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Abstract

This thesis considers the application of the principles of distributed signal detection
to the uplink of a mobile communication unit engaged in soft handoff, when all base
stations involved are equipped with multiple receiving antennas. The system consists
of a local detector at each base station and a fusion center at the Mobile Switch-
ing Center (MSC). Optimum decision rules are derived for systemns without channel
coding, as well as for systems using channel coding, over a quasi-static spatially un-
correlated Rayleigh fading channel. Two different cases are considered. In the first
case, accurate estimates of the base station channel states are available at the MSC,
while in the second case only the statistics of the channels are known. For both cases,
when the system is not using channel coding the optimum local decision rules are
likelihood ratio quantizers for which the defining thresholds are optimized numeri-
cally with respect to the probability of bit error at the output of the MSC. With
channel coding it is shown that the complexity of either the implementation or the
optimization of the optimum decision rules increases exponentially with the frame
size. Hence, for coded systems, sub-optimum alternatives are proposed where the
local decision rules are likelihood ratio quantizers. The performances of these systems
are investigated. For the uncoded systems the probability of bit error is evaluated
numerically, and for coded systems the probability of bit error and frame error are
estimated through computer simulations. Finally, it is demonstrated that by carefully
selecting the thresholds defining the local decision rules, 8 quantization levels are suf-
ficient to make the performances almost identical to the performances of an optimum
centralized system, implementing at the MSC a maximum likelihood test using the

actual signals received at the involved base stations.
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Sommaire

Le sujet de cette these concerne 'application des principes de détection décentralisée
au lien montant d’une unité de communication mobile engagée dans un transfert
intercellulaire doux (“soft handoff”), lorsque les stations de base sont équipées de
plusieurs antennes de réception. Le systeme est formé d’un détecteur local a chaque
station de base et d’un centre de fusion au Centre de Commutation Mobile (CCM).
Les régles optimales de décision sont dérivées pour les systémes sans codage de canal
de méme que pour les systémes qui utilisent le codage de canal pour des canaux a
évanouissement quasi-statiques de type Rayleigh, non corrélés spatialement. Deux cas
différents sont considérés. Dans le premier cas, il est présumé que l'atténuation sur
les différents canaux est connue au CCM tandis que, dans le deuxiéme cas, seulement
les statistiques de ces canaux sont connues. Dans ces deux cas, lorsque le systeme
n’utilise pas de codage de canal, les régles locales optimales de décision sont basées sur
une quantification des rapports de vraisemblance. Les différents seuils correspondant
A cette quantification sont ajustés de fagon & minimiser la probabilité d’erreur a la
sortie du CCM. Lorsque le systeme utilise le codage de canal, il est démontré que,
dans les deux cas, la complexité des regles de décision augmente exponentiellement
avec la longueur des trames d’information. Par conséquent, des alternatives sous
optimales qui effectuent, & chaque station de base, une quantification des rapports
de vraisemblance sont donc proposées pour les systemes codés. Les performances de
ces systémes sont étudiées. La probabilité d’erreur par bit des systemes sans aucun
codage de canal est évaluée numériquement tandis que la probabilité d’erreur par bit
et par trame des systémes qui utilisent le codage de canal est estimée en utilisant
des simulations par ordinateur. Finalement, il est démontré que lorsque les seuils
sont choisis avec attention, 8 niveaux de quantification sont suffisants pour obtenir
des performances presque identiques aux performances obtenues avec un systeme op-
timal de détection centralisée qui applique au CCM une méthode de maximum de

vraisemblance pour les signaux regus aux stations de base impliquées.
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Chapter 1
Introduction

Third generation wireless systems are based on Code Division Multiple Access (CDMA)
techniques allowing the implementation of soft handoff at the cell boundaries. During
soft handoff, the uplink consists of a mobile unit communicating simultaneously with
multiple base stations that are often separated by a few kilometers. In current svs-
tems, all base stations transmit through wireline their respective decoded data frame
to the mobile switching center (MSC) where the best frame is selected based on a
reliability criterion[1]. This selection diversity technique reduces the impairments due
to shadowing near the cell boundaries. On the other hand, selection diversity does not
take advantage of the information contained in the signals received by base stations
that are not selected. A better technique would be to perform maximum ratio combin-
ing [2] of the actual signals received by the different base stations and then to channel
decode the output of the combiner, providing protection against multipath fading as
well as shadowing. The feasibility of such a system, however, is questionable due to
the required bandwidth between the base stations and the MSC where combining is
performed. This work proposes a bandwidth efficient solution which is a compromise
between these two alternatives and makes use of the principles of distributed signal
detection.

Distributed signal detection is a generalization of classical detection theory to sys-
tems where the observations are first processed at distributed sensors before sending
the outcome of the processing to a fusion center where a final decision is made. A
good introduction to distributed detection can be found in [3], where an analysis

employing a Bayesian framework is included. For the past several ycars, distributed
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detection has received increasing interest in many application areas, including diver-
sity combining for wireless communication. The first of such studies is reported in
(4] where the optimum hard decision combiner is derived and the performances of the
combiner are evaluated for systems using binary non-coherent Frequency Shift Keying
(FSK) modulation over a Rayleigh fading channel. The performances of the optiinum
hard decision combiner have been also investigated for other system configurations
and channel models. For example in [5] and [6], the performances of the hard decision
combiner are analyzed for DS-CDMA in a shadowed Rician fading land mobile satel-
lite channel using Binary Phase Shift Keying (BPSK) and Differential Phase Shift
Keying (DPSK) modulation respectively. In [7] [8], [9] and [10], an adaptive imple-
mentation of the optimum hard decision combiner is derived and the performances
of the combiner are evaluated for a three base stations macroscopic diversity scheme.
These studies show that the application of distributed detection with hard decisions
at the local detectors can be used to reduce the probability of bit error although the
performance is still far from the performance of the optimum centralized detection
scheme.

In order to close the gap between the performance of the optimum centralized
detection scheme and the performance of the distributed detection scheme, the local
detectors must provide soft decisions to the fusion center. The first work that studied
distributed detection with soft decisions at the local detectors in the context of wireless
communication is reported in [11]. In this paper, the optimum design of a soft decision
distributed detection system is studied for diversity reception with non-coherent FSK
over a Rayleigh fading channel. It is shown that soft decision distributed detection
with a few bits of resolution provides performances close to the optimum centralized
detection scheme. Then, in [12] and [13], the application of distributed detection with
soft decisions at the local detectors is considered for the detection of data from multiple
users using BPSK modulation in the presence of interference and additive noise. The
optimum fusion rule and optimum local detector decision rules are derived for a jointly
optimum decision criterion and an individually optimum decision criterion. In [14]
and [15], the subjects of distributed detection and distributed multiuser detection
are revisited and more practical sub-optimuimn schemes are presented where Minimum
Mean Square Error (MMSE) Log-Likelihood Ratio (LLR) quantizers arc used by the
local detectors.

The problem of distributed detection with channel coding is addressed in [16] for
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the uplink when mobiles using BPSK modulation are in soft handoff with three base
stations. The paper proposes different approaches based on hard decision combining
prior to de-interleaving/channel decoding as well as a hybrid combining technique.
In the hybrid combining technique, the combining unit is located at the base station
with the maximum average carrier power allowing direct observations from this base
station, as well as hard decisions from the remote base stations, to be used in the
combining procedure.

Motivated by these results, we study in this work the application of soft deci-
sion distributed detection to handoff macrodiversity in cellular communication sys-
tems when the channel fading is spatially uncorrelated, quasi-static and Rayleigh
distributed. We first consider uncoded communication systems using BPSK mod-
ulation and generalize results from [11] for handoff macrodiversity where each base
station (local detector) is equipped with multiple antennas. A global optimization al-
gorithm is proposed to optimize the thresholds defining the likelihood ratio quantizers
used at the local detectors, as opposed to the local optimization algorithms proposed
in [11][12][13][14][15]. Furthermore, we consider coded communication systems using
BPSK modulation, where as opposed to [16] we assume soft decisions are made at
the local detectors and the channel fading may or may not be known at the MSC. In
addition, we generalize the MMSE-LLR quantizer proposed in [14] and [15] to coded
communication systems using multiple receiving antennas at each local detector.

This thesis is structured as follow. In chapter II, the optimum distributed de-
tection scheme for handoff macrodiversity is derived assuming an uncoded commu-
nication system using BPSK modulation, where each base station is equipped with
multiple receiving antennas. We refer to this scheme as the Soft Handoff Distributed
Detection (SHDD) scheme. Two cases are considered. In the first case, the chaunel
state is assumed to change slowly enough such that estimates' with infinite precision
can be transmitted by the base stations to the MSC while, in the second case, the
channel state information (CSI) is not available at the MSC. For almost all system
configurations that are considered, the results show that the optimum local detector
decision rule is a likelihood ratio quantizer, which is defined by a set of thresholds.
These thresholds must be adjusted in order to minimize the probability of error at

the output of the MSC, which is a nonlinear non-convex function of these thresh-

1The CSI estimates are assumed to be accurate
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olds. Since local optimization techniques only provide locally optimum solutions,
we propose to use a global optimization technique called Adaptive Simulated An-
nealing (ASA) [17] to perform the required optimization. The performances of the
SHDD schemes are investigated in term of Bit Error Rate (BER) and compared to
the performances of the Optimum Centralized (OC) detector and Conventional Hand-
off Macrodiversity (CHM). Analytical expressions are derived in Appendix B for the
BER of the SHDD schemes allowing the BER to be evaluated numerically. In chapter
III, channel coding is included in the design of the SHDD scheme. The optimum
distributed detection scheme for handoff macrodiversity is derived assuming a coded
communication system using BPSK modulation, where each base station is equipped
with multiple receiving antennas. Since the complexity of the optimum decision rules
grows exponentially with the frame size, in this case sub-optimum alternatives are
proposed where the local decision rules are LLR quantizers. The performances of the
proposed sub-optimum Coded Soft Handoff Distributed Detection (CSHDD) schemes
are investigated in term of BER and Frame Error Rate (FER), and compared to
the performances of the OC decoder and CHM. As opposed to the uncoded case, a
computer simulator was constructed in order to estimate the BER and FER. Finally,
chapter IV presents concluding remarks.

It is important to mention that a compact disk is included with this thesis and
contains all software necessary to reproduce the results presented in Chapter 2 and
Chapter 3. More precisely, the compact disk contains the software used to evaluate
numerically the BER of the SHDD schemes as well as the software used to optimize
the LLR quantizer thresholds of the CSHDD schemes, where both softwares are writ-
ten in Matlab programming language. Furthermore, the compact disk also contains
the software simulator, written in C programming language, used to estimate the per-
formances of the CSHDD and reference schemes. In addition, the compact disk also
includes a software manual discussing the implementation of the different softwares
and providing instructions for the utilization of these softwares.

In the development and performance evaluation of the designed handoff macro-
diversity schemes based on distributed detection, the following novel and original

contributions were made

1. Application of the principles of soft decision distributed detection to handoff

macrodiversity for uncoded communication systems using BPSIK modulation,
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where each base station is equipped with multiple receiving antennas and the

channel is a spatially uncorrelated quasi-static Rayleigh fading channel.

2. Extension of the principles of soft decision distributed detection in order to take

channel coding into account in the design of the handoff macrodiversity schemes.

3. The utilization of a global optimization technique called Adaptive Simulated
Annealing in the optimization of the designed distributed detection schemes, as

opposed to local optimization techniques usually used.

4. Evaluation of the performances of the designed handoff macrodiversity schemes

for various system configurations.



Chapter 2

SHDD scheme for uncoded

communication systems

In this chapter we study the application of distributed detection, with soft decisions
at the local detectors, to the uplink when a mobile unit is in soft handoft. In section
2.1, the SHDD scheme is presented. In section 2.2, the optimum SHDD scheme is
derived for BPSK modulation for the case when the channel state is known at the
MSC and also when it is not known. In section 2.3, the optimization of the local
detector decision rules is considered using the ASA global optimization technique.
Finally, in section 2.4, the performances of the designed SHDD schemes are evaluated

numerically for a quasi-static spatially-uncorrelated Rayleigh fading channel.

2.1 System model

We consider the uplink of a mobile unit in soft handoff with Ngg base stations, each
equipped with Ny antennas, as illustrated in Fig. 2.1. At the mobile unit, prior to
transmission the information bit B is sent to a symbol mapper to generate the BPSK
symbol S € {—1,1}. The symbol is then transmitted to the Npg base stations involved
in the handoff process. At the receiving end, all base stations make individually a
soft decision on the transmitted bit. For instance, the kth base station makes a soft
decision Uy € {0,...,L — 1} on the transmitted bit B based on the received signal
vector Ry = [Rk,1,---, Rk ng|T- The decisions contained in the local decision vector

U = [Uy,...,Un,s|7 are sent from the involved base stations to the MSC where a
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Fig. 2.1 Uncoded Soft Handoff Distributed Detection system model

final decision Uy is made on the transmitted information bit B.
The signal received at the nth antenna of the kth base station is modeled as follows

Rin = HinV ES + Nip. (2.1)

The parameters N, model white Gaussian noise as independent zero mean circu-
lar complex Gaussian random variables with variance Ny/2 per real and imaginary
component. The parameters H, model spatially-uncorrelated Rayleigh fading as
independent zero mean circular complex Gaussian random variables with variance
0.5 per real and imaginary component. The parameters E; model the average re-
ceived energy per antenna at the different base stations and are dependent on the
position of the mobile unit in the cellular network as well as power control. It is as-
sumed that each base station provides to the MSC an accurate estimate of the average
signal-to-noise ratio (SNR) received at each individual antenna, which is defined for
the kth base station as SNRy = % On the other hand, the channel state vector
H = [Hy,...,Hy,,|T, where Hy = [Hy 1, ..., Hy ng], may or may not be available at
the MSC although Hy is perfectly known at the kth base station.

Since almost all third generation cellular systems employ CDMA it is important
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to mention that the SHDD scheme can be applied to CDMA. In fact, considering the

received signal in a CDMA system is modeled as follows
Rk,n = Hk,n\/ EkSa + Nk,n (22)

where a is the spreading code, the SHDD scheme can be applied as presented in
this thesis by assuming the kth base station local detector observes the output of a

correlator to Ry ,, which can be modeled by expression (2.1).

2.2 Optimum Distributed Detection

In this section, we consider the optimum SHDD scheme generalizing the results from
[11] for the system presented in the previous section. As presented in the previous
section, the SHDD scheme consists of Ngg local detectors (base stations) and one
fusion center (MSC) where the final decision is made. Hence, the objective in op-
timizing this type of scheme is to obtain the set of local decision rules used at the
different base stations, denoted by v« kK = 1,..., Ngs, and the fusion rule used at the
MSC, denoted by 7y, that jointly minimize the optimality criterion. The considered
optimality criterion is the average probability of bit error at the output of the MSC

which can be defined as follows
P, = / Pb|th(h)dh (2.3)
h

where Py, is the probability of bit error given the channel state vector H = h and
fu(h) is the Probability Density Function (PDF) of H. Let P(Uy = uy | h.u) denote
the probability that the final decision U, equals uy given the local decision vector
U = u and the channel state vectcor H = h, P(U = u | h, B = b) denote the
probability that the local decision vector U equals u given the bit B = b and the

channel state vector H = h. The conditional probability of bit error Py, cquals
1
Poyn = §;P(U0 =1|hu)P(U=u|h,B=0)

1 ¢
+5 XU:P(UO =0|h,u)P(U=u|h,B=1). (24)
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Furthermore, since P(Uy = 0] h,u) =1— P(Uy =1 | h,u), the conditional probabil-

ity of bit error (2.4) can be reformulated as follows

1
Py = §;P(UO=1|h,U)P(UZUIh,B=0)

1 1
+5 - 5zu:p(UO =1|hu)P(U=u|h,B=1)
1 1
= §+§;P(U0:1|h,u)[P(U:u|h,B:O)—P(U=u|h,B: 1)]
(2.5)
which is a more appropriate form for the optimization of the decision rules.
It is important to mention that, since the decision rules vy = {70, 71, - .., Ynps } have

a common optimality criterion, they are interdependent on each others and cannot
be selected individually. Hence, we consider that the decision rules are all selected at
the MSC and that the local decision rules are updated at the base stations when the
average SNR or the channel state varies, depending on the information available at
the MSC and other assumptions as will be discussed next. In fact, it will be shown
that the optimum decision rules are likelihood ratio quantizers such that the MSC
only needs to transmit through the fixed network new threshold values to the base
stations in order to update the local decision rules. As mentioned in the previous
section, the channel state vector H = [Hy,...,Hy,,]7 may or may not be available
at the MSC although the channel state vector Hy is perfectly known at the Ath base
station. Since both cases provide different decision rules, the derivation is separated

in two parts treating separately both cases.

2.2.1 Known channel state information at the fusion center

In this section, it is assumed that the channel state is varying slowly cnough at cach
base station such that accurate estimates can be transmitted to the MSC, where the
decision rules are optimized and the final decision U is made. Therefore, since the
channel state vector H is known at the MSC, the channel state information is available
to the fusion center such that the optimum fusion rule should take advantage of this
information and be a function of the channel state vector H. In addition, since the

decision rules are optimized at the MSC, it is also possible for the local decision rules
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to be functions of the channel state vector H. This requires the MSC to update
the local decision rules used at the base stations every time the channel state varies.
The optimum decision rules are therefore functions of the channel state vector H and
minimize, given H = h, the conditional probability of error (2.5).

It can be argued that, depending on the rate at which the channel state varies, such
a scheme may require more bandwidth from the fixed network than the OC scheme (see
appendix D) contradicting our original goal of designing bandwidth efficient handoff
macrodiversity schemes. However, it is still important to consider such a scheme since
its probability of bit error represents a lower bound to the probability of bit error of
any possible SHDD scheme. A bandwidth efficient alternative to the optimum scheme
will be to limit the MSC to update the local decision rules only when the average SNR
varies at any base station. Hence, as opposed to the optimum scheme, the kth base
station local decision rule is not a function of the channel state vector H anymore.
However, since H; is perfectly known at the kth base station, it is possible for the
kth base station local decision rule to be a function of the channel state vector Hy.

In this section, we are considering the optimum scheme and the bandwidth efficient
scheme. We first derive a fusion rule which is optimum in the sense that for fixed local
decision rules at the base stations, it provides the minimum average probability of bit
error at the output of the fusion center. Then, we derive, for the optimum schemne
and bandwidth efficient scheme, the kth base station decision rule which is optimum
in the sense that for a fixed fusion rule and fixed local decision rules at the remaining
base stations, it provides the minimum average probability of bit error at the output

of the fusion center.

A. Optimum fusion rule

At the MSC, the only information available to the fusion rule to make a final decision
U, on the transmitted bit B is the local decision vector U = [U), ..., Un,,|T and the
channel state vector H. Furthermore, since the optimality criterion is the probability
of bit error which is a Bayesian criterion, it can be assumed that the fusion rule is
deterministic. In fact, it is shown in [19] that even under a Neyman-Pearson criterion,
a randomized fusion rule is never optimum, when the local detector likelihood ratios
contain no point mass. Hence, when the channel state vector H is equal to h, the

fusion rule should partition the observation set Z containing all possible realizations
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of U into the mutually exclusive sets Zy(h) and Z,(h). The conditional probability
P(Uy = 1| h,u) in (2.5) can thus be expressed as follows

1 if Z(h
PUy=1|hu)=1-PUy=0]|h,u) = hu e 1(h) (2.6)
0 if u € Zo(h)
and the conditional probability of bit error (2.5) can be rewritten as follows
1 1
— — P = = — = = . .
Pyn = 5+ QUE;h){ (U=u|hB=0)-P(U=u|hB=1)]. (27)

From expression (2.7), it is clear that the realizations of U that make the summand
negative must be included in Z;(h) and the realizations of U that make the summand
positive must be included in Z(h) in order to minimize the probability of bit error.
However, the realizations of U that make the summand equal to 0 can be included
in either set without affecting the performances of the system. Using these facts, the

optimum fusion rule can be formulated as follows

Up=1
PU=u|hB=1) >
% (u, h) = : 1
Mowh) = s uThB=0) < (2.8)
Uy=20
or equivalently in the maximum a-posterior form
U() = 1
>
P(B=1|h,U=u) - P(B=0|h,U=nu) (2.9)
<
Up=0

since P(B = 1) = P(B = 0). Then, considering the local decisions contained in U =
[Ul,..,,UNBS]T are conditionally independent since no communication is assumed

between the base stations, the likelihood ratio A(l?g(u, h) simplifies to

Nes P(Uk:uk|h,B=1)

(©) =
Matw ) = |1 P(Up=u | h,B=0)

k=1

(2.10)
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It is interesting to note that even if the channel fading is not spatially uncorrelated,
the decision rule stays valid. In addition, the derived fusion rule is dependent on the
local decision rules and is optimum, regardless of the rate at which the local decision

rules are updated at the base stations.

B. Optimum local decision rules assuming the MSC updates the local de-

cision rules when the channel state varies at any base station

Considering that, in the optimum scheme, the MSC updates the decision rules used by
the local detectors when the channel state varies, the information available to the local
detector of the kth base station to make the decision Uy is the received signal vector
R and the channel state vector H. Assuming first all base stations are making a
hard decision, the local decision rule 7, (rg, h), which determines the value of the local
decision Uy given Ry = ry and H = h, should therefore partition the observation set
RF containing all possible realizations of Ry into the mutually exclusive sets R (h)
and RE(h). In order to determine which realizations of Ry should be included in
these sets, it is necessary to expand the conditional probability of bit error (2.5) as a
function of ry.

Before expanding the conditional probability of bit error (2.5) as a function of ry,

it is advantageous to first expand expression (2.5) as follows

Pyn
= l+12P(U =1|h,U=u*)[P(U=u"|hB=0)-P(U=u"|hB=1)]
9 2 - 0 y ) ’
1 )
+§ZP(U0 =1|h,U=u*")[P(U=u*"|h,B=0)-P(U=u*"|h,B=1)],(211)
uk
where uf = [uy,..., Uk_1, Uks1, .- Ungs|Ts UFY = [ug, oo ukot, 1 g, - U] T
and u*® = [uy,..., %-1,0,%41,---,UNys]T. Then, given that P(U = u*® | h,B =

b) = P(UF = u* | h, B =b) — P(U =u*" | h, B =), the conditional probability of
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bit error (2.11) can be written as
11 k0 k k k k
Py = §+§ZP(UO:1[h,U=u ) [P(UF =u* |h,B=0)- P(U*=1u"|h,B=1)]
uk

1 .
—§ZP(U0:1|h,U:u’“°) [P(U=u*"|h,B=0)-P(U=u*|h,B=1)]

uk

1
+§§ P{Uy=1|h,U=u")[P(U=1u" |h,B=0)- P(U=u*"|h B=1)]
k

= Ai(h)+> Bi(u*,h) [P(U=v*" |h,B=0)-P(U=u*" |h,B=1)], (212

where U¥ = [Uy, ..., U_1, Uks1, - . ., Unys) 7,

11 . .
Ae(h) = §+§§ P({Uy=1|h,U=u")[P(U*=u*|h,B=0)-P(U"=u*|h B=1)]
uk

(2.13)

and
k 1 k1 1 k0
Bk(u,h)ziP(U0:1|h,U=u )—§P(U0:1|h,U:u ). (2.14)

Let fr, (rx | hg, B = b) denote the joint PDF of the received signals Ry y, ..., Ri g
given the bit B = b and the channel state vector Hy = hy. Since no communication is
assumed between the base stations, the local decisions are conditionally independent
and the conditional probability P(U = u*! | h,B = b) in equation (2.12) can be

expanded as a function of ry as follows

P(U=u""|h,B=0)
P(U*=u*|h,B=b)P(Uy=1|h,B=0)
= P(U’“:u"|h,B:b)/ P(Uy=1|h,re, B=10)fr,(rs | h, B = b)dr,

Tk

= P(Uk = uk I h,B = b)/ P(Uk =1 | h,l‘k)ka_(I‘k- | hk,B = I))(il‘k, (215)

ry

where P(U, = 1 | h,ri, B = b) = P(Ux = 1 | h,1ry), since the local decision Uy
is specified by the deterministic decision rule x(ry, h) given Ry = ry and H = h.
and fg, (ry | h,B = b) = fr,(rx | hy, B = 1), since Ry is independent of H* =
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[Hy,...,Hi_1,His1, ..., Hygs]T. The conditional probability of bit error (2.12) can

therefore be expanded as a function of ry using (2.15) as follows
Pb]h = Ak(h) + ZBk(uk, h) X
uk

I:P(Uk:uk|h,B=0)/ P(Uk: 1|h,l‘k)ka(I‘k | hk,BZO)dI‘k

ry

—P(U*=u*|h,B= 1)/

ry

P(Ux = 1| hyr) fr, (e | B, B = 1>m]

= Ak(h)+/ P(Uk:1|h,rk)x

" Bi(u*,h) [P(U’“ —u* | h, B = 0)fr, (s | by, B = 0)
uk
_P(U*=u* | h, B =1)fg, (rx | hg, B = 1)]drk(2.16)

Since the local decision Uy is specified by the deterministic decision rule ~(ry, h)
given Ry = ry and H = h, the conditional probability P(Uy = 1| h,ry) in (2.16) can

thus be expressed as follows

1 if rp, € R(h)

2.17
0 if 1, € RE(D) (2:17)

P(Uk:1|hark):1_P(Uk:0|h’rk):{
and the conditional probability of bit error (2.16) can be rewritten as follows

Pyn = Ak(h)+/

Jr€RE(h)

[ka(rk | he, B=0)>_ Bi(u*,h)P(U* =u* | h, B =0)

—fr(r | g, B=1) > Bi(u*,h)P(U* = u* | h, B = 1) dry.
uk

(2.18)

From expression (2.18), it can be concluded that, in order to minimize the prob-
ability of bit error, the realizations of Ry that make the integrand negative must be

included in R¥(h). The optimum local decision rule for the kth base station can
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therefore be formulated as follows

Uy, =1
(k) 2 ‘
mp AL o(rk, hy) — bi - 0 (2.19)
Uc=0
where fe (0% | b, B = 1)
AB) (g hy) = (RelTk L Dk 27 = 2) 2.20
1,0( k k) ka(rk | hk,B — O) ( )
mg = Y_ Bi(u*,h)P(U* =u* | h, B =1) (2.21)
uk
and
bp =Y Bi(u*,h)P(U* =u* | h,B =0) (2.22)
uk

Since the coefficients my and by are independent of r; but vary with h, it can be seen
on Fig. 2.2 that, for a given h, the optimum decision rule at the kth base station is a
likelihood ratio threshold test, with the exception of the case when the local decision
Uy is discarded by the fusion rule.

It is important to mention that the value assigned to Uy only identifies the inter-
val, delimited by the threshold, in which the likelihood ratio A(llfg(rk, h,) appears. The
mapping can therefore be permuted as long as the same change is made in the fusion
rule. If the local decision rules are made nondecreasing functions of the likelihood
ratios by permuting the mapping when necessary, it implies that H,Icvjls P(Uy = uy |
h, B =1)/P(Uy = ux | h, B = 0) is a nondecreasing function of u [20]. Consequently,
the fusion rule is a nondecreasing function of u. The converse is also true, when the
fusion rule is a nondecreasing function of u, all local decision rules are nondecreas-
ing functions of the likelihood ratios since Bi(u*, h) > 0 such that m, and by are
always larger than 0 (see Fig. 2.2). Therefore, assuming that the fusion rule is a

nondecreasing function, the optimum local decision rule for the kth base station can
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be formulated as follows

U,=1
k ko ik
®(p h > Y Bi(ut,h)P(U* =u* | h,B=0)

Ueg=0

where the threshold #;(h) is a function of h and must therefore be updated as the
channel state varies. Furthermore, the threshold ¢ (h) is dependent on the fusion rule
and the other local decision rules such that expression (2.23) is optimal only if the

other decision rules are optimal.

Uk=0 . Uk=1 Uk=0
'rrLkA(llfg(rk, h\k) — bk /
I ' "
f - F
0 ‘ 1'\(1‘53(1‘;;, hk) 0 1\5{3(1} hk)

/ mk.;\ﬁfg(rk, hy) — b
2) b)
\ mkl\(llfg(l‘k: hk) = b /
I

0 AL (e hy) 0

—_—

) ‘\(llfg(rkw hk)
mkx’\(l,g(l‘k, hy) = by

¢) d)
Fig. 2.2 Graphical representation of the kth base station local decision
rule: a) mg > 0 and b, > 0, b) my < 0 and by > 0, ¢) mg > 0 and b <0,
d) mp <0and by <0

These results can be extended to the case when local detectors are making soft
decisions. In fact, in [20] it is proved that the local decision rules, for a distributed
detection scheme using soft decisions, are deterministic monotone likelihood ratio
threshold tests, as long as the observations made at the distributed sensors are con-

ditionally independent. Using this result, the optimum local decision rule at the kth
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base station can be generalized, in a logarithmic form, as follows
Up = ug if tk,uk(h) < \Il(l’fg(rk, hk) < tk,uk+1(h) (224)

where
T (r, hy) = In (A(l'f(?(rk, hk)) (2.25)

givenug, =0,...,L—1,k=1,...,Npg, tyo(h) = —oo and t; ;,(h) = co. The local de-
cision rule at the kth base station is therefore defined by the L —1 thresholds contained
in the vector tx(h) = [tx1(h), ..., tk1—1(h)] and partitioning the Log-Likelihood Ratio
(LLR) @{f)(r, hy).

It is important to mention that the values of these thresholds cannot be determined
analytically due to the interdependence of these thresholds and other local detector
thresholds caused by the common optimality criterion. The set of thresholds contained
in the vector t(h) = [t;(h),...,tn,s(h)]T must therefore be optimized simultaneously
using a numerical optimization algorithm in order to determine their optimum values.
Since the channel state is known at the MSC where the numerical optimization takes
place and new thresholds are transmitted to the base stations every-time the channel
state varies, it is obvious that, in order to minimize the probability of bit error,
the cost function J(t) used for the threshold optimization, given H = h, is Pyn(t(h))
representing the conditional probability of bit error (2.5) as a function of the thresholds
in t(h). The optimization of the local detector thresholds is treated in more details

in section 2.3 and an analytical expression is derived for Py,(t(h)) in Appendix B.

C. Optimum local decision rules assuming the MSC updates the local de-

cision rules when the average SNR varies at any base station

Considering that, in the bandwidth efficient scheme, the MSC only updates the deci-
sion rules used by the local detectors when the average SNR varies at any base station,
the information available to the local detector of the kth base station to make its de-
cision is the received signal vector Ry and the channel state vector Hy. Assuming
first all base stations are making a hard decision, the local decision rule ;(rg, hg),
which determine the value of the local decision Uy given Ry = ry and Hy = hy,
should therefore partition the observation set R¥ containing all possible realizations

of Ry into the mutually exclusive sets R¥(hy) and Rf(hi). In order to determine
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which realizations of Ry should be included in these sets, it is necessary to expand as
a function of r; the probability of bit error conditioned on the channel state vector

H, = h;, which can be defined as follows

Py, = /k Pyn fu (h*|hg)dh* = /k Pyh fur (h*)dh*, (2.26)
h* h*

where Py is defined in expression (2.5) and fus(h*|hy) = fu«(h*) since H* =
[Hi,...,Hig_1, Hepo, ..., Hyg, )T is independent of H. In the derivation of the kth
base station local decision rule of the optimum scheme, we already expanded the
conditional probability of bit error (2.5) as a function of ry in (2.16). Hence, by sub-
stituting (2.16) in (2.26), the conditional probability of bit error Py, can therefore

be expanded as a function of ry as follows

P = [ fe@®Amant + [ fu@([ PO=11h5) x
hk h*

Ty

S Bi(u,h) [P(U’c =u* | h, B =0)fg,(rx | he, B = 0)
uk
_P(U* = u* | h, B =1)fr, (rs | h, B = 1)]drk)dh"‘,(2.27)

where Ax(h) and By (u*, h) are defined in (2.13) and (2.14) respectively. However. as
opposed to the optimum scheme, the kth base station local decision of the bandwidth
efficient scheme is independent of H* such that P(Uy = ux | h,ry) = P(Up = uy |
hi,r;) and P(U¥ = u* | h,B = b) = P(UF = u* | h*, B = ). The conditional
probability of bit error (2.27) can therefore be simplified as follows

Py,
= Ak(hk)+/ P(Up = 1| hg, i) x

T

fHk(hk)(Z Be(u*, h) [P(Uk — u* | h¥, B = 0)fr, (rx | hy, B = 0)
h* k

_P(U* = u* | h*, B = 1) fg, (rs | hy, B = 1)]drk)dhk,(2.28)
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where

R 1 1 )
Aelhy) = 5+5 hkfm(hk)ZP(Uo=1lh,U=uk°)><

uk

[P(Uk = u* | h*, B = 0) — P(U* = u* | h¥, B = 1)|dh*. (2.29)

Since the local decision Uy is specified by the deterministic decision rule v (rg, hy)
given Ry = ry and Hy = hy, the conditional probability P(Ux = uy | hi,rg) in (2.28)

can thus be expressed as follows

1 if ry € le(hk)

PU.=1|hg,r.) =1—P(Uy =0 | hg,re) =
(U =11 he, ) (U =01 by re) {OifrkeRﬁ(hk)

and the conditional probability of bit error (2.28) can be rewritten as follows

Py,

= Ak(hk)+/
r€RK (hy)

fr, (te | by, B =0) z/ frx (W) B (u*, h) P(U* = u* | h* B = 0)dh*
u* ht

—fr.(rx | hg, B=1) Z/hk Fre (h%) Bi(u*, h) P(U* = u* | h*, B = 1)dh* | dr;.(2.31)
uk

From expression (2.31), it can be concluded that, in order to minimize the condi-
tional probability of bit error, the realizations of Ry that make the integrand negative
must be included in R¥(h,). Similarly to the optimum scheme, the optimum local
decision rule of the bandwidth efficient scheme for the kth base station can therefore

be formulated as follows
U.=1

mxA{ (rk, hy) — by 0 (2.32)

ANV

Ue=0
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where A (rk, h;) is defined in (2.20). However, as opposed to the optimum scheme,

mi =Y k fae (%) By (u¥, h) P(U* = u* | b*, B = 1)dh* (2.33)
r vh*

and

be = Z fur(8%) By(u®, h) P(U* = u* | b*, B = 0)dh*. (2.34)

The coefficients my and by are now independent of h* and ry, although they are still
functions of h,. Hence, as shown in Fig. 2.2, for a given h; the optimum decision
rule at the kth base station is a likelihood ratio threshold test, where the threshold is

a function of h; and equals

Y ur Jo fur (h¥) B (u¥, h)P(U* = u* | h¥, B = 0)dh*
>uk Jux fre(h*)Bp(u*, h)P(Uk = u* | h¥, B = 1)dh*

te(he) = (2.35)
The threshold t;(hg) is also dependent on the fusion rule and the other local deci-
sion rules such that expression (2.35) is optimal only if the other decision rules are
optimal. However, since the other decision rules are not known a priori, expression
(2.35) cannot be used directly to determine the optimum threshold value. All base
stations thresholds must be optimized simultaneously using a numerical optimization
algorithm in order to determine their optimum values. Unfortunately, since the MSC
updates the local decision rules only when the average SNR varies, it makes the opti-
mization very difficult, since the threshold used by kth base station decision rule does
not appear as a scalar anymore but as a function of hi. It is important to mention
that for the optimum scheme we do not have this problem since the thresholds are
optimized for a given h, every-time the channel state varies.

Therefore, as a sub-optimum alternative, we propose that the thresholds be in-
dependent of the channel state vector Hy. Assuming soft decisions are made at the
local detectors, the local decision rule at the kth base station can be expressed, in a

logarithmic form, as follows
Up = we if trny < 08 (0x hy) < trues (2.36)

where W) (re, hy) is defined in (2.25), ug =0,...,L =1, k = 1,..., Nps, tro = =00

and t¢ ;, = co. The local decision rule at the kth base station is therefore defined by the
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L — 1 thresholds contained in ty = [tx.1,. .., tx —1] partitioning the LLR \Il(llfg(rk, hy).

Since in this case the channel state information cannot be used in the optimization
of the thresholds contained in the vector t = [t1,...,tn,s]T, the cost function J(t)
used for the threshold optimization is P,(t), representing the average probability of
bit error (2.3) as a function of the thresholds contained in the vector t, rather than
the conditional probability of bit error (2.5). The optimization of the local detec-
tor thresholds is treated in more details in section 2.3 and an analytical expression
is derived for P,(t) in Appendix B considering the assumptions made in this sec-
tion. It is important to mention that the evaluation of P,(t) for a given t requires a
Npgs-fold integral to be performed numerically, making the optimization process time

consuming.

2.2.2 Unknown channel state at the fusion center

In this section, it is assumed that the channel state vector H is not available at the
MSC. However, the statistical properties of the channel state vector H are known.
Therefore, as opposed to the previous case, the fusion rule is not a function of the
channel state vector H and the MSC updates the local decision rules at the base
stations every time the average SNR varies at any base station. However, since Hy, is
perfectly known at the kth base station, it is possible for the kth base station local
decision rule to be a function of the channel state vector Hy.

In this section, we first derive a fusion rule which is optimum in the sense that
for fixed local decision rules at the base stations, it provides the minimum average
probability of bit error at the output of the fusion center. Then, we derive the kth base
station local decision rule which is optimum in the sense that for a fixed fusion rule
and fixed local decision rules at the remaining base stations, it provides the minimum

average probability of bit error at the output of the MSC.

A. Optimum fusion rule

At the MSC, the only information available to make a final decision Uy on the trans-
mitted bit B is the local decision vector U = [Uj,...,Un,s]". As mentioned in the
previous section, since the optimality criterion is the probability of bit crror which
is a Bayesian criterion, it can be assumed that the fusion rule is deterministic. The

fusion rule should therefore partition the observation set Z containing all possible
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realizations of U into the mutually exclusive sets Zy and Z,. Hence, considering the
fusion rule is independent of the channel state vector H, the conditional probability
P(Uy = ug | h,u) reduces to P(Uy = ug | u) and the average probability of bit error

(2.3) can be reformulated as follows

P, = %+%ZP(UO:1|u)><
[/h fu(h)P(U =u|h, B = 0)dh — /th(h)P(U —u|hB= 1)(111]
- %+%Z:P(UO:1|u)[P(U=u|B:0)—P(U=u\le)] (2.37)
since P(U = u | B =b) = [ fa(h)P(U = u | h, B = b)dh. Furthermore, the

conditional probability P(Up = 1| u) in (2.37) can thus be expressed as follows

‘ (2.38)
0 if u € ZO

P(Uozllu)zl—P(UO:O|u):{

such that the average probability of bit error (2.37) can be rewritten as follows

P, = %+-Z[P(U:u|3:0)—P(U=u|B=1). (2.39)

From expression (2.39), it is clear that the realizations of U that make the summand
negative must be included in Z, and the realizations of U that make the summand
positive must be included in 2, in order to minimize the probability of bit error.
However, the realizations of U that make the summand equal to 0 can be included
in either set without affecting the performances of the system. Therefore, it is un-
necessary to consider randomized test to take care of the equality case since it only
make the test more complicated. Using these facts, the optimum fusion rule can be

formulated as follows

© 1y _ = =1)
Ajp(u) = — —0) 1 (2.40)



2 SHDD scheme for uncoded communication systems 23

or equivalently in the maximum a-posterior form
Uy=1
>
P(B=1|U=nu) - P(B=0|U=nu). (2.41)
<
Uy=0

Then, considering that the local decisions contained in the local decision vector
U = [Uy,...,Uny,]" are conditionally independent since no communication is as-
sumed between the base stations and the channel fading is spatially uncorrelated
meaning that fug(h) = fu,(hi) X -+ x fuy, (hwgg), the likelihood ratio A(l?a(u)
simplifies as follows
_ L% PUk=w | B=1)

= Hf:;f P, = | B = 0)] (2.42)

B. Optimum local decision rules

As the bandwidth efficient scheme presented in section 2.2.1, in this case the infor-
mation available to the local detector of the kth base station to make the decision Uy
is the received signal vector Ry and the channel state vector Hy. Hence, assuming
all base stations are making a hard decision, the optimum kth base station decision
rule we derived in section 2.2.1 for the bandwidth efficient scheme is also valid in this

case. The optimum local decision rule can therefore be formulated as follows

Uy =1
(k) >
mkAl,O(rk, hk) — bk < 0, (243)
Us=0
where A(l’fg(rk, h;) is defined in (2.20),
mi =Y [ fur(h*)Bp(u*, h)P(U* = u* | b*, B = 1)dh* (2.44)

h*
uk
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and
be _Z (b *)Bi(u*, h)P(U* = u* | h*, B = 0)dh*. (2.45)

However, since in this case the fusion rule is independent of H, P(Uy = ug | h,u) =
P(Uy = ug | u) such that, in (2.44) and (2.45), Bx(u*,h), which is defined in (2.14),
can be replaced by

1 1
Bi(u*) = 5P(U0 =1|U=u"") - 5P(U0 =1|U=u"). (2.46)

The coefficient m; and b can therefore be simplified to

miy =Y Bi(u*) [ fue(b*)P(U* = u* |b¥, B =1)dh* = Z Bi(u =u"|B=1)
uk h*
(2.47)
and
be=>_ Bi(u*) [ fux(h*)P(U* = u* | ¥, B = 0)dh* = ZB,C =u*| B =0),
uk h*
(2.48)

since P(U* =u* | B=1) = J,. fur () P(U* = u* | b*, B = b)dh*.

Thus, the coefficients m; and by are in this case independent of both r; and
h,. Hence, as shown in Fig.2.2, the optimum decision rule at the kth base station
is a likelihood ratio threshold test, where the threshold is independent of h;. It is
important to mention that, as the bandwidth efficient scheme presented in section
2.2.1, it is assumed that the MSC only updates the local decision rules when the
average SNR varies at any base station. However, since in this case the threshold is
not a function of hy, it is therefore possible to derive its optimum value at the NMSC
without imposing any constraint on the threshold.

As mentioned previously, the mapping between the interval in which the likelihood
ratio Aglfg(rk,hk) appears and the local decision Uy can be permuted as long as the
same change is made in the fusion rule. Hence, it can be assumed without loss of
generality the local decision rules are nondecreasing functions of the likelihood ratios.
It implies that HNBS P(U, = ug | B = 1)/P(Ux = ux | B = 0) is a nondecreasing
function of u {20]. Consequently, the fusion rule is a nondecreasing function of u. The

converse is also true, when the fusion rule is a nondecreasing function of u, all local
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decision rules are nondecreasing functions of the likelihood ratios since Bi(u*) > 0
such that my and by are always larger than 0 (see Fig. 2.2). Therefore, assuming that
the fusion rule is a nondecreasing function, the optimum local decision rule for the

kth base station can be formulated as follows

Ug=1

where the threshold ¢ is independent of hy.

These results can be extended to the case when the local detectors are making soft
decisions. As mentioned previously, in [20] it is proved that the local decision rules,
for distributed detection schemes using soft decisions, are deterministic monotone
likelihood ratio threshold tests, as long as the observations made at the distributed
sensors are conditionally independent. Using this result, the optimum local decision

rule at the kth base station can be generalized, in a logarithmic form, as follows
. k o =
U = ug if tgn, < \I/S,é(rk, hp) < tpu+ (2.50)

where \Il(llfg(rk,hk) is defined in (2.25), ux = 0,...,L — 1, k = 1...., Nps, tro =
—oo and t;,, = co. Hence, as the sub-optimum local decision rule proposed for the
bandwidth efficient scheme presented in 2.2.1, the optimum local decision rule at the
kth base station is defined by the L — 1 thresholds contained in t; = [t 1, .- ., tk,L-1]
partitioning the LLR \Il(lkg (ry, hi). Furthermore, since only the statistics of the channel
state are known at the MSC where the optimization takes place, as the bandwidth
efficient scheme the cost function J(t) used for the optimization of the thresholds
contained in the vector t = [t1,...,tnus]7 is Py(t) representing the average probability
of bit error (2.3) as a function of the thresholds contained in the vector t. In fact,
what differentiates both schemes is that, in this case, the fusion rule is independent of
the channel state. The optimization of the local detector thresholds is treated in more
details in section 2.3 and an analytical expression is derived for Py(t) in Appendix B.
It important to mention that, in this case, a closed form expression can be derived

for P,(t), accelerating the optimization process.
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2.3 Optimization of local detector thresholds

In the previous section, we designed SHDD schemes employing a fusion rule vy, and
a set of local decision rules {71,...,Yngs}, defined by the thresholds contained in
the vector t = [ti,...,tngs]T where tx = [tk1,...,tk—1]). These thresholds must
be adjusted in order to minimize the cost function J(t) defined by the probability
of bit error (2.3) or the conditional probability of bit error (2.5), depending on how
often the thresholds are updated. Therefore, the SHDD schemes pose the following

multivariate optimization problem

t" = arg min J(t) (2.51)
where the set 7 contains all possible values of t. The major difficulty in the imple-
mentation of the SHDD schemes is caused by this numerical optimization problem
and more precisely by the fact that the cost function J(t) is a nonlinear non-convex
function of t. Since this cost function may have many local minima, local optimiza-
tion techniques do not guarantee to provide a global optimum solution. Until now,
the optimization algorithms used to optimize distributed detection schemes related
to communication applications were local optimization algorithm. In [11] for ex-
ample, this optimization problem was solved by a numerical gradient descent based
algorithm. In [13], a Gauss-Seidel' procedure was used to optimize the proposed
distributed multiuser detection scheme.

In this work, we propose to solve the optimization problem using an improved
Simulated Annealing (SA) algorithm called Adaptive Simulated Annealing (ASA).
SA was originally developed in 1983 [21} as a technique to solve combinatorial opti-
mization problems. This approach has been later extended to solve continuous global
optimization problems with multivariate nonlinear non-convex cost functions. SA al-
gorithms try to mimic the principles of thermodynamic that make metal freeze in
a minimum energy crystalline structure, when it is cooled slowly enough (annealing
process). The major advantage of SA over other local optimization algorithms is that
it has the ability to avoid staying trapped in local minima. This ability is due in
part to the fact that the algorithin employs a random search which not only accepts

changes that decrease the cost function but also some changes that increase it, where

1The Gauss-Seidel procedure converges to a locally optimum solution for which the performance
cannot be improved by changing only one of the decision rules.
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the probability of taking such changes decreases with an artificial temperature pa-
rameter. It has been proved in [22] that by cooling the temperature according to
an inverse-log law the SA algorithm converges in probability to a global optimum
solution. However, the convergence of the algorithm can be too slow for many ap-
plications. In order to accelerate the convergence of the algorithm, a method known
as Fast Annealing (FA) [23] was proposed which permits lowering the temperature
exponentially faster, guaranteeing that the algorithm converges to a value close to
the global minimum in a reasonable amount of time. However, FA still requires quite
a lot of time to converge. An algorithm called Very Fast Simulated Re-annealing
(VFSR)[17][24] [25] or Adaptive Simulated Annealing (ASA), which is exponentially
faster than FA, was developed by A.L.Ingber, making SA a viable solution to global
optimization. It is important to mention that a C language code implementation of
the ASA algorithm has been made publicly available by Ingber since 1993%. In ad-
dition, a Matlab gateway routine to Ingber’s ASA C code, called ASAMIN®, is also
publicly available via the World Wide Web and allows the ASA algorithm to be used
directly in a Matlab environment as any Matlab function.

In this section, the ASA algorithm is first presented in details. Then, the conver-
gence of the algorithm is discussed. The tuning of the ASA algorithin is then studied
for the optimization of the SHDD schemes. Finally, some simplification assumptions

are proposed to simplify the optimization process.

2.3.1 ASA algorithm

ASA is a global optimization algorithm designed to solve continuous optimization

problems of the form

* 3 =4
X" = arg min J(x), (2.52)
where x = [z,. .., zD]T and X C R? is a continuous domain defined by
Lo® <z, <Up®, 1<4<D (2.53)

2ASA C language code is available at http://www.ingber.com.
3 ASAMIN mex-file is available at http://www.econ.ubc.ca/ssakata/public_html/softwarc
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and the inequality constraints
fi(x) <0, 1<j<N. (2.54)

Similarly to any SA algorithm designed to solve continuous optimization problems,
the ASA algorithm performs a random walk through the D-dimensional domain X,
searching for the optimum solution x*. Also, as for any SA algorithm, the randomn
walk is controlled by three main functions which are the generating function, the
acceptance function and the cooling function. In general, a SA algorithm can be

described as follows:
Step 0 A starting point x(0) is selected randomly from the domain X

Step 1 Assuming x(t) is the tth visited point by the random walk, the generating

function generates randomly a new candidate point y(t 4+ 1) from x(¢).

Step 3 The acceptance function accepts or rejects the new candidate point y(t + 1)
by comparing the cost at the new candidate point y(t + 1) and the last visited
point x(t). It determines if the random walk stays still or moves to the candidate
point y(¢+1), such that x(t+1) = y(t+1), when the candidate point is accepted,
and x(t + 1) = x(t), when the candidate point is rejected.

Step 4 Assuming the point x*(t) is the lowest observed cost value after ¢ iterations,
it is verified if x(¢ + 1) is a new minimum such that x*(t + 1) = x(t + 1), if
J(x(t+ 1)) < J(x*(t)), and x*(¢t + 1) = x*(t) otherwise.

Step 5 The cooling function adjusts the temperatures controlling the random behav-

ior of the walk insuring the convergence of the algorithm.

Step 6 It is verified if predefined criterion of convergence are satisfied. If the con-
vergence criterion are not met, the time index ¢ is incremented by 1 and the

algorithm goes back to Step 1.

However, what differentiate the different implementations of the SA algorithm is how
the generating function, the acceptance function and the cooling function are defined.
A good overview of the different implementations of the SA algorithm can be found
in [26].
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One of the particularities of the ASA algorithm is that an artificial temperature is
not only employed in the acceptance function, but also in the generating function. In
order to distinguish the different temperature parameters, the temperature associated
with the acceptance function is denoted as Tyecept (ko) and the temperature associated
with the ith dimension in the generating function is denoted as T; gen(k;), where £k,
and k; are the annealing time index associated with these artificial temperatures. It
is important to mention that each temperature parameter is varied independently of
the others allowing the ASA algorithm to adapt to the different sensitivity in each
parameter dimension and to adapt to the current status of the cost function, through
a process called re-annealing. In the next three sections, the generating function, the

acceptance function and the cooling function used by the ASA algorithm are defined.

A. Generating function

The main task of the generating function in the random walk is to generate a new
candidate point y(¢ + 1) from the current point x(¢). In the ASA algorithm, the ith

component of the new candidate point y(¢ + 1) is determined as follows
yi(t +1) = z;(t) + Az (Up!Y — LoW) (2.55)

where Az; € [—1,1] is a sample of a random variable with the following PDF,

1

. (2.56)
2(|AIL',| + 71i,gen(ki)) ln(l + m)

gi(Aifi) =

It is shown in [17] that the sample Az; can be generated as follows

1 1 |2U,’—l|
P — i TS ,Tz en ki 1 Y - s 5
Az; = sgn (I/ 2) gen (ki) ( + Ti,gen(k‘i)> 1 (2.57)

where v; is a sample of a random variable uniformly distributed over the interval [0, 1].
The temperature T; e, (k;) controls the width and scale of the PDF (2.56). In fact,
as can be seen from Fig. 2.3, at high temperature the random variable Ax; is almost
uniformly distributed over the interval [—1,1], favoring a global exploration of the
domain X. Then, as the temperature is gradually decreased by the cooling function,

the PDF favorizes more and more a local exploration of the domain X by generating
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with higher probability new candidate points in the vicinity of the current point.
Finally, it can be noticed that equation (2.55) does not take in consideration the
conditions set by the lower and upper bounds (2.53) and by the inequality constraints
(2.54) when it generates the new candidate point y(t+1). Hence, new candidate points
are generated by the generating function, using expression (2.55), until a candidate

point that satisfies the conditions is generated.

B. Acceptance function

The main task of the acceptance function in the random walk is to determine if a new
candidate point y(¢ -+ 1) of poorer quality than the current point x(t) is accepted or
rejected. In the ASA algorithm as in most SA algorithms, the acceptance function is
the Metropolis acceptance function. The Metropolis acceptance function generates a

sample p € [0, 1] of a uniformly distributed random variable and set

y(t+1) if p < A(y(t+1),%x(?), Taccept(ka))

| (2.58)
X(t) if p > A(Y(t + 1), X(t), Taccepl(ka))

x(t—l—l):{

where

~(Jy(+1) - J(X(O))) } (2.59)

t+1 t); Taccept(ka)) = mi 1, .
ALy ¢+ 1,500, (k) = min { 1,0 (=T 5

Therefore, independently of the temperature T,ccepe(ka), the acceptance function al-
ways accepts a new candidate point y(¢+ 1) that improves the cost value with respect
to the current point x(¢). However, new candidate points of poorer quality are only

accepted with probability

—(J(y(t+1)) - J(XU)))) 7 (2.60)

Paccept = €xXp ( T t(k )
accept\a

which decreases with the temperature parameter Toceept(kq). In the final stage of
the algorithm, Tyecept(ka) — O and the probability of accepting a point of poorer
quality is almost null such that the algorithm acts much more like a local optimization
algorithm.

It is important to mention that the choice of acceptance function is much less

important in the ASA algorithm then the choice of generating function. First, as
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Fig. 2.3 PDF g;(Az;) for Tigen(ki) = 1, Tigen(k:) = 107° and
ﬂ,gen(ki) =10"10

discussed in [26], most acceptance functions, which do not depend directly on y(t+1)
and x(t) but depend on the difference of their cost values, can be substituted by the
Metropolis acceptance function after a simple modification of the cooling function.
Furthermore, the convergence of the ASA algorithm, as opposed to more conventional
SA algorithms, is much less dependent on the acceptance function. This is due to the
fact that the PDF used by the generating function allows for much wider displacements
in the domain such that the algorithm does not depend as much on the acceptance

function to escape from local minima.

C. Cooling function

The main task of the cooling function in the random walk is to gradually decrease
(Annealing function) as well as periodically rescale (Re-annealing function) the tem-
perature parameters associated with the acceptance function and the generating func-
tion. It is important to mention that the cooling schedules employed by the Annealing
function must be chosen carefully in order to guarantee that the algorithm converges
in probability to a globally optimum solution [17] . More precisely, in the ASA algo-
rithm, the cooling schedules of the temperatures T; e, (ki) ¢ = 1..... D, which control

the width and scale of the distribution associated with the new candidate point. are
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crucial to guarantee the convergence of the ASA algorithm, as will be discussed in
the next section treating the convergence of the ASA algorithm. Hence, in the ASA
algorithm, the cooling schedule associated with the ¢th dimension of the generating

function can be defined as follows
1
T, gen(k) = T gen (0) exp (—cgenki") , (2.61)

where the temperatures T; g.,(0) is usually initially set to 1, cgen must be adjusted
by the user and k; is incremented every time a new candidate point is generated. It
is important to mention that, even if the algorithm converges statistically for any
appropriate value of cgen, practically the convergence of the algorithm is influenced
by this parameter such that adjustments must be made by the user to tune the ASA
algorithm to a specific problem. On the other hand, the cooling schedule of the
temperature Tpecept(Kq) is less crucial to the convergence of the ASA algorithmn. In

fact, it is only required that [26]

lim Taccept(ka) = 0. (2.62)

kq—00

Practically, the cooling schedule used by the ASA algorithm can be defined as follows,

1
Taccept(ka) - Taccept(o) exp (—Cak(f)> (263)

where the temperature Tyecep(0) is usually initially set to J(x(0)), ¢, must be adjusted
by the user and k, is incremented every time a new candidate point is accepted.

As mentioned previously, one of the particularities of the ASA algorithin as op-
posed to other SA algorithms is that it allows for re-annealing. However, it is im-
portant to mention that the re-annealing process is not essential to the statistical
convergence of the algorithm. It is in fact possible to use the ASA algorithm with-
out re-annealing and it is sometime advantageous for some applications. However, it
has been shown in [25] that the re-annealing process can in practice accelerate the
convergence of the algorithm. The re-annealing process improves the convergence
speed in two ways. First, the re-annealing process allows the ASA algorithm to adapt
itself to the difference in sensitivity of the cost function in the different dimensions
by periodically rescaling the generating function temperatures T} ge,, (ki) i = 1,..., D.

Furthermore, since the acceptance function depends on the difference of the cost val-
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ues at y(t+1) and x(¢) and the relative importance of a difference in cost value varies
depending on the order of magnitude of the cost function in the region explored by
the ASA algorithm, the re-annealing process allows the ASA algorithm to better suit
the status of the cost function throughout the random walk by periodically rescaling
the temperature Tyecept(Ka)-

In the ASA algorithm the re-annealing process takes place every time rg., points
are generated Or Toccepe POiNts are accepted, where recommended values are in the order
of 10000 for 7y, and in the order of 100 for r4ccept- When re-annealing is performed,

the temperature T; en (k;) is rescaled as follows

simaz:
71i,fh‘i"(ki): s, Ti,gen(k‘i)a (264)
where
d(J
(= | W) (2.65)
dzi e

and 4,4, = argmax;=1__p{s:}. Then, the annealing index k; is reset as follows

()

In addition, the temperature Tyecept(0) is reset to the cost value at the last accepted

point x(t), Taccept(ka) s reset to the cost value at the current minimum x*(¢) and then

the annealing index k, is reset as follows

1 Tacce t(ka)>>D
ke =|——In[ =222 : 2.67
( Ca " ( Taccept(o) ( )

2.3.2 Convergence of the ASA algorithm

In [17], it is proved that the ASA algorithm converges in probability to a global

optimum solution as the number of iterations goes to infinity, meaning that,
lim Pr(x*(t) € B] =1 (2.68)
t—00

where B, = {x € X : J(x) < J(x*) +¢} for all e > 0, given x* is the global minimum.
The proof is based on the fact that by carefully controlling the rate of cooling of the
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temperatures associated with the new candidate point distribution, any subset B, of
the domain X with positive Lebesgue measure is visited infinitely often.

Practically it is sufficient to find a solution that approaches closely the global
minimum x* such that the search can be halted when it ceases to make sufficient
progress. Lack of progress can be defined in a number of ways, where an overview of
the different stopping rule found in the literature can be found in [26]. For example,

in Ingber ASA C code, the search is stopped when

1 T;,gen(ki) S Tmin or Taccept(ka) S Tmin

gen accept

o the cost J(x(t)) repeats at Nyepetition SUCCESsive re-annealing time instants within

a predefined precision App

min

e the ratio of accepted points and generated points is smaller than tara

e the number of accepted new candidate points y(t) is larger than Ni.CZ,

e the number of generated new candidate points y(t) is larger than Njgi?

where N2 NIo%, Apin, t;"/i;, e, T;n, and Nyeperition are parameters defined by
the users. It is important to mention that it is almost impossible to select stopping
rules that guarantee with a given probability that the global minimum has been
detected within a certain accuracy. However, it is obvious that, longer the algorithm
will run, better are the chance that a minimum in the vicinity of the global minimum

x* has been found.

2.3.3 Tuning of the ASA algorithm for the optimization of the SHDD

schemes

In this section, we explain how to tune the ASA algorithm to optimize the thresholds
defining the SHDD schemes. More precisely, three main points are discussed, which
are the selection of the domain X, the tuning of the parameter cg,, and the tuning
of the stopping rule parameters. We discuss in details these three points since they
influence the convergence of the ASA algorithm.

The domain 7 contains all possible values of t that satisfy the inequalities —oco <
teg < teg < o0 < tkp-2 < tgrp-1 < 00, where kK = 1,..., Ngs. However, the ASA

algorithm is designed to work with a domain having a finite range. It is therefore
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necessary to select a domain X’ as a subset of 7 that still includes the global optimum
solution but only contains the values of t satisfying the inequalities —L; < #;; <
tro < <o+ < tgp—2 < tgr—1 < Lg, where k = 1,..., Ngs. Obviously, the more the
domain X can be constrained to a smaller region of the domain 7, the easier is the
convergence of the ASA algorithm. The limit L, must therefore be selected such that
only plausible values of t;; and t; —; are included in the domain X. To this end, we
use the fact that the probability of bit error of SHDD schemes using L quantization
levels is upper bounded by the probability of bit error of SHDD schemes using L — 1
quantization levels.

For SHDD schemes for which the cost function is the conditional probability of
bit error (2.5), the value of Ly, for Hy = hy, is selected to eliminate the region of the
domain 7, where P(Uy = 0Jh;) and P(Uy = L — 1|hy) approach 0. However, it is
also necessary to make sure that the domain X still includes the optimum solution.
Hence, the value of Ly is selected such that the thresholds ¢x; and t; ,—; be able to
take values for which P(Uy = Olhx) and P(Uy = L — 1}hi) are at least as low as
a = 10719, To determine the values of L that satisfy this condition, we first derive

an upper bound to P(Uy = L — 1|h;) as follows

1 1
P(Uy=L—1lb) = 5P(Us=L~1lhg,B=1)+3P(Us=L~ 1, B=0)
< P{Ug=L-1|h,B=1) (2.69)

where

o<
P(Uk = L—llhk,B) = /tk . f\ngg(Rk,Hk)(x I hk,B)d.’L‘ = l_F\I’(fg(Rk,Hk)(tk’L_l l hk, B),
' (2.70)
given f\bﬁ’fg(Rk,Hk)(z | hy, B) and F\PEfg(Rk,Hk)(CE | hy, B) are derived in Appendix A
and represent, respectively, the PDF and cumulative distribution function (CDF) of
the LLR ¥')(Ry, Hy) given the transmitted bit B and Hy = h;. Then, since
2Lk 2

te— o "k
PUs=L—1jh,B=1)=Q | —nl ¥ 2 | (2.71)

1
2,/23kw}
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it can be concluded that P(Uy = L — 1|hy, B =1) =« and P(Uy = L — 1|hy) < «v if

E .
th,L—1 = 24 /2——kw,% V2er finv (—(2a — 1)) + \/QQwﬁ . (2.72)
No A‘/VO

where w; = Zgﬁl |hen|2. Hence, if for a given o and wy Li equals to txp—; in
(2.72), it is guaranteed that the limit L, satisfies the condition set above. Fig.2.4

presents Ly as a function of & = FEw}.

J300F

2001

Fig. 2.4 Limit Ly as a function of @y, where a = 1019

For SHDD schemes for which the cost function is the probability of bit error
(2.3), it is possible to use the same strategy as for the previous case but replacing
P(Uy = 0|hy) and P(Uy = L—1}hy) with P(Ux = 0) and P(Uy = L—1). However, the
domain that results from this strategy is relatively large. A more efficient alternative
uses the fact that the probability of bit error after the threshold optimization can be

expressed as follows

Pb*:/Pb*lwa(w)dwz/I(w)dw (2.73)

w

where Pb*lw represents the probability of bit error after the threshold optimization

conditioned on Q = w, Q = [Q, ..., Qy,,]7 given Qi = S VR | Hyol? and fa(w) =

fay(wr) -+ fay, (Wrss) given fo,(wk) is the PDF of defined in (B.8). Hence, the
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value of L, can be selected such that the thresholds ¢;; and tx ,_; be able to take
values for which P(Uy = 0|h) and P(Uy = L —1|hy) are at least as low as a = 10719,
for all values of wy for which the integrand I(w) of (2.73) can possibly take a value
that has an impact on the result of the integral within the desired precision. Since
the probability P(U, = 0|hx) and P(Uy = L — 1}h;) are monotonically increasing
functions of wy, it is first necessary to determine a value of wy over which the integrand
I(w) is lower than the desired precision independently of w; ... wi_1,wry1 ..., Wips-
Then, we use this value of wy in expression (2.72) to determine the limit Ly as in the
previous case. It is obviously necessary to use an upper bound U(wy) to the integrand
I(w), independent of w; ... wWk_1,Wk+1 - .., Wnys, since the optimum thresholds are not
known a priori.

For instance, for a SHDD scheme for which the channel state vector H is known
at the MSC and the thresholds are forced to be even symmetric, the conditional
probability of bit error Pb*lw can be upper bounded by the conditional probability of

bit error of a single base station scheme, which can be defined as follows

E
IDst;c - Q 2_sz (274)
Ny
Hence, in this case, we use the upper bound
Uwi) = Pay foo (wx) [T max { fa, (i)}, (2.75)
£k K
where k¥ = 1,..., Ngg. However if either the assumption that the thresholds are

symmetric or the assumption that the channel state vector H is known at the MSC is
removed, this upper bound is not valid and it becomes more difficult to find a relatively
tight upper bound U(wy). Hence, in these cases, we use the fact that o < 0-5 and

set

Ulwe) = 0.5fa (wr) [ max {fo, (@)}, (2.76)

k' £k

where k' = 1,..., Nps.
The ASA algorithm also requires that the cooling schedule parameter cyen, be
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chosen carefully. In order to help its adjustment, the parameter cg, is given by

Coen = Mgen €XP (-"g") , (2.77)

where the parameters mge, and ng, can be adjusted according to the following rela-

tions (k)
_ f
Mgen = — 1N <—T(O) ) (2.78)
and
Tgen = In(ky). (2.79)

The parameter T'(0) is the initial temperature, T'(k;) is the desired final tempera-
ture and ks is the desired number of annealing steps, assuming no re-annealing is
performed. It is suggested that the initial temperature T(0) be set to 1 and final tem-
perature T'(ks) be set to 1071 although it can be necessary to adjust these parameters
differently for certain problems. However, the value of k; need to be selected experi-
mentally. Table 2.1a) presents the values of k; for which we obtain a good trade-off
between efficiency and accuracy.

Finally, it is necessary to determine when to stop the ASA algorithm. In our case,
the only stopping rule parameter that we consider is N2'* representing the maximum
number of candidate points generated, since it is probably the more secure criterion.
Given we know that the ASA algorithm is in the final stage of the search when the

number of iterations is larger than ky, we can expect relatively good results by setting

maxr
gen

Ngen® equal to kg but the accuracy can be improved by increasing the value of /

with respect to ky.

2.3.4 Simplification assumptions

The main disadvantage of the ASA algorithm as well as any global optimization al-
gorithm is that it is computationally expensive, as can be seen from Table 2.1a).
However, since the optimization can be performed off-line, the computational com-
plexity has little influence on the actual scheme complexity. On the other hand, the
complexity of the algorithm increases rapidly with the number of thresholds to be
optimized, where the number of thresholds increases exponentially with the number
of bits of resolution at each base station and linearly with the number of base sta-

tions. It may therefore be advantageous to add constraints on the thresholds in order
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Ngs L D kg Ngs L D kg Ngs L D kg
2 2 2 20-10° 2 2 0 2 2 0
4 6 3.2-10¢ 4 2 20-10° 4 1 1.0-103
8 14 1.0-10° 8 6 3.2-10¢ 8 3 4.0-10°
3 2 3 4.0-10° 3 2 0 3 2 0
4 9 26-10° 4 3 4.0-10% 4 1 1.0-103
8 21 2.0-10° 8 9 26-10° 8 3 4.0-10°
a) b) c)

Table 2.1 Values of k; used for the optimization of the different SHDD
schemes a) when there is no constraint applied to the thresholds, b) when
the thresholds are constrained to be even symmetric, ¢) when the thresh-
olds are constrained to be even symmetric as well as identical at all base
stations

to keep the optimization complexity to a reasonable level. More precisely, the local
decision rules can be for example constrained to be even symmetric meaning that
PU,=1|B=3j)=PUy=L-1-1l|B=—-j+1),for 0 <1< L~-1. When the
local detector likelihood ratio is expressed in its logarithmic form, as shown in Fig.
2.5 the number of dimensions of the optimization problem reduces from Npg(L — 1)
to Npg (%) Hence, when L = 2, the number of dimensions is equal to 0 since the
only threshold ¢;; defining the kth local decision rule is forced to be equal to 0 in
order for the decision rule to be even symmetric, avoiding any optimization. How-
ever, for systems using more than two quantization levels at each base station, the
optimization complexity can be further reduced by forcing the thresholds to be equal
at all base stations such that the number of dimensions of the optimization problem
reduces to %2 Since the number of cost function evaluations required by the ASA al-
gorithm increases almost exponentially with the number of dimensions, the proposed
constraints greatly simplify the optimization as can be seen in Table 2.1b) and Table
2.1c). On the other hand, it is important to mention that when any of the constraints
is applied to the thresholds, the solution cannot be considered optimum anymore.
The influence of these constraints on the performances of the system is evaluated for

different system configurations in section 2.4.
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Fig. 2.5 Graphical representation of the kth base station local decision
rule a) when there is no constraint applied to the thresholds, b) when the
thresholds are constrained to be even symmetric

2.4 Numerical results

In this section, we study the performances of the designed SHDD schemes, in term of
BER, for different numbers of base stations, different numbers of receiving antennas,
different numbers of quantization levels and different types of constraints on the local
detector thresholds. In addition, since the average SNR received at each base station
is dependent on the mobile unit location in the cellular network, as well as on power
control, we study the performances of the designed SHDD schemes for the case when
the average received SNR is equal at all base stations as well as for the case when the
average received SNR is different at each base station.

Before presenting the performances of the designed SHDD schemes, it is interesting
to evaluate the potential gain that can be achieved by the SHDD schemes with respect
to the CHM scheme. The potential gain is obtained by evaluating the difference
between the performances of the CHM and OC schemes (see Appendix D). Fig 2.6
presents the potential gain in SNR achievable, when operating at BER = 107°, by 2
base stations SHDD schemes as a function of the difference in average SNR between
the two base stations. Obviously, the potential gain decreases with an increase of the

difference in average SNR between the two base stations and the number of receiving
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antennas at each base station. However, it is clear from this figure that iinportant
gains can be made by using more sophisticated techniques such as the proposed SHDD

schemes.

25

23
T

Potential gain (dB)

o
T

0 1 ' L ' 4
0 2 4 6 8 10 12
A SNR (dB)

Fig. 2.6 Potential gain at BER = 107 for 2 base stations SHDD

schemes with respect to the CHM scheme as a function of ASNR = —g—INV%.

2.4.1 Known channel state information at the fusion center

In section 2.2.1, we have presented two alternative SHDD schemes for the case when
the channel state is known at the MSC. The first is the optimum SHDD scheme when
the channel state is known at the MSC referred as the SHDD) 4, scheme. As men-
tioned previously, such a scheme requires that the MSC transmits to each base station
new threshold values every time the channel state varies. The second alternative is
a bandwidth efficient sub-optimum SHDD scheme referred as the SHDD, ,,, scheme.
The only difference between the SHDD, ,,y and SHDD, 4, schemes is that, in the
SHDD; 4 scheme, the thresholds defining the local decision rules are independent of
the channel state vector H.

We evaluated numerically the BER of both the SHDD, ,,; and SHDD) 4 schemes
assuming the mobile unit is communicating simultaneously with 2 base stations. The
evaluation of the probability of bit error for both schemes is discussed in Appendix

B. In addition, the software used to obtain these results is included in the compact



2 SHDD scheme for uncoded communication systems 42

disk provided with this thesis. Results for BER as a function of the first base station
average SNR, defined as follows SNR; = %, are respectively illustrated for the case
when each base station is equipped with 1, 2 and 3 receiving antennas in Fig.2.7,
Fig.2.8 and Fig.2.9. Each figure is made of two sub-figures where in part a) the
average SNR is equal at both base stations while in part b) there is a difference of
6dB between the average SNR at the first and the second base station. It is important
to mention that, in these figures, when the difference between two curves is less than
0.05dB at fixed BER, the two curves are plotted as one single curve on the figures.
All figures present BER curves for SHDD, ,,; and SHDD, s, schemes using 2
and 4 quantization levels when there is no constraint applied on the thresholds. In
addition, all figures also present BER curves for SHDD) ;. schemes using 2, 4 and
8 quantization levels for the case when the thresholds are constrained to bhe even
symmetric and for the case when the thresholds are constrained to be even symmetric
as well as identical at all base stations. For comparison purposes, all figures also
include the BER curves of the OC scheme, the CHM scheme and a selection diversity
scheme which assumes the channel state is known at the MSC. Appendix D presents
these 3 reference schemes and discusses the evaluation of the probability of bit error
for each scheme. It is important to remember that the BER of the OC scheme is
obviously a lower bound to the BER of the SHDD), ,,, and SHDD, 4, schemes while.
as shown in Appendix D, the BER of the selection diversity and CHM schemes are

upper bounds.

A. Effect of the number of receiving antennas

By comparing Fig.2.7, Fig.2.8 and Fig.2.9, we see that, as expected, increasing the
number of receiving antennas increases the slope of the BER curves at large SNR and
consequently the diversity order provided by the SHDD, ,,; and SHDD, ., schemes,

which can be defined as

(2)
—10log, ( 2257 )

N (1010 (SNR?) ~ 10108, (SNRL”) )

(2.80)

In fact, it appears that all considered SHDD, 4, and SHDD, s, schemes provide
the same asymptotic diversity order as the OC scheme, which equals approximately

NpsNg. Hence, by increasing the number of receiving antennas per base station from
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1 to 2, a gain in SNR of approximately 11.0-11.5dB can be observed at BER = 1073
while the gain, obtained by increasing the number of receiving antennas per base
station from 2 to 3, reduces to approximately 4.0-4.3dB. The gain reduction is due to
the fact that as the diversity order increases the gain obtained by further increasing
the diversity order decreases.

It is important to mention that the diversity order of the CHM scheme equals
only to Np, since this scheme selects a base station based on the average SNR and
is therefore not taking advantage of the diversity provided by the remaining base
stations. The diversity order of the SHDD ,,; and SHDD) ,,, schemes is therefore Nps
times larger than the diversity order of the CHM scheme, independently of the number
of receiving antennas. For this reason, the SHDD, o, and SHDD 4, schemes provide
important gains with respect to CHM scheme. For instance, from part a) of Fig. 2.7,
it appears that, when the SNR is equal at both base stations and each base station
is equipped with a single receiving antenna, the SHDD, o,; and SHDD) 4, schemes
provide respectively gains in SNR with respect to the CHM scheme of 21.7dB and
21.2dB at BER = 107%, with only 2 levels of quantization, which increase to 22.5dB
and 22.3dB, with 4 levels of quantization. However, as mentioned previously, as the
diversity order increases, the gain obtained by further increasing the diversity order
decreases, such that the gains obtained by the SHDD, ,,; and SHDD ,,,;, schemes with
respect to the CHM scheme decrease with the number of receiving antennas per base
station. From part a) of Fig. 2.8, it appears that, when each base station is equipped
with 2 receiving antennas, the gains in SNR with respect to the CHM scheme reduce
respectively to 10.2dB and 9.6dB at BER = 107°, with 2 levels of quantization, and
to 11.2dB and 11.1dB, with 4 levels of quantization. Furthermore, from part a) of Fig.
2.9, it appears that, when each base station is equipped with 3 receiving antennas,
the gains in SNR with respect to the CHM scheme reduce respectively to 6.8dB and
6.2dB at BER = 1073, with 2 levels of quantization, and to 7.8dB and 7.7dB, with 4
levels of quantization. Hence, from these results it can be concluded that, even if cach
base station is equipped with 3 receiving antennas, important gains with respect to
the CHM scheme can still be obtained by using handoff macrodiversity schemes that

further increase the diversity order such as the SHDD, ,,; and SHDD, ., schemes.
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B. Effect of the difference in average SNR between two base stations

By comparing part a) to part b) of Fig.2.7, Fig.2.8 and Fig.2.9, we see that, when the
average SNR at the second base station is lower by 6dB from the SNR at the first base
station, it has the effect of shifting horizontally the BER curves of the SHDD o, and
SHDD; . schemes, obtained when the average SNR is equal at both base stations, by
approximately 2.7-3.0dB toward the BER curves of the CHM scheme, independently
of the number of receiving antennas. However, it is important to mention that, even
if a difference of 6dB in the average SNR is not sufficient to affect the diversity order
of the scheme, it is expected that, as the difference in average SNR increases, the
diversity order of the SHDD; ,,; and SHDD s, schemes will eventually tend toward
the diversity order of the CHM scheme. This is due to the fact that the performances
of the SHDD, o,x and SHDD 4,5 schemes, as the OC scheme, have to converge to the
performances of the CHM scheme when the asymmetry between the two links is very

large.

C. Effect of the number of quantization levels

From Fig.2.7 - Fig.2.9, we see that in all considered cases most of the potential gain
with respect to the CHM scheme is reached by SHDD, ,,, and SHDD, ,,, schemes
using only 2 quantization levels. However, additional gains can still be obtained by
increasing the number of quantization levels. In fact, if the number of quantization
levels is increased from 2 to 4, the BER curves are shifted horizontally toward the
OC scheme by approximately 0.8-1.0dB, for the SHDD, o scheme, and 1.2-1.5dB,
for the SHDD; 4, scheme. Hence, with only 4 levels of quantization at each base
station, the potential additional gain that can be obtained by further increasing the
number of quantization levels equals approximately 0.3dB, for the SHDD, ;.5 scheme,
and approximately 0.2dB, for the SHDD; ,,; scheme. Furthermore, using the BER of
the SHDD) ;. scheme when the thresholds are symmetric as an upper bound to the
BER of the SHDD, ,,; and SHDD . schemes, the potential additional gain that can
be obtained by further increasing the number of quantization levels of SHDD ,,, and
SHDD; 4 schemes, using 8 quantization levels, can be upper bounded to less than
0.1dB for all considered cases. It can be concluded that no practical gains can be

obtained by increasing the number of quantization levels over 8.
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D. Comparison between the SHDD, ,,, and SHDD, ,,;, schemes

From Fig.2.7 - Fig.2.9, we see that, when operating at a fixed BER, in all considered
cases the difference in SNR between the SHDD; ,,, and SHDD) 4, schemes decreases
from approximately 0.5-0.6dB, when L = 2, to approximately 0.1-0.2dB, when L = 4.
Furthermore, when L = 8 the SNR difference at fixed BER between the SHDD, ,
and SHDD; ,,; schemes can be upper bounded to approximately 0.1dB, the SNR
difference between the OC scheme and the SHDD, 4, scheme when the local detector
thresholds are forced to be even symmetric which are respectively a lower and upper
bound to the BER of both schemes. Hence, when the number of quantization levels
is larger or equal to 4, the performances of the SHDD, 4, and SHDD, 4, schemes
are almost identical, proving that the SHDD; 4, scheme is a viable alternative to the
SHDD, op: scheme.

E. Effect of the threshold constraints on the SHDD, ,,;, scheme

From Fig.2.7 - Fig.2.9, we see that, in all considered cases, the SHDD, ;. scheme
is not severely affected by the constraints applied on the local detector thresholds,
although they significantly reduce the complexity of the optimization process. In
fact, when L = 2 the losses caused by forcing the thresholds to be symmetric vary
from within the precision of the results when Ng = 1, to approximately 0.2dB, when
Ngr = 2, and to approximately 0.3dB, when Nr = 3. For L = 4, the losses, caused by
forcing the thresholds to be symmetric, equal approximately 0.1dB while the losses,
caused by forcing the thresholds to be symmetry and equal at both base stations,
equal approximately 0.3-0.4dB. For L = 8, the losses caused by forcing the thresholds
to be symmetric can be upper bounded to 0.1dB, while the losses caused by forcing
the thresholds to be symmetric and equal at both base stations can be upper bounded
to 0.2dB, using the OC scheme as a lower bound to the BER of the SHDD, ,,; schemne
with no constraints on the thresholds.

It is interesting to mention that, when L = 2 and the thresholds are even symmet-
ric, the local decisions are locally optimum decision rules meaning that they minimize
the probability of bit error on the local decisions as opposed to globally optimum
decision rules which minimize the probability of bit error at the output of the MSC.
Furthermore, if the SHDD; g, scheme involves only 2 base stations and is using lo-

cally optimum decision rules, the scheme is equivalent to the selection diversity scheme
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since, as shown in Appendix D, the fusion rule selects the local decision of the base
station for which the probability of bit error on the local decision is the lowest. Finally,
for any number of quantization levels, the losses caused by forcing the thresholds to
be symmetric and equal at both base stations do not seem to increase when there is

a difference of 6dB between the average SNR of the two base stations.

2.4.2 Unknown channel state information at the fusion center

In section 2.2.2, we have presented the optimum SHDD scheme for the case when the
channel state is unknown at the MSC referred as the SHDD, ,,; scheme. Similarly to
the SHDD; ;. scheme, the local decision rules of the SHDD; ;5 scheme are likelihood
ratio quantizers for which the thresholds are independent of the channel state vector
H. However, as opposed to the SHDD; ;,;, scheme, the fusion rule of the SHDD, 4
is independent, of the channel state vector H.

We evaluated numerically the BER of the SHDD; ,,; scheme for the case when the
mobile unit is communicating with 2 base stations as well as for the case when the
mobile unit is communicating with 3 base stations. The evaluation of the probability
of bit error is discussed in Appendix B. In addition, the software used to obtain these
results is included in the compact disk provided with this thesis. Results for BER as a
function of the first base station average SNR are illustrated in Fig.2.10, Fig.2.11 and
Fig.2.12 for 2 base stations equipped with 1, 2 and 3 receiving antennas respectively.
Similarly Fig.2.13 and Fig.2.14 present results for 3 base stations equipped with 1
and 2 receiving antennas respectively. Each figure is made of two sub-figures where
in part a) the average SNR is equal at both base stations while in part b) there is a
difference of 6dB between the average SNR at the first and the second base station. It
is important to mention that, in these figures, when the difference between two curves
is less than 0.05dB at fixed BER, the two curves are plotted as one single curve on
the figures.

All figures present BER curves for SHDD, ,,; schemes using 2, 4 and 8 quantization
levels for the case when there is no constraint applied on the thresholds, for the case
when the thresholds are constrained to be even symmetric and for the case when
the thresholds are constrained to be even symmetric as well as identical at all base
stations. All figures also include for comparison purposes the BER curves of the OC
and the CHM schemes. Appendix D presents these 2 reference schemes and discusses
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the evaluation of the probability of bit error for each scheme. It is important to
remember that the BER of the OC scheme is obviously a lower bound to the BER of
the SHDD; 4, schemes while the BER of the CHM scheme is an upper bound.

A. Effect of the number of receiving antennas and the number of base

stations

From Fig.2.10 - Fig.2.14, we see that, as expected, increasing the number of base
stations or the number of receiving antennas per base station increases the diversity
order of the SHDDy ,,; scheme, as defined in (2.80). However, as opposed to the
SHDD, o and SHDD; 4,5 schemes, it appears that the diversity order provided by the
SHDD, ,p: scheme is not equal to the diversity order provided by the OC scheme, which
equals NgsNpg, although the difference is not dramatic. Furthermore, the diversity
order of the SHDD, ,,; scheme seems to increase as the number of quantization levels
increases such that, for schemes using 4 or 8 quantization levels, the difference with
respect to the diversity order of the OC scheme is only minor.

Hence, by comparing Fig.2.10, Fig.2.11 and Fig.2.12, it appears that, when 2
base station are involved in the handoff macrodiversity scheme, the gains obtained by
increasing the number of receiving antennas of the SHDD, ,,; scheme are similar to
the gains observed for the SHDD, ,,; and SHDD, 4,5 schemes, especially for schemes
using 4 and 8 quantization levels. Furthermore, by comparing Fig.2.13 and Fig.2.14, a
gain of approximately 8.0-9.6dB, at BER = 107, can be observed when the number
of receiving antennas per base station is increased from 1 to 2 in a 3 base station
SHDDg op: scheme.

Similarly to the SHDD, o, and SHDD) s, schemes, the diversity order provided
by the SHDDg ,p; scheme is approximately Npg time larger than the diversity order of
the CHM scheme, independently of the number of receiving antennas. For this reason,
the SHDD, ,,; scheme also provides important gains with respect to the CHM scheme.
For instance, from part a) of Fig.2.10, it appears that, when the SNR is equal at both
base stations and each base station is equipped with a single receiving antenna, the
SHDDg ., scheme provides a gain in SNR with respect to the CHM scheme of 17.8dB
at BER = 1073, with only 2 levels of quantization, which increases to 22.1dB, with 4
levels of quantization, and 22.6dB, with 8 levels of quantization. However, as for the
SHDD, . and SHDD; 4 schemes, the gains obtained by the SHDD; o scheme with
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respect to the CHM scheme decrease with the number of receiving antennas per base
station. From Fig.2.11a), it appears that, when each base station is equipped with 2
receiving antennas, the gain in SNR, at BER = 1073, reduces to 7.9dB, with 2 levels
of quantization, to 11.0dB, with 4 levels of quantization, and to 11.3dB, with 8 levels
of quantization. Furthermore, from part a) of Fig.2.12, it appears that, when each
base station is equipped with 3 receiving antennas, the gain in SNR with respect to
the CHM scheme reduces to 5.2dB at BER = 107°, with 2 levels of quantization, to
7.8dB, with 4 levels of quantization, and 7.9dB, with 8 levels of quantization.
Furthermore, since the diversity order of the CHM scheme is independent of the
number of base stations, additional gains with respect to the CHM scheme can be
obtained by increasing the number of base stations involved in the scheme. In fact, by
comparing Fig.2.10 and Fig.2.11 with Fig.2.13 and Fig.2.14, we see that the additional
gain obtained by increasing the number of base stations from 2 to 3 varies from
approximately 7.0-7.4dB, when Ng = 1, to approximately 3.7-4.1dB, when Np = 2.
Finally, it is interesting to notice that more gain is obtained by increasing the
number of receiving antennas of a two base stations SHDD; ,,,; scheme from 2 to 3
than increasing the number of base stations of the same scheme from 2 to 3, although
both schemes provide the same diversity order. In fact, the difference decreases with
the number of quantization levels and varies from up to 1.1dB, when L = 2, to (.4dB,
when L = 4, and 0.1dB, when L = 8. Hence, it seems that, in this case, it is more
advantageous to provide to the fusion center fewer local decisions of better quality

than more of worst quality.

B. Effect of the difference in average SNR between base stations

By comparing part a) to part b) of Fig.2.10, Fig.2.11 and Fig.2.12, it appears that,
similarly to the SHDD o, and the SHDD, 4, schemes, the BER curves of a SHDDg opt
scheme using 2 base stations are shifted horizontally by approximately 2.7-3.1dB
toward the BER curves of the CHM scheme, when the average SNR at the second
base station is lowered by 6dB from the SNR at the first base station. It is important
to mention that the BER curves of the OC scheme are also affected similarly by the
asymmetry in the two links, such that the losses with respect to the OC scheme appear

independent of this factor.
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C. Effect of the number of quantization

From Fig.2.10 - Fig.2.14, we see that in all considered cases a large part of the po-
tential gain that can be obtained by the SHDD; o, scheme with respect to the CHM
scheme is reached with only 2 quantization levels although less than the SHDD, oy
and SHDD 4, schemes. However, additional gains can still be obtained by increasing
the number of quantization levels.

More precisely, from Fig.2.10 - Fig.2.12, it appears that for the 2 base station
SHDDs, 4, scheme, if the number of quantization levels is increase from 2 to 4, the
performance is improved at BER = 107° by 4.4dB, when Ng = 1, by 3.0dB, when
Ng = 2, and by 2.4dB, when Ni = 3. Hence, with only 4 levels of quantization at
each base station, the difference between the BER curves of the OC scheme and the
2 base station SHDDj 4, scheme equals approximately 0.4-0.5dB, for all considered
cases. The gain obtained by further increasing the number of quantization levels from
4 to 8 equals approximately 0.3-0.4dB. Hence, when L = 8 the difference in SNR, at
fixed BER, between the OC scheme and the 2 base station SHDD, ,,, scheme is lower
than 0.1dB for all considered cases.

From Fig.2.13 and Fig.2.14, it appears that for the 3 base station SHDDg
scheme, if the number of quantization levels is increased from 2 to 4, the performance
is improved at BER = 1075 by 4.6dB, when Ng = 1, and 3.1dB, when Np = 2.
Hence, with only 4 levels of quantization at each base station, the difference between
the BER curves of the OC scheme and the 3 base station SHDD, 4, scheme equals
approximately 0.8dB, for all considered cases. The gain obtained by increasing the
number of quantization from 4 to 8 equals approximately 0.5-0.7dB. In fact, when
L = 8 the difference in SNR, at fixed BER, between the OC scheme and the 3 base
station SHDDj ,,; scheme is lower than 0.2dB for all considered cases.

Hence, since the difference between the SHDD, ,,; scheme using 8 quantization
levels and the OC scheme is less than 0.2dB for all considered cases, it can be concluded
that the additional gains obtained by increasing the number of quantization levels over

8 can only be marginal.

D. Effect of the threshold constraints

From Fig.2.10 - Fig.2.14, we see that the SHDD, ., scheme is much more affected by
the constraints than the SHDD, 4, scheme. As opposed to the SHDD), ., scheme, the
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performance losses are not only caused by an horizontal shift of the BER curves but the
constraints have also an impact on the diversity order of the SHDD, ,,, scheme. The
more striking example can be observed when the thresholds of a SHDD; o, scheme,
using 2 quantization levels, are forced to be even symmetric when only two base
stations are involved in the handoff macrodiversity scheme. It implies that the local
decision rules are locally optimum and, as shown in Appendix D, the scheme is now
equivalent to the CHM scheme, reducing the diversity order of the scheme by one half.
From Fig.2.10, it appears that, when the scheme is using only one receiving antenna,
the losses reach up to 17.8dB when operating at a fixed BER of 107°. However,
it can also be seen from these figures that the performance losses diminish with the
number of quantization levels, the number of base stations and the number of receiving
antennas. In fact, in Fig.2.14 it can be observed that, independently of the number
of quantization levels, the constraints produce no noticeable loss of performance for a
SHDD, ,,; scheme involving 3 base stations, when each base station is equipped with
2 receiving antennas. Similarly, when the number of quantization levels at each base
station is equal to 8, in all considered cases the losses caused by forcing the thresholds
to be even symmetric are as low as 0.01dB, although the reduction in optimization

complexity is considerable.

2.4.3 Comparison of the two cases

In this section, we use the results presented in the two previous sections and compare
the BER of the SHDD schemes for the case when the channel state is known at
the MSC and the case when the channel state is not known at the MSC. First.
by comparing the performances of the SHDD, o4 and SHDD, ,, schemes, we sce
that, when both schemes are using 2 quantization levels, the SNR difference when
operating at BER = 107° reaches up to 3.4dB, when Ng = 1, but reduces to 1.7dB,
when Ny = 2, and 1.0dB, when Ng = 3. Similar, the gain in SNR at BER = 107"
obtained by the SHDD; ,,; scheme with respect to the SHDD, 5 scheme equals 3.9dDB,
when Ni = 1, 2.3dB, when Ng = 2, and 1.6dB, when Ng = 3. Hence, when the
SHDD schemes are using 2 quantization levels at each base station, the additional
complexity and additional fixed network bandwidth required by the SHDD), 4, scheme
and SHDD ;,, scheme can be justified by the relatively important performance gains

that provide these schemes with respect to the SHDD;,; scheme, especially when
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each base station is using a single receiving antenna.

However, it appears that the performance difference diminishes as the number
of quantization levels increases. More precisely, the performance difference between
either the SHDD ,,; or SHDD; 45 scheme and the SHDDj o scheme using 4 quanti-
zation levels reduces to less than 0.3dB at BER = 10~°, independently of the number
of receiving antennas. Furthermore, the performance difference for the case when
L = 8 can be upper bounded to approximately 0.07dB since the difference between
the OC scheme and the SHDD, ,,; scheme, using even symmetric thresholds. is ap-
proximately 0.07dB for any number of receiving antennas. Hence, when L > 2. the
performance difference between the SHDD; o, SHDD, sy and SHDD; o, schemes is
much less significant. Consequently, when L > 2, the SHDD; ,,; scheme becomes a
much more attractive alternative since it does not require the channel state to be
known at the MSC, only requires that the thresholds be updated when the average
SNR varies and a closed form expression can be derived for the threshold optimization

cost function.
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Chapter 3

SHDD scheme for coded

communication systems

In this chapter we study the application of distributed detection, with soft decisions
at the local detectors, to the uplink when a mobile unit is in soft handoff and error
control coding is used. In section 3.1, the CSHDD scheme is presented. In section
3.2, the optimum CSHDD scheme is derived for BPSK modulation for the case when
the channel state is known at the MSC and also when it is not known. Since the
complexity of the optimum CSHDD scheme grows exponentially with the frame size,
section 3.3 considers sub-optimum alternatives using likelihood ratio quantizers at the
base stations. Finally, in section 3.4, the performances of the designed sub-optimum
CSHDD schemes are evaluated by computer simulations for a quasi-static spatially-

uncorrelated Rayleigh fading channel.

3.1 System model

We consider the uplink of a mobile unit in soft handoff with Ngs base stations, each
equipped with Ng antennas, as illustrated in Fig. 3.1. At the mobile unit, prior to
transmission, the information bits in the frame B = [By, By, . .. , By]T, where N is the
frame size, are channel encoded, by a rate k./n. convolutional code with constraint
length p, yielding the coded frame C = [Cy,Cy, ... ,Cn.]T, where N, is the coded
frame size. Before encoding, Ny, tail bits are added to the information frame B to

ensure that the code trellis terminates in the zero state, such that N. = (N + Ntai[)z—f.
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Fig. 3.1 Coded Soft Handoff Distributed detection system model

The coded bits Cy,Cs,...,Cy, are then sent individually to a symbol mapper to
generate the BPSK symbols in the frame S =[S}, Sy, ..., Sn |7, where S, € {—1.1}.
The symbols are then transmitted sequentially to the Ngg base stations taking part
in the handoff process.

At the receiving end, all base stations make soft decisions on the transmitted
coded bits. For instance, the local detector at the kth base station makes a soft
decision Ui, € {0,...,L — 1} on the transmitted coded bit C; based on the received

signal vector R = [Rkt1,- - -, Rieng]T - The decisions contained in the local decision
vector U = [Uy,..., Uy, |7, where Uy = [Ug 1, ..., Ukn.], are sent from the different
base stations to the MSC where a final decision Uy = [Up 1, .., Upn.]T is made on

the transmitted coded frame C. More precisely, the final decision is selected from
the codebook C containing all possible codewords such that the decoding process only
requires to determine the information frame B = [Bl, B’Q, e, BN]T associated with
the final decision Uj.

The signal received at time-index ¢ at the nth antenna of the kth base station can
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be represented as follows

Ryin = HenV/ ExSe + N g (3.1)

The parameters N ., model white Gaussian noise as independent zero mean circu-
lar complex Gaussian random variables with variance Np/2 per real and imaginary
component. The parameters Hy , model quasi-static spatially-uncorrelated Rayleigh
fading as independent zero mean circular complex Gaussian random variables with
variance 0.5 per real and imaginary component. The parameters Ex model the average
received energy per antenna at the different base stations and are dependent on the
position of the mobile unit in the cellular network as well as power control. It is as-
sumed that each base station provides to the MSC an accurate estimate of the average
signal-to-noise ratio (SNR) received at each individual antenna, which can be defined
as SNRy = 1%1; On the other hand, the channel state vector H = [Hy, ..., Hy,.]7,
where Hy = [Hy 1, ..., Hg ng), may or may not be available at the MSC although Hy
is perfectly known at the kth base station.

3.2 Optimum Distributed Detection

In this section, we derive the optimum CSHDD scheme for which the optimality
criterion is the probability of frame error at the output of the MSC. Similarly to the
uncoded case considered in the previous chapter, the objective in optimizing such a
system is to obtain the set of local decision rules used at different base stations and
time instants, denoted by vk where k = 1,..., Ngsand ¢t = 1,..., N, and the fusion
rule used at the MSC, denoted by 7y, that jointly minimize the optimality criterion.
However, the major difference with respect to the uncoded case is that correlation,
introduced by the error control coding, exists between the different transmitted bits
of a frame. Consequently, the distributed detection scheme must take in consideration
the information contained in the whole frame when making a decision on any of the
transmitted bits.

The average probability of frame error at the output of the MSC can be defined

as follows
Py =/Pf|th(h)dh, (3.2)
h

where Py, is the probability of frame error given the channel state vector H =h and
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fu(h) is the PDF of H. Let P(Ug = ug | h,u) denote the probability that the final
decision U, equals ug given the channel state vector H = h and the local decision
vector U = u, P(U = u | h,c) denote the probability that the local decision vector
U equals u given the channel state vector H = h and the transmitted coded frame
C = c and P(C = c) denote the probability that the mobile unit transmitted the

codeword c. The conditional probability of frame error Py, equals

Pin = >3 > P(Ug=u,|h,u)P(U=u|hc)P(C=c). (33)

ceC up#c u

where P(C = ¢) = 5. Furthermore, the conditional probability of frame error (3.3)

can be reformulated as follows

Prn = QLNZZP(U=u|h,c)ZP(Uo=UO|h,u)

ceC u up#c

= Y PU=ulho)(1-P(Us=c|hw)

ceC u

= l—glﬁZZP(UO:c|h,u)P(U=u|h,c), (3.4)

ceC u

which is a more appropriate form for the optimization of the decision rules.

It is important to mention that, as the uncoded case, the decision rules have a
common optimality criterion and are therefore dependent on each others. Since the
decision rules cannot be selected individually, we consider that they are selected at
the MSC and that the MSC has a mean to update the local decision rules at the
base stations when the average SNR or the channel state varies, depending on the
information available at the MSC. As mentioned in the previous section, the channel
state vector H = [Hy, ..., Hy,,]" may or may not be available at the MSC although
the channel state vector Hy is perfectly known at the kth base station. Since both
cases provide different decision rules, the derivation is separated in two parts treating

separately both cases.

3.2.1 Known channel state information at the fusion center

In this section, it is assumed that the channel state at each base station is varying

slowly enough such that accurate estimates can be transmitted to the MSC, where
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the decision rules are optimized and the final decision Uy is made. Hence, as for
the uncoded case, the fusion rule is obviously a function of the channel state vector
H. In addition, since the decision rules are optimized at the MSC, the local decision
rules are also functions of the channel state vector H as long as the MSC updates
the local decision rules used at each base station every time the channel state varies.
The optimum decision rules are therefore functions of the channel state vector H, and
minimize, for H = h, the conditional probability of frame error (3.4).

In this section, we first derive a fusion rule which is optimum in the sense that, for
fixed local decision rules, it provides the minimum average probability of frame crror
at the output of the fusion center. Then, we derive the kth base station local decision
rule which is optimum in the sense that, for a fixed fusion rule and fixed local decision
rules at the remaining base stations, it provides the minimum average probability of

frame error at the output of the fusion center.

A. Optimum fusion rule

At the MSC, the information available to the fusion rule to make a final decision
on the transmitted frame is the local decision vector U = [Uy,..., Up,,]7 and the
channel state vector H. Furthermore, since the optimality criterion is the probability
of frame error which is a Bayesian criterion, it can be assumed that the fusion rule
is deterministic. Hence, when H = h, the fusion rule should therefore partition
the observation set Z containing all possible realizations of U into the 2" mutually
exclusive sets Z.(h). The conditional probability P(U; = c | h,u) in (3.4) can thus

be expressed as follows

(3.5)

P(Ug=c | h,u) = 1 if u € Z.(h)
° ’ 0if u ¢ Zc(h)

and the conditional probability of frame error (3.4) can be rewritten as follows

Pin = 1——2 > P@U=u]|h,c). (3.6)

ceC ueZ.(h)

From expression (3.6), it can be concluded that, in order to minimize Py, each real-
ization of U should be included in the set Z.(h) associated with the codeword c that

maximizes P(U = u | h,c). Therefore, the optimal fusion rule, given U = u and
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H=h,is
Uy = arg r?éacx{P(U =u | h, c)} (3.7)

or equivalently in the maximum a-posterior form
Uy = argmeacx{P(C =c | h, u)}, (3.8)

since all codewords contained in C are equiprobable. In case of equality, the final deci-
sion can be made randomly among the codewords in C providing the same maximum
since it does not affect the performances of the CSHDD scheme. Considering that
the local decision vectors Uy, ..., Uy, are conditionally independent since no com-
munication is assumed between the base stations, the optimum fusion rule simplifies

to

Nps
Uy = arg max {H P(Uy = u; | h, c)} : (3.9)

Furthermore, since it is assumed that each local decision Uy, is made only based on
the information contained in Ry, ignoring the information contained in the received
signal vectors R 1,. .., Ri -1, Ret41, - - -, Rk nv,, the local decisions Uy 1, . .., Uy N, are

also conditionally independent such that the fusion rule simplifies to

N¢ Nps
Uy = arg ncleacx {,11 II_I[ P(Uis = ugy | h, c,,)} ) (3.10)

The Viterbi algorithm can therefore be used to implement the optimum fusion rule

where the branch metric m;(s, s’) associated with the branch starting in state s and

ending in state s in the trellis step ¢, where 1 = 1,..., N—+kj—\"M, can be defined as
follows
ne Nps
mi(s,8) = [ [] P(Ueti-vmets = tkii-tmeri | B, Climimers = ¢i(s,8)) - (3.11)
j=1 k=1

given c;(s, s') is the jth coded bit associated with the set of branches starting in state

s and ending in state s'.
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B. Optimum local decision rules

Considering the MSC updates the local decision rules every-time the channel state
varies, the information available to the local detector of the kth base station, to
make the decision U, on the transmitted coded bit Y, is the received signal vectors
R 1,..., Rk, and the channel state vector H. However, it is assumed that the
local decision rule that determines the local decision U, ignores the information
contained in the received signal vectors R 1, ..., Rks—1, Ree41, - - - Ren, in order for
the kth base station local decisions Uy, ..., Uk n,. to be conditionally independent
and P(Uy = u; | h,c) = HLVQIP(Uk,t = ugy | h,c). The local decision Uy, is
therefore conditionally independent from all the other decisions contained in U such
that P(U = u | h,¢) = P(U%t = ub* | h,¢)P(Uk, = uk; | h, ¢;) and expression (3.4)

can be expressed as follows

P = 1-— 2LN Y3 > P(Ug=c| b utt uy) x

ceC upy ukit

P(UR = u** | h,¢)P(Us, =t | h, ), (3.12)

where Ukt = [Uy,..., UL, ..., Upn, |7 and UL = [Uky, ..., Ukt Ukt - - -, Uk

The local decision rule i ¢(r ¢, h), which determines the value of the local decision
Ui, given Ry, = ry, and H = h, should partition the observation set Rt containing
all possible realizations of Ry, into the mutually exclusive sets Rf’t(h), where | =
0,...,L — 1. In order to determine which realizations of Ry, should be included in
these sets, it is necessary to expand the conditional probability of frame error (3.12)
as a function of ry,. Let fr,,(rk. | hi,c) denote the joint PDF of the received signals
Rit1, ..., Ree vy given the coded bit C,; = ¢; and the channel state vector Hy = hy.
The conditional probability P(Ux; = uk, | h, ¢;) can be expanded as a function of ry

as follows

P(Uk,t = Ukt | h, Ct) = / P(Uk,z = Ukt | h, rk,tact)ka‘,(rk,t ' h,Ct)dI'k,t

Tet

_ / P(Uss = s | By te) fre, (T | By )iy (3.13)

Tit

where P(Uy, = ug, | h,res,¢0) = P(Upy = ke | hyryy), since the knowledge of

H and Ry, is sufficient to determine the local decision Uk, and fri,(Tee | hyc) =
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fri (ks | By, ct), since Ry is independent of H* = [H),...,Hy_;, Heyy, .., Hyp o]
Substituting (3.13) in (3.12), the conditional probability of frame error can therefore

be expanded as a function of r ., such that

Py = 1___ZZZPU0—C|hu ) Uk t) X

ceC ug¢ ukt

P(Uk't = k’t ] h C)/ P(Ukt = Ukt | h g g)ka l(r“ | hk,Ct)drk,t

= 1——2/ P(Uke = ke | 1) Y D P(Ug = ¢ | h,u*t, uyy)

Ut ceC uh.t

P(U“ = u®* | b, C)ka,z(rk,t | hg, ¢)dry,
= l-o§ Z/ Ukt = Ukt | h y> t)Luk :(rk ty h)drk,ta (314)

Uk,t

where

Ly, ,(tks,h ZZP (Uo = ¢ | h,ub uy ) P(US = u™* | b, c) fr,, (tie | Baocr).
c€C uk:t

(3.15)
Since the local decision Uy ; is specified by the deterministic decision rule ;. ,(ry ., h)
given Ry, = ry, and H = h, the conditional probability P(Uy, = ug, | h,rs,) in

(3.14) can thus be expressed as follows

1 if r., € R5 (h
P(Uk,t = Ukt | h,rk,t) = { kit ng( )

0 if ry, ¢ RE! (D) (3.16)

and the conditional probability of frame error (3.14) can be rewritten as follows

1
Pf]h = 1- _Z/ Luk‘t(rk,tah)drk,t- (317)
ri t€Ry) , (h)

9N

Ukt
From expression (3.17), it can be concluded that, in order to minimize Py, cach
realization of Ry, should be included in the set R%* (h) associated with the index

uk,s that maximizes Luk't(rk,t,h). Therefore, the optimum local decision rule, given
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Ry =r, and H = h, equals

Up = arg max 1{Luk't(rk,t,h)}. (3.18)

uk't=0,...,L—

Then, given the set C} of all codewords for which C; = 1 and the set C} of all codewords

for which C; = 0, expression (3.15) can be expressed as follows

Luk,t (rk,t7 h)
= > 3 P(Up=c|h,u", u) P(U = u* | h,c) fr,, (tee | i, Co = 1)

ceC} uk:t
+3 Y P(Up =c | hub*, ug) P(UM = u** | b, ¢) fr,, (re, | By, C, = 0)
c€CP uk:t
= frRo.(Tke | B, Ce=1) Y Y P(Ug = ¢ | h,u**, up ) P(UM = ub* | b, c)
ceCl ukit
+fRe (Tre | Bk, Ce = 0) DY " P(Ug = ¢ | h,ub, uy,) P(UH = u™* | b, ¢).(3.19)
cGC? ukt

The local decision rule (3.18) can therefore be reformulated as follows

Uy = arg max {ka't(rk‘t | hy, C; = 0) ('Inuk'tA(llf(’)t)(rk,t, h;) + buk,g) } (3.20)

ug ¢=0,...,

or equivalently, since ka‘t(rk,, | hg, C; = 0) is independent of uy, as follows

=g, BP0} G
where o beCo= 1)
Tkt kLt =
AED (£, hy) = Rk B LR , 3.22
1,0 (rie, hy) Fre,(Tre | s, G = 0) ( )
M, = . 3 P(Ug = ¢ | h,ub, ug, )P(US = ub* | b, ) (3.23)
c€eC} ukt
and
bup, = D > P(Up =c|hub u )P(U = u™* | h,c). (3.24)
CEC? uk.t

Since the coefficients m,, , and b, , are independent of ry; but varying with h. as

can be seen on Fig. 3.2 the optimum decision rule Yeu(rr e, h) is, as for the uncoded
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U, =1+1 Uy =1-1 Uy =1

\

Kt
\ 7!L1+11\(1,0 Yrpe ) = b
\

k
’”’/l—lA(l,dt)(rk,L: hy) — by

— —

k.
AR (rp )

gAY (v ) = by

Fig. 3.2 Graphical representation of the local decision rule v ,(r , h)
and Yk ¢(Tk ¢, i)

case, a likelihood ratio threshold test, where the thresholds partitioning the likelihood
ratio A(llfét)(rk,t, hy) are functions of h and must therefore be updated as the channel
state varies. Furthermore, as for the uncoded case, the values of these thresholds
cannot be determined analytically due to the interdependence of these thresholds and
other local detector thresholds with respect to the common optimality criterion. The
thresholds must therefore be optimized simultaneously using a numerical optimiza-
tion algorithm in order to determine their optimum values. Since the channel state
is known at the MSC where the numerical optimization takes place, in this case the
cost function minimized by the thresholds, for H = h, is the conditional probability
of frame error (3.4). However, as opposed to the uncoded case, the number of sum-
mations required to evaluate this cost function grows exponentially with the frame

size. Therefore, in section 3.3 sub-optimum schemes are proposed.

3.2.2 Unknown channel state information at the fusion center

In this section, it is assumed that the channel state vector H is not known at the MSC,
where the decision rules are optimized and the final decision Uy is made. However,
the statistics necessary to describe the random behavior of the channel state vector
H are known. Therefore, as opposed to the previous case, the fusion rule is not a
function of the channel state vector H and the MSC only updates the local decision

rules every time the average SNR varies at any base station. However, since Hy is
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perfectly known at the kth base station, it is possible for the kth base station local
decision rules to be functions of the channel state vector Hy.

In this section, we first derive a fusion rule which is optimum in the sense that,
for fixed local decision rules at the base stations, it provides the minimum average
probability of frame error at the output of the fusion center. Then, we derive the
kth base station local decision rules which are optimum in the sense that, for a fixed
fusion rule and fixed local decision rules at the remaining base stations, it provides

the minimum average probability of frame error at the output of the fusion center.

A. Optimum fusion rule

At the MSC, the only information available to the fusion rule to make a final decision
on the transmitted frame C is the local decision vector U = [Uy,..., Upn, |7, Since
the optimality criterion is the probability of frame error which is a Bayesian criterion,
it can be assumed that the fusion rule is deterministic. The fusion rule should therefore
partition the observation set Z containing all possible realizations of U into the N
mutually exclusive sets Z.. As opposed to the previous case, the fusion rule is not a
function of the channel state vector H such that the conditional probability P(Ug, =
ug | h, u) simplifies as follows P(Uy = ug | u). The average probability of frame error

(3.2) can thus be reformulated as

P = I—QLNZZP(UO:C|u)/th(h)P(U:u|h,c)d,h

ceC u
1 i
= 1—2—N;2u:P(UO:c|u)P(U:u\c) (3.25)
since
P(U=u]c)= /fH(h)P(U — u | b, c)dh. (3.26)
h

Furthermore, since the final decision Uy is specified by the fusion rule o(u) given
U = u, the conditional probability P(Uy = ¢ | u) in (3.25) can thus be expressed as

follows
1ifue Z

. (3.27)
0 if u ¢ Z,

P(Uozclu):{
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and the probability of frame error can be rewritten as follows

1
P = 1—2—NZZP(U:u|c). (3.28)
ceC uez.

From expression (3.28), it can be concluded that, in order to minimize I’;, cach
realization of U should be included in the set Z. associated with the codeword c that

maximizes P(U = u | ¢). Therefore, the optimal fusion rule, given U = u, is

Uy = arg nclgcx{P(U =u] c)} (3.29)
or equivalently in the maximum a-posterior form

Uy = arg TQCX{P(C =c]| u)}, (3.30)

since all codewords contained in C are equiprobable. Then, considering that the local
decision vectors Uy, ..., Uy, are conditionally independent since no communication
is assumed between the base stations and the channel fading is spatially uncorrelated.

the optimum fusion rule simplifies as follows

Nps
Uy = arg r?&x{kl—_ll P(Uy = uy | c)} . (3.31)

However, even if each local decision Uy, is made only based on the information con-
tained in Ry, the kth base station local decisions Uy, ..., Uk n, are still dependent
on the unknown channel state vector Hy such that P(Uy = u; | ¢) # Hfi‘l P(Uks =
ugy | ¢t). Therefore, as opposed to the previous case, the Viterbi algorithm cannot be
used to progressively eliminate possible candidates using the convolution code struc-
ture. The implementation of such a fusion rule requires a number of comparisons that

increases exponentially with the frame size.

B. Optimum local decision rules

At the kth base station, the information available to the local detector, to make the
local decision U, on the transmitted coded bit Ci, is the received signal vectors

Rk, ..., Ri,n. and the channel state vector H,. However, as for the previous case, it
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is assumed that the local decision rule that determine the local decision Uy, ignores the

information contained in the received signal vectors Ri 1,. .., Rg -1, Re g1, - - - s R owv,
in order for the kth base station local decisions Uy ,..., Uk n. to be conditionally
independent.

The local decision rule vk ¢(rg ¢, hy), which determines the value of the local decision
Uk given Ry = iy and Hy = hy, should therefore partition the observation set R*t
containing all possible realizations of Ry, into the mutually exclusive sets Rf’t(hk),
where | = 0,...,L — 1. In order to determine which realizations of Ry, should be
included in these sets, it is necessary to expand as a function of ry, the probability of

frame error conditioned on the channel state vector Hy = h; which can be defined as

Pfjn, = /k Py fax (h*|hy)dh* = /k Pyin fux (h*)dh", (3.32)
h* h*

where Py, is defined in expression (3.4) and fu(h*[hi) = fu(h*) since H* =
Hy,...,He_1,Higqo, . .y Hp,s]T is independent of Hy. Hence, by substituting (3.4)
n (3.32), the conditional probability of frame error can be expressed as follows

Ppn, = 1——ZZPU0—C|U/fHk (h*)P(U = u | h, c)dh*, (3.33)

ceC u

where we used the fact that P(Uy = ¢ | h,u) = P(Uy = c | u) since the fusion
rule is independent of H. Furthermore, since the local decisions are conditionally
independent, it implies that, in (3.33), P(U = u | h,¢) = P(U* = u* | h*,¢)P(U} =
u! | hg, c)P(Uk, = uk, | h, c;) and the conditional probability of frame error can be

expressed as follows
Pine = 1= 55 2 Y3 P(Us = ¢ |, uf )
c€C ug,: uf uk
fnk(hk)P(Uk = u* | h*, ¢)dh*P(U}, = u}, | i, ¢)P(Ur, = gy | hyo )

1——ZZZZP (Up =c | uf,ul, ug,) x

c€C up,e uf

P(U’“ =u* | c)P(UL = ul | hy,c)P(Us, = upy | he, c)(3.34)

T t T
where Uk [Ula s 7Uk—1a Uk+la BRI UNgs] ) Uk - [Uk,la SRR Uk,t—l) Uk,t+1a cee Uk,Nc]
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and
PU*=u*|c)= | fu(BF)P(U* = u* | b* c)dh*. (3.35)
h*

The conditional probability P(Ux: = ug; | hi, c:) in (3.34) can be expanded as a

function of ry, as follows

P(Uk, = uky | hi, ce)

/ P(Uk,t = Uk | hkyrk,t,ct)ka,t(rk,t | hk,Ct)drk,t

Tkt

- / P(Uss = wee | By Toe) fr (e | e, )i, (3.36)

Tkt

where P(Uy: = ugy | hg,riy, ) = P(Uke = ugy | by, riy), since the knowledge of
H; and Ry, is sufficient to determine the local decision U ,. Hence, by substituting
(3.36) in (3.34), the conditional probability of frame error can therefore be expanded

as a function of ry,, such that

Pf\n,

= 1_—2222}’ Uo = ¢ | u, uj, wey)

c€C upe ul

P(Uk = lllc | C)]D(UfC = ui l hk, C) / P(Uk’t = Ut I hk, rk,t)ka‘t(rk,t I hk, ct)drk,t

St
= 1——2/ Ukv‘:ukv‘|hk’rkv‘)EZZP(U0:C|uk,u2€,uk,¢) %
Uk,t ceC “i- uk
P(U* =u* | ¢)P(U = uj | by, ¢) fry, (Tke | By, ce)driy
= l-95 Z/ P(Ukt = tikye | By i) Luy (O, i) dr g, (3.37)
Ukt
where
L’uk_g(rk,t’ hk ZZZP U[) =C | u uk,ukt X
ceC ui

P(U’c = u* | ¢)P(UL = u}, | hy, ¢) fr,, (T, | i, ). (3.38)

Since the local decision Uy, is specified by the deterministic decision rule Ve, (Trp, )

given Ry, = r, and Hy = hy, the conditional probability P(Uks = ugy | hy,1iy) in
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(3.37) can thus be expressed as follows

1 if | %) € Rk’t (hk)

Up,t

0 if Tkt ¢ Rk’t (hk)

Uk ¢

P(Ug,t = ugy | he,riy) = { (3.39)

and the conditional probability of frame error (3.37) can be rewritten as follows

1

P h = 1-—= / Lu,t(rk, ,hk)dl‘kY (340)
flhy 9N Z e €RES () k, t t

Ukt

From expression (3.40), it can be concluded that, in order to minimize Py, each
realization of Ry should be included in the set Rﬁ’:‘,(hk) associated with the index
ug, that maximizes L,, ,(rg;, hy). Therefore, the optimum local decision rule, given
Ry = ri, and Hiy = hy, equals

Ugt = arg  max 1{Luk‘t(rk¢,hk)} (3.41)

ukJ:O,...,L—

Then, given the set C} of all codewords for which C; = 1 and the set C} of all codewords

for which C, = 0, expression (3.38) can be expressed as follows

Luk,t (rk,ta hk)
fry (teye | hy, Cr = 1) x
DN P(Up =c| u¥, up, ug ) P(U* = u* | ¢)P(Ug = ug, | hy, c)

c€Cl ul uk
+ka'¢ (rk,t | h,,C; = O) X
S Y Y P(Us = ¢ | ¥, ul, ug ) P(U* = u* | ) P(UL = uf | by, ) (3.42)

ceCd uf uk

As the previous case, the local decision rule (3.41) can therefore be reformulated as

follows

Ugy = arg max . {ka’t(rk,t | hy, C, = 0) (muk‘tA(llf(;t)(rk,t, h,) + buk,z) } (3.43)

ug 1 =0,..,L—
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or equivalently, since p(rg. | hx, C; = 0) is independent of ug, as follows

Upy = arg  max {muk'tA(llfdt)(rk,t, hy) + bu“} , (3.44)

‘uk'g:O,...,L—l
where A(l%t)(rk,t, h;) is defined in (3.22). However, as opposed to the previous case,

My, = D 9 3 P(Uo = c| u¥, uf,ue, ) P(U* = u* | ¢)P(U} = uj, | hy, )

cec! uf uk

(3.45)

and

buee = 3 O 3 P(Ug =c | u*,uf, ) P(U* = u* | ¢)P(Uf = uf, | by, ) (3.46)

ceC) uf u*

Since the coefficients m,, , and b,, , are independent of ry, but varying with hy,
as can be seen on Fig. 3.2 the optimum decision rule i (rx,, hy) is a likelihood ratio
threshold test, where as opposed to the uncoded case the thresholds are functions
of hy. The values of these thresholds cannot be determined analytically due to the
interdependence of these thresholds and other local detector thresholds with respect
to the common optimality criterion. The thresholds must therefore be optimized
simultaneously using a numerical optimization algorithm in order to determine their
optimum values. However, since new local decision rules are only transmitted to the
base stations when the average SNR varies at any base station, it is very difficult to
optimize such a decision rule since the thresholds do not appear as scalars anymore
but as functions of hy. In fact, we encounter the same difficulty in chapter 2 when we
design a bandwidth efficient scheme for the case when the channel state is known at
the MSC. Hence, as a sub-optimum alternative, it can be proposed that the thresholds
be independent of hy. However, the number of summations required to evaluate the
cost function, which is in this case the average probability of frame error, grows
exponentially with the frame size, the number of base stations and the number of
bits of resolution per decision made at each base station. Therefore, in section 3.3

sub-optimum schemes are proposed.
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3.3 Sub-optimum alternatives

In the previous section, we derived decision rules that minimize the probability of
frame error at the output of the MSC. We showed that the complexity associated
with either the implementation or the numerical optimization of these decision rules
grows exponentially with the frame size. Therefore, in this section, we propose for both
considered cases sub-optimum decision rules based on the results from the previous
section with some simplifications to keep the complexity to a reasonable level.

It is first assumed that the local decision rules used at the kth base station are
identical for all values of ¢, such that P(Uy; =1 | C, = j) = -+ = P(Ugn. =1 |
Cy. = j), and even symmetric, such that P(Ux, =1|C,=j) = P(Ury =L - 11|
Ci=—j+1),for0<I<L-1andj=0,1. In fact, for both considered cases we

propose to use LLR quantizers as local decision rules which can be defined as follows,

. K, -
Ukvt = ukyt lf tkyuk,t S \IJ(l,Ot)(rkyt’ hk) < tk,Uk‘[“‘l? (3'4{)
where
k, k,
T (ri i) = In (AL (n, b)) (3.48)
and —o0 = tk,() < -0 < tk‘L/Q =0< - < tk,L = oo and tk,l = —tg -1, for
1 =0,...,L—1. Furthermore, it is assumed that the thresholds contained in the vector

ty = [tk1,---,tk,—1]7 partitioning the LLRs at the kth base station are independent
of h, such that new threshold values need only to be transmitted to the base stations
when the average SNR varies at any base station.

Then, for both considered cases we propose to use fusion rules that can be imple-
mented using the Viterbi algorithm. As derived in section 3.2.1, when the channel
state is known at the MSC and each local decision Uy, is made only based on the
information contained in the received signal vector Ry, the optimum fusion rule
presented in (3.10) can be implemented using the Viterbi algorithm. On the other
hand, as derived in section 3.2.2, when the channel state is not available at the fusion
center, the optimum fusion rule cannot be implemented using the Viterbi algorithm
since the local decisions Uy 1, . .., Uk n. are dependent on the unknown channel state
vector H. Therefore, we propose a sub-optimum fusion rule that ignores the depen-

dence between the local decisions Uy 1, ..., Uk n, made at the kth base station. The
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sub-optimum fusion rule given U = u can therefore be expressed as follows

N¢ Nps
UO = arg rglEaCX {H H P(Uk’t = Ukt l Ct = Ct)} . (349)
t=1 k=1

The Viterbi algorithm can therefore be used to implement the optimum fusion rule

where the branch metric m;(s, s’) associated with the branch starting in state s and

ending in state s* in the trellis step ¢, where ¢ = 1,..., N—J"k’i‘ﬂﬂ, can be defined as
follows
ne Nps
mi(s,8) = [ [ ] P(Uki-nets = wk-vnets | Climtners = (s, 5)) (3.50)
j=1 k=1

given ¢;(s, s*) is the jth coded bit associated with the set of branches starting in state
s and ending in state s.

Finally, in order to completely define these decision rules, the thresholds contained
in the vector t = [ty,...,tnys]” defining the LLR quantizers must be specified. Ob-
viously, it is a computationally intensive problem to select local detector thresholds
that minimize directly the average probability of frame error. To reduce the compu-
tation difficulty, we propose two optimality criteria that are expected to reduce the
probability of frame error at the output of the MSC, which are the pairwise error
probability (PEP) and the Mean Square Error (MSE) between the LLRs used by the
CSHDD scheme and the OC scheme at the fusion center. We refer respectively to
the quantizers optimized with respect to these criteria as the Minimum PEP-LLR
(MPEP-LLR) quantizer and the Minimum MSE-LLR (MMSE-LLR) quantizer. It
is important to mention that, in both cases, the cost function used to optimize the
thresholds is a nonlinear non-convex function of these thresholds. Since the cost func-
tions may have many local minima, we propose to use the ASA algorithm presented
in the the previous chapter to perform the optimization. Hence, the two proposed
LLR quantizers are first presented and then the tuning of the ASA algorithm for the
optimization of the quantizer thresholds is discussed. The numerical evaluation of the

proposed cost functions is discussed in Appendix C.
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3.3.1 MPEP-LLR quantizer

In this section, we consider the design of LLR quantizers that minimize the PEP at
the output of the fusion center. The PEP is the basic component of the probability of
frame error union bound {27] and can be defined as the average probability of frame
error when ¢ and c¢® are the only two codewords in the codebook C. Hence, the
PEP of the CSHDD scheme can be defined as follows

Py(c®, c®) = / Py (e, ¢@) fy(h)dh, (3.51)
h

where Py (c(V),c®) represents the PEP associated with the codewords ¢!) and c®,
given the channel state vector H = h. Using expression (3.3) defining the conditional
probability of frame error, the conditional PEP P2|h(c(1), c(?) can be formulated as

follows

P2|h(C(l), c(2))
= %ZP(UO =c® | h,u)P(U=u|h,C=c?)

1
- —c® - —
+2 Eu P(Uy=c*¥ | h,u)P(U=u|h C=c")
1
= 52 "P(Up=c | h,u)P(U=u|h,C=c?)

1 1
-z — c — — ¢
+2 2% P(Uy=c'V | hu)P(U=u|h,C=c')

= %+%ZP(UO:C“)|h,u) [PU=u|C=hc?)-P(U=u|hC=c")],

u

(3.52)

since P(Ug = ¢® | h,u) = 1 — P(Uy = ¢V | h,u). Considering the structure
of the proposed sub-optimum CSHDD schemes, we prove next that the PEP can
be expressed as a function of the Hamming distance d between the two considered
codewords.

First, considering ¢) and ¢ are the only two codewords in the codebook C, the

fusion rule (3.10), for the case when the channel state is known at the MSC, can be
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reformulated as follows

Nc Nps
P(Ues = ugs | he, Gy = >
A((l)c(z) HH Bt ke | B, G Ct) - 1, (3.53)
o1 ko1 LUkt = uks | hg, Gy = ¢?) <
U, = @

while the fusion rule (3.49), for the case when the channel state is unknown at the
MSC, can be reformulated as follows

N: N
ITﬁPUu=wna=4W > (3.54)
c(‘)cm tlklPUkt—UktICt_ct ) <
U0 — C(z)

Considering the set 7,, contains the indexes ¢ for which Y ;é c(Q) and the set T,

contains the indexes ¢t for which cE = ctz) the likelihood ratio A (1) (1, h) simplifies
as follows

0
A(C(z),cm (u,h)
Ngs

- I

P ) HPU“_u“|hk,Ct~c§”)
ere. iot PUke = wee | i, Co = o) o7y, oy P(Uky = wey | e, Gy = )
NBSP )
)

(

(

Ukt =tk | hg, Cr = ¢
HH Ek, | hy =

t€Tug k=1

Ukt = Uy | hk,Ct—CSI

, (3.55)

and similarly the likelihood ratio A(C?Z) «(» (1) simplifies as follows

Ai?%,c(z) (u)
= ]ﬁs PUky = uky | Cy = Cgl)) pLs PUge = wy | Cr = Cgl))
te7ug kot P(Uke =ty | Cp = o) teTeq ket PUke = e | Co = )
_ Y8 P(Upy = gy | G = ) (3.56)
te7uq kot DUk = gy | Ce = ) |

proving that both fusion rules are independent of the local decisions associated with
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the indexes t € T4 Let U™ contain all local decisions Uy, for which ¢ € Ty
and U? contain all local decisions U, for which ¢ € 74 Since the fusion rules
are independent of the local decisions in the vector U9 the conditional probability
P(Uy = ug|h,u) reduces to P(Up = ug|h, U0 = u®) and the conditional PEP
(3.52) can be simplified as follows

1
P2|h(C(1), C(2 = 5 + - (2:) P — C(l)lh, U(uq) — u(uq)) %
[P(US) = a9 | 1, C = @) = PU = u [ 1,C = V)],

(3.57)

since the local decisions are conditionally independent.

In addition, since the local decision rules are assumed to be even symmetric,
P(UW) = u*)|h,C = cm) = P(U®) = gd|h, C = &™) and P(Up = c¢™|h, UMD =
u®?)) = P(Ugy = & |h, UMD = () as long as @k, = L — 1 — up if adm =1 M
where m = 1,2. Hence, the conditional PEP can be reformulated as a function of

19 and &™) as follows

1
P2|h(c(1), @) = 5 + = Z P(Uy = éW]h, Uk = a®0) x

u(“Q)

[p Uk — gua) |h,C = 6(2)) — p(U(uq) — qlua) |h,C = é(l))] _
(3.58)

Since the sum is performed with respect to all possible values of a9 a0 can be
replaced by u®® in (3.58) without affecting the result. It shows that the PEP is
independent of the specific choice of codewords c® and ¢ as long as cgl) # c52) for
t € T, It can therefore be assumed without loss of generality that c®® is the all zero
codeword and ¢! differs from the all zero codeword at t € T,.

Finally, since the local decision rules at the kth base station are assumed identical
for all time indexes ¢, it can be assumed that P,ij =PU1=1l|h,Cr=j)=---=
P(Ugn, =1 | hg,Cn, = j), such that

Nps L—1

P(U®) = 4 | h,C = cV) = H [1& )i (3.59)

k=1 [=0
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and
Nps L-1
P(UM = y®) | h,C=c?) = (P (hy))™e (3.60)
k=1 1=0
where ny = [ngo,--.,nkr-1]7 and ngo + -+ + ng -1 = d, since ng represents the

number of local decisions equal to [ at the kth base station for ¢ € T, and the set 7,
contains d elements. The coefficients ngy, ..., ng -1 can be interpreted as the number
of elements in sets, partitioning the set 7Ty, which contain the time indexes ¢ for which
the kth base station local decisions equal respectively 0,...,L — 1. From [28], it is
known that the number of distinct partitions of 7,, into L sets of ngg,...,n% -1

elements equals M (n;) which is defined as follows

d!
!

‘Mg, L-1-

M(ny) = (3.61)

ol

and is called the multinominal coefficient. Hence, M(n,)--- M(ny,,) realizations of
U9 provide the same ny, ..., ny,, and consequently the same probability P(UMD =
u®® | h,C = c™). The conditional PEP (3.52) can therefore be reformnulated as

follows

Pyn(d) = £ —Z Z M(n;)---M(nyge)l(ng, ... Ny ) X

NNps
Nps L—1 Nps L-1
HHW(”“HWWMWL (3.62)
k=1 (=0 k=1 =0
where 1(n;,...,ny,) is an indicator function which, for the case when the channel

state is known at the MSC, equals

NBS - Pél(hk))”k'l
1(n1 ny ) = b H l ° (Pl(l)(hk) kI =
yeeay BS N Pll(h,) ng,

0 if H BS _ (ﬁm) <1

(3.63)

while, for the case when the channel state is unknown at the MSC, cquals

N En, [P{(H))\
it [12 115 (Fy) 2!
Ey [P“(HL)]

N - . O e
0 if J[2 l=0( [P:’.O(Hk)l) <l

En,

(3.64)
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Expression (3.62) proves that the PEP can be expressed as a function of the Hamming
distance d between the two codewords c(!) and c(®.

It is assumed that the PEP with respect to the two closer codewords in C represents
the more dominant error event. Therefore, by optimizing the decision rules with
respect to the PEP associated with the free Hamming distance dy, it can be expected
that the probability of frame error will be reduced. The numerical evaluation of the

PEP as a function of the thresholds contained in t is discussed in Appendix C.

3.3.2 MMSE-LLR quantizer

In this section, we consider the design of LLR quantizers that minimize a MSE cri-
terion, generalizing results from [15] to distributed detection system using channel
coding.

As mentioned in Appendix D, the decision rule of the OC scheme is a maximum
likelihood rule which can be reformulated as a function of the LLR \P(I'fdt)(rk,t,hk),
defined in (3.48), as follows

N: Npg
Ct k, -
Uy = arg max {; kz—;(—l) “\Il(lyot)(rk,,, hk)} . (3.65)

Hence, the OC scheme decision rule can therefore be presented as a function of the
LLR \Ilglf(;t)(rk,t, hy), which is the input to the kth base station LLR quantizer used by
the proposed CSHDD schemes. Similarly, the fusion rule (3.10) used by the proposed
sub-optimum CSHDD scheme, for the case when the channel state is known at the
MSC, is equivalent to [29]

Ne NES
ct k,
Uy = arg r?éxcx {Z Z(—l) “‘I/E’Ot)(uk,,, hk)} , (3.66)

t=1 k=1

where

P(Uk,t = Ukt I hkyct = 1)) (3 67)

P(Uk,t = Ukt ‘ hy,Cy = 0)
In addition, the fusion rule (3.49) used by the sub-optimum CSHDD scheme, for the

\Ifﬁ’j(;”(uk,t, hy) =In (
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case when the channel state is unknown at the MSC, is equivalent to [29]

N¢ Nps
Ct k‘,
UFWE&X{Z S (1) “\PE,J’(uk,o}, (3.68)

t=1 k=1

where

(3.69)

\Il(lk(,)t)(uk ) =In ( PUxs=upy | Ce = 1) ) |

P(Uks = ugy | Cy = 0))

It is important to mention that the LLRs \Ilglf(’)t)(uk,t,hk) and \I/(llfdt)(uk,t), used
by the CSHDD schemes, are functions of the LLR \Il(llfdt)(rk,t, h;), since the value of
the local decision Uy, is determined, given Ry, = r; and Hy = hg, by a local
decision rule that quantizes the LLR \Il(llf(;t) (rks, hy). Hence, by comparing expression
(3.65) with either (3.66) or (3.68), the LLRs W\;? (ug,, hy) and {57 (uy,) can be
interpreted as discretized representations of the LLR \Ilg'fdt)(rk,t, h;), used by the OC
scheme. Furthermore, the thresholds contained in the vector t defining the LLRR
quantizers used by the CSHDD schemes determine the discrete values that take the
LLRs \Ilglfdt)(uk,t,hk) and \Ilglf(’,t)(uk,t) as well as the mapping between \I/(l’fdt)(rk,t,hk)
and these discrete values.

Hence, given \Il(llfét)(rkyt, hy), \I/(llfdt)(ukyt, h;) and ‘I/(I'f(’)t)(uk,t) are respectively realiza-
tion of the random variables ¥ (R ., Hy), U7 (Uy,, Hy) and ¥57 (Uy,.), we pro-
pose that the thresholds defining the LLR quantizers, used by the CSHDD schemes,
be adjusted in order for the LLRs \I/(llfét)(Uk,i, H;) and \Il(l'f(;t)(Uk,,) to approximate un-
der a MMSE criterion the LLR \Il(llfdt)(Rk,t, H,). The MSE between the LLR used by
the OC scheme and the LLRs used by the CSHDD schemes can be defined as follows

2
€kt = LR, H, U [(‘I’(ll,cdt) (R, Hye) — U550 (Ui, Hk)) ] : (3.70)
for the case when the channel state is known at the MSC, and as follows
. 2
€kt = ERy 1L UL {(‘I’g'fdt)(Rk,t»Hk) - ‘I’(xlfdt)(Uk,t)) } , (3.71)

for the case when the channel state is unknown at the MSC. Hence, this quantizer is
expected to minimize indirectly the probability of frame error by minimizing the MSE
between the LLRs used by the OC and CSHDD schemes. The numerical evaluation
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of the MMSE as a function of the thresholds t is discussed in Appendix C.

3.3.3 Tuning of the ASA algorithm for the optimization of the CSHDD

schemes

In this section, we explain how to tune the ASA algorithm to optimize the thresholds
defining the LLR quantizers used by the proposed sub-optimum CSHDD schemes.
The reader is referred to chapter 2 for a detailed description of the ASA algorithm.
Hence, as discussed in chapter 2, the convergence of the ASA algorithim is influenced
principally by the selection of the domain X, the tuning of the cooling schedule
parameter cgen, and the tuning of the stopping rule parameters.

As for the uncoded case, it is necessary to select a domain X having a finite range
but still includes the global minimum. Considering the fact that the PEP and MSE
of CSHDD schemes using L quantization levels are respectively upper bounded by the
PEP and MSE of CSHDD schemes using L — 1 quantization levels, the domain A" can
be selected such that it contains all possible values of t that satisfy the inequalities
—Ljp <tgy <tgo < - <tgp—o<tgr1 <Ly k=1,...,Npgs.

Hence, for CSHDD schemes using MMSE-LLR quantizers, the value of Ly is se-
lected to eliminate the region of the domain 7', where P(Uy = 0) and P(Uy = L — 1)
approach 0. However, it is also necessary to make sure that the domain still includes
the optimum solution. The value of Ly is thus selected such that the thresholds #;
and t; 1, be able to take values for which P(Uy, = 0) and P(Uy, = L — 1) are at
least as low as o = 10710,

However, for CSHDD schemes using MPEP-LLR quantizers, it is possible to limit
X to a smaller region of T by using the fact that the PEP after the threshold opti-

mization can be expressed as follows

P (d) =/P2"|w(d)fg(w)dw=/1(w)dw, (3.72)

where P;lw(d) represents the PEP after the threshold optimization conditioned on 2 =
W, X =1[,..., Uy, )T given Q = /SN | H |2 and fa(w) = fa, (1) - fay,, (@Nps)
given fo, (wk) is the PDF of Qi defined in (B.8). Hence, the value of Ly is selected
such that the thresholds t; ; and tx ;-1 be able to take values for which P(Uy, = 0lhy)

and P(Uy, = L — 1}hy) are at least as low as a = 107!, for all values of wy. for which
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the integrand of (3.72) can possibly take a value that has an impact on the results
of the integral within the desired precision. Since the probability P(Ux, = 0|hy) and
P(Uy; = L — 1]hy) are monotonically increasing functions of wg, it is first necessary
to determine a value of wy over which the integrand I(w) is lower than the desired
precision independently of w; ... wk_1,Wk41 ..., Wnps- Lhen, as for the uncoded case,
we use this value of wy in expression (2.72) to determine the limit L. It is obvi-
ously necessary to use an upper bound U(wg) to the integrand I(w), independent of
Wi ... We_1,Wk4t1 - - -, WNps, Since the optimum thresholds are not known a priori.

For instance, for a CSHDD scheme for which the channel state vector H is known
at the MSC, the conditional PEP 2*|w(d) can be upper bounded by the conditional
PEP of a CSHDD scheme for which only the local decisions of the kth base station
are considered and hard decisions are made at the local detectors. This represents
the conditional PEP of a single base station scheme using a maximum likelihood rule

based on hard decisions and equals [30]

P () = qu B C'i;_1> ( éJ )Psg_lwk(l_Pslwk)%”L iﬂ ( Z ) Py, (1= Pej )™,

1)

(3.73)
where |z| represents the greatest integer < z and P, represents the conditional
probability of error on the local decisions which equals either P(Uy, = 0}h;C, = 1)
or P(Ui; = 1|hC, = 0). Hence, in this case, we use the upper bound

U () = Puge (d)fr () T mex { ()} (374)
kl;ﬁk k
where k' = 1,..., Ngs. However, if the channel state vector H is unknown at the

MSC, this upper bound is not valid and it becomes more difficult to find a relatively
tight upper bound U(ws). Hence, in these cases, we use the fact that P} < 0.5 and

set
Uler) = 0.5 fa (wr) T masx{ fo,, (we)} (3.75)
K £k *
where k¥ = 1,..., Nps.
The ASA algorithm also requires that the cooling schedule parameter cge, be

adjusted. As mentioned when we discussed the tuning of the ASA options for the
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uncoded case, cgen must be adjusted as shown in (2.77) which is a function of the
initial temperature 7'(0), the desired final temperature T'(ks) and the desired number
of annealing steps k. It is suggested that the initial temperature 7°(0) be set to 1 and
the final temperature T'(k;) be set to 107! although it can be necessary to adjust
these parameters differently for certain problems. However, the value of k; need to be
selected experimentally. Table 3.1 presents for both the MPEP and MMSE quantizers
the values of k; for which we obtain a good trade-off between efficiency and accuracy.

Finally, it is necessary to determine when to stop the ASA algorithm. As for
the uncoded case, the only stopping rule parameter that we consider is Nj;\*, which
represents the maximum number of sampling point generated, since it is probably
the more secure criterion. Given we know that the ASA algorithm is in the final
stage of the search when the number of iterations is larger than k;, we can expect
relatively good results by setting Nj2:® equal to £y but the accuracy can be improved

by increasing the value of N72a¥ with respect to ky.

gen

Ngs L D kg Ngs L D kg

2 2 0 0 - 2 0 0
4 2 20-10° - 4 1 1.0-10%
8 6 — - 8 3 40103
a) b)

Table 3.1 Values of k; used for the optimization of the different LLR
quantizers used by the proposed sub-optimum CSHDD schemes: a)
MPEP-LLR quantizer, b) MMSE-LLR quantizer

3.4 Computer Simulation Results

In this section, we study the performances of the proposed sub-optimum CSHDD
schemes, in term of BER and FER, for a 16-states, rate 1/2 convolution code with
generator polynomials G,(D) = 1+ D* + D* and G3(D) = 1 + D + D* + D* [30].
It is important to mention that the considered convolution code is designed for an
AWGN channel and may not necessarily be optimum for a quasi-static fading channel.
We consider only 2 base station CSHDD schemes but study the performances for
different numbers of receiving antennas and different numbers of quantization levels.

In addition, since the average SNR received at each base station is dependent on the
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mobile unit location in the cellular network, as well as on power control, we study the
performances of the CSHDD schemes for the case when the average received SNR is
equal both base stations as well as for the case when the average received SNR differs
at both base stations.

Before evaluating the performances of the designed CSHDD schemes, it is inter-
esting to estimate the potential gain that can be achieved by the CSHDD schemes
with respect to CHM. The potential gain is obtained by evaluating the difference
between the performances of the CHM and OC schemes (see Appendix D). Table 3.2
presents the potential gain in SNR achievable, when operating at FER = 10~% and
BER = 1074, by 2 base stations CSHDD schemes. Similarly to the uncoded case, the
potential gain decreases when the difference in average SNR between the two base
stations and the number of receiving antennas at each base station increases. How-
ever, it is clear from these results that important gains can be made by using more
sophisticated techniques such as the proposed CSHDD schemes.

Unfortunately, the evaluation of the probability of frame error and bit crror is a
computationally expensive problem that grows exponentially with the frame size. In
addition, bounding techniques have shown to provide, for the centralized case, very
loose bounds for the probability of frame and bit error over quasi-static channels [27].
Therefore, we constructed a software simulator in order to estimate the probability
of frame and bit error of the CSHDD schemes and reference schemes through Monte
Carlo simulations. The considered reference schemes are the OC scheme as well as

CHM scheme which are presented in Appendix D.

Nr ASNR (dB) Pot. gain (dB) Nr ASNR (dB) Pot. gain (dB)
1 0 16.5 1 0 19.7
6 13.4 6 16.6
2 0 9.6 2 0 10.9
6 6.6 6 8.0
3 0 7.3 3 0 8.1
6 4.5 6 5.3

a) b)

Table 3.2 Potential gain for 2 base stations CSHDD schemes with
respect to the CHM scheme as a function of ASNR = SNRL. 4) at

SNRy*
FER=10"%b) at BER = 10™*



3 SHDD scheme for coded communication systems 87

3.4.1 Computer simulation implementation

In order to estimate the performances of the proposed sub-optimum CSHDD schemes
and reference schemes, a software simulator was implemented and is included on the
compact disk provided with this thesis. However, it is important to mention that, be-
fore using the software simulator to estimate the performances of the CSHDD schemes.
the local detector thresholds were optimized using the ASA algorithm presented in the
previous chapter. More precisely, the ASAMIN Matlab gateway routine to Ingber’s
ASA C code is used to determine the local detector thresholds minimizing the MSE
and PEP criterion proposed in section 3.3. The evaluation of the MSE and PEP is
discussed in Appendix C. In addition, the optimization software is also included on
the compact disk provided with this thesis.

The software simulator is made of two modules which are the communication
system module and the performance estimation module. In the next two sub-sections,

we describe in details the role of both modules and their interactions.

A. Communication system module

The communication system module reproduces the transmission of a frame in the
different considered handoff macrodiversity scheme which can be either the CSHDD
scheme, the OC scheme or the CHM scheme. In addition, the communication systemn
module compares the detected information frame with the transmitted information
frame to determine the number of bit errors obtained. This number of bit errors is
transmitted at the performance estimation module to form the basic experiment used
to estimate the performances of the tested scheme.

For the CSHDD scheme, the communication system module implements the sys-
tem presented in section 3.1 for N = 130 and N,y = 4, considering the convo-
lution code investigated. The local detector LLRs \Il(llf(;t)(rk,t,hk) k =1,...,Nps
t =1,..., N, are evaluated, using the expression derived in Appendix A, and quan-
tized using the optimized thresholds to determine the local decisions. The fusion rule
is implemented using a Viterbi algorithm where no decision is made on any of the
transmitted bits before the end of the trellis is reached. In the Viterbi algorithm, the

branch metric m;(s, s*) associated with the branch starting in state s and ending in
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state s’ in the trellis step ¢, where 1 =1,..., %ﬂﬂ, equals

Ne Ngs — ) . ) o
mi(s, 5’) = Z CJ(S s )+1 Zl ( Uk:(i—l)nc+j = Uk, (i—1)nc+j | hk, C(z—l)nc-H - 1) + 6) ’
P(Uk (i—1yne+j = Uk i—1)neti | By Clityne+j = 0) + €

(3.76)

j=1

when the channel state is known at the MSC, and

Tic N
mi(s’ 3‘) = Z CJ(“ a fl < Uk (i-Unets = Uk(izne+ts | C(l Dnc+j — 1) + 6) )

=1 Uk J(i—Dnet+i = Uk (i-l)nc+j | C(z Dne+j = 0) + €
(3.77)
when the channel state is unknown at the MSC, where the constant € = 10~!'® ensures
there is no division per 0 and ¢;(s, ) is the jth coded bit associated with the set of

branches starting in state s and ending in state s>. It is important to mention that

P(Uep = us | Hi, ) = Fyoog, 1, o ey | Hi, Cr) = Fywom, 1, J(tr s, | Hes Ct)
(3.78)

and
P(Uks = ke | Co) = Fyo LR, Hy (kg 41 | C) = F\I'(fa”(Rk,:,Hk)(tk’“*v‘ | Ci), (3.79)

where the CDF F\pg%e)(Rk'th)(:v | Hy,C;) and F WO, Hy) (z | C;) are defined in
Appendix A.

B. Performance estimation module

The performance estimation module uses iteratively the communication system mod-
ule to estimate the FER and BER of the considered communication system as well
as the degree of accuracy of these estimates. In addition, the performance estimation
module initializes the simulation and periodically saves partial results to avoid large
data losses in case of system crash.

In the first part of the performance estimation, new frames are transmitted until
N. = 100 frame errors are detected. Given Ny frames were necessary to obtain the 100
frame errors, a new experiment is formed where Ny frames are transmitted and the
number of detected bit errors X} and frame errors X/ are recorded. This experiment

is performed N,, = 10 times such that estimates of the mean and variance of X% and
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X7 can be estimated, where X? and X/ are random variables representing respectively
the number of frame errors and bit errors when N frames are transmitted. In fact,
assuming X denotes either X? or X/ and X; denotes either X? or X/, an estimate of

the mean px can be evaluated as follows

Nrep
- - 1 ,
ﬂx(Xl,...,)&Nrep) = N Z)&, (380)
TeP =i

and an estimate of the variance 0% can be evaluated as follows
1 Nrep
. N 2
6% (X1, ..., Xn,.,) = > (X —ax (X1, Xwe,)) (3.81)
TP =1

Furthermore, the mean and variance estimates can be used to estimate the standard
deviation of the error e( X1, ..., Xn,.,) = ux—fix(X1,..., Xn,,,). Since E[e(X\, ..., Xn,)l =
0, the variance of e(Xy, ..., Xn,,,) simplifies as follows

Og(Xl,...,XNrep) = Var{e(Xl,...,XNrep)} = Var {[L/\' )&’1,...,4\’1\/,“,)}

Nrep Avcp
1 r
N S I R

i=1

Since all experiments are i.i.d.,

Nrep Nrep
T {Z Xi} = Z Var {X;} = Nrepos, (3.83)
=1 =1

2
r 0-1'
o2 (Xiyoo oy Xn,.,) = N‘ : (3.84)
rep
such that the error standard deviation ¢.(X1,..., Xn,,,) can be estimated as follows

re e 2
a-/\’(le"' Nrap \/E:N ’ 'UI’\(JXL'”"XN' P))
vV Nrep Nrep
(3.85)

Hence, given fixs(X{,.. .,X,{,rep) represents an estimate of the mean number of

OA'e(Xl, . '7XNrep) =

frame errors when Ny frames are transmitted, the FER can be estimated by the
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performance estimation module as follows

~ rf rf Nre
pxr(X{,.. .., X 1 {
X ( 1 Nre,,) \,f (386)

Ny NNy &7

FER =

and the standard deviation on the FER estimate error can be estimated as follows

~ r Nre e ~ r r 2
) Ge(X{,. ., X% \/Z "X = (XL X)) 3.8)
OFER = . .
Nf NfNrep
Similarly, given iy (X?,..., X% ,,) represents an estimate of the mean number of

bit errors when Ny frames of N information bits are transmitted, the BER can be

estimated by the performance estimation module as follows

fs(XE, . X5 ) 1 e
BER = e — D¢ .
N;N N,NN,ep; i (3.88)

and the standard deviation on the BER estimate error can be estimated as follows

~ r Te ~ r > 2
) Ge( X2, X% ) \/Z P(XE - pxe (XD, X))
OBER = NfN NfNNrep '

(3.89)

3.4.2 Known channel state information at the fusion center

In section 3.3, we have presented a sub-optimum CSHDD scheme for the case when
the channel state is known at the MSC referred as the CSHDD, 4, scheme. The local
decision rules of the CSHDD; 4, scheme are LLR quantizers. Two different types of
LLR quantizers were considered in section 3.3: the MPEP-LLR quantizer and the
MMSE-LLR quantizer. In this section, we further propose a third LLR quantizer
that uses the thresholds optimized for the uncoded SHDD; 4, scheme, presented in
chapter 2, when the thresholds are constrained to be even symmetric and we refer to
this LLR quantizer as the U-LLR quantizer.

We estimated using our software simulator the BER and FER of the CSHDD) s
scheme for the three choices of LLR quantizers assuming the mobile unit is commu-
nicating simultaneously with 2 base stations. Results for the BER and FER as a
function of the first base station average SNR, defined as follows SNR, = % are il-
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lustrated in Fig.3.3, Fig.3.4 and Fig.3.5 for 1, 2 and 3 receiving antennas respectively,
for the case when the average SNR is equal at both base stations. Similarly, Fig.3.6,
Fig.3.7 and Fig.3.8 present results for 1, 2 and 3 receiving antennas respectively, for
the case when there is a difference of 6dB between the average SNR at the first and
the second base station. Each figure is made of two sub-figures where in part a) the
FER curves are presented and in part b) the BER curves are presented.

For comparison purposes, all figures also include the BER and FER curves of the
OC scheme and the CHM scheme presented in Appendix D. It is important to mention
that the BER and FER of the OC scheme are obviously lower bounds to the BER and
FER of the CSHDD 4, scheme. On the other hand, as opposed to the uncoded case,
the BER and FER of the CSHDD 4, scheme are not upper bounded by the BER
and FER of the CHM scheme. It is due to the fact that, even if the CHM scheme
does not take advantage of the information received at the non-selected base stations,
the selected base station has access to direct observations to perform the decoding
as opposed to the CSHDDy g, scheme. Hence, when the difference in average SNR
between the two base stations is significant, the CHM scheme can provide better

performances than the CSHDD; 4,4 scheme.

A. Effect of the number of receiving antennas

From Fig.3.3 - Fig.3.8, we see that, as expected, increasing the number of receiving
antennas increases the slope of the BER and FER curves at large SNR and conse-
quently the diversity order provided by the CSHDD; 4, scheme, which can be defined
as

@
—101log, (%ﬁm)

(1010g10 (SNREP) — 10log;, (SNREC”))

d= (3.90)
where ER® represents either the BER or FER at the ith point. In fact, it appears
that in all considered cases the CSHDD, 4y, scheme provides the same asymptotic
diversity order as the OC scheme, which equals approximately Ngs/Ng. Hence, by
increasing the number of receiving antennas per base station from 1 to 2, a gain in
SNR of approximately 9.3-9.6dB at FER = 1072 and 10.7-11.1dB at BER = 107*
can be observed while, by increasing the number of receiving antennas per base station
from 2 to 3, the gain reduces to approximately 3.9-4.2dB at FER = 1073 and 4.1-
4.5dB at BER = 10~*. However, it can be observed that, when the CSHDD sy
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scheme is using either MPEP-LLR or U-LLR quantizers, the asymptotic diversity is
attained more quickly as opposed to the case when MMSE-LLR quantizers are used.
especially when Np = 2 and Ny = 3.

It is important to mention that, as in the uncoded case, the diversity order of
the CHM scheme is only equal to Ng, since this scheme selects a base station based
on the average SNR. The diversity order of the CSHDD; ;4 scheme is therefore Npg
times larger than the diversity order of the CHM scheme, independently of the num-
ber of receiving antennas. For this reason, the CSHDD, 4, scheme provides in the
considered cases important gains with respect to the CHM scheme, especially when
the average SNR is equal at both base station. In fact, the gains obtained when the
CSHDD); 4y scheme is using U-LLR quantizers with 8 levels of quantization are within
0.3dB of the potential gain presented in Table 3.2. Hence, as the potential gain, the
gain obtained by the CSHDD ,,; scheme with respect to the CHM scheme decreases
with the number of receiving antennas per base station. However, from Fig.3.5 and
Fig.3.8, it can be concluded that, even if each base station is equipped with 3 receiving
antennas, important gains with respect to the CHM scheme can still be obtained by
using handoff macrodiversity schemes that further increase the diversity order such
as the CSHDD; op; scheme.

B. Effect of the difference in average SNR between two base stations

By comparing Fig.3.3 - Fig.3.5 with Fig.3.6 - Fig.3.8, we see that, similarly to the
uncoded case, when the average SNR at the second base station is lower by 6dB from
the SNR at the first base station, it has for effect to shift horizontally the BER and
FER curves of the CSHDD; 4,5 scheme, obtained when the average SNR is equal at
both base stations, by approximately 2.6-3.1dB toward the BER and FER curves of
the CHM scheme, independently of the number of receiving antennas and the choice of
LLR quantizers. Hence, the diversity order of the CSHDD) ,; scheme is not affected
by average SNR difference of 6dB between the two base stations.

C. Comparison between the MPEP-LLR, MMSE-LLR and U-LLR quan-

tizer

First, it is important to mention that, when L = 2, the three LLR quantizers are

equivalent because the even symmetry constraint implies that the only threshold
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defining each quantizer is equal to 0. Furthermore, from Fig.3.3 - Fig.3.8, we see
that in all considered cases most of the potential gain that can be obtained by the
CSHDD gy scheme with respect to the CHM scheme is reached when L = 2. However,
additional gains can still be obtained by increasing the number of quantization levels.
In fact, the potential additional gain that can be obtained by increasing the number
of quantization levels of the CSHDD, ,,; scheme to more than 2 equals approximately
1.6-2.0dB, when operating at fixed BER or FER.

On the other hand, it is interesting to see that, when L > 2, the three designed
quantizers perform quite differently, especially the MMSE-LLR quantizer. In fact,
the worst performances are obtained by the MMSE-LLR quantizer, especially at high
SNR where almost no gain (<0.3dB) can be observed by increasing the nuinber of
quantization levels from 2 to 8. This can be explained by the fact that this crite-
rion does not focus on minimizing the probability of error associated with the more
probable error event.

As expected, the best performances are obtained with the MPEP-LLR quantizer
which minimizes the criterion that is the more correlated with the probability of frame
error and bit error. In fact, if the number of quantization levels is increased from 2
to 4, the FER and BER curves are shifted horizontally toward the BER and FER
curves of the OC scheme by approximately 1.1-1.5dB. Hence, with only 4 levels of
quantization at each base station, the potential additional gain that can be obtained
by further increasing the number of quantization levels equals approximately 0.4-
0.8dB, when operating at fixed BER or FER. However, it is important to mention
that the optimization of the thresholds with respect to the PEP is a computationally
intensive problem due to the numerical integrations and the large number of operations
involved. This is why the performances of the MPEP-LLR quantizer were not estimate
for L = 8.

The quantizer that offered the best trade-off between performance and computa-
tion complexity is the U-LLR quantizer. In fact, the performance difference between
the MPEP-LLR quantizer and the U-LLR quantizer, when using 4 quantization lev-
els, is inferior to 0.3dB for almost all considered cases. However, in Fig.3.4 and
Fig.3.7, it can be observed that, when Ng = 2, the performance difference reaches
0.6dB at BER = 104, when the average SNR is equal at the two base stations, and
0.4dB, when there is a difference of 6dB between the average SNR at the two base

stations. Finally, with 8 levels of quantization, the U-LLR quantizer provide perfor-
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mances within 0.3dB of the OC scheme, for all considered cases. It demonstrates that
by carefully selecting the thresholds defining the local decision rules, 8 quantization
levels are sufficient to make the performances almost identical to the performances of
the OC scheme.

3.4.3 Unknown channel state information at the fusion center

In section 3.3, we have presented a sub-optimum CSHDD scheme for the case when
the channel state is unknown at the MSC and, in this section, we refer to this scheme
as the CSHDD, g, scheme. As for the CSHDD, 4 scheme, the CSHDD; 4. scheme
uses LLR quantizers at the local detectors, where two different types of LLR quan-
tizers are proposed in section 3.3: the MPEP-LLR quantizer and the MMSE-LLR
quantizer. In this section, we further propose a third LLR quantizer that uses the
thresholds optimized for the uncoded SHDDj o, scheme, presented in chapter 2, when
the thresholds are constrained to be even symmetric and we refer to this LLR quan-
tizer as the U-LLR quantizer.

We estimated, using our software simulator, the BER and FER of the CSHDDy ;.
scheme for the three choices of LLR quantizers assuming the mobile unit is commu-
nicating simultaneously with 2 base stations. As for the previous case, results for
the BER and FER as a function of the first base station average SNR, defined as
follows SNR, = —Ilf—,ol, are illustrated in Fig.3.9, Fig.3.10 and Fig.3.11 for 1, 2 and 3
receiving antennas respectively, for the case when the average SNR is equal at both
base stations. Similarly, Fig.3.12, Fig.3.13 and Fig.3.14 present results for 1, 2 and 3
receiving antennas respectively, for the case when there is a difference of 6dB between
the average SNR at the first and the second base station. Each figure is made of two
sub-figures where in part a) the FER curves are presented and in part b) the BER
curves are presented.

For comparison purposes, all figures also include the BER and FER curves of the
OC scheme and CHM scheme presented in Appendix D. It is important to mention
that the BER and FER of the OC scheme are also lower bounds to the BER and FER
of the CSHDD; ;. scheme while, as opposed to the uncoded case, the BER and FER

of the CHM scheme are not upper bounds.
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A. Effect of the number of receiving antennas

From Fig.3.9 - Fig.3.14, we see that, as expected, increasing the number of receiving
antennas increases the slope of the BER and FER curves at large SNR and conse-
quently the diversity order provided by the CSHDDj ;4 scheme, as defined in (3.90).
However, as opposed to the CSHDD; 4, scheme, it seems that, when the CSHDD sus
scheme is using only 2 quantization levels or MMSE-LLR quantizers, the CSHDDg gy
scheme does not reach the same asymptotic diversity order as the OC scheme. It
is mostly apparent in Fig.3.9 and Fig.3.12 presenting the results for the case when
Ng = 1. However, the gain obtained by increasing the number of receiving antennas
for these schemes seems to be superior as for the other cases that reach the full di-
versity. In fact, by increasing the number of receiving antennas per base station from
1 to 2, it can be observed that the performances of the CSHDD, 4, scheme using 2
quantization levels are improved by approximately 13.0-14.8dB at FER = 1073 and
by 13.9-14.0dB at BER = 10™* while, by increasing the number of receiving antennas
per base station from 2 to 3, the performance improvement reduces to approximately
4.8dB at FER = 10~% and 4.6-5.2dB at BER = 10~*. On the other hand. for the
other cases where the CSHDD, 4, scheme reaches the same asymptotic diversity order
as the OC scheme, the gains obtained by increasing the number of receiving antennas

are similar to the gains obtained with the CSHDD 4, scheme.

B. Effect of the difference in average SNR between two base stations

By comparing Fig.3.9 - Fig.3.11 with Fig.3.12 to Fig.3.14, it can be observed that
in most of the considered cases, when the average SNR at the second base station
is lower by 6dB from the SNR at the first base station, the BER and FER curves
of the CSHDD 4,5 scheme, obtained when the average SNR is equal at both base
stations, are shifted horizontally by approximately 2.6-3.1dB toward the BER and
FER curves of the CHM scheme. However, when the CSHDDy ., scheme is using
only 2 quantization levels or MMSE quantizers, it seems that the performance losses
are not only caused by an horizontal shift of the performance curves but also by a
change in the slope of these curves at high SNR.

Furthermore, when examining the curves associated with L = 2 in Fig.3.12 -
Fig.3.14, it can be observed that the CSHDD, s, scheme provides, at low SNR,

worst performances than the CHM scheme, proving that the performances of the
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CSHDDs 4, scheme are not lower bounded by the performances of the CHM scheme.
Consequently, in this case when the asymmetry between the quality of the local deci-

sions becomes too significant, it may be advantageous to implement the CHM scheme.

C. Comparison between the MPEP-LLR, MMSE-LLR and U-LLR quan-

tizer

As for the CSHDD; 4, scheme, when L = 2 the three LLR quantizers are equivalent
because the even symmetry constraint implies that the only threshold defining each
quantizer is equal to 0. From Fig.3.9 - Fig.3.14, we see that, as opposed to the
CSHDD,; 4. scheme, when L = 2 the performances obtained are far from reaching the
potential gain that CSHDD schemes can obtained with respect to the CHM schene.
In this case, it is thus much more advantageous to use soft decisions at the local
detectors. In fact, the potential additional gain at FER = 1073 that can be obtained,
by increasing the number of quantization levels of the CSHDD; 5 scheme to more
than 2, goes up to 9.1dB, when Ng = 1 and the average SNR is equal at both base
stations.

Hopefully, by increasing the number of quantization levels, the performance curves
of the CSHDDj 5,y scheme move gradually toward the performance curves of the OC
scheme. The worst performances are still obtained with the MMSE-LLR quantizer.
On the other hand, as opposed to the CSHDD 4, scheme, the performances obtained
with the MMSE-LLR quantizer are in most cases not converging at high SNR to the
performances of the 2 quantization level CSHDDy ;5 scheme. However, even with 8
quantization levels, the performances of the CSHDDy 5, scheme using MMSE-LLR
quantizers are far from the performances of the OC scheme. From Fig.3.9, it can be
observed that the difference is still as high as 6.1dB at FER = 1073, when Ng =1
and the average SNR is equal at both base stations.

Again, as expected the best performances are obtained with the MPEP-LLR quan-
tizer which minimize the criterion the more correlated with the probability of frame
error. In fact, from Fig.3.9, it can be observed that the gain in SNR obtained at
FER = 1073 by increasing the number of quantization levels from 2 to 4 goes up to
7.8dB, when Nr = 1 and the average SNR is equal at both base stations. Hence,
with only 4 levels of quantization at each base station, the potential additional SNR

gain that can be obtained at FER = 1073, by further increasing the number of quan-
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tization levels, varies from approximately 1.3dB, when Np = 1, to approximately
0.8dB, when N = 2 or Ng = 3. However, similarly to the CSHDD 5,5 scheme, the
optimization of the thresholds with respect to the PEP is still a computationally in-
tensive problem due to the numerical integrations and the large number of operations
involved.

The quantizer that offered the best trade-off between performance and computa-
tion complexity is the U-LLR quantizer. In fact, from Fig.3.12 - Fig.3.14, it appears
that the performance difference between the MPEP-LLR quantizer and the U-LLR
quantizer, using 4 quantization levels, is negligible for the case when the average SNR
is unequal at the two base stations. On the other hand, from Fig.3.9 - Fig.3.11, it
appears that, when the average SNR is equal at the two base stations, the difference
between the performances obtained with the two quantizers is more considerable and
varies from 0.3dB to 0.6dB at FER = 1073, depending on the number of receiving
antennas. Furthermore, with only 8 levels of quantization, the CSHDDj s, scheme
using U-LLR quantizers provides performances within 0.3dB of the OC scheme, for all
considered cases. It demonstrates that by carefully selecting the thresholds defining
the local decision rules, 8 quantization levels are sufficient to make the performances
almost identical to the OC scheme without even knowing the channel state at the

MSC.

3.4.4 Comparison of the CSHDD, ,,, and CSHDD, ,,, schemes

In this section, we use the results presented in the two previous sections and compare
the performances of the CSHDD, 4, and CSHDD; 4 schemes. Similarly to the un-
coded case, the more significant performance difference between the CSHDD, 4 and
CSHDDs, 4, schemes can be observed when L = 2. In fact, by comparing the results
presented in Fig.3.3 - Fig.3.8 with the results presented in Fig.3.9 - Fig.3.14, we see
that, when both schemes are using 2 quantization levels, the SNR difference when op-
erating at FER = 1073 reaches up to 7.2dB, when Ng = 1. However, the difference
diminishes as the number of receiving antennas increases and equals to 1.8dB, when
Ng = 2, and 1.0dB, when Np = 3. Furthermore, as the uncoded case, the performance
difference diminishes also as the number of quantization levels increases. For instance,
for CSHDD schemes using MPEP-LLR quantizers and 4 quantization levels, the per-
formance difference reduces to less than 0.5dB at FER = 1073, independently of the
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number of receiving antennas. Similarly, for CSHDD schemes using U-LLR quantiz-
ers, the performance difference reduces to less than 0.7dB, when L = 4, and 0.1dB,
when L = 8. Hence, when L = 2, the significant gains obtained by the CSHDD
scheme with respect to the CSHDD, ., scheme can justify the additional complexity
and additional fixed network bandwidth required by the CSHDD, 4y, scheme, espe-
cially when each base station is using a single receiving antenna. On the other hand,
when L > 2, the CSHDD, ,,,;, scheme becomes, as the number of quantization lev-
els increases, more attractive since it provides almost the same performances as the
CSHDD; sy» scheme without the added complexity and fixed network bandwidth.

3.4.5 Comparison with the uncoded case

In this section, we compare the BER performances of the SHDD 4, and SHDD, o,
schemes presented in chapter 2 with the BER performances of the CSHDD, ., and
CSHDD3 g, schemes. It is important to mention that in order to fairly compare
the performances of these schemes, it is necessary to express the results as a func-
tion of %,
base station and, for the coded case, E, = %“sEl. In addition, the SHDD, 4, and
SHDD, ,,: schemes considered are using even symmetric thresholds as the CSHDD) ;4
and CSHDDy s schemes.

Before discussing the results obtained for the CSHDD schemes, it is important

where Ej, represents the received energy per information bit at the first

to first look at the coding gain obtained with the OC scheme. Hence, by comparing
the BER of the OC scheme for coded and uncoded communication systems, it can
be remarked that no coding gain is obtained at BER = 107" when Np = 1. This
can be explained in part by the fact that the channel coding does not increase the
diversity order of the system since the fading is quasi-static and is therefore constant
over the whole frame. Furthermore, since all error events have the same diversity
order and the probability associated with these error events is not decreasing, as for
AWGN channel, exponentially with the hamming distance between the transmitted
codeword and the erroneously decoded codeword, there is no dominant error event
and all error events contribute to the probability of bit error [27][31]. However, the
coding gain increases with the number of receiving antennas since by increasing the
diversity order the channel tends to behave more like a AWGN channel. In fact, the
coding gain reaches 1.6dB, when Ny = 2, and 2.4dB, when N = 3.
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For the CSHDD schemes, the more important gain is observed when comparing
the performances of the SHDD, ., and CSHDDg 45 schemes when L = 2. In fact,
the gain at BER = 107* reaches up to 11.7dB, when N = 1, up to 7.9dB, when
Ng = 2, and up to 6.5dB, when Ng = 3. It is due to the fact that a 2 base station
SHDDj ,p; scheme, when L = 2 and the thresholds are even symmetric, is equivalent
to the CHM scheme and only provides half the diversity of the CSHDD, ,,; scheme.
However, this is an exception and, in all other cases, the diversity order provided
by both the coded and uncoded schemes approaches the asymptotic diversity of the
OC scheme. Furthermore, for all the other cases, the gain provided by the CSHDD
schemes with respect to the SHDD schemes is inferior to the coding gain provided by
the OC scheme. It is not surprising since the CSHDD, ,,, and CSHDD, ,,,; schemes are
sub-optimum schemes designed to reduce the probability of frame error as opposed
to the SHDD, ;,, and SHDD; ,,; schemes which are optimum scheme designed to
minimize the probability of bit error.

This is obviously the CSHDD schemes using MMSE-LLR quantizers that provide
the less gain. In fact, for most of the considered cases, CSHDD schemes using MMSE-
LLR quantizers provides worst performance than the SHDD schemes, where the losses
can reach up to 4.5dB when Ngr = 1. This actually proves the inefficiency of the
MMSE-LLR quantizers. On the other hand, it can be observed that CSHDD schemes
using MPEP-LLR quantizers with 4 quantization levels provide gains within 0.3dB
of the coding gain obtained with the OC scheme. Similarly, the CSHDD schemes
using U-LLR quantizers provide gains within 0.3dB of the coding gain obtained with
the OC scheme, when L = 8, and within 0.8dB when L = 4.. Consequently, the
performances of the SHDD schemes can be improved significantly by adding channel
coding to the system as long as the diversity order is sufficient and the local detector

quantizers are well designed.
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Chapter 4

Conclusions and future work

This work studied the application of soft decision distributed detection to the uplink
of a mobile in soft handoff, in an effort to design improved alternatives to conventional
handoff macrodiversity techniques based on selection diversity. We first considered
uncoded communication system over a quasi-static spatially uncorrelated Rayleigh
fading channel. Two different cases were considered. In the first case, the average SNR
as well as the channel state at each base station is assumed known at the MSC. In the
second case, only the average SNR at each base station is known at the MSC. For both
cases, it is shown that the optimum local decision rules can be expressed as likelihood
ratio quantizers and the optimum fusion rule is a maximum likelihood decision rule
based on the local decisions. When the channel state is known at the MSC, new
threshold values need to be transmitted to the base stations every time the channel
state varies at any base station. However, it was observed that, when the thresholds
are only updated when the average SNR varies at any base station, the performance
degradation is neglectable as long as the number of quantization levels is larger than
2. The performances of the distributed detection schemes were evaluated numerically
assuming that each base station is equipped with multiple receiving antennas. It
appears that with only 3 bits of resolution at each base station, performances less
than 0.1dB from the optimum centralized scheme are obtained for all considered
cases.

The proposed distributed detection schemes provide large performance gains with
respect to the conventional handoff macrodiversity scheme, based on selection diver-

sity, at the expense of a small increase in the required bandwidth from the fixed
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network and an increase in the offline computational requirements, where the offline
computation is caused by the optimization of the local detector thresholds. The opti-
mization of the thresholds is complicated by the fact that the probability of bit error
is a non-convex nonlinear function of the thresholds. An improved Simulated An-
nealing (SA) algorithm, called Adaptive Simulated Annealing (ASA), was thus used
to perform the numerical optimization. The influence of assumptions simplifying the
optimization process were investigated. It was observed that as the number of quan-
tization levels and the number of base stations increase, these assumptions have less
and less impact on the performances.

Extension of the principles of distributed detection were derived for communication
system using channel coding over a quasi-static spatially uncorrelated Rayleigh fading
channel. The two same cases as for uncoded communication systems were considered,
and optimum decision rules were derived. It was shown that the complexity, that im-
plies either the implementation or the numerical optimization of these decision rules,
grows exponentially with the frame size. Sub-optimum alternatives using likelihood
ratio quantizers were proposed. The selection of local detector thresholds to minimize
directly the average probability of frame error is a computationally intensive prob-
lem. We therefore investigated different optimality criteria of a lower computational
complexity that reduce the probability of frame error. The optimality criterion that
provided the best performances is the pairwise error probability. However, it is still
a computationally intensive problem, because it requires the evaluation of numerical
integrals. The best trade-off between computation complexity and performance was
obtained by simply using the thresholds of the uncoded system. It appears that with
only 3 bits of resolution at each base station, performances less than 0.3dB from the
optimum centralized scheme are obtained at FER = 1073, It should be mentioned
that the mean square error is the criterion that provided the worst performances,
especially at high SNR.

We also investigated the performance gains of the coded schemes over the corre-
sponding uncoded schemes, with respect to the BER. It was observed that the added
complexity and bandwidth required by the coded systems only improve the perfor-
mances as long as the diversity order is sufficient and the local detector quantizers
are well designed.

In closing, the designed handoff macrodiversity schemes based on distributed de-

tection have proved to be an effective alternatives to the more conventional handoft
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macrodiversity scheme. However, much more still need to be investigated, commenc-
ing by the extension of these results to higher order modulation schemes. In fact, pre-
liminary results show that the results presented in this thesis can easily be extended
to communication systems using QPSK modulation. Furthermore, additional future
research can consider other type of channel fading (spatial correlation, frequency se-
lective fading,...), the impact of error on the estimates of the channel coefficients used

at the base stations and the MSC and much more.
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Appendix A

Local detector LLR

In this appendix, the local detector likelihood ratio is first formulated in its logarith-
mic form. The PDF and CDF of the LLR are then derived for the case when the
channel state vector H is known and for the case when the channel state vector H is
unknown. These results are necessary for the evaluation of the cost functions and for
the implementation of the decision rules of both the SHDD and CSHDD schemes. It is
important to mention that, in this appendix, we consider the LLR used by the SHDD
scheme. However, these results can be extended to the LLR used by the CSHDD
scheme by replacing in all expressions the bit B by the coded bit C; as well as the
received signal vector Ry, and its realization ry by the received signal vector Ry, and

its realization ry ;.

A.1 Local detector likelihood ratio

Considering the system model presented in section 2.1, the local detector likelihood

ratio is defined as follows

_ fru(rx | hy, B=1) (A1)

AB (re hy) =
10(r, Be) fr, (tr | he, B =0)

where the joint conditional PDF of the Ny received signals at the kth base station

equals

1 — N |ren = hienVER(-1) 21
fri(rk | hg, B) = Wexp{ N, . (A2)
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The likelihood ratio at the kth base station can therefore be simplified as follows

5™ = lrin = P/ Bl Nt rpn + henvVEr|

n=1 n=1
— e %R: — |rkn — eV Ek|2 + |Tem + hk,n\/Ek|2
b n=1 NO
. f —|rinl? = [PeaVEe|" + 2R{h; . VErTin}
b n=1 NO
n % |Tk,n|2 + |hk,n\/ Ele + 2§R{h;,n\/Ek7'k,n}
n=1 NO
NR * /
= ex : : A3
p {Z N (A.3)
such that the LLR equals
NR * N
4%{}1, n\/ Ek"'k,n} R n
\Ij(lkg(rky hk) = Z ut N, = Z\Il(f(’) )(Tk,na hk,n)a (A4)
0

n=1 n=1

4%{’1;'"\/ Ek‘l‘k‘"}
No

where \I!(llf(;")(rk,", hen) = is the nth antenna LLR.

A.2 LLR PDF given Hy is known

Let \Il(llf(’)")(rk,n,hk,n) and \Il(llfg(rk,hk) be respectively the realizations of the random
variables \Ilglf(;")(Rk,n,Hk,n) and \Ilg’fg(Rk,Hk). Assuming the transmitted bit B and
the channel state vector Hy are known, the LLRs \Il(lif(;")(Rk,n, Hin)n=1,...,Ngrare

normally distributed random variables with mean p(B, Hy ) and variance o?(Hy »):

&5

“(B’ Hk’n) = ERk.n|Hk,n [\II(IIT(S")(RIC{”’ Hkyn)] = ERk,n|Hk,n SR {Hl: Rk:"}]

4/ E
= ENk,n [Q% {H;,n(Hk,n \/—ETk(_l)B+1 + Nk,n)}]

[4E,c 1B+ 4 4/ E}

= ENk,n |Hkn‘ ( %{Hankn}]

4\/E;c 4Ek

= A IHP(-1)PH 4+ %{HknENM [Ne]} =

lHan (=1)7*' (A.5)
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and

02(Hk,n)
2
= FEpy .|Hin [(‘1/ kn)(Rk no Hen) — (B,Hk,n)) ]

4/E 4E 2
(\/_k%{Hkann}— '“IHan( )B“>

= ENk,n <4\/El; {H;,n <Hk’"\/E_k(_1)B+l + Nk’n>} B @IHIHJ ( )B+1>2]

- ERk,ank,n

0

= En,. (4]‘?7’“% {Hy Nk, n})z}

= ;;E)'“Emn <§R{(3?{Hk,n}%{Nk,n}+%{Hk,n}<s{zv,c,n})
+i (R{Hin} S {Nin} — S {Hin} R{Nkn}) })2]
O B 160 (o} R (i} + () (e,
o I B (R (e R UNi}] + B, (18 (o) S {00’
= (lf,ﬁk( {Hix))? Eny . [RAN D] + (S {Hiw})? En [(S{Nkn})?]
8B 8Ek

= (§R {Hk n}) ( {Hk,n})2 |Hk nl2 (A‘G)

No

Hence given the transmitted bit B and the channel state vector Hy are known, the
LLR \Il (Rk, H;) is thus the sum of Ng independent normally distributed random

varlables and is itself normally distributed as follow

_ 1 (y — (B, Hy))?
fu,ﬁfgmk,nk)(ylHk’B)——me"?{‘ 202 (H) } (A7)

where (B, Hy) = 0% (B, Hy,) and o?(Hy) = Ne 6%(Hy.,,). Since

4F)

u(B,Hy) = Z“E’“iH AP0 = 22

n=1

—— %=1 = u(B, ) (A.8)



A Local detector LLR 118

and

8E, 8E,
o’ (Hy) = Z o Hral” = 5608 = 0 (@), (A.9)

n=1

the PDF f ¥ O Ry H) (y | Hy, B) reduces to fq:("’R H,) (y | %, B), where =
%y [ Hinl2.

A.3 LLR CDF given H; is known

Using (A.7), the LLR CDF F, ¥ ®)(R, H )(:v | Hy, B) can be evaluated as follows

F
v{*)(Ry Hy)

= 1 f‘I‘%(Rk,Hk)(y | Hk7B)dy = /_ f‘l’gfg(RmHk)(y I ka B)dy
i 1 _(y—#(B,Qk))z} . {l‘—u(B,Qk)}
/_oo V/2mo? () =P { 202() W=1-¢ o ()

. (_1)B+1 /2%9’%
= 1-Q - =F )R, Hk)(li | Qk,B). (A.IO)

E 1
2 21—\};&22

(z | H, B)

A.4 LLR PDF given H; is unknown

Assuming now the transmitted bit B is known but the channel fading H is unknown,
the LLRs \Il(k ")(Rk,n, Hin)n=1,..., Ng are independent random variables since the
channel fading is spatially uncorrelated. Thus, the kth base station LLR \Il(k)(Rk, H;)
is the sum of the Ng conditionally independent antenna LLRs \I/(k ")(Rk,n, Hpn) n=
1,..., Ng and its PDF equals to

fopmomgW 1 B) = futwn,, m )W B)*- xS gy oy W [ BAALL
where x represents the convolution operator and
ot i)W 1 B) = /h Lo Rty W | Plins B) Fii (i)

k,n

= [ g it @ ikl B) it il (A12)
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since the mean (B, ht ) and variance o%(hi,) defining f\p(k,")(Rk i )(.’L' | hieny B)
1,0 conydlk n
are independent of the phase of hy,. Hence, since the fading magnitude |Hy,| is

Rayleigh distributed as follows
Nl (1Benl) = 2|hin] exp { =hunl?} (A.13)

the antenna LLR PDF f

\I'(l’fa")(Rk,mHk,n)(y | B) can be evaluated using (A.12) as follows

f‘I’Y‘cén)(Rk,n,Hk,n)(y | B)
(y - M(By h‘k,n))2

o0 1
—————expqy — 2hi ol exp { = hen|?} dlk
/0 \/27T02(hk,n) p{ 202(}lk,71) } I . | : { | & | } | 5 l

| y — 48 \h, 12(—1)B+1)?
_ / 1 eXP{—lhk,nlz— (v — 45 heal*(=1)77) dlhen
0
1

1625 | hy |2
© 1
N /0 21 [E
No

—

[\
3
Z

y? 4+ 16(EZ8)2 | hy |4 — 8yZe|hy o |2(—1) B!
exp{—lhk,nP— (J (52)2| e Yk (—1) Al

16%]hk,n|2

1 hial? R (=1)BH1
PR (D) y}dmkm'

I gl = £
o W [E PUT™ T 16 e P 1 2
0

1 (=1)"*1y 1 2 1 y
— +1] - 1 Al
25 exp { 5 NG /0 exp < —u f,o 602 du (A.14)

2 -1 B+1 1 o , 12
(ﬂkz D exp {( )2 11}77_r / exp {*“Zﬁf—lguz}d“ (A.15)

where the change of variable u = ,/%|hk,n| is made in expression (A.14),

B 5

— 2 — —

Br = of_?& and (B —1)= OE& -1=
No NO

2]

Since as shown in [32]

oo
/ exp {—a$2 - %} dz = l\/Eexp {—2\/@} a>0 b>0, (A.16)
0 z 2V a
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(y | B) simplifies to the following closed form

the antenna LLR PDF fq,glfén)(Rk'mHk‘n)

expression
exp{B{y} if y >0

A.17
exp{Byy} if y <0 ( )

f\y(llfdn)(Rk,mHk,n)(y I B) = Ak {

2_ _1)B+1_ _1)B+! )
where A, = -(%%kl—), Bl‘c" = (;)Q_ﬂk < 0 and B"c‘ = M > 0. Since f\y(lk(,)n)(nk L ")(y I

B) is a PDF,

o 0]
/_oo f‘l’glfdn)(Rk,naHk.n)(y | B)dy

= [ék—eXJ{B_ }]0 + ﬂex {B+}°°____
= | o {Buv}| +|prew{Bivl| =55

_ #;-y ( 2 2 )
4,3k (_1)B+1 + Bk (_1)B+1 —_ ﬁk
(Bi — 1) (2((—1)3+1 = B) —2((-1)"*" + Bk))

40 1-p;
(B - 1) ( — 40y ) .
() = (A.18)

Using the derived antenna LLR PDF f\PE'f(‘)"’(Rk,mHk,u)(y | B) and expression (A.11),
it is possible to derive the kth base station LLR PDF f‘l’(l‘j(;(Rkka)(y | B) for any numn-
ber of receiving antennas. In the next two sub-sections, we evaluate the convolution
integral (A.11) for the cases where the kth base station is equipped with 2 and 3

receiving antennas.

A.4.1 Two receiving antennas

When the kth base station is equipped with two receiving antennas, the local detector

LLR PDF f‘Il‘l‘fg(Rk,Hk)(

y | B) equals to
fotmemn W 1 B) = g W B> foto @ 1 5)

= /_Oo f‘l’gf"'(’,l)(Rk,x,Hk,x)(I | B)f‘P(l‘fdz)(Rk,z,Hk,z)(y — & \ B)d.’l?.
(A.19)
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Hence, since B, — B} = B, if y is larger than 0
fetm, im0V | B)
0 y
= / Apexp {Byz} Agexp {Bf(y—1z)}dz+ / Arexp {Bfz} Avexp {B (y — z)}de
—oo 0

+/ Arexp {Bjz} Acexp {B; (y - z)} dz
y

0 Y o]
A2 {exp{B:y}/ exp{ﬁkx}dw-i—exp{B,jy}/o dz-{—exp{Bk"y}/ exp{—ﬂka:}dz}

= A2 {exp{B,’fy} [%exp{xﬂk}]im+exp{33y}[ ] +exp {B; y}[ exp {— aﬂk}ro}

y

_ Az{%w}expw:y} (A.20)
and, if y is smaller than 0,
fq,gfg(nk,ﬁk)(y | B)
- /y Akexp{Bk'x}Akexp{B,j(y—a:)}dx—l-/OAkexp{Bk_:L‘}Akexp{Bk_(y—.fc)}drzr
. y
+/000Akexp{B+:v}Akexp{B_(y—z)}dm
- Az{exp{B y}/ exp{xﬁk}d:r-i-exp{Bky}/ dz+eq){BkJ}/ exp {— wk}dl}

_ Ag{exp{B;y} [B;exp{xﬁk}]y +exp {Byy} M +exp {Byy) [—je\p _mk} }

) —00
= Az{—ﬂ—k—y}exp{Bk_y}. 2

In summary, when the kth base station is equipped with two antennas, the local

detector LLR PDF f\I'(l’fg(Rk,Hk)(y | B) can be expressed as follows

—
.
e
[\
[

~—

2 U
Z +ylexp{Bfy} if y > 0
Br

f\yﬁfg(Rk,Hk)(y | B) = Ak { E 2 ;

il exp{Bk_y} if y < 0 .
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A.4.2 Three receiving antennas

When the kth base station is equipped with three receiving antennas, the local detec-

tor LLR PDF f

¥Ry Hy) (y | B) equals to

f‘I’g’B(Rk,Hk)(y | B) = f‘l’(xl,cdl)(Rk.th,l)(y | B) *f‘y(ll,c(')2)(Rk,27Hk,‘2)(y | B) * \I’(lk,SS)(Rk.s,Hk.s)(?/ | B)
= g(y) * ‘I’(l‘jda)(Rk.s,Hk,z)(y l B)

- /_ 9@) fu 9y g )Y — T | Bz, (A.23)

o0

where g(y) = f‘pgfél)(Rk,th,l)(y | B) % wg%z)(Rm,Hk'?)(y | B) is derived in the previous

section. Therefore, using (A.23) the local detector LLR PDF fq,(;.-)(Rk Hk)(y | B) can
1,0 Rinint

be evaluated such that, if y is larger than 0,

fq’glfg(Rk,Hk)(y | B)

_ /_0 42 (%—x) exp { By} Aexp { Bl (y —2)) do

o

+/y A2 <ﬂ£ +m> exp{B,':a?} Ay exp {B,j’(y - 33)} dz
0 k

+/ A? (232— + :L) exp { Bz} Axexp {B; (y — )} dx
y
0

2 [ e ()2
= Ajexp{Bjy} </ — exp {20k} dz /_oozexp {1ﬁk}d.t+/0 B + 2 | dx
+Ajexp {Byy} </ 3exp{—acﬂk}alﬂn—+—/ a;exp{—:vﬁk}d.z')
v v

B
B}’ 2z 2217
= Ajexp{Bjy} ([ exp {zf} — Iexpﬁimﬂk} + eXp;kf k}]_oo + [5—: + %—]()
vatew () [ 2 oxp (-apy - 2o oi)_ ow L))
i Br B y
= A [; + z;—y + ?ﬂ exp { Biy} (A.24)
k
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and, if y is smaller than 0,
fq,(k)(Rk \(y | B)
y
= / A2 (—52— - :c) exp {Brz} Avexp {Bf (y — z)} dx
—0 k
0 2
+/ A} (B_ — x) exp {Byz} Avexp {B; (y — z)} dz
y k
+/ Al (ﬂ +x> exp {Biz} Avexp {B; (y —z)} dz
0

= Alexp{B} }(/ —exp{xﬁk}dm—/y

— 00

0 9 2 o)
+A} exp {B;y} </y (B;—CL‘) da:+/0 Eexp{—xﬂk}dz-}-/o T exp {—Iﬂk}d:L')

= Ajexp{By y}[ exp {26y} — — G231 +exP{fﬂk}r
ﬂk Bk —oo
2

0 e — oo
cate (55) ([ - 5]+ [ on (oo - 220 o) o el )
y k 0

zexp {zfx} da:)

2 Br 5;?

= A} {57 — —:;% + ‘{? } exp {Bk_y}, (A.25)

where we used the following integral

n 1 n—k

H™ (z) = /:r:” exp {az}dz = Z(_l)kﬁ% exp {az} (A.26)

k=0
to obtain expression (A.24) and (A.25).

In summary, when the kth base station is equipped with three antennas, the local
detector LLR PDF f\I’(l’fJ(Rk,Hk)(y | B) can be expressed as follows

3 4 )exp{Biy} if y > 0
2% {5y} - (A.27)
5

fo (?/IB)ZAS k+ﬁk+
Uio (R, Hi) k BQZ - %% + 2 exp {B;y} fy<®©0
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A.5 LLR CDF given Hj is unknown

Using (A.17), (A.22) or (A.27), the kth base station LLR CDF F WO (R, H, )(z | B)

can be evaluated using integral (A.26) for 1, 2 and 3 receiving antennas.

A.5.1 Single receiving antenna

If x is larger than 0,

z oo
Fomamy @1 B) = /_oofW‘lf&(Rk,Hk)(“B)dy:1_/1 oo | By

= 1- / Arexp {Bly}dy =1+ % exp {Bfz}, (A.28)
T k

and, if z is smaller than 0,

z T B AL ~
Fywm,m,(®@ | B) = /_Oo Fa®m,myW | Bldy = /_OO Arexp {Bry}dy = B—; exp { By v}
(A.29)

A.5.2 Two receiving antennas

If z is larger than 0O,

Fymm, (@ | B) = / foym W | Bldy =1 —/ fowym,my W 1 B)dy

= 1- / A2 <ﬂ2 y> exp {B+y} dy
T k
= 1—Ai(ﬁ2>[;+exp{3+y}]oo

A2 [Bk exp { By} -

1+ A ((5k ) El,f — ﬁ) exp { Bz} (A.30)

5 exp {Bﬂ/}]
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and, if z is smaller than 0,

F
TR (R Hi)

T x 2 _
~ [ Aoty P = [ A (5 -v) e (Boa
—00 ' —00

_ o2 (2] L Al ey L
= A} <,Bk> {Bk_exp{Bky}]_oo A? [Bk exp{Byy} — k)

- 4 ()&

A.5.3 Three receiving antennas

(z | B)

w7)
+——=]expi{B;z
(B )? {Ba)
If z is larger than O,
o) 6 3 2
= 1—/ A3 [—2+—y+%] exp{B,‘:y}dy
T k

srotan] (3

o) e )]

(32)3}

T

exp { By y}

-0

(A.31)

)| - ap ) o500

exp { Bz} (A.32)
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and, if x is smaller than 0,

Pty (® 1 B)

z ¥ 6 3
/ f\pgkg(R H) (y | B)dy = / A3 [[3 ﬁ—i + ‘{2 } exp {B7y}dy
—00 : k

4 (5) [greo ] -4 (5) |3 - @) e t8i0)]
41 (3) (5~ me o) o (5 ""}]I_m

4(F-5+3) w7 w ey v
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Appendix B

Evaluation of the BER of the
SHDD schemes

In chapter 2, three different SHDD schemes are proposed which are the SHDD/ o,
SHDD, 4. and SHDDj, o, schemes. In this appendix, we discuss the evaluation of the

probability of bit error for each scheme.

B.1 SHDD; , scheme

The SHDD; o scheme is a SHDD scheme for which the channel state vector H is
known at the MSC and the local detector thresholds t(h) are optimized with respect
to the conditional probability of bit error Py(t(h)). For such a scheme, the average

probability of bit error after the threshold optimization can be evaluated as follows

P = / Piy fea(h)dh, (B.1)

where Pb*|h represents the conditional probability of bit error after the threshold opti-

mization and

P = minf Pouteta) . (B.2)

The conditional probability of bit error Py, (t(h)) is defined by expression (2.5). How-

ever, using results from [33], it is possible to reformulate the conditional probability
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of bit error as

Pyn(t(h)) = %—%Z’P(Uzulh,BzO)—P(U:u|h,B=1), (B.3)

where, since the local decisions are conditionally independent,

NBs
P(U=u|h,B) =[] PU=ux | h, B). (B.4)

k=1
Using results from Appendix A,

thup+1(h)

o m (@ | B Bldz

P(Us = w | h,B) = /
t

kug (h)

F‘I’(l’fg(Rk,Hk) (tk,uk+1(h) | hkv B) - F\ng‘g(Rk,Hk) (tk‘“k(h) ' hy, B) (B:))

such that the conditional probability of bit error Pyn(t(h)) has a closed form expres-
sion, simplifying the optimization process.

Due to the optimization in the integrand of expression (B.1), it is obvious that
the integration required to evaluate the average probability of bit error needs to be
performed numerically. As shown in Appendix A, the CDF F‘I’(l‘:g(R—kka) (z | Hg, B) can
be expressed as a function of ) = Zgjl |Hy. n|? such that the conditional probability

of bit error can be expressed as a function of Q = [Q),...,Qn,]7. Consequently, the

average probability of bit error (B.1) can be reformulated as follows

Py :/Pb*lwfn(w)dw, (B.6)
where
falw) = fo(wl)"'fQNBS(UJNBS) (B.7)
and, as shown in [30],
2w2Nr-1
fou (we) = m exp {—wz} (B.8)

which is a generalized Rayleigh distribution. This has for effect to simplify the eval-
uation of the probability of bit error since it reduces the order of the numerical inte-

gration from 2NpgsNg to Nps.
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B.2 SHDD; ,, scheme

The SHDD; 4y scheme is a SHDD scheme for which the channel state vector H is
also known at the MSC but, as opposed to the SHDD, ,,; scheme, the local detector
thresholds t are independent of H and are optimized with respect to the average
probability of bit error P,(t). For such a scheme, the average probability of bit error

after the threshold optimization can be evaluated as follows

P= mtin{Pb(t)}, (B.9)

where
Py(t) = / Pyn(t) fez(h)dh (B.10)

given Pyn(t) is defined as for the SHDD, ., by expression (B.3). As opposed to
the previous case, the minimization is outside the integral but, unfortunately, due to
the absolute value operation in the conditional probability of bit error Pyy(t) (B.3),
the integration still needs to be performed numerically. Furthermore, since Py(t) is
the threshold optimization cost function, the integral has to be evaluated multiple
times during the optimization process making the optimization time consuming. It is
therefore advantageous, as for the SHDD, ,,; scheme, to perform the averaging with

respect to £ such that
A(®) = [ Puul®)falw)de (B.11)

where fo(w) is defined in (B.7). However, the evaluation of the average probability of
bit error Py(t) still requires a relatively large amount of time, making the optimization
of the thresholds time consuming, especial for systems using more than two base
stations since the order of the numerical integration increases with the number of

base stations.

B.3 SHDD,,, scheme

The SHDD, ,,: scheme is a SHDD scheme for which the channel state vector H is
unknown at the MSC and, as the SHDD) y,, scheme, the local detector thresholds
t are optimized with respect to the average probability of bit error F(t). Similarly

to the SHDD; 4, scheme, the average probability of bit crror after the threshold



B Evaluation of the BER of the SHDD schemes 130

optimization can be evaluated as follows
P = mtin{Pb(t)}. (B.12)

However, as opposed to the SHDD; ., scheme, as shown in (2.37) the probability of

bit error simplifies as follows

1 1

P,,(t):§+§ZP(U0-——1|U:u)[P(U:u}B:O)]—P(U:u|le).

(B.13)
since the fusion rule is independent of the channel state vector H. Using results from

[33], it is possible to reformulate the probability of bit error as follows
P(t)—l—lz‘P(U— |B=0)-P(U=u|B=1) (B.14)
TR TS Bk =uiE=4p '

where, since the local decisions are conditionally independent and the fading is spa-

tially uncorrelated,
Nps

P(U=u|B) =[] P(Us=w|B). (B.15)
k=1

Using results from Appendix A,

thug +1
PO=u1B) = [ g, le | Bl

tk,uk

= F\I,gl‘vg(Rk,Hk)(tk,uk+l | B) — Fq,gfg(Rk,Hk)(tk,uk | B) (B.16)

such that, as opposed of the SHDD, 4, scheme, the average probability of bit crror
Py(t), which is the threshold optimization cost function, has a closed form expression.

It has for effect to greatly accelerate the optimization process.
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Appendix C

Evaluation of the cost functions of
the CSHDD schemes

In Chapter 3, we proposed sub-optimum CSHDD schemes for which the local detectors
are LLR quantizers. The thresholds defining these LLR quantizers are optimized to
minimize either the PEP associated with the free Hamming distance d; or the MSE
between the LLRs used at the fusion center by the OC and CSHDD schemes. In this
appendix, we discuss the evaluation of the PEP and MSE.

C.1 MPEP-LLR quantizer

In section 3.3.1, we showed that the conditional PEP and conscquently the average
PEP can be expressed as a function of the Hamming distance d between two code-

words. The average PEP can thus be defined as
Po(dt) = [ Pan(d,)fa(b)ah (1)
h

where Pyn(d, t) represents the conditional PEP associated with the thresholds t and

the Hamming distance d between two codewords. The conditional PEP Pyn(d,t) is
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defined in expression (3.62) as follows

P2|h(dt = —+ Z Z Mn1 (nNBS)l(nl,...,nNBs) X
NNps
Bs L— Nps L—1
[HH Jr =TT T ©
k=1 1=0 k=1 [=0
given the indicator function 1(ny,...,ny,,) is defined in (3.63), for the case when

the channel state is known at the MSC, and in (3.64), for the case when the channel
state is unknown at the MSC. In order to evaluate (C.2), it is necessary to specify
PJ(hy) which equals

. Li,i+1
P () = / Fatto w1y (z | g, C = j) dx

Lit

= F‘I’g‘fdt)(Rk,th) (tk,l+1 l hk, Ct = ]) - F‘I’(ll‘k‘ét)(Rk’th) (tk,l | hk) Ct = .7) ’ (03)

where the CDF F .0 (z | Hy, Cy) is derived in Appendix A.
1,0

(R‘k,th)

C.1.1 Known channel state information at the MSC

For the case when the channel state is known at the MSC, the indicator function
1(ny,...,ny,,) is a function of h such that the integral in (C.1) needs to be performed

numerically. As shown in Appendix A, the CDF F, (z | Hg, Cy) can be

(k t)(R Hy)
expressed as a function of Q = {/3."% |H |2, such that the average PEP can be

reformulated as follows
Pg(d,t):/Pglw( t) fa(w)dw, (C.4)

where Q@ = [Q),..., Q)7 falw) = fo,(wi) - faxp, (wnps) and the PDF fq, (wi)
is defined in (B.8). This simplifies the evaluation of the average PEP since it reduces
the order of the numerical integration from 2NgsNg to Ngs. However, the evalua-
tion of the average PEP still requires a relatively large amount of time, making the
optimization of the thresholds time consuming. In fact, the time required to perform
the numerical integration increases exponentially with the number of resolution bits,

Hamming distance d and even more dramatically with the number of base stations
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since it determines the order of integration.

C.1.2 Unknown channel state information at the MSC

For the case when the channel state is unknown at the MSC, the average PEP can
be evaluated as for the previous case although, in this case, in order to determine the
value of the indicator function 1(ny, ..., ny,) it is necessary to evaluate Eg, [Py’ (Hy)]

which equals

. L4l
EHk[Pkl:](Hk)] = /h / \p“ SO(R, , Hy) (x | he, Cy = j) fu, (hi)dzdhy
k

Li ot

k41 )
B / ooy (@ 1 Co=g) dz

te

F‘I’gfdt)(Rk,t,Hk) (tk,l+1 |Cy=7j) — F\I’(llfdt)(Rk'th) (tk,l | Cy =j), (C.5)

where the CDF Foeom,  m,) (z | Cy) is also derived in Appendix A. On the other
1,0 12 v
hand, since the indicator function 1(ni,...,ny,.) is in this case independent of H,

the average PEP (C.1) can also be simplified as follows

1
Pg(d,t) = 5 —Z Z M n1 (nNBs)l(nl,...,nNBS) X

NNgs
Ngs L—1 Nps L-1
HEHL [1& ] HEHk [ (Hk»"k-'H (C.6)
1=0 {=0
where
L-1 L1
[:O k l 0 Wk [ZO

(C.7)
and the integration needs to be performed numerically. Hence, as opposed to the other
alternative, it is necessary to evaluate numerically multiple one-dimensional integrals

as opposed to a single Npg-dimensional integral.
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C.2 MMSE-LLR quantizer

C.2.1 Known channel state information at the MSC

The MSE between the LLR \I!(llf(’)t)(Rk,t, H,) used at the fusion center by the OC scheme
and the LLR \Il(“ (Uk.t, Hi) used at the fusion center by the CSHDD scheme, when
the channel state is known at the MSC, has been defined in expression (3.70). Since
the local decision Uy, is determined by the MMSE-LLR quantizer that quantizes the
LLR \Ilgk(;t)(Rk t, Hg), Uk can be expressed as a function of \I/S'fdt)(Rkyt, H,) such that
Uk = [k ( (k. ”(Rk t) Hk)> The MSE can thus be reformulated as follows

ey = PR, H [(\p(l’fdt)(Rk,t,Hk) - \ygffdo ( i (\p(llfdt)(Rk,t,Hk)) HA))Z} (C.8)

In order to evaluate the MSE g, it is advantageous to decompose the expectation

as follows
= E E v Ry, H i
Efk:,t - H; ,C: ‘I’gkét)(Rk,tka)lHk,Ct ( k,ts k)
I;C:,(Hk)
(k.t) (k.b) 2
+E‘1’£l,cdt)(Rk,t,Hk)|Hk,Ct |:(\Il1,0 (fk (\III’O (Rk’t’Hk)) ’Hk)) :|
12C:Hk)

7

K, (k k,
2 Eytom, om0 [\Pg’ot)(R“’H’“) 6’ (f’“ (\I’g Ot)(R“’H’“)> H’“)]] (69)

A~

I;C¢ Hy,)

where closed form expressions can be derived for I;(Cy, Hy), I,(Cy, Hy) and I3(Cy, Hg).

First, I;(Cy, Hy) represents the second moment of \I/(llf(;t)(Rk,t, H,), given the trans-
mitted coded bit C; and the channel state vector Hy, are known, and can be expressed
as a function of the mean u(Hg, C;) and variance o?(Hy), which are derived in Ap-

pendix A, as follows

2

1(Co H) = 02 (Hy) + (1u(Hy, C))? = o2k ZIHMF (4E’° S [Hen?100+!
" (C.10)

Then, since ¥ ( fe (\pﬁ’fé‘)(rk,t,hk)) ,hk) = U (e, ) i b, < U0 (p, By <
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tk,uk't+l7

o 2
L(C, Hy) = / _ (265 (i (2) H)) foeom, sy (@ He, C)da

(’C t) 2 tk.ukvt-f-l
= Z (‘1’1,0 (uk ¢, Hk)) /t f\p(li':dt)(Rk'“Hk)(illek, Cy)dzx
Uk ¢ koug
(k,) 2
= > (9P He))
U ¢
(F\Il(l‘fdt)(Rk.nHk)(tk’"’“-‘+1|Hk’ Ct) - F\P(lf(;')(Rk,qu)(tk"”"" IHI".’ CJ) )

(C.11)
where the CDF F\Pﬁ'f(,”(Rk,t,Hk)(t’“”“‘Hk’ C}) is derived in Appendix A. Finally,

13(Cta Hk)
= / \I’(ll,cét) (fe (), Hi)z \Pifg”(Rk,t,Hk)(mlHk’ Cydx

beuy 41

= Z \Il(llfdt)(uk»t’ Hk) / If\ng(‘)t)(Rk‘,,Hk)(ﬂHk’ Ct)d:IT

U ¢ .tk'uk,t
— (Hy, Cy))?
= \Ilgkdt)(uk,z,Hk) A exp{—(I pH, dr
;: ’ e,V 2T0(Hy) 20*(Hy)
thuy (+17#(HECr)

_ (k) (L) vo(Hy) + p(Hy, Ct) v?
= Z‘I’l,o (ulc,z,Hk)/ek,uk't—#mk'cf’ NG expq —— ¢ dv

2
Uk, = (Hz)
G(Hk) (tkyuk_e-!-l - /‘{’(Hk) Ct))2

= Z\I!(l'fdt)(uk,t,Hk)(— Jon [eXp{_ 202(Hy) }

oot )

tk,uk'ti-l

+1(Elk, Co) (Fyirm pt) Chaseacrt His € = Fygsiog, 11,y (o o[l ct))) (C.12)

However, even if we found closed form expressions for I,(C;, Hi), Io(Cy, Hy) and

I3(Cy, Hy), it is not possible to derive a closed form expression for £;,. which can be
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formulated as a function of I(Cy, Hy), I,(Cy, Hi) and I3(Cy, Hy) as follows
Ekt = Z/ (e, he) + (e, he) — 203(cy, hy)) fu, (he)dhe P(Cr = ¢;). (C.13)

Hence, since I,(C;, Hy), Io(Cy, Hy) and I3(Cy, Hy) can all be expressed as function of

Q= 271:,21 |Hi |2, it is advantageous to reformulate €, as follows
e = 2 [ (lensn) + Do) = 2Us(ecn)) fo () P(C, = €0), (C14)

reducing the number of dimensions of the required numerical integral from 2/Np to 1.
The PDF fq, (wi) is presented in (B.8).

C.2.2 Unknown channel state information at the MSC

The MSE between the LLR \I!(llf(’)t) (Rg,¢, Hi) used at the fusion center by the OC scheme
and the LLR \Il(kt (Uk,+) used at the fusion center by the CSHDD scheme, when the
channel state is unknown at the MSC, has been defined in expression (3.71). As in
the previous case, the local decision Uy, is determined by the MSE-LLR. quantizer
that quantizes the LLR \I/(k’t)(R,C ¢, Hy). The local decision Uy can thus be expressed
as a function of \Ilg(’,)(R“,Hk) such that Ug; = fi ( (Rkt Hk)> and the MSE

can be reformulated as follows
2
et = Egeom, my {(\p b8 (Ree, He) = 017 (f’“(‘l’(llfét)(Rk’“ H’“)))) J

(k,t) 2
E‘I’(l},c(')t)(Rk,th) (\Ill,o (Rk,laHk))

- 7
.

I
2
+ By w0 [(‘I’Y,Co’t) (fk(\ll(ll,c(’)t)(Rk,taHk)))) ]
~ ;; 5
2By @ [985) (R, B0 (£ (R HY))) | -(C15)

J/

—

I3

It is important to mention that closed form expressions can be derived for I, I

and I3 such that, as opposed to the previous case, a closed form expression can be
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obtained for e . First,

b= Z/oox2 wgfdt)(Rkvthk)(zlct = ¢;)P(Cy = cr)dw
Ct -

oo :L,Q
B Z/_ 2 fet i, oo (#lC = cdz, (C.16)
ct 0

where f z|C}) has been derived in Appendix A. Hence, given the function

\If&‘,‘a‘)(Rk,th)(
H{™(z) defined in (A.26), if Ng = 1

© g2 0 2
I, = Z (/ 7Ak exp {B:(ct)z} dz +/ 7Ak exp {Bk_(ct)l}) dzx
Ct 0 -0
_ A (_go @
=23 (—HB:(Q)(O) t HB;(Q)(O)) ’ (C.17)
if Np = 2,

I, = Z(/OOO%QA,i (%m) exp { B} (c,)z} dz

0 2 9
-i-/_o0 %AZ (E - CE) exp { By (c1)z } d1;>

A2 (=2 (3) 2 L@ (3)
z 7 (EHB:(&)(O) N HB+(cc)(O) + EHB;(Q)(O) B HB/:(C‘)(O) (C.18)

Ct

and, if Ngp = 3,
I Z(/wIQA?’(G +3m+$2>e {Bf(c)x} dx
= R — —_— —_— —_— X ! e
1 . 2 k 62 B ) p K \Ct

0 g2 6 3z 2?2
A= -4+ Jexp{B (¢)2} dx
/_002 ’“(ﬁ,'g’ ﬁk+2>exp{ k(ct)z} 1)
A}

_ —6 .2 3 @) J )
N Z 2 <5_,3HB;T(Q)(O) B EHB:(CO(O) B iHB:r(Ct)(O)

Ct

6 3 1
+,37H)(32,;(ct)(0) N EHS;)(Q)(O) + §H1(34;)(a)(0)> ’ (C.19)
k

where in these expressions it is emphasized that the parameters B and B; defined in
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Appendix A are functions of C;. Then, since \I/(I'f(’,t) (fk (\Il(llfdt)(rk,t, hk)>> = \I/(lﬁ‘)')(zu_,)

k.t
when tk,uk,t < \Ifg,o )(I'k’t, hk) < tk,uk‘g+l7

& 2
I, = Z/_ (‘Ifgkét)(fk(ﬂ?))) f\I'E'f(‘,”(Rk‘t,Hk)(xlCt =¢,)P(C, = ¢;)dx

( )ukt))2 Ehuy o1
- ZZ / fq,(m(R Hk)( t|Cy = ¢)da

Ct Upy RET

oukt)2
- T

(F\vﬁ’fé‘)(nk,t,nk)(tk,uk,t+1|Ct = &) = Fyoo g, m, (k|G = Ct)) (C.20)

where the CDF F, *O(R, , Hy) (z|C}) is derived in Appendix A. Finally,
[3 = Z/—v \Ij(llfdt)(fk(x))l q’i’fdt)(Rk,thk)(l.'Ct = CL)P(Ct = Ct)dﬂ

bhouy g+1
ukt kot
) ZZ / Tfg00 R, p (EIC = c)de (C.21)

Ct Uk ey,

such that, if Np =1,

L-1 \I/(k t)(uk t)

tk,u"t-&l
I, = Z Z _2_/ ‘ mAkexp{B,j'(ct)x}dz

Ct uk,t=L/2 tk’ukt
(L/2)~1 k,t)
w u tk.uk't+l
N Z Vi (Uke) / zArexp { By (c;)z} dz
ug =0 terug e
Ak (1 1
= Z 7 Z \Ill 0 u t (H )( )(tk,uk‘ﬁ-l) - H(B:)-(C‘)(tk,uk',))
ct ug,t=L/2
(L/2)-

k.t 1 1)
s \1/( 9 (4, 1) (Hég(m(tk,uml)—Hg;(q)(tk,,w)) ,(C.22)

Uy, 1—0
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if Np =2,
L-1 (k,t) th
\P (7 ku Y‘-+-l 2
b= D B [T e (s o (B a
ct ug,=L/2 Slkug ’8
(L/2)-1 (’c t) tr
\I[ k,u ,t+l 2
+ Z ( )/ ‘ lAi(— )exp{B a)r} dz
ug,=0 teyug g ﬂk
A& Lk 2 (4 (1)
- Z?( 2 W () BZ(HB:(ct)(t’“v“““)_HB:(ct)(tk’“k-'))
ct ug ,=L/2
2 2
(Hi(el( (1) = H,(B:)(Ct)(tk,u“))]
ey (k) 2 () (1)
ot 1 1
+ Z \Ill,O (uk,l) [E (HB;(Ct)(tk,uk‘ﬁ—l) - HB;(Ct)(tk,uk',))
Uk, ¢ =
2 2
— (HE oy rant) = H () | )(€23)
and, if Np =3

I3

Ct

- 24

Ct
3
B

(L/2)-1

L-1 (k,t) th
Z Wio (Uke) [Hoerett 6 3r a?
_1’2— / IL‘A% Ei + ‘IB_ ? exp {B Ct } dx

ug,t=L/2 Ty, k
(L/2)-1 (kt ¢ ’
v koug, e+l 6 3r 12
+ , ‘IL‘AB — — — + — ) exp B C dL
20 / ¢ (ﬁz Be 2 ) p{B; (c)r}

(Ict 1 1)
( Z \IJ 'lth |:,B2 ( 1(33. c;)(tk Uy, ¢+1) H;:(Cl)(tk,uk't))
Up, t_L/Z

2 2 1 3 3
+— (H( ) (tk,uk,t+1) - Hé’g—(m)(tkyuk,t)) + 5 (H(Bif)'(ct)(tk’uk"+l) - H(B:)_((‘vf)(tk’uk'l)>

k

k.t 1 1
+ z \Ij(l,O)(ukyt) |:_— (Hl(g’;(q)(tk,uk,t+1) - H;g(Ct)(tk,uk,t))

1 .
2 2 3) (3)
( ézm)(tk,uml) Hia)(a)(t’“’“k-‘» 2 (HB (ct )(t’“’”kvf“) B HB;(Q)(tk'u“)>}
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Appendix D
Reference schemes

In this appendix, we present three different handoff macrodiversity reference schemes.
We consider the OC scheme, the CHM scheme and a selection diversity scheme that
assumes the channel state is known at the MSC. We consider these three schemes for

both uncoded and coded cellular communication systems.

D.1 OC scheme

In the OC scheme, the local detectors transmit to the fusion center the received signals
as well as all the channel state information. Hence, classical detection theory can be
applied to determine the final decision.

For uncoded communication systems, the optimum decision rule at the fusion cen-
ter is therefore a maximum-likelihood rule which is, considering the assumptions made
in this thesis, equivalent to a maximum-ratio-combining receiver. The probability of
bit error of such systems is derived in [34] and these results were used to produce the
BER curves of the OC scheme presented in section 2.4.

Similarly, for coded communication systems, the decision rule of the OC scheme

is a maximum likelihood rule which can be formulated as follows
Nps N¢
Uy = arg max { kl—[_1 tlj[lka't(rk’t | hy, C = ct)} (D.1)

given Ry, = iy, and Hy = hy, where the PDF pg, (¢, | hi, G = ¢;) is defined in

(A.2). However, it can be proved that the decision rule (D.1), when expressed in a
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logarithmic form, can be simplified as follows

Nps Nc
Ug = arg max {Z Z(—l)c‘“\lf(llfét)(rk,t, hk)} , (D.2)

k=1 t=1

where the LLR \Ilglfét)(rk,t, h;) is defined in (A.4). In fact, this is the decision rule used

by the computer simulator used to estimate the performances of the OC scheme.

D.2 CHM and selection diversity schemes

In the CHM scheme as in the selection diversity scheme, each base station makes hard
decisions on the transmitted information bits, using locally optimum decision rules
that minimize the probability of error on the local decisions. Considering the assump-
tions made in this thesis, the optimum local decision rules are maximum likelihood
rules. Then, at the MSC, the decisions of the base station for which the probability
of error on the local decisions is the lowest are selected.

What differentiate both schemes is the amount of information on the channel
available at the MSC. For the CHM scheme, it is assumed that only the average
SNR received at each base station is known at the MSC. The link with the highest
SNR is thus selected. Hence, for fixed values of average SNR, the probability of
error for the CHM scheme is equal to the probability of error at the base station
with the maximum average SNR. For the selection diversity scheme, it is assumed
that the channel state as well as the average SNR at each base station is known at
the MSC. Since the probability of error at the kth base station given H; = h; is a
monotonically decreasing function of Wy = 1%’; Zflvjl |hk,,,|2, the base station for which
@y is the highest is selected.

It is important to mention that, for uncoded communication systems, the local
decision rules of a SHDD scheme, making hard decisions on the transmitted bits,
are locally optimum when the local decisions are forced to be even symmetric, or
equivalently when the only threshold defining each local decision rule equals to 0.
Furthermore, when the handoff macrodiversity scheme involves two base stations and
the two base stations are making hard decisions on the transmitted bits using locally
optimum decision rules, the optimum fusion rule selects the local decisions of the base

station for which the probability of bit error on the local decisions is the lowest, as the
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CHM scheme and the selection diversity scheme. For instance, assuming the channel
state is known at the MSC, the optimum decision rule for a 2 base station SHDD

scheme equals

Up=1

P(U1 = u1|h1,B = 1)P(U2 = U2|h2,B = 1) Z
1 (D.3)

P(U1 = Ullhl,B = O)P(UQ = U2‘h2,B = 0) <

Uy=0

which is equivalent to

Up = 1

P(U, = u;|hy,B=1) > P(U, = uz|hy, B = 0)

P(U, = uy|hy, B = 0) < P(U; = uslhy, B=1)
Uy=0

(D.4)

Then, since locally optimum decision rules are even symmetric, P(Uy = w|hg, B =
0) = 1 — P(Ux = uglhg, B =1) and we have

Up=1
P(U1=U1|h1,B=1) 2 1—P(U2:u2|h2,B=1)
1—P(U1:U1|h1,B:1) < P(U2:u2|h2,B:1)
UO -
Up=1
>
0 - ].—P(Ul:Ullhl,B:1)—P(U2=U2|h2,B:1).
<
Up=20
(D.5)
Using (D.5), the local decision rule can be reformulated as follows
Uy =1
P(Ul ZU1|h1,B:1) - P(UQZUQIhQ,B:O) (D 6)
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or as follows

Uy=1

v

P(U2 = ’LLQIhQ,B = 1) P(Ul = Ullhlv B = 0) (D7)

Uy=0

Hence, assuming that @, > @s, it is clear from (D.6) that if U; = 1 the final decision
U equals 1 independently of Us while it is clear from (D.7) that if U; = 0 the final
decision Uy equals 0 independently of U,. Similar results can also be obtained for the
case when the channel state is unknown at the MSC, proving that the CHM scheme
and the selection diversity scheme involving two base stations are equivalent to SHDD
schemes for which L = 2 and the only threshold defining each decision rule is equal to
0. Furthermore, it can be concluded that the selection diversity scheme probability
of bit error is an upper bound to the probability of bit error of the SHDD scheme
for the case when the channel state is known at the MSC while the probability of bit

error of the CHM scheme is an upper bound to both cases.
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