
Design and Modeling of Mixed Synchronous-Asynchronous

and

Hardware-Software Systems

Weiwen Zhu

McGill University, Montreal Canada

December, 2001

A Thesis subrnitted to the Faculty of Graduate Studies and Research in partial fulfùlment

of the requirements for the degree of Master of Engineering

© 2001 Weiwen Zhu

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

385 W.MIngIon St,..t
Oftawa ON K1... 0N4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

385. rue Welington
oa.... ON K1A~

CAnada

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distnbute or sen
copies of tbis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts nom it
may he printed or otherwise
reproduced without the author's
perm1SS1on.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, Jriter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfichelfilm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'alltem qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-79108_4

Canad~

To myfamily

2

Abstract

This thesis presents the design of a hardware/software co-simulator and a case

study in the comparison of synchronous and asynchronous design styles of

digital VLSI circuits. Adopting the design pattern approach of software design,

our simulator software package, based on PtolemyII, extracts the temporal

causality of software in embedded systems to perform fast timing estimation of

functionality partitioning of hardware/software in embedded systems. Our

package can simulate system features such as task prioritization, message

passmg, resource sharing and task blocking. We demonstrate the proposed

approach by two event-driven software applications. In this thesis we also

discuss synchronous and asynchronous design styles ofVLSI circuits. We use a

CDMA correlator to illustrate the different aspects of these design styles. The

comparison is presented in terms of area and power. Meanwhile, we aise

include a switching activity study for the evaluation of architecture tradeoffs.

3

Résumé

Cette thèse présente la conception d'un co-simulateur matériel/logiciel et une

étude d'un cas de comparaison de styles de conception synchrone et asynchrone

pour circuits digitaux VLSI. En adoptant le style 'design pattern' de conception

de logiciel, notre module de simulation extrait la causalité temporelle du logiciel

d'un système encastré, afin d'y effectuer une estimation de timing rapide de la

division fonctionelle entre matériel et logiciel. Notre module peut simuler des

charactéristiques du système telles que la prioritization des tâches, le transfert

de messages, le partage de ressources, et le bloquage de tâches. Nous

démontrons la méthode proposée avec deux applications de logiciels à base

d'évènements. Dans cette thèse, nous traîtons des styles de conception

synchrones et asynchrones pour des circuits de VLSI. Nous utilisons un

corrélateur CDMA pour illustrer les différents aspects de ces styles de

conception. La comparaison est faite en termes de dimensions et de

consommation de puissance. En parallèle, nous incluons également une étude

des activités de commutation afin d'évaluer les compromis au niveau de

l'architecture.

4

Acknowledgements

First, 1 would like to thank my co-supervisors, Dr. Radu Negulescu and Dr.

Zeljko Zilic, for their direction, advice and attention. This work is impossible

without their continuous support and encouragement. Particularly, thanks to Dr.

Radu Negulescu for his persistent tolerance of reviewing the drafts 1 wrote and

for his ceaselessly pushing me to pursue higher level of quality, to Dr. Zeljko

Zilic for rus insight and determination in the course of my research. 1 am very

grateful to them for providing me with good study and research facility.

1 would like to thank aIl my fellows at the MACS lab, in particular Xiahua

Kong, Nazmy Abaskharoun, Henry Chan, lan Brynjolfson, Antonio Chan and

Clarence Kar-Lun Tarn. 1 wish also to acknowledge Ehab Lotayef, Ben

Mihailescu, our system administrators and people at CMC of their support for

my CAD support work at the labo

My study is supported by the CAD tool support job at MACS labo Dr. Gordon

Roberts, Thank you! The fabrication of the VLSI chip is through the grant

from CMC (Canadian Microelectronics Corporation).

Last but not least, 1 like to thank my family, speciaIly, my wife - Jiong Chen ­

for supporting me throughout this endeavor. Also 1 like to mention that Bardia

Pishdad prepares the translation of the French version of the abstract.

5

Contents

List of Figures 8

List of Tables 9

1. INTRODUCTION 11

1.1 Motivation 12

1.2 Contributions 16

1.3 Organization of the Thesis 17

2. BACKGROUND 18

2.1 Hardware/Software Co-Simulation 19

2.1.1 Previous Work 20

2.1.2 Heterogeneous Modeling Framework - Ptolemyll 22

2.1.3 Design Patterns 22

2.2 Synchronous and Asynchronous Design 23

2.2.1 Synchronization in Digital System Design 24

2.2.2 Asynchronous Circuit Design Style 28

2.3 CDMA System and CDMA Correlator 37

2.3.1 The Concept of CDMA System 37

3. MODELING AND SIMULATION OF HETEROGENOUS SYSTEMS.......•..... 40

3.1 Modeling of Hardware/Software Systems .41

3.2 System Modeling 43

3.3 Package Implementation 44

3.3.1 Class Design _ 45

3.3.2 Design Patterns 47

3.4 Examp1es 48

3.5 Summary 53

4. SYNCHRONOUS AND ASYNCHRONOUS VLSI DESIGN 54

6

4.1 The Correlator Design 55

4.1.1 Specification 55

4.1.2 Architecture Design 56

4.2 Asynchronous Design 58

4.2.1 Handshake Components 59

4.2.2 Top Level Architecture 63

4.2.3 Major Sub-Circuits 66

4.2.4 Asynchronous Circuit Design Flow 70

4.3 Synchronous Design : 70

4.3.1 Digital Design Flow 71

4.3.2 Synchronous Design 72

4.4 Power Analysis for Architecture Exploration 73

4.5 Performance Comparison 76

4.6 Summary 79

5. CONCLUSIONS AND FUTURE WORK 80

Bibliography 83

Appendix 1 88

7

List of Figures

Figure 1: Synchronous interconnection--24

Figure 2: The pipeline structure--- 25

Figure 3: The cause of dock skew-- 26

Figure 4: Register bank implementation without dock gating ------------------------------ 27

Figure 5: Register bank implementation with dock gating ---------------------------------- 28

Figure 6: The C-element symbol and one of its implementation---------------------------- 30

Figure 7: The asymmetric C-element -- 31

Figure 8: The "Early", "Broad" and "Late" data scheme of the four-phase protocol -----32

Figure 9: Micropipeline architecture --- 34

Figure 10: Handshake channel notions--- 35

Figure Il: CDMA transmitter schematic -- 39

Figure 12: The graph of a system model--- 44

Figure 13: UML dass diagram-- 45

Figure 14: The sequence diagram of the reactor pattern -------------------------------------47

Figure 15: The sequence diagram of the non-blocking buffer pattern---------------------- 48

Figure 16: The dashboard example --- 49

Figure 17: The software execution time plot of example 1 ---------------------------------- 50

Figure 18: A communication device --- 51

Figure 19: Two' complement implementation of the CDMA correlator ------------------- 56

Figure 20: The alternative architecture with POSACC and NEGACC two datapaths----57

Figure 21: The carry-save adder -- 58

Figure 22: The case component --- 59

Figure 23: The passivator component -- 60

Figure 24: The mixer implementation-- 61

Figure 25: Single micropipeline stage-- 61

Figure 26: The early scheme and semi-decoupling micropipeline controller ------------- 62

Figure 27: Another implementation of micropipeline controller---------------------------- 63

8

Figure 28: The top level schematic --- 64

Figure 29: The schematic of the synchronizer -- 66

Figure 30: The schematic of the counter component --- 67

Figure 31: The schematic of the carry-save adder -- 69

Figure 32: The synchronous digital design flow -- 72

Figure 33: The switching activity analysis simulation setup -------------------------------- 75

Figure 34: One example of switching activity plot --- 76

Figure 35: The layout of the asynchronous design --- 78

9

List of Tables

Table 1 : A comparison of Co-Simulation methods 13

Table 2: The asynchronous design and synchronous design comparison 77

10

Chapter 1

Introduction

VLSI technology has shown spectacular capacity improvements during the past decade.

Today, a powerful computing system can be built from a few VLSI chips, which are

complex systems themselves. The design of such VLSI chips becomes increasingly

complex. CUITently, the minimal feature size of VLSI designs is aIready in the deep sub­

micron range. Technology of 0.18 micron minimal feature size is used in today's

mainstream designs. The designers face more and more challenges to design such complex

chips. At system level of VLSI chips, we observe the trend of the shifting the realization of

the functionality from hardware to software. Simulating such designs poses new challenges

to the designers who use traditional event-driven simulators. At the circuit level, the CUITent

digital circuit design paradigm - global synchronous design - is facing difficulties in

solving the problem of increasing power consumption and in achieving even higher

operation frequency of the circuit. New approaches in circuit design methodologies and

circuit design styles are needed to achieve significant further improvements.

11

1.1 Mativatian

This thesis consists of two parts of work related to the issues mentioned above. Results are

presented in areas of system level modeling, simulation and design methods of VLSI

circuits.

Present day integrated circuit development is facing significant challenges. Complexity of

the integrated circuits is growing exponentially, as observed by Moore's law. Meanwhile,

time-to-market demands are becoming stricter, while the sizes of the design teams remain

essentially the same. Short product life cycles and customization to niche markets force

designers to reuse not only building blocks, but also entire architectures. With the ability to

mix processors, complex peripherals, custom hardware and software on a single chip at

decreasing cost, the designers increasingly choose the embedded system design approach.

To deal with complex embedded system design, most of the design effort has to be

concentrated at a high level of abstraction, while increasingly reusing existing designs and

leveraging design expertise. Forms of reuse include design patterns, component-based

designs for object-oriented software and hardware IP (intellectual property) blocks for

integrated circuits.

Designers face the options of implementing virtually any functional component of a system

in terms of hardware, software, or (more likely) a mixture of hardware and software. The

final product cost is often paramount, so the main incentive is to find the right combination

of processors, memories and glue logics for efficient production in a short design time. An

important part of the design consists of mapping the functionality (from the specification)

to the architectural blocks (from IP suppliers and/or software library suppliers) in such a

way that cost, power consumption and timing of the system can be analyzed.

Achieving optimal design of complex embedded system is a difficult task. Besides being

application specific, such system design also needs to respect real-time constrains of the

environment in which the system is operating. Designing and simulating embedded

systems is difficult because of their heterogeneous nature. In such systems, software and

12

hardware components must be simulated at the same time. The basic co-simulation

problem is two-fold. Firstly, it is desirable to execute the software as fast as possible, often

on a host machine that may be faster than the final embedded processor and certainly is

quite different from it. Secondly, it is required to keep the hardware and software

simulations synchronized, so that they interact just as they will in the target systems.

Accordingly, there are different approaches in co-simulation with varying degrees of

accuracy and performance. The main approaches can be summarized in the following table

according to [EL+97].

Author Hardware Software Simulation Synchronization
Simulation Mechanism

Gupta [GCM92] logic custom bus-cycle custom single simulation
Rowson [Row94] logic commercial host-compiled handshake
Wilson [Wil94] logic commercial host-compiled handshake
Thomas [TAS93] logic commercial host-compiled handshake
ten Hagen [HM93] logic commercial host-compiled handshake
ten Hagen [HM93] cycle-based cycle-counting tagged message
Kalavade [KL92] logic custom host-compiled single simulation
Kalavade [KL92] logic custom rSA single simulation
Lee [KL92] logic custom host-compiled single simulation
Suterwala [SP94] logic commercial rSA on HW simulation single simulation

Table 1 : A comparison of Co-Simulation methods

For hardware simulation, the designers use commercial or custom logic simulator. To

simulate software, they use either bus-cycle model of the target CPU, or use software

compiled on the host processor interacting the hardware simulator via a bus-cycle emulator

in the hardware simulator. Alternatively, they can use an ISA processor model augmented

with interfaces within a hardware simulator. The synchronization mechanism of these

methods can use either single simulation which both hardware and software are simulated

in the same simulator, or use handshaking when hardware and software are simulated

separately. Another synchronization approach keeps track of time in software and hardware

independently and uses tagged messages to synchronize them periodically.

The choice of the model of computation to represent an embedded system depends strongly

on the type of the system being constructed. For example, for a purely computational

13

system that manipulates a finite stream of data into another finite stream of data, the

necessary semantics that are common in programming languages such as C, C++, Java and

Matlab are adequate. For modeling electronics hardware, the semantics need to be able to

handle concurrency and time continuum, in which case the continuous-time models of

computation such as Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS are more

appropriate.

For embedded systems, the most useful models of computation need to handle concurrency

and time. This is because embedded systems typically consist of components that operate

simultaneously and have multiple simultaneous sources of stimuli; and they operate in a

timed (real world) environment, where the timeliness of their responses to stimuli may be

as important as the correctness of the responses.

For the system performance evaluation, simulation-based methods are more used than the

analytical methods. Analytical approaches have the advantages that they usually produce

general results, which are valid for aIl system inputs and parameters. Simulation-based

methods are inputs-dependent. Good simulation results responding to sorne input vectors

may not guarantee the correctness of the design. Nevertheless, the design of any practical

embedded system in real life is so complex to model and to solve in mathematics, if not

impossible. AIso, the analytical methods suffer from the fact that they do not scale up weIl

with the scale of the complexity of the design.

The history of the VLSI circuit design is a record of technology inventions that push the

use of existing processing to its limit, interlacing with the advance of processing

technology. It should be no surprise that this revolution has had a profound impact on how

digital circuits are designed. To design today' s complex VLSI circuits, designers have

increasingly adhered to strict design methodologies and flows that are amenable to design

automation. Most of current sequential circuits belong to synchronous systems, in which

the latching of data into the memory elements is coordinated by a globally distributed clock

signal.

14

Synchronous design methodology faces increasing difficulties for today's deep sub-micron

designs. First, with the shrinking of the transistor feature size, we observe that gate delays

scale down quicker than wire delays. As a result, across-block communication incurs

higher cost than in-block processing on the VLSI chip. In particular, dock distribution is

becoming difficult to realize because of the existence of large skews. Meanwhile, the speed

of the circuit is greatly limited by the global synchronous dock network whose speed is

governed by the slowest element of the circuit. AIso, this global synchronous dock

network is often accountable for fair large portion of the circuit' s total power consumption

because of the power involved in the dock generation, synchronization, and distribution.

High power systems are expensive in term of packages, cooling devices and battery life for

mobile devices. High noise emission and Electro-magnetic Interference (EMI) in

harmonics of the dock frequency are also increasingly becoming concerns in mobile

communication applications.

The asynchronous design as an alternative to the synchronous design is gaining more

attention recently. Several asynchronous circuit architectures only dissipate power when

and where active, that is, any sub-circuit returns to standby mode whenever it is not in use.

Performance can be better as it is based on the average-case delay rather than the worst­

case delay. Power consumption can also be lower since power is only consumed when

needed. Large digital systems can easily be maintained due to high modularity and

composability as each block can be designed without knowledge of the timing

characteristics of any other blocks. One such architecture is single-rail handshake circuits,

which have been shown to consume only 1/5 of the power of their synchronous

counterparts, at the cost of a small area overhead [Pee96].

On the other hand, asynchronous circuit designs have several shortcomings. Lack of design

tools limits their applications. Also the difficulty of testing asynchronous circuits prevents

their wide acceptance by the circuit design community.

15

1.2 Contributions

In this thesis, we explore ways to address the issue of functionality partitioning of

embedded system design. For embedded system design, early validation is a necessary

approach to reduce the design effort by having guarantees of correctness early in the design

flow, instead of leaving such guarantees to testing after the design is completed. Early

validation of functionality and performance requirements can reduce the amount of

redundancy and waste of design effort in the design cycle, by making sure the architecture

and the high level design are stable before the low level details are developed. Most of the

methods listed in Table 1 require system simulation only after the completion of the system

design. We propose a method to perform fast performance estimation in the system

planning stage. This method can simulate various dynarnic software run-time behaviors

concurrently with hardware behaviors. We extract the timing behavior of the software and

ignore its functionality to quickly estimate the performance of the system under design.

This perrnits early resolution of the tradeoffs of allocating functionality between hardware

and software, before the detailed implementation is developed. Our simulation package is

designed as an extension of PtolemyII, a heterogeneous design and simulation environment

developed at DC Berkeley. In designing our package, we use the software design pattern

approach. Our package can simulate system features such as task prioritization, message

passing, resource sharing and task blocking, which influence the timing dependencies of

the simulated system. This method has been reported in [ZNZOl].

In this thesis, we use the CDMA correlator as a case study to compare various aspects of

synchronous and asynchronous design styles. The CDMA correlator circuit was chosen

because it is intensively used in the DSP design and has portable applications. For the

synchronous design, the circuit is described using hardware description language (HDL),

then implemented in ASIe by using commercial design tools. For the asynchronous design,

we implemented it in the single-rail handshake circuits design style, using gates from a

standard cell library. Several handshake components from [Pee96] are implemented and

simulated in this thesis. AIso, we have custom designed several asynchronous blocks for

this correlator.

16

The CDMA correlator architecture from [SB98] was chosen to minimize power

consumption. We have built the circuit models in Ptolemyll to study the switching activity

in the correlator and to explore the architecture tradeoffs for the correlator design.

1.3 Organization of the Thesis

The presentation of this work is organized as follows: in next Chapter, we present the

background material for the work in this thesis. In Chapter 3, we describe our software

package design of the hardware/software co-simulator for fast performance estimation,

along with two examples to illustrate the usefulness of our method. Chapter 4 presents the

handshake circuits as an alternative design style for low-power design and describes the

design of CDMA correlator of asynchronous design -- single-rail handshake circuits ­

and of synchronous design. The comparison of these two designs and a study of switching

activity by simulation are also included in Chapter 4. Finally in Chapter 5, we conclude the

presentation of our work and indicate directions for future work.

17

Chapter 2

Background

In this chapter, we review the background of the work presented in this thesis. In the

Section 2.1, we present the background material for our hardware/software (HW/SW) co­

simulator software design. This includes the review of previous work, an introduction to

Ptolemyll and the design pattern approach of software design which is used in Ptolemyll

and in our software package. In the Section 2.2, we describe basic concepts in synchronous

design and asynchronous design. In that Section, various tradeoffs of these two design

styles are discussed and one particular class of the asynchronous circuits -- handshake

circuits -- is introduced in detail. In this thesis, we describe the VLSI circuit design of the

CDMA correlator as a case study for the comparison of these two circuit design styles. The

background knowledge of the CDMA system and its correlator can be found in Section 2.3

of this chapter.

18

2.1 Hardware/Software Co-Simulation

With the advancing of circuit design and VLSI processing technology for higher packaging

density, faster circuit speed and lower power dissipation, today' s VLSI technology can

place 107
-- 108 transistors on a single chip [TB+97]. As the time-to-market pressure

increases, with the decreasing cost of microprocessors and the flexibility of the software

implementation, we observe a trend for designers to use mixed hardware and software

solutions for their applications. Embedded systems that combine hardware and software are

widely used in communication and multimedia applications.

The differences in the behaviors of hardware and software pose new challenges to system

modeling, design and simulation. Traditionally, hardware operates in timed fashion and is

physically stmctured. Usually, hardware is synchronously reactive to its environment.

Multiple hardware components can operate in parallel [PPTOO]. Meanwhile, software

usually modeled as non-timed, which means its executing time is affected by factors like

OS scheduler, memory size etc. Software processes can mn interleaved. Sorne software can

reconfigure themselves during their mn-time. Also, software are usually resource

independent that they can be evoked to execute whenever there is resource available

[PPTOO]. To simulate the performance ofmixed HW/SW systems, we need a mechanism to

bridge the representations of these two domains.

In the traditional HW/SW co-design flow, the system is modeled, simulated and compared

to the specification to verify the correctness of its functionality. In the next stage, the

mapping of each function to hardware or software implementation is carried out. To

explore the design space of different hardware and software combinations, a fast

performance estimation method is important. In particular, it is necessary to rapidly

evaluate tradeoffs of various hardware and software implementation options to guide the

refmement of the system.

19

2.1.1 Previous Work

The HW/SW co-design problem is receiving growing attention both in academic research

and in industry. There exist several tools that address the HW/SW co-design [BM+97].

Simulating embedded systems is challenging, mainly because they are heterogeneous. In

particular, most of these systems contain both hardware and software components that must

be simulated at the same time. Several approaches to co-simulation have been proposed,

with varying tradeoffs between accuracy and performance. According to [EL+97], the

major approaches to co-simulation are:

• Gate-level models. They are the most accurate, but also are very slow. Thus, they

are only suitable for small systems, where either the processor is very simple or

only very liUle code needs to run on it, or both.

• ISA (Instruction Set Architecture) models. In such models, filtered information is

passed between a standard processor simulator (often written in C) augmented with

hardware interfaces and a hardware simulator.

• Annotation models. In these models, the software is represented by a "software

graph" which contains static timing information regarding the processor

configuration [SS96].

• Translation-based models. This approach converts the code for the target processor

to the host processor, then simulates the converted code on the host computer.

Passing the timing information to a hardware simulator is the major challenge.

• Equation models. This approach uses a set of linear equations to implicitly describe

the possible execution paths. They are mostly used for conservative worst-case

execution time estimation [Bal99].

20

Each method has its advantages and disadvantages. The drawback of the more accurate

methods is that they require detailed models of hardware and software, which may not be

available until in the later stage of the design cycle. In such models, performance analysis

can be done only when the detailed timing information is obtained after finishing the

design.

The advantages of high level, abstract models are small simulation overhead, ease of

integration and the flexibility of porting to different systems. However, high level models

usually suffer from low accuracy. Besides, it may be difficult to preserve the characteristics

of software (dynamic, resource sharing, etc.) and hardware while abstracting them into the

high level models.

A typical HW/SW design flow is that of the Polis development environment [Pol]. First,

the system specification is defined in sorne formaI languages. Then it is translated into a

network of interacting finite-state machines, called co-design finite state machines

(CFSM). This representation does not distinguish between hardware and software

implementations. Afterwards, each CFSM is mapped to hardware or software

implementation. Finally, the system undergoes a HW/SW co-simulation to verify its timing

requirements. The whole design process needs to iterate several times before finding the

optimal solution.

A fast performance estimation method is needed in this process to guide the functionality

partitioning of the system, which is usually performed interactively by the designer

[BM+97]. If only the timing estimation or time budget of the system can be simulated

instead of the whole system functionality, then the simulation can run much faster. Hence,

more architectural design options can be explored in a short period of time.

This need for fast performance estimation motivated us to find a novel way to abstract the

timing behavior from the functionality of the software. This allows us to simulate hardware

and software in their own domains, and then to link them together for timing simulation

21

purposes, without the costs incurred by reference to the detail functionality simulation

which is aIready verified by other methods.

2.1.2 Heterogeneous Modeling Framework - PtolemyII

Ptoiemyll is designed to support heterogeneous modeling and design of concurrent

systems. In PtolemyII, a system is modeled as a collection of hierarchical and concurrent

components. The executable components of a system are called actors. These actors

include the semantics of message passing and execution. This semantics is shared by a

group of models of computation, including CSP, discrete-event (DE) model, and etc.

Messages are encapsulated in tokens. Actors have ports, which are represented as instances

of the IOPort and which can be input, output or both, depending on whether they can

receive tokens, send tokens or both. An execution includes one invocation of initializeO,

followed by an arbitrary number of iteration of prefireO, fireO and postfireO, followed by

one invocation of wrapupO. The execution of the components of a composite actor is

governed by a director object. A director may implement different models of computation.

A model of computation is implemented as a domain in Ptoiemyll. There exists a rich set

of models of computation that deal with the concurrency and time in different ways. For

example, the actors in the continuous time (CT) domain represent components that interact

via continuous-time signaIs. They are most suitable to model analog circuits, mechanical

components and microwave circuits [LeeOl].

An essential difference between various models of computation is their modeling of time

and order of occurrence of events. Choosing the right computation model is critical for the

system modeling and specification.

2.1.3 Design Patterns

Design patterns [GH+95] are a new design approach in object-oriented software design. A

broadly applicable definition of term "pattern" is that a pattern is the abstraction from a

22

class collaboration recurring in specific contexts. The notion of a pattern is geared toward

solving problems in design. But a pattern is more than just a solution to a recurring

problern. The problem occurs within a certain context in the presence of many competing

concerns. A solution pattern involves a set of classes and their relationship (inheritance,

aggregation and association) that balances these concernS in the manner most appropriate

for the given context. Design patterns optimize maintainability of an object-oriented

software design, rather than performance, memory, or other quantitative parameters.

Through using patterns, it is easier to design and change software by reusing successful

designs and architectures.

Several design patterns -- reactor pattern, non-blocked buffering pattern etc - are used in

our software package design. For example, the reactor pattern addresses event-driven

applications, such as protocol software in communication devices, which receive requests

from multiple clients concurrently and iterate them without blocking indefinitely on any

particular source. In the reactor pattern, the reactor defines an interface for registering,

removing and dispatching concrete event handlers. A single-threaded application can use

the reactor to wait synchronously for the arrivaI of events from multiple sources. By

handling concurrent events at the reactor, there is no need for more complicated threading,

synchronization or locking within the application.

2.2 Synchronous and Asynchronous Design

A digital circuit has the distinctive property that aIl signaIs in it are binary. By assuming

that, Boolean logic can be used to describe and to manipulate logic constructs. For the time

model, designers often assume that aIl events of interest for the functionality of a circuit

occur at discrete times. The circuits designed with this assumption belong to the class of

synchronous circuits, in which aIl signal transactions are synchronized to the rising and/or

falling edge of the clock signal; one the other hand, circuits in which signal transactions

can happen at any time along the continuous time axis are belong to the class of

asynchronous circuits.

23

2.2.1 Synchronization in Digital System Design

Synchronous design uses the global dock signal to concert the operations of various

components of a circuit. Instead of using a global synchronized dock network,

asynchronous design uses communication channels of several types, which permit to

exploit intrinsic timing relationships of the components and circuit topology to ensure the

correct operation of the circuit. The synchronous design style is currently used in most of

the designs because it is easy to understand and because of the availability of highly

automated design tools. On the other hand, asynchronous design is getting more and more

attention recently for their timing robustness and low power properties.

2.2.1.1 Basic Concepts

A basic approach in complex circuit design is to define abstractions that enable the

designer to ignore the unnecessary details and to focus on the essential features of the

design.

Clock
Generator

1.. Clock ..
Originating Receiving

...
Element .. Element

Data

Figure 1: Synchronous interconnection

The raIe of synchronization is to coordinate the operation of various parts of a digital

circuit. For synchronous design, each element (or module) is provided with a dock signal,

as well as one or more signaIs that are generated with transitions synchronized to the dock.

The global dock network contraIs the order of operations, ensuring correct data transfer

throughout the circuit. This synchronous interconnection isolates the circuit behavior from

timing details by setting the dock period T. There exists a certainty period during which

24

the output signaIs are guaranteed to be correct and stable, so they can be sampled. With

synchronous interconnection, the irrelevant behaviors (multiple signal transitions and

uncertain completion times) are hidden from the interface of a module. We can thus

abstract the operation of a computational block, as viewed from the output registers, as an

element that completes its computation precisely at the active transition of the second dock

signal.

2.2.1.2 Pipelining

Pipelining is a common design technique to increase the throughput of the circuit. The

pipelined structure has the ability to initiate a new computation at the inputs to a

computational block prior to the completion of the last computation at the outputs of that

block. Since this results in more than one computation in process within the block at any

given time, pipelining is a form of concurrency. The number of the pipeline stages IS

defined as the number of concurrent computations that can be in process at any one time.

In practice, it is usually not possible to precisely divide a computational block into

"equally-sized" stages. In that case, the throughput of a synchronous pipeline has to be

adjusted to match the worst-case delay of a stage in the pipeline, resulting in a lowered

throughput. There are a number of other factors, such as register setup time, which reduce

even further the throughput of a pipeline and increase the overall processing time.

ut
-" t<jl' -,r t<jl" -,r t<jl'"

0
In ... CL R -+ CL R

~
CL R

~....

Figure 2: The pipeline structure

25

2.2.1.3 Clock Skew

Clearly, any increase in the uncertainty of clock phase (clock skew) will reduce the

throughput of the circuit, since the sampling time of the output registers requires precise

control of the clock phase within a vanishing certainty period. Conversely, any fixed delay

in the interconnection will not necessarily affect the achievable throughput of the circuit,

because it will increase the propagation and the settling time equally and thus it will not

affect the length of the uncertainty period. In practice, however, for common digital circuit

design, the effect of any uncertainty in clock phase is lumped with interconnection delays.

The practical way to limit the problems caused by the skew is to ensure that the clock skew

between communication registers is bounded. Careful routing of the clock signaIs is one

possible solution to reduce the skew by equalizing the local clock delay.

Negative skew

Positive skew

Out

Clock distribution

Figure 3: The cause of dock skew

Another approach to circumventing the skew is to introduce the Phase-Locked Loops

(PLLs) or the Delay-Locked Loops (DLLs) in the clock distribution network. Such circuits

synchronize the edges of the internaI clock, generated from any specifie location in the

circuit relative to the edge of the reference clock with an adjustable offset [BryOl]. By

controlling the offset value, the locally generated clock signal can eliminate the clock

skew.

26

2.2.1.4 Clock Gating

Power optimization at high levels of abstraction has great impact on the reduction of

overall power consumption at the final gate-Ievel design. Clock gating is a widely used

high level technique to reduce power.

A register bank is a group of flip-flops that share the same clock signal and synchronous

control signaIs such as load enable, set and reset. Clock gating provides a power-efficient

implementation of register banks that are disabled during sorne clock cycles. Without clock

gating, register banks are usually implemented using a feedback loop and a multiplexer

(see Figure 4). When such registers maintain the same logical values during multiple clock

cycles, they use more power than necessary.

Data Out

n

Data In

Flip-Flop

Figure 4: Register bank implementation without dock gating

Clock gating saves power by eliminating the energy dissipation associated with reloading

register banks whose stored logical values do not change. Clock gating eliminates the

feedback net and the multiplexer from Figure 4 by inserting a two-input gate in the clock

net of the registers, as shown in Figure 5. Clock gating can also insert inverters or buffers

to satisfy timing or clock waveform and cycle dutYrequirement.

27

Clk

Latch

D LQ

G NL

Data
In

Q

Data
Out

Figure 5: Register bank implementation with dock gating

2.2.2 Asynchronous Circuit Design Style

In this Section, we introduce sorne aspects of asynchronous design. Asynchronous design

here refers to the design of digital circuits that operate correctly without relying on the

global dock signal for synchronization. It is not possible to offer a complete overview

here; instead a brief introduction to the basic concepts is provided with the emphasis on the

single-rail handshake circuits, which will be used in the design example in this thesis. A

full treatment of the subject of asynchronous design can be found elsewhere [Hau95].

2.2.2.1 Basic Concepts

By assuming that time is discrete, hazards and feedbacks can largely be ignored in

synchronous circuits. However, as with many simplifying assumptions, circuits that can he

designed and operate without these assumptions have the potential to generate better

results.

There are several possible benefits by removing that assumption.

28

No dock skew - By definition, asynchronous circuits do not have globally distributed

clock signal, so there is no need to worry about dock skew. In contrast,

synchronous circuits often slow down their operating frequency to accommodate

the skew. As transistor feature size shrinks and operation frequency increases,

longer wire delays are taking a larger portion of the clock duty cycle. Efficiently

distributing the dock network to avoid the dock skew will become a major design

concern in high performance design.

Low power - Asynchronous circuits inherently cease their switching activity when no

work needs to be done, and can go from idle (ideally zero power) to full activity

(maximum throughput) instantaneously. This means that for sorne types of circuits,

where there is a significant time period in which the circuits must be able to react

quickly to their environment, also where there also is a significant time period in

which the circuits are not doing anything useful, asynchronous design techniques

are good candidates. For example, the most successful commercial asynchronous

applications have been in portable electronics aiming for low power [Pee96].

Average-case instead of worse-case peiformance - Synchronous circuits must wait

until aIl possible computation have completed before latching the results, yielding

worst-case guarantees of performance. Many asynchronous circuits sense when

operations have completed, allowing them to exhibit average-case performance.

Automatic adaptation to physical properties - The delay through a circuit can change

with variations in fabrication, temperature and power supply voltage. Synchronous

circuits must assume that the worst possible combination of these factors is present

and clock the circuits accordingly. Many asynchronous circuits sense computation

completion, and will run as fast as the current physical properties allow.

Although asynchronous circuits have aIl of these potential advantages, they have several

drawbacks as weIl. Primarily asynchronous circuits are often more difficult to design in an

ad hoc fashion than synchronous circuits. Designers of asynchronous circuits must paya

29

great deal of attention to the dynamic states of the circuits. Hazards must be removed from

the circuits, or not be introduced in the frrst place. Asynchronous circuits generally require

extra time due to their signaling policies, thus increasing their average-case delay. Whether

this cost is greater or less than the benefits listed above is still unc1ear and more research in

this area is necessary.

2.2.2.2 Basic Asynchronous Component - C-Element

Before we introduce asynchronous circuits and present the correlator designs in detail in

the following sections, it is beneficial to briefly introduce the C-element here. Apart from

standard Boolean gates, the C-element and its variations are the most widely used

components in asynchronous design and will be used in various places in our circuit

design.

z

Figure 6: The C-element symbol and one of its implementation

A C-element is essentially an asynchronous memory element. A simple two-input

generalized C-element can be represented by the production rules in Figure 6. The C­

element operates as follows: when both inputs a and b are high, the output z is pulled high,

and when both inputs a and b are low, the output z is pulled low; otherwise the output

remains unchanged.

30

Besides the symmetric C-element, asymmetric C-elements is also very useful. The notation

used for the asymmetric C-element indicates that an input contraIs both rising and falling

edges of the output when that input is connected to the main body of the gate, an input

contraIs only the rising edge of the output when that input is connected to the extension

marked '+', and an input contraIs only the falling edge of the output when that input is

connected to the extension marked '-'. This notation is illustrated in Figure 7 (a), and a

possible transistor-Ievel implementation of an asymmetric C-element is shown in Figure 7

(b).

a

b

c

(a)

2.2.2.3 Data Encoding

C

+

c

(b)

Figure 7: The asymmetric C-element

The term "data encoding" refers to the data and the signaling scheme used for

communication between circuit components. Different communication protocols and

timing assumptions are used in different asynchronous design styles. In a typical handshake

protocol, a sender will indicate the validity of data on one signal and the receiver will

indicate the completion of pracessing data via another signal. This can be done by using

either dual rail data coding, or bundled (single-rail) data coding.

Dual rail data coding involves encoding the data signal on two wires, and the wire that

undergoes a transition indicates the logical bit' s value. This method is, effectively, one-hot

coding for the two states of each bit. The bundled data coding encodes the data on the

conventional I-bit per wire scheme, but uses an explicit request line to initiate the data

31

validity signal. It is assumed that the delay on the explicit request line is greater than that

on the data lines. In both cases an explicit acknowledgement line is needed. It can be seen

from this that it is not possible in these types of circuits to encode a data bit with a single

wrre.

2.2.2.4 Two-Phase versus Four-Phase Protocols

The handshake initiation and completion signaIs use either a two-phase protocol or a four­

phase protocol.

In the two-phase protocol, a handshake event occurs on a wire whenever there is a signal

transition: no differences are made between a rising edge and a falling edge. The data must

be valid before the sender initiates the request transition, and must remain valid until after

the receiver indicates the completion of receipt by sending a transition on the

acknowledgement line.

Acknowledgement

Request

Early

1 l ,

l,: i ~ 1
__----1. i ~L..---___+_J _

" ,
: \ 1

! /,----+------.\,:
-----1:-------', ,'------

" 1
" ,
" ,

-------,~,------,X ! i
------1 1 1 ! 1

1 1 1 1
: : 1 1

Broad

Late

Figure 8: The "Early", "Broad" and "Late" data schemes of the four-phase protocol

32

The four-phase protocol has a return-to-zero phase for each signal, so the sequence,

O~1~O, comprises only one transition on a four-phase protocol signaling. There are three

data schemes of the four-phase protocol, which are "Early", "Broad" and "Late" schemes.

The "Broad" scheme has the advantage of simplifying datapath design, as data are valid as

long as the Request signal is high, meaning that the Request signal can be used as a

conventional enable signal.

The advantage of four-phase circuits is that, having the return-to-zero phase, circuit

elements can be level-sensitive, rather than edge-sensitive, which can simplify their

designs. On the other hand, two-phase circuits have, at least in theory, speed and power

advantages over four-phase circuits since they have only half the number of transitions in

their control paths. This advantage is not as great as might at frrst be thought, as the

majority of delay is usually in the datapath logic, which must be inc1uded in whichever

protocol is used. AIso, two-phase control elements are generally slower than the four-phase

ones.

2.2.2.5 Micropipelines

Micropipelines are a c1ass of asynchronous circuits introduced by Sutherland in his Turing

award lecture (Sut89]. The timing assumption used here is that for a small, isolated section

of datapath, the delay is known, but that section can operate in an environment of

unbounded delays.

A micropipeline, like any other pipeline, has stages separated by memory elements. The

memory elements can be registers or latches, depending on whether the protocol used is

two-phase or four-phase handshake. Due to the asynchronous nature of the circuit, these

registers or latches need to indicate when they have latched the data values. As shown in

Figure 9, the event registers latch the data in response to the request event on Rin, but only

if the downstream registers have indicated that they have themselves latched the last data

they were passed. The downstream registers did that by issuing an acknowledgement event

on their Ain (connected to the Aout of the upstream registers). When processing is added to

33

micropipelines, it can he put just in the datapath between event registers. In this case, the

Request signal must be delayed by the time greater than the delay of the processing logic,

which can he done by using either matched delay or completion detection.

Ain
DELAY

Figure 9: Micropipeline architecture

Micropipelines have an inherent advantage over other asynchronous circuits, which is that

the datapath elements may be easily designed, using conventional combinational circuit

design with conventional tools. Using matched delays, it is possible to simply take a block

of conventional, synchronous style logic and to wrap it into a micropipeline shell, adding a

matched delay, and it becomes an asynchronous component. This facility of module design

means that it is easy to design small blocks and in turn to use these blocks to build very

large devices [Sut89].

2.2.2.6 Handshake Circuits

Handshake circuits are another class of mature asynchronous circuits, mostly developed by

the research group leaded by Kees van Berkel at Philips Research Labs [Ber93].

Handshake signaling as used in handshake circuits is a communication mechanism that

establishes the point-to-point synchronization. A handshake involves two partners which

play different roles, called active and passive. The partners exchange so-called request

34

signal and acknowledge signaIs. The passive partner waits for a request signal to arrive and

after receipt of a request signal responds with sending an acknowledge signal. The active

partner starts with issuing a request signal and then waits for the corresponding

acknowledge signal to arrive. Such an exchange of a request signal and an acknowledge

signal is called a handshake.

• ~o
req-------~..data valid

ack 0(data release

-----.,7.p/"~-____;~..data

(a) push channel

.......---0
req ------;~~.data release

acko(E---------,data valid

0(/n data

(b) pull channel

Figure 10: Handshake channel notions

A handshake essentially synchronizes the active and the passive partners. In addition to

pure synchronization, handshake can also establish data communication between the

partners by encoding data in the request signal, in the acknowledge signal, or in both.

Handshake channels with no data encoded are called nonput channels. They connect two so

called nonput handshake partners, one active, another passive. A handshake on a nonput

channel establishes synchronization only, no data is communicated.

The second type of handshake channels is that with data encoded in the request signal.

These channels connect an active sender and a passive receiver. So, the sender takes the

initiative for a communication. One might say that the sender pushes the data through the

channel, therefore these channels are referred to as push channels. From a data-flow point

of view, push channels are data driven.

35

On a pull handshake channel, data is encoded in the acknowledge signal. Such a channel

connects a passive sender and an active receiver. The sender issues the data after receiving

a request from the receiver, so one could say that the receiver pulls the data through the

channel. From a data-flow point of view, pull channels are demand driven.

2.2.2.7 Design Tools

Currently, there are almost no CAD tools for asynchronous circuit design. Of the few

available tools, none of them is integrated into the commercial EDA (Electronics Design

Automation) tool suites. However, conventional synchronous tools may be used for many

of the asynchronous design work.

In most cases, for the lower levels of the design, Place-and-Route and layout, there are in

practice no differences between synchronous and asynchronous circuits. It is in the higher

levels, architectural design and synthesis, that the lack of tools is most obvious.

Nevertheless, the simulation tool LARD proved useful for architectural experimentation in

Amulet project at University of Manchester [Amu] , while the Petrify tool is used for

verification and synthesis [Pet].

Silicon compilation, that is, the automatic generation of VLSI circuits from descriptions

written in a high level programming language, demands a powerful programming language

and a good compiler. The programming language should be abstract from VLSI circuits

and technology details, thus allowing designers to concentrate on application programming

issues. The Tangram VLSI language [Ber93] is one of the most successful languages in

this category. Circuits described in Tangram programs first are translated into equivalent

handshake circuits, then the silicon compiler compiles the handshake circuits into a gate­

level netlist. This compilation is based on component-by-component substitution of

handshake components by pieces of circuitry. The compilation also contains many gate­

level optimizations, so called peephole optimizations [Pee96]. These optimizations replace

combinations of circuit elements by simpler ones that are smaller, faster and more power

efficient.

36

2.3 CDMA System and CDMA Correlator

In this Section, we briefly present the concept of the CDMA system and the role of

correlators in a CDMA system. The discussion of asynchronous and synchronous

implementations of the CDMA correlator is included in Chapter 4.

2.3.1 The Concept ofCDMA System

The requirements of the capacity of data transmission through mobile radio interface is

rapidly increasing. Currently, the second generation of mobile communication system - the

digital data and voice system -- has almost replaced the analog system - the first

generation mobile system. Most third generation mobile communication proposaIs suggest

using Wide-Band Code Division Multiple Access (W-CDMA) technologies in arder to

support future multimedia transmission, which requires high data rate and wide bandwidth.

CDMA is a class of multiple access technology based on the spread spectrum technology.

In a communication system, the task of multiple access technology is to transmit message

to and from many users simultaneously without mutual interference. Traditionally, signaIs

are considered from two aspects, time and frequency. CDMA system uses a different

approach. This approach spreads the message from each user to a longer code. Codes from

different users are mutually statistically uncorrelated, i.e. orthogonal. Therefore, a

correlator with the property of the codes of specific user can extract the information from

him/her even through the signaIs of aIl user are mixed.

Both Walsh code and "Pseudo-Noise (PN) code are employed in CDMA technology. The

Walsh functions are a binary antipodal {+1, -1} sequence that are designed, by definition,

to be orthogonal to each other [PM96]. However, Walsh codes, while having perfect cross­

correlation properties, are extremely poor auto-correlated: they do not appear to be pure

"white" noise. The desirable property of multipath rejection, which depends heavily on the

autocorrelation performance, is completely lost. Timing recovery in the receiver is also

exacerbated, since it becomes difficult to determine each user's baseband bit-timing

37

without employing large over-sampling factors. Although this problem can be overcome in

the situation that a base station is capable of providing synchronization for aIl of its users

the Walsh sequences in the downlink by maintaining a pilot tone.

The PN sequences have the key property that they appear to be "white" in nature: their

power spectrum is fiat, and their autocorrelation is nearly an impulse function.

Furthermore, the resulting spectrum of the concatenated Walsh/PN code is also white, to

good approximation. Basically, it is a similar situation as the case of sinusoidal modulation

of white noise: the periodicity of the Walsh codes, spectrally concentrated, does not

significantly affect the randornness of the spectrally fiat PN code. Multiplication in the time

domain by periodic function results in a shift in frequency domain, and shifting a white

spectrum results the same.

The IS-95 standard is a typical CDMA standard, which is widely used in today' s public

CDMA mobile phone network. In the IS-95 standard, the CDMA operations are slightly

different in uplink and downlink. In downlink, the base station uses Walsh codes to

generate codes, these codes are deterministic, strictly orthogonal. In uplink, each mobile

uses a long PN code to spread the message. The PN sequence generator is seeded with the

data received in the message send from the base station. The same seed is used in both

directions. In IS-95 standard, the basic user channel rate is 9.6kbit/sec. This is spread to a

channel chip of 1.2288Mchip/sec (a total spreading factor of 128, a chip is single bit within

the PN code in CDMA terminology) by using a combination of techniques. More details

can be found in [Vit95].

The basic codes used in this design - PN code and Walsh code - are the same codes

employed by the IS-95 standard. However, the detail coding scheme - a hybrid PN-Walsh

code - and channel rate do not conformed to the IS-95 standard. This aggregate coding

scheme can simultaneously achieve 100% capacity, while still maintaining near white

spectral performance [Vit95], each user bears a signaling rate of lM bit/s, with a minimum

spread rate of 64 Mchip/s (64 chip are transmitted per user bit) to accommodate 64 users

sirnultaneously [SB98].

38

The correlator performs the correlation function at the receiver end in this CDMA system.

It recovers the sequence of data coded with the same Walsh function and PN code as it is

selected to decode from the aggregated transmitting signal, so the data coded with different

pairs of Walsh function and PN code are rejected as noise. It samples the input signal at 64

Mchip/s and outputs 1 Mbit/s decoded data stream.

r/) • •....
(])
r/)

::;J • • Aggregate
~
'D • • Transmit
V

Signal
Z

Pilot Transmit Filter
Tone

Figure Il: CDMA transmitter schematic

In this thesis, we present the design of the correlator in two different digital circuit design

styles, namely, synchronous and asynchronous design style as introduced in section 2.2. A

word of caution should be mentioned here to clarify the terms of "asynchronous" and

"synchronous" used in this thesis. The synchronous and asynchronous terms also are used

in the communication domain. Most noticeably, there are two different communication

modes, the synchronous communication mode and the asynchronous communication mode,

which indicate the synchronization method at the system and/or architecture level. They are

two totalIy different concepts, used in different contexts. AlI the terms "asynchronous" and

"synchronous" appeared in this thesis are in the context of digital VLSI circuit design.

39

Chapter 3

Modeling and Simulation of

Heterogenous Systems

In this chapter, we describe the design of a software package that performs system timing

estimation of embedded HW/SW systems. Two aspects of interest are the functionality and

the timing constraints of the simulated system. Detailed HW/SW co-simulation is a time­

consuming task in which both software and hardware are usually simulated in their own

time domains, then simulated jointly for both functionality and timing. In contrast, we

extract the timing behavior of the software and ignore its functionality to quickly estimate

the system performance. This permits early resolution of the tradeoffs of allocating

functionality between hardware and software, before the detailed implementation is

developed. In designing our package, we adopted the reactor design pattern [SS+OO], which

permits to represent distributed objects in such a way that facilitates maintenance of the

models.

Our package is built as an extension of Ptoiemyll [Pto]. We model each hardware element

as a component in the discrete-event (DE) domain of Ptoiemyll. We view the software part

of the system as another DE component that represents just its timing behavior. The

40

simulated software is assumed to consist of several concurrently executing threads, and

each thread is represented by a fIxed number of actions.

Our package can simulate system features such as task prioritization, message passing,

resource sharing and task blocking, which influence the timing dependencies of the

simulated system. In combination with the other existing domains in PtolemyII, our

package provides a convenient way to model and estimate the tradeoffs of the HW/SW

functionality partitioning of embedded systems.

3.1 Modeling of Hardware/Software Systems

"Software" mainly implies the sequential execution of a single instruction stream. That is,

the same hardware resources are multiplexed in time to perform different functions.

"Hardware" in contrast, denotes primarily parallel execution [LeeOO]. A dedicated DSP

with its own instruction memory, which is processing the incoming data stream, may be

treated as hardware component rather than a software component. The software in

embedded systems is dynamic in nature. Its responsibilities inc1ude run-time components

instantiation and termination, run-time allocation and de-allocation of resources (CPU,

memory, communication channels), management of access to these system resources, as

well as the possibility to guarantee bounds on the execution time. Most of these services

are offered by a real-time operating system (RTOS).

Typically, the architecture of software in embedded systems is layered [CC+99]. Each

layer provides the functions and services to the next layer. Software tasks are mostly

implemented as threads running under the control of the RTOS kernel, which offers basic

services, such as task scheduling and inter-task message passing. AIso, a RTOS contains

the communication protocol stack, which provides the communication between the

application layer and the hardware layer, event and alarm trapping and management to

handle hardware interrupts, and external la stream management and other functions. High­

level system functions are made available to user applications via Application Program

Interfaces (API).

41

Software is widely used to implement controlloops, user interfaces and protocol stacks in

the embedded system. Software either interactively responds to the inputs from the user or

executes upon occurrence of events from the environment. Typically, the specifications of

this type of software consist of the interacting state machines rather than of sequences of

arithmetic operations to be scheduled within a bounded time frame. On one hand, such

specifications exhibit FSM-style behavior, as in the RTL (register transition level)

description for hardware; on the other hand, they have the behavior pattern of software

(dynamic, resource sharing etc). Object-oriented software generated by the modern

compilers also has certain reactive-type features, in which objects can be dynamically

created and destroyed to implement certain functions in reaction to the message they

receive.

In [GM93], Gupta suggested to model software as a set offixed-Iatency concurrent threads.

We model the timing behavior of the software threads as a combination of several atomic

constructs corresponding to their timing behavior relative to the hardware components and

other software threads. We catalogue these atomic software actions into following types:

• Execution - The software thread executes for a fixed amount of time, which has no

timing dependency relationship with the operation of hardware or the execution of

other concurrent software threads.

• Creation -This action creates the message that will invoke the message handler.

• Wait - This action expresses the temporal relationship with the hardware or the

other threads. It is blocked by result of the output of the hardware or the message

generated by the other threads.

• Send - This action sends the output signal to the output port.

42

Our model of the software is a set of concurrently executing threads, which is made of a

combination of these actions. These threads are assembled into a temporally and causally

ordered task graph. To the event-driven software, the top-Ievelloop is the message dispatch

mechanism that is implemented by using the reactor pattern, as will be described in more

detail in Subsection 3.3.2. Each task can be assigned a priority. The execution of the tasks

is scheduled by the RTOS according to a scheduling policy. Different scheduling policies

can be enforced, depending on how to build the task graph, how to add a new task to the

task graph and how to select the next task from the task graph to execute. The timing

information of each action, used for linking back to DE domain, is determined by the

parameters of each action. These parameters can be set to the worst-case data, average-case

data or even a distribution pattern extracted from the time-stamped trace of the previous

implementation.

An important point of this model is the separation of the functionality of the software from

its run-time behavior. We represent the software code by the Process class, which is just a

sequential collection of actions (see Figure 13 for the class diagram). The run-time

behavior is represented by the Task class, which uses the process object as prototype,

together with the run-time information, which is updated at the completion of each action.

A task graph is constructed by an RTOS class, whose responsibility is to control the run­

time behavior of the software execution.

3.2 System Modeling

A typical model of the reactive embedded system built in Ptolemyll is as follows. The

functionality provided by the software implementation is run under the control of the

system RTOS. The hardware component is only aware of the existence of the glue logic

between the hardware itself and the interfaces to which it is attached. The glue logic

circuitry may include the control registers that the CPU can address to, the buffer to hold

the temporary data and the interface protocol logic. The hardware component interfaces

with a virtual machine in the sense that the response of this virtual machine is the value of

its outputs with a certain delay.

43

Software
space

Input/Output
Input

Bus 1

Bus2

Figure 12: The graph of a system model

A HW/SW co-simulation mode! must capture the typical behavior described above. In

PtolemyII, the model of certain behavior is implemented as a component in certain domain.

For our timing behavior modeling of embedded systems, we use a proxy component to

represent aIl the software threads and the hardware elements on which these threads are

running, and the hardware components which can run concurrently (no resource sharing)

along with the software threads in DE domain. The timing information of the thread

execution will be called back to the proxy component to link it to the virtual time in the DE

domain.

3.3 Package Implementation

Our package is designed as an extension of the DE domain in Ptoiemyll. In the DE domain,

the actors interact with each others through sequences of event placed in time. An event

has a value and a time stamp. Actors [Ife when new events are present. This model of

computation is appropriate for specifying concurrent hardware.

44

Idrlveab/e

levent ... L
galTypeO 1

gelNam eO

.<~. IOE1, 1

gelMsg()

wall

1 C/oneable 1

c1oneO

Action
1

1 0,..1'00 1

InlCom pleledO 1

F~~Tm';':>'ad() 1

,"Typa() +
1 Oparatlo

I
sendEVanl(laVanl) 1
isB lockedO

Actable

Raaclor

pro cess

Iist: avlllsi

li8t:procassllsl

notlly(lavent)

a dd Eva n tH and la r(la van l,
procass)
satRTQS(RTQS)

handleEvant(lavanl)

ad dA clio n (aclab la)
addCom blnad(actabla)

galActlonLlslO

gelCom L181{)

/eventLlstener1·~_~r_I_~_k~-n

Me8s11ge

gelNam eO

getMassageO

addField(O bjecl)

gelFleldO

Map: laskMap

inl: tim eslot

Raactor: _reactor

lnt: naxtld

List: InputEvantO uaue

List: SysEventO ueua

Actor: containar

task: currentTask

List: drlvelial

List: porllist

l

eventEXecutiOn(8ctable,leV_enl) 1

~
ootIlY(m'!)+

- - - lask

--<
_. lask(RTOS, procass, inl)

RIOS --- b-- runO

11':'-=-'''"'':-:'''''T''''''''k(''")--'------r gelP arenlld()

crealelask(proce8s) updateO

HandleEvenl(levenl) execute(lnl)
updale(task) evanIExecutlon(action, message) -+-+------------'
gatN axlld() setTlm eS lol(int)

runProgram (conlrol) selBlockedO

noliryM sgO isBlockedO

getEventO isCom pleledO

run(lask) setCom pleledO

addEvent(levent) getldO
gelOueuaLenO isCom binedO

axacuta(int) satR unningO

hasEvanlO seIN olR unning()

add L is la n a r(lava n IL ia te na r, is Ru n n ln 9 0
m assaga) List: actlonLisl
haslaskO

List: corn Lisl
addTask(task)
addDriver(Port,ldrivaable) RIOS: rtos

gettnput(tOPorl) List: Iialener
haslO 0 String: wailM assage

setH aslOO Int: id

setNolOO

handlelOO

sendoutput(porl)

1 --fypedAlomlc,a'-clor -1

!
:preflre o
fireO

poslfiraO

Resource

loadRTOS(RTOS)

saIFee-dback()

clearFeedback()

seIOllsal(int)

add P rocessor(R eso u rce)

isProBusyO

hasEvenlO

a'd d 0 rlve r(P 0 rl,ld rive a b le)

haslnpul()

gdtlnpulO

sendO ulput()

List: up Lisl

RTOS: rtos

double: offset

OEReceivar: _lb

+

setBusy(double)

selldieO

setT ask(ta8k)

gell ask()

isBusyO

speedO

gelType()

isCom blned()

setCom binedO

Syslem

1

1~$Em ply()
IlsFullO

send(message)

receive(m e88aga)

pul(Tokan)

gelO
getType()

';'Na±,

Figure 13: UML c1ass diagram

3.3.1 Class Design

The different software actions mentioned in Subsection 3.1. are represented as a Java class.

(For a full description of the Java language, see for instance [AGHÜÜ].) Unified Modeling

Language (UML) is a general-purpose modeling language for specifying, visualizing,

constructing and documenting the artifacts of software systems [Boo94]. A UML class

diagram visually shows the universal relationship of a set of classes to each other. A UML

sequence diagram formalizes the behavior of the software systems and visualizes the

communication among objects. Figure13 shows the UML class diagram of the class

structure in this package. Below, we brief1y list the functionality of the major classes.

System class - The System class is a subclass of the Actor class of PtolemyII. It represents

the proxy class of the software virtual machine. This is the place where timing

information of the execution of software action is passed back to the virtual time in

45

the DE domain. It has input and output ports to receive and send Token to other

components in the DE domain. It contains a reference to the RTOS and other system

resources (CPU, memoryetc).

RTOS class - This is where the functionality of the RTOS is modeled. This class can

provide different scheduling policies, such as priority-based or round robin. The

preemption feature is not supported at present, but it can be emulated by using

different task priorities. The RTOS class includes an event queue that supports the

message passing. A task graph is constructed under the control of this class to

represent the run-time status of the software threads.

Process class - It includes a list of actions, which can be treated as the static software

code.

Task class - This is the representation of run-time behavior and states of the thread. Task

objects can be dynamically created by the RTOS object by prototyping the process

object using the clone method of the Process class.

Reactor class - It implements the message dispatch mechanism in the event-driven

software. Messages and their handlers (processes) are registered to it by the user.

Driver class - It simulates the functionality of the driver in the software virtual machine.

It includes a buffer to hold the temporary input/output data and to perform the flow­

control.

Resource dass - It represents the hardware resource used by the software tasks such as

memory, and processors which keeps the information (task id, next action completion

time) of the tasks which are running on them to indicate and update their status.

46

All action classes implement an interface called Actable. An Event interface is defined for

the classes used for internaI communication between different classes (System, RTOS etc).

Through using interfaces, our design is more extensible, and easily accommodates design

changes and adding new features.

3.3.2 Design Patterns

Following is a brief discussion of the main software design patterns that are used in this

package.

Reactor pattern - It is an event demultiplexing mechanism which channels all external

events in an event-driven application through a single demultiplexing point. It allows

handling of multiple events concurrently. Using this pattern, a task graph can be

created and different tasks prototyped from the same process can co-exist in a single

application. It is weIl suited for simulating the dynamic behavior of the event-driven

software. In the initialization phase, messages and their handlers are registered to the

RTOSControUer Process
1 rfa~ nte acei Reactor 1 1

: :
1

1
1 1

AddHandlo/(message, process) i :
1
1

1 1 :1 1
1 : 1
1 1

: 1 i1
1 1
1 : 1
1 add_handleO 1
1 : 1

:.. 1 :
1 1 1
1 1 1
1 r-'- 1

Handle fvent 0 1

:
:
1
1
1

getO
,
1
1

return
,
:
1 L-
I

: Create new task
1

1 1

- 1 1

Application Message
M'

EXTRACT HANDLE

INITIALZE

REGiSlER HANDLER

SET EVENT LaOP

~ WAIT FOR EVENTS

Q"'l
ZQ
~ 0 D~PATCH
""' ::E HANDLER

~

Figure 14: The sequence diagram of the reactor pattern

47

control object; during event handling phase; handlers are extracted to create tasks by

the RTOS object.

Non-blocked buffering pattern - This pattern decouples input and output mechanisms, so

it avoids blocking the application processing. This pattern is used in the system class

and the driver class. In the driver operation phase, the data is put into the buffer of the

driver and the driver registers its next output action time to the system object. When

time arrives, the system wakes up the drivers to execute the output actions to the 10

ports.

,,
1
1

Sen
l

Driver

RECY MSGI
SEND MSG

System Driver/Port
table

1,,

Driver

Send Port

Find Driver

1/0 Port

EnqueueO

RECY MSGI
SEND MSG

Figure 15: The sequence diagram of the non-blocking buffer pattern

3.4 Examples

We use two examples from the literature to illustrate how to use our method in realistic

applications.

Our first example consists of the dashboard controller of a car, taken from Balarin et al

[BC+97]. The controller consists of the following modules. The speed meter displays the

48

speed of the car in a certain range. The odometer incrementally records the distance

traveled starting from 0 km. The driver can reset the trip odometer. The only input is the

wheel pulse that is generated from every rotation of the wheel.

After receiving the input from the wheel pulse, the system schedules the execution of these

tasks to meet their timing constrains. Both the computation and the filtering can be

implemented in software while filtering may also be implemented in hardware. A fast time

budgeting can be carried out to try the different functionality partitioning of the system

before starting the detail design of the system.

msgJO:--------......p......l----.~

I--_~ Speedorneter

msg3o- P3 -.~

ms~------P"-=4'----+~

Figure 16: The dashboard example

We first decompose the system into different messages and processes. Then each process is

refined to a list of actions. A control object is constructed to register aIl the message

process pairs. Figure 16 shows the detailed message and process graph after the system

decomposition.

A Source component in the DE domain is built to simulate the wheel pulse that generates

the input message. The wheel pulse changes its frequency during the simulation. To each

process, we assign a priority. From the simulation, we find that the task execution time

remains the same within certain frequency range of the wheel pulse input, and starts to

49

Figure 17: The software execution time plot of example 1

change when the frequency higher than a eut-off frequency. When we change the priority

of each process, we observe the change in the pattern of the execution time. The higher

priority processes finish faster than before and the lower priority processes get accumulated

in the event queue in the RTOS as shown in Figure 17. By shifting functions between

different software processes and/or between hardware and software, we can change the

input frequency that causes the tasks to miss their deadlines. Through this example, we

demonstrate the options of relocation of the functionality between software processes and

between software and hardware to get the optimal design. AIso, it is easy to observe the

effect of the event queue in the RTOS which may take millions cycles to simulate few

seconds behavior by using the cycle accurate simulation method.

The second example is a simplified model of a communication device, shown in Figure 18.

There are several components in this example. The RX module is the hardware receiver

that receives, amplifies and/or samples the receiving signal. The RXCU module is the RX

control unit that controls the work of the RX module and generates sorne data to the local

and remote system (like the stats report, control signaling etc). Sorne of the functions of the

RXCU can be implemented in software, and sorne can be in hardware. The system includes

a microcontroller (controller) to execute the reactive control software. Functions of the

control software can either be implemented in hardware or in software. The SP module is

the signaling processing module that implements certain signaling conversion functions in

50

hardware to relieve sorne workload of the controller so that it can meet the real-time

requirements. The TX module is the transmitter module that transmits the RF signal

converting from the digital baseband signal. This is a complex system that may have

hundreds of feature and finïte-state control function.

-?>Cfi)RX output!
~

... 'nput
frame output2 ... \ /i ...

\ 1 TX\
,

~ 1start
' x:e2> ~.... _---

frame start

...
~output! ...

output2 ...
'O~-D

...... ... 'nput

RXCU
SP

1
butput

1 P4 d

input
t__-=--~ _ ,_

~

Controller

Figure 18: A communication device

Following is the explanation of how our example works. When the system starts, the

RXCU module sends message via "starf' port to RX, then sends sorne signaling messages

to the controller with different fixed delay through output! and output2 ports. The RX

module sends messages to the controller via 2 ports periodically which acts sending data.

The data is organized in frames. Each frame contains a fixed number of bits to represent

data or signaling. The frames compose the hyper-frame that has the data frames and the

signaling frames arranged in fixed patterns. After certain amount of data frame sent, it

sends a frame message to RXCU to inform the start of the next hyper-frame. There are

several processes running on the controller that respond to the inputs of these modules.

After receiving the message from the first port of RX, it starts executing process one that

only includes execution actions. Process two is invoked after receiving the message from

second port of RX and the completion of the process one. Process two sends the message to

51

the TX module after sorne delay that can represent the using of controller to execute sorne

functions like data compression, adding error check bits, which have the option to be

shifted to the TX module. Processes three and four are called after receiving the inputs

from two ports to RXCU, respectively. Process three is a simple process like process one.

Process four is a more complex one: it starts with sorne operations, then sends the message

to the SP and waits for the response from the SP. After receiving the input from the SP,

process four sends a message back to the output port to RXCU. The RXCU will iterate

another cycle of sending messages to the controller only when it receives the response from

the controller before receiving the frame signal from the RX. If the RXCU does not receive

such a response, the RXCU has to wait for the next hyper-frame to send its signaling

frames.

When the system is simulating, multiple software task instances exist, possibly in different

stages. We start with the initial frequency of the data frames of the RX, increase its

frequency gradually, because process one and two have strict time constrains, so we set the

priority of these processes higher than that of processes three and four. With the reduction

of the cycle time of the output of RX, it will increase the delay of the execution time of the

lower priority process. At a certain point, the input of the RXCU will miss the next hyper­

frame signal. We let the simulation to stop after two continuous hyper-frame misses of the

RXCU module. From the simulation, we can observe that a long delay in process four

causes the simulation to stop. We have the options to avoid it by shifting the function from

software to hardware, or by using faster CPUs or multiple CPUs.

A more complex and refined model can be built by using this method. Instead of using the

fixed execution time, one can use the execution time of a distributed pattern or use the data

derived from the reference implementation.

To decompose the software processes into a sequence of actions and estimate their

execution time, one can reference the design from the previous implementations if the new

processes are just improvements of previous versions. Or, one can decompose the software

52

into sub-modules that mainly use the function library: by annotating the function library

with sorne distribution pattern, one can get the estimated time.

One the other hand, we can use this method to do the time budgeting of different software

architectures before starting the detailed code design of the software.

3.5 Summary

We presented a software extension to Ptoiemyll that performs the fast timing estimation of

the HW/SW embedded systems. Two examples are shown to illustrate the usage of our

methods. The experiments show that:

• This package can weIl capture the dynamic characteristics of the event-driven

software.

• The pure timing behavior simulation is useful for system performance estimation

and time budgeting in system development.

53

Chapter 4

Synchronous and Asynchronous

VLSI Design

For digital circuit design, how to synchronize the operation of different parts is an

important issue. Choosing the right synchronization scheme will have the critical impact on

the final performance of the circuit. Until now, using the clock signal to concert the

operation of the whole circuit has been the most widely used design practice. With the

transistor feature size shrunk into deep sub-micron range, this design style faces new

challenges of timing closure for ever higher operation frequencies and of constraints on the

power consumption of a single chip. Asynchronous design styles with their robustness of

timing characteristics and low power properties are promising alternatives in low power

applications.

In this chapter, we frrst discuss the architecture design of a CDMA correlator. Then, two

different implementations -- asynchronous design using single-rail handshake circuits, and

synchronous design using edge-triggered registers -- are presented. Finally a comparison is

carried out to illustrate the differences between these two design styles, along with a study

of the circuit switching activity.

54

4.1 The Correlator Design

The viability of a 64 Mbps aIl digital CDMA receiver hinges upon the development of a

low power matched filter correlator: a receiver DSP may employ many such correlators in

timing recovery, adjacent cell scan and data recovery units. The operation of the system

requires aIl or sorne of these correlators working simultaneously.

N

Y =LW[i].X[i]
i

The correlator essentially functions as an accumulate-and-dump of N weighted inputs,

where X[i] is an input sample and W[i] is the weight. For the receiver DSP, the input

sample from the analog front-end is a 4-bits wide word docked at 64 MHz. A sign­

magnitude representation of data was chosen because the received data samples are

spectrally white due to the spread spectrum nature of the system; from [Cha94], it has been

shown that a sign-magnitude correlator results in 30% lower power consumption than an

equivalent two' s complement one. This is because of the nature of the weighting function

W[i], which is a 1 bit stream of +/- l 's corresponding to a Walsh code overlaid on a PN

sequence. A simple toggling of the sign bit can easily realize the multiplication by +/- l, it

is extremely efficient from the power standpoint.

4.1.1 Specification

This chip has 7 input pads and Il output pads along with the power supply pads. The input

signaIs to the circuit are of a 4-bit wide data stream in sign-magnitude representation, a 1­

bit wide Walsh code stream and al-bit wide PN stream. The dock pad connects to the

dock signal of 64MHz. The output from this circuit is a lü-bit wide data stream in 2's

complement representation synchronized at 1 MHz with the outside environment. It should

operate at 3.3V power supply. Several extra pads are needed to act as test points to access

to signaIs inside the chip. The power consumption and silicon area are not specified for this

circuit The main purpose of this experiment is to compare the aspects of different

55

implementation using synchronous and asynchronous design style, rather than push the

edge of the CDMA systems.

4.1.2 Architecture Design

In [SB98], it presents the architecture exploration of a full-custom correlator design for low

power. The main ideas are restated here for c1arity since we adopt the similar approach. As

the weighting function of the correlation is simply a sign-toggle, the operation effectively

reduces to an accumulation. The main element of functionality is the additionlsubtraction

of 3 magnitude bits over 64 samples at 64 MHz, which requires 9 bits of magnitude plus 1

bit of sign for dynamic range, with a resulting output dump frequency at 1 MHz. As a

simple-minded frrst attempt, one possible implementation is to use a straightforward two's­

complement ripple adder and literally accumulate the data after multiplication by the

weighting sequence. Since the incoming data is sign-magnitude, it would need to be

converted to two' s complement in this approach. This sign-extension causes significant

additional power consumption, but it is not the worst aspect of this design. The carry chain

carry on subtractlOn

.------

/ Sign

9~ 10 Cou i:::
0

9 bit .~

Full "3
8 II)

Adder ::l t;;
u '5bu

<r; ~
0/)

0..:::
'S 8 Outpu

9 ::: ::l

~
::l Ci

.... 0:: /
5/ SUM / 1-

/
Input Convert to

/
two's / ... /\ ~~

10

~
.... Complement: 4

XOR with sign
64 MHz 1 MHz

force t
/

Figure 19: Two' complement implementation of the CDMA correlator

56

of a ripple adder must complete in 15.6 ns minus the register setup and delay times and any

clock skew; this is tight time budget in the worst case that the carry signal must propagate

from the lowest bit to the highest bit.

To preserve the advantage of the sign-magnitude nature of the incoming data, an alternative

architectural approach is to immediately break up the accumulation into two parts: one

accumulation of aIl incoming positive data and another accumulation of aIl incoming

negative data. The sign bit can be used to multiplex the 3 bits of magnitude to either the

positive or the negative accumulator, and the difference between positive and negative

values can be computed after dumping at the 1 MHz rate by simply including a subtractor

after the dump register. This approach has the advantage that the final subtractor will take

negligible power at 1 MHz and has plenty of time to compute, but increases the area

OClk
(lMHz)

NEGACC

POSACC

+

Clk OClk OClk
(lMHz) (lMHz)

Clk3

Clk

4

Clk Clk OClk OClk
(lMHz) (lMHz)

Figure 20: The alternative architecture with POSACC and NEGACC two datapaths

slightly. In the following discussion, the positive-data accumulator will be designated

POSACC, and the negative-data accumulator will be designated NEGACC as shown in

Figure 20.

57

Another architectural optimization is to cut down the critical path by pipelining the entire

carry chain. Thus, the bit-Ievel carry pipelining of the carry-save reduces the critical path to

that of a single bitslice of a full adder cell. A carry-save architecture needs the use of two

register banks, one to hold the temporary sum vector and another to hold the temporary

carry vector. The cost of this replication is extra area for registers and a separate adder to

recombine the sum and carry vectors after the 1 MHz dump operation. Not surprisingly, the

adder is one of the most studied digital arithmetic blocks, and an overview of the more

common designs can be found in the reference [Rab96].

Carry out ta next slice

Data in

Clk

Full Adder Bitslice

AEEJBEEJc = Sum -f----1~~ E
AB+BC+AC = Carrv-+--+-->.:-+I--.J

carry in from previous slice

Figure 21: The carry-save adder

4.2 Asynchronous Design

Both the asynchronous and the synchronous designs of the CDMA correlator are presented

in this thesis. The asynchronous implementation uses the single-rail handshake circuits

which will be discussed in this section; the synchronous implementation is presented in the

section afterwards. In this section, we present the design of several handshake components,

the top level schematic and the design of several sub-modules. We also discuss in this

section sorne important design issues and the asynchronous circuit design flow.

58

4.2.1 Handshake Components

The handshake components are computational modules that communicate on their input

and output channels via handshake protocols. These handshake circuits must coordinate the

request and acknowledge signaling exchanges with their environment and impiement the

required computational functionality as well. In the following, we list the handshake

components used in our design. Sorne component designs refer to the work of [Pee96].

4.2.1.1 Case Components

Case components are used in the implementation of case construct in VLSI programming

to decode the expression to select the appropriate statement to be executed. For the

implementation of the case component, the data-valid scheme on data channels is critical.

If the data-valid scheme on ais broad, then valid data may be assumed during the complete

handshake on a. This implies that the handshakes on band c apparently do not directly

influence this data. With the broad data-valid scheme on a, the case component can be

implemented as shown below. The AND-gates decode the incoming data, and depending

on the ao either initiate a handshake along b or along c.

Cr

Figure 22: The case component

59

4.2.1.2 Passivator

The passivator is used to synchronize two active partners during a data transfer. It

synchronizes data exchange between an active sender and an active receiver.

ar br

aa

/
7

ba

Figure 23: The passivator component

A four-phase implementation of the passivator is shown above. The data-release signal of

channel a is directly connected to the data-valid signal of channel b. This circuit can be

used to combine the broad data-valid scheme along a with the early scheme along b.

4.2.1.3 Mixer

The isochronic fork is introduced by Burns and Martin [BM88] and is considered to be an

essential and the "weakest possible" compromise to true delay insensitivity. An isochronic

fork is a fork for which we assume that the difference in delays between the two branches

is less than the delay through the gates to which the fork is input. Circuits in which the only

timing assumption is that of the isochronic fork are generally called quasi delay insensitive

(QDI). The term speed independent basically refers to the same class of circuits. An

example of the application of isochronic forks is the four-phase implementation of the

nonput mixer. The nonput mixer requires the handshake on a and b to be mutually

exclusive. For the four-phase protocol, this implies that the environment guarantees that ar

and br will never be high simultaneously.

60

The efficiency of the mixer implementation (in term of area, delay and power) can be

improved by replacing the symmetric C-elements by asymmetric C-elements. The mixer

implementation illustrates that circuit realizations can be made more efficient by making

additional timing assumptions. Especially in the application of isochronic fork the

replacing symmetric C-elements by asymmetric variants is an interesting one that is often

applied in the implementation of handshake components.

Qa

Qf-- ----L._....,.
br ---r-_....,

ba,"4-__--I

Cr

I----C,a

Figure 24: The mixer implementation

4.2.1.4 Four-Phase Micropipeline Control1er

As introduced before, mircopipelines are a very commonly used pipeline architecture in the

practical asynchronous circuits design. Micorpipelines are viewed as being composed of a

control circuit employing the two-phase or four-phase handshake protocol and a datapath

Data i
Data out

-5......
ce
~

D Lt

Rin Rout

Control1er
Ain

Figure 25: Single micropipeline stage

61

using the bounded delay model.

Figure 25 shows a general micropipeline stage structure. The latch control circuit

communicates with neighboring pipeline stages on both its upstream link (Rin, Ain) and its

downstream link (Rout, Aout). The control links (E, D) connect with associated

combinationallogic block. In addition to these three handshake links, a latch control wire

(Lt) is needed to open and close the latch when it is low or high, respectively. The rising

edge of Rin that indicates "data available" is usually used to activate combinationallogic.

Rin

Lt

c

Ain

Raut

Aout
~

Figure 26: The early scheme and semi-decoupling micropipeline controller

To implement the micropipeline, another important factor that needs to be considered is the

degree of decoupling. A micropipeline stage is said to be decoupled if it satisfies the

following two conditions: (1) a new communication coming along its upstream link cannot

be "initiated" until the CUITent communication going along its downstream link has been

"completed", (2) and it is "suspended" if the new communication along its downstream

link has not been "initiated". A micropipeline stage becomes semi-decoupled by removing

the flfst condition, and it becomes fully-decoupled by also removing the second condition

[Liu98]. A new communication along the input link of a fully-decoupled latch control

circuit may be "completed" before the new communication along its downstream link has

been "initiated".

62

In our correlator design, several variants of micropipeline controller are used. The early

data scheme and semi-decoupling version is shown in Figure 26. Within this circuit a new

communication on the upstream link can be "initiated" before the current communication

on the downstream link has been "completed", but it is suspended until the new

communication on the downstream link has been "initiated".

Rin

+

Lt

Raut

Aout

Figure 27: Another implementation of micropipeline controller

Another kind of micropipeline controller used in our design is shown in Figure 27. In this

implementation, the input Rin signal will create a pulse at the latch control output CU).

Then it triggers signal on Raut to go through the 4-phase handshake signaling exchange.

4.2.2 Top Level Architecture

The top-Ievel schematic of our asynchronous correlator design consists of a control path

circuit and two data path circuits. One data path is called accumulator data path along

which input data samples are summed up; another data path is called counter data path

along which a counter counts how many cycles have been processed in one frame and

generates the corresponding control signaIs.

The handshake components steer the data flow along the data paths. The micropipeline

controllers control the memory elements that represent the variables along the data path.

63

They separate the previous stage and the next stage of the micropipeline, so that they can

operate in various degree of parallelism depending on the type of micropipeline controller

used. Without pipelining operations of the circuit, the handshake signaIs issued by the

handshake components just form a single handshake channel, in which the acknowledge

signal to the frrst handshake component in the chain will appear only after the completion

of aIl the handshake signaling of the rest handshake components in the chain. This

reduction of parallelism would limit the speed and the throughput of the handshake circuit.

By using the micropipeline structure in asynchronous circuits, the throughput of the circuit

will increase similarly to the way it does in a pipelined synchronous circuit. Micropipeline

controllers are also used in the control path for the correction operation of latches in sorne

cases.

Data

~
10

­Data
Valid

NEGACC

Rea

POSACC

9 Adder

Posit~e

T~Y

Tr,~a y

9

Lt

Lt
~

T~ ~
Dump Complemer Req '--------'
Latch adder

~-- ----

Teml}Sum Tf'~ tJ

Carry-say 9 Dump 9 Adder
Adder Latch

!"-ck Ir
r

~ Ar! Temp Carr
r---+-+-~ArO /

r--- Start /
'------' 9

rU=:!±t;A~C~::~ Req Rea
Re 0 Case Micropipelinlej-----"""-j

Controller
rttl~---l Ack L~=yr----I-___;A~Ck;:-1

ck

-

/

1

Weight

r+ eq

Ack B"dr- fi ge

aO ~ Te~pSum

Case AIRtI Carry-say 9
Rea B~'+-t:j:j::I+=R=eq::tArlAdder

Re H _I q ArO
L---.o.. "OK _ ---::\ok Cr

f\ck ~ En Te~pCarr

'- Counter rcr- /
J "Ac r--'------lStart 9Oln _ Start

- ~

PN
Sign

Walsh

Lt

..9L-- Synch- ~
ronizer

Figure 28: The top level schematic

According to this concept, the accumulator data path needs one micropipeline controller

which controls dump latches. When it is the last cycle of one data frame, the micropipeline

controller controls the dump latches to latch the sum and carry vectors from the positive

and the negative adder networks. So the addition operation of accumulation adder networks

64

can run parallel with the addition operation of the dump adders which have the option to

choose simple and low speed adder structure. For the counter data path, which generates

the control signaIs according to the value of the counter, there are two micropipeline

controllers. One micropipeline controller pipelines the increment operation of the counter

which is implemented as a carry-save adder network; another controller is used to control

updating the control signal latches. Our asynchronous correlator is designed to accept

inputs from a clocked environment. When the rising edge of the Clk signal cornes, the

synchronizer latches the data and generates the request signal to initiate the actions along

the accumulator data path and the counter data path. Along the counter data path, the

counter updates the End signal and the Start signal which indicate the last and the first

cycle of the data frame, when its value is high, respectively.

The End signal of the counter is used by the downstream case component to initiate the

operation of adding the positive and negative values to generate the circuit output. When

the End signal is high, the case component sands a request signal to the micropipeline

controller in the accumulator data path. The micropipeline controller starts the operation of

dump addition where the dump latches latch the sum and carry vectors from the positive

and the negative accumulation adder networks, then one adder adds positive sum and carry

vectors, another adder performs a 2's complement of the addition of negative sum and

negative carry vectors, afterwards the third adder adds them together as the output of the

circuit. The availability of results at the output is indicated by the "Data out" signal.

Synchronization of the circuit output to a clocked environment can be realized by sizing the

delays of the circuit to match a specifie number of periods of the clock. When is End signal

is low, nothing happens, the request signal from case component is used directly as

acknowledge signal to the case component itself.

After the counter has updated the End and Start signaIs, it sends the request signal to

another case component. Meanwhile the weight component generates the selection signal

to this case component to steer the input data to either the positive or the negative part of

the accumulator data path depending on the sign of the input sample, the Walsh code and

the PN. The bridge component synchronizes the acknowledge signaIs from the two

65

accumulator data paths which indicate the completion of adding the new input sample. The

join component merges the acknowledge signaIs from both the bridge component and

counter data path to indicate that the circuitry is ready for accepting the next input sample.

4.2.3 Major Sub-Circuits

For our asynchronous correlator design, we designed several new handshake components,

in addition to using common handshake components from [Pee96]. These new components

will be presented in the following subsections.

4.2.3.1 Synchronizer

To interface the asynchronous circuit to the synchronous inputs, a synchronizer has been

designed. It accepts the clock signal as input from one side and initiates the handshake

l.atch Control

Ok

[)------'---+---I gC Req

Ack

Figure 29: The schematic of the synchronizer

signaIs to another side of the circuit. If the acknowledge signal for one cycle cornes too

Iate, after the rising edge of the next cycle clock signal, the synchronizer will not generate

the request signal for the next dock cycle, which means that the speed of circuit is too slow

to fmish the frrst stage of the action within one dock period.

66

4.2.3.2 Counter

The counter unit in this design needs to generate the control signaIs in two continuous

cycles of the data inputs to indicate, the Iast cycle of the frame, and the start of the new

frame, which are called End signal and Start signal, respectively.

Late

L Lateh

End
Vriri Carry-save Logie ln Q
Ar adder 1

Network
/

fLG6 --

Matehed
rl~Iay rr

-MieroPiPeline~ Mieropipeline
Aa Controller Controller rn-

G rn?
'--

Stnrtp Q
rr?

~
) G

h

Figure 30: The schematic of the counter component

The counter consists a carry-save adder network that increments its value whenever a

request signal (Ar) cornes. There are two Iatches in the counter to represent the End and

Start signaIs. One micropipeline handshake controller controis the pipelined carry-save

adder and another micropipeline controller controls the End and Start Iatches. The Start

Iatch captures the signal of End Iatch before it changes to the new value. The adder

network in the accumulator data path has to wait for the Start signal from the counter

which indicates whether the adder needs to reset to zero before starts to add the new data

item. The Start signal also resets the adder in the counter itself to zero. The counter uses

the handshake signaIs Cr2 and Ca2 to communicate with the case component in the

upstream of the accumulation adder networks and utilizes the Cr and Ca signaIs to control

the case component in the downstream of the dump adder network. These two handshake

67

signaIs merge at the frrst micropipeline controller using a passivator in the counter unit as

shown in the Figure 30.

4.2.3.3 Accumulation Adder

The accumulation adder in the accumulator data path consists aN-bit wide carry-save

adder and the controllogic. AN-bit wide carry-save adder is composed of N one-bit full

adder slices. Each carry-save adder unit has one sum and one carry latch. The carry of the

low bit adder connects to the carry input of the higher bit adder. The controllogic circuit is

the modified asynchronous latch controller. The latch is opaque between two handshake

signalings. When the request signal cornes, it generates a short pulse signal to make the

latch transparent to latch the input signal. Both POSACC and NEGACC adder network

receives the handshake signal to itself and the handshake signal to its counterpart.

Either POSACC or NEGACC adds the new input data to its temporary sum and generates

the new temporary sum and carry vectors when the request signal to it cornes and the Start

signal is low. When the Start signal is high, the adder will reset itself to zero when request

signal to other part of the adder networks cornes, otherwise the adder network clears the

previous temporary sum and carry vectors and adds the new input data sample.

68

LGLG

.-__----jD Q Carry[9 D Q t--__-.- S_u_m-'.[9-"-]

Sum[8]

LGLG

'--+-+---1D Q

•
• Ta lawer bit carry •
• •

•Ta higher bit adder

Data[O] D Q Carry[O] Q
Sum[O]

LG LG

Ar}

ArO -I

Start

Cr

Figure 31: The schematic of the carry-save adder

69

4.2.4 Asynchronous Circuit Design Flow

The full chip design is composed of logic design stage and physical design stage. In the

logic design stage, the circuit is designed and simulated to generate the gate-level netlist

description of the circuit. In the physical design stage, the circuit components in the netlist

are placed and routed to generate the physicallayout information.

For the correlator design, the function of the correlator is frrst described in sorne sort of the

programming language. Then the structure of the source code is analyzed and optimized to

maximally explore the parallel operations. Then the optimized code is manually refined to

a handshake network composed of handshake components communicating through

handshake channels. Afterwards the design of each handshake component and module is

captured in the schematic editor. These designs use the gates chosen from the standard cell

library. The circuit level simulator - SPICE -- is used to tune the delay match of these

circuitry. The whole design is also simulated in SPICE to verify its functionality and

timing.

Afterwards, the design is exported from the schematic editor in EDIF (electronics design

interchange format) format. This file is used by the synthesis tool to link each element to its

Verilog model file. The output of the synthesis tool is the Verilog netlist description of the

circuit. Then it is gone through the Auto Place&Route using the commercial tools (Design

Planner and Silicon Ensemble from Cadence Design System) as done in the synchronous

design flow to generate the physicallayout data.

4.3 Synchronous Design

In this section, we briefly introduce the synchronous design of the correlator for the

purpose of comparison against the asynchronous design. First we present the digital design

flow to put this design in perspective. Then we discuss our design. Comparing to its

asynchronous counterpart, the synchronous version is quite straightforward and simple.

70

4.3.1 Digital Design Flow

CUITently, the most effective and successful design methodology of digital circuit design is

to use the high level description language (HDL) to design and simulate the circuit, then

synthesize it into different implementations with the aid of electronics design automation

(EDA) tools. A digital circuit is frrst described in the source code of sorne type of HDL,

either VHDL or Verilog. Then the functional and timing COITectness of the code are

verified against the specification by using the HDL simulator. Afterwards the source codes

are fed into the synthesis tool to be synthesized to generate the gate-Ievel netlist according

to the chosen implementation. What synthesis does is translation plus optimization. In most

situations, the problem of finding a optimal solution to the design is so hard that run-time

of algorithms for the overall problem is prohibitive long or it is impossible. It is better to

use the two stage procedures of translation plus optimization to approximate the optimal

solution in a short run-tirne.

The steps mentioned above are usually called front-end steps since they do not involve any

of the physical information of the implementation. The steps that follow the front-end steps

are usually called back-end steps in which gate-Ievel netlists generated at the front-end

stage are mapped to the physicallayout information.

The main challenge in the CUITent design flow is the timing closure that is to meet the

timing constrains of the design in the back-end stage. Since they are two separate stages of

the CUITent design flow the high level synthesis and the physicallevel placing-and-routing,

if the constrains of design are set too aggressive, it may take very long time to close the

timing or even unable to close the timing, if the constrains of the design are set too 100se, it

may sacrifice the performance. To achieve the best performance, it may need several

iterations and design expertise.

71

4.3.2 Synchronous Design

The design is described in the Verilog source code. It uses mixed structural style coding

and RTL style coding. The adder network is described as a group of carry-save adder units

connected directly. The counter is written in RTL code. The top level RTL code is written

to reflect the two paths architecture as described in Figure 20.

,....----------+1 HDL Coding ~----------l

Goal Specification

Design Exploration

Yes

Functional Simulation

r---~ Design Implementation

No

Physical design

No

Figure 32: The synchronous digital design flow

72

Aiso a testbench is developed for simulation proposaI. It generates the source signaIs which

are fed to the correlator model, then the correlator outputs are compared against the result

of the direct correlator function to verify the design. It is simulated in a commercial event

driven simulator, the Verilog-XL from Cadence, to simulate its functionality. Then the

source code is undergone the synthesis step in the synthesis tool, in this case, the Design

Compiler from Synopsys. Afterwards the design is mapped to specifie technology, the

ASIC implementation using the standard cell library from Canadian Microelectronics

Corporation (CMC).

4.4 Power Analysis for Architecture Exploration

The power consumption is an important design concern in the modern VLSI design,

especially in the deep sub-mieron design. High power consumption increases the cost of

the chip in term of package and cooling technology. In addition to cost, there is the

reliability issue. High power systems often run hot, and high temperature tends to

exacerbate several silicon failure mechanisms [Ped96].

The power dissipation of digital CMOS circuits is mostly caused by following four

sources:

• Leakage current, whieh is mainly decided by the fabrication technology. It consists of

two parts, the frrst is the reverse bias current in the parasitic diodes formed between

source and drain diffusions and the bulk region of a MOS transistor, and the second is

the subthreshold current that arises from the inversion charge that exists at the gate

voltage below the threshold voltage.

• Standby current, which is the DC current drawn continuously from power source to

ground.

73

• Short-circuit current, which is the CUITent gone through the DC path during the

output transitions; and

• Capacitance current, which flows to charge and discharge the capacitive loads during

the logic changes.

The dominant factor of the power dissipation of the CMOS circuits is the charging and

discharging of the capacitive nodes. It can be represented by the following formula:

P =CL XVd~ xSw

where CL is the total physical capacitance at the output of the node, Vdd is the power supply

voltage, Sw is the average number of signal transitions on that node. Reducing the supply

voltage is the most effective way of reducing power consumption, but at cost of reduced

performance. When the supply voltage is set by the external requirement, or when the

performance degradation caused by lowering the supply voltage is not acceptable, the only

way to reduce the power consumption is by lowering the physical capacitance or switching

activity, or both. While the physical capacitance is mainly decided by the circuit family and

processing technology, the architecture and logic designs have the most significant impact

on the switching activity.

Calculation of the switching activity of a logic circuit is difficult since it depends on

several circuit parameters and technology dependent factors that are not available or

precisely characterized. Sorne of these factors are input pattern, gate delay model, logic

function, logic style and circuit structure etc. Still the simulation-based method is the most

commonly used method for switching activity analysis today.

As mentioned before, architectural level design decision will have the most important

factor affecting the total amount of switching activity of the final design, thus affecting the

total power consumption of the chip. Here we use the Ptolemyll to simulate and analyze

the switch activity of two different architectures, one using 2' s complement to represent the

74

data with one data path, and another using the sign bit plus the magnitude to represent the

data with two data paths. The simulation environment is set up as shown in Figure 33.

Signal
Source

Architecture
A

Architecture
B

Display

Figure 33: The switching activity analysis simulation setup

The source, architecture A and architecture B are components in the DE domain of

Ptoiemyll. Architecture A is the one using 2's complement adder, and architecture Bis the

one using two data paths. The source component generates the PN, Walsh code and the

dock signal with the random data samples. These signaIs are fed to both architecture A and

architecture B. According to their different architecture, each node is simulated to record

its switching activity. One snapshot of the simulation is shown in Figure 34. The dot is

number of switching activity of the architecture A and the cross is that of the architecture

B. From the figure, we can see on average architecture A has about 10-20% more

switching activity than that of architecture B. The reasons for that are, frrst the sign

extension in the input data converting of architecture A may cause more switching

activities, second, the adder network of architecture A may cause more switching activities

when the accumulated data changes sign. From the figure, we also observe that sometime

architecture B has more switching activity than architecture A. This is because architecture

B needs to latch both the temporary sum and carry data vector, whereas architecture A only

needs to latch the temporary sumo At the end of the frame, architecture B needs to perform

the subtraction operation which is absent in architecture A.

75

Figure 34: One example of switching activity plot

4.5 Performance Comparison

The performance comparison is mainly based on the results of simulation and synthesis of

the design. For digital design, mostly we use the gates from the standard ceIllibrary, as we

did for this design. The library provides various characteristic data of the cells in the

library, which includes the operation condition, max, min and typical delay and other

useful information needed by the simulation and synthesis tools. Comparing to the real

result from the silicon, these results from simulation and synthesis are accurate enough to

indicate the difference of the designs.

There are a lot of points worth noticing in these two design experiments. First,

asynchronous design uses more area compared to the synchronous design. It uses 813 cell

instances from a standard ceIllibrary, whereas the synchronous design uses only 654 cell

instances from the same standard cell library. For the power consumption, the

76

asynchronous design uses average 17mw at 3.3 supply voltage for the 64 MHz data stream,

and 0.9 mw at 1.5v for the 25M Hz data stream from the SPICE simulation. The die size of

this chip is 3mm x 2 mm as shown in the layout view below. We can see from the layout

that this chip is pads bounded, leaving a real core area is of 130855 square microns.

Area (Ilm2
) Power(64M/s, 3.3v) Power(25M/s, 1.5v)

Asynchronous 130855 17mW* 0.9mW
Synchronous 114935 5.4076 mW not available.

Table 2: The asynchronous design and synchronous design comparison

A word of notice should be mentioned for reading the power value of this table. The value

of synchronous design is obtained from the synthesis tool, and the value of asynchronous

design is obtained by using circuit-Ievel simulation of SPICE. Because of the prohibitive

long simulation time of whole frame of 64 cycles, this value is obtained by setting per

frame to four cycles. We can expect that the power value will be much smaller if we use

per frame of 64 cycles. Aiso the power simulation is input pattern dependent as mentioned

before. To verify the design, the input pattern that we used for simulation tries to sensitize

more paths in the design, it may also cause more switching activity for this input pattern

and increase the power consumption.

Another interesting point in this comparison is the area. Because this application is

computation intensive, the area overhead of handshake circuits is not that critical. Another

fact reflected in this value is that the memory elements are implemented as latches in the

handshake circuit, but as flipflops in the synchronous design. Usually the flipflops use

more area than that of the latches. Therefore, for wider data paths, the area ratio would

change in favor of asynchronous circuits.

For the asynchronous design the delay of the pipeline stage of that of the data path is about

one iteration of bit slice adder. In this case, the delay of the micropipeline controller is

comparable to or even larger than the delay of the data path that it contraIs. So reducing the

delay of the micropipeline contra11er can speed up the circuit. As seen from the schematic,

77

various C-elements are used in micropipeline controller design. These C-elements are

implemented by using gates from the standard celllibrary. By using full custom design C­

element, we can predicate faster speed and less power consumption of the resulted circuit.

Figure 35: The layout of the asynchronous design

Figure 35 shows the layout of the asynchronous design. The layout of physical design of

the synchronous circuit is quite straightforward according to the steps of CMC digital

design flow. This stage is omitted in this thesis. This circuit itself is a fairly small design

for the modern mature digital design flow. The simulation result and the estimation values

from the synthesis tools are good approximation of the final design that can be achieved by

the experienced designer.

The detailed breakdown lists of the cell usage of bath designs are attached as Appendix 1 at

the end of this thesis.

78

The final physical design of the asynchronous chip is done in Cadence design environment

by using the standard celI and pad library developed by CMC. The circuit passed the LVS

(Layout via Schematic) check without including the extracted pad models and DRC

(Design Rule Check) with the pad layout. We sent this design for fabrication by TSMC

(Taiwan Semiconductor Manufacture Corporation) in March 2001 and got the chip back in

July 2001. During test, we found there are short paths existing inside the power supply

network. After diagnosis, we found that there exist short path between VSS ring pads and

the VDD code pads in this fabrication run.

4.6 Summary

In the Chapter, we have discussed the advantages and disadvantages of synchronous and

asynchronous design styles.

We use the CDMA correlator as a case study to illustrate many aspects of the practical

design issues. For asynchronous design, we have described our single-rail handshake

circuit design in detail. For synchronous design, we have presented the digital design flow

in today's VLSI design.

Also a switching activity study is carried out to show the importance of the architecture

selection on the final system performance. Although we have not been able to reproduce

the power economy reported in [Pee96], overalI we can see that both design styles have its

advantages and disadvantages, depending on factors such as application area, width of data

path, idle time, the availability of design tools and etc.

79

Chapter 5

Conclusions and Future Work

This thesis has presented the research work of a simulator software design for modeling,

simulation of hardware/software embedded systems and research work of VLSI circuit

design of synchronous and asynchronous circuits. First, the simulator can be used for the

fast performance estimation in functionality partition of embedded hardware/software

systems. In this thesis, we illustrate the software design and its use of design patterns, we

also inc1ude two examples to demonstrate the usefulness of our method. Second, after the

general discussion of synchronous and asynchronous circuit design style, a case study - the

CDMA correlator - is designed to compare various aspects of this two different design

styles. Though the nature of work is mainly engineering, there are sorne ideas and

contributions gained in the course of the work.

In the simulator design, we propose to abstract the temporal relation of the complex

software design. Such abstraction will still keep the inherent temporal relationship between

the hardware, software components of the system under design, meanwhile it will greatly

simplify the task of the system simulation. Its integration into the Ptoiemyll - a

heterogeneous simulation framework - makes it easy to combine with other models of

computation. Through two examples, we show how embedded system with dynamic run­

time behavior of event-driven software can be effectively simulated.

80

Using software design patterns is another important gain in this software package design. It

makes software easy to maintain and to extend. Through using reactor and non-blocked

buffering patterns, complicated algorithms (like task tree construction, priority ordering

and concurrently execution etc.) can be wrapped into a simple interface. New features can

be easily added.

For the comparison of synchronous circuits design versus asynchronous circuits design,

several new asynchronous handshake circuits have been designed for the CDMA

correlator. They are quite general handshake components. They can be used in other

handshake circuits as well. A comparison of the ASIC implementations in term of the area

and power is also presented. Each design style has its advantages and disadvantages. Most

current circuits use synchronous design due to its smaller area, high performance, wide

support ofEDA tools and matured design flow. Meanwhile synchronous design faces more

and more challenge for the power dissipation and clock skew in the deep sub-micron

design. Conversely, very few commercial designs use asynchronous design. Lack of tool

limits its adoption by the industry. However its excellent power properties and timing

robustness make it a potential alternative for digital circuit design in the deep sub-micron

range. For asynchronous design to become a mainstream design style, more research in

circuit, signaling techniques and design methodology are need. Other alternative design

styles such as global-asynchronous-and-Iocal-synchronous [Cha84] might emerge as weil.

There is still lots of work that can be done to extend the current work. For the simulator

software design, various algorithms can be added, features can be enriched. For example,

for the dynamic task tree construction, cycle detection can be added to indicate the

deadlock in possible program execution. It will be useful that given a system model and a

set of constrains, the simulator can interactively help designer find the optimal solution in

hardware/software functionality partition.

Asynchronous circuit design is an active research area. One of the interesting new circuit

family is so called "Gasp" circuits developed at SUN Microsystem Labs. In the "Gasp"

circuits, they use only one wire to represent both the request and acknowledge signaIs. It

81

can be used in the micropipeline controller circuit. The full custom design "Gasp" circuit

has only three inverter delay of the one iteration of handshaking.

By replacing the four phase micropipeline controller circuits with those of "Gasp" circuits,

it will increase the speed of the design. To do that, new interface circuitry between the four

phase handshake circuits and the "Gasp" micropipeline controllers has to be designed.

82

Bibliography

[AGHOO] K. Arnold, J. Gosling and D. Holmes, The Java Programming Language. 3rd

Edition. Addison Wesley 2000.

[Amu] http://www.cs.man.ac.uk/amulet.

[BaI99] F. Balarin, Worst-case analysis of discrete systems. Digest of Technical

Papers of the 1999 IEEE international Conference on CAD, Nov. 1999.

[BC+97] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A.

Sangiovanni-Vincentelli, E. M. Sentovich, K. Suzuki and B. Tabbara,

Hardware-Software Co-design of Embedded System: The POLIS approach.

Kluwer Academie Boston, MA. 1997.

[BC+99] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A.

Sangiovanni-Vincentelli, E. Sentovich and K. Suzuki, Synthesis of Software

Programs for Embedded Control Applications. IEEE Transactions on

Computer-Aided design of Integrated Circuits and Systems. pp834-849 Vol.

18 No. 6, June 1999.

[Ber93] K. van Berkel, Handshake Circuits: an Asynchronous Architecture for VLSI

Programming. Volume 5 of International Series on Parallel Computation.

Cambridge University Press, 1993.

[BM88] S. M. Burns and A. 1. Martin, Syntax-directed translation of concurrent

programs into self-timed circuits. Proceedings of the Fifth MIT Conference on

Advanced Research in VLSI, pages 35-50. MIT Press, 1988.

[BM+97] 1. Bolsens, H. de Man, B. Lin, K. van Rompaey, S. Vercauteren and D.

Verkest, Hardware/Software Co-Design of Digital Telecommunication

Systems. In Proceedings ofIEEE, VOL. 85, NO. 3, Mar. 1997.

83

[Boo94] G. Booch, Object-Oriented Analysis and Design with Applications.

BenjaminlCummings, Redwood City, CA, 1994. Second Edition.

[BryOl] 1. Brynjolfson, Dynamic Clock Management Circuits for Low Power

Applications. M.Eng. Thesis, McGill University, April 2001

[CC+99] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly and L. Todd, Surviving

the SOC Revolution - A Guide to Platform-Dased Design. Kluwer Academie,

1999.

[CG+94] M. Chiodo, P. Giusto, A. Jurecska, H. Hsieh, A. Sangiovanni-Vincentelli and

L. Lavagno, Hardware-Software Codesign of Embedded Systems. IEEE micro

pp. 26-36, 1994.

[Cha84] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous. PhD thesis,

Stanford University, Oct. 1984.

[Cha94] A. Chandrakasan, Low Power Digital CMOS Design. Ph.D. Thesis, U. C.

Berkeley, Berkeley, CA, 1994.

[DRG98] A. Dasdan, D. Ramanathan and R. Gupta, A Timing-Driven Design and

Validation Methodology for Embedded Real-Time Systems. ACM Trans.

Design Automation of Electronic Systems., pages 533-553 Oct. 1998.

[EL+97] S. Edwards, L. Lavagno, E. Lee and A. Sangiovanni-Vincentelli, Design of

Embedded System: FormaI Models, Validation, and Synthesis. Proc. of IEEE

pages 366-390 Vol. 85, No. 3. March 1997.

[GCD92] R. K. Gupta, C. N. Coelho Jr. and G. De Micheli, Synthesis and simulation of

digital systems containing interacting hardware and software components, in

Proc. Of the Design Automation Conf., June 1992.

[GH+95] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. Addison Wesley 1995.

84

[GM93]

[Hau95]

[HB+93]

[HM93]

[KL92]

[LeeOO]

[LeeOl]

[Liu98]

[LS]

[Mes90]

R. Gupta and G. De Michell, Hradware-Software Cosynthesis for Digital

Systems. IEEE Design & Test of Computers. pp. 29-41 Sept. 1993.

S. Hauck, Asynchronous design methodo10gies: an overview. Proceedings of

the IEEE, Vol. 83, pp: 69-93, 1995.

J. Haans, K. van Berkel, A. Peeters and F. Scha1ij, Asynchronous multipliers

as combinational handshake circuits. Proc. IFIP Working Conf. Asynchronous

Design Methods, Manchester, U.K., Mar. 31-Apr. 2, 1993.

K. ten hagen and H. Meyr, Timed and untimed hardware/software

cosimulation: application and efficient implementation, in Proc. of the int.

Workshop on Hardware-Software Codesign, Oct. 1993.

A. Kalavade and E. A. Lee, Hardware/software co-design using Ptolemy - a

case study, in Proc. of the Int. Workshop on hardware-Software Codesign,

Sept. 1992.

E. A. Lee, What's Ahead for Embedded Software? IEEE Computer,

September 2000, pp. 18-26.

E. A. Lee, Overview of the Ptolemy Project. Technical Memorandum

UCB/ERL MO1/11, University of California, Berkeley, March 6, 2001.

J. Liu, Arithmetic and Control Components for an Asynchronous System.

PhD Thesis, Dept. of Computer Science, University of Manchester, 1998.

IS-95 North American Standard - A CDMA Based Digital Celluar Systems.

http://citeseer.nj.nec.com/32841.html

D. Messerschmitt, Synchronization in Digital System Design. IEEE Journal

on Selected Areas in Communications. Vol 8. No. 8. Oct. 1990.

85

[MJ+97]

[Pet]

[Ped96]

[Pee96]

[PM96]

[Pol]

[PPTOO]

[Pto]

[Rab96]

[Row94]

[SB98]

[SGR99]

C. E. Molnar, 1. W. Jones, B. Coates and 1. Lexau, A PIFO ring oscillator

performance experiment. Proc. International Symposium on Advanced

Research in Asynchronous Circuits and Systems, 1997.

http://www.lsi.upc.es/-jordic/petrify/petrify.html.

M. Pedram, Power Minimization in IC Design: Principles and Applications.

ACM trans. on Design automation of Electronic Systems, Vol. 1, pp 3-56,

January 1996.

Ad M. G. Peeters, Single-Rail handshake circuits. Ph. D. thesis, Edinhoven

University of Technology, June 1996.

J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles,

Algorithms, and Application. Prentice-Hall. Inc. 1996.

J. M. Paul, S .N. Peffers and D .E. Thomas, A codesign virtual machine for

hierarchical, balanced hardware/software system modeling. Design

Automation Conference, 2000. Proceedings 2000 , 2000 , Page(s): 390 -395

J. M. Rabaey, Digital Integrated Circuits. Prentice Hall, 1996.

J. Rowson, Hardware/Software co-simulation, in Proc. Of the Design

Automation Conf. 1994, pp.439-440.

S. Sheng and R. Broderson, Low-Power CMOS Wireless Communications ­

A Wideband CDMA System Design. Kluwer Academie Publisher, 1998.

K. Stevens, R. Ginosar and S. Rotem, Relative timing. Proceedings of.

International Symposium on Advanced Research in Asynchronous Circuits

and Systems ASYNC'99, pp. 208-218, 1999.

86

[SP94]

[SS96]

[SS+OO]

[Sut89]

[TAS93]

[TB+97]

[Vit95]

[Wil94]

[ZNZ01]

S. Sutarwala and P. Paulin, Flexible modeling environment for embedded

systems design, in Proc. of the int. workshop on Hardware-Software

Codesign, 1994.

K. Suzuki and A. Sangiovanni-Vincentelli, Efficient software performance

estimation methods for hardware/software codesign. In Proc. Design

Automation Conf., pages 605-610, Jun. 1996.

D. C. Schmidt, M. Stal, H. Robnert and F. Bushmann, Pattern-Oriented

Software Architecture: Patterns for Concurrency and Distributed Objects,

Volume 2. New York, NY: Wiley & Sons. 2000

1. E. Sutherland, Micropipelines. Communications of the ACM, 32(6):720­

738, June 1989.

D. E. Thomas, J. K. Adams and H. Schmitt, A model and methodology for

hardware-software codesign, IEEE Design and Test of Computers, vol. 10 no.

3, pp. 6-15, Sept. 1993.

Y. Taur, D. A. Buchanan, W Chen, D. 1. Frank, K. E. Ismail, S. H. Lo, G. A.

Sai-Halasz, R. G. Viswanathan, H. C. Wann, S. J. Wind and H. Wong, CMOS

Scaling into the Nanometer Regime. Proc. ofIEEE, pp. 486-504 Vol. 85,NoA,

April 1997.

A. J.Viterbi, CDMA: principles of spread spectrum communication. Reading,

Mass.: Addison-Wesley Pub. Co., 1995.245 p.

J. Wilson, Hardware/software selected cycle slution, III Proc. Of the Int.

Workshop on Hardware-Software Codesign, 1994

W. Zhu, R. Nagulescu and Z. Zilic, Using Design Patterns for Fast

Hardware/Software Performance Estimation. IEEE ICT2001 June, 2001.

87

Appendix 1

A. The celis breakdown list of the asynchronous design of the CDMA correlator

CELL INSTANCE DATA
#Master #Instances
wand2_1 192
wand2_2 36
wand2_4 5
wbuf_1 1
wbuf_2 3
wbuf_4 15
wdp_2 11
winv_1 19
winv_2 16
winv_4 39
winvzp_2 47
w1p_2 8
w1rp_2 86
wnand2 1 32
wnand2_2 6
wnand2_4 1
wnand3_1 2
wnand3_2 1
wnor2_1 1
wnor2_2 54
wnor2_4 4
wnor3_1 2
wnor4_1 1
wnor4_2 29
wor2_1 42
wor2_4 2
wor3_1 51
wor4_1 3
wxor2_2 104
Total: #Masters=37 #Instances=861

88

B. The celllist breakdown of the synchronous design.

**

Report :
Design :
Version:
Date

cell
core
2000.05
Wed Jun 20 17:45:31 2001

**

Reference

core_DW01_add_10_0
core_DW01_add_10_1
core_DW01 sub_10 0
counter
p_adder_O
p_adder_1
wdp_2
winv_1
wnor2_1
wxor2 2

Library

wcells
wcells
wcells
wcells

Unit Area

6105.000000
6105.000000
7212.000000
7545.000000

39391.000000
39387.000000

360.000000
67.000000
88.000000

193.000000

Count

1
1
1
1
1
1

22
4
7
2

Total Area

6105.000000
6105.000000
7212.000000
7545.000000

39391.000000
39387.000000

7920.000000
268.000000
616.000000
386.000000

Attributes

h
h
h
h, n
h, n
h, n
n

Total 10 references

**
Report : reference
Design : counter
Version: 2000.05
Date Wed Jun 20 17:50:01 2001
**

114935.000000

Reference Library Unit Area Count Total Area Attributes

counter_DW01 inc 7- 0 1845.000000 1 1845.000000 h
wand2 1 wcells 109.000000 6 654.000000
wdp_2 wcells 360.000000 10 3600.000000 n
winv_1 wcells 67.000000 2 134.000000
wnand2 1 wcells 88.000000 4 352.000000
wnand3 - 1 wcells 109.000000 1 109.000000
wnand4- 1 wcells 130.000000 2 260.000000
wnor2- 1 wcells 88.000000 4 352.000000
wnor3 - 1 wcells 109.000000 1 109.000000
wnor4 1 wcells 130.000000 1 130.000000

Total 10 references

**

7545.000000

Report :
Design :
Version:
Date

cell
counter_DW01 inc 7 0
2000.05
Wed Jun 20 17:56:28 2001

**

Cell Reference Library Area Attributes

U5 winv_1 wcells 67.00
U6 wnor2- 1 wcells 88.00
U7 wnand2 1 wcells 88.00
U8 winv_1 wcells 67.00
U9 wnor2 - 1 wcells 88.00
U10 winv- 1 wcells 67.00

89

Ull wnand3 - 1 wcells 109.00
U12 wxor2 - 2 wcells 193.00
U13 wxor2 - 2 wcells 193.00
U14 wxor2 - 2 wcells 193.00
U15 wxor2 - 2 wcells 193.00
U16 wmux2 - 2 wcells 172.00
U17 wmux2 - 2 wcells 172.00
U18 wnand2 1 wcells 88.00
U19 winv_l wcells 67.00

Total 15 cells

**

1845.00

Report :
Design :
Version:
Date

reference
p_adder_O
2000.05
Wed Jun 20 18:00:19 2001

**

Reference Library Unit Area Count Total Area Attributes

adder_u_O 302.000000 1 302.000000 h
adder_u_l 302.000000 1 302.000000 h
adder_u_2 302.000000 1 302.000000 h
adder_u_3 302.000000 1 302.000000 h
adder_u_4 302.000000 1 302.000000 h
adder_u_5 302.000000 1 302.000000 h
adder_u_6 650.000000 1 650.000000 h
adder_u_7 650.000000 1 650.000000 h
adder_u_8 302.000000 1 302.000000 h
wand2 1 wcells 109.000000 2 218.000000
wdp_2 wcells 360.000000 72 25920.000000 n
winv_l wcells 67.000000 5 335.000000
wnand2 1 wcells 88.000000 54 4752.000000
wnor2_1 wcells 88.000000 54 4752.000000

Total 14 references

**

39391.000000

Report :
Design :
Version:
Date

reference
core_DW01_add_l0 0
2000.05
Wed Jun 20 18:03:29 2001

**

Reference Library Unit Area Count Total Area Attributes

wand2 - 1 wcells 109.000000 1 109.000000
winv_l wcells 67.000000 6 402.000000
wmux2- 2 wcells 172.000000 3 516.000000
wnand2 - 1 wcells 88.000000 23 2024.000000
wnand3 1 wcells 109.000000 1 109.000000
wor2- 1 wcells 109.000000 4 436.000000
wxor2 2 wcells 193.000000 13 2509.000000

Total 7 references

**

6105.000000

Report :
Design :
Version:
Date

reference
adder_u_7
2000.05
Wed Jun 20 18:09:27 2001

**

90

Reference

wnand2_1
wxor2 2

Total 2 references

Library

wcells
wcells

Unit Area

88.000000
193.000000

Count

3
2

Total Area

264.000000
386.000000

650.000000

Attributes

**

Report :
Design :
Version:
Date

reference
adder_u_1
2000.05
Wed Jun 20 18:11:23 2001

**

Reference

Total 2 references

Library

wcells
wcells

Unit Area

109.000000
193.000000

Count

1
1

Total Area

109.000000
193.000000

302.000000

Attributes

**

Report :
Design :
Version:
Date

reference
core_DW01_add_10 1
2000.05
Wed Jun 20 18:13:40 2001

**

Reference Library Unit Area Count Total Area Attributes

wand2_1 wcells 109.000000 1 109.000000
winv_1 wcells 67.000000 6 402.000000
wrnux2_2 wcells 172.000000 3 516.000000
wnand2_1 wcells 88.000000 23 2024.000000
wnand3 1 wcells 109.000000 1 109.000000
wor2 - 1 wcells 109.000000 4 436.000000
wxor2 2 wcells 193.000000 13 2509.000000

Total 7 references

**

6105.000000

Report :
Design :
Version:
Date

reference
core_DW01 sub_10 0
2000.05
Wed Jun 20 18:15:38 2001

**

Reference Library Unit Area Count Total Area Attributes

wand2 - 1 wcells 109.000000 3 327.000000
winv_1 wcells 67.000000 7 469.000000
wrnux2- 2 wcells 172.000000 3 516.000000
wnand2 1 wcells 88.000000 23 2024.000000
wor2 - 1 wcells 109.000000 9 981.000000
wxor2 2 wcells 193.000000 15 2895.000000

Total 6 references 7212.000000

91

