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ABSTRACT

In this thesis the following model state dependent delay differential equation is considered,

εu̇ (t) = µu (t) + σu (t− a− cu (t)) .

For fixed ε, a and c, the analytical stability region of this equation is known and it is the same for

both the constant delay (c = 0) and state dependent delay (c 6= 0) cases. Different approaches

are used to directly prove stability in parts of this analytic region for the state dependent DDE:

first using a Gronwall argument and then using a Lyapunov-Razumikhin method which is a

generalisation of the work of Barnea [6] who considered the µ = c = 0 case. The parameter

regions in which stability is proven by these methods contain the entire delay independent

portion of the analytical stability region and parts of the delay dependent portion. These

methods are then extended to show the stability of the backward Euler method with linear

interpolation applied to the model DDE. Using the Lyapunov-Razumikhin method, stability is

proven in larger parameter regions that depend on the stepsize, but always contain the region

found for the DDE. Analytic expressions for regions in which general Θ methods are stable

were also derived and evaluated numerically. In the last chapter a new scheme for numerically

integrating scalar DDEs with multiple state dependent delays is presented. This scheme is

based on singularly diagonally implicit Runge-Kutta (SDIRK) methods in order to solve stiff

problems such as the equation above with small ε. Due to the nature of SDIRK methods, if

there is no overlapping then at each step a set of scalar equations are solved one-by-one using

a Newton-bisection algorithm. New continuous extensions which are piecewise polynomial are

chosen to accompany the SDIRK scheme so as not to destroy the SDIRK structure in the

overlapping cases and to avoid the problem of spiking when there is a sharp change in the

numerical solution.
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ABRÉGÉ

Dans cette thèse, l’équation différentielle à retard (DDE) modèle d’état dépendant suivante

est considérée,

εu̇ (t) = µu (t) + σu (t− a− cu (t)) .

Pour ε, a et c fixés, la région de stabilité analytique de cette équation est connue et est la

même pour le retard constant (c = 0) ainsi que pour l’état de retard dépendant (c 6= 0).

Différentes approches sont utilisées pour prouver directement la stabilité dans certaines parties

de cette région analytique pour la DDE d’état dépendant: d’abord en utilisant un argument de

Gronwall, puis en utilisant une méthode de Lyapunov-Razumikhin qui est une généralisation

du travail de Barnea [6] qui considère le cas µ = c = 0. Les régions de paramètres dans

lesquelles la stabilité est prouvée par ces méthodes contiennent la partie entière de retard

indépendant de la région de stabilité analytique et certaines parties de la portion de retard

dépendant. Ces méthodes sont ensuite étendues pour montrer la stabilité de la méthode d’Euler

arrière avec interpolation linéaire appliquée à la DDE modèle. En utilisant la méthode de

Lyapunov-Razumikhin, la stabilité est prouvée dans des régions de paramètres plus grandes

qui dépendent du pas de discrétisation, mais qui contiennent toujours la région trouvée pour

la DDE. Des expressions analytiques pour les régions dans lesquelles les méthodes Θ générales

sont stables ont également été tirées et évaluées numériquement. Dans le dernier chapitre d’un

nouveau schéma pour intégration numérique des DDE scalaires avec des multiples retards d’état

dépendant est présenté. Ce schéma est basé sur des méthodes de Runge-Kutta singulièrement

et diagonalement implicites (SDIRK) afin de résoudre des problèmes raides tels que l’équation

ci-dessus avec des petites valeurs de ε. En raison de la nature des méthodes SDIRK, s’il n’y a pas

de chevauchement, alors à chaque iteration un ensemble d’équations scalaires sont résolues, une

par une, en utilisant un algorithme de bissection de Newon. Des nouvelles extensions continues

qui sont polynomiales par morceaux sont choisies pour accompagner le schéma SDIRK afin de

ne pas détruire la structure SDIRK dans les cas de chevauchement et pour éviter le problème

des piques quand il y a un changement brusque de la solution numérique.
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CHAPTER 1

Introduction

Ordinary differential equations (ODEs) use the current time and current state of a system

to determine the rate of change of the state. The theory behind these equations as well as

the numerical methods that are employed to solve them is well-established, a good thing since

ODEs prove to be effective in describing many physical phenomena. However, many phenom-

ena require information from the past state of the system as well as the current state. This

naturally leads us to consider delay differential equations (DDEs). The additional complication

of requiring values from the past results in a much more difficult equation to solve both analyt-

ically and numerically. For instance, consider the logistic model (also called the Verhulst-Pearl

model) for population dynamics,

u̇ (t) = au (t) (1− u (t)) , (1.0.1)

where a > 0. In this model the total carrying capacity of the system is one, and the rate

of change of the population is proportional to its current size u(t) multiplied by 1 − u(t)

which reflects the bottleneck effect due to competition within the population for resources. A

modification of this ODE model was presented by Hutchinson [31] in 1948,

u̇ (t) = au (t) (1− u (t− 1)) . (1.0.2)

This model takes into account a time lag in the bottleneck effect which may be due to the

maturation time of the population, or the recovery time of resources. The solutions of (1.0.1)

all monotonically converge to the fixed point at u = 1. In contrast, one may find solutions

of (1.0.2) that are monotonic for a ∈
(

0, 1
e

)

, exhibit decaying oscillations about u = 1 for

a ∈
(

1
e
, π

2

)

and approach periodic orbits for a > π
2 (see Figure 1–1). Wright [60] proved the

convergence of all positive solutions to u = 1 for a ∈
[

0, 3
2

]

. The convergence for the case

a ∈
(

3
2 ,

π
2

)

is still an open conjecture [54].

Another difference we note between (1.0.1) and (1.0.2) is that the ODE requires an initial

value while the DDE requires an initial history function defined over an interval of length one.

If we think of these equations as dynamical systems where the solutions describe a flow from a

1
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Figure 1–1: Sample trajectories of Hutchinson’s equation (1.0.2) for population dynamics

space of initial vectors, then the DDE is a flow from a space of functions, an infinite dimensional

vector space. This illustrates the infinite dimensionality of DDE systems, a property of DDEs

that is further discussed in texts by Bellman and Cooke [10] and Hale and Verduyn Lunel

[29]. Here we just note that this increase in dimensionality led to the interesting changes in

dynamics in going from (1.0.1) to (1.0.2). In other DDE systems one may also observe chaotic

behavior of solutions even in the scalar case, non-injectivity between initial data and solutions,

and possible termination of solutions.

There are now many mathematical models that incorporate time delays. In biology they

are used to add immune response time in disease dynamics, and sojourn times in epidemic

models [3, 54]. Delays arise in engineering systems from feedback loops and observation lags

such as in traffic control [17, 46]. DDEs are now also being used in models in various other

fields of science such as chemical kinetics, electrodynamics, optics, ecology, just to name a few

[5, 36]. The delays in these models may be constant, time dependent or state dependent. Fewer

models use state dependent delays, perhaps due to the difficulties in analysing and numerically

simulating such equations. This is the motivation for our work in tackling some of the various

complications state dependent DDEs bring to the table. Our results will hopefully encourage

more people to utilize the wealth of dynamics and wide potential for practical applications of

state dependent DDEs.
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1.1 Retarded functional differential equations and delay differential equations

In this thesis the following model state dependent DDE is considered

εu̇ (t) = µu (t) + σu (t− a− cu (t)) . (1.1.1)

This is the simplest equation one can write with a state dependent delay. The only nonlinearity

in this equation comes from the state dependence and from this, interesting dynamics arise

that cannot be found in the constant delay case (c = 0), much less the ODE case (σ = 0)

[38, 39, 40, 41]. This model problem is a prototype for a general class of DDE problems when

the solutions are close to zero. In this thesis the dynamics of (1.1.1) are considered as well as

the generalisation of (1.1.1) to N delays,

εu̇ (t) = −γu (t)−
N
∑

i=1

κiu (t− ai − ciu (t)). (1.1.2)

If N = 1 then this is just (1.1.1). The change in notation from µ and σ to γ and κ is due to

our focus on bounded solutions of the N -delay problem.

In equations (1.1.1) and (1.1.2), the derivative depends on values of the state at discrete

delayed times. There are other types of DDEs such as DDEs with distributed delays and neutral

DDEs in which the derivative depends on values of the derivative in the past. These equations

are covered under the general theory of retarded functional differential equations (RFDEs).

Our treatment of RFDEs including the definitions, results on existence and uniqueness is based

on the text by Hale and Verduyn Lunel [29].

Let R
d be the d-dimensional linear vector space over the reals equipped with the Euclidean

norm | · |. Let r > 0 and C = C
(

[−r, 0],Rd
)

be the Banach space of continuous functions

mapping [−r, 0] to R
d with the supremum norm denoted by ‖·‖. Let Ω be an open subset of

R × C and f : Ω → R
d. If u ∈ C

(

[t0 − r, tf ],Rd
)

then for every t ∈ [0, tf ] define ut ∈ C such

that

ut (θ) = u (t+ θ) , θ ∈ [−r, 0] .

Then with · indicating a right hand derivative consider the RFDE

u̇(t) = f (t, ut) . (1.1.3)
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A solution of (1.1.3) passing through (t0, φ) is a function u ∈ C
(

[t0 − r, tf ),Rd
)

for some tf > t0

such that (t, ut) ∈ Ω and u satisfies (1.1.3) for t ∈ [t0, tf ) and ut0 = φ. We write u = u (t0, φ)

when we want to explicitly show the dependence of the solution on the initial time and function.

Theorem 1.1.1 (Local existence theorem from Hale and Verduyn Lunel [29]). Suppose Ω ⊆
R × C is open, f : Ω → R

d is continuous, and Lipschitz continuous with respect to its second

argument in each compact set in Ω. Then there is a unique solution to (1.1.3) through any

(t0, φ) ∈ Ω.

To observe the dynamics of solutions to RFDEs we need more than the local existence of

solutions. A solution u to (1.1.3) on an interval [t0 − r, tf ) is said to have a continuation v if

there (i) is a t̃f > tf such that v is defined on
[

t0 − r, t̃f
)

, (ii) v is a solution to (1.1.3) and (iii)

v coincides with u on [t0, tf ). A solution is non-continuable if no continuation exists.

Theorem 1.1.2 (Continuation theorem from Hale and Verduyn Lunel [29]). Suppose Ω ⊆ R×C
is open and f : Ω→ R

d is completely continuous (f takes closed bounded sets of Ω into bounded

sets of R
d). Let u be a noncontinuable solution of (1.1.3) on [t0 − r, tf ). Then for any compact

set W ∈ Ω, there is a tW ∈ (t0, tf ) such that (t, ut) /∈W for tW 6 t < tf .

In general, even if f is not locally Lipschitz we assume that f is completely continu-

ous. Otherwise strange behaviors of noncontinuable solutions in finite time intervals may be

observed.

RFDE theory covers a wide range of equations, and for this reason the conditions for

existence and uniqueness are stricter than necessary for some classes of equations. In particular,

the theory is difficult to apply to the class of state dependent DDEs because there is no a priori

bound on the delay terms. Also, and perhaps more importantly, the existence and uniqueness

theorems for RFDEs require Lipschitz continuity with respect to its second argument, a strong

condition since the second argument is a function on [−r, 0]. For instance, (1.1.1) written as

a an RFDE (1.1.3) yields F (t, φ) = µ
ε
φ(0) + σ

ε
φ (−a− cφ(0)). Such an F is not Lipschitz

continuous in φ ∈ C so we may not use Theorems 1.1.1 and 1.1.2. Instead we consider the

theory developed by Driver [14] for a general class of DDEs with discrete delays.

Consider the general N -delay differential equation with state dependent delays







u̇ (t) = f (t, u (t) , u (α1 (t, u(t))) , ..., u (αN (t, u(t)))) , t0 6 t 6 tf

u (t) = ϕ (t) , t 6 t0.
(1.1.4)
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Let D ⊆ R × R
(N+1)d be an open set and let D∗ be the projection of D to R × R

d (the

space of the first d + 1 coordinates). Let the function f ∈ C
(

D,Rd
)

and αi (t, u) ∈ C (D∗,R)

for i = 1, ..., N . We call αi (t, u) the deviated arguments and τi (t, u) = t − αi (t, u) the delay

terms. Let τ0 ∈ [0,∞] and let the deviated arguments be such that t0 − τ0 6 αi (t, u) 6 t for

all (t, u) ∈ D∗ ∩ {t > t0}, i = 1, ..., N . If τ0 <∞ then let ϕ ∈ C
(

[t0 − τ0, t0] ,Rd
)

and

(t0, ϕ (t0)) , (t0, ϕ (α1 (t0, ϕ (t0)))) , ..., (t0, ϕ (αN (t0, ϕ (t0)))) ∈ D∗.

A solution to (1.1.4) is a function u(t) : [t0 − τ0, tf ) → R
d such that the equations in (1.1.4)

are satisfied, u(t) is continuous and (t, u (t)) ∈ D∗ for t ∈ [t0, tf ). If τ0 = ∞ then change the

intervals [t0 − τ0, tf ) to (−∞, tf ) everywhere and the same definition of a solution applies.

Theorem 1.1.3 (Local existence theorem, Driver [14]). Let f (t, u, v1, ..., vN ) ∈ C
(

D,Rd
)

be

Lipschitz continuous in u, v1, ..., vN in every compact subset of D. Let αi (t, u) ∈ C (D∗,R)

be Lipschitz continuous in u in every compact subset of D∗ for i = 1, ..., N . Let τ0 ∈ [0,∞] be

such that t0 − τ0 6 αi (t, u) 6 t for all (t, u) ∈ D∗ ∩ {t > t0}, i = 1, ..., N . If τ0 < ∞ then let

ϕ(t) be Lipschitz continuous on [t0 − τ0, t0]. If τ0 =∞ then let ϕ(t) be Lipschitz continuous on

each finite subinterval of (−∞, t0]. Then there is a δ > 0 such that a unique solution to (1.1.4)

exists on [t0, t0 + δ).

The Lipschitz continuity condition here is less stringent since it is with respect to vector

arguments, unlike in Theorem 1.1.2 where it is with respect to a function argument. It is easy

to verify that equations (1.1.1) and (1.1.2) are Lipschitz in this sense.

Theorem 1.1.4 (Extended existence theorem, Driver [14]). Let f (t, u, v1, ..., vN ) ∈ C
(

D,Rd
)

and αi (t, u) ∈ C (D∗,R) for i = 1, ..., N . Let τ0 ∈ [0,∞] be such that t0 − τ0 6 αi (t, u) 6 t for

all (t, u) ∈ D∗ ∩ {t > t0}, i = 1, ..., N . If τ0 <∞ then let ϕ(t) be continuous on [t0 − τ0, t0]. If

τ0 =∞ then let ϕ(t) be continuous on (−∞, t0]. Then any solution to (1.1.4) can be extended

to [t0, tf ) where t0 < tf 6 ∞. If tf is finite and cannot be increased then one of the following

cases must occur:

1. lim sup
t→∞

‖u (t) , u (α1 (t, u(t))) , ..., u (αN (t, u(t)))‖ =∞
2. (t, u(t), u (α1 (t, u(t))) , ..., u (αN (t, u(t)))) comes arbitrarily close ∂D.

Driver notes that for ordinary differential equations, (t, u(t)) approaches ∂D, instead of

just coming arbitrarily close to it. For general DDEs, stronger conditions are required to obtain

this sort of behavior.
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1.2 Extending Runge-Kutta methods to solve DDEs

As with ODEs, DDEs generally have to be solved numerically. The standard approach

for doing this is to look into existing ODE methods and extend them to solve DDEs. It turns

out that different types of extensions work well for some DDE problems but not for all of

them. Bellen and Zennaro [8] stress that the integration of different classes of DDEs requires

methods that are designed specifically for the relevant class of DDE and cannot be based on a

simple adaptation of an ODE method. For instance, if during the integration one encounters

a vanishing delay (τ (t, u(t)) = 0) then an explicit numerical integrator for ODEs becomes

implicit for this DDE. Stiff delay equations also lead to new problems that are not covered

by the numerical analysis of stiff ODEs. These and other issues that arise in extending ODE

methods to solve DDEs are introduced in this section and will be further discussed in Chapters 4

and 5.

We begin with our notation for Runge-Kutta (RK) methods. An s-stage RK method may

be represented by its Butcher tableau.

c A

bT

=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

The bi’s are called the weights, and ci’s are called abscissae (for most common methods, ci =
∑s

j=1 aij ∈ [0, 1]). Suppose that the ODE to be solved is







u̇(t) = g (t, u(t)) , t0 6 t 6 tf ,

u(t0) = ϕ0

(1.2.1)

where g : R × R
d → R

d and ϕ0 ∈ R
d. Given a mesh ∆ = {tn}nf

n=0 of discrete time values,

the approximation un to the solution of (1.2.1) at time tn is obtained by setting u0 = ϕ0 and

solving

Y
(i)
n+1 = un + hn+1

s
∑

j=1
aijg

(

t
(j)
n+1, Y

(j)
n+1

)

, i = 1, ..., s

un+1 = un + hn+1

s
∑

i=1
big
(

t
(i)
n+1, Y

(i)
n+1

)

,
(1.2.2)
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where t
(i)
n+1 = tn + cihn+1 and hn+1 = tn+1 − tn.

Now we extend the RK method so that it can be used to solve DDEs. Consider the

following DDE with one general state dependent delay







u̇(t) = f (t, u (t) , u (α (t, u(t)))) , t0 6 t 6 tf ,

u(t) = ϕ (t), t 6 t0,
(1.2.3)

where f : R × R
d × R

d → R
d and ϕ : R → R

d. We use one delay only for simplicity. The

extension to multiple delays is straightforward. Assume α (t, u(t)) = t − τ (t, u(t)) 6 t for all

t. The right-hand-side function requires the value of the solution at this past time which will

generally not fall on a mesh point. A natural way to approximate this value is to augment the

RK method with a continuous extension that interpolates between mesh values. These methods

are called continuous RK (CRK) methods. The interpolant within a time interval [tn, tn+1] can

be constructed by making use of information from the stages of the RK method in the same

interval. We follow the standard treatment of doing this by changing the bi’s from constants

to polynomial functions bi (θ), θ ∈ [0, 1] satisfying

bi(0) = 0, bi(1) = bi, i = 1, ..., s

Given a mesh ∆ = {tn}nf

n=0 of discrete time values, the approximation un to the solution of

(1.2.3) at time tn is obtained by setting u0 = ϕ (t0) and solving

Y
(i)
n+1 = un + hn+1

s
∑

j=1
aijf

(

t
(j)
n+1, Y

(j)
n+1, Ỹ

(j)
n+1

)

, i = 1, ..., s,

un+1 = un + hn+1

s
∑

i=1
bif
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

,
(1.2.4)

where the Ỹ
(j)
n+1 (called the spurious stages) are the values of the continuous extension at time

α
(

t
(j)
n , Y

(j)
n+1

)

. At time t = tn + θhn+1 ∈ [tn, tn+1], the continuous extension η is defined by

η (tn + θhn+1) = un + hn+1

s
∑

i=1

bi(θ)f
(

t
(i)
n+1, Y

(i)
n+1

)

. (1.2.5)

These types of continuous extensions which only use the existing stage values of the RK method

are called interpolants of the first class. It is also possible to create interpolants which interpo-

late using new stages that are not part of the original RK method. These are called interpolants

of the second class and they are sometimes necessary to improve the accuracy of a CRK method.
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Although the stages of an RK method are used to produce the continuous extension (1.2.5),

in general η does not actually pass through the stage values (η(tn + cihn+1) 6= Y
(i)
n+1). From

Bellen and Zennaro [8],

{η(tn + cihn+1) = Y
(i)
n+1, ∀i = 1, ..., s} ⇔ {bi(cj) = aji, ∀i, j = 1, ..., s}.

A CRK method that has this property is called natural. For examples of RK methods and

their continuous extensions, refer to the methods discussed in Chapter 5. Bellen and Zennaro

[8] contains a more comprehensive discussion of results on CRK methods.

As mentioned at the beginning of this section, extending RK methods to solve DDEs

gives rise to many issues. First there is the problem of overlapping which occurs if for some

i, α
(

t
(i)
n+1, Y

(i)
n+1

)

∈ [tn, tn+1]. In this case the equation for the continuous extension (1.2.5)

becomes an implicit equation even for explicit RK methods. Also, it appears as if there may be

as many as 2s unknowns in solving (1.2.4) instead of the usual s unknowns for a fully-implicit

method. But notice that it is not actually the values of Y
(i)
n+1 and Ỹ

(i)
n+1 that are required to

solve for the update un+1 or even for the continuous extension η. Rather, it is the values of the

right hand side function evaluated at these stages that are necessary. Rewriting (1.2.4) in the

following K-notation shows that there are only s unknowns even in the overlapping case.

K
(i)
n+1 = f

(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

= f

(

t
(j)
n+1, un + hn+1

s
∑

j=1
aijK

(j)
n+1, Ỹ

(j)
n+1

)

, i = 1, ..., s,

un+1 = un + hn+1

s
∑

i=1
biK

(i)
n+1,

(1.2.6)

The spurious stages are given by Ỹ
(j)
n+1 = η

(

α

(

t
(j)
n+1, un + hn+1

s
∑

k=1

aijK
(k)
n+1

))

and (1.2.5) can

be rewritten as

η (tn + θhn+1) = un + hn+1

s
∑

i=1

bi(θ)K
(i)
n+1. (1.2.7)

Theorem 4.3.1 of Bellen and Zennaro [8] guarantees that under certain conditions (essentially

uniqueness of the analytic solution and use of a small enough stepsize) solving for the continuous

extension, even in the overlapping case, is a well-posed problem.

Another issue that comes up in extending RK methods to solve DDEs is the correct choice

of the polynomials bi (θ) in order to preserve the order of the method. Before going into this,

here is the definition of the order of an RK method for ODEs.
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Definition 1.2.1 (Bellen and Zennaro [8]). Recall the ODE system (1.2.1) and consider the

local problem






z′n+1(t) = g (t, zn+1(t)) , tn 6 t 6 tn+1,

zn+1(tn) = u∗n.
(1.2.8)

An RK method has discrete order p if p > 1 is the largest integer such that, for all Cp-continuous

right-hand-side functions g(t, y) in (1.2.1) and for all mesh points,

‖zn+1(tn+1)− un+1‖ = O
(

hp+1
n+1

)

,

uniformly with respect to u∗n in any bounded subset of R
d and to n = 0, ..., nf . We say that the

interpolant η defined by (1.2.5) has uniform order q if q > 1 is the largest integer such that, for

all Cq-continuous right-hand-side functions g(t, y) and for all mesh points,

max
tn6t6tn+1

‖zn+1(t)− η(t)‖ = O
(

hq+1
n+1

)

.

For an RK method with order p, the global error is order p, that is

‖u(tn)− un‖ = O (hp) , n = 0, ..., nf

where h = max16n6nf
hn.

Numerical methods for DDEs derived from RK methods with order p are not necessarily of

order p when solving DDEs. Two issues that can cause the loss of order are the choice of con-

tinuous extension and the improper tracking of discontinuity points. Discontinuity points (also

called breaking points) are values of t for which a derivative of the solution to (1.2.3) becomes

discontinuous. Since the solution at time t0 is given by u̇ (t0) = f (t0, ϕ (t0) , ϕ (α (t0, ϕ (t0))))

but the history function ϕ is arbitrary, then in general one may expect that the derivative is dis-

continuous at t0. In this case t = t0 is called a 0-level primary discontinuity point and following

standard notation it is labeled ξ0,1, where the first subscript indicates the level and the second

is an index. At the points t = ξ1,j where αi(ξ1,j, u(ξ1,j)) = t0 for some i, the discontinuity

in u̇(t) at t0 will cause a discontinuity in ü(t) at t = ξ1,j, and these points are called 1-level

primary discontinuity points. Similarly at points t = ξ2,k such that αi(ξ2,k, u(ξ2,k)) = ξ1,j for

some i and j there can be a discontinuity in u(3)(t). In this way the discontinuity in the first

derivative at t = 0 propagates to discontinuities in higher derivatives of u(t) at later times.

Bellen and Zennaro [8] provides a more complete discussion of breaking points.
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Theorem 1.2.2 (Order of a CRK method, Bellen and Zennaro [8], Theorem 6.1.2). Let

f(t, u, v) in (1.2.3) be Cp-continuous in [t0, tf ] × R
d × R

d, the initial function ϕ(t) be Cp-

continuous and the delay τ(t, u) be Cp-continuous in [t0, tf ] × R
d. Assume that the discrete

mesh {t0, ..., tnf
} includes all the discontinuity points of order 6 p in [t0, tf ]. If the underlying

CRK method has discrete order p and uniform order q, then the method (1.2.6)-(1.2.7) has

discrete global order and uniform global order q′ = min{p, q + 1}; that is

max
16n6nf

‖u(tn)− un‖ = O
(

hq′
)

, max
t06t6tnf

‖u(t)− η(t)‖ = O
(

hq′
)

where h = max16n6nf
hn.

Another issue that comes up in the numerical integration of DDEs is stability failure which

will be discussed in Chapter 4. In Chapter 5 a class of RK methods, called singularly diagonally

implicit RK methods, is implemented to solve stiff DDE problems in which the problems of

overlapping and capturing a discontinuity point in the mesh sometimes occur in tandem. We

also deal with the appropriate choice of continuous extension for this method, preferring those

that preserve the structure of the SDIRK method to those that preserve the order of the

method.

1.3 Literature review

The general theory of RFDEs and DDEs has been developed over the years by many

authors. The classical texts are by Bellman and Cooke [10], El’sgol’ts and Norkin [15], Hale

[28], Hale and Verduyn Lunel [29] and Kolmanovskii and Myshkis [33]. Driver [14] contains

the results on existence, uniqueness and continuation of solutions for DDEs with multiple state

dependent delays. Hartung et al. [30] and Walther [58] contain more recent results on the

solution manifold of state dependent delay equations.

There have also been many recent texts on both theory and applications of DDEs [3, 17, 36,

54]. Mallet-Paret and Nussbaum [38, 39, 40, 41], Mallet-Paret, Nussbaum and Paraskevopoulos

[42] have considered the model equation (1.1.1) and looked into so-called slowly oscillating

periodic solutions as ε → 0. By the classical arguments of El’sgol’ts and Norkin [15], the

analytical solution of the c = 0 case of (1.1.1) may be written as

u (t) =
∑

k

Ck exp (λkt).
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Applying this to (1.1.1) with c = 0 yields the characteristic equation for the eigenvalues of the

DDE. A necessary and sufficient condition for the solutions of this DDE to approach zero as

t→ ∞ is that all the characteristic roots have negative real parts. The stability region in the

(µ, σ) parameter has been derived by Bellman and Cooke [10] for the constant delay case. For

the state dependent case, results by Györi and Hartung [25] show that the state dependent

DDE is exponentially stable if and only if the trivial solution of the constant delay problem is

exponentially stable.

The method of Lyapunov functions for ODEs were first extended to Lyapunov functionals

for RFDEs by Krasovskii [34]. For this reason these functionals are sometimes called Lyapunov-

Krasovskii functionals. Razumikhin [51] developed the theory on how one might go back from

the more difficult Lyapunov functionals for DDEs to Lyapunov functions again. The proof and

some applications of this theorem are presented by Barnea in [6] and he also applied it to (1.1.1)

with µ = c = 0. Following his method of proof, we generalise his results to arbitrary µ and

c. Other papers that state and employ theorems of the Razumikhin-type are Ivanov, Liz and

Trofimchuk [32] and Krisztin [35]. A comprehensive discussion of Lyapunov functionals and

functions for DDEs is available in the text by Hale and Verduyn Lunel [29] among other texts.

The main reference for the theory of numerical methods for DDEs is the text by Bellen

and Zennaro [8]. Baker, Paul and Willé [5] provide an introduction to issues in numerically

solving DDEs. More recent results on a more general class of equations (including neutral

delay equations) are available in Bellen et al. [9]. The generalization of A-stability for ODE

methods to P- and GP-stability for DDE methods was introduced by Barwell [7]. Zennaro [61]

showed that any A-stable method is also P-stable for DDEs. The extensions to D-stability

were considered by Wiederholt [59] and Guglielmi [21]. The stability of numerical methods for

DDEs have also been looked at by Al-Mutib [1], Baker and Paul [4], Calvo and Grande [12],

Guglielmi [20, 21], Guglielmi and Hairer [22], Liu and Spijker [37], Maset [43] and Torelli [57].

The problems involved in extending RK methods to solve DDEs are documented in Bellen

and Zennaro [8]. These problems include loss of order, loss of stability, discontinuity tracking

and the choice of continuous extensions. Guglielmi and Hairer also talk about the problems of

discontinuity tracking in [24]. There are several DDE solvers currently available. Particularly

relevant to this work is DDE23 by Shampine and Thompson [53] which is a friendly MAT-

LAB solver for non-state dependent DDEs, DDESD by Shampine [52] which is the MATLAB
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solver for DDEs with state dependent delays and RADAR5 by Guglielmi and Hairer [23] which

solves stiff DDEs. Other DDE solvers are DKLAG6 by Corwin, Sarafyan and Thompson [13],

DDVERK by Enright and Hayashi [16], DDE SOLVER by Thompson and Shampine [56] and

ARCHI by Paul [49]. The solver that we develop in MATLAB is based on SDIRK methods

which are discussed in Hairer and Wanner [26].

1.4 Main results

The main results of this thesis concern aspects of both the theory and numerical analysis

of DDEs. Chapter 2 presents results on the properties and some dynamics of a model DDE

with N state dependent delays. Equation (1.1.1) gives the N = 1 case which is the focus of

my work. All parameters in the equation are real numbers with ε, a > 0. A scaling argument

shows that there are effectively only two free parameters in the equation because if c 6= 0 it

is always possible to rescale and set ε = a = c = 1, and if c = 0 it is possible to again set

ε = a = 1. However all parameters are kept arbitrary in the discussion to allow for limiting

cases such as ε → 0 which yields saw-tooth graphs and other interesting solutions. More

complex dynamics can be observed for the N > 1 case which is discussed in Section 2.2. The

use of a state dependent delay imposes the possibility of the delay becoming an advance and

the solution becoming dependent on both past and future states. In Theorems 2.1.4 and 2.2.2

I find conditions on the parameters for which this does not happen for the model equations.

Furthermore, in Theorems 2.1.8 and 2.2.4 I derive sufficient conditions for which the deviated

arguments become monotonically increasing after a finite time.

In Chapter 3 the parameters ε, a and c are fixed and I look for regions in the (µ, σ)

parameter space for which the zero solution of (1.1.1) is Lyapunov stable, or asymptotically

stable. The c = 0 case is well-known and its analytic stability domain Σ⋆ =
∆
Σ∪

w

Σ∪
c

Σ can be

derived using pole location techniques. This region is given in Definition 3.1.1 and shown in

Figure 3–2. The cone
∆
Σ is sometimes called the delay independent region and

w

Σ∪
c

Σ the delay

dependent region because the size of the latter depends on the delay term a. By the results

of Györi and Hartung [25], the local stability domain of the c 6= 0 case is the same as the

analytic stability domain of the c = 0 case. However I still consider different ways to directly

prove stability so that discrete versions of these methods may be adapted to prove the stability

of numerical solutions to the problem. In
∆
Σ it can be easily shown that the zero solution is

asymptotically stable using a contraction argument. In
w

Σ∪
c

Σ I use two different approaches.

12



In Section 3.2 a Gronwall argument is used to directly prove asymptotic stability in part of
w

Σ∪
c

Σ. This result is given in Theorem 3.2.6. In Sections 3.4.1-3.4.2 a larger region for which

the solution is Lyapunov stable is found using a method based on a Lyapunov-Razumikhin

theorem for RFDEs. This second approach is a generalisation of the work of Barnea [6] who

considered the µ = c = 0 case. These results are summarised in Theorems 3.4.7, 3.4.13 and

3.4.15. Section 3.5 shows measurements of the different stability regions that were found.

Chapter 4 is on the stability properties of CRK methods applied to DDEs. The equations

involved are known to be well-posed for problems that satisfy certain Lipschitz and continuity

conditions and when the stepsize is small enough [8]. But this stepsize is very small for stiff

equations such as (1.1.1) with small ε, and are therefore not practical. As in ODEs, stiff

problems are the motivation for studying the stability of numerical methods. We consider

P(0), GP(0), D(0) or GD(0)-stability, generalizations of A-stability to DDE methods.

Much of the existing literature on the stability of DDE methods involves the constant delay

DDE (1.1.1) with c = 0 where the stepsize is a submultiple of the delay term a. Such a choice

of stepsize removes the need for interpolation to determine the values of the spurious stages.

However this technique cannot be used for time dependent and state dependent problems. In

this work I use direct approaches to find a stepsize-independent stability region of the backward

Euler method in the (µ, σ) parameter space of (1.1.1) using both constant delays (c = 0) and

state dependent delays (c 6= 0). In Theorem 4.6.3 I prove that if (µ, σ) ∈ Σ⋆ then there exists

a BE solution to (1.1.1) that converges to zero for all stepsizes h > a. For the case h ∈ (0, a],

discrete versions of both the Gronwall and Razumikhin-like arguments are conducted to derive

regions in the (µ, σ) parameter space for which the backward Euler solution to (1.1.1) is stable.

Using the Razumikhin-like method, stability is proven in larger parameter regions that depend

on the stepsize, but always contain the region found for the DDE. These results are presented

in Theorems 4.4.6 and 4.5.15. An extension of these results to general Θ methods is presented

at the end of this chapter.

Chapter 5 is a discussion on the implementation of some methods to solve stiff, scalar DDEs

with multiple state dependent delays. The solver is based on L-stable singularly diagonally

implicit Runge-Kutta (SDIRK) methods with a selection of continuous extensions. SDIRK

methods are RK methods where the A matrix is lower triangular and the entries in the diagonal

all have the same value. These methods are sometime called semi-implicit methods because

13



the stages are solved for in order, one at a time. When using an s-stage SDIRK scheme

to numerically integrate scalar ODE problems, at every time step we need to solve s scalar

equations one at a time. This is a more tractable problem than solving an s-dimensional

system all at once. The advantage is the same when SDIRK schemes are used to solve DDEs

without overlapping. In the overlapping case, the need to determine the continuous extension

at the current time interval introduces a need to solve all the stages all at once again, a difficult

iteration for stiff problems. In order to retain the properties of SDIRK methods new continuous

extensions that are piecewise polynomials are used so as not to destroy the SDIRK structure

in the overlapping cases.

Some of the issues involved in implementing CRK methods to solve DDEs are also tackled

in Chapter 5. I concentrate on the issue of choosing appropriate continuous extensions for the

methods. From Theorem 1.2.2, a discrete method of order p needs a continuous extension of

at least order p − 1 to retain its order for solving DDEs. However higher order continuous

extensions usually use polynomials of higher degrees and this can lead to “spiking” in the

continuous extension. Spiking happens when the solution is undergoing sudden changes and

the continuous extension leaves the convex hull of the adjacent mesh values. Figure 5–3 shows

an example of a continuous extension spiking and how it affects the solution at later times.

This problem may be avoided by choosing continuous extensions that are convex combinations

of the mesh values such as continuous extensions based on linear interpolation and piecewise

linear interpolation.

14



CHAPTER 2

Properties of a DDE with N linearly state dependent delays

The properties of a model delay differential equation with N state dependent delays are

discussed in this chapter. We begin by looking at N = 1, the simplest case, in Section 2.1 and

prove existence, uniqueness and boundedness results as well as some properties of the delay

term and deviated argument. In Section 2.2 we derive conditions for which these results can

be extended to arbitrary N > 1. Finally, in Section 2.3 we look at bounds on the solutions of

the model problem and estimate from these bounds where these solutions might bifurcate.

2.1 The model problem: N=1

Consider the following DDE with one state dependent delay

εu̇ (t) = µu (t) + σu (t− a− cu (t)) , t > 0,

u (t) = ϕ (t) , t 6 0,
(2.1.1)

where ε, a, c, µ, σ ∈ R, and ε, a > 0 and the history function ϕ (t) is a real-valued continuous

function. The delay function is τ (t, u(t)) = a+cu (t) and the deviated argument is α (t, u (t)) =

t − a − cu (t). If a 6= 0 we can rescale the problem to set a = 1. Let v (t) = u (at), then the

equation for v (t) is

ε̄v̇ (t) = µv (t) + σv (t− 1− c̄v (t)) ,

where ε̄ = ε
a
, c̄ = c

a
. If c 6= 0, we can also set c = 1. Let w (t) = c̄v (t) then we derive

ε̄ẇ (t) = µw (t) + σw (t− 1− w (t)) .

These scaling arguments have been presented by Mallet-Paret and Nussbaum in [41]. Since it

is also possible to divide by ε this shows that for a 6= 0 and c 6= 0, (2.1.1) actually only has two

free parameters µ and σ. However we will keep all five parameters arbitrary in our discussion

of this equation to limiting cases such as ε→ 0.

To compare the constant delay problem (c = 0) and the state dependent problem (c 6= 0)

consider a Taylor expansion of the solutions about u = 0,

u (t− a− cu (t)) = u (t− a) + u′ (t− a) (−cu (t)) +
u′′ (t− a)

2!
(−cu (t))2 + . . . .
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Thus,

εu̇ (t) = µu (t) + σ

(

u (t− a) + u′ (t− a) (−cu (t)) +
u′′ (t− a)

2!
(−cu (t))2 + . . .

)

.

Ignoring the higher order terms leaves the constant delay problem εu̇ (t) = µu (t) + σu (t− a).
This suggests that the local stability region of the c 6= 0 case is the same as the stability region

of the constant delay problem. Numerics and the results of Györi and Hartung [25] confirm

that this is so. This is discussed further in Section 3.1.

For c = 0, it is easy to see using the method of steps that (2.1.1) is a well-posed problem.

Theorem 2.1.1. Consider the constant delay problem (2.1.1) with a > 0, c = 0. Let the

history function ϕ (t) be continuous over the interval [−a, 0]. Then there exists a unique solution

u (t) ∈ C ([−a,∞) ,R) to the constant delay problem. Furthermore, if ϕ(t) is smooth then u (t)

is C∞ for all t > 0 except at points in the mesh aN = {0, a, 2a, ...}. If ϕ(t) is Cp-continuous

then u (t) is Cp+n-continuous on the interval (na, (n+ 1)a]. In either case, the solution is Cn

at points t = na, n ∈ N.

Proof. The discontinuity in u̇ at t = 0 propagates to a discontinuity in u(n+1) at t = n, n ∈ N.

For existence and uniqueness, use Bellman’s method of steps [10].

For c 6= 0, before looking at existence and uniqueness we must find the conditions for which

the delay term does not become an advance. This requires t−a− cu (t) 6 t which is equivalent

to the condition






u(t) > −a
c
, if c > 0,

u(t) 6 −a
c
, if c < 0.

Thus, if c > 0 and ϕ (0) > −a
c
, or if c < 0 and ϕ (0) < −a

c
then the delay cannot become

an advance. In these cases the local existence and uniqueness result of Driver [14] given in

Theorem 1.1.3 states that there is a solution to (2.1.1) for some nonzero time interval. This

result applies for any value of µ, σ and ε. For the region µ+ σ < 0, the following lemma shows

that the delay term cannot become an advance.

Lemma 2.1.2. Let ε, a > 0, c 6= 0 and µ+ σ < 0. If c > 0 and ϕ (0) > −a
c

then any solution

to (2.1.1) must satisfy u (t) > −a
c

for all t > 0 such that the solution exists. If c < 0 and

ϕ (0) < −a
c

then any solution to (2.1.1) must satisfy u (t) < −a
c

for all t > 0 such that the

solution exists.
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Proof. Let c > 0 and u (0) = ϕ (0) > −a
c
. Suppose there is a first time t1 > 0 such that u (t1) =

−a
c
. Then since u (t) > −a

c
for t < t1 then u̇ (t1) 6 0. But u (t1 − a− cu (t1)) = u (t1) = −a

c
so

εu̇ (t1) = µ
(

−a
c

)

+ σ
(

−a
c

)

= −a
c

(µ+ σ) > 0

This is a contradiction and it proves that u (t) > −a
c

for all t > 0 such that the solution exists.

The case for c < 0 can be proven similarly.

Properties of the solution when µ < 0 and σ < 0.

Lemma 2.1.2 gives one bound to the solution when µ+σ < 0. The entire stability region of

(2.1.1) actually satisfies µ+σ < 0 as will be discussed in Chapter 3. For c > 0, µ < 0 and σ < 0

we can do better and get a lower and upper bound on the solution to show global existence of

the solution. The global existence of the solution to (2.1.1) when µ < 0 and σ < 0 has recently

been presented by Mallet-Paret and Nussbaum in [41]. However, these results are still derived

and proven here because they are later extended to the case of multiple state dependent delays

in Section 2.2. Define

L0 = −a
c
, M0 =

aσ

cµ
, τ0 = a+ cM0. (2.1.2)

Lemma 2.1.3. Let ε, a, c > 0, µ < 0 and σ < 0. Let the history function ϕ (t) be continuous

with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. If u (t) is a solution to (2.1.1) then u (t) ∈ (L0,M0) for

all t for which the solution exists.

Proof. Since c > 0 and µ+ σ < 0 then by Lemma 2.1.2 u(t) > L0 for all t. Now suppose that

there exists t1 > 0 such that u(t1) = M0 and u(t) < M0 for t < t1. This implies that u̇(t1) > 0.

However,

εu̇ (t1) = µM0 + σu (t1 − a− cu(t1)) < µM0 + σL0 = 0

which is a contradiction. Thus u(t) ∈ (L0,M0) for all t.

Theorem 2.1.4. Let ε, a, c > 0, µ < 0 and σ < 0. Let the history function ϕ (t) : [−τ0, 0] →
(L0,M0) be Lipschitz continuous with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Then there exists a

unique solution u ∈ C1 ([0,∞) , (L0,M0)) to (2.1.1). In particular, u (t) ∈ (L0,M0) for all

t > 0.
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Proof. Here we employ the local and extended existence theory for a general delay differential

equations with multiple state dependent delays by Driver [14] which are given in Chapter 1 as

Theorems 1.1.3 and 1.1.4. Define D = R × (−L,M)2 and D∗ = R × (−L,M) where L > L0

and M > M0. Consider the DDE

u̇ (t) = f (t, u (t) , u (α (t, u (t)))) , t > 0

u (t) = ϕ (t) , t 6 0
(2.1.3)

where f (t, u, v) = µ
ε
u + σ

ε
v, α (t, u (t)) = min {t, t− a− cu (t)} and τ̄0 = a + cM . It is easy

to see that f is continuous with respect to all of its variables and Lipschitz continuous with

respect to u and v in the domain D. Also, α (t, u) is Lipschitz with respect to its u argument

and satisfies −τ̄0 6 α (t, u) 6 t in D∗ ∩ {t > 0}. Since the history function ϕ (t) is given to be

Lipschitz continuous in [−τ0, 0] then by Theorem 1.1.3 we have local existence and uniqueness

of the solution to (2.1.3).

If u(t) ∈ C([−τ, 0], (L0,M0)) then Lemma 2.1.3 states that u(t) remains inside the interval

(L0,M0). In this case, the system written above is equivalent to (2.1.1) and the history function

needs only to be defined and Lipschitz in the interval [−τ0, 0]. Hence we have local existence

and uniqueness of the solution to (2.1.1).

To prove that the solution exists for t ∈ [0,∞) we apply Theorem 1.1.4 to (2.1.3). The

theorem states that given the same conditions as for existence and uniqueness, the solution

can be extended to [0, β) where 0 < β 6 ∞. If β is finite and cannot be increased then as

t→ β either the solution goes off to ∞ or (t, u (t) , u (α (t, u(t)))) comes arbitrarily close to the

boundary of D. But Lemma 2.1.3 states that u(t) must stay inside (L0,M0) so neither case is

possible. Thus we must have β = ∞ and this completes the proof of the continuation of the

unique solution to [0,∞).

Lemma 2.1.5. Let ε, a, c > 0, µ < 0 and σ < 0 and let u (t) be a solution to (2.1.1) with

u (t) ∈ (L0,M0) for t ∈ [−τ0,∞). Then u (t) must be behave in one of the following manners:

(A) There exists T̄ such that u (t) ↓ 0 for t > T̄

(B) There exists T̄ such that u (t) ↑ 0 for t > T̄

(C) For every T > 0 there exists T1, T2 > T such that the solution attains a positive local

maximum at T1 and a negative local minimum at T2.
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Proof. From Lemma 2.1.3, for all t > 0, u (t) ∈ (L0,M0) and

t− τ0 6 α (t, u (t)) 6 t (2.1.4)

Suppose there exists a time T such that u (t) > 0 for all t > T . Then for t > T̄ = T + τ0,

we have u̇(t) 6 0 because of (2.1.4). This means there is some ū ∈ [0,M0) such that u (t) ↓ ū
when t > T̄ . Again because of (2.1.4) we must also have u (t− a− cu (t)) → ū. This means

u̇(t)→ µ+σ
ε
ū which is only possible if ū = 0. Thus in this case, we have the behavior in (A).

If there exists a time T such that u (t) 6 0 for all t > T then using a similar argument we

must have the behavior in (B). If there is no time T such either u (t) > 0 or u (t) 6 0 holds for

t > T then the solution must be always be changing signs which yields the behavior (C).

In Theorem 2.1.6, we derive a uniform bound τ̄ such that delay term satisfies τ(t, u(t)) >

τ̄ > 0. Using this bound the global existence and uniqueness of the solutions to (2.1.1) could

have been proven using the method of steps. This bound is still useful because in a numer-

ical integration of this equation, taking the stepsize to be smaller than τ̄ allows us to avoid

overlapping.

Theorem 2.1.6. Let ε, a, c > 0, µ < 0 and σ < 0 and let u (t) be a solution to (2.1.1) with

u (t) ∈ (L0,M0) for t ∈ [−τ0,∞). Define

τ̄ =
a
(

1 + µ
σ

)

1 + µ
σ
− aµ2

σε
− aσ2

µε

, L̄ = −a
c

+
τ̄

c
,

and define h (v) ∈ C
((

−a
c
, 0
)

,R
)

as in (2.1.8). Then h (v) has a unique zero v∗ ∈
(

−a
c
, 0
)

and

v∗ > L̄ > −a
c
. Define also,

τ̃ = min {a+ cϕ(0), τ̄} , L̃ = min
{

ϕ(0), L̄
}

,

τ∗ = min {a+ cϕ(0), a + cv∗} , L∗ = min {ϕ(0), v∗} .

Then τ (t) > τ∗ > τ̃ > 0 and u (t) > L∗ > L̃ > −a
c

for all t > 0.

Remark 2.1.7. This theorem shows that the solution can be bounded away from −a
c

and this

bounds the delay term away from zero. Any local minima of the solution cannot cross the root

v∗ of h (v). The bound L̄ is less strict but it has an explicit expression that depends on the

model parameters.
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Proof. Suppose the solution u (t) never attains a negative minimum. Then it is easy to show

that τ (t) > min {a+ cϕ(0), a} > τ̃ > 0 and u (t) > min {ϕ(0), 0} > L̃ > −a
c

for all t > 0. So

suppose instead that the solution attains a negative minimum at u (t) = v0 < 0. Then u̇ (t) = 0

and

u (t− a− cv0) = −µ
σ
v0. (2.1.5)

Since the requirements of Lemma 2.1.3 are satisfied then u (t) ∈ (L0,M0) for all t > −τ0. This

bound is used in the following Gronwall argument.

εu̇ (t)− µu (t) > σM0 =
aσ2

cµ

d

dt

(

u (t) e−
µ
ε
t
)

>
aσ2

cµε
e−

µ
ε
t

u (s) e−
µ
ε

s
∣

∣

∣

t

s=t−a−cu(t)
> −aσ

2

cµ2
e−

µ
ε
t

∣

∣

∣

∣

t

s=t−a−cu(t)

u (t) e−
µ
ε
t − u (t− a− cu (t)) e−

µ
ε
(t−a−cu(t))

> −aσ
2

cµ2

(

e−
µ
ε
t − e−µ

ε
(t−a−cu(t))

)

(2.1.6)

Set u(t) = v0 and substitute for u (t− a− cv0) from (2.1.5) in (2.1.6),

v0e
−µ

ε
t +

µ

σ
v0e

−µ
ε
(t−a−cv0)

> −aσ
2

cµ2

(

e−
µ
ε
t − e−µ

ε
(t−a−cv0)

)

,

(

1 +
µ

σ
e

µ
ε
(a+cv0)

)

v0 +
aσ2

cµ2

(

1− e−µ
ε
(a+cv0)

)

> 0. (2.1.7)

Define the following function

h (v) =
(

1 +
µ

σ
e

µ
ε
(a+cv)

)

v +
aσ2

cµ2

(

1− e−
µ
ε
(a+cv)

)

. (2.1.8)

Then we must have h (v0) > 0. Consider the behavior of this function.

h′ (v) = 1 +

(

µ

σ
+
µ2c

σε
v − aσ2

µε

)

e
µ
ε
(a+cv),

h′′ (v) = −
(

−µ
2c

σε
+
aσ2c

ε2
− µ2c

σε

(

1 +
µc

ε
v
)

)

e
µ
ε
(a+cv).

Easily, h′ (v) > 0 and h′′ (v) < 0 when v < 0. Also,

h
(

−a
c

)

=
(

1 +
µ

σ
e0
)(

−a
c

)

+
aσ2

cµ2

(

1− e0
)

= −a
c

(

1 +
µ

σ

)

< 0.
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Thus h
(

−a
c

)

< 0 and is strictly increasing and concave down for v ∈
(

−a
c
, 0
)

. The function

must have a root v∗ < 0 because h (v) > 0 for all v > 0. Since at the negative minimum v0 has

to satisfy h (v0) > 0 then this lower bound on the solution should occur at a positive distance

from −a
c
. We can find an explicit lower bound on the distance of the root v∗ to −a

c
. Since h(v)

is strictly increasing and concave down ∀v ∈
(

−a
c
, 0
)

then v∗ > v∗∗ where v∗∗, the root of the

tangent line to h (v) at the point
(

−a
c
,−a

c

(

1 + µ
σ

))

. This is illustrated in Figure 2–1. If we let

v∗∗ = L̄ = −a
c

+ τ̄
c

(where L̄ < 0 and τ̄ > 0) then using the tangent line,

0−
(

−a
c

(

1 + µ
σ

))

τ̄
c

= h′
(

−a
c

)

= 1 +
µ

σ
− aµ2

σεc
− aσ2

µε

⇒ τ̄ =
a
(

1 + µ
σ

)

1 + µ
σ
− aµ2

σε
− aσ2

µε

Thus, if ϕ(0) > L̄ then the solution never crosses below L̄. If ϕ(0) < L̄ then the solution has

to start off increasing (u̇(0)+ > 0) otherwise it would have to reach a minimum (because the

solution is bounded) below L̄ which is a contradiction. If the solution reaches a minimum for

any t > 0 then this minimum cannot be lower than L̄. Thus, u (t) > L̃ = min
{

ϕ(0), L̄
}

> −a
c

for t > 0. The result τ (t) > τ̃ > 0 and u (t) > L̃ > −a
c

follows easily.

We now consider the behaviour of the delay term and deviated argument when µ < 0 and

σ < 0. In Theorem 2.1.8 we show that α (t, u(t)) is eventually monotonically increasing. This

result and its proof was also recently presented by Mallet-Paret and Nussbaum in [41]. We still

state and prove this result here since we extend this in Theorem 2.2.4 to a special case of the

N-delay equation. Let the following notation denote the derivative of α (t, u(t)) with respect to

time

α̇ (t, u (t)) =
d

dt
α (t, u (t))

Theorem 2.1.8. Let ε, a, c > 0, µ < 0 and σ < 0. Let u (t) be a solution to (2.1.1) with u (t) ∈
(L0,M0) for t ∈ [−τ0,∞). Then there exists T , 0 6 T 6 τ0 such that u (t) ∈ C2 ([T,∞) ,R),

α (t, u (t)) ∈ C2 ([T,∞) , [0,+∞)) and α̇ (t, u(t)) > 0 for all t > T .

Proof. Generally, εϕ̇ (0) 6= µϕ (0) + σϕ (−a− cϕ (0)) for arbitrary ϕ so there is usually a dis-

continuity in u̇(t) at t = 0. We also have

εü (t) = µu̇ (t) + σu̇ (α (t, u(t))) (1− cu̇ (t))
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Figure 2–1: Sample plot of h (v) for ε = a = c = 1, µ = −1 and σ = −1.5. Properties of the
function h dictate that the root v∗ of h would provide a lower bound for the minimum v0. We
can also find an explicit expression for v∗∗ ∈

(

−a
c
, v∗
]

, in terms of the equation parameters.
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Figure 2–2: Sample plot showing the root L̄ of h (v) located at a positive distance above a
c
.

The solution is uniformly bounded away from −a
c

and so the delay term is bounded away from
zero.
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So there also exists a discontinuity in ü (t) when α (t, u(t)) = 0. Define

T = sup
t
{α (t, u(t)) = 0}

Then T ∈ [0, τ0] by Lemma 2.1.3. When restricted to t > T we have u (t) ∈ C2 ([T,∞) ,R).

α̇ (t, u(t)) = 1− cu̇ (t) = 1− cµ

ε
u (t)− cσ

ε
u (α (t, u(t))) (2.1.9)

α̈ (t, u(t)) = −cü (t) = −cµ
ε
u̇ (t)− cσ

ε
u̇ (α (t, u(t))) α̇ (t, u(t)) (2.1.10)

By definition of T we have α (t, u(t)) > 0 for t > T . Thus when restricted to t > T we have

α (t, u(t)) ∈ C2 ([T,∞) , [0,+∞)).

As a result of the definition of T then either (i) α̇ (T, u(T )) > 0 or (ii) α̇ (T, u(T )) = 0

holds. In the case of (i) then by continuity there exists δ > 0 such that α̇ (t, u(t)) > 0 for all

t ∈ [T, T + δ). If (ii) holds then α̈ (T, u(T )) = − cµ
ε
u̇ (T ). But since 0 = α̇ (T, u(T )) = 1−cu̇ (T )

then u̇ (T ) = 1
c
. Thus α̈(T, u(T )) = −µ

ε
> 0 and in this case there exists a δ > 0 such that

α̇ (t, u(t)) > 0 for all t ∈ (T, T + δ). Thus in either case, we have δ > 0 such that α̇ (t, u(t)) > 0

for all t ∈ (T, T + δ).

Now the problem is to show that it is possible to let δ → ∞. Suppose not, then there

exists T1 = T + δ such that α̇ (T1, u(T1)) = 0 and α̇ (t, u(t)) > 0 for all t ∈ (T, T1). That

means α̈ (T1, u(T1)) 6 0. However from (2.1.10), α̈ (T1, u(T1)) = − cµ
ε
u̇ (T1) = −µ

ε
> 0. This is

a contradiction and thus there is no such T1 > T .

2.2 The model N-Delay problem

Let N ∈ Z, N > 1. Consider the model DDE with N state dependent delays.

εu̇ (t) = −γu (t)−
N
∑

i=1
κiu (t− ai − ciu (t)), t > 0,

u (t) = ϕ (t) , t 6 0,

(2.2.1)

where ε, ai, ci, γ, κi > 0 for i = 1, ..., N . If we set N = 1 we get back our 1-delay equation in

(2.1.1) with a = a1, c = c1, µ = −γ and σ = κ1. We would like to extend the results we had

in the previous section with µ < 0 and σ < 0. In later chapters it will be useful to keep the

notation we had in Section 2.1 for the 1-delay equation. However, for the N-delay equation we

change the notation as this will be more convenient for the results that we will consider for

these problems.
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Without loss of generality assume

0 > −a1

c1
> −a2

c2
> ... >

aN

cN
. (2.2.2)

For the N-delay equation, define

L0 = −a1

c1
, M0 =

a1

c1γ

N
∑

i=1

κi, τ0 = max
j=1,...,N

{aj + cjM0} . (2.2.3)

The boundedness, existence and uniqueness results for the N-delay equation parallel Lemma 2.1.3

and Theorem 2.1.4 for the 1-delay problem provided condition (2.2.4) holds. Note that this

condition just becomes γ > 0 if we set N = 1.

Lemma 2.2.1. Let ε, ai, ci > 0, γi > 0 and κi > 0 for i = 1, ..., N . Let the history function

ϕ (t) be continuous with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Let

γ >

N
∑

i=2

κi, (2.2.4)

and (2.2.2) hold. Then if u (t) is a solution to (2.2.1) then u (t) ∈ (L0,M0) for all t > 0.

Proof. Suppose there exists t1 > 0 such that u (t) ∈ (L0,M0) for all t < t1 and u (t1) = L0 = −a
c
.

Then u(t) > −a
c

for t < t1. This implies that u̇(t1) 6 0. However, α1 (t1, u (t1)) = t1 − a1 −
c1L0 = t1. Also, u(αi (t1, u(t1))) < M0 for i = 2, ..., N so

εu̇ (t1) = −γu(t1)−
N
∑

i=1

κiu(αi(t1, u(t1))),

> (γ + κ1)
a1

c1
−M0

N
∑

i=2

κi =
a1

c1γ

[

(κ1 + γ)γ −
(

κ1 +

N
∑

i=2

κi

)

N
∑

i=2

κi

]

.

Using (2.2.4) we see that the last term must be positive. Since ε > 0 we get u̇ (t1) > 0 which

is a contradiction.

If instead u(t1) = M0 and u(t) < M0 for t < t0 then u̇(t1) > 0. But u(t) > −a1
c1

for t < t0

implies that

εu̇(t1) < −γM0 +
a1

c1

N
∑

i=1

κi = 0.

This is a contradiction.
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Theorem 2.2.2. Let ε, ai, ci > 0, γi > 0 and κi > 0 for i = 1, ..., N . Let the history function

ϕ (t) be Lipschitz continuous with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Let (2.2.2) and (2.2.4) be

satisfied. Then there exists a unique solution u ∈ C1 ([0,∞) , (L0,M0)) to (2.2.1). In particular,

u (t) ∈ (L0,M0) for all t > 0.

Proof. This proof requires Theorems 1.1.3 and 1.1.4, the existence theory for a general DDE

with multiple state dependent delays by Driver [14]. Define D = R × (−L,M)N+1 and D∗ =

R× (L,M) where L < L0 and M > M0. Consider the system

u̇ (t) = f (t, u (t) , u (α1 (t, u (t))) , ..., u (αN (t, u (t)))) , t > 0

u (t) = ϕ (t) , t 6 0
(2.2.5)

f (t, u, v1, ..., vN ) = −γ
ε
u−

N
∑

i=1

κi

ε
vi,

αi (t, u (t)) = min {t, t− ai − cu (t)} , τ0 = max
j=1,...,N

{aj + cjM}

As in the proof of Theorem 2.1.4, we use Theorem 1.1.3 to prove the local existence and

uniqueness of (2.2.5) and then use the boundedness result in Lemma 2.2.1 to show that in this

case, (2.2.5) is equivalent to (2.2.1). Then using Theorem 1.1.4 the existence, uniqueness and

boundedness result is extended to [0,∞).

Now that we have global existence of the solutions we can look at the smoothness of these

solutions. Recall the discussion in Section 2.1 of discontinuity points. The solution u (t) is

continuously differentiable for t > 0, but in general limt→0− u̇(t) 6= limt→0+ u̇(t). In this case

t = 0 is a discontinuity point due to a discontinuity in the first derivative. This discontinuity

at t = 0 propagates to discontinuities in higher derivatives of u(t) at later times. Due to

the state dependency of the delay, it is not possible to solve for the location of these points

without the actual solution. However the bounds from Lemma 2.2.1 yields an upper bound

to the location of the discontinuity points. Since the solution must remain bounded inside

(L0,M0) then the delay term must satisfy t− αi (t, u(t)) = ai + ciu(t) ∈ (ai + ciL0, ai + ciM0).

Right away this implies that αi(t, u(t)) → +∞ as t → ∞. These bounds also dictate that

if an n-level discontinuity point ξn,j gives rise to the (n + 1)-level point ξn+1,k then we must

have ξn+1,k 6 ξn,j + τ . Starting from the 0-level point this implies that the n-level primary

discontinuities ξn,k 6 nτ for all k. Thus u(t) ∈ Cn+1 for all t > nτ .
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Next consider a special case of the N -delay equation. Let c = c1 = c2 = ... = cN . Since

we have (2.2.2) then 0 < a1 6 a2 6 ... 6 aN .

Lemma 2.2.3. Let ε, ai, ci > 0, γi > 0 and κi > 0 for i = 1, ..., N . Let the history function

ϕ (t) be continuous with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Let c = c1 = ... = cN , (2.2.2) and

(2.2.4) be satisfied. If u (t) is a solution to (2.2.1) then the deviated arguments αi (t, u(t)) must

satisfy the following for all t > 0.

t− ai −
a1

γ

N
∑

j=1

κj 6 αi (t, u(t)) = t− ai − cu (t) 6 t

α1 (t, u(t))− αi (t, u(t)) = ai − a1

Also, where the following derivatives are defined, we have

α
(j)
1 (t, u(t)) = α

(j)
2 (t, u(t)) = ... = α

(j)
N (t, u(t)) , ∀j = 1, 2, ...

Proof. The first result easily follows from the boundedness of the solutions. The second result

comes from α1 (t, u(t)) − αi (t, u(t)) = (t− a1 − cu(t)) − (t− ai − cu(t)) = ai − a1. As for the

last result,

α̇i (t, u(t)) = 1− cu̇ (t) ,

α
(j)
i (t, u(t)) = −cu(j) (t) .

These expressions are all equal for i = 1, ..., N .

So the arguments αi in this case are separated by constant distances with the αN term

being the furthest back. From the ordering of the ai’s, the upper bound on all the delay terms

is τ0 = aN + cM0. Theorem 2.2.4 shows that in this special case the αi must eventually become

monotonically increasing. The proof of this is based on Theorem 2.1.8 for N = 1 which is based

on a proof by Mallet-Paret and Nussbaum [41]. As in Section 2.1 we write the derivative of the

deviated arguments as

α̇i (t, u (t)) =
d

dt
αi (t, u (t)) .

Theorem 2.2.4. Let ε, ai, ci > 0, γi > 0 and κi > 0 for i = 1, ..., N . Let the history function

ϕ (t) be continuous with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Let c = c1 = ... = cN , (2.2.2)

and (2.2.4) be satisfied. If u (t) is a solution to (2.2.1) then there exists T , 0 6 T 6 τ
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such that u (t) ∈ C2 ([T,∞) ,R) and for i = 1, ..., N , αi (t) ∈ C2 ([T,∞) , [T − τ0,+∞)) and

α̇i (t, u(t)) > 0 for all t > T .

Proof. The point t = 0 is a breaking point as u̇ (t) is generally discontinuous at this point. There

is also a discontinuity in ü (t) when any of the deviated arguments αi (t, u(t)) = 0. Define

T = sup
t
{αi (t) = 0}

Then T ∈ [0, τ0] and αi (t, u (t)) > 0 for t > T . Thus, we must have u (t) ∈ C2 ([T,∞) ,R).

Then also, αi ∈ C2 ([T,∞) , [T − τ0,+∞)).

Since α̇i (t, u (t)) = 1− cu̇ (t) for i = 1, ..., N then it will be enough to show that α̇N (t) > 0

for t > T .

α̇N (t, u(t)) = 1− cu̇ (t) = 1 +
cγ

ε
u (t) +

c

ε

n
∑

i=1

κiu (αi (t, u(t))) (2.2.6)

α̈N (t, u(t)) = −cü (t) =
cγ

ε
u̇ (t) +

c

ε

N
∑

i=1

κiu̇ (αi(t, u(t))) α̇N (t, u(t)) (2.2.7)

where the last line is because the derivatives of all deviated arguments are equal.

As a result of the definition of T then either (i) α̇N (T, u(T )) > 0 or (ii) α̇N (T, u(T )) = 0

holds. If we have case (i) then by continuity there exists δ > 0 such that α̇N (t, u(t)) > 0 for

all t ∈ [T, T + δ). If (ii) holds then α̈N (T, u(T )) = cγ
ε
u̇ (T ). But in this case u̇ (T ) = 1

c
so

α̈N (T, u(T )) = γ
ε
> 0. Then there exists δ > 0 such that α̇N (t, u(t)) > 0 for all t ∈ (T, T + δ).

Thus in either case, we have δ > 0 such that α̇N (t, u(t)) > 0 for all t ∈ (T, T + δ).

Now the problem is to show that it is possible to let δ → ∞. Suppose not. Then there

exists a finite T1 = T + δ such that α̇N (T1, u(T1)) = 0 and α̇N (t, u(t)) > 0 for all t ∈ (T, T1).

At such a point α̈N (T1, u(T1)) 6 0. However from (2.2.7), α̈N (T1, u(T1)) = γc
ε
u̇ (T1) = γ

ε
> 0.

This is a contradiction and thus there is no such T1.

2.3 Bounds on the solutions of the model problems

In this section we look for bounds on the solutions to the 1-delay equation (2.1.1) and the

general N -delay equation (2.2.1). It will be convenient to continue using the γ and κ notation

from the previous section. So in this section when considering the 1-delay equation we set

γ = −µ < 0 and κ = −σ < 0 and write

εu̇ (t) = −γu (t)− κu (t− a− cu (t)) . (2.3.1)
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Bounds on the amplitudes of solutions to the 1-delay equation

Define the following function

H1 (v,w) =
(

1 +
γ

κ
e−

γ
ε
(a+cv)

)

v +
κw

γ

(

1− e− γ
ε
(a+cv)

)

. (2.3.2)

Recall h (v) from (2.1.8) in Theorem 2.1.6. This is actually a special case of H1 (v,w), with

h (v) = H1

(

v, aκ
cγ

)

. We consider some properties of H (v,w) in Lemma 2.3.1.

Lemma 2.3.1. Let ε, a, c, γ and κ > 0.

1. For every fixed w > 0 there is a v∗(w) < 0 such that H1 (v,w) is negative if v < v∗, zero

if v = v∗ and positive if v ∈ (v∗, 0].

2. For all w > 0, v∗(w) ∈
(

−a
c
, 0
)

.

3. If w1 > w2 > 0 then v∗ (w1) < v∗ (w2) < 0.

4. For every fixed w < 0 there is a v∗(w) > 0 such that H1 (v,w) is negative if v ∈ [0, v∗),

zero if v = v∗ and positive if v > v∗.

5. For all w < 0, v∗(w) ∈
(

0,−κ
γ
w
)

.

6. If w1 < w2 < 0 then v∗ (w1) > v∗ (w2) > 0.

Proof. The first derivatives of H1 (v,w) are given by

∂

∂v
H1 (v,w) = 1 +

γ

κ

(

1− cγ

ε
v +

cκ2

εγ
w

)

e−
γ
ε
(a+cv),

∂

∂w
H1 (v,w) =

κ

γ

(

1− e− γ
ε
(a+cv)

)

.

Let w > 0. Then H1 (0, w) > 0, H1

(

−a
c
, w
)

< 0 and ∂
∂v
H1 (v,w) > 0 for all v < 0. Then

H1 (v,w) is monotonically increasing for all v < 0 and changes sign in the interval
(

−a
c
, 0
)

.

Properties 1 and 2 easily follow. Also, ∂
∂w
H1 (v,w) > 0 for all v ∈

(

−a
c
, 0
)

. This leads to

property 3.

Now let w < 0. ThenH1 (0, w) < 0. LetW0 (x) be the restricted Lambert W functionW0 ∈
C
([

−1
e
,∞
)

, [−1,∞)
)

. This section of the Lambert W function is injective and real-valued. Any

solution v to ∂
∂v
H1 (v,w) = 0 must be given by v = ε

cγ

(

1−W0

(

−κ
γ
e1+

aγ
ε

+ cκ2

εγ
w

))

+ κ2

γ2w. Thus

there can be at most one point for which ∂
∂v
H1 (v,w) changes signs. Since limv→∞H1 (v,w) = 1

then either the derivative is always positive or it starts off negative and then becomes positive.

Either way, since H1 (0, w) < 0, there can only be one positive solution v to H (v,w) = 0. This

proves property 4.
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If v > −κ
γ
w then H1 (v,w) > 0. Thus the positive root to H1 (v,w) = 0 must satisfy

v ∈
(

0,−κ
γ
w
)

. This proves property 5. Since ∂
∂w
H1 (v,w) > 0 for all v > 0 then property 3

follows.

Recall the definitions of L0, M0 and τ0 in (2.1.2). Suppose that the requirements of

Lemma 2.1.3 are satisfied. Then the unique solution to (2.3.1) is bounded inside the interval

(L0,M0). Following the same Gronwall argument as for (2.1.6) in the proof of Theorem 2.1.6,

we get the following relationship

u (t)− u (t− a− cu (t)) e−
γ
ε
(a+cu(t))

> −κM0

γ

(

1− e−
γ
ε
(a+cu(t))

)

.

Suppose that we have behaviour (C) in Lemma 2.1.5. If the solution attains a local minimum

at u (t) = v then u̇(t) = 0 and u (t− a− cu(t)) = −γ
κ
v. Applying this to the equation yields

(

1 +
γ

κ
e−

γ
ε
(a+cv)

)

v +
κM0

γ

(

1− e− γ
ε
(a+cv)

)

> 0. (2.3.3)

This can be written as H1 (v,M0) > 0. Let L1 = v∗ (M0). Then by Lemma 2.3.1, v > L1.

Consider what this means. Within every time interval of length τ0, either the solution must

have attained an extremum or it crossed zero (u(t) and u̇(t) cannot have the same sign for

longer than an interval of length τ0). In either case, we must have u(t) > v > L1 for t > τ0.

After another time interval of τ0, this will be the lower bound on the relevant history of the

solution. Using the same arguments we can find a new upper bound on the solution by finding

a bound on any possible local maximum within this time interval. Suppose the local maximum

occurs at u (t) = v and using the same Gronwall argument to derive

(

1 +
γ

κ
e−

γ
ε
(a+cv)

)

v +
κL1

γ

(

1− e− γ
ε
(a+cv)

)

6 0.

This equation can be written as H1 (v, L1) 6 0. Let M1 = v∗ (L1). Then by Lemma 2.3.1,

v 6 M1. Then we have a new positive upper bound on u(t) for t > 2τ0. Starting with the

original bounds L0 and M0 and continuing on in this manner we get that after every interval

of length 2τ0, we alternate between obtaining a new lower bound on the solution Lk and a new

upper bound Mk that can be computed using the following relationships

H1 (Lk+1,Mk) = 0, H1 (Mk+1, Lk+1) = 0. (2.3.4)
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From properties 2, 3, 5 and 6 in Lemma 2.3.1, 0 > Lk+1 > Lk > −a
c

and 0 6 Mk+1 6 Mk 6 aκ
cγ

.

Hence we have proven Theorem 2.3.2.

Theorem 2.3.2. Let ε, a, c > 0, γ > 0 and κ > 0. Let the history function ϕ (t) be continuous

with ϕ (t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Define the sequence of bounds {Lk} and {Mk} using the

relationship (2.3.4). Let u(t) be the solution to (2.3.1). Then either u(t)→ 0 monotonically or

u(t) ∈
[

Lk(t),Mk(t)

]

where k(t) =
⌊

t+τ0
4τ0

⌋

for all t > 0.

In the limit as k →∞, the interval [L∞,M∞] which bounds the solution as t→∞ can be

calculated using the following equations

H1 (L∞,M∞) = 0, H1 (M∞, L∞) = 0. (2.3.5)

In Figure 2–3 the bounds are plotted as a function of κ for fixed ε, a, c and γ. In Figure 2–4

sample solutions are plotted with the bounds we have derived. These plots show that the

bounds are not tight, but they provide us with better bounds on the solution than (L0,M0)

and they may be used to find parameter regions for which the fixed point at zero is stable, and

a necessary condition for a Hopf bifurcation to occur.
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Figure 2–3: Bounds on the solution of (2.3.1) as a function of κ, for ε = a = c = γ = 1.
The bounds L∞ and M∞ are given by (2.3.5). The zero solution of the 1-delay problem loses
stability after the point for which the bounds are no longer zero.
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Figure 2–4: Sample plots of solutions to (2.3.1). The bounds Lk and Mk on the solution are
determined by the iteration (2.3.4).

Bounds on the amplitudes of solutions to the N-delay equation

Let us now consider the N -delay equation,

εu̇ (t) = −γu (t)−
N
∑

i=1

κiu (t− ai − ciu (t)). (2.3.6)

Here we derive bounds of solutions to (2.3.6) similar to those we have just derived for (2.3.1).

Recall the definition of L0, M0 and τ0 in (2.2.3). Suppose that the requirements of

Lemma 2.2.1 are satisfied. Then we have initial bounds (L0,M0) on the solution and

u̇ (s) +
γ

ε
u (s) > −M0

ε

N
∑

i=1

κi,

(

u (s) e
γ
ε
s
)′

> −M0e
γ
ε
s

ε

N
∑

i=1

κi.

Using a Gronwall inequality, integrating from s = t− aj − cju (t) to s = t yields

u (t) e
γ
ε
t − u (t− aj − cju (t)) e

γ
ε
(t−aj−cju(t))

> −
M0

(

e
γ
ε
t − eγ

ε
(t−aj−cju(t))

)

γ

N
∑

i=1

κi,

u (t) e
γ
ε
(aj+cju(t)) − u (t− aj − cju (t)) > −

M0

(

e
γ
ε
(aj+cju(t)) − 1

)

γ

N
∑

i=1

κi. (2.3.7)
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Similar to the 1-delay case, the solution to the N -delay problem may either monotonically

go to zero or oscillate. Suppose the latter case and suppose that the solution reaches a minimum

at u (t) = v. Then at this point u̇ (t) = 0. From the bounds on the solution,

u (t− a1 − c1u(t)) > − γ

κ1
v − M0

κ1

N
∑

i=2

κi.

Substitute this into (2.3.7) with j = 1

(

e
γ
ε
(a1+c1v) +

γ

κ1

)

v > −
M0

(

e
γ
ε
(a1+c1v) − 1

)

γ

N
∑

i=1

κi −
M

κ1

N
∑

i=2

κi,

(

1 +
γ

κ1
e−

γ
ε
(a1+c1v)

)

v +
M0

γ

(

(

1− e−
γ
ε
(a1+c1v)

)

N
∑

i=1

κi +
γ

κ1
e−

γ
ε
(a1+c1v)

N
∑

i=2

κi

)

> 0.

This suggest defining a new function HN (v,w)

HN (v,w) =

(

1 +
γ

κ1
e−

γ
ε
(a1+c1v)

)

v +
w

γ

[

(

1− e−
γ
ε
(a+cv)

)

N
∑

i=1

κi +
γ

κ1
e−

γ
ε
(a+cv)

N
∑

i=2

κi

]

.

If N = 1 this is H1 (v,w) as defined in (2.3.2). Going back to (2.3), we can write this as

HN (v,M0) > 0. Let L1 < 0 solve HN (L1,M) = 0. Then v > L1 and L1 is a new negative

lower bound on the solution. After a time τ0 this will be the bound on the relevant history

function and using the same steps as in the derivation of (2.3), we derive

(

1 +
γ

κ1
e−

γ
ε
(a1+c1v)

)

v +
L1

γ

(

(

1− e− γ
ε
(a1+c1v)

)

N
∑

i=1

κi +
γ

κ1
e−

γ
ε
(a1+c1v)

N
∑

i=2

κi

)

6 0.

This can be written as HN (v, L1) 6 0. Let M1 be a positive solution to HN (x,L1) = 0, then

v 6 M1 and M1 is a new positive upper bound on the solution. As in the N = 1 case, if we

continue on in this manner, after every interval of length 2τ0 we alternate between obtaining a

new lower bound on the solution Lk and a new upper bound Mk that can be computed using

the following relationships

HN (Lk+1,Mk) = 0, HN (Mk+1, Lk+1) = 0. (2.3.8)
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In the limit k → ∞, the interval [L∞,M∞] which bounds on the solution as t → ∞ can be

calculated using the following equations

HN (L∞,M∞) = 0, HN (M∞, L∞) = 0. (2.3.9)

Figure 2–5 shows an example of these bounds for the N = 2 case as a function of κ1 for

fixed ε, a1, a2, c1, c2, γ and κ2.
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Figure 2–5: Bounds on the solution of (2.3.6) as a function of κ, for N = 2, ε = c1 = c2 = 1,
a1 = 1.3, a2 = 6, γ = 4.75 and κ2 = 3. The bounds L∞ and M∞ are given by (2.3.9).
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CHAPTER 3

Stability of DDEs

In this chapter we consider the stability of the model DDE with one state dependent delay

(1.1.1). We begin with the constant delay case (c = 0) and derive its characteristic equation.

For fixed ε and a, the analytic stability region Σ⋆ of the zero solution to (1.1.1) in the (µ, σ)

plane is derived from its characteristic equation by requiring all the roots to have a negative

real part [15]. The mathematical description of Σ⋆ is well-known and can be found in the

literature [1, 8, 10, 29]. Results by Györi and Hartung [25] show that Σ⋆ is also the stability

region of the state dependent case (c 6= 0). In Section 3.2 we use a Gronwall argument to

directly prove the asymptotic stability of the trivial solution for the state dependent DDE in

part of Σ⋆. In Section 3.3 we consider the stability of RFDEs of the form (1.1.3) because

there are well-established general results on stability of these equations [6, 29]. In particular we

look at the generalisation of Lyapunov functions for ODEs to Lyapunov functionals for RFDEs

by Krasovskii [34], and the switch back to Lyapunov functions for RFDEs using Lyapunov-

Razumikhin theorems [51]. These ideas are then generalised to state dependent DDEs by

applying them to our model DDE. The result is a proof of Lyapunov stability in a larger

subset of Σ⋆ than that found using the Gronwall argument. These direct techniques to prove

the stability of DDEs are extended in the next chapter into methods to prove the stability of

numerical methods applied to DDEs.

3.1 The known stability region of the model problem

Here we restate the model DDE (1.1.1)

εu̇ (t) = µu (t) + σu (t− a− cu (t)) , t > 0,

u (t) = ϕ (t) , t 6 0.
(3.1.1)

All parameters are in R and ε, a > 0. First set c = 0 to consider the constant delay case. Recall

from Chapter 2 that it is always possible to rescale the equation so that ε = a = 1. Thus, µ

and σ are effectively the only two free parameters in this equation. We would like to find the

values of (µ, σ) for which the trivial solution of (3.1.1) is stable.
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Let u(t) = eλt to derive the characteristic equation of (3.1.1),

f (λ) = ελ− µ− σe−λa = 0. (3.1.2)

The equation f (λ) = 0 has infinitely many solutions in C. Setting λ = x + iy in (3.1.2) and

taking the real and imaginary parts of this equation yields

−µ+ εx− σe−ax cos (ay) = 0, εy + σe−ax sin (ay) = 0 (3.1.3)

This equation is further manipulated to yield the equation of a curve (3.1.4) on which all the

roots must lie. Since for λ = x+ iy

σ2e−2ax cos (ay) = (−µ+ εx)2 , σ2e−2ax sin (ay) = ε2y2,

then

(εx− µ)2 + ε2y2 = σ2e−2ax. (3.1.4)
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σ = −1 σ = −3.77 σ = −8

Figure 3–1: Illustration of the eigenvalues of (3.1.2) in the complex plane. The eigenvalues are
indicated by open circles and for a given σ value they lie on the curve described by (3.1.4). The
other parameter values are ε = 1, µ = −3 and a = 1.

Figure 3–1 shows a complex conjugate pair of eigenvalues crossing the imaginary axis.

Setting x = 0 in (3.1.3) gives the curve for which these crossings occur.
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The stability region of (3.1.1) is well-known and is discussed in the books by Bellen and

Zennaro [8], Bellman and Cooke [10] and Hale and Verduyn Lunel [29].

Definition 3.1.1 (Analytic Stability Region of (3.1.1) with c = 0). The region bounded

between the following curves

ℓ⋆ =
{

(v,−v) , v ∈
(

−∞, ε
a

]}

g⋆ =
{

(µ (y) , σ (y)) , y ∈
(

0, π
a

)}

where the functions µ (y) and σ (y) are given by (3.1.5)

µ (y) = εy cot (ay) , σ (y) = −εy csc (ay) (3.1.5)

is the analytic stability region of the DDE (3.1.1). The stability region, to be denoted by Σ⋆,

can be divided into three subregions: the cone
∆
Σ, the wedge

w

Σ and the cusp
c

Σ. These divisions

are shown in Figure 3–2.

Σ⋆ =
∆
Σ∪

w

Σ∪
c

Σ, ∂Σ⋆ = ℓ⋆ ∪ g⋆
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,− ǫ

a
)

Figure 3–2: The analytic stability region Σ⋆ in the (µ, σ) plane for ε = a = 1.

Figure 3–3 shows how Σ⋆ depends on a. As a → 0 (3.1.1) approaches the ODE u̇ (t) =

(µ+ σ) u (t) which is stable for µ + σ < 0. Figure 3–3 shows that indeed Σ⋆ fills the region

µ+ σ < 0 as a→ 0.
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Figure 3–3: The dependence of Σ⋆ to the delay term a.

Now look for the set of (µ, σ) values for which there are real eigenvalues. In this case we

set λ = x ∈ R and obtain

f (x) = εx− µ− σe−ax,

f ′ (x) = ε+ aσe−ax, f ′′ (x) = −a2σe−ax.

There are two cases to be considered: σ > 0 and σ < 0. In the first case we have f ′ (x) > 0 and

lim
x→−∞

f (x) = −∞ and lim
x→+∞

f (x) = +∞ so there is always one real root. In the second case

we observe that f has to be concave up. We also observe that the function attains a minimum

value at x1 = 1
a

ln
(

−aσ
ε

)

. The number of real eigenvalues in this case are thus given by whether

or not f (x1) lies above or below zero.

f (x1) =
ε

a
ln
(

−aσ
ε

)

− µ− σe− ln(−aσ
ε )

=
ε

a

(

ln
(

−aσ
ε

)

+ 1
)

− µ

The zero of this function is σ = − ε
a
e

aµ
ε
−1. Define the curve

σ1 (µ) = − ε
a
e

aµ
ε
−1. (3.1.6)
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Together with our result for σ > 0, the number of real roots are given by

no. of real roots =



















0, if σ < σ1 (µ) ,

1, if σ < 0 and σ = σ1 (µ) < 0, or σ > 0,

2, if σ1 (µ) < σ < 0.
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(a) Two real eigenvalues, σ = 0.7σ1 > σ1
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(b) One real eigenvalue, σ = σ1 < 0
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(c) No real eigenvalues, σ = 1.7σ1 < σ1

Figure 3–4: Illustration of the eigenvalues (solutions to (3.1.2)) in the complex plane. The
eigenvalues are indicated by open circles. For each σ value they lie on the curve described by
(3.1.4). Note that the curve is composed of two separate parts for the case σ < σ1. The other
parameter values are ε = 1, µ = −1 and a = 1.

Now consider when the purely real eigenvalues change signs. Note that when σ = 0 then

the sole eigenvalue is λ = µ
ε

so it has the same sign as µ. Also when σ < 0, on the curve
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σ = σ1 (µ) given by (3.1.6) there is only one real eigenvalue x1,

x1 =
1

a
ln
(

−aσ1
ε

)

=
1

a
ln
(

e
aµ
ε
−1
)

=
µ

ε
− 1

a

So the one real eigenvalue on the curve defined by σ = σ1 (µ) changes sign from negative to

positive when µ = ε
a
. Finally, we have a zero eigenvalue whenever f(0) = 0 which occurs when

0− µ− σe−0 = 0⇒ µ+ σ = 0.

In Figure 3–5 we show the boundaries at which some the eigenvalues of (3.1.2) change their

nature. The blue curve is described by (3.1.5). On the blue curve there is a pair of complex

conjugate eigenvalues on the imaginary axis and all other eigenvalues have negative real parts.

The green and red curves represent σ = σ1 (µ). In the lower half-plane (σ < 0) and above this

curve there are two real eigenvalues and below it there are none. On the curve itself there is

only one real eigenvalue and it is negative on the green part (µ < ε
a
) and positive on the red

part (µ > ε
a
). In the upper half-plane (σ > 0) there is only one real eigenvalue. The magenta

line represents µ+ σ = 0 where there is a zero eigenvalue.

Further discussions are available in other references [10, 28, 29] which describe the prop-

erties of eigenvalues more comprehensively in each of the divisions shown in Figure 3–5. Here

we just state that the stability region is found by splitting the (µ, σ) plane using the magenta

and blue curves and taking the region on the left. When σ > σ1 (µ) the zero solution becomes

unstable when it crosses the magenta line because an eigenvalue crosses zero and changes sign

from negative to positive. When σ < 0 the zero solution becomes unstable when it crosses the

blue curve because a pair of complex conjugate eigenvalues crossed the imaginary axis. These

curves intersect at the point
(

− ε
a
, ε

a

)

.

Now we consider the stability region of the state dependent case. Set c 6= 0. Following the

results of Györi and Hartung [25], we can show that this actually stable in the same region as

in the constant delay case.

Theorem 3.1.2 (Györi and Hartung [25]). Consider the delay systems

ẋ(t) =

m
∑

i=1

Ai(t)x (t− τi(t, xt)) (3.1.7)

ẏ(t) =

m
∑

i=1

Ai(t)y (t− τi(t,0)) (3.1.8)
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Figure 3–5: Divisions of the (µ, σ) plane based on what we know about the eigenvalues. The
blue curve is described by (3.1.5). The green and red curves together represent σ = σ1 (µ).
The magenta line represents µ+ σ = 0 where there is a zero eigenvalue.

where xt ∈ C = C
(

[−r, 0] ,Rd
)

. Suppose that the following are true:

1. Ai : [0,∞)→ R
d×d is continuous and |Ai(t)| 6 bi, t ∈ [0,+∞) for i = 1, ...,m;

2. ϕ ∈ C;

3. the delay functions τi : [0,∞)× C → [0, r] are continuous for i = 1, ...,m;

4. there exist a constant 0 < γ 6∞ and continuous functions ωi : [0, γ)→ [0,∞), such that

|τi(t, ψ) − τi(t,0)| 6 ωi (‖ψ‖) , t > 0, ‖ψ‖ < γ, i = 1, ...,m

where ωi(0) = 0 (i = 1, ...,m).

5. the sets {s ∈ [0, r] : s − τi(s + t0,0) = 0} have Lebesgue measure 0 for i = 1, ...,m and

τ0 > 0.

Conditions (1)-(3) guarantee existence but not uniqueness of the solutions (Driver [14]). Con-

ditions (1)-(5) guarantee that the trivial solution of (3.1.7) is exponentially stable if and only

if the trivial solution of (3.1.8) is exponentially stable.

This result can be applied to the auxiliary system (2.1.3) defined in Chapter 2 for the proof

of existence and uniqueness of solutions. In this system we change the deviated argument in

(3.1.1) to become α (t, u (t)) = min {t, t− a− cu (t)}. This auxiliary state dependent problem
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would be (3.1.7) and the constant delay problem would be (3.1.8). It is easy to show that

(1)-(5) are satisfied in this case. Thus the auxiliary system also has Σ⋆ as its stability region.

By choosing the bounds on initial function to be small enough so that no advances are allowed,

the auxiliary system becomes equivalent to (3.1.1) so Σ⋆ is also the stability region of the zero

solution to (3.1.1).

Finally, consider the following general state dependent delay equation,

εu̇ (t) = µu (t) + σu (t− a− c (u (t))) , t > 0,

u (t) = ϕ (t) , t < 0.
(3.1.9)

where c(u) is a continuous function with c(0) = 0. Then using the result of Györi and Hartung

[25] and the same steps as before, it is possible to show that Σ⋆ is the stability region of (3.1.9)

as well.

3.2 Asymptotic stability of the model problem using a Gronwall argument

In this section we find sufficient conditions for the solution of (3.1.1) to remain inside an

interval [−δ, δ] for small enough δ and converge to zero. It is easy to see that the solutions are

asymptotically stable for (µ, σ) ∈
∆
Σ = {|σ| < −µ}. Suppose a solution attains an extremum

at time t. Then u̇ (t) = 0 so u (t) = −σ
µ
u (t− a− cu (t)). This shows a contraction in the size

of the solution because
∣

∣

∣

σ
µ

∣

∣

∣
< 1 and it becomes obvious that the solutions must go to zero.

This asymptotic stability of the trivial solution for the constant delay case in
∆
Σ is proven in

Section 3.3 using Lyapunov methods. Here we move on to proving asymptotic stability of the

state dependent DDE in some subset of
w

Σ∪
c

Σ, the delay dependent portion of the analytic

stability region. In these regions we have σ 6 µ, σ < −µ, and automatically σ < 0.

We begin with a lemma on the behaviour of bounded solutions of (3.1.1). This is similar

to Lemma 2.1.5 but it allows for positive values of µ.

Lemma 3.2.1. Let ε, a, c > 0, µ + σ < 0 and let u (t) be a solution to (3.1.1) such that

u (t) ∈ [−δ, δ] , δ ∈
(

0, a
c

)

for all t. Then u (t) must be behave in one of the following manners:

(A) There exists T̄ such that u (t) ↓ 0 for t > T̄

(B) There exists T̄ such that u (t) ↑ 0 for t > T̄

(C) For every T > 0 there exists T1, T2 > T such that the solution attains a local maximum at

T1 and a local minimum at T2.
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Proof. Suppose there exists a time T̄ such that u̇ (t) 6 0 for all t > T̄ . Since the solutions are

assumed to be bounded then there is ū ∈ [−δ, δ], u(t) ↓ ū when t > T̄ . Then u̇ (t) → 0. Since

t− a− cδ 6 α (t, u(t)) 6 t then u (α (t, u(t))) ↓ ū as well.

0 = lim
t→∞

εu̇(t) = lim
t→∞

[

µu(t) + σu (t− a− cu(t))
]

= (µ+ σ) ū.

Since µ+ σ < 0 then ū = 0. Similarly, if there exists T such that u̇ (t) > 0 for all t > T then

we must have u (t) ↑ 0 for t > T̄ . If there is no T̄ such that the derivative does not change sign

past t > T̄ then it must behave as described in (C).

Lemma 3.2.2. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let −a
c
< L < 0 < M , t > 0 and let the

solution to (2.1.1) exist and satisfy u (s) ∈ [L,M ] for s ∈ [t− a− cM, t]. If µ 6= 0 then the

following inequalities hold

u (t) e−
µ
ε
t − u (t− a− cu (t)) e−

µ
ε
(t−a−cu(t))

> −σM
µ

(

e−
µ
ε
t − e−µ

ε
(t−a−cu(t))

)

, (3.2.1)

u (t) e−
µ
ε
t − u (t− a− cu (t)) e−

µ
ε
(t−a−cu(t))

6 −σL
µ

(

e−
µ
ε
t − e−µ

ε
(t−a−cu(t))

)

. (3.2.2)

If µ = 0 then the following inequalities hold,

u (t)− u (t− a− cu (t)) >
σM

ε
(a+ cu(t)) , (3.2.3)

u (t)− u (t− a− cu (t)) 6
σL

ε
(a+ cu(t)) . (3.2.4)

Proof. Since u (s) 6 M then

εu̇ (s)− µu (s) = σu (s− a− cu (s)) > σM.

for all s ∈ [t− a− cM, t]. Equation (3.2.1) is derived using the same Gronwall arguments that

were used to derive both (2.1.6) and (2.3.3) in Chapter 2. The proof of (3.2.2), (3.2.3) and

(3.2.4) are similar. Observe that taking the limit as µ → 0 in (3.2.1) and (3.2.2) yield (3.2.3)

and (3.2.4) respectively.

Lemma 3.2.3. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let −a
c
< L < 0 < M , t > 0 and let the

solution to (2.1.1) exist and satisfy u (s) ∈ [L,M ] for s ∈ [t− a− cM, t]. Suppose that u (t) = v
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is a local extremum of the solution. If µ 6= 0 and 1 + µ
σ
e

µ
ε
(a+cv) > 0 then

−σ
µ

[

1− eµ
ε
(a+cv)

1 + µ
σ
e

µ
ε
(a+cv)

]

M 6 v 6 −σ
µ

[

1− eµ
ε
(a+cv)

1 + µ
σ
e

µ
ε
(a+cv)

]

L. (3.2.5)

If µ = 0 then
σM

ε
(a+ cv) 6 v 6

σL

ε
(a+ cv) (3.2.6)

Proof. Let u (t) = v be a relative extremum of the solution for t > 0. Then u̇(t) = 0 so we

must have u (t− a− cu (t)) = −µ
σ
v. Using this and Lemma 3.2.2, we derive (3.2.5) and (3.2.6).

Observe that taking the limit as µ→ 0 in (3.2.5) yields (3.2.6).

Definition 3.2.4. Let ε, a, c > 0, σ 6 µ and σ < −µ. Define

r (v) =











σ
µ

[

1−e
µ
ε (a+cv)

1+ µ
σ

e
µ
ε (a+cv)

]

, if µ 6= 0,

−σ
ε

(a+ cv) , if µ = 0.

For fixed v, the expression r (v) is continuous in µ, including at µ = 0.

Lemma 3.2.5. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let the model parameters satisfy r (0) ∈
(0, 1). Then there exists a sufficiently small δ ∈

(

0, a
c

)

such that r (v) ∈ (0, 1) for all v ∈ [−δ, δ].
If the history function ϕ (t) is continuous with ϕ (t) ∈ [δ, δ] for t ∈ [−a− cδ, 0] then the solution

u(t) to (3.1.1) satisfies u (t) ∈ [−δ, δ] for all t > 0.

Proof. Let r (0) ∈ (0, 1). Since r (v) is a continuous function of v then it is always possible to

find a small enough δ ∈
(

0, a
c

)

such that r (v) ∈ (0, 1) for all v ∈ [−δ, δ].
Consider the sign of r (v). This is always positive if µ < 0. If µ > 0 and 1 + µ

σ
e

µ
ε
(a+cv) < 0

then r (v) < 0. Thus, our choice of δ always excludes the case 1 + µ
σ
e

µ
ε
(a+cv) < 0. If µ = 0 then

we always have r (0) > 0 since v > −a
c
.

First let ϕ (t) ∈ [−δ, δ] for all t 6 0. Suppose it is possible for u (t) to leave the interval

[−δ, δ]. Suppose that when this first happens the solution crosses its upper bound. Since u (t)

is continuous and differentiable for all t > 0, there exists T1 > 0 such that u (T1) = δ and

u̇ (T1) > 0.

0 6 εu̇ (T1) = µu (T1) + σu (T1 − a− cu (T1)) = µδ + σu (T1 − a− cδ)

u (T1 − a− cδ) 6 −µ
σ
δ (3.2.7)
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Since for all t 6 T1 u(t) ∈ [−δ, δ] then from (3.2.1) in Lemma 3.2.2 we obtain

u (t)− u (t− a− cu (t)) e
µ
ε
(a+cu(t))

6
σδ

µ

(

1− eµ
ε
(a+cu(t))

)

.

At t = T1 we have u (T1) = δ and applying (3.2.7) we obtain

(

1 +
µ

σ
e

µ
ε
(a+cδ)

)

δ 6 δ
σ

µ

(

1− eµ
ε
(a+cδ)

)

, (3.2.8)

and hence
σ

µ

[

1− eµ
ε
(a+cδ)

1 + µ
σ
e

µ
ε
(a+cδ)

]

> 1.

This implies r (δ) > 1 which is a contradiction.

Similarly we obtain a contradiction to the solution leaving through the lower bound. Thus

it is not possible for u (t) to leave [−δ, δ]. Because of this we only require the history function

ϕ (t) ∈ [−δ, δ] for t ∈ [−a− cδ, 0].

Theorem 3.2.6. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let the model parameters satisfy

r (0) ∈ (0, 1). Then there exists a sufficiently small δ ∈
(

0, a
c

)

such that if the history function

ϕ (t) is continuous with ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then the solution to (3.1.1) satisfies

u (t) ∈ [−δ, δ] for all t > 0 and lim
t→∞

u (t) = 0.

Remark 3.2.7. In the limiting case c = 0 then r (v) = r (0) for all v ∈ [−δ, δ] which allows for

δ → ∞. This reflects the global stability of zero solution when r (0) ∈ (0, 1) for the constant

delay case.

Proof. Choose δ as in Lemma 3.2.5 and define

r = max
v∈[−δ,δ]

r (v) . (3.2.9)

Then r ∈ (0, 1) and by Lemma 3.2.5, u (t) ∈ [−δ, δ] and α (t, u(t)) ∈ [t− a− cδ, t] for t > 0. We

call the solution on this interval the relevant history at time t.

Since the solutions are bounded then by Lemma 3.2.1, the solution may (A) eventually go

to zero monotonically from above, or (B) eventually go to zero monotonically from below, or

(C) oscillate. To complete the proof of this theorem we only have to prove that in the oscillating

case we still get u (t)→ 0.
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Suppose the solution attains a minimum at u (S1) = L1. Then by Lemma 3.2.3,

L1 > −r (L1) δ > −rδ > −δ.

So −rδ is a new lower bound on the solution. For t > S1 + a + cδ, the relevant history is on

the time interval [0, a+ cδ] so −rδ is a lower bound on the relevant history. Suppose now that

a local maximum occurs at u (R1) = M1. Then by Lemma 3.2.3,

M1 6 −r (M1) (−rδ) 6 r2δ

For t > R1+a+cδ the relevant history is bounded above by r2δ. Starting with these definitions

of S1 and R1, for n > 2 define Sn to be the location of the first local minimum past Rn−1+a+cδ,

and Rn to be the location of the first local maximum past Sn + a+ cδ. Since we are assuming

that the solutions behaves as described in (C) in Lemma 3.2.1, Sn and Rn exists for all n > 0.

By iteratively applying Lemma 3.2.3, we get that for all t > S1,

u (t) ∈
[

−rnδ, rn−1δ
]

, if t ∈ [Sn, Rn] ,

u (t) ∈ [−rnδ, rnδ] , if t ∈ [Rn, Sn+1] .

Since r ∈ (0, 1) then u (t)→ 0.

The contraction by r argument is illustrated in Figure 3–6. The region in the (µ, σ) plane

where r (0) ∈ (0, 1) and we get asymptotic stability from Theorem 3.2.6 is shown in Figure 3–7.
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Figure 3–6: Illustration of the contraction of the bounds on the solution by r ∈ (0, 1).
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Figure 3–7: The set
∆
Σ∪{r(0) ∈ (0, 1)} is shaded green and plotted with ε = a = c = 1. The

zero solution of the model DDE (3.1.1) is asymptotically stable in this region.

3.3 The Lyapunov-Krasovskii and Lyapunov-Razumikhin theorems for RFDEs

In this section we review the standard approaches to prove the stability of steady-state

solutions to RFDEs. These results are then extended in the next section to prove similar results

for our model state dependent DDE. Consider the RFDE

u̇(t) = F (t, ut) ,

ut0 = φ,
(3.3.1)

where F : R × C → R
n is completely continuous with F (t,0) = 0. The value of the solution

to (3.3.1) at time t is written as u (t0, φ) (t) to show the dependence on the initial time and

function φ, or simply as u (t). The following definitions of different types of RFDE stability

come from the text by Hale and Verduyn Lunel [29].

Definition 3.3.1 (Types of RFDE stability). The zero solution to (3.3.1) is said to be Lyapunov

stable if ∀t0 ∈ R, δ1 > 0, there is a δ2 = δ2 (t0, δ1) such that if φ ∈ B (0, δ2) then ut (t0, φ) ∈
B (0, δ1) for all t > t0. The zero solution is said to be uniformly Lyapunov stable if the δ2 in

the stability definition does not depend on t0. We note that Hale and Verduyn Lunel simply

call these two concepts stable and uniformly stable.

The zero solution to (3.3.1) is said to be asymptotically stable if it is Lyapunov stable and

there exists b0 = b0(t0) > 0 such that if φ ∈ B (0, b0) then lim
t→∞

u (t0, φ) (t) = 0. The zero
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solution is uniformly asymptotically stable if it is uniformly Lyapunov stable and there exists

b0 > 0 such that for every η > 0, there is a t1(η) such that φ ∈ B (0, b0) then ut (t0, φ) ∈ B (0, η)

for t > t0 + t1(η).

One of the standard methods to prove the stability of a stationary solution of an RFDE

is using Lyapunov functionals (functions of the form V (t, ut)). A Lyapunov functional V :

R× C → R is the extension of Lyapunov functions used for ODEs. Define

V̇ (t, φ) = lim sup
h→0+

1

h
[V (t+ h, ut+h (φ))− V (t, φ)] .

Theorem 3.3.2 (Stability using Lyapunov functionals (Hale and Verduyn Lunel [29])). Let

ω1, ω2, ω3 : R
+ → R

+ be continuous, nondecreasing functions. Let ω1(s) and ω2(s) be positive

definite functions on R
+. If there exists a continuous function V : R×C → R such that

ω1 (|φ(0)|) 6 V (t, φ) 6 ω2 (|φ|) ,

V̇ (t, φ) 6 −ω3 (|φ (0) |) ,

then the zero solution to (3.3.1) is uniformly Lyapunov stable. If ω1 (s) → ∞ as s → ∞ then

the solutions to (3.3.1) are uniformly bounded (for every α > 0 there is a constant β = β (α)

such that if |φ| < α then |ut (t0, φ)| < β). If ω3(s) is positive-definite then the zero solution is

uniformly asymptotically stable.

For example, apply this to the constant delay DDE (3.1.1) with c = 0,

εu̇ (t) = µu (t) + σu (t− a) .

Let the Lyapunov functional be V (φ) = 1
2φ (0)2 +K

∫ 0
−a
φ2 (θ) dθ where K > 0. Then for any

φ ∈ C,
1

2
φ (0)2 6 V (φ) 6

(

1

2
+Ka

)

|φ|2 .

Applied to the DDE this functional can be written as V (ut) = 1
2u (t)2 +K

∫ t

s=t−a
u2 (s) ds, so

the derivative with respect to t is given by

V̇ (t, ut) = u (t) u̇ (t) +K
(

u2 (t)− u2 (t− a)
)

,

=
(µ

ε
+K

)

u2 (t) +
σ

ε
u(t)u (t− a)−Ku2 (t− a) ,
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V̇ (t, φ) =
(µ

ε
+K

)

φ2 (0) +
σ

ε
φ(0)φ (−a)−Kφ2 (−a) ,

= −
[

φ(0) φ(−a)
]





−µ
ε
−K − σ

2ε

− σ
2ε

K









φ(0)

φ(−a)



 .

This expression is always negative if the matrix is positive definite. From Sylvester’s criterion,

this is true if and only if both of the following conditions hold

−µ
ε
−K > 0,

(

−µ
ε
−K

)

K − σ2

4ε2
> 0.

Let ε > 0 and µ < 0 be fixed. Then this condition is equivalent to

|σ| < 2ε

√

−K
(µ

ε
+K

)

.

The choice of K ∈
[

0,−µ
ε

]

that yields the largest possible region for σ is K = − µ
2ε

. This

yields Lyapunov stability of the zero solution if |σ| 6 −µ and asymptotic stability if |σ| < −µ.

Thus the zero solution to (3.1.1) with c = 0 and (µ, σ) ∈
∆
Σ is Lyapunov stable and we have

asymptotic stability in the interior of
∆
Σ.

Razumikhin [51] showed that it is possible to use Lyapunov functions (functions of the

form V (u (t))) instead of the more complicated Lyapunov functionals. The stability theorems

based on such functions are often called Lyapunov-Razumikhin theorems, or theorems of the

Razumikhin-type. For simplicity we consider these theorems for autonomous RFDEs

u̇(t) = F (ut) ,

ut0 = φ.
(3.3.2)

Without loss of generality set t0 = 0. The value of the solution to (3.3.2) at time t is written as

u (t0, φ) (t) to show the dependence on the initial function φ, or simply as u (t). Here we follow

the proof of a Lyapunov-Razumikhin theorem for RFDEs by Barnea [6]. We define another

type of stability used by Barnea which will be useful in the derivation.

Definition 3.3.3 (δ0-stability). Let δ0 > 0. The zero solution to (3.3.2) is said to be δ0-

stable if for every δ1 > δ0 there exists a δ2 = δ2 (δ1) > 0 such that if φ ∈ B (0, δ2) then

ut (t0, φ) ∈ B (0, δ1) for all t > 0. It follows that if δ0 = 0 then the zero solution is Lyapunov

stable.
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Definition 3.3.4. Let V : R
d → R be a differentiable function satisfying

ω1 (|u|) 6 V (u) 6 ω2 (|u|) , ∀u ∈ R
d (3.3.3)

where ω1, ω2 are increasing functions in C (R+,R+) such that ω1(0) = ω2(0) = 0 and ω1(s),

ω2(s)→∞ as s→∞. For φ ∈ C, an integer k > 0, define

V̄ (φ) = sup
s∈[−r,kr]

V (u (φ) (s)), (3.3.4)

V̄ ′ (φ) = lim
h→0+

1

h

(

V (uh (φ))− V (φ)
)

. (3.3.5)

Lemma 3.3.5. For φ ∈ C, if sups∈[−r,kr] |u (φ) (s)| = δ <∞ then ω1 (δ) 6 V̄ (φ) 6 ω2 (δ).

Proof. This easily follows from the definition of V̄ , (3.3.3) and the fact that ω1 and ω2 are

continuous, increasing functions.

Lemma 3.3.6. Recall the norms ‖·‖ and | · | defined in page 3. Let F satisfy the following

Lipschitz property

|F (φ1)− F (φ2) | < L ‖φ1 − φ2‖ (3.3.6)

for all φ1 and φ2 ∈ C. Then for all t > 0 the solution of (3.3.2) satisfies

|u (φ1) (t)− u (φ2) (t)| 6 ‖φ1 − φ2‖ eLt. (3.3.7)

Proof. This proof is sketched in Halanay [27] who credits Krasovskii as his source. I reproduce

the proof here in more detail. The inequality is obviously satisfied at t = 0. Assume there exists

a time t1 > 0 such that |u (φ1) (t1)− u (φ2) (t1)| = ‖φ1 − φ2‖ eLt1 and that for an interval past

this time the inequality becomes false. Then there exists h > 0 such that for all t ∈ (t1, t1 + h),

|u (φ1) (t)− u (φ2) (t)| > ‖φ1 − φ2‖ eLt.

Then,

1

t− t1
[|u (φ1) (t)− u (φ2) (t)| − |u (φ1) (t1)− u (φ2) (t1)|] >

eLt − eLt1

t− t1
‖φ1 − φ2‖ .
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Hence,

lim sup
t→t+1

1

t− t1
[

|u (φ1) (t)− u (φ2) (t)| − |u (φ1) (t1)− u (φ2) (t1)|
]

,

> lim sup
t→t+1

eLt − eLt1

t− t1
‖φ1 − φ2‖ ,

= LeLt1 ‖φ1 − φ2‖ = L |u (φ1) (t1)− u (φ2) (t1)| . (3.3.8)

However, using the reverse triangle inequality,

lim sup
t→t+1

1

t− t1

[

|u (φ1) (t)− u (φ2) (t)| − |u (φ1) (t1)− u (φ2) (t1)|
]

6 lim sup
t→t+1

1

t− t1

∣

∣

∣u (φ1) (t)− u (φ1) (t1)− u (φ2) (t) + u (φ2) (t1)
∣

∣

∣,

=

∣

∣

∣

∣

∣

lim
t→t+1

u (φ1) (t)− u (φ1) (t1)

t− t1
− lim

t→t+1

u (φ2) (t)− u (φ2) (t1)

t− t1

∣

∣

∣

∣

∣

,

This is true because the limits exist. Thus,

lim sup
t→t+1

1

t− t1

[

|u (φ1) (t)− u (φ2) (t)| − |u (φ1) (t1)− u (φ2) (t1)|
]

=

∣

∣

∣

∣

d

dt
u (φ1) (t1)−

d

dt
u (φ2) (t1)

∣

∣

∣

∣

= |F (ut1(φ1))− F (ut1(φ2))| ,

< L sup
θ∈[−r,0]

|u (t1 + θ) (φ1)− u (t1 + θ) (φ2)| = L |u (φ1) (t1)− u (φ2) (t1)| . (3.3.9)

The second to the last step comes from (3.3.6) and the last step is because (3.3.7) holds before

time t1. Since (3.3.9) contradicts (3.3.8), this proves the lemma.

Lemma 3.3.7. Let F satisfy (3.3.6) for some L > 0 and let δ̃ > 0. Suppose that V̄ ′ (φ) 6 0

for every φ ∈ C such that sups∈[−r,kr] |u (φ) (s)| > δ̃. Then there is a δ0 > 0 such that for every

δ1 > δ0 there is a δ2 > 0 such that φ ∈ B (0, δ2) implies

I. The solution u (φ) (t) of (3.3.2) exists for all t > 0

II. ut (φ) ∈ B (0, δ1) (which means that the zero solution of (3.3.2) is δ0-stable).

If δ̃ = 0 then δ0 = 0 and (3.3.2) is Lyapunov stable.

Proof. Because of the properties of ω1 and ω2 we can always find a δ0 > δ̃ such that ω1(δ0) =

ω2(δ̃). Pick φ ∈ C such that sups∈[−r,kr] |u (φ) (s)| 6 δ̃. Such a φ exists because of Lemma 3.3.6.
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We will first show that the solution exists and |u (φ) (t)| 6 δ0 for all t > 0. Assume that this

is false. Then there is a t′ such that u (φ) (t) exists for t ∈ [−r, t′] and |u (φ) (t′)| > δ0. Then

t′ > kr because δ0 > δ̃. Using the left inequality in Lemma 3.3.5 and the fact that ω1 is

increasing,

ω1 (δ0) 6 ω1

(

sup
s∈[−r,kr]

∣

∣u (φ)
(

s+ t′ − kr
)∣

∣

)

6 V̄ (ut′−kr (φ))

Now set t∗ = max{t : t ∈ [0, t′ − kr] , |u (φ) (t)| 6 δ̃}. This exists and t∗ < t′ by continuity of u.

Using the left inequality in Lemma 3.3.5,

V̄ (ut∗−kr) 6 ω2

(

δ̃
)

= ω1 (δ0) .

Then V̄ (ut∗−kr) 6 V̄ (ut′−kr). By our assumption we must have V̄ ′ (ut) 6 0 for t ∈ [t∗ − kr, t− kr]
which is a contradiction. Thus, |u (φ) (t)| 6 δ0 for all t > 0. From Theorem 1.1.2, such bound-

edness implies that the solution can be continued for all t > 0.

To prove II, we use Lemma 3.3.6 and F (0) = 0. This yields

|u (φ) (t)| 6 ‖φ‖ eLkr

for t ∈ [−r, kr]. Let δ2 = δ̃e−Lkr. If ‖φ‖ < δ2 then sups∈[−r,kr] |u (φ) (s)| 6 δ̃ and as proven in

I, |u (φ) (t)| 6 δ0 for all t > 0. Finally, if δ̃ = 0 then δ0 = 0 (because ω1 (0) = ω2 (0) = 0) and

we get stability.

Theorem 3.3.8. Let F satisfy (3.3.6) for some L > 0 and let k > 0. Define V and V̄ as in

Definition 3.3.4. Let M > 0 and define the following set

Φ (M) =

{

φ ∈ C : V̄ (φ) = V (u (φ) (kr)) > M,
d

ds
V (φ) (s)

∣

∣

∣

∣

s=kr

> 0

}

If Φ (M) is empty for some M > 0 then there is a δ0 > 0 such that the zero solution to (3.3.2)

is δ0-stable. If M = 0 then the zero solution is Lyapunov stable.

Proof. Let M > 0 and let δ̃ = ω−1
1 (M) > 0. Take any φ ∈ C and if sups∈[−r,kr] |u (φ) (s)| > δ̃

then by Lemma 3.3.5,

M = ω1

(

δ̃
)

6 V̄ (φ)
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Suppose Φ(M) is empty. If we can show that sups∈[−r,kr] |u (φ) (s)| > δ̃ implies V̄ ′ (φ) 6 0 then

the proof is complete using Lemma 3.3.7. So assume sups∈[−r,kr] |u (φ) (s)| > δ̃. Three cases

are considered:

(i) The maximum value of V occurs in the interior of the interval (−r, kr). If this holds then

we can find θ0 ∈ (−r, kr) such that V (u (θ0)) = V̄ (φ). Then for sufficiently small h,

V̄ (uh) = V̄ (φ) and this means V̄ ′ = 0.

(ii) The maximum value of V occurs at the endpoint −r. If this case holds then for sufficiently

small h we have V̄ (uh) < V̄ (φ) and this means V̄ ′ < 0.

(iii) The maximum value of V occurs at the endpoint kr. Then V̄ (φ) = V (u (φ) (kr)). Since

Φ(M) is empty then V̄ ′ (φ) = d
ds
V ′ (u (φ) (s))

∣

∣

s=kr
6 0.

Thus V̄ ′ (φ) 6 0 for all cases and the equation must be δ0-stable from Lemma 3.3.7. Finally,

note that if M = 0 then δ̃ = 0 and so also δ0 = 0. This proves the part about stability.

Other versions of this theorem are also discussed in Hale and Verduyn Lunel [29], Ivanov,

Liz and Trofimchuk [32], Krisztin [35] and many other papers on the topic.

Let us now return to our previous example, (3.1.1) with c = 0. Using a Lyapunov function

V (u) = 1
2u

2 instead of a functional,

V (u (t)) =
1

2
u (t)2 ,

V̇ (u (t)) = u (t) u̇ (t) = u (t)
(µ

ε
u (t) +

σ

ε
u (t− a)

)

=
µ

ε
u2 (t) +

σ

ε
u(t)u (t− a) .

Let ε > 0 and µ < 0 be fixed. Suppose |u (t+ θ)| 6 |u (t)| for θ ∈ [−a, 0]. Then

V̇ (u (t)) =
µ

ε
u2 (t) +

σ

ε
u(t)u (t− a) 6

µ

ε
u2 (t) +

∣

∣

∣

σ

ε

∣

∣

∣
u2 (t) .

Thus V̇ (u (t)) 6 0 if the parameters satisfy |σ| 6 −µ. From Theorem 3.3.8, this proves that if

(µ, σ) ∈
∆
Σ then the zero solution of (3.1.1) is Lyapunov stable for the constant delay case. A

stronger version of Theorem 3.3.8 given in [29] shows asymptotic stability when |σ| < −µ but

we move on now to applying this theorem to the case µ = 0.
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3.3.1 Stability of u̇(t) = σu(t− a) using k = 2, Barnea [6]

Set µ = c = 0 in (3.1.1).

εu̇(t) = σu (t− a) , t > 0,

u (t) = φ (t) , t 6 0.
(3.3.10)

In this equation the bound on the delay is r = a. Using Theorem 3.3.8 with k = 2 it is possible

to show that if − 3ε
2a
< σ 6 0 the zero solution of (3.3.10) is stable. The following proof is based

on the proof in Barnea [6]. Let k = 2 and V = u2

2 . We need to find the values of σ for which

Φ (0) is empty. Define

B (δ) =

{

φ ∈ C : sup
s∈[−r,kr]

|u (φ) (s)| 6 δ

}

,

ψ (δ) =

{

φ : φ ∈ B (δ) , |u (φ) (kr)| = δ,
d

ds
V (u (φ) (s))

∣

∣

∣

∣

s=kr

> 0

}

.

Then Φ (0) = ∪δ>0ψ (δ). Thus Φ (0) is empty if ψ (δ) is empty for all δ > 0. But since this

equation is linear then the values of σ for which ψ (δ) is empty are independent of δ. So to

find a parameter region where the zero solution is stable we only need to find the region where

ψ (δ) is empty for any δ > 0. It is convenient to choose δ = 1. However we will keep the δ

term arbitrary so that we can compare the results here with those in the next section where

we apply the method to state dependent delays. Since letting v (t) = −u (t) yields the same

equation εv̇ (t) = σv (t− a), and V is symmetric then we can write ψ (δ) as

ψ (δ) =

{

φ : φ ∈ B (δ) , u (φ) (kr) = δ,
d

ds
V (u (φ) (s))

∣

∣

∣

∣

s=kr

> 0

}

.

Let − 3ε
2a
< σ 6 0 and δ > 0. Assume that ψ (δ) is not empty. Then there must exist a

φ ∈ C such that for some δ > 0, u(s) = u (φ) (s) satisfies

(A) |u(s)| 6 δ, ∀s ∈ [−a, 2a],
(B) u(2a) = δ,

(C) V̇ = u̇ (2a) u (2a) = σ
ε
u(2a)u(a) > 0.

By integrating (3.3.10) from t = a to 2a we obtain

u (2a) = u (a) +
σ

ε

a
∫

0

u(s)ds. (3.3.11)
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To prove that ψ (δ) is empty we will obtain a contradiction to (B) by showing that u (2a) < δ.

This is done by applying restrictions (A) and (C) on u (s), s ∈ [0, a]. From (A) and (3.3.10),

two of the restrictions are |u(s)| 6 δ and |u̇(s)| 6 |σ|
ε
δ for s ∈ [0, a]. From (C), we have u(a) < 0.

Then

u (2a) 6 sup
φ

[

u (φ) (2a) : φ ∈ C, sup
s∈[0,a]

|u (φ) (s)| 6 δ, u (φ) (a) < 0, sup
s∈[0,a]

|u̇ (φ) (s)| 6 |σ|
ε
δ

]

,

where u (φ) (2a) is from (3.3.11). Let η = ua (φ) then

u (2a) 6 sup
η

[

u (η) (a) : η ∈ C, ‖η‖ 6 δ, η (0) < 0, sup
s∈[−a,0]

∣

∣η′ (s)
∣

∣ 6
|σ|
ε
δ

]

.

Let P (û) be the value of the right hand side when we fix η(0) = û. From the constraints,

û ∈ [−δ, 0]. Then

P (û) ≡ sup
η

[

u (η) (a) : η ∈ C, ‖η‖ 6 δ, η (0) = û, sup
s∈[−a,0]

∣

∣η′ (s)
∣

∣ 6
|σ|
ε
δ

]

.

Since σ < 0, it is easy to see from (3.3.11) that the η that maximizes P (û) is a function that

stays at its most negative possible value of −δ for as long as possible and then increases linearly

to û. This function is

η̃ (θ) =







−δ, θ ∈
[

−a, δ+û
σδ
ε
]

,

û− σ
ε
δθ, θ ∈

[

δ+û
σδ
ε, 0
]

.
(3.3.12)

In Barnea [6] this function is immediately integrated piecewise and yields the following expres-

sion

P (û) = û+
σ

ε

0
∫

−a

η̃(θ)dθ = û− σ

ε
δa− 1

2δ
(δ + û)2 . (3.3.13)

He found that the maximum of P (û) occurs at û = 0 which means

u (2a) 6 P (0) = −δ
(

σ

ε
a+

1

2

)

.

So if − 3ε
2a
< σ 6 0 then P (0) < δ. This is true for all δ > 0 so Φ (0) is empty and the u = 0

solution of (3.3.10) is Lyapunov stable using Theorem 3.3.8.

Remark 3.3.9. The region found in [6] is correct but the derivation is not completely correct.

The integration (3.3.13) was performed assuming that the point δ+û
σδ
ε > −a for all û ∈ [−δ, 0].

This assumption does not always hold. We have δ+û
σδ
ε < −a when û > −δ − σ

ε
aδ. So we have
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to take this case into account when

−δ − σ

ε
aδ < 0 ⇒ σ > − ε

a

Instead of (3.3.12) we should use

η̃ (θ) =



the restriction to [−a, 0] of η̄(θ) =







−δ, θ ∈
(

−∞, δ+û
σδ
ε
]

û− σ
ε
δθ, θ ∈

[

δ+û
σδ
ε, 0
]



 . (3.3.14)

Let σ > − ε
a

and û > −δ − σ
ε
aδ. The integration of P (û) yields

P (û) = û
(

1 +
σ

ε
a
)

+
σ2a2

2ε2
δ 6

σ2a2

2ε2
δ 6

δ

2
, (3.3.15)

where the last two inequalities both stem from − ε
a

6 σ 6 0. Since P (û) < δ then this case

which might have been overlooked in [6] does not affect the stability region that was found.

The next step in this method would be to work with k > 2. Using the same ideas, k = 3

gives us an additional requirement on the η function: |η′′ (θ)| 6 σ2

ε2 δ. Because of this, the new

η̃ must be split into three parts: a horizontal part, a quadratic part with leading term σ2

2ε2 and

then a linear with slope
∣

∣

σ
ε

∣

∣. Performing the integration considering all possible cases confirms

that the larger region − 37ε
24a

< σ 6 0 is in the stability region. This integration is shown in

Section 3.4.2. Using the characteristic equation of the DDE we know that the entire stability

region of this DDE is actually −πε
2a
< σ 6 0. Krisztin [35] is able to find this entire stability

region for the constant delay equation using similar Razumikhin techniques with k →∞.

3.4 Stability of the model problem using a Razumikhin-style theorem

In this section we extend the ideas to the state dependent problem (3.1.1) with µ 6= 0

and c 6= 0. If this equation is written as an autonomous RFDE (3.3.2), then F (φ) = µ
ε
φ(0) +

σ
ε
φ (−a− cφ(0)). Aside from having no a priori bound on the delay term, it is easy to show that

this F is not Lipschitz continuous in the space of continuous functions. Thus, Theorem 3.3.8

cannot be applied to our model DDE. Instead, a more direct proof of stability will be used for

this problem. This approach will extend more naturally to a proof of stability of numerical

methods applied to (3.1.1).

As in Section 3.3, the solution of (3.1.1) at time t will be denoted by u (ϕ) (t) when we

would like to be specific about the initial history function, and simply u (t) otherwise. The

focus of this section will again be in
w

Σ∪
c

Σ so set σ 6 µ and σ < −µ (again σ < 0). From
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Lemma 2.1.2, if u (0) > −a
c

then τ (t, u (t)) = a + cu (t) 6 t so the delay cannot become an

advance.

3.4.1 Results using k = 2

Barnea [6] claims that using the same techniques as in Section 3.3.1 for the case c = 0, the

region X2 = {(µ, σ) : 0 6 s∗ 6 a, P < 1} (shown in Figure 3–8) where

s∗ = −εe
µ
ε
a

σ
, P =

σ(µ+ σ)

µ2

[

e
µ
ε
s∗ − σ

µ+ σ

]

can be shown to be part of the stability region of (3.1.1). The shape of the region X2 appears

a little strange and we note that it does not include the interval − 3ε
2a
< σ 6 0 on the σ-axis

which was proven to be stable in Section 3.3.1. Barnea did not graph X2 and did not present

a derivation of how he obtained this expression, but he noted that setting P = 1 and letting

µ → 0 yields that the point σ = − 3ε
2a

is a boundary of X2 on the σ-axis. We observe that

setting s∗ = 0 and µ→ 0 yields σ = − ε
a

is the other boundary on the σ-axis. Recall from the

remark in page 54 that Barnea might have overlooked a case when − ε
a
< σ 6 0, precisely the

region in the σ-axis that is now missing in Figure 3–8. It is likely be that when he extended

his results to µ 6= 0 he also omitted this case.
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B

(a) X2
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−3
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σ

(b) X2 −
∆

Σ

Figure 3–8: The set X2 = {(µ, σ) : 0 6 s∗ 6 a, P < 1} are shaded green. This is part of the
stability region of (3.1.1) with ε = a = 1 and c = 0 according to Barnea [6] using the Razumkhin
technique with k = 2.

In this section we derive new points in the stability region of (3.1.1) for arbitrary fixed ε,

a and c with ε and a > 0. The new points for the case ε = 1, a = 1 and c = 0 are shown in
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Figure 3–10. This region is noticeably different from the region in Figure 3–8(b). In particular,

our new region contains the entire interval − 3ε
2a
< σ 6 0 on the σ-axis and the points in X2

except for a small piece in the region µ > 0. In Section 3.4.3 we improve upon the results of

this section and derive a new region shown in Figure 3–13(d) which also contains the entire

interval − 3ε
2a
< σ 6 0 on the σ-axis and all the points in X2 −

∆
Σ.

Using the same Razumikhin techniques as in the previous section we will show that for a

given δ > 0, in a subset of
w

Σ∪
c

Σ if the history function ϕ(t) is small enough then the solution to

(3.1.1) satisfies u(t) ∈ [−δ, δ] for all t > 0. For the linear case (c = 0) this region is independent

of δ. For the state dependent case, these regions change with δ as shown in Figure 3–9. As δ

goes to zero these regions converge to the region for the constant delay case (Figure 3–10). We

begin by showing that given δ, it is possible to find a bound for the history function so that

u(t) ∈ [−δ, δ] for any finite amount of time.

Lemma 3.4.1. Let L > |µ|+|σ|
ε

, T > 0, δ ∈
(

0,
∣

∣

a
c

∣

∣ e−LT
)

and |ϕ (s)| 6 δ for s 6 0. Then the

solution of (3.1.1) satisfies |u (ϕ) (t)| 6 δeLt for t ∈ [0, T ].

Proof. Suppose not. Then there exists t1 ∈ [0, T ] and h > 0 such that |u (t1)| = δeLt1 and

|u (t)| > δeLt for t ∈ (t1, t1 + h). Suppose first that u (t1) = δeLt1 and u (t) > δeLt for

t ∈ (t1, t1 + h). Then since the solutions to (3.1.1) are C1 for t > 0 then

lim
t→t+1

u(t)− u(t1)
t− t1

> lim
t→t+1

(

eLt − eLt1

t− t1

)

δ = LδeLt1 . (3.4.1)

Since t1 − a− cu(t1) 6 t1 then |u (t1 − a− cu(t1))| 6 δeLt1 . Thus,

∣

∣

∣

∣

∣

lim
t→t+1

u(t)− u(t1)
t− t1

∣

∣

∣

∣

∣

=
∣

∣

∣

µ

ε
u(t1) +

σ

ε
u (t1 − a− cu(t1))

∣

∣

∣
6
|µ|+ |σ|

ε
δeLt1 < LδeLt1 .

This contradicts (3.4.1). A similar contradiction can be obtained if we let u (t1) = −δeLt1 and

u (t) < −δeLt for t ∈ (t1, t1 + h). Therefore there is no such t1 ∈ [0, T ] and h > 0 such that

|u (t1)| = δeLt1 and |u (t)| > δeLt for t ∈ (t1, t1 + h).

Let k = 2 and δ ∈
(

0,
∣

∣

a
c

∣

∣

)

. Let τ1 = a + |c| δ (the upper bound of the delay term for

u (t) ∈ [−δ, δ]). Then if |ϕ (t)| 6 δ2 = δe−2Lτ1 for some L > |µ|+|σ|
ε

then from Lemma 3.4.1,

sups∈[−τ1,2τ1] |u (s)| 6 δ. Now take any t > 2τ1. If we can show that u̇ (t)u (t) < 0 if |u (t)| = δ

then this proves that the solution must remain bounded inside [−δ, δ].
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First assume that u (t) = δ, u̇ (t) > 0 for some t > 2τ1 (the case u (t) = −δ, u̇ (t) 6 0 will

be considered later).

d

dt

(

e−
µt
ε u (t)

)

= e−
µt
ε u̇(t)− µ

ε
e−

µt
ε u(t) =

σ

ε
e−

µt
ε u (t− a− cu (t))

using (3.1.1). Now integrating

u (t) = u (t0) e
µ(t−t0)

ε +
σ

ε
e

µt
ε

t
∫

t0

e−
µs
ε u (s− a− cu (s)) ds (3.4.2)

Let τ2 = τ (t, u (t)) = τ (t, δ) = a + cδ. In general, τ1 > τ2 > 0 with τ1 = τ2 for c > 0. Since

t > 2τ1 then t − τ2 > τ1. Suppose the equation has already been integrated from 0 to t − τ2.
Set t0 = α (t, u (t)) = t− τ2 and use θ = s− t

u (t) = u (t− τ2) e
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε u (t+ θ − a− cu (t+ θ)) dθ,

= η (0) e
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η (θ)dθ, (3.4.3)

where η (θ) = u (t+ θ − a− cu (t+ θ)) for θ ∈ [−τ2, 0]. Since t > 2τ1 then t+ θ ∈ [τ1, 2τ1] and

u (t+ θ) ∈ [−δ, δ] for all θ ∈ [−τ1, 0]. Then also,

t+ θ − a− cu (t+ θ) ∈ [2τ1 − τ2 − a− |c| δ, t− a+ |c| δ] ⊆ [0, t] .

So the η function must have properties stemming from the properties of u (s) for s ∈ [0, t].

From the assumption that u̇ (t) > 0, one of these properties is µu (t) + σu (t− τ2) > 0 hence,

u (t− τ2) 6 −µ
σ
δ. (3.4.4)

So we require u (t− τ2) ∈
[

−δ,−µ
σ
δ
]

⊆ [−δ, δ]. From the bounds on the solution we also obtain

a bound on the derivative of u(t)

|u̇ (s)| 6 |µ|+ |σ|
ε

δ, for s ∈ [0, t]. (3.4.5)

From (3.4.4)-(3.4.5), we obtain

η (0) = u (t− τ2) 6 −µ
σ
δ, (3.4.6)
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and η′ (θ) = u̇ (t+ θ − a− cu (t+ θ)) (1− cu̇ (t+ θ)) which implies

∣

∣η′ (θ)
∣

∣ 6
|µ|+ |σ|

ε
δ

(

1 +
|µ|+ |σ|

ε
δ |c|

)

= Dδ, (3.4.7)

where D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε

δ |c|
)

. Following Section 3.3.1, given û = η(0), the η function that

would yield the largest possible u(t) in (3.4.3) is one that stays as negative as possible given

the restrictions on η. Using such an η in (3.4.3) we get

u (t) 6 sup
û∈[−δ,−µ

σ
δ]



ûe
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η (θ) dθ



 .

Definition 3.4.2. Let ε, a > 0, σ 6 µ and σ < −µ. For any δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and û ∈
[

−δ,−µ
σ
δ
]

,

define η(2) ∈ C ((−∞, 0] , [−δ, û]) to be

η(2) (θ) =







−δ, θ ∈
[

−∞,− δ+û
Dδ

]

,

û+Dδθ, θ ∈
[

− δ+û
Dδ

, 0
]

.
(3.4.8)

where D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε

δ |c|
)

. Define I (û, δ, c, 2) to be

I (û, δ, c, 2) = ûe
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η(2) (θ)dθ,

The 2 in the argument of this function is from k = 2 (we consider general k > 2 in the next

section). This function I (û, δ, c, 2) depends on c through τ2 and D. If we use |c| instead of c

in the expression, the only change is τ2 becomes τ1;

I (û, δ, |c|, 2) = ûe
µτ1

ε +
σ

ε

0
∫

−τ1

e−
µθ
ε η(2) (θ)dθ.

Let the function P (δ, c, 2) be defined as

P (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]
I (û, δ, |c|, 2) .

In the succeeding lemmas we fix ε, a > 0 and use the set notation {·} to denote regions

in the (µ, σ) plane. For example, {P (δ, c, 2) < δ} is the set of all (µ, σ) values for which the

relation P (δ, c, 2) < δ holds.
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Lemma 3.4.3. Let ε, a > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

be fixed. Consider the partial

derivative of I (û, δ, c, 2) with respect to τ2,

∂

∂τ2
I (τ2) ≡

∂

∂τ2



ûe
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η(2) (θ) dθ



 =
e

µτ2
ε

ε

[

µû+ ση(2) (−τ2)
]

. (3.4.9)

If ∂
∂τ2
I (τ2) 6 0 then µ > 0 and I (û, δ, c, 2) < δ.

Proof. If either µ 6 0 holds or µ > 0 and η(2) (−τ2) 6 0 hold then it is easy to show that

µû+ ση(2) (−τ2) > 0. So consider the case when µ > 0 and η(2) (−τ2) > 0. Then δ+û
Dδ

> τ2 and

integrating yields

I (û, δ, c, 2) = û

[

e
µ
ε
τ2 +

σ

µ

(

e
µ
ε
τ2 − 1

)

]

+
σ

µ
Dδ

[

ε

µ

(

e
µ
ε
τ2 − 1

)

− τ2e
µ
ε
τ2

]

A very similar derivation of this expression is shown in (3.4.14). Let ∂
∂τ2
I (τ2) 6 0 then

µû+ ση(2) (−τ2) = (µ+ σ) û+ στ2Dδ 6 0. Using this we derive

I (û, δ, c, 2) 6 û

[

e
µ
ε
τ2 +

σ

µ

(

e
µ
ε
τ2 − 1

)

]

+ δ
σεD

µ2

(

e
µ
ε
τ2 − 1

)

− (µ+ σ) û
e

µτ2
ε

µ

= −ûσ
µ

+ δ
σεD

µ2

(

e
µ
ε
τ2 − 1

)

6 δ + δ
σεD

µ2

(

e
µ
ε
τ2 − 1

)

< δ

where the last two inequalities are because û 6 −µ
σ
δ and σ < 0.

Lemma 3.4.4. Let ε, a > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

. Then







P (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]
I (û, δ, |c|, 2) < δ







⊆







sup
û∈[−δ,−µ

σ
δ]
I (û, δ,−|c|, 2) < δ







.

Proof. Let (µ, σ) ∈ {P (δ, c, 2) < δ} and û ∈
[

−δ,−µ
σ
δ
]

⊆ [−δ, δ]. Recall that changing the sign

of c in I (û, δ, c, 2) only changes the value of τ2 = a+ cδ.

(i) If µû+ ση(2) (−(a− |c|δ)) 6 0 then by Lemma 3.4.3, I (û, δ, |c|, 2) < δ.

(ii) If µû+ ση(2) (−(a− |c|δ)) > 0 and µû+ ση(2) (−(a+ |c|δ)) > 0 then µû+ ση(2) (−τ)) > 0

for all τ ∈ (a− |c|δ, a + |c|δ). By Lemma 3.4.3, I (û, δ,−|c|, 2) 6 I (û, δ, |c|, 2) < δ.

(iii) If µû + ση(2) (−(a− |c|δ)) > 0 and µû + ση(2) (−(a+ |c|δ)) < 0 then there exists x ∈
(a− |c|δ, a + |c|δ) such that µû + ση(2) (−x)) = 0 and µû + ση(2) (−τ)) > 0 for τ ∈
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(a− |c|δ, x). Then ∂
∂τ2
I (x) = 0 and hence by Lemma 3.4.3,

I (û, δ,−|c|, 2) < ûe
µx
ε +

σ

ε

0
∫

−x

e−
µθ
ε η(2) (θ) dθ < δ.

Cases (i), (ii) and (iii) all yield I (û, δ,−|c|, 2) < δ. The result easily follows.

Lemma 3.4.5. Let ε, a > 0, σ 6 µ and σ < −µ. If 0 < δ∗ 6 δ∗∗ <
∣

∣

a
c

∣

∣ then

{P (δ∗∗, c, 2) < δ∗∗} ⊆ {P (δ∗, c, 2) < δ∗} .

Proof. Increasing δ increases τ1 = a+ |c|δ and D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε
|c|δ
)

, the only nonlinear-

ities in δ in the expression for I (û, δ, |c|, 2).

∂

∂δ

(I (sδ, δ, c, 2)

δ

)

=
e

µτ1
ε

εδ

[

µsδ + ση(2) (−τ1)
]

|c|+ σ

ε

0
∫

−min{τ1, 1+s
D

}

e−
µθ
ε Dδθdθ. (3.4.10)

Notice that the second term is always positive. Let τ∗1 = a + |c|δ∗, τ∗∗1 = a + |c|δ∗∗ and

(µ, σ) ∈ {P (δ∗∗, c, 2) < δ∗∗}. Let s ∈
[

−1,−µ
σ

]

and use the notation η(δ) (θ) equal to the

expression defined by (3.4.8). Consider the following cases:

(i) If µsδ∗ + ση(δ∗) (−τ∗1 ) 6 0 then by Lemma 3.4.3, I (sδ∗, δ∗, |c|, 2) < δ∗.

(ii) If µsδ∗ + ση(δ∗) (−τ∗1 ) > 0 and µsδ∗∗ + ση(δ∗∗) (−τ∗∗1 ) > 0 then ∂
∂δ

I(sδ,δ,c,2)
δ

> 0 for

δ ∈ [δ∗, δ∗∗]. Thus,

I (sδ∗, δ∗, c, 2)
δ∗

6
I (sδ∗∗, δ∗∗, c, 2)

δ∗∗
6
P (δ∗∗, c, 2)

δ∗∗
< 1,

(iii) If µsδ∗ + ση (−τ∗1 ) > 0 and µsδ∗∗ + ση (−τ∗∗1 ) < 0 then there exists x ∈ (δ∗, δ∗∗] such that

µsx+ση (−(a+ |c|x)) = 0 and µsδ+ση (−(a+ |c|δ)) > 0 for δ ∈ (δ∗, x). By (3.4.10) and

Lemma 3.4.3,
I (sδ∗, δ∗, c, 2)

δ∗
6
I (sx, x, c, 2)

x
< 1.

Cases (i), (ii) and (iii) all yield I (sδ∗, δ∗, |c|, 2) < δ∗. The result easily follows.

Lemma 3.4.6. Let ε, a > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and (µ, σ) ∈ {P (δ, c, 2) < δ}.
Then there exists a δ2 ∈ (0, δ] such that if ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then the solution

of (3.1.1) satisfies u (t) ∈ [−δ, δ] for all t > 0.
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Proof. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and (µ, σ) ∈ {P (δ, c, 2) < δ}. Let L > |µ|+|σ|
ε

, τ1 = a+ |c|δ, δ2 = δe−2Lτ1

and |ϕ (t)| ∈ [−δ2, δ2]. Then from Lemma 3.4.1, sups∈[−τ1,2τ1] |u (s)| 6 δ. Now suppose that

the solution exits the interval [−δ, δ] for the first time at some t > 2τ1 through the upper

bound. Then u (t) = δ and u̇ (t) > 0. We have derived that given these assumptions u(t) 6

sup
û∈[−δ,−µ

σ
δ] I (û, δ, c, 2) 6 P (δ, c, 2). This is true for any sign of c by Lemma 3.4.4. But by

our choice of (µ, σ), P (δ, c, 2) < δ which contradicts our assumption. Thus, the solution cannot

exit the interval [−δ, δ] for the first time through the upper bound.

Now we need to show that in the same region we cannot have the solution exit the interval

[−δ, δ] for the first time through the lower bound either. Let v (t) = −u (t) in (3.1.1). Then

εv̇ (t) = µv (t) + σv (t− a+ cv (t)) , t > 0,

v (t) = −ϕ (t) , t 6 0.
(3.4.11)

The problem is now to show that a solution of (3.4.11) cannot leave the interval [−δ, δ] for the

first time at some t > 2τ1 through the upper bound. But this is the same DDE as (3.1.1) except

with c replaced by −c. By our discussion above and Lemma 3.4.4, if (µ, σ) ∈ {P (δ, c, 2) < δ}
and ϕ is small enough then the solution to (3.4.11) cannot escape [−δ, δ] through the upper

bound. Hence the solution to (3.1.1) cannot escape [−δ, δ] through the lower bound.

Theorem 3.4.7. Let ε, a > 0 and (µ, σ) ∈ {P (1, 0, 2) < 1}. Then for every δ ∈
(

0,
∣

∣

a
c

∣

∣

)

there

exists a δ2 > 0 such that if ϕ (t) ∈ [−δ2, δ2] for all t ∈ [−a− |c|δ, 0] then the solution to (3.1.1)

satisfies u (t) ∈ [−δ, δ] for all t > 0. This means that for (µ, σ) ∈ {P (1, 0, 2) < 1}, the zero

solution to (3.1.1) is Lyapunov stable.

Proof. For this proof define

J =
⋃

δ∈(0,|ac |)
{P (δ, c, 2) < δ} .

Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, L > |µ|+|σ|
ε

, τ1 = a+ |c|δ and (µ, σ) ∈ J . Then for some maximal δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

,

(µ, σ) ∈ {P (δ1, c, 2) < δ1}. If δ1 < δ set δ2 = δ1e
−2Lτ1 . By Lemma 3.4.6, if ϕ (t) ∈ [−δ2, δ2]

for t ∈ [−τ1, 0] then u (t) ∈ [−δ1, δ1] ⊆ [−δ, δ] for all t > 0. If δ < δ1 set δ2 = δe−2Lτ1 . By

Lemma 3.4.5, (µ, σ) ∈ {P (δ1, c, 2) < δ1} ⊆ {P (δ, c, 2) < δ}. By Lemma 3.4.6, if ϕ (t) ∈ [−δ2, δ2]
for t ∈ [−τ1, 0] then u (t) ∈ [−δ, δ] for all t > 0. This proves that for (µ, σ) ∈ J , the zero solution

to (3.1.1) is Lyapunov stable.
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Now we show that J = {P (1, 0, 2) < 1}. For all c, when δ → 0 then τ1 → a, D → |µ|+|σ|
ε

(its

value for c = 0) and so I (û, δ, |c|, 2) → I (û, δ, 0, 2). Thus, P (δ, c, 2) → P (δ, 0, 2). When c = 0

the nonlinear terms in δ (which appear in theD term) disappear and P (δ,0,2)
δ

= P (1, 0, 2). Thus,

P (δ,c,2)
δ
→ P (1, 0, 2) as δ → 0. Because of this and Lemma 3.4.5, J = {P (1, 0, 2) < 1}.

The sets {P (δ, c, 2) < δ} for different values of δ are shown in Figure 3–9. As δ → 0, these

sets can be seen to be converging to the set {P (1, 0, 2) < 1} shown in Figure 3–10.
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(a) The region {P (δ, 1, 2) < δ} for δ = 0.1
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(b) The region {P (δ, 1, 2) < δ} for δ = 0.01

Figure 3–9: The sets {P (δ, 1, 2) < δ} for different values of δ with ε = a = c = 1. As δ → 0
the region converges to {P (1, 0, 2) < 1} which is shown in Figure 3–10.
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Figure 3–10: The set {P (1, 0, 2) < 1} is shaded green and plotted with ε = a = 1. The function
P is defined in Definition 3.4.2. This region is globally stable for the constant delay case and
locally stable for the state dependent case.
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Simplifying the integration term

Since this proof will be extended later on to prove the stability of numerical methods, it is

necessary to perform the integration I (û, δ, |c|, 2) and find the û values for which the integral

is a maximum. As pointed out in the remark in page 54, we first need to divide the region into

cases according to which of − δ+û
Dδ

and −τ1 is larger.

CASE:− δ+û
Dδ

> −τ1
In this case the integration has to be broken down into two parts so we call the integration

for this case I2. When this case occurs û has another upper bound since

δ + û

Dδ
< τ1 ⇒ û < (τ1D − 1) δ.

Then û ∈
[

−δ,min
{

(τ1D − 1) δ,−µ
σ
δ
}]

. First let µ 6= 0.

I2 (û, δ) = ûe
µ
ε
τ1 +

σ

ε

− δ+û
Dδ
∫

−τ1

e−
µθ
ε (−δ) dθ +

σ

ε

0
∫

− δ+û
Dδ

e−
µθ
ε (û+Dδθ) dθ

= ûe
µ
ε
τ1 +

σ

µ
δ
(

e
µ
ε

δ+û
Dδ − e

µ
ε
τ1
)

− σ

µ
û
(

1− e
µ
ε

δ+û
Dδ

)

+
σ

µ
Dδ

(

ε

µ

(

e
µ
ε

δ+û
Dδ − 1

)

− δ + û

Dδ
e

µ
ε

δ+û
Dδ

)

= û

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
δ

[

εD

µ

(

e
µ
ε

δ+û
Dδ − 1

)

− eµ
ε
τ1

]

(3.4.12)

For the case µ = 0 we can go back to the expression (3.3.13) in the previous section with a

replaced by τ1 and σ replaced by σ
ε
.

I2 (û, δ) = û− στ1
ε
δ − 1

2δ
(δ + û)2 = −στ1

ε
δ − δ

2
− û2

2δ
(3.4.13)

It is easy to show that (3.4.12) approaches (3.4.13) as µ → 0 so we will always assume that

µ 6= 0, use (3.4.12) and just take the limit when we need to consider µ = 0.

CASE: − δ+û
Dδ

6 −τ1
In this case the η̃ function does not have the flat part so the integration is only one-part.

For this case to occur û must be in the interval
[

(τ1D − 1) δ,−µ
σ
δ
]

. This is only possible in the

region where τ1D − 1 6 −µ
σ
. Again, first let µ 6= 0.
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I1 (û, δ) = ûe
µ
ε
τ1 +

σ

ε

0
∫

−τ1

e−
µθ
ε (û+Dδθ) dθ

= ûe
µ
ε
τ1 − σ

µ
û
(

1− e
µ
ε
τ1
)

+
σ

µ
Dδ

[

ε

µ

(

e
µ
ε
τ1 − 1

)

− τ1e
µ
ε
τ1

]

= û

[

e
µ
ε
τ1 +

σ

µ

(

e
µ
ε
τ1 − 1

)

]

+
σ

µ
Dδ

[

ε

µ

(

e
µ
ε
τ1 − 1

)

− τ1e
µ
ε
τ1

]

(3.4.14)

When µ = 0 we can go back to the expression in (3.3.15) in the previous section with a replaced

by τ1 and σ replaced by σ
ε
.

I1 (û, δ) = û+
στ1
ε
û+

σ2τ2
1

2ε2
δ (3.4.15)

The expression in (3.4.14) approaches (3.4.15) as µ → 0. Like in the previous case, we will

always use (3.4.14) and just take limits when we need µ = 0.

In Theorem 3.4.10 we prove that P (δ, c) = I
(

−µ
σ
δ, δ, c, 2

)

. The proof of this theorem

requires the items proven in Lemmas 3.4.9 and 3.4.8.

Lemma 3.4.8. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and {τ1D − 1 6 −µ
σ
}. If

µ > 0 then σ > − ε
τ1

. If µ < 0 then µ ∈
[

(

−3 + 2
√

2
)

ε
τ1
, 0
]

and

σ > − ε

τ1

[

1

2

(

1 +
µτ1
ε

)

+
1

2

√

1 + 6
µτ1
ε

+
(µτ1
ε

)2
]

> − ε

τ1
.

Proof. Let τ1D − 1 6 −µ
σ
. Then

τ1
sign (µ)µ− σ

ε
− 1 = τ1

|µ|+ |σ|
ε

− 1 6 τ1D − 1 6 −µ
σ
,

⇒ τ1
ε
σ2 +

(

1 - sign (µ)
µτ1
ε

)

σ − µ 6 0. (3.4.16)

The boundary of the region where this inequality holds is

σ = − ε

τ1

[

1

2

(

1 - sign (µ)
µτ1
ε

)

± 1

2

√

(

1 - sign (µ)
µτ1
ε

)2
+ 4

µτ1
ε

]

. (3.4.17)

If µ > 0 then this simplifies to σ = − ε
τ1

. Since µ = σ = 0 satisfies (3.4.16) then this inequality

holds for σ > − ε
τ1

.
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If µ < 0 then (3.4.17) simplifies to

σ = − ε

τ1

[

1

2

(

1 +
µτ1
ε

)

± 1

2

√

1 + 6
µτ1
ε

+
(µτ1
ε

)2
]

. (3.4.18)

Requiring 1 + 6µτ1
ε

+
(

µτ1
ε

)2
> 0 yields µτ1

ε
∈
[

−3 + 2
√

2, 0
]

. The lower bound on σ can be

found by taking the lower boundary in (3.4.18) which attains its minimum at µ = 0. This

yields σ > − ε
τ1

[

1
2

(

1 + µτ1
ε

)

+ 1
2

√

1 + 6µτ1
ε

+
(

µτ1
ε

)2
]

> − ε
τ1

.

Lemma 3.4.9. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

. Define

û∗ =

[

ε

µ
D ln

(

1− µ

σ
e

µ
ε
τ1
)

− 1

]

δ.

The following statements are true:

(A) If τ1D − 1 > −µ
σ

then the maximum of I2 (û, δ) over û ∈
[

−δ,−µ
σ
δ
]

occurs at either −µ
σ
δ

or at û∗ if û∗ < −µ
σ
δ.

(B) If τ1D − 1 > −µ
σ

and u∗ < −µ
σ
δ then P (δ, c, 2) > δ.

(C) If τ1D − 1 6 −µ
σ

then supû∈[−δ,(τ1D−1)δ] I2 (û, δ) = I2 ((τ1D − 1) δ, δ)

(D) If τ1D − 1 6 −µ
σ

then sup
û∈[(τ1D−1)δ,−µ

σ
δ] I1 (û, δ) = I1

(

−µ
σ
δ, δ
)

(E) If τ1D − 1 6 −µ
σ

then I2 ((τ1D − 1) δ, δ) 6 I1
(

−µ
σ
δ, δ
)

.

Proof of (A). To find the maximum of I2 with respect to û, consider the derivative

∂I2 (û, δ)

∂û
= e

µ
ε
τ1 +

σ

µ

(

e
µ
ε

δ+û
Dδ − 1

)

. (3.4.19)

At û = −δ this is positive. To find û∗ where I2 (û∗, δ) is maximum, set the derivative equal to

zero in (3.4.19),

û∗ =

[

ε

µ
D ln

(

1− µ

σ
e

µ
ε
τ1
)

− 1

]

δ. (3.4.20)

Since 1− µ
σ
e

µτ1
ε ∈ [0, 1] if µ < 0 and 1− µ

σ
e

µτ1
ε > 1 if µ > 0 then û∗ > −δ in both cases.

Proof of (B). We first show that if τ1D − 1 > −µ
σ

and û∗ < −µ
σ
δ then we cannot have µ > 0.

Let û∗ < −µ
σ
δ and µ > 0. Then

∂I2(−µ
σ

δ,δ)
∂û

< 0. Consider the term εD
µ

,

εD

µ
=
|µ|+ |σ|

µ

(

1 +
|µ|+ |σ|

ε
|c| δ

)

>
|µ|+ |σ|

µ
=

(

1− σ

µ

)

. (3.4.21)
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Now consider the exponent of the second term in (3.4.19) with û = −µ
σ
δ,

µ

ε

1− µ
σ

D
=
(

1− µ

σ

) µ

εD
6

1− µ
σ

1− σ
µ

= −µ
σ
.

Thus,

e
µτ1

ε +
σ

µ

(

e−
µ
σ − 1

)

6
∂I2

(

−µ
σ
δ, δ
)

∂û
< 0.

Isolating τ1 in this expression yields τ1 <
ε
µ

ln
[

σ
µ

(

1− e−µ
σ

)]

. Let x = µ
σ
. Then x ∈ (−1, 0)

and 1−e−x

x
> 1. Also,

(

1− 1
x

)

ln
[

1−e−x

x

]

− 1 6 −x. Using these inequalities and (3.4.21) yields

τ1D − 1 6
εD

µ
ln

[

σ

µ

(

1− e−µ
σ

)

]

− 1 6

(

1− σ

µ

)

ln

[

σ

µ

(

1− e−µ
σ

)

]

− 1 6 −µ
σ
.

It follows from this argument that if we require both τ1D − 1 > −µ
σ

and û∗ < −µ
σ
δ then we

cannot have µ > 0.

Now let µ < 0 and û∗ < −µ
σ
δ. Then by setting ∂I2(û∗,δ)

∂û
= 0 in (3.4.19), e

µ
ε

δ+û∗

Dδ − 1 =

−µ
σ
e

µ
ε
τ1 . Also, e

µ
ε
τ1 − σ

µ
< 0 because µ < 0 and σ 6 µ < 0. Thus,

I2 (û∗, δ) = û∗

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
δ

[

εD

µ

(

e
µ
ε

δ+û∗

Dδ − 1
)

− eµ
ε
τ1

]

,

> −µ
σ
δ

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
δ

[

−εD
σ
e

µ
ε
τ1 − eµ

ε
τ1

]

= δ −
(

εD

µ
+
µ

σ
+
σ

µ

)

δe
µ
ε
τ1 .

To complete the proof we need to show that
(

εD
µ

+ µ
σ

+ σ
µ

)

δe
µ
ε
τ1 < 0. Since D >

|µ|+|σ|
ε

>

|µσ ||µ|+|σ|
ε

then

D >

∣

∣

µ
σ

∣

∣ |µ|+ |σ|
ε

= −1

ε

(

µ2

σ
+ σ

)

⇒ εD

µ
+
µ

σ
+
σ

µ
6 0.

This proves I2 (û∗, δ) > δ.

Proof of (C). Let ∂I2((τ1D−1)δ,δ)
∂û

< 0. Then,

e
µτ1

ε +
σ

µ

(

e
µτ1

ε − 1
)

< 0. (3.4.22)

This can be rewritten as

σ <
µe

µτ1
ε

1− e
µτ1

ε

= − ε

τ1

(

−µτ1
ε
e

µτ1
ε

1− e
µτ1

ε

)

. (3.4.23)
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We show that the expression in the right-hand-side is continuous and decreases as µ increases.

Let x = µτ1
ε

, then

lim
µ→0
− ε

τ1

(

−µτ1
ε
e

µτ1
ε

1− e
µτ1

ε

)

= lim
x→0
− ε

τ1

( −xex
1− ex

)

= − ε

τ1
.

d

dµ

[

− ε

τ1

(

−µτ1
ε
e

µτ1
ε

1− e
µτ1

ε

)]

=
d

dx

xex

1− ex =
ex (1 + x− ex)

(1− ex)2
6 0.

The last inequality is because 1 + x 6 ex for all x ∈ R. So in the region µ > 0, a necessary

condition for (3.4.22) to hold is σ < − ε
τ1

. From Lemma 3.4.8, if τ1D− 1 6 −µ
σ

and µ > 0 then

σ > − ε
τ1

. Thus ∂I2((τ1D−1)δ,δ)
∂û

> 0 if τ1D − 1 6 −µ
σ

and µ > 0.

Now let τ1D − 1 6 −µ
σ

and µ < 0. From Lemma 3.4.8, µτ1
ε
∈
[

−3 + 2
√

2, 0
]

and

σ > − ε
τ1

[

1
2

(

1 + µτ1
ε

)

− 1
2

√

1 + 6µτ1
ε

+
(

µτ1
ε

)2
]

. Since −xex

1−ex > 1
2 (1 + x)+ 1

2

√
1 + 6x+ x2 for x ∈

[

−3 + 2
√

2, 0
]

, then σ > − ε
τ1

(

−µτ1
ε

e
µτ1

ε

1−e
µτ1

ε

)

. This contradicts with (3.4.23). Thus ∂I2((τ1D−1)δ,δ)
∂û

>

0 if τ1D − 1 6 −µ
σ

and µ < 0. Thus, we have proven that

τ1D − 1 6 −µ
σ
⇒ ∂I2 ((τ1D − 1) δ, δ)

∂û
= e

µτ1
ε +

σ

µ

(

e
µτ1

ε − 1
)

> 0. (3.4.24)

This is illustrated in Figure 3–11. To complete the proof of (C), observe from (3.4.19) that

the derivative ∂I2(û,δ)
∂û

decreases as û increases. Then by (3.4.24), supû∈[−δ,(τ1D−1)δ] I2 (û, δ) =

I2 ((τ1D − 1) δ, δ).
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Figure 3–11: {τ1D − 1 6 −µ
σ
} is shown in brown and {e

µτ1
ε + σ

µ

(

e
µτ1

ε − 1
)

< 0} is shown in

blue (ε = a = c = 1 and δ = 0.1). The two regions do not intersect.
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Proof of (D). Let τ1D − 1 6 −µ
σ
. For all û ∈

[

(τ1D − 1) δ,−µ
σ
δ
]

,

∂I1 (û, δ)

∂û
= e

µτ1
ε +

σ

µ

(

e
µτ1

ε − 1
)

=
∂I2 ((τ1D − 1) δ, δ)

∂û
. (3.4.25)

From (3.4.24), ∂
∂û
I1 (û, δ) > 0 for all û ∈ [−δ, (τ1D − 1) δ]. Thus, sup

û∈[(τ1D−1)δ,−µ
σ

δ] I1 (û, δ) =

I1
(

−µ
σ
δ, δ
)

.

Proof of (E). Let τ1D − 1 6 −µ
σ
. The expression for I2 ((τ1D − 1) δ, δ) simplifies to

I2 ((τ1D − 1) δ, δ) = (τ1D − 1) δ

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
δ

[

εD

µ

(

e
µ
ε
τ1 − 1

)

− e
µ
ε
τ1

]

.

Compare I1
(

−µ
σ
δ, δ
)

and I2 ((τ1D − 1) δ, δ) when τ1D − 1 < −µ
σ
,

I1
(

−µ
σ
δ, δ
)

−I2 ((τ1D − 1) δ, δ)

=
(

−µ
σ
− (τ1D − 1)

)

δ

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
e

µ
ε
τ1
(

−µ
σ
δ
)

+
σ

µ
δ (−τ1D + 1) ,

=
(

−µ
σ
− (τ1D − 1)

)

δ

[

e
µ
ε
τ1 +

σ

µ

(

e
µ
ε
τ1 − 1

)

]

.

This is non-negative because of (3.4.24). Thus, I1
(

−µ
σ
δ, δ
)

> I2 ((τ1D − 1) δ, δ).

Theorem 3.4.10. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

. If P (δ, c, 2) < δ then

P (δ, c, 2) =







I1
(

−µ
σ
δ, δ
)

, if τ1D − 1 6 −µ
σ
,

I2
(

−µ
σ
δ, δ
)

, if τ1D − 1 > −µ
σ
.

Proof. Note that this expression does not hold outside of {P (δ, c, 2) < δ}. In order to prove

this theorem, we need the items (A)-(E) in Lemma 3.4.9.

Let τ1D− 1 > −µ
σ
. Then we only have the two-part integration so I (û, δ, c, 2) = I2 (û, δ).

From (A) and (B), P (δ, c, 2) = I2
(

−µ
σ
, δ
)

if P (δ, c, 2) < δ.

Let τ1D−1 6 −µ
σ
. From (C) and (D), I (û, δ, c, 2) = max{I2 ((τ1D − 1) δ, δ) ,I1

(

−µ
σ
δ, δ
)

}.
From (E), P (δ, c, 2) = I1

(

−µ
σ
δ, δ
)

.

3.4.2 Results using arbitrary k > 2

In this section the results of Section 3.4.1 are generalised to arbitrary k > 2. The results of

this section are summarized in Lemma 3.4.12 and Theorem 3.4.13 which parallel Lemma 3.4.6

and Theorem 3.4.7 in Section 3.4.1. Since we are still looking for new points in the stability

region in
w

Σ∪
c

Σ, we again set σ 6 µ and σ < −µ.
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Let k > 2, L > |µ|+|σ|
ε

and δ ∈
(

0,
∣

∣

a
c

∣

∣

)

. Let τ1 = a + |c|δ and τ2 = a + cδ. If |ϕ (t)| 6
δ2 = δe−Lkτ1 then by Lemma 3.4.1, the solution to (3.1.1) satisfies sups∈[−τ1,kτ1] |u (s)| 6 δ.

Now take any t > kτ1. As in Section 3.4.1, set D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε
|c|δ
)

and use (3.4.2) in

page 58,

u (t) = η (0) e
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η (θ) dθ. (3.4.26)

We again have θ = s − t and η (θ) = u (t+ θ − a− cu (t+ θ)) for θ ∈ [−τ2, 0]. Since t >

kτ1 then t + θ > (k − 1) τ1 and u (t+ θ) ∈ [−δ, δ] for all θ. Also, t + θ − a − cu (t+ θ) ∈
[kτ1 − τ2 − a− |c| δ, t− a+ |c| δ] ⊆ [(k − 2) τ1, t]. So we can require the η function to have the

same properties as u (s) when s ∈ [(k − 2) τ1, t]. For the case k = 2, our only restrictions on η (θ)

were η (0) = û ∈
[

−δ,−µ
σ
δ
]

and |η′ (θ)| 6 Dδ. To extend our results to k = 3 we add a bound

on the second derivative. For t ∈ [τ1, 3τ1], t−a− cu (t) ∈ [τ1, 2τ1] so |u̇(t)| and |u̇(t−a− cu(t))|
are both bounded by |µ|+|σ|

ε
δ using the bounds on the solution. For t ∈ [(k − 2) τ1, t],

|ü(t)| = 1

ε
|µu̇(t) + σu̇ (t− a− cu(t)) (1− cu̇ (t)) |,

6
|µ|
ε

|µ|+ |σ|
ε

δ +
|σ|
ε

|µ|+ |σ|
ε

δ

(

1 +
|µ|+ |σ|

ε
|c| δ

)

6
|µ|+ |σ|

ε
Dδ.

Then the bound on the second derivative of η is

∣

∣η′′ (θ)
∣

∣ =

∣

∣

∣

∣

d2

dθ2
u (t+ θ − a− cu (t+ θ))

∣

∣

∣

∣

= |ü (t+ θ − a− cu (t+ θ)) (1− cu̇ (t+ θ)) + u̇ (t+ θ − a− cu (t+ θ)) (−cü (t+ θ))|

6

∣

∣

∣

∣

|µ|+ |σ|
ε

Dδ

(

1 +
|µ|+ |σ|

ε
|c| δ

)

+
|µ|+ |σ|

ε
δ |c| |µ|+ |σ|

ε
Dδ

∣

∣

∣

∣

= D2δ +

( |µ|+ |σ|
ε

)2

|c|Dδ2

Define D(0) = 1, D(1) = D and D(2) = D2 +
(

|µ|+|σ|
ε

)2
|c|Dδ so that for k = 3 we have the

following restrictions:

|η (θ)| 6 D(0)δ,
∣

∣η′ (θ)
∣

∣ 6 D(1)δ,
∣

∣η′′ (θ)
∣

∣ 6 D(2)δ.

For higher values of k > 2 we similarly derive bounds on
∣

∣η(i) (θ)
∣

∣ 6 D(i)δ for i = 1, ..., k − 1.

When c = 0 these simplify to D(i) =
(

|µ|+|σ|
ε

)i

. If we let η(k) (θ) be the function that satisfies
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these restrictions and stays as negative as possible then from (3.4.26) we must have

u (t) 6 sup
û∈[−δ,−µ

σ
δ]



ûe
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η(k) (θ) dθ



 .

Definition 3.4.11. Let k ∈ Z, k > 2, σ 6 µ and σ < −µ. For any δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and

û ∈
[

−δ,−µ
σ
δ
]

define η(k) (θ) ∈ C
(

[−τ1, 0] ,
[

−δ,−µ
σ
δ
])

to be the function that stays as negative

as possible while satisfying the following conditions:

η(k) (0) = û,
∣

∣

∣
η

(i)
(k) (θ)

∣

∣

∣
6 D(i)δ for i = 0, ..., k − 1. (3.4.27)

Also, define I (û, δ, |c|, k) and P (δ, c, k)

I (û, δ, |c|, k) = ûe
µτ1

ε +
σ

ε

0
∫

−τ1

e−
µθ
ε η(k) (θ)dθ,

P (δ, c, k) = sup
û∈[−δ,−µ

σ
δ]
I (û, δ, |c|, k) .

Sample η(k)(θ) plots for k = 2 and 3 are shown in Figure 3.4.2. The η(2) function is given

in Definition 3.4.2. For k = 3 it can be found by first defining

η̄(3) (θ) =



















−δ, θ 6 0,

−δ + δ
2D(2)θ

2, 0 6 θ 6
D(1)

D(2)
,

−δ − δD2
(1)

2D(2)
+ δD(1)θ,

D(1)

D(2)
6 θ.

(3.4.28)

This function needs to be shifted to the left in order to get the required value of û at θ = 0.

The shift depends on the value of û.

θshift =















√

2(û+δ)
D(2)δ

, −δ 6 û 6 −δ +
δD2

(1)

2D(2)
,

û+δ+
δD2

(1)
2D(2)

D(1)δ
, −δ +

δD2
(1)

2D(2)
< û.

(3.4.29)

Now we define the η function for k = 3 as

η(3) (θ) = η̄(3) (θ + θshift) .
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Using this we numerically evaluate {P (1, 0, 3) < 1} and plot it in Figure 3–13(c). Observe that

{P (1, 0, 2) < 1} ⊆ {P (1, 0, 3) < 1} ⊆ Σ⋆. Section 3.5 provides measurements on the size the

regions that we have derived.

Lemma 3.4.12. Let ε, a > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, k ∈ Z, k > 2 and

(µ, σ) ∈ {P (δ, c, k) < δ}. Then there exists a δ2 ∈ (0, δ) such that if |ϕ (t)| ∈ [−δ2, δ2] for

t ∈ [−a− |c|δ, 0] then the solution to (3.1.1) satisfies u (t) ∈ [−δ, δ] for all t > 0.

Proof. Similar to the proof of Lemma 3.4.6.

Theorem 3.4.13. Let ε, a > 0, σ 6 µ and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, k ∈ Z, k > 2 and

(µ, σ) ∈ {P (1, 0, k) < δ}. Then for every δ ∈
(

0,
∣

∣

a
c

∣

∣

)

there exists δ2 ∈ (0, δ) such that if

|ϕ (t)| ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then u (t) ∈ [−δ, δ] for all t > 0.

Proof. Similar to the proof of Theorem 3.4.7.
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Figure 3–12: Sample η̃(θ) functions for ε = a = 1, c = 0 and δ = 1.

Stability in the σ-axis

The segment of {P (1, 0, 3) < 1} on the σ-axis is
(

− 37ε
24a
, 0
)

, an improvement over the

segment
(

− 3ε
2a
, 0
)

found using k = 2 in Section 3.3.1. We prove this now by evaluating P (1, 0, 3)

for the case ε = 1 and µ = c = 0. In this case D = −σ and I (û, δ, 0, 3) simplifies to

I (û, δ, 0, 3) = û+ σ

θshift
∫

−a+θshift

η0 (θ)dθ,
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where η0 and θshift are as defined in (3.4.28) and (3.4.29). Since the integration depends on the

positions of −a+ θshift and θshift, there are six cases to consider.

1. −a+ θshift 6 0 and θshift 6 0 (only possible when û = −δ)

I (û, δ, 0, 3) = û+ σ

θshift
∫

−a+θshift

−δdθ = −(1 + σa)δ

Then I (û, δ, 0, 3) < δ if σ > − 2
a
.

2. −a + θshift 6 0 and 0 < θshift 6
1
|σ| (only possible if û 6 − δ

2). In this case, θshift =

1
|σ|

√

2(û+δ)
δ

. So we are considering

√

2(û+δ)
δ

6 |σ|a. The integration yields

I (û, δ, 0, 3) = û+ σ

0
∫

−a+θshift

−δdθ + σ

θshift
∫

0

(

−δ +
δ

2
|σ|2 θ2

)

dθ,

= û− σδa +
δ

6
σ |σ|2 θ3

shift = û− σδa− δ

6

(

2 (û+ δ)

δ

)

3
2
.

In the range û ∈
[

−δ,− δ
2

]

the right-hand-side is always increasing so the maximum is

obtained at û = − δ
2 . Then I (û, δ, 0, 3) 6 − δ

2 −σδa− δ
6 = −σδa− 2δ

3 and this is less than

δ if σ > − 5
3a

.

3. 0 6 −a + θshift 6
1
|σ| and 0 < θshift 6

1
|σ| (only possible if û 6 − δ

2). In this case we

have θshift = 1
|σ|

√

2(û+δ)
δ

and −a+ 1
|σ|

√

2(û+δ)
δ

> 0. This last inequality implies |σ|a 6
√

2(û+δ)
δ

6 1 which implies − 1
a

6 σ. But we already know from [6] that if σ ∈
(

− 3
2a
, 0
)

then P (δ, 0, 2) < δ. Thus in this case P (δ, 0, 3) 6 P (δ, 0, 2) < δ.

4. −a+ θshift 6 0 and 1
|σ| < θshift. This case requires û > − δ

2 and θshift = 1
|σ|

û+
3
2 δ

δ
.

I (û, δ, 0, 3) = û+ σ

0
∫

−a+θshift

−δdθ + σ

1
|σ|
∫

0

(

−δ +
δ

2
|σ|2 θ2

)

dθ + σ

θshift
∫

1
|σ|

(

−3δ

2
+ δ |σ| θ

)

dθ

= û− σaδ − σθshift
δ

2
− δ

6
+ σ |σ| θ2

shift

δ

2
= −σaδ − û2

2δ
− 13δ

24

6 −σaδ − 13δ

24

The last line is because û ∈ [−δ, 0]. Thus, I (û, δ, 0, 3) < δ if σ > − 37
24a

. It turns out that

this is the case that determines the stability interval.
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5. 0 6 −a+θshift 6
1
|σ| and 1

|σ| < θshift. Here once again we have û > − δ
2 and θshift = 1

|σ|
û+

3
2 δ

δ
.

Also, for this case to occur we must have 0 6 −a+ θshift which means

a 6 θshift =
1

|σ|
û+ 3

2δ

δ
⇒ σ > − 3

2a
.

But we already know from [6] that if σ ∈
(

− 3
2a
, 0
)

then P (δ, 0, 2) < δ. Thus in this case

P (δ, 0, 3) < P (δ, 0, 2) < δ.

6. 1
|σ| 6 −a+ θshift and 1

|σ| < θshift. For this case, û > − δ
2 and |σ| aδ < û+ δ

2 . So we require

û >
(

|σ| a− 1
2

)

δ.

I (û, δ, 0, 3) = û+ σ

θshift
∫

−a+θshift

(

−3δ

2
+ δ |σ| θ

)

dθ = û− σa3δ

2
+
σ |σ|

2
a (−a+ 2θshift) δ

= (1 + σa) û− σ |σ|
2

a2δ

We have to consider two more cases:

• If σ > − 1
a

then the maximum occurs at û = 0 and

I (û, δ, 0, 3) 6 −σ |σ|
2

a2δ 6
σ2a2δ

2
6

1

2
δ.

So this case always satisfies the criterion for being part of the stability region.

• If σ < − 1
a

then the maximum occurs at û =
(

|σ| a− 1
2

)

δ. Thus,

I (û, δ, 0, 3) = (1 + σa)

(

|σ| a− 1

2

)

δ − σ |σ|
2

a2δ.

For stability, we require (1 + σa)
(

|σ| a− 1
2

)

δ − σ|σ|
2 a2δ < δ which leads to σ2a2 +

3σa+ 3 > 0. But this is true for any σa so this case does not provide restrictions.

The strictest restriction for {P (δ, 0, 3) < δ} comes from Case 4 and that is σ > − 37
24a

. Thus we

have shown Lyapunov stability of the zero solution to (3.1.1) if µ = 0, ε = 1 and σ ∈
(

− 37
24a
, 0
)

.

Easily we can derive zero stability for σ = 0 (u̇ = 0) so we have zero stability for σ ∈
(

− 37
24a
, 0
]

.

For arbitrary ε > 0, this extends to Lyapunov stability for µ = 0 and σ ∈
(

− 37ε
24a
, 0
]

.

3.4.3 Results using k = 2 and η∗(2) (θ)

In this section we change the requirements on η again. Going back to the k = 2 case,

instead of |η′ (θ)| 6 Dδ we use η′ (θ) 6
µ̄
ε
η (θ) + |σ̄|

ε
δ where µ̄ = µ

(

1 + |µ|+|σ|
ε
|c|δ
)

and σ̄ =
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σ
(

1 + |µ|+|σ|
ε
|c|δ
)

. This bound comes from the DDE (3.1.1) and |u (t)| for t ∈ [−τ1, 2τ1]. Given

û ∈
[

−δ,−µ
σ
δ
]

, we want to find η which satisfies the bound on the derivative and stays as

negative as possible. We find this by first defining η̄∗(2),

η̄∗(2) (θ) =







−δ, θ 6 0,

−δe µ̄
ε
θ + |σ|δ

µ

(

e
µ̄
ε
θ − 1

)

, θ > 0,
(3.4.30)

and then finding θshift such that η̄∗(2) (θshift) = û. Solving this equation yields

θshift =
ε

µ̄
ln





|σ|
µ

+ û
δ

|σ|
µ
− 1



 . (3.4.31)

The expression inside the logarithm is positive since σ 6 µ, σ < −µ and û ∈
[

−δ,−µ
σ
δ
]

.

Definition 3.4.14. Let ε, a > 0, σ 6 µ and σ < −µ. For any δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and û ∈
[

−δ,−µ
σ
δ
]

,

define η̃ ∈ C ((−∞, 0] , [−δ, û]) to be η∗(2) (θ) = η̄∗(2) (θ + θshift) where η̄∗(2) and θshift are given by

(3.4.30) and (3.4.31). Also define

I∗ (û, δ, |c|, 2) = ûe
µτ2

ε +
σ

ε

0
∫

−τ2

e−
µθ
ε η∗(2) (θ) dθ,

P ∗ (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]
I (û, δ, |c|, 2) .

Theorem 3.4.15. Let ε, a > 0 and (µ, σ) ∈ {P ∗ (1, 0, 2) < 1}. Then for every δ ∈
(

0,
∣

∣

a
c

∣

∣

)

there exists a δ2 > 0 such that if |ϕ (t)| ∈ [−δ2, δ2] for all t ∈ [−a− cδ, 0] then the solution to

(3.1.1) satisfies u (t) ∈ [−δ, δ] for all t > 0. This means that for (µ, σ) ∈ {P ∗ (1, 0, 2) < 1}, the

zero solution to (3.1.1) is Lyapunov stable.

Proof. Similar to the proof of Theorem 3.4.7.

The new points in the stability region found by using η∗(2) are shown in Figure 3–13(d). Note

that the integration and maximum were evaluated numerically. Notice how this improves the

stability region in
c

Σ. We observe that this new region contains the region found by Barnea in [6]

which is shown in Figure 3–8(b). But this region also contains the entire interval − 3ε
2a
< σ 6 0

on the σ-axis.
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3.5 Measurements of the regions

In this section we present measurement of the stability regions derived in Sections 3.2,

3.4.1, 3.4.2 and 3.4.3. For these tests we set ε = a = 1 and c = 0.

In Table 3–1, the difference between the numerical measurement of the region and the

results found in Sections 3.4.1, 3.4.2 and 3.4.3 for µ = 0 are very small. The tables show that

by improving the η (θ) function in going from {P (1, 0, 2) < 1} to {P (1, 0, 3) < 1}, we derive

larger stability regions. However, the improvement is not very significant in
w

Σ with µ = −5

and the difference gets smaller as µ gets more negative.

Table 3–1: Numerical measurements of the boundary of the derived regions of stability: Values
of σ for fixed µ, ε = a = 1.

σ at µ = −5 σ at µ = −2 σ at µ = 0

{r (0) ∈ (0, 1)} -5.067385507762116 -2.557804062076531 -1

{P (1, 0, 2) < 1} -5.067608565809856 -2.587564203387213 -1.499999765595120 = −3
2

{P (1, 0, 3) < 1} -5.067926805638362 -2.612788724539893 -1.541665406581630 = −37
24

{P ∗ (1, 0, 2) < 1} -5.067608565809855 -2.589826047227501 -1.499999765595120 = −3
2

Σ⋆ -5.660558641232643 -3.039605122412370 -1.570796326794897 = −π
2

Table 3–2: Numerical measurements of the boundary of the derived regions of stability: Values
of µ for fixed σ, ε = a = 1.

µ at σ = −5 µ at σ = −2

{r (0) ∈ (0, 1)} -4.928663352979243 -1.164014632535759

{P (1, 0, 2) < 1} -4.928416273329012 -1.004116462539647

{P (1, 0, 3) < 1} -4.928035196754609 -0.936121469769667

{P ∗ (1, 0, 2) < 1} -4.928416273329013 -0.974926877322070

Σ⋆ -4.273422355721326 -0.638045048285238

Table 3–3: Numerical measurements of the boundary of the derived regions of stability: The
value of µ at the rightmost boundary point for ε = a = 1.

Maximum value of µ

{r (0) ∈ (0, 1)} 0.188226406459598

{P (1, 0, 2) < 1} 0.456988952862656

{P (1, 0, 3) < 1} 0.457021925023451

{P ∗ (1, 0, 2) < 1} 0.550544246705956

Σ⋆ 1

The measured values of σ at µ = −5 for {P (1, 0, 2) < 1} and {P ∗(1, 0, 2) < 1} are al-

most the same in Table 3–1 for µ = −5, and in Table 3–2 for σ = −5. This suggests that
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{P ∗ (1, 0, 2) < 1} is not a significant improvement over {P (1, 0, 2) < 1} in
w

Σ. We suspect

that the reason a large part of
w

Σ cannot be included in the stability regions derived using

Razumikhin-type arguments is because the solutions to (3.1.1) when (µ, σ) ∈
w

Σ display decay-

ing oscillations with several cycles occurring over an interval of length a. It is likely that it will

be necessary to use these oscillations to prove that solutions eventually decay to zero. Perhaps

if we find a way to improve η (θ) to take this into account we could get more of
w

Σ in the stability

region.

In Table 3–3 the µ values of the rightmost boundary point of the regions are measured.

For the case k = 2 it is possible to calculate this point by finding the maximum µ value as a

function of σ in the expression I
(

−µ
σ
, 1, 0, 2

)

= 1. By solving for this we derive the maximum µ

to be approximately 0.456971657679506 ε
a
. This agrees well with the numerical measurement of

the boundary point for {P (1, 0, 2) < 1}. The results of Table 3–3 were found using the golden

section search algorithm discussed in [50].

These regions are all shown in Figure 3–13. In
∆
Σ the zero solution to (3.1.1) is asymptoti-

cally stable. The zero solution was also proven to be asymptotically stable in {r (0) ∈ (0, 1)}.
In the sets {P (1, 0, k) < 1} for k > 2 the zero solution was proven to be Lyapunov stable. All

these regions are strict subsets of the known analytic stability region Σ⋆. It is encouraging that

we were able to prove stability in a significant region of the delay dependent stability region
w

Σ∪
c

Σ using Gronwall and Lyapunov-Razumikhin techniques. These methods will be extended

in the next chapter to find stability regions for backward Euler and other Θ methods. The

regions that will be derived for backward Euler using the k = 2 Lyapunov-Razumikhin method

depend on the stepsize used but always contain {P (1, 0, 2) < 1} thus providing a region in

which backward Euler is stable for any stepsize h ∈ (0, a].
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Figure 3–13: Illustration of all the regions discussed in this chapter.
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Figure 3–14:
∆
Σ∪{P (1, 0, 3) < 1} ∪ {P ∗ (1, 0, 2) < 1}
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CHAPTER 4

Stability of numerical methods for DDEs

In the first chapter we listed some of the issues involved in extending numerical methods

for ODEs to solve DDEs. In this chapter we focus on the issue of stability failure. To clarify

what we mean by this let us begin with an example from Bellen and Zennaro [8]. Consider

numerical methods that use a constant stepsize of h. Recall that the A-stability region of an

RK method is the set of complex numbers hλ such that the numerical solution applied to the

test problem u̇(t) = λu converges to zero. A numerical method is A-stable if its A-stability

region includes the set {ℜ (hλ) < 0}. This means that when ℜ (λ) < 0, an A-stable numerical

method will reproduce the decay of the solutions to zero for any stepsize. On the other hand,

methods with bounded stability domains such as explicit RK methods usually require very

small stepsizes when |λ| is large in order to exhibit the same behaviour.

Consider two well-known RK methods:

midpoint rule:
1
2

1
2

1
, trapezoidal rule:

0 0

1 1
2

1
2

1
2

1
2

Both methods are A-stable and of order 2 as ODE methods. Following the standard notation

introduced in Chapter 1, RK methods can be transformed into continuous RK methods by

replacing the weights bi with polynomial functions. For the midpoint rule we set b1 (θ) = θ

and for the trapezoidal rule set b1 (θ) = 1
2θ and b2 (θ) = 1

2θ. For both methods, the continuous

extension we have just defined is simply linear interpolation between adjacent nodal values.

Since we are only considering stability issues and long-term behaviour of numerical solutions in

this chapter, we can ignore the tracking of discontinuity points and order conditions. Consider

the problem






u̇ (t) = −50u (t) + 40u (t− 1) , t > 0

u (t) = K (constant), t 6 0.
(4.0.1)

This is our model DDE (1.1.1) with ε = a = 1, c = 0, µ = −50 and σ = 40. Since |σ| < −µ
then (µ, σ) ∈

∆
Σ. The delay in this problem is constant τ = a = 1 so for all initial functions, the

solutions of (4.0.1) converge to zero. Sample plots of the solutions are shown in Figure 4–1.
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Figure 4–1: Sample time plots of the solutions to (4.0.1) for different constant initial functions.
These simulations were performed using an SDIRK scheme discussed in Chapter 5.

Sample results of the numerical integration using midpoint and trapezoidal rules are shown

in Figure 4–2. Observe that the numerical solution using the midpoint rule converges to zero

in the case where the stepsize h = 0.1 = τ
10 , a submultiple of the delay. However, midpoint rule

displays numerical instability when h = 0.08 = τ
12.5 , a non-submultiple of the delay. This is

an example of what Bellen and Zennaro [8] call stability failure when the method is extended

to solve DDEs. In contrast, trapezoidal rule provides stable solutions for both h = 0.1 and

h = 0.08. This shows that of the two second order, A-stable ODE methods that are actually

identical methods when applied to linear ODEs, the trapezoidal rule is more robust when

extended to linear DDEs.

Another example in Bellen and Zennaro [8] shows that even the trapezoidal rule is inad-

equate for solving u̇ (t) = λ (t) y (t) − 4
5λ (t)u (t− 1) where λ (t) = −50 sin2

(

2π
3

(

t− 1
4

))

. The

solutions of these equations are known to converge to zero. Although we will not discuss this

example, it is interesting to note that the trapezoidal rule displays numerical instability in

solving this equation even with the use of submultiple stepsizes. In later sections we consider

backward Euler which satisfies a stronger form of stability called L-stability. Without going

into details here, an RK method with matrix A, weights b and abscissae c is L-stable if its sta-

bility function R (z) : C → R given by R (z) =
det(I−zA−zebT)

det(I−zA) satisfies R (z) → 0 as |z| → ∞.

In Chapter 5 we consider other methods that are L-stable.
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(a) Midpoint rule, h = 0.1 = τ
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(b) Midpoint rule, h = 0.08 = τ
12.5
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(c) Trapezoidal rule, h = 0.1 = τ
10
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(d) Trapezoidal rule, h = 0.08 = τ
12.5

Figure 4–2: Numerical solutions of (4.0.1) with K = 1 using midpoint and trapezoidal rules.
This shows the stability failure of midpoint rule when using non-submultiple stepsize.

4.1 Definitions of stability for DDE methods

To extend the notions of stability to numerical methods for DDEs we use our model DDE

with one state dependent delay as a test equation

εu̇ (t) = µu (t) + σu (t− a− cu (t)) , t > 0,

u (t) = ϕ (t) , t 6 0.
(4.1.1)

Recall from Section 2.1 that for any nonzero ε and a, it is always possible to rescale the equation

and set ε = a = 1. For any nonzero c, it is always possible to rescale and set c = 1. As in

previous chapters we keep ε, a and c fixed and consider only nonnegative values, with ε, a > 0

and c > 0. Then the free parameters in the equation are (µ, σ) ∈ R
2. The history function
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ϕ (t) is a real-valued continuous function. General properties of this equation are discussed in

Chapter 2. The analytic stability region Σ⋆ =
∆
Σ∪

w

Σ∪
c

Σ of the constant delay case is derived in

Chapter 3 (see Definition 3.1.1), and found to also be the stability region for the state dependent

case [25].

Previous authors who have looked into the numerical stability of DDE methods only con-

sidered the stability of methods applied to the constant delay case [1, 4, 12, 20, 21, 37, 43, 57,

59, 61]. Many authors have also only considered the stability of numerical methods in the cone
∆
Σ, the delay independent portion of Σ⋆. Barwell [7] first introduced the notion of P-stability

in
∆
Σ but in his definition (µ, σ) ∈ C

2. Since complex coefficients will not be considered here,

we instead define P(0)-stability.

Definition 4.1.1 (Adapted from Bellen and Zennaro [8]). A numerical method is said to be

P(0)-stable if the numerical solution {un}n>0 derived from applying the numerical method to

(4.1.1) with constant delay τ = a converges to zero for all (µ, σ) ∈
∆
Σ, all initial functions and

for constant stepsize h = τ
m

, m ∈ N. Removing the constraint of h being a submultiple of τ

and allowing for all h ∈ (0, τ) leads to the stronger concept of GP(0)-stability.

Zennaro [61] showed that any A-stable method is also P-stable (and therefore also P(0)-

stable) for DDEs. This does not extend to GP(0)-stability as we can see from Figure 4.0.1.

Although stability in
∆
Σ is important to consider in testing for the robustness of a numerical

method, stability in
w

Σ∪
c

Σ should also be considered, and is perhaps more interesting. Recall

that
∆
Σ is the delay independent portion of Σ∗ so this region stays the same regardless of the

value of a. On the other hand,
w

Σ∪
c

Σ is the delay dependent portion of Σ∗ and its range depends

on the values of ε and a.

Definition 4.1.2 (Adapted from Bellen and Zennaro [8]). A numerical method is said to be

D(0)-stable if the numerical solution {un}n>0 derived from applying the numerical method to

(4.1.1) with constant delay τ = a converges to zero for all (µ, σ) ∈ Σ⋆, all initial functions and

for constant stepsize h = τ
m

, m ∈ N. Removing the constraint of h being a submultiple of τ

and allowing for all h ∈ (0, τ) leads to the stronger concept of GD(0)-stability.

Methods that are known to be D(0)-stable are Θ methods for Θ ∈
[

1
2 , 1
]

[21], Radau IIA

for s = 2, 3 [20], and Gauss RK methods with s > 1 [22]. Lobatto IIIc is not D(0) stable [20].

More results on the stability of DDE methods are available in Bellen and Zennaro [8]. There

are currently no methods that have been proven to be GD(0)-stable.
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In this thesis I consider the stability of numerical methods applied to state dependent

problems. The natural test problem for this is (4.1.1) with c > 0 arbitrary. In this case it

does not make sense to require a submultiple stepsize anymore so we consider all stepsizes

h > 0. Following the stability proofs for the DDE in Section 3.2 using a Gronwall argument

and in Section 3.4.1 using a Razumikhin-like proof, I prove the stability of backward Euler in
∆
Σ

and a significant portion of
w

Σ∪
c

Σ. The region derived using a Razumikhin-like proof is larger

than that using the Gronwall argument, but in the latter region I prove the convergence of the

backward Euler solutions to zero while I only prove a discrete version of Lyapunov stability in

the former. For the c = 0 case, stability means global stability, but otherwise we always mean

local stability. Both proofs are extended in Sections 4.9 and 4.10 to derive stepsize-dependent

stability regions of general Θ methods. In the extension of the Razumikhin-style proof for

Θ methods we derive analytic expressions for the stability regions which are then evaluated

numerically.

4.2 Description of backward Euler

The backward Euler (BE) method is given by the following Butcher tableau:

backward Euler:
1 1

1

Backward Euler is an A-stable and L-stable ODE method. To solve DDEs, the method may be

equipped with linear interpolation. As discussed in Section 1.2, this is done by changing from

a constant b1 = 1 to a function b1 (β) = β. Notice that we have switched our interpolation

argument from θ to β. For the rest of the chapter we will always use β as the interpolation

argument in order to avoid confusion later on when we look at the general Θ methods.

Consider the following DDE with one general delay,

εu̇ (t) = f (t, u(t), α (t, u(t))) , t > t0,

u (t) = ϕ (t) , t < t0,
(4.2.1)

where we assume α (t, u (t)) 6 t at all times. Backward Euler with constant stepsize h and

linear interpolation applied to (4.2.1) can be written as

un+1 = un + hf
(

tn+1, yn+1, Ỹ
(1)
n+1

)

(4.2.2)
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where Ỹ
(1)
n+1 is given by the value of the linear interpolation of the numerical solution at time

t̃
(1)
n+1 = α (tn+1, un+1). In general, linear interpolation may be written as:

η (tn + βh) = un + βhf
(

tn+1, un+1, Ỹ
(1)
n+1

)

One may also think of the η (t) in the following step-by-step manner: Suppose the numerical

solution has been solved up to time tn.

• If t 6 t0 then η (t) = ϕ (t).

• If t ∈ [0, tn] then solve the following system with β ∈ [0, 1].



















m =
⌈

tn−t
h

⌉

t = (1− β) tn−m + βtn−m+1

η (t) = (1− β)un−m + βun−m+1

• If t > tn then solve the following system with β > 0.







t = (1− β) tn + βtn+1

η (t) = (1− β) un + βun+1

This is how we will treat linear interpolation in this chapter.

Backward Euler applied to (4.1.1) yields

un+1 = un +
h

ε

(

µun+1 + σY
(1)
n+1

)

. (4.2.3)

This equation has to be solved for un+1 at every step of backward Euler. Suppose the BE

solution to (4.1.1) is known up to time tn and we would like to find the update at time tn+1.

Define the following function

gn+1 (v) = v − un −
h

ε

(

µv + σỸn+1 (v)
)

, (4.2.4)

where Ỹn+1 (v) = ηv (tn+1 − a− cv) and

ηv (t) =







η (t) , if t 6 tn,

(1− β)un + βv, β = t−tn
h
, if t > tn.

The BE update un+1 is any solution to gn+1 (v) = 0. As discussed in Section 1.2, if the stepsize

h is small enough then this root exists and is unique even for the overlapping case. However,
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we are considering backward Euler because its has nice stability properties so we use it with

larger stepsizes.

Lemma 4.2.1. Let ε, a > 0 and µ + σ < 0. Let the stepsize h be such that ε − hµ > 0 (no

restriction if µ < 0) and let L < 0 < M . If c > 0 suppose that the history function ϕ (t) is

continuous and ϕ (t) ∈
(

−a
c
,M
)

for t 6 0. Then a BE solution to (4.1.1) {un}n>0 exists such

that un > −a
c

for n > 0. If c < 0 suppose that ϕ (t) is continuous and ϕ (t) ∈
(

L,−a
c

)

for

t 6 0. Then a BE solution to (4.1.1) {un}n>0 exists such that un < −a
c

for n > 0.

Proof. Suppose first that c > 0. The proof will be by induction. For the base case n = 0,

obviously u0 = ϕ (0) exists and from the bounds on ϕ, u0 > −a
c
. Now let n > 0 and suppose

that un exists and satisfies un > −a
c
. Rewrite (4.2.3) as

gn+1 (v) =

(

1− hµ

ε

)

v − un −
hσ

ε
Ỹn+1 (v) . (4.2.5)

Let v = −a
c
. Then tn+1 − a− cv = tn+1 so Ỹn+1 (v) = −a

c
. Then,

gn+1

(

−a
c

)

=

(

−1 +
h (µ+ σ)

ε

)

a

c
− un < 0.

Now consider letting v →∞. Then the deviated time tn+1−a− cv → −∞ so Ỹn+1 (v) takes its

values from the history function which is bounded inside
(

−a
c
,M
)

. From (4.2.5), and if µ > 0

the stepsize restriction, gn+1 (v)→∞ as v →∞. Since Ỹn+1 (v) is continuous then gn+1 (v) is

continuous and has a root in
(

−a
c
,∞
)

. This proves that a solution to gn+1 (v) = 0 exists and

satisfies v > −a
c
. Set the BE update un+1 = v. The proof for the c < 0 case is similar.

Lemma 4.2.1 enables us to always choose our BE update such that the delay does not

become an advance. For the rest of the chapter we always restrict our BE solution accordingly.

Lemma 4.2.1 does not say anything about the uniqueness of the BE solution. Indeed, for

general stepsizes the function gn+1 (v) may have multiple roots. In Chapter 5 we take some

care in choosing which root gives the best qualitative approximation to the DDE solution.

Properties of the BE solution when µ < 0 and σ < 0.

Here we look at some properties of the BE solution when µ < 0 and σ < 0. This is

motivated by the properties derived in Section 2.1 for negative µ and σ. Recall the definitions

in (2.1.2),

L0 = −a
c
, M0 =

aσ

cµ
, τ0 = a+ cM0. (4.2.6)
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Lemma 4.2.2. Let ε, a, c > 0, µ < 0 and σ < 0. Let the history function ϕ (t) be continuous

and ϕ(t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Then for any stepsize h > 0, a BE solution to (4.1.1)

{un}n>0 exists such that un ∈ (L0,M0) for n > 0.

Proof. The existence of the BE solution and the lower bound are already guaranteed by

Lemma 4.2.1. Since µ < 0 then there is no restriction on the stepsize. So it only remains

to prove that un < M0 for all n > 0. Again, the proof will be by induction. For the base n = 0,

obviously u0 = ϕ (0) < M0. Now let n > 0 and assume that un < M0.

gn+1 (M0) =
aσ

cµ
− un −

h

ε

(aσ

c
+ σỸn+1

)

>
aσ

cµ
− un > 0

The first inequality comes from the lower bound L0 and the second inequality comes from

un < M0. Recall from the proof of Lemma 4.2.1 that gn+1 (L0) < 0. Since gn+1 (v) is continuous,

this proves that a solution to gn+1 (v) = 0 exists and satisfies v ∈ (L0,M0). Set the BE update

un+1 = v.

Lemma 4.2.3. Let ε, a, c > 0, µ < 0 and σ < 0. Let the history function ϕ (t) be continuous

and ϕ(t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Then for any stepsize h > 0, any BE solution to (4.1.1)

{un}n>0 must satisfy un ∈ (L0,M0) for n > 0.

Proof. This proof is by strong induction. The base case is easy. Now suppose the BE solution

up to n, {u0, ..., un}, is bounded inside (L0,M0). Let v 6 L0. Then α (tn+1, v) = tn+1−a−cv >
tn+1. Set α (tn, v) = tn + βh. Then β > 1. The spurious stage is Ỹn+1 (v) = (1− β)un + βv

and then

gn+1 (v) = v − un −
h

ε

(

µv + σỸn+1(v)
)

,

= v − un −
h

ε
(µv + σ ((1− β)un + βv)) ,

=

(

1− hµ

ε
− hσβ

ε

)

v −
(

1 +
hσ (1− β)

ε

)

un.

Since β > 1 then σ (1− β) > 0 and we can apply the lower bound on un in the expression

above. Also applying v 6 L0 yields

gn+1 (v) <
h (µ+ σ)

ε

a

c
< 0.
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Thus there is no solution to gn+1 (v) = 0 such that v 6 L0. Now let v > M0. Consider two

possible cases:

• If h 6 a+ cv then α (tn+1, v) 6 tn so Ỹn+1 (v) ∈ (L0,M0). Then,

gn+1 (v) >
aσ

cµ
− un −

h

ε

(aσ

c
+ σỸn+1

)

>
aσ

cµ
− un > 0. (4.2.7)

The first inequality comes from v > M0, the second and third inequalities are from the

lower bound of L0.

• If h > a + cv then α (tn+1, v) ∈ [tn, tn+1]. Let β = α(tn+1,v)−tn
h

, so β ∈ [0, 1]. Then

Ỹn+1 = (1− β)un + βv > L0 and we get the same series of inequalities as in (4.2.7).

Thus, there is no solution v > M0 to gn+1 (v) = 0. This proves that any BE solution must

remain bounded inside (L0,M0).

Lemma 4.2.3 shows that the BE solution to (4.1.1) reproduces the bounds we found in

Section 2.1 for the case when µ < 0 and σ < 0. Now to show that it also has the same three

possible types of behaviour as found in Lemma 3.2.1.

Lemma 4.2.4. Let ε, a, c > 0, µ < 0 and σ < 0. Let the history function ϕ (t) be continuous

and ϕ(t) ∈ (L0,M0) for t ∈ [−τ0, 0]. Then for any stepsize h > 0, any BE solution to (4.1.1)

must be behave in one of the following manners:

(A) There exists N ∈ N such that un ↓ 0 for n > N .

(B) There exists N ∈ N such that un ↑ 0 for n > N .

(C) For every N > 0 there exists N1, N2 ∈ N and N1, N2 > N such that the solution attains a

positive maximum at N1 and a negative minimum at N2.

Proof. From Lemma 4.2.3, for all n > 0, un ∈ (L0,M0). Using these bounds we can use

Lemma 4.4.1 which states that bounded solutions must behave as in (A), (B) or (C) for the

more general case when µ+ σ < 0.

4.3 Stability of BE in
∆
Σ

Recall that the cone
∆
Σ is the delay independent portion of the analytic stability region of

the model DDE (4.1.1). It is known that for the constant delay case, backward Euler is stable

independent of stepsize in
∆
Σ (see Guglielmi [21] and Maset [43] for the complex coefficients

case). In this section we prove that if (µ, σ) ∈
∆
Σ, the BE solution to (4.1.1) converge to zero

for the state dependent case for all stepsizes.
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Recall (4.2.3), the BE equation applied to the model problem (4.1.1)

un+1 = un +
h

ε

(

µun+1 + σY
(1)
n+1

)

,

un+1 =
ε

ε− hµun +
hσ

ε− hµY
(1)
n+1. (4.3.1)

Assume that the numerical solution up to un and the entire history function is bounded inside

[−δ, δ]. Assume also that there is no overlapping. Then Ỹ
(1)
n+1 is also bounded by δ and

|un+1| 6
|ε|+ |hσ|
|ε− hµ| δ. (4.3.2)

We will return to this equation later on. First consider how this changes if there is overlapping.

Since we exclude any BE solutions below −a
c

then tn+1 − a − cun+1 ∈ [tn, tn+1] and we have

Ỹ
(1)
n+1 = (1− β) un + βun+1 with β ∈ [0, 1]. Going back to (4.3.1) and solving for un+1 yields

un+1 =

(

ε+ hσ (1− β)

ε− hµ− hσβ

)

un. (4.3.3)

Let ε − hµ > 0. If σ 6 0 then since β ∈ [0, 1] we easily derive (4.3.2) again. If σ > 0 this

not so easy. Let σ > 0 and consider ε+hσ(1−β)
ε−hµ−hσβ

as a function of β ∈ [0, 1]. If µ + σ < 0 then

this function is positive at β = 1 and its derivative is always negative. Thus,
∣

∣

∣

ε+hσ(1−β)
ε−hµ−hσβ

∣

∣

∣ is

maximum at β = 0. Using this, we derive (4.3.2) again,

|un+1| 6
|ε|+ |hσ|
|ε− hµ| δ. (4.3.4)

We have now shown that this inequality is true for both the overlapping and non overlapping

cases if ε− hµ > 0 and µ+ σ < 0. Consider the case when |ε|+|hσ|
|ε−hµ| < 1,

|ε|+ |hσ|
|ε− hµ| =

ε+ |hσ|
ε− hµ < 1 ⇔ |σ| < −µ ⇔ (µ, σ) ∈

∆
Σ .

Theorem 4.3.1. Let ε, a, c > 0, (µ, σ) ∈
∆
Σ and h > 0. For every δ > 0, if the history function

ϕ (t) is continuous and ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then the BE solution to (4.1.1)

{un}n>0 satisfies un ∈ [−δ, δ] for all n > 0 and lim
n→∞

un = 0.

Proof. Let r = |ε|+|hσ|
|ε−hµ| . If (µ, σ) ∈

∆
Σ then r ∈ (0, 1). Suppose ϕ (t) ∈ [−δ, δ] for all t 6 0. It is

easy to see from (4.3.4) that un ∈ [−δ, δ] for all n > 0. Thus ϕ (t) is only required to be known,
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continuous and ϕ (t) ∈ [−δ, δ] for t ∈ [−a− cδ, 0]. Also, α (t, un+1) ∈ [t− a− cδ, t] for t > 0.

We call the solution on this interval the relevant history at time t.

By (4.3.4), |un+1| 6 rδ for n > 0. Let N̄ =
⌈

a+cδ
h

⌉

. For n > N̄ , the relevant history will

be on the time interval [0, tn+1] so rδ is the bound on the relevant history. Using rδ instead of

δ in (4.3.4), |un+1| 6 r2δ for n > N̄ .

After N̄ more steps, the relevant history of the BE solution is bounded above by r2δ. By

iteratively applying (4.3.4) we get that for every n > 0 if we let n̄ =
⌊

n
N̄

⌋

then un ∈ [−rn̄δ, rn̄δ].

Since r ∈ (0, 1) then un → 0.

Now consider the case when ε− hµ < 0. This is only possible if µ > 0.

|ε|+ |hσ|
|ε− hµ| =

ε+ |hσ|
− (ε− hµ)

< 1 ⇒ |σ| < hµ− 2ε.

For µ > 0 the points where we have a contraction must satisfy |σ| < hµ− 2ε. On these points

we always have µ+ σ > 0 so if we set β = 1 in (4.3.3) we get ε+hσ(1−β)
ε−hµ−hσβ

= ε
ε−h(µ+σ) > 1 and we

do not have a contraction of the solutions as described in Theorem 4.3.1. Thus the region we

have derived for the case µ > 0 only yields a contraction if there is no overlapping. This can

be guaranteed if h ∈ (0, a) and the bound δ is chosen to be small enough. Sample plots of the

stability regions are shown in Figure 4–3.
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Figure 4–3: The sets
{

|ε|+|hσ|
|ε−hµ| < 1

}

are shaded green and plotted with ε = a = 1. Each set

restricted to µ < 0 is
∆
Σ and we have shown that if (µ, σ) is in that set then the BE solution to

(4.1.1) converges to zero for all stepsizes. The set restricted to µ > 0 is only stable if there is
no overlapping.
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4.4 Stability of BE using a discrete Gronwall argument

Let us now consider the stability of the backward Euler method in
w

Σ∪
c

Σ, the delay depen-

dent portion of Σ⋆. In these regions, σ 6 µ and σ < −µ. So automatically, σ 6 0. This section

is based on a discrete Gronwall argument which is a generalization of the proof of the asymp-

totic stability of the zero solution to (4.1.1) in Section 3.2 which used a continuous Gronwall

argument .

Lemma 4.4.1. Let ε, a, c > 0 and µ+σ < 0. Let the history function ϕ (t) and the BE solution

to (4.1.1) be bounded by [−δ, δ] for all t 6 0 and n > 0. Then for any stepsize h > 0, the BE

solution must behave in one of the following manners:

(A) There exists N ∈ N such that un ↓ 0 for n > N

(B) There exists N ∈ N such that un ↑ 0 for n > N

(C) For every N > 0 there exists N1, N2 ∈ N and N1, N2 > N such that the solution attains a

positive maximum at N1 and a negative minimum at N2.

Proof. From the bounds on the solution we must have

tn+1 − a− cδ 6 α (tn+1, un+1) 6 tn+1. (4.4.1)

Suppose there exists a point N ∈ N such that un+1 6 un for all n > N . Then for some

ū ∈ [−δ, δ], un ↓ ū. Then also, un+1 − un → 0. By (4.4.1), we also have Ỹ
(1)
n+1 → ū.

0 = lim
n→∞

ε (un+1 − un) = lim
n→∞

h
(

µun+1 + σỸ
(1)
n+1

)

= h (µ+ σ) ū

Since µ+ σ < 0 then ū = 0. Thus in this case un ↓ 0 for n > N .

Similarly, if there exists a point N ∈ N such that un+1 > un for all n > N then we must

have un+1 ↑ 0. If there is no N past which the BE solution becomes monotonic then since the

solution is bounded its behaviour must be given by (C).

At every time step the value of the spurious stage Ỹ
(1)
n+1 = η (α (tn+1, un+1)) is found by

setting

m =

⌊

a+ cun+1

h

⌋

, β = m+ 1− a+ cun+1

h
. (4.4.2)

Then α (tn+1, un+1) = tn+1 − a− cun+1 = tn−m + βh = (1− β) tn−m + βtn−m+1 so

Y
(1)
n+1 = (1− β)un−m + βun−m+1. (4.4.3)
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In the succeeding lemmas and theorems we always assume that ε, a, c > 0, σ 6 µ < ε
a
,

σ < −µ, and automatically σ < 0. These restrictions are always satisfied by points in
w

Σ∪
c

Σ.

Lemma 4.4.2. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε − hµ > 0 (no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]).

Let −a
c
< L < 0 < M , n ∈ N, n > 0 and let the BE solution to (4.1.1) {ui}ni=0 satisfy

ui ∈ [L,M ] for i = max{0, n−
⌈

a+cM
h

⌉

}, ..., n. If tn+1 − a− cM < 0 then let ϕ (s) ∈ [L,M ] for

s ∈ [tn+1 − a− cM, 0]. Let µ 6= 0. If un+1 6 un then

un+1 −
ε

ε− hµ (1− β)

(

ε

ε− hµ

)m

Ỹ
(1)
n+1 > −σM

µ

[

1− ε

ε− hµ (1− β)

(

ε

ε− hµ

)m]

, (4.4.4)

and if un+1 > un then

un+1 −
ε

ε− hµ (1− β)

(

ε

ε− hµ

)m

Ỹ
(1)
n+1 6 −σL

µ

[

1− ε

ε− hµ (1− β)

(

ε

ε− hµ

)m]

. (4.4.5)

Let µ = 0. If un+1 6 un then

un+1 − Ỹ (1)
n+1 > (a+ cun+1)

σM

ε
, (4.4.6)

and if un+1 > un then

un+1 − Ỹ (1)
n+1 6 (a+ cun+1)

σL

ε
. (4.4.7)

Proof. Start with the BE equation applied to the model problem (4.1.1).

un+1 = un +
h

ε

[

µun+1 + σỸ
(1)
n+1

]

,

Suppose un+1 6 un. Then even in the overlapping case Ỹ
(1)
n+1 6 M .

un+1 =
ε

ε− hµun +
hσ

ε− hµỸ
(1)
n+1 >

ε

ε− hµun +
hσ

ε− hµM (4.4.8)

Consider first the case µ 6= 0. Applying the discrete Gronwall lemma to the inequality above,

un+1 >

hσM
ε−hµ

1− ε
ε−hµ

(

1−
(

ε

ε− hµ

)m+1
)

+

(

ε

ε− hµ

)m+1

un−m,

un+1 > −σM
µ

(

1−
(

ε

ε− hµ

)m+1
)

+

(

ε

ε− hµ

)m+1

un−m. (4.4.9)
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Similarly, we can derive

un+1 > −σM
µ

(

1−
(

ε

ε− hµ

)m)

+

(

ε

ε− hµ

)m

un−m+1. (4.4.10)

Take (1− β) ε−hµ
ε
× (4.4.9)+β× (4.4.10). This yields

(

ε− hµ
ε

(1− β) + β

)

un+1 > −σM
µ

(

ε− hµ
ε

(1− β) + β −
(

ε

ε− hµ

)m)

+

(

ε

ε− hµ

)m

((1− β)un−m + βun−m+1) ,

which simplifies to

ε− hµ (1− β)

ε
un+1 > −σM

µ

(

ε− hµ (1− β)

ε
−
(

ε

ε− hµ

)m)

+

(

ε

ε− hµ

)m

Ỹ
(1)
n+1,

un+1 > −σM
µ

[

1− ε

ε− hµ (1− β)

(

ε

ε− hµ

)m]

+
ε

ε− hµ (1− β)

(

ε

ε− hµ

)m

Ỹ
(1)
n+1.

Rearranging yields (4.4.4). The proof of (4.4.5) follows similarly. Now let µ = 0. Then (4.4.8)

becomes simply un+1 > un + hσM
ε

. Applying a discrete Gronwall inequality yields

un+1 > un−m + (m+ 1)
hσM

ε
, un+1 > un−m+1 +m

hσM

ε
(4.4.11)

Taking (1− β)× the first equation + β× the second equation yields

un+1 > (1− β)un−m + βun−m+1 + (m+ 1− β)hσM = Ỹ
(1)
n+1 + (a+ cun+1)

σM

ε
.

By rearranging we get (4.4.6). The proof of (4.4.7) follows similarly.

Definition 4.4.3. Recall r (v) from Definition 3.2.4,

r (v) =











σ
µ

[

1−e
µ
ε (a+cv)

1+ µ
σ

e
µ
ε (a+cv)

]

, if µ 6= 0,

−σ
ε

(a+ cv) , if µ = 0.

Also define the following RΘ=1,h (v) function

RΘ=1,h (v) =







σ
µ

[

1−A∗

v

1+ µ
σ

A∗

v

]

, if µ 6= 0,

−σ
ε

(a+ cv) , if µ = 0.
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where for each v,

A∗
v =

ε

ε− hµ (1− βv)

(

ε

ε− hµ

)mv

,

and mv and βv are defined by

mv =

⌊

a+ cv

h

⌋

, βv = mv + 1− a+ cv

h
.

For fixed v, one may show using L’Hopital’s rule that the expression RΘ=1,h (v) is contin-

uous in µ, including at µ = 0. So both these functions are continuous at µ = 0. To show that

RΘ=1,h (v) is continuous in v, consider a point v∗ at which a+cv∗
h

is an integer. In the limit

v ↓ v∗ then mv → mv∗ and βv → 1. In the limit that v ↑ v∗, mv → mv∗ − 1, and βv → 0. Thus,

lim
v→v+

∗

ε

ε− hµ (1− βv)

(

ε

ε− hµ

)mv

=

(

ε

ε− hµ

)mv∗

= lim
v→v−∗

ε

ε− hµ (1− βv)

(

ε

ε− hµ

)mv

.

So RΘ=1,h (v) is a continuous function of v even though mv and βv are not continuous.

Lemma 4.4.4. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε − hµ > 0 (no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]).

Let −a
c
< L < 0 < M , n ∈ N, n > 0 and let the BE solution to (4.1.1) {ui}ni=0 satisfy

ui ∈ [L,M ] for i = max{0, n −
⌈

a+cM
h

⌉

}, ..., n. If tn+1 − a− cδ < 0 then let ϕ (s) ∈ [L,M ] for

s ∈ [tn+1 − a− cδ, 0]. Also let 1 + µ
σ

ε
ε−hµ(1−β)

(

ε
ε−hµ

)m

> 0 where m and β are as defined in

(4.4.2). If un+1 6 un then

un+1 > −RΘ=1,h (un+1)M. (4.4.12)

If un+1 > un then

un+1 6 −RΘ=1,h (un+1)L. (4.4.13)

Proof. Suppose un+1 6 un. Then,

un+1 = un +
h

ε

(

µun+1 + σỸ
(1)
n+1

)

6 un ⇒ Ỹ
(1)
n+1 > −µ

σ
un+1.

Since the relevant history at n+ 1 is bounded above by M then we may use (4.4.4) and (4.4.6)

in Lemma 4.4.2. Using Ỹ
(1)
n+1 > −µ

σ
un+1 in those equations yield (4.4.12). Equation (4.4.13)

can be derived similarly.
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Lemma 4.4.5. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε− hµ > 0 (no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Let the

model parameters and the stepsize h satisfy RΘ=1,h (0) ∈ (0, 1). Then there exists a sufficiently

small δ∗ ∈
(

0,
∣

∣

a
c

∣

∣

)

such that RΘ=1,h (v) ∈ (0, 1) for all v ∈ [−δ∗, δ∗]. Let δ =
∣

∣

∣

ε−hµ
ε−hσ

∣

∣

∣
δ∗. If ϕ (t)

is continuous and ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then the BE solution to (4.1.1) {un}n>0

satisfies un ∈ [−δ, δ] for all n > 0.

Proof. Let RΘ=1,h (0) ∈ (0, 1). Since RΘ=1,h (v) is a continuous function of v then it is always

possible to find a small enough δ∗ ∈
(

0, a
c

)

such that RΘ=1,h (v) ∈ (0, 1) for all v ∈ [−δ∗, δ∗].
Now consider the sign of 1 + µ

σ
ε

ε−hµ(1−βv)

(

ε
ε−hµ

)mv

. This is always positive if µ < 0. If

µ > 0 and this term is negative then RΘ=1,h (v) < 0. So from our choice of δ∗, we must have

1 + µ
σ

ε
ε−hµ(1−βv)

(

ε
ε−hµ

)mv

> 0 for all v ∈ [−δ∗, δ∗].
Suppose it is possible for un to leave the interval [−δ, δ]. Suppose that when this first

happens the solution crosses its upper bound. But up to the n-th step the BE solution is still

bounded inside [−δ, δ]. Recall from (4.3.4) that if the history function and the BE solution up

to n are bounded inside [−δ, δ] and µ+ σ < 0 then

|un+1| 6
|ε|+ |hσ|
|ε− hµ| δ = δ∗

This is true whether or not there is overlapping. Then we have the case un 6 δ 6 un+1 6 δ∗.

Using L = δ in Lemma 4.4.4,

un+1 6 RΘ=1,h (un+1) δ.

But un+1 > δ so this means, 1 6 RΘ=1,h (un+1). But since un+1 ∈ [0, δ∗] then we must have

RΘ=1,h (un+1) ∈ (0, 1) by our choice of δ∗. This is a contradiction and so the BE solution

cannot leave the interval [−δ, δ] through the upper bound. Similarly, assuming that the BE

solution leaves through the lower bound also leads to a contradiction. Thus, the BE solution

cannot exit the interval [−δ, δ].

Theorem 4.4.6. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε− hµ > 0 (no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Let the

model parameters and the stepsize h satisfy RΘ=1,h (0) ∈ (0, 1). Then there exists δ ∈
(

0, a
c

)

such that if the history function ϕ (t) is continuous and ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0]
then the BE solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for all n > 0 and lim

n→∞
un = 0.
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Remark 4.4.7. Note that if we had the case c→ 0 then we can let δ →∞ which means global

stability of the numerical solution in the region where the parameter satisfy RΘ=1,h (0) ∈ (0, 1).

Proof. Let RΘ=1,h (0) ∈ (0, 1). Choose δ as in Lemma 4.4.5 so that by setting ϕ (t) ∈ [−δ, δ] for

all t ∈ [−a− cδ, 0] then un ∈ [−δ, δ] for n > 0. This choice of δ also yields RΘ=1,h (v) ∈ (0, 1)

for all v ∈ [−δ, δ]. Then if we define r = max
v∈[−δ,δ]

RΘ=1,h (v), then r ∈ (0, 1). Since un ∈ [−δ, δ]
for all n > 0, then α (tn+1, un+1) ∈ [tn+1 − a− cδ, tn+1] for all n. We call the values of the BE

solution (including the continuous extension) on this interval the relevant history at step n.

Since the solutions are bounded then by Lemma 4.4.1, the BE solution may (A) eventually

go to zero monotonically from above, or (B) eventually go to zero monotonically from below,

or (C) it may display oscillations. To complete the proof of this theorem we only have to prove

that in the oscillating case we still get un → 0.

Suppose that the BE solution attains a local minimum at n = S1 and let uS1 = L1. Then

by Lemma 4.4.4,

L1 > −RΘ=1,h (L1) δ > −rδ.

So −rδ is a new lower bound on the solution. Let N̄ =
⌈

a+cδ
h

⌉

. For n > S1 + N̄ , the

relevant history will be on the time interval
[

tS1 , tS1+N̄

]

so −rδ is a lower bound on the relevant

history. Suppose now that a local maximum occurs at n = R1 and with uR1 = M1. Then by

Lemma 4.4.4,

M1 6 −RΘ=1,h (M1) (−rδ) 6 r2δ.

For n > R1 + N̄ steps, the relevant history of the BE solution is bounded above by r2δ.

Starting with these definitions of S1 and R1, for i > 2 define Si to be the location of the first

local minimum past Ri−1 + N̄ , and define Ri to be the location of the first local maximum past

Si + N̄ . Since we are assuming that the solutions behaves as described in (C) in Lemma 4.4.1,

Si and Ri exist for all i > 0. By iteratively applying Lemma 4.4.4, we get that for all n > S1,

un ∈
[

−riδ, ri−1δ
]

, if n = Si, ..., Ri,

un ∈
[

−riδ, riδ
]

, if n = Ri, ..., Si+1.

Since r ∈ (0, 1) then un → 0.

Theorem 4.4.6 gives stepsize-dependent analytic expressions for regions where the BE

solution with small enough history functions converge to zero. These regions can be written
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as the sets {RΘ=1,h (0) ∈ (0, 1)}. Sample plots of these sets are shown in Figure 4–4. From

these figures we see that there is a region contained in all these sets independent of stepsize.

This region is actually (µ, σ) : {r (0) ∈ (0, 1) , µ < 0}, part of the region in which we proved the

asymptotic stability of the zero solution of (4.1.1) in Theorem 4.4.9.

Lemma 4.4.8. Let ε, a, c > 0, σ 6 µ < 0 and σ < −µ. Let the stepsize h be such that

ε − hµ > 0 (no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Then

for all v > −a
c

it holds that RΘ=1,h (v) 6 r (v).

Proof. Since 1 + x 6 ex for all x ∈ R,

ε

ε− hµ (1− β)
=

(

1− hµ (1− β)

ε

)−1

> e
hµ(1−β)

ε ,

(

ε

ε− hµ

)m

=

(

1− hµ

ε

)−m

> e
hµm

ε .

Thus,
ε

ε− hµ (1− β)

(

ε

ε− hµ

)m

> e
hµ(m+1−β)

ε = e
µ(a+cv)

ε ,

Since µ < 0,

σ

µ





1− ε
ε−hµ(1−β)

(

ε
ε−hµ

)m

1 + µ
σ

ε
ε−hµ(1−β)

(

ε
ε−hµ

)m



 6
σ

µ

[

1− eµ
ε
(a+cv)

1 + µ
σ
e

µ
ε
(a+cv)

]

,

which completes the proof of the lemma.

Theorem 4.4.9. Let ε, a, c > 0, σ 6 µ < 0 and σ < −µ. Let the model parameters satisfy

r (0) ∈ (0, 1). Then there exists δ ∈
(

0, a
c

)

such that for all stepsizes h > 0, if ϕ (t) ∈ [−δ, δ] for

t ∈ [−a− cδ, 0] then the BE solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] and lim
n→∞

un = 0.

Proof. If µ < 0 then RΘ=1,h (v) > 0 for all v > −a
c
. By Lemma 4.4.8, RΘ=1,h (0) 6 r (0) < 1.

Thus Theorem 4.4.6 applies for any stepsize h > 0.

The stepsize-independent stability region {r (0) ∈ (0, 1) , µ < 0} given by Theorem 4.4.9 is

confined to the left half-plane so we still do not have a stepsize independent stability region in
c

Σ. In the next section we adapt the Razumikhin-style argument we had from Section 3.4.1 to

prove that in a larger parameter region we have a discrete version of Lyapunov stability, and in

Section 4.6 it is proven that un → 0 in this case when µ < 0 and h > a. Although the results
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Figure 4–4: The set {RΘ=1,h (0) ∈ (0, 1)} is shaded green and plotted with ε = a = c = 1.
This figure also shows the boundary of the set {r (0) ∈ (0, 1)} (in red) which is contained inside
{RΘ=1,h (0) ∈ (0, 1)} when µ < 0.

may be extended later on to prove convergence to zero for all h > 0, currently we have only

proven convergence to zero for all stepsizes in this section, using the Gronwall argument.

4.5 Stability of BE using a Razumikhin-style proof

Recall that in Section 3.4.1 (Theorems 3.4.7 and 3.4.10) we used a Razumikhin-style proof

to show that for every δ > 0, if (µ, σ) ∈ {P (δ, c, 2) < δ} and the history function is small enough

then the solution to the model problem (4.1.1) u(t) ∈ [−δ, δ] for all t > 0. Also, if (µ, σ) ∈
{P (1, 0, 2) < 1} then the zero solution to (4.1.1) is Lyapunov stable. From Theorem 3.4.10,

the function P can be written as

P (δ, c, 2) =







I1
(

−µ
σ
δ, δ
)

, if τ1D − 1 6 −µ
σ
,

I2
(

−µ
σ
δ, δ
)

, if τ1D − 1 > −µ
σ
,

(4.5.1)

I1 (û, δ) = û

[

e
µ
ε
τ1 +

σ

µ

(

e
µ
ε
τ1 − 1

)

]

+
σ

µ
Dδ

[

ε

µ

(

e
µ
ε
τ1 − 1

)

− τ1e
µ
ε
τ1

]

,

I2 (û, δ) = û

(

e
µ
ε
τ1 − σ

µ

)

+
σ

µ
δ

[

εD

µ

(

e
µ
ε

δ+û
Dδ − 1

)

− eµ
ε
τ1

]

,

where τ1 = a+ |c|δ and D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε

δ |c|
)

.

In this section the Razumikhin-style proof of Lyapunov stability are adapted to prove that

the BE solution to (4.1.1) satisfies similar properties. Let c ∈ R, but set ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Automatically, σ < 0. These restrictions are always satisfied by points in the
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delay dependent stability region
w

Σ∪
c

Σ of (4.1.1). Given a constant step-size h, backward Euler

applied to (4.1.1) is given by

un+1 = un +
h

ε

(

µun+1 + σỸ
(1)
n+1

)

.

where Ỹn+1 is the value of the linear interpolation η at tn+1 − a− cun+1. Rearranging yields

un+1 =
ε

ε− hµun +
hσ

ε− hµỸ
(1)
n+1. (4.5.2)

Here we only consider the case when ε− hµ > 0 to keep ε
ε−hµ

> 0. This is always true if µ 6 0

and it provides a step-size restriction otherwise. But the stability domain of the test equation

requires µ < ε
a

so in the case µ > 0 choosing h ∈ (0, a] is sufficient.

Lemma 4.5.1. Let ε, a > 0, σ 6 µ < ε
a
, σ < −µ. Let the stepsize h be such that ε − hµ > 0

(no restriction if µ < 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Define ‖ϕ‖ =

sups60 |ϕ (s)|. If ‖ϕ‖ <
∣

∣

a
c

∣

∣ (no restriction if c = 0) then

|un| 6
(

ε− hσ
ε− hµ

)n

‖ϕ‖ .

Proof. The proof is by strong induction. For the case n = 0 this is obviously true. Suppose for

all i = 1, ..., n we have

|ui| 6
(

ε− hσ
ε− hµ

)i

‖ϕ‖ .

Before going on to the n + 1 case, consider the term ε−hσ
ε−hµ

. Since we are interested in σ 6 µ

then ε− hσ > ε− hµ. So ε−hσ
ε−hµ

> 1. So in fact, for all i = 1, ..., n

|ui| 6
(

ε− hσ
ε− hµ

)n

‖ϕ‖ .

Now look at the n+ 1 case with no overlapping (tn+1 − a− cun+1 6 tn). From (4.5.2),

|un+1| 6
ε

ε− hµ |un|+
h |σ|
ε− hµ

∣

∣

∣
Ỹ

(1)
n+1

∣

∣

∣
,

6
ε

ε− hµ

(

ε− hσ
ε− hµ

)n

‖ϕ‖ − hσ

ε− hµ

(

ε− hσ
ε− hµ

)n

‖ϕ‖ ,

6

(

ε− hσ
ε− hµ

)n+1

‖ϕ‖ .
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The second to the last step is because the continuous extension is always a convex combination

of stages and we are assuming that there is no overlapping. Now consider the n+ 1 case with

overlapping. Recall from Lemma 4.2.1 that we may always choose our BE solution such that

un+1 is bounded away from a
c
. Then tn < tn+1 − a− cun+1 6 tn+1. Write tn+1 − a− cun+1 =

tn + βh where β ∈ [0, 1]. Then,

un+1 = un +
h

ε
[µun+1 + σ ((1− β)un + βun+1)]

(

1− hµ

ε
− hσβ

ε

)

un+1 =

(

1 +
hσ (1− β)

ε

)

un

un+1 =

(

ε+ hσ (1− β)

ε− hµ− hσβ

)

un

|un+1| =
∣

∣

∣

∣

ε+ hσ (1− β)

ε− hµ− hσβ

∣

∣

∣

∣

|un| 6
(

ε− hσ
ε− hµ

)

|un| 6
(

ε− hσ
ε− hµ

)n+1

‖ϕ‖ .

This completes the proof by strong induction.

By Lemma 4.5.1, for every δ1 > 0 it is always possible to bound a finite segment of the

BE solution by δ1 by bounding the history function by an appropriate δ2. If we can prove

that past that finite segment it is not possible to have un+1 > δ1 > un or un+1 < −δ1 6 un

then the BE solution must always remain bounded inside δ1. This is the discrete version of the

Razumikhin-style proof of stability used in Section 3.4.1.

Let δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ,
∣

∣

a
c

∣

∣

)

, M =
⌈

a+|c|δ
h

⌉

and δ2 = δ1

(

ε−hσ
ε−hµ

)−2M

. If ϕ (t) ∈ [−δ2, δ2]
for t 6 0 then by Lemma 4.5.1, the segment of the BE solution to the model problem (4.1.1)

{un}n>0 from n = 0 to 2M must satisfy un ∈ [−δ1, δ1] for n = 0, ..., 2M . Because of this bound

on the numerical solution then we actually only need ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ1, 0].
We now look for parameter regions for which the BE solution cannot exit [−δ1, δ1]. Suppose

that the BE solution {un}n>0 escapes the interval for the first time through the upper bound

at the (n+ 1)-st step for some n > 2M . Then un+1 > δ1 > un. In the parameter region where

we can obtain a contradiction to this assumption then BE solution must remain inside [−δ, δ].
Suppose un+1 = δ. Since un+1 > un then we get the following condition on Ỹ

(1)
n+1

µun+1 + σỸ
(1)
n+1 > 0 ⇒ Ỹ

(1)
n+1 < −

µ

σ
un+1 = −µ

σ
δ. (4.5.3)
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As in the previous section, define

m =

⌊

a+ cun+1

h

⌋

=

⌊

a+ cδ

h

⌋

, β = m+ 1− a+ cδ

h
(4.5.4)

The definitions of m and β were chosen so that tn+1− a− cδ = (1− β) tn−m + βtn−m+1. Thus

because we are using linear interpolation we also have,

Ỹ
(1)
n+1 = (1− β) un−m + βun−m+1 (4.5.5)

Since n > 2M this implies that for i = n−m, .., n,

ti+1 − a− cun+1 ∈ [tn−m+1 − a− |c| δ, tn+1 − a+ |c| δ] ⊆ [0, tn+1] .

This means that Ỹ
(1)
i+1 = η (ti+1 − a− cui+1) must have properties stemming from the properties

of the continuous extension on [0, tn+1]. We derive some of these properties first and see later

on why these properties are important.

The change from Ỹ
(1)
i to Ỹ

(1)
i+1 depends on the maximum change in the mesh values in a

single step. Since δ1 is a bound on the history function and {ui}ni=0 then δ is also a bound on

the history function and {ui}ni=0. Since un+1 = δ then it is also a bound on the continuous

extension η (t) for t ∈ [0, tn+1]. As a result, for i = 0, ..., n,

|ui+1 − ui| 6
|µui+1|+

∣

∣

∣σỸ
(1)
i+1

∣

∣

∣

ε
h 6

|µ|+ |σ|
ε

δh.

The quantity
∣

∣

∣Ỹ
(1)
i+1 − Ỹ

(1)
i

∣

∣

∣ is bounded by the number of time steps between ti+1 − a − cui+1

and ti − a − cui (including fractions of a step since we are working with linear interpolation),

multiplied by the maximum change in the mesh values in a single step.

∣

∣

∣
Ỹ

(1)
i+1 − Ỹ

(1)
i

∣

∣

∣
6

∣

∣

∣

∣

(ti+1 − a− cui+1)− (ti − a− cui)

h

∣

∣

∣

∣

|µ|+ |σ|
ε

δh,

6

(

1 +
|ui+1 − ui|

h
|c|
) |µ|+ |σ|

ε
δh,

6

(

1 +
|µ|+ |σ|

ε
|c| δ

) |µ|+ |σ|
ε

δh,

= Dδh, (4.5.6)

where D =
(

1 + |µ|+|σ|
ε
|c| δ

)

|µ|+|σ|
ε

as in Section 3.4.1.
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Lemma 4.5.2. If A > 0 and un+1 = Aun + vn then

un+1 = Am+1un−m +

n
∑

i=n−m

An−ivi

Proof. Fix n and use induction on m.

Writing (4.5.2) in the form of Lemma 4.5.2 then un+1 = Aun + vn with

A =
ε

ε− hµ, vi =
hσ

ε− hµỸ
(1)
n+1. (4.5.7)

Applying Lemma 4.5.2 yields un+1 = Am+1un−m +
n
∑

i=n−m

An−ivi. We would like to maximize

the right hand side of this equation in order to get a bound on the value of un+1. To do this we

need to make the sequence {vi} as large as possible. This is done by using the most negative

possible sequence of Ỹi+1 given a fixed value of Ỹn+1. Let this sequence be {wi}. Using the

bounds on the solution and the restrictions (4.5.3) and (4.5.6), define {wi} to be

wi =







−δ, n−m 6 i 6 n− ℓ,
û− (n− i)Dδh, n− ℓ+ 1 6 i 6 n,

(4.5.8)

where û = Ỹ
(1)
n+1 ∈

[

−δ,−µ
σ
δ
]

and

ℓ =

⌈

û+ δ

Dδh

⌉

, χ = ℓ− û+ δ

Dδh
. (4.5.9)

Set ṽi = hσ
ε−hµ

wi. Then using Lemma 4.5.2, we derive

un+1 = Am+1un−m +
n
∑

i=n−m

An−iṽi 6 Am+1un−m +
n
∑

i=n−m

An−iṽi, (4.5.10)

un+1 = Amun−m+1 +

n
∑

i=n−m+1

An−iṽi 6 Amun−m+1 +

n
∑

i=n−m+1

An−iṽi. (4.5.11)
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We performed two summations so that we can combine the un−m and un−m+1 terms using

û = (1− β) un−m + βun−m+1 from (4.5.5). Take (1−β)
A
× (4.5.10) plus β× (4.5.11),

(

1− β
A

+ β

)

un+1 6 [(1− β) un−m + βun−m+1]A
m

+
1− β
A

n
∑

i=n−m

An−iṽi + β

n
∑

i=n−m+1

An−iṽi,

(

1− β
A

+ β

)

un+1 = ûAm +
1− β
A

n
∑

i=n−m

An−iṽi + β

n
∑

i=n−m+1

An−iṽi. (4.5.12)

From this equation we would like to derive discrete versions of the expressions I1 and I2. Recall

from Section 3.4.1 that I2 is used when the η(2) function over the integration interval can be

split between the flat part at −δ and a line with slope Dδ (corresponding to the increasing part

when i = n− ℓ+1, ..., n in the definition of {wi}). The expression I1 is used when the function

to be integrated consists of only the straight line with slope Dδ. We now define S1 and S2

where S2 is used when the {wi} sequence consists of a flat part and then an increasing part

(occurs when ℓ 6 m), and S1 is used when the {wi} sequence consists of only the increasing

part (occurs when ℓ > m). As in the derivation of I1 and I2 we first assume µ 6= 0.

Deriving S2, the discrete version of I2.
Consider the case when ℓ 6 m.

⌈

δ + û

Dδh

⌉

6 m ⇒ û 6 (mhD − 1) δ 6 (τ2D − 1) δ

In this case û ∈
[

−δ,max
{

−µ
σ
δ, (mhD − 1) δ

}]

. Consider the last term in (4.5.12),

n
∑

i=n−m

An−iṽi =
hσ

ε− hµ

[

−
n−ℓ
∑

i=n−m

An−iδ +
n
∑

i=n−ℓ+1

An−i (û− (n− i)Dδh)

]

,

=
hσ

ε− hµ

[

Am+1 −Aℓ

1−A δ +

n
∑

i=n−ℓ+1

An−i (û− (n− i)Dδh)

]

. (4.5.13)

The second term in (4.5.13) can be written as

n
∑

i=n−ℓ+1

An−i (û− (n− i)Dδh) = (û− nDδh)
1−Aℓ

1−A +DδhAn
n
∑

i=n−ℓ+1

i

(

1

A

)i

. (4.5.14)

102



Using the formula
n
∑

i=0
ixi = x−(n+1)xn+1+nxn+2

(x−1)2
, the summation term at the end of (4.5.14)

simplifies to

n
∑

i=n−ℓ+1

i

(

1

A

)i

=

(

1
A
− n+1

An+1 + n
An+2

)

−
(

1
A
− n−ℓ+1

An−ℓ+1 + n−ℓ
An−ℓ+2

)

(

1
A
− 1
)2 ,

=
1

(1−A)An

[

n
(

1−Aℓ
)

+ ℓAℓ+1 +
A
(

Aℓ − 1
)

1−A

]

.

Substitute this back to (4.5.14) and simplifying yields

n
∑

i=n−ℓ+1

An−i (û− (n− i)Dδh) =
1−Aℓ

1−A û+Dδh
ℓAℓ

1 −A +Dδh
A
(

Aℓ − 1
)

(1−A)2
. (4.5.15)

Now substitute this back to (4.5.13)

n
∑

i=n−m

An−iṽi =
hσ

ε− hµ

[

Am+1 −Aℓ

1−A δ +
1−Aℓ

1−A û+Dδh
ℓAℓ

1 −A +Dδh
A
(

Aℓ − 1
)

(1−A)2

]

,

=
hσ

(ε− hµ) (1−A)

[

− (û+ δ)Aℓ + δAm+1 + û+DδhℓAℓ +Dδh
A
(

Aℓ − 1
)

1−A

]

. (4.5.16)

Since A = ε
ε−hµ

then hσ
(ε−hµ)(1−A) = −σ

µ
and A

1−A
= − ε

hµ
. Using this expression in (4.5.16)

simplifies to

n
∑

i=n−m

An−iṽi =
σ

µ

[

(û+ δ)Aℓ − δAm+1 − û−DδhℓAℓ +
εDδ

µ

(

Aℓ − 1
)

]

.

From the definition of ℓ and χ in (4.5.9), û+ δ −Dδhℓ = −Dδhχ. Thus,

n
∑

i=n−m

An−iṽi =
σ

µ

[

−DδhχAℓ − δAm+1 − û+
εDδ

µ

(

Aℓ − 1
)

]

,

=
σ

µ

[

εDδ

µ

((

1− hµχ

ε

)

Aℓ − 1

)

− û− δAm+1

]

. (4.5.17)

Similarly, if we performed the summation from n−m+ 1 to n instead, we derive

n
∑

i=n−m+1

An−iṽi =
σ

µ

[

εDδ

µ

((

1− hµχ

ε

)

Aℓ − 1

)

− û− δAm

]

. (4.5.18)
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Note that this expression works even in the boundary case ℓ = m. The summation term in

(4.5.12) can now be written as

1− β
A

n
∑

i=n−m

An−iṽi + β

n
∑

i=n−m+1

An−iṽi

=
σ

µ

[(

1− β
A

+ β

)[

εDδ

µ

((

1− hµχ

ε

)

Aℓ − 1

)

− û
]

− δAm

]

Using 1−β
A

+ β = (1− β) ε−hµ
ε

+ β = ε−hµ(1−β)
ε

and solving for un+1 in (4.5.12) we get

un+1 6 û

(

A∗ − σ

µ

)

+
σ

µ
δ

[

εD

µ

((

1− hµχ

ε

)

Aℓ − 1

)

−A∗
]

where A∗ = ε
ε−hµ(1−β)A

m. This expression gives a discrete version of I2. We summarize what

we have done so far in Lemma 4.5.4.

Definition 4.5.3. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε − hµ > 0. For δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ1,
∣

∣

a
c

∣

∣

)

define τ1 = a + |c|δ, τ2 = a + cδ, M =
⌈

τ1
h

⌉

and

δ2 = δ1

(

ε−hσ
ε−hµ

)−2M

. As in (4.5.4), (4.5.9), (4.5.7), define

m =

⌊

a+ cun+1

h

⌋

=

⌊

a+ cδ

h

⌋

, β = m+ 1− a+ cδ

h
, ℓ =

⌈

û+ δ

Dδh

⌉

, χ = ℓ− û+ δ

Dδh
,

A =
ε

ε− hµ, A∗ =
ε

ε− hµ (1− β)
Am.

Lemma 4.5.4. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that ε−hµ > 0.

Let δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ1,
∣

∣

a
c

∣

∣

)

and û ∈
[

−δ,min{−µ
σ
δ, (mhD − 1)δ}

]

. Define τ1, τ2, M , δ2,

m, β, ℓ, χ, A and A∗ as in Definition 4.5.3. If ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then the

BE solution {un}n>0 satisfies un ∈ [−δ1, δ1] for n = 0, ..., 2M . Suppose that the BE solution

escapes the interval for the first time through the upper bound at un+1 = δ > δ1, n > 2M and

û = Ỹ
(1)
n+1 = η (tn+1 − a− cun+1). Define

S2 (û, δ) = û

(

A∗ − σ

µ

)

+
σ

µ
δ

[

εD

µ

((

1− hµχ

ε

)

Aℓ − 1

)

−A∗
]

. (4.5.19)

Then un+1 6 S2 (û, δ).

When µ = 0 we define S2 (û, δ) as the limit of the right hand side of (4.5.19) as µ → 0.

For brevity we do not consider this case separately.
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Deriving S1, the discrete version of I1.
Now consider the case when ℓ > m.

⌈

δ + û

Dδh

⌉

> m ⇒ û > (mhD − 1) δ

Then û ∈
[

(mhD − 1) δ,−µ
σ
δ
]

. Consider the last term in (4.5.12). The summation does not

have to be split up in this case. Using the same steps as in the derivation of (4.5.15) we derive

n
∑

i=n−m

An−iṽi =
hσ

ε− hµ

n
∑

i=n−m

An−i (û− (n− i)Dδh),

=
hσ

(ε− hµ) (1−A)

[

(

1−Am+1
)

û+Dδh (m+ 1)Am+1 +Dδh
A
(

Am+1 − 1
)

1−A

]

,

=
σ

µ

[

(

Am+1 − 1
)

û−Dδh (m+ 1)Am+1 +
εDδ

µ

(

Am+1 − 1
)

]

.

Similarly, if the summation were performed from n−m+ 1 to n this yields

n
∑

i=n−m+1

An−iṽi =
σ

µ

[

(Am − 1) û−DδhmAm +
εDδ

µ
(Am − 1)

]

.

Combining these two terms as in (4.5.12),

1− β
A

n
∑

i=n−m

An−iṽi + β

n
∑

i=n−m+1

An−iṽi,

=
σ

µ

[

−
(

1− β
A

+ β

)(

û+
εDδ

µ

)

+ ûAm −Dδh (m+ 1− β)Am +
εDδ

µ
Am

]

,

=
σ

µ

[

−
(

1− β
A

+ β

)(

û+
εDδ

µ

)

+

(

û−Dδτ2 +
εDδ

µ

)

Am

]

.

Solving for un+1 in (4.5.12) and using A∗ = ε
ε−hµ(1−β)A

m we get

un+1 6 ûA∗ +
σ

µ

[

−û− εDδ

µ
+

(

û−Dδτ2 +
εDδ

µ

)

A∗
]

= û

[

A∗ +
σ

µ
(A∗ − 1)

]

+
σ

µ
Dδ

[

ε

µ
(A∗ − 1)− τ2A∗

]

This expression gives a discrete version of I1.
Lemma 4.5.5. Let ε, a > 0, σ 6 µ < ε

a
and σ < −µ. Let the stepsize h be such that

ε− hµ > 0. Let δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ1,
∣

∣

a
c

∣

∣

)

and û ∈
[

(mhD − 1)δ,−µ
σ
δ
]

. Define τ1, τ2, M , δ2,

m, β, ℓ, χ, A and A∗ as in Definition 4.5.3. If ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then the
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BE solution {un}n>0 satisfies un ∈ [−δ1, δ1] for n = 0, ..., 2M . Suppose that the BE solution

escapes the interval for the first time through the upper bound at un+1 = δ > δ1, n > 2M and

û = Ỹ
(1)
n+1 = η (tn+1 − a− cun+1). Define

S1 (û, δ) = û

[

A∗ +
σ

µ
(A∗ − 1)

]

+
σ

µ
Dδ

[

ε

µ
(A∗ − 1)− τ2A∗

]

(4.5.20)

Then un+1 6 S1 (û, δ).

When µ = 0 we define S1 (û, δ) as the limit of the right hand side of (4.5.20) as µ → 0.

Again, we do not consider this case separately for brevity.

Definition 4.5.6. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε− hµ > 0. Let δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ1,
∣

∣

a
c

∣

∣

)

and û ∈
[

(mhD − 1)δ,−µ
σ
δ
]

. Define

S (Θ = 1, h) (û, δ, c, 2) =







S1 (û, δ) , ℓ > m

S2 (û, δ) , ℓ 6 m,

using (4.5.19), (4.5.20) and Definition 4.5.3. Also define the function

PΘ=1,h (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]
S (Θ = 1, h) (û, δ, |c|, 2) .

Note that by using |c| instead of c in S we only need to set τ2 and m to be equal to τ1 and M

respectively.
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(a) h = 0.3, δ = 0.1
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(b) h = 0.5, δ = 0.1

Figure 4–5: The sets {PΘ=1 (δ, c, 2) < δ} are shaded green and plotted with ε = a = c = 1. This
figure also shows the boundary of the set {P (1, 0, 2) < 1} (in red) which is always contained
inside {PΘ=1 (δ, c, 2) < δ} for small enough δ (Theorem 3.4.10).
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Sample plots of the sets {PΘ=1,h (δ, c, 2) < δ} in the (µ, σ) plane are shown in Figure 4–5.

We prove in Lemma 4.5.10 that if PΘ=1,h (δ, c, 2) < δ then the BE solution to (4.1.1) cannot

exit the interval [−δ, δ]. Figure 4–5 also shows that the set {P (1, 0, 2) < 1} is contained inside

{PΘ=1,h (δ, c, 2) < δ} for small δ. This is proven in Theorem 3.4.10 where we also show that a

discrete version of Lyapunov stability holds for (µ, σ) ∈ {P (1, 0, 2) < 1}. To prove these results

we first need to consider how the sets {PΘ=1,h (δ, c, 2) < δ} change when we change δ or c.

Lemma 4.5.7. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε − hµ > 0. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, m ∈ N and û ∈
[

−δ,−µ
σ
δ
]

be fixed. The partial derivative of

S (Θ = 1, h) (û, δ, c, 2) with respect to τ2 is defined for τ2 ∈ (mh, (m+ 1)h) and it is given by

∂

∂τ2
S (τ2) ≡

∂

∂τ2







S1 (û, δ) , ℓ > m

S2 (û, δ) , ℓ 6 m
=

A∗

ε− hµ (1− β)
(µû+ σwn−m) . (4.5.21)

If ∂
∂τ2
S (τ2) 6 0 then µ > 0 and S (Θ = 1, h) (û, δ, c, 2) < δ.

Proof. If either µ 6 0 holds or µ > 0 and wn−m 6 0 holds then it is easy to show that

µû+ σwn−m > 0. So consider the case when µ > 0 and wn−m > 0. Then we must have ℓ 6 m

and S (Θ = 1, h) (û, δ, c, 2) = S1 (û, δ). Let ∂
∂τ2
S (τ2) 6 0 then µû + σwn−m = (µ+ σ) û +

σmhDδ 6 0. Using this we derive

S1 (û, δ) 6 û

[

A∗ +
σ

µ
(A∗ − 1)

]

+
σ

µ
Dδ

ε

µ
(A∗ − 1)− (µ+ σ) û

A∗

µ
− σDδ (1− β)

= −ûσ
µ

+ δ
σεD

µ2
(Am − 1)− (µ+ σ) û

e
µτ2

ε

µ
6 δ + δ

σεD

µ2

(

e
µ
ε
τ2 − 1

)

< δ.

where the last line is because û 6 −µ
σ
δ and σ < 0.

Lemma 4.5.8. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that ε−hµ > 0

(no restriction if µ 6 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

.

Then S (Θ = 1, h) (û, δ,−|c|, 2) 6 S (Θ = 1, h) (û, δ, |c|, 2) and







PΘ=1,h (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]
S (Θ = 1, h) (û, δ, |c|, 2) < δ







⊆







sup
û∈[−δ,−µ

σ
δ]
S (Θ = 1, h) (û, δ,−|c|, 2) < δ







.
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Proof. Similar to the proof of Lemma 3.4.4. We use the continuity of S (Θ = 1, h) (û, δ, c, 2)

with respect to τ2 even though it is not differentiable at points where τ2 = mh, m ∈ N.

Lemma 4.5.9. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that ε−hµ > 0

(no restriction if µ 6 0, automatically satisfied for µ > 0 when h ∈ (0, a]). If 0 < δ 6 δ∗ <
∣

∣

a
c

∣

∣

then {PΘ=1,h (δ∗, c, 2) < δ∗} ⊆ {PΘ=1,h (δ, c, 2) < δ}.

Proof. Similar to the proof of Lemma 3.4.5.

Lemmas 4.5.9 describes how the sets {PΘ=1,h (δ, c, 2) < δ} change with δ and Lemma 4.5.8

describes how these sets change with the sign of c. These are used along with Lemmas 4.5.4

and 4.5.5 to prove that the BE solution cannot escape [−δ, δ] if PΘ=1,h (δ, c, 2) < δ. This result

is given in the following lemma.

Lemma 4.5.10. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that ε−hµ > 0

(no restriction if µ 6 0, automatically satisfied for µ > 0 when h ∈ (0, a]). Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

,

M =
⌈

a+|c|δ
h

⌉

, δ2 = δ
(

ε−hσ
ε−hµ

)−2M−1
and (µ, σ) ∈ {PΘ=1,h (δ, c, 2) < δ}. Then if ϕ(t) ∈ [−δ2, δ2]

for t ∈ [−a− |c|δ, 0] then the BE solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for n > 0.

Proof. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ1 =
(

ε−hσ
ε−hµ

)−1
δ and δ2 = δ

(

ε−hσ
ε−hµ

)−2M−1
. By Lemma 4.5.1, if

ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− cδ, 0] then un ∈ [−δ1, δ1] for n = 0, ..., 2M . Assume the solution

first exits this interval at the (n+1)st step through the upper bound with un+1 = δ3 > δ1. Then

by Lemmas 4.5.4 and 4.5.5, un+1 6 PΘ=1,h (δ3, c, 2). If (µ, σ) ∈ {PΘ=1,h (δ3, c, 2) < δ3} then we

have contradiction. Thus the BE solution cannot exit [−δ1, δ1] for the first time through the

upper bound.

Recall from (4.3.4) that if the history function and the BE solution up to n are bounded

inside [−δ1, δ1], ε− hµ > 0 and µ+ σ < 0 then

|un+1| 6
|ε|+ |hσ|
|ε− hµ| δ1 = δ.

Thus, un+1 = δ3 > δ1 is only possible if δ3 ∈ [δ1, δ]. By Lemma 4.5.9,

⋂

δ3∈[δ1,δ]

{PΘ=1,h (δ3, c, 2) < δ3} = {PΘ=1,h (δ, c, 2) < δ}

Let (µ, σ) ∈ {PΘ=1,h (δ, c, 2) < δ} and ϕ(t) ∈ [−δ2, δ2]. Then by our discussion above, the

BE solution cannot escape [−δ1, δ1] ⊆ [−δ, δ] through the upper bound.
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Now consider the case in which the BE solution leaves [−δ, δ] through the lower bound by

considering the system v (t) = −u (t),

εv̇ (t) = µv (t) + σv (t− a+ cv (t)) , t > 0,

v (t) = −ϕ (t) , t 6 0.
(4.5.22)

This is effectively the same system (4.1.1) except with c replaced by −c. By our discussion

above and Lemma 4.5.8, if (µ, σ) ∈ {PΘ=1,h (δ, c, 2) < δ} and ϕ is small enough then the BE

solution to (4.5.22) cannot escape [−δ, δ] through the upper bound. Thus the BE solution to

(4.1.1) cannot escape [−δ, δ] through the lower bound either.

Lemma 4.5.10 proves that if (µ, σ) ∈ {PΘ=1 (δ, c, 2) < δ}, then it is possible to bound the

history function such that un ∈ [−δ, δ] for n > 0. To extend this idea to Lyapunov stability, we

need a region where we can bound the BE solution like this for all δ > 0. In Theorem 4.5.15 we

show that for small enough δ, {P (1, 0, 2) < 1} ⊆ {PΘ=1 (δ, c, 2) < δ}. Thus we get a discrete

version of Lyapunov stability of the BE solution to (4.1.1) if (µ, σ) ∈ {P (1, 0, 2) < 1}. The

proof of Theorem 4.5.15 requires the items proven in Lemma 4.5.14. This lemma requires

Lemmas 4.5.11, 4.5.12 and 4.5.13.

Lemma 4.5.11. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h be such that

ε− hµ > 0. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and use Definition 4.5.3. The following inequalities hold

ε

ε− hµ (1− β)
Am = A∗

> e
µτ1

ε ,

(

1− hµχ

ε

)

Aℓ
> e

µ
ε

δ+û
Dδ . (4.5.23)

If µ > 0 then the following inequalities also hold

(

1− hµ

ε

)− τ1
h

>
ε

ε− hµ (1− β)
Am = A∗

> e
µτ1

ε , (4.5.24)

(

1− hµχ

ε

)

Aℓ
>

(

1− hµ

ε

)− δ+û
Dδh

> e
µ
ε

δ+û
Dδ . (4.5.25)

Proof. Since 1 + x 6 ex for all x ∈ R,

ε

ε− hµ (1− β)
=

(

1− hµ (1− β)

ε

)−1

> e
hµ(1−β)

ε ,

(

ε

ε− hµ

)m

=

(

1− hµ

ε

)−m

> e
hµm

ε .
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Together these two inequalities yield the first inequality in (4.5.23). For the second inequality

let s = hµ
ε

. Since χ ∈ [0, 1] then for all s ∈ R,

1− χs
1− s > e(1−χ)s,

with the equality only occurring at s = 0. Note that ℓ > 1. Since 1 + x 6 ex for all x ∈ R,

(

ε

ε− hµ

)ℓ−1

=

(

1− hµ

ε

)−ℓ+1

> e
hµ(ℓ−1)

ε .

The two inequalities used together yield the second inequality in (4.5.23). Now let µ > 0. Since

ε− hµ > 0 then s = hµ
ε
∈ [0, 1). Let ω = 1− β ∈ (0, 1]. Then,

(1− ωs)−1 = 1 + ωs+ ω2s2 + ω3s3 + ...

(1− s)−ω = 1 + ωs+
ω (ω + 1)

2!
s2 +

ω (ω + 1) (ω + 2)

3!
s3 + ....

From these series expansions, (1− ωs)−1
6 (1− s)−ω. Also, since 1 + x 6 ex for x ∈ R,

1− ωs 6 e−ωs and 1− s 6 e−s. Thus for m > 0,

e(m+ω)s
6 (1− ωs)−1 (1− s)−m

6 (1− s)−(m+ω) .

By substituting in ω = 1− β, s = hµ
ε

and m+ 1− β = τ1
h

this equation becomes (4.5.24). For

the next inequality we consider the series expansion

(1− s)ω = 1− ωs− ω (1− ω)

2!
s2 − ω (1− ω) (2− ω)

3!
s3 − ....

Then 1− ωs > (1− s)ω. Thus it follows that

(1− ωs) (1− s)−ℓ
> (1− s)−(ℓ−ω) . (4.5.26)

And again from 1 + x 6 ex we have 1− s 6 e−s which immediately yields

(1− s)−(ℓ−ω)
> e(ℓ−ω)s (4.5.27)

From (4.5.26) and (4.5.27), (1− ωs) (1− s)−ℓ
> (1− s)−(ℓ−ω)

> e(ℓ−ω)s. Setting ω = χ, s = hµ
ε

and ℓ− χ = δ+û
Dδh

this inequality becomes (4.5.25).
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Lemma 4.5.12. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and use Definition 4.5.3.

Let h ∈ (0, τ1). If mhD − 1 6 −µ
σ

then µ > − ε
2τ1

, σ > −2ε
τ1

.

Proof. Let mhD − 1 6 −µ
σ
. Then by the same proof as in Lemma 3.4.8, we must have

µ >
(

−3 + 2
√

2
)

ε
mh

and σ > − ε
mh

. For all τ1 > h > 0, τ1
mh

= τ1

⌊ τ1
h ⌋
∈ [1, 2]. Then σ > −2ε

τ1
and

µ > 2
(

−3 + 2
√

2
)

ε
τ1
≈ −0.343 ε

τ1
> − ε

2τ1
.

Recall that in the sets {P (δ, c, 2) < δ} we always have σ 6 µ and σ < −µ. In Sec-

tion 3.4.3, we also calculated that in the limit set {P (1, 0, 2) < 1} we have µ 6 s ε
a

where s ≈
0.456971657679506. Thus, for all (µ, σ) ∈ {P (1, 0, 2) < δ}, if we restrict δ ∈

(

0,
∣

∣

a
c

∣

∣

(

1
2s
− 1
))

then µ 6 s ε
a

6
ε

2τ1
. Choosing δ ∈

(

0, a
4|c|

)

suffices. Since {P (δ, c, 2) < δ} ⊆ {P (1, 0, 2) < 1}
then µ 6 ε

2τ1
as well in the set {P (δ, c, 2) < δ}. This is necessary for the proofs of Lemmas 4.5.13

and 4.5.14.

Lemma 4.5.13. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let h ∈ (0, a], δ ∈
(

0, a
4|c|

)

so that

τ1 = a + |c|δ 6
ε
2µ

for all (µ, σ) ∈ {P (δ, c, 2) < δ}. Let m =
⌊

τ1
h

⌋

and û0 = σ
µ
δ

1− ε
µτ1

1+ σ
µ

ε
µτ1

. If

mhD − 1 6 −µ
σ

and µ > 0 then (mhD − 1) δ > û0.

Proof. Let mhD − 1 6 −µ
σ

and µ > 0. Since τ1
mh
∈ [1, 2] (shown in Lemma 4.5.12) then

mh ∈
[

τ1
2 , τ1

]

and

û0 − (mhD − 1) δ 6
σ

µ
δ

1− ε
µτ1

1 + σ
µ

ε
µτ1

−
(

τ1D

2
− 1

)

δ = δ
1 + σ

µ

(

1− εD
2µ

)

− τ1D
2

1 + σ
µ

ε
µτ1

. (4.5.28)

Since σ < −µ and µτ1
ε

6 1
2 then the denominator is negative. Consider the numerator. The

term εD
2µ

>
µ−σ
2µ

> 1. Thus since σ
µ
< −1,

1 +
σ

µ

(

1− εD

2µ

)

− τ1D

2
>
εD

2µ
− τ1D

2
=
D

2

(

ε

µ
− τ1

)

> 0

Going back to (4.5.28), this yields the required result (mhD − 1) δ > û0.

Next we prove Lemma 4.5.14 which is used to prove Theorem 4.5.15.

Lemma 4.5.14. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h > 0. If µ > 0 restrict

h ∈ (0, a]. Let δ ∈
(

0, a
4|c|

)

so that τ1 = a+|c|δ satisfies µτ1
ε

6
1
2 for all (µ, σ) ∈ {P (δ, c, 2) < δ}.

Then for all (µ, σ) ∈ {P (δ, c, 2) < δ}, the following items (A)-(G) are true:

(A) If µ < 0 then for all û 6 0, S2 (û, δ) 6 I2 (û, δ).
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(B) If µ > 0 then for all u >
σ
µ
δ

1− ε
µτ1

1+ σ
µ

ε
µτ1

, S2 (û, δ) 6 I2 (û, δ). Also,

sup
û∈[−δ,min{−µ

σ
δ,(τ1D−1)δ}]

S2 (û, δ) < δ.

(C) If µ < 0 then for all û 6 0, S1 (û, δ) 6 I1 (û, δ).

(D) If µ > 0 then for all û > −δ, S1 (û, δ) 6 I1 (û, δ).

(E) If τ1D − 1 > −µ
σ
> ⌊ τ1

h
⌋hD − 1 and h ∈ (0, τ1] then sup

û∈[(⌊ τ1
h
⌋hD−1)δ,−µ

σ
δ] S1 (û, δ) 6

I2
(

−µ
σ
δ, δ
)

. If h > τ1 and µ < 0 then supû∈[(⌊ τ1
h
⌋hD−1)δ,−µ

σ
δ] S1 (û, δ) < δ.

(F) If τ1D − 1 6 −µ
σ

then supû∈[−δ,(τ1D−1)δ] S2 (û, δ) = S2 ((τ1D − 1) δ, δ).

(G) If τ1D − 1 6 −µ
σ

then S2 ((τ1D − 1) δ, δ) 6 sup
v̂∈[(τ1D−1)δ,−µ

σ
δ] S1 (v̂, δ).

Proof of (A). Recall the definition of S2 (û, δ) in (4.5.19) and compare this with I2 (û, δ) in

(3.4.14),

S2 (û, δ) − I2 (û, δ) =

(

û− σ

µ
δ

)

(

A∗ − e
µτ1

ε

)

+
σεD

µ2
δ

((

1− hµχ

ε

)

Aℓ − eµ
ε

δ+û
Dδ

)

. (4.5.29)

When µ < 0 then û ∈
[

−δ,−µ
σ
δ
]

⊆ [−δ, 0] and so û − σ
µ
δ < 0. Also, σεD

µ2 δ < 0. Using

Lemma 4.5.11, when µ 6 0 then S2 (û, δ) 6 I2 (û, δ).

Proof of (B). First we would like to show that S2 (û, δ) is continuous with respect to û. The

only term in the expression that gives us trouble with this is
(

1− hµχ
ε

)

Aℓ whenever ℓ changes

values. Let i > 0 be an integer. Then

lim
δ+û
Dδh

→i+

(

1− hµχ

ε

)

Aℓ = lim
χ→1

(

1− hµχ

ε

)

Ai+1 =

(

1− hµ

ε

)

Ai+1 = Ai,

lim
δ+û
Dδh

→i−

(

1− hµχ

ε

)

Aℓ = lim
χ→0

(

1− hµχ

ε

)

Ai = Ai.

Let µ > 0 and h ∈ (0, a]. Then û− σ
µ
δ > 0 for û ∈

[

−δ,min
{

−µ
σ
δ, (τ1D − 1) δ

}]

. From (4.5.29)

we see that S2 (−δ, δ) > I2 (−δ, δ) because the second term disappears. So we cannot show

S2 (û, δ) > I2 (û, δ) for all û. From (4.5.29) and Lemma 4.5.11, we derive a function E (h)
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defined as follows

S2 (û, δ)− I2 (û, δ)

6 E (h) =

(

û− σ

µ
δ

)

[

(

1− hµ

ε

)− τ1
h

− e
µτ1

ε

]

+
σεD

µ2
δ

[

(

1− hµ

ε

)− δ+û
Dδh

− e
µ
ε

δ+û
Dδ

]

. (4.5.30)

Figure 4–6 shows the comparison between S2 (û, δ) − I2 (û, δ) and E (h). The function E (h)

always goes to zero as h→ 0. So if we would like to keep S2 (û, δ)− I2 (û, δ) negative for all h

such that ε− hµ > 0, then it suffices to require dE(h)
dh

6 0 for all h ∈ (0, a].
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Figure 4–6: Sample plots of S2

(

−µ
σ
δ, δ
)

− I2
(

−µ
σ
δ, δ
)

and the estimate E (h) given in (4.5.30)
versus the step-size h for ε = a = 1 and different values of σ and c.
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dE (h)

dh
=

(

û− σ

µ
δ

)(

1− hµ

ε

)− τ1
h

τ1





ln
(

1− hµ
ε

)

h2
+

µ

εh
(

1− hµ
ε

)





+
σεD

µ2
δ

(

1− hµ

ε

)− δ+û
Dδh δ + û

Dδ





ln
(

1− hµ
ε

)

h2
+

µ

εh
(

1− hµ
ε

)





Series expansions show that the term
ln(1−hµ

ε )
h2 + µ

εh(1−hµ
ε )

is always positive. Thus,

dE (h)

dh
< 0

⇔






1 +

σ

µ

ε

µτ1

(

1− hµ

ε

)

τ1−
δ+û
Dδ

h






û− σ

µ
δ






1− ε

µτ1

(

1− hµ

ε

)

τ1−
δ+û
Dδ

h






6 0. (4.5.31)

Consider the sign of the term 1− ε
µτ1

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h
,

1− ε

µτ1

(

1− hµ

ε

)

τ1−
δ+û
Dδ

h

6 0 ⇔ δ + û

Dδ
> τ1 −

h ln
(

µτ1
ε

)

ln
(

1− hµ
ε

) . (4.5.32)

Recall we chose δ small enough such that µτ1
ε

6
1
2 . Then ln

(

µτ1
ε

)

< 0. Since h ∈ (0, a] then

x = µh
ε

6
µτ1
ε

6
1
2 . The function x

ln(1−x) is an increasing function of x = µh
ε
∈
[

0, µτ1
ε

]

, thus

τ1

(

1− ln
(

µτ1
ε

)

ln
(

1− µτ1
ε

)

)

= τ1 −
ε ln

(

µτ1
ε

)

µ

µτ1
ε

ln
(

1− µτ1
ε

) > τ1 −
ε ln

(

µτ1
ε

)

µ

hµ
ε

ln
(

1− hµ
ε

) .

Since 1 − ln(x)
ln(1−x) 6 0 for all x = µτ1

ε
∈
(

0, 1
2

]

. Then δ+û
Dδ

> 0 > τ1

(

1− ln(µτ1
ε )

ln(1−µτ1
ε )

)

. Then by

(4.5.32) and σ < −µ < 0,

1 +
σ

µ

ε

µτ1

(

1− hµ

ε

)

τ1−
δ+û
Dδ

h

6 1− ε

µτ1

(

1− hµ

ε

)

τ1−
δ+û
Dδ

h

6 0.

114



Going back to (4.5.31), dE(h)
dh

< 0 if û satisfies

û >
σ

µ
δ

1− ε
µτ1

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h

1 + σ
µ

ε
µτ1

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h

.

Consider the function σ
µ

1− ε
µτ1

x

1+ σ
µ

ε
µτ1

x
of x =

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h
. The derivative of this for µ > 0 is

positive so the function is maximum at the maximum value of x. This occurs at û = (τ1D − 1) δ

and x = 1. Thus,

σ

µ
δ

1− ε
µτ1

1 + σ
µ

ε
µτ1

>
σ

µ
δ

1− ε
µτ1

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h

1 + σ
µ

ε
µτ1

(

1− hµ
ε

)

τ1−
δ+û
Dδ

h

.

It suffices to require û > û0 = σ
µ
δ

1− ε
µτ1

1+ σ
µ

ε
µτ1

to get dE(h)
dh

< 0. This proves the first part of (B).

In order to show the second part of (B), consider the derivative of S2 (û, δ) with respect to

û. When δ+û
Dδh

is not an integer, the derivative of S2 (û, δ) is defined and given by

d

dû
S2 (û, δ) = A∗ − σ

µ
+
σ

µ
Aℓ. (4.5.33)

This shows that S2 is piecewise linear. The function reaches a maximum at the start of the

first interval where this derivative is negative. Let ℓ be fixed and assume that this derivative is

negative. Then,

d

dû
S2 (û, δ) = A∗ − σ

µ
+
σ

µ
Aℓ

6 0 ⇒ σ 6 −µ A∗

Aℓ − 1

Since ℓ 6 m then −µ A∗

Aℓ−1
is a decreasing function of µ. Thus the maximum occurs at µ = 0.

Using L’Hopital’s rule, the value at this point is − ε
hℓ

. Thus,

d

dû
S2 (û, δ) 6 0 ⇒ σ 6 − ε

hℓ
(4.5.34)

We will come back to this later. Let û0 = σ
µ
δ

1− ε
µτ1

1+ σ
µ

ε
µτ1

and

ℓ0 =

⌈

δ + û0

Dδh

⌉

=











δ + σ
µ
δ

1− ε
µτ1

1+ σ
µ

ε
µτ1

Dδh











=









1 + σ
µ

(

1 + σ
µ

ε
µτ1

)

Dh









. (4.5.35)
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Suppose ℓ0 > 1. From our choice of δ, ε
µτ1

> 1
2 . Since σ < −µ then

1+ σ
µ

1+ σ
µ

ε
µτ1

< 1. Thus for

ℓ0 > 1 we must have Dh < 1.

Dh < 1 ⇒ µ− σ
ε

h < 1 ⇒ µ− ε

h
< σ.

In particular this means σ > − ε
h
. From (4.5.34), we cannot have d

dû
S2 (û0, δ) 6 0 if ℓ0 > 1.

Thus in this case the maximum value of S2 (û, δ) must occur past û0. We have already proven

that S2 (û, δ) 6 I2 (û, δ) past û0. So if ℓ0 > 1 then for all û1 > û0,

sup
û∈[−δ,û1]

S2 (û, δ) 6 sup
û∈[−δ,û1]

I2 (û, δ) .

Since µ > 0 then û0 < 0 < −µ
σ
δ. If τ1D−1 6 −µ

σ
then mhD−1 6 −µ

σ
and from Lemma 4.5.13,

û0 6 (mhD − 1) δ 6 (τ1D − 1) δ. Thus, min{−µ
σ
δ, (τ1D − 1) δ} > û0. This proves the second

part of (B) for the case ℓ0 > 1.

Now consider the case ℓ0 = 0 or 1. In either case, the maximum of S2 (û, δ) must occur at

û = −δ. If we can prove that S2 (û, δ) < δ then we are done. Suppose not. Then,

S2 (−δ, δ) = −δ
(

A∗ − σ

µ
+
σ

µ
A∗
)

> δ ⇒ σ 6 −µA
∗ + 1

A∗ − 1
.

The term −µA∗+1
A∗−1 is an increasing function of A∗. Using this and Lemma 4.5.11,

σ 6 −µA
∗ + 1

A∗ − 1
6 −µ

(

1− hµ
ε

)− τ1
h

+ 1

(

1− hµ
ε

)− τ1
h − 1

6 −µ
(

1− µτ1
ε

)−1
+ 1

(

1− µτ1
ε

)−1 − 1
= µ− 2ε

τ1
.

By our choice of δ, τ1 6
5
4a. Thus, σ 6 µ− 8ε

5a
. But if (µ, σ) ∈ {P (δ, c, 2) < δ} ⊆ {P (1, 0, 2) <

1} then σ > µ− 3ε
2a

. This is a contradiction. Then we must have S2 (−δ, δ) < δ.

Proof of (C). Let µ < 0. Then

S1 (û, δ)− I1 (û, δ) =

[

û

(

1 +
σ

µ

)

+
σD

µ
δ

(

ε

µ
− τ1

)]

(

A∗ − e
µτ1

ε

)

. (4.5.36)

From Lemma 4.5.11, the second factor is positive. Since σ 6 µ < 0 then the first factor,

û
(

1 + σ
µ

)

+ σD
µ
δ
(

ε
µ
− τ1

)

is negative for all û 6 0. This is enough to show S1 (û, δ) 6 I1 (û, δ)

for all û ∈
[

−δ,−µ
σ
δ
]

.
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Proof of (D). Consider (4.5.36) with µ > 0. From Lemma 4.5.11, the second factor is positive.

So we need to show that û
(

1 + σ
µ

)

+ σD
µ
δ
(

ε
µ
− τ1

)

6 0. Since 1 + σ
µ

6 0 then set û = −δ to

get the worst case.

−δ
(

1 +
σ

µ

)

+
σ

µ
Dδ

(

ε

µ
− τ1

)

6 0 ⇔ 1− µτ1
ε

> µ
µ
σ

+ 1

εD
(4.5.37)

Since D = |µ|+|σ|
ε

(

1 + |µ|+|σ|
ε

δ|c|
)

>
|µ|+|σ|

ε
then µ

σ

µ
σ
+1

µ
σ
−1

> µ
µ
σ
+1

εD
. Maximizing the function

x
(

x+1
x−1

)

over x = µ
σ
∈ [−1, 0] yields a maximum value of 3−

√
2. Hence,

0.8284 ≈ 3− 2
√

2 >
µ

σ

µ
σ

+ 1
µ
σ
− 1

> µ
µ
σ

+ 1

εD
. (4.5.38)

By our choice of δ, µτ1
ε

6
1
2 so 1 − µτ1

ε
> 3 − 2

√
2. By this, (4.5.36), (4.5.37) and (4.5.38) we

must have S1 (−δ, δ) 6 I1 (−δ, δ). Then S1 (û, δ) 6 I1 (û, δ) for all û > −δ.

Proof of (E). Let τ1D−1 > −µ
σ
> mhD−1 and û ∈

[

(mhD − 1) δ,−µ
σ
δ
]

. In this case ℓ = m+1

so the relevant summation is S1 (û, δ). First consider h ∈ (0, a]. We begin by proving that in

this case, S1 ((τ1D − 1) δ, δ) 6 I1 ((τ1D − 1) δ, δ). For µ > 0 this is guaranteed by (D). For

µ < 0 the result is guaranteed by (C) only if (τ1D − 1) δ < 0 which is not always true. Let

µ < 0. From (4.5.36), the sign of S1 ((τ1D − 1) δ, δ)−I1 ((τ1D − 1) δ, δ) is the same as the sign

of (τ1D − 1)
(

1 + σ
µ

)

+ σD
µ

(

ε
µ
− τ1

)

. Since σ < −µ then 1 + σ
µ

ε
µτ1

< 0. Thus,

(τ1D − 1)

(

1 +
σ

µ

)

+
σD

µ

(

ε

µ
− τ1

)

=

(

1 +
σ

µ

ε

µτ1

)

τ1D − 1− σ

µ
,

6

(

1 +
σ

µ

ε

µτ1

)

τ1
|µ|+ |σ|

ε
− 1− σ

µ
,

= −(µ+ σ) τ1
ε

− 1− 2
σ

µ
− σ2

µ2
6 −(µ+ σ) τ1

ε
− 4. (4.5.39)

By Lemma 4.5.12, µτ1
ε

> −1
2 and στ1

ε
> −2. Then the term in (4.5.39) is negative so

S1 ((τ1D − 1) δ, δ) 6 I1 ((τ1D − 1) δ, δ).

From this result and from the continuity at the point where we switch between I1 and I2,

S1 ((τ1D − 1) δ, δ) 6 I1 ((τ1D − 1) δ, δ) = I2 ((τ1D − 1) δ, δ) .
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From (A), (B) and continuity at the point where we switch between S1 and S2,

S1

((⌊τ1
h

⌋

hD − 1
)

δ, δ
)

= S2

((⌊τ1
h

⌋

hD − 1
)

δ, δ
)

6 I2
((⌊τ1

h

⌋

hD − 1
)

δ, δ
)

.

Since S1 (û, δ) is monotonic and I2 (û, δ) is concave downwards with respect to û (these prop-

erties of I2 are discussed in Theorem 3.4.10), then the two functions cannot cross between

û =
(

⌊ τ1
h
⌋hD − 1

)

δ and (τ1D − 1) δ. So S1 (û, δ) 6 I2 (û, δ) in the entire interval if h ∈ (0, τ1].

The case h > τ1 is only allowed when µ 6 0. Then Lemma 4.5.12 does not apply but in

this case m = 0 so easily S1 (û, δ) = û− σ
µ
τ1Dδ < δ.

Proof of (F). Recall the expression for d
dû
S2 (û, δ) from (4.5.33). If µ 6 0 then A < 1 and

increasing û decreases the derivative. If µ > 0 then A > 1 and increasing û also decreases

the derivative. So to prove (F) we just have to show that d
dû
S2 ((τ1D − 1) δ, δ) > 0. Let

û = (τ1D − 1) δ. Then ℓ =
⌈

τ1
h

⌉

. Then generally ℓ = m+ 1.

d

dû
S2 (û, δ) >

ε

ε− hµ (1− β)
Am − σ

µ
+
σ

µ

ε

ε− hµ (1− β)
Am

So it suffices to prove ε
ε−hµ(1−β)A

m − σ
µ

+ σ
µ

ε
ε−hµ(1−β)A

m > 0. In the case µ < 0,

ε

ε− hµ (1− β)
Am − σ

µ
+
σ

µ

ε

ε− hµ (1− β)
Am > e

µ
ε
τ1 − σ

µ
+
σ

µ
e

µ
ε
τ1 > 0,

where the first inequality is from Lemma 4.5.11 and the second is from Lemma 3.4.9 (C). Now

let µ > 0. Suppose ε
ε−hµ(1−β)A

m − σ
µ

+ σ
µ

ε
ε−hµ(1−β)A

m < 0. Solving for σ we get

σ < −µ
(

ε
ε−hµ(1−β)A

m

ε
ε−hµ(1−β)A

m − 1

)

The right hand side can be shown to be a decreasing function in µ. In the limit µ → 0, the

right hand side goes to − ε
τ1

using L’Hopital’s rule. So for µ > 0,

d

dû
S2 (û, δ) < 0 ⇒ σ < − ε

τ1

But from Lemma 3.4.8, τ1D − 1 6 −µ
σ

implies σ > − ε
τ1

. Thus if τ1D − 1 6 −µ
σ

we must have

d
dû
S2 (û, δ) > 0.
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Proof of (G). Compare S2 ((τ1D − 1) δ, δ) and S1 (v̂, δ) where v̂ ∈
[

(τ1D − 1) δ,−µ
σ
δ
]

.

S2 ((τ1D − 1) δ, δ)− S1 (v̂, δ) < (û− v̂)
(

A∗ − σ

µ

)

+ ((τ1D − 1)− v̂) σ
µ
A∗

= (τ1D − 1− v̂)
(

A∗ − σ

µ
+
σ

µ
A∗
)

In the proof of (F) we showed that the second factor is nonnegative if τ1D − 1 6 −µ
σ
. So

S2 ((τ1D − 1) δ, δ) 6 S1 (v̂, δ) for v > (τ1D − 1) δ.

This finally brings us Theorem 4.5.15, the main result of this section.

Theorem 4.5.15. Let ε, a > 0, σ 6 µ < ε
a

and σ < −µ. Let the stepsize h > 0. If µ > 0

restrict h ∈ (0, a]. Let (µ, σ) ∈ {P (1, 0, 2) < 1} where P is as defined in Definition 3.4.2. Then

for any δ ∈
(

0, a
4|c|

)

there exists δ2 > 0 such that if ϕ(t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then

the BE solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for n > 0.

Proof. The first part of this proof is similar to the proof of Theorem 3.4.7. Define

J =
⋃

δ∈(0,|ac |)
{PΘ=1,h (δ, c, 2) < δ} .

Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

and (µ, σ) ∈ J . Then for some maximal δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

we have (µ, σ) ∈
{PΘ=1,h (δ1, c, 2) < δ1}. If δ1 < δ set δ2 = δ1

(

ε−hσ
ε−hµ

)−M−1
. By Lemma 4.5.10, if ϕ (t) ∈ [−δ2, δ2]

for t ∈ [−a− |c|δ, 0] then un ∈ [−δ1, δ1] ⊆ [−δ, δ] for all n > 0. If δ < δ1 set δ2 = δ
(

ε−hσ
ε−hµ

)−M−1
.

In this case, (µ, σ) ∈ {PΘ=1,h (δ1, c, 2) < δ1} ⊆ {PΘ=1,h (δ, c, 2) < δ} by Lemma 4.5.9. By

Lemma 4.5.10, if ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then un ∈ [−δ, δ] for all n > 0. This

proves Lyapunov stability.

We now need to prove that {P (1, 0, 2) < 1} ⊆ J for any h ∈ (0, a] and {P (1, 0, 2) <

1, µ < 0} ⊆ J for any h > 0. Recall that {P (1, 0, 2) < 1} = ∪
δ∈(0,|ac |) {P (δ, c, 2) < δ}. It

suffices to show that for all small enough δ > 0, (i) for any h ∈ (0, a], if P (δ, c, 2) < δ then

PΘ=1,h (δ, c, 2) < δ and (ii) for h > 0 and µ < 0, if P (δ, c, 2) < δ then PΘ=1,h (δ, c, 2) < δ. We

prove this using items (A)-(G) from Lemma 4.5.14 so small enough δ means δ ∈
(

0, a
4|c|

)

. Let

(µ, σ) ∈ {P (δ, c, 2) < δ}. If µ < 0 then let h > 0, otherwise let h ∈ (0, a]. Here are all the

possible cases:

I. τ1D− 1 > ⌊ τ1
h
⌋hD− 1 > −µ

σ
. In this case we have ℓ 6 m for all û ∈

[

−δ,−µ
σ
δ
]

. From (A)

and (B), PΘ=1,h (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ] S2 (û, δ) < δ.
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II. τ1D − 1 > −µ
σ
> ⌊ τ1

h
⌋hD − 1. There are two cases:

i. ℓ 6 m. From (A) and (B), sup
û∈[−δ,(⌊ τ1

h ⌋hD−1)δ] S2 (û, δ) < δ.

ii. ℓ = m+ 1. From (E) sup
û∈[(⌊ τ1

h ⌋hD−1)δ,−µ
σ

δ] S1 (û, δ) 6 I2
(

−µ
σ
δ, δ
)

for all h ∈ (0, τ1].

If µ < 0 then also for h > a, sup
û∈[(⌊ τ1

h ⌋hD−1)δ,−µ
σ

δ] S1 (û, δ) < δ.

Thus, since I2
(

−µ
σ
δ
)

= P (δ, c, 2) < δ then PΘ=1,h (δ, c, 2) < δ.

III. τ1D − 1 6 −µ
σ
. There are two possible cases:

i. ℓ 6 m. From (F) and (G), supû∈[−δ,(τ1D−1)δ] S2 (û, δ) 6 supû∈[(τ1D−1)δ,δ] S1 (û, δ).

From (C) and (D), supû∈[(τ1D−1)δ,δ] S1 (û, δ) = I1
(

−µ
σ
δ, δ
)

.

ii. ℓ > m. From (C) and (D), sup
û∈[(τ1D−1)δ,−µ

σ
δ] S2 (û, δ) 6 sup

û∈[(τ1D−1)δ,−µ
σ

δ] I2 (û, δ).

Thus, PΘ=1,h (δ, c, 2) 6 I1
(

−µ
σ
δ
)

= P (δ, c, 2) < δ.

Cases I-III show that PΘ=1,h (δ, c, 2) < δ for all (µ, σ) ∈ {P (δ, c, 2) < δ}.
Finally, for any h > 0 (not restricted to h ∈ (0, a]) the same proof shows that for all small

enough δ, {P (δ, c, 2) < δ, µ < 0} ⊆ {PΘ=1,h (δ, c, 2) < δ, µ < 0}.

Theorem 4.5.15 states that if (µ, σ) ∈ {P (1, 0, 2) < 1} then the BE solution to (4.1.1) is

stable for any h > 0 if µ > 0, and for h ∈ (0, a] if µ > 0. This is the first expression for a stability

region that we have found for BE in
c

Σ that does not depend on the stepsize. However, the

stepsize is still restricted to h ∈ (0, a], a restriction also used by other authors when considering

the constant delay case. In the next section we consider h > a.

4.6 Stability of BE with h > a

In this section we consider the case h > a. As usual, let ε, a > 0, σ 6 µ 6
ε
a

and σ < −µ.

We also add the other restriction that σ > µ − 2ε
a

. These restrictions are always satisfied by

points in the analytic stability region Σ⋆ of (4.1.1). Given a constant step-size h > a, backward

Euler applied to (4.1.1) is given by the zero of gn+1 (v) defined in (4.2.4)

gn+1 (v) = v − un −
h

ε

(

µv + σỸn+1 (v)
)

, (4.6.1)

where Ỹn+1 (v) = ηv (tn+1 − a− cv) and

ηv (t) =







η (t) , if t 6 tn,

(1− β)un + βv, β = t−tn
h
, if t > tn.

For all v ∈
(

−a
c
, h−a

c

)

we have the overlapping case tn+1 − a − cv > tn. Then Ỹ
(1)
n+1 (v) =

(1− β) un + βv where β = tn+1−a−cv−tn
h

= 1− a+cv
h

. Using this (4.6.1) and grouping powers of
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v together yields

gn+1 (v) =
σc

ε
v2 +

(

1 +
σ (a− cun)

ε
− h (µ+ σ)

ε

)

v −
(

1 +
σa

ε

)

un. (4.6.2)

Lemma 4.6.1. Let ε, a, c > 0, (µ, σ) ∈ Σ⋆ and h > a. Let |un| ∈
(

0,min
{

1
4

∣

∣

µ+σ
σ

∣

∣

h−a
c

,
∣

∣

∣

ε−hµ
ε+hσ

∣

∣

∣

h−a
c
, h−a

c
, a

c
,
})

. If un 6= 0 then there exists v∗ ∈
[

−a
c
, h−a

c

]

such that gn+1 (v∗) = 0,

|v∗| < |un|. If un = 0 then v∗ = 0 solves gn+1 (v∗) = 0. If ε − hµ > 0 then there are no other

solutions to gn+1 (v∗) = 0 in
[

−a
c
, h−a

c

]

.

Proof. Consider the values of gn+1 (v) at v = un, 0 and −un. By our choice of un, tn+1−a−cv >

tn for all three values of v so we may use (4.6.2).

gn+1 (un) = −h (µ+ σ)

ε
un

gn+1 (0) = −
(

1 +
σa

ε

)

un

gn+1 (−un) =

(

2
σc

ε
un +

h (µ+ σ)

ε
− 2

(

1 +
σa

ε

)

)

un

Obviously if un = 0 then v∗ = 0 is a solution to gn+1 (v) = 0. So let un 6= 0. Consider the term

h(µ+σ)
ε
− 2

(

1 + σa
ε

)

in the expression for gn+1 (−un). Since (µ, σ) ∈ Σ⋆ then σ > µ− 2ε
a

and

h (µ+ σ)

ε
− 2

(

1 +
σa

ε

)

= −2− σa

ε
+
hµ

ε
+
σa

ε

(

h

a
− 1

)

,

6 −2− a

ε

(

µ− 2ε

a

)

+
hµ

ε
+
σa

ε

(

h

a
− 1

)

,

=
µ+ σ

ε
(h− a) .

Since h > a and µ+ σ < 0 then h(µ+σ)
ε
− 2

(

1 + σa
ε

)

< 0. By our choice of un,

2
σc

ε
un +

h (µ+ σ)

ε
− 2

(

1 +
σa

ε

)

< 2
|σ| c
ε

∣

∣

∣

∣

µ+ σ

4σ

∣

∣

∣

∣

h− a
c

+
µ+ σ

ε
(h− a) < µ+ σ

2ε
(h− a) < 0.

Thus, the sign of gn+1 (−un) is the opposite sign of un. Also, since µ + σ < 0, gn+1 (un) has

the same sign as un. Together these results imply that gn+1 (− |un|) < 0 and gn+1 (|un|) > 0.

Then there must be a root v to gn+1 (v) such that v ∈ [− |un| , |un|] ⊆
[

−a
c
, h−a

c

]

.
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Now consider the value of the function at the two endpoints,

gn+1

(

−a
c

)

= −un +
a

c

(

(µ+ σ)h

ε
− 1

)

,

gn+1

(

h− a
c

)

= −un

(

1 +
hσ

ε

)

+
h− a
c

(

1− hµ

ε

)

.

Since µ + σ < 0 and |un| < a
c

then easily gn+1

(

−a
c

)

< 0. Since we assume |un| <
∣

∣

∣

ε−hµ
ε+hσ

∣

∣

∣

h−a
c

then sign
(

gn+1

(

h−a
c

))

= sign (ε− hµ).

Thus, we now have gn+1

(

−a
c

)

< 0, gn+1 (− |un|) < 0, gn+1 (|un|) > 0 and sign
(

gn+1

(

h−a
c

))

=

sign (ε− hµ). If µ < 0 and σ < 0 then gn+1 (v) is a concave down quadratic function that is

positive at h−a
c

. Then this function has only one root in
[

−a
c
, h−a

c

]

. If µ < 0 and σ > 0 then

gn+1 (v) is a concave up quadratic function that is negative at −a
c
. Then this function has only

one root in the interval
[

−a
c
, h−a

c

]

as well. If µ > 0 then automatically σ < 0 in order to satisfy

µ + σ < 0. Then gn+1 (v) is a concave down quadratic function with one root in
[

−a
c
, h−a

c

]

if

ε− hµ > 0 and two if ε− hµ < 0. The case ε− hµ = 0 has one root if un > 0 and two roots if

un < 0. In the case where there are two roots, one root is between |un| and h−a
c

.

Remark 4.6.2. In particular, if 1 + σa
ε

= 0 then gn+1 (0) = 0 so we can choose v∗ = 0. If

1 + σa
ε
> 0 then gn+1 (0) has the opposite sign as gn+1 (un) so v∗ is between 0 and un. If

1 + σa
ε
< 0 then v∗ is between 0 and −un.

Theorem 4.6.3. Let ε, a, c > 0, (µ, σ) ∈ Σ⋆ and h > a. Let δ ∈
(

0,min
{

1
4

∣

∣

µ+σ
σ

∣

∣

h−a
c

,
∣

∣

∣

ε−hµ
ε+hσ

∣

∣

∣

h−a
c
, h−a

c
, a

c
,
})

. If ϕ (t) is continuous and ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then

there exists a BE solution to (4.1.1) {un}n>0 such that the following are satisfied:

(A) un ∈ [−δ, δ] for all n > 0.

(B) For all n > 0, |un+1| < |un| if un 6= 0 and un+1 = 0 if un = 0.

(C) lim
n→∞

un = 0.

Proof. The proof of (A) and (B) is by strong induction which easily follows from Lemma 4.6.1.

The convergence to zero (C) follows from the fact that gn+1 (un) and gn+1 (−un) are nonzero

unless un = 0. Note that there may be other BE solutions to (4.1.1).

Theorem 4.6.4. Let ε, a, c > 0, µ < 0, (µ, σ) ∈ {P (1, 0, 2) < 1} (P is as defined in Defini-

tion 3.4.2) and h > a. Then for any δ ∈
(

0,min
{

1
4

∣

∣

µ+σ
σ

∣

∣

h−a
c

,
∣

∣

∣

ε−hµ
ε+hσ

∣

∣

∣

h−a
c
, h−a

c
, a

4c
,
})

there
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exists δ2 > 0 such that if ϕ(t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0] then any BE solution to (4.1.1)

{un}n>0 satisfies un ∈ [−δ, δ] for n > 0 and limn→∞ un = 0.

Proof. By Theorem 4.5.15 there exists δ2 > 0 such that if ϕ(t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0]
then any BE solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ]. By our choice of δ we are always

in the overlapping regime and Lemma 4.6.1 applies. Since µ < 0 then ε− hµ > 0 and at every

time step there is always only one root to gn+1 (v) so the BE solution is unique by Lemma 4.6.1.

By the same lemma, for all n > 0, |un+1| < |un| if un 6= 0 and un+1 = 0 if un = 0. Since

gn+1 (un) and gn+1 (−un) are nonzero unless un = 0, limn→∞ un = 0.

4.7 Description of Theta methods

The Θ methods are RK methods parameterized by Θ ∈ [0, 1]. They are given by the

following Butcher tableau,

0 0 0

1 1−Θ Θ

1−Θ Θ

.

The method with Θ = 0 is forward Euler, Θ = 1
2 is the trapezoidal rule and Θ = 1 is backward

Euler. The trapezoidal rule is of order two while the other methods of order one. Recall from

Theorem 1.2.2 that in order to preserve the order p of an ODE method when it is extended to

solve DDEs we need to use a continuous extension that has at least order p − 1. Since linear

interpolation is of order one, then if we use this as the continuous extension of a general Θ

method we preserve the orders of the methods. In particular, we preserve the second order

trapezoidal rule. Theorem 1.2.2 lists other requirements necessary to preserve the order of a

method but in this chapter we focus on stability. Issues involved in the implementation of

methods are discussed in Chapter 5.

Consider the following DDE with one general delay,

u̇ (t) = f (t, u(t), α (t, u(t))) , t > t0,

u (t) = ϕ (t) , t < t0,
(4.7.1)

where we assume α (t, u (t)) 6 t for all times. The Θ method with constant stepsize h and

linear interpolation applied to (4.7.1) can be written as

un+1 = un + (1−Θ)hf
(

tn, un, Ỹ
(1)
n+1

)

+ Θhf
(

tn+1, un+1, Ỹ
(2)
n+1

)

(4.7.2)
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where the spurious stages are given by values of the continuous extension Ỹ
(1)
n+1 = η (α (tn, un))

and Ỹ
(2)
n+1η (α (tn+1, un+1)). The continuous extension we use here is linear interpolation,

η (tn + βh) = un + (1−Θ) βhf
(

tn, un, Ỹ
(1)
n+1

)

+ Θβhf
(

tn+1, un+1, Ỹ
(2)
n+1

)

.

One may also think of linear interpolation in the step-by-step manner described on page 84.

4.8 Stability of Theta methods in
∆
Σ

Here we derive the delay independent stability regions of the Θ methods using the same

arguments as in Section 4.3. This method does not yield stability in all of the cone
∆
Σ for any

method other than backward Euler (Θ = 1). These results may not be sharp since it is known

that the Θ methods are GP-stable if and only if Θ ∈
[

1
2 , 1
]

[37]. Although GP-stability deals

with the constant delay case, numerical simulations show that trapezoidal rule appears to be

stable also in all of
∆
Σ for all h ∈ (0, a). Nevertheless, since there are currently no results on

stability of methods for our model state dependent DDE, we continue here with the contraction

argument as in Section 4.3.

The Θ method applied to (4.1.1) has the following form:

un+1 = un +
h

ε

[

(1−Θ)
(

µun + σỸ
(1)
n+1

)

+ Θ
(

µun+1 + σỸ
(2)
n+1

)]

. (4.8.1)

For convenience use Ỹn+1 = (1−Θ) Ỹ
(1)
n+1 + ΘỸ

(2)
n+1. We derive an expression for un+1 ignoring

the dependence of Y
(2)
n+1 on un+1,

un+1 =

(

ε+ hµ (1−Θ)

ε− hµΘ

)

un +
hσ

ε− hµΘ
Ỹn+1. (4.8.2)

Assume that the numerical solution up to un and the entire history function is bounded inside

[−δ, δ]. Assume also that there is no overlapping. Then Ỹn+1 is also bounded by δ and

|un+1| 6
[ |ε+ hµ (1−Θ)|+ |hσ|

|ε− hµΘ|

]

δ. (4.8.3)

Consider the parameter region where

|ε+ hµ (1−Θ)|+ |hσ|
|ε− hµΘ| < 1.
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For µ < 0 then we can rewrite this as

|σ| <







−µ, if µ > − ε
h(1−Θ) ,

2ε+hµ(1−2Θ)
h

, if µ < − ε
h(1−Θ) .

For Θ < 1
2 this ends at the µ axis when 2ε+ hµ (1− 2Θ) = 0.

Now consider the case with overlapping (tn < tn+1 − a − cun+1 6 tn+1). We will prove

that (4.8.3) still holds in this case if |ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1. Since we are assuming overlapping,

Ỹn+1 = (1−Θ) Ỹ
(1)
n+1 + Θ [(1− β)un + βun+1]. Using this in (4.8.2) we derive

un+1 =

(

ε+ hµ (1−Θ)

ε− hµΘ

)

un +
hσ

ε− hµΘ

[

(1−Θ) Ỹ
(1)
n+1 + Θ [(1− β)un + βun+1]

]

.

Solving for un+1 leads to

un+1 =

(

ε+ hµ (1−Θ) + hσΘ (1− β)

ε− hµΘ− hσΘβ

)

un +
hσ (1−Θ)

ε− hµΘ− hσΘβ
Ỹ

(1)
n+1,

|un+1| 6
[ |ε+ hµ (1−Θ) + hσΘ (1− β)|+ |hσ (1−Θ)|

|ε− hµΘ− hσΘβ|

]

δ.

Let ε − hµΘ > 0. If σ 6 0 then since β ∈ [0, 1] this easily leads to (4.8.3) again. So let σ > 0

and consider ε+hµ(1−Θ)+hσΘ(1−β)
ε−hµΘ−hσΘβ

as a function of β ∈ [0, 1]. If µ+ σ < 0 then the derivative is

always negative. If ε+hµ (1−Θ) > 0 then this function is nonnegative at β = 1 so its absolute

value is maximized at β = 0. This easily leads to (4.8.3) again. If ε+ hµ (1−Θ) < 0 then

|ε+ hµ (1−Θ) + hσΘ (1− β)|+ |hσ (1−Θ)|
|ε− hµΘ− hσΘβ|

6 max

{ |ε+ hµ (1−Θ) + hσΘ|+ |hσ (1−Θ)|
|ε− hµΘ| ,

|ε+ hµ (1−Θ)|+ |hσ (1−Θ)|
|ε− hµΘ− hσΘ|

}

,

6 max

{ |ε+ hµ (1−Θ)|+ |hσ|
|ε− hµΘ| ,

|ε+ hµ (1−Θ)|+ |hσ (1−Θ)|
|ε− hµΘ− hσΘ|

}

. (4.8.4)

Since we are considering the case, ε− hµΘ > 0, µ+ σ < 0, σ > 0 and ε+ hµ (1−Θ) < 0 then

|ε+ hµ (1−Θ)|+ |hσ (1−Θ)|
|ε− hµΘ− hσΘ| − |ε+ hµ (1−Θ)|+ |hσ|

|ε− hµΘ| = −hσ εΘ− hµΘ2 + ε− hσΘ

(ε− hµΘ− hσΘ) (ε− hµΘ.)
(4.8.5)
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Assuming that |ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1 then σ < 2ε+hµ(1−2Θ)

h
, and

εΘ− hµΘ2 + ε− hσΘ > εΘ − hµΘ2 + ε− (2εΘ + hµΘ (1− 2Θ))

= (1−Θ) (ε− hµΘ) > 0.

By (4.8.5), |ε+hµ(1−Θ)|+|hσ(1−Θ)|
|ε−hµΘ−hσΘ| < |ε+hµ(1−Θ)|+|hσ|

|ε−hµΘ| . From (4.8.4), we derive (4.8.3) again.

|un+1| 6
[ |ε+ hµ (1−Θ)|+ |hσ|

|ε− hµΘ|

]

δ (4.8.6)

We have now shown that this inequality is true for the non overlapping cases and for the

overlapping cases where the stepsize and parameters satisfy ε−hµΘ > 0, µ+σ < 0 and one of

the following conditions:

1. σ 6 0,

2. σ > 0, ε+ hµ (1−Θ) > 0,

3. σ > 0, ε+ hµ (1−Θ) < 0, |ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1.

This shows that (4.8.6) holds for all points for which the parameters satisfy |ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1.

Theorem 4.8.1. Let ε, a, c > 0, µ < 0, |ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1 and h > 0. For every δ > 0, if

the history function ϕ (t) is continuous and ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then the Θ

method solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for all n > 0 and lim
n→∞

un = 0.

Proof. Similar to the proof of Theorem 4.3.1.

Sample plots of the sets
{

|ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1

}

are shown in Figure 4–7. Note that our

bounds give the correct known stability region of Θ methods for the case when σ = 0 and

(4.1.1) is an ODE. If (µ, σ) is in one of those sets with µ > 0, the solutions also converge to

zero as long as there is no overlapping. This can be guaranteed if h ∈ (0, a) and the bound δ

is chosen to be small enough. The part of the set in the µ > 0 half-plane can be written as

|σ| < −2ε+ hµ (2Θ− 1)

h

If Θ 6
1
2 then we do not have this region at all.

4.9 Stability of Theta methods using a discrete Gronwall argument

In this section we generalise the results in Section 4.4 to general Θ methods. We prove the

asymptotic stability of Θ method solutions to (4.1.1) in a portion of
w

Σ∪
c

Σ. Once again we set

ε, a, c > 0, σ 6 µ < ε
a
, σ < −µ, and automatically σ < 0.
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(a) Θ = 0 (forward Euler), h = 0.25
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(b) Θ = 0 (forward Euler), h = 0.5
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(c) Θ = 0.5 (trapezoidal rule), h = 0.25
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(d) Θ = 0.5 (trapezoidal rule), h = 0.5
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(e) Θ = 1 (backward Euler), h = 0.25

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

µ

σ

(f) Θ = 1 (backward Euler), h = 0.5

Figure 4–7: The sets
{

|ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ| < 1

}

for different values of Θ and h are shaded green

and plotted with ε = a = 1. We have shown that if (µ, σ) is in this set and µ < 0 then the Θ
method solution to (4.1.1) goes zero for all stepsizes.
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Lemma 4.9.1. Let ε, a, c > 0, σ 6 µ and σ < −µ. Let the history function ϕ (t) and the Θ

method solution {un} to (4.1.1) be bounded by [−δ, δ] for all t 6 0 and n > 0. Then for any

stepsize h > 0, the Θ method solution must behave in one of the following manners:

(A) There exists N ∈ N such that un ↓ 0 for n > N

(B) There exists N ∈ N such that un ↑ 0 for n > N

(C) For every N > 0 there exists N1, N2 ∈ N and N1, N2 > N such that the solution attains a

positive maximum at N1 and a negative minimum at N2.

Proof. Similar to the proof of Lemma 4.4.1.

At every time step, the value of the spurious stages can be found by first solving for m1,

m2, β1 and β2,

m1 =
⌈

a+cun

h

⌉

, β1 = m1 − a+cun

h
,

m2 =
⌊

a+cun+1

h

⌋

, β2 = m2 + 1− a+cun+1

h

. (4.9.1)

This is valid whether or not there has been overlapping. From these relations we derive

α (tn, un) = tn − a− cun = tn−m1 + β1h = (1− β1) tn−m + β1tn−m1+1,

α (tn+1, un+1) = tn+1 − a− cun+1 = tn−m2 + β2h = (1− β2) tn−m2 + β2tn−m2+1,

Thus using linear interpolation, the values of the spurious stages Ỹ
(1)
n+1 and Ỹ

(2)
n+1 are

Y
(1)
n+1 = (1− β1) un−m1 + βun−m1+1 ∈

[

m1h− a
c

,
(m1 + 1)h− a

c

]

, (4.9.2)

Y
(2)
n+1 = (1− β2) un−m2 + βun−m2+1 ∈

[

m2h− a
c

,
(m2 + 1)h− a

c

]

. (4.9.3)

Also define

B =
1

(1−Θ) ε−hµ(Θ−β1)
ε+hµ(1−Θ)

(

ε−hµΘ
ε+hµ(1−Θ)

)m1

+ Θ ε−hµ(Θ−β2)
ε+hµ(1−Θ)

(

ε−hµΘ
ε+hµ(1−Θ)

)m2
, (4.9.4)

Ỹn+1 = (1−Θ) Ỹ
(1)
n+1 + ΘỸ

(2)
n+1. (4.9.5)

Lemma 4.9.2. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize h > 0

be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let −a

c
< L < 0 < M , n ∈ N, n > 0 and let the Θ method solution

to (4.1.1) {ui}ni=0 satisfy ui ∈ [L,M ] for i = max{0, n−
⌈

a+cM
h

⌉

}, ..., n. If tn− a− cδ < 0 then
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let ϕ (s) ∈ [L,M ] for s ∈ [tn − a− cδ, 0]. Let µ 6= 0. If un+1 6 un then

1

B
un+1 − Ỹn+1 > −σM

µ

[

1

B
− 1

]

, (4.9.6)

and if un+1 > un then
1

B
un+1 − Ỹn+1 6 −σL

µ

[

1

B
− 1

]

, (4.9.7)

Let µ = 0. If un+1 6 un then

un+1 − Ỹn+1 > [(1−Θ) (a+ cun + h) + Θ (a+ cun+1)]
σM

ε
, (4.9.8)

and if un+1 > un then

un+1 − Ỹn+1 6 [(1−Θ) (a+ cun + h) + Θ (a+ cun+1)]
σL

ε
. (4.9.9)

Proof. Start with the equation for the Θ method applied to (4.1.1) and solve for un+1,

un+1 = un +
h

ε

[

(1−Θ)
(

µun + σỸ
(1)
n+1

)

+ Θ
(

µun+1 + σỸ
(2)
n+1

)]

un+1 =
ε+ hµ (1−Θ)

ε− hµΘ
un +

hσ

ε− hµΘ
Ỹn+1 >

ε+ hµ (1−Θ)

ε− hµΘ
un +

hσ

ε− hµΘ
M (4.9.10)

Let µ 6= 0. Use m = mi and β = βi for i = 1. Using the discrete Gronwall lemma,

un+1 >

hσM
ε−hµΘ

1− ε+hµ(1−Θ)
ε−hµΘ

(

1−
(

ε+ hµ (1−Θ)

ε− hµΘ

)m+1
)

+

(

ε+ hµ (1−Θ)

ε− hµΘ

)m+1

un−m

This simplifies to

un+1 > −σM
µ

(

1−
(

ε+ hµ (1−Θ)

ε− hµΘ

)m+1
)

+

(

ε+ hµ (1−Θ)

ε− hµΘ

)m+1

un−m. (4.9.11)

Similarly, we also have

un+1 > −σM
µ

(

1−
(

ε+ hµ (1−Θ)

ε− hµΘ

)m)

+

(

ε+ hµ (1−Θ)

ε− hµΘ

)m

un−m+1. (4.9.12)
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Take ε−hµΘ
ε+hµ(1−Θ) (1− β)× (4.9.11) +β× (4.9.12),

(

ε− hµΘ

ε+ hµ (1−Θ)
(1− β) + β

)

un+1

> −σM
µ

(

ε− hµΘ

ε+ hµ (1−Θ)
(1− β) + β −

(

ε+ hµ (1−Θ)

ε− hµΘ

)m)

+

(

ε+ hµ (1−Θ)

ε− hµΘ

)m

((1− β)un−m + βun−m+1) .

Using ε−hµΘ
ε+hµ(1−Θ) (1− β) + β = ε−hµ(Θ−β)

ε+hµ(1−Θ) and (1− β)un−m + βun−m+1 = Y
(i)
n+1 this becomes

ε− hµ (Θ− β)

ε+ hµ (1−Θ)
un+1

> −σM
µ

(

ε− hµ (Θ− β)

ε+ hµ (1−Θ)
−
(

ε+ hµ (1−Θ)

ε− hµΘ

)m)

+

(

ε+ hµ (1−Θ)

ε− hµΘ

)m

Ỹ
(i)
n+1.

Rewrite as

ε− hµ (Θ− β1)

ε+ hµ (1−Θ)

(

ε− hµΘ

ε+ hµ (1−Θ)

)m1

un+1

> −σM
µ

(

ε− hµ (Θ− β1)

ε+ hµ (1−Θ)

(

ε− hµΘ

ε+ hµ (1−Θ)

)m1

− 1

)

+ Ỹ
(1)
n+1. (4.9.13)

Using the same derivation as before, we derive (4.9.14) using m = mi and β = βi with i = 2,

ε− hµ (Θ− β2)

ε+ hµ (1−Θ)

(

ε− hµΘ

ε+ hµ (1−Θ)

)m2

un+1

> −σM
µ

(

ε− hµ (Θ− β2)

ε+ hµ (1−Θ)

(

ε− hµΘ

ε+ hµ (1−Θ)

)m2

− 1

)

+ Ỹ
(2)
n+1 (4.9.14)

Taking (1−Θ)× (4.9.13) + Θ× (4.9.14) yields (4.9.6). The derivation of (4.9.7) is similar.

Now let µ = 0. Then (4.9.10) becomes simply un+1 > un + hσM
ε

. Let m = mi and β = βi with

i = 1. Applying a discrete Gronwall inequality yields

un+1 > un−mi
+ (mi + 1)

hσM

ε
, un+1 > un−mi+1 +mi

hσM

ε

Taking (1− βi)× the first equation + βi× the second equation yields

un+1 > (1− βi) un−mi
+ βiun−mi+1 + (mi + 1− βi)hσM > Ỹ

(i)
n+1 + (mi + 1− βi)hσM.
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Taking (1−Θ)× this equation with i = 1 + Θ × this equation with i = 2 and using (4.9.1)

yields (4.9.8). The derivation of (4.9.9) is similar.

Definition 4.9.3. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. For (v,w) ∈

(

−a
c
,∞
)2

define

rΘ,h (v,w) =
σ

µ

1−
[

(1−Θ) e
− µ(a+cv+h)

ε+hµ(1−Θ) + Θe
− µ(a+cw)

ε+hµ(1−Θ)

]−1

1 + µ
σ

[

(1−Θ) e
− µ(a+cv+h)

ε+hµ(1−Θ) + Θe
− µ(a+cw)

ε+hµ(1−Θ)

]−1

Note that rΘ=1,h (v,w) = r (w) from Definitions 3.2.4 and 4.4.3. Also define the following

RΘ,h (v,w) function

RΘ,h (v,w) =







σ
µ

[

1−B(v,w)
1+ µ

σ
B(v,w)

]

, if µ 6= 0,

−σ
ε

[(1−Θ) (a+ cv + h) + Θ (a+ cw)] , if µ = 0.

where for each v and w,

B (v,w) =
1

(1−Θ) ε−hµ(Θ−βv)
ε+hµ(1−Θ)

(

ε−hµΘ
ε+hµ(1−Θ)

)mv

+ Θ ε−hµ(Θ−βw)
ε+hµ(1−Θ)

(

ε−hµΘ
ε+hµ(1−Θ)

)mw
,

and mv, βv, mw and βw are defined by

mv =
⌈

a+cv
h

⌉

, β1 = m1 − a+cv
h
,

mw =
⌊

a+cw
h

⌋

, β2 = m2 + 1− a+cw
h

For fixed v and w, one may show using L’Hopital’s rule that lim
µ→0

rΘ,h (v,w) = rΘ,h(v,w)

and lim
µ→0

RΘ,h (v,w) = RΘ,h(v,w). So these functions are continuous at µ = 0. Also, RΘ,h (v,w)

is a continuous function of v and w.

Lemma 4.9.4. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize h > 0

be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let −a

c
< L < 0 < M , n ∈ N, n > 0 and let the Θ method solution

to (4.1.1) {ui}ni=0 satisfy ui ∈ [L,M ] for i = max{0, n−
⌈

a+cM
h

⌉

}, ..., n. If tn− a− cδ < 0 then

let ϕ (s) ∈ [L,M ] for s ∈ [tn − a− cδ, 0]. If un+1 6 un then

un+1 > −RΘ,h (un, un+1)M. (4.9.15)
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If un+1 > un then

un+1 > −RΘ,h (un, un+1)L. (4.9.16)

Proof. If un+1 6 un then,

(1−Θ)
(

µun + σỸ
(1)
n+1

)

+ Θ
(

µun+1 + σỸ
(2)
n+1

)

6 0.

Using (4.9.5),

Ỹn+1 > −µ
σ

((1−Θ) un + Θun+1)

Solving for un in (4.8.1) yields,

un =
ε− hµΘ

ε+ hµ (1−Θ)
un+1 −

hσ

ε+ hµ (1−Θ)
Ỹn+1.

Apply this to the previous inequality and solve for Ỹn+1. This simplifies to Ỹn+1 > −µ
σ
un+1.

Substitute this into (4.9.6) and solving for un+1 yields (4.9.15). The derivation of (4.9.16) is

similar.

Lemma 4.9.5. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize h > 0

be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let the model parameters and the stepsize h satisfy RΘ,h (0, 0) ∈

(0, 1). Then there exists a sufficiently small δ∗ ∈
(

0,
∣

∣

a
c

∣

∣

)

such that RΘ=1,h (v,w) ∈ (0, 1) for

all v,w ∈ [−δ∗, δ∗]. Let δ =
∣

∣

∣

ε−hµΘ
ε+hµ(1−Θ)−hσ

∣

∣

∣
δ∗. If ϕ (t) is continuous and ϕ (t) ∈ [−δ, δ] for

all t ∈ [−a− cδ, 0] then the Θ method solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for all

n > 0.

Proof. Similar to the proof of Lemma 4.4.5.

Theorem 4.9.6. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize h >

0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let the model parameters and the stepsize h satisfy RΘ,h (0, 0) ∈

(0, 1). Then there exists δ ∈
(

0, a
c

)

such that if the history function ϕ (t) is continuous and

ϕ (t) ∈ [−δ, δ] for all t ∈ [−a− cδ, 0] then the Θ method solution to (4.1.1) {un}n>0 satisfies

un ∈ [−δ, δ] for all n > 0 and lim
n→∞

un = 0.

Proof. Similar to the proof of Theorem 4.4.6.
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Lemma 4.9.7. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Then

RΘ,h (v,w) 6 rΘ,h (v,w) (4.9.17)

Proof. Since 1 + x 6 ex for all x ∈ R then for any βz ∈ [0, 1] and mz ∈ N,

ε− hµ (Θ− βz)

ε+ hµ (1−Θ)
= 1− hµ (1− βz)

ε+ hµ (1−Θ)
6 e

− µh(1−βz)
ε+hµ(1−Θ) ,

(

ε− hµΘ

ε+ hµ (1−Θ)

)mz

=

(

1− hµ

ε+ hµ (1−Θ)

)mz

6 e
− µhmz

ε+hµ(1−Θ) .

Thus,
ε− hµ (Θ− βz)

ε+ hµ (1−Θ)

(

ε− hµΘ

ε+ hµ (1−Θ)

)mz

6 e
−µh(mz+1−βi)

ε+hµ(1−Θ) .

From these relations we derive that for v,w > −a
c
,

B(v,w) >

[

(1−Θ) e
−µh(mv+1−βv)

ε+hµ(1−Θ) + Θe
−µh(mw+1−βw)

ε+hµ(1−Θ)

]−1

.

Since µ < 0, then

RΘ,h (v,w) =
σ

µ

[

1−B (v,w)

1 + µ
σ
B (v,w)

]

6
σ

µ

1−
[

(1−Θ) e
−µh(m1+1−β1)

ε+hµ(1−Θ) + Θe
−µh(m1+1−β1)

ε+hµ(1−Θ)

]−1

1 + µ
σ

[

(1−Θ) e
−µh(m1+1−β1)

ε+hµ(1−Θ) + Θe
−µh(m1+1−β1)

ε+hµ(1−Θ)

]−1 .

Using (mv + 1− βv)h = a+ cv + h and (mw + 1− βw)h = a+ cw we derive (4.9.17).

Theorem 4.9.8. Let ε, a, c > 0, σ 6 µ < 0 and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let the model parameters satisfy rΘ,h (0, 0) ∈ (0, 1). Then

there exists δ ∈
(

0, a
c

)

such that for all stepsizes h > 0, if ϕ (t) ∈ [−δ, δ] for t ∈ [−a− cδ, 0]
then the Θ method solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] and lim

n→∞
un = 0.

Proof. If µ < 0 then RΘ,h (v,w) > 0 for all v > −a
c
. By Lemma 4.9.7, RΘ,h (0, 0) 6 rΘ,h (0, 0) <

1. Thus Theorem 4.9.6 applies for any stepsize h > 0.

See Figure 4–8 for plots of the regions {RΘ,h (0, 0) ∈ (0, 1)} and {rΘ,h (0, 0) ∈ (0, 1)}.
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(a) Θ = 0 (forward Euler), h = 0.25
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(b) Θ = 0 (forward Euler), h = 0.5
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(c) Θ = 0.5 (trapezoidal rule), h = 0.25
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(d) Θ = 0.5 (trapezoidal rule), h = 0.5
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(e) Θ = 1 (backward Euler), h = 0.25
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(f) Θ = 1 (backward Euler), h = 0.5

Figure 4–8: The set {RΘ,h (0, 0) ∈ (0, 1)} is shaded green and plotted with ε = a = c = 1. This
figure also shows the boundary of the set {rΘ,h (0, 0) ∈ (0, 1)} (in red) which is contained inside
{RΘ,h (0) ∈ (0, 1)} when µ < 0.
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4.10 Stability of Theta methods using a Razumikhin-style proof

In this section we extend the results of Section 4.5 on backward Euler to general Θ methods.

In this section we let Ỹn+1 = (1−Θ) Ỹ
(2)
n+1 + ΘỸ

(2)
n+1. Recall from (4.8.2) the general Θ method

applied to the model problem (4.1.1)

un+1 =

(

ε+ hµ (1−Θ)

ε− hµΘ

)

un +
hσ

ε− hµΘ
Ỹn+1. (4.10.1)

We only consider the case when ε − hµΘ > 0 and ε+ hµ (1−Θ) > 0. This implies a stepsize

restriction of h < ε
µΘ when µ > 0 and Θ 6= 0, and h < − ε

µ(1−Θ) when µ < 0 and Θ 6= 1.

Lemma 4.10.1. Let ε, a > 0, σ 6 µ < ε
a
, σ < −µ. Let Θ ∈ [0, 1] and let the parameters satisfy

ε+hµ(1−Θ)
ε−hµΘ > 0. Define ‖ϕ‖ = sups60 |ϕ (s)|. If ‖ϕ‖ <

∣

∣

a
c

∣

∣ (no restriction if c = 0) then

|un| 6
(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖

for all n such that
(

ε+hµ(1−Θ)−hσ
ε−hµΘ

)n

‖ϕ‖ <
∣

∣

a
c

∣

∣ (no restriction if c = 0).

Proof. This proof is by strong induction. For the case n = 0 this is obviously true. Suppose

this is true up to n. Then for all i = 1, ..., n we have

|ui| 6
(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)i

‖ϕ‖

Before we look at the n + 1 case, consider the term ε−hµ(1−Θ)−hσ
ε−hµΘ . Since σ < µ then we must

have ε+hµ(1−Θ)−hσ
ε−hµΘ > 1. This means that for all i = 1, ..., n we have

|ui| 6
(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖

Now consider the n+ 1 case with no overlapping (tn+1 − a− cun+1 6 tn). Using (4.9.5),

|un+1| 6
ε+ hµ (1−Θ)

ε− hµΘ
|un|+

h |σ|
ε− hµΘ

∣

∣

∣Ỹn+1

∣

∣

∣

6
ε+ hµ (1−Θ)

ε− hµΘ

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖ − hσ

ε− hµΘ

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖

=

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n+1

‖ϕ‖
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Now consider the n + 1 case with overlapping (tn < tn+1 − a − cun+1 6 tn+1). Then we have

Ỹ
(2)
n+1 = (1− β) un + βun+1 and solving for un+1 in (4.10.1) yields

un+1 =

(

ε+ hµ (1−Θ) + hσΘ (1− β)

ε− hµΘ− hσΘβ

)

un +
hσ (1−Θ)

ε− hµΘ− hσΘβ
Ỹ

(1)
n+1

|un+1| 6
∣

∣

∣

∣

ε+ hµ (1−Θ) + hσΘ (1− β)

ε− hµΘ− hσΘβ

∣

∣

∣

∣

|un|+
h |σ| (1−Θ)

ε− hµΘ− hσΘβ

∣

∣

∣Ỹ
(1)
n+1

∣

∣

∣

6
|ε+ hµ (1−Θ) + hσΘ (1− β)| − hσ (1−Θ)

ε− hµΘ− hσΘβ

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖

Due to our restriction that the solution remain bounded away from a
c
, β ∈ [0, 1]. Since ε +

hµ (1−Θ) > 0 then |ε+ hµ (1−Θ) + hσΘ (1− β)| 6 ε+ hµ (1−Θ)− hσΘ, and

un+1 6
ε+ hµ (1−Θ)− hσ
ε− hµΘ− hσΘβ

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n

‖ϕ‖

6

(

ε+ hµ (1−Θ)− hσ
ε− hµΘ

)n+1

‖ϕ‖

This completes the proof by strong induction.

Recall the method of proof in Section 4.5. By Lemma 4.10.1, for every δ1 > 0 it is

always possible to bound a finite segment of the Θ method solution by δ1 by bounding the

history function by an appropriate δ2. Let δ1 ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ ∈
(

δ1,
∣

∣

a
c

∣

∣

)

, M =
⌈

a+|c|δ
h

⌉

and

δ2 = δ1

(

ε+hµ(1−Θ)−hσ
ε−hµΘ

)−2M

. If ϕ (t) ∈ [−δ2, δ2] for t 6 0 then from Lemma 4.10.1, the segment

of the Θ method solution to the model problem (4.1.1) {un}2M
n=0 must satisfy un ∈ [−δ1, δ1] for

n = 0, ..., 2M . Because of this bound on the numerical solution then we actually only need

ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− |c|δ, 0].
As in Section 4.5, we look for parameter regions for which the Θ method solution cannot

exit [−δ1, δ1]. We do this by first supposing that the Θ method solution {un}n>0 escapes the

interval for the first time through the upper bound at the (n+ 1)-st step for some n > 2M .

Then un+1 > δ1 > un. In the parameter regions where we can obtain a contradiction to this

assumption the Θ method solution must remain inside [−δ, δ] . Let un+1 = δ. Since un+1 > un

then (1−Θ)
(

µun + σỸ
(1)
n+1

)

+ Θ
(

µun+1 + σỸ
(2)
n+1

)

> 0 and

Ỹn+1 = (1−Θ) Ỹ
(2)
n+1 + ΘỸ

(2)
n+1 < −

µ

σ
[(1−Θ)un + Θun+1] .
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But from (4.10.1), un =
(

ε−hµΘ
ε+hµ(1−Θ)

)

un+1 − hσ
ε+hµ(1−Θ) Ỹn+1 so

Ỹn+1 < −
µ

σ

[

(1−Θ)

((

ε− hµΘ

ε+ hµ (1−Θ)

)

un+1 −
hσ

ε+ hµ (1−Θ)
Ỹn+1

)

+ Θun+1

]

,

and solving for Ỹn+1 gives

Ỹn+1 < −
µ

σ
un+1 = −µ

σ
δ. (4.10.2)

Define m1, m2, β1 and β2 as in (4.9.1)

m1 =
⌈

a+cun

h

⌉

, β1 = m1 − a+cun

h
,

m2 =
⌊

a+cun+1

h

⌋

, β2 = m2 + 1− a+cun+1

h

. (4.10.3)

Let m = max{m1,m2}. Since n > 2M then for i = n−m, .., n we have

ti − a− cui ∈ [tn−m − a− |c| δ, tn − a+ |c| δ] ⊆ [0, tn]

ti+1 − a− cui+1 ∈ [tn−m+1 − a− |c| δ, tn+1 − a+ |c| δ] ⊆ [0, tn+1]

This means that Ỹ
(1)
i+1 = η (ti − a− cui) and Ỹ

(2)
i+1 = η (ti+1 − a− cui+1) must have properties

stemming from the properties of the continuous extension on [0, tn+1]. Let us derive some of

these properties first and then we will see later on why these properties are important.

The change from Ỹ
(j)
i to Ỹ

(j)
i+1 for j = 1, 2 depends on the maximum change in the mesh

values in a single step. So we need to determine the maximum change in mesh values in a single

step. Since δ1 is a bound on the absolute value of the past mesh values and un+1 = δ > δ1

then δ is a bound on the absolute value of the past mesh values, the present one at tn+1 and

the continuous extension η (t) for t ∈ [0, tn+1]. As a result, for i = 0, ..., n we have

|ui+1 − ui| =
h

ε

∣

∣

∣(1−Θ)
(

µui + σỸ
(1)
i+1

)

+ Θ
(

µui+1 + σỸ
(2)
i+1

)∣

∣

∣

6
h

ε

[

|µ| |(1−Θ) ui + Θui|+ |σ|
∣

∣

∣Ỹi+1

∣

∣

∣

]

6
|µ|+ |σ|

ε
δh

The quantity
∣

∣

∣
Ỹ

(1)
i+1 − Ỹ

(1)
i

∣

∣

∣
is bounded by the maximum number of time steps (including

fractions of a step since we are working with linear interpolation) between ti − a − cui and

ti−1 − a− cui−1, multiplied by the maximum change in the mesh values in a single step. Sim-

ilarly, the quantity
∣

∣

∣Ỹ
(2)
i+1 − Ỹ

(2)
i

∣

∣

∣ is bounded by the maximum number of time steps between

ti+1 − a − cui+1 and ti − a − cui, multiplied by the maximum change in the mesh values in a
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single step. Thus,

∣

∣

∣
Ỹi+1 − Ỹi

∣

∣

∣
6

[

(1−Θ)

∣

∣

∣

∣

(ti − a− cui)− (ti−1 − a− cui−1)

h

∣

∣

∣

∣

(4.10.4)

+ Θ

∣

∣

∣

∣

(ti+1 − a− cui+1)− (ti − a− cui)

h

∣

∣

∣

∣

] |µ|+ |σ|
ε

δh,

6

(

1 +
|µ|+ |σ|

ε
|c| δ

) |µ|+ |σ|
ε

δh,

= Dδh, (4.10.5)

where as before we define D =
(

1 + |µ|+|σ|
ε
|c| δ

)

|µ|+|σ|
ε

. Now recall Lemma 4.5.2. If we write

(4.10.1) in the form un+1 = Aun + vn then

A =
ε+ hµ (1−Θ)

ε− hµΘ
, vi =

hσ

ε− hµΘ
Ỹi+1

Applying Lemma 4.5.2 yields un+1 = Am+1un−m +
n
∑

i=n−m

An−ivi. We would like to get the

right hand side of this equation as large as possible in order to get a bound on the value of

un+1. This is done by using the most negative possible sequence of Ỹi+1. Let that sequence be

{wi}. Using the bound on the solution and the conditions (4.10.2)-(4.10.5), we define {wi} as

wi =







−δ, i 6 n− ℓ
û− (n− i)Dδh, n− ℓ+ 1 6 i 6 n

where û = Ỹ
(1)
n+1 ∈

[

−δ,−µ
σ
δ
]

and

ℓ =

⌈

û+ δ

Dδh

⌉

, χ = ℓ− û+ δ

Dδh
. (4.10.6)

Set ṽi = hσ
ε−hµ

wi. For j = 1 or 2, using Lemma 4.5.2, we derive

un+1 = Am+1un−mj
+

n
∑

i=n−mj

An−iṽi 6 Amj+1un−m +

n
∑

i=n−mj

An−iṽi, (4.10.7)

un+1 = Amun−mj+1 +
n
∑

i=n−mj+1

An−iṽi 6 Amjun−m+1 +
n
∑

i=n−mj+1

An−iṽi. (4.10.8)
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Suppose ℓ 6 mj. As in Section 4.5, take (1−β)
A
× (4.10.7) plus β× (4.10.8),

(

1− βj

A
+ βj

)

un+1 (4.10.9)

6
[

(1− βj)un−mj
+ βjun−mj+1

]

Amj +
1− βj

A

n
∑

i=n−mj

An−iṽi + βj

n
∑

i=n−mj+1

An−iṽi

= Ỹ
(j)
n+1A

mj +
1− βj

A

n
∑

i=n−mj

An−iṽi + βj

n
∑

i=n−mj+1

An−iṽi. (4.10.10)

We skip the steps in performing the summation because they are very similar to the steps in

Section 4.5. The result is

1− βj

A

n
∑

i=n−mj

An−iṽi + βj

n
∑

i=n−mj+1

An−iṽi

=
σ

µ

[(

1− βj

A
+ βj

)[

(ε+ hµ (1−Θ))Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û
]

− δAmj

]

.

Using 1−β
A

+β = (1−β)(ε−hµΘ)
ε+hµ(1−Θ) +β = ε−hµ(Θ−β)

ε+hµ(1−Θ) , we derive an expression for un+1 from (4.10.10),

un+1 6 Ỹ
(j)
n+1

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

+
σ

µ

[

(ε+ hµ (1−Θ))
Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û− δ ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

]

(4.10.11)

Rewrite this as

(

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

)−1

un+1 6 Ỹ
(j)
n+1 −

σ

µ
δ +

(

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

)−1

× σ

µ

[

(ε+ hµ (1−Θ))
Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û
]

(4.10.12)
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We will leave this equation for now and go back to it later on. Let us first derive a corresponding

expression for the case ℓ > mj . In this case instead of (4.10.11) we obtain

1− βj

A

n
∑

i=n−mj

An−iṽi + βj

n
∑

i=n−mj+1

An−iṽi

=
σ

µ

[

−
(

1− βj

A
+ βj

)(

û+ (ε+ hµ (1−Θ))
Dδ

µ

)

+

(

û−Dδh (mj + 1− βj) + (ε+ hµ (1−Θ))
Dδ

µ

)

Amj

]

(4.10.13)

Using 1−β
A

+β = (1−β)(ε−hµΘ)
ε+hµ(1−Θ) +β = ε−hµ(Θ−β)

ε+hµ(1−Θ) , we derive an expression for un+1 from (4.10.10),

un+1 6 û
ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj +

σ

µ

[

−û− (ε+ hµ (1−Θ))
Dδ

µ

+

(

û−Dδh (mj + 1− βj) + (ε+ hµ (1−Θ))
Dδ

µ

)

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

]

Rewrite this to get the same left hand side as in (4.10.12)

(

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

)−1

un+1 6 Ỹ
(j)
n+1 +

σ

µ

[

û−Dδh (mj + 1− βj) + (ε+ hµ (1−Θ))
Dδ

µ

]

− σ

µ

[

û+ (ε+ hµ (1−Θ))
Dδ

µ

](

ε+ hµ (1−Θ)

ε− hµ (Θ− βj)
Amj

)−1

(4.10.14)

Now we have two expressions in (4.10.12) and (4.10.14) depending on how ℓ compares with

mj. Since there are two mj ’s, then there are four cases to consider.

Definition 4.10.2. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. For any δ ∈

(

0,
∣

∣

a
c

∣

∣

)

and û ∈
[

−δ,−µ
σ
δ
]

, define the function

S (Θ, h) (û, δ, c, 2) =































S2,2 (Θ) (û, δ) , if ℓ 6 m1 and ℓ 6 m2,

S2,1 (Θ) (û, δ) , if ℓ 6 m1 and ℓ > m2,

S1,2 (Θ) (û, δ) , if ℓ > m1 and ℓ 6 m2,

S1,1 (Θ) (û, δ) , if ℓ > m1 and ℓ > m2.

(4.10.15)
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where m1, m2, β1, β2, ℓ and χ are given by

m1 =

⌈

a+ cu∗
h

⌉

, β1 =
a+ cu∗
h

−m1, u∗ =

(

ε− hµΘ

ε+ hµ (1−Θ)

)

δ − hσ

ε+ hµ (1−Θ)
û

m2 =

⌊

a+ cδ

h

⌋

, β2 = m2 + 1− a+ cδ

h
,

ℓ =

⌈

û+ δ

Dδh

⌉

, χ = ℓ− û+ δ

Dδh
.

We derive the expressions Sij from (4.10.12) and (4.10.14). First let

B =

[

(1−Θ)

(

ε+ hµ (1−Θ)

ε− hµ (Θ− β1)
Am1

)−1

+ Θ

(

ε+ hµ (1−Θ)

ε− hµ (Θ− β2)
Am2

)−1
]−1

.

For the first case in (4.10.15), take (1−Θ) times (4.10.12) with j = 1 plus Θ times (4.10.12)

with j = 2. This yields

1

B
un+1 6 û− σ

µ
δ +

σ

µB

[

(ε+ hµ (1−Θ))
Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û
]

,

un+1 6 B

(

û− σ

µ
δ

)

+
σ

µ

[

(ε+ hµ (1−Θ))
Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û
]

.

Define S2,2 to be the right hand side of this expression.

S2,2 (Θ) (û, δ) =

(

B − σ

µ

)

û

+
σ

µ
δ

[

(ε+ hµ (1−Θ))D

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

−B
]

(4.10.16)

The second and third cases in (4.10.15) are similar so we just perform the derivation for

the second case. Take (1−Θ) times (4.10.12) with j = 1 plus Θ times (4.10.14) with j = 2.

This yields

1

B
un+1 6 û− (1−Θ)

σ

µ
δ + Θ

σ

µ

[

û−Dδh (m2 + 1− β2) +
(ε+ hµ (1−Θ))Dδ

µ

]

+(1−Θ)

[

ε+ hµ (1−Θ)

ε− hµ (Θ− β1)
Am1

]−1 σ

µ

[

(ε+ hµ (1−Θ))Dδ

µ

((

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ − 1

)

− û
]

+ Θ

[

ε+ hµ (1−Θ)

ε− hµ (Θ− β2)
Am2

]−1 σ

µ

[

−(ε+ hµ (1−Θ))Dδ

µ
− û
]

.
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Rearranging and solving for un+1 yields

un+1 6 Bû− σ

µ
û−B (1−Θ)

σ

µ
δ +BΘ

σ

µ

[

û−Dδh (m2 + 1− β2) +
(ε+ hµ (1−Θ))Dδ

µ

]

+B (1−Θ)

[

ε+ hµ (1−Θ)

ε− hµ (Θ− β1)
Am1

]−1 σ (ε+ hµ (1−Θ))Dδ

µ2

(

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ

− σ (ε+ hµ (1−Θ))Dδ

µ2
.

Define S2,1 to be the right hand side of this expression. After a bit more rearranging this can

be written as

S2,1 (Θ) (û, δ) =

(

B +
σ

µ
(BΘ− 1)

)

û−Bσ
µ
δ (1−Θ + ΘDh (m2 + 1− β2))

+
σ (ε+ hµ (1−Θ))Dδ

µ2

(

BΘ− 1 +B (1−Θ)

[

ε+ hµ (1−Θ)

ε− hµ (Θ− β1)
Am1

]−1

×
(

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ
)

. (4.10.17)

The derivation of the third case is very similar to the second case. Define S1,2 as

S1,2 (Θ) (û, δ) =

(

B +
σ

µ
(B (1−Θ)− 1)

)

û

−Bσ
µ
δ (Θ + (1−Θ)Dh (m1 + 1− β1)) +

σ (ε+ hµ (1−Θ))Dδ

µ2

(

B (1−Θ)− 1

+BΘ

[

ε+ hµ (1−Θ)

ε− hµ (Θ− β2)
Am2

]−1(

1− hµχ

ε+ hµ (1−Θ)

)

Aℓ
)

. (4.10.18)

For the fourth case in (4.10.15), take (1−Θ) times (4.10.14) with j = 1 plus Θ times (4.10.14)

with j = 2.

1

B
un+1 6 û+

σ

µ

[

û+ (ε+ hµ (1−Θ))
Dδ

µ

]

−σ
µ
Dδh [(1−Θ) (m1 + 1− β1) + Θ (m2 + 1− β2)]

− 1

B

σ

µ

[

û+ (ε+ hµ (1−Θ))
Dδ

µ

]
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Note that h [(1−Θ) (m1 + 1− β1) + Θ (m2 + 1− β2)] = (1−Θ) (a+ cu∗ + h) + Θ (a+ cδ).

Define S1,1 to be the right hand side of the inequality. After some rearranging,

S1,1 (Θ) (û, δ) =

(

B +
σ

µ
(B − 1)

)

û+
σ

µ
Dδ
[ε+ hµ (1−Θ)

µ
(B − 1)

−B [(1−Θ) (a+ cu∗ + h) + Θ (a+ cδ)]
]

(4.10.19)

Recall S1 (û, δ) and S2 (û, δ), the functions derived for backward Euler in Section 4.5. If

we set Θ = 1 in the expressions above then S1,1 (Θ) (û, δ) and S2,1 (Θ) (û, δ) coincides with

S1 (û, δ), and S2,2 (Θ) (û, δ) and S1,2 (Θ) (û, δ) coincides with S2 (û, δ).

Definition 4.10.3. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. For any δ ∈

(

0,
∣

∣

a
c

∣

∣

)

define

PΘ,h (δ, c, 2) = sup
û∈[−δ,−µ

σ
δ]

(

S (Θ, h) (û, δ, c, 2) ∨ S (Θ, h) (û, δ,−c, 2)
)

,

where a ∨ b = max{a, b}.
For the case Θ = 1 we know that S (Θ = 1, h) (û, δ,−|c|, 2) 6 S (Θ = 1, h) (û, δ, |c|, 2) (refer

to Lemma 4.5.8). Thus in Section 4.5, we simply set PΘ=1,h (δ, c, 2) = S (Θ = 1, h) (û, δ, |c|, 2).
We cannot do this for Θ 6= 1.

Lemma 4.10.4. Let ε, a, c > 0, σ 6 µ < ε
a

and σ < −µ. Let Θ ∈ [0, 1] and let the stepsize

h > 0 be such that ε+hµ(1−Θ)
ε−hµΘ > 0. Let δ ∈

(

0,
∣

∣

a
c

∣

∣

)

, M =
⌈

a+|c|δ
h

⌉

, δ2 =
(

ε+hµ(1−Θ)−hσ
ε−hµΘ

)−2M−1
δ

and (µ, σ) ∈ ∩
δ3∈

[

(

ε+hµ(1−Θ)−hσ

ε−hµΘ

)

−1
δ,δ

] {PΘ,h (δ3, c, 2) < δ3}. Then if ϕ(t) ∈ [−δ2, δ2] for t ∈

[−a− |c|δ, 0] then the Θ method solution to (4.1.1) {un}n>0 satisfies un ∈ [−δ, δ] for n > 0.

Proof. The proof is similar to that of Lemma 4.5.10. Let δ ∈
(

0,
∣

∣

a
c

∣

∣

)

, δ1 =
(

ε+hµ(1=Θ)−hσ
ε−hµΘ

)−1
δ

and δ2 =
(

ε+hµ(1−Θ)−hσ
ε−hµΘ

)−2M−1
δ. By Lemma 4.10.1, if ϕ (t) ∈ [−δ2, δ2] for t ∈ [−a− cδ, 0]

then un ∈ [−δ1, δ1] for n = 0, ..., 2M . Assume the solution first exits this interval at the

(n + 1)st step through the upper bound with un+1 = δ3 > δ1. Then from our discussion,

un+1 6 PΘ,h (δ3, c, 2). If (µ, σ) ∈ {PΘ,h (δ3, c, 2) < δ3} then we get a contradiction. Thus the

BE solution cannot exit [−δ1, δ1] for the first time through the upper bound.
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Recall from (4.8.6) that if the history function and the Θ method solution up to n are

bounded inside [−δ1, δ1], ε− hµΘ > 0, µ+ σ < 0, σ < 0 and ε+ hµ (1−Θ) > 0 then

|un+1| 6
|ε+ hµ (1−Θ)|+ |hσ|

|ε− hµΘ| δ1 = δ.

All these conditions apply because of the requirements of this lemma. Thus, un+1 = δ3 > δ1 is

only possible if δ3 ∈ [δ1, δ]. Thus, if (µ, σ) ∈ ∩δ3∈[δ1,δ]{PΘ,h (δ3, c, 2) < δ3} and ϕ(t) ∈
[

−δ2, δ̄2
]

then un cannot escape [−δ1, δ1] ⊆ [−δ, δ] through the upper bound.

Now consider the case in which the Θ method solution leaves [−δ, δ] through the lower

bound by considering the system v (t) = −u (t). This yields effectively the same system (4.1.1)

except with c replaced by −c. By our discussion above and the definition of PΘ,h, if ϕ (t) ∈
[−δ2, δ2] for t ∈ [−a− cδ, 0] and (µ, σ) ∈ ∩δ3∈[δ1,δ]{PΘ,h (δ3, c, 2) < δ3} then the Θ method

solution to this system cannot escape [−δ, δ] through the upper bound. Thus the Θ method

solution to (4.1.1) cannot escape [−δ, δ] through the lower bound either.

Sample plots of the sets {PΘ,h (δ, c, 2) < δ} are shown in Figure 4–9.
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(a) Θ = 0 (forward Euler), h = 0.25
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(b) Θ = 0 (forward Euler), h = 0.5
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(c) Θ = 0.5 (trapezoidal rule), h = 0.25
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(d) Θ = 0.5 (trapezoidal rule), h = 0.5
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(e) Θ = 1 (backward Euler), h = 0.25
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(f) Θ = 1 (backward Euler), h = 0.5

Figure 4–9: The sets
{∣

∣

∣

|ε+hµ(1−Θ)|+|hσ|
|ε−hµΘ|

∣

∣

∣
< 1, µ < 0

}

∪{PΘ,h (δ, c, 2) < δ} for different values of

Θ and h are shaded green and plotted with ε = a = c = 1 and δ = 0.01. On these sets the Θ
method solution to the model problem (4.1.1) {un}n>0 satisfy un ∈ [−δ, δ].
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CHAPTER 5

Implementation of a class of SDIRK methods

In this chapter we discuss an implementation of a class of RK methods to solve scalar

DDEs with multiple state dependent delays. Recall our model N-delay DDE from Section 2.2,

εu̇ (t) = −γu (t)−
N
∑

i=1
κiu (t− ai − ciu (t)), t > 0,

u (t) = ϕ (t) , t 6 0.

(5.0.1)

where ε, ai, ci, γ and κi > 0 for i = 1, ..., N . The N = 1 case is the model DDE we have been

considering with µ = −γ and σ = −κ1. This is a scalar problem and we know that this is a stiff

problem when ε is small. There is currently no standard formal definition of a stiff problem

even for ODEs. What we really mean when we say this is that many numerical schemes require

very small stepsizes to solve (5.0.1) when ε is small. In particular, explicit numerical schemes

have this difficulty. The stepsize generally needs to be smaller than ε which is impractical if

we would like to observe the behaviour of the solution as ε→ 0.
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(a) N = 1, a = c = 1, γ = 3, κ1 = 9
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t

u
(t

)

(b) N = 2, a1 = ci = κ1 = 1, a2 = γ = 2 = κ2 = 3

Figure 5–1: Sample solutions of (5.0.1) with ε = 1 (dashed) and ε = 0.01 (solid).

There are many DDE solvers that are currently available. In MATLAB there are DDE23

by Shampine and Thompson [53] and DDESD by Shampine [52] for state dependent problems.

The code RADAR5 written in FORTRAN by Guglielmi and Hairer [23] is one of the best

known solvers and solves stiff DDEs. Other DDE solvers are DKLAG6 by Corwin, Sarafyan
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and Thompson [13], DDVERK by Enright and Hayashi [16], DDE SOLVER by Thompson and

Shampine [56] and ARCHI by Paul [49]. Many of these solvers work very well in solving (5.0.1).

However, to study the ε → 0 case, we are interested in building an efficient MATLAB solver

specialised for scalar problems with the possibility of some stiffness.

5.1 An example using backward Euler

Recall our discussion in Section 4.2 on implementing backward Euler with linear interpo-

lation to solve the N = 1 case of (5.0.1). Using a constant stepsize h, at time step tn+1 the

update un+1 is a root of the function gn+1 (v) given in (4.2.4),

gn+1 (v) = v − un +
h

ε

(

γv + κ1Ỹn+1 (v)
)

,

where Ỹn+1 (v) = ηv (tn+1 − a1 − c1v), η(t) is the continuous extension and

ηv (t) =







η (t) , if t 6 tn,

(1− θ) un + θv, θ = t−tn
h
, if t > tn.

Solving for the root of gn+1 (v) using a fixed point iteration is not recommended because

this iteration requires the stepsize to be small enough in order to converge. With such a

requirement we might as well have used an explicit method instead of backward Euler. A

better choice would be to use a Newton iteration. Since the DDE and the delay terms are

linear and the interpolation is piecewise linear, gn+1 (v) is piecewise linear in every subinterval
[

−a+mh
c

, −a+(m+1)h
c

]

, m = 1, ..., n. Consequently, the Newton method converges in one step

to the correct solution if the starting point is in the same subinterval as the root. For larger

stepsizes however, we run into the problems when we are solving for the turning points of the

solutions. Figure 5–2 shows sample plots of gn+1 (v) at a trough point of the ε = 1 solution

in Figure 5–1(a) (t ≈ 20). In this plot the root is located inside an interval where the gn+1(v)

jumps. Figure 5–2(b) shows how the iterates of the Newton method may exhibit oscillations

between the sections before and after the jump, and never actually converge to the actual root.

Notice that this problem already occurs for ε = 1 and h = 0.02. The jump is sharper for larger

h and smaller ε. Examples of these are shown in Figures 5–2(c) and (d). In these cases the

Newton method fails in finding the roots unless the starting point is in the same subinterval as

the root. It is difficult to choose such a starting point for this problem because the jumps in
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gn+1 (v) correspond to jumps in the solution. A starting guess for un+1 based on extrapolation

from previous mesh values will not be close to the root.

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

3

v

g n
+

1
(v

)

(a) h = 0.02

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

v

g n
+

1
(v

)

(b) h = 0.02, oscillation of Newton’s method
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(c) h = 0.2
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(d) h = 0.3

Figure 5–2: Illustration of gn+1 (v) for the ε = 1 solution in Figure 5–1(a) at a trough point
(t ≈ 20). Newton method by itself fails at finding the roots in these cases unless the starting
point is sufficiently close to the root.

The problems shown in Figure 5–2 go away with smaller stepsizes. But since we are using

an implicit method so that we may use a large stepsize, it does not make sense to reduce the

stepsize for the root-finder. The bisection method is more reliable than the Newton method

in finding the roots in the examples in Figure 5–2. Even better, a Newton-bisection algorithm

may be used in which the default iteration is the Newton method but the algorithm switches to

the bisection method if it starts to detect oscillations. Since there is no simple multidimensional

analogue to the bisection algorithm, we cannot use this fix for non-scalar problems.
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In more sophisticated solvers like RADAR5 [23], variable stepsize selection is used to

accurately solve for the roots. This is beyond the scope of our current work. We instead use a

fixed stepsize which we only change when we have to include a discontinuity point in the mesh

(refer to Section 5.5).

5.2 Definitions

The general form of a scalar, state dependent, multiple delay problem that we would like

to solve is

u̇ (t) = f (t, u (t) , u (α1 (t, u (t))) , ..., u (αN (t, u (t)))) , t0 6 t 6 tf ,

u (t) = ϕ (t) , t 6 t0,
(5.2.1)

where f (t, u, v1, ..., vN ) ∈ C ([t0, tf ]× R× R× ...× R,R). Advances are not allowed so through-

out the entire solution we require αi (t, u (t)) 6 t for all t ∈ [t0, tf ] and i = 1, ..., N . Sample

problems, some with exact solutions, are found in Section 5.6. If for every compact subset R

of R there exist constants L0, ..., LN > 0 such that

‖f (t, u, v1, ..., vN )− f (t, ũ, ṽ1, ..., ṽN )‖ 6 L0 ‖u− ũ‖+ L1 ‖v1 − ṽ1‖+ ...+ LN ‖vN − ṽN‖

for all t ∈ [t0, tf ] and u, v1, ..., vN , ũ, ṽ1, ..., ṽN ∈ R then the local existence and uniqueness result

in Theorem 1.1.3 by Driver [14] applies.

Recall the notation introduced in Section 1.2. An RK method extended to solve DDEs

is given by its Butcher tableau with matrix A, abscissae ci and weight polynomial functions

bi (θ). Given a mesh ∆ = {tn}nf

n=0 of discrete time values, the approximation un to the solution

of (5.2.1) at time tn is obtained by setting u0 = ϕ (t0) and solving

K
(i)
n+1 = f

(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1,1, Ỹ

(i)
n+1,2, ..., Ỹ

(i)
n+1,N

)

,

un+1 = un + hn+1

s
∑

i=1
bi (1)K

(i)
n+1,

(5.2.2)

where t
(i)
n+1 = tn + cihn+1, Y

(i)
n+1 = un + hn+1

s
∑

j=1
aijK

(j)
n+1 and Ỹ

(i)
n+1,k = η

(

αk

(

t
(i)
n+1, Y

(i)
n+1

))

for

i = 1, ..., s and k = 1, ..., N . The function η is the continuous extension of the discrete method
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defined by

η (t) =



















ϕ (t) , t 6 t0

interpolation using mesh and stage values found in previous steps, t0 6 t 6 tn,

interpolation using mesh and stage values used in the current step, t > tn.

The continuous extension η (t) for t ∈ [tm, tm+1] is found by first calculating θ = t−tm
hm+1

so that

t = tm + θhm+1 and

η (t) = um + hm+1

s
∑

i=1

bi (θ)K
(i)
m+1. (5.2.3)

In this chapter, the equations are written in K-notation and solving for the stages means

solving for K
(i)
n+1 instead of Y

(i)
n+1. As discussed in Section 1.2, this is more convenient when

there is overlapping. Recall that the overlapping occurs if we are currently solving for the

update un+1 and for some i ∈ {1, ..., s} and k ∈ {1, ..., N}, αk

(

t
(i)
n+1, Y

(i)
n+1

)

∈ [tn, tn+1]. In

this case the equation for the continuous extension (1.2.5) becomes an implicit equation even

if the method itself is explicit. For sufficiently small stepsizes, these equations are known to

be well-posed problems [8]. For sufficiently small stepsizes, Theorem 1.2.2 also states that a

method of order p with a continuous extension of order q can be implemented so that the overall

global error is min {p, q + 1} [8]. In both cases, this sufficiently small stepsize is very small for

stiff problems.

5.3 SDIRK methods extended to solve DDEs

Diagonally implicit RK methods (DIRKs) are RK methods where the A matrix is lower

triangular. Singularly diagonally implicit RK methods (SDIRKs) are DIRK methods were the

entries in the diagonal all have the same value. These methods are sometime called semi-

implicit methods because the stages are solved for in order, one at a time. For scalar ODE

problems this means that one would only need to solve a scalar equation at each stage, a more

tractable problem than solving an s-dimensional system all at once. When SDIRK schemes are

extended to solve DDEs the need to find the spurious stages destroys this special property of

DIRK methods when there is overlapping in the lower stages. For instance, suppose that at

i < s, αk

(

t
(i)
n+1, Y

(i)
n+1

)

∈ [tn, tn+1] for some k ∈ {1, ..., N}. Then in order to solve the first stage

we require the value of Ỹ
(i)
n+1,k = η

(

αk

(

t
(i)
n+1, Y

(i)
n+1

))

. But we see from (5.2.3) that η on the

current interval requires K
(j)
n+1, j = 1, ..., s. Thus in the overlapping case the first stage cannot

150



be solved without the other stages and in this case we might as well have used a fully implicit

method.

For non-stiff problems, it is not a big deal to solve for all the stages all at once. However

for stiff problems such as (5.0.1) with small ε, the multidimensional iteration may come across

a multidimensional version of the problems we observed in Figure 5–2. Due to this it is difficult

to get the Newton iterations to converge and there is no simple multidimensional bisection

algorithm to help it out. Because of this we would like to preserve the SDIRK property when

extended to DDEs with possible overlapping.

The problem is circumvented by employing continuous extensions that do not need to use

higher stages before they have been found, i.e.

bi (θ) = 0, for θ < ci−1 (5.3.1)

With this property, if θ ∈ [0, ci] the continuous extension (5.2.3) can be written as

η (tm + θhm+1) = um + hm+1

i
∑

j=1

bj (θ)K
(j)
m+1. (5.3.2)

To our knowledge, such continuous extensions have not been used before, at least in the numer-

ical solution DDEs. Thus the continuous extensions we used for our solver had to be derived

using the order and continuity conditions. Examples of such continuous extensions are derived

in the next section.

Definition 5.3.1. An s-stage RK method given by its Butcher tableau with matrix A, abscissae

ci and piecewise polynomial weight functions bi (θ) has a DIRK-type continuous extension, and

the weight functions are called DIRK-type weight functions if they satisfy (5.3.1) for i = 1, ..., s.

In this case, we may write the weight functions as

bi (θ) = Bj,i (θ) , if θ ∈ [cj−1, cj ] , (5.3.3)

where c0 = 0. Since Bj,i (θ) = 0 if j < i, the matrix B is lower triangular.

Theorem 1.2.2 and indeed most of other results on RK methods for DDEs are stated using

polynomial weight functions. The results however can be easily extended to RK methods with

DIRK-type continuous extensions. This result is given in Theorem 5.3.2.
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Theorem 5.3.2. Let f (t, u, v1, ..., vN ) ∈ Cp([t0, tf ]× R
(N+1)d,Rd), let the deviated arguments

αk (t, u(t)) 6 t be Cp-continuous in [t0, tf ] for k = 1, ..., N and ϕ (t) be Cp-continuous. Assume

that the discrete mesh {t0, ..., tnf
} includes all the discontinuity points of order 6 p in [t0, tnf

].

If the underlying CRK method with DIRK-type continuous extension has discrete order p and

uniform order q, then the DDE method given by (5.2.2) and (5.3.2) applied to the DDE (5.2.1)

has discrete global order and uniform global order q′ = min{p, q + 1}; that is

max
16n6nf

‖u(tn)− un‖ = O
(

hq′
)

, max
t06t6tnf

‖u(t)− η(t)‖ = O
(

hq′
)

where h = max16n6nf
hn.

Proof. In the proof of Theorem 1.2.2 (Theorem 6.1.2 in Bellen and Zennaro [8]), the continuous

extension is only required to have order q and satisfy the endpoint conditions bi (0) = 0 and

bi (1) = bi. There are no continuity or differentiability conditions. Thus the same proof can

be applied to RK methods with DIRK-type polynomial functions. The extension to multiple

delays is straightforward.

Recall from Definition 1.2.1 that the order of a method is only defined for h → 0. So the

order of the method is really only relevant for small stepsizes. For stiff problems, stability of

a method is more important. The SDIRK methods that we consider are all L-stable methods

(A-stable with its stability functions R (z) satisfying R (∞) = 0). Requiring un+1 = Y
(s)
n+1 (the

last stage) results in the R (∞) = 0 property [26]. We consider four methods, of orders one

through four with a default continuous extension that uses polynomial weight functions. When

there is overlapping at some stage i < s, the continuous extension switches to a DIRK-type

weight function. The continuous extensions chosen are not natural (the Ỹ
(i)
n+1 do not necessarily

coincide with η
(

t
(i)
n+1

)

) unless otherwise specified.

SDIRK1 (backward Euler with linear interpolation)

In our discussion of backward Euler in Chapter 4 it was more convenient to use the Y -

notation because the only stage of the method is also the update un+1. Here is the form of

backward Euler with linear interpolation using the K-notation.

1 1

1
, b1 (θ) = θ
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SDIRK2

The two-stage, L-stable, second order method is given by the following Butcher tableau

with γ = 1− 1√
2
. This method is derived in [26].

γ γ

1 1− γ γ

1− γ γ

There are several choices for continuous extensions of this method, some of which satisfy (5.3.1).

We use the notation given in (5.3.3).

I. Default: First order continuous extension using linear interpolation between adjacent mesh

values.

b1 (θ) = (1− γ) θ

b2 (θ) = γθ

II. Natural, first order DIRK-type continuous extension that is C1 in the [0, 1]. The polyno-

mials are degree one for θ ∈ [0, γ] and degree two for θ ∈ [γ, 1].

B1,1 (θ) = θ

B2,1 (θ) = −5 +
7
√

2

2
+
(

7− 4
√

2
)

θ +
(

−2 +
√

2
)

θ2

B2,2 (θ) = 5− 7
√

2

2
+
(

4
√

2− 6
)

θ +
(

2−
√

2
)

θ2

III. Natural, first order DIRK-type continuous extension that is degree one in the entire in-

terval [0, 1]. This is equivalent to linear interpolation between the stages Y
(i)
n+1.

B1,1 (θ) = θ

B2,1 (θ) =
γ2 − 2γθ + θ

1− γ

B2,2 (θ) =
γ (θ − γ)

1− γ
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SDIRK3

The three-stage, L-stable, third order method can be derived using order condition and

the requirement that asi = bi.

γ γ

c c− γ γ

1 1− b− γ b γ

1− b− γ b γ

The way that the method has been written up, there are only three more order conditions to

satisfy third order. Solving these equations for b, c and γ yields

c = γ

(

1 +
1
6 −

γ
2

1
6 − γ + γ2

)

, b =

(

1
6 − γ + γ2

)2

γ2
(

1
6 −

γ
2

) ,

and γ as the root of the cubic equation

γ3 − 3γ2 +
3

2
γ − 1

6
= 0.

The value of γ that makes this an L-stable method is the middle root of that polynomial

(approximately 0.435866521508459) according to the analysis of the stability function of the

method by Hairer and Wanner [26] and Owren and Simonsen [47]. Using the polynomial

equation for γ, the expressions for b and c can also be simplified to

b =
2

3

(1− 3γ)

(1− γ)2
, c =

1

2
(1 + γ) .

I. Default: Second order Natural Continuous Extension (NCE). NCEs are discussed in Chap-

ter 5 of Bellen and Zennaro [8]. It can be shown that an NCE of a p-th order RK method

has order q > ⌊p+1
2 ⌋ and that one may be obtained by requiring the following conditions:

bi (0) = 0,

∫ 1

0
θrb′i (θ) dθ = bic

r
i , for r = 0, ..., q − 1.

Applying these conditions with q = 2 yields the following NCE for the third order method

bi (θ) = θ (4− 6ci) bi + θ2 (6ci − 3) bi.
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II. Second order DIRK-type continuous extension that utilizes un as an extra stage. The

polynomial function b0 (θ) = Bj,0 (θ) is the DIRK-type weight function corresponding to

this stage.

B1,0 (θ) = θ − θ2

2γ

B1,1 (θ) =
θ2

2γ

B2,0 (θ) =
θ

2

(

1− θ − γ
c− γ

)

B2,1 (θ) =
θ

2

(

1 + γ
θ − γ

(c− γ)2
)

B2,2 (θ) =
θ

2

(θ − γ) (c− 2γ)

(c− γ)2

B3,1 (θ) = 1− b− γ + (θ − 1)

(

1− b− γ +
2γ − 1

2 (c− γ)θ
)

B3,2 (θ) = b+ (θ − 1)

(

b+
1− 4γ

2 (c− γ)

)

B3,3 (θ) = γ

[

1 + (θ − 1)

(

1 +
θ

1− c

)]

III. Natural, first order DIRK-type continuous extension that is degree one in the entire inter-

val [0, 1]. Using this continuous extension lowers the order of the overall method to two,

but unlike the first option, it does not require the use of un as an extra stage (which may

affect the stability properties of the method).

B1,1 (θ) = θ

B2,1 (θ) =
γ2 − 2γθ + cθ

1− γ

B2,2 (θ) =
γ (θ − γ)
c− γ

B3,1 (θ) =
(1− θ) (c− θ) + (θ − c) (1− b− γ)

1− c
B3,2 (θ) =

γ (1− θ) + (θ − c) b
1− c

B3,3 (θ) =
(θ − c) γ

1− c
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SDIRK4

There is no four-stage fourth order L-stable SDIRK method [2, 47]. Instead we use a

five-stage fourth order method is presented in Chapter IV.6 of Hairer and Wanner [26].

1
4

1
4

3
4

1
2

1
4

11
20

17
50 − 1

25
1
4

1
2

371
1360 − 137

2720
15
544

1
4

1 25
24 −49

48
125
16 −85

12
1
4

25
24 −49

48
125
16 −85

12
1
4

I. Default: Hairer and Wanner [26] presented a continuous extension with polynomial weight

functions for this method that is third order.

b1 (θ) = 11
3 θ − 463

72 θ
2 + 217

36 θ
3 − 20

9 θ
4 b4 (θ) = −85

4 θ
2 + 85

6 θ
3

b2 (θ) = 11
2 θ − 385

16 θ
2 + 661

24 θ
3 − 10θ4 b5 (θ) = −11

9 θ + 557
108θ

2 − 359
54 θ

3 + 80
27θ

4

b3 (θ) = −125
18 θ + 20125

432 θ2 − 8875
216 θ

3 + 250
27 θ

4

II. First order DIRK-type continuous extension that is degree one in the entire interval [0, 1].

Using this continuous extension lowers the global order of the method to two.

B1,1 (θ) = θ

B2,1 (θ) = B3,1 (θ) =
θ

2
− 1

8

B2,2 (θ) = B3,2 (θ) =
θ

2
+

1

8

B3,3 (θ) = B4,1 (θ) = B4,2 (θ) = B4,3 (θ) = B4,4 (θ) = 0

B5,1 (θ) =
13θ

6
− 9

8

B5,2 (θ) = −61θ

12
+

65

16

B5,3 (θ) =
25

6

(

θ − 3

4

)

B5,4 (θ) = −85

3

(

θ − 3

4

)

B5,5 (θ) = θ − 3

4
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To always be clear about what continuous extensions are being used, we use the following

notation: SDIRKp (x, y) stands for the p-th order SDIRK method with continuous extension

x for the non-overlapping case and y for the overlapping case. So SDIRK2 (I,II) stands for the

second order SDIRK method using continuous extension I when there is no overlapping and

II for the overlapping case. For SDIRK1, there is only one continuous extension so it is not

necessary to specify this. For higher order methods, the continuous extension is always I for

the non-overlapping case.

By Theorem 5.3.2, an RK method with order p requires a continuous extension of at least

order p − 1 to retain its order. SDIRK1, SDIRK2 and SDIRK3 are each provided with one

DIRK-type continuous extensions that accommodates this. For SDIRK4 we currently only have

a DIRK-type continuous extension of order one, yielding a global order of two. Due to this it

would be preferable to use SDIRK3 to SDIRK4 when overlapping cases and vanishing delays

are expected. In cases where the delay terms are bounded away from zero (i.e. there exists

a τ̄ > 0 such that τi (t, u(t)) = t − αi (t, u(t)) > τ̄ for all t > t0) then choosing h to be small

enough (h < τ̄) eliminates overlapping cases. Thus for these problems SDIRK4(I,II) is still of

order four.

Applied to stiff problems, it is possible to find a further reduction in the order of DDE

methods analogous to the known reduction of order of ODE methods for stiff ODEs [26]. For

example, the code RADAR5 [23] uses s-stage Radau IIA methods that are order 2s for ODEs.

For DDEs, these methods have global order s + 1 which may reduce to order s for stiff DDEs

[23].

For SDIRK2 and SDIRK3 we have two choices of DIRK-type continuous extensions. The

second option for overlapping (given as continuous extension III for both methods) is a continu-

ous extension of order and degree one. The only DIRK-type continuous extension we currently

have for SDIRK4 is also of order and degree one. Using a weight function with a low degree

has the advantage of avoiding the problem of “spiking” which is displayed by SDIRK2 (I,II) in

Figure 5–3(a). Spiking occurs when there are sharp changes in the solution corresponding to

large changes in K
(i)
n+1 values. There is a sharp jump down in the solution at t ≈ 2.5. If such

a jump is to be reflected in going from un to un+1, some or all of the stage values K
(i)
n+1 must

be relatively large. As a result of these large K
(i)
n+1 values, the continuous extension spikes too

far down first before coming up to the value of un+1. The Y
(i)
n+1 stages themselves are not on
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the downwards spike which occurs in the time interval with θ ∈ [c1, 1], the second interval of

the interpolation where the B2,i (θ) are degree two polynomials. The spiking of the continuous

extension affects the solution at t ≈ 5 to 7 because at these times the deviated argument maps

back to t ≈ 2.5. Figure 5–3(b) shows that switching to SDIRK2 (I,III) fixes this problem.

By Theorem 5.3.2, using a continuous extension of order and degree one does not affect the

global order of the second order method as long as the discontinuity points are found accurately

(we discuss this issue in Section 5.5). For the third order method, using a continuous extension

of order one results in a reduction of the global order to two. This reduction of order is necessary

for stiff problems because allowing for the spiking of continuous extension would be worse. Once

again, stability is more important than order when using “large” stepsizes.
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(a) SDIRK2 (I,II)
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(b) SDIRK2 (I,III)

Figure 5–3: Numerical solutions of 0.001u (t) = −2u (t)− 3u (t− 1− u (t)) using SDIRK2 with
h = 0.1 and different continuous extensions for the overlapping cases. This shows the spiking
of continuous extension II at a trough point.

5.4 Solving for the stages

In this section we discuss the Newton-bisection algorithm used to solve for the stages. For

convenience consider a DDE with a single deviated argument α (t, u (t)). Suppose that the

solution is already known up to tn for some n > 0. To determine the update un+1 at time tn+1,

the stages have to be solved for in order. For i = 1 to s, the stage K
(i)
n+1 is the root of the

following function

G(i)
(

K
(i)
n+1

)

= K
(i)
n+1 − f

(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

, (5.4.1)
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where Y
(i)
n+1 = yn +hn+1

i
∑

j=1
aijK

(j)
n+1 and Ỹ

(i)
n+1 = η

(

α
(

t
(i)
n+1, Y

(i)
n+1

))

and η given by (5.3.2). In

Section 5.1 we gave an example of how Newton’s method by itself may not converge in finding

the root of these functions. A better option is to use a combined Newton and bisection method.

An outline of this is given in Algorithm 1.

Tolerance: TolX and TolY

Maximum iterate count: MaxCount

Input: i, tn+1, un, K
(j)
n+1 for j = 1, ..., i, hn+1, an interval [L,M ] in which the root must line

on and a starting point K ∈ [L,M ].
1. If G(i) (L)G(i) (M) > 0 then

• Look for an interval in which G(i) changes sign. This can be done using fminbnd in
MATLAB fminbnd which uses parabolic interpolation and the golden section search
(MATLAB references [11] and [19]).

• Choose the leftmost interval and return it as [L,M ].
• If no such interval is found then exit with an error.

2. Set signleft← sign
(

G(i) (L)
)

, IterateCount=0.

3. While
∣

∣G(i) (K)
∣

∣ >TolY or M − L >TolX and IterateCount<MaxCount
• IterateCount←IterateCount+1.
• If sign

(

G(i) (K)
)

=signleft then L← K. Otherwise M ← K.
• Take a Newton step,

K ← K − G (K)
d

dK
(i)
n+1

G(i) (K)
.

If K /∈ (L,M) then instead assign

K ← L+M

2
.

Algorithm 1: Root-finding algorithm using Newton and bisection methods

The derivative of G(i) is necessary to perform the Newton step. At any stage i = 1, ..., s,

if α
(

t
(i)
n+1, Y

(i)
n+1

)

6 tn (no overlapping at this stage) then

∂G(i)

∂K
(j)
n+1

= δij − ∂2f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

hn+1aij

− ∂3f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

η′
(

α
(

t
(i)
n+1, Y

(i)
n+1

))

∂2α
(

t
(i)
n+1, Y

(i)
n+1

)

hn+1aij, (5.4.2)

where δij is the Kronecker delta. If there is overlapping then we first solve for

θ
(i)
n+1 =

α
(

t
(i)
n+1, Y

(i)
n+1

)

− tn
hn+1

, (5.4.3)
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and use this in finding the derivative

∂G(i)

∂K
(j)
n+1

= δij − ∂2f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

hn+1aij

− ∂3f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

hn+1

(

bj

(

θ
(i)
n+1

)

+

(

s
∑

k=1

b′k
(

θ
(i)
n+1

)

K
(k)
n+1

)

∂2α
(

t
(i)
n+1, Y

(i)
n+1

)

aij

)

.

This can be rewritten to appear more similar to (5.4.2).

∂G(i)

∂K
(j)
n+1

= δij − ∂2f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

hn+1aij

− ∂3f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

η′
(

α
(

t
(i)
n+1, Y

(i)
n+1

))

∂2α
(

t
(i)
n+1, Y

(i)
n+1

)

hn+1aij

− ∂3f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

hn+1bj

(

θ
(i)
n+1

)

(5.4.4)

These derivatives may be used in multidimensional Newton iterations. However, our solver

only needs j = i. To extend these results to multiple delays, the arguments
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

should be replaced with
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1,1, ..., Ỹ

(i)
n+1,N

)

, the ∂3f with (∂3, ..., ∂N+2) f , the α

with (α1, ..., αN ) and η′ (α) with (η′ (α1) , ..., η
′ (αN )). All the products involving these terms

in (5.4.4) should now be changed to dot products.

1. Find a starting value for K
(i)
n+1 for i = 1, ..., s. It could be its value from the previous step

or a guess based on the values of K
(j)
n+1 for j = 1, ..., i.

2. Set the weight polynomials to be the default polynomial weight functions.
3. For i = 1, ..., s

• Derive an interval [L,M ] such that K
(i)
n+1 must lie in this interval.

• Solve for K
(i)
n+1 using Algorithm 1.

• If α
(

tn + cihn+1, Y
(i)
n+1

)

> tn exit this for loop.

4. If i < s then
• Set the weight polynomials to be the DIRK-type polynomial weight functions.
• For i = 1, ..., s

– Derive an interval [L,M ] such that K
(i)
n+1 must lie in this interval.

– Solve for K
(i)
n+1 using Algorithm 1.

All the K
(i)
n+1 values need to be saved along with a marker that states whether or not there was

overlapping in that interval.

Algorithm 2: Solving for the stages

When solving for K
(i)
n+1, the interval [L,M ] in Algorithm 2 should be derived from the

DDE that is being solved numerically. For (5.0.1) we know from Section 2.2 that the solution
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may be bounded inside [L0,M0] from (2.2.3). Using these, one may say that the bounds on the

derivative of the solution has to be in [−M,M ] where M =
γ+

N
∑

i=1
κi

ε
max{L0,M0}. However,

these bounds may be very large for small ε. A more accurate lower bound can be found by

requiring all delays to not become advances

α



t
(i)
n+1, un + hn+1

i−1
∑

j=1

aijK
(j)
n+1 + hn+1aiiK

(i)
n+1



 6 t
(i)
n+1. (5.4.5)

For (5.0.1), this yields an effective lower bound

L =

−a1
c1
− un − h

i−1
∑

j=1
AijK

(j)
n+1

hAii
. (5.4.6)

Similar bounds may be found for other equations.

5.5 Tracking discontinuities

Theorem 4.3.8 of Bellen and Zennaro [8] state that if a DDE has a smooth solution apart

from a finite number of discontinuities in the derivative, then for any choice of mesh an RK

method of order p > 1 with a continuous extension of uniform order q > 1 performs as a DDE

method with global order min{p, 2}. Thus, we can implement SDIRK1 and SDIRK2 without

discontinuity tracking and expect no loss of order for the non-stiff problems. This is a useful

option when the discontinuities are hard to find. In general, we would prefer to include all

discontinuities up to order p in the mesh. To do this, first check to see if there is a discontinuity

in the derivative at the starting point t0. If there is one, store this as ξ̃1 = t0 with order ζ1 = 1.

Say we have already solved for all the discontinuities up to time tn and these are saved in the

array {ξ̃}ℓi=1 with corresponding array {ζ}ℓi=1 which stores the order of the discontinuity points.

An outline of how to check and capture discontinuities in [tn, tn+1] is given in Algorithm 3.

If there is no overlapping in the current time step [tn, tn+1] and Algorithm 3 detects a

discontinuity point in this interval that maps αk (t, η (t)) back to a previously calculated dis-

continuity point ξ, it uses a Newton step to determine the next correct stepsize. The function

associated with this Newton step is

H (hn+1) = αk (tn + hn+1, w)− ξ, (5.5.1)
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Tolerance: TolX and TolY

Maximum iterate count: MaxCount

At every time step, set flag← 1, DiscCountn← 0, h← hmax, hleft ← 0 and hright ← hmax.
While flag=1 and DiscCountn<DiscCountMax do the following:

1. DiscCountn←DiscCountn+1.
2. Solve for the continuous approximation η(t) on [tn, tn+1] where tn+1 = tn + h.
3. If DiscCountn=1 then

• For k = 1, .., N ,
– For every j, check if there is an x ∈ [tn, tn + hmax] such that

αk (x, η (x)) = ξ̃i, for some i = 1, ..., ℓ and k = 1, ..., N ,

ζi 6 p− 1.

This may be done by checking the values at the endpoints. For every pair of x
and ξ̃i found, if |x− tn| < TolX then ignore this point.

4. If there are no such discontinuity points found then set flag=0. Otherwise choose the set
of x, k and ξ̃i values with the minimum x.

5. signleft← sign (αk (tn, un)− ξi).
6. If flag=1

• If
∣

∣

∣αk (tn + h, η (tn + h))− ξ̃i
∣

∣

∣ <TolY

– ξ̃ℓ+1 ← tn + h, ζℓ+1 ← ζi + 1, flag← 0.
• Else, if |hleft − hright| <TolX

– h← hleft, ξ̃ℓ+1 ← tn + hleft, ζℓ+1 ← ζi + 1, flag← 0.
• Otherwise reject the current step and the approximation η(t) on that interval.

– If sign (αj (tn + h,w) − ξi) =signleft then hleft ← h. Otherwise hright ← h.

– If there is no overlapping, h̃ ← h − H(h)
dH(h)
dhn+1

(from (5.5.1),(5.5.4)). Otherwise,

h̃← hleft+hright

2 .

– If h̃ ∈ [hleft, hright] then h← h̃. Otherwise h← hleft+hright

2 .
– flag← 1.

Algorithm 3: Discontinuity tracking
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where

w = η (tn + hn+1) = un + hn+1

s
∑

i=1

bi (1)K
(i)
n+1. (5.5.2)

In this case, the K
(i)
n+1’s are functions of the step size hn+1 as well. The new stepsize using a

Newton iteration should be

hnew
n+1 = hold

n+1 −
H
(

hold
n+1

)

dH(hold
n+1)

dhn+1

(5.5.3)

The derivative of H (hn+1) is given by

dH (hn+1)

dhn+1
= ∂1αk (tn + hn+1, w) + ∂2αk (tn + hn+1, w)

dw

dhn+1
, (5.5.4)

dw

dhn+1
=

s
∑

i=1

bi (1)K
(i)
n+1 + hn+1

s
∑

i=1

bi (1)
dK

(i)
n+1

dhn+1
. (5.5.5)

We need to calculate the derivative of the stages. In this derivation we first consider the case

of one deviated argument α (t, u (t)) for simplicity. Suppose that there is no overlapping in the

stages. Then,

dK
(i)
n+1

dhn+1
=
df
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

dhn+1

dK
(i)
n+1

dhn+1
= ∂1f

(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

ci+∂2f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)





i
∑

j=1

aijK
(i)
n+1 + hn+1

i
∑

j=1

aij

dK
(i)
n+1

dhn+1





+ ∂3f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

η′
(

α
(

t
(i)
n+1, Y

(i)
n+1

))

[

∂1α
(

t
(i)
n+1, Y

(i)
n+1

)

ci

+ ∂2α
(

t
(i)
n+1, Y

(i)
n+1

)





i
∑

j=1

aijK
(i)
n+1 + hn+1

i
∑

j=1

aij

dK
(i)
n+1

dhn+1





]

To simplify the notation, let us write f for f
(

t
(i)
n+1, Y

(i)
n+1, Ỹ

(i)
n+1

)

and α for α
(

t
(i)
n+1, Y

(i)
n+1

)

. Then

this equation becomes

dK
(i)
n+1

dhn+1
= ∂1fci + ∂2f





i
∑

j=1

aijK
(i)
n+1 + hn+1

i
∑

j=1

aij

dK
(i)
n+1

dhn+1





+ ∂3fη
′ (α)



∂1αci + ∂2α





i
∑

j=1

aijK
(i)
n+1 + hn+1

i
∑

j=1

aij

dK
(i)
n+1

dhn+1







 .
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Now we solve for
dK

(i)
n+1

dhn+1
as a function of

dK
(j)
n+1

dhn+1
for j = 1, ..., i. Rearrange the last equation to

become

dK
(i)
n+1

dhn+1
= ∂1fci+∂3fη

′ (α) ∂1αci+
(

∂2f + ∂3fη
′ (α) ∂2α

)





i
∑

j=1

aijK
(i)
n+1 + hn+1

i
∑

j=1

aij

dK
(i)
n+1

dhn+1



 ,

and collect the
dK

(i)
n+1

dhn+1
terms together

[

1−
(

∂2f + ∂3fη
′ (α) ∂2α

)

hn+1aii

] dK
(i)
n+1

dhn+1

= ∂1fci + ∂3fη
′ (α) ∂1αci +

(

∂2f + ∂3fη
′ (α) ∂2α

)





i
∑

j=1

aijK
(i)
n+1 + hn+1

i−1
∑

j=1

aij

dK
(i)
n+1

dhn+1



 .

This yields

dK
(i)
n+1

dhn+1
=

∂1fci + ∂3fη
′ (α) ∂1αci + (∂2f + ∂3fη

′ (α) ∂2α)

(

i
∑

j=1
aijK

(i)
n+1 + hn+1

i−1
∑

j=1
aij

dK
(i)
n+1

dhn+1

)

1− (∂2f + ∂3fη′ (α) ∂2α)hn+1aii
.

(5.5.6)

As in the previous section, the result can be extended to N -delays by replacing ∂3f with

(∂3, ..., ∂N+2) f , α with (α1, ..., αN ) and η′ (α) with (η′ (α1) , ..., η
′ (αN )). All the products in-

volving these terms in (5.5.6) should now be changed into dot products. Then this expression

can be used in (5.5.5) and (5.5.4) in order to get the relevant derivatives. Then the new stepsize

can be found using (5.5.3).

Since the K
(i)
n+1 derivative expressions were only derived for the nonoverlapping case, a

Newton step to find the next stepsize is only taken in Algorithm 3 if there is no overlapping.

We also have to consider the differentiability requirement in using Newton’s method. In our

problems we assume that the history function is always continuous. Because of this the discon-

tinuity points of a solution must all stem from the discontinuity in the derivative at the initial

time. Then any discontinuity point that we would be solving for in a time interval [tn, tn+1]

has to be of minimum order two. Then the continuous extension η (t) and H (hn+1) has a

continuous first derivative in this interval

The stepsize h is kept within the interval [hleft, hright]. Initially this interval is [0, hmax] but

this changes as the iteration gives us more information on the bounds of the correct stepsize. If
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the stepsize found using (5.5.3) is outside a range of values [hleft, hright] then the new stepsize is

found instead using a bisection step hnew =
hleft+hright

2 . In Algorithm 3, if the interval becomes

small enough (|hleft − hright| <TolX) then the algorithm exits with h = hleft. The reason why

we do this is illustrated in Figures 5–4 and 5–5. In Figure 5–4 there are multiple zeros and one

disappears as we change the stepsize. In Figure 5–5 there is a nearly horizontal section of zeros.

In both cases, a small change in the stepsize h will cause a small change in the function G(i)

itself but it causes a large change in the value of the root. When there is a discontinuity point

to be found then hleft and hright can be very close together but they result in very different

roots of the G(i) functions which results in very different updates. In the case of (5.0.1), it

could be the difference between a trough point and a crest point. This is why we choose hleft

as the stepsize. In these situations we will detect the discontinuity point again in the next time

step. It makes sense to actually solve for the discontinuity point again now because this time

we can solve for it with a smaller stepsize which results in much smoother G(i) functions and

a better estimate for the discontinuity point. So far the code only finds the same discontinuity

points a maximum of two times.

Other methods to find discontinuities

There are other methods to detect breaking points. Guglielmi and Hairer [24] point out that

the methods for directly finding the discontinuity points (such as our method) may be expensive

and some computed breaking points may not even be relevant for the actual computation.

Instead, they presented an algorithm which activates the search for breaking points only when

there has been a step rejection (when the local error is too large or the solver failed to converge

to a value at the next step). Their method along with convergence results and proof are

discussed in [24].

5.6 Test problems

A report by Paul [48] provides a collection of test scalar delay differential equations, some

with their solutions. Chapter 1 of Bellen and Zennaro [8] also provides some test problems that

have known stability properties. This section lists some of the problems that have been used

to test our solver.
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Figure 5–4: Plots of G(3)
(

K
(3)
n+1

)

displaying the problem when there are multiple roots and

one disappears when the stepsize is changed. A small change in stepsize leads to a large change
in the root. This plot is from applying SDIRK3 (I,III) to the DDE 0.001u̇ (t) = −2u (t) −
3u (t− 1− u(t)).
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Figure 5–5: Plots of G(3)
(

K
(3)
n+1

)

displaying the problem when the function is close to flat near

the root. A small change in stepsize leads to a large change in the root. This plot is from
applying SDIRK3 (I,III) to the DDE 0.01u̇ (t) = −2u (t)− 3u (t− 1− u(t)).
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1. Our main test problem is (5.0.1), the simplest test equation with state dependent delay.

We used a constant history function for all the tests.

εu̇ (t) = −γu (t)−∑N
i=1 κiu (t− ai − ciu (t)) , t > 0

u (t) = 1, t 6 0

As mentioned before, For small ε this is a stiff test problem.

2. The source for this test problem is Feldstein [18].

u̇ (t) = u
(

t

(1+2t)2

)(1+2t)2

, t > 0

u (t) = 1, t 6 0

The analytical solution of this is u (t) = et. There are no discontinuities in the solution.

This is good for testing the overlapping cases. See Figure 5–6 for the order test using this

test equation.

3. The source for this test problem is Neves and Feldstein [44].

u̇ (t) = u(t)u(ln(u(t)))
t

, t > 1

u (t) = 1, t 6 1

The analytical solution of this is known for t ∈
[

1, e2
]

u (t) =







t, 1 6 t 6 e

exp
(

t
e

)

, e 6 t 6 e2

This is good for testing discontinuity tracking. See Figure 5–7 for the order test using

this test equation.

4. The source for this test problem is Neves and Feldstein [45].

u̇ (t) = exp(u(u(t)−ln(2)+1))
t

t > 1

u (t) = 0, t 6 1

The analytical solution of this on the interval [1, 4] is

u (t) =







ln (t) , 1 6 t 6 2

1
2 t ln (2)− 1, 2 6 t 6 4

This has discontinuities at t = 1, 2, 4 respectively.
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5. The source for this test problem is Neves and Feldstein [45].

u̇ (t) =
u(u(t)−

√
2+1)

2
√

t
, t > 1

u (t) = 1, t 6 1

The analytical solution of this on the interval [ξ1, ξ3] is

u (t) =







√
t, ξ1 6 t 6 ξ2

t
4 + 1

2 +
(

1− 1√
2

)√
2, ξ2 6 t 6 ξ3

where ξ1 = 1, ξ2 = 2 and ξ3 = 5.0294372515248.

6. The source for this test problem is Tavernini [55].

u̇ (t) = u (u (t)) + (3 + a) t2+a − t(3+a)2 0 6 t 6 1

u (0) = 0,

The analytical solution of this on the interval [0, 1] is u (t) = t3+a. The solution has no

discontinuities and is a good test for overlapping.

5.7 Performance of the SDIRK solver

The work on the SDIRK solver is still ongoing. Here we state some results on the per-

formance of the preliminary SDIRK solver. The schemes described in this chapter have been

implemented successfully for all non-stiff test problems listed in Section 5.6. The order tests

on test equations 2 and 3 are found in Figures 5–6 and 5–7 respectively.

For stiff problems, SDIRK1, SDIRK2 (I,III) and SDIRK3 (I, III) are fast and efficient as

long as the discontinuity tracking is turned off. When used to integrate test equation 1, the

methods are fast when using a stepsize of 0.1 even when ε = 10−16. SDIRK4 is currently not

recommended for use on stiff equations.

As expected, the methods take much longer when the discontinuity tracking is turned on.

SDIRK1, SDIRK2 (I,III) and SDIRK3 (I, III) are still fairly fast when ε is about 100 times

smaller than the stepsize. However, past this point the SDIRK3 becomes much slower. At the

trough points of solutions to test equation 1 with small ε, the intervals have both discontinuity

points and overlapping if the stepsize is not small enough. Because of this we cannot use the

Newton method iteration for finding the correct stepsize to capture the discontinuity point in

the mesh so we have to use bisection which is much slower.
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Figure 5–6: Plots of the error of the methods when applied to test equation 2 versus the
stepsize in logarithmic scale. The order of the error is the slope of the regression line. SDIRK1,
SDIRK2 (I,II), SDIRK3 (I,II) all exhibit close agreements with their respective expected orders
of one, two and three. SDIRK4 (I,II) is expected to perform as a method of order two when
there is overlapping, but for this problem it displays a slightly better order of 2.5. Notice that
for this test equation, overlapping occurs when t − t

(1+2t)2
< h so 4t2 1+t

(1+2t)2
< h. From this

we can derive that the length of overlapping interval is of order h0.5. Thus the order of 2.5 for
SDIRK4 (I,II) can be explained by carefully deriving the error term at the overlapping interval
and realizing at these steps the error is the method order of h2 multiplied by the h0.5 because
of the length of the integration interval.
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Figure 5–7: Plots of the error of the methods when applied to test equation 3 versus the step-
size in logarithmic scale. The order of the error is the slope of the regression line. SDIRK1,
SDIRK2 (I,II), SDIRK3 (I,II) and SDIRK4 (I,II) all exhibit close agreements with their re-
spective expected orders of one, two, three and four. There is no overlapping for this test
equation.
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One difficulty with the current format of the solver is that to solve for a stage K
(i)
n+1, an

interval [L,M ] such that G(i)
(

K
(i)
n+1

)

has different signs at the two endpoints is required. For

non-stiff problems, it is usually not hard to pick such an interval but for stiff problems this is

a problem since
∣

∣

∣K
(i)
n+1

∣

∣

∣ can be very large. As mentioned, one of these bounds may be found

using (5.4.5). For test equation 1, this requirement yields (5.4.6). Finding such a bound would

be difficult to automate for general problems.
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CHAPTER 6

Conclusions

Here we summarise the main contributions of this thesis and discuss areas of future re-

search. In the first chapter we gave an introduction to retarded functional differential equations,

a general class of equations that includes DDEs with discrete delays, distributed delays and

neutral equation. However RFDE theory cannot be automatically applied to state dependent

DDEs even when the delay is known to be bounded. Conditions on RFDEs are difficult to

transcribe into conditions on state dependent DDEs. A separate treatment of state dependent

DDEs is needed and a good starting point is the following model equation

εu̇ (t) = µu (t) + σu (t− a− cu (t)) . (6.0.1)

This is the simplest DDE with a state dependent delay. The state dependence is the only

nonlinearity in this equation and from it interesting dynamics arise that cannot be found in

the constant delay case (c = 0), much less the ODE case (σ = 0) [38, 39, 40, 41]. This model

problem is a prototype for other state dependent DDE problems when the solutions are close

to zero. In this thesis we also consider the generalisation of (6.0.1) to N delays,

εu̇ (t) = −γu (t)−
N
∑

i=1

κiu (t− ai − ciu (t)). (6.0.2)

Properties of these model equations were considered in Chapter 2 starting with the ex-

istence and uniqueness of solutions. Global existence and uniqueness results were obtained

for some parameter regions. These results are summarized in Theorem 2.1.4 for (6.0.1), and

Theorem 2.2.2 for (6.0.2). The conditions for which the deviated arguments αi (t, u(t)) must

eventually become monotonically increasing were also considered. The results are found in

Theorem 2.1.8 for (6.0.1), and Theorem 2.2.4 for (6.0.2). Finally, bounds on the solutions to

special cases of (6.0.1) and (6.0.2) were derived in Section 2.3 using a Gronwall argument.

In Chapter 3 we considered the stability of the zero solution to (6.0.1). For fixed ε, a

and c, the parameter region in the (µ, σ) plane in which the zero solution is stable is known

to be the same for both the constant delay (c = 0) and state dependent delay (c 6= 0) cases

[25]. This region is denoted by Σ⋆ =
∆
Σ∪

w

Σ∪
c

Σ and described in Definition 3.1.1. Different
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approaches were used to directly prove stability in parts of this analytic region for the state

dependent case. The first approach, summed up in Theorem 3.2.6, uses a Gronwall argument

to prove that if (µ, σ) ∈ {r (0) ∈ (0, 1)} (refer to Definition 3.2.4) then the zero solution to

(6.0.1) is asymptotically stable. The second approach, culminating in Theorem 3.4.13, uses

a Razumikhin-style argument to prove that for k > 2, if (µ, σ) ∈ {P (1, 0, k) < 1} (refer to

Definition 3.4.11) then the zero solution to (6.0.1) is Lyapunov stable. This second approach

is a generalisation of the work of Barnea [6] who considered the µ = c = 0 and k = 2 case. The

parameter regions in which stability is proven by these methods are shown in Figure 3–13 and

compared in Section 3.5. These regions include the delay independent stability region
∆
Σ and a

significant portion of the delay dependent stability region
w

Σ∪
c

Σ.

The Gronwall argument used to prove stability in Chapter 3 is the same one used in

Section 2.3 to derive bounds on the solutions to special cases of (6.0.1) and (6.0.2). In future

work I would like to use the Razumikhin-style argument to find stricter bounds on the solutions.

The direct techniques used in Chapter 3 were extended in Chapter 4 to find parameter

regions for which the backward Euler solution to (6.0.1) is stable. The results for the Gronwall

argument and the Razumikhin-style argument are given in Theorems 4.4.6 and 4.5.15. Using

the Razumikhin-style argument with k = 2, we showed that backward Euler is stable when

(µ, σ) ∈ {P (1, 0, 2) < 1} for all stepsizes h ∈ (0, a]. These results were then extended to

derive analytic expressions of stepsize-dependent regions for which general Θ methods applied

to (6.0.1) are stable. These expressions were evaluated numerically and sample plots are shown

in Figure 4–9.

Eventually I would like to extend the results on the stability of the zero solution to (6.0.1)

using the Razumikhin-style technique so that more of
w

Σ is included. One idea on how to do

this is to use the decaying oscillations that undergo several cycles over a time period a that

are displayed by solutions to (6.0.1) when (µ, σ) ∈
w

Σ. Future improvements on the arguments

applied to the DDEs can possibly be extended to improve the results on numerical stability.

The stability of backward Euler solution to (6.0.1) was also considered when the stepsize

h > a. In Section 4.6 it was shown that if h > a then for all (µ, σ) ∈ Σ⋆ there is a BE

solution that converges to zero. The BE solution may not be unique so there may be another

BE solution that is behaving in an entirely different manner. This is another thing I would like

to investigate further.
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In the last chapter a new scheme for numerically integrating scalar DDEs with multiple

state dependent delays was presented. This scheme is based on singularly diagonally implicit

Runge-Kutta (SDIRK) methods. New continuous extensions, called DIRK-type continuous

extensions are chosen to accompany the SDIRK scheme. These continuous extensions consist

of piecewise polynomial weight functions, unlike the usual polynomial weight functions in a

continuous RK method, and they are derived to maintain the SDIRK structure even when

applied to a DDE problems with the possibility of overlapping. Four SDIRK schemes (of orders

one through four) were implemented and found to be successful in maintaining their order using

appropriate DIRK-type continuous extensions. The methods were also tested against (6.0.1)

and (6.0.2) which are stiff problems when ε is very small. The lower order methods were found

to be very successful in performing this integration for very small ε when the discontinuity

tracking is turned off. The solver is still currently at its preliminary stages and more work is

necessary to improve the convergence of the method when the discontinuity tracking is turned

on. One option to do this would be to implement stepsize control using a lower order method.

175



References

[1] A.N. Al-Mutib. Stability properties of numerical methods for solving delay differential
equations. Journal of Computational and Applied Mathematics, 10:71–79, 1984.

[2] R. Alexander. Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM Journal
of Numerical Analysis, 14(6):1006–1021, 1977.

[3] Hbid M.L. Arino, O. and E. Ait Dads. Delay Differential Equations and Applications.
NATO Science Series. Springer, Dordrecht, 2006.

[4] C.T.H. Baker and C.A.H. Paul. Computing stability regions - Runge-Kutta methods for
delay differential equations. IMA Journal of Numerical Analysis, 14:347–362, 1994.
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