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[1] Evidence of past climate variations are stored in polar
ice caps and indicate glacial-interglacial cycles of �100 kyr.
Using advanced scaling techniques we study the long-range
correlation properties of temperature proxy records of four
ice cores from Antarctica and Greenland. These series are
long-range correlated in the time scales of 1–100 kyr. We
show that these time series are nonlinear for time scales of
1–100 kyr as expressed by temporal long-range correlations
of magnitudes of temperature increments and by a broad
multifractal spectrum. Our results suggest that temperature
increments appear in clusters of big and small increments—
a big ( positive or negative) climate change is most likely
followed by a big ( positive or negative) climate change and
a small climate change is most likely followed by a small
climate change. INDEX TERMS: 3344 Meteorology and

Atmospheric Dynamics: Paleoclimatology; 3220 Mathematical

Geophysics: Nonlinear dynamics; 3250 Mathematical Geophysics:

Fractals and multifractals; 3210 Mathematical Geophysics:

Modeling. Citation: Ashkenazy, Y., D. R. Baker, H. Gildor,

and S. Havlin, Nonlinearity and multifractality of climate change

in the past 420,000 years, Geophys. Res. Lett., 30(22), 2146,

doi:10.1029/2003GL018099, 2003.

1. Introduction

[2] Abundant geological evidence indicates that temper-
atures varied from the cold of ice ages to the warmth of
interglacial periods through Earth’s history. In the last
800,000 years (800 kyr) there is strong evidence for a
dominant glacial-interglacial cycle of 100 kyr, with weaker
secondary cycles of 40 kyr and 20 kyr [Petit et al., 1999].
Each 100 kyr cycle consists of gradual cooling for �90 kyr
followed by rapid warming during �10 kyr. ‘‘Milankovitch
forcing’’, which refers to changes in insolation due to
variations in the precession, obliquity, and eccentricity of
Earth’s orbit are thought to play an important role in glacial
dynamics [Imbrie et al., 1992]. These orbital variations are
characterized by periods of 20 kyr, 40 kyr, and 100 kyr,
respectively. The 20 kyr and 40 kyr periods in the climate
records are generally believed to be a linear response of the
climate system to insolation variations. In contrast, the
weakness of the variations in solar radiation at the 100 kyr
timescale has lead to the generally accepted conclusion that

the glacial-interglacial oscillations at this timescale are most
likely not a linear response of the climate system to external
solar variations [Imbrie et al., 1992].
[3] Many studies indicated that climate dynamics is

nonlinear; [e.g., Ghil and Tavantzis, 1983; Nicolis and
Nicolis, 1984; Yiou et al., 1994; King, 1996]. The term
nonlinearity is understood in different ways by different
people. E.g., some would define nonlinearity according to
the response of the system to external perturbation—if the
response is linear/nonlinear then the system is linear/non-
linear. Others would define a system to be nonlinear
according to its dynamical equations—if the system’s
dynamical equations contain nonlinear terms it is considered
nonlinear. Others refer to nonlinear dynamics when they
want to describe the complex behavior of systems such as
chaotic systems.
[4] The understanding of climate dynamics is usually

based upon reconstructed time series of proxies for climatic
variables. These time series exhibit complex behavior while
the underlying process is, in many cases, poorly known.
Moreover, it is difficult to separate the system’s dynamics
and the perturbation added to it. In this case, the linearity or
nonlinearity of the underlying process is subject to the
model suggested to describe the process. Such an approach
lacks the objectivity needed for classification of the under-
lying mechanics producing the time series.
[5] Generally, natural time series may be described by a

set of dynamical equations that contains both deterministic
and stochastic elements [Hasselmann, 1976]. The determi-
nistic elements mimic a finite set of physical processes
driving the system while the stochastic elements mimic
processes that might perturb the system; these processes
are approximated as a background noise. Auto regression
moving average (ARMA) processes are processes that
contain linear terms plus stochastic elements, i.e.,
xn =

PM
i¼1ai xn�i +

PL
i¼0bihn�i, where h is Gaussian white

noise. The coefficients, ai and bi, fully specify the process,
solely depend on the Fourier power spectrum, and are
independent of the Fourier phases.
[6] Schreiber and Schmitz [2000] suggested defining the

linearity/nonlinearity of a process with respect to the Fourier
phases. If it is possible to reproduce the statistical properties
of a process just from its power spectrum and its probability
distribution, regardless of the Fourier phases, the process is
defined as linear. This definition includes ARMA processes
and fractional Brownian motion [Ashkenazy et al., 2001];
the output, xn, of these processes may undergo monotonic
nonlinear transformations sn = s(xn) and still be linear.
Processes which do not fall under this category are defined
as nonlinear. Following this definition, the Fourier phases
of a series bear the nonlinearity of the series—randomizing
the Fourier phases would destroy the nonlinearity of the
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series and ‘‘linearize’’ the series. Thus, the phase random-
ized series can be fully modeled by an ARMA linear model
( plus monotonic linear/nonlinear transformation) since its
coefficients are independent of the Fourier phases. On the
other hand, if the original series is nonlinear it is impossible
to find an ARMA model that has the same statistical
characteristics as the original series.
[7] The nonlinearity of a time series can be assessed

using the above definition. The NULL hypothesis is that the
underlying process of a time series is linear. In order to
reject the NULL hypothesis it is necessary to generate a
surrogate time series with the same probability distribution
and almost identical power spectrum, but with random
Fourier phases. If a statistical measure of the original series
is significantly different than that of the surrogate data, then
the NULL hypothesis is rejected and the series is classified
as nonlinear; the significantly different value for the statis-
tical measure is due to special relations of the Fourier
phases. Different versions of surrogate data tests are widely
used in many branches of natural sciences including the
climate system (see Schreiber and Schmitz [2000] and
references therein). Measures for nonlinearity include,
asymmetry of the time series [King, 1996; Schreiber and
Schmitz, 2000], harmonics in the power spectrum [King,
1996], modulations of the series [King, 1996], phase rela-
tions between different frequencies [King, 1996], the pres-
ence of combination tones in the power spectrum [Ghil and
Treut, 1981; Yiou et al., 1994], and others [Nicolis and
Nicolis, 1984; Tsonis and Elsner, 1992].
[8] Many deterministic theories have been developed to

explain the glacial-interglacial 100 kyr variability; some
suggested that the 100 kyr cycle is a result of nonlinear
rectification of the very small eccentricity forcing while
other studies suggested that the 100 kyr period is a result of
self-sustained nonlinear mechanisms [e.g., Saltzman, 1990;
Imbrie et al., 1992; Gildor and Tziperman, 2000; Tziperman
and Gildor, 2003]. Other studies proposed that climate
variations are stochastic [Hasselmann, 1976; Benzi et al.,
1982] and follow scaling laws [e.g., Kominz and Pisias,
1979]. Importantly, the majority of the deterministic and
stochastic mechanisms still assume that the variations on
time scales below 100 kyr down to 10 kyr are linear.
[9] The objectives of the present study are to quantify the

degree of nonlinearity of climate dynamics within the time
scales of 1–100 kyr and to provide statistical characteristics
of the proxy records which can serve as a test for distin-
guishing between existing climate models [Wunsch, 2002].
We study the correlation (scaling) properties of climate
records of the past 420 kyr. We show that temperature
variations are long-range correlated suggesting that the
Milankovitch periods are indeed secondary and (contrary
to common belief [Imbrie et al., 1992]) that climate
dynamics of all time scales below 100 kyr down to 1 kyr
are highly nonlinear. In addition, we quantify the degree of
nonlinearity in the climate records.

2. Ice-Core Data Analysis

[10] Our analysis is based on high resolution isotope
records obtained from four ice cores, Vostok and Taylor
Dome from Antarctica, and GISP (Greenland-Ice-Sheet-
Project) and GRIP (Greenland-Ice-Project) from Greenland

(downloaded from www.ngdc.noaa.gov/paleo/). Measure-
ments of oxygen and hydrogen isotope ratios (d18O and
dD) of the ice at different depths provide a proxy record of
temperature [Petit et al., 1999] when the ice was formed
(Figure 1a). These records extend back to 100–420 kyr.
[11] Fourier analysis is the standard method for studying

temporal long-range correlations in time series. When the
power spectrum follows scaling laws, S( f ) � 1/f b (b > 0),
the series is long-range correlated. However, the power
spectrum might yield an inaccurate estimation of the scaling
exponent due to constant or polynomial trends that are not
necessarily related to the intrinsic dynamics. We therefore
use detrended fluctuation analysis (DFA) [Peng et al., 1994;
Bunde et al., 2000]; the mth order DFA eliminates polyno-
mial trends of order m � 1 from the data. If the root mean
square fluctuation function, F(n), is proportional to na,
where n is the window scale, the series is long range
correlated (b = 2a � 1). For a random series a = 0.5 while
for correlated (or anticorrelated) series a > 0.5 (or a < 0.5).
Correlated series are dominated by low frequencies and thus
the values of the series tends to persist. Anticorrelated series
are dominated by high frequencies and thus values of the
series tend to alternate.
[12] We begin our analysis with the Vostok ice core; we

evenly sampled the data (0.1 kyr) before applying the
scaling techniques. We find that temperature changes are
highly correlated in the time range 1–100 kyr with a scaling
exponent a � 1.5 (Figure 2a), consistent with the previ-
ously reported power spectrum exponent b = 2 [Kominz and
Pisias, 1979; Pelletier, 1997; Wunsch, 2002]. Random
walk, i.e., the sum of white noise, also has exponent
a = 1.5. Consequently, one might conclude that the temper-
ature increment time series is simple, linear, white noise
[Pelletier, 1997]; we will show below that temperature
increment series is a complex nonlinear series.

3. Nonlinearity of Ice-Core Data

[13] Next, we analyze the nonlinear properties of the ice
core record. Long-range correlations in the temperature time
series, Ti, reflect linear aspects of Ti. Long-range correla-
tions in the magnitudes of temperature increments, j�Tij �
jTi+1 � Tij (Figure 1b) indicate nonlinearity of the underly-
ing process [Ashkenazy et al., 2001, 2003]. Linear series
have uncorrelated j�Tij series while nonlinear time series
that follow a scaling law exhibit long-range correlations in

Figure 1. (a) Isotopic temperature record (calculated from
the hydrogen isotope ratio) from the Vostok ice core [Petit
et al., 1999]; (b) A typical example for the clustering of the
magnitude of temperature changes j�Tij.
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the magnitude series j�Tij. We find that j�Tij is long-range
correlated within the time range 1–100 kyr (Figure 2b) with
exponent a � 0.8. If the temperature series Ti was a simple
random walk the corresponding j�Tij series would be
uncorrelated with exponent a � 0.5. Thus, the underlying
process is nonlinear. The value of the correlation exponent
of j�Tij quantifies the degree of nonlinearity in the ice core
record. Correlations in j�Tij indicate that the magnitude
series is ‘‘clustered’’, i.e., a large magnitude is more likely
to be followed by a large magnitude and a small magnitude
is likely to be followed by a small magnitude, as can be seen
in Figure 1b. As the correlations in j�Tij increase, the
clustering in j�Tij are more pronounced; linear series
have uncorrelated, homogeneous, magnitude series j�Tij
[Ashkenazy et al., 2003].
[14] To demonstrate that the correlations in j�Tij are

related to the nonlinearity of the underlying process we
apply a surrogate data test for nonlinearity that preserves
both the power spectrum and the histogram of the temper-
ature increment time series �Ti [Schreiber and Schmitz,
2000]. The surrogate series has random Fourier phases; the
nonlinearities that are stored in the phases are destroyed. We

find that the magnitude series obtained from the surrogate
series is indeed uncorrelated (Figure 2b). We generate
10 surrogate series and measure the correlation exponent
of j�Tij; we find that the mean exponent ±1 std is a = 0.5 ±
0.05, a value which is significantly different than the value
of the original j�Tij series exponent, a � 0.8. This
surrogate data test confirms that the original series is
nonlinear within 1–100 kyr. We note that in some cases
the asymmetry of a time series is an indication for nonlin-
earity and in other cases it is a result of a simple monotonic
and static transformation of a symmetric distribution. Since
we apply a surrogate data test that preserves the probability
distribution of the series under consideration on the incre-
ment temperature series, the asymmetry in the surrogate
series is the same as the asymmetry in the original incre-
ment temperature series. Thus the asymmetry of the ice-core
data is not related to the nonlinearity we find in the ice-core
data.
[15] An additional measure for nonlinearity is the multi-

fractal (MF) spectrum [Parisi and Frisch, 1985]. A series xi
obeys scaling laws if hjxi+n � xijqi � nt(q)+1 (h 	 i stands for
average). When the exponents t(q) are nonlinearly (or
linearly) dependent on q the series xn is multifractal (or
monofractal ). In many cases a MF (or monofractal) series
has a nonlinear (or linear) underlying process. We use an
advanced method of multifractality that accurately estimates
the exponents of negative moments and is capable of
removing polynomial trends from the data [Muzy et al.,
1994]. We calculate the exponents t(q) of different
moments q for the ice core data and find that t(q) is a
nonlinear function of q (Figure 2c), indicating that the
temperature series is MF. Most of the multifractality
observed in the ice-core data is due to the negative moments;
i.e., the small fluctuations are more inhomogeneous than
the big fluctuations. We also perform MF analysis on the
surrogate data and find that its t(q) is almost linear. The MF
spectrum,D(h)� hq� t(q) (h� dt/dq) (Figure 2d), is broad
for the original data and narrower for the surrogate data.
The broadness of the MF spectrum may also be used to
quantify the degree of multifractality, and thus the degree of
nonlinearity, in the data.
[16] We note that Schmitt et al. [1995] analyzed the GRIP

ice-core data and found a broad MF spectrum; their study
differs from ours because: (i) We exclude polynomial trends
that exist in climate records and might cause inaccuracies in
measuring the MF spectrum. (ii) We compute both positive
and negative moments; for the Vostok ice-core, most of the
broadness of the MF spectrum is due to the negative
moments. (iii) We use a surrogate test for nonlinearity to
verify whether the MF spectrum is indeed a measure of
nonlinearity; linear series with broad ( power-law) tails for
the probability distribution may have a broad MF spectrum
inspite of their linearity [Kantelhardt et al., 2002]. (iv) We
use longer ice-core time series (which became available
recently) that leads to a more accurate MF spectrum. (v) We
apply MF analysis to cores from both polar regions.
[17] We repeat the above analysis for the other three

ice cores (Table 1). The DFA exponents of the original
series are smaller for the Greenland cores (a � 1.2)
compared to the Antarctica cores (a � 1.5). The smaller
correlation exponents for Greenland cores may be related
to the more variable climate of the Northern hemisphere

Figure 2. (a) The root mean square fluctuation F(n) (2ND

order DFA) as a function of window scale n in kyr for the
Vostok temperature proxy data indicates strong correlations
(&). The surrogate series (4) exhibits almost identical
scaling confirming that correlations in the T series are a
linear measure. (b) F(n) for the magnitude series, j�Tij,
indicates strong correlations (&). The magnitude series of
the surrogate data (triangles) is uncorrelated (with
exponent 0.5) demonstrating the nonlinearity of the data.
(c) The MF analysis uses the wavelet transform modulus
maxima method [Muzy et al., 1994], with the 8-tap
Daubechies discrete wavelet transform [Daubechies,
1992]. The exponents t(q) are calculated for window scales
between 0.8 kyr and 25.6 kyr. The curvature in t(q) reflects
the multifractality of the temperature series (.). The t(q) of
the surrogate series (6) is linear (10 realizations; the
average ±1 std is shown). (d) The MF spectrum, D(h), is
much broader for the original data (.) compared to the
average D(h) of the surrogate data (6) confirming that the
underlying dynamics is nonlinear.
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(expressed by Heinrich and Dansgaard-Oeschger events).
The corresponding power spectrum exponent b = 1.4 for
the Greenland cores is consistent with the previous studies
[Lovejoy and Schertzer, 1986; Schmitt et al., 1995].
Although the DFA exponents of the original series are
smaller for the Greenland cores, the nonlinear measures of
magnitude series exponents are almost the same for all
cores. We also performed the MF analysis on the other
three cores (GRIP, GISP, and Taylor Dome) and find a
larger contribution of the positive moments than seen for
the Vostok data. We note however that since these
3 additional records are shorter by more than a factor
of two than the Vostok record their corresponding MF
spectrum is less reliable.
[18] Based upon our DFA and MF spectra for all of the

ice cores studied we conclude that climate dynamics is
nonlinear for time scales of few thousands of years up to
100 kyr.

4. Summary

[19] We conclude that climate changes in the time range
of 1–100 kyr are long-range correlated confirming the
major role of stochasticity in climate. Moreover, our results
suggest that the underlying dynamics in the time scales of
1–100 kyr is nonlinear. This nonlinearity is specified and
quantified by strong long-range correlations in the magni-
tudes of temperature changes and in a broad MF spectrum.
This nonlinearity is, most probably, a result of the tendency
of temperature increments to appear in clusters of big or
small increments rather than being randomly distributed.
[20] Climate models may be generally categorized into

two main alternatives: (i) linear or nonlinear mechanisms
that are driven by linear stochastic forcing [e.g., Benzi et al.,
1982; Pelletier, 1997; Wunsch, 2002], and (ii) nonlinear
mechanisms without stochastic forcing [e.g., Saltzman,
1990; Gildor and Tziperman, 2000]. Our results suggest a
third alternative—a mechanism that inherently involves
nonlinear stochastic forcing. This nonlinear stochastic forc-
ing may represent (i) interaction of a rapidly varying forcing
(like the atmosphere) with a slowly varying forcing (like the
ocean), (ii) interaction of noise with an intrinsic component
of the glaciation process (like ice-volume), or (iii) interac-
tion of noise with an external deterministic forcing (like
insolation). Our results raise a new challenge for the many
climate models, which ideally should reproduce the prop-
erties we have found in the ice core data, and may help
guide development of better climate models, which include
both periodic and stochastic elements of climate change.
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Table 1. Scaling Results of the Cores Under Consideration

(0.1 kyr Sampling)

measure GISP GRIP Taylor Vostok

age 110 kyr 225 kyr 103 kyr 422 kyr
aT 1.14 1.18 1.4 1.54

aj�Tj 0.77 0.82 0.8 0.78

The scaling regime starts at 1 kyr and is larger than the maximal spacing
between consecutive values. The DFA exponents for the original (aT) and
magnitude (aj�Tj) series are obtained for window scales between 1 kyr and
�1/4 of the series length.
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