
GitHub Events
Through the Lens of
Knowledge Graphs

Kian Ahrabian

School of Computer Science
McGill University

Montreal, Quebec, Canada

December 2020

A thesis submitted to McGill University in partial
fulfillment of the requirements of the degree of

Master of Science

© Kian Ahrabian, 2020

Abstract

In the past few years, GitHub has become the leading platform for open-source software
development, offering many collaborative tools to developers. Consequently, the number
of artifacts in the platform has grown significantly, making it a suitable data source for
researchers to study software development from different perspectives. Parallel to this rise
in popularity, there have been many advancements in terms of modelling graphical data.
Notably, the problem of graph completion has been studied more thoroughly in the context
of knowledge graphs. This thesis focuses on connecting these two disciplines.

Our study highlights the potential of adapting knowledge graphs to answer broad soft-
ware engineering questions. Meanwhile, it also reveals the shortcomings of existing tem-
poral knowledge graph embedding models to solve these questions. More precisely, we
present a temporal knowledge graph based on the daily interactions between GitHub arti-
facts, which enables us to pose software engineering questions as queries over the knowl-
edge graph. In particular, we first introduce three new datasets, each with distinguished
properties, to study different aspects of GitHub. Then, we benchmark existing temporal
knowledge graph embedding models on the newly introduced dataset, which reveals these
models’ unsatisfactory performance on extrapolated queries and time prediction queries.
Therefore, we propose two novel extensions over existing temporal knowledge graph em-
bedding models that drastically boost the newly introduced datasets’ performance. Finally,
we evaluate our model in a well-established scenario to study its applicability for solving
the underlying software engineering question, which reveals a performance gap compared
to our baselines; hence, we state our hypotheses to address this problem in future works.

i

Abrégé

Au cours des dernières années, GitHub est devenu la plateforme leader pour le développe-
ment de logiciels open-source, offrant de nombreux outils collaboratifs aux développeurs.
Conséquemment, le nombre d’artefacts dans la plateforme a augmenté, cela est une source
de données appropriée afin que les chercheurs étudient le développement de logiciels sous
différents angles. Parallèlement à cette montée en popularité, il y a eu de nombreuses
avancées en termes de modélisation des données graphiques, notamment, le problème de
la complétion de graphes a été étudié de manière plus approfondie dans le contexte des
graphes de connaissances. Ainsi cette thèse se concentre sur la connexion de ces deux
disciplines.

Notre étude met en évidence le potentiel d’adapter les graphiques de connaissances
pour répondre à des questions générales d’ingénierie logicielle. Parallèlement, il révèle
également les lacunes des modèles d’intégration de graphes de connaissances temporelles
existants pour résoudre ces questions. Plus précisément, nous présentons un graphe de con-
naissances temporelles basé sur les interactions quotidiennes entre artefacts dans GitHub,
ce qui nous permet de poser des questions de génie logiciel sous forme de requêtes sur le
graphe de connaissances. En particulier, nous introduisons d’abord trois nouveaux ensem-
bles de données, chacun avec des propriétés distinctives pour étudier différents aspects de
GitHub. Ensuite, nous comparons les modèles d’intégration de graphe de connaissances
temporelles existants sur le jeu de données nouvellement introduit, ce qui révèle les per-
formances insatisfaisantes de ces modèles sur les requêtes extrapolées et les requêtes de
prédiction temporelle. Par conséquent, nous proposons deux nouvelles extensions sur les

ii

modèles d’intégration de graphes de connaissances temporelles existants qui améliorent
considérablement les performances sur les ensembles de données nouvellement introduits.
Enfin, nous évaluons notre modèle dans un scénario bien établi pour étudier son applica-
bilité pour résoudre la question de génie logiciel sous-jacente, qui révèle un écart de per-
formance par rapport à nos lignes de base; par conséquent, nous formulons nos hypothèses
pour aborder ce problème dans les travaux futurs.

iii

Acknowledgements

First and foremost, I would like to thank my supervisors, Prof. Jin Guo and Prof. Daniel
Tarlow, who guided and supported me throughout my studies. I am incredibly grateful for
all the time and effort they put into helping me shape my research skills and consistently
providing feedback during this project and thesis.

I want to thank all of my friends and labmates whom I spent my days interacting with in
the past two years. I also want to thank Sophie for her help with writing the French abstract
of this thesis.

Finally, and most importantly, I thank my parents for their unconditional and continuing
support and encouragement. I am extremely fortunate to have you in my life.

iv

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Organization . 4

2 Background 5
2.1 Classical Machine Learning . 5

2.2 Matrix Factorization . 6
2.2.1 Inference . 7

2.3 Knowledge Graphs . 7

2.3.1 Knowledge Graph Embeddings 9

2.3.2 Training . 12

2.3.3 Inference . 13
2.4 Graph Neural Networks . 14

3 Related Work 16
3.1 Pull Requests and Issues . 16

3.2 Repositories . 17

3.3 Users . 17
3.4 Ecosystem . 18

4 GitHub Events as a Knowledge Graph 19
4.1 Dataset . 19

4.1.1 Retrieval . 19
4.1.2 Extraction . 19
4.1.3 Preprocessing . 20

4.1.4 Characteristics . 23

v

4.2 Methodology . 24

4.2.1 Baselines . 24
4.2.2 Proposed Approach . 24

4.3 Evaluation and Results . 29
4.3.1 Datasets . 29
4.3.2 Queries . 29

4.3.3 Metrics . 29
4.3.4 Hyperparameters . 30

4.3.5 Results . 31

5 Real-World Applications 33
5.1 Addressing Shortcomings . 33

5.1.1 Proposed Model (R-TGN) . 33

5.1.2 Empirical Comparison between R-TGN and RT-X 34

5.2 Study Expansion . 37

5.2.1 Dataset . 37
5.2.2 Baselines . 40
5.2.3 Proposed Approach Results . 49

6 Future Work and Conclusion 52
6.1 Future Work . 52
6.2 Conclusion . 52

Bibliography 54

A Fusion Performance Comparison 61

vi

List of Figures

2.1 Overview of a 2-layer neural message passing algorithm on a single node [20]. 14

4.1 Example heatmap of the absolute importance scores among relations. . . . 32

5.1 Entity counts, in log scale, from all sliding windows datasets on selected
repositories. 41

5.2 Split statistics, in log scale, from all sliding windows dataset on selected
repositories. 42

5.3 Interaction based baselines performance over all datasets. The area around
each line indicates its error bars. 44

5.4 Temporal baselines performance over all datasets. The area around each
line indicates its error bars. 45

5.5 Inverted average cosine distance between training set predictions and test
set predictions. 48

5.6 R-TGN performance comparison to best performing baselines of each cat-
egory. The area around each line indicates its error bars. 50

A.1 Gaussian naive bayes fusion baselines performance over all datasets. The
area around each line indicates its error bars. 62

A.2 k-NN fusion baselines performance over all datasets. The area around each
line indicates its error bars. 63

vii

List of Tables

2.1 Comparison of modeling abilities of common static KGEs [52]. TransX
represents a wide range of models such as TransR [60] and TransH [39] . . 10

4.1 Comparison of the newly created datasets to existing static and temporal
KG datasets. Missing or unavailable statistics are represented as a dash. . . 20

4.2 Extraction rules used to build the KG from raw events. 21

4.3 Time and space complexity comparison of the models given static embed-
ding dimension ds, diachronic embedding dimension dt, relative time em-
bedding dimension dr, entity set E, and relation set R. 28

4.4 Average runtime comparison of the models in seconds. 28

4.5 Details of train, validation, and test splits. 29

4.6 Hyperparameter ranges used for experiments. 30

4.7 Performance comparison on time-conditioned Link Prediction. Results within
the 95% confidence interval of the best are bolded. 31

4.8 Performance comparison on standard extrapolated time-conditioned Link
Prediction. Results within the 95% confidence interval of the best are bolded. 32

4.9 Performance comparison on extrapolated Time Prediction. 32

viii

5.1 Hyperparameter ranges used for tuning R-TGN. 35

5.2 Performance comparison on time-conditioned Link Prediction. Results within
the 95% confidence interval of the best are bolded. 36

5.3 Average runtime comparison of the models in seconds. 37

5.4 Top-5 repositories with the most number of pull requests from 2015 to 2019. 38

5.5 Extraction rules used to build the KG from raw events. 39

5.6 Performance comparison of all baselines. Results within the 95% confi-
dence interval of the best are bolded. 40

5.7 Hyperparameter ranges used for tuning stacking model. 47

5.8 Hyperparameter ranges used for tuning R-TGN. 49

ix

List of Algorithms

1 Snowball Sampling strategy used for extracting the GITHUB-SE 1M-NODE
dataset. 22

2 Temporal Sampling strategy used for extracting the GITHUB-SE 1Y-REPO
dataset. 23

x

1
Introduction

GitHub1 is the largest host of source code in the world. It provides a distributed version
control service based on Git revision control system2 containing more than 43 million pub-
lic repositories, 163 million public issues, and one billion public commits [12]. Along
with its main functionality, i.e., hosting source codes, it offers many essential collaborative
features such as issue tracking system, task management tools, and code review infras-
tructure. These functionalities have made GitHub a unique large-scale collaborative social
network [38].

Over the past decade, the available artefacts hosted on GitHub have proliferated. The
platform tracks all the occurring events and interactions, and makes them accessible through
a public API. Additionally, other cold storages such as GH Archive3 provide historical
dumps of these events. These factors have made GitHub one of the most important re-
sources for researchers to study various procedural aspects of software development and
open source ecosystems along with the behavioural characteristics of users and software
engineers [7].

The questions of interest to SE researchers include but not limited to “When will an
issue be closed?" [31, 45], “Will a pull request be merged and if yes when?" [16, 51], and
“Who will review a pull request?" [63, 22].

1https://github.com/
2https://git-scm.com/
3https://www.gharchive.org/

1

https://github.com/
https://git-scm.com/
https://www.gharchive.org/

Introduction

In the past few years, software engineering (SE) researchers have mainly focused on the
analysis of repositories, issues, and other entities in an isolated environment using station-
ary features to carry out tasks such as classification and clustering. This focus on isolated
artefacts has led to a lack of studies from a interdisciplinary perspective, e.g. network anal-
ysis, in the previous publications [7].

However, if we take a step back, there exists an immense temporal system of interacting
events comprised of various artefacts present in the platform that dynamically affect and
change each other. This colossal complex network of interacting entities provides an excel-
lent opportunity for researchers to examine GitHub as a whole, e.g. how specific features
change the dynamics of interaction in GitHub. Additionally, it potentially yields the discov-
ery of behavioural and procedural patterns that could only be perceived from a temporal
standpoint. Besides providing the opportunity to study GitHub as a single unit, leveraging
this network is potentially advantageous in combination with existing models operating
on stationary characteristics of artefacts. Additionally, there exists a potential opportunity
to study the everyday tasks solely by observing the dynamics of the network to discern
how far a model can go in learning patterns with almost no extra information from the
underlying artefacts.

From the modelling outlook, graphs are the ideal mathematical constructs to represent
this system of interacting artefacts. With the advent of graph neural networks (GNNs) [15,
47] and knowledge graph embeddings (KGEs) [6], recent years have witnessed a surge
of interest in the field of graph representation learning. These models allow us to perform
various tasks on graph structures, including node classification [32], relation prediction [6],
and community detection [1]. However, the extent of tasks that could be carried out with
these models is not limited to the tasks mentioned above and includes a wide variety of
different tasks. Hamilton et al. [21] presents a comprehensive review of these models and
their applications.

Introduced by Metaweb in 2007 [4], knowledge graphs (KGs) provide a robust struc-
ture for storing and querying the data. A KG represents entities and their relations with
high reliability, explainability, and reusability. Notably, they depict the logical connections
accurately and add logical induction capabilities to the model. Consequently, models could
be built on top of these structures, enabling them to capture the interactions inside a sys-

2

1.1 Contributions

tem better. In particular, when dealing with the temporal and dynamic aspects of the data
compared to static characteristics, previous works have demonstrated [13, 2] that the tem-
poral variations of knowledge graphs achieve better performance compared to the static
variations.

This thesis is intended to inform future endeavours on the efforts made to adapt well-
known software engineering questions to use the new paradigm of temporal graph represen-
tation learning, provide insight and analysis into the results, challenges, and shortcomings,
and propose future research directions to build upon the work that has been done.

1.1 Contributions

The contributions of this work are:

1. Collecting three new temporal KG datasets from GitHub public events that allow
casting the SE questions as time-conditioned prediction queries. Each dataset is par-
ticularly designed to allow the study of GitHub from a different perspective.

2. Implementing and benchmarking state-of-the-art knowledge graph completion meth-
ods on the newly introduced datasets.

3. Based on the observation that existing temporal Knowledge Graph Embeddings (KGEs)
do not well capture patterns in relative time that are important to SE applications,
particularly in extrapolated settings, e.g., “How long will it take from pull request
being opened to being closed?," we propose a new relative temporal KGE, RT-X [2],
inspired by the use of relative time in attention-based neural networks like Music
Transformer [24] and Transformer-XL [8].

4. To further improve the proposed model, inspired by attention-based and relational
GNNs such as Temporal Graph Networks [46] and R-GCN [48], we propose a novel
relation-aware GNN architecture, i.e. R-TGN, that learns to attend over past events
through the use of multi-head-attention, achieving state-of-the-art performance on
the above tasks. The main advantage of this model is the replacement of the temporal
context introduced in the previous model with a learning-based process.

5. Finally, we study the problem of predicting the pull request integrator when it is

3

1.2 Thesis Organization

opened and benchmark the proposed models and approaches.

1.2 Thesis Organization

The remaining of the thesis is organized as follows. Chapter 2 introduces the necessary ma-
chine learning background for the models used in this work, e.g. KGEs and GNNs. Chapter
3 presents an overview of previous works done on GitHub from a social perspective which
essentially motivated this work. Chapter 4 states the efforts done on casting GitHub events
as a KG and elaborates on the datasets, models, and results achieved in experiments. Chap-
ter 5 provides insights into addressing shortcomings of the model in Chapter 4 and further
expansion of our study on other parts of GitHub where we try out the generalizability of our
best model in real-world scenarios. Chapter 6 sheds light on some possible future directions
and presents the conclusion.

4

2
Background

This chapter introduces necessary machine learning background for the methods used in
this work, starting with a brief introduction to classical machine learning models (Section
2.1), moving to matrix factorization models (Section 2.2), then introducing KGEs (Section
2.3), and finishing up with GNNs (Section 2.4).

2.1 Classical Machine Learning

As we are working with a new data source, training simple classical machine learning
models as baselines would give us a benchmark on the collected datasets to be used for
evaluating more complex models. We selected a few standard models for making classifi-
cations. The following establishes the strengths and weaknesses of these models.

Random Forest: Random Forest is an ensemble learner that makes use of the bootstrap
aggregating process along with a voting mechanism to make predictions based on a fixed
number of decision trees where each decision tree divides a continuous sample space by
learning a set of axis-orthogonal hyperplanes. Although a decision tree can learn very so-
phisticated boundaries, it is sensitive to small perturbations in training data. However, this
problem could be diminished by balancing the bias vs variance trade-off through the depth
and number of decision trees used in a random forest.

Gaussian Naive Bayes: Naive Bayes is a simple probabilistic learner that assumes in-
dependence over features, making predictions as ŷ “ argmaxc ppcq

ś

i ppxi|cq. The Gaus-

5

2.2 Matrix Factorization

sian variation, which is suitable to be used on continuous features, further assumes that
each feature fi is sampled from the underlying probability distribution N pµi, σ2

i q with µi
and σ2

i respectively indicating the mean and the variance of the distribution. However, this
assumption is usually too strong to hold on the feature space.

k-Nearest Neighbors (k-NN): k-NN is a non-parametric instance learner that makes
use of a voting mechanism over the closest training samples on a specific metric space to
make predictions. Although k-NN can learn highly irregular boundaries, it suffers from
the curse of dimensionality, which causes all the points to be near each other in a high-
dimensional feature space.

Note that all of these models are capable of outputing a probability distribution over the
classes which we will use to obtain rankings over the candidates.

2.2 Matrix Factorization

In linear algebra, matrix decomposition is referred to as the act of factorizing a matrix into
the product of two or more matrices. One example of such methods is LU -decomposition
in which given a rectangular matrix A its decomposition is defined as

A “ LU (2.1)

where L and U are lower-triangular and upper-triangular matrices, respectively.

Inspired by the use of matrix decomposition in linear algebra, Shpak [50] introduced
the first gradient-based matrix factorization algorithm. The goal of this algorithm is learn-
ing to generalize over the missing values of a sparse matrix K based on the non-empty
elements. To this end, each entity is represented through an embedding function that maps
elements in its domain to d-dimensional vector representations, e.g. E : V Ñ Rd, where
d is a hyperparameter. Usually, an embedding is implemented as a lookup table to main-
tain efficiency. Then the regularized squared error objective is optimized using stochastic
gradient descent as

min
q˚,p˚

ÿ

pu,iqPK

prui ´ q
T
i puq

2
` λp}qi}

2
` }pu}

2
q (2.2)

6

2.3 Knowledge Graphs

where qi and pu are the vector representations of the two interacting entities, rui is a node-
level statistic between them, and λ is the regularization coefficient. After optimizing Equa-
tion 2.2, the final approximation of matrix K would be achieved through a matrix decom-
position defined as

K “ PQ . (2.3)

The aforementioned method relies on specific measurements between entities, e.g. rat-
ing given to a movie by a user; however, recent developments [43, 17] have seen the adapta-
tion of stochastic measures. More specifically, the node2vec [17] algorithm employs a noise
contrastive estimation approach [18] that approximates the optimization of cross-entropy
loss over the whole sample space as

L “
ÿ

pu,iqPK

´ log σpqTi puq ` γEun∼PnpVq
“

log σpqTi punq
‰

(2.4)

where PnpVq denotes a noise distribution, usually a uniform distribution, over the sample
space V , γ ą 0 is a hyperparameter balancing their weight of negative and positive samples,
and σ is the sigmoid function.

2.2.1 Inference

Given a matrix factorization model and an entity qi, the inference task is to find the entity
with the highest similarity score defined as the dot product of the two entities, i.e.

max
u˚

qTi pu , (2.5)

with the results being a sorted list of entities with regards to the calculated score.

2.3 Knowledge Graphs

Graphs are omnipresent structures with a powerful mathematical abstraction for represent-
ing and analyzing a wide variety of data allowing us to represent them as special-case
graphs. For example, a sentence, or any sequence, could be represented as a path graph or
an image could be represented as a lattice graph. Social networks are common real-world

7

2.3 Knowledge Graphs

examples of these structures.

A directed graph G “ pV , Eq is defined as a collection of nodes V and a collection of
edges

E Ď tpu, vq|pu, vq P V ˆ Vu . (2.6)

Hence, a suitable way to represent a graph is by an adjacency matrix A P t0, 1u|V|ˆ|V|

where
Aru, vs “ 1 Ø pu, vq P E (2.7)

To accommodate richer structures, we extend this definition to account for edge-types,
e.g. follower or following relations in social networks, node-types, e.g. user or bot types
in GitHub, and temporal relations, e.g. a user starts/ends following another user in social
networks.

Multi-Relational Graphs: Adding a set of relation-types R, a multi-relational graph
is defined as G “ pV , E ,Rq where

E Ď tpu, r, vq|pu, r, vq P V ˆRˆ Vu . (2.8)

Each multi-relational graph is represented by an adjacency tensor A P t0, 1u|V|ˆ|R|ˆ|V|

where
Aru, r, vs “ 1 Ø pu, r, vq P E . (2.9)

Heterogeneous Multi-Relational Graphs: Adding a set of node-types C, a heteroge-
neous multi-relational graph is defined as G “ pV , E ,R, C, fq where

f : V Ñ C (2.10)

is a function mapping each node to its respective type.

Temporal Heterogeneous Multi-Relational Graphs: Adding a set of timestamps T ,
a temporal heterogeneous multi-relational graph is defined as G “ pV , E ,R, C, f, T qwhere

E Ď tpu, r, v, tq|pu, r, v, tq P V ˆRˆ V ˆ T u . (2.11)

8

2.3 Knowledge Graphs

Each temporal heterogeneous multi-relational graph is represented by an adjacency tensor
A P t0, 1u|V|ˆ|R|ˆ|V|ˆ|T | where

Aru, r, v, ts “ 1 Ø pu, r, v, tq P E . (2.12)

To cover a broader range of structures, each graph could be assumed to be a multi-graph
represented by an adjacency matrix/tensor with non-negative integer elements, i.e. whole
numbers W, instead of binary elements, i.e. t0, 1u. This is a crucial requirement when we
are dealing with models/tasks that require to have access to count of the same interaction.

Given the sets of entities V , and relations R, a static knowledge graph GS is the un-
derlying heterogeneous multi-relational graph representing a subset of all true facts WS Ď

V ˆR ˆ V . Similarly, with the addition of a set of timestamps T , a temporal knowledge
graph GT is the underlying temporal heterogeneous multi-relational graph representing a
subset of all true temporal facts WT Ď V ˆRˆV ˆ T . Additionally, relations in a knowl-
edge graph (KG) could be bidirectional, represented by undirected edges.

In KGs, the Open World Assumption holds indicating that the non-existing edges are
unknown. Hence, the problem of KG completion is the task of inferring the set of missing
facts from the set of available facts, formally defined as

G |ùW ´ G . (2.13)

2.3.1 Knowledge Graph Embeddings

A KGE aims to learn representations, usually a continuous vector, for entities, relations, and
sometimes timestamps by leveraging the observed facts from a given KG. KGEs typically
consist of an encoder generating representations for the inputs and a decoder generating a
score based on those representations. Such models could be divided into static and temporal
groups based on the kind of KG that they can represent.

The most common static KGE models either use translational transformations such as
TransE [6] and RotatE [52] or bilinear transformations such as DistMult [62] and Sim-
plE [28].

9

2.3 Knowledge Graphs

Model Score Function Symmetry Antisymmetry Inversion Composition

SE [5] ´}Wr,1h´Wr,2t} 7 7 7 7

TransE [6] ´}h` r ´ t} 7 3 3 3

TransX [60, 39] ´}gr,1phq ` r ´ gr,2ptq} 3 3 7 7

DistMult [62] xh, r, ty 3 7 7 7

ComplEx [58] Repxh, r, t̄yq 3 3 3 7

RotatE [52] ´}hd r ´ t} 3 3 3 3

Table 2.1: Comparison of modeling abilities of common static KGEs [52]. TransX repre-
sents a wide range of models such as TransR [60] and TransH [39]

Expressivity: The inherent ability of a model to infer different relation patterns is re-
ferred to as expressivity. If the employed model is not expressive enough for the under-
lying KG, it will be likely to underfit/underperform on that specific KG. Symmetry, anti-
symmetry, inversion, and composition are among the most common relation patterns in
KGs. Formally, these patterns are defined as

‚ Symmetry: r is symmetric if

@x, y : rpx, yq ñ rpy, xq (2.14)

‚ Anti-symmetry: r is anti-symmetric if

@x, y : rpx, yq ñ rpy, xq (2.15)

‚ Inversion: r1 is inverse of r2 if

@x, y : r2px, yq ñ r1py, xq (2.16)

‚ Composition: r1 is composed of r2 and r3 if

@x, y, z : r2px, yq ^ r3py, zq “ r1px, zq (2.17)

Table 2.1 presents a comparison of modeling abilities of common static KGEs. Given the
illustrated comparison in Table 2.1, RotatE was chosen as the base model for the experi-

10

2.3 Knowledge Graphs

ments.

RotatE [52]: Built on top of two complex-valued embeddings EV and ER for entities
and relations respectively, RotatE models each relation as a rotation between entities in the
embedding vector space. The advantage of RotatE is its ability to infer all mentioned above
relations patterns. Given a triplet ps, o, rq, RotatE’s scoring function is defined as

φps, o, rq “ ´}EVpsq d ERprq ´ EVpoq}. (2.18)

With regards to temporal KGEs, methods for time prediction and time-conditioned link
prediction in KGs [30, Section 5.1-5.2] are generally based on point process models [56,
57, 33] or adaptations of static KGEs that additionally use time to compute scores [9,
35, 11, 13]. While point processes models are elegant, they are more challenging to work
with and require strong assumptions on their underlying intensity functions [see, e.g., 57,
Equation 1 & Section 4]. Thus we focus on KG embedding-based methods, in particular
starting with Diachronic Embeddings (DE-X) [13] for time-varying embeddings as it has
demonstrated state-of-the-art performance over common benchmarks.

Diachronic Embeddings [13]: Diachronic embeddings are temporal extensions of em-
beddings defined as

Dpe, tq “ EVpeq ‘ pEApeq ` sinptˆ EF peq ` Eφpeqqq (2.19)

where‘ is the concatenation operator andE,EA, EF , Eφ are embeddings and the last three
respectively represent Amplitude, Frequency, and Phase of a multidimensional sinusoid.

Constructed on top of diachronic embeddings, DE-X defines a general extension to
static models allowing them to operate on temporal KGs. The idea behind this extension
is to replace embeddings in a static model with diachronic embeddings adding temporal
information into the model without any changes to the scoring function.

The expressivity of any DE-X model is greater equal than the analogous static model
as there exists a configuration for the respective DE model that is equivalent to the static
variation. Moreover, DE-X models can infer entailment relation pattern, e.g. if someone
becomes the president of a country then (s)he is a citizen of that country, defined as

11

2.3 Knowledge Graphs

‚ r1 entails r2 if
@x, y : r2px, yq |ù r1px, yq . (2.20)

Hence, to create a temporal variation of RotatE we replace its embeddings with di-
achronic embeddings to create DE-RotatE with a scoring function defined as

φps, o, r, tq “ ´}Dps, tq d ERprq ´Dpo, tq}. (2.21)

2.3.2 Training

KGEs are trained using a noise contrastive estimation approach; however, since there are
only positive samples in KGs, to avoid trivial solutions of embeddings a Closed World

Assumption is made during the training phase indicating that non-existing edges are false.
With this assumption, negative sampling is used to randomly select negative samples from
a specific set, e.g. the whole sample space, with respect to a predefined distribution, e.g.
uniform, to contrast with a given positive sample, optimizing [58]

L “ ´ log σpγ ` φpxqq ´
1

k

k
ÿ

i“1

log p1´ σpγ ` φpx1iqqq (2.22)

where x is the positive sample, tx1iui“1,...,k are the negative samples, and γ is a fixed margin
acting as a regularizer.

Self-Adversarial Negative Sampling [52] is an extension of regular negative sampling
scheme which replaces the uniform noise distribution with a distribution dependent on the
current state of the embedding model defined as

P px1j|txiui“1,...,kq “
expαφpx1jq

ř

i expαφpx1iq
(2.23)

where α is the sampling temperature and txiui“1,...,k is the set of negative samples. Due to
the computational cost of realizing the actual distribution, these probabilities are embedded

12

2.3 Knowledge Graphs

into the objective function as

L “ ´ log σpγ ` φppqq ´
k
ÿ

i“1

ppniq log p1´ σpγ ` φpniqqq (2.24)

Adapting negative sampling methods to temporal setting, Dasgupta et al. [9] demon-
strate the potential of using a mixed negative sampling approach where negative samples
are drawn from both Time Agnostic and Time Dependant negative samples distributions
during training of a temporal KGE.

The last piece needed in the process of training KGEs is a regularization techinque to
alleviate the chance of overfitting and improve generalization. Apart from common regu-
larization techniques such as L1 and L2 regularizations [23, 54], Lacroix et al. [34] propose
a novel regularization method based on nuclear norm-3 and demonstrate its efficiency for
training KGEs.

2.3.3 Inference

A query on a given KG is represented as a tuple with missing elements denoting the desired
search space to find the complete tuple with the highest score. Hence, each inference task
on a KG is framed and executed as a proxy query. Moreover, the result of a query is a
ranking over all the samples in the specified search space.

The set of all temporal queries is defined as

QT “

ps, r, o, tq | s, o P V Y t˚u, r P RY t˚u, t P T Y t˚u
(

(2.25)

with asterisk being a special symbol acting as the missing element to denote the desired
search space. Since static KGs are special-cases of temporal KGs, we can easily derive the
set of all static queries the same way as QT .

Link prediction is the most common type of query on KGs defined as inferring missing
links given a KG and is represented as a tuple with exactly one entity missing, e.g. ps, r, ˚q
or p˚, r, oq. Suggesting a connection in a social network is one of the widely used examples
of these queries. From a propositional logic perspective, links are analogous to proposi-

13

2.4 Graph Neural Networks

tions and link prediction is analogous to one-step induction. In the temporal setting, link
prediction queries are usually time-conditioned which means that they are conditioned on a
specific given time, e.g p˚, r, o, tq; however, it is also possible to execute time-independent
link prediction queries such as ps, r, ˚, ˚q or p˚, r, o, ˚q.

Time prediction is another type of query that could be executed on temporal KGs. Pre-
dicting the time of a future connection in a social network is an example of this kind of
query. These queries are represented as ps, r, o, ˚q.

2.4 Graph Neural Networks

Moving forward from encoders that encode relations and entities independently in KGEs,
GNNs introduce a general framework to leverage the structure of the graph to generate
representations on various levels. In comparison to previous well-known architectures, e.g.
recurrent neural networks, the key distinguishing feature of GNNs is that they operate on an
arbitrary ordered set of inputs which casts specific constraints on the functions that could
be used to define a model. More specifically, given the adjacency matrix of input nodes A,
the function f should satisfy either

fpPAP T
q “ fpAq (Permutation Invariance) or (2.26)

fpPAP T
q “ PfpAq (Permutation Equivariance), (2.27)

where P is a permutation matrix. Another pivotal difference of GNNs to shallow embed-
ding methods, e.g. KGEs, is their ability to use node-features when available.

Figure 2.1: Overview of a 2-layer neural message passing algorithm on a single node [20].

14

2.4 Graph Neural Networks

The basic building block for GNNs is a form of neural message passing algorithm
which relies on messages, i.e. continuous vector representations of neighbors, to pass on
information among nodes and generate representation for nodes, subgraphs, and graphs.
Battaglia et al. [3] define the generalized neural message passing algorithm at k-th layer of
a GNN as

h
pkq
pu,vq “ UPDATEedgeph

pk´1q
pu,vq , h

pk´1q
u , hpk´1qv , h

pk´1q
G q (2.28)

mN puq “ AGGREGATEnodepth
pkq
pu,vqu@vPN puqq (2.29)

hpkqu “ UPDATEnodephpk´1qu ,mN puq, h
pk´1q
G q (2.30)

h
pkq
G “ UPDATEgraphph

pk´1q
G , thpkqu u@uPV , th

pkq
pu,vqu@pu,vqPEq (2.31)

where N puq is the neighborhood around the node u, hpu,vq is the edge representation, hu is
the node representation, and hG is the graph representation. Figure 2.1 illustrates a simpli-
fied variation of a generalized 2-layer neural message passing algorithm. Complementary
to the neural message passing algorithm, Hamilton et al. [19] introduce a simple neighbor
sampling technique to keep the computational cost tractable by aggregating over a fixed-
size random set of neighbors at each layer instead of the complete neighborhood.

Moving on to the temporal setting, Rossi et al. [46] introduce Temporal Graph Net-
works (TGN), a novel GNN architecture which is particularly designed to leverage the
temporal nature of a given graph. Formally, TGN defines the representation generation
process for node u at timestamp t, huptq, at k-th layer as

hpkqu ptq “ MLPpkqphk´1u ptq ‖ rhpkqu ptqq, (2.32)
rhpkqu ptq “ MultiHeadAttentionpkqpqpkqptq, Kpkq

ptq, V pkqptqq, (2.33)

qpkqptq “ hk´1u ptq ‖ φp0q, (2.34)

Kpkq
ptq “ V pkqptq “ Cpkqptq, (2.35)

Cpkqptq “
”

h
pk´1q
1 ‖ e1pt1q ‖ φpt´ t1q, . . . , hpk´1qN ‖ eNptNq ‖ φpt´ tNq

ı

(2.36)

where φp.q is the time encoding presented in [29], ‖ is the concatenation operator, the
multi-head-attention is the scaled dot-product variation [59], and tenptnqun“1,...,N is the set
of edge features over N puq. Here, hp0qu could either be an embedding or a feature vector.

15

3
Related Work

Becoming the most popular social coding platform [7], GitHub provides ample opportuni-
ties for researchers to study it from different perspectives. This chapter reviews previous
related research done on various aspects of GitHub with a focus on those using social el-
ements. This work is motivated by the numerous information entanglements found across
entities in GitHub.

3.1 Pull Requests and Issues

Given the pull-based development model of GitHub, Yu et al. [63] study the feasibility
of relying only on social relations to recommend pull-request reviewers and compare it to
traditional approaches. Their findings show that social network analysis approaches achieve
similar performance as traditional approaches. Fused with traditional methods, they found
significant improvements over both methods, indicating the importance of combining social
factors with technical factors.

Similarly, Jiang et al. [25] focus on the problem of assigning core members for contri-
bution evaluation. Utilizing follower and following relationships as a proxy of the social
closeness between the contributor and the core member, they achieve superior performance
in comparison to various baselines.

As resource allocation becomes more critical with the growth of a project, Kikas et al.
[31] study the problem of issue lifetime prediction across 4000 projects through static,

16

3.2 Repositories

dynamic, and contextual features. Their study highlights the importance of fusing dynamic
and contextual features to build more robust predictive models. In an extension done by
Rees-Jones et al. [45], authors found out that in some cases there are advantages to using
cross-project models instead of local-learning methods too.

3.2 Repositories

Studying the forking process in GitHub, Jiang et al. [26] uncover similar behaviour to social
networks such as Twitter and Reddit, suggesting that repository owners should utilize social
relationships to promote and attract forks through the introduction of their repositories to
popular developers with a high number of followers.

Closely related, Xu et al. [61] present a personalized software-recommendation system
that leveraged the user’s past social behaviours such as starring and forking. Their result
shows that in combination with the content of each project, the proposed model outper-
forms the other two baselines.

Looking at the project recommendation problem from the onboarding process perspec-
tive, Liu et al. [40] make use of the social ties between existing project members and the
new member. Their results indicate the importance of past social interactions, essentially
confirming the preference of developers toward working with former frequent collabora-
tors. Their study also shows that prior experience in the programming language of the
project, number of commits in the project, and size of the team working on the project are
predictors of a higher probability of success in the onboarding process.

3.3 Users

Working on the problem of finding influential developers, Liao et al. [37] propose a method
based on influence propagation through heterogeneous network constructed on top of user
behaviours. They achieve significant improvement over other link analysis algorithms while
showing the importance of using commit information to outperform traditional techniques
such as PageRank and HITS.

Focusing on finding the indicators of being accepted into a team, [41] try to find the type

17

3.4 Ecosystem

and qualities of project interactions that affect joining an open-source software team both
in isolation and combination. Their findings show the pull requests influence the decision
the most with frequent discussions having a positive effect.

3.4 Ecosystem

Being critical to the survival of open-source projects, Qiu et al. [44] study the impact of
social-networks formed by contributors on sustained participation. Their findings show a
correlation associated between decreased risk of disengagement and contributing to projects
with more familiar team members as indicated by having previous collaborations.

Studying community aspects of GitHub, Tamburri et al. [53] propose a tool for measur-
ing community aspects characterising a software community and a community structure
predictor for software systems. Their results indicate a reliable prediction of community
structure patterns using software engineering data.

18

4
GitHub Events as a Knowledge Graph

This chapter focuses on the efforts made on casting GitHub events as KG, adapting some re-
lated SE tasks to queries, benchmarking exiting models, and finally description of new pro-
posed models. The content of this chapter is based on a previous peer-reviewed work [2].

4.1 Dataset

4.1.1 Retrieval

To create the dataset, we retrieved from GitHub Archive all of the raw public events in
GitHub in 2019. The knowledge graph was then constructed by tuples, each of which rep-
resents an individual event containing temporal information based on its type and a prede-
fined set of extraction rules. The properties of the constructed KG is shown in the first row
of Table 4.1, referred to as GITHUB-SE 1Y.

4.1.2 Extraction

As for the fact extraction strategy, Table 4.2 presents the set of extraction rules used to
build the KG from raw events each representing a relation type. Although 80 extractions
rules are defined in Table 4.2, the raw events that we used only contained 18 of them.

The codes presented in the Relation column of Table 4.2, when divided on underscore,
are interpreted as a) the first and the last components respectively represent entity types of

19

4.1 Dataset

Dataset |V| |E| |R| |T| DMAX DMED

GitHub-SE 1Y 125,455,982 249,375,075 19 365 3,519,105 2
GitHub-SE 1Y-Repo 133,335 285,788 18 365 73,345 1

GitHub-SE 1M 13,690,824 23,124,510 19 31 1,324,179 2
GitHub-SE 1M-Node 139,804 293,014 14 31 639 2

FB15k [6] 14,951 592,213 1,345 - 11,963 108
FB15k-237 [55] 14,541 310,116 237 - 8,642 38
WN18 [6] 40,943 151,442 18 - 1,040 6
WN18RR [10] 40,943 93,003 11 - 521 3

GitHub (Original) [57] 12,328 771,214 3 366 - -
GitHub (Subnetwork) [33] 284 20,726 8 366 4,790 53.5
ICEWS14 [11] 7,128 90,730 230 365 6,083 3
ICEWS05-15 [11] 10,488 461,329 251 4017 52,890 5
YAGO15K [11] 15,403 138,056 34 198 6,611 5
Wikidata [35] 11,153 150,079 96 328 586 5
GDELT [36] 500 3,419,607 20 366 53,857 10,336

Table 4.1: Comparison of the newly created datasets to existing static and temporal KG
datasets. Missing or unavailable statistics are represented as a dash.

the event’s subject and object, b) AO, CO, SE, SO, and HS are abbreviations of extracted
information from raw payloads1 serving as distinguishers between different relation types
among entities, and b) the second to the last component represents the concrete action taken
that triggers the event.

4.1.3 Preprocessing

As evident from the statistics presented in Table 4.1, both the GITHUB-SE 1Y and the
GITHUB-SE 1M have computationally intractable sizes. Therefore, we resort to further
process the datasets into tractable size KGs that are feasible to experiment with by employ-
ing two distinct strategies.

The first strategy aims to retain maximum temporal information about particular SE
projects. To achieve this, first, an induced sub-graph containing all related nodes was ex-
tracted for each node with type Repository. Then, for each sub-graph a popularity score

1https://developer.github.com/webhooks/event-payloads/

20

https://developer.github.com/webhooks/event-payloads/

4.1 Dataset

Event Type Head Relation (Code) Tail

Commit Comment User Actor (U_AO_CC) Commit Comment

Fork Repository Fork (R_FO_R) Repository

Issue Comment
User

Created (U_SO_C_IC)
Issue CommentEdited (U_SO_E_IC)

Deleted (U_SO_D_IC)

Issue Comment
Created (IC_AO_C_I)

RepositoryEdited (IC_AO_E_I)
Deleted (IC_AO_D_I)

Issues

User

Opened (U_SE_O_I)

Issue

Edited (U_SE_E_I)
Deleted (U_SE_D_I)
Pinned (U_SE_P_I)

Unpinned (U_SE_UP_I)
Closed (U_SE_C_I)

Reopened (U_SE_RO_I)
Assigned (U_SE_A_I)

Unassigned (U_SE_UA_I)
Locked (U_SE_LO_I)

Unlocked (U_SE_ULO_I)
Transferred (U_SE_T_I)

User Assigned (U_AO_A_I) IssueUnassigned (U_AO_UA_I)

Issue

Opened (I_AO_O_R)

Repository

Edited (I_AO_E_R)
Deleted (I_AO_D_R)
Pinned (I_AO_P_R)

Unpinned (I_AO_UP_R)
Closed (I_AO_C_R)

Reopened (I_AO_RO_R)
Assigned (I_AO_A_R)

Unassigned (I_AO_UA_R)
Locked (I_AO_LO_R)

Unlocked (I_AO_ULO_R)
Transferred (I_AO_T_R)

Member User
Added (U_CO_A_R)

RepositoryRemoved (U_CO_E_R)
Edited (U_CO_R_R)

Pull Request Review Comment
User

Created (U_SO_C_PRC)
Pull Request Review CommentEdited (U_SO_E_PRC)

Deleted (U_SO_D_PRC)

Pull Request Review Comment
Created (PRC_AO_C_P)

Pull RequestEdited (PRC_AO_E_P)
Deleted (PRC_AO_D_P)

Pull Request Review
User

Submitted (U_SO_S_PR)
Pull Request ReviewEdited (U_SO_E_PR)

Dismissed (U_SO_D_PR)

Pull Request Review
Submitted (PR_AO_S_P)

Pull RequestEdited (PR_AO_E_P)
Dismissed (PR_AO_D_P)

Pull Request

User

Assigned (U_SO_A_P)

Pull Request

Unassigned (U_SO_UA_P)
Review Requested (U_SO_RR_P)

Review Request Removed
(U_SO_RRR_P)

Opened (U_SO_O_P)
Edited (U_SO_E_P)
Closed (U_SO_C_P)

Ready for Review (U_SO_RFR_P)
Locked (U_SO_L_P)

Unlocked (U_SO_UL_P)
Reopened (U_SO_R_P)

Synchronize (U_SO_S_P)
User Assigned (U_AO_A_P) Pull RequestUnassigned (U_AO_U_P)
User Review Requested (U_RRO_A_P) Pull RequestReview Request Removed

(U_RRO_R_P)

Pull Request

Assigned (P_AO_A_R)

Repository

Unassigned (P_AO_UA_R)
Review Requested (P_AO_RR_R)

Review Request Removed
(P_AO_RRR_R)

Opened (P_AO_O_R)
Edited (P_AO_E_R)
Closed (P_AO_C_R)

Ready for Review (P_AO_RFR_R)
Locked (P_AO_L_R)

Unlocked (P_AO_UL_R)
Reopened (P_AO_R_R)

Synchronize (P_AO_S_R)

Push User Sender (U_SO_C) Repository

Star User Created (U_HS_A_R) RepositoryDeleted (U_HS_R_R)

Table 4.2: Extraction rules used to build the KG from raw events.

21

4.1 Dataset

was calculated as P pGq “ W1 ˆ SG `W2 ˆ TG where SG is the size of the graph, TG is
the time-span of the graph, and W1,W2 P R` are weight values. Finally, from the top three
ranked repositories, we selected the Visual Studio Code repository to extract a one-year
slice as it exercised more functionalities related to the target entities in this work, i.e. issues
and pull requests. We name this dataset GITHUB-SE 1Y-REPO due to its repository-centric
characteristics.

The second strategy aims at preserving the most informative nodes regardless of their
type. We used a variation of Snowball Sampling [14] on all the events in December 2019.
This sampled dataset, i.e. GITHUB-SE 1M-NODE, captures events across various projects
and therefore, can be used to answer queries such as which project does a user start con-
tributing at a certain time.

Algorithm 1 Snowball Sampling strategy used for extracting the GITHUB-SE 1M-NODE
dataset.
Require: set of nodes V , set of edges E, sample size N , growth size S, initial sample size
K
LÐ sortDescendingpV q w.r.t node degree
QÐMaxPriorityQueuepq
for i “ 1, ..., K do
Q.put(Lris)

end for
U Ð Setpq
while sizepUq ă N do
VuÐ Q.top() w.r.t node degree
U .put(Vu)
UsÐ randomSamplepErVusq with size S
for i “ 1, ..., S do
Q.put(Usris)

end for
end while

Algorithm 1 describes the snowball sampling technique used to create the GITHUB-
SE 1M-NODE dataset. Focused on the breadth of the covered projects in a short span-of-
time, it aims at preserving the most informative nodes regardless of their types. Algorithm
2 describes the temporal sampling approach used to create the GITHUB-SE 1Y-REPO
dataset. Focused on the depth of a single project in a long span of time, it aims at preserving

22

4.1 Dataset

maximum temporal information regarding particular repositories.

Algorithm 2 Temporal Sampling strategy used for extracting the GITHUB-SE 1Y-REPO
dataset.
Require: set of nodes V , size importance factor W1, time span importance factor W2,

sample size N
RÐ extractRelatedpV q {Repository node type only}
P Ð Arrayp|R|q
for i “ 1, ..., |R| do
PiÐ calculatePopularitypRi,W1,W2q

end for
S Ð sortedpP q
U Ð Setpq
for i “ 1, ..., |S| do

if sizepUq ă N then
U .union(Si)

end if
end for

4.1.4 Characteristics

In Table 4.1, we compare the variations of GITHUB-SE KG proposed in this work with
commonly used datasets in the literature. Even the sampled down versions of our datasets
are considerably larger in terms number of nodes. They have much higher edge to node
ratios which translates into sparsity in graphs, but this sparsity level is close to what appears
in GitHub as a whole. Additionally, similar to relations, each node in our datasets is also
typed.

Trivedi et al. [57] also collects a temporal KG dataset from GitHub. However, this
dataset is exclusively focused on the social aspects of GitHub, discarding repositories and
only including user-user interactions, and it does not appear to be publicly available beyond
raw data and a small subnetwork extracted in a follow-up work [33]. To differentiate our
datasets, which focus on the SE aspects of GitHub, we append -SE to the dataset names.

The distinguishing characteristics of the proposed datasets, i.e. size, sparsity, node-
typing, diversity, focus on SE aspects, and temporal nature, introduce a variety of engineer-
ing and theoretical challenges that make these datasets a suitable choice for exploring and

23

4.2 Methodology

exposing the limitations of temporal knowledge graph embedding models.

4.2 Methodology

4.2.1 Baselines

We first examine the performance of the state-of-the-art KG embedding models on the
GITHUB-SE 1M-NODE and GITHUB-SE 1Y-REPO datasets. We select RotatE [52] for
the static settings considering its ability to infer Symmetry, Antisymmetry, Inversion, and
Composition relational patterns. Moreover, we use DE-X [13] for the dynamic setting due
to its superior performance on existing benchmarks and the fact that for any static model
X there exists an equivalent DE-X model ensuring the ability to learn aforementioned pat-
terns.

4.2.2 Proposed Approach

Motivation

Inspired by the use of relative temporal information in machine learning literature, and
given the potential causal characteristic of SE events, we hypothesize that temporal KGEs
could also benefit from such information provided as an extra signal.

The idea of using relative temporal information has been successfully employed in
natural language processing [59, 8] and music generation [24]. These models formalize the
intuition that temporal spacing between events is more central than the absolute time at
which an event happened. We believe this framing is also appropriate for SE applications
of temporal knowledge graphs: to predict if a pull request is closed at time t, it is more
important to know how long it has been since the pull request was opened than it is to
know t.

However, one of the challenges is that there are a lot of events, and we do not want to
hard-code which durations are relevant. Instead, we would like the model to learn which
temporal durations are important for scoring a temporal fact. As the number of related facts
to an entity could be as high as a few thousand, we propose to pick a fixed-number of facts

24

4.2 Methodology

as temporal context to provide as an input to the models.

The manually engineered temporal context tries to bake into the model the expert
knowledge regarding which events are most likely to have an effect on the inference task
at the query-time. The hypothesis is that the required temporal context could be collected
from the recent facts involving the two entities being scored. Hence, we propose to take the
most recent fact of each relation type for a given entity resulting in a fixed-size temporal
context for each entity at the query-time.

Formalization (RT-X)

Let
Hpe, r, tq “ tt1 | ps1, r, o1, t1q P G ^ pt1 ă tq ^ ps1 “ e_ o1 “ equ (4.1)

be the set of times associated with facts involving entity e and relation r occurring before
time t, and let

δpe, r, tq “ t´maxHpe, r, tq (4.2)

be the relative time since a fact involving e and relation r has occurred. Hence, an entity’s
relative temporal context at query time tq is

∆pe, tqq “

»

—

—

–

δpe, 1, tqq
...

δpe, |R|, tqq

fi

ffi

ffi

fl

P R|R| . (4.3)

Moreover, to mimic the temporal gap of information occurring in the evaluation phase
of extrapolated link prediction, we insert a random temporal information gap, tq, during the
training phase whenever the context is retrieved. Following the introduction of the afore-
mentioned temporal context, we now turn attention to using the relative temporal context
∆pe, tq as an input to temporal KG embeddings. Our inspiration is the Transformer en-
coder, which has emerged as a successful substitute to more traditional Recurrent Neural
Network approaches used for sequential [59, 8, 24] and structural [42] tasks. The core idea
is to employ a variation of attention mechanism called Self-Attention that assigns impor-
tance scores to the elements of the same sequence.

25

4.2 Methodology

Unlike recurrence mechanism, the positional information is injected to the Transformer
styled encoders by 1) adding sine/cosine functions of different frequencies to the input [59,
8], or 2) directly infusing relative distance information to attention computation in form of
a matrix addition [49, 24]. Vaswani et al. [59] introduced a positional encoding scheme in
form of sinusoidal vectors defined as ρpiq “ rρ1piq, . . . , ρdpiqs, with

ρjpiq “

$

&

%

sinpi{10000
tj{2u

d q j even

cospi{10000
tj{2u

d q j odd
, (4.4)

where i is the absolute position, and d is the embedding dimension. In the follow-up
Transformer-XL model, Dai et al. [8] introduce a reparameterization of the relative atten-
tion where the attention score between a query element at position i and a key element at
position j is defined as

Areli,j “ EpiqJWJ
QWK,EEpjq

looooooooooomooooooooooon

paq

`EpiqJWJ
QWK,ρρpi´ jq

looooooooooooomooooooooooooon

pbq

(4.5)

` uJWK,EEpjq
loooooomoooooon

pcq

` vJWK,ρρpi´ jq
loooooooomoooooooon

pdq

where Epiq, Epjq P Rdˆ1 are the i and j element embeddings, u, v P Rdˆ1, WQ, WK,E ,
WK,ρ are trainable dˆ d matrices, and i´ j is the relative position between i and j.

The main difference in our setting is that the above models compute a score based on
a single relative time i ´ j, while our relative temporal context ∆ contains |R| relative
times for each entity. Our approach is to score a tuple ps, r, o, tq based on the information
available at query time tq2. For each entity e P ps, oq we define a positional embeddings
matrix P of relative times between t and the events in its relative temporal context ∆pe, tqq

2During training, tq is the t of the positive sample, and during evaluation, tq is set to the maximum
timestamp in the training set.

26

4.2 Methodology

as

P pe, t, tqq “

»

—

—

—

—

–

ρpt´ tq ` δpe, 1, tqqq

ρpt´ tq ` δpe, 2, tqqq
...

ρpt´ tq ` δpe, |R|, tqqq

fi

ffi

ffi

ffi

ffi

fl

P R|R|ˆd. (4.6)

Intuitively, these relative times encode “If the event happened at time t, how long would it
have been since the events in the relative time context?”

A learned, relation-specific row vector

WP prq P R1ˆ|R| for r “ 1, . . . , |R| (4.7)

chooses which rows of P are important, and then

γpr, e, t, tqq “ WP prqP pe, t, tqq P R1ˆd , (4.8)

abbreviated as γpr, e, tq, embeds the relative temporal context of e, replacing WK,ρρpi´ jq:

Arelx “ Dps, tqW prqDpo, tqJ
looooooooooomooooooooooon

paq

` γpr, s, tqWPγpr, o, tq
J

loooooooooooomoooooooooooon

pdq

(4.9)

` EpsqWEγpr, o, tq
J

loooooooooomoooooooooon

pbq

` γpr, s, tqWJ
EEpoq

J

loooooooooomoooooooooon

pcq

where W prq is a relation-specific weight matrix and WE and WP are tuple-agnostic weight
matrices; however, this formulation is suitable for bilinear models. Hence, we derive a
translational variation for the DE-RotatE model as

Arelx “ }Dps, tq ˝ ERprq ´Dpo, tq}
loooooooooooooooomoooooooooooooooon

paq

(4.10)

` }EpsqWE ´ γpr, o, tq}
loooooooooooomoooooooooooon

pbq

`}γpr, s, tq ´ EpoqWE}
loooooooooooomoooooooooooon

pcq

where W prq is replaced by an embedding lookup table ERprq. Intuitively, under this for-

27

4.2 Methodology

mulation paq capture entities compatibility and pbq and pcq capture entity-specific temporal
context compatibility. In comparison, the existing models only include term paq discarding
terms pbq and pcq.

Baking more expert knowledge into the process, we employed two re-ranking heuristics
during the evaluation time for time-conditioned link prediction. First, each entity was only
evaluated among entities with the same type. Next, we push down the ranks of entities with
prior interactions with the given entity.

Complexity

Table 4.3 presents time and space complexity comparison between the existing models and
the introduced RT-X model. Notice that, while yielding superior performance, the number
of free-parameters introduced in our extension does not increase linearly with the number
of entities which is one of the bottlenecks of training large KG embedding models. Table
4.4 presents the average runtime of each model for every 100 steps with batch size set to
64. All experiments were carried on servers with 16 CPU cores, 64GB of RAM, and a
NVIDIA V100/P100 GPU.

Model Computational Complexity Free Parameters Complexity

RotatE Opdsq Opdsp|E| ` |R|qq

DE-RotatE Opds ` dtq Oppds ` dtqp|E| ` |R|qq

RT-DE-RotatE (ours) Opds ` dt ` dsdr ` dr|R|q Oppds ` dtqp|E| ` |R|q ` d2r ` dsdrq

Table 4.3: Time and space complexity comparison of the models given static embedding
dimension ds, diachronic embedding dimension dt, relative time embedding dimension dr,
entity set E, and relation set R.

Model Number of Batches Avg Training Runtime

RotatE 100 77s
DE-RotatE 100 80s

RT-DE-RotatE 100 87s

Table 4.4: Average runtime comparison of the models in seconds.

28

4.3 Evaluation and Results

4.3 Evaluation and Results

4.3.1 Datasets

We use a 90%-5%-5% events split for constructing the train, validation, and test sets. For
the interpolated queries the split was done randomly, whereas we split the data using event
timestamps for the extrapolated queries. Table 4.5 presents details of the splits.

Dataset Type #Train #Validation #Test

GITHUB-SE 1M-NODE
Interpolated 285,953 3,530 3,531
Extrapolated 281,056 2,104 3,276

Standard Extrapolated 275,805 2,104 3,276

GITHUB-SE 1Y-REPO
Interpolated 282,597 1,595 1,595
Extrapolated 269,789 2,281 1,472

Standard Extrapolated 252,845 2,281 1,472

Table 4.5: Details of train, validation, and test splits.

4.3.2 Queries

For time-conditioned link prediction, we selected events related to the resolution of Github
issues and pull requests due to their direct impact on software development and mainte-
nance practice. Particularly, we used “Who will close issue X at time T?" and ‘Who will

close pull-request X at time T?" for evaluation. For time prediction, we used the analogous
time queries of the aforementioned queries for evaluation, i.e. “When will issue X be closed

by user Y?" and ‘When will pull-request X be closed by user Y?".

4.3.3 Metrics

We calculated the standard metrics to evaluate the model performance on the test set. More-
over, we use standard error to calculate confidence intervals and detect statistically indis-
tinguishable results.

29

4.3 Evaluation and Results

4.3.4 Hyperparameters

We tuned our models using the hyperparameter ranges reported in Table 4.6 for dropout, η,
ω, and α resulting in total of 72 runs. Then, following the best hyperparameters achieved
on RotatE and DE-RotatE models, we used dropout = 0.4, η “ 0.5, ω “ 6.0, α “ 3ˆ10´5,
λ “ 5 ˆ 10´4, time-agnostic negative ratio = 256, time-dependant negative ratio = 32,
batch size = 64, warm-up steps = 100000, warm-up α decay rate = 0.1, steps = 200000, and
validation steps = 10000 for all experiments.

We apply L3 regularization parameterized by λ as introduced in Lacroix et al. [34] on
E, EA, WE , and WP .

Hyperparameter Range

Dropout t0.0, 0.2, 0.4u

η t0.5, 1.0u

ω t3.0, 6.0, 9.0u

α t10´3, 10´4, 3ˆ 10´5, 10´5u

λ t10´3, 5ˆ 10´4, 10´4u

ds t128, 96, 64, 32, 0u

da t128, 96, 64, 32, 0u

dr t128, 64, 32, 0u

Table 4.6: Hyperparameter ranges used for experiments.

To make a fair comparison, we chose a base embedding size of 128 for all experiments.
Subsequently, we only report on the combinations of static embedding dimension ds values
and diachronic embedding dimension dt values presented in Table 4.6 where ds`dt “ 128.
We evenly distribute dt among all diachronic embeddings to prevent giving models a dis-
tinct advantage in terms of free-parameters. As for the relative time embedding dimension
dr, we report on all the combinations in Table 4.6 with ds and dt respecting the stated
restriction resulting in total of 17 experiments per dataset.

30

4.3 Evaluation and Results

4.3.5 Results

For the extrapolated time-conditioned link prediction queries, after using the validation
set for hyperparameter tuning, we retrained the selected models using both training and
validation sets for evaluation. We also report the model performance without retraining in
Table 4.8.

Dataset Type Model HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE
1M-NODE

Interpolated
RotatE 47.58 76.66 88.95 807.40 0.6328

DE-RotatE 47.98 76.92 88.87 779.50 0.6349
RT-DE-RotatE (ours) 49.70 78.67 90.48 773.90 0.6522

Extrapolated
RotatE 25.40 49.02 57.54 4762.87 0.3797

DE-RotatE 26.28 48.53 57.33 4840.16 0.3838
RT-DE-RotatE (ours) 26.50 49.54 57.94 4891.81 0.3888

GITHUB-SE
1Y-REPO

Interpolated
RotatE 44.05 57.14 80.95 18.54 0.5460

DE-RotatE 42.17 53.88 76.88 24.67 0.5233
RT-DE-RotatE (ours) 48.93 60.96 78.32 14.47 0.5815

Extrapolated
RotatE 2.11 4.82 9.71 1917.03 0.0464

DE-RotatE 1.77 4.08 9.10 1961.75 0.0402
RT-DE-RotatE (ours) 38.25 40.08 64.06 1195.02 0.4345

Table 4.7: Performance comparison on time-conditioned Link Prediction. Results within
the 95% confidence interval of the best are bolded.

In Table 4.7 we compare the model performance on the time-conditioned link predic-
tion queries. On the GITHUB-SE 1M-NODE queries, our model slightly outperforms ex-
isting models in some cases, but the difference is statistically insignificant in others. On the
GITHUB-SE 1Y-REPO, on the other hand, our RT-DE-ROTATE model shows a signif-
icant performance boost, particularly on the extrapolated time-conditioned link prediction
queries, indicating the importance of using relative time as temporal context.

For the extrapolated time prediction queries on GITHUB-SE 1Y-REPO dataset, our
model performed slightly better on HITS@1, HITS@3, and Mean Reciprocal Rank (MRR)
than the other existing models while marginally surpassing the random baseline on all
metrics. These results, detailed in Table 4.9, stress the necessity of having further studies
on extrapolated time prediction queries.

31

4.3 Evaluation and Results

Dataset Model HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE 1M-NODE
RotatE 19.60 38.37 45.54 6437.30 0.2965

DE-RotatE 20.97 38.03 45.21 6504.79 0.3005
RT-DE-RotatE (ours) 22.10 38.61 45.54 5782.83 0.3113

GITHUB-SE 1Y-REPO
RotatE 0.41 1.49 2.45 2259.03 0.0141

DE-RotatE 5.16 8.83 16.44 1342.25 0.0911
RT-DE-RotatE (ours) 38.59 40.01 43.27 1613.70 0.4034

Table 4.8: Performance comparison on standard extrapolated time-conditioned Link Pre-
diction. Results within the 95% confidence interval of the best are bolded.

Dataset Model HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE 1Y-REPO

RotatE 1.77 18.27 56.05 10.62 0.1675
DE-RotatE 3.46 7.27 60.73 9.35 0.1724

RT-DE-RotatE (ours) 6.18 19.29 55.91 9.40 0.2073
Random 5.26 15.79 52.63 9.5 0.1867

Table 4.9: Performance comparison on extrapolated Time Prediction.

Figure 4.1 presents the importance matrix WP between relations. As evident from non-
symmetry of the matrix, the model learns query-relation conditioned importance scores.

Figure 4.1: Example heatmap of the absolute importance scores among relations.

32

5
Real-World Applications

This chapter focuses on addressing the shortcomings of RT-X model as well as expanding
the previous study to evaluate the generalizability of the proposed approaches in real-world
scenarios.

5.1 Addressing Shortcomings

In Chapter 4 we observe that the main weakness of the RT-X model is its usage of a hand-
picked temporal context which potentially limits its capabilities to infer temporal patterns.
To alleviate this issue, we turn to the neural message passing algorithm and GNNs. We
hypothesize that by giving the model the flexibility to gather information from past events
autonomously, we could overcome the existing barrier and achieve improved performance.

5.1.1 Proposed Model (R-TGN)

Inspired by the state-of-the-art performance of TGN on various datasets, we propose a
relation-aware extension, i.e. R-TGN, that takes advantage of temporal, relational, and
contextual information available in the KG. The main difference of our model is its use
of relation types to guide the information aggregation from past events. More specifically,
we hypothesize that the information gathered from past events varies among different rela-
tions. Therefore, it would become crucial for the model to be aware of the relationship that
is being evaluated. Formally, the node representation generation process of R-TGN given

33

5.1 Addressing Shortcomings

a fact ps, r, o, tq is defined as

huptq “ MLPpEVpuq ‖ ERprq ‖ rhuptqq, (5.1)
rhuptq “ MultiHeadAttentionpqptq, Kptq, V ptqq, (5.2)

qptq “ EVpuq ‖ ERprq ‖ ρp0q, (5.3)

Kptq “ V ptq “ Cptq, (5.4)

Cptq “ rEVpu1q ‖ ERpr1q ‖ ρpt´ t1q, . . . , EVpuNq ‖ ERprNq ‖ ρpt´ tNqs (5.5)

where ρp.q is the positional encoding proposed by Vaswani et al. [59], ‖ is the concatenation
operator, N is a hyperparameter controlling the number of past events to attend to, and

tpsn, rn, on, tnq|psn “ u_ on “ uq ^ tn ă tun“1,...,N (5.6)

is the set of N most recent events before t during which u appears as either the source
or target entity. The multi-head-attention operation used in TGN is a scaled dot-product
attention mechanism [59]. In this model, we specifically use the 1-hop neighbourhood of
each node; however, it is possible to extend the formalization to account for larger neigh-
bourhoods.

Given the generated node representation, we then use the DistMult [62] scoring func-
tion to generate a score for the given fact. It is formally defined as

φps, o, r, tq “ xhsptq, ERprq, hoptqy “
d
ÿ

i“1

hsptqris ˆ ERprqris ˆ hoptqris. (5.7)

5.1.2 Empirical Comparison between R-TGN and RT-X

Even though both RT-X and R-TGN are conceptually grounded in the idea that the occur-
rence of events is consequential to a series of prior events, they have different approaches to
drawing and using this information from related events. RT-X relies on a handpicked set of
events in combination with an auxiliary scoring function whereas R-TGN uses multi-head
attention to merge all the contextual information into a single vector.

34

5.1 Addressing Shortcomings

We focus on extrapolated time-conditioned link prediction as the task for comparison
using the GITHUB-SE 1Y-REPO dataset introduced in Chapter 4. This decision is based
on the following reasons:

1. This dataset specifically resembles a more realistic scenario where we have all the
information for a single project in a relatively long span of time rather than having
the information for many projects in a short span of time.

2. In GitHub, we want to predict the person who closes an Issue or a Pull-Request in
the future rather than in the past.

Starting our experiments with the simplest combination of components of R-TGN, we
found out that even with those simple building blocks, it achieves improved performance
over the best RT-X variation. We highlight the differences below:

1. Dropping the time-dependent negative-sampling.

2. Replacing the self-adversarial negative sampling loss with cross-entropy loss.

3. Dropping any regularization other that dropout used in multi-head-attention.

4. Only using regular embeddings rather than a fusion with diachronic embeddings.

Hyperparameter Range

ds t32, 64, 128u
dr t32, 64, 128u
dt t32, 64, 128u

Time-agnostic Negative Ratio t64, 128, 256u
N t10, 20, 40u

Number of Attention Heads t1, 2, 4u
Dropout t0.0, 0.2, 0.4u

α t10´3, 3ˆ 10´4, 10´4, 3ˆ 10´5u
Epochs t50, 75, 100, 125u
tq t0, 7u

Table 5.1: Hyperparameter ranges used for tuning R-TGN.

35

5.1 Addressing Shortcomings

Hyperparameters

We tuned our model using the hyperparameter ranges reported in Table 5.1 by running 60
distinct random runs and taking the best set of hyperparameters based on the performance
on the validation set. Following this procedure, the best set of hyperparameters found is ds
= 128, dr = 32, dt = 128, time-agnostic negative ratio = 256, N = 10, number of attention
heads = 4, dropout = 0.2, α “ 3 ˆ 10´4, epochs = 75, warm-up epochs = 37, warm-up α
decay rate = 0.1, batch size = 64, tq = 0, and validation epochs = 25. Note that in this setting
dt represents the positional encoding embedding dimension. Similar to our experiments on
RT-X, to make a fair comparison, we chose a base embedding size of less than or equal 128
for all experiments.

Performance

Table 5.2 represents the performance comparison between the best RT-X model and the
best R-TGN model. As evident from these results, we have gained significant performance
boosts on all metrics, particularly 35.02% and 57.57% relative increases in MRR and
HITS@3 respectively. This shows the immense potential of building upon GNN based
models that make use of temporal events for extrapolated time-conditioned link prediction.

Dataset Type Model HITS@1 HITS@3 HITS@10 MR MRR

GITHUB-SE
1Y-REPO

Extrapolated
RT-DE-RotatE 38.25 40.08 64.06 1195.02 0.4345

R-TGN 50.60 63.11 72.23 423.42 0.5867

Table 5.2: Performance comparison on time-conditioned Link Prediction. Results within
the 95% confidence interval of the best are bolded.

Runtime

Given the extra inherent computational complexity of using neural networks, we expect
R-TGN to be much slower than RT-X model. However, as illustrated in Table 5.3, R-TGN
has a significant lower runtime compare to RT-X. We believe that this is due to

1. Using regular embeddings in combination with non-learnable positional encodings
instead of diachronic embeddings which reduces the gradient propagation computa-

36

5.2 Study Expansion

tions significantly.

2. Attending to an optimal number of past events which could have a smaller size than
the fixed-size handpicked temporal context, as it is the case for the best R-TGN
model. This further emphasizes the importance of drawing information from the lat-
est events involving a node to make more accurate decisions.

The experiments to test our hypotheses is left for future work.

Model Number of Batches Avg Training Runtime

RT-DE-RotatE 100 87s
R-TGN 100 12s

Table 5.3: Average runtime comparison of the models in seconds.

5.2 Study Expansion

In this section, we aim to expand our previous study to take into account certain constraints
when deployed and used in practice. More specifically, we predict the integrator of a pull
request when it is opened, i.e. we don’t use any interaction with the pull request between its
opening and closing times, whereas in previous tasks proposed in Chapter 4, the prediction
is made when it is closed. Similar to GITHUB-SE 1Y-REPO, we use the task of extrapo-
lated time-conditioned link prediction for pull requests as a proxy for the underlying task.
Finally, we use an experimental scenario described in a previous work which will allow
us to use well-established baselines as well as simple natural heuristics for performance
comparison.

5.2.1 Dataset

Retrieval

To create the dataset, we retrieved from GitHub Archive all of the raw public events in
GitHub from 2015 to 2019, i.e. five years worth of data. Then, we sort repositories based

37

5.2 Study Expansion

on the number of pull requests that they had over the five years. Table 5.4 presents the
statistics of the top-5 repositories based on this criteria.

Repository Pull Requests

kubernetes/kubernetes 48,896
ansible/ansible 31,334

ceph/ceph 27,539
tgstation/tgstation 27,188

rust-lang/rust 25,018

Table 5.4: Top-5 repositories with the most number of pull requests from 2015 to 2019.

However, we drop rust-lang/rust from our study mainly because the repository uses
a bot for closing all the pull requests automatically. Hence, we continue our experiments
with the remaining 4 projects.

Extraction

As for the fact extraction strategy, Table 5.5 presents the set of extraction rules used to
build the KG from raw events, each representing a relation type. In contrast to the 80 rules
defined in Table 4.2, here we only use 14 distinct event types. The reasons for this reduction
are 1) dropping rules that don’t appear in the raw data 2) dropping rules that add a lot of
low degree nodes, such as commits, that make the training intractable.

The codes presented in the relation column of Table 5.5, e.g. U_O_P, when divided on
underscore, are a) the first and the last components respectively represent entity types of the
event’s subject and object, e.g. U for user and P for pull request, b) the second component
represents the concrete action taken that triggered the event, e.g. O for opened.

Preprocessing

To validate our model and study its behaviour through time, we use a sliding window with
a 3 months stride for the training time period. In other words, for 0 ă N ă 59 we train on
the first N month, validate on month N `1, and finally test on month N `2. Given the five
years worth of data that we have, for each repository, we end up with 20 different datasets.

38

5.2 Study Expansion

Event Type Head Relation (Code) Tail

Issues

User
Opened (U_O_I)

IssueClosed (U_C_I)
Reopened (U_RO_I)

Issue
Opened (I_O_R)

RepositoryClosed (I_C_R)
Reopened (I_RO_R)

Pull Request Review Comment User Created (U_C_PRC) Pull Request Review Comment
Pull Request Review Comment Created (PRC_C_P) Pull Request

Pull Request

User
Opened (U_O_P)

Pull RequestClosed (U_C_P)
Reopened (U_R_P)

Pull Request
Opened (P_O_R)

RepositoryClosed (P_C_R)
Reopened (P_R_R)

Table 5.5: Extraction rules used to build the KG from raw events.

To process the training, validation, and test sets, we follow the procedure introduced by
Jiang et al. [27]. Specifically, we take the following steps:

1. Filter out pull requests that have the same contributor, i.e. the person who has opened
it, and integrator, i.e. the person who will close it.

2. Split the pull requests into training, validation, and test sets based on their opening
times and use the opening time as the query time during inference.

3. Use all the valid integrators as the set of candidates for evaluation during the training
period rather than considering the whole entity space.

4. We filter out pull requests in the validation and test sets whose integrators are not
among the integrator set of the training set.

Comparing to the experiment design in other works on KG representation learning, this
setting is much closer to the context of making predictions for real-world software engi-
neering projects.

Finally, to enable our proposed model to draw some information from past interactions,
we add a set of auxiliary facts to the evaluation sets which is only used as context of other
nodes. More specifically, for each pull request, we add two additional facts, connecting it
to its contributor and repository. These changes don’t affect the real-world scenario as this
information is available throughout the lifetime of a pull request.

39

5.2 Study Expansion

Category Model kubernetes/kubernetes tgstation/tgstation ceph/ceph ansible/ansible

Bounds UB 0.9725˘ 0.0072 0.9065˘ 0.0208 0.9549˘ 0.0162 0.9596˘ 0.0158

Interaction
Based

MI 0.6494˘ 0.0266 0.3900˘ 0.0338 0.5373˘ 0.0434 0.3980˘ 0.0427
MF 0.6855˘ 0.0245 0.3879˘ 0.0345 0.5056˘ 0.0427 0.4092˘ 0.0483

Temporal
MRI 0.6807˘ 0.0270 0.4249˘ 0.0337 0.5249˘ 0.0425 0.3994˘ 0.0429
TMF 0.6975˘ 0.0220 0.3604˘ 0.0335 0.4523˘ 0.0410 0.3819˘ 0.0456
STS 0.6649˘ 0.0280 0.4368˘ 0.0352 0.5541˘ 0.0445 0.3976˘ 0.0434

Fusion (GN)

TMF + STS + (RF + GN) 0.7478˘ 0.0204 0.4777˘ 0.0354 0.5516˘ 0.0422 0.4567˘ 0.0446
MF + STS + (RF + GN) 0.7395˘ 0.0231 0.4760˘ 0.0356 0.5863˘ 0.0424 0.4623˘ 0.0457

TMF + (RF + GN) 0.6672˘ 0.0231 0.3833˘ 0.0348 0.4950˘ 0.0412 0.4394˘ 0.0440
MF + (RF + GN) 0.6763˘ 0.0243 0.4095˘ 0.0351 0.5618˘ 0.0422 0.4436˘ 0.0448
MI + (RF + GN) 0.7751˘ 0.0195 0.4788˘ 0.0354 0.5982˘ 0.0421 0.5117˘ 0.0459

MRI + (RF + GN) 0.7870˘ 0.0176 0.4922˘ 0.0356 0.5606˘ 0.0420 0.4923˘ 0.0450
MI + MRI + (RF + GN) 0.7906˘ 0.0189 0.4881˘ 0.0356 0.5930˘ 0.0425 0.5098˘ 0.0458

STS + (RF + GN) 0.8151˘ 0.0172 0.4851˘ 0.0357 0.5681˘ 0.0420 0.4934˘ 0.0448

Fusion (k-NN)

TMF + STS + (RF + k-NN) 0.7535˘ 0.0201 0.4775˘ 0.0357 0.5559˘ 0.0421 0.4748˘ 0.0454
MF + STS + (RF + k-NN) 0.7567˘ 0.0220 0.4705˘ 0.0355 0.5949˘ 0.0424 0.4736˘ 0.0454

TMF + (RF + k-NN) 0.6913˘ 0.0234 0.3946˘ 0.0354 0.5090˘ 0.0415 0.4585˘ 0.0440
MF + (RF + k-NN) 0.6785˘ 0.0245 0.4084˘ 0.0347 0.5646˘ 0.0420 0.4690˘ 0.0450
MI + (RF + k-NN) 0.7872˘ 0.0196 0.4857˘ 0.0355 0.6066˘ 0.0421 0.5169˘ 0.0455

MRI + (RF + k-NN) 0.7845˘ 0.0194 0.4819˘ 0.0355 0.5581˘ 0.0415 0.4981˘ 0.0449
MI + MRI + (RF + k-NN) 0.7869˘ 0.0194 0.4897˘ 0.0357 0.6071˘ 0.0421 0.5114˘ 0.0454

STS + (RF + k-NN) 0.7804˘ 0.0195 0.4869˘ 0.0359 0.5821˘ 0.0423 0.4999˘ 0.0450

Bounds R 0.0617 0.1694 0.0961 0.1658

Table 5.6: Performance comparison of all baselines. Results within the 95% confidence
interval of the best are bolded.

Characteristics

Figure 5.1 and Figure 5.2 provide insights into the characteristics of the datasets. As evi-
dent, all repositories have a linear growth of the number of pull requests while having an
extremely small node to edge ratio.

5.2.2 Baselines

We divide our baselines into three different categories, interaction based, temporal, and
fusion, and then choose the best performing baseline from each category for the final com-
parison with the proposed model. All of the baselines introduced here only use information
available in pull requests.

40

5.2 Study Expansion

Figure 5.1: Entity counts, in log scale, from all sliding windows datasets on selected repos-
itories.

41

5.2 Study Expansion

Figure 5.2: Split statistics, in log scale, from all sliding windows dataset on selected repos-
itories.

42

5.2 Study Expansion

Interaction Based

We use two interaction based baselines for comparison. The simplest baseline in this cate-
gory is sorting the candidates based on the number of past interactions. The second baseline
is a matrix factorization method using regular embeddings between integrators and contrib-
utors. Figure 5.3 illustrates the performance comparison of the above mentioned models.

As evident from Figure 5.3, the matrix factorization method almost always performs as
well or better compared to the most interactions approach. This is particularly interesting
given the fact that intuitively we expect it to perform as well at best. We believe this could
be explained by the fact that the representation of each integrator and contributor in the
d-dimensional space is affected by other entities which prevent model to overfitting; hence,
allowing it to have more generalizability compared to simple heuristics. Table 5.6 presents
the average performance of each model over all months.

Temporal

We use three temporal based baselines for comparison. The simplest baseline in this cat-
egory is sorting the candidates based on the least elapsed time since the last interaction.
Moreover, the second baseline is a temporal matrix factorization method using diachronic
embeddings between integrators and contributors.

Furthermore, we also use the sorted time-decaying relationship score introduced by
Jiang et al. [27] as our third baseline. Formally, this score is defined as

sppn, iq “
ÿ

pjPCnXIi

ptn ´ tjq
´1 (5.8)

where pn is the pull request, Cn is the set of pull requests opened by the contributor of pn,
Ii is the set of pull requests closed by integrator i, tn and tj are the opening times of the
pull requests pn and pj respectively. Figure 5.4 presents the performance comparison of the
above mentioned models

In the case of temporal baselines, we don’t have a clear winner model over all datasets.
Therefore, we choose the best model for each repository based on the average over all
months as presented in Table 5.6.

43

5.2 Study Expansion

Figure 5.3: Interaction based baselines performance over all datasets. The area around each
line indicates its error bars.

44

5.2 Study Expansion

Figure 5.4: Temporal baselines performance over all datasets. The area around each line
indicates its error bars.

45

5.2 Study Expansion

Fusion

Inspired by the mixture model used by Jiang et al. [27], we stack all of our previous feature-
sets with a random forest and a gaussian naive bayes as follows:

P pi|pnq “ γPRF pi|pnq ` p1´ γqPGNpi|pnq (5.9)

where PRF represents the probability obtained from the random forest and PGN rep-
resents the probability obtained from the gaussian naive bayes. We also experiment with
replacing the gaussian naive bayes with a k-NN. To stack with the classifiers properly, we
normalize our features applying the followings:

1. For the number of interactions, we normalize it into a distribution over the set of
candidates.

2. For the elapsed time from the last interaction, we use the inverse of this value.

As we don’t have a clear winner model over all datasets, we choose the best model of
each category based on the average over all months as presented in Table 5.6. Appendix A
provides more insights on the performance of fusion models.

An interesting phenomena that we observed during our experiments, was a sudden
change in performance on kubernetes/kubernetes at month 44. After investigating the ex-
ternal reasons, we found out that the repository has switched to a bot-based pull request
closing system at that month. This is particularly interesting as it tests the ability of models
to adapt to sudden distributional changes which is something that could happen in real-
world applications. We particularly attribute the superior performance of STS + (RF + GN)

on kubernetes/kubernetes to this quick adaptation. This could be observed both in Figure
A.1 and Table 5.6.

To tune our stacking models we use a grid search over the provided ranges in Table 5.7
for each dataset. We also report the upper-bound and random baselines. It is essential to
note that the small difference between the upper-bound and the perfect prediction is due to
situations where the same contributor has pull requests that are opened at the same day but
are closed by different integrators. In these situations model is forced to make a ranking on

46

5.2 Study Expansion

those integrators which will always result in a subpar performance.

Model Hyperparameter Range

Random Forest
Number of Estimators t15, 35, 55, 75, 95u

Max Depth t3, 5, 7, 9, 11u

Gaussian Naive Bayes Variable Smoothing t10´9, 10´7, 10´5, 10´3, 10´1u

k-NN
Number of Neighbors t1, 25, 75, 125, 175, 225u

Weights tuniform, distanceu

- γ t0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0u

Table 5.7: Hyperparameter ranges used for tuning stacking model.

To illustrate the distribution shifts present in our datasets we calculate the inverted
average cosine distance between the contributor-integrator distribution in the training sets
and validations sets. Formally, for an arbitrary dataset with N distinct contributors and M
distinct integrators in the test set, this metric defined as

Ai “
“

PtrainpI1|Ciq, PtrainpI2|Ciq, . . . , PtrainpIM |Ciq
‰T (5.10)

Bi “
“

PtestpI1|Ciq, PtestpI2|Ciq, . . . , PtestpIM |Ciq
‰T (5.11)

AVGcos “ 1´
1

N

N
ÿ

i“1

Ai.Bi

‖ Ai ‖‖ Bi ‖
(5.12)

where Ij is the j-th integrator, Ci is the i-th contributor, and P pIj|Ciq is the conditional
probability of Ij being the integrator given Ci as the contributor. Figure 5.5 presents the
results of this metric over our evaluation datasets. When compared to the performance
of baselines, we can see that they roughly follow the same trend, which is particularly
interesting as we are more interested in models that could generalize despite these shifts;
however, from the experiments, we could see that drastic distributional changes still pose a
problem to these models. Further investigations for understanding these models’ behaviors
and sensitivities to input distribution shifts are left to future works. Another takeaway from
this figure is that it illustrates the limitations of solely using pull requests on the model’s
abilities, which further reinforces the idea of using other entities to build better models.

47

5.2 Study Expansion

Figure 5.5: Inverted average cosine distance between training set predictions and test set
predictions.

48

5.2 Study Expansion

5.2.3 Proposed Approach Results

We tuned our model using the hyperparameter ranges reported in Table 5.1 by running 20
distinct random runs and taking the best set of hyperparameters based on the performance
on the validation set. To keep the computation tractable across all windows and repositories,
we tuned our model on 12 months windows and then used those hyperparameters for all
preceding windows. In total we tuned our model on 20 settings, running a total of 400
experiments.

Hyperparameter Range

ds t32, 64, 128u
dr t32, 64, 128u
dt t32, 64, 128u

Time-agnostic Negative Ratio t128, 256u
N t10, 20, 30u

Number of Attention Heads t2, 4u
Dropout t0.2, 0.4u

α t10´3, 3ˆ 10´4, 10´4u
Epochs t50, 75, 100u
tq t0, 7u

Table 5.8: Hyperparameter ranges used for tuning R-TGN.

Figure 5.6 illustrates the comparison between R-TGN and best performing baselines
of each category. As evident, the model is performing inconsistently over different months
with a lot of performance fluctuation. Given the facts that 1) for every TMF or MF model
there exists an equal R-TGN model and 2) TMF and MF models are performing better on
many datasets compared to their counterpart R-TGN models, we believe that one of the
main reasons of our model underperforming is the tuning scheme that we used for finding
optimal hyperparameters. Given the massive computational cost of tuning the model for
every dataset, a more rigorous hyperparameters tuning is left for future work.

Despite the overall poor performance of our model, on tgstation/tgstation dataset it
had an on-par performance on few occasions compared to more sophisticated baselines
which have access to all of the scores before during the inference phase. Moreover, our

49

5.2 Study Expansion

Figure 5.6: R-TGN performance comparison to best performing baselines of each category.
The area around each line indicates its error bars.

50

5.2 Study Expansion

model had a relatively fast recovery compared to baselines after the paradigm shift on
kubernetes/kubernetes dataset at month 44. However, given the exceptional occurrences of
these phenomena, further investigation in future works is needed to determine whether this
could be replicated consistently.

To alleviate the shortcomings of R-TGN, we present two hypotheses to be tested in fu-
ture works. First, we believe that we have to push back the time of all events related to a pull
request or an issue, e.g., comments, to the opening time in order to mimic the evaluation
settings. By doing so, the model would learn to make decisions in an information deprived
situation that closely resembles the evaluation setting. Second, during the training and vali-
dation phases, we observed that the validation results had fluctuations between consecutive
epochs, indicating a potential problem with the used training scheme. We believe that these
issues could be mitigated by employing other regularization methods in combination with
dropout. Further experimenting for testing these hypotheses is left to future work.

51

6
Future Work and Conclusion

6.1 Future Work

Throughout this thesis, we focused on the idea of solely using the dynamics present in the
GitHub to make our inferences; however, each entity in our KG could be represented by
features extracted from the underlying entities and their properties, e.g. the title of a pull
request or an the textual content of an issue comment. We believe enriching the nodes with
these features could potentially lead to a significant boost in performance. Furthermore, it
would be interesting to see how we can combine various modalities, i.e. natural language
and code, to enhance our existing models. The ultimate goal would be to devise models that
can coherently represent the contents and properties of the entities and their interactions in
GitHub. We believe that the paradigm of temporal graph representation learning provides
promising tools to achieve this goal in the future.

6.2 Conclusion

In this thesis, we bridged between the SE domain questions and the literature on KGEs
by introducing three new datasets based on the daily interactions in the GitHub platform
and casting those questions as queries on an appropriate KG. Furthermore, we introduced
RT-X and R-TGN, two novel extensions to existing KGEs that make use of past relevant
events during inference time. Our initial experiments highlighted some of the shortcom-
ings of existing temporal KGEs, notably on extrapolated time-conditioned link prediction,

52

6.2 Conclusion

and exhibited the advantage of leveraging past events as used in both RT-X and R-TGN
models. However, despite these improvements on existing KGEs, our study expansion on a
scenario taken from previous works revealed a performance gap between well-established
baselines and our best model, i.e., R-TGN. Additionally, we presented a brief discussion on
the potential reasons for this performance deficiency along with possible future directions
for further investigations.

In total, this work highlighted new opportunities for improving temporal KGEs on
time-conditioned link prediction queries and some of the shortcomings of the proposed
models on existing evaluation scenarios. It also revealed the need for having well-thought-
out experiment scenarios, including but not limited to careful consideration of practical
constraints and selecting well-established baselines, when discussing the performance of
complex models while paving the way for employing graph representation learning meth-
ods to answer software engineering questions.

53

Bibliography

[1] Monica Agrawal, Marinka Zitnik, Jure Leskovec, et al. Large-scale analysis of disease
pathways in the human interactome. In PSB, pages 111–122. World Scientific, 2018.

[2] Kian Ahrabian, Daniel Tarlow, Hehuimin Cheng, and Jin LC Guo. Software engineer-
ing event modeling using relative time in temporal knowledge graphs. arXiv preprint

arXiv:2007.01231, 2020.

[3] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vini-
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam San-
toro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261, 2018.

[4] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, pages 1247–1250, 2008.

[5] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning struc-
tured embeddings of knowledge bases. In Conference on artificial intelligence, 2011.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances

in neural information processing systems, pages 2787–2795, 2013.

[7] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. A systematic map-
ping study of software development with github. IEEE Access, 5:7173–7192, 2017.

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. arXiv preprint arXiv:1901.02860, 2019.

54

BIBLIOGRAPHY

[9] Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte:
Hyperplane-based temporally aware knowledge graph embedding. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages
2001–2011, 2018.

[10] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Con-
volutional 2d knowledge graph embeddings. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[11] Alberto García-Durán, Sebastijan Dumančić, and Mathias Niepert. Learning
sequence encoders for temporal knowledge graph completion. arXiv preprint

arXiv:1809.03202, 2018.

[12] GitHub. Github public entities, 2020. URL https://github.com/search?

q=is%3Apublic&type=Repositories. [Accessed: 2020-08-09].

[13] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Di-
achronic embedding for temporal knowledge graph completion. In AAAI, 2020.

[14] Leo A Goodman. Snowball sampling. The annals of mathematical statistics, pages
148–170, 1961.

[15] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in
graph domains. In Proceedings. 2005 IEEE International Joint Conference on Neural

Networks, 2005., volume 2, pages 729–734. IEEE, 2005.

[16] Georgios Gousios and Andy Zaidman. A dataset for pull-based development research.
In Proceedings of the 11th Working Conference on Mining Software Repositories,
pages 368–371, 2014.

[17] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 855–864, 2016.

[18] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new esti-
mation principle for unnormalized statistical models. In Proceedings of the Thir-

55

https://github.com/search?q=is%3Apublic&type=Repositories
https://github.com/search?q=is%3Apublic&type=Repositories

BIBLIOGRAPHY

teenth International Conference on Artificial Intelligence and Statistics, pages 297–
304, 2010.

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Advances in neural information processing systems, pages 1024–
1034, 2017.

[20] William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical

Intelligence and Machine Learning, 14(3):1–159, 2020.

[21] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

[22] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn. Auto-
matically recommending code reviewers based on their expertise: An empirical com-
parison. In Proceedings of the 31st IEEE/ACM International Conference on Auto-

mated Software Engineering, pages 99–110, 2016.

[23] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[24] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. Music transformer. In International Conference on Learn-

ing Representations, 2019.

[25] Jing Jiang, Jia-Huan He, and Xue-Yuan Chen. Coredevrec: Automatic core mem-
ber recommendation for contribution evaluation. Journal of Computer Science and

Technology, 30(5):998–1016, 2015.

[26] Jing Jiang, David Lo, Jiahuan He, Xin Xia, Pavneet Singh Kochhar, and Li Zhang.
Why and how developers fork what from whom in github. Empirical Software Engi-

neering, 22(1):547–578, 2017.

[27] Jing Jiang, David Lo, Jiateng Zheng, Xin Xia, Yun Yang, and Li Zhang. Who should
make decision on this pull request? analyzing time-decaying relationships and file

56

BIBLIOGRAPHY

similarities for integrator prediction. Journal of Systems and Software, 154:196–210,
2019.

[28] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in
knowledge graphs. In Advances in neural information processing systems, pages
4284–4295, 2018.

[29] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus
Brubaker. Time2vec: Learning a vector representation of time. arXiv preprint

arXiv:1907.05321, 2019.

[30] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter
Forsyth, and Pascal Poupart. Representation learning for dynamic graphs: A survey.
Journal of Machine Learning Research, 21(70):1–73, 2020.

[31] Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic and contextual fea-
tures to predict issue lifetime in github projects. In 2016 IEEE/ACM 13th Working

Conference on Mining Software Repositories (MSR), pages 291–302. IEEE, 2016.

[32] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. In International Conference on Learning Representations (ICLR),
2017.

[33] Boris Knyazev, Carolyn Augusta, and Graham W Taylor. Learning temporal attention
in dynamic graphs with bilinear interactions. arXiv preprint arXiv:1909.10367, 2019.

[34] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor de-
composition for knowledge base completion. arXiv preprint arXiv:1806.07297, 2018.

[35] Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge
graph. In Companion Proceedings of the The Web Conference 2018, WWW ’18,
page 1771–1776, Republic and Canton of Geneva, CHE, 2018. International World
Wide Web Conferences Steering Committee. ISBN 9781450356404. doi: 10.1145/
3184558.3191639. URL https://doi.org/10.1145/3184558.3191639.

57

https://doi.org/10.1145/3184558.3191639

BIBLIOGRAPHY

[36] Kalev Leetaru and Philip A. Schrodt. Gdelt: Global data on events, location, and tone.
ISA Annual Convention, 2013.

[37] Zhifang Liao, Haozhi Jin, Yifan Li, Benhong Zhao, Jinsong Wu, and Shengzong Liu.
Devrank: Mining influential developers in github. In GLOBECOM 2017-2017 IEEE

Global Communications Conference, pages 1–6. IEEE, 2017.

[38] Antonio Lima, Luca Rossi, and Mirco Musolesi. Coding together at scale: Github as
a collaborative social network. In Eighth international AAAI conference on weblogs

and social media, 2014.

[39] Hailun Lin, Yong Liu, Weiping Wang, Yinliang Yue, and Zheng Lin. Learning entity
and relation embeddings for knowledge resolution. Procedia Computer Science, 108:
345–354, 2017.

[40] Chao Liu, Dan Yang, Xiaohong Zhang, Baishakhi Ray, and Md Masudur Rahman.
Recommending github projects for developer onboarding. IEEE Access, 6:52082–
52094, 2018.

[41] Justin Middleton, Emerson Murphy-Hill, Demetrius Green, Adam Meade, Roger
Mayer, David White, and Steve McDonald. Which contributions predict whether
developers are accepted into github teams. In 2018 IEEE/ACM 15th International

Conference on Mining Software Repositories (MSR), pages 403–413. IEEE, 2018.

[42] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. arXiv preprint

arXiv:1802.05751, 2018.

[43] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 701–710, 2014.

[44] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bog-
dan Vasilescu. Going farther together: The impact of social capital on sustained par-
ticipation in open source. In 2019 IEEE/ACM 41st International Conference on Soft-

ware Engineering (ICSE), pages 688–699. IEEE, 2019.

58

BIBLIOGRAPHY

[45] Mitch Rees-Jones, Matthew Martin, and Tim Menzies. Better predictors for issue
lifetime. arXiv preprint arXiv:1702.07735, 2017.

[46] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti,
and Michael Bronstein. Temporal graph networks for deep learning on dynamic
graphs. arXiv preprint arXiv:2006.10637, 2020.

[47] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Net-

works, 20(1):61–80, 2008.

[48] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional networks.
In European Semantic Web Conference, pages 593–607. Springer, 2018.

[49] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative posi-
tion representations. arXiv preprint arXiv:1803.02155, 2018.

[50] Dale J Shpak. A weighted-least-squares matrix decomposition method with appli-
cation to the design of two-dimensional digital filters. In Proceedings of the 33rd

Midwest Symposium on Circuits and Systems, pages 1070–1073. IEEE, 1990.

[51] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and
Alexandre Plastino. Acceptance factors of pull requests in open-source projects.
In Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages
1541–1546, 2015.

[52] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197,
2019.

[53] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman. Dis-
covering community patterns in open-source: a systematic approach and its evalua-
tion. Empirical Software Engineering, 24(3):1369–1417, 2019.

[54] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

59

BIBLIOGRAPHY

[55] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury,
and Michael Gamon. Representing text for joint embedding of text and knowledge
bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, pages 1499–1509, 2015.

[56] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep tempo-
ral reasoning for dynamic knowledge graphs. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 3462–3471. JMLR. org, 2017.

[57] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep:
Learning representations over dynamic graphs. In International Conference on Learn-

ing Representations, 2019.

[58] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In International Con-

ference on Machine Learning (ICML), 2016.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998–6008, 2017.

[60] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph em-
bedding by translating on hyperplanes. In Aaai, volume 14, pages 1112–1119. Cite-
seer, 2014.

[61] Wenyuan Xu, Xiaobing Sun, Jiajun Hu, and Bin Li. Repersp: recommending per-
sonalized software projects on github. In 2017 IEEE International Conference on

Software Maintenance and Evolution (ICSME), pages 648–652. IEEE, 2017.

[62] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding
entities and relations for learning and inference in knowledge bases. arXiv preprint

arXiv:1412.6575, 2014.

[63] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug assignment?
Information and Software Technology, 74:204–218, 2016.

60

A
Fusion Performance Comparison

Figure A.1 and A.2 provide more insights into the performance comparison of fusion mod-
els over consecutive months on all repositories.

61

Fusion Performance Comparison

Figure A.1: Gaussian naive bayes fusion baselines performance over all datasets. The area
around each line indicates its error bars.

62

Fusion Performance Comparison

Figure A.2: k-NN fusion baselines performance over all datasets. The area around each line
indicates its error bars.

63

	Introduction
	Contributions
	Thesis Organization

	Background
	Classical Machine Learning
	Matrix Factorization
	Inference

	Knowledge Graphs
	Knowledge Graph Embeddings
	Training
	Inference

	Graph Neural Networks

	Related Work
	Pull Requests and Issues
	Repositories
	Users
	Ecosystem

	GitHub Events as a Knowledge Graph
	Dataset
	Retrieval
	Extraction
	Preprocessing
	Characteristics

	Methodology
	Baselines
	Proposed Approach

	Evaluation and Results
	Datasets
	Queries
	Metrics
	Hyperparameters
	Results

	Real-World Applications
	Addressing Shortcomings
	Proposed Model (R-TGN)
	Empirical Comparison between R-TGN and RT-X

	Study Expansion
	Dataset
	Baselines
	Proposed Approach Results

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	Fusion Performance Comparison

