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Ahstract 

Tlm. thc!li~ adù,cs!lcS the prohlem of how 10 determin ' the optlJ11lllTI Jevel 01 mesh 

ù/~c.:rctizéltion requircd to ~olve a magnetic device accurateJy anù efficiently using 

tlllite clement-.. Currently, 111()~t l'mite element packages require liser intervention ln 

i1S~llrC tlwt thc mc!'>h dCI1!'>ity i.., appropriate for the device. This requires t1uII the u~er 

he knowkdgilhle 1!1 lilllte-eJcmcnt analysls and magne tic dey/ce design. 

The approach introduced here lI!'>es n neural network which i!'> trained to recognize 

slgl1ltlcant gcometnc tcatures and material propertlcs trorn the description of a 

I1wgnetlc dcVJ(:c. Ré/sed on ilS knowledge of meshing rules the neural network 

compute!'> thc mesh den!'>lt)' rcqUlred lm an optimum l11e~h of the device. The neural 

nctwork :tcqlllrc!o. thls knowledgc from examples of "iùeal" meshes. 

The ~ystclll require!. 110 liser intervention and can be used either inde 1endently or as 

a preprncessor to an adaptive mesh rdinement system. 
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Résumé 

Le sUjet de cette thèse est III déterminatIon de la demlll' opl1111.lIc dl' 111.1111;I!-!l' d'lIll 

composant magnétIque reqU1~ pour une solution précise ct ettllill'l' 1';1\ 1.1 1l11'llllldl' 

des élément~ fmis, Actuellement. la plupart deo; logicIels d'élénwnls Illm Il'qUlt'll'lll 

J'interveutlon de l'utilisateur pour s'assurer que la densité ùu m:l1l1a!!l' l'~t adl'qllall', 

Ceci sous-entend, de la part de J'utilisateur, un niveau d'npertlse l'Il ékllll'llI\ 11111\ 

et en analyse magnétique. 

L'approche suivie ici consl~te en un réseau de llL'ur()lle~ qUI :1 l'IL' l'\l'I l'l' a 

reconnaître, h partir de la description du composant magnL'llqul" Il'~ Il all~ 

géometriques et les propriétés des matériaux sigmllcatlls Sc ha~aIlI ~UI !'-:I 

connaissance des règles demalllage.leréseaudeneuronescalcllklatleIlslll.ll.qlll\l. 

pour un maillage optimal du composant. Le réseau de lIeurolle., aqull'il l'l' \:I\'(J11 ;\ 

partir d'exemples de maillages optImaux. 

Le sy~tème ne requiert aucune mtervenllon de l'uttli~at'~lIr. l't 11l'lI1 l'Ill' lIttll\C' 

indépendemment, ou comme préprocesseur h un système mlaptalL'1I1 dl' r:lllllll'nlL'lll 

de maillage. 

Il 
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1.1 flrohlem Descri ptinn 

Chaptcu' 1 
Introduction 

Thl!\ lhe!->I\ glew oul of an Inve!->tJgation into the applicéltlon!-> ot neuml networks in 

e /ectm:a/ e ngll1eenng de!->Ign and ana/ysis. The Idea of u~ing ne lIr,1! Iletw(}rk~ wa~ lirst 

pmpo\l'd (1\ an alternative to expert !->ystem!-> in a proJeet II1VO/VlIlg the u~er IIHerlace 

tCl a lllagl1etll~ allél!y\l!o. program. From the 1Il\'e!>tigatloll came the concept ot lI.,ing 

Ileural network!o. !Cl elll11l1late the need for lI!>er II1teractloll III the l11e~11 gener;ltIO/l 

~l<Ige 01 Ilwgnetlc devlce j)naly~I~. 

CUfrently tlle U\er~ 01 mm! magnetlc devlce anilly~ls package~ l1lU~t gUIde the ll1e~h 

generatlon pha!>e tCl en~ure that the ll1e~h ha~ the proper /evel ot dl~cretization. This 

reqlllre~ knowledge about tJl1lte e/ement analysl~, and ahout the propertie'\ ot the 

~()llItl()n to the prob/em. Wlthout tlw. gUlùrlllce the me~b may he too COélr..,e 10 mode/ 

the solution acclIrately at certm/l critical points in the device dOI11é1I1l. or o\'er­

dlscretll.ed, reqlllrlng H large al110unt of computer tlme 111 solution and post-

proce~"lI1g. 

o nI..' approach whlch doe~ not reqUlre user interaction me~ an (/tf{{fJ/l\'f Wh'fl 10 

re/Ille :Ill Illltlill com~e me!lh. The adaptlYe ~olver u~e~ an error cntenon to e~lIlllate 

the enor 01 the erude mesh, amI retllles it where the l'rrm i~ estimateù tn hl..! I"rge. 

IIDwever tlm Illethoù ~tart~ out \VIth es~entially zero knowledge 01 l11e~hlllg rule., and 

the (1IOhlem ~(lllltion. 

The prl'l1ll~e DI tllJS thesls J" that neural networb céln le,lm the reqlllred ~n()\\ !t'Lige. 

and fUI1CIJon \Vith li l11e~h generator to generate l11eshe~ WJthout reqlllnng lllly u~er 

mput. l'lm prenme i~ vahdateù hy creatmg a sy~tem whJch COl11pllte!-> él gond 

apprm.imlltlon to the Ideal mesl1 denslt), in the 2-D ca~e and \Vith III1.;:,:ar lll11terials, 

101 steady state prohlel1l~. The meshes generated by thb sy~tel11 l'an be u:...:L! :l!->-l". 

• 



or they ean hè used as the ;'1ltialmesh for an adaptlw soher (Ill ~I\:.· Il li 11l'.ld 'Iil\t), 

1.2 Original Contributions 

This the!o.is makes the folim/lIlg eontributlon~ tu onginal rL'~L'illl'h: 

1) The application of neural networks tu deterJl1l111' Ihe tllllll' l'klllt'Ilt 

mesh density from the geomctric specification allllm:ltL'1 i.1I pl P!lt'I tll'~ 

of a magnetic device. 

2) A local represelltation for the Input tn a l1L~ural lll't\\'ork (Jt il ~pl'l'llll'd 

geometry fnr special sym!11etry condItions, 

3) A general metl10d of repre~entll1g contlnuou, IL'ill "aille, t(JI 1 Ill' (lutpUI 

of a neural network. 

~î 
" A method of estimating the ideal element ~Ize at :lny P(J1I11 III the 

geometric do main of a magne tic deviœ, hased on Ihe "exilel" ~()11I11(J1l. 

1.3 Literatllre SlIrvey 

This application of neural network$ essentially hridge!o. the gap hctWL'l'n the tll'Id (JI 

fmite elements, and the field of neural networks. The relevant Ilteratllre I~ rl'Vll'wed 

in the following slIh-sectiom. 

1.3.1 Neural Network~ 

Fro!11 the tleld of neural nelworb ail c!o.,>cntlill rderellCl' 1(lI 1111" ilpplll.lIJ()1l 1\ 

[RlImelhart, 19X6], \vhich pre~ent~ the archltccture ll<,ed ln tl1l'> ilpplll'iltl()11 1 (JI illl 

introduction to \'anou~ nellrailletwork archltccture~, [CalldJlI, ]<).I)()] 1" il g()ml "()Urll' 

The text: [Hecht-Nleben, 1lJl)O] I~ rndlspen~élhle for dcvel()pJl1g il neural Ill'I\'vwk 

él,1plJcatlOn. H()\.vever no ~pccifIc eXélmple!o. of oll1er applIcilt)(lll' fl~"ell1hlll1!! tl1l" Olle 



lOulù he !oum!. 

In !-omc way~ tlm arpllcéltion i" !-Imilar to visual pattern recogllltJon. Much eltort ha!­

heen !oclI"eù in thi" fJeld; the !ollowmg C(lver !-ume ot the more rele\':lI1t m:ltena1. 

The ncocogl1ltron [Fuka!-him;l, 1 <JX2] b a netwmk optill1lzed lor char;lcter recognItIon. 

Sorne !-pecwl élf(.:hitecture~ lor ùe,t!mg .. vith .,)iiin&;,:tï;~., have been developeù ry 

B. \Vldrow, ~ee, lor examp1e, [WIÙroW, 19XXa]. Also an application of neural 

network" u!'>ing Fourier-Mellm ~patial tllteJ!- is descnhed in [Lejeune, 19K9]. 

Unlortunatcly, the special fe,ltures and properties of the mesh demi!)' prohlem l11ake 

1l10~t o! these rekrence!> Inappllcahle, as some rc~u1ts presented later ",dl sho\\'. Abc) 

vl"ual pattern recognition i!- largely concerned \VIth the prohlem ot I/oi.\c. Howevcr. 

ln thl!'> application, noise I~ not an b~L1e since the uevlce gellll1etry and propertle~ are 

typil':lIly !-pecitled \Vith ~'reat preciSion. 

U.2 Me~h Generation for Fil1lte Element~ 

f-lOm the flcld of hnite element analy!'>is there IS practlcally no lI!>l'Iul IIterature 

Vlrtually aIl the relevant mesh generation research ([Jill, J'JSlO]. [FuJlta. jlJSS]. 

[B;lchm;II1Tl, 1<)~7]) I~ foctlseu on generatmg a mesh a~~uming that the (Je~lred ll1e~h 

density I~ specifie(.L Most of the~e papers expect thc mesh gcnt'rator to torm part ot 

the loup III an adaptive slliver (the mesh ùen~lty I~, in thls case. ueterl11ll1ed lI!'>ing an 

error cnte non applieu to an approxlll1ate ~olutlon from a crude me~h). Thi!> ~tep m 

the mesh gcneratlol1 proCè~s I~ also required by this ~ystel11, hut the ÙlftlCU]t pmt I~ 

Ilot gelleratmg il mesh ba~ed on den~ity. but rather determining the proper density 

in the lJr~t place. Therefore thi!- ~ystem i~ haseu on the exi~tence 01 demlty dnven 

Other l1le~h generator~ u~e Iwrd-coùeu rules (e.g., [Relchert, 199o], WhlCh, IIlcidently, 

doc~ IlOf lI~e expert sy~tem method~ as c1aimed). These rllle~ are u~ed to en!-ure 

optimum gradll1g and trIangle ~hape, anu do nN take mto é1ccount any propertie~ ut 

1 



1 the devlcc or ot the solution. 

Sorne knowledge ahout finite element allalysl~ of magnetll" dl'\'lrt'~ IS u"cd 111 thl\ 

app1ication. However this knowledge is very geneml. illll! l'illl l'l' IOUIIlI 111 :Illy ~llod 

text on Imite elements for electromagnetics (e.g .. [Lo\\'thel. )llShj). 

4 
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Chapter 2 
The Neural Network Approach 

Recently neural networks have reccived increased attention hecause of their ahility 

10 learn t'rom examples and to generalize. While neural networks are conceptllally 

very ~ll1lple, there are still many aspects that are ponrly under~tood. This chapter 

dc),cribc), ncural networks and gives a constructIve interpretation of how they work. 

Althollgh l11uch ot what i~ presented in this chapter appears elsewhere in the 

I1tcraturc (fRul11clhrt, 19R6], [Hecht-Nielsen, 1990]), it i~ included here for 

colllpictelle~~. Even so, t!lb the1>is is nece~sanly terse in the background of neural 

lll:tworks. For li more thOrollgh and readahle introduction to neural networks, the 

rcader IS cncouraged to read [Rumelhart, 1986]. This WIll form the ha!>l!> for the 

~ystell1 lI~ed tn solve the mesh dlscretization prohlem. 

2.1 General Definition of Il Neurnl Network 

Neural networks were inspired hy hiologlcal computing systems as exemplified in 

animal hrain~. However the neural network concept has evolved to include a l1luch 

hroadcr range of computing systems. The following definition i~ taken from 

[Camlill, 1989]: 

Ddllliwm: A neural network 15 a computing system made ur> of él number of 

simple. highly interconnected processing elel11ent~ (nodes). which 

processes Jl1formation hy its dynamic state response to external inputs. 

Neural net",orks are chmactèflzed hy their ahllity to generalize from example!l, to 

extract feature~ present in li set of inputs, and ta tolerate uncertainty. Neural 

network~ .m: an mherently paralle! computing architecture, and while some parallel 

hardware lI11plementations eXlst, 1110st neural network applicatlon~ are develnped on 

standard seriaI computers. This highlights the fact that the actual difference hetween 

5 



neural networks and conventional computing is the cornplltill~ p:lr:ldl~11l hellilld tlll' 

network structure. 

2,1.1 The Neural Network Paradigm 

The conventional procedllral computing paradigm ernphaslze:- aho\'l' ail l'bl' thl' 

algorithm hehind a data proCè:-~ing task, How data is rcpresl'lltL'd pl:l)'s a SL'Clllld:IlY 

role compared to how the data is maniplllated. 

In the neural network computing paradigm. on the othL'r hand. the "alglllltlllll" 1:­

essentially the same for dlfferent applications (lm :1 gl\'l'11 nl'ulal lll't",mJ.. 

architecture). The emphasi:- 1:- Instead placed on IqJf·('\(.!I/I{/liol1. U:-ing a lll'ul:1I 

network paradigm. a data ]Jroœ~:-1I1g task I~ IIrst rdorrnulated III II1pllt/Olltpllt tl'flll:-. 

A representation i~ cho~en lor thl' Il the pm~lhk 1I1]JUt:- and ()Utpllt~, and thl'Il. il thL' 

representatlon IS "gond enough". a mapping betwl'ell IIlput :lIld output C:1Il hL' 

determined élutomallcally. Exactly what thls l11ean~ wIll hL'cOI11L' l'kart'I III tlll' 

following !lections. 

2.1.2 Neural Network Architectures 

The previous statements apply to practically ail neural network :lrchitecturl'!I. M:lI1y 

sophisticated architectures exist such as Fuku~hima's Nencogllltroll ! FuJ..u!lhl111:I. 

1982], Grossberg's adaptive resonance network [Gros~berg. 19N3]. :lI1d Koh()IlL'Il\ 

associative ma p [Kohonen, 19f<'4]; these archltecture!l are !llIrveycd III ! Llpplll:lJlll. 

1987] and [Caudill, 19R9]. For the application pre~ented here (Jnc III the ~ll1lpkr :1 III 1 

more estahlished architectllre~ proved tn be sllitable: thl.! !>{/c/,/Jropagaliol/ I/('(\I'(J/k 

The following analysis will t'ncus on thi~ network mchllcctllre. 



2.2 The Backpr"p .. ~gation Network 

The backpropagation network is also 

referred to as the "Iayered 

fccdforward network", and "the 

mappmg neural network". As the 

name suggcsts, the nodes in the 

network are arranged in layers (see 

Figure 1). The l'irst layer consists of 

input nodes; their values are set 

extcrnally and reprcsent the 

information the network will use to 

determme the output of the data 

Figure 1 - A Small Backpropagéltlon 
Network 

proccssing task. Each node In the following layers takes its input from the layer 

previous ta It, and computes an output whlch is a bounded monotonie functlon of the 

weighted sum of these inpJJts. The nodes in the last layer are called output nodes. 

Once the computation of the node values has propagated through the layers, the 

output nodes represent the solution ta the data processing ta!'.k for the input 

presented to the input nodes. 

2.2.1 Feedl'orward Mathematics 

The following four equations express this mathematically: 
0(1) -

= X 

s(p) = ff'p) O(p-l) 

o(P) f;P)(s;P»), 
(1 ) 

= l~i ~Np ~ 

y= 0(M) 

where: 

o (p) is the (column) vector of node values of layer p, i.e., 

7 



1 
o}P) is the value of node i in layer p. 
Je is the vector of mput node vallle~. 
y .s the vector of output node values. 
W(p) is the rnatrix of weights. I.e .. 

wjr) is the connectlOn weight from node j 10 layer p-l 10 Ilodc i in laycl p. 

alsa: 

Np is the nurnher of nodes m layer [7, 

M is the number of layers, and finally 
f}p) () is the node transter functlOn. 

A commonly used transfer functlon IS: 

f~(sJ = 1 
( 2) 

where the superscript p has been dropped for clarity, and where a l i~ an ad.lll~t:lhll' 

threshold parameter of the function. ThIs parameter can he ~een as a \wlght (ln a 

connection to a nade whlch has a constant value of 1: therelore t hls p:1I :1 Illl'tl' 1 

shauld be thought of as just another weight. FIgure 2 ~h()\vs the tral1sler 

characteristics In diagram farm. 

o (p-l) 
Np _

1 

, . 

.,/ ------------ -

Figure 2 - Node Transfer Functioll 
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2.2.2 Network Topology 

The topology nf a hackpropagation network IS the specification of the numher of 

layer!., the number of n()de~ in each layer, and the form of the tram,ter functlOn of 

each node. The welght~ themselves are not considered to he part of the architecture, 

ému élfC Il1JtJéllly glvcn randol11 values (the fmal values for the weight~ are determined 

thïough a pf()ce~~ U1l1cd traimng). The topology ltself has no c.hrect reJationship to 

the colllputatlOl1éll problc1l1!. a given network b meant to ~olve (except f,)f flxmg the 

Ilumbcr (lf IIlput (lnd output nnde!.), although the topology will influe ICC the 

pcrlorll1ancc. Thcre I~, as of yet, no analytical methml of deterlllinmg the optilllé\J 

topology. Smce the tOj1ology i~ not 11lnditied during le mn IIlg. al1 the knowledge 

acquired hy the nctwork ahout a certain data proce~sing télsk i~ encoded in the 

welghts during the training phase. 

2.3 Training the Backprnpagatinn Netwnrk 

The backpropagatlon network acquires Its knowledge from a ~et of traillil/g examples. 

The train1l1g eXéll11ple~ are input-output pairs, where each pair consists of the mput 

value~ of one example and the corresponding target output values. During the 

trainmg pl1:l~e, one ot the inputs from the !.et of traming eXéll1lples (selected at 

random) IS pre~ented 10 the network and the output values are computed. The 

weight~ are then 1l10dJtled to reduce the error hetween the élctunl output vélllle~ émd 

the target output values. This proces~ IS repeated unt1l the network response is 

sllniC1t~ntly close tu the target~ for ail the exaI11pJe~ in the training ~et. How close 

deprlllb on the applicatIon: however it may also happen that the network never 

reaches il pOlllt where the error is sufhciently small. Thi~ phenomena can he 

lIndrr~tood l110~t easily from the numericaJ perspective presented in the next section. 
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2.3.1 The Error Backpropagation Rule 

The backpropagation network gets ItS name t'rom the Illethlld 1I,ed tll tl.lll1 tlll' 

network, the errol hackpropagatioll mie. Ttm rule WlIS llI~cO\'l'll'd IIllkpl'lIlklltl\' Iw 

several researchers including [Rumelhart, 19~61, In thi!. twin1l1g ~chl'Illl'. thl' Ilet\\'\ll J,. 

is trained by backward propagatIon of the error t'rom the olltpllt~ tu thl' IIlputs, 'l'hl, 

algorithm defme~ the error of the neural network \Vith re!\pt'ct tn the l,-th tr.lllllllg 

example as: 
( 3 ) 

wherey(kl is the output of the network when training input X(k) 1" applll'd III IIlL' 

inputs of the neural network, and tek) IS the targe! output Ill! tlllll ~;IIlll' llilllll11g 

mput. The IOlal error is then defined as E = ~EO,). The .t1gorltllm Illlnlllll/l'~ tlll' 

total error with respect 10 the weights using a gradient dc!\ccnl alg()lllhl11, 

This algonthm was implemcnted exactly a~ de~crihed 111 [Rulllelh:trt, 1l)~()I, llSlllg 

these two equations: 
( 4 ) 

where ex is a momentum parame ter (approxllllately eqllivale nt tn the ~llcœ~'IVl' llVl' r­

relaxatIon parameter in relaxation terminology), and p i!\ the "stej1 ~IZl'" !lI l'ill Il 

update, Interested readers l'an rder tn [Rulllelhart, 1l)~61 for l1lore dl'Iat!, Oll tlle 

backpropagation algorithm. 

The previous section mentioned the po<;~ihillly that the Iletwork I1l'Vl'j '1Italll" .1 

sufticiently small error. The reason for thl!\ i~ tIuc tu Ihe lilCI 111011 11lt' 

backpropagation algorithm IS a minimization algonthm, but the <,urlace ()I Ihl' 

function heing mmimized (the total error) doe~ not have a ~illglc \l1I1lIIllUIlI. 111 laLl 

the error surface typically has many local minima whlch Céln be lle;lr or br 1 mm thl' 

global minimum. Since the hackpropagation alway~ traveb "tI()wllhlll", Il l' Ilélhlt' ICl 
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get ~tllck ln one of theM! mlnlllla. The next ~ectlon dl~cu~~es thls prohlem in terms 

of other minimlZéltion methods. 

2.3.2 ModJtymg the Backpropa,Çat/(m Algonthm 

A!> mentHJned lJ1 the preVI()ll~ paragraph, the hackpropagation algonthm mlllÏlmze!l 

the crror hy gradient de~cent. SlIlce it is well known that gradient descent methods 

are IIllenOf tn other minimizéltlOn algnnthms ln many appllcatiom, it is temptmg to 

try ~ome of these supcnor algorithms tn mmimize the error of the neural network. 

The conJugate gradient mcthod I!'> one ~llch method; It i!'> weil doculllented ln the 

literature (e.g Sect/on HU) of [Pre~s, 19XX]), and feature~ <.juadr<ttic convngcnce on 

(1 cert:lln cl:I~"" of prohlcm\. Abo one application, [Lapede~, 1 <)~X], uses the conJugate 

grmllcnl met!1od (dcmon!,trallllg that Il i!'> workahle), but without comparisol1 to the 

grallJcnt de~cent metllOl!. Accordlllgly the conJugélte gradient algorithm WéJ.I, 

Il11plemcnted, and the resuIts compared to the gradient de~cent algonthm. 

The re~lIlts were dl~,,\pp())ntJllg; the conJugate gradient mcthot! did converge to a 

minimum in many fewer iteratlOn!'>, hut the l11iIllIllUI11 it converged to was far trom 

global. The gradient descent methoù, lJ1 general, fmds mllch better minimél. There 

are !leveral poslIlble explanat\On~ for th)~. First of aIl, the J1l0J1lentum parameter in 

the welght update step all{Jw~ the gradient ùe!.cent algorithm tn escape éI local 

minlll1l1111 111 ~ome cases hy carrymg It throllgh the minimum. Seconùly the fact that 

the \vcIght 1Ipllate ()ccur~ <Ifter each 1I1divldual example J1lean~ that the error 

"Iand~l'ape" chaIlge~ at each Iteration. Thl~ J11eaIl~ that what I~ a lonl milll111Ll111 lor 

ont.' l':\:Il1lpk may Ilot he for the Ilext. Finally the order of îhe e:\é\l11p1es IS chmen 

at randol1l; tlm :Iùd~ ,\ certalI1 amour.t nt "noise" to the directIon taken, é1gain ~o that 

escnpt' fmm local mmilll<l i~ possihle. Of cour~e in theory these three factor~ coulù 

alsu cause It to escape l'rom a hetter minllllum to a worse one, hut in practice this 

does not happl'n orten enough to impair the superior performance of the gradient 
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descent a Igorithm. 

Attempts at u~mg other mlnlll1izatIOn methmb ~uch :lS ~1I11111:ltL'l1 :lIlIlt'altll,L! 1 PIl'\\, 

1988], and genetic algorithI1l~ [Montana, 19~N] have abo heen :lttl'll1ptl'd (hut Ih1l hy 

this author) without much ~ucces~. These I11l'thoùs are good fOI 11l1I111ll1l;11~ IUlll·tllll1!'> 

with many local minima, however they have only limitl'd mdull1l' ...... 11t'l':IU~l' IIlL'y 

converge Illuch Illore slowly than l'ven the gradient dl'srent Illl'thmi (:dtllllUgh 1 hl' 

minimum they fmd might be c1m.er to a global III III 1Il1l1 m). 'l'hl' Il'a~()Jl lOI tlll~ 1\ th,lt 

each set of weights is chosen almost indepcndl'ntly 01 thl' ()Ihl'I~. Thl~ 11lL':IIlS thal 

the chance!'> of finding Cl good ~l't of welghl~ are almml val1l';hlllgly \Illilil. Tl) 

ilImtrate thl~, con~)(.Ier a network of only 75 \\'l'Ight~ (a rathL'r ~l1lall llL'twOI k) Il :111 

implementation of these algorithms tested one million wl'Ight l11allirc~ pel ~l'l'()11l1 (:1 

figure only specialized parallel hardware could achl'Ive), Il wlluld takl' ll!lL' hi/liol/ 

years Just to te~t one welght vel'tor in each "quadrant" (lI the wt'i~ht ~p:Il'l'. 

Considering that the estimated geologlcal age 01 the earth I~ Ul1lkl II\'L' hlll1l1l1 yl'al\, 

it is c1ear that an exhamtlve search 01 tlm, kll1d i~ qUltl' Il1k;I\lhk'. ïïll'~l' 

experimental results favour the ~tandard bal'kpropagatlon algonthm. ;\I:-'(l, :i1t IHlll~h 

no formaI analysis on convergence propertles has been l'arrrni (lut, the ~I allll'nt 

descent method is the method of choicc in practlcally ,dl appllc,ltHII1\ 01 the 

backpropagation neural network. 

2.4 Numerical versus Knowledge Based Interpretation 

The previolls ~ections de~crrhed neural networb 111 very 1111111111:11 tl'lIl1\ Till' 

description specifted, in mathematll'al term~. the operati()n (li tllL' Ilctw(lrk :1 III 1 the 

method lIsed to modlty the weights during trainlllg. 111 prll1clpk tlll'" 1" :-.uttlt lellt (() 

implement a neural network, however It doe~ not glve I11lllll II1\lgllt IIJt() tlll' 

behaviour of the network as a whole. 

This emergent behaviour i~ olten de~cribed ll~ing dllterent tcrrm lrolll tllL' :11 ttllt 1:11 
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mtdllgence field ~uch a~ pattern recognition, feature extraction, élnd generallzation. 

Ilowever, e~pccléllly ln thl'> appllcatICm, the emergent hehaviour is best de~cnbed trom 

il numcncal an:t1y~l~ pcr~pective. 

2.4.1 Emergent Be!mvlour: NlIl11cncal Per~pective 

The mathematlc,> de~cnblng the neural network pre~ented in the previou~ ~ection 

~lIggc~t tl1:lt :1 neural network can he mterpreted a~ a functional mapping between 

the input~ and the ()utput~. In thi~ type of mapping, the input ~pace is theN1 

d/men!\/O/wl sp<lœ ot input point!\, and the output ~pace IS the N..! dimen~i()néll SpélCC 

ni output p()Jnt~. SpecJtlcally, a backpropagatlon neural network can be defined a~ 

lollows: 

Dellllition: A hackpropagalÎOIl Ilcural lle/WOIk is a multi-valued function of many 

variables; the ~()lutIOIl 10 a computing problem is tound hyel'(//u(lliflg 

thl~ tlllletion at a ~pecified point. 

The '\pecJlïed point" i~ the IIlput tu the neural network. and the \'aluc~ or the 

11Il1ction corre~pond to the output of the neural network (the ~()Illtion ln the 

computlllg problem). U~ing thl~ definition, Illélny ot the propertle~ of the neural 

IIdwork can he e.\plained m term~ de!\cnblllg tunctiona! mélpping:-.. In particu!<tr, the 

ahihty 01 the net\Vork 10 generalize caT1 been seen as ÎllIc'1}{)!a/ÎOIl between the 

tntll1l1lg exampk!> 111 the output space. Thl!> has Implicati()n~ regardmg input and 

output n:pre~entatlon, WhlCh b di~cussed in the next chapter. 

2.4.2 Learnlllg a~ Modelhng 

II the neural network is 1I1terpreted as a function, then the proce~s 01 learnll1g can 

be II1terpreted a~ modellil/g. The welghts can he seen as the I)(I/ame/ell of a 

mndelling tunction, and the traming examples as da/a poÎms 111 the multi-dimensional 
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(input-output) spnce of this function. Then the ermr hackpropagat 1011 r uk I~ 

identical ta él/east sqllares rit (minimized hy graùlent ùesccnt) ni the llL'lIlal m'twIlIk 

"madeJhng function" to these ùata p01l1ts. Tlm. put~ neuralnet\\,(ll b (ln I1Hlll' 1:1111111:11 

ground, and allow~ the large hoùy of knowleùge ahout l110dellrng thL'ury to hL' applll'd 

ta neural nctworb. 

2.4.3 Using Other Madelliilg Functians 

If the neural network can he interpreted as a J110dellmg 11Inctloll. tlH'1l It I~ 

appropriate to a~k whether other modelling tllnctlon~ might not hc more ~uitahk lm 

implementing the functional mapping hetween mputs and ()lItpllt~. Whrle!lo amWl'1 

ta this question is presented here, ~ome hackground information I11lghl prow to IK' 

illuminatmg. Thl~ questIon i~ addressed ln two papers hy dllkrent :llIthor~. Buth 

papers descrrhe a ~()Iution to the same prohlcm. hut each me~ (1 dlilerellt "ppru:lch. 

The tlrst paper. rLapede~, 19RR], ill1plernent~ a ~ollltion 1I~1I1g nl'ur;r1 Ill'twOl k:-. 'l'hL' 

~econd paper. [Farmer. 19RR]. lises an explrclt 1I1terpolatioll flllll'lroll \\'hich 1" I()ml. 

I.e., the output at a ~pecrfred input point l~ detcrr11lned by II1lerpol;lllllg hL't"'l'l'!l Illl' 

output of the nearest neighbours to the input point. In thl~ expllCIt :-.chclllc Il tllrt1~ 

out that the way ln which nearest neighhours are chmen 11<l~ tl ~lgllrllC:lllt rl11p:llI (l!l 

the accuracy of the interpolation. Aiso the local Interpolatloll :-.chellle i~ ~uperl(lr III 

several dIfferent type~ of global interpolation ~cheme~ attempted hy the aLltIHl!~. 

What is of interest here is that the neural network apprnach glve~ very SlInJ!;lr rl~:-'lIlb 

ta the local interpolation scheme. Thi~ ~lIgge~t!'> that in fact neural netwmb are 

implementing ~ome type of local interpolatIon ~('heme. Thl!'> abo !'>lIggl'<,t!'> tllilt whL'lI 

the neural network learns the rnput-olltput p;lIf~, It also IC;lrtl:-. the teaturl'!'> (lI the 

input which are important in ~electrng the "hest" nearest neIghl1()lIr~. 
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2.5 Summary 

This charter olltline~ the neural network compllting paradlgm. The ~y~tem pre!-ented 

in the following chapter~ IS bél~ed on the backpropagation neural net\\'ork 

architecture. Four key fact~ ahout neural networks are introduced: 

1) Method of computation: in parallel. 

2) Information repre~entation: rcal numbers. 

~) Knowledge repre~entation: in the connection weight". 

4) Knowledge acqlw.itHlI1: learm l'rom examples. 
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Chaptcr 3 
Input and Ontl)ut Ucprcscntation 

The most dlfficult aspect ot developing a neural networh. :lpplll':ttIOIl (11l1l nllllllll1!! 

the generatlon of trainmg e\ampks) b flmlIng :1 wmJ...abk Il'prl'!'.l'IlI:lllllll tlll lltl' 

input and output of the neural network. Thm. most ot the l'\IK'f1111l'ntal \\ Il) J... \\';I~ 

aimed at determining appropriate representatlons. The re!'.lllts illl' the ~uhll'l·t lit thl~ 

chapter; more is saiù on the simulations them~L'lve~ ln C'lwpll'r 5. 

3.1 General Considerations 

The only expliclt con~trall1t Impo!'.ed hy the neural nelwork I~ llll' torlllilt: tilt' Illplit 

and the output must each be encoùed a~ a ~et ot real nUll1her~. Tltl' "Ill' ot tltl' "l't 

(the number of input or output noùe~) is arhitrary. The r<lngl' llt l'ilCIt \"tlut' I~ ,iI~1l 

arbitrary, thollgh 111 practice the vé1lue~ are usually con~tra111ed tll hl' 111 tltl' Irttl'rv.1! 

[0,1] or [-1,1]. However the principle on whrch the neural Ill't\\'mk llIK'liltl'~. il.., 

explained in Chapter 2. means that not ail representatrons arl' equiil III t"cl tlte 

representation chosen is critrcal to the SllCceSS of é1 neural rtelwork lIppllcatlllll. 

3.1.1 Rules tor Deriving Representations 

Unfortunately, the field of neural networks IS ~till very young, and tbere 1'" :1' .. Yl'l no 

ngorous approach to findrng a gond representatlon (thls applle\ to otlll'r :1"'llL'l'I~ 01 

neural r.etworks as weil!). There I~ even an ~c;lrclty 01 gClll:rill rllk~ ()t tlHlmh (11 

other guidelines 10 assbt developers of neural network applll'illl<ll1'" ï Ill' prt'VJ(lll.., 

chapter, however, d()e~ glve !\011le idea of what the Input ,1\1l1 ()utpllt repll· ... l'1I1iltl()Jl 

must be capable of. Specifically. since generaliLatiol1 1\ equlviilCllt Id rnlnp( ll"l\( III 

between trainmg example~, the lIlput and output repre~el1lilll()(J 11111\1 l11ilkl' tllr.., 

interpolation pos~ible. One ImplicatIOn of thi~ i~ that the input il III 1 the ()utpul "Il()ultl 

be encoded so that simllar inputs produce ~imilar output.." 
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One general qlle~tl()n I~: ~hould the input repre~entati()n lavour a !>lll1ple encoding 

lI!'>mg a large llull1her 01 ll()de~, or a complex encodmg lI!'>mg a ~mall number nt 

n()de~. In the apphc~ltl()n pre<.,ented here, an eXélll1ple of the former - slIllple codmg 

u<.,lJlg Ilwny n()de~ - wI)lIld he " pIxel Image ot the input geo1l1etry. An example of 

the latter - COJllplex cmlIng u<,mg only a tew n()de~ - would he an encoding ba~ed on 

relatJIJJ1!'>llIp~ hetween the Ime ~egll1ent~ makmg up each geometnc obJect. The sal1le 

que~tf()11 "pplles to the output. 

The an!'>wer~ 10 thc!>e qlle!>tlOn~ were found through sottwnre expenmenb. In the 

proccs~, 1Il~lght Wél~ gained mtn the working-. of back-propagatlon networks. From 

tlm in~ight a set 01 gllldelille~ wa~ d~veloped lor creatmg input élnd output 

repre~elltatJ()Jl~ for neur,,1 networb In the general ca~e. The~e guidelines are 

pre:--ented at the end 01 tlm chapter, and are one of the contrihutlons ot this the~is. 

J.2 I~eprc~cnting the Output l\1esh 

At Ilr:--t glanœ. the cOl11plexlty ot a l'mite element ll1e!>h makes Il dIfticult to ImagIne 

that il workahle encndmg eXI~ts at ail. The idea of él pIxel image of él complete finite 

element llle~h :lppe<lfmg at the output of the neural network makes one shudder at 

the C01l1pllt;ltlonal CŒt that woule.! he reqllIred. However the reason a neural 

netwurk \Va!> c!tosen for thl~ applicatIon was bccau~e ot It~ pattern recognItIOn 

capahllltle~. But m tlm applIcatfon the key need for pattern recognitIOn I~ 1101 for 

Delaunay trIangulatIon or optimum gradlllg ot the mesh. There already exi~t elfIcient 

aigonthlllll' ~llll1tioll~ to these aspects of the mc~hll1g proce~~. The aspect ot the 

procè!>S wlllch IS a!> yet lIn~olved. anù for which pattern recogn.tlon is reqUlred, is in 

dt:termining the 0rtimulll density of the me~h. Hae, and m the followmg, the density 

of a me!>h at a gl\'en point i~ the node demity in the vlcinity ot the rom!. Thl" I~ 

111ea~ured hy the dl~tance between the node~. (e., equivalently, the length 01 the ~Ide 

of the element). The Ideal mesh denslty evenly distribllte~ the error in the solutIOn 
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computed on the mesh. Later. the chapter on tI<l1l1ing t'\<Il11pln \\'111 gl\'l' ll11lll' 

precise definitions for mesh denslty and for the Ideal mesh dt'lI,ity. Flllll1 tlll' lICIISlty 

specification it is straighltorward to generate a mcsh. and solt\\'art' pild .. :lgl'~ ;t1ll'ad~ 

exist whlch do e;\actly that [Hé tu, 1990]. Therefore it IS sutliclt'Ilt lor thl' 1ll'1It:t1Ill't 

ta compute the density of the mesh everywhere (or at li sell'ctlon 01 s<lmple pUlI1ts) 

in the domam of the mesh. 

3.2.1 Properties ot the Mesh Denstty 

Before discussing different options for reprc~enting the mesh de mit y, It I~ 1I1~trlll·tt\'L' 

tn study the properties of the mesh density as a fllnctlon ot the Illput gconll'tl)'. 

These properties are defined wlth re~pect 10 pOllltS, lincs, or the wholc d()Il1:III1. 

whichever is most convenient. Speclfically, the me~h dCI1~ity tUI1CtlOll ha, thl' 

following properties: 

1) Translational covarIance Translating the 1l1pllt gC()I11Clly le~Lllt, 111 :111 

equivalent translation of the mesh denslty m li wlHlIe. 

2) Rotationallllvariance Rotatlllg the input about a rOll1t dol" Il(ll r1t:1llgl' 

the mesh den!'>lty at that point. 

3) Scale covarIance Scaling the mput geometry (ah()ut :1 p()Jllt) rl'~lIlt.., III 

an equivalent scaling of the me~h dcn~lty (clellll'l1l ~l/e) :11 tlt;11 P()1I1!. 

4) Mirror Illvariance Mlfroring the input geometry ah()ut :t Iml' d()e~ lI()t 

change the l11e~h denslty along that Imc. 

Many of these propertles are also exploited in other field!'> 01 1I1ltlgC pf()œ~~llIg ~lIch 

a!; character recognition. However there are sorne important dlllcrcnCl;~ ln mmt 

pattern recognition tasb of this type, the output i~ IIldepcndcnt 01 ()nerJt;It!()I1, \l':tiL' 

and positIon of the input. ThIS IS not the same m translation and ~c;t1t: ((JI/fil/aI/ce, 
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whlch is u~ed here tn mean tllat the output is transfprmed in the same way the input 

wa~ tran~l()rmed. Therefore technique~ used in image proces!\ing are not readily 

applicahle to this application. 

3.2.2 Reprc!\enting the Me~h Density at a Point 

If the neural nctwork is appropriately set up, the above properties will be ellforced 

explicltly. Otherwise they will only he present implicitly in the training examples, and 

the neural nctwork will attempt to learn these properties from the training eXélmples. 

The f!r~t property ha~ the /110st relevance to the representation chm.en for the output, 

Ix:cau~e Il implies that the neural network only hm to compule the mesh demity at 

a ~ing\c point. The me~h density at any pOll1t in the domain ran then be compllted 

hy the appropriate translation of the mput geometry. Ta make thi~ clearer, imagine 

that the neural network is !let up to compute the mesh density at the exact center of 

a "snapshot" of the input device. Then the mesh de!1sity at any point can he 

computed hy "pannmg" the device across the input ta the network sllch that the 

center ot the snapshot corresponds ta the desired point: the output of the neural 

network will he the reqUlred mesh density al that point. 

Representmg a smgle value is not difficult. The most obvious representatlon uses a 

single output node, with the output value proportion al to the size of the element at 

the output point. But there are still several options to consider. Care ml/st he taken 

to ensure that the tull dynamic range of the output is being used. In faet the reason 

mesh density was defined in terms of element length is because the distributton ot 

clement kngth~ over the geometrie domam is relatively l/mform. Figure 3 !\ho\V~ tht> 

distributIOns ot two encodlJ1g!'>: length and area. These distributions are derived l'rom 

the ideal sizes at 547 uniformly di~tributed points in the geometnc domain nI' the C­

core deviœ (sec Charter 5). Note how the distrihution of the encoding using 

clement area is skewed towards the smaller size values. The oppmite is true for the 
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encoding based on number ot elements per Unit arca (sincc thi~ I~ ~lInply the IIlV~r~l' 

of the encoding using element area), i.e., this encoding i~ ~kewl'd towélflb the Iargl'I 

size values. For ather devlces this rule may not ho Id, but SIllC~ the devlœ 111 tlll~ ca~l' 

was chosen to be repreSClllalÙJe (in terms of Important g~()llletnc teatlJl~s and 

material properties, see Chapter 5), this dl~triblitlOn is a~ cIme (l', pwct iet! t(l the 

expected distribution. 

However, even with a umtorm di!>trihution, the neural network h(l~ llllilculty karnlllg 

to model a continuous valued output. It proved to he impŒ~lhk tu o!1talll ~lIl1ïclellt 

accuracy (Jess than about 5% error on the training example~, or Ie~~ than JO~, (lI! te~t 

examples). Why this is sn is not ohvJOus; perhar~ the fleuraI network t'ail., at 

continuous interpolation heCéluse it ha!> ton lew degree~ 01 Ireedoll1 to model L:vcry 

example closely, but too many degree~ of treedom tn he :-.mooth hetwccn CXillllple.,. 

In any case, this dlf1ïculty is neatl~/ circumvented hy 1I~1I1g éI codlllg proce.,~ which 
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allow~ for error correction. The next section describes the output encoding and 

decoding proce~!'. which reduœs this error withm acceptahle bounds. 

3.3 Rcprcscnting a Continuolls Output 

The encoding of the output is based on the hypothesis that recogllitioll and 

c/a.\'.\ijicatioll are the strong points of neural networks. Accordingly, a representation 

WélS developed which takes advantage of these abilities: the output is discretized, and 

cach discrete value is represented by a separate output. Conceptually, each output 

rcpresent:-. <III the continllou:-, values in the mterval élround the correspondmg dlscrete 

value. 1'0 decodc this output, a votmg ~y~tell1 can he used to select the element ~Ize 

corrcspondlllg to the output WJ1h the large!'.t value. Thi~ encodlllg provldes a ll1uch 

grcatcr error imn1unity, since ail that matters is which output is matÏmwn, and not 

the precise value of each output. From the pattern recognItion point nt view, it 

means that the netw<Yk only has to c/ass({y a given input geometry into one of the 

l'lins representing element sizes. Alternatively, each output can he seen as 

representing a confH.Jence level that the input geometry requires the corrcsponding 

element sizc. This method of refJre~enting a continuo us value is not restricted to this 

application. The next two sub-sections explain the encoding and decoding process 

in detail, for the general case of a continuous valued output. 

3.3.1 Encoding a Continuous Output 

Since the neural network reqll\res target values for the outputs during training, it is . 
neccssary to be able to encode a single continuolls target value into many target 

values, one for each of the output nad, s. Before specifying what these values ~houlcl 

he, the lollo"'lIlg formalizes this representation. As stated in the previolls paragraph, 

cach output nnde is as~igned to represent a different (discrete) value. The~e discrete 

vall!es a:-t' chosen m this case to correspond to a Iinear scale (i.e., each interval has 
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the same width), although there is no reason that other scale~ çouldlù hl' lI~l'd 111 

other applications. In the simplest case, the output of the Ill'uralnctwork i~ dl'l"odl'Ù 

by selecting the node \Vith the largest valuc. If the output Ilode~ aIl' IlUmhell'd l'rom 

1 ta N, then if the Il-th output has the largest value, the correspol1dlllg COl1tlllUOUS 

value is: 

x=(n- ~)w ( 1 ) 

where x is the continuous value, and H', the \vidth of the IIlter\'als, is the (.'oll\'L'r~ioll 

factor between the node index and the calltllluouS value. 111 the apl'lrcatloll 

presented here, this interval width is defined m: 

w = 
2x 
N 

( 2) 

where x is the average over ail the example!o. ni the cnlltIl1U()lI~ \'illue~ (the '1i'L'~ 111 

this case), and N IS the numher of rntervals (the 1ll1ll1!1el ot ()utput 1H1l1e\). 'l'lm 

relation was round emplrically to glve a uniform dbtrrhutjon owr thl' output Il ()Lle!>, 

i.e., each node recognizes its share ot input gcoll1ctr ics. The c\H)!Cl' IS loglcal Il thc 

values are uniformly distributed. Note however that thls implIe~ thm valul'!> grenter 

than 2x wauld map to an index larger than N. In this case the value IS sql/{l.\l!et! to 

2x; artifacts of this step are discussed in Cnapter 4. 

To encode a continuous value requires the ùlvc/se of the ll1:lpping lrom nut!e ()utput 

values to the continuous value hy taking the maximum output. )-Jowevcr thls Illverse 

mapping is not unique, since the operation ot takmg the maXIlllUIll output I~ Il()t 

unique. In fact any mapping IS valld whlCh asslgn~ the maXlmUIll valuc to the ()utput 

whose corresponding value IS c1()~est to the cont1l1uous valuc. The ~illlp!l'~t ~uch 

mapping assigns 1 thls output, and 0 to ail other outputs. Ilowever t IlIS llWpplllg I~ 

a bIt too simple, and leads to problelm dllrmg the learnlllg p!J:I"t:. Tht: rea\()11 for 

this is the dirico/ltilluity in the target output value!> when the contlnu()u~ value 1\ :It thl' 

boundary hetween intervals. If the continuou~ value IS pertllrhed ~llghtly, olle output 

node value will jump from 0 to 1, while the neighbouring node value JUl11p~ trom 1 
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10 n. ThIs dl!.continuity is arbitrary, yet cause!. considerable difficulty when the neural 

network attempts to mode) the discontinuity. The next section de!>cnhes a more 

appropriate !.trategy based on the principle of Gaussian error distnbutions. 

3.3.2 DI!>tnhuting Output Node Values Normal~v 

Sim:e thl~ encm.IJllg strategy dl~cretizes a continuous value, it has a haslc error of half 

the interval wH.lth. Accordmgly, it is appropriate ta train the neural network 

assuming that cach continuous value has an error which is normally distributed ahout 

11H11 value \VIth il !>Iandard deviation a of half the interval width: 

(J = .2:.. w 
2 

(3) 

Then the value ot each output nnde is the probability that the continuous value falb 

JIlto the interval corresponding ta each node. The probability that a continuolls value 

x l'ails into intervalll is: 
Pn(X) = 6'{ (n-l) IV s: x ::; nw} (4) 

Using the Gaus!.ian probability distribution for the "error" of the continuolls value, 

Ihis probabilJty i~: 
P (x) = /i>{ (n-l) W - x ~ Z ~ ~} 

n a a 
(5) 

where :: i!> normally distnbuted with a mean of zero and a variance equal to one. 

Dcfining the function prob(z): 
z 

prob(z) = /i>{(~z} = -1-Jexp(--.!..C2)d( 
v'2it 2 

(6) 

- ... 

and ~lIbstilllting this and 0= ~ into the eqllation for Pn (x) gives: 

Pn(x) = prob(2n - 2x!w) - prob(2n - 2 - 2x!w) (7 ) 

The target output value of nnde Il is this value scaled so that the maximum possible 

value is unit y, which occurs when x = (n-1 )w: 
Pmax = Pn((n-f)w) = prob(l) - prob(-l) .. 0.68 (8) 

i.e., the probability that the error is within one standard deviation of the mean. So 
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the final expression for output Il IS: 

o = Pn(X) = prob(2n - 2x/w) - plob(2n - ;~ - <~X/I\') 
n Pmax pr ob ( 1) - pIob ( -1 ) 

( 9 ) 

This mapping hé\~ no discontinuities. This mappmg lliso ha~ thL' alh :tl1ta~l' (lI trillJlIl1g 

the outputs for partial recognition, or, more precisely. not di.\(,Olllïigil/g an output 

nnde as severely If it partJéllly recognizcs an II1put wnflgllriltlol1. 111 tl'rlllS DI :1 

rnodelling function: this encoding sl1100ths the I110delling lum:tlol1, thw, 1l1:tking 

interpolatIon easler. Also the decoding ~chel11e presented 111 thL' I1L'Xt ~llIHL'rtIOJ1 

takes advantage of the extra information avaJlahle in thls cnclldlllg to letllll' thl' 

decodcd value. 

3.3.3 Decoding the Output 
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Figure 4 - Decoded Vallle~ withollt Smoothlllg 

As described above, the simplest decoding procc~ ... ~lll1ply t1lltl ... the Ill:lXIJl1UI11 output 
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and ~et~ the decoded output value to the value corresponding to this output. 

However the discretizatlon error, especially with scaling (see Chapter 4), can be qlllte 

large, as Figure 4 illustra tes. However a simple modification tn this basic process can 

reduce the error to a negligihle value. 
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figure 5 - Decoded Values with Smoothing 

The idea IS sim ply to take the weighted average of the values corresponding to the 

maximum output and its two neighhours. The weighting for the average is the actual 

value ot each output. Thus if a vétlue is on the boundary hetween two mtervals, the 

adjacent output will be approximately equal to the maximum output, and averagmg 

their correspond mg values will produce the correct decoded value. Explicitly, the 

dccoded value IS calculated with (c.f. equation (1»: 

x = 
(n-1)On-l + (n-1)on + (n+1)On+l . W (10) 

0n-l + on + 0n.l 

Figure 5 shows how closc\y the decoded values match the original value. 
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1 There is one possible snag ln the dewùing proCL'~~. Il i~ pm'lhlL' thal Ih)Ill' III Ihe 

output values are large enough to be differ~ntiatL'ù trom nOIse. The thll'~lhlld \alut' 

for this applicatIOn b 0.2; If ail the outputs are Ies~ than thl~ \'.Jluc. tllL'1I It l' 

assumed that the neural network dues not recognize the II1pUt. Thl~ l' ~IJlI plckwhk 

ta the single output continuou~ representatllJl1. howe\'L'r. ~ince in thi~ L'il~l' tlll' oulput 

can be estlmated by other means (e.g., averaging tht' lkl'llLleLi output ill Ihl' 

neighbouring sample points). Other error checb are po~~ihk; lm l'\iII11PlL'. il dllT" 

that only one output (and possihly its n~ighbours) has a large "alut'. 

3.3.4 Evaluation of the Encoding Scheme 

Table 1 - Error of Ditferent Output Repre~entatiom 

RMS Error ot RMS Enor 01 RI\'lS 1'.11 (l! 11/ 
Continuous Output Dlserete Outpllt~ nl'Clllbi ()lIl)lut 

Training ]4.3% 12.4% \W; 
Examples 

Test 23.9% 24. ]% 9. ()(/;-

Example~ 

The performance of the output representation compmed very liIV()Ur;lhly to the !'>ll1t!Ie 

output scheme. To compare the two represelltatJ(Hl~, thL: top()l()gy lm Ihe 

(contin llOUS valued) single output network wa!'> de rIved t rolll the (di~l'I e t I/l'd) J () 

output network by adding an extra hidden layer with 1 () Ilolle!'>. Till .... Wily Ihe 

continuous output network was actually more powerllli Hl pnlll'lplL: thilll the di\cretl' 

output network. The compan~()n of the performance i~ very Illterè!'>llllg. T:lhll' 1 

shows the root mean squared (rm!'.) error of both network ..... r\()te III pmllcul:ll that 

the rms error before decoding was almost identical to the error (lI the !,>Illgle 
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(contlllllOU\) output network (23.9% v.~. 24.1 % for the te~t examples). However the 

rm!'> error 01 the decoded OlItput!-. \Vas much lower for both the training examples and 

the tellt example!-.. Thi!. reductinn in error IS entlrely due tn the repre!-.entéltion of the 

output. lt i~ cxpccted that ~Imllar gams C,1n he made by using thi!> representation 111 

other arplicati()n~ mvolving a continuous output. 

3.4 nCllresenting the Input Geometry 

This section de!.cnhes the representation of the input. Several encodings of the input 

were evalua/cd, and wha! failed ID work is aImas! as important a~ the fmal encoding. 

AccorulI1gly, the lollowing ~ectlOns descTlbe the evolution of the representation from 

il Ihi~t()Tlcal" per~pective. 

3.4. 1 Repre~enliltiom. based on Image Recognition 

At the start, the repn:sentation for the input geometry was oélsed on the work of 

other neural network researchers who \Vere also dealing \Vith geometric type 

recognition task~ ([Wldrow, 19~Ra], [Fukashima, 1982]). The 111 put 111 these cases \Vas 

il pixel image 01 the geometry. Representll1g the input in this manner meant thnt the 

propertie~ of the mesh density stated in the previous section (rotational Invariance, 

etc.) would have to he leamed by the neural network. At the time this did not 

appcar tn he li slgniflcant disadvantage. 

A unique topology for the network (based on a structure proposed by B. Widrow) 

enabled the translational symmetry property 10 be entorced in a manner that 

econoJ111zcd on hidden layer node!.. The same weights were med al every output 

point, and the COlll1Cctlon~ were arranged so that the hidden layer n(lde~ were ~hared 

bctween nelghbouring pOIntS. The topology abo partially enforced the rotational 

invarJ<l/lct' property by duplicélting the weights arollnd each point so that the Sélme 
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output resulted when the input \Vas rotated hy l11ultipk'~ 01 ()O dl'grt'l'~, S,'all' 

covariance and mirror invariance were propertles that the Ill' ur: Il l1l't"'lll k Iwd III 

learn from the examples, 

As previ()u~ly mentioned the Idea was to represent the Illput gl'ollll'tr~ a~.\ p\\l'I 

image, However as the network architecture e\olved. l'Vt'Il hl'lort' the III~I 

simulations were run. it hecame ohvious Ihat ~:tll1pling the II1put gl'OI11L'try :\1 :t 1 Il Il' 

enough resolution to captu re the e~~ential ka t ure~ (~lIl'h a" l'orne 1 ~) \\'llllid hl' 

impractical. This was due sim ply to the comput;ltinnal cmt nf e\';lIuallllg thl' Ill'lWll1 k 

on a standard (seriai) computer (a SUN IV workstatiof1), Il \\'a~ ab!) lllwhlll!'> 111:\1 

a representation of the entire input geol11etry wa~ abo Il11praL'IIL':II. :11ll1 Ih:\1 :1 

representation of the geometry local to a speclflc pOlllt wOllld haw tll 11L' ~lItt Il'Il'Ilt. 

Exactly how local the repre~entatl()n l'an he made and )'CI !l11I1 )1lodlll'l' u"ctllllt'!'>ulh 

is an open qucslHm. althollgh the ~uccess of the lI11plcllll'lltl'd "y.,lel11 d()L'~ "ct :111 

upper hound of sorts. 

Using this archItecture several different repre~entation~ wen.' :\ttl'Illplcd. 11ll' Il](1'11 

successful heing a radial samplll1g of the input gcollletry, wht're l':lch IlIplil 11lIdl' 

represented the distance tn the geometry in a different dlrectloll (!\l'l' Fig li 1 l' fi) 'l'hl' 

results were st1l1 far from satlsfactory, howcver, e!\pl'cially when gcnl'r:lIll.allllll 10 IlCW 

input geometries was attempted. 

3.4.2 Enhancing the Performance 

One other approach that \Vm tested lf1 conJlInctloll with the radIai ~:lIllJ>llIlg 

representation uses two additional inputs tn encode Ihe llJreclloll alld 1ll;lgIIIIudl' (lI 

the magne tic field at each ~ample point. Thl~ muy !\ouml Iikl' ChC:IIlIlg, "'"lll' Ihe 

purpose of the mesh generatinn b to be "hie tn C01llputl' thl' lllaglll'lll' field! 

However the magne tic field in this case IS derrved from éI crU<.k !\olullon C(llllpUIl'd 

on a near-mmimal me~h, A minimal me~h d()c~ not have (Illy rHH.lc!\ tlwt ilrc Ilot 

2~ 



l 

, / 
/ 

\ 

1 // 

1 / \ 
\ 

1 / 

11/ 
,,, ,j , 

, \ \ 1 1 1 

, 1 1 / 

/ 
/ 

/r------------.. 
/ 

:\\~: , __ " ~'~~_ -- Input #2 
,\"(,, -- - ----

Sample 1!' ~=j'~----- Input #] 

Point, l'j//i\, '~ ----, '-:- --Input #36 

,) 1 \ ' , Input #35 
'j' \ \ ~~----------------~ 

1 j \ \ 

/ l '\ 
/ 1 \ \ 
/ l ' 

Figure 6 - 1 nput Representation Exarnple 

already part ot the geometry of a device (i.e .• ail nodes are at corners of the device). 

The cost of this solution IS small, yet gives the neural network a rough iùea ot the 

tmm of the solution. However this approach was abandoned becall~e the 

improvement in the performance of the neural network was not signiticant. This IS 

not to say that this approach IS a dead end. ln fact this approach may he required 

when the system is extended to non-Imear materials. 

One aspect of this process ot ~elecling the best input representatlon is that it was 

dom: in paralle) with the selectIon of the output representation. The ideas presented 

in the previous section~ were ail tested in conJunction with the output representation 

which lIscd only a single continuous output. This means 1hat these input 

representations may work wlth the discretized encoding. However. lack of resources 

prohiblts the complete evaluation of ail combinatiom of these representations in thls 

thesis. This IS unfortunate, since it Ieaves many of loose ends, but 1his is the nature 
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of scientific research. 

In any case, it was decided at this point that the propertlL'~ 01 scale Cll\:tr1:!lll'C :11ll! 

rotational invariance were too important 10 leavl' un-enfmcl'd. L'spCl'wlly ~ll1l'L' 

enforcing thel11 would mean that the neurallll't\\'ork woullln't h:I\'L' hl k.111l Iht'Ill. 

Also the experience gained wlth dlfferent input repre~entatl()IlS sugge-;tL'd 111:11 ail 

appropriate encoding could explicitly enrmce these propertle~, 

3.4.3 Enforcing the Properties of the Mesh Denslty 

Accordingly the interleaved, partially rotationally invariant Ilctwork t()pology \\'.1'" 

scrapped. and a ~tandard backpropagatlon netwcrk lI~ed in~tead. wlth the gl'Ol11l'tly 

and element size at each sample point treated a~ a ~epar:\te II1pllt-olltpllt pail. In 

such a network the input encoding becomes very complex. SIllCC It enloren ail IUliI 

of the properties ot the mesh density stated ahove, ln thls encmllng SChCIl1l', the 

sample point IS taken as the ongin of a local coonhnate ~ystel1l (Ior tr;lml:ltlonal 

invariance), The input geometry is rotated amI scaled so that the l'lme~t cmllel III 

iron falls on the X-élXlS a unit distance trom the ongm (Ior rotatioll ;!llli ~l'all' 

invariance), Finally the input geometry I~ fllpped, If nece~~(\ry, ~() th<lt the cOlner ha ... 

a positive orientation with respect to this local x-axIs (Ior 11llrror III v; 1 na Il Cl' ). 111 tlll ... 

coordinate ~ystem the local geometry ca:l be de~crihed whlle malllt;lll1lllg ;111 (hl' 

propertie~ of the mesh demlly mapping (for the tran~lati()n and ~c;dlllg tlll' ~;lllle 

transformation is applled to the target sizes) 

The final encoding scheme descrihe~ the relati()n~hlp hetween thl' IWO l1l~ilrl' ... 1 corlier ... 

of the magnetlc device, Hnd requires only eight lll)1ut node!'.. FIgure 7 ... 11<1\V~ tl!~ 

angles and dbtances lIsed to defme the input véllue~. In the flgur~, ail the ;lllgk~ ;Irl' 

positive except for <P2' Corner] IS always chmen 10 hl' the clme~t corner 111 IroJl 011 

the closest segment to the sample point. Corner 2 is alway~ chmen tn h~ the clt)\e~t 

corner distinct from Corner 1 (e,g., Corner 2 could on the nther ~Ide 01 ;In ;\Ir grll'). 
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Ali the inputs are scaled appropriately so that theyare elther in the interval [0, 1] or 

[-l, Il. The inputs are: 

Input 1: 'Pl/n The orientatIon (see below) of Corner 1 W.r.t the local x-axis. 

If necessary the whole geometry is tlipped about the local x-axis 

ta make thi~ angle positive. 

Input 2: 1 - V) ;"'; The sharpness of Corner 1. 

The orientation of Corner 2 w.r.t. the local x-axis. 

Input 4: 1 - Vz/n The sharpness of Corner 2. 

Input 5: S (.rZ/r1) The squashed distance (see below) to Corner 2 in the (scaled) 

local coordinate system. 
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Input 6: 82 1 1t The angle from the local x-axis to Corner 2 . 

Input 7: S (r cl r l ) The dIstance ta the center of gravit y of the neal est l'lIrrent 

carrymg conductor \Il the (scaled) local coordin:lte systl'm. 

Input 8: 8 cl1t The angle from the local x-axIs to the Cl'nter 01 gravit y of the 

nearest eurrent carrying eonductor. 

The orientation of a corner I~ the direction the l'orner "polllts". fvlore prl'l'I~l·ly. the 

corner has the sa me orientatIOn as a vector on li line hisccling the corner angle, and 

which points outward from the corner (notice the vectors attached to the l'llrnl'r~ 111 

Figure 7). The squashing function S () warps the (hstance so that it IS always 111 the 

interval [0, 1]. It IS defined as: 
S (x) = 

1 (11) 
1 + exp (l-x) 

ft should be pointed out that some knowledge about ll1e~hll1g W<lS lI~ed 111 c1Hl()~lI1g 

this representation. Specifically, corner~ are used a~ the ba~l~ lor the encodll1g 

because it is known that corners are important feature~ of the meshlllg procl'~~ 

(because of the singularity ln the solution at corners). The loc,ltlon of the currl'nt 

carrying conductors IS also an important con~ideratlon for hUllwn expert~. 

A brief comparison between this representation (which will be referred to ,1'> the 

"invariant representatlOn") and the radIaI samplll1g repre~entatl()n Illily hl' In~trllctlvl' 

at this point. In fact a numerical companson is not avallahle ~mce the te~tcd vc r ~I()n~ 

of each scheme used a different output representatlon. However a compamoll h:l!-.l'd 

on which local fentures are represented 111 eaeh schell1e IS p{)~~lble. The Illvan:1I11 

representation is able ta encode the two nearest corner ... III near perleet accurilcy. 

This includes the line segments attached to the~e corner~. The radlill :-.amplillg V<lfll'~ 

considerahly in the amount of detail repre!\ented. In Figure () only a ~lIlgle Ilne 

segment is encoded, and even the length of thi~ ~egl1lent i:-. ratller vague. In the g:lp 

this representation could encode the two face,>, but could ml~!\ the pre~cncc of the 
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gap (i.e. il would only see li "dent" in the iron) unless a "ray" happened ta pass 

through the gap. The invariant representation could also miss the gap, if the two 

c10sest corners were on the sa me face. What tips the scales in favour of the invariant 

representation IS two factors. The first is the dependence of the mesh density on 

corners. The tact that the radIaI sampling scheme leaves corners rather vague is 

thereforc a major failing ot this scheme. The second factor is the number of inputs 

that each representation requires. The last section of this chapter explains that the 

quality 01 the interpolatIOn hetween examples can be expected to decreélse as the 

nllmher of mput~ increases. 

Neithcr of thCM:: representatlons distillguish between the inside or the outside of él 

mate rial hOllndary. This cou Id be another (binary) input, but mstead the pmblem is 

sllhdividcd, as described in the next sub-section. 

3.4.4 Separating Air and Iron 

The rules that an expert uses to determine the mesh density in iron are not the same 

as the rules lIsed when meshing air. For exampIe, the iron at an outside corner in 

Iron is meshi"d differently from the air at an outside corner in air. Therefore, to 

improve the performance of the network, the meshing problem is divided inta two 

suh-prohlems, one problem heing the meshing of iran, the other being the meshing 

ot' (('urrent carrymg conductors are incJlIded as air). Two separate tr(Jining 

~cssions producc dtfferent networks for each region. Bath networks have the saille 

topology and mitial weights, but they have different final wetght~ (and therefore 

diffcrcnt responses) by virtue of the faet that they are trained on ditferent training 

exal11pk~. This separation hctween iron and air also simplifie~ the representéltion, 

since it means that any houndaries ncar a point are always the same, cither t'rom air 

10 irol1 lm the network used to mesh air, or vice versa for the other network. 

In principle this sub-division of a ncural network implcmentation ean be bascd on any 
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binary (or even dlscrete) input to the network. although then: is li point wherl' the 

number of networks becomes unmanageahle. 

3.5 Guidelines for Input and Output Representation 

In the first section of this chapter the question was raiseù: should rC!m:sent,ltilln~ 1'01 

the input (or output) favour simple encoùing in many noùe~, or ll~:11pIeX clll'oding ln 

few nodes. The results presented in the previous sectlon~ mdicate that the answer 

to this question is different for the input and the output. For the II1put. ,\ l'olllpll'\ 

encoding in as few nodes as possible gave the best results. The output, OJl tlle otller 

hand, gave much better results when it was diviùed betwcen several n()lIes. The 

following suhsections expia in why these rules should apply in the gcner,lI case to 

other applications. 

3.5.1 Theoretical Justification 

In retrospect the results Ju~t stated are logical, given the eqlllvalenCl' hetwlTn li 

neural network and a modelling function. First of ail the result~ lor the Input 

representation are discussed. When viewed a!l a modelling IUl1ction, the property of 

generalization is equivalent to interpolation hetween cxamplc!I. The IIrst implication 

of this was already mentioned earher in this chapter, that ~il11ilar il1put~ ~h()lIld 

correspond to similar outputs. There is, however annther implication: the trainmg 

examples must populate the input space del/sely enough so that the IIlterpolatHll1 will 

not break down between examples. As the l1umher 01 dll11em.IOI1\ 01 the input ~pacc 

is increased (by IIlcreasing the number ot input nocJe~) the density 01 cXillllple~ 

decrease.\. This can be seen hy imagining that the exall1ples arc di~tribllll;d Oll (\ 

regular grid in the input ~pace; even with only eight inputs Il lakc~ GSGI CX;llllple!l to 

populate a grid with only three vertice~ III each dllllen~ion (ni COllr~e, 111 Illilny Cil<;C~ 

the inputs are correlated in sorne way, so the actual cJimen~J()nality of the input pOJnt\ 
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i:. :.maller than the number of inputs, but how obvious this correlation is also depends 

on the representation). Fewer examples per dimension means interpolation is more 

risky. This is the reason, the n, that fewer input nodes improve the performance of 

the nellralnetwork: fewer node~ mean the input space is more densely poplliated (for 

the !>ame number of training examples). 

The opposite is true for the output. If a single output node is taken in isolation, then 

interpolation IS simplest it the node takes on only two values, instead of a continuous 

range of values. The binary output node has only ta tune itself ta recogllize certain 

t'eatures of th(' output. Also, a simple output encoding typically has an error 

tolerance that is much larger than the error tolerance of continuous output nodes. 

rn addition, training IS ülster, since the larger error coupled with more outputs means 

that the gradient descent step size at each iteration is larger. This explains why a 

simpler encoding scheme with many outputs improves the performance of the neural 

network. 

3.5.2 Rules for Representation 

The reasoning presented in the previous subsection is far from rigorous, but it does 

give sorne insight into how input and output representations should be chosen. The 

result is the followmg set of rules for input and output representation. 

This first rule applies equally ta input and output representations: 

1) The input and output should be encoded so that similar inputs 

correspond to similar outputs. Here "sirniJar" can be taken as a 

Euclidean distance rneasure, for example. Expressed another way, if 

a collection of outputs are all in the same neighbourhood in the output 

space, then the inputs which give rise ta these outputs should also be 

in the same neighbourhood in the input space. The inverse is also 
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", true, i.e., if a collection of inputs are ail in the saille neighhourhood 

then the responses of the network to these inputs should IX' similar. 

This rule appHes only to the input representation: 

2) When encoding the input, preference should be givcn to incrcasing thc 

complexity of the encoding in favour of a rcduced 1l1ll11hcr of IIllHlt 

nodes, provlding the encoding still respects the tirst rule. 

Finally this ru le applies only to the output representation: 

3) When encoding the output, preference sholiid he givcn 10 inneaslI1g 

the number of output nades ln favour of a reductlon in the CDl11plcxily, 

with the optimum being many binary output nodes. 

3.6 Summary 

This chapter describes the representation used for the input amI output of the neural 

network for the mesh generation application. Aiso prescnted IS il rohust clH.:odll1g 

scherne for continuous output values in general, élnd somc general rllle~ for 

representing input and output in other neural network applicati(lll~. 
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Chapter 4 
Gcncrating Ideal Meshcs 

As mentioned in the previous chapter, the neural network acquîres its knowledge 

from training cxamplcs. In this application the training examples are derived from 

ideal meshes of representative magnetic devices. This chapter explains how these 

ideal meshes are generated. 

4.1 Cnmputing Ideal Element Sizes 

An ideal mesh is defined here ta be a mesh in which the errar is distributed 

uniformly throughout the mesh. The error is the difference between the solution 

computeJ on the mesh and the exact (theoretical) solution. The error il' unitormly 

Jistrihuted If the total error of each element (measured using an appropriate norm, 

and possihly normalized hy area) is approximately equal throllghollt the mcsh. 

As mentioned in the literature survey, most of the research in the field has heen in 

the context of adaptive solvers, and has centered around the formulation of an a 

posteriori enor measure. The é\ posteriori error measure determines the error of a 

solution cnmputed with a trial mesh, but without knowledge of the exact solution 

[Bahuska, 19H6]. This error measure can be lIsed in an adaptive solver to determine 

whcre the mesh should be refined ta improve the solution. Since this error measure 

IS based only on the inexact solution, reliability can be difficlIlt to obtam. 

1 n the appltcatlon discussed here, however, the exact solutIon is known, or at least a 

very close approximation 10 It can be computed. The dlfference is due to the faet 

that the neural network nnly needs the Ideal mesh for the traming examples. Once 

the network IS tTal/led, the me~h den~ity for a magnetic device is computcd hased 

nnly 011 the mput geometry and material properties. Therefore the computational 

cost of the solution IS Irre\evant. 
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The algorithm presented here is based on the availahility of the exact solution. l'hl' 

algorithm also takes advantage of the faet that the neural net",ork only 1L'<.)UIlt'S thl' 

mesh dellSity at specified points, and not an actual mesh of Ihe gL'ometnc dOI11:1I1l. 

The next section presents the details of this algorithm. 

4.1.1 The Sizing Aigorithm 

The algorithm used to compute the sizes is given hclow in outlinl' l'orlll. l'hL' 

remainder of this section clarifies the flow of the algorithm, and disL'lIsse~ thL' 

simplifications and assumptions implicit in the algorithm. 

1) Compute the "exact" solution to the magnetic dcvice. 

2) Pick a value for the desired error level in the mesh. This error level i~ as 

measured with respect to the exact solution, and the element!'. will hl' !'.l/cd Ml 

they ail have this same error. 

3) At each point compute the ideal element size as follows: 

3.1) Pick a starting guess for the size that an element should have i11 Ihls 

point. 

3.2) Generate a trial element of this size centered at this pO III 1 (i.e. 

compute the coordinates of the vertices of the clcment). 

3.3) Compute the error that this element would have il it werc lI1c1uded m 

part of a mesh (see helow). 

3.4) Compare the resulting error to the desired error. 

3.5) Increase the size if the error i~ )e~~ than the de~ired l'rrm élnd decrcéI:-'c 

the size if the error is greater than the de~lrcd error. 
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3.6) Repeat steps (3.2) to (3.5) until the errar converges to the desired 

error. 

4.1.2 Explaining the Sizing Algorithm 

1 n step (1) the "exact" solution can itself be computed using finite elements, as long 

as an expert ensures that the mesh will generate a good solution. Recall that the cost 

of computation i~ Ilot a factor at this stage, since this step is only reqllired tl) train 

the neural network. Therefore the mesh used ta generate the "exact" solution can 

over-(hscretize the magnetlc devlce, and a high arder solver can be used 10 maximize 

the accuracy of the computed solution. 

Step (2) reqllin~s ~electing a value for the global error. This number will determine 

how large the elements actllally are, although the relarive sizes ot the elements remain 

approximately the same for ditterent errors. Also since this is an ahsolule measure 

ot the error its value cannat he set in advance; i.e., the global errar depend~ on the 

solution to the magnetic device. In practice this value is chosen tu generate 

reasonahle element sizes. 

Step (3) applic~ the same procedure ta every sample point. The algonthm is 

b,l~iclilly éI root findmg algonthm applied to the element error é1~ a function of size. 

This root flfldmg algonthm determines the slze of the element which results in the 

de~ired error specifIed m step (2). The details of the root flfldmg algonthm were 

takcn trom Section 9.3 of [Pre~~, 1988]. Note that computing the sizes ln thi!> l1lélnner 

imphes that the element slzes are obtamed illdepel/dclll(V. In fact the trIaI clements 

never form part of an actual mesh. This Will he clarified in the followmg. 

Step (3.1) sets the starting guess for the root fll1dll1g algorithm. 

Step (3.2) generates an element centered at the ClIrrent sam pIe point and of the 

specified size. Smce the orIentation of the element is not specifled, and tn make 
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things as symmetric as possible. the clement shape was taken tu hl' a h~x;tg()ll. So 

this step actually computes the coordinates of the six vertices of li hexagol1 ni thl' 

specified size centered at the current sample point. 

Step (3.3) computes the error ot the trial element. The mathenwtical detillb behllld 

this step are given in Appendix 1. 1 n essence, the error I~ cnmpllted as lollo",s: 

3.3.1) Perform a least squares fit of the (Iinear) trial element tn the exact slllutlllll. 

3.3.2) Integrate (over the domain of the tnal element) the sqllar~ of thc dllfl'rellCL' 

between the linear solution on the trial element and the "exact" sollltillll. 

3.3.3) The trial element error is ohtained hy scahng tlllS re~lIlt hy Ihe ;lIl':! ut tllL' 

tnal element. 

Step (3.3.1) hides the key as~umption behind tlm approach to CllllllHltlllg tllc Ille;1I 

mesh. Here it IS assumed thnt the least squares fit of the tnal elemcnt to tlle exact 

solution is equivalent ta using this element in a trial l11e~h (n()twlth~té\lllllllg It~ 

unusual shape), and then computmg a trial ~()Iutlon to the magnctlc devlœ lI1,lllg thi~ 

mesh. Although thlS assumption may mtroduce error~ In the ~IZC~ com)1uted lm the 

"ideal" elements, these errors are negliglble when compared to, lm l'xal11ple. the 

neural network output error (even at the completion of thc training phal,l'). 'l'lm 

method has the advantage of being simple, consistent and rehable. SImple III that no 

solutions on tnal meshes are required, consIstent In thélt the SIZL'~ (lI the l'lel1lclJt~ do 

not vary arbitrarily, but rather are determined preclscly by the "exéll't" ~{)llIti{)lI, .ml! 

reliable in that this method WIll not accldentally over-size an ckmcnt (;I~ l'ail happcll 

in the adaptive case). 

Step (3.3.2) computes the total squared errOT over the clement. '11w. I!'> ~c:lbl III !'>tep 

(3.3.3) by the area of the element to glve the mean squmct! L'rror 01 the elemcllt. 

During the development of thi~ algorithm, ~everal VaTlatl()n~ on computlllg the errm 
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Figure 8 - Comparison of Error Norms along a Horizontal Slice 

were compared (see Figure 8). The maximum error is obtained by ta king the 

maximum diffcrence between the solution on the trial element and the "exact" 

solution. The squared error is not sealed by area. Without scaling by area, the 

sqllaTcd crror givcs skewed results since the algonthm determines element sizes sllch 

that each clement contrihlltes the same amount to the total error, lrrespective of size. 

This has the effeet of concentratlllg the error in the finely meshed regions, which is 

precisely where the highe~t accuracy is usually required. 

The mm.il11l1lll crror doe~ not need to be scaled since in thls case the algorithm 

detenmnes e1ement ~lze~ sllch that the solution lS bounded everywhere by the 

speclficd global error. In fact the maximum and mean squared methods give 

practically lùcntlcal vallle~ for the sizes of the "ide al" elements (within a scale factor). 

ln this case the mcan squareù error is cheaper to compute (the algorithm is already 

doing a Iea~t squares fit, so the squared error cornes for free), therefore it IS the one 
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used in this algorithm. 

Finally steps (3.4) to (3.6) complete the steps in the mot finding procedure. 

4.1.3 Special Case: Material Boundaries 

The algorithm outlined in the previous subsection needs to he nHllhfled in the ~pl'rÎ,,1 

case of material boundaries. In step (3.2) the tnal element cannot hl' allowl'd tn 

cross mate rial boundaries, since the solution is often discontinllOlls ;Icm~s materÎal 

boundaries. Instead, in this case the trial element is c1ippcd agaÎn~t lllaterJal 

boundaries. To avoid distortmg the element slze when ,1 large part ul the l'Iement 

is chpped away, the size ot the Ideal trial element IS I11ca~ured hy the ~qllan' loot 01 

its area. 

4.1.4 Scaling Properties of the Error Criterion 

Figure 9 shows the scaling properties of the error criterion. The data I~ wkl'I1 from 

the C-core device (see Chapter 5), by eVélluating the l'rror at dlllercnl l'(lllll.;. 

Interestingly enough, the relationship between the l'rror and tnal elcmcnt arca I~ 

almost exactly lmear. This means that therc i~ a certam dl'grec ot trel'dom allmved 

in choosing the desired error (in step (2) of the algorithm). Bccall~c of thc lincar 

relationship, the effeet of ehoosing a larger or smaller dc~ired error can he 

approximated by simply multiplying ail the element sizc~ by il slIlglc ~c(Jlc faclor. 

Even more important, it means that the same network l'an hl' ll'-.cd tu compute tht' 

mesh density for dMe" _,11 tmal error~. 

For example, msteaù of ~upplylng an ab~olute l'rror leve 1 (which ca Il he dIt t IClIl1 Il t/Je 

magnitude of the solution is unknown m the f1r~t place!) the lI~er 01 thl~ package may 

want to speclfy the total number of elements m the final mc~h. The ~cale factor 

required ta do this can be determined hy tïrst integrating (over the dOl1lél\11 of the 
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Figure 9 - Scaling Properties of the Error Criterion 

prohlem) the IJ1verse of the mesh density squared (the number of elements per unit 

area). The scale factor is found by dividing this result by the specified number of 

clements. 

The linear relationship also makes the network response meaningful even If the 

magnitude ot the solution for a given device is very different from the magnitude of 

the solution of the de vice used to generate the traming examples. ft mély harpen that 

the deslrcd error specifled for the example device is meaningle~s in terms of the 

sO)UWln 01 the glvcn device (recall that the desired error is ail absolllle Ilurnher). 

However, hecéluse of the Imear relationship, the output of the neural network still 

prcscribcs clement sizes which are appropria te for the device. In effect, the neural 

nctwork IS 1carning the relative error, even if It is the absolute error that is u~ed to 

train the nctwork. 
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4.2 Encoding Element Size to Train the Netwnrk 

Once the ideal element size has heen determined, the t'lll'mltllg pnH:l'!\S i!'. 

straightforward. The encoding s.;heme which is used to represellt the output W:lS 

presented in chapter 3. However hefore each Ideal size value is ellcoded It 1l111!\t hl' 

scaled by the geometric scale factor used to scale the corre~pollllrng Input (thi~ sl'alc 

factor is different for each point). This step is necessary to marntilll1 consl!'.tcllcy wlth 

the scaling property of the mesh density function, as presentcù III Chaptcr 3. One 

possible problem with this step is the case when a point l'ails on a corner, since ill this 

case the scale factor is infinite. How this case is trcateù lead ... to ;Irtll:tct!\. whlch IS 

the subject of the next section. 

4.3 Artifacts of the Encnding Process 

As mentioned previou!.ly, forcing the target sizes into hins pr()(lllœ~ certalll artilacts 

when the bin representation is converted back tn sizes. The m:trn artllact i" due to 

the squashing that takes place when a size value is ïarger than the value 01 thc 1;11 gnt 

bin. These extra-large values correspond to mputs wlth a very sl11all gcollll'trrc !'Icalt' 

factor, and compromise typically 0.1% of ail the size value~ III a unrlormly !'I;lIl1pll'd 

input domain. Since the current input encoding scales hy the distance tn the fll';lre!'.t 

corner, the effect of squ3shing IS to reduce the size of the clement!'. Ilear corners. 

Since corners are usually me shed very densely anyway, thl!'. artilact I!'. not detrillll'ntai 

to the performance of the system. The seconù artifact IS sim ply the l'rror rntroduced 

by the discretization proce!'.!\. This l'rror I~ inver~ely proportlmwl to thl' Illllllher 01 

output node~. However since the rl'quired rl'solution of the ml'!\h dl'll!'llty I!\ Il()t Imgc, 

this error IS sufflciently small \VIth only ten output noùes (5% dl!'.crl'tll;rtHlIl crror). 

Also the smoothing which takes place in the decoding proce!\~ relluœ ... tlll" crror 

considerably. 
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4.4 Summary 

This chapter explains in detail the algorithm used to generate the training examples 

tor the mesh discretization application. Chapter 5 de scribes how this algorithm was 

lIsed tn generate examples based on two different devices. 
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Chapter 5 
Simulations 

The results presented in the previous chapters \Vere found through a series of soft­

ware experiments. These results include the representation of the IJ1put and output. 

and the network topology. The software experiments IJ1volved trallling a sillllllated 

neural network and evaluating the performance of the tramcd nct"'01 J... TllI!'I c1wptl'r 

describes ho\V these simulations \Vere set up, a!l \Vell a!l some addrtlonal leslllt!'l. 

5.1 Objectives of the Simulations 

The main objective of the simulations was to determme the contlguratl()J1 ot tilt' 

neural network. Specifically, the simulations é1llowed the evaluation and comp:m!'loll 

of different input and output representations, and ot ditterent netwmk top()l()gll'~ 

Strictly speaking, these two objectives satisfy the requirements ot the rne~hillg !'Iy~tl'Ill. 

However the posllible mel/lOds used to train the network abo reqlured evalliatHlIl, so 

additional objectives were defined: to determine whlch trarning :t1gorrthm glves the 

best results (gradient descent, or conjugate gradient), and to detcrmllle value~ lm the 

training parameters in the ca!le of the backpropagation algorithlll (the IlHllllcntulll 

parame ter and the step-size parameter). 

The following sections de scribe how these objectives were achicved, ~té1rtrl1g \Vith thL' 

training objectives. Along the way additional detarls are rncluded to cl:mly the 

simulation results. 

5.2 Training 

The mathematical backround of the backpropagation algorithm wa~ pre"l'rllcc! III 

Chapter 2. However, the algorithm leaves lIeveral detmb lIn~pccitleù, the~l: arc tlw 

length of the training session, the values for the learning pantmcter!l, how thc III 1 iii" 
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weights are set, and the arder of presentation of the examples. The following 

paragraphs tackle each of these details in turn. 

5.2.1 Ermr Critenon and Termination Condition 

During the training process, the pl:rformance of the network can be monitored I.lsing 

the root ml~an square (rms) of the netwark output error with respect to the training 

cxamplc!\. ThIs i!\ cheap tn compute since the squared error is computed at each step 

as part ot the backpropagatlon algorithm. In the application described here, there 

is also a more !'-Ignificant errar: the decoded output error. This is the rms of the 

dittcrence hetween the decoded output of the neural netwark and the target size 

values hcfore encoding. Monitoring this error gives a indication of the performance 

of the neural network on the training examples. 

However monitoring the error with respect to the training examples is not sufficient 

to gauge a more significant ahility: the ability to generahze. Therefore ta properly 

monitor the network during training it is necessary to mea!o.ure the: error of a set of 

test examplcs whi('h are distinct l'rom the training examples. In thl~ case a smaJ/ 

complicatIon ari~es If the test examples come l'rom a dlfferent magnetic oevlee. In 

this case the clement size ean ditfer by a seale factor. To account for this, thls scale 

tactor must he taken into account. This is accomplished hy minimlzing the mean 

squared errnr with respect to the scale factor. The reslIlt is: 

(e) = {( t - ky) 2) 

:;:; (t 2) - 2Mty} + k 2{y2) 

~~) = -2{ty) + 2k{y2) = 0 
( 1 ) 

k = (ty) 
.. (y2) 

:. (e) = (t 2) - (ty)2j{y2) 

whcre 0 denotes e'T·LV.(' .10n value or, more precisely, the ensemhle average (over 
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the examples), e is the errar, y is the decoded output of the neural network. :lIld r i!'> 

the target value . 

As training progresses, the error of the training set always shows:lIl a\'t.~ragl' dl'clt:a!lL'. 

However the errar of the test set at tirst decreases \Vith the tr:llnillg errm. bUI "lIn 

a certain point it will stop decreé1sing and eventually !'>tar t to increll!'>L·. 'J'hi!'> 

phenomena is known as OI'erlmÎI/Îl/g [Hecht-Nlclsen, 1(1)()]. For OptllllUIll 

performance of the neural network in the general ca!.c, it is Illlportant to !ltop the 

training as saon as the test set error stops decrea~ing. Alter thl!'> pOlllt the Ileural 

network is starting ta pick up on features particular 10 the trainlllg set. and whlrh do 

not hold in general. The simulations were run tn 500,000 iteratlon!.. \Vith thl' he!.1 

weights on the test examples saved along the \Vay. 

5.2.2 Training Parameters 

The backpropagatlon algonthm has two l'ree parameter!l: a, the IlHll11elltulll 

parame ter, and p, the step-size parameter. Till' step-!lize ùeterlllllles ho\V largc célch 

step is relative to the gradient of the error. The 1ll0mentuIll parallleter :dlow, the 

algorithm ta escape local mmima 1r1 !lame Cél!.es. The value 01 a W:I!I tnken f mm the 

1,!erature ([Caudill, 1989] élnd [Rumelhart, 19~6]), ami WlI!I set to 0.<) for pr:tl'tlc:llly 

aIl the simulations. A few intormal simulations with different valuc" of ex hll1h:d Ihill 

there are no slgnificant improvements ta he had fnr !lmall devinlioll!'> Irom thl!'> valuL', 

and larger variations only make the convergence \V(me (!llowL'r cOllvergence to :1 

larger final error). 

Much more effort \Va!> taken into choming an appropria te v:t1ue lor p, the '>tl'IH>lïe 

parameter. This was motivated especially hy simulatiom with wl1vergenCL' pr()pl'rtll'~ 

as shawn in FIgure 10. Thi!. graph show!'> the error lor Iwo karIllllg !'>l'~",I(}I1'. I.ilcll 

learning ses!lÎon started with the same mitial weight~, anù u!'>ed the '>ilme exdlllpk .... 

The anly difference hetween them was the ~tep-size: the karnrng !lL""Ol1 tlJilt 
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Figure 10 - Convergence of Two Identical Networks 

1000 

converged tn the lower error used a step-size that was effectively half that of the 

other session. 

The Het ual step-size taken at any iteréltion is actua)]y the product of P with the 

decaymg average of the gradient of the error w.r.t. the weights. If this gradient is 

slowly varying, the step-size is: 

.:1 .. Ck) 
~ . aE(k-j) p L..,., ex J --=---
J=O aw 

(2 ) 
P oE{k) 

1-0: aw 
where the ~lIperscript refer~ to the training iteration (and not the layer). The 

literatllre [C:llIdill, 1989J states thât J3 should between zero and one. In faet Il is the 

prmluct P / (1- ex) that sholild he less than one. Choosing tao large a step-size 

rcsults 111 a phenomena known as network paralysis. Instead of converging 10 a low 

error state, the network reaches astate where ail the outputs are satUfélted at either 
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one or zero. In this state the error is large, hui learl1lng dcpc:nds 011 Ihl' gwclÎClIl 01 

the error, which in this case is small (because the outputs arc !>i1turatcd). TIll'rclmc 

the weights remain virtually constant, and the network re~pOI1!>L' 1Il'\'c:r II11P[()\'L'!>. To 

avoid this the step-size must he reduced, but again the OptllllUI11 valuL' I~ 1Illkl1o\\'Il, 

The training session that produced the tinal network uscd p=o. 03. ~() thal Ihl' 

product P / (1- ex ) = 0 . 3 . 

It is training behavlOur like that shown in Figure 10 that cOlllpllcatc:~ thl' l'valualioll 

of different learning expenments. When one Iearning ~C~~IOI1 rc~ult!> ill a lll'IWOIk 

with improved performance, it is not c\car whether Ihis IS due 10 a SlIpl'lIm IIIIHII 

representation, fr)r example, or simply a 11Icky choice for OIlC 01 Ihl' k:1I Illl1g 

parameters. 

5.2.3 Initial Weights 

The literature suggests small randol11 wClghts. Some inlormal L'XpCrll1lL'llb rcvcabl 

that random well!:hts, uniformly dl~tnbutcd betwccn -2.. amI 2.. are ..... ~lIod :1 c1HlIl'l' 
.... 2 2 ~ 

as any. Note that the weights cannot he il1ltwhzed to zero, hccamc III 1111 ... Cil~L' 

backpropagation of the error will ~top at the la st hldden laycr, and wClghb 011 

connections between prevlOlIs layer~ Will never be modllied. Mml of the CXpCfll11Cnb 

used the same initial welghts (if the t()p()logie~ were Ihe saille) 10 makc l'vallwlHlllS 

of the pertOil11ance of difterent networh as c()n~i~tel1t él~ pm~lhle, ;\ lew 

experiments were tried lISlllg the ~ame learnll1g paramelcr~ and tr<lilllng n.:ll1lplc~, 

but starting with different wcight~, to ~ee how much II1llucnce Ihi~ /wd 011 Ihe tillaI 

performance. The performance of the trained networks wa~ ~llllilar III Ihl\ (,:I\C, hUI 

it is still a possibility that thls could also have é.I ~ignillcélnl ellecl O/l nclwork 

performance. 
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5.2.4 Order of Presentation of the Training Examples 

1-
o 

05 

t 04 
w 
....... 
:J 
0.. 

-+-' 
:J 

o 
(J1 
:?! 0.3 
cr:: 

Error ot end of trolnlng 

a 20 40 60 80 
Iteration 

Figure Il - Learning During First Century 

100 

Figure Il shows the error (before decoding) for the first 100 Itera tlons of a learning 

session. Note that a large part of the training appears tn occurs during the 

presentation of the first 20 examples. It b reasonable to assume, the n, that I1'hich 

cxamples come first will have a sigmficant Impact on the final result. An etton \Vas 

made to slow down learnmg (by reducing p) so that more examples would intluence 

the ll1itial \earning, hut then the learning failed altogether. In the end the order of 

pre~entatJnn was left randoll1. Trying different random orders dld not seem to hé\v'~ 

tnn I11urh of an mfluence, althollgh this does not mean thm a carefully selected order 

would not improve learnmg. 

Thcre is Hl10ther mterpretatlon for the graph in Figure 11. The nm. error of the 

dc('odecl output does not show sllch a sharp decrease. Therefore it appears that the 
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rms error of the test examples remains reJauvely constant during the tra\l1lllg ~l'~~1011 

(after the first 20 iterations): it is the nm error ot the llL'COlkd outpUI wluch 

decreases. Sa why is the rms error heing 111ll1iI111Zed \11 the tlr~t pl:ll'e'! Thal I~ a 

good question! (hut heyond the scope of this thesls), 

5.3 Training Examplcs 

The generation of training examples l'rom a repre~entatlvc Illaglletlc dl'\'IÙ' a III 1 Ils 

"exact" solution was descnbed ln Chapter 4. This sectIOn dcscnbl'~ ho\\' thc ll1aglletlc 

devices whlch formed the basi~ tor the exampJes were dlOsen, a~ weil as ~uml' ut the 

details of the example gencration phase. 

5.3.1 Selection of Repre~entative Magnetlc Deviees 

The representatlve magne tic devlccs which form the hasi~ for thc trall1l1lg n:lI11pll'~ 

were chosen with the help nt an expert III magnetlc devlCl' analy~I~: Pro! J. S, McFl'c. 

Based on his suggestions the two devlccs shown 111 Figure~ 12 alld J3 Wl'Il' l'Il':JIl'll. 

The first, aC-core inductor, I~ one 01 the mo~t commull magrll'tlc devlce~, yl'I 

captures many ot the ba~lc features of these devlce~. On the ~ugge<;tl()n u! Pro! D. 

A Lowther, the air gap of thi~ device, whlch u~ually has a constant wldth, I!\ hCI'cllcd 

so that the magne tic field 111 the gap I~ non-unitorm. Thi~ II1cre:t~e!\ the COl11pleXlty 

of the dlstnbution of the element ~ize~ III the gap reglon. In addlllClIl, Il IIlnl'a\l". the 

sharpne~~ of the corners al the ~malle~t part ot the gap, further wmpllc:lIlllg the 

element density distnbutlon becall~e ot the re~lIltJng singlllmJtie~ 111 the !\OllllIOIl The 

device III Figure ]2 is an E-core Illductor, The right gap i., Ix:velkd ~lrnJlar t() Ih:11 

of the C-core, but in the oppmite direction. The left gap ha!'. the two P()IL'~ \11I!letl, 

again to increase the non-llniformity ot the fteld in the gap. Tlm pole ~trllclllre, wlth 

the two poJe~ not 'lUIte aligned, I!\ abo important bec<lu.,c thl~ killure 1\ !(JUIll! III 

many magnetic devices, for eXélll1ple motor!\, The propertlc\ o! h()th deVlle\ ;Jrl.~ 
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mode lied u~ing linear mate rials. 

-------------~ l 

Iii 

.'igure 12 - C-Core Geometry Figure 13 - E-Core Geometry 

Dl/ring most ot the tramlllg seSSIons, the examples denved from the E-core \Vere used 

to train the network, while the examples from the C-core \Vere lI~ed as te~t examples 

tn monitor the performance of the network. Training sessions with the roles reversed 

resulted in comparahle performance. 

5.3.2 Solving for the "Exact" Solution 

The "exact" wlution to these devices was generated using a fmite element solver. 

Several steps were taken to ensure that the solutions \Vere ~;ufficit::ntly accurate. First 

of ail the devlce domain was ovcr-discrctizcd (using more clements than ~trictly 

nece~sary) and in critical areas (e.g. the air gap) an expert touched up the tinalmesh. 

The s()lution~ were then computed with fourth order elements, u~mg a standard 

conJugate gradient solver. Finally the re~ulting solutions were Inspected vlMléllly to 

verity that the results were con~lstent with the expected !>olution. 
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5.3.3 Generation of the Examples 

From the "exact" solution. examples are generated lIsing the algorithl11 prcsl'ntcd III 

Chapter 4. This step reqUlres specifying the location of the tnal t'lL'nll'nt~ in thl' 

domain of the device, as weil as the desired crror for the trial l'ICIlll'nt~. 

The trial elements \Vere positioned at the vertiœs 01 a reglliar grill cowrJng the 

dama in of the device. Recause of the earltcr ndwork topology, thi~ gr Id \\'a~ 

triangular instead of carte~ian. Althollgh a cardully chosen. nOIl-lIllItmm dl~trJbllt\ll\l 

may have improved the speed of training, this possIble gain (hd nut out-Wl'Igh thl' 

difficulty of choosrng the points. In tact \Vith a unilmm dr~tl1butl()11 01 pOlllt~. thL' 

distrihution of element sizes \Vas also roughly lInIform (see FIgure ~ III Chilptl'I -' l 
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• • • • • r"-;--; • • . • • • • • • • • . .1. • ••• . . . . -..................... . 
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• • • • • • • l' • 1, r.--- ~ • • • • • • • • • • .[. • • •••• , '1 ' 
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••••••••••••••••••••••• •••••••••••••••••••••• ••••••••••••••••••••• •••••••••••••••••••• ••••••••••••••••••• •••••••••••••••••• ••••••••••••••••• 

Figure 14 - Target Element Size~ lm the E-Corc 

The desired error of the element~ \Vas chosen hy fm~t cvaluating thc elemcnt error 

at a few critical points for different size trial elemenb. The ue.,lred crror wa., thcn 
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chosen to give reasonable sizes for the elements. In fact since the relationship 

hctween desired size and element area is approximately linear, this step is not critical. 

Hgllre 15 - Contour Plot of the Target Element Sizes for the E-Core 

For the E-core training examples, the density of the grid was chosen to give 3997 

CXéI III pics. Thl!> many training examples are necessary since the input value!> of the 

cXHmples should sample the input space as densely as possible. For the test examples 

from thc C-core, the gnd was choserl ta give only 547 example!>, since complete 

w\'cragc i~ not necessary to evaluate the performance of the network. Figure] 4 

sho\V~ the target element sizes for the E-core device. The area of each spot is 
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proportional to the size an element should have there. Figure 15 sh()\\'~ a contlHI! 

plot of the Ideal element sizes. There are a total of 75 lines. sn li vanatlon of IWé 

is equivalent ta 7.5 lines. 

5.4 The Neural Network System 

5.4.1 Network Topology 

The network topology was chosen based on only very approximatc glles~wor~. l'hl' 

analysis in [Lippmann, 1987] holds only for threshold networks. Mort' ()f Il'''S 

arbitrarily the first hidden layer was chosen ta have 24 noùes, anù the ~el"ond 11Illdl'J1 

layer 18 nodes. Sorne experimentation was done to deterllllllc the optlmulll IllIl11her 

of layers. 

Table 2 - Error of Networks with 1, 2, and 3 J-hdden Layer .. 

-

Number of Number of RMS Oecoded Error RMS Dccodl'd ( ':rnlr 
Hidden Nodes in each of of 
Layers Hidden Layer Traming Examples Te~t EX<lmpln 

1 24 7.0% 13.5(;f, 

1 45 6.4% Il (,'ir, 

" 20, 15 5.5% 13.3 c/" .. 
2 24, 18 5.0% 9.<J% 

3 24, 18, 10 5.1% 1 2. (Y;f, 

Table 2 shows the error tor the different ~lmlllatl()l1S. Surprl\lIlgly the nll'> l'rror 

increased \VIth the additIOn of another hlddcn layn ot 10 !]()dt.:.. 'l'hl'" C;11l hl' 

accounted for by the tact that three layer~ glve~ the ncur<l1 network tou Jlwny de~ree ... 

of freedom, so It can easily model the trainmg example~, but 111 hetween the eXcll11ple .. 

the interpolatIOn is not very ~mooth. Conversely a ~ingle hidden lilyer of 24 n()t1e~ 
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performs !\ignificantly worse than the two layer network. To be fair the single layer 

network should have the same number of weigills as the two layer network, which in 

this case would mean 45 nodes ln the single hidden layer. This network, while better 

than the one with only 24 nodes, still has a significantly larger error than the two 

hldden layer network. These results give a baIl park estimate of the number of layers 

required hy the system to learn the mapping. 

5.4.2 Performance 

•••••••••••••• ••••••••••••••• •••••••••••••••• ••••••••••••••••• •••••••••••••••••• ••••••••••••••••••• . . . . . .---.----.. -.~ .... 
• • • • • r · · · · · · · · · -· _1· • • • • •••••••••••••••••••••• •••••• • • • • • • • • • • • •••••• ••••• • ·1· • · . . · · . • ••••• •••••• H • •. .. .. • •••••• •••••• ·1·1 •••••..•••••••••• 

••••••••••••••••• •••••••••• •••••• • 1·1 ••••••• • •••••••• ...... . -. . .. .. . ........ . 
••••• • • 1 •• • • • •• • ••••• ...... ~ ..........••.••• ••• • • • • • • • • • •• • •••• ••••• • •••• ••••••• • •••••• ••••••••••••••••••• •••••••••••••••••• ••••••••••••••••• •••••••••••••••• ••••••••••••••• •••••••••••••• 

Figure 16 - Element Sizes for the C-Core from Neural Network 

The ptrlormélnce can be judged in two ways. First of ail the decoded output of the 

neural network can be compared with ideal element sizes. Figure 16 show~ the ~izes 

rccomended by the neural network for the C-core, using the same format as 

Figure 14. 
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Figure 17 - Mesh tor C-Core hased on Neural Network 

\ 

And secondly the resliiting mesh can be judged on its own ment. Figure 17 !'>llOW!'> 

the final mesh for the C-core devlce. The denslty for this mesh wa~ C()l11pllled Il!'.lllg 

the weights ohtained hy training the network on the E-core devlcc. The llle~h Wil!'> 

then generaled u~ing the TRIA2D mesh generator of [Hétu, 1990], wlllch 1I<'l'!'> dell!'>lly 

information to dIrect node placement. (The tact that tlm ll1e~h I!'> Ilot Del:llIllilY I!'> Ihe 

félult of the mesh generator, and I~ not related to the me~h dell<'lty). Accordlllg 10 

experts, thls mesh is clo~e to what they would produce Il a~ked 10 me<,h the device 

themselves. There is no dOllbt that the network )~ contnhllting v:duahle II1lm111i111()1l 

to the meshing process. If thi~ mesh is not optimal enough, then a kw ad'lpllve !'>tep<, 

would fimsh the proce~s with a ~ignificant ~aving ln total COll1pUlatlollill cml 
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5.5 Summary 

The purpose of this chapter is ta c1arify the procedures used to obtain the results 

which are prcsented in earlier chapters. This chapter should also highlight the lack 

of rigollr in the neural network field at the present time. As muer. effort as possible 

was put into the software experiments so that the conclusions drawn from them had 

a reasonable ehance of being valid. The system thus far still has more an élura of a 

collectIon of patehes théln of a logically evolved structure. However, in a ~ense, this 

IS engineering and not science! 
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Chapter 6 
Conclusion and Future Work 

This chapter olltlines the future work spawned hy this mesh generatiol1 appltcatlOl1. 

as weI! as noting what loose ends need to he tied up to complete the ~ystL'lll. l'hl' 

sllmmary hriefly states the InitiaI premlse ot the t hcsis "Ild the origllJa 1 WlIl k 

accomplished in pursuing this premise. 

6.1 Future Work 

A great deal of work remains to he done in order to make thi~ appllcatioll u!'.cahlc. 

Because of the nature of neural networks, the ha~ls in thenry may 1ll'''CI he 

completely ngorous, hut more experimentatlon should c1ear up milny Issues. 

6.1.1 Error Cri tenon 

The error criterion described in Chapter 4 should he venfled. To do Ihis, il 111e~h 01 

a device should be generated using the ideal density informatIon. The solutlOIl on 

this mesh should then he compared to the "exact" sdllltion hy intcgratlllg lor the 

mean squared error of each element in the mesh. If the schcme lor deterrlllning 

ideal element size is working correctly, then each element should have the sallie 

mean squared error (i.e., the variance of this quantity shollld he sl11all). 

6.1.2 Input Representation 

The representation for the input is currently a bit too arhitrary, and 'I!'. It ~tand,> 11lI~ 

a few problems. The first problem has to do with the ~célllllg 01 the Iflput <l1ll! output 

(by distance to nearest corner). When a sample pomt I~ on a corna, then the '>cale 

factor becomes InfInite. The second problem I~ the way llléltCrIéll hOUIlt!iIrIC'> ,Ife 

treated. Because different networks are u~ed on elther side 01 the houlldary, the 
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mesh dcnsity as computed by the system is discolltimwlts across the boundary. Sorne 

sort of !>moothing would correct this, and could also make sure the mesh was graded 

properly. The thin.! problem IS more fundarnental, and ha~ to do \Vith the fact that 

the repre!>entatlOn as~umes that the geometry call be approxlIllated locally hy a 

couple 01 line ~egment~. This assurnpticn is vlolated in the more general case where, 

lor cxampk, a curved surface 1" approximatèd with many short line segments. Fina!!y 

" i~ !>Iill <lll open qucstion al. 10 how local the representatioll can be éllld still contain 

enough information to compute tht' mesh density. 

III more general tCTlm, the mput representation should he evaluated for redundancy. 

ThIS can be accomplished hy training the network using an input representation whlch 

omit!> one input. In this wayeach input can be tested in turn to see how "necessart 

Il is. 

G.1.3 Output Repre~entati()n 

The output representation is hmly sound, and in concept is prohably near optImal lor 

this network architecture. The number of "binsff was cho~en arhitraily, élnd this could 

be refined through turther experimentation. More generally. the nature of the output 

1ll,lkes it natural to examine C011lfJClitivc networks. where the output~ compete lor the 

right 10 re~p()nd to a glven input. 

6.1.4 TraIning 

The trail11ng method used in the learning process is unsatisfactory. \\'hlle the 

performance of the network IS acceptable, it seems Iikely that there exi~t more global 

111111ima in the error ~urface, and especially minima that would perform hetter al 

generallz\I1g. The are several approaches to fmdmg these millll11é1. 

1) Fmt of ail. in any approach a much larger number of example!> i~ required. 
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The examples should come from many. very different. dl.'\'Il'l'~ E\:Impk:. cou Id 

include aC-core inductor, a stepping l1lC'tor, a tral1~tmll1t'r. an actu,IIll!. 

2) Different training algorithms could be tl!~ted. 011 po~slhlltty that ~l'l'm~ 

especially attractive IS sl11wlared alllzcalillg. As menlHmed III Chaptl'r .2. Ihl" IllL'thml 

can be slow to find a network with an acceptable error. IlowL'wr tlm lllL'tlwd muId 

be accelerated hy using it 111 conjunction wlth the conjugale gradlL'llt 1llL'lhod. 111 Iim. 

hybrid scheme. the welght vector trom a !>1I11ulatl!d anneahllg ~tl'p \\'(Juili 111..' Il'IlIll'd 

ta the nearest localmrnima in the error surlan:. Tlm woult! hL'lp ollllL't the plllllaly 

disadvantaue of the simulated annealin~ al~oflthm, which I~ liS VL'I\' ~I{)\\' COII\'l'II.!l'I1l'l'. ""' "-" '- ., ... 

Also the conjugate gradient method is very last. so thl! addlli()Jwl l'Ilst wou Id hL' 

minor. 

Another alternative would use an explicit, nearest nelghbour, interpolation ~l'hell1l'. 

The mam disadvantage ot thi!. approach i~ the requlrement that ail the tllIlllIllg 

examples be kept around to construct the local IIlterpolants 011 (kl1l:tlld 'l'hL' 

advantage is that there is no training involved at ail. One dliliculty 1" ill dctl'llllllllllg 

which of the nearest neighbours ~hould he llseù to col1struct the local IlIte rl'Dlant. 

6.1.5 Evaluation 

There is little doubt that the neural network approach I~ COll1pUtilll{)ll:dly ll1orL' 

efficient that an adaptive ~y~tem (lt~ only competltor). IlllWL'W 1 L''\pIIClt 

computational cost and resource usage should be ca/cul:lled for hoth ~yqt·lll~. '1'111'0 

would help canvll1ce sceptics of the utility ni thl~ approilch. 

6.1.6 Stepl. ta a Workmg System 

Fmally several steps are necessary 10 turn the network 11110 a complete !-.y.,tCJll. A 

mesh generator working l'rom density ha~ to be aùapted 10 lI~e the {)ut put (lf the 
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neural network. Also the system should be extended ta handle different mate rials 

and dittercnt types of prohlems (e.g., time harmonie, rotatlonally ~ymmetrie). This 

muId m()~t ea~lIy he accomplished by using a rlitferent network (e!'>sentially only 

diffcrent wClghts) for each type of problem. 

Another major 1>tep i~ extending the system to handle non-linear materials. This 

problem may be too dithcult for the neural network to handle directly (since knowing 

where the iron ~aturate~ Ü, an e~sential part of the problem). However one approach 

would lise a t-.olution to the device eomputed on a very crude mesh (and therefore 

relatively chcap 10 compute). Thi!'> erude solution could then be one of the inpub to 

the network. In lact tlm I~ !,>Imilar to the expert who traces approximate flux lines tn 

help detl:fllline where saturé\tion occurs. 

6.2 Summal1' 

This thesl~ started by examming what contrIbution neural network~ could l11ake 10 

automatlllg engineenng design and anaIY!'>I!'>, 111 particular t'mite clements. The idea 

i1> tn el11l1late, and not ~lIrpass. the ability of human expertli applying thell1!'1e1ve~ to 

a certain ta~k. The re!'lult is a working system that succes!.~ul1y applies neural 

networh 10 a previously unsolved problem ln mesh generatlon. 
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Appendix 1. 
Mathematics for Element Error Computation 

i. tcast Squares Fit 

The kast ~qllare~ fit of a trall element to a solution is aecomlished hy minimlzmg the 

~qllé1red error. The error I~ the dlfference hetween the "exact" ~olution, {lnd the 

linear ~()llItl()n on the clement. The minimization is done wlth re~pect to tlHee 

parameter~: the value~ of the ~ollltl()n on the three vertice~ of the Imear trial element. 

The "exact" ~olution in thi., case i~ in faet only a close approximation which it~elf has 

hcen cOll1putcd on li Il1c~l1. To avoid confusion 111 the tollo\\'mg dcrivatÎon, the 

elt;/Jlent~ lrom the ~()llltJ()1l wIll he reiered 10 a~ "~ollltion elel11ent~", and the clement 

hClllg litted to the wlutHln a~ the "trial clement". 

The IlIlcar ~olutlon on the tna) e)ement i~ repre~ented hy: 

À = a + a x + a y = a ~% z 1 2 3 
( 1) 

where x = (1 x y) T anù a = (al a 2 a 3 ) T. The squarederror of the trialelement 

I~ round hy mtegratmg over the tna) element: 

E = f(A z - Àz)2 ds ( 2 ) 
S 

The minimum of the ~quared error is found by ditferentiating \V.r.t. the each of the 

paramctcrs and equatmg the results to zero: 

aa f(Az - Àz)2 dS = 
al s 

-2 f(A z - Àz)xdS = 0 
s 

Solvmg for the parameter~ glve~: 

J AzxdS = f ÀzxdS 
s s 

= !{a ~x)xdS 
s 

= !(xx ~dSa 
s 

( 3 ) 

( 4) 

This cquation is a linear system of three variahles, and can he solved for the 
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parameters of the Imear element. 

ii. Squared Error 

The expression for the squareù error can be ~lIl1plifled a~ lollll\\~: 

E = fA; - 2A)"z + X;d8 
s 

= fA;dS - a '1'fA zXd8 
( 5 ) 

s s 

In the program to compute Ideal slze~. the integration I~ perlllrl1wd hy t:Ii"lIlg l'adJ 

solution clement and c1ipping it agall1st the tnal clement. l'hl' c1lpplllg :dg(lI Ithlll 

used is the Sutherlanù-Hodgman algorithm wllH:h b de~cflhed 111 Sectloll .1.1·1 01 

[Foley, 1990]. Once the integral quantltle~ are Clllllputed. thL' )1:lIallll'tl'r~ are 

calclliated by ~olvrng equation (4). after which the sqllared er[()r 1'> rl'adlly l'l'I1l)1utl'd 

using equation (5). 

The mathematical methods neœssary to perlorm thcse integrat(()I1~ r'> )1le~l'lltl'd III 

[Webb, 1988]. The FORTRAN code used 10 impie ment parts 01 thL'~l' Clllll)1ut;ltIOIl'" 

was donated hy J. S. McFee. 
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Appendix II. 
Geometrie Input Files for C-Core and E-Core 

; Geometrie input file for C-Core. 

; Domain 
-5.0 -5.0 

4.7 5.0 

; Core 
1 
12 
-3.1 
-3.1 

3.2 
3.2 
0.95 
0.95 

-0.9 
-0.9 

0.95 
0.95 
3.2 
3.2 

x_min, y_min 
x_max, y_max 

material type (1 = iron, 2 = copper) 
number of vertices (a closed figure is assumed) 

3.5 (x, y) coordinates of vertiees 
-3.4 
-3.4 
-1.0 
-0.1 
-1. 5 
-1.5 

1.6 
1.6 
0.15 
1.4 
3.5 

; Left 
2 

coil 

4 
-3.1 
-3.7 
-3.7 
-3.1 

; Right 
2 
4 
-0.3 
-0.9 
-0.9 
-0.3 

o 

1.0 
1.0 

-0.9 
-0.9 

Coil 

1.0 
1.0 

-0.9 
-0.9 

zero indicates no more abjects 
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; Geometrie input file for E-Core. 

; Domain 
-8.0 
11. 0 

; Core 
1 
22 
9.0 
0.0 

-6.0 
-6.0 
-4.0 
-4.0 
-2.0 
-2.0 
-5.0 
-5.0 
-7.0 
-7.0 

0.0 
9.0 
9.0 
6.0 
6.0 
2.0 
2.0 
6.0 
6.0 
9.0 

7.0 
7.0 
6.0 
1.0 
1.0 
4.0 
4.0 

-3.0 
-3.0 

0.6 
0.6 

-5.0 
-7.0 
-7.0 

0.0 
-1.0 
-4.0 
-3.0 

4.0 
4.0 
0.2 
0.2 

; Left Coil 
2 
4 
-2.0 
-3.0 
-3.0 
-2.0 

3.0 
3.0 

-2.0 
-2.0 

-9.8 
10.0 

x_min, y_min 
x_max, y max 

material type (1 = iron, 2 = eopper) 
number of vertices Ca closed figure is assumeJ) 
(x, y) coordinates of vertices 

; Right Coil 
2 
4 

3.0 
2.0 
2.0 
3.0 

o 

3.0 
3.0 

-2.0 
-2.0 

zero indicates no more objects 
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