations for neural networks n the general case. These guidelines are

presented at the end of this chapter, and are one of the contributions of this thesis.

3.2 Representing the Output Mesh

At first glance, the complenity of a finite element mesh makes 1t ditficult to imagine
that o workable encoding exists at all. The idea of a pixel image of a complete finite
clement mesh appearing at the output of the neural network makes one shudder at
the computational cost that would be required. However the reason a neural
network was chosen tor this application was because of 1its pattern recognition
capabibties.  Butn this application the key need for pattern recogntion s not for
Delaunay triangulation or optimum grading ot the mesh. There already exist etticient
algonthmie solutions to these aspects of the meshing process. The aspect of the
process which 1s as yet unsolved. and for which pattern recogn.tion is required, is in
determining the optimum density of the mesh. Here, and in the following, the density
of @ mesh at a given point is the node density in the vicinity ot the point. This 1s
measured by the distance between the nodes, (., equivalently, the length of the side

of the element). The deal mesh density evenly distributes the error in the solution
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computed on the mesh. Later, the chapter on traming examples will give more
precise definitions for mesh density and for the ideal mesh density. From the density
specification it is straighttorward to generate a mesh, and soltware packages already
exist which do exactly that [Hétu, 1990]. Therefore it 1s sutticient tor the neural net
to compute the density of the mesh everywhere (or at a selection of sample points)

in the domain of the mesh.

3.2.1 Properties ot the Mesh Density

Before discussing different options for representing the mesh density, it 1s instructive
to study the properties of the mesh density as a function of the mput geomety.
These properties are defined with respect to paints, lines, or the whole doman,
whichever is most convenient. Spectfically, the mesh density tunction has the

following properties:

1 Translational covarniance Translating the mput gcometty results i an

equivalent translation of the mesh density as a whole.

2) Rotationalinvariance Rotating the input about a pomnt does not change

the mesh density at that point.

3) Scale covariance Scaling the input geometry (about & point) results i

an equivalent scaling of the mesh density (element size) at that point.

4) Mirror invariance Mirroring the input geometry about a hine does not

change the mesh density along that hne.

Many of these properties are also exploited in other fields of image processing such
as character recognition. However there are some important differences  In most
pattern recognition tasks of this type, the output is independent of orientation, scale

and position of the input. This 15 not the same as translation and scale covanance,
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which is used here to mean that the output is transformed in the same way the input
was transformed. Therefore techniques used in image processing are not readily

applicable to this application.

3.2.2 Representing the Mesh Density at a Point

If the neural network is appropriately set up, the above properties will be enforced
explicitly. Otherwise they will only be present implicitly in the training examples, and
the neural network will attempt to learn these properties from the training examples.
The first property has the most relevance to the representation chosen for the output,
because 1t implies that the neural network only has to compute the mesh density at
a single point. The mesh density at any point in the domain can then be computed
by the appropriate translation of the input geometry. To make this clearer, imagine
that the neural network is set up to compute the mesh density at the exact center of
a "snapshot” of the input device. Then the mesh density at any point can be
computed by "panning” the device across the input to the network such that the
center of the snapshot corresponds to the desired point: the output of the neural

network will be the required mesh density at that point.

Representing a single value is not difficult. The most obvious representation uses a
single output node, with the output value proportional to the size of the element at
the output point. But there are still several options to consider. Care must be taken
to ensure that the full dynamic range of the output is being used. In fact the reason
mesh density was defined in terms of element length is because the distribution ot
element lengths over the geometric domain is relatively umiform. Figure 3 shows the
distributions of two encodings: length and area. These distributions are derived from
the ideal sizes at 547 uniformly distributed points in the geometric domain of the C-
core device (see Chapter 5). Note how the distribution of the encoding using

element area is skewed towards the smaller size values. The opposite is true for the
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Figure 3 - Distribution of Ditterent Encodings ot Size

encoding based on number of elements per unit area (since this 1s simply the mverse
of the encoding using element area), i.e., this encoding is skewed towards the larger
size values. For other devices this rule may not hold, but since the device i this case
was chosen to be representative (in terms of important geometric features and
material properties, see Chapter 5), this distribution is as close as practical to the

expected distribution.

However, even with a unitorm distribution, the neural network has ditheulty learning
to model a continuous valued output. It proved to be impossible to obtam sutficient
accuracy (less than about 5% error on the training examples, or less than 10% on test
examples). Why this is so is not obvious; perhaps the neural network fails at
continuous interpolation because it has too tew degrees of treedom to model every
example closely, but too many degrees of treedom to be smooth between examples.,

In any case, this difficulty is neatlv circumvented by using a coding process which
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allows for error correction. The next section describes the output encoding and

decaoding process which reduces this error within acceptable bounds.

3.3 Representing a Continuous Output

The encoding of the output is based on the hypothesis that recognition and
classification are the strong points of neural networks. Accordingly, a representation
was developed which takes advantage of these abilities: the output is discretized, and
cach discrete value is represented by a separate output. Conceptually, each output
represents all the continuous values in the interval around the corresponding discrete
value. To decode this output, a voting system can be used to select the element size
corresponding to the output with the largest value. This encoding provides a much
greater error immunity, since all that matters is which output is mavinum, and not
the precise value of each output. From the pattern recognition point ot view, it
means that the netwo-k only has to classify a given input geometry into one of the
bins representing element sizes.  Alternatively, each output can be seen as
representing a confidence level that the input geometry requires the corresponding
element size. This method of representing a continuous value is not restricted to this
application. The next two sub-sections explain the encoding and decoding process

in detail, for the general case of a continuous valued output.

3.3.1 Encoding a Continuous Output

Since the neural network requires target values for the outputs during training, it i
necessary to be able to encode a single continuous tglrget value into many target
vitlues, one tor each ot the output nodes. Before specifying what these values should
be, the tollowing formalizes this representation. As stated in the previous paragraph,
cach output node 1s assigned to represent a different (discrete) value. These discrete

valres are chosen n this case to correspond to a linear scale (i.e., each interval has




the same width), although there is no reason that other scales couldn’t be used n
other applications. In the simplest case, the output of the neural network is decoded
by selecting the node with the largest value. It the output nodes are numbered trom
1 to N, then if the n-th output has the largest value, the corresponding continuous
value is:

X = (n - —g-)w (1)
where x is the continuous value, and w, the width of the intervals, is the conversion
factor between the node index and the continuous value. In the appheation
presented here, this interval width is defined as:

2x

Wy (2)

where X is the average over all the examples of the contimuous values (the sizes in
this case), and N 1s the number of intervals (the number ot output nodes). This
relation was found empirically to give a uniform distribution over the output nodes,
i.e., each node recognizes its share ot input geometries. The chowee as logical 1t the
values are uniformly distributed. Note however that this imphies that values greater
than 2x would map to an index larger than N. In this case the value s squashed to

2Xx; artifacts of this step are discussed in Cnapter 4.

To encode a continuous value requires the imverse of the mapping from node output
values to the continuous value by taking the maximum output. Howewver this inverse
mapping is not unique, since the operation of taking the maximum output s not
unique. In fact any mapping 1s valid which assigns the maximum value to the output
whose corresponding value 1s closest to the continuous value. The simplest such
mapping assigns 1 this output, and 0 to all other outputs. However this mapping 1s
a bit too simple, and leads to problems during the learning phase. The reason for
this is the discontinuity in the target output values when the continuous value 1s at the
boundary between intervals. It the continuous value 1s perturbed shghtly, one output

node value will jump from 0 to 1, while the neighbouring node value jumps trom |
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to 0. This discontinuity is arbitrary, yet causes considerable ditticulty when the neural
network attempts to model the discontinuity. The next section describes a more

appropriate strategy based on the principle of Gaussian error distributions.

3.3.2 Distributing Output Node Values Normally

Since this encoding strategy discretizes a continuous value, it has a basic error of half
the interval width.  Accordingly, it is appropriate to train the neural network
assuming that each continuous value has an error which is normally distributed about
that value with a standard deviation o of half the interval width:

o = %w (3)
Then the value of each output node is the probabilily that the continuous value falls
into the interval corresponding to each node. The probability that a continuous value
x falls into interval n is:
pp(x) = @{(n-1)w < x < nw} (4)
Using the Gaussian probability distribution for the "error” of the continuous value,
this probabihty is:
D, (x) = 9{—‘-21—’;"—'—" < zZ< ﬂ’-‘;‘—’ﬁ} (5)
where = is normally distributed with a mean of zero and a variance equal to one.

Defining the function prob(z):

zZ
= = L -1z 6
prob(z) = @{{<z} m_fmexp( S ¢H)dC (6)
and substituting this and o=% into the equation for p, (x) gives:
p,(x) = prob(2n - 2x/w) - prob(2n - 2 - 2x/w) (7)

The target output value of node 1 is this value scaled so that the maximum possible

value is unity, which occurs when x = (n——lz-)w:
Prax = Pof(n=3)w) = prob(1) - prob(-1) = 0.68 (8)

i.e., the probability that the error is within one standard deviation of the mean. So
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the final expression for output # 1s:

- P, (x) . brob(2n - 2x/w) - prob(2n - 2 - 2x/w)
n Drax prob (1) - prob(-1)

(9)

This mapping has no discontinuities. This mapping also has the advantage of tranmng
the outputs for partial recognition, or, more precisely. not discouraging an output
node as severely 1if it partially recognizes an input configuration. In terms of o
modelling function: this encoding smooths the modelling function, thus making
interpolation easier. Also the decoding scheme presented m the neat sub-section
takes advantage of the extra information available in this encoding to ehine the

decoded value.

3.3.3 Decoding the Output
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Figure 4 - Decoded Values without Smoothimg

As described above, the simplest decoding process simply finds the maximum output
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and sets the decoded output value to the value corresponding to this output.
However the discretization error, especially with scaling (see Chapter 4), can be quite
large, as Figure 4 illustrates. However a simple modification to this basic process can

reduce the error to a negligible value.
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Figure 5 - Decoded Values with Smoothing

The idea s simply to take the weighted average of the values corresponding to the
maximum output and its two neighbours. The weighting for the average is the actual
value of each output. Thus if a value is on the boundary between two intervals, the
adjacent output will be approximately equal to the maximum output, and averaging
their corresponding values will produce the correct decoded value. Explicitly, the
decoded value 1s calculated with (c.f. equation (1)):

- (7=5)0n1 * (273)% * (1*3)%0 W (10)

on-l + On + On*l

Figure 5 shows how closely the decoded values match the original value.
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There is one possible snag in the decoding process. 1tis posable that none of the
output values are large enough to be difterentiated trom nowse. The threshold value
for this application is 0.2; 1f all the outputs are less than this value, then it s
assumed that the neural network does not recognize the mput. This s stll preterable
to the single output continuous representation, however, since in this case the output
can be estimated by other means (e.g., averaging the decoded output at the
neighbouring sample points). Other error checks are possible: tor example, o check

that only one output (and possibly its neighbours) has a large value.

3.3.4 Evaluation of the Encoding Scheme

Table 1 - Error of Ditferent Output Representations
. ]

RMS Error ot
Continuous Output

RMS Erior of RMS Faror of

Discrete Outputs

Decoded Output

Training 14.3% 12.4% 5.0
Examples
Test 23.9% 24.1% 9.9¢¢
Examples

The performance of the output representation compared very tavourably to the smgle
output scheme. To compare the two representations, the topology for the
(continuous valued) single output network was dernved trom the (discretized) 10
output network by adding an extra hidden layer with 10 nodes.  This way the
continuous output network was actually more powertulin priciple than the discrete
output network. The companson of the performance is very mteresting. Fable |
shows the root mean squared (rms) error of both networks. Note i particulan thit

the rms error before decoding was almost identical to the crror of the sigle
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(continuous) output network (23.9% v.s. 24.1% for the test examples). However the
rms error of the decoded outputs was much lower for both the training examples and
the testexamples. This reduction in error s entirely due to the representation of the
output. It is expected that similar gains can be made by using this representation in

other applications involving a continuous output.

3.4 Representing the Input Geometry

This section describes the representation of the input. Several encodings of the input
were evaluated, and what failed to work is almost as important as the final encoding.
Accordingly, the tollowing sections describe the evolution of the representation from

a "histonical” perspective.

3.4.1 Representations based on Image Recognition

At the start, the representation for the input geometry was based on the work of
other neural network researchers who were also dealing with geometric type
recognition tasks ([ Widrow, 1988a], [Fukashima, 1982]). The inputin these cases was
a pixelimage of the geometry. Representing the input in this manner meant that the
properties of the mesh density stated in the previous section (rotational mvariance,
etc.) would have to be learned by the neural network. At the time this did not

appear to be a significant disadvantage.

A unique topology for the network (based on a structure proposed by B. Widrow)
enabled the translational symmetry property to be enforced in a manner that
cconomized on hidden layer nodes. The same weights were used at every output
point, and the connections were arranged so that the hidden layer nodes were shared
between neighbouring points. The topology also partially entorced the rotational

invanance property by duplicating the weights around each point so that the same
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output resulted when the input was rotated by multiples ot 60 degrees. Scale
covariance and mirror invariance were properties that the neural network had to

learn from the examples.

As previously mentioned the 1dea was to represent the mput geometry as @ pnel
image. However as the network architecture evolved, even betore the tust
simulations were run, it became obvious that sampling the mput geometry at i tine
enough resolution to capture the essential features (such as corners) would be
impractical. This was due simply to the computational cost of evaluatmg the network
on a standard (serial) computer (a SUN IV workstation). It was also obvious that
a representation of the entire input geometry was also impractical, and that a
representation of the geometry local to a specitic point would have to be sutticient.
Exactly how local the representation can be made and yet sull produce usetul results
is an open question, although the success of the implemented system does set an

upper bound of sorts.

Using this architecture several ditferent representations were attempted, the most
successful being a radial sampling of the input geometry, where cach mput node
represented the distance to the geometry in a ditferent direction (see Figuie 6)  The
results were still far from satistactory, however, especially when generahzation to new

input geometries was attempted.

3.4.2 Enhancing the Performance

One other approach that was tested in conjunction with the radial sampling
representation uses two additional inputs to encode the direction and magnitude of
the magnetic field at each sample point. This may sound hke cheating, smce the
purpose of the mesh generation is to be able to compute the magnetie hicld!
However the magnetic field in this case 1s derived from a crude solution computed

on a near-mnimal mesh. A minimal mesh does not have any nodes that are not
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Figure 6 - Input Representation Example

already part ot the geometry of a device (i.e., all nodes are at corners of the device).
The cost of this solution 1s small, yet gives the neural network a rough idea of the
form of the solution. However this approach was abandoned because the
improvement in the performance of the neural network was not signiticant. This 1s

not to say that this approach s a dead end. In fact this approach may be required

when the system is extended to non-linear materials.

One aspect of this process ot selecting the best input representation is that it was
done in paralle]l with the selection of the output representation. The ideas presented
in the previous sections were all tested in conjunction with the output representation
which used only a single continuous output. This means that these input
representations may work with the discretized encoding. However, lack of resources
prohibits the complete evaluation of all combinations of these representations in this

thesis.  This 1s unfortunate, since it leaves many of loose ends, but this is the nature
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of scientific research.

In any case, it was decided at this point that the properties of scale covaranee and
rotational invariance were too important to leave un-entorced, especially siee
enforcing them would mean that the neural network wouldn’t have o learn them.
Also the experience gained with different input representations suggested that an

appropriate encoding could explicitly enforce these properties.

3.4.3 Enforcing the Properties of the Mesh Density

Accordingly the interleaved, partially rotationally invariant network topology was
scrapped, and a standard backpropagation netwerk used instead, with the geometry
and element size at each sample point treated as a separate mput-output pair. In
such a network the input encoding becomes very complex, since it entorees all tour
of the properties of the mesh density stated above. In this encoding scheme, the
sample point 1s taken as the origin of a local coordmate system (tor translitional
invariance). The input geometry is rotated and scaled so that the closest corner in
iron falls on the x-axis a unit distance trom the ongm (for rotation and scale
invariance). Finally the input geometry 1s flipped, 1f necessitry, so that the corner has
a positive orientation with respect to this local x-axis (for mirror invariance ). In this
coordinate system the local geometry can be described while mamtuming all the
properties of the mesh density mapping (for the translation and scaling the same

transformation is appled to the target sizes)

The final encoding scheme describes the relationship between the two nearest corners
of the magnetic device, and requires only eight mput nodes. igure 7 shows the
angles and distances used to define the input values. In the figure, all the angles are
positive except for ¢,. Corner 1 1s always chosen to be the closest corner inron on
the closest segment to the sample point. Corner 2 is always chosen to be the closest

corner distinct from Corner 1 (e.g., Corner 2 could on the other side of an ar gap).
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Figure 7 - Input Representation Example

All the inputs are scaled appropriately so that they are either in the interval [0, 1] or

[-1, 1]. The inputs are:

Input 1: ¢,/=

Input2: 1 - ¢/~
Input 3: ¢,/x
Input4: 1 - ¢,/=n

Input 5: s(zr,/r;)

The orientation (see below) of Corner 1 w.r.t the local x-axis.
If necessary the whole geometry is flipped about the local x-axis

to make this angle positive.
The sharpness of Corner 1.
The orientation of Corner 2 w.r.t. the local x-axis.
The sharpness of Corner 2.

The squashed distance (see below) to Corner 2 in the (scaled)

local coordinate system.
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Input 6: 6,/7 The angle from the local x-axis to Corner 2.

Input 7: s (r./r,) The distance to the center of gravity of the nearest current

carrying conductor m the (scaled) local coordinate system.

Input 8: 8 /= The angle from the local x-anis to the center of gravity of the

nearest current carrying conductor.

The orientation of a corner 1s the direction the corner "ponts”. More preenscly, the
corner has the same orientation as a vector on a line bisecting the corner angle, and
which points outward from the corner (notice the vectors attached to the corners in
Figure 7). The squashing function S () warps the distance so that it 1s always in the
interval [0, 1]. It1s defined as: N

S (x) = 1+ exp(l-x) (11)

It should be pointed out that some knowledge about meshing was used 1 choosing
this representation. Specifically, corners are used as the basis tor the encoding
because it is known that corners are important features of the meshing process
(because of the singularity in the solution at corners). The location ot the current

carrying conductors 1s also an important consideration for human experts.

A brief comparison between this representation (which will be referred to as the
“invariant representation") and the radial sampling representation may be mstructive
at this point. Intact a numerical comparison is not available since the tested versions
of each scheme used a different output representation. However a comparison based
on which local features are represented in each scheme 1s possible. The mvariant
representation is able to encode the two nearest corners i near perfect accuracy.
This includes the line segments attached to these corners. The radial sampling varies
considerably in the amount of detail represented. In Figure 6 only a single hine
segment is encoded, and even the length of this segment is rather vague.  In the gap

this representation could encode the two taces, but could miss the presence of the
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gap (i.e. it would only see a "dent" in the iron) unless a "ray" happened to pass
through the gap. The invariant representation could also miss the gap, if the two
closest corners were on the same face. What tips the scales in favour of the invariant
representation 1s two factors. The first is the dependence of the mesh density on
corners. The tact that the radial sampling scheme leaves corners rather vague is
therefore a major failing ot this scheme. The second factor is the number of inputs
that each representation requires. The last section of this chapter explains that the
quality of the interpolation between examples can be expected to decrease as the

number of inputs increases.

Neither of these representations distinguish between the inside or the outside of a
material boundary. This could be another (binary) input, but instead the problem is

subdivided, as described in the next sub-section.

3.4.4 Separating Air and Iron

The rules that an expert uses to determine the mesh density in iron are not the same
as the rules used when meshing air. For example, the iron at an outside corner in
on is meshed differently from the air at an outside corner in air. Therefore, to
improve the performance of the network, the meshing problem is divided into two
sub-problems, one problem being the meshing of iron, the other being the meshing
of - (current carrying conductors are included as air). Two separate training
sessions produce ditferent networks for each region. Both networks have the same
mbology and 1nitial weights, but they have different final weights (and therefore
different responses) by virtue of the fact that they are trained on ditferent training
examples. This separation between iron and air also simplifies the representation,
since it means that any boundaries near a point are always the same, either from air

to iron tor the network used to mesh air, or vice versa for the other network.

In principle this sub-division of a neural network implementation can be based on any
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binary (or even discrete) input to the network. although there is a point where the

number of networks becomes unmanageable.

3.5 Guidelines for Input and OQutput Representation

In the first section of this chapter the question was raised: should repiesentations for
the input (or output) favour simple encoding in many nodes or camplex encoding in
few nodes. The results presented in the previous sections indicate that the answer
to this question is different for the input and the output. For the mput, a comples
encoding in as few nodes as possible gave the best results. The output, on the other
hand, gave much better results when it was divided between several nodes. The
following subsections explain why these rules should apply in the general case to

other applications.

3.5.1 Theoretical Justification

In retrospect the results just stated are logical, given the equivalence between a

neural network and a modelling function. First of all the results tor the mput

representation are discussed. When viewed as a modelling tunction, the property of

generalization is equivalent to interpolation between exampies. The tirst implication
of this was already mentioned earlier in this chapter, that similar inputs should
correspond to similar outputs. There is, however another imphcation: the training
examples must populate the input space densely enough so that the mterpolation will
not break down between examples. As the number of dimensions of the input space
is increased (by increasing the number of input nodes) the density of examples
decreases. This can be seen by imagining that the examples are distributed on a
regular grid in the input space; even with only eight inputs 1t takes 6561 examples to
populate a grid with only three vertices in each dimension (of course, 10 many cases

the inputs are correlated in some way, so the actual dimensionality of the input points
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is smaller than the number of inputs, but how obvious this correlation is also depends
on the representation). Fewer examples per dimension means interpolation is more
risky. This is the reason, then, that fewer input nodes improve the performance of
the neural network: fewer nodes mean the input space is more densely populated (for

the same number of training examples).

The opposite is true for the output. If a single output node is taken in isolation, then
interpolation 1s simplest it the node takes on only two values, instead of a continuous
range of values. The binary output node has only to tune itself to recognize certain
features of the output. Also, a simple output encoding typically has an error
tolerance that is much larger than the error tolerance of continuous output nodes.
In addition, traning 1s faster, since the larger error coupled with mare outputs means
that the gradient descent step size at each iteration is larger. This explains why a

simpler encoding scheme with many outputs improves the performance of the neural

network.

3.5.2 Rules for Representation

The reasoning presented in the previous subsection is far from rigorous, but it does
give some insight into how input and output representations should be chosen. The

result is the following set of rules for input and output representation.
This first rule applies equally to input and output representations:

1) The input and output should be encoded so that similar inputs
correspond to similar outputs. Here "similar” can be taken as a
Euclidean distance measure, for example. Expressed another way, if
a collection of outputs are all in the same neighbourhood in the output
space, then the inputs which give rise to these outputs should also be

in the same neighbourhood in the input space. The inverse is also
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true, i.e., if a collection of inputs are all in the same neighbourhood

then the responses of the network to these inputs should be similar.
This rule applies only to the input representation:

2) When encoding the input, preference should be given to increasing the
complexity of the encoding in favour of a reduced number of input

nodes, providing the encoding still respects the first rule.
Finally this rule applies only to the output representation:

3) When encoding the output, preference should be given to increasig
the number of output nodes in favour of a reduction in the complenxity,

with the optimum being many binary output nodes.

3.6 Summary

This chapter describes the representation used for the input and output of the neural
network for the mesh generation application. Also presented 1s a robust encoding,
scheme for continuous output values in general, and some general rules for

representing input and output in other neural network applications.
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Chapter 4
Generating Ideal Meshes

As mentioned in the previous chapter, the neural network acquires its knowledge
from training examples. In this application the training examples are derived from
ideal meshes of representative magnetic devices. This chapter explains how these

ideal meshes are generated.

4.1 Computing Ideal Element Sizes

An ideal mesh is defined here to be a mesh in which the error is distributed
uniformly throughout the mesh. The error is the difference between the solution
computed on the mesh and the exact (theoretical) solution. The error is unitormly
distributed 1f the total error of each element (measured using an appropriate norm,

and possibly normalized by area) is approximately equal throughout the mesh.

As mentioned in the literature survey, most of the research in the field has been in
the context of adaptive solvers, and has centered around the formulation of an a
posteriori enor measure.  'The a posteriori error measure determines the error of a
solution computed with a trial mesh, but without knowledge of the exact solution
[Babuska, 1986]. This error measure can be used in an adaptive solver to determine
where the mesh should be refined to improve the solution. Since this error measure

18 based only on the inexact solution, reliability can be ditficult to obtain.

In the appheation discussed here, however, the exact solution is known, or at least a
very close approximation toat can be computed. The difference is due to the fact
that the neural network only needs the 1deal mesh for the training examples. Once
the network s tramned, the mesh density for a magnetic device is computed based
only on the mput geometry and material properties. Therefore the computational

cost of the solution 1s irrelevant.




The algorithm presented here is based on the availability of the exact solution. The
algorithm also takes advantage of the fact that the neural network only requues the
mesh density at specified points, and not an actual mesh of the geometric domann.

The next section presents the details of this algorithm.

4.1.1 The Sizing Algorithm

The algorithm used to compute the sizes is given below in outline form. The
remainder of this section clarifies the flow of the algorithm, and discusses the

simplifications and assumptions implicit in the algorithm.
1) Compute the "exact" solution to the magnetic device.

2) Pick a value for the desired error level in the mesh. This error level is as
measured with respect to the exact solution, and the elements will be sized so

they all have this same error.
3) At each point compute the ideal element size as follows:

3.1) Pick a starting guess for the size that an element should have at this

point.

3.2) Generate a trial element of this size centered at this pomt (i.c.

compute the coordinates of the vertices of the element).

3.3) Compute the error that this element would have it it were included as

part of a mesh (see below).
3.4) Compare the resulting error to the desired error.

3.5) Increase the size if the error is less than the desired error and decrease

the size if the error is greater than the desired error.
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3.6) Repeat steps (3.2) to (3.5) until the error converges to the desired

€rror.

4.1.2 Explaining the Sizing Algorithm

In step (1) the "exact” solution can itself be computed using finite elements, as long
as an expert ensures that the mesh will generate a good solution. Recall that the cost
of computation is not a tactor at this stage, since this step is only required to train
the neural network. Therefore the mesh used to generate the "exact” solution can
over-discretize the magnetic device, and a high order solver can be used to maximize

the accuracy of the computed solution.

Step (2) requires selecting a value for the global error. This number will determine
how large the elements actually are, although the relative sizes ot the elements remain
approximately the same for ditterent errors. Also since this is an absolute measure
of the error its value cannot be set in advance; i.e., the global error depends on the

solution to the magnetic device. In practice this value is chosen to generate

reasonable element sizes.

Step (3) applies the same procedure to every sample point. The algonithm is
basically a root tinding algorithm applied to the element error as a function of size.
This root finding algornithm determines the size of the element which results in the
desired error specified in step (2). The details of the root finding algonthm were
taken from Section 9.3 of [Press, 1988]. Note that computing the sizes 1n this manner
imphes that the element sizes are obtaned independently. In fact the trial elements

never form part of an actual mesh. This will be claritied in the following.
Step (3.1) sets the starting guess for the root finding algorithm.

Step (3.2) generates an element centered at the current sample point and of the

specified size. Since the orientation of the element is not specified, and to make
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things as symmetric as possible, the element shape was taken to be a hexagon. So
this step actually computes the coordinates of the six vertices of a heaagon ot the

specified size centered at the current sample point.

Step (3.3) computes the error of the trial element. The mathematical detls behind

this step are given in Appendix I. In essence, the crror s computed as tollows:
3.3.1) Perform a least squares fit of the (linear) trial element to the exact sofution.

3.3.2) Integrate (over the domain of the tnal element) the square of the ditference

between the linear solution on the trial element and the "eaact" solution.

3.3.3) The trial element error is obtained by scaling this result by the area ot the

trial element.

Step (3.3.1) hides the key assumption behind this approach to computing the deal
mesh. Here it 1s assumed that the least squares fit of the tnial element to the exact
solution is equivalent to using this element in a trial mesh (notwithstanding s
unusual shape), and then computing a trial solution to the magnetic device using this
mesh. Although this assumption may introduce errors n the sizes computed tor the
"ideal" elements, these errors are negligible when compared to, for example, the
neural network output error (even at the completion of the training phase). This
method has the advantage of being simple, consistent and reliable. Simple in that no
solutions on trial meshes are required, consistent in that the sizes of the elements do
not vary arbitrarily, but rather are determined precisely by the "exact” solution, and
reliable in that this method will not accidentally over-size an element (as can happen

in the adaptive case).

Step (3.3.2) computes the total squared error over the element. “This s scaled m step
(3.3.3) by the area of the element to give the mean squared crror of the clement.

During the development of this algorithm, several variations on computing the error
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Figure 8 - Comparison of Error Norms along a Horizontal Slice

were compared (see Figure 8). The maximum error is obtained by taking the
maximum difference between the solution on the trial element and the "exact"
solution. The squared error is not scaled by area. Without scaling by area, the
squared error gives skewed results since the algorithm determines element sizes such
that each element contributes the same amount to the total error, wrrespective of size.
This has the effect of concentrating the error in the finely meshed regions, which is

precisely where the highest accuracy is usually required.

The maximum error does not need to be scaled since in this case the algorithm
determines element sizes such that the solution 1s bounded everywhere by the
speafied global error. In fact the maximum and mean squared methods give
practically identical values for the sizes of the "ideal"” elements (within a scale factor).
In this case the mean squared error is cheaper to compute (the algorithm is already

doing a least squares fit, so the squared error comes for free), theretore it 1s the one
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used in this algorithm.

Finally steps (3.4) to (3.6) complete the steps in the root finding procedure.

4.1.3 Special Case: Material Boundaries

The algorithm outlined in the previous subsection needs to be modified in the special
case of material boundaries. In step (3.2) the trial element cannot be allowed to
cross material boundaries, since the solution is often discontinuous across material
boundaries. Instead, in this case the trial element is clipped against material
boundaries. To avoid distorting the element size when a large part of the element
is chpped away, the size of the 1deal trial element 1s measured by the square oot of

its area.

4.1.4 Scaling Properties of the Error Criterion

Figure 9 shows the scaling properties of the error criterion. The data s taken from
the C-core device (see Chapter 5), by evaluating the error at different pomts.
Interestingly enough, the relationship between the error and trial element arca s
almost exactly linear. This means that there is a certain degree of treedom allowed
in choosing the desired error (in step (2) of the algorithm). Because of the linear
relationship, the effect of choosing a larger or smaller desired error can be
approximated by simply multiplying all the element sizes by a single scale factor.
Even more important, it means that the same network can be used to compute the

mesh density for ditfer _at hinal errors.

For example, instead of supplying an absolute error level (which can be ditticultat the
magnitude of the solution is unknown in the first place!) the user of this package may
want to specify the total number of elements 1n the final mesh. The scale tactor

required to do this can be determined by first integrating (over the domann of the
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Figure 9 - Scaling Properties of the Error Criterion

problem) the inverse of the mesh density squared (the number of elements per unit
area). The scale factor is found by dividing this result by the specified number of

elements.

The linear relationship also makes the network response meaningful even 1if the
magnitude of the solution for a given device is very different from the magnitude of
the solution of the device used to generate the training examples. It may happen that
the desired error specified for the example device is meaningless in terms of the
solution of the given device (recall that the desired error is an absolute number).
However, because of the linear relationship, the output of the neural network still
prescribes element sizes which are appropriate for the device. In effect, the neural
network s learning the relative error, even if 1t is the absolute error that is used to

train the network.
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4.2 Encoding Element Size to Train the Network

Once the ideal element size has been determined, the encoding process is
straightforward. The encoding scheme which is used to represent the output was
presented in chapter 3. However before each ideal size value is encoded it must be
scaled by the geometric scale factor used to scale the corresponding mput (this scale
factor is different for each point). This step is necessary to mantam consistency with
the scaling property of the mesh density function, as presented in Chapter 3. One
possible problem with this step is the case when a point falls ona corner, since in this
case the scale factor is infinite. How this case is treated leads to artifacts, which s

the subject of the next section.

4.3 Artifacts of the Encoding Process

As mentioned previously, forcing the target sizes into bins produces certinn artitacts
when the bin representation is converted back to sizes. The mamn artifact is due to
the squashing that takes place when a size value is farger than the value of the largest
bin. These extra-large values correspond to inputs with a very small geometric scale
factor, and compromise typically 0.1% of all the size values i a umtormly sampled
input domain. Since the current input encoding scales by the distance to the ncarest
corner, the eftect of squashing 1s to reduce the size of the elements near corners,
Since corners are usually meshed very densely anyway, this artitact 1s not detrimental
to the performance of the system. The second artifact1s simply the error ntroduced
by the discretization process. This error 1s inversely proportional to the number of
output nodes. However since the required resolution of the mesh density 1s not large,
this error 1s sufficiently small with only ten output nodes (5% discretization error).
Also the smoothing which takes place in the decoding process reduces this error

considerably.
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4.4 Summary

This chapter explains in detail the algorithm used to generate the training examples
tor the mesh discretization application. Chapter 5 describes how this algorithm was

used to generate examples based on two different devices.

45




Chapter §
Simulations

The results presented in the previous chapters were found through a series of soft-
ware experiments. These results include the representation of the mput and output,
and the network topology. The software experiments involved traming a simulated
neural network and evaluating the performance of the tramed network. This chapter

describes how these simulations were set up, as well as some addittonal 1esults.

5.1 Objectives of the Simulations

The main objective of the simulations was to determuine the conhguration ol the
neural network. Specifically, the simulations allowed the evaluation and comparison
of different input and output representations, and ot ditferent network topologies
Strictly speaking, these two objectives satisfy the requirements of the meshing system.
However the possible methods used to train the network also required evaluation, so
additional objectives were defined: to determine which trmning algorithm gives the
best results (gradient descent, or conjugate gradient), and to determine values for the
training parameters in the case of the backpropagation algorithm (the momentum

parameter and the step-size parameter).

The following sections describe how these objectives were achieved, starting with the
training objectives. Along the way additional details are included to clanfy the

simulation results.

5.2 Training

The mathematical backround of the backpropagation algorithm was presented in
Chapter 2. However, the algorithm leaves several details unspecified, these are the

length of the training session, the values for the learning paramcters, how the imitial
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weights are set, and the order of presentation of the examples. The following

paragraphs tackle each of these details in turn.

5.2.1 Error Criterion and Termination Condition

During the training process, the puerformance of the network can be monitored using
the root mean square (rms) of the network output error with respect to the training
examples. This is cheap to compute since the squared error is computed at each step
as part of the backpropagation algorithm. In the application described here, there
is also a more significant error: the decoded output error.  This is the rms of the
ditterence between the decoded output of the neural network and the target size
values before encoding. Monitoring this error gives a indication of the performance

of the neural network on the training examples.

However monitoring the error with respect to the training examples is not sufficient
to gauge a more significant ability: the ability to generalize. Therefore to properly
monitor the network during training it is necessary to measure the error of a set of
test examples which are distinct from the training examples. In this case a small
complication arises if the test examples come from a ditferent magnetic aevice. In
this case the element size can ditfer by a scale factor. To account for this, this scale
tactor must be taken into account. This is accomplished by minimizing the mean

squared error with respect to the scale factor. The result is:

(@) = ((t - ky)2
= (£2) - 2Kty) + k2y2)
de) _ + =
o - 2(ty) + 2Ky?3) = 0 (1)
_ ey
SR
o le) = (3 - (eyr/(y2)

where O denotes evpovieaon value or, more precisely, the ensemble average (over
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the examples), e is the error, y is the decoded output of the neural network, and ¢ is

the target value.

As training progresses, the error of the training set always shows an average decrease.
However the error of the test set at tirst decreases with the traming cerror, but after
a certain point it will stop decreasing and eventually start to increase.  This
phenomena is known as overnraining [Hecht-Nielsen, 1990].  For  optunum
performance of the neural network in the gencral case, it is important to stop the
training as soon as the test set error stops decreasing. After this pomt the neural
network is starting to pick up on features particular to the trainmg set, and which do
not hold in general. The simulations were run to 500,000 iterations, with the best

weights on the test examples saved along the way.

5.2.2 Training Parameters

The backpropagation algorithm has two free parameters: «, the momentum
parameter, and B, the step-size parameter. The step-size determines how Lirge cach
step is relative to the gradient of the error. The momentum parameter allows the
algorithm to escape local minima 1n some cases. The value of @ was taken from the
Lterature ([Caudill, 1989] and [Rumelhart, 1986]), and was sct to 0.9 for practucally
all the simulations. A few intormal simulations with ditferent values of « hinted that
there are no significant improvements to be had for small deviations from this value,
and larger variations only make the convergence worse (slower convergence to a

larger final error).

Much more effort was taken into choosing an appropriate value tor f, the step-size
parameter. This was motivated especially by simulations with convergence properties
as shown in Figure 10. This graph shows the error for two learning sessions. Fach
learning session started with the same nitial weights, and used the same examples.

The only difference between them was the step-size: the learming session that
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Figure 10 - Convergence ot Two Identical Networks N

converged to the lower error used a step-size that was effectively half that of the

other session.

The actual step-size taken at any iteration is actually the product of B with the

decaying average of the gradient of the error w.r.t. the weights. If this gradient is
slowly varying, the step-size is:

= (k-3

Aw® = p @t 97

ow
(2)

G

l1-a  ow
where the superscript refers to the training iteration (and not the layer). The
literature [Caudill, 1989] states that B should between zero and one. In fact 1t is the
product B/ (1-a) that should be less than one. Choosing too large a step-size
results in a phenomena known as network paralysis. Instead of converging to a low

error state, the network reaches a state where all the outputs are saturated at either
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one or zero. In this state the error is large, but learmng depends on the gradient ol
the error, which in this case is small (because the outputs are saturated). Theretore
the weights remain virtually constant, and the network response never improves. To
avoid this the step-size must be reduced, but again the optimum value 1s unknown.
The training session that produced the tinal network used f=0.03, so that the

product B/ (1-a) =0.3.

It is training behaviour like that shown in Figure 10 that complhicates the evaluation
of different learning experiments. When one learning session results in a network
with improved performance, it is not clear whether this 1s due to a supenor imput
representation, for example, or simply a lucky choice for one of the learmng

parameters.

5.2.3 Initial Weights

The literature suggests small random weights. Some intormal experniments revealed
that random weights, uniformly distributed between -= and = are as good i choee
as any. Note that the weights cannot be imtiahzed to zero, because m this case
backpropagation of the error will stop at the last ldden layer, and weights on
connections between previous layers will never be moditied. Most of the experiments
used the same initial weights (if the topologies were the same) to make evaluations
of the pertoimance of difterent networks as consistent as possible. A few
experiments were tried using the same learning parameters and training examples,
but starting with different weights, to see how much nfluence this had on the hinal
performance. The performance of the trained networks was similar in this case, but
it is still a possibility that this could also have a signiticant cticet on network

performance.
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5.2.4 Order of Presentation of the Training Examples
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Figure 11 - Learning During First Century

Figure 11 shows the error (before decoding) for the first 100 iterations of a learning
session.  Note that a large part of the training appears to occurs during the
presentation of the first 20 examples. It is reasonable to assume, then, that which
examples come first will have a significant impact on the final result. An ettort was
made to slow down learning (by reducing ) so that more examples would influence
the nitial learning, but then the learning failed altogether. In the end the order of
presentation was left random. Tryi_ﬁg different random orders did not seem to hav:
too much of an mfluence, although this does not mean that a carefully selected order

would not improve learning.

There is another mterpretation tor the graph in Figure 11. The rms error of the

decoded output does not show such a sharp decrease. Therefore it appears that the
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rms error of the test examples remains relatively constant during the tramming session
(after the first 20 iterations); it is the rms error ot the decoded output which
decreases. So why is the rms error being mumnimuzed in the first place? That s @

good question! (but beyond the scope of this thesis).

5.3 Training Examples

The generation of training examples from a representative magnetie deviee and its
"exact” solution was described 1n Chapter 4. This section describes how the magnetie
devices which formed the basis tor the examples were chosen, as well as some of the

details of the example generation phase.

5.3.1 Selection of Representative Magnetic Devices

The representative magnetic devices which form the basis for the trammg examples
were chosen with the help of an expert in magnetic device analysis: Prot . S. Mclee.
Based on his suggestions the two devices shown in Figures 12 and 13 were ereated,
The first, a C-core inductor, 15 one ol the most common magnetic devices, yet
captures many of the basic features of these devices. On the suggestion of Prot D.
A. Lowther, the air gap of this device, which usually has a constant width, 1s bevelled
so that the magnetic field in the gap 1s non-unitorm. This mcreases the complexity
of the distribution of the element sizes in the gap region. In additton, it mereases the
sharpness of the corners at the smallest part of the gap, turther complicating the
element density distribution because ot the resulting singulanties in the solution The
device 1n Figure 12 is an E-core inductor. The right gap is bevelled simular to that
of the C-core, but in the oppaosite direction. The left gap has the two poles shifted,
again to increase the non-uniformity ot the field in the gap. This pole structure, with
the two poles not quite aligned, 1s also important because this teature s tound i

many magnetic devices, tor example motors. The properties of both devices are
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During most of the traiming sessions, the examples derived from the E-core were used
to train the network, while the examples from the C-core were used as test examples
to monitor the performance of the network. Training sessions with the roles reversed

resulted in comparable performance.

5.3.2 Solving for the "Exact" Solution

The "exact” solution to these devices was generated using a finite element solver.
Several steps were taken to ensure that the solutions were sufficiently accurate. First
of all the device domain was over-discretized (using more elements than strictly
necessary) and in critical areas (e.g. the air gap) an expert touched up the tinal mesh.
The solutions were then computed with fourth order elements, using a standard
comjugate gradient solver.  Finally the resulting solutions were inspected visually to

verify that the results were consistent with the expected solution.




5.3.3 Generation of the Examples

From the "exact" solution, examples are generated using the algorithm presented in
Chapter 4. This step requires specifying the location of the tnal elements in the

domain of the device, as well as the desired error tor the trial elements.

The trial elements were positioned at the vertices of a regular grid coverimg the
domain of the device. Because of the earher network topology, this gnd was
triangular instead of cartesian. Although a carctully chosen, non-unitorm distribution
may have improved the speed of training, this possible gain did not out-weigh the
difficulty of choosing the points. In tact with a unitorm distnibution of pomts, the

distribution of element sizes was also roughly uniform (see Figure 3 in Chapter 3)
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The desired error of the elements was chosen by first evaluating the element enor

at a few critical points for different size tnal elements. The desired error was then
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chosen to give reasonable sizes for the elements. In fact since the relationship

between desired size and element area is approximately linear, this step is not critical.

ST ////;;;

\\ ,/,i
\\\ \\( ///{/’é}:\
\ ‘\ ///,_//'_‘\:

\\\ // //a,fi"/‘\\\\\ 2
’x‘ : \ XS

\\\ \\\\\\\\ N \\

\ \ \\
IR W

} 4"///////

YN

J, NETPMEN
b \ \
&zﬁ,‘}\l\‘ = S \\)‘W\ ! \{Ml, M:'Il
0 L
/(I g

& ML
g O/\T AN \?
AN

/
s

Figure 15 - Contour Plot of the Target Element Sizes for the E-Core

For the E-core training examples, the density of the grid was chosen to give 3997
examples. This many training examples are necessary since the input values of the
examples should sample the input space as densely as possible. For the test examples
from the C-core, the gnid was chosen to give only 547 examples, since complete
coverage is not necessary to evaluate the performance of the network. Figure 14

shows the target element sizes for the E-core device. The area of each spot is

wn
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proportional to the size an element should have there. Figure 15 shows a contowr
plot of the i1deal element sizes. There are a total of 75 lines, so a vanation of 10¢%

is equivalent to 7.5 lines.

5.4 The Neural Network System
5.4.1 Network Topology

The network topology was chosen based on only very approximate guesswork. The
analysis in [Lippmann, 1987] holds only for threshold networks. More or less
arbitrarily the first hidden layer was chosen to have 24 nodes, and the second hidden
layer 18 nodes. Some experimentation was done to determine the optimum number
of layers.

Table 2 - Error of Networks with 1, 2, and 3 Hidden Layers
. ]

Number of Number of RMS Decoded Error | RMS Decoded Error
Hidden Nodes in each of of
Layers Hidden Layer Traming Examples Test Examples
ﬁ-'_..__—__.—_—_—-_—_—_——
1 24 7.0% 13.5%
1 45 6.4% 11 6%
2 20, 15 5.5% 13.3%
2 24, 18 5.0% 9.9%
3 24, 18, 10 51% 12.9%

Table 2 shows the error tor the different simulations.  Surprisingly the rms error
increased with the addition of another hidden layer ot 10 nodes  This can be
accounted for by the fact that three layers gives the neural network too many degrees
of freedom, so 1t can easily model the training examples, but in between the examples

the interpolation is not very smooth. Conversely a single hidden layer of 24 nodes
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performs significantly worse than the two layer network. To be fair the single layer
network should have the same number of weights as the two layer network, which in
this case would mean 45 nodes in the single hidden layer. This network, while better
than the one with only 24 nodes, still has a significantly larger error than the two
hidden layer network. These results give a ballpark estimate of the number of layers

required by the system to learn the mapping.

5.4.2 Performance

.000000.0’...."0.000000
(W IR W ) _j_l_-’o.o.

00 000 e o ¢ o 006 ¢ o 0 0 00 00O
Q0 0O 00 ¢ ¢ 2 s 000 00500000
........00.....0.......
.......’.."—f—'— ’
00000 o o 0
....'....... ..l.. © 0 0 oo ol T 0o 0c 00 0@ .....‘
L ® 0@ ®@je s s 0000 00
.‘.....|.| ® & & o o oo ° ....‘...
000000060 0 ¢ e s s 000000
Q000G OGEOS I o+ . .\.ﬁ...‘..
00000 ® 66 ¢ 00 0690 ccl000000O

Figure 16 - Element Sizes for the C-Core from Neural Network

The pertormance can be judged in two ways. First of all the decoded output of the
neuril network can be compared with ideal element sizes. Figure 16 shows the sizes
recomended by the neural network for the C-core, using the same format as

Figure 14,
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Figure 17 - Mesh tor C-Core based on Neural Network

And secondly the resulting mesh can be judged on its own mernit. Figure 17 shows
the final mesh for the C-core device. The density for this mesh was computed using
the weights obtained by training the network on the E-core device. The mesh was
then generated using the TRIA2D mesh generator of [Hétu, 1990], which uses density
information to direct node placement. (The tact that this mesh s not Delaunay s the
fault of the mesh generator, and 1s not related to the mesh density). According to
experts, this mesh is close to what they would produce it asked to mesh the device
themselves. There is no doubt that the network is contributing valuable mtormation
to the meshing process. If this mesh is not optimal enough, then a few adaptive steps

would fimish the process with a significant saving in total computational cost
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5.5 Summary

The purpose of this chapter is to clarify the procedures used to obtain the results
which are presented in earlier chapters. This chapter should also highlight the lack
of rigour in the neural network field at the present time. As much effort as possible
was put into the software experiments so that the conclusions drawn from them had
a reasonable chance of being valid. The system thus far still has more an aura of a
collection of patches than of a logically evolved structure. However, in a sense, this

1s engineering and not science!
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Chapter 6
Conclusion and Future Work

This chapter outlines the future work spawned by this mesh generation apphcation,
as well as noting what loose ends need to be tied up to complete the system. The
summary briefly states the mmtial premise ot the thesis and the origimal work

accomplished in pursuing this premise.

6.1 Future Work

A great deal of work remains to be done in order to make this apphcation uscable.
Because of the nature of neural networks, the basis in theory may never be

completely rigorous, but more experimentation should clear up many issues.

6.1.1 Error Criterion

The error criterion described in Chapter 4 should be venfied. To do this, & mesh of
a device should be generated using the ideal density information. The solution on
this mesh should then be compared to the "exact”" sulution by integratig tor the
mean squared error of each element in the mesh. If the scheme for deternuning
ideal element size is working correctly, then each element should have the same

mean squared error (i.e., the variance of this quantity should be small).

6.1.2 Input Representation

The representation for the input is currently a bit too arbitrary, and as 1t stands has
a few problems. The first problem has to do with the scaling ot the input and output
(by distance to nearest corner). When a sample pomnt is on a corner, then the scale
factor becomes intfinite. The second problem 1s the way maternal boundanes are

treated. Because different networks are used on either side of the boundary, the
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mesh density as computed by the system is discontinuous across the boundary. Some
sort of smoothing would correct this, and could also make sure the mesh was graded
properly. The third problem 1s more fundamental, and has to do with the fact that
the representation assumes that the geometry can be appronimated locaily by a
couple of line segments. This assumpticn is violated in the more general case where,
for example, a curved surface 15 approximated with many short line segments. Finally
it is still an open question as to how local the representation can be and still contain

enough information to compute the mesh density.

In more general terms, the input representation should be evaluated for redundancy.
This can be accomplished by training the network using an input representation which

omits one input. In this way each input can be tested in turn to see how "necessary"

It is.

6.1.3 Output Representation

The output representation is fairly sound, and in concept is probably near optimal tor
this network architecture. The number of "bins” was chosen arbitraily, and this could
be refined through turther experimentation. More generally, the nature of the output
makes it natural to examine competitive networks, where the outputs compete for the

right to respond to a given input.

6.1.4 Traning

The traimng method used in the learning process is unsatisfactory. While the
performance of the network 1s acceptable, it seems likely that there exist more global
mmima in the error surtace, and especially minima that would perform better at

generahizing. The are several approaches to finding these minima.

1) Fuirst of all, in any approach a much larger number of examples is required.

61




¥

The exanmples should come from many, very different, devices  Examples could

include a C-core inductor, a stepping motor, a transtermer, an actuator,

2) Different training algorithms could be tested.  On possibility that scems
especially attractive 1s sunulated annealing. As mentoned in Chapter 2, this method
can be slow to find a network with an acceptable error. However this method could
be accelerated by using it in conjunction with the conjugate gradient method. In this
hybrid scheme. the weight vector trom a simulated annealing step would be rehined
to the nearest local mimnima in the error surtace. This would help offset the piimany
disadvantage of the simulated annealing algorithm, which 1s its very slow convergenee.
Also the conjugate gradient method is very fast, so the additional cost would be

minor.

Another alternative would use an explicit, nearest neighbour, interpolation scheme.
The main disadvantage ot this approach is the requirement that all the tining
examples be kept around to construct the local interpolants on demand  The
advantage is that there is no training involved at all. One dificulty s in determimmg

which of the nearest neighbours should be used to construct the Jocal mterpolant.

6.1.5 Evaluation

There is little doubt that the neural network approach s computationally more
efficient that an adaptive system (its only competitor).  However  exphent
computational cost and resource usage should be calculated tor both systems. This

would help convince sceptics of the utility of this approach.

6.1.6 Steps to a Working System

Finally several steps are necessary to turn the network mto a complete system. A

mesh generator working from density has to be adapted to use the output of the
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neural network. Also the system should be extended to handle different materials
and ditferent types of problems (e.g., time harmonic, rotationally symmetric). This
could most easily be accomplished by using a different network (essentially only

different weights) for each type of problem.

Another major step is extending the system to handle non-linear materials. This
problem may be too ditticult for the neural network to handle directly (since knowing
where the iron saturates is an essential part of the problem). However one approach
would use a solution to the device computed on a very crude mesh (and therefore
relatively cheap to compute).  This crude solution could then be one of the inputs to
the network. Infact this s similar to the expert who traces approximate tlux lines to

help determine where saturation occurs.

6.2 Summary

This thesis started by examining what contribution neural networks could make to
automating engineering design and analysis, in particular finite elements. The idea
is to emulate, and not surpass, the ability of human experts applying themselves to
a certain task. The result is a working system that successlully applies neural

networks to a previously unsolved problem 1in mesh generation.




Ll

References

[Babuska, 19806]
. Babuska, O. C. Zienkiewicz, J. P. Gago, E. R. de A, Olinvera, Editors,

Accuracy Estimates and Adaptive Refinements in Finite Elenient Computations,

John Wiley, New York, 1986.

[Baehmann, 1987)
P. L. Bachmann, K. R. Gnice, M. S. Shephard, S. L. Wittchen, M. AL Yerny,

"Robust, Geometrically Based, Automatic Two-Dimesional Mesh Generation,”
International Journal for Numerical Methods in Engineering 24, No. 6, pp.

1043-78, 1987

[Caudill, 1989
M. Caudill, "Neural Networks Primer" (series), AT EXPERT, Part 1, December

1987, pp. 46-52; Part 2, February 1988, pp. 55-61; Part 3, June 1988, pp.
53-59; Part 4, August 1988, pp. 61-67; Part 5, November 1988, pp. 57-65; Pant
6, February 1989, pp. 61-67; Part 7, May 1989, pp. 51-38; Part 8, August 1989,
pp- 61-67.

[Carpenter, 1988]
G. A. Carpenter and S. Grossherg, "The ART of Adaptve Pattern

Recognition by a Self-Organizing Neural Network,” Computer 21, March 1988,
pp.- 77-88.

[Fang, 1990]
M. Fang and G. Hausler, "Class of transtorms invariant under shift, rotation

and scaling," Applied Optics 29, No. S, pp. 704-8, February, 1990.

[Farmer, 198§]
J. D. Farmer and J. 1. Sidorowich, "Exploiting Chaos to Predict the Future and

Reduce Noise," in Y. C. Lee (ed.), Evoluton, Learning and Cogiition, Waorld

Scientific, New Jersey, 1988, pp. 277-330.

64




[Foley, 1990]
J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, "Computer Graphics,"

2nd Edition, Addison-Wesley, Reading, Massachusetts, 1990.
[Fupta, 1988]
M. Fujita and M. Yamana, "Two-Dimensional Automatically Adaptive Finite-

Element Mesh Generation," IEEE Trans. on Magnetics, MAG-24, No. 1, pp.
303-6, 1988,

[Fukushuna, 1982]
K. Fukushima and S. Miyake, "Neocognitron: A New Algorithm for Pattern

Recogmion Tolerant of Deformations and Shifts in Position," Pattern
Recognition 15, No. 6, 1982, pp. 455-69.

[Gallant, 1988])
S. I. Gallant, "Connectionist Expert Systems," Communications of the ACM 31,

No. 2, February 1988, pp. 152-69.

[Grossberg, 1983]
S. Grossberg, Studies of Mind and Brain, Reidel, Boston, 1982,

[Hecht-Nielsen, 1987]
R. Hecht-Nielsen, "Neurocomputer Applications," AFIPS Conference
Proceedings 56, 1987, pp. 239-44.

[Heeht-Nielsen, 1990)
R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading, Massachusetts,
1990. '

[Hétu, 1990]
J. F. Heétu, D. Pelletier, "Adaptive Remeshing for Incompressible Viscous

Flows," AIAA Paper 90-1604, ALAA 21st Fluid Dynamics, Plasma Dynamics

and Lasers Conference, June 18-20, 1990 Seattle, Washington,

65




[Hinton, 1990]
G. E. Hinton and S. Becker, "An Unsupervised Learnng Procedure that

Discovers Surfaces in Random-dot Stereograms,” to appear in JONN,

Washington D.C.. January 1990.

[Jin, 1990]
H. Jin, and N. E. Wiberg, "2-Dimensional Mesh Generation, Adaptive

Remeshing, and Refinement," International Journal for Numerical Methods in

Engineering 29, No. 7. pp. 1501-26, 1990.

[Kohonen, 1984]
T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 1984,

[Lapedes, 1988]
A. Lapedes and R. Farber, "How Neural Nets Work," m Y. C Lee (vd),

Evolution, Learning and Cognition, World Scientiic, New Jersey, 1988, pp

331-46.

[Lejeune, 1989]
C. Lejeune and Y. Sheng, "Invanant Pattern Recogmtion using  Back-

Propagation Neural Neiwork and Fourier-Mellin Filters," Canadian Conference
on Electrical and Computer Engineering, Montreal, Quebec, September 1989,

pp. 417-19.

[Linsker, 198§]
R. Linsker, "Seif-Orgamzation in a Perceptual Network," Compuiter 21, Mairch

1988, pp. 105-17.

[Lippmann, 1987]
R. P. Lippmann, "An Introduction to Computing with Neural News,” [ELE

ASSP Magazine, April 1987, pp. 4-22.

[Lowther, 1986]
D. A. Lowther, P. P. Silvester, Computer-Aided Design i Magnetics, Springer-

66



Fa

Verlag (New-York), 1986.

[Montana, 1989]
D. J. Montana and L. Davis, "Training Feedforward Neural Nets Using
Genetic Algonithms," JCAT 89, pp. 762-7.

[Press, 1988]
W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipies in C, The Arnt of Scientific Computing, Cambridge University Press,
New York, 1988,

[Reichert, 1990]
K. Reiwchert, J. Skoczylas, T. Tarnhuvud, "Automatic Mesh Generation Based

on Expert-System-Methods," (private communication) 1990.

[ Rumelhart, 1986]
D. E. Rumelhart, G. E. Hinton and R. J. Williams. "Learning Internal

Representations by Error Propagation,”in D. E. Rumelhart, J. L. McClelland
and the PDP research group (Eds.), Parallel  Distributed  Processing:
Exploarations in the Miciostructure of Cognition, Vol 1: Foundations, MIT Press,
Cambnidge, 1987, pp. 318-62.
[Sejnowsk, 1987]
T. J. Seynowski and C. R. Rosenberg, "Parallel Networks that Learn to
Pronounce English Teat," Complex Systems 1, 1987, pp. 145-68.
[Sompolinsky, 198§]
H. Sompolinsky, "Statstical Mechanics of Neural Networks." Phvsics Today,
December 1988, pp. 70-80.
[Soucek, T98K]
B. Soucek and M. Soucek, Neural and Muassively Parallel Computers, John
Wiley & Sons, New York, 1988,

67




[Swaine, 1989]
M. Swaine, "Programming Paradigms" (column), Dr. Dobb's Journal. No. 153,

July 1989, pp. 100-110; No. 154, August 1989, pp. 134-8; No. 155, September
1989, pp. 114-18; No. 156, October 1989, pp.112-21.

[Webb, 1988]
1. P. Wehb, Finite Elements in Electromagnetics, class notes (304-017), pp.

TRS3-TR70, 1988.

[Widrow, 1988a}
B. Widrow, R. G. Winter and R. A. Baxter, "Layered Neural Nets for Pattern

Recognition," IEEE Transactions on Acoustics, Speech, and Signal Processing

36, No. 7, July 1988, pp. 1109-18.

[Widrow, 1988b]
B. Widrow and R. Winter, "Neural Nets for Adaptive Filtering and Adaptive

Pattern Recognition," Computer 21, March 1988, pp. 25-39,

68




l«@‘-’“‘: l

;v.m‘drq

Appendix 1.
Mathematics for Element Error Computation

i. Least Squares Fit

The least squares tit of a trail element to a solution is accomlished by minimizing the
squared error. The error 1s the ditference between the "exact” solution, and the
lincar solution on the element. The minimization is done with respect to three

parameters: the values of the solution on the three vertices of the hinear trial element.

The "exact” solution in this case is in fact only a close approximation which itself has
been computed on a mesh. To avoid confusion in the tollowing derivation, the
clements from the solution will be retered to as "solution elements”, and the element
bemg fitted to the solution as the "trial element”.

The hnear solution on the tnial element is represented by:

~

A, =a +ax+ay=a’x (1)
where x = (1 x y) Tanda = (a, @, a,) ™. The squared error of the trial element

15 found by mtegrating over the trial element:

£= [(a, - &)*ds (2)
S

The minimum of the squared error is found by ditferentiating w.r.t. the each of the

piarameters and equating the results to zero:

321 (A, - A,)°ds = —2f(Az - A,)xdS =0 (3)
S

Solving tor the parameters gives:

[a,xds
S

fA'zde
S

f(a Tx) xdsS (4)

s
f(xx Ndsa

s

This equation is a linear system of three variables, and can be solved for the
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parameters of the linear element.

ii. Squared Error

The expression for the squared error can be simplitied as follows:

E

[a% - 24,4, + AZds
S

[aids - aT[a,xds
S S

In the program to compute 1deal sizes, the integration 1s pertormed by taking cach
solution element and clipping it against the tnal element. The chppig algonthm
used is the Sutherland-Hodgman algorithm which is described 1in Secuon 304 of
[Foley, 1990]. Once the integral quantities are computed, the parametens are
calculated by solving equation (4), atter which the squared error s readily computed

using equation (5).

The mathematical methods necessary to perform these integrations 1s presented n
[Webb, 1988]. The FORTRAN code used to implement parts of these computations
was donated by J. S. McFee.
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Appendix I1.
Geometric Input Files for C-Core and E-Core

; Geometric input file for C-Core.
; Domain
-5.0 -5.0 ; x_min, y min

4.7 5.0 ; x_max, Yy max

; Core
1 ; material type (1 = iron, 2 = copper)
12 ; number of vertices (a closed figure is assumed)
-3.1 3.5 : (x, y) coordinates of vertices
-3.1 -3.4
3.2 ~3.4
3.2 -1.0
0.95 =-0.1
0.95 ~-1.5
-0.9 -1.5
-0.9 1.6
0.95 1.6
0.95 0.15
3.2 1.4
3.2 3.5
; Left Coil
2
4
-3.1 1.0
-3.7 1.0
-3.7 -0.9
-3.1 -0.9
; Right Coil
2
4
-0.3 1.0
-0.9 1.0
-0.9 -0.9
-0.3 -0.9
0 i zero indicates no more objects
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; Geometric input file for E-Core.

; Domain
-8.0 -9.8 i x_min, y_min
11.0 10.0 ; X_max, y_max
; Core
1 ; material type (1 = iron, 2 = copper)
22 ; number of vertices (a closed figure is assumed)
9.0 7.0 :; (x, y) coordinates of vertices
0.0 7.0
-6.0 6.0
-6.0 1.0
-4.0 1.0
-4.0 4.0
-2.0 4.0
-2.0 =3.0
-5.0 =-3.0
-5.0 0.6
-7.0 0.6
-7.0 =-5.0
0.0 =-7.0
9.0 =-7.0
9.0 0.0
6.0 -1.0
6.0 —-4.0
2.0 =-3.0
2.0 4.0
6.0 4.0
6.0 0.2
9.0 0.2
; Left Coil
2
4
-2.0 3.0
-3.0 3.0
-3.0 =-2.0
-2.0 =-2.0
; Right Co1il
2
4
3.0 3.0
2.0 3.0
2.0 =-2.0
3.0 -2.0
0 ; zero indicates no more objects
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