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Abstract

In Radio Detection and Ranging, the inverse problem is that of acquiring knowledge

of the physical features of a body by making observations of the refiected energy and

synthesising the model from the measured data. This procedure is in contrast to

the forward problem, which consists of calculating the observable effects from a given

mode!. The forward problem has a unique solution whereas the inverse process,

being carried out on the basis of hypotheses, is always characterized by a lack of

umqueness.

The approach taken towards deve!oping the synthesis framework is to consider a

logic of argumentation of belief fundions which is used to represent the various

symbolic aspects of belief and uncertainty. The logic extends so that not just one

argument, but ail arguments, supporting or opposing a hypothesis are considered.

That is the logic used to solve the inve7'se problem. As arguments are identified

among measurements, the support they confer on a hypothesis or its negation is

aggregated to provide a measure of the degree of belief in the hypotheses of interest.

The aggregatioll operation, or the synthesis regularization, will depend on an ent1'Opy

calculation to represent the uncertainty associated with the arguments.

Based on the theory of Kalman filters, sensor fusion is used to finally establish prob­

abilistic models of the hypotheses. In conjunction with the synthesis regularization,

consistent estimates will converge to a qualitative image reconstruction. The syn­

thesis framework is compared to current solutions to the inverse problem in radio '

detection and ranging and applied to Ground Penetrating Radar image reconstruc­

tion.
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R ' ,esume

Le problème inverse dans l'imagerie à partir des radars consiste en l'acquisition de la

connaissance des caractéristiques physiques du corps en observant l'énergie réfléchie

et en établissant le modèle à partir des mesures calculées. Cette procédure contraste

avec le problème directe qui consiste en un calcul des effets observés d'un modèle

donné. Le problème directe possède une solution unique tandis que le problème

inverse, est toujours caractérisé par un manque de unicité.

L'approche prise en vue de développer le cadre de la synthèse, est utilisée pour

représenter les différents aspects symboliques de la croyance et le doute. Cette ap­

proche doit prendre en considération une logique d'argumentation des fonctions de

croyance ainsi que l'étendue de cette logique, pour que tous les arguments, et non un

seul, supportant ou opposant une hypothèse, soient considérés, c'est la l'Jgique utilisée

pour résoudre le problème inverse. Comme les arguments sont identifiés parmi les

capteurs et les moyens de mesure, le support qu'ils confèrent à une hypothè:se ou il sa

négation est aggré de procurer une mesure du degré de croyance dans les hypothèses

d'intérêt. L'opération aggrégative, ou le processus de la régularisation pa!: synthèse,

dépendent d'un calcul d'entropie pour représenter le doute associé aux arguments.

La fusion des capteurs, basée sur 1" théorie des filtres de type Kalman, est finaliement

utilisée pour établir des modèles de probabilité pour les estimations. En conjonctiun

avec la régularisation par synthèse, les prédictions des capteurs convergent vers une

reconstruction d'une image qualitative. Le cadre de la synthèse est comparé aux

solution courante du problème inverse avec une application sur les radars.
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The author daims the originality of the basic ideas and research results presented in

this thesis, the following being the most significant:

1. Philosophy of the regularization synthesis in statistical inversion theory of a

priori data to a posteriori knowledge delineated by belief functions and uncer­

tainty (Chapter 4 and Chapter 5).

2. Derivation of the exact entropy for the Dempster-Shafer theory. The proposed

entropy computation is based on the principle of the theory of Dempster-Shafer

(Chapter 5).

3. Derivation of the Kalman filter in its decentralized form to an autoregressive

AR optimal filter (Chapter 6).

4. Derivation of the finite to semi-finite mapping from an uncertainty concept to

a normal distribution variance (Chapter 6).

5. Introduction of the regularization factor as a partial momentum warp which

affects the inference in the minimum entropy search. This method is devised

for Dempster-Shafer as weil as Ba:vesian reprcsentation (Chapter 5).

6. Concept of adaptive noise filtering for narrow wave scans which results in the

innovation of dynamic adaption to a time-varying noise spectrum (Chapter 3).

7. Concept of recovering spatial distortion in electromagnetic imaging and adap­

tation of the range" resolution factor from the airborne long range radar system
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and derivation for ground penetrating radar application (Chapter 7).

8. The hierarcha! co!or scheme that would suit the requirements of image encoding

and concur with the basic conditions for efficient image perception (Chapter

8).

Som(. of these contributions have been partly reported in many pre!iminary forms

[64] [63J [58] [59J [66] [65] .
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Chapter 1

Introduction

1 keep six honest serving men. They taught me ail 1 knew. Theil' names are
What and Why and When and How and Where and Who.

R. Kipling, Just Sa Staries.

Sorne of the earliest warld madeling with respect to inverse pl'oblems was of an

astronomical nature. Since the time of Aristotle (384-322 B.e.) human kind has been

interested in perceiving what is beyond its "vision", but it. was not until R6ntgen

(1845-1923) discovered X-rays, which enabled him to see inside living tissue, that

"vision" beyond the naked eye entered a new era. In the fol1owing years, the theory

of Radio Detection And Ranging in imaging has developed so rapidly that astronomy,

medicine and geology are just a few of the areas where remote sensing has been

found useful. Finally, whether in electromagnetic, optical or acoustic sensing, the

main intention of this research and analysis is to augment our understanding of the

surrounding world.

1.1 World Modeling

The objective of wOl'ld modeling in radio detection and ranging is to determine the

spatial configuration and/or physical properties of an unknown object. World mod­

eling problems can be subdivided into a number of classes, according to the kind

1



of information that must be retrieved in the measurements. In the present thesis,

besides the methodologies, two types of world modeling are presented. The first stage

is the identification problem, which amounts to establishing input-output relations

from the wave1ets such as deconvolution and noise estimation. The second stage is

the inverse problem, where the identified measurements are combined to determine

the models' spatial configuration. This dass of inverse problem stems directly from

inverse scattering properties of eleetromagnetic waves.

•
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The inverse problem deals with the process of searching for unique solutions to the

problem of the reverse mapping of dispersion and scattering phenomena. In general,

the problem does not admit a unique solution and has to be approached by special

cases or approximations and/or by search algorithms. In this thesis, we start to

explore new methodologies as an alternative solution to the inverse problem in radio

deteetion and ranging. As we do not daim uniqueness and there is no attempt to do

50, we explore these new techniques for our world modeling synthesis fmmew01·k.

KadlO
System Inverse Image

Detection
Identification System Perception

and Ranl!inl!

Figure 1.1: Block diagram showing the possible overall sequence. System Identifica­
tion might involve any type of amplitude, time and frequency modifications and/or
adjustments.

This research examines two complementary sensor fusion methods that we adapt

to the inverse problem context. We initially devise the synthesis framework of the

world modeling process based on sensor fusion methods. Then we evaluate the

proposed system in comparison to the current solution for the inverse problems in



radio detection and ranging with a direct application to Ground Penetrating Radar

(GPR). The first sensor fusion method relies on beliej junetions and specifically on

Dempster-Shajer evidential reasoning which is a generalization of Bayesian inference

classification [19] [81] [32]. The second sensor fusion method is an adaptation of the

recursive Kalman fllter to its deeentralized form [51J [39J.

•
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1.2 Motivation and Objective

The instances when the inverse problem is of importance are valid when informa­

tion about the structure and composition of an object are required but cannot be

ascertained from direct measurements. Rather, the measurements are recorded at

a spatial location distant from the object and without affecting it in any tangible

way. It is therefore apparent that the problem of inverse scattering is central to the

development of techniques in remote sensing, imaging science and non-destructive

analyses of materials in ail their various manifestations. These appear in such diverse

areas as astronomy [38], antenna synthesis [21], computed tomography in medical

physics [7], profile inversion in geophysics [2] [89] and grollnd penetrating radar. In

each of these areas of stlldy, sensors have been developed to produce signaIs and

images which ail, in one way or another, exploit the way the radiation interacts with

the property of scatterer. In the latter topic, only a few techniques have been devel­

oped to a workable state. One reason cOllld be attribllted to its recent investigation

whereas most theories were tailored for its seismic cOllnterparts.

1.3 Remote Sensing

Generally speaking, remote sensing technology describes the concept of acquiring in­

formation distantly about specifie targets. We realize that ground penetrating radar

introduces a paradigm shift in the understanding of remote sensing. A simple reason

can be associated with the common belief of remote sensing, a characteristic known



as transparency. In fact, the use of radar in aircraft technology can be recognized as

a particular case of ground penetrating radar. Indeed, radio detection and ranging

systems are not concerned with the nature of the target but merely with its presence

and location. This is contrasted with the ability to penetrate the target with the

intent to reconstruct in detail the morphology of the target, including its shape and

composition. Although the task is difficult, ground penetrating radar is likely to be

a fruitful area of research.

•
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What mainly constitutes remote sensing is the existence of a transmitter and

receiver. The basis of remote sensing can be clearly defined as the emission of

a pulse of continuous wavelength (CW) associated with sorne modulation, such

as frequency sweep (FMCW) . On the other hand, a large amount of information

about the target is generated and requires sensing capabilities of the same order as

the generated information. There are sorne remote sensing systems which rely on

passive sources, such as in astronomy or vision, but here we will concentrate on what

are known as active systems which in fact constitute the majority of applications of

inverse theories.

In general, a property of active remote sensing systems is the fact that the source

is arbitrary in aIl the natural dimensions - temporal, spatial, energy spectrum etc.

- which introduces a control factor into the solution of the inverse problem.

1.4 Outline of Thesis

In order to fully follow world modeling in radio detection and ranging as presented

in this thesis, understanding of the analytical and numerical constraints of signal

processing, the inverse problem, logic reasoning and perception is essentia1. I-Iowever,

understanding of electromagnetic field computations is reduccd to the equivalent

basic knowledge of optics.



A chapter on the inverse scattering problem has also been included. The various

known solutions to inverse problems stem from the knowledge acquired from studies

of different research backgrounds that deals with scattering concepts. The work done

in attempting these inverse problems aid in the understanding of the sophisticated

work in world modeling issues.

•
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The thesis itself is divided into three parts. The first part deals with the concepts

and main theoretical derivation of world mode!ing and consists of five chapters.

Section 2.1 introduces the general perspective of radio detection and ranging. The

concepts of ground penetrating radar are introduced only in Section ï.l. Section

2.3 deals with the inversion methodologies for the inverse problem. Radio detection

and ranging inversions are the primary concern of this thesis. The inverse problem

definition was elaborated on the residual error and finite difference computations.

These inversion methodologies in a sense propose the forward problem solution as

an alternative approach to the inverse problem. ln addition, and under the same

llCading as the inverse problem, the most common technique for radar inversion is

also described from a theoretical as weil as a practica! perspective. Also in Section

2.3.3, the notion of inverse operator stacking is mentioned as the evolutionary aspect

of migration techniques.

Chapter 3 introduces aspects of system identification. The theory of !inear time

invariant systems dominates this chapter where numerous techniques dedicated to

system identification and noise filtering are discussed, in particular, the least-squares

method in linear prediction and estimation. The wavelet theOl'y and information

capacity is introduced in Section 3.2. Section 3.3 discusses the methodology of ap­

proaching the system identification of electromagnetic scattering measurements. In

Section 3.3, the assumption of zero offset imaging is stated as a basis of this thesis

work. The scattering and measurements are performed \Vith a pseudo-single antenna.

Section 3.4 contains the equations that describe the linear input-output relations of



the scattering and measurements state. A simple algorithm for estimating measure­

ment noise corruption is presented in Section 3.4.1. In Sn.ction 3.5, the possibility

of extending the concept of narrow scans introduced in Section 3.4.1 as the basis of

an initial assumption for a sophisticated deconvolution algorithm is discussed. The

least-squares method, which has been shown to be useful in many parameter esti­

mations [60], is formulated for the general prediction radio detection and ranging

output estimate in Section 3.5.1. The viability of the formulation is accomplished

by deriving the equation around a simple examplej the inverse fiitering and echo

excitation removal from radar signais.

•
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Chapter 4 contains an introduction to the inverse problem. General difficulties

one encounters in understanding the inverse problem are discussed in Section 4.2.

Henceforth, the formulation of the inverse problem is proposed. However, Section

4.2 is considered relatively important to the notations and terminology which are

used throughout the thesis. As this thesis introduces the definition of divergence

in the inverse problem which is separated from the" definition of the ill-posed in­

verse problem, this chapter is relatively important. Therefore in Section 4.2.1 the

four categorizations of the inverse problem are proposed. Section 4.3 delineates the

Backus-Gilbert approach to inverse problems. This process introduces the ,'egular­

ization term in inverse problem nomenclature, Nowadays, Backus-Gilbert is often

recommended as the generic method of choice for designing and predicting the per­

formance of experiments that require data inversion. Although one cannot obtain a

complete solution based on this approach, Section 4.3 nevertheless presents a clear

picture of regularization and uncertainty factors in the inverse problem. The l'esolu­

tion limits and resolving power which mainly validate the inverse problem solution

are discussed in Section 4.3.1. The uncel'tainty factor resolution limits in this con­

text are also described. The main points of this chapter are expounded in Section

4.4, where a qualitative approach to the inverse problem is pl'esented. This new ap­

proach to the inverse problem, however, does not claim uniqueness, but incorporates



techniques to stabilize divergent inverse problems ( also mentioned in Section 4.2.1).

Section 4.4.2 relates the a posteriori knowledge map and uncertainty to a knowledge

mapping process. A brief discussion is presented in Section 4.4.3, hence introducing

the proposed regularization synthesis.

•
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In Chapter 5, the synthesis regularization method is proposed. An alternative

descriptive title for Chapter .5 is logic regularization, however, the title A World of

Beliefs was chosen due to the nature of its contents rather than its functionality. An

introduction to evidential reasoning is presented in Section 5.1. The notion of rep­

resentation of knowledge with uncertainty factors is presented in the same Sectivn.

This chapter contains the major theoretical contributions of this thesis. The Bayesian

and belief function propagations of evidence are described in Section 5.2 where belief

networks, directed cyciic/acyciic graphs and knowledge regularization synthesis form

the main focus. Section 5.2.2 describes a possible notation of the Dempster-Schafer

model and the frame of discernment concepts. In addition, Section 5.2.2 suggests

sorne definitions and assumptions of the sensor data implications to the belief func­

tions and inciudes the algorithm for combining belief fUllctions. Section .5.3 describes

the generic derivation of exact entropy computation for the Dempster-Shafer belief

model [81]. Oempster-Shafer evidential reasoning is consideree! a gelleralization of

Bayesian inference. The secone! contribution is in Section 5.4 and Section 5.4.1 and

explains the e!erivation of the l'egulal'izing factor (l'J), which is a momentum bias

that largely affects the knowlee!ge evaluation. The regularizing facial' (rJ) is usually

associatee! with skewing the distribution of the data and results in momentum in the

minimum entropy computation. This method is devised for Dempster-Shafer as weil

as for Bayesian knowledge representations.

Chapter 6 is devotee! to the Kalman filtel'ing integration method and functioning

as front-end multi-sensor fusion technique. The Kalman filter is our proposed method

to achieve the final synthesis and statistical mapping. In Section 6.2 we derive the

finite to semi-fini te mapping from an uncertainty concept to a normal distribution



variance. In Section 6.3 we discuss model robustness and the need to combine the

knowledge maps into an optimal estimate.•
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Part two of this thesis is devoted to various aspects of the experimental ap­

plicationof world modeling and the inverse problem to ground penetrating radar,

starting with Section 7.1 which discusses ground penetrating radar from a user point

of view. Besides the main functionality aspects and the hardware involved in ground

penetrating radar which are weIl elaborated in Section 7.1.1, other factors which

enter into the data interpretation are also explained. The basic electrical and elec-,~

tromagnetic specifications of the GSSI SIR 10 radar unit in addition to sorne main

components such as control functions, line scanning and the board computer are

described in Section 7.2; however, on-board digital filtering is presented separately

in Section 7.2.1 even though it consists of part of the radar unit. Since the spec­

troanaIysis of the transmitted signal of the radar was nevc" measured, Section 7.2.2

discusses the hypothetical spectra. Section 7.3 becomes more conceptuaIly techni­

cal when the reflection, refraction and scattering phenomena are explained. This

Section is of importance for its proposaI of a new methodology for the operation of

ground penetrating radar. When both scattered and reflected signaIs are separated,

the reflection analysis provides the data for the Impulse Reflection Knowledge Map

(IRKM) which is explained in Section 7.3.1, and the scattering analysis provides

the data for the Polarized Scattering Map (PSKM) which is discussed in Section

7..3.2. As spatial distortion in ground penetrating radar decreases its resolution, Sec­

tion 7.3.3 reports ail important characteristic of the horizontal resolution of short

distance radar where the analysis of the range resolution (R r ) is proposed. On the

other hand, to remedy the vertical spatial distortion that results from velocity change

of the electromagnetic wave field in different media, Section 7.3.4 demonstrates an

efficient approach to manipulating the velocity-depth-time space. Once the basis of

the knowledge maps is computed as in Sections 7.3.1 and 7.3.2, the knowledge map

(KM) synthesis, that is Section 7.4, systematicaIly uses the knowledge maps (IRKM)
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and (PSKM) in constructing the world mode!.
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Chapter 8 deals with data interpretation and perception as the next stage from

Cha,pter 7 in knowledge handling. Section 8.1 introduces the general perspective of

the visual perception. The parameters' description as sets of forms is presented in

Section 8.2, where the hierarchical information combination is proposed. However,

it is in Section 8.3 where image encoding is explained. Numerical results for the

overall process (Figure 1.1) are generated and are shown. Ali techniques listed in

this thesis are to be applied for validation purposes in their numerical performance

imp!ementation in the inversion of the measurements of ground penetrating radar

with the exception of the finite difference forward modelling algorithm.

In part three and Chapter 9, general conclusions are drawn. Also, suggestions

are made for further research in the inverse-scattering problem in general, and in

regularization by synthesis and world modelling. The strategie review (Chapter 9)

contains also a brief review of the inverse problem as weil as a claim of originality

stated in Section 9.3.
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Chapter 2

General Perspective

Remote .•ensing is broadly defined as col!ecting information about a target without

being in physical contact with it. Aircrafts and satellites are among many platforms

where remote sensing is extensively used for remote observation. The term remote

sensing is commonly restricted to methods that employ electromagnetic energy as

the means of detecting and ranging target characteristics. In this thesis, we classify

electromagnetic sensing as radio detection and ranging (RADAR), a subclass of

remote sensing, in contrast to its usual classification.

Historical!y, the ref!ection of radio waves from objects was noted in the late

1800s and early 1900s. Definitive investigation of radar began in the 1920's in the

United States and Great Britain fol' war detection purposes. In present times, radar

applications are considered to be the most reliable in remote sensing.

2.1 Radio Detection And Ranging

Electromagnetic energy refers to al! energy that moves with the velocity of light

in a harmonie wave pattern. A harmonie pattern consists of waves that occur at

equal intervals in time. The wave concept explains how electromagnetic energy

propagates, but this energy can only be detected as it interacts with matter. In this

11



interaction, electromagnetic energy behaves as though it has particle-like properties.

When electromagnetic energy refracts as it propagates through different media, it is

behaving as a wave (Appendix A.I).

•
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Electromagnetic waves can be described in terms of their velocity, wavelength and

frequency. Ali electromagnetic energy travels at the speed of light in a vacuum. Un­

like velocity and wavelength, which change as electromagnetic energy is propagated

through media of different characteristics (e.g. density), frequency remains constant

and is therefore a fundamental reference property. Electromagnetic energy that en­

counters matter, whether solid, liquid or gas, is referred to as incident radiation.

Interactions with matter can change the properties of the incident radiation: inten­

sity, direction, wavelength, polarization and phase. During interactions between the

electromagnetic energy and the media, mass and energy are conserved according to

basic physical principles. The incident radiation can endure the following behavior:

1. Refraction, that is, the incident radiation passed through the medium. Trans­

mission through media of different electrical characteristics causes a change in

the velocity which is accompanied by a direction change.

2. Reflection, that is, returned from the medium. Conjugate responses are found

such as the refiection angle and the wave po!arization.

3. Scattering, that is, defiected in ail directions.

4. Absorption, where the electromagnetic energy is transformed into another

form of energy such as heat or any type of radiation of other wavelengths.

Hence, the incident electromagnetic energy may be refiected, refracted, scattered

and absorbed, often in combination. Radio detection and ranging depends highly

on the refiected waves which are called the Albedo [85]. The Albedo is the ratio

of the energy refiected, usually onto a different medium, to the incident energy.
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Figure 2.1: A pulse of high frequency eleetromagnetic energy (Tx power) is used
repetitively. As this energy source waveform propagates through the environment
(scattered power), sorne of the energy is refiected back to the origin (acquired power).

This terminology is often used in an optics context. On the other hand, scattering

phenomena are continuously masked by the aspects of the refiection and refraction

counterparts which are usually stronger in magnitude. Scattering results from multi­

ple interactions of the electromagnetic energy on a particle level. The major process

of scattering in radio deteetion and ranging is of a non-seleclive scallering type [50]

where all wavelengths of the electromagnetic energy are equally scattered. Electro­

magnetic scattering phenomena are comparable to the illumination process at an

invisible wavelength.

2.1.1 Radar Component

Having described radio detection and ranging with relation to electromagnetic con­

cepts, in reference to Section 1.3, the radio detection and ranging system is an active

remote sensing system as it provides its own source of energy. In fact, the system

illuminates the surrounding matter with electromagnetic energy and detects radar re­

lurns which are the energy returning from the medium. Radio detection and ranging



systems operate in the radio and microwave bands of the electromagnetic spectrum

ranging from a meter to a few millimeters in wavelength. The advantage of similar

active systems can be extended to the proper tuning of wavelength, hence achieving

ground penetration capabilities and performing subsurface detection and ranging.

•
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2.~ Ground Penetrating Radar

Ground penetrating radar (GPR) is a non-destructive technique similar in principal

to seismic applications. An electromagnetic energy pulse propagates into the ground

and the partial reflections are sampled and recorded [18]. Radar hardware design is

diverse, however it shares a common technology. For purposes of the experimentation

reported in this proposaI, a Geophysical Survey System Incorporated (GSSI) radar

unit (SIR-ID) was used, with the system set to operate in the L band around a center

frequency of 1 GHz. A random-Ietter code was assigned to different frequencies

during the early stages of development to avoid mention of the wavelength regions

under investigation. The transmitter and receiver antennae were located adjacent to

each other, behaving as a single pseudo-antenna.

Over the past decades ground penetrating radar techniques have been applied to

many practical problems as a non-destructive testing method. This has resulted in a

demand for more dependable subsurface imaging, as weil as improved capabilities for

processing and interpreting the resulting images in an autonomous fashion. However,

until recently [70], there were no devised methods that met the above requirements.

Data were acquired manually and interpreted in their raw format.

Understanding of the ground penetrating radar concept is best introduced by

the analogy of a f1ashing light beam dispersed through a semi-transparent medium.

Despite the fact that well-established concepts in signal analysis and for the inverse

problem have been developed for seismic applications in geophysics [78] [13J [14], such

formalisms are still lacking in the ground penetrating radar domain. The focus in



grom:d penetrating radar remains on the evolution of particular mode!s rather than

on generic methods, and, likewise, the emphasis is placed more often on empiricai

approaches to the field instead of on the classical foundations.

•
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In most applications of electromagnetic imaging in subsurface exploration, a pulse

of high frequency electromagnetic energy is used repetitively. As this energy source

waveform propagates through the environment, sorne of the energy is refiected back

to the origin (Figure 2.1). The refiections vary with the composition of the medium

in terms of its electric properties and hence describe the fOl'wal'd problem. In Figure

2.2.a, the cross section of a cylinder has been generated by a radar simulator showing

sorne features of the electromagnetic scattering phenomena (Figure 2.2.b). In Figure

2.2.c, an attempt to invert the process of the forward modeling is shown.

•
a b c

•

Figure 2.2: Left: A cross section of a cylinder being scanned by the ground pene­
trating radar beam. Middle: The output shows the scattering <'ffect of the electro­
magnetic waves. Right: Image reconstruction is carried on on the basis of an inverse
process.

From the imaging point of view for real world situations, al! objects are three­

dimensional. I-Iowever, in most cases, a techniquedevised for solving a two-dimensional

problem can be generalized for three-dimensional applications. Furthermore, in

the cases of ground penetrating radar applications, two-dimensional images can be



stacked together to form a three-dimensional reconstruction. It is, therefore, appro­

priate to consider a two-dimensional - and if possible a single-dimensional - version

of a problem since, besides offering physical insight, it involves less algebraic and

computational· complexities.

•
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Alth;ough the subsurface electromagnetic imaging is in its early stage and still

growing in an era of advanced research, sorne prominent techniques like pattern recog­

nition were applied and were pioneered for the subsurface electromagnetic imaging

applications by Poulton [75J and later, by Glass [34J where the concept of artificial

neural networks was introduced in the radar context. Additional models have been

used to describe the behavior of ground penetrating radar in ways to facilitate the

analysis of the system. Since the use of the radar acquisition system yields enor­

mous amounts of data, it is advantageous to model the ground penetrating radar to

scale as described by Smith and Scott [86J. Relationships between full-sized systems

and models having scaled physical dimensions can be estab\ished. Such an approach

can lead to an exponential decrease in the computational analyses that are to be

performed, since geophysical characteristics and dimensionality correction ratios are

preserved.

2.3 Inversion Methodologies

Inverse problems abound in science and engineering and sorne inversion method­

ologies are subsequently derived. Examples of typical inverse problems are found

in: antenna synthesis [21], computed tomography in medical physics [7] and pro­

file inversion in geophysics [2] [89J. In the latter topic, only a few techniques have

been developed to a workable state. One reason could be attributed to its recent

application whereas most theories were tailo:ed for its seismic counterparts.

In formulating the solution techniques for the inverse problem as weil as for

the inverse-scattering problem, an important consideration has been to maintain its



capability of being generalized to more complex configurations as much as possible.

A consequence of this approach is that the conelusions obtained from the abstract

formulation must be verified by computing numerical results for adequate image

inversions. In fact, ail the techniques listed in this thesis are applied for validation

purposes in their numerical performance in 'the implementation of the inversion of

the measurements of the ground penetrating radar application.

•
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2.3.1 Forward Modeling and Residual Error

One \Vay of solving an inverse problem is to propose a model, calculate the \Vave

field, compare the calculated field with the measured data and subsequently modify

the model (Figure 2.3.1).

ForlVard
modeling

1--------............ elTor

synthetic

Rada

•
Figure 2.3: Forward modeling and residual error computation and estimation. Syn­
thetic data are simulated according to a model which is compared to the real data.
As the error is minimized, a model can be estimated.

•

Until Yeo [95], where a solution to the penetrable wedge problem was addressed,

methods of computing the electromagnetic wavefield had to undergo many approx­

imations. Initially, the research in forward modeling was dominated by mathe­

maticians and physicists in the wave/partiele properties of radiation conditions and

boundary conditions. In contrast, the focus of this thesis research is to achieve a

feasible, efficient and stable solution to the inverse problem without approaching

forward modeling techniques.
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In a finite difference scheme, a space-time mesh is introduced and the wave equations

are replaced by a system of finite difference equations on the mesh. An appropri­

ate numerical method is then invoked to solve for the field at every point of the

mesh. The finite-difference method in the time domain (FDTD) has been adapted

to model radar wavelets. The method is based on the explicit finite-difference of

Maxwell's equations (Appendix A.2). The model is set up to produce the forward

model wavelets when given the constraints and to result in synthetic data.

The finite-difference time domain method is a robust technique for forward mod­

eling of electromagnetic wave radiation, propagation and scattering. As the FDTD

method is computer-intensive, it becomes time consuming when used recursively in

residual· error computation. With the advent of the enormous increase in computer

technology, the FDTD method has became one of the leading candidates for ca1cu­

lating scattering from radar targets. In the past three years, several articles have

described the FDTD method of forward modeling in GPR [9] [87].

2.3.3 Migration Stacking Inverse Operators

There are a number of different ways of looking at this process. One which is in­

tellectually satisfying, though not computationally useful, is to see it as a a two­

dimensional deconvolution. Each point in the subsurface produces in the Euclidean

data space a characteristic response of a hyperbolic nature - a two-dimensional im­

pulse response. Since the total response in the measurement space is the !inear

superposition of impulse responses of ail points on the subsurface, the forward mod­

eling can be thought of as a two-dimensional convolution of hyperbolae, the impulse

responses. Rence migration is the inverse of this convolution. In short, migration is

the process of constructing the refiector surface from the record surface. The basic

mathematica! properties of migration were developed by Hagerdoorn [41] .



When migration was simplified to a sequence of hyberbolae stacking, migration

became ultimately the most widely accepted process whereby the antenna pattern

contribution could be removed. In many respects, the process is the same as synthetic

aperture processing. Migration analysis in its implemented form requires antenna

pattern information as weIl as wave velocity for qualitative image focusing. Although

the migration process does a very effective job of coIlapsing the hyperbolic returns

back to their localized source position, the migration process is not perfect nor was

it expected to be, as the problem is mainly attributed to boundary conditions.

•

•

•
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Chapter 3

System Identification: Exploiting

Wavelets

3.1 Introduction

Our approach is to base our model on mathematical equations representing only

basic electromagnetic scattering phenomena, and to apply concepts of digital signal

processing and wavelet filter banks [36]. In fact, as the nature of the problem

has been proven to be of a linear type and validated at a later stage through a

state space analysis [97], the theory of linear time invariant systems can introduce

numerous techniques dedicated to system identification and noise filtering [60J. In

particular, the least-squares method has demonstrated promising results in digital

signal processing in geophysics [62] [78].

In general, parameter estimation and identification are usually described within

a probabilistic framework. Here, we basically employ such a framework, however we

attempt to allow inclusion of a priori information or knowledge. In Figure-l.I, the

overall synthesis framework including the system identification prior to data inversion

is shown. Pre-processing is included in the system identification .

20
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• 3.2 Wavelet Theory and Information Capacity
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The purpose of this section is to present sorne basic concepts and constraints of

identification from an information theory point of view. Information may be defined

as a measure of the degree of uncertainty of sorne proceSSj i.e. the more uncertainty

there is in a process, the less informative the process. On the other hand, uncertainty

does not necessarily imply the lack of possible information but rather the lack of

capacity to retrieve the information. The best analogy can be related to the science

of cryptology. The encrypted text contains the same information as in its original

form, though it is only in the second case that there is sorne potential of information

retrieva1.

Communication or information theory is a large subject, and it is not the in­

tention of this thesis to explore ail of its aspects. However there are a few basic

principles that we are going to investigate in an informai way [24] [8]. Whether in

Weiner's communication theory [93J, Shannon's information theory [83] or Gabor's

communication theOl'y [29J, time series signal principles and constraints in informa­

tion theory are shared. The constraints in information theory have a positive impact

on the knowledge extraction from a probabilistic perspective, as will be described in

Section 5.3.

As there are various types of signaIs and, in particular, power signais, which are

represented by time series, the concept of wuve/et theory was introduced for time

series signais with additional restrictions. For electromagnetic imaging, the concepts

of wavelets can be characterized by two properties:

1. The one-sided property: A wavelet has zero wavelet values before its origin.

2. The stubi/ity prope7'ly: A wavelet has finite energYj that is, mathematically

speaking, L: Ily(n) Il < c, for ail n and c·is a fini te constant.



Another approach is the Fourier transform of a set of filter coefficients bj given•
Chapter 3. System Identification: Exploiting Wavelets 22

(3.1)
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by

Y(w) = L bje
ijw

.
j

Here Y is a function periodic in 21r and it defines the wavelet y(n) iu Fourier domain.

Henee, in contrast to time series, wavelets are self-contained with a definite origin

and arrivai time. In other words, a wavelet has a fini te time independent index. A

wavelet in electromagnetic imaging is the measurement data set subsequent to a

finite emitted pulse. Wavelet theory is extensively used in seismic applications [78J

[14J.

The retrieval, by means of coherent techniques, of information from wavelets

has been demonstrated [46]. Although we will use the same principle of system

identification, we will further explore additional concepts of uncertainty for opti­

mal information retrieva! (Section 5.3). However, in this chapter the significance

of wavelet theory is that the measured signal can present a maximum capacity of

information and in order to demonstrate the potential of information retrieval from

an uncertainty perspective, we may realize that the problem is related to Heisen­

berg'; 'uncertainty principle [76J. In general, the problem can be divided into two

categories:

1. Linear wavelet identification

2. Uncertainty and information retrieval

The fol1owing part of the chapter will concentrate on the system identification

aspects whereas the second category will be approached in Chapter 5. Wavelet

identification is governed by the principle of separability in the frequency domain

such that

• Y(w) = H(w) IlSi(W)
i

(3.2)



and henc~ system identification is to find the realizahility of the inverse filters that

will solve for H(w) or•
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1
H(w) = Y(w)!f Si(w)"

3.3 System Identification Methodology

23

(3.3)

•

•

System i0,·ptification concepts developed in this research rely exclusively on the

measured data. As a result, assumptions regarding the radar waveform and the

nature of noise involvement are reduced to a minimum. In fact, we will consider these

variables to he assoeiated with the identification procedure of the characteristics of

the system being investigated.

System identification can also be hardware-dependent. For example, since the

scattering and measurements are performed with a pseudo-single antenn~" data be-­

comes highly correlated and excessive symmetries are found. When the source and

receiver are coincident, the path of the energy from the transmitter is retraced ex­

aetly by the energy coming back to the receiver. Known as zero offset imaging, it

simplifies the inverse problem and spatial distortion recovery by knowledge of the

travel time which is exaetly doubled. Another important aspect is that only nor­

mal incident wave fields are reflected and measured 1 and hence the reflection index

assumptions are not required. The concept of zero offset was first introduced in

seismic applications as described by Cassinis [13]. In fact, due to the similarities in

the prineiple of wave propagations, the same concept of the zero offset is embodied

in modern ground penetrating radar designs. Reducing uncertainties and assump­

tions allows an increase in imaging resolution and reduces the computational costs

allowing the freed time to he used in resolving spatial distortion relating the wave

velocities [64].

1Refracted signais are of higher order and can be eliminated. Refiected refractions are identified
by their weak signal energy compared to their first refiection through correlation.



Chapter 3. System Identification: Exploiting Wavelets

• 3.4

24

Input-Output System Description and Mod­

eling

The input-output description of a system consists of deriving mathematical expres­

sions which specifical1y define the relation between the input and output signais. An

electromagnetic signal x(t) is emitted at ta and is of fini te lengthj a signal y(t) is

recorded for an interval T units of time starting at ta.

Let h1(t) define the characteristics of the medium in the direction of the trans­

mitted wave, and h2(t), the characteristics of the medium in the opposite direction

for the interval T or

(3.4)

•
where ta +T becomes the cutoff time. In other words, if a signal excitation x(t)

is emitted and a measurement y(t) is recorded in the interval T, the signal uses

at maximum T/2 units of time to penetrate the medium and T/2 units of time to

return. In addition, the signal employs exactly the same path in both directions.

Also, the signal that penetrated the medium was affected by the material charac­

teristic h1(t) until it was refiected, and affected again by h2(t) and finally measured.

In general such behavior is represented by the convolution of the signal with the

medium characteristics and

y(t) = h1(t) * h2(t) * x(t)

'tnd expanded, given a zero offset system, to

which displays an autocorrelation sequence, and

(3.5)

(3.6)

•
(3.7)

In reality, the signal y(t) is sampied and modified arbitrarily to yield the wavelet

y(n), which is the only m;::~surement recorded. Hence, it is relevant to assume



a corresponding sequence x(n) and h(n) where k describes the index each time a

measurement is recorded and•
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Yk(n) = s(n)[hk(n) * x(n)]
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(3.8)

•

where Yk(n) is multiplied point-by-point by the arbitrary sequence s(n). Here, s(n)

has no physical meaning, but rather introduces a gain to compensate for the atten­

uation of electromagnetic waves as a function of distance.

3.4.1 Estimating Noise Corruption

Suppose that an electromagnetic excitation input sequence x(n) is repeatedly used

and Yk(n) is the set of measured sequences. In reality, the current problem is that

measurements are corrupted with noise as shown in Figure 3.1, and the objective

is to estimate the noise spectrum. In general the measured signal Yk(n) may he

expressed as

(3.9)

where k is the k th scan, hk(n) depends on the medium characteristic and e(n) is the

corruption noise. In the z-domain transform

Yk(Z) = Ih(z)X(z) + Ek(z). (3.10)

x(n)--+l

•
Figure 3.1: Model representation with noise corruption. In the proposed model, we
only assume measurement noise.



Assume the fact that the scans are consecutive and narrow enough to have the

variation between hk _ 1(n) and hk(n) negligible. As a result the fractional noise

change becomes sharp and locally identified

•
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which leads to

lim (h - Yk- 1) = Ek,k-l(Z)
.6.k,k_l-H:
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(3.11)

(3.12)

which is the zero mean noise spectrum and ( is an arbitrary value. The inverse

z-transform ek,k-l(n) can be considered the best local estimated noise and thereby,

global noise filtering can be achieved. What we have introduced here is adynamie

adaption to a time-varying noise spectrum.

The validity of this approach is to investigate the nature of ek,k_l(n). The auto­

correlation sequence of ek,k-l should resemble

• 1=0

1#0
(3.13)

•

if Ck,k_l(n) is white noise sequence, and Eek,k_1 is a constant. What is of interest is

to examine the effect of the distance of the scans on the noise estimation, which can

be accomplished by evaluating the sequences ek,k-l(n), ek,k_2(n), ek,k-3(n), ... and

eomparing their corresponding auto-correlations.

3.5 Deconvolution in Remote Sensing

A large dass of systems can be represented by a convolution of the input and the

system impulse response. Even the system impulse response can be represented as

a convolution of impulse response functions of many subsystems. The problem of

deconvolution has been solved by many different approaches, as for sorne time this

was a major issue in seismic applications. Among others we can identify the following

fiitering techniques: Weiner filtering [92] and Homomorphie deconvolution [90].
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3.5.1 Example: Least Squares Prediction in Radar
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(3.14)

Assuming the signal y(n) was recorded at the antenna for an excitation sequence

x(n), the output wavelet may be written as

L

y(n) = L kix(n - Di)
i=l

where ki is the refiection coefficient at the ith depth and Di represents the corre­

sponding propagation delay. The number L is the number of points recorded. The

received signal y(n) can be viewed as the convolution of the excitation x(n) with the

sequence
L

h(n) = Lkio(n- Di)
i=l

(3.15)

•
where h(n) is a function of the characteristics of the medium. What is of interest is to

recover the sequence h(n) from the measured sequence y(n). Consequently the prob­

lem becomes an inverse filtering to remove the excitation effects of x(n). In reality,

the current problem of inverse filtering is more complex. The ghost patterns, which

are a series of reverberations, are known to strongly mask the measurements which

are represented by the sequence c(n). In general, when ail variables are considered,

the received signal can be represented as

y(n) = :r(n) * c(n) * h(n).

As a result, the sequences .T(n) and c(n) are to be eliminated. Let

p(n) = .T(n) * c(n)

(3.16)

(3.1 il

as a single sequence to be eliminated. The sequential effect of a signal path may be

expressed as

•
p(n) = x(n) - cx(n - Di) +c2 x(n - 2Di) - c3 x(n - 3D;) +...

and in the z-transform domain

(3.18)

(3.19)
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which converges to
1

P(z) = 1- CZ-DiX(z).

Therefore, the system function for the ghost pattern can be expressed as

1
C(z) = 1 _ CZ Di'

28

(3.20)

(3.21 )

•

Since the coefficient c < 1, the system is stable and its inverse is FIR and mini­

mum phase. The deconvolution is designed to remove the effect of x(n) and c(n)

simultaneously. To derive the inverse system for deconvolution, it is necessary to

adopt a weil based statistical approach. The assumption is that the sequence h(n)

is uncorrelated [92] [78] and consequently has the following autocorrelation

(3.22)

where Eh is sorne arbitrary constant. On the other hand, the sequence p(n) =

x(n) *c(n) is highly correlated. As before in the previous section on noise estimation,

we will assume the fact of consecutive narrow scans for small variations in the output

observation and, hence, we can predict future observations. If y(n) is the observed

output sequence of the real system, let y(n) be the output of the predicted model,

and
M

y(n) = L bkx(n - k) (3.23)
k=O

where bk is the prediction coefficient. Sine the previous equation describes an FIR

filter, of length M and coefficients bk , the filter coefficients are selected to minimize

the sum of the squared-error sequence, that is

The minimization of ê with respect to the coefficients bk leads to the equations of

the form

•
(1

co [ M ]2
ê = ~ y(n) - Ebkx(n - k)

M

L bkryy(k -i) = ryy(l)
k=l

(3.24)

(3.25)
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+.y(n) ----,---------+{ h(n)
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Delay z-l
FIR

predictor
y(n)

Figure 3.2: Linear prediction and deconvolution. The FIR predicts a sequence y(n)
from past samples and subtracts it from the observed values to yield the desired
sequence h(n).

where l'yy (l) is the auto-correlation of the sequence y(n) defined as

00

;'yy(l) = Ly(n)y(n -1).
n=O

We can express again the linear equation in the matrix form as

• l'yy (O) ryy (l) ryy(Ao! - 1) b1 ryy (l)

ryy (l) ryy(O) ryy(M -2) b2 ryy (2)
=

ryy(M - 1) ryy (1) ... ryy(O) bAI ryy (J\I)

or equivalently, as

Ryyb = f yy .

(3.26)

(3.27)

(3.28)

•

These equations, often called the Yule- Walker equations [62], admit an efficient solu­

tion due to the Levinson and Durbin algorithm [57]. Since the correlation sequence

{rhh} is an impulse, it follows that {1'yy } = Eh{rpp }. In view of the foregoing cor­

relation, the FIR fiiter preciicts the sequence p(n) from past samples of y(n). The

Dredicted y(n) is basically an estimate of p(n), and is subtracted from the observed

values to final1y yield the desired sequence h(n) as shown in Figure 3.2.
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Chapter 4

The Inverse Problem

The moment one begins to investigate the truth of the simplest facts which
one has accepted as true, it is as though one had stepped off a finTI, narrow
path into a bog of quicksand - every step one takes one sinks deeper into the
bug of uncertainty.

L. Woolf.

In formulating the solution techniques for the inverse problem as weil as for the.

inverse-scattering problem, an important consideration has been to maintain their

capability of being generalized to more complex configurations as much as possible.

A consequence of this approach is that the conclusions obtained from the abstract

formulation must be verified by computing numerical results for adequate inversions.

The inverse problem is a complicated process. Techniques vary in their approach

to solving the inverse problem. Trial and error techniques are too cumbersome.

Analytical inversion of the direct problem does not leave mnch space for a realistic

application and is possible for few cases, and even then meets with many diflicnlties.

Problems such as uniqueness and stability are to he dealt with. There is a brancll

of mathematics in which problems of uniqueness and staLility have been studied

extensively: Linear Algebra.

30
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Our dull description of an inverse problem was based on terms of common knowl­

edge in scattering and slightly on terms of electromagnetic scattering, but, with a

little stretch of the imagination, the analogy can be transposed to a generic infini te

scattering phenomenon with a finite measurable space.

The interpretation of scattered radiation is rarely straightforward. Often the

information contained in the raw measurement data requires a considerable degree

of processing before a sensible conclusion can be made about the object. Indeed,

it is only after the implementation of sorne inversion procedures, which necessarily

contain within them a description of the scattering mechanism, that the measure­

ment can be transformed into an understandable cognitive form. For example, the

images of an object produced by two electromagnetic detection devices.operating at

different frequencies reveal distinct differences when compared, despite their both

having emerged from antennas and being formed from scattered radiation. More re­

stricti vely, some eleetromagnetic signaIs can be mani pulated more easily than others,

whereas other wave fields can provide valuable information despite the encountered

difficulties in their manipulation.

In the devclopment of electromagnetic theory, emphasis \Vas placed on discov­

ering the implications and exploiting a few specific applications of the theory. As

a consequence, ail effort was invcsted on the forward problem, that is, on finding

solutions to Maxwell's eqllations rather than on the corresponding inverse solutions.

The individllal constraints and challenges imposed by electromagnetic theory

have led to different inverse solutions. In recent years, the emphasis has shifted

from solving the exact inverse problem to adapting techniques which can be applied

with confidence in certain areas which have greater flexibility with relation to the

measurements.
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Any scattering problem can be represented in terms of a luapping between certain

sets of functions. Before presenting the inverse problem itself, it is appropriate to

consider the forward problem within this context. The direct problem consists of

finding how a set of functions p forming the elements of the parameter set P, which

describes the scatterer, are mapped to the set of functions d, being the elements of

the data set D and hence describing the scattering phenomenon in its conceptual

form. The mapping A is an operator which acts on the elements pEP to produce

the data set d E D, or

A: P -t D. (4.1)

Provided that the operator and parameter set are known, the data set can be defined

This formai definition of the forward problem can be restated in words such as the

set D is the collection of elements d such that the operator A maps p to d. Solution

of the inverse problem can be defined as finding the inverse mapping and the inverse

operator A -1 which constructs the parameter set from the data set. In this sense, the

inverse operator performs a reconstruction of the parameter set and, again, provided

the inverse mapping and data sets are known, the parameter set can be defined as:

•
as:

D = {d: A(p) -t dl.

P = {d: A-1(d) -t pl.

(4.2)

(4.3)

•

These operations are shown schematically in Figure 4.1.

If these general concepts are related to a real scattering experiment, then the

complicated relationship between the mapping and the respective sets soon becomes

apparent. First o(all, consider the parameter set. This set of functions is unlikely to

represent a complete description of the object, being defieient in specific parameters

which may contribute to measurements, such as geometrical constraints. In addition,
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forward

inverse
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Figure 4.1: Demonstrating the forward and inverse problem as a mapping between
parameter and data sets P and D respectively. The mapping itself is a representation
of the scattering phenomena where forward and inverse are function operators.

measurements are made from a finite set of wavelets or finite discretization of spatial

and temporal domains, and this inevitably means that we cannot deny the data

incompleteness. Specific to radio detection and ranging, knowledge of the source

signal is also deficient and results in an additional comp1cxity in the accuracy of the

forward problem itself prior to any inversion.

The mapping itself is a representation of the scattering phenomena, usually de­

duced from a knowledge of the propagation characteristics. For the majority of

electromagnetic applications, including radio detection and ranging, the mapping is

derived from a wave operator. It is important to realize that this wave operator is

linear in the forward mapping problem and nonlinear in the inverse mapping problem

of the data set to the corresponding parameter [45].

One critica! aspect of inverse solutions is the effect that inaccuracÎes in the mea­

sured data have upon the accuracy of the reconstruction. These inaccuracies can be

introduced by the measuring equipment. The problem of en'ors can be considered

of high importance and is treated on its own as there is no intention to study the

j.mpact of noise on the inverse solution. Sorne noise analysis was presented in Section

3.4.1.
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Many issues have obvious bearing on the validity of an inversion in the existence of

the reconstruction, that is, the inverse mapping maps elements from the data set to

those elements which are proper members of the parameter set. One wishes that the

inversion should also be unique, in the sense that every element of the data should

correspond to a single element in the parameter set. However, it will become evident

that the mappings describing inverse scattering in electromagnetic applications are

nonlinear, indicating the existence of more than one inverse solution to the scattering

problem. In this thesis we classify the inverse problem into four categories.

Definition 4.1 (Inverse Uniqueness) A unique inversion is one in which every

element of the data set should correspond to a single element in the parameter set.

Definition 4.2 (Inverse Stability) A stable inversion is one in which an infinites­

imally smail change in the data set gives rise to correspondingly smail changes in

the pammeter set. If the changes in the pammeter set are large, then the inlJe7·sion

is deemed to be unstable.

•
P = {p: A(p) -+ dj A-1(d) -+ p} (4.4)

(4.5)

and e, f are arbitrary values.

Definition 4.3 (Inversion Divergence) A divergent inversion is one in which,

for every element in the data set, there is at least more than one corresponding

element in the parameter set. Hence the divergence factor of the inversion is the

ratio of the corresponding element in the parameter set to the whole set.

•
P = {p : A-l(p) -+ aP}

where alpha is the divergence factor.

(4.6)
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Figure 4.2: Depiction of a unique, divergent and ill-posed inverse problem. A per­
turbation of the sd can lead to an unstable solution which is a point outside the
parameter P space but with sorne feasible dimensions. The iIl-posed inverse prob­
lem occurs when the reconstructed parameters lie outside the domain of feasible
dimensions.

•
Definition 4.4 (Ill-posed Inversion) An ill-posed inversion is one in which there

is at least one element in the data set that does not have at least one corresponding

element in the parameter sel.

(4.ï)

In general, ill-posed problems are the inverse problems that do not admit solutions

[2ï], that is, numerically, the inverse operator .'1- 1 does not exist or is the null

operator [2J. However, in the realistic aspect of electromagnetic scattering, the unique

inverse problem and the ill-posed inverse problem will not be stressed in this thesis.

•

An ill-posed problem is schematically described in Figure 4.2. The inversion of

the data does not yield anything in the parameter set P. However, in Figure 4.2,

the same element deriving from the data set D breaks off into two possible elements

in the parameter sets. The consideration of solving a divergent inverse problem

is at best ambiguous. One reason is that the inverse problems in electromagnetic

scattering are divergent problems by definition of the scattering wave operator. In

other words, in electromagnetic imaging the formulation of an inverse operator is

feasible at Ieast in an approximate perspective.
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Considering that initially there are a fini te amount of sensor measurements, the hope

that there exists only one satisfying model is vain. In fact, Backus and Gilbert have

proved [2] that the set of models satisfying the finite amount of data is either empty

or infinite. As Backus and Gilbert point out, the uncertainty in the final mode!

results mainly from the fini te number of measurements and provides a basic insight

into the approach of how to choose the model which is the "smallest" in a least­

square sense, that is, to minimize the Euclidean norm of the sensor measurements

[3] [4].

Similar world modeling methodologies introduce sorne concepts of linear regu­

larization of elements as they seek to maximize the stability of the solution. The

Backus-Gilbert method looks at the relationship between the solution and measure­

ments and proceeds to minimize what is called the resolution Junetion kernel. Once

the model has been ca1culated, it remains to determine its uncertainty which is com­

puted as a function of the smallest model and the magnitude of the image. As a

result, it becomes clear that there is a trade-off between the uncertainty and the

resolution range of the image. This process is termed regularization in inverse prob­

lem nomenclature. Nowadays, Backus-Gilbert is often recommended as the generic

method of choice for designing and predicting the performance of experiments that

require data inversion.

4.3.1 Resolution Limits and Resolving Power

This thesis plainly defines resolu~ion as the ability to distinguish between two closely

spaced parameters. A spatial resolution defines more specifically the minimum dis­

tance between the spatial coordinates in the parameter space. Forshaw and others

[26] discuss aiternate definitions of spatial resolution. Resolving power and spatial



resolution are closdy related concepts. The term resolving power applies to the imag­

ing and transformation procedure, whereas spatial resolution applies to the Cartesian

coordinates produced by the imaging or transformation procedure.

•
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In the inverse problem, the resolving power is of interest since the inversion

is validated by the spatial resolution. In fact this concept is broadly applied in the

forward model!ing and residual error computation in the least square sense where the

resolution is set to a numerical threshold. Though sorne computational perspectives

become redundant, since the correct validation is the visnal perception of the image

rather than the algorithm's convergence, this discussion is expanded in Chapter 8

from an image perception concept. In this thesis our concern is on the qualitative

understanding of the resolving power that leads to the spatial resolution knowledge

maps.

The advantage of these approaches is that, in principle at least, they are appli­

(able to al! remote sensing and scattering phenomena, with any amount of available

information. More information simply leads to better numerical stability, faster con­

vergence, larger tolerance and probably uniqueness, although the last property may

be difficult to achieve in a romplicated situation, even with sufficient data.

,
In any rea:l' life situation, noise and other uncertainties associated with a measur-

illg process arc always incvitable. Howcver, there are few authors who have concerned

themselves \Vith the resolution limit imposed by these uncertainties [4]. One expla­

nation may be that approximations of one sort or another must be made in al! the

methods llsed. Hence the resolution limits are actual!y governed by the degree of

approximation rather than the measurement uncertainties.

According to the Backus-Gilbert method, the set of models satisfying the finite

amount of data is either empty or infinite. In our context of remote sensing in

general, the Backus-Gilbert solutions sets are of the il!-posed inverse type. However,

the inverse problem in electromagnetic scattering admits a finite amount of solutions



which therefore are of a divergent inverse type. The resolution limit in our context

is to determine uncertainty factors of the estimated parameters.•
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4.4 Inverse Problem: A Qualitative Approach

The starting point of our inversion investigations is to clearly define the inversion

problem and what is exactly required of the inversion process. As the proposed

inversion process described in this thesis is applicable in a generic fashion, our inves­

tigations revolve around the macroscopic description of Maxwell equations in their

application in radio detection and ranging. There is no doubt that the proposed

concepts in this chapter can be validated in areas other than remote sensing which

involve somewhat incomplete data inversion.

There are no methods at our disposai to correct the inverse of ill-posed problems,

however, we can restrict the divergent inverse problem to one from a stability sense

(Figure 4.3). The study of the convergent inverse problem in its practical context has

led to the development of techniques which incorporate constraints on the inversion

or reconstruction operation which have sorne physical relevance to the problem being

considered. These constraints consist of information which is independent of the data

set and therefore should be known a priori. Constraint is a useful description since it

conveys the correct impression that the information is used to confine the inversion

process to solutions which are considerable or sensible in electromagnetic applications

and radio detection and ranging.

In Section 4.2, Vie have briefly mentioned the effect that limited and erroneous

data can have on the qualitative inversion. A proper examination of the scattered

field data is therefore of major importance to the successful implementation of an

inverse solution. As a matter of fact, the theoretical development of inverse scattering

solutions might profitably be influenced by the quality.of the measured data. It is also

true that compromises must be made in the implementation of thc)nverse scattering

..,
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Figure 4.3: Schematic illustration of knowledge inference to stabilize divergent in­
verse problems. Knowledge Inference accepts many types of a priori information
about either the data or the parameters and may include constraints of conformity
to certain statistical distributions and sensing resolutions. Manipulating the a pri­
ori information results in the "egularization synthesis, although the derived solution
is not a unique solution but rather sorne a posteriori knowledge sets that provide
knowledge maps of the parameters.

theories. The art of this thesis subject is to ensure that, in making such compromises,

sorne knowledge is retained in a descriptive manner. Renee, qualitative inversion can

be performed, and this process will identify the particularities of the application.

In this thesis we have adopted a different perspective to approaching the inverse

problem. The implication of knowledge inference and higher order statistica! inter-

pretation of the inverse problem provides a qu"litative approach to associating ~,,~,;­

surement truth parameters with understanding. As the proposed technique for the

inverse problem in this thesis is given the generic term synthesis and regularization

method, we will show in future chapters the inversion scheme based on knowledge

Inference methodologies that exploit concepts of Information Classification (IC) and

Information Visualization (IV). Similar work has been approached by Zucker and

•
others [99J [47]. ,,,-;::...·;;::c.-,~-~:.
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4.4.1 The Inverse Problem in Radio Detection and Rang­
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Although measured data consist of real numbers, it is often convenient to analyse the

properties of signaIs by constructing the analytical signal which is the extension of the

real signal in the complex plane. In this form it is straightforward to deduce the signal

amplitude and phase which are natural descriptions of electromagnetic wave fields.

In most circumstances, however, only the amplitude C'f the scattered field is recorded.

In this case, the inverse computation of the phase field from the direct measurements

obeys the uniqueness and stability requirements and is directly computed as wavelets

[36J [16] [77]. Section 7.3.2 describes the compl.\tational approximation of the phase

signal as the application to ground penetrating radar. The deconvolution of the

measurement data into two separate data sets of phases and magnitudes is used

associatively in the inversion process. The deconvolution example in Section 3.5

can be transformed to a generalized deconvolution prediction process and therefore

solved for the phase. Other techniques can be employed in estimating the phase'

from the measurements by a minimal knowledge of the electromagnetic field. What

prompted the topic of phase retrieval from the amplitude data is the verification of

an assertion by researchers [97J disputing the minimal phase of recorded signaIs as

proposed by [92] and [78]. The phase may contain coherent information and may

not have been properly investigated in ground penetrating radar applications [35J.

In order to be able to handle divergent inverse problems adequately in electro­

magnetic scattering, one must use the recorded measurement to its full extent. In

other words, maximum knowledge has to be extracted from the measurements and

used thereafter in estimating the model parameters and distributions 4.4. However,

one must bear in mind that the solution is only as good as the accuracy of the mea­

sured data and optimal knowledge separation and inference. There is no dispute

about the mathematical model of the inverse operator in radio detection and rang­

ing, although one must note that the essential aspects of divergent inverse probl~ms
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Figure 4.4: A priori knowledge has to be extracted from the measurements and used
thereafter in estimating the a posteriori model paramcters and distributions.

l'eside in handIing the inverse operator solutions.

Statistical inversion methods have recently been shown to be able to produce essential

new information in most remote sensing applications [53]. The inversion problem we

are approaching is the inversion theory for multi-valued variables, which have sorne

dependent probabilistic distributions. In fact, this would make it possible to handle

•
4.4.2 Synthesis and Regularization

•

white noise in a convenient way. But, mai Illy, the estimated inversion could be

described by infered stochastic processes whieh could clarify the interplay between

. resolution and accuracy.

In our model, we construct the knowledge space by standard deductive methods

of the hyperboIic inverse operator but we may have no source of information about

the weights of the propagation (e.g. aperture angle). The question is addressed

whether it is possible to compute accurately the measure of uncertainty of the re­

sulting inverted knowledge map. For example, it can be proven that the longer the

hyperbolic sensor tine (the inverse path of point estimates), the larger the evidential

space and the more certain a conclusion. Ho\vever, technical descriptions will be
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kept for the application to radio detection and ranging chapter (Chapter 7).
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As the conceptual approach of the regularization synthesis is analysed, the math­

ematical formulation of the inversion procedures will be discussed in the next two

chapters. The philosophy of the regularization synthesis resides in statistical inver­

sion theory with the initial constraint that measurement data do have an a priori

knowledge. Typical measurement data resulting from a forward problem as defined

in equation 4.2 may be represented by series of indexed data, or

i=1,2, ... to < t < tn (4.8)

(4.9)

•

where ui is the measurement space, and h denotes a generic measurement wavélet

time indexed by t. Considering the problem is linearly separable, h is broken down

to one or more of its components such that

[ui(h, t)] = I: ([ui(hk' t)]).
k

Therefore the probability space where ui is measured can be expressed by the a p7'iori

density functions

(4.10)

On the other hand, the inverse problem as in equation 4.3 can be expressed as

i = 1,2, ... to < t < in (4.11)

where ui is the computed space and h denotes a corresponding estimated wavelet

time indexed by i. As the problem was assumed to be separable, this leads to

(4.12)

•
where hk is the estimated wavelet and f;\ is sorne inverse operator function. Rence

the collection joint probability density functions of the estimated wavelets are ex­

pressed as

(4.13)



which is a good way to give marginal densities of inverse problems with respect to

each inverse operator involved in the process.•
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The approach we are taking towards developing the regularization synthesis,

which may be used to represent aIl of the various symbolic and numeric aspects

of a priori knowledge delineated by beliefs and uncertainty, is to consider a logic

of argumentation. We extend the logic so that not just one argument, but all ar­

guments, supporting or opposing an inversion hypothesis are considered in a given

decision-making context, that is, the logic used to structure the inverse problem. We

hold this to be the key component of the practical inversion synthesis and regular­

ization. As arguments are identified, the support they confer on a hypothesis or its

negation is aggregated to provide a measure of the degree of belief in the hypotheses

of interest. The aggregation operation will depend on the calculus used to represent

the uncertainty or vagueness associated with the arguments. The choice of calculus

will in turn depend on the representation requirements and the information which is

available from the given a priori knowledge maps. By inversion theory, the synthe­

sized inverse solution is objectively an a posteri07'i density function regardless of the

innovatbn of the regularization factor (rI) (Section 5.4) that largely influences the

knowledge map density functions. As the a priori densities are approximately con­

stant and the knowledge maps densities are resolved, the problem can be formulated

as the minimization of the norm of the covariance matrix [covf.J-1] or

lvIin: (4.14)

•

where E is the expected value,

The analysis of evidence supporting hypotheses is a promising framework for

drawing conclusions efficiently without losing resolution limits, Two different as­

sumptions lead to stable expressions of the a posteriori knowledge maps derived



from the hypotheses based on the belief functions. The first assumption is one of in­

dependence of each measurement or evidenœ from ail other measurements (Chapter

5). The second assumption is one of independence between each measurement and

the hypotheses derived from the remaining evidence. The required independency in

equation 4.14 is not an assumption but rather a requirement of the inverse problem.

In reality, the independency between the a priori and a posteriori knowledge sets only

guarantees a solution to the inverse problem [53] [27] for ail the inverse operators for

maximum independence. The analogous opention yielding maximum a posteriori

estimates is found in many stochastic relaxation processes with Bayesian restoration

in pattern analysis [1] [31]. A common interest of this thesis and the stochastic

relaxation is stability. Image restoration by a maximum a posteriori estimate by

annealing [31] is in fact creating independence between the marginal distributions.

•
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The ability of deriving a posteriori knowledge map distributions provides many

possibilities for approaching various statistical testing problems [88]. In 0tif deriva­

tion, when there is more than one knowledge map to choose from, each of which has

its own a priori spaces for its corresponding variable, an inversion approach might

be formulated by considering the union of these a priori spaces. The test would be

based on ca1culating the density functions of the inverted space and minimizing the

partial density function dependencies as in equation 4.14. In other words, the ob­

jective is to utilize the density functions as in equation 4.13 in the synthesis process

which can be carried out in optimal fashion through Kalman Filtering which will be

expanded in Chapter 6.

4.4.3 Discussion

It is true, nonetheless, that a highly divergent inverse problem needs more regular­

ization, that is, a higher order complex knowledge map, than a problem which is only

weakly divergent. We can remark also that the complex derived knowledge maps for

weakly divergent inverse problems are trivial in the sense of the excess of information

Il



they represent. The major disadvantage associated with imposing trivial knowledge

constraints is the cumbersome mathematical and programming methods required to

determine the numerical solution when the solution already exists.

•
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A basic difficulty of this kind of method is that one has to specify adequate a

priori distribution knowledge. As the probability law that governs measured data is

unknown, numerical modeling is needed to define the separate variables involved in

the forward problem, and hence form the a priori knowledge map for every identified

variable.

The numerical solutions constructed using high order synthesis regularization as

In Chapters .5 and 6 converge non-iteratively in a consistent manner, provided of

course that the inverse problem is at worst a stable and divergent case. As far as

we can see, application of the proposed inverse problem solution will require, sooner

or later, the experimenter to speculate constructive information about the proposed

solution from its numerical representation, as will be described in Chapter 8.
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Chapter 5

Synthesis: A world of Beliefs

In maximum entropy restoration, the entropy of a physical system in sorne
macroscopic state of an image is the logarithm of the microscopically distinct
configuration knowledge nodes leading to the same macroscopic image. In
sorne situations there is reason to believe that the entropy of a stable system
is of lower entropy whereas any ergodic behavior only increases the entropy.

adapted from Boltzmann.

5.1 Introduction

•

One of the important aspects of using evidential reasoning concepts to solve inverse

problems lies in the representation of knowledge uncertainty. The variety of theories

and models for the representation of knowledge with uncertainty factors has been

addressed often in research [11] [19] [73J [81J [98]. Several optimality criteria, such

as ma.ximum likelihood and minimum entropy, have been used in handling the un­

certainty of knowledge. Shannon [82] introduced in 1948 the notion of entropy as

a measure of uncertainty in information theory, and, since then, this concept has

been intensively applied in probability contexts. The entropy computation concept

is also used in the current framework to evaluate the uncertainty and in fact forms

the emphasis of the regularization synthesis.

Although the concept of entropy as a representation of uncertainty factors can be

46



used in a large range of applications, we employ in the derivation and validation of

the proposed regularization synthesis method a specifie model in knowledge represen­

tation. The current work draws on research in knowledge inference. In particular, it

is validated by the methodology of empirically constructed knowledge networks (i.e.,

inference networks) [58] [59J. Such networks serve as a basis for making inferences

about knowledge assertions where knowledge maps can be extraeted. The present

study basically employs similar maps by augmenting the implications with certainty

measures and optimization methods.

•

•
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Xi

Figure 5.1: Typical networks. Right: Node Xi, Xj and node Xk are the frame of
discernment in Dempster-Shafer. Left: Any two knowledge units can be linked in a
single direction, in both directions or not linked at ail.

The described electromagnetic image inversion problem fits into the general ob­

jective to develop a method of building a imowledge map from sensor based data. To

approach the inverse problem as an issue, it is necessary to analyse the simultane­

ous effeet of both types of characterization of the beliej junetions and the Evidence

propagation scheme as they ail affect the accÎ.1racy and variability of the reasoning.

Therefore, the objective becomes that of addressing the optimization of the belief

functions in the construction of the knowledge map. In other words, the interaction



between the belief construction method and the evidence propagation scheme that

would affect the accuracy and variability should be optimized. We propose an opti­

mization method based on entropy computation, and hence minimizing uncertainties

will result in a series of classified knowledge maps within a context of probabilities.

For example, it could happen that sorne initial beliefs (assumptions) based on sorne

evidence propagations are more valid with sorne constructed belief functions than

others, thereby confirming that the sequential image classification (reasoning) must

be considered a function of both the evidence propagation scheme and the belief

function's construction.

•
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•
5.2 Belief Function Propagation of Evidence

Bayesian inference is based on the mapping of an implication relation into conditional

probabilities. Let {Zll Z2, ...ZN} be N independent radar measurements of Xk such

that

Given the conditional probability function fl(xlzi), updating the knowledge of x

given Zi measurement would be based upon P(XIZi)' The difficulty with the scheme

stems from the fact that with fm·ther estimation of y and with a relation y -+ Zi,

then there is a need to update the value estimated of a: based upon P(x, yIZi), and

so on. As more observations OCCUl', the conditional probabilities become practically

impossible to estimate, whether subjectively or from sample data and consist of the

inverse problem. To address this difficulty in Bayesian belief network, we consider

the fact of dependence between implication relations. In other words, x and y would

be dependent and we would not need to obtain the joint conditional probability

P(x, ylZi) but would need only the simple conditional probabilities to compute the

new probabilities of P(ylx) and P(xly) or

• {x,y -+ Zi} ==} {x;=' y}.

(.5.1 )

(5.2)



These dependencies, when they exist, form the context of belief networks to the

extent of this thesis and the regularization synthesis in the sensor fusion.•
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•

Belief networks (Figure 5.1) are directed cyclic or acyclic graphs in which each

node represents a knowledge unit (ku) and each link represents an implication rela­

tion [84J [43J [15]. Suppose that we are given a certain knowledge mal' about which

a new knowledge state is to be analyzed resulting from an additional sensor mea­

surement. Thus, a complete knowledge estimation of aIl the knowledge units would

indicate the new knowledge mal' state. It is this estimate and assessment that form

the basis of the proposed regularization in its logical form.

InitiaIly, our present approach to knowledge regularization relies on an inference

network [10]. The inference network, in conventional knowledge-based applications,

llsually refers to a representation of knowledge structure (Figure 5.1) as defined by

eqnation 5.2, which enables an inference engine to make explicit conclusions given

sorne specific measurement data. For the pnrpose of knowledge mapping, we use an

instantiation of such a representation, that we identify as a knowledge structure, as a

basis of performing inferences and thereby handling the regularization of uncertainty

factors to each sensor individuaIly.

l3ayesian inference is based on the mapping of an implication relation into condi­

tional probability relations which form the skeleton of the knowledge structure. The

Dempster-Shafer them·y, as introduced bO' Shafer [81J, offers a powerful methodology

for revising beliefs about uncertainty in the presence of new information (i.e., accu­

mulated evidence). vVe suspect optimization in the belief updating process can best

characterize the regularization reasoning. Other related formalisms exist [98J, such

as Pearl's Bayesian networks [72J [73], though we presume that Dempster-Shafer will

fit in our application of subsurface imaging, and be the first step in solving an inverse

l'roblem through eviclential reasoning.
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5.2.1 Bayesian and Dempster-Schafer Belief Functions

50

The Dempster-Shafer theOl'y of evidence accepts partial specifications in the form of

logical sentences and allows a probability assignment to a subset of these sentences.

Mathematically, it offers a rigorous way of combining beliefs from distinct sources

(e.g., confirming and dis-confirming supports) to obtain a set of aggregate beliefs. Of

most significance, it distinguishes the state of ignorance about a proposition from the

relative weight afforded to the proposition versus its negation.Therefore, as a system

for representing and manipulating degrees of uncertainty, webelieve that uncertainty

optimization in Dempster-Shafer theory would be well-suited to modeling the process

of assessing knowledge based on the accumulation of evidence.

Unlike the Dempster-Shafer scheme, the Bayesian belief network treats rules as

conditional probabilities. The axioms of probability rùquire that

• P(J() +P(-,J() = 1 (5.3)

•

and, hence, may sometimes raise concerns about represEnting belief measures. For

instance, an observation leading to the belief of J( does necessary commit the com­

plementary dis-belief about -,J(. In general, the amount of truth observation is not

bounded and the axioms are to be questioned about handling uncertainty in order

to reach conclusive judgements.

There exist various inte!'pretations of the imprecision 1 measures associated with
\ ..

an implication rule [49]. Each interpretation dictates the way in which inferences are

to be performed.ln our knowledge assertion, we have chosen the Dempster-Shafer

model of evidence and Bayesian model of inference, where the deductions take place

within logical constraints, and the belief information is treated as an empirically

formed meta-constraint as a function of the inverse operator that modifies these

logical constraints. In addition, examples of integrating the evidence theory into real

IUncertainty.

..,



world systems can be found in the literature such as inference [37J and multi-sensor

integration [30J.•
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5.2.2 Dempster-Schafer Representation

According to the Dempster-Shafer theory, the set of possible outcomes of a unit in

the knowledge map is called the frame of discernment , denoted by 0. Let us define

the following sets:

p: number of positive instances
n: number of negative instances

P: total number of positive instances
N: total number of negative instances

m: basic probability assignment

Table .5.1: Possible measurement distributions.

Among other possible notations [20] [19J, the Dempster-Shafer belief functions

may be written as

m(h) =

m(...,h) =

m(0) =

{
p-n ifp 2:: np

0 othel'wise

{
n-p ifn 2:: pN

0 othenvise

1 - m(h) - m(...,h)

(5.4)

(5.5)

(5.6)

•

where {h,...,h} denotes the hypothesis induced from the observations data. In this

context, when the confirmation m(h) and dis-confirmation m(...,h) tend to zero, the

frame of discernment mass m(0) tends to unity. Although the proposed model in­

creases the complexity, there have been suggested more complex representations of



the Dempster-Shafer theory [96]. In our context, we maintain the entropy Gompu­

tation independent of the proposed model which is generalized as a function of the

frame of discernment.

•
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Definitions and Assumptions

As mentioned before, the set of possible outcomes of anode is the frame of dis­

cernment 0. If the antecedents of a mie resulting in an inverse operator confirm

a conclusion with degree m(h), where m(h) is above a certain threshold value, the

mle's effect on belief in the subsets of 0 can be represented by so-cal1ed probability

masses. (Note that in Bayesian formalism, probability masses can be assigned only

to singleton subsets of 0). When a source of evidence assigns the probability masses

to the conclusion represented by subsets of 0, the resulting function is called a basic

probability assignment.

In the Dempster-Shafer model, the probability mass assigned to 0 represents ig­

norance. If a basic probability' itssignment assigns m(h) to a singleton corresponding

to the conclusion of a rule, for example K, then it assigns 1 - m(h) to 0. If it

is a negative implication and the evidence dis-confirms the conclusion with degree

m(..,h), then the basic probability assignment assigns m(..,h) to the subset corre­

sponding to the negation of the conclusion, ..,K, and assigns I-m(..,h) to 0. Unlike

the Bayesian approach, in the Dempster-Shafer model, a subset cannot be proved by

any rule set unless it appears in a consequent,'of at least one mie.

Formal1y, a basic probability assignment is a f;{I1Ctiorr:

m : 20 -+ [0, 1] (5.7)

•
where

L: m(X) = 1.0;
XÇ0

m(0) = O. (5.8)



Accordingly, a belieffunction, Bel(X), over 0 is defined as the total belief committed

in ail subsets of X, i.e.,•
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Bel(X) = L m(Y).
l'Ç;X

Combination of Belief Functions
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(5.9)

The Dempster-Shafer theory provides a means for combining beliefs from distinct

sources, known as Dempster's l'ule of combination. This rule states that two basic

probability assignments, cOfresponding totwo iritlel,enrif''lt sources of evidence, may
-.- '----- --

be combined to yield a new basic probability assignment, and that is,

m(X) = k L m[(Xi )m2(Xj)
XjnX]=X

(5.10)

•

•

where k is a normalization factor that ensures equation 5.10 be satisfied,

(5.11)

As will be shown in Chapter i, this rule of combination plays an important role

in deriving the knowledge maps from the accumulation of evidence and inferencing

results.

5.2.3 Belief Function Propagation of Evidence

The general problem of drawing inferences from objectively assessed evidence is one

in which there is a renewed interest because of the current work in the field of

artificial intelligence. It is natural to attempt to apply Bayesian. methods in the

analysis of such a problem [22]. These methods have been grounded in the concept

of subjective probability [49], for which there exists a solid theoretical foundation.

In general, our concern is with an inference network in which there are cllains of

evidence and hypotheses, several hypotheses supported by the same ev·idence, and

a single piece of evidence supported by several pieces ofevidence. Pearl [73], for

example, has developed an updating scheme for inference networks.



We assume that there are only two possible outcomes for each sensor measure­

ment, Zij namely, "the sensor does or does not confirm to the parameter hypothesis in

question".· In the Dempster-Shafer model, this implies that our frame of diseernment

will be of the form in equation 5.4. The basic probability assignment, corresponding

to the frame of diseernment, to the propagation of knowledge in the knowledge map

can be formulated in the following fashion:

•
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The AIgorithm: (BIND &facts)

For each single node in the knowledge structure, there can exist from the inverse

operator, without loss of generality, m nodes confirming the node Uk and n

nodes disconfirming the node Uk. In this case, combining ail basic probability

assignments for each of the possible outcomes can be thought of as grouping ail

the rules into two rules, one confirming Uk with a basic probability assignr.,cnt
. ,

equal to mk(h) and the other disconfirming mk(~h) .

By the definition of the basic probability assignment, we know that mk(h) and

mk(~h) can be derivd by repeatedly applying

mk(h) = 1 - II (1 - mi(~h))
l~iSm

mk(~h) = 1- II (1 - m;(h))
l$i$n

and also we can compute

(5.12)

(5.13)

(5.14)

•

Renee, the belief propagation algorithm can be reformulated as: Each of the

knowledge units propagates the belief to its neighboring nodes (as specified by

the inverse operator), following equations 5.12, 5.13 and 5.14. In general, if a

node is confirmed, it performs backward chaining, otherwise it performs for­

ward chaining and results in the branching of the propagation into a continuous

direction change..



In our case, the belief functions, defined as the set of the beliefs committed to

every basic probability assignment, can b'e easi!y represented as follows,•
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(5.15)

and here t represent the time index of the knowledge state. From the preceding

discussions, we can readily work out a procedure for automatically deriving the

stability factor of the knowledge unit 11 which is governed by the relative (e.r.)

standard error estimate

•

e.r. = Im7(G) - m7-r(G)1

and the static (e.s.) standard erraI' estimate

e.s. = Im7(G) - m~(G)I .

which are computed as a function of G.

(5.16) 1

(5.17) 1

•

In what follows, we provide basic search and computing steps for regulating the

belief functions.

5.3 Entropy Computation and Optimal Search

In the notion of information theory [82], quantitative concepts were derived with the

intention of optimizing the information process. Whether for simple systems, or for

systems that·have a tendency to grow in complexity and size such as belief network

architecture, a standard method of measuring the system is essential.

In the context of this thesis, the knowledge graph consists of the information sys­

tem model, which is to be somehow measured and which is to acquire a significant

and informative measurable index. Since the knowledge structure faces sorne alter­

ations when faced with modifications of one or more knowledge units, the knowledge



structure undergoes a state transition. Here, it is logical to "ssume that the new

state is more certain than its antecedent as the nature of the modifications added to

the knowledge units is of an informative nature (cumulative evidence).

•
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It is obvious that if a knowledge structure can be controlled to any state, there

is no need to measure the knowledge structure since the final state (i.e. maximum

information) of the structure is readi:y reached. On the other hand, in the case where

the knowledge states are not predictable, it is essential to measure the knowledge

,tructure at every update or state transit:on and acquire an index of uncertainty and,

hence, the largest possible transition between a state and its antecedent minimizes

the uncertainty and leads to the optimal knowledge state. This procedure is known

as the minimum entropy search.

5.3.1 Uncertainty in Bayesian Networks Revisited

Realizing that the knowledge structure can be at any state, which characterizes the

notion of a degree of uncertainty, it is evident that the information gathered regarding

the knowledge structure can dramatically change the uncertainty index. It becomes

a problem of a sequential selection of knowledge units to be governed by the degree

of uncertainty. Generally speaking, it is clear that the more information gained, the

more the degree of uncertainty regarding the knowledge structure decreases. Hence,

in Bayesian space when assigning to each knowledge unit in the knowledge structure

a probability space, it becomes obvious that the degree of uncertainty is a function

of the probabilities associated with the knowledge units or

(5.18)

•
where P(un ) describes the probability of the nth knowledge unit. It is essential

to mention that the degree of uncertainty is a function of the number of units in

general, and, in particular for the knowledge structure, the amount of units is fixed

at N which is also the amount of nodes in a specifie knowledge map.



In practice, to measure the uncertainty of a knowledge unit, we will use the

concept of entropy which was initially developed in information theory [82]. The

entropy of a knowledge unit or node can be valued as

•
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Hu = - 'L,Pi(u)log(Pi(u))
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(5.19)

•

where log is a logarithmic function and Pi(u) describes the probability space of the

event u. It is important to mention that the probability space is confined to unity or

L Pi = 1. The index i describes the individual exclusive sets of the assigned space.

In building the knowledge map, as refered to in ear1ier sections of this document,

adapted to Bayesian space, knowledge representation is based on the existence of

the {confirm, ~confirm} pair, where each contributes equally to the assessment

process. This ref1ects the aspect of knowledge introduced by the knowledge units with

probability values approaching zero which is considered as valuable as knowledge

units approaching unity, and the sampIe space of knowledge is divided into two

exclusive spaccs (i = 2). Bence the entropy can then be evaluated exactly as

Hu = -[P(U)log(ll) + (1 - P(u))log(1 - P(u))]

where u is any knowledge unit in the knowledge map.

(5.20)

Since the basic concept of knowledge aSSeSSrllelit is to obtain an impression of a

certain measure of the degree of unccrtainty of a knowledge structure of more than

one node (i.e., N nodes), the knowledge structure can be at any state dominated by

the probability sets in ail knowledge units. Eence, the uncertainty measure may be

viewed as a function of the probability of ail units in the knowledge map and,

which can be expanded and arranged to a successive sum of the composition of ail

the possibilities of ail nodes and hence

• H = - 'L, ... 'L,Pi,(Ul) ...PiN(UN)log(Pi,(ud ...PiN(UN))
iN 11

(5.21 )

(5.22)
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(5.23)
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where the index i describes the individual exclusive sets of the assigned probability

space and N the number of knowledge units. In particular for our case, the number

of states of the knowledge unit is fixed to two. As a result, the total number of

combinations is bounded to 2N • Since the logarithmic function of a product can be

expressed as summation, the previous equation may be expandcd and rearranged as

N 2

H = - LLPi(un)log(Pi(un)).
n i

•

which is the sum of the entropy of each individual node 2.

5.3.2 Uncertainty in Dempster-Schafer Networks

•
Unlike the entropy computation for the Bayesian approach which has many practica!

implementations in expert systems, entropy computation for the Dempster-Shafer

approach has few implementations which have been carried out on the ~ame criteria

as its Bayesian counterpart. The controversy relies on the exactness of the entropy

computation in Dempster-Shafer and the linear projection of the entropy in the

Bayesian case.

•

In Figure 5.2.a, the entropy computed in Bayesian space can be viewed as a direct

cost function of the associated probability. Figure 5.2.b demonstrates the erroneous

attempt to construct the entropy for Dempster-Shafer as a linear projection from

its Bayesian counterpart. In Figure 5.2.b, values {l,I}, H,H and {O,O} have the

same entropy although each {confirm, ~confirm} set represents different amounts

of knowledge. Note that the {confirm, ~confirm} pair divides completely and

exclusively the probabi!ity space. Although a formai investigation of the !inear pro­

jection of entropy can lead to an existing relation between the {confirm, ~confirm}

pair which defies the definition of Dempster-Schafer induction rules, we will concen­

trate our effort on directly deriving the entropy cost function for Dempster-Schafer.

'Hint for proof: expand the log to a series of sums and regroup by units and finally collapse the
probabilities to unity.
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Figure 5.2: Entropy computed for Bayesian belief networks. Notice the linearly
projected cost function for Dempster-Shafer at values: {l,Il, H, nand {D,D}.

•
Entropy Computation in Dempster-Schafer

As mentioned before in Section .5.2.2 on Dempster-Schafer theory, there is a fixed set

of mutually exclusive and exhaustive elements of the environment which is formally

symbolized by

(5.24)

•

Whell an ellvironment's e!ements are interpreted as possi ble answers, the environ­

ment is called a frame of discernment, and only one answer is correct in the frame of

discernment [32J. The term discern means that it is possible to differentiate correct

knowledge states from ail the other possible knowledge states to a specifie node. If

the knowledge state is not in the frame, then the frame is expanded to accommodate

the additional kllowledge elements 0M+h 0M+2 and so forth. One correct state re­

quires the set be exhaustive and that the subset be disjoint [19] [8lJ. The power set of

the frame of discernmellt has as its elements ail knowledge states of the environment

and

(5.25)



The entropy can then be defined as a function of the power set of the frame of

discernment•
Chapter 5. Synthesis: A world of Beliefs

Hu (0) = J(P(0)).

Defining the joint distributions,
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(5.26)

(5.27)

•

hence entropy becomes the sum of the individual entropy of tach element in the

frame of discernment. The partial entropy of the k th element in the frame can be

written using Equation 5.19 as

2"

Hu(0) = L Hu(Qk(O)).
k=!

Using the same derivation devised for the Bayesian approach, the entropy for the

knowledge structure can he written as

N 2M

H = L L Hun(QdO))
n k=l

•

where N is the total number of knowledge units or nodes.

In Figure 5.3.a, the overlap plots of the linearly projected Bayesian entropy cost

function and the exact entropy cost function for Dempster-Shafer are shown. Figure

5.3.b is the proposed entropy cost function for Dempster-Shafer. Note that entropy

increases for values {D,D} and {l,l} and reaches a maximum entropy at H,!}.

5.4 Regularization and Minimum Entropy

Since one of the intentions is kl10wledge assessment, minimizatiol1 of the uncertainty

becomes essential to satisfying the goal. The concept of minimum entropy com­

putation as the measure of degree of uncertainty provides optimal perspective to
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Figure .5.3: Entropy computed for Dempster-Shafer environment of two elements.
Notice the cost function at values: {l,l}, {D,D}, {l,D} and {D,l}.

measuring the knowledge structure although that is only valid when the interest of

the knowleclge assessment is fair and is particular to the {confirm, ~confirm} set .

. To understand the concept of the regularization of entropy for the knowledge

maps, it is imperative to realize that the goal of entropy is to locate the maximum

uncertainty in the network and require the measurements of the knowledge unit

that minimizes the uncertainty. However, when a large amount of the knowledge

units are distributecl around a certain mean different from ~, the entropy of the

total system increases arouncl the mean and results in a rnomentUll1 bias, whereas

uncertain knowledge units locatecl sYll1ll1etrically away from the ll1ean are not weil

represented.

A practical way to view the impact of the bias is to consicler a specific knowledge

map with a probability assignment to each knowledge unit. Since the entropy of

a knowledge structure is the sum of the entropy of the individual knowledge units,

it becoll1es ciear that the mean of the probabilities is refiected in the knowledge

:3tructure entropy computation and hence forll1s a momentum towards an extreme

in the devised set {knowledge, ~knowledge}. A control of the mean would result in



a moderate control in the minimum search and hence regularize the entropy search

by the cumulative momentum.•
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5.4.1 Sensitivity and Regularization

In practice, the entropy of complex systems of multiple units can exhibit eccentric

behavior due to the effect of any possible cumulative bias in the structure. Such

behavior can occur in dynamic systems when the minimization of entropy is used.

This can be viewed as the belief values being driven numerically towards zero or one

and hence any initial bias will force the minimization to follow a path constrained

by the momentum.

The computation of the momentum of the entropy in a knowledge map is sorne

function of the mean f1 which is the average sum of the assigned probabilities P(un)

of the knowledge units. The mean can he written as

• 1 N
f1 = NI: l'(un )

n

(5.30)

and hence we can warp the knowledge map probabilities to the space normalized by

the mean which can then he expressed by the posterior probability

P'(Un ) = P(P(un )ll - f1)

and the Bayesian posterior probability is expressed as

P'= (I-f1)P
(1 - f1)P + f1(1 - P)

(5.31 )

(5.32)

•

The transformation is one to one, mapping every unit to the new probability

space. Such a warp will ensure that the entropy cost function is balanced and the

bias momentum is reduced. The direct impact of warping the data around the mean

will result in as much interest in resolving uncertain data as in resolving more certain

data. The reduction in the bias momentum is not sufficient by itself ta guarantee

a good estimate. In fact, there is no advantage to performing statistical warping



besides that of escaping the unpredictable bias. However, achieving a control on the

bias is highly significant to the inverse problem. Let À he the bias momentum we

would like to achieve and hence the desired mean Jl', which is also the second order

warp, is computed as

•
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P~ == P(P~IÀ); À E [O,lJ.
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(5.33)

À is the proposed regularization factor (rJ) in this thesis to accomplish the second

order warp around the mean. As a result the entropy, for example in Bayesian space,

can then be expressed as
N 2

H == - LLPf'(un )
n ;

(5.34)

where such mapping introduces an entropy decrease for the units neighboring the

bias Jl and an entropy increase for the units neighboring À.

•
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Figure 5.4: Left: A warp of À == 0.2 compared with warp of À == 0.5. Middle and
Right: A combined warp of Il == 0.8 and À == 0.8.

Similarly, the approach can be clerived for the Dempster-Shafer belief functions.

The mean of the mass beliefs is compllted separately as

Mapping the mass m to a new space m' normalized by its mean is expressed again

by the posterior probability fllnction or•
(5.35)
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Figure 5.5: Entropy functions as a notion of uncertainty measure: left to right, a
comparison of the resulting entropy functions for a warp for fl = 0.8 and fl = 0.5,
given two distributions with mean 0.5 and 0.8.

• m"(h) = P(m(h)ll- flh,À) (5.36)

m"(~h) = P(m(~h)ll - fl~h, À) (5.37)

m"(8) = 1 - m"(h) - m"(~h). (5.38)

Typical warp is shown in Figure 5.4. In Figure 5.5, two probabilistic distributions

are shown. The first fixed plot is normalized with mean ~ whereas the second is

skewed to the right and has a mean of 0.8. The entropy computation fol' both

plots is shown in Figure 5.5 and the adapted plot demonstrates the adjustments

introduced.

•

Finally, before concluding this chapter, the notion of regl!larization in adapting

the sensitivity can be viewed as the concept of having maximum conceivable response

of the system to the smallest knowledge change. That is, in the context of the biased

knowledge structures, the entropy around the bias decreases when mapped. The

entropy become more sensitive to values neighboring the bias centered at À.
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Chapter 6

Synthesis: Multi-Sensor Fusion

6.1 Introduction

All deterministic phenomena are inevitably followed by stochastic variations. How­

ever, in practical problems the theory is not perfect and there exist l'andom vari­

ations. The methodologies of peljecl science often fail to justify certain behaviors

which could be attributed to lack of knowledge of certain parameters, or simply

randomness.

From a completely theoretical point of view: the parameters, which have been

labellcd as random, do not cliITer in principle from any other parameters in ques­

tion. Theoretically, the resolution of the problem can grow difficult when additional

parameters are taken into consideration [ilJ. However, the realization of such an

approach is practically unfeasible, 01' will result in complicated solutions which are

also not practical [74J.

It is evident that there must exist a diITerence in principle among the methodolo­

gies that permit us tOLake into consideration the essential factors governing world

modeling, and also secondary factors that manifest through errors 01' more simple

random variations. As the essential factors of the inverse problem were developed
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in Chapters 4 and 5, this chapter deals with the secondary factors of the inverse

problem, namely, interpreting the uncertainty.•
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6.2 Uncertainty and Probability Distributions

To comput~ t:hl" prübabilities of a random variable, it is not always indispensable to

determine the frequency directly from empirical data. Empirical analysis in remote

sel1sing is quasi.-impossible while the system is under investigation, which leads to a

contradiction in the a priori a posteriori definition. The theory of probability dis­

poses of numerous methods that permit the indirect identification of probabilities

in function of other events or measurements somehow related to the investigated

problem. It is these methods on which we try to base this thesis. Chapter 5 in­

troduces an initial approach in multi-sensor fusion to infer the knowledge through

direct and indirect approaches. Nevertheless, it is fundamental to define the random

behavior in truth as stable in the sense of a density function,which is validated in

calibration procedures and laboratory experiments. In most statistical distributions,

chance intervention is more or less high, and that is due to the fact that the number

of the selected samples is limited. To resolve this issue while processing the sampie

space, it is necessary to choose a theoretical curve to approximate a statistical distri­

bution and to express the essential elements of the samples without expressing the

circumstances.

The probiem consists of finding a theoretical curve which in a way provides a

satisfactory description of the sampie space. The search for the best approximation

of the distribution of a sample space, which is similar to the problem of the best

analytical representation of an empirical function, is a problem which is vaguely

defined. Howevcr, the solution depends explicitly on what "best" means. The range

of functions which provide the approximat.ion is chosen, depending on the nature of

the physîcal problem to be solved rather than on mathematical perspectives, and
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hence depends on the characteristics of the empirical curve [Sa].
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To represent the statistical observation in a compact and ordered form, the fre­

quencies are grouped and sorted and finally approximated by an analytical density

function. In the most common sensor technology, the normal distribution n(x; p., (7),

also known as the Gaussian distribution, can accommodate the situation and is for­

mally written as
1n(x' /1 (7) = __e- 1/ 2[(x-I')/u]'

''''''!?= '(J'v.t.7f
(6.1)

•

•

which has, in fact, proven to be efficient in most histogram approximations. In gen­

eral, the normal curve is directly dependent on the mean p. and the variance 17 of

the distribution under investigation. The variance of a random variable is charac­

terized .by the dispersion of its value in the neighborhood of its mathematical mean.

Alt,hough we operate in a single dimension, we should note that in the application

of the inverse problem, the inverse estimates are governed not by a single random

variable, but rather by tlHee random variables in the x, y, z Euclidean space.

6.2.1 Finite Semi-Finite Spaces and DifferentiaI Entropy

As we envisaged in Chapter 5, entropy computation as an index for uncertainty in

the belief functions, continuous distributions also present entropy as an information

aspect. Single dimension continuous probability functions are characterized by the

random variable x and probability density function f(x) and a zero mean in which

case the normal distribution can be represented by f(.1:) = n(x; (7). Above all, con­

tinuous functions are ideal in their form and in fact they approximate empiiitally

constructed distributions. For the mathematical derivation simplicity, we will con­

sider a precisioll increment flx for the normal distribution n(Xj (7) such that the

variation of x in fl.1' has an insignificant ontcome. The equivalence of this descrip­

tion is to evaluate the continuous functions n(x; (7) by a discrete histogram such that

flxf(x) is the probability of the event occuring in the segment flx .



If we consider the segment ll.x small enough to justify the insignificant variations

of x in ll.x, the approximation of the entropy for ail the ll.x is determined by the

standard entropy expression or

•
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HtJ.x(x) = - Lf(x;)ll.x log[f(x;)ll.x]
;

which is also equal to
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(6.2)

HtJ.x(x) = - L f(x;)log[f(x;)Jll.x - L log[ll.x]f(x;)ll.x. (6.3)
i i

Letting ll.x be very small, the following approximation becomes valid and

HtJ.x(x) = - l: log[f(x)J!(x)dx - l: log[ll.x]f(:i:)dx (6.4)

The first term in expression 6.4 does not depend on ll.x, which is the precision in

evaluating the uncertainty. It is rather the second term (-log[ll.xJ) which depends

on the precision ll.x which tends towards infinity for ll.x -+ 0, which is perfectly

logical, as the more precision there is, the more uncertain the random variable is.

However, giving ll.x the required length as direct impact of the sensitivity of the

sensor measurements, the entropy can be approximated by equation 6.5 and may be

rewritten in an expectation form

•
and hence equation 6.4 becomes

HtJ.x(x) = - l: log[f(x)ll.x]f(x)dx.

HtJ.x(x) = cov(-lu!I[J(x)ll.xJ).

(6.5)

(6.6)

For the zero mean normal hnction n(x; 0"), equation 6.6, the entropy is then derived

as

•
which reduces to

[0"V2iTe]HtJ.x(x) = log ll.x .

(6.7)

(6.8)



The complete entIopy was derived in Section 5.3 and we can rewrite equation 5.29

as the sum of three components or•
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(6.9)

where Ii is the information index and U the uncertainty index as a function of G

and, for the Dempster-Schafer model as in 5.4, the Us component is expressed as

•

Us = -(1 - m(G))log(l -- m(G)),

hence equating Us to Htlx and finally we get

2 (e1-m (S))2 (~2'T)
(1 = 1 - m(G) 21Te'

which can be generalized for any uncertainty function Up and

Up E [O,lJ,

where ~.T is the physical resolution limit.

(6.10)

(6.11 )

(6.12)

•

Having derived the finite to semi-finile mapping from an uncertainty concept to

a normal distribution variance, one should keep in mind that equation 6.12 is only

valid if the density function is a zero mean normal (Gaussian) distribution.

6.3 Sensor Fù.iion and Kalman Filtering

Interest now arises from the need to combine the knowledge maps into an optimal

estimate. Th'" best estimate of parameters is that which maximizes the expected

consequences. In the statistical literature, the eifects of variations in the distri­

bution is called model robuslness [80]. In this work, we first consider the possible

advantage to representing knowledge byapproximate distribution and associated un­

certainty. Secondly, we realize that the type of error modelled is properly described

--',.



as a function of a stochastic mode!. This variation may arise from two possible anal­

yses: variations among the knowledge maps themselves, or discrepancies between

the estimated knowledge and the real model, and that is of course under simulation

conditions. This distinction is important - the former is an error which must be

minimized by the final stage of the sensor fusion while the latter, if available, may

be an important source of information about the suitability of the mode!. However,

nothing much can be done about this.

•
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Since error free point estimates among knowledge maps are generally not possible,

an important element in the Jetermination of a strategy for merging the knowledge

maps is the effect of the estimation error. Merging data has been the focus of much

research, especially in robotics applications where the sensor fusion became common

in the literature [23] [39] [25J . The essential problem in fusion is the conservation of

the patterns that exist in either knowledge map. On the other hand, merging must

preserve the knowledge without introducing spurious elements. A simple method

can be that of simply averaging the pr'lbabilities of the point estimatesj however, we

will keep a linear aspect in the fusion although sorne optimality will be required.

6.3.1 Theory of Kalman Filtering

The application of linear filters in sensor fusion provides simple processing opera­

tions and that is something we s~(l:ild investigate before any attempt at nonlinear

optimization. Fortunately,fh~ known Kalman filter clearly outlines the proposed

requirements with minimum assumptions. The theory of Kalman filtering encom­

passes a wide range of classical mathematical topics, especially when dealing with

random process theory and estimation theory. Kalman filtering can be considered as

a mature engineering discipline at this point in time. Since the original concept was

first published by R. Kalman back in 1960, literally thousands of technical papers

have been written about Kalman filtering. Unfortunately, Kalman filtering will only

be used in its simple form. The mathematical theory behind the concept of Kalman



filtering involves probability and statistics together with linear systems theury in a

state vector formulation. In this thesis, the theory will be outlined, however, in its

decentralized form. Many references are available for more complete analysis of the

•
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theory [5] [52].

When presented in its simple form [6J, the Kalman filtering process consists of

combining two estimates of a random variable to form a weighted average. The

optimal weighting factor is chosen so as to produce a weighted average having the

. minimum variance. In order to apply Kalman filtering technique to any particular

physical problem involving adynamie process. the equations of motion of the process

must be expressed in a state variable formulation, with any random noise included

as weil - the underlying statistical theory will he that of the Markov process.

In principle, the Kalman filter is a non-discriminating classifier. which, in a sense,

attempts to combine a statistical componrmt of estimates rather than selecting a best

estimate. The main stage in the operation in the image synthesis or reconstruction,

that is, the Kalman filter will search among the knowledge maps for the most con­

sistent sensors and generate an output estimate based on the optimized weighted

estimate. Each estim~.ted node deals with the corresponding point estimate in the

knowledge mapi given that the number of knowledge maps is larger than one, the

failure of any node will not result in failure in the final estimate of the node. In

fact, the Kalman filter advantage is that, it is able to degrade gracefully in the face

of merging failure.

In order to make the design of a Kalman filter at ail feasible, there is the major

requirement that all noise sources be Gaussian. As demonstrated in Section 6.2.1,

point estimates are normal, by definition, with a stable variance (0'2) evaluated as a

function of uncertainty (equation 6.12). The statistical mean (Il) and variance (0'2)

completely define the normal distribution. Thus the former factor, or the mean, has
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not been eva!uated. However, the mean can be computed as

/l = m(h) +m(~h),

72

(6.13)

which is a straightforward eva!uation given the mode! as described in equation 5.4.

6.3.2 The Kalman Filter and the Kalman Gain

'Formally, let x be a point !ocated in the physical system under investigation and

let {Xl, X2, ...XN} be N independent point estimates of x. Given the conditiona!

probability functions !n(xJxn) for ail n = 1,2, .. N expressed by their means /ln =

E {x n } and error variances a;, the N independent estimates set can then be combined

to generate an optima! estimate of the physica! mode! x. The genera! weighted

average of the estimate X n is denoted by x, as the expression of the optima! estimate

and may be written as

and the expected value is

E{x} = E{~[(iXi} = ~[(iE{Xi}'
The variance of x becomes

•
N

x = L: [(iXi;
i

N

L:K;=1
i

(6.14)

(6.15)

which reduces to

(6.16)

(6.17)

(6.18)

as the Xi estimates are initially independent and cross covariance is zero. The goal

turns into a minimization of the variance with respect to [(n coefficients. The partial

derivation with respect to [(n may then written as

8a;, 8 {;.., ,2 2}
8[(n = 8[(n 7' Il i aZi ,

•
yie!ding the Kalman gain set or weight estimates Î<n for ail n = 1,2, .. N and

[(n= N~1 (~a;i-a~) (~a;irl (6.19)
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Part II

Ground Penetrating Radar
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Chapter 7

Application to Radio Detection

And Ranging

The concept of using radar to penetrate the ground has heen in design for three

decades. Historically, the initial ground penetrating radar work originated from the

fact that altimeters on aircrafts used in the Arctic would penetrate through ice sheets.

This discovery led to the exploitation of radar in other materials and in time led to

great success with the advances of computer technology and visualization methods.

7.1 Ground Penetrating Radar

Actually, ground-penetrating radar can he used with success in almost al! environ­

ments. In general, the higher the groulld resistivity, the hetter the chances of utilizing

ground-penetrating radar. As a result, hardware adaptations to radar systems were

added to compensate for the large variety of materials. Higher resistivity has excel­

lent dielectrics through which radio waves easily propagate. Early work has led to

the assumption that frozen material should he transparent to radar signais. In fact,

field measurements at later stages have verified this suggested hypothesis.

Similar to conventional radar systems, which are used for ranging the distance
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to specific targets, an antenna is used in ground penetrating radar to generate an

electromagnetic radio frequency pulse. The differences between ground penetrating

radar and the conventional radar system are governed by the major aspects of prone

to wave velocity changes, excessive attenuations. On the other hand, the major

resemblance is related to its historical discovery, the refiectivity characteristic.

•
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The basic concept of ground penetrating radar is very simple. A signal is radiated

from the antenna and part of the energy propagates with the corresponding electro­

magnetic wave velocity in the medium. When the signal reaches a critical point of

a medium change, part of the energy is refiected. This return radiation forms the

basis of ground penetrating radar.

A ground penetrating radar system has two initial requirements. The first is

to obtain hardware which can generate and receive the appropriate e!ectromagnetic

signais. The second is to make this hardware portable. Once these two requirements

are resolved, profiling can then be achieved. Since the wave lengths and scales of the

measurements are quite often small, of the order of MHz and centimeters respectively,

it becomes essential to have very close spatial sampling. As a result, it turns out

to be most practical to make very narrow scans of the medium (p seconds). The

method of performing narrow scans is known in practice as continuous profiling.

7.1.1 Main Functionality Aspects

•

The hardware involved in ground penetrating radar is generic and simple. Typical

units consist of three essential elements, namely, the transmitting unit, the receiving

unit and the recorcling and/or display units. The transmitter unit is a pulse genera­

tor which outputs a polarized short duration (1-20ns) voltage pulse onto a broadband

antenna. The receiving unit consists of a receiving antenna which acquires refiected

signaIs in a time frame window. It is common to use the same antenna for transmit­

ting and receiving.



In order to put the timing problem into perspective, it is necessary to consider the

propagation velocities of electromagnetic waves in typical materials. For example,

electromagnetic energy propagates at an average speed of 0.3m/ns. The slowest

medium encountered is water, which has a speed of propagation of about 0.03m/ns.

It is thus imperative that timing mechanisms be available to control the time frame

window and hence provide a spatial resolution.

•
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In ground penetrating radar, the typica! repeti:ion rate of the transmitted pulse

is in the range of 50KHz to 100KHz. Another timing ramp controls the receiving

signal which is arbitrary to the user. This timing ramp provides a relation to the

desired depth of penetration. Finally, the major timing issue resides in the pulse

itself. Depending on the hardware and designs, pulse width can be in the range of

0.5ns to IODOns.

One of the biggest challenges with ground penetrating radar to date has been pre­

sentation of the data in an effective manner. As mentioned earlier, a main component

of the radar hardware is its portability which results ln a major limitation of the in­

volved technology. As computational costs are rednced to a minimum, only analog

basic featllres are used, mainly, signal filtering and dynamic gain enhancements, to

compensate for any signal attenuation.

Invariably, ground penetrating radar records have a significant amount of noise

associated with them. Part of this noise is just system noise. The second source of

noise can be external, spurious radio frequency interference which is identified as a

general harsh background noise on the record. Various type of band pass filtering,

zero suppression, biasing of the data and other factors can be utilized to enhance

the data presentation and interpretation at a minimum cost.
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• 7.1.2 Operation: A Heuristic Approach
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Practically speaking, a graund penetrating radar system can be considered a very

simple system. In fact this property has largely contributed 1.0 its success in ap­

plications in geophysics, mining and other fields. Users have learned 1.0 interpret

the measured data on site by means of graphies displays where the recorded signal

intensity is a funclion of pre-allocated color map tables.

Others factors which enter into the dat.a display are those that enhance the color

map allocation tables such that the eye can discern individual features in the record.

Users usually develop their own method of calibration and include color map def­

initions. There are a large number of variables in a radar survey operation and

these various settings of hardware components of the 0;' stem as weil as the survey

procedure can be tailored to the particular application under investigation.

The output of a radar SUl'vey is a set of continuous sections which show radar

refiections verSUs delaO' time on one axis and horizontal position on the other axis.

The objective of the exercise is to re-map the radar refiections into their true spatial

positions under the surface. This involves two aspects of analO'sing the data. One is

just utilizing this record as delaO' time image. In this case, an event has a known delaO'

time associated with il. and a certain spatial position. The delaO' time is converted 1.0 a

distance with a pocket calculator bO' estimating the velocity of the material through

which the wave has propagated. Some radar hardware allows distance mapping

directlO'on the displaO'. In practice, the depth in the ground is only an approximate

value since the velocitO' of propagation is usually unknown. Experience with radar

data suggests that accurate predictions of propagation velocity can be made with

very little effort.

A great deal of ~dditional information is present in the radar record, but requires

considerable effort 1.0 extract. With high fidelity recording systems, il. is sometimes

possible 1.0 estimate the polarity of the refiection signal, and 1.0 discern variations in
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the character of the recordcd signaIs IVhich indicate variation, in the artual g,'o\ogira!

target. In practicc, the understanding of these concepts i, limilt'd to tho",' f,,1V

technica! experts in the field "i,:> arc familiar with the <ksign of the 'yst"m.

In general, the experienccd interpreter, however, can readily identify f"atnl"<" in

the records which have a unique character and utilize these unique charac\.,'ri,tic, in

arder ta infer the proper ideas about the investigated site.

7.2 The GSSI SIR 10 System

The SIR 10 radar system has four channels, allowing simu\taneons operation of

transducers with different center frequencies, gains, ranges and filter settings. Each

channel leads ta a 16-bit data segment quantization. The system is a based on an

80286 microprocessor and designed ta function as an on-board computer ami p""fonn

automatic control on the radar system. The main components of the systenl are as

follows:

• Control Functions Range and gain values, signal position, pulse repetition

rate and ail alpha-numeric information relevant to the operation of the system.

• Oscilloscope Vertical display of the current scan wave fonn. The wave forlll

is controlled by the time based window.

• Data Storage Dl' to 2.3 gigabyte on 8mm tape drive.

• Line Scan Each scan is represented as a column, one pixel wide. The scans

begin on the right side of the display and scrollieft as new scans are displayed.

16 grey scales or colors rel' l'l'sent the amplitude and polarity of the signai.

• Range Gain Range adjustment from -26d8 to 120d13. Gain curve is repre­

sented in its logarithmic form .

Additional electrical and electromagnetic specifications can be found in Table 7.1.
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Resolution 60 picoseconds
Range a 1.0 20,000 nanosecond

Pulse Repetit.ion Rat.e 3.2 t.o 256 kHz
Analog Quant.ization 8 / 16 bit.s

A/D Sampling 128, 256, 512, 1024 samples/scan

Clock Synchronization Crystal Based: 1 nanoseconds
Scan Rat.es 3.2 1.0 256

Beam width Maximum 90 degrees aperture
Beam width Minimum 60 degrees aperture

Radiation Power 0.061.0100 mW

ï9

•

•

Table 7.1: Basic e1ectrical and electromagnetic specifications of the GSSI SIR 10
J'adar unit. Electromagnetic specifications are empiricaJ.

7.2.1 Digital Filtering

The SIR la radar unit is equipped with digital filters enabling variable filterfrequency

selections and filter lengths. The two types of filters are the common Infinite Impulse

Response Filters (HR) and the Finite Impulse Response Filters (FIR).

Infinite Impulse Response Filters (lIR) operate by combining new data along

with a hist.ory of the past data in some average form. The weights applied 1.0 this

combination determine the bandwidth of the filter. They are popular because they

correspond 1.0 the analog filters in the real world. lIR filters are recursive and they

use past. values of the input 1.0 attenuate undesirable frequencies.

Finite Impulse Response Filters (FIR) operate by convolving (i.e applying a slid­

ing weighted average) a fini te length function with the data. Each data value is

multiplied by the corresponding filter value and added together. The advantage of

FIR filters is thal. they can be made symmetric and centered. This means that the

output corresponds in time and space 1.0 the inp'lt, unlike the lIR filters which will be

skewed 1.0 one side. The FIR filters exhibit a non-recursive behavior which depends

only on the current sample.
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7.2.2 A Design Aspect in the SIR 10 Radar Unit
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This section introduces some theoretieal aspects of the SIR 10 radar unit whieh an'

related 1.0 the transmitted signal. Whether ber.ause of praet.ieal feasibility or becauHe

of a theoretieal advantage, the transmitted signal plays a major role in the overall

radar behavior. The transmitted signal is kuown as a pulse and its shape varies with

different hardware.

Without getting involved in the e1eetronics design, the SIR JO radar unit initially

generates a seqnence of trigger pnlses with a pulse width of 1 nanosecond. I~ach pllbe

is polarized and transmitted through a dipole antenna. Hence, the l'cal signal is an

eleetrically polarized electromagnetie pulse of a finite duration. In the freqnency

domain, the spectroanalysis of the transmitted signal is never measllredj however,

hypothetieal speetra ean be estimated [12].

Butler [12] estimatec! the speetrum of the 120MHz antenna with -3 dB attenuation

al. 120 ± SO MHz. Although we can predict the speetrum al. 1 GHz, wc can also note

the possible speetrum wic!th. In general, this wide speet.ra can result in cornplex

behavior in ground penetrating radar. Actually, similar problems can be compared

1.0 the use of the continuous wave (CW) in a frequeney sweep model (FMCW) in a

wide band impulse response.

7.3 Refiection, Refraction and Scattering

The historieal suecess of Iighthouses or any light beaeons provides the perfeet. ex­

ample for introc!ueing this section. Light emerging from lighthouses has a l'articulaI'

behavior on dense foggy nights, and that partieularity is sought in ail light bea­

cons which are traeing a light beam. Thus, considering a perfectly semi-transparent

medium illuminated by a light source, and provided that the medium is homoge­

neous, il. may beeome clear that each point in the medium behaves loeally and can



he visually identified. Light scattering in a selliÎ-transparent medium presents a per­

fcct cxample hy which 1.0 introduce energy scattering. Whether related 1.0 eye glasses

or mirrors, the implications of the concepts of refiection and refraction have major

importance tohuman society.
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Very little research has dealt with the scattering analysis directly, and this re­

scal'ch mainly consists of the polarization matching of the receiveà signal for optimal

sigual l'cccption and hence identification of amplitude changes [61]. On the other

haud, l'esearch has indirectly dealt with the scattering influence and its removal with

high technology !IR filtering as described in Section 7.2.1.

In reality, scattering can provide tremelldous knowledge, and, when compared,

excced the information acquired from the reflection analysis alone. Again, bringing

the issue 1.0 a visual perspective as in the lighthouse example, the scattering light

provides local knowledge within the light beam width similar 1.0 identification of the

fog From a density perspective. On the other hand, analysing any reflected light can

ouly provide an average for the fog density.

II. is thus an advantage 1.0 analyse the scattering electromagnetic wave field in

addition 1.0 the measured reflection. In fact the measurements consist of the convolu­

tion of both scattered and refiected signais. When separated, the reflection analysis

pl'Ovides the data for whal. we cali the Impulse Reflection Knowledge Map (IRKM)

whereas the scattering analysis provides the data for the Polarized Scattering Map

(PSKM).

7.3.1 The Impulse Refleetion Map (IR)

When an electromagnetic field is incident upon a boundary, in general il. will split

up into rellected and refracted fields. For a wave striking a separation interface of

materials, Snell's laws [48J [45J state that

1. The angle of incidence is equal 1.0 the angle of reflection, 111 = 112•
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where v, and V2 are the refractive il)dices of the two media.

.,.)
o •

:3. For E-polarisation (the case of GSSI SIR la radar unit), the refleet.ion coefli-

cient is
Il,COSO, - Jvl- v[sin201

RE = ----:---O:-r:==:;===
11ICOSO, + Jvl- v[sin201

and the refraction coefficient is

(7.1 )

(7.2)

•

•

4. If V2 < v, and v,sinO, > '12, total refiection occurs and there is no energy

entering into the second medium. In fact the total refiection does ilOt. occllr

completely from the interface, but rather from an imaginary location inside t.he

second medium. This phenomena is known as G6ss-Hanchen phenomena alld

willnot be taken into acco.irÎG as it is beyond the scope of this thesis.-

In general, the reflected and refracted fields are not only dependent. on the re­

f1ection and refraction coefficients of the media in question. I-Iowevel', we believe

that further investigation in electromagnetic scattering becomes irre!evant. 1,0 the

scope of this research, as many approximat.ions and imperfections have been init.iall~

introduced (i.e. signal transmission).

7.3.2 The Polarized Scattering Map (PS)

The problem of computing the wave field propagation can be divided int.o a dOllble

estimation of geometrical properties as weil as of electrical pl"C'pert.ies. Alt.hough IIIost.

research focuses solely on the geometrical aspects as in Osborn [70], some research

has computed the wave field in both geometrical and electrical properties [69] [17].

In general, electromagnetic imaging is susceptible to properties of the media. As

in Yu [97], we make the assumption that the subsurface is divided into multiple



layers of different resistivity separated by discontinuity surfaces. Let us consider a

subsurfacc that is divided into two parts of different resistivity with a single discon­

tinuity layer. When a radar pulse travels from one medium to another, the pulse

will undergo an amplitude modulation (attenuation) along its path. In addition, the

radar signal will undergo a velocity change when changing media, and hence the

modulation will acquire a phase shift at the discontinuity as the initial radar signal

is of minimal phase [92]. Normally the phase shift is associated with a reflection at

the intet'face.

•
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From a signal processing point of view, it has been shown that the signal re­

ceived at the radar antenna is of a. complex exponential form [40] [13] [63]. Complex

exponentials play a major l'ole in the analysis of signal processing. Most cases of

wave field propagal,ioa signal processing involve sets of ha;monically-related signaIs

as described in the previous section. In general, a surface wave is generated such that

the energy enters the medium along one edge, travels along the interface and then

leaves at the other edgej thus the E-field components vanisa along the penetrating

direction and,

(7.3)

where e- j
{3t represents a daIilping term and cjo' is the phaser. Here E is time

varying and generates a corresponding time variant orthogonal magnetic field which

is expressed as

H = ~r1e-jkt+jw'. (7.4)
WJ.I.

The surface wave Impedance (Z) of the medium is defined as the ratio of electrical

and magnetic field and is evaluated as

Z = H = ~ = JCT + jWE
E WJ.I. jwJ.I.

(7.5)

•
In practice, the polarized scattering map wave impedance can lead to a double direc­

tion inference such that the medium charaeteristic is infered from phase knowledge
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•
Figure 7.1: Two sets of raw data from sensors arc shown in the top left plot whel'eas
the left bottom plot had sorne noise filtering. The middle and right plots arc syn­
thetic, showing phase shift detection in the Fourrier transform. Top middle and right
plots are in time domain whereas the bottom middle and right plots arc phases in
frequency domain

and vice versa.

phase"" impedance

Our approach in this proposed research is to base our phase identification on the

time series approximations to the basic eleetromagnetic wave-scattel'ing phenomena

rather than fully using Maxwell's wave field equations.

•

The two plots shown in figure 7.11'epresent two l'cal measurements. One measure­

ment was taken in a single medium and the second takfm in an additional medium.

Since the second medium has a higher dielectric compared to the first medium, no­

ticeable amplitude modulations can be observed. The two plots sh?wn in figure 7.1

are raw data, and the first phase shift lies in the enci l'clement. In addition to the

phase shift, the encirclement also encloses a refiection bllrst as weil as an incl'ease in

the scattering polarization.

Figure 7.1 shows a synthetic corr~plex signal with a constant frequency shift on



the top left, whereas, on the top right, two phase shifts were added. The bottom

plots show their corresponding phase spectrum computed from Fourrier transforms.

ln fact the Fourier transform between time/frequency is sufficient alone with sorne

minor me>difications to estimate any phase shift. However, as our interest is the

polarization changes, the phase spectrum obtained from the signaIs will be used as

the basis for the spatial phase maps.

•
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7.3.3 Correction Factors: Range Resolution

An important characteristic of the resolution of short-distance radar is the aperture

angle influence of the antenna. Bince the radar will acquire measurements within the

aperture angle, the detection resolution varies at different angles within the beam.

ln other words, targets that have been detected at the center beam present different

attributes when detected at a different angle within the beam aperture. We adapted

this range resolution factor from the airborne long range radar system [85] [94] and

derived it for ground penetrating radar application.

Antenna aperture
c

o "1.
2

•

Figure 7.2: A single dimension approximated range resolution Rr for ground pene­
trating radar. The real aperture is elliptical (two dimensional). 1 is in degrees.

Range ,.esolulion (Rr ) is determined by the beam angle (Figure 7.2) and the

pulse length[68]. Range resolution is theoretically equal to one-half the pulse length.

The pulse lenglh (T) is the duration of the transmitted pulse and is measured in

nanoseconds. It is cOllverted from time into distance by multiplying by the speed



of the electromagnetk radiation. The resulting distance is the measure of the .</anl

mnge, or direction in which the energy propagates from the antenna to the ta.rget

[79~. Range resoluüon, however, is expressed in deplh range, which is the penetrat.ed

distance in the medium. Dividing the slant range by the sine of one-half of the

beam aperture converts the slant-range distance into depth range distancc. !lence

the equation for the range resolution is

•
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R _ TC

r - 2 sin '/

8U

(7.G)

•

Therefore, given the specifications as in Table 7.1, for a maximum aperture angle !JO

degrees b = 45 deg), and a pulse width of one nanosecond, the rCRolution range IS

0.21 meters.

7.3.4 Correction Factors: Spatial Distortion

1'0 remedy the spatial distortion that results from velocity change of the c1ectro­

magnetic wave field in media of different properties, we analyse the (v, "', 1) space

- velocity/depth/time space. The two-dimensiollal picture construction is llsua.lly

based on the assumption that the depth and time dimensions are orthogonal and

confine the propagation veloci ty to a constant value.

The problem is criticized on the assumption regarding the properties of the wave

field propagation velocities. We investigate the phase shift and reckon the velocity

interval discrepancies. The space created by the velocity, timc and depth dimensions

hence endures a mapping over the intervals where a medium characteristic is most

likely to exist. The velocity ratio can be derived from Snell's law and expressed as

(7.7)

•
VI and V2 are the velocities of the wave whereas Cl and C2 arc the corresponding

medium dielectrics. A typicai spatial distortion recovery assumes a linear relation

between time and depth which produces a gap in the sector where a real velocity



change occlIrred. In reconsidering the a,pects of the velocities, the space (x, t) defined

by the, depl.h/time dimensions is mapped accordingly and hence new coordinates arc

forrned.

•
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7.4 Knowledge Map (KM) Synthesis

When grollnd penetrating radar was devised from electromagnetic imaging, major

asslIlIlptions were carried out and were rarely justified al. a later stage. The initial

asslImpl.ions were basically the consideration of the rellection nature of c1ectr'lmag­

nel.ic waves al. inl.erfaccs and the concems in imaging Were mainly on the rellection

aspects, under the influence of seismic work. As seismic sounding had an extremely

sllccessful application, il. is very logical 1.0 use the same concepts and terminology

for the grollnd penetrating radar counterpart applications.

The inl.erpretation of the radar physical measurements has suffered from the fact

I.hal. many variables involved arc not taken into consideration. The methods user!

orl.en lack statisl.ical jusl.ifical.ion and a particular method may be chosen because il.

"works", because il. is I.he only method known, or beca.use il. ha.s become popular.

On the ol.her hand, very simple applications of statistical inverse methods may lead

1.0 significant improvemenl.s in the accuracy of estimated analysis results. Moreover,

basic adjllstment techniques derived from radar principles may also lead 1.0 improve­

ments in the resolution of the inverse problem. As this section describes mainly the

application of synthesis regularization 1.0 radar, the corrections factors mentioned in

Section 7.3.4 play a secondary role in the inverse process but a primary importance

for any forward problem simulation.

With the models described in equations 7.1, 7.3, 7.5, 7.6 and 7.7, nonlinear

inversion of radar data requires computations 1.0 generate the a priori knowledge

map distributions. The separability is based on classical signal analysis. In faet,

Veno and Osumi [91] have empirically shown that the received signal from a buried
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Figure 7.3: Complete overall radar operation associated with the world mocleling

framework .
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object has the following separable form,

s(t, 0, <f;) = A(t)G(O, <f;)

89

(7.8)

where A(l) is the' tirne series convolution model and G(O, <f;) is a function of <f;, the

phase diffcrcnce of ~IJtenna polarization, and 0, the rotation angle between the target

axis and the antenna direction (in this thesis the angular rotation is irrelevant and

, 1) = 0). /\s described in chapter 3, A(t) is the combination of ail the impulse responses

of the source impulse. Writing the covariance m'lt:~ix for the synthesis process as in

e'luation 4.14 for the knowledge maps wc may then have

where fk and fi: 1 denote the corresponding forward and inverse operators for the

phase modulation, amplitude modulation and reflection knowledge maps.•
COVJ.J-I = E

lu;(h~, t)] - SJ·

[u;(h A , t)]- SJA

[u;(h" t)]- SJ,

[v;(h~, t)] - SJ;1

[v;(lîA , t)] - SJ;;"

[v;(lî" i)] _ SJ;:1

T

(7.9)

•

/\Ithough the suggested separation process here is for three components, that is,

reflection, phase and magnitude modulation, the basic a priori knowledge 1.0 drive

the synthesis regularization will henceacquire three state variables for the fronl.-end

synthesis. First, as for ail nonlinear problems, il. is important 1.0 start infering al. a

point çlose 1.0 the fastest converging solution. For belief functions, the starting point

is selected by the initial maximum entropy search. In fact, in belief functions, the

l'egu!arization synthesis factor (A) introduces the advantage of the momentum that

forrns the strategy of biased beliefs. The locus of the starting point in function of

a decreasing A follows the hyperbola of a forward l'roblem operator starting al. the

center wavelet with time index zero and splits 1.0 the end of first and last wavelets.

ln other words, for values of A approaching zero, the minimum entropy search tries

1.0 resolve knowledge maps with insufficient data. in the beginning of the inversion

process whereas, for values of A approaching unity, the minimum entropy search

resolves maximum knowledge first and moves down 1.0 insufficient knowledge.
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• 7.4.1 Heuristic Propagation of Evidence

gO

Again, usually there are different pieces of evidence collected from different SOlllTes

in penetrating radar. One piece of evidence that one shollid face is that lower L band

electromagnetic propagations are constrained bO' an elliptical apertlll'e as in Table

7.1, which in a matter of fact justifies the mlliti-sensor fllsion approach. Again,

assume that a specifie sensor Zl is ta confirm some evidencc which, accol'ding to

some inverse operator, results in a set of N possible solutions. If another sensol'

Z2 happens ta confirm one solution of the solutions proposed bO' sensol' Z), this will

result in the dis-confirmation of the l'est of the N - 1 sol litions. Fol' penet.l'ating

radar, the propagation of evidence is proposed as heuristimllO' stl'lIet.ul'ed from 1.11"

antenna aperture. In fact the experimental calibration of the used anl.enna. happened

1.0 be two adjacent ellipses rather than the one as suggested in Table 7.1. Figure 7A

elaborates on the theoretical and experimental behavior of impulse function of I.he

antenna.

a b c

Figure 7.4: Left: The theoretical impulse response. Middle: I.he expel'imental iin­
pulse response of using the SIR radar unit of 1 GHz. RighI.: The expel'imenl.al inverse
operator that will collapse the experimental impulse response.

proposition propagates backward and a negative proposition propagates forwal'd.

In contrast 1.0 most cyclic/acyclic graphs, the proposed evidential propagation

• function is based on forward and backward chaining. In our context, a posil.ive



The cross-form propagation for two knowledge units {Ui, Uj} sharing a cornmon sen­

sor measurement may be expressed as•
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(7.10)

Here, we devised two types of knowledge propagation among the units:

Type 1:

Type 2:

Bel(uiIUj) = BIND(Bel(uj) -+ Bel(ui))

Bel(udUj) = BIND(a -+ Bel(ui)).

•

•

a is an arbitrary sensitivity factor, whereas BIN Dis the combination belieffunc­

tion as described in Section 5.2.2. Since the propagation function forms an acyclic

graph, the a factor was introduced for an experirnental control in the propagation

as in Type 2.
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Chapter 8

Image Perception

8.1 General Perspective

The field of Computer Vision has already resulted in ample research ramifications in

image interpretation, where visual perception aspects have gained a large influencc.

Numerous mathematical models for representation of the neurophysiologica! world,

whether partial or complete, have been established into concepts and paradigms.

The immense complexity and the .evolution of the computational aspects of vision

have now given way to an increased comprehension and understanding of visual

perception of the surrounding world.

Despite the advances in computational vision, informality is frequently encoun­

tered in this subject. The focus remains on the evolution of ideas rather than on

models, and, likewise, the emphasis is placed more often on the classical founda­

tions of the field instead of the current approaches. Several weil established modcls

related to a specifie aspect of vision are frequently encountered. Even though the

equivalency among these models is heuristic, their applications for this specifie pur­

pose are profitable for each suggested mode!. What is projected in this thesis are

sorne preliminary steps of the current approaches with the intention of perceiving

the computed world mode!.

92



Different models have described the spatial impression of vision perception in a

formai repres~ntation such as the stochastic relaxation [31] or the relaxation labeling

[47] conccpts. The former presents the approach of Bayesian image reconstruction in

hicrarchical annealing function and the latter approach uses contextual information

for finding consistent labellings of graphs. We have already approached in one form

or another in this thesis the essence of both representations in the minimum entropy

computation and the Dempster-Shafer belief networks. In faet, in the literature

t.here are many imaging modes and schemes for visualizing information that, when

prcscnted under a diffcrent perspective with sorne adaptation, can perform a double

task. In our case, that is sensor fusion as weil as the basic classification of the image

reconst.l'tlction. What is needed is an efficient method for quantitative data encoding

and integration of the complex information into sorne perceivable and acceptable

form. The investigation in this chapter is based on the consideration of the existence

of well-founded mathematical models and paradigms. The attempt is to employ sorne

of these concepts and to integrate information and images in an efficient presentation

aiming towards a better visual perception response. The complete image derivation

t.hat can be obtained by thorough research in any possible mathematical model is

unfort.unately not within the scope of this thesis.

•

•
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8.2 Vision and Image Perception

The initial argument in visual perception is that vision concepts mainly depend on

sensed light.. Such an assumption leads to the thought that the receptive field is

devoted to detecting certain patterns of light and their changes, corresponding to

part.icular relat.ions in the visible world [55].

The regulat.ion of light in the receptive field is considered the low level processing

of visual perception. Since the images project different intensities, it is the changes



of the intensities which are processed rather that the intensities themsc1ves. Conse­

quently, an abrupt shift in the transition between light and shade produccs a contour

which is the necessary condition for segregated shapes and forms. Usually, an image

in the visual field is coordinated with objects in the visual world, where the per­

ception is initiated originally by the change in brightness, which results in infering

cartoon-like forms.

•
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Curves arise from the projection of various kinds of structures in the visible world,

such as contours, curvatures and discontinuities. However, the problem is that our

world modeling in subsurface imaging is invisible by its physical nature and thesc

curves are not directly observable; rather, they are ahstract entities in our imagina­

tion, and the example of "a cube contained in a smaller cube" only demonstrates

that the primary parameters of the "contained" cube are its curves. Ail that is ob­

servable in images is information about the traces of curves, and the inferencc npon

those traces is under-constrained. An attempt al. curve inferencing is not a straight

forward problem given the complex situation of the inferec! knowledge map ['csltiting

from the sensor fusion, even though there exists the hope that the qualitative invcrse

problem algorithms are in some aspects neurophysiological mathematical Illodcls.

On the other hand, what we try 1.0 resolve are concepts of forms that hold as a

global symbolic structure and are referred 1.0 as the later vision stage, bypassing the

discontinuity l'roblems which are still impossible 1.0 classify for the visualizing of the

invertec! data.

8.2.1 Knowledge Interpretation and Pattern Recognition

•

The first stage in most pattern recognition tasks is feature extraction. Essentially,

the l'roblem in our context differs from most pattern classification l'roblems in that

we have the feature measurements and statistical c!istributions among the point

estimates. The l'roblem is 1.0 group the point estimates into local Jeatures 1.0 result

in a local feature detection from the viewer perspecti ve.



A local feature is a subset of pixels at a particular location within an image

which form a recognizable pattern in their own right [44]. For example, an edge, a

line or any geometric shape or arrangement of lines is a local features. Detection

of a local featme within an image may be sufficient in itself to classify the entire

image. In some ways, most researchers consider the concept oflocal feature detection

almost another way of stating the fundamental problem of image recognition [99].

ln a sense, detecting a local feature is a more complex problem than straightforward

pattern recognition which makes the problem of image encoding more complex, since

the pattern recognition part is already complex. In other words, the issue is to

nse approximately the reverse engineering aspects of computer vision paradigms in

a way to obey the requirement of construeting the image given sorne "a p1'Ï01'i"

classifications.

•
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Again, it can be claimed that edges are the result of an early vision process of

the gradients of shades. Orientations and curvatures are to be initially extracted,

yielding inferable functions for the higher vision process. Likewise, patterns and

textures follow a similar behavior and can be occasionally treated as functions of

cllrvatures and orientations, since gradients are also the basis of shading effects

in higher dimensions. In addition, most references conCUl' that visual impressions

al'e the effeet of interaeting gradients [42] [33]. Spacing between edges, whether

straight lines or cnrves, provokes a visual perspective which can induce a considerable

change in the inference. Formally speaking, it is agr"""r] that a mathematically simple

gradient corresponds to a geometrically complex surface.

8.3 Image Encoding

Encoding I11eans creating visual distinctions among several different types of objects

[67]. lVlany different techniques can be identified, mainly colar, shape, intensity and

texture. A fundamental issue in any encoding technique is to determine how many



possible techniques an image can have at a time. Closely related to quantitative data

encoding is any means that calls for the viewer's attention to particular information

and the capabilities of the viewer to separate that particular information from the

rest of the image.

•
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We will consider here the case of two-dimensional environmental modeling as an

extension in the derivation of this thesis. Line segments arc used to model collections

of subsurface curves. Each segment can be thought of as representing a medinm

change, although sorne linear collections of observations may not correspond direct,ly

to existing structures. The curve segment models for gmund penetrating radar nse

arc appropriate where the medium characteristics can be infered.

What is of interest in this thesis are the geometric properties of images, lndccd,

there is no need for the medium characteristics to be involved in image reconstruct.ion

rather than being visually infered. There is enough information about the absolut.c

values of the image boundaries which may help in the particular image perccpt.ion.

The essential constraint in image encoding is an increase in acuity of t.he image

which is governed by the visual perception of orientations and curvatures. '1'0 achievc

control of certain aspeets of image generation, the constraints on t.he sharpness and

diffusion of ail the edges arc extensive. In addition, as mentioned previously, arbit.l'ary

image encoding and filtering arc not accept.able, either in computational vision or in

general cases.

8.3.1 CIE Color Encoding

•

Levine [56] and Marr [67] support the theOl'y of computat.ional modcls based on

the assumption that the best perception requires smoothness among the point. cst.i­

mates. In other words, the pieture must be rest.ricted to pat.ches of uniform colOl'

with distinct delineations between them. Although the basic fact of color perception

is not completely understood [54], there is a praetical need to deal with color for



better imall;e perception. Tberefore, in 1931 the CIE (Commission International de

l'Eclairage) adopted a standard based on sorne assumptions about color definitions.

Not to get involved in the neurophysiological aspc':ts of color, the CIE psychophys­

ical color mapping is a three-dimensional tristimulus space, Red-Green-Blue, thus

increasing possible image information encoding and its relative perception.

•
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Color enhancement couId be done using pseudocolor, a methodology developed

for computer graphics [28]. Pseudocolor images are created by assigning a color to

gray level images according to an arbitrary transformation. A quite common color

ordering is one based on optimizing information perception; however, selections of

pseudocolor mapping are heuristically evaluated.

The important point here is that the CIE methodology does provide a practical

psychophysical model for defining color as viewed by humans. The model is defi­

nitely not unique and does not really attempt to explain the underlying probability

distributions behind it. There might be sorne interest in examining a mathematical

model based on optical probabilistic processing, which attempts to deal with the

probability distributions gathered from the a posteriori knowledge maps.

8.3.2 Segmentation by Thresholding and Stretching

Thresholding is known as a method of separating a foreground from the background

in an image. A fixed threshold simply assigns a value of zero to an image pixel if it

is less than the threshold, and to unity otherwise. Sorne researchers do not consider

thresholding particularly useful as a segmentation method [1 J. At a later stage

in the evolution of segmentation in thresholding, tl~e method was revised so that,

instead of assigning a constant value, there was stretching of the desired segment and

discarding of the l'est. The final aspect of thresholding and stretching settled down

to a two-valued threshold which assumes that the data points are to be greater than

the first value threshold and lower than the second value threshold. The two-valued



thresholds always result in either discarding one or two segments, and that is directly

dependent on the relative difference of the two threshold limits.•
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An alternative approach 1.0 assigning constant velues 1.0 the region of interesl. is to

map the desired region over the allowable intensities which·results in a .5fl'c1chillg 01'

normalization of the truncated segment. Thresholding is common among trending

techniques and, since our data are classified within probabilistic regions, il. is of

direct importance 1.0 choose an interval of confidence fol' the inverted data. Whatevcr

segmentation method used, il. is helpfu! 1.0 think of the purpose of segmcntal.ion.

8.3.3 Encoding

Returning 1.0 the essence of the problem of encoding thc knowledge map, wc can

rewrite the final inverted image of the inverted image as the union of two sct.s of

estimates and their corresponding variances or

(8.1 )

On the contrary, as one would expeet a cooperative merging in'lolving the point

estimate mean and variance, the problem of interpretation and encoding is an in­

dependent feature of the two sets of estimates. The coloring schcme proposed ill

Section 8.3.1 rf'~ults in thousands of possible colors, hencc providing a hicrarchal

color scheme that would suit the requirements of image encoding and concllI' with

the basic conditions for efficient image perception:

1. Perception is more sensitive 1.0 intensity differences than to absolutc intensity

values.

2. Neighboring point estimates are 1.0 be related and 1.0 not just occur randomly.

The change has 1.0 occur randomly.

Before considering the second stage of point estimate grouping, we need to exam­

ine how the final image will manifest within the RGB color set. The concepts of edge



and color featme enclosure have been introduced above as a means of representing

the characteristics of patch contours. It is possible, however, to apply these con­

cepts so that the estimate groups sharing common characteristics may be identified.

In accordance with the encoding process, we choose to mak~ a distinction between

three dilferent part types - namely the mass {m(h)}, the mass{m(h),m(~h)}and

the Variance (72. The mass {m(h)} is defined by the Blue color patch configura-

•
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tion, giving rise to the direct confirmation enclosure measurement only, whereas the

mass {m(h),m(~h)} is defined by the Green color patch configuration giving rise to

the confirmed and disconfirmed enclosure measurement combined, which is mostly

govcrned by evidential reasoning. The third type is defined by the Red color patch

configuration as a relevance to the point estimate variance. Based on the described

estimatc grouping, it is possible to intuitively understand the essential nature of what

constitutes a part. For example, tracing {m(h)} alone provides a relevant aspect of

signaIs of high peaks in radar. This aspect does characterize the ranging part of

radar. We can spcculate that, for a relatively large radio penetration, the {m(h)}

traces arc quite relevant. These operations are shown schematically in Figure S.l
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•
Figure S.l: Image encoding as combination of threshold segmentation and RGB
color mapping.

The quality of the image integration will clearly depend on the choice we make

in the hierarchy among the three colors where the Blue color has priority over the



Green, which in turn has a prionty over the Red. In other words, for a Red COIOI'

to appear in the final image requires that the belief mass {m(h)} is bclo\V a cert.ain

thrcshold (3 and the combined masses {m(h), m(~h)} arc bclo\V a certain t.hreshold

a. For a Green color to appear requires that the bcIicf mass {m(h)} is bclo\V t.he

threshold (3 but the combined masses {m(h), m(~h)} arc above a cert.ain t.hreshold

•
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a.

8.4 Examples: Image Reconstruction

To evaluate the qualitative performance and robustness of the regulari~at.ion syn­

thesis, many differcnt tests \Vere performed to evaluat.e t.he sensitivit.y and st.abilit.y

margins throughout simulations and hence a radar simulator \Vas built [35]. lIow­

ever, what could he the foundations of robustness of the regulari~ation synthesis

arc real radar measurements. The option to evaluate the regnlari~ation synthesis

through a radar simulator was hased on the simplicity of scenario generation. Once

the regularization synthesis was "finely tuned", selected real scenarios were designed .



Figure 8.2: World modeling example: real data analysis of an edged body.
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-t I-1ypothetical image of a
metallic rectangular slab in
a homogeneous medium. Di­
mensions are in nanoseconds
which results in an approxi­
mative ~ 0.5 meters depth.

-t Raw data originating
l'rom the radar scans of the
rectangular slab.The data
had an exponential gain in­
crease as function of depth
prior to discretization and
hence compensate for atten­
uation.

-t The inverse solution con­
forming to the regulariza­
tion synthesis framework.
Data have been dynami­
cally low pass filtered (But­
terworth) and deconvolved
before the inverse process.
The synthesis coefficients
are: precision resolution:
L::.r = 10-4 meters; regular­
ization factor (rJ): ), = 0.9,
threshold: a = 0.95; (3 =
0.8.



Figure 8.3: World modeling example: synthetic data analysis of a curved body.
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--+ Data originating from
synthctic simnlation of a
cylinder. Dimensions arc set
in nanoseconds which results
in 0.5 meters depth,

--+ The inverse solution con­
forming to the regulari~a­

tion synthesis fnllnework.
The synthesis coefficients
are: precision resolution:
t.x = 10-4 meters; reglllar­
ization factor (1'f): À = O.D.
No coloring scheme fOI' val'Î­
ance.

--+ The inverse solution COII­
forming to the l'egulari~a­

tion synthesis framework.
The synthesis coefficiellts
are: precision resollltion:
t.x = 10-4 meters; reglllar­
i~ation factor ("f): À = O.D,
threshold: a = 0.8; ri =
0.75.
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Part III

Conclusion
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Chapter 9

Strategie Review

Remote sensing is a diverse field, with respect to both technology and applica.tions.

Chapter 7 of this thesis described the properties of electromagnetic radiation a.nd its

interaction with matter. The nature of this interaction, which is specific for dirferent

wavelengths of radiation and different types of matter, is detected and recorded

by remote sensing systems. This description characterizes the radi" det.eetion and

ranging system.

At one time, the concept of multiple sensor analysis was popular; for any inter­

pretation project, it was felt that ail possible types of analyses should be acqnired

and interpreted. However, problems in handling the data were not peI-fect and

disappointment was often felt. The idea of presenting a model of the wodd frolll

an electromagnetic perspective did not fade but rather strongly sUl'vived turbulent

changes in technology. For many decades, radars system have been considel'ed 1.0 he

al. the leading edge of technology and, in the last decade, ground penetrating radar

has been demonstrated to be a successful non-destructive technique.

104
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• 9.1 A Brief Review
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'1'0 conclude, in this chapter we recap briefty the essential parts of this thesis and

give some guidance about how to proceed thereafter. Essentially the problem is that

remotely rneasured data can be severely filtered convolutions of desired functions.

Whcther scparating essential knowledge from the data or deconvolving plain echo

signais, it is a complete mistake to disregard any prior system identification proce­

dures, or to use a forward fitting mode! procedure, getting impressed by how weil the

mode! fits the data, or to use an approximation technique such as stacking inverse

operators without recognizing the instability of the model solution.

Ex:;ensive work that has been achieved in the inverse probJem shows clearly the

impossibility of advocating a firm method for achieving such solutions for ail prob­

lems since the best approach depends not only on the problem but also on the

funetional fonn of the data. Either way, optimized numerical technique or not, the

faet is that the measured data in radio deteetion and ranging can never contain

enough information to permit unique inversion according to definition 4.1. This is

reftected in the classical inversion by solving integral funetions where the indetermi­

nacy is ,~f an infinity and form an il! posed inverse problem as in definition 4.4. The

most common non-ciassicaJ techniques - the regularization methods - incorporate

information structures of uncertainty.

It is a feature of radio detection and ranging problems that numerical solutions

have often been presented by experimenters using heuristic data reduction tech­

niques, often without bcing aware of the information being discarded. Researchers

are impressed by these fast data reduetion algorithms where already the inverse prob­

lem Jacks data. As we have shown in the application of ground penetrating radar,

the necessity of analysis of the po!arization of the electromagnetic signal can provide

as much information as the recorded reftection coefficients.

First, from a given data set, we consider sorne numerical experiments based on



a priori information about an initial separable problem. This may inclnde aspects

such as the separation of the wave polarization data and the reficction cocfficicnts

from the signal intensities as shown in the examplr of ground pcnetrating radar.

Although there is a good deal of heuristic reasoning in this proposcd framework, it.

is a matter of practical experience that a good representation gocs alOlù; cxt.rading,

rathcr than submerging, thc csscntial information carricd by thc data fnndion.

•
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9.2 Approach to the Inverse Problem

In our model, we construct the knowledge space by standard dednctivc mcthods of

the hyperbolic inverse operator but we may have no SOlll'ce of information about the

weights of the propagation (e.g aperture angle). The question is addrcsscd whcthcr

it is possible to compute accurately the measure of uncertainty of the inverted kllowl­

edge map. For example, it can be proven that the longer the hYl)erbolic scnsol' line

(the inverse path of a knowledge unit), the larger the evidential space and the more

certain a conclusion.

The approach we are taking towards developing an extended framewol'k, which

may be used to represent ail of the various symbolic and numeric aspects of bclief

and uncertainty, is to consider a logic of argumentation. We extend the logic so t.hat

not just one argument, but ail arguments, supporting or opposing a hypothesis arc

considered in a given decision-making context. That is the logic used to st.ructure t.he

inverse problem. We hold this to be the key component of a practical decision-making

system. As arguments are identified, the support they confer on a hypot.hesis 01' it.s

negation is aggregated to provide a measure of the degree of belief in the hypotheses

of interest. The aggregation operation will depend on the calculus used t.o represent

the uncertainty or vagueness associated with the arguments. The choicc of calcnlus

will in turn depend on the representation requirements and the information which is

available from the given sensors.
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• 9.3 Claim of Originality
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We have described a global approach towards modcling ground penetrating radar

rneasurements and, in particular, image synthesis and integration. One of our sec­

ondary emphases is the investigation of Kalman filters as a robust sensor-fusion

method to perform the inverse image reconstruction, and also to degrade gracefully

in front of boundary problems and non-consistent measurements. The combination

of the non-discriminating sensor-fusion as a front~end method with the identification

process provides a qualitative understanding of the subsurface.

Our main emphasis is based on the theory of Dempster-Shafel' belief functions;

sensor data are structured in knowledge maps to estimate the geometrical aspects

oi the model. In generaI, belief function estimation is usually described within a

probabilistic framework. Here, we basically employ such a framework and we try

to restrain our probabilistic interpretation with uncertainty factors which are weil

expanded in Dempster-Shafer theory. Minimizing the uncertainty will result in series

of images classified within probabilistic regions. In our model, we construct the

knowledge space by standard deductive methods of the hyperbolic inverse operator

but we may have no source of information about the uncertainty. The question is

addressed whether it is possible to compute accurately the measure of uncertainty

of the inverse knowledge map. For example, it can be proven that the longer the

hyperbolic sensor line (the inverse path of a knowledge unit), the larger the evidential

space ancl the more certain a conclusion. A combination of probabilistic l'easoning

theOl'y based on Dempstel'-Shafer belief functions, concepts of information theOl'y

ancl enl1'OPY driven search has been presented,

It is possible to provide a synthesis framework and derive solutions to the inverse

problem in remote sensing for radio detection and ranging. The proposed synthe­

sis methodologies do not claim uniqueness and there is no attempt to do so, but

they nevertheless provide a robust effective solution to the inverse problem in wodd
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Figure 9.1: Qverall operation associated with the world 11l0deling framcwork.

modeling.

9.4 Recommendations

•

The science of remote sensing has matured perceptibly over the past decadc. Quly

rarely are striking daims made about sorne new method describing "complltational

perfection". The true capabilities and limitations that have always been lIndcrstood

by remote sensing professionals are not generally understood. In the field of resollrcc

exploration, for example, people do not expect that remote sensing alone will pl'Ovidc

them with the highest quality of information in addition to spatial and temporal



efficiency. However, the implementation of advanced technology is not an easy task,

espeCiall.v when the technology itself is so quickly evolving.•
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The successes of radio detection and ranging have encouraged the development

of radar technology, mainly because radar is an active system that supplies its own

illumination at different wavelengths. Unfortunately, problems in controlling the

illumination direction at the radio wavelength is beyond today's technology (which

in fact has an indirect influence on the motivation of this thesis)j however, partial

control and orientation have provided for additional success of the radar system.

There is no doubt that the future of radar systems is in vision synthesis in the

invisible specf1"um.

Ground penetrating radar: There has been for a while a need for height reso­

lution sub-surface imaging that can be obtained rapidly and economically. Initially

ground penetrating radar easily took its place among geophysicists and mining en­

ginccrs who had already become familiar with seismic soundings. Applications for

GPR are numerous and include any type of subsurface exploration, geotechnical and

archeological investigations, as weil as rock mechanics and mine development require­

ments. Sorne speCific application examples are subsurface mapping and may include

rock type changes, fracture identification and soil stratigraphy. Also geotechnical

and archeological investigations can highly benefit from high resolution subsurface

imaging. GPR analysis can detect and map features. Finally, space exploration

cannot be exclllded from benefiting from grollnd penetrating radar as radio detec­

tion and ranging imaging throllgh satellites have proven that the moon and near-by

planets appear favorable for similar applications.
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•
Appendix A

Electromagnetic ~Tave

Characteristics

•
A.1 Review of Basic Wave Characteristics and

Motion

•

A Wave is a disturbance in a medium such that each particle in the medium vi­

brates about an equilibrium point in a simple harmonie motion. The direction of

the vibration is perpendicular 1,0 the direction of propagation of the wave, and the

wave is called a tmnsverse wave. Many characteristics represent the wave behavior.

The wavelength, written as À, is the theoretical or measured distance from the cre~t

1,0 crest (or valley 1,0 valley) of a transverse wave. II, may also be defined as the

distance between two particles with the same displacement and direction of displace­

ment. The amplitude is the maximum displacement of a particle in one dircction

from its equilihrium point. The Jr'equency, usually written as J, is the numbcr of

wavelength (cycles) thal, pass pel' unit time. The per'iod, usually written as 'l', is

the time required for one wavelength 1,0 pass a point. The velocity, usually written

as c, of a wave refers 1,0 its propagation velocity through the medium. The phase,

usually written as <P, is the difference in displacement and direction of a particle duc
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to two different waves, that is two waves are in phase if each particle has the same

displacement and direction of motion (t/J = 0).•
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The basic wave eharacteristics are related to eaeh other by the laws of physics.

The wave velocity is proportional to the wavelength and frequency and

c= À f.

The frequency component is inversely proportional to the period and

l
f = T'

(A.i)

(A.2)

•

•

Sorne basic principles apply to the behavior of the wave characteristics. The Super­

position princi]J!e state that the effects of two or more waves on the displacement of

a particle are independent. This means the displacement of a particle by a simul­

taneous wave in a medium is algebraically additive. Interference is the summation

of the displacements of different waves in a medium. Constructive intcrferenee is

whcn the waves add up to a larger resultant wave than their original. This occurs

maximally when the phase difference (t/J) is a whole wavelength (À) which correspond

1.0 multiples of 27r. Destructive interfe7'ence is when the waves add up 1.0 a smaller

resultant wave than either original wave. Variation of the interferences can be ex­

tendcd to closer analysis on the complex harmonies wavelength. Standing waves

result when waves are refiected off stationary eoordinates back into the oncoming

waves of the medium, and super-imposition results. Constructive and destructive

interference dominate the standing wave's behavior.
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• A.2 Eleetromagnetic Wave Propagation

122

Maxwell's (James C. Maxwell) e1ectromagnetic field equations are [50] [48]:

aB
\lxE+-=Oal

aD
\lxH--=Jal

as
\l.J + al = 0

\l.B = 0

\l.D = 0

where

(1\.3)

(1\.'1)

(1\.5)

(1\.G)

(1\.7)

J: the electric current density vector, s: the electric charge density•
E: the electric field vector,

D: the electric flux density vector,

H: the magnetic field number,

B: the magnetic flux density vector,

and

J = aE (1\.8)

B = IlH (1\.9)

D =fE (A.IO)

\\

in addi tion to

Il = Ilall., € = EoEr ,
2 (A.ll)Cr = V

with

a : conductivity v :refractive index c : speed of light

•
Il : permeability Ilr: relative permeability Ila: permeability in free space

f : permittivity f r : relative permittivity fa: permittivity in free space
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Forward chaining, 90
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Fourrier transforms, 85
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Ill-posed problem, 35
Image encoding, 95
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• Inverse problem, 2, 3 Regularization factor, 63
Inverse Stability, 34 Regularization of entropy, 61
Inverse Uniqueness, 34 relaxation labeling, 93
Inversion Divergence, 34 Remote sensing, 1, 3, 4, 11

Kalman Filtering, 70
Resisti vi ty, 74
Resolution limits, 37

Kalman Gain, 72
Knowledge map, 41, 47 Scattering, 2, 3, 12, 13, 81
Knowledge network, 46 Segmentation, 97
Knowledge regularization, 49 Seismic applications, 14

Least squares method, 20
Sensor Fusion, 69
Sensor fusion, 2

Local feature, 94 Signal analysis, 14

Mass,99 Signal filtering, 76

Migration, 19 SIR 10 radar system, 78

Migration stacking inverse opeiators, Slant range, 86

18 Spatial confignration, 2

Minimum variance, 7I Stability property, 21

Model robustness, 69 stochastic relaxation, 93
Stretching, 97, 98

• Noise corruption, 25 Subsurface imaging, 16
Noise estimation, 2 System identification, 23
Non-selective scattering, 13

Thresholding, 97
One-sided property, 21 Transmitter unit, 75

Passive sensing, 4
Transparency, 4

Penetrable wedge problem, 17 Uncertainty, 46, 56, 66
Polarized Scattering Map, 81

Variance, 99Propagation velocities, 76
Pseudo-antenna, 14 Wavelet filtering, 20

RADAR, 11, 14 Wavelet theory, 21

Radar refiections, 77 Wavelets,2

Radio, 11 World modeling, 1, 4

Radio detection and ranging, 1 Zero offset, 24
Range resolution, 85 Zero-offset imaging, 23
Receiving unit, 75
Receptive field, 93
Refieetion, 12
Refieetivity characteristic, 75
Refraction, 12• Regularization, 42, 46




