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Abstract

The paper of Chen, Wang, and Yau, titled “The Minkowski Formula and the Quasi-
Local Mass” [4], shows the application of Minkowski curvature formulas to quasi-
local mass and energy in spacetimes, deriving several bounds on these quantities
and using these to prove rigidity theorems. We first provide detailed explanations
of the proofs, and then follow the methods that they use in the cases of Minkowski,
Anti de-Sitter and Schwarzschild spacetimes to show that the main result on quasi-
local energy can also be used for the Kerr spacetime. The necessary background is
included in the first chapters and the appendix, covering spacetime geometry and
curvature equations.



Résumé

L’article de Chen, Wang, et Yau, titué “The Minkowski Formula and the Quasi-
Local Mass” [4], démontre l’application des formules de courbure de Minkowski à la
masse et l’énergie quasi-locales dans des espace-temps, dérivant plusieurs bonds sur
ces quantités et les employant afin prouver des théorèmes de rigidité. Premièrement,
nous pourvoyons des explications détaillées de ces preuves, et puis nous suivons
les méthodes qu’ils emploient dans les cas des espace-temps de Minkowski, Anti
de-Sitter et Schwarzschild pour démontrer que le théorème principal sur l’énergie
quasi-locale peut être utilisé en l’espace-temps de Kerr. Le contexte nécessaire est
inclus parmi les premiers chapitres et l’appendice, couvrant la géometrie des espace-
temps et les equations de courbure.
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1. Introduction

In a recent paper by Chen, Wang, and Yau [4], the authors found estimates on
the Wang-Yau quasi-local mass in Minkowski and Anti de-Sitter spacetimes using
a Minkowski curvature formula, which in turn was possible due to the existence of
conformal Killing-Yano (CKY) tensors in these geometries. We describe here the
necessary background comprising curvature equations for submanifolds of Lorentz
manifolds and CKY 2-forms present in 4-dimensional spacetimes. Also included
are some examples of connection and curvature calculations using the structure
equations, to showcase the relevant methods for computations.

The motivating problem is that the concepts of mass and energy in general
relativity are not well-defined locally, as one cannot make use of an energy density.
If one can make use of some asymptotic symmetry, then this can still be salvaged.
Viewing systems possessing such symmetry from spatial infinity, we obtain the ADM
energy-momentum, whereas viewing them from null infinity yields the Bondi energy-
momentum [23]. This is limited in scope, as the system need not be isolated and
thus viewed from infinity where this symmetry exists. As a result, various definitions
of so-called quasi-local mass were proposed, with natural physical requirements such
as nonnegativity in the general case, vanishing in the case of a flat spacetime, and
gauge invariance, among others [28] .

We will consider mainly the Wang-Yau quasi-local energy. To describe the energy
of a region of spacetime, it will be sufficient to consider quantities on a spacelike
2-surface which bounds it. In particular, we will explain how to construct this in a
gauge-invariant (that is, a frame invariant) way, starting with the extrinsic curvature
of the boundary surface in the ambient physical spacetime. Once this is done,
the estimates which Chen, Wang, and Yau have obtained will give way to rigidity
theorems for 3-dimensional Riemannian manifolds through isometric embeddings of
the boundary surface into Minkowski or Anti de-Sitter spacetimes, and using the
quasi-local energy as a geometric tool available therein.

To facilitate the discussion of these results, we will present the necessary pre-
requisites from general relativity. In particular, we will need to transition from
the Riemannian to the Lorentzian setting, thus introducing the distinction between
spacelike, timelike, and null vector fields and submanifolds of spacetime. This al-
lows for the aforementioned viewing of isolated systems from null or spatial infinity
by following the appropriate geodesic curves. We also make a brief mention of
the Einstein field equations, which sit at the heart of the theory, and comment on
some properties of vacuum solutions. The exact static and stationary solutions of
Schwarzschild and Kerr, respectively, are then explored in more depth.

We follow this up with a discussion of various curvature equations which will
be vital in the computations required for later proofs. A necessary component of
this examination is the hierarchy of Killing tensors, where we will find a particular
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importance in the conformal Killing-Yano tensors. Such tensors of rank 2 exist for
certain spherically symmetric spacetimes that we will consider. They constitute so-
called “hidden symmetries” of the spacetime, which may allow for separability of
certain equations, which we discuss in section 3.3. It is critical for section 4.4 that
the Kerr spacetime admits such conformal Killing-Yano tensors.

The equations themselves are found by taking the familiar Gauss curvature for-
mulas and extending the results to a Lorentzian setting, with embedded submani-
folds of arbitrary codimension. Our focus will be on codimension 2 surfaces lying
in 4-dimensional spacetimes, for which we derive the Gauss and Codazzi equations
in section 3.5. In this, we largely shadow the work in [19], while making necessary
adjustments for our specific case. These will be used frequently in the proofs of the
main results.

Throughout chapter 4, we will describe the many proofs in the main paper [4],
explaining many of the details which were not included explicitly. In particular, the
exact formula which uses the conformal Killing-Yano 2-forms to present quasi-local
energy in a more tractable way requires a long chain of computations which we
attempt to present. Moreover, to show how some of the tensor calculations we are
assuming or quoting could be verified directly, we include an appendix with some
basic calculations and outlines of (co)frames so that the reader may see the methods
underlying some of the statements.

Finally, the authors showed that the Minkowski curvature formula used in the
discussion of quasi-local mass with respect to Minkowski and Anti de-Sitter space-
times is also valid in Schwarzschild. We will introduce the conformal Killing-Yano
2-form for the Kerr spacetime, and follow the proof of Chen, Wang, and Yau to show
that the formula continues to hold in the rotating Kerr solution. The critical fact
is to see that the exact expression of this 2-form comes is not used explicitly, where
the proof instead requires us to use the divergence of the tensor instead. The con-
formal Killing-Yano 2-form for the Kerr spacetime can be shown to have the same
divergence as that for the Minkowski and Anti de-Sitter spacetimes [15], whence
the theorem will follow. The exact expression is of course used in deriving certain
bounds for the quasi-local energy, which we do not pursue in this case.
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2. General Relativity Background

2.1. Basic definitions

The context in which we are working will largely be Lorentzian geometry, and so
we define the basic notions required beyond the Riemannian setting. Throughout
chapter 2, we are using material found in [5], [20], [19], and [22].

Definition 2.1.1. Let V be an n-dimensional vector space. A Lorentz inner product
on V is a symmetric, nondenerate, bilinear form g with 1 negative and n−1 positive
eigenvalues.

We will often write 〈·, ·〉 in place of g to represent the scalar product. Now we
present the meaning of the negative eigenvalue in the Lorentz metric:

Definition 2.1.2. A vector v in a Lorentz vector space V is called

1. spacelike if 〈v, v〉 > 0

2. null if 〈v, v〉 = 0

3. timelike 〈v, v〉 < 0

We see that the negative eigenvalue is meant to correspond to vectors describing
time, whereas null vectors represent light. Moreover, the set of all null vectors in a
Lorentz vector space V is called its nullcone, and it separates the timelike vectors
into two regions joined at the origin. After a suitable choice of orientation, we will
be able to refer to timelike vectors as either future- or past-directed, depending on
the region in which they lie. Using the above, we may single out vector subspaces
of V of particular importance:

Definition 2.1.3. Let V be a Lorentz vector space with a scalar product g. A
subspace W of V is called

1. spacelike if g|W is positive definite

2. null if g|W is degenerate

3. timelike if g|W defines a Lorentz metric on W

Having defined the above in the case of vector spaces, we are able to smoothly
transition to the case of spacetime manifolds.

Definition 2.1.4. A spacetime N is a connected and time-oriented 4-dimensional
Lorentz manifold, by which we mean that each tangent space of N is a Lorentz
vector space, and that there exists a continuous and globally defined nonspacelike
vector field on N .
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A simple example of a spacetime is the Minkowski space R3,1, which is the space
R4 equipped with the Lorentz metric:

ds2 = −dt2 + (dx1)2 + (dx2)2 + (dx3)2

where we denote, as expected, the spatial coordinates by xi and the time coordinate
by t, with ds2 the arc length element. The time orientation is given by the constant
vector field ∂t. This spacetime is modelled after the flat Euclidean space.

We may present another example, called Anti de-Sitter space (AdS), which is
modelled after hyperbolic space. Topologically, AdS is S1 × R3, endowed with the
metric

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dS2

where we denote the sphere metric by dS2.

Finally, we define the corresponding special submanifolds of a spacetime N :

Definition 2.1.5. A submanifold M of a spacetime, or more generally a Lorentz
manifold, N , is called

1. spacelike if TpM is spacelike for all p in M

2. null if TpM is null for all p in M

3. timelike if TpM is timelike for all p in M

In order to be as self-contained as possible, we pause here to review distributions
and Killing vector fields, before continuing on to stationary and static spacetimes.

Definition 2.1.6. A distribution D of dimension k on a smooth manifold M is a
smooth subbundle of rank k of the tangent bundle TM . At each point p in M , it
assigns a subspace Dp ⊂ TpM .

In particular, we need the following:

Definition 2.1.7. A distribution D is called integrable if for every p in M , there
exists a submanifold P of M whose tangent space agrees with the distribution at
this point: TpP = Dp.

By virtue of the Frobenius theorem, the above condition is equivalent to other
useful statements. A distribution D is integrable if and only if it is involutive, which
means that it is closed under the Lie bracket. Precisely, if X, Y are vector fields in
D , then so is [X, Y ]. Another equivalent statement is the complete integrability of
D . We will call a chart (U, φ) on M flat for D if φ(U) is a cube in Rn, and if at
point of U , D is spanned by the coordinate vector fields {∂1, . . . , ∂k}. Then we call
the distribution D completely integrable if each point of M admits a neighbourhood
with a flat chart for D .

Moving onto the topic of Killing vector fields, we recall that the motivation here
is to consider infinitesimal isometries of M . The flows φt of these vector fields are
isometries of M for the times t where they are defined. Put another way, we may
define them using the assumption that LXg = 0, where we denote the Lie derivative
by L . This equation leads us to the equivalent formulation below:
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Definition 2.1.8. A Killing vector field X on a pseudo-Riemannian manifold (M, g)
satisfies the Killing equation:

g(∇VX,W ) + g(∇WX, V ) = 0

for all vector fields V,W . Equivalently, we may write this in components as

∇(aXb) = ∇aXb +∇bXa = 0

Given the context of general relativity, we need to introduce also the concept of
an observer field. An observer in a spacetime is a material particle parametrized by
so-called “proper time”. What is important for us is the following definition:

Definition 2.1.9. An observer field X on (M, g) is a future-pointing, timelike unit
vector field, whose integral curves are called X-observers.

1. We call X stationary if there exists a smooth function f > 0 on M such that
fX is a Killing vector field, in which case we say that M is stationary relative
to X.

2. If X is hypersurface-orthogonal, that is, if X⊥ is integrable, then X is static,
and we say that M is static relative to X.

We call X hypersurface-orthogonal whenever X⊥, its orthogonal complement in
TM , is an integrable distribution. This is because the integral manifolds to such a
vector field are hypersurfaces normal to X.

Given a stationary field X, the flow φt of fX is an isometry for each t which
carries each X-observer to itself. This means that the local universe is not changing
for X-observers. On the other hand, should the observer field X be static, we know
that the integral manifolds of X⊥ are 3-dimensional spacelike manifolds which are
invariant under the flow of X. This provides a strong separation of time and space.

Before moving onto the structure equations, let us briefly introduce the Einstein
field equations. These are a set of nonlinear partial differential equations which
involve the curvature tensor R of the spacetime metric g, and relate these to the
energy-momentum tensor T which represents the matter fields. We denote the
cosmological constant by Λ. Then the equations state that:

Rab −
1

2
Rgab + Λgab = 8πTab

The desired solutions of these equations are spacetimes with a Lorentz metric gab,
and their complexity makes exact solutions quite difficult to come by. We will,
however, study a few such solutions in the next section.

The Minkowski spacetime is of course one possible solution, taking the cosmologi-
cal constant Λ = 0 and assuming a vacuum T = 0. Allowing a nonzero cosmological
constant, we may arrive at constant scalar curvature solutions of the equations.
When R > 0, we obtain the so-called de-Sitter spacetime, with topology R1 × S3.
On the other hand, if R < 0 then we recover the Anti de-Sitter spacetime discussed
in a previous example. We note that vacuum solutions of the above, where T = 0,
must be Ricci flat. To see this, raise an index and take the trace over the left hand

7



side of the above equation. This will yield for us that R = 0. Substituting this back
into the field equations, we get Rab = 0.

Although not directly pertinent to our discussion, it is interesting to point out
that the above system of PDEs admits a well-posed Cauchy problem. In particular,
we may prescribe initial data on a spacelike hypersurface S, and ask whether there is
a development into a spacetime M satisfying the field equations, such that the metric
of M restricts to the metric on S, and the hypersuface S is a Cauchy surface for M
(i.e. every non-spacelike curve intersects it exactly once). The formulation of the
initial data on S involves a nonlinear elliptic system, called the constraint equations,
whereas the development itself requires one to solve a nonlinear hyperbolic problem
involving the reduced Einstein equations.

It is also worthwhile to note that the Einstein field equations are self-interacting,
which means that they remain nonlinear in the absence of other fields, since the
gravitational field defines the spacetime over which it propagates. Furthermore,
they are unique only up to diffeomorphism, so in the solving of the Cauchy problem
one must impose certain gauge conditions on the covariant derivatives of the metric
and so remove the additional degrees of freedom. Last of all, the metric itself defines
the spacetime structure, so we do not even know the domain of dependence of the
initial surface S to begin with. Despite all this, given sufficiently smooth initial data
satisfying the empty space constraint equations on a spacelike hypersurface, there
will exist a maximal development of the empty space Einstein field equations.

2.2. Schwarzschild and Kerr solutions

We conclude this chapter with an excursion into the well-known Schwarzschild
and Kerr solutions of Einstein’s field equations. These are both vacuum solutions,
and so Ricci-flat. The Schwarzschild solution represents the spacetime surrounding a
static black hole, whereas the Kerr solution allows for the black hole to be rotating.
Where the Schwarzschild solution is recovered as a limit of the Kerr spacetime,
they are both special cases of the Kerr-Newman solution, which generalizes Kerr by
allowing an electric charge.

The Schwarzschild spacetime has the metric:

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ + sin2 θ dφ2)

for r > 2m. This is a static spacetime, as the vector field ∂t is a timelike Killing
vector which is a gradient. It is spherically symmetric, by which we mean that it
is invariant under the SO(3) action on the spacelike two-spheres {t, r = constant}.
Furthermore, it is an asymptotically flat solution, in the sense that the metric is of
the form g = g0 + O(1/r) as r tends to infinity, for g0 the metric of the Minkowski
spacetime. The m variable in the metric represents the mass of the black hole as
measured from infinity. We note that the Schwarzschild spacetime is unique in the
sense that, given any spherically symmetric vacuum solution of the field equations,
it must be locally isometric to the Schwarzschild solution.

The Kerr spacetime, on the other hand, has the metric of the form:

ds2 = ρ2

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θ dφ2 − dt2 +

2mr

ρ2
(a sin2 θ dφ− dt)2
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in the Boyer-Lindquist coordinates. The newly introduced variables stand for:

ρ2(r, θ) = r2 + a2 cos2 θ

∆(r) = r2 − 2mr + a2

and m, ma represent the mass and angular momentum as measured from infinity,
respectively. To see the connection between Kerr and Schwarzschild explicitly, we
need only make the following substitutions in the Schwarzschild case:

gtt = −1 + 2m/r −→ −1 + 2mr/ρ2

grr = (1− 2m/r)−1 −→ ρ2/∆

gθθ = r2 −→ ρ2

gφφ = r2 sin2 θ −→ (r2 + a2 + 2mra2 sin2 θ/ρ2) sin2 θ

and with the addition of the mixed term gtφ = gφt = −2mra sin2 θ/ρ2.
The Kerr family is parametrized by the parameters a and m. In the limit as a

tends to 0, we recover the Schwarzschild spacetime. Otherwise, we are left with three
distict cases: (1) if 0 < a2 < m2, then we obtain the slowly rotating Kerr spacetime,
(2) if a2 = m2, then we obtain the extreme Kerr spacetime, and (3) if m2 < a2, then
we have the rapidly rotating Kerr spacetime. These lead to different horizons of the
spacetime, denoted by H and defined as the vanishing sets of ∆ = r2 − 2mr + a2.
Apparent in the metric is also another type of singularity, called the ring singularity
Σ, and defined by ρ2 = r2 + a2 cos θ = 0.

The roots of ∆ have to be examined for each of the above scenarios. In the
Schwarzschild case a = 0, we see that the roots are 0 and 2m. For slow Kerr, we
have two distinct positive roots r± = m± (m2−a2)

1
2 < 2m. In the extreme case, we

obtain a double root r = m. Last of all, for fast Kerr, ∆ has no real roots. We are
interested in seeing the maximal domains for the Kerr metric, and it can be shown
that the Boyer-Lindquist form has to be considered on the connected components
of R × S2 \ (H ∪ Σ), cut using the horizons H : ∆ = 0. We call these components
the Boyer-Lindquist blocks.

Definition 2.2.1. The Boyer-Lindquist blocks, denoted I, II, III, are the open
subsets of R2 × S2 \ Σ described by:

1. For slow Kerr, there are two horizons r+ and r−;
I : r > r+, II : r− < r < r+, III : r < r−.

2. For extreme Kerr, there is a single horizon r = m;
I : r > m, III : r < m.

3. For fast Kerr, there are no horizons, so we may view the spacetime;
I = III = R2 × S2 \ Σ.

A noteworthy result is that the maximally extended Kerr spacetimes are com-
posed precisely of the Boyer-Lindquist blocks glued together along the horizons.
This is interesting in particular when we consider the causal structure of the blocks.
Note that we may call a spacetime region chronological if it contains no closed time-
like curves, and causal if it contains no closed non-spacelike curves. Blocks I and
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II are both causal. Furthermore, since ∂t is a Killing vector field on I which is
future-directed and timelike, we have a stationary observer field X = ∂t/|∂t| on the
open set {gtt < 0}. The integral curves of this vector field are called Kerr stationary
observers. However, ∂t fails to be hypersuface-orthogonal on any open set in a Kerr
spacetime, and thus Kerr observers are not static. However, block III is vicious,
meaning that for any two points p and q in the block, there exists a timelike future-
directed curve in block III from p to q. The consequence is a violation of causality
in the interior block III of the Kerr spacetime. Furthermore, all maximal models
of the Kerr spacetime contain this block.

We may end the section by summarizing a few meaningful properties of the
Kerr family of solutions. First of all, the Kerr spacetime is axially symmetric, as a
consequence of the rotation. Second, it is stationary for r > 2m, so if we imagine
a star of such a radius being the source of gravity, it would not be expanding or
collapsing. Third of all, it is Ricci flat, which means that the spacetime is a vacuum
solution: the star is the only source of gravity. Last of all, the Kerr solution is
asymptotically flat, which implies that gravity becomes very weak when far from
the source.
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3. Curvature Equations

3.1. The structure equations

In order to perform the necessary calculations for deriving the connection and
curvature associated to the metric tensor, we will be employing the first and second
structure equations. This section is largely based on the work in [20] and [22]. Let us
begin by introducing connection and curvature forms. We choose an orthonormal
frame {E1, . . . , En} of a pseudo-Riemannian manifold (where the metric g has p
positive and q negative eigenvalues, with p + q = n), which we may do at least
locally. Associated to this is the orthonormal coframe {θ1, . . . , θn} defined by the
relation

θi(Ej) = δij

where δij is the Kronecker delta.

Definition 3.1.1. Given a pseudo-Riemannian manifold (M, g) with Levi-Civita
connection ∇, we define the connection 1-forms ωij acting on vector fields X by:

ωij(X) = θi(∇XEj)

Theorem 3.1 (Cartan’s first structure equation). If ωij are the connection 1-forms
and {θi} the orthonormal coframe as above, we have the relation:

dθi = −
∑
m

ωim ∧ θm

Proof. We make use of the equation

dθ(X, Y ) = Xθ(Y )− Y θ(X)− θ([X, Y ])

where θ is a 1-form and X, Y are vector fields. It follows that:

dθi(Ea, Eb) = Eaθ
i(Eb)− Ebθi(Ea)− θi([Ea, Eb])

= −θi([Ea, Eb])
The right hand side gives us:(

−
∑
m

ωim ∧ θm
)

(Ea, Eb) = −
∑
m

ωim(Ea)θ
m(Eb) +

∑
m

ωim(Eb)θ
m(Ea)

= −ωib(Ea) + ωia(Eb)

= −θi(∇EaEb) + θi(∇Eb
Ea)

= −θi([Ea, Eb])
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If we denote ω = (ωij) the matrix of connection 1-forms, then the first structure
equation may be written as

dθ = −ω ∧ θ
The second equation will relate the connection 1-forms to the curvature forms. We
define the latter:

Definition 3.1.2. If X and Y are vector fields on the pseudo-Riemannian manifold
M , then we define the curvature forms Ωi

j by:

R(X, Y )Ej =
∑
i

Ωi
j(X, Y )Ei

where Ωi
j are 2-forms.

Realize (R(X, Y )Ej) as a vector and let E = (E1, . . . , En). Then the above
definition states that

(R(X, Y )Ej) = E(Ωi
j(X, Y ))

with (Ωi
j(X, Y )) acting as matrix multiplication on the right on E.

Theorem 3.2 (Cartan’s second structure equation). Given the connection 1-forms
ωij and curvature 2-forms Ωi

j, the following relation holds:

Ωi
j = dωij +

∑
m

ωim ∧ ωmj

Proof. Once again, we will prove this by evaluating both sides of the equation on
the frame field vectors.

R(Ea, Eb)Ej = ∇Ea(∇Eb
Ej)−∇Eb

(∇EaEj)−∇[Ea,Eb]Ej

The connection forms can be used to rewrite the terms ∇Eb
Ej =

∑
i ω

i
j(Eb)Ei. We

evaluate:

∇Ea(∇Eb
Ej) =

∑
Eaω

i
j(Eb)Ei +

∑
ωmj (Eb)∇EaEm

=
∑

Eaω
i
j(Eb)Ei +

∑
ωmj (Eb)ω

i
m(Ea)Ei

Using the above, we may write the curvature terms using connection 1-forms:

R(Ea, Eb)Ej =
∑(

Eaω
i
j(Eb)− Ebωij(Ea)

)
Ei

+
∑(

ωmj (Eb)ω
i
m(Eb)− ωmj (Ea)ω

i
m(Eb)

)
Ei

−
∑

ωij
(
[Ea, Eb]

)
Ei

Notice that the middle line is exactly the evaluation of ω ∧ ω, while the first and
last lines compose the evaluation of dω. This proves the second structure equation.

�

Once again, we may use matrix notation to write the structure equation in short
form as:

Ω = dω + ω ∧ ω
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3.2. Gauss Codazzi equations for arbitrary codimension

Here we extend some basic curvature formulas to the context of pseudo-Riemannian
submanifolds of arbitrary codimension. The case of 2-dimensional spacelike surfaces
sitting in a 4-dimensional spacetime is the most relevant for the later sections. How-
ever, for the sake of generality, we take a codimension k submanifold M embedded
in a pseudo-Riemannian manifold (M, g) of dimension n, with the induced metric
denoted by g. Further, we denote the curvature tensors by R and R, respectively.
We quickly recall some basics, following the work of Lee in [19], as well as [11] and
[16] for some foundations.

Definition 3.2.1. The second fundamental form h of a hypersurface (M, g) ↪→
(M, g) is a symmetric mapping into the normal bundle of M in M .

h : TM × TM → NM

(X, Y ) 7→ (∇XY )⊥

In higher codimensions, there are multiple independent normal vectors to M . If we
write them as {ν1, . . . νk} for codimension k, then by h we mean the summation of
the second fundamental forms in each of the normal directions:

h(X, Y ) =
∑

hi(X, Y ) =
∑
〈(∇XY )⊥, νi〉νi

where by 〈·, ·〉 we are denoting g.

It can be shown that the second fundamental form measures the discrepancy
between the connections on the ambient and the embedded manifolds; namely, we
have the relation

∇XY −∇XY = h(X, Y )

Therefore, it will also relate the curvature tensors of the two manifolds, described
by the Gauss equation. If X, Y, Z,W are sections of TM , then we arrive at:

R(X, Y, Z,W )−R(X, Y, Z,W ) = 〈h(X,Z), h(Y,W )〉 − 〈h(X,W ), h(Y, Z)〉

where this formula holds in the general case that we have been discussing. (This fact
follows from checking that the usual proofs carry over to the general case without
much effort.)

However, we need not stop there. The vector field W does not have to be chosen
in TM , as the proof of the Gauss equation still holds more generally. Of particular
interest to us will be the case where W is one of the normal directions νi. In this
case, we arrive at the equation:

R(X, Y, Z, νi) = 〈h(X,Z), (∇Y νi)
⊥〉 − 〈h(Y, Z), (∇Xνi)

⊥〉

We may immediately drop the orthogonal projection, since h already takes values
in NM . We arrive at:

R(X, Y, Z, νi) =

〈∑
hj(X,Z),∇Y νi

〉
−
〈∑

hj(Y, Z),∇Xνi

〉
13



Note that for some scalar function f , we will have

X〈fνj, νi〉 = 〈Xfνj, νi〉+ f〈∇Xνj, νi〉+ f〈νj,∇Xνi〉

which implies for us that we can write

R(X, Y, Z, νi) =

〈∑(
∇Xhj(Y, Z)−∇Y hj(X,Z)

)
νj, νj

〉
+
∑

hj(Y, Z)〈∇Xνj, νi〉 −
∑

hj(X,Z)〈∇Y νj, νi〉

where we are using hj to denote both the vector and the coefficient, which should
be clear from context. We state the specific case we need in the following theorem:

Theorem 3.3. Consider a codimension 1 or 2 submanifold M of an n-dimensional
pseudo-Riemannian manifold M̄ , with the normal directions to M denoted by ν1, ν2.
It follows from the Gauss equation that we have the following relations:
In codimension 1:

R(X, Y, Z, ν1) = ∇Xh1(Y, Z)−∇Y h1(X,Z)

whereas in codimension 2:

R(X, Y, Z, ν1) =∇Xh1(Y, Z)−∇Y h1(X,Z)

+ h2(Y, Z)〈ν1,∇Xν2〉 − h2(X,Z)〈ν1,∇Y ν2〉

We will use exactly this last equation in the proofs of many results in chapter 4.

3.3. Killing tensors

In the paper of [26], the authors generalize the above Gauss and Codazzi cur-
vature equations with Minkowski formulas in spacetime, using the existence of con-
formal Killing-Yano (CKY) tensors. Before specifying the result we will need later,
we explain some of the hierarchy of Killing tensors [8], [9], [10]. Since we will only
be concerned with rank 2 CKY tensors, we present the setup with this in mind.

Note that in what follows, we will denote the tensor∇∂aTb by Tb;a. That is, we let
the subscript ; denote the covariant derivative applied to the tensor T . Moreover,
the symmetric part of a tensor, for example Tab, is denoted using open brackets,
T(ab), while its antisymmetric part is denoted using closed brackets, T[ab].

Definition 3.3.1. A Killing tensor of rank p on a spacetime (M, g) is a symmetric
tensor which satisfies the Killing equation:

T(a1...ap;b) = 0

Notably, this is a symmetric generalization of a Killing vector. Let us provide
some physical motivation for the examination of such objects [8], [9]. The geodesics
on a spacetime manifold can be studies using the Hamilton-Jacobi equation:

H(q, ∂qS(q)) = E

14



for E the energy, and S Hamilton’s characteristic function. Precisely, H in this case
is ‖∇S‖2 in the metric of the cotangent bundle. An important question to ask is
when this equation is separable. To this end, the existence of Killing vectors and
Killing tensors satisfying some commutativity conditions is integral to the definition
of so-called separability structures. These structures are composed of charts which
allow for an additive separation of variables of the Hamilton-Jacobi equation.

Furthermore, let us consider the Klein-Gordon equation

�φ = m2φ

where we have the wave operator � = gab∇a∇b. If the manifold in question is Ein-
stein, that is a manifold whose Ricci tensor is a scalar multiple of the metric, then
the Klein-Gordon equation is separable if and only if the Hamilton-Jacobi equation
is separable.

On the other hand, a Killing-Yano tensor is an antisymmetric version of the
Killing tensor, in the following sense:

Definition 3.3.2. A Killing-Yano tensor of rank p on a spacetime (M, g) is an
antisymmetric tensor which satisfies the Killing-Yano equation:

Ta1...ap−1(ap;b) = 0

Since T is antisymmetric, this shows us that the covariant derivative on T is also
antisymmetric.

One may motivate the Killing-Yano tensor geometrically as follows: Let γ be
a geodesic curve on a manifold, and let T be a Killing-Yano tensor of rank two.
Denote also by T the associated endomorphism obtained by raising the index. Then
T gives rise to a vector field X that is parallel translated along γ, where X = T γ̇.
We may check that the necessary condition holds:

γ̇a∇aX
b = γ̇a∇a(T

b
c γ̇

c)

= γ̇a(∇aT
b
c )γ̇c + T bc (γ̇∇aγ̇

c)

=
1

2
γ̇aγ̇c(∇aT

b
c +∇cT

b
a)

= 0

We see that the vanishing occurs due to the appearance of the geodesic condition
on γ, and the Killing-Yano equation Tb(c;a) = 0.

Moreover, Killing-Yano tensors act as “square roots” of Killing tensors in the
following sense: If we have two Killing-Yano tensors f, g of rank p, then the product

Kab = f (a
c2...cp

gb)c2...cp

is a Killing tensor of rank 2. In certain spacetimes, the Killing and Killing-Yano
tensors allow for the separability of the Dirac equation [9].

We may generalize both of these to their conformal versions via:

15



Definition 3.3.3.

1. A conformal Killing tensor of rank p on a spacetime (M, g) is a symmetric
tensor which satisfies the modified equation:

T(a1...ap;b) = gb(a1T a2...ap)

for some symmetric tensor T of rank p− 1

2. A conformal Killing-Yano tensor of rank p on a spacetime (M, g) is an an-
tisymmetric tensor which satisfies the modified equation (∇ the Levi-Civita
connection of g):

∇(a1Ta2)a3...ap+1 = ga1a2T a3...ap+1 − (p− 1)g[a3(a1T a2)...ap+1]

where by taking a trace we find that

T a2...ap =
1

n− p+ 1
∇a1Ta1a2...ap

for n the dimension of M .

If ω is a conformal Killing-Yano p-form on a manifold with metric g, then Ωp+1ω is
a conformal Killing-Yano p-form with respect to the conformally scaled metric Ω2g.

Of particular importance are two subsets of the conformal Killing-Yano forms:
the Killing-Yano forms we had discussed above, and closed conformal Killing-Yano
forms (with respect to exterior differentiation). Let us rewrite the above definitions
in terms of differential forms for clarity. We will denote by ι(·) the interior product.
Then we may define a p-form ω to be conformal Killing-Yano if and only if, for any
smooth vector field X, its covariant derivative satisfies:

∇Xω = ι(X)κ+X ∧ ξ

where κ is a (p+ 1)-form, and ξ is a (p− 1)-form. Explicitly, we may find that these
forms are:

κ =
1

p+ 1
∇∧ ω

ξ = =
1

n− p+ 1
ι(∇)ω

where n is the dimension of the spacetime we are working with. To be clear:

ι(X)ω = Xaωaa2···ap
ι(∇)ω = ∇aωaa2···ap

The defining equation with the κ and ξ specified becomes:

∇Xω =
1

p+ 1
ι(X)(∇∧ ω) +

1

n− p+ 1
X ∧ ι(∇)ω

16



With this notation, we may characterize the special subsets of conformal Killing-
Yano tensors quite simply. The Killing-Yano forms are exactly the forms α which
satisfy

∇Xα = ι(X)κ

whereas the closed conformal Killing-Yano forms β satisfy

∇Xβ = X ∧ ξ

Moreover, we may also note the behaviour of the conformal Killing-Yano tensors
under the Hodge star ∗. The defining equation above becomes:

∇X(∗ω) =
1

p∗ + 1
ι(X)(∇∧ ∗ω) +

1

n− p∗ + 1
X ∧ ι(∇) ∗ ω

for p∗ = n− p. This shows that the Hodge star of a conformal Killing-Yano form is
another conformal Killing-Yano form. Furthermore, it acts as a mapping between
Killing-Yano forms and closed conformal Killing-Yano forms (so that ∗ maps KY
forms to closed CKY forms, and conversely, closed CKY forms to KY forms).

We should note that, for our desired context, we will focus on conformal Killing-
Yano 2-forms on a 4-dimensional spacetime. In this case, we have a far simpler
identification for such tensors. Let us call Q the form, and (N, 〈·, ·〉) the spacetime
manifold. Denoting by ∇ its Levi-Civita connection, and by ξ the divergence of Q
with respect to ∇, the aforementioned equations reduce to:

∇XQ(Y, Z) +∇YQ(X,Z) =
1

3
(2〈X, Y 〉〈ξ, Z〉 − 〈X,Z〉〈ξ, Y 〉 − 〈Y, Z〉〈ξ,X〉

for all fields X, Y, Z, where the similarity to the basic Killing equation is more easily
appreciated [4].

3.4. Killing-Yano tensors in the Kerr spacetime

We present a basic application of the aforementioned ideas to the Kerr spacetime.
The cited results can be found throughout [4], [9], and [15]. It is a well-known result
that the Kerr solution admits a closed conformal Killing-Yano tensor, namely:

Q = a cos θ sin θ dθ ∧ ((r2 + a2) dφ− a dt) + r dr ∧ (a sin2 θ dφ− dt)

written in the Boyer-Lindquist coordinate system discussed in section 2.2. This
tensor Q has a well-known divergence of 3∂t [15]. It is also interesting to note
that in the limit as a → 0, we recover the conformal Killing-Yano 2-form for the
Schwarzschild spacetime, r dr∧dt. This is, in fact, a conformal Killing-Yano 2-form
present in any spherically symmetric spacetime endowed with a metric of the type:

−f(r)2 dt2 +
dr2

f(r)2
+ r2 dS2

where we again denote by dS the line element of the sphere metric. The tensor
retains the divergence of 3∂t in such spacetimes.
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Q will map to a Killing-Yano tensor P = ∗Q under the Hodge star. This yields

P = ∗Q = r sin θ dθ ∧ ((r2 + a2) dφ− a dt) + a cos θ dr ∧ (dt− a sin2 θ dφ)

which is divergence-free, P ab
;a = 0. Now recall that Killing-Yano tensors act as

“square roots” of Killing tensors, in the sense that we may write a new Killing
tensor kab = PacP

c
b. Moreover, the coordinate vector fields ∂t and ∂φ are Killing

vector fields with respect to the Boyer-Lindquist coordinates. It can then be shown
that the four tensors - ∂t, ∂φ, k, and the metric g - are linearly independent and
commute with respect to the so-called Nijenhuis-Schouten bracket (a generalization
of the Lie bracket). This further implies that the integrals of motion associated with
these tensors are all independent and in involution. Consequently, this means that
the geodesic motion in the Kerr spacetime is completely integrable.

3.5. Minkowski curvature formulas in spacetime

The primary method used to prove the results of the paper is a kind of Minkowski
curvature formula in the setting of a spacelike surface in spacetime. This work can
be found in great detail in the thesis of Y-K. Wang [25] and paper of Wang, Wang
and Yau [26]. We recall some classical results first, and then proceed to introduce the
necessary preliminaries for the formula. Recall that in the case of a 2-dimensional
surface Σ ⊂ R3, with outward unit normal ν, the Minkowski formula states that∫

Σ

H dσ =

∫
Σ

K(X · ν) dσ

where we denote by σ the induced metric on the surface Σ, by H the mean curvature
vector which is defined as the trace of the second fundamental form associated to ν
on Σ, and finally by K the Gauss curvature of the surface Σ which can be viewed
as the determinant of said second fundamental form.

A more general version of the Minkowski formula holds as well, again for a hyper-
surface embedded in Rn. Recall that the principal curvatures of Σ are the eigenvalues
of its second fundamental form. Now denote by σk the k-th elementary symmetric
function of the principal curvatures, and by µ the induced volume measure on Σ,
to avoid misunderstanding. For X : Σ → Rn the embedding, and ν the outer unit
normal as before, the formula reads:

(n− k)

∫
Σ

σk−1 dµ = k

∫
Σ

σk〈X, ν〉 dµ

Now let Σ be a 2-dimensional surface in N , with normal directions ν1 = e3, ν2 =
e4, where {ei} compose a frame of the tangent bundle of N . We write the connection
1-form of the normal bundle of Σ as

αe3(X) = 〈∇Xe3, e4〉

We may finally quote the special case of the Minkowski formula:

Theorem 3.4. Let Σ be a 2-dimensional spacelike surface in a spacetime manifold
(N, ḡ). We denote by σ the induced metric on Σ. Let e3, e4 be a frame of the
normal bundle, h3, h4 be the corresponding second fundamental forms, H0 the mean
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curvature vector field, R the Riemann curvature tensor of ḡ, and αe3 the connection
1-form in the normal bundle. Then

−
∫

Σ

〈J0, ∂t〉 dσ =

∫
Σ

2(deth3 − deth4)Q34 + (Rab
a3Qb4 −Rab

a4Qb3)

+ (Rab
43 − (dαe3)

ab)Qab dσ

where by J0 we denote the reflection of H0 through the light cone in the normal
bundle of Σ. Explicitly,

J0 = 〈H0, e4〉e3 − 〈H0, e3〉e4

This is in particular the formula given in [26] with the choice of (r, s) = (2, 0), [4].
The mean curvature is vital to calculating the quasi-local mass and energy terms in
spacetimes.
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4. Quasi-Local Mass Estimates

4.1. Quasi-local mass

In this chapter, we describe the results of the paper by Chen, Wang, and Yau [4],
and explain the proofs they have given. As we will be dealing with isometric embed-
dings of surfaces from some physical spacetime into a chosen reference spacetime,
let us make the choice at the outset to denote with a prime ′ the quantities present
in the source space, and without it the quantities living in the target. Therefore, as
at the end of chapter 3, we take a 2-dimensional surface Σ in a physical spacetime N
with a frame {e′3, e′4} of its normal bundle, and let h′3, h

′
4 be the second fundamental

forms of Σ in the normal directions e′3, e
′
4, respectively. Furthermore, we write D for

the ambient connection, whereas we use simply ∇ for the connection of the induced
metric σ on Σ. With this in mind, recall the definition of the connection 1-form of
the normal bundle to the surface:

αe′3(X) = 〈DXe
′
3, e
′
4〉

where for convenience we sometimes denote by 〈·, ·〉 the metric of the ambient space-
time N . We take an isometric embedding X of Σ into, at first, Minkowski space-
time R3,1, although we will consider cases of Anti de-Sitter, Schwarzschild, and Kerr
spacetimes shortly. We choose also a frame {e3, e4} of the normal bundle of the em-
bedded surface X(Σ), with h3, h4 being the associated second fundamental forms,
and αe3 the connection 1-form of its normal bundle.

We begin with the critical idea of the paper, which combines Killing-Yano tensors
with Minkowski curvature formulas. The evaluation of quasi-local mass or energy of
a region of spacetime comes down to considering the differences of the mean curva-
ture along a spacelike 2-dimensional surface which forms a boundary of a spacelike
region (a time-slice), measured with respect to the ambient spacetime in which the
surface lives, against the extrinsic curvature it attains in the reference spacetime
through some embedding. It can be shown that there is a gauge-invariant method
for producing this reference extrinsic curvature, meaning that the choice of the frame
will not remain an ambiguity [27], [28], [29].

Theorem 4.1. Given a spacelike 2-dimensional surface Σ in a physical spacetime
N , and a frame {e′3, e′4} of its normal bundle in N , let X be an isometric embedding
of Σ into Minkowski space R3,1. Suppose that there is a frame of the normal bundle
of X(Σ) in R3,1 such that

αe′3 = αe3 = ζ
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Then ∫
− 〈∂t, e4〉(trh3 − trh′3) + 〈∂t, e3〉(trh4 − trh′4)dσ

=

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34

+ (Rab
a4Qb3 −Rab

a3Qb4)−Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

for R the curvature tensor of N . We have denoted by ζ the common connection one
form. Moreover, we are using the conformal Killing-Yano tensor inside the target
spacetime, which for R3,1 is r dr ∧ dt, with divergence 3∂t.

Proof. The idea of the proof is to consider two divergence quantities and, using
Stokes’ theorem, derive the above relations. The first one concerns the frame in the
physical spacetime before any embedding, whereas the second is for the embedded
surface.

∇a((trh
′
3σ

ab − h′ab3 )Qb4 − (trh′4σ
ab − h′ab4 )Qb3)

∇a((trh3σ
ab − hab3 )Qb4 − (trh4σ

ab − hab4 )Qb3)

where the connection ∇ is the induced connection on the surface.

We first do the necessary calculations for the first quantity. We use the second
equation of Theorem 3.3. Raising two indices and setting X = ∂a = Z, Y = ∂b, ν1 =
e′3, ν2 = e′4, and ζa = (αe′3)a we derive

Rab
a3 = ∇a(h′3)ba −∇b(h′3)aa + (h′4)baζ

a − (h′4)aaζ
b

= ∇a(h
′
3)ab −∇aσ

abtrh′3 + (h′4)cbσcaζ
a − trh′4ζb

= ∇a((h
′
3)ab − σabtrh′3) + (h′4)abζa − trh′4ζb

We can rearrange the above, and repeat the calculation with ν2 = e′4 to write:

∇a(σ
abtrh′3 − (h′3)ab) = −Rab

a3 + (h′4)abζa − trh′4ζb

∇a(σ
abtrh′4 − (h′4)ab) = −Rab

a4 + (h′3)abζa − trh′3ζb

Now we turn our attention to differentiating the Killing-Yano 2-form.

∇aQb3 = (∇aQ)b3 +Q(∇a∂b, e3) +Q(∂b,∇ae3)

Recall that the differentiation is done using the connection of σ, that is, the induced
connection on the surface Σ. However, the fact that we have an isometric embedding
into R3,1 allows us to use the fact that the discrepancy between the ambient con-
nection D and the induced connection ∇ is described using the second fundamental
forms. Let us work term by term. The first is simply differentiation of a function,
so the two connections agree:

(∇aQ)b3 = (DaQ)b3
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The second term can be rewritten as follows:

Q(Da∂b − (h3)ab + (h4)ab, e3)

= −Q((h3)ab, e3) +Q((h4)ab, e3)

= (h4)abQ43

Note that we can choose for Q(Da∂b, e3) to be pointwise equal to zero, so this part
vanishes. Moreover, the tensor h3 is in the direction of e3, which by the antisymmetry
of Q also forces this part to vanish. Thus we arrive at the above. It should be noted
that the positive on h4 is coming from the e4 direction being timelike, and thus
under the Lorentzian metric having a negative sign. This can be observed from the
equations following Definition 3.2.1. Finally, the third term becomes:

Q(∂b, Dae3)

= Q(∂b,Σc〈Dae3, ∂c〉∂c + 〈Dae3, e4〉e4)

= Qbc(h3)ca − ζaQb4

= Qbcσ
cd(h3)ad − ζaQb4

Using the fact that we may use the ambient connection and subtract off the second
fundamental forms, but these are defined over TΣ, there is no discrepancy. The rest
follows by summing up all the components, and separating appropriately.

Although the calculations above were done in the case of Qb3, we may read off
the results for Qb4 by following the same steps. Therefore, we may put everything
together:

∇a((σ
abtrh′3 − (h′3)ab)Qb4 − (σabtrh′4 − (h′4)ab)Qb3)

= (Rab
a4 − (h′3)abζa + trh′3ζ

b)Qb3 − (Rab
a3 − (h′4)abζa + trh′4ζ

b)Qb4

+ (σabtrh′3 − (h′3)ab)((DaQ)b4 − (h3)abQ34 +Qbcσ
cd(h4)da)

− (σabtrh′4 − (h′4)ab)((DaQ)b3 − (h4)abQ34 +Qbcσ
cd(h3)da)

We can use the definition of conformal Killing-Yano 2-forms to rewrite some of
the above terms. Since the divergence of Q is 3∂t, we get:

(DaQ)b4 + (DbQ)a4 =
1

3
(2〈∂a, ∂b〉〈3∂t, e4〉)

where all other terms vanish because 〈e4, ∂b〉 = 〈e4, ∂a〉 = 0. Notice further that we
are summing over both the indices a and b. Thus:

(σabtrh′3 − (h′3)ab)(DaQ)b4

=
1

2
(σabtrh′3 − (h′3)ab)((DaQ)b4 + (DbQ)a4)

= (σabtrh′3 − (h′3)ab)〈∂a, ∂b〉〈∂t, e4〉
= (2trh′3 − trh′3)〈∂t, e4〉
= 〈∂t, trh′3e4〉

22



We will treat the terms separately, then put them together.

∇a((σ
abtrh′3 − (h′3)ab)Qb4 − (σabtrh′4 − (h′4)ab)Qb3)

= (Rab
a4 − (h′3)abζa + trh′3ζ

b)Qb3 − (Rab
a3 − (h′4)abζa + trh′4ζ

b)Qb4

+ (σabtrh′3 − (h′3)ab)∇aQb4

− (σabtrh′4 − (h′4)ab)∇aQb3

We now deal with the latter two terms. Expanding the derivative of Q as we
have above, then grouping terms, we obtain:

trh′3〈∂t, e4〉 − trh′4〈∂t, e3〉
+ (σabtrh′4 − (h′4)ab)((h4)abQ34 −Qbcσ

cd(h3)da + ζaQb4)

− (σabtrh′3 − (h′3)ab)((h3)abQ34 −Qbcσ
cd(h4)da + ζaQb3)

We split this up further into manageable pieces. The Qbcσ
cd terms are:

Qbcσ
cd[(h3)da(h

′
4)ab − (h4)da(h

′
3)ab]

The Q34 terms give:

Q34[(h′3)ab(h3)ab − trh′3σab(h3)ab − (h′4)ab(h4)ab − trh′4σab(h4)ab]

= Q34[h′3 · h3 − trh′3trh3 − h′4 · h4 + trh′4trh4]

where we have used the notation h3 · h′3 to denote the product (h3)ab(h3)ab, as well
as the fact that the metric σ satisfies σab = δab, the Kronecker delta. Next, the ζa
terms give us:

(σabtrh′4 − (h′4)ab)ζaQb4 − (σabtrh′3 − (h′3)ab)ζaQb3

= (trh′4ζ
b − (h′4)abζa)Qb4 − (trh′3ζ

b − (h′3)abζa)Qb3

which will cancel with the other terms from the first computation. Finally, the left
over terms we have give rise to:

trh′3σ
abQbcσ

cd(h4)da − trh′4σabQbcσ
cd(h3)da

= trh′3Qbc(h4)cb − trh′4Qbc(h3)cb

= Qab(trh
′
3h

ab
4 − trh′4hab3 )

= 0

Let us write down the final divergence quantity we have arrived at:

∇a((σ
abtrh′3 − (h′3)ab)Qb4 − (σabtrh′4 − (h′4)ab)Qb3)

= Rab
a4Qb3 −Rab

a3Qb4 + trh′3〈∂t, e4〉 − trh′4〈∂t, e3〉
+Qbcσ

cd[(h3)da(h
′
4)ab − (h4)da(h

′
3)ab]

+Q34[h′3 · h3 − trh′3trh3 − h′4 · h4 + trh′4trh4]
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where we note that the ζa terms cancelled with some of the terms in the first line.
Now that we have considered every term arising from this divergence term, it

remains for us to examine what happens for the other divergence quantity with no
prime ′ terms. All the equations we have above continue to hold, although the final
expressions have a slightly simpler form.

Indeed, first let us replace every h′3 with h3, and every h′4 with h4. For the Q34

terms, let us use the fact that the second fundamental forms are symmetric 2 × 2
matrices, say of the forms: [

a c
c b

]
,

[
e g
g f

]

Q34[h3 · h3 − (trh3)2 − h4 · h4 + (trh4)2]

= Q34[a2 + 2c2 + b2 − (a+ b)2 − e2 − f 2 − 2g2 + (e+ f)2]

= Q34[2c2 − 2ab− 2g2 + 2ef ]

= Q34[2 deth4 − 2 deth3]

The term trh′3〈∂t, e4〉 changes to trh3〈∂t, e4〉, and likewise for 3 and 4 interchanged.
Next, the Gauss equations whence we obtained the curvature terms in the ambient
spacetime do not give any curvature terms after the embedding, because the curva-
ture tensor of the flat Minkowski spacetime is zero. Before we move onto putting
everything together, we make more sense of one of the expressions after the em-
bedding. Let us calculate the differential of the connection one form of the normal
bundle.

dζ(∂a, ∂b)

= ∂aζ(∂b)− ∂bζ(∂a)− ζ([∂a, ∂b])

= ∂a〈Dbe3, e4〉 − ∂b〈Dae3, e4〉
= 〈(DaDb −DbDa)e3, e4〉+ 〈Dbe3, Dae4〉 − 〈Dae3, Dbe4〉

The first term is a curvature R(∂a, ∂b, e3, e4), which for a codimension 2 surface will
vanish by the equations of chapter 3, since:

R(∂a, ∂b, e3, e4) = 〈(Dae3)⊥, (Dbe4)⊥〉 − 〈(Dbe3)⊥, (Dae4)⊥〉

where we note that Dae3 is orthogonal to e3 by ∂a〈e3, e3〉 = 2〈Dae3, e3〉 = 0, and
so similarly Dbe4 is orthogonal to e4. This means that the inner products are some
components multiplying 〈e3, e4〉 = 0. For what remains, the above arguments show
us that any of the terms in the normal directions will vanish, and so we may split up
the derivatives into components along the tangent directions ∂a, ∂b, and so obtain:

〈〈Dbe3, ∂a〉∂a + 〈Dbe3, ∂b〉∂b, 〈Dae4, ∂a〉∂a + 〈Dae4, ∂b〉∂b〉
− 〈〈Dae3, ∂a〉∂a + 〈Dae3, ∂b〉∂b, 〈Dbe4, ∂a〉∂a + 〈Dbe4, ∂b〉∂b〉
= (h3)ab(h4)aa + (h3)bb(h4)ab − (h3)aa(h4)ab − (h3)ab(h4)bb

These computations give us the Ricci equation, which means that after the em-
bedding, we obtain the term:
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Qbcσ
cd[(h3)da(h4)ab − (h4)da(h3)ab] = Qbc(dζ)bc = 0

the vanishing due to Qbc = 0 in our case, as there are no timelike vectors among the
coordinate vector fields ∂b. To finish the proof, we need only to take one divergence
quantity, subtract it from the other, and then integrate over the surface Σ. The
divergence quantities under integration vanish by Stokes’ theorem, and so we obtain
the desired integral equalities.

�

Let us return to the connection with the Wang-Yau quasi-local mass. We are
given, a priori, the frame {e′3, e′4} of the normal bundle to Σ inside N , and an
isometric embedding X of the surface into Minkowski spacetime R3,1. To construct
a “canonical” gauge in the reference space, we further require a choice of a timelike
unit vector, T0, in R3,1. We take the image X(Σ) and project it onto the orthogonal
complement of T0, which for convenience we denote by T⊥0 . The projection now
lies in this 3-dimensional “time-slice” of Minkowski space, and so admits a unique
normal unit vector field e3, defined globally by parallel translation along T0. Now
we must choose the second normal vector field e4 to Σ. We take it to be that vector
field which is orthogonal to e3, and uniquely determined by the condition that

〈H ′, e′4〉 = 〈H, e4〉
Namely, that the inner product of the mean curvature vector field with the timelike
normal e4 is the same whether we measure it in the source, or in the target spacetime.
This means that the expansion of the surface along the timelike vector fields is the
same before and after and embedding [28].

The connection with the quasi-local mass is that, if we have a surface Σ in
spacetime N , and an observer (X,T0) satisfying αe3 = αe′3 , then

E(Σ, X, T0) =

∫
−〈∂t, e4〉(trh3 − trh′3) + 〈∂t, e3〉(trh4 − trh′4)dσ

=
1

8π

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34

+ (Rab
a4Qb3 −Rab

a3Qb4)−Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

and here we immediately see the Minkowski formula above allowing us to rewrite
the difference of the mean curvatures.

4.2. Estimates in Minkowski space

The goal of this section is to provide applications of the quasi-local mass as a
geometric gadget that can be used, for example, to prove rigidity theorems for 3-
dimensional manifolds fitting a certain framework of hypetheses. Such results are
reliant on a variety of bounds on the quasi-local mass and energy with reference to
the Minkowski spacetime. We begin with the choice of isometric embedding X and
timelike unit vector T0 = ∂t. The Liu-Yau quasi-local mass of the surface, mLY (Σ),
is then equal to the quasi-local energy E(Σ, X, ∂t). Under the assumption that
αH = 0, that is, 〈DXH

′, e′4〉 = 0 for all choices of fields X, the Liu-Yau quasi-local
mass is a critical point of the Wang-Yau quasi-local energy [4].
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Theorem 4.2. If αH = 0, then the Liu-Yau mass is

mLY (Σ) =
1

8π

∫
(2 deth3 − trh3trh

′
3 + h3 · h′3)(X · e3)−Rab

a3(X · eb) dσ

Proof. We embed the surface into (∂t)
⊥, and so take e4 = ∂t. Therefore, the mean

curvature in the embedding must have no component in the ∂t direction.

〈H, e4〉 = 0

Recall that when constructing these frames, we make the assumption that

〈H ′, e′4〉 = 〈H, e4〉

and so we obtain e′4 = J/|H|. Next, recall that h3 and h4 are in the directions e3

and e4, respectively, and thus so are their traces. By a slight abuse of notation, we
again denote by hi both the vector in the direction ei as well as the scalar value,
which should be clear in the following context:

αH(X) = 〈DXH, e4〉
= 〈DX(trh3 + trh4), e4〉
= trh3〈DXe3, e4〉+ trh4〈DXe4, e4〉
= trh3〈DXe3, e4〉
= 0

By the equality 〈H ′, e′4〉 = 〈H, e4〉, we obtain the same result with e′3, e
′
4, whence

it follows that
αe3 = αe′3 = 0

Next, note that since the isometric embedding is into the orthogonal complement of
∂t, we actually obtain h4 = 0. Now, let us apply Theorem 4.1, which yields:

mLY (Σ) =
1

8π

∫
(2 deth3 − trh3trh

′
3 + h3 · h′3)Q34 +Rab

a4Qb3 −Rab
a3Qb4 dσ

We compute the necessary Q components, using the form Q = r dr ∧ dt, with
e4 = ∂t.

Qab = 0, Qa3 = 0, Q34 = (X · e3), Qb4 = (X · e4)

using X · ei to denote the inner product in this direction. Using these values, we
recover the desired expression.

�

This allows us to prove the following bound on the Liu-Yau mass:

Theorem 4.3. Given Σ a topological sphere in spacetime N , and choice of frame
e′3 = −H/|H|, e′4 = J/|H|. If, in addition, αe′3 = 0, Rab

a4 = 0, the second fundamental
form in direction e′3, h

′
3, is positive definite, and the Gauss curvature of σ is positive,

then:

mLY (Σ) ≤ 1

8π

∫
2R+

1212(X · e3)−Rab
a3(X · eb) dσ

with R+
1212 = max{R1212, 0}.
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Proof. The proof uses the Gauss and Codazzi equations to estimate the integrand.
The Gauss equation describes the Gauss curvature K of the surface Σ, an invariant
under the isometric embedding from N into Minkowski space. It states:

K = deth′3 − deth′4 +R1212

which we may read off of the general Gauss equation in section 3.2, using the fact
that K = R1221 in the curvature tensor induced on Σ (whereas the R above is
the curvature of the ambient spacetime N). Next, the Codazzi equations are the
codimension 2 case of Theorem 3.3:

∇a(h
′
3)bc −∇b(h

′
3)ac = Rabc3 + (αe′3)b(h

′
4)ac − (αe′3)a(h

′
4)bc

∇a(h
′
4)bc −∇b(h

′
4)ac = Rabc4 + (αe′3)b(h

′
3)ac − (αe′3)a(h

′
3)bc

We have assumed that αe′3 = 0, so most of the above terms vanish. Moreover, we
may show that trh′4 = 0, using the fact that our choice of frame assumes 〈H, e4〉 =
〈H ′, e′4〉. Recall from the previous theorem that in the case of the Liu-Yau mass
mLY , we are embedding into the orthogonal complement (∂t)

⊥, yielding h4 = 0. As
we had done before, we may derive:

〈H, e4〉 = 〈(trh′3)e3 + (trh4)e4, e4〉
= 0

= 〈H ′, e′4〉
= 〈(trh′3)e′3 + (trh′4)e′4, e

′
4〉

= −trh′4

Let us rearrange the indices in the Codazzi equations, and take a trace in the
following way:

∇c(h′4)bc = ∇c(h′4)bc +∇btrh
′
4 = 0

where adding the trh′4 term of course does not change anything, and the Rab
a4 = 0

assumption removes the curvature term. It then follows that h′4 = 0, by symmetry
and being traceless. Therefore, we only need to consider the second fundamental
forms in the e3, e

′
3 directions.

We diagonalize and write them as 2× 2 matrices:

h3 =

(
a 0
0 b

)
, h′3 =

(
c e
e d

)
with which the Gauss equations for before and after the embedding become, respec-
tively:

K = cd− e2 +R1212

K = ab

with the curvature of the Minkowski spacetime being zero, and thus yielding no
term to match R1212.
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Now, to begin estimatingmLY , we need a bound on the terms 2 deth3−trh3trh
′
3+

h3 · h′3 appearing in the integral in Theorem 4.2. Using the matrices for h3 and h′3,
this quantity is

2ab− bc− ad

We will argue first assuming R1212 ≤ 0, then with R1212 > 0.
For the first case, we may read off from the Gauss equations that K ≤ cd. So in

particular:

bc+ ad = bc+
abcd

bc

≥ bc+
K2

bc

Note that for any positive real numbers, we have

a

b
+
b

a
≥ 2

so for our case we have

bc

K
+
K

bc
≥ 2

bc+
K2

bc
≥ 2K

So altogether, we attain:

2ab− bc− ad ≤ 2K − 2K = 0

For the case of R1212 > 0, the Gauss equations tell us that

cd = K −R1212 + e2 > K −R1212

We may choose a constant C > 1 such that

(K −R1212)C2 = K = ab

Dividing through, we can get the estimate

K −R1212 =
K

C2
≤ cd

With this, let us again estimate bc+ ad:

bc+ ad =
abcd

ad
+ ad

≥ K2

C2ad
+ ad

=
K

C

( K

Cad
+
Cad

K

)
≥ 2K

C
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Using this result, we get:

2ad− bc− ad ≤ 2K − 2K

C

≤ 2K − 2K

C2

= 2R1212

Setting R+
1212 = max{R1212, 0}, we arrive at the desired inequality. �

Finally, we may use the previous bound to obtain a rigidity result, which makes
use of the quasi-local mass to yield geometric properties of a 3-dimensional manifold.
This method will come into play again in the case of embeddings into Anti de-
Sitter space. We note that among the hypotheses of the following theorem lies
the dominant energy condition. We do not, however, belabour this point, as the
methods of proof remain clear.

Theorem 4.4. Given Σ a surface in spacetime N satisfying the dominant energy
condition, and bounding a spacelike hypersurface M , suppose that we have: frame
e′3 = −H/|H|, e′4 = J/|H|, with αe′3 = 0, Rab

a4 = 0,∇bR
ab
a3 = 0, and R1212 ≤ 0

on Σ. Assume that the second fundamental form in direction of e3, h3 is positive
definite, and Gauss curvature of Σ is positive. Then the domain of dependence of
M is isometric to an open set of R3,1.

Proof. The proof uses by Theorem 4.3, integration by parts, and realizing that the
vector field

(X · ea)ea + (X · eb)eb

is the gradient quantity
1

2
∇|X|2

Then we may apply the hypotheses of the theorem directly to the Liu-Yau mass
inequality:

mLY (Σ) ≤ 1

8π

∫
2R+

1212(X · e3)−Rab
a3(X · eb) dσ

≤ 1

8π

∫
1

2
|X|2∇bR

ab
a3 dσ

= 0

Now, the mass term satisfies positivity and rigidity properties that then force the
isometry of the domain of dependence to an open set of Minkowski space. However,
we do not discuss these properties in any further detail.

�

The next upper bound is a necessary lemma before the final rigidity theorem we
shall state for the Minkowski reference case.

Theorem 4.5. If Σ is a convex surface in a time-symmetric hypersurface (M, ḡ)
with positive Gauss curvature, then its Brown-York quasi-local mass satisfies the
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upper bound:

mBY (Σ) =
1

8π

∫
(2 deth3 − trh3trh

′
3 + h3 · h′3)(X · e3)−Rab

a3(X · eb) dσ

≤ 1

8π

∫
2R̄+

1212(X · e3) dσ +
1

16π

∫
|X|2∇bR̄

ab
a3 dσ

Proof. To prove this, we begin with a static spacetime N with metric g = −dt2 + ḡ,
realizing our surface Σ as lying in the time slice. Now, notice that the curvature
R of the spacetime is related to the curvature R̄ of the original manifold by the
relations:

Rijkl = R̄ijkl

Rijk0 = 0

meaning that the curvature tensor is zero in the timelike direction. Now, the upper
bound may be calculated using the same ideas as in Theorem 4.3. The first term
2R+

1212 is clear from the result of said theorem. The second term follows by applying
the methods used in Theorem 4.4. �

We arrive at the rigidity theorem using Brown-York quasi-local mass.

Theorem 4.6. Let (M, ḡ) be a 3-dimensional manifold with boundary Σ, with scalar
curvature of ḡ nonnegative, and Σ a convex 2-dimensional sphere with positive Gauss
curvature. If ∇bR̄

ab
a3 = 0, R̄1212 ≤ 0 on Σ, then ḡ is the flat metric.

Proof. Notice that under the given assumptions, Theorem 4.5 gives us the bound

mBY ≤ 0

The fact that ḡ must be the flat metric then follows from results on the Brown-York
mass’ positivity and rigidity, which we again do not delve into. �

Before moving onto other reference spacetimes, we would like to describe a result
on the asymptotic behaviour of the quasi-local mass. In particular, that the Brown-
York-Liu-Yau quasi-local mass limits to the ADM mass in a precise sense [4]. For
this purpose, we must first define asymptotically flat manifolds.

Definition 4.2.1. A 3-dimensional manifold (M, ḡ) is called asymptotically flat of
order τ if, outside a compact set, M is diffeomorphic to R3 \ {|x| ≤ r0} for some
r0 > 0, and under the diffeomorphism we have:

ḡij − δij = O(|x|−τ ); ∂ḡij = O(|x|−τ−1); ∂2ḡij = O(|x|−τ−2)

for some τ > 1/2. We have denoted by ∂ the partial differentiation on R3.

Theorem 4.7. If we have an asymptotically flat manifold of order τ > 1/2 with Σr

the coordinate spheres of asymptotically flat coordinates, then

lim
r→∞

∫
Σr

H −H ′ + (Ric− 1

2
R̄ḡ)(X, e3) dσr = 0
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Proof.∫
H −H ′ dσ = 8πmLY (Σ)

=

∫
(2 deth3 − trh′3trh3 + h′3 · h3)−Ric(e3, ea)X · ea dσ

=

∫
det(h3 − h′3)(X · e3) + (deth3 − deth′3)(X · e3)

−Ric(e3, ea)X · ea dσ

where the above equalities can be checked by again using the fact that the second
fundamental forms are 2 × 2 symmetric matrices, and computing directly. Now,
notice that the determinant of the second fundamental form gives us the Gauss
curvature. In this case, for a 2-dimensional surface within a 3-dimensional space,
this is simply the quantity R̄1212. But we may rewrite this using:

R̄ = Ric11 +Ric22 +Ric33

= R̄1212 + R̄1313 + R̄2121 + R̄2323 + R̄3131 + R̄3232

= 2R̄1212 + 2Ric33

Using this in our calculations, we obtain:

∫
det(h3 − h′3)(X · e3) + (deth3 − deth′3)(X · e3)−Ric(e3, ea)X · ea dσ

=

∫
det(h3 − h′3)(X · e3) + (

R̄

2
−Ric(e3, e3))(X · e3)−Ric(e3, ea)(X · ea) dσ

Notice that the Ricci terms can be combined into:

Ric33(X · e3) +Ric3a(X · ea) = Ric(X, e3)

and therefore the integral above becomes∫
det(h3 − h′3)(X · e3) + (

R̄

2
ḡ −Ric)(X, e3) dσ

Finally, notice that det(h3 − h′3) = O(r−2τ−2), and X · e3 = O(r), so that as
r →∞, we arrive at the desired limit expression. �

4.3. Estimates in Anti de-Sitter space

The case of embedding our surface Σ isometrically into Anti de-Sitter space will
be treated analogously to the Minkowski case, so that the processes involved will
seem much the same. We begin with the mirror result at the basis of the paper.

Theorem 4.8. Let Σ be a 2-dimensional surface in a physical spacetime N , and
take a frame {e′3, e′4} of its normal bundle. Let X be an isometric embedding of
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Σ into the Anti de-Sitter spacetime. Suppose that there is a frame {e3, e4} of the
normal bundle of X(Σ) so that αe′3 = αe3. Then we again have the formula:∫

− 〈∂t, e4〉(trh3 − trh′3) + 〈∂t, e3〉(trh4 − trh′4)dσ

=

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34

+ (Rab
a4Qb3 −Rab

a3Qb4)−Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

for R the curvature tensor of N .

Proof. Notice that the Anti de-Sitter spacetime once again has the spherical sym-
metry discussed in section 3.4, and thus admits the same Killing-Yano 2-form as
in the Minkowski case, with the same divergence of 3∂t. Therefore, the same proof
yields for us the desired integral expression. The only significant difference is that
the curvature tensor of the AdS spacetime does not vanish. However, this is a com-
plete manifold of constant curvature, that is, a space form, and it is a well known
fact that the curvature tensor of such a manifold satisfies the equality:

R(X, Y )Z = Sec(g)(g(Y, Z)X − g(X,Z)Y )

and with Z = e3 or Z = e4, we see that the relevant curvature terms vanish.
�

We again have a connection to quasi-local mass for the above formula, as taking
the Killing vector field T0 = ∂t and embedding X with α′e3 = αe3 yields for us

E(Σ, X, T0) =
1

8π

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34

+ (Rab
a4Qb3 −Rab

a3Qb4)−Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

Mimicking the setup of the Minkowski case, we take αH = 0, and deduce the
following:

Theorem 4.9. If αH = 0 and X is an isometric embedding of Σ into the t = 0 slice
of the Anti de-Sitter spacetime, then we have

E(Σ, X, ∂t) =
1

8π

∫
(2 deth3 − trh3trh

′
3 + h3 · h′3)(r∂r · e3)−Rab

a3(r∂r · eb) dσ

Proof. Recall that with an embedding into a time-slice, we have h4 = 0. Moreover,
Qab = Qa3 = 0, and Qa4 = r∂r · ea. The result then follows. �

We next obtain a rigidity result in the spirit of Theorem 4.6 above, where we
use the embedding into the Anti de-Sitter spacetime to bring forth the quasi-local
mass unavailable in the original setting. Once again, we see that this introduces for
us a useful tool in the analysis of the given manifold.

Theorem 4.10. Let (M, ḡ) be a 3-dimensional manifold with boundary Σ which
is convex and has Gauss curvature (of the induced σ) bounded from below by −1.
Suppose that the scalar curvature R̄(ḡ) ≥ −6. Let R̄ijkl, the curvature tensor of ḡ,
satisfy ∇bR̄

ab
a3 = 0 and R̄1212 ≤ −1 on the boundary. Then ḡ is the hyperbolic metric.
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Proof. Let us choose an isometric embedding X of Σ into hyperbolic space, with
the constraint r∂r · e3 > 0. The hyperbolic metric

dr2

1 + r2
+ r2 dS2

can be viewed as the t = 0 time-slice of the AdS metric

−dt2 +
dr2

1 + r2
+ r2 dS2

Moreover, the vector field r∂r ·eb can be viewed as the gradient ∇b(r
2/2+r4/4) with

respect to the connection on hyperbolic space. Last of all, notice that R = R̄ in the
case that g = −dt2 + ḡ. Therefore, we obtain:∫

Rab
a3(r∂r · eb) dσ = −

∫
∇bR

ab
a3

(r2

2
+
r4

4

)
dσ = 0

Consequently, the energy quantity becomes

E(Σ, X, ∂t) =
1

8π

∫
2 deth3 − trh3trh

′
3 + h3 · h′3)(r∂r · e3) dσ

As we had in Theorem 4.3, we must now estimate the quantity inside the integral.
We employ the Gauss equations, which in the case of an embedding into hyperbolic
space give us

K = deth′3 +R1212

K = deth3 − 1

with −1 being the sectional curvature of hyperbolic space. Use the notation of
Theorem 4.3 to rewrite these using the components of the second fundamental forms:

K = cd− e2 +R1212

K = ab− 1

Finally, notice that with our assumption of R1212 ≤ −1, these equations reduce to
the case of R1212 ≤ 0 of Theorem 4.3, and so the same argument yields

2 deth3 − trh3trh
′
3 + h3 · h′3 = 2ab− bc− ad ≤ 0

Once more, although we do not discuss the details, theorems concerning positivity
and rigidity of the energy force the metric ḡ to be the standard hyperbolic one. �

At the end of this section, we once again wish to study the asymptotic behaviour
of the quasi-local mass, now with reference to AdS, which corresponds to the hyper-
bolic metric. In a way parallel to the flat case, we come to the following definition:

Definition 4.3.1. A 3-dimensional manifold (M, ḡ) is called asymptotically hyper-
bolic of order τ if, outside a compact set, M is diffeomorphic to H3 \ {|x| ≤ r0} for
some r0 > 0, and under the diffeomorphism we have:

|ḡ − g0| = O(|x|−τ ); |∂(ḡ − g0)| = O(|x|−τ−1); |∂2(ḡ − g0)| = O(|x|−τ−2)

for some τ > 3/2. We have denoted by ∂ the partial differentiation on hyperbolic
space H3, and its metric by g0, with respect to which we measure the norm.
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We also arrive at a similar theorem, taking V =
√
r2 + 1 to be the static poten-

tial.

Theorem 4.11. If we have an asymptotically hyperbolic manifold of order τ > 3/2,
and Σr denote the coordinate spheres of the asymptotically hyperbolic coordinates,
then we have

lim
r→∞

∫
V (H0 −H) + (Ric− 1

2
(R̄ + 2)ḡ)(X, e3) dσ = 0

We forgo the proof given that it follows the same calculation as in the Minkowski
case, though with the change of R̄ to R̄ + 2 to account for the hyperbolic metric’s
curvature.

4.4. Schwarzschild and Kerr results

In this final section, we note that the authors have showed the critical theorem
holds for embeddings into the Schwarzschild spacetime with minimal adjustments.
We will show, further, that this theorem will hold analogously in the case of the
Kerr solution, largely because the dependence on the explicit form of the conformal
Killing-Yano 2-form within the result is in fact focused upon its divergence, which
remains as 3∂t as we allow for rotation a > 0. First, for the static solution a = 0 we
retain:

Theorem 4.12. Let Σ be a 2-dimensional surface in a physical spacetime N , and
take a frame {e′3, e′4} of its normal bundle. Let X be an isometric embedding of
Σ into the Schwarzschild spacetime. Suppose that there is a frame {e3, e4} of the
normal bundle of X(Σ) so that αe′3 = αe3. Then we have the formula:∫

− 〈∂t, e4〉(trh3 − trh′3) + 〈∂t, e3〉(trh4 − trh′4)dσ

=

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34

+ (Rab
a4 −S ab

a4 )Qb3 − (Rab
a3 −S ab

a3 )Qb4 −Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

for R the curvature tensor of N , and S the curvature tensor of the Schwarzschild
spacetime.

Arguing in the more general case of Kerr will suffice, and so we may move onto
the following generalization:

Theorem 4.13. Let Σ be a 2-dimensional surface in a physical spacetime N , and
take a frame {e′3, e′4} of its normal bundle. Let X be an isometric embedding of Σ
into the Kerr spacetime. Suppose that there is a frame {e3, e4} of the normal bundle
of X(Σ) so that αe′3 = αe3. Then we have the formula:∫
− 〈∂t, e4〉(trh3 − trh′3) + 〈∂t, e3〉(trh4 − trh′4)dσ

=

∫
(2 deth3 − 2 deth4 − trh3trh

′
3 + h3 · h′3 + trh4trh

′
4 − h4 · h′4)Q34 −Qab(dζ)ab

+ (Rab
a4 −K ab

a4 )Qb3 − (Rab
a3 −K ab

a3 )Qb4 −Qbcσ
cd[(h3)dah

′ab
4 − (h4)dah

′ab
3 ] dσ

for R the curvature tensor of N , and K the curvature tensor of the Kerr spacetime.
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Proof. The proof follows the same calculations for the divergence quantities as in
Theorem 4.1. Going through the individual components, we note that first of all,
the Gauss equations give the same terms regardless of the target spacetime into
which we embed the surface. However, unlike the cases of Minkowski and Anti de-
Sitter spacetimes, the curvature terms after the embedding do not vanish, hence the
appearance of K above. The other terms come from differentiating the conformal
Killing-Yano 2-form of the Kerr spacetime using the induced connection ∇ on Σ.
Recall that the form is:

Q = a cos θ sin θ dθ ∧ ((r2 + a2) dφ− a dt) + r dr ∧ (a sin2 θ dφ− dt)

with divergence 3∂t [15].
Now, we first related the induced connection ∇ to the ambient connection D,

making no use of the specific form of Q, and so these terms remain the same.
Further, we used the definition of the conformal Killing-Yano tensors of rank 2 in 4-
dimensional spacetimes to obtain the terms of form trh′3〈∂t, e4〉. Notice that within
these calculations, we made explicit use of only the divergence of the tensor Q, which
is the same in the Kerr solution. Therefore, the same conclusions follow here.

The latter parts of the computations make only one explicit use of Q, which is
to allow for the vanishing of Qab(dζ)ab. In the Kerr spacetime, this term remains.
Thus the simplifications made to arrive at the final formula hold in this general case,
as stated in the theorem. Letting a vanish in the metric and tensor, we recover the
result of Theorem 4.12 for the Schwarzschild spacetime, as then Qab(dζ)ab = 0.

�
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5. Appendix

5.1. Curvature calculations in spacetimes

We wish to include several examples of how the connection and curvature forms
can be used along with the structural equations described in chapter 3 in order to
calculate the tensors in question. It is most illustrative to begin with the case of
Euclidean space, after which we continue with the static Schwarzschild black hole.
The Kerr calculations are not presented explicitly, but follow an analogous process,
starting with a standard frame and coframe described at the end.

We follow the presentation of Sternberg [22] for R2 in polar coordinates. The
metric we consider is given by

ds2 = dr2 + φ(r)2 dψ2

for which {dr, φ(r) dψ} is a coframe field. Using compact notation, we write that

θ =

(
dr
φ dψ

)
, dθ =

(
0

φ′ dr ∧ ψ

)
By the first structure equation, dθ + ω ∧ θ = 0, we find that

ω =

(
0 −φ′ dψ

φ′ dψ 0

)
The curvature form then follows from the second structure equation, dω+ω∧ω = Ω.
However, ω ∧ ω = 0, so this reduces to Ω = dω.

Ω =

(
0 −φ′′ dr ∧ dψ

φ′′ dr ∧ dψ 0

)
We identify the components in terms of the coframe field:

θ =

(
θ1

θ2

)
, Ω =

(
0 −φ′′

φ
θ1 ∧ θ2

φ′′

φ
θ1 ∧ θ2 0

)
This now allows us to easily compute these terms on the frame field {E1, E2} corre-
sponding to the coframe field {θ1, θ2}.

Ω(E1, E2) =

(
0 −φ′′

φ
φ′′

φ
0

)
Matrix multiplication on the right gives us the curvature tensor evaluation:
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(E1, E2)

(
0 −φ′′

φ
φ′′

φ
0

)
=
φ′′

φ
(E2,−E1)

Which tells us that R(E1, E2, E2, E1) = −φ′′/φ.
For the example of Schwarzschild calculations, we again follow [22]. The metric

on R2 × S2 is given by

ds2 = −h dt2 +
1

h
dr2 + r2(dθ2 + S2 dφ2)

using the shorthand:

h = 1− 2M

r
, S = sin θ, C = cos θ

On the Schwarzschild exterior, that is, where r > 2M , we take the orthonormal
coframe

θ =


√
h dt

1√
h
dr

r dθ
rS dφ


calling its components θi, i = 0, 1, 2, 3. We again employ the equation dθ+ω∧θ = 0.
We arrive at the expressions:

dθ0 = − M

r2
√
h
θ0 ∧ θ1

dθ1 = 0

dθ2 =

√
h

r
θ1 ∧ θ2

dθ3 =

√
h

r
θ1 ∧ θ3 +

C

rS
θ2 ∧ θ3

Applying the structural equation for each of the components of dθ is sufficient
to solve for the components of ω:

ω =


0 M

r2
dt 0 0

M
r2
dt 0 −

√
h dθ −S

√
h dφ

0
√
h dθ 0 −C dφ

0 S
√
h dφ C dφ 0


To find the curvature 2-form, we need to apply the second structural equation as
before, dω + ω ∧ ω = Ω. Since we know the components of the left hand side, this
is purely computational. It yields:

Ω =


0 2θ0 ∧ θ1 −θ0 ∧ θ2 −θ0 ∧ θ3

2θ0 ∧ θ1 0 −θ1 ∧ θ2 −θ1 ∧ θ3

−θ0 ∧ θ2 θ1 ∧ θ2 0 2θ2 ∧ θ3

−θ0 ∧ θ3 θ1 ∧ θ3 −2θ2 ∧ θ3 0
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Last of all, we describe the setup for the Kerr spacetime, using both Sternberg
[22] and O’Neill [20]. Following the exposition of section 2.2, define on the region
I ∪ II ∪ III the Boyer-Lindquist frame field:

E0 =
1

ρ
√
ε∆

((r2 + a2)∂t + a∂φ)

E1 =

√
ε∆

ρ
∂r

E2 =
1

ρ
∂θ

E3 =
1

Sρ
(∂φ + aS2∂t)

where we use the shorthard:

ρ2 = r2 + a2C2, ∆ = r2 − 2Mr + a2

and ε is a function which is equal to 1 on I ∪ III, and to −1 on II. Now, the above
induced the coframe:

ω0 =

√
ε∆

ρ
(dt− aS2 dφ)

ω1 =
ρ√
ε∆

dr

ω2 = ρ dθ

ω3 =
S

ρ
((r2 + a2) dφ− a dt)

What follows is then many calculations, using the two structural equations in the
same way as in the above examples, to yield for us both the connection 1-form
components for the connection in the Kerr metric, and then for the curvature. It
can be shown directly in this way that the Kerr solution is Ricci-flat, as is expected
of a vacuum solution of Einstein’s field equations.
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