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Many clinical and epidemiological applications of survival analysis focus on interval-censored events that can be 

ascertained only at discrete times of clinic visits. This implies that the values of time-varying covariates are not correctly 

aligned with the true, unknown event times, inducing a bias in the estimated associations. To address this issue, we 

adapted the simulation-extrapolation (SIMEX) methodology, based on assessing how the estimates change with 

artificially increased time between clinic visits. We propose diagnostics to choose the extrapolating function. In 

simulations, the SIMEX-corrected estimates reduced considerably the bias to-the-null and generally yielded better 

bias/variance trade-off than conventional estimates. In a real-life pharmacoepidemiological application, the proposed 

method increased by 27% the excess hazard of the estimated association between a time-varying exposure, representing 

the 2-year cumulative duration of past use of a hypertensive medication, and the hazard of non-melanoma skin cancer 

(interval-censored events). These simulation-based and real-life results suggest that the proposed SIMEX-based 

correction may help improve the accuracy of estimated associations between time-varying exposures and the hazard of 

interval-censored events in large cohort studies where the events are recorded only at relatively sparse times of clinic 

visits/assessments. However, these advantages may be less certain for smaller studies and/or weak associations.  
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1 Introduction  

Classic methods of survival analysis rely on the assumption that the exact times of the occurrence of individual 

endpoint events of interest are known (Andersen et al., 2021). Yet, many applications of survival analysis in 

epidemiology and clinical research focus on endpoints for which the occurrence can be established only at the discrete 

times of clinical assessment, usually during a medical visit. Examples include cancer recurrence, the development of 

cognitive impairment, or the onset of AIDS. In such situations, it can only be ascertained that the event occurred within 

the interval between the last visit before and the first visit after its (unknown) true time of occurrence, implying 

interval-censored endpoints (Lindsey and Ryan, 1998; Zhang and Sun, 2010). Over the past four decades, many 

methods have been developed to extend survival analysis methods to such interval-censored outcomes (e.g., 

(Finkelstein, 1986; Turnbull, 1976; Kooperberg and Stone, 1992; Gentleman and Geyer, 1994)). 

 

However, within the large body of literature on interval-censored data, relatively less attention was given to assessing 

the effects of time-varying covariates/exposures (TVCs/TVEs). For example, TVCs are not mentioned in some popular 

tutorials on interval-censored data (Lindsey and Ryan, 1998; Zhang and Sun, 2010; Sun et al., 2013). A recent PubMed 

search yielded 48 articles that mentioned both “interval censored” and “time-varying (or time-dependent)”, including 
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statistical papers and real-life applications. Relevant statistical papers often proposed new methods to meet a specific 

analytical challenge encountered in analyses involving both TVCs and interval-censored events, e.g. stepped wedge 

clinical trials (Zhan et al., 2016), or TVCs representing the occurrence of a secondary interval-censored event (Ahn et 

al., 2018). Campbell et al. (2019) adapted joint modelling with shared random effects to model associations between 

TVCs and interval-censored outcomes, whereas Clark et al. (2014) adapted their imputation algorithm (Clark, 

Winchell and Betensky, 2013) to correct the inaccurate reported event times. Finally, Chen and Cook (2003) 

considered an interval-censored time-varying prognostic marker in the analysis of accurately timed recurrent events. 

Other authors extended earlier specialized methods to associations of TVCs with interval-censored outcomes, 

including the flexible HARE model (Kooperberg and Clarkson, 1997) and illness-death model (Chiang et al., 1989). 

Yet other authors proposed new tests for the association between a possibly interval-censored TVC and an interval-

censored event time, but did not discuss multivariable modelling of such data (Schoenfeld et al., 2011; Oller and 

Gomez, 2020). 

 

Several of the aforementioned papers do not report simulations (e.g., (Bacchetti and Quale, 2002; Sparling et al., 2006; 

Seaman and Bird, 2001; Clark et al., 2014)), making it difficult to assess how the proposed methods perform in 

plausible real-life situations. In addition, it was pointed that standard statistical packages do not allow the modelling 

of TVC associations with interval-censored events (Clark et al., 2014). 

 

However, inaccurate timing of interval-censored events may have a strong impact on their estimated associations with 

TVCs, which require that, at each event time t, the corresponding hazard 𝜆(𝑡) is correctly aligned with the updated 

TVC value 𝑋𝑖(𝑡) for each subject i in the risk set (Andersen and Liestol, 2003). Thus, if the true event times are 

distorted, the estimated regression coefficients will be based on incorrect TVC values and likely be biased. For 

example, we encountered this problem while assessing the impact of cumulative exposure to hydrochlorothiazide, a 

photo-sensitizing drug, on the hazard of non-melanoma skin cancer (NMSC) (see section 4). Cumulative exposure 

duration has to be modelled as a TVC and updated for each risk set (Andersen et al., 2021), whereas NMSC can be 

diagnosed only at visits to physicians with relevant specialties, i.e. is an interval-censored event. Thus, it is difficult 

to accurately establish for how long a given subject was truly exposed before his/her actual (unknown) event time. 

Yet, the literature provides little guidance regarding how this issue can be resolved in real-life applications. Indeed, 

our PubMed search failed to identify any pharmacoepidemiological study with time-varying drug exposure that 

attempted to account for interval-censored events. However, (i) effects of medications are often assessed using 

interval-censored endpoints, and (ii) time-varying exposures are essential to account for the considerable within-

subject variation over time in drug use and/or its dose, and their potential cumulative effects (Patorno et al., 2015; 

Abrahamowicz, Beauchamp and Sylvestre, 2012; Pazzagli et al., 2018). 

 

In this paper, we propose an easy-to-implement approach to account for interval-censored endpoints in Cox model-

based analyses involving time-varying exposures, by adapting the simulation-extrapolation (SIMEX) methodology 

(Cook and Stefanski, 1994). Section 2 describes the proposed SIMEX-based procedure and related diagnostics. 

Section 3 presents simulations involving TVEs and an interval-censored endpoint. In section 4 we apply the proposed 

method to re-assess the association between HCTZ cumulative exposure and the NMSC hazard. The paper ends with 

a discussion of the implications of our results and limitations of our study. 

2 Methods 

2.1 Setting and objectives 

We consider right censored time-to-event data, with i = 1,…,n independent subjects. For subject i the outcome is 

defined by {𝜏𝑖 , 𝛿𝑖}, where 𝜏𝑖 is the observed duration of follow-up and 𝛿𝑖 is the binary indicator of status at 𝜏𝑖 (𝛿𝑖 = 1 

for event, 𝛿𝑖 = 0 for censoring) (Andersen et al., 2021). We assume independent random censoring. 

 

We focus on associations between a TVE 𝑋(𝑡) and the hazard of an interval-censored event. Specifically, 𝑋𝑖(𝑡) 

represents the updated value assigned to subject i at time t. Examples include the indicator of developing an infection 

at any time before t, or of the current drug use; an updated prognostic factor value; the current duration of a disease; 

and the cumulative dose of the drug received up to time t; each of which may be lagged to account for the latency in 

the exposure’s impact on the current hazard (Danieli et al., 2019). 

 



We assume that the association between 𝑋𝑖(𝑡) and the event time is analyzed using the multivariable Cox proportional 

hazards (PH) model (1), which adjusts for p a priori selected risk factors 𝑍𝑖1(𝑡), … , 𝑍𝑖𝑝(𝑡), which may include time-

varying and time-invariant (𝑍𝑖𝑗(𝑡) = 𝑍𝑖𝑗, for all t) variables: 

 

𝜆 (𝑡|𝑋𝑖(𝑡), 𝑍𝑖1(𝑡), … , 𝑍𝑖𝑝(𝑡)) = 𝜆0(𝑡) exp {𝛽𝑥𝑋𝑖(𝑡) + ∑ 𝛽𝑗𝑍𝑖𝑗(𝑡)

𝑝

𝑗=1

} (1) 

 

In model (1), 𝛽’s, the adjusted log hazard ratios (HRs), are estimated by maximizing the partial likelihood (PL) of the 

data, conditional on observed event times (Cox, 1972). PL is the product of the following components, each calculated 

for the risk set corresponding to one of the m observed events (for simplicity we assume no ties): 

 

𝑃𝐿 = ∏ (
exp{𝛽𝑥𝑋𝑠(𝜏𝑠) + ∑ 𝛽𝑗𝑍𝑠𝑗(𝜏𝑠)𝑝

𝑗=1 }

∑ exp {𝛽𝑥𝑋𝑖(𝜏𝑠) + ∑ 𝛽𝑗𝑍𝑖𝑗(𝜏𝑠)𝑝
𝑗=1 }𝑖:𝜏𝑖≥𝜏𝑠

)

𝑚

𝑠=1

 (2) 

 

where 𝜏𝑠 is the time of the sth event, ordered in time, and all subjects still at risk at time 𝜏𝑠 (i.e. with 𝜏𝑖 𝜏𝑠) are 

considered in the denominator.  

 

Calculations in equation (2) rely on an implicit assumption that 𝜏𝑠 corresponds to the true time when the sth event 

occurred. In contrast, in this manuscript we consider situations when the events are interval-censored, i.e. the exact 

event times are unknown. Specifically, we assume that assessing whether, for a given subject, the event has already 

occurred is possible only at discrete times, corresponding to his/her clinic visits or dates of specific diagnostic 

procedures (Lindsey and Ryan, 1998; Zhang and Sun, 2010). The timing and frequency of such “relevant visits” may 

vary between-subject and within-subject over time. Then, if the event for subject s is diagnosed/reported at visit time 

𝑡𝑠,𝑒, we can only deduce that the event occurred at some time between his/her most recent relevant visit 𝑡𝑠,𝑒−1 and 𝑡𝑠,𝑒. 

In real-life analyses of such events, the event times are imputed at 𝜏𝑠
∗ typically corresponding to either the end 

(𝜏𝑠
∗ = 𝑡𝑠,𝑒) or the mid-point 𝜏𝑠

∗ = (𝑡𝑠,𝑒−1 + 𝑡𝑠,𝑒) 2⁄  of the interval between the two relevant visits. Accordingly, the 

partial likelihood being maximized is redefined, relative to the classic definition in equation (2), as: 

 

𝑃𝐿∗ = ∏ (
exp{𝛽𝑥

∗𝑋𝑠(𝜏𝑠
∗) + ∑ 𝛽𝑧,𝑗

∗ 𝑍𝑠𝑗(𝜏𝑠
∗)𝑝

𝑗=1 }

∑ exp {𝛽𝑥
∗𝑋𝑖(𝜏𝑠

∗) + ∑ 𝛽𝑧,𝑗
∗ 𝑍𝑖𝑗(𝜏𝑠

∗)𝑝
𝑗=1 }𝑖:𝜏𝑖

∗≥𝜏𝑠
∗

)

𝑚

𝑠=1

 (3) 

 

where 𝜏𝑠
∗

  is the imputed time of the sth event, 𝑋𝑖(𝜏𝑠
∗) and 𝑍𝑖1(𝜏𝑠

∗), … , 𝑍𝑖𝑝(𝜏𝑠
∗) are the corresponding TVE/TVC values 

for subject i at 𝜏𝑠
∗, and 𝛽∗’s are the resulting log HRs. 

 

Equation (3) uses different 𝑋(𝑡) and 𝑍(𝑡) values than the classic formula (2) and these distortions affect the 

calculations for both “cases” (numerators of event-specific ratios) and “controls” (denominators) who remain at risk 

at 𝜏𝑠
∗. Moreover, in each risk set, the subsets of controls who contribute to the denominator for the sth event in (3) vs. 

(2) may differ due to inaccurate imputation of event times in (3). For example, if the imputed time 𝜏𝑠
∗ is later than the 

true event time 𝜏𝑠, then the corresponding risk set used in (3) will incorrectly exclude subjects who are censored at 

any time c in between 𝜏𝑠 < 𝑐 ≤ 𝜏𝑠
∗. Vice versa, if the imputed time underestimates the true event time, the 

corresponding risk set in (3) may incorrectly include some subjects censored between times 𝜏𝑠
∗ and 𝜏𝑠. For these 

reasons, the coefficients 𝛽̂∗’s that maximize PL* in (3) will likely diverge from 𝛽̂’s that would be estimated using PL 

in (2), based on true event times.  

 

Our goal is to propose a pragmatic approach to reduce the impact of the aforementioned distortions of PL calculations 

on the accuracy of hazard ratios estimated for time-varying exposures. 

 

2.2 Proposed SIMEX-like procedure 

We propose to adapt the popular simulation-extrapolation (SIMEX) methodology to correct for errors due to interval-

censored events in time-to-event regression analyses involving time-varying exposures (TVEs). SIMEX was 



originally proposed for regression analyses involving a continuous independent variable X measured with additive 

random, normally distributed, measurement errors (MEs) 𝜖𝑖~N(0, 𝜎𝜖
2) (Cook and Stefanski, 1994). The classic 

SIMEX requires specifying the expected standard deviation 𝜎𝜖 of MEs based on the literature, measurement 

calibration studies and/or validation analyses (Cook and Stefanski, 1994). Then, the main idea of SIMEX is to combine 

two steps: (i) adding further ME to the original mismeasured 𝑋𝑖, by simulation, to estimate how 𝛽̂𝑋 varies with 

increasing ME, and (ii) extrapolate this relationship to the case of no ME (𝜎𝜖
2 = 0). Specifically, at consecutive 

iterations (j=1,...,k) of step (i), artificial data 𝑋𝑖(𝜆𝑗) with additional measurement errors generated independently from 

N(0, 𝜎𝜖
2) are created as 𝑋𝑖(𝜆𝑗) = 𝑋𝑖 + √𝜆𝑗 ⋅ 𝑒𝑖𝑗, where 𝜆𝑗 > 0  is increased gradually across the iterations. This implies 

that the ME variance of modified covariate values 𝑋𝑖(𝜆𝑗), at iteration j, is increased to (𝜆𝑗 + 1)𝜎𝜖
2. At each iteration 

j, the regression model is re-estimated using the modified data 𝑋𝑖(𝜆𝑗), and the corresponding coefficient 𝛽̂𝑋,𝜆𝑗  is 

retained. At the extrapolation step (ii), the estimated values of 𝛽̂𝑋,𝜆𝑗
 are regressed on 𝜆𝑗, using a simple user-defined 

parametric function 𝑓(𝜆𝑗), e.g. linear, logarithmic, or quadratic (Cook and Stefanski, 1994). Finally, the estimated 

function 𝑓(𝜆𝑗) is extrapolated to obtain 𝛽̂𝑋,𝜆𝑗  corresponding to 𝜆𝑗 = −1, implying (𝜆𝑗 + 1)𝜎𝜖
2 = (−1 + 1)𝜎𝜖

2, i.e. with 

no MEs, to obtain the SIMEX-corrected estimate of 𝛽𝑋. Notice that SIMEX does not attempt to improve the accuracy 

of the error-prone covariate measurements but, instead, to reduce the impact of MEs on the estimated regression 

coefficient (Cook and Stefanski, 1994). 

 

In the specific setting described in section 2.1, the problem of inaccurate imputation of event times can be cast in 

general terms of MEs in the TVE 𝑋(𝑡). Indeed, the impact of using inaccurate information in PL calculations in 

equation (3) depends on how much individual 𝑋𝑖(𝜏𝑠
∗) values at imputed event times diverge from the corresponding 

values 𝑋𝑖(𝜏𝑠) at the true, unknown, event times. However, it is difficult to quantify the expected standard deviation 

𝜎𝜖 of MEs {𝑋𝑖(𝜏𝑠
∗) − 𝑋𝑖(𝜏𝑠)} across all subjects and risk sets. The ME for a given subject i at imputed event time 𝜏𝑠

∗ 

will depend on both (a) the difference from the true event time (𝜏𝑠
∗ − 𝜏𝑠), and (b) the magnitude and pattern of within-

subject changes over time in TVE values, which is difficult to quantify as it depends on the TVE metric used in the 

analyses (Abrahamowicz et al., 2012). For example, in pharmacoepidemiological applications, current exposure to 

drugs to treat chronic conditions will vary less than for drugs used only occasionally, or prescribed to treat short-term 

health problems. Furthermore, short-term exposure metrics, such a current daily exposure, will exhibit more within-

subject variation, relatively, than cumulative long-term measures (e.g., total duration of drug use in the past 6 months). 

 

To avoid the above difficulties, we propose an ad hoc modification of the SIMEX algorithm that circumvents the need 

to specify the standard deviation 𝜎𝜖 of MEs in 𝑋(𝑡). Instead, we rely on a more easily quantifiable function of observed 

data that is expected to increase monotonically with increasing 𝜎𝜖. Specifically, our approach is based on the 

combination of two relationships. (a) On average, absolute ME |𝑋𝑖(𝜏𝑠
∗) − 𝑋𝑖(𝜏𝑠)| should increase monotonically with 

increasing absolute distance between the two corresponding times Δ𝜏 = |𝜏𝑠
∗ − 𝜏𝑠|. (b) Furthermore, even if, in our 

context, the true event times 𝜏𝑠 are not known, mean Δ𝜏 will increase systematically with increasing mean difference 

between the visit times before (𝑡𝑠,𝑒−1) and after (𝑡𝑠,𝑒) the true event time, across all “cases” s = 1,…,m who had events 

diagnosed at their respective visit times 𝑡𝑠,𝑒. Together, (a) and (b) imply that 𝜎𝜖  is a monotonically increasing function 

of the mean distance between relevant visit times for cases: 

 

𝛥𝑡̅̅ ̅ =
∑ (𝑡𝑠,𝑒 − 𝑡𝑠,𝑒−1)𝑚

𝑠=1
𝑚⁄  

 

Thus, we propose the following 4-step SIMEX-like procedure: 

 

1. Through j = 1,…,k iterations gradually increase the mean time between visits 𝛥𝑡̅̅ ̅ for “cases”. Depending on 

the application, different approaches may be considered to simulate less frequent visit times. Section A.1 of 

the Supporting Information describes two alternative approaches that involve, respectively, (i) moving the 

time of previous relevant visits 𝑡𝑠,𝑒−1 back by a pre-specified amount of time, or (ii) deleting some observed 

visits before 𝑡𝑠,𝑒. Then, the imputed event time, for each case, is artificially moved to the mid-point of the 

interval between the modified time 𝑡𝑠,𝑒−1
′  of the last visit before the event and the observed time 𝑡𝑠,𝑒 when 

the event was originally reported. In each iteration, a similar manipulation is applied to the time of the last 

visit for “controls” (who had no event during their follow-up), who are then right-censored at the 

corresponding modified time, because the event could not be observed after their last visit. 



 

2. In each iteration j (j = 1,…,k), refit the Cox PH model of interest using the modified times of events for cases 

and censoring for controls (based on step 1). Retain the corresponding estimated log HR for exposure (𝛽̂𝑋,𝑗). 

 

3. Regress the k+1 point estimates, including the estimate from the original analysis of the unmodified data 

(𝛽̂𝑋,0 for j=0) and k estimates 𝛽̂𝑋,𝑗  from step 2, on the corresponding mean 𝛥𝑡̅̅
𝑗̅ of the difference between the 

(modified) times of the two relevant visits for cases. Here, we fit a simple linear regression model 𝛽̂𝑋,𝑗 =

𝛼0 + 𝛼1𝑓(𝛥𝑡̅̅
𝑗̅) + 𝜀, where 𝑓(∙) is a pre-specified parametric monotone function. (Diagnostics to help choose 

the functional form of 𝑓(∙) are discussed in section 2.3.) 

 

4. Use the regression model estimated in step 3 to extrapolate the expected value of log HR 𝛽̂𝑋  to a hypothetical 

ideal scenario where the mean time between relevant visits is 1 time unit, i.e. ∆𝑡̅̅ ̅ = 1, implying no errors in 

the timing of events. The resulting extrapolated value is considered the SIMEX-corrected log HR estimate 

for the exposure. 

 

To get the bootstrap-based 95% confidence interval (CI) for the SIMEX-corrected log HR, we repeat steps 1-4 of the 

SIMEX procedure in each of B bootstrap resamples, and use the percentile method, based on the normal approximation 

for the resulting distribution of SIMEX-corrected estimates. 

 

The proposed SIMEX-like procedure shares the underlying rationale with and involves similar data manipulations as 

the DELEX (deletion and extrapolation) algorithm (Andersen and Liestol, 2003). However, DELEX focuses on 

correcting for sparse measurements of time-varying covariates, rather than for inaccurate times of interval-censored 

events. 

 

Similar to other authors who extended the SIMEX methodology to different complex settings (e.g., (Kyle, Moodie 

and Abrahamowicz, 2016; Kuchenhoff, Mwalili and Lesaffre, 2006; Wang, Beauchamp and Abrahamowicz, 2020; 

Oh et al., 2018)), in section 3 we rely on simulations to validate the proposed method in our specific context of interval-

censored events. 

 

R programs used to run the simulations are available as Supporting Information. R code allowing end-users to 

implement our proposed SIMEX-like method for a given dataset and an illustrative example based on a simulated 

dataset are available at https://github.com/mebeauchamp/SIMEX-IntervalCensoredEvents. The code for producing 

the diagnostic plot to help choosing the extrapolating function and for estimating the bootstrap CI is also included. 

 

2.3  Choice of the extrapolating function 

The final SIMEX-corrected estimate depends on the choice of the functional form of the extrapolating function 𝑓(∙) 

in steps 3 and 4. This issue, common to all SIMEX-based methods (Cook and Stefanski, 1994), becomes challenging 

for non-linear models (e.g., Cox model) where the optimal choice cannot be analytically derived, so exploratory 

analyses may offer insights (Stefanski and Cook, 1995). Below, we provide practical suggestions to help with this 

choice in real-life applications.  

 

The shape of the function 𝑓(∙) should describe how estimated log HR 𝛽̂𝑋,𝑗  for the TVE 𝑋(𝑡) changes, across the 

SIMEX k iterations (j = 1,…,k), with increasing mean difference (𝛥𝑡̅̅
𝑗̅) between the (modified) times of the two relevant 

visits for cases. These changes in 𝛽̂𝑋,𝑗 will reflect the impact of increasing MEs in 𝑋(𝑡), i.e. discrepancies between 

exposure values at the imputed vs. the corresponding true event time. This impact, in turn, depends on both the 

individual longitudinal patterns of exposure (e.g., drug use) and properties of the chosen exposure metric. For example, 

if most users of the drug remained exposed for several months, without interruptions, then TVE values would be little 

affected by even large discrepancies between imputed vs. true event times. Yet, in most real-life applications, 

individual exposure patterns vary considerably between subjects and changes in 𝛽̂𝑋,𝑗 depend mostly on the average 

amount of resulting errors in the TVE. Still, more “acute” exposure metrics, such as current exposure or total dose 

from the past week, are relatively more affected by short-term changes in individual exposure status/dose than long-

term metrics, such as cumulative dose since the beginning of follow-up. Thus, the choice of the extrapolating function 

should be approached as an empirical modelling problem (Lindsey and Ryan, 1998). 

https://github.com/mebeauchamp/SIMEX-IntervalCensoredEvents


 

In our specific context, the full history of individual exposure values 𝑋𝑖(𝑡) is available in prescription databases used 

in most pharmacoepidemiologic studies (MacMahon and Collins, 2001; Abrahamowicz and Tamblyn, 2005; Avorn, 

2007). Thus, one can assess how the discrepancy between an individual’s exposure at different times 𝑋𝑖(𝑡) vs. 𝑋𝑖(𝑢) 

varies with increasing time differences t − u. Specifically, based on measurement error theory (Carroll et al., 2006), 

we consider the correlation 𝑟{𝑋𝑖(𝑡), 𝑋𝑖(𝑢)} as an indicator of the ability of the TVE value 𝑋𝑖(𝑢), at time u, to serve as 

a proxy for 𝑋𝑖(𝑡). 
 

In addition, because the problem is directly related to inaccuracies in establishing event times, we focus on cases. For 

each case s, we first identify his/her imputed event time 𝜏𝑠
∗ and the corresponding TVE value 𝑋𝑠(𝜏𝑠

∗). Then, in p = 

1,...,P iterations, we gradually move the presumed event time back, by 𝑝 ∙ 𝛿𝑡 (where e.g. 𝛿𝑡 = 1 week or 1 month), 

and establish the corresponding exposure values: 𝑋𝑠(𝜏𝑠
∗ − 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗ − 2𝛿𝑡), etc. For each p, we calculate the Pearson 

correlation coefficient between pairs of exposure values for the same case r(𝑝) = r{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)}. Finally, 

we plot the correlations 𝑟{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)} against the corresponding time discrepancies 𝑝 ∙ 𝛿𝑡. The resulting 

curve illustrates how the ability of TVE 𝑋𝑠(𝜏𝑠
∗) to mimic its “target” value 𝑋𝑠(𝜏𝑠) varies with increased discrepancy 

between the corresponding times 𝜏𝑠
∗ vs. 𝜏𝑠, and, thus, provides an empirical basis to (i) select the analytical form of 

the SIMEX extrapolation function 𝑓(∙), and (ii) help determine the number k of iterations for SIMEX step 1.         

 

Notice that these diagnostics rely exclusively on observed data, and thus, can be implemented in real-life settings, as 

illustrated in our simulations in section 3. In all main simulations, summarized in Table 1, and for both TVE metrics, 

the correlation r{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)} decreased, in an approximately linear way, with time discrepancy 𝑝 ∙ 𝛿𝑡 

increasing from 0 to some relatively clear threshold 𝑝′ ∙ 𝛿𝑡 (see Figure 2 for 10 samples simulated for scenario 1 and 

Figure 3 for the skin cancer application (section 4)). Furthermore, for all main simulations, using a linear extrapolation 

function at SIMEX steps 3 and 4 resulted in lower bias and root mean squared error (RMSE) of estimates than using 

quadratic or logarithmic extrapolation functions (Table B.2 in the Supporting Information provides results for one 

scenario). In contrast, in additional simulations based on “change-of-status exposure” generation, which resulted in 

higher short-term within-subject variation in the binary indicator of current drug use, the correlation changed in a non-

linear fashion in the low range of 𝑝 ∙ 𝛿𝑡 values (Figure B.1 of the Supporting Information, panel a)). This suggested a 

logarithmic function which, indeed, in these additional simulations, considerably reduced the bias in the estimated 

effect of current use (but not for cumulative duration of use in the past 12 weeks) relative to the linear extrapolation 

function (Table B.4 of the Supporting Information). 

   

Based on these simulation results, we propose a 4-step approach to select the extrapolation function for a given real-

life application:  

 

a) Start with a visual assessment of the pattern of changes in the correlation 𝑟(𝑝) = 𝑟{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)} 

on the y axis, with increasing time difference 𝑝 ∙ 𝛿𝑡 between the two times when the TVE is assessed on the 

x axis. Identify on the x axis the value corresponding to the mean distance 𝛥𝑡̅̅ ̅ between relevant visits in 

observed data, i.e. ¼ ∙ 𝛥𝑡̅̅ ̅. (When imputing the event time at the mid-point of the interval between two visits, 

the expected value of the discrepancy from the true event time that occurred in the same interval equals about 

¼ of the interval’s length, assuming an approximately uniform distribution of true event times within the 

intervals.) In SIMEX step 1, the difference between the imputed and true event times will progressively be 

increased beyond ¼ ∙ 𝛥𝑡̅̅ ̅ in successive iterations, and then, we must consider time differences 𝑝 ∙ 𝛿𝑡 beyond 

this point to inform about the extrapolating function 𝑓(∙). 

 

b) If no major departure from linearity − for some interval between 0 and 𝑝′ ∙ 𝛿𝑡 beyond ¼ ∙ 𝛥𝑡̅̅ ̅ − is observed 

on the graph, choose the linear function as the default option.  

 

c) If, however, the diagnostic graph shows an important non-linearity for values of 𝑝 ∙ 𝛿𝑡 from 0 to early after 

¼ ∙ 𝛥𝑡̅̅ ̅, choose a simple 1-degree-of-freedom (df) non-linear function, e.g. log(𝑝 ∙ 𝛿𝑡) or (𝑝 ∙ 𝛿𝑡)2, whose 

shape approximates the curve.  

 

d) Identify an approximate upper bound 𝑝′ ∙ 𝛿𝑡, beyond ¼ ∙ 𝛥𝑡̅̅ ̅, over which the function chosen in step b) or c) 

mimics the corresponding 𝑟(𝑝). Then, choose the number k of iterations for SIMEX step 1 so that the upper 

limit 𝛥𝑡̅̅ ̅
𝑘 of the difference between the (modified) times of two relevant visits corresponds approximately to 



4 times this threshold (𝑝′ ∙ 𝛿𝑡). In sensitivity analyses, one may increase 𝑝′and, thus, the number of SIMEX 

iterations k, to assess the robustness of the SIMEX-corrected estimate.  

 
However, as illustrated in real-life analyses in section 4, if the exposure metric is lagged to account for the latency (L) 

between the exposure and an event such as cancer occurrence (Danieli et al., 2019; Richardson and Ashmore, 2005), 

increasing the distance between relevant visits 𝛥𝑡̅̅
𝑗̅ in SIMEX iterations j=1,…,k entails also decreasing artificially the 

number of observed events. Indeed, all original events for which the modified imputed event times, at SIMEX iteration 

j, fall within the period (0, L] will not contribute to estimates for iterations j,…,k. Section C.4 and Figure C.1 of the 

Supporting Information provide further explanations. In such cases, to avoid (i) unstable estimates for later SIMEX 

iterations due to considerably reduced number of events, and (ii) serious incompatibility of exposure log HR estimates 

across iterations (which rely on different numbers of events), we suggest limiting the number of SIMEX iterations k 

so that the corresponding estimates in SIMEX step 2 rely on at least 80% of the originally observed events, and then 

ignore step d) above. 

 

3 Simulations  

3.1 Methods 

Below, we describe the main features of our simulations using the ADEMP (aims, data-generating mechanisms, 

estimands, methods, performance measures) structure (Morris, White and Crowther, 2019). 

 

Aims 

 

Our simulations aim at assessing the performance of the SIMEX-based correction for interval-censored events, 

proposed in section 2, in hypothetical prospective or retrospective pharmacoepidemiological cohort studies of an 

adverse effect of a time-varying drug exposure. We assume that a complete drug exposure history can be reconstructed 

based on recorded timing and duration of prescriptions filled by individual patients (Abrahamowicz and Tamblyn, 

2005; Patorno et al., 2015).  

 

Data-generating mechanisms and assumptions  

 

We generated cohorts of N=750, 1500, or 3000 new users of a drug (Ray, 2005), followed from time 0 until either an 

adverse event of interest or right censoring at the administrative end of the study, at 240 weeks. Without any loss of 

generalizability, no censoring on competing events or losses to follow-up were considered.  

 

For each subject, we randomly generated age (uniform U(40, 80)) and, independently, sex with P(woman)=0.7. To 

generate the time-varying exposure (TVE), we first simulated N individual vectors of 240 binary values of current 

drug use in week t: 𝑈𝑖(𝑡), i = 1,…,N, t = 1,…,240. Different subjects had different propensity to use the drug, and its 

use was intermittent, with alternating periods of use and non-use, whose durations varied both within-subject over 

time and across subjects (Sylvestre and Abrahamowicz, 2009). Section B.1 of the Supporting Information provides 

details of two different approaches used to generate time-varying exposures. The “duration-based exposure” approach 

was used in the main simulations while the “change-of-status exposure” was employed in additional simulations. For 

each subject i, based on his/her generated 𝑈𝑖(𝑡) vector, we then calculated the corresponding time-varying values of 

the cumulative duration of use in the past 12 weeks 𝐶𝑢𝑚12𝑖(𝑡) = ∑ 𝑈𝑖(𝑟)𝑡
𝑟=𝑡−12 .  

 

The events were generated, separately for 𝑈(𝑡) and 𝐶𝑢𝑚12(𝑡), from the exposure-specific PH model, with the hazard 

depending on the respective TVE and time-invariant values of age and sex: 

 

𝜆𝑖(𝑡|𝑎𝑔𝑒𝑖 , 𝑠𝑒𝑥𝑖 , 𝑈𝑖(𝑡)) = 𝜆0exp{0.05 𝑎𝑔𝑒𝑖 + 0.8 𝑠𝑒𝑥𝑖 + 𝛽𝑈𝑈𝑖(𝑡)} 

 

𝜆𝑖(𝑡|𝑎𝑔𝑒𝑖 , 𝑠𝑒𝑥𝑖 , 𝐶𝑢𝑚12𝑖(𝑡)) = 𝜆0exp{0.05 𝑎𝑔𝑒𝑖 + 0.8 𝑠𝑒𝑥𝑖 + 𝛽𝐶𝑢𝑚12𝐶𝑢𝑚12𝑖(𝑡)} 

 

To generate either (i) stronger or (ii) weaker exposure effects, we assumed, respectively, (i) log HRs U = log(3) = 

1.01 and Cum12 = log(2)/6 = 0.12 for one week increase in Cum12(t); or (ii) U = log(2) = 0.69 and Cum12 = 

log(3)/12=0.09.  



 

The combination of the three sample sizes with stronger/weaker effects resulted in six different main simulated 

scenarios for the duration-based exposure simulations (scenarios 1-6). Similar scenarios were replicated in additional 

change-of-status exposure simulations, reported in section B.6 of the Supporting Information (scenarios 9-14). In two 

further simulated scenarios (scenarios 7-8), with N=3000, duration-based exposure generation and strong effects, we 

assumed that (a) the hazard depends also on an additional time-varying binary risk factor generated independently of 

exposure, using duration-based approach, and (b) exposure has no effect (true HR=1.0).  

  

For each scenario, the constant baseline hazard 𝜆0was defined so that about one third of the cohort had uncensored 

events in the 240 weeks of follow-up, resulting in approximately 67% censoring rate. We used the permutational 

algorithm, validated for simulating event times conditional on time-varying exposures (Sylvestre and Abrahamowicz, 

2008; Sylvestre et al., 2015) to generate individual event times (see section B.2 of the Supporting Information for 

details). 

 

Finally, assuming the adverse event is an interval-censored event, we generated individual vectors of consecutive 

irregular clinic visit times, when its occurrence could have been ascertained (see section B.3 of the Supporting 

Information).  

 

For each simulated scenario, we generated 1000 independent and identically distributed random samples.   

 

Methods  

 

Each simulated sample was analyzed with a series of correctly specified Cox PH models, which included the TVE 

used to generate the data (𝑈(𝑡) or 𝐶𝑢𝑚12(𝑡)), age and sex, and, if relevant, the additional time-varying risk factor. 

The models differed only with respect to how they handled the event and censoring times. 

 

First, we estimated two conventional Cox models that made no attempt to correct for the inaccurate (imputed) timing 

of events. In the first, for each patient with an observed event, the imputed event time corresponded to the mid-point 

of the interval between the patient’s last visit before and his/her first visit after the true (generated but assumed 

unobserved) event time. Subjects were censored at the time of their last visit before 240 weeks of follow-up, if they 

had no events until then. (Thus, a few events, generated between the subject’s last visit and 240 weeks, could not be 

“observed” and were ignored in the analyses.) Figure 1 illustrates how this naïve imputation, at the interval’s mid-

point, induces errors in the corresponding TVE values, relative to their values at the true event time. The second 

conventional model imputed event times at the end of the relevant interval.  

 

The same data were then analyzed using the SIMEX-like procedure proposed in section 2.2, with the extrapolating 

function 𝑓(∙) chosen based on diagnostics of section 2.3. For details of SIMEX implementation see section B.4 of the 

Supporting Information.  

 

Finally, as a benchmark, we fit the “oracle” Cox model which used the true times of all events. 

 

Estimands 

 

For each model considered, the estimand of primary interest was the adjusted log HR (𝛽̂𝑈 or 𝛽̂𝐶𝑢𝑚12) for the respective 

TVE. 

 

Performance measures 

 

Estimated exposure log HRs from the 1000 samples simulated per scenario were compared with the corresponding 

true exposure effect, used to generate events, and summarized with respect to: relative bias, empirical standard 

deviation (SD), and root mean squared error (RMSE). In limited additional simulations, we assessed empirical 

coverage rates of the 95% CI for 𝛽̂𝑈 or 𝛽̂𝐶𝑢𝑚12 obtained with different models, i.e. the proportion of simulated samples 

where the 95% CI included the true exposure log HR.   

 

 

 



3.2 Simulation results 

This section summarizes results for the main simulations with “duration-based exposure” generation (see section B.1 

of the Supporting Information for details). The mean number of uncensored events was about 956, 478 and 240 in 

scenarios with N=3000, 1500 and 750, respectively. Section B.5 of the Supporting Information reports details on the 

distance between visits and exposure metrics in generated data. 

 

To choose the extrapolation function used at steps 3 and 4 of the SIMEX-like approach, we relied on diagnostics 

proposed in section 2.3. Figure 2 shows, for 10 random samples of scenario 1 (N=3000, stronger exposure effects, and 

duration-based exposure generation), how the correlation 𝑟(𝑝) =  𝑟{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)}, across all m cases, 

varies with increasing difference in time 𝛿𝑡, relative to the imputed event time 𝜏𝑠
∗. For both exposure metrics (current 

use 𝑈(𝑡) and cumulative duration of use in the past 12 weeks 𝐶𝑢𝑚12(𝑡))), 𝑟(𝑝) increases approximately linearly for 

𝛿𝑡 increasing from 0 to about 10-15 weeks, and then gradually stabilizes for larger time differences 𝛿𝑡 > 20 weeks. 

Based on these diagnostics, we decided to rely on the linear extrapolating function for SIMEX, and limited the range 

of 𝛿𝑡 values used to estimate this function to about 13 weeks. The mean expected error in the timing of an event s, 

imputed at the mid-point of the interval between the two relevant visits, is close to ¼ of the length of this interval 

[𝑡𝑠,𝑒−1, 𝑡𝑠,𝑒]. Thus, in SIMEX iterations we aimed at about 52 weeks (4*13 weeks) as the upper bound for the range 

for the artificially increased mean difference between relevant visits for cases 𝛥𝑡̅̅
𝑗̅ (see section 2.3 for details). This 

implied k=15 iterations, with 𝛥𝑡̅̅
𝑗̅ increasing from 𝛥𝑡̅̅ ̅ = 25.6 weeks for the “observed” data (vertical dotted lines in 

Figure 2, at 25.6/4 = 6.4 weeks) to 𝛥𝑡̅̅ ̅
15 = 51.0 weeks (1st dashed vertical line in each panel in Figure 2, at 51.0/4=12.8 

weeks). However, we recognize that in real-life applications, the exact number of iterations used to estimate the 

extrapolating function may be subject to arbitrary decisions. Therefore, as sensitivity analyses, we increased the 

number of iterations to k=25, with  𝛥𝑡̅̅
𝑗̅ distributed between 25.6 and 65.7 weeks (2nd vertical dashed lines in Figure 2, 

at 65.7/4=16.4 weeks). 

 

Table 1 and Table B.1 in the Supporting Information compare the log HR estimates for the effects of (i) current use 

𝑈(𝑡) (upper half) and (ii) cumulative duration of drug use in the past 12 weeks (lower half), obtained with different 

modelling strategies, for the six main simulated scenarios. As expected, the “oracle” analyses, which relied on true 

event times, yielded the lowest RMSEs and uniformly unbiased estimates (Supporting Information Table B.1), which 

indirectly validates our approach for simulating individual event times based on the permutational algorithm (Sylvestre 

and Abrahamowicz, 2008). The conventional estimates, which did not correct for inaccurately imputed event times at 

the midpoint of the relevant intervals, yielded relative underestimation bias of about 50% for current use and 30% for 

cumulative duration (Table 1). Biases of conventional estimates increased further to about 67% and 52%, respectively, 

if events were imputed at the end of the interval (Supporting Information Table B.1). The bias is stronger for the binary 

indicator of current use, for which an error in the imputed value implies a complete reversal of the true exposure status. 

 

SIMEX estimates, with linear extrapolation, reduced the relative bias to 16%-25% for current use and only to 6%-

10% for cumulation duration (Table 1). However, as expected, the SDs of SIMEX estimates were about twice higher 

than for conventional estimates (Table 1). Even so, in all simulations summarized in Table 1, the bias/variance trade-

off, in terms of lower RMSE, was systematically better for SIMEX-corrected estimates. The benefits of SIMEX were 

most evident for larger N and/or stronger exposure effects (Table 1), where RMSE was more affected by the bias than 

by variance. Still, even with only N=750 and 239 events, for weaker exposure effects, SIMEX reduced RMSEs 

moderately, by 11%, for current use and slightly, by 5%, for cumulative duration (scenario 6 in Table 1). All 

aforementioned SIMEX results were similar for k=15 vs. k=25 iterations at step 1 (Table 1), confirming the robustness 

of our estimates.   

 

Table 2 and Table B.3 of the Supporting Information summarize results for two variations of scenario 1. Scenario 7 

shows that including an additional time-varying covariate does not change materially the results for exposure, 

confirming the applicability of the proposed SIMEX-based approach in multivariable analyses. Scenario 8 indicates 

that, as expected, when the TVE is not associated with the hazard (true β=0), both conventional and SIMEX estimates 

are unbiased, but the latter inflates the variance.  

 

Similar results for additional simulations, with TVEs generated using the “change-of-status” approach are reported in 

Supplementary Tables B.4 and B.5, with brief comments in section B.6, of the Supporting Information. 

 



Finally, we used 500 random samples simulated for scenario 3 to assess the coverage rates of 95% bootstrap CIs, 

based on 300 bootstrap resamples. Due to important biases (Table 1), conventional estimates yielded very poor 

coverage rates ≤ 7.2% for both exposure metrics (with both analytical and bootstrap-based CIs). In contrast, for 

SIMEX estimates, bootstrap-based CIs yielded much better coverage rates of 79.2% for current use and 89.8% for 

cumulative drug use duration in the past 12 weeks, for which SIMEX estimates were less biased.  

 

4 Application: cumulative duration of hydrochlorothiazide use and risk of non-

melanoma skin cancer 

4.1 Methods 

Background 

 

To illustrate a real-life pharmacoepidemiology application, we used a large population-based cohort to re-assess the 

potential association between TVE to hydrochlorothiazide (HCTZ), a popular antihypertensive drug, and the hazard 

of non-melanoma skin cancer (NMSC), the most commonly diagnosed cancer (Lomas, Leonardi-Bee and Bath-

Hextall, 2012). HCTZ increases the sensitivity of the skin to sunlight and ultraviolet radiation (Blakely, Drucker and 

Rosen, 2019), which are important risk factors for NMSC (Kaae et al., 2010; Makhzoumi and Arron, 2013). Because 

the NMSC risk, similar to other cancers, is likely affected by cumulative exposure to relevant carcinogen(s) (Danieli 

et al., 2019; Richardson and Ashmore, 2005), careful modelling of the TVE is required (Abrahamowicz et al., 2012). 

However, NMSC occurrence can be diagnosed only at a visit to a physician who had requested a biopsy for NMSC 

or has a relevant specialty, particularly dermatology. Thus, the NMSC occurrence is an interval-censored event.  

 

Data source 

 

We used a subset of participants of the Ontario Health Study (OHS), a long-term study of about 225,000 residents of 

the Canadian province of Ontario. OHS data are linked to data on all hospitalizations and medical visits in 2006-2017, 

and provide details on all drug prescriptions for elderly participants, aged over 65 years, covered by the public 

prescription drug plan. 

 
We relied on the new user design (Ray, 2005), i.e. limited the analyses to subjects who started HCTZ use at some time 

after they entered the OHS cohort and had not used it for six prior months. This design reduces substantially concerns 

about potential confounding-by-indication related to unmeasured time-invariant characteristics (Ray, 2005). We 

excluded subjects diagnosed with NMSC or melanoma before their 1st HCTZ prescription. Finally, similar to other 

studies of this association, we assumed a lag of 2 years (Pottegard et al., 2019; Eworuke et al., 2021) between HCTZ 

exposure and NMSC occurrence. Accordingly, exposures were lagged (Danieli et al., 2019) and subjects followed for 

less than 2 years after their 1st HCTZ prescription were excluded, restricting the analyses to 3152 new HCTZ users. 

 

Event and censoring times 

 

Time 0 corresponded to entry into the OHS cohort. To avoid immortal time bias (Suissa, 2008; Zhou et al., 2005), we 

used the delayed entry approach, with subjects entering risk sets only after the time of their 1st HCTZ prescription 

(Sylvestre and Abrahamowicz, 2009). 

 

During follow-up, 175 subjects were diagnosed with NMSC. All NMSC diagnoses were recorded in the database at 

the time of a visit to a physician with a relevant specialty (mostly dermatology, general practice, plastic or general 

surgery). To account for interval-censored events, all subjects who had no NMSC diagnosis during follow-up were 

censored at the time of their last recorded relevant physician visit, after which there was no opportunity to get the 

diagnosis. In addition, subjects who discontinued HCTZ treatment or switched to an alternative antihypertension drug 

were censored 25 months (to account for the 2-year latency discussed above) after the end of their most recent HCTZ 

prescription. If subject s had NMSC diagnosed at a physician visit at time 𝑡𝑠,𝑒, we imputed the presumed event time 

at the mid-point of interval between the preceding relevant visit 𝑡𝑠,𝑒−1 and 𝑡𝑠,𝑒. Section C.1 of the Supporting 

Information describes the algorithm used to determine 𝑡𝑠,𝑒−1, based on the visit history and physician specialties. 

 



Time-varying exposures 

 

Because, for many cancers, the time window of the etiologically relevant exposures is limited to a few years (Danieli 

et al., 2019; Richardson and Ashmore, 2005), and the median follow-in our cohort was only 4.8 years, we focused on 

the potential impact of cumulative duration of HCTZ exposure in a 2-year interval spanning 2-4 previous years (to 

account for the 2-year lag). Section C.2 of the Supporting Information describes details of constructing the resulting 

continuous TVE.    

 

Analyses 

 

We first estimated the conventional multivariable Cox proportional hazards (PH) model. All models adjusted for 

calendar year and the following time-invariant covariates, selected a priori as known or plausible risk factors for 

NMSC, evaluated at cohort entry: age group, sex, Charlson comorbidity index, other comorbidities and clinical 

conditions (diabetes, dialysis, chronic kidney disease, and aid), use of any drug with potential photosensitizing 

properties, and other antihypertensive drugs. The PH assumption was tested using the Grambsch and Therneau (1994) 

approach implemented in the R survival package and was not rejected either globally (p = 0.084) or for the HCTZ 

exposure (p = 0.919). 

 

Then, we employed the SIMEX adaptation, proposed in section 2.2, to correct for the potential bias due to interval-

censoring of NMSC events. Section C.3 of the Supporting Information provides details of our SIMEX implementation. 

The confidence interval for SIMEX-corrected log HR was estimated using bootstrap with 1000 resamples. 

 
4.2 Application results 

During the total follow-up of 14 310 person-years (mean = 4.5 years, median = 4.8, IQR: 3.2 – 5.8), 175 (5.6%) among 

the 3152 new HCTZ users were diagnosed with NMSC, with an incidence rate of 12.2 NMSC cases per 1000 person-

years. 

 

Table 3 shows that in the conventional multivariable model, increasing duration of exposure, in the 2-year window 

from 2 to 4 years ago, is associated with a moderate increase in the hazard of NMSC (49% for each additional 2 years 

of HCTZ exposure). However, this association is statistically non-significant (two-tailed p-value for the model-based 

Wald test = 0.133), which may be partly due to the low number of 175 events and, thus, limited power.  

 

On the other hand, across the 175 NMSC cases, the mean time difference between the visit when NMSC diagnosis 

was recorded and the previous relevant medical visit was 8.6 months (median = 5.3, IQR: 3.0 – 9.5). Thus, given 

simulation results in section 3.2, the above conventional estimate is likely somewhat biased toward the null. Indeed, 

diagnostics proposed in section 2.3 indicated that the correlation 𝑟(𝑝) = 𝑟{𝑋𝑠(𝜏𝑠
∗ − 𝑝 ∙ 𝛿𝑡), 𝑋𝑠(𝜏𝑠

∗)} between the 

corresponding exposure values, across the cases, decreased in a fairly linear fashion with increased time difference 

𝑝 ∙ 𝛿𝑡, over a long time window of up to 20 months, and tended to stabilize at around r = 0.4 for larger differences 

(Figure 3). On the other hand, because of the 24-month lag, the observed number of events decreased quickly with 

artificially increased differences between the two relevant visits for cases, which gradually shifted the imputed event 

times to earlier dates (see section C.4 and Figure C.1 of the Supporting Information for further comments on this 

issue). Based on this evidence and recommendations in section 2.3, we decided to (i) use the linear extrapolating 

function at steps 3 and 4 of our proposed SIMEX-like procedure, and (ii) limit the number of iterations at step 1 to 

k=7, so that the upper threshold for the mean time between relevant visits 𝛥𝑡̅̅ ̅
𝑘 for cases does not exceed 22.4 months, 

the last iteration at which the number of observed events (145) remains above 80% of the original 175 events. This 

corresponds to 5.6 months (22.4/4) in Figure 3.  

 

The resulting SIMEX-corrected estimate suggest a somewhat stronger association than estimated through the 

conventional model (Table 3). Indeed, the adjusted HRs associated with 2 years of cumulative duration of HCTZ 

exposure between 2 and 4 years ago, are HR=1.49 (95% CI: 0.89 to 2.52) for conventional model versus HR=1.63 

(95% CI: 0.92 to 3.15) for the SIMEX-corrected estimate. This corresponds to a 27% relative increase in the estimated 

excess hazard (0.626/0.494 = 1.268), associated with 2 years of continuous HCTZ use in the relevant period of 2-4 

years ago after correcting for imprecise timing of the events. 

 



5 Discussion 

It is important to develop and validate methods able to handle analytical challenges of assessing associations between 

time-varying exposures (TVEs) with interval-censored endpoints. We presented a pragmatic solution that adapts the 

simulation-extrapolation (SIMEX) methodology (Cook and Stefanski, 1994) to time-to-event analyses involving 

interval-censored events, which occurrence can be established only at sparse clinic visits. We also proposed 

diagnostics that help choose the SIMEX extrapolating function, used to extrapolate the estimated regression 

coefficient to the hypothetical ideal situation when event times are measured without errors. 

 

Our simulations, designed to mimic pharmacoepidemiology cohort studies of the association between time-varying 

drug exposures and the hazard of an interval-censored adverse event, illustrate the potential advantages of the proposed 

approach. For both a binary indicator of current drug use and cumulative duration of past exposure, SIMEX-corrected 

estimates reduced considerably the serious bias toward the null of conventional Cox PH model estimates. Even if 

SIMEX estimates had systematically higher variance, typical for multiple-stage estimation procedures designed 

primarily to reduce bias (Hernan, Brumback and Robins, 2000; Xiao, Moodie and Abrahamowiczm 2013; Brookhart 

et al., 2006; Ionescu-Ittu, Delaney and Abrahamowicz, 2009; Esteve et al., 1990; Le Teuff e al., 2005), they generally 

yielded better bias/variance trade-off, i.e. lower root mean squared error (RMSE) than the corresponding conventional 

estimates. RMSE reductions were more pronounced for (i) larger samples and/or (ii) stronger true exposure effects, 

as they imply that, respectively, (i) the variance becomes relatively less important, and (ii) the absolute amount of bias 

increases (for the same relative bias). Still, the RMSE was generally improved even for N=750 (about 239 events) and 

weaker exposure effects. As expected, when the true effect was null (HR=1.0), both the conventional and SIMEX 

estimates were unbiased and similar, except for increased variance of the latter. 

 

Thus, the proposed method may be of particular interest for pharmacoepidemiology which typically relies on very 

large administrative health databases, with detailed time-varying history of prescriptions filled by several thousands 

of users of a given drug (Patorno et al., 2015; Abrahamowicz and Tamblyn, 2005), i.e. sample sizes larger than 

considered in our simulations. As many adverse drug events represent interval-censored endpoints, it is important to 

reduce the resulting bias in the estimated associations, as illustrated by our analyses of the cumulative impact of 

exposure to hydrochlorothiazide (HCTZ) on the hazard of non-melanoma skin cancer (NMSC). The fact that the 

SIMEX-based correction increased the strength of this association only moderately may be partly due to (i) the 

relatively frequent clinic visits by the participants, and (ii) limited within-subject variation over-time in HCTZ use, 

consistent with generally good adherence to antihypertensive medications (Friedman et al., 2010; Gee et al., 2012). 

Thus, the updated values of cumulative exposure duration, for the same subject at different times, were often strongly 

correlated, reducing the impact of imprecise timing of events. Still, SIMEX-corrected estimates suggested that 2 years 

of cumulative HCTZ use, 2-4 years ago, were associated with HR=1.63, i.e. a 27% higher estimated excess hazard 

than the conventional HR=1.49. 

 

The classic SIMEX methodology (Cook and Stefanski, 1994) has been extended to several more complex settings, 

including survival analysis with time-invariant predictors (He, Yi and Xiong, 2007; Greene and Cai, 2004; Zhang, He 

and Li, 2014), estimation of IPT weights in marginal structural models (Kyle et al., 2016), non-linear effects of error-

prone time-varying covariates (Wang et al., 2020), or categorical predictors (Kuchenhoff et al., 2006). Similar to our 

approach, most of these extensions used some ad hoc methods and then relied on simulations to assess and validate 

the resulting SIMEX-corrected estimates (Kyle et al., 2016; Kuchenhoff et al., 2006; Wang et al., 2020; Oh et al., 

2018).  

 

Recently, SIMEX was adapted to address a somewhat different problem of inaccurate timing of events self-reported 

by the patients (Oh et al., 2018). The authors assumed that the resulting discrepancies from the true (unknown) event 

times follow the classic ME model, with normal distribution around the mean of 0. Their simulation results are 

generally similar to ours in that SIMEX-corrected estimates considerably reduce bias of the conventional Cox model-

based estimates, but do not entirely eliminate bias. However, TVEs are not discussed while, based on our simulation 

results, they may be especially sensitive to inaccuracies in the event times. Thus, further research should evaluate 

SIMEX-corrected estimates of the association between time-varying exposures and the hazard of events for which 

times are affected by classic measurement errors. 

 

We recognize some limitations of both our methods and our simulations. Firstly, our pragmatic SIMEX-like approach 

relies on the choice of an appropriate functional form of the extrapolating function used in steps 3 and 4. Indeed, for 



the binary time-varying indicator of current drug use, for example, both the bias and RMSE of SIMEX-corrected 

estimates may be only marginally lower than for conventional estimates if the extrapolating function is not well chosen 

(Tables B.2 and B.4 in the Supporting Information). To address this practically important challenge, in section 2.3 we 

propose specific diagnostics that rely on the fact that in many real-life applications, e.g. pharmacoepidemiology 

analyses of prescription databases or environmental studies of ambient air pollution, the full history TVE is recorded. 

Therefore, the expected impact of (a) increasing absolute discrepancy between imputed vs. true event times on (b) 

decreasing correlation between the corresponding updated exposure values can be approximated based on the available 

data. One can rely on plots of the relationship between (a) and (b) to choose the analytical form of the extrapolating 

function. Yet, simulation results in section 3.2 suggest using linear function as a default option, unless the plot shows 

considerable non-linearity. The correlation plot may also often suggest an approximate interval over which the 

difference between visits is artificially increased and, thus, the number of iterations for SIMEX step 1. However, as 

illustrated in real-life application in section 4, if the exposure is lagged, the number of iterations may have to be 

reduced to avoid losing too many early events (section C.4 of the Supporting Information provide further insights). 

Finally, it is possible that in some applications the proposed diagnostics will be of little help. For example, if the 

average difference D between times of the two relevant visits, before and after the true event time, is so large that the 

correlation between the corresponding exposure values is close to 0, the proposed extrapolation will not work due to 

a “floor effect”, yielding the SIMEX-based extrapolated log HR value very close to the conventional uncorrected 

estimate. If so, the proposed diagnostic plot may be still help approximately assess whether the resulting estimates are 

highly or only moderately biased, but the correction will not be possible. In addition, while we focused on MEs in 

interval-censored event times, similar errors may affect time-varying covariates, e.g. the occurrence of new 

comorbidities, based on clinical assessment at discrete times of medical visits. This may induce residual confounding 

of the estimated exposure effect, with the direction of bias that depends on the pattern of covariate-exposure and 

covariate-outcome associations (Brenner and Blettner, 1997). Further analytical developments will be necessary to 

allow SIMEX-like corrections for errors in both interval-censored events and time-varying covariates. 

 

Furthermore, the potential advantages of the proposed SIMEX-based approach depend on both the effective sample 

size, i.e. the number of uncensored events, and the underlying data structure. From this perspective, it is important to 

ensure that simulations that assess the performance of statistical methods are based on realistic assumptions, relevant 

for potential future real-life applications (Boulesteix et al., 2018; Morris et al., 2019). Accordingly, our time-varying 

simulations were designed to generate plausible patterns of both between- and within-patient changes in time-varying 

exposure. Future research may consider plasmode simulations, with exposure matrix based on specific real-life dataset 

(Franklin et al., 2014).  

 

Finally, similar to other SIMEX implementations, the multi-step approach proposed in section 2.2 requires repeated 

iterations of data manipulations and refitting of multivariable models. However, necessary calculations are rather 

straightforward and the resulting computing times are reasonable. For example, the time to get the SIMEX estimate 

for the current use metric for one simulated sample with N=3000 for scenario 1 was about 45 seconds and 3.5 hours, 

respectively, without and with calculating the 95% bootstrap CI based on 300 resamples (computer under Windows 

10 operating system, with Intel Xeon 3.60 GHz processor). 

 

In conclusion, we proposed a pragmatic extension of the SIMEX methodology to correct for bias in time-to-event 

analyses of associations between time-varying exposures and the hazard of interval-censored events. Given 

encouraging results of both simulations and the real-life pharmacoepidemiology application, we believe this method 

may be useful in several large empirical studies. Our work may also stimulate further methodological research on 

adapting SIMEX to deal with different challenges specific to time-to-event analyses. 
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Figure 1 Measurement errors in time-varying exposure metrics due to imputing the event time at the mid-point 

between the two relevant visits, relative to exposure metric values at the true event time, for a hypothetical subject. 

The two panels correspond to the exposure metrics used in our simulations: a) current drug use 𝑈(𝑡), and b) 

cumulative duration of drug use in the past 12 weeks 𝐶𝑢𝑚12(𝑡). In panel a), the true event time occurs during a 

period of non-use of the drug, but the imputed event time at the mid-point of the interval between the two relevant 

visits correspond to a period of current use. In panel b) it can be seen that the cumulative duration of drug use differs 

between the imputed vs. true event times.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 2 Diagnostics for the selection of the extrapolating function for each of the two exposure metrics: a) current 

drug use 𝑈(𝑡) and b) cumulative duration of drug use in the past 12 weeks 𝐶𝑢𝑚12(𝑡), for scenario 1 (N=3000, 

stronger exposure effects, and duration-based exposure generation). Each panel shows how the correlation between 

the exposure values observed for the same case at different times varies with increasing time difference from the 

original imputed event time. The gray lines are for 10 individual samples and the bold black line represents the mean 

across the 1000 simulated samples. The vertical dotted line indicates the correlation corresponding to the mean 

difference between the imputed vs. the true event times (at 25.6/4 = 6.4 weeks, given observed 𝛥𝑡̅̅ ̅= 25.6 weeks on 

average across simulated samples). The vertical dashed lines in each panel correspond to the selected number of 

iterations for the proposed SIMEX approach, i.e. either 15 or 25 iterations. 

 

 



 

 

 

Table 1 Comparison of model-specific log HRs for the main scenarios with duration-based exposure generation 

 

Scenario N  

[mean # 

events]1 

True log HR Cox model SIMEX 

extrapolating 𝒇(∙) 

Relative 

bias (%) 

SD  RMSE 

Exposure metric: Current use 

1 3000 

[956] 

log(3) = 1.10 Conventional, event at middle of interval -- -50.4 0.065 0.558 

 SIMEX Linear 15 iterations -19.7 0.140 0.257 

 SIMEX  Linear 25 iterations -24.5 0.114 0.292 

2 3000 

[955] 

log(2) = 0.69 Conventional, event at middle of interval -- -49.1 0.062 0.346 

 SIMEX  Linear 15 iterations -16.2 0.142 0.181 

 SIMEX  Linear 25 iterations -21.4 0.110 0.185 

3 1500 

[478] 

log(3) = 1.10 Conventional, event at middle of interval -- -50.7 0.092 0.564 

 SIMEX  Linear 15 iterations -19.8 0.201 0.296 

 SIMEX  Linear 25 iterations -24.2 0.160 0.310 

4 1500 

[478] 

 

log(2) = 0.69 Conventional, event at middle of interval -- -49.0 0.090 0.351 

 SIMEX  Linear 15 iterations -17.7 0.195 0.231 

 SIMEX  Linear 25 iterations -21.4 0.157 0.216 

5 750 

[240] 

log(3) = 1.10 Conventional, event at middle of interval -- -50.2 0.127 0.566 

 SIMEX  Linear 15 iterations -19.6 0.281 0.354 

 SIMEX  Linear 25 iterations -24.1 0.224 0.347 

6 750 

[239] 

log(2) = 0.69 Conventional, event at middle of interval -- -49.4 0.131 0.367 

 SIMEX  Linear 15 iterations -18.8 0.300 0.327 

 SIMEX  Linear 25 iterations -22.5 0.236 0.283 

Exposure metric: Cumulative duration in past 12 weeks 

1 3000 

[956] 

log(2)/6 = 0.12 Conventional, event at middle of interval -- -30.7 0.007 0.036 

 SIMEX  Linear 15 iterations 8.3 0.015 0.018 

 SIMEX  Linear 25 iterations 6.4 0.014 0.015 

2 3000 

[955] 

log(3)/12 = 0.09 Conventional, event at middle of interval -- -30.4 0.006 0.029 

 SIMEX  Linear 15 iterations 8.0 0.014 0.016 

 SIMEX  Linear 25 iterations 6.4 0.012 0.014 

3 1500 

[479] 

log(2)/6 = 0.12 Conventional, event at middle of interval -- -30.6 0.010 0.037 

 SIMEX  Linear 15 iterations 8.3 0.022 0.024 

 SIMEX  Linear 25 iterations 6.0 0.019 0.020 



 

 

 

4 1500 

[478] 

 

log(3)/12 = 0.09 Conventional, event at middle of interval -- -30.2 0.010 0.029 

 SIMEX  Linear 15 iterations 8.5 0.020 0.022 

 SIMEX Linear 25 iterations 7.3 0.018 0.019 

5 750 

[240] 

log(2)/6 = 0.12 Conventional, event at middle of interval -- -29.8 0.013 0.037 

 SIMEX  Linear 15 iterations 9.7 0.030 0.032 

 SIMEX  Linear 25 iterations 7.4 0.026 0.027 

6 750 

[239] 

log(3)/12 = 0.09 Conventional, event at middle of interval -- -30.4 0.014 0.031 

 SIMEX  Linear 15 iterations 7.7 0.029 0.029 

 SIMEX  Linear 25 iterations 6.3 0.025 0.026 
1 Mean number of events in imputed data. Events after the last visit during follow-up are ignored, as subjects are censored at their last visit. 

 

 

 

Table 2 Comparison of model-specific log HRs for additional scenarios with duration-based exposure generation 

 

Scenario N  

[mean # 

events]1 

True log HR Cox model SIMEX 

extrapolating 𝒇(∙) 

Relative 

bias (%) 

SD  RMSE 

Exposure metric: Current use 

7 3000 

[955] 

log(3) = 1.10 Conventional, event at middle of interval -- -50.6 0.068 0.561 

Extra TV SIMEX Linear 15 iterations -19.5 0.149 0.261 

risk factor SIMEX  Linear 25 iterations -24.6 0.118 0.295 

8 3000 

[955] 

log(1) = 0 Conventional, event at middle of interval -- bias: -0.001 0.064 0.064 

 SIMEX Linear 15 iterations bias: 0.003 0.147 0.147 

 SIMEX  Linear 25 iterations bias: 0.002 0.114 0.114 

Exposure metric: Cumulative duration in past 12 weeks 

7 3000 

[955] 

log(2)/6 = 0.12 Conventional, event at middle of interval -- -30.8 0.007 0.036 

Extra TV SIMEX Linear 15 iterations 8.1 0.015 0.017 

risk factor SIMEX  Linear 25 iterations 6.5 0.013 0.015 

8 3000 

[955] 

log(1) = 0 Conventional, event at middle of interval -- bias: 0.000 0.007 0.007 

 SIMEX Linear 15 iterations bias: 0.000 0.014 0.014 

 SIMEX  Linear 25 iterations bias: 0.000 0.013 0.013 
1 Mean number of events in imputed data. Events after the last visit during follow-up are ignored, as the subjects are censored at the last visit. 



 

 

Table 3 Results of alternative multivariable Cox PH models for the association of cumulative 

hydrochlorothiazide (HCTZ) use duration with the hazard of non-melanoma skin cancer 

 

Exposure Cox model 
Adjusted HR for 

2-year increase 95% CI 

HCTZ duration of use, in the 2-year 

window from 4 to 2 years ago 

Conventional, event at 

middle of interval 
1.49 (0.89, 2.52)1 

SIMEX, linear 

extrapolation 7 iterations 
1.63 (0.92, 3.15)2 

1 Covariance matrix-based confidence interval (CI).  
2 CI based on 1000 bootstrap resamples. 

 

 

 
Figure 3 Diagnostics for the selection of the extrapolating function form, for the association of 

cumulative 2-year duration, 2-4 years ago, of hydrochlorothiazide use and the risk of non-melanoma 

skin cancer. The graph shows how the correlation between the exposure values observed for the same 

case at different times varies with increasing time difference from the original imputed event time. The 

vertical dotted line indicates the correlation corresponding to the mean difference between the imputed 

vs. the true event times in the observed data (8.6/4 = 2.1 months, given the observed 𝛥𝑡̅̅ ̅ = 8.6 months). 

The vertical dashed line corresponds to the selected number of iterations for the SIMEX approach, i.e. 

7 iterations, corresponding to 5.6 months on x axis. 

 

 


