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Abstract

This thesis explores different techniques for quantifying risk. Risk is a concept that permeates
several branches of mathematics as well as fields for which statistical analysis is crucial. Examples
include economics, actuarial sciences, finance, and hydrology. In particular, risk is examined here
through the use of risk measures and statistical modeling.

First, we explore the estimation of multivariate risk measures. Specifically, we develop a semi-
parametric estimation procedure for expectiles for extreme levels of risk. Multivariate expectiles and
their extremes have been the focus of plentiful research recently, including estimation in extreme
scenarios. However, current estimation techniques in an extreme value framework are restricted to
the limiting cases of upper tail dependence: independence and comonotonicity. In this thesis, an
alternative optimization problem along with a consistent estimation scheme is presented, which
can solve for multivariate extreme expectiles without having to assume any underlying dependence
structure. Specifically, we show that if the upper tail dependence function, tail index, and tail ratio
can be consistently estimated, then one would be able to accurately estimate multivariate extreme
expectiles. The finite-sample performance of this methodology is demonstrated using both simulated
and real data.

Second, we build a hierarchical Bayesian model for quantifying the prevalence and magnitude
of extreme surges on the Atlantic Coast of Canada with limited data. Generalized extreme value
distributions are fitted marginally to surge observations at 21 buoys within our domain, and the
modeling hierarchy includes latent Gaussian fields whose means and variances are driven by the
atmospheric sea-level pressure and the distance between the buoys, respectively.

Incorporating this spatial information allows the model to share information between buoys and,
more importantly, allows for spatial interpolation to be conducted at locations with no observations.
Additionally, introducing a copula into the hierarchy allows for a continuous representation of
extreme surges, which extends the inferential capabilities of the models beyond a site-by-site basis.
Using realization of extreme surges simulated from the model and combining it with the physically
driven tidal process at each location, we are able to predict potentially catastrophic water levels.



Résumé

Cette thèse porte sur les techniques de quantification du risque. La notion de risque intervient un
peu partout en mathématiques et dans des domaines pour lesquels l’analyse statistique est cruciale,
dont l’économique, l’actuariat, la finance et l’hydrologie. En particulier, le risque est abordé ici sous
l’angle des mesures de risque et de la modélisation statistique.

Nous nous penchons d’abord sur l’estimation de mesures de risque multivariées. Nous proposons
plus précisément une procédure d’estimation semi-paramétrique des expectiles aux niveaux de risque
extrêmes. Les expectiles multivariés et leurs extrêmes ont été largement étudiés récemment, y com-
pris leur estimation dans des scénarios extrêmes. Dans ce cadre, les techniques d’estimation actuelles
ne sont toutefois adaptées qu’aux cas de dépendance caudale supérieure limite : l’indépendance et
la comonotonicité. Cette thèse met de l’avant un nouveau schéma d’optimisation et une méthode
d’estimation convergente permettant le calcul des expectiles extrêmes multivariés sans égard à la
structure de dépendance. Nous montrons de fait que si la fonction de dépendance caudale supérieure,
l’indice de dépendance caudale et le ratio caudal peuvent être estimés de manière convergente, il
en va de même pour les expectiles extrêmes multivariés. Le comportement de ces estimations est
exploré à taille finie à l’aide de données réelles et simulées.

Dans un second temps, nous élaborons un modèle bayésien hiérarchique pour quantifier la
prévalence et l’ampleur des ondes de tempête extrêmes sur la côte atlantique du Canada à partir
de peu de données. Des lois de valeurs extrêmes généralisées univariées sont ajustées aux données
relevées par 21 bouées et le modèle hiérarchique s’appuie sur des champs gaussiens latents dont les
moyennes et les variances sont respectivement fonction de la pression atmosphérique au niveau de
la mer et de la distance entre les bouées. L’ajout de ces informations spatiales au modèle permet le
partage d’informations entre les bouées et, mieux encore, d’interpoler en des lieux où l’on ne dispose
d’aucune donnée. L’inclusion d’une copule dans la hiérarchie conduit en outre à une représentation
continue des ondes extrêmes, ce qui permet d’étendre l’inférence au-delà des sites. En simulant
des ondes extrêmes à partir du modèle et en y incorporant le mouvement des marées, on peut ainsi
prédire des niveaux d’eau potentiellement catastrophiques en tout lieu.
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1
Introduction

In all facets of life, individuals and collectives are exposed to risk. Colloquially, risk is viewed in a
negative light as the possibility that something bad will happen. Moreover, risk can manifest itself
in several ways. Actuaries, hydrologists, and economists are just a few examples of professions in
which practitioners must account for risk on a day-to-day basis.

A big component of risk is how it relates to uncertainty. In this sense, statistics presents itself
as the perfect tool for quantifying risk. By developing statistical techniques for quantifying the
impact and propensity of risky events, one can have a better understanding of how to prepare
for, mitigate, and respond to such outcomes. Furthermore, it is often the events that are both
rare and impactful which are of greatest interest, e.g., economic recession, financial turmoil, and
environmental disasters. These events, which are all extreme in nature, can pose catastrophic
consequences for the wellbeing and safety of humanity.

A first step in understanding these events is to model the mechanisms which drive them using
statistical distributions. Fitting a particular distribution to a collection of observations can provide
insight into their behavior by relating them to well understood random objects. Additionally, for
decision making purposes it can be beneficial to supplement the general structure of distributions
with quantities that can provide additional information for a given situation. Risk measures are one
such tool for accomplishing this task as they can provide clear and digestible summaries of the
underlying stochastic behavior.

In this thesis, we explore techniques for measuring risk using both statistical modeling and risk
measures. In particular, we are interested in the occurrence of extreme events for several interactive
processes. Extreme events are difficult to model and quantify because, by nature, they are rare. This
results in having few observations available for modeling purposes which can produce poor fitting
models with little predictive accuracy. Moreover, selecting the wrong distribution can have drastic
effects on the resulting inference. Risk measures stemming from these ill-fitted distributions pose
the same drawbacks. This problem is further exacerbated when one is interested in the behavior of
several related quantities. In this scenario, one must also account for the way concurrent events can
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impact one another, making the scarcity of data all the more impactful.
The first way we explore multivariate extremes is through the estimation of multivariate ex-

pectiles. In particular, we discuss how to consistently estimate L1-expectiles for elevated levels of
risk using observed data. While estimation of these measures has been discussed in the literature
(Maume-Deschamps et al., 2017, 2018), the case of extremes is only addressed under pre-imposed
assumptions that the underlying dependence structure is asymptotic independence or comonotonic-
ity. These dependence relations present limiting scenarios of tail dependence which do not represent
the full breadth of possibilities when discussing dependence of extreme events. The estimator we
have developed can capture any underlying dependence structure without any prior distributional
assumptions, thereby mitigating the risks of model misspecification.

In the second problem, we return to statistical modeling, specifically in the context of spatial
extremes with environmental applications. Spatial extremes have a rich literature in the environmen-
tal sciences (Davison et al., 2012; Tawn et al., 2018; Davison et al., 2019). Using techniques from
spatial statistics, one can characterize observations using the physical and atmospheric properties of
the locations at which they are recorded, including, for instance, the distances between them. By
incorporating these properties into the modeling process, inference on the nature of environmental
processes can be elevated, opening the door to several compelling techniques, such as spatial inter-
polation. Combining these methods with extreme value theory, one can effectively model extremes
of spatially driven processes. In particular, we are interested in applying some of these techniques
for quantifying the risk of extreme surges in Atlantic Canada.

Chapter 2 provides the necessary background information for the discussions in this thesis.
Sections 2.1 and 2.2 introduce extreme value theory in the univariate and multivariate settings,
respectively, including block-maxima and peaks-over-threshold techniques. In particular, Section 2.2
discusses different ways to quantify dependence between random variables, including copulas and
measures of association. Section 2.3 formally introduces risk measures, including some examples in
the univariate and multivariate settings, important properties for risk measures to have in practice,
and a discussion of how to estimate risk measures efficiently using data.

In Chapter 3, we begin by adding to the lexicon of desirable properties for risk measures
and introduce elicitability, a property which has garnered increased interest from an actuarial
standpoint in recent literature (Bellini and Bignozzi, 2015; Ziegel, 2016; Herrmann et al., 2018).
Building on elicitability, we turn our attention to expectiles risk measures which are elicitable while
possessing several other sought after properties. Beginning in the univariate setting, we then extend
the discussion of expectiles to dimensions d ≥ 2 with several different characterizations. Finally,
we develop a consistent semi-parametric estimation scheme for L1-expectiles when considering
extreme levels of risk.
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Introduction

Chapter 4 focuses on spatial environmental extremes. Techniques discussed include classical
geostatistics, max-stable processes, and Bayesian hierarchical modeling for problems in the envi-
ronment. In particular, using a hierarchical Bayesian model, we model the propensity of extreme
surges in the Atlantic Coast of Canada. Using this information, we hope to contribute to the rapidly
developing flood risk prevention infrastructure in Canada. In fact, the work presented here helped
contribute to the launch of a comprehensive overland flood insurance product by a prominent
Canadian insurer in March of 2017.

Finally, Chapter 5 summarizes the impacts of the works presented in this thesis and briefly
discusses some venues for further investigation.
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2
Background

In this chapter, the important background information motivating the work in this thesis is sum-
marized. In particular, Section 2.1 introduces classical extreme value theory, including the block-
maxima and peaks-over-threshold methods of modeling extreme observations. Section 2.2 extends
these univariate notions to dimensions d ≥ 2, including a discussion of general dependence struc-
tures and measures of tail dependence. Finally, Section 2.3 introduces risk measures, including
properties and estimation in the univariate as well as multivariate setting.

2.1 Classic extreme value theory
When one is interested in understanding the potential impacts of a stochastic process, it is natural
to be curious about particularly elevated, or “extreme”, levels of risk. In fact, the study of these
extreme phenomena is a widely studied topic in statistics with a rich research history. Here we take
the opportunity to introduce some of the concepts in extreme value theory. For a more in-depth
discussion of extremes, we suggest the works of Coles (2001), Beirlant et al. (2004), de Haan and
Ferreira (2006), Resnick (2013), among others.

2.1.1 Block maxima
The first way we consider the study of extremes is through the study of maxima. Specifically, we
consider the maximum of a pre-specified number of observations, called a block. Let X1, X2, . . .

be independent and identically distributed (iid) random variables (rv) with common marginal
cumulative distribution function (cdf) F . For a block with n observations, denote the maximum of
them Mn = max(X1, . . . , Xn). For iid random variables, it is easy to see that the distribution of
Mn can be written
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FMn(x) = Pr(Mn ≤ x) = Pr{max(X1, . . . , Xn) ≤ x}

= Pr(X1 ≤ x, . . . , Xn ≤ x)

= Pr(X1 ≤ x) · · ·Pr(Xn ≤ x)

= F n(x).

The block maxima method seeks to study the behavior of Mn as the block size n→∞. However,
as n approaches infinity, FMn will become degenerate. The following theorem, summarizing results
established independently by Fisher and Tippett (1928), Von Mises (1936) and Gnedenko (1943),
formalizes a powerful result about the distribution of Mn.

Theorem 2.1. Let X1, X2, . . . be a sequence of iid rv’s with common marginal cdf F and denote

Mn = max(X1, . . . , Xn). If sequences an > 0, bn ∈ R exist, such that for all x ∈ R,

lim
n→∞

Pr

(
Mn − bn
an

≤ x

)
= Gξ{(x− µ)/σ},

for some non-degenerate distribution Gξ, then Gξ is of the form

Gξ(x) =

{
exp

{
−(1 + ξx)−1/ξ

}
if ξ 6= 0,

exp {exp(−x)} if ξ = 0,
(2.1)

for location µ ∈ R, scale σ > 0 and shape ξ ∈ R. In this case, we say F is in the domain of

attraction of Gξ, denoted F ∈ DA(Gξ). Moreover, Gξ is known as a generalized extreme value

distribution (GEVD), comprising three families of distributions: The Fréchet (ξ < 0), the Gumbel

(ξ = 0) and the Weibull (ξ < 0).

The significance of the shape parameter ξ should be stressed. First, ξ, also known as the extreme
value index, entirely determines the behavior of the tails of Gξ. It quantifies how “heavy” the tails
of Gξ are. For instance, the shape parameter determines the domain on which the distribution Gξ is
defined, which can be important in applications. The three possibilities are:

(i) x ∈ [0,∞) for ξ > 0,

(ii) x ∈ (−∞, 0] for ξ < 0, and

(iii) x ∈ (−∞,∞) for ξ = 0.

Second, the shape ξ also relates EVT to the concept of regular variation. A measurable function f is
regularly varying at a with tail index θ, denoted f ∈ RVθ(a), if

lim
t→a

f(tx)/f(t) = xθ

5



2.1 Classic extreme value theory

for all x > 0. If θ = 0, the function f is called slowly varying. All regularly varying functions f can
be written as

f(x) = xθL(x),

where L is a slowly varying function. For GEVD’s, it can be shown that F ∈ DA(Gξ) if and only if
1− F ∈ RV−1/ξ(∞).

One of the properties which characterize GEVD’s is that of max-stability. A distribution F is
said to be max-stable if, for every n ∈ {2, 3, . . .}, there are constants αn and βn such that

F n(αnz + βn) = F (z).

Max-stability implies that the distribution of the maxima is equivalent to the distribution of the
margins, up to a change of scale and location. The following result of Leadbetter et al. (1983)
establishes max-stability as a defining property of GEVDs.

Theorem 2.2. A distribution is max-stable if, and only if, it is a GEVD.

In data analysis, it is important to realize that the asymptotic requirements of Theorem 2.1
will never be verifiable. As such, parameter estimation can pose a challenge for GEVD’s. In
particular, the choice of block-size n is critical. If blocks are chosen to be too small, the asymptotic
requirements of Theorem 2.1 will not be met and the model fit is likely to be poor. If the blocks
are too large, too few observations will be considered, yielding large variances in the estimates.
Depending on the type of observations, common choices for block size are daily, monthly or yearly.
For example, this could equate to the study of maximal rainfall on the daily, monthly, or yearly time
horizon.

To fit the parameters of a GEV, several techniques are possible; see, e.g., Hosking et al. (1985)
or Smith (1985). The most commonly used technique, available in several packages of the statistical
computing language R, is maximum likelihood estimation (MLE). In general, MLE centers around
finding the collection of parameters which optimize the underlying parametric distribution relative
to the observed data. For a collection of block-maxima z = (z1, . . . , zm) from a rv X having a
GEVD, the log-likelihood can be written

`(µ, σ, ξ; z) =

{
−m log σ − (1 + 1/ξ)

∑m
i=1 log (1 + ξz̊i)−

∑m
i=1 (1 + ξz̊i)

−1/ξ if ξ 6= 0,

−m log σ −
∑m

i=1 z̊i −
∑m

i=1 exp (−z̊i) if ξ = 0,

(2.2)

where z̊i = (zi − µ)/σ. Additionally, for ξ 6= 0 we require 1 + ξz̊i > 0 for all i ∈ {1, . . . ,m} else
the log-likelihood is −∞. Note that while no analytical solution for the minimum of (2.2) exists, it
can be solved for using standard numerical optimization algorithms.

6



2.1 Classic extreme value theory

Fitted models are often used to provide inference about the underlying random process. While
the approximated parameters, in particular ξ, provide some insight into the natures of extremes,
interest exists beyond these values. To this end, two quantities of great import in extreme value
analysis are the return level and the return period. These quantities are linked with the following
expression:

1

p
= Pr(X > zp),

where zp and p are the return level and return period, respectively. Note that the units of the return
period are determined by the block size. For example, if the block size is one year, the return-level
is commonly interpreted as the value of X which is expected to be surpassed on average once every
p years. More precisely, zp is the value for which there is a 1/p chance of it being surpassed each
year. Simply, zp is the (1− 1/p)-level quantile of X , i.e.,

q1−1/p(X) = inf {x ∈ R : Pr(X ≤ x) ≥ 1− 1/p} .

For a GEVD, there exists a closed form for the return level, namely,

zp =

{
µ− σ [1− {− log(1− 1/p)}] /ξ if ξ 6= 0,

µ− σ log {− log(1− 1/p)} if ξ = 0.

These quantities are of particular interest in fields such as finance, insurance and environmental
sciences. Consider the construction of a dam on river bordering a small town; if one were to consider
daily water levels for the river with a block size of one year, the ideal height at which to build the
dam to protect the community for the next 50 years, on average, would be z50 return level.

While the block maxima method is often seen in the study of extremes, a drawback is that it can
be wasteful of data as there could be several extreme values in a block. Two methods which can
mitigate this issue are considering the r largest observations in each block, see, e.g., Coles (2001)
Section 3.5, or by considering threshold exceedances. The latter is outlined in the following section.

2.1.2 Peaks-over-threshold
A second way to study extremes, which can curb the issue of data scarcity, is through the peaks-over-
thresholds (POT) approach. Instead of considering the singular maximum, or r largest observations,
for a pre-specific block size, consider any observation above a pre-described threshold as extreme.
For a rv X and a threshold u, X − u is called the exceedance of X over u. The POT approach is
interested in the asymptotic distribution of X − u|X > u, which we will denote Fu. The following
theorem provides an asymptotic result for Fu as u approaches infinity.

7
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Theorem 2.3 (Coles (2001), Theorem 4.1). Let X1, X2, . . . be sequence of iid rv with common

marginal cdf F . If F ∈ DA(Gξ) then, for large enough u,

Fu(x) ≈ H(x) =

{
1− (1 + ξx/σu)

−1/ξ if ξ 6= 0,

1− exp (−x/σu) if ξ = 0,

where σu = σ + ξ(u− µ). The distribution H is called a generalized Pareto distribution (GPD).

If in a given block, there are several observations one would like to consider extreme, it is clear
to see the advantage that the POT methodology has over block-maxima. For an appropriately chosen
threshold u, one can keep a larger portion of the available observations for modeling purposes.
However, in practice, the choice of threshold is not straightforward. The issues are analogous to
those for modeling block-maxima. If the threshold is set too low, the asymptotic requirements
of Theorem 2.3 will not be satisfied. If the threshold is too high, too few observations will be
considered, producing large variances in model fitting. One way to select an appropriate threshold
is through a mean residual life plot. If Yu0 = X − u0|X > u0 has a GPD with parameters σu0 and ξ
then, for ξ < 1,

E(X − u0|X > u0) =
σu0

1− ξ
.

Given Theorem 2.3, the distribution of Yu should also follow a GPD for all u > u0, i.e.,

E(X − u|X > u) =
σu

1− ξ
=
σu0 − ξu0

1− ξ
+

ξ

1− ξ
u. (2.3)

Equation (2.3) thus implies that for u > u0, E(Yu) is linear in u. It stands to reason then that
the smallest threshold u0 for which the average of the exceedances is linear in u for u > u0 is a
reasonable choice. For more information on threshold selection, the interested reader is referred
to, e.g., Dupuis (1999), Coles (2001), and Embrechts et al. (1997). With a threshold selected, and
for observed exceedances y = (y1, . . . , ynu), GPD parameter fitting can be done via MLE with
log-likelihood

`(σ, ξ;y) =


−k log σ − (1− 1/ξ)

nu∑
i=1

log (1 + ξyi/σ) if ξ 6= 0,

−nu log σ − σ−1

nu∑
i=1

yi if ξ = 0.

Additionally, in the case ξ 6= 0, we require 1 + ξyi/σ > 0 for all i ∈ {1, . . . , nu}, else the
log-likelihood is −∞.

Similarly to the GEVD’s, return-levels and return periods for GPD’s are useful metrics when
studying threshold exceendances. Deriving these quantities requires one to not only consider the

8
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distribution H , but also the probability that X is in fact above the threshold u. Thus, the return level
zp > u is defined as the value of X such that

1

p
= Pr(X > zp) = Pr(X > u) Pr(X > zp|X > u)

= ζu{1−H(zp)}

= ζu

(
1 + ξ

zp − u
σ

)−1/ξ

,

where ζu = Pr(X > u). Thus, zp can be written

zp =

{
u+ σ{(ζup)ξ − 1}/ξ if ξ 6= 0,

u+ σ log (ζup) if ξ = 0.

2.2 Multivariate extreme value theory
The theory presented in Section 2.1 centers around the concept of a single sequence of mutually
independent observations. While the results of Theorem 2.1 are indeed powerful, they say nothing
about the inter-relationships between several connected extreme values. For example, if one were in-
terested in how extreme gains/losses of individual stocks impacted one another, a more sophisticated
theory would be required. Building from the concepts of Section 2.1, letXi = (Xi1, . . . , Xid), for
i ∈ {1, . . . , n}, be an iid collection of independent random vectors from a d-dimensional cdf F with
marginal cdf’s F1, . . . , Fd. Denote the jth component-wise maxima Mjn = max(X1j, . . . , Xnj).
Suppose there exists sequences an = (a1n, . . . , adn) > 0 and bn = (b1n . . . , bdn) ∈ Rd such that
for all x ∈ Rd

lim
n→∞

Pr

(
M1n − b1n

a1n

≤ x1, . . . ,
Mdn − bdn

adn
≤ xd

)
= lim

n→∞
F n(anx+ bn) = G(x), (2.4)

then G is called a multivariate extreme value distribution (MEVD) and one says F ∈ DA(G). In
this scenario, the marginal cdf’s F1, . . . , Fd of F are GEVD’s, i.e., Fi ∈ DA(Gξi), where Gξi are
of the form (2.1).

The following proposition from Resnick (2013), extends the notion of max-stability and its
relation to extreme value distributions to the multivariate setting. First, in the multivariate setting, a
d-dimensional function G is max-stable if there exists sequences ak > 0 and bk ∈ Rd such that for
every k ∈ {2, 3, . . .} and all x ∈ Rd

Gk(akx+ bk) = G(x).

Proposition 2.4 (Resnick (2013), Proposition 5.9). The class of MEVD’s is precisely the class of

9
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max-stable functions with non-degenerate marginals.

While for GEVD’s there is a well defined parametric family, this is not the case for the class
MEVD’s. An MEVD is characterized by its exponent measure, µ on [0,∞]d, such that

G(x) = exp{−µ([−∞,x]{)},

where A{ represents the complement of a set A. For simplicity, the marginal distributions of
X1, . . . , Xd are often assumed to be unit Fréchet, i.e., F1(x) = exp (−x−1). This simplification
does not impact the discussion of G (Resnick (2013), Proposition 5.10). For X1, . . . , Xd having
unit Fréchet distributions, the exponent measure can be written V (x) = µ([0,∞] \ [0,x]) and the
joint distribution G has the form

G(x) = exp{−V (x)},

for x > 0, where

V (x) =

∫
Sd

max(ω1/x1, . . . , ωd/xd)dH(ω)

and Sd = {ω ∈ [0, 1]d : ω1 + · · ·+ ωd = 1} is called the unit simplex. The measure H , called the
spectral measure, on Sd satisfies ∫

Sd

ωidH(ω) = 1

for all i ∈ {1, . . . , d}. An advantage of this formulation is that V (tx) = t−1V (x), i.e., it is
homogeneous of order −1. Similar results have been established for the distribution of multivariate
exceedances; see, e.g., Coles (2001), McNeil et al. (2015). For this thesis, we focus primarily on
multivariate block maxima.

A concept related to the notion of multivariate extremes, which will be of great importance in
this thesis, is that of multivariate regular variation (MRV).

Definition 2.1 (Multivariate Regular Variation). The distribution of a random vectorX on [0,∞]d

is said to be regularly varying if there exists a non-null Radon measure µX on Borel σ-algebra Bd
on [0,∞]d \ {0}, and a normalization function a : R 7→ R which satisfies limx→+∞ a(x) = +∞,

and such that

uP
{
X

a(u)
∈ ·
}

ν−→
u→+∞

µX(·).

Definition 2.2 (MRV equivalent definitions). Let X be a random vector on Rd. The following

definitions are equivalent:

• The vectorX has regularly varying tail of index θ.

10
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• There exists a finite measure µ on the unit sphere, Sd−1 = {x ∈ Rd : ‖x‖ = 1}, and a

normalizing function a : (0,∞) 7→ (0,∞) such that

lim
t→+∞

P
{
‖X‖ > xa(t),

X

‖X‖
∈ ·
}

= x−θµ(·)

for all x > 0. The measure µ depends on the chosen norm; it is called the spectral measure of

X .

• There exists a finite measure µ on the unit sphere Sd−1, a slowly varying function L, and a

positive real θ > 0 such that

lim
x→+∞

xθ

L(x)
P
(
‖X‖ > x,

X

‖X‖
∈ B

)
= µ(B)

for all B ∈ B(Sd−1) with µ(∂B) = 0, where B represents the Borel σ-algebra and ∂B the

boundary of the set B.

For more information on the concept of regular variation, see, e.g., Resnick (2007) and Resnick
(2013). In particular, the equivalence between the convergence of multivariate extremes and multi-
variate regular variation has been stated in either Resnick (2007), Proposition 7.1 or Resnick (2013),
Proposition 5.15

2.2.1 Copulas
The multivariate distribution of extremes can also be expressed in terms of copulas. In what follows
we provide a brief overview of copula theory. For a comprehensive study of copula theory, see, e.g.,
Nelsen (2006) and Joe (2014). Copulas represent a powerful way in which to model the dependence
between random vectors. In essence, a copula is a multivariate distribution on a collection of standard
uniform random variables, i.e., for U1, . . . , Ud ∼ U(0, 1), a copula is a function C : [0, 1]d 7→ [0, 1]

such that, for all u1, . . . , ud ∈ [0, 1],

C(u1, . . . , ud) = Pr(U1 ≤ u1, . . . , Ud ≤ ud).

A copula will also possess the following properties:

(i) C(u1, . . . , ud) = 0 whenever uj = 0 for at least one j ∈ {1, . . . , d}.

(ii) C(u1, . . . , ud) = uj if ui = 1 for all i ∈ {1, . . . , d} \ {j}.

(iii) C is d-nondecreasing on [0, 1]d. That is, for each hyperrectangle R =
∏d

j=1[aj, bj] ⊂ [0, 1]d,

2∑
i1=1

. . .

2∑
id=1

(−1)i1+...+idC(u1i1 , . . . , udid),

11



2.2 Multivariate extreme value theory

where for j ∈ {1, . . . , d}, uj1 = aj and uj2 = bj .

In fact, copulas can be used to quantify the dependence between a much wider array of random
variables. This result is formalized in the following theorem, attributed to Sklar (1959).

Theorem 2.5 (Sklar’s Theorem). Consider a collection of rv’s X1, . . . , Xd with cdf’s F1, . . . , Fd,

respectively, for d ≥ 2 and joint cdf F . There exists a function C : [0, 1]d 7→ [0, 1], called a copula,

such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}

for all x1, . . . , xd ∈ R. Moreover, if the margins are all continuous, then the function C is unique.

Conversely, for a copula C and a collection of marginal cdf’s F1, . . . , Fd, the function F , defined by

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)},

is a joint cdf for X1, . . . , Xd.

The proof of this theorem stems from the probability integral transform. For a rv X with
continuous cdf F , it can be shown that F (X) ∼ U(0, 1). Thus, for any collection of rv’s, the copula
can be written

C(u1, . . . , ud) = Pr{X1 ≤ F−1
1 (u1), . . . , Xd ≤ F−1

d (ud)}.

It is important to note that the dependence structure of the rv’s X1, . . . , Xd is entirely determined
by the copula C. Moreover, the range of possible dependence strengths is delineated by the Fréchet–
Hoeffding bounds. Specifically, any copula C satisfies

max(0, u1 + · · ·+ ud + 1− d) ≤ C(u) ≤ min(u1, . . . , ud). (2.5)

Returning to the study of extremes, a copula for a vector extreme events is partly established by
the univariate theory. If the margins of G are non-degenerate, then they must be GEVD’s. As these
distributions are continuous, Sklar’s Theorem tells us that G has a unique copula representation.
The following theorem introduces extreme value (EV) copulas using its defining characteristic.

Theorem 2.6 (McNeil et al. (2015), Theorem 7.44). If (2.4) holds for some joint cdf F and some

G with GEV margins, then the unique copula C of G satisfies

C1/t(ut) = C(u)

for all t > 0 and u ∈ [0, 1]d.

This result can be used to extend the notion of maximum domain of attraction to copulas,
denoted the copula domain of attraction (CDA).

12
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Theorem 2.7 (McNeil et al. (2015) Theorem 7.48). Let F be a joint cdf of a random vector

X = (X1, . . . , Xd) with continuous marginals cdfs F1, . . . , Fd and a copula C. Denote G =

C(G1, . . . , Gd) a MEVD with EV copula CEV . Then F ∈ DA(G) if and only if Fi ∈ DA(Gi) for

all i ∈ {1, . . . , d} and

lim
t→∞

Ct(u
1/t
1 , . . . , u

1/t
d ) = CEV (u1, . . . , ud) (2.6)

for all u = (u1, . . . , ud) ∈ [0, 1]d.

If (2.6) holds for some copula C, we say that C ∈ CDA(CEV ). EV copulas can be characterized
in several ways. The following is due to Pickands (1981), who states that C is an extreme value
copula if and only if it can be written

C(u) = exp

{
A

(
log u1∑d
i=1 log ui

, . . . ,
log ud∑d
i=1 log ui

)
d∑
i=1

log ui

}
,

where the map A is called the Pickands dependence function.
Other families of copulas do exist, e.g., Elliptical and Archimedean copulas. Elliptical copulas

are the implicit dependence structure for multivariate elliptical distributions. A random vector
X ∈ Rd is elliptically distributed if X d

= µ + RAS, where µ ∈ Rd is a vector of location
parameters, A ∈ Rn×k such that AA> is a covariance matrix, S is uniformly distributed on Sk−1,
and R ≥ 0 is a radial rv independent of S. Archimedean copulas are characterized by a generator
function, ψ : [0,∞) 7→ [0, 1], where

Cψ(u1, . . . , ud) = ψ
{
ψ−1(u1) + · · ·+ ψ−1(ud)

}
.

For Cψ to be a valid copula, McNeil and Nešlehová (2009) show that the following properties for ψ
are required:

(i) ψ(0) = 1 and limx→∞ ψ(x) = 0.

(ii) ψ is strictly decreasing on the interval [0, xψ] where xψ = inf{x : ψ(x) = 0}.

(iii) For all k ∈ {1, . . . , d−2}, the kth derivative ofψ exists on (0,∞) and satisfies (−1)kψ(k)(x) ≥
0. Additionally, (−1)d−2ψ(d−2) is non-decreasing and convex on (0,∞).

(iv) The pseudo-inverse ψ−1 : [0, 1] 7→ [0,∞] is defined as the inverse of ψ on (0, 1] with
ψ−1(0) = xψ.

While the elliptical and Archimedean families of copulas are generally not extreme value, they can
exhibit tail dependence; see Section 2.2.2.

In this thesis, we will be interested in estimating the underlying copula structure. Estimation of
a copula is a widely discussed topic. There are several well documented methods for estimating C.
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The simplest of them is the empirical copula. For a random sampleX1, . . . ,Xn with corresponding
ranks Rij =

∑n
k=1 1 (Xkj ≤ Xij), the empirical copula can be written

Cn(u) =
1

n

n∑
i=1

1 (Ri1/n ≤ u1, . . . , Rid/n ≤ ud)

=
1

n

n∑
i=1

d∏
j=1

1
{
F̂i,n(Xij) ≤ uj

}
.

For more discussion on the empirical copula, see, e.g., Fermanian et al. (2004), Genest and Rémillard
(2004), Rüschendorf (2009) or Segers (2012). One issue with the empirical copula is it does not
have uniform margins and, therefore, is not a genuine copula. As such, it does not satisfy the
Fréchet–Hoeffding bounds (2.5). Two estimators that address this are the checkerboard copula Czn
(Genest et al., 2014, 2017; Kuzmenko et al., 2020) and the empirical beta copula Cβ

n (Segers et al.,
2017). In particular, the empirical beta copula can be written

Cβ
n (u) =

1

n

n∑
i=1

d∏
j=1

FRi,j ,n(ui),

where u ∈ [0, 1]d and Fr,n is the cumulative distribution function (cdf) of Ur:n, the rth order
statistic of n independent uniform random variables on [0, 1]. This also corresponds to Ur:n ∼
Beta(r, n + 1 − r). Given that both Czn and Cβ

n are genuine copulas, they satisfy the Fréchet–
Hoeffding bounds (2.5). Furthermore, Segers et al. (2017) demonstrate that Cβ

n outperforms Cn and
Czn in terms of both bias and variance.

2.2.2 Tail dependence
In multivariate statistical analysis, practitioners are often interest in summarizing the way rv’s
impact one another. Classic measures of dependence between two random variables X1 and X2

include Pearson correlation

ρ(X1, X2) =
E [{X1 − E(X1)}{X2 − E(X2)}]√

var(X1)var(X2)
,

and Kendall’s τ ,

τ(X1, X2) = Pr{(X1 −X∗1 )(X2 −X∗2 ) > 0} − Pr{(X1 −X∗1 )(X2 −X∗2 < 0)}

= 2 Pr{(X1 −X∗1 )(X2 −X∗2 ) > 0} − 1,

where (X∗1 , X
∗
2 ) denotes an independent copy of (X1, X2). These quantities are measures of overall

association between X1 and X2. However, in EVT, one is more interested in the likelihood of
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2.2 Multivariate extreme value theory

extreme events occurring together. For instance, two stock indices recording record lows together, or
neighboring cities experiencing droughts. The repercussions of these types events occurring together
could be disproportionately worse than if they were to occur separately. In this sense there is less
interest in the dependence between probabilistically common events and more so in the dependence
between rare events.

One way this can be quantified is through the upper tail dependence function (udf)

λ(x) = lim
t→0+

Pr{F1(X1) ≥ 1− tx1, . . . , Fd(Xd) ≥ 1− txd}
t

. (2.7)

For a copula C representing the dependence structure ofX the udf can be written

λ(x) = lim
t→0+

C̄(tx1, . . . , txd)

t
,

where C̄(u1, . . . , ud) = Pr{F̄1(X1) ≤ u1, . . . , F̄d(Xd) ≤ ud} is the survival copula associated to
C. The udf quantifies the likelihood that the members of a random vector X are simultaneously
large. In two dimensions, the scenario where x = (1, 1) is often considered, i.e.,

χ := λ(1, 1) = lim
t→0+

Pr{F1(X1) ≥ 1− t|F (X2) ≥ 1− t}

= lim
t→0+

2t+ C(1− t, 1− t)− 1

t
.

The value χ is called the upper tail dependence coefficient (udc) and summarizes the asymptotic tail
dependence on the pair (X1, X2). When χ = 1 random pairs are said to be comonotonic, for χ = 0

they are said to be asymptotically independent and for 0 < χ < 1 the random pairs are said to be
asymptotically dependent. See Joe (1997) and Joe et al. (2010) for more information on the udc and
udf, respectively. An analogous quantity exists for the lower tail, called the lower tail dependence
function.

Related to the udf is the stable tail dependence function (stdf),

L(x) = lim
t→0+

Pr{F (X1) ≥ 1− tx1 or . . . or F (Xd) ≥ 1− txd}
t

,

which considers the probability that at least one observation is extreme. In two dimensions, the stdf
and udf can be linked by

L(x, y) = x+ y − λ(x, y).

This relationship will be important in Chapter 3. Finally, EV copulas may also be written in terms of
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2.3 Risk measures

the stdf, i.e, a copula C is extreme value if and only if there exists a stdf L such that C = CL, and

CL = exp{−L(− log u1, . . . ,− log ud)}.

2.3 Risk measures
Across a multitude of disciplines, including finance, actuarial science and hydrology, quantifying
risky positions is an essential part of day-to-day operations and an important step in making sound
decisions. Examples include an insurance company wishing to assess how much capital to reserve
in order to pay off future claims or a city deciding where to limit the construction of new structures,
be they private or commercial, given the risk of flooding. Completing these tasks is often done
through the use of risk measures. In fact, risk measures are often required in certain industries so
that companies operate in good faith of the interests of stakeholders; see for instance, Solvency II
(2016), OSFI (2019), or Basel II (2004), among others. A risk measure is defined as a mapping
from the set of random variables (measurable functions) to the reals, i.e.,

T : X 7→ Rd.

It is often the case that a risk measure is defined in terms of some pre-prescribed risk level
α ∈ (0, 1); in this sense we can denote risk measures as mappings Tα. In Section 2.3.1, we
introduce several common univariate risk measures. Section 2.3.2 defines several multivariate
extensions of these measures. Section 2.3.3 discusses several definitions which describe properties
that could be considered as desirable for risk measures and the heuristics behind them. Finally,
Section 2.3.4 provides concepts and examples surrounding the accurate estimation of risk measures
using observations.

2.3.1 Univariate risk measures
The two most popular risk measures are the value-at-risk (VaR) and expected shortfall (ES). First,
and perhaps currently the most widely-used risk measure, is VaR. In particular, use of VaR is
required for regulatory purposes in many cases. For example, Solvency II (2016) requires European
insurance companies to retain capital reflecting the 99.5% VaR of their “basic own funds” for a
period of one year to mitigate the risk of insolvency and the ability to pay customer claims. Similar
regulations for Canada are provided through OSFI (2019). For a rv X with cdf F , the α-level VaR
is defined by

VaRα(X) = inf{x ∈ R : F (x) ≥ α} (2.8)

= inf{x ∈ R : F̄ (x) ≤ 1− α} (2.9)
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2.3 Risk measures

since F̄ (x) = Pr(X > x) = 1− F (x). For continuous rv’s, this can be simplified as VaRα(X) =

F−1(α) where F−1 is the generalized inverse of F . The VaR is often referred to simply as a quantile
in many other fields of study. In this sense, it can be seen that the VaR is also a commonly used
metric for risk in EVT, as the α-level VaR is the same as the 1− 1/p return level.

While the α-level VaR can be interpreted as the value of X for which you are protected at least
100α% of the time, sometimes one wishes to know more. For instance, were a rv X to exceed a
specified value, what could we expect to actually happen? A practical example: given that the water
level at a dam will surpass the dam’s height, by how much will it overflow? The ES, sometimes
referred to as the tail value-at-risk (TVaR), measures exactly this. The ES at level α for a random
variable X with cdf F is

ESα(X) =
1

1− α

∫ 1

α

VaRu(X)du.

Moreover, from Acerbi and Tasche (2002a), it can be shown that

ESα(X) =


E{X|X > VaRα(X)} for X continuous,

1
1−α

(
E{X;X ≥ VaRα(X)}+

VaRα(X)[Pr{X < VaRα(X)} − α]
)

for X discrete,

where E(X;A) = E(X · 1A). It is easy to see that ESα(X) ≥ VaRα(X) for all α ∈ (0, 1). For
continuous X , the ES is also known as the conditional tail expectation (CTE). A criticism of ES is
that it can be heavily impacted by the presence of outliers in a collection of observations. In this
sense it is not considered to be robust. A solution to this issue, introduced in Cont et al. (2010), is to
cap the range of possible outcomes that are considered past VaRα(X). This gives way to the range

value-at-risk (RVaR) defined for 0 ≤ α1 < α2 ≤ 1 by

RVaRα1,α2(X) =
1

α2 − α1

∫ α2

α1

VaRu(x)du.

By setting α2 = 1, it is easy to see that RVaRα1,1(X) = ESα(X).
While VaR is a more prevalent risk measure in industry, ES is increasingly considered a more

appropriate choice for reasons which will discussed in Section 2.3.3. For a further discussion on
VaR and ES as well as other related notions to risk measurement, see, e.g., McNeil et al. (2015) or
Albrecher et al. (2017).

2.3.2 Multivariate extensions
While univariate risk measures are fairly well understood, the responsibility to accurately assess risk
is inherently a multivariate problem. However, once these measures are extended to the multivariate
setting, it opens a seemingly boundless list of possibilities. There is often no clear-cut extension for
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2.3 Risk measures

univariate measures to their multivariate counterparts; numerous definitions are available. This can
be explained in part by the lack of a canonical sense of order on Rd for d ≥ 2. Beginning with VaR,
several parameterizations exist for this reason. First, Embrechts and Puccetti (2006) introduced the
concept of the multivariate lower- and upper-orthant VaR using level sets. For a random vectorX
with joint cdf F , the lower-orthant VaR at level α is defined by

VaRα(X) = ∂LX(α), (2.10)

where LX(α) = {x ∈ Rd : F (x) ≥ α} and ∂A denotes the boundary of a set A. In the case where
X is continuous, one can rewrite VaRα(X) = {x ∈ Rd : F (x) = α}, which is simply the α-level
set of F . Whereas (2.8) and (2.9) are synonymous given the univariate relationship between F
and F̄ , such is not the case in the multivariate setting. This gives rise to a second measure, the
upper-orthant VaR. For a random vectorX with joint survival function (sf) F̄ (x) = Pr(X > x),
define the upper orthant VaR at level α by

VaRα(X) = ∂LX(α) (2.11)

where LX(α) = {x ∈ Rd : F̄ (x) ≤ 1 − α}. Figure 2.1 illustrates the difference between the
lower and upper orthant VaR compared to the univariate VaR. In Cossette et al. (2013), the authors
extended the work of Embrechts and Puccetti (2006). In particular, they defined the lower-orthant
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Figure 2.1: Comparison of lower and upper orthant VaR for Weibull margins joined by a Gumbel
with varying Kendall’s τ .
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VaR by

VaRα(X) = ∂{x ∈ Rd
+ : F (x) ≥ α}

=
d⋃
i=1

{(
x1, . . . , xi−1,VaRα,x\i

(X), xi+1, . . . , xd

)
: xj ≥ VaR(Xj), ∀j 6= i

}
,

where VaRα,x\i
(X) = inf{xi ∈ R+ : Fx\i(xi) ≥ α} denotes the lower orthant VaR for a rv Xi

when X\i = x\i. Similarly, the upper-orthant VaR is defined

VaRα(X) = ∂{x ∈ Rd
+ : F̄ (x) ≤ 1− α}

=
d⋃
i=1

{(
x1, . . . , xi−1,VaRα,x\i(X), xi+1, . . . , xd

)
: xj < VaR(Xj), ∀j 6= i

}
,

where VaRα,x\i(X) = inf{xi ∈ R+ : F̄x\i(xi) ≤ 1− α} is the upper orthant VaR for a rv Xi when
X\i = x\i. The central idea behind this formulation is to fix all but one of the random variables,
and find the value of the free variable which satisfies the required conditions. For more information
on the properties of the lower and upper orthant VaR, see Cossette et al. (2013).

It is important to note that using these definitions, the upper and lower orthant VaR defined
by (2.10) and (2.11) provide an infinite collection of points, as opposed to a singular value. Such
a property could be considered undesirable for applications such as capital allocation, where a
singular value, or vector, is required for decision making purposes. While Cossette et al. (2013)
discuss methods for allocating capital from this collection of points, Cousin and Di Bernardino
(2013) take a different route in developing a multivariate extension of VaR. Here, the authors define
an upper and lower orthant VaR as the expected value of the random vector given that it is a member
of the level sets (2.10) or (2.11), i.e.,

eVaRα(X) = E {X|X ∈ VaRα(X)} (2.12)

=


E {X1|X ∈ VaRα(X)}

...
E {Xd|X ∈ VaRα(X)}


and

eVaRα(X) = E
{
X|X ∈ VaRα(X)

}
(2.13)

=


E
{
X1|X ∈ VaRα(X)

}
...

E
{
Xd|X ∈ VaRα(X)

}
 ,
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2.3 Risk measures

respectively. In these definitions, the resulting output is equal in dimension to the underlying random
vector, foregoing the need for further allocation methods.

Just as in the univariate case, the formulations of multivariate VaR provided by Cossette et al.
(2013) and Cousin and Di Bernardino (2013) can also be seen as providing insufficient information
in catastrophic scenarios. To this end, both definitions of VaR offer a seamless continuation to
multivariate ES. For brevity we focus on the lower orthant, though equivalent definitions are
available for the upper orthant in each case. First, Beck and Mailhot (2018) extend the work of
Cossette et al. (2016), defining the lower orthant TVaR as

TVaRα(X) =
d⋃
i=1

{
(x1, . . . , xi−1,TVaRα,x\i

(X), xi+1, . . . , xd) : xj > VaR(Xj), ∀ j 6= i
}
,

where

TVaRα,x\i
(X) = E

[
Xi|Xi > VaRα,x\i

(X),X\i ≤ x\i
]
, xj ≥ VaR(Xj)

for all j ∈ {1, . . . , d} with j 6= i. A similar definition exists for the upper orthant TVaR; see
Cossette et al. (2016) or Beck and Mailhot (2018) for more information. The connection between
TVaRα(X) and its univariate counterpart becomes more apparent with Proposition 2.8.

Proposition 2.8 (Cossette et al. (2016), Proposition 2.2). For any i ∈ {1, . . . , d} and xi ≥ VaR(Xi),

one has

TVaRα,x\i
(X) =

1

F\i(x\i)− α

∫ F\i(x\i)

α

VaRu,x\i
(X)du.

In this sense TVaRα(X) exists as a natural continuation of VaRα(X). Conversely, using the
levels sets LX and LX , multivariate formulations of CTE arise naturally as extensions of (2.12) and
(2.13). As defined in Cousin and Di Bernardino (2014), one has

CTEα(X) = E {X|X ∈ LX(α)}

=


E {X1|X ∈ LX(α)}

...
E {Xd|X ∈ LX(α)}

 .
The upper orthant CTE can be defined similarly. These measures are interpreted in the same way as
their univariate counterparts: given that you have surpassed the stated risk level, how much can you
expect to lose?

An alternative formulation of multivariate risk measures that has gained some traction in recent
years is geometric risk measures. Chaudhuri (1996) formalizes the notion of geometric VaR as
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follows:

−−→
VaRα(X) = arg min

x∈Rd
E {Φα(X − x)}

with Φα(x) = (‖x‖2 + 〈α,x〉) /2 for a fixed α ∈ B, where ‖·‖2 is the Euclidean norm, 〈·, ·〉
is the scalar product, and B = {x ∈ Rd : ‖x‖2 < 1} is the unit ball in Rd. In contrast to the
measures defined above, the risk-level α for geometric risk measures is actually a vector in itself.
This features allows one to assign different levels of risk to each asset inX while still considering
the dependence between them, as opposed to a singular level of risk associated to the collection of
random variables. Similarly, a geometric formulation of TVaR and RVaR is possible. See Herrmann
et al. (2020) for more information.

This is by no means an exhaustive list of existing risk measures. For more research on multi-
variate risk measures, see, e.g., Torres et al. (2015), Di Bernardino et al. (2015), Di Bernardino and
Palacios-Rodríguez (2017), or Girard and Stupfler (2017).

2.3.3 Properties of risk measures
As a mathematical object, a risk measure is a very vague concept. In Sections 2.3.1 and 2.3.2 we
introduced several well known examples of risk measures. However, what is it that makes these
measures so widely used and commonly referenced? In practical applications, it is of great interest
to discuss properties which one believes define a “good” risk measure. The first such notion we
discuss, and one which is widely considered the standard for any useful measure of risk is the
property of coherence. Introduced in Artzner et al. (1999), a risk measure T is called coherent if all
of the following hold:

(A1) Translation invariance: for all X ∈ X and c ∈ R

T (X + c) = T (X) + c.

By adding or subtracting a deterministic quantity to the underlying rv, this alters the associated
risk to the random variable by the same amount.

(A2) Subadditivity: for all X, Y ∈ X

T (X + Y ) ≤ T (X) + T (Y ).

Subadditivity reflects the notion of risk reduction through diversification. By aggregating
assets, the subsequent collective risk will be less than the risks of the individual assets
combined.
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(A3) Positive homogeneity: for all X ∈ X and λ > 0,

T (λX) = λT (X).

Instead of diversifying one’s portfolio, consider multiples of the same asset. The resulting
portfolio risk would be scaled as such.

(A4) Monotonicity: For X, Y ∈ X such that Pr(X ≤ Y ) = 1, then

T (X) ≤ T (Y ),

almost surely. A variable that always takes larger values, is always riskier.

Given these axioms and their interpretations, it is easy to see these properties provide a defensible
definition for a good measure of risk.

With coherence in mind, we elaborate on the adequacy of certain risk measures. In particular,
it becomes clear why VaR is so heavily criticized in the literature: VaR is not coherent as it is not
always sub-additive. When considering VaR, pooling of risks does not guarantee a reduction of risk.
Conversely, ES is sub-additive and therefore coherent. Many academics use this difference, in part,
in motivating a switch from VaR to ES in many risk management situations. For more discussion on
the differences between VaR and ES, see, e.g., Tasche (2002), Acerbi and Tasche (2002b), Yamai
and Yoshiba (2002), or Yamai and Yoshiba (2005).

While coherence is generally accepted as a well founded definition for axiomatic risk measures,
it is not devoid of criticism. These criticisms often center around the sub-additivity property which
VaR is criticized for lacking. For example, Dhaene et al. (2008) discuss scenarios under which
sub-additivity can be problematic in a risk management scenario. One way to alleviate such pitfalls,
is to relax the axioms required for coherence. Introduced by Föllmer and Schied (2002), convex risk
measures accomplish this by replacing properties (A2) and (A3) with

(A2.5) Convexity: For all X, Y ∈ X and λ ∈ [0, 1],

T {λX + (1− λ)Y } ≤ λT (X) + (1− λ)T (Y ).

It should be noted that (A2) and (A3) imply (A2.5), but the converse is not true. In this sense
coherent risk measures are a subset of the class of convex risk measures. Convex risk measures
are sometimes referred to as weakly coherent risk measures because of this. This formulation is
also motivated by criticisms of the positive homogeneity property. In certain situations, it is argued
that the risk of an asset can increase in a nonlinear fashion with respect to the size of its position.
For additional discussion on convex risk measures, see Deprez and Gerber (1985) and Frittelli and
Gianin (2002).
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The discussion around risk measures in this thesis generally centers around the concept that the
risk associated to a rv X is inextricably linked to its distribution. This is formalized with the axiom
of law invariance.

(A0) Law Invariance: If X, Y ∈ X such that Pr(X ≤ c) = Pr(Y ≤ c) for all c, then T (X) =

T (Y ).

Combined with axioms (A1)-(A4) one has law-invariant coherent risk measures (Kusuoka, 2001).
Axioms (A0), (A1), (A2.5) and (A4) form the collection of law-invariant convex risk measures

(Frittelli and Gianin, 2005). However, Kou et al. (2013) take a different approach, choosing to
develop a characterization for risk measures which is primarily data driven. Motivated by their
interest in the Basel accords (Basel II (2004); Basel III (2010)), they introduce the notion of
natural risk statistics. The idea of quantifying risk using statistics instead of risk measures is
motivated in part by the appeal of assuaging the risk of model misspecification. Consider a sample
x = (x(1), . . . ,x(m)) from a rv X , where x(i) = (x

(i)
1 , . . . , x

(i)
ni ) is the ith sub-sample of X for

i ∈ {1, . . . ,m} where n1 + · · · + nm = n is the total number of observations. The sub-samples
of x1, . . . ,xm represent different scenarios of X . A statistic T̂ : Rn 7→ R is called a natural risk

statistic if it satisfies the following axioms:

(C1) Positive homogeneity and translation scaling: For all x,y ∈ Rn, a ≥ 0, b ∈ R and s > 0

T̂ (ax+ b1) = aT̂ (x) + sb,

where 1 = (1, . . . , 1).

(C2) Monotonicity: For all x,y ∈ Rd, if x ≤ y then

T̂ (x) ≤ T̂ (y),

where x ≤ y is interpreted component wise, i.e., xji ≤ yji for i ∈ {1, . . . , nj} and j ∈
{1, . . . ,m}.

(C3) Scenario-wise comonotonic sub-additivity: For any x,y ∈ Rn which are scenario-wise
comonotonic

T̂ (x+ y) ≤ T̂ (x) + T̂ (y).

Here, x,y ∈ Rn are called scenario-wise comonotonic if for all j ∈ {1, . . . ,m} and i, k ∈
{1, . . . , nj}, (xji − x

j
k)(y

j
i − y

j
k) ≥ 0.

(C4) Empirical law invariance: For any collection of permutations φi of (1, . . . , ni) for i ∈
{1, . . . ,m}

T̂ (x) = T̂
(
x

(1)
φ1(1), . . . , x

(1)
φ1(n1), . . . , x

(m)
φm(1), . . . , x

(m)
φm(nm)

)
.
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Coherence is still debatably the most widely discussed characterization of risk measures, though
convex risk measures and natural risk statistics have strong heuristic merit. Classifications not
explicitly defined in this thesis include: vector-valued coherent risk measures (Jouini et al., 2004),
insurance risk measures (Wang et al., 1997), risk measures using Choquet integrals (Song and Yan,
2009) and more. In Chapter 3, we introduce the concept of elicitability (Osband, 1985; Gneiting,
2011) which furthers the discussion of how to define an ideal measure of risk.

2.3.4 Estimation of risk measures
Taking into account law-invariance, the risk measures presented in this thesis are explicitly defined
in terms of an underlying rv X or random vector X . For example, if X ∼ N (µ, σ2), the α-level
VaR can be written

VaRα(X) = µ+ σΦ−1(α),

where Φ is the standard normal cdf. Similarly, for a bivariate random vector X = (X1, X2) with
marginal cdfs F1 and F2 and a dependence structure defined by an Archimedean copula with
generator ψ, one may write

VaRα,x1
(X) = F−1

2

[
ψ−1 {ψ(α)− ψ(u1)}

]
,

where u1 = F1(x1). Unfortunately, the reality is that practitioners are often presented collections of
data without any prior knowledge of the stochastic process from which it was generated. To this
end, there are no assurances that any assumed statistical model is in fact correct and choosing the
wrong model can lead to drastically incorrect assessments which can be catastrophic for companies,
customers, and citizens alike. This helped motivate the formulation of natural risk statistics defined
in Section 2.3.3. In this thesis, as a means of mitigating such dangers, risk measures are estimated
using nothing more than the data provided and some relatively unrestrictive assumptions. For
example, VaR can be estimated using the empirical cdf of a rv X , denoted

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x),

i.e.,

V̂aRα(X) = inf{x ∈ R : Fn(x) ≥ α}. (2.14)

When defining an estimator for a particular risk measure, one would like to have some guarantees
that the estimated value will be reasonably close to the true value were we to know the underlying
distribution. Enter the concept of consistency. An estimator Tn for T is said to be consistent for a
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Figure 2.2: Performance of V̂aR0.75(X) as the sample size increases

risk measure T if Tn converges in probability to T , i.e.,

lim
n→∞

Pr(|T − Tn| > ε) = 0,

for all ε > 0. This is denoted by Tn
P−→

n→∞
T and is sometimes referred to as weak consistency.

Strong consistency implies Tn converges almost surely (a.s.), i.e.,

Pr
(

lim
n→∞

Tn = T
)

= 1,

and is denoted Tn
a.s.−→
n→∞

T . It can be shown that convergence almost surely implies convergence
in probability, though convergence in probability is usually considered sufficient. Simply put,
consistency implies that, with arbitrarily large probability as the sample size tends to infinity, the
difference between the estimated value Tn and the true value T becomes negligible. For more
information on convergence of random variables, see, e.g., Billingsley (2008).

Returning to the example of VaR, it can be shown that the estimator (2.14) is consistent for
VaRα(X); see, e.g., van der Vaart (1998). In Figure 2.2, the finite-sample performance of (2.14) is
demonstrated for X ∼ N (0, 1) and varying sample sizes. As can be seen, for increasingly large
sample sizes the accuracy of (2.14) improves until there is minimal variability around the true value
VaR0.75(X) = 0.6745. In dimensions d ≥ 2, Cuevas and Rodríguez-Casal (2004), and Cuevas et al.
(2006) develop techniques for the estimation of the level sets Lα(X) and Lα(X). Focusing on the
lower level sets Lα(X), the authors show that for an appropriate estimator, Fn, of the joint cdf F of
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X , the boundaries of the empirical level set

Lnα(X) = {x ∈ Rd : Fn(x) ≥ α}

is a consistent estimator for ∂Lα(X) = VaRα(X). Di Bernardino et al. (2013) extended these
works to the non-compact setting with specific interest in multivariate risk theory. To deal with the
non-compactness assumption, the authors introduce truncated versions of the lower-orthant VaR

LTα(X) = {x ∈ [0, T ]d : F (x) ≥ α} and Ln,Tnα (X) = {x ∈ [0, Tn]d : Fn(x) ≥ α},

where Tn →∞ as n→∞. Next, define the Hausdorff distance between two sets A1 and A2,

dH(A1, A2) = inf {ρ > 0 : A1 ⊂ B(A2, ρ), A2 ⊂ B(A1, ρ)}

for B(A, ρ) = ∪x∈AB(x, ρ) where B(x, ρ) = {y : ‖y − x‖ ≤ ρ} is the closed ball centered at x
of radius ρ. The authors establish under certain regularity conditions, including that Fn is continuous
for almost all samples of size n and

‖F − Fn‖∞ → 0 a.s.,

that

dH(VaRα1
(X)Tn ,VaRn

α1
(X)Tn) = O(‖F − Fn‖∞) a.s. (2.15)

In turn, they use this result to show that the nonparametric estimator

CTEn
α(x) =



∑n
i=1Xi11{Xi ∈ Lnα(X)}∑n
i=1 1{Xi ∈ Lnα(X)}

...∑n
i=1 Xid1{Xi ∈ Lnα(X)}∑n
i=1 1{Xi ∈ Lnα(X)}


is consistent for CTEα(X). Equivalently, Beck and Mailhot (2018) use (2.15) to establish a
consistent estimator for the orthant based TVaR. First they show

VaRn
α,x\i

(X)
a.s−→

n→∞
VaRα,x\i

(X), (2.16)

where VaRn
α,x\i

(X) = {x ∈ R : Fn,x\i(x) ≥ α} and Fn,x\i : xi 7→ Fn(x). Using (2.16), they show

TVaRn
α,x\i

(X)
a.s.−→
n→∞

TVaRα,x\i
(X),
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where

TVaRn
α,x\i

(X) =
1

m

m∑
j=1

VaRuj ,x\i
(X),

by the dominated convergence theorem. For further research on the estimation of risk measures, see,
e.g., Jones and Zitikis (2003), Ahn and Shyamalkumar (2011), Cai et al. (2015), Lauer and Zähle
(2016), Torres et al. (2017), Di Bernardino and Palacios-Rodríguez (2017), Daouia et al. (2018).
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3
Extreme Multivariate Expectiles

In this chapter, we discuss the estimation of multivariate expectiles. Expectiles have received
increased interest in the literature recently due to the fact that they are the only law-invariant risk
measure which is both coherent and elicitable. Specifically, we develop a consistent estimator for
multivariate expectiles when considering extreme levels of risk α ≈ 1. In Section 3.1, we introduce
the notion of elicitability and demonstrate how VaR is an elicitable risk measure. In Section 3.2,
univariate expectiles are introduced. Section 3.3 provides several extensions of expectiles for
dimensions d ≥ 2: Σ-expectiles, Lp-expectiles, and geometric expectiles. In Section 3.4, we
describe an estimation procedure which provides consistent estimates of L1-expectiles for levels of
α ≈ 1. Finally, we end the chapter with a brief discussion and concluding remarks in Section 3.4.5
and 3.5, respectively.

3.1 Elicitability
In Section 2.3.3 several properties which one would consider necessary to define an ideal risk
measure are discussed. However, in recent years, increasing attention has been shifted to the
study of elicitability. Elicitability stems from the notion of backtesting, which refers to the idea
of validating and comparing the effectiveness of an estimation procedure using past observations.
This in turn helps in deciding the most effective method for making forecasts about future events.
However, as discussed in Gneiting (2011), it is not always sensible to compare forecasting methods.
This brings us to the property of elicitability. First discussed in Osband (1985) and later coined by
Lambert et al. (2008), a collection of risk measures for which meaningful comparisons of point
forecasts is possible is called elicitable.



3.1 Elicitability

Explicitly defining elicitability requires the concept of consistency:

Definition 3.1. A scoring function S : Rd×Rd 7→ [0,∞) is consistent for a risk measure T relative

to X if

EX{S(t,X)} ≤ EX{S(x,X)} (3.1)

for all X ∈ X , all t ∈ T (X) and all x ∈ Rd. The scoring function is strictly consistent if it is

consistent and equality in (3.1) implies that x ∈ T (X).

For example, if one were to consider the T (X) = E(X) then the mean square error S(x, y) =

(x− y)2 is consistent relative to E(X). In fact, for random variables with second moment E(X2) <

∞, it is strictly consistent. Using consistency, Definition 3.2 formalizes the concept of elicitability.

Definition 3.2. A risk measure T is elicitable relative to a class of rv X if there exists a scoring

function S that is strictly consistent for T relative to X .

One way to interpret Definition 3.2 is that a risk measure T : X 7→ Rd is elicitable if it may be
written as the solution of the optimization problem

T (X) = arg min
x∈Rd

E{S(x,X)}.

For a discussion on the properties of elicitability, see Bellini and Bignozzi (2015). For a discussion
of elicitability and its relationship to coherence, see Ziegel (2016). Under this framework, consider
VaR. Indeed, the α-level VaR is an elicitable risk measure. For a rv X , VaR can be written in its
elicitable form as

VaRα(X) = arg min
x∈R

E {α(X − x)+ + (1− α)(X − x)−} ,

where x+ = max(0, x) and x− = max(0,−x) = −min(0, x). Unfortunately, VaR is not coherent.
Conversely, while ES is coherent, it was shown by Gneiting (2011) that it is not elicitable. As there
exists no scoring function which is consistent for ES, evaluating and comparing the performance
of ES based on point forecasts would not be sensible, making it unsuitable for forecasting-based
model selection. However, recent results from Fissler and Ziegel (2016), show that for a real-valued
random variable X with finite first moment and unique quantiles, the pair (VaRα(X),ESα(X)) is
2-elicitable. Such a result would allow for the joint use of VaR and ES in forecasting-based model
selection. For more information on k-elicitability and higher order elicitability, see Lambert et al.
(2008) and Fissler and Ziegel (2016), respectively.
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3.2 Expectiles
The introduction of elicitability has led many to wonder about the viability of both VaR and ES as
tools for effectively quantifying risk. Much research has been devoted to the development of risk
measures while taking into account the concept of elicitability. For instance, Bellini and Bignozzi
(2015) discuss a family of risk measures known as generalized quantiles. A generalized quantile
can be written

q∗α(X) = arg min
x∈R

E[αC1{(X − x)+}+ (1− α)C2{(X − x)−}],

where C1, C2 are convex functions. It is immediate that any measure defined in such a way is
elicitable with corresponding strictly consistent scoring function S(x, y) = αC1{(x− y)+}+ (1−
α)C2{(x− y)−}. Also note that VaR is a generalized quantile where C1(x) = C2(x) = x.

Another member of this family, and the focus of this chapter, are expectiles. In one dimension,
the α-level expectile for a rv X corresponds to a generalized quantile with C1(x) = C2(x) = x2, i.e.,

eα(X) = arg min
x∈R

E
{
α(X − x)2

+ + (1− α)(X − x)2
−
}

(3.2)

= arg min
x∈R

E
[
|α− 1{(X − x) ≤ 0}|(X − x)2

]
= arg min

x∈R

1

2
E [|X − x| {|X − x|+ (2α− 1)}] . (3.3)

First introduced by Newey and Powell (1987), expectiles are a measure which can be both elicitable
and coherent. In fact, for α > 0.5, it is the only risk measure that is coherent, elicitable and
law-invariant (Ziegel, 2016). As risk managers are often interest in elevated levels of risk, this lines
up perfectly with the needs of industry.

For interpretability, it is interesting to consider expectiles through their optimality condition
of the first order. Taking the derivative of (3.2) with respect to x, one can describe eα(X) as the
solution of

1− α
α

=
E{(X − x)+}
E{(X − x)−}

. (3.4)

Thus, eα(X) can be interpreted as the value of X which equates the ratio of positive scenarios
relative negative scenarios to (1− α)/α. The remainder of this chapter will focus on a multivariate
extension of expectiles, and in particular the estimation of them for elevated levels of α. For a
further discussion of univariate expectiles in risk management and asymptotic properties, see Bellini
and Di Bernardino (2017).
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3.3 Extensions to higher dimensions
As was discussed in Section 2.3.2, extending risk measures to dimensions d ≥ 2 allows for a variety
of constructions. For expectiles, we provide two examples of multivariate extensions defined in
Maume-Deschamps et al. (2017). First, Lp-expectiles:

Definition 3.3. Let X = (X1, . . . , Xd) ∈ Rd be random vector and let 1 ≤ p ≤ ∞. The α-level

Lp-expectile ofX is then

epα(X) = arg min
x∈Rd

E
{
α‖(X − x)+‖2

p + (1− α)‖(X − x)−‖2
p

}
= arg min

x∈Rd
E

α{ d∑
i=1

(Xi − xi)p+

}2/p

+ (1− α)

{
d∑
i=1

(Xi − xi)p−

}2/p
 .

The choice of p has an important effect on the resulting measure. For example, for p = 2 one
recovers a vector of univariate expectiles,

e2
α(X) = arg min

x∈Rd

d∑
i=1

E{α(Xi − xi)2
+ + (1− α)(Xi − xi)2

−}

= (eα(X1), . . . , eα(Xd))
> .

For p = 2, the underlying dependence structure of the random vector is not taken into account.
The second construction presented here are matrix expectiles. Also referred to as Σ-expectiles,

they are defined in Definition 3.4.

Definition 3.4. Let X = (X1, . . . , Xd) ∈ Rd be random vector such that E|XiXj| < ∞ for all

pairs (i, j) ∈ {1, . . . , d}2, and Σ = (πij)i,j∈{1,...,d} a real square matrix of full rank, symmetric and

positive semi-definite that satisfies

(i) for all i ∈ {1, . . . , d}, πii = πi > 0, and

(ii) for all i, j ∈ {1, . . . , d}, πi > πij .

The α-level Σ-expectile of a random vectorX is any vector

eΣ
α(X) ∈ arg min

x∈Rd
E{α(X − x)>+Σ(X − x)+ + (1− α)(X − x)>−Σ(X − x)−},

where A> denotes the transpose of a matrix A. If the solution is unique, the Σ-expectile ofX is

eΣ
α(X) = arg min

x∈Rd
E{α(X − x)>+Σ(X − x)+ + (1− α)(X − x)>−Σ(X − x)−}. (3.5)
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For equality to hold in (3.5), it is sufficient for πij > 0 for all (i, j) ∈ {1, . . . , d}2. Matrix
expectiles are interesting because the flexibility in the choice of Σ provides multiple venues for
application. If one were interested in some collection of spatially related random variables, Σ could
be a function of a distance matrix. If one were interested in emphasizing the tail dependence between
the random vectors, Σ could be a matrix of tail dependence coefficients.

A third extension of expectiles to the multivariate framework uses a geometric interpretation.
Building off the works of Chaudhuri (1996) and his geometric interpretation of multivariate VaR,
Herrmann et al. (2018) extend the score function representation in (3.3) to Sα : Rd 7→ [0,∞), where

Sα(x,y) =
1

2
‖x− y‖2 (‖x− y‖2 + 〈x,y〉) ,

for α ∈ B, giving the multivariate geometric expectile defined by

−→e α(X) = arg min
x∈Rd

E {Sα(X,x)} .

By allowing α to take values in the d-dimensional unit ball, the authors are capable of assigning
different levels of risk to each asset inX while still considering the dependence between them. See
Herrmann et al. (2018) for more information.

Moving forward we consider a special case of multivariate expectiles which satisfy both
Definitions 3.3 and 3.4. Setting all the entries of Σ to be 1, denoted Σ = 1d, gives

eα(X) := e1d(X) = arg min
x∈Rd

E{α(X − x)>+1d(X − x)+ + (1− α)(X − x)>−1d(X − x)−}

= arg min
x∈Rd

E

α{ d∑
i=1

(Xi − xi)+

}2

+ (1− α)

{
d∑
i=1

(Xi − xi)−

}2
 . (3.6)

This is also equivalent to the Lp-expectile for p = 1. For simplicity, these will henceforth be referred
to as L1-expectiles. Note that this construction only takes into account pairwise dependencies.

Similar to univariate expectiles, the interpretation of (3.6) can be divined by considering its first
order condition. Taking derivatives with respect to x, it is seen that eα(X) satisfies the following
system of equations:

α
d∑
i=1

E [(Xi − xi)+1{Xk > xk}] = (1− α)
d∑
i=1

E [(Xi − xi)−1{Xk < xk}]

or, equivalently,
1− α
α

=
E [‖X − x‖+1{Xk > xk}]
E [‖X − x‖−1{Xk < xk}]

for all k ∈ {1, . . . , d}. The similarities to (3.4) are clear; eα(X) can thus be interpreted as the
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value of X that sets the ratio of expected positive scenario outcomes relative to negative ones to
(1−α)/α for all members of the random vectorX . The goal in many risk management applications
is to minimize the ratio (1− α)/α, which requires one to consider elevated levels of α. Calculating
expectiles for elevated levels of α will be discussed in the remainder of this chapter. We end the
section by listing a few properties of L1 expectiles.

Proposition 3.1. For any random vector X = (X1, . . . , Xd) ∈ Rd with finite second moment,

eα(X) has the following properties:

(i) Positive homogeneity: for any a > 0,

eα(aX) = aeα(X).

(ii) Translation invariance: for any vector b = (b1, . . . , bd) ∈ Rd,

eα(X + b) = eα(X) + b.

(iii) Law invariance: for any random vector Y = (Y1, . . . , Yd) ∈ Rd with finite second moment

such that pairs (Xi, Xj) and (Yi, Yj) have the same distribution for all i, j ∈ {1, . . . , d}2,

then

eα(X) = eα(Y )

for all α ∈ [0, 1].

(iv) Pseudo-invariance by linear transformations: for any vectors a = (a1, . . . , ad) ∈ [0,∞)d

and b = (b1, . . . , bd) ∈ Rd,

eα(AX + b) = AeA1dA
α (X) + b,

where A = diag(a>), a diagonal square matrix with a across the diagonal.

For a proof of these properties and a discussion of additional properties of eα(X), see Maume-
Deschamps et al. (2017). The listed properties may also be extended for any matrix Σ satisfying
Definition 3.4.

3.4 Estimation of extremes for L1-expectiles
As noted in Maume-Deschamps et al. (2017), multivariate expectiles can rarely be solved for
explicitly. However, the estimation of eα(X) is possible using noisy observations. In particular, the
authors show that one can estimate L1-expectiles from observational data using Robbins–Monro
stochastic optimization (Robbins and Monro, 1951). They show that in general scenarios, this algo-
rithm performs quite well when solving for eα(X). However, one area which the Robbins–Monro
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algorithm fails is estimating eα(X) for elevated risk levels α ≈ 1. As discussed in Section 3.3,
there is a great deal of interest in evaluating risk for extreme levels of α. To this end, extra care must
be given when estimating eα(X) for α ≈ 1. For a discussion of extreme expectiles in the univariate
case, see, e.g., Bellini and Bignozzi (2015), Mao et al. (2015), Bellini and Di Bernardino (2017),
Daouia et al. (2018, 2019).

In the case of multivariate extreme L1-expectiles (MEEs), Maume-Deschamps et al. (2018)
lay the foundation we wish to build upon. Their discussion centers around random variables with
equivalent tails, which is formalized in Assumption 1.

Assumption 1. Assume thatX has equivalent regularly varying marginal tails, i.e.,

(i) F̄1 ∈ RV−θ(∞), with θ > 0.

(ii) The tails of X1, . . . , Xd are equivalent. That is, for all i ∈ {1, . . . , d}

lim
x→∞

F̄i(x)/F̄1(x) = ci.

The conditions of Assumption 1 imply that F̄i ∈ RV−θ(∞) for all i ∈ {1, . . . , d}. The following
proposition provides the main result for L1-expectiles when considering levels of risk α→ 1.

Proposition 3.2 (Maume-Deschamps et al. (2018), Proposition 2.3). Assume that X has a regu-

lar varying multivariate distribution in the sense of Definition 2.2 and that Assumption 1 holds.

Consider the L1-expectile eα(X) = (eiα(X))i∈{1,...,d}. Then any limit vector (η, β2, . . . , βd) of(
(1− α)/F̄1 {e1

α(X)} , e2
α(X)/e1

α(X), . . . , edα(X)/e1
α(X)

)
satisfies the following system

1

θ − 1
− ηβ

θ
k

ck
= −

d∑
i=1,i 6=k

{∫ ∞
βi
βk

λik
(
ci
ck
t−θ, 1

)
dt− ηβ

θ−1
k

ck
βi

}
, ∀k ∈ {1, . . . , d}. (3.7)

With Proposition 3.2, one can provide an alternative system of equations when solving for
limα→1 eα(X). Moreover, it has been shown that for the limiting cases of tail dependence, comono-
tonicity and asymptotic independence, closed form solutions to the system in (3.7) exist. These
results are summarized in the following two lemmas:

Lemma 3.1 (Maume-Deschamps et al. (2018), Lemma 2.5). Under the assumptions of Proposi-

tion 3.2, consider the L1-expectile eα(X) = (eiα(X))i∈{1,...,d}. If X = (X1, . . . , Xd) is such that

the pairs (Xi, Xj) are asymptotically independent for all i 6= j ∈ {1, . . . , d}, then the limit vector

(η, β2, . . . , βd) of
(
(1− α)/F̄1 {e1

α(X)} , e2
α(X)/e1

α(X), . . . , edα(X)/e1
α(X)

)
satisfies

η =
1

(θ − 1)
{

1 +
∑d

j=2 c
1/(θ−1)
j

} and βk = c
1/(θ−1)
k (3.8)

for all k ∈ {1, . . . , d}.
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Lemma 3.2 (Maume-Deschamps et al. (2018), Lemma 2.4). Under the assumptions of Proposi-

tion 3.2, consider the L1-expectile eα(X) = (eiα(X))i∈{1,...,d}. IfX = (X1, . . . , Xd) is a comono-

tonic random vector then the limit vector (η, β2, . . . , βd) of
(
(1− α)/F̄1 {e1

α(X)} , e2
α(X)/e1

α(X),

. . . , edα(X)/e1
α(X)

)
satisfies

lim
α→1

1− α
F̄k{ekα(X)}

=
1

(θ − 1)
and βk = c

1/θ
k (3.9)

for all k ∈ {1, . . . , d}. Note that for k = 1 this gives η = 1/(θ − 1).

For simplicity, we denote Θ⊥ = (η⊥, β⊥2 , . . . , β
⊥
d ) and Θ+ = (η+, β+

2 , . . . , β
+
d ), where the

entries of Θ⊥ and Θ+ are given by (3.8) and (3.9), respectively. By rearranging the results provided
in Lemmas 3.1 and 3.2, asymptotic representations of MEEs under asymptotically independent and
comonotonic random vectors can be defined by

e⊥α (X) ∼
α→1

VaRα(X1)(θ − 1)−1/θ

(
1 +

d∑
j=2

c
1/(θ−1)
j

)−1/θ (
1, c

1/(θ−1)
2 , . . . , c

1/(θ−1)
d

)
(3.10)

and

e+
α (X) ∼

α→1
VaRα(X1)(θ − 1)−1/θ

(
1, c

1/θ
2 , . . . , c

1/θ
d

)
, (3.11)

respectively. Moreover, estimators ê⊥α (X) and ê+
α (X) for (3.10) and (3.11), respectively, can be

written in the same way, using plug-in estimates for VaRα(X1), θ and c2, . . . , cd. The consistency
of said estimators is established in Theorem 3.3

Theorem 3.3 (Maume-Deschamps et al. (2018), Theorem 4.6). Under the assumptions of Proposi-

tion 3.2, assume further that the function U : y 7→ VaR1−1/y(X1) satisfies

U(ux)

U(x)
∼

x→∞
uγ [1 + h−β(u)b(x) + o{b(x)}] ,

where β > 0, b ∈ RV−β(∞) and h−β(u) = (1 − u−β)/β. Next, choose k = k(n) and α = α(n)

such that

(i) k(n)→∞, k(n)/n→ 0 and α(n)→ 1, n{1− α(n)} → c > 0 as n→∞;

(ii)
√
k(n)

[
1 + log2 k(n)

n{1−α(n)}

]
→∞ as n→∞.

Then, if each pair inX is asymptotically independent,

ê⊥α (X)/e⊥α (X)
P−→

n→∞
1.
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IfX is comonotonic, then

ê+
α (X)/e+

α (X)
P−→

n→∞
1.

3.4.1 Optimization
The results of Theorem 3.3 represent a great step forward in the estimation of extreme multivari-
ate expectiles. However, being restricted to the limiting cases of tail dependence is suboptimal.
Moreover, it requires one to assume in advance that the given data come from a distribution with
asymptotically independent or comonotonic margins. We wish to expand on their methodology
so that one may estimate eα(X) for α ≈ 1 under any tail dependence structure without any
distributional assumptions. Using Proposition 3.2, we reformulate the optimization problem in (3.6).

Definition 3.5. Consider a d-dimensional random vector X with regularly varying multivariate

distribution in the sense of Definition 2.2 with margins possessing equivalent tails as given in

Assumption 1. Let β∗ = (β1, . . . , βd) with β1 = 1 and Θ = (η,β2:d) = (η, β2, . . . , βd). Let c1 = 1

and Λ = (θ, c2, . . . , cd, λ(·)), where ci is the tail ratio for i ∈ {2, . . . , d}, θ is the tail index and λ is

the udf associated to the random vectorX in (2.7).
Define the loss function

LΛ(Θ) :=
1

2
‖FΛ(Θ)‖2

2, (3.12)

where

FΛ(Θ) =
(
F

(1)
Λ (Θ), . . . , F

(d)
Λ (Θ)

)
=
(
g

(1)
Λ (Θ) + f

(1)
Λ (Θ), . . . , g

(d)
Λ (Θ) + f

(d)
Λ (Θ)

)
,

and

g
(k)
Λ (Θ) =

1

θ − 1
− ηβ

θ
k

ck
,

f
(k)
Λ (Θ) =

d∑
i 6=k

{∫ ∞
βi
βk

λik
(
ci
ck
t−θ, 1

)
dt− ηβ

θ−1
k

ck
βi

}

for all k ∈ {1, . . . , d}. Define an optimal vector Θ∗, obtained by optimizing the loss function LΛ in

(3.12), i.e.,

Θ∗ = arg min
Θ

LΛ(Θ). (3.13)

With Definition 3.5, we have formulated an explicit optimization problem for L1-expectiles
when α→ 1. Corollary 3.1 establishes that the optimization problem (3.13) can be used to calculate
MEEs.
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Corollary 3.1. Consider a d-dimensional random vectorX with regularly varying multivariate dis-

tribution in the sense of Definition 2.2. Consider the L1-expectile eα(X) = (eiα(X))i∈{1,...,d} as in

(3.6). Under Assumption 1 and the assumption that the vector
(
(1−α)/F̄1 {e1

α(X)} , e2
α(X)/e1

α(X),

. . . , edα(X)/e1
α(X)

)
has a unique limit point Θ = (η, β2, . . . , βd) for α→ 1, then Θ satisfies the

optimization problem (3.13) in Definition 3.5. Moreover, the optimization problems (3.6) and (3.13)
are equivalent for α→ 1, i.e.,

lim
α→1

eiα(X)

ẽiα(X)
= 1, for i ∈ {1, . . . , d}, where ẽα(X) := VaRα(X1)η1/θ(1, β2, . . . , βd)

>.

Proof. From Proposition 3.2 and the uniqueness of the limit Θ = (η, β2, . . . , βd) we get that
Θ satisfies the optimization problem in (3.13). Furthermore, from Proposition 5.1 in Maume-
Deschamps et al. (2018), we know that eα(X) ∼ VaRα(X1)η1/θ(1, β2, . . . , βd)

>, for α → 1.
Hence, the result is proved. �

To solve this problem, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) descent algorithm will
be used. The algorithm is a member of the family of quasi-Newton optimization methods and allows
one to avoid calculating second derivatives, a feat which can drastically improve computation time.

Algorithm 1 BFGS for Estimation of Extreme Expectiles

(Step 0) Put counter k := 0 and choose initial values

Θ0 ∈ Rd, H0 ∈ Rd×d initial inverse Hessian matrix, σ ∈ (0, 1/2), ρ ∈ (σ, 1), and
ε ≥ 0.

(Step 1) Let LΛ as in Definition 3.5. If ‖∇LΛ

(
Θk
)
‖ ≤ ε: STOP.

(Step 2) Calculate the direction dk = −Hk∇LΛ

(
Θk
)
.

(Step 3) Determine the step size tk > 0 such that the Wolfe conditions are satisfied, i.e.,

LΛ

(
Θk + tkd

k
)
≤ LΛ

(
Θk
)

+ σtk∇LΛ

(
Θk
)

∇LΛ

(
Θk + tkd

k
)>
dk ≥ ρ∇LΛ

(
Θk
)>
dk.

where > denotes the transpose.
(Step 4) Update the following:

• Θk+1 := Θk + tkd
k • yk := ∇LΛ

(
Θk+1

)
−∇LΛ

(
Θk
)

• sk := Θk+1 −Θk • Hk+1 :=
(
I− ρksky>k

)
Hk

(
I− ρksky>k

)
+ ρksks

>
k

where ρk = (y>k sk)
−1.

(Step 5) Set k ← k + 1 and go to (Step 1).
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3.4 Estimation of extremes for L1-expectiles

The BFGS descent algorithm is given in Algorithm 1. The gradient of LΛ can then be written

∇LΛ(·) = ∇

[
1

2

d∑
k=1

{
g

(k)
Λ (·) + f

(k)
Λ (·)

}2
]

=



∑d
k=1

{(
g

(k)
Λ (·) + f

(k)
Λ (·)

)
× ∂

∂η

(
g

(k)
Λ (·) + f

(k)
Λ (·)

)}
∑d

k=1

{(
g

(k)
Λ (·) + f

(k)
Λ (·)

)
× ∂

∂β2

(
g

(k)
Λ (·) + f

(k)
Λ (·)

)}
...

∑d
k=1

{(
g

(k)
Λ (·) + f

(k)
Λ (·)

)
× ∂

∂βd

(
g

(k)
Λ (·) + f

(k)
Λ (·)

)}


,

where

∂

∂Θj

g
(k)
Λ (Θ) =


−βθk/ck, j = 1,

−ηθβθ−1
k /ck, j = k 6= 1,

0, otherwise,

∂

∂Θj

f
(k)
Λ (Θ) =


−βθ−1

k

ck

∑
i 6=k βi, j = 1,∑

i 6=k

[
λik
(
ci
ck

(
βi
βk

)−θ
, 1

)
βi
β2
k
− η (θ−1)βθ−2

k

ck
βi

]
, j = k 6= 1,

−λjk
(
cj
ck

(
βj
βk

)−θ
, 1

)
1
βk
− η β

θ−1
k

ck
, otherwise,

for j, k ∈ {1, . . . , d}.
For more information, including convergence results, on the BFGS algorithm see Nocedal

and Wright (1999). It is important to note that, in the general case, the true optimization problem
(3.13) does not satisfy the convexity assumption required for global convergence of the BFGS
algorithm. Nevertheless, the choice to use BFGS is motivated by its simplicity of implementation and
further validated by the satisfactory numerical results provided in Section 3.4.4. More sophisticated
algorithms which extend BFGS would indeed be possible, including L-BFGS-B (Byrd et al., 1995)
and modified BFGS (Li and Fukushima, 2001a,b), the latter of which allows one to relax the
convexity assumption and still achieve global convergence. These methods are briefly discussed in
Section 3.4.5.

In Figure 3.1, the accuracy of the BFGS algorithm applied to (3.12), is demonstrated. It can
be seen that the BFGS algorithm performs quite well for the presented optimization problem,
recapturing the true MEEs for a range of risk levels.
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Figure 3.1: Demonstration of BFGS algorithm for solving (3.13) for varying α and dependence
structures. Here, Xi ∼ bit2 where t2 is a student t-distribution with 2 degrees of freedom and
bi = 2i−1 for i ∈ {1, 2, 3}. The dotted green line represents the true values as described in Maume-
Deschamps et al. (2018).

3.4.2 Approximate optimization problem
While preliminary results of the reformulated optimization problem in Definition 3.5 are encour-
aging, they are predicated on knowing the underlying distribution of the data and the values of λ,
θ and c2, . . . , cd. As such information is rarely available in practice, directly solving (3.12) is not
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3.4 Estimation of extremes for L1-expectiles

possible. Here we consider an approximated version of (3.12) as a proxy for (3.13). In other words,
we focus on solving

Θ̂∗ = arg min
Θ∈Rd

LΛ̂(Θ), (3.14)

for some vector of estimators Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂). Specifically, convergence of the estimated
optimum can be shown in the following way. The first step will be to show that Λ̂

P−→
n→∞

Λ, and

subsequently that LΛ̂(Θ)
P−→

n→∞
LΛ(Θ) and ∇LΛ̂(Θ)

P−→
n→∞

∇LΛ(Θ). Then, we will prove the
consistency of every iteration of the BFGS algorithm (see Theorem 3.7)

Θ̂k P−→
n→∞

Θk, ∀ k ∈ {1, 2, . . .}.

Finally by using a two-step procedure (see Algorithm 2), we can study the behaviour of the proposed
method (see Corollary 3.3).

3.4.3 Consistency

Before we can establish the consistency of the estimator Θ̂∗, we first require consistent estimators
for the components of Λ. Also note that given the form (3.12), a consistent estimator for∫ ∞

βi/βk

λik
(
ci
ck
t−θ, 1

)
dt (3.15)

is also required. For n observations from a random vector X , denote the random sample Xi =

(Xi1, . . . , Xid) for i ∈ {1, . . . , d}. Next, denote Xj:1,n ≤ · · · ≤ Xj:n,n the order statistics associated
to the realizations of the jth random variable of X for j ∈ {1, . . . , d}. Also define ` = `(n) an
intermediate integer sequence such that ` = o(n) and ` −→

n→∞
∞. First, we estimate the tail index θ

via Hill’s estimator (Hill, 1975):

γ̂ =
1

`θ

`θ∑
i=1

log(X1:n−i+1,n)− log(X1:n−`θ,n) and θ̂ =
1

γ̂
(3.16)

for an intermediate integer sequence `θ = `θ(n). The tail ratio, ci, can be estimated for i ∈ {2, . . . , d}
by

ĉi =

(
Xi:n−`i+1,n

X1:n−`i+1,n

)−θ̂
, (3.17)

where `i = `i(n) is an intermediate sequence and θ̂ as in (3.16). The consistency of θ̂ and ĉi is
established, for instance, in Deheuvels et al. (1988) or de Haan and Ferreira (2006), and Maume-
Deschamps et al. (2018), respectively. This leaves the udf as the sole remaining piece. Given the
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3.4 Estimation of extremes for L1-expectiles

definition of the udf given in Section 2.2, we consider estimators of λ which take the form

λ̂(x) =
n

`λ
ˆ̄C

(
`λ
n
x

)
,

where ˆ̄Cn is some estimator of the survival copula of the random vector X . In this scenario, to
accurately estimate the upper dependence requires one to first define a consistent estimator for ˆ̄C.
In Figure 3.2, the performance of λ̂ under the empirical, empirical beta and checkerboard copulas,
introduced in Chapter 2, are compared using independent Pareto type I distributions. Specifically,
we consider Xi ∼ P(2, 1.25(1 + i)) with cdf

Fi(x) = 1−
(

x

1.25(1 + i)

)−2

for i ∈ {1, 2, 3}. As can be seen, both the empirical beta and checkerboard copulas provide a
far more accurate estimates of λ and do not exhibit any of the oscillating behavior that is seen
when considering λ̂n. The performance is also better at smaller sample sizes when larger limiting
subsequence is considered. Choosing to build on the results of Segers et al. (2017) and Kiriliouk
et al. (2018), we focus on developing our estimation procedure using the empirical beta copula,
though it seems that the checkerboard copula would be a strong choice as well. In two dimensions
we can write the empirical beta copula as

Cβ
n (u, v) =

1

n

n∑
i=1

FRi,1,n(u)FRi,2,n(v).

Moreover, as Cβ
n is a genuine copula, using the bivariate relationship C̄(u, v) = u+ v− 1 +C(1−

u, 1− v) gives pairwise udf

λ̂ikβ (xi, xk) =
n

`λ

{
`λ
n
xi +

`λ
n
xk − 1 +

1

n

n∑
j=1

FRj,i,n

(
1− `λ

n
xi

)
FRj,k,n

(
1− `λ

n
xk

)}
.

(3.18)

Proposition 3.4 establishes the consistency of the udf based on the empirical beta copula.

Proposition 3.4. For the estimator of the udf based on the empirical beta copula, as defined in

(3.18), one has that

λ̂ikβ (xi, xk)
P−→

n→∞
λik(xi, xk).

That is, λ̂ikβ is a consistent estimator for λik.

Proof. The proof is straightforward from the work of Kiriliouk et al. (2018). They define the
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(b) Limiting subsequence `λ = n0.40

0 2000 4000 6000 8000 10000

0.
50

0.
55

0.
60

0.
65

0.
70

Sample Size

λ̂

Empirical
Beta
Checkerboard
True Value

(c) Limiting subsequence `λ = n0.50
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(d) Limiting subsequence `λ = n0.75

Figure 3.2: Comparison between λ̂23
n (0.5, 1.5), λ̂23

β (0.5, 1.5), λ̂23
z (0.5, 1.5) and λ23(0.5, 1.5). Note

that for these estimates `θ = `i = n0.75. The margins are Pareto, specifically, Xi ∼ P(2, 1.25(1 + i))
for i ∈ {1, 2, 3}.

empirical process
Bβ
n,`λ

=
√
`λ(Lβn,`λ − L),

where
Lβn,`λ(x) =

n

`λ

{
1− Cβ

n

(
1− `λ

n
x

)}
is the stdf defined under the empirical beta copula. In particular, they established the weak conver-
gence (as defined in van der Vaart and Wellner (1996)) Bβ

n,`λ
 B on `∞ ([0, 1]), where B is some
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stochastic process with continuous trajectories. Using this result, and the bivariate relationship that
for any stdf λ(x, y) = x + y − L(x, y), the empirical process for the udf based on the empirical
beta copula will have the same (up to a sign) asymptotic distribution. This implies that

λ̂ikβ (xi, xk)
P−→

n→∞
λik(xi, xk),

establishing the result. �

In particular, Proposition 3.4 gives

λ̂β

(
ci
ck
t−θ, 1

)
P−→

n→∞
λ

(
ci
ck
t−θ, 1

)
.

Finally, we require a consistent estimator for (3.15). The following proposition establishes that the
integral of (3.18) is such an estimator.

Proposition 3.5. Consider the estimator of λ as proposed in (3.18), then∫ ∞
βi/βk

λ̂ikβ

(
ci
ck
t−θ, 1

)
dt

P−→
n→∞

∫ ∞
βi/βk

λik
(
ci
ck
t−θ, 1

)
dt.

Proof. The proof boils down to an application of the Dominated Convergence Theorem (Royden,
1988; Billingsley, 2008). First, the convergence of the integrand follows from Proposition 3.4.
Second, as the empirical beta copula is a proper copula, it is easy to see that its udf satisfies the
bounds

λik,⊥
(
ci
ck
t−θ, 1

)
≤ λ̂ikβ

(
ci
ck
t−θ, 1

)
≤ λik,+

(
ci
ck
t−θ, 1

)
and hence

0 ≤ λ̂ikβ

(
ci
ck
t−θ, 1

)
≤ min

(
ci
ck
t−θ, 1

)
.

See for instance Proposition 2.1 in Kiriliouk et al. (2018). Finally, it is shown in Maume-Deschamps
et al. (2018) (see the proof of Lemma 3.4) that∫ ∞

βi
βk

λik,+
(
ci
ck
t−θ, 1

)
dt =

ci
ck

(
βi
βk

)−θ+1
({

βk
βi

(
ck
ci

)− 1
θ

− 1

}
+

ck
ci

(
βk
βi

)−θ

+
1

θ − 1

[
1 +

{
βi
βk

(
ck
ci

)− 1
θ

− 1

}
+

]−θ+1
 <∞.

Thus, by dominated convergence,∫ ∞
βi/βk

λβ

(
ci
ck
t−θ, 1

)
dt

P−→
n→∞

∫ ∞
βi/βk

λ

(
ci
ck
t−θ, 1

)
dt,
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as required. �

To our knowledge, a consistent estimator for the integral of the udf has not been established
in prior literature. In Figure 3.3, an illustration of the finite-sample performance of the estimator
is provided. In particular, for each sample size and subsequence combination, the calculation of∫∞
β2/β3

λ23
β

(
c2t
−θ/c3, 1

)
dt was replicated 500 times. As can be seen for samples of size n > 400

and subsequences nq for q > 0.4, the estimator performs well. For a final comparison, we consider
an estimator of (3.15) using the standard empirical copula. In fact, said estimator has a closed form
which is derived in Proposition 3.6. The proof is left for Appendix 3.A.
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Figure 3.3: Performance of
∫∞
β2/β3

λ̂23
β

(
c2t
−θ/c3, 1

)
dt for various sample sizes and subsequences.

The variable q refers to the power used for our subsequence, i.e., `λ = nq for q ∈ {0.1, 0.2, . . . , 0.9}.
They are compared to the true value

∫∞
β2/β3

λ23
(
c2t
−θ/c3, 1

)
dt under Pareto margins with a comono-

tonic dependence structure (green horizontal line). Here Xi ∼ P(2, 1.25(1 + i)) for i ∈ {1, 2, 3}.
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Proposition 3.6. Under the empirical copula

Cn(u) =
1

n

n∑
i=1

d∏
j=1

1
{
R

(n)
ij /n ≤ uj

}
,

it holds that∫ ∞
βi/βk

λ̂ikn

(
ci
ck
t−θ, 1

)
dt =

1

`λ

n∑
j=1

{n−R(n)
ij + 1

`λ
· ck
ci

}−1/θ

− βi
βk


+

× 1 (Xkj ≥ Xk:n−`λ,n) ,

where `λ is an intermediate integer subsequence.
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Figure 3.4: Performance of
∫∞
β2/β3

λ̂23
n

(
c2t
−θ/c3, 1

)
dt as in Proposition 3.6 for various sample sizes

and subsequences. The variable q refers to the power used for our subsequence, i.e., `λ = nq

for q ∈ {0.1, 0.2, . . . , 0.9}. They are compared to the true value
∫∞
β2/β3

λ23
(
c2t
−θ/c3, 1

)
dt under

Pareto margins with a comonotonic dependence structure (green horizontal line). Here Xi ∼
P(2, 1.25(1 + i)) for i ∈ {1, 2, 3}.
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Figure 3.4 illustrates the performance of
∫∞
β2/β3

λ̂n
(
c2t
−θ/c3, 1

)
dt as in Proposition 3.6. Com-

paring to Figure 3.3, one sees that the empirical beta copula far surpasses the standard empirical
copula in terms of accuracy.

Before establishing the consistency of our estimation procedure, the next step is to combine the
results of Deheuvels et al. (1988), Maume-Deschamps et al. (2018), Propositions 3.4 and 3.5 for θ̂,
ĉ2, . . . , cd, λ̂β and

∫
λ̂β , respectively.

Corollary 3.2. Taking Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂
ik
β ) as defined in (3.16), (3.17) and (3.18), one has∫ ∞

βi
βk

λ̂ikβ

(
ĉi
ĉk
t−θ̂, 1

)
dt

P−→
n→∞

∫ ∞
βi
βk

λik
(
ci
ck
t−θ, 1

)
dt.

Proof. For simplicity, we establish a similar result for λ̂ikβ , i.e.,

λ̂ikβ

(
ĉi
ĉk
t−θ̂, 1

)
P−→

n→∞
λik
(
ci
ck
t−θ, 1

)
.

The proof makes use of the continuous mapping theorem (CMT); see, e.g., van der Vaart (1998),
Theorem 2.3. Several iterations of the triangle inequality yield∣∣∣∣λ̂ikβ ( ĉiĉk t−θ̂, 1

)
−λik

(
ci
ck
t−θ, 1

)∣∣∣∣
=

∣∣∣∣λ̂ikβ ( ĉiĉk t−θ̂, 1
)
− λik

(
ĉi
ĉk
t−θ̂, 1

)
+ λik

(
ĉi
ĉk
t−θ̂, 1

)
− λik

(
ci
ck
t−θ, 1

)∣∣∣∣
=

∣∣∣∣λ̂ikβ ( ĉiĉk t−θ̂, 1
)
− λik

(
ĉi
ĉk
t−θ̂, 1

)
+ λik

(
ĉi
ĉk
t−θ̂, 1

)
− λik

(
ci
ĉk
t−θ̂, 1

)
+ λik

(
ci
ĉk
t−θ̂, 1

)
− λik

(
ci
ck
t−θ̂, 1

)
+ λik

(
ci
ck
t−θ̂, 1

)
− λik

(
ci
ck
t−θ, 1

)∣∣∣∣
≤
∣∣∣∣λ̂ikβ ( ĉiĉk t−θ̂, 1

)
− λik

(
ĉi
ĉk
t−θ̂, 1

)∣∣∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣λik ( ĉiĉk t−θ̂, 1
)
− λik

(
ci
ĉk
t−θ̂, 1

)∣∣∣∣︸ ︷︷ ︸
(ii)

+

∣∣∣∣λik ( ciĉk t−θ̂, 1
)
− λik

(
ci
ck
t−θ̂, 1

)∣∣∣∣︸ ︷︷ ︸
(ii)

+

∣∣∣∣λik ( cick t−θ̂, 1
)
− λik

(
ci
ck
t−θ, 1

)∣∣∣∣︸ ︷︷ ︸
(iii)

P−→
n→∞

0,

where

(i) by convergence of λ̂ikβ (Proposition 3.4),

(ii) by the CMT on λik and the consistency of ĉi, i ∈ {1, . . . , d} (Maume-Deschamps et al.
(2018), Proposition 4.2), and
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(iii) by the CMT on λik and the consistency of θ̂ (de Haan and Ferreira (2006), Theorem 3.2.2).

The proof of the main statement follows in the same way, or as a result of the dominated convergence
theorem, similar to Proposition 3.5. �

For illustration, simulations are presented in Figure 3.5. It is clear that adding extra uncertainty
through calculation of θ̂ and ĉi for i ∈ {2, . . . , d} decreases the accuracy of the full estimator. The
variability of these quantities is well documented and this would naturally require an increased
number of observations to estimate with confidence. Moreover, the selection of the subsequences `θ
and `i for i ∈ {2, . . . , d} is crucial. While in a simulation study the subsequences were chosen to be
fixed for ease of replication, in a real data study the subsequences could be calibrated using Hill
plots.

Finally, in Theorem 3.7, we proceed with the main result.

Theorem 3.7. Let Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂
ik
Beta) as in (3.16), (3.17) and (3.18) respectively. Then

LΛ̂(Θ)
P−→

n→∞
LΛ(Θ) and ∇LΛ̂(Θ)

P−→
n→∞

∇LΛ(Θ). (3.19)

Moreover, given identical starting values Θ0, H0, σ ∈ (0, 1/2), ρ ∈ (σ, 1) and ε ≥ 0, for any step

k, it holds that

Θ̂k P−→
n→∞

Θk. (3.20)

Proof. Noting the structure of LΛ and ∇LΛ(Θ), the consistency results in (3.19) are a direct result
of the consistency of θ̂, ĉi for i ∈ {2, . . . , d}, Propositions 3.4, 3.5 and Slutzky’s Theorem. For
(3.20), we use induction. First, fix Θ0, H0, σ ∈ (0, 1/2), ρ ∈ (σ, 1) and ε ≥ 0. Recalling the
iteration step of BFGS algorithm, we have

d̂0 = −H0∇LΛ̂(Θ0)
P−→

n→∞
−H0∇LΛ(Θ0) = d0.

Similarly, it is clear that t̂0
P−→

n→∞
t0. It follows that

Θ̂1 = Θ0 + t̂0d̂
0 P−→
n→∞

Θ0 + t0d
0 = Θ1,

as well as ŷ0 P−→
n→∞

y0, ŝ0 P−→
n→∞

s0 and Ĥ1
P−→

n→∞
H1. Next, assume Θ̂k P−→

n→∞
Θk. Then,

Θ̂k+1 = Θ̂k + t̂kd̂k = Θ̂k + t̂kĤ
−1
k ∇LΛ̂

(
Θ̂k
)

P−→
n→∞

Θk + tkH
−1
k ∇LΛ

(
Θk
)

= Θk+1.

Thus, for any step k ∈ {1, 2, . . .}, Θ̂k P−→
n→∞

Θk by induction. �
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Figure 3.5: Performance of
∫∞
β2/β3

λ̂23
β

(
ĉ2t
−θ̂/ĉ3, 1

)
dt for various sample sizes and subsequences.

The variable q refers to the power used for our subsequence, i.e., `λ = nq for q ∈ {0.1, 0.2, . . . , 0.9}.
They are compared to the true value

∫∞
β2/β3

λ23
(
c2t
−θ/c3, 1

)
dt under Pareto margins with a comono-

tonic dependence structure (green horizontal line). Here Xi ∼ P(2, 1.25(1 + i)) for i ∈ {1, 2, 3}.

We now proceed by using an iterated two-step procedure. We first provide an adequate estimate
of the true loss function (and its gradient) and then proceed with the optimization procedure. This is
formalized in Algorithm 2.

Algorithm 2 Two-steps estimation procedure for MEEs

(Step 1) Taking the limit n→∞
Establish the consistency of Λ̂ and subsequently LΛ̂ and ∇LΛ̂ (see Theorem 3.7).
(Step 2) Taking the limit k →∞
Optimize the consistently approximated problem from Step 1 using the BFGS algorithm.

The resulting asymptotic behavior of our estimation scheme using Algorithm 2 is established in
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3.4 Estimation of extremes for L1-expectiles

Corollary 3.3. It is important to note the limit order in the non-exchangeable iterated limit (3.21).

Corollary 3.3. Under the assumptions of Corollaries 3.1, 3.2 and Theorem 3.7, and further assum-

ing that BFGS algorithm solves for the global minimum of (3.12), then, it holds that

lim
k→∞

(plim
n→∞

Θ̂k) = Θ∗. (3.21)

Proof. Under the assumption that BFGS solves for the global minimum of (3.12), i.e., Θk −→
k→∞

Θ∗,
we have

lim
k→∞

{
lim
n→∞

P
(
‖ Θ̂k −Θ∗ ‖≥ ε

)}
= lim

k→∞

{
lim
n→∞

P
(
‖ Θ̂k −Θk + Θk −Θ∗ ‖≥ ε

)}
≤ lim

k→∞

{
lim
n→∞

P
(
‖ Θ̂k −Θk ‖ + ‖ Θk −Θ∗ ‖≥ ε

)}
≤ lim

k→∞

[
lim
n→∞

{
P
(
‖ Θ̂k −Θk ‖≥ ε/2

)
︸ ︷︷ ︸

(i)

+ P
(
‖ Θk −Θ∗ ‖≥ ε/2

)
︸ ︷︷ ︸

(ii)

}]

= 0,

where firstly (i) converges to zero as n→∞ by Theorem 3.7 and subsequently (ii), which does not
depend on n, converges to 0 as k →∞ by assumption. �

3.4.4 Examples
We substantiate the results of Section 3.4.3 with a series of numerical examples. First, we present a
simulation study. For comparison, we consider the limiting cases of tail dependence: asymptotic
independence and comonotonicity. As closed form solutions exist for Θ⊥ and Θ+, provided in
Lemmas 3.1 and 3.2, respectively, they will provide a good measuring stick for our estimation
procedure. Equivalently, we can compare the explicit expectiles estimates using the values of e⊥α (X)

and e+
α (X) given in (3.10) and (3.11), respectively. In this case, the estimator for MEEs is written

êα(X) = V̂aR
∗
α(X1)η̂1/θ̂(1, β̂2, . . . , β̂d)

>

where

V̂aR
∗
α(X1) = X1:n−k(n)+1,n

{
k(n)

(1− α)n

}1/θ̂

, (3.22)
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3.4 Estimation of extremes for L1-expectiles

called Weissman’s estimator (Weissman, 1978), for an intermediate integer sequence k(n) is better
suited than V̂aRα(X) for α ≈ 1. For more information regarding V̂aR

∗
α, see, e.g., Embrechts

et al. (1997), Beirlant et al. (2004). However, comparisons using Θ̂⊥ and Θ̂+ will more effectively
demonstrate the capabilities of our algorithm as they do not rely on the performance of (3.22).

For the simulations, we considered a random vector X made up of Pareto type I marginals.
Specifically, Xi ∼ Pa(bi, a), where a = 3.5 and bi = 1.25(i + 1) for i ∈ 1, . . . , d and d ∈ {3, 5}.
In this scenario, we have that F̄1, . . . , F̄d ∈ RV3.5(∞) and

ci = lim
x→∞

F̄i(x)

F̄1(x)
=

(
bi
b1

)a
=



1.000, when i = 1,

4.134, when i = 2,

11.314, when i = 3,

24.705, when i = 4,

46.765, when i = 5,

where F̄1, . . . , F̄d are the margins sf’s for X1, . . . , Xd, respectively. Simulations were conducted
for samples of size n = 50, 100, 250, 500, 1000, 2500, 5000 and repeated 500 times each. The
limiting integer subsequences for θ, ci for i ∈ {2, . . . , d} and λ were `θ = `2 = · · · = `d = n0.75

and `λ = n0.5, respectively. The risk level was set to α = 1 − 1/5000 = 0.9998 to reflect the
largest sample size considered. First, we consider the three-dimensional case. Under asymptotic
independence and comonotonicity the true system solutions are

Θ⊥ = (0.0740, 1.764, 2.639) and Θ+ = (0.400, 1.500, 2.000),

respectively, with corresponding expectiles

e⊥0.9998(X) = (13.545, 23.894, 35.744) and e+
0.9998(X) = (21.932, 32.899, 43.865).

The results of the simulations are summarized in Table 3.1 and Figure 3.6. In the three-dimensional
scenario, our proposed estimation procedure performs quite well. At lower samples, the results are
only slightly biased though display a fair amount of standard error. As the sample size increases
however, the algorithm is able to successfully estimate the true values of both Θ and eα(X) for
α = 0.9998 with minimal standard errors. It should be noted that for the comonotonic simulations,
the slight bias and small standard errors would mean that the true value would likely not be contained
in any reasonable confidence interval, though the bias is generally quite small and continues to
shrink as the sample size increases. A possible explanation for this occurrence could be that the
structure of a comonotonic random vector makes for less informative samples given the way it is
generated; every realization of the random vector comes from the same uniform observation. See
Section 3.4.4 for more information on simulation for a comonotonic dependence structure.
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Table 3.1: Median results of simulation study for Pareto margins in three dimensions. Standard
deviations for each estimate are presented in parentheses. Here Xi ∼ P(3.5, 1.25(1 + i)) for
i ∈ {1, 2, 3} with `θ = `i = n0.75 and `λ = n0.50.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.088 (0.056) 1.811 (0.382) 2.726 (0.588) 14.814 (9.370) 27.332 (20.79) 40.634 (36.25)
100 0.085 (0.039) 1.769 (0.264) 2.629 (0.426) 14.438 (5.674) 25.757 (11.88) 38.158 (19.61)
250 0.081 (0.028) 1.771 (0.189) 2.660 (0.304) 14.210 (3.700) 25.359 (7.075) 37.745 (11.78)
500 0.078 (0.017) 1.758 (0.132) 2.660 (0.211) 13.725 (2.488) 24.333 (4.833) 36.347 (7.912)
1000 0.076 (0.012) 1.770 (0.110) 2.644 (0.160) 13.786 (1.749) 24.466 (3.529) 36.468 (5.638)
2500 0.076 (0.008) 1.766 (0.073) 2.639 (0.115) 13.682 (1.105) 24.308 (2.169) 36.117 (3.536)
5000 0.075 (0.006) 1.765 (0.052) 2.639 (0.091) 13.636 (0.834) 24.060 (1.652) 36.006 (2.701)
Θ 0.074 1.764 2.639 13.545 23.894 35.744

(a) Independent Margins

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.371 (0.137) 1.525 (0.006) 2.062 (0.016) 22.523 (20.60) 34.338 (31.81) 46.446 (43.49)
100 0.375 (0.099) 1.519 (0.004) 2.049 (0.009) 21.737 (11.68) 33.028 (17.89) 44.534 (24.29)
250 0.385 (0.072) 1.514 (0.002) 2.036 (0.005) 22.109 (7.243) 33.485 (11.03) 45.029 (14.89)
500 0.382 (0.054) 1.512 (0.001) 2.029 (0.003) 21.580 (4.952) 32.618 (7.514) 43.789 (10.12)
1000 0.387 (0.041) 1.509 (0.001) 2.024 (0.002) 21.797 (3.555) 32.900 (5.383) 44.114 (7.238)
2500 0.391 (0.028) 1.507 (0.000) 2.019 (0.001) 21.834 (2.277) 32.908 (3.441) 44.069 (4.619)
5000 0.392 (0.022) 1.506 (0.000) 2.016 (0.001) 21.810 (1.761) 32.845 (2.658) 43.976 (3.563)
Θ 0.400 1.500 2.000 21.932 32.899 43.865

(b) Comonotonic Margins
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Figure 3.6: Boxplots for the three-dimensional Pareto simulations. Here Xi ∼ P(3.5, 1.25(1 + i))
for i ∈ {1, 2, 3}. Results for independent margins (left) and comonotonic margins (right). True
values Θ⊥ and Θ+ (dashed green lines) provided for comparison.

52



3.4 Estimation of extremes for L1-expectiles

Table 3.2: Median results of simulation study for Pareto margins in five dimensions linked with
the independence copula. Standard deviations for each estimate are presented in parentheses. Here
Xi ∼ P(3.5, 1.25(1 + i)) for i ∈ {1, . . . , 5} with `θ = `i = n0.75 and `λ = n0.50.

n η̂ β̂2 β̂3 β̂4 β̂5

50 0.040 (0.058) 1.779 (0.773) 2.672 (1.159) 3.641 (1.405) 4.662 (1.887)
100 0.037 (0.033) 1.760 (0.404) 2.622 (0.602) 3.553 (0.851) 4.565 (1.136)
250 0.032 (0.017) 1.779 (0.288) 2.674 (0.410) 3.667 (0.547) 4.783 (0.757)
500 0.032 (0.012) 1.783 (0.205) 2.668 (0.300) 3.661 (0.410) 4.690 (0.545)
1000 0.031 (0.008) 1.782 (0.142) 2.653 (0.206) 3.661 (0.286) 4.723 (0.386)
2500 0.031 (0.005) 1.769 (0.109) 2.653 (0.148) 3.638 (0.210) 4.695 (0.282)
5000 0.030 (0.004) 1.763 (0.073) 2.645 (0.108) 3.618 (0.154) 4.667 (0.205)
Θ 0.029 1.764 2.639 3.607 4.655

(a) Parameter estimates.
n ê1

α(X) ê2
α(X) ê3

α(X) ê4
α(X) ê5

α(X)
50 12.301 (7.676) 21.755 (22.48) 33.493 (31.78) 46.092 (43.99) 58.649 (53.44)
100 11.546 (4.261) 19.608 (8.535) 29.990 (12.93) 41.265 (19.67) 53.211 (26.50)
250 10.968 (2.510) 19.893 (5.057) 29.810 (7.971) 41.149 (11.05) 52.947 (15.67)
500 10.761 (1.870) 19.108 (3.689) 28.967 (5.726) 38.747 (8.207) 50.317 (11.57)
1000 10.653 (1.261) 19.185 (2.324) 28.377 (3.698) 38.982 (5.352) 50.274 (7.274)
2500 10.660 (0.784) 18.776 (1.591) 28.107 (2.491) 38.583 (3.622) 49.900 (4.956)
5000 10.581 (0.628) 18.653 (1.108) 27.999 (1.823) 38.329 (2.632) 49.508 (3.671)
e0.9998(X) 10.390 18.330 27.420 37.475 48.372

(b) Expectiles estimates.

The results of the simulations for d = 5 are presented in Table 3.2. It can be seen that the
algorithm scales well to the increased dimension. This could be explained in part by the fact we are
only ever dealing with pairwise dependencies through the pairwise udf λik.

To further substantiate the performance of our estimation procedure, we compare the results in
Table 3.1 to simulations using the fully parametric estimators

η̂⊥ =
1

(θ̂ − 1)

(
1 +

∑d
j=2 ĉ

1

θ̂−1

j

) and β̂⊥k = ĉ
1

θ̂−1

k

and

η̂+ =
1

θ̂ − 1
and β̂+

k = ĉ
1

θ̂
k ,

based on (3.8) and (3.9), respectively, from Maume-Deschamps et al. (2018). Using these fully
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parametric estimators for the system solutions, extreme expectiles estimators can be written

ê⊥α (X) = V̂aRα(X1)

(
1

θ̂ − 1

) 1

θ̂

 1

1 +
∑d

i=i ĉ
1

θ̂−1

i

(1, ĉ
1

θ̂−1

2 , . . . , ĉ
1

θ̂−1

d

)>
and

ê+
α (X) = V̂aRα(X1)

(
1

θ̂ − 1

) 1

θ̂
(

1, ĉ
1

θ̂
2 , . . . , ĉ

1

θ̂
d

)>
for independent and comonotonic random vectors, respectively, where V̂aRα(X1) is Weissman’s es-
timator (Weissman, 1978) in Equation (3.22). Analogously to Table 3.1, in Table 3.3 we consider me-
dian results of simulation study for independent and comonotonic Pareto margins in three dimensions.
Standard deviations for each estimate are presented in parentheses. Here Xi ∼ P(3.5, 1.25(1 + i))

for i ∈ {1, 2, 3}.
Unsurprisingly, the fully parametric estimators perform better in particular for smaller sample

sizes and have smaller standard errors. However, our semi-parametric method (see Table 3.1) does
not require any pre-imposed dependence assumption and still provides satisfactory results. Note that
the standard errors being zero for β̂2 and β̂3 for the comonotonic case are a result of the estimators
structures and the distributional assumptions, i.e.,

β̂+
i = ĉ

1

θ̂
i =

Xi:n−`i+1,n

Xi:n−`i+1,n

=
F−1
i (Un−`i+1,n)

F−1
1 (Un−`i+1,n)

=
bi
b1

for i ∈ {2, 3}, where Un−`i+1,n is the n − `i + 1, nth order statistic from the standard uniform
sample used to generate the data. For comonotonic random vectors, each realization of the copula
is generated using the same uniform realization for each component, i.e., Xji = F−1

j (Ui) for
j ∈ {1, . . . , d} and i ∈ {1, . . . , n}.

In the full nonparametric framework, Maume-Deschamps et al. (2017) use Robbins-Monro’s
stochastic optimization to solve the system of equations

α

d∑
i=1

E [|(Xi − xi)+1{Xk > xk}] = (1− α)
d∑
i=1

E [(Xi − xi)−1{Xk < xk}] , ∀ k ∈ {1, . . . , d}.

For a comparison with our results under the same independent Pareto model, the interested reader is
referred to Figure 7 in Maume-Deschamps et al. (2017) (page 40). It is easy to see that for elevated
levels of α, the nonparametric approach solved through Robbins-Monro’s stochastic optimization
performs quite poorly.
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Table 3.3: Analogous results to Table 3.1 using the full parametric estimators for Θ̂ and êα for
independent and comonotonic random vectors. Here Xi ∼ P(3.5, 1.25(1 + i)) for i ∈ {1, . . . , 3}
with `θ = `i = n0.75 and `λ = n0.50.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.075 (0.022) 1.794 (0.231) 2.672 (0.407) 13.917 (8.231) 25.373 (18.82) 38.092 (31.18)
100 0.074 (0.016) 1.770 (0.167) 2.645 (0.304) 13.569 (5.119) 24.443 (10.67) 36.305 (17.80)
250 0.075 (0.012) 1.770 (0.124) 2.656 (0.214) 13.736 (3.293) 24.610 (6.598) 36.895 (11.03)
500 0.074 (0.009) 1.765 (0.094) 2.639 (0.157) 13.540 (2.281) 23.933 (4.580) 35.459 (7.501)
1000 0.074 (0.007) 1.767 (0.075) 2.636 (0.126) 13.588 (1.626) 23.915 (3.340) 35.931 (5.452)
2500 0.074 (0.005) 1.767 (0.053) 2.637 (0.089) 13.560 (1.051) 23.957 (2.108) 35.685 (3.441)
5000 0.074 (0.004) 1.762 (0.042) 2.637 (0.074) 13.530 (0.804) 23.903 (1.602) 35.736 (2.667)
True 0.074 1.764 2.639 13.544 23.894 35.744

(a) Independent Margins

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.411 (0.151) 1.500 (0) 2.000 (0) 23.228 (21.68) 34.843 (32.53) 46.457 (43.37)
100 0.404 (0.106) 1.500 (0) 2.000 (0) 22.222 (12.08) 33.333 (18.12) 44.444 (24.16)
250 0.407 (0.076) 1.500 (0) 2.000 (0) 22.460 (7.411) 33.690 (11.12) 44.921 (14.82)
500 0.399 (0.057) 1.500 (0) 2.000 (0) 21.842 (5.040) 32.763 (7.560) 43.684 (10.08)
1000 0.401 (0.043) 1.500 (0) 2.000 (0) 22.006 (3.605) 33.009 (5.407) 44.011 (7.210)
2500 0.401 (0.029) 1.500 (0) 2.000 (0) 21.980 (2.303) 32.970 (3.454) 43.960 (4.606)
5000 0.400 (0.023) 1.500 (0) 2.000 (0) 21.939 (1.776) 32.908 (2.664) 43.878 (3.552)
Θ 0.400 1.500 2.000 21.933 32.899 43.865

(b) Comonotonic Margins

Finally, we also present an application of MEEs to a real data set. In particular, we consider the
Pima Indians Diabetes Database (https://www.kaggle.com/uciml/pima-indians-
diabetes-database). This data set has been used in previous studies of multivariate risk
measures; see, e.g., Girard and Stupfler (2015), Chaouch and Goga (2010). The data set consists
of nine variables (Pregnancies, Glucose, Diastolic Blood Pressure (DBP), Skin Thickness, Insulin
Levels, body mass index (BMI), Diabetes Pedigree Function, Age and Outcome) for n = 768

individuals from the Pima Indian population. The study was conducted in an attempt to understand
the prevalence of diabetes in this population. For comparison, we consider the two-dimensional
case for pairs (Xi1, Xi2) where Xi1 is the BMI and Xi2 is the DBP for individual i ∈ {1, . . . , 768}.

The first step is to estimate θ̂ and ĉ2. Using the selection procedure described, for instance,
by Cai et al. (2015), we consider a range of possibilities for intermediate sequences `θ and `2 for
which the estimators showed some stability. Then, to gain robustness, we average the estimates
corresponding to the selected ranges. The interested reader is also referred to Di Bernardino and
Prieur (2018). For θ̂ this turned out to be values of `θ ∈ [100, 150]. The corresponding Hill plots
are presented in Figure 3.7. Considering these values the tail index was estimated to be θ̂ = 9.126.

55

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database


3.4 Estimation of extremes for L1-expectiles

10 22 34 46 58 70 82 94 107 122 137 152 167 182 197 212 227 242

4
6

8
10

12
14

16
18

49.6 45.6 43.6 42.8 41.3 40.1 39.3 38.6 38.0 37.5 36.8 36.4 35.7 35.4 34.9

Order Statistics

al
ph

a 
(C

I, 
p 

=
0.

95
)

(a) `θ ∈ [10, 250]

100 104 108 112 116 120 124 128 132 136 140 144 148

8
9

10
11

39.8 39.6 39.4 39.3 39.2 39.0 38.9 38.7 38.5 38.4 38.3 38.1 38.0

Order Statistics

al
ph

a 
(C

I, 
p 

=
0.

95
)

(b) `θ ∈ [100, 150]

Figure 3.7: Hill Plots for estimating θ̂ using BMI measurements.
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Figure 3.8: Extreme Expectiles for Pima Indians Diabetes Study. Included is the extreme expectile
at level α = 1− 1/n (red triangle).

The same procedure is followed for ĉ2 and the resulting estimated value is ĉ2 = 1103.046. In Figure
3.8, the resulting expectiles are plotted.

Recalling the first order conditions of L1 expectiles, eα(X) is the value of x such that∑d
i=1 E [(Xi − xi)+1{Xk > xk}]∑d
i=1E [(Xi − xi)−1{Xk < xk}]

=
1− α
α

∀k ∈ {1, 2}.

This could be interpreted as the value of x which fixes the ratio of participation in positive scenarios
to negative scenarios at (1− α)/α for all variables. Consider the MEE at level α = 1− 1/768 =

0.9987; we have ê0.9987(X) = (45.433, 106.493). As was noted in similar studies of this data set,
e.g., Chaouch and Goga (2010), an individual with a BMI above 31.7 kg/m2 would qualify as
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3.4 Estimation of extremes for L1-expectiles

severely overweight and a DBP value above 95 mm Hg would be at risk of hypertension. Both these
factors are considered to impact the prevalence of diabetes.

3.4.5 Discussion
As mentioned in Section 3.4.1, in the general case the loss function in (3.12) could be non-convex,
and thus, might not satisfy the assumptions required for global convergence of the BFGS algorithm.
Nevertheless, we chose this method for its relative simplicity and ease of implementation, as well
as the satisfactory numerical results it has provided for our problem. To build a more rigorous
estimation procedure, one could consider implementing methods which build upon the foundation
of the original BFGS algorithm. For instance, Li and Fukushima (2001a,b) discuss modifications to
the BFGS algorithm which allow one to relax the assumption of convexity and still ensure global
convergence. Specifically, they discuss the importance of Lipschitz continuity and using a damping
method on the iterates of the approximate inverse Hessian matrix. Equivalently, Yuan et al. (2017)
discuss modifications to the Wolfe conditions in Algorithm 1 which ensures global convergence of
BFGS for general functions. Such methods could further improve our results. However, while BFGS
is already included in many R packages, the above methods are not readily available. Moreover,
manually programming them and doing so efficiently would require a specific work which is beyond
the scope of this thesis.

Additionally, while the BFGS algorithm works well for our problem, as exemplified in the simu-
lation studies, it is important to note that its intended use is for unconstrained optimization problems.
Clearly for MEEs of positively-valued random vectors it is required that Θ > 0 componentwise. A
further improvement to this problem would be incorporating a box-constrained methodology for
solving (3.13) and, more importantly, (3.14). A clear choice in this case would be box-constrained
BFGS (or BFGS-B). This algorithm extends the basic BFGS algorithm by incorporating simple box
constraints into the optimization procedure, allowing us to integrate additional properties of MEEs.
More specifically, as comonotonicity and independence represent the limiting cases of dependence
in the upper tail, all expectiles will be bounded above and below by comonotonic and independent
expectiles. Moreover, from Lemmas 3.1 and 3.2 we know that for asymptotically independent and
comonotonic random vectors the solutions to (3.13) are given by (3.8) and (3.9), respectively. This
allows one to bound any solution Θ∗ of (3.13) to the d-dimensional box

[
ΘL

1 ,Θ
U
1

]
×· · ·×

[
ΘL
d ,Θ

U
d

]
where ΘL

i = min
(
Θ⊥i ,Θ

+
i

)
and ΘU

i = max
(
Θ⊥i ,Θ

+
i

)
for i ∈ {1, . . . , d}. However, because the

estimation is done without prior knowledge of the underlying distribution, the box-constraints in the
algorithm must also be estimated. To this end, the bounds of each box will be slightly relaxed. In
other words, the algorithm would look for a solution in[

Θ̂L
1 , Θ̂

U
1

]
× · · · ×

[
Θ̂L
d , Θ̂

U
d

]
,
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where Θ̂L
i = (1− γL) min

(
Θ̂⊥i , Θ̂

+
i

)
and Θ̂U

i = (1 + γU) max
(
Θ̂⊥i , Θ̂

+
i

)
for some γL, γU > 0.

Another change that could be made to the general BFGS algorithm is to incorporate limited
memory storage of the inverse hessian Hk. This would prove most beneficial when the dimension of
the problem is large and we would want to limit the number of operations on large inverse Hessian
matrices. Combining these two modifications gives the limited-memory box-constrained BFGS
algorithm (L-BFGS-B). Preliminary simulation results using L-BFGS-B applied to (3.14) were
conducted with the results summarized in Figure 3.9. It can be seen that the algorithm performs
quite well, though not drastically differently than BFGS. However, initial results demonstrated a
marked improvement in computation speed; see Table 3.4. L-BFGS-B is seen to be almost twice
as fast as BFGS for d = 3. For the complete simulations presented in Figures 3.6 and 3.9, the
computation time was 4 hours and 1.7 hours, respectively, using 50 cores from an AMD Optetron
Processor 6380 with 2.5 GHz clockspeed. However, these simulations were conducted on a shared
computation server and the results are likely to be noisier. This time difference is likely to increase
with d. While the numerical results are encouraging, theoretical backing would be required to further
support this methodology. Nonetheless, we believe further research on incorporating L-BFGS-B
is merited as its properties are better suited for the optimization of (3.13) and, more importantly,
(3.14). For more information on L-BFGS or L-BFGS-B, see, e.g., Nocedal and Wright (1999), Liu
and Nocedal (1989) and Byrd et al. (1995).

Table 3.4: Microbenchmarking comparison for BFGS vs L-BFGS-B. Estimating e⊥(X) with d = 3
and n = 250 and 100 replications. Margins Pareto distributed, Xi ∼ P(3.5, 1.25(1 + i)). qα is the α-
level quantile of the distribution of run-times. Entries are presented in seconds. Microbenchmarking
was completed using 4 cores from a Intel Core i7-5500U CPU with 2.40 GHz clock speed.

Min q0.25 Mean q0.50 q0.75 Max
BFGS 6.621 13.764 19.401 17.237 20.606 80.647

L-BFGS-B 4.711 8.456 11.728 10.589 13.383 43.874

3.5 Conclusion
In this chapter, we provided a review of expectiles in one or more dimensions, including dis-
cussion on how to consistently estimate L1-expectiles. In particular, we introduce an effective
semi-parametric method for estimating multivariate expectiles for extreme risk levels α ≈ 1. Using
the empirical beta copula, taking advantage of the fact that it is a genuine copula, we are able to
establish the consistency of the approximate optimization problem in (3.14) under the BFGS algo-
rithm when using empirical estimators for the tail index, tail ratio and udf. We have also proposed a
new consistent estimator for the integral of the udf. Numerical simulations demonstrate the satisfac-
tory finite-sample performance of the algorithm when compared to the true multivariate extreme
expectiles stemming from comonotonic and independent dependence structures, where closed form
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Figure 3.9: Boxplots for the three-dimensional Pareto simulations using L-BFGS-B. Margins are
comonotonic and remaining settings are equivalent to Figure 3.6.
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3.5 Conclusion

solutions exist. Furthermore, the set-up provided by the system of equations in Proposition 3.2
allows us to mitigate the curse of dimensionality as we are only ever required to consider pairwise
dependencies. As such, the number of operations required for each iteration of the optimization
algorithm will be

(
d
2

)
.

In the future, it would be interesting to compare the performance of the algorithm for a variety
of estimators; for instance, if one were to consider the checkerboard copula instead of the empirical
beta copula. Finally, while finite-sample results are encouraging, the estimation procedure could be
further streamlined by considering an algorithm which could take advantage of additional properties
of our optimization problem. For example, L-BFGS-B could improve estimation by bounding
solutions to (3.14) by the MEEs under the limiting cases of upper tail dependence.

Furthermore the present work could open interesting perspectives in functional statistics field.
Indeed, the univariate well known conditional expectile/quantile model (see, e.g., Daouia et al.
(2013), Usseglio-Carleve (2018), Girard et al. (2019)) can be adapted to our semi-parametric esti-
mation scheme for new conditional multidimensional L1-expectile from heavy-tailed distributions
when functional covariate information is available. The interested reader is also referred for instance
to Gardes et al. (2010), Gardes and Stupfler (2019) where functional nonparametric estimators for
conditional extreme quantiles are proposed.

More precisely, let (X1, Z1), . . . , (Xn, Zn) be n independent copies of a random pair (X,Z) ∈
Rd×E where (E , d) is a not necessarily finite-dimensional Polish space endowed with a semi-metric
d. For instance, E can be the standard p-dimensional space Rp, a space of continuous functions
over a compact metric space, or a Lebesgue space Lp(R), to name a few. From Equation (3.6), a
future development of this work would be to consider the functional conditional multidimensional
L1-expectile extension given by

e1
α(X, z) := arg min

x∈Rd
E

α
(

d∑
i=1

|Xi − xi|+

)2

+ (1− α)

(
d∑
i=1

|Xi − xi|−

)2 ∣∣∣∣Z = z

 .

With this, the presented work could be adapted to estimate extreme e1
α(X, z) by using the

extrapolation technique when α → 1 together with a nonparametric estimation of the condi-
tional tail copula (see, e.g., Gardes and Girard (2015)). The main objective of this semi-parametric
approach for extreme functional e1

α(X, z) would be to balance the trade-off between the high
sensitivity to dimension of the nonparametric models and the relative lack of flexibility of the
completely parametric models (see, e.g., Goia and Vieu (2016)).
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Appendix

3.A Proof of Proposition 3.6
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4
Environmental Extremes

Depending on the local climate and geography, populations can be exposed to a litany of natural
disasters. For example: tornados, droughts and floods all pose varying risks to different communities.
The impacts of these events can be catastrophic to the local economy and the well being of
individuals. In this chapter, we seek to build upon our tools for risk analysis by quantifying the
risks associated to extreme events in the environment. The modeling of environmental events is
inherently spatial in nature as data provided for this purpose are often drawn from locations where
their geographic properties are key. To this end, the discussions that follow are predicated on the
concept of spatial processes. Consider s ∈ Rd a location in d-dimensional Euclidean space and
denote Z(s) a rv at location s. For a subdomain D ⊂ Rd, denote

Z = {Z(s) : s ∈ D}

the random process on D. More specifically, Z is called a spatial process or field. For all s ∈ D,
Z(s) provides some information about random occurrences at location s ∈ D.

In Section 4.1, we introduce how spatial processes are used to study spatial phenomena in the
environment through geostatistics. Section 4.2 focuses on the intersection between geostatistics
and extreme value theory, in particular focusing on the difference between large- and small-scale
variation. In Section 4.3, we provide an application of these techniques for quantifying the risk of
extreme surges in Atlantic Canada. Finally, concluding remarks are provided in Section 4.4.

4.1 Geostatistics
The study of spatial processes defined by their geographical locations is often referred to as
geostatistics. For an in-depth discussion of geostatistics, see Cressie (1993), Diggle and Ribeiro
(2007), or Banerjee et al. (2014). Geostatistics can also include the study of phenomena in time, as
well as space-time, though the following discussion will be predominantly limited to processes in
space.



4.1 Geostatistics

As one is often interested in using realizations of spatial processes for inference, certain
operating assumptions make this task more manageable. In particular, we introduce the notion of
stationarity. There are two main types of stationary: Second-order (weak) stationary and strict
(strong) stationarity.

Definition 4.1. A random process Z is said to be second-order or weakly stationary if the following

hold

(i) For all s ∈ D,

E{Z(s)} = µ.

(ii) For all s1, s2 ∈ D,

cov{Z(s1), Z(s2)} = C(s1 − s2),

where C is called a stationary covariance function or a covariogram.

Moreover, if C(s1 − s2) is only a function of h = ‖s1 − s2‖, then we say that C is isotropic.

Definition 4.2. A random process Z is said to be strict-sense or strongly stationary if for any finite

collection of locations s1, . . . , sn, the joint distribution of Z(s1), . . . , Z(sn) satisfies

Fs1+h,...,sn+h(z1, . . . , zn) = Fs1,...,sn(z1, . . . , zn)

for all m ≥ 1 and h ∈ Rd.

When Z(s) has finite second moment, strong stationarity implies second-order stationarity. The
property of isotropy implies that the variability between spatial locations is solely determined by the
distance between them and not the direction. The spatial processes discussed in this chapter often
require stationarity and isotropy. In particular, one often considers processes of the form

Y (s) = α(s) + Z(s),

where α(s) is a deterministic function determining the mean behavior and Z(s) is a second-
order stationary, isotropic and zero-mean stochastic process with some spatially driven covariance
structure. In particular, the mean behavior is often formulated as a regression relation, i.e., one may
write α(s) = X(s)>β, whereX(s) is a column vector of spatially defined covariates and β is a
vector of regression coefficients.

One of the principal goals in many geostatistics applications is to provide inference beyond the
original scope of the data provided. For example, providing inference on precipitation outcomes
at an unmonitored area using observations available at a neighboring one. This is referred to as
spatial interpolation or kriging. The simplest type of kriging is called ordinary kriging and consists
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4.1 Geostatistics

of making predictions at unmonitored locations s0 using weighted averages of observed values, i.e.,

ẑ(s0) =
n∑
i=1

w(si)z(si),

where z(1), . . . , z(sn) are the observed values of the spatial process Z at locations s1, . . . , sn

and w(s1), . . . , w(sn) are the kriging weights which incorporate some behavior about the spatial
process as a whole. Thus, kriging requires one to have an understanding of how to quantify the
dependence/variability of rv’s in space.

As discussed in Section 2.2, the dependence between rv’s can be quantified in several ways.
This information, which describes the way rv’s behave relative to one another, can greatly impact
our perception of the risks associated to them. In geostatistics, there are three quantities often used
to model spatial variability/dependence: the variogram, the covariogram and the correlogram. For
two locations, s1, sd ∈ D, the variogram and covariogram are defined by

2γ(s1, s2) = var{Z(s1)− Z(s2)} (4.1)

and

C(s1, s2) = cov{Z(s1), Z(s2)} (4.2)

= E{Z(s1)Z(s2)} − E{Z(s1)}E{Z(s2)},

respectively. The quantity γ(s1, s2) is referred to as the semivariogram. If the spatial process Z is
stationary and isotropic, then (4.1) and (4.2) can be simplified to

2γ(h) = E
[
{Z(s1)− Z(s1 + h)}2

]
and C(s1, s2) = C(h),

respectively, where s1 − s2 = h. In this case, the correlogram can be defined as

ρ(s1, s2) = corr{Z(s1), Z(s2)} = C(h)/C(0).

Second order stationarity is often assumed for many spatial processes as most kriging requires that
the semivariogram, γ, be a function of only the difference h. In the case of Gaussian processes,
often used in geostatistics, second-order and strict stationarity coincide. Isotropy is often assumed
as it simplifies the estimation of the semivariogram. Under both weak stationarity and isotropy, the
traditional empirical variogram is defined as

γ̂(h) =
1

2|N (h)|
∑

(s,s′)∈N (h)

{Z(s)− Z(s′)}2
,
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4.2 Spatial extremes

where N (h) = {(s, s′) : s− s′ = h} and |A| is the number of distinct elements in a set A. Often,
the empirical variogram is used to inform variogram model selection. Several families of variogram
models exist. One of the most well known families of variograms is defined by the Matérn variogram
model (Matérn, 1960; Stein, 1999), viz.

γ(h) = c0 + (c1 − c0)

{
1− 1

2κ−1Γ(κ)

(
h

α

)κ
Kκ

(
h

α

)}
,

where Kκ is the modified Bessel function of the second kind (Bowman, 1958) and

Γ(t) =

∫ ∞
0

xt−1e−xdx

is the gamma function. The parameter ν controls the smoothness of γ. Special cases of γ include
the exponential and Gaussian variograms for ν = 0.5 and ν →∞, respectively.

In general, while second order-stationarity is often assumed for kriging purposes, spatial in-
terpolation is possible under a weaker set of assumptions, namely intrinsic stationarity. Intrinsic
stationarity requires only that the increments Z(s)− Z(s+ h) be second order-stationary. In this
case, the semivariogram is still defined in terms of h. Note however that intrinsically stationary
processes do not have covariance functions.

4.2 Spatial extremes
Use of geostatistics in the extreme value framework poses some challenges. The first owes itself to
the differing interests between classical geostatistics and EVT. Geostatistics often centers around
the study of distributional means whereas EVT focuses on the tail of a distribution. The Gaussian
framework often employed in geostatistics is thus unsuitable for extreme value analysis and the
interest in max-stable random variables, as defined in Section 2.1.

In this section we discuss ways in which geostatistical methods and EVT have been combined
for the purpose of studying spatially driven extremes and, in particular, different ways to model
spatial behavior.

4.2.1 Hierarchical models
Hierarchical models are often used to bridge the gap between geostatistics and EVT by introducing
a modeling hierarchy which incorporates geostatistical concepts into extreme value models. Often,
these models consider the spatial variability in the data with some type of latent process, often
assumed Gaussian. For example, Diggle et al. (1998) use latent Gaussian fields to model the intensity
of Poisson distributed random data. They apply the same latent Gaussian structure to binomial data.
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4.2 Spatial extremes

These hierarchies are constructed using a series of conditional statements. For instance, given a
vector of parameters Θ = (θ1,θ2,θ3), a simple 3-layer hierarchy can be written

Z|θ1 ∼ p(·;θ1), θ1|θ2 ∼ p(·;θ2), and θ2 ∼ p(·;θ3),

where the parameters θ3 are fixed. Here Z|θ1 is called the data layer and p(·; θ1) defines the
likelihood function. The process layer θ1|θ2 incorporates spatiality using concepts from geostatistics.
Specifically, the unobserved parameters are modelled using the relationship

θ1 = X>β + ε,

where X is a collection of spatially driven covariates, β ∈ θ2 are regression coefficients and
ε ∼ N (0,Σ) is a stationary, often isotropic, Gaussian field with covariance structure defined by
the distance between the locations of the observed data. The inclusion of this latent field fosters
information sharing between stations, strengthening model fit, and allows for spatial interpolation
to be conducted. Finally, θ2 is called the prior layer of the model.

This methodology lends itself perfectly to the Bayesian framework of modeling. The Bayesian
paradigm is particularly powerful in the context of environmental extremes. For one, it allows
prior information one might have about the area of study to be incorporated into the fitting. Given
that environmental phenomena are physical processes, expert knowledge could prove invaluable.
Secondly, as the parameters themselves are treated as random variables, model fitting using Bayesian
methods can incorporate the model error in a more tenable manner, allowing it to propagate
naturally throughout the estimation process. As such, post-fitting analyses will have a more coherent
interpretation.

Conditional on the observed realizations z of Z, the distribution of Θ can be written, using
Bayes’ rule,

p(Θ|z) =
p(z|θ1)p(θ1|θ2)p(θ3)∫

ϑ
p(z|Θ)dP (Θ)

, (4.3)

where ϑ is the parameter space of Θ. Examples of hierarchical modeling for environmental extremes
include wind speeds (Casson and Coles, 1999; Fawcett and Walshaw, 2006), precipitation (Cooley
et al., 2007; Sang and Gelfand, 2009; Jalbert et al., 2017; García et al., 2018), wildfires (Mendes
et al., 2010) and streamflows (Yan and Moradkhani, 2015; Lima et al., 2016).

Markov chain Monte Carlo

HBM’s in the form of (4.3) often have complicated structures which make closed form representa-
tions of parameter distributions difficult to obtain, and thus difficult to sample from. To handle this,
Markov Chain Monte Carlo (MCMC) techniques are used to produce samples from these unknown
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4.2 Spatial extremes

distributions. MCMC techniques function by producing a Markov chain which spans the support
of the parameter space ϑ. Requiring the full posterior distribution of the parameters is avoided by
considering the relationship

p(Θ|z) ∝ p(z|θ1, ξ)p(θ1|θ2)p(θ3), (4.4)

given that the denominator in (4.3) does not depend on Θ.
In many of the models referenced in this thesis, including our own application in Section 4.3,

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) and the Metropolis–Hastings
algorithm (Hastings, 1970; Chib and Greenberg, 1995) are chosen for sampling purposes. The
combination of these techniques is often referred to as a Metropolis–Hastings-within-Gibbs algo-
rithm. For a collection of parameters Θ = (θ1, . . . , θp), Algorithm 3 describes how to generate N
realizations from the posterior distribution using the Metropolis–Hastings-within-Gibbs algorithm.
The idea here is to conduct a simple random walk where at each step one generates a potential real-
ization from the posterior distribution. Proposals are generated using a candidate distribution, often
assumed to be normal, i.e., θcandj ∼ N (θ

(i)
j , σ

2
j ) for some σ2

j > 0. When the candidate distribution

3 Metropolis-within-Gibbs Sampling Algorithm

Initialize Θ = Θ(0).
for i ∈ {1, . . . , N}

for j ∈ {1, . . . , p}
(1) Denote θ∗,(i)j = (θ

(i)
1 , . . . , θ

(i)
j−1, θ

(i−1)
j , θ

(i−1)
j+1 , . . . , θ

(i−1)
p )

(2) Sample a possible realization from the posterior distribution, θcandj , from a candidate
distribution q(θ(i)

j |θ
∗,(i)
j ).

(3) Calculate acceptance probability

α
(
θcandj |θ(i−1)

j

)
= min

{
1,

q(θ
(i−1)
j |θcandj )π(θcandj |z,θ∗,(i)j )

q(θ
(cand)
j |θ(i−1)

j )π(θ
(i−1)
j |z,θ∗,(i)j )

}
.

Generate Ui,j ∼ U(0, 1)

if Ui,j < α
(
θcandj |θ(i−1)

j

)
then

Accept the candidate: θ(i)
j ← θcandj

else
Reject the candidate: θ(i)

j ← θ
(i−1)
j

end if
end for

end for
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is symmetric, as is the case with the normal distribution, the acceptance probability simplifies to

α
(
θcandj |θ(i−1)

j

)
= min

{
1,
π(θcandj |z,θ∗,(i)j )

π(θ
(i−1)
j |z,θ∗,(i)j )

}
.

For HBM’s, Gibbs sampling allows for sequential sampling of the posterior parameter distri-
bution using simplifications provided by the conditional relationships described in (4.4) while
the Metropolis–Hastings algorithm allows one to accept or reject a candidate value as a feasible
realization from the true posterior based on the realized improvement of the likelihood of the
predictive posterior density, π(·|z,θ∗,(i)j ). Diagnostics for MCMC techniques will be postponed
until Section 4.3.

4.2.2 Residual dependence
In environmental applications, there are two types of spatial behavior which are of interest: regional
and local. The HBM’s referenced in Section 4.2.1, focus on modeling the regional behavior of a
spatial process. Moreover, these models forego the modeling of local variation. After accounting for
spatial dependence through some latent process, the distributions of the observed data are assumed
conditionally independent given the parameter or vector of parameters θ1. If the goal of the analysis
is to produce return levels, this assumption is not so impactful (Davison et al., 2012; Ribatet et al.,
2016). However, as discussed in Tawn et al. (2018) and Towe et al. (2018), the consideration of
events at a site-by-site basis, independent of the surrounding area, is overly simplistic when impact
across the entire domain is of interest. This is especially true for environmental events for which
large clusters of locations can be impacted by a single event, e.g., a tornado ravaging the coast of a
country or a river overflowing and flooding multiple communities. The dependence which helps
describes the impact of these localized events on a collection of locations is referred to as residual

dependence. Below we present a few techniques for modeling residual dependence, after marginal
effects have been accounted for.

Max-stable processes

The first way in which the residual dependence between spatially defined rv’s can be dealt with
is through max-stable processes. Building on the concepts of Sections 2.1 and 2.2, max-stable
processes extend the notion of max-stability to the infinite-dimensional setting. A construction of
max-stable processes was first provided by de Haan (1984) using a spectral representation. See also
de Haan and Ferreira (2006). This process is described by two components: a stochastic process
X = {X(s) : s ∈ D} and a Poisson process Π with intensity dλ/λ2 on (0,∞). Let {Xi(s)}i∈N be
independent realizations of a processX(s) with E{X(s)} = 1 and let ζi ∈ Π be the realizations of
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4.2 Spatial extremes

a Poisson process. Then Z = {Z(s) : s ∈ D}, where

Z(s) = max
i≥1

ζiXi(s)

is a max-stable process with unit Fréchet margins and a distribution function

Pr {Z(s) ≤ z(s), s ∈ D} = exp

(
−E

[
sup
s∈D

{
X(s)

z(s)

}])
,

where −E [sups∈D {X(s)/z(s)}] is the infinite-dimensional analogue to µ, introduced in Sec-
tion 2.2. The choice of the process X will determine the resulting max-stable process Z .

For instance, Smith (1990) demonstrates how Gaussian processes can be incorporated into the
construction of de Haan (1984). If one were to set Xi(s) = f(s−pi), where pi is a Poisson Process
with unit rate on D and f is a multivariate normal density with covariance matrix Σ, the resulting
max-stable process is called the Gaussian extreme value process. The bivariate distribution of this
process can be written in a closed form (Hüsler and Reiss, 1989) for z1, z2 > 0 as

Pr{Z(s1) ≤ z1, Z(s2) ≤ z2} = exp

[
− 1

z1

Φ

{
a

2
+

log(z2/z1)

a

}
− 1

z2

Φ

{
a

2
+

log(z1/z2)

a

}]
, (4.5)

where a =
√

(s1 − s2)>Σ−1(s1 − s2) is the dependence parameter and Φ is the standard normal
cdf. de Haan and Pereira (2006) define analogous processes when f is a t or Laplace density.

Conversely, Kabluchko et al. (2009) suggest settingXi(s) = exp{ei(s)−σ2(s)/2}, where ei(s)

is an intrinsically stationary Gaussian process and σ2(s) = var{e(s)}. This formulation gives the
Brown–Resnick process (Brown and Resnick, 1977). Brown–Resnick processes are a particularly
useful class of max-stable processes in geostatistics as their dependence structure is determined
by the variogram. The bivariate cdf of Brown–Resnick processes is similar to (4.5), replacing the
dependence parameter a with the square root of the semivariogram, i.e.,

Pr{Z(s1) ≤ z1, Z(s2) ≤ z2} = exp

[
− 1

z1

Φ

{√
γ(h)

2
+

log(z2/z1)√
γ(h)

}

− 1

z2

Φ

{√
γ(h)

2
+

log(z1/z2)√
γ(h)

}]
,

where h is the Euclidean distance between s1 and s2.
Applications of max-stable processes for environmental extremes include Reich and Shaby

(2012), Thibaud et al. (2016), Oesting et al. (2017), Shin et al. (2019), and Albrecher et al. (2020).
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Estimation of max-stable processes has been discussed using a variety of methodologies,
including nonparametric estimators (Vettori et al., 2018), M-estimators (Einmahl et al., 2016),
and generalized least squares estimators (Buhl and Klüppelberg, 2019). While these methods
perform well in lower dimensional settings, likelihood-based inference is often preferred in higher
dimensions for its large-sample properties. Unfortunately, full likelihood methods suffer from
increased computational burden as the dimension of the problem increases (Castruccio et al.,
2016; Huser et al., 2019). Conversely, while composite likelihood methods have been suggested
to circumvent this issue (Padoan et al., 2010; Huser and Davison, 2013; Sang and Genton, 2014),
they do so with a loss of efficiency (Huser et al., 2016). Simulation from max-stable processes also
proves difficult depending on the properties of the spatial domain (Oesting et al., 2012, 2018).

Copulas

As discussed in Section 2.2, copulas represent a convenient way of modeling the dependence
between marginal random variables. Given that we are interested in rare events, an EV copula would
make a natural choice for quantifying these large scale dependencies (Hsing, 1989). Unfortunately,
due to their construction, such copulas can be unwieldy to work with in increased dimension
(Davison et al., 2012; Davison and Huser, 2015). While methods have been described to mitigate
such issues (Vettori et al., 2020), given that problems in the context of spatial extremes often
consider a multitude of locations, this makes any practical use of extreme value copulas infeasible at
present. Even if the beginning number of observation locations is small, the interest in interpolating
to unmonitored locations provides a further set of obstacles.

In the papers of Sang and Gelfand (2010) and Bracken et al. (2016), a Gaussian copula is
introduced to the HBM framework so as to model the residual dependence in precipitation data.
A Gaussian copula is seen as a viable choice because of its simplicity; its parametrization using
a pairwise correlation matrix makes incorporating spatial information straightforward. Moreover,
being elliptical, Gaussian copulas are closed under the margins (Genest et al., 2007). This provides
an efficient way of dealing with missing data. When evaluating the likelihood of the Gaussian
copula for a given year, one can simply integrate out the locations for which there is no annual
maximum and still be left with a Gaussian copula of lower dimension with the corresponding
dependence structure. Specifically, consider a stationary spatial process Z = (Z1, . . . , Zd) for
locations s1, . . . , sd, whose underlying copula CΞ is elliptical with correlation matrix Ξ. For a given
year t, consider the realization z(t) = (z1(t), . . . , zd(t)) and define the set I = {i1, . . . , id′} of
indices of size d′ ≤ d for which there is an annual maximum recorded at locations si1 , . . . , sid′ . The
underlying copula CΞ′ of the vector Z ′ = (Zi1 , . . . , Zid′ ) is then of lower dimension than, but from
the same elliptical family as, CΞ; in fact, Ξ′ is deduced from Ξ by extracting the appropriate d′ × d′

submatrix.
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However, a key feature of extreme value copulas is tail dependence, i.e., the propensity of
extreme events to occur simultaneously. Gaussian copulas are asymptotically independent, and
thus assume all extreme events occur independently of each other. Student’s t copulas represent an
interesting compromise in this arena. Similar to Gaussian copulas, t copulas are elliptical. They
can easily incorporate spatial information into their covariance matrices and are closed under the
margins. Additionally, while not extreme value, they still capture tail dependence. Specifically, it
was shown by Demarta and McNeil (2005) that the upper tail dependence index of a random pair
(Zi, Zj) whose underlying copula is Student’s t with ν degrees of freedom is given by 2tν+1

(
−

√
ν + 1

√
1− ρij/

√
1 + ρij

)
, where ρij is the Spearman’s correlation between Zi and Zj while

tν+1 refers to the cumulative distribution function of the standard Student’s t distribution with ν + 1

degrees of freedom. The level of tail dependence decreases as ν increases, and the limiting case
ν →∞ corresponds to the Gaussian copula, which exhibits no tail dependence.

For more information on the extreme value properties of the Student’s t copula, see Nikoloulopou-
los et al. (2009). For an example of the t copula being used with a HBM, see Ghosh and Mallick
(2011).

4.3 Flood risk in Atlantic Canada
In this section, we use a combination of extreme value theory, spatial statistics, hierarchical Bayesian
methods and dependence modeling to quantify the risk of flooding in Atlantic Canada.

Flooding represents one of the biggest and most impactful risks globally. The impact of floods
is devastating, both in terms of the number of victims and damages. According to Winsemius et al.
(2016), between 1980 and 2013, economic losses due to floods exceeded $1 trillion (2013 USD)
with more than 220,000 lives lost. In 2018 alone, based on a study conducted by Munich Re, 46%
of the world’s disasters were categorized as flooding events (Löw, 2019).

Clearly, accurately predicting and mitigating the effects of overland floods is important, particu-
larly in light of climate change. With the observed increase in the risk of flooding, one would expect
an equal increase in protective measures. To an extent, this has been the case in the United States and
generally in Europe, where flooding has been met with developments at both the governmental level
and in the private (e.g., insurance) sector over the past several decades. From a statistical modeling
standpoint, however, relatively little has been done to quantify the risk of overland flooding on a
large and sparsely monitored domain.

Motivated by the need for insurers to disclose their risk exposure, the analysis described here
contributes to the development of tools for assessing the risk and economic impact of overland
flooding in Canada. It was not until the Alberta floods of 2013 that Canadian insurers began to
develop products for protection against overland flooding. In the wake of this disaster, only a third
of the estimated $6 billion in damages were covered by insurance, none of which was paid out for
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4.3 Flood risk in Atlantic Canada

Figure 4.1: Map of Atlantic Canada with labels identifying the location of the 21 monitoring stations
used in this study and listed in Table A.

overland flooding (Teufel et al., 2017). The first overland flood product in Canada was launched in
2015 by Aviva but was initially available only in Alberta and Ontario. In 2017, Desjardins became
the first Canadian insurer to pay out for overland flooding. These floods, caused by a confluence
of melting snow and bad weather in April and May, cost insurers over $220 million for events
occurring in Québec and Ontario (Teufel et al., 2019).

4.3.1 The data
Our application focuses on the Atlantic Coast of Canada, including the Gulf and Estuary of the
St. Lawrence River. For brevity, this domain will be referred to as “Atlantic Canada”, including
Québec, even though this expression is generally reserved for the region of Canada comprising the
four provinces located on the Atlantic coast.

To quantify the risk of coastal flooding in this vast region, shown in Figure 4.1, we rely on water
level observations. After some preliminary processing, described in Sections 4.3.2 and 4.3.3, these
data will be used to fit a spatial HBM with GEV margins to the area. The water level data we used
were freely available from Fisheries and Oceans Canada (http://www.tides.gc.ca). Their
measurements are made using buoys placed at over a thousand locations, some of which date back
1848. However, data sparsity poses a challenge as the number of observations spans on average six
years per station.
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Given that the initial motivation for this study was in insurance, the consideration of the buoys
was driven by coastal population density. In the end, 21 buoys were selected. Information about
their locations, including station name, station ID and available annual maxima are provided in
Appendix 4.A. The buoys can be identified by their ID numbers in Figure 4.1, where darkness of
the circles represents the number of annual maxima available. The selected buoys provide data
ranging from 1966 to 2015. However, many of the buoys were not operational for the entirety of
this period resulting in a fair amount of missing data throughout the series. On average, 37 years of
observations on average were available over these 21 locations.

4.3.2 Tidal modeling
The water levels measured by the buoys can be broadly decomposed into a deterministic part,
namely the tide, and a stochastic part called the surge. Large surges occurring in tandem with high
tides can cause flooding events. In September 2003, for instance, Hurricane Juan hit Atlantic Canada
and caused an estimated $300 million in damages in the area. In Halifax, there were waves of up to
20 m in height at their maximum, and surges between 1.5 and 2 m occurring near high-tide; see,
e.g., Fogarty (2004) for details. The interaction between tide and surge is thus crucial to adequately
quantify flood risk on the Atlantic Coast of Canada. Given that the surges represent the stochastic
portion of our observations, this is what we model using the HBM detailed in Section 4.3.4.

Before modeling surges, we must first extract them from the water level observations by
removing the tidal component. Several models have been developed for tidal prediction. Each
of these methods operates by representing the tidal process through a collection of harmonic

constituents. Harmonic constituents are defined as “one of the elements in a mathematical expression
for the tide-producing force and in corresponding formulas for the tide or tidal current. Each
constituent represents a periodic change or variation in the relative positions of the Earth, Moon,
and Sun.”1 More information on harmonic constituents can be found on the website of the National
Oceanic and Atmospheric Administration (NOAA) (https://tidesandcurrents.noa
a.gov/about_harmonic_constituents.html). For our study of Atlantic surges, we
consider three tidal models: WebTide, the Tidal Model Driver (TMD) and TideHarmonics.

The first option, WebTide, was developed by Dupont et al. (2002) for Eastern Canada. They
incorporated into it an inverse/forward finite-element method model which fits a mesh to the region
of interest taking into account a prescribed level of error. Their model considers five major harmonic
constituents, M2, N2, S2, K1, and O1, incorporates data from several sources and assimilates
them into two groups, one for fitting and one for validation. While the authors claim a 10 cm root
mean square error (RMSE), given the rather coarse resolution of the model, it cannot make tidal
predictions at our collection of locations.

1https://tidesandcurrents.noaa.gov/glossary.html#constituent
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4.3 Flood risk in Atlantic Canada

A second option is the TMD Matlab toolkit. Developed by Oregon State University, TMD
incorporates its own harmonic analysis model. Their regional model assimilates multiple sources of
data and fits the tide h(t, x), at time t for a specific harmonic constituent x, by

h(t, x) = pu(t, x)Re[h(x)ei{ωx(t−t0)+V0(t0)+ph(t,x)}],

where V0(t0) is the astronomical argument for the constituent at time t0, pu(t, x) and ph(t, x) are
nodal corrections, and Re refers to the real part of the complex argument. See Egbert et al. (1994)
or Egbert and Erofeeva (2002) for more information. Using this formulation, the authors fit the
harmonic constituents M2, N2, S2, K1, O1, K2, P1 and Q1. Unfortunately, the resolution of the
model was again too coarse to provide predictions, except at a few of our buoys.

In the end, we opted for the R package TideHarmonics of Stephenson (2016), which provides
estimates of the tidal process based on user-provided input data. To model the tide T (s, t) at time t
for station s, Stephenson (2016) considers a harmonic analysis on N constituents, viz.

T (s, t) = M(s, t) +
N∑
n=1

An cos[π{ωnt− ψn(s)}/180],

where M(s, t) is the observed time-varying mean sea-level, ωn is the known angular frequency of
harmonic constituent n, and An and ψn(s) are the amplitude and phase shift of that constituent
respectively. First, M(s, t) is estimated using the data. Second, the values of An and ψn are fitted
using standard least squares regression. For more details on the model, see the TideHarmonics
vignette at https://cran.r-project.org/web/packages/TideHarmonics/vig
nettes/austides.pdf.

To validate our choice, we compared the tidal patterns generated by TideHarmonics at the
monitoring location in St. John, NB, where TMD could also be used. As transpires from Figure 4.2a,
the TMD model has difficulty representing the observed water levels, even though it incorporates
satellite altimetry in addition to gage data. By contrast, the TideHarmonics package does capture
the tidal behavior quite effectively without resorting to anything but the raw data from Fisheries and
Oceans Canada. In our experience, TideHarmonics is preferable to TMD even when it performs
poorly, as illustrated in Figure 4.2b.

A critical element in using TideHarmonics is the selection of the number N of harmonic
constituents. At least 409 such constituents have been identified in the literature and bundled
in scientifically meaningful groups. Different organizations throughout the world ran studies to
build and validate their own regional prediction models. In particular, the National Oceanic and
Atmospheric Administration (NOAA), based in the United States, uses 37 constituents.

For this study, we chose to align with the NOAA variable selection, in part to keep our results
comparable with this organization, but also because this choice was supported by the results of
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Figure 4.2: Tide comparison at Station 65 (St. John, NB). (a) June 2013. (b) June 2014.
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our own diagnostic analysis. Specifically, we compared the evolution of the adjusted coefficient
of determination R2 and the RMSE as the number of constituents increases. Results are shown in
Figure 4.3 for all 21 monitored locations. Additionally, we used a k-folds cross validation procedure
to test the predictive capabilities of each collection of harmonic constituents. For k = 8, the results
can be found in Table 4.1. As can be seen, the inclusion of a fifth harmonic, the larger lunar
elliptic semidiurnal constituent N2, drastically improves the fit of many of the tidal sequences, in
accordance with Dupont et al. (2002). One can also see that while the inclusion of more harmonics
monotonically improves both metrics, fitting more than the 37 harmonic constituents used by
the NOAA provides minimal improvement. For a detailed description of these constituents, see
https://tidesandcurrents.noaa.gov/glossary.html.

Examples of the fitted tidal series are presented in Figure 4.4. As a means of validating the results,
we see that the tidal fitting process accurately captures historical extreme weather events in two
locations. The left panel depicts The Groundhog Day gale of 1976 as experienced in Yarmouth, NS.

Table 4.1: Average SSE of prediction using k-folds cross validation with k = 8 for collections of
harmonic constituents hc4, hc5, hc7, hc37, hc60 and hc114. For more information on hc4, hc7,
hc37, hc60 and hc114, see the TideHarmonics R package. The collection hc5 is simply hc4 with the
larger lunar elliptic semidiurnal constituent N2 included.

Station 491 65 365 490 612 665 835
hc4 303.81 12483.69 4647.07 1509.70 1200.77 925.66 1815.24
hc5 208.52 3434.55 1547.75 1022.33 1053.74 754.65 1360.13
hc7 191.42 2906.01 1351.08 958.14 1015.90 709.14 1267.20
hc37 161.01 1284.39 909.77 798.69 864.15 662.69 942.40
hc60 160.52 1250.32 903.22 795.88 863.05 661.74 922.26
hc114 159.96 1148.87 880.23 792.87 861.71 661.06 916.76

Station 905 1700 1805 1970 2000 2145 2330
hc4 1736.48 2775.94 1315.86 188.75 1470.49 733.31 1473.09
hc5 1602.11 2099.79 1294.78 180.47 1377.01 575.59 1187.50
hc7 1535.58 1857.69 1208.82 170.74 1276.56 511.68 1055.88
hc37 1262.18 1632.04 1152.54 160.68 1180.30 458.75 954.53
hc60 1257.65 1611.61 1147.91 160.12 1176.72 455.54 951.73
hc114 1256.26 1569.05 1133.22 159.81 1172.40 453.74 950.56

Station 2780 2985 3057 3100 3248 3250 3460
hc4 2454.60 2665.86 9162.00 12513.59 2050.50 12426.00 5197.93
hc5 1622.99 1476.28 5473.36 9249.21 1723.14 10210.56 2891.97
hc7 1371.19 1145.99 4642.16 8549.17 1675.00 9745.88 2262.74
hc37 1210.60 960.60 3672.61 4204.64 943.38 4517.30 1750.86
hc60 1206.68 953.70 3621.98 3968.38 943.28 4356.86 1714.12
hc114 1204.93 949.23 3584.36 3727.12 902.78 3877.08 1693.10
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Figure 4.3: Model fit comparison for different groups of harmonic constituents at each of the 21
monitored locations. Location codes are provided in the Appendix. (a) Adjusted coefficient of
determination R2. (b) RMSE.
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Figure 4.4: Tidal fitting examples at Stations 365 (Yarmouth, NS; left) and 490 (Halifax, NS; right).
(a) Groundhog Day Gale, February 1–3, 1976. (b) Hurricane Juan, September 28–30, 2003.

At the time, a powerful winter storm with winds of almost 200 km/h in tandem with a rare event
within the tidal cycle known as Saros decimated the northeastern United States and southeastern
Canada. In Canada, damages were estimated to be around $10 million. The right panel accurately
represents Hurricane Juan, mentioned earlier, with a maximum surge of 1.5 m occurring at around
1 am local time.

4.3.3 Data selection and augmenting
To account for the vast amount of missing data and curb the risk of mislabeling an observed value
as extreme, maxima were only recorded for years where there were no more than 15% of the hourly
measurements missing. This choice seems appropriate because when too few data are available,
there is a significant risk that the actual maximum is lost in the missing data. Using the 15% cutoff,
as argued in Appendix 4.B, provided reasonable assurance that the recorded annual maxima was the
true maximum and that it stemmed from a GEV distribution. This process provided us with 647

annual maxima. Had the data been complete over all 50 years and 21 locations, there would have
been 1050 = 50 × 21 values, meaning we only have 61.6% of the total possible annual maxima.
Note that in the case of Station 3248 (Vieux Québec, QC), this initially left only two annual maxima
available for use. This station was included nonetheless as it will later serve to demonstrate the
data-sharing capabilities of the employed spatial model.

Unfortunately, a strict application of this rule could cause important data points to be excluded
from the model. For example, at station 490, there would then be no annual maximum recorded for
the year 2003, when Hurricane Juan occurred. Regardless of the amount of missing data, such an
event is crucial to the accurate modeling of flood risk in Atlantic Canada.

To address this issue, we revisited the years with insufficient data and checked if a maximum
from that year could feasibly fall in line with the initially recorded maxima. In such cases, the
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4 Data augmentation algorithm.
1. Extract an initial data matrix using only maxima that appear in years with less than 15% of the
data missing.
2. Assume that for each buoy si with i ∈ {1, . . . , 21}, the maximum annual surge Zi follows a
generalized extreme value (GEV) distribution with parameters θi = (µi, σi) ∈ R× (0,∞) and
ξ ∈ R, i.e.,

Zi ∼ GEV(µi, σi, ξ). (4.6)

3. For the observed maxima, z, fit the marginals jointly through MLE by assuming that they are
mutually independent and share a common shape parameter, ξ. The corresponding log-likelihood
is

`(µ,σ, ξ|z) =
21∑
i=1

[
−ni log σi −

(
1 +

1

ξ

) ni∑
j=1

log

{
1 + ξ

(
zji − µi
σi

)}

−
ni∑
j=1

{
1 + ξ

(
zji − µi
σi

)}−1/ξ
]
.

Call the resulting estimates ξ̂ and θi = (µ̂i, σ̂i) for each i ∈ {1, . . . , 21}.
4. For each station si with i ∈ {1, . . . , 21}, look through the raw hourly data in all years where
no maximum was recorded because there was more than 15% of data missing. For each such year
j, find the maximum z∗ij and include it in the dataset if its value is above the α quantile of the
fitted marginal distribution GEV(θi, ξ).

maximum was added to the data set even if more than 15% of the data were missing. Details of the
procedure are given in Algorithm 4.

In Step 2 of Algorithm 4, the assumption that the shape parameter is the same for all buoys was
made after an initial fit of the marginal models through maximum likelihood. As the sample sizes
are small, our analysis revealed large standard errors for the marginal shape parameter estimates.
As all but one pair of (asymptotic) 95% confidence intervals intersected (see Figure 4.5), there was
no statistical basis to support the notion that the shape parameter varies spatially. The assumption of
a common shape parameter is frequent in the hydrological literature; see, e.g., Sang and Gelfand
(2009, 2010), Ghosh and Mallick (2011) or Reza Najafi and Moradkhani (2013).

An application of this procedure with α = 0.05 in Step 4 led to the inclusion of nα = 138

values, bringing the number of annual maxima from 647 to 785. Other values of α are clearly
possible and, in our case, nα decreases almost linearly as α → 1. For example, n0.1 = 128 and
n0.25 = 104. In preliminary marginal analysis (Appendix 4.C), the maximum likelihood estimate of
the common shape parameter as calculated in Step 3 did not vary substantially, ranging from 0.03
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Figure 4.5: Asymptotic 95% confidence intervals for the MLE’s fitted to each of the selected 21
stations marginally.

to 0.07. Overall, α = 0.05 seemed like a reasonable choice given the intent to found the inference
on a sufficiently broad base.

It is important to note that we assumed that their was no trend in time for the annual maximum
surges. At location si for some i ∈ {1, . . . , 21}, we had at our disposal a series of at most 8760
hourly surges for each (non-leap) year t, say Xi,1(t), . . . , Xi,8760(t), and the corresponding annual
maximum Zi(t) = max{Xi,1(t), . . . , Xi,8760(t)} from which to estimate θi and ξ. However, as
discussed, the series is typically shorter than that, due to missing values. Looking for a temporal
trend in the annual maximum surges, we used the Mann–Kendall test for trend. At the 5% level, and
accounting for multiple comparisons by controlling the false discovery rate, there was no evidence
to reject the null hypothesis of no temporal trend in the annual maximum surges at any of the 21
locations.

Spurious data*

As a final check, we examined the augmented data to make sure that none of the included maxima
is a result of some type of measurement error. This was accomplished by cross-referencing the data
augmented Q-Q plots based on marginal GEV’s, fitted with MLE, with historical records; when a
proposed maximum seemed particularly large, evidence for its occurrence was sought in, e.g., the
press, as was the case for Hurricane Juan. While this procedure was by no means exhaustive, we
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Figure 4.6: Q-Q plot comparison for constrained MLE model at Station 65 (St John, NB).

believe that the inclusion of this ancillary step improved the quality of our data, and subsequently
the credibility of the model.

An example of its application at station 65 (St. John, NB) can be found in Figure 4.6. After
the augmenting procedure, the maximum annual surge for 2014 was recorded at 3 m. Given the
disparity between this observation and all other annual maxima for that station, clearly this would
mark a significant event. However, no record of such an event could be found in our inquiries. The
point was thus removed from the collection of observations and the resulting Q-Q plot in Figure 4.6b
demonstrates a much better fit.

4.3.4 The statistical model
For the extracted and augmented annual maxima surges, we consider a HBM as described in
Section 4.2.1. Specifically, let Z = (Z1, . . . , Z21) be the random vector of maximum annual
surges at each of the 21 buoys considered. Denote ∆ = (Θ, η, ξ) = (θ1, . . . , θ21, η, ξ), where for
each i ∈ {1, . . . , 21}, θi = (µi, σi). The extremal spatial Bayesian hierarchical model for ∆ was
constructed by assuming a joint distribution for Z|(Θ, ξ) and a hierarchical prior for Θ involving a
vector, η, of hyperparameters. Conditional on the observed values of Z, the posterior for can be
written

p(∆|Z) ∝ p(Z|Θ, ξ)p(Θ|η, ξ)p(η, ξ). (4.7)
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The data, process and prior layers are detailed as follows.

Data level

As discussed in Section 4.3.3, the marginal distributions of Z1, . . . , Z21 will follow a GEV distribu-
tion with the same structure as (4.6). As we are interested in inference beyond individual sites, we
include a dependence structure for the residual dependence.

Given the dimension of the problem and the prevalence of missing data, we opted for a Student’s
t copula, denoted Cν,Ξ. Owing to the difficulty in estimating the degrees of freedom, this parameter
was taken as fixed and different values of ν were tested for best fit. As for the correlation structure
induced by Ξ, it was assumed to be in the form of an exponential correlogram, i.e.,

Ξij = exp(−dij/ρΞ),

where dij is the straight line distance between si and sj when considering the Earth’s curvature. This
is also known as the great circle distance between si and sj , which is very common in geostatistics.
Other choices of correlograms were briefly considered within the Matérn class,

Ξij(κ) =
21−κ

Γ(κ)

{√
2κ(dij/ρΞ)

}κ
Kκ

{√
2κ(dij/ρΞ)

}
.

In this parametrization, κ = 0.5 corresponds to the exponential correlogram, and the limiting case
κ→∞ coincides with the Gaussian correlogram. To justify the choice κ = 0.5, we compared, for
all distinct i, j ∈ {1, . . . , 21}, the two following estimates of Ξij:

(i) the unstructured correlation estimate Ξ̃ij obtained by inversion of Kendall’s tau;

(ii) the structured estimate Ξ̂ij(κ) derived from the median of the posterior for ρΞ for κ ∈
{0.5, 1.5, 2.5} and κ→∞.

The resulting boxplots displayed in Figure 4.7 show the minimal influence of κ. The two most
extreme outliers in the plots of Figure 3.7 correspond to pairs of stations that are geographically
near: Halifax (490) and Bedford (491) on one hand, Vieux Québec (3248) and Lauzon (3250) on
the other hand. In each case, the distance between the stations is smaller than 4 km and in the
unstructured case, the correlation estimates happen to be near zero, whereas they should be close
to 1. This oddity does not reflect reality but is due to the very small number of pairs of simultaneous
observations available at these two locations (15 and 2, respectively).
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Figure 4.7: Boxplots showing the difference between raw correlation estimates and structured
correlation estimates based on a Matérn correlogram with parameter κ ∈ {0.5, 1.5, 2.5} and
κ→∞

Process level

In the process layer we model the location parameters µ = (µ1, . . . , µ21) and log scale parameters
Φ = (φ1, . . . , φ21) = (log(σ1), . . . , log(σ21)) using latent spatial Gaussian fields, i.e., we set

µ ∼ N21(Xµβµ, τ
2
µ Σµ) and Φ ∼ N21(XΦβΦ, τ

2
Φ ΣΦ). (4.8)

As discussed in Section 4.2.1, these hierarchical structures are useful because the matricesXµ and
XΦ can include covariate information about the region to improve inference capabilities. The two
strongest drivers of extreme surges are known to be wind speed and atmospheric sea-level pressure
(Muis et al., 2016). To our knowledge, wind data are unavailable on a fine-resolution grid in the
domain of interest. In contrast, we were able to incorporate atmospheric sea-level pressure into the
model. Due to the lack of observational data, however, sea-level pressure data had to be obtained
from a reconstruction of past meteorology by the Canadian Regional Climate Model 5 (CRCM5).

The CRCM5 is the fifth-generation Canadian RCM (Martynov et al., 2013) developed by the
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER) at the Université du
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Figure 4.8: Sea-level pressure provided by CRCM5 for Atlantic Canada. At each grid point, the
mean annual minimum pressure is given in kPA. It is the use of this variable as a covariate at the
process level of the Bayesian hierarchical model that enables spatial interpolation at unmonitored
locations.

Québec à Montréal. The simulated data were generated for the Northeastern part of North America
and archived at every three hours. More information on this climate reconstruction can be found in
Bresson et al. (2017).

In Figure 4.8, the mean annual minimum pressure provided by CRCM5 is given in kilopascals
(kPA) at each grid point in the region of study. The 21 stations are displayed there, along with a
sub-grid of the pressure covariate. As can be seen, sea level pressure lowers from South-West to
North-East. The inclusion of this feature at the process level of the Bayesian hierarchical model
enables realistic spatial interpolation at unmonitored locations.

As is well known, lower pressure induces large surges. We extracted from the reconstructed
sea-level pressure data various summary statistics at each location si with i ∈ {1, . . . , 21}, e.g., the
mean, median, minimum, maximum, standard deviation, and range. We then regressed maximum
likelihood estimates of the marginal parameters µ and Φ using these summary statistics and simple
transforms thereof. Using standard diagnostic tools, we concluded that the mean annual minimum
sea-level pressure xi at location si was the best predictor and that on balance, there was little benefit
to the inclusion of additional variables. Therefore, we assumed that

E(µi) = β0,µ + β1,µxi and E(φi) = β0,Φ + β1,Φxi.
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We further assumed that for each i, j ∈ {1, . . . , d}, the (i, j)th entries of the correlation matrices
Σµ and ΣΦ are respectively given by (Σµ)ij = exp(−dij/ρµ) and (ΣΦ)ij = exp(−dij/ρΦ), where
dij is again the greater circle distance between si and sj . Note that these will correspond to
exponential correlograms with range parameters ρµ and ρΦ, respectively (Cressie, 1993). Finally,
τ 2
µ and τ 2

Φ stand for the variance of µi and φi, respectively; these are assumed to be the same for all
i ∈ {1, . . . , 21}, which amounts to saying that the variance of the Gaussian fields which generate
the location parameters µ and the log-scale parameters Φ is constant over space.

This set up allows for the sharing of information between locations based on their proximity and
is useful when interpolating our results to unmonitored locations. With these latent fields, we can fit
GEVs to locations where no observations exists, allowing us to complete a more comprehensive
analysis of flood risk on the Atlantic coast.

Prior level

To complete the model specification, prior distributions are required on ξ, τ 2
µ, τ 2

Φ, β0,µ, β1,µ, β0,Φ,
β1,Φ, ρµ, ρφ, and ρΞ. They were all taken to be mutually independent and non-informative, i.e.,
π(ξ) ∝ 1, π(τ 2

µ) ∝ 1/τ 2
µ, π(τ 2

Φ) ∝ 1/τ 2
Φ, π(β0,µ) ∝ 1, π(β1,µ) ∝ 1, π(β0,Φ) ∝ 1, π(β1,Φ) ∝ 1,

as well as ρµ, ρφ, ρΞ ∼ U [0,maxij dij/3] with the restriction that ρΞ ≤ min(ρµ, ρΦ) to avoid
non-identifiability issues.

Additionally, the choice of priors for β0,µ, β1,µ, β0,Φ, β1,Φ, τ 2
µ, and τ 2

Φ facilitate a more efficient
fitting procedure as the resulting posterior distributions will have closed forms for sample generation.
Consider for µ where π(τ 2

µ) ∝ 1/τ 2
µ corresponds to an improper inverse gamma distribution,

τ 2
µ ∼ lima,b→0 IG(a, b). Recall, Y ∼ IG(a, b) has a inverse gamma distribution with density

f(y) =
ba

Γ(a)xa+1
exp

(
− b
x

)
.

Given the hierarchical structure of (4.7), the posterior of βµ|τ 2
µ and τ 2

µ can be written, using Bayes’
Rule,

p(βµ, τ
2
µ|µ) =

p(βµ, τ
2
µ,µ)

p(µ)

=
p(µ|βµ, τ 2

µ)p(βµ, τ
2
µ)

p(µ)

∝ p(µ|βµ, τ 2
µ)p(βµ|τ 2

µ)p(τ 2
µ).
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Using the distributional assumption in (4.8), we have

p(βµ, τ
2
µ|µ) ∝ 1

τ 2
µ

· 1 ·
(

1

τ 2
µ

)n
2

exp

{
− 1

2τ 2
µ

(µ−Xµβµ)>Σ−1
µ (µ−Xµβµ)

}
=

(
1

τ 2
µ

)n−p
2

+1

exp

(
− 1

2τ 2
µ

µ>Σ−1
µ µ

)(
1

τ 2
µ

) p
2

× exp
{
− 1

2τ 2
µ

(
−µ>Σ−1

µ Xµβµ − β>µX>µ Σ−1
µ µ+ β>µX

>
µ Σ−1

µ Xµβµ
)︸ ︷︷ ︸

(a)

}
.

To simplify the expression further, we complete the square in (a)

−µ>Σ−1
µ Xµβµ − β>µX>µ Σ−1

µ µ+ β>µX
>
µ Σ−1

µ Xµβµ

= β>µX
>
µ Σ−1

µ Xµβµ − 2µ>Σ−1
µ Xµβµ

= β>µ (X>µ Σ−1
µ Xµ)βµ − 2µ>Σ−1

µ Xµ(X>µ Σ−1
µ Xµ)−1︸ ︷︷ ︸

=β̂>

(X>µ Σ−1
µ Xµ)βµ

= β>µX
>
µ Σ−1

µ Xµβµ − 2β̂>(X>µ Σ−1
µ Xµ)βµ + β̂>µ (X>µ Σ−1

µ Xµ)β̂µ − β̂>µ (X>µ Σ−1
µ Xµ)β̂µ

= (βµ − β̂µ)>(X>µ Σ−1
µ Xµ)(βµ − β̂µ)− β̂>µ (X>µ Σ−1

µ Xµ)β̂µ.

Returning to the joint posterior, one finds that

p(βµ, τ
2
µ|µ) ∝

(
1

τ 2
µ

)n−p
2

+1

exp

[
− 1

2τ 2
µ

{
µ>Σ−1

µ µ− β̂>µ (X>µ Σ−1
µ Xµ)β̂µ

}]
︸ ︷︷ ︸

∝ p(τ2µ|µ)

×
(

1

τ 2
µ

) p
2

exp

{
− 1

2τ 2
µ

(βµ − β̂µ)>(X>µ Σ−1
µ Xµ)(βµ − β̂µ)

}
︸ ︷︷ ︸

∝ p(βµ|τ2µ,µ)

,

implying that

τ 2
µ|µ ∼ IG

{
n− p

2
,µ>Σ−1

µ µ− β̂>µ (X>µ Σ−1
µ Xµ)β̂µ

}
and

βµ|τ 2
µ,µ ∼ N

{
β̂µ, τ

2
µ(X>µ Σ−1

µ Xµ)−1
}
.
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4.3.5 Model estimation
In total, eight models were fitted, corresponding to the independence copula Π and Student’s t
copula Cν,Ξ with varying degrees of freedom ν. In addition, a special case of the models in which
φ1 = · · · = φ21 = ϕ was run for comparison purposes. For each choice of copula, the model was
fitted using the Metropolis–Hastings-within-Gibbs algorithm described in Section 4.2.1. Specifically,
we produced four independent chains of 30,000 observations for each model with the first 5,000
iterations of each chain being discarded, considered as warm-up. To deal with serial dependence
between iterations, we kept every 10th realization. In the end, we are left with 10,000 realizations
from the posterior distribution.

To assess the performance of the algorithm for each individual model, the samples from the four
chains were used to calculate the multivariate potential scale reduction factor (MPRSF), R̂M . The
MPSRF is a scalar value, introduced in Brooks and Gelman (1998) as a multivariate extension to
the potential scale reduction factor of Gelman and Rubin (1992), which quantifies performance by
considering how well the individual chains mix. This is accomplished by comparing the within-
and between-chain covariance matrices, where each chain is produced using different starting
values. In particular, starting values should be chosen to be overdispersed with respect to the target
distribution. In each of our chains, Θ was first chosen by jittering the maximum likelihood estimates
from Section 4. The remaining hyperparameters and ξ were initialized so as to cover a realistic
range of possibilities. Values of R̂M close to 1 imply that the chains mix well and that each of
the chains produced samples closely representing the target distribution whereas large values of
R̂M would imply that additional simulation could improve fit. Being close to 1, the values of R̂M

reported in Table 4.2 suggest that the results of the MCMC algorithm are reliable for all of our
models. Examples of the well-mixing of the individual chains for the winning model can be found
in Figure 4.9.

To compare the fit of each model, we used the Watanabe–Akaike Information Criterion (WAIC)
(Watanabe, 2009; Gelman et al., 2014). In practice, WAIC compares models by considering numeri-
cal estimates of the log predictive pointwise density (lppd). The lppd is written

lppd =
50∑
i=1

log

∫
p(Zi|∆)ppost(∆)d∆,

where Zi = (Zi1, . . . , Zi21) is the vector of observed maxima in year i. For a collection of realiza-
tions ∆1, . . . ,∆10000 from the posterior distribution, the lppd is estimated via

̂lppd =
50∑
i=1

log

{
1

N

10000∑
j=1

p(Zi|∆j)

}
.
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Table 4.2: Model comparison using WAIC for different choices of copulas and log-scale parameters
that are either equal or freely varying. Reported in the table are −2 ̂lppd, p̂WAIC,j and ŴAICj for
j ∈ {1, 2}, and the value of the MPSRF R̂M .

Model
Φ as per Eq. (4.8) −2 ̂lppd p̂WAIC,1/p̂WAIC,2 ŴAIC1/ŴAIC2 R̂M

Π −468.246 35.588/38.504 −397.070/− 391.239 1.01
C4,Ξ −489.849 70.317/75.599 −349.2147/− 338.6504 1.01
C5,Ξ −497.107 65.244/69.539 −366.619/− 358.030 1.02
C7,Ξ −501.759 60.784/64.088 −380.192/− 373.583 1.01
C8,Ξ −501.821 59.980/63.153 −381.861/− 375.516 1.02
C9,Ξ −501.540 59.789/62.708 −381.962/− 376.123 1.01
C10,Ξ −500.702 59.245/62.618 −382.212/− 375.465 1.02
C15,Ξ −495.762 60.243/63.679 −375.277/− 368.403 1.01
φ1 = · · · = φ21 −2 ̂lppd p̂WAIC,1/p̂WAIC,2 ŴAIC1/ŴAIC2 R̂M

Π −319.997 26.265/29.096 −267.467/− 261.805 1.01
C1,Ξ −268.491 61.080/78.938 −146.331/− 110.614 1.01
C5,Ξ −372.844 42.625/48.522 −287.594/− 275.800 1.01
C6,Ξ −374.812 42.634/48.055 −289.543/− 278.702 1.01
C7,Ξ −375.615 43.107/47.919 −289.401/− 279.777 1.01
C9,Ξ −374.801 43.478/48.371 −287.846/− 278.060 1.01
C10,Ξ −374.001 43.465/48.674 −287.071/− 276.654 1.01

The models are also penalized based on complexity. In particular, there are two adjustments which
have been proposed in the literature, namely

pWAIC,1 = 2
50∑
i=1

[
log
[
E {p(Zi|∆)} − E {log p(Zi|∆)}

]]
and

pWAIC,2 =
50∑
i=1

var{log p(Zi|∆)},

which are estimated by

p̂WAIC,1 = 2
50∑
i=1

[
log

{
1

10000

10000∑
j=1

p(Zi|∆j)

}
− 1

10000

10000∑
j=1

log p(Zi|∆j)

]
and

p̂WAIC,2 =
50∑
i=1

V 10000
j=1 {log p(Zi|∆j)},

respectively, where V N
j=1aj =

∑N
j=1(aj − ā)2/(N − 1) is the sample variance. Table 4.2 reports the

estimated values of WAIC using the samples from our MCMC simulations, i.e., for j ∈ {1, 2},

ŴAICj = −2 ̂lppd + 2p̂WAIC,j.
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Figure 4.9: Examples of the well mixing of chains for the winning model, C9,Ξ with spatially
varying log-scale parameters. Chains for µ1 (top left), σ1 (top right), ξ (bottom left) and ρΞ (bottom
right) are shown for a variety of starting parameters. The filled in circles represent the starting points
of each chain. Here, s1 corresponds to station 491.

On the basis of these results, it appears that stricto sensu, the independence copula Π provides
the best overall fit. However, as illustrated by Genest et al. (2009) and others, it is very difficult to
detect tail dependence based on a sample of 50 observations. Given that in the present case, the
sample size is frequently smaller than 20, it seems that incorporating the t copula into the model is
not unreasonable, even if the assumption of independence would be more parsimonious. Moreover,
while incorporating this feature into the model may lead to an overestimation of risk, it constitutes a
conservative assumption that is preferred by risk regulators. For these reasons, it seems prudent to
allow for asymptotic dependence between locations.

Therefore, we ultimately opted for a Student’s t copula with 9 degrees of freedom. This choice
was further substantiated by Kendall’s test, which rejected the null hypothesis of independence at
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the 5% level for 41 of the 210 possible pairs of locations at which data were collected. Only one
location (Vieux Québec, QC) was independent of all the others, but this could be attributed to the
lack of power of the test, given that there were only six maxima available for that station.

Estimates for the return level of annual maxima surges are provided in Table 4.3 using two
different methods. Maximum likelihood estimates were obtained by fitting the marginals indepen-
dently; they are available only at the four monitored stations. The estimates based on the HBM are
the medians of the posterior distributions of the specified return levels. To generate these posteri-
ors, return levels where computed using realizations from the posterior distributions of the GEV
parameters at the specified locations. These parameters are affected by the inclusion of dependence
structures at both the data and process level.

To compare these two approaches, Table 4.3 also includes the percent relative change observed
by going from the MLE to the HBM approach, viz. %RC = 100 × (HBM−MLE)/MLE, at
the original stations. At the selected stations, the HBM consistently predicts heavier return levels
than the MLE. This results from the choice of the median as the representative of the posterior
distributions of the return levels. Because these posteriors are asymmetric, the median may not
coincide with the mean or the mode. A benefit of the Bayesian modeling approach is that one has a
choice between these different summaries of the posterior distribution; depending on this choice,
which would be guided by the context, the HBM may produce higher or smaller return levels than
those provided by the MLE.

An added benefit of Bayesian modeling is that it produces posterior distribution estimates, which
makes the calculation of uncertainty much easier. To illustrate this point, 95% credible intervals
based on the HBM are provided in Table 4.3. For comparison purposes, asymptotic 95% confidence
intervals for the MLEs are also reported. Observe how wide some of the latter become for longer
return periods, to the point of including negative values in the cases of Bedford (491) and Vieux
Québec (3248), where the number of observations was very small.

It is also interesting to see how the results are impacted by the inclusion of spatiality into the
Bayesian model. As an illustration, consider the 50-year return level for Vieux Québec and Lauzon,
located just 4 km apart on the St. Lawrence River. When estimation is done by maximum likelihood,
there is a difference of approximately 70 cm in the calculated returns for these two locations. This
seems like a rather large discrepancy for buoys in the same body of water that are so close. In
contrast, the HBM generates returns that are more homogeneous. Note also how the sharing of
information between locations in the HBM leads to 95% credible intervals whose widths, for any
given return period, do not vary much as a function of the record length.

Table 4.3 further illustrates the ability of the HBM approach to generate return levels at unmoni-
tored locations. This key feature is not shared by the maximum likelihood approach, as the latter
does not allow for information to be shared across neighboring locations where the initial model
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Table 4.3: Comparison of the return level for various return periods (RP, in years) computed with
either the individual margins of the Hierarchical Bayesian Model (HBM) or the maximum likelihood
estimate based on that single location. Also included are asymptotic 95% confidence intervals for
the MLE and 95% credible intervals derived from the HBM, as well as the percent relative change
given by %RC = 100× (HBM−MLE)/MLE. As stations 3200 and 3260 are unmonitored, the
MLEs, and hence the %RC, cannot be be computed.

RP MLE Conf Int HBM Cred Int %RC
10 0.94 (0.85, 1.02) 1.18 (1.03, 1.39) 25
25 1.06 (0.92, 1.20) 1.44 (1.23, 1.76) 36
50 1.15 (0.97, 1.34) 1.65 (1.38, 2.07) 43

100 1.25 (1.00, 1.50) 1.87 (1.54, 2.40) 50
250 1.39 (1.03, 1.75) 2.20 (1.77, 2.89) 58
500 1.50 (1.03, 1.96) 2.46 (1.94, 3.32) 65

1000 1.61 (1.03, 2.19) 2.75 (2.12, 3.83) 71

(a) Station 490: Halifax, NS

RP MLE Conf Int HBM Cred Int %RC
10 1.08 (0.89, 1.26) 1.25 (1.09, 1.50) 16
25 1.23 (0.86, 1.60) 1.53 (1.30, 1.90) 24
50 1.37 (0.79, 1.96) 1.75 (1.46, 2.23) 28

100 1.53 (0.65, 2.41) 1.99 (1.63, 2.59) 30
250 1.77 (0.34, 3.21) 2.34 (1.87, 3.13) 32
500 1.99 (-0.01, 3.99) 2.62 (2.05, 3.59) 32

1000 2.23 (-0.50, 4.96) 2.93 (2.24, 4.13) 31

(b) Station 491: Bedford Institute, NS
RP MLE Conf Int HBM Cred Int %RC
10 1.81 (1.47, 2.14) 2.26 (2.02, 2.59) 25
25 1.95 (1.34, 2.57) 2.63 (2.30, 3.13) 35
50 2.06 (1.13, 2.99) 2.93 (2.52, 3.57) 42

100 2.17 (0.85, 3.49) 3.25 (2.75, 4.07) 50
250 2.31 (0.36, 4.26) 3.71 (3.06, 4.80) 61
500 2.41 (-0.09, 4.92) 4.09 (3.30, 5.44) 69

1000 2.52 (-0.61, 5.65) 4.49 (3.55, 6.17) 78

(c) Station 3248: Vieux Québec, QC

RP MLE Conf Int HBM Cred Int %RC
10 2.30 (2.07, 2.52) 2.30 (2.08, 2.61) 0
25 2.57 (2.20, 2.95) 2.68 (2.38, 3.14) 4
50 2.78 (2.23, 3.32) 2.99 (2.61, 3.59) 8

100 2.98 (2.22, 3.73) 3.32 (2.85, 4.09) 12
250 3.24 (2.14, 4.33) 3.80 (3.18, 4.83) 17
500 3.43 (2.04, 4.82) 4.19 (3.44, 5.48) 22

1000 3.62 (1.90, 5.34) 4.61 (3.71, 6.21) 27

(d) Station 3250: Lauzon, QC

RP MLE HBM Cred Int %RC
10 — 2.13 (1.82, 2.58) —
25 — 2.50 (2.09, 3.11) —
50 — 2.80 (2.31, 3.56) —

100 — 3.11 (2.54, 4.05) —
250 — 3.57 (2.84, 4.79) —
500 — 3.94 (3.08, 5.41) —

1000 — 4.34 (3.33, 6.13) —

(e) Station 3200: Berthier-sur-Mer, QC

RP MLE HBM Cred Int %RC
10 — 2.26 (1.95, 2.69) —
25 — 2.63 (2.22, 3.24) —
50 — 2.94 (2.43, 3.70) —

100 — 3.26 (2.65, 4.20) —
250 — 3.72 (2.96, 4.98) —
500 — 4.10 (3.20, 5.65) —

1000 — 4.51 (3.46, 6.39) —

(f) Station 3260: Saint-Romuald, QC

was fit. See, e.g., stations 3200 and 3260 at Berthier-sur-Mer and Saint-Romuald, QC, respectively.
The methods used to accomplish this are described in Section 4.3.6.

Finally, Table 4.4 reports the return level for return periods T ∈ {10, 25, 50, 100, 250, 500, 1000}
(in years) computed at 10 stations using the joint distribution of surges from the HBM. For each
parameter realization from the posterior distribution, Algorithm 6 was used to generate a sample
of 10,000 surges at each of the 21 monitored stations. The empirical quantiles corresponding to
each return period were then computed for each station individually. While consistent estimation of
the multivariate quantiles defined in Beck and Mailhot (2018) would also be possible, it would be
computationally prohibitive in such high dimension.
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Table 4.4: Return level for various return periods (RP, in years) computed at 10 stations using the
joint distribution of surges from the Hierarchical Bayesian Model (HBM). The names of the stations
are specified by ID in Table A.

RP 490 491 665 905 2985 3100 3248 3250 3200 3260
10 1.18 1.29 0.85 0.87 1.25 2.17 2.26 2.33 2.20 2.28
25 1.47 1.61 0.96 1.01 1.46 2.58 2.66 2.77 2.63 2.68
50 1.70 1.85 1.06 1.11 1.66 2.92 2.99 3.12 2.98 3.01

100 1.92 2.14 1.17 1.23 1.87 3.27 3.33 3.50 3.44 3.44
250 2.28 2.59 1.37 1.40 2.15 3.91 3.90 4.09 4.04 3.93
500 2.66 3.10 1.52 1.61 2.46 4.35 4.34 4.64 4.52 4.32

1000 3.27 3.87 1.63 1.89 2.62 4.82 4.78 4.88 5.29 4.89

Comparing the results in Tables 4.3 and 4.4, we can see once again the effect of sharing
information across stations spatially. Closer stations tend to have much closer return periods than in
the case when independent MLEs are fitted. Moreover, comparing the empirical results to those
produced by the fitted margins, it can be seen that the returns are generally slightly higher. This
could be a result of the samples used for Table 4.4 first being generated using the fitted copula,
whereas the effect of the copula is only felt through its effect on the model fit in the HBM case.

4.3.6 Application
Here we present various applications of fitted model. In particular, we demonstrate

(i) how to use the latent Gaussian fields to provide GEV parameter estimates at unmonitored
locations,

(ii) how the model can easily generate realizations of extreme surges from the collection of GEVs
both at monitored and unmonitored locations, and

(iii) how to use the generated surges to recover (potentially) extreme water level realizations.

Using the model for interpolation purposes

As discussed in Section 4.1, one of the main interests in geostatistics application is providing
inference at locations where no data are recorded. Using the latent Gaussian fields in (4.8) and a
simple algorithm, GEVs were fitted to 1340 unmonitored locations along the Atlantic Coast. The
procedure is described in Algorithm 5 for interpolating the location parameters across the domain.
A similar procedure was used for interpolating the log-scale parameters. To describe this procedure,
let S = {s1, . . . , s21} be the set of locations at which data were recorded.

The results of Algorithm 5 are illustrated in Figures 4.10 and 4.11 for the medians of the
posterior distribution for location and scale parameters of the original 21 stations. Moreover, the

92
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5 Spatial interpolation algorithm.

(1) Denote S∗ = {s22, . . . , sd} the set of new locations of interest. The joint distribution for
the expanded vector of means µS∪S∗ including the new locations then takes the form µS∪S∗ ∼
Nd(XµS∪S∗βµS∪S∗ , τ

2
µS∪S∗

ΣµS∪S∗ ), whereXµS∪S∗ = (X>µS ,X
>
µS∗

)> and

Σµ =

[
ΣµS ΣµS,S∗

ΣµS,S∗ ΣµS∗

]
,

where for all i, j ∈ {1, . . . , d}, the (i, j)th entry of Σµ is of the form exp(−dij/ρµ).
(2) Conditioning on a realization of the location parameters generated from the model, denoted
µS = m, the remaining location parameters can be generated from the conditional Gaussian
field µS∗|µS = m ∼ Nd−21(µ̄S∗ , τ

2
µS∗

Σ̄µS∗ ), where

µ̄S∗ = XµS∗βµS∗ +ΣµS,S∗Σ
−1
µS,S

(m−XµSβµS) and Σ̄µS∗ = ΣµS∗,S∗ −ΣµS,S∗Σ
−1
µS,S

ΣµS,S∗ .

maps in Figure 4.12 show the values of the standard deviation of the posterior distribution for the
location (upper panel) and scale (lower panel) parameters in these 1361 locations.

Finally, Figure 4.13 shows maps of the 97.5% (upper panel) and 99.9% (lower panel) quantiles
of the posterior distribution for the surge heights at the 1361 locations of interest along the Atlantic
Coast of Canada. It transpires from these plots that the St. Lawrence River is most susceptible to
large surges whereas the Eastern Coast of Newfoundland seems to be the least at risk. Observe
also how the standard deviations displayed in Figure 4.12 are smaller in areas surrounding the 21
original monitoring stations, reflecting the smaller uncertainty associated with interpolation near
locations where data are available.

Simulation of the fitted surge process

Once fitting and the subsequent interpolation are complete, we have at our disposal a mapping of
1361 interconnected GEV distributions corresponding to locations scattered across the Atlantic
Coast of Canada. For the most part, these distributions were obtained without the benefit of data
being recorded at their respective locations. With the entire domain of interest modeled, the surge
process can be simulated. In particular, given the structure of the proposed model, sample generation
is very simple and straightforward. The procedure is outlined in Algorithm 6.

With the generated samples, we have 10,000 realizations of maximal annual surges in all
locations of interest. As there is no temporal trend in the surges, they can be interpreted as 10,000

realizations of a specific year, or as realizations for the next 10,000 years. Both will have their uses
in applications. However, another step is required first.

93



4.3 Flood risk in Atlantic Canada

Figure 4.10: Maps showing the median values of the posterior distribution for the location parameters
of the hierarchical Bayesian model at the monitoring stations (upper panel) and in 1361 locations
along the Atlantic coast of Canada (lower panel).
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Figure 4.11: Maps showing the median values of the posterior distribution for the scale parameters
of the hierarchical Bayesian model at the monitoring stations (upper panel) and in 1361 locations
along the Atlantic coast of Canada (lower panel).

Predicting water levels from extreme surges along the coast line

While the fitted model provides information about the frequency and severity of extremal surges, the
time at which they occur is critical to determining the corresponding water level, i.e., the combination
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Figure 4.12: Maps showing the values of the standard deviation of the posterior distribution for the
location (upper panel) and scale (lower panel) parameters in 1361 locations along the Atlantic Coast
of Canada.

of tide and surge, and the associated risk of flooding. Consider for instance Station 3250 at Lauzon,
across the river from Québec City. The range of tide at this location is 6.2 m with a minimum
and maximum tide over the 1966–2015 period being −0.12 m and 6.10 m, respectively. Were the
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Figure 4.13: Maps showing the 97.5% (upper panel) and 99.9% (lower panel) quantiles of the
posterior distribution for the surge heights at 1361 locations along the Atlantic Coast of Canada.

1-in-1000-year extreme annual surge to occur at low tide, the resulting water-level would only be
about 3 m, i.e., half the height of the normal deterministic high-tide. Such a surge would be very
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6 Simulation algorithm.

(1) Consider a realization ∆ = (Θ, η, ξ) of the parameters from the posterior distribution.
(2) Using Algorithm 5, interpolate the location parameters at the unmonitored stations to obtain
µS∗ and σS∗ .
(3) Generate a realization from the copula Cν,Ξ, denoted u = (u1, . . . , ud).
(4) Invert u using the relationship zi = F−1(ui|µi, σi, ξ) for all i ∈ {1, . . . , d}. This yields a
single realization z = (z1, . . . , zd).
(5) Repeat as necessary, once for each of the n realizations from the posterior distribution.

unlikely to be of any consequence to the people of Lauzon. In principle, therefore, it is important to
consider when surges occur.

To assess the effect of the simultaneity (or not) of an extremal surge and an extremal tide, the
following two scenarios were considered at three stations, namely 65 (St. John, NB), 490 (Halifax,
NS), and 2985 (Rimouski, QC):

(i) random-case scenario: the maximal surges occur randomly throughout the tidal process;
(ii) worst-case scenario: the maximal surges occur at the maximum of the tide distribution.
For each station, 10,000 samples were generated from the fitted Hierarchical Bayesian model.

Each of these surges was then turned into a water level by adding to it a tide observed at that location.
For scenario (i), the 10,000 tides were selected randomly; for scenario (ii) all tides were taken to be
equal to the largest possible value observed at the given station over the entire study period.

Based on our analysis, scenario (i) is the more realistic given that at the 5% level, a test of
independence based on the Kendall’s tau statistic could only detect dependence between the annual
maximum surges and their corresponding tides at one location, namely station 3250 (Lauzon, QC).
Nevertheless, scenario (ii) is interesting to consider as it provides a global upper bound on water
levels across the entire domain. The simultaneous flooding resulting from these levels would be
relevant in assessing the worst-case scenario of damages for which insurance companies might be
liable.

The boxplots in Figure 4.14 summarize the water level distribution for each of these locations
and scenarios. For stations 65 and 2985, the distinction between scenarios (i) and (ii) is easily
noticeable, both in terms of median level and spread. Clearly, the coincidence of a maximum surge
with a maximum tide would have disastrous consequences at those locations, and the proposed
model is helpful in assessing its extent. By contrast, the change of scenario appears to be less
critical on the water levels at station 490, e.g., at the lower tail of the distribution. Nevertheless, the
occurrence of such high water levels could have devastating effects, depending on the location.
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Figure 4.14: Boxplots representing the distribution of water levels at three locations under scenarios
(a) and (b), based on 10,000 realizations of the surge model.
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4.3.7 Discussion
In Section 4.3.6, the generation of the maximal surges was completed using the full Bayesian
hierarchical model, taking in the dependence at both the data and process-level. In contrast, the
generation of the corresponding tides was done on a site-by-site basis. As there is likely some
spatial interaction across tidal processes, inference could be improved by developing an analogous
model for this phenomenon. Another possible extension of the approach would be to take temporal
dependence into account. Given that the maximum surge process appears to be stationary in time
and independent of tide, this would involve including a temporal component in the tidal process.

Another consideration is the computational efficiency of the model. While the HBM is quite
flexible and can easily incorporate residual dependence through the inclusion of a copula, operations
on large correlation matrices can be cumbersome. In the future it would be interesting to evaluate
the risk of maximal surges using Integrated Nested Laplacian Approximations (INLA) as described,
e.g., by Rue et al. (2009) and Blangiardo et al. (2013). A second potential modeling approach
would be the use of intrinsic Gaussian Markov random fields (iGMRF) as described in Paciorek
(2013) and applied in Jalbert et al. (2017). Methods such as these would allow one to fit GEVs to
both the observed and unobserved locations simultaneously as opposed to sequentially. Moreover,
the computation time needed to generate samples from the posterior distributions would be vastly
decreased by employing sparse precision matrices. Inclusion of a copula in either approach might
also be considered. The risk of coastal flooding in Atlantic Canada could then be compared using
the HBM, INLA methods and iGMRF fitting.

Finally, an important factor in the modeling process is how we quantify the dependence between
stations. Given the physical nature of the problem, the great circle distance was a natural choice
for this purpose. Unfortunately, while appropriate, we believe that only considering this notion of
dissimilarity might limit the inference potential of the model as it ignores some of the geographical
properties of the domain we study. As we are dealing with locations within a complex body of
water, it would make sense to consider distances which factor in this irregular geography. However,
one must be careful when considering such non-Euclidean distance measures. If not, the resulting
covariance matrix might not possess positive definiteness.

Several works have addressed such issues, e.g., see Ver Hoef and Peterson (2010), Asadi et al.
(2015) or Ver Hoef et al. (2006) for a discussion on the notion of river/stream, or hydrological,
distance. However, these works rely on the assumption that the network is made up of (width-less)
lines, essentially creating a projection into R, a luxury the irregular shape of Atlantic Canada does
not harmonize with.

A more general framework has been developed in Curriero (2006) to explain the viability
of alternative distance metrics. Here, situations in which non-Euclidean distance matrix can be
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considered in a geostatistics framework are described. The key concept is isometric embedding.
Consider a distance metric d(·, ·) for a spatial domain D. If there exists points s∗i , s

∗
j in a spatial

domain D∗ and a function η : D 7→ D∗ such that

d(si, sj) = ‖s∗i − s∗j‖ (4.9)

for all si, sj ∈ D and η(s) = s∗ then d is said to be embeddable in a Euclidean space of dimension
d∗ = dim(D∗). If a distance metric is embeddable, then the corresponding covariance matrix will
be positive-definite. A more flexible technique for addressing non-Euclidean distance matrices is
through the use of multidimensional scaling (MDS). See for instance Bibby et al. (1979), Løland
and Høst (2003) or Schabenberger and Gotway (2017). In short, MDS creates locations (in an
augmented space) whose Euclidean distances approximate the original distance matrix, providing a
type of approximation to (4.9).

Using these concepts, it would be interesting to consider different distance metrics for the
process and data layers of the model. For example, if the correlation structure associated to the
residual dependence structure could consider some type of water-based distance between stations,
this could provide additional insight into the physical properties of the bodies of water in Atlantic
Canada and could further accentuate the interplay between the large- and small-scale variation
described by these two layers.

4.4 Conclusion
In this chapter, we have provided an overview of modeling spatial extremes with applications
towards natural disasters. In particular, in Section 4.3, we used several of these techniques to model
the prevalence of extreme surges on the Atlantic Coast of Canada. Model fitting over this large
and sparse domain was done using a well established HBM on GEV margins. Latent Gaussian
fields were used at the process level to introduce spatiality into the model. Having the location and
(log) scale parameters vary spatially, as opposed to just location, substantially improved model
performance. Moreover, the use of a copula allowed for possible dependence between the annual
maximum surges.

The employed model also allowed us to generate simultaneous realizations of annual maximum
surges at a large collection of both observed and unobserved locations of interest. Two different
scenarios for calculating water levels resulting from extremal surges could then be computed.
Quantitative information about the water levels across the entire domain under such scenarios could
be helpful from an infrastructure or insurance perspective. Moreover, getting a sense of when these
catastrophes might occur relative to each other would also be useful for organizations in charge of
public safety, e.g., in terms of resource allocation for disaster response.
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Turning our focus to this work’s initial motivation, i.e., the assessment of overland flooding
risk for insurance regulatory purposes, the next step would be to quantify the damages caused
inland as a result of extreme water levels. One way to ascertain this information would be through
the use of water propagation models included in, e.g., Geographic Information Systems (GIS)
software. Using the coastal water levels, one could then calculate the water propagation inland and
use damage curves to evaluate the resulting costs at each site of the entire domain for a given year.
From here, the problem would be simplified to a univariate one and assessing risk frequency would
be straightforward.

More specifically, consider realizations Z1, . . . ,Zn of the d-dimensional surge process Z. For
each year i ∈ {1, . . . , n}, find the vector Wi of water levels corresponding to Zi. Through GIS,
inundation levels fi = (f1, . . . , fd`) can be obtained at d` locations of interest. Using damage curves,
the total costDi = (Di1, . . . , Did`) can then be determined. Thus, for each year i ∈ {1, . . . , n}, we
have

Zi
Find Tide
=⇒ Wi

GIS
=⇒ fi

Damage Curves
=⇒ Di.

The total cost across the domain in year i is then Si = Di1 + · · · + Did` . Using these total
damages will drastically simplify the ensuing analyses as the remaining calculations will be done
in a univariate context. With these values, the amount of capital needed to protect an insurer at a
prescribed solvency level can be easily determined. Moreover, if we wish to consider the individual
flood locations, we can better assess the specific risk, and subsequent premium necessary, for each
location. A method for working with such random sums is described in Mailhot and Mesfioui
(2016). In a multivariate context, it would also be interesting to consider how the Σ-expectiles
(3.5) introduced in Chapter 3 could be used on either of the vectors f or D, in particular, if one
were to use a distance based correlation matrix. Some examples of applications of multivariate
risk measures applied to (extreme) environmental phenomena can be found in Torres et al. (2017),
Di Bernardino and Palacios-Rodríguez (2017), and Di Bernardino and Prieur (2018).
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4.A List of Stations by ID

Table A: List of monitored stations and their locations, along with the number of annual maxima
available at each site.

ID Station Name # ID Station Name #
65 St. John, NB 49 2000 Lower Escuminac, NB 40

365 Yarmouth, NS 48 2145 Belledune, NB 15
490 Halifax, NS 48 2330 Rivière-au-Renard, QC 43
491 Bedford Institute, NS 17 2780 Sept-Îles, QC 43
612 North Sydney, NS 46 2985 Rimouski, QC 31
665 Port-aux-Basques, NL 37 3057 Saint-Joseph-de-la-Rive, QC 44
835 Argentia, NL 45 3100 Saint-François de l’Île d’Orléans, QC 49
905 St. John’s, NL 50 3248 Vieux Québec, QC 6

1700 Charlottetown, PE 47 3250 Lauzon, QC 45
1805 Shediac Bay, NB 32 3460 Port-Alfred (Saguenay), QC 32
1970 Cap-aux-Meules, QC 18

4.B Justification of 15% rule for including maxima
This appendix provides a rationale for keeping an annual maximum at a given site only when at
most 15% of the hourly measurements are missing, and to treat it as the true maximum. Because the
tidal process is a deterministic phenomenon which is available throughout the study period, one can
restrict the discussion to the stationary series X1, . . . , Xn of hourly surges for a given site in a given
year. For a non-leap year, n = 8760.

Suppose for simplicity that the observations are exchangeable and hence, without further loss of
generality, that one has observed only X1, . . . , Xk with k ≥ 0.85× n. For a non-leap year, one then
has k ≥ 7446 observations. If Mk = max(X1, . . . , Xk), then Mk ≥ X(k), where X(1) < · · · < X(n)

are the order statistics associated with the series X1, . . . , Xn, which are almost certainly distinct if
the base distribution is continuous.

A simple combinatorial argument then implies that, for all ` ∈ {k, . . . , n},

Pr{Mk = X(`)} = p` ≡
(
`− 1

k − 1

)/(n
k

)
.

This probability is non-decreasing in ` so that if k ≥ 0.85n, one has Pr{Mk = X(n)} = k/n ≥ 0.85.
Therefore, the 15% rule guarantees that the probability that the observed maximum is the true one
is at least 85%.



4.B Justification of 15% rule for including maxima

As mentioned in Section 2.1, the distribution of X(n) can be suitably approximated by a GEV
distribution when n is large enough. Under the additional assumption that X1, . . . , Xn form a
random sample, Theorem 3.4 in Coles (2001) states that, as n → ∞, and for sufficiently large
integer ` ≤ n,

Pr{X(`) ≤ x} = H`(x) ≡ exp
[
− {1 + ξ(x− µ)/σ}−1/ξ

] n−∑̀
s=0

{1 + ξ(x− µ)/σ}−s/ξ/s!,

whenever ξ > 0 and 1 + ξ(x − µ)/σ > 0. When ` = n, one recovers the expression of the GEV
distribution given in Algorithm 4. This is the distribution of Mk when Mk = X(n). More generally,
the asymptotic distribution of Mk is the mixture pkHk + · · · + pnHn with the weights pk, . . . , pn
introduced above. This mixture has the same three location, scale, and shape parameter as the GEV
distribution.

Given that for n = 8760 and k = 7446, one has pn−1 = k(n − k)/(n2 − n) ≈ 0.128,
pn−2 ≈ 0.019, and pn−3 ≈ 0.003, it seems reasonable to approximate the distribution of Mk

by Hn. This comes at the cost of a small bias. A more accurate approximation would be given
by (pn−1Hn−1 + pnHn)/(pn−1 + pn) = (0.128Hn−1 + 0.85Hn)/0.978 but this refinement was
not considered here because of the presence of autocorrelation in the hourly (and even in the
daily) measurement series X1, . . . , Xn. From the results reported in Leadbetter et al. (1983), this
dependence is likely such that the large-sample distribution of X(n) can still be approximated
by a GEV with the same shape parameter as before but it is no longer clear that the asymptotic
distribution of Mk is a mixture. Only the fact that Mk = X(n) with probability 0.85 remains.

While other values than k/n = 85% could have been considered, this choice seemed adequate
on balance. On one hand, any significant reduction in k/n would imperil the approximation of the
distribution of Mk by Hn, even in the absence of autocorrelation. On the other hand, too many years
would have been discarded if k/n had been made larger, causing a large increase in uncertainty.
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4.C Effect on shape parameter given different cutoffs for data
augmenting
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Figure 4.15: Variability in the fitted constrained shape parameter for different quantiles qα acting as
the cutoff for new data.



5
Final Conclusion and Future Work

The contribution of this thesis lies at the intersection of extreme value theory, risk analysis, and
environmental statistics. Extreme value theory is an important branch of statistics which has a
plethora of applications to real-world problems. Specifically, we have examined the behavior of
extreme events through two separate lenses: risk measure estimation and statistical modelling. Risk
measures are a fundamental tool for quantifying the risk of a variety of processes, including stocks,
insurance claims, and water levels. Moreover, modeling these events can provide valuable infor-
mation about their behavior. Both of these projects were considered in the multivariate framework
where dependence between random variables, especially for tail events, is a key factor.

In the first case, we developed an estimation procedure for multivariate L1-expectiles when
the level of risk α ≈ 1. In particular, we followed a semi-parametric approach that, under the
assumption that the tails of each margin behaved similarly, consistently estimated extreme L1-
expectiles. Furthermore, the methodology presented here can account for any underlying tail
dependence structure. This poses a tangible improvement over prior methods in the literature where
classic methods performed poorly for elevated levels of risk and methods tailored to extremes
were limited by pre-imposed assumptions of asymptotic independence or comonotonicity between
random variables. Using the BFGS algorithm for unconstrained optimization, the results of our
simulation study showed satisfactory performance for a wide range of sample sizes.

In the future, it would be interesting to consider alternative optimization algorithms. For instance,
L-BFGS-B is a natural choice as it provides an extension of BFGS which can reduce computation
time by limiting matrix operations and improve efficiency by incorporating simple box constraints.
This latter modification would allow us to utilize some of the properties of the underlying loss
function. Considering stochastic optimization, as was done in Maume-Deschamps et al. (2017),
for the alternative problem would present another interesting avenue. A further consideration in
this project is that we focused on L1-expectiles, which are in fact a special case of Σ-expectiles. It
would be interesting to examine the impact that different matrices Σ could impart on the estimation



Final Conclusion and Future Work

procedure, in particular for real-world examples. For instance, treating Σ as a distance matrix for
spatially defined problems could allow the risk measure to naturally incorporate the properties of
the region of study. It would be interesting to see how this measure could be used for our study on
Atlantic water surges.

In the aforementioned study of Atlantic Canada, we modelled annual maximum surges at 21
locations in a large, irregular domain using a hierarchical Bayesian model with GEV margins. The
model was then fitted with a variety of residual dependence structures. In the end, a Student t copula
with 9 degrees of freedom was considered the best choice. This model provides a sense of continuity
throughout the entirety of the domain, a factor which has been stressed recently (Towe et al., 2018;
Tawn et al., 2018) while still allowing for the existence of tail dependence between extreme events.

Using the simulations generated from the model, it would be interesting to see the impacts
that these events would have inland. One way to accomplish this would be to make use of GIS
software which could provide physical simulations of inland water propagation given extreme
water levels on the coast. These subsequent simulations could then be used to estimate inundation
levels across communities which could in turn inform potential damages from extreme flooding
events. The information from this process could be used at both a private and public level. Flood
levels could help inform future iterations of flood plain mapping, thereby ensuring that citizens and
businesses are housed in safe areas, whereas the estimated damages could aid insurance companies
for premium pricing as well as capital allocation.

In fact, the research presented was inspired from a collaboration with a prominent Canadian
insurance company, where a prior version of the work helped contribute to the launching of a
comprehensive flood insurance product in Canada in March of 2017, a Canadian first. This product
ensured that victims of the 2017 floods in Ontario and Québec were adequately covered, resulting
in claims payouts totalling over $220 million.
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Acronyms and Notation

CDF Cumulative distribution function

CTE Conditional tail expectation

ES Expected shortfall

EVT Extreme value theory

GPD Generalized Pareto distribution

HBM Hierarchical Bayesian model

IID Independently and identically distributed

MCMC Markov chain Monte Carlo

MDA Maximum domain of attraction

MEE Multivariate extreme expectiles

MHG Metropolis–Hastings-within-Gibbs

MLE Maximum likelihood estimate

POT Peaks-over-threshold

QQ Quantile-quantile

RMS Root mean square error

RV Random variable

STDF Stable tail dependence function

SF Survival function

SSE Sum squared error

TVAR Tail value-at-risk

UDF Upper tail dependence function

VAR Value-at-risk

WAIC Watanabe-Akaike Information Criterion
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Acronyms and Notation

GEV(µ, σ, ξ) Univariate generalized extreme value distribution
with location, scale and shape µ, σ and ξ respectively.

N (µ, σ2) Univariate Normal distribution with mean µ and variance σ2

Nd(µ,Σ) d-dimensional Normal distribution with mean vector µ and covariance
matrix Σ

U(0, 1) Univariate (standard) uniform distribution on the interval (0, 1)

 Weak convergence
P−→

n→∞
Convergence in probability

a.s−→
n→∞

Convergence almost surely

1(·) Indicator function

Rd d-dimensional reals
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