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Abstract 
Future telecommunication systems and infrastructure must support large data rates in order 

to meet the growing demand for data-intensive multimedia contents and applications. 

Practical communication systems operate on continuous-time bandlimited communication 

channels, transmitting symbols over such channels at the Nyquist rate that is proportional 

to the channel bandwidth. Nyquist rate transmission has been traditionally motivated by 

the simple transmitter and receiver architectures, as it avoids introducing intersymbol-

interference (ISI). This dissertation explores the benefits of transmitting data faster than 

the Nyquist rate of the continuous-time bandlimited channel. This alternative data 

transmission approach has been explored in the literature, but it causes severe 

intersymbol-interference which makes design of practical communication systems 

challenging.  

The main goal of this work is to quantify the fundamental merits and identify potential 

applications of the faster than Nyquist (FTN) signaling. Using tools from information 

theory and channel coding, this dissertation demonstrates that, in some scenarios, systems 

based on the FTN signaling can have capacity benefits over conventional Nyquist rate 

systems. First, FTN is shown to have competitive capacity benefits in point-to-point 

digital communications systems that employ finite-alphabet modulation symbols and 

practical modulating pulses. Moreover, the concept of FTN signaling is extended to a 

single-hop network, known as Gaussian broadcast channels, where FTN signaling is 

proved to be capacity-wise optimal and able to outperform traditional time- or frequency-

division broadcasting schemes. Consequently, low-complexity FTN coding architectures 

are proposed and implemented in order to explore the practical feasibility of achieving this 

improved capacity. Furthermore, appropriate precoding strategies at the FTN transmitter 

are derived and shown to enable significant capacity improvements over non-precoded 

FTN transmission. Overall, presented results indicate that the FTN technology has 

significant potential for the next generation wireless cellular systems, digital TV 

broadcasting, and fiber-optic communication networks.  
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Sommaire  
Les systèmes de télécommunication futurs doivent supporter d’importants taux de débit 
de données afin de répondre à la demande croissante d’applications et contenus à  grosse 
échelle dans le domaine du multimédia. Des systèmes de communication pratiques 
fonctionnent sur des canaux de communications à bande limitée en temps continu, 
transmettant des symboles sur ces canaux au taux de Nyquist qui est proportionnel à la 
largeur du spectre du canal. La transmission de la fréquence de Nyquist a traditionnellement 
été motivée par l'architecture simple de l’émetteur et du récepteur. Cette thèse explore les 
avantages de la transmission de données plus rapide que le taux de Nyquist du canal à 
bande limitée en temps continu. Cette approche alternative pour la transmission de 
données a été explorée dans la littérature, mais elle provoque une interférence inter-
symbole significative qui rend la conception de systèmes de communication difficile en 
pratique. 

L'objectif principal de ce travail est de quantifier les mérites fondamentaux et identifier 
les applications potentielles pour la signalisation plus rapide que Nyquist (FTN). En 
utilisant les outils de la théorie de l'information et du codage, la thèse démontre que la 
signalisation FTN peut avoir des avantages au niveau de la capacité sur les systèmes au 
taux de Nyquist classiques dans plusieurs scénarios envisagés. Tout d'abord, FTN 
démontre des avantages de la capacité concurrentielle sur les systèmes de communication 
classiques point à point numériques qui utilisent un alphabet fini de symboles de 
modulation et les impulsions pratiques de modulation. En outre, le concept de signalisation 
FTN est étendu à un réseau à un bond connu sous le nom de canaux à diffusion gaussienne, 
dans lesquels il est prouvé que la capacité optimale est atteinte et qu’elle surpasse les 
systèmes traditionnels de la diffusion à temps partagé ou des systèmes par répartition en 
fréquence. Par conséquent, les architectures de codage FTN à faible complexité sont 
proposées pour explorer la possibilité d'atteindre cette capacité améliorée à une large 
gamme  d'efficacité spectrale. En outre, les stratégies de précodage appropriées à 
l'émetteur FTN sont dérivées et de permettre l'amélioration significative des capacités au-
delà de la transmission FTN sans précodage. Globalement, les résultats présentés indiquent 
que FTN a un potentiel important pour les systèmes cellulaires sans fil de prochaine 
génération, la télédiffusion digitale et les systèmes de communication par fibre optique. 
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Chapter 1  
 
Introduction 
 

 

1.1 Developments and Trends in Communication Systems 
 

During the past few decades, various technological innovations in the telecommunication 

industries have transformed our society. Led by technological breakthroughs such as the 

Internet, cellular phones, advances in digital signal processing, and emergence of 

spectrally efficient data communication techniques, we are now constantly connected with 

peers on the Internet, search daily online for news/information, stream live videos for 

entertainment, and upload and share personal stories in near real-time.  

 

 

Figure 1.1   Illustration of today’s telecommunication networks; showing that large portion of the 
“last mile” links are wireless including (clockwise from top) mobile cellular networks, 
wireless local area networks, radio broadcasting, and satellite links  

Core Optical 
Network 
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Figure 1.2  Worldwide trend in information and communication technology [68] 

One of the major emerging trends in the telecommunications sector is the development 

of ubiquitous wireless mobile networks that provide seamless connectivity to the core 

network anywhere and at anytime. Figure 1.1 depicts today’s telecommunication network 

infrastructure illustrating that a significant portion of the “last mile” communication is now 

done over wireless links. As Google also proclaims “the time for mobile is now” (2011) 

[137], the mobile smartphones (e.g., iPhones, Blackberries, Androids, etc.) and tablet 

computers (e.g., iPads, Galaxy Notes, etc.) caused the recent explosive growth of mobile 

cellular and broadband subscriptions worldwide. Figure 1.2 shows the fast growth in 

worldwide broadband penetrations (subscriptions per 100 inhabitants) from 2006 to 2011, 

showing a startling increase in mobile cellular subscriptions in the recent years. This trend 

is expected to continue, as evident from recent progress in the emerging markets (most 

notably China, India, Russia, and Brazil). 

A closer look at the types of mobile media that consumers typically access, shown in 

Figure 1.3, reveals increasing usage of data-intensive contents including, but not limited to, 

live streaming video or TV, social networking, and web browsing. One of the notable 

trends in Figure 1.3 is the increase in the real-time entertainment (e.g., Youtube, Netflix,  

* Estimate. 
Source: ITU World Telecommunication /ICT Indicators database 
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Figure 1.3  Peak period aggregate traffic composition (North America, fixed access);  

Real-time Entertainment refers to applications and protocols that allow “on-demand” 
entertainment that is consumed (viewed or heard) as it arrives (e.g., Youtube, Netflix, 
Pandora, PPStream, etc.) [54] 

Pandora, etc.) from 30% in 2009 to near 50% in March, 2011, indicating that multimedia 

contents are beginning to dominate the data traffic in wireless systems and over the 

Internet.   

These data-heavy applications must operate in real-time and can put a heavy traffic 

load on the wireless networks. Most smartphones and tablet PCs available today already 

require data rates that exceed the networks’ capabilities and, given the chance, “[they] can 

choke their wireless networks to death” [110]. The wireless service providers now face a 

grand challenge of making enough spectral resources available to accommodate the fast 

growing number of data-hungry broadband subscribers.  

Currently, many wireless and Internet service providers are proposing ambitious plans 

in offering order-of-magnitude increase in the data rates. For instance, the so-called ‘pre-

4G’ networks using Long Term Evolution (LTE) technology promise peak download rates 

of 100 Mb/s [140], which is more than 100 times faster than the rates of some of the early 

third generation (3G) standards. The proposed technologies that should enable this 

enormous capacity increase include multiple-antenna technology (MIMO), advanced 

coding and multiplexing, and addition of infrastructure to improve coverage and signal 

quality.  

2009
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Even with these promising technologies, however, the offered data rates are still far 

short of the IMT-Advanced (International Mobile Telecommunications-Advanced) 

requirements of 1 Gb/s for stationary user in a cell for the true fourth generation (4G) 

systems [121]. Furthermore, due to the proliferation of mobile devices and rapidly growing 

wireless applications [137], the offered data rates may not keep up with the exploding 

customer demands on the multimedia communications in the near future. Consequently, 

major global telecommunication companies are already in the process of developing fifth 

generation (5G) wireless cellular systems [44] and the innovative technologies that can 

further offer order of magnitude higher spectrum utilization are keenly anticipated by 

researchers and industries alike.  

 

1.2 Traditional Digital Communication Systems 
 

Initially, the digital communication systems had been severely constrained by limited 

memory, available hardware capabilities and coding techniques. Recent advancements in 

both hardware capabilities and communication systems theory are driving the need for 

more spectrally efficient communication techniques beyond traditional digital 

communication systems. 

 

1.2.1 Recent Advancements in Memory, Hardware and Coding 
 

The wireless spectrum has become a premium commodity due to its increasing scarcity, 

while thanks to the recent advancements in the silicon technology, the memory and signal 

processing units have become inexpensive and abundant in quantities. For instance, the 

number of transistors on integrated circuit has been observed to be doubling in every 18 

months − the phenomenon also known as the Moore’s law [103]. In addition, the density 

of the memory storage has been observed to be increasing even at a faster rate − known as 

the Kryder’s law [157]. Consequently, we now have significantly more hardware 

processing power in a small handheld device (e.g., a smartphone) than in some of the 

bulky supercomputers used in early 1970s. Today, this available data and signal processing 
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ability allows us to practically implement advanced error-correcting-codes that were too 

complex to build earlier. 

The advancements in error-control-coding also amend limited energy storage 

capabilities of mobile devices. It has been observed that battery technologies have not kept 

pace with the exponential increase in the processing abilities [4]. Using better error-

control-coding techniques, the mobile devices can reduce power consumptions required 

for communications at a given data rate. The saved battery power can readily be used for a 

wide array of other applications and leads to increased lifespan of mobile devices. 

Moreover, there have been significant developments in the fields of information theory 

and coding in the recent years. Since Shannon’s landmark information theory paper in 

1948 [132], channel capacity has become a practical benchmark for reliable 

communications over many practical bandlimited communication channels. However, it 

was only after 40 years since the birth of the information theory when practical error-

correcting-codes including Turbo codes and the low density parity check (LDPC) codes 

were designed to perform close to the capacity limits of practical channels [47]. These 

advances in the information theory and coding techniques have not only drastically 

improved the practical performances of digital communication systems, but have also 

established the channel capacity limit as one of the key benchmarks in communication 

system performance.  

 

1.2.2 Nyquist Rate Modulation and Demodulation 
 

The common assumptions made on the modern digital communication systems stem from 

the pioneering works of Nyquist in 1924 and 1928 [105], [106], who formulated a general 

baseband model for data transmission over continuous-time bandlimited channel. In 

particular, one can express the baseband transmission signal by 

 ( ) [ ] ( )
n

x t x n s t nT
∈

= −∑


, (1.1) 

where x(t) is a continuous-time baseband signal to be transmitted over the communication 

channel and {x[n]} are modulation symbols (or information) mapped onto continuous-time  
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Figure 1.4   Conceptual illustration of traditional Nyquist rate signaling without intersymbol 

interference between modulation symbols {x[n]} 

modulating pulses …, s(t+T), s(t), s(t−T), s(t−2T), … that are assumed to be bandlimited 

to W Hertz. The model in (1.1) also has an interpretation of sending information carrying 

pulses at every T seconds as illustrated in Figure 1.4. We note that these pulses may 

significantly overlap in time, as long as they remain orthogonal to one another.  

Nyquist showed that the maximal signaling rate 1/T, such that the pulses do not cause 

intersymbol interference (ISI) over a bandlimited communication channel with a 

bandwidth W Hertz, is given by 2W pulses per second. This so-called Nyquist rate 

signaling of 2W symbols per second is now the de-facto standard in the modern 

communication systems − motivated mainly by the simple receiver architecture based on a 

matched filter and a sampler [163], [13]. The receiver front-end is commonly equipped 

with a matched filter, that is matched to the modulation pulse shape, followed by a Nyquist 

rate sampler, which are known to maximize the received signal-to-noise ratio (SNR) in the 

additive white Gaussian noise (AWGN) channel. Most current digital communication 

systems are built with these assumptions of the Nyquist rate signaling at the transmitter 

and the Nyquist rate sampling at the receiver.1  

 

1.3 Faster than Nyquist Rate Transmission 
 

Following Nyquist’s work on zero-ISI transmission over bandlimited channels, many 

researchers (notably from the Bell Labs) have contemplated whether signaling faster than  

1 The Nyquist rate signaling may be considered as a dual of the Nyquist sampling theorem (also named after 
Whittaker [161], Shannon [133], or Kotel’nikov [89] in different literatures). The Nyquist sampling theorem 
states that any continuous-time signal with bandwidth W Hertz is completely determined by an infinite 
sequence of its samples spaced 1/(2W) seconds apart, i.e., the Nyquist rate samples (see also [70] for a 
tutorial review). Albeit intricately related, we note that the Nyquist rate sampling and the Nyquist rate 
signaling are two separate concepts, where the latter deals with communication over a bandlimited channel.  

x[0] x[1] x[2] 

T 
t 
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Figure 1.5   Conceptual illustration of faster than Nyquist rate signaling with its inherent 

intersymbol interference between transmitted symbols in a continuous-time 
bandlimited channel 

the channel Nyquist rate has any practical merit. (This approach is conceptually shown in 

Figure 1.5. Note that the overlapped pulses are no longer orthogonal in FTN.) The 

question of whether faster-than-Nyquist rate signaling has any merit beyond the Nyquist 

rate signaling has been pondering many communication engineers for years, as it is evident 

from some of the early references, including papers by Landau [91], Saltzberg [129], 

Lucky [98], Mazo [99], Salz [130], Foschini [49] and others. However, this topic has not 

received a widespread attention in the literature and practical systems until very recently. 

The key problem can be mainly attributed to the complex processing necessary to deal 

with the cumbersome intersymbol-interference (ISI) [49] − a byproduct of the faster than 

Nyquist transmission.  

Today, due to the escalating cost of wireless bandwidth and declining cost of memory 

and processing units, the importance of spectral efficiency of communication far 

outweighs the amount of processing required. Furthermore, recent advances in memory 

and hardware capabilities allow us to implement some of the powerful equalization and 

coding techniques that can practically deal with the severe ISI. Consequently, we are now 

in a perfect position to revisit the concept of faster than Nyquist transmission as a potential 

method to trading processing complexity for improved spectral efficiency. 

 

1.4 Thesis Contributions and Structure 
  

This dissertation is motivated by the following long-standing open question in digital 

communications: What are the practical merits of faster than Nyquist (FTN) signaling in 

continuous-time bandlimited channels? In order for the FTN signaling to have any 

x[0] x[1] x[2] 

T/2 
t 

x[3] x[4] 
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competitive advantages over the conventional below-Nyquist rate signaling, the benefit of 

data rate increase beyond the Nyquist rate must outweigh potential information loss 

incurred by FTN-induced ISI. The goal of this dissertation is to study the FTN signaling 

with a strong emphasis on the information theoretic analysis of FTN in various channel 

setups. The information theoretic tools allow us to analyze the channel capacity of the 

FTN signaling, which shows the maximal rate of information transfer at which reliable 

recovery after the channel is possible. Subsequently, the dissertation focuses on coding 

designs that allow practically approaching the FTN capacity limits. Finally, the potential 

merits of FTN signaling over various communication channels will be identified with 

consideration of practicality, and potential applications of FTN are also presented.  

 

 

Figure 1.6  Concept map of this dissertation 
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The main contributions of this dissertation work are described below 2  and, for 

convenience, a concept map of this thesis is presented in Figure 1.6:  

1. FTN Channel Models, Power Constraints and Spectral Analysis:  

- Discrete-time channel models of general FTN signaling (precoded and non-precoded 
with generalized waveforms) are formulated, highlighting all underlying assumptions.   

- FTN power transmission constraint is derived for the first time to allow proper 
assessment of the transmission power for non-i.i.d. (precoded) FTN signals.  

- The power spectral density (PSD) of FTN signals is analytically derived for non-i.i.d. 
(pre-coded) FTN signals, showing potential increase in transmission bandwidth. 

2. FTN Channel Capacity Analysis:  

- The channel capacity of non-precoded FTN signaling is derived (for the first time) 
for independent non-identically distributed (i.n.i.d.) FTN signals.   

- Channel capacity of previously considered convolutionally precoded FTN signaling 
is derived for the first time.  

- A closed-form capacity expression and capacity-wise optimal precoding are derived 
for FTN signaling. This highlights the benefit of precoding in the FTN systems and 
reveals the information theoretic potential of FTN signaling, 

- FTN channel capacity analysis is extended to linear time-invariant Gaussian channels, 
showing that the capacity admits the classical water-filling solution. 

3. FTN Broadcasting:  

- A novel concept of FTN broadcasting is proposed for the first time, extending the 
concept of the FTN signaling to a single-hop network setting.  

- The corresponding channel capacity region is derived for FTN broadcasting which 
can achieve the capacity boundaries of Gaussian broadcast channel.  

4. Design and Simulation of Coded FTN Systems with Near-Capacity Performance:  

- A low-complexity iterative receiver is designed for non-precoded FTN signaling 
using Gaussian approximation and successive cancellation of the FTN-induced ISI.3  

- Two FTN broadcasting transceiver architectures are proposed and shown to perform 
close to the capacity boundaries of the Gaussian broadcast channel.  

2 Please note that this work has been published in [74]-[85] and is being prepared for publication in [86],[87]. 
3 This design alleviates the use of any complex equalizer and hence offers significant complexity savings at 
high spectral efficiencies, when compared to the prior coded FTN system receivers in the literature. 
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The rest of the dissertation is structured as follows. Chapter 2  provides a chronological 

literature survey of the FTN signaling followed by an overview of important concepts, 

results and techniques in information theory, coding, and matrix algebra that will be useful 

in studying the FTN signaling. Chapter 3 describes the discrete-time channel models, their 

properties, and spectral analysis of the FTN signaling. In Chapter 4, the capacity analysis 

of non-precoded FTN signaling is derived, followed by a design and simulation of a low-

complexity near-capacity coded FTN system. Chapter 5 presents capacity analysis of 

precoded FTN signaling and highlights merits of data precoding in FTN systems. In 

Chapter 6, a novel concept of FTN broadcasting is introduced along with the development 

of FTN-based transceiver architectures for the broadcast channel communications. Finally, 

Chapter 7 provides a summary of research achievements and directions for future work.  
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Chapter 2  
 
Preliminaries 
 

 

The main objective of this chapter is to provide preliminary background and relevant 

techniques for studying faster than Nyquist (FTN) signaling. First in section 2.1, a 

chronological literature survey on the FTN signaling is given, starting from the early 

developments to the current state-of-the-art. Several relevant concepts from the 

information theory are then reviewed in section 2.2 as well as some of the results from the 

coding theory in section 2.3 (especially on the maximum a posteriori (MAP) symbol 

detection for intersymbol interference (ISI) channels and the Turbo coding). In section 2.4, 

selected results from matrix algebra are reviewed as these will be useful in the later 

chapters. The study of the FTN signaling cannot be complete without a proper review of 

the Nyquist theorem and we revisit the concept and provide a simple proof in section 2.5. 

In addition, the definitions of continuous-time channel bandwidth and the power spectral 

density are carefully reviewed in section 2.5. Finally, section 2.6 gives a useful insight into 

the FTN signaling by introducing the concept of signaling dimensions for FTN. 

 

2.1 Review of Past Literature on Faster than Nyquist Signaling 
 

The faster than Nyquist rate transmission makes its first appearance in the literature in the 

mid 1960s. Despite its 50 year history, there seems to be only handful number of papers 

regarding on the FTN transmission up until very recently. In this section, this literature is 

classified in three chronological periods, and the general theme of research in each period 
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is highlighted. The focus will be placed exclusively on the data transmission problem 

when the signaling rate exceeds the Nyquist rate of the bandlimited continuous channel.  

 

Early Days of FTN (1960s ~ 1985): 

The research in this early telecommunication era was mainly motivated by the Bell Labs’ 

interests with the possibility of transmitting faster than the Nyquist rate of a band-limited 

communication channel, for better utilization of their communication infrastructure. 

However, a general conclusion was that minor benefit of FTN exists for practical usage. 

The reason was that the equalization techniques available at the time could not sufficiently 

deal with the inter-symbol interference (ISI) once the transmission rate becomes 

significantly faster than the Nyquist rate.  

To the best of our knowledge, first published reference on FTN dates back to 1965, 

when Tufts, of Harvard University, extended Nyquist’s pulse transmission results and 

showed that “it is possible to transmit a finite sequence of real numbers at an arbitrarily 

high rate through any linear, time invariant, noiseless transmission medium” [149]. As for 

noisy channels, Tufts derived an analytical framework for designing minimum mean 

square error equalization for his FTN scheme, but its use was limited to transmission of 

very short burst of pulses and he did not consider any error-control-coding. In 1967, 

Landau from Bell Labs defined a concept of stable sampling and argued that “data cannot 

be transmitted as (stable) samples at a rate higher than the Nyquist” [91]. Tufts soon 

challenged Landau’s claim in 1968 by arguing that “it is possible to transmit any finite 

number of data elements at rates faster than the Nyquist rate” [150]. On the other hand, 

Saltzberg in 1968 attempted reducing the channel bandwidth below the Nyquist band 

(hence simulating an effective FTN transmission) and observed that “the system 

bandwidth can be reduced slightly below the Nyquist band without catastrophic results” 

[129].  

In 1970, Lucky from Bell Labs argued in his short paper [98] that despite advances in 

equalization, ISI caused by FTN signaling cannot be sufficiently removed by decision 

feedback equalization (which was relatively new in communications at the time) to 

guarantee any practical merit to FTN. In 1973, Salz also from Bell Labs analyzed mean-
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square decision feedback equalizers and, as a special case, considered such equalizers for 

FTN transmission [130]. However, he concluded that FTN transmission causes increased 

mean-square error after the decision feedback equalizer, thus worsening the overall 

communication system performance. 

It was only in 1975, when the first significant result appeared on the FTN transmission. 

In his landmark paper [99], Mazo from Bell Labs showed for the first time that the 

minimum Euclidean distance4 can be preserved even when the signaling rate exceeds the 

Nyquist rate by up to 25% (see Figure 2.1).  

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.4

0.5

0.6

0.7

0.8

0.9

1

Factor of rate increase over Nyquist rate (K)

d m
in (n

or
m

al
iz

ed
)

 

Figure 2.1   Normalized minimum Euclidean distance of FTN signaling with increasing signaling 
rates; Note that the minimum Euclidean distance stays constant until K = 1.25 (i.e., 25% 
faster than the Nyquist rate) 

Considering that the minimum Euclidean distance is one of the important metrics for 

measuring performance of communication systems, Mazo’s findings seemed to imply that 

FTN transmission can increase the rate of communication up to 25% without incurring any 

4 Euclidean distance between two signals is defined as ∫|sa(t) − sb(t)|2dt. It is closely related to the probability 
of mistaking transmitted singal sa(t) for some other signal sb(t).  
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loss in the communication performance. 5  Mazo’s paper, however, focused little on 

transceiver architecture and considered only the idealized sinc-type modulating pulses6. 

Also, channel capacity, rather than the minimum Eucldean distance, becomes a more 

relavant metric for measuring communication performance when advanced error-control-

coding techniques such as Turbo codes and LDPC codes are used as in the 3G and 4G 

wireless standards. Nevertheless, Mazo’s work opened the door and spurred much of the 

later research in this direction, as highlighted in the next chronological period. 

On the other hand, Foschini in 1984 conducted for the first time a thorough feasibility 

study and comparative analysis on the FTN signaling with standard quadrature amplitude 

modulation (QAM) techniques [49]. His conclusion was that FTN signaling using binary 

symbols offers only minor gains over QAM, mainly due to the significant spectral 

sidelobes inherent in FTN signaling and the large implementation complexity of the ISI 

equalizer. The comparisons were made by using pulses that maximize the minimum 

Euclidean distance under some constraints in complexity and out-of-band energy (OBE). 

Foschini’s work, however, was limited to FTN signaling using only binary symbols and 

this was compared to the high-level QAM techniques [45]. Furthermore, Foschini briefly 

mentions at the end of his paper that one “cannot dismiss (FTN signaling using multi-level 

symbols)” and “(such) systems may have some value (over QAM)” [49].  

Marked by the paper by Foschini, the once looming curiosity over the FTN signaling 

within Bell Labs seems to be put to an end, as most of the authors have moved on to 

different research topics. Mazo, on the other hand, motivated by independent work by 

Hajela [59]-[63], has followed up on his work with a joint paper along with Landau in 

1988 [100], but did not seem to publish any further results on the FTN signaling.   

 

5 For example, the error probability of M-ary signaling on additive white Gaussian noise (AWGN) channels 
can be tightly upper-bounded by a function of minimum Euclidean distance in high signal-to-noise ratio 
(SNR). In addition, the error probability of a maximum-likelihood sequence estimator (MLSE) in high SNR 
is closely related to the minimum Euclidean distance between signal sequences or codewords [155]. 
6 sinc(t) is defined as sin(πt)/(πt). They are strictly bandlimited in the frequency domain. 
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Later Days of FTN (mid 1980s ~ early 2000s): 

While the genuine interests in the FTN signaling seemed to have faded within Bell Labs 

by mid 1980’s, other researchers subsequently have picked up the topic and started 

contributing in different ways. The main direction of the research in this chronological 

period had been in extending Mazo’s work on the minimum Euclidean distance calculation 

while using more practical modulating pulses. In addition, more practical system designs 

incorporating advanced channel coding techniques were proposed, showing that ISI 

resulting from FTN signaling can be effectively removed in practice (this addressed the 

concerns raised by Lucky [98], Salz [130], and Foschini [49]). Unfortunately, papers in 

this period appear very sparsely from various independent groups and most of these groups 

did not seem to follow up on their work after their initial publication.  

Mazo’s work on the invariance of minimum Euclidean distance up to 25% above the 

Nyquist rate was first made mathematically rigorous by Hajela, who published a series of 

papers on the topic between 1987-1992 [59]-[63]. Hajela’s main contributions were first 

mathematically formulating the problem of finding minimum Euclidean distance (of FTN 

signaling using sinc pulses), and then showing that about 25% above Nyquist rate, as 

shown numerically by Mazo, is indeed the best possible result. Liveris and Georghiades in 

2003 [96] subsequently extended Mazo’s minimum distance analysis from the sinc pulses 

to more practical raised cosine pulses, and showed numerically that similar rate increase is 

possible (although less than 25%).  

Aside from the theoretical work, practical pulses and coding designs were also 

proposed by various authors. In 1995, Wang and Lee [158] proposed a 5-step iterative 

procedure to modify realizable FTN transmit filter response (equivalently, modulating 

pulse) in order to increase the minimum Euclidean distance in a multi-level FTN7. In 

addition, they proposed using approximate whitened matched filter at the receiving front-

end followed by an adaptive Viterbi algorithm to combat ISI, although no simulation 

results were reported. On the other hand, Liveris and Georghiades in 2003 [96] designed 

constrained coding to keep minimum Euclidean distance constant for higher signaling 

7 Unfortunately, some key technical flaws in [158] were later pointed out by Rusek and Anderson [126]. 
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rates, at the expense of small rate loss, and also considered iterative Turbo equalization. 

Their simulation results show that, using advanced coding and equalizers, ISI resulting 

from FTN signaling can be effectively removed in practice. Their FTN coding system, 

however, still performed many decibels away from the capacity limit of the FTN signaling. 

The concept of faster than Nyquist signaling has also inspired some other notable 

designs. For instance, the pulse-code modulation (PCM) modem of the International 

Telecommunications Union (ITU)-T V.92 Recommendations (which specifies the 

government approved protocols for modem communications over telephone networks) 

employs signaling slightly faster than the Nyquist rate of the channel bandwidth (see e.g., 

[147], [9], [8], [93]). Strictly speaking, however, the V.92 modem is not an FTN system as 

it only signals 7 out of 8 time slots, keeping the overall symbol rate less than the Nyquist 

rate. Furthermore, Wu and Feher in 1985 [164] used a transmit filter with cutoff frequency 

slightly below the Nyquist frequency to achieve a similar effect as the FTN signaling, and 

reported 3% rate increase above the Nyquist rate with 0.4 dB degradation in performance.  

 

Recent FTN Work (mid 2000s ~ present): 

The recent research activities in the FTN signaling have been driven strongly by the 

escalating cost of channel bandwidth and declining cost of memory and processing units. 

Furthermore, due to the advances in precoding and equalization techniques allowing 

practical reduction of FTN-caused intersymbol interference, the FTN signaling is now 

being considered as a method of trading processing complexity for potential of improving 

spectral efficiency. Recently, the concept of FTN signaling has been extended to 

multicarrier communication systems based on the orthogonal frequency-division 

multiplexing (OFDM) technology, long-haul fiber-optic communication links, and 

underwater acoustic channels. The FTN signaling is currently a vibrant on-going research 

area with many open problems and potentials for improvements. 

Considerate amounts of the research in the past decade have been made by Rusek and 

Anderson from Lund University in Sweden, initially as a part of Rusek’s Ph. D. thesis 

work [122]. They (recently with some other collaborators) have taken up various 

approaches to examine the FTN signaling in a great detail, including analysis of 
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constrained channel capacity, extension of FTN to frequency dimension, design of 

practical coding systems, and more recently, implementation on FPGA hardware.  

Most notably, in 2009, Rusek and Anderson have analyzed the capacity of FTN 

signaling when the modulation symbols are constrained to be independent and identically 

distributed (i.i.d.) [127]. They showed that the capacity of the i.i.d. FTN signaling can be 

greater than that of traditional orthogonal signaling, but this capacity gain comes from 

using excess transmission bandwidth (if available). That is, when the modulating pulse is 

strictly bandlimited, the FTN capacity reduces back to the Shannon capacity of 

continuous-time bandlimited channel for their FTN transmission approach. Also, their i.i.d. 

FTN transmission prohibits any type of precoding since it introduces symbol correlations, 

although precoding has been used in coded FTN systems.  

In [123], [124], [128], Rusek and Anderson extended the FTN concept to two 

dimensions, in time and frequency as illustrated in Figure 2.2, similar to the non-

orthogonal frequency division multiplexing. Furthermore, they generalized Mazo’s work 

on the invariance of minimum Euclidean distance of FTN signaling to the two dimensions 

in time and frequency for root-raised cosine pulses and Gaussian pulses. Their simulation 

results showed that the two-dimensional FTN can achieve the same error performance as 

the conventional OFDM at high SNR, while using only half of the time-bandwidth product 

of OFDM. This work showed that the concept of FTN can be potentially used to improve 

the conventional OFDM, which is the backbone technology for the upcoming 4G wireless 

networks.  
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Figure 2.2  Two dimensional FTN signaling in time and frequency; Dots represent locations of 
modulating pulses in the time-frequency plane that are separated by ∆t and ∆f 

Rusek and Anderson (with other collaborators) also conducted a significant amount of 

research on the design of practical coding systems (see e.g., [112], [125], [126] and the 

references therein). In one design [112], they considered FTN transmitters using the root-

raised cosine pulse and rate one recursive convolutional precoder. The FTN receivers were 

based on the Turbo equalization using the BCJR decoders. In addition, they used extrinsic 

information transfer (EXIT) chart analysis [144] to study the convergence of their Turbo 

equalizers. The overall system performed around 0.5dB away from the Shannon capacity 

limit on the additive white Gaussian noise (AWGN) channel in the low SNR regime. 

Furthermore, their FTN transceiver architecture was recently synthesized in both 65nm 

complementary metal-oxide-semiconductor (CMOS) and field-programmable gate array 

(FPGA), thus demonstrating that FTN systems can be efficiently implemented in practice 

(see e.g., [32]-[34]).  

In the last decade, the topic of FTN signaling has also been considered by many other 

researchers. For instance, the FTN signaling has been considered in long-haul fiber-optic 

communication links as a means to increase the spectral efficiency without having to use 

high-order modulation formats (see e.g., [136], [25], [22], [94]). In particular, Colavolpe et 

al. in 2011 [25] proposed using the FTN signaling with low-order modulation symbols in 

optical transmission, as opposed to using traditional Nyquist-rate signaling with higher-
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order modulation formats. Their claim was that FTN signaling using low-order modulation 

can be more robust against the optical nonlinearities. Also, non-orthogonal multicarrier 

modulation techniques, which are similar to the two-dimensional (time-and-frequency) 

FTN signaling, have been considered in the literature (see e.g., Spectrally-Efficient FDM 

[118], [73], [69], High Compaction Multicarrier-Communication [64], Overlapped FDM 

[71], and Weyl-Heisenberg frame transmission [65]). These techniques commonly aim to 

increase the spectral efficiencies of the multicarrier systems via reduced spacing between 

the modulating pulses in time and/or in frequency.  

In addition, Yoo and Cho in 2010 [165] proved that the FTN signaling using binary 

modulation symbols can achieve the capacity of i.i.d. Gaussian FTN signaling as signaling 

rates tends to infinity. This work implies that the binary FTN can be asymptotically 

optimal in the capacity sense when compared to Nyquist rate signaling using Gaussian-

distributed modulation symbols. On the other hand, Erez, Wornell, and Trott in 2004 [43] 

used the concept of FTN to design low-complexity rateless coding for the case when the 

transmitter does not know when the decoding will begin. Their FTN rateless coding 

scheme was recently considered in underwater acoustic channel transmission [42], [43]. 

Furthermore, McGuire and Sima in 2010 [101] reformulated the discrete-time channel 

model for FTN signaling, for the purpose of designing a low-complexity FTN receiver. 

Their simulation results indicate that the FTN receiver can achieve ISI-free performance at 

high SNR − a result that is consistent with the Mazo’s result on the minimum Euclidean 

distance of the FTN signaling. All these recent vibrant research developments indicate that 

there is now a growing interest in the topic of FTN signaling and its potentials are 

beginning to be recognized in the research community. 

 

2.2 Selected Information Theory Concepts 
 

Selected concepts from the information theory are reviewed in this section. Subsection 

2.2.1 reviews definitions and properties of Gaussian vector, entropy, and mutual 

information, while subsection 2.2.2 reviews selected capacity results of additive Gaussian 
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channels. These concepts will be used in the capacity analysis of FTN signaling from 

Chapter 4 to Chapter 6. 

2.2.1 Gaussian Vector, Entropy, and Mutual Information 
 

Some relevant definitions and lemmas are first given in the following. 

Definition 2.1 (Complex multivariate Gaussian vector): An n-by-1 complex random 

vector ni≡ + ∈z x y  , is said to be Gaussian distributed if the real n-by-1 vectors x and y 

are jointly Gaussian.  

Definition 2.2 (Circularly symmetric complex multivariate Gaussian vector): The 

complex Gaussian vector z is further said to be circularly symmetric if the real random 

vector 2[ , ]T T T n≡ ∈z x y   has covariance matrix of the form 

 ( )( ){ } ( ) ( )
( ) ( )

1{ } { }
2

† z z

z z

e K m K
E E E

m K e K
ℜ −ℑ 

− − =  ℑ ℜ 
z z z z    , (2.1) 

where Kz is the covariance matrix of z and the superscript (·)† denotes the complex 

conjugate transpose operator (also called the Hermitian operator). The circularly 

symmetric complex Gaussian vector is completely characterized by its mean μ and 

covariance Kz, and its probability density function is given [162] by8  

 ( ) ( ) ( )( )1exp
det

n
†

z
z

f K
K

π −
−= − − −z z μ z μ .  (2.2) 

Lemma 2.1 (Affine transformation of Gaussian): If z is circularly symmetric complex 

Gaussian with mean μ and covariance Kz, then any affine transformation Az + b results in 

another circularly-symmetric complex random vector with mean Aμ + b and covariance 

matrix AKzA†. 

Proof: By the linearity of the expectation, { }E A A+ = +z b μ b . Also by the definition of 

the covariance matrix, 

8 Note that the covariance matrix Kz is nonnegative definite and may not be always invertible. In such a case, 
the probability distribution (2.2) cannot be used as Kz

–1 is undefined and det(Kz) = 0. A more general 
definition of circularly symmetric multivariate Gaussian can be used in that case (see e.g., [115]), but we do 
not consider such generalizations here since it would unnecessarily complicate the following analysis. 
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 { }( { })( { })†

Az bK E A E A A E A+ ≡ + − + + − +z b z b z b z b  (2.3) 

 { }( )( )† †E A A= − −z μ z μ  (2.4) 

 { }( )( )† † †
zA E A AK A= ⋅ − − ⋅ =z μ z μ , (2.5) 

where (2.5) is due to the matrix A being deterministic (i.e., non-random). This completes 

the proof of Lemma 2.1.  ■ 

Next some information theoretic quantities and results are introduced as they will be 

used throughout this dissertation. We use base 2 logarithms to express the following 

quantities in bits.  

Definition 2.3 (Differential entropy): The differential entropy h(x) of a continuous 

random vector [ [0], [1], , [ 1]]Tx x x n= −x   with joint probability density function p(x) = 

p(x[0], x[1],  , x[n-1]) is defined as 

 ( ) ( ) ( )2logh p p d≡ −∫x x x x . (2.6) 

Definition 2.4 (Conditional differential entropy): If continuous random vectors x and y 

have a joint density function p(x,y), the conditional differential entropy h(x|y) is defined as 

 ( ) ( ) ( )2, logh p p d d≡ −∫ ∫x y x y x y x y . (2.7) 

Definition 2.5 (Mutual information): The mutual information between random vectors 

[ [0], [1], , [ 1]]Tx x x n= −x   and [ [0], [1], , [ 1]]Ty y y m= −y   is the relative entropy 

between their joint distribution and the product of distributions p(x)p(y) and is defined as: 

 
( ) ( )2

( , )( ; ) ( , ) log pI p d d
p p

≡ ∫ ∫
x yx y x y x y

x y
 (2.8) 

 ( ) ( ) ( ) ( ) ( ; )h h h h I= − = − =y y x x x y y x . (2.9) 

Definition 2.6 (Conditional mutual information): The mutual information between two 

random vectors [ [0], [1], , [ 1]]Tx x x n= −x   and [ [0], [1], , [ 1]]Ty y y m= −y  when 

conditioned on another random vector [ [0], [1], , [ 1]]Tz z z l= −z   is defined as: 
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 ( ) ( )2

( , )
( ; ) ( , , ) log

p
I p d d d

p p
≡ ∫ ∫ ∫

x y z
x y z x y z x y z

x z y z
 (2.10) 

 ( ) ( , ) ( ) ( , ) ( ; )h h h h I= − = − =x z x y z y z y x z y x z , (2.11) 

when the joint probability distribution p(x,y,z) and conditional probability distribution 

p(x|z), p(y|z), etc. are well defined.  

The mutual information satisfies a chain rule as shown below: 

Lemma 2.2 (Chain rule of mutual information): Let y, x1, x2 be any column random 

vectors (possibly of different sizes). Then the mutual information satisfies the chain rule: 

( ) ( ) ( )1 2 1 2 1; ( , ) ; ;I I I= +y x x y x y x x . 

Proof: By the definition of mutual information, ( )1 2 1 2; ( , ) ( ) ( ( , ))I h h= −y x x y y x x  

1 1 1 2( ) ( ) ( ) ( ( , ))h h h h= − + −y y x y x y x x ( ) ( )1 2 1; ;I I= +y x y x x . This completes the proof 

of Lemma 2.2. ■ 

In the following lemmas, the differential entropy of a Gaussian vector z and the 

entropy maximizing distribution under an average power constraint are determined. 

Lemma 2.3 (Differential entropy of Gaussian): The differential entropy of a circularly 

symmetric complex Gaussian vector z with invertible covariance matrix Kz is 

2( ) log (( ) det )n
zh e Kπ=z . 

Proof: Proof can be found in Appendix A.  ■ 

Lemma 2.4 (Gaussian as entropy maximizing distribution): Let x be a circularly 

symmetric complex Gaussian vector with n×n covariance matrix Kx. Also let y be another 

random vector, not necessarily Gaussian, with the same covariance. Then h(y) ≤ h(x) with 

equality if and only if y is also circularly symmetric Gaussian. 

Proof: Proof can be found in Appendix A. ■ 

The following lemma shows that translation does not change the differential entropy.  
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Lemma 2.5 (Translation invariance of differential entropy): Let x be any n×1 complex 

random vector and c be any deterministic (non-random) vector. Then h(x+c) = h(x). 

Proof: Proof can be found in Appendix A. ■ 

2.2.2 Selected Channel Capacity Results 
 

One of the most celebrated accomplishments of the information theory is the explicit 

characterization of the quantity known as channel capacity, which refers to the maximal 

information rate for which a reliable communication is possible over the channel [132].  

Definition 2.7 (Channel capacity): Let x be an input sequence of length n and y be the 

output sequence of a discrete channel characterized by the conditional probability density  

function p(y|x). Then the channel capacity is defined by9: 

 
( )

( )1lim sup ;
n p S

C I
n→∞ ∈

=
x

x y  in bits per channel use, (2.12) 

where S is the set of allowed probability distribution of x reflecting a possible constraint 

on the input to the channel and I(x;y) is the mutual information between x and y. 

Shannon’s celebrated channel coding theorem [132], [31] states that when the data 

(information) rate R is below the capacity C of the channel, i.e., R < C, there exists a 

coding scheme that can achieve the communication with arbitrarily small probability of 

error. Conversely, if R > C, i.e., if information rate is greater than the channel capacity, the 

probability of error of the communication must be bounded away from zero. Consequently, 

the channel capacity C is a tight upperbound on the amount of information that can be 

transmitted reliably over a communication channel.   

9  The channel capacity definition (2.12) generally holds for the information stable channels. Loosely 
speaking, the communication channel is called information stable if ( )1lim sup ;

n
n I−

→∞ x x y  

( )1sup lim ;
n

n I−

→∞
= x x y , i.e., the order of limit and supremum operations can be interchanged without any 

ambiguity. The precise definition of information stability is much more involved and can be found in Chapter 
6 in reference [23]. Most practical channels of interests are information stable, including the considered 
bandlimited AWGN channels and frequency-selective channels considered in this thesis. 
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The explicit capacity expression for the bandlimited additive white Gaussian noise 

(AWGN) channel is well known and is often praised as “one of the most famous formulae 

of information theory” [31]. 

Theorem 2.1 (Capacity of bandlimited Gaussian channel [132], [31]): The capacity of an 

additive white Gaussian noise (AWGN) channel with noise power spectral density N0/2 

watts/Hertz, and transmission power P watts is given by 

 2
0

1 log 1
2 2AWGN

PTC
T N

 
= + 

 
 bits per second, (2.13) 

where T is the symbol period in seconds. When the Gaussian channel is strictly 

bandlimited to [−W, W] Hertz with the Nyquist rate signaling of 1/T = 2W, the 

corresponding capacity of the bandlimited Gaussian channel is given by 

 2
0

log 1AWGN
PC W

N W
 

= + 
 

 bits per second. (2.14) 

Proof: The proof can be found in chapter 11 of [31]. For completeness of this thesis, the 

proof is also presented in Appendix A. ■ 

In general, the communication channel may impose more broad spectral constraints in 

the form of the spectral masks (e.g., the spectral masks for ultra-wideband (UWB) 

communications, frequency-division-multiple-access (FDMA), etc.). In such cases, the 

transmission power spectral density (PSD) is restricted to fall under the mask. Generally, 

the transmit spectral constraint is given by 

 ( ) ( )x f f≤S S  for all f, (2.15) 

where ( )x fS  and ( )fS  are the transmission PSD and the given spectral mask, 

respectively. The corresponding capacity of the Gaussian channel subject to the spectral 

constraint (2.15) is given in the following: 

Theorem 2.2 (Capacity as a function of PSD): The capacity of a Gaussian channel with 

the spectral constraint (2.15) is given by 

 2
0

1 ( )log 1
2 2PSD

fC df
N

∞

−∞

 
= + 

 
∫

S  bits per second. (2.16) 
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Summary of proof [12]: We shall use the idea similar to the Riemann sum for 

approximating an integral. First, partition the frequency axis into { }i if ∞
=−∞ , such that for all 

i, 1i if f f+ − = ∆ . In each partition 1[ , ]i if f f +∈ , denote the maximal and the minimal 

values of the spectral mask ( )fS  by mi and Mi, respectively. Furthermore, construct two 

new spectral masks by 
1[ , ]( ) ( )

i ii f fi
f m f

+

∞

=−∞
=∑ 1L  and 

1[ , ]( ) ( )
i ii f fi

f M f
+

∞

=−∞
=∑ 1U , where 

1[ , ] ( )
i if f f

+
1  denotes the indicator function (i.e., 

1[ , ] ( )
i if f f

+
1 =1 for 1[ , ]i if f f +∈  and 0 

otherwise). Then, it’s easy to see that ( ) ( ) ( )f f f≤ ≤L S U .  

The spectral mask ( )fL  comprises of a set of multiple rectangular bands of widths Δf 

Hz and hence the capacity with the spectral mask ( )fL  may be easily derived by a simple 

sum of (2.14): 

 ( ) 2 2
0 0

( ) log 1 log 1
2 2 2 2

i i

i i

m f mf fC f
N f N

∞ ∞

=−∞ =−∞

   ∆∆ ∆
= + = +   ⋅∆   
∑ ∑L , (2.17) 

where the two-sided bandwidth 2W is replaced by Δf, and the power P in the frequency 

band 1[ , ]i if f f +∈  is given by miΔf (since area under PSD corresponds to the power). 

Similarily, we can show that, for ( )fU : 

 ( ) 2
0

( ) log 1
2 2

i

i

MfC f
N

∞

=−∞

 ∆
= + 

 
∑U . (2.18) 

The sought-out capacity CPSD can then be bounded as 

 ( ) ( )( ) ( )PSDC f C C f≤ ≤L U , (2.19) 

due to ( ) ( ) ( )f f f≤ ≤L S U . Finally, by letting Δf→0, we can show by using calculus that 

 ( ) ( ) 20 0
0

1 ( )lim ( ) lim ( ) log 1
2 2f f

fC f C f df
N

∞

∆ → ∆ →
−∞

 
= = + 

 
∫

SL U , (2.20) 

which, with (2.19), leads to the desired expression. This completes the proof.  ■ 

We note that the capacity expression (2.16) as a function of PSD is a generalized form 

of the classical Shannon formula (2.14). In practical cases where the bandwidth is ill-
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defined (e.g., when transmitting pulses that are non-strictly bandlimited), the generalized 

capacity expression (2.16) can be a more appropriate capacity benchmark.  

In some scenarios, one may be interested in the maximal achievable rate when some 

fixed input probability distribution p(x) is used that is not necessarily the capacity-wise 

optimal. The resulting maximal achievable rate with the fixed p(x) is known as an 

information rate: 

Definition 2.8 (Information rate): An information rate in bits per second is defined as 

[109], [132] 

 1lim ( ; )
N

C I
NT→∞

= x y  bits per second, (2.21) 

(without supremum or maximum) for some specific probability distribution of x.  

The information rate usually gives a lower-bound to the true channel capacity due to 

the assumption of a specific channel input probability distribution p(x) that is in general 

not capacity-achieving.  

 

2.3 Review of Selected Channel Coding Techniques 
 

Selected concepts from coding and equalization are reviewed in this section. In particular, 

the BCJR algorithm (named after its four inventors Bahl, Cocke, Jelinek, and Raviv) on a 

trellis representation of convolutional code is reviewed in subsection 2.3.1. Moreover, 

maximum a-posteriori (MAP) symbol detection for an intersymbol interference (ISI) 

channel is reviewed in subsection 2.3.2. Finally, the capacity-approaching Turbo code and 

Turbo equalization are reviewed in subsection 2.3.3. Many of these concepts will be used 

in designing FTN coding architectures in section 4.3 and section 6.4.  

 

2.3.1 BCJR Algorithm on a Trellis 
 

Error-correcting-codes enable error detection and correction by adding redundancies to the 

transmissions for reliable data communication over noisy channels. Convolutional codes 
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are one important class of error-correcting-codes, which encode its input message by 

continually feeding the message bits into a finite-state machine, as shown in Figure 2.3 as 

an example. The finite state machine consists of registers, denoted by D in Figure 2.3, that 

are initialized to 0 and binary modulo 2 adders, denoted by ⊕ .  

 

 

Figure 2.3 Rate 1/2 - memory 4 - recursive systematic convolutional code used by Berrou et al. [18] 

The convolutional code can also be conveniently represented by a trellis diagram, 

which describes the encoded bits in a layered directed graph. As an example, the trellis 

representation of the convolutional code from Figure 2.3 is shown in Figure 2.4. In the 

trellis diagram, the set of vertices on the left-hand-side denotes all possible states of the 

convolutional encoder at the n-th stage, whereas the set of vertices on the right hand side 

denotes the possible states at the (n+1)-th stage. The transition from one state to another is 

possible only if there is an edge connecting the two states, and is triggered by incoming 

message bits while simultaneously generating the coded bits as outputs.  

 

D D D D 

Coded bit 2 out 

Message bits in Coded bit 1 out 
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Figure 2.4   One trellis stage of the recursive convolutional code from Berrou et al. [18]; Input and 
output symbols are denoted by in/out labels at each trellis edge 

Having such a trellis representation allows efficient probabilistic (soft-in-soft-out) 

decoding of the convolutional encoder. The goal of the probabilistic decoding of an error-

correcting-code is to find the probability of n-th message bit, m[n], given a received noisy 

version of the corresponding codewords, r, i.e., the a-posteriori probabilities p(m[n]|r). 

These can be efficiently computed by the BCJR algorithm [10], [11] (also known as the 

forward-backward, a posteriori probability (APP), or MAP algorithm) applied on to the 

trellis representation of the convolutional encoder. 
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The BCJR algorithm is described below. First let S  be a set of all states in the trellis 

and ns ∈S  be one of the states at n-th stage of the trellis. Given a state pair (sn, sn+1), the 

BCJR algorithm computes the probability of traversing the trellis edge connecting the state 

pair given received sequence r, by the factorization: 

 1 1( , ) ( ) ( , ) ( )n n n n np s s s s s s s sα γ β+ +′ ′ ′= = = , (2.22) 

where ( )n sα  is called the forward metric of the state s at the n-th trellis stage, βn+1(s’) is 

called the backward metric of the state s’ at the (n+1)-th stage, and γn(s, s’) is called the 

metric of the edge connecting the state pair (s, s’). The edge metric γn(s, s’) is given by  

 ( , ) ( [ ]) ( [ ] [ ])n s s p m n p r n c nγ ′ = , (2.23) 

where p(m[n]) is a-priori probability of the n-th message bit and p(r[n]|c[n]) is the 

likelihood probability of receiving r[n] when the codeword c[n] was transmitted at the n-th 

stage. For example, in the conventional additive Gaussian channel where r[n] = c[n] + z[n] 

with z[n] 2(0, )σ N , the edge metric can be computed as 

 
2

2 1 2
2

( [ ] [ ])( , ) ( [ ])(2 ) exp
2n

r n c ns s p m nγ πσ
σ

−  −′ = − 
 

. (2.24) 

On the other hand, the forward metric and the backward metric are computed recursively 

in forward and backward sweeps over the trellis, respectively, according to 

 1( ) ( ) ( , )n n ns s s s
σ

α α γ+ ′=∑  and (2.25) 

 1( ) ( ) ( , )n n ns s s s
σ

β β γ+
′

′ ′ ′= ∑ , (2.26) 

where 0 ( )sα  and ( )N sβ ′  are initialized to 1 for the beginning state s of the trellis and the 

ending state s′  of the trellis (and ( )n sα  and 1( )n sβ + ′  for all the other states at each trellis 

stage are initialized to zero by default).  

Finally, the sought-out a-posteriori probabilities p(m[n]=0|r) and p(m[n]=1|r) can be 

obtained by noting that these are precisely equal to the probability of traversing the one of 

the trellis edges having the input labels of m[n]=0 and m[n]=1, respectively, at the n-th 

trellis stage. Therefore,  
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 1

( , )  with
input label [ ] 0

( [ ] 0 ) ( , )n n
s s

m n

p m n p s s s s+
′

=

′= = = =∑r  and (2.27) 

 1
( , )  with

input label [ ] 1

( [ ] 1 ) ( , )n n
s s

m n

p m n p s s s s+
′

=

′= = = =∑r . (2.28) 

We note that the BCJR algorithm can be applied to other codes including non-binary 

codes, block codes, or other codes that has a trellis representation. It can also be used to 

perform a posteriori probability decoding for intersymbol interference channels (since such 

channels can also be represented by an appropriate trellis diagram).  

 

2.3.2 MAP Symbol Detection for Ungerboeck Observation Model 
 

The objective of this subsection is to develop a posteriori symbol detection/decoding for 

the FTN systems, which have a particular intersymbol interference (ISI) pattern with a 

specific noise correlation structure known as Ungerboeck observation model [151], using 

the BCJR algorithm discussed in subsection 2.3.1. 

Intersymbol interference (ISI) refers to a form of distortion of signals that causes a data 

symbol interfering with other data symbols. Such ISI typically arises in channels with 

memory, such as multipath fading or frequency selective channels, but also appears in the 

considered FTN signaling due to the inherent non-orthogonality of the signals that are 

spaced closer than the Nyquist interval. Although it has been traditionally considered as an 

undesired phenomenon to communications, ISI has recently been shown to be beneficial in 

some scenarios, such as in multiple-input-multiple-output (MIMO) channels where 

multipath propagation improves statistical independence on each communication path 

[141], [53] and in partial-response signaling where a controlled amount of ISI is 

deliberately introduced into the signal to allow reshaping of the spectrum or achieving the 

ideal Nyquist signaling rate while using practical time-limited pulses [72].  

The typical ISI observation model is given in the following: 

 [ ] [ ] [ ]
L

l
l L

y n h x n l z n
=−

= − +∑ , (2.29) 
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where y[n] is the n-th observation from the ISI channel, x[n] is the desired n-th data 

symbol, z[n] is the additive noise, and { }lh  for { , 1, ,0, , }l L L L∈ − − +    is a set of real 

numbers that corresponds to the ISI pattern. The integer parameter L determines the 

memory length of ISI and can be appropriately chosen depending on the values of hl. Let 

the noise z[n] be modeled as a correlated Gaussian with 0 mean and an autocorrelation 

function { } 0[ ] [ ] ( 2) m nE z n z m N h∗
−= , ,n m∈  where N0/2 is the two-sided noise power 

spectral density [151]. The resulting model (2.29), with the noise correlation being 

proportional to the ISI coefficients {hl}, is known as the Ungerboeck observation model 

[151], which can model selected ISI channels including the considered FTN systems10.  

One of the key methods to combat the effects of ISI is by using an equalizer at the 

receiver. In this subsection, we describe a design of the optimal equalizer based on the 

maximum a-posteriori (MAP) symbol detection for the Ungerboeck observation model 

[24]. This equalizer can be used with the considered FTN systems, as will be discussed in 

the later chapters11. 

The MAP symbol detector attempts to find the symbol probabilities of x[n] given the 

sequence of observations y (i.e., a-posteriori probabilities), which can be written as (by 

using the Bayes’ rule): 

 1( [ ] ) ( [ ]) ( [ ])p x n c p x n p x n= ⋅y y , (2.30) 

where c1 is a normalization constant that can be easily computed by the law of total 

probability. By the law of total probability, we can express the a-posteriori probabilities as 

 1

[ ]

( [ ] ) ( ) ( )
with x n fixed

p x n c p p= ⋅ ∑
x

y y x x , (2.31) 

10 Another popular model for ISI channels is the Forney observation model, which is obtained by designing a 
whitened matched filter at the receiver, leading to a white Gaussian noise vector. The Forney and 
Ungerboeck models are known to be equivalent in the way what one model can be transformed to the other 
without any loss in information.  
11 Instead, one could use suboptimal, reduced complexity equalizers (e.g., zero-forcing, MMSE, decision-
feedback, etc.). There have been numerous reports on the good performances of these suboptimal detectors in 
many special scenarios, and these may be preferred in practical coding systems due to their significant 
complexity reduction. 
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where the summation is over all possible combinations of x with the n-th symbol x[n] 

fixed. Noting that y conditioned on x is Gaussian distributed in the considered Ungerboeck 

observation model, we can express the likelihood function p(y|x) as [151] 

 2
2 0

10

2 1( ) exp [ ] [ ] [ ] [ ] [ ]
2

L

l
lk

p c x k y k x k h x k x k l h
N =

  
= ⋅ − − −  

  
∑∏y x , (2.32) 

where c2 is a normalization constant that can be computed by the law of total probability. 

Finally substituting the likelihood function p(y|x) into (2.31) yields 

2
0

10
[ ]

2 1( [ ] ) ( [ ]) exp [ ] [ ] [ ] [ ] [ ] ,
2

L

l
lk

with x n fixed

p x n c p x k x k y k x k h x k x k l h
N =

  
= ⋅ − − −  

  
∑ ∑∏

x
y

 (2.33) 

where we have used the assumption that input symbols x[n] are independent and c is 

another normalization constant that can be computed by the law of total probability.  

These a-posteriori probabilities can be efficiently computed by the BCJR algorithm, 

described in subsection 2.3.1, applied on to the trellis representation of the observation 

model (2.29). In the case of the Ungerboeck observation model, the edge metrics used to 

compute (2.22) is given by [24]  

 2
0

10

2 1( , ) ( [ ]) exp [ ] [ ] [ ] [ ] [ ]
2

L

n l
l

p x n x n y n x n h x n x n l h
N

γ σ σ
=

  ′ = − − −  
  

∑ , (2.34) 

which can be derived from the a-posteriori probabilities (2.33). Due to the summation term 

appearing in (2.34), we need L past symbols values x[n-L], x[n-L+1], …, x[n-1] at the n-th 

trellis stage. Consequently, the number of states required to implement this BCJR 

algorithm is ML for M-ary symbols (e.g., 2L for binary symbols). Consequently, the overall 

implementation complexity of the equalizer based on the MAP symbol detection is on the 

order of ML. 

 

2.3.3 Turbo Coding and Turbo Equalization 
 

Since Shannon’s landmark paper [132], which established the concept of channel capacity, 

many coding techniques have been devised to close the gap between the practical 
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performance of digital communications and the channel capacity benchmark. In 1993, 

Turbo code emerged as one of the first practical codes to closely approach the capacity of 

AWGN channel within a fraction of a decibel [18] and has since revolutionized the field of 

digital communications. Presently, it has been adopted in various communications 

standards including, but not limited to, 3G and 4G standards such as IMT2000, UMTS, 

HSPA, LTE [146], [145], and satellite communication systems such as DVB-RCS [38], 

[35]. In this subsection, we briefly highlight the structures of Turbo codes and its 

important variation known as the Turbo equalization for ISI channels. 

Turbo codes are comprised of either parallel or serial concatenation of two (or more) 

constituent codes that are separated by an interleaver, and are decoded by iterative 

decoding of the constituent codes. The classical parallel Turbo code [18] is first illustrated 

in Figure 2.5. At the encoding-end, encoder 1 encodes message bits m to produce coded 

bits c1, while encoder 2 encodes interleaved message bits mπ to produce another set of 

coded bits c2.12 The two sets of the coded bits (c1, c2) are subsequently modulated and sent 

to the communication channel.  

 

` 

Figure 2.5  Encoder and decoder structures of a parallel Turbo code; П and П-1 denote interleaver and 
deinterleaver, respectively; SISO denotes a soft-input-soft-output module 

Given the channel observations, the demodulator at the receiver first computes a-

posteriori probabilities p(c1) and p(c2) of the coded bits and passes these information to the 

12 In typical parallel Turbo code, encoder 1 is usually a systematic recursive convolutional code, which 
includes its encoder input as the output sequence, whereas encoder 2 is typically a non-systematic recursive 
convolutional code that does not include its encoder input as the output sequence. 
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Turbo decoder for further processing. The Turbo decoder is comprised of two soft-input-

soft-output (SISO) modules computing the reverse operations of the encoder 1 and 

encoder 2 at the Turbo encoder. The SISO module, illustrated in Figure 2.6, accepts a-

priori probabilities about the codeword c and the message m and as its two inputs and 

computes a-posteriori probabilities about c and m, using the BCJR algorithm, described in 

subsection 2.3.1. The a-posteriori probabilities are then divided by the corresponding a-

priori probabilities, as also shown in Figure 2.6, to produce extrinsic information pe(c) and 

pe(m) about c and m.13 The purpose of this so-called extrinsic information processing is to 

extract only the information that are newly learnt from the BCJR decoding. It is 

accomplished by removing from the a-posteriori probability of each BCJR decoded 

symbol the contributions of the a-priori probability of this symbol and known extrinsic 

information about this symbol that was at the input of this decoder.  

 

 

Figure 2.6  Illustration of the soft-input-soft-output (SISO) module of the Turbo decoder that is 
implemented using the BCJR algorithm; also includes the extrinsic information 
processing 

The SISO 1 module of the Turbo decoder in Figure 2.5 first computes the extrinsic 

information about the message, pe(m). These are then interleaved, using the same 

interleaver used at the Turbo encoder, and are input to the SISO 2 module as a-priori 

13 Note that, instead of the probabilities p(c) and p(m), the log-likelihood ratios (LLRs) defined by Λ(c) ≡ 
log(p(c=1)/p(c=0)) or Λ(m) ≡ log(p(m=1)/p(m=0)) may be computed and exchanged between the two 
constituent decoders in Turbo code. Then, the SISO module in Figure 2.6 will accept two LLRs Λa(c) ≡ 
log(pa(c=1)/pa(c=0)) and Λa(m) ≡ log(pa(m=1)/pa(m=0)) as inputs. Furthermore, the output extrinsic 
information is generated by simply subtracting the LLRs by Λe(c) = Λ(c)−Λa(c) and Λe(m) = Λ(m)−Λa(m). 
Note that either using probabilities or LLRs lead to an equivalent operation in Turbo code.  
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probabilities about the interleaved message bits mπ. The SISO 2 module then computes the 

extrinsic information about the interleaved message bits mπ, using the a-posteriori 

probabilities p(c2) from the demodulator as the a-priori information about c2. The extrinsic 

information pe(mπ) are then de-interleaved back to the format of m, which are fed back to 

the SISO 1 module as an updated a-priori probabilities about the message bits m. These 

steps continue for a prescribed number of iterations or until some convergence is reached. 

At the last iteration, the estimates about the message bits m̂  are obtained by multiplying 

pe(m) by pa(m) after the SISO 1 module, followed by a hard-decision device, as illustrated 

in Figure 2.5.  

Similarily, the serial Turbo code [14] is illustrated in Figure 2.7. The encoding of 

message bits m is now done in two stages in serial, with an interleaver in between. Note 

that the encoder 2 now does not encode the message bits m directly, but instead encodes 

the interleaved version of the codeword c1, denoted by c1π. Consequently, at the Turbo 

decoder, the SISO 2 module treats c1π as its message bits and outputs the extrinsic 

information about c1π. The rest of the operations follow similarly as in the parallel case. 

 

 

Figure 2.7  Encoder and decoder structures of a serial Turbo code; П and П-1 denote interleaver and 
deinterleaver, respectively; SISO denotes a soft-input-soft-output module 

Turbo codes have been originally applied to the memoryless AWGN channels and 

were shown to perform near the capacity limit (e.g., 0.1 dB within the capacity limit 

reported in [142]). Within only few years of its invention, Turbo code has been 

successfully extended to intersymbol interference (ISI) channels (and branded as Turbo 

equalization [37], [88]) which was shown to be able to iteratively remove ISI and perform 

close to the ISI channel capacity limit. In the Turbo equalization, the ISI channel is treated 
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as a constituent code of the serial Turbo code by modeling it as a tapped-delay line as 

illustrated in Figure 2.8. The receiver first needs to estimate the ISI channel tap 

coefficients h−L, …, hL, which can be achieved by sending training or pilot sequences. The 

(soft-input-soft-output) SISO symbol detector at the Turbo equalizer then calculates a-

posteriori probabilities about each modulation symbol x, which can be implemented by the 

MAP symbol detector as explained in subsection 2.3.2. This is followed by the de-mapper 

(symbols to bits), which reverses the mapping function of the mapper (bits to symbols) 

used at the encoder, and computes the extrinsic information pe(cπ) about the interleaved 

codewords cπ. The rest of the iterative processing is the same as in the serial Turbo 

decoder from Figure 2.7. 

 

 

Figure 2.8  Turbo equalization in ISI channels 

The performance of the Turbo equalizer depends on which (error-correcting) encoder 

is being used at the transmitter. When it is a simple convolutional code, the Turbo 

equalizer can successfully remove the adverse effects of ISI, but does not perform near the 

capacity limit of the ISI channel [88]. This is primarily due to the ISI channel being 
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equivalent to a non-recursive code, which is known to have a poor convergence when used 

as a constituent code of Turbo code [15]. In order to approach the capacity limit of the ISI 

channel, either the encoder at the transmitter must be a Turbo code (parallel or serial) by 

itself, leading to a three-stage iterative decoding at the Turbo equalizer [116], [159], or an 

additional recursive precoder must be used right before the ISI channel in order to make 

the overall effects of the precoder and the ISI channel recursive [104], [92]. For instance, 

when the encoder block at the transmitter is by itself a parallel Turbo code, the 

corresponding Turbo equalizer was reported to perform less than 1 dB away from the ISI 

channel capacity [116]. 

 

2.4 Some Concepts and Results from Matrix Algebra 
 

This dissertation uses extensively the following concepts and results from matrix algebra, 

which are reviewed in this section for completeness. (Please refer to [55] for proofs of 

these results.) In particular, we first define some special types of matrices: 

Definition 2.9 (Unitary matrix): A square complex matrix U of size n×n is called Unitary 

if it satisfies UU† = U†U = In, where (∙)† denotes matrix transpose followed by complex 

conjugation of the matrix entries and In denotes the n×n identity matrix.  

Definition 2.10 (Hermitian matrix): An n×n square complex matrix A is called Hermitian 

if it satisfies A = A†.  

Definition 2.11 (Hermitian positive and negative definite matrices): An n×n Hermitian 

matrix A is said to be: 

- positive definite if x†Ax > 0 

- non-negative definite if x†Ax ≥ 0 

- non-positive definite if x†Ax ≤ 0 

- negative definite if x†Ax < 0 

for all non-zero complex n×1 vectors x. 

One special property of the Hermitian matrices is that they can be further decomposed 

into a product of matrices involving unitary matrices and a diagonal matrix: 
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Theorem 2.3 (Eigenvalue decomposition or eigendecomposition): For any n×n complex 

Hermitian matrix A, there exist an n×n complex unitary matrix U and an n×n diagonal 

matrix Λ with real diagonal entries such that 

 †A U U= Λ . (2.35) 

In addition, the column vectors of U, u0, u1, …, un-1, are called eigenvectors of A and the 

real diagonal entries of matrix Λ, λ0, λ1, …, λn-1, are called eigenvalues of A. 

The eigenvalue decomposition expresses the Hermitian matrix A as an n-dimensional 

vector [λ0, λ1, …, λn-1] in the space spanned by the eigenvectors of A. This is similar to the 

well-known Gram-Schmidt orthonormalization process in linear algebra.  

The sign of the real eigenvalues λ0, λ1, …, λn-1 of Hermitian matrix A depends on the 

positive definiteness of A. 

Lemma 2.6 (Sign of eigenvalues of Hermitian matrix): A Hermitian matrix A is positive 

definite, non-negative definite, non-positive definite, or negative definite if and only if all 

of its real eigenvalues are positive, non-negative, non-positive, or negative, respectively.  

In the following, two special matrices known as Toeplitz and Gramian are defined. 

Definition 2.12 (Toeplitz matrix): An n×n square matrix A is called Toeplitz if it can be 

expressed as  

 

0 1 2 ( 1)

1 0 1 ( 2)

2 1 0 ( 3)

1 2 3 0

n

n

n

n n n

a a a a
a a a a

A a a a a

a a a a

− − − −

− − −

− −

− − −

 
 
 
 =
 
 
  



  



, (2.36) 

where the entries {ai} are complex numbers.  

Toeplitz matrices naturally arise in many applications including image processing and 

signal processing as well as in the considered FTN signaling. If Toeplitz matrix is further 

Hermitian, then its eigenvalues are also well characterized by Szegö’s theorem [57], [56]. 

(More details about this theorem are given in Appendix D.)  

The Gramian matrix is defined in the following. 
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Definition 2.13 (Gramian or Gram matrix): The Gramian matrix of non-zero complex 

finite energy functions r0(t), r1(t), …, rn-1(t) is a matrix of their inner products, defined as 

 ( ) ( )( )

0 0 0 1 0 2 0 1

1 0 1 1 1 2 1 1

0 1 2 0 2 1 2 2 2 1

1 0 1 1 1 2 1 1

, , , ,
, , , ,

, , , , , , ,

, , , ,

n

n

n n

n n n n n

r r r r r r r r
r r r r r r r r

G r t r t r r r r r r r r

r r r r r r r r

−

−

− −

− − − − −

 
 
 
 ≡
 
 
  





 

    



 (2.37) 

where inner product of ri(t) and rj(t) is defined as 

 ( ) ( ),i j i jr r r t r t dt
∞

∗

−∞

≡ ∫ . (2.38) 

One important result related to the invertibility of the Gramian matrix is given below: 

Lemma 2.7 (Gram’s criterion [51]): Let r0(t), r1(t), …, rn−1(t) be non-zero complex finite 

energy functions with a finite support in the closed interval [α, β]. Then, the Gramian 

matrix G(r0(t),…, rn−1(t)) as defined in (2.37) has a nonzero determinant, thus is invertible, 

if and only if the set of functions {r0(t), r1(t), …, rn-1(t)} is linearly independent.  

In the following, we present some matrix identities involving matrix trace tr(∙), which 

is equal to a sum of main diagonal entries of n×n square matrix.  

Lemma 2.8 (Cyclic invariance of matrix trace): The trace of a matrix is commutative, i.e., 

for any n×m matrix A and m×n matrix B, 

 ( ) ( )tr AB tr BA= ,  (2.39) 

where 1

0
( ) n

iii
tr A a−

=
=∑ , where aii denotes (i,i)th entry (or i-th diagonal entry) of A. 

Lemma 2.9 (Trace of Hermitian matrix): The trace of Hermitian matrix A of size n×n is 

the sum of the eigenvalues of A, i.e. 

 
1

0
( )

n

i
i

tr A λ
−

=

=∑ , (2.40) 

where λ0, λ1, …, λn-1, are the real eigenvalues of the Hermitian matrix A. 
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Moreover, some matrix algebra results involving matrix determinant det(∙) are 

presented below.  

Lemma 2.10 (Properties of determinant): Let A and B be square matrices of size n×n and 

c be any real constant. Then, the matrix determinant satisfies the following: 

 det( ) det( )TA A=  (2.41) 

 1det( ) 1 det( )A A− =  (for an invertible A) (2.42) 

 det( ) det( )det( ) det( )AB A B BA= =  (2.43) 

 det( ) det( )ncA c A= . (2.44) 

Lemma 2.11 (Sylvester’s determinant identity): If A and B are matrices of size n×m and 

m×n, respectively, then 

 det( ) det( )n mI AB I BA+ = + , (2.45) 

where In and Im are identity matrices of size n×n and m×m, respectively.  

Lemma 2.12 (Hadamard’s inequality): The determinant of an n×n Hermitian non-

negative definite define matrix A is equal or less than the product of the diagonal elements, 

i.e., 

 
1

0

det( )
n

ii
i

A a
−

=

≤∏ , (2.46) 

where aii is the (i,i)th entry (or i-th diagonal entry) of A. 

Lemma 2.13 (Concavity of log-determinant [20]): The function f(A) = log2(det(A)) is 

concave on the set of non-negative definite matrices A. 

The Kronecker product of matrices is also defined below: 

Definition 2.14 (Kronecker product): If A and B are m×n and p×q matrices, respectively, 

then the Kronecker product A B⊗  is an mp×nq matrix defined as 

 
11 1

1

n

m mn

a B a B
A B

a B a B

 
 ⊗ ≡  
  



  



. (2.47) 
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Lastly, we review the concept of conditioning of non-singular (invertible) n×n 

matrices. A classical problem in the linear algebra is to solve a linear equation Ax = b 

about an n×1 vector x given m×n matrix A and m×1 vector b that are a priori known or 

obtained through some observation or measurements. When this equation is solved using a 

computer, we are interested in how accurate the computed solution x̂  will be, when 

compared to the analytically obtained solution x. From the classical perturbation analysis 

[148], the accuracy of the results from the linear equation solution (such as matrix 

inversion) is proportional to the degree of conditioning of the matrix A, defined as follows: 

Definition 2.15 (Conditioning or condition number for a matrix): The condition number 

of a nonsingular matrix A is defined by κ(A) ≡ ||A−1||·||A||, where ||A|| is the induced 

matrix norm14.  

By the perturbation analysis, given a perturbed matrix equation (A+δA)(x+δx) = 

(b+δb), the relative error in the solution (i.e., ||δx||/||x||) can be upper-bound by 

 ( )
( )

1 ( )
bA

bA
δ δ δκ

κ δ
 

≤ +  −  

x x
x xx x

. (2.48) 

This implies that if the condition number κ(A) is not close to 1, then small relative error in 

A or b can be roughly magnified by up to κ(A), to give the relative error in the solution. 

Essentially, the conditioning number of a matrix measures the sensitivity of the solution of 

a system of linear equations to perturbations in the data.  

The following lemma shows that the condition number of the Hermitian matrix is 

particularly easy to compute, as it is inversely proportional to the minimum absolute value 

of an eigenvalue of this matrix.  

Lemma 2.14 (Condition number of Hermitian matrix): When an n×n nonsingular matrix 

A is Hermitian, its condition number can be expressed as 

 ( ) max min( ) ( )A A Aκ λ λ= , (2.49) 

14 In this dissertation, we use the convention that ||a|| for an n×1 vector a is a vector norm, whereas, ||A|| for 
an n×n matrix A is the induced matrix norm that is defined as 

0
maxA A

≠
≡

x
x x . 
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where λmax(A) and λmin(A) are the maximal and the minimal (in absolute value) eigenvalues 

of A, respectively. 

 

2.5 Continuous-time Channels and the Nyquist Rate 
 

The FTN signaling deals with continuous-time bandlimited channels and is intricately 

related to the Nyquist theorem for zero-ISI signal transmission. In this section, we 

carefully review the definition of Nyquist rate signaling, signal and channel bandwidth, 

power spectral density (PSD) of noise and transmitted signal, and signal-to-noise ratio 

(SNR) on continuous-time channels.  

 

2.5.1 Nyquist Rate Signaling 
 

Dr. Nyquist, in his seminal paper on data transmission over bandlimited channel [106], 

considered what would be the maximal signaling rate over such channels without causing 

intersymbol interference (ISI). He showed that this maximal signaling rate is directly 

proportional to the channel bandwidth. Throughout this dissertation, this maximal 

signaling rate without ISI will be refered to as Nyquist rate and PAM transmissions with 

signaling rate equal to the Nyquist rate will be referred to as Nyquist rate signaling.  

We review, in following two theorems (in Theorem 2.4 and Theorem 2.5), two key 

results regarding on the Nyquist rate signaling. In this subsection, we consider standard 

pulse-amplitude modulation (PAM) baseband transmission model, given by 

( )1

0
[ ]N

n
x n s t nT−

=
−∑  where s(t) is a modulating pulse (typically assumed to be bandlimited 

to W Hertz), N is a signaling block length, and {x[n]} are modulation symbols. The 

signaling rate of such PAM transmission scheme is 1/T symbols per second. After channel 

and matched filter receiver with impulse responses c(t) and g(t), respectively, received 

noisy signal is given by ( )1

0
( ) [ ] ( )N

n
y t x n r t nT z t−

=
= − +∑ , where z(t) is a noise signal and 

r(t) is given by a convolution of s(t), c(t), and g(t), denoting the combined response of 

transmit filter, channel, and receive filter. Sampling this received signal at t = nT yields  
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 ( )
1

0
( ) [ ] (0) [ ] ( ) ( )

N

m
m n

y nT x n r x m r n m T z nT
−

=
≠

= + − +∑ , (2.50) 

where the summation term represents an ISI term to the desired symbol x[n] [113]. 

Consequently, a necessary and sufficient condition for zero ISI is r((n−m)T) = 0 for m≠n 

and r(0)≠0. Without loss of generality, we may assume that r(0)=1 by normalizing the 

pulse r(t). Then, in order to remove the effect of ISI, r(t) should satisfy 

 
1, 0

( )
0, 0.

n
r nT

n
=

=  ≠
 (2.51) 

Dr. Nyquist has derived a following necessary and sufficient condition for ˆ( )r f  

(Fourier transform of r(t)) such that (2.51) is satisfied.  

Theorem 2.4 (Nyquist condition for zero ISI [106]): A necessary and sufficient condition 

for ˆ( )r f , to satisfy (2.51) is 

 ( )ˆ
k

r f k T T
∞

=−∞

+ =∑ . (2.52) 

Proof : This version of proof is reproduced from section 8.3.1 of [113] for completeness. 

First, by inverse Fourier transform: 

 2ˆ( ) ( ) j ftr t r f e dfπ∞

−∞
= ∫ , and (2.53) 

 2ˆ( ) ( ) j fnTr nT r f e dfπ∞

−∞
= ∫ , (2.54) 

where j denotes an imaginary unit. We further rewrite (2.54) as 

 
(2 1) (2 ) 2

(2 1) (2 )
ˆ( ) ( )

k T j fnT

k T
k

r nT r f e dfπ
∞ +

−
=−∞

= ∑ ∫  (2.55) 

 
1 (2 ) 2

1 (2 )
ˆ

T j fnT

T
k

kr f e df
T

π
∞

−
=−∞

 = + 
 

∑ ∫  (2.56) 

 
1 (2 ) 2

1 (2 )
ˆ

T j fnT

T
k

kr f e df
T

π
∞

−
=−∞

  = +  
  

∑∫  (2.57) 

 
1 (2 ) 2

1 (2 )
ˆ ( )

T j fnT
foldedT

r f e dfπ

−
= ∫ , (2.58) 
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where ˆ ( )foldedr f  is defined by 

 ˆ ˆ( )folded
k

kr f r f
T

∞

=−∞

 ≡ + 
 

∑ . (2.59) 

Note that ˆ ( )foldedr f  is a periodic function with period 1/T, and hence it has a Fourier series 

expansion: 

 2ˆ ( ) j nfT
folded n

n
r f r e π

∞

=−∞

= ∑ , (2.60) 

where its Fourier series coefficients rn are given by 

 
1 (2 ) 2

1 (2 )
ˆ ( )

T j nfT
n foldedT

r T r f e dfπ−

−
= ∫ . (2.61) 

Comparing equations (2.61) and (2.58) we obtain 

 ( )nr T r nT= ⋅ − . (2.62) 

Therefore, the necessary and sufficient condition for (2.51) to be satisfied is that 

 
, 0

0, 0n

T n
r

n
=

=  ≠
. (2.63) 

Substituting into equation (2.60) finally yields 

 ˆ ˆ( )folded
k

kr f r f T
T

∞

=−∞

 = + = 
 

∑ . (2.64) 

This completes the proof of Theorem 2.4.  ■ 

One important consequence of Theorem 2.4 is that when 1/T > 2W (representing 

faster-than-Nyquist signaling over strictly bandlimited channel with bandwidth W Hz), the 

ISI cannot be avoided in any way. This is because the channel frequency response ĉ(f) will 

be equal to zero for |f| > W for strictly bandlimited channel and hence ˆ( )r f = 0 also for |f| > 

W. Consequently, ( )ˆ
k
r f k T+∑  will have non-overlapping replicas of ˆ( )r f  and thus 

there is no choice for ˆ( )r f  to ensure the condition ( )ˆ
k
r f k T T+ =∑  in this case.  

In strictly bandlimited channel with one-sided bandwidth of W Hz, Dr. Nyquist proved 

that the Nyquist rate (i.e., maximal signaling rate without ISI) is explicitly given by twice 

the channel bandwidth, i.e. 1/T = 2W. In the following, a simple proof of this result is 
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given, which provides some insights into the various tradeoffs associated with increasing 

the signaling rates beyond the Nyquist rate. 

Theorem 2.5 (Nyquist rate in strictly bandlimited channel): If the modulating pulse s(t) is 

strictly band-limited to [-W,W] where W is some fixed frequency in Hz, the smallest T 

without intersymbol interference (ISI) is T=1/(2W), otherwise known as the Nyquist 

symbol period.  

Proof: We first define ( ) ( )1

0
[ ]N

n
p t x n t nTδ−

=
≡ −∑ . Then 

 ( ) ( ) ( ) ( ) ( ) ( )
1

0
[ ]

N

n
p t s t p s t d x n nT s t dτ τ τ δ τ τ τ

+∞ −

=−∞

∗ = − = − −∑∫ ∫  (2.65) 

 ( )
1

0
[ ]

N

n
x n s t nT

−

=

= −∑ , (2.66) 

where ( ) ( ) ( ) ( )a t b t a b t dτ τ τ∗ ≡ −∫  denotes the convolution. This shows that the PAM 

baseband transmission signal is a convolution of p(t) and s(t). By taking the Fourier 

transform, the frequency response is shown below: 

 ( ) ( ){ } ( ) ( ) ( )
1

2

0

ˆ ˆ ˆ[ ]
N

j fnT

n
p t s t p f s f x n e s fπ

−
−

=

 
∗ = =  

 
∑F , (2.67) 

where ( )p̂ f  and ( )ŝ f  are the Fourier transforms of p(t) and s(t), respectively. Note that 

( ) 1 2
0

ˆ [ ]N j fnT
n

p f x n e π− −
=

=∑  is periodic with 1/T. But, if ( )ŝ f  is band-limited to [-W, W], 

the frequency components of ( )p̂ f  that are outside [−W, W] will be clipped off due to 

due to the multiplication with ( )ŝ f  in (2.67). Figure 2.9 illustrates the case when the 

period of ( )p̂ f , 1/T, is greater than 2W.  

Due to the periodicity of ˆ ( )p f , the data symbols {x[n]} can be completely inferred 

from only one period of ˆ ( )p f  (and the rest are redundant replicas). Therefore, a sufficient 

condition for full data recovery (i.e., without intersymbol interference) is 1/T ≤ 2W, or T ≥ 

1/(2W), which is known as the Nyquist rate. This completes the proof of Theorem 2.5. ■ 
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Figure 2.9  Spectrum of baseband transmission signal; only the shaded portion of ˆ ( )p f  is transmitted 

The above proof of the Nyquist’s theorem allows further insights into what happens in 

the faster than Nyquist rate signaling. With the Nyquist rate signaling (i.e., 1/T = 2W), the 

one complete period of ˆ ( )p f  is captured within the transmission bandwidth [−W, W] and 

hence the full data is transmitted over the band-limited channel. On the other hand, as for 

the FTN signaling, part of the spectrum gets necessarily truncated as seen in Figure 2.9, 

due to the symbol rate of 1/T being greater than the channel bandwidth 2W.  

This does not necessarily mean that the data are lost, as the increased symbol rate in 

FTN can be exploited in the time domain to add redundancies in the data to recover the 

information contained in the lost spectrum by means of error control coding. Therefore, 

the FTN signaling can be considered as a means to trading off amount of data encoding in 

either spectrum domain or in time domain. 

 

2.5.2 Bandwidth, Power, and Power Spectral Density 
 

There is no single universal definition of bandwidth. Bandwidth is typically defined by the 

frequency support of the Fourier transform of a signal, but this may not be always 

satisfactory because mathematically no signal can be both strictly band-limited and strictly 

time-limited, except the zero energy signals (see Appendix B for the reasoning). In other 

words, any strictly band-limited signal must have an infinite time-support, which is 

physically unrealizable. Consequently, the Nyquist rate of 2W pulses per second can be an 

ill-defined quantity, since there is no single definition of the bandwidth W for non-strictly 

bandlimited signals. This may give rise to discrepancies and confusions in signal analysis. 

Period 1/T 

W −W 

( )p̂ f  
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In this dissertation, therefore, we consider a more universal description of the spectrum 

called the power spectral density (PSD) of a random process, which describes how the 

power is distributed over all range of frequencies. Many of the common definitions of 

bandwidth can easily be derived from the PSD expression [2]. First, we formally define 

power of a random process below: 

Definition 2.16: The (average) power15 of a random process x(t) are defined as  

 
2

2

2

1lim ( )
T

T
T

P E x t dt
T→∞

−

 
≡  

  
∫ , (2.68) 

where E[·] denotes the statistical expectation (or average) with respect to the probability 

distribution of the process x(t).  

The above definition also has an interpretation of how the power is distributed over 

time. Alternatively, the power can also be thought to be distributed over some range of 

frequencies. This gives rise to the following definition: 

Definition 2.17 (Power spectral density): Let x(t) be a random process and define a time-

truncated random process xT(t) by 

 ( ) ( ) , 2
0, .T

x t t T
x t

otherwise
 <

= 


 (2.69) 

The power spectral density ( )x fS  of the random process x(t) is a non-negative function of 

frequency such that 

 21 ˆ( ) lim ( )x TT
f E x f

T→∞
 ≡  S , (2.70) 

where ˆ ( )Tx f  denotes the Fourier transform of the time-truncated process xT(t). 16 

Furthermore, the power spectral density ( )x fS  satisfies: 

 ( )x f df P
∞

−∞

=∫ S , (2.71) 

15 The average power of a signal P corresponds to the physical power delivered by the signal when the signal 
is interpreted as a voltage or current source feeding 1 ohm resistor [113]. 
16 Note that the time-truncation ensures that any sample function of ( )Tx t  is square integrable and hence its 
Fourier transform is well defined. 
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where P is the average power of x(t).  

Note that the power spectral density ( )x fS  of a random process x(t) describes how the 

average power P is distributed over range of frequencies. For instance, if P0 denotes the 

power allocated to the frequency band f ∈[f0, f1], then PSD ( )x fS  satisfies 

 
1

0

0( )
f

x
f

f df P=∫ S . (2.72) 

For (wide-sense) stationary random signals, PSD can be simply obtained by taking a 

Fourier transform of the autocorrelation function of x(t), Rx(τ) = [ ( ) ( )]E x t x t∗ + τ  where (∙)* 

denotes the complex conjugation, due to the well-known Wiener-Khinchin theorem [113], 

[26].  

Theorem 2.6 (Wiener-Khinchin theorem [113], [26]): Let x(t) be a wide-sense stationary 

process with an absolutely integrable autocorrelation function Rx(τ) and 

 
2 2

1 2 1 22 2

1 ( ) ( )
T T

T T
E x t x t dt dt

T
∗

− −
  < ∞ ∫ ∫ , (2.73) 

for all finite T > 0. Then, the power spectral density ( )x fS  for this x(t) is given by 

 ( )( )x xf R = τ S F , (2.74) 

where [ ]⋅F  denotes the Fourier transform.  

The power spectral density of the considered non-precoded and precoded FTN signals 

will be derived rigorously in section 3.4.  

 

2.5.3 Definitions of SNR and Eb/N0 
 

The common definitions of the signal-to-noise ratio (SNR) in the additive white Gaussian 

channels is SNR = P/(N0/2) or P/N0. These definitions are mostly suited for discrete-time 

channel models as these do not involve time or bandwidth. For continuous-time channels, 

the definition SNR = P/(N0W) is typically used to take into account of the channel 



 
 
Chapter 2      Preliminaries 49 
 
 
bandwidth of W Hertz. As discussed in subsection 2.5.2, however, the bandwidth W may 

be an ill-defined quantity for many practical scenarios.  

Alternatively, the SNR definition in terms of time (instead of bandwidth) is given by 

Es/(N0/2) = PT/(N0/2), where T is the symbol period in seconds, Es = PT is the symbol 

energy in watts∙second (i.e., Joules), and N0/2 is the two-sided power spectral density of 

the white Gaussian noise in watts/Hz or watts∙second. This definition of SNR naturally 

arises from the Shannon capacity expression (2.13) and it becomes the usual P/(N0W) in 

the strictly bandlimited channels using the Nyquist rate transmissions (T=1/(2W)). This 

definition of SNR seems especially appropriate for the considered FTN system as the FTN 

signaling is a time-domain technique and will be the default definition throughout the 

dissertation, unless otherwise specified. 

Definition 2.18 (SNR): The signal-to-noise ratio (SNR) for communication over Gaussian 

channels with N0/2 additive white Gaussian noise power spectral density is defined by 

 
0 2

PTSNR
N

≡ , (2.75) 

where P is the total available power and T is the symbol period in seconds. 

In addition, Eb/N0 (the energy-per-bit to noise power spectral density ratio) is defined 

conventionally as (P/R)/N0 where R is the communication rate in information bits per 

second.  

Definition 2.19 (Eb/N0): Let R denote the communication rate in information bits per 

second and x(t) denote the information-bearing transmission signal. Then, the energy-per- 

bit Eb (in watts∙second per information bit or Joules per information bit) is defined by 

 bE P R≡ , (2.76) 

where P is the average power of the transmission signal x(t) in watts. Moreover, Eb/N0 in 

Gaussian channels with N0/2 noise power spectral density in watts∙second is defined by 

 
0 0

bE P R
N N

≡ . (2.77) 
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2.6 Faster than Nyquist Signaling in a Hilbert Space 
 

In this section, a useful geometrical insight on the FTN signaling is presented. We 

establish that the FTN signaling can be viewed as a technique to insert additional signaling 

dimensions beyond those of the Nyquist rate signaling. First, we review the two key 

mathematical concepts from the theory of functional analysis, namely the Hilbert space of 

bandlimited signals and 2WNT dimensions, before turning our discussion to the FTN 

signaling. 

 

Hilbert Space of Bandlimited Signals: 

Hilbert space generalizes the Euclidean space of real numbers to finite energy (L2) 

signals17. Each finite energy signal can be represented by a vector in the Hilbert space with 

each coordinate given by an inner product with the corresponding orthonormal basis 

functions. To see this, first express a finite energy signal x(t) as a linear combination of the 

orthonormal basis functions: 

 ( ) [ ] ( )n
n

x t x n b t
∈

=∑


, (2.78) 

where bn(t) is an orthonormal basis function (i.e., the inner product ( ), ( )n mb t b t  is equal 

to zero for any n ≠ m or equal to one for n = m) and x[n] is the corresponding coefficient in 

the direction of the basis function bn(t). Note that any finite energy signal can be written as 

(2.78) with an example being the inverse Fourier series with complex exponentials as the 

basis functions. The coefficients x[n] then can be obtained by the following inner product: 

 ( ), ( ) [ ] ( ), ( ) [ ]n m n
m

x t b t x m b t b t x n
∈

= =∑


, (2.79) 

due to the linearity of the inner product and the orthogonality of the basis functions bn(t).  

This Hilbert space representation is particularly useful as it allows a complete 

description of time-continuous signals x(t) by set of discrete values {x[n]}. In addition, it 

17 Although Hilbert spaces can be defined for more general classes of signals, for the purpose of the ensuing 
discussions, it suffices to consider Hilbert spaces only for the finite energy signals.  
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allows visualizing a continuous-time signal x(t) as a vector in an n-dimensional space, as 

illustrated in Figure 2.10.  

 

 

Figure 2.10  Illustration of Hilbert space (showing only up to three dimensions for brevity) 

We now let the signal x(t) be further strictly bandlimited; i.e., its Fourier transform 

ˆ( )x f  has a frequency support of f ∈(–W, W). Such bandlimited-finite energy signals also 

have a Hilbert space representation, and it has a special name attached to it [40]: 

Definition 2.20 (Paley-Wiener space): The Hilbert space consisting of finite-energy (L2) 

functions whose Fourier transforms are supported on f ∈ (−W, W), where W > 0 and 

W∈   is called the Paley-Wiener space (PW2).  

The Nyquist sampling theorem [70] tells us that any bandlimited signal (in the PW2 

space) can be written as 

 ( )( ) [ ] 2 sinc(2 ( ))
n

x t x n W W t nT
∞

=−∞

= −∑ , (2.80) 

where T is the Nyquist interval T=1/(2W). Comparing (2.80) with (2.78), we can see that 

the orthonormal bases of PW2 are bn(t) = 2 sinc(2 ( ))W W t nT− . Also by the Nyquist 

sampling theorem, we also know that x[n] = T∙x(nT), i.e., the samples of x(t) scaled by the 

factor T. Due to the completeness of the PW2 space, the set of Nyquist rate sinc pulses 

{sinc(2W(t−nT))}n is a complete set, i.e., any bandlimited signal can be written as a linear 

combination of these sinc pulses as in (2.80). Consequently, even the sinc pulses that do 

b1(t) 

b2(t) 

b3(t) 

x[1] 

x[2] 

x[3] 
x(t) 
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not lie at integer multiples of T, e.g., sinc(2W(t-nT/2)), still lie completely in the PW2 space, 

since they can be written as a linear combination of the set of Nyquist rate sinc pulses.  

 

2WNT Dimensions: 

Let us now consider sending a bandlimited signal of the form (2.80) over a band-limited 

channel, and let x[n] be the symbol (or data) modulated on the sinc pulse bn(t). This, so 

called Nyquist rate signaling using the sinc function as its modulating pulse, is illustrated 

in Figure 2.11. Using the Nyquist rate signaling of 2W symbols per second, approximately 

2WNT symbols are transmitted in NT seconds of transmission (assuming that the tails of 

the sinc are reasonably negligible compared to the overall duration of the transmission NT).  

In the Hilbert space, the Nyquist rate signaling corresponds to sending a 2WNT 

dimensional vector within NT seconds of transmission. Furthermore, since the sinc pulses 

are mutually orthogonal, they do not interfere with one another. This implies that Nyquist 

rate signaling is capable of accessing 2WNT signaling dimensions within NT seconds of 

transmission. This statement (and its variations) is sometimes referred to as “2WT 

theorem” in the literature [133], [134], [135].  
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Figure 2.11  Nyquist rate sinc pulses, for n = 0,1, …, 4; W is the one-sided channel bandwidth in Hertz 



 
 
Chapter 2      Preliminaries 53 
 
 
Adding New Dimensions Through FTN Signaling 

We now turn our attention to the faster than Nyquist signaling. Using the above two 

concepts, the FTN signaling will be shown to provide more signaling dimensions in the 

Hilbert space than 2WNT dimensions offered by the Nyquist rate signaling in the case of 

finite-time transmissions. As a consequence, FTN leads to higher data throughput than that 

of the conventional Nyquist-rate signaling in this case.  

First consider a finite set of Nyquist rate sinc-pulses, denoted by NyquistS : 

 { }1 2( ) (2 ) sinc(2 ( ))Nyquist ns t W W t nT≡ = −S , for n = 0, 1, …, 2WNT−1. (2.81) 

The number of signaling dimensions spanned by this Nyquist set NyquistS  is 2WNT within 

approximately NT seconds of transmission. Now, consider inserting into the Nyquist set 

NyquistS  a FTN sinc-pulse 1 2
1 2 ( ) (2 ) sinc(2 ( 2))s t W W t T= − . Applying the well-known 

Gram-Schmidt orthogonalization process to the newly formed set, we obtain the following 

orthonormal basis functions: 

 ( ) ( ) for 0,1, , 2 1n nb t s t n WNT= = − , (2.82) 

and 

 

2 1

1 2 1 2
0

2 2 1

1 2 1 2
0

( ) ( ), ( ) ( )
( )

( ) ( ), ( ) ( )

WNT

n n
n

WNT WNT

n n
n

s t s t b t b t
b t

s t s t b t b t

−

=
−

=

−
=

−

∑

∑
. (2.83) 

The newly formed basis function b2WNT(t) is plotted in Figure 2.12 and is shown to be a 

non-zero function due to linear independence of s1/2(t) and the Nyquist set. Consequently, 

the number of signaling dimensions spanned by the Nyquist set plus s1/2(t) becomes 

2WNT+1. That is, a new signaling dimension has been introduced by the FTN signaling 

within NT seconds of transmission.  

Similarily, inserting another FTN rate sinc-pulse, say s3/2(t), into the set introduces a 

(2WNT+2)th signaling dimension. The corresponding orthonormal basis function b2WNT+1(t) 

is also plotted in Figure 2.12 and is non-zero due to linear independence of s3/2(t) to the 

Nyquist set and s1/2(t).  
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Figure 2.12  New orthonormal basis functions introduced by inserting FTN signals s1/2(t) and s3/2(t) into 
the Nyquist set of {s0(t), s1(t), …, s2WNT-1(t)} 

In summary, when viewed from the Hilbert space, the FTN signaling provides a means 

to access more than 2WNT signaling dimensions within the NT seconds of transmission. In 

other words, FTN signaling gives an access to signaling dimensions that are otherwise 

only accessible by signaling outside the time window in the Nyquist rate signaling.  

 

2.7 Chapter Summary 
 

The main objective of this chapter has been a review of preliminary definitions and tools 

that are relevant to studying the FTN signaling. First, a chronological literature survey on 

the FTN signaling was presented. Selected definitions and theorems from the information 

theory were then reviewed with an emphasis on the characterization of the channel 

capacities in strictly bandlimited or power-spectrum confined AWGN channels. Moreover, 

MAP symbol detection for ISI channels (for Ungerboeck observation model) and the 

advanced channel coding techniques known as the Turbo coding and Turbo equalization 
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were briefly highlighted. This was followed by the review of selected results from the 

matrix algebra. 

In addition, continuous-time channel parameters such as the channel bandwidth, power 

spectral density (PSD), and channel SNR and Eb/N0 were carefully defined for a fair and 

unambiguous analysis of the considered continuous-time FTN signaling. The Nyquist 

theorem was also revisited with a simple proof, and it was pointed out that data can still be 

recovered even if the Nyquist theorem is violated as in the faster than Nyquist signaling. 

Finally, a useful insight into the FTN signaling, from the signaling dimensions perspective, 

was presented. 
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Chapter 3  
 
FTN System Models and Power 
Spectral Analysis 
 

 

Conventional discrete-time channel models used in digital communications are generally 

formulated with the assumptions of Nyquist rate transmissions or orthogonality of the 

transmitted signals. For the considered faster than Nyquist (FTN) signaling, however, 

these channel models no longer apply due to the inherent non-orthogonality of FTN and 

hence it is imperative to re-establish the link between the actual continuous-time channel 

transmissions and the discrete-time channel models for an accurate analysis.  

In this chapter, we develop several discrete-time FTN channel models, study their 

various properties, and analyze power spectral densities of the FTN signals. First, in 

section 3.1, the discrete-time channel models of the FTN signaling are formulated, clearly 

highlighting all the underlying assumptions. Some important properties of the FTN 

signaling are then studied and derived in section 3.2, through analysis of the FTN channel 

matrix H that characterizes the inter-symbol interference (ISI) patterns. Secondly, in 

section 3.3, a (non-trivial) power transmission constraint for the FTN signaling is derived 

for the first time, which allows a proper assessment of the transmission power of non-i.i.d. 

FTN signals. Finally, in section 3.4, the power spectral density (PSD) analysis of FTN 

signals is presented, which extends the PSD analysis of i.i.d. FTN signals to non-i.i.d. FTN 

signals. It is analytically shown that data precoding in FTN signaling generally increases 

the transmission bandwidth and sufficient conditions for preventing such bandwidth 

expansions are identified. 
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3.1 FTN Discrete-Time Channel Models 
 

In this section, we formulate the discrete-time channel models for the considered FTN 

signaling. The FTN baseband transmission model, illustrated in Figure 3.1, is given by 

 ( ) ( ) ( )
1 1

0 0
[ ] [ ]

KN KN

n n
x t x n s t nT K x n s t n t

− −

= =

= − = − ∆∑ ∑ , (3.1) 

where s(t) is a modulating pulse (or transmit filter response), {x[n]} is a set of modulation 

symbols that may be either precoded or not, N is the packet length, and K (> 1) is a factor 

by which the Nyquist rate is exceeded. Then, the signaling rate (or the baud rate) is given 

by 1/Δt = K/T symbols per second and the total time duration taken to transmit KN 

symbols is NT+(K−1)T/K seconds (for N sufficiently large, NT+(K−1)T/K ≅  NT seconds). 

Without any loss of generality, the modulating pulse s(t) is assumed to have a unit energy 

by proper normalization.  

 

 

Figure 3.1  Conceptual illustration of the faster than Nyquist signaling with the signaling rate 1/Δt=K/T 

We consider the FTN signaling in a linear, time-invariant (LTI) channel perturbed by 

additive white Gaussian noise (AWGN). LTI channels are frequently encountered in 

practice, such as in landline and cellular telephony, microwave line-of-sight radio, satellite, 

and underwater acoustic [113]. Figure 3.2 shows the considered continuous-time FTN 

channel model, where c(t) is an impulse response of LTI channel, z(t) is AWGN with a 

two-sided power spectral density N0/2 watts/Hz, and the outputs of the receiver matched 

filter g(t) are sampled at the FTN signaling rate of 1/Δt in order to obtain an channel 

observation y[n] for each transmitted symbol x[n].  
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Figure 3.2  Considered FTN digital communication setup 

The receiver filter may be matched to the transmit filter response only, in which case 

g(t) = ( )s t∗ − , or matched to the combined response of the transmit filter and the channel, 

in which case ( ) ( ( ) ( ))
t t

g t s t c t ∗

=−
= ∗ , where the superscript (·)* denotes the complex 

conjugation and the convolution operator is denoted by ( ) ( ) ( ) ( )a t b t a b t dτ τ τ
∞

−∞
∗ ≡ −∫ . Note 

that the latter ( ) ( ( ) ( ))
t t

g t s t c t ∗

=−
= ∗ is the optimal matched filtering in the sense of 

maximizing the received signal-to-noise ratio (SNR), but the former g(t) = ( )s t∗ −  is also 

being used in practice where adaptive adjustment of the receiver to varying c(t) is not 

feasible, such as in rapidly changing channels, or where the receiver is “hardwired” and 

cannot be adjusted. 

The n-th sampled output y[n] from Figure 3.2 is given by  

 ( )[ ] ( ) ( ) ( ) ( ) ( )
t n t t n t

signal component noise component

y n y n t x t c t g t z t g t
= ∆ = ∆

≡ ∆ = ∗ ∗ + ∗


. (3.2) 

Our goal in the following is to write the above expression in a compact form involving 

discrete-time terms only for the considered FTN signaling. We start by substituting the 

expression of the FTN signal x(t) from (3.1) into the signal component of (3.2), which 

leads to  

 ( ) ( ) ( ) ( )
1

( )
0

[ ] ( ) ( ) ( )
KN

t n m tt n t
m

x t c t g t x m s t c t g t
−

= − ∆= ∆
=

∗ ∗ = ∗ ∗∑ . (3.3) 

For notational conveniences, we define terms α  and kh  as 

 ( ) ( ) ( )
0t

s t c t g tα
=

≡ ∗ ∗  and (3.4) 
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0

( ) ( ) ( ) 1 ( ) ( ) ( ) ,
( ) ( ) ( )

t k t
k t k t

t

s t c t g t
h s t c t g t k

s t c t g t α
= ∆

= ∆
=

∗ ∗
≡ = ⋅ ∗ ∗ ∈

∗ ∗
  . (3.5) 

Then, the signal component of the sampled outputs can be simply expressed as 

 
1

0
( ) ( ) ( ) [ ] [ ]

KN

n mt n t
m
m n

x t c t g t x n h x mα α
−

−= ∆
=
≠

∗ ∗ = + ∑  , (3.6) 

where the first term [ ]x nα  is the desired term scaled by the scalar α whereas the second 

term 1
0 [ ]KN

m n m
m n

h x mα −
= −
≠

∑   represents the intersymbol interference (ISI) term.  

The noise component in (3.2) will be denoted by z[n] for n = 0, 1, …, KN−1:  

 ( ) ( ) ( ) ( )[ ]
t n t

z n z t g t z g n t dτ τ τ
+∞

= ∆
−∞

≡ ∗ = ∆ −∫ . (3.7) 

The filtered noise samples {z[n]} are Gaussian distributed with zero mean and N0/2 

variance with the following correlations between the samples: 

 { } ( ) ( )0[ ] [ ] ( )
2

NE z n z m g g n m t dτ τ τ
+∞

∗ ∗

−∞

= − − ∆∫ , (3.8) 

which is due to the properties of AWGN, i.e., due to ( ) ( ) 0{ } ( 2) ( )E z z Nτ λ δ τ λ∗ = − . For 

convenience, we define a variable φk by 

 ( ) ( ) ( )2
,k g t g g k t d kϕ τ τ τ

∞− ∗

−∞
≡ − ∆ ∈∫  , (3.9) 

where ||·|| denotes the L2 norm. Then, the noise correlation (3.8) can be rewritten as 

 { } ( ) 20[ ] [ ]
2 n m

NE z n z m g t ϕ∗
−= . (3.10) 

Summarizing, the sampled outputs y[n] (3.2) can be written as 

 
1

0
[ ] [ ] [ ] [ ]

KN

n m
m
m n

y n x n h x m z nα α
−

−
=
≠

= + +∑  , (3.11) 

where the noise samples {z[n]} are zero mean Gaussian distributed with the correlations 

given by (3.10).  

Alternatively, the set of sampled outputs {y[n]} can be conveniently expressed in a 

matrix form. Let y ≡ [y[0], y[1],  , y[KN-1]]T, x ≡ [x[0], x[1],  , x[KN-1]]T, and z ≡ 
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[z[0], z[1],  , z[KN-1]]T, where the superscript [·]T denotes the vector (matrix) transpose 

operator. Also define a Toeplitz matrix ( ) , 0,1, , 1[ ]i j i j KNH h − = −≡ 
 , i.e., 

 

1 2 ( 1)

1 1 ( 2)

2 1 ( 3)

1 2 3

1

1
,1

1

KN

KN

KN

KN KN KN

h h h

h h h
H h h h

h h h

− − − −

− − −

− −

− − −

 
 
 
 ≡  
 
 
  

  

  
   

    

   

 (3.12) 

where kh , as defined in (3.5), is reproduced below for convenience: 

 1 ( ) ( ) ( ) ,k t k t
h s t c t g t

α = ∆
≡ ⋅ ∗ ∗  where (3.13) 

 
0

( ) ( ) ( )
t

s t c t g tα
=

≡ ∗ ∗ . (3.14) 

Then, the matrix equation of {y[n]} becomes simply 

 Hα= +y x z , (3.15) 

and the Gaussian noise vector z has a zero mean vector and a covariance matrix (due to the 

noise correlations (3.10)) 

 ( ) 20{ }
2

† NE g t Φ=zz , (3.16) 

where ( )†⋅  denotes the conjugate transpose (Hermitian) operator and the KN×KN matrix Φ 

is defined by 

 

1 2 ( 1)

1 1 ( 2)

2 1 ( 3)

1 2 3

1
1

1 ,

1

KN

KN

KN

KN KN KN

ϕ ϕ ϕ
ϕ ϕ ϕ

Φ ϕ ϕ ϕ

ϕ ϕ ϕ

− − − −

− − −

− −

− − −

 
 
 
 ≡
 
 
  







    



 (3.17) 

where 

 ( ) ( ) ( )2
k g t g g k t dϕ τ τ τ

+∞− ∗

−∞
≡ − ∆∫ . (3.18) 
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Discrete-time channel models, that are similar to the considered FTN model (3.15), 

appear frequently in the ISI channel literature (e.g., see [46], [151], [131], [66]). The key 

differences that distinguish the FTN channel (3.15) from the other ISI channels are  

1) the AWGN noise samples {z[n]} are not i.i.d. as a result of sampling faster than the 

Nyquist rate at the receiver, and  

2) significant ISI also originates from the transmitter, not only from the physical channel, 

due to the non-orthogonality of FTN. 

As an important special case, in the AWGN channel where c(t) = δ(t) and g(t) = s*(−t), 

the discrete time FTN channel model (3.11) simplifies to 

 
1

0
[ ] [ ] [ ] [ ]

KN

n m
m
m n

y n x n h x m z n
−

−
=
≠

= + +∑ , (3.19) 

where  

 ( ) ( ) ,kh s s k t d kτ τ τ
+∞ ∗

−∞
≡ − ∆ ∈∫  . (3.20) 

Furthermore, the FTN matrix model in AWGN channel becomes simply 

 H= +y x z , (3.21) 

where  

 

1 2 ( 1)

1 1 ( 2)

2 1 ( 3)

1 2 3

1
1

1

1

KN

KN

KN

KN KN KN

h h h
h h h

H h h h

h h h

− − − −

− − −

− −

− − −

 
 
 
 ≡
 
 
  







    



 (3.22) 

with the covariance matrix of z now given by 

 0{ }
2

† NE H=zz . (3.23) 

The matrix H (3.22) is a Toeplitz matrix with entries hk given by the signal 

autocorrelations of s(t) at every FTN signaling instances kΔt = kT/K, k = 0, 1, …, KN-1. 

Due to its significance in the analysis of FTN in the AWGN channel, we will call this 

matrix the FTN matrix H throughout this dissertation. Some of its key properties are 

derived in the next section. 
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3.2 Properties of the FTN Channel Matrix H 
 

The FTN matrix H as defined in (3.22) represents the intersymbol interference that arises 

from signaling faster than the Nyquist rate. This matrix is Toeplitz and Hermitian by 

definition and has the size KN×KN. The question of whether this matrix is invertible or not 

and how it behaves asymptotically as the block length N tends to infinity will have 

important consequences in the later analysis of FTN signaling. In this section, we study 

two properties of the matrix H, namely its invertibility for K and N finite and its 

asymptotic eigenvalue distribution as N tends to infinity. The analysis here will be vital in 

understanding the contrasting behavior of FTN signaling at the finite block length N and at 

N arbitrarily large. 

We first consider the invertibility of the FTN matrix H with finite FTN signaling rate 

factor K and finite packet size N. We prove in the following proposition that a class of 

finite Toeplitz matrices including the matrix H is always invertible. 

Proposition 3.1 (Nonsingularity of some Toeplitz matrices): Let q(t) be any non-zero 

finite energy L2 function that is either strictly band-limited to (−W, W) or time-limited to 

(T0, T1). Then an n×n Toeplitz matrix  

 

0 1 2 ( 1)

1 0 1 ( 2)

2 1 0 ( 3)

1 2 3 0

,

n

n

n n

n n n

q q q q
q q q q

Q q q q q

q q q q

− − − −

− − −

− −

− − −

 
 
 
 ≡
 
 
  







    



 (3.24) 

where for k∈ , 

 ( ) ( )kq q q k t dτ τ τ
+∞

∗

−∞

≡ − ∆∫  (3.25) 

is invertible for any positive integer n < ∞.  

The proof of the proposition involves the following two lemmas. First lemma 

establishes a direct relationship between linear independence of q(t) and the invertibility of 

the matrix Qn.  
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Lemma 3.1: Let q(t) be a non-zero finite energy L2 function either strictly band-limited to 

(−W, W) or time-limited to (T0, T1). Then, matrix Qn as defined in (3.24) is invertible if and 

only if the set of translates {q(t−k∆t)}k with k = 0, …, n−1 is linearly independent. 

Proof of Lemma 3.1: Recall from section 2.4 that the Gramian matrix of finite energy 

functions r0(t), r1(t), …, rn-1(t) is defined as 

( ) ( )( )

0 0 0 1 0 2 0 1

1 0 1 1 1 2 1 1

0 1 2 0 2 1 2 2 2 1

1 0 1 1 1 2 1 1

, , , ,
, , , ,

, , , , , , ,

, , , ,

n

n

n n

n n n n n

r r r r r r r r
r r r r r r r r

G r t r t r r r r r r r r

r r r r r r r r

−

−

− −

− − − − −

 
 
 
 ≡
 
 
  





 

    



 

where 

 ( ) ( ),i j i jr r r t r t dt
∞

∗

−∞

≡ ∫ . (3.26) 

If ri(t) and rj(t) are both bandlimited to (−W, W), then (3.26) becomes 

 ( ) ( )ˆ ˆ,
W

i j i j
W

r r r f r f df∗

−

= ∫ , (3.27) 

due to the generalized Parseval’s theorem ( ) ( )a t b t dt
∞ ∗

−∞∫ = ˆˆ( ) ( )a f b f df
∞ ∗

−∞∫ , where ( )îr f  

and ( )ĵr f  denote the Fourier transforms of ri(t) and rj(t), respectively.  

On the other hand, when ri(t) and rj(t) are both time-limited, the product ri(t)rj
*(t) is 

also time-limited to, say (T0, T1), and (3.26) becomes 

 ( ) ( )
1

0

,
T

i j i j
T

r r r t r t dt∗= ∫ . (3.28) 

We note that the matrix Qn defined in (3.24) is also a Gramian matrix since Qn can be 

re-written as 

 ( ) ( ) ( )( )( ), , , 1nQ G q t q t t q t n t= −∆ − − ∆ . (3.29) 

Then by the Gram’s criterion in Lemma 2.7, the Gramian matrix Qn has a nonzero 

determinant, thus is invertible, if and only if the set of translates {q(t), …, q(t−(n−1)∆t)} is 

linearly independent. This completes the proof of Lemma 3.1.  ■ 
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Therefore, to ensure that the matrix Qn is invertible, the set of translates {q(t−k∆t)}k 

must be linearly independent. The next lemma derives a sufficient condition for 

invertibility of the matrix Qn.  

Lemma 3.2 (based on Proposition 5.1.1 in [21]): Let qk be defined by (3.25), i.e.,  

 ( ) ( ) ,kq q q k t d kτ τ τ
+∞

∗

−∞

≡ − ∆ ∈∫  , (3.30) 

where q(t) is a non-zero finite energy L2 function that is either strictly band-limited to (−W, 

W) or time-limited to (T0, T1). If qk → 0 as k → ∞ then the n×n matrix Qn given in (3.24) is 

non-singular for every n ≥ 1. 

The proof of this lemma is given in Appendix C.   

At this point, we are finally ready to give a proof to the Proposition 3.1.  

Proof of Proposition 3.1: By Lemma 3.2, the sufficient condition for the non-singularity 

of Qn is qk → 0 as k → ∞. When q(t) is time-limited to (T0, T1), qk clearly becomes zero for 

k sufficiently large (precisely, when kΔt > (T1−T0)) and hence the non-singularity of Qn 

follows. Now we consider the case when q(t) is strictly bandlimited to (−W, W). Denoting 

the Fourier transform of q(t) by ˆ( )q f , we have for k∈ , 

 ( ) ( )kq q q k t dτ τ τ
∞

∗

−∞

= − ∆∫  (3.31) 

 ( ) ( ) 2ˆ ˆ j f k tq f q f e dfπ
∞

∗ ∆

−∞

= ∫  (3.32) 

 ( ) 2 2ˆ
W

j f k t

W

q f e dfπ ∆

−

= ∫ , (3.33) 

where (3.32) is due to the generalized Parseval’s theorem, ( ) ( )a t b t dt
∞ ∗

−∞∫  = 

ˆˆ( ) ( )a f b f df
∞ ∗

−∞∫  followed by the delay property of the Fourier transform, and (3.33) is 
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due to the finite bandwidth f ∈(−W, W). But by the Riemann-Lebesgue lemma18 and by 

noting that 2ˆ( )q f  is absolutely integrable or ( ) 22ˆ( )
W

W
q f df q t

−
= < ∞∫ , 

 2ˆlim ( ) 0
W

j f

W

q f e dfλ

λ →∞
−

=∫ . (3.34) 

Therefore, qk → 0 as k → ∞ and the proof of Proposition 3.1 is complete.  ■ 

Note that the FTN matrix H (as well as the noise covariance matrix Φ in (3.17)) is a 

special instance of the matrix Qn in Proposition 3.1 by replacing q(t) with the modulating 

pulse s(t) and by setting n = KN. The invertibility (or non-singularity) of the FTN matrix H 

will have several important consequences in the analysis of optimal precoding and the 

resulting channel capacities in Chapter 5.  

We now consider the behavior of the FTN matrix H as N → ∞. First, we define a 

useful frequency-domain signal called folded pulse spectrum below: 

Definition 3.1 (Folded pulse spectrum): Let ŝ(f) denote the Fourier transform of a unit 

energy modulating pulse s(t). Then, the folded pulse spectrum ŝfolded(f) is defined by 

 2 1 1ˆ ˆ( ) ( ) , ,
2 2folded

k
s f s f k t f

t t

∞

=−∞

 ≡ − ∆ ∈ − ∆ ∆ 
∑ . (3.35) 

The folded pulse spectrum ŝfolded(f) consists of overlapping replicas of |ŝ(f)|2 separated 

by 1/Δt, and the terminology “folded spectrum” stems from the Nyquist’s work on his 

pulse-shaping criterion (or zero-ISI criterion) [106]. It is interesting to note that the folded 

pulse spectrum is absolutely integrable over the frequency range ( 1 (2 ) ,1 (2 ))f t t∈ − ∆ ∆ , 

i.e., 
1 (2 )

1 (2 )
ˆ ( )

t

foldedt
s f df

∆

− ∆∫
1 (2 ) 2

1 (2 )
ˆ( )

t k t

t k t
k

s f df
∞ ∆ − ∆

− ∆ − ∆
=−∞

= ∑ ∫
2ˆ( )s f df

∞

−∞
= ∫  = 1, where the last 

equality is due to s(t) having a unit energy.  

The folded pulse spectrum ŝfolded(f) is directly related to the FTN matrix H in the 

following way: 

18 The Riemann-Lebesgue lemma states that, for any absolutely integrable function q(t) on [a, b], the Fourier 

series coefficients ak’s tend to zero as |k|→∞ [119]. That is, if ( )
b

a
q t dt < ∞∫ , lim ( )exp( ) 0

b

ak
q t jkt dt

→∞
− =∫ . 
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Lemma 3.3 (Folded pulse spectrum and inverse Fourier series of FTN matrix): Let h(λ) 

be the inverse Fourier series of the entries of the Toeplitz FTN matrix 

( ) , 0,1, , 1[ ]i j i j KNH h − = −≡  , i.e., 

 ( ) jk
k

k
h h e λλ

∞

=−∞

= ∑  for λ∈ , (3.36) 

where ( ) ( )kh s s k t dτ τ τ
+∞ ∗

−∞
= − ∆∫  for k∈ . If ˆ ( )foldeds f < ∞  for all f, then 

 ( )ˆ ( ) 2foldeds f t h f tπ= ∆ ⋅ − ∆ . (3.37) 

Proof of Lemma 3.3: We begin by evaluating h(−2πf∆t) in the following: 

 ( ) 2( 2 ) ( ) ( ) j f k t

k
h f t s s k t d e ππ τ τ τ

∞ ∞ ∗ − ∆

−∞
=−∞

− ∆ = − ∆∑ ∫  (3.38) 

 ( )2 2 2ˆ( ) j k t j f k t

k
s e d eπλ πλ λ

∞ ∞ ∆ − ∆

−∞
=−∞

= ∑ ∫  (3.39) 

 2 2 ( )ˆ( ) j k t f

k
s e dπ λλ λ

∞∞ ∆ −

−∞
=−∞

= ∑∫  (3.40) 

 ( )2ˆ( ) ( )
k

s t f k dλ δ λ λ
∞∞

−∞
=−∞

= ∆ − +∑∫  (3.41) 

 21 ˆ( ) ( )
k

t s f k t
∞

−

=−∞

= ∆ − ∆∑ , (3.42) 

where (3.39) is due to the generalized Parseval’s theorem, ( ) ( )a t b t dt
∞ ∗

−∞∫  = 

ˆˆ( ) ( )a f b f df
∞ ∗

−∞∫  and the delay property of the Fourier transform, (3.40) and (3.42) are due 

to Fubini’s theorem 19 , and (3.41) is due to the Poisson summation formula 
2j kt

k
e π∞

=−∞∑ = ( )
k

t kδ∞

=−∞
+∑ . Finally, using the definition of ŝfolded(f), we have 

1 ˆ( 2 ) ( ) ( )foldedh f t t s fπ −− ∆ = ∆  as desired. This completes the proof of Lemma 3.3.  ■ 

19 To use Fubini’s theorem, we go backwards from (3.42) to (3.40), establishing equalities throughout. First 
note that (3.42) is (∆t)–1ŝfolded(f), which was assumed to be finite for all f. Since (3.42) is finite, Fubini’s 
theorem can be applied to obtain (3.41) (by interchanging the order of the integral and the sum), and from 
(3.41) we can re-apply Fubini to get to (3.40). 
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Lemma 3.3 implies that the folded pulse spectrum ˆ ( )foldeds f  completely characterizes 

the FTN matrix H, by being an inverse Fourier series of the entries of H. The following 

proposition further establishes that the asymptotic eigenvalue distribution of the FTN 

matrix H as N → ∞ is also completely characterized by the folded pulse spectrum. 

Roughly speaking, the proposition indicates that the eigenvalues of H behaves as the 

normalized folded pulse spectrum 1 ˆ( ) ( )foldedt s f−∆ . 

Proposition 3.2 (Asymptotic eigenvalue distribution of H): Let λ0, λ1, λ2, …, λKN−1 be the 

eigenvalues of the KN×KN FTN matrix H. Define the (cumulative) eigenvalue distribution 

function by DN(ξ) = (number of λi ≤ ξ)/(KN) for ξ ∈ . Assume furthermore that, for all 

ξ ∈ , 

 
1 ˆ: ( ) ( )

0
foldedf t s f

df
ξ−∆ =

=∫ .20 (3.43) 

Then the limiting distribution D(ξ) = limN→∞ DN(ξ) exists and is given by 

 
1 ˆ( ) ( )

( )
foldedt s f

D t df
ξ

ξ
−∆ ≤

= ∆ ∫ . (3.44) 

(Note that fraction of eigenvalues between two values a and b (b>a) is then D(b) – D(a). 

The definition D(ξ) is similar to the cumulative distribution function (CDF) in probability 

theory.) 

Proof: The following proof uses a generalized form of Szegö’s theorem on the asymptotic 

eigenvalues of Toeplitz matrices, which is discussed in detail in Appendix D. By Lemma 

D.2 in Appendix D, the limiting eigenvalue distribution function D(ξ) of the FTN matrix H 

is given by 

 
( )

1( )
2 h

D d
λ ξ

ξ λ
π ≤

= ∫ , (3.45) 

20 The technical condition (3.43) may be interpreted as not allowing ŝfolded(f) to have a flat region around the 
point ξ. In many cases, this condition may be circumvented by approximating ŝfolded(f) by another signal, say 
ˆ ( )foldeds f , which replaces flat regions in ŝfolded(f) (if any) by small arcs with very small ε > 0 perpendicular 

distances.  
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where ( ) jk

kk
h h e λλ ∞

=−∞
=∑  denotes the inverse Fourier series of the entries of H. By 

substitution of variable (setting (2 )f tλ π= − ∆ ), (3.45) can be rewritten as 

 
( 2 )

( )
h f t

D t df
π ξ

ξ
− ∆ ≤

= ∆ ∫ . (3.46) 

Finally, due to Lemma 3.3, ( )2h f tπ− ∆  can be replaced by the normalized folded pulse 

spectrum 1 ˆ( ) ( )foldedt s f−∆ . This completes the proof of Proposition 3.2. ■ 

Proposition 3.2 indicates that the eigenvalues of H, as the packet length N gets large, 

behave as the normalized folded pulse spectrum 1 ˆ( ) ( )foldedt s f−∆ . To help better understand 

the implications of Proposition 3.2, we consider two following concrete examples with 

two different modulating pulses s(t) and subsequently examine the eigenvalue distributions 

of the corresponding FTN matrices H.   

Example 3.1 (Bandlimited modulating pulse): The FTN matrix H when the modulating 

pulse is s(t) = (2W)1/2sinc(2Wt) (which leads to a constant frequency response over f 

∈(−W, W) and zero everywhere else) is given by H = [sinc((i–j)/K)]i, j=0,…,KN–1, or 

 

1 2 11 sinc sinc sinc

1 1 2sinc 1 sinc sinc

2 1 3sinc sinc 1 sinc

1 2 3sinc sinc sinc 1

KN
K K K

KN
K K K

KN
K K K

KN KN KN
K K K

H

 −      
            

 −     
      

      
 −     
      

     



 − − −                  
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





    













, (3.47) 

for some integers K > 0 and N > 0. It is interesting to note that this specific matrix based 

on the sinc function is also known as the “Prolate matrix” in the linear algebra and 

applied mathematics literature (e.g., see [154]) and is noted for its extreme ill-

conditioning. 

Example 3.2 (Time-limited modulating pulse): The FTN matrix H when the s(t) is a 

rectangular pulse, i.e., s(t) = T−1/2 within t∈(0, T) and zero everywhere else, is given by H 

= [max(0, 1–|i–j|/K)]i, j=0,1,…,KN−1, for K>0, N>0, or 
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1 1 2

1
1 2 1
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1 2 1

K K
K

K K
K

K
K K

K

K K

H

− 
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− 
 
 
 
 
 
 
 
 
  

=

0

0





  





  



, (3.48) 

which is a banded Toeplitz matrix with the size KN×KN. 

Figure 3.3 plots the MATLAB computed eigenvalues of H from the above two 

examples along with the corresponding normalized folded pulse spectra.  
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Figure 3.3  Plotting MATLAB computed eigenvalues of the FTN matrices H from Example 3.1 (top) 

and Example 3.2 (bottom); Also plotting the corresponding normalized folded pulse 
spectra 1 ˆ( ) ( )folded nt s f−∆  (sampled at fn = –1/(2∆t) + n/(NT) for n = 0, 1, …, KN-1 and sorted 
in the descending order); packet length N = 20 and FTN signaling rate factor K = 4 are 
considered in both examples. 
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Note that in order to compare with KN number of eigenvalues of H, the normalized 

folded pulse spectra (∆t)–1ŝfolded(f) were sampled at KN uniformly spaced frequency 

locations over the frequency range f ∈ (−1/(2∆t), 1/(2∆t)) and plotted in the descending 

order in Figure 3.3. The figure shows an excellent match between the computed 

eigenvalues and the normalized folded pulse spectra even at the small block length N = 20.  

One of the consequences of Proposition 3.2 is that if the modulating pulse s(t) is 

bandlimited, the eigenvalues of H also exhibit ‘bandlimited-ness’. This effect can be 

observed from the top plot in Figure 3.3 when the sinc modulating pulse (strictly 

bandlimited in frequency) is being used. Mathematically, when s(t) is strictly bandlimited 

to f ∈(–W, W) as in Example 3.1, and noting that the signaling rate 1/∆t > 2W for the FTN 

signaling, the folded pulse spectrum simplifies to 

 2ˆ ˆ( ) ( ) , ( , )foldeds f s f f W W= ∈ − . (3.49) 

Hence, the asymptotic eigenvalues of H will also be bandlimited, i.e., only about 

2W/(1/NT) = 2WNT = N (by T = 1/(2W) due to the Nyquist theorem) number of 

eigenvalues remain nonzero and the other (KN–N) number of them converge to zero as N 

tends to infinity. This means that the FTN matrix H becomes asymptotically singular (or 

non-invertible) as N → ∞. On the other hand, when the modulating pulse s(t) is not strictly 

bandlimited as in the bottom plot of Figure 3.3, we can observe that the eigenvalues decay 

much more slowly.  

In summary, the FTN matrix H is theoretically invertible when its size is finite (when 

FTN signaling rate factor K and packet size N are finite). As N tends to infinity, the 

asymptotic eigenvalues of the FTN matrix H follows the abovementioned folded pulse 

spectrum, consequences of which include ‘bandlimited-ness’ of the eigenvalues if the 

modulating pulse s(t) is strictly bandlimited. This implies that the asymptotic eigenvalues 

of H depends on the spectrum of the modulating pulse s(t) and for band-limited s(t), the 

FTN matrix H tends asymptotically to a singular matrix.  
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3.3 Generalized FTN Transmission Power Constraint 
 

All digital communication systems are practically limited in amounts of power it can use. 

Accordingly, many capacity analyses involve maximizing the mutual information subject 

to given input power and energy constraints [31]. In this section, we develop energy and 

power constraints fitted for the FTN communication system that allows fair comparisons 

with the conventional Nyquist-rate systems. These constraints turn out to be quite 

nontrivial due to the nonzero signal correlations inherent to the FTN signals. 

Lemma 3.4 (FTN signal energy): The energy of the continuous-time FTN signal x(t) 

defined in (3.1) can be expressed as 

 ( ) ( )2
xE x t dt tr K H

∞

−∞

 
= 

 
∫ , (3.50) 

where the left-hand side is the statistical energy average over the ensemble of transmitted 

FTN waveforms x(t), Kx=E{xx†} is the correlation matrix of the modulation symbols x[n], 

H is the FTN matrix defined by (3.22) that is Toeplitz, and tr(∙) denotes the matrix trace.  

Proof: Substituting in the expression of x(t) from (3.1), we have 

 ( )
1 12

0 0
[ ] [ ] ( ) ( )

KN KN

n m
E x t dt E x n x m s t n t s t m t dt

∞ ∞ − −
∗ ∗

= =−∞ −∞

   
= − ∆ − ∆   

   
∑ ∑∫ ∫  (3.51) 

 { } ( )

1 1

0 0
[ ] [ ]

KN KN

n m
n m

E x n x m h
− −

∗
−

= =

= ∑ ∑ , (3.52) 

where ( ) ( )( ) ( )n mh s s n m t dτ τ τ
∞ ∗

− −∞
= − − ∆∫  by the definition (3.20)21. Moreover, (3.52) 

can be written in a matrix form:  

 { } ( ) { }
1 1

0 0
[ ] [ ]

KN KN
†

n m
n m

E x n x m h E H
− −

∗
−

= =

=∑ ∑ x x , (3.53) 

21 As a side note, if the set of time-translates {s(t−kΔt)}k is an orthonormal set, then h(m−n) = δ(m−n) and the 
energy expression (3.50) simplifies to 2{| [ ]| }

n
E x n∑ , which is the commonly-used energy expression in the 

orthogonal systems. Unfortunately, the orthogonality condition on {s(t−kΔt)}k is never satisfied for the FTN 
systems and the energy must now include the signal correlation terms h(n−m). 
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Since x†Hx is a scalar, the matrix trace tr(∙) can be applied, and by the trace identity tr(AB) 

= tr(BA): 

 { } ( ){ } ( ){ }† † †E H E tr H E tr H= =x x x x xx . (3.54) 

Furthermore, by the linearity of the trace and the expectation operators, the order can be 

interchanged as follows: 

 { } ( ) ( )( ) { }† †
xE tr H tr E H tr K H= =xx xx , (3.55) 

where Kx = E{xx†} denotes the correlation matrix of the modulation symbols {x[n]}. This 

completes the proof of Lemma 3.4.  ■ 

We can normalize the FTN signal energy from (3.50) by either the total number of 

transmitted symbols (KN symbols) to get an average FTN energy in Joules per symbol. 

Alternatively, it can be normalized by total time duration taken to transmit KN symbols 

(NT seconds in FTN plus (K−1)T/K which is negligible for N sufficiently large, see Figure 

3.1) for a power constraint in Joules per second (i.e., watts). We will consider the latter 

since the capacity derivations in this dissertation deal with bits per second. The following 

power constraint derived for the FTN transmission specify that the energy of individual 

FTN symbols {x[n]} must scale down according to increasing FTN signaling rate factor K, 

in order to keep the overall transmission power fixed and independent of the signaling rate. 

Proposition 3.3 (FTN transmission power constraint): The transmission power constraint 

of the FTN transmission signal x(t) in Joules per second (watts) is given in a matrix form 

by 

 ( )1
xtr K H P

NT
≤ . (3.56) 

where P is a fixed constant in Joules per second. 

Note that, regardless of the FTN signaling rate 1/Δt = K/T, the maximum used power 

remains P. This fixed maximum power enforces stricter restrictions on the energy of 

individual modulation symbol {x[n]} as the signaling rate 1/Δt = K/T is increased (i.e., as 

the FTN signaling rate factor K increases, the energy of {x[n]} must scale down 
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accordingly). The power constraint (3.56) thus allows a ‘fair’ comparison between the 

FTN systems and traditional Nyquist rate systems. 

Furthermore, the constraint (3.56) allows a fair comparison between the un-precoded 

FTN and the precoded FTN. For un-precoded (i.i.d.) FTN systems, the correlation matrix 

becomes simply 2{ [ ] }x KNK E x n I= ⋅ , where IKN denotes KN×KN identity matrix. Hence 

2( ) { [ ] }xtr K H E x n KN= ⋅ , from the power constraint (3.56), since the diagonal entries of 

H are all 1’s, and the power constraint for the un-precoded FTN simplifies to 
21( ) { [ ] }t E x n P−∆ ≤  (note that this is consistent with the constraints used in the un-

precoded FTN literature, e.g., [127]). 

Sometimes, it will be convenient to re-express the transmission power constraint in a 

different form.  

Corollary 3.1 (Alternative transmission power constraint): The transmission power 

constraint on FTN transmission signal x(t) can alternatively be written as 

 ( )1 2 1 21 †
xtr U H K H U P

NT
≤ , (3.57) 

with any unitary matrix U, i.e., U†U = UU† = I.  

Proof: First let H = H1/2H1/2 by taking a matrix square root of H. Hence, we have tr(KxH) = 

tr(KxH1/2H1/2) = tr(H1/2KxH1/2), where the last equality is due to the trace identity tr(AB) = 

tr(BA). Furthermore, tr(H1/2KxH1/2) = tr(H1/2KxH1/2UU†) = tr(U†H1/2KxH1/2U), due to UU† 

= I followed by the trace identity tr(AB) = tr(BA). This completes the proof. ■ 

As an interesting side note, the derived FTN signal energy tr(KxH) may be compared 

to the block symbol energy tr(Kx) used in the Nyquist-rate communication systems (see 

e.g., [66], [141]). The following corollary characterizes this relationship between the FTN 

signal energy and the conventional block symbol energy in the Nyquist rate systems: 

Corollary 3.2 (Block symbol energy versus FTN signal energy): The block symbol energy 

for transmission of KN symbols in Nyquist rate systems is given by  
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 ( ) { }
1

2

0
[ ]

KN

x
n

tr K E x n
−

=

= ∑ , (3.58) 

in Joules. This is related to the FTN signal energy from Lemma 3.4 by the following 

relationship: 

 ( ) ( )maxx xtr K H tr Kλ≤ , (3.59) 

where λmax denotes the maximum eigenvalue of the FTN matrix H. Furthermore, by 

exploring the structure of H, we can associate λmax with the folded pulse spectrum ŝfolded(f), 

as defined by 

 2ˆ ˆ( ) ( ) , ( 1 (2 ) ,1 (2 ))folded
k

s f s f k t f t t
∞

=−∞

≡ − ∆ ∈ − ∆ ∆∑ , (3.60) 

where ŝ(f) denotes the Fourier transform of s(t), and we have 

 1
max ˆ( ) esssup ( )folded

f
t s fλ −≤ ∆ , (3.61) 

which becomes an equality in the limit as N tends to infinity and ess sup denotes the 

essential supremum. (A rule of thumb we observed is λmax ≈ K in FTN systems and λmax ≈ 1 

in Nyquist rate systems.) 

Proof: We use the von Neumann’s inequality of trace product [102]: i.e., for any complex 

n×n matrices A and B, 

 
1

0
( )

n

i i
i

tr AB α β
−

=

≤∑ , (3.62) 

where α0 ≥ α1 ≥ … ≥ αn–1 and β0 ≥ β1 ≥ … ≥ βn–1 are the singular values of A and B, 

respectively. Therefore, 

 
1

0
( )

KN

x i i
i

tr K H σ λ
−

=

≤ ∑ , (3.63) 

where σ0 ≥ σ1 ≥ … ≥ σKN–1 and λ0 ≥ λ1 ≥ … ≥ λKN–1 are the singular values of Kx and H, 

respectively. Note that we dropped the absolute value since Kx and H are Hermitian non-

negative definite matrices and hence the trace of their product is always non-negative. 

Applying the Hölder’s inequality on (3.63), we obtain 
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 ( )
1 1

0 1
0 0

max( , , )
KN KN

i i i KN
i i

σ λ σ λ λ
− −

−
= =

 ≤  
 

∑ ∑   (3.64) 

 max ( )xtr Kλ= , (3.65) 

where λmax denotes the maximum singular value of H. Since H is Hermitian non-negative 

definite, λmax is also the maximum eigenvalue of H by the spectral theorem.  

Now to associate λmax with ŝfolded(f), we use Lemma D.1 in Appendix D to upper-bound 

the eigenvalues of H by essential supremum of the inverse Fourier series of {hk}, i.e., 

 esssup esssup ( )ik
i k

k
h e hλ

λ λ
λ λ

∞

=−∞

≤ =∑ . (3.66) 

By Lemma 3.3, we know that h(–2πf∆t) = (∆t)–1ŝfolded(f). Now noting that the essential 

supremum of h(λ) is equal to the essential supremum of h(–2πf∆t), we arrive at (3.61). 

Finally, (3.66) becomes equality as N tends to infinity due to Lemma D.1. This completes 

the proof of Corollary 3.2.  ■ 

As a consequence of Corollary 3.2 (and using our rule of thumb λmax ≈ K), if  

 ( )1
x

Ptr K
NT K

≤ , (3.67) 

then the transmission power constraint ( )1( ) xNT tr K H P− ≤  from Proposition 3.3 is 

automatically satisfied. In other words, in FTN systems, energy of each modulation 

symbol x[n] needs to be reduced roughly by a factor of K compared to the Nyquist rate 

systems for the same transmission energy.  

 

3.4 Spectral Analysis of Different FTN Signals 
 

A common assumption accompanying the FTN signaling in the literature is that such 

signaling preserves the transmission bandwidth for varying signaling rates. We shall show 

in this section, however, that this assumption on bandwidth invariance holds always only if 

a perfectly band-limited modulating pulse is used or the modulation symbols are 

uncorrelated. Furthermore, any precoding on the modulation symbols can significantly 

alter the shape of the power spectrum of the FTN signals. Therefore, the exact form of the 
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power spectrum with respect to the symbol rates and precoding is of interest in the context 

of FTN signaling.  

The objective of this section is to analyze closed-form expressions on power spectral 

densities (PSDs) of various FTN signals. Specifically we consider non-precoded, 

convolutionally-precoded, or block-precoded FTN signals, operating over either AWGN 

or linear- time-invariant (LTI) channels. The analysis reveals how the power spectrum of 

FTN varies with 1) the FTN signaling rate 1/∆t, 2) the modulating pulse spectra ŝ(f), 3) the 

modulation symbol correlations { [ ] [ ]}E x n x m∗ , and 4) the utilized precoding strategy. 

Moreover, we identify sufficient conditions on the precoding to prevent spectrum 

broadening of the resulting FTN signals. 

 

 

Figure 3.4  The considered precoded FTN signaling over linear, time-invariant (LTI) channel setup 

We will consider the precoded FTN transmission over the linear time-invariant (LTI) 

channel with the impulse response c(t) as introduced in section 3.1. For convenience, a 

schematic block diagram including only the relevant blocks is shown in Figure 3.4. The 

channel output signal v(t) is simply the convolution of the FTN signal x(t) and LTI channel 

response c(t), i.e., 

 ( ) ( ) ( ) [ ] ( )
n

v t x t c t x n p t n t
∞

=−∞

= ∗ = − ∆∑  (3.68) 

where ∗  denotes the convolution of continuous-time signals and ( ) ( ) ( )p t s t c t≡ ∗ . Note 

that the overall combined ISI from LTI channel and signaling faster than Nyquist rate is 

determined by p(t) and the FTN signaling rate 1/∆t. 
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3.4.1 PSD of FTN for Wide-Sense Stationary Data 
 

This subsection considers the FTN signal x(t) when the modulation symbols {x[n]} are 

wide-sense stationary (WSS) with a constant mean mx and an autocorrelation function Rx(n, 

m) = E{x[n]x*[m]} that satisfies 

 ( ) ( ) ( ),x x xR n m R m n R k= − = , (3.69) 

where k ≡ m–n. First note that the power spectral density of the pulse-amplitude 

modulation (PAM) signal with WSS modulation symbols (also known as cyclostationary 

PAM signal) is well known (see e.g., subsection 8.2.1 in [113]). Careful review of the 

derivation reveals that such PSD analysis does not depend on the signaling rate, and hence 

it can be directly applied to the considered FTN signal. This yields the following PSD 

expression of the FTN signal: 

 ( ) ( ) ( ) 21 ˆ
xx Rf f s f

t
=
∆

S S , (3.70) 

where ŝ( f ) is the Fourier transform of s(t) and ( )
xR fS , called a data spectrum, is defined 

by 

 ( ) ( ) 2
x

j f k t
R x

k
f R k e π

∞
+ ∆

=−∞

≡ ∑S , (3.71) 

which has an interpretation of a PSD of discrete-time modulation symbols {x[n]} 

(furthermore, note that ( )
xR fS  is periodic in f with a period 1/∆t). An a consequence of 

(3.70), the spectrum of the FTN signals can be precisely controlled by changing the 

modulating pulse spectra, ŝ(f), and the second order statistics of the modulation symbols, 

Rx(k).  

 

3.4.2 PSD of Convolutionally Precoded FTN Signals in LTI Channels 
 

Convolutional precoding has been considered in the FTN literature (see e.g., [158], [96], 

[125], [126]) to deal with the FTN-induced intersymbol interference. Precoding in general 

causes the FTN symbols become non-i.i.d, but the effects of this symbol correlation to the 
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PSD of precoded FTN signals have been largely ignored in the past literature. The 

assumption of precoders generating always uncorrelated sequences [125] is 

mathematically incorrect. The objective of this subsection is to properly analyze PSD of 

convolutionally precoded FTN signal over linear time-invariant (LTI) channels.  

Convolutional precoding is a special class of precoding defined as follows: 

Definition 3.2 (Convolutional precoding): The modulation symbols {x[n]} are called 

convolutionally precoded if they can be written as 

 [ ] [ ],k
k

x n a n kξ
∞

=−∞

= −∑  for n = 0, ±1, ±2, …, (3.72) 

for some real precoding (weighting) coefficients {ξk}, where {a[n]} are zero-mean i.i.d. 

information sequence.  

Such precoding may model many conventional linear precodings employed in practice, 

such as partial response signaling, trellis coding as well as finite-impulse-response (FIR) 

or infinite-impulse-response (IIR) filtering. The precoding coefficients {ξk} are further 

assumed to be absolutely summable; i.e., they satisfy the condition 

 .k
k

ξ
∞

=−∞

< ∞∑  (3.73) 

We note that the the above condition is always satisfied for FIR filters with finite tap 

coefficients and also for IIR filters that are causal and BIBO (bounded-input-bounded-

output) stable. (Latter is due to the property of causal linear, time-invariant digital filters 

being BIBO stable if and only if the impulse response is absolutely summable [107].) 

The following theorem gives PSD of the convolutionally precoded FTN signal 

explicitly as a function of the signaling rate 1/∆t, the channel frequency response ĉ(f) and 

the precoding coefficients {ξk}.  

Theorem 3.1 (PSD of convolutionally precoded FTN signals over LTI channels): Let the 

modulation symbols {x[n]} be generated by precoding of a zero mean i.i.d. information 

sequence {a[n]} according to (3.72) with absolutely summable precoding coefficients {ξk}. 

Let c(t) be an impulse response of linear time-invariant (LTI) channel and consider the 
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channel setup as in Figure 3.4. Then, the power spectral densities of the convolutionally 

precoded FTN signal x(t) and the channel output signal v(t) are respectively given by 

 ( ) ( ) ( )
2 2

ˆa
x f f s f

t ξ
σ

=
∆

S S  and (3.74) 

 ( ) ( ) ( )
2 2

ˆ ˆ( )a
v f f s f c f

t ξ
σ

=
∆

S S , (3.75) 

where ŝ(f) and ĉ(f) are the Fourier transforms of s(t) and c(t), respectively, σa
2 = 

E{|a[n]|2} is the variance (or PSD) of the i.i.d. information sequence {a[n]}, and ( )fξS  is 

called precoding spectrum as defined by 

 2( ) j f k t
k

k
f e π

ξ ξ
∞

+ ∆

=−∞

≡ ∑S . (3.76) 

Proof: Note that the convolutionally precoded data symbols {x[n]} have zero mean mx = 

E{x[n]} = 0 for all n and have an autocorrelation function 

 ( ) 2 *
x a n n k

n
R k σ ξ ξ

∞

+
=−∞

= ∑ . (3.77) 

Therefore, {x[n]} are wide-sense stationary when precoding coefficients are absolutely 

summable, and the PSD of the corresponding FTN signal x(t) is given (3.70). Now by 

substituting the expression for Rx(k) from (3.77) to (3.71) and simplifying: 

 ( ) 2 * 2
x

j f k t
R a n n k

k n
f e πσ ξ ξ

∞ ∞
+ ∆

+
=−∞ =−∞

= ∑ ∑S  (3.78) 

 ( )22 * j f k n t
a n k

n k
e πσ ξ ξ

∞ ∞
+ − ∆

=−∞ =−∞

= ∑ ∑  (3.79) 

 2 2 * 2j f n t j f k t
a n k

n k
e eπ πσ ξ ξ

∞ ∞
− ∆ + ∆

=−∞ =−∞

= ⋅∑ ∑ , (3.80) 

which is equal to 
22 ( )a fξσ S . As for the PSD of the output signal v(t), simply replace ŝ(f) 

by ˆ ˆ( ) ( )s f c f  in the above analysis to yield the desired result. This completes the proof of 

Theorem 3.1.  ■ 
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The theorem gives the PSD of the FTN signal explicitly as a function of the signaling 

rate 1/∆t, the channel frequency response ĉ(f) and the precoding coefficients {ξk}. This 

allows a communication system designer to use appropriate precoding to shape the power 

spectrum of x(t). Note also that due to the 1/∆t term appearing in (3.74), increasing the 

symbol rate of the precoded FTN signal amplifies the overall power spectrum and can also 

modify the shape of the spectrum due to dependencies of ∆t in the precoding spectrum 

(3.76). Therefore, care must be exercised if such data precoding is to be applied to the 

FTN signaling. The next corollary presents sufficient conditions for preventing the 

spectrum broadening.  

Corollary 3.3 (Sufficient conditions for preventing spectrum broadening): The power 

spectral density of the convolutionally precoded FTN signal does not exhibit spectrum 

broadening with respect to the signaling rate 1/∆t if 

 2
a tσ ≤ ∆  and 1k

k
ξ

∞

=−∞

≤∑ . (3.81) 

Proof: Substituting the conditions above to (3.74) (or (3.75)) yields 

 ( ) ( ) ( )
2 2 2ˆ ˆ( )a

x f f s f s f
t ξ

σ
= ≤
∆

S S , (3.82) 

since ( ) kk
fξ ξ≤∑S . Note that the right-hand side of (3.82) is independent of the both 

signaling rate 1/∆t and the precoding coefficients {ξk}. This completes the proof. ■ 

The conditions in the corollary imply that in order to avoid the spectrum broadening in 

the precoded FTN signaling, the power of the information sequence {a[n]} should be 

scaled down accordingly with increasing FTN signaling rate and the precoding coefficients 

should not be chosen too big. We note that these sufficient conditions are stronger 

conditions than the FTN transmission power constraint in (3.56). 

In order to gain further insights, several practical examples are considered below. First, 

we consider a precoded FTN signal using a rectangular modulating pulse and a duo-

binary-like [72] precoding with the system parameters listed below: 

• σa
2 = T = 1 μs, 
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• 
1 2  (0, )

( )
0

T for t T
s t

elsewhere

− ∈
= 


  (rectangular modulating pulse) 

• c(t) = δ(t), (AWGN channel) 

• ξ0 = ξ1 = 1 and ξk = 0 for k ≠ 0 and 1. (duo-binary-like precoding) 

By Theorem 3.1, the overall closed form PSD of this example is given by  

 ( ) 224 ( ) sinc( )cos( )x af T t f T f tσ π= ∆ ∆S , (3.83) 

where sinc(λ) ≡ sin(πλ)/(πλ).  
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Figure 3.5  Power spectral density of FTN signal at symbol rate 1/∆t = 2/T using rectangular pulse s(t); 
Left is the exact PSD and right is plotted using the Welch method; See text for the system 
parameters 
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Figure 3.6  Power spectral density of FTN signal at symbol rate 1/∆t = 20/T using rectangular pulse 
s(t); Left is the exact PSD and right is plotted using the Welch method; See text for the 
system parameters 
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Figure 3.5 and Figure 3.6 plot the PSD expressions (3.83) using signaling rates 1/Δt = 

2/T and 20/T, respectively, and compare them with numerically estimated PSDs using 

MATLAB. (Note that the left plots in Figure 3.5 and Figure 3.6 are the exact closed-form 

PSDs while right plot are the PSD estimates obtained by the Welch method [160], which is 

a variant of the periodogram-based spectral estimation technique.) From these figures, we 

note that the presented results show an excellent match between the analytic and the 

numerically estimated power spectral densities. Also, by comparing Figure 3.5 and Figure 

3.6, we can see that as the signaling rate 1/∆t increases, the PSDs of the FTN signals 

clearly exhibit the spectrum broadening as well as shape altering. 

Next, we use a different modulating pulse and investigate how precoding can impact 

the power spectrum. In Figure 3.7 and Figure 3.8, we consider a raised cosine modulating 

pulse s(t) with a roll-off factor β = 0.22 (used in e.g., WCDMA standard) and a long-

memory precoder. Following lists the system parameters: 

• σa
2 = T = 1 μs, 

• 2

sin( ) cos( )( )
1 (2 )

t T t Ts t
t T t T
π πβ

π β
 

=  − 
, (raised cosine modulating pulse) 

• c(t) = δ(t), (AWGN channel) 

• ξk = 1 for k = 0, …, 9 and ξk = 0 elsewhere. (long memory precoding) 

By Theorem 3.1, PSD of the FTN signal is given by 

 ( ) 2

4 ( ) (1 ) 2

( ) ( ) (1 ) 2 (1 ) 2
0

x

g f for f T

f g f q f for T f T
otherwise

β

β β

 ≤ −
= − ≤ ≤ +



S  (3.84) 

where ( ) 1 cos[( )( (1 ) 2 )]q f T f Tπ β β≡ + − −  and g(f) ≡ 22 2( ) cos( )aT t f tσ π∆ ∆ .  

We note from Figure 3.7 and Figure 3.8 that the precoding in FTN can considerably 

alter the shape and amplify the overall power spectrum. In the figures, the PSD estimates 

exhibit long spectral ‘tails’, which is just an effect of time-truncating s(t) to |t|≤6T, the 

otherwise infinite duration s(t), for the purpose of computer simulations. We also note that 
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the spectrum does not broaden in this case since the raised cosine pulse is a (theoretically) 

strictly band-limited pulse.  
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Figure 3.7  Power spectral density of FTN signaling before and after the long memory precoding; at 
signaling rate 1/∆t = 2/T using time-truncated raised cosine pulse s(t) 
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Figure 3.8  Power spectral density of FTN signaling before and after the long memory precoding; at 
signaling rate 1/∆t = 5/T using time-truncated raised cosine pulse s(t) 

Finally in Figure 3.9 and Figure 3.10, we consider an impact of an LTI channel to the 

power spectrum of the FTN signaling. A simple realization of the two-way fading channel 

model c(t) is considered which is given by 

• 2( ) 1 j fc t ae π τ−= +  with a = 0.5 and τ = 3.3 μs, 

where a represents the attenuation factor of the secondary path delayed by τ seconds [120]. 

Figure 3.9 and Figure 3.10 plot the exact PSD of the FTN signals before and after the 
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channel; i.e., left plots show ( )x fS  and right plots show ( )v fS . The system parameters 

are kept the same as in Figure 3.5 using rectangular pulse s(t). The power spectral density 

after the channel ( )v fS  is derived using Theorem 3.1 and is given by 

 
22 2( ) 4 ( ) sinc( )cos( )(1 2 cos(2 ))v af T t f T f t fσ π α α π τ= ∆ ∆ + +S , (3.85) 

where sinc(λ) ≡ sin(πλ)/(πλ). The figures show that the channel introduces distortions to 

the original spectrum, which can be precisely determined by the spectral analysis, and if 

the channel is known at the transmitter, appropriate precoding can be applied to combat 

these channel distortions (Chapter 5 will deal with such FTN precoding in a greater detail). 
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Figure 3.9  Power spectral densities of FTN signal before and after a realization of 2-way fading 
channel at signaling rate 1/∆t = 5/T 
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Figure 3.10  Power spectral densities of FTN signal before and after a realization of 2-way fading 
channel at signaling rate 1/∆t = 10/T 



 
 
Chapter 3      FTN System Models and Power Spectral Analysis 85 
 
 
3.4.3 PSD of General Linearly Precoded FTN Signals 
 

As an extension to the analysis thus far, we can consider a more general linear precoding: 

 ,[ ] [ ], 0, 1, 2, ,n k
k

x n a k for nξ
∞

=−∞

= = ± ±∑   (3.86) 

for some deterministic precoding coefficients {ξn,k}. With the above general precoding, 

however, corresponding FTN signals x(t) may become non-stationary stochastic processes 

with ill-defined power spectral densities or time-evolving spectra [97]. Nevertheless, when 

the data are parsed into packets which are sent separately, the overall FTN signal can be 

treated as a cyclostationary process with the period being the length of each packet. This 

treatment allows one to estimate the power spectrum of general precoded FTN signals 

using standard periodogram-based spectral estimation techniques22.  

We consider a special linear precoding, described by (in vector notations) 

 1 2( )P t H −= ∆ ⋅x a , (3.87) 

where H is the FTN matrix defined in (3.22). It will be shown in Chapter 5 that this linear 

precoding is capacity-wise optimal for the FTN signaling. Table 3.1 lists PSD estimates of 

this optimally precoded FTN signals using different modulating pulses. Four modulating 

pulses (rectangular, root-raised cosine, prolate spheriodal wave function, and sinc-type) 

are considered. The rectangular and sinc modulating pulses are the two extreme cases in a 

sense that the former is most time compacted and the latter is most frequency compacted. 

The root raised cosine pulses, commonly used in modems [113], stand in between the two 

in terms of time-frequency compaction, whereas the prolate spheroidal wave functions 

have the best time-frequency energy concentrations [134], [135]. From the table, we can 

observe that the optimal precoding (3.87) heavily distorts the spectra and boosts the side-

lobes as the signaling rate 1/Δt is increased beyond the Nyquist rate; with the exception of 

the case of the perfectly band-limited sinc-type pulse. The behavior of the power spectrum 

with respect to the optimal precoding and the signaling rate will have several important 

consequences in the capacity analysis of precoded FTN signaling in Chapter 5.   

22 Notably, there are several other techniques that can be used to estimate the time-varying nature of non-
stationary processes; see for example, [1] using short-time Fourier analysis and [111] using evolutionary 
spectra. We do not pursue such directions in this dissertation.  
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Table 3.1  Some power spectral densities (PSDs) of optimally precoded FTN signals 

Modulating Pulse Type Time Domain s(t) Power spectra of optimally precoded FTN signals x(t) 
1/∆t = 1/T (Nyquist case) 1/∆t = 2/T (K=2) 1/∆t = 5/T (K=5) 

Rectangular pulse 
s(t) = 1; 

t ∈  (−1/2, 1/2) 
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3.5 Chapter Summary 
 

The main objective of this chapter has been the development of accurate FTN system 

models by re-establishing the link between the continuous-time communication setup and 

the discrete-time channel models. Due to its inherent non-orthogonality, the FTN signaling 

led to non-trivial discrete-time channel models that involve the intersymbol interference 

(ISI) and correlated noise statistics that depended on the FTN-induced ISI pattern. Based 

on the established FTN channel models, some of their important properties were derived, 

including the invertibility and eigenvalue distribution of the FTN matrix H that 

characterizes the ISI pattern. Furthermore, a non-trivial power transmission constraint for 

the FTN signaling has been derived for the first time, which allows fair comparisons of the 

FTN signaling with the Nyquist rate systems.  

Finally, through the power spectral density (PSD) analysis, it was shown that the data 

precoding in the FTN signaling can both broaden and alter the shape of the original power 

spectrum. The result implied that the common assumption of bandwidth invariance of the 

FTN signaling no longer holds if the modulating pulse s(t) is not strictly band-limited and 

the modulation symbols {x[n]} are correlated. In addition, sufficient conditions for 

preventing the broadening of the power spectrum were provided. The discrete-time FTN 

channel models and the power spectral analysis presented in this chapter provides a 

foundation for more in-depth analysis on the FTN signaling in the later chapters.  
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Chapter 4  
 
Non-Precoded FTN Signaling 
 

 

Traditional FTN signaling assumes sending independent and identically distributed (i.i.d.) 

modulation symbols x that are sent without any pre-coding. Such non-precoded FTN 

signaling does not alter the transmission power spectrum (as shown in section 3.4), and 

allows fair and simple comparisons with other coded modulation techniques. Recent 

developments in the information theory have further allowed closed form evaluation of the 

capacity limits of the non-precoded FTN signaling and further enhancement of our 

understanding of the FTN signaling.  

This chapter has the following objectives with regards to the non-precoded FTN: 

1) Determine capacity benefits of non-precoded FTN signaling over conventional 

Nyquist rate signaling.  

2) Evaluate optimality of equal power distribution for non-precoded FTN and quantify 

any capacity loss in sending FTN symbols with non-equally distributed power.  

3) Design a low-complexity and spectrally efficient FTN coding system.  

The above three objectives are addressed in detail in sections 4.1, 4.2, and 4.3, respectively. 

In short, it will be shown that there exist capacity benefits of non-precoded FTN signaling, 

when compared to the M-ary Nyquist rate signaling. Also a class of non-uniform power 

distributed modulation symbols does not incur any capacity loss, and this observation 

consequently leads to a design of a low-complexity FTN-based coding system that can 

support large signaling rates and achieve high spectral efficiencies.  
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4.1 Review on Capacity Benefits of i.i.d. FTN Signaling 
 

This section reviews previous capacity results on FTN signaling when independent and 

identically distributed (i.i.d.) modulation symbols {x[n]} are assumed. Two separate cases 

are considered for the i.i.d. FTN symbol alphabet, namely the Gaussian distributed 

modulation symbols {x[n]} in subsection 4.1.1 and more practical finite alphabet 

modulation symbols such as PAM, QAM, or PSK in subsection 4.1.2.  

 

4.1.1 Gaussian Distributed Modulation Symbols 
 

Consider FTN signaling over AWGN channel: y = Hx + z from (3.21), where the 

modulation symbol vector x is assumed to be i.i.d. In order to satisfy the FTN transmission 

power constraint (3.56), the covariance matrix of x under the i.i.d. constraint is given by Kx 

= (PΔt)∙IKN, where IKN denotes the KN×KN identity matrix, P is the total available 

transmission power in watts, and Δt is the FTN signaling interval (Δt ≡ T/K). Furthermore, 

recall from Definition 3.1 that the folded pulse spectrum ŝfolded(f) is defined as 

 2 1 1ˆ ˆ( ) ( ) , ,
2 2folded

k
s f s f k t f

t t

∞

=−∞

 ≡ − ∆ ∈ − ∆ ∆ 
∑ , (4.1) 

where ŝ(f) is the Fourier transform of the modulating pulse s(t). 

The capacity of the i.i.d. FTN signaling was first presented and rigorously proved by 

Rusek and Anderson in [127] and the statement of this result is given below. 

Theorem 4.1 (Capacity of i.i.d. FTN signaling over AWGN channel [127]): Let the FTN 

modulation symbols x[0], x[1], …, x[KN−1] be chosen to be i.i.d, with a variance PΔt that 

satisfies the FTN transmission power constraint (3.56). Then the capacity of this i.i.d. FTN 

signaling in AWGN channel with the signaling rate 1/Δt symbols per second is given by  

 
1/(2 )

. . . 2
01/(2 )

ˆlog 1 ( )
2

t
FTN
i i d folded

t

PC s f df
N

∆

− ∆

 
= + 

 
∫  bits per second, (4.2) 

and it is achieved by Gaussian-distributed FTN modulation symbols. 
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Proof: Please refer to [127] for the proof. We will also extend this theorem to a more 

general setting (for convolutionally precoded FTN signaling) in Chapter 5 where the proof 

of this theorem will be presented as a special case (see Corollary 5.1).  ■ 
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Figure 4.1  The folded pulse spectra ŝfolded(f) plotted for the frequency range f ∈ (-1/(2Δt), 1/(2Δt)) with 
varying FTN rates K = 1, 2, 5, and 10; The rectangular pulse s(t) = 1 for t∈ (−1/2, 1/2) and 
0 elsewhere is used in this example (where T = 1) 

As an example, the folded pulse spectra ŝfolded(f) for varying FTN rates K are plotted in 

Figure 4.1 when the rectangular pulse s(t) is used. The capacity expression (4.2) is given 

by an integral of (or an area under) a non-negative logarithm function of ŝfolded(f) and the 

signal-to-noise power ratio. Note that the integral in (4.2) extends over the frequency range 

f ∈(−1/(2Δt), 1/(2Δt)) and this range expands with the increasing FTN signaling rate 1/Δt. 

Consequently, if ŝfolded(f) is not strictly zero outside the frequency range f ∈ (−1/(2Δt), 

1/(2Δt)), there exists a capacity benefit in signaling faster than the Nyquist rate. In contrast, 

the conventional Nyquist rate transmissions with 1/T symbols per second will not be able 

to recover any information residing in the frequency range outside f ∈(−1/(2T), 1/(2T)).  

The following corollary deals with asymptotic case when FTN signaling rate 1/Δt 

tends to infinity.  

ŝ f
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Corollary 4.1 (Asymptotic K [127]): The capacity of i.i.d. FTN signaling as the signaling 

rate tends to infinity (or as ∆t = T/K → 0) is given by 

 2
. . . 20

0

ˆlog 1 ( )
2

FTN
i i d t

PC s f df
N

∞

∆ → −∞

 
→ + 

 
∫  (4.3) 

 2
0

( )log 1
2

x f df
N

∞

−∞

 
= + 

 
∫

S , (4.4) 

where 2ˆ( ) ( )x f P s f=S  denotes the transmission power spectral density (PSD) of the i.i.d. 

FTN signal x(t) and N0/2 is the two-sided Gaussian noise PSD.  

Proof: Please refer to [127] for the proof. ■ 

Above corollary shows that the i.i.d. FTN signaling has the capability to recover 

information residing over all spectral range, f ∈(−∞, ∞), including all spectral side-lobes 

of the transmission power spectrum. We also note that the capacity expression (4.4) is the 

same as the generalized Shannon capacity written as a function of PSD (i.e., CPSD from 

Theorem 2.2), meaning that the i.i.d. FTN signaling can asymptotically achieve the 

capacity benchmark CPSD for any given transmission PSD23. 

There are some limitations, however, in the practical usage of the capacity expression 

above. The capacity from Theorem 4.1 does not take into account of interfering users (if 

any) present in the adjacent frequency bands. These neighboring spectrum users may cause 

or may be negatively affected by inter-channel-interference if the FTN transmission PSD 

extends to these frequency bands. Therefore, in a conventional multi-user setting, nearly 

bandlimited modulating pulses are typically used in order to minimize such inter-channel-

interference. However, the capacity benefits of the i.i.d. FTN signaling diminishes quickly 

with the increasing ‘bandlimited-ness’ of the modulating pulse s(t), and it completely 

disappears at the extreme case when s(t) is a strictly bandlimited (e.g., sinc pulse), as 

shown in the following corollary: 

23 The i.i.d. FTN capacity expression (4.4) is in fact two times CPSD from Theorem 2.2. This factor of two 
comes from allowing complex signals (by allowing complex modulation symbols and complex modulating 
pulses) in the FTN capacity analysis. 
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Corollary 4.2 (Special case using sinc modulating pulse [127]): Let the modulating pulse 

s(t) be a unit energy sinc pulse with bandwidth of W Hz, i.e., s(t) = (2W)1/2sinc(2Wt) = 

(2W)1/2sin(2πWt)/(2πWt). Its Fourier transform is given by 

 
1 2(2 ) ( , )ˆ( )

0 .
W f W W

s f
otherwise

− ∈ −
= 


 

Furthermore, let the modulation symbols {x[n]} be chosen i.i.d. Then the capacity of the 

i.i.d. FTN signaling in AWGN channel for all K becomes  

 ( ). . . 2 02 log 1 ( )FTN
i i dC W P N W= +  bits per second, (4.5) 

which is equivalent to the classical Shannon capacity of Nyquist rate transmission over 

bandlimited complex AWGN channel (see Theorem 2.1). 

Proof: Using the sinc pulse, the Nyquist interval T is simply T = 1/(2W). Note also that the 

folded pulse spectrum ˆ ( )foldeds f  simplifies to  

 2ˆ ˆ( ) ( (2 ))folded
k

s f s f k WK
∞

=−∞

= −∑  (4.6) 

 2ˆ( )s f= , (4.7) 

over the frequency range ( ),f W W∈ − , due to s(t) being strictly bandlimited. Substituting 

these to Theorem 4.1 and simplifying:  

 ( )
1/(2 )

2
. . . 2

01/(2 )

ˆlog 1
2

t
FTN
i i d

t

PC s f df
N

∆

− ∆

 
= + 

 
∫  (4.8) 

 2
0

2 log 1 PW
N W

 
= + 

 
, (4.9) 

after setting ∆t = T/K and T = 1/(2W). This completes the proof.  ■ 

The implication of the corollary is as follows. For strictly bandlimited transmissions 

with the i.i.d. Gaussian modulation symbols, the conventional Nyquist rate transmission is 

indeed optimal and the FTN capacity is equal to the Shannon capacity with Nyquist 

signaling. On the other hand, considering that strictly bandlimited pulses cannot be 

realized in practice (due to its infinite time support, see Appendix B), the FTN signaling 
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will always provide additional capacity benefits when compared to the Nyquist rate 

counterpart. The capacity benefits of FTN can be explained due to its ability to recover 

information residing over all spectral range (even though the gain may be small if the 

spectral side-lobes are small in magnitude). On the other hand, traditional Nyquist rate 

transmit signaling with a Nyquist rate matched filtering, corresponding to the case ∆t= T = 

1/(2W), can only recover information within frequency range f ∈(−1/(2T), 1/(2T))=(-W,W). 

 

4.1.2 Finite Alphabets Modulation Symbols 
 

Thus far, we have assumed using Gaussian distributed modulation symbols, as these lead 

to achieving FTN capacity in Theorem 4.1. In practice, however, finite constellations such 

as PAM, PSK and QAM are used, and the specific channel input alphabet limits the 

achievable capacities of a digital communication system. In Figure 4.2, the capacity curves 

of various (Nyquist rate) PAM transmissions are plotted with respect to the Shannon 

capacity log2(1+P/(N0W)) in bits/s/Hz. Figure 4.2 reveals that the PAM capacities 

eventually level off as SNR increases due to the input alphabet constraints. This well-

known fact implies that, at high SNR, the number of modulation levels should be 

increased in order to perform close to the Shannon limit.  

In some channels, however, increasing the number of modulation levels may lead to 

undesirable effects. For example, in long haul optical links, higher modulation levels lead 

to increased sensitivity to nonlinear effects [25], whereas in ISI channels, it leads to (order 

of magnitude) increase in implementation complexity of the equalizer. In these channels, 

design of alternative signaling schemes would be of interest.  

 

 



 
 
Chapter 4      Non-Precoded FTN Signaling 94 
 
 

-10 -5 0 5 10 15 20 25 30
0

2

4

6

8

10

SNR = P/(N0W)  (dB)

C
ap

ac
ity

  (
bi

ts
/s

/H
z)

2PAM

4PAM

8PAM

16PAM

Sha
nn

on
 ca

pa
city

 = lo
g 2

(1+S
NR)

 
Figure 4.2  Input-constrained capacities of (Nyquist rate) equiprobable M-PAM transmissions 

A key benefit of the i.i.d. FTN signaling lies in its capability to attain the capacities of 

the high-order (M-ary) modulation while employing only the binary modulation formats at 

the transmitter. That is, instead of increasing the modulation order (e.g., from 2-PAM to 8-

PAM), FTN obtains similar capacity gains by increasing its signaling rate (e.g., from K=1 

to K=3). This ability of FTN can be easily understood by considering a following example. 

Consider a binary antipodal FTN signaling using a rectangular modulating pulse s(t), as 

illustrated in Figure 4.3b. As opposed to traditional binary Nyquist rate signal shown in 

Figure 4.3a, the FTN signal in Figure 4.3b can attain increased number of signal levels {−2, 

0, +2} while employing only the binary antipodal modulation x[n]∈{−1, +1}. We also 

note that the FTN receiver only needs to execute binary demodulation, not the full M-ary 

demodulation (at the price of having to remove FTN-induced ISI).  

In 2010, Yoo and Cho [165] made this argument mathematically rigorous by showing 

that the capacity of binary antipodal FTN signaling converges to that of the i.i.d. Gaussian 

FTN signaling (4.2) as the FTN signaling rate tends to infinity.  
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Figure 4.3    Comparing a generic (a) Nyquist rate signal and (b) a faster than Nyquist rate signal with 
K=2: For binary antipodal modulation {-1,+1} and rectangular modulating pulse with 
symbol period T=1 

Theorem 4.2 (Asymptotic optimality of binary FTN signaling [165]): As the FTN 

signaling rate tends to infinity (i.e., as 1/Δt → ∞ or K → ∞), the capacity of binary 

antipodal i.i.d. FTN signaling converges to the capacity of the i.i.d. Gaussian FTN in (4.2). 

Proof: Please refer to [165] for the proof.  ■ 

In other words, the FTN signaling with binary modulation suffices to achieve the i.i.d. 

FTN capacity limit (4.2) for all values of SNR, which, with the conventional Nyquist rate 

signaling, is achieved only by using Gaussian-distributed modulation symbols (or as a 

limiting case of M-ary modulation, as M→∞, with additional signal shaping [48], [90]). 

Consequently, the FTN signaling may be more desirable than the Nyquist rate signaling in 

applications where high spectral efficiencies are needed, yet increasing the number of 

modulation levels is not desired (such as in fiber-optical links [25], [136]). In this sense, 

the i.i.d. FTN signaling can be an important competing technology to non-binary (M-ary) 

Nyquist rate communications. Moreover, this result calls for a low-complexity design of 

high rate FTN systems, but this is still an open problem [165] due to the large 

implementation complexity associated with the equalizer. We will address this complexity 

issue in section 4.3 by proposing a low-complexity FTN coding architecture that can 

support moderate to large FTN rates and operate at high spectral efficiencies. 
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4.2 Capacity Analysis of FTN with Non-Uniform Power 

Allocation 
 

The purpose of this section is to determine what happens to the capacity of FTN signaling 

when we send independent modulation symbols with non-uniform power distribution. We 

will show that, for a specific class of non-uniform power allocation, its capacity is always 

equal or greater than that of the Nyquist rate siganling. The non-uniform power allocation 

will eventually lead to a design of low-complexity FTN-based coding architecture in 

section 4.3 that can support large spectral efficiencies. 

Consider the FTN signaling over AWGN channel: y = Hx + z from (3.21), where the 

signaling rate is 1/Δt=K/T (i.e., K times faster than the Nyquist rate) and x[n] are now 

allowed to have unequal power allocations but still independently distributed. We consider 

one such class of x with the covariance matrix Kx given by 

 1 2( , , , )x N KK I diag PT PT P T= ⊗  , (4.10) 

where ⊗  denotes the Kronecker product of matrices (Definition 2.14), diag(∙) denotes a 

diagonal matrix with diagonal entries given by its arguments, and the maximum available 

power P is divided into K non-negative parts, P1, P2, …, PK, such that 
1

K
kk

P P
=

=∑ . Such 

signaling has an interpretation of multiplexing of K Nyquist rate signal streams, each with 

different delay and power assignment, as illustrated Figure 4.4 for K = 3.  
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Figure 4.4  Illustration of non-uniform power distributed faster than Nyquist signal x(t) as 
multiplexing of K Nyquist rate signal streams, each with different delay and power 
assignment (K=3 illustrated) 

We now show our own result that such non-uniform power distributed FTN signaling 

does not incur any capacity loss regardless of the power distribution P1, P2, …, PK, when 

compared to the capacity of bandlimited complex AWGN channel CAWGN.  

Theorem 4.3 (Capacity of FTN signaling over AWGN channel with unequal power 

assignment): Consider the case of non-equal power distribution when FTN modulation 

symbol vector x has the covariance matrix Kx defined in (4.10). The capacity of such 

independent and non-identically distributed (i.n.i.d.) FTN signaling over AWGN channel 

. . . .
FTN
i n i dC  is greater than or equal to the Shannon capacity of complex AWGN channel CAWGN, 

i.e., 

 . . . . 2
0

1 log 1
2

FTN
i n i d AWGN

PTC C
T N

 
≥ = + 

 
, (4.11) 
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regardless of the power distribution P1, P2, …, PK as long as 

1

K
kk

P P
=

=∑ . 

Proof: Recall that y = Hx + z where z is a zero mean Gaussian noise vector with a 

covariance matrix Kz = (N0/2)H. Consequently, the mutual information between x and y is 

 ( ) ( ) ( );I h h= −x y y y x  (4.12) 

 ( ) ( )h h= −y z , (4.13) 

where h(∙) denotes the differential entropy (Definition 2.3) and (4.13) follows from Hx 

being deterministic given x, and the translation invariance of the differential entropy 

(Lemma 2.5) followed by independence of x and z. By Lemma 2.4, equation (4.13) can be 

maximized by choosing x to be complex symmetric Gaussian distributed and the 

corresponding mutual information is given by 

 ( ) ( ) ( )( )2; log det dety zI K K=x y , (4.14) 

where Ky denotes the covariance matrix of y and is given by 

 ( )0 2†
y xK HK H N H= + ⋅ . (4.15) 

Therefore, the mutual information for ( , )xKx 0 N , normalized by total time duration NT 

seconds, is given by 

 ( )
( )( )

( )( )
0

2
0

det 21 1; log
det 2

†
xHK H N H

I
NT NT N H

 + ⋅
 =
 ⋅ 

x y , (4.16) 

 ( )( )( )1
2 0

1 log det 2 x KNN K H I
NT

−= + , (4.17) 

where IKN is a KN×KN identity matrix, and (4.17) is due to the determinant identities 

det(A)−1 = det(A−1) and det(A)det(B) = det(AB).  

For convenience, we will denote (4.17) by ψ(∙), i.e., 

 ( ) ( )( )1
2 0

1 log det 2x x KNK N K H I
NT

ψ −≡ + . (4.18) 

Furthermore, let ( )k
xK  denote the covariance matrix when all power is allocated to k-th 

signal stream, i.e., 

 ( ) (0, ,0, ,0, ,0)k
x NK I diag PT≡ ⊗    for {1, 2, , }k K∈  , (4.19) 
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where PT appears at the k-th entry of diag(∙). With such a power allocation, only one 

Nyquist rate signal-stream is active and the FTN transmission becomes simply the 

conventional Nyquist-rate channel transmission with the AWGN capacity, i.e., for all k, 

 ( )( )
2

0

1 log 1
2

k
x AWGN

PTK C
T N

ψ
 

= = + 
 

, (4.20) 

from Theorem 2.1. 

Now for a general Kx, we will use the fact that ψ(∙) is concave on the set of covariance 

matrices Kx. To show that ψ(∙) is concave, first note that 

 ( ) ( )1 2 1 2log det log detx xcK H I cH K H I+ = + , (4.21) 

for any constant c by the identity: logdet(AB+I) = logdet(BA+I). The concavity of ψ(∙) then 

follows from the fact that the logdet(∙) function is concave on the set of non-negative 

definite matrices (Lemma 2.13) and the mapping 1 2 1 2( )x xK cH K H I→ +  for any constant 

c is linear and preserves positive definiteness for any nonzero H. 

Hence, by the concavity of ψ(∙), 

 ( )( ) ( )

1 1

K K
k k

k x k x
k k

K Kψ α α ψ
= =

  ≥ 
 
∑ ∑ , (4.22) 

for any [0,1]kα ∈  such that 
1

1K
kk

α
=

=∑ . By (4.20), 

 ( )

1 1

K K
k

k x k AWGN AWGN
k k

K C Cψ α α
= =

  ≥ = 
 
∑ ∑ . (4.23) 

But by the definition of Kx
(k) and setting k kP Pα = , 

 ( )( )
1 2

1
, , ,

K
k

k x N K x
k

K I diag PT PT PT Kα α α α
=

= ⊗ =∑  . (4.24) 

Hence, for all packet lengths N, (4.23) becomes 

 ( )x AWGNK Cψ ≥ . (4.25) 

Substituting this back to (4.17), we have thus shown that 

 ( )1( ) ; AWGNNT I C− ≥x y  (4.26) 
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for all N, when x is a zero mean complex symmetric Gaussian vector with any power 

assignments P1, P2, …, PK. This establishes that the capacity using the considered non-

identically distributed x is greater than or equal to the AWGN capacity CAWGN. This 

completes the proof of Theorem 4.3. ■ 

When considering the FTN signaling as a multiplexing of K Nyquist rate signal 

streams shown in Figure 4.4, Theorem 4.3 implies that the available power P can be split 

to each signal stream any way we like, while ensuring that the corresponding capacity 

. . . .
FTN
i n i dC  is at least the capacity of Nyquist rate transmission over complex AWGN channel. 

This approach of non-uniform power allocation leads to a design of low-complexity FTN-

based coding system in the next section that can support large spectral efficiencies.  

When compared to the capacity of i.i.d. FTN signaling, however, the non-uniform 

power allocation in the considered i.n.i.d. FTN signaling can in general lead to a non-zero 

capacity loss, i.e., . . . . . . .
FTN FTN
i n i d i i dC C≤ . In the special case when strictly bandlimited modulating 

pulse s(t) is used, however, the two capacities coincide and become the Shannon capacity 

CAWGN, as shown in the following corollary. 

Corollary 4.3 (Optimality of non-uniform power allocation using sinc pulse): When the 

FTN modulating pulse is the strictly bandlimited sinc pulse, i.e., s(t) = (2W)1/2sinc(2Wt) 

with W Hertz bandwidth, the i.n.i.d. FTN capacity . . . .
FTN
i n i dC  is equal to the i.i.d. FTN 

capacity . . .
FTN
i i dC  as well as the Shannon capacity of bandlimited complex AWGN channel 

CAWGN, i.e.,  

 . . . . . . .
FTN FTN
i i d i n i d AWGNC C C= = . (4.27) 

Proof: The equality . . .
FTN
i i d AWGNC C=  is due to Corollary 4.2 for the sinc modulating pulse. 

Finally, the desired relation (4.27) follows by . . . . . . .
FTN FTN
i n i d i i d AWGNC C C≤ =  and . . . .

FTN
i n i d AWGNC C≥  

due to Theorem 4.3. This completes the proof of the corollary.  ■ 
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4.3 Proposed Low-Complexity FTN Coding Architecture 
 

Section 4.1 reviewed results indicating that FTN can be a competing technology to 

standard M-ary Nyquist rate signaling with signal shaping in the high SNR regime since 

FTN can achieve the Shannon capacity while using only binary modulation symbols. 

Consequently, FTN signaling has been considered for potential applications in channels 

with moderate to high SNR including long-haul fiber-optic communication links [136], 

[25]. Due to the high SNR in the optical fibers, FTN systems must be designed to operate 

at high spectral efficiencies, yet possess manageable implementation complexity. 

 

4.3.1 Initial Considerations 
 
Most of the previously-known FTN coding architectures involve some form of equalizers, 

the purpose of which is to remove the FTN-induced intersymbol interference (ISI). 

Unfortunately, the implementation complexity of the optimal maximum a-posteriori 

(MAP) equalizer (described in subsection 2.3.2) is on the order of ML where M is the 

modulation order and L is the length of the ISI memory which is usually multiple orders of 

K. For example, consider an FTN system that employs BPSK (M=2) and signaling 5-times 

faster then Nyquist rate (K=5), using the root raised cosine pulse with roll-off factor of 

0.22 in AWGN channel. From simulations, the memory length of the ISI induced by FTN 

signaling was observed to be near L=50 and cosueqently the implementation complexity of 

the corresponding MAP equalizer is on the order of 250 ≈ 1×1015. Even for a simple 

rectangular pulse, the complexity scales exponentially in the FTN signaling rate factor K. 

Given practical FTN system implementations in current state-of-the-art VLSI or FPGA 

hardware, this exponentially increasing complexity turns out to be prohibitive even for 

moderately large values of M and K. Reduced complexity equalizers have been considered 

in the literature (see e.g., [96], [93], [125], [128], [25]), but these still suffer from the large 

implementation complexity at the considered high SNRs. Consequently, practical FTN 

transceiver design for moderate to high transmission rates has been recently recognized as 

an open problem in [165]. 
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In this section, we propose a low-complexity FTN-based coding architecture that is 

based on non-uniform power allocated FTN signaling and multistage decoding of the 

constituent Nyquist rate signals. The proposed architecture does not require any complex 

equalizer and has a linear implementation complexity on the orders of K∙M, where M is 

the modulation order of the modulation symbols and K is FTN signaling rate factor. The 

key idea is the treatment of FTN as multiplexing of K Nyquist rate signal substreams with 

different power assignments and delays as illustrated in Figure 4.4. At the receiver, the K 

Nyquist-rate signal substreams are successively decoded following an order from the most 

powerful substream to the least powerful substream, while canceling out the previously 

decoded signal substreams along the way. This architecture shares similar concepts and 

properties of Imai and Hirakawa’s multilevel codes [67], [156] or with Cover’s 

superposition coding [28] and may be considered as an extension of the multilevel codes in 

the discrete-time symbol domain to continuous-time waveform domain. Furthermore, the 

capability of FTN to multiplex of more than one Nyquist-rate signal substreams can be 

used to explitly multiplex more than one user’s message in downlink broadcast channels. 

We develop this idea in a greater depth in Chapter 6. 

 

4.3.2 FTN Transceiver Architecture 
 

Figure 4.5 shows the block diagram of the proposed FTN transmitter architecture with 

non-uniform power assignments.  

 

 

Figure 4.5  Proposed FTN transmitter architecture with power assignments P1, P2, …, PK 
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The i.i.d. information sequence a is first demultiplexed into K subsequences a1, a2, …, 

aK according to 

 [ ][ 1], [ 1], , [ ( 1) 1] T
k a k a K k a K N k≡ − + − − + −a  , for {1,2, }k K∈  . (4.28) 

These K subsequences are then separately Turbo-coded and bit-wise interleaved. The 

interleaved coded bits are then mapped to (possibly different) constellation alphabets with 

different power assignments, so that the resulting K mapped symbol vectors x1, x2, …, xK 

are assigned with power P1, P2, …, PK, respectively. Without loss of generality, we assume 

that P1 ≤ P2 ≤ … ≤ PK. The K symbol vectors are then multiplexed to form a combined 

modulation symbol vector x = [x[0], x[1], …, x[KN-1]]T such that 

 [ ] [ 1]kx n x Kn k= + − , (4.29) 

for {1,2, }k K∈   and {0,1, , 1}n N∈ − . Finally, using a chosen modulating pulse shape 

s(t), the FTN modulator constructs the FTN signal by ( ) ( )1

0
[ ]KN

n
x t x n s t nT K−

=
= −∑ , and 

sends it over the communication channel. 

The proposed FTN receiver architecture and its constituent blocks are shown in Figure 

4.6. The signal y(t) received from the communication channel is first matched filtered to 

the pulse shape s(t) and sampled at the FTN rate of 1/Δt. The corresponding matched filter 

outputs [ ] ( ), ( )y n y t s t n t= − ∆  in Figure 4.6 are then de-multiplexed into K FTN sub-

stream vectors, y1, y2, …, yK , where yi is defined by  

 [ ][ 1], [ 1], , [ ( 1) 1] T
i y i y K i y K N i= − + − − + −y  , for i∈{1, 2, …, K}. (4.30) 

That is, the n-th element of yi is given by yi[n] = y[Kn+i−1]. Consequently, the term yi[n] 

can be written explicitly as a function of xk[n] as 

 [ ]
1

[ ] [ ] 1
i

i mK j i j
j i K m

y n h x n m z Kn i
− ∞

+ −
= − =−∞

= − + + −∑ ∑ , (4.31) 

which is due to the definition of xk[n] in (4.29) and [ ] ( ), ( )z n z t s t n t= − ∆ . We can 

simplify above further by noticing that for any T-orthogonal unit energy modulating pulses 

s(t): 
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1 if 0

( ) ( )
0 if 0mK

m
h s t s t mT dt

m
∞ ∗

−∞

=
= − =  ≠
∫  (4.32) 

by the definition {hk}. Furthermore, also due to (4.32), the noise samples z[Kn+i-1] for 

n∈{0, 1, …, N−1} become independent zero mean Gaussian distributed with the N0/2 

variance. Based on these observations, (4.31) can be simplified as 

 
1

0

[ ] [ ] [ ] [ ]
i

i i mK j i j i
j i K m
j

y n x n h x n m z n
− ∞

+ −
= − =−∞
≠

= + − +∑ ∑ , (4.33) 

where the summation terms can be interpreted as ISI terms to the desired symbol xi[n], and 

the noise samples denoted by zi[n] = z[Kn+i-1] for n ∈{0, 1, …, N−1} are white Gaussian 

distributed with zero mean and N0/2 variance. 

The proposed FTN receiver in Figure 4.6 proceeds in K stages, decoding from the most 

powerful FTN substream vector (yK) in the top branch and gradually working its way 

down to the least powerful FTN substream vector (y1) in the bottom branch. (Without loss 

of generality, the depicted decoding structure assumes that the assigned powers are chosen 

such that PK ≥ PK-1 ≥ … ≥ P1.) This decoding order is chosen to minimize possible error 

propagation through the decoding stages.  
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(a) 

 
(b) 

Figure 4.6   (a) Proposed FTN receiver architecture based on multistage decoding;   
  (b) Structures of decoderi and re-encoderi modules of the proposed FTN receiver 

The FTN receiver first processes yK (in the top branch after the de-multiplexer in 

Figure 4.6), which represents a noisy observation about the data symbol vector xK. Due to 
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1

1
[ ] [ ] [ ] [ ]

K

K K mK j K j K
j m

y n x n h x n m z n
− ∞

+ −
= =−∞

= + − +∑ ∑ . (4.34) 

The ISI term 1

1
[ ]K

mK j K jj m
h x n m− ∞

+ −= =−∞
−∑ ∑  in (4.34) is approximated by a Gaussian 

random variable due to the Central Limit Theorem. Consequently, the receiver treats the 
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ISI term as additional noise and approximates it by a Gaussian random variable with zero 

mean and 
21

1

K
mK j K jj m

h P T− ∞

+ −= =−∞∑ ∑  variance (due to the variance of xk[n] being PkT). 

Therefore, a-posteriori probabilities of K-th data symbols xK[n] can be approximately 

calculated by 

 ( ) ( )
2

2

( [ ] [ ])Pr [ ] [ ] Pr [ ] exp
2

K K
K K K

K

y n x nx n y n c x n
σ

 −
≅ ⋅ − 

 
, (4.35) 

where c is a normalization constant, Pr(xK[n]) is a-priori probability of xK[n], and σK
2 

denotes the variance of noise plus ISI, i.e., 
212

0 1
2 K

K mK j K jj m
N h P Tσ − ∞

+ −= =−∞
= +∑ ∑ . Using 

this Gaussian approximation (4.35), the decoderK in Figure 4.6 computes the estimates 

about the K-th information subsequence ˆ Ka  by taking a hard decision. These are 

subsequently re-encoded to produce estimates about the K-th data symbols ˆ Kx , which will 

be used to recreate the corresponding ISI terms in the later decoding stages.  

In general, consider the i-th stage when [ ]iy n  is processed with regard to the i-th data 

xi[n]. At this time, the symbol estimates ˆ Kx , 1ˆ K−x , …, 1ˆ i+x  are already available from the 

previous stages and the corresponding ISI terms can be estimated by 
1

ˆ [ ]mK j i j
j i K m

h x n m
− ∞

+ −
= − =−∞

−∑ ∑ . These are then subtracted from [ ]iy n  to yield (using (4.33)): 

 
1 1

1

ˆ[ ] [ ] [ ] [ ] [ ]
i

i mK j i j i mK j i j i
j i K m j m

y n h x n m x n h x n m z n
− ∞ − ∞

+ − + −
= − =−∞ = =−∞

− − ≅ + − +∑ ∑ ∑ ∑ , (4.36) 

which becomes equality if the estimates ˆ Kx , 1ˆ K−x , …, 1ˆ i+x  are all without errors. The 

residual ISI term 1

1
[ ]i

mK j i jj m
h x n m− ∞

+ −= =−∞
−∑ ∑  in (4.36) is approximated by a zero mean 

Gaussian random variable with zero mean and 
21

1

i
mK j i jj m

h P T− ∞

+ −= =−∞∑ ∑  variance, again 

due to the Central Limit Theorem. Consequently, the a-posteriori probabilities of the i-th 

data symbols xi[n] can be approximated by 

 ( ) ( )
2

2

( [ ] [ ])Pr [ ] [ ] Pr [ ] exp
2

i i
i i i

i

y n x nx n y n c x n
σ

 −
≅ ⋅ − 

 
, (4.37) 
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where c is a normalization constant, Pr(xi[n]) is a-priori probability of xi[n], and σi

2 denotes 

the variance of noise plus the residual ISI, i.e., 2
iσ  

21
0 1

2 i
mK j i jj m

N h P T− ∞

+ −= =−∞
= +∑ ∑ . 

Using the Gaussian approximation (4.37), the decoderi computes estimates about the i-th 

information subsequence ˆ ia , which are then re-encoded to produce estimates about ˆ ix . 

These steps continue in stages from i = K all the way down to i = 1, and the obtained 1â , 

2â , …, ˆ Ka  are finally multiplexed to form an overall estimate about the entire information 

sequence â .  

Due to the sequential nature of decoding, some amount of buffering is required for a 

practical implementation of the FTN receiver. To buffer the FTN substream vectors y1, y2, 

…, yK, one would need 32×KN bits or 4×KN bytes, if 32 bit single-precision floating-point 

format is used to represent a number. For FTN rate factor K = 5 and packet length N = 

10,000, only 0.2 Megabyte of memory would be needed for buffering of the FTN 

substream vectors. Such memory requirement is insignificant for the state-of-the-art 

mobile handsets.  

 

4.3.3 Power Assignment Rule for Finite Modulation Alphabets 
 

The considered FTN signaling with non-uniform power allocation allows one to choose 

how the available power P can be split and assigned to K FTN sub-streams. The capacity 

analysis in section 4.2 indicates that the power can be distributed non-uniformly without 

negatively affecting the capacity when the optimal Gaussian modulation symbols are used. 

However, in the case of practical finite-alphabet modulation (e.g., PAM, QAM, and PSK), 

choosing appropriate power assignments among FTN sub-streams becomes crucial in 

achieving the performance close to the channel capacity. Furthermore, due to the 

multistage decoding setup of the proposed FTN receiver in subsection 4.3.2, the power 

assignments should take into account of the performance of individual error-correcting-

codes used in each stage.  

In the following, a simple power assignment rule is described that takes into account of 

the finite modulation alphabets and the performance of individual error-correcting-codes. 
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First let the error-correcting-code used in the i-th branch of the FTN transceiver in Figure 

4.5 and Figure 4.6 converges at SNR = ρi in the conventional AWGN channel (e.g., for the 

original Turbo code from [18], 10log10(ρ) ≈ 0.7 dB). Using the discrete-time FTN channel 

model given in (4.33) and the configuration of the proposed FTN multistage decoding in 

Figure 4.6, the i-th branch of the decoder can be modeled as an AWGN channel. In this 

channel, the signal energy is given by PiT and the variance of noise plus residual ISI is 

given by 
212

1

i
z mK j i jj m

h P Tσ − ∞

+ −= =−∞
+∑ ∑ . Due to the Central Limit Theorem, the 

distribution of this ISI can be approximated as a Gaussian distribution as the FTN induced 

ISI memory length increases. 

Therefore, in order for the error-correcting-code to be able to successfully decode the 

information sequence at the i-th branch of the decoder, signal-to-interference-plus-noise 

ratio (SINR) must satisfy 

 1 22

1

i
ii

z mK j i j
j m

PTSINR
h P T

ρ
σ

− ∞

+ −
= =−∞

= ≥
+∑ ∑

, for i = 1, 2, …, K, (4.38) 

which, in addition to the power constraint P = P1+P2+…+PK, lead to K+1 equations with 

K+1 unknowns (i.e., P1, P2, …, PK, and 2
zσ ). Note that 2

zσ  signifies the noise power at 

which the system is expected to converge. Consequently, we obtain for i = 1, 2, …, K, 

 
1 20

1 0

2 1
2

i
j

i i mK i j
j m

P TNP h
T N

ρ
− ∞

+ −
= =−∞

  ≥ +  
  

∑ ∑  such that 
1

K

j
j

P P
=

=∑ . (4.39) 

Then, the minimum required power Pi for all i can be obtained by taking the equality in 

(4.39) and recursively solving (4.39) starting from i=1. The simulation results in the next 

subsection follow the above power assignment rule.  

 

4.3.4 Simulation Results and Discussions 
 

In this subsection, we report the simulated performances of the proposed FTN transceiver. 

In all simulations, the modulating pulses s(t) were chosen to be the bandlimited square-

root raised cosine with the roll-off factor β=0.22, used in, e.g., WCDMA standard (with 
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time-truncation to ±15T about t=0, signaling interval T=(1+β)/(2W), and bandwidth W=1 

kHz). Figure 4.7 depicts the modulating pulse s(t) in time domain and the corresponding 

pulse correlation coefficients ( ) ( )lh s t s t l T K dt
+∞

−∞
= − ⋅∫  for l∈ . 
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       (a)          (b) 

Figure 4.7  Characteristics of the time-truncated square-root raised cosine modulating pulse s(t) with 
the roll-off factor β=0.22; Normalized to have a unit energy;  
(a) plotting in normalized time t/T in seconds where T=(1+β)/(2W) and W = 1 kHz;   
(b) plotting the corresponding pulse correlations hl 

All interleavers were pseudorandom 24  and, unless otherwise specified, the packet 

lengths were N=4×104. With these design choices, the overall spectral efficiencies η in bits 

per second per Hz were calculated as 

 
1

1
i i

K

coding modulation
i

R R
TW

η
=

= ∑  bits/s/Hz, (4.40) 

where 
icodingR  and 

imodulationR  denote the coding rate (in information bits per coded bit) and 

the modulation rate (in coded bits per modulation symbol), respectively, for the i-th 

message subsequence (i = 1, 2, …, K). The signaling rate (in symbols per second) for the i-

th symbol subsequence xi is equal to 1/T (note that T=(1+β)/(2W) for the root-raised cosine 

pulses). Motivated by the optimality of binary FTN signaling [165], binary antipodal 

modulation has been used for all the data symbols (although the designed architecture 

24 Turbo codes using pseudorandom interleavers have been demonstrated to perform close to the Shannon 
capacity of AWGN channel [18]. Using other interleavers such as S-random [36] or algebraic interleavers 
[139] can bring additional small performance gains including lower error-floor and better convergence with 
small packet length.  
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allows higher order modulations). Furthermore, the error correcting encoders at the 

proposed FTN transmitter were chosen to be a version of the rate 1/2 serial Turbo codes25 

proposed by ten Brink [143], which is known to perform very close to the capacity limit in 

AWGN channel. 

In Figure 4.8, the achieved spectral efficiencies of the simulated FTN transceiver 

architecture with varying rates (K = 2 to 6) are plotted in a power-bandwidth plane for the 

AWGN channel. The corresponding bit-error-rate (BER) curves of the FTN systems (each 

after 100 Turbo iterations) are plotted in Figure 4.9. The power assignments between the K 

symbol subsequences x1, x2, …, xK were as listed in Table 4.1, which were found using the 

power assignment rule described in subsection 4.3.3. The considered binary FTN signaling 

with the factor K is comparable to the 2K-PAM Nyquist rate signaling, and for 

comparisons the 2K-PAM input-constrained channel capacities at the same spectral 

efficiencies are also plotted in Figure 4.8. We observe that the proposed FTN system for 

all simulated range of K can approach the corresponding capacity limits of PAM signaling 

with no ISI to within 1 dB at the target BER=10-4.  

 

25 The used Turbo code had a rate 1/2 repetition encoder for the outer code and a rate 1 (memory 4) recursive 
convolutional code, described by code polynomials (Gr,G)=(037,020) in octal values, for the inner code. 
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Figure 4.8  Achieved spectral efficiencies (for BER = 10-4) using the proposed FTN transceiver 

employing K times faster than the Nyquist rate transmissions; Capacities of competing 
Nyquist rate systems with equiprobable PAM transmissions and no ISI are also plotted 
(as square boxes) for reference 
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Figure 4.9  BER simulation results of the proposed FTN transceiver in AWGN channel after 100 

Turbo iterations; Capacities of competing Nyquist rate systems employing equiprobable 
M-PAM transmission are also plotted for reference 
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Table 4.1  Power assignments used for the simulations 

K P1 P2 P3 P4 P5 P6 
2 0.3283 0.6717 - - - - 
3 0.1352 0.2810 0.5838 - - - 
4 0.0599 0.1264 0.2630 0.5507 - - 
5 0.0273 0.0581 0.1219 0.2554 0.5373 - 
6 0.0125 0.0269 0.0568 0.1196 0.2520 0.5322 

 

One of the primary benefits of the considered FTN system is that it can effectively 

implement very high rate systems with relatively small modulation formats. For example, 

using only binary antipodal symbols with K=6 FTN signaling, we can implement a system 

that is equivalent to 64-PAM Nyquist rate system. Furthermore, the proposed low-

complexity FTN transceiver design allows practical implementation of these high rate 

FTN systems with only linear computational complexity at the receiver. This directly 

contrasts with the earlier FTN coding designs where the implementation complexity of the 

equalizer grows exponentially with the length of the ISI and hence severely hinders the 

design.  

On the other hand, one potential drawback of the presented design is a non-zero error 

propagation in the multistage decoding. Amount of error propagation depends on number 

of stages K and performance of utilized error-correcting-codes. Figure 4.10 plots the 

expected converging Eb/N0 of FTN multistage decoder, which is calculated by solving for 
2
zσ , the noise power at which the system is expected to converge, in (4.38). The parameter 

ρ in Figure 4.10 denotes converging Eb/N0 of utilized Turbo code in AWGN channel (e.g., 

ρ = 0.7 dB for Berrou’s rate 1/2 parallel Turbo code with N = 65,536 bits from [18] and ρ 

= 0.3 dB for ten Brink’s rate 1/2 serial Turbo code with N = 106 bits from [142]). We 

considered BPSK modulation formats and square-root raised cosine (RRC) pulse with roll-

off factor β = 0.22. We can observe from Figure 4.10 that the converging Eb/N0 diverges 

from the capacity with increasing number of stages (or FTN rate factor) K, which is a 

direct consequence of non-zero error propagation in the multistage decoder.  
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Figure 4.10  Expected converging Eb/N0 of the FTN multistage decoder with varying number of stages 
(or FTN rate factor) K; The parameter ρ represents converging Eb/N0 of used Turbo code 
in conventional AWGN channel.  

The effect of error propagation can be minimized by using a stronger error-correcting-

code. For instance, when ten Brink’s serial Turbo code [142] with ρ = 0.3 dB and N = 106 

bits can be used, the FTN multistage decoder can perform within fraction of decibals away 

from the capacity for entire range of spectral efficiencies considered (see square markers 

in Figure 4.10). Alternatively, one can reduce the number of stages K directly, hence the 

amount of error propagation, by utilizing higher level modulation format (e.g., 4-PAM or 

8-PAM) for each stage at the same FTN rate. For example, binary FTN with K = 10 is 

equivalent to FTN with 4-PAM with K = 5, in terms of the information rates.  

In addition, we also considered peak-to-average power ratio (PAPR) of FTN signals in 

time domain, which is defined as [19]: 
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∫
. (4.41) 

Large PAPR is known to saturate power amplifiers at the transmitter and may cause 

undesired nonlinear distortion in the transmitted signal [113]. Figure 4.11 shows the 

numerically computed PAPR estimates of FTN signals (obtained by averaging  at least 200 

instances of FTN signal realizations) that are using either uniform power assignments or 

the non-uniform power assignments as listed in Table 4.1. For comparison purposes, 

PAPR estimates of Nyquist rate signals using 2K-PAM input constellations are also plotted 

as a reference. All signals were modulated by square-root raised cosine pulse with roll-off 

factor 0.22.  
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Figure 4.11  Peak-to-average power ratio of FTN signals with uniform or non-uniform power 
assignments, along with Nyquist rate signal using 2K-PAM modulation formats; Square-
root raised cosine pulse with roll-off factor 0.22 is used. 

We first observe from Figure 4.11 that the non-uniform power assignments as 

compared to uniform power can reduce PAPR of FTN signals for all ranges of FTN rate 

factor K considered. This implies that reduced PAPR may be an additional benefit to using 
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non-uniform power assignments in FTN signaling. On the other hand, for K ≥ 3, FTN 

signals are shown to have higher PAPR than that of Nyquist rate signals using 2K-PAM 

input constellations. Consequently, high rate FTN signaling may suffer from increased 

PAPR, and further research is needed to address this issue. (To the best of our knowledge, 

PAPR analysis of FTN signals has not been reported in published literature.) Interestingly, 

at K = 2, PAPR of FTN signals are observed to be smaller than that of 4-PAM Nyquist rate 

signals. This observation may lead to yet another potential research topic in FTN signaling.  

Finally, we note that a method of pipelining can be used to keep the decoding latency 

of the multistage decoding to latency associated with only one stage. Pipelining is 

achieved by feeding a new packet into the first stage while previous packets in each stage 

are fed to the next − leading to decoding maximum of K packets in parallel over K stages. 

 

4.4 Chapter Summary 
 

The main objective of this chapter has been a comprehensive evaluation of non-precoded 

FTN signaling from the capacity and coding perspectives. The review of FTN capacity 

analysis results in sections 4.1 revealed that the i.i.d. (non-precoded) FTN signaling can 

asymptotically achieve the generalized Shannon capacity of power spectral density of the 

transmission spectrum (i.e., CPSD from Theorem 2.2) and has an ability to recover 

information residing in all frequency ranges. Furthermore, binary FTN signaling was 

shown to achieve the capacity of the high-order (M-ary) Nyquist rate transmission using 

signal shaping. Based on these observations, we argued that the i.i.d. FTN signaling can be 

seen as an important competing technology to non-binary (M-ary) Nyquist rate 

communication and could find applications in channels with high SNR, which are 

frequencly encountered in long-haul optical fiber links, femto cells in wireless systems, 

DSL channel, etc.  

Subsequently in section 4.2, we relaxed the independent and identically distributed 

(i.i.d.) condition on the FTN symbols. We have identified a class of independent but non-

identically distributed FTN signaling that offers competitive capacity potential when 

compared to capacity of Nyquist rate systems. Using this FTN signaling approach, a low-
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complexity FTN-based coding system was designed in section 4.3 which could operate 

near the FTN capacity and at high spectral efficiencies. The main features of the design 

include non-uniform power allocation over FTN modulation symbols and multistage 

decoding. This design effectively removes the need for large complexity ISI equalizer and 

hence significantly reduces the implementation complexity. The obtained simulation 

results indicated that the low complexity design allows practical implementation of high 

rate and spectrally efficient FTN systems.  
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Chapter 5  
 
Benefits of Precoding in FTN Signaling 
 

 

Precoding and equalization have been previously considered as two ways to deal with the 

intersymbol interference that is inherently introduced by the FTN transmission. Initially, 

the prior FTN precoding designs primarily aimed to increase the minimum distance of the 

FTN signaling [96], [158], [126], [101], while the recursive precoding design in [125] 

improved the convergence of serially concatenated FTN coding systems. 

In this chapter, we focus on developing an information-theoretically optimal precoding 

strategy that maximizes the mutual information of the FTN channel. In section 5.1, we first 

consider convolutional precoding for the FTN signaling and derive the corresponding 

closed-form FTN capacity expression. The derived capacity generalizes the capacity 

analysis in Chapter 4 and further introduces the concept of the (power) water-filling to the 

FTN signaling through the utilization of convolutional precoding.  

In section 5.2, we derive the universally optimal FTN precoding structure and show 

that it can substantially increase the capacity of FTN signaling. This capacity gain would 

not be possible without utilizing an appropriate precoder at the transmitter. However, this 

capacity increase comes at a price of either a bandwidth expansion or numerical instability 

in computing the precoding matrix. These issues are also discussed in section 5.2.  

Finally, section 5.3 describes a potential use of the precoded FTN signaling to achieve 

spread-spectrum communication. We propose an FTN-based spread spectrum architecture 

and present bit-error-rate (BER) simulation results that indicate feasibility of the proposed 

FTN-based spread spectrum technique.  
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5.1 Convolutional Precoding for FTN Signaling 
 

Convolutional precoding has been considered in many digital communication systems, 

including partial response signaling and trellis coded modulation, due to its practicality in 

implementation and the tractable computation of power spectral density that results from it 

[52], [72]. Convolutional precoding has been also considered in the FTN literature (see 

e.g., [158], [96], [125], [126]) to deal with the FTN-induced intersymbol interference. 

However, such precoding causes the FTN modulation symbols become non-i.i.d. and, to 

the best of our knowledge, no capacity analysis of precoded FTN transmission has been 

presented so far.  

In this section, we consider convolutional precoding for FTN signaling and analyze the 

corresponding channel capacity (technically, the information rate). It will be shown that 

convolutional precoding can increase the FTN channel capacity in frequency-selective 

channels by enabling water-filling over the channel frequency spectrum. In addition, 

convolutional precoding allows reshaping the transmission spectrum of FTN and 

achieving the ideal near-flat transmission spectrum while using practical time-limited 

modulating pulses.  

 

5.1.1 Initial Considerations 
 
First consider a zero-mean i.i.d. information sequence a[0], a[1], …, a[KN−1], where N 

denotes the packet length and K (>1) is the factor by which the Nyquist rate is exceeded. 

Following the Definition 3.2, the convolutionally precoded FTN modulation symbols are 

given by [ ] [ ]kk
x n a n kξ∞

=−∞
= −∑  for n = 0, 1, 2, …, KN−1, for some real precoding 

coefficients {ξk} that are assumed to be absolutely summable and it is assumed that a[n]=0 

for n < 0 and n > KN−1. For mathematical tractability, the real finite precoding coefficients 

{ξk} are further assumed to be equal to zero all |k| > KN−1 (we will eventually let N tends 

to infinity in our analysis to allow very long precoding coefficients). Such precoding can 

be practically achieved by a matrix multiplication or using a filter with a discrete-time 

finite impulse response (FIR). Note that we only transmit KN data symbols, i.e., x[n] for 
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0<n<KN−1, due to the limited number of symbols that can be transmitted over channels 

per given time window, although the convolutional precoding [ ] [ ]kk
x n a n kξ∞

=−∞
= −∑  can 

theoretically output non-zero data symbols for n<0 and n>KN−1.  

Such convolutional precoding can also be conveniently expressed in a matrix equation. 

Denote the information symbol vector by a = [a[0], a[1], …, a[KN-1]]T and the 

convolutionally precoded FTN modulation symbol vector by x = [x[0], x[1], …, x[KN-1]]T. 

Then, x can be expressed as the following the matrix equation: 

 L=x a , (5.1) 

where L is a Toeplitz precoding matrix defined by 

 

0 1 2 1

1 0 1 2

2 1 0 3
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− − − +

− − +

− +

− − −

 
 
 
 =
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 
  







    



. (5.2) 

Such precoding of FTN modulation symbols leads to a convolutionally precoded FTN 

signal x(t) with a well-defined transmission power spectral density ( )x fS  (as derived in 

Theorem 3.1): 

 ( ) ( ) ( )
2 2

ˆa
x f f s f

t ξ
σ

=
∆

S S , (5.3) 

where ŝ(f) is the Fourier transform of the modulating pulse s(t), Δt = T/K is the FTN 

signaling interval, σa
2 = E{|a[n]|2} is the variance (or PSD) of the i.i.d. information 

sequence a[n], and ( )fξS  is the spectrum of the precoding coefficients, defined by 

 2( ) j f k t
k

k
f e π

ξ ξ
∞

+ ∆

=−∞

≡ ∑S . (5.4) 

The channel capacities (or the information rates) of the convolutionally precoded FTN 

signaling in AWGN channel and LTI channel are derived in subsection 5.1.2 and 5.1.3, 

respectively. Recalling from Definition 2.8, the information rate gives the maximal 

achievable rate when the modulation symbol vector x has some fixed structure (in our case, 

it is the convolutionally precoded x), and is defined by 1lim( ) ( ; )
N

C NT I−

→∞
= x y  in bits per 
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second where x is the convolutionally precoded FTN modulation symbol vector and y 

denotes the corresponding FTN channel output.  

 

5.1.2 Convolutional FTN Precoding in AWGN Channels 
 

We first define some relevant terms. The precoding spectrum ( )fξS  is defined as in (5.4)

with a set of absolutely summable precoding coefficients {ξk}. In addition, the folded pulse 

spectrum ŝfolded(f) from Definition 3.1 is reproduced below for convenience: 

 2ˆ ˆ( ) ( ) , ( 1 2 ,1 2 )folded
k

s f s f k t f t t
∞

=−∞

≡ − ∆ ∈ − ∆ ∆∑ , (5.5) 

where ŝ(f) is the Fourier transform of the modulating pulse s(t). 

The information rate of the convolutionally precoded FTN signaling in AWGN 

channel is given in the following theorem. 

Theorem 5.1 (Information rate of convolutionally precoded FTN signaling in AWGN 

channel): Consider the convolutionally precoded FTN modulation symbols x = La with 

precoding spectrum ( )fξS  defined in (5.4), where a is the i.i.d. information symbol vector 

with a variance 2
aσ  and L is a Toeplitz precoding matrix defined in (5.2). Assume that the 

folded pulse spectrum ŝfolded(f) is finite for all ( 1 (2 ) ,1 (2 ))f t t∈ − ∆ ∆ . Then the 

information rate of the convolutionally precoded FTN signaling in AWGN channel y = Hx 

+ z is given by 

 
1/(2 ) 2 2

- 2
01/(2 )

1 ˆlog 1 ( ) ( )
2

t
FTN a
conv precoded folded

t

C f s f df
N t ξ

σ∆

− ∆

 
≤ + ∆ 

∫ S  bits per second, (5.6) 

with equality if the modulation symbols {x[n]} are jointly Gaussian distributed. 

Proof: When the FTN modulation symbols x are convolutionally precoded, the covariance 

matrix of the FTN symbol vector x can be expressed as 2 †
x aK LLσ= , where (∙)† denotes 

conjugate transpose (or Hermitian) of a matrix.  

The mutual information between the precoded FTN modulation symbols x and the 

noisy channel observations y = Hx+z is given by: 
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 ( ) ( ) ( );I h h= −x y y y x  (5.7) 

 ( ) ( )h h= −y z , (5.8) 

where h(∙) denotes the differential entropy (Definition 2.3) and (5.8) follows from Hx 

being deterministic given x and the translation invariance of the differential entropy 

(Lemma 2.5). The covariance matrix of y is given by 

 ( )0 2 ,†
y xK HK H N H= + ⋅  (5.9) 

due to 0{ } ( 2)†E N H= ⋅zz  from (3.23), where Kx is the covariance matrix of x and (∙)† 

denotes conjugate transpose (Hermitian) operation. 

By Lemma 2.4, the differential entropy of channel output, h(y), is maximized by 

having y circularly symmetric complex Gaussian distributed with covariance Ky: 

 ( ) ( ) ( )( )2log detKN
yh e Kπ≤y  (5.10) 

 ( ) ( )( )( )2 0log det 2 ,KN †
xe HK H N Hπ= + ⋅  (5.11) 

with equality if y is a circularly symmetric complex Gaussian. Furthermore, the 

differential entropy of the Gaussian noise, h(z), is given by (using Lemma 2.3) 

 ( ) ( ) ( )( )( )2 0log det 2KNh e N Hπ= ⋅z . (5.12) 

Therefore, the mutual information (5.8) can be upper- bounded as follows: 

 ( )
( )( )

( )( )
0

2
0

det 2
; log

det 2

†
xHK H N H

I
N H

 + ⋅
 ≤
 ⋅ 

x y , (5.13) 

with equality if and only if y is circularly symmetric complex Gaussian, which is obtained 

when x is also circularly symmetric complex Gaussian.  

Since H is Hermitian and invertible as proved in Proposition 3.1, (5.13) can be further 

simplified as follows: 

 ( ) ( )( )1
2 0

0

1; log det det 2
2

†
xI H HK H N H

N
−  

≤ + ⋅     
x y  (5.14) 

 1
2

0

1log det
2

†
x KNH HK H I

N
−  

= +     
 (5.15) 
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 2
0

1log det
2 x KNK H I

N
  

= +     
 (5.16) 

 
2

2
0

log det
2

†a
KNLL H I

N
σ  

= +     
, (5.17) 

where (5.14) is due to det(A−1) = det(A)−1, (5.15) is by det(A)det(B) = det(AB), (5.16) 

follows from the conjugate symmetry of H (i.e., H = H†), and (5.17) is due to the 

covariance matrix of the convolutionally precoded x being equal to 2 †
x aK LLσ= . Denoting 

λj{A} by the j-th eigenvalue of the matrix A, the information rate of the convolutionally 

precoded FTN then becomes: 

 
2

1
- 2

0

1lim( ) ( ; ) lim log det
2

FTN a
conv precoded KNN N

C NT I LL H I
NT N

σ−

→∞ →∞

  
≡ ≤ +     

x y †  (5.18) 

 
2

2
0

1lim log det
2

†a
KNN

L HL I
NT N

σ
→∞

  
= +     

, (5.19) 

 { }
21

2
0 0

1lim log 1
2

KN
†a

jN j
L HL

NT N
σ λ

−

→∞
=

 
= + 

 
∑ , (5.20) 

where (5.19) is due to the identity: logdet(AB+I) = logdet(BA+I), and (5.20) is due to the 

identities: det( ) { }jj
A Aλ=∏  and { }j I Aλ +  = 1 { }j Aλ+  for any Hermitian matrix A (see 

section 2.4). 

In order to further evaluate the above, we invoke Szegö’s theorem on the asymptotic 

eigenvalues of the product of Toeplitz matrices L†, H, and L (using the generalized Szegö’s 

theorem for product of Toeplitz matrices in Theorem D.2 in Appendix D). Consequently, 

(5.20) converges in the limit N → ∞ to 

 ( )22 1
- 2 0

1 log 1 ( 2) ( ) ( )
2

FTN
conv precoded aC N h d

t
π

π
σ ξ λ λ λ

π
−

−
≤ +

∆ ∫ , (5.21) 

where 

 ( ) jk
k

k
e λξ λ ξ

∞

=−∞

≡ ∑  and ( ) jk
k

k
h h e λλ

∞

=−∞

≡ ∑ . (5.22) 

By a change of variable (substituting λ = 2πf∆t), (5.21) can be rewritten as 
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 ( )1/(2 ) 22 1
- 2 01/(2 )

log 1 ( 2) (2 ) (2 )
tFTN

conv precoded at
C N f t h f t dfσ ξ π π

∆ −

− ∆
≤ + ∆ ∆∫  (5.23) 

 ( )1/(2 ) 22 1
2 01/(2 )

log 1 ( 2) ( ) (2 )
t

at
N f h f t dfξσ π

∆ −

− ∆
= + ∆∫ S  (5.24) 

 ( )1/ 2 22 1 1
2 01/ 2

ˆlog 1 ( 2) ( ) ( ) ( )
t

a foldedt
N f t s f dfξσ

∆ − −

− ∆
= + ∆ −∫ S , (5.25) 

where (5.24) is due to ξ(2πf∆t) = 2jk f t
kk
e πξ∞ ∆

=−∞∑ , which is equal to the precoding 

spectrum ( )fξS  as defined in (5.4), and (5.25) is due to the relationship 

( )ˆ ( ) 2foldeds f t h f tπ= ∆ ⋅ − ∆  as proved in Lemma 3.3. Finally, applying a change of 

variable (f’ = −f) to (5.25), followed by ( )fξ
∗S = ( )fξ −S  for real precoding coefficients 

{ξk}, yields the desired result. This completes the proof of Theorem 5.1.  ■ 

The information rate expression in (5.6) is an integral of a non-negative function over a 

frequency range f ∈ (−1/(2Δt), 1/(2Δt)). Consequently, as the FTN signaling rate 1/Δt 

increases, the wider the integral range becomes. If ŝfolded(f) has nonzero frequency 

component beyond frequency range f ∈ (−1/(2T), 1/(2T)), FTN signaling can lead to a 

higher information rate26. (This is similar to the non-precoded i.i.d. FTN signaling case in 

section 4.1.) On the other hand, when compared to the capacity of the i.i.d. FTN signaling, 

i.e., ( )( )1/(2 )

. . . 2 01/(2 )
ˆlog 1 2 ( )

tFTN
i i d foldedt

C P N s f df
∆

− ∆
= + ⋅∫  in (4.2), convolutional precoding in 

FTN newly introduces a frequency-dependent term called the precoding spectrum 
2( ) j fk t

kk
f e π

ξ ξ ∆=∑S  into the information rate expression (5.6). This implies that the 

information rate of FTN can in general be increased by carefully choosing a convolutional 

precoder with appropriate precoding coefficients {ξk}.  

In order to gain further insights into Theorem 5.1, an upper-bound on the information 

rate of the convolutionally precoded FTN signaling is established in the following. 

26 We note that the folded pulse spectrum ŝfolded(f) has nonzero frequency components beyond the frequency 
range f ∈ (−1/(2T), 1/(2T)) for any practical time-limited modulating pulse shape s(t). 
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Theorem 5.2 (Upper-bound on the information rate of FTN): Let 

( ) ( ) 22 1 ˆ( ) ( )x af t f s fξσ −= ∆S S  be the power spectral density (PSD) of the 

convolutionally precoded FTN signal x(t) as derived in Theorem 3.1. Then, the 

information rate of the convolutionally precoded FTN signaling, -
FTN
conv precodedC , in AWGN 

channel is upper-bounded by 

 ( )1
- 2 0log 1 ( 2) ( )FTN

conv precoded xC N f df
∞ −

−∞
≤ +∫ S , (5.26) 

which is the generalized Shannon capacity formula CPSD in Theorem 2.2 for complex 

AWGN channels. 

Proof: Rewrite the right hand side of (5.26) as follows: 

( ) ( ) ( )
2 21

2 0 2
0

1 ˆlog 1 ( 2) ( ) log 1
2

a
xN f df f s f df

N t ξ
σ∞ ∞−

−∞ −∞

 
+ = + ∆ 

∫ ∫S S  (5.27) 

 ( ) ( )
1 (2 ) 2 2

2
01 (2 )

1 ˆlog 1
2

k t t
a

k k t t

f s f df
N t ξ

σ− ∆ + ∆∞

=−∞ − ∆ − ∆

 
= + ∆ 
∑ ∫ S  (5.28) 

 
2 21 (2 ) 2

2
01 (2 )

1 ˆlog 1
2

t
a

k t

k kf s f df
N t t tξ

σ∆∞

=−∞ − ∆

    = + − −     ∆ ∆ ∆    
∑ ∫ S  (5.29) 

 ( )
221 (2 ) 2

21 (2 )
0

1 ˆlog 1
2

t a
t

k

kf s f df
N t tξ

σ∞∆

− ∆
=−∞

  = + −   ∆ ∆  
∑∫ S  (5.30) 

 ( )
221 (2 ) 2

21 (2 )
0

1 ˆlog 1
2

t a
t

k

kf s f df
N t tξ

σ ∞∆

− ∆
=−∞

  ≥ + −   ∆ ∆  
∑∫ S  (5.31) 

 ( )
21 (2 ) 2

21 (2 )
0

1 ˆlog 1 ( )
2

t a
foldedt

f s f df
N t ξ

σ∆

− ∆

 
= + ∆ 
∫ S , (5.32) 

where (5.27) is due to ( )x fS ( ) ( ) 22 1 ˆ( )a t f s fξσ −= ∆ S , (5.28) is due to the linearity of 

integral, (5.29) is due to the substitution of variable (f′ = f − k/Δt), (5.30) is due to the 

periodicity of the precoding spectrum ( )fξS  with the period 1/∆t, (5.31) is by using the 

inequality ( ) ( )log 1 log 1k kk k
x x∞ ∞

=−∞ =−∞
+ ≥ +∑ ∑   for xk ≥ 0 for all k, and (5.32) is due to 
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the definition of ŝfolded(f). Finally, comparing with Theorem 5.1, we obtain the desired 

result. This completes the proof of Theorem 5.2. ■ 

Theorem 5.2 states that, regardless of the choice of the convolutional precoding 

coefficients, the information rate of the convolutionally precoded FTN system is limited 

by the generalized Shannon capacity formula. This further implies that there exist Nyquist 

rate systems with appropriate waterfilling that can also achieve the same capacity. 

Consequently, the FTN capacity benefits due to convolutional precoding can be mainly 

attributed to inducing a modified transmission PSD ( ) ( ) 22 1 ˆ( ) ( )x af t f s fξσ −= ∆S S . 

These three observations give a global perspective on the merits of using convolutional 

precoding for FTN transmission.  

Before closing the subsection, as an auxiliary result we present and prove the capacity 

of non-precoded FTN signaling, i.e., when the modulating symbols {x[n]} are all i.i.d., 

originally stated as Theorem 4.1.  

Corollary 5.1 (non-precoded i.i.d. FTN capacity [127]): Let the modulation symbols 

{x[n]} be chosen i.i.d. Then the capacity of the i.i.d. FTN signaling in AWGN channel 

becomes  

 ( )1/(2 )

. . . 2 01/(2 )
ˆlog 1 ( 2) ( )

tFTN
i i d foldedt

C P N s f df
∆

− ∆
= + ⋅∫ . (5.33) 

Proof: The lack of precoding leads to the precoding matrix L = IKN, the precoding 

spectrum ( ) 1fξ =S , and the FTN modulation symbol vector x = a. Also, the covariance 

matrix of x becomes 2 2†
x a a KNK LL Iσ σ= = . Then, by the transmission power constraint 

( )1( ) xNT tr K H P− ≤  from Proposition 3.3, we get the variance of the information 

sequence σa
2 = E{|x[n]|2} = P∆t. Substituting these to Theorem 5.1 and with jointly 

Gaussian distributed x, we get the desired result. This completes the proof.  ■ 
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5.1.3 Convolutional FTN Precoding in LTI Channels 
 

The purpose of this subsection is to extend the information rate analysis of the 

convolutionally precoded FTN in AWGN channel in subsection 5.1.2 to linear time-

invariant (LTI) channel as shown in Figure 5.1.  

 

 

Figure 5.1  Block diagram of the considered convolutionally precoded FTN signaling in LTI channel 

Recall that the corresponding discrete-time channel model, developed in section 3.1, is 

 αΗ= +y x z , (5.34) 

where 

 
0

( ) ( ) ( )
t

s t c t g tα
=

≡ ∗ ∗ , (5.35) 
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 (5.36) 

 1 ( ) ( ) ( )k t k t
h s t c t g tα −

= ∆
≡ ∗ ∗ . (5.37) 

Note that Η  is a Toeplitz matrix (not necessarily Hermitian), which represents collective 

ISI due to the FTN signaling and LTI channel response c(t). Furthermore, recall the 

definitions of the precoding spectrum 2( ) j f n t
nn

f e π
ξ ξ + ∆≡∑S  from (5.4) and the folded-

pulse spectrum 2ˆ ˆ( ) ( )folded k
s f s f k t≡ − ∆∑ from (5.5), where {ξk} is a set of 

convolutional precoding coefficients and ŝ(f) denotes the Fourier transform of the 

AWGN z(t) 
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modulating pulse s(t). In addition, define folded-receiver spectrum ˆ ( )foldedg f  and folded-

pulse-channel-receiver spectrum ˆ ( )foldedh f in a similar fashion as: 

 2 1 1ˆ ˆ( ) ( )  for ,
2 2folded

k
g f g f k t f

t t

∞

=−∞

 ≡ − ∆ ∈ − ∆ ∆ 
∑ , (5.38) 

 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) for ,
2 2folded

k
h f s f k t c f k t g f k t f

t t

∞

=−∞

 ≡ − ∆ − ∆ − ∆ ∈ − ∆ ∆ 
∑ , (5.39) 

where ĝ(f) and ĉ(f) denote the Fourier transforms of the receiver matched filter response 

g(t) and LTI channel impulse response c(t), respectively27.  

With the above definitions, we derive the following theorem about information rate of 

the convolutionally precoded FTN on a LTI channel: 

Theorem 5.3 (Information rate of convolutionally precoded FTN in LTI channel):  

Consider the convolutionally precoded FTN modulation symbols x = La with precoding 

spectrum ( )fξS  defined in (5.4), where a is the i.i.d. information symbol vector with a 

variance 2
aσ  and L is a Toeplitz precoding matrix defined in (5.2). If LTI channel spectrum 

and the folded-pulse-channel-receiver spectrum are finite, i.e., |ĉ(f)| < ∞ and ˆ ( )foldedh f < 

∞ for all real frequencies f, and if the receiver matched filter response satisfies |ĝfolded(f)| > 

0 for f ∈(−1/(2∆t), 1/(2∆t)), then the information rate of the convolutionally precoded 

FTN signaling in LTI channel is upperbounded by 

 ( )
2

1/(2 ) 2 2

- 2
01/(2 )

ˆ ( )1log 1
ˆ2 ( )

t
foldedFTN a

conv precoded
foldedt

h f
C f df

N t g fξ
σ∆

− ∆

 
 ≤ + ∆ 
 

∫ S  bits per second, (5.40) 

with equality if the convolutionally precoded modulation vector x is jointly Gaussian 

distributed. 

27 It is interesting to note that note that ˆ ( )foldedg f  is absolutely integrable if g(t) is a finite energy signal, 

since 
1 (2 )

1 (2 )
ˆ ( )

t

foldedt
g f df

∆

− ∆∫
1 (2 ) 2

1 (2 )
ˆ ( )

t k t

t k t
k

g f df
∞ ∆ − ∆

− ∆ − ∆
=−∞

= ∑ ∫
2ˆ ( )g f df

∞

−∞
= ∫ < ∞. Similarily, ˆ ( )foldedh f is also 

absolutely integrable if s(t) and g(t) are both finite energy signals and |ĉ(f)| < ∞ (which is satisfied for most 
practical channels of interest). This can be proved by the similar procedure as above and by using the 
Hölder’s inequality. 
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Proof: Please see subsection 5.1.5 for the proof of this theorem.  ■ 

Theorem 5.3 successfully extends the FTN information rate in AWGN channel in 

Theorem 5.1 to LTI channels. Comparing to the AWGN channel where the information 

rate depends on the folded-pulse spectrum ŝfolded(f), the information rate expression (5.40) 

in LTI channel now depends on the ratio 
2ˆ ˆ( ) ( )folded foldedh f g f , which takes into account 

of the modulating pulse response s(t), channel impulse response c(t), and the receiver 

matched filter response g(t).  

We now find the structure of the optimal convolutional precoder that maximizes the 

information rate (5.40) in an LTI channel. The optimal precoding strategy is shown to have 

the ‘water-filling’ or ‘water-pouring’ [31] interpretation, which is known to be the 

capacity-achieving strategy in traditional ISI channels, correlated noise channels, 

correlated MIMO channels, etc., but is shown here for the first time to be capacity-

achieving for the convolutionally precoded FTN channels. 

Theorem 5.4 (Power water-filling in convolutional precoded FTN signaling): The 

information rate of the convolutionally precoded FTN signaling in LTI channel, subject to 

the average transmission power constraint 

 ( )x f df P
∞

−∞
≤∫ S , (5.41) 

is maximized by the water-filling strategy: 

 

2
1/(2 )

- 2
( ) 01/(2 )

ˆ ( )2sup log max ,1
ˆ ˆ( ) ( )

t
foldedFTN

conv precoded
f folded foldedt

h f
C df

N s f g fξ

µ
∆

− ∆

  
  =       

∫
S

, (5.42) 

where the water-filling parameter μ is chosen such that  

 
1/(2 )

0
2

1/(2 )

ˆ ˆ( ) ( )
max ,0

2 ˆ ( )

t
folded folded

t folded

s f g fN df P
h f

µ
∆

− ∆

 
 − =  
 

∫ . (5.43) 
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Figure 5.2  Illustrating power water-filling in frequency domain for the convolutionally precoded FTN 
in LTI channel under the average transmission power constraint 

Proof Theorem 5.4: Recall that for convolutionally precoded FTN signal x(t), its power 

spectral density has the form ( ) ( ) 21 2 ˆ( ) ( )x af t f s fξσ−= ∆S S . First write the power 

constraint (5.41) as: 

 ( ) 2 21 2 ˆ( ) ( ) ( )x af df t f s f dfξσ
∞ ∞ −

−∞ −∞
= ∆∫ ∫S S  (5.44) 

 ( )
1 (2 ) 2 21 2

1 (2 )
ˆ( ) ( )

t k t

at k t
k

t f s f dfξσ
∞ ∆ − ∆ −

− ∆ − ∆
=−∞

= ∆∑ ∫ S  (5.45) 

 ( )
1 (2 ) 2 21 2

1 (2 )
ˆ( ) ( )

t

at
k

t f k t s f k t dfξσ
∞ ∆ −

− ∆
=−∞

= ∆ − ∆ − ∆∑ ∫ S  (5.46) 

 ( )
1 2 2 21 2

1 2
ˆ( ) ( )

t

at
k

t f s f k t dfξσ
∞ ∆ −

− ∆
=−∞

= ∆ − ∆∑ ∫ S  (5.47) 

 ( )
1 2 2 21 2

1 2
ˆ( ) ( )

t

at
k

t f s f k t dfξσ
∞∆ −

− ∆
=−∞

= ∆ − ∆∑∫ S  (5.48) 

 ( )
1 2 21 2

1 2
ˆ( ) ( )

t

a foldedt
t f s f dfξσ

∆ −

− ∆
= ∆∫ S  (5.49) 

 P≤ ,  (5.50) 

where (5.45) is due to the linearity of integral, (5.46) is due to a change of variable, (5.47) 

is due to the periodicity of the precoding spectrum ( )fξS  with a period 1/∆t, (5.48) is due 

2
2

ˆ( ) ( )a
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to Fubini’s theorem, (5.49) is by the definition of 2ˆ ˆ( ) ( )folded k

s f s f k t≡ − ∆∑ , and (5.50) 

is due to the transmission power constraint (5.41).  

We now find the optimal precoding spectrum 2( ) j f n t
nn

f e π
ξ ξ + ∆≡∑S  that maximizes 

the information rate of FTN in (5.40), subject to the power constraint (5.49) and (5.50). 

We first form a Lagrangian function: 

 
( ) ( )

( )

2
1/(2 ) 22 2

2
01/(2 )

1/ 22 2

1/ 2

ˆ ( )1( ) log 1
ˆ2 ( )

ˆ ( ) ,

t
foldeda

foldedt

t
a

folded
t

h f
f f df

N t g f

f s f df P
t

ξ ξ

ξ

σ

σλ

∆

− ∆

∆

− ∆

 
 ≡ + ∆ 
 

 
− − ∆ 

∫

∫

L S S

S

 (5.51) 

where λ, the Lagrange multiplier, is a constant (not a function of f) with an integral 

constraint. Using the Euler-Lagrange equation of the calculus of variations, 

 
( )

( )

( ) ( )

212 2
0

2 2212
0

ˆ ˆ2 ( ) ( )1 ˆ0 ( )
ln 2 ˆ ˆ1 2 ( ) ( )

a folded folded a
folded

a folded folded

t N h f g f
s f

tf t N f h f g fξ ξ

σ σλ
σ

−

−

∆ ⋅∂
= = −

∆∂ + ∆ ⋅

L
S S

 

  (5.52) 

which, after some simplifications and by setting μ = 1/(λ∙ln2), becomes 

 ( ) 21 2 0
2

ˆ ˆ( ) ( )
ˆ( ) ( ) max ,0

2 ˆ ( )

folded folded
a folded

folded

s f g fNt f s f
h f

ξσ µ−

 
 ∆ = −  
 

S , (5.53) 

where μ is chosen such that the power constraint (5.49) and (5.50) is satisfied. Finally, the 

desired expression is obtained from substituting (5.53) into (5.40). This completes the 

proof of Theorem 5.4.  ■ 

Figure 5.2 illustrates the power allocation strategy (5.43) by the water-filling analogy. 

Note that, once the water-filling parameter μ is determined, the optimal convolutional 

precoding coefficients {ξk} can then be determined from (5.53) and by noting that {ξk} is 

essentially the set of Fourier series coefficients of ( )fξS  satisfying 

 2( ) j f k t
k

k
f e π

ξ ξ
∞

+ ∆

=−∞

= ∑S  and (5.54) 
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1 (2 ) 2

1 (2 )
( )

t j f k t
k t

t f e dfπ
ξξ

∆ − ∆

− ∆
= ∆ ∫ S . (5.55) 

We present below two important special cases when the receiver matched filter with 

the impulse response g(t) is either matched to the modulating pulse response only, i.e., g(t) 

= ( )s t∗ − , or matched to the combined response of LTI channel and the modulating pulse, 

i.e., g(t) = ( ( ) ( ))
t t

s t c t ∗

=−
∗ . Note that the latter is the optimal matched filtering in the sense 

of maximizing the received signal-to-noise ratio (SNR), but the former is also being used 

in practice where adaptive adjustment of the receiver to varying c(t) is not feasible, such as 

in rapidly changing channels, or where the receiver is “hardwired” and cannot be adjusted. 

First define two special cases of the folded-pulse-channel-receiver spectrum ˆ ( )foldedh f : 

 ( ) 21ˆ ˆ ˆ( ) ( ) ( )folded
k

h f s f k t c f k t
∞

=−∞

≡ − ∆ − ∆∑  and (5.56) 

 ( ) 2 22ˆ ˆ ˆ( ) ( ) ( )folded
k

h f s f k t c f k t
∞

=−∞

≡ − ∆ − ∆∑ . (5.57) 

where (5.56) results when g(t) = ( )s t∗ −  and (5.57) results when g(t) = ( ( ) ( ))
t t

s t c t ∗

=−
∗ . The 

following corollary deals with the case with g(t) = ( )s t∗ − .  

Corollary 5.2 (Information rate of convolutionally precoded FTN in LTI channel when 

receiver matched filter is matched only to the transmit modulating pulse): Let the 

receiver filter response matched to the transmit modulating pulse g(t) = ( )s t∗ −  and define 

a special case of the folded-pulse-channel-receiver spectrum ˆ ( )foldedh f  as  

 ( ) 21ˆ ˆ ˆ( ) ( ) ( )folded
k

h f s f k t c f k t
∞

=−∞

≡ − ∆ − ∆∑ . (5.58) 

If LTI channel spectrum is finite, i.e., |ĉ(f)| < ∞ for all frequency range f, then the 

information rate of the convolutionally precoded FTN signaling in an LTI channel is given 

by 

 ( )
( ) 211/(2 ) 2 2

- 2
01/(2 )

ˆ ( )1log 1
ˆ2 ( )

t
foldedFTN a

conv precoded
foldedt

h f
C f df

N t s fξ
σ∆

− ∆

 
 ≤ + ∆ 
 

∫ S , (5.59) 
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with equality if the convolutionally precoded modulation vector x=La is jointly Gaussian 

distributed. 

Proof: Note that ĝ(f) = ˆ ( )s f∗  and hence 2ˆ ˆ ˆ( ) ( ) ( )folded foldedk
g f s f k t s f= − ∆ =∑ . Also, 

2 (1)ˆ ˆˆ ˆ( ) ( ) ( ) ( )folded folded
k

h f s f k t c f k t h f
∞

=−∞

= − ∆ − ∆ =∑ . Substituting ˆ ˆ( ) ( )folded foldedg f s f=  

and (1)ˆ ˆ( ) ( )folded foldedh f h f= into Theorem 5.3 yields the expression (5.59).  

Furthermore, note that (5.59) is well defined even when the folded-pulse spectrum 

ˆ ( )foldeds f = 0 for some f ∈ (−1/(2∆t), 1/(2∆t)). This is because the ratio 

( )1ˆ ˆ( ) ( )folded foldedh f s f  is always well defined as shown below: 

 
( )

2
1 ˆ ˆ( ) ( )ˆ ( )

ˆ ˆ( ) ( )
folded k

folded folded

s f k t c f k th f

s f s f

∞

=−∞

− ∆ − ∆
≤
∑

 (5.60) 

 
( ) 2ˆ ˆmax ( ) ( )

ˆ ( )
f k

folded

c f s f k t

s f

∞

=−∞

− ∆
≤

∑
 (5.61) 

 ˆmax ( )
f

c f=  (5.62) 

 < ∞ ,  (5.63) 

where (5.61) is due to ˆ ˆ( ) max ( )fc f k t c f− ∆ ≤  and (5.62) is by the definition of 

ŝfolded(f). Finally, (5.63) follows from the assumption |ĉ(f)| < ∞, which holds for most 

practical channels of interest. This completes the proof of Corollary 5.2. ■  

Next corollary deals with the case with g(t) = ( ( ) ( ))
t t

s t c t ∗

=−
∗ . 

Corollary 5.3 (Information rate of convolutionally precoded FTN in LTI channel when 

receiver matched filter is matched to the transmitter and the channel): Let the receiver 

filter response matched to the modulating pulse and the channel response g(t) = 

( ( ) ( ))
t t

s t c t ∗

=−
∗ .  If LTI channel spectrum is finite, |ĉ(f)| < ∞ for all frequency range f, the 

information rate of the convolutionally precoded FTN signaling in LTI channel is given by 
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 ( ) ( )
1/(2 ) 2 2 2

- 2
01/(2 )

1 ˆlog 1 ( )
2

t
FTN a
conv precoded folded

t

C f h f df
N t ξ

σ∆

− ∆

 
≤ + ∆ 

∫ S , (5.64) 

with equality if the modulation symbols {x[n]} are jointly Gaussian distributed. 

Proof: Note that the Fourier transform of g(t) can be evaluated as ĝ(f) = ˆ ˆ( ) ( )s f c f∗ ∗  using 

the convolution property of the Fourier transform. Hence the folded-receiver spectrum 

becomes ˆ ( )foldedg f ( )2 2 2ˆˆ ˆ( ) ( ) ( )folded
k

s f k t c f k t h f
∞

=−∞

= − ∆ − ∆ =∑ . Similarly, the folded-

pulse-channel-receiver spectrum becomes ˆ ( )foldedh f 2 2ˆ ˆ( ) ( )
k

s f k t c f k t
∞

=−∞

= − ∆ − ∆∑  

( )2ˆ ( )foldedh f= . Substituting ( )2ˆˆ ( ) ( )folded foldedg f h f=  and ( )2ˆ ˆ( ) ( )folded foldedh f h f= into Theorem 

5.3 yields the desired result. This completes the proof of Corollary 5.3. ■  

 

5.1.4 Numerical Results on Convolutionally Precoded FTN 
 

Figure 5.3 compares the information rates of the convolutionally precoded FTN using the 

water-filling strategy (5.42) and the non-precoded FTN using the i.i.d. modulation 

symbols, when 

• FTN modulating pulse s(t) = 1 for t∈[0, 1] and 0 elsewhere (the rectangular pulse),  

• LTI channel response c(t) = e−tu(t) (modeling a simple RC low-pass filter 

response), where u(t) is the step function, and 

• receiver matched filter response g(t) = ( )s t∗ −  (receiver matched to the transmit 

modulating pulse only). 
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Figure 5.3  FTN information rates in RC low-pass channel with different signaling rates 1/∆t = K/T, 
using convolutional precoding (waterfilling) (solid) and i.i.d. (dashed); Right plot shows 
the FTN capacity when the power water-filling is restricted to only over a truncated 
frequency range of [−1, 1] Hertz 

Note from the left plot of Figure 5.3 that FTN signaling (K>1) clearly outperforms the 

conventional Nyquist rate signaling (K=1). In addition, the convolutional precoded FTN 

signaling with water-filling strategy is clearly better than the i.i.d. FTN signaling. As 

discussed previously, the FTN capacity gain from convolutional precoding is due to 

reshaping of the transmit signal’s PSD to yield ideal near-flat channel spectrum. This 

approach, however, can also lead to a spectral expansion if the water-filling extends to the 

outside of the designated channel bandwidth as discussed in section 3.4. If we restrict the 

water-filling to the main-lobe width of the pulse spectrum ŝ(f) (i.e., by truncating the 

integration limits in (5.42) and (5.43) to only f ∈[−1, 1]), the FTN information rates are as 

shown in the right plot of Figure 5.3. Comparing with the left plot, the capacity gains from 

the FTN signaling are clearly reduced, but still about two-fold gains are possible at 40dB 

compared to the Nyquist case. 

We now investigate the impact of the receiver matched filter response g(t) on the FTN 

information rates. Figure 5.4 plots the information rates of convolutionally precoded FTN 

signaling when the utilized receiver matched filter is either matched to the FTN 

modulating pulse only, i.e., g(t) = ( )s t∗ − , or matched to combined response of LTI channel 

and the FTN modulating pulse, i.e., g(t) = ( ( ) ( ))
t t

s t c t ∗

=−
∗ . We can observe from the figure 
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that there exists non-zero capacity benefit in using the channel-matched filter receiver g(t) 

= ( ( ) ( ))
t t

s t c t ∗

=−
∗ , and this receiver should be used if accurate estimation of the channel 

response c(t) is possible. In the cases when the channel exhibits rapid variations in time 

(such as the wireless fading channel) and the adaptive adjustment of the receiver to 

varying c(t) is not feasible,  however, the pulse-matched filter receiver g(t) = ( )s t∗ −  must 

be used and this will incur a small capacity penalty as seen in Figure 5.4. 
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Figure 5.4  Comparing the information rates of convolutionally precoded FTN when the receiver 
matched filter is matched to the FTN modulating pulse only or to the combined response 
of LTI channel and the FTN modulating pulse 

In Figure 5.5, we consider root-raised cosine pulse s(t) with the roll-off factor β = 0.22 

(used in e.g., WCDMA standard): 

• 
( )( ) ( )( )( ) ( )

( )2

cos 1 sin 1 44( )
1 4

t T t T t T
s t

T t T

β π β π ββ
π β

+ + −
=

−
 with T = 1 μs, 

when communicating over a fixed two-path fading channel and using matched filter 

receiver that is matched only to the modulation pulse: 
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• c(t) = δ(t) + α∙δ(t−τ) (modeling a realization of two-path fading channel),  

where α = 0.5, τ = 3.3 μs, and 

• g(t) = ( )s t∗ −  (receiver matched to modulating pulse only). 

As can be seen from Figure 5.5, convolutional precoding on FTN signals again 

improve the capacity when compared to the i.i.d. FTN case. This implies that 

convolutional precoding is beneficial due to its ability to waterfill on the FTN channel 

spectrum. On the other hand, the capacity gains from increasing the signaling rates beyond 

the Nyquist rate are only marginal (i.e., no notable differences observed between K=2 and 

K>2 cases). This is because the root-raised cosine pulse s(t) is strictly band-limited and 

hence there is little excess bandwidth available for the FTN signaling to utilize by 

reshaping the transmission PSD.  
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Figure 5.5  FTN information rates in a realization of two-way fading channel using a root-raised cosine 
modulating pulse s(t) 
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5.1.5 Proof of Theorem 5.3 
 

The objective of this subsection is to provide a proof of Theorem 5.3 which gives the 

information rate of the convolutionally precoded FTN in LTI channel in subsections 5.1.3. 

The corresponding channel model is reproduced below for convenience: 

 Hα= +y x z , (5.65) 

subject to the FTN transmission power constraint from Corollary 3.1: 

 ( )† 1 2 1 21
xtr U H K H U P

NT
≤  (5.66) 

for some unitary matrix U and covariance matrix of modulation symbols Kx. Other 

relevant definitions are also reproduced below for convenience (see section 3.1 for 

details): 

 ●     Normalization factor: 
0

( ) ( ) ( )
t

s t c t g tα
=

≡ ∗ ∗ , (5.67) 

 ●     FTN matrix for LTI channel: 

1 ( 1)

1 ( 2)

1 2

1

1
,

1

KN

KN

KN KN

h h

h h
H

h h

− − −

− −

− −

 
 
 ≡  
 
  

 

 
   

  

 (5.68) 

     with the ISI coefficients: 1 ( ) ( ) ( )k t k t
h s t c t g tα −

= ∆
≡ ∗ ∗ , (5.69) 

 ●     Noise covariance matrix: ( ) 20{ }
2

† NE g t Φ=zz , (5.70) 

 ●     Receiver filter correlation matrix: 

1 ( 1)

1 ( 2)

1 2

1
1

,

1

KN

KN

KN KN

ϕ ϕ
ϕ ϕ

Φ

ϕ ϕ

− − −

− −

− −

 
 
 ≡
 
 
 





   



 (5.71) 

      with the receiver filter correlations: ( ) ( ) ( )2
k g t g g k t dϕ τ τ τ

+∞− ∗

−∞
≡ − ∆∫ . (5.72) 

First consider the following two lemmas: 
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Lemma 5.1 (Upperbound on Mutual Information of FTN in LTI Channel): If the FTN 

modulation vector x has a covariance matrix Kx, then the mutual information of FTN 

signaling in LTI channel can be upperbounded by: 

 ( )
( )

2
1 2 1 2

2 2
0

; log det
2 ( )

†
KN xI I HK H

N g t
α

Φ Φ− −
  
 ≤  + 

    
x y   , (5.73) 

where the upperbound is achieved if x is circularly symmetric Gaussian distributed.  

Proof: Rewrite mutual information between x and Hα= +y x z  as: 

 ( ) ( ) ( );I h h= −x y y y x   (5.74) 

 ( ) ( )h h= −y z   (5.75) 

 ( ) ( ) ( ) 20
2log det

2
KN Nh e g tπ Φ  = −   

  
y  (5.76) 

 ( ) ( )( ) ( ) ( ) 20
2 2log det log det

2
KN KN

y
Ne K e g tπ π Φ  ≤ −   

  
 (5.77) 

 
( ) ( )( )

( ) ( )( )
22

0

2 2
0

det 2
log

det 2

†
xHK H N g t

N g t

α Φ

Φ

 + =  
 
 

 

, (5.78) 

where h(∙) denotes the differential entropy, (5.75) is due to Hα x  being deterministic given 

x, followed by the translation invariance of the differential entropy (Lemma 2.5), (5.76) is 

due to the known differential entropy function of Gaussian vector z (Lemma 2.3), and 

(5.77) is due to upper-bounding the differential entropy by choosing y circularly 

symmetric complex Gaussian distributed with covariance matrix Ky (Lemma 2.4). 

Moreover, (5.78) is due to the covariance matrix of y being equal to 

( ) 22
0( 2)†

y xK HK H N g tα Φ= +  . Note that the upperbound in (5.77) is achieved if 

and only if y is circularly symmetric complex Gaussian, which can be obtained when x is 

chosen circularly symmetric complex Gaussian with the covariance matrix Kx.   
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Due to Proposition 3.1, the receiver filter correlation matrix Φ is Hermitian and 

invertible, and hence it can be decomposed into Φ = Φ1/2Φ1/2, where Φ1/2 is symmetric 

positive definite. Therefore, (5.78) can be further simplified as follows: 

 ( )
( ) ( )( )

( ) ( ) ( ) ( )

22
0

2 2 1 2 1 2
0

det 2
; log

2 det det

†
x

KNKN

HK H N g t
I

N g t

α Φ

Φ Φ

 + ≤  
 
 

y x
 

 (5.79) 

 ( )
( )

( )
2

1 2 1 2
2 2

0

log det det det
2 ( )

†
xHK H

N g t
α

Φ Φ Φ− −
  
 =  + 

    

   (5.80) 

 
( )

2
1 2 1 2

2 2
0

log det
2 ( )

†
KN xI HK H

N g t
α

Φ Φ− −
  
 =  + 

    

  , (5.81) 

where (5.79) and (5.81) are due to det(AB) = det(A)det(B), and (5.80) is due to 1/det(A) = 

det(A-1) for an invertible matrix A. Note that IKN denotes KN×KN identity matrix. This 

completes the proof of Lemma 5.1. ■ 

Lemma 5.2 (Inverse Fourier series of ISI coefficients and receiver filter correlations): 

Denote the inverse Fourier series of the ISI coefficients kh  and the receiver filter 

correlations kϕ  by ( ) jk
kk

h h e λλ ∞

=−∞
≡∑   and ( ) jk

kk
e λϕ λ ϕ∞

=−∞
≡∑ , respectively. When 

2 f tλ π= − ∆ , these inverse Fourier series can be written as 

 1 1 ˆ( 2 ) ( ) ( )foldedh f t t h fπ α − −− ∆ = ∆ , (5.82) 

 ( ) 2 1 ˆ( 2 ) ( ) ( )foldedf t g t t g fϕ π
− −− ∆ = ∆ , (5.83) 

where the folded-pulse-channel-receiver spectrum is defined as ˆ ( )foldedh f  

ˆ ˆ ˆ( ) ( ) ( )
k
s f k t c f k t g f k t≡ − ∆ − ∆ − ∆∑  that is assumed to be finite for all f, and the 

folded-receiver spectrum is defined as 2ˆ ˆ( ) ( )folded k
g f g f k t≡ − ∆∑ . 

Proof: The term ( 2 )h f tπ− ∆  can be simplified as follows:  

 1 2( 2 ) ( ) ( ) ( ) j f k t

k
h f t s g c k t d d e ππ α τ λ τ λ τ λ

∞ ∞∞
− − ∆

=−∞ −∞ −∞

 
− ∆ = − ∆ − 

 
∑ ∫ ∫  (5.84) 
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 ( )1 2 2ˆ ˆ ˆ( ) ( ) ( ) j k t j f k t

k
s g c e d eπλ πα λ λ λ λ

∞ ∞− ∆ − ∆

−∞
=−∞

= ∑ ∫  (5.85) 

 1 2 ( )ˆ ˆ ˆ( ) ( ) ( ) j f k t

k
s g c e dπ λα λ λ λ λ

∞∞− − ∆

−∞
=−∞

= ∑∫  (5.86) 

 ( )1 ˆ ˆ ˆ( ) ( ) ( ) ( )
k

s g c t f k dα λ λ λ δ λ λ
∞∞−

−∞
=−∞

= ∆ − +∑∫  (5.87) 

 1 1 ˆ ˆ ˆ( ) ( ) ( ) ( )
k

t s f k t g f k t c f k tα
∞

− −

=−∞

= ∆ − ∆ − ∆ − ∆∑ , (5.88) 

where (5.85) is due to the generalized Parseval’s theorem ( ) ( )a t b t dt
∞ ∗

−∞∫  = 

ˆˆ( ) ( )a f b f df
∞ ∗

−∞∫  and the delay property of the Fourier transform, (5.86) and (5.88) are due 

to the Fubini’s theorem 28 , and (5.87) is due to the Poisson summation formula 
2jk t

k
e π∞

=−∞∑ = ( )
k

t kδ∞

=−∞
+∑ . Similarly, the term φ(−2πf∆t) may be written as 

 ( ) 2 21 ˆ( 2 ) ( ) ( )
k

f t g t t g f k tϕ π
∞− −

=−∞

− ∆ = ∆ − ∆∑ . (5.89) 

This completes the proof of Lemma 5.2.  ■ 

We are now ready to prove Theorem 5.3 on the information rate of the convolutionally 

precoded FTN signaling in LTI channel.  

Proof of Theorem 5.3 (information rate of convolutionally precoded FTN in LTI channel): 

When the FTN modulation symbol vector x is convolutionally precoded, i.e., x = La, the 

covariance matrix Kx can be expressed as 2 †
x aK LLσ= , where σa

2 is the variance of the i.i.d. 

information sequence {a[n]} and L is the Toeplitz precoding matrix defined by (5.2). Due 

to Lemma 5.1, the information rate of the convolutionally precoded FTN signaling can be 

written as:  

28 To use the Fubini’s theorem, we go backwards from (5.88) to (5.86), establishing equalities throughout. 
First note that (5.88) is by definition equal to 1 1 ˆ( ) ( )foldedt h fα − −∆ , which was assumed to be finite for all f. 
Since (5.88) is finite, Fubini’s theorem can be applied to obtain (5.87) (by interchanging the order of the 
integral and the sum), and from (5.87) we can re-apply Fubini to get (5.86). 
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( )

2
1 2 1 2

- 2 2
0

1lim log det
2 ( )

FTN †
conv precoded KN xN

C I HK H
NT N g t

α
Φ Φ− −

→∞

  
 ≤  + 

    

   (5.90) 

 
( )

22
1 2 1 2

2 2
0

1lim log det
2 ( )
a † †

KNN
I HLL H

NT N g t
σ α

Φ Φ− −

→∞

  
 =  + 

    

   (5.91) 

 
( )

22
1

2 2
0

1lim log det
2 ( )
a † †

KNN
I L H HL

NT N g t
σ α

Φ −

→∞

  
 =  + 

    

   (5.92) 

 
( )

{ }
221

1
2 2

0 0

1lim log 1
2 ( )

KN
a † †

jN j
L H HL

NT N g t
σ α

λ Φ
−

−

→∞
=

 
=  + 

 
 

∑    (5.93) 

where (5.90) is due to Lemma 5.1 which becomes equality if x is circularly symmetric 

complex Gaussian distributed with a covariance matrix Kx, (5.91) is due to 2 †
x aK LLσ= , 

and (5.92) is due to logdet(AB+I) = logdet(BA+I). Moreover, denoting λj{A} by the j-th 

eigenvalue of the matrix A, (5.93) follows from the identities: det( ) { }jj
A Aλ=∏  and 

{ }j I Aλ +  = 1 { }j Aλ+  for any Hermitian matrix A [55].  

We note that Φ−1 is not Toeplitz (since inverse of a Toeplitz matrix is not Toeplitz in 

general) and H  is not Hermitian in general by its definition. Therefore, we cannot directly 

apply Szegö’s theorem to (5.93) as we did in the proof of Theorem 5.1. We note, however, 

that inverse of a Toeplitz matrix is Toeplitz asymptotically as N → ∞ [56]. Furthermore, 

Φ−1 is Hermitian since Φ is Hermitian and by (Φ−1)† = (Φ†)−1. In addition, a product of 

Toeplitz matrices is asymptotically Toeplitz [56]. Hence, the matrix product, 1† †L H HLΦ −  , 

is asymptotically Hermitian Toeplitz and is asymptotically equivalent to an another 

Toeplitz matrix Tn(∙) by the generalized version of Szegö’s theorem in Theorem D.2.  

By applying Theorem D.2 to the matrix product 1† †L H HLΦ −  , (5.93) converges in the 

limit to 

 
( )

22
22 1

- 2 2
0

1 log 1 ( ) ( ) ( )
2 2 ( )

aFTN
conv precodedC h d

t N g t

π

π

σ α
ξ λ λ ϕ λ λ

π
−

−

 
≤  + 

 ∆  
∫  , (5.94) 

where 
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 ( ) jk
k

k
e λξ λ ξ

∞

=−∞

≡ ∑ , ( ) jk
k

k
h h e λλ

∞

=−∞

≡ ∑  , ( ) jk
k

k
e λϕ λ ϕ

∞

=−∞

≡ ∑ . (5.95) 

By a change of variable (setting λ = −2πf∆t), (5.94) can be rewritten as 

 
( )

221/(2 ) 2
2

- 2 2
1/(2 ) 0

( 2 )
log 1 ( )

( 2 )2 ( )

t
aFTN

conv precoded
t

h f t
C f df

f tN g t ξ

πσ α
ϕ π

∆

− ∆

 − ∆ ≤ +
 − ∆ 
 

∫


S , (5.96) 

where we made use of the definition of recoding spectrum: ξ(−2πf∆t) = 2j f k t
kk
e πξ − ∆∑  

( )fξ= −S , followed by the property ( ) ( )f fξ ξ
∗= −S S  for real convolutional precoding 

coefficients {ξk}.  

Finally by Lemma 5.2, we can substitute into (5.96): 1 1 ˆ( 2 ) ( ) ( )foldedh f t t h fπ α − −− ∆ = ∆  

and ( 2 )f tϕ π− ∆  ( ) 2 1 ˆ( ) ( )foldedg t t g f
− −= ∆ . This completes the proof of Theorem 5.3.  ■ 

 

5.2 Capacity-wise Optimal Precoding for FTN Signaling 
 

In this section, we further generalize the FTN system model by considering a linear FTN 

precoding that is not of convolutional nature. We find the universally optimal linear 

precoding strategy that maximizes the mutual information of the FTN channel. Subsection 

5.2.1 first derives the optimal precoding strategies and the corresponding channel capacity 

for the FTN transmissions over AWGN channel. Useful insights into the optimal FTN 

precoding are highlighted in subsection 5.2.2. The analysis about the optimal FTN 

precoding is then extended to LTI channel transmissions in subsection 5.2.3. Discussions 

about the findings and the implementation issues follow in subsection 5.2.4. 

 

5.2.1 Derivation of Optimal FTN Precoding in AWGN Channels 
 

This subsection presents the capacity limit of optimally precoded FTN signaling over 

AWGN channel when subject to the FTN transmission power constraint from (3.57). 

Furthermore, the structure of the optimal precoding for the FTN signaling that can achieve 
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the capacity limit is also presented. This is followed by an example of the optimal FTN 

precoder. 

Theorem 5.5 (Capacity of optimally precoded FTN in AWGN channel): Consider the 

FTN communication system operating in AWGN channel y = Hx+z, subject to the FTN 

transmission power constraint (3.57). Furthermore, consider the linear precoding x=La of 

a zero-mean 2
aσ -variance i.i.d. information sequence a by a precoding matrix L. Then, 

(a) the capacity of optimally precoded FTN signaling is given by 

 - 2
0

log 1
2

FTN
optimally precoded

K PTC
T K N

 
= + ⋅ 

 bits per second, (5.97) 

which is achieved by having circularly symmetric complex Gaussian distributed x, and 

(b) the optimal precoding matrix L that maximizes the mutual information on the FTN 

channel satisfies 

 2 1†
a LL P t Hσ −= ∆ ⋅ . (5.98) 

Proof: We start from the mutual information between the precoded FTN modulation 

symbols x and the noisy channel observations y = Hx+z: 

 ( ) ( ) ( );I h h= −x y y y x  (5.99) 

 ( ) ( )h h= −y z , (5.100) 

where h(∙) denotes the differential entropy (Definition 2.3) and (5.100) follows from Hx 

being deterministic given x and the translation invariance of the differential entropy 

(Lemma 2.5). The covariance matrix of y is given by 

 ( )0 2 ,†
y xK HK H N H= + ⋅  (5.101) 

due to noise correlation 0{ } ( 2)†E N H= ⋅zz  from (3.23), where Kx is the covariance 

matrix of x.  

By Lemma 2.4, the differential entropy of channel output, h(y), can be upper-bounded 

by 

 ( ) ( ) ( )( )2log detKN
yh e Kπ≤y  (5.102) 
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 ( ) ( )( )( )2 0log det 2 ,KN †

xe HK H N Hπ= + ⋅  (5.103) 

with equality if and only if y is a circularly symmetric complex Gaussian vector. Also by 

Lemma 2.3, the differential entropy of the correlated Gaussian noise vector z is given by 

 ( ) ( ) ( )( )( )2 0log det 2KNh e N Hπ= ⋅z . (5.104) 

Therefore, the mutual information (5.100) can be upper- bounded as follows: 

 ( )
( )( )

( )( )
0

2
0

det 2
; log

det 2

†
xHK H N H

I
N H

 + ⋅
 ≤
 ⋅ 

x y , (5.105) 

with equality if and only if y is circularly symmetric complex Gaussian vector, which is 

obtained when x is also circularly symmetric complex Gaussian vector.  

Since H is Hermitian and invertible due to Proposition 3.1, (5.105) can be further 

simplified as follows: 

 ( ) ( )( )1
2 0

0

1; log det det 2
2

†
xI H HK H N H

N
−  

≤ + ⋅     
x y  (5.106) 

 1
2

0

1log det
2

†
x KNH HK H I

N
−  

= +     
 (5.107) 

 2
0

1log det
2 x KNK H I

N
  

= +     
, (5.108) 

where IKN denotes KN×KN identity matrix, (5.106) is due to det(A−1) = det(A)−1, (5.107) is 

by det(A)det(B) = det(AB), and (5.108) follows from H = H†. Furthermore H can be 

decomposed into H1/2H1/2 and by the log-determinant identity logdet(AB+I) = logdet(BA+I),  

 ( ) 1 2 1 2
2

0

1; log det
2 x KNI H K H I

N
  

≤ +     
x y . (5.109) 

The term inside the determinant, i.e., 1 2 1 2( )x KNcH K H I+  for some constant c, is 

overall Hermitian and non-negative definite (note that Kx is Hermitian and non-negative 

definite by definition of the covariance matrix). Therefore, we can use Hadamard’s 

inequality from Lemma 2.12 to further upper-bound (5.109) by (denoting (A)ii as (i,i)th 

entry of matrix A) 
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 ( ) ( )
1

1 2 1 2
2

0 0

1; log 1
2

KN

x ii
i

I H K H
N

−

=

 
≤ + 

 
∑x y , (5.110) 

with an equality if and only if H1/2KxH1/2 is diagonal. This implies that optimal Kx is such 

that H1/2KxH1/2 is diagonal, say H1/2KxH1/2 = D. 

Now the problem becomes a constrained maximization of  

 ( )( )
0 1 1

1
1

2 0, , , 0
max log 1 2

KN

KN

id d d i
N d

−

−
−

=

+∑


 (5.111) 

subject to the power constraint from (3.57) simplifying to 

 ( )
1

1 2 1 2

0

1 1 KN

x i
i

tr H K H d P
NT NT

−

=

= ≤∑ , (5.112) 

where di denotes the i-th diagonal entry of matrix D. We can solve this constrained 

maximization problem by the method of Lagrange multipliers [20]. First construct a 

Lagrange function Λ as 

 ( ) ( )( )
1 1

1
2 0

0 0

1log 1 2
KN KN

i i i
i i

d N d d P
NT

λ
− −

−

= =

 = + − − 
 

∑ ∑L , (5.113) 

where λ is a Lagrange multiplier. Taking a partial derivative with respect to di and setting 

it to zero yields 

 
0

1 1 0
ln 2 2i id N d NT

λ ∂  = − =   ∂ +   

L  (5.114) 

or 

 0

ln 2 2i
NNTd

λ
  = −   

   
. (5.115) 

Substituting (5.115) back to the power constraint (5.112) and solving for λ yields  

 
( )0ln 2 2

NT
P t N

λ =
∆ +

. (5.116) 

Finally, substituting (5.116) back to (5.115) and simplifying, we arrive at the solution di = 

PΔt. In other words, the optimal diagonal matrix is D = PΔt ∙ IKN, or 

 ( )1 2 1 2
x KNH K H P t I= ∆ ⋅ . (5.117) 
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By substituting in (5.117) into (5.110) and using the definition of the capacity 

( )1lim sup ( ) ;
xpN

C NT I−

→∞
= x y  in units of bits per second, we arrive at the desired FTN 

capacity expression -
FTN
optimally precodedC  in (5.97).  

Furthermore, note that the optimal input covariance Kx that satisfies (5.117) is PΔt∙H−1, 

which is well defined since H is invertible and H−1 is Hermitian due to the inverse of an 

invertible Hermitian matrix is also Hermitian. Finally note that the covariance matrix of 

the precoded modulation symbols Kx is equal to 2
aσ LL†, where 2

aσ  is the variance of a. 

This leads to the desired relation Kx = 2
aσ LL† = PΔt∙H−1 for the optimal precoding matrix L.  

This completes the proof of Theorem 5.5.  ■ 

It is also interesting to note that the capacity of optimally precoded FTN transmission 

-
FTN
optimally precodedC  in (5.97) does not depend on the shape of the modulating pulse s(t), but it 

does depend on the pulse bandwidth W=1/(2T). On the other hand, the optimal FTN 

precoder L does depend on the shape of s(t) through the FTN matrix H as this optimal 

precoder must satisfy (5.98).  

Figure 5.6 shows the capacity of precoded FTN signaling with varying FTN signaling 

rate factor K. Note that the conventional Nyquist-rate signaling is represented by K = 1 

plot. It can be observed that precoding can substantially increase the capacity of the FTN 

signaling especially for moderate to high SNRs (shown for 20 dB to 50 dB range in the 

figure). This numerical result indicates a significant potential in using the optimally 

precoded FTN signaling.  
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Figure 5.6  Capacity of optimally precoded FTN signaling versus SNR with varying K with T = 1 

An example of the optimal precoding matrix L that satisfies Theorem 5.5 is presented 

below and illustrated in Figure 5.7. First, since H is fixed and known to the transmitter, H–1 

can be derived before the communication commences. Then we can apply the Choleski 

factorization on H–1: H–1=LL†, where L is a lower triangular matrix. Consider an i.i.d. 

information sequence {a[n]} (or a = [a[0], a[1], …, a[KN-1]]T in a vector notation) with a 

variance 2
aσ  = P∆t for all n. We can linearly precode a by the lower triangular matrix L 

and set it equal to x, i.e. x = La. Note that this linear precoding matrix L satisfies the 

optimality condition (5.98), hence is capacity-wise optimal. Also, the lower triangular 

structure of L is favorable for real-time communication since the resulting x[n] depends 

only on the current and the past information sequence: a[n], a[n-1], …, a[0]. 

 

 

Figure 5.7  FTN signaling with the optimal precoding and an optional noise whitening filter  
in vector notations 

L 
a x=La 

H 

z 

y Hx 

H−1 = LL† 

Transmitter 
Correlated noise 

L† 
ỹ 

Noise whitening filter 
(optional) 
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Also illustrated in Figure 5.7 is an optional noise whitening filter at the receiving end. 

The effect of this filter on the signal component of y is described in the following. The 

filtered output ỹ = L†y can be expressed as (by substituting x = La) 

 ( )† †L H L HL= + = +y x z a z  , (5.118) 

where †L=z z  is a whitened Gaussian noise vector with zero mean and (N0/2)∙IKN 

covariance. Finally, by H−1=LL†, (5.118) can be written as 

 = +y a z  , (5.119) 

which is commonly referred to as parallel Gaussian channels in the literature. 

In the following, the capacity of optimally precoded FTN in the limit K → ∞ is derived. 

Corollary 5.4 (Asymptotic capacity of optimally precoded FTN): The asymptotic capacity 

of optimally precoded FTN is given by 

 -
0

1lim
ln 2 2

FTN
optimally precodedK

PC
N→∞

=  bits per second, (5.120) 

as FTN signaling rate factor K → ∞. 

Proof: This corollary can be proved by applying l’Hôpital’s rule to the capacity expression 

from (5.97). ■ 

The asymptotic capacity expression (5.120) scales linearly in the signal-to-noise ratio 

(SNR). Furthermore, note that this linear capacity gain is achieved with the optimally 

precoded FTN signaling without increasing the transmission bandwidth (when the 

modulating pulse s(t) is strictly band-limited). More insights into the capacity of this 

optimally precoded FTN signaling is given in subsection 5.2.2. 

We note that the above capacity analysis derives the Shannon capacity for FTN 

transmission as opposed to traditionally considered capacity of Nyquist transmission. Our 

results seem to be consistent with that of Ash [5], [6], [7], who also arrived at a similar 

capacity expression while using a different (Fortet) channel model without using the FTN 

signaling framework.  
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5.2.2 Insights into Capacity of Optimally Precoded FTN 
 

The objective of this subsection is to take a signal processing point of view to illustrate 

FTN transmission and the optimal FTN precoder from Theorem 5.5. For this, it is 

convenient to decompose the FTN communication channel model y = Hx + z derived in 

(3.21) into a set of parallel channels. First, the FTN matrix H can be decomposed into H = 

UΛU† by the eigendecomposition (Theorem 2.3) where U is the unitary matrix whose 

columns are the eigenvectors of H and Λ is the diagonal matrix whose diagonal entries λi 

are the corresponding eigenvalues (such eigenvalue decomposition is possible since H is a 

Hermitian). Furthermore, recall from section 3.1 that the Gaussian noise vector z in the 

FTN model is correlated with the covariance matrix Kz = 0{ } ( 2)†E N H=zz  (see section 

3.1 for the details). 

We first consider non-precoded modulation symbols x, i.e., statistically independent 

modulation symbols x. In this case, y = (UΛU†)x + z, or 

 Λ= +y x z    (5.121) 

where ỹ ≡ U†y, x  ≡ U†x, and the noise z  ≡ U†z is an uncorrelated Gaussian vector with 

zero mean and (N0/2)Λ covariance. Once we decode x , the original modulation symbols x 

can be obtained by x = U x . Note that the formulation (5.121) is equivalent to KN parallel 

channels as shown in Figure 5.8.  

 

 

Figure 5.8  KN parallel channels formulation of FTN transmission when using independent 
modulation symbols x 

[0]x  

[1]x  

[ 1]x KN−  

λ0 

ỹ[0] 
0 0[0] (0, ( 2) )z N λ  N  

λ1 

ỹ[1] 
0 1[1] (0, ( 2) )z N λ  N  

λKN–1 

ỹ[KN-1] 
0 1[ 1] (0, ( 2) )KNz KN N λ −−  N  
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The capacity of the i-th parallel channel is given by maximizing 

 ( )
( ) ( )

2
0

2 2
0

2
( [ ] [ ]; [ ]) log log 1

2
i i i

i i i
i

PT N
I x i z i x i SNR

N
λ λ

λ λ
λ

 +
+ = = +  

 
   (5.122) 

where I(·;·) denotes mutual information as defined in Definition 2.5 and SNRi ≡ PiT/(N0/2) 

with Pi being the power allocated to the i-th channel (and PiT is the energy). Therefore, the 

capacity of the KN parallel channels is simply 

 ( )
0 1

1

. . . 2, , 0
max log 1

KN

KN
FTN
i i d i iP P i

C SNRλ
−

−

=

= +∑


, (5.123) 

and the optimal power allocation is given by the classical water-filling algorithm [31]. 

Note that if a particular λi is small, i.e., λi ≈ 0, then the i-th parallel channel is 

essentially useless as it contributes little to the capacity. Recalling that the λi are the 

eigenvalues of the FTN matrix H, we see that the capacity depends heavily on the 

eigenvalue distribution of H. As discussed in section 3.2, for FTN signals that are strictly 

bandlimited to (–W, W) Hertz, only about 2WNT eigenvalues are significant and the rest 

are arbitrarily small as N tends to infinity. In other words, the number of parallel channels 

reduces to only N (by replacing T = 1/(2W) by the Nyquist theorem), which is exactly how 

many parallel channels the conventional Nyquist rate signaling would give. Therefore, 

without precoding, when independent modulation symbols x are sent and when strictly 

bandlimited modulating pulse is used, the FTN capacity gain over the Nyquist rate 

signaling is marginal and reduces to zero as the block length N goes to infinity.  

On the other hand, consider sending linearly precoded modulation symbols x = H–1/2a, 

where a is an i.i.d. information symbol vector with covariance (P∆t)∙IKN. Note that this 

linear precoding satisfies the optimality criterion (5.98) from Theorem 5.5 and hence is 

capacity-wise optimal. Furthermore, sending such precoded modulation symbols x does 

not violate the FTN transmission power constraint (3.56). Noting that H–1/2 = UΛ–1/2 (since 

H–1 = UΛ–1U† and H–1 = H–1/2H–1/2), the corresponding parallel channels are 

 1 2Λ= +y a z  , (5.124) 

where ỹ = U†y, and the noise z = U†z is again an uncorrelated Gaussian vector with zero 

mean and (N0/2)Λ covariance. These parallel channels are depicted in Figure 5.9. 
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Figure 5.9  KN parallel channel formulation using precoded FTN modulation symbols x = H–1/2a 

The only difference from the parallel channels in Figure 5.8 is the square roots 

appearing in the channel gains. However this seemingly small change makes rather 

significant impact on the capacity. The i-th channel capacity is now given by maximizing 

 ( ) ( )
( ) ( )0

2 2
0

2
[ ] [ ]; [ ] log log 1

2
i i i

i i
i

PT N
I a i z i a i SNR

N
λ λ

λ
λ

 +
+ = = +  

 
 , (5.125) 

where I(·;·) denotes the mutual information. The capacity of the KN parallel channels is 

then 

 ( )
0 1

1

- 2, , 0
max log 1

KN

KN
FTN
optimally precoded iP P i

C SNR
−

−

=

= +∑


, (5.126) 

which is no longer dependent on the eigenvalues λi of H. This capacity is equivalent to that 

of the KN parallel AWGN channels as shown in Figure 5.10. This implies that no matter 

how small the channel gains iλ are, as long as they are strictly nonzero29, the particular i-

th parallel channel is equally good as the conventional AWGN channel. This is because 

the noise variance (N0/2)λi is also small if channel gains are small, leading to a fixed SNRi.  

 

29 The eigenvalues of H, λi, are indeed nonzero for any finite N. This is a direct consequence of the 
invertibility of the matrix H as proved in Proposition 3.1.  

a[0] ỹ[0] 
0 0[0] (0, ( 2) )z N λ  N  

a[1] ỹ[1] 
0 1[1] (0, ( 2) )z N λ  N  

a[KN-1] ỹ[KN-1] 
0 1[ 1] (0, ( 2) )KNz KN N λ −−  N  

0λ  

1λ  

1KNλ −  
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Figure 5.10  Parallel AWGN channels equivalent to Figure 5.9 in terms of overall channel capacity 

Considering that the Nyquist signaling gives N parallel channels only, the FTN 

signaling using precoded modulation symbols x = H–1/2a increases the capacity by 

providing additional channels in total of KN channels (this is consistent with our Hilbert 

space argument in section 2.6).  

Before closing the subsection, we point out an important issue about the computer 

precision (or range) versus the capacity. When the i-th channel gain iλ  is very small (but 

nonzero), the received value ỹ = [ ] [ ]i a i z iλ +   will also be scaled down to a small value. If 

the value falls below the range of data-type representation of the computing platform, the 

received value will simply be truncated down to zero and hence the corresponding channel 

cannot be utilized by the decoder. Consequently, the practically attainable capacity of FTN 

depends on the available precision of the computing platform. We discuss this issue in a 

greater detail in subsection 5.2.4. 

 

5.2.3 Optimal FTN Precoding in LTI Channels 
 

The objective of this subsection is to extend the analysis of the optimal FTN precoding 

from subsection 5.2.1 for AWGN channel to linear time-invariant (LTI) channel setup as 

shown in Figure 5.11.  

 

a[0]
 

ỹ[0] 
0[0] (0, 2)z N N  

a[1] ỹ[1] 
0[1] (0, 2)z N N  

a[KN-1] ỹ[KN-1] 
0[ 1] (0, 2)z KN N−  N  
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Figure 5.11  Block diagram of the optimally precoded FTN signaling in LTI channel 

Recall that the corresponding discrete-time channel model is (as developed in section 

3.1) 

 αΗ= +y x z , (5.127) 

under the transmission power constraint (3.57): 

 ( )† 1 2 1 21
xtr U H K H U P

NT
≤ , (5.128) 

for some unitary matrix U and covariance matrix of precoded modulation symbols Kx. The 

relevant definitions are also reproduced below for convenience (see section 3.1 for 

details): 

 ●     Normalization factor: 
0

( ) ( ) ( )
t

s t c t g tα
=

≡ ∗ ∗ , (5.129) 

 ●     FTN matrix for LTI channel: 

1 ( 1)

1 ( 2)

1 2

1

1
,

1

KN

KN

KN KN

h h

h h
H

h h

− − −

− −

− −

 
 
 ≡  
 
  

 

 
   

  

 (5.130) 

 ●     ISI coefficients: 1 ( ) ( ) ( )k t k t
h s t c t g tα −

= ∆
≡ ∗ ∗ , (5.131) 

 ●     Noise covariance matrix: ( ) 20{ }
2

† NE g t Φ=zz , (5.132) 

 ●     Receiver filter correlation matrix: 

1 ( 1)

1 ( 2)

1 2

1
1

,

1

KN

KN

KN KN

ϕ ϕ
ϕ ϕ

Φ

ϕ ϕ

− − −

− −

− −

 
 
 ≡
 
 
 





   



 (5.133) 

 ●     Receiver filter correlations: ( ) ( ) ( )2
k g t g g k t dϕ τ τ τ

+∞− ∗

−∞
≡ − ∆∫ . (5.134) 
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Furthermore, the data symbol vector x is assumed to be linearly precoded, i.e., x=La, 

where a is an i.i.d. information sequence with a variance 2
aσ . 

The resulting precoding strategies have ‘water-filling’ or ‘water-pouring’ 

interpretations.  

Theorem 5.6 (Optimal precoder for FTN signaling in LTI channel): Consider the FTN 

communication system operating in LTI channel using linear precoding x=La of zero-

mean 2
aσ -variance i.i.d. information sequence a by a precoding matrix L. Furthermore let, 

by the eigenvalue decomposition, 

 ( ) ( )1 2 1 2 1 2 1 2† †HH HH U UΦ Φ Λ− − − − =  , (5.135) 

where H is the FTN matrix as defined in (3.22), U is a unitary matrix, and Λ is a diagonal 

matrix with eigenvalues on the diagonal. Also define a diagonal matrix D with the i-th 

diagonal entry given by the water-filling algorithm (see Figure 5.12) 

 ( ) 2
0 1

2

2 ( )
max , 0i i

N g t
d µ λ

α
−

  
 = −  

    
, (5.136) 

where λi is the i-th diagonal entry of Λ and μ is the water-filling parameter chosen to 

satisfy the following power constraint 

 
1

0

1 KN

i
i

d P
NT

−

=

≤∑ . (5.137) 

Then  

(a) the capacity of the optimally precoded FTN signaling subject to the FTN transmission 

power constraint (3.57) is given by 

 
( )

21

- 2 2
0 0

1lim log max , 1
2 ( )

KN
FTN
optimally precoded iN i

C
NT N g t

α
µλ

−

→∞
=

  
 =  

    
∑  bits per second, (5.138) 

which is achieved by having circularly symmetric Gaussian distributed x, and  

(b) the precoding matrix L that maximizes the mutual information of the FTN channel 

satisfies 

 2 1 2 1 2† †
a LL H UDU Hσ − −= . (5.139) 
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Figure 5.12  Water-filling algorithm: The water-filling parameter μ is chosen such that  
the area of the shaded region divided by NT is exactly P 

Proof of Theorem 5.6: We begin with the mutual information between the precoded 

modulation symbol vector x and LTI channel observation vector y (from Lemma 5.1) 

 ( )
( )

2
1 2 1 2

2 2
0

; log det
2 ( )

†
x KNI HK H I

N g t
α

Φ Φ− −
  
 ≤  + 

    
y x   , (5.140) 

which, due to Lemma 5.1, becomes equality if x is circularly symmetric complex Gaussian 

distributed with a covariance matrix Kx. The next step is to re-express above as a function 

of H1/2KxH1/2, trace of which appears in the transmission power constraint (5.128). 

Consider the following series of equalities: 

 ( ) ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2† †
x xHK H H H H K H H HΦ Φ Φ Φ− − − − − −=     (5.141) 

 ( )( )( )1 2 1 2 1 2 1 2 1 2 1 2†
xHH H K H H HΦ Φ− − − −=    (5.142) 

 ( )( )( )1 2 1 2 1 2 1 2 1 2 1 2 †

xHH H K H HHΦ Φ− − − −=   . (5.143) 

We now substitute (5.143) back into the mutual information (5.140) for further 

simplifications: 
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   (5.144) 
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1 2 1 2 1 2 1 2 1 2 1 2
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2 ( )

†

x KNH K H HH HH I
N g t

α
Φ Φ− − − −

  
 =  + 

    
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   (5.145) 
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1 2 1 2
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†
x KNH K H U U I
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  
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 (5.146) 
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 (5.147) 

where (5.145) follows from the determinant identity det(AB+I) = det(BA+I), and U and Λ 

in (5.146) are KN×KN unitary and diagonal matrices, respectively, obtained by the 

following eigenvalue decomposition: 

 ( ) ( )1 2 1 2 1 2 1 2† †HH HH U UΦ Φ Λ− − − − =  . (5.148) 

Moreover, (5.147) is due to the decomposition 1 2 1 2Λ = Λ Λ  (which is possible since the 

matrix product ( ) ( )1 2 1 2 1 2 1 2†
HH HHΦ Φ− − − −   is Hermitian), followed by the determinant 

identity det(AB+I) = det(BA+I). 

Using Hadamard’s inequality from Lemma 2.12 and denoting (A)ij as the (i, j)-th entry 

of matrix A: 

 ( )
( )

( )
21

1 2 1 2
2 2

0 0

; log 1 ,
2 ( )

KN
†

x iii
i

I U H K H U
N g t

α
λ

−

=

 
≤  + 

 
 
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which becomes an equality if and only if U†H1/2KxH1/2U is diagonal. This implies that the 

optimal Kx is such that D ≡ U†H1/2KxH1/2U is diagonal and its diagonal entries di satisfy the 

constraint 
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due to the transmission power constraint (5.128). The solution to this constrained 

optimization problem is then found via the water-filling, which is given by: 

 ( ) ( ) 2
01 2 1 2 1

2

2 ( )
max , 0†

i x iii

N g t
d U H K H U µ λ

α
−

  
 = = −  

    
, (5.151) 

where μ is chosen to satisfy the constraint (5.150). Substituting this back into (5.149) 

yields 
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The above (5.152) becomes equality if the water-filling solution (5.151) is used. That is, 

the covariance matrix Kx must satisfy 

 1 2 1 2†
xK H UDU H− −= , (5.153) 

where D is the diagonal matrix with entries given by the water-filling solution (5.151).  

The desired capacity expression (5.138) is then obtained by substituting the mutual 

information expression from (5.152) into the definition of the capacity 

( )1lim sup ( ) ;
xpN

C NT I−

→∞
= x y  in units of bits per second. Furthermore, due to (5.153) and 

by noting that the covariance matrix Kx of a linearly precoded data symbols x=La is 
2 †

x aK LLσ= , we arrive at the desired relation 2 1 2 1 2† †
x aK LL H UDU Hσ − −= =  for the 

optimal precoding matrix L.  This completes the proof of Theorem 5.6. ■ 

An example of an optimal precoding matrix that satisfies (5.139) is shown in Figure 

5.13. First, since the matrices H , Φ, and H are known to the transmitter, we can apply the 

eigenvalue decomposition ( ) ( )1 2 1 2 1 2 1 2† †HH HH U UΦ Φ Λ− − − − =   prior to the 

communication commences. The diagonal entries of the optimal diagonal matrix D are 

determined by the water-filling algorithm (5.136). A precoding matrix is then computed 

offline by L=H−1/2UD1/2 and stored in a lookup table. Note that this particular linear 

precoding matrix L satisfies the optimality condition (5.139). At the time of 

communication, generate an independent information sequence {a[n]}, or a ≡ [a[0], a[1], 
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…, a[KN-1]]T in a vector form, with a covariance matrix Ka ≡ E{aa†} = IKN. Finally, 

precode a by the precoding matrix L and set it equal to x, i.e., x = La.  

 

 

Figure 5.13 FTN signaling in LTI channels with the optimal precoding and optional noise whitening 
filter in discrete-time (vector) notations 

Also illustrated in Figure 5.13 is an optional noise whitening filter at the receiving end. 

The filtered output ỹ can be expressed as (by substituting x = H−1/2UD1/2a) 

 ( ) ( )1 11 2 1 2 1 2 1 2( ) ( )g t H g t HH UDΦ α α Φ− −− − −= + = +y x z a z    , (5.154) 

where 1 1 2( )g t Φ− −≡z z  is a whitened Gaussian noise with zero mean and (N0/2)·IKN 

covariance. But due to the eigenvalue decomposition 1 2 1 2 1 2 1 2( ) ( )†HH HHΦ Φ− − − −   
†U UΛ= , we have 

 1 2 1 2 1 2 †HH UΦ Λ− − = . (5.155) 

Substitution this into (5.154) and by U†U = IKN, we obtain 

 ( )1 1 2( )g t Dα Λ−= +y a z  , (5.156) 

which is known as the set of parallel Gaussian channels in the literature. Note that Λ1/2 

carries eigenvalues (or so called eigen-channels) of the matrix product 1 2 1 2HHΦ − −  which 

entails contributions from the transmit pulse response s(t) (via H), LTI channel response 

c(t) (via H ), and the receiver filter response g(t) (via Φ ). On the other hand, the entries of 

D1/2 are determined by the water-filling algorithm, purpose of which is to combat the 

imperfect channel responses and the FTN-induced ISI. When the channel c(t) is well-

behaving, i.e., its eigenvalues become close to unity, Λ1/2D1/2 becomes approximately IKN 

since D1/2 will be chosen by the water-filling algorithm to be almost Λ−1/2 under the 

allowances of the transmission power constraint. In such case, we simply obtain KN 

H−1/2UD1/2 
a x 
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number of parallel Gaussian channels, of which both capacities and practical performances 

are well understood.  

5.2.4 Discussion on Implementation Issues: Precision Versus Capacity 
 

Subsections 5.2.1 to 5.2.3 showed the merits of precoding and the substantial capacity 

potential in the optimally precoded FTN transmission. The information theoretic analysis 

in subsections 5.2.1 to 5.2.3, however, assumes perfect computing precision and ideal 

computing environments, and we examine the impact of finite computing precision on the 

optimal precoding in this subsection.  

Recall from Theorem 5.5 that the optimal precoding matrix L must satisfy 
2 1†
a LL P t Hσ −= ∆ ⋅ . Generating this matrix L involves a matrix inversion of the FTN 

matrix H, which becomes ill-conditioned when the modulating pulse s(t) is strictly 

bandlimited. Example 5.1 below illustrates this issue: 

Example 5.1 (Bandlimited modulating pulse): The FTN matrix H when the modulating 

pulse is s(t) = (2W)1/2sinc(2Wt) (which has a constant frequency response over f ∈(−W, W) 

and zero everywhere else) is given by H = [sinc((i–j)/K)]i, j=0,1,…,KN–1, for K>0 and N>0. 

This is a Toeplitz matrix with a size KN×KN. Although this matrix is theoretically 

invertible for every finite K and N, it quickly becomes ill-conditioned with increasing K or 

N. Figure 5.14a plots the condition numbers30 of this matrix in logarithmic scale when K = 

2 and N is varied from 1 to 10 (note that condition numbers near 1 indicate a well-

conditioned matrix). 

From Figure 5.14a, we can readily see that the condition numbers increase 

exponentially with increasing FTN packet length N. With the IEEE standard double-

precision floating-point-numbers using 64 bits (used in MATLAB), computing matrix 

inversions or solving linear equations is accurate for condition numbers up to around 1016. 

(This corresponds to N = 11 or 12 for the considered Example 5.1.) If a matrix has a 

condition number larger than 1016, then the inverse of the matrix can contain very large 

30 Condition number is defined in section 2.4. It gives an indication of the accuracy of the results from matrix 
inversion and the linear equation solution. 
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values (in the order of 1016) and may not be accurate. As a consequence, the computing 

precision needs to be increased accordingly in order to accurately implement the optimally 

precoded FTN systems with larger K and N. For instance, quadrature-precision floating-

point-number formats (using 128 bits) can push the condition number limit to around 1034. 

Moreover, extended precision formats and variable precision arithmetic can push this limit 

even further. 
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             (a)               (b) 
Figure 5.14  Condition numbers of the FTN matrix H when (a) sinc-type modulating pulse is used as in 

Example 5.1 or when (b) rectangular modulating pulse is used as in Example 5.2; 
(condition numbers are estimated by MATLAB built-in function cond) 

On the other hand, when s(t) is a time-limited pulse (hence not bandlimited) the 

corresponding matrix H turns out to be much more well-conditioned. This is demonstrated 

in the following example. 

Example 5.2 (Non-bandlimited modulating pulse): The FTN matrix H when the s(t) is a 

rectangular pulse, i.e., s(t) = T−1/2 within t∈(0, T) and zero everywhere else, is given by H 

= [max(0, 1–|i–j|/K)]i, j=0,1,…,KN−1, for K>0, N>0. Note that this is a banded Toeplitz matrix 

with size KN×KN. As before, we plot the condition numbers of this matrix with varying N 

in Figure 5.14b, which reveals that the condition numbers of H increase only linearly with 

N, in contrast to the exponential increase from Example 5.1. This implies that standard 

software such as MATLAB can simulate very large K and N without loss in the accuracy. 

Unfortunately, using non-bandlimited modulating pulse in optimally precoded FTN 
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signaling may cause spectral broadening as discussed in subsection 3.4.3 and shown in 

Table 3.1, and hence is typically not suitable for the optimal precoding.  

From the previous two examples, we see that the condition numbers of matrix H are 

strongly tied to the bandlimited-ness of the modulating pulse s(t). We can make this 

relationship precise by making a following connection with the eigenvalue analysis of H 

from section 3.2. Recall from Lemma 2.14 that the condition number κ(H) for Hermitian 

matrices can be expressed as 

 ( ) max min( ) ( )H H Hκ λ λ= , (5.157) 

where λmax(H) and λmin(H) are the maximal and the minimal (by moduli) eigenvalues of H, 

respectively. This shows that the condition numbers are inversely proportional to the 

minimum eigenvalue of the matrix. Therefore, the exponential increase in the condition 

numbers from using strictly band-limited pulses can be attributed to the quickly decaying 

minimum eigenvalue of H with increasing N (see section 3.2 for the eigenvalue analysis of 

H).  

Consequently, the more bandlimited the modulating pulses are, the more eigenvalues 

of H quickly converges to zero; leading to more rapidly increasing condition numbers of H 

as its size KN×KN increases. This makes the computation of the matrix inverse H–1 

increasingly difficult for bandlimited FTN transmission and consequently obtaining the 

optimal precoding matrix L.31  

Fortunately, there exist powerful techniques such as extended-precision formats and 

arbitrary precision arithmetic with which the precision is limited only by the available 

memory of the computing system. With these techniques, one can explore precoding gain 

versus available computing precision: i.e., the more precision is available, the longer 

packets with length N or the faster FTN with larger K can be implemented with the optimal 

31 One may also explain this phenomenon from the parallel channel argument from subsection 5.2.2. Recall 
that with the optimal precoding, the parallel channels are scaled by square-root of eigenvalues of the FTN 
matrix H (see subsection 5.2.2 for details). When a particular eigenvalue of H is so small in magnitude such 
that it falls below the range of data-type representation of the computing platform, the corresponding parallel 
channel cannot be recognized and no data can be recovered from this channel. Consequently, the full 
capacity benefits from the optimal precoding can only be realized if the computing system has enough 
computing precision so that it can recognize and process very small real numbers. 
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precoding. With the exponential growth in the memory size (following the Moore’s law 

[103]), the true capacity potentials of the precoded FTN signaling may be realized in near 

future.32 

 

5.3 Using Precoded FTN for Spread-Spectrum Communication 
 

It is interesting to note that the precoded FTN signaling described in this chapter so far 

may find an application as a new type of spread-spectrum communication. Traditional 

spread spectrum communication systems rely on either direct sequence spreading, 

time/frequency hopping or a combination of these [108]. Alternatively, the considered 

FTN signaling with appropriate precoding at the transmitter can also generate signals that 

have a spread spectrum when compared to the bandwidth of the original signal. This idea 

stems from the observation that optimally precoded FTN signals based on non-bandlimited 

modulating pulses can undergo spectral broadening, as shown in Table 3.1. If the degree of 

broadening can be precisely controlled (e.g., by using a wideband frequency filter front-

end), precoding of FTN signals can be used to spread the signal spectrum 

“unconventionally”. Consequently, the FTN based spread-spectrum technique can 

potentially be used to allow secure communication and/or improve resistance to jamming 

and interference.  

The FTN system model and design of appropriate spectrum spreading precoders and 

corresponding receivers are first presented in subsection 5.3.1. Numerical power spectral 

density estimates as well as bit-error-rate simulation results are then provided in subsection 

5.3.2 which show that spread spectrum communication using precoded FTN signaling can 

be a feasible alternative to traditional spread spectrum methods. 

 

32 An additional interesting problem is to determine the pulse shape that is maximally bandlimited (or has 
minimal out-of-band energy) for a given eigenvalue decay rate. This leads to a new subproblem of pulse 
design for FTN systems. 
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5.3.1 System Setup for FTN- based Spread-spectrum Signaling 

 

The system block diagram of the considered spread spectrum FTN model is shown in 

Figure 5.15. An i.i.d. data vector a of size KN×1 is first linearly precoded to form a set of 

modulation symbol vector x = La by a matrix precoder L. The FTN modulator generates 

an FTN signal x(t), which is frequency-filtered by a wideband filter to suppress spectral 

side-lobes and subsequently transmitted onto a wideband channel. At the receiving-end, a 

noisy version of the transmitted FTN signal is first matched filtered and sampled at the 

FTN rate of 1/∆t times per second. Finally, a decorrelator produces a vector of estimates â 

about the data vector a.  

 

 

Figure 5.15  Schematic block diagram of the proposed spread spectrum FTN communication system 

The purpose of the FTN spreading precoder is to achieve broadband nature of the 

signal transmitted over the channel. The FTN de-spreader module in Figure 5.15 aims to 

recover the data from the matched filter output by joint removal of the FTN interference. 

Towards this goal, we consider a matrix precoder L designed to compute x = La, where a 

is assumed to be normalized to have zero mean and unit variance. The spreading matrix L 

satisfies 

 1( )†LL P t H −= ∆ ⋅ , (5.158) 

which maximizes the mutual information on the FTN channel, as proved in Theorem 5.5. 

On the other hand, the FTN de-spreader in Figure 5.15 implements â = (P∆t)−1/2L†y which, 

with the precoder L, yields 

Wideband 
frequency 

filter 

x(t) FTN 
modulator 

s(t) 

x 

Mod. 
Symbol

 

FTN 
signal 

Spreading 
Precoder 

L 

a 

i.i.d. 
data 

Wideband 
Channel 

FTN 
matched filter 

s*(−t) 

y FTN de-
spreader 

(P∆t)−1/2L† 

Sample every 
∆t sec 

sampled 
outputs 

â 

 



 
 
Chapter 5      Benefits of Precoding in FTN Signaling 164 
 
 
 ( ) ( )1 2 1 2ˆ ( )† † †P t L P t L HL L− −= ∆ = ∆ + = +a y a z a z , (5.159) 

where z  is a whitened Gaussian vector with zero mean and N0/2 variance. As discussed in 

section 3.4, such FTN precoding does broaden the transmission spectrum, if s(t) is not 

strictly bandlimited. 

 

5.3.2 Numerical Power Spectral Density Estimates and BER Simulation 
 

The spread-spectrum FTN communication system shown in Figure 5.15 was simulated 

with the following system parameters: 

• T = 10 ms; K = 100; ∆t = T/K = 0.1 ms; 

• Modulating pulse s(t): Square-root raised cosine with a roll-off factor β=0.22 (used 

in e.g., WCDMA standard), delayed in time by T/2 and time-truncated to t∈[0, T]; 

• Precoder: L = (P∆t)1/2∙H−1/2 (satisfies (5.158)); 

• Ideal brick-wall wideband frequency filter with W = 10 kHz. 

Figure 5.16 plots the modulating pulse s(t) and the spread-spectrum precoded FTN 

signal x(t) from the simulation. Figure 5.17 shows the numerical power spectral density 

(PSD) estimates of the precoded FTN signal x(t), plotted using the Welch method from 

[160] (which is a variant of the periodogram-based spectral estimation technique). When 

compared to the conventional Nyquist rate narrowband signal (in the left plot of Figure 

5.17), the precoded FTN signal clearly exhibits significant spectrum spreading by a factor 

of 25 in this case. Plotted at the right of Figure 5.17 is the PSD estimate of randomly 

precoded FTN signal with an i.i.d. Gaussian precoding matrix (i.e., when entries of L are 

i.i.d. Gaussian distributed). It can be seen that randomly chosen precoding matrix does not 

provide spectral broadening and hence specific precoding matrices such as L from (5.158) 

should be used for spreading. 
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Figure 5.16  Plots of modulating pulse s(t) (time-truncated root raised cosine) (left) and a snapshot of 
the wideband precoded FTN signal x(t) in a small time window (right) 
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Figure 5.17  Power spectral density estimates of the generated spread-spectrum FTN signal (red), as 
compared to the original Nyquist narrowband signal and a randomly precoded FTN 
signal (both in blue). See text for details. 

In Figure 5.18, we show bit error rate (BER) performance of the spread-spectrum FTN 

signal using hard decision demodulation after the FTN de-spreader in Figure 5.15. The 

definition of the signal-to-noise ratio (SNR) was SNR = P/N0 where P is the available 

power and the information rate was computed by KN/((N+1)T) (in bits/second). Figure 

5.18 shows that the spread-spectrum FTN signal has nearly the same performance as the 

narrowband Nyquist counterpart; thus demonstrating feasibility of the proposed scheme. 
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Figure 5.18  Hard decision bit error rate performances of the proposed spread-spectrum FTN system 
compared to the BER performance of the conventional (narrowband) Nyquist system. 

5.4 Chapter Summary 
 

The main objective of this chapter was to study, evaluate and optimize the merits of 

precoding in FTN-based data communication. We considered two types of precoding, 

namely, previously proposed convolutional FTN precoding in section 5.1 and the 

information-theoretically optimal FTN precoding derived in section 5.2. Furthermore, we 

also proposed an application of the pre-coded FTN signalling to achieve spread-spectrum 

digital communication in section 5.3.  

In particular, it was first shown that convolutional FTN precoding can increase the 

capacity of the non-precoded FTN signaling by spectrum reshaping. Consequently, the 

optimal (non-convolutional) FTN precoding, derived in section 5.2, yielded substantial 

capacity gains when compared to the non-precoded FTN transmission. However, this FTN 

capacity increase occurred at a price of either a large bandwidth expansion for strictly non-

bandlimited pulses or a significant numerical instability encountered for strictly-

bandlimited modulating pulses. We further explored in section 5.3 a potential application 

of the precoded FTN signaling to generate spread-spectrum signals. Specific system 

architecture was proposed and its BER performance evaluated.  
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Chapter 6  
 
Faster than Nyquist Broadcasting 
 

 

This chapter describes a novel concept of using the faster than Nyquist (FTN) signaling to 

achieve transmission over broadcast channels, by multiplexing signals corresponding to 

multiple users’ messages using different time-offsets in the continuous-time domain. This 

method is further shown to be capacity-wise optimal in the Gaussian broadcast channel, 

which implies that the described FTN broadcasting technique can be a viable alternative to 

the currently known capacity-achieving techniques in the Gaussian broadcast channel, e.g., 

superposition coding [28] and dirty paper coding [27]. Consequently, two FTN-based 

broadcast transceiver architectures are proposed that can perform close to the capacity 

boundaries of the Gaussian broadcast channels. In the FTN broadcasting, the users’ data 

are completely separated in the coding stage and are explicitly transmitted over the 

channel. This alleviates the definition of auxiliary random variables in the channel coding 

theorems and eliminates joint encoding, which is required in the previously proposed 

capacity-achieving techniques.  

Section 6.1 first gives a general overview of the Gaussian broadcast channel model and 

its capacity region. The concept of the FTN broadcasting in the continuous-time Gaussian 

broadcast channels is then formulated in section 6.2 and its information-theoretic 

optimality in the Gaussian broadcast channel is established in section 6.3. Subsequently, 

two FTN-based broadcasting receiver architectures are presented in section 6.4. The 

simulation results presented in section 6.5 show that the FTN broadcasting can perform 

close to the capacity boundaries of the broadcast channels. 
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6.1 Introduction to Gaussian Broadcast Channels 
 

Figure 6.1 illustrates a wireless downlink channel with two receivers accepting two 

separate streams of data (e.g., two separate phone calls, music files, or streaming videos). 

Widely employed broadcasting strategy in practice is transmission of the two messages 

one after the other in a time-sharing fashion, or separating the messages in the frequency 

domain. 

 

 

Figure 6.1  Two-user wireless downlink channel with private messages 

From an information theoretic perspective, the primary question in broadcast channel 

is how much capacity gain the broadcast channel coding can provide upon traditional time-

sharing or the frequency-division broadcasting. In 1972, Cover showed that the broadcast 

channel coding can in general yield superior capacity than the time-sharing or frequency-

division broadcasting [28]. Coding in broadcast channel involves multiplexing messages 

of multiple users into one stream of channel symbols, such that the messages can be 

reliably recovered at the receivers. 

In this chapter, we focus on an important class of broadcast channels known as the 

Gaussian broadcast channel. In particular, we consider the continuous-time Gaussian 

broadcast channel with one broadcasting transmitter and K receivers, as shown in Figure 

6.2.  
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Figure 6.2  K-user continuous-time Gaussian broadcast channel 

This model may represent certain wireless downlink channels, e.g., K wireless devices 

downloading separate data streams from a base station transmitter. The transmitter encodes 

the K independent message vectors of length N, m1, m2, …, mK, which are intended for the 

respective K receivers, into a continuous-time bandlimited signal x(t) with a bandwidth of 

W Hz. The signal x(t) is then broadcast to K receivers, where it gets perturbed by 

independent additive white Gaussian noise (AWGN) signals z(1)(t), z(2)(t), …, z(K)(t) with 

zero mean and two-sided power spectral densities ( )1
0 2N , ( )2

0 2N , …, ( )
0 2KN , 

respectively. Without loss of generality, we will assume that ( )1
0N ≤ ( )2

0N ≤ … ≤ ( )
0

KN , 

meaning that the receivers are indexed according to increasing noise strengths and 

decreasing quality of signal receptions. The broadcasting transmitter is further assumed to 

know this ordering (but not necessarily the precise noise value of each receiver) through 

channel sounding or periodic feedbacks from receivers.  

Furthermore, all K communication links in the broadcast channel are assumed to have 

a common channel bandwidth of W Hz, and hence, the corresponding Nyquist signaling 

rate is given by 1/T = 2W symbols per second. Finally, the channel signal-to-noise ratio 

(SNR) at the k-th receiver will be defined by SNRk = ( )
0( 2)kPT N , where P is the 

available transmission power in watts.  
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The capacity region of the K-user continuous-time bandlimited Gaussian broadcast 

channel is known and is given by a set of K-tuple spectral efficiencies (η1, η2, …, ηK) in 

bits per second per Hz, such that [28], [16] 

 
( )2 1
01

log 1 k
k k k

jj

P
P N W

η −

=

 
 ≤ +
 + ∑

 for k∈{1, 2, …, K}. (6.1) 

Note that in (6.1), the available transmit power P is split to K non-negative parts, P1, P2, 

…, PK such that 
1

K
kk

P P
=

=∑ , for encoding of the K users’ messages (i.e., P1 is used to 

encode user 1’s message, P2 is used to encode user 2’s messages, etc.). The achievability 

of the capacity region (6.1) assumes that these power assignments P1, P2, …, PK are 

known at all receivers. The capacity region (6.1) is also derived with the assumption that 

the conventional Nyquist rate transmission and standard matched filtering are used at the 

transmitter and the receivers, respectively.  

The two widely-known techniques in the literature that can achieve the capacity 

boundaries of Gaussian broadcast channel (6.1) are the superposition coding [28], [16] and 

the dirty paper coding [27]. Recently, near-capacity performances using these two coding 

techniques are reported in the literature (see e.g., [138], [17], [152], [114], [3], [166]). 

Although these two coding schemes are conceptually well-understood, applying them in 

practical systems turned out to be challenging and many of the presently used broadcasting 

standards still operate using the suboptimal time-sharing and frequency-division 

broadcasting techniques. 

The capacity region (6.1) of the two-user (K=2) Gaussian broadcast channel is plotted 

in Figure 6.3 for various SNR pairs of the two receivers. For comparison purposes, the 

maximum achievable rate regions when the two-user messages are broadcasted using the 

time-sharing strategy are also plotted in dashed lines in Figure 6.3. One can observe that 

when SNR1 = SNR2 (as in Figure 6.3a), the time-sharing broadcasting achieves the capacity 

of the Gaussian broadcast channel, making the broadcast channel coding unnecessary in 

this case. As the differences of the two channel SNRs increase (as in Figure 6.3b through 

Figure 6.3d), however, the broadcast channel coding starts dominating the time-sharing 

strategy. Consequently, the coding should be used if the broadcast channel is asymmetrical 
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as in typical wireless downlink channels where mobile receivers are in different locations 

and thus have different SNR characteristics.  

0 1 2 3 4
0

1

2

3

4

 

 

sp
ec

tra
l e

ff 
η 2

 (b
its

/s
/H

z)

spectral eff η1 (bits/s/Hz)

(a) SNR1 = 10dB, SNR2 = 10dB

0 2 4 6 8
0

1

2

3

4

 

 

spectral eff η1 (bits/s/Hz)

(b) SNR1 = 20dB, SNR2 = 10dB

time-sharing
Capacity

time-sharing
Capacity

0 2 4 6 8 10
0

1

2

3

4
(c) SNR1 = 30dB, SNR2 = 10dB

sp
ec

tra
l e

ff 
η 2

 (b
its

/s
/H

z)

spectral eff η1 (bits/s/Hz)

 

 

0 5 10 15
0

1

2

3

4

spectral eff η1 (bits/s/Hz)

(d) SNR1 = 40dB, SNR2 = 10dB

 

 

time-sharing
Capacity

time-sharing
Capacity

 

Figure 6.3  Capacity regions of two-user Gaussian broadcast channel and the time-sharing rate regions 
for various SNR pairs; SNR1 is 10dB through 40dB, and SNR2 is 10dB 

The capacity region (6.1) is achieved by transmitting Gaussian-distributed input 

symbols. On the other hand, when the practical finite symbol constellations such as PAM, 

QAM or PSK are used, the corresponding achievable throughput (or the input-

constellation constrained capacity region) is smaller and can be derived as follows. First let 

1X , 2X , …, KX  be the symbol constellations used by the K receivers, respectively. Due to 

the power splitting (i.e., splitting P into P1, P2, …, PK), the input constellations should be 

chosen such that 1X  uses power P1 and 2X  uses power P2, etc. (e.g., for 4-PAM equi-

probable modulation formats, { 3 , , , 3 }k k k k kA A A A∈ − − + +X , where 5k kA P T= ). Then, 

the input-constellation constrained capacity region is given by [17], [114] 
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 ( )11 ( )

01
( ) 2

k

k k
k jj

TW C P T Nη −−
=

≤ +∑X  for k∈{1,2,…, K}, (6.2) 

where  

 
2 2

2
2 2 2

1 ( ) ( )( ) log log exp
2k

k k

k Y X
x xk

y x y xC Eσ
σ′∈ ∈

 ′ − − − = −   
   

∑ ∑X
X X

X
X

. (6.3) 

In (6.3), Y = X + Z with Z ~ 2(0, )σN  and the conditional expectation EY|X{∙} can be 

computed numerically. The expression (6.2) further allows numerical computation of the 

minimum allowable SNRk = ( )
0( 2)kPT N  for a given spectral efficiency ηk under the 

symbol constellation constraints.  
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Figure 6.4  Input-constellation constrained capacity regions of two-user Gaussian broadcast channel 
for various SNR pairs; SNR1 is 10dB through 40dB, and SNR2 is 10dB 

Figure 6.4 plots BPSK, 4-PAM, and 8-PAM input constrained capacity regions of two-

user Gaussian broadcast channel for varying SNR pairs. In addition, the unconstrained 

Gaussian-input capacity regions are also plotted for comparison purposes. Due to the 
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limited symbol constellations, BPSK, 4-PAM, and 8-PAM limit the maximum achievable 

spectral efficiencies to 2 bits/s/Hz, 4 bits/s/Hz, and 6 bits/s/Hz respectively. As practical 

digital communication systems use finite inpute constellations, we will use the input-

contellation constrained capacity region (6.2) as an appropriate capacity benchmark for our 

simulated broadcast coding systems in section 6.5. 

 
6.2 Proposed FTN Broadcasting and its Channel Model 
 

This section describes a new method of using FTN signaling to achieve transmission over 

Gaussian broadcast channels. First, a system block diagram of the FTN signaling over K-

user continuous-time Gaussian broadcast channel is shown in Figure 6.5.  

 
Figure 6.5  System block diagram of faster than Nyquist broadcasting over a K-user continuous-time 

Gaussian broadcast channel 

At the FTN broadcast transmitter, the K users’ message vectors m1, m2, …, mK are 

separately encoded by user-specific error control encoders, interleaved, and subsequently 

encoder1 

m2 

x1 

x2  
FTN  

broadcast 
modulator x 

c1 

c2 encoder2 

m1 

mapper2 

mapper1 

Π 

Π 

mK 
xK cK encoderK mapperK Π 

FTN 
signal 

x(t) 

y(2) 

y(1) 

sample every  
T/K sec. 

receiver1 

receiver2 

y(K) 
receiverK 

z(1)(t) 

z(2)(t) 

y(1)(t) 

y(2)(t) 

matched 
filter1 

matched 
filter2 

z(K)(t) 

y(K)(t) matched 
filterK 

1m̂  

2m̂  

ˆ Km  

 



 
 
Chapter 6      Faster than Nyquist Broadcasting 174 
 
 
mapped onto separate user-specific signal constellations (e.g., PAM, QAM, or PSK) by the 

mapping devices. The resulting K-user data symbol vectors x1, x2, …, xK are then passed to 

the FTN broadcast modulator which generates the FTN signal x(t) given by 

 ( )( )
1

1 0
( ) [ ] 1

K N

k
k n

x t x n s t nT k T K
−

= =

= − − −∑∑ , (6.4) 

where xk[n] denotes the n-th data symbol of k-th user data symbol vector 

[ ][0], [1], , [ 1]k k k kx x x N= −x  , 1/T is the Nyquist rate of the channel, and s(t) is a T-

orthogonal unit energy modulating pulse33 (assumed to be real valued for brevity). The 

available average transmit power P is split to K non-negative parts P1, P2, …, PK such that 

P =
1

K
kk

P
=∑ , for transmission of each user’s data symbols xk[n]. The FTN signal x(t) is also 

illustrated in Figure 6.6 for the case of three users K = 3.  

 

 

Figure 6.6  Illustration of faster than Nyquist broadcast signal x(t) carrying three-user messages 
(signals corresponding to user 1’s message is shaded for an illustration) 

Note that the modulation symbols are transmitted in the following order: x1[0], x2[0], 

…, xK[0], x1[1], x2[1], …, xK[1], …, x1[N-1], x2[N-1], …, xK[N-1]. Accordingly, we define 

a combined data symbol vector by x = [ 1 2[0], [0], , [0]Kx x x , 1 2[1], [1], , [0]Kx x x , …, 

1 2[ 1], [ 1], , [ 1]Kx N x N x N− − − ], and hence 

 [ ] [ ( 1)]kx n x Kn k= + − , for n = 0, 1, …, N−1 and k = 1, 2, …, K. (6.5) 

Using this definition, we may rewrite (6.4) simply as 

 ( )
1

0
( ) [ ]

KN

n
x t x n s t nT K

−

=

= −∑ , (6.6) 

33  The T-orthogonal modulating pulses s(t) refer to pulses that are orthogonal T-seconds apart, i.e., 

( ) ( ) 0s t s t nT dt
∞ ∗

−∞
− =∫  for all integer n ≠ 0. 

x1[0] 

t 0 T 5T/3 NT 
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where x = [x[0], x[1], …, x[KN-1]]T represents the combined data symbol vector (note the 

resemblance of (6.6) with the definition of the FTN signal x(t) from the earlier chapters).  

We note that unlike in traditional broadcast channel coding where K messages must be 

jointly encoded to produce one data symbol at each symbol interval, FTN can transmit the 

all K data symbols x1[n], x2[n], …,  xK[n] explicitly and separately over the channel by 

increasing the number of channel uses per second. Furthermore, the considered FTN 

broadcasting does not incur any bandwidth expansion for i.i.d. data symbols x[n] as proved 

in section 3.4.  

The transmitted FTN signal x(t) is then broadcast to K separate receivers as shown in 

Figure 6.5, where x(t) gets perturbed by K independent additive white Gaussian noise 

(AWGN) signals z(1)(t), z(2)(t), …, z(K)(t) with zero mean and two-sided power spectral 

densities ( )1
0 2N , ( )2

0 2N , …, ( )
0 2KN , respectively. Without loss of generality, we assume 

that ( )1
0N ≤ ( )2

0N ≤ … ≤ ( )
0

KN , meaning that the receivers are indexed according to increasing 

noise strengths and decreasing quality of signal receptions. As before, the broadcasting 

transmitter is further assumed to know this ordering (but not necessarily the precise noise 

value of each receiver) through channel sounding or periodic feedbacks from receivers. 

At the K individual receivers (see Figure 6.5), the noisy signals y(1)(t), y(2)(t), …, y(K)(t) 

are passed to respective matched filters with the impulse response s(−t) and then sampled 

at every T/K seconds (i.e., at the FTN signaling rate). With the convention that x[n] = 0 for 

n < 0 and n > KN-1, the n-th sample at the k-th receiver, ( )[ ]ky n , can be written as  

 ( ) ( )[ ] [ ] [ ]
L

k k
l

l L
y n h x n l z n

=−

= − +∑ , 0,1,..., 1n KN= − , (6.7) 

where the integer parameter L determines the memory length of the FTN-induced 

intersymbol interference (ISI), which can be appropriately chosen depending on the 

support of the pulse correlation coefficients {hl}: 

 ( ) ( )lh s t s t l T K dt
+∞

−∞
= − ⋅∫ , { }, 1, ,0, ,l L L L∈ − − +   . (6.8) 

The noise sample after the k-th receiver matched filter, ( )[ ]kz n = ( )( ) ( )kz t s t nT K dt
∞

−∞
−∫ , 

is Gaussian distributed with a zero mean and an autocorrelation 
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 ( ) ( ){ } ( )

0[ ] [ ] ( 2)k k k
m nE z n z m N h −= ⋅ , ,m n∈ . (6.9) 

For convenience, the equation (6.7) can also be expressed in a matrix form: 

 ( ) ( )k kH= +y x z , for k = 1,2,…,K, (6.10) 

where ( )ky = ( ) ( ) ( )[ [0], [1], , [ 1]]k k k Ty y y KN− , x = [x[0], x[1], …, x[KN−1]]T with x[n] as in 

(6.5). Note that H is a symmetric Toeplitz matrix defined by , 0,1, , 1[ ]i j i j KNH h − = −=  , i.e., 

 

1 2 ( 1)

1 1 ( 2)

2 1 ( 3)

1 2 3

1
1

1

1

KN

KN

KN

KN KN KN

h h h
h h h

H h h h

h h h

− − − −

− − −

− −

− − −

 
 
 
 ≡
 
 
  







    



, (6.11) 

where hi-j is as defined in (6.8). Finally, the zero mean additive Gaussian noise vector 
( )kz = ( ) ( ) ( )[ [0], [1], , [ 1]]k k k Tz z z KN−  is correlated as seen in (6.9) and has a covariance 

matrix: 

 ( ) ( ){ } ( )
0( ) ( 2)k k kTE N H=z z . (6.12) 

Note that the above correlation occurs due to the sampling of the filtered noise faster than 

the Nyquist rate at the receivers.  

 

6.3 Optimality of the Proposed FTN Broadcast Signaling 
 

In this section, we prove that the considered FTN broadcasting allows achieving the 

capacity boundary of K-user continuous-time Gaussian broadcast channel34. Throughout 

this section, we will assume that the K-user data symbol vector x is zero mean Gaussian 

distributed. We will show that the capacity of the Gaussian broadcast channel is achieved 

with this choice of x, meaning that there is no loss in assuming such an x. We will also 

assume that the strictly bandlimited modulating pulse s(t) = (2W)1/2sinc(2Wt) is being used 

throughout. Furthermore, x has the following KN×KN diagonal covariance matrix Kx: 

34 We have reported a special case of 2-user Gaussian broadcast channel in [78], which has a simpler and 
more compact proof.  
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 1 2( , , , )x N KK I diag PT PT P T= ⊗  , (6.13) 

where ⊗  denotes the Kronecker product of matrices (Definition 2.14), and diag(∙) denotes 

a diagonal matrix with the diagonal entries given by its arguments. Note also that the 

maximum available power P is split into K non-negative parts, P1, P2, …, PK such that 

1

K
kk

P P
=

=∑ , for encoding of the K users’ messages.  

We first present and prove the following two lemmas. 

Lemma 6.1 (Mutual information of partial user input given the rest): Consider the 

discrete-time FTN channel model (6.10) with independent data symbols ( , )xKx 0 N  and 

diagonal covariance matrix Kx given by (6.13). Then, the mutual information between 

random vectors ( )ky and (x1, x2, …, xi), conditioned on (xi+1, xi+2, …, xK), is given by the 

following35 for i = 1, 2, ∙∙∙, K: 

 ( )( ) 1( )
1 1 2 ( )

0

1lim ; , , , , log 1
i

jjk
i i K kN

P
I W

NT N W
=

+→∞

 
 = +
 
 

∑
y x x x x  . (6.14) 

Proof: The proof of Lemma 6.1 can be found in Subsection 6.3.1. ■ 

Lemma 6.2 (Mutual information of ith user input given partial information): Consider 

the discrete-time FTN channel model (6.10) with independent data symbols ( , )xKx 0 N  

and diagonal covariance matrix Kx given by (6.13). Then, for i=1, 2, ∙∙∙, K−1, the mutual 

information between random vectors ( )ky and xi, conditioned on (xi+1, xi+2, …, xK), is given 

by the following: 

 ( )( )
1 2 1 ( )

01

1lim ; , , log 1k i
i i K i kN

jj

PI W
NT P N W

+ −→∞
=

 
 = +
 + ∑

y x x x . (6.15) 

Proof: Applying multiple times the chain rule of mutual information from Lemma 2.2 to 

(6.15), we have the following series of equalities: 

35 When i = K, (6.14) is interpreted as ( ) ( )1 ( ) ( )
2 0lim ( ) ; log 1 ( )k k

N
NT I W P N W−

→∞
= +y x . 
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( )

( )( ) ( )( )

( )
1

( ) ( )
1

1lim ; , ,

1lim ; , , ; , ,

k
i i KN

k k
i K i KN

I
NT

I I
NT

+→∞

+→∞
 = − 

y x x x

y x x y x x



 

 (6.16) 

 
( )( ) ( )( )

( )( ) ( )( )( )

( ) ( )
1 1 1

( ) ( )
1 1 1

1lim ; , , ; , , , ,

; , , ; , , , ,

k k
K i i KN

k k
K i i K

I I
NT

I I

−→∞

+

= −

− −


y x x y x x x x

y x x y x x x x

  

  

 (6.17) 

 ( )( ) ( )( )( ) ( )
1 1 1 1

1lim ; , , , , ; , , , ,k k
i i K i i KN

I I
NT + −→∞

 = − y x x x x y x x x x     (6.18) 

 
1

1 1
2 2( ) ( )

0 0

log 1 log 1
i i

j jj j
k k

P P
W W

N W N W

−

= =
   
   = + − +
   
   

∑ ∑
 (6.19) 

 2 1 ( )
01

log 1 i
i k

jj

PW
P N W−

=

 
 = +
 + ∑

, (6.20) 

where (6.16)-(6.18) are due to applying multiple times the chain rule of mutual 

information from Lemma 2.2, (6.19) is due to Lemma 6.1, and (6.20) follows from 

combining the logarithms. This completes the proof of Lemma 6.2. ■ 

Using the two preceding lemmas, we now prove the optimality of FTN broadcasting 

over K-user Gaussian broadcast channel. 

Theorem 6.1 (Optimality of faster than Nyquist broadcasting): The FTN transmission 

can achieve the capacity boundaries of the continuous-time K-user Gaussian broadcast 

channel with Nyquist rate signaling that is given by: 

 2 1 ( )
01

log 1 k
k k k

jj

P
P N W

η −

=

 
 ≤ +
 + ∑

 for k = 1, 2, …, K. (6.21) 
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Proof: An achievable spectral-efficiency region of the FTN signaling on K-user Gaussian 

broadcast channel (in bits per second per Hz)36 is the set of spectral-efficiency tuples (η1, 

η2, …, ηK) such that 

 ( )( )
1

1lim ; , ,k
k k k KN

I
NTW

η +→∞
≤ y x x x  for k = 1, 2, …, K. (6.22) 

The achievability of the region above follows from the Cover’s coding principle of the 

degraded broadcast channel [28], which can be stated as follows:  

1. The Kth receiver, with the worst SNR among all receivers37, decodes its own message 

xK from its channel observation ( )Ky  while treating all the other users’ messages x1, …, 

xK-1 as another source of noise. Consequently, due to the channel coding theorem, xK 

can be decoded with arbitrarily small probability of error as long as 
1 ( )lim( ) ( ; )K

K KN
NTW Iη −

→∞
≤ y x . 

2. On the other hand, the (K−1)th receiver first decodes the Kth user message xK from its 

channel observation ( 1)K−y , before decoding its own message xK-1. Note that this 

receiver can successfully decode xK with arbitrary small probability of error due to 

having a higher SNR than the Kth receiver (in other words, if the Kth receiver with the 

worst SNR can decode xK, the (K-1)th receiver with better SNR can also decode xK). 

Consequently, the (K-1)th receiver can decode its own message xK-1 with the complete 

knowledge of xK, leading to the requirement: 1 ( 1)
1 1lim( ) ( ; )K

K K KN
NTW Iη − −

− −→∞
≤ y x x . 

3. Successively applying the concept of step 2, i.e., decoding xK, xK-1, …, xk+1 first before 

decoding xk at k-th receiver, leads to the requirements (6.22) for all k = 1, 2, …, K.  

We will now show that the achievable region (6.22) is precisely equal to the capacity 

region of the K-user Gaussian broadcast channel (6.21). This means that the achievable 

region is in fact the capacity region of FTN and the FTN transmission is optimal in the K-

36 Note that the mutual information in bits per second per Hz needs to be normalized by NTW seconds. This 
is because the total time duration of the FTN signal x(t) is about NT seconds (see Figure 6.6), plus (K-1)T/K 
which is negligible compared to NT for N sufficiently large. 
37 This is due to the assumption (1) (2) ( )

0 0 0
KN N N≤ ≤ ≤ . 
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user Gaussian broadcast channel. For the cases k = 1, 2, …, K−1, the rate region (6.22) is 

evaluated to the following expression using Lemma 6.2: 

 ( )( )
1 2 1 ( )

01

1lim ; , , log 1k k
k k K k kN

jj

PI
NTW P N W

+ −→∞
=

 
 = +
 + ∑

y x x x , k = 1,2,…,K−1, (6.23) 

which is precisely equal to the capacity region of Gaussian broadcast channel (6.21). In the 

special case k = K, the spectral-efficiency region (6.22) can be evaluated as follows:  

 ( )( )1lim ;K
KN

I
NTW→∞

y x  

 ( ) ( )( ) ( )
1 1 1 1

1lim ;( , , , ) ; ( , , )K K
K K K KN

I I
NTW − −→∞

 = − y x x x y x x x   (6.24) 

 ( ) ( )( ) ( )
1 1

1lim ; ;( , , )K K
K KN

I I
NTW −→∞

 = − y x y x x x  (6.25) 
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jj
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N W N W

−

=
    = + − +      

∑
 (6.26) 
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−
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−

=
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∑
∑

 (6.27) 

 2 1 ( )
01

log 1 K
K K

jj

P
P N W−

=

 
 = +
 + ∑

,  (6.28) 

where (6.24) is due to the chain rule of mutual information from Lemma 2.2, (6.25) is due 

to the definition of the combined data symbol vector x, (6.26) is by Lemma 6.1, and (6.27) 

is due to 
1

K
jj

P P
=

=∑ . We have therefore established that the capacity region of the FTN 

broadcasting is precisely equal to that of the K-user Gaussian broadcast channel. This 

completes the proof of Theorem 6.1. ■ 

Remark: The expression of the FTN spectral-efficiency regions (6.22) does not involve 

any auxiliary random variables, in contrast to the conventional capacity regions of the 
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degraded broadcast channels38. This is because the number of channel use is increased by 

the FTN signaling, thus allowing all users’ data symbols to explicitly enter the broadcast 

channel. 

 

6.3.1 Proof of Lemma 6.1 
 

The objective of this subsection is to prove Lemma 6.1, which is needed in establishing the 

optimality of faster than Nyquist broadcasting in K-user Gaussian broadcast channel. We 

first state and prove the following two propositions that will be useful in proving Lemma 

6.1.  

Proposition 6.1 (Spectrum of the FTN-induced ISI coefficients h0, h1, …, hKN−1): Let h0, 

h1, …, hKN−1 be the pulse correlation coefficients defined by ( ) ( )lh s t s t l T K dt
+∞

−∞
= − ⋅∫  

for l = 0, 1, …, KN−1  and let us consider s(t)=(2W)1/2sinc(2Wt). Then for p = −(K−1), 

−(K−2), …, K−1, and over a frequency range f ∈[−W, W], 

 2 2j f kT j f pT K
kK p

k
h e eπ π

∞

+
=−∞

=∑ , (6.29) 

where T=1/(2W) is the Nyquist interval, K is a positive integer, and  j= 1−  is the 

imaginary unit.   

Proof of Proposition 6.1: By the definition of the pulse correlation coefficients hl, 

 2 2( ) ( )j f kT j f kT
kK p

k k
h e s t s t kT pT K dt eπ π

∞∞ ∞

+
=−∞ =−∞ −∞

 
= − − 

 
∑ ∑ ∫  (6.30) 

 ( )2 2 2ˆ( ) j kT pT K j f kT

k
s e d eπλ πλ λ

∞∞
+

=−∞ −∞

 
=  

 
∑ ∫ , (6.31) 

38 The capacity region of two-user degraded broadcast channel is the set of rate pairs (R1, R2) such that 
1 1( ; )R I X Y U≤ , 2 2( ; )R I U Y≤ , where U is called auxiliary random variable that is never transmitted over 

the channel [39]. The purpose of U is assist encoding/decoding of two users’ messages M1 and M2 to/from a 
single transmission symbol X. In FTN broadcasting, definition of U is not necessary since all users’ data 
symbols are explicitly transmitted over the channel.  
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where (6.31) is due to the generalized Parseval’s theorem 

( ) ( )a t b t dt
∞ ∗

−∞∫ = ˆˆ( ) ( )a f b f df
∞ ∗

−∞∫  and the delay property of the Fourier transform. For 

s(t)=(2W)1/2sinc(2Wt), its Fourier transform is given by ˆ( )s f = 1 (2 )W  over the 

frequency range f ∈ [−W, W] and zero everywhere else. Hence, (6.31) can be further 

simplified as 

 ( )22 21
2

W
j kT pT Kj f kT j f kT

kK p
k k W

h e e d e
W

πλπ πλ
∞ ∞

+
+

=−∞ =−∞ −

 
=  

 
∑ ∑ ∫  (6.32) 

 ( )221
2

W
j f kTj pT K

kW

e e d
W

π λπλ λ
∞

+

=−∞−

 =  
 
∑∫  (6.33) 

 ( )( )21
2

W
j pT K

kW

e f T k d
W

πλ δ λ λ
∞

=−∞−

 = + − 
 
∑∫  (6.34) 

 ( )( )
1 2

2

1 2

(2 )j p K

k
e k f W dπλ δ λ λ

∞

=−∞−

 = − − 
 
∑∫ , (6.35) 

where (6.33) is due to changing the order of summation and integral, (6.34) is due to the 

Poisson summation formula 2jk t
k

e π∞

=−∞∑  = ( )
k

t kδ∞

=−∞
−∑  and (6.35) is due to a change 

of variables and T=1/(2W). It is not hard to see that only one impulse centered at λ = 

−f/(2W) falls within the integral range of λ∈[−1/2, 1/2] for any f∈[−W, W]. This implies 

that (6.35) can be simplified to 

 ( )
1 2

2 2

1 2

(2 )j f kT j p K
kK p

k
h e e f W dπ πλ δ λ λ

∞

+
=−∞ −

= −∑ ∫  (6.36) 

 2j f pT Ke π= . (6.37) 

This completes the proof of Proposition 6.1.  ■ 

The next proposition deals with the FTN broadcasting scenario when the user data-

symbol vectors xi+1, xi+2, …, xK are all equal to zero for 1 ≤ i ≤ K  (in other words, when 

the power assignments Pi+1, Pi+2, …, PK are all zeros). 
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Proposition 6.2: Let Qi be a (covariance) matrix defined by 

 ( )1 2, , , ,0, ,0i N iQ I diag PT PT PT= ⊗    for 1 ≤ i ≤ K, (6.38) 

where ⊗ denotes the Kronecker product of matrices, IN is the N×N identity matrix, diag(∙) 

denotes a diagonal matrix with diagonal entries given by its arguments, T=1/(2W) is the 

Nyquist signaling interval, and P1, P2, …, Pi are non-negative real numbers. Then for any 

constant c, 

 ( )2 2
1

1 1lim log det log 1
2 2

i

i KN jN j

ccQ H I W P
NT W→∞

=

 
+ = + 

 
∑ , (6.39) 

where H = [sinc((i–j)/K): i,j=1,…,KN] using the strictly bandlimited modulating pulse s(t) 

= (2W)1/2sinc(2Wt). 

Proof of Proposition 6.2: The proof involves asymptotic analysis on the eigenvalues of 

Hermitian block Toeplitz matrices [58]. First, denoting λj{A} by the j-th eigenvalue of the 

matrix A, we rewrite the left-hand-side of (6.39) as 

 ( ) ( )1 2 1 2
2 2

1 1 1 1lim log det lim log det
2 2i KN i i KNN N

cQ H I cQ HQ I
NT NT→∞ →∞

+ = +  (6.40) 

 { }( )
1

1 2 1 2
2

0

1 1lim log 1
2

KN

j i iN j
c Q HQ

NT
λ

−

→∞
=

= +∑ , (6.41) 

where (6.40) is due to the decomposition of the block diagonal matrix iQ = 1 2 1 2
i iQ Q , 

followed by the identity: log2det(AB+I) = log2det(BA+I), and (6.41) is due to the identities: 

det( ) { }jj
A Aλ=∏  and { }j I Aλ +  = 1 { }j Aλ+  for any Hermitian matrix A [55]. Note that 

H and 1 2
iQ  are two instances of Hermitian block Toeplitz matrices since they can be 

written as 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 ( 1)

1 0 ( 2)

1 2 0

N

N

N N

H H H

H H HH

H H H

− − −

− −

− −

 
 
 =  
 
  





   



, 

( )
( )( )

( )( )

(0)1 2

01 2
1 2

01 2

i

i
i

i

Q

QQ

Q

 
 
 
 =
 
 
 
 



, (6.42) 
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where H(m) for m∈ [−(N−1), (N−1)] are K×K Toeplitz matrices and ( )(0)1 2

iQ  is a K×K 

diagonal matrix defined by ( ) ( )(0)1 2
1 2, , , ,0, ,0i iQ diag PT PT PT=   .  

The asymptotic eigenvalues of product of Hermitian block Toeplitz matrices can be 

characterized by the product of so-called ‘spectrum’ of the individual Toeplitz matrices 

[58]. Using this result and again denoting λj{A} by the j-th eigenvalue of the matrix A, 

(6.41) can be evaluated as 

 { }( ) { }( )
1 1

1 2 1 2
2 2

0 0

1 1 1lim log 1 log 1 ( )
2 2

WKN K

j i i jN j jW

c Q HQ c F f df
NT

λ λ
− −

→∞
= =−

+ = +∑ ∑∫ , (6.43) 

where F(f) is a K×K matrix, known as the ‘spectrum’ of the product of block Toeplitz 

matrices, defined as 

 ( ) ( )(0) (0)1 2 ( ) 2 1 2( ) m j fmT
i i

m
F f Q H e Qπ

∞

=−∞

 = ⋅ ⋅ 
 
∑ . (6.44) 

Hence, in order to further evaluate (6.43), we need to determine the eigenvalues of F(f) 

for f∈[−W,W]. First, recall the definition of H(m) as the m-th block matrix of H, i.e., 

 

1 ( 1)

1 ( 2)( )

1 2

mK mK mK K

mK mK mK Km

mK K mK K mK

h h h
h h h

H

h h h

− − −

+ − −

+ − + −

 
 
 =
 
 
 





   



. (6.45) 

By Proposition 6.1, ( ) 2m j fmT
m

H e π∑  can be evaluated as 

 

1 ( 1)

1 ( 2)
( ) 2

1 2

1
1

1

K

K
m j fmT

m
K K

Z Z
Z Z

H e

Z Z

π

− − −

− −∞

=−∞

− −

 
 
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 
 
 

∑





   



, (6.46) 

where 2j f T KZ e π=  is a complex exponential. Therefore F(f) can be written as 

( )F f =

1

0

0

i

PT

PT

 
 
 
 
 
 
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 
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 





   



1

0

0
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 
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. (6.47) 
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We can further show that F(f) is a rank 1 matrix since it can be decomposed as F(f) = uu†, 

where u is a K×1 vector given by 

 1 2
1 2, , , ,0, ,0

Ti
iPT Z PT Z PT Z =  u   . (6.48) 

Therefore, F(f) has only one eigenvalue and this eigenvalue corresponds to the matrix trace 

of F(f) since trace of any non-negative definite matrix is the sum of its eigenvalues [55]. 

That is, 

 { } ( )0
1

( ) ( )
i

j
j

F f tr F f P Tλ
=

= =∑ . (6.49) 

Finally, we substitute (6.49) back to (6.43) and by noting that T = 1/(2W), 

 { }( ) { }( )
1

2 2 0
0

1 1log 1 ( ) log 1 ( )
2 2

W WK

j
jW W

c F f df c F f dfλ λ
−

=− −

+ = +∑∫ ∫  (6.50) 
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1

1 log 1
2

W i

j
jW

c P T df
=−

 
= + 

 
∑∫  (6.51) 

 2
1

log 1
2

i

j
j

cW P
W =

 
= + 

 
∑ , (6.52) 

where (6.50) is due to F(f) having only one non-zero eigenvalue λ0 and (6.51) is due to 

(6.49). This completes the proof of Proposition 6.2.  ■ 

We are now ready present the proof of Lemma 6.1.  

Proof of Lemma 6.1: Let h(∙) be the differential entropy and recall that ( ) ( )k kH= +y x z . 

Due to the definition of the mutual information,  

( )( ) ( ) ( )( ) ( ) ( )
1 1 1 1 1; , , , , , , , , , , ,k k k

i i K i K i i KI h h+ + += −y x x x x y x x y x x x x      (6.53) 

 ( ) ( )( ) ( )
1, ,k k

i Kh h H+= − +y x x x z x  (6.54) 

 ( ) ( )( ) ( )
1, ,k k

i Kh h+= −y x x z  (6.55) 

 ( ) ( )
( )

( ) 0
1 2

1, , log 2 det
2 2

k
KNk

i K
Nh e Hπ+

  
= −   

  
y x x , (6.56) 
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where (6.54) is due to having (x1, x2, …, xK) is equivalent to having given x, (6.55) is due 

to Hx being deterministic when x is known, followed by the translation invariance of the 

differential entropy (Lemma 2.5), and (6.56) is by the known differential entropy 

expression of Gaussian random vector with a covariance matrix ( )
0( 2)kN H⋅ . 

Now denoting m-th column vector of the FTN matrix H by hm and n-th data symbol of 

the user m’s message by xm[n], we express ( )ky  as: 

 ( ) ( )
( 1)

1 1 1
[0] [1] [ 1]

K K K
k k

m m K m m N K m m
m m m

x x x N+ − +
= = =

= + + + − +∑ ∑ ∑y h h h z  (6.57) 

 
1

( )

1 0
[ ]

K N
k

nK m m
m n

x n
−

+
= =

= +∑∑h z .  (6.58) 

Hence, the conditional differential entropy in (6.56) can be completely written as 

 ( )
1

( ) ( )
1 1

1 0
, , [ ] , ,

K N
k k

i K nK m m i K
m n

h h x n
−

+ + +
= =

 
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∑∑y x x h z x x   (6.59) 

 
1

( )

1 0
[ ]

i N
k

nK m m
m n

h x n
−

+
= =

 = + 
 
∑∑h z  (6.60) 

 ( )( )
1 0k

i Kh += = = =y x x , (6.61) 

where (6.60) is again due to the translation invariance of the differential entropy (Lemma 

2.5) and (6.61) follows since (6.60) no longer depends on the input terms xi+1, xi+2, …, xK. 

Hence, the conditional differential entropy can be written as 

 ( ) ( ) ( )( )( ) ( )
1 2 1

1, , log det 2 cov 0
2

KNk k
i K i Kh eπ+ += = = =y x x y x x  , (6.62) 

where ( )
1cov( 0)k

i K+ = = =y x x  denotes the covariance of ( )ky  when xi+1, xi+2, …, xK 

are all zeros, i.e., 

 ( )( ) ( )
1 0cov 0 ( 2)k T k

i K iHQ H N H+ = = = = +y x x , (6.63) 

with Qi as defined as 

 ( )1 2, , , ,0, ,0i N iQ I diag PT PT PT= ⊗   . (6.64) 

Substituting (6.62) back to (6.56) and simplifying, we obtain 
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 ( )( ) ( )
( )

( )
0( )

1 1 2 ( )
0

det ( 2)1 1 1; , , , , log
2 det ( 2)

T k
ik

i i K k

HQ H N H
I

NT NT N H+

 +
 =
 
 

y x x x x   (6.65) 

 ( )( ) 1
2 0

1 1 log det ( 2)
2

k
i KNN Q H I

NT
−= + . (6.66) 

Finally using Proposition 6.2 with c = ( ) 1
0( 2)kN − , we obtain the desired expression. This 

completes the proof of Lemma 6.1. ■ 

 

6.4 Proposed FTN Broadcast Receiver Architectures 
 

In this section, we propose two FTN broadcast receiver architectures that can be used to 

recover the FTN transmitted data intended for K respective receivers. One receiver 

architecture, described in subsection 6.4.1, is based on the optimal maximum a posteriori 

(MAP) equalizer followed by an iterative Turbo equalization. An alternative receiver 

architecture, described in subsection 6.4.2, is based on a Gaussian approximation of the 

intersymbol interference (ISI) followed by successive ISI cancellation.  

 

6.4.1 FTN Receiver Architecture with MAP-based Turbo Equalization 
 

In this subsection, FTN broadcast receiver architecture that is based on Turbo equalization 

principle is described. The k-th receiver architecture of the K-user broadcast channel is 

shown in Figure 6.7 and is described in the following.  
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Figure 6.7  Proposed FTN broadcast receiver architecture based on Turbo equalization principle 

The matched filter outputs ( )ky  are first passed to a maximum a posteriori (MAP) 

equalizer, along with a priori information about the data symbols x (denoted by Pa(x) in 

probabilities). It is assumed that mapping constellations of x1, x2, …, xK, and power 

assignments P1, P2, …, PK are known at all receivers of the broadcast channel. Initially all 

x are assumed to be equi-probable. The MAP equalizer provides soft outputs (or reliability 

values) about the data symbols x given ( )ky . The detailed description of the MAP 

equalizer will be given at the end of this subsection.  

From the soft outputs of the MAP equalizer, the contributions from a priori 

information Pa(x) are removed to obtain an extrinsic information Pe(x) about the data 

symbols x. Subsequently, Pe(x) is de-multiplexed into K users’ data symbols, ( )e KP x , 

1( )e KP −x , …, 1( )eP x , by following the definition of x in (6.5). Of these, only ( )e iP x  for 

i∈{k, k+1, …, K} needs to be processed since the remaining data x1, x2, …, xk-1 cannot be 

properly decoded by the k-th receiver due to the degraded broadcast channel setup, as 

described in Cover’s degraded broadcast coding principle [28]. The extrinsic information 

about the i-th user data symbols Pe(xi) are then de-mapped into binary bit format, which 

are further de-interleaved and (Turbo) decoded. The decoder provides reliability values 

about the codewords ci and the corresponding message bits mi for i = {k, k+1, …, K}. 
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In the second and subsequent iterations of Turbo-equalization, the extrinsic 

information Pe(ci) for i = {k, k+1, …, K} are re-interleaved, re-mapped, and multiplexed 

together to form an updated a-priori information Pa(x) about the data symbols x. The a-

priori information Pa(x) is then fed back to the MAP equalizer for improved estimates 

about the data symbols x. These steps continue for a prescribed number of iterations or 

until some convergence is reached. 

We now fully describe the maximum a posteriori (MAP) equalizer in Figure 6.7 that is 

suitable for the considered FTN broadcast system. The MAP equalizer described herein is 

not standard in the sense that it must 1) handle the nonzero correlations of the noise 

samples ( )kz  and 2) handle (possibly) different modulation formats of each user’s data 

symbols.  

We start from the FTN broadcast channel model (6.7) at the k-th receiver; reproduced 

below for convenience: 

 ( ) ( )[ ] [ ] [ ]
L

k k
l

l L
y n h x n l z n

=−

= − +∑ , 0,1,..., 1n KN= − , (6.67) 

where x[n] is the nth symbol of the combined data symbol vector x and L is the ISI memory 

length that is equal to or larger than K. This channel model is an instance of the 

Ungerboeck observation model as discussed in subsection 2.3.2, and the a-posteriori 

probabilities p(x[n]|y(k)) are given by  

( ) ( ) 2
0

10
[ ]

2 1( [ ] ) Pr( [ ]) exp [ ] [ ] [ ] [ ] [ ] ,
2

L
k k

l
li

excluding x n

p x n x i x i y i x i h x i x i l h
N =

  
∝ − − −  

  
∑ ∑∏

x
y

 (6.68) 

where ∝  denotes ‘proportional to’.  

For the purpose of building a MAP equalizer that can efficiently compute (6.68), an 

appropriate trellis diagram is first constructed from a block diagram shown in Figure 6.8. 

The block diagram admits K-tuple of input symbols [x[n], x[n+1], …, x[n+K-1]] and the 

corresponding states are the all possible combinations of L consecutive input x[n]. Note 

that only L registers are needed in the block diagram (as opposed to 2L+1, which is the full 

memory of the observation model) since the expression (6.68) does not depend on hl for 
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l<0 by accounting for the symmetry of hl (i.e., hl = h−l). For example, the trellis diagrams 

for two users (K=2) when both users are using antipodal modulations and the ISI memory 

length L = 2~4 are shown in Figure 6.9. 

 

 

Figure 6.8  A block diagram for constructing an appropriate trellis diagram of the FTN broadcast 
channel model; Only L registers are needed (and not 2L+1) due to the symmetry of hl and 
the a-posteriori probabilities in (6.68) depending only on h0, h1, …, hL 

  

Figure 6.9  Trellis diagram of the FTN broadcast channel model (6.67) for 2 users (K=2) where both 
users are using antipodal modulations x1[n]=±a and x2[n]=±b, and ISI memory lengths  are 
(a) L=2, (b) L=3, or (c) L=4; Input to each trellis edge is the pair (x[n],x[n+1]) 
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Given the trellis representation, the MAP symbol detection of the FTN broadcast 

channel model (6.67) can be accomplished using the BCJR algorithm with suitable trellis 

edge metrics (see subsection 2.3.2 for more details). First let S  be a set of states in a trellis 

stage. Then the edge-metric of the trellis-edge connecting the two states s∈S  and s’∈S  

at the m-th trellis-stage is given by39  

 
( 1)

( ) 2
0

10

2 1( , ) Pr( [ ]) exp [ ] [ ] [ ] [ ] [ ]
2

Km K L
k

m l
li Km

s s x i x i y i x i h x i x i l h
N

γ
+ −

==

  ′ = − − −  
  

∑∏ , (6.69) 

for m∈{0, 1, …, N-1}, where each trellis-stage accounts for the FTN signal transmission 

over T seconds (i.e., time duration for K data symbol transmissions).  

The computational complexity of the described MAP symbol detection scales 

quadratically with the total number of states of a trellis stage, | S |, and is given by the 

following Big-O notation: O(KN∙| S |2). The total number of states of a trellis stage | S | can 

be derived as follows. First let k-th user’s data symbols xk[n] use symbol constellation kX , 

i.e., xk[n] k∈X . Referring to the block diagram in Figure 6.8, the states of a trellis stage are 

the all possible combinations of L consecutive inputs x[n]. Therefore, the total numbers of 

states for L ≥ K are given by  
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  (6.70) 

In other words, | S | scales exponentially with the length of the ISI memory L.  

39 The only difference of (6.69) compared to (2.34) of the single user case is the appearance of the product 
over index i. This product is needed to account for the K-tuple inputs in the trellis diagrams. 
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For example, for two-user broadcast channel (K=2) with ISI memory length L=6, when 

first user and second user are using BPSK and 4-PAM, respectively ( 1X =2 and 2X =4), 

the number of states is given by (2∙4)∙(2∙4)∙(2∙4) = 512. The overall computational 

complexity of the MAP equalizer then becomes O(KN∙5122) ≈ O(5×105∙N), which may be 

prohibitively large for practical implementations in the current state-of-the-art VLSI or 

FPGA based communication system hardware. Consequently, the presented MAP 

equalizer design is appropriate only for small K and L. For moderate to large K and L, the 

Gaussian-approximation based receiver architecture proposed in the following subsection 

6.4.2 is more appropriate due to its linear computational-complexity. 

 

6.4.2 Using Successive Interference Cancellation and Gaussian 
Approximation 

 
The FTN broadcast receiver architecture we propose in this subsection is based on the 

Gaussian approximation and successive cancellation of the FTN-induced ISI. The k-th 

receiver architecture of the K-user broadcast channel and the detailed descriptions of the 

individual components are shown Figure 6.10.  
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(a) 

 
 (b)  

Figure 6.10 Proposed FTN broadcast Turbo receiver architecture based on a Gaussian approximation 
and a successive cancellation of intersymbol interference; (a) the overall structure of the 
Turbo receiver architecture; (b) detailed description of the decoderi and re-encoderi 
modules 

First, the matched filter outputs at the k-th receiver ( )ky  are de-multiplexed into K sub-

vectors, ( )k
Ky , ( )

1
k

K−y , …, ( )
1

ky , where ( )k
iy  is defined for i∈{1, 2, …, K} by 

 ( ) ( ) ( ) ( ) ( )[0], [1], [2], , [ 1]k k k k k
i i i i iy y y y N = − y   (6.71) 

 ( ) ( ) ( ) ( )[ 1], [ 1], [2 1], , [ ( 1) 1]k k k ky i y K i y K i y K N i = − + − + − − + −  . (6.72) 
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The sub-vector ( )k

iy  represents noisy observation about the data symbol vector xi that is 

intended for the ith receiver. Furthermore, the term ( )[ ]k
iy n  can be expressed explicitly as a 

function of xi[n] as 

 [ ]
1

( ) ( )[ ] [ ] 1
i

k k
i mK j i j

j i K m
y n h x n m z Kn i

− ∞

+ −
= − =−∞

= − + + −∑ ∑ , (6.73) 

for i∈{1, 2, …, K} and n∈{0, 1, …, N−1}, which is due to the expression of ( )[ ]ky n  in 

(6.7) and the definition of xi[n] in (6.5). But for any T-orthogonal unit energy modulating 

pulses s(t), 

 
1 0
0 0,mK

if m
h

if m
=

=  ≠
 (6.74) 

by the definition ( ) ( )lh s t s t l T K dt
+∞

−∞
= − ⋅∫ . Therefore, (6.73) can be rewritten as 

 [ ]
1 1

( ) ( )

1
[ ] [ ] [ ] [ ] 1

i
k k

i i mK j i j mK j i j
j i K m j m

y n x n h x n m h x n m z Kn i
− ∞ − ∞

+ − + −
= − =−∞ = =−∞

= + − + − + + −∑ ∑ ∑ ∑ . (6.75) 

Furthermore, due to (6.74), the noise samples ( )[ 1]kz Kn i+ −  for n∈{0, 1, …, N-1} are 

independent zero mean Gaussian distributed with variance of ( )
0 2kN . 

In Figure 6.10a, the proposed k-th FTN receiver in the K-user broadcast channel 

proceeds in multiple decoding stages, decoding from the most powerful FTN sub-stream 

vector ( )k
Ky  in the top branch and gradually working its way down to the desired FTN sub-

stream vector ( )k
ky  in the bottom branch. (Without loss of generality, the depicted decoding 

structure assumes that the assigned powers are chosen such that PK ≥ PK-1 ≥ … ≥ P1.) It is 

further assumed that power assignments P1, P2, …, PK are known at all K receivers of the 

broadcast channel. 

The k-th FTN receiver first processes ( )k
Ky  (in the top branch after the de-multiplexer in 

Figure 6.10a), which represents a noisy observation about the data symbol vector xK that is 

intended for the K-th receiver. Due to (6.75), the n-th element of ( )k
Ky  is given by 

 [ ]
1

( ) ( )

1
[ ] [ ] [ ] 1

K
k k

K K mK j K j
j m

y n x n h x n m z Kn i
− ∞

+ −
= =−∞

= + − + + −∑ ∑ . (6.76) 
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The term 1

1
[ ]K

mK j K jj m
h x n m− ∞

+ −= =−∞
−∑ ∑  on the right-hand-side of (6.76) represents the ISI 

to the desired symbol xK[n] and is approximated by a Gaussian random variable using the 

Central Limit Theorem. Consequently, the receiver treats the ISI term as additional noise 

and approximates it by a Gaussian random variable with zero mean and 
21

1

K
mK j K jj m

h P T− ∞

+ −= =−∞∑ ∑  variance (due to the variance of xk[n] being PkT). Therefore, a 

posteriori probabilities of K-th user’s data symbols xK[n] can be approximated by 

 ( ) ( )
( ) 2

( )
2

( [ ] [ ])Pr [ ] [ ] Pr [ ] exp
2

k
k K K

K K K
K

y n x nx n y n c x n
σ

 −
≅ ⋅ − 

 
, (6.77) 

where σK
2 denotes the variance of noise plus ISI, i.e., 

212 ( )
0 1

2 Kk
K mK j K jj m

N h P Tσ − ∞

+ −= =−∞
= +∑ ∑ , Pr(xK[n]) is a priori probability of xK[n], and c 

is a normalization constant that can be easily computed by the law of total probability. 

Using this Gaussian approximation (6.77), the decoderK in Figure 6.10 computes estimates 

about K-th user messages ˆ Km  by taking a hard decision, and these are then re-encoded to 

produce estimates about K-th user’s data symbols ˆ Kx .  

Next, the receiver processes ( )
1

k
K−y  (in the second branch after the de-multiplexer in 

Figure 6.10). The estimates ˆ Kx  in the last step are used to recreate an ISI term 

1 ˆ [ ]mK Km
h x n m− −∑ , which is then subtracted from ( )

1[ ]k
Ky n−  to obtain 

 [ ]
2

( ) ( )
1 1 1 1

1

ˆ[ ] [ ] [ ] [ ] 1
K

k k
K mK K K mK j K j

m j m
y n h x n m x n h x n m z Kn i

∞ − ∞

− − − + − −
=−∞ = =−∞

− − ≅ + − + + −∑ ∑ ∑ . (6.78) 

Note that if the estimates ˆ Kx  from the last step were without any error, (6.78) becomes an 

equality. Subsequently, xK-1[n] is decoded while approximating the rest of the terms in 

(6.78) as a Gaussian distributed noise with 
222 ( )

1 0 11
2 Kk

K mK j K jj m
N h P Tσ − ∞

− + − −= =−∞
= +∑ ∑  

variance. The estimates about the message intended for (K-1)th receiver, 1ˆ K−m , are then 

obtained by taking a hard decision, which are further re-encoded to produce 1ˆ K−x  for later 

processing.  
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Generally, consider the step when ( )k
iy  is being processed with regard to the i-th user 

data xi. At this time, the symbol estimates ˆ Kx , 1ˆ K−x , …, 1ˆ i+x  are already available from 

the previous steps and the corresponding ISI terms can be estimated as 
1

ˆ [ ]mK j i j
j i K m

h x n m
− ∞

+ −
= − =−∞

−∑ ∑ . These are then subtracted from ( )[ ]k
iy n  to yield (using (6.75)) 
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1 1
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1

ˆ[ ] [ ] [ ] [ ] 1
i

k k
i mK j i j i mK j i j

j i K m j m
y n h x n m x n h x n m z Kn i

− ∞ − ∞

+ − + −
= − =−∞ = =−∞

− − ≅ + − + + −∑ ∑ ∑ ∑ , (6.79) 

which becomes an equality if the estimates ˆ Kx , 1ˆ K−x , …, 1ˆ i+x  are all without errors. Again, 

due to the Central Limit Theorem, the residual ISI term 1

1
[ ]i

mK j i jj m
h x n m− ∞

+ −= =−∞
−∑ ∑  is 

approximated by a zero mean Gaussian random variable with a variance 
21

1

i
mK j i jj m

h P T− ∞

+ −= =−∞∑ ∑ . Consequently, a posteriori probabilities of data symbols 

intended to i-th receiver xi[n] can be approximated by 

 ( ) ( )
( ) 2

( )
2

( [ ] [ ])Pr [ ] [ ] Pr [ ] exp
2

k
k i i

i i i
i

y n x nx n y n c x n
σ

 −
≅ ⋅ − 

 
, (6.80) 

where σi
2 denotes the variance of noise plus ISI, i.e., 

212 ( )
0 1

2 ik
i mK j i jj m

N h P Tσ − ∞

+ −= =−∞
= +∑ ∑ , Pr(xi[n]) is a priori probability of xi[n], and c is a 

normalization constant. Using the Gaussian approximation (6.80), the decoderi computes 

estimates about i-th user messages ˆ im  by taking a hard decision. These estimated i-th user 

messages ˆ im  are then re-encoded to produce estimates about i-th user’s data symbols ˆ ix . 

These steps continue from i = K all the way down to i = k, where the decoderk simply takes 

the hard decision ˆ km  since it is the message intended for the considered k-th receiver.  

We note that the K-th receiver in the K-user broadcast channel simply apply a single 

user decoding of its own message ˆ Km . On the other hand, the receiver 1 in the K-user 

broadcast channel performs the decoding of all K users’ messages while successive 

canceling the corresponding ISIs, in order to obtain an ISI-free AWGN channel 

observation of the desired symbols x1[n].  
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From the implementation point of view, only one decoder and re-encoder would be 

needed if all user data are encoded using the same error-control-codes. Furthermore, each 

de-mapper in the proposed FTN receivers needs to only operate on the signal constellation 

of individual user symbols (e.g., binary constellation if all users are using BPSK symbols) 

and not on the expanded joint constellation of all users’ symbols (e.g., 2K-ary constellation 

if all K users are using BPSK symbols). This significantly reduces the implementation 

complexity and allows supporting a large number of receivers in the broadcast channel.  

 

6.5 Simulation Results 
 

In this section, we report simulation performances of the FTN broadcast receiver 

architectures proposed in subsection 6.4.1 and subsection 6.4.2. These simulation results 

will be compared to the capacity limits of the Gaussian broadcast channel.  

In all simulations throughout this section, the modulating pulses s(t) were chosen to be 

the square-root raised cosine with the roll-off factor β=0.22, used in, e.g., WCDMA 

standard (with time-truncation to ±6T about t=0, signaling interval T=(1+β)/(2W), and W = 

1 kHz). Figure 6.11 depicts the modulating pulse s(t) in time domain and the 

corresponding pulse correlation coefficients ( ) ( )lh s t s t l T K dt
+∞

−∞
= − ⋅∫ . We can observe 

that hl for |l| > 5 are small in magnitude (less than 0.05) and hence can be ignored by 

setting L=5 at the receiver. It was also verified by simulations that fixing L=5 indeed 

caused only negligible performance loss. 
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       (a)          (b) 

Figure 6.11  Characteristics of the time-truncated square-root raised cosine modulating pulse s(t) with 
the roll-off factor β=0.22; (a) plotting in normalized time t/T in seconds where 
T=(1+β)/(2W); (b) plotting the corresponding pulse correlations hl 

6.5.1 Simulation Results of Turbo Equalization based FTN Architecture 
 

First, we report the simulation results of the Turbo-equalization based FTN broadcast 

architecture that was presented in subsection 6.4.1, for 2-user Gaussian broadcast channel. 

All interleavers were pseudorandom with packet length N=2×104 and both users were 

using binary antipodal signaling. The power assignments were P1=0.2 and P2=0.8 (about 6 

dB difference between the two). Different power ratios were also tested and yielded 

similar results.  
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(b) 

Figure 6.12  Simulated performances of Turbo-equalization based receiver architecture at 2 receivers 
of the broadcast channel using rate 1/3 Turbo encoders with power assignments P1=0.2 
and P2=0.8; (a) BER curves with respect to the binary-input constrained capacities of the 
Gaussian broadcast channel (in dotted lines); (b) Achieved spectral efficiency pairs at the 
converging SNRs (i.e., SNR at the BER = 10-4) 

Figure 6.12 shows the simulated BER performances and the corresponding achieved 

spectral-efficiency pairs when the 2 encoders at the FTN broadcast transmitter were the 
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rate 1/3 UMTS parallel Turbo codes [153]. All BER curves of the simulated FTN 

broadcast systems (see Figure 6.12a) reached the target BER=10−4 within 1 dB from the 

corresponding binary-input constrained capacities of the Gaussian broadcast channel. 

Figure 6.12b shows the corresponding achieved spectral-efficiency pairs with respect to 

the binary-input constrained capacity region at the converging SNR pairs. The results 

demonstrate that the designed FTN broadcast system can be superior to the time-sharing 

based broadcasting system and can perform close to the capacity boundaries of the 

Gaussian broadcast channel. 

Moreover, a higher rate FTN broadcasting system has been also simulated by using the 

rate 1/2 parallel Turbo codes by Berrou et al. [18] at the FTN broadcast transmitter. Figure 

6.13 shows the corresponding simulated BER performances and the achieved spectral-

efficiency pairs. These results again demonstrate the near-capacity performances of the 

designed FTN broadcast system.  
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(b) 

Figure 6.13  Simulated performances of Turbo-equalization based receiver architecture at 2 receivers  
of the broadcast channel when the Turbo encoders are now rate 1/2; (a) BER curves with 
respect to the binary-input constrained capacities of the Gaussian broadcast channel (in 
dotted lines); (b) Achieved spectral efficiency pairs at the converging SNRs  (i.e., SNR at 
the BER = 10-4) 
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6.5.2 Simulation Results of Gaussian-approximation based FTN 

Architecture 
 

We now report the simulated performances of the Gaussian-approximation based FTN 

broadcast architecture that was presented in subsection 6.4.2, in 2-user Gaussian broadcast 

channel (K=2). The system setup is described below: 

• Both users were using binary antipodal modulations ( { , }k k kP T P T∈ − +X  where k = 

1, 2), and P1=0.02 and P2=0.98 were the power assignments between the users (about 

17 dB difference)40.  

• All interleavers were pseudorandom and the packet lengths were N = 105.  

• Stephan ten Brink’s rate 1/2 serial Turbo code [142] is known to perform very close to 

the capacity limit of the AWGN channel. This Turbo encoder (without the doping) has 

been used at the FTN broadcast transmitter. 

• The achieved spectral efficiency for each user was ηk = Rcoding∙Rmodulation∙Rsignaling/W = 

(1/2)∙(1)∙(1/T)/W = (1/2)∙2/(1+β) = 0.8197 bits/s/Hz.  

As shown in Figure 6.14a, the BER curves at the 2 receivers reach the target 

performance BER=10−4 at SNR1 = 17.64 dB and SNR2 = 0.826 dB, respectively, which are 

less than 0.5 dB away from the respective binary-input constrained capacities. Figure 

6.14b plots the achieved spectral efficiency pair (η1, η2) with respect to the capacity region 

of the Gaussian broadcast channel. We observe that the designed FTN broadcast system 

significantly outperforms to the time-sharing broadcasting in this case and can operate 

very close to the capacity boundary of the Gaussian broadcast channel. 

 

40 We simulated heavily asymmetrical channel conditions between the receivers, which led to the heavily 
skewed power splitting (e.g., P1=0.02, P2=0.98). This was motivated by observing that when the two channel 
qualities are the same (i.e., N0

(1)=N0
(2)), coding in Gaussian broadcast channel is unnecessary as time-sharing 

also achieves the capacity, as discussed in section 6.1. Nevertheless, more balanced power assignments such 
as P1=0.2 and P2=0.8 were also tested and yielded near capacity results.  

 

                                                 



 
 
Chapter 6      Faster than Nyquist Broadcasting 203 
 
 

17 17.2 17.4 17.6 17.8

10
-4

10
-3

10
-2

10
-1

10
0

SNR1 = PT/(N0
(1)/2) (dB)

B
E

R
1

bi
na

ry
-in

pu
t c

on
st

ra
in

ed
 c

ap
ac

ity
 =

 1
7.

17
5 

dB

0.465 dB

 

 

0.2 0.4 0.6 0.8 1

10
-4

10
-3

10
-2

10
-1

10
0

SNR2 = PT/(N0
(2)/2) (dB)

B
E

R
2

 
 

0.
37

1 
dB

 0.455 dB

 

 

50 iterations 60 iterations

Rx 2, antipodal modulation, P2=0.98
spectral eff iciency=0.8197 b/s/Hz

Rx 1, antipodal modulation, P1=0.02
spectral eff icency = 0.8197 b/s/Hz

 
(a) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

spectral eff η1 (bits/s/Hz)

sp
ec

tra
l e

ff 
η 2

 (b
its

/s
/H

z)

at SNR1 = 17.64 dB
   SNR2 = 0.826 dB

 

 

achieved spectral eff iciency
Gaussian-input capacity
binary-input constrained capacity
time-sharing capacity limit

(η1, η2) =(0.8197,0.8197)

 
(b) 

Figure 6.14  Simulated performances of the Gaussian approximation based receiver architecture in 2-
user Gaussian broadcast channel, where both users using binary antipodal modulation 
with power assignments P1=0.02 and P2=0.98; (a) BER curves at 2 receivers with respect 
to the binary-input constrained capacities of the Gaussian broadcast channel (in dotted 
lines); (b) Achieved spectral efficiency pairs at the converging SNRs (i.e., SNR at the 
BER=10-4) 
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We also simulated the Gaussian-approximation based FTN broadcast architecture 

using a higher order modulation (first user message is now mapped to 8-PAM 

constellation with ‘d21’ mapping [143] whereas the second user message is still mapped to 

the binary antipodal constellation). The system setup is described below: 

• The power allocations were P1=0.03 and P2=0.97 (about 15 dB difference) and packet 

lengths were N=5×104. 

• The encoder1 at the transmitter was a rate 1/2 recursive systematic convolutional code 

with memory 2, described by code polynomials (Gr,G)=(07,05) in octal values [143], 

where Gr stands for the recursive feedback polynomial41.  

• The encoder2 was still the rate 1/2 serial Turbo code (without the doping) [142]. 

• The spectral efficiencies of the first and second users were η1 = (1/2)∙log2(8)∙(1/T)/W = 

2.459 and η2 = (1/2)∙(1)∙(1/T)/W = 0.8197 in bits/s/Hz.  

Figure 6.15 shows simulated BER curves of the FTN broadcast receivers42 and the 

corresponding achieved spectral efficiency pair with respect to the Gaussian broadcast 

capacity region. Again, we can observe that the simulated FTN broadcast system clearly 

outperforms the time-sharing broadcasting, while the results also indicate a potential of 

closely approaching the capacity boundary of the Gaussian broadcast channel at high 

spectral efficiencies. 

 

41 Stephan ten Brink, using the EXIT chart analysis, showed that this memory-2 code matches well with 8-
PAM with ‘d21’ mapping [143]. However, it still performs 1.8 dB away from the AWGN capacity limit.  
42  The 1.592 dB gap between the receiver 1’s BER performance and the corresponding 8-PAM input 
constrained capacity in Figure 6.15 is mainly due to the inherent limitations in the Turbo decoder design (i.e., 
memory-2 (Gr,G)=(07,05) in concatenation with 8-PAM constellation with ‘d21’ mapping is known to 
perform about 1.8 dB away from the AWGN capacity [143]). One way to improve this performance further 
is by utilizing the Turbo-trellis coded modulation [117], which is known to perform very close to the capacity 
limits at high spectral efficiencies.  
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Figure 6.15  Simulated performances of Gaussian-approximation based receiver architecture when the 
first user is now using 8-PAM modulation (with ‘d21’ mapping) and the second user is 
still using binary antipodal modulation, with power assignments P1=0.03 and P2=0.97; (a) 
BER curves at 2 receivers with respect to the 8-PAM and binary-input constrained 
capacities (in dotted lines); (b) Achieved spectral efficiency pairs at the converging SNRs 
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6.6 Chapter Summary 
 

In this chapter, we proposed using the faster than Nyquist (FTN) signaling to achieve 

transmission over continuous-time broadcast channels. Furthermore, we have shown that 

the FTN broadcasting is capacity-wise optimal in the Gaussian broadcast channel, proving 

that FTN can be a viable alternative to other capacity-achieving techniques in broadcast 

channels (e.g., superposition coding and dirty paper coding). Consequently, two Turbo-

coded FTN broadcast transceiver architectures have been designed, which are based on the 

Turbo equalization and Gaussian-approximation of ISI, respectively. Simulation results 

indicated that the designed FTN broadcast systems can outperform traditional time-or 

frequency division broadcasting and have the potential to perform close to the capacity 

boundaries of the Gaussian broadcast channel. The results in this chapter open a potential 

avenue for future research on the FTN signaling in various network settings involving 

multiple users and/or nodes.  
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Chapter 7  
 
Conclusion 
 

 

This work has been motivated by an explosive growth of data intensive applications over 

spectrally confined networks, such as video on demand, ubiquitous social networking and 

streaming live video services. These applications create a need for more spectrally 

efficient communication designs. To improve traditional Nyquist rate digital transmission 

systems, this dissertation studied the faster than Nyquist (FTN) rate signaling over 

continuous-time bandlimited channels as a means to trade processing complexity for 

improved spectral efficiency. The main goal of this work has been to develop a 

comprehensive treatment of the FTN signaling with a strong emphasis on its information-

theoretic analysis in various channel setups and corresponding coding design to allow 

approaching the FTN capacity limits. 

 

7.1 Research Contributions 
 

This research has mainly contributed to advancing the knowledge on how digital 

information rates scale with the signaling rates in various communication settings over 

continuous-time channels. The three major research contributions have been the 

identification of the potential capacity benefits in precoded FTN signaling (Chapter 5), the 

establishment of the optimality of FTN signaling over Gaussian broadcast channels 

(Chapter 6), and the proposal of near-capacity FTN coding architectures (Chapter 4 and 

Chapter 6). 
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The research was mainly divided up into the following five parts: 

• Formulation of discrete-time FTN channel models; 

• Power spectral analysis of various FTN signals; 

• Capacity analysis and coding designs for non-precoded FTN;  

• Analysis of precoded FTN and identifying its merits;  

• Exploration of FTN signaling over broadcast channels.  

Furthermore, Table 7.1 summarizes the individual research contributions.  

Table 7.1  Summary of presented research contributions 

Objective Research Contributions 

Formulation of FTN 

channel models 

(Chapter 3) 

- Formulated discrete-time FTN channel models for AWGN and linear Gaussian 

channel transmissions with generalized waveforms 

- Developed power transmission constraints in matrix equations that is suitable for 

any general FTN signals 

- Analyzed properties of FTN through the eigenvalue analysis of the FTN matrix H 

Spectral analysis of 

various FTN signals 

(Chapter 3) 

- Derived exact power spectral density (PSD) expressions of convolutionally 

precoded FTN signals 

- Studied PSD of more general, linearly precoded FTN signals 

- Identified sufficient conditions on FTN to prevent spectral broadening 

Analysis of non-

precoded FTN 

signaling 

(Chapter 4) 

- Analyzed capacity of independent non-identically distributed FTN signaling 

- Proposed a low-complexity non-precoded FTN system architecture that offers 

significant implementation complexity savings at high spectral efficiencies 

Analysis of precoded 

FTN signaling 

(Chapter 5) 

- Derived the capacity-wise optimal precoding structure for FTN signaling 

- Analyzed the capacity of optimally precoded FTN signaling, which revealed 

significant capacity potentials in the FTN signaling 

- Formulated capacity versus computer precision tradeoffs for FTN 

- Analyzed capacity of convolutional precoded FTN signaling 

- Extended capacity analysis to LTI Gaussian channel setup, in which the capacity 

admits the classical water-filling solution 
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FTN broadcasting 

(Chapter 6) 

- Proposed the novel concept of FTN broadcasting, which extends the FTN concept 

to a network setting for the first time 

- Showed FTN signaling over Gaussian broadcast channel is capacity-wise optimal 

- Proposed two transceiver architectures based on the FTN broadcasting, which 

showed the potential to perform close to the capacity boundaries of Gaussian 

broadcast channel 

 

7.2 Directions for Future Work 
 

This dissertation has revealed that there is a significant potential to the FTN signaling and 

opened an avenue for more exciting research in new directions. Future research work 

related to the presented FTN research results are listed below: 

• The capacity potential in the optimally precoded FTN signaling can be further 

exploited with the technological advancements in the computer memory.  

• The proposed FTN system can be implemented in hardware for actual field-tests. Two 

of the most attractive applications for the FTN systems wireless broadcast networks 

and fiber-optic communications systems.  

• With its ability to multiplex more than one user’s data in the time-domain, the 

proposed FTN broadcasting technique can be further exploited in various other 

network settings involving multiple users. For instance, the concept of FTN 

broadcasting can be applied to the interference channels or relay networks that involve 

multiple transmitters and receivers.  

• The FTN channel model resembles many other practical digital communication setups 

including, but not limited to, inter-symbol interference channels, multiple-access 

channels with asynchronous transmitters, MIMO channels with asynchronous signal 

transmissions between antennas, and signal transmission over channels with time-

varying channel bandwidths. Due to the similarities in these channel models, the 

analysis from this dissertation can be used to study these important, but non-trivial, 

communication scenarios. 
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Appendix A  
 
Proofs of Selected Information Theory 
Results 
 

 

For completeness purposes, objective of this appendix is to provide proofs to selected 

(well-known) information theoretic results on the differential entropy function − namely, 

the differential entropy of a Gaussian random vector in Lemma 2.3, entropy maximizing 

distribution under the average power constraint in Lemma 2.4, and translation invariance 

of differential entropy in Lemma 2.5 − as well as the capacity of bandlimited Gaussian 

channel in Theorem 2.1. These results are used throughout the information theoretic 

analysis in Chapter 4, Chapter 5, and Chapter 6.  

Lemma 2.3 (Differential entropy of Gaussian): The differential entropy of a circularly 

symmetric complex Gaussian vector z with invertible covariance matrix Kz is 

2( ) log (( ) det )n
zh e Kπ=z . 

Proof: The differential entropy of n-by-1 vector z is (by Definition 2.2 and Definition 2.3) 

 ( ) ( ){ } ( ) ( ) ( ){ }1
2

1log ln det
ln 2

† n
z zh E p E K Kπ−= − = − − − − −z zz z z μ z μ  (A.1) 

 ( ) ( )( ){ } ( )1
2

1 log det
ln 2

† n
z zE tr K Kπ−= − − +z z μ z μ  (A.2) 

 ( )( )( ){ } ( )1
2

1 log det
ln 2

† n
z zE tr K Kπ−= − − +z z μ z μ  (A.3) 

 ( )( ){ }( ) ( )1
2

1 log det
ln 2

† n
z ztr K E Kπ−= − − +z z μ z μ  (A.4) 
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 ( ) ( )1
2

1 log det
ln 2

n
z z ztr K K Kπ−= +  (A.5) 

 ( ) ( )( )2 2 2log log det log detnn n
z ze K e Kπ π= + = , (A.6) 

where (A.2) is due to trace of a constant is the constant, (A.3) is by the trace identity tr(AB) 

= tr(BA), (A.4) is by exchanging order of trace and expectation operators, and (A.5) 

follows from the definition of the covariance matrix. This completes the proof.  ■ 

Lemma 2.4 (Gaussian as entropy maximizing distribution): Let x be a circularly 

symmetric complex Gaussian vector with n×n covariance matrix Kx. Also let y be another 

random vector, not necessarily Gaussian, with the same covariance. Then h(y) ≤ h(x) with 

equality if and only if y is also circularly symmetric Gaussian. 

Proof: We start by evaluating the difference in the differential entropies: 

 ( ) ( ) ( ){ } ( ){ }2 2log logh h E p E p− = − +x x y yx y x y . (A.7) 

But since Cov(x) = Cov(y) = Kx, for a nonsingular Kx, 

 ( ){ } ( ) ( )( ) ( )1
2 2 2log log log detn

x xE p e tr K Cov Kπ−− = +x x x x  (A.8) 

 ( ) ( )( ) ( )1
2 2log log detn

x xe tr K Cov Kπ−= +y  (A.9) 

 ( ){ }2logE p= − y x y . (A.10) 

Therefore, (A.7) can be written as 

 ( ) ( ) ( )
( )2log

p
h h E

p
  − =  
  

y
y

x

y
x y

y
 (A.11) 

 ( )
( )

1 1
ln(2)

p
E

p
  ≥ − 
  

x
y

y

y
y

 (A.12) 

 ( )( )1 1 0
ln(2)

p d= − =∫ x y y , (A.13) 

where the inequality in (A.12) is due to the log-inequality: ln( ) 1 (1 )x x≥ −  for x > 0. This 

completes the proof.  ■ 
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Lemma 2.5 (Translation invariance of differential entropy): Let x be any n×1 complex 

random vector and c be any deterministic (non-random) vector. Then h(x+c) = h(x). 

Proof: Let y = x + c. Then py(y) = px(y−c), and 

 ( ) ( ) ( )2log
n

h p p d
∈

+ = −∫ y yy
x c y y y


 (A.14) 

 ( ) ( )2log
n

p p d
∈

= − − −∫ x xy
y c y c y


 (A.15) 

 ( ) ( )2log
n

p p d
∈

= −∫ x xx
x x x


 (A.16) 

 ( )h= x ,  (A.17) 

where (A.16) is due to a change of variables in the integral. This completes the proof.  ■ 

A proof of the capacity expression of bandlimited AWGN channel is given below: 

Theorem 2.1 (Capacity of bandlimited Gaussian channel [132], [31]): The capacity of an 

additive white Gaussian noise (AWGN) channel with noise power spectral density N0/2 

watts/Hertz, and transmission power P watts is given by 

 2
0

1 log 1
2 2AWGN

PTC
T N

 
= + 

 
 bits per second, (A.18) 

where T is the symbol period in seconds. When the Gaussian channel is strictly 

bandlimited to [−W, W] Hertz with the Nyquist rate signaling of 1/T = 2W, the 

corresponding capacity of the bandlimited Gaussian channel is given by 

 2
0

log 1AWGN
PC W

N W
 

= + 
 

 bits per second. (A.19) 

Proof: Consider the channel input vector x and channel output vector y = x + z of sizes 

n×1, where z is an i.i.d. Gaussian noise vector with zero mean and diagonal covariance Kz 

= (N0/2)In. The input vector x is subject to the conventional average power constraint 
21

1
{ }n

ii
n E x PT−

=
≤∑  where P is available power in watts (and PT corresponds to energy 

in Joules per symbol).  

Following the definition of the channel capacity formula from Definition 2.7, we 

evaluate the mutual information between x and y as follows: 
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 ( ) ( )( )1 1; ( )n I n h h− −= −x y y y x  (A.20) 

 ( )( )1 ( )n h h−= −y z x   (A.21) 

 ( )( )1 ( )n h h−= −y z   (A.22) 

 ( ) ( )( )( )1
2log detn

zn h e Kπ−= −y  (A.23) 

 ( ) ( )( ) ( )( )( )1
2 2log det log detn n

x z zn e K K e Kπ π−≤ + −  (A.24) 

 ( )1
2

det
log

det
x z

z

K K
n

K
− + 

=  
 

 (A.25) 

 
1

1 0
2log det

2n x
Nn I K

−
−

   =  +        
 (A.26) 

 
2

1
2

1 0

{ }
log 1

2

n
i

i

E x
n

N
−

=

  
 ≤  + 

    
∏  (A.27) 

 
2

1
2

1 0

{ }
log 1

2

n
i

i

E x
n

N
−

=

 
=  + 

 
 

∑  (A.28) 

 2
0

log 1
2

PT
N

 
≤ + 

 
,  (A.29) 

where (A.20) is due to the definition of mutual information where h(∙) denotes the 

differential entropy, (A.21) is due to the translation invariance of the differential entropy 

by Lemma 2.5, (A.22) is due to statistical independence of the channel input x and the 

AWGN noise z, (A.23) is due to the known differential entropy expression of the Gaussian 

vector by Lemma 2.3, and (A.24) is due to differential entropy maximizing distribution 

being Gaussian by Lemma 2.4, followed by y having a covariance matrix Kx+Kz, where Kx 

and Kz are the covariance matrices of x and z, respectively. Furthermore, (A.26) is 

obtained after substituting the covariance matrix of noise Kz = (N0/2)In, and (A.27) is due 

to Hadamard’s inequality [30] where E{|xi|2} is i-th diagonal entry of Kx. Finally, (A.28) 

can be further maximized by using the method of Lagrange multipliers under the power 
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constraint 21

1
{ }n

ii
n E x PT−

=
≤∑ , leading to (A.29) with an equal power distribution being 

optimal, i.e., 2{ }iE x PT=  for all i = 1, 2, …, n.  

Therefore, we have the following capacity expression: 

 
( )

( ) 2
0

1 1lim sup ; log 1
2 2n p S

PTC I
n N→∞ ∈

 
= = + 

 x
x y  in bits/channel use, (A.30) 

where the factor 1/2 is accounts for non-complex (real) AWGN channel transmissions, and 

the capacity is achieved by choosing x Gaussian distributed with zero mean and 

covariance matrix Kx = (PT)∙In. Finally, assuming the Nyquist rate transmission, each data 

symbol is sent every T seconds (i.e., one channel use per T seconds). This leads to the 

following capacity expression in units of bits per second: 

 2
0

1 log 1
2 2AWGN

PTC
T N

 
= + 

 
 in bits/second. (A.31) 

Furthermore, substituting 1/T = 2W for the Nyquist rate transmission leads to (A.19). This 

completes the proof of Theorem 2.1.  ■ 
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Appendix B  
 
Simultaneously Time- and Frequency-
Limited Signals 
 

 

The objective of this appendix is to give a simple plausibility argument to why no signals 

can be both strictly band-limited and strictly time-limited, except the zero energy signals. 

First, it is trivial to show that zero energy signals have zero Fourier transforms, and hence 

the zero energy signals are both time-limited and band-limited in the strict sense.  

Now for non-zero energy signals, consider the following argument. Let a non-zero 

energy signal x(t) be strictly time-limited to the time range t1 < t < t2. Then the signal can 

be multiplied by a rectangle function r(t) whose value is equal to one in the time range t1 < 

t < t2 and zero everywhere else, without effecting the signal x(t). That is, x(t) = x(t)r(t). 

Taking the Fourier transform of this product x(t)r(t) yields a convolution of ˆ( )x f , 

denoting the Fourier transform of x(t), and a sinc function which is the Fourier transform 

of the rectangle function. That is, 

 ( ) ( )1 2
2 1 2 1ˆ ˆ( ) ( ) ( )sinc ( )j f t tx f x f e t t t t fπ− + = ∗ − −  , 

where * denotes the convolution. Now suppose that ˆ( )x f  is also strictly band-limited to 

some frequency range. But due to the infinite support of the sinc function, the convolution 

of ˆ( )x f  and the sinc function cannot have a finite support. Hence we have a contradiction 

and conclude that ˆ( )x f  could not have been strictly band-limited when x(t) is strictly 

time-limited. The converse, i.e., a strictly band-limited signal cannot be also strictly time-

limited, may be proven by a similar argument. 
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Appendix C  
 
Nonsingularity of a Class of Toeplitz 
Matrices 
 

 

The goal of this appendix is to prove our own result, Lemma 3.2, which derives a 

sufficient condition for invertibility of a class of Toeplitz matrices including the FTN 

matrix H and the noise covariance matrix Φ. The invertibility of these Toeplitz matrices 

has several important consequences in the analysis of FTN signaling, including the 

existence of the capacity-achieving precoding for the FTN signaling in Chapter 5.  

Lemma 3.2: Let qk be defined by:  

 ( ) ( ) ,kq q q k t d kτ τ τ
+∞

∗

−∞

≡ − ∆ ∈∫  , 

where Δt > 0 and q(t) is any non-zero finite energy signal that is either strictly band-

limited or time-limited. If qk → 0 as k → ∞ then the n×n matrix sequence Qn defined by Qn 

= [q(i−j)]i, j=0, 1, …, n-1 is non-singular for every n. 43  

Proof: The proof is obtained by modifying the proof of Proposition 5.1.1 in [21] to fit the 

problem considered here. Without loss of generality, let us assume that q(t) has a unit 

energy44, leading to q0 = 1. Now, suppose that Qn is singular for some n. Then there exists 

43 Note that 1 0Q q= , 0 1
2

1 0

q q
Q

q q
− 

=  
 

, 
0 1 2

3 1 0 1

2 1 0

q q q
Q q q q

q q q

− −

−

 
 =  
  

, etc. 

44 This assumption corresponds to normalizing the matrix Qn by a constant non-zero scalar. This does not 
affect the non-singularity of the matrices. 
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an integer r ≥ 1 such that Qr is nonsingular but Qr+1 is singular (note that Q1 is always non-

singular since Q1 = 1 = Q1
−1). We will prove the lemma by a contradiction. By Lemma 3.1, 

singular Qr+1 implies that there exist 0a , …, 1ra − ∈  not all zero such that  

 ( ) ( )
1

0

r

j
j

q t r t a q t j t
−

=

− ∆ = − ∆∑ , 

i.e., q(t−r∆t) is linearly dependent to the set {q(t), q(t−∆t), q(t−2∆t), …, q(t−(r−1)∆t)} to 

yield Qr+1 singular. (Note that in this appendix, for the brevity of the following proof steps, 

we will use j to refer to an index of the summation and not to an imaginary unit). We also 

have, by delaying time by k∆t,  

 ( )( ) ( )( )
1

0

r

j
j

q t r k t a q t j k t
−

=

− + ∆ = − + ∆∑ . 

This implies that ( )q t n t− ∆  for all n ≥ r are also linearly dependent to the set {q(t−k∆t)}k = 

0, …, r−1. Consequently, for all n ≥ r, there exist constants ( ) ( )
0 1, ,n n

ra a −  not all zero such that 

 
( ) ( ) ( )

( ) ( )

1

0

( ) ,

r
n

j
j

Tn
r

q t n t a q t j t

t

−

=

− ∆ = − ∆

=

∑

a q
 (C.1) 

where a(n) = ( ) ( )
0 1[ , , ]n n T

ra a −  and qr(t) = [ ( ), , ( ( 1) )]Tq t q t r t− − ∆ . In order words, 

if Qr+1 is singular, Qr+2, Qr+3,   are all singular.  

Using (C.1), we can derive square of the norm of q(t) as follows: 

 

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

1 1

0 0

1 1

0 0

1

 

 .

r r
n n

j i
i j

r r
n n

j i i j
i j

q t n t q t n t dt

a a q t j t q t i t dt

a a q

+∞
∗

−∞

+∞− − ∗
∗

= = −∞

− − ∗

−
= =

= − ∆ − ∆

= − ∆ − ∆

=

∫

∑∑ ∫

∑∑

 

In matrix notations, 
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( )

( )
( )( ) ( )

( ) ( )

1 1
( ) ( )

0 0

( )

1

 ,

r r †n n n n
j i ri j

i j

† nn †
r r r

a q a Q

U U

− − ∗

−
= =

= =

= Λ

∑∑ a a

a a
 (C.2) 

where (∙)† denotes conjugate transpose (Hermitian) operator and Qr = Ur
†ΛrUr by 

eigenvalue decomposition (recall that Qr is non-singular and is Hermitian positive definite). 

The r×r diagonal matrix Λr has its diagonal entries strictly positive real eigenvalues 

λ0≥λ1≥≥λr−1>0 of Qr, and Ur
 is an r×r unitary matrix satisfying Ur

†Ur = Ir where Ir is an 

r×r identity matrix. 

But note that for some x ≠ 0,  
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Applying this inequality to (C.2) yields 
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Since λr−1 > 0, dividing by λr−1 to both sides gives 

( )
1 2

0 1

1r
n

j
j r

a
λ

−

= −

≤ < ∞∑ . 

In other words, for any fixed j, 

 ( )n
ja < ∞ , for n ≥ r. (C.3) 

We can also write using (C.1) 
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We then establish the following inequality (by the triangular inequality): 
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From our assumption that qk → 0 as k → ∞ and by |aj
(n)| < ∞ from (C.3), 
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0
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r
n

j n j
j

a q
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−
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≤ →∑  as n → ∞, 

which clearly fails for n large enough. Hence, it is not possible to have qk → 0 as k → ∞ if 

Qn is singular for some n. This completes the proof of Lemma 3.2.  ■ 
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Appendix D  
 
Szegö’s Theorem on Eigenvalues of 
Toeplitz Matrices 
 

 

The objective of this Appendix is to review Szegö’s theorem on the asymptotic eigenvalue 

distribution of Toeplitz matrices and some of its generalizations (please refer to [56] for 

the proofs).  

First we introduce some notations. A sequence of n×n Hermitian Toeplitz matrices 

Tn(p) = [ti–j; i, j = 0, 1, … , n–1] is  

 

0 1 2 ( 1)

1 0 1 ( 2)

2 1 0 ( 3)

1 2 3 0

( )

n

n

n n

n n n

t t t t
t t t t

T p t t t t

t t t t

− − − −

− − −

− −

− − −

 
 
 
 =
 
 
  



  



, 

where tk = t–k
* due to Hermitianity and {tk} are assumed to be absolutely summable and 

hence the following inverse Fourier series of {tk} exists: 

 ( ) jk
k

k
p t e λλ

∞

=−∞

= ∑ , (D.1) 

 
2

0

1 ( )
2

jk
kt p e d

π λλ λ
π

−= ∫ . (D.2) 

Furthermore, we let ess inf ( )pm pλ λ≡  (essential infimum) and esssup ( )pM pλ λ≡  

(essential supremum). The asymptotic eigenvalues of Tn(p) as n tends to infinity is given 

by the following celebrated theorem known as Szegö’s theorem [57].  
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Theorem D.1 (Szegö’s theorem [57], [56]): Let τn,k be the eigenvalues of Tn(p). Then for 

any function F(x) continuous on [mp, Mp] 
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,
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1 1lim ( ) ( ( ))
2

n

n kn k
F F p d

n
π

π
τ λ λ

π

−

−→∞
=

=∑ ∫ . (D.3) 

(In other words, sum of eigenvalues converges to integral of inverse Fourier series of the 

matrix entries.) 

Next theorem shows that Szegö’s theorem can be applied to a product of Toeplitz 

matrices, although the product of two Toeplitz matrices is not necessarily Toeplitz. 

Theorem D.2 (Product of two Hermitian Toeplitz matrices [56]): Let Tn(p) = [ti−j] be an 

n×n Toeplitz matrix with p(λ) as the inverse Fourier series of {tk}. Similarly, Tn(q) = [ri−j] 

is defined as another Toeplitz matrix with q(λ) as the inverse Fourier series of {rk}. If both 

Tn(p) and Tn(q) are Hermitian and ρn,k denote the eigenvalues of the matrix product 

Tn(p)Tn(q), then for any function, F(x), continuous on [mpmq, MpMq] 
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2
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π

π
ρ λ λ λ

π

−

−→∞
=

=∑ ∫ . (D.4) 

Next theorem deals with Szegö’s theorem for an inverse of a Toeplitz matrix. 

Theorem D.3 (Inverse of Toeplitz matrix is asymptotically Toeplitz [56]): As before, let 

Tn(p) = [ti−j] be an n×n Hermitian Toeplitz matrix with p(λ) as the inverse Fourier series 

of {tk}. Let ρn,k be the eigenvalues of Tn(p)−1. If p(λ) ≥ mp > 0, then for any continuous 

function, F(x) on [1/Mp, 1/mp] 

 ( )
1

,
0

1 1lim ( ) 1 ( )
2

n

n kn k
F F p d

n
π

π
ρ λ λ

π

−

−→∞
=

=∑ ∫ . (D.5) 

The eigenvalues of Hermitian Toeplitz Tn(p) are characterized below: 

Lemma D.1 (Bounds on the eigenvalues [56]): Let τn,k be the eigenvalues of Tn(p) and let 

mp and Mp denote the essential infimum and the essential supremum of p(λ), respectively. 

Then 

 ,p n k pm Mτ≤ ≤ . (D.6) 

Also, in the limit as n tends to infinity, 
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 ,lim max n k pn k

Mτ
→∞

= , (D.7) 

 ,lim min n k pn k
mτ

→∞
= . (D.8) 

Finally, the asymptotic eigenvalue distribution of Hermitian Toeplitz Tn(p), as n tends 

to infinity, is given below: 

Lemma D.2 (Asymptotic eigenvalue distribution [56]): Let τn,k be the eigenvalues of Tn(p) 

and define the eigenvalue distribution function Dn(x) = (number of τn,k ≤ x)/n. Assume 

furthermore that 

 
: ( )

0
p x

d
λ λ

λ
=

=∫ . (D.9) 

Then the limiting distribution D(x) = limn→∞ Dn(x) exists and is given by 

 
( )

1( )
2 p x

D x d
λ

λ
π ≤

= ∫ . (D.10) 

(Note that fraction of eigenvalues between two values a and b (b>a) is then D(b) – D(a). 

The definition D(x) is similar to the cumulative distribution function (CDF) in probability 

theory.) 
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Appendix E  
 
BER Results for Some Optimally 
Precoded FTN Systems 
 

 

The optimal FTN precoding that we derived in section 5.2 can lead to substantial capacity 

gains over capacity of non-precoded FTN signaling. As discussed in subsection 5.2.4, 

however, ill-conditioning of the optimal FTN precoding poses a significant challenge in 

practical system implementation. Figure E.1 shows our initial BER simulation results of 

this optimally precoded FTN signaling with varying FTN rate factor K = 1, 2, 3 for short 

packet lengths N = ceil(20/K), where ceil(∙) refers to the smallest interger not less than its 

argument.  
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Figure E.1   Simulated bit-error-rate (BER) performances of the optimally precoded FTN signaling 
as compared to the Nyquist rate signaling for short packet length 
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In Figure E.1, binary antipodal modulation and strictly bandlimited sinc modulating 

pulse were used in all cases. Hard decision decoding was used for the K=1 Nyquist rate 

case, whereas single parity check coding was applied across 2 and 3 consecutive data bits 

in K = 3 and K = 4 FTN cases, respectively, thereby exploiting the increased symbol rates 

in FTN. 

We also explored fractional-rate FTN signaling by letting the FTN rate factor K to be 

any positive real number (i.e., allowing 0 < K < 1). Figure E.2 demonstrates such 

possibility: By inserting 5 additional sinc pulses into a Nyquist rate of block of size N = 

100, up to 5% fractional rate increase over the Nyquist rate was obtained without 

noticeable loss on BER and bandwidth. These additional FTN pulses can be used to carry 

extra information such as control data, watermarks, etc.  

 

 
   (a)              (b) 
Figure E.2  Fractional-rate FTN signaling (for 5% rate increase over Nyquist rate); (a) showing hard 

decision performance of FTN compared to the Nyquist rate signaling; (b) the power 
spectral density estimates for the FTN signal compared to the Nyquist rate signal 
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