
 i 

 
 
 
 
 

Biologging wildlife behaviour and the seasonality of 
boreal food webs 

 
 
 

Emily Kate Studd 

Department of Natural Resource Sciences  

Macdonald Campus of McGill University, Montréal 

March 2020 

 

 

 

 

 

 

A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of 
DOCTOR OF PHILOSOPHY 

© Emily K. Studd, 2020 



 ii 

List of Tables ........................................................................................................vi 
List of Figures ................................................................................................... viii 
Abstract ............................................................................................................. xiii 
Résumé ................................................................................................................ xv 

Acknowledgements .......................................................................................... xvii 
Contribution to Knowledge ............................................................................. xxii 
Contribution of Authors ................................................................................... xxv 

Chapter 1 – Introduction ...................................................................................... 1 

Introduction............................................................................................................................ 1 

Literature Review ................................................................................................................... 3 

Chapter 2 - Behavioral classification of low frequency acceleration and 
temperature data from a free ranging small mammal ..................................... 16 

Abstract ................................................................................................................................ 16 

Introduction.......................................................................................................................... 17 

Materials and Methods ......................................................................................................... 23 

Study site and species ....................................................................................................... 23 

Behavioral observations and scoring ................................................................................. 23 

Adjusting for time errors ................................................................................................... 24 

In nest vs. out of nest ........................................................................................................ 25 

Moving versus not moving ................................................................................................ 26 

If moving: feeding versus foraging versus travelling .......................................................... 28 

Testing overall accuracy .................................................................................................... 29 

Red squirrel seasonal time budgets................................................................................... 31 

Results .................................................................................................................................. 32 

In nest versus out of nest .................................................................................................. 32 

Moving and not moving classification (Two behavior level) .............................................. 32 

Classifying moving behavior .............................................................................................. 32 

Overall accuracy of decision tree ...................................................................................... 34 

Seasonal time budgets ...................................................................................................... 34 

Discussion ............................................................................................................................. 35 

Data Accessibility Statement ................................................................................................. 43 

Literature cited ..................................................................................................................... 43 



 iii 

Linking Statement .............................................................................................. 50 

Chapter 3 - Use of acceleration and acoustics to classify behavior, generate 
time budgets, and evaluate responses to moonlight in free-ranging snowshoe 
hares .................................................................................................................... 51 

Abstract ................................................................................................................................ 51 

Introduction.......................................................................................................................... 52 

Materials and Methods ......................................................................................................... 55 

Behavioral observations of captive and chased hare ......................................................... 56 

Accelerometer classification ............................................................................................. 58 

Using acoustic recorders to refine accelerometer-classified behavior ............................... 61 

Daily time budgets and behavioral responses to moonlight .............................................. 63 

Results .................................................................................................................................. 65 

Accelerometer classification ............................................................................................. 65 

Refinement of accelerometer behavior categories using acoustic recorders ..................... 67 

Daily activity ..................................................................................................................... 69 

Moonlight analysis ............................................................................................................ 72 

Discussion ............................................................................................................................. 74 

Biologging behavior .......................................................................................................... 75 

Daily activity ..................................................................................................................... 76 

Response to moonlight ..................................................................................................... 77 

Literature cited ..................................................................................................................... 80 

Linking Statement .............................................................................................. 89 

Chapter 4 - Optimization of energetic and reproductive gains explains 
behavioural responses to environmental variation across seasons and years . 90 

Abstract ................................................................................................................................ 90 

Introduction.......................................................................................................................... 90 

Materials and Methods ......................................................................................................... 94 

Measuring Activity in Relation to Temperature, Resources, and Mating Opportunities ..... 94 

Modelling Activity in Relation to Temperature, Resources, and Mating Opportunities ...... 97 

Comparing Measured and Modelled Activity Patterns .................................................... 100 

Results ................................................................................................................................ 101 

Measured Activity ........................................................................................................... 101 

Modelled Activity ............................................................................................................ 104 



 iv 

Comparing Measured and Modelled Activity Patterns .................................................... 105 

Discussion ........................................................................................................................... 106 

Literature cited ................................................................................................................... 113 

Linking Statement ............................................................................................ 120 

Chapter 5 - Bioavailability, ecological dynamics, and the paradox of seasonal 
enrichment ........................................................................................................ 121 

Summary ............................................................................................................................ 121 

Main Text ........................................................................................................................... 122 

Methods ............................................................................................................................. 136 

The Model ...................................................................................................................... 136 

Seasonality in lynx prey selection .................................................................................... 139 

Seasonality in hare and squirrel mortality rates .............................................................. 140 

Red squirrel and snowshoe hare seasonal population dynamics ..................................... 141 

Global analysis of small mammal population dynamics ................................................... 141 

Literature cited ................................................................................................................... 142 

Chapter 6 - Summary and Conclusions ........................................................... 146 

Discussion of general thesis results ..................................................................................... 146 

Final conclusion and summary ............................................................................................ 150 

Supplementary Materials ................................................................................. 153 

Supplementary Materials for Chapter 2 .............................................................................. 153 

7.2.1 Collar construction method .................................................................................... 153 

7.2.2 Red squirrel behavior data collection application ................................................... 155 

7.2.3   Time alignment .................................................................................................... 159 

7.2.4 Temperature filtering ............................................................................................. 160 

7.2.5  Running means smoothing window for static acceleration .................................... 161 

7.2.6 Video of squirrel behavioural states ....................................................................... 163 

Supplementary Materials for Chapter 3 .............................................................................. 164 

7.3.1 Smoothing window selection for removing static acceleration ............................... 164 

7.3.2 Random forest analysis for accelerometer classification ........................................ 165 

7.3.3 Recorder-specific acoustic classification analysis .................................................... 168 

7.3.4  Individual accuracies of accelerometer behavioral classification for captive snowshoe 
hares ............................................................................................................................... 171 

7.3.5 Individual accuracy of acoustic behavioral classification ......................................... 173 



 v 

7.3.6 Audio clips from acoustic recorders........................................................................ 173 

Supplementary Materials for Chapter 4 .............................................................................. 174 

7.4.1- Resource index, Ra ................................................................................................ 175 

7.4.2 – Resource type index (RT) ...................................................................................... 183 

7.4.3 - Modelling activity ................................................................................................. 184 

7.4.4 – Fitting diminishing returns to modelled activity ................................................... 187 

7.4.5 – Measured activity model results .......................................................................... 189 

Supplementary Materials for Chapter 5 .............................................................................. 190 

Literature cited ................................................................................................. 192 

  



 vi 

List of Tables 
Table 2.1 - Definitions of each behavioral category used in each step of the hierarchical decision 
tree completed in this study. Table illustrates how each subsequent behavioral state is nested 
within a category in a less complex tree. ................................................................................... 48 

Table 2.2 - Average durations in seconds of each behavior common in red squirrels calculated 
from different classification methods. Winter and autumn durations are tabulated from 
observations of free ranging squirrels during each season (winter: 18 squirrels, 2328 min; 
autumn: 27 squirrels, 621 min). These are compared to durations calculated from classified 
accelerometer data from 6 squirrels (3 winter, 3 autumn) using the random forest method with 
varying sample sizes of 2 – 30 seconds, and a manual decision tree method (DT). .................... 49 

Table 2.3 - Mean percent accuracy of the manually-created decision tree at correctly classifying 
each behavioral state in four trees of increasing complexity. Mean accuracy is calculated over 
100 subsampling events of observational data (50 observations per behavioral state). There is no 
observational data of whether red squirrels were moving or not moving while in the nest so those 
two categories were combined as ‘In Nest’ for the 4, 5, and 6-behavior classification trees. ...... 49 

Table 3.1 - Confusion matrix of accelerometer-based classification of snowshoe hare behavior to 
three categories: not moving, forage, and travel. Overall accuracy is 88.0% .............................. 67 

Table 3.2 - Confusion matrix of acoustic-based behavioral classification of snowshoe hare 
behavior to three categories: silence, chew, and hop. Overall accuracy is 94.1% ....................... 69 

Table S7.2.1. Maximum temperature change between two temperature recordings on data 
loggers deployed on red squirrels in the winter (ambient temperature < 0°C) and autumn 
(ambient temperature > 0°C). This rate of change is influenced by the temperature differential 
between the nest and ambient temperature. ............................................................................. 161 

Table S7.3.1. Summary of the number of observations of each behavior per hare per day 
recorded from six captive snowshoe hares for validating behavioral classification of 
accelerometer data. ................................................................................................................. 164 

Table S7.3.2. Percentage of observed snowshoe hare data that was included in random forest 
analysis at each time window after selecting segments that matched specific criteria. ............. 166 

Table S7.3.3. Inter-rater reliability at identifying chewing, silence, hopping, and unclassified 
sounds from acoustic recorders. .............................................................................................. 168 

Table S7.3.4. Upper and lower threshold values (dB) at each frequency used to identify silence, 
chewing, and hopping in 1 second audio clips for hare A. ....................................................... 168 

Table S7.3.5. Upper and lower threshold values (dB) at each frequency used to identify silence, 
chewing, and hopping in 1 second audio clips for hares B and C. ............................................ 169 

Table S7.3.6. Confusion matrix of classification of accelerometer data into three behavioral 
states for captive hare B2105. Overall accuracy was 85%. ...................................................... 171 

Table S7.3.7. Confusion matrix of classification of accelerometer data into three behavioral 
states for captive hare B2729. Overall accuracy was 90%. ...................................................... 171 

Table S7.3.8. Confusion matrix of classification of accelerometer data into three behavioral 
states for captive hare B2880. Overall accuracy was 91.7%. ................................................... 171 



 vii 

Table S7.3.9. Confusion matrix of classification of accelerometer data into three behavioral 
states for captive hare B2891. Overall accuracy was 78.3%. ................................................... 172 

Table S7.3.10. Confusion matrix of classification of accelerometer data into three behavioral 
states for captive hare B2895. Overall accuracy was 76.7%. ................................................... 172 

Table S7.3.11. Confusion matrix of acoustic behavioural classification for free-ranging 
snowshoe hare A. Overall accuracy is 92.2% .......................................................................... 173 

Table S7.3.12. Confusion matrix of acoustic behavioural classification for free-ranging 
snowshoe hare B. Overall accuracy is 92.2% .......................................................................... 173 

Table S7.3.13. Confusion matrix of acoustic behavioural classification for free-ranging 
snowshoe hare C. Overall accuracy is 97.8% .......................................................................... 173 

Table S7.4.1. Definition of variables, units, and parameters present on our model of activity. 
Values of constants used in simulations of the model are provided along with reference from 
which value was extracted. ..................................................................................................... 185 

Table S7.4.2. Model selection table for the proportion of 24 hours spent active by red squirrels 
including the log likelihood, AIC value, delta AIC, and model weight of each model. 
Explanatory variables included in each model are represented by a ‘Y’. Explanatory variables are 
resource availability (RA), proportion of available resources that are hoardable (RT), temperature 
(Ta), reproductive status (B), reproductive opportunities (nq), and interaction terms between 
these single variables. ............................................................................................................. 189 

 
  



 viii 

List of Figures 
Figure 2.1 Example of temperature and acceleration biologger data on red squirrels 
demonstrating the distinct signatures of different behavioral states. This includes in (black bars) 
and out (grey bars) of the nest in the temperature data during both winter and summer, and 
running, feeding, not moving, and foraging signatures in acceleration data. .............................. 20 

Figure 2.2 Classification decision tree of behavior from animal-borne acceleration and 
temperature biologgers on wild North American red squirrels. Red squirrel use of insulated nests 
can be identified through temperature signatures while behavioral state can be classified using 
acceleration. Classification was done at sample windows relevant to the natural duration of each 
behavior. For example, short duration behavior like running were classified at 4 second sample 
windows. Values in dark grey are the summary statistics and threshold values (in gforce) used for 
each division............................................................................................................................. 27 

Figure 2.3 Example of methodology used for determination of threshold values in separating two 
behavioral states. Histograms of summary statistics were plotted to determine which statistics 
visually had the clearest distinction between two behavioral states (A). The optimal threshold 
value was then determined by assessing the accuracy of classification of each known behavior 
across the selected summary statistic (B). Here ODBA showed a clear division between red 
squirrel feeding and travelling (A) and an ODBA value of 6.2 gforce produced the highest overall 
accuracy (92.1%; B). ................................................................................................................ 30 

Figure 2.4 Percent accuracy of random forest algorithm at classifying accelerometer data to 
known active behavioral states at varying sample windows for red squirrels. Overall accuracy is 
the mean accuracy of the three behavioral states: running, foraging, and feeding. ..................... 33 

Figure 2.3 Time red squirrels spent each day from late winter to late autumn doing each of the 
four main behavioral states: running, foraging, feeding and in nest. Each box represents the 
interquartile range of all individuals as calculated from classified accelerometer data using a 
manual decision tree classification. The dotted line signifies a break in the time line when no 
accelerometers were deployed. ................................................................................................. 36 

Figure 3.1 Example of 1Hz tri-axis accelerometer data and the orientation axis from a collar 
attached to a captive snowshoe hare. Arrow indicates location where accelerometer rested on the 
animal. ..................................................................................................................................... 53 

Figure 3.2  Example illustrating method for determination of threshold values for separation of 
behavioral states using accelerometer data from collars attached to snowshoe hares. Histograms 
provide visualization of percent overlap between two behavioral categories using a given 
summary statistic (A). Optimization is performed by examining the accuracy of the behavioral 
classification between two behavioral states across a range of values and selecting the value at 
which the overall accuracy is the highest and where the individual accuracy of each behavior 
intersects. Dotted line represents the selected threshold value for classifying accelerometer data 
into forage and travel using DOA. ............................................................................................. 60 

Figure 3.3  Hierarchal decision tree used to classify snowshoe hare accelerometer data to four 
behavioral categories. Long duration behavioral states were classified using a 12 second window, 
while short duration behavior was classified using a four second window. The accuracy of each 
division is the percentage of observed behavior that were classified correctly. Histograms depict 



 ix 

the frequency of each behavior occurring at different values of the summary statistic used for the 
division of the tree. Black represents behavior on left side of the decision tree while white is 
behavior on right side of decision tree at each split. .................................................................. 66 

Figure 3.4  Amplitude frequency spectral properties of hop, chew and silent sounds from animal-
borne acoustic recorders on snowshoe hares (right) and accompanying spectrograms (left). 
Shading represents the 95% CI of the amplitude for each behavior. .......................................... 68 

Figure 3.5 Acoustic determination of time spent chewing (black), hopping (white), silent (black 
stripe), and other (white stripe) during accelerometer-defined bouts of foraging (A) and not 
moving (B), across all individuals (n=3) and for each individual free-ranging snowshoe hare. .. 70 

Figure 3.4 Accelerometer classification of the proportion of each hour of the day spent foraging 
(A) and not moving (B) and the acoustic composition (chewing: black, hopping: white, silence: 
black stripe, or other: white stripe) of those behavioral states. All data was collected over the 
same two days from free-ranging snowshoe hares (n=3) that were outfitted with an accelerometer 
and an acoustic recorder. Arrows denote sunrise and sunset times............................................. 71 

Figure 3.5  Average time spent by snowshoe hares on each behavior during different light phases 
of a day and moon phase with light boxes for full moon (lunar illumination > 0.66) and dark 
boxes for new moon (lunar illumination < 0.33) conditions (mean ± 95% CI). Not moving (A), 
foraging (B), and hopping (C) are presented as time spent (min/hr) expressing each behavior, 
while sprinting (D) is depicted as number of events per hour. Bar at top indicates the solar 
illumination level of each light phase and average number of hours that occur during that phase 
in a 24-hour period. .................................................................................................................. 73 

Figure 3.6.  Average foraging time (min/hour) of snowshoe hares when moon is above (risen; 
light grey) or below (set; black) the horizon during different moon illumination fractions (mean ± 
95% CI). ................................................................................................................................... 74 

Figure 4.1. Seasonal variation in observed red squirrel (n=225) activity and inactivity throughout 
the day recorded using accelerometers. The timing and amount of activity varies according to 
each season (spring (A), summer (B), autumn (C), and winter (D)). Timing of daily activity is 
presented as proportion of photoperiod phase that squirrels were active (left), along with an 
actogram illustrating how activity (black) is organized within each time period (right). Each day 
is subdivided into four photoperiods in each figure: dawn (light grey shading in actogram), day 
(white), dusk (light grey) and night (dark grey) with the relative length of each phase represented 
by the width of box. Actograms display 7 days of activity and inactivity for a randomly selected 
individual. .............................................................................................................................. 102 

Figure 4.2. Observed daily activity (proportion of 24 hours) of free ranging red squirrels (n = 
225) recorded using accelerometers over three and half years. Each date is represented as a 
boxplot denoting the 25 and 75 quantiles with dots representing activity outside that range. ... 103 

Figure 4.3 Daily activity (proportion of 24 hours) responses to temperature, resources, and 
reproductive opportunities. The effects of temperature on activity were dependent on resource 
availability and resource type (A), while the effects of mating opportunities were dependent on 
resource availability (B). Responses and 95 confidence intervals were generated from a GLMM 
of 3.5 years of activity data collected from accelerometers. Resource availability at a saturation 
(RT) value of 0 are 5 (low), 20 (moderate), 40 (high), while at an RT of 0.5 and 1 are 60 (low), 90 
(moderate), and 120 (high) to represent the natural range observed at each condition. As mating 



 x 

only occurs when RT = 0, resource availability values were 5 (low), 20 (moderate), and 40 
(high)...................................................................................................................................... 104 

Figure 4.4. Predicted responses of optimal daily activity (proportion of 24 hours) of red squirrels 
to temperature (A), and reproductive opportunities (B) across variation in resource availability 
and resource type (panels in A). Predictions are based on measured values of ambient 
temperature (Ta), resource availability (RA), proportion of available resources that were satiating 
(RT), and mating opportunities (nq) from the study area. ........................................................ 106 

Figure 4.5. Observed and predicted daily activity of a population of free-ranging red squirrels in 
southwestern Yukon (A). Activity was observed over 3.5 years using accelerometers (n=489) 
and predicted according to optimization of energetic and reproductive gain in the decision 
between activity and inactivity. Predictions (black) are overlaid on range of observed daily 
activity (light grey shading). The correspondence between observed and predicted is assessed by 
the error of the prediction relative to the observed daily mean value (B), and the correlation of 
predicted daily values to observed (C). Error of the prediction is the difference between the 
observed mean daily proportion of activity and model predicted daily proportion (convertible to 
hours by multiplying by 24; B). Dark grey band represents within 1.2 hours of daily mean value 
and light grey band represents range within 2.4 hours. ............................................................ 107 

Figure 5.1. Seasonally differentiated daily activity of co-occurring red squirrels (dark grey) and 
snowshoe hares (black) at Kluane, Yukon. Background colour reflects daily air temperature 
variation, ranging from -40°C indicated by the darkest blue to 20°C indicated by the brightest 
red. Predicted activity of both species is generated from an optimization model (Studd et al., n.d.) 
that had high accuracy at matching observed range of values collected using accelerometers 
(squirrels = 0.76 %, hares = 0.81 %). ...................................................................................... 124 

Figure 5.2. An extension of Weiner’s barrel model of energy balance to a seasonal realm (a). In 
summer, the intake triangle is large and energy expenditure (bottom) is low resulting in a highly 
positive energy balance (black fill). In winter, intake is lower, expenditure is higher, and 
balances are negative (deficit). Summer production potential is gain above expenditure minus 
summer storage, which is equivalent to winter deficit. Model predicted energy balance (b) in 
summer (top) and winter (bottom), along a seasonality of behaviour continuum (inflexible 
express year-round constancy in activity, flexible express high activity in summer and low to no 
activity in winter). Although the flexible end of the continuum is just as active in summer, their 
potential rates of production are less, because they need to store summer accumulation for winter 
deficits. Observed rates of spring to autumn increase (c) over 30 years for snowshoe hares, which 
are characterized by inflexible activity, and red squirrels, which are characterized by seasonally 
flexible activity ....................................................................................................................... 126 

Figure 5.3. Predator diet composition is dependent on the activity of the prey. Model predictions 
of predator diet (a) on two prey species at equal biomass illustrate a seasonal shift in diet in 
response to the bioavailability of the flexible prey species. Canada lynx diet composition of 
inflexible (snowshoe hare; black) and flexible (red squirrel; light grey) prey species calculated 
from animal-borne acoustic recorders shows a seasonal transition in response to the activity of 
the flexible prey. Numbers on top of bars are the total number of kills recorded each month. .. 128 

Figure 5.4. Seasonal shifts in predator prey choice due to changing bioavailability generates  
differential mortality rates over the year for behaviourally inflexible (black) and flexible (light 
grey) prey. Model predictions (a) suggest that inflexible prey will have higher mortality in winter 



 xi 

than summer while flexible prey will higher mortality in summer than winter. Weekly mortality 
rates of inflexible adult snowshoe hares (b) calculated from individuals monitored daily for four 
years, and flexible adult red squirrels (c) calculated from individuals monitored seasonally for 27 
years illustrate this pattern empirically. For empirical data values from each year of the study are 
shown in the background with the mean values across the whole study in the foreground. ...... 130 

Figure 5.5. Annual rate of increase, decrease and population stability depend on the flexibility of 
behaviour to seasonal variation. Model predictions (a) show that behaviourally inflexible 
consumers will have higher rates of increase when predators are scarce and higher rates of 
decrease when predators are abundant than flexible consumers, which produces larger 
amplitudes in population dynamics (b). Analysis of population time series from 229 small 
mammal populations illustrates that observed maximum rates of increase and decrease are more 
extreme (c) and population coefficient of variation are greater (d) for diet and thermoregulatory 
strategies associated with behavioural inflexibility than more flexible strategies. Shading of 
boxplots range from behaviourally inflexible (black) to flexible (light grey) species. Diet 
categories include plant vegetative material (veg), plant reproductive material (rep), and 
invertebrates (inv). .................................................................................................................. 132 

Figure 5.6. Predicted values and observations of biomass production across the variation of 
summer and winter intensities observed in Kluane between 1995 and 2018. Predictions of the 
influence of growing degree days (a) and winter severity (c) on biomass production of 
behaviourally flexible (Cf) and inflexible consumers (Ci) when activity varies with temperature. 
The effect of condition is dependent on whether there are no predators (dashed; P-low) or 
abundant predators (solid; P-high) in the system. Observed summer (b) and winter (d) biomass 
changes of snowshoe hares (black), red squirrels (gray) according to growing degree days and 
winter severity. Low predator condition were years during the hare population increase, and high 
predator condition were years during the hare population decline. Growing degree days was the 
accumulated temperature of all days > 5°C between April 1 – and Oct 31. Winter severity is the 
number of days during winter when temperature was < -15°C. ............................................... 134 

Figure S7.2.1. Change in overall dynamic body acceleration (ODBA; median and 25th/75th 
quantiles) as acceleration data is smoothed at increasing running means window sizes from 3 s to 
221 s for running (A), foraging (B), and feeding (C) behavioral states over 1 day in 8 red 
squirrels. Grey box (91 s) represents the window size selected for calibration of red squirrel 
accelerometer data. ................................................................................................................. 163 

Figure S7.3.1 – Influence of smoothing window size for calculate of static acceleration on value 
of OA (g). ............................................................................................................................... 165 

Figure S7.3.2 - Accuracy of random forest classification of snowshoe hare accelerometer data 
into behavior is influenced by the size of the time window over which acceleration summarized.
 ............................................................................................................................................... 167 

Figure S7.3.3 – Frequency-amplitude outputs of 1 second clips of animal-borne acoustic 
recordings on snowshoe hares (n=3)  showing the sound profiles of hopping (A,B), silence 
(C,D), and chewing (E,F). Each line represents a different audio clip. Different recorders 
generated different profiles for the same type of sound. A,C, and E are sounds recorded from 
hare A, while B, D, and F are the same types of sounds recorded from hares B and C. ............ 170 



 xii 

Figure S7.4.1. Measured and estimated temporal variation of Kluane abiotic and biotic variables 
relevant to red squirrel activity optimization including resource availability (Ra), proportion of 
available resources that are hoardable (Rt), number of mating events in a week (n), quality of 
offspring produced from mating event (q), and temperature (Ta). ............................................ 174 

Figure S7.4.2. Relative resource availability (Ra) over the duration of the study is composed of 
seasonal and multiannual pulses of different resource types. Primary resources for red squirrels 
include fresh spruce cones (Rfc), hoarded cones (Rhc), fresh fungi (Rff), hoarded fungi (Rhf), 
spruce buds (Rb), and summer pulse items (berries, leaves, needles; Rp). ................................ 182 

Figure S7.4.3. Assessment of model accuracy in relation to diminishing returns values for 
hoardable (αH, top) and non-hoardable (αP, bottom) resources. Model allows diminishing returns 
values for both hoardable and non-hoardable resources to vary linearly with resource availability 
such that min values are applied to lowest observed resource values and max values are applied 
to the highest observed resource values. .................................................................................. 188 

Figure S7.5.1 – Summer population rates of increase of small mammal populations in Kluane, 
Yukon observed over 30 years. Behaviourally inflexible species (red-backed vole and snowshoe 
hare) have, on average, greater population increases than behaviourally flexible species (red 
squirrel and arctic ground squirrels). Letters denote significant differences (p<0.001) in 
population rates of increases between species. ........................................................................ 190 

Figure S7.5.2 – Daily activity values recorded using accelerometers on red squirrels (a; n = 489) 
and snowshoe hares (b; n = 279) over four years. .................................................................... 191 

 
  



 xiii 

Abstract 
 
The behavioural decision to be active or inactive represents a trade-off between the need to 

acquire energy and the costs associated with that acquirement. In seasonal environments, the 

relative costs and gains associated with activity can shift dramatically between winter, when 

temperatures are cold and resources are scarce, and summer, when temperatures are mild and 

resources are abundant. Despite the obvious link between activity and seasonality, studies of 

activity patterns over multi-seasonal time scales are surprisingly sparse, meaning we do not 

know how activity responds to environmental conditions and, in turn, how activity responses to 

environmental conditions influence population dynamics and species interactions. In this thesis, I 

use biologging to quantify how free-ranging animals adjust activity according to seasonal 

environmental variation, including air temperature and resource availability, and theoretical 

modelling to explore the ecological implications of these responses, including population 

dynamics and trophic interactions. I collected continuous behavioural data through direct 

observations and biologging technologies over four years on three interacting species - the North 

American red squirrel, snowshoe hare, and Canada lynx - within the highly seasonal northern 

boreal forest. Using direct observations for biologger calibration, I show that classifying low 

frequency accelerometer signatures to long duration behavioural states can be achieved with high 

accuracy allowing for long duration (weeks to months) recordings even in small mammals with 

high frequency movements. Combining accelerometric and acoustic biologging technologies on 

snowshoe hares highlights the complementarity of accelerometer quantification of activity states 

and acoustic determination of finer-scale details like chewing.  I show that red squirrel activity is 

highly seasonal with a 3-fold decrease in activity from autumn to winter and that hares express 

subtle behavioural responses to moonlight conditions and are characterized by more seasonal 
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constancy in activity patterns than red squirrels. Given the advances achieved recording 

behaviour over long time periods on free-ranging individuals, I use four years of accelerometer 

recordings on red squirrels to show that daily activity is highly predictable as an optimization of 

energetic and reproductive gain. Finally, I show how summer-to-winter differences in activity 

levels determines the seasonality of biomass production and loss, and thus population rates of 

increase, decrease, and stability. Through empirically-supported theoretical modelling, this thesis 

highlights the ecological importance of animal activity in seasonal environments, including its 

bottom-up regulation by environmental conditions and its contributions to populations dynamics 

and species interactions.  
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Résumé 

La décision comportementale d’être actif ou inactif représente un compromis entre le besoin 

d’acquérir de l’énergie et le coût associé à cette acquisition. Dans les environnements 

saisonniers, les coûts et bénéfices relatifs associés à l’activité peuvent changer radicalement entre 

l’hiver, quand la température est froide et les ressources sont rares, et l’été, quand la température 

est douce et les ressources sont abondantes. Malgré le lien évident entre l’activité et la 

saisonnalité, les études sur les patrons d’activité à une échelle multi-saisonnière sont rares, ce qui 

signifie que nous en savons peu sur comment l’activité répond aux conditions environnementales 

et comment cette réponse influence la dynamique des populations et les interactions entre 

espèces. Dans cette thèse, j’utilise le biologging pour quantifier comment l’activité des animaux 

en liberté répond à la variation saisonnière de l’environnement, incluant des changements de 

températures de l’air et de la disponibilité des ressources, et des modèles théoriques pour 

explorer les implications écologiques de ces réponses, incluant la dynamique des populations et 

les interactions trophiques. Dans l’environnement très saisonnier de la forêt boréale nordique, 

j’ai recueilli, en utilisant des observations directes et des technologies de biologging, des 

données comportementales en continu sur quatre ans et trois espèces en interaction - l'écureuil 

roux d'Amérique du Nord, le lièvre d'Amérique et le lynx du Canada. En calibrant les biologgers 

à l’aide des observations directes, je démontre qu’il est possible de classifier, avec une grande 

précision, des signatures d’accéléromètre à basse fréquence selon des états comportementaux, ce 

qui permet des enregistrements de longue durée (semaines à mois) même chez les petits 

mammifères avec des mouvements à haute fréquence. Chez le lièvre d’Amérique, la 

combinaison de technologies de biologging en accélérométrie et en acoustique met en évidence 

la complémentarité des mesures accélérométriques des états d'activité et des mesures acoustiques 
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plus détaillées du comportement, comme la mastication. Je montre que l’activité des écureuils 

roux est extrêmement saisonnière avec une activité trois fois moindre à l’automne qu’à l’hiver et 

que les lièvres expriment des réponses comportementales subtiles aux phases de la lune et un 

patron saisonnier d’activité plus constant que les écureuils roux. Compte tenu des progrès 

réalisés sur l'enregistrement du comportement d’individus en liberté sur de longues périodes, 

j'utilise quatre années d'enregistrements par accéléromètre sur des écureuils roux pour montrer 

que leur activité quotidienne est hautement prévisible selon l’optimisation des gains énergétiques 

et reproductifs. Enfin, je montre comment les différences d'activité entre l'été et l'hiver 

déterminent le caractère saisonnier de la production et de la perte de biomasse, et donc des taux 

d'accroissement, de diminution et de stabilité des populations. À travers une modélisation 

théorique appuyée empiriquement, cette thèse met en évidence l’importance écologique de 

l’activité animale dans les environnements saisonniers, y compris sa régulation ascendante par 

les conditions environnementales et ses contributions à la dynamique des populations et aux 

interactions entre espèces. 
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Contribution to Knowledge 
 
Within this thesis, I contribute to our understanding of how the environment shapes an 

individuals’ choice between activity and inactivity and what implications this choice has on a 

species’ engagement with, and the dynamics of, other species with which it interacts. In 

achieving this objective, I feel that I have made seven key contributions to knowledge. First by 

examining behaviour over longer time scales than is typical, this thesis highlights the importance 

of studying organisms in all seasons. There is a strong bias in research towards studying animals 

in summer and breeding seasons, but winter is a very different beast that is under appreciated. 

Within this thesis I show that animals have differential behavioural patterns between seasons 

(Chapters 2, 4, 5), and more importantly that what occurs in one season has carry-over effects to 

the other seasons (Chapter 5).  

 

Second, studying behaviour on free-ranging individuals has traditionally been difficult requiring 

high manpower for little data. Recent advances in technology have alleviated this constraint but 

required recording behaviour in such fine detail and high frequency that devices were limited in 

their duration, especially on small mammals that are restricted in the weight they can carry. 

Chapter 2 pushes the boundaries of what the literature states is the minimal recording frequency 

that can be used with accelerometers for recording behaviour, and shows that low frequency 

acceleration data can be used on small mammals with high accuracy if the scale of the 

behavioural states of interest is increased (e.g., from identifying individual steps to identifying 

travel bouts). This methodological advance will provide a new way forward within the 

biologging world and allow more applications of this technology for monitoring behaviour over 

durations relevant to studying ecological interactions.  
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The only issue with these technologies is a requirement of species-specific calibrations before 

the data can be used in behavioural studies. My third contribution to knowledge is a completion 

of this calibration for red squirrels (Chapter 2) and for snowshoe hares (Chapter 3). Both 

chapters produced a simple decision tree classification that is easily transferrable to other 

researchers using accelerometers on these species, as long as the same deployment procedure is 

used. This has allowed several other research projects in addition to the remainder of my thesis 

to include continuously-measured behaviour in their analysis.   

 

Fourth, there are limitations in what accelerometers are capable of capturing for which other 

biologging technologies might be better suited. In Chapter 3, I illustrated the applicability of 

using acoustic recorders for capturing continuous behaviour on a cryptic species where observing 

free-ranging individuals was nearly impossible. Although not emphasized in the text, in Chapter 

5, I use acoustic recorders on lynx to get continuous data on diet composition. In the first 

comparison of accelerometer and acoustic recorders on terrestrial fauna, I show the pros and 

cons of using one technology over another and highlight the importance selecting the right tool 

for the behaviour of interest. Acoustic recorders are rarely used in terrestrial systems for studying 

behaviour outside of vocalizations, and the work I have done here should be critical to the 

incorporation of this emerging method in other work.   

 

Fifth, throughout this thesis, I produce the first detailed characterization of how two boreal 

species change behaviour over time, contributing new knowledge about the level of flexibility to 

which red squirrels are capable of adjusting behaviour over a year (Chapter 2 and 4), and how 



 xxiv 

snowshoe hares adjust behaviour in response to moonlight conditions (Chapter 3). The later 

provided evidence that species use compensatory foraging to minimize daily effects of 

moonlight-induced activity-reduction during the night.  

 

Sixth, behaviour is often considered to be complex, noisy, and unpredictable but is also often 

observed at the scale of patch use and prey selection. By zooming out and considering daily scale 

decisions across seasons and years from a bioenergetic framework, I show that behaviour is 

actually highly predictable (Chapter 4) and likely bottom-up regulated. Within this chapter, I 

produce a simple decision model based on optimization of energetic and reproductive gain that 

should be capable of predicting activity throughout the year for any endotherm given knowledge 

of resource quality and quantity, temperature, mating opportunities, and energetic parameters.   

 

Finally, I have produced the first attempt, to my knowledge, at incorporating activity into 

predator-consumer-resource dynamical equations (Chapter 5). In doing so theoretically, I 

generate testable predictions of how seasonal activity of species influences the flow of energy 

and biomass through a system. By empirically testing these predictions, I propose that bottom-up 

regulated seasonal flexibility in activity (Chapter 4) is one of the main determining factors of a 

population’s rate of increase and decrease, and ultimately the amplitude of cyclical dynamics. 

This theoretical finding contributes substantially to our understanding of population cycles.  
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Chapter 1 – Introduction 
 

Introduction 

The boreal forest, covering 11.5% of earth’s land mass is the world’s largest terrestrial biome 

and most seasonal forested environment on earth (Gauthier et al., 2015). Existing in locations 

where temperatures are below 0°C for 6 – 8 months of the year, these forests are characterized by 

short growing seasons, severe winters, and low species diversity (Brandt et al., 2013). In order to 

sustain viable populations, animals residing within these forests must be capable of capitalizing 

on the short periods of production, and surviving long periods of suspended primary production 

with associated high energetic costs. While some species take extreme measures to avoid the 

long winters through migration or hibernation, many remain active and resist conditions through 

various adjustments and adaptations (Scholander et al., 1950; Marchand, 2013). This variety of 

behavioural approaches to winter creates seasonal variation in local species composition that is 

predicted to shift food web regulation from bottom-up in summer to top-down in winter 

(Humphries et al., 2017).This prediction extends beyond that of hibernators and non-hibernators, 

with the expectation that there is actually a gradient of behavioural strategies to winter with 

ramifications on species interactions. However, because the traditional tendency is to study 

behaviour over short time frames (Lima & Zollner, 1996), or in controlled settings, and to study 

wildlife during the summer (breeding season) when researchers are free of academic constraints 

(Marchand, 2013) and environments are considered “active” (Campbell et al., 2005), little is 

known about behavioural responses of “winter-active” species to seasonal environmental change, 

especially when measured at a scale that is relevant to population dynamics and species 

interactions. With the current climate emergency and a push to predict how species will be 
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impacted by milder winters and longer summers (IPCC, 2013), it is critical to collect baseline 

information year-round on of how species respond to environmental variability.  

 

The objective of this thesis is to determine how an individuals’ choice between activity and 

inactivity is shaped by predictable and unpredictable environmental variation occurring over 

months, seasons, and years, and how this choice impacts a species’ population dynamics and its 

interactions with other species. This begins with the development of methods for studying 

behaviour in small mammals over ecologically relevant timescales. Chapter 2 combines 

behavioural observations with animal-borne acceleration and temperature data from North 

American red squirrels to develop analytical approaches for classifying low frequency 

biologging into behaviour and has been published in Ecology and Evolution (Studd et al., 2019). 

Building on this classification, Chapter 3 evaluates the use of accelerometers and acoustic 

recorders for recording behaviour on the cryptic snowshoe hare and assesses hare behavioural 

responses to changing moonlight conditions. This chapter has been published in Frontiers in 

Ecology and Evolution as part of special issue on biologging (Studd et al., 2019). The remaining 

two chapters use the classifications developed in Chapter 2 and 3 to examine how animals 

respond behaviourally to their environment and the population and food web implications of 

those responses. As such, Chapter 4 examines the drivers of seasonal and multiannual 

fluctuations in red squirrel activity and develops a bioenergetic model to predict activity 

according to optimization of energetic gain, and is currently in review at Ecology Letters. Given 

the predictability of activity at long time scales, Chapter 5 integrates an activity parameter into 

predator-consumer-resource dynamical equations to assess how variation in seasonal flexibility 

of a species’ behaviour influences species interactions, population rates of increase and decrease, 



 3 

and population stability. This empirically-supported theoretical chapter is prepared for 

submission to Nature. 

 

In the next section, I review the literature surrounding what behaviour is, how we study it, and 

how it is influenced by environmental change including seasonality, before concluding with a 

review of the boreal forest vertebrate food web, and in particular the Kluane ecosystem on which 

this thesis is focused. 

 

Literature Review 

Behaviour – its energetic basis and dynamical consequences 

The definition of behaviour is a topic of contention (Levitis et al., 2009; Baum, 2013; Lazzeri, 

2014), but fundamentally can be described as a choice that is expressed by an organism, that has 

a purpose, that takes time, and that occurs in a particular place (Baum, 2013). Although by 

placing the focus at the level of the organism, this definition admittedly ignores behaviour at the 

level of neurons (Hogan, 2015), muscles (Grier & Burk, 1992; Manning & Dawkins, 1998), or 

groups (DeLellis et al., 2015), but in doing so does focus in on a level that is relevant to the 

ecology of a species (Baum, 2013). Even after narrowing the definition to a specific level of 

organization, the form that behaviour takes is still highly varied, both occurring across many 

axes of variation (including but not limited to movement, feeding, and social behavior), and 

across different timescales (from seconds to seasons; Bailey et al., 1996; Mueller & Diamond, 

2001; Owen-Smith et al., 2010). For example, depending on the question of interest, one could 

describe the behaviour of an animal as a set of steps and pauses, a sequence of feeding and 

sleeping bouts, or a transition between migrating and non-migrating. This wide range of 
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categorizations represents a variety of different contexts and questions that can be explored. 

Ultimately, both the form and definition of behaviour that is used will depend on which of 

Tinbergen’s four questions (or other more recently proposed behavioural frameworks; see Hogan 

2015) the particular study of behavior is directed under (Tinbergen 1963, Batesen and Laland 

2013). For the purpose of finding a generalizable way to classify behaviour across all species in a 

manner that is pertinent to the ecology of the species and its interactions with the environment 

and other species, the rest of this review will consider behaviour in the form of two contrasting 

states: activity and inactivity. In this form, activity, defined as moving, feeding, and outside of a 

refuge, is characterized by acquisition and expenditure, and inactivity, defined as stationary, not 

feeding, and within a refuge, is characterized by conservation and recuperation. 

 

Behavioral variation is widely recognized as important in defining an animal’s energetic status, 

and as such is highly dependent on environmental conditions. All animals are essentially energy 

processors that take energy acquired from the environment and allocate it to maintenance, 

growth, and reproduction (Yodzis & Innes, 1992). In this light, the choice between activity and 

inactivity defines both energy intake and expenditure; energy intake is determined, in part, by 

time spent foraging, and energy expenditure is determined by the cost of the behaviour, as well 

as costs of thermoregulation (Anderson & Jetz, 2005; Humphries & McCann, 2014). With clear 

links from foraging theory that foraging time is dependent on resource availability, resource 

quality and predation risk (Pyke, 1984; Houston & Mcnamara, 2014), and from metabolic theory 

that energy expenditure is dependent on thermal conditions (Scholander et al., 1950; Buckley et 

al., 2018), whether activity generates an energy surplus or deficit, and thus whether an animal 

should be active or inactive is ultimately environmentally-driven. Despite the obvious connection 
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between behaviour and environmental conditions, and behaviour and energy status, our 

consideration of behaviour in energetic processes is often neglected (Kam & Degen, 1997; 

Humphries & Umbanhowar, 2007). But it is through these two connections, and through 

consideration of behaviour in these processes that we can begin to understand the relationship 

between environmental variation and life-history and ecological outcomes.   

 

In addition to its role in energetic pathways, behavioural variation also shapes the nature and 

strength of ecological interactions (Rizzuto et al., 2018). Food webs are shaped by the outcomes 

of behavioural decisions oriented around the discordant interests of predators seeking to eat prey, 

and prey seeking to avoid being eaten by predators. Initial attempts to incorporate behaviour into 

ecological theory focused on handling time constraints that limit the consumption of abundant 

prey (i.e. saturating functional responses), and search image constraints that limit the 

consumption of scarce prey (i.e accelerating functional responses; Holling, 1959, 1966; 

Rosenzweig & MacArthur, 1963). With the inclusion of prey choice (MacArthur & Pianka, 

1966) and habitat selection (Fretwell & Lucas, 1969) into basic ecological theory, behaviour 

came to be recognized as a choice in addition to a constraint. However, these foundational 

models and the modern food web theory that is organized around them omit many additional 

behavioural decisions that must be critical to food web interactions. In particular, the behavioural 

decisions made by a consumer, seeking to acquire a resource in the presence of a predator are 

likely to be highly complex and sensitive to resource abundance, predator abundance, predator 

behaviour, and multiple aspects of the abiotic environment (e.g., photoperiod, temperature, snow 

and ice cover, etc.; Schoener, 1971; Pyke et al., 1977; Sih, 2005; Laundré et al., 2010; van Beest 

et al., 2012; Dell et al., 2014). The form of these decisions – how animals behave in time – will 
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determine not only the interaction strength between two species, but also whether a modification 

in one component of a food web will influence the stability of adjacent components of that food 

web (i.e. indirect effects, trophic cascades; Pace et al., 1999; Werner & Peacor, 2003; Schmitz et 

al., 2004). It is thus important, that we begin to explore the role behaviour plays in food web 

theory by considering it from a bioenergetic framework.    

 

Measuring behavior in the wild 

Recent advances in technology are revolutionizing methodological approaches and alleviating 

long-standing constraints of studying behaviour of free-ranging organisms. Traditionally 

behavioural research has relied heavily on direct observations of free-ranging species (Altmann, 

1974), a process that required large manpower for little data, was restricted to non-cryptic 

species, and was marred by the fact that individuals would often adjust behaviour in the presence 

of an observer (Schneirla, 1950; Altmann & Altmann, 2006; Crofoot et al., 2010). The use of 

indirect methods like tracking, and camera traps gave access to times and species where 

observation was not possible, but still provided only a brief snapshots of behaviour (Macdonald, 

1978; Priede & Swift, 1992; Meek et al., 2014; Caravaggi et al., 2017). These limitations meant 

quantifications of behaviour could only be achieved at broad classifications and often only at a 

population level over a whole season. Recently, the biologging revolution, as part of the broader 

digital revolution and the entrance of the world into the Information Age has brought drastic 

shifts to how behaviour is studied (Brown et al., 2013; Kays et al., 2015). The constant reduction 

in the size of computers and microprocessors resulting from a doubling of the number of 

processors per microchip every two years (i.e., Moore’s law) has led to an equivalent 

improvement of animal attached remote sensors, or bio-loggers (Moore, 1965; Elliott, 2016). 
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This is producing opportunities for continuous and detailed recordings of behaviour during 

cryptic times and in cryptic locations over long time periods, thus eliminating the previous 

limitations imposed by requirements for physical observations or hands-on measurements 

(Ropert-Coudert & Wilson, 2005; Hussey et al., 2015; Wilmers et al., 2015). 

 

With an explosion of bio-logging technologies and the ever-increasing processor efficiencies, 

ecologists now face the task of choosing the right tool for the right job. A plethora of bio-loggers 

exist that are capable of collecting a range of data about individuals and their local environment 

through measurements of spatial location (Cagnacci et al., 2010; Dujon et al., 2014), proximity 

(Prange et al., 2006), acceleration (Yoda et al., 1999; Gleiss et al., 2011), temperature (Brown-

Brandt et al., 2003; James & Mrosovsky, 2004; Kanda et al., 2009), depth (Hays et al., 2007), 

heart rate (Woakes et al., 1995; Ropert-Coudert et al., 2009), sound (Lynch et al., 2013; 

Couchoux et al., 2015), and video (Thompson et al., 2012; Rutz & Troscianko, 2013). Every 

device provides a wealth of information but three technologies in particular capture detailed 

information on behaviour without the need of an observer. Camera collars produce videos taken 

from the perspective of the animal, notably providing information on prey selection, inter- and 

intra-species interactions, and local environmental conditions (Thompson et al., 2012; Pagano et 

al., 2018). Although there is lots of potential in the camera collars, as of yet the high energy 

consumption limits their application to large animals who can carry the weight of the battery. 

Acoustic recorders first gained attention for documenting soundscapes (Pijanowski et al., 2011), 

and animal communication (e.g., Reby & McComb, 2003; Fischer et al., 2004; Couchoux et al., 

2015; Thiebault et al., 2016) but more recently have also showed great potential in also recording 

non-vocal behaviour, even on small mammals (e.g., flying, feeding, walking; Ilany et al., 2013; 
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Lynch et al., 2013; Stowell et al., 2017; Wijers et al., 2018). Accelerometers that record the 

magnitude and direction of proper acceleration along multiple axes at high frequencies can 

provide information on the movement, activity, energy expenditure, and behaviour of individuals 

in fine detail over large temporal scales (e.g., Shepard et al., 2008; Nathan et al., 2012; Bidder et 

al., 2014; Williams et al., 2014).  

 

With each biologging device comes methodological challenges that can limit their applicability 

for answering ecological questions. The three technologies mentioned above, that are useful for 

behavioural studies, require recording at high frequencies in order for the data to be convertible 

to behaviour (see recommendations in Brown et al., 2013). This necessity results in high energy 

consumption which on small mammals, in particular, means only short deployments and thus 

still only snapshots of behaviour through time (Tatler et al., 2018). However, little work has been 

done to explore the possibility of extracting behaviour from lower frequency data, which if 

possible could provide a way to extend deployments. The other limitation is that conversion of 

biologger data into behaviour can require large processing power, partly due to the use of 

machine learning algorithms like random forests (Breiman, 2001; Nathan et al., 2012; Campbell 

et al., 2013; Graf et al., 2015). Unfortunately, these methods have a black box nature that makes 

it difficult for researchers to assess the logic, validity, and accuracy of a classification developed 

with training data and applied to new applications lacking training data (Bidder et al., 2014; 

McClune et al., 2014). To counter this, support is gaining ground for more simplified techniques 

that, although are more time consuming, produce results in a more comprehensible classification 

that is easily transferrable to new applications (e.g., Collins et al., 2015). Given these limitations, 
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there remains a need for further methodological exploration of the techniques used for 

biologging behaviour.  

 

Behavioural responses to changing environments 

All environments change cyclically over time at various scales and magnitudes that influence 

how animals choose to behave. At one of the shorter timescales, the rotation of the earth around 

its axis creates a transition from day to night that brings drastic changes in the light environment 

and a corresponding daily fluctuation in temperature. This simple transition maintains circadian 

rhythms and generates daily activity patterns as individuals select the environmental conditions 

that best suit its needs (Daan, 1981; Anderson & Wiens, 2017; Yan et al., 2018; Vinne et al., 

2019). Over the course of each month, the rotation of the moon around the earth creates a lunar 

cycle which adjusts the level of light available each night for nocturnal animals. With light levels 

determining visual acuteness, moonlight conditions are known to impact hunting success of 

visual predators, as well as perceived predation risk for prey (Daly et al., 1992; Pratas-Santiago 

et al., 2016). At the scale of a year, the rotation of the earth around the sun creates seasons. These 

long term changes in photoperiod and temperature drive primary productivity, often resulting in 

an environment that fluctuates annually between scarce resources combined with harsh thermal 

conditions, and abundant resources combined with thermally neutral temperatures (Goward et 

al., 1985). The duration of these seasonal fluctuations extend past the length that animals can just 

sit and wait until conditions return to being favourable, and thus require more drastic behavioural 

adjustments (Goldman, 2001). Some species avoid harsh seasons by migrating or hibernating, 

while others remain active and resist conditions by adjusting behaviour where possible 

(Lovegrove, 2000; Marchand, 2013). Whatever the strategy, these seasonal fluctuations are 
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responsible for creating annual routines that structure the year into discrete periods (i.e., breeding 

season) (McNamara & Houston, 2008). Regardless of the scale over which environmental 

conditions vary, cyclic changes in light and temperature are always key predictors of behavioural 

variation (Laje et al., 2018). 

 

In addition to these predictable changes in the environment, animals also face unpredictable and 

non-cyclic environmental variability. Short-term variation in weather is often unpredictable and 

can drastically change the local environment. Wind, rain, snow, drought, and floods affect 

thermal conditions and resource availability in ways that augment behaviour by shifting 

energetic costs and gains (Kemp et al., 2010; Ismail et al., 2011; Payne et al., 2013; Loe et al., 

2016). Most primary resources grow on an annual cycle in connection with seasonality, but the 

quantity and quality of plant growth and seed production varies each year with climate, as well 

as with masting events that have evolved through plant-herbivore arms races (Yang et al., 2010; 

Sala et al., 2012). These two processes create multiannual fluctuations including intermittent 

pulse resources on which animals are known to adjust reproduction and activity in response to 

(Boutin et al., 2006; Yang et al., 2008; Bergeron et al., 2011). Finally, climate change is expected 

to bring more unpredictable weather and extreme events, in addition to shifting the 

characteristics of each season, including a shortening of winter, and lengthening of summer as 

the climate generally warms (Reed, 2006; IPCC, 2013). Responses to shifting seasons and 

extreme weather are varied and species- and location-dependent, but can include anything from 

reproductive mismatch and population crashes, to range expansions and increased production 

(Hellberg et al., 2001; Wilson et al., 2005; Both et al., 2006; Durant et al., 2007; Wong & 

Candolin, 2015).  
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Despite knowing that animals respond behaviourally to changing environments, most research 

thus far has focussed on the short term responses, extreme behaviours, or broad responses, 

leaving long term variation as far less understood. For example, the characterisation of daily 

activity patterns is one of the most ubiquitous metrics collected of any animal, but seasonal 

activity patterns are mainly only quantified in animals with extreme responses like hibernation or 

migration. With climate change becoming a critical issue that the world is facing, and an ever-

growing desire to predict what the effects on wildlife will be, filling the gaps in our 

understanding of species responses to predictable and unpredictable environmental change will 

become crucial. Included within this is the need to collect baseline data on, and explore how 

species that don’t exhibit extreme behaviour respond to environmental variation occurring over 

long time frames like seasons, as these are the processes that are most likely to be affected by 

climate change.  

 

The northern boreal forest and Kluane 

The boreal forest, as the world’s coldest forest ecosystem, constitutes a quarter of the planet’s 

closed canopy forests, and is home to some of the most dramatic population cycles. With a 

circumpolar distribution, this biome is characterized by conifer forest and low biodiversity 

relative to lower latitudes, but species composition and community structure varies between 

geographic regions (Brandt et al., 2013; Boonstra et al., 2016). Much of the boreal forest is well 

known for the presence of large population cycles of small mammalian species, although the 

primary species that cycles differs between the regions (North America: hares, Krebs et al., 

1995; Siberia: shrews, Zakharov et al., 1997; Europe: voles, Sundell et al., 2013). In the northern 
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boreal forest of North America, the dramatic rise and fall in the numbers of snowshoe hares and 

lynx was first documented in 1830 in Hudson Bay Company written records of fur returns 

(Poland 1892). For the nearly 200 years since, the ten year lynx-hare cycle has drawn the 

attention of many of the world’s top ecologists including Charles Elton (1942), AWF Banfield 

(1951), Pat Moran (1953), Robert May (1980), Charles Krebs (1995), and Nils Stenseth (1999). 

More recently the lynx-hare cycle, and its ramifications on the entire boreal food web, has been 

intensively studied in south-western Yukon between 1980 and present (Krebs et al., 2018) and is 

where the work for this thesis was carried out.  

 

The Kluane region of southwestern Yukon (61°N, 138°W) is defined by its relatively high 

elevation and its location in the climatic rain shadow of the St. Elias Mountains. These unique 

characteristics manifest in a colder climate and generally lower productivity than areas to the 

northeast and southwest (Krebs et al., 2001). The study occurred in the Shakwak trench, a 8-12 

km wide valley that is bordered by Kluane National Park and the St. Elias Mountains to the west, 

and the Kluane Ranges to the east. This valley runs south for 50 km from Kluane Lake. Aside 

from the Alaska Highway that transects the valley, a couple of cabins at the southern edge, the 

area is essentially uninhabited and with the establishment of the Kluane Game Sanctuary in 

1942, the area between the highway and the St. Elias Mountains is protected from 

overexploitation of wildlife. In addition traditional land claims have been signed for sections of 

the valley. The climate in the region is highly seasonal, with day length ranging from 22 hours to 

5 hours, and monthly mean temperatures fluctuating from 20°C to -35°C between summer and 

winter. Snow typically starts to accumulate in October and remains until May restricting the 

growing season to three months (Krebs et al., 2001).   
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The boreal forest, and in particular the mammalian species that reside within this region, have 

been the focus of studies and long-term monitoring projects for the past 40 years making them 

well characterized. The forest is predominantly white spruce (Picea glauca) intermixed with 

patches of aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and an 

understory of gray willow (Salix glauca) and dwarf birch (Betula pumila var. glandulifera) 

(Boonstra et al., 2016). The herbivore community is dominated, in terms of biomass, by 

snowshoe hares (Lepus americanus) and red squirrels (Tamiasciurus hudsonicus), and to a lesser 

degree by moose (Alces alces) and small rodents while the predator community primarily 

consists of lynx (Lynx canadensis), coyote (Canis latrans), and birds of prey (Krebs et al., 2001). 

The dynamics of most species within the forest are linked to the 10-year population cycles of the 

snowshoe hares, except for the red squirrel which cycles in response to spruce cone masting 

events (Krebs et al., 2014). This thesis is focused on a subset of the species in this region, the 

snowshoe hare, Canada lynx, and red squirrel, and the interactions that occur between them, and 

that occur with their resources. 

 

Snowshoe hares are considered the keystone species of the boreal forest. Their diet consists of 

forbs, leaves and terminal twigs of shrubs in summer but during the long winter they subsist only 

on twigs and bark of shrubs, and spruce needles once the snow is deep enough to prevent digging 

for forbs and grasses (Wolff, 1978; Smith et al., 1988; Hodges, 2000; Seccombe-Hett & 

Turkington, 2008). High availability of resources in summer is converted into high production 

with hares having up to 4 litters of 3-5 leverets per year (Stefan & Krebs, 2001). Mortality is 

high and primarily due to predation, with most hares not living to reproductive age (Krebs et al., 



 14 

1995). Hares are primarily active through the night including during crepuscular periods with 

greater distances travelled per night in winter than summer (Keith, 1964; Mech et al., 1966; 

Feierabend & Kielland, 2014). As nocturnal animals, hares are known to respond behaviourally 

to changing moonlight conditions by adjusting habitat selection and in some populations distance 

travelled (Griffin et al., 2005; Gigliotti & Diefenbach, 2018). However, most of our knowledge 

of activity and behavioural responses has come from monitoring movement spatially (e.g., 

displacement) which may not accurately represent the amount of activity within a time period.   

 

Red squirrels are seed-eating rodents whose populations are desynchronized from the hare-lynx 

cycle by white spruce cone masting episodes that occur every 4-5 years (Boutin et al., 1995, 

2006). This arboreal species is a capital breeder reliant on white spruce seed and fungi that is 

hoarded when available and consumed throughout the winter and into breeding (Archibald et al., 

2013; Fletcher et al., 2013). In this northern population, females generally have only one litter of 

2-4 pups per year except in years when the white spruce mast (McAdam et al., 2007, 2019). In 

these years, squirrels anticipate the coming resource availability and continue breeding through 

the summer and into the autumn producing two litters. As such population dynamics are driven 

by white spruce seed availability, peaking in autumns following masting events (Krebs et al., 

2014). Despite their small size (200g), squirrels remain active above ground throughout the 

winter building well-insulated grass nests in the trees to reduce energy expenditure when resting 

(Humphries et al., 2005; Guillemette et al., 2009). Both activity patterns and diet vary seasonally 

with timing of activity shifting from the warmest to coldest part of the day, and diet shifting from 

hoarded resources to buds, and fresh mushrooms or cones as winter transitions into summer 

(Fletcher et al., 2013; Studd et al., 2016). Little consideration has been given to downstream 
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effects of seasonal fluctuations in resources on behaviour or how fluctuations in behaviour may 

impact higher trophic levels. 

 

Our detailed knowledge of these two herbivores and their predators in Kluane provides an ideal 

system to achieve the objectives of this thesis. Snowshoe hares and red squirrels are apparent 

competitors with differing diets and life histories but shared predators including both mammalian 

(coyote, Canada lynx), and avian (Northern goshawk: Accipiter gentilis, great-horned owl: Bubo 

virginianus) species. Snowshoe hares are primarily consumed by Canada lynx and secondarily 

by coyotes (Peers et al., submitted; Krebs et al., 2001). Red squirrels are primarily consumed by 

avian predators and secondarily by mammalian predators (Stuart-Smith & Boutin, 1995). Lynx 

are known to switch from snowshoe hares to red squirrels when hares are at low abundance, 

while coyotes switch to squirrels and red-backed voles during the same conditions (O’Donoghue 

et al., 1998). This wealth of knowledge, the existence of several long-term monitoring projects of 

the small mammal communities and their predators that reside in this area, and the highly 

seasonal environment make it an ideal study system to explore questions surrounding behaviour 

and seasonality. 
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Chapter 2 - Behavioral classification of low frequency acceleration 
and temperature data from a free ranging small mammal 
 

Abstract 

1. The miniaturization and affordability of new technology is driving a biologging 

revolution in wildlife ecology with use of animal-borne data logging devices. Among 

many new biologging technologies, accelerometers are emerging as key tools for 

continuously recording animal behavior. Yet a critical, but under-acknowledged 

consideration in biologging is the trade-off between sampling rate and sampling duration, 

created by battery- (or memory-) related sampling constraints. This is especially acute 

among small animals, causing most researchers to sample at high rates for very limited 

durations. Here, we show that high accuracy in behavioral classification is achievable 

when pairing low frequency acceleration recordings with temperature. 

 

2. We conducted 84 hours of direct behavioral observations on 67 free-ranging red squirrels 

(200-300 g) that were fitted with accelerometers (2 g) recording tri-axial acceleration and 

temperature at 1 Hz. We then used a random forest algorithm and a manually-created 

decision tree, with variable sampling window lengths, to associate observed behavior 

with logger recorded acceleration and temperature. Finally, we assessed the accuracy of 

these different classifications using an additional 60 hours of behavioral observations, not 

used in the initial classification. 

  

3. The accuracy of the manually-created decision tree classification using observational data 

varied from 70.6% to 91.6% depending on the complexity of the tree, with increasing 
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accuracy as complexity decreased. Short duration behavior like running had lower 

accuracy than long duration behavior like feeding. The random forest algorithm offered 

similarly high overall accuracy, but the manual decision tree afforded the flexibility to 

create a hierarchical tree, and to adjust sampling window length for behavioral states with 

varying durations.  

  

4. Low frequency biologging of acceleration and temperature allows accurate behavioral 

classification of small animals over multi-month sampling durations. Nevertheless, low 

sampling rates impose several important limitations, especially related to assessing the 

classification accuracy of short duration behavior. 

 

Introduction 

In recent years, accelerometers have become an important tool in ecology, initially used in 

marine ecosystems where direct observations are difficult and the need for a device that records 

what cannot be observed was necessary (Yoda et al., 1999; Brown et al., 2013). Since then, there 

has been a slow integration of these dataloggers by terrestrial wildlife biologists to aid in the 

quantification of energy expenditure, activity levels, and animal behavior (Wilson et al., 2008; 

Gleiss et al., 2011). An exciting opportunity afforded by biologgers is the potential to document 

how the behavior of free-ranging animals, including their time budgets (e.g., McClintock et al., 

2013), movement rates (e.g., Heurich et al., 2014), and occurrence of specific acts like predation 

(e.g., Williams et al., 2014), mating (e.g., Whitney et al., 2010), specialized feeding (e.g., 

Watanabe & Takahashi, 2013), or refuge occupation (e.g., Körtner & Geiser, 2000), corresponds 

with temporal variation in temperature, photoperiod, and resource availability operating over 
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daily (e.g. photoperiod), monthly (e.g. moon phase), annual (e.g., seasons), and multi-annual 

time scales. However, constraints related to biologger battery life, memory capacity, and device 

size generate a trade-off between sampling rate (frequency of recording) and sampling duration 

(the recording interval between the start and end of observations). While high sampling rates are 

attractive because they offer more accurate information at higher temporal resolution, they often 

require sampling durations that are much shorter than many ecologically-important timescales. 

Small animals that cannot carry large biologgers are most constrained in this way.  

 

The sampling rate vs. duration trade-off is made more extreme with accelerometers by the 

recommendation that recording frequencies need to be at least twice that of the highest frequency 

movement of the individual (Brown et al., 2013). For small species, which consequentially have 

the highest stride frequencies (Bejan et al., 2006), this requires a recording frequency between 8 

and 100 Hz (Brown et al., 2013). This results in a potential maximum recording longevity in the 

order of minutes to days, unless sub-sampling techniques are used (e.g. Hammond et al., 2016). 

Unfortunately, such short sampling duration severely constrains the forms and extent of temporal 

variation that can be incorporated into behavioral studies. An alternative method is to extend the 

sampling duration by reducing the sampling rate. If behavioral classification is possible at 

recording frequencies of 1 Hz or slower, sampling period could be increased from hours or days 

to weeks, months, or years, again depending on the size of the tag possible given animal mass. 

However, the few studies that have directly tested this possibility suggested that low recording 

frequencies have significantly reduced accuracy when using current classification methods 

(Broell et al., 2013; Wang et al., 2015; Pagano et al., 2017). 
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For species-specific calibrations, a variety of methods have been proposed for the conversion of 

raw acceleration values into behavioral states (Nathan et al., 2012; Bidder et al., 2014; Collins et 

al., 2015). Many methods use supervised machine learning algorithms and among the most 

popular methods is the random forest algorithm (Breiman, 2001), which uses known data to 

generate numerous decision trees and calculates the overall relative importance of each variable 

with which it was provided (e.g. Graf et al., 2015). The black box nature and data specificity of 

these methods makes it difficult for researchers to assess the logic, validity, and accuracy of 

applying classification schemes developed with training data to new applications lacking training 

data (Bidder et al., 2014; McClune et al., 2014). As alternatives to such methods, arguments have 

been raised for more simplified analytical techniques such as manually creating decision trees 

(Collins et al., 2015). Although more time consuming, the hands-on nature of this approach, 

likely results in a more comprehensible classification that should be more easily transferable to 

new applications.  

 

In addition to acceleration, many accelerometer devices designed for wildlife research are 

equipped with built-in temperature loggers (e.g. Figure 2.1). Although often overlooked and 

under used, recorded temperature can provide important supplementary information about an 

individual and its thermal micro-environment. When attached externally to an animal, the 

temperature recorded is often intermediate between body temperature and the ambient 

temperature of the environment immediately surrounding the individual (Osgodd & Weigl, 1972; 

Tremblay et al., 2003; Studd et al., 2016). This temperature intermediacy likely accounts for 

their rarity of use; collar temperature is not a reliable measure of body temperature or air 

temperature (Audet & Thomas, 1996; van Beest et al., 2012). However, depending on the  
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Figure 2.1 Example of temperature and acceleration biologger data on red squirrels 

demonstrating the distinct signatures of different behavioral states. This includes in (black bars) 

and out (grey bars) of the nest in the temperature data during both winter and summer, and 

running, feeding, not moving, and foraging signatures in acceleration data. 
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ecology of the species and which of these two temperatures vary more, collar temperature can be 

used to monitor thermal exposure (e.g., Osgodd & Weigl, 1972; Kanda et al., 2009) or 

heterothermic fluctuations indicative of torpor expression or hibernation (Lazerte & Kramer, 

2016). Most pertinent here, collar temperature likely offers useful information about behavioral 

state, as it tends to more closely approximate the body temperature of inactive animals confined 

in small spaces (e.g. thermal refuges) and to more closely approximate the air temperature 

experienced by active animals fully exposed to ambient conditions (e.g., Messier et al., 1994; 

Körtner & Geiser, 2000; Murray & Smith, 2012; Wassmer & Refinetti, 2016; Olson et al., 2017). 

 

An ideal candidate for investigating the potential for low frequency recordings is the North 

American red squirrel (Tamiasciurus hudsonicus), as their small size (~250g) drastically restricts 

potential battery life of biologging devices. This diurnal homeotherm uses insulated nests during 

rest periods, and remains active year-round (Humphries et al., 2005; Guillemette et al., 2009). In 

the northern boreal forest, they larder hoard resources every autumn to sustain activity and 

reproduction during the winter, resulting in large variation in activity and energy expenditure 

throughout the year (Humphries et al., 2005; McAdam et al., 2007; Fletcher et al., 2013). Due to 

the fact that they are diurnal, and actively defend small (0.3 ha) territories (Smith, 1968; 

LaMontagne et al., 2013), individuals are relatively easy to capture and observe in the wild.  

 

Here, we used a combination of low frequency (1 Hz) acceleration and temperature recordings 

on free-ranging red squirrels to develop methods for biologger-based behavioral classification. 

Our main objective was to determine if accurate classifications can be achieved using low 

frequency accelerometer and temperature recordings from a small animal, and determine what 
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modifications to common recommendations for behavioral classification methods of 

accelerometer data would be needed. The first part of our analysis develops a method that 

integrates temperature data into the behavioral classification allowing for identification of 

whether or not the individual is in a thermal refuge or not. The second part of our analysis 

explores different analytical approaches to the accelerometer classification to determine best 

practices for low frequency data. We initially complete the classification using the commonly 

used random forest approach, and use this to explore how selection of sample window size can 

affect both the accuracy of the classification and structure of the resulting behavioral dataset. 

Using this information on sample window size, we then manually create a hierarchical decision 

tree that starts with the broadest classification of behavior (2-behavior: not moving, moving) and 

then expands in detail with each subsequent branch until a 6-behavior classification is reached 

(see Table 2.1 for description of each stage). This approach creates a tree that can be easily 

clipped for the level of detail that is desired for different ecological questions. Finally, we 

compare the accuracy of the classification using the random forest algorithm to that of our 

manually created decision tree. This study demonstrates that manually created decision trees give 

a greater level of understanding and control over the classification, and allows adjustment of 

sampling windows to the characteristics of naturally occurring behavior. We show how to 

achieve accurate behavioral classifications on free-ranging small animals using low frequency 

accelerometer recordings and conclude by highlighting some of the difficulties that may be faced 

when trying to implement this method on other free ranging species, as well as how best to 

overcome them. 
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Materials and Methods 

Study site and species 

Between February and October 2014, we studied free ranging North American red squirrels in 

southwestern Yukon (61°N, 138°W), a population that has been part of a long term study since 

1987 (McAdam et al., 2007). Male squirrels were trapped on their territories using Tomahawk 

live traps baited with peanut butter, and fitted with a collar (total weight = 8 g) combining a 

ventrally-mounted VHF radio-transmitter (model PD-2C, 4 g [1.7 % of body mass], Holohil 

Systems Limited, Carp, Ontario, Canada) and a dorsally-mounted tri-axial accelerometer (model 

Axy2, 4 g [1.7 % of body mass], Technosmart Europe). Accelerometers were set to record forces 

between -8 and 8 gforce at 1 Hz. Collars were constructed in the field on day of deployment (see 

Supporting Information 7.2.1). Once collared, squirrels were released and remained free-ranging, 

including during focal observations (see below), until they were recaptured an average of 22 

days (range 5- 65) later and collars were removed. During 2014, we deployed 37 accelerometers 

on 20 individual red squirrels in winter (February) and mating season (March), 25 

accelerometers on 18 individuals in summer, and 30 accelerometers on 30 individuals in autumn 

for a total of 1924 days of recordings.  

 

Behavioral observations and scoring 

We used two methods to record instantaneous behavioral states of free ranging red squirrels. In 

winter 2014, we located individuals using VHF and continuously recorded behavior for 2 min 

using an application built for iPod touch (see Supporting Information 7.2.2). Six behavioral 

states were recorded: feeding, not moving, in nest, running, slow travel, and stationary 

movement (defined as not travelling but still moving: e.g. grooming, vocalizing).  
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In autumn 2014, in addition to recording continuous behavior on the iPod app, we located 

individuals and recorded behavior with a video camera (Sony Handycam HDR-CX240) for as 

long as the individual was visible. Videos were watched by two observers and scored in real 

time, recording the start and end time of each behavior. Autumn behavior was categorized as: 

caching, clipping cones, digging, feeding, grooming, running, slow travel, and vocalizing. For all 

analyses, observed behavior were then combined into in nest, not moving, feeding, foraging 

(caching, clipping cones, digging, slow travel), stationary movement (grooming, vocalization), 

and travelling (see Supporting Information 7.2.6 for video). Over both winter and autumn 

deployments, we completed 1165 two-min observations on 20 individuals, and video-recorded a 

total of 83.8 h of direct observation on 27 individuals with videos ranging from 15 s to 12 min in 

duration. 

 

Adjusting for time errors 

Although we made every effort to ensure that accelerometers and time devices used for 

behavioral observations were synchronized upon deployment, the internal clocks on the different 

devices did not run precisely at the same rate. This resulted in small deviations, in the order of 

seconds, that would not be noticed if only a single recording device was used. However, when 

trying to synchronize and cross-reference observations recorded by two devices, such as an 

accelerometer and a focal observation app, these small deviations were significant, especially 

because most recorded behavior lasted for only a few seconds. We corrected the time on the 

observations by aligning abrupt changes in acceleration with abrupt changes in observed 

movement data (resting to travelling, and vice versa) on the two devices (see Supporting 
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Information 7.2.3 for details). We removed from future analysis all squirrels for which there was 

not an abrupt change in the observed data during a given day (320 of 403 squirrel days), leaving 

46 squirrel days (12 individuals; 378 min) from the winter and 37 squirrel days (18 individuals; 

326 min) from the autumn observational periods in the analysis.  

 

In nest vs. out of nest 

Red squirrels spend considerable amounts of time in their nests, during which time they mostly 

rest. The first stage of our classification was to identify whether or not the individual was in a 

nest. The accelerometer units recorded temperature in addition to acceleration (Figure 2.1). 

Following a similar method used by Studd et al. (2016), we inferred nest-use based on the 

concept that the ambient temperature of the local environment (i.e. surrounding the squirrel) is 

warm and stable when in the nest, and cold and variable when out of the nest. Before analysis, all 

temperature data was smoothed to filter out erroneous recordings (see Supporting Information 

7.2.4). For each day of recordings (12 pm – 12 pm), we used k-means clustering constrained to 2 

clusters to determine a daily threshold temperature, above which a squirrel was considered to be 

in the nest (Studd et al., 2016). This threshold is unique to each squirrel and day to account for 

changes in nest insulation (Guillemette et al., 2009), orientation of collar, and daily ambient 

temperature. As there are some occasions when squirrels were observed to be active and out of 

the nest but the temperatures were above the threshold, possibly as a result of the individual 

sitting in the sun, we imposed an additional constraint using the squirrel’s activity levels from the 

accelerometer data. We assumed that squirrels use nests primarily for resting and, therefore, 

should not be moving most of the time they are in the nest. Thus, we calculated the proportion of 

each nest bout that the squirrel was moving versus not moving (using the method below) and 
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reclassified any nest bout where the ratio of moving to not moving was above 1, as being out of 

the nest. 

 

Moving versus not moving 

Prior to all accelerometer analysis, we separated the static acceleration from the dynamic 

acceleration by applying a running means smoothing function at a window of 91 seconds. 

Following methods proposed by Shepard et al. (2008) on selecting appropriate window size for 

the smoothing, we completed a sensitivity analysis of the window on the estimation of overall 

dynamic acceleration (see Supporting Information 7.2.5). Although body orientation and posture 

can be determined from the static acceleration, we only used the dynamic acceleration (raw 

acceleration minus smoothed acceleration) for all analysis.  

 

The first level of classification of the accelerometer data was to determine when the squirrels 

were moving or not moving (Figure 2.2). In most deployments, accelerometers would be turned 

on, packaged, and then sat on a table for 30 min to 8 h prior to being deployed. We selected a 

1000 s section during this time from 36 accelerometers (14 winter, 22 autumn deployments), and 

calculated the delta dynamic body acceleration (DDBA), defined as:  

∆"#$ =&∆'() +	∆',) +	∆'-)
.

)/0
 

where the change in dynamic acceleration (Da) for the surge (x), sway (y), and heave (z) axis is 

calculated for each recording and then summed across a sample window (t). From our data of 

devices sitting still, we selected the 99.9% quantile of these DDBA measurements at a sample 

window (defined as the # of consecutive acceleration records over which the statistic is 
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calculated) of 14 s as the threshold (1.06 gforce; Figure 2.2), above which the device was 

considered to be moving and below which to be not moving.  

 

Figure 2.2 Classification decision tree of behavior from animal-borne acceleration and 

temperature biologgers on wild North American red squirrels. Red squirrel use of insulated nests 

can be identified through temperature signatures while behavioral state can be classified using 

acceleration. Classification was done at sample windows relevant to the natural duration of each 

behavior. For example, short duration behavior like running were classified at 4 second sample 

windows. Values in dark grey are the summary statistics and threshold values (in gforce) used for 

each division. 
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If moving: feeding versus foraging versus travelling  

For the next stage of our hierarchical classification (Figure 2.2), we took all accelerometer data 

that indicated periods of movement and divided them into the three most common moving 

behavioral states (feeding, foraging, and running; 97.4% of observed movement). Using the 

random forest classification algorithm in R (Svetnik et al., 2003), we tested the degree to which 

accuracy of classification varied with the chosen sample window (2, 4, 7, 10, 14, 20, and 30 s). 

For this, we separated the focal observation data into segments of the desired sample windows, 

identified the most common behavior within these sample windows, calculated their duration, 

and selected only segments that met the following criteria: 100 % of sample window was 

feeding, at least 75 % was foraging with 0 % running, or at least 51 % was running (as running 

rarely continuously lasted for more than 4 s). To create our training dataset, we randomly 

sampled equal numbers of each behavior from this pool of segments. Across each window we 

calculated 6 summary statistics on the dynamic acceleration of each axis (mean, standard 

deviation, maximum, sum, range, and sum of Da), the overall dynamic body acceleration 

(ODBA; sum of the absolute values of dynamic acceleration; Wilson et al., 2006), DDBA, 

minimum Da, maximum Da, maximum acceleration, mean pitch, and mean roll using all three 

axes together for a total of 25 different summary statistics. All statistics were input into the 

random forest algorithm using 75% of observations for training (growing 2000 trees), and 25% 

for calculating the accuracy. 

As an alternative method, we constructed a manual decision tree for classification using 

R (R Core Team, 2017). Our first division of moving behavior was into two categories: feeding 

and travelling. We selected a sample window of 10 s; we considered this sample window to be 

long enough that only the two behavioral states of interest would be relevant (those that naturally 
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occur at that duration or longer). Following rationale suggested by Collins et al. (2015), we 

initially plotted histograms of all summary statistics for each behavioral category to visually 

determine which statistic had the clearest division between the two behavioral states (Figure 2.3). 

We then ran an optimization calculating the % error of classification of known behavior across a 

range of values of that statistic to determine a threshold value. This method is easily repeatable 

for separation of any behavioral states and was used to subsequently separate running from other 

forms of travelling (foraging), using only the segments of behavior that were correctly classified 

in the previous division. Since the average duration of running behavior in red squirrels is 4 s 

(see results), we ran this last division at a 4 s sample window. 

 

Testing overall accuracy 

Once our decision tree was built, we tested the accuracy in two ways: 1) at high resolution with 

the full observational dataset of detailed continuous behavioral observations used in the training 

as is commonly done in accelerometer calibrations (e.g., Bidder et al., 2014), and 2) at lower 

resolution with a 7 min behavioral observation data set that was collected concurrently during 

autumn 2014. We chose to test accuracy at two resolutions to explore whether issues with the 

time alignment may be influencing the accuracy values at the high resolution. These latter 

observations recorded behavior of each individual squirrel every 30 seconds for 7 min, as well as 

the occurrence of critical incidents defined as vocalizations, caching, and new feeding events. 

From these (n = 509), we selected only those 7 min observations where the individual spent 95% 

of the observations feeding (n=45), or travelling (n=50). For this analysis, travelling was defined 

as any combination of foraging and running as they always co-occurred over the course of 7 min. 

To eliminate issues of time alignment, we selected the inner 5 min of these observational periods 
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Figure 2.3 Example of methodology used for determination of threshold values in separating two 

behavioral states. Histograms of summary statistics were plotted to determine which statistics 

visually had the clearest distinction between two behavioral states (A). The optimal threshold 

value was then determined by assessing the accuracy of classification of each known behavior 

across the selected summary statistic (B). Here ODBA showed a clear division between red 

squirrel feeding and travelling (A) and an ODBA value of 6.2 gforce produced the highest overall 

accuracy (92.1%; B).  
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and tested whether the most common behavior from the accelerometer classification aligned with 

the most common behavior during those 5-min periods. To test accuracy of in/out of the nest for 

both accuracy measures, we assumed that since squirrels are diurnal and are known to sleep in 

nests, that the majority of each night all squirrels should be in nest. Thus, we randomly selected 

400, 15-s samples between 10 pm and 4 am from accelerometers that were deployed during 

winter (n=200) and autumn 2014 (n=200) and labelled them as in nest. Accuracy was calculated 

for each step of the hierarchical decision tree (2, 4, 5, and 6-behavior classifications; Table 2.1) 

on a random subsample of 50 observational event for each behavior in the respected 

classification. We calculated the average accuracy and standard deviation for each behavior by 

repeating the subsampling process 100 times. Accuracy was calculated for the lower resolution 

behavioral dataset following the same method with the exception that: a) each subsampling 

selected 15 random observational events for each behavioral state due to lower total sample size, 

and b) only for the 5-behavior classification tree due to which behavioral states were recorded at 

this lower resolution. 

 

Red squirrel seasonal time budgets  

We calculated the average time budget per season for red squirrels using all accelerometer 

recordings used for the calibration. We selected a 10-day period in each season (winter: February 

15 – 25, n=15; mating: March 10 – 20, n=9; summer: June 10 -20, n=12; autumn: Sept 5 – 15, 

n=24) and included all squirrels that had accelerometer recordings during that time. All 

recordings were converted to behavior using our decision tree (Figure 2.2), and the proportion of 

each day spent doing each behavior was calculated. To test if time budgets varied with season, 

we used a MANOVA analysis with a Pillai test in R (Fox & Weisberg, 2011) where the number 
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of seconds per day spent doing each of 6 the behavioral states were the dependent variables, and 

season and squirrel id were the explanatory variables.  

 

Results 

In nest versus out of nest 

Using a k-means cluster analysis to determine daily threshold temperatures for in/out of the nest 

and a movement-based correction, we achieved an overall nest classification accuracy of 91.6 ± 

2.5%. The classification had higher accuracy for the out of nest (observed feeding, or travelling) 

category (93.8 ± 3.4%) than for the in nest category (89.3 ± 3.9%).  

 

Moving and not moving classification (Two behavior level) 

Before testing the accuracy of the moving/not moving threshold (DDBA = 1.06), we removed all 

behavior classified as “in nest” from the testing dataset as we did not have visual confirmation of 

whether the individuals were moving or not while in the nest. On the remaining training data set 

of known behavior the threshold had an overall accuracy of 90.3 ± 2.3%. The accuracy of known 

not moving behavior was 83.9 ± 4.7%, and for known moving behavior was 96.9 ± 2.3% 

  

Classifying moving behavior  

We tested how different sampling windows influenced classification accuracy of the random 

forest machine learning algorithm. The overall accuracy increased with increasing sample 

window size from 84.8% correct classification at 2 seconds to 90.2% at 20 seconds before 

decreasing at the longest window size (Figure 2.4). The ability to distinguish feeding behavior 

was consistently above 90% for all sample windows increasing from 2 to 20 seconds. Foraging 
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and running varied from 77% to 90.0% accuracy. However, using different sample window sizes 

influenced the average duration of each behavior classified through the analysis (Table 2.2).  

 

Figure 2.4 Percent accuracy of random forest algorithm at classifying accelerometer data to 

known active behavioral states at varying sample windows for red squirrels. Overall accuracy is 

the mean accuracy of the three behavioral states: running, foraging, and feeding.  

 

The first step of the manual decision tree method was to separate feeding behavior (consumption 

of food) from travelling (foraging and running). We identified that ODBA provided the clearest 

division between the two categories. Optimization across a range of ODBA values produced the 

highest classification accuracy (92.1%) at a threshold of 6.2 gforce (Figure 2.4). Since the natural 

average duration of running was 4 seconds (Table 2.2), we selected that as our sample window to 

classify running from other travelling (foraging). We identified that the maximum value of the 

surge axis had the greatest distinction between the two behavioral states, although there was 

considerable overlap, with a threshold value of 1.15 gforce providing the highest overall accuracy 
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of 71.9%, with individual accuracies of 78.0% and 65.9% of distinguishing foraging and running 

among the observations that had been classified as non-feeding behavior in the previous step of 

the decision tree (Figure 2.2).  

 

Overall accuracy of decision tree 

Accuracy decreased with increasing complexity of the decision tree where the highest accuracy 

occurred at the 2-behavior tree (91.6 ± 2.5%), and lowest accuracy at the 6-behavior tree (70.6 ± 

2.3%; Table 2.3). For individual behavioral states, the accuracy was high for in nest (89.4 ± 

4.2%), feed (86.3 ± 4.3%), and out of nest not moving (83.9 ± 4.7%), and low for foraging (66.4 

± 5.9%) and running (26.8 ± 5.8%). For these last two behavioral states, most error was 

associated with misclassification of running as foraging and vice versa as the combined category 

of the two behavioral states (travelling) had high accuracy of classification (89.4 ± 3.6%). Using 

an independent data set of 5 min observational periods, we were able to test the accuracy of the 

classification of feeding, travelling (foraging and running), and in nest behavior. The overall 

accuracy was 96.4 ± 1.7%, with individual accuracies of 97.8 ± 3.1% for feeding, 91.5 ± 6.9% 

for in nest, and 100 ± 0.0 % for travelling. 

 

Seasonal time budgets 

Red squirrels adjusted daily time budgets between seasons (MANOVA Pillai=1.25, F=70.0, 

df=15 and 1467, p<0.001), spending considerably more time in the nest not moving during 

winter (64.5 ± 0.7% of 24 hours) and mating season (56.5 ± 1.2%) than in summer (43.9 ± 0.8%) 

and autumn (36.4 ± 0.3%). Time spent foraging and running was the greatest during the autumn 

hoarding period (forage = 32.25 ± 0.3%, running = 7.9 ± 0.2%) and least during winter (forage = 
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5.7 ± 0.1%, running = 0.7 ± 0.0%), with intermediate amounts during summer (forage = 17.7 ± 

0.3%, running = 3.6 ± 0.2%) and mating (forage = 10.9 ± 0.6%, running = 1.3 ± 0.7%). The 

amount of time spent feeding (autumn = 15.0 ± 0.2%, mating = 20.2 ± 0.6%, summer = 19.1 ± 

0.3%, winter = 15.7 ± 0.02%), in nest moving (autumn = 4.1 ± 0.1%, mating = 6.1 ± 0.2%, 

summer = 5.5 ± 0.2%, winter = 7.6 ± 0.1%), and not moving (autumn = 4.4 ± 0.3%, mating = 4.8 

± 0.5%, summer = 10.3 ± 0.6%, winter = 5.7 ± 0.6%) were the most consistent behavioral states 

between seasons (Figure 2.5). These seasonal time budget differences were expressed 

consistently by most individuals across most seasons. 

 

Discussion 

We demonstrate that accurate behavioral calibrations are achievable using low frequency 

accelerometer recordings on free-ranging species with a decision tree methodology that is simple 

to use and easy to interpret. Our classification of 1 Hz acceleration and temperature recordings of 

red squirrels into 6 behavioral categories had an accuracy of 70.6%. However, classifying into 5 

behavioral categories had a much improved accuracy of 87.5% in matching high resolution 

observational data and 96.4% accuracy in matching to the general behavioral state during 5 

minute visual observations. This was the first terrestrial study, to our knowledge, that integrates 

acceleration with temperature, producing information on behavioral state as well as whether that 

behavioral state is expressed inside or outside of a thermal refuge. Using this calibration, we 

were able to produce the first seasonal time budgets for North American red squirrels, showing 

that there are substantial changes in daily behavior between seasons (Figure 2.5).  
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Figure 2.3 Time red squirrels spent each day from late winter to late autumn doing each of the 

four main behavioral states: running, foraging, feeding and in nest. Each box represents the 

interquartile range of all individuals as calculated from classified accelerometer data using a 

manual decision tree classification. The dotted line signifies a break in the time line when no 

accelerometers were deployed.  
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Here, we showed that the standard accelerometry practice of high frequency recording may not 

be as necessary as previously suggested. Our calibration of 1 Hz acceleration data yielded high 

overall accuracy while allowing continuous recordings on red squirrels for up to 2 months per 

deployment. This contrasts alternative methods of increasing sampling duration of these devices 

through non-continuous sampling regimes. For example, on chipmunks, Hammond et al. (2016) 

recorded at a commonly recommended 20 Hz which required a sampling regime of 10 seconds 

every 15 minutes in order to achieve a 4.5-day sampling period. If a continuous recording regime 

had been used, the maximum sampling period would have been just over one hour. While our 

study design (exclusive reliance on low frequency sampling) does not permit direct comparison 

of accuracies that could have been obtained with higher sampling rates, we can assess this 

indirectly by examining the classification accuracy of behavioral states of variable duration (see 

recommendation 2 below). However, future research on the direct comparison of sampling rate is 

warranted by subsampling a higher frequency recording while allowing for variation in sample 

window size with each new sampling rate (see recommendation 3 below). Currently all 

comparative studies that have been completed maintain the same sample window size for all 

recording frequencies (e.g., Wang et al., 2015; Pagano et al., 2017) which may be driving the 

sudden and drastic decrease in accuracy seen at low frequency recordings (Figure 2.4). Despite 

this, the accuracies that we achieved here (70.6% to 91.6%) were comparable to other studies 

which sampled at much higher rates (3.3 Hz to 40 Hz) with accuracies ranging from 75% to 98% 

(Nathan et al., 2012; Bidder et al., 2014; McClune et al., 2014; Hammond et al., 2016).  

 

Our study is one of few that has completed a calibration using free-ranging individuals. Although 

many calibrations use captive animals or surrogate species for training data (Campbell et al., 
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2013), Pagano et al. (2017) showed that highest accuracy is achieved using free ranging 

individuals of the same species of interest. We followed this advice by incorporating 

observations from both low activity (winter) and high activity (autumn) seasons for training, 

attempting to incorporate the full range of potential movements that red squirrels might express 

in the calibration. Although specific behavioral states may change between seasons, at the broad 

behavioral categories that we were using, there was no evidence that there were distinct enough 

seasonal differences to merit a separate calibration for each season, but future research could 

explore this in more detail. The one aspect of the calibration that may be susceptible to 

seasonality is the use of temperature for determining in and out of the nest, where the efficacy 

depends on the nest temperature being distinctly warmer than ambient air temperature (Osgodd 

& Weigl, 1972). The population of red squirrels used in this study lives in a climate where this is 

always the case and even in summer we found that you could clearly distinguish between in and 

out of the nest (see Figure 2.1 for example), but this may not be the case in all studies. Despite 

the high accuracy that we achieved, we would like to highlight a couple issues that were 

encountered with both low frequency recordings and working on free ranging individuals that 

may be common to others who follow a similar methodology.  

 

First, when recording at a lower frequency than the stride frequency of the species, some 

commonly used and recommended analytical techniques (spectral analysis, orientation; Brown et 

al., 2013) may become less applicable. At 1 Hz, the data recorded is a snapshot of acceleration 

values from each movement type. This means that it will not always record the peak acceleration 

that was reached but some value along the wave of accelerations experienced during each stride. 

Second, no two time devices will record time at precisely the same rate due to variation in crystal 
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oscillating frequency in each time device, which is influenced by general noise, voltage change, 

temperature, and aging of the clock (Syed & Heinemann, 2006). When there is a need to 

precisely align instances recorded on two devices, for example to calibrate one observation 

method via another using instantaneous observations recorded every second or less, then small 

time offsets become noticeable and problematic. Until behavior and accelerometer data can be 

collected over a network with a shared clock, studies on free-ranging animals fitted with non-

networked, store-on-board biologgers will face this problem (see Gaylord & Sanchez, 2014).  

 

Although these two issues do make field-based calibrations of low frequency acceleration more 

difficult, they do not preclude detailed time budget classification and an overall assessment of 

classification accuracy. We conclude the paper with some recommendations for behavioral 

classifications using low frequency acceleration, applicable to a research context in which the 

priority is to accurately classify major behavioral states, recorded continuously, across a 

sampling period of maximum length. 

1) Behavioral observations used for calibrations should be continuous and as long in 

duration as is possible for the study species. More stark transitions between behavioral states 

(travelling to not moving and vice versa) within each observational period makes it easier to 

accurately align events recorded on both devices. That being said, the feasibility of long 

duration, continuous observation sampling varies by species. Although red squirrels are 

relatively easy to observe, their small size, arboreality, and rapid movement, all within a three-

dimensional visual obstructed forested landscape makes long continuous observations 

challenging to obtain. As a result, we had to remove 80% of observational periods (320 of 403 

squirrel days) from the analysis because in too many instances we did not observe enough major 
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transitions within a single continuous bout to accurately and objectively align time as recorded 

by the accelerometer and the observer.  

2) Select behavioral states that naturally occur at durations longer than both the recording 

frequency, and the error in the time alignment. Longer duration behavioral states provide the 

opportunity to select the middle segment of each occurrence, thereby eliminating the chance of 

working with mislabeled accelerometer data from misalignment. If classifying a behavior that 

typically lasts for 2 seconds, using a 1 Hz sampling rate with a 2 second error in alignment, the 

likelihood that the labelled segment will include the matching acceleration is only ~30%. We 

found that short duration behavior had the lowest accuracy (26.8%) when testing on 

observational data aligned to the second, a pattern that is common to other studies (e.g., Pagano 

et al., 2017). We used a lower resolution observational data set (five-minute) to test if the low 

accuracy is likely resulting from misalignment of time. If the inaccuracies are the result of poor 

ability of the decision tree than we would expect that accuracies would be similar between the 

low and high resolution datasets, while if the errors are stemming from time alignment then we 

would expect higher accuracy at the lower resolution when time misalignment has minimal 

effects. We found that accuracy of lower resolution data was ~10% greater than the higher 

resolution data, suggesting that our estimate of classification accuracy for short behavior is likely 

more conservative than is actually the case. Though this is vaguely reassuring, accurate 

classification (and assessment of classification accuracy) becomes an increasingly intractable 

challenge as behavioral duration begins to approximate sampling rate. The trade-off between 

sampling rate and sampling duration dictated by the accelerometer manifests as the same trade-

off affecting the behavioral classification. Extending the sampling duration by reducing the 

sampling frequency inevitably compromises detection of behavioral events confined to very 
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short time intervals. Thus, researchers will need to set expectations to either accurately 

documenting fine scale behavior continuously at millisecond sampling rates, or accurately 

documenting long-term behavior continuously over months and years, as likely both, at the same 

time, with the same device will not be possible. 

3) Create classifications using a manual decision tree. There are two key benefits to this 

approach over a machine learning algorithm. First, creation of hierarchical decision trees become 

possible, such that classification can be performed at multiple levels of complexity, starting with 

coarse distinctions (e.g., active vs. inactive) that subdivide into more resolved categories (e.g., 

active subdividing into different types of activity) (Figure 2.2; e.g. McClune et al., 2014). This 

allows for a tree that can be easily trimmed post calibration to match the ecological question 

being studied that has an accompanying accuracy for each trimming. For example, if a study is 

only interested in when the animal is vigilant versus active when out of the nest, the tree can be 

trimmed to four behavioral states (moving/not moving) with the knowledge that the accuracy is 

90.3%. Second, this provides an opportunity to classify each step separately starting with the 

longest duration behavior for which the time alignment issue should be trivial, and proceeding 

towards the shortest duration behavior. Data can be cleaned at each stage ensuring that when 

distinguishing the shortest duration behavior, the training dataset has the lowest error due to time 

alignment.  

4) Select sample windows based on the duration characteristics of the behavior, and the 

recording frequency. Sample windows must be large enough to contain multiple samples of 

acceleration in order to calculate the summary statistics. Generally, calibrations of high 

frequency recordings use sample windows of 1 to 2 seconds (20 to 80 samples, e.g. Pagano et al., 

2017). Using lower recording frequencies require larger windows, and thus run the risk of 
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extending beyond the natural duration of the behavior being classified. Although, it may always 

be possible to find a summary statistic that can separate two behavioral states at any sample 

window (Figure 2.4), selecting an inappropriate window will result in unrealistic behavioral 

durations (Table 2.2) leading to biased time budgets (Robson & Mansfield, 2014). Thus, it is 

critical that careful consideration is given to sample window size, and it may be necessary to 

incorporate different sized windows for different behavioral categories into the classification, as 

we did in this study (Figure 2.2).  

5) Select summary statistics that are consistent across individuals. Variation in the placement 

of accelerometer tags during attachment to each individual may influence deployment angles and 

what each axis is actually measuring. In our study, despite the fact that all tags were attached in 

the same orientation on all individuals, the nature and weight balance of the collars resulted in 

the devices spinning around the neck of the animal and resting in unique orientations for each 

individual. One option to counteract this problem during calibration is to do individual-specific 

calibrations, when possible. The other option is to carefully select summary statistics for the 

calibration that will not be influenced by this issue, such as statistics that are summaries off all 

three axis (e.g. ODBA, DDBA), or single-axis values that are not affected by the possible range 

in deployment angles (e.g., surge axis in our study).  

 

Accelerometers provide an unprecedented potential for ecologists to estimate time- and energy-

budgets of many species at a level of detail that is not achievable by traditional methods. We 

found that the limitations in the applicability of these devices on small species can be alleviated 

through low frequency recordings without loss in accuracy, though low sampling rates do 

preclude the detection of very short behavior. With an ability to record behavior continuously on 
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small species regardless of light or weather conditions, ecologists can now not only explore time 

budgets at seasonal scales as we did here (Figure 2.5), but also how the timing of behavior is 

structured throughout a day (Ropert-Coudert et al., 2004). Having access to this detail provides a 

means for easily incorporating behavioral responses of species to their environments into broader 

and more complex questions about how they may interact with the species around them in a 

changing world.  

 

Data Accessibility Statement 

All data from this study is archived on Dryad (doi:10.5061/dryad.1s1m8r7). 
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Table 2.1 - Definitions of each behavioral category used in each step of the hierarchical decision tree completed in this study. Table 1 

illustrates how each subsequent behavioral state is nested within a category in a less complex tree.   2 

2-Behavior 4-Behavior 5-Behavior 6-Behavior 
Category Def. Category Def. Category Def. Category Def. 

Out of Nest 
Outside a 
thermal 
refuge.  

Moving 

Outside a 
thermal 

refuge and 
some part 

of the 
animal is 
moving. 

Travelling 

Animal is 
moving in 
space at 
either a 

slow or fast 
locomotion 

state. 

Foraging 

Slow 
locomotion 

consistent with 
searching for 
and collecting 

food. 

Running 

Fast locomotion 
consisting of 
more than 1 

stride at a time. 

Feeding Not moving in space but body is moving with the 
handling and ingesting of food. 

Not Moving Outside a thermal refuge and no part of the animal is moving except for breathing. 

In Nest 
Inside a 
thermal 
refuge. 

Moving Inside a thermal refuge and some part of the animal is moving. 

Not Moving Inside a thermal refuge and no part of the animal is moving except for breathing. 

 3 

 4 
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Table 2.2 - Average durations in seconds of each behavior common in red squirrels calculated from different classification methods. 5 

Winter and autumn durations are tabulated from observations of free ranging squirrels during each season (winter: 18 squirrels, 2328 6 

min; autumn: 27 squirrels, 621 min). These are compared to durations calculated from classified accelerometer data from 6 squirrels 7 

(3 winter, 3 autumn) using the random forest method with varying sample sizes of 2 – 30 seconds, and a manual decision tree method 8 

(DT). 9 
 

Observed Predicted - Random Forest 
 

 
Winter Autumn 2 4 7 10 14 20 30 DT 

Feed 45.89 24.03 3.84 20.24 32.1 48.5 54.5 72.49 81.61 57.75 
Forage 8.29 10.56 3.22 8.02 13.07 18.43 23.86 32.69 58.33 19.01 

Run 5.2 3.77 3.78 11.82 19.74 28.98 42.94 66.05 60.47 7.44 
 10 

Table 2.3 - Mean percent accuracy of the manually-created decision tree at correctly classifying each behavioral state in four trees of 11 

increasing complexity. Mean accuracy is calculated over 100 subsampling events of observational data (50 observations per 12 

behavioral state). There is no observational data of whether red squirrels were moving or not moving while in the nest so those two 13 

categories were combined as ‘In Nest’ for the 4, 5, and 6-behavior classification trees. 14 

2-Behavior 4-Behavior 5-Behavior 6-Behavior 
Category Mean ± sd Category Mean ± sd Category Mean ± sd Category Mean ± sd 

Out of Nest 93.8 ± 3.4% 
Moving 96.9 ± 2.3% 

Feeding 86.7 ± 4.0% Feeding 86.3 ± 4.3% 

Travelling 89.4 ± 3.6% 
Foraging 66.4 ± 5.9% 
Running 26.8 ± 5.8% 

Not Moving 83.9 ± 4.7% Not Moving 84.2 ± 4.6% Not 
Moving 

83.9 ± 4.7% 

In Nest 89.3 ± 3.9% In Nest 90.0 ± 4.1% In Nest 89.8 ± 4.2% In Nest 89.4 ± 4.2% 
Total 91.6 ± 2.5% Total 90.3 ± 2.3% Total 87.5 ± 1.9% Total 70.6 ± 2.3% 

15 
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Linking Statement 
 
In the previous chapter, I developed methodological approaches for the use of low-frequency 

acceleration and temperature data to record behaviour continuously for long durations (weeks to 

months) on small mammals. The classification used requires direct observations for training data 

that is sometimes not easy to collect on free-ranging species. In the next chapter, I test the same 

classification methodology on snowshoe hares, but due to the hare’s cryptic nature and an 

inability to observe individuals in the wild, I also test the applicability of using acoustic recorders 

for capturing behaviour. As a case study to highlight the application of these devices to studying 

animal behaviour, this chapter also investigates behavioural responses of snowshoe hares to 

changing moonlight conditions.     
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Chapter 3 - Use of acceleration and acoustics to classify behavior, 
generate time budgets, and evaluate responses to moonlight in free-
ranging snowshoe hares 
 

Abstract 

Technological miniaturization is driving a biologging revolution that is producing detailed and 

sophisticated techniques of assessing individual behavioral responses to environmental 

conditions. Among the many advancements this revolution has brought is an ability to record 

behavioral responses of nocturnal, free-ranging species. Here, we combine captive validations of 

acceleration signatures with acoustic recordings from free-ranging individuals to classify 

behavior at two resolutions. Combining these classifications with ~2 month-long recordings, we 

describe winter time budgets, and responses of free-ranging snowshoe hares to changing 

moonlight. We successfully classified snowshoe hare behavior into four categories (not moving, 

foraging, hopping, and sprinting) using low frequency accelerometry, with an overall model 

accuracy of 88%, and acoustic recordings to three categories (silence, hopping, and chewing) 

with an accuracy of 94%. Broad-scale accelerometer-classified categories were composed of 

multiple fine-scale behavioral states with the composition varying between individuals and 

across the day. Time budgets revealed that hares spent ~50% of their time foraging and ~50% 

not moving, with most foraging and feeding occurring at night. We found that hares adjusted 

timing of activity in response to moon phase, with a 6% reduction in foraging and 30% reduction 

in travelling during the night when the moon was full. Hares compensated for this lost foraging 

time by extending foraging into the morning hours of the following day. Using two biologging 

technologies to identify behavior, we demonstrate the possibility of combining multiple devices 

when documenting behavior of cryptic species. 
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Introduction 

From satellites and drones to biologging devices, new technologies are providing us with the 

capabilities to answer questions about the natural world, and the species that live within it that 

could only have been dreamt about a few decades ago. Every year, the number of technologies 

available to ecologists expands, and the sophistication and capacity of those tools that exist 

improves (see reviews: Elliott, 2016; Williams et al., 2016). Although initial incorporation of 

devices on wildlife focused on space use, with a focus on knowing in real time the exact location 

of an individual, the latest phase of the biologging revolution has, in part, been behaviorally 

focused, with a desire to know what the individual was doing (Wilmers et al., 2015). One of the 

most popular devices for behavioral classification is the accelerometer, which measures 3-

dimensional acceleration of a species of interest (see Figure 3.1; e.g., Graf et al., 2015) and for 

which miniaturization has reduced the weight to as little as 0.7 grams (e.g., Axy-4 without 

battery, Technosmart, Rome, Italy). Taking into account gravity and acceleration profiles of 

different movement types, these recordings can provide information on posture and orientation, 

energy expenditure, and activity levels, that should correspond to specific behavioral states 

(Wilson et al., 2006; Shepard et al., 2008; Gleiss et al., 2011; Brown et al., 2013).  

 

The potential for accelerometers to record behavior over long timeframes, including multi-day, 

cross-seasonal, and even multi-annual periods, involves a tradeoff between recording duration 

and the resolution of behavioral classification (Broell et al., 2013; Tatler et al., 2018). Accurate 

classification of detailed behavioral states requires a sampling rate that is twice the highest 

frequency present in the signal, referred to as the Nyquist criterion (Beutler, 1966; Chen & 

Bassett, 2005; Graf et al., 2015). Most classifications target rapid movements like wingbeats or  
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Figure 3.1 Example of 1Hz tri-axis accelerometer data and the orientation axis from a collar 

attached to a captive snowshoe hare. Arrow indicates location where accelerometer rested on the 

animal.  

 

steps (Shepard et al., 2008; Spivey & Bishop, 2013), but the intensive sampling needed to do so 

tends to limit device longevity below what is necessary for documenting wildlife responses to 

changes in their environment that occur at seasonal and annual timescales. To increase recording 

duration, sampling frequency can be lowered at the cost of only capturing behavioral categories 

with lower Nyquist criterion such as bouts of travelling, foraging, and resting (Campbell et al., 
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2013; Tatler et al., 2018; Studd et al., 2019). Such information, although less specific, is still 

highly useful for building activity and energy budgets (Williams et al., 2017; Studd et al., 2019).  

 

To counteract the loss of information from using a lower sampling frequency, it may be 

necessary to determine the detailed behavioral composition of the broader behavioral categories 

through different means. In species where direct observations are difficult, this may require 

combining accelerometers with additional biologging technology such as video or audio 

recorders (Lynch et al., 2013; Pagano et al., 2018). For large terrestrial species (such as polar 

bears and caribou), observational data on free-ranging behavior can be obtained with video 

camera collars (e.g., Thompson et al., 2012; Pagano et al., 2018), while for smaller taxa where 

weight of monitoring devices becomes limiting, deployment of acoustic recorders may be a 

potential alternative (Lynch et al., 2013; Couchoux et al., 2015). Acoustic data has been 

incorporated into many fields within ecology providing new means of quantifying biodiversity 

(e.g., Depraetere et al., 2012; Gasc et al., 2013), soundscapes (Pijanowski et al., 2011) and 

animal communication (e.g., Reby & McComb, 2003; Fischer et al., 2004; Thiebault et al., 

2016). More recently, a few studies have even revealed the potential of acoustic devices to 

record non-vocal behavior (e.g., flying, feeding, walking; Ilany et al., 2013; Lynch et al., 2013; 

Stowell et al., 2017; Wijers et al., 2018). 

 

Here we highlight the potential of using accelerometers and acoustic recorders (attached as 

collars) to classify the behavior of free-ranging snowshoe hares (Lepus americanus), a cryptic 

small mammal (2kg). Our primary objective was to determine if we could use low frequency 

acceleration to identify broad behavioral categories that could be recorded over days to months. 
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In order to do this, we linked accelerometer recordings to observations of captive hares. 

Additionally, we took advantage of the ability of acoustic recorders to classify non-vocal 

behavior in order to determine a more detailed composition of accelerometer-based behavioral 

categories. Our secondary objective was to showcase how these tools, in providing detailed 

behavioral information over long periods of time, can then be used to investigate daily activity 

patterns and how aspects of the environment can influence behavior of free-ranging hares. We 

took a proof of concept approach whereby we explored how light conditions caused by phases of 

the moon and daylight influenced nocturnal hare behavior. 

 

Materials and Methods 

The study took place in southwestern Yukon (61°N, 138°W) within the Shakwak trench, an area 

of boreal forest where snowshoe hares have been the focus of studies for the past 45 years (Krebs 

et al., 2018). The forest is predominantly white spruce (Picea glauca) intermixed with patches of 

aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and an understory of 

gray willow (Salix glauca) and dwarf birch (Betula pumila var. glandulifera) (Boonstra et al., 

2016). Snowshoe hares exhibit 10-year population cycles, which are, at least in part driven by 

their primary predators Canada lynx (Lynx canadensis), coyote (Canis latrans), and great horned 

owls (Bubo virginianus; Rohner & Krebs, 1996; O’Donoghue et al., 1998). During this study, 

snowshoe hares were in the increase phase of the cycle with densities averaging 1 hare/ha (Krebs 

unpublished).  

 

All snowshoe hares were captured using Tomahawk live-traps (Tomahawk Live Trap Co. 

Tomahawk, WI, USA) baited with alfalfa and rabbit chow, and set and checked overnight (Keith, 
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1964). Individuals were fitted with an accelerometer (model Axy3, 4 g, Technosmart, Rome, 

Italy) and VHF radio transmitter (Model SOM2380, Wildlife Materials Inc., USA, or Model MI-

2M, Holohil, Canada, both 27g +/- 1g) in the form of a collar (31g +/- 1g, 2.5% of smallest hare 

mass). Accelerometers rested on the dorsal side of the neck and recorded acceleration on 3 

dimensional axes at 1 Hz with a resolution of +/- 8 g-forces. To record observations of snowshoe 

hare behavior, we captured six hares (>1200g) in April 2015, attached collars and transferred 

them to outdoor enclosures (4.5m by 4.5m; modified from Sheriff et al., 2009; Lavergne and 

Boonstra pers comm). Hares were held for three days and supplied with rabbit chow, water, and 

willow branches collected from the surrounding area. At the completion of observational trials, 

collars were removed, and hares were released at point of capture. To explore the potential of 

accelerometers for monitoring behavior over multiple months, we live-trapped and collared 14 

free-ranging snowshoe hares between October 2015 and March 2016. Once collared, hares were 

released at their capture site, and recaptured 1-3 months later (average=62 days, range: 32-100 

days) for collar removal and data download. This research conformed to the guidelines of the 

American Society of Mammalogists (Sikes, 2016) and was approved by the McGill University, 

University of Alberta, and University of Toronto Animal Care and Use Committees.  

 

Behavioral observations of captive and chased hare 

We used the observations of captive hares to cross-validate behavioral categories based on 

accelerometer information. For this, two hours of video (Nikon D90 with 50mm, Sony 

Handycam HDR-CX240) were recorded per day for three days capturing morning and dusk 

activity. During recordings, personnel left the enclosure area to minimize influence of human 

activity on hare behavior. Hares tended to move rapidly when humans entered the enclosures to 
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provide food and remove droppings, so cameras also recorded during these times. The same 

time-keeping device was held in frame at the start of each video to sync times for all 

observations. Videos were watched by two observers who recorded the start and end times of 

each behavior, which included digging, feeding, grooming, jumping, vigilance (sitting while 

head moves to look in multiple directions), sprinting, shaking, sitting (motionless), standing, 

travel with multiple hops, or travel with one hop only. From this we selected the six most 

common behavioral states that represented 91.8% of all observations and combined them into 

three broader categories (not moving: sitting and vigilance; foraging: feeding and travel with one 

hop; travelling: sprinting and travel with multiple hops). This included at least one observation of 

each behavior per hare per day with the average number of observations of each behavior per 

hare per day ranging from 8 for feeding to 42 for vigilance (supplementary materials Table 

S7.3.1). Since clocks on separate devices did not run at exactly the same rate, we visually 

identified multiple occasions per day per hare where the animal transitioned from sitting to 

travelling to calculate the time divergence between each accelerometer and the camera clock to 

generate a time correction equation for each accelerometer (error = +/- 3 sec).  

 

We observed few instances of hares sprinting at maximum speeds in the enclosures. Thus, to 

capture potential high-speed chase or ‘fleeing’ behavior (an important aspect of predator-prey 

interactions), we added additional behavioral data from free-ranging snowshoe hares that were 

chased by a simulated predator (i.e., a dog, Canis familiaris, a model for coyotes; see methods in 

Boudreau et al., submitted). For each chase, the time and whether or not the hare sprinted were 

recorded, and a subset of chases (n=47) where hares were observed sprinting from the dog were 

used as examples of sprinting behavior.   
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Accelerometer classification 

Average static acceleration was calculated using a running medians smoothing window of 91 

samples (see supplementary materials 7.3.1 for window size selection method). We removed this 

long duration static acceleration (general orientation of device) from total acceleration to retain 

only acceleration generated from the movement of the animal on which all further analyses were 

based. This remaining acceleration is primarily the measurement of small changes in the posture 

of the animal that occur during each behavior, and secondarily, measurements of the dynamic 

acceleration of the movement. To classify acceleration by behavioral categories we constructed a 

decision tree consisting of three hierarchical divisions (Studd et al., 2019): 1) not moving (no 

visible motion, i.e. sitting) and moving (any physical movement), 2) all moving into foraging 

(feeding, travel with one hop) or travelling (travel with multiple hops), and 3) all travelling into 

hopping (observed in enclosure) and sprinting (observed in simulated chases in the wild). For 

each division of the tree, observed behavioral data was split between training (70%) and testing 

(30%), and then subsampled to ensure equal numbers of each behavior. Over each sample 

window duration, determined by the average duration observed in videos of behavioral states in 

each division, we calculated the mean, maximum, minimum, range, standard deviation, and sum 

of acceleration on each of the three axes (surge, heave, and sway), along with the sum of overall 

acceleration (OA; similar to ODBA in Wilson et al., 2006), and the change in overall 

acceleration (DOA) across all three axes. DOA is the change in acceleration (Da) for each axis 

from one second to the next summed over the time window across all three axes. Threshold 

values for behavioral categories at each division were determined by a two-step process. First, 

the percent overlap between the two behavioral categories for each summary statistic was 
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calculated and the statistic with the lowest overlap was selected (Figure 3.2a). Second, the 

percent error of classification was calculated for every 0.1 increment of the selected statistic 

between the minimum and maximum values, and the threshold value was set according to the 

lowest classification error (Figure 3.2b). Using the remaining 30% of the observational data, 

accuracy for each division of the tree was calculated as proportion of all observations that were 

correctly classified by the threshold value. 

 

The flexibility of this method allows for different sample duration windows to be used at each 

division. Sample window size was 12 second for not moving and moving, and 4 sec for each of 

foraging and travelling, and for hopping and sprinting. Different training datasets were used for 

each division. For the first division we used all not moving and moving events with durations of 

at least 12 seconds (91.8% of observed behavior). The second division included all foraging 

(51% or more feeding with no type of travel) and travelling (51% or more travel with multiple 

hops) events that lasted at least 4 seconds (89.4% of observed behavior). The final division 

included all hopping (low speed travel with multiple hops) and sprinting (simulated predator 

chases) events with summary statistics calculated over 4 seconds. Due to low sample size of 

sprinting events, overall classification accuracy was calculated on the first two divisions only. 

 

Although we used a threshold-based classification approach, much recent accelerometer-based 

literature uses alternative machine learning methods. These approaches have the advantage of 

efficient processing for the generation of complex classifications with high accuracies, but the 

disadvantage of black box, non-transferrable thresholds and non-hierarchical trees (Bidder et al., 

2014; McClune et al., 2014). Given pros and cons to both approaches, we also explored the  
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Figure 3.2  Example illustrating method for determination of threshold values for separation of 

behavioral states using accelerometer data from collars attached to snowshoe hares. Histograms 

provide visualization of percent overlap between two behavioral categories using a given 

summary statistic (A). Optimization is performed by examining the accuracy of the behavioral 

classification between two behavioral states across a range of values and selecting the value at 

which the overall accuracy is the highest and where the individual accuracy of each behavior 

intersects. Dotted line represents the selected threshold value for classifying accelerometer data 

into forage and travel using DOA. 
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accuracy of random forest-based classification, as described more fully in the supplementary 

materials (see 7.3.2), and briefly describe the outcome of this alternative approach in the results. 

As the random forest provided similar results, we decided to report the more simple method in 

the body of the paper.  

 

Using acoustic recorders to refine accelerometer-classified behavior 

We used animal-borne acoustic recorders to explore composition of broad behavioral 

classifications (i.e. not moving, and foraging) generated from our low frequency accelerometer 

recordings. In January 2018, we captured three male snowshoes hares and fitted them with an 

accelerometer-VHF combination collar that contained an acoustic recorder (Edic-mini Tiny+ 

A77, 6.6 g, total collar weight of 41g, <3% of body mass). Once collared, each individual was 

released at the capture site and recaptured between 4 and 22 days later. Audio recorded 

continuously at 16000hz with µ-law compression for three days following capture. Prior to 

acoustic analysis, we listened to and recorded the sounds contained within 135-15 second audio 

clips (45 per recorder) that corresponded to long duration (>15 sec) foraging, not moving, and 

travelling as determined by our accelerometer classification tree. Listeners determined that 

sounds that suggested chewing (33.4% of audio; see supplementary materials 7.3.6 for example 

clips), hopping (24.5%), silence (23.6%), and unclassifiable noises (9.3%) could be repeatedly 

distinguished and were the most common. Although we could not truly validate our sound 

classification for each behavior, we verified that these sounds could be repeatedly associated 

with a specific behavior among different observers. Three independent listeners blindly classified 

a subset of clips into the four categories, and we calculated inter-listener agreement for each type 

of sound. 



 62 

 

We manually extracted 300 seconds of each sound associated with chewing, hopping, and 

silence consisting of 20-30 independent clips from each hare. Using 70% of the clips, 

spectrogram analysis (window=8000, overlap=50) was run on each second using the seewave 

package in R to determine the acoustic properties (Sueur et al., 2008). A classification algorithm 

consisting of upper and lower amplitude threshold values at 8 frequencies between 0 and 8 kHz 

for each sound (chewing, hopping, and silence) was created for each device. Thresholds were the 

100% confidence intervals plus or minus 10% for that sound (Tables S7.3.4, S7.3.5 

supplementary materials 7.3.3). However, if thresholds of two sounds overlapped at all 

frequencies, an optimization was run at the frequency where amplitudes were most 

distinguishable between sounds, and thresholds were adjusted to the value that generated the 

lowest misclassification. Any sound that did not meet all specified thresholds for chewing, 

hopping, or silence was classified as “other”. The accuracy of classification, unique to each 

recorder, was calculated using the remaining 30% of clips.  

 

All audio files were converted to behavioral categories at a one-second resolution and used to 

tabulate an acoustic-based behavioral composition of the not moving and foraging categories 

from accelerometer classification for each hare, and across all hares. To account for drift in the 

internal clocks of the devices, prior to analysis we aligned the timing between devices by 

identifying 30 events across the file when both acceleration and acoustic amplitude shifted from 

a long bout of low values to a long bout of high values (i.e. resting to moving). A linear 

regression of time divergence over time of recording was calculated and the coefficients were 

used to readjust acoustic time. However, a ~20 second error remained post-alignment so 
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behavioral composition was calculated using not moving and foraging accelerometer bouts 

longer than 90 seconds, with the first and last 30 seconds removed.  

 

Daily time budgets and behavioral responses to moonlight 

From both accelerometer-classified, and acoustic-classified behavior, we determined the daily 

time budgets of free-ranging individuals. This was calculated as the proportion of 24 hours that 

all hares spent expressing each behavior. 

 

Moonlight illumination levels and daily light phase times (including moon rise and moon set 

times) for our study site were retrieved with suncalc package in R (Agafonkin & Thieurmel, 

2017). Moonlight illumination levels were converted into a 3-level categorical variable according 

to the fraction of the moon that was lit: <0.33 (new), 0.33-0.66, and >0.66 (full). Eight light 

phases defined by the position of the sun relative to the horizon were used including: day (above 

horizon minus the first and last hour sunlight; ~4 hours), evening (last hour above horizon; ~1 

hour), dusk (0 - 6° below horizon; ~1 hour), evening twilight (6 – 18° below horizon; ~2 hours), 

night (>18° below horizon; ~12 hours), morning twilight (18 – 6° below horizon; ~2 hours), 

dawn (6 - 0° below horizon; ~1 hours), and morning (first hour above horizon; ~1 hours). We 

removed all times when there was potentially cloud cover using both snowfall measures, which 

were collected daily from 4 locations throughout the study area, and hourly relative humidity 

values from the nearest weather station (Haines Junction, 40km away; Environment Canada). We 

removed all nights preceding a snowfall measurement greater than 0, and all times when the 

relative humidity was greater than 85%, since cloud cover is highly correlated with relative 

humidity (Sandor et al., 2000). Although we did not measure moonlight illumination levels 
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ourselves and do not know the exact values that occurred, moon phase and lunar position are 

commonly used in studies of the effects of moonlight on wildlife (e.g., Johnson & De León, 

2015; Gigliotti & Diefenbach, 2018). 

 

As foraging and not moving were highly correlated (Pearson’s correlation coefficient =-0.99), 

moonlight analysis focused on foraging with the understanding that any major changes seen in 

foraging times are mirrored by opposite changes in not moving. We quantified accelerometer 

derived hare behavior in response to moonlight at three temporal scales. At a daily scale, we 

examined foraging time per 24 hours using a generalized linear mixed effects model (GLMM) 

with moon phase (three level) as a fixed effect (R:lmer; Bates et al., 2015). At a within-day scale, 

we examined how foraging time (min/hr) was influenced by moon phase during different times 

of day using a GLMM with a light phase and moon phase interaction. At this scale we also tested 

how hopping (min/hr) and sprinting (events/hr) were influenced by moonlight across light 

phases. Hopping was examined using the same GLMM as foraging. Sprinting event data was 

zero-inflated so a hurdle model (Martin et al., 2005; Zuur et al., 2009) was used consisting of a 

binomial (logit-link) GLMM to test whether individuals sprinted or not during each light phase, 

and a second GLMM to test whether differences occurred in the number of sprint events during 

times when hares sprinted at least once. As behavioral states were analyzed separately, a 

Bonferroni correction (alpha=0.02) was applied to all analyses at this temporal scale. At an 

hourly scale, we examined how foraging time (min/hr) was influenced by the presence of moon 

using a GLMM with a moon phase and moon position (set or risen) interaction. This analysis 

only used hourly foraging values during the darkest light phase (night). All hours when the moon 

rose, or set were removed to reduce landscape-imposed variation in timing of rising and setting. 
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We included the intermediate moonlight levels in this analysis as it is during this part of each 

month that the moon rises or sets halfway through the night and the response to moon position 

relative to the horizon might be most pronounced. All GLMMs included hare ID as a random 

factor, and for the within-day and hourly scale analysis, date was included as a random factor. 

Model fit was calculated using conditional R-squared values, and significance of fixed effects 

were assessed using Wald chi-square (χ2) tests (Bolker et al., 2009). 

 

Results 

Accelerometer classification 

We found that a DOA threshold value of 1.15 g-forces distinguished moving from not moving 

with a 95.8% accuracy using a sample window duration of 12 seconds. Not moving was 

correctly classified 94.6% (159/168 events) of the time, while moving had an accuracy of 97.0% 

(163/168 events; Figure 3.3). A DOA threshold of 3.0 g-forces over four seconds further 

separated any segment classified as moving into foraging (feeding, and short travel) and 

travelling with an accuracy of 88.1% (travelling = 83.1%, 242/291 events; foraging = 93.1%, 

271/291 events; Figure 3.3). Finally, travelling-classified segments were divided into sprinting 

and hopping (low speed travel) using a OA threshold value of 6.5 g-forces over 4 seconds with 

an accuracy of 88.4% (sprinting = 76.9%, 10/13 events; hopping = 100%, 13/13 events; Figure 

3.3). The overall accuracy of the classification into three behavioral states (not moving, foraging, 

and travelling), which accounts for all misclassifications at each level of the tree was 88.0% with 

slightly lower divisional accuracy than what was calculated when setting the threshold values 

(Table 3.1). Accuracy varied at the individual level from 80% to 91.7%, with large variation in 

individual accuracy of classifying travelling and foraging (see supplementary materials for  
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Figure 3.3  Hierarchal decision tree used to classify snowshoe hare accelerometer data to four 

behavioral categories. Long duration behavioral states were classified using a 12 second window, 

while short duration behavior was classified using a four second window. The accuracy of each 

division is the percentage of observed behavior that were classified correctly. Histograms depict 

the frequency of each behavior occurring at different values of the summary statistic used for the 

division of the tree. Black represents behavior on left side of the decision tree while white is 

behavior on right side of decision tree at each split.  
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individual confusion matrices 7.3.4). Classification using a random forest algorithm generated 

accuracies ranging from 83.3% to 96.7% depending on the sample window chosen (see 

supplemental materials Figure S7.3.2). 

 

Table 3.1 - Confusion matrix of accelerometer-based classification of snowshoe hare behavior to 

three categories: not moving, forage, and travel. Overall accuracy is 88.0% 

 Not Moving Forage Travel Accuracy 

Not Moving 68 7 0 90.7% 

Forage 6 66 3 88.0% 

Travel 0 11 64 85.3% 

 

Refinement of accelerometer behavior categories using acoustic recorders  

Three audio sounds (silence, chewing and hopping) could consistently be identified by listeners 

(see supplementary materials 7.3.6 for example clips; Table S7.3.3). Inter-rater reliability was 

97% and 95% for chewing and silence, respectively. There was 83.3% agreement among all 

raters for “unclassifiable sounds”; some sound clips were suggested to be hopping or chewing, 

but there was no consensus across all listeners. Hopping had the lowest among-listener 

agreement (55.6%) with the most common alternative classification being unclassifiable sound. 

We are confident in our identification of these four sounds due to 1) the high inter-rater 

reliability scores, and 2) sounds labelled chewing, hopping, and silence primarily occurred when 

the hare was foraging, travelling, and not moving according to the accelerometer respectively. 

That being said, we have no means to truly validate that these sounds are the behavioral states 

classified. As such, our acoustic results should be taken with caution as there is a potential for 

misclassification.    
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Acoustic spectral analysis of user-classified sounds indicated that silence had no peaks in 

amplitude at any frequency, chewing had a peak at 250-600 Hz, and hopping had a primary peak 

at 0-650 Hz and secondary peak at 3650-4000 Hz (Figure 3.4), but peak frequencies varied 

between recorders (supplementary materials 7.3.3, Figure S7.3.3). Automated classification of 

these three acoustic behavioral states produced an accuracy of 94.1% (Table 3.2) with little 

variance in accuracy between devices (supplementary materials 7.3.5). Only 5.7% of acoustic 

files did not match the properties of these three behaviors and were classified as other sounds. 

The majority (~60%) of these other sounds were short in duration (1 second) and may have 

consisted of branches or parts of the hare hitting the microphone, or the hare shifting in position. 

In comparison, only a small amount of the silence (4%), chewing (9.4%) and hopping (22.8%) 

were short duration (1 second). 

 
Figure 3.4  Amplitude frequency spectral properties of hop, chew and silent sounds from animal-

borne acoustic recorders on snowshoe hares (right) and accompanying spectrograms (left). 

Shading represents the 95% CI of the amplitude for each behavior.  
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Table 3.2 - Confusion matrix of acoustic-based behavioral classification of snowshoe hare 

behavior to three categories: silence, chew, and hop. Overall accuracy is 94.1% 

 Silence Chew Hop Other Accuracy 

Silence 87 3 0 0 96.7% 

Chew 0 84 2 4 93.3% 

Hop 0 5 83 2 92.2% 

 

Acoustic refinement of accelerometer classification revealed that bouts of foraging were 

composed of a combination of chewing (42.5%), hopping (35.7%), silence (13.0%) and other 

sounds (8.8%). The composition of foraging bouts varied among individuals (Figure 3.5a) but, 

on average, was consistent throughout the day (Figure 3.6). The behavioral composition of not 

moving was consistent among individuals and was composed of silence (~80%) chewing 

(~13%), other sounds (~4%), and hopping (0.3%) (Figure 3.5b). The composition of not moving 

varied with time of day switching from primarily silence during the day to primarily chewing at 

night (Figure 3.6).  

 

Daily activity 

We calculated average daily time budgets of free-ranging snowshoe hares in winter using 

accelerometer data from all individuals. Hares spent almost all of their time either foraging 

(~49%) or not moving (~49%) with small amounts of travelling (2%; i.e., either long duration 

hopping or sprinting). Not moving was the predominant behavior during daylight hours, and time 

spent foraging increased at dusk, remained high throughout the night, and decreased at dawn 

(Figure 3.6, 3.7a). Acoustic recorders revealed that snowshoe hares split their time between 

silence (46.3%), chewing (37.5%), and hopping (10.8%) with small amounts of other sounds 
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(5.4%). Hares were mainly silent during daylight, while at night they were chewing and hopping 

(Figure 3.6).  

 
Figure 3.5 Acoustic determination of time spent chewing (black), hopping (white), silent (black 

stripe), and other (white stripe) during accelerometer-defined bouts of foraging (A) and not 

moving (B), across all individuals (n=3) and for each individual free-ranging snowshoe hare. 
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Figure 3.4 Accelerometer classification of the proportion of each hour of the day spent foraging 

(A) and not moving (B) and the acoustic composition (chewing: black, hopping: white, silence: 

black stripe, or other: white stripe) of those behavioral states. All data was collected over the 

same two days from free-ranging snowshoe hares (n=3) that were outfitted with an accelerometer 

and an acoustic recorder. Arrows denote sunrise and sunset times. 
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Moonlight analysis  

Snowshoe hares decreased daily time spent foraging by 40 min per day during a full moon 

compared to during a new moon (χ2=11.6, df=2, P=0.003, model R2(c)=0.23). Time spent 

foraging, hopping, and the occurrence of sprinting events during each light phase was influenced 

by the phase of the moon (foraging: χ2=230.8, df=14, P<0.001, model R2(c)=0.69; hopping: 

χ2=104.5, df=14, P<0.001, model R2(c)=0.37; sprinting: χ2=42.9, df=14, P<0.001, model 

R2(c)=0.67; Figure 3.7), but the number of sprint events in a light phase was not influenced by the 

moon (χ2=15.2, df=14, P=0.36, model R2(c)=0.32). Hares had the largest decrease in foraging 

time during the night, with an average decrease of 3 min/hr or 51 min between dusk until dawn 

during full moons compared to new moons (Figure 3.7b). Hopping, but not sprinting, was also 

substantially reduced through the darkest phases from twilight until dawn (Figure 3.7c, d). 

However, this pattern switched during dawn and morning following a full moon when hares 

spent noticeably more time foraging and hopping and were more likely to sprint than after a new 

moon (Figure 3.7b, c, d). Within a single night, snowshoe hare responses to the moon being 

above or below the horizon depended on the phase of the moon (χ2=15.1, df=2, P<0.001, model 

R2(c)=0.30; Figure 3.8). When the moon was at its brightest (>0.66 fraction is visible), snowshoe 

hares spent more time foraging per hour during the hours that the moon was below the horizon 

than when the moon had risen (t= 2.07, df=1443, P=0.039; Figure 3.8). However, during all 

other phases of the moon (visible fraction is <0.66), hares decreased time spent foraging when 

the moon was below the horizon as compared to when it was above the horizon (fraction<0.33: 

t= -2.25, df=1436, P=0.024; fraction>0.33: t= -3.62, df=1444, P<0.001; Figure 3.8).  
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Figure 3.5  Average time spent by snowshoe hares on each behavior during different light phases 

of a day and moon phase with light boxes for full moon (lunar illumination > 0.66) and dark 

boxes for new moon (lunar illumination < 0.33) conditions (mean ± 95% CI). Not moving (A), 

foraging (B), and hopping (C) are presented as time spent (min/hr) expressing each behavior, 

while sprinting (D) is depicted as number of events per hour. Bar at top indicates the solar 

illumination level of each light phase and average number of hours that occur during that phase 

in a 24-hour period.  
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Figure 3.6.  Average foraging time (min/hour) of snowshoe hares when moon is above (risen; 

light grey) or below (set; black) the horizon during different moon illumination fractions (mean ± 

95% CI). 

 

Discussion 

By integrating two biologging technologies (accelerometers and acoustic recorders), we 

demonstrate the possibility of accurately classifying behavior of a nocturnal, and often difficult 

to observe, free-ranging mammal over multi-month durations. After achieving high overall 

accuracy for both accelerometer- and acoustic-based behavioral classification, we were able to 

explore the composition of broad accelerometer categories revealing inter- and intra-individual 

differences in behavior. Our demonstration of the potential for accelerometers to assess 
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behavioral responses of hares to moonlight revealed that hares adjust their time spent foraging as 

light conditions change.  

 

Biologging behavior 

Despite general difficulties in observing cryptic species, we successfully recorded behavior of a 

nocturnal species for up to three months continuously using biologging technology. We found 

that different technologies were best suited for extracting specific behavioral states and that a 

combination of technologies may be necessary to understand the complex nature of a species’ 

behavior. For example, although accelerometers could classify foraging behavior, the act of 

chewing in snowshoe hares did not generate a measurable amount of acceleration. In this 

particular study, our capacity to detect chewing was limited by low sampling regime but it is also 

likely that some behavioral acts, like chewing, may be difficult to detect using acceleration at 

any sampling frequency without adjusting the attachment of the device to a different location 

(such as to the jaw; Iwata et al., 2012). However, chewing was a behavior that was easily 

identifiable on the acoustic recorders. Travelling, on the other hand, was more accurately 

distinguishable with accelerometers than through acoustics. Additionally, while we were 

significantly below the Nyquist criterion for a hare hop (Brown et al., 2013), we show that 

accurate classification is possible to accuracies (88.0%) comparable to those achieved (75% to 

98%) using higher frequencies (3.3 Hz to 40 Hz; Nathan et al., 2012; Bidder et al., 2014; 

McClune et al., 2014; Hammond et al., 2016). At this lower frequency, the detail of behavioral 

categories (e.g., foraging instead of feeding and individual hops) is compromised to maintain 

accuracy. This compromise will not suit researchers interested in describing steps or wingbeats 
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over the span of days, but for researchers interested in behavioral changes over the span of 

months this will likely be a negligible cost.  

 

Our use of animal-borne acoustic recorders not only provided a means of determining behavioral 

composition of accelerometer classification, but also demonstrated an alternative technique for 

collecting continuous behavioral data in circumstances when other methodologies might not be 

possible. Despite only recording on a few individuals (n=3) for a short duration to test the 

potential of this technology, we revealed that individual and temporal variation exists in the 

composition of accelerometer-classified foraging and not moving categories. Although sounds 

like chewing were easily identifiable, other sounds could not be identified to a particular 

behavior with any confidence. For this reason, validating acoustic data with behavioral 

observations would be recommended in order to generate a more detailed classification than 

what we presented here. Acoustic recorders are rarely used for non-vocal behavior despite their 

commonality in animal communication research (e.g., Bee & Gerhardt, 2001; Reby & McComb, 

2003; Fischer et al., 2004). However, successful applications of acoustics to record behavior all 

highlight the considerable wealth of information contained in this media form including bodily 

functions (e.g., heart rate; Couchoux et al., 2015), behavior (e.g., chewing, grooming, wingbeats; 

Ilany et al., 2013; Stowell et al., 2017; Wijers et al., 2018), and environmental noise (e.g., 

anthropogenic noise, wind, vocalization of other species; Lynch et al., 2015; Stowell et al., 

2017).  

 

Daily activity 
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Analyses of both accelerometer and acoustic information revealed that snowshoe hares split their 

time primarily between not moving and foraging-related behavior with limited time spent 

travelling. This is a similar pattern as seen in other hare species where vigilance, rest and feeding 

represented over 95% of the day (Lush et al., 2016). At least in winter, when nights are long and 

dark, we found that snowshoe hares are characterized by a single daily activity peak centered in 

the night, with elevated activity extending into dawn and dusk. The limited literature on the 

behavior of free-ranging snowshoe hares generally classifies the species as exhibiting either 

crepuscular (Murray, 2003) or nocturnal (Foresman & Pearson, 1999) activity patterns. Using the 

definition of Anderson & Wiens (2017) and Bartness and Albers (2000), snowshoe hares are 

likely best classified as a nocturnal species, but alternatively as a nocturnal species with activity 

that extends into the crepuscular period. 

  

Response to moonlight 

For nocturnal animals, moonlight can drastically change the landscape, and impacts the tradeoff 

between foraging and predation risk (Prugh & Golden, 2014; Gigliotti & Diefenbach, 2018). We 

found that moonlight conditions caused snowshoe hares to make substantial adjustments in 

behavior throughout the night, with the magnitude and direction being dependent on the light 

phase. During the darkest phases of the night (dusk to morning twilight), travelling was reduced 

by ~30% and foraging by ~6% when the moon was full. This reduction in foraging is 

considerably less than the average reduction found in foraging trials (13.6%) across all species 

where it has been tested (Prugh & Golden, 2014), but the disproportionate reduction in travelling 

to foraging suggests that the snowshoe hares were not moving around their environment in the 

same manner while foraging. These responses to moonlight confirm previous studies in 
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snowshoe hares that have reported decreased activity and adjustments in habitat use under full 

moon conditions (Gilbert & Boutin, 1991; Griffin et al., 2005; Gigliotti & Diefenbach, 2018). 

Although we could not directly measure whether moonlight impacts predation risk, increased 

illumination at night has been linked to increased activity and feeding in various predators 

including coyotes (Kenaga et al., 2013) and Lynx spp. (Rockhill et al., 2013; Heurich et al., 

2014). The reduction in activity under full moons suggests that snowshoe hares change their 

behavior to reduce risk of predation.  

 

Hares appeared to behaviorally compensate for the lost foraging time associated with full moons 

via an extension of foraging into morning daylight hours. Such compensatory temporal shifts in 

behavior due to moonlight have also been shown to occur in other species (e.g., Dipodomys 

merriami; Daly et al., 1992). All animals have minimum energy intake requirements that must be 

achieved through daily foraging (Norberg, 1977) and although some species can reduce this 

requirement (e.g. through fat storage or use of torpor), snowshoe hares who have limited body fat 

stores (~ 4 days resting metabolic support; Whittaker & Thomas, 1983) must forage on a daily 

basis. This nutritional constraint seems to translate to drastic adjustments in temporally-explicit 

foraging choices rather than changes in overall foraging time as light conditions change (Gilbert 

& Boutin, 1991). If choice in timing of foraging is directly related to predation risk, then in 

hares, moonlight shifts risk of predation from relatively low to relatively high during the night to 

the extent that it is perceived to be safer to forage in the morning than maintain high foraging 

rates during the night.    
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A second compensation that seems to occur is that adjustments in behavior made during the 

night counteract any increases in predation risk that would be expected. We considered sprinting 

to be a measure of flightiness, as although some sprints occur from direct predator encounters, 

the majority are likely responses stemming from wary behavior (Vasquez et al., 2002). If the 

amount of flightiness is related to the amount of perceived predation risk, as would be expected, 

then the lack of effect of moonlight on sprinting during the night (Figure 3.5d) suggests that 

hares reduce their time spent foraging to minimize the level of predation risk, creating a constant 

level of risk across moonlight conditions. However, the increased sprinting during dawn and 

morning periods following full moon nights suggests the morning compensational foraging bouts 

come at a cost. This increased level of perceived predation risk may be due to the morning period 

being a time when all predators can be active. Predators of hares are characterized as 

nocturnal/crepuscular (Lynx canadensis, Canis latrans, Bubo virginianus), or diurnal/crepuscular 

(Accipiter gentilis), but many nocturnal species have considerable movement into and throughout 

the day, especially in winter, making the morning a time when both primarily nocturnal and 

diurnal predators may be hunting (Ozoga & Harger, 1966; Squires & Reynolds, 1997; Kolbe & 

Squires, 2007; Arias-Del Razo et al., 2011; Artuso et al., 2013).  Despite this increased risk 

during the compensatory foraging, the strategy of reducing foraging during the night likely 

results in lower exposure to risk overall.    

 

We additionally found that the extent of moonlight avoidance by snowshoe hares was dependent 

on the phase of the moon, with diminished foraging times when the moon was above the horizon 

on full moon nights and below the horizon on partial or new moon nights; a switching of 

preference that has not been observed previously. Generally in other species, individuals are 
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found to be more active during the darkest hours when the moon is below the horizon regardless 

of moon phase (Morrison, 1978; Daly et al., 1992). This switching of preference for moonlight 

would suggest that risk is highest when light conditions are either at their brightest or darkest 

(Prugh & Golden, 2014). The main predators of snowshoe hares all rely on visual cues for 

hunting (Wells, 1978; Artuso et al., 2013). As such, a decrease in activity with increasing light 

may be a response to higher hunting efficiency from their predators through improved vision. 

Although the darkest conditions may inhibit the predators ability to hunt (Wells, 1978), these 

conditions will have similar effects on the hares ability to detect predators as they also rely 

partially on visual senses to detect danger. It may be that the loss of use of one of their senses is 

enough to cause the hares to select against these conditions for foraging, even if predators are 

similarly hindered.   

 

Biologgers provide us with the opportunity to investigate detailed behavioral adjustments over 

long temporal timeframes revealing subtle and short-term responses to environmental change. 

Every biologging technique has strengths and weaknesses, however, combining biologging 

technology in complementary ways can allow a circumvention of such issues. Short duration 

acoustic recorders provided a method of collecting behavioral states of a free ranging nocturnal 

animal that were not possible with accelerometers and vice versa. This allowed for easier 

interpretation of the behavioral classification generated from long duration accelerometers. Such 

multi-faceted approaches will allow us to gain the most detailed insight yet into behavioral 

responses of species to environmental change. 
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Linking Statement 

 
In the previous two chapters, I explored different biologging technologies and developed 

species-specific decision trees for classifying acceleration into behaviour for red squirrels and 

snowshoe hares. In both chapters, applications of this classification to data from free-ranging 

individuals indicated that individuals adjust their behaviour to changing conditions. The next 

chapter builds on these early indications of behavioural flexibility to explore how environmental 

variability drives activity patterns in endotherms. Combining accelerometer data collected over 

four years on red squirrels with measures of resource availability, mating opportunities and 

temperature, I examine how squirrels respond to seasonal and multiannual fluctuations in their 

environment and use that to build a bioenergetic behavioural decision model to predict activity 

across seasons and years.  
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Chapter 4 - Optimization of energetic and reproductive gains 
explains behavioural responses to environmental variation across 
seasons and years 
 

Abstract  

Animals switch between inactive and active states, simultaneously impacting their energy intake, 

energy expenditure and predation risk, and collectively defining how they engage with 

environmental variation and trophic interactions. We assess daily activity responses to long-term 

variation in temperature, resources, and mating opportunities to examine whether individuals 

choose to be active or inactive according to an optimization of the relative energetic and 

reproductive gains each state offers. We show that this simplified behavioural decision approach 

predicts most activity variation (R2=0.83) expressed by free-ranging red squirrels over four 

years, as quantified through accelerometer recordings (489 deployments; 5066 squirrel-days). 

Recognizing activity as a determinant of energetic status, the predictability of activity variation 

aggregated at a daily scale, and the clear signal that behaviour is environmentally-forced through 

optimization of gain, provides an integrated approach to examine behavioural variation as an 

intermediary between environmental variation and energetic, life-history, and ecological 

outcomes. 

 

Introduction 

Behaviour can be defined as choices made by whole organisms, which have purpose and take 

time (Baum, 2013; see also Levitis et al., 2009). In many cases, animals choose where to be and 

what to do with the purpose of increasing access to resources while reducing the risk of 

predation (Lima & Dill, 1990; Brown, 1992; Werner & Anholt, 1993; Brown et al., 1999). Given 
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behavioural decisions relate directly to food, predators, and reproduction, how behaviour varies 

over time links environmental variation to rates of consumption and predation, reproduction and 

survival, and ultimately population dynamics and trophic interactions. 

  

However, successful documentation of behavioural responses to environmental variation and 

their ecological consequences has been limited by at least three major impediments. 

Methodologically, the difficulty of quantifying animal behaviour outside of the direct presence 

of a human observer has often constrained behavioural research to temporal extents and 

observation windows that are much shorter than, and not fully representative of, seasonal and 

multi-annual environmental variation (Altmann & Altmann, 2006). Empirically, behavioural 

variation is multi-dimensional, including but not limited to movement, feeding, and social 

behaviour (Martin & Bateson, 1993), making it challenging to characterize behavioural 

responses in a generalized, yet ecologically-relevant manner. Finally, conceptually, the 

importance of behaviour in defining the energetic and ecological status of animals has often been 

misrepresented or neglected in physiological models and ecological theory. For example, the 

metabolic theory of ecology has focused primarily on body size and temperature - but not 

behaviour - as determinants of metabolic variation (Brown et al., 2004; Humphries & McCann, 

2014). Meanwhile, consumer resource theory allows for behaviour to affect the consumption of 

resources, but treats energy expenditure as behaviourally-independent (Yodzis & Innes, 1992; 

Post et al., 2000). The methodological constraint requiring direct observation of behaviour has 

now largely been eliminated by recent advances in biologging technologies which offer effective 

methods for continually recording fine-scale behavioural variation (Kays et al., 2015) over long 

durations (Williams et al., 2016; Tatler et al., 2018; Studd et al., 2019). Accordingly, we focus 
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the next two paragraphs on describing an empirical approach for categorizing behavioural 

variation and a conceptual approach to relating these behavioural categories to their energetic 

and ecological consequences.    

 

A simple way to classify behaviour in an ecologically and energetically-relevant way is to 

consider inactivity and activity as contrasting states. Inactivity (stationary, not feeding, and 

within a refuge) minimizes energy losses and predation risk, whereas activity (moving, feeding, 

and outside of a refuge) is necessary for energy acquisition and mating (Daly, 1978; Werner & 

Anholt, 1993; Luttbeg et al., 2003). Of course, the specificities and correlates of particular active 

and inactive states vary widely both among animals and within the same individual over time. 

Nevertheless, because all animals punctuate active bouts with periods of inactivity, these two 

states capture behavioural variation in a generalizable way where activity is focused on 

acquisition and expenditure whereas inactivity is focused on conservation and recuperation.  

 

Animals can be thought of as energy processors that acquire energy from the environment and 

allocate this energy among maintenance, growth, and reproduction (Yodzis & Innes, 1992).  

Considering animals in this way situates energetic status as the mechanistic link connecting 

environmental variation, including that in resource availability and thermal conditions 

(Scholander et al., 1950; Mueller & Diamond, 2001), to the survival and reproduction of 

individuals, and the demographics of populations. In considering bioenergetic responses to 

environmental variation, energy expenditure is often measured and modeled as behaviourally-

independent (Yodzis & Innes, 1992; Brown et al., 2004; Humphries & McCann, 2014). 

However, for all animals, acquiring resources requires activity, and activity requires energy 
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expenditure (Kam & Degen, 1997; Humphries & Umbanhowar, 2007). Energetic surplus is 

achieved only when the energy gains offered by activity exceed its energetic cost. Behavioural 

activity is thus a fundamental, but under-appreciated, determinant of how environmental 

variation affects the energetic status of organisms. Although other areas of research in ecology 

and evolution consider behaviour-energetic linkages more explicitly, like the possible co-

evolution of metabolic and behavioural traits (i.e. metabolism and personality traits; Careau et 

al., 2008; Biro & Stamps, 2010; Mathot & Dingemanse, 2015) or the link between locomotory 

performance and ancillary change in metabolic traits (Rezende et al., 2009; Careau et al., 2011), 

these areas of research tend not to focus on how shared variation in activity and energetic status 

drive ecological responses to environmental variation. 

  

Here we extend energetically-explicit optimality models to predict activity responses of free-

ranging organisms across seasonal and multi-annual variation in resources and temperature. 

Although considering behavioural decisions as optimizations has been central to foraging models 

(Pyke et al., 1977; Brown et al., 1999), this has generally, although not completely (e.g., 

McNamara & Houston, 1987), been restricted to understanding short-term decisions like prey 

and patch selection (Brown, 1992; Kramer, 2001). Since shifting the scale of focus often changes 

the nature of behavioural variation (Levin, 1992), it is important to assess whether the same 

optimality models traditionally applied across short-term conditions are able to predict activity 

across long time scales. Here, we hypothesized that behavioural responses to seasonal and 

multiannual variation in resources, temperature, and mating are optimized according to energetic 

and reproductive gain. This hypothesis, and the empirical comparisons and modelling approach 

described next, do not explicitly include temporal changes in predation risk as a driver of activity 
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variation, a limitation which we revisit in the discussion. The current study measures the extent 

of daily, seasonal and annual variation expressed by 225 free-ranging North American red 

squirrels (Tamiasciurus hudsonicus) and explores how activity of non-lactating individuals 

varies across temperature (+/-50°C), day length, (+/- 17 hour), resource availability (20x 

change), and seasonal mating periods. We then develop an optimality model, based on the short-

term energetic decision to be active or inactive according to prevailing environmental conditions 

to predict daily activity. By comparing measured and modeled activity across the full extent of 

environmental variation, we show that despite the perceived complexity of behaviour, seasonal 

and multiannual activity patterns are highly predictable from a remarkably few number of biotic 

and abiotic factors. 

 

Materials and Methods 

Measuring Activity in Relation to Temperature, Resources, and Mating Opportunities 

We used accelerometers to measure activity on 225 individual red squirrels over three and a half 

years (2014-2017, deployments=489; squirrel-days=5066). This biologging research focuses on a 

bottom-up regulated population in the Kluane region of southwestern Yukon (61°N, 138°W) that 

has been the focus of long-term monitoring since 1987 (McAdam et al., 2007; Krebs et al., 

2014). As a free-ranging study population, red squirrels offer several advantages in documenting 

drivers of activity variation, including year-round residency, large sample size, daily and 

seasonally variable activity patterns (Pauls, 1977; Studd et al., 2016; Studd, Landry-Cuerrier, et 

al., 2019), quantifiable resources (LaMontagne et al., 2005; Fisher et al., 2019), and most 

importantly, the ability to accurately classify activity and inactivity on undisturbed individuals 

using accelerometers (Studd, Landry-Cuerrier, et al., 2019).  
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Individual squirrels were captured on defended territories, weighed, assessed for reproductive 

condition, and fitted with an accelerometer (models Axy2/Axy3, 4 g [1.7% of body mass], 

Technosmart Europe) in collar form, either ventrally mounted on its own (n=128) or dorsally-

mounted in combination with a ventrally-mounted VHF radio transmitter (n=361, model PD-2C, 

4 g [1.7% of body mass], Holohil Systems Limited, Carp, ON, Canada; see Studd et al., 2019 for 

collar design). All accelerometers recorded acceleration between +/- 8 gforces at a sampling rate of 

1 Hz and temperature at a rate of 0.1 Hz, frequencies that have been shown to capture broad-

scale behaviour of small animals with high accuracy, allowing for long-duration recordings 

(Tatler et al., 2018; Studd et al., 2019). Squirrels were released at site of capture and remained 

free-ranging until recaptured for collar removal (3 - 103 days later). Accelerometer data was 

processed and classified into two behavioural states, active (physically moving outside a nest) 

and inactive (physically not moving or inside a nest) using two thresholds described in detail in 

Studd et al (2019). Briefly, animals were in nest when the collar temperature was above the 

threshold value from a k-means clustering of all collar temperatures recorded that day (2 

clusters), and were moving when the 10 second sum of the changes in acceleration from one 

second to the next was greater than 1.06 gforces. We first assessed timing of activity by calculating 

proportion time spent active during 4 different light phases: day, dusk (sunset to start of civil 

twilight), night, and dawn (end of morning civil twilight to sunrise). Then, we calculated daily 

activity as the proportion of 24 hours in which squirrels were active. All procedures were 

approved by animal care committee at McGill University (Animal Use Protocol #4728) and were 

conducted under Yukon Territorial Government Wildlife Research Permits and Scientist and 

Explorers Permits.  
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Ambient temperature, Ta, was calculated at 15-minute intervals from recordings at nine locations 

across or near the study site. Our index of resource availability, Ra, reflects within and among 

year variation in the abundance and accessibility of key food sources to red squirrels and is based 

on quantified production, hoarding, and consumption of spruce cones, the primary food source 

for this population, in combination with direct feeding observations of alternative resources (n = 

22,513). We distinguished each food source according to resource saturation characteristics (the 

extent to which additional resource gain diminishes as resource exploitation time increases) by 

categorizing between resources that were subject to intake saturation because they can only be 

consumed when encountered, and those that were alleviated from short-term saturation 

constraints because they can be hoarded for later consumption. This index of resource type, Rt, 

ranged from 0 when all available resources were only consumable (including previously hoarded 

items) and 1 when all available resources are hoardable. Finally, our mating opportunities 

variable was the product of the number of mating events each week by the probability of 

offspring recruitment as observed annually within the population. Details of how each 

explanatory variable was measured in the field, and subsequently calculated can be found in 

supplementary materials 1, 2, and 3. 

 

Statistical Analysis 

We tested when within the diel period squirrels were active, and whether that changed through 

the year using an ANOVA with an interaction between time of day (dawn, day, dusk, night) and 

season (spring, summer, autumn, winter). Season was defined according to normalized 

difference vegetation index values extracted for the study area from MODIS (winter: NDVI < 
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0.35, spring: 0.35 < NDVI < 0.61 and day of year < 200, summer: NDVI > 0.61, autumn: NDVI 

< 0.61 and day of year > 200; Didan, 2015). Following this analysis, we tested whether activity 

between sunrise and sunset (represented as proportion of 24 hours) was driven by Ra, Rt, Ta, 

mating opportunities, or a combination of these variables by building competing GLMM models 

for binomial data with a logit link. When testing models with combinations of variables, we 

included a three-way interaction (Ra, Rt, Ta) and a two-way interaction (Ra and mating). Since 

mating occurs when only non-hoardable resources are available, we split mating into two 

variables: a 2-level categorical variable (mating or non-breeding), and a continuous variable of 

mating opportunities which was only tested for values greater than zero when Rt = 0. All models 

included random effects of squirrel ID, and observation level (to control for over-dispersion; 

dispersion parameter ~1). Models were compared using AIC. Additionally, we tested the same 

variables in a generalized linear model (binomial) of daily mean activity values to determine the 

explanatory power of the model at explaining population level variation in activity over time. 

 

Modelling Activity in Relation to Temperature, Resources, and Mating Opportunities 

We constructed an energetic and mating optimization model to assess how, in theory, daily 

activity should respond to variation in temperature, resources, and mating opportunities if 

animals optimize inactive and active states. A basic version of this model is described in 

Humphries and Umbanhower (2007), elaborated here to incorporate additional documented 

drivers of red squirrel activity patterns, including diurnality (Pauls, 1977), food hoarding 

(Fletcher et al., 2010; Archibald et al., 2013), and access to thermal refuges (Humphries et al., 

2005; Guillemette et al., 2009). Despite the red squirrel focus, the overall modeling should be 
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generalizable to other animals that vary behaviour in response to bottom-up drivers, because it is 

based on commonalities of endotherm behaviour and energetics (highlighted below). 

 

Optimal daily activity, expressed as the proportion of time that an animal is active in a day, is 

modelled as the sum of a series of decisions made throughout the day as to whether to be active 

or inactive at a given moment. We assume animals base this choice according to which state 

maximizes net energy gain (Ge) and net reproductive gain (Gr) such that: 

Behaviour[Active, Inactive] (Ge, Gr,) = "#$%&'(										&*	+,- > +,/	01	+2 > 0
456$%&'(			&*	+,/ ≥ +,-	658	+2 = 0	  (1) 

where Gea is the net energy gain if active, Gei is the net energy gain if inactive, and net energy 

gain is represented by:  

Ge = I - E  (2) 

where I is the energy ingested and assimilated, and E is the energy expended (see Humphries & 

McCann, 2014). Given acquiring resources requires activity, it follows that Gei is always 

characterized by I = 0, such that  

Gei = - Ei   (3) 

where Ei is the rate of expenditure when inactive. Given that activity offers the possibility of 

intake at the expense of increased energy expenditure, it follows that  

Gea = I – AEi  (4) 

where A is an activity multiplier equal to the factor that expenditure is increased above inactivity. 

Because cold temperatures, below an endotherm’s thermoneutral zone, increases energy 

expenditure, it follows that 

E = f(Ta)  (5) 
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where Ta is air temperature and the function, f, assumes a Scholander-Irving thermoregulatory 

response (Scholander et al., 1950). Given the potential that thermoregulatory costs can be 

reduced by occupying a thermal refuge when inactive, then 

Ea = f(Ta)  (5a) 

Ei = f(Ta, Q)  (5b) 

where Q is refuge quality varying from 0 if the refuge offers no thermoregulatory benefit to 1 if 

it eliminates all costs of thermoregulation. Heat-generated by activity can substitute for the costs 

of thermoregulation, but this was not incorporated into the current model because substitution 

potential is eliminated when refuge quality (Q) is high and, even when Q is 0, substitution tends 

to be small or undetectable among small endotherms with a high surface to volume ratio 

(Humphries & Careau, 2011). With this model structure, energy expenditure varies according to 

activity, but also in relation to other factors including resting metabolic rate and 

thermoregulation. Because intake can saturate over time, we assume that It (I at time interval t) 

decreases relative to the previous time interval, t-1, according to: 

I(t) = R/a(t-1)  (6) 

where R is resource abundance and a is a diminishing returns coefficient in which a = 1 

represents no diminishing returns, and a = 2 represents a diminishing return of half the intake of 

the previous time period of foraging. The possibility that resource types vary in their rate of 

saturation, is accommodated in the model by allowing a to vary by resource type. The reality 

that at particular times of the year, mating success requires activity unrelated to foraging 

gains is added to the model by assuming reproductive gain, Gr,  

Gr= nqm   (7) 
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where n is the number of potential mating events, q is the quality of offspring produced by 

mating, and m is a mating conversion factor equal to the rate at which activity is expected to 

increase per unit of nq. Finally, the tendency that organisms express periodicity in activity 

patterns over a 24-hr cycle is integrated into our model through a conditional argument 

restricting activity to the diel period (e.g. diurnal, nocturnal) within which the species is most 

active. 

 

To explore optimal activity responses to a range of hypothetical temperature, resource, and 

mating opportunity conditions, we ran a series of simulations under two main frameworks. The 

first explored activity responses to the environmental conditions that influence Ge, by varying 

temperature, resource availability, and resource type. The second simulations explored activity 

responses generated by Gr by varying mating opportunities (qm) and resource availability. See 

supplementary materials 4 for elaborated versions of equations 1-7, and a table defining all 

variables, units, and parameter-values used in simulations (Table S1).  

 

Comparing Measured and Modelled Activity Patterns  

We tested the ability of our model to predict animal activity using measurements of squirrel 

resource availability, diet composition, mating events, juvenile recruitment, and air temperature 

for Ra, Rt, n, q, and Ta respectively. After generating a predicted value for daily activity for each 

day of the 3.5-year study duration, we assessed the correspondence of observed (measured) and 

predicted (modelled) activity by calculating the percentage of days where predicted activity was 

within 1.2 hours and 2.4 hours of the daily mean observed value (647 days with >3 squirrels). 

The parameters that were not directly measured or previously known were the mating conversion 
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factor (m), the scaling of Ra, and the diminishing returns of the two resource types (hoardable 

and non-hoardable). We set m according to the empirically observed slope between activity and 

mating opportunities at average resource levels (Ra=30; m = 0.016). Ra was scaled 

proportionately so the lowest resource value generated enough active gain for at least 15 minutes 

of activity in a day at -20°C. Using measured activity, we assessed how varying the value of 

αHoardable and αNon-hoardable influenced the accuracy of our model (see Supplemental Materials 4 for 

details).  

 

Results 

Measured Activity 

Squirrels were primarily inactive at night and active during the day with some activity during 

dawn and dusk (Fig. 1), but the amount of activity was seasonally dependent (F=505, df=9, 

P<0.001; Fig. 1a-d). Squirrels were most active in autumn, averaging 75.2% of daylight hours 

(10.1 hours), and least active in winter, averaging 43.1% of daylight hours (3.73 hours). Activity 

during the night averaged 2% (9 min; range 0 – 70 min) with little variation between seasons. 

Dawn and dusk activity was generally limited (~ 5 min per period) except during autumn when 

activity would begin during the dawn period (~ 16 min per period).   

 

Red squirrel activity varied seasonally and multi-annually, with individual values ranging from 1 

hour to 15.5 hours per day (Fig. 2). The models with the most support (weight = 1) explained 

approximately 13% of the variation in activity at the individual level (conditional R2 = 0.13; 

Table S2) and 88% of daily activity variation observed at the population level (adjusted R2 = 

0.88). Activity was dependent on interacting effects of resource availability, resource type, and 
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Figure 4.1. Seasonal variation in observed red squirrel (n=225) activity and inactivity throughout 

the day recorded using accelerometers. The timing and amount of activity varies according to 

each season (spring (A), summer (B), autumn (C), and winter (D)). Timing of daily activity is 

presented as proportion of photoperiod phase that squirrels were active (left), along with an 

actogram illustrating how activity (black) is organized within each time period (right). Each day 

is subdivided into four photoperiods in each figure: dawn (light grey shading in actogram), day 

(white), dusk (light grey) and night (dark grey) with the relative length of each phase represented 

by the width of box. Actograms display 7 days of activity and inactivity for a randomly selected 

individual.  
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air temperature (z = 356.8, p < 0.001). The lowest activity levels occurred when cold 

temperatures coincided with low availability of non-hoardable resources, and the highest activity 

levels occurred when warm temperature coincided with high availability of hoardable resources 

(Fig. 3a). Activity generally decreased as temperature decreased below 10°C, decreased or 

remained constant at temperatures above 10°C, increased with increasing resource availability, 

and increased as the proportion of hoardable resources increased (Fig. 3a). However, the strength 

of the activity response to these three environmental variables was inter-dependent. For example, 

when resources were non-hoardable (strongly saturating), increased resource availability reduced 

the effect of temperature on activity, and when resources were hoardable (weakly saturating), 

 

Figure 4.2. Observed daily activity (proportion of 24 hours) of free ranging red squirrels (n = 

225) recorded using accelerometers over three and half years. Each date is represented as a 

boxplot denoting the 25 and 75 quantiles with dots representing activity outside that range.  

 

increased resource availability increased activity regardless of temperature (Fig. 3a). Activity 

response to mating opportunities was dependent on resource availability. Males during the 
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mating season had higher activity than non-breeding males and females (Fig. 3b; z = 5.57, 

p<0.001). Among breeding males, activity increased with increasing reproductive opportunities 

(z = 2.01, p = 0.04), with indications, although not significant, that the strength of this response 

might increase as resource availability decreases (Fig. 3b; z = -0.25, p > 0.05).  

 

Figure 4.3 Daily activity (proportion of 24 hours) responses to temperature, resources, and 

reproductive opportunities. The effects of temperature on activity were dependent on resource 

availability and resource type (A), while the effects of mating opportunities were dependent on 

resource availability (B). Responses and 95 confidence intervals were generated from a GLMM 

of 3.5 years of activity data collected from accelerometers. Resource availability at a saturation 

(RT) value of 0 are 5 (low), 20 (moderate), 40 (high), while at an RT of 0.5 and 1 are 60 (low), 90 

(moderate), and 120 (high) to represent the natural range observed at each condition. As mating 

only occurs when RT = 0, resource availability values were 5 (low), 20 (moderate), and 40 

(high). 

 

Modelled Activity 

Our model predicted that activity increased exponentially as daily mean temperature (Ta) 
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increased and approached the thermal neutral zone of an endotherm. Increasing resource 

availability resulted in increased activity but the extent of that increase was dependent on 

resource type. If no resources were hoardable then there was a moderate increase in activity but 

as the proportion of hoardable resources increased, the benefits of remaining active began to 

outweigh the benefits of inactivity, and activity increased towards maximum values. Finally, 

increasing mating opportunities increased activity. Although these independent responses of 

activity to temperature, resources, and reproductive opportunities provide general patterns, most 

organisms live in environments where all three drivers fluctuate simultaneously creating 

interacting effects on activity (Fig. 4). The model predicted that daily activity was lowest when 

all resources were non-hoardable and when temperatures were well below the lower critical 

temperature. Availability of hoardable resources and warm temperatures both increased energetic 

gain to a point where day-long activity would occur. Resource availability influenced the activity 

responses to temperature such that the strength of the response to decreasing temperature 

increased with decreasing resources (Fig. 4a). The effect of mating opportunities was 

independent of temperature, but dependent on resources with the activity response to mating 

opportunities increasing with decreasing resource availability (Fig. 4b).     

 

Comparing Measured and Modelled Activity Patterns  

Our model with diminishing return values set to the best fit (αHoardable = 1.10 - 1.12, αNon-hoardable = 

1.09 - 1.35) predicted squirrel activity within 1.2 hour of the observed daily mean 59.8% of the 

time and within 2.4 hours of the mean 92.6% of the time (Fig. 5a, b). Predicted activity values 

were highly correlated with observed values (R2 = 0.83) suggesting that overall the model 

accurately captured the seasonal and multi-annual variation in squirrel activity (Fig. 5c). 
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Figure 4.4. Predicted responses of optimal daily activity (proportion of 24 hours) of red squirrels 

to temperature (A), and reproductive opportunities (B) across variation in resource availability 

and resource type (panels in A). Predictions are based on measured values of ambient 

temperature (Ta), resource availability (RA), proportion of available resources that were satiating 

(RT), and mating opportunities (nq) from the study area.  

 

However, the model tended to over-estimate the lowest activity levels, and failed to capture one 

period of high activity (spring 2015). Adjusting diminishing return values of hoardable and non-

hoardable resources changed the accuracy of predicting activity within 2.4 hours of observed 

values (accuracy range = 0-0.926 %; Supplementary Materials 5, Fig. S3) but had minimal 

influence on the correlation between predicted and observed values (R2 range = 0.609 to 0.83).  

 

Discussion 

We demonstrated that the vast majority of multi-seasonal and multi-annual variation in activity 

can be explained by an energetic-based behavioural choice model that incorporates only resource  
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Figure 4.5. Observed and predicted daily activity of a population of free-ranging red squirrels in 

southwestern Yukon (A). Activity was observed over 3.5 years using accelerometers (n=489) 

and predicted according to optimization of energetic and reproductive gain in the decision 

between activity and inactivity. Predictions (black) are overlaid on range of observed daily 

activity (light grey shading). The correspondence between observed and predicted is assessed by 

the error of the prediction relative to the observed daily mean value (B), and the correlation of 

predicted daily values to observed (C). Error of the prediction is the difference between the 

observed mean daily proportion of activity and model predicted daily proportion (convertible to 

hours by multiplying by 24; B). Dark grey band represents within 1.2 hours of daily mean value 

and light grey band represents range within 2.4 hours. 
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availability and quality, air temperature and presence of mating opportunities. Our analyses 

suggest that activity reflects an optimization of energetic and reproductive gain, with individuals 

active when the gains of activity outweigh the gains (or minimization of losses) offered by 

inactivity. Based on this optimality approach, the activity responses of free-ranging red squirrels 

to abiotic and biotic drivers became highly predictable, when aggregated at the level of a day.  

 

Incorporating resource type, air temperature, and reproductive parameters into an activity 

optimization model predicts that activity responds dynamically to environmental conditions. 

Increasing resources, increasing ambient temperature, or decreasing resource saturation rates all 

led to increases in activity. However, both red squirrel activity and our predictive model 

highlighted the inter-dependency of activity responses to temperature and resources. This 

interacting effect is driven by resources and temperature influencing opposing components of net 

energy gain (i.e., resources on intake, and temperature on expenditure), and illustrates that 

organisms can buffer some environmental variability if either intake can be increased or 

expenditure decreased (King & Murphy, 1985; Boggs, 1992; Williams et al., 2015). An ability to 

buffer the environment helps to explain why activity responses to resources and/or temperature 

vary between studies (Fernandez-Duque, 2003; Murray & Smith, 2012; Hall & Chalfoun, 2019)  

 

Among the environmental drivers we considered, resource type appeared to be the strongest 

driver of activity variation. The energetic value and potential hoardability of different resource 

types are known to be key components of short term foraging decisions (Pyke et al., 1977; 

Gerber et al., 2004; Lichti et al., 2017). Our results extend these patterns across much longer 

time scales, to show how resource abundance and saturation drive daily activity levels across 
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seasons and years. In red squirrels, we distinguished resources according to whether they could 

be hoarded (i.e., weakly saturating) or not (i.e., strongly saturating) and the model confirmed the 

importance of this distinction. From an ecological perspective, non-saturating foraging returns 

for hoardable resources drives high rates of sustained activity for as long as this resource type 

remains abundant. Although we only focused our categorization of resource type on the 

distinction between hoardable and non-hoardable resources, additional resource type differences 

would need to be considered in systems where, for example, energetic values, nutrient 

composition, or handling constraints vary more and have stronger effects on activity 

optimization (Emlen, 1966; Pyke et al., 1977; Gill, 2003).  

 

Beyond resources and temperature, reproductive gain associated with mating opportunities is an 

important driver of activity. Reproduction requires activity for mate searching and courtship in 

addition to mating itself (Daly, 1978; Real, 1990), and in scramble competition mating systems, 

like in red squirrels, increased mate searching or activity is linked to increased mating success 

(Lane et al., 2009). We found that considering reproductive gain as a probabilistic outcome of 

activity in the model adequately predicted observed activity responses expressed by red squirrels 

in relation to mating opportunities. This approach meant that activity for mating is not mutually 

exclusive of that for foraging. Activity that capitalizes on mating opportunities instead of 

foraging comes at the detriment of energy balance as there is insufficient energy intake to offset 

the cost of activity (Lescroël et al., 2010; Foley et al., 2018). In red squirrels, the late winter 

mating season is associated with elevated energy expenditure (Lane et al., 2010) and endocrine 

indications of stress and energy mobilization (Boonstra et al., 2017). 
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Despite our model’s high predictability of squirrel activity (83%; when diminishing return values 

were set to best fit), error tended to be concentrated in time and likely results from some 

shortcomings. First, our model did not account for behavioural responses to predation risk, a 

critical component of many foraging theories (Brown, 1992; Brown et al., 1999). If increased 

predation risk reduces activity (Lima & Dill, 1990), then periods when our model prediction 

overestimated activity (e.g. early winter) may be indicative of short term increases in risk. 

Unfortunately, we have no information on how predation risk varies within a year in this system. 

However, our model’s generally high accuracy at predicting activity, despite the exclusion of 

variation in predation risk, suggests that, for red squirrels, predation risk is either a weak driver 

of daily activity, relatively stable over time, or highly correlated with another driver included in 

our model, such as temperature or resources. Nevertheless, given the demonstrated importance of 

spatial and temporal variation in predation risk on activity in many systems (Hughes et al., 1994; 

Diaz et al., 2005; Lone et al., 2016; Kohl et al., 2018), inclusion of predation risk into our 

modelling approach would improve its general applicability beyond bottom-up regulated species 

like red squirrels, to systems where activity is more responsive to variation in predation risk. 

 

A second source of error likely stems from our estimation of resource availability throughout the 

year. Although we had measurements of larder hoard quantities and spruce cone availability, we 

estimated timing and relative amounts of all other resources according to snow depth, squirrel 

diet composition data, and known phenological information (Fletcher et al., 2013). These 

estimates, although reasonable, likely do not perfectly capture resource availability across 

seasons and years. Despite this, the error in the model did reveal resource-related behaviour that 

was previously unknown. Revisiting behavioural observations collected in spring 2015, where 
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our model considerably underestimated activity, revealed that a secondary hoarding season 

occurred following a spruce masting the previous autumn. As the snow melted, squirrels 

appeared to reinitiate hoarding behaviour, collecting cones that were buried by snow in the 

autumn.  

 

Despite its simplicity, we show that energy-based optimality models of behaviour can have a 

surprisingly powerful ability to predict activity variation expressed by individuals 

over seasonal and annual time frames. Some of the activity responses to environmental variation 

described here, like reduced activity in winter, when resources are scarce, days are short, and air 

temperatures are cold, may seem unsurprising, but are also indicative that behavioural decisions 

are based on a maximization of energetic gain rather than a maintenance of energy balance 

(which would cause activity to increase, instead of decrease, as resources or temperature 

decreases). Our analyses also revealed several, less obvious patterns, including autumn activity 

peaks driven more by resource type than resource abundance, the resource-dependency of 

activity responses to temperature and mating opportunities, and activity peaks not predicted by 

the model used to identify novel, season-specific forms of activity. Additionally, we show that 

aggregation of behavioural variation to a daily scale was critical to predictive success; our model 

predicted 83% of variation in daily activity expressed across seasons and years, but if we 

attempted to predict whether any given individual was active at any given moment, across the 

same multi-annual extent, explanatory power dropped to less than 15%. It thus appears, that at 

the scale of days, seasons, and years, the energy and reproductive requirements of populations 

coalesce with constraints imposed by the abiotic and biotic environment to drive highly 

deterministic and predictable activity responses. Whereas, within these days and seasons, at the 
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scales of minutes to hours, individuals retain considerable flexibility in choosing what to do and 

where to be at any one moment in time. Intriguingly, if we as researchers can predict squirrel 

behaviour using relatively few variables and a relatively simple model, perhaps so too can 

predators, which presumably know them better. This may cause predators to structure their 

activity patterns according to these expectations, which in turn may select for variability in 

behaviour around the central tendencies documented here. This could account for the 

unpredictability of behavior at finest temporal scales. We hope that the opportunity to combine 

activity-and energy-explicit optimality modelling with biologging of activity patterns expressed 

across seasons and years enables broader evaluation of the importance of behavioural variation 

in seasonal and annual energetic status, population dynamics, and trophic interactions. As also 

described in Humphries and McCann (2014), this may include extending how we think of 

metabolic theories in ecology, beyond equations focused on size, temperature, and metabolic rate 

(Brown et al., 2004), to include equations focused on energy balance, energy flows, and the 

ecological importance of both metabolic and behavioural variation. 
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Linking Statement 

 
In the previous chapter, I showed that activity across seasons and years is highly predictable as 

the outcome of an optimization of energetic and reproductive gain. With activity mainly being 

driven by resources, temperature, and mating opportunities, this chapter indicated that all species 

should be characterized by annual patterns in activity with fluctuations between seasons. The 

next chapter explores how differential behavioural responses to seasonality impact the flow of 

energy and biomass within a population through interactions within a food web motif. By 

incorporating activity into predator-consumer-resource dynamical equations, empirically-support 

model predictions show how the extent to which a species is seasonally flexible in behaviour 

impacts the population rate of increase, decrease, and population stability.   
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Chapter 5 - Bioavailability, ecological dynamics, and the paradox of 
seasonal enrichment 
 

Summary 

Seasonality in northern latitudes is an annual cycle comprised of wavelike variation in 

photoperiod and temperature that has inevitable and unavoidable impacts on organismal 

function, ecological interactions, and evolutionary outcomes (Bridgman & Oliver, 2006; 

Morisette et al., 2009; Steltzer & Post, 2009; Padian, 2012; Basille et al., 2013; Dopico et al., 

2015; McMeans et al., 2015). Whether seasonality maintains or constrains biological diversity 

depends on the extent and consequences of differential responses to seasonal variation (Hurlbert 

& Haskell, 2003; Tonkin et al., 2017). Here we focus on a subtle but ubiquitous form of 

differential responses to temporal variation – the behavioural switch between active and inactive 

states – that leads to covariation in energy intake, energy expenditure, and predation risk (Anholt 

& Werner, 1995; Humphries & McCann, 2014). This behavioural switch defines how individuals 

engage with environmental variation, and determines the bioavailability of populations within 

food webs. We develop energy- and activity-explicit consumer-resource equations to examine 

the seasonal dynamics of a food web motif consisting of a predator and two consumers that have 

different behavioural flexibilities to seasonality. Predators optimizing seasonal prey choice will 

have diverse diets in summer when warm temperatures and abundant resources cause high 

activity in more behaviourally-flexible consumers, and more specialist-like diets of less 

behaviourally-flexible consumers in winter, when cold temperatures and scarce resources cause 

more flexible consumers to become less active and more decoupled. As a consequence, less 

flexible consumers experience intense predation in winter, but also a critical respite from 

predation in summer when predators switch back to bioavailable more flexible consumers. 
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Seasonality is thus essential to the coexistence of both types of consumers and their generalist 

predators, and changes in the duration and severity of seasons will disrupt the balance of 

seasonal advantages and disadvantages. Because less flexible consumer’s respite from predation 

occurs during the productive summer season and more flexible consumers must allocate a 

substantial fraction of summer production to winter maintenance, less flexible consumers should 

be characterized by a higher realized rate of increase during summer and higher losses to 

predation during winter relative to more flexible species characterized by dampened seasonal 

dynamics. A well-characterized vertebrate food web in a highly seasonal boreal environment 

generates empirical support for most model predictions, as does a global analysis of the 

population dynamics of small mammals expressing extremes of differential seasonal activity. As 

summers continue to lengthen and winters become less severe, empirically-supported theory 

predicts amplified rather than diminished seasonal dynamics, extending the paradox of 

enrichment to a seasonal realm. 

 

Main Text 

Behaviour, seasonality, and, especially, differential behavioural responses to seasonality are 

rarely considered, but likely important, drivers of ecological dynamics. Behaviour can be defined 

as choices made by whole organisms, which have purpose and take time (Baum, 2013, see also 

Levitis et al., 2009). Among the many axes of behavioural variation, the decision to be active or 

inactive is a choice and an optimization outcome that defines the trophic status of individuals and 

populations by determining co-variation in energy intake and expenditure, foraging behaviour 

and vulnerability to predation, and environmental exposures and refuge occupation (Studd et al., 

in review). Activity optimization is thus both a trait-mediated indirect interaction (Werner & 
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Peacor, 2003) and a non-consumptive effect (Peckarsky et al., 2008). Here we test the hypothesis 

that activity plays a key role in the seasonal balance of energy within individuals, species, and 

food webs, with high activity associated with high intake, high loss, and strong interactions, and 

low activity associated with low intake, low loss, and weak interactions. We also extend 

consideration of the paradox of enrichment – the tendency towards ecological instability in 

resource-rich environments (Rosenzweig, 1971; Tabi et al., 2019) – to a seasonal realm.  

  

Co-occurring species experiencing the same climate conditions can be characterized by highly 

differentiated seasonal activity responses. Hibernation - literally to spend winter in an inactive 

state - represents the extreme of seasonal flexibility, combining energy storage (often high in 

quality and quantity) with metabolic depression, permitting winter-long inactivity and trophic 

decoupling (Withers & Cooper, 2010; Williams et al., 2016; Humphries et al., 2017). But even 

among non-hibernating mammals activity patterns can be strongly differentiated. Our monitoring 

of activity over four years with accelerometers on North American red squirrels (n = 225) and 

snowshoe hares (n = 127) illustrates the differential behavioural flexibility of two homeothermic 

herbivores experiencing the same highly seasonal boreal environment (Fig. 5.1). Red squirrels, 

that consume high-quality seed that is made accessible year-round via food hoarding, have 

seasonally flexible activity (i.e. low activity in winter, high activity in late summer; Fig. 5.1). 

Meanwhile, snowshoe hares that consume relatively low quality vegetative tissue are 

characterised by higher overall activity than squirrels and dampened seasonal variation (Fig. 

5.1).  
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Figure 5.1. Seasonally differentiated daily activity of co-occurring red squirrels (dark grey) and 

snowshoe hares (black) at Kluane, Yukon. Background colour reflects daily air temperature 

variation, ranging from -40°C indicated by the darkest blue to 20°C indicated by the brightest 

red. Predicted activity of both species is generated from an optimization model (Studd et al., n.d.) 

that had high accuracy at matching observed range of values collected using accelerometers 

(squirrels = 0.76 %, hares = 0.81 %).  

 

Because activity is energetically costly and is a pre-requisite for energy intake, seasonal activity 

patterns define the seasonality of biomass production. Consider the ability of an individual or a 

population to acquire an energetic surplus, S, through rates of intake, I, that exceed rates of 

energy expenditure, E. 

S = I – E       eq. 1 

Given activity, p, is necessary for intake (Schoener, 1971; Abrams, 2010), and energy 

expenditure when active, ea, exceeds expenditure when inactive, em, by an activity multiplier, A 

(Karasov, 1992; Alexander, 2005) then: 
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S = p(I – ea) – (1 – p)em  = p(I – Aem) – (1 – p)em    eq. 2 

Summer provides a seasonal window of opportunity for high rates of production, particularly in 

herbivores, for which resource availability tends to be high due to elevated primary production, 

and particularly for endotherms, for which energy requirements tend to be low due to thermally 

neutral ambient temperatures. However, the situation reverses in winter when low primary 

production limits resource intake and cold air temperatures increase maintenance requirements. 

While the capacity for some species to avoid this winter energetic bottleneck through reduced 

activity or hibernation is well described (see Lovegrove, 2000; Ruf & Geiser, 2015), an under-

recognized consequence of this seasonal decoupling is the need to allocate a fraction of summer 

production to energy storage in order to offset winter deficits (Fig. 5.2a). As a consequence, 

seasonally flexible species that reduce activity in winter are predicted to have lower rates of 

maximum summer production than seasonally inflexible species remaining active throughout 

winter (Fig. 5.2b). Within the boreal forests of Kluane, Yukon, Canada, where spring and 

autumn densities of snowshoe hares and red squirrels have been monitored for the past 30 years, 

snowshoe hares characterized by high winter activity exhibit higher summer biomass production 

rates than red squirrels that reduce activity in winter (unpaired t-test, t = 3.9332, df = 31.567, P < 

0.001; Fig 5.2c). This trend extends beyond these two species at Kluane, including red-backed 

voles that express year-round constancy in activity levels (Stebbins, 1972) and are characterized 

by high rates of summer production, and arctic ground squirrels that hibernate (Williams et al., 

2012) and have low rates of summer production (Supplemental Fig S7.5.1). This pattern also 

extends beyond the boreal forest, with global analyses indicating hibernating mammals have 

lower production rates than non-hibernating species (Kirkland & Kirkland, 1979).  
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Figure 5.2. An extension of Weiner’s barrel model of energy balance to a seasonal realm (a). In 

summer, the intake triangle is large and energy expenditure (bottom) is low resulting in a highly 

positive energy balance (black fill). In winter, intake is lower, expenditure is higher, and 

balances are negative (deficit). Summer production potential is gain above expenditure minus 

summer storage, which is equivalent to winter deficit. Model predicted energy balance (b) in 

summer (top) and winter (bottom), along a seasonality of behaviour continuum (inflexible 

express year-round constancy in activity, flexible express high activity in summer and low to no 

activity in winter). Although the flexible end of the continuum is just as active in summer, their 

potential rates of production are less, because they need to store summer accumulation for winter 

deficits. Observed rates of spring to autumn increase (c) over 30 years for snowshoe hares, which 



 127 

are characterized by inflexible activity, and red squirrels, which are characterized by seasonally 

flexible activity 

 
Given activity also affects vulnerability to predation, a predator’s prey selection and 

consumption rate will vary not just with the biomass of each prey species, but also their activity 

levels. We refer to this activity-adjusted biomass measure as bioavailability, B, and assume  

B = pVa + (1 - p)Vi      eq. 3 

where Va and Vi are vulnerability to predation when active and inactive respectively. The optimal 

prey choice of a predator, P, between two consumers C1 and C2 is thus  

     eq. 4 

where  is the proportion of the predator’s diet made up of one consumer,  is the preference of 

the predator for consumer 1 over consumer 2, and C is the biomass of the consumer. If the 

seasonal activity patterns of the two consumers differ, with Ci expressing seasonally inflexible 

behavior and Cf expressing high activity in the summer and reduced activity in the winter, then 

predators are predicted to consume primarily Ci when Cf is inactive, but as Cf becomes more 

active, broaden their diets to include both species (Fig. 5.3a). The seasonality of lynx predation 

on less behaviourally flexible snowshoe hares and more behaviourally flexible red squirrels, 

quantified over three winters using lynx-attached acoustic recorders, provides direct support for 

this prediction (Fig. 5.3b). Lynx consumption of snowshoe hares and red squirrels varied with 

red squirrel activity, with consumption of red squirrels at its lowest rate (0% of 79 kills) during 

the winter months (Jan-Feb; Fig. 5.3b) when squirrels are least active (Fig. 5.1a), and increasing 

in autumn and early spring (~30% of 64 kills) when squirrel activity increases (we lack data on 

lynx prey consumption in summer and autumn when squirrels are most active because we have 

so far captured lynx only in winter months and acoustic recorders have limited battery life). 
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Figure 5.3. Predator diet composition is dependent on the activity of the prey. Model predictions 

of predator diet (a) on two prey species at equal biomass illustrate a seasonal shift in diet in 

response to the bioavailability of the flexible prey species. Canada lynx diet composition of 

inflexible (snowshoe hare; black) and flexible (red squirrel; light grey) prey species calculated 

from animal-borne acoustic recorders shows a seasonal transition in response to the activity of 

the flexible prey. Numbers on top of bars are the total number of kills recorded each month.   

 

As a result of predators switching between prey according to their bioavailability, consumer 

populations characterized by high and seasonally invariant rates of activity should experience 

high predation rates and mortality in winter when seasonally flexible species are inactive and 
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therefore unavailable to predators. In return, these same consumers should experience a reprieve 

from predation in summer, when seasonally flexible species increase their activity and 

bioavailability to predators. This seasonal switch of bioavailability and predation can be modeled 

by expanding eqs. 2-4 into energy- and activity-explicit dynamical equations that consider the 

flow of biomass and energy (Yodzis & Innes, 1992; McCann et al., 1998) between a predator, P, 

and two non-competing consumers, one of which expresses seasonally flexible activity, Cf, and 

one characterized by behavioural inflexibility, Ci, and thus seasonally constant activity. The 

complete set of dynamical equations and parameters are described in the methods. This model 

predicts that seasonally flexible species will have the highest mortality in the summer when their 

activity is high, and the lowest mortality in winter when their activity is low, whereas seasonally 

inflexible species will have the highest mortality rates in winter when flexible species are 

inactive, and the lowest mortality rates in the summer when flexible species are active (Figure 

5.4a). Daily monitoring of snowshoe hare survival, conducted year-round over 4 years using 

VHF collars equipped with mortality switches (Peers et al., submitted), indicates that mortality 

rates within this consumer with low behavioural flexibility were indeed highest in the winter and 

near zero in the summer (unpaired t-test: t=9.06, df=171, p<0.001; Fig. 5.4b). Meanwhile, red 

squirrels, present in the same habitat and being preyed upon by the same predator guild as 

snowshoe hares but characterized by reduced activity in winter, experienced higher adult 

mortality rate in summer than winter (paired t-test: t = 4.771, df = 26, p < 0.001, Fig. 5.4c), as 

estimated through bi-annual population censuses conducted every spring and autumn for 27 

years. Beyond these relative seasonal differences, both maximum and annual average mortality 

rates were substantially higher in snowshoe hares, the Ci, than red squirrels, the Cf. The model 

did not, however, predict that snowshoe hare mortality would decline to near zero in summer. 
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This discrepancy may arise from our mortality monitoring of only adult hare survival during a 

summer reproductive season when predators may switch to more vulnerable newborn and 

juvenile hare age-classes, as well as the multiplicity of Cf populations present in this system in 

the summer.       

 
Figure 5.4. Seasonal shifts in predator prey choice due to changing bioavailability generates  

differential mortality rates over the year for behaviourally inflexible (black) and flexible (light 

grey) prey. Model predictions (a) suggest that inflexible prey will have higher mortality in winter 

than summer while flexible prey will higher mortality in summer than winter. Weekly mortality 

rates of inflexible adult snowshoe hares (b) calculated from individuals monitored daily for four 

years, and flexible adult red squirrels (c) calculated from individuals monitored seasonally for 27 

years illustrate this pattern empirically. For empirical data values from each year of the study are 

shown in the background with the mean values across the whole study in the foreground.  
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Given inflexible consumers produce high amounts of biomass in summer and lose substantial 

biomass to predation in winter, while flexible consumers gain less in summer but also lose less in 

winter, one might expect that these seasonal differences cancel out on an annual basis, causing 

the two strategies to have similar multi-annual rates of increase and population dynamics. But, 

according to theory, Cf and Ci are in fact predicted to differ substantially in multi-year dynamics 

because Cf must allocate a substantial portion of summer production to storage (to offset winter 

deficit) and because Ci experiences a reprieve from predation during the most productive phase 

of the annual cycle. Flexible species are predicted to be characterized by dampened annual rates 

of increase and decrease, which are less affected by predator densities, relative to inflexible 

species with more divergent rates of increase and decrease that also vary more with predator 

density (Fig. 5.5a). As a consequence, inflexible species exhibit less multi-annual population 

stability and are more likely to express cyclic dynamics than flexible species (Fig. 5.5b). To test 

this prediction empirically, we calculated maximum rates of increase and decrease, and 

population coefficient of variation for 299 small mammal time series included in the Global 

Population Dynamics Database (NERC Centre for Population Biology Imperial College, 1999). 

Within this sample, we consider species described as hibernators to be the most seasonally 

flexible, species that do not hibernate but express torpor as intermediately flexible, and year-

round homeotherms as the least seasonally flexible. Within these homeotherms, positioned 

toward the inflexible end of the continuum, homeotherms consuming seeds and other plant 

reproductive structures tend to express more seasonal flexibility, related to the hoardability and 

seasonality of these food sources, than homeotherms consuming vegetative plant parts and 

insects. Across the 57 species in the database, we found that species that hibernate, express 
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torpor, or are homeothermic consumers of seeds and other reproductive plant structures tend to 

have, although not significant, dampened population increases and decreases (increase: ANOVA 

F=2.4, df=4, P=0.0619; decrease: ANOVA F=1.4, df=4, P=0.237; Fig. 5.5c) and more stable 

population dynamics (ANOVA, F=5.564, df=4, P<0.001; Fig. 5.5d) than homeotherms, 

consuming insects or vegetative plant parts.  

 

Figure 5.5. Annual rate of increase, decrease and population stability depend on the flexibility of 

behaviour to seasonal variation. Model predictions (a) show that behaviourally inflexible 

consumers will have higher rates of increase when predators are scarce and higher rates of 

decrease when predators are abundant than flexible consumers, which produces larger 

amplitudes in population dynamics (b). Analysis of population time series from 229 small 

mammal populations illustrates that observed maximum rates of increase and decrease are more 

extreme (c) and population coefficient of variation are greater (d) for diet and thermoregulatory 

strategies associated with behavioural inflexibility than more flexible strategies. Shading of 

boxplots range from behaviourally inflexible (black) to flexible (light grey) species. Diet 

categories include plant vegetative material (veg), plant reproductive material (rep), and 

invertebrates (inv). 
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Given the seasonality of behaviour influences the balance of seasonal biomass gains and losses 

as well as multi-annual population dynamics, climate change towards milder winters and longer 

and warmer summers (IPCC, 2013) should have differential effects on behaviourally flexible and 

inflexible consumers. We assessed how changes in winter frequency of days below -15°C and 

summer growing degree days influence the population dynamics of inflexible and flexible 

species by comparing model predictions to observed seasonal dynamics of snowshoe hares (less 

flexible) and red squirrels (more flexible) over 30 years of varying climate conditions. Model 

predictions suggested minimal influence of longer, warmer summers on the summer biomass 

gain of flexible or inflexible species (Fig. 5.6a) and empirical population data show weakly 

positive or no relationships among these variables. Theory predicted a strong effect of predator 

density on summer biomass gains of both consumer types, but empirically only inflexible hares 

showed reduced summer gains under conditions of high predation (Fig. 5.6b). In contrast, theory 

predicted less severe winters would lessen winter biomass loss in the inflexible consumer, but 

not the flexible consumer (Fig. 5.6c). Empirical data supported this prediction with less flexible 

snowshoe hares being characterized by less biomass loss in the least severe winters, under both 

low and high predation circumstances, whereas the winter biomass loss of more flexible red 

squirrels was unrelated to winter severity or predator abundance (Fig. 5.6d). This suggests that as 

summers lengthen and warm, and winters become less severe, the balance of competitive 

advantage between seasonally flexible and inflexible consumers shifts towards the inflexible 

strategy as their production is maintained or slightly increased during summer, and conserved 

much more during winter. This expectation that less severe winters and warmer summers will 

benefit inflexible species more than flexible species is surprising given inflexible species seem to 

be best adapted to cope with severe winter conditions (to which they are exposed as a result of 
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their inflexibility) and best positioned to capitalize on the summer reprieve from predation 

(resulting from the increased summer activity and bioavailability of flexible species). Given 

inflexible species express much larger seasonal biomass amplitudes and destabilized multi-

annual dynamics, an even more surprising outcome is that as seasonality of the environment 

diminishes, the seasonal biomass fluxes and the dynamical instability of dominant consumers is 

predicted to amplify. We refer to this expectation as the paradox of seasonal enrichment. 

 

Figure 5.6. Predicted values and observations of biomass production across the variation of 

summer and winter intensities observed in Kluane between 1995 and 2018. Predictions of the 

influence of growing degree days (a) and winter severity (c) on biomass production of 

behaviourally flexible (Cf) and inflexible consumers (Ci) when activity varies with temperature. 

The effect of condition is dependent on whether there are no predators (dashed; P-low) or 

abundant predators (solid; P-high) in the system. Observed summer (b) and winter (d) biomass 

changes of snowshoe hares (black), red squirrels (gray) according to growing degree days and 

winter severity. Low predator condition were years during the hare population increase, and high 

predator condition were years during the hare population decline. Growing degree days was the 

accumulated temperature of all days > 5°C between April 1 – and Oct 31. Winter severity is the 

number of days during winter when temperature was < -15°C.  
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Energy- and activity-explicit population biomass models, the seasonal activity patterns of boreal 

vertebrates, and their seasonal and multi-annual population dynamics, supports the following 

conclusions. First, consumer species present in the same place at the same time, and therefore 

experiencing the same seasonal variation in environmental conditions, can be characterized by 

highly differentiated seasonal responses and a range of activity flexibility. These activity patterns 

and differential responses appear to be related to dietary differences and the seasonal availability 

of preferred resources, which extend to more generalized differences in organismal design 

spanning physiology, behaviour, life history, and natural history. Second, the maximum potential 

rate of increase and decrease for a population is determined by its seasonal activity patterns and 

those of all other interacting species in the system. From this we suggest that differences in the 

seasonality of activity provides at least a partial answer to what Myers (2018) describes as one of 

nature’s great mysteries - why some species cycle and others in the same environment do not. In 

short, species that cycle are characterized by seasonally invariant activity and constant trophic-

coupling, while species that do not cycle are characterized by seasonal inactivity and periodic 

trophic decoupling. Third, seasons are fundamentally coupled – energy balance in one season 

determines energy balance in another, and as such understanding processes in one season 

ultimately requires studying processes in all seasons. By documenting the seasonal, year-round, 

and multi-annual energy balance of interacting species, we have shown how winter activity and 

energetic status affects summer biomass production, and the consequences this has on population 

dynamics. Fourth and finally, we have predicted a paradox of seasonal enrichment, by suggesting 

that as the extremes of seasonality are diminished by climate change, the magnitude of seasonal 

biomass fluxes and the instability of biological communities may amplify.    
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Methods 

The Model 

We based our model on one proposed by Humphries and McCann (2014) that intake requires 

activity and activity requires energy such that the total energy flowing through a system can be 

represented as  

S = p(I - ea) – (1 - p)em  eq. 2 

where S is the surplus energy, p is the proportion of a time period spent active, I is intake, ea is 

energy expenditure when active, and em is energy expenditure when inactive. Given that energy 

expenditure is temperature dependent when outside the thermal neutral zone of a species 

(Scholander et al., 1950), ea is 

ea = -Aca(Tb -Ta)  when Tb<TLC  eq. 5 

ea = -AMRMR   when Tb >=TLC 

where A is the activity multiplier, ca is the rate at which metabolic rate increases per degree in 

temperature, Tb is body temperature, Ta is air temperature, TLC is the lower critical temperature, 

and MRMR is the metabolic rate when resting. Given that most species utilize some type of 

thermal refuge when at rest, em can be represented as  

em = -(ca – caQ)(Tb - Ta) - caQ(Tb - TLC) when Tb<TLC  eq. 6 

em = - MRMR     when Tb >=TLC 

where Q is the refuge quality and ranges from 0 (no thermal refuge) to 1 (refuge maintains 

temperature within the thermoneutral zone).  
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Our dynamical equations were formed by merging eqs. 2 and 4 into a two consumer, one 

predator dynamical system modified from McCann et al. (1998): 

 

 

   eq. 7 

where K is the carrying capacity of the consumers, I is the maximum ingestion rate given 100% 

activity, Co is the half saturation densities for the predator. 

 

For all simulations we set predators to have no preference for one consumer over another (  = 

0.5), vulnerability of inactive consumers was 0, vulnerability of active consumers was 1. I for 

both consumers was seasonally forced with the summer values being based on the average NDVI 

measurements of the northern boreal forest, and winter values peaking at the first frost and 

decreasing consistently through the winter until green-up the following spring. Consumers were 

treated as identical in all capacities (ca=0.005, Tb=38, MRMR=0.19, TLC = 0, C1=C2) except 

activity. Activity was considered to be a linear function of temperature with the maximum value 

(0.6) being equal in all consumers and occurring at the warmest temperatures. Flexibility was 

quantified by the extent to which activity reduced below this maximum value with decreasing 

temperatures with flexible species varying between 0.1 – 0.6 within a year. Temperature was the 

daily mean value from the nearest weather stations to the Kluane field site (1986-1994 Burwash 

Landing, 1994-2018 Haines Junction, Environmental Canada).    

 

Red squirrel and snowshoe hare seasonal activity patterns 
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We used accelerometers to measure activity on 225 individual red squirrels over three and a half 

years (2014-2017, deployments = 489; squirrel-days = 5066) and 127 individual snowshoe hares 

over four years (2015-2018, deployments= 279, hare-days=14,487) spanning seasonal and 

multiannual variation in the environment. Individuals were captured on defended territories 

(squirrels) or at systematically placed trapping locations (hares), and fitted with an accelerometer 

(models Axy2/Axy3, 4 g [1.7% of body mass], Technosmart Europe) in the form of a collar, 

either ventrally mounted on its own (squirrels: n=128) or dorsally-mounted in combination with 

a ventrally-mounted VHF radio transmitter (squirrels: n=361, model PD-2C, 4 g [1.7% of body 

mass], Holohil Systems Limited, Carp, ON, Canada; see Studd et al., 2019 for collar design; 

hares: Model SOM2380, Wildlife Materials Inc., USA, or Model MI-2M, Holohil, Canada; <40 

g, <5% body weight). All animals were released at site of capture and remained free-ranging 

until recaptured for collar removal or until they were predated on. All procedures were approved 

by animal care committee at McGill University (Animal Use Protocol #4728) and were 

conducted under Yukon Territorial Government Wildlife Research Permits and Scientist and 

Explorers Permits.  

 

All accelerometers recorded acceleration between +/- 8 gforces at a sampling rate of 1 Hz (all 

squirrels and 256 hares) or 10 Hz (23 hares). All 10 Hz recordings were down sampled to 1 Hz 

For squirrels, data was processed and classified into six behavioural states (in nest not moving, in 

nest moving, out of nest not moving, travelling, feeding, and other (primarily foraging)) 

according to Studd et al.’s (2019) classification methodology. For hares, data was classified into 

four behavioural states (not moving, foraging, travelling, and sprinting) using the classification 

methodology developed by Studd et al (2019).  For both species we combined active behavioural 
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states (feeding, foraging, and travelling) together to calculate daily activity as the proportion of 

24 hours in which individuals were active (see supplemental materials Figure S7.5.2).  

 

Seasonality in lynx prey selection 

Canada lynx were live-trapped between November and April over three years (2015-2018). Lynx 

over 7 kg were given a GPS collar (Telemetry Solutions remote download model (350g) or 

Followit Iridium GPS (400g)) with externally mounted self-powered acoustic recorder (EDIC-

mini tiny E60-1200h; 50g). For a subset of lynx, GPS data was downloaded throughout the 

study, and all locations from the previous two days were visited to find kill sites. If tracks were 

of a feeding event, we identified the prey species, and whether it was a kill (only fresh tracks, 

signs of a chase), or scavenging (killed by other predator or older snow tracks) event. When 

snow conditions permitted, we followed lynx tracks between locations and recorded any 

additional kill sites or chases that occurred.  

Acoustic recorders were programmed to record continuously at either 16000 Hz with 2-

bit compression, or 8000 Hz with 4-bit compression, recording for up to 25 days. A subset of 

lynx audio files (24 of 104, 29.25 days) were listened to and transcribed in entirety, recording the 

start and end time of each sound, what the sound was perceived to be, and whether it was 

generated by the lynx or by the environment (e.g., other lynx, species, vehicle, wind). This 

identified that feeding, chasing, sleeping, and vocalizing generated unique and distinguishable 

sounds that were unlikely to be mistaken for anything else. To identify all feeding events, audio 

files were loaded in an audio program that visualizes the waveform. Each file was then scanned 

by listening to five seconds every 5 minutes where sound was generated for more than 1 minute. 

When the sounds of feeding were identified, we recorded the duration of the event. We validated 
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that the sound identified as feeding was actually feeding in two ways: 1) with snow tracking 

data, we calculated the percent of kill sites that corresponded to this sound and the percent of 

feeding sounds that occurred where no kill site was found, and 2) extracted the sound from three 

videos recorded of free-ranging lynx feeding from behavioural observations during the study to 

confirm that this was the same sound as what we identified. We determined the prey species 

being consumed either by the vocalization of the prey when being killed (97 of 207 kills, 46.9%) 

or by the duration of the feeding event. A combination of direct observations of feeding in the 

field and those recordings where species was identified by vocalization suggested that duration 

of consumption of a red squirrel was between 7 and 14 mins (mean = 8.5 mins) while 

consumption of snowshoe hares was between 18 and 67 mins (mean = 36.8 mins). As only 7% of 

hare kills had feeding durations less than 20 min, we classified all unknown feeding events with 

durations less than 15 mins as red squirrel and all feeding events with durations greater than 15 

mins as snowshoe hares. 

 

Seasonality in hare and squirrel mortality rates  

We monitored hare survival on a subset of the population daily between October and June, and 

biweekly between July and September. Detailed methods are described in Peers et al (submitted) 

but are briefly explained here. From February 2015 to June 2018, we captured and collared 

snowshoe hares (n = 474) with VHF transmitters that had built in mortality signals. Hares were 

released at capture site and collars remained on individuals until they were predated. Each day all 

collar signals were checked from set locations in the study area and signal type (live or mortality) 

was recorded. All mortality signals were investigated and cause of death was determined. We 

monitored an average of 74 hares (range: 37-110) at any one point in time throughout the study. 
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Winter and summer survival of red squirrels was calculated from 27 years of population 

monitoring. Every squirrel in the population was followed from birth to death and censused 

every May and August. Mortality rate was calculated as the proportion of the population that was 

last seen or trapped by the project in a given census divided by the number of weeks between 

each census.   

 

Red squirrel and snowshoe hare seasonal population dynamics 

As part of the long-term Community Ecological Monitoring Project, twice a year (once in the 

spring prior to breeding and once in the autumn post breeding) we estimated the population 

density of snowshoe hares (and arctic ground squirrels and northern red-backed voles, see 

supplementary materials) through mark recapture trapping (see methods in (Krebs et al., 2001, 

2014)). As part of the long-term Kluane Red Squirrel Project, all squirrels within a 72 ha section 

of the same study area are followed from birth to death, and population is censused twice a year 

in May and August providing exact densities (see McAdam et al., 2007). For hares and red 

squirrels (and, in supplementary materials, red-backed voles and ground squirrels), we calculated 

summer rate of increase as the proportional change in density between spring and autumn 

relative to the spring density. Winter rate of decrease was calculated as the proportional change 

in density between autumn and the following spring relative to the autumn density.  

 

Global analysis of small mammal population dynamics 

We calculated species-specific annual rates of increase and decrease, and population stability 

using all small mammal populations within the families Rodentia, Lagomorpha, and Insectivora 
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for which there were at least 12 years of densities in the Global Population Dynamics Database 

(NERC Centre for Population Biology Imperial College, 1999). Since population cycles are 

known to vary between populations and we were interested in the potential ability of a species to 

cycle, we extracted the maximum measured annual rate of increase, decrease, and population CV 

for each species. Rates of increase and decrease were calculated at the proportional change in 

population densities between years. 
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Chapter 6 - Summary and Conclusions 
 

Discussion of general thesis results 

 
Behaviour is often considered to be unpredictable with high variability due to the perceived 

complexity that goes into decision making and individual difference from personality. Although 

this may be true when trying to predict decisions at small scales like patch use, prey selection, 

and whether to move at this moment or the next, it is not true at longer time frames. I found that 

when the scale of interest is extended to the accumulation of decisions over a day, the 

predictability of behaviour across seasonal and multiannual timeframes becomes incredibly high 

since the variation over a year exceeds the individual variation within a day (see Chapter 4). By 

considering that activity patterns over seasons and years are predictable and species-specific, I 

also show that the level of flexibility in seasonal activity that a species has determines the rate of 

production and stability of population dynamics.  

 

It may seem surprising that the simple theoretical foundations about activity that I produce here 

have not been previously assessed given the early interest within ecology in quantifying 

behaviour of animals. Activity patterns have always been one of the first aspects of a species’ 

natural history to be characterized, in that for almost any species we know whether it is 

nocturnal, diurnal, crepuscular, etc. (Burkhardt, 1999). Despite this our ability to study behaviour 

in free-ranging species has been severely limited until recently. The classic studies all relied 

heavily on direct observations, which not only consumed considerable amounts of manpower 

and time for relatively small sample size, was restricted to species that were conducive to 

observation, and came with the biased outcome of the observer influencing the behaviour of the 
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individual (Altmann, 1974; Altmann & Altmann, 2006; Crofoot et al., 2010). These restrictions 

placed a limit on the duration and number of individuals that could be observed and thus on the 

scales at which behaviour was studied. The theoretical advancements in our knowledge of 

behaviour that this thesis achieved (Chapters 4 and 5) were completely dependent on access to 

highly detailed and continuous behavioural data over long time frame made possible by 

biologging technologies for which a substantial part of this thesis was centered around (Chapters 

2 and 3).  

 

Although the biologging technologies that are the focus of the first half of the thesis are not new 

to biologists – having been used in marine studies for decades - their recent miniaturization has 

only recently allowed deployment on small animals, making them relatively new to terrestrial 

ecologists (Block, 2005; Rutz & Hays, 2009). Indeed, their inclusion in terrestrial wildlife 

studies has increased exponentially since the start of this thesis. This explosion has brought with 

it a desire to record behaviour for longer durations than can be achieved with the battery size 

restrictions imposed by small mammals. Chapters 2 and 3 show that this issue can be alleviated 

by reducing the recording frequency below the recommended Nyquist frequency (Williams et al., 

2019) at the trade-off of classifying behaviour to broader categories than highlighted in the 

literature, and adjusting the classification methodology to account for this broader scale. 

Although at these long time scales it might not be possible to count stride frequencies or 

calculate speed of movement, it is possible to capture feeding or travelling bouts at the benefit of 

recording behaviour for weeks to months, instead of hours to days. Although detail is always 

thought to be better and more informative, the analysis done in Chapters 4 and 5 highlight that 

there is considerable value to studying behaviour in very simple, but ubiquitous forms. In these 
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chapters, quantifying behaviour of an organism as active or inactive provided remarkable 

amounts of information about the species.  

 

The high predictability of a bottom-up regulated bioenergetic model of activity (Chapter 4) raises 

questions about the role of predation risk to broad scale behaviour. Any search on the literature 

surrounding animal behaviour will highlight the recurring importance of predation risk to activity 

and foraging decisions (see Lima & Dill, 1990). However, our modelling of daily activity that 

only incorporated resource availability, temperature and mating opportunities produced 

predictions that matched seasonal and multiannual variation in daily activity with a surprisingly 

high correlation (R2 = 0.87). Since most work done on animal behaviour is focused at decisions 

made over short time frames like timed trials in laboratories or patch selection for foraging, we 

currently know very little about how these observed effects manifest over longer time windows. 

It is possible that animals may compensate for reductions in activity during one moment by 

increasing activity at other times or places within the day. I showed an example of this type of 

compensation occurs in snowshoe hares in response to moonlight (Chapter 3). Although not in 

alignment with most theories it would make sense that if the choice is between not eating and 

certainly starving, or eating and only potentially being predated, that at a daily scale, activity 

should not be affected by predation risk. Alternatively, it is possible that variation in predation 

risk over time is highly correlated with temperature or resource availability and was thus was 

inadvertently captured in our model. Needless to say, the question of how predation risk 

influences daily activity is left as an important knowledge gap stemming from the work that I 

have done in this thesis that requires attention to advance our theoretical understanding of 

behaviour variation observed over seasons and years. 
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Integrating activity into bioenergetic consumer-resource dynamical equations generated 

predictions that seasonal flexibility of behaviour drives aspects of population dynamics. 

Although I found empirical support for most of these predictions, some remained partially 

untested. Through modelling I showed that species with inflexible seasonal behaviour are prone 

to larger rates of increase and decrease resulting in more unstable population dynamics than 

species with flexible seasonal behaviour (Chapter 5). Empirically I was able to show that this is 

potentially the case across small mammals, but did so through a reliance the extreme cases of 

hibernators and torpor users vs homeotherms. However, the rest of that chapter is centered 

around two homeotherms (red squirrels and snowshoe hares) with drastically different flexibility 

in activity. Outside of hibernation and torpor use (McLellan & McLellan, 2015), there is a 

surprising lack of data on seasonal activity patterns for most species. Given the potential 

importance that I found of seasonal activity to population dynamics and species interactions, this 

baseline information is critically needed and should be of high priority for most species. Beyond 

collecting this information for each species, Chapter 5 also suggests a need to study behavioural 

patterns of populations across a gradient of seasonality. The final analysis of this chapter created 

a prediction that population cycles should have greater amplitudes in less seasonal locations due 

to higher production in longer, warmer summers. Given cycles are generally shown to dampen in 

warmer locations, this prediction creates a seasonal paradox of enrichment. The explanation to 

this may still have to do with activity. The relationship between activity and resource availability 

shown in the bioenergetic model in Chapter 4, suggests that activity patterns should be quite 

variable across the range of a species distribution. Unfortunately, our tendency to study species 

at only one field site, and only publish data once per species, means that we have essentially no 
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data on how daily activity varies over space and between climates. Thus, with this thesis I 

conclude with a call for a more concerted effort to be made to not only characterize seasonal 

activity of different species but also to investigate how activity varies between populations 

within each species. This thesis shows that this characterization of long term behaviour is 

important, but also that it can be done relatively simply, as although I started out characterizing 

behaviour into multiple detailed states (e.g. feeding, foraging, travelling, sleeping; Chapters 2 

and 3), I concluded by exploring theoretical concepts of a more basic, but ubiquitous, form of 

behaviour (active and inactive; Chapters 4 and 5). 

 

Final conclusion and summary 

My thesis objective was to examine how the environment shapes an individuals’ choice between 

activity and inactivity and what implications this choice has on a species’ engagement with, and 

the dynamics of, other species with which it interacts. To achieve this, Chapter 2 and 3 tested and 

developed novel approaches to the use and analysis of biologging technologies on small 

mammals. By increasing the scale at which behaviour is classified from acceleration recordings, 

I showed that accelerometers can be effectively used at lower recording frequencies than the 

current standard in the literature. This ability to reduce the recording frequency results in 

increased longevity of devices, and provided the means needed to monitor behaviour over the 

time scales required of the thesis objective. 

 

Throughout the thesis, I explored how environmental variation across a range of temporal scales 

influences and structures behaviour of individuals. This included confirming that red squirrels 

are strictly diurnal with strong seasonal activity patterns driven by primary production, 
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temperature, and mating opportunities, in addition to interannual pulse resource fluctuations 

(Chapter 2 and 4). Snowshoe hares, on the other hand, are generally nocturnal and crepuscular, 

adjust timing of foraging in response to the monthly lunar cycle, and have seasonal activity 

patterns that are dampened in comparison to red squirrels (Chapter 3 and 5). Overall, 

environmental variation is a key driver in the bioenergetic decision to be active or inactive when 

calculated at the scale of a day and monitored over seasons and years (Chapter 4). This shows 

that behaviour, which is often considered noisy, is actually highly predicted and likely bottom-up 

regulated when considered over longer time scales than normally observed.   

  

Finally, I found that environmentally-driven activity determines the level of trophic engagement 

of species with the environment and with other species in the system (Chapter 5). By 

incorporating activity into energy-explicit consumer-resource dynamical equations, I created 

predictions that seasonal flexibility in activity determines the rate of energy intake, expenditure, 

and loss to predation throughout the year. Over the course of a season or year, these rates 

accumulate to determine the population rates of increase and decrease, and contribute to 

population stability over time. This revealed that resource-driven seasonal inflexibility of activity 

has a tendency to drive large amplitudes in population cycles. The implications of this are that 

regardless of whether we consider a system to be top-down regulated or not, regulation will 

always be, at least, partly bottom-up through resource-driven activity mediation of species 

interactions (also suggested by White, 2013). Finally, this thesis highlights that seasonal 

processes are fundamentally coupled (Chapter 2, 4, and 5). Given what happens in winter 

influences what happens in summer, and vice versa, this finding reveals that it is important that 

we begin to study ecology across all season and not just during the “active” season. Until we do, 
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we will be limited in our ability to push our theoretical understandings further than they currently 

are and we will continue to struggle to explain the patterns we observe within one season.    
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Supplementary Materials 
Supplementary Materials for Chapter 2 

7.2.1 Collar construction method 

The accelerometer units that we used came unpackaged so that we could construct collars to 

meet the specifications needed for the small size of the red squirrels. Below are the steps that 

were taken to protect the accelerometers from claws and teeth of the squirrels as well as the 

elements. The circuit boards came coated with a protective layer such as plastidip which we 

then labelled externally (2). We then added a layer of seran wrap (3) and candle wax (4) to 

protect against moisture. On top of that we constructed a hard casing using a strip from an 

aluminum drinking can (5). This was formed into a round housing and held in place around 

the accelerometer with electrical tape (6). Two circular aluminum end pieces were fashioned 

from the same can and attached with duct tape (7). Care was taken to ensure that all devices 

were in the same orientation on the animal, so as the device was sealed in the protective 

housing, the orientation was marked on the housing (8).  

 

We used zip ties for the band of the collar.  To give reference to the circumference of the 

collar when attaching, we mark the zip ties at 9 cm and 10 cm prior to construction (9).  

These are used when collaring the animal to ensure that no collar is attached too tight. To 

protect the neck of the squirrel from the rough edge of the zip tie, we coat the zip tie in two 

lengths of 1/8” heat shrink where the accelerometer will not be placed (10). To attach the 

accelerometer to the zip tie, we first used a piece of electrical tape (11), then heat shrink.  A 

trapezoidal piece of ¾” heat shrink was used where the short side is the length of the 

accelerometer and the long side is 1.5X the length of the accelerometer (12).  This is centered 

over the collar band and accelerometer with the short side lying against the band (13).  When 
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shrunk with heat, the long side of the heat shrink will fold up and around the base of the 

accelerometer (14) ensuring that it is securely attached to the collar.  
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 7.2.2 Red squirrel behavior data collection application 

 

This application was designed and developed in 2014 to record instantaneous changes in 

behavior of wild red squirrels. This app was developed for IOS version 6.1.  

 

The Application 

The application consists of two screens: the first collects basic information about the individual 

that is being viewed and their initial behavior at first observation, the second allows the user to 

collect instantaneous behavior of the individual with a series of buttons.  This saves all the data 

into 2 .csv files, one for each screen.  

 

Screen 1: 

OBS – Initials of the observer 

Mode – Type of observation being made.  On the red squirrel project, we distinguish between 

casual observations and schedule focal observations. 

Colours – Identification markings of the individual. In red squirrels a unique combination of 

colored ear tags is used for identification. 

Sex – Male or Female 

Behaviour – a drop down list of behaviours appears to choose from including behaviours like 

feeding, travelling, and vocalizing. 
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Detail – for some behaviors there are additional details 

to be filled in. For example, if the animal is feeding, 

what is being consumed would be recorded in this 

variable. 

Handedness – if the squirrel is feeding, we record 

whether it is using its left or right forepaw 

predominantly. 

Time – time of observation.  If button “Time” is pressed, 

the current time is filled in.  

Loc X, Loc Y – the coordinates (X,Y) of the squirrel 

within the study grid. 

Midden? – recorded whether or not the squirrel is on the 

center larder hoard within its territory.  

Date – record the date of the observation.  If button 

“Today” is pressed, the current date will be filled in 

automatically.  

Comments – any additional comments can be recorded 

here.  

Save – press this button to save the observation.   

Next – press this button to proceed to the next screen without saving.  Information from this 

screen such as observer, colours, and sex are transferred to the next screen and included in all 

data saved when on the next screen 
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Screen 2: 

This screen collects instantaneous behaviour of the 

squirrel.  It consists of 6 buttons that each 

represent a behavioral state.  For the red squirrels, 

these behaviours included slow and fast travel 

(Slow Move, and Running), Stationary Movement 

(not moving in space, but body still moving 

including grooming and vocalizing), Not Moving, 

Feeding (actively consuming resources), and In 

Nest (not visible but telemetry signal triangulated 

to a squirrel nest).  

 

Depending on the common duration of the behavior, the buttons had different functions when 

tapped. For behavioral states that tended to last longer than 10 secs at a time (Not Moving, In 

Nest, and Feeding), the application would record one line when the button is tapped indicating 

the start of the behavioral state.  This requires that another button is pressed when the squirrel 

changes behavioral state to indicate the end of that state.   

 

For behavioural states that typically occur at durations less than 10 seconds (Slow Move, 

Running, and Stationary Movement), two lines of data will be recorded when the button is 

pressed.  The first when the button is pressed indicating the start of the behavior. The second 

when the button is released indicating the end of the behavior. For these behavioural states, user 

must press and hold the button for the duration of the behavior. 
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Additional functions of this screen include an “End” button that records a line of data indicating 

the end of the observational period.  An “Erase” button that records a line indicating that the 

previous line of data was a mistake and should be deleted during post observation.  There is a 

timer in the top center of the screen that counts down from 120 seconds to 0 indicating when to 

finish the observational period.  

 

The Data 

 

This application creates two data frames for different purposes. The first (table 1) creates a list of 

behavioral observations in the standard format used for the long term Kluane Red Squirrel 

Project. The second was the continuous observations used for this study. This data frame 

consisted of the observer, squirrel identification, sex, time, behavior, and whether it was when 

the behavior started or stopped, or the end of the observational period.  

 
Table 1. Example of the data frame that is produced by screen 1 of the application. 

id obs mode lcolor rcolor sex behavior detail hand time locx locy midden date com 
13 EKS adfoc G! P! M In nest   10:16:45 J.7 18.9 On 2014-02-

19 
 

14 EKS adfoc R! - M Travel Tree  12:03:09 E.7 10.0 Off 2014-02-
19 

 

15 EKS adfoc Y! B! M Vigilant   12:14:42 C.3 13.1 Off 2014-02-
19 

 

16 EKS adfoc W! Y! M Vigilant   12:18:04 C.0 11.2 On 2014-02-
19 

 

17 EKS adfoc B! Y! M Feeding Cone R 12:26:21 J.2 9.6 On 2014-02-
19 

 

18 EKS adfoc W! O! M Vocal rattle  12:34:12 J.7 6.6 Off 2014-02-
19 

 

19 EKS adfoc O! P! M feeding mush  12:40:39 D.8 3.1 on 2014-02-
19 

 

 
 
Table 2. Example of the data frame that is produced by screen 2 of the application.  

ID OBS LCOLOUR RCOLOUR SEX TIME BEHAV B2 
49 EKS Y! B! M 2014-03-20 11:03:17 Nest PrStart 
50 EKS Y! B! M 2014-03-20 11:04:18 END END 
51 EKS P! W! M 2014-03-20 11:24:20 Nest PrStart 
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52 EKS P! W! M 2014-03-20 11:25:22 END End 
53 EKS W! Y! M 2014-03-20 11:35:15 StatMove Start 
54 EKS W! Y! M 2014-03-20 11:35:21 StatMove Stop 
55 EKS W! Y! M 2014-03-20 11:35:27 RunningMove Start 
56 EKS W! Y! M 2014-03-20 11:35:37 RunningMove Stop 
57 EKS W! Y! M 2014-03-20 11:35:59 StatMove Start 
58 EKS W! Y! M 2014-03-20 11:36:00 StatMove Stop 
59 EKS W! Y! M 2014-03-20 11:36:01 notmoving PrStart 
60 EKS W! Y! M 2014-03-20 11:36:04 StatMove Start 
61 EKS W! Y! M 2014-03-20 11:36:04 StatMove Stop 
62 EKS W! Y! M 2014-03-20 11:36:05 Feed Start 
63 EKS W! Y! M 2014-03-20 11:37:01 Feed Stop 
64 EKS W! Y! M 2014-03-20 11:37:02 END END 

 
 
 
 
  7.2.3   Time alignment 

To align the clocks on the accelerometers with that on the behavioral observation, it was 

necessary to visually inspect the acceleration recording in and around the time of the 

observations to determine the extent of this mismatch. These time discrepancies appeared to be 

unique to each combination of squirrel, observer, and date. To determine the mismatch, we first 

identified in the behavioral observations clear transitions from substantial time (>10 sec) being 

spent not moving to moving as these transitions would generate a clear signal on the 

accelerometer. From this we were able to calculate the time mismatch for 47 and 13 observer 

squirrel days in the winter and autumn observation periods, respectively.  Sample sizes were 

smaller in the autumn because at this time squirrels spent very little time not moving and large 

amounts of time running in comparison to the winter.  Accordingly, we additionally identified in 

the autumnal data transitions from feeding (>30 sec) to fast travel (>7 sec) for additional 

calculations of time mismatch.  From these additional transitions, we calculated the mismatch for 

a total of 39 observer squirrel days in the autumn. In total there were 11 observer squirrel days 

with multiple transitions on which a time mismatch could be calculated. In all cases the time 

mismatch tended to be within 2 seconds of the other transitions with the largest discrepancies 
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being 8 seconds.  In the situations where there was more than one transition, we used the mean 

time mismatch of all transitions for adjusting the time of the observations.   

  

7.2.4 Temperature filtering 

The temperature data loggers had a tendency to sporadically glitch throughout the recording.  

These glitches appeared to record a temperature that was considerably different (up to 10°C) 

from the 10 seconds before and after and would record the same temperature at each glitch. 

Thus, prior to any analysis, we filtered for these by determining the largest temperature 

difference that can occur naturally from one recording to the next, which is dependent on the 

temperature differential between in and out of the nest.  Using temperature loggers (winter: 

n=10; autumn: n=10) that were visually confirmed to be functioning correctly over time, we 

calculated the maximum rate of temperature change from one recording to the next over 4 days 

(Table 1). Autumn recordings had a max rate of temperature change of -1.22°C and 1.10°C, and 

winter temperature differences maxed out at -4.40°C and 1.35°C. We identified any temperature 

recordings that had rates of change greater than 1.5°C per 10 seconds or 5°C per 10 seconds in 

autumn and winter, respectively.  These temperature recordings were replaced by the mean 

temperature of the preceding and subsequent temperature recordings. 
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Table S7.2.1. Maximum temperature change between two temperature recordings on data 

loggers deployed on red squirrels in the winter (ambient temperature < 0°C) and autumn 

(ambient temperature > 0°C). This rate of change is influenced by the temperature differential 

between the nest and ambient temperature. 

Accelerometer MaxTempDiff (neg) MaxTempDiff (pos) Season 
DD_Mar27_2014 -1.35 1.22 Winter 
HH_Sep28_2014 -0.86 0.61 Autumn 
TT_Sept24_2014 -0.86 0.86 Autumn 
BB_Sep16_2014 -1.22 1.10 Autumn 
NN_Sep28_2014 -1.1 0.98 Autumn 
UU_Sept24_2013 -1.1 1.1 Autumn 
ZZ_Sep28_2014 -1.22 1.1 Autumn 
XX_Sept27_2014 -1.22 1.1 Autumn 
AF_Sep29_2014 -1.22 0.98 Autumn 
SS_Sep28_2014 -1.10 1.10 Autumn 
DD_Sept25_2014 -1.1 0.86 Autumn 
XX_Feb27_14 -1.83 1.22 Winter 
OO_Mar2_14 -2.57 0.74 Winter 
CC_mar4_2014 -4.4 1.22 Winter 
YY_March4_2014 -2.81 0.98 Winter 
II_Mar29_2014 -1.34 0.86 Winter 
DD_Mar13_2014 -2.93 1.35 Winter 
EE_Mar17_2014 -2.32 0.86 Winter 
BB_Mar29_2014 -1.96 0.98 Winter 
CC_mar4_2014 -4.4 1.22 Winter 

 

 

  

7.2.5  Running means smoothing window for static acceleration 

To separate static acceleration from dynamic acceleration, a running means smoothing window 

is applied to the raw acceleration. The smoothed file is the static acceleration. Dynamic 

acceleration is calculated by removing the static acceleration from the raw acceleration. 

Selection of the window size over which the smoothing function is important as too short a 
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window may result in much of the dynamic acceleration being captured as static. This can cause 

implications on the summary statistics like ODBA that are derived from the dynamic 

acceleration. To determine if our selected window size (91 s) was appropriate we followed 

recommendations proposed by Shepard et al. (2008) and completed a sensitivity analysis by 

calculating ODBA using dynamic acceleration generated from running mean smoothing 

functions with windows ranging from 3 s to 220 s (Figure 1). For this we selected accelerometer 

files from 8 red squirrels and from each file we randomly selected one complete day of data 

producing 8 days of acceleration. As ODBA for different behavioral states may stabilize at 

different smoothing function window size (Shepard et al., 2008), we completed this sensitivity 

analysis for three different behavioral states: running (Figure 1a), foraging (Figure 1b), and 

feeding (Figure 1c). We confirmed that our window size (91s) was above the point at which 

ODBA became less variable with changes in the length of the running mean. 

 

Shepard, E., Wilson, R., Halsey, L., Quintana, F., Gómez Laich, A., Gleiss, A., … Norman, B. 

(2008). Derivation of body motion via appropriate smoothing of acceleration data. Aquatic 

Biology, 4(3), 235–241. doi:10.3354/ab00104 
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Figure S7.2.1. Change in overall dynamic body acceleration (ODBA; median and 25th/75th 

quantiles) as acceleration data is smoothed at increasing running means window sizes from 3 s to 

221 s for running (A), foraging (B), and feeding (C) behavioral states over 1 day in 8 red 

squirrels. Grey box (91 s) represents the window size selected for calibration of red squirrel 

accelerometer data.  

7.2.6 Video of squirrel behavioural states 

Video can be found in the supplementary materials section at 
https://doi.org/10.1002/ece3.4786  
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Supplementary Materials for Chapter 3 

Table S7.3.1. Summary of the number of observations of each behavior per hare per day 

recorded from six captive snowshoe hares for validating behavioral classification of 

accelerometer data.  

Behavior Min Num Max Num Mean Num Mean Duration 
Vigilance 2 150 42 10 sec 

Sitting 1 46 9 45 sec 
Sprinting 6 25 14 12 sec 

Travel-multi hop 4 41 18 5 sec 
Travel-one hop 4 58 13 5 sec 

Feeding 1 26 8 30 ec 
 
 
 
7.3.1 Smoothing window selection for removing static acceleration 

 
Acceleration generated from the orientation of the device on the animal can be separated from 

behaviourally-derived acceleration by applying a running means smoothing window to the raw 

acceleration. Behaviorally-derived acceleration is then calculated by subtracting the long 

duration static acceleration from the raw acceleration. Selection of the window size over which 

the smoothing function is important as using too short a window may result in much of the 

behaviourally-derived acceleration being captured as static. To determine if our selected window 

size (91 s) was appropriate we followed recommendations proposed by Shepard et al. (2008) and 

completed a sensitivity analysis by calculating overall acceleration (OA) using the remaining 

acceleration generated from running mean smoothing functions with windows ranging from 3 s 

to 211 s (Figure S7.3.1). For this we selected 1 day of accelerometer data from each of the 6 

captive snowshoe hare files. We confirmed that our window size (91s) was above the point at 

which OA became less variable with changes in the length of the running mean.  

 

Shepard, E., Wilson, R., Halsey, L., Quintana, F., Gómez Laich, A., Gleiss, A., … Norman, B. 

(2008). Derivation of body motion via appropriate smoothing of acceleration data. Aquatic 

Biology, 4(3), 235–241. doi:10.3354/ab00104 
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Figure S7.3.1 – Influence of smoothing window size for calculate of static acceleration on value 

of OA (g). 

 
 

7.3.2 Random forest analysis for accelerometer classification 

 
We distinguish all accelerometer recordings that were classified as moving into the 3 most 

common moving behaviours observed on snowshoe hares (vigilant, foraging, travelling; 95.2% 

of movement). We approached this using the random forest classification algorithm, which 

involves separating data into training and testing subsets. We used this algorithm to test how 

accuracy of classification varies with the sampling window of the accelerometer data.  We tested 

7 time windows (2, 4, 7, 10, 14, 20, and 30 seconds). For each window, we took the full data set 

of the continuous focal observations and separated it into segments of the desired time window, 

calculated the most common behaviours and the duration of those behaviours within that 

window. These observations were subsetted, selecting only segments that met the following 

criteria: 100% was not moving, 51% was travelling, or 51% feeding or foraging with 0% 

travelling. The proportion of observed data that met these requirements varied with the size of 

the time window with smaller time windows more likely to capture behaviour at the natural 

OA
 (g

) 



 166 

durations that is occurs (Table S7.3.1). Finally, we randomly sampled these to ensure that our 

dataset had equal numbers of each behaviour. Once the known behaviours were selected, we 

calculated 6 summary statistics on the dynamic acceleration of each axis including mean, 

standard deviation, maximum, sum, range, and sum of . We additionally calculated the overall 

acceleration (OA), DOA, min , max , max acceleration, mean pitch, and mean roll using all 

three axis together for a total of 25 different summary statistics. Using these statistics, we ran the 

random forest algorithm on a training subset (70% of data; growing 2000 trees) and calculated 

the % accuracy from the resulting confusion matrix on the testing data set.   

 

Table S7.3.2. Percentage of observed snowshoe hare data that was included in random forest 

analysis at each time window after selecting segments that matched specific criteria.  

Time Window (sec) % Observed Data Used 

2 95.2% 

4 89.4% 

7 78.5% 

10 80.4% 

14 75.9% 

20 70.1% 

30 61.7% 

 

Results 

The accuracy of the random forest increased with increasing time window from 83.3% at 2 

seconds to 96.7% at 20 seconds (Figure S7.3.2). Above a sample window of 4 seconds, the 

accuracy of both not moving and travelling behaviour was consistently above 95%, while 

foraging was the most influenced by the sample window size increasing from 85.4% at 4 seconds 

to 93.0% at 30 seconds. However, this high accuracy at larger time windows comes at the trade-

off of classifying behavior at durations that don’t naturally occur in snowshoe hares which will 

likely inflate the occurrence of short duration behavioural states (like travelling) while reducing 

the occurrence of long duration behaviour (like not moving). 
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Figure S7.3.2 - Accuracy of random forest classification of snowshoe hare accelerometer data 

into behavior is influenced by the size of the time window over which acceleration summarized.  
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7.3.3 Recorder-specific acoustic classification analysis 

Prior to any acoustic analysis we assessed the ability of independent listeners (n=3) to classify 

sounds to a behavior (Table S7.3.3). Acoustic properties of hopping, silence, and chewing 

sounds were initially measured for each recorder separately. Two recorders (hares B and C) had 

identical profiles for each sound, while one recorder had unique profiles for each sound (Figure 

S3). Thus, we combined all data from hares B and C for analysis and produced two sets of 

threshold values for automated classification of the three sounds (Table S7.3.4, S7.3.5). 

 

 

 

Table S7.3.3. Inter-rater reliability at identifying chewing, silence, hopping, and unclassified 

sounds from acoustic recorders.  

 Chewing Silence Hopping Unclassified Accuracy 
Chewing 41 1 0 0 97.6% 
Silence 0 40 1 1 95.2% 

Hopping 0 0 15 13 55.6% 
Unclassified 2 1 3 35 85.4% 

 
 
 
 

Table S7.3.4. Upper and lower threshold values (dB) at each frequency used to identify silence, 

chewing, and hopping in 1 second audio clips for hare A.   

 
 Silence Chewing Hopping 

Frequency Lower Upper Lower Upper Lower Upper 
0 -1 13 4 14 8 40 

0.25 -4.2 -0.08 -0.08 17.8 -0.08 26.5 
0.6 -4.1 0.1 -3.1 5.9 -2.4 15.4 
1 -5.7 -1.4 -5.7 0.1 -4.9 6.4 
2 -9.4 -4.4 -9.1 1.4 -8.1 7.2 

3.45 -11.7 -7 -11.8 -8 -8 5.9 
6 -13.4 -8.1 -13.8 -8 -11.9 0.6 
7 -12.7 -7.9 -12.5 -8.1 -11.8 -2.9 
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Table S7.3.5. Upper and lower threshold values (dB) at each frequency used to identify silence, 

chewing, and hopping in 1 second audio clips for hares B and C.   

 Silence Chewing Hopping 
Frequency Lower Upper Lower Upper Lower Upper 

0 2 13.1 4 22 4 41 
0.2 -4.8 3.7 -2.2 20.3 -0.4 27.3 
0.6 -4.7 2.3 2.3 28.2 4.1 33 
1 -6.1 -1.6 -4.4 5.5 -4.5 18.5 
2 -9.1 -4.4 -9 -3 -9.2 6.6 
4 -13 -8.4 12.7 -7.5 -7.5 12 
6 -13.8 -9 -13.7 -8.2 -12.4 -1.1 
7 -13.1 -8.4 -12.4 -7.3 -12.6 -2.2 
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Figure S7.3.3 – Frequency-amplitude outputs of 1 second clips of animal-borne acoustic 

recordings on snowshoe hares (n=3)  showing the sound profiles of hopping (A,B), silence 

(C,D), and chewing (E,F). Each line represents a different audio clip. Different recorders 

generated different profiles for the same type of sound. A,C, and E are sounds recorded from 

hare A, while B, D, and F are the same types of sounds recorded from hares B and C.    
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7.3.4  Individual accuracies of accelerometer behavioral classification for captive snowshoe 

hares  

Table S7.3.6. Confusion matrix of classification of accelerometer data into three behavioral 

states for captive hare B2105. Overall accuracy was 85%. 

 Not Moving Forage Travel Accuracy 

Not Moving 20 0 0 100% 

Forage 1 15 4 75% 

Travel 0 4 16 80% 

 

Table S7.3.7. Confusion matrix of classification of accelerometer data into three behavioral 

states for captive hare B2729. Overall accuracy was 90%. 

 Not Moving Forage Travel Accuracy 

Not Moving 19 1 0 95% 

Forage 0 20 0 100% 

Travel 0 5 15 75% 

 

Table S7.3.8. Confusion matrix of classification of accelerometer data into three behavioral 

states for captive hare B2880. Overall accuracy was 91.7%. 

 Not Moving Forage Travel Accuracy 

Not Moving 20 0 0 100% 

Forage 2 17 1 85% 

Travel 0 2 18 90% 
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Table S7.3.9. Confusion matrix of classification of accelerometer data into three behavioral 

states for captive hare B2891. Overall accuracy was 78.3%. 

 Not Moving Forage Travel Accuracy 

Not Moving 19 1 0 95% 

Forage 2 18 0 90% 

Travel 0 10 10 50% 

 

 

Table S7.3.10. Confusion matrix of classification of accelerometer data into three behavioral 

states for captive hare B2895. Overall accuracy was 76.7%. 

 Not Moving Forage Travel Accuracy 

Not Moving 17 3 0 85% 

Forage 3 16 1 80% 

Travel 0 7 13 65% 
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 7.3.5 Individual accuracy of acoustic behavioral classification  

 
Table S7.3.11. Confusion matrix of acoustic behavioural classification for free-ranging 

snowshoe hare A. Overall accuracy is 92.2% 

 Silence Chew Hop Other Accuracy 

Silence 29 1 0 0 93.3% 

Chew 0 27 1 2 90.0% 

Hop 0 1 27 2 90.0% 

 

Table S7.3.12. Confusion matrix of acoustic behavioural classification for free-ranging 

snowshoe hare B. Overall accuracy is 92.2% 

 Silence Chew Hop Other Accuracy 

Silence 29 1 0 0 96.7% 

Chew 0 28 1 1 93.3% 

Hop 0 4 26 0 86.7% 

 
Table S7.3.13. Confusion matrix of acoustic behavioural classification for free-ranging 

snowshoe hare C. Overall accuracy is 97.8% 

 Silence Chew Hop Other Accuracy 

Silence 29 1 0 0 96.7% 

Chew 0 29 0 1 96.7% 

Hop 0 0 30 0 100.0% 

 
 
 
 

7.3.6 Audio clips from acoustic recorders  

 
Audio clips of not moving, forage, and travel can be found in the supplementary materials at 
 https://www.frontiersin.org/articles/10.3389/fevo. 2019.00154/full#supplementary-material 
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Supplementary Materials for Chapter 4 

 

 
Figure S7.4.1. Measured and estimated temporal variation of Kluane abiotic and biotic variables 

relevant to red squirrel activity optimization including resource availability (Ra), proportion of 

available resources that are hoardable (Rt), number of mating events in a week (n), quality of 

offspring produced from mating event (q), and temperature (Ta).  
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7.4.1- Resource index, Ra 

We assumed early autumn in mast years (when cones are mature, unopened, and readily 

accessible to squirrels; Archibald et al., 2012) represented maximum resource availability for this 

population and assigned a value of 100 to these periods to reflect 100% of maximum resource 

availability. Access to spruce cones at other times of the year, as well as access and use of other 

food resources were then scaled relative to this 100% maximum. Thus, our resource index is 

based on quantified production, hoarding, and consumption of spruce cones as well as feeding 

observations of alternative resources, and scales between 100 in the early autumn of a mast year 

to a possible minimum of 0 if squirrels completely lacked access to spruce cones and consumed 

no other alternative resources 

Our resource index, Ra, is based on annual quantification of spruce cone production (cone 

counts), the number of cones hoarded by red squirrels (hoard-size sampling), and observations of 

the feeding behaviour of free-ranging red squirrels throughout the year (feeding observations).  

Our R index represents the contributions of various food types to squirrels across the annual 

cycle, including fresh cones, RaFC, hoarded cones, RaHC, spruce buds, RaB, fungi, RaF, and various 

summer pulse leaves, needles, and berries, RaP, such that: 

Ra = RaFC + RaHC + RaB + RaF + RaP    (R1) 

Ra scales between 100 in the early autumn of a mast year to a possible minimum of 0 if squirrels 

completely lacked access to fresh (RaFC) or hoarded spruce cones (RaHC) and consumed no other 

alternative resources (RaB, RaF, or RaP).  
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In this section, we explain the observations and assumptions involved in translating cone counts, 

hoard-size sampling, and feeding observations into estimates for each of these components, then 

conclude the section by describing how they were combined into a single index.  

Fresh Cones, RaFC 

Prior to the hoarding season, fresh cones - still closed, maturing, and on spruce trees - are 

consumed by squirrels beginning in late spring or early summer. These fresh cones increase in 

energetic value and are consumed more as they mature over the course of summer, reaching a 

peak availability soon after the start of the hoarding season, when cone maturation is complete, 

cones have not yet begun to open (and disperse their seed), and few cones have been removed by 

squirrel hoarding activity. RaFC is thus assumed to be 0 throughout winter and spring until 

feeding observations, for that given year, indicate squirrels have initiated fresh cone feeding. 

RaFC is then assumed to increase in relation to i) increasing prevalence of fresh cone feeding in 

weekly feeding observations and ii) cone maturation, towards a maximum value at the start of 

the hoarding period. Every year in July prior to the beginning of spruce cone hoarding, we 

measured annual cone production by counting all cones in the top 1/3 of the tree visible from one 

direction for 586 trees in the study area. Total cones per tree was calculated using conversion 

generated by LaMontagne et al (2005; log(actual total cones) = 0.073 + 1.189 × log(cone 

count)). We refer to this annual measure as a cone count. Given the superabundance of cones on 

the landscape during mast years, we assumed that, at the start of the hoarding season in a mast 

year, RaFCm= 100 (i.e., 100% of maximum), whereas in any other year, RaFCy was << 100, scaled 

according to the cone count in that year. Following its annual maximum, at the beginning of the 

hoarding season, RFC was assumed to decline to 0 by the end of the hoarding season, due to 
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squirrel hoarding activity (removing approximately 10% of cones) and cone opening and seed 

dispersal (all remaining cones). Because squirrel hoarding occurs throughout the hoarding season 

and accounts for only 10% of the reduction in RaFC, whereas cone opening happens at the end of 

the hoarding season and accounts for 90% of the reduction, the decline in RaFC from the start to 

the end of the hoarding season was assumed to be non-linear, remaining close to maximum 

values throughout most of the hoarding season, then marked by an accelerating towards 0 

coincident with the end of the hoarding season.       

Hoarded Cones, RaHC 

Red squirrels collect and hoard spruce cones during an autumn hoarding period in a larder hoard 

located at the center of individual food-based territories that they occupy and defend throughout 

the year. Hoarded cones are then consumed throughout winter and into the subsequent spring and 

summer. Every late September or early October, at the end of the hoarding season but prior to 

the ground freezing and snow accumulation, we quantified the total cones hoarded TCy, averaged 

across 215 larder hoards (range: 187 – 236) sampled across two study grids as described in 

Fisher et al. (2019). Importantly, within this TCy total, two types of cones can be and were 

differentiated in each larder hoard: 1) new cones hoarded during the current hoarding season, 

NCy, and 2) old cones from previous autumn(s) still available in larder hoards, OCy. We refer to 

this quantification of TCy, including NCy and OCy, at the end of the hoarding season, as hoard-

size sampling. 

Annual consumption of hoarded cones, CHCannual, between any two years, y and y+1 is: 

CHCannual = (NCy + OCy) – OCy+1      (R2) 
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Where NCy and OCy are the number of new and old cones that were present in autumn y and 

OCy+1 is the number of old cones present in middens in autumn y+1.  

Consumption of hoarded cones is not evenly distributed across the year and varies primarily 

according to the availability and consumption of alternative resources. We used feeding 

observations of free-ranging red squirrels conducted throughout the year to quantify the 

proportion of observed feeding events that involved hoarded cones, pHC, and grouped these 

observations into weekly estimates, pHCw1-52. If CHCw, the number of hoarded cones consumed 

per week, varies proportionately with pHCw, then:  

CHCannual = ∑ (CHCw1:52) = ∑ x pHC1:52   (R3) 

where x is a constant, reflecting the number of hoarded cones consumed in a week (for a given 

CHCannual) when no other resources were consumed.  

RaHC was assumed, at the termination of hoarding period in year y, to reflect the total number of 

cones, TCy, present in larder hoards including old and new cones (NCy + OCy). Following this, 

RaHC was assumed to decline as a function of weekly cone consumption CHCw over the course of 

the remainder of the winter, spring, and summer, until the start of the next hoarding period in 

y+1. Once autumn hoarding commenced, RaHC was assumed to increase linearly from TCy – sum 

Cw1:48 at the start of the four-week hoarding period to TCy+1 at the end of the hoarding.  

Mast cone production effectively swamps the hoarding capacity of red squirrels, meaning that 

only a fraction of cones available on the landscape are secured within squirrel larder hoards by 

the end of the hoarding season. The remainder open and their seeds wind disperse, rendering 

non-hoarded cones inaccessible to red squirrels following the hoarding season. In a mast year, 
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squirrels can larder hoard approximately 10% of the cones available within their territories 

(Fletcher et al. 2013). Thus, we assumed a maximum value of 10 for RaHC, occurring at the end 

of the hoarding season in the mast year, and scaled RHC according to:  

RaHC = 10 (RHC-unscaled/TCm)      (R3) 

where RaHC-unscaled is our estimate of average hoard size on a given day, and TCm is the total 

number of cones in larder hoards at the end of the mast hoarding season.  

Buds, RaB  

In late winter and early spring, red squirrels consume buds from spruce trees. The timing and 

extent of bud feeding by squirrels is well quantified by our feeding observations. As described in 

Fletcher et al. (2013), bud feeding commences in February, gradually increases through March 

and April, and peaks in May and early June when the vegetative and reproductive buds of white 

spruce end their dormancy and begin to rapidly grow and differentiate. We know little about the 

energy and protein returns achieved during bud feeding, but can use feeding observations to 

assess the extent to which squirrels prioritize feeding on buds versus hoard cones in later winter 

(across RHC due to variable cone production and hoard size variation) and buds versus pulse 

resources in early summer. Accordingly, RaB, was assumed to follow the seasonal prevalence of 

bud consumption in feeding observations (Fletcher et al. 2013), initiating in February, peaking in 

May and early June, and declining to 0 by early July, then remaining at 0 for the remainder of the 

year until recommencing the following February. We assumed the value and timing of annual 

maximum, and the timing of decline and summer termination were proportional to the 

prevalence of buds in weekly feeding observations. Initiation date (Feb 15) was held constant 

across all years due to limited inter-annual observations in February. 
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Fungi, RaFF and RaHF 

Red squirrels feed on various fungi, including numerous unidentified mushroom species and 

hypogeous fungi-like truffles. These fresh food sources are available to squirrels from late spring 

to late autumn, during snow free periods when the ground is not frozen. In addition, red squirrels 

also hoard mushrooms and truffles, generally securing them in tree branches, where they dry and 

remain accessible for consumption during winter and spring periods of snow cover. Thus, within 

our feeding observations, mushrooms and truffles consumed during the growing season are 

almost always fresh fungi, RaFF, whereas those consumed during periods of snow cover always 

involve hoarded fungi, RaHF. We assumed squirrels consume fresh fungi when they are available 

on the landscape and set the onset, peak, and end dates of annual availability according to timing 

of initial, peak, and final presence in feeding observations, respectively. RaFF was assumed to be 

zero outside of these dates and to increase from onset to peak and decrease from peak to end 

according to a parabolic curve. We did not quantify amount of hoarded fungi each year nor do 

we have feeding observations throughout the winter when consumption of RHF would be at the 

highest. As such, we estimated RHF throughout the winter as the proportion of feeding 

observation on hoarded fungi relative to hoarded cones during late February and early March 

each year.  For example if feeding observations were 0.2 hoarded fungi and 0.8 hoard cones, than 

RaHF for that winter would be 0.25 (0.2/0.8) the value of RaHC. 

 

Summer pulse leaves, needles, and berries, RaP 

Squirrels feed on leaves, needles, berries, and deciduous buds from various plant spp. that grow 

during the summer pulse. These plants begin to grow once the snow has melted with each food 
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source likely reaching peak availability at different points throughout the summer. We used daily 

on-site snow depth measurements and field observations and weekly NDVI values for the area to 

estimate RaP each year. We assumed summer pulse availability began when 90% of the study 

area became snow free, and ended at first permanent snow fall of the winter. The relative value 

of RaP throughout the pulse was set according to NDVI scaling so that zero was equivalent to an 

NDVI value of 0.5. Any NDVI values below 0.5 during the snow-free period were removed and 

interpolation was used to estimate any missing values, ensuring that RaP was above 0 throughout 

the pulse period. 

 

To generate one resource variable, we scaled each variable relative to RFC according to known 

information so that are Ra ranges from 0 to 1. RaHC was scaled so that peak availability in the 

mast year (2014) was 10% peak RaFC of that year, the average proportion of available cones that 

squirrels hoard in a mast year (Fletcher et al., 2010). The scaling of RaFF, RaB, and RaP was set 

according to the equivalent cone index that would generate a similar maximum proportion of the 

diet. For example, fresh cone availability of 10% mast conditions generates a squirrel diet 

composition of 60% fresh cones. Peak consumption of fresh fungi was 60% of diet, thus we 

scaled RaFF so that peak values equalled 0.1. RaB and RaP both had peak consumptions of 25% of 

diet, and were thus scaled so that peak values equalled 0.05. Our RaHF estimate was calculated 

after RaHC had been scaled and thus needed no further adjustments.  Once scaled all components 

of resources availability were combined to generate a timeseries of Ra over the course of the 

study (Figure S1).  
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Figure S7.4.2. Relative resource availability (Ra) over the duration of the study is composed of 

seasonal and multiannual pulses of different resource types. Primary resources for red squirrels 

include fresh spruce cones (Rfc), hoarded cones (Rhc), fresh fungi (Rff), hoarded fungi (Rhf), 

spruce buds (Rb), and summer pulse items (berries, leaves, needles; Rp).  

 

  



 183 

7.4.2 – Resource type index (RT) 

Our index of resource type, Rt, as a proportion of available resources is 0 when all available 

resources are only consumable and 1 when all available resources are hoardable. Based on the 

seasonal extent of squirrel hoarding activities, generally Rt is 0 throughout winter and spring 

when no resources are hoardable, begins to increase in summer with the onset of fresh fungi 

availability, accelerates in late July or early August if fresh cones become available, then 

declines as hoarding declines. We estimated Rt from feeding observations (n = 22,513) of free-

ranging squirrels in the study area that were recorded daily between March and October each 

year. For each week, we calculated the proportion of feeding events (average weekly 

observations = 132, range = 1-1290) that were on hoardable and non-hoardable resources. Since 

cone hoarding occurs only once cones mature but feeding occurs on all cone developmental 

stages, we restricted cone-influenced Rt to a maximum value of 0.1 prior to August 10 (onset of 

hoarding; Archibald et al., 2012), and interpolated values between the onset of cone feeding and 

this date, and this date and peak Rt. We further assumed that squirrels in winter (mid-October – 

end of January) had no access to new hoardable resources and, therefore, solely consumed 

previously stored food (Rt =0). For any remaining weeks with no feeding observations (n=9; 

4%), Rt was interpolated assuming linearity between weeks (Figure S1).  
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7.4.3 - Modelling activity  

Temperature-dependency of energy expenditure  

Equation 5 states that E varies with air temperature (Ta); expenditure increases linearly per unit 

decrease of Ta below the lower critical temperature (TLC) according to the Scholander-Irving 

thermoregulatory response. However, when temperature is above the TLC and below the upper 

critical temperature (TUC), E is independent of temperature such that:  

E = C(Tb – Ta)  when Ta < TLC   

E = MRMR   when TUC>Ta>TLC (S1) 

where C is the rate of increase in expenditure per unit decrease in Ta, Tb is the body temperature, 

and MRMR is the resting metabolic rate. 

 

Inactive net energy gain  

Combining equations 3 and 5b provides us with a model of net energy gain when inactive. The 

later equation states that expenditure when inactive is a function of temperature and refuge 

quality. Inactive individuals have the opportunity to use thermal refuges to reduce the rate of 

increase in energy expenditure when temperatures decrease. The rate of increase in expenditure 

when inactive (Ci) is dependent on the extent of refuge quality (Q) and the rate of increase in 

expenditure per unit decrease in Ta when no refuge (Ca) is used such that: 

Ci = Ca - CaQ  (S2) 

where Q ranges from 0, when there is no thermal refuge, to 1 when the thermal refuge maintains 

temperature within the thermoneutral zone. By substituting equations S1 and S2 into 3, energetic 

gain of inactivity incorporating thermal refuge use can be represented as: 

GEI = -(Ca – CaQ)(Tb - Ta) - CaQ(Tb - TLC)   when Ta < TLC 
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GEI = - MRMR     when TUC > Ta > TLC (S3) 

 

Active net energy gain 

By substituting equation S1 into 4 we can model net energy gain of activity as:  

GEA = I – ACa(Tb – Ta)   when Ta < TLC 

GEA = I – A*MRMR   when TUC > Ta > TLC (S4) 

If consumption is on only resource type, then the diminishing returns over time of that resource 

will influence I according to equation 6. However, not all resources will have equal diminishing 

returns. If we assume that an individual’s diet is composed of two types of resources (i and j), 

then equation 6 is modified to be: 

I(t) = RtiRa/αit-1 + (1 - Rti)Ra/αjt-1  (S5) 

where Rti is the proportion of available resources that are resource type i, αi defines the 

diminishing returns of resource i, and αj defines the diminishing returns of resource j.  

 

Net reproductive gain 

Net reproductive gain is represented in equation 7.  As this gain was not time explicit we 

modelled GR at each time interval as a discrete random variable with a probability space of two 

outcomes: 1 if individual should be active and 0 if individual should be inactive according to: 

P(GR = 1) = nqm  (S6) 

 

Table S7.4.1. Definition of variables, units, and parameters present on our model of activity. 

Values of constants used in simulations of the model are provided along with reference from 

which value was extracted.  
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Variable Subvariable Definition Unit Value used in 

simulations 

G GEi Net energy gain of inactivity W calculated 

GEA Net energy gain of activity W 

GR Net reproductive gain  

I  Energy Intake W calculated 

E Ei Energy expenditure inactivity W calculated 

Ea Energy expenditure of activity W 

A  Activity multiplier equal to the 

factor that expenditure is 

increased above inactivity 

 2; assumed to double 

when active (Karasov, 

1992) 

T Ta Ambient temperature °C -30°C to 20°C by 

0.5°C increments  

Tb Body temperature °C 38°C (red squirrel) 

(Pauls, 1979; 

Humphries & 

Umbanhowar, 2007) 

TLC Lower critical temperature 

defining lower boundary of 

thermoneutral zone. 

°C 15°C (red squirrel) 

(Pauls, 1981) 

MRMR  Resting metabolic rate. W 1.215 W (red squirrel) 

(Pauls, 1981) 

C Ca Conductance; rate of increase in 

expenditure per unit decrease in Ta 

for activity. 

W Ca = 0.05325 W (red 

squirrel); (Pauls, 

1981) 

Ci Conductance; rate of increase in 

expenditure per unit decrease in Ta 

for inactivity. 

W Ci was calculated 

using eq. S2 

Q  Refuge quality  0.5 (red squirrel) 

(Guillemette et al., 

2009) 

R Ra Resource availability index; sum 

of multiple resource types 

 5 (low), 20 

(moderate), 60 (high) 
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Rt Proportion of available resources 

that are of a particular type 

(hoardable vs non-hoardable) 

 Rti + Rtj = 1; Rti = 0, 

0.5, 1 

a  Diminishing returns coefficient 

representing satiation. Varies with 

resource availability and type 

 ai = 1.02; aii = 1.04, 

1.06, 1.08 with low, 

moderate, and high 

resources, 

respectively 

n  number of potential mating events  * 

q  quality of offspring produced by 

mating 

 * 

m  mating conversion factor equal to 

the rate at which activity is 

expected to increase per unit of nq 

 0.05 

* for simulations, a combined n and q variable was used that ranged from 0 to 12 at increments of 1. We did not 

assess each variable on its own.   The geometry of a population cycle: a mechanistic model of snowshoe hare 

demography 

 

7.4.4 – Fitting diminishing returns to modelled activity  

We assessed how the accuracy of the model at predicting observed activity of red squirrels 

varied as we adjusted the diminishing return values of the resources. Rates of diminishing returns 

likely increase with resource availability as individuals become satiated more quickly. Assuming 

this relationship is linear, we assessed all combinations of minimum and maximum αHoardable and 

αNon-hoardable values at 0.01 increments between 1.0 and 1.4. For the combination of αHoardable and 

αNon-hoardable values that generated the highest accuracy we calculated Pearson’s R correlation 

between predicted and observed values as a secondary measure of fit.    
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Figure S7.4.3. Assessment of model accuracy in relation to diminishing returns values for 

hoardable (αH, top) and non-hoardable (αP, bottom) resources. Model allows diminishing returns 

values for both hoardable and non-hoardable resources to vary linearly with resource availability 

such that min values are applied to lowest observed resource values and max values are applied 

to the highest observed resource values. 
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7.4.5 – Measured activity model results 

 
Table S7.4.2. Model selection table for the proportion of 24 hours spent active by red squirrels including the log likelihood, AIC 

value, delta AIC, and model weight of each model. Explanatory variables included in each model are represented by a ‘Y’. 

Explanatory variables are resource availability (RA), proportion of available resources that are hoardable (RT), temperature (Ta), 

reproductive status (B), reproductive opportunities (nq), and interaction terms between these single variables.  

 
Model RA RT Ta B nq RA:B RA:nq RA: RT RA: RT: Ta df LogLik AIC deltaAIC weight 

1 Y Y Y Y Y Y Y Y Y 19 -50090 100217 0 1 

2 Y Y Y Y Y   Y Y 15 -50109 100248 31 0 

3 Y Y Y Y Y Y Y Y 
 

16 -50246 100523 306 0 

4 Y Y Y Y Y   Y  12 -50269 100561 344 0 

5 Y Y Y Y Y Y    14 -50274 100576 359 0 

6 Y Y Y Y Y Y Y   15 -50273 100577 360 0 

7 Y Y Y Y Y  Y   12 -50288 100601 384 0 

8 Y Y Y Y Y   
  

11 -50290 100602 385 0 

9 Y         5 -50602 101214 997 0 

10 
 

Y 
  

   
  

5 -50771 101552 1335 0 

11 
  

Y 
 

   
  

5 -50808 101626 1409 0 

12 
   

Y    
  

7 -50962 101938 1721 0 

13 
    

Y   
  

4 -50986 101972 1755 0 
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Supplementary Materials for Chapter 5 

 

Figure S7.5.1 – Summer population rates of increase of small mammal populations in Kluane, 

Yukon observed over 30 years. Behaviourally inflexible species (red-backed vole and snowshoe 

hare) have, on average, greater population increases than behaviourally flexible species (red 

squirrel and arctic ground squirrels). Letters denote significant differences (p<0.001) in 

population rates of increases between species.  
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Figure S7.5.2 – Daily activity values recorded using accelerometers on red squirrels (a; n = 489) 

and snowshoe hares (b; n = 279) over four years.  
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