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Abstract

It has long been appreciated that Ekman transport and pumping velocities are modified through

interactions with underlying geostrophic currents. Nonlinearity involving interaction of the Ek-

man flow with itself is, however, typically neglected. This occurs when the Rossby number based

on the Ekman velocity and horizontal length scale approaches order one values. Such values are

common, for example, in the ice-ocean stress field across sharp gradients such as leads in the sea

ice cover. Recent work has shown strong asymmetry in the pumping velocities, with cyclonic forc-

ing producing diffuse upwelling and anticyclonic forcing producing sharp downwelling fronts. To

better understand this dynamics, we consider the steady response to a simple specified prescription

of the stress. In the (x-z) plane perpendicular to the stress, dynamics are described by the 2-d

Navier-Stokes equation, with a forcing term dependent on vertical shear of velocity in the y-hat

direction, specified by a pressureless momentum equation. An expansion in an Ekman-velocity

based Rossby number is used to solve the system and to better understand the asymmetry. Inter-

actions with stratification and underlying geostrophic currents are also considered, and examples

of where these effects might be important are given. The self-advection of the Ekman flow is

important in this asymmetrical phenomenon. As the asymmetry appears in the vorticity field, the

self-advection of Ekman terms plays a stronger role in upwelling-downwelling asymmetry than

the dissipative term. The solutions are found to be stable with significant noise added, however

further research is needed to assess the more precise source of the asymmetry.
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Abrégé

On sait depuis longtemps que le transport et la vitesse de pompage de l’Ekman sont modifiés par les

interactions avec les courants géostrophiques sous-jacents. Cependant, la non-linéarité des interac-

tions du l’écoulement d’Ekman avec lui-même est généralement négligée. Cela se produit lorsque

le numéro de Rossby, basé sur la vitesse d’Ekman et l’échelle de longueur horizontale, approche

des valeurs d’ordre un. Ces valeurs sont typiques, par exemple, dans le champ de stress glace-

océan à travers des gradients prononcés tels que les pistes de la couverture de glace de mer. Des

travaux récents ont montré une forte asymétrie dans les vitesses de pompage, le forçage cyclonique

produisant des remontées d’eau diffuses et le forçage anticyclonique produisant des fronts de de-

scente d’eau nets. Pour mieux comprendre cette dynamique, nous considérons la réponse stable

à une simple prescription spécifiée du stress. Dans le plan (x-z) perpendiculaire au stress, la dy-

namique est décrite par l’équation de Navier-Stokes à deux dimensions, avec un terme de forçage

dépendant du cisaillement vertical de la vitesse dans la direction y-hat, spécifié par une équation

de quantité de mouvement sans pression. Une expansion dans un nombre de Rossby basé sur

la vitesse d’Ekman est utilisée pour résoudre le système et pour mieux comprendre l’asymétrie.

Les interactions avec la stratification et les courants géostrophiques sous-jacents sont également

considérées, et des exemples de cas où ces effets pourraient être importants sont donnés. L’auto-

advection du flux d’Ekman est importante dans ce phénomène asymétrique. Puisque l’asymétrie

apparaı̂t dans le champ de vorticité, l’auto-advection des termes d’Ekman joue un rôle plus im-

portant dans l’asymétrie upwelling-downwelling que le terme dissipatif. Les solutions sont stables

avec l’ajout d’un bruit significatif, cependant des recherches supplémentaires sont nécessaires pour

évaluer la source plus précise de l’asymétrie.
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Chapter 1

INTRODUCTION

When looking at the surface of the ocean on a windy day, one notices at the very surface of the

water that the movement follows the direction of the wind. If you were to stand at the shoreline

on such a day then you would surely see the wind and waves in the same general direction at

the surface, but if you were to stand in the ocean your feet won’t feel as much of the effects of

wind stress as your chest where the surface meets the air. This illustrates the intuitive dissipation

of wind speed with depth through frictional forces between layers of water. What this does not

capture, however, is the effect of a rotating Earth.

As the Earth rotates, so does our dynamical representation of fluids. In particular, the Coriolis

force deflects the direction of water to the right of the wind stress in the Northern Hemisphere, and

to the left in Southern Hemisphere. It follows that the flow of each subsequent layer of water is

also deflected by Coriolis force and at a slower rate [Ekman, 1905]. This phenomenon is depicted

in Figure 1.1 and referred to as the Ekman spiral, named after Vagn Wilfrid Ekman as he was the

first to discover this dynamical phenomenon 1. From the surface of the water to the depth at which

the effects of wind stress have dissipated, is called the Ekman layer. The vertical profile of the

Ekman layer is shown in Figure 1.2. This layer is relatively thin (O(10 − 102 m)) compared to the

entire depth of the ocean (O(103) m)), where the upper layer is primarily driven by wind stress and

the lower layer driven by interaction of interior geostrophic velocity with a rigid lower surface.

1This came decades before advances in oceanographic instrumentation in the 1980s which allowed for sufficiently
sensitive measurements of velocity profiles at depth [Vallis, 2006]

1



In large scale oceanic flow where effects of rotation is large, the dominant balance in the mo-

mentum equation is between Coriolis and friction or stress terms in the boundary layer (i.e. the

Ekman layer). More precisely, the balance is between Coriolis terms and the forces due to the

stress generated small-scale turbulent motion and not molecular viscosity and diffusion in a direct

sense – because then we would only consider scales on the order of centimeters. Since the stress

comes from turbulence, this makes things more complex – it becomes nearly impossible to con-

fidently determine its state with precision, so instead we look at general properties of the Ekman

layer that are independent of knowing the precise form of the friction, and as it turns out we can

learn a lot by doing just that [Vallis, 2006].

It is well understood that turbulence plays an important role in the dynamics of the Ekman

layer and contribute to dynamical features observed, but its precise nature is unclear. The Ekman

layer is of particular interest because of several reasons, one of it being the prevalence of turbu-

lence and nonlinear motion, but also the fact that this is where atmosphere-ocean coupling models

are important. Despite advanced instrumentation for oceanographic data, Ekman layer dynamics

are more difficult to observe due to the rapid timescale and turbulence motion, leaving room to

reconcile observations and theory via climate models.

1.1 Formulation of Linear Ekman Theory

We begin by introducing the main components of Ekman theory and its uses. The Ekman layer is

the thin boundary layer near the surface of the ocean that where in large-scale circulation – effects

of rotation are significant. Therefore the dominant balance is between Coriolis and frictional terms.

In order to analyze either atmospheric or oceanic Ekman layers some assumptions may be

made. Let us recall that the atmospheric Ekman layer is near the ground while the oceanic Ekman

layer is near the surface of the ocean and is therefore largely driven by wind. We may assume that

the Ekman layer is Boussinesq, which is to say that variations in density ρ are very small. This

assumption is a good one to make since the boundary layer in consideration is very thin. We may

also assume that the Ekman layer has a finite depth which occurs in the interior of the ocean where
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Figure 1.1: Figure obtained from [Vallis, 2006]. Idealized Ekman spiral forced by wind stress.

Figure 1.2: Vertical profile of a surface Ekman layer generated by wind stress, compared to the

interior flow of the Ekman layer. Figure taken from [Cushman-Roisin and Beckers, 2011].
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frictional stress nearly vanishes. It is also assumed that the nonlinear and time dependent terms in

the equations of motion are ignored, while hydrostatic balance holds true vertically, and buoyancy

is constant. Lastly we may parameterize friction by a viscous term of the form

∂τ

∂z
1
ρ0
= A

∂2u
∂z2 ,

where A is the eddy viscosity and τ is the stress, and τ/ρ0 is the kinematic stress term.

Figure 1.3: Figure obtained from [Vallis, 2006]. An idealized boundary layer where velocity field

U varies rapidly near the boundary z=0 in order to satisfy the boundary conditions. This region is

depicted as δ, which is the boundary layer thickness such δ << H where H is total distance away

from boundary

1.1.1 Equations of Motion

Let us consider the fluid to be above a rigid surface (z = 0), and sufficiently far away from the

boundary the velocity field is known and it is in geostrophic balance. Then the velocity field

includes both a geostrophic and Ekman component:

4



u = ug + uE . (1.1)

To derive the Ekman equations we start with the horizontal momentum equation, where u =

(ue, ve) is the Ekman velocity and ∂
∂y = 0. The Frictional-geostrophic balance is as follows:

f × u =
1
ρ0

∂τ

∂z
− ∇ϕ , (1.2)

= A
∂2u
∂z2 − ∇ϕ , (1.3)

where f = f k̂ and f is the Coriolis parameter, phi is pressure divided by density, and ∂τ
∂z represents

the Reynolds-stress turbulence transmitting wind stress from the surface to ocean interior. The

stress term can also be parameterized with eddy viscosity, where A is the coefficient of turbulent

velocity.

The vertical momentum equation with constant buoyancy, b, gives

∂ϕ

∂z
= b = 0 . (1.4)

Lastly it follows that Ekman equations must satisfy mass continuity. Thus our equation set becomes

f × u = A
∂2u
∂z2 − ∇ϕ , (1.5)

∂ϕ

∂z
= 0 , (1.6)

∇ · v = 0 . (1.7)

The Ekman correction terms are negligible far away from the boundary layer. If only consid-

ering Ekman components then we can recall that there is no boundary layer in the pressure field,
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thus equation 1.5 becomes:

f × uE = A
∂2u
∂z2 . (1.8)

1.1.2 Ekman Pumping and Suction

Figure1.3 depicts the vertical (WE) and horizontal (ME) agestrophic mass transport in the Ekman

layer. The upper Ekman layer is dominantly driven by wind stress while the bottom Ekman layer

transport is driven by interactions with the interior geostrophic velocity and rigid surface at the

bottom [Vallis, 2006]. From this it is evident that the Ekman pumping, WE near the surface of the

layer will differ if measured near the bottom. The expression for the top and bottom Ekman pump-

ing (equations (1.12),(1.13)) can be deduced from frictional geostrophic balance and integrating

over the layer thickness:

f × uE =
1
ρ0

∂τ

∂z
, (1.9)

f × ME = τT − τB , (1.10)

where ME =

∫
Ek
ρ0uEdz . (1.11)

When calculating the bottom Ekman layer Mass transport, the stress at the top will be zero, and

similarly for the top Ekman layer mass transport, the stress at the bottom will be zero. Using this

and equation 1.10, we can write the mass transport as:

top Ekman layer: Me = −
1
f

k × τT , (1.12)

bottom Ekman layer: Me =
1
f

k × τB . (1.13)

The Ekman transport is always at right angles to the stress at the surface as we have previously

discussed, and can now be seen by the cross product in equations 1.12, 1.13. This formulation is

useful in the Ekman layer where the stress is primarily from wind, and since we only consider the

top layer of the ocean it is generally independent of interior flow. In order to obtain vertical mass
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transport, as is of interest in upwelling and downwelling, it can be obtained analytically beginning

with integrating mass continuity equation over the Ekman layer:

1
ρ0
∇ · Mtotal = −(wT − wB) , (1.14)

Mtotal =

∫
Ek
ρ0udz , (1.15)

=

∫
Ek
ρ0(ug + uE)dz , (1.16)

≡ Mg + ME , (1.17)

where the total mass transport is the sum of the geostrophic and ageostrophic component. As

we did with the horizontal transport, we can set WT = 0 in the top Ekman layer, and WB = 0 in the

bottom Ekman layer, where using 1.10 and the above equations gives:

k × (Mtotal − Mg) =
1
f

(τT − τB) , (1.18)

=⇒ ∇ · (Mtotal − Mg) = curlz[(τT − τB)/ f ] , (1.19)

where curlz is the z-component of the curl. Plugging in equation 1.14 gives the bottom and top

vertical velocities:

WB =
1
ρ0

(
curlz
τT

f
+ ∇ · Mg

)
, (1.20)

WT =
1
ρ0

(
curlz
τB

f
− ∇ · Mg

)
, (1.21)

where we will omit the divergence of the geostrophic transport ∇ · Mg since it is generally small

compared to the other terms. Thus our vertical transport equations are as follows:
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Figure 1.4: Horizontal ME and vertical mass transport WE in the Ekman layer, resulting in 2D

circulation cells. Positive WE corresponds to Ekman pumping and negative corresponds to suction.

Figure taken from [Vallis, 2006].

WB =
1
ρ0

(
curlz
τT

f

)
,

WT =
1
ρ0

(
curlz
τB

f

)
,

(1.22a)

(1.22b)

demonstrating that the friction inducing a vertical velocity at the boundary of the Ekman layer is

proportional to the curl of the stress at the surface – an incredibly powerful tool in Ekman theory.

Its usefulness comes from the power to parameterize the layer using resolved/known values when

numerical models often do not have the ability to explicitly solve an Ekman layer (usually due to

a lack of vertical resolution and computational expense).

1.2 Development of Nonlinear Ekman Theory

The work of [Stern, 1965] and [Niiler, 1969] included tilting of vertical relative vorticity in Ekman

theory, which is what is called nonlinear Ekman theory, whereby this inclusion modifies the Ekman

pumping velocity such that a horizontally uniform wind stress can still drive vertical velocities

(Stern 1965) [Wenegrat and Thomas, 2017]. A pertinent finding from [Wenegrat and Thomas,
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2017] is that there is an improvement of accuracy of of the calculated Ekman pumping velocity by

retaining terms of higher order in the balanced Rossby number R = U/ f L by virtue of the Ekman

pumping velocity itself being proportional to R. Thus including terms of O(R2) in the solution

leads to an O(R) relative improvement in accuracy [Wenegrat and Thomas, 2017].

It is interesting to note that although it is historically called “nonlinear” Ekman theory, these

models rely on a known geostrophic velocity, which renders the system into one which can be lin-

earized. Furthermore, all previous stipulations of nonlinear Ekman theory ignore the self-advecting

Ekman flow, from now referred to as “Ekman-Ekman interactions”. These are found in the Ekman

equations with terms such as (u⃗E · ∇)u⃗E, where uE = u − ug. This is typically neglected since the

Ekman based Rossby number RE =
UE
f LE

is typically small, making the Ekman-Ekman interactions

relatively negligible.

Hence the main focus of this thesis, which is to show how Ekman-Ekman interactions play a

role in scenarios with higher Ekman-Rossby numbers.

1.3 Beyond Classical Nonlinear Ekman Theory

The presence of a high Rossby number R = U/ f L implies that f L << U which could mean small

f (like in low latitudes) or a length scale L that is very small. Thus, submesoscale (SM) flows are

typically characterized by Rossby numbers of O(1).

In Arctic sea ice leads, the forcing varies sharply across the width of a narrow lead as shown in

Figure 1.7, meaning even weak friction layer currents can produce large Rossby numbers [Bour-

gault et al., 2020]. This sharp gradient in stress is responsible for increased small-scale horizontal

activity which in turn leads to strong surface layer nonlinearity [Bourgault et al., 2020].

1.3.1 Upwelling-Downwelling Asymmetry in the Arctic

The work of Bourgault et al. considers the response to mechanical forcing across sea ice leads using

large-eddy simulations. They considered a periodic domain similar to the one we will consider in

Chapter 2, and took forcing to be given by a saw tooth profile (see Figure 1.5). This produced
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an intense vorticity forcing over the lead balanced by a broad vorticity forcing on the opposite

sign elsewhere. Their results show strong asymmetry between anticyclonic and cyclonic forcing,

with a focused downwelling associated with strong turbulence, and diffuse upwelling with weak

turbulence [Bourgault et al., 2020]. This asymmetry contributes to the additional heat flux and

turbulence heat fluxes underneath the lead. The turbulent kinetic energy beneath the ice lead in

Figure 1.6 shows that the shear production (downwelling) provides a clear source of turbulent

kinetic energy and buoyancy production (upwelling) provides a weak sink. This points to a key

result from their work which was that an anticyclonic forcing over the lead led to a large input of

turbulent kinetic energy there (Figure 1.6).

Linear Ekman theory suggests that the Ekman pumping is proportional to the curl of the stress.

This proportionality is not seen in upwelling-downwelling asymmetry (UDA) which makes this a

phenomenon worth investigating further. The dynamical origins of UDA has been examined by

others but they find that the the asymmetries are due to interactions of Ekman pumping with under-

lying currents [Stern, 1965], [Hart, 1995], [Wenegrat and Thomas, 2017]. The work of [Duquette

et al., 2019] found the asymmetry to be not to be related to nonlinear interactions with the under-

lying currents, but rather to nonlinear interactions in which the surface Ekman-like flow advects.

This is found to be significant when Rossby numbers approach R = U
f L ∼ O(1) values, which can

either happen for very small f (for instance near the equator) or for motion across small length

scales. This is why we are able to achieve high Rossby numbers across sharp gradients in forcing

such as narrow sea ice leads. In Bourgault et al.’s simulations, the Rossby number in upwelling was

about 9 and in downwelling case was 80 [Bourgault et al., 2020], corresponding to the circulation

cells in Figure 1.5.

We seek to further our understanding of the dynamical origins of UDA based on findings from

[Bourgault et al., 2020] and [Duquette et al., 2019]. This thesis investigates this phenomenon by

approaching the problem from the bottom up, by modelling the UDA through dynamic equations

of the Ekman layer as opposed to using a global climate model.

The role of submesoscale dynamics of mid-latitude regions in upper-ocean dynamics is well

understood in oceanographic literature, while much less is understood about submesoscale dynam-

10



Figure 1.5: Upwelling-Downwelling asymetry. Figure taken from [Bourgault et al., 2020]

Figure 1.6: Turbulent kinetic energy generation from mean kinetic energy (MKE) and potential

energy (PE) in an intense downwelling and diffuse upwelling regime. Figure taken from [Bourgault

et al., 2020].

ics in the Arctic [Mensa and Timmermans, 2017]. This could be particularly important since it has

been suggested that lateral SM flows under sea ice is greatly underestimated in general circulation

models [Stroeve et al., 2007]. More pertinent to our research, we know that small-scale flows are

often associated with vertical velocities which can enhance ocean-to-ice heat fluxes – naturally,

these flows may have serious consequences to sea-ice cover [Mensa and Timmermans, 2017]. Any

improvement to models involving these small-scale flows could have the potential to improve the

accuracy and prediction of sea-ice cover melt.
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Figure 1.7: Ice-ocean stress and salt flux profiles over a sea ice lead Llead. Figuretaken from

[Bourgault et al., 2020]

As discussed, this thesis investigates the dynamical origins of UDA. One possible origin is the

transients in Reynold’s stress term, where the transients feed back onto the mean state. This how-

ever is out of the scope of the thesis, where we will only be considering a steady-state version of

the problem. As such, the focus will be to investigate whether nonlinearity related to the mean ad-

vection itself. The central ideal is to solve a steady nonlinear Ekman problem using a perturbation

method and look for any potential asymmetry, and if so to attempt to understand it better.
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Chapter 2

NUMERICAL MODEL

The purpose of the model is to explicitly solve for the steady-state boundary value Ekman layer

problem in the x-z plane. To do so, we use a framework which allows for solving differential

equations using spectral methods, and utilizes Message Passing Interface (MPI) parallelization.

Thus the program was written in python 3.2 in conjuction with an open-source python framework

called Dedalus [Burns et al., 2020].

We aim to primarily investigate the importance of Ekman-Ekman nonlinearity – by which

we mean Ekman terms multiplied by one another (see equation 2.31)– in a steady upwelling-

downwelling asymmetry regime. We do so by assuming a z-independent geostrophic flow in order

to explicitly solve the x-z nonlinear Ekman layer problem.

An expansion is implemented where the assumed Ekman solution for velocity v is used to

compute streamfunction Ψ, where Ψ is implied from vz and vice versa, therefore a new correction

is computed at each step. What we hope to find is that in this regime the corrections display stronger

upwelling-downwelling asymmetry as the order increases. Our a priori expectation is that this is

due to the slow part of the flow advecting the y-vorticity anomalies in the x-direction interacting

with the quadratic interactions of near-inertial waves which feedback onto the slow part.

To start, we will make a 2D model of the Ekman layer, periodic (Fourier basis) in x and Cheby-

shev in z. A constant wind stress is applied to the surface layer causing larger momentum flux near

the surface and minimal to none near the bottom surface (fixed, for the purposes of the simulation).
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2.1 Governing Equations

In the following sections, a subscript of either x, y, or z denotes a partial derivative taken in the

respective direction.

We seek a solutions for streamfunction ψ using Ekman equations. Assessing the problem in

the x-z plane, with a constant density fluid in the x-z plane but allowing for v , 0, we state the

pressureless Navier-Stokes equation, taking vertical shear in the y-direction as forcing. The full

equations include time dependence are as follows:

u⃗t + u⃗ · ∇u⃗ + f ẑ × u⃗ = −∇ϕ − A∇2u⃗ , (2.1)

∇ · u⃗ = 0 , (2.2)

∂y −→ 0 . (2.3)

We now have a set of equations reminiscent of the Ekman equations plus a total derivative of

velocity term on the LHS of our Navier-Stokes simplification. Expanding the vector form into

component form, we get:

ut + uux + wuz︸     ︷︷     ︸
Non-linear

− f v = −ϕx + A (uxx + uzz) , (2.4)

vt + uvx + wvz︸     ︷︷     ︸
Non-linear

+ f u = A (vxx + vzz) , (2.5)

wt + uwx + wwz︸      ︷︷      ︸
Non-linear

= −ϕz + A (wxx + wzz) . (2.6)

Removing time-dependence we get our steady problem governing equations:

uux + wuz − f v = −ϕx + A (uxx + uzz) ,

uvx + wvz + f v = A (vxx + vzz) ,

uwx + wwz = −ϕz + A (wxx + wzz) .

(2.7a)

(2.7b)

(2.7c)
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Note that in the above equations, the dissipation terms are written assuming an isotropic viscous

coefficient A. In our simulations we ultimately replace this with anistrophic coefficients such that

A∇2 = Ah∂xx + Av∂zz. For notational simplicity this will often be written below in isotropic form

however.

2.1.1 Full Derivation from Momentum Equations

Using the relationship between streamfunction ψ, velocity (u, v,w) and relative vorticity ζ

ζ = ∇2ψ = uz − wx (2.8)

u = ψz (2.9)

w = −ψx (2.10)

We take the x-z momentum equations 2.4 and 2.6, and take the ŷ component of the curl of the

equations :

∂(2.4)
∂z

=⇒ uzux + uuxz + wzuz + wuzz − f vz = −ϕxz + A(uxxz + uzzz) (2.11)

∂(2.6)
∂x

=⇒ uxwx + uwxx + wxwz + wwzx = −ϕzx + A(wxxx + wzzx) (2.12)

∂(2.4)
∂z
−
∂(2.6)
∂x

=⇒ uzuxz + wzuzz − uxwxx − wxwzx − f vz = A ((uxxz + uzzz) − (wxxx + wzzx))

(2.13)

=⇒ wz(uz − wx) + ux(uz − wx) + J(ψ, ζ) = A∇2(uz − wx) (2.14)

=⇒ ζ�����:0
(ux + wz) + J(ψ, ζ) = f vz + ∇

2ζ (2.15)

=⇒ J(ψ, ζ) = f vz + A∇2ζ (2.16)
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where J(A, B) = AzBx − AxBz is the Jacobian operation of variables A, B. Simplifying the v-

momentum equation 2.5 by using streamfunction notation, we get our second state equation:

uvx + wvz = − f u + A∇2v (2.17)

ψzvz − ψxvx = − f u + A∇2v (2.18)

J(ψ, v) = − f u + A∇2v (2.19)

Therefore equations 2.16 and 2.19 are the governing equations for the model, derived from our

original momentum equation.

Boundary Conditions

The variables we’ve stated explicitly for our solver to take in are ψ,u,v,vz,w,ζ,ζz (7 variables).

The boundary conditions should be such that there is no stress in the u-direction from top or

bottom (free-slip condition), similarly for v-direction but with top being sin x stress and vz = 0

at the bottom. The free slip boundary conditions make the bottom Ekman layer minimal since

that is not our focus in this study. This causes an issue however where the y-momentum budget

cannot be easily balanced. To rectify this we add a linear damping term (with coefficient r) on the

geostrophic velocity. Since our geostrophy is z-independent as prescribed by the model, we can

substitute vg =
∫ H

0
vdz = v̄.
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ψ|top = 0 (2.20)

ψ|bottom = 0 (2.21)

vz|top =
τ0

A
sin (xk +

π

2
) (2.22)

vz|bottom = 0 (2.23)

uz|top = 0 (2.24)

uz|bottom = 0 (2.25)

(2.26)

where k = 2π
L and τ0 is the wind forcing. For orders above 0 (i.e. all nonlinear adjustments), the

wind forcing is τ0 = 0 since the adjustments themselves need no additional forcing to the base

case.

2.1.2 Linear Case: Leading Order Solution

The leading order solution to the problem is the linear solution, therefore the nonlinear terms in

our momentum equations 2.4-2.6 are set to zero. Equivalently, we can set the LHS of equations

2.32a and 2.32c to zero, shown below:

A∇2v − f u = 0 (2.27)

A∇4ψ + f vz = 0 (2.28)

In order to ensure the problem remains top trapped and free slip at the bottom of our domain, a

damping term rv = r
(

1
H

) ∫ H

0
vdz is added, where r is a factor hat is sufficiently small for convergent

solutions, and v is the vertically averaged velocity in the y-direction.
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A∇2v − rv − f u = 0

A∇2ζ + f vz = 0

2.1.3 Nonlinear and Nth Order Approximations

For the derivation of the nonlinear equations, we keep the nonlinear terms in the momentum equa-

tions and thus keep the Jacobian terms in equations 2.32a and 2.32c. 1

A∇2v − rv − f u = J(ψ, ζ)

A∇2ζ + f vz = u⃗ · ∇v

= J(ψ, v)

(2.32a)

(2.32b)

(2.32c)

The nonlinear terms (the Jacobians) are approximated using the linear solution, the linear solu-

tion being the zeroth-order approximation. In the linear case, the forcing has a sin (kx) structure

and a sin (kx) response. As the order of approximation increases, so does the wavenumber k. Let

us denote the order of the solution as superscript (unless on gradient), where u0 is the leading order

solution and F0 = −
(
u0 · ∇

)
u0 is the forcing (with a sin (2kx) structure and sin (2kx) response)

used to obtain u1 solutions, as presented in the equations below:

f ẑ × u1 = F0 − ∇ϕ1 + ν∇2u1 (2.33)

∇ · u1 = 0 (2.34)

1Note that if we expand the RHS equation 2.32b (ignoring the viscosity factor) into the geostrophic and Ekman
components, we obtain a clear indication of where the Ekman-Ekman terms occur:

u⃗ · ∇v = (u⃗g + u⃗E) · ∇(vg + vE) (2.29)
= (ug + uE,wg + wE)(vgx + vEx, vgz + vEz) (2.30)
= ugvgx + ugvEx + uEvgx + uEvEx + wgvgz + wgvEz + wEvgz + wEvEz (2.31)
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In order to compute order 2 solutions, the forcing now becomes F1 = −
(
u0 · ∇

)
u1−

(
u1 · ∇

)
u0.

This forcing F1 has a structure made of sin (kx) and sin (3kx) components, since the u1 has sin (2kx)

structure (with frequencies near ω = 0, f , 2 f ). Note that the structure of un always corresponds to

that of Fn−1.

f ẑ × u2 = F1 − ∇ϕ2 + ν∇2u2 (2.35)

∇ · u2 = 0 (2.36)

(2.37)

In order to compute higher order (Nth order) nonlinear approximations, we take the sum of

all corrections until the Nth order correction computed. This process is shown in the diagram in

Figure 2.1. As we can see in this flow chart, in order to solve the n = 2 order correction we need

to compute a sum of Jacobians. These Jacobians correspond to the forcing Fn denoted above.

Jacobian Operator in higher order computations

It is clear in the linear case that the expansion of u⃗ · ∇v with streamfunction notation can be written

as a Jacobian (see equations 2.32a and 2.32c). In higher order approximations however, these

advective terms become more complex. Since the Jacobian is the nonlinear component of our

equations, it’s important to create a regime that allows for Ekman self-advection. Suppose the 0th

order solutions have been found, i.e. solutions to equations 2.27, 2.28. To compute the 1st order

approximation, we need to solve our equations in O(1) by forcing the LHS with the Jacobian of

the linear solution, i.e. J0 = F0 = f v1
z + A∇2ζ1 needed as a forcing to compute solutions of order

1 . To compute O(2), the forcing now becomes the sum of Jacobians corresponding to the sum of

advective terms. 2

2The sum of advective terms is to ensure that we have all interactions between different ordered solutions, i.e. self
advection. It also is described in such a way that avoids double counting terms once Jacobians are expanded.
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Order 0:
A∇2v0 − f u0 = 0

A∇2ζ0 + f v0
z = 0

Order 1:
A∇2v1 − f u1 = J(ψ1, ζ0)

A∇2ζ1 + f v1
z = J(ψ0, v0)

Order 2:
A∇2v2 − f u2 = J(ψ1, ζ0) + J(ψ0, ζ1)

A∇2ζ2 + f v2
z = J(ψ1, v0) + J(ψ0, v1)

...

Order N:

A∇2vN − f u0 =

N+1∑
i=0

J(ψi, ζN−i)

A∇2ζN + f vN
z =

N+1∑
i=0

J(ψi, vN−i)

Figure 2.1: Diagram showing how Nth order correction terms are computed. Superscripts denote

the order number n (0 ≤ n ≤ N), except for on the gradient operator. At each order n, the set of

equations give the solution to a state variable, say ψn, which is the nth correction term such that the

final nth order approximation of ψ is Ψ = ψ0 + ψ1 + ψ2 + ... + ψN .
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0 = f v0
z + A∇2ζ0 (2.38)

J0 = f v1
z + A∇2ζ1 (2.39)

J1 = f v2
z + A∇2ζ2 (2.40)

= J
(
ψ1, ζ0

)
+ J

(
ψ0, ζ1

)
(2.41)

J2 = f v3
z + A∇2ζ3 (2.42)

= J
(
ψ0, ζ2

)
+ J

(
ψ2, ζ0

)
+ J

(
ψ1, ζ1

)
(2.43)

Below is a matrix of all permutations of the orders of ψ and ζ respectively which appear as we

expand J(ψN , ζN), and we find that only the diagonal entries contain the permutations that would

appear as we solve to order N = 2. For instance the matrix entry for all permutations of J2 would be

{(0, 2), (1, 2), (2, 2), (0, 1), (1, 0), (1, 2), (0, 0), (2, 0), (2, 1)} where the pair of numbers corresponds

to the order of (ψ, ζ) which the Jacobian takes in the expansion of J(ψ2, ζ2) = J(ψ0, ζ2)+ (ψ1, ζ2)+

...+(ψ2, ζ1). Recall that the Jacobian expansion ought to represent order n advective terms, and this

expansion of J(ψN , ζN) illustrates that this will not correspond to the advective term at order n, and

only a few of them will actually appear. This is how the general JN fixes this – by only selecting

the permutations that correspond to the advective term expansion. The same principle and process

applies to determining J(ψN , vN) :


0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

 .
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This is then continued to the Nth order, the Jacobians calculated at each order can be expressed as

the following sum:

JN(ψ, ζ) B
N∑

i=0

J
(
ψi, ζN−i

)
JN(ψ, v) B

N∑
i=0

J
(
ψi, vN−i

) (2.44)

These appear as forcing terms at each order on the RHS of the equations to solve for the n−1 order

correction term in Figure 2.1.

2.2 Code Implementation

This numerical model was programmed in python using Dedalus [Burns et al., 2020], which is an

open-sourced MPI-parallelized python framework for solving differential equations using spectral

methods. This is particularly useful in this model since the problem can easily be represented in

a spectral domain, where the x-axis is Fourier representable and z-axis is chebyshev. The choice

of z-axis to use chebyshev basis is based on the fact that we require the highest resolution near the

boundaries – in particular the top boundary. We need more resolution at the surface of the ocean

where the main physical forcing is. The chebyshev basis provides just that, by containing grid

points which are unevenly spaced, where they are more spaced out near the center of the domain

and closer together near the boundaries.

2.2.1 Nondimensionalization of Parameters

In order to ensure the relative order of magnitude of the parameters chosen reflect a realistic Ekman

layer, while adhering to our constraints, we nondimensionalize the parameters using Buckingham

Pi theorem. We have length and time scale as dimensions, and height, length scale, viscosity,

Coriolis parameter, damping parameter and wind forcing amplitude as variable parameters. Since

we want to use the model to investigate the flow’s behaviour at different Ekman-Rossby (Re) and

Geostrophic-Rossby (Rg) numbers, we would like to write them as a function of our parameters
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such that the model can compute the parameters given a particular Rossby number. Similarly, the

aspect ratio, ∆a, of vertical to horizontal scales, and height ratio, ∆h, of Ekman layer thickness to

total depth of layer, must be written as functions in terms of the parameters. This is in order to be

able to freely specify to the model both of these values to ensure that the regime has a sufficiently

large horizontal length scale compared to vertical scale (as required for thin-boundary layer ap-

proximations) and that the Ekman layer remains significantly top trapped compared to the entire

vertical length scale of the domain.

Dimensions: L, T

Parameters: H,L, A, f, r, τ0

∆h = he/H (2.45)

∆a = H/L (2.46)

Re =
τ0

f 2Lhe
(2.47)

Rg =
τ0

rH f L
(2.48)

where he =
√

2A/ f is the Ekman layer thickness, a is the aspect ratio, and τ0 includes the division

by density ρ for simplicity (i.e. assumes ρ = 1).

Now we can fix f and H so that all dimensional quantities can be written in terms of f, H and

functions of nondimensional parameters:
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A = f H2
(
∆h2

2

)
, (2.49)

L =
H
∆a

, (2.50)

τ0 = f 2H2Re

(
∆h
∆a

)
, (2.51)

r = f∆h
(

Re

Rg

)
. (2.52)

The viscous coefficient is set as follows:

∆h = he/H , (2.53)

=

√
2A1/2

f 1/2H , (2.54)

=⇒ A1/2 =
∆h f 1/2H
√

2
, (2.55)

=⇒ A = ∆h2 f H2/2 . (2.56)

We let this now be equal to the vertical viscosity Av, such that the horizontal viscosity Ah is greater

by some factor. The horizontal viscosity relation is found as follows:

The horizontal viscosity tends to be more sensitive to the resolution of the model, and needs

to be high enough such that the solutions do not blow up or acquire excessive model noise. As

such, the goal is to be able to resolve for the area of the contour plot where the data is closest

together – this would be the downwelling jet. This distance will be equal to Uλ where U = τ/he

and λ = nλ∆x is the wavelength in terms of the number of desired grid points in the jet, nλ, and the

size of each grid cell, ∆x = L/nx. Note that the value of nλ is the one we will later by varying in

order to increase or decrease Ah later in Chapter 3. Therefore the horizonal viscosity is

=⇒ Ah = Uλ (2.57)

=

(
τ

he

)
nλ

(
L
nx

)
(2.58)
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τ0

Re
= he f 2L , (2.59)

=

√
2A1/2

f 1/2 f 2L =
√

2 f 3/2A1/2L , (2.60)

=
√

2 f 3/2L
(
∆h2 f H2/2

)1/2
(by equation 2.56) , (2.61)

= ∆h f 2HL = ∆hH(
H
∆a

) f 2 , (2.62)

=⇒ τ0 =
∆h
∆a

H2 f 2Re , (2.63)

r =
τ0

RgH f L
, (2.64)

=
∆h
∆a

H2 f 2Re
1

H f L
, (2.65)

=⇒ r = ∆h
Re

Rg
f . (2.66)

The full steady-state equations with nondimensional parameters are:

α

(
k2

n

h2
e

) (
∆h2 f H2

2

)
vxx +

(
∆h2 f H2

2

)
vzz −

(
f∆h

(
Re

Rg

))
v − f u = J(ψ, v) , (2.67)

α

(
k2

n

h2
e

) (
∆h2 f H2

2

)
ζxx +

(
∆h2 f H2

2

)
ζzz − f vz = J(ψ, ζ) , (2.68)

vz(z=top) =
 ∆h
∆a H2 f 2Re

∆h2 f H2/2

 cos(kx +
π

2
) . (2.69)

2.2.2 Testing Convergence of Solutions

The amplitude of the correction term should in theory exponentially decrease as order increases.

Thus, the final solution should be when the maximum value of the correction term approaches

zero, or very close to compared to the 0th order max value. Therefore when higher orders do

not converge to zero, and in fact exponentially increase, we can conclude that these solutions are

divergent, and thus are not robust. It must be noted that the model needs to be computed to high
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Figure 2.2: The maximum values for streamfunction strength as the order to which Ψ is corrected

to (n) increases. This method is used for detecting convergence or divergence of solutions.

enough orders that the solutions do not just appear to be convergent with hidden divergence in

orders above the one computed to. This can be a constraint in model, however this is why we

choose to define convergence when each order’s maximum solution value is consistently (across

10+ orders) monotonically decreasing. Figure 2.2 shows the the comparison of the maximum

value of ψ found at each order correction for three different Ekman Rossby numbers, all of which

converge.

2.2.3 Buoyancy

The standard equations we have derived thus far assume constant buoyancy, however in Chapter 3

we examine how the convergence of solutions and dynamical properties change with the inclusion

of buoyancy flux at high Ekman-Rossby values.
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To do so, the equations are amended to include buoyancy flux 3:

A∇2v − rv − f u = 0 , (2.70)

A∇2ζ + f vz − bx = 0 , (2.71)

A∇2b + wN2 = 0 , (2.72)"
b dxdz = 0 , (2.73)

where N is the Brunt–Väisälä frequency, and its square equals the background vertical buoy-

ancy flux, N2 = bz. It follows that 0 < N2 ≪ f 2, thus a conservative choice of frequency would be

N = 0.1 f .

2.2.4 Time-Dependent Stability Analysis

vt − (Ahvxx + Avvzz) + rv̄ + f u = −(ψxvz − ψzvx) (2.74)

ζt − (Ahζxx + Avζzz) + f vz = −(ψxζz − ψzζx) (2.75)

The timestepping scheme used to solve this set of equations is the 1st-order semi-implicit BDF

(backward Euler) scheme based on equation 2.6 from [Wang and Ruuth, 2008]. This scheme is

implemented by Dedalus as part of their ODE integrator classes for timestepping [Burns et al.,

2020].

3note that vertical velocity w is implemented in the code by substituting for its equivalent form, −ψx
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Chapter 3

RESULTS AND DISCUSSION

To effectively diagnose the driving factors in upwelling-downwelling asymmetry we compute the

solutions to an nth order approximation as described in Chapter 2, while increasing Re and keeping

Rg constant. In the next section we consider three regimes, where Re ≪ 1, Re < 1, and Re > 1. A

summary of the parameters and values used in all regimes is shown in table 3.1.

Furthermore, a time-dependent version of the equations is simulated in order to test the stabil-

ity of the upwelling-downwelling asymmetry under a forcing of additional noise. Results from the

time-dependent solution are then compared to the steady case in terms of their parameter sensitiv-

ity, convergence limits, and general dynamics.

3.1 Near Convergence Steady Velocity Fields

In this section we will examine three Regimes where the Ekman Rossby number approaches O(1)

as previously mentioned. We will look at the first few order approximations (n=0,1,2) and then see

the convergent solution.

3.1.1 Regime I: Small Ekman Rossby Number

In this regime, the Ekman Rossby number value is Re ≪ 1, specific values found in table 3.2.

For such small Rossby number values we would not expect difference between the linear state and
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Parameter meaning value
nx number of x-grid points 512
nz number of z-grid points 68
L Length of domain (m) 20000m
H Height/Depth of domain (m) 200m
he Ekman layer thickness (m) 20m

Table 3.1: Parameters used in all simulations

Parameter meaning value
Re Ekman Rossby Number 0.2
Rg Geostrophic Rossby Number 0.1
Ah Horizontal viscosity 6.22 × 101 m2/s
Av Vertical viscosity 2 × 10−2 m2/s
r Damping parameter parameter 2 × 10−5

f Coriolis parameter 10−4 rads/s
τ0 Wind Forcing Amplitude 1.27 × 10−4

N Max order of approximation 6

Table 3.2: Parameters used in Regime I

computing higher order approximations, since the Ekman-nonlinearity in this regime would be

very small. As is expected, Fig. 3.1 shows that the convergent state has symmetrical pumping and

suction, and the streamfunctions look extremely similar to the linear (zeroth order) solution.

3.1.2 Regime II: Moderate Ekman Rossby Number

In the second regime the Ekman Rossby number is Re < 1 but is close to 1 (specific values found

in table 3.3). For a Rossby number close to 1 we should expect to have more Ekman-nonlinearity

playing a role in the approximations. This is seen in figure 3.2. In comparison to figure 3.1,

the streamlines are more concentrated near the center in figure 3.2b), and consequently there is a

downwelling jet there as well shown in purple with a broader upwelling in green. However the

intensity of the upwelling-downwelling asymmetry is not as strong as is seen for Re > 1.
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(a) Linear Solution w0 (b) 1st order NL approximation w1 = w0 + w1

(c) 2nd order NL approximation w2 = w0 + w1 + w2

(d) 6th order (converged) NL approximation wN =∑N
N=0 wn

Figure 3.1: Colourmap depicts vertical velocity in the Ekman layer and contour lines represent

streamfunction lines. Solutions computed for Regime I where Re = 0.2

3.1.3 Regime III: Large Ekman Rossby Number

In this regime the Ekman-Rossby number is such that Re > 1. Under these conditions we expect

to see the effects of significant nonlinearity at play. Specific values for parameters in this regime

are found in table 3.4. The resulting state Ψ100, as seen in figure 3.3, shows a much stronger

downwelling jet in the center in between the two cells, and a similarly broad upwelling to that of

Regime II. This suggests that indeed as the values of Re increase and go over values of 1 in this

model, the intense downwelling and diffuse upwelling asymmetry emerges.
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(a) w0 (b) w1 = w0 + w1

(c) w2 = w0 + w1 + w2 (d) Converged vertical velocity wN =
∑N

N=0 wn

Figure 3.2: Colourmap depicts vertical velocity in the Ekman layer and contour lines represent

streamfunction lines. Solutions computed for Regime II where Re = 0.9

In order to address where the asymmetry comes from, we must break down our equations

into components we can analyze. For instance, throughout the steady state nonlinear equations,

the nonlinear term which we suspect drives asymmetry is composed of a geostrophic and Ekman

component:

J(ψ, v) = J(ψ, vg) + J(ψ, ve) (3.1)
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Parameter meaning value
Re Ekman Rossby Number 0.9
Rg Geostrophic Rossby Number 0.1
Ah Horizontal viscosity 2.80 × 102m2/s
Av Vertical viscosity 2 × 10−2m2/s
r Damping parameter 9 × 10−5

f Coriolis parameter 10−4 rads/s
τ0 Wind Forcing Amplitude 5.73 × 10−4

N Max order of approximation 20

Table 3.3: Parameters used in Regime II

(a) w0 (b) w1 = w0 + w1

(c) w2 = w0 + w1 + w2 (d) Converged vertical velocity wN =
∑N

N=0 wn

Figure 3.3: Colourmap depicts vertical velocity in the Ekman layer and contour lines represent

streamfunction lines. Solutions computed for Regime III where Re = 1.75
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Parameter meaning value
Re Ekman Rossby Number 1.75
Rg Geostrophic Rossby Number 0.1
Ah Horizontal viscosity 5.44 × 102 m2/s
Av Vertical viscosity 2 × 10−2 m2/s
r Damping parameter 1.75 × 10−4

f Coriolis parameter 10−4 rads/s
τ0 Wind Forcing Amplitude 2.79 × 10−6

N Max order of approximation 100

Table 3.4: Parameters used in Regime III

The ”classical” nonlinear Ekman theory as discussed in Chapter 1 would consider the nonlinear

term to only be J(ψ, v) = J(ψ, vg) for equation 2.32c where in the expansion of the Jacobian we

would obtain Ekman-geostrophic terms which would be considered ”nonlinear” in this theory.

However what we have done is to also include the J(ψ, ve) term in the nonlinearity, which is

what includes the Ekman-Ekman terms (i.e. Ekman self-advection). We suspect that this is in

fact the contribution which primarily drives the characteristic asymmetry we see in higher order

solutions. In order to concretely assess this however, we need to explicitly solve the numerical

model from Chapter 2 but where Jacobians are now in terms of geostrophic v, and see if any

asymmetry arises and to what extent. We do this by simply taking the vertical average of v in

our simulation and using that in the Jacobian forcing in the model. Results shown in figure 3.4

indicate no significant difference in the dynamical features or intensity of signals compared to

the solutions seen with Ekman-Ekman nonlinearity in figure 3.3. This suggests that the approach

of classical nonlinear Ekman theory would be insufficient for seeing this phenomena, as our test

shows negligible contribution from the forcing corresponding to only Ekman-geostrophic terms

and no Ekman-Ekman terms. To further investigate this we look at the balance in equation 2.32a

and test the impact each term has on the forcing of the solution.

In the steady state equations we have a balance of the nonlinearity (Jacobian term) equals

f vz + F where F = A∇2ζ = Ahζxx + Avζzz is the dissipative (friction) term. As seen in figure 3.5,

the order of magnitude of values from the dissipative term (figure 3.5a) is the same as that of the

Coriolis term (figure 3.5b). These plots summed gives the Jacobian in figure 3.5c, however it is
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(a) w0 (b) w1 = w0 + w1

(c) w2 = w0 + w1 + w2 (d) Converged vertical velocity wN =
∑N

N=0 wn

Figure 3.4: Plots for geostrophic forcing where J(ψ, vg) forces equation 2.32c. Colourmap depicts

vertical velocity in the Ekman layer and contour lines represent streamfunction lines. Solutions

computed for Regime III where Re = 1.75.

evident that the magnitude of values in figure 3.5c are less than its components, and there is a

different placement and shape of cells. This suggests that the signals in Av(ζzz − ζ
0
zz) and f (vz − v0

z )

significantly cancel each other out in some areas. This is confirmed by comparing the opposite

signs in corresponding areas of figure 3.5a) versus b).

If we know how the vorticity comes to be, then we will consequently understand how the

asymmetry arises, since it follows that the streamfunction comes from vorticity. Figure 3.6 shows

the (nonlinear part of) vorticity, where at first glance it is not evident which term primarily forces
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(a) Nonlinear contribution of dissipative term in hor-

izontal vorticity equation

(b) Nonlinear contribution of Coriolis forcing term

in horizontal vorticity equation

(c) Jacobian term in Ekman balance

Figure 3.5: Nonlinear component of terms is isolated by subtracting the linear approximation from

the nth order approximation

this pattern. Now, we isolate the vorticity due to each term by splitting up the equation as follows:

∇2ζ = ∇2ζA + ∇
2ζB , (3.2)

∇2ζA = J(ψ, ζ) , (3.3)

∇2ζB = − f vz , (3.4)
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Figure 3.6: Colourmap showing nonlinear contribution to vorticity (ζ minus the linear component

(ζ0)).

where ζA is the vorticity driven by J(ψ, ζ) and ζB is driven by − f vz. Now we can treat these as

Poisson equations and solve for ζA and ζB using the already solved variables from the model as

input on the RHS of the above equations. The resulting streamfunction and vorticity fields are

plotted in figure 3.7. By comparing 3.7a,c to b,d respectively it is evident that the Jacobian forcing

is much stronger than that of f vz. This confirms the hypothesis that it is indeed the nonlinear term

mainly contributing to the upwelling-downwelling asymmetry. The corresponding intensities near

the central discontinuity are significantly stronger in figures b) and d) where it is forced by the

Jacobian. This suggests that self-advection of Ekman terms plays a stronger role in upwelling-

downwelling asymmetry than the dissipative f vz term.

3.2 Parameter Sensitivity

We have seen the clear difference in dynamical features as RE changes from Regimes I to III, but

there are other parameters that the model is particularly sensitive to which have interesting insights

to offer. In this section we will briefly overview the sensitivity of the model to a few parameters

with interesting results.
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(a) (b)

(c) (d)

Figure 3.7: Ψ and ζ forced by different terms in horizontal momentum equation. Only NL con-

tributions are plotted (order 0 solution subtracted). Contours correspond to streamfunction ΨA and

ΨB

Horizontal Eddy Viscosity

The convergence of steady solutions are quite sensitive to horizontal viscosity Ah. The greater Ah

is, the better the noise is suppressed. The trade-off however, is that as eddy viscosity increases the

more interesting features arising from nonlinearity also get suppressed, for instance there is a less

narrow downwelling jet that would form. For instance, in the steady model for RE large, when

Ah is increased significantly, solutions converge only after a few orders computed, but the solution

looks very similar to the linear (n=0) case (see Fig. 3.8).
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Figure 3.8: RE = 1.75, Ah = 1.08 × 103 m2/s, increased horizontal viscosity to exemplify the

effect of higher Eddy viscosity while RE remains the same as before.

Buoyancy

In the case of a weakly stratified ocean where N = 0.1 f , with all other parameters remaining the

same as before, the solutions diverge, as seen in Fig. 3.9 this happens after about order 35.

In order to achieve convergent solutions with N = 0.1 f , Ah must be increased to 6.5×10−2m2/s.

This, however, decreased the intensity of the downwelling jet, and thus the buoyant case is not

largely considered in the scope of this project.

3.3 Time-dependent Solution and Stability Analysis

The time-dependent model is implement as discussed in section 2.2.4. First it is solved with no

additional noise added, to compare it to the steady state solutions. Results are seen in Figure

3.10. In comparison to the streamlines of ψ in the steady solutions (see Fig. 3.3), ψ in the time

dependent solutions demonstrate a significantly stronger and more narrow downwelling jet. This

is due to the time-dependent solver allowing for smaller values of horizontal Eddy-viscosity Ah

(see table 3.5) while producing convergent solutions – whereas the steady solutions had difficulty

converging when using smaller values of Ah (see table 3.4).
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Figure 3.9: Maximum ψ computed in regime with buoyancy flux, showing the divergence of

solutions at higher orders of approximation.

Parameter meaning value
Re Ekman Rossby Number 1.75
Rg Geostrophic Rossby Number 0.1
Ah Horizontal viscosity 1.29 × 104 m2/s
r Damping parameter 1.75 × 10−4 m2/s
f Coriolis parameter 10−4 rads/s
τ0 Wind Forcing Amplitude 1.11 × 10−3

tstop Simulation Duration 0.69 days

Table 3.5: Parameters used in Time-dependent Solution (no noise added)

3.3.1 Stability analysis

Adding a noise function to the initial state of v in the form pert = 1e−3∗noise(zt−z)(z−zb) where

zt, zb is z at the top and bottom boundary respectively, and noise is a random seeded function.

The function is of this form such that the noise is situated away from boundaries. The noise added

is seen in Figure 3.11, and the time-dependent solutions with noise are seen in Figure 3.12.

The noise added to v has an order of approximately 10−3 while the noise-less v has an order

of about 10−1. The noise is significant enough to disturb the solution throughout the 0.69 days the

simulation ran, however it appears to stabilize after about 0.6 days (Fig. 3.12d). The same parame-

ters from Regime III were used, however in this simulation it is evident that the downwelling jet is

significantly less strong, and thus a less narrow jet. This could perhaps be rectified by decreasing

Ah – in which solutions would not converge – or by decreasing the noise added, since the noise-
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(a) (b)

(c) (d)

Figure 3.10: Time dependent streamfunction solution at 11th, 71st, 131st and 541st iteration

respectively. Simulation ran for a total of 6 × 104 seconds, or approximately 16.7 hours.

less time-dependent solutions appears to have no problem achieving a very strong downwelling

jet in the same time-frame of 0.69 days. Alternatively the simulation could be ran for longer than

0.69 days to see if once the solution stabilizes the jet would become more narrow. This was not

performed due to constraints in computational cost.

40



Figure 3.11: Large random background noise added to v at t = 0 in the form 1e − 3 ∗ noise(zt −

z)(z − zb) where noise is a Python-generated random seeded function.

3.4 Fourier Analysis

Performing a Fourier analysis serves the important role of clarifying the role of higher order cor-

rections to the model. Figure 3.14 is the power spectrum of the different order solutions, comparing

the relative amplitude to the number of modes. As we know, with each nth order solution, there

are n + 1 modes. Therefore, as the order of solution increases so do the number of modes in the

solution.

We take the Fourier transform of the streamfunction values at a horizontal slice z=7m, where

the strongest values are found by looking at the contour plots. These values are sinusoids pre-

Fourier transform, as seen in figure 3.13. Then multiplying the transform by its complex conjugate

gives us the energy spectrum as we see in figure 3.14.

We can clearly see the energy containing range, inertial range, then the dissipation range of

each order’s spectra. As order increases, so does the energy containing range and to some extent

the inertial range. Since the energy spectrum depicts the contribution to the energy from each

wavenumber, this suggests that as order increases (i.e. wavenumber increases) that those additional

wavenumbers contribute significantly to delaying the dissipation of the signal. In other words, this

shows the significance of higher order adjustments to the psi solution with respect to Ekman-

Ekman nonlinearity.
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(a) (b)

(c) (d)

Figure 3.12: Time dependent streamfunction with noise at 1st, 71st, 131st and 411st (final) itera-

tion respectively.

3.5 Conclusions

As we saw in figure 3.3d for Re ∼ O(1), at the 100th order approximation, it clearly depicts a

strong downward jet near the center, i.e. the discontinuity, and a diffuse velocity of lesser strength

that flows towards to surface. This is precisely the intense downwelling and broad upwelling

asymmetry effect that we expected to see at higher order approximations of this model for Re ∼

O(1) with the implementation of Ekman self-advection in the model.
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Figure 3.13: The horizontal slice of Ψn from Regime III taken at the depth containing maximum

streamfunction values, iterated over all orders of correction. This is the signal that we later take

the Fourier transform of to analyze.

In order to properly see an even more distinct and concentrated jet and diffuse upwelling like

that of [Bourgault et al., 2020], the model would need to be able to take in Rossby numbers much

higher than 1, or to be able to decrease Ah without having solutions diverge. An obvious limitation

of this study at this stage is the steady model’s inability to have solutions for Rossby numbers

beyond that of Regime III that do not diverge at high enough order approximations. This is evident

by the green line in figure 3.15 corresponding to an attempt to push the Ekman-Rossby number

past 1.75 to RE = 1.85. As we can see the higher RE attempt diverges completely beyond order

30 approximation. In attempts where the model took in different parameters we were able to

reach convergent solutions where RE > 1.75, however the parameter changes necessary yielded

non insightful solutions. For instance an increase in horizontal viscosity Ah would allow to push

to higher Rossby numbers, but then it would create a regime with too much damping and so the

nonlinear effects were unevident in the resulting plots (and no upwelling-downwelling asymmetry).

Thus, future work involves modifying the methods in the steady model such that a sharper jet can
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Figure 3.14: Power Spectrum of each 10th order taken of the signal shown in figure 3.13. Plotted

on a logarithmic y- and x-axis to show the energy containing range, inertial subrange, and dissipa-

tion range.

be found while still having solutions converge, like results seen in the time-dependent model (see

Fig. 3.10), although it is currently unknown how this could be done or if it would be possible.

Similarly, testing the model’s stability was necessary to assess its robustness. it was performed

by solving for the time-dependent version of the model using an iterative time-step scheme. Next

steps would include confirming the statistical equilibrium for the time dependent case and repeating

a similar forcing analysis to what we have performed, but now we can also add in the Reynolds

stress terms and consider transient terms in our analysis. This would mean that our velocity field

would look like u = u + u′ = ug + u′g + ue + u′e where primes denote transient terms.

The future of this work involves incorporating a global climate model (GCM) such as MITgcm

to include realistic wind stress coupling as well as sea ice dynamics. This is an important future

step because the goal of this research is to ultimately reconcile theory and observations, and a

large-ensemble GCM would bring us one step closer to that.
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Figure 3.15: The maximum values for streamfunction strength as the order to whichΨ is corrected

to (n) increases. Shows that values above RE = 1.75 do not converge. The oscillations in each run

is noise from the model “trying” to converge.
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