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Abstract

In Radio Detection and Ranging, the inverse problem is that of acquiring knowledge
of the physical features of a body by making observations of the reflected energy and
synthesising the model from the measured data. This procedure is in contrast to
the forward problem, which consists of calculating the observable effects from a given
model. The forward problem has a unique solution whereas the inverse process,
being carried out on the basis of hypotheses, is always characterized by a lack of

uniqueness.

The approach taken towards developing the synthesis {ramework is to consider a
logic of argumentation of belief funciions which is used to represent the various
symbolic aspects of belief and uncertainty. The logic extends so that not just one
argument, but all arguments, supporting or opposing a hypothesis are considered.
That is the logic used to solve the inverse problem. As arguments are identified
among measurements, the support they confer on a hypothesis or its negation is
aggregated to provide a measure of the degree of belief in the hypotheses of interest.
The aggl'ega.tion operation, or the synthesis regularization, will depend on an entropy

calculation to represent the uncertainiy associated with the arguments.

Based on the theory of Kalman filters, sensor fusion is used to finally establish prob-

abilistic models of the hypotheses. In conjunction with the synthesis regularization, ‘
consistent estimates will converge to a qualifative image reconstr—ucti()n. The syn-
thesis framework is compared to current solutions to the inverse problem in radio -
detection and ranging and applied to Ground Penetrating Radar image reconstruc-

tion.
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Résumé

Le probleme inverse dans i'imagerie a partir des radars consiste en 'acquisition de la
connaissance des caractéristiques physiques du corps en observant 1’énergie réfléchie
et en établissant le modele a partir des mesures calculées. Cette procédure contraste
avec le probléme directe qui consiste en un calcul des effets observés d’un modele
donné. Le probleme directe posséde une solution unique tandis que le probléeme

inverse, est toujours caractérisé par un manque de unicité.

L’approche prise en vue de développer le cadre de la synthése, est utilisée pour
représenter les différents aspects symboliques de la croyance et le doute. Cette ap-
proche doit prendre en considération une logique d’argumentation des fonctions de
croyance ainsi que I’étendue de cette logique, pour que tous les arguments, et non un
seul, supportant ou opposant une hypothése, soient considérés, c’est la logique utilisée
nour résoudre le probleme inverse. Comme les arguments sont identifiés parmi les
capteurs et les moyens de mesure, le support qu'ils conférent a une hypothése ol & sa
négation est aggré de procurer une mesure du degré de croyance dans les hypothéses
d’intérét. L'opération aggrégative, ou le processus de la régularisation par synthése,

dépendera d’un calcul d’entropie pour représenter le doute associé aux arguments.

La fusion des capteurs, basée sur lu théorie des filtres de type Kalman, est finaliement
utilisée pour établir des modeles de probabilité pour les estimations. En conjonction
avec la régularisation par synthése, les prédictions des capteurs convergent vers une
reconstruciion d’uhe image qualitative. Le cadre de la synthése est comparé aux

solution courante du probleéme inverse avec une application sur les radars.

3
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Claim of Originality

The author claims the originality of the basic ideas and research results presented in

this thesis, the following being the most significant:

1.

Philosophy of the regularization synihesis in statistical inversion theory of a
priori data to a posteriori knowledge delineated by belief functions and uncer-

tainty (Chapter 4 and Chapter 5).

.. Derivation of the exact entropy for the Dempster-Shafer theory. The proposed

entropy computation is based on the principle of the theory of Dempster-Shafer

(Chapter 5).

Derivation of the Kalman filter in its decentralized form to an autoregressive

AR optimal filter (Chapter 6).

Derivation of the finite to semi-finite mapféiﬁg from an uncertainty concept to

a normal distribution variance (Chapter 6).

Introduction of the regularizaiion factor as a partial momentum warp which
affects the inference in the minimum entropy search. This method is devised

for Dempster-Shafer as well as Bayvesian representation (Chapter 5).

Concept of adaptive noise filtering for narrow wave scans which results in the

innovation of dynamic adaption to a time-varying noise spectrum (Chapter 3).

Concept of recovering spatial distortion in electromagnetic imaging and adap-

tation of the range resolution factor from the airborne long range radar system
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and derivation for ground penetrating radar application {Chapter 7).

8. The hierarchal color scheme that would suit the requirements of image encoding
and concur with the basic conditions for efficient image perception (Chapter

8).

Some of these contributions have been partly reported in many preliminary forms

[64] [63] [58] [59) [66] [65].
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Chapter 1

Introduction

I keep six honest serving men. They taught me all I knew. Their names are
What and Why and When and How and Where and Who.

R. Kipling, Just So Stories.

Some of the earliest world modeling with respect to inverse problems was of an
astronomical nature. Since the time of Aristotle (384-322 B.C.) human kind has been
interested in perceiving what is beyond its “vision”, but it was not until Rontgen
(1845-1923) discovered X-rays, which enabled him to see inside living tissue, that
“vision” beyond the naked eye entered a new era. In the following years, the theory
of Radio Detection And Ranging in imaging has developed so rapidly that astronomy,
medicine and geology are just a few of the areas where remote sensing has been
found useful. Finally, whether in electromagnetic, optical or acoustic sensing, the
main intention of this research and analysis is to augment our understanding of the

surrounding world.

1.1 World Modeling

The objective of world modeling in radio detection and ranging is to determine the
spatial configuration and/or physical properties of an unknown object. World mod-

eling problems can be subdivided into a number of classes, according to the kind

1



Chapter 1. Introduction 2

of information that must be retrieved in the measurements. In the present thesis,
besides the methodologies, two types of world modeling are presented. The first stage
is the identification problem, which amounts to establishing input-output relations
from the wavelets such as deconvolution and noise estimation . The second stage is
the inverse problem, where the identified measurements are combined to determine
the models’ spatial configuration. This class of inverse problem stems directly from

inverse scattering properties of electromagnetic waves.

The inverse problem deals with the process of searching for unique solutions to the
problem of the reverse mapping of dispersion and scattering phenomena. In general,
the problem does not admit a unique solution and has to be approached by special
cases or approximations and/or by search algorithms. In this thesis, we start to
explore new methodologies as an alternative solution to the inverse problem in radio
detection and ranging. As we do not claim uniqueness and there is no attempt to do

so, we explore these new techniques for our world modeling synthesis framework.

ctoct Syst Inverse Image
Depection l1d isﬁm;' | System "| Perce gtion
and Ranging entification y o

Figure 1.1: Block diagram showing the possible overall sequence. System Identifica-
tion might involve any type of amplitude, time and frequency modifications and/or
adjustments.

This research examines two complementary sensor fusion methods that we adapt
to the inverse problem context. We initially devise the synthesis framework of the
world modeling process based on sensor fusion methods. Then we evaluate the

proposed system in comparison to the current solution for the inverse problems in
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radio detection and ranging with a direct application to Ground Penetrating Radar
(GPR). The first sensor fusion method relies on belief functions and specifically on
Dempster-Shafer evidential reasoning which is a generalization of Bayesian inference
classification [19] [81] [32]. The second sensor fusion method is an adaptation of the

recursive Kalman filter to its decentralized form [51] [39].

1.2 Motivation and Objective

The instances when the inverse problem is of importance are valid when informa-
tion about the structure and composition of an object are required but cannot be
ascertained from direct measurements. Rather, the measurements are recorded at
a spatial location distant from the object and without affecting it in any tangible
way. [t is therefore apparent that the problem of inverse scattering is central to the
development of techniques in remote sensing, imaging science and non-destructive
analyses of materials in all their various manifestations. These appear in such diverse
areas as astronomy [38], antenna synthesis [21], computed tomography in medical
physics 7], profile inversion in geophysics [2] [89] and ground penetrating radar. In
each of these areas of study, sensors have been developed to produce signals and
images which all, in one way or another, exploit the way the radiation interacts with
the property of scatterer. In the latter topic, only a few techniques have been devel-
oped to a workable state. One reason could be attributed to its recent investigation

whereas most theories were tailored for its seismic counterparts.

1.3 Remote Sensing

Generally speaking, remote sensing technology describes the concept of acquiring in-
formation distantly about specific targets. We realize that ground penetrating radar
introduces a paradigm shift in the understanding of remote sensing. A simple reason

can be associated with the commeon belief of remote sensing, a characteristic known
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as transparency. In fact, the use of radar in aircraft technology can be recognized as
a particular case of ground penetrating radar. Indeed, radio detection and ranging
systems are not concerned with the nature of the target but merely with its presence
and location. This is contrasted with the ability to penetrate the target with the
mtent to reconstruct in detail the morphology of the target, including its shape and
composition. Although the task is difficult, ground penetrating radar is likely to be

a fruitful area of research.

What mainly constitutes remote sensing is the existence of a transmitter and
receiver. The basis of remote sensing can be clearly defined as the emission of
a pulse of continuous wavelength (CW) associated with some modulation, such
as frequency sweep (FMCW) . On the other hand, a large amount of information
about the target is generated and requires sensing capabilities of the same order as
the generated information. There are some remote sensing systems which rely on
passive sources, such as in astronomy or vision, but here we will concentrate on what
are known as active systems which in fact constitute the majority of applications of

inverse theories.

In general, a property of active remote sensing systems is the fact that the source
is arbitrary in all the natural dimensions ~ temporal, spatial, energy spectrum etc.

- which introduces a control factor into the solution of the inverse problem.

1.4 Outline of Thesis

In order to fully follow world modeling in radio detection and ranging as presented
in this thesis, understanding of the analytical and numerical constraints of signal
processing, the inverse problem, logic reasoning and perception is essential. However,
understanding of electromagnetic field computations is reduced to the equivalent

basic knowledge of optics.
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A chapter on the inverse scattering problem has also been included. The various
known solutions to inverse problemns stem from the knowledge acquired from studies
of different research backgrounds that deals with scattering concepts. The work done
in attempting these inverse problems aid in the understanding of the sophisticated

work in world modeling issues.

The thesis itself is divided into three parts. The first part deals with the concepts
and main theoretical derivation of world modeling and consists of five chapters.
Section 2.1 introduces the general perspective of radio detection and ranging. The
concepts of ground penetrating radar are introduced only in Section 7.1. Section
2.3 deals with the inversion methodologies for the inverse problem. Radio detection
and ranging inversions are the primary concern of this thesis. The inverse problem
definition was elaborated on the residual error and finite difference computations.
These inversion methodologies in a sense propose the forward problem solution as
an alternative approach to the inverse problem. In addition, and under the same
heading as the inverse problem, the most common technique for radar inversion is
also described from a theoretical as well as a practical perspective. Also in Section
2.3.3, the notion of inverse operator stacking is mentioned as the evolutionary aspect

of migration techniques.

Chapter 3 introduces aspects of system identification. The theory of linear time
invariant systems dominates this chapter where numerous techniques dedicated to
system identification and noise filtering are discussed, in particular, the least-squares
method in linear prediction and estimation. The wavelet theory and information
capacity is introduced in Section 3.2. Section 3.3 discusses the methodology of dp-
proaching the system identification of electromagnetic scattering measurements. In
Section 3.3, the assumption of zero offset imaging is stated as a basis of this thesis
work. The scattering and measurements are performed with a pseudo-single antenna.

Section 3.4 contains the equations that describe the linear input-output relations of
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the scattering and measurements state. A simple algorithm for estimating measure-
ment noise corruption is presented in Section 3.4.1. In S~ction 3.5, the possibility
of extending the concept of narrow scans introduced in Section 3.4.1 as the basis of
an initial assumption for a sophisticated deconvolution algorithm is discussed. The
least-squares method, which has been shown to be useful in many parameter esti-
mations [60], is formulated for the general prediction radio detection and ranging
output estimate in Section 3.5.1. The viability of the formulation is accomplished
by deriving the equation around a simple example; the inverse filtering and echo

excitation removal from radar signals.

Chapter 4 contains an introduction to the inverse problem. General difficulties
one encounters in understanding the inverse problem are discussed in Section 4.2.
Henceforth, the formulation of the inverse problem is proposed. However, Section
4.2 is considered relatively important to the notations and terminology which are
used throughout the thesis. As this thesis introduces the definition of divergence
in the inverse problem which is separated from the definition of the ill-posed in-
verse problem, this chapter is relatively important. Therefore in Section 4.2.1 the
four categorizations of the inverse problem are proposed. Section 4.3 delineates the
Backus-Gilbert approach to inverse problems. This process introduces the regular-
ization term in inverse problem nomenclature. Nowadays, Backus-Gilbert is often
recommended as the generic method of choice for designing and predicting the per-
formance of experiments that require data inversion. Although one cannot obtain a
complete solution based on this approach, Section 4.3 nevertheless presents a clear
picture of regularization and uncertainty factors in the inverse problem. The resolu-
tion limits and resolving power which mainly validate the inverse problem solution
are discussed in Section 4.3.1. The uncertainty factor resolution limits in this con-
text are also described. The main points of this chapter are expounded in Section
4.4, where a qualitative approach to the inverse problem is presented. This new ap-

proach to the inverse problem, however, does not claim uniqueness, but incorporates
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techniques to stabilize divergent inverse problems ( also mentioned in Section 4.2.1).
Section 4.4.2 relates the a posteriori knowledge map and uncertainty to a knowledge
mapping process. A brief discussion is presented in Section 4.4.3, hence introducing

the proposed regularization synthesis.

In Chapter 3, the synthesis regularization method is proposed. An alternative
descriptive title for Chapter 5 is logic reqularization, however, the title A World of
Beliefs was chosen due to the nature of its contents rather than its functionality. An
introduction to evidential reasoning is presented in Section 5.1. The notion of rep-
resentation of knowledge with uncertainty factors is presented in the same Sectiun.
This chapter contains the major theoretical contributions of this thesis. The Bayesian
and belief function propagations of evidence are described in Section 5.2 where belief
networks, directed cyclic/acyclic graphs and knowledge regularization synthesis form
the main focus. Section 5.2.2 describes a possible notation of the Dempster-Schafer
model and the frame of discernment concepts. In addition, Section 5.2.2 suggests
some definitions and assumptions of the sensor data implications to the belief func-
tions and includes the algorithm for combining belief functions. Section 5.3 describes
the generic derivation of exact entropy comnputation for the Dempster-Shafer belief
model [81]. Dempster-Shafer evidential reasoning is considered a generalization of
Bayesian inference. The second contribution is in Section 5.4 and Section 5.4.1 and
explains the derivation of the regularizing factor (rf), which is a momentum bias
that largely affects the knowledge evaluation. The regularizing factor (r f) is usually
associated with skewing the distribution of the data and results in momentum in the
minimum entropy computation. This method is devised for Dempster-Shafer as well

as for Bayesian knowledge representations.

Chapter 6 is devoted to the Kalman fillering integration method and functioning
as front-end multi-sensor fusion technique. The Kalman filter is our proposed method
to achieve the final synthesis and statistical mapping. In Section 6.2 we derive the

finite to semi-finite mapping from an uncertainty concept to a normal distribution
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. variance. In Section 6.3 we discuss model robustness and the need to combine the

knowledge maps into an optimal estimate.

Part two of this thesis is devoted to various aspects of the experimental ap-
plication of world modeling and the inverse problem to ground penetrating radar,
starting with Section 7.1 which discusses ground penetrating radar from a user point
of view. Besides the main functionality aspects and the hardware involved in ground
penetrating radar which are well elaborated in Section 7.1.1, other factors which
enter into the data interpretation are also explained. The basic electrical and elec-
tromagnetic specifications of the GSSI SIR 10 radar unit in addition to some main
components such as control functions, line scanning and the board computer are
described in Section 7.2; however, on-board digital filtering is presented separately
in Section 7.2.1 even though it consists of part of the radar unit. Since the spec-
troanalysis of the transmitted signal of the radar was never measured, Section 7.2.2

. discusses the hypothetical spectra. Section 7.3 becomes more conceptually techni-
cal when the reflection, refraction and scattering phenomena are explained. This

- Section is of importance for its proposal of a new methodology for the operation of

= ground penetrating radar. When both scattered and reflected signals are separated,
the reflection analysis provides the data for the Impulse Reflection Knowledge Map
(IRKM) which is explained in Section 7.3.1, and the scattering analysis provides
the data for the Polarized Scattering Map (PSKM) which is discussed in Section
7.3.2. As spatial distortion in ground penetrating radar decreases its resolution, Sec-
tion 7.3.3 reports an important characteristic of the horizontal resolution of short
distance radar where the analysis of the range resolution (R,) is proposed. On the
other hand, to remedy the vertical spatial distortion that results from velocity change
of the electromagnetic wave field in different media, Section 7.3.4 demonstrates an
efficient approach to manipulating the velocity-depth-time space. Once the basis of

the knowledge maps is computed as in Sections 7.3.1 and 7.3.2, the knowledge map
. (KM) synthesis, that is Section 7.4, systematically uses the knowledge maps (IRKM)
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and (PSKM) in constructing the world model.

Chapter 8 deals with data interpretation and perception as the next stage from
Chapter 7 in knowledge handling. Section 8.1 introduces the general perspective of
the visual perception. The parameters’ description as sets of forms is presented in
Section 8.2, where the hierarchical information combination is proposed. However,
it is in Section 8.3 where image encoding is explained. Numerical results for the
overall process (Figure 1.1) are generated and are shown. All techniques listed in
this thesis are to be applied for validation purposes in their numerical performance
implementation in the inversion of the measurements of ground penetrating radar

with the exception of the finite difference forward modelling algorithm.

In part three and Chapter 9, general conclusions are drawn. Also, suggestions
are made for further research in the inverse-scattering problem in general, and in
regularization by synthesis and world modelling. The strategic review (Chapter 9)
contains also a brief review of the inverse problem as well as a claim of originality

stated in Section 9.3.



Part 1

Synthesis: Radio Detection and
Ranging

10



Chapter 2

General Perspective

Remote sensing is broadly defined as collecting information about a target without
being in physical contact with it. Aircrafts and satellites are among many platforms
where remote sensing is extensively used for remote observation. The term remote
sensing is commonly restricted to methods that employ electromagnetic energy as
the means of detecting and ranging target characteristics. In this thesis, we classify
electromagnetic sensing as radio detection and ranging (RADAR), a subclass of

remote sensing, in contrast to its usual classification.

Historically, the reflection of radio waves from objects was noted in the late
1800s and early 1900s. Definitive investigation of radar began in the 1920’s in the
United States and Great Britain for war detection purposes. In present times, radar

applications are considered to be the most reliable in remote sensing.

2.1 Radio Detection And Ranging

Electromagnetic energy refers to all energy that moves with the velocity of light
in a harmonic wave pattern. A harmonic pattern consists of waves that occur at
equal intervals in time. The wave concept explains how electromagnetic energy

propagates, but this energy can only be detected as it interacts with matter. In this

11
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. interaction, electromagnetic energy behaves as though it has particle-like properties.
When electromagnetic energy refracts as it propagates through different média, it is

behaving as a wave (Appendix A.1).

Electromagnetic waves can be described in terms of their velocity, wavelength and
frequency. All electromagnetic energy travels at the speed of light in a vacuum. Un-
like velocity and wavelength, which change as electromagnetic energy is propagated
through media of different characteristics (e.g. density), frequency remains constant
and is therefore a fundamental reference property. Electromagnetic energy that en-
counters matter, whether solid, liquid or gas, is referred to as incident radiation.
Interactions with matter can change the properties of the incident radiation: inten-
sity, direction, wavelength, polarization and phase. During interactions between the
electromagnetic energy and the media, mass énd energy are conserved according to

basic physical principles. The incident radiation can endure the following behavior:

. 1. Refraction, that is, the incident radiation passed through the medium. Trans-

mission through media of different electrical characteristics causes a change in

the velocity which is accompanied by a direction change.

bo

Reflection, that is, returned from the medium. Conjugate responses are found

such as the reflection angle and the wave polarization.
3. Scattering, that is, deflected in all directions.

4. Absorption, where the clectromagnetic energy is transformed into another

form of energy such as heat or any type of radiation of other wavelengths.

Hence, the incident electromagnetic energy may be reflected, refracted, scattered
and absorbed, often in combination. Radio detection and ranging depends highly
on the reflected waves which are called the Albedo [85]. The Albedo is the ratio

. of the energy reflected, usually onto a different medium, to the incident energy.
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Figure 2.1: A pulse of high frequency electromagnetic energy (Tx power) is used
repetitively. As this energy source waveform propagates through the environment
(scattered power), some of the energy is reflected back to the origin (acquired power).

This terminology is often used in an optics context. On the other hand, scattering
phenomena are continuously masked by the aspects of the reflection and refraction
counterparts which are usually stronger in magnitude. Scattering results from multi-
ple interactions of the electromagnetic energy on a particle level. The major process
of scattering in radio detection and ranging is of a non-selective scattering type [50]
where all wavelengths of the electromagnetic energy are equally scattered. Electro-
magnetic scattering phenomena are comparable to the illumination process at an

invisible wavelength.

2.1.1 Radar Component

Having described radio detection and ranging with relation to electromagnetic con-
cepts, in reference to Section 1.3, the radio detection and ranging system is an active
remote sensing system as it provides its own source of energy. In fact, the system
illuminates the surrounding matter with electromagnetic energy and detects radar re-

turns which are the energy returning from the medium. Radio detection and ranging
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systems operate in the radio and microwave bands of the electromagnetic spectrum
ranging from a meter to a few millimeters in wavelength. The advantage of similar
active systems can be extended to the proper tuning of wavelength, hence achieving

ground penetration capabilities and performing subsurface detection and ranging.

2.2 Ground Penetrating Radar

Ground penetrating radar (GPR) is a non-destructive technique similar in principal
to seismic applications. An electromagnetic energy pulse propagates into the ground
and the partial reflections are éampled and recorded [18]. Radar hardware design is
diverse, however it shares a common technology. For purposes of the experimentation
reported in this propdsal, a Geophysical Survey System Incorporated (GSSI) radar
unit (SIR-10) was used, with the system set to operate in the L band around a center
frequency of 1 GHz. A random-letter code was assigned to different frequencies
during the early stages of development to avoid mention of the wavelength regions
under investigation. The transmitter and receiver antennae were located adjacent to

each other, behaving as a single pseudo-antenna.

Over the past decades ground penetrating radar techniques have been applied to
many practical problems as a non-destructive testing method. This has resulted in a
demand for more dependable subsurface imaging, as well as improved capabilities for
processing and interpreting the resulting images in an autonomous fashion. However,
until recently [70], there were no devised methods that met the above requirements.

Data were acquired manually and interpreted in their raw format.

Understanding of the ground penetrating radar concept is best introduced by
the analogy of a flashing light beam dispersed through a semi-transparent medium.
Despite the fact that well-established concepts in signal analysis and for the inverse
problem have been developed for seismic applications in geophysics [78] [13] [14], such

formalisms are still lacking in the ground penetrating radar domain. The focus in
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grourd penetrating radar remains on the evolution of particular models rather than
on generic methods, and, likewise, the emphasis is placed more often on empirical

approaches to the field instead of on the classical foundations.

In mest applications of electromagnetic imaging in subsurface exploration, a pulse
of high frequency electromagnetic energy is used repetitively. As this energy source
waveform propagates through the environment, some of the energy is reflected back
to the origin (Figure 2.1). The reflections vary with the composition of the medium
in terms of its electric properties and hence describe the forward problem. In Figure
2..2.a, the cross section of a cylinder has been generated by a radar stimulator showing
some features of the electromagnetic scattering phenomena (Figure 2.2.b). In Figure

2.2.c, an attempt to invert the process of the forward modeling is shown.

Figure 2.2: Left: A cross section of a cylinder being scanned by the ground pene-
trating radar beam. Middle: The output shows the scattering effect of the electro-

magnetic waves. Right: Image reconstruction is carried on on the basis of an inverse
process.

From the imaging point of view for real world situations, all objects are three-
dimensional. However, in most cases, a technique devised for solving a two-dimensional
problem can be generalized for three-dimensional applications. Furthermore, in

the cases of ground penetrating radar applications, two-dimensional images can be



Chapter 2. General Perspective 16

stacked together to form a three-dimensional reconstruction. It is, therefore, appro-
priate to consider a two-dimensional — and if possible a single-dimensional — version

of a problem since, besides offering physical insight, it involves less algebraic and

computational complexities.

Although the subsurface electromagnetic imaging is in its early stage and still
growing in an era of advanced research, some prominent techniques like pattern recog-
nition were applied and were pioneered for the subsurface electromagnetic imaging
applications by Poulton [75] and later, by Glass [34] where the concept of artificial
neural networks was introduced in the radar context. Additional models have been
used to describe the behavior of ground penetrating radar in ways to facilitate the
analysis of the system. Since the use of the radar acquisition system yields enor-
mous amounts of data, it is advantageous to model the ground penetrating radar to
scale as described by Smith and Scott [86]. Relationships between full-sized systems
and models having scaled physical dimensions can be established. Such an approach
can lead to an exponential decrease in the computational analyses that are to be
performed, since geophysical characteristics and dimensionality correction ratios are

preserved.

2.3 Inversion Methodologies

Inverse problems abound in science and engineering and some inversion method-
ologies are subsequently derived. Examples of typical inverse problems are found
in: antenna synthesis {21], computed tomography in medical physics [7] and pro-
file inversion in geophysics [2] [89]. In the latter topic, only a few techniques have
been developed to a workable state. One reason could be attributed to its recent

application whereas most theories were tailored for its seismic counterparts.

In formulating the solution techniques for the inverse problem as well as for

the inverse-scattering problem, an important consideration has been to maintain its
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capability of being generalized to more complex configurations as much as possible.
A consequence of this approach is that the conclusions obtained from the abstract
formulation must be verified by computing numerical results for adequate image
inversions. In fact, all the techniques listed in this thesis are applied for validation
purposes in their numerical performance in the implementation of the inversion of

the measurements of the ground penetrating radar application.

2.3.1 Forward Modeling and Residual Error

One way of solving an inverse problem is to propose a model, calculate the wave
field, compare the calculated field with the measured data and subsequently modify

the model (Figure 2.3.1).

Rada = error

Forward
synthetic modeling

Figure 2.3: Forward modeling and residual error computation and estimation. Syn-
thetic data are simulated according to a model which is compared to the real data.
As the error is minimized, a model can be estimated.

Until Yeo [95], where a solution to the penetrable wedge problem was addressed,
methods of computing the electromagnetic wavefield had to undergo many approx-
imations. Initially, the research in forward modeling was dominated by mathe-
maticians and physicists in the wave/particle properties of radiation conditions and
boundary conditions. In contrast, the focus of this thesis research is to achieve a
feasible, efficient and stable solution to the inverse problem without approaching

forward modeling techniques.
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2.3.2 Finite Difference Forward Modeling

In a finite difference scheme, a space-time mesh is introduced and the wave equations
are replaced by a system of finite difference equations on the mesh. An appropri-
ate numerical method is then invoked to solve for the field at every point of the
mesh. The finite-difference method in the time domain (FDTD) has been adapted
to model radar wavelets. The method is based on the explicit finite-difference of
Maxwell’s equations (Appendix A.2). The model is set up to produce the forward

model] wavelets when given the constraints and to result in synthetic data. -

The finite-difference time domain method is a robust technique for forward mod-
eling of electromagnetic wave radiation, propagation and scattering. As the FDTD
method is computer-intensive, it becomes time consuming when used recursively in
residual error computation. With the advent of the enormous increase in computer
technology, the FDTD method has became one of the leading candidates for calcu-
lating scattering from radar targets. In the past three years, several articles have

described the FDTD method of forward modeling in GPR [9] [87].

2.3.3 Migration Stacking Inverse Operators

There are a number of different ways of looking at this process. One which is in-
tellectually satisfying, though not computationally useful, is to see it as a a two-
dimensional deconvolution. Each point in the subsurface produces in the Euclidean
data space a characteristic response of a hyperbolic nature — a two-dimensional im-
pulse response. Since the total response in the measurement space is the linear
superposition of impulse responses of all points on the subsurface, the forward mod-
eling can be thought of as a two-dimensional convolution of hyperbolae, the impulse
responses. Hence migration is the inverse of this convolution. In short, migration is
the process of constructing the reflector surface from the record surface. The basic

mathematical properties of migration were developed by Hagerdoorn [41].
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When migration was simplified to a sequence of hyberbolae stacking, migration
became ultimately the most widely accepted process whereby the antenna pattern
contribution could be removed. In many respects, the process is the same as synthetic
aperture processing. Migration analysis in its implemented form requires antenna
pattern information as well as wave velocity for qualitative image focusing. Although
the migration process does a very effective job of collapsing the hyperbolic returns
back to their localized source position, the migration process is not perfect nor was

it expected to be, as the problem is mainly attributed to boundary conditions.



Chapter 3

System Identification: Exploiting
Wavelets

3.1 Introduction

Qur approach is to base our model on mathematical equations representing only
basic electromagnetic scattering phenomena, and to apply concepts of digital signal
processing and wavelet filter banks [36]. In fact, as the nature of the problem
has been proven to be of a linear type and validated at a later stage through a
state space analysis [97], the theory of linear time invariant systems can introduce
numerous techniques dedicated to system identification and noise filtering [60]. In
particular, the least-squares method has demonstrated promising results in digital

signal processing in geophysics [62] [78].

In general, parameter estimation and identification are usually described within
a probabilistic framework. Here, we basically employ such a framework, however we
attempt to allow inclusion of a priori information or knowledge. In Figure 1.1, the
overall synthesis framework including the system identification prior to data inversion

is shown. Pre-processing is included in the system identification.

20
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3.2 Wavelet Theory and Information Capacity

The purpose of this section is to present some basic concepts and constraints of
identification from an information theory point of view. Information may be defined
as a measure of the degree of uncertainty of some process; i.e. the more uncertainty
there is in a process, the less informative the process. On the other hand, uncertainty
does not necessarily imply the lack of pdssible information but rather the lack of
capacity to retrieve the information. The best analogy can be related to the science
of cryptology. The encrypted text contains the same information as in its original

form, though it is only in the second case that there is some potential of information

retrieval.

Communication or information theory is a large subject, and it is not the in-
tention of this thesis to explore all of its aspects. However there are a few basic
principles that we are going to investigate in an informal way [24] [8]. Whether in
Weiner’s communication theory [93], Shannon’s information theory [83] or Gabor’s
communication theory [29], time series signal principles and constraints in informa-
tion theory are shared. The constraints in information theory have a positive impact
on the knowledge extraction from a probabilistic perspective, as will be described in

Section 5.3.

As there are various types of signals and, in particular, power signals, which are
represented by time series, the concept of wavelef theory was introduced for time
series signals with additional restrictions. For electromagnetic imaging, the concepts

of wavelets can be characterized by two properties:

1. The one-sided property: A wavelet has zero wavelet values before its origin.

2. The stability property: A wavelet has finite energy; that is, mathematically

speaking, 3 ||y(n)|| < ¢, for all n and c'is a finite constant.
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. Another approach is the Fourier transform of a set of filter coefficients b; given
by
Y(w)=>] b, (3.1)
3

Here Y is a function periodic in 27 and it defines the wavelet y(n) in Fourier domain.

Hence, in contrast to time series, wavelets are self-contained with a definite origin
and arrival time. In other words, a wavelet has a finite time independent indez. A
wavelet in electromagnetic imaging is the measurement data set subsequent to a

finite emitted pulse. Wavelet theory is extensively used in seismic applications [78]

[14].

The retrieval, by means of coherent techniques, of information from wavelets
has been demonstrated [46). Although we will use the same principle of system
identification, we will further explore additional concepts of uncertainty for opti-

. mal information retrieval (Section 5.3). However, in this chapter the significance
of wavelet theory is that the measured signal can present a maximum capacity of
information and in order to demonstrate the potential of information retrieval from
an uncertainty perspective, we may realize that the problem is related to Heisen-
berg’: 'uncertainty principle [76]. In general, the problem can be divided into two

categories:

1. Linear wavelet identification

2. Uncertainty and information retrieval

The following part of the chapter will concentrate on the system identification
aspects whereas the second category will be approached in Chapter 5. Wavelet
identification is governed by the principle of separability in the frequency domain

such that
Y(w) = H(w)HS,(w) (32)
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and herice system identification is to find the realizability of the inverse filters that

will solve for H(w) or

(3.3)

3.3 System Identification Methodology

System ic-otification concepts developed in this research rely exclusively on the
measured data. As a result, assumptions regarding the radar waveform and the
nature of noise involvement are reduced to a minimum. In fact, we will consider these
variables to be associated with the identification procedure of the characteristics of

the system being investigated.

System identification can also be hardware-dependent. For example, since the
scattering and measurements are performed with a pseudo-single antenna, data be-
comes highly correlated and excessive symmetries are found. When the source and
receiver are coincident, the path of the energy from the transmitter is retraced ex-
actly by the energy coming back to the receiver. Known as zero offset imaging, it
simplifies the inverse problem and spatial distertion recovery by knowledge of the
travel time which is exactly doubled. Another important aspect is that only nor-
mal incident wave fields are reflected and measured ! and hence the reflection index
assumptions are not required. The concept of zero offset was first introduced in
seismic applications as described by Cassinis [13]. In fact, due to the similarities in
the principle of wave propagations, the same concept of the zero offset is embodied
in modern ground penetrating radar designs. Reducing uncertainties and assump-
tions allows an increase in imaging resolution and reduces the computational costs
allowing the freed time to be used in resolving spatial distortion relating the wave

velocities [64].

'Refracted signals are of higher order and can be eliminated. Reflected refractions are identified
by their weak signal energy compared to their first reflection through correlation.
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3.4 Input-Output System Description and Mod-

eling

The input-output description of a system consists of deriving mathematical expres-
sions which specifically define the relation between the input and output signals. An
electromagnetic signal z(t) is emitted at {o and is of finite length; a signal y(t) is

recorded for an interval T units of time starting at o.

Let h;(2) define the characteristics of the medium in the direction of the trans-

mitted wave, and hs(t), the characteristics of the medium in the opposite direction

for the interval T or
ha(t) = hi(T = 1) (3.4)

where {g + T becomes the cutoff time. In other words, if a signal excitation z(¢)
is emitted and a measurement y(t) is recorded in the interval T, the signal uses
at maximum 7'/2 units of time to penetrate the medium and T'/2 units of time to

return. In addition, the signal employs exactly the same path in both directions.

Also, the signal that penetrated the medium was affected by the material charac-
teristic /21 (£) until it was reflected, and affected again by h,(t) and finally measured.
In general such behavior is represented by the convolution of the signal with the

medium characteristics and
y(2) = hat) = ha(t) * 2(0) (3.5)
and expanded, given a zero offset system , to
y(t) = hi(t) * h(T — 1) * 2(2) (3.6)
which displays an autocorrelation sequence, and
h(t) = rps, (t+ 1. (3.7

In reality, the signal y(t) is sampled and modified arbitrarily to yield the wavelet

y(n), which is the only mcisurement recorded. Hence, it is relevant to assume
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a corresponding sequence z(n) and h(n) where k describes the index each time a

measurement is recorded and

ye(n) = s(n)lhi(n) * z(n)] (3.8)

where yi(n) is multiplied point-by-point by the arbitrary sequence s(n). Here, s(n)
has no physical meaning, but rather introduces a gain to compensate for the atten-

uation of electromagnetic waves as a function of distance.

3.4.1 Estimating Noise Corruption

Suppose that an electromagnetic excitation input sequence z(n) is repeatedly used
and yi(n) is the set of measured sequences. In reality, the cﬁrrent problem is that
measurements are corrupted with noise as shown in Figure 3.1, and the objective
is to estimate the noise spectrum. In general the measured signal yi(n) may be

expressed as
ye(n) = hi(n) % 2(n) + ex(n) (3.9)

where k is the &** scan, hi(n) depends on the medium characteristic and e(n) is the

corruption noise. In the z-domain transform

Yi(z) = Ho(2)X(2) + Ee(2). (3.10)
er(n)
_|_
z(n)—  hi(n) Y (n)

Figure 3.1: Model representation with noise corruption. In-the proposed model, we
only assume measurement noise.
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Assume the fact that the scans are consecutive and narrow enough to have the
variation between hi_;(n) and hi(n) negligible. As a result the fractional noise

change becomes sharp and locally identified
Ye—Yior=(Hy— Hi))X + Ep — By (3.11)

which leads to
lim (Yl — Y;;_I) = Ek,k—l(z) (312)

A gy e

which is the zero mean noise spectrum and e is an arbitrary value. The inverse
z-transform e x—1(n) can be considered the best local estimated noise and thereby,
global noise filtering can be achieved. What we have introduced here is a dynamic

adaption to a time-varying noise spectrum.

The validity of this approach is to investigate the nature of et —1(n). The auto-

correlation sequence of eg 11 should resemble

E

€k k—1 =0

(3.13)
0 [#£0

Ve k—1€k k=1 (l) =

if exk-1{n) is white noise sequence, and E,, ,_, is a constant. What is of interest is
to examine the effect of the distance of the scans on the noise estimation, which can
be accomplished by evaluating the sequences egx—1(n), exr—2(n), €xr-3(n),... and

comparing their corresponding auto-correlations.

3.5 Deconvolution in Remote Sensing

A large class of systems can be represented by a convolution of the input and the
system impulse response. Even the system impulse response can be represented as
a convolution of impulse response functions of many subsystems. The problem of
deconvolution has been solved by many different approaches, as for some time this
was a major issue in seismic applications. Among others we can identify the following

filtering techniques: Weiner filtering [92] and Homomorphic deconvolution [90].
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3.5.1 Example: Least Squares Prediction in Radar

Assuming the signal y(n) was recorded at the antenna for an excitation sequence

z(n), the output wavelet may be written as

L
y(n) = Z kiz(n — Di) (3.14)

where k; is the reflection coefficient at the ith depth and D; represents the corre-
sponding propagation delay. The number L is the number of points recorded. The

received signal y(n) can be viewed as the convolution of the excitation z(n) with the

sequence i
h(n) = kib(n— D;) (3.15)

i=1
where f2(n) is a function of the characteristics of the medium. What is of interest is to
recover the sequence £(n) from the measured sequence y(n). Consequently the prob-
lem becomes an inverse filtering to remove the excitation effects of z(n). In reality,
the current problem of inverse filtering is more complex. The ghost patterns, which
are a series of reverberations, are known to strongly mask the measurements which

are represented by the sequence ¢(n). In general, when all variables are considered,

the received signal can be represented as
y(n) = z(n) * c(n) = h(n). (3.16)
As a result, the sequences z(n) and c(n) are to be eliminated. Let
p(n) = z(n) * ¢(n) (3.17)

as a single sequence to be eliminated. The sequential effect of a signal path may be

expressed as
p(n) = z(n) — cz(n — D) + Fz(n—2D;) — SCa(n —3D;) + ... (3.18)
and in the z-transform domain

P(z)=(1—cx™P + %722 = 32730 4 )X (2) (3.19)



Chapter 3. System Identification: Exploiting Wavelets 28

which converges to
1

1—e¢z-Di

P(z)= X(z). (3.20)

Therefore, the system function for the ghost pattern can be expressed as

1

Tl ez D

C(z) (3.21)

Since the coefficient ¢ < 1, the system is stable and its inverse is FIR and mini-
mum phase. The deconvolution is designed to remove the effect of z(n) and ¢(n)
simultaneously. To derive the inverse system for deconvolution, it is necessary to
adopt a well based statistical approach. The assumption is that the sequence h(n)
is uncorrelated [92] [78] and consequently has the following autocorrelation

E, =0

maa(l) = (3.22)
0 140

where Ej is some arbitrary constant. On the other hand, the sequence p(n) =
z(n)*c(n) is highly correlated. As before in the previous section on noise estimation,
we will assume the fact of consecutive narrow scans for small variations in the output
observation and, hence, we can predict future observations. If y(n) is the observed

output sequence of the real system, let §(n) be the output of the predicted model,

and

M
g(n) =Y bez(n — k) (3.23)

k=0
where by, is the prediction coefficient. Sine the previous equation describes an FIR

filter, of length M and coefficients by, the filter coefficients are selected to minimize

the sum of the squared-error sequence, that is

o M 2
e=). [y(n) =Y bz(n—~ k)| . (3.24)

n=0 k=0
The minimization of € with respect to the coefficients b, leads to the equations of

the form

M
2 birgy(k — 1) = ry (0) (3.25)
k=1
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y(n) L
I
Delay z7! > FIR

predictor

Figure 3.2: Linear prediction and deconvolution. The FIR. predicts a sequence g(n)

from past samples and subtracts it from the observed values to yield the desired
sequence h(n).

where 7y, ({) is the auto-correlation of the sequence y(n) defined as

o0

() = 3 y(n)y(n —1). (3.26)

n=0

We can express again the linear equation in the matrix form as

. 7'yy(0) Tyy(l) T‘yy(l‘/f - 1) by ryy(l)
Tyy(1) Tyy(0) oo Tyy(M ~2) by _ Tyy(2) (3.27)
[ 7o(M = 1) 7yy(1) oo 7(0) Ji bar ] L rys(M) -
or equivalently, as
Ryyb =ryy. (3.28)

These equations, often called the Yule-Walker equations [62], admit an efficient solu-
tion due to the Levinson and Durbin algorithm [57]. Since the correlation sequence
{rns} is an impulse, it follows that {r,,} = Ey{rpp}. In view of the foregoing cor-
relation, the FIR filter predicts the sequence p(n) from past samples of y(n). The

predicted g(n) is basically an estimate of p(n), and is subtracted from the observed

values to finally yield the desired sequence h(n) as shown in Figure 3.2.



Chapter 4

The Inverse Problem

The moment one begins to investigate the truth of the simplest facts which
one has accepted as true, it is as though one had stepped off a firm, narrow
path into a bog of quicksand ~ every step one takes one sinks deeper into the
bog of uncertainty.

L. Woolf.

In formulating the solution techniques for the inverse problem as well as for the
inverse-scattering problem, an important consideration has been to maintain their
capability of being generalized to more complex configurations as much as possible.

A consequence of this approach is that the conclusions obtained from the abstract

formulation must be verified by computing numerical results for adequate inversions.

The inverse problem is a complicated process. Techniques vary in their approach
to solving the inverse problem. Trial and error techniques are too cumbersome.
Analytical inversion of the direct problem does not leave much space for a realistic
application and is possible for few cases, and even then meets with many difficulties.
Problems such as uniqueness and stability are to be dealt with. There is a brandil
of mathematics in which problems of uniqueness and stability have been studied

extensively: Linear Algebra.

30
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4.1 Introduction

Qur dull description of an inverse problem was based on terms of common knowl-
edge in scattering and slightly on terms of electromagnetic scattering, but, with a
little stretch of the imagination, the analogy can be transposed to a generic infinite

scattering phenomenon with a finite measurable space.

The interpretation of scattered radiation is rarely straightforward. Often the
information contained in the raw measurement data requires a considerable degree
of processing before a sensible conclusion can be made about the object. Indeed,
it is only after the implementation of some ihversion procedures, which necessarily
contain within them a description of the scattering mechanism, that the measure-
ment can be transformed into an understandable cognitive form. For example, the
images of an object produced by two electromagnetic detection devices operating at
different frequencies reveal distinct differences when compared, despite their both
having emerged from antennas and being formed from scattered radiation. More re-
strictively, some electromagnetic signals can bc mampulated more easily than others,
whereas other wave fields can provide valuable information despite the encountered

difficulties in their manipulation.

In the development of electromagnetic theory, emphasis was placed on discov-
ering the implications and exploiting a few specific applications of the theory. As
a consequence, all effort was invested on the forward problem, that is, on finding

solutions to Maxwell’s equations rather than on the corresponding inverse solutions.

The individual constraints and challenges imposed by electromagnetic theory
have led to different inverse solutions. In recent years, the emphasis has shifted
from solving the exact inverse problem to adapting techniques which can be applied

with confidence in certain areas which have greater flexibility with relation to the

measurements.
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4.2 The Inverse Problem Formulation

Any scattering problem can be represented in terms of a wmapping between certain
sets of functions. Before presenting the inverse problem itself, it is appropriate to
consider the forward problem within this context. The direct problem consists of
finding how a set of functions p forming the elements of the parameter set P, which
describes the scatterer, are mapped to the set of functions d, being the elements of
the data set D and hence describing the scattering phenomenon in its conceptual
form. The mapping A is an operator which acts on the elements p € P to produce
the data set d € D, or

A: P> D. (4.1)

Provided that the operator and parameter set are known, the data set can be defined

as:

D ={d: A(p) - d}. (4.2)

This formal definition of the forward problem can be restated in words such as the
set D is the collection of elements d such that the operator A maps p to d. Solution
of the inverse problem can be defined as finding the inverse mapping and the inverse
operator A~! which constructs the parameter set from the data set. In this sense, the
inverse operator performs a reconstruction of the parameter set and, again, provided

the inverse mapping and data sets are known, the parameter set can be defined as:
P={d: A"Y(d) = p}. (4.3)
These operations are shown schematically in Figure 4.1.

If these general concepts are related to a real scattering experiment, then the
complicated relationship between the mapping and the respective sets scon becomes
apparent. First of all, consider the parameter set. This set of functions is unlikely to
represent a complete description of the object, being deficient in specific parameters

which may contribute to measurements, such as geometrical constraints. In addition,
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forward

inverse

Figure 4.1: Demonstrating the forward and inverse problem as a mapping between
parameter and data sets P and D respectively. The mapping itself is a representation
of the scattering phenomena where forward and inverse are function operators.

measurements are made from a finite set of wavelets or finite discretization of spatial
and temporal domains, and this inevitably means that we cannot deny the data
incompleteness. Specific to radio detection and ranging, knowledge of the source
signal is also deficient and results in an additional complexity in the accuracy of the

forward problem itself prior to any inversion.

The mapping itself is a representation of the scattering phenomena, usually de-
duced from a knowledge of the propagation characteristics. For the majority of
electromagnetic applications, including radio detection and ranging, the mapping is
derived from a wave operator. It is important to realize that this wave operator is
linear in the forward mapping problem and nonlinear in the inverse mapping problem

of the data set to the corresponding parameter [45].

One critical aspect of inverse solutions is the effect that inaccuracies in the mea-
sured data have upon the accuracy of the reconstruction. These inaccuracies can be
introduced by the measuring equipment. The problem of errors can be considered
of high importance and is treated on its own as there is no intention to study the

Jmpact of noise on the inverse solution. Some noise analysis was presented in Section

84l
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4.2.1 Labelling the Inverse Problem

Many issues have obvious bearing on the validity of an inversion in the existence of
the reconstruction, that is, the inverse mapping maps elements from the data set to
those elements which are proper members of the parameter set. One wishes that the
inversion should also be unique, in the sense that every element of the data should
correspond to a single element in the parameter set. However, it will become evident
that the mappings describing inverse scattering in electromagnetic applications are
nonlinear, indicating the existence of more than one inverse solution to the scattering

problem. In this thesis we classify the inverse problem into four categories.

Definition 4.1 (Inverse Uniqueness) A unique inversion is one in which every

element of the data set should correspond to a single element in the parameler set.
P={p: Alp) = d; A~(d) = p} (4.4)

Definition 4.2 (Inverse Stability) A stable inversion is one in which an infinites-
imally small change in the data set gives rise to correspondingly small changes in
the parameter sel. If the changes in the parameter set are large, then the inversion

is deemed to be unstable.

P={d: A7'[d+ e] = [p+ ¢} £,€ < 00 (4.5)

and g, € are arbilrary values.

Definition 4.3 (Inversion Divergence) A divergent inversion is one in which,
for every element in the data sei, there is at least more than one corresponding
element in the parameter set. Hence the divergence factor of the inversion is the

ratio of the corresponding element in the parameter set to the whole set.
P={p: A" (p) = P} 0<a<1 (4.6)

where alpha is the divergence factor.
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Figure 4.2: Depiction of a unique, divergent and ill-posed inverse problem. A per-
turbation of the set can lead to an unstable solution which is a point outside the
parameter P space but with some feasible dimensions. The ill-posed inverse prob-
lem occurs when the reconstructed parameters lie outside the domain of feasible
dimensions.

Definition 4.4 (Ill-posed Inversion) An ill-posed inversion is one in which there

is at least one element in the data set that does not have at least one corresponding

element in the parameter set.
P={3d: A" (d) = {}} (4.7)

[n general, ill-posed problems are the inverse problems that do not admit solutions
[27], that is, numerically, the inverse operator A~! does not exist or is the null
operator {2]. However, in the realistic aspect of electromagnetic scattering, the unique

inverse problem and the ill-posed inverse problem will not be stressed in this thesis.

An ill-posed problem is schematically described in Figure 4.2. The inversion of
the data does not yield anything in the parameter set P. However, in Figure 4.2,
the same element deriving from the data set D breaks off into two possible elements
in the parameter sets. The consideration of solving a divergent inverse problem
is at best ambiguous. One reason is that the inverse problems in electromagnetic
scattering are divergent problems by definition of the scattering wave operator. In
other words, in electromagnetic imaging the formulation of an inverse operator is

feasible at least in an approximate perspective,
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4.3 The Backus-Gilbert Solution

Considering that initially there are a finite amount of sensor measurements, the hope
that there exists only one satisfying model is vain. In fact, Backus and Gilbert have
proved [2] that the set of models satisfying the finite amount of data is either empty
or infinite. As Backus and Gilbert point out, the uncertainty in the final model
results mainly from the finite number of measurements and provides a basic insight
into the approach of how to choose the model which is the “smallest” in a least-

square sense, that is, to minimize the Euclidean norm of the sensor measurements

[3] {4]-

Similar world modeling methodologies introduce some concepts of linear regu-
larization of elements as they seek to maximize the stability of the solution. The
Backus-Gilbert method looks at the relationship between the solution and measure-
ments and proceeds to minimize what is called the resolution function kernel. Once
the model has been calculated, it remains to determine its uncertainty which is com-
puted as a function of the smallest model and the magnitude of the image. As a
result, it becomes clear that there is a trade-off between the uncertainty and the
resolution range of the image. This process is termed regularization in inverse prob-
lem nomenclature. Nowadays, Backus-Gilbert is often recommended as the generic
method of choice for designing and predicting the performance of experiments that

require data inversion.

4.3.1 Resolution Limits and Resolving Power

This thesis plainly defines resolution as the ability to distinguish between two closely
spaced parameters. A spatial resolution defines more specifically the minimum dis-
tance between the spatial coordinates in the parameter space. Forshaw and others

[26] discuss alternate definitions of spatial resolution. Resolving power and spatial
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resolution are closely related concepts. The term resolving power applies to the imag-
ing and transformation procedure, whereas spatial resolution applies to the Cartesian

coordinates produced by the imaging or transformation procedure.

In the inverse problem, the resolving power is of interest since the inversion
is validated by the spatial resolution. In fact this concept is broadly applied in the
forward modelling and residual error computation in the least square sense where the
resolution is set to a numerical threshold. Though some computational perspectives
become redundant, since the correct validation is the visual perception of the image
rather than the algorithm’s convergence, this discussion is expanded in Chapter 8
from an image perception concept. In this thesis our concern is on the qualitative
understanding of the resolving power that leads to the spatial resolution knowledge

maps.

The advantage of these approaches is that, in principle at least, they are appli-
cable to all remote sensing and scattering phenomena, with any amount of available
information. More information simply leads to better numerical stability, faster con-
vergence, larger tolerance and probably uniqueness, although the last property may

be difficult to achieve in a complicated situation, even with sufficient data.

In any re;il‘life situation, noise and other uncertainties associated with a measur-
ing process are always inevitable. However, there are few authors who have concerned
themselves with the resolution limit imposed by these uncertainties [4]. One expla-
nafion may be that approximations of one sort or another must be made in all the
methods used. Hence the resolution limits are actually governed by the degree of

approximation rather than the measurement uncertainties.

According to the Backus-Gilbert method, the set of models satisfying the finite
amount of data is either empty or infinite. In our context of remote sensing in
general, the Backus-Gilbert solutions sets are of the ill-posed inverse type. However,

the inverse problem in electromagnetic scattering admits a finite amount of solutions
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which therefore are of a divergent inverse type. The resolution limit in our context

is to determine uncertainty factors of the estimated parameters.

4.4 Inversé Problem: A Qualitative Approach

The starting point of our inversion investigations is to clearly define the inversion
problem and what is exactly required of the inversion process. As the proposed
inversion process described in this thesis is applicable in a generic fashion, our inves-
tigations revolve around the macroscopic description of Maxwell equations in their
application in radio detection and ranging. There is no doubt that the proposed
concepts in this chapter can be validated in areas other than remote sensing which

involve somewhat incomplete data inversion.

There are no methods at our disposal to correct the inverse of ill-posed problems,
however, we can restrict the divergent inverse problem to one from a stability sense
(Figure 4.3). The study of the convergent inverse problem in its practical context has
led to the development of techniques which incorporate constraints on the inversion
or reconstruction operation which have some physical relevance to the problem being
considered. These constraints consist of information which is independent of the data
set and therefore should be known a priori. Constraint is a useful description since it
conveys the correct impression that the information is used to confine the inversion
process to solutions which are considerable or sensible in electromagnetic applications

and radio detection and ranging.

In Section 4.2, we have briefly mentioned the effect that limited and erroneous
data can have on the qualitative inversion. A proper examination of the scattered
field data is therefore of major importance to the successful implementation of an
inverse solution. As a matter of fact, the__fheoretical development of inverse scattering
solutions might profitably be influenced by the quality of the measured data. It is also

true that compromises must be made in the implementation of the inverse scattering
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Figure 4.3: Schematic illustration of knowledge inference to stabilize divergent in-
verse problems. Knowledge inference accepts many types of a priori information
about either the data or the parameters and may include constraints of conformity
to certain statistical distributions and sensing resolutions. Manipulating the a pri-
ori information results in the regularization synthesis, although the derived solution
is not a unique solution but rather some a posteriori knowledge sets that provide
knowledge maps of the parameters.

theories. The art of this thesis subject is to ensure that, in making such compromises,
some knowledge is retained in a descriptive manner. Hence, qualitative inversion can

be performed, and this process will identify the particularities of the application.

In this thesis we have adopted a different perspective to approaching the inverse
problem. The implication of knowledge inference and higher order statistical inter-
pretation of the inverse problem provides a quulitative approach to associating n-u-
surement truth parameters with understanding. As the proposed technique for the
inverse problem in this thesis is given the generic term synthesis and regularization
method, we will show in future chapters the inversion scheme based on knowledge
inference methodologies that exploit concepts of Information Classification (IC) and

Information Visualization (IV). Similar work has been approached by Zucker and

others [99] [47]. pr—

s
o

i\
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4.4.1 The Inverse Problem in Radio Detection and Rang-

ng

Although measured data consist of real numbers, it is often convenient to analyse the
properties of signals by constructing the analytical signal which is the extension of the
real signal in the complex plane. In this form it is straightforward to deduce the signal
amplitude and phase which are natural descriptions of electromagnetic wave fields.
In most circumstances, however, only the amplitude of the scattered field is recorded.
In this case, the inverse computation of the phase field from the direct measurements
obeys the uniqueness and stability requirements and is directly computed as wavelets
[36] [16] [77]. Section 7.3.2 describes the computational approximation of the phase
signal as the application to ground penetrating radar. The deconvolution of the
measurement data into two separate data sets of phases and magnitudes is used
associatively in the inversion process. The deconvolution example in Section 3.5
can be transformed to a generalized deconvolution prediction process and therefore
solved for the phase. Other techniques can be employed in estimating the phase -
from the measurements by a minimal knowledge of the electromagnetic field. What
prompted the topic of phase retrieval from the amplitude data is the verification of
an assertion by researchers [97] disputing the minimal phase of recorded signals as
proposed by [92] and [78]. The phase may contain coherent information and may

not have been properly investigated in ground penetrating radar applications [35].

In order to be able to handie divergent inverse problems adequately in el;ectro-
magnetic scattering, one must use the recorded measurement to its full extent. In
other words, maximum knowledge has to be extracted from the measurements and
used thereafter in estimating the model parameters and distributions 4.4. However,
one must bear in mind that the solution is only as good as the accuracy of the mea-
sured data and optimal knowledge separation and inference. There is no dispute
about the mathematical model of the inverse operator in radio detection and rang-

ing, although one must note that the essential aspects of divergent inverse problems
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Figure 4.4: A priori knowledge has to be extracted from the measurements and used
thereafter in estimating the a posteriori model parameters and distributions.

reside in handling the inverse operator solutions.

4.4.2 Synthesis and Regularization

. Statistical inversion methods have recently been shown to be able to produce essential
new information in most remote sensing applications [53]. The inversion problem we
are approaching is the inversion theory for multi-valued variables, which have some
dependent probabilistic distributions. In fact, this would make it possible to handle
white noise in a convenient way. But, mainly, the estimated inversion could be
described by infered stochastic processes which could clarify the interplay between

. resolution and accuracy.

In our model, we construct the knowledge space by standard deductive methods
of the hyperbolic inverse operator but we may have no source of information about
the weights of the propagation (e.g. aperture angle). The question is addressed
whether 1t is possible to compute accurately the measure of uncertainty of the re-
sulting inverted Anowledge map. For example, it can be proven that the longer the
hyperbolic sensor line (the inverse path of point estimates), the larger the evidential

. space and the more certain a conclusion. However, technical descriptions will be
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kept for the application to radio detection and ranging chapter (Chapter 7).

As the conceptual approach of the regularization synthesis is analysed, the math-
ematical formulation 61‘ the inversion procedures will be discussed in the next two
chapters. The philosophy of the regularization synthesis resides in statistical inver-
sion theory with the initial constraint that measurement data do have an a priori
knowledge. Typical measurement data resulting from a forward problem as defined

in equation 4.2 may be represented by series of indexed data, or
D=[d(ht)] i=12,.. to<t<t, (4.8}

where u* is the measurement space, and h denotes a generic measurement wavelet
time indexed by ¢. Considering the problem is linearly separable, h is broken down
to one or more of its components such that
[w'(h, )] = 3 ([u'(h, 1)) (4.9)
k
Therefore the probability space where u! is measured can be expressed by the a priori

density functions .
o _ Lo
k Zk [ul(hkat)]

On the other hand, the inverse problem as in équation 4.3 can be expressed as

(4.10)

P=['(h,t)] i=12,. {fo<t<t, (4.11)

where ' is the computed space and h denotes a corresponding estimated wavelet

time indexed by 1. As the problem was assumed to be separable, this leads to

[wihy, O] = £ ([ (hy, 1)]) (4.12)

where by is the estimated wavelet and f;! is some inverse operator function. Hence
the collection joint probability density functions of the estimated wavelets are ex-

pressed as .
S{—t _ [v'(hk,t)]

= S i, ] 1)
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which is a good way to give marginal densities of inverse problems with respect to

each inverse operator involved in the process.

The approach we are taking towards developing the regularization synthesis,
which may be used to represent all of the various symbolic and numeric aspects
of a priori knowledge delineated by beliefs and uncertainty, is to consider a logic
of argumentation. We extend the logic so that not just one argument, but all ar-
guments, supporting or cpposing an inversion hypothesis are considered in a given
decision-making context, that is, the logic used to structure the inverse problem. We
hold this to be the key component of the practical inversion synthesis and regular-
ization. As arguments are identified, the support they confer on a hypothesis or its
negation is aggregated to provide a measure of the degree of belief in the hypotheses
of interest. The aggregation operation will depend on the calculus used to represent
the uncertainty or vagueness associated with the arguments. The choice of calculus
will in turn depend on the representation requirements and the information which is
available from the given a priori knowledge maps. By inversion theory, the synthe-
sized inverse solution is objectively an a posteriori density function regardless of the
innovation of the regularization factor (rf) (Section 5.4) that largely influences the
knowledge map density functions. As the a priori densities are approximately con-
stant and the knowledge maps densities are resolved, the problem can be formulated

as the minimization of the norm of the covariance matrix {cov; (-t] or

Min: ||E [([u*(h, 01— 87) (5 (wi(h, £)]) - sf“)T] I (4.14)

where £ is the expected value.

The analysis of evidence supporting hypotheses is a promising framework for
drawing conclusions efficiently without losing resolution limits. Two different as-

sumptions lead to stable expressions of the a posteriori knowledge maps derived
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from the hypotheses based on the belief functions. The first assumption is one of in-
dependence of each measurement or evidence from all other measurements (Chapter
5). The second assumption is one of independence between each measurement and
the hypotheses derived from the remaining evidence. The required independency in
equation 4.14 is not an assumption but rather a requirement of the inverse problem.
In reality, the independency between the a prioriand a posteriori knowledge sets only
guarantees a solution to the inverse problem [53] [27] for all the inverse operators for
maximum independence. The analogous operz*tion yielding maximum a posteriori
estimates is found in many stochastic relaxation processes with Bayesian restoration
in pattern analysis [1] [31] A common interest of this thesis and the stochastic
relaxation is stability. Image restoration by a maximum a posteriori estimate by

annealing [31] is in fact creating independence between the marginal distributions.

The ability of deriving a posteriori knowledge map distributions provides many
possibilities for approaching various statistical testing problems [88]. In our deriva-
tion, when there is more than one knowledge map to choose from, each of which has
its own a priori spaces for its corresponding variable, an inversion approach might
be formulated by considering the union of these a priori spaces. The test would be
based on calculating the density functions of the inverted space and minimizing the
partial density function dependencies as in equation 4.14. In other words, the ob-
jective is to utilize the density functions as in equation 4.13 in the synthesis process
which can be carried out in optimal fashion through Kalman Filtering which will be

expanded in Chapter 6.

4.4.3 Discussion

It is true, nonetheless, that a highly divergert inverse problem needs more regular-
ization, that is, a higher order complex knowledge map, than a problem which is only
weakly divergent. We can remark also that the complex derived knowledge maps for

weakly divergent inverse problems are trivial in the sense of the excess of information

AL
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they represent. The major disadvantage associated with imposing trivial knowledge
constraints is the cumbersome mathematical and programming methods required to

determine the numerical solution when the solution already exists.

A basic difficulty of this kind of method is that one has to specify adequate a
priori distribution knowledge. As the probability law that governs measured data is
unknown, numerical modeling is needed to define the separate variables involved in
the forward problem, and hence form the a priori knowledge map for every identified

variable.

The numerical solutions constructed using high order synthesis regularization as
in Chapters 5 and 6 converge non-iteratively in a consistent manner, provided of
course that the inverse problem is at worst a stable and divergent case. As far as
we can see, application of the proposed inverse problem solution will require, sooner
or later, the experimenter to speculate constructive information about the proposed

solution from its numerical representation, as will be described in Chapter 8.



Chapter 5

Synthesis: A world of Beliefs

In maximum entropy restoration, the entropy of a physical system in some
macroscopic state of an image is the logarithm of the microscopically distinct
configuration knowledge nodes leading to the same macroscopic image. In
some situations there is reason to believe that the entropy of a stable system
is of lower entropy whereas any ergodic behavior only increases the entropy.

adapted from Boltzmann.

5.1 Introduction

One of the important aspects of using evidential reasoning concepts to solve inverse
problems lies in the representation of knowledge uncertainty. The variety of theories
and models for the representation of knowledge with uncertainty factors has been
addressed often in research [11] [19] [73] [81] [98]. Several optimality criteria, such
as maximum likelihood and minimum entropy, have been used in handling the un-
certainty of knowledge. Shannon [82] introduced in 1948 the notion of entropy as
a measure of uncertainty in information theory, and, since then, this concept has
been intensively applied in probability contexts. The entropy computation concept
is also used in the current framework to evaluate the uncertainty and in fact forms

the emphasis of the regularization synthesis.

Although the concept of entropy as a representation of uncertainty factors can be

46
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used in a large range of applications, we employ in the derivation and validation of
the proposed regularization synthesis method a specific model in knowledge represen-
tation. The current work draws on research in knowledge inference. In particular, it
is validated by the methodology of empirically constructed knowledge networks (i.e.,
inference networks) [58] [59]. Such networks serve as a basis for making inferences
about knowledge assertions where knowledge maps can be extracted. The present
study basically employs similar maps by augmenting the implications with certainty

measures and optimization methods.

()| 6|6
) () ()

T4
() ||, o)
Xi X3 Xx

Figure 5.1: Typical networks. Right: Node Xj, X; and node Xy are the frame of
discernment in Dempster-Shafer. Left: Any two knowledge units can be linked in a
single direction, in both directions or not linked at all.

The described electromagnetic image inversion problem fits into the general ob-
jective to develop a method of building a #nowledge map from sensor based data. To
approach the inverse problem as an issue, it is necessary to analyse the simultane-
ous eflect of both types of characterization of the belief functions and the evidence
propagation scheme as they all affect the accuiracy and variability of the reasoning.

Therefore, the objective becomes that of addressing the optimization of the belief

functions in the construction of the knowledge map. In other words, the interaction
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between the belief construction method and the evidence propagation scheme that
would affect the accuracy and variability should be optimized. We propose an opti-
mization method based on entropy computation, and hence minimizing uncertainties
will result in a series of classified knowledge maps within a context of probabilities.
For example, it could happen that some initial beliefs (assumptions) based on some
evidence propagations are more valid with some constructed belief functions than
others, thereby confirming that the sequential image classification (reasoning) must
be considered a function of both the evidence propagation scheme and the belief

function’s construction.

5.2 Belief Function Propagation of Evidence

Bayesian inference is based on the mapping of an implication relation into conditional
probabilities. Let {z;,22,...25} be N independent radar measurements of z; such
that

z = {z1,22,...25} ) (5.1)

Given the conditional probability function fi(z|z:), updating the knowledge of z
given z; measurement would be based upon P(z|z;). The difficulty with the scheme
stems from the fact that with further estimation of y and with a relation y — z;,
then there is a need to update the value estimated of 2 based upon P(z,y|2;), and
so on. As more observations occur, the conditional probabilities become practically
impossible to estimate, whether subjectively or from sample data and consist of the
inverse problem. To address this difficulty in Bayesian belief network, we consider
the fact of dependence between implication relations. In other words, z and y would
be dependent and we would not need to obtain the joint conditional probability
P{z,y|z:) but would need only the simple conditional probabilities to compute the

new probabilities of P(y|z) and P(z|y) or

{o,y =z} = [z =), (5.2)
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These dependencies, when they exist, form the context ol belief networks to the

extent of this thesis and the regularization synthesis in the sensor fusion.

Belief networks (Figure 5.1) are directed cyclic or acyclic graphs in which each
node represents a knowledge unit (ku) and each link represents an implication rela-
tion [84] [43] [15]. Suppose that we are given a certain knowledge map about which
a new knowledge state is to be analyzed resulting from an additional sensor mea-
surement. Thus, a complete knowledge estimation of all the knowledge units would
indicate the new knowledge map state. It is this estimate and assessment that form

the basis of the proposed regularization in its logical form.

Initially, our present approach to knowledge regularization relies on an inference
network [10]. The inference network, in conventional knowledge-based applications,
usually refers to a representation of knowledge structure (Figure 5.1) as defined by
equation 5.2, which enables an inference engine to make explicit conclusions given
some specific measurement data. For the purpose of knowledge mapping, we use an
instantiation of such a representation, that we identify as a knowledge structure, as a
basis of performing inferences and thereby handling the regularization of uncertainty

factors to each sensor individually.

Bayesian inference is based on the mapping of an implication relation into condi-
tional probability relations which form the skeleton of the knowledge structure. The
Dempster-Shafer theory, as introduced by Shafer [81], offers a powerful methodology
for revising beliefs about uncertainty in the presence of new information (i.e., accu-
mulated evidence). We suspect optimization in the beliel updating process can best
characterize the regularization reasoning. Other related {ormalisms exist [98], such
as Pearl’s Bayesian networks [72] [73], though we presume that Dempster-Shafer will
fit in our application of subsurface imaging, and be the first step in solving an inverse

problem through evidential reasoning,.
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5.2.1 Bayesian and Dempster-Schafer Belief Functions

The Dempster-Shafer theory of evidence accepts partial specifications in the form of
logical sentences and allows a probability assignment to a subset of these sentences.
Mathematically, it offers a rigorous way of combining beliefs from distinct sources
(e.g., confirming and dis-confirming supports) to obtain a set of aggregate beliefs. Of
most significance, it distinguishes the state of ignorance about a proposition from the
relative weight afforded to the proposition versus its negati'on_,,_Therefore, as a system

for representing and manipulating degrees of uncertainty, we believe that uncertainty

optimization in Dempster-Shafer theory would be well-suited to modeling the process

- of assessing knowledge based on the accumulation of evidence.

Unlike the Dempster-Shafer scheme, the Bayesian belief network treats rules as

conditional probabilities. The axioms of probability require that
P(K)Y+ P(-K)=1 (5.3)

and, hence, may sometimes raise concerns about represe-ﬁting belief measures. For
instance, an observation leading to the belief of K does necessary commit the com-
plementary dis-belief about K. In general, the amount of truth observation is not
bounded and the axioms are to be questioned about handling uncertainty in order

to reach conclusive judgements.

There exist various interpretations of the imprecision ! measures associated with
an implication.‘r\ule [49]. Each inﬁerpretati’on dictates the way in which inferences are
to be performed. In our knowledge assertion, we have chosen the Dempster-Shafer
model of evidence and Bayesian model of inference, where the deductions take place
within logical constraints, and the belief information is treated as an empirically
formed meta-constraint as a function of the inverse operator that modifies these

logical constraints. In addition, examples of integrating the evidence theory into real

J—

!Uncertainty.
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world systems can be found in the literature such as inference [37] and multi-sensor

integration [30].

5.2.2 Dempster-Schafer Representation

According to the Dempster-Shafer theory, the set of possible outcomes of a unit in

the knowledge map is called the frame of discernment , denoted by ©. Let us define

the following sets:

number of positive instances
n: number of negative instances

=

P: total number of positive instances
N: total number of negative instances

m: basic probability assignment

Table 5.1: Possible measurement distributions.

Among other possible notations [20] [19], the Dempster-Shafer belief functions

may be written as

p—n 7 =
m(h) = P ipzn (5.4)
otherwise
2 ifn >
miohy= | ¥ HUm2P (5.5)
0 otherwise
m(@)= 1 —m(h) —m(-h) (5.6)

where {%,-h} denotes the hypothesis induced from the observations data. In this
context, when the confirmation m(h) and dis-confirmation m(-h) tend to zero, the
frame of discernment mass m(@) tends to unity. Although the proposed model in-

creases the complexity, there have been suggested more complex representations of
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the Dempster-Shafer theory [96]. In our context, we maintain the entropy compu-
tation independent of the proposed model which is generalized as a function of the

frame of discernment.

Definitions and Assumptions

As mentioned before, the set of possible outcomes of a node is the frame of dis-
cernment ©. If the antecedents of a rule resulting in an inverse operator confirm
a conclusion with degree m(h), where m(h) is above a certain threshold value, the
rule’s effect on belief in the subsets of © can be represented by so-called probability-
masses. (Note that in Bayesian formalism, probability masses can be assigned only
to singleton subéets of ©). When a source of evidence assigns the probability masses
to the conclusion represented by subsets of @, the resulting function is called a basic

probability assignment.

In the Dempster-Shafer model, the probability mass assigned to © represents ig-
norance. If a basic probability issignment assigns m(k) to a singleton corresponding
to the conclusion of a rule, for example K, then it assigns 1 — m(h) to ©. If it
is a negative implication and the evidence dis-confirms the conclusion with degree
m(—-h), then the basic probability assignment assigns m{-h) to the subset corre-
sponding to the negation of the conclusion, =K, and assigns 1 —m(—h) to ©. Unlike
the Bayesian approach, in the Dempster-Shafer model, a subset cannot be proved by

any rule set unless it appears in a consequent of at least one rule.
Formally, a basic probability assignment is a function:
m:2% = [0,1] | (5.7)

where
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Accordingly, a belief function, Bel(X), over © is defined as the total belief committed

in all subsets of X, i.e.,

Bel(X)= Y m{Y). (5.9)

YCX
Combination of Belief Functions

The Dempster-Shafer theory provides a means for combining beliefs from distinct
sources, known as Dempster’s rule of combination. This rule states that two basic
probability assignments, corresponding to two iidependent sources of evidence, may

be combined to yield a new basic probability assignment, and that is,
m(X)=% Z my(Xi)ma( Xj;) (5.10)
X,'ﬂ.a\',:;\'
where k is a normalization factor that ensures equation 5.10 be satisfied,

1

k= — —.
1 = x,nx,=0 m1(Xi)ma(X;)

(5.11)

As will be shown in Chapter 7, this rule of combination plays an important role

in deriving the knowledge maps from the accumulation of evidence and inferencing

results.

5.2.3 Belief Function Propagation of Evidence

The general problem of drawing inferences from objectively assessed evidence is one
in which there is a renewed interest because of the current work in the field of
artificial intelligence. It is natural to attempt to apply Bayesian methods in the
analysis of such a problem [22]. These methods have been groundeci in the concept
of subjective probability [49], for which there exists a solid theoretical foundation.
In general, our concern is with an inference network in which there are chains of
evidence and hypd-‘&heses, several hypotheses supported by the same e{r;idence, and
a single piece of evidence supported by several pieces ofevidence. Pearl [73], for

example, has developed an updating scheme for inference networks.
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We assume that there are only two possible outcomes for each sensor measure-
ment, z;; namely, “the sensor does or does not confirm to the parameter hypothesis in
question”. In the Dempster-Shafer model, this implies that our frame of discernment
will be of the form in equation 5.4. The basic probability assignment, corresponding
to the frame of discernment, to the propagation of knowledge in the knowledge map

can be formulated in the following fashion:

The Algorithm: (BIND &facts)
For each single node in the knowledge structure, there can exist from the inverse
operator, without loss of generality, m nodes confirming the node u; and n
nodes disconfirming the node u,. In this case, combining all basic probability
assignments for each of the possible outcomes can be thought of as grouping all
the rules into two rules, one confirming u; with a basic probability a,ssigrlp.‘:ént

equal to m*(k) and the other disconfirming mk(—'h).‘

By the definition of the basic probability assignment, we know that m*(#) and

m*{—h) can be derived by repeatedly applying

mb(h)=1—- T[] (1 -m'(=h)) (5.12)
1€i<m

mA(=h) =1 J] (1 -m'(h)) (5.13)
1<i<n

and also we can compute

m*(0) = 1 — m*(h) — mF(=h). (5.14)

Hence, the belief prolﬁ-;gation algorithm can be reformulated as: Each of the
knowledge units propagates the belief to itslfneighboring nodes {as specified by
the inverse operator), following equations 5.12, 5.13 and 5.14. In general, if a
node is confirmed, it performs backward chaining, otherwise it performs for-
ward chaining and results in the branching of the propagation into a continuous

direction change. -
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In our case, the belief functions, defined as the set of the beliefs committed to

every basic probability assignment, can bz easily represented as follows,

Bei(u) = {mf(h),m{(=h),m}(©)} (5.15)

and here ¢ represent the time index of the knowledge state. Irom the preceding
discussions, we can readily work out a procedure for automatically deriving the
stability factor of the knowledge unit u which is governed by the relative (e.r.)

standard error estimate

e.r. = |mf(0Q) — m¥_ (@) (5.16)

and the static (e.s.} standard error estimate

e.s. = [mf(@) — mk(©)]. (5.17)

which are computed as a function of ©.

In what follows, we provide basic search and computing steps for regulating the

belief functions.

5.3 Entropy Computation and Optimal Search

In the notion of information theory [82], quantitative concepts were derived with the
intention of optimizing the information process. Whether for simple systems, or for
systerﬁs that have a tendency to grow in complexity and size such as belief network

architecture, a standard method of measuring the system is essential.

In the context of this thesis, the knowledge graph consists of the information sys-
tem model, which is to be somehow measured and which is to acquire a significant
and informative measurable index. Since the knowledge structure faces some alter-

ations when faced with modifications of one or more knowledge units, the knowledge
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structure undergoes a state transition. Here, it is logical to assume that the new
state is more certain than its antecedent as the nature of the modifications added to

the knowledge units is of an informative nature (cumulative evidence).

It is obvious that if a knowledge structure can be controlled to any state, there
is no need to measure the knowledge structure since the final state (i.e. maximum
information) of the structure is readily reached. On the other hand, in the case where
the knowledéé states are not predictable, it is essential to measure the knowledge
3£fucfure at every update or state transition and acquire an index of uncertainty and,
hence, the largest possible transition between a state and its ante.cedent minimizes
the uncertainty and leads to the optimal knowledge state. This procedure is known

as the minimum entropy search.

5.3.1 Uncertainty in Bayesian Networks Revisited

Realizing that the knowledge structure can be at any state, which characterizes the
notion of a degree of uncertainty, it is evident that the information gathered regarding
the knowledge structure can dramatically change the uncertainty index. It becomes
a problem of a sequential selection of knowledge units to be governed by the degree
of uncertainty. Generally speaking, it is clear that the more information gained, the
more the degree of uncertainty regarding the knowledge structure decreases. Hence,
in Bayesian space when assigning to each knowledge unit in the knowledge structure
a probability space, it becomes obvious that the degree of uncertainty is a function

of the probabilities associated with the knowledge units or
H = f(P(w), P(uz), ..., P(un)) (5.18)

where P(u,) describes the probability of the n'* knowledge unit. It is essential
to mention that the degree of uncertainty is a function of the number of units in
general, and, in particular for the knowledge structure, the amount of units is fixed

at N which is also the amount of nodes in a specific knowledge map.
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In practice, to measure the uncertainty of a knowledge unit, we will use the
concept of entropy which was initially developed in information theory [82]. The

entropy of a knowledge unit or node can be valued as

H, = =3 Pi(u)log(P:(u)) (5.19)

where log is a logarithmic function and P;(u) describes the probability space of the
event u. It is important to mention that the probability space is confined to unity or

Y. P; = 1. The index ¢ describes the individual exclusive sets of the assigned space.

In building the knowledge map, as refered. to in earlier sections of this document,
adapted to Bayesian space, knowledge representation is based on the existence of
the {con firm,—confirm} pair, where each contributes equally to the assessment
process. This reflects the aspect of knowledge introduced by the knowledge units with
probability values approaching zero which is considered as valuable as knowledge
units approaching unity, and the sample space of knowledge is divided into two

exclusive spaces (i = 2). Hence the entropy can then be evaluated exactly as
H, = —[P(u)log{u) + (1 — P{u))og(l — P(u))] (5.20)

where u is any knowledge unit in the knowledge map.

Since the basic concept of knowledge assessment is to obtain an impression of a
certain measure of the degree of uncertainty of a knowledge structure of more than
one node (i.e., N nodes), the knowledge structure can be at any state dominated by
the probability sets in all knowledge units. Hence, the uncertainty measure may be

viewed as a [unction of the probability of all units in the knowledge map and,

H = [(P, (). Py (1) . Py () (5.21)

which can be expanded and arranged to a successive sum of the composition of all

the possibilities of all nodes and hence

H=- Z w2 Piy(un) Poyg(un)log( Py, (t1)... iy (un)) (5.22)
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where the index i describes the individual exclusive sets of the assigned probability
space and N the number of knowledge units. In particular for our case, the number
of states of the knowledge unit is fixed to two. As a result, the total number of
combinations is bounded to 2V, Since the logarithmic function of a product can be

expressed as sumnmation, the previous equation may be expanded and rearranged as

N 2
H = =323 Pi(un)log(Pi(un)). (5.23)

which is the sum of the entropy of each individual node 2.

5.3.2 Uncertainty in Démpster-Schafer Networks

Unlike the entropy computation for the Bayesian approach which has many practical
implementations in expert systems, entropy computation for the Dempster-Shafer
approach has few implementations which have been carried out on the same criteria
as its Bayesian counterpart. The controversy relies on the exactness of the entropy
computation in Dempster-Shafer and the linear projection of the entropy in the

Bayesian case.

In Figure 5.2.a, the entropy computed in Bayesian space can be viewed as a direct
cost function of the associated probability. Figure 5.2.b demonstrates the erroneous
attempt to construct the entropy for Dempster-Shafer as a linear projection from
its Bayesian counterpart. In Figure 5.2.b, values {1,1}, {},1} and {0,0} have the
same entropy although each {con firm,—confirm} set represents different amounts
of knowledge. Note that the {confirm,—confirm} pair divides completely and _
exclusively the probability space. Although a formal investigatioh of the linear pro-
jection of entropy can lead to an existing relation between the {con firm,-con firm}

pair which defies the definition of Dempster-Schafer induction rules; we will concen-

trate our effort on directly deriving the entropy cost function for Dempster-Schafer.

“Hint for proof: expand the log to a series of sums and regroup by units and finally collapse the
probabilities to unity.

et



Chapter 5. Synthesis: A world of Beliefs 59

@.7 o,8

z.080

I A S |

| SYMMETRY &

Ent rapy
Entropy

% .000
oy_f 1

o.1 @.z 0.3 O0.a
|

1 !
c.o0t o.9u0
Probablility a b

Figure 5.2: Entropy computed for Bayesian belief networks. Notice the linearly
projected cost function for Dempster-Shafer at values: {1,1}, {3,1} and {0,0}.

Entropy Computation in Dempster-Schafer

As mentioned before in Section 5.2.2 on Dempster-Schafer theory, there is a fixed set
of mutually exclusive and exhaustive elements of the environment which is formally
symbolized by

O = {0,,0,,...,0u}. (5.24)

When an environment’s elements are interpreted as possible answers, the environ-
ment is called a frame of discernment, and only one answer is correct in the frame of
discernment [32]. The term discern means that it is possible to differentiate correct
knowledge states from all the other possible knowledge states to a specific node. If
the knowledge state is not in the frame, then the frame is expanded to accommodate
the additional knowledge elements ®pr41, @ars2 and so forth. One correct state re-
quires the set be exhaustive and that the subset be disjoint [19] [81]. The power set of

the frame of discernment has as its elements all knowledge states of the environment

and

P(O) = {0, {6:1},{02},{01,02},.... {01, -, 0ns }}- (5.25)
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The entropy can then be defined as a function of the power set of the frame of

discernment

Defining the joint distributions,

Q(0) = {0, {01}, {02}, {0:62}, ... }; (5.27)

hence entropy becomes the sum of the individual entropy of each element in the
frame of discernment. The partial entropy of the k** element in the frame can be

written using Equation 5.19 as

2M’

H.(©) = 3 Hy(Qk(0)). (5.28)

k=1

Using the same derivation devised for the Bayesian approach, the entropy for the

knowledge structure can be written as

oAl

H=3 5 Ha(Qu(0) (5.29)

n k=1

where N is the total number of knowledge units or nodes.

In Figure 5.3.a, the overlap plots of the linearly projected Bayesian entropy cost
function and the exact entropy cost function for Dempster-Shafer are shown. Figure
5.3.b is the proposed entropy cost function for .Dempster-Shafer. Note that entropy

increases for values {0,0} and {1,1} and reaches a maximum entropy at {3, 1}.

5.4 Regularization and Minimum Entropy

Since one of the intentions is knowledge assessment, minimization of the uncertainty
becomes essential to satisfying the goal. The concept of minimum entropy com-

putation as the measure of degree of uncertainty provides optimal perspective to
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Figure 5.3;: Entropy computed for Dempster-Shafer environment of two elements.
Notice the cost function at values: {1,1}, {0,0}, {1,0} and {0,1}.

measuring the knowledge structure although that is only valid when the interest of

the knowledge assessment is fair and is particular to the {con firm, —con firm} set.

To understand the concept of the regularization of entropy for the knowledge
maps, it is imperative to realize that the goal of entropy is to locate the maximum
uncertainty in the network and require the measurements of the knowledge unit
that minimizes the uncertainty. However, when a large amount of the knowledge
units are distributed around a certain mean different from %, the entropy of the

total system increases around the mean and results in a momentum hias, whereas

uncertain knowledge units located symmetrically away from the mean are not well

represented.,

A practical way to view the impact of the bias is to consider a specific knowledge
map with a probability assignment to each knowledge unit. Since the entropy of
a knowledge structure is the sum of the entropy of the individual knowledge units,
it becomes ciear that the mean of the probabilities is reflected in the knowledge
:structure entropy computation and hence forms a momentum towards an extreme

. “in the devised set {knowledge, ~knowledge}. A control of the mean would result in
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a moderate control in the minimum search and hence regularize the entropy search

by the cumulative momentum.

5.4.1 Sensitivity and Regularization

In practice, the entropy of complex systems of multiple units can exhibit eccentric
behavior due to the effect of any possible cumulative bias in the structure. Such
behavior can occur in dynamic systems when the minimization of entropy is used.
This can be viewed as the belief values being driven numerically towards zero or one
and hence any initial bias will force the minimization to follow a path constrained

by the momentum.

The computation of the momentum of the entropy in a knowledge map is some
function of the mean g which is the average sum of the assigned probabilities P{u,,)
of the knowledge units. The mean can be written as

1N
=5 zﬂ: Pluy) (5.30)

and hence we can warp the knowledge map probabhilities to the space normalized by

the mean which can then be expressed by the posterior probability
P'(un) = P(P(un)|l — p) (5.31)

and the Bayesian posterior probability is expressed as

’_ (1—#) P
i e i) (532

The transformation is one to one, mapping every unit to the new probability

space. Such a warp will ensure that the entropy cost function is balanced and the
bias momentum is reduced. The direct impact of warping the data around the mean
will result in as much interest in resolving uncertain data as in resolving more certain
data. The reduction in the bias momentum is not sufficient by itself to guarantee

a good estimate. In fact, there is no advantage to performing statistical warping
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besides that of escaping the unpredictable bias. However, achieving a control on the
bias is highly significant to the inverse problem. Let A be the bias momentum we
would like to achieve and hence the desired mean p’, which is also the second order

warp, 1s computed as

P'=P(P);  Ae[01] (5.33)

A is the proposed regularization factor (rf) in this thesis to accomplish the second
order warp around the mean. As a result the entropy, for example in Bayesian space,

“can then be expressed as
N 2
H==3"% P'(us) (5.34)
where such mapping introduces an entropy decrease for the units neighboring the

bias ¢ and an entropy increase for the units neighboring A.

=

Figure 5.4: Left: A warp of A = 0.2 compared with warp of A = 0.5. Middle and
Right: A combined warp of ¢ = 0.8 and A = 0.8.

Similarly, the approach can be derived for the Dempster-Shafer belief functions.

The mean of the mass beliefs is computed separately as

1 N 1 N
ph = 'ﬁznln(h); fhh = szn("h)- (5.35)

Mapping the mass m to a new space m’ normalized by its mean is expressed again

by the posterior probability function or
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Figure 5.5: Entropy functions as a notion of uncertainty measure: left to right, a
comparison of the resulting entropy functions for a warp for ¢ = 0.8 and y = 0.5,
given two distributions with mean 0.5 and 0.8.

m"(h) = Pm(h)|1 - pp, \) (5.36)
m(=h) = P(m(~h)|1 — pap, A) (5.37)
m"(0@) = 1-m"(h) — m"(=h). (5.38)

Typical warp is shown in Figure 5.4. In Figure 5.5, two probabilistic distributions

are shown. The first fixed plot is normalized with mean § whereas the second is
skewed to the right and has a mean of 0.8. The entropy computation for both
plots is shown In Figure 5.5 and the adapted plot demonstrates the adjustments

introduced.

Finally, before concluding this chapter, the notion of regilarization in adapting
the sensitivity can be viewed as the concept of having maximum conceivable response
of the system to the sinallest knowledge change. That is, in the context of the biased
knowledge structures, the entropy around the bias decreases when mapped. The

entropy become more sensitive to values neighboring the bias centered at A.
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Synthesis: Multi—Sensor Fusion

6.1 Introduction

All deterministic phenomena are inevitably followed by stochastic variations. How-
ever, in practical problems the theory is not perfect and there exist random vari-
ations. The methodologies of perfect science often fail to justify certain behaviors

which could be attributed to lack of knowledge of certain parameters, or simply

randomness.

From a completely theoretical point of view. the parameters, which have heen
labelled as random, do not differ in principle from any other parameters in ques-
tion. Theoretically, the resolution of the problem can grow difficult when additional
parameters are taken into consideration [71]. However, the realization of such an

approach is practically unfeasible, or will result in complicated solutions which are

also not practical [74].

It is evident that there must exist a difference in principle among the inethodolo-
gies that permit us to take into consideration the essential factors governing world
modeling, and also secondary factors that manifest through errors or more simple

random variations. As the essential factors of the inverse problem were developed

65
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in Chapters 4 and 5, this chapter deals with the secondary factors of the inverse

problem, namely, interpreting the uncertainty.

6.2 TUncertainty and Probability Distributions

To compute the probabilities of a random variable, it is not always indispensable to
determine the frequency directly from empirical data. Empirical analysis in remote
sensing is quasi-impossible while the system is under investigation, which leads to a
coﬁtradiction in the a priori a posteriori definition. The theory of probability dis-
pdses of numerous methods that permit the indirect identification of probabilities
in function of other events or measurements somehow related to the investigated
problem. It is these methods on which we try to base this thesis. Chapter 5 in-
troduces an initial approach in multi-sensor fusion to infer the knowledge through
direct and indirect approaches. Nevertheless, it is fundamental to define the random
Ibeha,vior in truth as stable in the sense of a density function,-which is validated in
calibration procedures and laboratory experiments. In most statislf.ica.l distributions,
chance intervention is more or less high, and that is due to the fact that the number
of the selected samples is limited. To resolve this issue while processing the sample
space, it is necessary to choose a theoretical curve to approximate a statistical distri-
bution and to express the essential elements of the samples without expressing the

circumstances.

The probiem consists of finding a theoretical curve which in a way provides a
satisfactory description of the sample space. The search for the best approximation
of the distribution of a sample space, which is similar to the problem of the best
analytical representation of an empirical function, is a problem which is vaguely
defined. Howevce, the solution depends explicitly on what “best” means. The range
of functions which provide the approximation is chosen, depending on the nature of

the physical problem to be solved rather than on mathematical perspectives, and
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hence depends on the characteristics of the empirical curve {30].

To represent the statistical observation in a compact and ordered form, the fre-
quencies are grouped and sorted and finally approximated by an analytical density
function. In the most common sensor technology, the normal distribution n(z; u, ),
also known as the Gaussian distrii)ution, can accommodate the situation and is for-

mally written as
1

oV 2%

e~ /A l==n)/o]? (6.1)

n(z; u,0) =

which has, in fact, proven to be efficient in most histogram approximations. In gen-
eral, the normal curve is directly dependent on the mean g and the variance o of
the distribution under investigation. The variance of a random variablelis charac-
terized by the dispersion of its value in the neighborhood of its mathematical mean.
Although we operate in a single dimension, we should note that in the application
of the inverse problem, the inverse estimates are governed not by a single random

variable, but rather by three random variables in the &, y, z Euclidean space.

6.2.1 Finite Semi-Finite Spaces and Differential Entropy

As we envisaged in Chapter 5, entropy computation as an index for uncertainty in
the belief functions, continuous distributions also present entropy as an information
aspect. Single dimension continuous probability functions are characterized by the
random variable z and probability density function f(z) and a zero mean in which
case the normal distribution can be represented by f(x) = n(z;o). Above all, con- -
tinuous functions are ideal in their form and in fact they approximate eﬂfnpifi"i:_é,lly
constructed distributions. For the mathematical derivation simplicity, we will con-
sider a precision increment Az for the normal distribution n(z;e) such that the
variation of  in Aa has an insignificant outcome. The equivalence of this descrip-
tion is to evaluate the continuous functions n(z; ¢) by a discrete histogram such that

Az f(x) is the probability of the event occuring in the segment Az.
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If we consider the segment Az small enough to justify the insignificant variations
of z in Az, the approximation of the entropy for all the Az is determined by the

standard entropy expression or

Haz(z)=— Zf Az log[f(z;)Az] (6.2)

which is also equal to

Hau(@) = = 3 f(willoglf ()] ~ 3= toglAa] () e (6:3)

Letting Az be very small, the following approximation becomes valid and

Haole) == [ loglf(@)if(a)de— [~ loglAdif(z)da , (64)

and hence equation 6.4 becomes

Haolw) = = [ loglf(e)Aclf(z)da. (6.5)

The first term in expression 6.4 does not depend on Az, which is the precision in
evaluating the uncertainty. It is rather the second term (—log[Az]) which depends
on the precision Az which tends towards infinity for Az — 0, which is perfectly
logical, as the more precision there is, the more uncertain the random variable is.
However, giving Az the required length as direct impact of the sensitivity of the
sensor measurements, the entropy can be approximated by equation 6.5 and may be

rewritten in an expectation form
Haz(x) = cov(—luyl f(z)Az]). (6.6)

For the zero mean normal function n{z; o), equation 6.6, the entropy is then derived

as

HA,;(a:)=E{—log{ ! e-a"fmm“ (6.7)

oV arn

which reduces to

(6.8)

Haz(z) = log {G 2”] :

Az
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The complete entiopy was derived in Section 5.3 and we can rewrite equation 5.29

as the sum of three components or

H=5L+ 14+ Us (6.9)

where I; is the information index and U/ the uncertainty index as a function of ©

and, for the Dempster-Schafer model as in 5.4, the /g component is expressed as
Uy = —{1 —m(@))log(l -- m(O)), (6.10)

hence equating Up to Ha, and finally we get

1-m(@) \? /A2 '
2 € x
— 11
= () () (641
which can be generalizéd for any uncertainty function U, and
Up\ 2 2
2 fer Afzy

where Az is the physical resolution limit.

Having derived the finite to semi-finite mapping from an uncertainty concept to
a normal distribution variance, one should keep in mind that equation 6.12 is only

valid if the density function is a zero mean normal (Gaussian) distribution.

6.3 Sensor Fusion and Kalman Filtering

Interest now arises from the need to combine the knowledge maps into an optimal
estimate. The best estimate of parameters is that which maximizes the expected
consequences. In the statistical literature, the effects of variations in the distri-
bution is called mode! robustness [80]. In this work, we first consider the possible
advantage to representing knowledge by approximate distribution and associated un-

certainty. Secondly, we realize that the type of error modelled is properly described
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as a function of a stochastic model. This variation may arise from two possible anal-
yses: val'iations among the knowledge maps themselves, or discrepancies between
the estimated knowledge and the real model, and that is of course under simulation
conditions. This distinction is important - the former is an error which must be
minimized by the final stage of the sensor fusion while the latter, if available, may
be an important source of information about the suitability of the model. However,

nothing much can be done about this.

Since error free point estimates among knowledge maps are generally not possible,
an important element in the determination of a strategy for merging the knowledge
maps is the effect of the estimation error. Merging data has been the focus of much
research, especially in robotics applications where the sensor fusion became common
in the literature [23] [39] [25]. The essential problem in fusion is the conservation of
the patterns that exist in either knowledge map. On the other hand, merging must
preserve the knowledge without introducing spurious elements. A simple method
can be that of simply averaging the probabilities of the point estimates; however, we

will keep a linear aspect in the fusion although some optimality will be required.

6.3.1 Theory of Kalman Filtering

The application of linear filters in sensor fusion provides simple processing opera-
tions and that is something we sho.ud investigate before any attempt at nonlinear
optimization. Fortunately, -‘Eﬁ;‘l'{nown Kalman filter clearly outlines the proposed
requirements with minimum assumptions. The theory of Kalman filtering encom-
passes a wide range of classical mathematical t0prics, especially when dealing with
random process theory and estimation theory. Kalman filtering can be considered as
a mature engineering discipline at this point in time. Since the original concept was
first published by R. Kalman back in 1960, literally thousands of technical papers
have been written about Kalman filtering. Unfortunately, Kalman filtering will only

be used in its simple form. The mathematical theory behind the concept of Kalman
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filtering involves probability and statistics together with linear systems theory in a
state vector formulation. In this thesis, the theory will be outlined, however, in its

decentralized form. Many references are available for more complete analysis of the

theory [5] [52].

When presented in its simple form [6], the Kalman filtering process consists of
combining two estimates of a random variable to form a weighted average. The
optimal weighting factor ’is chosen so as to produce a weighted average having the
: hinimum variance . In order to apply Kalman filtering technique to any particular
physical i)roblem involving a dynani'ic process. the equations of motion of the process
must be expressed in a state variable formulation, with any random noise included

as well — the underlying statistical theory will be that of the Markov process.

In principle, the Kalman filter is a non—diécriminatsing classifier. which, in a sense,
altempts to combine a statistical component of estimates rather th:a.n selecting a best
estimate. The main stage in the operation in the image synthesis or reconstruction,
that is, the Kalman filter will search among the knowledge maps for the most con-
sistent sensors and generate an output estimate based on the optimized weighted
estimate. Each estimeted node deals with the corresponding point estima;;in the
knowledge map; given that the number of knowledge maps is larger than one, the
failure of any node will not result in failure in the final estimate of the node. In
fact, the Kalman filter advantage is that it is able to degrade gracefully in-the face

of merging failure.

In order to make the design of a Kalman filter at all feasible, there is the major
requirement that all noise sources be Gaussian. As demonstrated in Section 6.2.1,
point estimates are normal, by definition, with a stable variance (¢?) evaluated as a
function of uncertainty (equation 6.12). The statistical mean (u) and variance (o?)

completely define the normal distribution. Thus the former factor, or the mean, has
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not been evaluated. However, the mean can be computed as
u = m(h) +m(=h), (6.13)

which is a straightforward evaluation given the model as described in equation 5.4.

6.3.2 The Kalman Filter and the Kalman Gain

".,-‘Formally, let  be a point located in the physi'cal systern under investigation and

let {z1,22,...z5} be N independent point'éstimates of z. Given the conditional
probability functions f,(z|z,) for all n = 1,2,..N expressed by their means p, =
E {2} and error variances 2, the N independent estimates set can then be combined
to generate an optimal estimate of .the physical model z. The general weighted
average of the estimate z, is denoted by Z, as the expression of the optimal estimate

and may be written as N
=) Ka; YK =1 (6.14)

i

and the expected value is

N N
E {.’E} =F {Z [\’,‘.’E,‘} = Z f\’,E {'B,} . (6.15)

The variance of T becomes

o2 = E{(z - E{z})’}, "~ (6.16)
which reduces to N
oi=) KloZ, (6.17)
as the z; estimates are initially indepenc;ent and cross covariance is zero. The goal
turns into a minimization of the variance with respect to K,, coeflicients. The partial
derivation with respect to K, may then written as

fo? g

z _

N

vielding the Kalman gain set or weight estimates K, for all n = 1,2,..N and

1 Y 2 l 2 Al 2 -
I{n = -NTI' (Z O'x‘. —_ O'n) (Z U:z:.-) f (619)
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Ground Penetrating Radar
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Chapter 7

Application to Radio Detection
And Ranging

The concept of using radar to penetrate the ground has been in design for three
decades. Historically, the initial ground penetrating radar work originated from the
fact that altimeters on aircrafts used in the Arctic would penetrate through ice sheets.
This discovery led to the exploitation of radar in other materials and in time led to

great success with the advances of computer technology and visualization methods.

7.1 Ground Penetrating Radar

Actually, ground-penetrating radar can be used with success in almost all environ-
ments. In general, the higher the ground resistivity, the better the chances of utilizing
ground-penetrating radar. As a result, hardware adaptations to radar systems were
added to compensate for the large variety of materials. Higher resistivity has excel-
lenf. dielectrics through which radio waves easily propagate. Early work has led to
the assumption that frozen material should be transparent to radar signals. In fact,

field measurements at later stages have verified this suggested hypothesis.

Similar to conventional radar systems, which are used for ranging the distance
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to specific targets, an antenna is used in ground penetrating radar to generate an
electromagnetic radio frequency pulse. The differences between ground penetrating
radar and the conventional radar system are governed by the major aspécts of prone
to wave velocity changes, excessive attenuations. On the other hand, the major

resemblance is related to its historical discovery, the reflectivity characteristic.

The basic concept of ground penetrating radar is very simple. A signal is radiated
from the antenna and part of the energy propagates with the correspondir;g electro-
magnetic wave velocity in the medium. When the signal reaches a critical point of
a medium change, part of the energy is reflected. This return radiation forms the

basis of ground penetrating radar.

A ground penetrating radar system has two Initial requirements. The first is
to obtain hardware which can generate and receive the appropriate electromagnetic
signals. The second is to make this hardware portable. Once these two requirements
are resolved, profiling can then be achieved. Since the wave lengths and scales of the
measurements are quite often small, of the order of MHz and centimeters respectively,
it becomes essential to have very close spatial sampling. As a result, it turns out
to be most practical to make very narrow scans of the medium (u seconds). The

method of performing narrow scans is known in practice as continuous profiling.

7.1.1 Main Functionality Aspects

The hardware involved in ground penetrating radar is generic and simple. Typical
units consist of three essential elements, namely, the transmitting unit, the receiving
unit and the recording and/or display units. The transmitter unit is a pulse genera-
tor which outputs a polarized short duration (1-20ns) voltage pulse onto a broadband
antenna. The receiving unit consists of a receiving antenna which acquires reflected

signals in a time frame window. It is common to use ihe same antenna for transmit-

ting and receiving,.
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In order to put the timing problem into perspective, it is necessary to consider the
propagation velocities of electromagnetic waves in typical materials. For example,
electromagnetic energy propagates at an average speed of 0.3m/ns. The slowest
medium encountered is water, which has a speed of propagation of about 0.03m/ns.
It is thus imperative that timing mechanisms be available to control the time frame

window and hence provide a spatial resolution.

In ground penetrating radar, the typical repeti.‘i’én rate of the transmitted pulse
is in the range of 50KHz to 100KKHz. Another timing ramp controls the receiving
signal which is arbitrary to the user. This timing ramp provides a relation to the
desired depth of penetration. Finally, the major timing issue resides in the pulse
itself. Depending on the hardware and designs, pulse width can be in the range of

0.5ns to 1000ns.

One of the biggest challenges with ground penetrating radar to date has been pre-
sentation of the data in an effective manner. As mentioned earlier, a main component
of the radar hardware is its portability which resulté"'in a major limitation of the in-
volved technology. As computational costs are reduced to a minimum, only analog
basic features are used, mainly, signal filtering and dynamic gain enhancements, to

compensate for any signal attenuation.

Invariably,rground penetrating radar records have a significant amount of noise
associated with them. Part of this noise is just system noise. The second source of
noise can be external, spurious radio frequency interference which is identified as a
general harsh background noise on the record. Various type of band pass filtering,
zero suppression, biasing of the data and other factors can be utilized to enhance

the data presentation and interpretation at a minimum cost.
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7.1.2 Operation: A Heuristic Approach

Practically speaking, a ground penetrating radar system can be considered a very
simple system. In fact this property has largely contributed to its success in ap-
plications in geophysics, mining and other fields. Users have learned to interpret
the measured data on site by means of graphics displays where the recorded signal

intensity is a funclion of pre-allocated color map tables.

Others factors which enter into the data display are those that enhance the color
map allocation tables such that the eye can discern individual features in the record.
Users usually develop their own method of calibration and include color map def-
initions. There are a large number of variables in a radar survey operation and
these various settings of hardware components of the system as well as the survey

procedure can be tailored to the particular application under investigation.

The output of a radar survey is a set of continuous sections which show radar
reflections versus delay time on one axis and horizontal position on the other axis.
The objective of the exercise is to re-map the radar reflections into their true spatial
positions under the surface. This involves two aspects of analysing the data. One is
just utilizing this record as delay time image. In this case, an event has a known delay
time associated with it and a certain spatial position. The delay time is converted to a
distance with a pocket calculator by estimating the velocity of the material through
which the wave has propagated. Some radar hardware allows distance mapping
directly on the display. In practice, the depth in the ground is only an approxin{ate
value since the velocity of propagation 1s usually unknown. Experience with radar

data suggests that accurate predictions of propagation velocity can be made with

very little effort.

A great deal of additional information is present in the radar record, but requires
considerable effort to extract. With high fidelity recording systems, it is sometimes

possible to estimate the polarity of the reflection signal, and to discern variations in
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the character of the recorded signals which indicale variations in the actual geological
target. I[n practice, the understanding of these concepts is limited to those few

technical experts in the field v-iio are familiar with the design ol the system.

In general, the experienced interpreter, however, can readily identify featnres in
the records which have a unique character and utilize these unique characteristics in

order to infer the proper ideas about the investigated site.

7.2 The GSSI SIR 10 System

The SIR 10 radar system has four channels, allowing simultaneous operation of
transducers with different center frequencies, gains, ranges and f[ilter setlings. Fach
channel leads to a 16-bit data segment quantization. The system is a based on an
80286 microprocessor and designed to function as an on-bhoard computer and perform

automatic control on the radar system. The main components of the system are as

follows:

¢ Contro! Functions Range and gain values, signal position, pulse repetition

rate and all alpha-numeric informmation relevant to the operation of the systenn.

o Oscilloscope Vertical display of the current scan wave [orm. The wave form

is controlled by the time based window.
¢ Data Storage Up to 2.3 gigabyte on 8mm tape drive.

e Line Scan Each scan is represented as a column, one pixel wide. The scans
begin on the right side of the display and scroll left as new scans are displayed.

16 grey scales or colors represent the amplitude and polarity of the signal.

¢ Range Gain Range adjustment [rom -26dB to 120dB. Gain curve is repre-

sented in its logarithmic form.

Additional electrical and electromagnetic specifications can be found in Table 7.1.
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Resolution

Range

ulse Repetition Rate
Analog Quantization
A/D Sampling

l)

Clock Synchronization
Scan Rates

Beam width Maximum

60 picoseconds

0 to 20,000 nanosecond

3.2 to 256 kHz

8 / 16 bits

128, 256, 512, 1024 samples/scan

Crystal Based: | nanoseconds
3.2 to 256

90 degrees aperture

Beam width Minimum 60 degrees aperture
Radiation Power 0.06 to 100 mW

Table 7.1: Basic electrical and electromagnetic specifications of the GSSI SIR 10
radar unit. Electromagnetic specifications are empirical.

7.2.1 Digital Filtering

The SIR 10 radar unit is equipped with digital filters enabling variable filter frequency
selections and filter lengths. The two types of filters are the common Infinite Impulse

Response Filters (1IR) and the Finite Impulse Response Filters (FIR).

Infinite Impulse Response Filters (IIR) operate by combining new data along
with a history of the past data in some average form. The weights applied to this
combination determine the bandwidth of the filter. They are popular because they
correspond to the analog filters in the real world. IIR filters are recursive and they

use past values of the input to attenuate undesirable frequencies.

Finite Impulse Response Filters (FIR) operate by convolving (i.e applying a slid-
ing weighted average) a finite length function with the data. Each data value is
multiplied by the corresponding filter value and added together. The advantage of
IFIR filters is that they can be made symmetric and centered. This means that the
output corresponds in time and space to the input, unlike the IIR filters which will be
skewed to one side. The FIR filters exhibit a non-recursive behavior which depends

only on the current sample.
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7.2.2 A Design Aspect in the SIR 10 Radar Unit

This section introduces some theoretical aspects of the SIR 10 radar unit which are
related to the transmitted signal. Whether because of practical {easibility or because
of a theoretical advantage, the transmitted signal plays a major role in the overall
radar behavior. The transmitted signal is known as a pulse and its shape varies with

different hardware.

Without getting involved in the electronics design, the SIR 10 radar unit initially
generates a sequence of trigger pulses with a pulse width of 1 nanosecond. Each pulse
is polarized and transmitted through a dipole antenna. Hence, the real signal is an
electrically polarized electromagnetic pulse of a finite duration. In the [requency
domain, the spectroanalysis of the transmitted signal is never measured; however,

hypothetical spectra can be estimated [12].

Butler [12] estimated the spectrum of the 120MIz anienna with -3 dB attenuation
at 120 £ 80 MHz. Although we can predict the spectrum at 1 GHz, we can also note
the possible spectrum width. In general, this wide spectra can result in complex
behavior in ground penetrating radar. Actually, similar problems can be compared
to the use of the continuous wave (CW) in a frequency sweep model (FMCW) in a

wide band impulse response.

7.3 Reflection, Refraction and Scattering

The historical success of lighthouses or any light beacons provides the perfect ex-
ample for introducing this section. Light emerging from lighthouses has a particular
behavior on dense foggy nights, and that particularity is sought in all light bea~
cons which are tracing a light beam. Thus, considering a perfectly semi-transparent
medium illuminated by a light source, and provided that the medium is homoge-

neous, it may become clear that each point in the medium behaves locally and can
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be visually identified. Light scattering in a senii-transparent medium presents a per-
fect, example by which to introduce energy scattering. Whether related to eye glasses
or mirrors, the implications of the concepts of reflection and refraction have major

importance tohuman society.

Very little research has dealt with the scattering analysis directly, and this re-
scarch mainly consists of the polarization matching of the received signal for optimal
signal reception and hence identification of amplitude changes [61]. On the other
hand, research has indirectly dealt with the scattering influence and its removal with

high technology IIR filtering as described in Section 7.2.1.

In reality, scattering can provide tremeundous knowledge, and, when compared,
exceed the information acquired from the reflection analysis alone. .Aga,in, bringing
the issue to a visual perspective as in the lighthouse example, the scattering light
provides local knowledge within the light beam width similar to identification of the
l[og from a density perspective. On the other hand, analysing any reflected light can

only provide an average for the fog density.

It is thus an advantage to analyse the scattering electromagnetic wave field in
addition to the measured reflection. In fact the measurements consist of the convolu-
tion of both scattered and reflected signals. When separated, the reflection analysis
provides the data for what we call the Impulse Reflection Knowledge Map (IRKM)

whereas the scattering analysis provides the data for the Polarized Scattering Map

(PSKM).

7.3.1 The Impulse Reflection Map (IR)

When an electromagnetic field is incident upon a boundary, in general it will split
up into reflected and refracted fields. For a wave striking a separation interface of

materials, Snell’s laws [48] [45] state that

1. The angle of incidence is equal to the angle of reflection, 8, = 6,.
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7 )
(3%

2. vy sinf, = vysind,

where v, and 1, are the refractive indices of the two media.

3. For E-polarisation (the case of GSSI SIR 10 radar unit), the rellection cocfli-

cient Is

mcoshy — \[vd — visin?0,

Rp = 1 (7.1)
vicosty + \Jvi — visin?0,

and the refraction coeflicient is

A cos

vicosly + \/;/3 — visin?l),

T =

4. If v < vy and vy sind; > 1, total reflection occurs and there is no energy
entering into the second medium. In fact the total rellection does not occur
completely from the interface, but rather from an imaginary location inside the
second medium. This phenomena is known as Goss-Hanchen phenomena and

will not be taken into accéanc as it is beyond the scope of this thesis- -

In general, the reflected and 1;éf1‘a.cted fields are not only dependent on the re-
flection and refraction coefficients of the media in question. However, we believe
that further investigation in electromagnetic scattering becomes irrclevant 1o the
scope of this research, as many approximations and imperfections have been initially

introduced (i.e. signal transmission).

7.3.2 The Polarized Scattering Map (PS)

The problem of computing the wave field propagation can be divided into a double
estimation of geometrical properties as well as of electrical preperties. Although mosl
research focuses solely on the geometrical aspects as in Osborn [70], some research

has computed the wave field in both geometrical and clectrical properties [69] [17].

In general, electromagnetic imaging is susceptible to properties of the media. Ag

in Yu [97], we make the assumption that the subsurface is divided into multiple
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layers of different resistivity separated by discontinuity surfaces. Let us consider a
subsurface that is divided into two parts of different resistivity with a single discon-
tinuity layer. When a radar pulse travels from one medium to another, the pulse
will undergo an amplitude modulation (attenuation) along its path. In addition, the
radar signal will undergo a velocity change when changing inedia, and hence the
modulation will acquire a phase shift at the discontinuity as the initial radar signal
is of minimal phase [92]. Normally the phase shift is associated with a reflection at

the interface.

From a signal processing point of view, it has been shown that the signal re-
ceived at the radar antenna is of a complex exponential form [40] {13] [63]. Complex
exponentials play a major role in the analysis of signal processing. Most cases of
wave field propagation signal processing involve sets of harmonically-related signals
as described in the previous section. In general, a surface wave is generated such that
the energy enters the medium along one edge, travels along the interface and then
leaves at the other edge; thus the E-field components vanish along the penetrating
direction and,

o E = Aejkf.+jwt — Ae-j,ﬁtej(wt—at) (73)

where e=P represents a dainping term and ¢! is the phaser. Here E is time
varying and generates a corresponding time variant orthogonal magnetic field which
is expressed as

H= ;HAe‘J""“”‘. (7.4)

The surface wave impedance (Z) of the medium is defined as the ratio of electrical

and magnetic field and is evaluated as

H k fo + jwe
=== — = —_ .
E wy Jwp (7.8)

In practice, the polarized scattering map wave impedance can lead to a double direc-

tion inference such that the medium characteristic is infered from phase knowledge
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Figure 7.1: Two sets of raw data from sensors are shown in the top lelt plot whereas
the left bottom plot bad some noise filtering. The middle and right plots are syn-
thetic, showing phase shift detection in the Fourrier transform. Top middle and right
plots are in time domain whereas the bottom middle and right plots are phases in
frequency domain

and vice versa.

phase = impedance

QOur approach in this proposed research is to base our phase identification on the
time series approximations to the basic electromagnetic wave-scattering phenomena

rather than fully using Maxwell’s wave field equations.

The two plots shown in figure 7.1 represent two real measurements. One measure-
ment was taken in a single medium and the second taken in an additional medium.
Since the second medium has a higher dielectric compared to the first medium, no-
ticeable amplitude modulations can be observed. The two plots shown in figure 7.1
are raw data, and the first phase shift lies in the enci;éleméht. In addition to the
phase shift, the encirclement also encloses a reflection burst as well as an increase in

the scattering polarization.

Figure 7.1 shows a synthetic complex signal with a constant frequency shift on
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the top left, whereas, on the top right, two phase shifts were added. The bottom
plots show their corresponding phase spectrum computed {rom Fourrier transforms.
In fact the Fourier transform between time/frequency is sufficient alone with some
minor modifications to estimate any phase shift. However, as our interest is the
polarization changes, the phase spectrum obtained frorn;lthe signals will be used as

the basis for the spatial phase maps.

7.3.3 Correction Factors: Range Resolution

An important characteristic of the resolution of short-distance radar is the aperture
angle influence of the antenna. Since the radar will acquire measurements within the
aperiure angle, the detection resolution varies at different angles within the beam.
In other words, targets that have been detected at the center beam present different
attributes when detected at a different angle within the beam aperture. We adapted
this range resolution factor from the airborne long range radar system [85] [94] and

derived it for ground penetrating radar application.

Antenna aperture

B TN

Figure 7.2: A single dimension approximated range resolution R, for ground pene-
trating radar. The real aperture is elliptical (two dimensional). « is in degrees.

C

Range resolution (R,) is determined by the beam angle (Figure 7.2) and the
pulse length[68]. Range resolution is theoretically equal to one-half the pulse length.
The pulse length (7) is the duration of the transmitted pulse and is measured in

nanoseconds. It is converted from time into distance by multiplying by the speed
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of the electromaguetic radiation. The resulting distance is the measure of the sfant
range, or direction in which the energy propagates rom the antenna to the target
[79]. Range resoluiion, however, is expressed in depth range, which is the penctrated
distance in the medium. Dividing the slant range by the sine ef oue-half of the
beam aperture converts the siant-range distance into depth range distance. Hence

the equation for the range resolution is

TC

R, =

(7.6)

2 sin g
Therefere, given the specifications as in Table 7.1, for a maximum aperture angle 90

degrees (v = 45deg), and a pulse width of one nanosecond, the resolution range is

0.21 melers.

7.3.4 Correction Factors: Spatial Distortion

To remedy the spatial distortion that results from velocity change of the clectro-
magnetic wave field in media of different properties, we analyse the (v, z,!) space
- velocity/depth/time space. The two-dimensional picture construction is usually
based on the assumption that the depth and time dimensions are orthogonal and

confine the propagation velocity to a constant value.

The problem is criticized on the assumption regarding the propertics of the wave
field propagation velocities. We investigate the phase shift and reckon the velocity
interval discrepancies. The space created by the velocity, time and depth dimensions
hence endures a mapping over the intervals where a medium characteristic is most,

likely to exist. The velocity ratio can be derived from Snell’s law and expressed as

1251 €9
212 7.7
” Y , (7.7)

1y and vy are the velocities of the wave whereas ¢; and ¢; are the corresponding
medium dielectrics. A typical spatial distortion recovery assumes a linear relation

between time and depth which produces a gap in the sector where a real velocity
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change occurred. In reconsidering the aspects of the velocities, the space (z, 1) defined
by the depth/time dimensions is mapped accordingly and hence new coordinates are

formed.

7.4 Knowledge Map (KM) Synthesis

When ground penetrating radar was devised from electromagnetic imaging, major
assumptions were carried out and were rarely justified at a later stage. The initial
assumnplions were basically the consideration of the reflection nature of electromag-
netic waves at interfaces and the concerns in imaging were mainly on the reflection
aspects, under the influence of seismic work. As seismic sounding had an extremely
successful application, it is very logical to use the same concepts and terminology

for the ground penetrating radar counterpart applications.

The interpretation of the radar physical measurements has suffered from the fact
that many variables involved are not taken into consideration. The methods user
olten lack statistical justification and a particular method may be chosen because it
“works”, because it is the only method known, or because it has become popular.
On the other hand, very simple applications of statistical inverse methods may lead
to significant improvements in the accuracy of estimated analysis results. Moreover,
basic adjustment techniques derived from radar principles may also lead to impréﬁe—
ments in the resolution of the inverse problem. As this section describes mainly the
application of synthesis regularization to radar, the corrections factors mentioned in
Section 7.3.4 play a secondary role in the inverse process but a primary importance

for any forward problem simulation.

With the models described in equations 7.1, 7.3, 7.5, 7.6 and 7.7, nonlinear
inversion of radar data requires computations to generate the a priori knowledge
map distributions. The separability is based on classical signal analysis. In fact,

Veno and Osumi [91] have empirically shown that the received signal from a buried
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object has the following separable form,

where A{l) is the tirne series convolution model and G(6, ¢) is a function of ¢, the
phase dilference of antenna polarization, and 4, the rotation angle between the target

axis and the antenna direction (in this thesis the angular rotation is irrelevant and

© 0 =0). As described in chapter 3, A(f) is the combination of all the impulse responses

of the source impulse. Writing the covariance matrix for the synthesis process as in
cquation 4.14 for the knowledge maps we may then have

T

(g, 1)] — S [vi(he, 1)] - 5%

covg -1 = B | | [ui(ha, 0] = $% | | [vi(ha,0)] - S/5° (7.9)
[ui(h,, )] — S [vi(h,,2)] — S5

where fi and f7' denote the corresponding forward and inverse operators for the

phase modulation, amplitude modulation and reflection knowledge maps.

Although the suggested separation process here is for three components, that is,
reflection, phase and magnitude modulation, the basic ¢ priori knowledge to drive
thie synthesis regularization will hence acquire three state variables for the front-end
synthesis. First, as for all nonlinear problems, it is important to start infering at a
point close to the fastest converging solution. For belief functions, the starting point
is sclected by the initial maximum entropy search. In fact, in belief functions, the
regularization synthesis factor (A) introduces the advantage of the momentum that
forms the strategy of biased beli.efs. The locus of the starting point in function of. - -
a decreasing A follows the hyperbola of a forward problem operator starting at the
cenier wavelet with time index zero and splits to the end of first and last wavelets.
In other words, for values of A approaching zero, the minimum entropy search tries
to resolve knowledge maps with insufficient data in the beginning of the inversion
process whereas, for values of A approaching unity, the minimum entropy search

resolves maximum knowledge first and moves down to insufficient knowledge.
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7.4.1 Heuristic Propagation of Evidence

Again, usually there are different pieces of evidence collected from different sources
in penetrating radar. One piece of evidence that one should face is that lower L band
electromagnetic propagations are constrained by an elliptical aperture as in Table
7.1, which in a matter of fact justifies the multi-sensor [usion approach. Again,
assume that a specific sensor z; is to confirm some cvidence which, according to
some inverse operator, results in a set of N possible solutions. 1if another sensor
z, happens to confirm one solution of the solutions proposed by sensor zy, this will
result in the dis-confirmation of the rest of the N — | solutions. For penetrating
radar, the propagation of evidence is proposed as heuristically structured from the
antenna aperture. In fact the experimental calibration ol the used antenna happencd
to be two adjacent ellipses rather than the one as suggested in Table 7.1, Figure 7.4

elaborates on the theoretical and experimental behavior of impulse function of the

antenna.

Figure 7.4: Left: The theoretical impulse response. Middle: the experimental im-
pulse response of using the SIR radar unit of 1 GHz. Right: The experimental inverse
operator that will collapse the experimental impulse response.

In contrast to most cyclic/acyclic graphs, the proposed evidential propagation
function is based on forward and backwerd chaining. In our context, a positive

proposition propagates backward and a negative proposition propagates forward.
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The cross-form propagation for two knowledge units {u;,u;} sharing a commeon sen-

sor measurement may he expressed as
m(h;) = m(-h;); m(-~h;) — m(h;). (7.10)

Here, we devised two types of knowledge propagation among the units:

Type 1:  Bel(u;i|u;) = BIND(Bel(u;) — Bel(u;))
Type 2:  Bel(u;|u;) = BIND(a — Bel(u;)).

o is an arbitrary sensitivity factor, whereas BI N D is the combination belief func-
tion as described in Section 5.2.2. Since the propagation function forms an acyclic
graph, the o factor was introduced for an experimental control in the propagation

as in Type 2.



Chapter 8

Image Perception

8.1 General Perspective

The field of Computer Vision has already resulted in ample research ramifications in
image interpretation, where visual perception aspects have gained a large influence.
Numerous mathematical models for representation of the neurophysiological world,
whether partial or complete, have been established into concepts and paradigms.
The immense complexity and the evolution of the computational aspects of vision
have now given way to an increased comprehension and understanding of visual

perception of the surrounding world.

Despite the advances in computational vision, informality is frequently encoun-
tered in this subject. The focus remains on the evolution of ideas rather than on
models, and, likewise, the emphasis is placed more often on the classical founda-~
tions of the field instead of the current approaches. Several well established models
related to a specific aspect of vision are frequently encountered. Even though the
equivalency among these models is heuristic, their applications for this specific pur-
pose are profitable for each suggested model. What is projected in this thesis are
some preliminary steps of the current approaches with the intention of perceiving

the computed world model.
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Dilferent models have described the spatial impression of vision perception in a
formal represé’ntation such as the siochastic relazation [31] or the relazation labeling
[47] concepts. The former presents the approach of Bayesian image reconstruction in
hierarchical annealing function and the latter approach uses contextual information
for finding consistent labellings of graphs. We have already approached in one form
or another in this thesis the essence of hoth representations in the minimum entropy
computation and the Dempster-Shafer belief networks. In fact, in the literature
there are many imaging modes and schemes for visualizing information that, when
piesented under a different perspective with some adaptation, can perform a double
task. In our case, that is sensor fusion as well as the basic classification of the image
reconstruction. What is needed is an efficient method for quantitative data encoding
and integration of the complex information into some perceivable and acceptable
form. Tl;e investigation in this chapter is based on the consideration of the existence
of well-founded mathematical models and paradigms. The attempt is to employ some
of these concepts and to integrate information and images in an efficient presentation
aiming towards a better visual perception response. The complete image derivation
that can be obtained by thorough research in any possible mathematical model is

unfortunately not within the scope of this thesis.

8.2 Vision and Image Perception

The initial argument in visual perception is that vision concepts mainly depend on
sensed light. Such an assumption leads to the thought that the receptive field is
devoted to detecting certain patterns of light and their changes, corresponding to

particular relations in the visible world [55].

The regulation of light in the receptive field is considered the low level processing

of visual perception. Since the images project different intensities, it is the changes
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of the intensities which are processed rather that the intensities themsclves. Conse-
quently, an abrupt shift in the transition between light and shade produces a contour
which is the necessary condition for segregated shapes and forms. Usually, an image
in the visual field is coordinated with objects in the visual world, where the per-
ception is initiated originally by the change in brightness, which results in infering

cartoon-like forms.

Curves arise from the projection of various kinds of structures in the visible world,
such as contours, curvatures and discontinuities. However, the problem is thal our
world modeling in subsurface imaging is invisible by its physical nature and these
curves are not directly observable; rather, they are abstract entities in our imagina-
tion, and the example of “a cube contained in a smaller cube” only demonstrates
that the primary parameters of the “contained” cube are its curves. All that is ob-
servable in images is information about the traces of curves, and the inference upon
those traces is under-constrained. An attempt at curve inferencing is not a straight
forward problem given the complex situation of the infered knowledge map resulting
from the sensor fusion, even though there exists the hope that the qualitative inverse
problem algorithms are in some aspects neurophysiological mathematical models.
On the other hand, what we try to resolve are concepts of forms that hold as a
global symbolic structure and are referred to as the later vision stage, bypassing the

discontinuity problems which are still impossible to classify for the visualizing of ihe

inverted data.

8.2.1 Knowledge Interpretation and Pattern Recognition

The first stage in most pattern recognition tasks is feature extraction. Pssentially,
the problem in onr context differs from most pattern classification problems in that
we have the feature measurements and statistical distributions among the point
estimates. The problem is to group the point estimates into local features to result

in a local feature detection from the viewer perspective.
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A local feature is a subset of pixels at a particular location within an image
which form a recognizable pattern in their own right [44]. For example, an edge, a
line or any geometric shape or arrangement of lines is a local features. Detection
of a local feature within an image may be sufficient in itself to classify the entire
image. In some ways, most researchers consider the concept of local feature detection
almost another way of stating the fundamental problem of image recognition [99].
In a sense, detecting a local feature is a more complex problem than straightforward
pattern recognition which makes the problem of image encoding more complex, since
the patiern recognition part is already complex. In other words, the issue is to
use approximately the reverse engineering aspects of computer vision paradigms in
a way to obey the requirement of constructing the image given some “a priori”

clussifications.

Again, it can be claimed that edges are the result of an early vision process of
the gradients of shades. Orientations and curvatures are to be initially extracted,
yielding inferable {unctions for the higher vision process. Likewise, patterns and
textures follow a similar behavior and can be occasionally treated as functions of
curvatures and orientations, since gradients are also the basis of shading effects
in higher dimensions. In addition, most references concur that visual impressions
are the effect of interacting gradients [42] [33]. Spacing between edges, whether
straight lines or curves, provokes a visual perspective which can induce a considerable
change in the inference. Formally speaking, it is agreed that a mathematically simple

gradient corresponds to a geometrically complex surface.

8.3 Image Encoding

Encoding means creating visual distinctions among several different types of objects
[67]). Many different techniques can be identified, mainly color, shape, intensity and

texture. A fundamental issue in any encoding technique is to determine how many
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possible techniques an image can have at a time. Closely related to quantitative data
encoding is any means that calls for the viewer’s attention to particular information
and the capabilities of the viewer to separate that particular information from the

rest of the image.

We will consider here the case of two-dimensional environmental modeling as an
extension in the derivation of this thesis. Line segments are used to model collections
of subsurface curves. Each segment can be thought of as representing a medium
change, although some linear collections of observations may not correspond directly
to existing structures. The curve segment models for greund penetrating radar use

are appropriate where the medium characteristics can be infered.

What is of interest in this thesis are the geometric properties of images. Indeed,
there is no need for the medium characteristics to be involved in image reconstruction
rather than being visually infered. There is enough information about the absolute

values of the image boundaries which may help in the particular image perception.

The essential constraint in image encoding is an increase in acuity of the image
which is governed by the visual perception of orientations and curvatures. To achicve
control of certain aspects of image generation, the constraints on the sharpness and
diffusion of all the edges are extensive. In addition, as mentioned previously, arbitrary

image encoding and filtering are not acceptable, either in computational vision or in

general cases.

8.3.1 CIFE Color Encoding

Levine [56] and Marr [67] support the theory of computational models based on
the assumption that the best perception requires smoothness among the point csti-
mates. In other words, the picture must be restricted to patches of uniform color
with distinct delineations between them. Although the basic fact of color perception

is not completely understood [54], there is a practical need to deal with color for
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better image perception. Therefore, in 1931 the C/E (Commission International de
I'Eclairage) adopted a standard based on some assumptions about color definitions.
Not to get involved in the neurophysiological aspe«ts of color, the CIE psychophys-
ical color mapping is a three-dimensional tristimulus space, Red-Green-Blue, thus

increasing possible image information encoding and its relative perception.

Color enhancement could be done using pseudocolor, a methodology developed
for computer graphics [28)]. Pseudocolor images are created by assigning a color to
gray level images according to an arbitrary transformation. A quite common color
ordering is one based on optimizing information perception; however, selections of

pseudocolor mapping are heuristically evaluated.

The important point here is that the CIE methodology does provide a practical
psychophysical model for deﬁni'ﬁg color as viewed by humans. The model is defi-
nitely not unique and does not really attempt to explain the underlying probability
distributions behind it. There might be some interest in examining a mathematical
model based on optical probabilistic processing, which attempts to deal with the

probability distributions gathered from the a posteriori knowledge maps.

8.3.2 Segmentation by Thresholding and Stretching

Thresholding is known as a method of separating a foreground from the background
in an image. A fixed threshold simply assigns a value of zero to an image pixel if it
is less than the threshold, and to unity otherwise. Some researchers do not consider
thresholding particularly useful as a segmentation method [1]. At a later stage
in'the evolution of segmentation in thresholding, the method was revised so that,
instead of assigning a constant value, there was stretching of the desired segment and
discarding of the rest. The final aspect of thresholding and stretching settled down
to a two-valued threshold which assumes that the data points are to be greater than

the first value threshold and lower than the second value threshold. The two-valued
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thresholds always result in either discarding one or two segments, and that is directly

dependent on the relative difference of the two threshold limits.

An alternative approach to assigning constant values to the region of interest is to
map the desired region over the allowable intensities which-results in a stretching or
normalization of the truncated segment. Thresholding is common among trending
techniques and, since our data are classified within probabilistic regions, it is of
direct importance to choose an interval of confidence for the inverted data. Whatever

segmentation method used, it is helpful to think of the purpose of segmentation.

8.3.3 Encoding

Returning to the essence of the problem of encoding the knowledge map, we can
rewrite the final inverted image of the inverted image as the union of two sets of

estimates and their corresponding variances or

[ (i, )] = [0/ (B, O U (e, 1) (8.1)

On the contrary, as one would expect a cooperétive merging involving the point
estimate mean and variance, the problem of interpretation and encoding is an in-
dependent feature of the two sets of estimates. The coloring scheme proposed in
Section 8.3.1 resuits in thousands of possible colors, hence providing a hierarchal
color scheme that would suit the requirements of image encoding and concur with

the basic conditions for efficient image perception:

1. Perception is more sensitive to intensity differences than to absolute intensity

values.

2. Neighboring point estimates are to be related and to not just occur randomly.

The change has to occur randomly.

Before considering the second stage of point estimate grouping, we nced to exam-

ine how the final image will manifest within the RG B color set. The concepts of edge
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and color feature enclosure have been introduced above as a means of representing
the characteristics of patch contours. It is possible, however, to apply these con-
cepts so thatl the estimate groups sharing common characteristics may be identified.
In accordance with the encoding process, we choose to make a distinction between
three different part types - namely the mass {m(h)}, the mass{m(h),m(—h)} and
the Variance ¢,  The mass {m(h)} is defined by the Blue color patch configura-
tion, giving rise to the direct confirmation enclosure measurement only, whereas the
mass {rn(h),m(—h)} is defined by the Green color patch configuration giving rise to
the confirmed and disconfirmed enclosure measurement combined, which is mostly
governed by evidential reasoning. The third type is defined by the Red color patch
configuration as a relevance to the point estimate variance. Based on the described
estimate grouping, it is possible to intuitively understand the essential nature of what
constitules a part. For example, tracing {m(h)} alone provides a relevant aspect of
signals of high peaks in radar. This aspect does characterize the ranging part of
radar. We can speculate that, for a relatively large radio penetration, the {m(h)}

traces are quite relevant. These operations are shown schematically in Figure 8.1
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Iigure 8.1: Image encoding as combination of threshold segmentation and RGB
color mapping,.

The quality of the image integration will clearly depend on the choice we make

in the hierarchy among the three colors where the Blue color has priority over the
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Green, which in turn has a priority over the Red. In other words, for a Red color
to appear in the final image requires that the beliefl mass {m(h)} is below a certain
threshold 3 and the combined masses {m(h), m(—h)} are below a certain threshold
a. For a Green color to appear requires that the belief mass {m(#)} is below the

threshold 4 but the combined masses {m(%), m(—-h)} are above a certain threshold

.

8.4 Examples: Image Reconstruction

To evaluate the qualitative performance and robustness of the regularization syn-
thesis, many different tests were performed to evaluate the sensitivity and stability
margins throughout simulations and hence a radar simulator was built [35]. How-
ever, what could be the foundations of robustness of the regularization synthesis
are real radar measurements. The option to evaluate the regularization synthesis
through a radar simulator was based on the simplicity of scenario generation. Once

the regularization synthesis was “finely tuned”, selected real scenarios were designed.
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— Hypothetical image of a
metallic rectangular slab in
a homogeneous medium. Di-
mensions are in nanoseconds
which results in an approxi-
mative ~ 0.5 meters depth.

— Raw data originating
from the radar scans of the
rectangular slab.The data
had an exponential gain in-
crease as function of depth
prior to discretization and
hence compensate for atten-
uation.

— The inverse solution con-
forming to the regulariza-
tion synthesis framework.
Data have been dynami-
cally low pass filtered (But-
terworth) and deconvolved
before the inverse process.
The synthesis coefficients
are:  precision resolution:
A, = 107" meters; regular-
ization factor (rf): A = 0.9,
threshold: o« = 0.95; 8 =
0.8.

Figure 8.2: World modeling example: real data analysis of an edged body.
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— Data originating from
synthetic simulation of a
cylinder. Dimensions are set
in nanoscconds which results
in 0.5 meters depth.

— The inverse solution con-
forming to the regulariza-
tion synthesis framework.
The synthesis coefficients
are:  precision resolution:
Az = 107 meters; regular-
ization factor (rf): A =0.9.
No coloring scheme lor vari-
ance.

— The inverse solution con-
forming to the regulariza-
tion synthesis [ramework.
The synthesis  coellicients
are:  precision  resolution:
Az = 107" meters; regular-
ization factor (rf): A = 0.9,
threshold;: o = 0.8; 4 =
0.75.

Figure 8.3:

World modeling example: synthetic data analysis of a curved body.
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Chapter 9

Strategic Review

Remote sensing is a diverse field, with respect to both technology and applications.
Chapter 7 of this thesis described the properties of electromagnetic radiation and its
interaction with matter. The nature of this interaction, which is specific for diflerent,
wavelengths of radiation and different types of matter, is detected and recorded
by remote sensing systems. This description characterizes the radiv detection and

ranging system.

At one time, the concept of multiple sensor analysis was popular; for any inter-
pretation project, it was felt that all possible types ol analyses should be acquired
and interpreted. However, problems in handling the data were not perfect and
disappointment was often felt. The idea of presenting a model of the world from
an electromagnetic perspective did not fade but rather strongly survived turbulent
changes in technology. For many decades, radars system have been considered to be
at the leading edge of technology and, in the last decade, ground penetrating radar

has been demonstrated to be a successful non-destructive technique.
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9.1 A Brief Review

"To conclude, in this chapter we recap briefly the essential parts of this thesis and
give some guidance about how to proceed thereafter. Essentially the problem is that
remotely measured data can be severely filtered convolutions of desired functions.
Whether separating essential knowledge from the data or deconvolving plain echo
signals, it is a complete mistake to disregard any prior system identification proce-
dures, or to use a forward fitting model procedure, getting impressed by how well the
model fits the data, or to use an approximation technique such as stacking inverse

operators without recognizing the instability of the model solution.

Extensive work that has been achieved in the inverse problem shows clearly the
impossibility of advocating a firm method for achieving such solutions for all prob-
lems since the best approach depends not only on the problem but also on the
ft‘il_lctional‘ form of the data. Either way, optimized numerical technique or not, the
facg_lb thtat the measured data in radio detection and ranging can never contain
enough information to permit unique inversion according to definition 4.1. This is
reflected in the classical inversion by solving integral functions where the indetermi-
nacy is of an infinity and form an ill posed inverse problem as in definition 4.4. The

most common non-classical techniques ~ the regularization methods - incorporate

information structures of uncertainty.

It is a feature of radio detection and ranging problems that numerical solutions
have often been presented by experimenters using heuristic data reduction tech-
niques, often without being aware of the information being discarded. Researchers
ave impressed by these fast data reduction algorithms where already the inverse prob-
lem lacks data. As we have shown in the application of ground penetrating radar,
the necessity of analysis of the polarization of the electromagnetic signal can provide

as much information as the recorded reflection coefficients.

First, from a given data set, we consider some numerical experiments based on
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a priori information about an initial separable problem. This may include aspects
such as the separation of the wave polarization data and the reflection coeflicients
from the signal intensities as shown in the examplr of ground penetrating radar.
Although there is a good deal of heuristic reasoning in this proposed framework, it
is a matter of practical experience that a good representation goes aloiy; extracting,

rather than submerging, the essential information carried by the data function.

9.2 Approach to the Inverse Problem

In our model, we construct the knowledge space by standard deductive methods of
the hyperbolic inverse operator but we may have no source of information about the
weights of the propagation (e.g aperture angle). The question is addressed whether
it ils possible to compute accurately the measure of uncertainty of the inverted knowl-
edge map. For example, it can be proven that the longer the hyperbolic sensor line

(the inverse path of a knowledge unit), the larger the evidential space and the more

certain a conclusion.

The approach we are taking towards developing an extended framework, which
may be used to represent all of the various symbolic and numeric aspects of beliel
and uncertainty, is to consider a logic of argumentation. We extend the logic so that
not just one argument, but all arguments, supporting or opposing a hypothesis are
considered in a given decision-making context. That is the logic used to structure the
inverse problem. We hold this to be the key component of a practical decision-making
system. As arguments are identified, the support they confer on a hypothesis or its
negation is aggregated to provide a measure of the degree of belief in the hypotheses
of interest. The aggregation operation will depend on the calculus used to represent
the uncertainty or vagueness associated with the arguments. The choice of calculus
will in turn depend on the representation requirements and the information which is

available from the given sensors.
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9.3 Claim of Originality

We have described a global approach towards modeling groﬁnd penetrating radar
measurements and, in particular, image synthesis and integration. One of our sec-
ondary emphases is the investigation of Kalman fillers as a robust sensor-fusion
method to perform the inverse image reconstruction, and also to degrade gracefully
in front of boundary problems and non-consistent measurements. The combination
of the non-discriminating sensor-fusion as a front-end method with the identification

process provides a qualitative understanding of the subsurface.

QOur main emphasis is based on the theory of Dempster-Shafer belief functions;
sensor data are structured in knowledge maps to estimate the geometrical aspects
of the model. In general, belief function estimation is usually described within a
probabilistic ramework. Here, we basically employ such a framework and we try
to restrain our probabilistic interpretation with uncertainty factors which are well
expanded in Dempster-Shafer theory. Minimizing the uncertainty will result in series
of images classified within probabilistic regions. In our model, we construct the
knowledge space by standard deductive methods of the hyperbolic inverse operator
but we may have no source of information about the uncertainty. The question is
addressed whether it is possible to compute accurately the measure of uncertainty
of the inverse knowledge map. For example, it can be proven that the longer the
hyperbolic sensor line (the inverse path of a knowledge unit), the larger the evidential
space and the more certain a conclusion. A combination of probabilistic reasoning
theory based on Dempsier-Shafer belief functions, concepts of information theory

and entropy driven search has been presented.

It is possible to provide a synthesis framework and derive solutions to the inverse
" problem in remote sensing for radio detection and ranging. The proposed synthe-
sis methodologies do not claim uniqueness and there is no attempt to do so, but

they nevertheless provide a robust effective solution to the inverse i)l'oblem in world
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Figure 9.1: Overall operation associated with the world modeling framework.

modeling.

9.4 Recommendations

The science of remote sensing has matured perceptibly over the past decade. Only
rarely are striking claims made about some new method describing “computational
perfection”. The true capabilities and limitations that have always been understood
by remote sensing professionals are not generally understood. In the field of resource
exploration, for example, people do not expect that remote sensing alone will provide

them with the highest quality of information in addition to spatial and temporal
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efficiency. However, the implementation of advanced technology is not an easy task,

especially when the technology itself is so quickly evolving.

The successes of radio detection and ranging have encouraged the development
of radar technology, mainly because radar is an active system that supplies its own
“illumination at different wavelengths. Unfortunately, problems in controlling the
illumination direction at the radio wavelength is beyond today’s technology (which
in fact has an indirect influence on the motivation of this thesis); however, partial
control and orientation have provided for additional success of the radar system.
There is no doubt that the future of radar systems is in vision synthesis in the

invisible spectrum.

Ground penetrating radar: There has been for a while a need for height reso-
lution sub-surface imaging that can be obtained rapidly and economically. Initially
ground penetrating radar easily took its place among geophysicists and mining en-
gineers who had already become familiar with seismic soundings. Applications for
GPR are numerous and include any type of subsurface exploration, geotechnical and
~ archeological investigations, as well as rock mechanics and mine development require-
ments. Some specific application examples are subsurface mapping and may include
rock type changes, fracture identification and soil stratigraphy. Also geotechnical
and archeological investigations can highly benefit from high resolution subsurface
imaging. GPR analysis can detect and map features. Finally, space exploration
cannot be excluded from benefiting from ground penetrating radar as radio detec-
tion and ranging imaging through satellites have proven that the moon and near-by

planets appear favorable for similar applications,
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Appendix A

Electromagnetic Wave

Characteristics

A.1 Review of Basic Wave Characteristics and

Motion

A Wave is a disturbance in a medium such that each particle in the medium vi-
brates about an equilibrium point in a simple harmonic motion. The direction of
the vibration is perpendicular to the direction of propagation of the wave, and the
wave is called a transverse wave. Many characteristics represent the wave hehavior.
The wavelength, written as A, is the theoretical or measured distance from the crest
to crest (or valley to valley) of a transverse wave. It may also be defined as the
distance between two particles with the same displacemnent and direction of displace-
ment. The amplitude is the maximum displacement of a particle in one direction
from its equilibrium point. The frequency, usually written as f, is the number of
wavelength (cycles) that pass per unit time. The period, usually written as 7, is
the time required for one wavelength to pass a point. The wvelocity, usually written
as ¢, of a wave refers to its propagation velocity through the ;nedium. The phase,

usually written as ¢, is the difference in displacement and direction of a particle due
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to two different waves, that is two waves are in phase if each particle has the same

displacement and direction of motion {¢ = 0).

The basic wave characteristics are related to each other by the laws of physics.

The wave velocity is proportional to the wavelength and frequency and
e= A f. (A.1)
The frequency component is inversely proportional to the period and

f= (A2)

-

Some basic principles apply to the behavior of the wave characteristics. The Super-
posilion principle state that the effects of two or more waves on the displacement of
a particle are independent. This means the displacement of a particle by a simul-
taneous wave in a medium is algebraically additive. Interference is the summation
of the displacements of different waves in a medium. Constructive interference is
when the waves add up to a larger resultant wave than their original. This occurs
maximally when the phase difference (¢) is a whole wavelength (A) which correspond
to multiples of 27, Desiructive interference is when the waves add up to a smaller
resultant wave than either original wave. Variation of the interferences can be ex-
tended to closer analysis on the complex harmonics wavelength. Stending waves
result when waves are reflected off stationary coordinates back into the oncoming
waves ol the medium, and super-imposition results. Constructive and destructive

interference dominate the standing wave’s behavior.
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A2 Electromagnetic Wave Propagation

Maxwell’s (James C. Maxwell) electromagnetic field equations are [50] [48):

0B

VXE+E:0 (A3)
oD
VxH-— W =J (*\1)
ds
V.J+ i 0 (A.5)
V.B=10 (A.6)
V.D=10 (A.T)
where
E: the electric field vector, H: the magnetic field number,
D: the electric flux density vector, B: the magnetic flux density vector,

J: the electric current density vector, s: the electric charge density

and

J=0ok (A.8)
B=uH (A.9)
D=¢cE (A.10)
in addition to
©= fofhe, € = €gcr, ¢ = (A.11)
with
o : conductivity v :refractive index c : speed of light

p : permeability . : relative permeability o : permeability in free space

€ : permittivity ¢, : relative permittivity ¢ : permittivity in {ree space
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