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 ABSTRACT 

Recently, decision makers have tried to develop smart city frameworks that can help optimize 

infrastructure usage and increase the quality of life for citizens. An intelligent transportation 

system (ITS) is a key element of any smart city platform. An ITS requires monitoring and data 

analysis capabilities to better understand the real-time conditions of the road network using 

different types of sensory systems. Ultimately, an ITS can optimize the network capacity based on 

the mobility information collected. For traffic monitoring, many technologies have been developed 

in recent years including traditional magnetic detectors or pneumatic tubes for vehicle or bicycle 

traffic, infrared- or image-based sensors, etc. Such systems have several limitations, such as high 

installation and maintenance costs, low accuracy, issues in performance under different weather 

and lighting conditions, and a lack of detailed information about the mode and class of the object 

in multi-modal traffic networks. Traditionally, a single mode was considered in vehicle-based 

traffic network monitoring. More recent studies are analyzing multi-modal networks in which the 

interaction between all modes (pedestrian, cyclist and vehicle) are considered. However, some 

elements of multimodal traffic monitoring systems remain missing in the research and 

development of multimodal traffic monitoring systems.  

The general objective of this thesis work is to develop two categories of monitoring technologies, 

between-point and fixed-point systems, as complementary components of a multi-modal traffic 

monitoring system. This thesis introduces a between-point monitoring system using an embedded 

WiFi-Bluetooth scanning system. The detection rate of both technologies has been compared. The 

results show that, in vehicular networks, the accuracy of travel time estimation can be improved 

by adding WiFi detected samples to the traditional Bluetooth-based systems. The same system was 

used to monitor a mixed pedestrian/cyclist network and to classify the objects using WiFi traces 

captured by sensors. The test results show that with the combined classification model, the 

algorithm could classify the objects correctly in 96% of the cases. The high correlation between 

the number of trips detected with WiFi signals and the flow of the pedestrians, as ground truth, 

demonstrates the potential of using the proposed system in flow extrapolation. 

To complement the proposed between-point monitoring system, this thesis introduces two types 

of fixed-point counting systems based on Lidar technology. The first system functions based on 

single beam Lidar technology. The system is easy to install, accurate and robust in different 
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weather and lighting conditions and addresses a shortcoming among commercially available 

counting technologies. The test results show an average directional count error of less than 5% for 

pedestrians and 2% for cyclists. All counting technologies that are installed from the side 

undercount because of occlusion. The problem of occlusion is particularly problematic along wide 

pedestrian sidewalks with high pedestrian volumes. To address this issue, another counting system, 

based on 2D Lidar technology, installed above and facing down, was developed in this thesis. This 

technology has improved performance over the 1D Lidar in environments with high pedestrian 

volumes. Additionally, this technology can be used in mixed mode networks; the shape of the 

object can be used in classification. The test results show an average absolute percent error of less 

than 5% when counting pedestrians on sidewalks with high flows and dense clusters.   
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 RÉSUMÉ 

Récemment, les décideurs ont essayé de développer des systèmes de villes intelligentes pouvant 

aider à optimiser l'utilisation des infrastructures et à améliorer la qualité de vie des citoyens. Un 

système de transport intelligent (STI), est un élément clé de toutes les plates-formes de ville 

intelligente. Un STI nécessite des capacités de surveillance et d'analyse des données afin de mieux 

comprendre les conditions du réseau routier en temps réel, et ce en utilisant différents types de 

systèmes sensoriels. En fin de compte, un STI peut optimiser la capacité du réseau en fonction des 

informations de mobilité collectées. Pour la surveillance du trafic, de nombreuses technologies ont 

été développées ces dernières années, notamment des détecteurs magnétiques traditionnels ou des 

tubes pneumatiques pour la circulation des véhicules ou des vélos, des capteurs infrarouges ou 

basés sur des images, etc. Ces systèmes ont plusieurs limitations, telles que des coûts d’installation 

et d’entretien élevés, un manque de précision, des problèmes de performances dans différentes 

conditions météorologiques et d'éclairage, et un manque d'informations détaillées sur le mode et 

la classe de l'objet dans les réseaux de transport multimodal. Traditionnellement, les véhicules 

étaient le seul mode de transport pris en compte dans la surveillance du réseau de circulation. Les 

études plus récentes analysent les réseaux multimodaux dans lesquels l’interaction entre tous les 

modes (piéton, cycliste et véhicule) est prise en compte. Toutefois, certains éléments demeurent 

absents dans la recherche et développement de systèmes de surveillance du trafic multimodal. 

L'objectif général des travaux de cette thèse est de développer deux catégories de technologies de 

surveillance, un système d’entre-points et un système de points fixes, en tant que composants 

complémentaires à un système de surveillance du trafic multimodal. Cette thèse présente un 

système de surveillance d’entre-points utilisant un système de numérisation WiFi-Bluetooth 

intégré. Le taux de détection des deux technologies a été comparé, et les résultats du test montrent 

qu'avec le modèle de classification combiné, l'algorithme pourrait classifier les objets correctement 

dans 96% des cas. La corrélation élevée entre le nombre de déplacements détectés avec des signaux 

WiFi et le flux de piétons réel observé démontre le potentiel de l’utilisation du système proposé 

dans le but d’extrapoler des flux. 

Pour compléter le système de surveillance d’entre-points proposé, cette thèse introduit deux types 

de systèmes de comptage de points fixes basés sur la technologie Lidar. Le premier système 

fonctionne sur la technologie Lidar à faisceau unique. Ce système est facile à installer, précis et 
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robuste dans différentes conditions météorologique et d’éclairage, et corrige une lacune parmi les 

technologies de comptage disponibles sur le marché. Les résultats du test montrent une erreur de 

comptage directionnel moyenne inférieure à 5% pour les piétons et à 2% pour les cyclistes. Toutes 

les technologies de comptage installées latéralement par rapport à la zone d’analyse obtiennent des 

sous-dénombrements en raison d’occlusions. Le problème de l'occlusion est particulièrement 

problématique le long des trottoirs piétons larges avec un volume de passage élevé. Pour résoudre 

ce problème, un autre système de comptage basé sur la technologie 2D Lidar, installé au-dessus et 

orienté vers le bas, a été développé dans cette thèse. Cette technologie a amélioré les performances 

par rapport au Lidar 1D dans les environnements très fréquentés par les piétons. En outre, elle peut 

être utilisée dans des réseaux à mode de transport mixte, la forme de l'objet pouvant être reconnue 

et classifiée. Les résultats du test montrent un pourcentage d'erreur absolu moyen inférieur à 5% 

lors du comptage de piétons sur des trottoirs à débits élevés et avec des groupes denses. 
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 GLOSSARY OF TERMS 

ARM Processor: is one of a family of processing units, which is based on RISC (Reduces 

Instruction Set Commuters) architecture developed by Advance RISC Machines.  

Average Travel Time: The average length of time taken to travel from point A to point B. 

Bluetooth: a wireless technology standard for exchanging data over short distances. 

Classification: dividing the object into one of the corresponding categories: pedestrian, cyclist or 

vehicle. 

Counting Systems: technologies, which can provide user flow in traffic networks. 

Detection rate: the number of identified users divided by a total number of objects in the coverage 

area of a sensor. 

Inductive Loop Detectors: a technology measuring the variation of an electromagnetic field. 

Inductive loop detectors use that information to detect the presence of an object built from metal.  

Infrared: region of the electromagnetic radiation spectrum where wavelengths range from 

approximately 700 nanometers (nm) to 1 millimeter (mm). Infrared-based sensors monitor the 

variation of infrared signals and detect the presence of the object based on measured variation. 

ITS: intelligent transportation systems include advanced and innovative technologies to better 

monitor transportation systems and act based on the collected data. 

Lidar technology: a technology, which uses the light flight time through the air to measure the 

distance to objects. There are three types of Lidar sensors: single-beam, which emits one laser 

beam at a time, 2-dimensional (2D), which emits multiple parallel laser beams to monitor a line 

rather than a single point, and 3-dimensional (3D), which simultaneously emits multiple beams 

along two different axes to generate a 3D map. 

MAC Address: an identifier assigned to a wireless device by the manufacturers. This address 

includes six (6) characters for the manufacturer ID and six (6) characters for the device, which are 

unique for each device. 

Multi-Modal Traffic Network: A traffic network in which at least two different classes of objects 

(pedestrian, cyclist, vehicle) exists. 

Non-motorized traffic: any form of transportation that provides personal or mobility goods by 

methods other than combustion motors. 
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Occlusion: when two or more objects adjacent to one another (side by side) make it difficult for 

technologies installed from the side to identify all of them. The closest object effectively masks all 

objects from being detected. 

Origin-Destination Study: a study used to determine travel patterns of traffic during a typical day.  

Passive and Active Scanning: During an active scan, the sensor transmits a request signal and 

listens for a response from a wireless device. During a passive scan, the sensor simply listens for 

probe signals sent periodically by a wireless device. 

WiFi protocol: a technology for radio wireless local area networking of devices based on IEEE 

802.11 standard, mainly used in high-speed data transmission and internet. 

Wireless Network Scanner: a system that records wireless signals emitted by wireless devices and 

processes them to extract the unique ID of the wireless device. 
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 Chapter 1: Introduction 

This chapter presents a brief introduction of the concept of intelligent transportation systems (ITS) 

in the context of smart city applications. The chapter focuses on automated data collection for 

motorized and non-motorized traffic monitoring systems and includes a literature review on ITS 

as well as the contributions and objectives of this work.  

 GENERAL CONTEXT 

It is estimated that more than six billion people will be living in urban areas by the year 2050, 

representing about 75% of the global population. The concentration of individuals in cities creates 

many opportunities; however, urbanization also creates its own challenges, such as congestion, 

poor air quality, road injuries, etc. With the significant growth of cities and the issues related to 

urban mobility, local governments are looking for solutions to improve the quality of life of its 

citizens. Active transportation, such as walking and cycling, has gained momentum in recent years 

(Bagloee et al. 2016, Dong et al. 2016, Hipp et al. 2017, Pucher and Dijkstra 2003, Staunton et al. 

2003). The cycling ridership and network size have risen sharply in the last decade in many North 

American cities. With the promotion of non-motorized transportation, the diversity and use of 

alternative modes has increased, resulting in more complex traffic conditions, with higher 

volumes, higher traffic mix, and, thus, more dangerous interactions among road users of different 

modes (Caviedes and Figliozzi 2018, El-Assi et al. 2017, Hamilton and Wichman 2018, Ricci 

2015). To deal with the increase of demand of alternative modes of transportation, cities have been 

looking for innovative strategies to monitor traffic conditions and transportation infrastructure 

operations using sensing technologies as part of the intelligent transportation systems (ITS) 

(Brosnan et al. 2015, Lindsey et al. 2015, Nordback et al. 2016, Proulx et al. 2016, Ryus et al. 

2014). Depending on the technology and the mode, monitoring technologies typically provide 

basic traffic parameters such as volumes or counts, speeds, travel times, etc. This information is 

often required in real-time for traffic operations. 

In the search for innovative solutions for traffic monitoring, cities are leveraging the emergence of 

new technologies and the growth of the Internet of Things movement, (Sherly and 

Somasundareswari 2015, Singh et al. 2014, Zanella et al. 2014). Technological solutions can help 

cities understand the temporal and spatial patterns of urban mobility demand in real time not only 
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for motor-vehicle traffic but also for non-motorized traffic. This is critical, not only for the traffic 

operations but also for the planning and the design of new road infrastructure that accounts for 

emerging modes (walking and cycling). For example, data on non-motorized mobility can provide 

essential information for traffic signal operation in real-time, but can also help assess the quality 

of service of sidewalks, bicycle facilities, streets, intersections, etc. Moreover, greater access to 

data can assist in the planning and design of new infrastructure, as well as in the ex-post evaluation 

of the impact of new infrastructure on traffic and air quality. Therefore, automated data acquisition 

can enable better management of traffic controls, safety, and emergency services, and it is essential 

in the planning and design process of the urban space and non-motorized facilities. 

 PROBLEM STATEMENT 

Modern urban transportation networks involve complex traffic dynamics composed of non-

motorized (pedestrians and bicycles) and motorized traffic flows. For the development of advanced 

traffic management and control systems, real-time and accurate traffic monitoring systems are 

crucial. These systems can collect data on traffic parameters such as flow, speed, density, travel 

time, etc. These parameters are monitored not only for motorized but for non-motorized modes in 

the road network and/or in transportation facilities such as airports and terminals. In addition to 

roads or urban streets, other public spaces (such as parks, university campuses, malls, etc.) need 

monitoring systems that can provide a comprehensive and detailed account of human activity or 

flow non only for motorized but also for active modes.  

In recent years, we have seen the emergence of new technologies for automated data collection 

and monitoring of urban transport systems. Generally, traffic monitoring systems (motorized or 

non-motorized) can be divided into three types: 

• Fixed-point monitoring systems: These systems provide information based on the 

detection at a given point (e.g., radar, magnetic, infrared sensors). These systems are 

designed for vehicular traffic to obtain volumes, speeds, and other parameters at different 

levels of granularity at a fixed point. For active transportation, these systems mainly 

provide volume or count data. Magnetic (loop) detectors are very popular for bicycle traffic 

while counting infrared systems for pedestrian volumes.   

• Between-point monitoring systems: Systems provide information such as travel time, 

origin-destination (O-D) matrices, and routes using a network of sensors. They use 
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technologies such as WiFi, Bluetooth, RFID, plate recognition, or other re-identification 

sensors. Generally, a signature (unique ID) of the user (for example MAC addresses of the 

user’s wireless device) is detected to identify the path, travel time and origin-destination of 

the road users among a set of sensors located strategically in a network (Ahmed et al. 2008, 

Bullock et al. 2010, Malinovskiy et al. 2012, Martchouk et al. 2010).  

• GPS-based monitoring systems: These systems are used in higher levels of data 

collection systems in both the real-time and offline modes, with rich information quality 

(not limited to one or a few point measurements)  (Herring et al. 2010). However, the 

penetration rates and representativity of the data of GPS-based systems can be an issue. 

 Most of the technological development has been geared towards motor-vehicle traffic monitoring 

systems. Technologies for monitoring and collecting non-motorized traffic data have emerged 

more recently. In general, effort on data collection and monitoring systems has gone into reducing 

costs (acquisition and operation), increasing the granularity of data, increasing the installation 

flexibility in terms of data collection duration (long term vs. short term), increasing the temporal 

and spatial coverage, and designing real-time systems.  

Of the three types of monitoring systems mentioned above, each has some advantages and 

shortcomings associated with respect to aspects of spatial and temporal coverage, accuracy, 

detection rates and efficiency in different weather and traffic conditions, and cost (Bagloee et al. 

2016, Hamilton and Wichman 2018, Leduc 2008, Nordback et al. 2016, Ricci 2015). Among the 

commercially-available traffic monitoring systems, several are touted for their functionality, real-

time implementation, and cost-effectiveness.  

1.2.1 Fixed-point monitoring systems  

Fixed-point monitoring systems are widespread in practice because they can be efficiently installed 

and implemented at a set of permanent data collection stations in a city to collect data for long 

periods of time. However, the traffic information collected from these systems has limited spatial 

coverage (Mitsakis et al. 2015). The systems are too expensive to be deployed at each facility in a 

large-scale network.  

Among the main outcomes from fixed-point monitoring systems, traffic volume (also referred to 

as flow or counts) and speeds are key parameters that provide information about the network state. 

Depending on the transportation facility that is being studied, there are various popular fixed-point 

systems available in the market such as loop detectors (Cheung et al. 2005, Coifman and Kim 
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2009, Kwon et al. 2003), radar sensors (Davis and Mee 2002, Hutchison et al. 2010), and video-

based sensors (Atev et al. 2005, Datondji et al. 2016, Robert 2009, Setchell and Dagless 2001). 

The accuracy of existing systems has been tested in the literature.  

1.2.2 Between-point monitoring systems 

Between-point monitoring systems are less expensive economically; hence larger networks can be 

covered in practice. These systems are often deployed for real-time data collection purposes. 

However, the detection rate depends on the penetration rates of technology. For instance, in the 

case of Bluetooth, the system can only report road users with enabled smartphones; the detection 

rates of Bluetooth MAC (Media Access Control) addresses that can be very low (Bhaskar et al. 

2015, Friesen and McLeod 2015, Malinovskiy et al. 2012, Mei et al. 2012, Moghaddam and 

Hellinga 2014, Wieck 2011).   

In Bluetooth monitoring systems, the typical mobility information that is reported includes travel 

times, paths, O-D matrices, etc. Bluetooth detectors have been widely researched for motor-vehicle 

traffic applications as a way of detecting Bluetooth devices such as smartphones (Agarwal et al. 

2013, Barcelo et al. 2010, Day et al. 2010, Haseman et al. 2010, Omrani et al. 2013, Zoto et al. 

2012). Bluetooth-based systems detect road users across multiple detection sites. Only a few 

applications have been explored the use of Bluetooth for non-motorized traffic; low detection rates 

have been documented. More recently, systems based on WiFi sniffers have been proposed as an 

alternative to Bluetooth (Danalet et al. 2014, Hidayat et al. 2018, Vu et al. 2010); however, very 

few applications have been documented for motorized and non-motorized traffic applications.  

1.2.3 GPS-based monitoring systems 

As a traditional travel time estimation method, probe vehicles equipped with GPS are used in the 

literature (Chen and Chien 2001, Li and McDonald 2002, Nantes et al. 2016, Nanthawichit et al. 

2003, Wei and Forougi 2016). However, the penetration rate, temporal coverage, and special 

coverage of this method are limited, and it is very costly.  

With the growth and ubiquity of smartphones, recent studies have used the GPS points logged by 

smartphones for traffic monitoring purposes. The location data can provide precise measurements 

of the user’s micro-scale activity. While most studies have used smartphone GPS points recorded 

by drivers for travel time and origin-destination studies (D'Andrea and Marcelloni 2017, 

Engelbrecht et al. 2015, Hu et al. 2015), a few studies have used the GPS data for monitoring the 

activity of the cyclists (Dabiri and Heaslip 2018, Martin et al. 2017, Montoya et al. 2015, Strauss 
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et al. 2015). Although GPS data can provide rich micro-level information about user activity and 

the transportation network, it has the drawback of requiring the user to actively participate in 

installing the application and recording their location. Privacy issues and the contribution to the 

battery drain of the device are the two main concerns that users have with smartphone GPS 

applications. These concerns reduce the penetration rate of this method of data collection.     

1.2.4 Non-motorized traffic monitoring systems 

Non-motorized traffic monitoring systems are typically categorized as pedestrian or bicycle 

monitoring systems. There are several pedestrian counting systems that can be placed along 

sidewalks and at the entrances of public areas (Dharmaraju et al. 2002, Greene-Roesel et al. 2008, 

Lesani et al. 2015, Lindsey et al. 2013, Proulx et al. 2016). Infrared based systems are the more 

widely used systems, particularly due to their cost and ease of installation (Ozbay et al. 2010). 

Although the accuracy of infrared-based systems has been shown to be adequate in the literature, 

there are circumstances in which the accuracy can drop (Lesani et al. 2015). For bicycle traffic 

monitoring, traditional technologies such as pneumatic tubes (Brosnan et al. 2015, Nordback et al. 

2016) and loop detectors (Jansen et al. 2014) have been widely used by cities. The pneumatic tubes 

are used mainly for temporary data collection and are easy to install, but the counting accuracy 

diminishes as the length of the tubes increases. The tubes are easily damaged, which translates into 

high maintenance cost (Nordback et al. 2016). Loop detectors are primarily used in permanent 

cyclists counting applications. The accuracy of loop detector systems tends to be high; however, 

they also typically require high maintenance and installation costs due to cutting into the pavement. 

1.2.5 Research needs 

Despite the advantages of each technology, some other practical and research needs have yet to be 

thoroughly addressed including: 

• Current technologies typically target one mode, or in the case of active modes, sensors 

typically provide only counts. For active modes, there is a lack of technology to gather 

microscopic data. Non-motorized sensors often do not provide information on gap time, 

density and speeds.  

• Current counting systems such as infrared sensors for pedestrian counting, installed from 

the side, suffer from an occlusion in high-density pedestrian facilities. Additionally, some 
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other shortcomings of infrared-based counting systems include sensitivity to temperature, 

short range, and the requirement of facing a wall to avoid over-counting. 

• Traditional bicycle counting systems, such loop detectors, have several shortcomings, 

namely, the high cost of installation due to the need to cut into the pavement. Installation 

involves road closure. This causes interruption in traffic flow, adds additional cost for the 

users and makes system maintenance more difficult.  

• Methods based on WiFi monitoring systems are lacking in the literature, in particular, for 

non-motorized networks with pedestrian and bicycle flows. The mode classification and 

extrapolation of MAC signals have not been addressed in the literature.   

• There is a lack of development of multiple-sensor systems with the capability of reporting 

data in real time while covering entire networks over long periods of time. Moreover, in 

the current context, requirements for the monitoring of, not only vehicular traffic but also, 

non-motorized activity (pedestrians and bicycles) are growing. The flexibility (including 

wireless communication) and monetary costs (including installation and maintenance) 

associated with these systems are also important elements which can be improved upon.  

• Many sensors have their own software and data platform, making integration into the 

overall system of the city very difficult. 

• Many of the more advanced systems, such as video-based and radar-based solutions, 

require accurate calibration to achieve the claimed performance. This requirement can add 

human error as a source of performance error. The vision-based systems also require 

homographic analysis to extract the objects speed.   

 OBJECTIVES 

This research work is a response to the practical needs and research gaps listed above. More 

specifically, the general objective of this work is to develop and test innovative monitoring systems 

using wireless network (WiFi) signatures from mobile devices and emerging Lidar (Light 

Detection and Ranging) technologies.  

The specific objectives of this research are to: 

1- Develop a WiFi-Bluetooth based monitoring system for automatically collecting and 

reporting road user signals in real time through a network of sensors. Such a system could 

be used to monitor traffic conditions. For this purpose, a real-time wireless network 
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scanning system is developed to capture the MAC addresses of wireless devices and send 

the data in real-time to the cloud platform for processing. These addresses are unique for 

each device, and can, therefore, be used to track the activity of the user throughout the 

network. The designed system combines WiFi and Bluetooth technologies to gain benefits 

from each technology. The combination of the two technologies enhances the performance 

of the data analysis algorithms and increases the penetration rate. 

2- Develop and evaluate the performance of an integrated WiFi-Bluetooth system to monitor 

pedestrian and bicycle flows in shared spaces. This includes the development of WiFi 

classification and extrapolation methods. Comparative analysis of technologies is also 

carried out. 

3- Investigate the performance of WiFi-Bluetooth Scanner for monitoring travel times along 

urban corridors. The goal is to compare the performance of the two wireless technologies, 

comparing their penetration rates and evaluating the accuracy of travel time estimation. 

The benefits of data fusion are also investigated to improve the performance of the 

Bluetooth monitoring system.    

4- Develop and evaluate the performance of a real-time counting system based on single-

beam Lidar sensors that measure the distance to the object (road user) and process the 

distance readings to detect, classify, and count pedestrians and bicycles on non-motorized 

facilities. The system is evaluated in different traffic conditions and compared to the 

performance of existing technologies.  

5- Propose and test a pedestrian monitoring system that is based on 2D Lidar sensors. The 

sensors read distances to objects (road users) in two-dimensional space and from above 

facing down. This sensor is designed to operate under very high pedestrian flow conditions 

and addresses occlusion and classification issues associated with traditional, side-mounted 

counting systems.  

 ORIGINAL CONTRIBUTION 

This thesis contributes to the existing literature by addressing several shortcomings in: 

➢ Designing and testing an integrated WiFi-Bluetooth scanner to detect the MAC addresses 

of wireless devices and monitor the activity and travel times of road users in different traffic 

networks. 
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➢ Evaluating the performance of WiFi vs. Bluetooth scanning systems in mixed pedestrian 

and cyclist networks, proposing a framework to classify objects (pedestrian/cyclists) and 

extrapolating the pedestrian flow using their WiFi traces and counts. 

➢ Evaluating the performance of WiFi vs. Bluetooth scanning systems in terms of detection 

rate and speed estimation accuracy, and proposing an integrated system to estimate 

vehicular travel time which benefits from the integration of the two technologies in one 

system. 

➢ Developing a novel pedestrian and cyclist monitoring system using single-beam Lidar 

technologies. The proposed solution performs better than existing systems, for temporary 

or continuous data collection, in terms of accuracy, cost, and installation flexibility. The 

developed technology provides higher accuracy, more flexibility in different traffic 

networks, and lower maintenance and installation costs when compared to commercially- 

available systems. 

➢ Developing a pedestrian counting system using 2D-Lidar technology for high-volume 

conditions. This sensor addresses occlusion issues associated with traditional, side-

mounted counting systems. 

 ORGANIZATION OF THE DOCUMENT 

This thesis is organized into seven chapters, including the introduction. Since this is a manuscript-

based thesis, the following chapters, three through six, are each article for which the author is the 

primary author. These papers are either published in journals and/or conferences or are reserved 

for submission after finalizing the provisional patent applications.  

Chapter 2 provides a general literature review following the description of the system architecture.  

Chapter 3 presents the WiFi-Bluetooth system that is implemented and tested to monitor pedestrian 

and bicycle activity in a shared space (McGill Campus). The performance of the two technologies 

is evaluated using ground truth data. A modeling framework is proposed to track, classify, and 

extrapolate MAC signals.  

In Chapter 4, the proposed WiFi-Bluetooth scanning system is evaluated for monitoring traffic 

flow and travel times of road users in vehicular traffic networks. A comprehensive comparison 
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between WiFi and Bluetooth technologies is conducted to show the advantages of the WiFi system 

over traditional Bluetooth systems.  

Chapter 5 presents the design and development of a novel pedestrian/cyclist counting system based 

on single beam Lidar sensors. The system can accurately count objects, and detect the direction of 

the passing object.  

Chapter 6 presents a novel pedestrian counting system, based on 2 dimensional (2D) Lidar 

designed for high pedestrian flow applications. The system functions in real-time and addresses 

issues associated with side-mounted systems.  

Chapter 7 summarises the achieved objectives, concluding remarks, and potential future work. 
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 Chapter 2: General Literature Review and System 

Architecture 

This Chapter consists of a literature review of the technologies and methodologies for traffic 

network monitoring with a particular focus on non-motorized modes. The literature review is 

divided into two parts: 1) studies focusing on wireless network sniffing devices that track user 

activity, known as between-point monitoring systems, and 2) studies focusing on fixed-point 

monitoring systems for motorized and non-motorized traffic.  

 WIRELESS NETWORK SNIFFING FOR TRAFFIC MONITORING  

The need for real-time traffic information is becoming increasingly important in urban areas, 

where large sets of monitoring locations are required. The use of fixed-point sensors is limited in 

spatial coverage and the high cost of installation and operation of large networks. More 

importantly, there is a particular interest in real-time monitoring of travel times or speeds (at 

segments, corridors or networks) and in generating origin-destination matrices, in addition to 

getting count data. To gather this information, the detection of the same road user across two or 

more locations is required.   

In recent years, the literature in traffic monitoring has expanded to include the use of floating 

traffic monitoring technologies in addition to fixed location sensory systems. Recent advances in 

Global Positioning System (GPS) technology have helped make the technology more 

commercially viable. Floating traffic monitoring systems could complement existing fixed 

location traffic monitoring systems, which limit spatial coverage in traffic networks. GPS 

technology can be utilized in three different contexts: i) GPS units on public bus fleets, taxis, car-

sharing companies, (Bacon et al. 2011, Balan et al. 2011, Herrera et al. 2010, Schäfer et al. 2002), 

ii) GPS equipped probe vehicles (Chen and Chien 2001, Li and McDonald 2002, Nanthawichit et 

al. 2003), and iii) GPS units following regular drivers (typically using smartphones) (D'Andrea 

and Marcelloni 2017, Engelbrecht et al. 2015, Hu et al. 2015). In a recent study (Dabiri and Heaslip 

2018) a convolutional neural network scheme was used to extract the mode of mobility using raw 

GPS data. An accuracy of 84% was achieved in detecting users who were walking, driving, biking, 

using the bus and train. Despite many studies that have utilized GPS technology in travel time 

estimation on motorized networks, few studies have applied this technology to non-motorized 

networks. For example, Strauss et al. 2012 used GPS points to investigate the link between cyclists 
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volume and air pollution level along bicycle facilities. Martin et al. 2017 developed a framework 

to classify the users based on GPS points reported by user smartphones. In Strauss et al. 2015, the 

authors mapped cyclists activity and injury risk in a network by combining GPS traces and fixed-

point count data. The study demonstrated that accurate count data is crucial for developing such 

frameworks.   

Despite the high accuracy in GPS-based methods, its use is not widespread because of some 

significant shortcomings. The greatest potential of this technology is to monitor regular users using 

smartphones. However, privacy issues and the contribution to battery drainage of smartphones are 

the two main concerns that users have with smartphone GPS applications. These concerns 

dramatically reduce the penetration rate of this method of data collection. The difficulty in 

achieving wide-spread implementation have led researchers to use other, less accurate, sources of 

data. 

To address the challenges of GPS-based monitoring system, alternative approaches have emerged 

using i) wireless technologies (Bluetooth) (Ahmed et al. 2008, Bullock et al. 2010, Danalet et al. 

2013, Malinovskiy et al. 2012, Martchouk et al. 2010, Porter et al. 2013, Saeedi 2013, Tsubota et 

al. 2011), ii) WiFi access points (Ahmed et al. 2008, Danalet et al. 2013, Musa and Eriksson 2012), 

and iii) cellular tower data (Caceres et al. 2007, Calabrese et al. 2015, Iqbal et al. 2014, Williams 

et al. 2015).  

The concept behind using cellular tower data (geo-localization of the users with GSM data) is to 

acquire their location based on knowledge of which Based Transceiver Stations (BTS) they are 

connected to in specific time spans. This data source, however, creates privacy concerns since the 

registered phones on networks can be associated with people’s identity. Moreover, the low 

positioning accuracy and ping-pong handover between BTSs represent technical limitations in 

using cellular data. Low BTS density in some areas makes this data unreliable; the large radius of 

the BTS cells (approximately 200 m) makes the data very noisy for short trips, (Kalatian and 

Shafahi 2016). 

As an alternative cellular tower data source, Bluetooth and WiFi detectors can detect a unique 

media access control (MAC) address for each device. Then, each device can be monitored 

(tracked) as it moves through a network. Bluetooth-based sensors have gained popularity for 

collecting motor-vehicle traffic data in recent years. Systems based on Bluetooth-enabled devices 

have been used to collect real-time measures of traffic congestion based on travel times or speeds 

(Martchouk et al. 2010, Tsubota et al. 2011) and for O-D matrix applications (Laharotte et al. 2015, 
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Michau et al. 2017). Bluetooth-base sensor popularity has been increasing in the last several years 

because the systems offer portability, and instant, unobtrusive data collection (Wasson et al. 2008). 

A basic device that collects travel time data is composed of a reader unit, a unit to store MAC 

addresses, and an antenna. The advantages of Bluetooth methods over conventional technologies 

include relatively lower costs (hardware and software are inexpensive), the ability to collect large 

quantities of data over time, and ease of installation. Given their flexibility, Bluetooth data 

collection devices are suitable for temporary or permanent installation along roadway facilities of 

interest. These sensors have been demonstrated to work well in vehicular traffic applications, and 

a few studies have shown that they can be used to monitor pedestrian traffic (Lan et al. 2017, 

Malinovskiy et al. 2012, Markowitz et al. 2009, Yoshimura et al. 2017). Using multiple detectors 

throughout a network, the path and approximate speed of each device can be determined and used 

to generate OD matrices, travel times, and measures of congestion (Martchouk et al. 2010, Saeedi 

2013, Tsubota et al. 2011, Wasson et al. 2008). Several applications in which Bluetooth devices 

have been used to compute travel time and other traffic performance measures have been recently 

reported. Among earlier works, Wasson et al. 2008, estimated travel times on freeways and 

arterials in the greater Indianapolis area. In another study Haseman et al. 2010, computed 

congestion measures to evaluate the impact of highway work zones along rural interstates in 

Indiana. Among the studies in urban environments, Quayle et al. 2010 measured segment travel 

time, average running speed, and origin-destination on arterials in Portland, Oregon. In a different 

application, Day et al. 2010 evaluated signal coordination by combining travel time measurements 

with detector event data. Other studies have compared alternative methods, such as floating car 

versus Bluetooth data collection. More recently, Porter et al. 2013, evaluated the use of different 

antennas and concluded that an antenna with a large gain and a lower sampling rate may provide 

more accurate travel time samples. Although most of the studies focused on vehicular traffic 

networks, some recent works have applied Bluetooth scanners to monitor users in mixed mode 

traffics. For instance, Michau et al. 2017 developed a framework to classify the mode of the object 

in mixed mode (bike-vehicle) facilities. Some other recent works have used Bluetooth data to 

monitor activity in pedestrian environments (Lan et al. 2017, Malinovskiy et al. 2012, Yoshimura 

et al. 2017). 

Despite the advantages of Bluetooth listed above, technology has several documented limitations. 

Among them is the fact that the quantity of collected data depends on the level of market 

penetration of Bluetooth technology. Sampling rates vary from 3 to 12% on roadways 
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(Malinovskiy et al. 2012). For instance, Wieck 2011 investigated the technology on an arterial 

corridor with six intersections and found a matching rate that varied from 3% to 11.4%. While 

these values can be statistically adequate given a large enough fleet size, higher detection rates 

between sensors are always preferred to ensure system reliability. Another shortcoming is that 

Bluetooth devices are often disabled or not “discoverable” on smartphones due to security risks, 

battery concerns, or lack of use. Moreover, Bluetooth-based systems have difficulty capturing 

usable data on arterials or facilities with high traffic mix, in particular with high volumes of 

pedestrians and bikes.  

To overcome the issues associated with Bluetooth sensors and increase the detection rate, 

researchers have considered WiFi access points as an alternative way to capture the MAC address 

of wireless devices connected to the network. WiFi is another common wireless service, and it has 

a considerably higher rate of use than Bluetooth. WiFi is typically left enabled by users because 

doing so allows users to connect to known networks when in range. WiFi has been used in existing 

networks to track devices that are connected to a specific network. In several studies, the 

information about connected devices to the network was used to monitor network performance 

and user activity (Hidayat et al. 2018, Reichl et al. 2018, Weppner et al. 2016). The advantages of 

using WiFi are particularly evident for networks with a large wireless coverage area and many 

nodes, e.g., on a university campus. For a device to be tracked, it must be connected to the given 

wireless network and must be within the coverage area. Therefore, the area studied cannot be 

expanded without extending the network coverage, which can be difficult as it means expanding 

the area supporting internet usage to its users. Because of the shortcomings of using WiFi access 

point data to monitor network traffic using WiFi protocol, there is a growing interest in developing 

independent WiFi sniffer systems. In these systems, capturing MAC addresses is not limited to the 

devices that are connected to a specific network. 

In the literature, few studies have compared the performance of Bluetooth and WiFi scanners in 

providing usable and representative travel data (Hidayat et al. 2018, Tufuor and Rilett 2018). In 

studying vehicle traffic, Abbott-Jard et al. 2013 compared the performance of the two technologies 

with data collected along a major arterial and freight route in Brisbane, Australia. The results 

indicated that Bluetooth performed better: 1191 matched MAC-IDs could be identified from the 

data produced by the Bluetooth scanners compared to 149 from the data produced by the WiFi 

scanners. In addition, the percentage of usable data from the Bluetooth and WiFi scanners was 
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81% and 19% respectively. The authors mentioned that WiFi technology might have been affected 

by interference with other WiFi signals in the area. 

For non-motorized monitoring, there are several ongoing studies that have applied WiFi network 

scanners to pedestrian networks at airports, shopping malls, university campuses (Abedi et al. 

2015, Bai et al. 2017, Kurkcu and Ozbay 2017, Schauer et al. 2014, Song and Wynter 2017). The 

purpose of these studies is to demonstrate how user activity can be monitored to improve in the 

management of the facilities, services provision, advertisement, and emergency evacuations. As 

part of the WiFi pedestrian-related applications, Schauer et al. 2014 compared various pedestrian 

flow techniques using both WiFi and Bluetooth scanners in the Munich Airport. The results 

showed that WiFi overestimated and Bluetooth underestimated flows compared to the number of 

boarding pass scans (ground truth). More recently, Kurkcu and Ozbay 2017 proposed an 

application to estimate the wait time in a bus terminal but the results were not validated with the 

ground truth data. Du et al. 2017 proposed a method to improve the detection rate and estimation 

precision of pedestrian flows. Bai et al. 2017 used the WiFi scanning approach to count the number 

of pedestrians using WiFi traces at public transport stations. In Abedi et al. 2015, the authors 

empirically assessed the impact of small and large antenna gains on tracking movements of 

pedestrians and cyclists based on MAC address datasets. Despite the growing body of work, some 

issues and gaps remain. Firstly, the authors considered a fixed coverage area based on the antenna 

gain but, in practice, the coverage area is also dependent on the type of device and network 

characteristics. Secondly, the proposed speed estimation approach was only validated for 

pedestrians (and not for cyclists). Thirdly, pedestrians, runners, and cyclists are classified only 

based on speed; the applicability of which is limited to large networks with large distances between 

sensors.  

Despite the growing body of literature, research gaps remain in the monitoring of multi-modal and 

non-motorized transportation networks. More specifically, their significant gaps related to 

methods for mode detection or classification of signal (MAC) and the extrapolation of the traffic 

flows based on WiFi signatures persist. Additionally, more validation on the performance of the 

Bluetooth and WiFi-based wireless scanning systems is required.  
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 FIXED-POINT MONITORING SYSTEMS 

Despite the advantages of wireless scanning systems in monitoring networks between points, such 

systems have low sampling rates and therefore monitor only a sample of the entire population. 

Therefore, as a complementary part of a monitoring system, fixed sensors are also required to 

detect and count all objects (road users) and measure the traffic parameters such as counts, speeds, 

and gaps between objects. In the literature and practice, fixed-points monitoring systems can be 

divided into two groups: motorized and non-motorized (pedestrian and cyclists) systems.  

2.2.1 Motorized Traffic Networks 

Several technologies are commercially-available for monitoring vehicular traffic, and such 

systems can function precisely under various traffic flow, weather, and lighting conditions. 

Generally, traffic count technologies can be divided into intrusive (traditional) and non-intrusive 

technologies (Leduc 2008). Intrusive data collection technologies include systems that are installed 

on roads during which traffic interruptions and infrastructure modifications (perforation) are 

required. The two traditional technologies are pneumatic-road tubes and magnetic loops. In the 

first case, rubber-tubes are installed across the road lanes to detect vehicles by measuring changes 

in air pressure inside the tube. The tire of a vehicle causes changes in air pressure and a counter 

recorder stores the data. This system is limited to collecting data along one lane, and the counting 

efficiency can be affected by weather and traffic conditions. Pneumatic tubes are typically installed 

for short-term counting. Magnetic loops are embedded in a road in square shapes and function 

based on the concept of changes in the electromagnetic field near the sensors. Using this 

technology, traffic data including counts, speed (with two consecutive sensors), and occupancy 

time can be obtained.  

Non-intrusive technologies are based on observations collected along a roadside without the need 

to make any changes to the pavement or infrastructure.  Passive or active infrared detects the 

presence and speed of a vehicle based on the heat energy radiated from vehicles. Microwave radar 

detects vehicles and level-vehicle speeds based on the Doppler Effect. The measured change in the 

sent and received wave frequency is proportional to the object (vehicle) speed. This type of sensor 

is not very sensitive to weather condition changes (Gómez-del-Hoyo et al. 2015). Video image 

processing uses video cameras to collect images of vehicles in a traffic network, and then a post 

image process is performed on the recorded video to detect license plate numbers, speeds, and 
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even to track vehicle trajectories. Applications of video processing based systems can be used for 

transportation facilities with homogeneous or mixed mode types (Zangenehpour et al. 2014). 

However, the existing systems are difficult to power and process in real-time. Thus video-based 

embedded systems are still limited. Moreover, the efficiency of video-based sensors decreases in 

bad weather or poor lighting conditions. Thermal video cameras address this issue. However, this 

solution is extremely costly (Fu et al. 2017).  

Overall, the aforementioned technologies share similar advantages in terms of temporal coverage. 

Traffic volumes, speed data, vehicle gaps, and vehicle classifications can be measured over short 

(hour or days) and long (months or years) periods of time.  

2.2.2 Non-Motorized Traffic Networks 

Data collection tools are more limited in non-motorized traffic and, historically, research on non-

motorized monitoring has been more limited than research on motorized monitoring. To address 

this gap, in recent years there has been growth in the development of non-motorized traffic 

monitoring solutions. The non-motorized counting solutions can be divided into pedestrian and 

bicycle counters (Johnstone et al. 2017, Ryus et al. 2014).  

2.2.2.1 Pedestrian Counting Solutions 

The most common technologies used in research and practice for the purpose of counting 

pedestrians are passive infrared sensors, laser scanning (Akamatsu et al. 2014), pressure pads 

(Ryus et al. 2014), thermal sensors 9González et al. 2016, Kristoffersen et al. 2016), and video 

camera sensors (Chao and Gupta 2013, Jackson et al. 2013). These counters, along with other 

methods currently in development, are presented and discussed in Dharmaraju et al. 2002, 

Johnstone et al. 2017, Markowitz et al. 2009, Ryus et al. 2014. A more expensive, but very accurate 

alternative to commonly-used technologies is thermal imaging cameras (González et al. 2016, 

Kristoffersen et al. 2016, Leykin and Hammoud 2006). Despite high accuracy, such systems do 

not function in real-time and are very expensive (Fu et al. 2017). Passive infrared is the most 

commonly used technology in practice, since it is relatively inexpensive, mobile, and battery 

operated. The remaining technologies are mainly used in research. 

Passive infrared counting technology includes all systems that are sensitive to the radiation of 

infrared waves (Ozbay et al. 2010, Ryus et al. 2014). The system monitors the changes in infrared 

signals in the environment to detect and counts pedestrians. These sensors have a number of 
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advantages such as relative ease to build and operate, very low power consumption, and real-time 

implementation, which make them very flexible and easy to install for long periods of time. 

However, some of the key limitations of this technology include occlusion, when installed in 

environments with high pedestrian volumes, and diminished performance in hot temperatures. 

Ideally, the device must be facing a fixed object, such as a wall, opposite the sidewalk on which it 

is mounted. This restricts their use at intersections, midblock crosswalks, and open spaces (Greene-

Roesel et al. 2008). Additionally, an intense source of infrared signals, such as vehicle engines can 

trigger the sensor and cause over-counting. Cases of under-counting and over-counting have also 

been observed and attributed to certain temperature anomalies and weather conditions (rain or hot 

weather condition). Studies have reported a systematic under-counting error ranging between 0 

and 25% depending on the traffic volumes and weather conditions (Greene-Roesel et al. 2008, 

Ryus et al. 2014). 

2.2.2.2 Bicycle Counting Solutions 

Automated bicycle counting systems, such as pneumatic tubes and loop detectors, similar to those 

used by vehicles but adapted to bicycle traffic monitoring, are widely used in practice (Johnstone 

et al. 2017, Ryus et al. 2014).  

Inductive loop detectors (Nordback and Janson 2010) are typically used for long-term, continuous 

data collection, whereas pneumatic tubes (Brosnan et al. 2015, Nordback et al. 2016, Proulx et al. 

2016) are used for short-term or temporary data collection. Inductive loop systems have some 

limitations, namely high maintenance and installation costs. The wires, installed under the 

pavement, can be broken due to construction or winter snow removal. This system is used solely 

on bike facilities, without any classification capability in mixed mode traffic networks. Pneumatic 

tubes are used for short-term data collection. They generally suffer from undercounting, with error 

rates ranging from 6% to 57%, depending on the location and configuration of deployment 

(Brosnan et al. 2015, Nordback et al. 2016). To monitor bike facilities more efficiently, a solution 

that has high accuracy, low maintenance, and installation costs and is not sensitive to varying 

weather and lighting conditions is necessary for both temporary and continuous data collection 

applications. 
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 GENERAL SYSTEM ARCHITECTURE 

In this thesis, several traffic-monitoring solutions are built and tested using the same system 

architecture. The two main components, hardware, and software, are developed to create systems 

that are highly accurate, easy to install and maintain, user-friendly, inexpensive and that able to 

collect and transmit real-time data to an integrated data storage and analysis platform. All these 

elements help make the large-scale implementation of the proposed systems feasible for any smart 

city initiatives. A general system architecture is divided into five elements: sensor, communication, 

database, analytics, and data visualization. 

 

Figure 2-1. General architecture of the system 

2.3.1 Sensor Layer 

The sensor layer includes different types of fixed-point and between-point monitoring systems. 

Each sensor unit consists of hardware and software components.  The software component 

analyzes the data collected from the sensor units. The hardware includes sensing units (Lidar, WiFi 

or Bluetooth modules), data telemetry, and the processing unit, which runs the software and 

interfaces with the other hardware components. 

The sensor has five hardware components, as seen in Figure 2-2, and described below: 
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Figure 2-2. Sensor hardware components 

Figure 2-2 describes the sensor hardware components  

a) Main Processor: depending on the application, different types of ARM processing units are 

used in the sensor system. The processor handles the interface between different parts of 

the system hardware and runs the main data analysis algorithms. The ARM architecture 

helps to improve the total power consumption of the system for battery-powered 

applications. 

b) Sensory Modules: depending on the application, different types of sensory modules are 

used. For wireless network scanning, WiFi and Bluetooth modules are used as sensing 

units. For counting applications, Lidar sensors are integrated into the system. 

c) Input-Output Interfaces: different types of wired communication protocols can be used to 

communicate with sensory modules. The I2C protocol is used for communication with 

Lidar sensors. WiFi and Bluetooth modules are attached to the processor using a USB. The 

LoRA communication module communicates with the main processor using a serial 

connection. External flash memory communicates with the processor through an SPI 

connection. 
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d) Data Telemetry: depending on the application, different types of wired (Ethernet) or 

wireless communications protocols could be implemented to transfer data between sensors, 

to gateways or directly to the database. Short-range communication using 

Bluetooth/ZigBee protocols, mid-range, and high speed through WiFi, long-range and low 

power consumption using LoRA and long-range and high-speed using on GSM/LTE 

networks are a variety of supported communication protocols in our design. 

e) Power Management Unit: manages the power sources of the system to select between 

power grids, battery or solar power. The power management unit is designed to reduce the 

internal power consumption of the system. 

2.3.2 Data Security and Encryption 

All the data transactions between sensors and database are encrypted to protect data security. 

Additionally, the Hyper Text Transfer Protocol Secure (HTTPS) which is the secure version of 

HTTP, is used to send data from counting sensors to the web server (running on the Amazon Cloud 

platform). For WiFi-Bluetooth scanners, Amazon API is used, which provides AWS-managed 

encryption keys to increase the security of the data. 

2.3.3 Database Layer 

The Amazon AWS cloud system is used to store the data. This cloud-based storage provides fast 

access to the data, with high security and low maintenance costs and is integrated into one location. 

The database is highly scalable with dynamic, pay-as-you-go pricing. 

2.3.4 Cloud Computing and Data Visualization Layer 

All the data transferred to the database will be accessible by the cloud computing unit. The 

proposed architecture uses Amazon EC2 to process the data coming from the sensors. The data 

analysis is done on different levels, depending on the nature of the data. The heaviest analysis is 

done on the cloud platform to analyze the MAC addresses reposted by each individual sensor to 

the database. The algorithm will read the time-stamped addresses and match them with different 

points on the network to extract the travel time and other traffic metrics over the network. The 

counting systems transfer the count data in real-time to the platform, and the analysis on those data 

are mainly for data visualization and integration. The fusing of all the traffic measures collected 
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by the different sensors is also implemented on the cloud platform. The platform provides access 

to the raw and analyzed data though a web interface or an API with HTTP requests.  

  SYSTEM TESTING 

The development of the monitoring system in this thesis is done through an iterative process. Once 

a first prototype is developed, it is tested and debugged at different stages until the final version is 

achieved. The summary of the steps is described below: 

1. Development of the first prototype: After studying all the required features and desired 

performance of the system, elements of the system (processor, sensory system, etc.) are 

selected, and a first prototype is designed.  

2. Testing:  

- Definition of the performance and feature measures: Depending on the type of the sensor, 

different performance measures such as counting error, speed estimation error, and 

detection rate, are defined. These metrics are used to evaluate if the designed prototype 

meets the requirements.   

- Installation and data collection: The prototype is installed in a traffic network along with a 

video camera system to collect the ground truth data for comparison and evaluation 

purposes.  

- Data processing and evaluation of system performance: The recorded video is processed 

along with manual ground truth data and compared to the data collected by the prototype. 

- Debugging: Issues are identified based on the validation measure. The debugging includes 

hardware or software bugs. 

These steps are repeated until system performance is satisfactory. 
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 ABSTRACT 

A real-time pedestrian monitoring system provides information about traffic flow, speeds, travel 

times, and time spent in areas or transportation facilities of interest. This is useful in travel 

information systems and crowd management strategies, as well as in planning and emergencies in 

public spaces such as airports, parks, malls, and university campuses. While there are technologies 

that can obtain count data for non-motorized transportation at specific locations, most technologies 

cannot provide origin-destination information, trip paths, travel times, or time spent. To overcome 

these shortcomings, some studies have explored the use of Bluetooth sensors to capture the unique 

Media Access Control (MAC) addresses of mobile devices carried by pedestrians. However, this 

collection method may suffer from low-detection rates. As an alternative, collecting MAC data 

from WiFi signals has emerged. The objective of this work is three-fold: i) develop and evaluate 

the performance of an integrated WiFi-Bluetooth system to monitor pedestrian/cyclists activity 

traffic, ii) develop and validate a classification method for differentiating pedestrians from 

bicycles, and iii) propose a simple extrapolation method that combines counts and MAC data. 

Among other results, relatively high detection rates were obtained for the developed WiFi system 

in comparison with Bluetooth sensors. Also, the high correlation between estimated and ground 
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truth speeds and low classification errors are observed. Finally, the extrapolated WiFi counts and 

ground-truth counts were found to be highly correlated. These results demonstrate the feasibility 

of the proposed system and methods to estimate travel times (speeds), to classify bicycle-

pedestrian WiFi signals, and to extrapolate pedestrian MAC counts. 

 INTRODUCTION 

There has been a growing interest in the development and application of automated traffic data 

collection and monitoring systems, often referred to as intelligent transportation systems (ITS), in 

the field of transportation. There is also a burgeoning interest in technologies involved in collecting 

pedestrian and bicycle traffic flow data in public outdoor areas (e.g., parks, plazas, university 

campuses, and pedestrian streets) and indoor facilities (e.g., train terminals, airports, hospital, and 

stadiums). The collected data is required for various tasks during the planning, design, and 

operation stages of facilities. In some applications, real-time data is necessary for travel 

information systems, crowd management strategies, and emergencies. For example, at airports, 

providing real-time travel time between terminals and gates, as well as waiting times at security 

checkpoints, is extremely important. Monitoring both facilities and large events, such as at 

concerts and festivals, requires such technologies. In the case of emergency and evacuation 

scenarios, real-time information is also critical (Caspari et al. 2017, Longo and Cheng 2016). 

For collecting counts, pedestrian sensors are commercially available and widely used in practice. 

These include passive & active infrared and ultrasonic counters for sidewalks, pressure & treadle 

mats for trails or indoor environments, etc. One can refer to (Lesani and Miranda-Moreno 2016) 

and (Markowitz et al. 2009) for more information. Despite their many advantages, these sensors 

can only provide data for a specific point in the network. In addition, when counting areas are not 

well defined or are very large, such as in open spaces, the performance (accuracy) of these sensors 

may deteriorate (Lesani et al. 2015). More importantly, point-based counting technologies are 

unable to identify the same individual at various points in a network to define trip routes, origins, 

and destinations, travel times, etc. These measures are as important as counting data in many non-

motorized mobility applications. To overcome these limitations, some recent works have looked 

at anonymous identity-retaining tools and Media Access Control (MAC) signals. This includes the 

use of wireless technologies and data from Bluetooth, e.g., (Bullock et al. 2010) and (Malinovskiy 
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et al. 2012), and WiFi access points, e.g., (Danalet et al. 2013) and (Musa and Eriksson 2012). 

More recently, several works have explored the use of smartphone Bluetooth and WiFi traces to 

collect pedestrian activity data given the high penetration rates of smartphones (Abedi et al. 2015, 

Ahmed et al. 2008, Bai et al. 2017, Bullock et al. 2010, Danalet et al. 2013, Du et al. 2017, Hidayat 

et al. 2018, Kurkcu and Ozbay 2017, Malinovskiy et al. 2012, Porter et al. 2013). In Canada, for 

instance, more than half of mobile phone users are smartphone users – and their share was expected 

to reach 60% in 2016. Most smartphones have both Bluetooth and WiFi capabilities. 

Many Bluetooth-based methods and applications have been documented for vehicular traffic on 

highway networks. In recent years, increased development of applications based on the WiFi-

Bluetooth scanning concept, to monitor pedestrian/cyclists facilities, has become apparent.  

Despite past efforts, some gaps can be highlighted in the literature. To our knowledge, no previous 

work has considered pedestrian and bicycle networks (mixed traffic on shared pedestrian bicycle 

spaces), in which MAC signals need to be classified by mode. In addition, the ability of WiFi 

counts to represent total volumes has not been studied. 

To overcome these gaps in the literature, this work has three main objectives: i) to develop and 

test the performance of an integrated WiFi-Bluetooth system for detecting anonymous MAC 

addresses of devices at fixed locations in a pedestrian network mixed with bicycle traffic, ii) to 

propose and validate a classification algorithm for mixed pedestrian and bicycle traffic, and iii) to 

investigate the reliability of data extrapolation combining MAC and video data. The former 

objective includes comparing the performance differences of each technology. 

As part of the contributions of this work, an integrated real-time system is proposed, which 

integrates sensors and algorithms for monitoring non-motorized transportation networks with 

pedestrian and bicycle traffic. Algorithms to classify and extrapolate MAC data were developed 

and tested on the McGill University campus. The performance of the proposed system is also 

quantified. The designed system works completely independently of the available infrastructure 

and can be easily implemented in other types of networks. 



 

38 

 

 RELATED WORKS 

The application and the performance of Bluetooth data collection systems for monitoring motor-

vehicle traffic on highways have been researched heavily in recent years. Very few of these 

applications have been in pedestrian traffic. Generally, with a Bluetooth scanner, discoverable 

Bluetooth-enabled devices will be detectable by a sensor. Every Bluetooth device (e.g., car radio, 

smartphone) has a unique hardware MAC address (a 12-character hexadecimal number), which is 

uniquely identifiable. Bluetooth has a range of 3.3 to 33 meters, which can be upgraded to 100 

meters using an external antenna (Piyare and Tazil 2011), depending on the device. It 

communicates power levels as users move radially closer and further from the sensor. Using 

multiple Bluetooth detectors throughout a network, the path and detected times of each device can 

be determined and used to generate origin-destination (O-D) matrices and travel times.   

Several applications using Bluetooth data are documented in the literature, and various methods 

have been proposed to compute vehicular traffic performance measures such as travel time and O-

D matrices (Friesen and McLeod 2015). Porter et al. 2013, evaluated the impact of different 

antennas and concluded that an antenna with a large gain and a lower sampling rate might provide 

more accurate travel time samples if the main focus is the collection of travel time data. However, 

Bluetooth technology has been used to monitor cyclists and pedestrians in very few cases. One can 

refer to (Hainen et al. 2013), (Jansen et al. 2014) and (Utsch and Liebig 2012). These works have 

employed Bluetooth sensors to measure pedestrian travel times at airport security checkpoints, to 

track the location of pedestrians in a laboratory, (Utsch and Liebig 2012) and to estimate the 

proportion of cyclists with a Bluetooth device within a city, combining Bluetooth data with 

inductive loop data (Jansen et al. 2014).  

The advantages of Bluetooth sensors with respect to other technologies, (e.g., radio frequency 

identification or RFID, or plate recognition) include relatively lower costs, the ability to collect 

large quantities of real-time data, and the ease of installation. Given their flexibility, Bluetooth 

data collection devices are suitable for temporary and for permanent installation in roadway 

facilities of interest.  

Despite the important advantages listed above, some of the limitations of Bluetooth technology 

have also been documented. An issue with Bluetooth detectors is that many users disable the 
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service altogether on their devices, or otherwise keep their devices undiscoverable. This is partially 

due to the fact that, for many, the Bluetooth service is infrequently used. Also, leaving Bluetooth 

enabled reduces battery life. This can lead to low detection rates in non-motorized networks. Most 

of the applications involving Bluetooth technology are conducted in vehicular networks given that 

Bluetooth devices are mainly found in motor vehicles and very few are from smartphones. 

Detection rates for Bluetooth are usually reported to be between 5 and 12 percent (Malinovskiy et 

al. 2012).  

As an alternative to Bluetooth data, some recent works have explored the use of WiFi signal 

devices connected to WiFi access points. These signals (MAC addresses) are used to track people 

traveling through a network, as one can see in (Danalet et al. 2013) and (Danalet et al. 2014). 

However, WiFi access point tracking requires that devices be connected to a specific wireless 

network and that the network encompasses the entire detection area, such as in indoor public spaces 

(airports, malls, university campus buildings, etc.) with available WiFi connection for users. Thus, 

the area under study cannot be expanded without extending the network coverage, which may be 

difficult. This could be an issue if the area under study is, for example, a park or a school campus. 

In some studies, cellular tower triangulation has been suggested as a way to track cellphones based 

on their cellular signal strength; however, location estimation is very coarse and therefore is only 

appropriate for O-D surveying (Caceres et al. 2007).  

Because of the shortcomings of access point data and methods, there has been a growing interest 

in developing independent WiFi sniffer systems for pedestrian activity. In this case, capturing 

MAC addresses is not limited to the devices that are connected to a specific network. A passive 

WiFi scanner captures all available WiFi probe signals broadcasted by WiFi devices attempting to 

identify available access points. This probe signal is broadcasted independent of device 

connectivity to any available access points.  

As part of the WiFi pedestrian-related applications, one can mention the work of (Schauer et al. 

2014) in Munich Airport. This work compared various pedestrian flow techniques using both WiFi 

and Bluetooth scanners. The results showed that WiFi overestimated and Bluetooth 

underestimated flows compared to the number of boarding pass scans (ground truth). This study, 

however, used a small sample for validation and used only one sensor to obtain the number of 
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detected MAC addresses at a single point. Other measures, such as O-D matrices, were not 

obtained since they require a network of sensors. In another work (Vu et al. 2010), the authors 

designed a pedestrian monitoring system which makes use of both WiFi and Bluetooth 

technologies. The Bluetooth data is used to assign a unique ID to each user based on a MAC 

address while the WiFi data is used to obtain the user’s location. This data is then used to evaluate 

how long a person stays at one location and which location is the most popular. However, the 

proposed approach was not validated. In (Abedi et al. 2015), the authors empirically assessed the 

impact of small and large antenna gains on tracking movements of pedestrians and cyclists based 

on MAC address datasets. However, some issues exist in this work. Firstly, the authors considered 

a fixed coverage area based on the antenna gain but, in practice, the coverage area is also dependent 

on the type of device and network characteristics. Secondly, their proposed speed estimation 

approach was only validated for pedestrians (and not for cyclists). Thirdly, they classified 

pedestrians, runners, and cyclists only based on speed, the applicability of which is limited to large 

networks with large distances between sensors. In some recent works, (Kurkcu and Ozbay 2017) 

proposes an application to estimate the wait time in a bus terminal but the results were not validated 

with the ground truth data. (Du et al. 2017) proposes a method to improve the detection rate and 

estimation precision of pedestrian flow. (Bai et al. 2017) uses the WiFi scanning approach to count 

the number of pedestrians using WiFi traces at public transport stations. Other applications on 

transit buses have been recently published to monitor passenger demand (Hidayat et al. 2018).  

Despite the work reported on WiFi/Bluetooth sensors for monitoring pedestrian activity, some 

gaps remain in the literature. An issue that has not been investigated is that pedestrian networks 

are often mixed with bicycle traffic. The classification of non-motorized users has not been 

investigated using mode detection algorithms. Furthermore, among available studies, no formal 

performance evaluation has been done on WiFi and Bluetooth detection rates based on ground 

truth obtained by other means. Also, the feasibility of pedestrian flow extrapolation between points 

has not been investigated by combining counting and MAC data. 

 SYSTEM OVERVIEW 

The developed system is inspired by the best elements of WiFi and Bluetooth technologies, taking 

advantage of the portability of Bluetooth and the detection levels of WiFi. The 802.11 whitepaper 
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(Committee 1997) makes possible the detection of packets that are broadcast periodically by WiFi-

enabled devices in a similar manner as how Bluetooth devices are detected. The WiFi device will 

broadcast probe signals even when the device is not being used. This probe signal will be captured 

by access points around the device and authenticate the connection if the device is in the list of 

authorized devices (based on the MAC address of the device). The designed system captures these 

probe signals and extracts the MAC address. The system is developed in a way that it is able to (i) 

track MAC addresses from WiFi traces from phones regardless of their network connection status 

or user settings (assuming WiFi radio is on), (ii) extract travel times and flows between two sensors 

per direction of travel and (iii) classify MAC addresses by mode into pedestrian or cyclist 

categories. 

The designed WiFi packet sniffer integrates the open source packet sniffer software, AirCrack, 

which is used for network security penetration tests. Modifications were made to increase the 

detection power and the sensitivity by optimizing wireless channel selection. In the IEEE 2.4GHz 

WiFi protocol, the whole spectrum (from 2.4GHz to 2.5GHz) is divided into 14 channels.  

A wireless connection is assigned automatically to one of these channels. A combination of the 

channels, 1, 6, and 11, can cover the whole spectrum with less overlap. In the packet sniffer, these 

channels are used to make the scanner faster and more efficient. The designed system sniffs probe 

signals from devices which are in managed mode (clients, also known as stations) and the devices 

in master mode (acting as access points). These two modes have different packet headers which 

our system can differentiate between by recording the client devices and excluding access points 

from our analysis. 

The modified packet sniffer is also capable of storing the time stamp of all received packets. This 

information is critical for detecting the in-out time of the detected MAC address. 

Capturing the MAC address of a wireless device raises the concern of protecting the privacy of its 

owner. This concern is addressed by encrypting all the detected MAC addresses before sending 

them to the servers. It is also worth noting that the MAC address is assigned by the chip 

manufacturer of the wireless device and does not include any personal information about the device 

owner; thus, no personal information can be associated. 
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Figure 3-1. An overview of the developed system platform 

Figure 3-1 shows an overview of the developed system platform. The development of the 

WiFi/Bluetooth sensors included the design and integration of different components. This involved 

the testing and selection of the best components, the design of a microprocessor, the integration of 

two separate modules for WiFi and Bluetooth, and a data logger. Additional details are provided 

as follows: 

Processor: The designed system uses a 600MHz processor with a 1G RAM with a Debian Linux 

kernel, an open source OS. The built image of the OS kernel includes different programming 

languages and libraries to interface the processor with a USB 3G Modem, Bluetooth module, and 

wireless packet handling. 

Bluetooth Module: To capture the Bluetooth MAC addresses, an upgraded high sensitivity Class 

I Bluetooth module has been used with an external antenna (either an omnidirectional or a 

directional antenna can be supported) to increase the detection zone of the sensor. 

WiFi Module: This module is used to scan the 2.4GHz spectrum and capture the probe signals of 

WiFi devices. This module has its own antenna. 

Data Logger: In order to locally record and transfer timestamped data to a web server, a unit 

including a Real-Time Clock module, an SD card, and a 3G Modem is used.  

The final system is illustrated in Figure 3-2. It is worth mentioning that each individual sensor 

monitors the 2.4GHz spectrum for WiFi traffic on multiple channels. The same frequency is used 

to monitor Bluetooth devices. A Class I Bluetooth module is used to increase the sensitivity of the 
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Bluetooth scan unit and capture more Bluetooth MAC addresses from nearby devices. Moreover, 

packets are stored in an internal database or are transmitted via WiFi or GSM to a central database. 

In order to improve results, multiple sensors can be placed at a single site to increase the probability 

of catching packets while scanning channels. For short-term studies, the sensors can be powered 

by the battery while for long-term studies, sensors can be plugged into the electrical network or 

powered by solar panels. Secure and waterproof enclosures are used to protect the equipment 

against adverse weather conditions and tampering. 

  

 

Figure 3-2. System hardware development and installation 

The proposed WiFi detector exploits a part of the IEEE 802.11 protocol that has stations actively 

and frequently broadcasting the identities of their desired access points. Typically, this data is 

ignored by access points and other routers unless it is directed towards them specifically. Our 

device passively listens to all packets from all stations and records their specific MAC addresses. 

Such detectors can be used as a standalone way to retrieve information or can be coupled with 

other counting devices, such as infrared and microwave sensors, video analysis systems, and 

depth-based counters. Counters can detect and classify road users as they pass by, but are not well 

suited for identifying individual travel times, paths, and time spent in an area. The ability to single-

out the identity and speed profile of most of the traffic moving through a network has two 

implications: (i) the paths of smartphone-carrying users can be extracted and (ii) the paths of non-

smartphone-carrying users can be better estimated based on the known paths and data from other 

sensors.  

The same criteria apply to capture the Bluetooth signals and to obtain the Bluetooth MAC 

addresses. However, there is one main difference: capturing a MAC address requires an active 
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handshake between a sensor and a device, i.e. a sensor transmits probe signals to other enabled 

and discoverable Bluetooth devices and listens to their response.  

This system is designed so that it can provide full coverage of an entire network at a relatively low 

cost. Also, sensors are not intrusive and can make use of existing infrastructure such as posts, wall, 

or barriers. 

 METHODOLOGY 

This section outlines the four steps for data analysis: i) identification of MAC addresses between 

sensors, ii) estimation of travel time (speeds) between sensors and “time-seen” within a given 

sensor, iii) mode classification method and calibration and iv) extrapolation of MAC flow data. A 

procedure for implementing the methodology is then proposed. 

3.5.1 Identification of MACs Between Adjacent Sensors 

Consider that MAC addresses are constantly detected and reported by sensor i. For each detected 

MAC address, the algorithm searches for the same MAC in the adjacent sensors. For every 

detected MAC pair, the required information for data analysis is extracted. From the extracted 

data, time-seen and speed measures are obtained. Figure 3-3 describes parameter definitions that 

are used to extract these two measures based on two adjacent sensors, i and j: 

 

Figure 3-3. A network sample with two sensors and detection time definitions 

Where, the variables Lij, ri, rj, tki1, and tki2 are defined as follows: 

Lij  Physical distance between sensors i and j 

ri, rj, Radius of the coverage area for sensors i or j  

tki1 Timestamp of the first packet of data detected by sensor i from device k, also called first 

time-seen 

tki2 Timestamp of the last packet of data detected by sensor 𝑖 from device 𝑘, also called last 

time-seen 
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Then, the time-seen for a MAC address, ∆𝑡𝑘𝑖, is defined as: 

∆𝑡𝑘𝑖 = 𝑡𝑘𝑖2 − 𝑡𝑘𝑖1 (1) 

It is worth mentioning that, for a given sensor i, 𝑡𝑘𝑖1 and 𝑡𝑘𝑖2 can be equal when it only detects a 

device once. That is, only one packet of data is captured by the sensor. In this case, the time-seen 

will be equal to zero. 

To calculate the speed of an object, the location of the object at its detection time is required; 

however, this location cannot be determined since the device can be detected at any point within 

the coverage area of the sensor. The effective distance, 𝐿𝑘𝑖𝑗
𝑒𝑓𝑓

, of a detected MAC k between two 

sensors can be defined based on the two radii of coverage areas and physical distance between two 

sensors. In the form of an equation, 𝐿𝑘𝑖𝑗
𝑒𝑓𝑓

 can be defined as: 

𝐿𝑘𝑖𝑗
𝑒𝑓𝑓

= 𝐿𝑖𝑗 + 𝛼𝑖𝑟𝑖 + 𝛼𝑗𝑟𝑗 where 𝛼 ∈ [−1,1]  (2) 

Where, 𝛼𝑖 is a random factor [−1,1] that is proportional to the location at which the MAC is 

detected in the coverage area. If it is detected at the beginning of the detection zone, 𝛼 will be 

equal to +1. If it has been detected at the end of the detection zone, it will be equal to -1. The 

detection point is related to the location of the devices broadcasted probe signal and the detection 

zone is related to the type of antenna and the device antenna characteristics. Since the exact 

location of the detection and the exact detection zone range, 𝛼 cannot be measured using 

information collected by the sensor, 𝛼 and 𝐿𝑘𝑖𝑗
𝑒𝑓𝑓

 cannot be calculated precisely. Based on the 

physical distance, the speed, 𝑆𝑘𝑖𝑗  of a device k moving between i and j can be computed as: 

𝑆𝑘𝑖𝑗 =
𝐿𝑖𝑗

 

𝑡𝑘𝑗2 − 𝑡𝑘𝑖1
 (3) 

Where effective distance is kept equal to the physical distance between two sensors. This 

assumption can create large speed variations in cases where the physical distance between two 

sensors is not large enough (not significantly larger than the coverage zone of the sensor) to neglect 

the radius of the sensor coverage area. 



 

46 

 

In summary, the two measures available from each device traveling between two sensors are  the 

speed of detected device 𝑘 (𝑆𝑘𝑖𝑗) and the total time-seen in the two adjacent sensors (Tkij) which 

is equal to the sum of the time-seen of a MAC address at sensors i and j:  𝑇𝑘𝑖𝑗 = ∆𝑡𝑘𝑖 + ∆𝑡𝑘𝑗 =

(𝑡𝑘𝑖2 − 𝑡𝑘𝑖1) + (𝑡𝑘𝑗2 − 𝑡𝑘𝑗2). Once MAC addresses have been identified between adjacent 

sensors, travel time or speed information is extracted. The steps to compute the travel time, detect 

the mode, and extrapolate the flow are described in the following subsections. 

3.5.2 Travel Time and Speed Extraction 

This section presents the method proposed to compute travel time and speed measures for each 

MAC address considering a pair of sensors:  

Step 1: For any given pair of sensors, MAC addresses that were captured in both sensors are 

identified. 

Step 2: For any MAC address k found in Step 1, the detection times are extracted from both sensors. 

Then for each sensor 𝑚, the data vector defined as 𝐷𝑚, includes all the detection times of MAC 𝑘, 

i.e., 𝐷𝑚 = {𝑡𝑖𝑚𝑒𝑖𝑛𝑑𝑒𝑥
𝑚 }   𝑖𝑛𝑑𝑒𝑥 ∈ [1,2, … , #𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠] 

Step 3: MAC addresses are grouped to generate a matrix showing the first time and the last time 

that a MAC address has been detected by sensor 𝑚. To implement a grouping algorithm, the vector 

𝐷𝑚
 is first sorted based on the time. Then, all timestamped samples in 𝐷𝑚

; are grouped as an 

identical group if 𝑡𝑖𝑚𝑒𝑖𝑛𝑑𝑒𝑥
𝑚 − 𝑡𝑖𝑚𝑒𝑖𝑛𝑑𝑒𝑥−1

𝑚 < 𝑇𝑡ℎ
 

, where Tth is a threshold defining the maximum 

time between detection of a MAC address at a sensor that can correspond to the same trip (in our 

case study it has been defined as 300 seconds). In other words, if the time difference between two 

consecutive detections of a MAC address is bigger than 300 seconds, then it is considered a new 

trip for that MAC. Next, the last time-seen of a MAC address in that group is updated. Otherwise, 

a new group of times will be created. The output of the grouping algorithm is a matrix showing 

the first time-seen (the time of the first detected packet in a corresponding group) and the last time-

seen (the detection time of the last sample in that group). The generated matrix is denoted as 𝐺𝑚 =

{(𝑡𝑘1
𝑚 , 𝑡𝑘2

𝑚 )} where 𝑘 indicates the index of the group. Each row of the matrix 𝐺𝑚 shows the trip 

time-stamps (first time and last time seen). An example of a group matrix for a given sensor and 

MAC address can be as: 
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𝐺𝑚 = [
11: 12: 32 11: 13: 54
12: 44: 23 12: 45: 12
16: 23: 12 16: 23: 14

] 

In the given sample matrix 𝐺𝑚, three different trips have been detected by sensor 𝑚 at different 

times of the day. 

Step 4: Travel time and speed are computed for any given pair of sensors. Considering the pair of 

sensors 𝑚 and 𝑛, the travel time referred to as 𝑡𝑡 
𝑚𝑛 is calculated as: 

𝑓𝑜𝑟 𝑖 = 1: 𝑠𝑖𝑧𝑒(𝐺𝑚) 

𝑡1
𝑚 = 𝐺𝑚(𝑖, 1) 

𝑡2
𝑚 = 𝐺𝑚(𝑖, 2) 

𝑓𝑜𝑟 𝑗 = 1: 𝑠𝑖𝑧𝑒(𝐺𝑛) 

𝑡1
𝑛 = 𝐺𝑛(𝑗, 1) 

𝑡2
𝑛 = 𝐺𝑛(𝑗, 2) 

𝑖𝑓 𝑡2
𝑚 < 𝑡1

𝑛: # it means that there is no overlap between detections 

𝑡𝑡 
𝑚𝑛 = 𝑡2

𝑛 − 𝑡1
𝑛 

𝑠 
𝑚𝑛 = 𝐿 

𝑚𝑛/𝑡𝑡 
𝑚𝑛   # 𝐿 

𝑚𝑛𝑖𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝑖𝑓 (𝑠 
𝑚𝑛 < 𝑆𝑢𝑝

𝑡ℎ ) 𝑎𝑛𝑑 (𝑠 
𝑚𝑛 > 𝑆𝑑𝑜𝑤𝑛

𝑡ℎ ):  # upper and lower speed limit 

𝑎𝑝𝑝𝑒𝑛𝑑 𝑠 
𝑚𝑛  𝑡𝑜 𝑠𝑝𝑒𝑒𝑑 𝑑𝑎𝑡𝑎 

𝑏𝑟𝑒𝑎𝑘; 

The procedure calculates the travel time of trips traveling from sensor 𝑚 to sensor 𝑛. The same 

concept can be used to get the travel time in the reverse direction by interchanging 𝑚 and 𝑛 in the 

code. 

3.5.3 Mode Classification Method 

This algorithm is used to classify each detected MAC address as a pedestrian or as a cyclist. For 

this, four different classifiers are defined in this section and evaluated later. 

3.5.3.1 Classifier I: Threshold Based Classifier 

This is the simplest classifier that relies only on speed thresholds. These speed thresholds are 

extracted from empirical speed distributions for the two types of road users. For pedestrians, a 

lower limit, 𝑇ℎ𝑝−𝑙𝑜𝑤, is established to filter out samples with very small values of speed, possibly 

from users who stay between sensors for long periods of time. Additionally, an upper limit, 𝑇ℎ𝑏−𝑢𝑝, 
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is also defined as the cyclist speed threshold to filter out very high speed values that can be 

associated with motorized modes, overlap bthe etween sensors, or very short distance between 

sensors. In this case, a simple classifier can be defined as: 

{

𝑖𝑓 𝑇ℎ𝑝−𝑙𝑜𝑤 < 𝑆𝑘 < 𝑇ℎ𝑝−𝑢𝑝 , 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛

𝑖𝑓 𝑇ℎ𝑝−𝑢𝑝 < 𝑆𝑘 < 𝑇ℎ𝑏−𝑢𝑝 ,        𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑐𝑦𝑐𝑙𝑖𝑠𝑡         

𝑒𝑙𝑠𝑒,                                           𝑁𝑜𝑛 − 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑            

 (4) 

Where 𝑇ℎ𝑝−𝑙𝑜𝑤, 𝑇ℎ𝑝−𝑢𝑝, and 𝑇ℎ𝑏−𝑢𝑝 are the predefined threshold values. 

3.5.3.2 Classifier II: Statistical Speed Approach 

For the second classifier, a logit model is calibrated and used to find the probability of being a 

pedestrian or a cyclist. The probability of belonging to a given class is defined based on a logit 

regression model: 

{
𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑆𝑘) =

1

1 + 𝑒𝑢

𝑃𝑟( 𝐶𝑘 = 𝑏𝑖𝑘𝑒| 𝑆𝑘) =
𝑒𝑢

𝑒𝑢 + 1

 (5) 

Where 𝑢 is a liner function of the travel speed between two sensors (Sk) and  𝑢 =  𝛽
0

+  𝛽
1

 𝑆𝑘 , 

with  𝛽
0
 and  𝛽

1
 being the regression parameters estimated from the empirical data. The model 

calibration is explained later in the paper. Once the model is calibrated, the speed 𝑆𝑘 of each 

detected sample k is known and the class 𝐶𝑘 can be estimated. Once the probability of each sample 

is calculated, this rule is applied: if 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑆𝑘) > 0.5, then the MAC address is classified 

as a pedestrian. Otherwise, it is classified as a cyclist.  

3.5.3.3 Classifier III: Statistical Time-Seen Approach 

Due to the slower travel speed nature of pedestrians compared to cyclists, we expect longer time-

seen values at a given sensor for pedestrians and shorter values for cyclists. That is, pedestrians 

are expected to take more time between entering and leaving the detection zone of a given sensor. 

However, because the scan time interval of smartphones can be as high as 2 minutes, some samples 

will have very short time-seen values making it impossible to distinguish between a pedestrian and 

a cyclist by simply using the time-seen information. 
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This classifier uses the same approach as Classifier II, but instead of using speed data, the total 

time-seen 𝑇𝑘 is used in the logit model. Again, the probability functions are defined as: 

{
𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑇𝑘) =

1

1 + 𝑒𝑢

𝑃𝑟( 𝐶𝑘 = 𝑏𝑖𝑘𝑒| 𝑇𝑘) =
𝑒𝑢

1 + 𝑒𝑢

 (6) 

And the utility function 𝑢 is defined as 𝑢 = 𝛼0 +  𝛼1 𝑇𝑘  where Tk stands for total time-seen of 

detected MAC in both sensors. Then, if the 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑇𝑘) > 0.5, the sample is classified as a 

pedestrian, otherwise it is classified as a cyclist.  

3.5.3.4 Classifier IV: Combined Logit Model 

Here, the two previous classifiers are combined to use two sources of data, speed, and time-seen. 

In Classifier II, speed data is used to define the probability of belonging to each class. Empirical 

data shows that, in most cases (around 85% of estimated speeds), the walking speeds vary between 

3km/h to 7km/h and biking speed varies between 12km/h to 16km/h. However, in some cases, the 

speed of a pedestrian or cyclist can vary between 7km/h to 12km/h (refereed as the mixed speed 

interval). These samples can belong to running pedestrians or cyclists biking at slower speeds due 

to high pedestrian traffic on shared paths. This could also be attributed to inaccuracy in travel time 

estimation due to the detection range and short distances between sensors that introduce error to 

the speed estimation. 

To address this issue, a combination of both Classifiers II and III is used. For speed samples within 

mixed speed intervals, the probability of being a pedestrian and of being a cyclist are nearly equal. 

Therefore, using a threshold of 0.5 for the probability is not sufficient. To address this issue, 

probabilities for both sources of data (speed and time seen) are calculated based on classifiers II 

and III:  

𝑖𝑓 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑆𝑘) > 𝑇ℎ𝑝:  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 

𝑖𝑓 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑆𝑘) < 𝑇ℎ𝑏: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑐𝑦𝑐𝑙𝑖𝑠𝑡 

𝑒𝑙𝑠𝑒: 

𝑖𝑓 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑇𝑘) > 0.5: 
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𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 

𝑖𝑓 𝑃𝑟( 𝐶𝑘 = 𝑝𝑒𝑑| 𝑇𝑘) < 0.5: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑎𝑠 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 

In the next section, the calibration of each model and the values of the thresholds are discussed. 

3.5.4 Flow Extrapolation 

Once MAC addresses between two adjacent sensors i and j are classified by mode, a sample of the 

total flow of road users (pedestrians or cyclists) is obtained as the outcome. The extrapolation of 

the sample to the entire population is then required in order to obtain an estimate of the total volume 

of pedestrians or bicycles. The representativeness of the sample is thus a crucial aspect to consider. 

If the sample by mode is representative of the total flow of each mode, the estimation of the 

volumes can be relatively simple. In this paper, a simple extrapolation methodology is proposed 

and computed as:  

𝐶𝑒
𝑡 = 𝐹𝑢𝑐

 × 𝐶𝑊𝑖𝐹𝑖
𝑡

, where the under-counting factor, 𝐹𝑢𝑐
 

, is defined as 𝐹𝑢𝑐
 =  

∑ 𝐶𝐺
𝑡

𝑡

∑ 𝐶𝑊𝑖𝐹𝑖
𝑡

𝑡
 and the other 

variables are defined as:  

𝐶𝐺
𝑡  total number of pedestrians (or bikes) counted using the camera between two sensors, i 

and j at time interval t  

𝐶𝑊𝑖𝐹𝑖
𝑡  total number of MACs detected between two sensors at time interval t 

𝐶𝑒
𝑡 extrapolated number of pedestrians (or bikes) using MAC counts at time interval t 

This simple approach can help estimate pedestrian flow between sensors assuming that the MAC 

sample, 𝐶𝑊𝑖𝐹𝑖
𝑡 , is representative of the total flow.  

3.5.5 Implementation 

This section summarizes the implementation of the proposed methodology. For this, consider a 

MAC address 𝑘 and a network of 𝑀 installed WiFi-Bluetooth sensors. Also, consider the following 

notation: 
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Notation Description 

Trip The observed trajectory of visited sensors of a given MAC address 

𝑡  The total time (in a sec) in which a MAC k moves (travels) through the sensors 

𝑛 A positive integer number showing the time window associated with the trip, 𝑛 =

𝑖𝑛𝑡 (
𝑡

∆𝑡
), where ∆t is any predefined time interval, i.e. (15-min intervals). 

 𝑃𝑖𝑗
𝑘  Trip information captured by WiFi-Bluetooth sensor and associated with MAC 

address 𝑘 from sensor 𝑖 to sensor 𝑗 where 𝑖, 𝑗 ∈ [0,1, … , 𝑀]. 

 𝑆𝑖𝑗
𝑘  Speed of captured trip for MAC address 𝑘 from sensor 𝑖 to sensor 𝑗 

 𝑇𝑖𝑗
𝑘 Total time-seen of the captured trip for MAC address 𝑘 from sensor 𝑖 to sensor 𝑗 

 𝐶𝑖𝑗
𝑘  Object class of captured trip for MAC address 𝑘 from sensor 𝑖 to sensor 𝑗 

𝑃̃𝑘 = [ 𝑃𝑖𝑗
𝑘] Set of all captured trips associated with MAC 𝑘 collected by all sensor combinations 

through the network. 

 𝑁𝑏
𝑛 A total number of objects classified as a pedestrian in time interval 𝑛. 

The methodology for implementation for each given MAC address is discussed below: 

Step 1: Obtain all the required information related to MAC addresses from all the sensors in a 

given time interval. 

Step 2: For each captured trip between sensors 𝑖 and 𝑗, and given MAC address 𝑘, calculate the 

speed and the total seen time  𝑃𝑖𝑗
𝑘 = (𝑆𝑖𝑗 

𝑘 , 𝑇𝑖𝑗 
𝑘 ). 

Step 3: Classify detected object 𝑘 as either a pedestrian or a cyclist and update trip information 

array:  𝑃𝑖𝑗
𝑘 = (𝑆𝑖𝑗 

𝑘 , 𝑇𝑖𝑗 
𝑘 , 𝐶𝑖𝑗 

𝑘 ). 

Step 4: Produce the object 𝑘 information matrix as a set of trips associated with MAC 𝑘, 𝑃̃
𝑘

=

[ 𝑃𝑖𝑗
𝑘 ]. 

Step 5: The final class of the object 𝑘 (𝐶 
𝑘) is equal to the class that has more repetition in the 

vector of object classes, 𝐶 
𝑘 = 𝑚𝑎𝑥(𝑐𝑜𝑢𝑛𝑡 (𝐶𝑖𝑗 

𝑘 = 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑛) , 𝑐𝑜𝑢𝑛𝑡 (𝐶𝑖𝑗 
𝑘 = 𝑐𝑦𝑐𝑙𝑖𝑠𝑡)). This 

maximum repetition comes from the entire trip of the object through the network considering all 

sensor combinations. 

Step 6: Update counts matrix for the time interval of the detected MAC address using the rule: 
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𝑖𝑓 𝐶 
𝑘 = 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛      𝑡ℎ𝑒𝑛    𝑁𝑝

𝑛 =  𝑁𝑝
𝑛 + 1    

𝑖𝑓 𝐶 
𝑘 = 𝑐𝑦𝑐𝑙𝑖𝑠𝑡              𝑡ℎ𝑒𝑛    𝑁𝑏

𝑛 =  𝑁𝑏
𝑛 + 1    

Step 7: At the end of each time interval, pedestrian and cyclist counts for time interval 𝑛 are 

appended to the count matrix. 

Step 8: Pedestrian and cyclist counts are extrapolated based on count (volume) data. 

 SYSTEM EVALUATION AND DATA EXTRAPOLATION 

The proposed methodology is tested within the pedestrian network of McGill University campus, 

located in downtown Montreal, Canada. The testing area is composed of pedestrian streets, with 

relatively low bicycle traffic (shared space) and practically no vehicular traffic flow. This test aims 

to investigate the performance of our system as well as to show the feasibility and the performance 

of the proposed methodology. For this, four important steps are required: 

Step 1: Installing a set of sensors, including WiFi-Bluetooth sensors, video cameras, and 

automated counters 

Step 2: Collecting and processing data over a few days, including ground truth information for 

model calibration 

Step 3: Evaluating the performance of the designed WiFi-Bluetooth system. 

Step 4: Implementing the methodology to compute speeds, O-D matrices, and volumes by mode 

3.6.1 Data Collection 

For the system test, three WiFi-Bluetooth devices were built, each of them with a water-proof 

enclosure and an internal power source (battery). The three locations chosen for sensor placement 

are illustrated in Figure 3-4. The location of sensors was carefully defined so that the overlap of 

sensing ranges between sensors do not exist. The shortest distance between sensors is around 300 

m, which is greater than the detection range of a 50 m radius for each sensor. Larger distances can 

increase accuracy and reduce the variance in travel time and speed estimation.  
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In addition, a camera was installed at the Y-intersection for validation and extrapolation purposes. 

The camera was used to count pedestrians and cyclists, and to obtain speed samples. A wide-angle 

camera was selected and installed with enough height (approximately 10 meters) to cover an area 

of around 20 meters. This helps in allowing to consider only road users are passing between the 

three sensors (the path from sensor 1 to sensor 2 and, finally, to sensor 3 and vice versa). The 

recorded video is then used for model training, validation and extrapolation purposes.   

 

 

Figure 3-4. Sensor locations at McGill University’s downtown campus 

As mentioned before, the McGill campus is a pedestrian network with cyclist traffic. Therefore, it 

is an appropriate place to test the proposed system and methods. Our data collection can be divided 

into three steps. A total of 90+ hours of video across 12 days, all weekdays, peak and off-peak 

hours were recorded. Data was collected during June, July, and October of 2015. Table 3-1 shows 

data collection schedules. 

The video data is used for detection rates and extrapolation validation. The counts (number of 

pedestrians walking between sensors 1, 2, and 3 per direction) were obtained manually using video 

data. Then, the 15-min count data is compared with detections and extrapolated flows for 

validation purposes.  

To calibrate the speed based classifier, a sample of 2,600 speed observations was generated using 

a specialized open-source software, Traffic Intelligence (TI), and 6 hours of recorded video on July 

1st, 2015, from which trajectories, speeds, and mode type were automatically generated. This 

process has been documented in previous research (Zangenehpour et al. 2015), reporting 88% 

Sensor 1 
Roddick Gate 

Sensor 2 
Intersection 

Gate 

Camera 

Sensor 3 
Milton Gate 
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accuracy in the classification algorithm. Once TI is used to classify and generate trajectories by 

mode, the mode misclassification errors were manually corrected by watching the entire video. 

Misclassified samples were fixed manually in the database. Also, we assumed that the recorded 

speed in a 20 m radius of the camera is the same as the rest of the path between sensors. 

Table 3-1. Data collection schedules 

Date Week Day Start End Total 

2015-06-19 Friday 11:00 19:15 8hr, 15min 
2015-06-22 Monday 13:00 21:15 8hr, 15min 

2015-06-26 Friday 10:00 18:15 8hr, 15min 

2015-06-30 Tuesday 10:00 17:45 7hr, 45min 

2015-07-01 Wednesday 11:00 17:00 6hr, 00min 
2015-07-02 Thursday 10:30 18:30 8hr, 00min 

2015-07-03 Friday 10:30 18:00 7hr, 30min 

2015-10-01 Thursday 11:45 17:45 6hr, 00min 
2015-10-02 Friday 9:45 18:15 8hr, 30min 

2015-10-07 Wednesday 9:00 17:30 8hr, 30min 

2015-10-08 Thursday 9:15 18:30 9hr, 15min 
2015-10-09 Friday 11:00 17:00 6hr, 00min 

To calibrate the seen-time based classifier and finally validate the performance of the classifier, 

200 manual trips were done on July 1st and 2nd, 2015, in different hours of the day, by research 

assistants registering their cellphone MAC addresses and GPS traces. Their MAC address was 

matched with the registered one using scanners for validation and GPS was used to obtain the 

travel time between points. To ensure a fair comparison between different classes, the dataset was 

balanced in terms of the number of samples in each class (in this case, 100 bicycle and 100 walking 

trips). Among 200 sample trips, 60% were used to calibrate the model, and 40% were used to 

evaluate classifier accuracy. These manual trips were also used for travel time (speed) estimation 

validation. 

3.6.2 Mode Classifier Calibration 

The classifier calibration process involves two steps: i) video data collection to obtain ground truth 

data of walking and cycling speeds from a large sample of individuals in the same network of 

analysis and ii) calibration of the distributions or model parameters.  
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Distribution of cyclist speed 

 

Distribution of pedestrian speed 

 

Probability function of 𝑷𝒓( 𝑺𝒌| 𝑪𝒌) 

Figure 3-5. Speed distribution and probability functions of each object type 

 

 

Distribution of cyclists seen time 

 

Distribution of pedestrian seen time 

 

Probability function of 𝑷𝒓( 𝑻𝒌| 𝑪𝒌) 

Figure 3-6. Seen-time distribution and probability functions of each object type 

Figure 3-5 and Figure 3-6 show the speed and seen-time distribution for the samples of pedestrians 

and cyclists obtained from the video process. Probability distributions are then fitted for each set 
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of data. After trying different options, the best fitted probability density functions (pdf) were found 

to be the Normal and Log-Normal distributions for pedestrians and cyclists, respectively. 

Not surprisingly, one can see that the samples with bigger time-seen are more likely to be 

pedestrians. In other words, the probability of being a cyclist when the time-seen values are small 

(e.g.,  50 seconds) is much higher than the probability of being a pedestrian. 

 Using the same approach, a model is fitted to the data to obtain the parameters of the utility 

function (α0 and α1) in the logit model presented in equation 6. These parameters are used in 

Classifier III and the binary logit model is used to predict the mode probability given the speed. 

Detection rates are determined to explore the capabilities of our proposed system. The accuracy of 

the classification methodology is also tested here. Detection rate analysis was performed at 

different intervals. Network flows between campus entrances and exits were determined. 

Bluetooth and WiFi technologies were also tested and compared in parallel. 

3.6.3 System Performance 

The criteria to evaluate the performance of the system is the number of matched MAC addresses 

between two sensors with respect to the total volume. Here, the detection rate = Np/Vp, where Np 

is the total unique MAC addresses read in two locations, and Vp is the total traffic volume in 15-

min, 30-min or 1-hr intervals. The detection rate validation was based on the volumes in 15-min 

intervals and a total of more than 58,000 trips detected during 12 days of data collection. To 

validate classification accuracy, 200 manual trips were used.  

To compute detection rates, the number of MAC addresses between sensors and the total number 

of pedestrians in each direction from manual counting were obtained in each direction. 

Table 3-2 shows a 2.5 hours sample detection rate of both the Bluetooth and WiFi technologies on 

October 9th, 2015. Note that the total number of pedestrians traveling from sensor 1 (main gate) to 

sensor 2 (Figure 3-7) was determined using video data. From these results, one can clearly see that 

WiFi has a much higher detection rate than Bluetooth. This result is not surprising given the low 

usage of Bluetooth technologies as reported in previous research (Malinovskiy et al. 2012). 
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Table 3-2. Sample of number of detection and detection rate for each technology 

  

Time 

Period  

Total Volume  

WiFi  Bluetooth 

Detected WiFi 

Signals 

Detection WiFi 

Rate 

Detected 

Bluetooth 

Signals 

Detection 

Bluetooth Rate 

Start End Dir. 1 Dir. 2 Dir. 1 Dir. 2 
DR*  

(Dir. 1) 

DR 

 (Dir. 2) 
Dir. 1 Dir. 2 

DR  

(Dir. 2) 

DR  

(Dir. 2) 

11:00 11:15 82 69 21 17 25.6 24.6 1 3 1.2 4.3 

11:15 11:30 149 164 33 32 22.1 19.5 0 2 0.0 1.2 

11:30 11:45 127 113 49 19 38.6 16.8 1 0 0.8 0.0 

11:45 12:00 64 78 8 18 12.5 23.1 2 1 3.1 1.3 

12:00 12:15 82 89 21 18 25.6 20.2 0 0 0.0 0.0 

12:15 12:30 75 99 21 18 28.0 18.2 0 1 0.0 1.0 

12:30 12:45 108 132 20 18 18.5 13.6 1 1 0.9 0.8 

12:45 13:00 154 173 28 38 18.2 22.0 2 0 1.3 0.0 

13:00 13:15 138 130 55 30 39.9 23.1 1 0 0.7 0.0 

13:15 13:30 70 87 22 15 31.4 17.2 0 2 0.0 2.3 

DR = Detection rate 

   

Figure 3-7. a) Detection rate comparison, b) proposed System WiFi vs. Libelium WiFi 

Figure 3-7.a presents the detection rates measured in 15-min time intervals. Note that only 170 

intervals (from the first 6 days out of 12) were used to make this figure clear. Again, the detection 

rate of WiFi was significantly higher than Bluetooth, with average detection rates of 27% and 2%, 

respectively. As a complementary assessment of our systems, a commercial sensor was installed 

in parallel with one of our sensors.  Figure 3-7.b compares our developed system with a Meshlium 

sensor, a Bluetooth-WiFi sensor designed by Libelium (www.libelium.com). To compare the two 

systems fairly, we used the same antenna and installed both sensors at the same location. The better 
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performance of our proposed WiFi detector in comparison with Libelium sensor comes from better 

channel hopping technic we used to detect the WiFi packets. The 2.4GHz WiFi frequency band is 

divided into 14 different channels covering 2.412GHz to 2.484GHz 

(https://en.wikipedia.org/wiki/List_of_WLAN_channels) . Each channel has overlap with the 

previous and next three channels. In our scanning algorithm, we are just scanning the three main 

channels, 1, 6 and 11 which are covering the whole WiFi frequency band. This implementation 

helped us to speedup scanning algorithm which directly affects the detection rate of the sensor.  

Table 3-3 shows some statistics on detection rates of both WiFi and Bluetooth technologies. Due 

to different patterns in the number of trips captured by a given sensor for different flow rates, we 

divided the pedestrian-bike flow into different categories and calculated statistical parameters for 

each category separately. Based on the results, we can see a decrease in the average detection rate 

with an increase in volumes. This drop may be due to the short amount of time available for the 

system to process WiFi probe signals in high-volume conditions. This could potentially be solved 

by the use of a redundant system (e.g., two WiFi modules could be implemented in the same 

sensor). Also, higher variations in the detection rates are expected with high pedestrian flows. This 

concept can be seen in Table 3-3 where the standard deviation of the detection rate samples 

increases when the pedestrian flow increases. 

Table 3-3. Some statistics on detection rates (15-min intervals) 

Ped. Flow # of Samples 
WiFi Bluetooth 

Average Std. Min Max Average Std. Min Max 

<80 9 28.22 5.26 18.42 35.82 3.42 3.02 0.00 8.70 

80-120 22 30.09 5.92 20.99 42.70 2.35 1.97 0.00 6.74 

120-160 59 27.23 7.01 14.17 55.56 2.17 1.99 0.00 8.50 

160-200 31 25.89 8.79 12.28 47.34 2.10 1.41 0.00 5.20 

200-240 19 26.04 8.62 15.76 50.22 1.28 1.09 0.00 4.93 

>240 29 22.13 8.86 11.27 38.85 1.43 1.16 0.26 6.23 

Dataset 169 26.40 7.75 11.27 55.56 2.02 1.80 0.00 8.70 

3.6.4 Travel Time Validation 

In addition to the detection rate, the accuracy of travel times obtained from the sensors was 

validated using ground truth data. For this, estimated travel times and, then, speeds were computed 

https://en.wikipedia.org/wiki/List_of_WLAN_channels


 

59 

 

based on timestamped detected MAC addresses between sensors 1 and 3 and were compared with 

“ground truth” travel times (speed) obtained from 200 manual trips.  

In large networks, there might be more than one route between two different nodes or sensor 

locations. Therefore, route choice behavior and travel time filtering should be considered as part 

of future work. This potential problem can be solved by adding a route choice model or by 

increasing the sensor density. In the current application, sensors were strategically located to avoid 

this issue. Alternative routes between sensors existed but had longer travel times because of 

significantly longer distances. In addition, the camera was installed with a complete view of the 

only existing path between sensors on campus. Therefore, we can easily count the users taking the 

connecting path between sensors and remove the rest. For instance, there are other paths from 

sensor 1 to sensor 3 through off-campus streets; however, these routes are associated with long 

travel times which is based on the average walking speed of pedestrians and the length of 

alternative paths (420 seconds compared to 200 seconds). These detected travel time samples were 

then removed (outliers) using an upper threshold. 

 

Figure 3-8. Ground truth speed data vs. speed estimated by the sensor 

Figure 3-8 shows the plotted speed values estimated using WiFi sensors versus ground truth 

speeds. Again, it needs to be mentioned that the ground truth speeds are calculated based on manual 

trips the volunteers have done carrying their phone and registering their GPS location. One can 

see that the estimated speeds are highly correlated to the ground truth data with an R-squared value 

equal to 0.88. As depicted in the plot, the real and estimated speed data are very close to each other 
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demonstrating accuracy of the proposed system in speed or travel time estimation. An average 

error of about 11.5% was observed. 

As mentioned earlier, since the exact location of the last detection cannot be measured, the physical 

distance between sensors is used as the effective distance. Therefore, the larger the distance 

between sensors relative to the detection area of each sensor, the greater the accuracy of speed 

estimation. The antenna used in this study is a 2dBi omnidirectional antenna. Our estimated 

coverage range with this antenna is about 50 m (that is similar to the range used in (Abedi et al. 

2015)). In this study, the effect of the range on the variance of the speed estimation was 

investigated. As described in Table 3, the variance of the hourly speed estimation is equal to 0.16 

for short distance between sensors (about a 300 m distance between sensor 1 and 2) and 0.01 for 

longer distance between sensors (about 600 m between sensor 1 and 3). This addresses the 

challenge of selecting the proper antenna, which depends on the distance between sensors. For an 

antenna with lower gain, the detection rates will be lower, but the speed estimation accuracy will 

increase. However, for pedestrian networks, where the speed of the users are low (around 5 km/h), 

the selected antenna meets these requirements. As a simple example, assume that the radius of 

each sensor’s detection area is about 50 m and that the physical distance between sensors is 300 

m. 

Then for a sample of travel time equal to 180 seconds, the speed value can be calculated as: 

𝑆𝑖𝑗 =
𝑑𝑖𝑗±𝑟𝑖±𝑟𝑗

𝑡𝑖𝑗
=

300±50±50

180   

which leads to a maximum of 8 km/h and a minimum of 4 km/h, 

indicating very high speed estimation variance. Instead, if the distance between sensors were 600 

m and travel time were 360 seconds, the values would be 7 km/h and 5 km/h, respectively, which 

shows less speed estimation variance.  

Table 3-4 shows the hourly average estimated pedestrian speed and the variance between two pairs 

of sensors for about 9 hours of data. In this test, the distance between sensor 1 and 2 was small 

(about 150 m). We expected a larger variance for average travel time measured between sensors 1 

and 2 in comparison with the average travel time between sensors 1 and 3 (which were 350 m 

apart). The variance of the average speed between sensors 1 and 2 was 10 times more than the 

variance of the average speed between sensor 1 and sensor 3. Based on these results, it is 
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recommended that the distance between sensors be as large as possible to increase the accuracy of 

travel time measurements. 

Table 3-4. Hourly average pedestrian speed between sensors 

Start End 
From Roddick to Intersection 

(km/h) 

From Roddick to Milton 

(km/h) 
Average (km/h) 

11:00 12:00 5.2 4.8 5.0 

12:00 13:00 5.8 4.7 5.4 

13:00 14:00 5.3 4.8 5.2 

14:00 15:00 5.3 5.0 5.1 

15:00 16:00 5.5 4.7 5.1 

16:00 17:00 5.4 4.9 5.1 

17:00 18:00 5.0 4.7 4.9 

18:00 19:00 5.3 4.7 5.1 

19:00 20:00 6.4 4.9 5.6 

Variance (km/h)2 0.16  0.01 0.04 

3.6.5 Calibration and Validation of the Mode Classifiers 

Here, the implementation of the mode classification method is presented, and the evaluation of the 

alternative classifiers is discussed. As defined in the methodology section, four different classifiers 

are proposed and calibrated using the sample of video speeds classified by mode and summarized 

in Figure 3-5 and Figure 3-6. Using the estimated speed observations and 200 time-seen 

observations, the parameters of the logistic models are determined. As mentioned before, 60 

percent of data was selected randomly and was used to calibrate the model, and the rest was used 

as a test dataset to evaluate the performance of each classifier. The estimated parameters for the 

speed-based model are 𝛽
0

= −8.9 and 𝛽
1

= 0.91. For the time-seen model, the parameters are 

𝛼0 = −2.63 and  𝛼1 = −0.06. From this, the probability of being a pedestrian or a cyclist can be 

computed given the speeds or time-seen and the corresponding parameters. 

To evaluate the accuracy of the classifier, the dataset which includes 200 manual samples of 

bicycle and pedestrian trips with known speed and the mode is used. To evaluate the performance, 

the classification error is used as a measure. This is defined as the total number of misclassified 

samples (MSCL) divided by the total number of samples in that class. The same measure is used 

over the entire dataset as a global measure of performance as well as for each mode.  
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Table 3-5. Performance measure of each developed classifier 

Mode # of Samples  
Classifier I Classifier II Classifier III Classifier IV 

MSCL % Error  MSCL % Error  MSCL % Error  MSCL % Error  

Ped. 40 9 22.5 5 12.5 8 20.0 1 2.5 

Bike 40 3 7.5 6 15.0 5 12.5 2 5.0 

Total 80 12 15.0 11 13.7 13 16.2 3 3.7 

MSCL: Number of misclassified (by developed classifier) samples in that class of users 

The results are reported in Table 3-5, from which one can clearly observe that Classifier IV has 

the best performance, globally and when separating classes. The error percentage is around 4%. 

This clearly shows the advantage of fusing the two pieces of information (speed and time-seen 

data), which significantly improves the classification accuracy. Classifier I is relatively simple 

(based on a simple threshold on speed), it works very well for classifying bike users, but it performs 

poorly for classifying pedestrians with an error of around 22%. This leads to an average error of 

15% on the entire dataset. 

3.6.6 Extrapolation 

This section explores the accuracy of the simple extrapolation method briefly described in the 

methodology section. For this application, only the WiFi system outcomes are considered based 

on the fact that detection rates were greater than 20% in 4 out of 5 cases (in contrast with the very 

low Bluetooth rates).  

To investigate the correlation between estimated WiFi counts and observed counts using video, a 

regression model using a second-degree polynomial function is fitted to the data with two 

variables, total WiFi counts and total ground truth video counts. The dataset including 12 days of 

15-min interval manual counts with their corresponding number of detected trips using WiFi 

scanner are used for extrapolation. To further evaluate the performance of the proposed method, 

the dataset is divided into two groups; a training dataset, including seven days of data used for 

model calibration and a testing dataset to evaluate the model accuracy.   

Figure 3-9.a shows the outcome between ground-truth total volume and WiFi counts using 15-min 

intervals for  training dataset. Different type of models was tested to fit on data and the second-

degree polynomial function had the best R-squared value.  From this, a high R-squared value of 

0.70 indicates a high correlation between the WiFi counts and the ground truth counts collected 
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using video data. Using the training dataset, the correction factor was estimated to be 3.38 and was 

applied to the test dataset to evaluate the accuracy of the model. Figure 3-9.b shows the  result of 

extrapolation using two  days of test dataset. According to the plot values, the extrapolated values 

are very close to the ground truth 15-min pedestrian flow and the hourly pattern of the flow is 

tracked well by the extrapolated data. Statistical analysis on estimation errors on test dataset shows 

17.1 and 14.41 for average and median estimation error respectively, demonstrating the potential 

of our developed platform for estimating the flow on pedestrian networks. These numbers can 

perhaps be improved by using more complex estimation methods. 

  

Figure 3-9. a) correlation and between WiFi count and ground truth data, b) ground truth data vs. 

extrapolated counts 

3.6.7 Some Limitations and Future Work 

It should be noted that a limited set of observations was obtained at higher or lower speeds and 

counts (Figure 3-8 and Figure 3-9). This is because very few or no observations were obtained at 

these extreme conditions. Outside of this range, the system needs more validation. 

The system was tested only in a small network. Additional tests in different environments and 

network sizes can be carried out to validate the performance of the system and the methods in other 

conditions. The system could be integrated with other designed automated pedestrian counting 

systems such as ultrasonic or LIDAR technology. A sensor-based counting system could be 

connected to the main processor through a wire or Bluetooth and data could be transferred to a 

server through the Internet. The system will be integrated to obtain data for extrapolation in a few 
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locations in a network of sensors. The classification of pedestrians, cyclists, and vehicles is another 

topic that can be investigated. The MAC address could be classified based on historical data. 

Received Signal Strength Indication (RSSI) can be explored as an additional source of information 

which might be useful for classification purposes. The daily and long-term travel patterns of MAC 

addresses could also be investigated to learn more about the short and long-term periodicity of 

visits and time spent on public spaces. 

 CONCLUSIONS 

This research developed and evaluated the performance of a Bluetooth-WiFi sniffer to detect 

anonymous MAC addresses of devices in pedestrian-bicycle networks. A comparative analysis 

was reported between these two technologies. Also, as part of the contributions, mode 

classification and extrapolation methods were proposed and evaluated using ground truth data. Our 

system was designed to work in real time so that all captured MAC addresses can be transferred 

to a web server at a time frame predefined by the user. The system can operate with a battery for 

a few days or with a solar panel for a longer period of time. Key system parameters associated 

with its performance can be controlled and adjusted by the user. The proposed system and 

analytical methods were evaluated using video counts and GPS data as ground truth. About 90 

hours of video data were recorded for this purpose. In addition, GPS traces and pre-defined MAC 

addresses were used to compare travel time estimated using a WiFi-Bluetooth system with ground 

truth data.   

Among other outcomes, promising results were obtained with the WiFi detection rates being 

higher than those typically reported in past studies using only Bluetooth technologies. In the 

network case study, an average detection rate of 26% for the WiFi system (with detection rates up 

to 50%) was observed. In comparison, the average detection rate for Bluetooth technology was as 

low as 2%. In fact, Bluetooth technologies alone are unfeasible in pedestrian networks given the 

low detection rates. Therefore, WiFi protocol can then be seen as a better alternative to Bluetooth 

in pedestrian networks mixed with bicycle traffic. 

The accuracy of estimated travel times or speeds was also investigated using ground truth data 

collected through manual trips and then compared with estimated speeds using MAC address 

captured by sensors. The preliminary results show a high correlation between estimated speed and 
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ground truth speed data with an R-squared value of 0.88. In addition, an average estimation error 

of about 11.5%, with a standard deviation equal to 9%, was obtained using the developed system. 

For mode classification, four classifiers were calibrated and tested ranging from simple classifiers 

based on speed threshold values to more complex classifiers using fused-statistical logit models. 

The average error percentages using logit models with speed and time-seen (separate models) as 

variables were about 14% and 16% respectively. However, when using a combined model with 

speed and time-seen duration (Classifier IV), the method showed much better results with an 

average classification error percentage of 3.7%.  

Furthermore, the extrapolation of WiFi MAC counts was tested using video data for pedestrian 

flow. A simple extrapolation method was used to estimate pedestrian flows from WiFi counts by 

assigning a correction factor to the number of WiFi counts in each 15-min intervals. An R-squared 

value of 0.70 was obtained when correlating WiFi counts and total pedestrian volumes. The 

extrapolated results show an average estimation error of 17.1%. This provides some evidence 

concerning the potential of using extrapolated WiFi counts as a surrogate of total volumes. 
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Link Between Chapter 3 and Chapter 4 

In Chapter 3, an embedded WiFi-Bluetooth scanning system has been developed and tested for 

collecting real-time MAC data in non-motorized environments. A framework for classification of 

MAC signals (in pedestrians and bicycles) has been presented along with a simple way to 

extrapolate signals into pedestrian counts. For this purpose, MAC addresses are matched between 

sensors installed in different locations, then based on the time stamp of the detections, travel times 

(average speeds) of the users are estimated. The information is then used to build a framework to 

classify the detected signals and extrapolate the total flow based on the WiFi traces.  

In the next Chapter (Chapter 4), the same scanning system is evaluated in an arterial context. As 

seen in Chapter 3, Bluetooth scanners perform poorly for non-motorized environments. However, 

Bluetooth technology has been used intensively in motor-vehicle traffic networks. The findings 

show that most of the Bluetooth MACs detected by our device belong to the motorized users. It 

proves that there is a potential in using our proposed embedded system in a multimodal network, 

which the Bluetooth scanning system provides accurate insights about the vehicular activity. These 

insights can be used to develop mode classifiers based on WiFi data (which covers all user modes). 

The following chapter evaluates the performance of using Bluetooth and WiFi data in vehicular 

networks and compares the results with ground truth data. It also builds the base for our future 

work on using embedded WiFi-Bluetooth system in the multi-modal traffic network.  
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 ABSTRACT 

There are a number of sensory systems available in the market to monitor traffic networks. 

However, these types of technologies cannot provide detailed data of user trip pattern (O-D 

matrices) and speed over the network. To achieve this, the system should be able to collect 

anonymous data pertaining to the vehicles in the network. In recent studies, Bluetooth (BT) 

technology has been widely used as a motor-vehicle traffic monitoring system using captured 

unique Media Access Control (MAC) address of Bluetooth devices. However, little is known about 

the performance of WiFi technology regarding detection rates and travel time estimation in 

comparison with Bluetooth technology. Hence, in this paper, we developed and tested an 

integrated Bluetooth-WiFi system to investigate the performance of each technology. To increase 

the detection rates, a high sensitivity class I Bluetooth module is integrated into the system. The 

performance of the two systems is then evaluated against ground truth data obtained from manual 

video processing at 5 min and 15 min intervals. At each individual (specific) sensor, the results 

indicated a higher detection rate of WiFi in comparison with the Bluetooth technology on a single 

sensor or when a network of sensors are implemented (more than two sensors). However, 

Bluetooth detection rates are higher when just two sensors are considered due to the fact that the 

WiFi probe signals are sent randomly in one or two minute intervals and that the arrival to the 

detection zone of each sensor might not lie in the interval when the device is sensing the probe 

signal.    
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In addition, the speed estimation errors decreased from 8.6% (Bluetooth only) to 5.8% (Bluetooth-

WiFi). Although the usage of Bluetooth in recent years has dropped, there is merit in having both 

technologies integrated into the same system, particularly in urban traffic networks.  

 INTRODUCTION 

In the transportation field, there has been a growing interest in the development of traffic 

monitoring systems, often referred to as intelligent transportation systems (ITS) technologies, to 

estimate reliable and efficient traffic measures, such as travel times, operating speeds and volumes 

in arterials or highways. The ability to measure travel times, route choices, volumes, and 

congestion levels are all very important tools for practitioners and researchers alike looking to plan 

and improve infrastructure.  

Among the popular technologies for monitoring and collecting real-time or short-interval counts 

and directions, one can mention traditional loop detectors, and video cameras (Datondji et al. 2016, 

Robert 2009, Katsuki and Tatsubori 2018, Sochor et al. 2017, Wang et al. 2018) used also for 

traffic surveillance. More recently, other traffic sensors such as acoustic, ultrasonic, radar, and 

video-based detection sensors have become popular. Depending on the sensor, traffic volume, 

speeds and in a few cases, time gaps can be obtained at different levels of temporal aggregation. 

Some technologies can provide vehicle level speeds per lane with a high level of precision in 

highway conditions. Computer vision algorithms can capture microscopic traffic parameters by 

grouping features and detecting group velocities from the previously captured elevated video, 

though these metrics are extracted in post-processing (Sochor et al. 2017). Most of these detectors 

are not disruptive to traffic because they are installed out-of-lane and often use existing roadside 

infrastructure. However, these traffic sensors are often very expensive and difficult to install and 

power in fixed locations. Also, the need for real-time traffic and travel time information is 

becoming increasingly important in urban areas for which large sets of devices are needed. In this 

regard, the use of these sensors for collecting data is insufficient because of their limited coverage 

and high costs of both, installation and maintenance.  

While all the sensors previously mentioned can accurately detect and count their respective modes 

of transportation, they lack the ability to provide travel times and O-D matrices. For this, individual 

vehicles need to be tracked as they move outside of each individual sensor’s range and through the 
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network. This issue led us to look at anonymous identity-retaining tools. In this area, smartphones 

have become the device of choice for many people buying new phones all over the world. In 

Canada, more than half of mobile phone users use smartphones, and the penetration rate is 

expected to reach 60% in 2016. Almost every phone available today has Bluetooth functionality, 

and most smartphones have both Bluetooth and WiFi. These wireless communication protocols 

(IEEE 802.11 for WiFi, formally IEEE 802.15.1 for Bluetooth) offer convenient ways for users to 

connect peripherals or to the Internet, and for devices to be detected by appropriate hardware.  

In order to overcome the high cost and limitations of traditional data collection methods, simpler 

approaches have emerged using wireless technologies, such as Bluetooth (Lan et al. 2017,  

Yoshimura et al. 2017, Ahmed et al. 2008, Bullock et al. 2010, Malinovskiy et al. 2012, Martchouk 

et al. 2010, Porter et al. 2013, Saeedi 2013, Tsubota et al. 2011) WiFi access points (Hidayat et al. 

2018, Reichl et al. 2018, Weppner et al. 2016, Ahmed et al. 2008, Danalet et al. 2013, Musa and 

Eriksson 2012), and cellular tower data (Caceres et al. 2007). In this context, Bluetooth 

surveillance has been researched heavily in recent years. In broad terms, a Bluetooth-enabled 

device that is discoverable can be detected by another Bluetooth radio, which in this case would 

be the detector. Every Bluetooth device has a unique hardware Media Access Control (MAC) 

address (a 12-character hexadecimal number), which is uniquely identifiable. A Bluetooth device 

has a range of anywhere from 3.3 meters to 33 meters (depending on the device and version of 

Bluetooth) and communicates power levels as users move radially closer and further from the 

sensor.  

Using multiple detectors throughout a network, the path and rough speed of each device can be 

determined and used to generate OD surveys, travel times, and congestion levels (Hidayat et al. 

2018, Tufuor and Rilett 2018, Barcelo et al. 2010, Blogg et al. 2010, Carpenter et al. 2012, 

Laharotte et al. 2014, Martchouk et al. 2010, Saeedi 2013, Tsubota et al. 2011, Wasson et al. 2008).  

Several applications in which Bluetooth devices have been used to compute travel time measures 

and other traffic performance measures have been reported recently. Among the first works, one 

can refer to Wasson et al. 2008, which conducted a study to estimate travel times in freeways and 

arterials in the greater Indianapolis area.  In another study, Kurkcu and Ozbay 2017 explored their 

use for computing congestion measures to evaluate the impact of highway work zones using as a 
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case study a rural interstate in Indiana. Among the studies in urban environments, Quayle et al. 

2010, measured segment travel time, average running speed, and origin-destination in arterials in 

Portland, Oregon. Yu et al. 2014 evaluated an incident detection algorithm which makes use of 

Bluetooth data on an arterial road in Tigard, Oregon. In a different application, Day et al. 2010, 

evaluated signal coordination by combining travel time measurements with detector event data. 

Szuch and McDaniel 2011, estimated travel time reliability along goods movement corridors used 

heavily by trucks in Calgary. Other studies have compared alternative methods, such as floating 

car versus Bluetooth data collection (Haghani et al. 2010). In most recent studies Salanova Grau 

et al. 2017, uses Bluetooth data to generate origin-destination and flow estimation over time. 

Lewandowski et al. 2018 proposes a method, which utilizes mobile devices (smartphones) and 

Bluetooth beacons, to detect passing vehicles and recognize their classes. 

The advantages of Bluetooth methods over conventional technologies have been highlighted in 

several documents including relatively lower costs (hardware and software are inexpensive), 

ability to collect large quantities of data over time, and ease of installation. Given their flexibility, 

Bluetooth data collection devices are suitable for temporary or permanent installation in roadway 

facilities of interest. These sensors can be used to measure travel times in highways and arterials 

(Hidayat et al. 2018, Tufuor and Rilett 2018, Malinovskiy et al. 2012, Martchouk et al. 2010, 

Saeedi 2013). 

Despite the important advantages listed above, a number of limitations have also been documented. 

The issue with Bluetooth detectors is that many users disable the service altogether on their 

devices, or otherwise keep their devices undiscoverable. This is partially due to the fact that for 

many people, the Bluetooth service is not frequently used. Also, leaving Bluetooth enabled can 

have a negative effect on battery life. This, along with detection error, leads to low detection rates. 

Detection rates for Bluetooth are usually reported between 5% and 12% (Malinovskiy et al. 2012, 

Porter et al. 2013). For instance, Wieck 2011, investigated the technology on an arterial corridor 

with 6 intersections and found a matching rate that varied from 3% to 11.4%. While the small 

sampling rate can be statistically adequate given the fleet size, higher detection rates between 

sensors are always preferred to increase system reliability. Despite recent developments, 

Bluetooth-based systems can still have difficulties monitoring traffic in arterials or facilities with 



 

74 

 

a high traffic mix, in particular for corridors with high volumes of pedestrians and bikes. WiFi 

access point tracking requires that devices be connected to a specific wireless network and that the 

network encompasses the entire detection area. Cellular tower triangulation is very coarse so it is 

only appropriate for origin-destination surveying (Bonnel et al. 2018, Bonnel et al. 2017, Caceres 

et al. 2007).  

To overcome the issues with Bluetooth and increase its accuracy rate, some researchers have begun 

considering WiFi detection as an alternative (Hidayat et al. 2018, Tufuor and Rilett 2018, Danalet 

et al. 2013, Musa and Eriksson 2012). WiFi is another common wireless service, but it has a much 

higher use-rate than Bluetooth because, while enabled, it allows users to connect to known 

networks when in range to save on cellular data usage (if applicable). WiFi has been used in 

existing networks to track devices that are connected to a specific network (Danalet et al. 2013). 

This is particularly useful for networks with a large wireless coverage area and many nodes, such 

as a university campus. Devices must be connected to the given wireless network and must be 

within the coverage area. The area studied thus cannot be expanded without extending the network 

coverage, which can be difficult as it means expanding the area supporting access to the Internet 

to its users. This could be an issue if the area under study is, for example, a highway, a 

neighborhood, or anything other than a campus. Because of the mentioned shortcomings of using 

access point data to monitor traffic networks using WiFi protocol in recent years, a growing interest 

in developing independent WiFi sniffer systems can be seen. In these systems, capturing MAC 

addresses is not limited to the devices that are connected to a specific network. 

In the literature, few studies have compared the performance of Bluetooth and WiFi scanners in 

providing usable and representative travel data. In regards to road traffic, Abbott-Jard et al. 2013, 

compared the performance of the two technologies with data collected along a major arterial and 

freight route in Brisbane, Australia. The results indicated that 1191 matching MAC-ID were able 

to be identified from the data produced by the Bluetooth scanners compared to 149 from the data 

produced by the WiFi scanners. In addition, the percentage of usable data from the Bluetooth and 

WiFi scanners were 81% and 19% respectively. The authors mentioned that WiFi technology may 

have been affected by interference with other WiFi signals in the area.  
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This work proposes and evaluates the performance of a system to detect anonymous MAC 

addresses of devices at short distances at temporal or fixed locations. Proposed herein is a 

technique for capturing signals from WiFi-enabled mobile devices for the purpose of measuring 

travel times, speeds, and user activity over a network. This document also discusses the potential 

advantages of the WiFi data collection system as an alternative or complement to Bluetooth 

technology for monitoring devices throughout a network.  

Our system is inspired by the best elements of both WiFi and Bluetooth, taking advantage of the 

portability of Bluetooth and the detection levels of WiFi. After reviewing the 802.11 whitepaper 

(Committee 1997), it became clear that it was possible to detect packets that are broadcast 

periodically by WiFi-enabled devices in a similar manner to the way Bluetooth devices are 

detected. The system we set out to create is able to: i) track MAC addresses from WiFi traces from 

phones regardless of their network connection status or user settings (assuming WiFi radio is on) 

and ii) extract travel times and flow rates per direction. 

 SENSOR SYSTEM OVERVIEW 

In this section, the developed system is introduced. First, we take a look at the hardware design 

and elements and, then, software development and data analysis methodology is explained. 

4.3.1 Hardware Components 

The first step in developing the system was designing the different components of the 

WiFi/Bluetooth sensor. These tasks required a number of steps, including the selection and testing 

of the best components, the design of a microprocessor, integration of a Bluetooth and WiFi 

modules and data logger.  Additional details are provided as follows: 

1. Processor: The designed system uses a 600MHz processor with 64M RAM with OpenWRT, 

an open source Linux based OS. The built image of the OS kernel includes different 

programming languages and libraries to interface the processor with a USB 3G Modem, 

Bluetooth module, and a wireless packet handling.   

2. Bluetooth Module: To capture the Bluetooth MAC addresses, a serial Bluetooth module is 

used in our system. The Bluetooth module is a “class I” Bluetooth device (higher sensitivity in 

comparison with class II Bluetooth devices used in smartphones) with an external antenna.   
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3. WiFi Module: This module is used to scan the 2.4GHz spectrum and capture probe signal of 

WiFi devices. 

4. Data Logger: In order to record locally and transfer timestamped data to a web server, a unit 

including Real Time Clock module, SD card and 3G Modem is used.  

The final system is illustrated in the following pictures: 

   

Figure 4-1. System hardware development 

 It is worth mentioning that each individual sensor monitors the 2.4 GHz spectrum for WiFi traffic 

on multiple channels. The same frequency is used to monitor Bluetooth devices. A class I 

Bluetooth module is used in our system to increase the sensitivity of the Bluetooth scan unit and 

capture more Bluetooth MAC addresses from nearby devices. Moreover, packets are stored in an 

internal database or transmitted via WiFi or GSM to a central database. In order to improve results, 

multiple sensors can be placed at a single site to increase the probability of catching packets while 

scanning channels. For short-term studies, the sensors can be powered by the battery while for 

long-term studies, they can be plugged into the municipal electrical system or be powered by solar 

panels. The secure, waterproof housing is used to protect the equipment against adverse weather 

and tampering. 

The proposed WiFi detector exploits a part of the IEEE 802.11 protocol that has stations actively 

and frequently broadcasting the identities of their desired access points. Typically, this data is 

ignored by access points and other routers, unless is it directed toward them specifically. Our 

device passively listens to all packets from all stations and records their specific MAC addresses. 

Such detectors can be used as a standalone way to retrieve information or can be coupled with 
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other counting devices, such as infrared and microwave sensors, video analysis systems, and 

depth-based counters. These other counters do a good job of catching and classifying all traffic as 

they pass by, but are not well suited for identifying individual paths. The ability to single out the 

identity and speed profile of most of the traffic moving through a network has two implications: 

(i) the paths of smartphone-carrying users can be extracted, and (ii) the paths of non-smartphone-

carrying users can be better estimated based on the known paths and data from other sensors.  

The same criteria are used to capture the Bluetooth signals and get the MAC addresses of Bluetooth 

devices, but with some differences. In regards to Bluetooth technology, capturing a MAC address 

requires active handshaking between a sensor and a device, i.e., a sensor transmits probe signals 

to other enabled and discoverable Bluetooth devices and listens to their response. 

Among the advantages of the developed system with respect to the existing one, is that the full 

coverage of the entire facility with a set (cluster) of devices is relatively low cost. Devices are not 

intrusive and make use of infrastructure that already exists (such as posts and barriers). 

Additionally, the designed system is also completely compatible with a developed pedestrian 

counting system based on ultrasonic technology. The pedestrian counting system is connected to 

the WiFi-Bluetooth system through a wire or Bluetooth communication protocol to transfer data 

to the main processor which then relays the data to a server.  

4.3.2 Data Collection and Analytics  

The process of extracting travel speed data from pairs of Bluetooth sensors involved numerous 

steps. These steps are presented conceptually in Figure 4-2. 

4.3.2.1 Deleting non-matching MAC addresses  

The first step involved deleting MAC addresses that did not appear in both datasets obtained from 

each sensor. This step was done first in order to avoid uselessly computing the results determined 

using the subsequent steps for MAC addresses in one sensor which could not be matched to 

identical MAC addresses in another sensor and, therefore, could not produce a travel time result. 
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Figure 4-2. Determining travel speeds for one direction between two sensors 

4.3.2.2 Grouping MAC addresses 

When a vehicle travels within the detection area of a sensor, it can be detected multiple times. It 

is therefore important to group those records in order to identify the timestamps associated with 

the vehicle passing the sensor. A threshold named time limits is used to define group sizes. For 

example, if a time limit of 30 seconds is chosen, two records with the same MAC address with 
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timestamps 25 seconds apart would be grouped together. In this paper, a 300 second time limit 

was chosen to group identical MAC addresses. 

4.3.2.3 Selecting a representative timestamp for each MAC address 

It is important to note that a sensor typically records multiple readings of each unique MAC address 

as it passes through its field of detection. This presents a challenge because it is difficult to clearly 

define at what time the vehicle passes a particular sensor. In this paper, the last recorded time was 

chosen arbitrarily to identify the representative timestamp for a MAC address.  

4.3.2.4 Matching identical MAC addresses and computing directional travel time 

In order to compute directional travel times, for each MAC address detected at one sensor, identical 

MAC addresses that appeared in the second sensor were isolated. After numerically sorting the list 

of identical MAC addresses from sensor two, the MAC address from sensor one was paired with 

the identical MAC address in sensor two which had the first timestamp larger than the timestamp 

at sensor one. 

4.3.2.5 Obtaining travel speeds 

After obtaining the raw travel times, the values were subject to basic filtering. An upper limit was 

set based on three times, the travel time without traffic between the two sensors as estimated from 

Google Maps. A lower limit was set based on the travel speed obtained from traveling 70 km/h on 

the road segment. This was calculated based on the distance between the two sensors as estimated 

from Google Maps. Any travel times above or below these values were deleted from the dataset. 

After doing so, the travel speeds were calculated based on the estimated distance between the two 

sensors. 

 SYSTEM EVALUATION AND TEST 

4.4.1 Testing Definition and Performance Measures 

The test was implemented along one of the main urban corridors of Montreal, Avenue du Parc. 

The study segment featured bi-directional traffic and was about 1550 m in length.  It had three 

lanes in each direction and crossed five signalized intersections. It is also worth mentioning that 

one lane in each direction performs as an exclusive bus-taxi lane and they are active either during 
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the morning (southbound) and evening (northbound) peak periods. The site selection was based 

on the availability of appropriate utility poles along the roadway to be used to install the sensors. 

Six sensors were installed in different locations to cover the whole arterial. Figure 4-3.a shows the 

location of the devices for the serial test, in which multiple sensors were located along the corridor, 

with only one sensor per location. Figure 4-3.b shows a site installation view. Data were collected 

for two days for which a total of 18 hours of data was used for detection rate validation and about 

8 hours was used for travel time and speed validation. 

  

a) Device locations along Avenue du Parc b) Sensor installation  

Figure 4-3. Test on Avenue du Parc. 

For validation purposes, two video cameras were installed at the same locations of the Sensor 1 

and 5 to calculate the ground truth travel times between them as well as flow rates. The travel time 

was calculated by matching identical vehicles seen in the two videos. For processing the video 

data and extracting the travel times we played the videos for both cameras at the same time with a 

small time delay between them. Then, for a sample of vehicles seen in upstream camera, we 

attempted to match them with similar vehicles seen in the downstream camera based on their color 

and body type. We collected 25 travel time samples for each 15 min intervals. Additionally, flow 

rates were obtained manually using the two cameras. 

The site was first chosen along the arterial based on coverage area and distance from neighboring 

sensors. Sensors were installed in lockable, weatherproof enclosures with internal battery packs. 

The aim was to collect data for a few hours every day in order to test different configurations and 
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locations. As mentioned before, permanent installations or collection campaigns that required data 

for several days would require using a solar-powered battery or plugging into the municipal 

electrical network. For the test, six water-proof enclosed devices were deployed. Details on the 

testing site and results are provided in the following subsections. 

It is important to mention that the criteria to evaluate the performance of the system were i) the 

number of detections per locations, ii) the number of matched MACs between two sensors with 

respect to the total volume (detection rate = Total unique MACs read in two locations / Total traffic 

volume (in one or both directions) in 15 min, 30 min or 1 hr intervals), and iii) travel time (speed) 

measurements. Detection rate criteria can be used for extrapolation and origin-destination studies 

as well as for arterial and highways travel speed/time estimation and prediction applications.  

4.4.2 Detection Rate Analysis 

Regarding the first analysis conducted, the number of paired MACs between sensors was 

compared with the manually counted traffic flow. For detection rate validation, data coming from 

the closest camera to Sensor 6 was used. Because of the turning movements at intersections, we 

made sure that the extracted trips from MAC pairs also pass the location of the camera in order to 

compare the data with the ground truth data of traffic flow. To do so, the sensor combinations were 

limited in a way that at least one of the sensors (Sensor 5 or 6) were in the sensor combination. 

Table 4-1 shows three hours of ground truth traffic flow and traffic flow estimated by Bluetooth 

and WiFi technologies. As it can clearly be observed, the detection rates of the WiFi were much 

higher than those of the Bluetooth in most of the intervals. 

Complementary to the table, Figure 4-4  shows the detection rate values for all the samples. The 

dashed lines show the average value of the detection rate for each technology. Test results indicate 

that the average detection rate was 27.2% for WiFi and 16.2% for Bluetooth. It should be noted 

that the detection rate of the Bluetooth technology in our system was slightly more than those 

reported in previous studies (between 10% to 15%). The high detection rate of WiFi can be helpful 

in the construction of origin-destination matrices and the extrapolation of the total flow based on 

the number of total trips. 
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Table 4-1. Three-hour sample of flow and detection rates 

Time 
Total Traffic 

Flow 

Captured by 

WiFi 

Detection Rate 

by WiFi (%) 

Captured by 

Bluetooth 

Detection Rate by 

Bluetooth (%) 

11:45 12:00 224 30 13.4 41 18.3 

12:00 12:15 184 33 17.9 34 18.5 

12:15 12:30 177 74 41.8 18 10.2 

12:30 12:45 188 37 19.7 30 16.0 

12:45 13:00 203 59 29.1 36 17.7 

13:00 13:15 194 41 21.1 35 18.0 

13:15 13:30 184 39 21.2 31 16.8 

13:30 13:45 194 34 17.5 25 12.9 

13:45 14:00 210 38 18.1 28 13.3 

14:00 14:15 185 41 22.2 26 14.1 

14:15 14:30 187 50 26.7 18 9.6 

14:30 14:45 184 41 22.3 34 18.5 

14:45 15:00 206 42 20.4 32 15.5 

Two days samples 

Average  
199.8 54.37 27.2 35.4 16.2 

 

 

Figure 4-4. trips detection rate by Bluetooth and WiFi technologies 

4.4.3 Origin-Destination Study 

Since the MAC is a unique address set by the manufacturer of the device, by capturing it and 

keeping it in the database, a user can be detected at different locations and times. Having samples 
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of a users’ activity in the network at different spatial points plus information about the past trips 

of the same user, one can conduct quality origin-destination studies. Table 4-2 shows a sample of 

detected activity of users in the arterial captured using our system. Although there were samples 

recorded throughout the day for the same user, there were many samples in which a user was 

detected by just two sensors.  Nonetheless, adding these types of trips to the database and 

comparing them with a user’s previous trip(s) can give us a clue about the user activity pattern. 

Table 4-2. A sample of user time stamped detected activity 

F8:F1:B6:F-:--:-- 90:27:E4:C-:--:-- 00:37:6D:2-:--:-- 

6 9:21:37 2 14:35:37 3 10:22:35 

6 9:21:54 2 14:36:14 3 10:23:35 

6 9:22:11 6 14:38:38 5 10:24:32 

4 9:23:58 6 14:38:42 6 10:25:32 

4 9:24:15 5 16:23:33 5 10:26:53 

1 9:26:31 5 16:23:35 5 13:28:21 

1 9:26:37 4 16:24:03 2 13:29:17 

1 16:30:05 2 16:25:44 2 13:29:35 

2 17:55:13 1 16:26:19 1 13:30:04 

4 17:57:35   1 13:30:32 

4 17:58:42   1 13:31:38 

5 17:58:43     

6 17:59:29     

4.4.4 Travel Time Analysis 

Travel time estimation is one of the most important functions of the developed system. In this 

paper, the travel time of a part of the arterial with a length of 1000 meter was calculated using two 

installed cameras and the average speeds of the ground truth were compared with the estimated 

values using our developed WiF-Bluetooth technologies. Again, there were 6 deployed sensors in 

the whole arterial that were used to get MAC data. In travel time estimation, there is an inherent 

error related to the effective distance concept. When travel time is calculated, it is important to 

know if the MAC address was detected when the device entered or left the detection area of the 

sensor or somewhere between them. The detection point will change the effective distance between 

sensors.  If we assume that the detection radius of the sensor 𝑖 is 𝑟𝑖 and the distance and travel time 

between two sensors are 𝑑𝑖𝑗 and 𝑡𝑖𝑗, then the average speed between two sensors would 
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be 𝑆𝑖𝑗 =
𝑑𝑖𝑗±𝑟𝑖±𝑟𝑗

𝑡𝑖𝑗  

. The numerator in that equation is referred to as the effective distance. In 

practice, it is not possible to find the exact coverage area of each sensor and the exact location of 

the detected MAC address in the coverage area. Therefore, it is not possible to find the exact 

effective distance between two sensors. As an example, assume that the distance between two 

sensors is about 1.5 km and the detection range of the sensor is about 100 m (it can be changed 

based on the type of the WiFi or Bluetooth device). If a car with a wireless device has an average 

speed of 30 km/h then the travel time between the two sensors would be 180 seconds. So based on 

the travel time, the estimated speed using the sensor would be something between 26 km/h and 34 

km/h. So, we expect an error ±13% in our estimation. To reduce this error, the sensors should be 

installed in locations with reasonable distances between them.  

The results of speed estimation using Bluetooth, WiFi, and combinations of both sensors are 

depicted in Figure 4-5. In each plot, straight horizontal lines show the average speeds of ground 

truth data and data collected by each sensor type. As depicted in the figure, the developed system 

shows promise in estimating the average speed at each time interval. The average errors of 8.67 

%, 11.19 %, and 5.82 % were obtained for the Bluetooth, WiFi and mixed system respectively. 

Therefore, integrating WiFi with Bluetooth can increase the accuracy of the system in travel time 

estimation. For the travel time test, only non-adjacent pairs of sensors were considered to avoid 

overlapping issues.  

Table 4-3 presents some statistics on the estimation error.  

Table 4-3. Some statistics on the estimation error with the two technologies 

 Average Median Variance Maximum Minimum 

Bluetooth 8.67 5.89 65.7 25.38 0.16 

WiFi 11.19 10.8 70.4 28.3 0.6 

Mixed 5.82 4.94 24.2 15.5 0.09 

Based on the values on the table, the Bluetooth system performance was better than the WiFi 

system. Based on the results, WiFi technology usually underestimated the travel speed while on 

the other hand; Bluetooth technology typically overestimated the average speed. The mixed system 

seems to have balanced out the errors and got more accurate speed estimation results. Also, based 
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on the results we can see that the mixed system can reduce the variance of the estimation error by 

about 64%. 

 

 

 

Figure 4-5. Speed, a) mixed in top, b) WiFi in the middle, c) Bluetooth in bottom 
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Also, the number of travel time samples for Bluetooth was much higher than the WiFi samples. 

The reason is that a Bluetooth device is easier to be captured when it is active and discoverable.  

So, we see more than one sample for each unique MAC address when we consider all the sensor 

combinations. On the other hand, for WiFi, when it is on, the MAC would be detected just in the 

scan interval. This scan interval depends on the device type. For example, the scan interval on 

average is two minutes for a Samsung Galaxy III. This means that even if the WiFi is ON we will 

not capture it at every sensor in an arterial and that the number of samples for a unique WiFi MAC 

will be less than the number of samples for a unique Bluetooth MAC. However, if just two sensors 

are considered, then the number of unique MACs for WiFi was much bigger than Bluetooth 

(detection rate). 

 PRELIMINARY CONCLUSIONS AND WORK IN PROGRESS 

This research developed and evaluated the performance of a Bluetooth-WiFi system to detect 

anonymous MAC addresses of devices at short distances at mobile or fixed locations. The sensors 

are able to capture signals from WiFi-enabled mobile devices and, enabled and discoverable, 

Bluetooth devices for the purpose of measuring travel times (speeds) and generating origin-

destination matrices. The system was tested in an arterial, and both technologies are compared 

with ground truth travel times obtained through manual video processing. Existing literature has 

mainly concentrated on applications of Bluetooth systems for travel time estimation in highways. 

The designed system works in real-time and provides a rich MAC database from both Bluetooth 

and WiFi signals. Results show higher detection rates for WiFi compared to those reported with 

Bluetooth when a single sensor is considered or a network of sensors is implemented (more than 

two sensors). However, if just two sensors are considered, the detection rate of Bluetooth 

technology is higher than that of a WiFi system. This conclusion comes from the fact that when 

the Bluetooth is in discoverable mode, it will be detected most of the time, but for WiFi technology, 

the device is detected whenever it is sending probe signals, which happens randomly in one to 

two-minute intervals.  Depending on the application, the integrated system can increase the 

accuracy of travel metrics compared to using only Bluetooth. For instance, testing the WiFi-

Bluetooth system in an arterial for two days, with about 20 hours of video data for manual 

validation, indicates that the average detection rate was 27.2% for WiFi and 16.2% for Bluetooth. 
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Additionally, our system’s performance was evaluated in terms of travel time estimation. A 

platform including six sensors with ten different combinations gave an average of 43 and 27 travel 

time samples in 15-min intervals for the Bluetooth and the WiFi system respectively. However, 

these numbers dropped to 17 and 23 samples for Bluetooth and WiFi respectively after removing 

duplicates and just keeping one sample for each MAC. The initial results show an average speed 

estimation error of around 8.6 %, 11.1 %, and 5.8 % for Bluetooth, WiFi, and the mixed system 

respectively.  

In summary, the advantages and constraints of both technologies can be summarized as such: 

• For WiFi: (+) Higher detection rates than Bluetooth technologies, (+) works well in low-

speed networks (e.g., downtown areas), (+) O-D matrices can be richer than Bluetooth 

technologies because of the higher penetration rate, (-) road user classification is required 

and can be more complex than Bluetooth since it includes transit users, cyclists, and 

pedestrians with smartphone devices. (-) Travel times for vehicles are less accurate than 

Bluetooth. 

• For Bluetooth: (+) It works better than WiFi at high speeds (e.g., urban highways), (+) 

travel times are more accurate for cars (when considering only one technology type). 

Bluetooth data comes mainly from cars. (-) It has lower detection rates: 10%-15%. The 

detection rates of MACs for smartphones represents only 1-3%, which is very low. 

Several research works are still in progress. Software optimization is already underway to ensure 

that we are not missing any data and are only collecting relevant data. This will include packet 

truncation, optimized channel scanning, and device lookup tables for classifying both the 

manufacturer and type of device (laptop, smartphone, vehicle, etc.). Classification of pedestrian, 

bikes, and vehicles is another work that should be investigated. A mode classification algorithm 

will be part of future work. In addition to travel-time (speed) model as a classifier, an idea to 

explore will be the use of historical data, e.g., one can consider all detected MAC addresses over 

time and check the speeds of each MAC address in different times/days; then classify it based on 

its historical data.  
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Developing a noise filtering methodology would be also part of future work. In travel time data, a 

lot of noise coming from samples stopping in between sensor can be seen. This part is essential for 

delay estimation applications at intersections.  
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Link Between Chapter 3, 4 and Chapter 5 

In Chapters 3 and 4, a WiFi-Bluetooth scanning system has been developed and used to monitor 

traffic network in either vehicular or mixed-mode pedestrian-cyclist networks. A basic flow 

extrapolation mechanism has been introduced and applied to the detected WiFi traces to estimate 

the pedestrian flow. However, calibrating extrapolation functions requires ground truth data of 

pedestrian/cyclists flow. The models also need to be updated over time using manual or automated 

counts. In chapter 5, a novel automated pedestrian/cyclists counting system based on Lidar 

technology is developed and tested. The system can work in different traffic lighting and weather 

conditions in real-time, and the count data can be accessible either locally or through a cloud-based 

platform. In our platform, the count data can be used to dynamically update the extrapolation 

functions for future developments. The system can also be used for other applications such as 

monitoring the level of service, and applications such as advanced warning systems and adaptive 

traffic light controls.   
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 ABSTRACT 

This research introduces the design elements of a pedestrian and cyclist counter, based on Laser 

Technology, Light Detection and Ranging (Lidar). The proposed counting system is designed for 

collecting data on various facilities such as sidewalks and cycle tracks. The system is built with 

two single beam Lidar sensors, which measure the distance to objects with a high sample rate. The 

system can detect, count and identify the direction of non-motorized road users in real time. To 

achieve this, a unique pattern recognition-based algorithm reads the distance values, extracts the 

defined features, measures direction and counts the number of pedestrians or cyclists in real-time. 

Due to the narrow laser beam, the developed sensor performs in situations where cyclists or 

pedestrians travel in parallel over the detection area. The system is designed to address occlusion, 

which is a source of undercounting for traditional, side-mounted counting systems.  

To evaluate the performance (accuracy) of the proposed system, manual video-based counting was 

performed under different traffic conditions. The video counts were defined as the ground truth. 

Two levels of data aggregation are used for validation: firstly, at the disaggregated data level using 

one-by-one matching of the sensor distance patterns and the ground truth counts, and secondly, 

using aggregated 15-min interval counts.  The results indicate that in 80% of the 15-min automated 

counting samples, the counting error was between 0-5% and 0-2% for pedestrians and cyclists, 

respectively. The Lidar system was compared to an existing infrared-based pedestrian counter and 

https://mcgill.wellspringsoftware.net/kms/disclosure/detail/83/
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an inductive loop cyclist counter. The proposed system performed significantly better than existing 

systems. On bicycle facilities, an average directional count error of 0.7% was achieved using the 

proposed system compared to an average of 4.7% using the inductive loop detector. Furthermore, 

the proposed system addresses occlusion; it achieved a count error of 2.2% in cases involving two 

or three cyclists passing in front of the sensor in parallel. For pedestrians, the disaggregate and 

aggregate counting errors are less than 3.5% and 3.0%, respectively. The proposed system is 

simple to install (it does not require pavement cutting as with inductive loop detectors), which 

reduces the installation and maintenance cost.  The system allows the user to set the coverage area 

of the sensor, which addresses a fundamental challenge for infrared counters that require the 

presence of a blocking barrier on one side of study space. This advantage makes the proposed 

system more versatile for site selection and installation. However, the system has a higher power 

consumption with respect to existing technologies. 

 INTRODUCTION 

The promotion of non-motorized transportation, walking, and biking, is one of the main goals of 

municipal governments and organizations across the world. In many cities, policies and projects 

to accommodate non-motorized modes have gained momentum in the last decade. With this, the 

planning, implementation, and operation of pedestrian and bike facilities have created a need for 

non-motorized monitoring systems. Consequently, traffic monitoring technologies and methods 

for automatically collecting such data have been developing at a greater pace. Pedestrian and 

cyclist counting data can be gathered short-term (for a few hours or a few days) at a set of locations 

or, long-term, to obtain traffic patterns and long-term changes in the traffic flow. The data obtained 

from these systems can then be used to evaluate the impact of new infrastructure (before-after 

studies), to generate extrapolation (expansion) factors, to estimate average annual daily volumes, 

to determine exposure measures for road safety studies, or to evaluate the impact of policies 

Johnstone et al. 2017, Kristoffersen et al. 2016, Lu et al. 2018, Miranda-Moreno and Lahti 2013, 

Ryus et al. 2014, Strauss et al. 2012.   

Traditionally, pedestrian and cyclists count data collection methods used by cities and 

municipalities relied heavily on manual counting procedures, particularly for short-term counts. In 

manual counting, individuals count the number of pedestrians or cyclists using a facility, either 
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directly at the site or from video recordings of the area, typically for a few hours. This method is 

costly; it requires a great deal of time and resources. In addition, the temporal coverage is very 

limited; only a few hours of counts are obtained at each site. Short-term manual counts can be very 

sensitive to temporal factors (time of the day, the day of the week, and season) and weather 

conditions. In order to standardize short-term counts that are taken at different periods of time, and 

in varying weather conditions, adjustments factors have been developed based on permanent (long-

term) counting stations from which continuous count data is obtained.  

Given the importance of non-motorized traffic monitoring, data collection over short and long 

periods of time is becoming a more common practice in many cities around the world. Given a 

large number of locations in a network where data is needed, automatic data collection methods 

and systems are essential. In response, there is an increased investment in the development of 

large-scale automated pedestrian (and bicycle) counting programs in North America. Today, many 

cities are either improving or launching such programs, with budgets that range in the hundreds of 

thousands of dollars per year. These cities and metropolitan areas include Vancouver, Ottawa, 

Montreal, San Francisco, Portland, San Diego, and others.  

For automatic data collection, several technologies have been developed in recent years; some of 

which are available for commercialization, including passive infrared, radar, and computer vision-

based counters. The advantages and drawbacks of these technologies have been documented in the 

literature Greene-Roesel et al. 2008a, Lindsey et al. 2013, Proulx et al. 2016, Ryus et al. 2014. 

While advances in computer vision processing have allowed for the collection of pedestrian flows 

in open spaces including sidewalks and intersections, very few video technologies are capable of 

automatically collecting data continuously and in real time. Video-based monitoring could be 

expensive in the long-term when infrastructure (video cameras and computers) is not available as 

an embedded system. Standard video sensors perform poorly in low-light conditions and severe 

weather. Thermal video sensors address this problem; however, they are an expensive solution. 

Despite recent technology developments, there still exists a need to develop low-cost and flexible 

data collection systems that can be easily installed to provide short- and long-term data in real-

time and to integrate such data into a platform for analysis and data fusion. 
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The main objective of this research is to develop and evaluate the performance of a monitoring 

system that automatically detects and counts pedestrians or bicycles based on the emission of laser 

beams. This paper describes the system elements and algorithm developed for the detection and 

counting of pedestrians and bicycles on non-motorized facilities, such as sidewalks and cycle 

tracks. The performance of the sensor was evaluated and compared to two of the most commonly 

used commercially available types of sensors: an infrared sensor for pedestrians and an inductive 

loop detector for bicycles. The limitations and advantages of the system are discussed along with 

plans for future work. 

 LITERATURE REVIEW 

Several monitoring technologies for automatic pedestrian and cyclist data collection, in indoor and 

outdoor environments, are commercially available. Typically, collection devices are used to detect 

and count the number of pedestrians/cyclists passing through doors, indoor corridors in terminals 

or buildings, park trails, sidewalks, cycle tracks, intersection crosswalks, mid-block crossings, etc. 

Ryus et al. 2014.  

In order to benefit from the advantages offered by automated data collection, transportation 

agencies are installing various commercially-available counting systems, as has been done in the 

past for motor vehicle traffic monitoring. Counting technologies are presented and discussed in 

the works by Markowitz et al. 2009a and Dharmaraju et al. 2002. The most popular types of 

automated pedestrian detection devices and techniques include passive and active infrared 

technology, piezoelectric pads, laser scanners, as well as video-image processing. Some of the 

mentioned technologies can be used in mixed mode networks. For bicycle counting, inductive loop 

detectors Nordback and Janson 2010 and pneumatic tubes Brosnan et al. 2015 are the most 

common commercial systems.   

Passive infrared counting technologies identify and count pedestrians based on a temperature 

differential. This category of sensors has several advantages such as relative ease to build and 

operate, very low power consumption, real-time implementation, acceptable accuracy and 

operation in wet and foggy weather. However, the technology also suffers from significant 

limitations including occlusion, when installed in environments with high pedestrian volumes and 

density; poor performance under extreme temperatures; and the requirement for the device to be 
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facing a fixed object, such as a wall. This last limitation restricts their use at intersections, midblock 

crosswalks, and open spaces Greene-Roesel et al. 2008b. Additionally, an intense source of 

infrared signals, such as vehicle engines, can cause over-counting. This limitation places 

restrictions on the types of sites that are suitable for counting. Cases of under-counting and over-

counting have also been observed and attributed to certain temperature anomalies and weather 

conditions (rain). Studies have reported a systematic under-counting error as high as 25%, 

depending on the traffic volumes and weather conditions Greene-Roesel et al. 2008b. In this study, 

an infrared sensor, manufactured by Eco-Counter, is tested at a location without the presence of 

the wall. In outdoor environments, the errors can be larger, as discussed in Lindsey et al. 2013, 

Markowitz et al. 2009b.  

With recent progress in image processing algorithms and computing technologies, the use of 

computer vision processing has been proposed as a technique for counting and classifying 

pedestrians and cyclists in mixed mode networks Ismail et al. 2009. The main benefit of using 

computer vision processing is that it can obtain counts, speeds, and trajectories of multiple mode 

types. The drawbacks of video-based systems are their high installation and maintenance costs and 

limitations regarding camera placement, light and weather conditions. Existing video-based 

techniques perform poorly at night or in adverse weather. A more expensive, but highly accurate, 

the alternative is the use of thermal imaging cameras Leykin and Hammoud 2006. It should also 

be noted that video-based systems in transportation are still overwhelmingly reliant on post-

processing rather than real-time processing of data. This reliance makes large-scale data collection 

costly and cumbersome, as videos must be regularly collected from installed cameras.  

Infrared sensors are the most commonly-used sensor for counting in outdoor environments. 

Alternative technologies such as radio wave, laser pulse, and thermal sensors are less common 

than infrared counters. Radio wave sensors work based on the variation of the wave frequency of 

the received and sent signal (i.e., Doppler Effect). The variation of the frequency has a linear 

relationship with the speed of the object. A laser pulse system functions based on scanning the 

detection area and producing a three-dimensional image of the object. Based on the video 

processing algorithm, the speeds and flows can be calculated. However, laser pulse systems have 

some significant limitations including high computational requirements and acquisition costs. 
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Thermal sensors can be mounted above entryways to count people entering and exiting key 

locations. A recent study Ozbay et al. 2010 tested a thermal sensor on trails and compared the 

results with that of an infrared sensor. The authors reported mean percentage errors ranging from 

-15% to 1% for the thermal sensor, which was considerably lower than the errors for the infrared 

sensor, which ranged between -28% and 0%.  

Little research has explored the use of devices emitting ultrasonic waves to detect and count 

pedestrians in urban environments. While ultrasonic sensors have been used in the field of 

intelligent transportation systems Krammer and Schweinzer 2006, Leibe et al. 2005, these systems 

have been neglected when it comes to automated pedestrian detection and counting. In Lesani et 

al. 2015, the authors designed an ultrasonic-based pedestrian counter and tested it, against an 

infrared-based pedestrian counter, at sidewalk locations. The results were promising in terms of 

accuracy, real-time performance, and cost. However, there are some issues with using low-cost 

ultrasonic technology such as low sample rates (less than 1 sample per 20 milliseconds), the 

divergence of ultrasonic waves by distance (beam with a 15-degree angle), and low effective range 

(four meters). This research is an effort towards the development of a low-cost counting system 

that provides a high level of accuracy in demanding conditions such as high flow, open spaces, 

and multi-modal detection. 

In the following sections, hardware and software implementation is described. The algorithms used 

to obtain pedestrian/cyclist counts from the raw distance measure extracted from the Lidar range 

finder is described as part of the software design section. 

 HARDWARE DESIGN 

The hardware design consists of two parts, the processor and the sensor. In the designed hardware, 

a low power ARM micro-controller is used as a processing unit. Two Lidar (Light Detection and 

Ranging) sensors are used to measure the distance between the sensors and moving objects: 

pedestrians, bicycles, or another road user. The sensor data is transferred to the microcontroller 

through the I2C protocol. The Lidar sensor has a range of 40 meters and a 500Hz sampling rate. 

As a result of narrow laser beams (0.3 degrees) and insensitivity to varying light and weather 

conditions, the sensor provides an output with low noise, which results in a robust and accurate 

range finding system. To extract the direction of the road users, the measurements of two Lidar 
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range finder sensors are obtained at the same time. Based on the time difference between 

detections, the direction is extracted. Figure 5-1 shows the snapshot of the sensor box prototype 

with a description of the elements. A built-in camera is used for manual counting and validation.  

The spacing between the sensors is important for detecting the object direction and is calibrated 

based on the maximum expected speed of the object and the sample rate of the sensor. Considering 

an upper limit for cyclist speed as 10m/s and a 20cm spacing between sensors, the travel time 

between two sensors is calculated as 20ms. Considering an average sample rate of 2ms, a minimum 

of 10 distance samples are read for the same object passing from sensor one to two, or vice versa. 

With this spacing, it is ensured that the system has a sufficient number of samples to detect the 

direction of the object occurately.  

 

Figure 5-1. The sensor with element description 

In addition to the sensory system, a real-time clock module (RTC) has been added to the controller 

to allow for time-stamped counting. To transfer real-time counts to the server, a GSM modem is 

integrated into the system. In the first prototype, a Raspberry Pi module was used to read 

measurements from the Lidar sensor and store time-stamped range values in a text file for offline 

processing, and for development of the data analysis algorithms. Then, to reduce the system power 

consumption, the data-analysis codes have been transferred to an ARM microcontroller, from 

Texas Instruments, for real-time applications. 

Once the system components are built, they are embedded in a solid waterproof enclosure. Figure 

5-2 provides a picture of the system hardware (left) and the sensor with the enclosure installed at 

one of the testing sites (right). In the prototype design, all the measurement samples are recorded 

and saved on the local processor storage for post-processing. 
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Figure 5-2. System hardware and installation 

 SOFTWARE DESIGN 

In this section, the methodology used to analyze raw distance measurements is described. The 

algorithm is divided into two parts, the main loop which gets the raw data and prepares arrays of 

information, and, the second part which processes the data and generates time-stamped object 

counts with direction. The same algorithm is used for both pedestrian and cyclist counting, but 

with different threshold values for the two applications.  

5.5.1 Definitions and Main Routine: 

This section includes the definition of the different variables and notations used in the algorithms: 

di : Distance value measured by Lidar i 

ti : Timestamp of the measurement by Lidar i 

THdist : Threshold defining the area for counting purposes. Any objects with 

distance values exceeding the threshold will be ignored. 

d1 , d2 : Distance value read by sensor 1 and 2 at the current sample 

d0i , t0i : Distance and time stamp by sensor i at the previous sample 

The remaining parameters are defined as they are used.  

Once the user defines the counting zone of interest, the algorithm reads distance values from the 

two Lidar sensors. On average a new distance value (di) is available to be read every four 

milliseconds. Then, the values of the distances are compared with a distance threshold (THdist). 
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The threshold is used to filter out the objects that travel outside of the user-defined counting zone. 

Relax Time (RT) is then introduced for real-time implementation. Once there are no longer any 

objects in the coverage area, a timer begins. New objects are not counted until the timer reaches 

the RT value. In this system, the RT is set to 500ms. a larger RT might append too many objects 

to be processed in real-time, whereas, a shorter RT might cause overcounting. Every time a new 

object is detected within the counting zone, the timer is reset to zero. The RT helps to avoid 

dividing an object into two separate objects, and it enables the processing of a group of closely-

spaced objects, at the same time, which is necessary for handling parallel objects.  

The next step is to cluster distance data into packets, skips, and groups. Once the RT is over, the 

distance values stored in the dist array construct a packet of data. Each packet is then clustered 

into subgroups called skips. A skip is defined as any jump (change) in measurement time stamps 

(in comparison with the previous measurement) that is bigger than a temporal threshold, THtime 

(50ms). It means that if the differences between time stamps of two consecutive measurements are 

bigger that time, a new skip is created. The skip data could belong to a person, a part of a body 

(hand, backpack or body) or even two people walking/biking close to each other or in parallel. To 

address all of these possibilities, the skip data is clustered into subgroups based on a distance 

threshold, called the Tightness Threshold, or THtight. If the difference between two consecutive 

measurements in each skip is bigger than THtight, a new group will be generated.  

Figure 5-3 shows a few seconds of distance data measured by one of the Lidar sensors plotted and 

a visual description of the terms. The green dot plot shows the raw distance data. Any drops in 

distance values indicate the presence of an object between the sensors and in counting zone. The 

green arrows show the start and end of each packet of data. As defined previously, a packet ends 

if, for at least 500ms (the RT), the distance values are bigger than THdist. The orange arrows show 

the start and end of the skip data. It can be seen that the first packet includes one skip, while the 

second packet includes three skips. Each skip then will be clustered based on the distance threshold 

into different groups. 

As mentioned previously, the proposed system uses two Lidar sensors to get the direction of the 

moving object. Typically, the same pattern of the data is seen on the second sensor data, with a 
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delay. The time stamp of each group data is assigned to an object and is used to detect the direction 

of the moving objects.  

 

Figure 5-3. A sample plot of distance data with term definitions 

Due to real-time implementation on a micro-controller, which has limited available memory, it is 

not feasible to store all the raw distance data. Therefore, at each time interval, the last and current 

distance values and their corresponding timestamps are used to construct skip and group data. For 

each group data, the following statistics are stored for the future processing: the average of the 

distances within that group  (dist_ave), the time stamp of the first sample, ts, and the time stamp 

of the last sample, te. At the end of the RT, these parameters are used to count the number of objects 

(pedestrian or cyclists) and their direction of travel. Figure 5-4 presents the flow chart of the real-

time implementation of the algorithm: 

Relaxed Time 0.5 

sec 

THdist 

<0.5 sec <0.5 sec 

Packet 1 Packet 2 

Skip 1 Skip 1 Skip 

2 

Skip 

3 

Group 1 

Group 2 

Group 3 

Group 1 

Group 1 

Group 1 

Group 2 
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Figure 5-4. Flow chart of real-time implementation of the algorithm 

The Process Packet Data Routine in the flowchart includes the decision-making section which 

outputs the time-stamped detected objects with their direction. The routine includes clustering on 

time and distance values and some conditions on the duration of each group data within the 

detected packet. This routine is described in the following subsection. 

Once the corresponding group data for each object has been detected, then the direction of the 

object is estimated based on the time stamp of the first sample of the group data associated with 

that object in two Lidar sensors, ts-lidar1 and ts-lidar2: 

✓ if ts-lidar1 is bigger than ts-lidar2 then the direction is from Lidar 2 to Lidar 1 

✓ if ts-lidar1 is less than ts-lidar2 then the direction is from Lidar 1 to Lidar 2 
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5.5.2 Counting and Direction Detection Routine 

In this subsection, the counting and direction detection routine (Process Packet Data Routine) is 

described. As described previously, the input of this routine is an array of some statistics on all 

individual group data within each packet of data and for each Lidar sensor. This routine is called 

at the end of RT interval. Figure 5-5 describes decision-making graphically.  

The plots show the raw distance data of five cyclists: one individual cyclist, and two groups of two 

parallel cyclists. The green points represent the raw distance values collected by one sensor. Figure 

5-5-a shows the data of each group and skip, generated by the main loop (described in the 

flowchart). As can be seen, the five cyclists create distance values that are grouped into seven 

different groups.  

The decision-making algorithm includes four steps which are described below. 

A) Clustering on time (ClusterT), clustering on groups, first and last sample timestamps (ts, te): 

The group data is clustered based on the difference between the time stamp of the last sample 

in group i (tsi) and the time stamp of the first sample of the next group, i+1. A threshold is 

used in this process. This level of clustering helps to connect the gaps between the different 

parts of one object (for example the gap between the hands and body of the cyclists) and 

prevent any overcounting. Additionally, the process helps to distinguish two object 

walking/biking back to back in close proximity.   

✓ If ts(i+1) - tei >THClusterTime : New Cluster 

✓ Else: Same Cluster 

Figure 5-5-b shows how this level of clustering works. THClusterTime is equal to 150ms. Based 

on this threshold, group1 and group2 are combined to build the first cluster (clusterT1). Since 

the time gap between group2 and group3 is larger than the threshold,  group3 creates a new 

cluster. This procedure is repeated for all groups. 
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a - Visual interpretation of the skip  and group data 

 
b - Visual interpretation of the first clustering step 

 
c - Visual interpretation of the second clustering step 

Figure 5-5. Visual description of the decision making steps 
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B) Clustering on groups average distances, dist_ave (ClusterD): Each cluster created in the 

previous step is clustered based the average distance values of the groups existing in that 

cluster, using a threshold, THBW. This threshold helps to detect the parallel objects, 

walking/biking side by side, and at the same time helps to reduce over-counting of different 

parts of an individual object (such as two hands for a single person). 

✓ If  |𝑑𝑖𝑠𝑡𝑎𝑣𝑒,𝑖  −  𝑑𝑖𝑠𝑡𝑎𝑣𝑒,𝑖+1| > THBW : New Cluster 

✓ Else: Same Cluster 

Figure 5-5-c shows how this clustering step works. ClusterT2, created in the previous step, will 

be divided into two clusters ClusterD1 and ClusterD2. ClusterT3, is then clustered into three 

new clusters, ClusterD1, ClusterD2, and ClusterD3.  

C) In the third step, the average distance value of all pairs of groups existing in the same ClusterT, 

are compared. If the difference between their average distance values is below the threshold, 

THBW, then the time gap between those groups are calculated. If the gap is less than THClusterTime, 

then two groups are combined as one object. This situation, though rare, occurs when the hands 

of the closer object to the sensor are detected, followed by the body of the second object, 

followed by the body of the closer object. As an example, ClusterD4 and ClusterD6 are 

combined because the difference between their average distance values is 37mm which is less 

than the threshold of 700mm, THBW, assigned for cyclists and the time gap between them 

(112ms) is less than THClusterTime, which is 150ms. 

D) For each new cluster, the duration of the cluster is checked with another threshold called duration, 

to ensure that small objects are not counted. The pedestrian and cyclist counting algorithms 

differ only in the threshold values. The values of the thresholds defined in the algorithm have 

been calibrated based on more than 300 hours of datasets collected on different facilities with 

different traffic and network conditions. Each object on the recorded video was manually 

compared with the raw data during the algorithm development to determine the best threshold 

values. Table 5-1 defines the value of the parameters used in the algorithm.  
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Table 5-1. Values of the Thresholds 

Parameter 
Value  Description 

Pedestrian Cyclists  

THdist - - Defined by the user (the interested counting range) 

RT 1 sec 1 sec 
Relaxed Time, the time before processing the packet of 

data 

THtime 50msec 50msec Time distance gap between samples to build skips 

THtight 100mm 100mm Distance gap between samples to build groups 

THBW 350mm 700mm Threshold on distance gap between two objects 

THClusterTime 300msec 150msec Threshold on time gap between two objects 

THduration 80msec 30msec 
Threshold on minimum duration of a pedestrian/cyclists 

passing in front of sensor (to remove noises) 

 SYSTEM EVALUATION 

This section presents the approach that was used to evaluate the performance of the developed 

Lidar-based counting system.  

5.6.1 Site selection and installation 

First, various locations with pedestrian and bicycle traffic were carefully selected. Two different 

pedestrian sidewalks and four exclusive bicycle paths (cycle tracks) in Montreal were selected to 

evaluate the performance of the developed system. The sites were chosen the test for alternative 

site characteristics, pedestrian traffic conditions, and peak patterns. For each site, several hours of 

data (covering both peak and off-peak hours) were collected. Additionally, video recording was 

used to manually count the objects; to be used as ground truth data.  

Figure 5-6 shows photos of the selected sites. Selected sites have different site characteristics and 

flow patterns to evaluate system performance under varying conditions. 
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Site 1: Maisonneuve (West) – cycle track Site 2: Maisonneuve (East) - cycle track 

 

Site 3: Du Parc – cycle track 

 

Site 4: University – cycle track 

 

Site 5: Saint Catherine –sidewalk 

 

Site 6: McGill College  –sidewalk 

Figure 5-6. Photos of selected bicycle and pedestrian facilities 
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Site 1 and 2, de Maisonneuve: These two sites represent locations with the highest flow of all bike 

paths in Montreal. These sites have a flow of approximately 600 cyclists/hour, which can be 

challenging for counting technology. At these sites, peak hour occurs in both directions at the same 

time, leading to many parallel cyclists (two or three) traveling in the field of view of the sensor. 

These two sites have been selected to show the performance of the system in challenging, high-

flow situations. 

Site 3, Avenue du Parc: This site has been selected to challenge the performance of the system in 

high and low speeds. Due to the high road grade, northbound cyclists travel as slow as 6km/h and 

southbound as high as 35km/h. This site is located on a bike path that forms the backbone of the 

Montreal network, connecting the north part of the city to downtown. Typically, morning and 

evening directional peak hours represent cyclists traveling to work and home respectively. 

Site 4, University street: This bike path is used by McGill University students traveling to and 

from school as well as by commuters. There are directional peak hours in the morning and evening 

and relatively high cyclist flows. 

Site 5, Saint-Catherine street: This site was chosen due to the high volume of morning and mid-

afternoon users. The sidewalk along this street is heavily populated with users: people heading to 

work, grabbing lunch, general shoppers, and students. The sidewalk is approximately four meters 

wide and represents an ideal study site for testing against conventional sidewalk dimensions, 

heavy-use, and densely packed groups.   

Site 6, McGill College street: The second site was located very close to the main entrance of 

McGill University. This site was selected to evaluate the performance of the system on wide 

sidewalks (approximately eight meters) with high pedestrian flows. As in site 2, the proximity of 

the study area to the signal-controlled intersection results in large groups of pedestrians with very 

little distance between them. This site was chosen to compare the performance of the Lidar-based 

system with infrared technology. 

The sensors were installed on existing infrastructure, such as posts. A built-in camera is used to 

acquire ground truth counts from manual counting. The camera has been installed in the sensor 

enclosure between the Lidar sensors to have the same field of view as the proposed counter system. 
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This helps match the time-stamped detection with the recorded video for algorithm development 

and testing purposes. In order to test our developed system against existing technologies, an 

infrared pedestrian counting system (pyro-box counter) for sidewalks and inductive loop detectors 

for cyclist facilities were installed in parallel. These technologies were furnished by Eco-Counter 

(http://www.eco-compteur.com). 

5.6.2 Performance measures 

Two outcomes are used for validation: i) disaggregated counts representing each individual 

pedestrian or bicycle and its direction and ii) aggregated counts representing pedestrians or 

bicycles counted in 15-min intervals. 

For the disaggregated counts, each row of the data shows the time stamp of the counted pedestrian 

or cyclist and their direction. Therefore, an error can occur at the detection level, when detecting 

(or not detecting) the road user, as well as in the direction measure. Table 5-2 shows a sample of 

the generated validation data at the disaggregated level. Each row of data represents one object in 

the video.  The first column shows the time associated with each pedestrian or cyclist from video 

data and the second column shows the direction of the object. The “sensor count” column is 1 if 

the captured object has been captured by the sensor as well, otherwise, it is set to 0. “Direction 

Error” is 1 if the detected direction from the sensor is different from the ground truth direction of 

the object (second column). If the system over-counts, the 5th and/or 6th column will be filled 

depending on the direction of the object. This table is used in both algorithm development (to 

visually check all the distance patterns and compare with ground truth data to define the thresholds) 

and performance evaluation. Once the disaggregated data has been generated, the 15-min intervals 

will be generated based on the detection time.   

Table 5-2. A sample of the disaggregated level of data validation 

Time of 

Day 

Ground truth 

Direction 

Sensor 

count 

Sensor 

direction 

Detection 

error 

Direction 

error 

Overcount 

direction 1-2 

Overcount 

direction 2-1 

14:47:26 2-1 1   0 - - 

14:47:29 2-1 1   0 - - 

14:47:34 1-2 1  1 0 - - 

14:47:39 1-2 0      

 

http://www.eco-compteur.com/
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After the ground truth and sensor, counts are obtained from the collected video, both the detection 

and direction errors are computed and reported for the disaggregated counts based on the outputs 

from Table 5-2.    

In a similar way, aggregated counts for every 15-min interval were computed. The error and 

deviation between the sensor and ground truth counts are computed using the Absolute Percentage 

Deviation (AAPD): 

𝑒𝑟𝑟𝑜𝑟𝑖 =
𝐴𝑖 − 𝐺𝑖

𝐺𝑖
 1 

𝐴𝐴𝑃𝐷 =
1

𝑛
∑ |

𝐴𝑖 − 𝐺𝑖

𝐺𝑖
|

𝑛

𝑖=1

 2 

where Ai is the automated count for time i (15min in this case), and Gi is the manual count for time 

i. 

5.6.3 Results 

Generating ground truth disaggregated-count data for validation can be time-consuming and 

difficult in high pedestrian flow conditions and when pedestrians are found in groups. For this 

reason, disaggregated ground-truth data was only generated for the first site (Saint-Catherine). For 

the second site, disaggregated pedestrian counts were only obtained for 15-min intervals. On the 

other hand, for bicycle facilities, all the validations have been done at both levels, disaggregated 

and aggregate.  

5.6.3.1 Cyclists Counting Evaluation 

This section presents the results of the validation of the proposed system for counting cyclists at 

the four sites described previously. For each site, directional counts and errors are presented at the 

aggregate and disaggregate level. For all sites, except site 2 (Maisonneuve-East), the count data 

coming from the inductive loop detectors is also presented to compare with our developed 

technology and ground truth. The counting time period at each site was selected to cover both off-

peak and peak hours. Table 5-3 shows some key statistics of each site: duration of data collection, 

total count by each technology, detection, and direction count errors (for disaggregated and 

aggregated levels).  
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Table 5-3. Statistic on data collection, total counts and error at disaggregated level 

Measures and errors 

Site 1: 

Maisonneuve 

(West) 

Site 2: 

Maisonneuve 

(East) 

Site 3: Parc 
Site 4: 

University 

Total Duration 05:30:36 hrs 03:43:40 hrs 04:22:23 hrs 04:01:02 hrs 

Total ground truth counts 1913 2688 1216 1326 

Sensor Total Counts 1912 2683 1215 1326 

Sensor Direction Error (counts) 8 14 3 6 

Sensor Over Counts 7 3 1 1 

Detection Error (%) 0.05 0.19 0.08 0.00 

Direction Error (%) 0.42 0.52 0.25 0.45 

Lidar vs ground 

truth  AAPD (%) 

Direction 1-2 0.6 0.4 0.1 0.1 

Direction 2-1 0.9 0.4 2.0 1.5 

Loop vs ground 

truth AAPD (%) 

Direction 1-2 4.9 - 3.4 2.5 

Direction 2-1 6.2 - 4.3 6.5 

Total Parallel bikes 97 200 120 78 

Total Missed Bikes 4 4 3 0 

Direction Error 1 7 1 2 

From the results (reported in Table 3), the following points can be highlighted: 

• At the disaggregate level, when comparing the ground truth with the sensor counts, the 

detection error ranges from 0.0% to 0.19% at the four sites. The direction error is also very 

small across sites, ranging from 0.25 to 0.52%.  

• At the aggregate (15min) level, the AAPD for Lidar vs. ground truth ranges from 0.1 to 2% 

across sites. Regarding the comparison between loop detectors and ground truth, the AAPD 

ranges between 4.3% and 6.5%; the magnitudes of these errors is significantly larger than the 

errors obtained with the developed system.  

• Additionally, a test was done in situations with the potential for occlusion; resulting from bikes 

traveling in parallel in the detection area. The total number of cyclists that passed the sensor 

field of view in parallel was recorded on video and compared with the developed system to 

determine the performance of the system in both counting and direction detection. The 

recorded data showed a total of 495 cyclists biking in groups of at least two cyclists (in the 

detection area of the sensor). Among them, 11 were missed, corresponding to a 2.2% error. 



 

113 

 

Additionally, 11 cyclists had an incorrect detected direction, corresponding to a 2.2% error. 

High bicycle flow conditions typically imply that multiple cyclists will pass the sensor at the 

same time and in parallel. This situation is a challenge for all counting technologies that are 

side-mounted. This evaluation of the system performance demonstrated that the proposed 

system addresses this high-flow case with high accuracy. 

Aggregated counts were also analyzed for accuracy. Figure 5-7 shows the distributions of the 

counts over time using 15-min intervals and the three outcomes: ground truth, Lidar and inductive 

loop sensors in each direction. The count data tracks the ground-truth daily traffic pattern, showing 

high accuracy in directional counting, even during peak hours (high cyclist flows). The plots show 

higher accuracy of count data coming from Lidar technology in comparison with inductive loop 

detector data. 

 

Maisonneuve West (Direction 12) 

 

Maisonneuve West (Direction 21) 

Maisonneuve East (Direction 12) 

 

Maisonneuve East (Direction 21) 
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Parc (Direction 12) 

 

 Parc (Direction 21) 

 

University (Direction 12) 

 

University (Direction 21) 

Figure 5-7. Bicycle 15-min interval counts (ground truth, Lidar and loop detector) 

5.6.3.2 Pedestrian Counting Evaluation  

The development and testing of the pedestrian counting algorithm were done after the completion 

of the bicycle counting system. The pedestrian system was tested at two pedestrian sidewalk 

locations, described previously: Saint-Catherine and McGill College. Data was collected during 

both morning and afternoon flow peaks. As in the bicycle test, video data was recorded to generate 

ground-truth counts. An infrared sensor was also installed at both sites following the 

manufacturers’ instructions and the recommended settings to compare the developed system with 

a commercially-available infrared system.  

In a similar manner, counts were obtained at the disaggregated and aggregate (15-minute) levels. 

The results for each site are summarized in Table 5-4:  
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Table 5-4. 15-minute aggregate pedestrian test results 

Measure Saint Catherine McGill College 

Total Duration 04:15:00 06:15:00 

Total counts 3996 3623 

Sensor Direction Error (counts) 139 95 

Sensor Over Counts 15 3 

Sensor Total Counts 124 92 

Detection Error (%) -2.72 -2.45 

Direction Error (%) 3.47 2.54 

Lidar vs ground truth 

AAPD (%) 

Direction 1-2 2.12 2.63 

Direction 2-1 2.88 1.41 

Infrared vs ground 

truth  AAPD (%) 

Direction 1-2 - 65.9 

Direction 2-1 - 21.1 

From this table, a few observations can be made: 

E) In the disaggregated data error analysis, the detection errors are less than 3%. Direction errors 

are slightly larger but still low (3.5% and 2.5% respectively at the two sites). Note that the 

magnitude of these errors are lower than those reported in the literature for similar 

environments in Montreal Miranda-Moreno and Lahti 2013.  

F) The aggregated data (15-minute intervals) has a low error as well; the AAPD does not exceed 

3% at the two sites when comparing Lidar with the ground truth counts. The errors are much 

lower than the infrared sensor, which reports large errors (21% and 65% for site 2). 

G) Undercounting is more frequent than the overcounting. This is due to an occlusion in dense 

groups. As with other technologies that are side-mounted, the proposed Lidar system 

undercounts in situations where pedestrians are densely packed, causing occlusion in the data 

received. The direction detection error is attributed to undercounting; incorrect direction 

detection rarely occurs due to the sensor falsely predicting the direction of the object. The 

overcounting is attributed to a number of possible situations: a pedestrian raises a hand 

simulating a second pedestrian, a pedestrian carrying a back-pack, the sensor not being set up 

at optimal height, and finally, a pedestrian making drastic movements with-respect-to the 

sensor beam. 

At the Saint Catherine site, the infrared sensor showed more than a 200% overcount because of 

the existing store glass window. For this reason, the infrared data was not used for comparison 
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purposes. The is one of the challenges of using infrared-based counting systems. The infrared 

sensor, a commercial product, performs unpredictably, and with poor results. As can be seen by 

the red bar in the plots of Figure 5-8, the infrared sensor is known to undercount and overcount 

without any deterministic pattern.  

 

Saint Catherine (Direction 12) 

 

Saint Catherine (Direction 21) 

 

McGill College (Direction 12) 

 

McGill College (Direction 21) 

Figure 5-8. The 15-min interval counts (ground truth, Lidar and loop detector)  

Figure 5-8 also demonstrates the ability of the Lidar to closely follow the ground-truth pedestrian 

patterns over time. Figure 5-9 shows the linear correlation between the manual count and the 

automatic count using the proposed system. Highly correlated results (more than a 0.99 R2 value) 

are evidence that the proposed system can provide reliable and accurate counts, and can be used 

in sidewalks with higher volume where the counts are extrapolated using correction factors.  
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Figure 5-9. The correlation plots between ground truth and Lidar count data (15min intervals) 

 CONCLUSIONS AND FUTURE WORK 

This paper outlines the development and evaluation of an original automated counting system for 

bicycle and pedestrian facilities based on Lidar technology. The system components, hardware, 

and software are described along with the testing protocol. Six different sites were selected for 

testing the accuracy of the proposed counting system and its functionality in different challenging 

situations including high volume traffic, occlusion, stop-and-go pedestrian flow conditions, and 

wide sidewalks. Video data was collected to obtain manual counts, defined as the “ground truth”. 

Sites and counting periods were selected to observe a large variability in the magnitude of counts. 

Two level-of-accuracy validations were considered using different data aggregation: i) 

disaggregated level, in which each captured object was visually matched with the output of the 

sensor (one-for-one). This validation shows all overcounting, undercounting and direction 

detection errors, and ii) aggregated level, in which LIDAR counts are aggregated in periods of 15-

minute intervals and compared with different technologies and ground truth. 

The initial findings show the potential of this counting system with promising results for different 

traffic conditions (low to relatively high volumes) in peak and off-peak hours on both pedestrian 

and bicycle facilities. The results, for different traffic conditions and network topology, show that 

in 80% of 15-min automated counting samples the error was between 0-5% and 0-2% for 

pedestrian and cyclists counting respectively. 

For the bicycle facility validation, disaggregate errors of less than 0.5% were observed across 

testing sites (both detection and direction errors). For the aggregate counts (15-min intervals), an 

average directional count error of around 0.7% was obtained when comparing the proposed system 
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with ground truth counts. The aggregate-count error from loop detectors vs ground truth was of 

4.7% on average. The results clearly show the performance of the proposed system in comparison 

with current systems. A low, 2.2% count error, in cases that a group of two or three cyclists are 

traveling in parallel, along with the path, in front of the sensor, address the concern of occlusion 

for side-mounted counting systems.  

For the pedestrian facility validation, disaggregate detection and direction errors were below 3.5% 

at all testing sites. When using aggregate counts, the errors of the proposed Lidar system with 

respect to the ground truth were of the same order of magnitude (less than 3%). On the other hand, 

infrared sensor errors were many time higher than those obtained from the proposed system; 

aggregate errors of more than 60% at one of the sites. The performance of the Lidar counter is high 

for pedestrian monitoring. 

H) It is important to highlight that, in addition to improved accuracy over other pedestrian and 

cyclist monitoring technologies, the proposed system presents other advantages:  

I) Installation: in the case of bicycle facilities, installation does not require traffic flow disruption 

due to pavement cutting. The traditional loop detector system required pavement perforation, 

increasing installation and maintenance cost.  

J) Flexible Use: the proposed system can be installed as a mobile or fixed sensor for either 

pedestrian and bicycle counting. Therefore, the proposed system is an alternative to pneumatic 

tubes (for mobile bicycle counting), inductive loops (for permanent bicycle counting), or 

infrared sensors for pedestrian counting.  

K) The setting of the Counting Area: the proposed system allows users to set the coverage 

counting area, which addresses a key challenge associated with infrared counters that require 

the presence of a wall or blocking barrier on one side of study space. This advantage enables 

its use on open space facilities, such as bike paths and trails.  

L) Occlusion: the proposed system handles the issue of occlusion associated with all side-

mounted counting systems. The results show that the system is accurate on high-flow 

pedestrian and bicycle facilities.  

M) High Temperatures: Lidar technology is not sensitive to temperature, whereas infrared-based 

sensor accuracy is significantly affected by hot-sunny conditions. 
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Although the proposed system has a strong performance for counting pedestrians and cyclists at 

different facility types, some limitations should be highlighted. The principal limitation of the 

proposed Lidar sensor, with respect to other sensors, is the high energy consumption. Infrared or 

loop detector sensors can function for several years on a single set of batteries, while the Lidar 

system will consume the same amount of energy in a few days. The power consumption limits the 

device to be a short-term counting system in the absence of external power. In order to operate as 

a permanent counting system, our proposed system could be integrated with a low-power passive 

infrared that would trigger the Lidar sensors once movement is detected. Another solution would 

be to provide external power by integrating a solar panel into the system or by hardwiring the 

system to the city electric network. Additionally, the performance of the proposed system under 

bad weather conditions requires further testing. The Lidar system can also underperform in very 

high-volumes or in traffic conditions with a high-frequency of pedestrians walking in groups. The 

error rate associated with occlusion under these conditions could increase significantly.   
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Link Between Chapter 5 and Chapter 6 

Chapter 5 presents a new technology for counting pedestrians and cyclists using single beam Lidar 

technology. As discussed in the previous chapter, the sensor should be mounted from the side of 

the pedestrian/cyclist facility and, to get the best performance, the installation height should be 

around 1.5 m from the ground. As all technologies installed from the side, the performance of the 

system can drop because of the occlusion problem when a group of people is walking 

tightly/closely together. Despite the use of a narrow laser beam in our solution, which can detect 

any small gap between the objects, the performance of the system in wide sidewalks may be 

affected. 

There is also a need for classifying the objects in counts in mixed mode traffic network. To address 

these issues, Chapter 6 proposes a new counting system based on 2D Lidar technology which is 

mounted from the top. Using this proposed solution, the sensor counts the objects and detect their 

direction in real-time, which can be used in congested and high volume pedestrian/cyclist facilities. 

Our proposed solution also has the potential to detect the class of the objects based on their shape.  
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 ABSTRACT 

Automated monitoring of pedestrians on non-motorized facilities with high pedestrian flows is 

extremely challenging. Several automated sensor solutions are commercially available that have 

been evaluated in the literature including traditional point-based sensors, such as inductive loop 

detectors for bicycles and infrared sensors for pedestrians. More recently, image-based systems 

based on video or thermal video cameras have been developed. Despite the various options, some 

key limitations of existing solutions exist, in particular, the lack of low-cost solutions using 

embedded systems capable of performing in real-time under high volume (flow) conditions. This 

work aims at developing and evaluating the performance of a novel, real-time counting system, 

developed for environments with extremely high pedestrian flows. The proposed system is based 

on a Laser Technology Light Detection and Ranging (Lidar). The system uses as an input the 

distance measurements from a two-dimensional Lidar sensor with a set of distinct laser channels 

and an angular resolution of three degrees between each channel. The developed system processes 

those measurements using a clustering algorithm to detect, count, and identify the direction of 

travel of each pedestrian. The system’s performance is evaluated by comparing its directional 

counting results with manual counts (ground truth) using disaggregate and aggregate (15-minutes 

intervals) counts at two different monitoring locations. The results demonstrate that the system 
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accurately counts more than 97% of the pedestrians at the disaggregate level, with a false direction 

detection rate of 1.1%. The over-count error is 0.7% and the under-count errors are 1.3% and 2.7% 

for the two selected sites. At the aggregate level (15-minutes intervals), the average absolute 

percentage deviations (AAPDs) are 1.6% and 4.3% while the weighted AAPDs are 1.5% and 3.5% 

for the first and second sites, respectively. The accuracy of the proposed system is higher than the 

traditional technologies used for the same purpose. 

 INTRODUCTION 

Active transportation, such as walking and cycling, has gained momentum in recent years in many 

North American cities. For instance, cycling ridership and network size have risen sharply in the 

last decade (Pucher et al. 2011, Ussery et al. 2018). The increase of bicycle and pedestrian activity 

has created more complex traffic conditions on the traditional road network and on non-motorized 

transportation facilities. To evaluate the needs of active modes, such as new infrastructure, and the 

impacts of policies and investments, cities have been looking for efficient and innovative ways to 

collect data for non-motorized traffic (Pucher and Buehler 2017). Similar to vehicular traffic, non-

motorized counting can be collected using permanent and short-term monitoring systems. The few 

technologies have emerged for short-term, and long-term counting of active users have many well-

documented limitations (FHWA 2016, NCHRP). Firstly, traditional bicycle counting systems, 

such as loop detectors, are associated with high installation and maintenance costs and require 

pavement cutting which can disrupt traffic. Secondly, traditional pedestrian counters require the 

presence of well-defined detection areas; in the case of pedestrian infrared counters, a blocking 

barrier on one side of the study space is required. The detection area of infrared sensors is difficult 

to define making it impractical for monitoring in open space facilities. Thirdly, the extreme 

temperature can impact the accuracy of traditional counting systems. Lastly, occlusion, which 

occurs when people walk or bike in groups, significantly reduces the accuracy of traditional point-

based monitoring systems. The under-counting error associated with occlusion worsens as density 

increases, making traditional systems impractical for high-flow facilities.  

More recently, computer vision solutions have emerged that use (visual spectrum) video sensors 

(Zangenehpour et al. 2015). These systems are typically mounted above a facility and are less 

prone to occlusion. However, they have some significant limitations such as poor performance 
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under adverse weather conditions (rain or snow precipitation), low visibility conditions, and 

environments with shadows or glare. To address this issue, thermal video camera solutions have 

also emerged. However, they are very expensive (Fu et al. 2017). Another issue with image-based 

sensors is the data transfer and processing cost; video data needs to be streamed and processed on 

powerful computing servers. Image-based embedded systems for processing video data locally is 

expensive.  

In recent years, Lidar (Light Detection and Ranging) technologies have been improved and show 

great potential in many transportation monitoring applications, including traffic monitoring of non-

motorized facilities. Lidar devices emit laser beams at an object and then compute the distance to 

the object using the energy of the reflected beams received by the sensor. There are different 

implementations of Lidar systems based on their number of laser channels and their coverage area. 

For example, a one-dimensional laser scanner has one channel that covers a straight line. A two-

dimensional (2D) Lidar includes an array of beams where each beam covers a straight line, and a 

set of beams covers a two-dimensional plane in space. Three-dimensional (3D) Lidar systems have 

two different types of solid and rotating Lidar sensors, which can scan their surrounding 

environment in 3D space (Tarko et al. 2018, De Silva et al. 2018, Pacala and Eldada 2017). 

This paper investigates the performance of an automatic laser-based pedestrian counting system. 

The system addresses several limitations with existing counting technologies; the proposed real-

time embedded system is not impacted by occlusion when monitoring facilities with very high 

volumes. More specifically, this paper proposes and tests a two-dimensional Lidar pedestrian 

counting system. This system serves as an upgrade from the previously implemented one-

dimensional Lidar-based sensor. The proposed 2D system has several advantages over the one-

dimensional system, including an extended coverage area; the ability to make multiple, 

simultaneous detections; enhanced accuracy in detection, especially when monitoring dense 

groups of objects. 

 LITERATURE REVIEW 

The increasing demand for automatic pedestrian and cyclist counting for non-motorized facilities 

has led to developments and advancements in available technologies including point- and image-

based systems. Some examples include passive infrared sensors for pedestrians, inductive loops 
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and pneumatic tubes for bicycles, and more recently radar, 3D stereo camera, and video-based 

sensors. Recently, the Federal Highway Administration (FHWA) released a new edition of their 

Traffic Monitoring Guidebook, which provides detailed information about motorized and non-

motorized traffic monitoring technologies and programs (Federal Highway Administration, 2016). 

Furthermore, the National Cooperative Highway Research Program (NCHRP) conducted a project 

to test several counting technologies. The study investigated the limitations and strengths of the 

alternative technologies and reported the accuracy of those that were tested. As one of the main 

limitations of traditional technologies, the report highlighted the poor performance of existing 

embedded pedestrian-counting systems under occlusion and high volumes (Board et al. 2017, Ryus 

et al. 2014). Although emerging technologies such as a stereo or video-based solutions have 

stronger performance, their (hardware and processing) costs make them less attractive. Embedded 

real-time video-based systems are also in the development stage.     

Passive and active infrared sensors are the most popular types of sensors for pedestrian counting 

in outdoor environments. Passive infrared sensors detect pedestrians based on the changes in the 

heat emissions within their detection area. They are easy to install, have low power consumption, 

and a fast response rate. Nevertheless, their performance degrades in open spaces, under extreme 

temperatures, or in the presence of other sources of heat (e.g., vehicle engines and radiation from 

the sun). They are also incapable of dealing with occlusion on facilities with high pedestrian 

volumes (Greene-Roesel et al. 2008). NCHRP tested three different passive infrared-based sensors 

and reported a total error of 22.5% (measured as the average absolute percentage deviance – 

AADP) (Board et al. 2017). 

Active infrared sensors can count pedestrians and cyclists, but they cannot classify them. An active 

infrared sensor consists of an emitter and a receiver. It should be mounted at the two opposite sides 

of the area under study, which makes it difficult to install at most cycling facilities. NCHRP tested 

an active infrared sensor on a shared pedestrian-cyclist facility, with an average hourly volume of 

327 users, and reported an AADP of 7.3%, (Board et al. 2017, Ryus et al. 2014). 
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Ultrasonic-based detection and counting systems have not been widely used for non-motorized 

counting applications. However, in our previous work (Lesani et al. 2015)1, the authors designed 

a low-cost ultrasonic system for pedestrian counting and compared it to an infrared sensor. The 

system demonstrated promising results in terms of real-time counting with acceptable accuracy. 

However, low-cost ultrasonic sensors have low sampling rates, operate for short distances (range 

measures four meters), and their waves diverge with distance (15-degree angle). This research on 

ultrasonic-based detection has led to further improvements and the development of a single beam 

Lidar sensor2, which is a low-cost system that counts pedestrian volumes with high accuracy. 

Nonetheless, the single beam Lidar sensor has lower performance in environments with high 

pedestrian flows and large groups of people (Lesani et al. 2015). 

Pneumatic tubes and inductive loop counters are the most common cyclists counting sensors. 

There are two types of pneumatic tube sensors: general-purpose counters (GPCs) and bicycle-

specific counters (BSCs). Studies in (Nordback et al. 2011, Hyde-Wright and Krista Nordback 

PHD 2014, Nordback et al. 2016) evaluated a comparison between BSCs produced by the Eco-

Counter and GPCs produced by MetroCount. The results in (Hyde-Wright and Krista Nordback 

PHD 2014) show that GPCs with long tubes show poor performance in cyclists counting, but for 

smaller lengths, GPCs reported a 94% weighted average accuracy. The accuracy of BCS sensors 

is between 94% and 95% for tube lengths between 4 and 27 feet. Nevertheless, the results in 

(Nordback et al. 2016) show that the mean percentage under-counting error (MPE) of BSCs is 

between 20% and 23%, and for GPCs the error is between 10% and 44%. NCHRP have also tested 

three different bicycle-specific tubes and one standard tube. BSCs reported AADPs of 10.8%, 

16.6%, and 69.1%, and standard tubes reported an AADP of 17.1% (Ryus et al. 2014). 

Inductive loops are electromagnetic-based counter systems and consist of a loop of wires. 

Although cycle-tracks and cycle lanes are ideal places for these sensors, factors such as detector 

sensitivity, pattern, and a number of loops have a direct effect on the accuracy of cyclist counting 

and directional speed estimating. A study on the installation of inductive loops has reported an 

                                                

1 Refer to Appendix A for more information. 

2 Discussed in Chapter 5 
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AAPD of 23% in shared facilities, and 7.6% in the separated pathway (Nordback et al. 2011). 

Additionally, NCHRP obtained an AAPD of 7.6% for embedded inductive loops and an AAPD of 

10.5% for loops on the surface (Board et al. 2017, Ryus et al. 2014). 

Recent advancements in computer vision algorithms and computing machines have enabled 

camera-based systems to count and classify pedestrians and cyclist (Li et al. 2012). However, they 

have some limitations including cost and weak performance at night and under extreme weather 

conditions. A recent study has compared a thermal camera with an MPE between -15% and 1%, 

and an infrared sensor with an MPE from -28% to 0% (Leykin and Hammoud 2006). 

The laser-based system known as Lidar works by measuring the distance to the object. In addition 

to the distance data, the reflection value is reported by most of the Lidar sensors. Recent 

advancements in 2D and 3D Lidar sensors have made them useful in a wide range of applications 

in civil engineering. Airborne and terrestrial laser scanning have been used for documenting earth 

surface features or 3D models of buildings in the urban environment (Pu and Vosselman 2009, 

Yan et al. 2015). In transportation engineering, Lidar scanners are used for vehicle speed 

estimation or road infrastructure mobile scanning (Guan et al. 2015) and in autonomous vehicles. 

This paper aims to develop a 2D Lidar-based pedestrian counting system as an alternative to 

conventional counting systems. 

 SYSTEM HARDWARE AND MEASURES DEFINITION 

The proposed system uses a 2D solid-state, 16-channel Lidar sensor from LeddarTech (Leddar 

M16). This sensor measures distances up to 50 meters with an angular resolution of 3 degrees 

between each channel and a sampling rate of 100 Hz. 

Figure 6-1.a and Figure 6-1.b show the prototype and a photo of the hardware. The prototype 

includes the Lidar module that senses the distance from objects, a processing unit equipped with 

different communication modules for data telemetry purposes and a built-in camera for validation 

and ground truth data collection. Figure 6-1.c shows a sample of installation conditions. By adding 

a rotation angle (represented by θ), the system can fully cover a sidewalk. The data is processed in 

real-time using a low-cost 1.2GHz quad-core processor with a 2Gb RAM. The designed system 

can provide different communication protocols such as Ethernet, WiFi/Bluetooth for short-range 
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communication, ZigBee/LoRA for long-range local connection between sensors and a cellular 

GSM network for long-range communication with the server. The power management unit can 

provide power from either a power grid and solar panel for permanent installations or from 

batteries for short-term installations. 

 

a) system prototype 

 

b) designed hardware 
 

c) sample installation 

Figure 6-1. The system prototype, the designed hardware, a sample of installation, and a 

schematic of the processing unit. 

Figure 6-2 shows the sensor configuration and setup. The key parameters used in the sensor 

measurements are defined as follows: 

N) 𝜃: angle of sensor rotation 

O) ℎ: height of sensor installation 

P) 𝛼1: total horizontal field of view (48 degrees) 

Q) 𝛼2: vertical field of view (7.5 degrees) 

R) 𝛼3: horizontal angle of each pixel (48 ÷ 16 = 3 degrees) 

S) 𝛽𝑖: angle between the center and 𝑖 − 𝑡ℎ channels 

T) 𝑑𝑖,𝑡: distance measured by 𝑖 − 𝑡ℎ pixel (channel) at time 𝑡 

U) 𝑑𝑡: vector of 16 measurements at time 𝑡, 𝑑𝑡  = [𝑑1,𝑡, … , 𝑑16,𝑡]
1×16

 

V) 𝐷𝑡: vector of raw data measurements including timestamp and 𝑑𝑡, 𝐷𝑡 = [𝑡, 𝑑𝑡]1×17 

W) 𝑑𝑖
𝑚𝑎𝑥: maximum distance measured by 𝑖 − 𝑡ℎ channel and when there are no moving objects 

in the detection area. (𝑑𝑚𝑎𝑥 = [𝑑1
𝑚𝑎𝑥 , … , 𝑑16

𝑚𝑎𝑥]1×16). 



 

130 

 

X) 𝛥𝑑𝑖𝑡: the difference between the current distance, 𝑑𝑖𝑡 , and the maximum distance 𝑑𝑖
𝑚𝑎𝑥, and is 

calculated as: 𝛥𝑑𝑖𝑡 = 𝑑𝑖,𝑡 − 𝑑𝑖−max, and for all pixels: Δ𝑑𝑡 = 𝑑𝑡 − 𝑑𝑚𝑎𝑥. 

Y) 𝐷𝑡𝑚𝑝: a matrix with 16 columns which holds the distance values when an object is in front of 

the sensor. Once there is no object for a predefined time, this matrix is processed and initialized 

to an empty matrix. 

The rest of the parameters represented in this figure will be discussed in the following sections. 

 

Figure 6-2. The definition of the field of view of the Lidar sensor 

When there are no moving pedestrians in the detection zone, the sensor reports the maximum 

distance (to the background), which in some cases may be noisy. When the object passes the 

detection zone, the pixel values drop according to the distances between the sensor and the 

different parts of the object. Therefore, the object detection algorithm starts with the pattern 

analysis of the detection of the differences between the current distances value (𝑑𝑖,𝑡) and maximum 

observed distances (𝑑𝑖
𝑚𝑎𝑥). 
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 PROPOSED METHODOLOGY 

This section presents the developed methodology to process raw Lidar measurements for 

pedestrian detection, segmentation, direction definition, and counting. Figure 6-3 shows the 

flowchart of the methodology used to process raw data and report counts and directions. 

 

Figure 6-3. Flowchart of the methodology 

6.5.1 Initialization 

This step gives the initial raw distance measurements of each channel for the initialization time, 

e.g., 30 seconds, at the beginning of the algorithm (this is referred to as the initialization step). 

Data is then stored in a data array, 𝐷0,30sec. In 30 seconds, this data array will include 3000 

observations each consisting of a vector of 16 measurements: 

𝐷0,30sec = [𝑑0; … 𝑑30𝑠𝑒𝑐]16×3000                           (1) 
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Then the median of each column (pixel) is calculated and the 𝑑𝑚𝑎𝑥  vector (𝑑𝑚𝑎𝑥 =

[𝑑1
𝑚𝑎𝑥 , … , 𝑑16

𝑚𝑎𝑥]1×16) is built for background removal purposes. This array is compared with each 

new distance measurement to detect the objects and remove the background. 

6.5.2 Data Normalization and background removal 

The measured distance to the object depends on the height of the object and the index of the pixel 

measuring it. Therefore, the sensor records different distance values for an object when it is in 

different locations. The distance values of different pixels should be normalized for clustering 

purposes and for reconstructing the shapes of the objects. Figure 6-2 describes the parameters used 

for the normalization process. The user needs to define the central pixel, the pixel number that is 

facing the center of the sidewalk by measuring the minimum distance to the sidewalk. 

First the projection of the distance measured by the 𝑖 − 𝑡ℎ channel, equivalent to the condition if 

the object where covered by the central pixel, is calculated as (2): 

𝑑𝑖,𝑗𝑐𝑒𝑛𝑡𝑒𝑟
= 𝑑𝑖 × cos(𝛽𝑖)                (2) 

𝛽𝑖 = (𝑖 − jcenter) ×
𝐹𝑂𝑉ℎ

𝐼
                (3) 

Where 𝛽𝑖 is the angle between the center and i-th channels, jcenter is the index of the center pixel, 

𝐹𝑂𝑉ℎ  is the horizontal field of view of the sensor (48°in this study), and 𝐼 is the total number of 

pixels (16 in this study). Then the normalized vertical distance (hi) of object detected by 𝑖 − 𝑡ℎ 

pixel is calculated as: 

ℎ𝑖 = 𝑑𝑖,𝑗𝑐𝑒𝑛𝑡𝑒𝑟
× 𝑐𝑜𝑠(𝜃)                             (4) 

Since the angle 𝜃 is independent of pixel ID, a rough estimation of it can give the required accuracy 

in calculating the vertical (normalized) distance between the sensor and object head. 

6.5.3 Background Removal 

The background removal step detects the presence of objects and constructs the object segment by 

comparing the current readings (𝑑𝑡) of the sensor to the reference values. These reference values 

are the median of the measurements obtained in the initialization step. A threshold value, c, (in 

this study, c=0.3m) is defined for distance comparison, and filters out measurement noise. The 
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sensor keeps the measurements of the triggered pixels and sets the output of the other pixels to a 

maximum value (the background or median value for that pixel), as follow: 

Algorithm 1. Background Removal 

1. At time t, define 𝛥𝑑𝑖,𝑡 = |𝑑𝑖,𝑡 − 𝑑𝑖
𝑚𝑎𝑥| 

2. 𝑖𝑓 ∑ (Δ𝑑𝑖,𝑡 > 0.3)16
𝑖=1 > 0: 

 print "Object Detected." 

 where Δ𝑑𝑖,𝑡 is less than 0.3𝑚, set the value of 𝑑𝑖,𝑡 to (1 + 𝑑𝑖
max) and update 𝑑𝑡 

Append 𝑑𝑡 to the matrix, 𝐷𝑡𝑚𝑝 , defined as… 

The first step of the algorithm compares the distance value of each pixel at time 𝑡 with its reference 

value. If at least one pixel shows a difference greater than 0.3 m, then an object is present in that 

frame. In the second step of the above script, for all pixels that have not detected any object (i.e., 

|𝑑𝑖,𝑡 − 𝑑𝑖
𝑚𝑎𝑥| < 0.3𝑚), their distance values are replaced by a predefined value (one meter more 

than the 𝑖 − 𝑡ℎ maximum distance). Then, the frame data is added to a new temporary variable 

called 𝐷𝑡𝑚𝑝 for further processing. 

6.5.4 Relax Time Concept 

Relax Time (RT) is introduced for real-time implementation. After that the Background Removal 

algorithm detects the presence of an object, raw data is added to 𝐷𝑡𝑚𝑝, the temporary array. Once 

there are no more objects in the coverage area, a timer starts to count while the normalized distance 

data is being added to 𝐷𝑡𝑚𝑝  until the timer reaches to a maximum RT value. Therefore, 𝐷𝑡𝑚𝑝 has 

the information of at least one object. In this paper, a time interval of 1000 millisecond (based on 

experiments and by analysing at a set of detected samples) is considered. RT helps to avoid 

dividing an object into two different 𝐷𝑡𝑚𝑝 frames, because of noisy or missing information. 

Figure 6-4 illustrates two examples including photos of the site, raw distance data, and the results 

of the Background Removal. The raw distance values are multiplied by -1, for visualization 

purposes, which also transforms the local minimum points associated with the minimum distance 

to the head of the pedestrian to the local maximum values and changes the objective to a peak 

detection problem. The X-axis in the plots represents the pixel ID, the Y-axis is the epoch time in 

milliseconds, and the Z-axis shows the distance values (multiplied by -1). 
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a : photo c : raw distance 

 

e : background removed 

 

b : photo 

 

d : raw distance 

 

f : background removed 

Figure 6-4. Site photos (a and b), the 3D plot of the raw distance data (c and d), and 

distance data with removed background (e and f) 

In these two examples (Figure 6-4), the middle plots, (c and d), show the raw data (𝐷𝑡𝑚𝑝) from the 

first detection of the object to the end of the Relax Time. Note that the wall on the right-side of the 

sidewalk has caused a sharp decrease in distance. Plots e and f show the same data after removing 

the background. The right-side plot in the first sample indicates two separate pedestrians. 

However, for the second example, the two pedestrians in the back are in close proximity to each 

other, thus their distance values are mixed and form one cluster. Circumstances in which 

pedestrians are in close proximity are challenging cases in counting applications. 

6.5.5 Count Routine: Low-Resolution Clustering 

A proposed sub-routine, called the Low-Resolution Clustering (LRC) routine, helps to cluster the 

𝐷𝑡𝑚𝑝 into sub-sets with a single pedestrian or group of pedestrians walking closely. The travel 

direction detection is the main reason for separating “single cluster” from “grouped cluster.” The 

details of the steps are provided below: 
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Algorithm 2. LRC routine 

1: Find local maximum points of the distance columns of −𝐃𝐭𝐦𝐩 as the peak of clusters 

(peak_local_max routine in Python), 

2: Put cluster points at the local maximum points from previous points (ndimage.label in 

Python), 

3: Find 𝐥𝐚𝐛𝐞𝐥𝐬 (a matrix of 𝐧 × 𝟏𝟔 label elements) of the different pedestrian clusters by 

applying the watershed algorithm to the distance columns of 𝐃𝐭𝐦𝐩 (watershed routine in 

Python).  

This routine starts with a peak detection algorithm, where the peak_local_max routine in Python, 

applied to the distance columns of -D_tmp, finds the candidate pixels representing the head of the 

pedestrian. Then the ndimage.label routine, also in Python, puts cluster labels at detected peaks. 

After that, the Watershed clustering algorithm is used to segment groups of pedestrians into 

different sub-clusters. The watershed transformation is a simplified image segmentation technique 

(Meyer 1994). Any grayscale image can be viewed as a topographic surface where high intensity 

denotes peaks and hills while low intensity denotes valleys. The idea or behind the watershed 

transformation is as follows. You start filling every isolated valley (local minima) with different 

colored liquid (labels). As the liquid rises, depending on the peaks (gradients) nearby, liquid from 

different valleys, with different colors, will start to merge. To avoid that, you build barriers in the 

locations where liquid merges. You continue the work of filling liquid and building barriers until 

all the peaks are under water. Then the barriers you created gives you the segmentation result.  

The distance matrix is considered as a mono-color image and then Watershed segmentation is 

applied to it. The output, the labels matrix, is a matrix with the same size where the cells with zero 

values represent the background, and others show the clusters ID (pedestrian ID). 

6.5.6 Count Routine: Width-Length Criteria  

Width-Length Criteria determines whether the cluster corresponds to one pedestrian or to a group 

of people based on comparing lengths (number of time frames that an object is present at the 

coverage area) and width (number of pixels that object covers) of each cluster with predefined 

threshold values of 50 frame numbers and 5 pixels respectively. Then if at least one dimension of 

the cluster is larger than its threshold value, it is considered as the “grouped object.” Subsequently, 

those “single object” clusters are given to a direction detection algorithm, and those “grouped 
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object” cluster are processed in another sub-routine called High-Resolution Clustering (HRC) for 

further analysis. 

6.5.7 Count Routine: High-Resolution Clustering (HRC) 

The peak detection algorithm implemented in the LRC routine uses a square-search window (same 

size in the pixel and the time axis). However, because of the low pixel resolution and high sampling 

rate of the sensor, the square search window can result in either detecting many noisy peaks for 

one object (when using a small size search window) or combining two objects if they are close to 

each other (when using a large size search window). The proposed High-Resolution Clustering 

(HRC) routine has the same steps as the LRC routine, but it uses a custom size for the search 

window. Since the HRC routine has more computing complexity, it is reasonable to perform the 

LRC first and then apply HRC to “grouped clusters” instead of the all detected objects.  

The window size is defined based on monitoring some samples of the detected single and grouped 

clusters and plotting their distance patterns (based on looking at data and experimental parameter 

setting). The selected length of the search window (in the time axis) is equal to 25 rows. The size 

of this window is such that the two pedestrians walking back to back are not closer than 25 samples 

(with a 10 milliseconds sample-rate of the sensor, the gap period between two pedestrians will be 

equal to 0.25 second). The selected width (number of pixels) of the search window is based on at 

least one-pixel gap between the head of two pedestrians. This value is the minimum required gap 

for identifying the two separate objects. Therefore, the search window will be a rectangle with a 

size of 25×3. The maximum_filter toolbox (in scipy.ndimage.filters python library) provides a fast 

peak detection algorithm based on a customized window size. The summary of HRC routine is as 

follow: 

Algorithm 3. HRC Routine 

1: Define 𝒁𝒊 as the distance columns of 𝑫𝒕𝒎𝒑, where 𝒍𝒂𝒃𝒆𝒍𝒔 is equal to the 𝒊 − 𝒕𝒉 candidate 

cluster 

2: Find the local maximum mask of 𝒁𝒊 as the peak of the 𝒊 − 𝒕𝒉 cluster with a search window 

of 𝟐𝟓 × 𝟑 by using maximum_filter in Python, 

3: Apply morphological operation including the binary_erosion routine in Python and the 

logical AND to find the exact position of the eligible local maximum values, 
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4: Put cluster points at the eligible local maximum points from step 3 by using ndimage.label 

in Python and make the matker_HRC matrix, 

5: Find 𝒍𝒂𝒃𝒆𝒍𝒔 of the different pedestrian cluster by applying the watershed algorithm to (−𝒁𝒊 ) 

which is done by the watershed routine in Python. 

First, the distance data of the 𝑖 − 𝑡ℎ candidate cluster (𝑍𝑖) is extracted from the clusters outputted 

by Width-Length Criteria. Then the peak_local_max routine in Python finds a local maximum 

mask with a search window of 25 × 3. After that, a set of morphological operations is applied to 

the obtained maximum mask to get the exact position of the maximum pixels representing the head 

of the pedestrians. The next (fourth) step is marking each peak and creating a labelled matrix called 

𝑚𝑎𝑟𝑘𝑒𝑟𝑠_𝐻𝑅𝐶. Then the Watershed algorithm does the second clustering by having the initial 

clustered data frame and the location of the peaks. 

Figure 6-5 shows the outputs of the LRC and HRC routines for a given sample in detail. The first 

row shows the four different clusters formed by the LRC routine: two single pedestrian clusters (1 

and 4) and two clusters with grouped pedestrians (2 and 3). Then the clusters with multiple 

pedestrians are given to the HRC routine. Plots in the 2nd and in the 4th rows show the outputs of 

the local maximum, binary erosion and peak detection algorithms respectively. Plots in the 3rd 

and 5th rows illustrate the sub-clusters formed by the HRC routine. 

6.5.8 Direction Detection 

The sensor installation, with an angle of 𝜃 (around 30°), creates specific distance patterns for 

pedestrians moving in different directions. Figure 6-6 presents two examples of distance patterns 

over space and time. When the object is moving from the left to the right (Figure 6-6.a), the 

distance values show the maximum value during 𝑡1 (ground). When the head of the pedestrian 

arrives at the detection zone of the sensor at 𝑡2, the distance value drops sharply to a minimum 

value. Once the object moves forward, the distance increases smoothly until the timestamp 𝑡7, 

when the pedestrian leaves the detection zone. For the right to left direction, Figure 6-6.b is an 

example of an inverted pattern. Figure 6-6.c and Figure 6-6.d show real 3D examples of the 

distance patterns of two objects in opposite directions over time. 
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Site Snapshot 

 

1st LRC single cluster 

 

2nd LRC grouped 

cluster 

 

3rd LRC grouped 

cluster 

 

4th LRC single cluster 

 

2nd LRC cluster – maximum filter 

 

2nd LRC cluster – morphological erosion 

 

2nd LRC cluster – peaks 

 

HRC output of 2nd LRC cluster 

 

1st HRC sub-cluster of 2nd LRC cluster 

 

2nd HRC sub-cluster of 2nd LRC 

cluster 

 

3rd LRC cluster – maximum 

filter 

 

3rd LRC cluster – 

morphological erosion 

 

3rd LRC cluster – peaks 

 

HRC output of 3rd LRC cluster 

 

1st HRC sub-cluster of 3rd 

LRC cluster 

 

2nd HRC sub-cluster of 3rd 

LRC cluster 

 

3rd HRC sub-cluster of 3rd 

LRC cluster 

 

4th HRC sub-cluster of 3rd LRC 

cluster 

Figure 6-5. The detailed output of the LRC and HRC routines (8 pedestrians) 
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(a) Left to Right 

 

(b) Right to Left 

 

(c) sensor data (L to R) 
 

(d) sensor data (R to L) 

Figure 6-6. Distance patterns for two different directions 

Based on the described patterns, three different measures are used to identify the direction of the 

object: 

1. 𝑐𝑜𝑢𝑛𝑡𝑝 and 𝑐𝑜𝑢𝑛𝑡𝑛 - the number of positive and negative slopes at each column (pixel) , 

2. 𝑎𝑣𝑒𝑝 and 𝑎𝑣𝑒𝑛 - the average of the positive and the negative slopes, 

3. 𝑖𝑛𝑑𝑒𝑥_𝑝𝑒𝑎𝑘 and 𝑐𝑒𝑛𝑡𝑒𝑟 - the location of the detected cluster peak in comparison to the 

center of the cluster. Note that in the provided sample, for the left to right, 𝑖𝑛𝑑𝑒𝑥_𝑝𝑒𝑎𝑘 is 

equal to 2 and 𝑐𝑒𝑛𝑡𝑒𝑟 is equal to 4. 

For the “single object” clusters, comparing the positions of the center and the peak in a specific 

pixel that peak has been detected at, can accurately identify the direction: 

• 𝑖𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 < 𝑖𝑛𝑑𝑒𝑥_𝑝𝑒𝑎𝑘: 

• 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑅 = 𝐿𝑒𝑓𝑡 𝑡𝑜 𝑅𝑖𝑔ℎ𝑡 

• 𝑒𝑙𝑖𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 > 𝑖𝑛𝑑𝑒𝑥_𝑝𝑒𝑎𝑘: 
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• 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝐿 =  𝑅𝑖𝑔ℎ𝑡 𝑡𝑜 𝑙𝑒𝑓𝑡 

For “grouped object” clusters and in some cases people who are walking closely in a group, the 

shape of the detected cluster by the HRC routine might be distorted. Therefore, the following steps 

have been used to identify the direction of each sub-cluster: 

• 𝑖𝑓 𝑐𝑜𝑢𝑛𝑡𝑝 > 𝑐𝑜𝑢𝑛𝑡𝑛: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑅;  𝑒𝑙𝑠𝑒: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝐿 

• 𝑖𝑓 𝑎𝑣𝑒𝑝 < 𝑎𝑣𝑒𝑛: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑅; 𝑒𝑙𝑠𝑒: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝐿 

• 𝑖𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 < 𝑖𝑛𝑑𝑒𝑥𝑝𝑒𝑎𝑘 : 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝑅; 𝑒𝑙𝑠𝑒: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝐿 

The column which the cluster peak exists (𝑖𝑛𝑑𝑒𝑥_𝑝𝑒𝑎𝑘) and left and right columns of it is used to 

estimate the direction. For each of these three columns, three different direction criteria are used. 

Therefore, there are nine different directions for each cluster, and the most repeated direction is 

assigned as the final cluster direction.  

 SYSTEM PERFORMANCE EVALUATION 

This section discusses the performance of the system. The sensor was installed at two different 

sidewalks in Montreal (near McGill University campus):  I) sidewalk of the Robert-Bourassa 

Boulevard (between Sherbrooke Street and Milton street); II) sidewalk of Milton Street (between 

University street and Aylmer street). For the second location, the sensor was installed close to a 

controlled intersection with traffic lights at the entrance of McGill University. Therefore, at the 

beginning of the green phase, a high volume of pedestrians passes through the coverage area and 

makes it a complicated condition for counting multiple pedestrians. Table 6-1 summarizes the 

information about the facilities and the overall outcomes of the developed system.  The duration 

of data collection was 4 hours and 21 minutes for the first site and 4 hours and 1 minute for the 

second site. Both sites had a high volume of pedestrians at the periods of installation. 

For the evaluation of the proposed system, aggregate and disaggregate error measures have been 

calculated. The aggregate error compares the total number of pedestrians counted by the sensor 

with the observed (ground truth) pedestrians in the video. In the aggregate error, the over-counting 

and the under-counting errors can cancel out. The disaggregate error evaluates the detection of 

pedestrians individually. Based on these two concepts several error measurements can be derived 

from the manual and automatic counts.  
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Accuracy or the True Positive Rate (TPR) is calculated by dividing the total number of correct 

counts by the total manual counts. Precision is the ratio of the total correct counts to the total sensor 

counts. Under-counting and over-counting errors are the ratios of a number of falsely rejected 

(negative) counts and falsely accepted (positive) counts to total manual counts, respectively. 

Finally, direction error is the ratio of total false direction detection to total manual counts. 

Testing results for the 2 locations are reported in Table 1. In the first site, the manual count is equal 

to 1,585. The developed sensor reported 1,553 pedestrians, with 1,543 being correctly counted, 10 

(0.64%) being over-counted, and 42 (2.6%) being under-counted. It incorrectly reported the 

direction of 17 pedestrians (1.07%). Similar results were obtained in the second location, where 

the manual count was equal to 3578 pedestrians. The second facility was more crowded and 

challenging than the first one. However, the proposed system reported 3,555 pedestrians, with 

3,532 being correctly counted, 23 (0.65%) being over-counted, and 46 (1.29%) being under-

counted. It incorrectly reported the direction of only 19 pedestrians (0.5%).  

The accuracy of the proposed system is 97.4% and 98.7% for the first and the second facility 

respectively. Furthermore, its precision also suggests high performance and has a value of 99.4% 

for the first location and 98.7% for the second location. These two measures illustrate the 

promising results of the proposed system.  

Table 6-1 also assesses the overall performance of the system by considering the over-count, 

under-count, and direction detection errors in 15-minute time intervals and for different directions. 

Three error measures have been calculated including the Average Percentage Deviation (ADP), 

average of the over and under-counting errors, the Average Absolute Percentage Deviation 

(AADP), the average of absolute value of false alarms and rejections, and the Weighted AAPD 

(WAAPD) where the weights are ratios of the pedestrian volume in 15-minute intervals to the total 

value. WAAPD gives importance to the time-intervals with higher pedestrian volume. The 

negative APD values show that the under-counting is the primary source of error. However, some 

over-counting errors diminish the effects of the under-counting. The total AAPD is 4.3% and 1.6% 

for the first and second sidewalks respectively. 
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Table 6-1. Summary of results for both facilities 

Sites: 
Robert-Bourassa 

Boulevard 
Milton 

Start Time 11:45:21 14:22:35 

End Time 16:06:48 18:23:42 

Total Duration (hours) 04:21:27 04:01:07 

Sidewalk Width (meters) 4 3 

Device Mounting Height (meters) 4 4 

Counts 

Manual Counts (Ground Truth) 1585 3578 

Sensor Counts (True Positive+ False Positive) 1553 3555 

Correct Sensor Count (True Positive) 1543 3532 

Sensor Over Count (False Positive) 10 23 

Sensor Under Count (False Negative) 42 46 

Sensor Direction Error 17 19 

Errors Measures 

Accuracy (True Positive Rate) 97.35% 98.71% 

Precision (Positive Predictive Value) 99.36% 99.35% 

Aggregated Error 2.02% 0.64% 

Under Counting Error (False Negative Rate) 2.65% 1.29% 

Over Count Error (False Discovery Rate) 0.64% 0.65% 

Direction Error 1.07% 0.53% 

Detail Direction Error 

Direction L-R1 R-L2 Total L-R R-L Total 

Average Percentage Deviation (APD) 
-

2.5% 

-

5.8% 

-

4.0% 

-

1.7% 

-

1.3% 

-

1.5% 

Average Absolute Percentage Deviation 

(AAPD) 
3.6% 5.8% 4.3% 2.1% 1.3% 1.6% 

Weighted (WAAPD) 3.0% 4.8% 3.5% 1.9% 1.1% 1.5% 

1. L-R: Left to Right 

2. R-L: Right to Left 

Figure 6-7.a and Figure 6-7.b show the match between manual and automatic counting results 

during several time intervals and different directions for both sidewalks. In Figure 6-7.a, there is 

an increase in the error between 14:30:00 and 15:30:00. By reviewing the provided video footages 

of this period, it turned out that rainfall had occurred in that time and most of the pedestrians were 

carrying an umbrella, and for those people that used a shared umbrella, the sensor counted one 
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pedestrian.  In Figure 6-7 (b), for time intervals between 14:30:00 and 15:30:00, the error is slightly 

more than the other intervals. By reviewing video footage, it was evident that there are some 

situations where two large groups of pedestrians are passing in different directions simultaneously. 

However, there were several situations where pedestrians were walking opposite each other 

simultaneously, and the sensor was able to detect their direction correctly and simultaneously. 

 

(a) Sidewalk of the Robert-Bourassa Boulevard 

 

(b) Sidewalk of the Milton Street 

Figure 6-7. Manual and Sensor Counts in 15-minutes Time Intervals 

 CONCLUSION AND FUTURE WORK 

This work reports the development and testing of a Lidar-based real-time pedestrian counting 

system. The system is based on a sixteen-laser channel sensor measuring the distance to objects 

every 20 milliseconds. First, the background-removal routine filters out the distances with respect 

to the background and gives the distances to the foreground objects. Then, two proposed clustering 
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routines named LRC and HRC are implemented providing single and group clusters, and counts. 

Finally, the direction identification algorithm helps determine the direction of travel for each 

individual pedestrian. Among other advantages, the proposed directional pedestrian counting 

system operates in real time and different weather conditions. Algorithms require minimum 

calibration and no training. The system can also handle occlusion and high volume conditions. 

This highly accurate pedestrian monitoring system would be useful in a variety of transportation 

applications such as network planning and management, safety analysis, traffic light optimization, 

pedestrian warning system (smart pedestrian signs), etc. 

As part of this work, the performance of the system is evaluated at two different counting locations 

(sidewalks) by comparing sensor counts and manual counts from video data at aggregate and 

disaggregate (15-min interval) levels. These sidewalks are close to McGill University and have 

high pedestrian flows, with people traveling in dense groups. 

Among other results, the disaggregate accuracy of the system was 97.4% and 98.7% for the first 

and second sidewalks respectively.  Over-counting errors for both sites were 0.7%, and under-

counting errors were 2.7% and 1.3%, respectively. Additionally, considering the direction 

detection error along with under-counting and over-counting, results show an APD of -4% and -

1.5%, and an AAPD of 4.3% and 1.6% for the first and second counting locations. 

The validation results of the system show the first promising application of 2D Lidar technology 

for monitoring pedestrian facilities. Its accuracy in real-time monitoring is high compared to other 

solutions available on the market, such as camera-based systems, which are expensive and very 

sensitive to lighting condition and infrared-based (or side-based) technology which has low 

counting accuracy due to occlusion. 

The developed system can be easily installed and requires a simple calibration process. However, 

it has some limitation, including the coverage area. For covering wider sidewalks, it is necessary 

to increase the height of installation. However, this will cause the horizontal resolution to be 

degraded and, thus, pedestrians that are passing between beams may not be detected. Using a 2D 

Lidar sensor with a higher number of channels can address this limitation.  Pedestrians that carry 

an umbrella and other items that cover multiple individuals results in under-counting. This 
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limitation which has been observed and reported in this paper seems to be one of the challenges 

for all pedestrian counting systems that are installed above a facility. Another limitation is the 

detection of children when they are close to an adult. Their distance pattern will be entirely mixed 

with that of the adult and make it difficult to detect and count them separately. 

In future work, the proposed system will be tested on more pedestrian facilities. The proposed data 

analysis will be applied to bike facilities to count the number of cyclists, and eventually to mixed 

mode applications with classification capability where pedestrian and cyclists have a shared 

facility. Higher 2D resolution Lidar sensors will be also tested in different environments. 
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 Chapter 7: Conclusion and Future Work 

 GENERAL CONCLUSION 

With a significant growth of the cities and the issues related to urban mobility and the environment, 

local governments are constantly looking for solutions to improve the urban mobility of their 

citizens. There are recent initiatives to build smart-city or ITS platforms, which monitor the 

network with an array of sensors, collect and centralize the data on cloud systems, and analyze 

them. ITS is considered to be the main part of smart city initiatives that can help with congestion 

and all the related issues. In this context, there is great attention from governments and 

policymakers into encouraging active (or non-motorized) mobility, as a sustainable solution to 

deal with the negative impacts of the car-oriented mobility (e.g., traffic congestion, climate change, 

and air pollution issues). Considering pedestrian and cyclists as the main part of active mobility, 

the need for monitoring their activity is also crucial. Therefore, smart transportation systems 

require multi-sensory, multi-mode monitoring system to collect necessary information. 

In this research, we develop a set of automated real-time solutions that can work independently or 

can be integrated into a platform to monitor multimodal traffic networks, in particular, non-

motorized modes, and generate information such as travel time (speeds) and volumes in bicycle 

and pedestrian environments. More specifically the proposed solutions include two types of 

systems, a between-point monitoring system using WiFi and BT technologies and fixed-point 

systems using Lidar technology. Our solutions support different types of wired and wireless 

communication protocols including short range (Bluetooth), medium range (WiFi), long range and 

low power consumption (LoRA) and to cloud connection over LTE networks. These protocols 

provide flexibility to embed our solutions to any smart city and IoT platforms with minimum 

modification. Also, the designed sensors are non-intrusive with minimum calibration requirements 

and can be used for either short-term or long-term data collections. 

Our developed WiFi-Bluetooth scanning system was presented in Chapter 3 along with its testing 

in a network with two modes, pedestrians, and cyclists. A framework for classifying the objects 

and extrapolating the pedestrian volume from WiFi traces was developed. Four different classifiers 
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were calibrated and tested, ranging from simple classifiers based on speed threshold values to more 

complex classifiers using fused-statistical logit models. The average error percentages using logit 

models with speed data and time-seen (separate models) as variables were 14% and 16%, 

respectively. However, with a combined model, including both speed and time-seen duration, the 

method showed much better results with an average classification error percentage of 3.7%. 

Additionally, the use of WiFi traces to extrapolate pedestrian flow was explored. The results show, 

with a simple developed extrapolation function, the flow estimated by WiFi traces could accurately 

track the pattern of the pedestrian flow coming from manual counts. As part of this work, the 

performance of the two technologies (Bluetooth and WiFi) was compared in terms of detection 

rates. From this, it was concluded that Bluetooth technology underperforms in non-motorized 

transportation networks; with WiFi technology being the most appropriate for monitoring 

networks with low-speeds. Since the main goal of this thesis was developing systems applicable 

in the multi-modal traffic network, the use of the developed WiFi-Bluetooth system was extended 

to the vehicular traffic network. Despite the low detection rate of Bluetooth technology in non-

motorized networks, the literature shows this technology can provide accurate information about 

the traffic patterns in vehicular networks. The low detection rate of Bluetooth technology in the 

non-motorized network indicates that most of the detected Bluetooth devices in a mixed network 

(pedestrian, cyclist and vehicles) can be associated with vehicles. This could lead to the 

development of monitoring systems that take the best of the two technologies by computing 

vehicle (travel times) metrics using Bluetooth data, and, then use WiFi traces for other modes. The 

next step was to test the performance of the WiFi-Bluetooth scanner in monitoring traffic in the 

vehicular network. 

In Chapter 4 the work was extended to arterial traffic monitoring. The initial findings show that 

the detection rates of WiFi technology are higher than Bluetooth. However, when just one pair of 

sensors is considered for analysis, the Bluetooth technology captures more trips between two 

sensors. This finding comes from the fact that WiFi devices are discoverable when they are 

broadcasting probe signals, and it happens randomly between one to two-minute intervals. In this 

case, if the device passes any sensor outside of broadcasting interval, the devices are not detected. 

Implementing a network of sensors can help to solve this issue. On the other hand, when the 

Bluetooth is in discoverable mode, it is very likely that any sensor in the network can capture it. 
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Finally, the combination of the two technologies could help in increasing the precision of the travel 

time (speed) estimates. Analysis on travel time estimation using two technologies, considering a 

pair of sensors shows an average speed estimation error of 8.6 %, 11.1 %, and 5.8 % for Bluetooth, 

WiFi, and the mixed system, respectively. When comparing Bluetooth with WiFi data, it is 

observed that more accurate travel time estimations are obtained - because of the higher detection 

rate of Bluetooth when just one pair of sensors is used and because the Bluetooth data has less 

noise.  

The importance of between-point monitoring systems in multi-modal traffic networks was shown 

in chapters 3 and 4. However, automated counting technologies are also a key element of an 

integrated monitoring system for non-motorized transportation. Much more attention has been 

directed towards motorized counting technologies with less focus in non-motorized monitoring 

systems. In chapter 5 and 6, we developed two innovative solutions to count the number of 

pedestrians and cyclists in non-motorized facilities. In Chapter 5, a new monitoring solution is 

proposed using a single beam (1D) Lidar technology to accurately count pedestrians or cyclists, 

and measure each road-user direction, in different environments. The current solutions for 

counting pedestrians or cyclists are either expensive to implement on large scale or suffer from 

low accuracy. The main cyclist is counting solutions, including loop detectors, need to be 

embedded in the pavement, which increases maintenance and installation costs and is not suitable 

for temporary data collection. The infrared-based pedestrian counting also suffers from low 

accuracy on high volume facilities and has specific installation requirements.  

To address the main issues with current technological solutions, our proposed solution benefits 

from Laser-based range finding sensors to measure the distance to the objects with narrow beams 

which helps to resolve the occlusion problem in many cases. The high sample rate of a Lidar sensor 

helps to accurately count the objects and identify the direction. Furthermore, the system maintains 

high accuracy on high-volume facilities. With the proposed solution, the detection area is 

adjustable by the sensor user, which provides flexibility over infrared-based solutions. Also, the 

low power consumption design of the system can help collect data for more than two weeks on a 

single battery charge. 
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The sensor has been tested in different traffic conditions and non-motorized traffic facilities. The 

results show that in 80% of 15-min automated counting samples, the error was between 0-5% and 

0-2% for pedestrian and cyclists counting respectively. Despite the performance of the single beam 

Lidar, it was observed that in conditions with very high pedestrian volumes, the occlusion problem 

of pedestrians walking in groups and side by side, can cause a drop in system accuracy.  

To address this issue in more congested pedestrian networks, a novel technology is proposed in 

Chapter 6 based on a 2-dimensional Lidar system. The details of the developed systems are 

provided in this Chapter along with the results of the test. This solution is designed to be installed 

in available posts to monitor the area from above. It helps easily resolve the occlusion problem 

when the facility is very congested and wide. Using, 2D-Lidar technology, the shape of the objects 

can be constructed accurately. This feature helps classify road users in mixed networks. The results 

show that the proposed system has accurately counted more than 97% of people at the 

disaggregated level, with less than 1.1% direction identification error. The results reveal that the 

over-count error is less than 0.7%, and the counter had missed 1.3% and 2.7% of pedestrians for 

two selected sites (undercount error). At the aggregated level (15-minutes intervals), the average 

absolute percentage deviations (AADP) are 1.6% and 4.3% with a weighted AAPD of 1.5% and 

3.5% for the selected sidewalks. The higher power consumption of the system is a limitation of 

the proposed solution which requires either solar panel or access to the City power grid for long 

term data collection.  

 FUTURE WORK 

In our case studies, the WiFi-Bluetooth sensor can be used in pedestrian cyclists facilities or 

vehicular networks. As part of the future work, the sensor can be used in multi-modal traffic 

networks with pedestrian, bicycle and vehicle flows. In that case, the classification framework 

needs to be extended to cover all modes. A mode-classification based on Bluetooth data on a mixed 

network can help to extend our WiFi-based classifier for networks with pedestrians, cyclists and 

vehicles.  

The use of the wireless received signal strength indicator (RSSI) could be also investigated as an 

extra source of information for classification purposes in complex networks. The study also shows 
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the potential of using WiFi traces for flow estimation purposes. However, more complex 

estimation models could improve the accuracy of the system estimates. 

A single beam Lidar sensor has been tested to count the directional flow of pedestrians and cyclists. 

The evaluation results show a high correlation between the count results and the ground truth flow. 

As a future work, a non-linear correction factor could be investigated to improve the accuracy of 

pedestrian counting systems in a high pedestrian volume. Also as a part of the future work, 

speed/density estimation features can be added to the counting system. This could help study the 

level of service of bike facilities and generate flow-speed-density curves. The sensor can also be 

used to implement green waves on bike facilities using estimates of the gaps between cyclists in 

real-time and feed this information to traffic light controllers. 

The findings on 2D based solution show the shape of the object can be extracted accurately. This 

feature could be used for classification of the object and extend the application to mixed mode 

networks including vehicular traffic. 3D Lidar solutions could be also investigated for very 

complex networks. This solution would provide more details about the objects in both vertical and 

horizontal views. 
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A Appendix A 

As a part of this research, the authors have developed and tested a pedestrian counter based on 

Ultrasound technology. This initiative was an attempt to address the shortcomings of the current 

commercial counting solutions3.   

This section provides some information about the sensor hardware and software components and 

some test results. In the end, we briefly discuss why authors replace Ultrasonic sensors with Lidar 

technology as the range finder sensor in their solution. 

The design of the sensor involves two aspects: hardware design and software design. Hardware 

design includes integrating all necessary elements to have a real-time automated pedestrian 

counting system. The methodology of how pedestrian counts can be obtained from the raw output 

of the ultrasonic sensor is described in the software design section. 

A.1  HARDWARE DESIGN 

The hardware of the designed system consists of three different parts: a sensory system, a 

microprocessor (which is the core of the system) and a robust data logger system. All of the three 

different parts are explained in this subsection. 

A.1.1  Sensory System 

An ultrasonic sensor is used to measure the distance between the sensor and passing objects. The 

ultrasonic sensor works based on the concept of ultrasound wave speed in the air. The sensor 

transmits an ultrasound wave in the air for a predefined time (around 5 microseconds) and then 

listens to the echo of the wave. Based on the transmitting and receiving time difference and 

knowing the speed of a sound wave in the air, the distance between objects can be measured.  

The ultrasonic sensor has some advantages in comparison with other technologies in the market 

designed to measure distance. In particular, the transmitter and receiver of the ultrasonic sensor 

can be mounted on the same board. Also, because the ultrasound wave is independent of weather 

                                                

3 for more detailed review on the current available solutions refer to chapters 1,2 and 5 
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condition and environment light, the accuracy of the measurement should be reliable regardless of 

the weather conditions even in hot and sunny summer days; the condition that affects the 

performance of the infrared-based sensors the most. 

A.1.2  Microprocessor 

The microprocessor is the most important part of the system hardware. The microprocessor can be 

programmed in some programming languages. In this project, an AVR based micro-controller is 

used to implement the pedestrian counting methodology and interface all other parts of the system. 

Additionally, the pedestrian counting method can be relatively easily implemented with this type 

of micro-controller. 

A.1.3  Data Logger 

The data logger consists of the following parts: 

• Real Time Clock Module, to keep the data time stamped 

• GSM modem, to keep the system working in real-time and send data to the server every 15 

minutes 

• SD card, to save all the data on an SD card in case the GSM modem internet connection is 

lost 

It is worth mentioning that once the system components are built, they are integrated into a solid 

water-proof enclosure. Figure 7-1.a provides a picture of the system hardware. Moreover, Figure 

7-1.b shows the sensor with the enclosure installed at one of the testing sites.  

 

 a) System hardware                    

 
b) Installation infrared and ultrasonic 

Figure 7-1. Pictures of the System 
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A.2  SOFTWARE DESIGN 

The methodology and necessary steps to implement an automated pedestrian counting are 

described in this section.  

A.2.1   Distance Measurement 

In this step, the microcontroller actuates the ultrasonic sensor to send the ultrasound wave to the 

environment for a duration of 5 microseconds. After this time, the processor listens for the echo 

of the ultrasound wave and based on the time difference between transmitting and receiving the 

ultrasound wave and its speed, the distance between the sensor and a passing object is measured. 

A.2.2   Noise Reduction Measurement 

In some cases, the ultrasonic sensor cannot get the ultrasound wave echo of the object in the 

meantime. Therefore, the distance to the object is measured as the maximum range of the sensor 

(e.g., 3. meters for this sensor, it can be changed by the user such as to cover a limited area like at 

crosswalks). To solve this issue, an algorithm is required to eliminate this noise from the output of 

the system. The one used in this system is based on the moving average concept. At first, a window 

of samples is defined and used to calculate the average of samples within that window. The 

window size is defined considering the sample rate, pedestrians average speed, and their body 

width (from trial and error; the 5 last samples were considered). The algorithm replaces the noisy 

data at each window with the minimum value of the samples within that window. Figure 7-2 shows 

a simplified example of noisy data and the output from the noise reduction technique. 

 
Figure 7-2. Noisy Distance Measurement and Filtered Data 
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A.2.3   Object Detection  

The distance measurements is then classified based on the distance thresholds. When the processor 

gets a new measurement it checks the distance value with the value of the last sample. If the 

difference is more than the predefined threshold (e.g., 35 cm), then a new class of distance is 

started. The mentioned threshold was considered based on the average body width of the people. 

If a smaller value is obtained, things like bags, or even a moving hand of a person can be considered 

as a new group. On the other hand, if it is considered to be bigger, two people passing in parallel 

will be underestimated. 

When a new distance group is started, then the mean value of all distance samples in the last group 

is calculated. Also, the number of the distance measurement samples in each class is counted for 

future processing.  

Figure 7-3 shows an example of the distance measurements for a few seconds when two 

pedestrians passed the sensor sight line. As depicted in Figure 7-3, the object detection process in 

cases when objects (pedestrians) pass one by one is straightforward. However, in some cases, 

objects such as pedestrians walking their bikes or pedestrian hands and bags can be considered as 

a new class. The average value of the distance samples in this type of class will be very close to 

the average of the previous or next class but, the number of samples will be much smaller than the 

sample class belonging to the pedestrian body. So, some thresholds can be defined on the average 

value and the number of the samples in each class of measurement to eliminate over-counting. 

 
Figure 7-3. Sample of Measurement for Two Objects 

0

50

100

150

200

250

300

350

400

0 10 20 30 40

d
is

ta
n

ce
 t

o
 S

en
so

r

Sample



 

159 

 

In addition to the aforementioned issue, there are situations in which pedestrians pass side by side 

without any detectable gap between them. Figure 7-4 illustrates this situation. To be able detect 

these patterns (objects walking almost in parallel), another threshold for the mean value for each 

sample class needs to be defined.  As explained before, each sample class refers to a group of 

samples that are tightly close. So, if the differences between the mean values of two subsequent 

sample classes are more than the threshold value, the second class is detected as new object. 

 

 

Figure 7-4. Distance Samples in Case Two Pedestrians Passing Almost Parallel 

A.2.4   Decision Making 

In this step, based on the defined rules on the mean values and number of distance samples in each 

class, the algorithm decides whether or not the passing object is a pedestrian. If the rules are 

satisfied, the object is counted as a pedestrian and the counter value is increased.  In order to have 

a better view of the pattern in each class, the decision making is done based on the information 

from the last four classes. This information helps to check if the two subsequent patterns with close 

distance mean values belong to the same pedestrian or two separate pedestrians. 

After doing so, the processor gets the time from the real-time clock module and sends the counter 

value to the server every 15 minutes (it can be changed by user). Then, the counter value is reset 

to zero.  

Figure 7-5 provides the flow chart of the pedestrian detection methodology described above. 
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Figure 7-5. Flow chart for Pedestrian Detection Methodology 

A.2.5  Performance Measures 

In order to evaluate the performance of the system, the following testing protocol was applied: 

Selection of Testing Sites: In this case sidewalks with different volume intensities, as well as 

different pedestrian flow patterns such as people walking in groups, were the subjects of interest. 

Sensor installation: Sensors were installed on existing infrastructure (posts). In parallel with the 

sensor, a video camera on a mast was installed. In one of the testing locations, an infrared sensor 

(pyro box contact) from Eco-Counter (http://www.eco-compteur.com) was also installed.   

Data Processing and Analysis: After several hours of data collection with the two systems and the 

video camera, counts for every 15-min interval were obtained for each sensor. Video data was 

processed manually and defined as the “ground truth”. For this purpose, plots and error measures 

http://www.eco-compteur.com/
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were obtained. The error and deviation between the sensor and ground truth counts are computed 

using the Absolute Percentage Deviation (AAPD): 

𝑒𝑟𝑟𝑜𝑟𝑖 =
𝐴𝑖 − 𝐺𝑖
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 2 

where Ai is the automated count for time i (15min in this case), and Gi is the manual count for time 

i. 

A.3   SYSTEM EVALUATION 

This section presents the approach that was used to evaluate the performance of the ultrasonic-

based counting system using the protocol defined previously. As a first step, three different sites 

with different widths and volume conditions were selected. For each site, one or two days of data 

collection were conducted from which video data was also recorded to obtain manual counts. 

These 3 sites are described as follows:  

A.3.1  Site selection  

Site 1 - Milton Street – site with pedestrians walking in groups. The ultrasonic sensor was first 

installed on Milton Street, in Montreal, at a site located a few blocks east of McGill University, on 

the southern sidewalk. This location was chosen because of its relatively high flow of pedestrians, 

most of which are university students either heading to or away from the university. It is not 

difficult to observe pedestrians walking in groups, which is a condition that is critical for automatic 

counting with traditional sensors such as infrared.  

Site 2 – Sherbrooke Street – site without a wall. The second site was located on Sherbrooke Street 

West, near the main gate of McGill University, Montreal. The sidewalk was selected because of 

its high pedestrian traffic, as well as for its lack of a wall in the proximity. The width of the 

sidewalk is more than the first site and there is no wall on one side of the sidewalk. A limitation 

of an infrared sensor is that sidewalks in which the sensor is installed should have a wall or a clear 

physical-delimitated area. Open spaces or inexistence of a wall can deteriorate the performance of 

this type of sensor. 
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Site 3 – University Street – site with stop-and-going flow conditions. The third site is located at 

the intersection if University Street and Saint Catherine. This site was selected because of its high 

pedestrian traffic given its proximity to a commercial area and for the retail exhibit windows that 

cause stop-and-going flow conditions. Pedestrians often stop to look at retail exhibits causing over-

counting issues. However, this site has a well-defined counting area with a wall. 

 

site 1 

 

site 2 

 

site 3 

Figure 7-6. Snapshot of the selected sites 

A.3.2  Results 

The general results of the three sites are presented in Table 7-1. From this table, one can observe 

that the errors percentage varied between 0.9 and 24.7 for the ultrasonic sensor and between 0.8 

and 42.1 for the infrared sensor over the 3 test sites. In addition, AADP for the ultrasonic and 

infrared sensors ranged from 6.4 to 12.3 and 4.6 to 19.4, respectively. These results clearly show 

the potential of using Ultrasonic technology in our counting solution. 

Table 7-1 Summary statistics of tests per site 

Measure  Site 1 Site 2 Site 3 

Error (%) 

Infrared 
Min - Min 0.9 Min 0.8 

Max - Max 42.1 Max 9.9 

Ultrasonic 
Min 1.7 Min 3.7 Min 0.9 

Max 24.7 Max 18.6 Max 27.2 

AADP (%) 
Infrared - 19.4 4.6 

Ultrasonic 12.3 9.9 6.4 

The initial findings clearly show the potential of this counting system with a very interesting 

performance on sidewalks with low to high volumes (from 200 to 800 pedestrians per hour). The 

under-counting error, due mainly to occlusion, varies between 0 to -20% in 98% of the cases. 

Based on the results, the error increases slightly with volumes, with a power or linear function, 



 

163 

 

which can be used to generate correction functions. These functions can be used to improve the 

counting estimates (reduce error) in congested sidewalks.   

The proposed system could help in handling the limitations of infrared technology, such as the 

requirement of an obstruction, such as a wall, or well-defined detection area. In open areas or wide 

sidewalks without walls, the definition of the counting area is a challenge for infrared sensors. In 

this condition, the accuracy of the infrared-based sensor is deteriorated. In the proposed ultrasonic 

system, the coverage area can be set by the user, so it can be used at different locations including 

open spaces. Additionally, the ultrasonic technology is not sensitive to temperature as opposed to 

an infrared-based sensor which can be significantly affected on hot-sunny days. 

Although the result shows promising performance in terms of real-time counting with acceptable 

accuracy, with further development and testing of the proposed solution, we found some 

limitations as presented below: 

• The Ultrasound range finder sensors have a fairly low sample rate (less than 10 sample per 

second). This limits the sensor’s performance when the objects are moving fast or cases of 

occlusion. Additionally, low sample rates makes it impossible to detect the direction of the 

objects. 

• The range of the sensors are limited to less than 4 meters, which makes it limited to narrow 

sidewalks. 

• The ultrasound waves diverge by increasing the distance (15- degree angle), which reduces 

the accuracy when people are walking in a group. 

To address these issues, authors benefit from high sample rate, accurate Lidar sensors with very 

narrow beams.  


