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ABSTRACT 

Objective: Identify the most performant automated text classification method (e.g., algorithm) for 

differentiating empirical studies from nonempirical works in order to facilitate systematic mixed studies 

reviews. 

Methods: The algorithms were trained and validated with 8050 database records, which had previously 

been manually categorized as empirical or nonempirical. A Boolean mixed filter developed for filtering 

MEDLINE records (title, abstract, keywords, and full texts) was used as a baseline. The set of features 

(e.g., characteristics from the data) included observable terms and concepts extracted from a 

metathesaurus. The efficiency of the approaches was measured using sensitivity, precision, specificity, 

and accuracy.  

Results: The decision trees algorithm demonstrated the highest performance, surpassing the accuracy of 

the Boolean mixed filter by 30%. The use of full texts did not result in significant gains compared with 

title, abstract, keywords, and records. Results also showed that mixing concepts with observable terms 

can improve the classification.  

Significance: Screening of records, identified in bibliographic databases, for relevant studies to include 

in systematic reviews can be accelerated with auto- mated text classification.  

Keywords: automated text classification, decision tree, health care, research method, support vector 

machine, systematic review 

1. CONTEXT

Researchers, policymakers, and practitioners are increasingly interested in literature reviews can 
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be used to justify, design, and interpret results of primary studies. Their growing popularity is mainly 

due to the increasing interest in evidence-informed decision-making and the need to have rigourous 

methods to identify and synthesize research. To synthesize research results, preference is given to 

systematic reviews since they use reproducible methods and are reported in a transparent manner.1 

Systematic reviews are considered epistemologically, methodologically, and practically relevant since 

they synthesize the best available evidence for a specific question. Moreover, they are increasing in 

popularity; the growth of the annual number of published systematic reviews largely exceeds that of other 

types of publications at least since 2010.2  

Over the past decade, mixed studies reviews have emerged as a new type of systematic review. 

They apply mixed methods approaches to critically analyse, synthesize, and integrate the findings of 

empirical studies.3-5 Moreover, given they combine empirical evidence from qualitative, quantitative, 

and mixed methods studies, these reviews can provide a rich understanding of complex phenomena. 

Although empirical research has a clear definition (based directly on observation, experiment, or 

simulation, rather than on reasoning or theory alone),6,7 because mixed studies reviews include all types 

of empirical research designs,3 search strategies often yield a high number of records to screen 

(sometimes more than 10 000). In fact, many of these records are totally irrelevant. The high yield means 

that the screening process is time consuming. Unlike reviews of randomized controlled trials, for 

example, because systematic mixed studies reviews include all types of design, no term referring to study 

design can be used to capture them. Empirical research is not referred to as empirical in articles, but 

rather by study design. 

In addition to that, it is estimated that approximately 1.4 million articles are written every year in 

scientific journals.8 Estimates also indicate that the entire systematic review process typically takes about 

12 months,9 which may include 1 or 2 months for manual screening of records. This time scale can be 

problematic for researchers limited in resources. As a result, a high number of irrelevant entries must be 

filtered. One common practice in systematic reviews is to use highly sensitive search filters to narrow 

the search for relevant records. The filters (or classifiers) have been developed for a very specific purpose, 

specific study type design (e.g., randomized controlled trials10) or discipline (e.g., primary care11). 

Traditional search strategies in bibliographic databases generally have high sensitivity (i.e., recall in 

computer science) and specificity for randomized controlled trials but are limited for other types of 

research study designs.12 Since mixed studies reviews are interested in several types of designs, these 

filters cannot be used. Also, several nonempirical works such as opinion letters, commentaries, editorials, 

reviews, and errata form a group of irrelevant records that are difficult to identify using traditional search 

filters because they often follow a research paper format (introduction, method, results, and discussion). 
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El Sherif et al13 proposed a mixed filter based on Boolean expressions to facilitate the 

identification of empirical studies for systematic mixed studies reviews. This Boolean filter covers 

quantitative, qualitative, and mixed methods studies and includes keywords and subject headings for 

identifying empirical studies and excluding nonempirical works. This filter has shown high sensitivity 

(89.5%), but its precision and specificity are just over 50%. The task of identifying empirical studies can 

be cast as a text classification problem since it can be resolved with two classes: relevant (empirical) or 

irrelevant (nonempirical). Automated text classification is “the activity of labelling natural language texts 

with thematic categories from a predefined set of data.”14 Also, automated text classification algorithms 

have the potential to provide users with a confidence or likelihood scale for each prediction. Automated 

text classification approaches are promising avenues for reducing the burden of screening of thousands 

of irrelevant records often captured in bibliographic data base searches for systematic reviews. In medical 

topic-specific searches, it was shown that these methods may reduce screening time by half without any 

loss of relevant records.15 Studies about the effectiveness of automated text classification for screening 

papers in systematic reviews are increasingly being published.16-19  

Extant research mainly focusses on topic-specific algorithm training where algorithms are 

conditioned to measure the relationship between a research question and a study. Little is known about 

the automated identification of potential relevant studies for systematic mixed studies reviews. Indeed, 

no research has been done to evaluate the performance of automated text classification for reviews based 

on research methods. Therefore, the objective of this study was to identify the most performant algorithm 

to distinguish empirical studies from nonempirical works, thereby facilitating the search and filtering of 

qualitative, quantitative, and mixed methods studies. The objectives of this study cover the following 

points: 

1. Identify the relevant characteristics (i.e., features) of both classes of document (i.e., empirical and 

nonempirical). 

2. Compare the most popular text classification methods with the Boolean “mixed filter.” 

3. Design a fitted model based on the most efficient algorithm and features. 

 

2. METHODS 

 

2.1 Text Collection  

 The text collection is a training set of preclassified records that are used to test the algorithms. 

This text collection consisted of sets of titles, abstracts, and full texts. 
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2.1.1 Titles and abstracts 

In order to train and test the different algorithms, we used several collections. The first contains the 5516 

entries extracted from seven journals (covering three areas: medical informatics, public health, and 

primary care) assembled by the developers of the Boolean mixed filter for evaluating its performance.13 

Second, we reused screened records and results from previous systematic reviews.20-27 These reviews 

cover a broad range of topics, from electronic prescription usage and participatory research to dementia 

and online health care. In total, approximately 10 000 records were gathered. After removing entries 

with- out abstract or full text, 8050 were included in the final col- lection. The relevant entries (i.e., 

empirical) were labelled “1,” and the irrelevant entries (i.e., nonempirical) were labelled “0.” Only titles 

and abstracts were considered in our initial experimentations. Subsequently, full texts were used for 

performance comparison. Table 1 shows the final collection distribution. 

 

2.1.2 Full texts 

 Researchers can obtain full texts automatically from reference management software, provided 

their institution has access. Thus, we also measured the benefits of incorporating full texts to the 

classification task. It should be noted that this evaluation is experimental since the availability of such 

content depends on database subscriptions.  

Full texts (PDF) were automatically using EndNote or retrieved manually via Google Scholar. In 

order to convert PDF files into usable text files, we used Tika,* a content analysis toolkit developed for 

different document formats. It should be noted that this conversion can be fully automated using the Tika 

application program interface. 

* https://tika.apache.org. 

 

2.2 Datasets 

 To train the automatic classifiers (algorithms) and, thus, adjust the parameters of their 

mathematical functions described below, the final collection had to be separated into three datasets: a 

training set, a validation set, and a test set. The classifiers were tested on the same entries as the Boolean 

mixed filter using a fourfold cross validation. Therefore, each distinct fold contained 1136 entries for 

testing, 1000 entries for validation (i.e., optimization), and 5914 entries for training. Entries were selected 

randomly while keeping the same category ratio (i.e., empirical/nonempirical) between folds. 

 

2.3 Baseline 

 The algorithms were compared with the Boolean mixed filter13 as it is the only approach to 
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distinguish empirical studies from nonempirical works. Developed by librarians and researchers with 

expertise in systematic mixed studies reviews, this filter consists of a combination of subject headings 

and keywords associated with randomized controlled trials, nonrandomized and descriptive quantitative 

studies, and qualitative and mixed methods studies and has been implemented for MEDLINE, an online 

bibliographic database. With a search engine like the one provided by MEDLINE, it is possible to build 

complex queries using the Boolean operators AND (i.e., all keywords included), OR (i.e., any keywords 

included), and NOT (i.e., keywords not included). As such, the filter includes the expression “NOT (letter 

OR comment OR editorial OR newspaper article).pt.” to exclude possible irrelevant publication types 

(“.pt.”). Terms associated with relevant methodologies like “case-control,” “focus group,” and “grounded 

theory” are combined with the operator OR and searched for in titles and abstracts. To maintain 

flexibility, some keywords are truncated with the opera- tor “*,” allowing the search engine to look for 

a portion of the words like “random*,” “control*,” and “evaluation stud*.” The Boolean filter and its 

toolkit are available online.† 

† http://toolkit4mixedstudiesreviews.pbworks.com. 

 

2.4 Text characteristics 

 Automatic text classification relies on features (i.e., characteristics or properties) extracted from 

the texts. The features we used are terms and concepts as outlined below. 

 

2.4.1 Terms 

 Terms are stemmed words that we generated as follows. The words composing the abstracts and 

titles were used to create the initial representation of each record. Terms were determined as follows. 

First, common words‡ such as “of” and “from” were removed from the documents. Words were then 

stemmed using the Porter algorithm.28 The latter is commonly used in natural language processing to 

standardize singular and plural forms as well as inflected words. An internal representation of a document 

was then created using the extracted terms as well as their weighting. An example of internal document 

representation is a vector in the space formed by all the terms. Numerous indexation methods can be used 

for this.29 TF-IDF is the most common method for term weighting and it balances the local 

representativeness of a term within a document and the global discrimination of the term in the whole 

dataset. It should be noted that this is the technique mostly commonly used in text classification.30 The 

values can be calculated as follows: 
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𝑓𝑓𝑡𝑡,𝑑𝑑
|𝑑𝑑| ∙ log �1 +

𝑁𝑁
𝑛𝑛𝑡𝑡
� ,  𝑛𝑛𝑡𝑡 > 0 

(1) 

where ft,d is the frequency of term t in document d, |d| is the length of document d, N is the total number 

of documents and nt is the number of documents containing term t. 
‡ www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords. 

 

2.4.2 Feature selection approaches 

 Not all of the selected terms may be useful for the task of classification. Thus, to eliminate 

irrelevant terms and decrease computational load, features were filtered using a feature selection 

approach.31 We compared three different feature selection methods: information gain, 𝜒𝜒2 statistic test, 

and document frequency. Information gain can be translated as the difference between the portion of 

irrelevant entries considering all features and the portion of irrelevant entries given a specific feature: 

 

IG = H(E)− 𝐻𝐻(𝐸𝐸|𝑡𝑡) 

(2) 

where H(E) is the portion of irrelevant entries in the collection E and H(E|t) is the portion of irrelevant 

entries in E given a feature t. 

The 𝜒𝜒2 statistic test method measures the dependency between a term and its category (empirical or 

nonempirical): 

 

𝑥𝑥2(𝑡𝑡, 𝑐𝑐) =
𝑁𝑁 ×  (𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐶𝐶)2

(𝐴𝐴 + 𝐶𝐶) × (𝐵𝐵 + 𝐷𝐷) × (𝐴𝐴 + 𝐵𝐵) × (𝐶𝐶 + 𝐷𝐷)′
 

 

(3) 

where A is the number of times term t and category c co-occur, B is the number of times t occurs without 

c, C is the number of times c occurs without t, D is the number of times neither c nor t occurs, and N is 

the number of documents. 

 The document frequency method measures the number of times a term t occurs in a document 

(i.e., the text representing a record). 

Based on these three calculations, the features obtaining the highest values are selected and used 

in the classification algorithms. Using our text collection, information gain and 𝜒𝜒2 statistic test generated 

zero values for terms excluded from the top 8000. As a result, the amount of terms selected for each 
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measure was set to 8000, accordingly. 

 

2.4.3 Concepts 

Many concepts in the Boolean mixed filter13 are compound words and cannot be captured by 

single terms. Using a metathesaurus is a simple way to consider complex and potentially important 

concepts in the indexation process. To this end, we used the Unified Medical Language System (UMLS) 

that provides a set of possible expressions for each concept, and relationships between concepts.32 The 

selection process used a custom script divided in two parts: concepts in UMLS metathesaurus were 

stemmed and then searched for in the documents. For this task, all the concept identifiers (CUI) listed by 

UMLS were considered, and their associated names were added in the new set of features. The concept 

identifiers are located in a rich release format (RRF) file provided with the metathesaurus. In total, 2101 

relevant concepts were extracted from the dictionary and added to the vectors. 

 

2.5 Algorithms 

Multiple studies have compared traditional text classification approaches for various 

problems.14,33,34 Below, we describe these approaches that are strong options for easily exploiting 

machine learning algorithms for automatic text classification. 

 

2.5.1 K-nearest neighbours (kNNs) 

 K-nearest neighbour predicts the category of a test document using the most common category 

of the surrounding documents (i.e., nearest neighbours) in the feature space. K-nearest neighbour is one 

of the best-known statistical approaches for supervised text classification.35 Among a set of training 

documents, the algorithm tries to identify the k closest entries from a test entry x. The majority category 

of the k entries is then used to classify x following a proximity weighting formula. For a test document x 

and a distinct training entry v, we used the Euclidian distance to represent the similarity (i.e., proximity) 

of both entries: 

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑣𝑣) =
��∑ (𝑥𝑥𝑖𝑖−𝑣𝑣𝑖𝑖)2𝑚𝑚

𝑖𝑖=1 �−1
 

 

(4) 

where xi and vi are the ith features of weight vectors x and v, respectively.  

The k documents with the highest sim(x, v) values were selected to represent the category of x. 
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The estimated probabilities of x being empirical or nonempirical were calculated as follows: 

 

𝑃𝑃0(𝑥𝑥) =
1

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑉𝑉𝑖𝑖)𝑘𝑘
𝑖𝑖=1

�𝑔𝑔(𝑥𝑥,𝑉𝑉𝑖𝑖, 0)
𝑘𝑘

𝑖𝑖=1

 

 

𝑃𝑃1(𝑥𝑥) =
1

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑉𝑉𝑖𝑖)𝑘𝑘
𝑖𝑖=1

�𝑔𝑔(𝑥𝑥,𝑉𝑉𝑖𝑖, 1)
𝑘𝑘

𝑖𝑖=1

 

 

(5) 

where Vi represents the ith nearest neighbour and P0(x) and P1(x) represent the likelihood of negative and 

positive categories, respectively.  

Weighting function g can be formulated as follows: 

 

 
(6) 

where yi is the category of document Vi. The final category 0 else was based on the maximum between 

P0(x) and P1(x). 

 

2.5.2 Naive Bayes 

Naive Bayes classifiers are commonly used for auto- mated text classification. Despite the fact 

that Naive Bayes approaches ignore all dependencies between features, they are still competitive with 

high-capacity algorithms.36 Because of this strong assumption, Naive Bayes may identify the winning 

category with disproportionate probabilities in some cases. Hence, the approach may provide inaccurate 

estimations but can still be efficient in providing the correct predictions with a large enough dataset. The 

typical assumption is that continuous data or features (i.e., quantitative data that can be measured) are 

distributed according to a normal distribution. Two estimators were used for both categories of 

documents. Training of the classifiers for a document x of dimension m was calculated with the following 

conditional probability: 

 

𝑝̂𝑝(𝑥𝑥|𝑐𝑐) = �𝑃𝑃(𝑥𝑥𝑖𝑖|𝑐𝑐)
𝑚𝑚

𝑖𝑖=1

 



 

 
9 

(7) 

As stated above, the probability of observing component xi with category c is modelled as a 

normal distribution. The final model follows Bayes' formula and choose the category with the highest 

probability: 

 

𝑃𝑃(𝑐𝑐|𝑥𝑥) =  
𝑝𝑝(𝑥𝑥|𝑐𝑐)𝑃𝑃(𝑐𝑐)

𝑝𝑝(𝑥𝑥)
 

(8) 

where P(c) is the prior likelihood of category c. 

 

2.5.3 Support vector machine (SVM) 

 Support vector machine can be considered as a representation of entries as points in space, where 

the greatest possible distance between entries from opposite categories is sought. It is one of the most 

popular approaches for binary classification. Based on risk minimization, the objective of the algorithm 

is to find the optimal hyperplane wTx + b that separate two predefined categories. To address non-

linearity, soft margins and higher dimension projections may be considered. We used the LibSVM 

implementation with a linear kernel to generate our classifier.37 

 

2.5.4 Decision trees 

 Decision trees combine a set of approaches based mainly on rules.38 They are especially useful 

for text classification problems since their predictions are easily interpretable. Many versions are 

exploitable and can be differentiated by their underlying algorithms and pruning techniques. The most 

common variants for this category of approaches are ID3 and its successor C4.5.39 We used the latter 

along with its reduced error pruning (REP) method. C4.5 tries to minimize the entropy (ie, portion of 

irrelevant entries) of a group of documents by splitting them into two different subsets using a rule 

generated by discretization. The latter process aims to summarize the behaviour of the features using 

conditional operators such as >, <, ≤, or ≥. Let E be the initial training set and let E1 and E2 be the two 

subsets resulting from the separation of E using a split based on a feature. Using the entropy of these 

three sets, the best possible separation rule is defined as the one that provides the highest information 

gain. This can be calculated as follows: 
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𝐻𝐻(𝐸𝐸) =  −�𝐸𝐸1,𝑐𝑐 log2 𝐸𝐸1,𝑐𝑐 −
𝑐𝑐

�𝐸𝐸2,𝑐𝑐 log2 𝐸𝐸2,𝑐𝑐
𝑐𝑐

 

𝐼𝐼𝐼𝐼(𝐸𝐸) = �−�𝐸𝐸2,𝑐𝑐 log𝑐𝑐

 

𝑐𝑐

𝐸𝐸2,𝑐𝑐� − 𝐻𝐻(𝐸𝐸) 

(9) 

where Ei,c and Ec are the proportion of documents belonging to category c in Ei and E, respectively.  

This process is recursively applied until entropy cannot be further minimized. Pruning is then 

used to eliminate unnecessary splits based on the predictions of left out documents (i.e., randomly and 

automatically selected from the training sets before the pruning process). 

 

2.6 Method refinement 

 To improve the classification results of the approaches mentioned above, we used additional 

techniques: bagging and booting, feature combination, linear interpolation, and titles. It is important to 

mention that these techniques do not represent additional distinctive algorithms but can be seen as 

different ways to enhance the performance of the approaches already presented. 

 

2.6.1 Bagging and boosting 

The previous algorithms can be combined and seen as a series of prediction votes (ie, voting 

techniques). It has been demonstrated that voting techniques have the potential to increase the stability 

and capacity of traditional algorithms for automated text classification.40,41 Comparisons have shown 

appreciable gain of precision using diversified datasets. Since a vote simply corresponds to the 

aggregation of predictions provided by a group of classifiers, voting techniques can be applied without 

additional complexity. They can be seen as meta-algorithms since they rely on the predictions of first-

level algorithms. For the most part, aggregation represents the average of the predictions generated by 

high-capacity classifiers. This representation is also referred to as bagging (i.e., bootstrap aggregating). 

It is also possible to aggregate the predictions of multiple low capacity classifiers or weak learners (ie, 

boosting). The following formulas describe these two approaches. Assuming an arbitrary training set E 

separated into j subsets randomly generated with replacement. For each subset Ei, a traditional classifier 

Hi can be trained. In order to aggregate the predictions for a test document x, the following formula was 

used: 

 

Pr(𝑥𝑥) =
1
𝑘𝑘
�𝐻𝐻𝑖𝑖(𝑥𝑥)
𝑘𝑘

𝑖𝑖=1
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(10) 

where Hi(x) is the prediction of the classifier Hi given x.  

As for the boosting approach, a first weak learner Hi is trained on dataset E. Prediction results are 

then memorized in a vector. Subsequently, a second weak learner Hi+1 is trained on E while making sure 

misclassified entries from Hi are better categorized. A total of m weak learners are trained iteratively 

following the same operation. The importance of each learner H is determined by a coefficient 𝛼𝛼 that is 

based on the error rate of the learner. The error rate often represents the sum of the errors generated by 

the weak learner. Hence, a learner producing fewer errors will have a greater 𝛼𝛼 value. Similar to the 

bagging approach, weak learners are then combined to determine the category of a document: 

 

Pr(𝑥𝑥) = �𝛼𝛼𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝐻𝐻𝑖𝑖(𝑥𝑥) 

(11) 

where αi ≥ 0.  

 The Adaboost.M1 algorithm was used to represent this approach.42 

 

2.6.2 Feature combination 

 Quantitative research methods rely largely on statistical explanations. Thus, numerical terms 

represent an important part of the entries implicated in the classification process. For instance, numbers 

may be observed in the form of percentages, P values or quantities. Because the variation of number 

values should not influence the predictions of the classifiers, a separate Numbers feature of documents 

was generated by merging these particular features. The feature was weighted as follows: 

 

𝑥𝑥′ = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑚𝑚−|𝑄𝑄|,
1

|𝑑𝑑|
�𝑓𝑓𝑛𝑛,𝑑𝑑)
𝑡𝑡𝑡𝑡𝑡𝑡

  

(12) 

where fn,d is the frequency of a numeric expression n in document d, Q is the group of numeric expressions 

in document d, and |d| is the length of the document. 

 Mathematical and statistical symbols are commonly observed in documents containing 

quantitative research methods. In addition to percentages (%), a large number of texts contain variables 

(e.g., 𝜎𝜎, 𝛼𝛼, 𝛽𝛽, and 𝜇𝜇), operators (e.g., +, =, ±, <, and >), and fractions or calculus symbols (e.g., 2, 3, ½, 

and ¼). Their occurrences in a document provide additional clues regarding its category. Thus, an 
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additional Maths feature was created and weighted in the same way as the number feature.   

 Unified Medical Language System provides concept associations such as synonyms. As such, by 

merging terms based on these relations, features may gain in homogeneity. Thus, we generated additional 

Synonymk features combining the weights (i.e., frequencies) of concepts and terms appearing in an 

observed group of synonym k. It is important to mention that number and symbol combinations presented 

above could have a bigger impact on quantitative methods. 

 Merging of features was done separately for the three methods. Afterward, an additional 

evaluation was per- formed using a mix of all combinations (i.e., Numbers, Maths, and Synonyms). 

 

2.6.3 Linear interpolation 

 The different text characteristics described above (i.e., terms and concepts) can be combined 

during the classification process. Yet, the significance of both types of feature can also be measured in 

order to grant a greater degree of importance to a specific group of terms or concepts. Smoothing 

techniques are often used for such evaluation and are particularly popular for natural language models.43 

Linear interpolation (i.e., Jelinek-Mercer's method) is a common approach that allows the com- bination 

of two different classification models. Specifically, the approach uses a coefficient 𝜆𝜆 that controls the 

influence of two separate groups of characteristics (𝜃𝜃A and 𝜃𝜃B): 

 

𝑃𝑃(𝑥𝑥|𝜃𝜃) = 𝜆𝜆𝜆𝜆(𝑥𝑥|𝜃𝜃𝐴𝐴) + (1 − 𝜆𝜆)𝑃𝑃(𝑥𝑥| 𝜃𝜃𝐵𝐵) 

(13) 

Smoothing is particularly useful for classifying the model based on decision trees (M1). For upper 

nodes, decision trees are inclined to favour terms that are unrelated to the problem when separating 

training data (e.g., terms associated with a journal rather than a research method). This phenomenon may 

affect the generalization of the two categories. Therefore, weights associated with this kind of feature 

should be penalized. Using the 8000 terms and 2000 concepts previously calculated, let T ∈ Ra be the 

weight vector of terms not included in UMLS and C ∈ Rb be the weight vector of matching concepts for 

document x. Predictions based on linear interpolation and decision trees can be translated as follows: 

 

Pr(𝑥𝑥|𝑇𝑇,𝐶𝐶) = 𝜆𝜆 ��𝑃𝑃𝑖𝑖(𝑥𝑥|𝑇𝑇)
𝑘𝑘

𝑖𝑖=1

� + (1 − 𝜆𝜆)��𝑃𝑃𝑖𝑖(𝑥𝑥|𝐶𝐶)
𝑘𝑘

𝑖𝑖=1

� 

(14) 

where Pi(x) represents the probability distribution of document x generated by the ith tree.  
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Linear interpolation was tested with 𝜆𝜆-values set to 0, 0.25, 0.5, 0.75, and 1. 

 

2.6.4 Titles 

Examining terms in the article titles provides important indications regarding the methodology 

used. To date, in the description of text characteristics, document representations do not differentiate 

terms from the abstracts and titles. Although term frequency for titles is meaningless, presence and 

absence indications may be valuable. These features can be represented as simple binary values. Let 

title(x) be the title of document x. New features αi  ∈ {0, 1} can be generated as follows: 

 

𝛼𝛼𝑖𝑖 = �1 𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖 𝜖𝜖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑥𝑥)
0        𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,  

(15) 

where ti is the ith term observable in the titles. 

By reconsidering the model presented in (14), 𝛼𝛼 components can be merged with vectors T and 

C. Since concepts are considerably less frequent in titles than regular terms, vectors T were chosen to 

carry the new features: 

𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑎𝑎,𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑙𝑙) 

Pr(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑇𝑇,𝐶𝐶) =  𝜆𝜆 ��𝑃𝑃𝑖𝑖(𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|𝑇𝑇)
𝑘𝑘

𝑖𝑖=1

� + (1 − 𝜆𝜆)��𝑃𝑃𝑖𝑖(𝑥𝑥|𝐶𝐶)
𝑘𝑘

𝑖𝑖=1

� 

(16) 

where l is the total number of terms observable in titles.  

Terms composing the titles were also evaluated separately in order to measure their capacity to 

describe the nature of a study. 

 

2.7 Implementation 

 The approaches were implemented using Weka,§ an application program interface that provides 

a collection of several machine learning algorithms. The features were extracted using custom scripts 

developed in programming language Python. The entries were indexed (i.e., term weighting) in this same 

language. Once the best method was selected, a more user-friendly and convenient tool¶ was programmed 

for researchers. The source code (Java and Python) as well as our original datasets are openly accessible 

at the same location and can be tested on projects and additional entries, thus, improved. New entries 

will also be made available over time along with the tool. Otherwise, please do not hesitate to contact the 

authors for an access to the data. 
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§ http://www.cs.waikato.ac.nz/ml/weka/. ¶ https://atcer.iro.umontreal.ca. 

 

2.8 Evaluation 

Algorithms were directly compared with the Boolean mixed filter (labelled “baseline”). Since 

sensitivity, precision, specificity, and accuracy were used to evaluate the filter and considered for the 

new automatic text classifiers (algorithms). The four indices were calculated as follows: 

 

Sensitivity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

Specificity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 

(17) 

where TP = number of true positives, TN = number of true negatives, FP = number of false positives, 

and FN = number of false negatives. 

 

3. RESULTS 

 

3.1 Algorithms  

A total of 8000 terms exclusively chosen by information gain were kept. Table 2 shows the 

performance of the six most efficient automatic text classification approaches tested. Note for first-level 

classifiers that were not improved by bagging and boosting techniques, the associated results are not 

included in Table 2. The additional method refinement techniques were evaluated separately (see Section 

2). Bagging was tested with decision trees, Naive Bayes, kNN, and SVM. Boosting was tested with 

decision trees, Naive Bayes, and kNN. Most classifiers tended to perform better with nonempirical 

documents. The decision trees with bagging (M1) approach performed well for empirical entries (>0.8) 

and increased the accuracy by 31.7% compared with the baseline. Support vector machine (M3) 

outperformed kNN and Naïve Bayes as well. These results informed the subsequent evaluations that were 

performed using the two best families of algorithm, that is, the decision trees (with bagging) and SVM. 

 

3.2 Concepts 

Figure 1A,B shows the progression of accuracy for decision trees with bagging (M1) and SVM 
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(M3) when concepts provided by the metathesaurus are added to the weight vectors. A maximum gain 

of 0.2% can be observed for decision trees. When 2000 concepts are considered in the classification 

process, precision, sensitivity, and specificity of decision trees with bagging increase by 0.38%, 0.1%, 

and 0.23%, respectively. As for SVM, accuracy gained 0.5% at 2000 additional concepts. At the same 

level, precision increased by 1%, sensitivity by 0.2%, and specificity by 0.6%. Table 3 gives an overview 

of the new performances for both algorithms.  

We experimented with different numbers of concepts as features. Figure 1 shows how accuracy 

changes according to the number of concepts with M1 and M3. Our results indicate the ideal number of 

concepts for M1 and M3 is, respectively, 2000 and 1200.  

To further assess the influence of concepts, we examined the top 50 features (including terms) 

selected using information gain. Our results indicate that 67% of these features are concepts included in 

UMLS. This shows that concepts are extensively used by the classification algorithms. The fact that the 

addition of concepts did not increase performance measures by large margins can be explained by the 

overlap between terms and concepts: most of these concepts would have been covered by terms if 

concepts are not used. 

Figure 2 shows a list of lemmatized concepts from the initial group of 2000 frequently selected 

by decision trees. Results indicate that these are multi-word concepts (which are more precise than single 

words or terms). 

 

3.3 Method refinement 

3.3.1 Feature combination  

Features were combined following the methods presented in the previous section. Table 4 

provides an overview of how the different combinations, using decision trees with bagging and SVM, 

performed.  

Combining synonyms and symbols slightly increased SVM accuracy (+0.09% and +0.02%, 

respectively). However, most combinations negatively affected decision tree final predictions. 

 

3.3.2 Linear interpolation  

Results are shown in table 5. When 𝜆𝜆 = 0.75, feature smoothing increased accuracy and precision 

by 0.16% and 0.5%, respectively. Although concepts from the thesaurus provide substantial support to 

predictions, regular terms still have a greater impact on the model. Compared with the approach that 

combined concepts and terms, the smoothing approach is slightly more effective. 
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3.3.3 Titles 

Table 6 lists some examples of predominant design indications that can be observed in titles and 

associated with a specific category.  

Table 7 summarizes the scores of the new model in com- parison with decision trees and bagging 

without smoothing for abstracts. The best results were obtained when 𝜆𝜆 is perfectly balanced (0.5). 

Accuracy increased by 0.07% as opposed to the previous smoothed models, and by 0.23% as opposed to 

decision trees without smoothing. In total, 137 occurrences of features associated with the titles are 

exploited by decision trees to split the training set. However, the contribution of these new features is 

arguable. 

 

3.3.4 Full texts 

Based on previous results, we used the classifier based on decision trees with bagging to evaluate 

its performance using full texts exclusively. 

Table 8 shows the gains from abstract to full text representations when concepts are added to the 

vectors and the three combination approaches are applied. Full text classification is positively influenced 

by the new features in every case, with the exception of synonyms. Combining the numbers has the 

greatest positive impact on predictions, with a precision increase of 0.6%. Concepts have a sensitivity 

gain of 1.23% compared with 0.1% for abstracts.  

Table 9 shows the overall performance of the interpolation model (𝜆𝜆 = 0.5) for both empirical 

and nonempirical entries on abstracts and full texts. Although full texts include more detail than abstracts, 

the final scores for both types of content is similar. When feature combination is active, the most 

discriminating terms/concepts reported by decision trees (M1) are both involved in full texts and 

abstracts, which explains the similar results. 

 

4. DISCUSSION 

The general observation on the classification algorithms shows that decision trees and bagging 

perform best, followed by SVM. These three algorithms are clearly better than Naive Bayes and kNN 

algorithms tested in this study. Moreover, they performed better than the manual Boolean filter (baseline) 

suggesting they can be used in pace of this filter. An important advantage of automatic classifiers is that 

they can be trained automatically. Our experiments show that words (terms) are the basic useful features 

that one can extract and select from abstracts and full texts. Additional features based on numerical and 

mathematical expressions, as well as concepts, can provide small, but limited, improvements (especially 

when full texts are used). 
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Prediction errors generated by decision trees and SVM (M1 and M3) occur with various research 

methods. Therefore, it is not possible to propose a general solution to improve the classifiers. 

Additionally, some publication types are often mentioned in both empirical and nonempirical records. 

For example, “action research” occurs in 246 abstracts of nonempirical works and 384 abstracts of 

empirical studies. This issue is not uncommon. Our results indicated that predictions for randomized 

controlled trials are influenced by ambiguous terms like “trial” (475 negative abstracts and 241 positive 

abstracts). However, most of the prediction errors made by the decision trees with linear interpolation 

model share common characteristics regarding false positives. Numerous entries labelled as negative and 

containing empirical research method keywords were incorrectly identified by the algorithm. Meta-

analysis and reviews are directly linked to this problem. In our study, it was not unusual to observe co-

occurrences of concepts related to opposite classes such as “review” and “con- trolled trial” (325 

abstracts), “review” and “cohort study” (176 abstracts), “meta-analysis” and “controlled trial” (133 

abstracts), as well as “meta-analysis” and “case-control” (46 abstracts).  

False negatives were less common given that letters, editorials, commentaries, and errata were 

usually correctly identified by both decision trees and SVM. In fact, precision for the negative class was 

considerably higher (+92%). However, there are a few similarities among false negatives for all the 

classification methods. More than half of these abstracts did not follow a typical structure with keywords 

such as “objective,” “results,” and “conclusion”. Also, short abstracts with vague descriptions were often 

rejected by all the algorithms we tested. Finally, negative concepts are sometimes included in empirical 

studies. For instance, we observed “review” 293 times in false negatives, “systematic” 121 times, and 

“analysis” 192 times.  

A benefit of using automated text classification methods, other than SVM, for categorizing 

empirical studies is their ability to provide a confidence score along with the predictions. Even though 

Naive Bayes and kNN provided irregular distributions for correct and incorrect predictions, decision 

trees resulted in a relatively coherent model for confidence scores. Regarding feature interpolation, the 

average disparity between the actual and the predicted classes was 19.21% with a median of 18.3%. In 

practice, for librarians requiring a reliable confidence scale, these results may be acceptable. To illustrate, 

a user who chooses to set the confidence threshold of the algorithm to 33% is able to get a greater 

sensitivity without undue interference on the precision.  

Regarding the three methods of feature combination on abstracts, poor overall performance was 

observed when used on abstracts only. These results can be explained in four ways: insufficient detail in 

abstracts, ambiguous connotations of numerical terms, uneven distribution of mathematical symbols 

within categories, and limited coverage of synonyms. An important aspect that is difficult to capture by 
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number combinations is the variation of meanings associated with particular features. Occurrences of 

term “2” in different sequences such as “2 years old,” “type 2 diabetes,” “p = 2,” and “2 patients” do not 

hold the same information. Since documents are very short, this phenomenon may have a negative impact 

on classification. Furthermore, in this study, merging mathematical and statistical symbols in a single 

feature did not lead to noticeable improvements in performance. Upon further examination, our data 

show that symbols have low occurrence frequency per document. In fact, the median of symbol 

occurrences in empirical documents is close to 1 and nearly 0 for nonempirical articles. 

A similar problem can be observed for the approach based on synonym combination. Specifically, 

a group of synonyms contains only eight concepts, on average, with a low frequency per document. As 

a result, the scope of each group is considerably reduced. The use of hypernym relations (i.e., broader 

concepts) proposed by UMLS, for instance, may address this problem. These relations are particularly 

popular for document and query expansion.44 Despite the potential impact of synonym combinations on 

the classification of all three types of research methods (i.e., quantitative, qualitative, and mixed), we 

were wary of the fact that number and symbol combinations could result in a bias towards quantitative 

and mixed methods. Nevertheless, the proposed automated text classification for systematic mixed 

studies reviews is promising as it suggests researchers can use supervised machine learning for screening 

records. In comparison with manually screening titles and abstracts, combining this method specific 

automatic text classification method with topic-specific automated text classification could potentially 

save hours of work by, for the most part, reducing the number of irrelevant records to manually screen. 

Future work could test this. Provided that reviewers can retrieve full-text publications in an automatic, 

systematic, and reliable manner, the proposed algorithms may represent an important innovation and 

transform systematic review processes.  

Given the absence of universal access to full-text publications, a combination of abstracts and 

full texts can be used as training data to enhance the predictions of M1 and M3. Figure 3 presents a 

possible scenario, illustrating the performance progression according to the ratio of full texts to abstracts 

in the collection. There is a high correlation between the general performance of our algorithm based on 

decision trees/bagging and the variation of the full-text ratio. However, sensitivity appears to be 

negatively affected by the mixture. There is also a decrease of almost every performance index when 

full-text ratio is relatively small. Alternatively, two distinct classifiers could be used: one for abstracts 

and one for full texts. In such a scenario, abstracts would need to be automatically differentiated from 

full texts prior to classification.  

Assuming an almost complete availability of full content provided by Google Scholar, reviewers 

would still need an automated tool to extract full texts from the pages listed by the search engine. Such 
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a tool may require a web crawler45 and a complete evaluation on a generic data collection. It is important 

to note that we have not proposed a tool for this type of operation.  

The proposed automated text classification (M1) performs very well for excluding nonempirical 

works (high precision is important for negative class), that is negative sampling. This suggests potential 

applications for future systematic and nonsystematic reviews. First, in systematic mixed studies reviews, 

high sensitivity is key. Reviewers seek the entire population of studies (exhaustive search in a 

comprehensive set of bibliographic databases and in the grey literature) to answer specific questions 

(qualitative and/or quantitative). For example, “In population P, what is the effectiveness of the 

intervention I (com- pared to intervention C) regarding the Outcome O?” and “what are the views and 

the life-experience of end-users and their relatives with regard to the planning, implementation, 

evaluation and sustainability of intervention I?” Thus, researchers could consider using M1 as an initial 

screening/filtering procedure to exclude irrelevant documents with high precision. Two independent 

researchers could then proceed with manual screening to select relevant studies to include in the review. 

To ensure no relevant studies are lost with the initial automatic text classification step, the process could 

be completed with citation tracking.46  

Second, M1 can be of interest in nonsystematic reviews, where an exhaustive search is not 

required. For example, for theses and dissertations, graduate students do not conduct exhaustive searches 

of all relevant publications could save time by combining the Boolean mixed filter (high sensitivity) with 

M1 (high specificity) to obtain a large (good enough) sample of studies. Likewise, sensitivity is not an 

issue in nonsystematic scoping reviews47 where reviewers seek a sample of the population of studies to 

address a large-scope (broad) question. Thus, researchers could consider combining the Boolean mixed 

filter (high sensitivity) to rule in a large sample of publications and M1 (high specificity) to rule out 

nonempirical work.  

Automated text classification can be easy to use. For example, if made available online, reviewers 

could export their records from reference management software. The tool would classify records into 

empirical and nonempirical sets of records. The two sets of records could then be imported to the 

reference management software. We have built a complete M1 tool (including a user interface) for 

categorizing records saved in a spreadsheet. The Method Development component of the Quebec-SPOR 

SUPPORT Unit is currently building and testing a website to disseminate the Automated Text 

Classification of Empirical Records (ATCER) and a user guide. The user guide will include the 

abovementioned recommendations for using the algorithm and its limitations. To access the website, 

please go to https://atcer.iro.umontreal.ca. 
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5. LIMITATION 

 One major aspect to consider regarding the results of this study is the limited amount of data used for 

training the algorithms. Knowing that PubMed alone includes at least 420 000 randomized controlled trials and 

almost 800 000 clinical studies, further tests should be performed to ensure the performance results of the algorithm 

we report herein are not influenced by our limited data distribution. However, for such tests, the mass extraction 

of training data from bibliographic databases should be supervised to ensure valid labelling (i.e., empirical vs 

nonempirical).  

Some drawbacks to using decision trees should be noted. The risk of overfitting is high, even 

with the use of pruning techniques. This occasionally applies when an algorithm is overtrained on a 

collection that does not represent the full population. For instance, commonly occurring research 

questions/disciplines and methods can greatly influence the categorization. In addition, decision trees are 

relatively unstable. In other words, small modifications applied to the training set can lead to very 

different predictions. Because of these difficulties, feature selection and training must be based on 

balanced collections with diversified methodologies.  

 

6. CONCLUSION 

Automated text classification of empirical studies (vs nonempirical works) is a promising option 

to use when conducting nonsystematic literature reviews, but further testing is required to verify its 

performance for systematic reviews. We propose a supervised machine learning algorithm that can 

facilitate the identification of empirical studies in bibliographic databases (i.e., the search for qualitative, 

quantitative, and mixed methods evidence) for systematic reviews. This can be used as an alternative or 

a complement to the Boolean mixed filter. Our results suggest that decision trees can surpass the accuracy 

of manual queries by at least 30% without influencing sensitivity. More importantly, the presented 

models obtained very high precision scores (+92%) for nonempirical works and could be used for 

removing entries rather than selecting studies.  

The use of separate features for concepts (extracted from a metathesaurus) and terms in titles 

moderately increased the performance of our methods. Varying the weights between terms and concepts 

provided gains as well, especially for precision (+0.5%) when the two groups of features had similar 

importance. In addition, the combination of features representing numbers, symbols, and synonyms was 

evaluated but did not enhance results sufficiently to be considered helpful for abstracts. Finally, the use 

of abstracts in the classification was compared with the use of full texts. Results showed very small gains 

for specificity and accuracy (≈ 2%) and noticeable gains for precision (≈ 5%) when full texts were 

employed.  
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It is important to specify that the nature of a relevant entry may slightly differ according to 

reviewers' perspectives and chosen topics. Hence, generic training should be followed by adjustment 

processes based on users' preferences. For example, the proposed classifiers can be improved online 

when new examples are provided during their utilization. Active learning approaches, which are 

commonly used to rectify classifier behaviours for automated text classification,48,49 can also be used. 

Further research is needed to evaluate the proposed models using a much larger collection, to compare 

our results with unsupervised machine learning, and to classify empirical records in accordance with the 

main study designs to facilitate syntheses (i.e., qualitative research, quantitative descriptive, 

nonrandomized studies, randomized trials, and mixed methods research).  
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TABLES AND FIGURES 

 

TABLE 1 Summary of the collection 

Subcollection Empirical  Nonempirical Total 

El Sherif et al13 2207 3309 5516 

Khanassov et al24-26 459 214 673 

Gagnon et al20 33 39 72 

Jagosh et al22,23 and Macaulay et al27 613 670 1283 

Granikov et al21 306 200 506 

Total 3618 4432 8050 
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TABLE 2 Algorithm comparison 

 

Subcollection  Precision Sensitivity Specificity Accuracy, % 

Bagging-decision trees (M1) 0.805 0.853 0.899 88.35 

Boosting-decision trees (M2) 0.776 0.852 0.879 87.01 

SVM (M3) 0.778 0.825 0.884 86.42 

Decision trees (M4) 0.763 0.789 0.878 84.81 

kNN (M5) 0.591 0.365 0.85 68.81 

Naïve Bayes (M6) 0.5 0.981 0.515 66.9 

Boolean mixed filter (Baseline) 0.604 0.895 0.545 56.9 
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TABLE 3 Performances of decision trees with bagging (M1) and SVM (M3) using 2000 concepts 
 
Algorithm  Precision Sensitivity Specificity Accuracy, % 

Bagging-decision trees (M1) 0.809 0.854 0.9 88.53 

SVM (M3) 0.788 0.827 0.89 86.92 
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TABLE 4 Performances of decision trees with bagging (M1) and SVM (M3) with feature combination 
 
Type Classifier Precision Sensitivity Specificity Accuracy, % 

Numbers M1 

M3 

0.807 

0.776 

0.849 

0.833 

0.901 

0.882 

88.35 (-0.18) 

86.56 (-0.36) 

Symbols M1 

M3 

0.785 

0.788 

0.856 

0.828 

0.885 

0.89 

87.55 (-0.98) 

86.94 (+0.02) 

Synonyms M1 

M3 

0.811 

0.791 

0.834 

0.826 

0.905 

0.892 

88.12 (-0.41) 

87.01 (+0.09) 

All M1 

M3 

0.788 

0.777 

0.836 

0.831 

0.889 

0.882 

87.19 (-1.34) 

86.51 (-0.41) 
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TABLE 5 Performances of the model based on interpolation 
 
λ-value Precision Sensitivity Specificity Accuracy, % 

No smoothing 0.809 0.854 0.9 88.53 

0 0.803 0.848 0.898 88.14 (-0.39) 

0.25 0.812 0.851 0.903 88.6 (+0.07) 

0.5 0.813 0.851 0.904 88.66 (+0.13) 

0.75 0.814 0.852 0.904 88.69 (+0.16) 

1 0.805 0.858 0.898 88.35 (-0.18) 
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TABLE 6 Design indications in titles 
 
Indication Frequency Most Likely Cateogry 

Review 403 Nonempirical 

Comment 359 Nonempirical 

Analysis 265 Nonempirical 

Controlled trial 214 Empirical 

Systematic review 196 Nonempirical 

Qualitative  132 Empirical 

Cohort profile 119 Nonempirical 

Erratum/corrigendum 95 Nonempirical 

Response 87 Nonempirical 

Cohort study 79 Empirical 

Meta-analysis 76 Nonempirical 

Case study 46 Empirical 

Opinion/editorial 24 Nonempirical 
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TABLE 7 Performances of the model based on interpolation with title features 
 
λ-value Precision Sensitivity Specificity Accuracy, % 

No smoothing 0.809 0.854 0.9 88.53 

0 0.803 0.848 0.898 88.14 (-0.39) 

0.25 0.814 0.85 0.905 88.64 (+0.11) 

0.5 0.817 0.85 0.906 88.76 (+0.23) 

0.75 0.812 0.847 0.903 88.48 (-0.05) 

1 0.808 0.853 0.901 88.48 (-0.05) 
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TABLE 8 Gain (%) provided by additional features for full texts compared with abstracts 
 
Type Precision Sensitivity Specificity Accuracy, % 

Concepts 

Abstracts +0.4 +0.1 +0.2 +0.3 

Full texts +0.3 +1.23 +0.1 +0.45 

Number combination 

Abstracts -0.2 -0.5 +0.1 -0.2 

Full texts +0.6 +0 +0.3 +0.2 

Symbol combination 

Abstracts -2.4 +0.2 -0.5 -0.98 

Full texts +0.6 +0.1 +0.3 +0.22 

Synonym combination 

Abstracts +0.2 -2 +0.5 -0.41 

Full texts -0.9 -0.2 -0.6 -0.44 

All combination 

Abstracts -2.1 -1.8 -1.1 1.34 

Full texts +0 -0.5 +0 -0.2 
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TABLE 9 Overall performances of the final model 
 
Category Precision Sensitivity Specificity Accuracy, % 

Abstracts (best λ = 0.75) 

Empirical 0.814 0.852 0.904 … 

Nonempirical 0.925 0.904 0.852 … 

Average 0.87 0.878 0.878 88.7 

Full texts (best λ = 0.5) 

Empirical 0.863 0.854 0.933 … 

Nonempirical 0.928 0.933 0.854 …  

Average 0.896 0.894 0.894 90.71 
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FIGURE 1 Accuracy of decision trees with bagging (M1) and support vector machine (SVM) (M3) 
using concepts [Colour figure can be viewed at wileyonlinelibrary.com] 
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FIGURE 2 Twenty concepts selected by decision trees with bagging (M1) 
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FIGURE 3 Performances of decision trees with bagging (M1) mixing abstracts and full texts [Colour 
figure can be viewed at wileyonlinelibrary.com] 

 


