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Abstract

While population analyses employing computational neuroanatomy have become com-

mon practice in magnetic resonance imaging (MRI) studies of human subjects, equiv-

alent automated solutions for the study of mouse brain morphology have remained

relatively unexplored. MRI studies of mice have largely been limited to labour-

intensive, manual or semi-automated methods. In this thesis, the combined auto-

mated approaches of population-specific reference creation and deformation-based

morphometry (DBM) were investigated in the context of a multiple timepoint study

of a transgenic mouse model of Alzheimer’s disease and age-matched, wild-type litter-

mates. Using a statistical framework based on mixed-model regression, the proposed

technique provided an unbiased, exploratory summary of focal neuroanatomical dif-

ferences due to genetic background, as well as localized regions exhibiting age-related

change. Morphological abnormalities were found in the transgenic group in the hip-

pocampus and ventricles, which are consistent with previous studies, as well as in

several previously unreported structures such as the olfactory bulbs and stria ter-

minalis. As validation, we found strong correlation between the results obtained

using automated DBM analysis and conventional manual segmentation in specific

neuroanatomical regions. Our findings suggest that DBM can be applied to the lon-

gitudinal study of other mouse models of central nervous system disease.
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Résumé

Alors que l’analyse neuroanatomique quantitative des populations humaines est de-

venue courante en imagerie par résonance magnétique (IRM), de telles méthodes

d’analyse automatisées sont essentiellement inexploitées pour l’étude des rongeurs.

L’étude par IRM des souris repose ainsi principalement sur des méthodes manuelles

ou semi-automatiques, impliquant une intervention lourde pour l’opérateur. Dans ce

mémoire, une approche automatique est évaluée, qui combine la création d’un es-

pace anatomique de référence spécifique de la population étudiée et l’analyse mor-

phométrique des déformations (AMD, (( deformation-based morphometry ))) afin de

comparer l’évolution de souris transgéniques, modèles de la maladie d’Alzheimer,

avec un groupe de contrôle de la même portée. La technique proposée a su déceler

sans biais des différences neuroanatomiques dues au bagage génétique en plus de

localiser des régions sujettes à des changements liés au vieillissement à l’aide d’un

modèle statistique de régression mixte. Les anomalies morphologiques ont été trouvées

dans l’hippocampe et les ventricules de groupe transgénique, confirmant des résultats

connus de la littérature, mais aussi dans de nouvelles régions, comme les bulbes ol-

factifs et la strie terminale. Comme validation de la méthode, nous avons mis en

évidence une corrélation forte entre les résultats obtenus par AMD automatisée et

par une méthode conventionnelle de segmentation manuelle de régions neuroanato-

miques spécifiques. Ce travail démontre que des techniques de type AMD pourraient

être appliquées à des études longitudinales de souris sur d’autres modèles de maladies

du système nerveux central.
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introduction, general literature review, summary, conclusions, and bibliography are
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Chapter 1

Introduction

Alzheimer’s disease (AD) is the leading cause of senile dementia with prevalence

expected to increase markedly in the next few decades (Hebert et al., 2003). While

researchers have revealed specific genetic and social factors associated with AD onset

(reviewed by Selkoe, 2001), the etiology of the disease remains poorly understood. As

the search for effective therapies continues, the role of transgenic mouse models of AD

has become increasingly important for the identification of molecular targets involved

in AD pathogenesis (reviewed by Higgins and Jacobsen, 2003). Typically, studies of

transgenic mouse models have employed classical immunohistochemistry techniques

(Higgins and Jacobsen, 2003), as well as behavioural assessment (Holcomb et al., 1999;

Howlett et al., 2004; Trinchese et al., 2004) to evaluate and detect genotype-related

abnormalities.

Magnetic resonance imaging (MRI) has become an invaluable tool for the non-

invasive detection of abnormal morphological patterns in neurological disorders. While

computational neuroanatomy approaches are commonly used in both cross-sectional

and longitudinal imaging studies of human AD subjects (reviewed by Anderson et al.,

2005; Barnes et al., 2007; Thompson et al., 2007), equivalent automated solutions for

the study of mouse neuroanatomy have remained largely unexplored. Most MRI

studies of AD mouse models have used labour-intensive manual or semi-automated

techniques to examine differences in the volume of structures between normal and

transgenic mice (Redwine et al., 2003; Delatour et al., 2006; Oberg et al., 2007).

There are few impediments to the translation of fully-automated techniques used in
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CHAPTER 1. INTRODUCTION 2

human imaging studies to the analysis of murine brain MRI. This thesis serves to in-

vestigate computational neuroanatomy methods for characterizing mouse models of

AD, with particular application to a longitudinal MRI dataset of double transgenic

APP/PS1 (TG) mice and their age-matched, wild-type (WT) littermates.

Automated image processing techniques, such as atlas-based segmentation, voxel-

based morphometry (VBM), and cortical thickness analysis, are powerful approaches

that have the potential to all be used for the analysis of mouse MRI data. However,

these methods require a priori information about anatomical labels and tissue classes,

for which a number of digital mouse atlases have been proposed (Dhenain et al., 2001;

MacKenzie-Graham et al., 2004; Ma et al., 2005; Kovacevic et al., 2005; Schwarz

et al., 2006). These atlases are also not often scanned in modalities or using methods

compatible across sites or laboratories, suggesting that other more data-driven options

be explored.

Deformation-based morphometry (DBM) is an established, automated method

that can detect localized, morphological differences from the vector field required to

nonlinearly register MR images (Davatzikos et al., 1996; Bookstein, 1997; Thompson

and Toga, 1997; Ashburner et al., 1998; Cao and Worsley, 1999; Chung et al., 2001).

This technique has recently been applied to study normal (Kovacevic et al., 2005;

Chen et al., 2006; Spring et al., 2007) and transgenic mice (Nieman et al., 2005a).

Aside from the chosen reference space to which all original data are registered, DBM

requires no prior information other than the input MR images. The DBM approach

also has the advantage of being exploratory in nature and is capable of providing

more focal information about neuroanatomically-affected regions than conventional

manual segmentation methods.

While DBM is now commonly used for exploratory brain MR analysis, the use

of DBM to analyze longitudinal data has not been thoroughly investigated. Both

human and mouse neuroimaging studies using automated DBM have mainly been

limited to cross-sectional or two timepoint observations. While Verma et al. have

utilized DBM for more timepoints in studies of murine development (Verma et al.,

2005; Zhang et al., 2005), their method relied on semi-automated registration and did

not address the issue of performing a unified analysis in a common reference space.
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1.1 Research objectives

In this thesis, DBM is investigated as an automated technique for examining local

neuroanatomy in a longitudinal MRI dataset of TG and WT mice. The research

objectives are the following:

1. Develop a pipeline framework for image analysis of rodent models

2. In a mouse model of Alzheimer’s disease, characterize:

� Morphological changes over time

� Morphological differences due to genetic background

1.2 Thesis organization

The thesis is structured in the form of a manuscript-based thesis in accordance with

McGill University Thesis Guidelines. Chapter 2 is a review of literature, starting

with a synopsis of AD-related research, and followed by a summary of emerging tech-

niques for studying Alzheimer’s, namely: transgenic technology, magnetic resonance

imaging, and computational neuroanatomy. Chapter 3 contains the manuscript en-

titled “Longitudinal Neuroanatomical Changes Determined by Deformation-Based

Morphometry in a Mouse Model of Alzheimers Disease” published in NeuroImage.

This chapter is followed by a summary of the work, conclusions, and future work

sections in Chapters 4, 5, and 6, respectively.



Chapter 2

Literature Review

2.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a devastating, neurodegenerative disease with prevalence

expected to increase substantially over the next few decades (Figure 2.1) (Hebert

et al., 2003). The progressive, protracted decline of cognitive function and behaviour

in AD patients places major emotional, physical, and financial burdens on families

and the healthcare providers that support them (Mount and Downton, 2006). Despite

having been first identified in 1901 by Dr. Alois Alzheimer, there remains no effective

treatment for the disease, as currently available drugs have only limited, short-term

effects. The increasing prevalence and lack of therapeutic options indicate an urgent

need to improve understanding of disease pathogenesis, and to develop novel avenues

for the prevention and treatment of AD.

2.1.1 Clinical findings

AD is characterized by a typically gradual and progressive course affecting cognitive

abilities. Common early to moderate stage clinical features include memory loss,

disorientation, depression, and difficulties with judgement, language, and calculations.

Evidence suggests that mild cognitive impairment (MCI), a clinical syndrome marked

4



CHAPTER 2. LITERATURE REVIEW 5

Figure 2.1: The estimated number of individuals in the United States with AD projected
from data from the 2000 US Census Bureau to the year 2050 (Hebert et al., 2003). The
middle series estimate is bounded by lower and upper estimates.

by both subjective and objective measures of memory loss, significantly increases the

risk of progression to AD (Singh et al., 2006). AD patients may additionally exhibit

behavioural changes and difficulties performing learned motor tasks. Ultimately, the

patient’s function will decline to a point where the patient requires total care for all

activities of daily living. Sporadic AD, the most common form of the disease, does not

typically present until the age of 60, and while heterogeneous, the rate of progression

has been estimated to take between 5 and 15 years to advanced stage illness (Andreoli

et al., 2007).

Diagnosis involves establishing features of dementia on examination and the exclu-

sion of other non-cognitive illnesses. The Mini-Mental State Examination (MMSE), a

standardized neuropsychological test, provides a measure of the degree of functional

decline by quantifying attention/concentration, memory/orientation, learning, and

language deficits (Folstein et al., 1975). The clock drawing test is another useful

procedure for assessing the degree of cognitive dysfunction (Freedman et al., 1994)

(Figure 2.2). These tests can be used to distinguish AD from other types of dementia.
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Figure 2.2: Clock drawings and associated Mini-Mental State Examination scores for four
individuals. Patients were all instructed to write the time as ”10 minutes past 11” (Feldman
et al., 2008).
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2.1.2 Pathological staging

In humans, classical histochemistry and immunohistochemistry approaches have iden-

tified several major neuropathological features of AD. This disease is characterized by

the formation of extracellular neuritic plaques, as well as intracellular neurofibrillary

tangles (Selkoe, 2001). In studies of affected brains at autopsy, Braak and colleagues

observed that both the distribution of β-amyloid plaque deposition and neurofibril-

lary tangles exhibited differential staging depending on the severity of disease (Braak

and Braak, 1991; Thal et al., 2002). Plaque deposition was observed to begin in the

medial temporal neocortex before expanding into other neocortical and allocortical

regions (Figure 2.3), while tangle formation was found to originate in the transen-

torhinal and entorhinal cortices prior to affecting other regions of the cortex (Figure

2.4).

Figure 2.3: The distribution pattern of amyloid deposits, which is shown to originate in
the basal part of the isocortex, and eventually spread to all cortical regions (Braak and
Braak, 1991).
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Figure 2.4: The distribution pattern of neurofibrillary tangle formation, which originates
focally in the transentorhinal region, and eventually involves more regions of the isocortex
(Braak and Braak, 1991).

2.1.3 Management

Current therapies of AD are non-curative, and are aimed at slowing the progres-

sion of degeneration (Doody et al., 2001). The use of cholinesterase inhibitors is

considered standard practice for patients with mild to moderate disease due to some

demonstrated efficacy for improving cognition and behaviour. Memantine, an NMDA

receptor antagonist, has been shown to prolong daily functioning in patients with

moderate to severe AD. Antidepressants, antipsychotics, and anxiolytics have been

used to treat coexistent depression or acute behavioural disturbances as appropriate.

2.1.4 Genetic determinants and risk factors

Studies have revealed several hereditary components of AD. In particular, studies

in humans have identified three autosomally dominant traits genetically linked with

early-onset familial AD (FAD): amyloid precursor protein (APP) (Goate et al., 1991;
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Mullan et al., 1992), presenilin 1 (PS1) (Schellenberg et al., 1992), and presenilin 2

(PS2) (Levy-Lahad et al., 1995; Sherrington et al., 1995). Even though, FAD accounts

for less than 5% of all cases of AD in humans, research into these rare and severe

forms of the disease have helped identify some of the key mechanisms involved in the

disease cascade. In particular, mutations in APP, PS1, and PS2 have all been found

to contribute to disordered β-amyloid metabolism (Selkoe, 2001; Jack et al., 2007).

Population studies of the more prevalent sporadic, or late-onset AD (LOAD), form

have revealed that mutations in two additional genes have been identified as potential

risk factors: allele 4 of apolipoprotein E (ApoE4) (Corder et al., 1993) and sortilin-

related receptor (SORL1) (Rogaeva et al., 2007). These components may serve as

potential therapeutic targets for treating AD.

2.1.5 Mouse models of AD

With the development of recombinant DNA technology, researchers are now able to

examine the effects of mutations in disease-related genes on transgenic animals, typ-

ically in mice. Transgenic mice are the product of a process that involves inserting

target genes of interest, or transgenes, into the mouse genome, and provide simplified

biosystems for examining the pathogenesis of disease (Hsiao et al., 1996; Holcomb

et al., 1998; Games et al., 2006). Modified or novel traits observed in the genet-

ically modified mice, in pathology or behaviour, indicate phenotypic abnormalities

that may be worthy of further study. Their role has become increasingly important

in the identification of molecular targets involved in AD pathogenesis, and a wide va-

riety of mouse models have been proposed, developed, and subsequently investigated

(reviewed by Higgins and Jacobsen, 2003).

The double transgenic APP/PS1 mouse

In this thesis, the double transgenic APP/PS1 (TG) mouse, which co-expresses mu-

tations in both APP and PS1 transgenes, was investigated. This commonly studied

AD mouse model has been reported to exhibit accelerated plaque pathology, be-

ginning as early as 2 months of age (Borchelt et al., 1997; McGowan et al., 1999;

Kurt et al., 2001; Gordon et al., 2002; Delatour et al., 2006; Oberg et al., 2007).
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While APP/PS1 mice do not exhibit tangle pathology, the relatively early-onset of

β-amyloid deposits makes this mouse an ideal candidate for evaluating the effects

of β-amyloid targeted therapies (Figure 2.5). Beyond amyloidogenesis, evidence of

progressive synaptic dysfunction (Trinchese et al., 2004), impairment of hippocampal

neurogenesis (Zhang et al., 2006), and cognitive deficit in behavioural tasks (Holcomb

et al., 1999; Gordon et al., 2001; Howlett et al., 2004) have been observed to advance

with age in this transgenic model, typically occurring by 9–10 months of age.

Figure 2.5: The distribution pattern of amyloid deposits shown for the APP/PS1 mouse
at (A) 6, (B) 9, (C) 12, and (D) 15 months of age (th = thalamus, hc = hippocampus, s =
striatum, fcx = frontal cortex) (Gordon et al., 2002).

Most studies of APP/PS1 and other transgenic mouse models have employed im-

munohistochemistry, as well as behavioural assessment, to evaluate and characterize

abnormal phenotypes. While immunohistochemistry remains the standard for as-

sessing microstructural and pathological effects, clearly less invasive means of study-

ing structural abnormalities are worthy of investigation. On the other hand, be-

havioural studies may be necessary for elucidating task-related aberrations, but on

their own, provide little information about the anatomical underpinnings of dysfunc-

tion. Magnetic resonance imaging techniques provide an alternative, and complemen-

tary, modality for assessing and characterizing mouse models of AD.
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2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) has become an invaluable diagnostic tool for the

non-invasive, three-dimensional (3D) imaging of biological tissues. The principles of

MR, also known more precisely as nuclear MR (NMR), are based on the interaction of

the nuclear spin angular momentum of atoms with different magnetic fields. While a

broad range of nuclei can be imaged with MRI, proton MRI is the most common form

due to the natural abundance of H2O in the body. Image contrast is optimized by

exploiting differences in magnetic properties of tissues of interest (more specifically,

T1 and T2 relaxation properties), which in the brain are principally gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF).

Different techniques have been developed to take advantage of different aspects

of magnetic resonance and tissue properties. These include functional magnetic reso-

nance imaging (fMRI), where changes in regional blood-oxygenation level dependency

(BOLD) are believed to be associated with local functional brain activation, as well

as magnetic resonance spectroscopy (MRS), where local biochemical information can

be elucidated in brain regions of interest. Here we focus on anatomical or structural

MRI, which is used to visualize the neuroanatomy of the brain. Anatomical MR

images are composed of individual “volume elements” called voxels. The resolution

provides a measure of the level of detail in an image quantified spatially as the di-

mensions of the voxels in the image. Typical clinical MRI resolution is around 1 mm

Ö1 mm Ö1 mm (or 1 mm3). However, more recently, high-resolution MRI, also often

called magnetic resonance microscopy (MRM), has become feasible through the use

of high-field magnets. Resolutions of 100 µm3 and below are now available at re-

search centers around the world. Currently, specimen sizes are restricted to whatever

can fit in the magnet bore, currently limiting high-resolution MRI to small animals.

Example slices are shown in Figure 2.6 for both human and mouse.

While high-resolution MR imaging allows for near-microscopic anatomical assess-

ment of small animals, the technology is not without tradeoffs (Mcconville et al.,

2005). Improved resolution comes at the potential expense of scan time and loss of

sensitivity. A significant increase in scan time may require that the animals be ei-

ther heavily sedated in order to prevent motion, or scanned post-mortem altogether.

On the other hand, decreased sensitivity results in a loss of dynamic contrast, which
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along with spatial resolution, contribute to the detail of the scanned image. In ad-

dition, the high-field magnets may result in image instabilities, such as intensity and

spatial inhomogeneities (Sled et al., 1998; Leow et al., 2006). As this paper is fo-

cused on post-acquisition image processing algorithms, the reader is referred to the

book, Principles of Magnetic Resonance Imaging by Dwight Nishimura, for a more

thorough examination of classical principles and methods (Nishimura, 1996).

Figure 2.6: Example slices from a human T1-weighted image (a-c), and a mouse T2-
weighted image (d-f) in the three standard viewing planes. In a T1-weighted image, GM
appears gray, CSF appears dark, and WM appears white. In a T2-weighted image, GM
appears gray, CSF appears white, and WM appears dark. Indicators are included for the
various tissue types. WM* indicates a region where WM is expected but cannot be resolved
at the acquired resolution. Note the obvious difference in cortical complexity of the human
and mouse brains.
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2.3 Manual Segmentation

Traditionally, human MRI studies have employed manual or semi-automated methods

to examine cross-sectional and longitudinal structural effects. These in vivo studies

have helped to reveal atrophy of the corpus callosum (Hampel et al., 1998; Teipel

et al., 2002), and regions of the entorhinal cortex and hippocampus (Xu et al., 2000),

as well as expansion of the lateral ventricles (Bradley et al., 2002) in AD subjects.

Manual volumetry has also been used to examine structural alterations in transgenic

AD and wild-type mice (Redwine et al., 2003; Delatour et al., 2006; Oberg et al.,

2007). These volumetric studies appear to be consistent with findings in humans,

revealing that whole brain and hippocampal volumes are significantly reduced in TG

mice, while ventricular volume was enlarged, when compared to their wild-type (WT)

littermates (Figure 2.7) (Delatour et al., 2006; Oberg et al., 2007).

While manual segmentation and visual inspection methods have yielded numerous

important findings related to the characterization and diagnosis of AD, they are time-

consuming, prone to intra- and inter-operator variability and bias, and require a priori

hypotheses about affected neuroanatomical structures. As such, these methods are

inappropriate for large-scale and exploratory imaging studies. MR image processing,

or computational neuroanatomy, techniques have been developed to facilitate analysis

by providing an automated, and ideally, unbiased framework (reviewed by Ashburner

et al., 2003; Evans, 2005).

Figure 2.7: Manual volumes for (a) whole brain, (b) hippocampus, and (c) ventricles in TG
and WT mice across three timepoints. Volume is reduced in whole brain and hippocampus
measures in tg, and increased in the ventricular volume (Oberg et al., 2007) (tg = APP/PS1;
wt = wild-type).
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2.4 Computational neuroanatomy

In human MRI studies of AD, computational neuroanatomy approaches have helped

to automate, or at least semi-automate, the detection of structural abnormalities

in affected cortical, subcortical, ventricular, and hippocampal regions (reviewed by

Grenander and Miller, 1998; Anderson et al., 2005; Evans, 2005; Barnes et al., 2007;

Thompson et al., 2007). Whole brain morphometric studies have revealed a limbic-

to-frontal structural progression of pathology (Fox et al., 2001; Janke et al., 2001;

Thompson et al., 2003; Lerch et al., 2005, 2006) that is consistent with the under-

lying staging described by Braak on post-mortem brains (Braak and Braak, 1991).

Furthermore, automated analyses of the hippocampus (Crum et al., 2001; Thomp-

son et al., 2004) and ventricles (Ferrarini et al., 2006) have revealed focally affected

regions within these structures in AD subjects.

Equivalent automated solutions for the study of mouse neuroanatomy have thus

far remained largely unexplored. This thesis serves to investigate computational

neuroanatomy methods for characterizing mouse models of AD in the context of a

longitudinal MRI dataset of TG and WT mice. The following sections represent a

synopsis of three general methodologies for automated analysis of brain morphology:

1. Atlas-based segmentation

2. Tissue classification

3. Deformation-based morphometry

2.4.1 Atlas-based segmentation methods

Brain atlases have provided a way of consolidating neuroimaging results across sites

and laboratories. They consist of individual or group efforts to delineate neuroanatom-

ical structures in a way that aims to facilitate standardized reporting of study results.

Brain research in humans has shifted over the years from mappings of individual

post-mortem neuroanatomy from histological slices (Talairach and Tournoux, 1988),

to digital stereotaxic templates of normal populations (Mazziotta et al., 1995; Collins
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et al., 1995; Mazziotta et al., 2001), normal individuals (Holmes et al., 1998), as well

as age- or disease-specific brains (Evans, 2005; Thompson et al., 2007). Typically, us-

ing 3D warping or nonlinear registration algorithms (reviewed by Woods et al., 1998;

Robbins et al., 2004), template-based anatomical labels can be propagated onto in-

dividual brain scans, eliminating the need to segment each MRI volume manually

(Bajcsy and Kovacic, 1989; Collins et al., 1995; Crum et al., 2001; Castellanos et al.,

2002; Hsu et al., 2002; Fischl et al., 2002; Walhovd et al., 2005; Heckemann et al.,

2006). Anatomical labels of the brain atlas have traditionally been defined using

discrete values, where a single neuroanatomical structure is defined at each brain

voxel. However, more recently, brain MRI researchers have shifted toward segmen-

tation of structures using probabilistic labels of neuroanatomical structures (Fischl

et al., 2002). This method has the added advantage that it utilizes information about

intersubject anatomical variability in assigning a label to each voxel of the subject

MRI.

Atlas-based segmentation methods allow for the quantification of regional brain

volume. These values can be statistically assessed across populations or parameters

of interest depending on the research paradigm as in manual segmentation studies of

the past. For example, in a longitudinal study, Walhovd et al. (Walhovd et al., 2005)

studied the effects of normal aging across 16 automatically segmented neuroanatomi-

cal structures. Changes in brain volume were found to exhibit regional heterogeneity,

meaning that different brain regions exhibited different trajectories with age.

Rigorously defined stereotaxic coordinate systems from 2D histological sections are

also available to rodent brain researchers (see Paxinos and Franklin, 2001). With the

increasing availability of small animal MRI scanners, high-resolution individual (Chan

et al., 2007) and population MRI atlases (Dhenain et al., 2001; MacKenzie-Graham

et al., 2004; Ma et al., 2005; Kovacevic et al., 2005; Ali et al., 2005; Badea et al.,

2007) have also been proposed and subsequently used for morphometric analyses.

While atlas-based segmentation methods are evidently a powerful means of studying

rodent MRI scans, several drawbacks exist that impede their routine use. First, these

atlases are not often made publicly available. In addition, the available reference

templates are not often scanned in an imaging modality or using specimen preparation

methods that are compatible across sites or even studies. For example, the atlas

proposed by MacKenzie-Graham et al. (MacKenzie-Graham et al., 2004) scanned
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adult, laboratory mice ex vivo using a T1-weighted sequence, while the transgenic

and wild-type mice studied in this thesis (see Section 3.3) were scanned in vivo using

a T2-weighted protocol. Finally, developing an accurate and compatible atlas, if none

already exists, is a labour-intensive endeavour that includes all the aforementioned

drawbacks associated with manual segmentation (see Section 2.3.

2.4.2 Tissue classification methods

Tissue classification, essentially a generalized form of anatomical segmentation, is

another common approach for morphometric analysis used in brain MR studies. The

technique involves segmentation of tissue types rather than different neuroanatomical

regions. As described in Section 2.2, MRI can produce images with a wide range

of tissue contrast. Using any of a variety of pattern classification strategies (an

excellent reference is Duda et al., 2000), the acquired MR volume can be classified

into GM, WM, and CSF on a voxel-by-voxel basis. The most robust and accurate

tissue classification methods are guided by supervised learning on training voxels in

the target image, which are derived from a template in which the tissue types are

known (Zijdenbos et al., 1994; Reddick et al., 1997; Cocosco et al., 2003). Generally,

the application of intensity nonuniformity correction prior to classification improves

performance (Sled et al., 1998).

The resulting tissue-classified maps can be further examined using voxel-based

morphometry (VBM) or cortical surface-based analysis. VBM detects changes in the

voxelwise tissue distribution after linear registration of MRI scans, usually in the

context of gray matter density (Ashburner and Friston, 2000). Controversy over the

original method (Bookstein, 2001) has lead to a refined version called modulated or

optimized VBM that applies nonlinear warping prior to analysis (Good et al., 2002;

Ashburner and Friston, 2001; Davatzikos et al., 2001). Cortical surface techniques

require extracting the GM-pial and the WM-GM surface meshes from the voxelwise

tissue maps, most frequently using deformable modeling algorithms (Dale et al., 1999;

MacDonald et al., 2000; Thompson et al., 2004). Subsequent analysis using vertex-

based cortical thickness measures has been shown to be a sensitive and robust method

for detecting cortical alterations in vivo (Lerch and Evans, 2005).
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There are, however, few studies that address the challenges associated with ro-

dent tissue classification. Only one published study, by Schwarz et al. (Schwarz

et al., 2006), has proposed tissue probability maps for rodent neuroimaging, but their

framework was implemented only for rat MR images, utilized only two tissue classes

(brain and CSF), and has not been made publicly available. One of the main dif-

ficulties with rodent tissue classification lies in the relatively reduced proportion of

white matter relative to total brain tissue. WM represents only approximately 5–8%

of total brain volume in mice (Ma et al., 2005) compared to 30–35% in adult humans

(Good et al., 2001). In addition, due to current limitations in resolution for in vivo

MRI, many voxels containing WM cannot be properly resolved due to partial volume

effects. WM tracts of mice and rats constitute only a thin, and at times subvoxel,

boundary between cortical GM and subcortical structures (Figure 2.6). Algorithms

that correct for partial volume effects (Tohka et al., 2004) may improve classifica-

tion. As well, one novel proposal by Tohka et al., employs genetic algorithms and

an unsupervised learning strategy to classify images, which may be worthy of future

investigation (Tohka et al., 2007).

2.4.3 Deformation-based morphometry

The lack of a standardized stereotaxic atlas for automated segmentation, as well as

the unresolved issue of murine tissue classification, suggest that alternative compu-

tational neuroanatomy strategies need to be explored. One possibility, and the one

that is investigated in this thesis, is deformation-based morphometry (DBM), also

known as tensor-based morphometry or voxel-compression mapping. DBM is a well-

established, automated method that can detect localized, morphological changes or

differences using information contained in the vector field required to nonlinearly reg-

ister MR images (Davatzikos et al., 1996; Bookstein, 1997; Thompson and Toga, 1997;

Ashburner et al., 1998; Cao and Worsley, 1999; Chung et al., 2001; Janke et al., 2001).

The approach is exploratory and provides local information about neuroanatomically

affected regions. In addition, DBM is almost entirely data-driven meaning that, apart

from the selection of a reference space to which all MR images are registered, it relies

on only the original image volumes themselves. This method has also been applied

prospectively for single subject analysis (reviewed by Ashburner et al., 2003), but we

focus here on its application to the study of populations.
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DBM has recently been applied to study MR images of normal (Kovacevic et al.,

2005; Chen et al., 2006; Spring et al., 2007) and transgenic mice (Nieman et al., 2006).

For this purpose, registration strategies that have been validated and employed in

numerous human neuroimaging studies (Collins et al., 1995; Woods et al., 1998) have

been adapted for use on rodent images (Kovacevic et al., 2005; Chen et al., 2006).

In fact, murine brains are particularly well-suited for this form of analysis due to

their relatively homogeneous morphology (recall Figure 2.6). On the other hand,

in humans, the variability in cortical folding has presented some practical issues for

proper, nonlinear registration and subsequent DBM analysis (Ono et al., 1990; Woods,

1996).

An unbiased, population-specific reference space

One of the most important implementation decisions in a DBM analysis is the selec-

tion of an appropriate reference space (or template) for spatial normalization. Typ-

ically, input MR images are warped to an individual representative image from the

population (Studholme et al., 2004), or a publicly available stereotaxic template (e.g.

Mazziotta et al., 2001). Of course, the best template would be one that is able to

finely match structures across all MR images included in a given study. Several strate-

gies for template generation have been proposed and subsequently evaluated in the

literature (Kochunov et al., 2001; Rohlfing et al., 2004; Kovacevic et al., 2005; Chris-

tensen et al., 2006). Kochunov et al. developed a means of quantitatively selecting

a minimum deformation target, or best individual template, from the original MR

scans (Kochunov et al., 2001).

More recently, Kovacevic et al. developed an unbiased reference creation algo-

rithm, or minimum deformation average approach, for mouse MR images (Kovacevic

et al., 2005). Their technique, summarized in Figure 2.8 and Section 3.3.2, is unbiased

in the sense that it does not rely on nonlinear registration to a prior template, but

instead produces a nonlinear reference space from the input population itself. This

data-driven technique is mediated by a pairwise registration algorithm that registers

each input scan to every other input scan in the dataset, and averaging the resulting

transformations. The deformation fields required to nonlinearly register individual

scans to this population average are then evaluated as part of a deformation-based
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analysis.

Figure 2.8: Illustration of the unbiased reference creation image processing pipeline de-
scribed by Kovacevic et al. (Kovacevic et al., 2002). The pipeline uses tools developed
at the Brain Imaging Centre that have been made freely available to the neuroimaging
community.

Computing the Jacobian determinant

In population-based MRI studies, DBM typically quantifies the local voxelwise growth

or atrophy in the brain based on the nonlinear registration of MRI scans to a reference

space. The nonlinear transformation is manipulated in order to obtain a unified

voxelwise mapping, T = (T1, T2, T3) defined at every voxel x = (x1, x2, x3) ∈ R
3,

from reference space to the native space of each scan. The Jacobian matrix, or

Jacobian tensor, at every voxel can then be expressed as:

J(x) =
∂T(x)

∂x
=




∂T1(x)
∂x1

∂T1(x)
∂x2
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From this 3x3 matrix, the Jacobian determinant, or simply the Jacobian, is most

often computed as a summary measure of local volume:

J(x) =

∣∣∣∣
∂T(x)

∂x

∣∣∣∣ (2.2)

This metric has been shown to provide a simple and direct means of determining

local, voxelwise morphometric changes (growth or atrophy) relative to the reference

space. Once the Jacobian maps have been computed for the dataset, local patterns

of brain change and structural differences can be evaluated using an appropriate

statistical framework.

2.5 Longitudinal analysis

Until fairly recently, most neuroimaging studies have been cross-sectional in nature,

requiring relatively simple statistical tests for the assessment of group differences. As

large-scale MRI studies with longitudinal designs are becoming increasingly common

(Castellanos et al., 2002; Mueller et al., 2005; Evans, 2006), the neuroimaging com-

munity has begun to embrace mixed-effects models for the analysis of neurostruc-

tural changes (e.g. Resnick et al., 2003; Shaw et al., 2006; Walhovd et al., 2005).

Mixed-effects regression provides a framework for examining longitudinal grouped

data. Mixed-effects regression is so named because it involves a combination of fixed

and random effects for the modelling of parameters/observations as related to a given

outcome measure. Fixed effects are modelled on entire populations or groups within

the dataset, while random effects are associated with individual units within the

study population. This flexible statistical framework allows for the handling of both

balanced and unbalanced data, repeated measures, and modelling of any number

of effects and interactions. The text by José Pinheiro and Douglas Bates, entitled

Mixed-Effects Models in S and S-Plus, provides an excellent introduction into this

realm of statistics and computing.

The application of DBM to longitudinal data with more than two timepoints

is a relatively novel prospect. Longitudinal AD-related DBM studies have, to this
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point, been limited, even in human MRI studies (Janke et al., 2001). While Verma

et al. have utilized DBM in their studies of murine development (Verma et al.,

2005; Zhang et al., 2005), their method has relied on semi-automated, tag point-

guided registration. Their statistical analyses were also limited to a set of manually

segmented regions-of-interest, rather than a unified voxelwise assessment across a

reference MRI volume.

2.6 Research justification

To date, there have been no MRI studies that have examined longitudinal morpho-

logical effects in mouse models of AD using computational neuroanatomy approaches.

This thesis investigates the viability of an unbiased reference creation algorithm, in

conjunction with deformation-based morphometry, to characterize morphological age-

related patterns in double transgenic APP/PS1 mice and their wild-type littermates

in an exploratory fashion. A statistical framework based on mixed-effects regression

was also designed and evaluated.
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3.1 Abstract

Magnetic resonance imaging (MRI) of transgenic mice has the potential to provide

valuable insight into the complex mechanisms underlying Alzheimer’s disease (AD).

Quantification of pathological changes is typically performed using manual segmen-

tation methods, and requires a priori hypotheses about anatomical structures for

volumetric measurement. Alternatively, deformation-based morphometry (DBM) has

been shown to be a powerful, automated technique for detecting anatomical differ-

ences between populations by examining the deformation field used to nonlinearly

warp MR images. In this multiple timepoint in vivo study, we have applied an

automated, unbiased technique for the creation of a nonlinear, population-specific

reference space from which robust DBM analysis can be performed. A general, linear

mixed-effects model framework was developed to follow the evolution of structural

changes in mouse brain from 2.5 to 9 months of age, and to examine neuroanatomical

differences between a transgenic (TG) APP/PS1 murine model of AD and wild-type

(WT) littermates. Morphometric abnormalities in the TG group were localized to

regions of the hippocampus, cortex, olfactory bulbs, stria terminalis, brain stem, cere-

bellum, and ventricles. Although volumetric reductions were detected in TG mice,

no general brain atrophy was found, suggesting a developmental, rather than a de-

generative, pathological process. Finally, we established a strong correlation between

a DBM summary measure and manually segmented volumes for each image in the

dataset. These results support the utility of DBM to study longitudinal morphologi-

cal changes in mouse models of central nervous system diseases in an automated and

exploratory fashion.

3.2 Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disease that currently

afflicts over 4.5 million people in the U.S., and which is predicted to rise to 11.3–16

million by 2050 (Hebert et al., 2003). This staggering prevalence and rapidly growing

incidence point to the desperate need for the development of new therapeutic avenues

for the treatment of AD. While currently available drugs provide limited, short-term,

symptomatic effects, drug development has moved toward disease-modifying therapies
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which would slow, reverse, or ultimately prevent AD. These disease-modifying agents

are, generally, designed for molecular targets known to be involved in the pathogenesis

of AD. However, the ultimate phenotypic consequences of the expression of these

molecular targets remain poorly understood.

Longitudinal, anatomical magnetic resonance imaging (MRI) studies provide a

non-invasive means of following the subtle structural changes which occur during

the natural evolution of AD (Lerch et al., 2005). While most quantitative MRI

studies of AD-related neuroanatomical alterations have focused on human subjects

(see reviews by Anderson et al., 2005; Barnes et al., 2007; Thompson et al., 2007),

a few recent studies have examined volumetric changes in transgenic (TG) mouse

models of AD (Redwine et al., 2003; Delatour et al., 2006; Oberg et al., 2007). TG

murine models with targeted expression of mutated amyloid precursor protein (APP)

genes demonstrate many of the cognitive (Palop et al., 2003) and neuropathological

features of AD, including senile plaques, neuronal impairments, acetylcholine (ACh)

denervation (Hsia et al., 1999; Mucke et al., 2000; Aucoin et al., 2005), cerebral

hypometabolism (Niwa et al., 2002), and alterations in synaptic transmission (Larson

et al., 1999). These models are particularly useful for studying the natural evolution

of AD, as well as for evaluation of the therapeutic efficacy of new disease-modifying

agents.

Quantitative anatomical MRI studies of TG models of AD have largely been

limited to manual segmentation of regions-of-interest (ROIs) (Redwine et al., 2003;

Delatour et al., 2006; Oberg et al., 2007). These techniques, however, are labour-

intensive, prone to intra- and inter-rater bias, relatively insensitive to subtle morpho-

logical brain changes (Ashburner et al., 2003), and require a priori hypotheses about

affected anatomical structures, thereby excluding potentially relevant regions from

the analysis.

In order to overcome these inherent limitations, we have developed an alternative

automated approach, using deformation-based morphometry (DBM), to detect the

natural evolution of neuroanatomical changes in TG mouse models of AD. DBM is a

quantitative image analysis technique which evaluates information contained within

the vector field generated by the nonlinear warping of an individual MRI scan to a

reference template (Davatzikos et al., 1996; Bookstein, 1997; Thompson and Toga,

1997; Ashburner et al., 1998; Cao and Worsley, 1999; Chung et al., 2001). In contrast
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to voxel-based morphometry (VBM) (see Ashburner and Friston, 2000; Good et al.,

2001; Bookstein, 2001; Ashburner and Friston, 2001), DBM does not require seg-

mentation of the brain into different tissue compartments, which can be particularly

challenging in the murine brain. Further, DBM has been successfully applied to ex-

amine cross-sectional morphological differences and longitudinal anatomical changes

in human (Fox et al., 2001; Janke et al., 2001; Studholme et al., 2004; Leow et al.,

2006) and, more recently, mouse neuroimaging studies (Verma et al., 2005; Zhang

et al., 2005; Chen et al., 2006; Nieman et al., 2006; Spring et al., 2007). While the

majority of DBM studies of mouse brains have been limited to cross-sectional or dual

timepoint studies, Verma et al. (Verma et al., 2005) and Zhang et al. (Zhang et al.,

2005) recently extended this technique to study murine brain development over mul-

tiple timepoints, comparing changes in diffusion-tensor MR images of fixed ex vivo

brains between post-natal developmental stages using qualitative, landmark-, and

ROI-based quantitative measures.

In the present study, we have utilized DBM to examine in vivo neuroanatomical

differences between TG mouse models of AD and wild-type (WT) littermates, as well

as followed the evolution of these structural changes from 2.5 to 9 months of age using

a general, linear-model framework based on the deformation maps. The relationship

between the results of our automated analysis and conventional manual segmentation

methods was assessed for a number of different anatomical structures. This fully-

automated framework allows for voxelwise statistical analysis and obviates the need

to specify pre-determined ROIs, thereby resulting in an unbiased, exploratory method

for analyzing subtle differences between TG and WT populations.

3.3 Materials and methods

3.3.1 Animals and MRI measurements

MRI scans were kindly provided by AstraZeneca R&D (AstraZeneca, Södertälje, Swe-

den). The mouse models and MRI scanning protocols used for these studies have

previously been described, in detail, by Oberg et al. (Oberg et al., 2007). Briefly, 20

TG APP/PS1 mice (11 females, 9 males) and 13 WT littermates (11 females, 2 males)
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were scanned at 2.5 months (14 TG, 9 WT), 4.5 months (13 WT, 9 WT), 6.5 months

(10 TG, 10 WT), and 9 months (8 TG, 13 WT) of age for a total of 86 scans. MRI

scans were performed using a horizontal-bore 9.4 T magnet (Bruker Biospec 94/30,

Bruker, Ettlingen, Germany) equipped with a 12 cm inner-diameter self-shielded gra-

dient system (maximum gradient strength 400 mTm−1). A 72-mm volume coil was

used for excitation and a quadrature mouse brain surface coil (Bruker, Germany) was

used for signal detection. MR images were acquired with a 3D inversion-recovery,

spin-echo sequence, with the following scan parameters: matrix size = 128Ö128Ö64,

FOV = 2.0 cmÖ2.0 cmÖ1.0 cm, resolution = 156.25 µmÖ156.25 µmÖ156.25 µm, TR

= 2500 ms, TE = 5.7 ms, RARE factor = 4, inversion delay = 500 ms, and NEX =

1. The total acquisition time was 1 h and 26 min.

3.3.2 Longitudinal deformation-based morphometry

Reference model and nonlinear registration

Image processing was performed using software available from the McConnell Brain

Imaging Centre (http://www.bic.mni.mcgill.ca/software) at the Montreal Neurologi-

cal Institute (Montreal, Canada). A single, average MRI reference space was gener-

ated using all 86 scans following the methods of Kovacevic et al. (Kovacevic et al.,

2005). A representative scan was chosen as the prior model for initializing the ref-

erence model creation algorithm. The brain region of the representative scan was

manually outlined using the Display software package (Montreal Neurological Insti-

tute, Montreal, Canada) yielding a brain mask for our initial model space. This brain

mask was used for all subsequent reference model creation steps. Briefly, each scan

was first registered using a rigid body (lsq6) transformation to the prior model (Collins

et al., 1994). Next, images were corrected for intensity nonuniformity artifacts using

the N3 algorithm (Sled et al., 1998) with nonuniformity correction limited to the

brain-masked region of the model. The specific parameters utilized were: distance =

8 mm, FWHM = 0.15 mm, number of iterations = 100, and number of runs = 8.

Pairwise 12-parameter (lsq12) registrations were then performed to create an unbi-

ased affine average model of the entire dataset. This transformation was followed by

a series of nonlinear registration steps, applied in a coarse-to-fine fashion, with each

subsequent step using the best previous model as a registration target (Collins et al.,
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1995; Kovacevic et al., 2005). After concatenating the sequential transformations,

the scans were resampled and averaged, resulting in a population-specific model. The

registration parameters are provided in Table 3.1.

The resulting deformation field, consisting of 200 µm grid points, was inverted.

The linear terms were removed and the deformation field was centered to the average

displacement across the entire population studied, allowing for the vector fields to be

interpreted in a reference space. After resampling, the final deformation field provided

a nonlinear mapping, T(x), from reference space to the native space of each scan at

every voxel, x.

Assessment of registration performance

Inaccuracies in reference model creation can occur due to warping to a finite voxel

size (quantization) and imperfect/suboptimal calculation of the nonlinear transforma-

tion. In order to assess the registration performance of the reference model creation

process, we utilized manual segmentation data for three neuroanatomical structures

(whole brain, hippocampus, and lateral ventricles) that had been segmented in the

native space of all 86 scans used in the study. The manual segmentations of these

three structures were provided by AstraZeneca R&D (AstraZeneca, Södertälje, Swe-

den). The segmentation methods have been described, in detail, by Lavebratt et

al. (Lavebratt et al., 2006) and Oberg et al. (Oberg et al., 2007). The manual

segmentations of each MRI scan were run through an iterative loop as follows:

1. identify forward transformation between native space and reference space;

2. apply transformation to native structure segmentation to obtain a resampled

segmentation in reference space.

A voxel overlap index was then calculated across all scans for each manually

segmented structure. In principle, the reference space segmentations obtained from

each scan should be identical. However, the aforementioned practical factors, as well

as potential rater variation in the manual segmentation, may cause a mismatch at the

structure border especially for low-dimensional transformations. The voxel overlap

index was therefore assessed at progressively decreasing spatial resolution as follows:
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1. every voxel in reference space was assigned a value between 0 and 100% (perfect

overlap) for a given structure, corresponding to the proportion of the 86 scans

for which that voxel included that structure;

2. maximal perfect overlap was defined as the peak number of voxels exhibiting

perfect overlap across all registration stages;

3. a voxel overlap metric was computed according to the method utilized by Spring

et al. (Spring et al., 2007), specifically:

voxel overlap =
voxels at stage with perfect overlap

voxels at stage with maximal perfect overlap
(3.1)

Adaptive spatial filtering

In order to reduce noise in the deformation maps, we have applied the intensity

consistent approach described by Studholme et al. (Studholme et al., 2003). This

anisotropic filter was selected over more traditional Gaussian smoothing methods

since it is edge-preserving and thus, better respects anatomical boundaries. Briefly,

this algorithm performs a Gaussian blur, f(k), at each voxel, x, of the associated

deformation field, where the contribution of each kernel neighbor, k ∈ K, depends

on the MR intensity-based statistical relationship, pxk(x,x − k), between x and its

relative neighbor x − k. The value of pxk(x,x − k) was computed from an estimate

of the average and individual subject scan intensity within the local neighborhood,

K (Studholme et al., 2003). The filtering equation can be formalized as

T̃(x) =
1

Θ(x)

∫

k∈K

T(x − k) · f(k) · pxk(x,x − k) · dk (3.2)

In order to account for the variable contribution of neighbors at each voxel,

Θ(x) =

∫

k∈K

f(k) · pxk(x,x − k) · dk (3.3)
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was computed and used to normalize the local volume. A kernel width of 1.0 mm

was used for filtering.

Computation of the Jacobian determinant

In order to examine the local volume change in each subject, the Jacobian determinant

(or simply the Jacobian), J̃(x), for each vector, T̃(x), in the filtered deformation

field was computed at every voxel (Chung et al., 2001; Janke et al., 2001). This

metric has been shown to provide a simple and direct means of determining local,

voxelwise expansion or compression relative to the reference space. Global effects of

size were reintroduced at every voxel by multiplying the local Jacobian by the scale

term associated with the spatial linear normalization of each image to the reference

space. The scaled Jacobian was log-transformed in order to better approximate a

symmetric normal distribution, thereby permitting the use of a mixed-effects model.

3.3.3 Longitudinal statistical analysis of the

voxelwise Jacobian

In order to characterize the local trajectory of change, mixed-effects models were

tested at every voxel within the brain from the filtered, Jacobian maps. Mixed-effect

models extend standard linear models by adding an additional error term that cor-

responds to the variable intercept for each subject in a longitudinal dataset with no

requirement of balance in the data (i.e. it is not necessary for all mice to have the

same number of scans) (Pinheiro and Bates, 2002). The nature of the Jacobian’s rela-

tionship with age was modeled as a sum of fixed and linear components, and different

polynomial models were evaluated for the developmental trajectory. Interactions with

genotype and sex were assessed, and to account for within-subject dependencies, ran-

dom effects for both intercept and slope for each individual were tested. For this

analysis, age was centered to the mean age of the population. Finally, mixed-effects

models were compared using voxelwise likelihood ratio tests, and the simpler model

was chosen whenever it was found to explain most of the variance.

The resulting statistical maps were corrected for multiple comparisons using the
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false discovery rate (FDR) procedure with q = 0.05 (Genovese et al., 2002). A sin-

gle FDR threshold was determined by pooling the uncorrected P -values across all

effects and all voxels tested. By taking into account the degrees of freedom for a

given statistical test, a t-value threshold for each statistical map was computed from

the FDR-determined P -value. Regions of significant group-dependent deformation

were reported with the aid of a mouse atlas (Paxinos and Franklin, 2001). All sta-

tistical analyses were performed using the R software package (www.r-project.org) in

conjunction with the nlme and RMINC libraries.

3.3.4 Relationship between DBM results and

conventional manual volumetry

In order to examine the relationship between the automated results from DBM and

manual volumetric analyses, we studied the longitudinal patterns of change in manual

segmentations of whole brain, hippocampus, and lateral ventricles using mixed-model

regression. We evaluated registration performance across all 86 subjects studied.

These segmentations were used to assess the same mixed-effects components as in the

longitudinal statistical analysis for DBM.

We examined the relationship between an automated measure of volume computed

from the nonlinear transformations and the manually segmented volumes for all 86

scans. The volume of interest for each structure was derived from the probabilistic

average of all individual manual segmentations, thresholding the 3D probability map

at 50% and manually correcting the borders. Subsequently, these reference masks

for each structure were transformed back into the native space of each scan using

the previously computed nonlinear transformations, thereby providing an automated

estimate of the actual volume. The correlation between the automated volume and

the manually segmented volume for each scan and structure was then determined.
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3.4 Results

3.4.1 Reference model and nonlinear registration

Prior to the DBM analysis, the quality of registration was assessed in order to ensure

that reference creation had been properly performed. Figure 3.1a depicts the qualita-

tive improvements that can be observed over the course of reference model creation.

The variability of neuroanatomical features decreased with pipeline progression, par-

ticularly in white matter structures (e.g. the cerebellar and dorsal hippocampal com-

missures), and the ventricles. The extra-axial tissues remained highly variable since

they were excluded from the registration steps. Figure 3.1b shows the quantitative

improvement using our voxel overlap metric. Improvements were observed to plateau

following six generations of nonlinear registration.

3.4.2 Results of longitudinal DBM analysis

The voxelwise, log-transformed Jacobian provides a biologically interpretable measure

of local volumetric expansion (> 0) or compression (< 0) relative to the reference

space. Mixed-effects models were tested and compared across all voxels in the brain

using ANOVA. We tested main effects of gender, as well as interactions of gender

with age and genotype. However, the inclusion of these terms did not result in any

significant effects in the analysis. As such, the final statistical model included fixed-

effects for genotype (β1), age (β2), and the interaction of genotype with age (β3), as

well as a random intercept to account for within-subject variability (bi). This simple

model was found to be as robust as more complicated models (e.g. modeling both

slope and intercept as random effects). Thus, for each subject i, the model evaluated

was

Ji(x) = β0 + bi + β1 × genotype + β2 × age + β3 × age × genotype + ǫ (3.4)

where β0 represents the intercept term and ǫ is the residual error in the model. The
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results from the analysis showed significant patterns of local shape change that can

be described on the basis of these underlying model components. Each component

provides different information about local shape change. A significant age term is an

indicator of local volume growth or loss with genotype effects removed. A significant

genotype term indicates regions demonstrating inherent genetic differences between

groups, in particular, where WT is larger than TG (reduction) and where TG is larger

than WT (expansion) with age effects removed. Finally, a significant interaction

between genotype and age signifies a region affected differently by aging in each

groups. This interaction component is dependent on the values of both the age and

genotype terms, and thus the direction of change was interpreted on a region-by-region

basis.

Significant growth for both groups of animals was detected throughout the brain

particularly in the hippocampus, olfactory bulbs, thalamus, cerebellar commissure,

ventricles, and white matter tracts (e.g. anterior commissure and corpus callosum).

Significant volume reduction was noted in several cortical regions (entorhinal, piri-

form, somatosensory), as well as in the caudate.

Neuroanatomical regions displaying significant genetic differences in volume are

summarized in Table 3.2 for simple differences related to genotype and Table 3.3

for more complex, dynamic interactions between age and genotype. No interactions

with sex were observed in the population studied. Representative regions of signif-

icant morphological change or difference are shown in Figure 3.2. The dynamics of

longitudinal change are illustrated using voxelwise regression plots at specific, sig-

nificant individual voxels of the hippocampus and other brain structures (entorhinal

cortex, lateral ventricles, bed nucleus of the stria terminalis) in Figures 3.3 and 3.4,

respectively.

3.4.3 Longitudinal findings from manual segmentations

While Figures 3.3 and 3.4 demonstrate the results of the automated voxel-based

analysis, we also assessed the temporal dynamics for larger structures using the man-

ual segmentation data. The best-fit, mixed-effects regression plots for each of the

manually segmented structures, specifically whole brain, hippocampus and lateral
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ventricles, are shown in Figure 3.5. All three structures exhibited significant linear

growth (P < 0.0001).

Differences due to genotype (TG versus WT) were found in all three manually

segmented structures. In TG mice, whole brain and hippocampus demonstrated

reduced volume, while the lateral ventricles showed enlarged volume relative to WT.

Significant interactions between age and genotype components in the hippocampus

and lateral ventricles, and marginal interactions in the whole brain measure (P =

0.054) suggested an additional dynamic difference between groups that varied with

age.

3.4.4 Correlation between automated and

manually segmented measures

The correlation plots between the automated and manually segmented volumes for

whole brain (r = 0.97; P < 0.0001), hippocampus (r = 0.86; P < 0.0001) and lateral

ventricles (r = 0.72; P < 0.0001) are shown in Figure 3.6. While still highly signif-

icant, the lateral ventricles demonstrated the greatest variability in the correlation

plot (Figure 3.6c).

3.5 Discussion

In this work, we have examined morphological changes and differences in a longitudi-

nal, anatomical MRI study of TG APP/PS1 mice and WT littermates using DBM.

The analysis was performed using a unified, population-specific reference space and

mixed-effects modeling to allow for a voxelwise study of the distribution of age-related

volumetric changes and regional differences related to genotype (i.e. TG vs. WT).

We found strong, positive correlations between results computed using our au-

tomated methods and manual segmentation/volumetry in selected anatomical struc-

tures for all 86 scans (see Figure 3.6). However, small offsets are evident in Figure

3.6b and 3.6c, indicating a systematic bias inherent in the automated method. Not
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surprisingly, this bias becomes more evident as the size of the segmented structure

decreases, with the greatest deviations observed in the lateral ventricles (see numeri-

cal scales on the axes of the plots in Figure 3.6). Nevertheless, the highly significant

correlation analysis (P < 0.0001) justifies the use of reproducible, automated segmen-

tation rather than manual approaches that suffer from intra-/inter-rater variability.

While a range of different longitudinal patterns were observed throughout the

brain, emphasizing the heterogeneous nature of neuroanatomical changes, a number

of distinct patterns identified in this study were particularly interesting. Growth

with age was identified in the hippocampus, olfactory bulbs, thalamus, ventricles,

cerebellar commissure, and white matter tracts in both TG and WT groups. On the

other hand, age-related volume loss was identified in the lateral entorhinal, piriform,

and somatosensory cortices, as well as the caudate nucleus.

A number of expected and unexpected findings were discovered upon examining

genotypic differences. Volume reduction was observed in the cingulate, retrosplenial,

and primary somatosensory cortices of TG mice relative to their WT littermates.

Substantial β-amyloid pathology has been shown in these regions in both TG AD

mouse models (Trinchese et al., 2004; Delatour et al., 2006; Oberg et al., 2007) and

human AD patients (Braak and Braak, 1991). Reduced volumes were also noted in the

olfactory bulb and piriform cortex of TG mice. This finding is supported by previous

observations of olfactory dysfunction in AD patients (Thompson et al., 1998; Attems

et al., 2005), and in the Tg2576 APP mouse model of AD (Smith et al., 2007). Several

white matter tracts, particularly the anterior commissure, corpus callosum, internal

capsule, and dorsal hippocampal commissure, also showed localized reductions in size

in TG mice relative to their WT counterparts. Developmental abnormalities in the

fiber connections may help to interpret the anatomical underpinnings of cognitive

impairment in the studied TG model (Howlett et al., 2004; Trinchese et al., 2004).

Volume reduction was also observed in the cerebellar paraflocculus and regions of

the cerebellar commissure in the TG group. While the cerebellum generally remains

unaffected in AD patients, the development of AD pathology in the cerebellum has

been reported in early-onset patients with PS1 mutations (Larner and Doran, 2006).

Several neuroanatomical regions demonstrated volume expansion in TG mice such

as the lateral and third ventricles. Enlargement of these particular regions has been

observed in volumetric studies of this transgenic murine model (Delatour et al., 2006;
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Oberg et al., 2007). In brain parenchyma, the bed nuclei of the stria terminalis, as

well as the dorsal superior colliculus and periaqueductal gray of the brain stem, also

demonstrated relative enlargement in the TG group. Interestingly, hypertrophy of the

bed nuclei has been observed in studies of late-stage AD patients due to enlargement of

galanin-containing fibres within the cholinergic basal forebrain (Mufson et al., 1993),

while extensive plaque deposition in the brain stem has also been previously reported

(Iseki et al., 1989).

By examining the interaction term between genotype and age, we were able to

elucidate regions with difference in aging between TG and WT groups. As previously

mentioned, these dynamic effects are dependent on both the local value of the age

and genotype terms and, therefore, must be interpreted on a region-by-region basis.

For example, a significant positive effect was observed in a focal portion of the left

entorhinal cortex in WT versus TG. Detailed examination revealed relative volume

growth with age in WT mice, while no change was detected in the same region of TG

animals (Figure 3.4a). Regions within the retrosplenial granular cortex, ventrolateral

hippocampus, and flocculus demonstrated age-related growth in WT mice, while

observed suggested volumetric decline, or atrophy, in TG mice. With the exception

of the flocculus, these regions are all known to be affected in the progression of disease

in human (Braak and Braak, 1991; Lerch et al., 2005) and mouse models of AD (Hsia

et al., 1999; Reilly et al., 2003; Palop et al., 2005).

The primary somatosensory, retrosplenial, cingulate, and piriform cortical regions

exhibited smaller baseline volumes in the TG mice compare to WT mice, but are

shown to increase in volume over the age range studied. This finding suggests that

a process of delayed development had occurred and concurs with the hypothesis pro-

posed by Delatour et al. (Delatour et al., 2006) describing a process of interrupted

normal growth in TG mice in certain brain regions. Given that the mutant APP

transgene is constitutively expressed, it is not surprising that phenotypic differences

are evident at a young age.

Interestingly, there was a lack of general atrophy in TG mice relative to their WT

littermates aside from a few, very focal regions within the dorsolateral hippocampus,

retrosplenial cortex, and cerebellum. Instead, most of the anatomical differences ap-

peared to result from a developmental, rather than a degenerative, process. These

results, of course, require rigorous correlation with microscopic/molecular studies to
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better understand the neuropathological changes underlying these gross morphologi-

cal changes.

In this study, mixed-effects analysis was limited to applying a single statistical

model across all brain voxels. Based on the plots of individual trajectories in Figures

3.3 and 3.4, it is apparent that a linear model may not be optimal for all cases. How-

ever, given the relatively small sample size of this study, we have been cautious in

model selection in order to avoid over-interpreting the data using insufficiently pow-

ered higher-order models. Future studies with larger sample sizes and the inclusion of

later timepoints may employ modeling with higher-order curvilinear components. For

example, a step-down model selection algorithm, where each voxel would be fit with

the polynomial mixed-effects model that best explains the variance, may allow for

more detailed characterization of developmental trajectories (e.g. Shaw et al., 2007).

We originally tested for main effects of gender, as well as interactions of gender with

age and genotype. However, the inclusion of these terms did not result in any sig-

nificant effects in the analysis. These terms were, therefore, removed in favour of

a simpler model omitting gender as a covariate (see Equation 3.4). While gender-

related dimorphisms in murine neuroanatomy have previously been reported using

DBM (Spring et al., 2007)), this study used ex vivo images with a 32 µm isotropic

resolution. At this high spatial resolution, regional analyses were able to reveal dis-

tortions/movements between 30–180 µm. Given the lower resolution of our in vivo

scans (156 µm isotropic), it is unlikely that the subtle effects of gender would influ-

ence our data, a conclusion which is supported by the lack of any significant effects

of gender in our analysis.

In summary, our results support the utility of longitudinal DBM for the study of

in vivo multiple timepoint datasets involving mouse models of AD in an automated

and exploratory fashion. We were able to identify interesting growth differences be-

tween a transgenic APP/PS1 AD mouse model and their wildtype littermates with

strong supporting pathophysiological interpretations. The seamless combination of

morphological data obtained from this technique with complementary studies, in-

cluding functional MRI (fMRI), positron emission tomography (PET), quantitative

immunohistochemistry, as well as cognitive performance testing, should allow for an

improved understanding of complex neuropathological changes and their consequences

in multiple diseases of the central nervous system.
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Table 3.1: Registration schedule

Step FWHM (µm) Filter Type Grid Resolution (µm)

lsq6 5000 Gaussian NA

lsq6 2000 Gaussian NA

lsq6 1000 Gradient NA

lsq6 800 Gaussian NA

lsq6 500 Gaussian NA

lsq12 800 Gaussian NA

lsq12 600 Gradient NA

lsq12 400 Gaussian NA

nlin1 800 Gaussian 1000

nlin2 600 Gaussian 800

nlin3 500 Gaussian 700

nlin4 400 Gaussian 600

nlin5 400 Gaussian 400

nlin6 300 Gaussian 400

nlin7 200 Gaussian 300

nlin8 200 Gaussian 200

NA = not applicable
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Table 3.2: Main effects of genotype

Region Symmetry β1 t-value β1 greater in

Primary somatosensory cortex (jaw region) right 0.088 4.93 WT

Primary somatosensory cortex (barrel field) bilateral 0.126 5.11 WT

Retrosplenial and cingulate cortex medial 0.155 6.58 WT

Piriform cortex left 0.100 5.03 WT

Olfactory bulb bilateral 0.126 6.07 WT

Paraflocculus bilateral 0.116 4.87 WT

Anterior commissure bilateral 0.146 5.83 WT

Corpus callosum bilateral 0.172 6.20 WT

Cingulum/Dorsal hippocampal commissure bilateral 0.191 5.69 WT

Cerebellar commissure bilateral 0.181 5.31 WT

Bed nucleus of stria terminalis bilateral -0.170 -8.21 TG

Dorsal superior colliculus bilateral -0.116 -5.68 TG

Dorsal periaqueductal gray matter bilateral -0.062 -3.56 TG

Stria terminalis bilateral -0.175 -4.39 TG

Brachium of superior colliculus bilateral -0.097 -3.66 TG

Lateral ventricles bilateral -0.137 -5.97 TG

Third ventricle medial -0.103 -3.52 TG

β3 = fixed-effect for genotype
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Table 3.3: Interactions between age and genotype

Region Symmetry β3 t-value β3 greater in

Lateral entorhinal cortex left 0.057 3.93 WT

Retrosplenial granular b cortex medial 0.049 3.75 WT

Hippocampus: CA3 and GrDG bilateral 0.030 3.95 WT

Flocculus/Paraflocculus bilateral 0.028 3.44 WT

Primary somatosensory cortex (jaw region) bilateral -0.016 -3.88 TG

Primary somatosensory cortex (barrel field) left -0.026 -4.09 TG

Retrosplenial and cingulate cortex right -0.016 -3.56 TG

Piriform cortex bilateral -0.015 -5.02 TG

Dorsolateral hippocampus (CA1 to CA2) bilateral -0.032 -4.94 TG

Septofimbrial and septal nucleus left -0.017 -6.06 TG

Lateral globus pallidus right -0.024 -4.33 TG

Ventral posterolateral thalamic nucleus left -0.012 -4.12 TG

Medial vestibular nucleus bilateral -0.010 -4.02 TG

Cingulum/Dorsal hippocampal commissure left -0.041 -6.43 TG

Cerebellar commissure right -0.022 -4.76 TG

Lateral ventricles bilateral -0.017 -4.67 TG

Third ventricle medial -0.018 -4.49 TG

β3 = interaction between age and genotype
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Figure 3.1: Pipeline results for successive stages of reference creation. (a) Average and
standard deviation images of the same transverse slice at successive stages of registration.
(b) Plots of performance (quantified as voxel overlap) versus registration step for each
manually segmented scan. Note that the performance of the algorithm is seen to plateau
after the sixth nonlinear registration step.
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Figure 3.2: Statistical maps demonstrating local volume differences between TG and
WT populations. (a) The positions of representative slices throughout the reference space
are marked with dashed lines in a mid-sagittal slice for the coronal sections (A-E) and a
mid-transverse slice for the sagittal sections (F-J). (b) Regions demonstrating volumetric
differences due to genotype across all timepoints. Volumetric expansion and reduction in TG
versus WT are shown in green and red, respectively. (c) Regions demonstrating dynamic
interactions between age and genotype. Positive and negative interactions are shown in
green and red, respectively. All coloured regions are statistically significant by pooled FDR
(q = 0.05).
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Figure 3.3: Dynamic longitudinal changes illustrated within the hippocampus using the
local scaled Jacobian. The voxelwise scaled Jacobians are plotted as open circles. The final
predicted model, represented by a thick solid line, includes only significant components
of the mixed-effects model, and individual trajectories are connected by thin solid lines.
Regions in (a) the left lateral dentate gyrus, (b) the right dorsal hippocampus within CA1,
and (c) the left dorsal hippocampal commissure are shown.
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Figure 3.4: Dynamic longitudinal changes illustrated for several regions throughout the
brain. The voxelwise scaled Jacobians are plotted as open circles. The final predicted
model, represented by a thick solid line, includes only significant components of the mixed-
effects model, and individual trajectories are connected by thin solid lines. Regions of (a)
the left lateral entorhinal cortex, (b) the lateral ventricles, and (c) the bed nucleus of the
stria terminalis are shown.
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Figure 3.5: Mixed-effects regression plots in three manually segmented neuroanatomical
volumes: (a) whole brain, (b) hippocampus, and (c) lateral ventricles. The raw datapoints
are plotted as open circles. The final predicted curve is represented by a solid line, and
individual trajectories are connected by thin solid lines.
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Figure 3.6: Correlation between automated and conventional manual segmentations of
(a) whole brain, (b) hippocampus, and (c) lateral ventricles.



Chapter 4

Summary of Findings

The presented thesis examined the utility of an automated image processing tech-

nique, DBM, for detecting morphological changes and differences in a longitudinal

MRI study of APP/PS1 mice and their wild-type littermates. The results were

evaluated against conventional, gold-standard manual segmentations of several neu-

roanatomical structures of interest. Findings from the study can be summarized as

the following:

1. Using both qualitative and quantitative metrics, the unbiased reference creation

method of Kovacevic et al. (Kovacevic et al., 2005) was shown to sufficiently

improve nonlinear registration prior to longitudinal analysis (Figure 3.1). Visual

inspection of average and standard deviation images revealed that anatomical

features were both more refined and exhibited less variability with successive

registration steps. Performance, quantified as a measure of voxel overlap, was

observed to plateau after six nonlinear registration steps to a level of nearly

perfect overlap across images.

2. Adaptive spatial filtering was shown to provide improved delineation of mor-

phology in the processed deformation maps due to its ability to better respect

anatomical boundaries.

3. Using mixed-model regression, linear age and genotype components, as well

as the interaction between genotype with age, were examined. DBM analysis
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revealed that each of these components exhibited focal regions of significance

throughout the brain (Figure 3.2).

4. With effects of genotype removed, positive linear age-related changes were iden-

tified throughout the brain, but particularly in the hippocampus, olfactory

bulbs, thalamus, cerebellum, ventricles, and white matter tracts (Figure 3.2b,c).

5. Differences due to genotype, suggesting morphological abnormalities in the TG

group, were observed in focal regions of the hippocampus, cortex, olfactory

bulbs, stria terminalis, brain stem, ventricles, and certain white matter tracts

(e.g. anterior commissure, corpus callosum, dorsal hippocampal commissure,

cerebellar commissure) (Figure 3.2d,e and Tables 3.2 & 3.3).

6. Strong correlation between automated and conventional manual volumetry was

established across all 86 scans for three segmented neuroanatomical regions:

whole brain (r = 0.97; P < 0.0001), hippocampus (r = 0.86; P < 0.0001), and

lateral ventricles (r = 0.72; P < 0.0001).



Chapter 5

Conclusions

DBM, in conjunction with unbiased, population-specific reference creation, was found

to be an effective, automated technique for examining morphological effects in a lon-

gitudinal study of APP/PS1 mice and their wild-type littermates. The presented

method is completely data-driven, and therefore can be readily applied to MRI

datasets without any a priori hypotheses. In conjunction with mixed-effects mod-

elling of local volume (i.e. the Jacobian), morphological patterns due to differences

in genetic background, and longitudinal, age-related change were detected in an ex-

ploratory fashion throughout the brain, confirming findings from literature, as well

as revealing novel anatomical regions of interest.
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Future Work

The described method of nonlinear reference creation and subsequent DBM analysis

has been shown to achieve excellent results on a longitudinal MRI dataset involving

both transgenic and wild-type mice. However, there are clearly ways in which the

analysis could be improved.

1. While the focal changes/differences found in this study appear to be well-

supported by literature, the only way to truly confirm our findings would be to

use microscopic neuropathological examination, which would include study by

histochemistry and immunohistochemistry.

2. A validation study with multiple raters and multiple segmented neuroanatomi-

cal structures using this dataset would allow for true quantification of inter- and

intra-rater reliability measures as related to the robustness of the registration

strategy to longitudinal datasets.

3. The reference creation strategy employed confers equal morphological weight to

each input MRI scan in the resulting population average. There are two major

drawbacks to the current strategy. First, the created reference space may be

anatomically weighted toward the more represented subpopulations in the input

dataset. Second, the pairwise alignment strategy may be overly computation-

ally intensive for large MRI datasets particularly as they become increasingly

available as a result of high-throughput imaging (e.g. Nieman et al., 2005b)
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and multicenter studies. In Big O notation, the complexity of the algorithm is

O(n2), where n is the amount of input data (i.e. the number of MR images in

the dataset). This quadratic dependence on the input data may be inefficient

and alternative reference creation strategies, that may be better optimized for

these purposes, should be explored. Furthermore, it may be worth investigating

the performance of the nonlinear registration method used (Collins et al., 1995)

against other warping methods that may take into account fluid and elastic

modeling constraints (Christensen and Johnson, 2001; Davatzikos et al., 2001;

Leow et al., 2006).

4. The adaptive filtering technique, first described by Studholme et al. (Studholme

et al., 2003), and implemented here, was shown to provide improved delineation

of features of interest. However, alternative anisotropic techniques should also

be investigated.

5. In this study, the Jacobian determinant was assessed at each voxel as a means of

examining local volumetric effects across the entire dataset. This measure was

chosen because it provides the simplest and most readily interpretable term that

can be extracted from the local deformation vector. The effect of higher-order

terms of the Jacobian matrix that include vector direction or strain should be

investigated as they can provide improved characterization of neuroanatomical

effects, as well as more statistical power (Thompson et al., 2007).

6. The mixed-effects regression technique employed in this study required normally

distributed observations. In order to obviate the need for such an assumption,

the possibility of using nonparametric models to characterize longitudinal DBM-

based changes should be explored.

7. Future studies should confirm and look to further quantify the longitudinal

morphological changes reported in the APP/PS1 and their WT littermates.

Greater temporal resolution, as the result of more scanned timepoints, and

larger study designs would allow for improved curvilinear descriptions of age-

related local structural change.

8. While the longitudinal DBM method was demonstrated here for an MRI dataset

of double transgenic APP/PS1 mice, the generalizability of this method to the

study of other murine models of AD, and to other models of CNS disease should

be explored.
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