
Topics in Early Universe Cosmology

Evan McDonough

Master of Science

Physics Department

McGill University

Montreal, Quebec

2014-04-15

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Science

c©Evan McDonough 2014.



ACKNOWLEDGEMENTS

I would like to thank my office mates and fellow graduate students for many

enlightening, and often hilarious, discussions, that taught me about physics, math,

and life. I am especially thankful to Rosasharon Gripton, my parents, and family,

for their constant support and encouragement throughout the process of my degree.

I am very grateful to my collaborators Francis Duplessis, Mohammed Mia, Rhiannon

Gwyn, and Radu Tatar, with whom it was a great pleasure to do research. I thank

Yifu Cai for being a seemingly bottomless well of knowledge, and for being more

than willing to share. I also thank my collaborator and friend Laurence Perrault-

Lavasseur for being a continual source of inspiration as I find my way as both a

student and a researcher.

I thank Professors Robert Brandenberger and Keshav Dasgupta for their guid-

ance at all stages of this process. You have helped me make ideas into projects, stay

on track while lost in calculations, and turn completed calculations into meaningful

results.

Finally, I thank McGill University for providing funding during the comple-

tion of this degree, in part via a Wolfe Fellowship. I thank the Banff International

Research Station for the hospitality while a portion of this work was being completed,

as well as Ecole Physique Les Houches for an amazing summer.

ii



Contributions of Author
For the paper: Y. -F. Cai, E. McDonough, F. Duplessis and R. H. Brandenberger,
Two Field Matter Bounce Cosmology, JCAP 1310, 024 (2013) [arXiv:1305.5259 [hep-
th]].

I initiated this project as a general investigation of perturbation theory for multi-
field bounce models, and Robert Brandenberger suggested it be focused on a specific
setup he developed with Yifu Cai. I performed, in tandem with the authors Yifu Cai
and Francis Duplessis, all calculations contained in the paper, both analytical and
numerical. I made significant contributions to the writing of the paper, especially
in discussing the background cosmology and perturbations. Robert Brandenberger
wrote the introduction to the paper, and provided guidance throughout the project.
Yifu Cai also contributed to the writing of the paper.

For the paper: K. Dasgupta, R. Gwyn, E. McDonough, M. Mia and R. Tatar, de
Sitter Vacua in Type IIB String Theory: Classical Solutions and Quantum Correc-
tions, arXiv:1402.5112 [hep-th].

I performed (often in tandem with the other authors) all calculations contained
in the paper. I contributed the key insight that conditions on curvature corrections
could be connected to general constraints on the sign of the stress energy tensor,
and Rhiannon Gwyn, Keshav Dasgupta, and myself did the neccessary calculations.
Mohammed Mia was responsible for realizing that equation 5.8 could be a power-
ful constraint, and all members of the collaboration worked towards applying this
to various setups. Keshav Dasupta provided his expertise to make the ideas more
precise, and guided the project from its initiation to completion. Mohammed Mia
wrote much of sections 5.2-5.3, while I wrote section 5.1, 5.4, much of 5.5-5.7, and
sections 5.8-5.9.

iii



ABSTRACT

This thesis concerns two questions in Early Universe Cosmology, as addressed

in the papers arXiv:1305.5259 and arXiv:1402.5112.

In the first part of this thesis, we examine the evolution of cosmological per-

turbations in a two-field non-singular bouncing cosmology. The field content of

this model consists of a canonical massive (“matter") scalar field and a galileon-like

(“bounce") field. The matter field leads to an effective cold, pressureless, matter

dominated contracting universe at early times, while the bounce field leads to a vi-

olation of the Null Energy Condition and a non-singular bounce at a sub-Planckian

energy scale. We study the evolution of both curvature and entropy fluctuations

through the bounce, and show that both have a scale-invariant spectrum. However,

we find that the entropy fluctuations have an amplitude that is much smaller than

that of the curvature perturbations, due to gravitational amplification of curvature

perturbations during the bounce phase.

In the second part of this thesis, we study the supergravity limit of Type IIB

string theory coupled to fluxes, scalar fields, D-branes, anti D-branes and Orientifold-

planes. We show that this theory does not admit solutions with a four-dimensional

de Sitter space. We extend the analysis to include higher-order curvature correc-

tions, and find that a de Sitter solution in type IIB theory may be achieved if the

higher-order curvature corrections are carefully controlled.
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ABRÉGÉ

Cette thèse concerne deux questions de la cosmologie de l’univers primordial,

telles qu’adressées dans les articles arXiv:1305.5259 et arXiv:1402.5112.

Dans la première partie de cette thèse, nous examinons l’évolution des pertur-

bations cosmologiques dans un univers rebondissant sans singularité à deux champs.

Les champs que contiennent ce modèle consistent en un champ scalaire massif (champ

de matière) et un champ de type “galileon” (champ de rebondissement). Le champ

de matière mène à un univers en contraction dominé par de la matière froide et sans

pression, tandis que le champ de rebondissement mène à une violation de la condi-

tion d’énergie de genre lumière et à un rebondissement sans singularité à une énergie

sous l’échelle de Planck. Nous étudions l’évolution des fluctuations de courbure et

d’entropie à travers le rebondissement, et nous montrons qu’elles ont tous les deux

un spectre indépendant de l’échelle. Par contre, nous trouvons que les fluctuations

d’entropie ont une amplitude qui est beaucoup plus petite que les perturbations de

courbure lors du rebondissement.

Dans la deuxième partie de cette thèse, nous étudions la limite de la supergravité

de la théorie des cordes de type IIB couplée à des flux, des champs scalaires, des D-

branes, des anti D-branes, et des plans orientifold. Nous montrons que cette théorie

n’admet pas de solutions avec un espace de Sitter à quatre dimensions. Nous éten-

dons l’analyse pour inclure des corrections de courbure d’ordres supérieurs, et nous

trouvons qu’une solution de Sitter dans la théorie de type IIB peut Ãłtre obtenue si

les corrections de courbure d’ordres supérieurs sont soigneusement contrôlées.
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Chapter 1
Introduction

This thesis is a study of two topics at the interface of high energy theoretical
physics and cosmology, using two fundamentally different approaches. The first
approach is to work in the context of an effective field theory, specifically chosen to
remove the initial singularity and replace it with a ‘bounce’: a smooth transition
from a contracting universe to an expanding universe. This allows for a consistent
semi-classical analysis of cosmology at all times, including during the bounce, which
in turn allows for detailed observable predictions, while remaining agnostic on the
precise details of quantum gravity.

The second part of this thesis will be much more ambitious in some ways, and
much less ambitious in others. We will abandon the 4d effective field theory approach,
and instead work within a UV complete theory: Type IIB superstring theory. This
allows for a much clearer understanding of the possible physics, however we will
not attempt to understand the initial singularity or do any precise phenomenology.
Instead we will be focused on a much simpler task: the search for four-dimensional
de Sitter solutions.

To place both these approaches into context, let us recall the earlier frameworks.
Standard Big Bang cosmology [1] is a description of the universe as being homoge-
neous, isotropic, and with matter content described by classical perfect fluids. The
initial state of this universe is hot and dense, with subsequent evolution governed by
General Relativity. This picture has had many successes, for example Hubble’s law,
the prediction of the Cosmic Microwave Background (CMB), and the prediction of
the primordial abundances of the light elements.

Standard Big Bang cosmology can be supplemented by introducing a period of
accelerated expansion, called inflation, that occurs before the radiation and matter
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dominated periods [1]. Provided the inflationary phase lasts for long enough, infla-
tion solves many problems of the Standard Big Bang. For example, an inflationary
universe evolves towards homogeneity, isotropy, and flatness, and dilutes the density
of defects such as monopoles. In addition to this, inflation provides the origin of
primordial perturbations that seed large scale structure, and a causal mechanism for
generating large-scale correlations in the CMB.

However, there are aspects of early universe physics for which inflation does not
provide an understanding [3]. The example relevant to this thesis is the Singularity
Problem: inflation does not provide a way to understand what came before inflation,
and hence inflationary cosmology has the same initial singularity as Standard Big
Bang cosmology. Furthermore, in the context of inflation, the primordial pertur-
bations that correspond to observable scales today were generated at energy scales
where quantum gravity cannot be ignored, and hence any semi-classical analysis is
inherently inconsistent. This forms the basis of the Trans-Planckian Problem of
inflationary cosmology.

There are two paths to making circumventing these problems: (1) construct an
addition, or alternative, to inflationary cosmology that avoids both the singularity
and high energy scales altogether, or (2) work in a theory, such as string theory, that
is in valid at all energy scales, such that physical quantities can (in principle) be
reliably computed in the quantum gravity regime.

This thesis will focus on answering two questions, as presented in the papers
[4] [5], each motivated by one of the two paths mentioned above. In Chapter 4,
we will study the evolution of cosmological perturbations, and in particular entropy
perturbations, as they pass through a specific realization of a sub-Planckian non-
singular bounce. The background material for this will be reviewed in Chapter 2. In
Chapter 5 we will change course and take path (2): we will study the construction
of a 3+1 dimensional accelerating universe in the context of Type IIB string theory.
The background material for this is reviewed in Chapter 3.
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Chapter 2
Review of Cosmological Perturbation Theory

2.1 Overview of Cosmological Perturbations
This chapter will function as a review of the tools that will be immediately

applicable to the analysis done in this thesis. Namely, we will, to a large degree,
avoid any discussion of perturbation theory of perfect fluids, and instead focus on
cosmological perturbation theory of scalar fields. The starting point is a single scalar
field with minimal coupling to gravity:

S =

∫
d4x
√
−g
(
R +

1

2
∂µϕ∂

µϕ− V (ϕ)

)
. (2.1)

The equations of motion that follow from varying this action with respect to the
metric are the Einstein equations, which determine the background evolution of
spacetime. A simple case is a homogenous and isotropic universe described by the
Freidman-Robertson-Walker metric:

ds2 = −dt2 + a2(t)dxidx
i, (2.2)

which leads to the equations of motion:

ϕ̈+ 3Hϕ̇+ V (ϕ),ϕ = 0, (2.3)

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V (ϕ)

]
, (2.4)

where H = ȧ/a is the Hubble parameter.
We now seek to understand perturbations about this background solution. It is

not enough to merely look at fluctuations in the field value, ϕ→ ϕ+δϕ, since matter
is coupled to gravity via Einstein’s general relativity. We are forced to consider the

4



most general form of perturbations that satisfy the perturbed Einstein equation:

δGµν = 8πGδTµν , (2.5)

where the left hand side is perturbed Einstein tensor, built out of metric fluctuations,
and the right hand side is the perturbed stress-energy tensor. The stress energy
tensor of a canonical scalar field has the same form as that for a perfect fluid, Tµν =

diag(−ρ, p, p, p), with pressure and energy density given by [1]

ρ =
1

2
gµν∂µϕ∂νϕ+ V (ϕ) , p =

1

2
gµν∂µϕ∂νϕ− V (ϕ), (2.6)

which allows perturbations to Tµν to be built out of field fluctuations δφ and metric
fluctuations δgµν .

The metric is a rank-2 symmetric tensor, and thus has 10 independent degrees of
freedom. Given our ansatz for the metric, we can decompose this into into irreducible
representations of the group of spatial rotations, which classifies the perturbations
as scalar, vector, and tensor components. The first order scalar metric fluctuations
can be written as [8]:

δgSµν = a2

(
2φ −B,i

−B,i 2(ψδij − E,ij)

)
, (2.7)

where φ, ψ, E, and B are scalars, and ,i = ∂/∂xi. Vector perturbations take the
form:

δgVµν = a2

(
0 −Si
−Si Fi,j + Fj,i

)
, (2.8)

where S and F are divergence-less vectors. Finally, tensor perturbations take the
form:

δgTµν = a2

(
0 0

0 γij

)
, (2.9)

where γij is traceless and divergence-less.
The scalar, vector, and tensor perturbations completely decouple from one an-

other at the linear level, end hence can be treated independently. The scalar, vector,
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and tensor modes are be mixed by the non-linearities of gravity, but this is precisely
the effect that is removed by considering only first order perturbations. An excellent
proof of this can be found in [3]. Furthermore, vector modes decay in amplitude in
an expanding universe, and hence in many cases it suffices to study only the scalar
and tensor fluctuations.

It is important to note that not all 10 metric degrees of freedom carry physical
significance. In fact, for a universe consisting of a single fluctuating scalar field, there
is only one physical scalar degree of freedom, as opposed to the 5 that one would
naively expect (4 from the metric and 1 from the field). Diffeomorphism invariance
of the action (2.1) requires invariance under the two possible scalar coordinate trans-
formations: t → t + α and xi → xi + ∂iβ, where α and β are scalars, and hence
two scalar degrees of freedom can removed by fixing the choice of coordinates [3].
The Einstein constraint equations remove two more scalar degrees of freedom, such
that the physics of all scalar fluctuations can be written in terms of the equation of
motion of a single scalar.

An easy way to deal with this issue is to introduce the concept of gauge-fixing.
A standard example is longitudinal gauge: B = E = 0, which leaves only φ and ψ as
the metric scalar degrees of freedom. This gauge is particularly useful since φ and ψ
are equal in the absence of anisotropic stress (that is, off-diagonal spatial elements
in δTµν), which indeed vanishes for a scalar field. The Einstein equations can then
easily be reduced to a single scalar degree of freedom.
2.2 Scalar Fluctuations
2.2.1 The ADM formalism

We will study scalar perturbations using a technique called the ADM formalism
[4]. This method is a choice of foliation of spacetime into spacelike hypersurfaces
Σt, labelled by the time t. The natural perturbation variable in this setup is the
curvature perturbation on uniform density hypersurfaces, denoted ζ, which can be
isolated by working in the uniform field gauge δϕ = 0. The variable ζ is related to

6



the comoving curvature perturbation R by [5]

−ζ = R+
2ρ

2(p+ ρ)

(
k

aH

)2

Ψ, (2.10)

where p and ρ are the pressure and energy density of the universe, and Ψ is a gauge-
invariant combination of the gravitational potentials. The potential Ψ vanishes on
super-Hubble scales, and hence on these scales ζ and R are equivalent perturbation
variables.

Figure 2–1: The ADM formalism. See text for description. Image taken from [6].

The time evolution of perturbations is given by the mapping of perturbations
from one spacelike hypersurface to another, specified by a lapse function N and shift
vector N i, as shown in Figure 2.2.1. The metric is written in the ADM formalism as

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt). (2.11)

Using this, the 4-dimensional Ricci scalar R4 can be decomposed as

R4 = R3 + κijκ
ij − κ2, (2.12)

7



where R3 and κij are the Ricci scalar and extrinsic curvature of the spatial slices,
with κij given by

κij =
1

2N
(ḣij −∇iNj −∇jNi) , κ = κii, (2.13)

and ∇i is the covariant derivative on spatial slices. Similarly, the canonical kinetic
term of a scalar field takes the form

X ≡ 1

2
gµν∂µϕ∂νϕ =

1

2N2

(
ϕ̇− hijNi∂jϕ

)2 − hij∂iϕ∂jϕ, (2.14)

where we have defined X as the canonical kinetic term. Finally, the action (2.1) is
written in the ADM formalism as:

S =

∫
d3xdt

√
h
N

2

[
R3 + κijκ

ij − κ2 +X − V (ϕ)
]
. (2.15)

We can now begin studying this action perturbatively. To simplify the analysis,
we fix the gauge to uniform field gauge δϕ = 0, and choose our physical perturbation
variable to the ζ. This gauge is fully specified by:

hij = a2 [(1− 2ζ)δij + γij] ; ∂iγij = 0 , γii = 0 , δϕ = 0. (2.16)

The lapse function and shift vector act as Lagrange multipliers, and can be redefined
as

Ni = ∂iσ + ∂Ñi , N ≡ 1 + α, (2.17)

where Ñi is a divergence-free, ∂iÑi. These can then be expanded perturbatively as:

α = α1 + α2 + ...

σ = σ1 + σ2 + ...

Ñi = Ñi1 + Ñi2 + ....

where the subsripts n = 1, 2... denote terms at order ζn. The variation of the action
at first order gives the background dynamics of the field φ, and also gives first-order

8



equations for the variables α, σ, and Ñi. These are given by [7]

α1 =
ζ̇

H
, ∂2Ñi1 = 0 , ∂2σ1 = −∂

2ζ

H
+

1

2

(
φ̇

MPlH

)2

ζ̇ , (2.18)

where ∂2 = ∂i∂
i. Upon expanding the action to second order, and using the first

order equations of motion, we obtain the second order action for ζ:

S =
1

2

∫
d3x adt

z2

2

[
ζ̇2 − 1

a2
(∂iζ)2

]
, (2.19)

where z is defined as

z2 = a2 φ̇
2

H2
. (2.20)

After a changing to the Mukhanov-Sasaki variable v ≡ zζ, and writing the action in
terms of conformal time dτ = adt, denoting d/dτ = ′, the action becomes

S =
1

2

∫
dτd3x

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
. (2.21)

The equation of motion that follows from this is the famous Mukhanov-Sasaki equa-
tion:

v′′k +

(
k2 − z′′

z

)
vk = 0 (2.22)

where we have decomposed v into Fourier modes,

vk(τ) =

∫
d3x e−ik·xv(τ, x). (2.23)

2.2.2 Quantization of Scalar Cosmological Perturbations
We now seek to quantize the scalar fluctuations, which will be used in the next

subsection to solve the Mukhanov-Sasaki equation for the mode functions vk. The
classic text on this is Birrell and Davies [8].

Quantum field theory (QFT) in an arbitrary curved spacetime is difficult. For
starters, an important step in QFT in Minkowski space is the splitting of the field
into positive and negative frequency modes. This splitting requires a global time-like
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Killing vector, an object with which an arbitrary spacetime is not generally endowed.
In practice, one may still define a set of positive and negative frequency modes, but
the non-uniqueness of the time variable means there is no inherent reason to prefer
this set over any other.

We will illustrate this with the most common example, and also the most phys-
ically relevant, the FRW metric:

ds2 = −dt2 + a2(t)dxidx
i. (2.24)

To quantize v, we promote fields to operators, and express the variable v as:

v̂(τ, x) =

∫
d3k

(2π)3/2

[
âkvk(τ)eik·x + â†v∗k(τ)e−ik·x

]
, (2.25)

whereˆdenotes an operator, and the operators âk, â†k are identified as the usual an-
nihilation/creation operators. The mode functions vk(τ) in the above decomposition
define an inertial observer, and the âk, â†k are defined with respect to this observer.
The annihilation/creation operators obey the commutation relations:

[âk, â
†
k′ ] = δ(k − k′) , [âk, âk′ ] = [â†k, â

†
k′ ] = 0. (2.26)

The mode functions must also satisfy the normalization condition

v′kv
∗
k − vkv∗k = −i. (2.27)

The Hilbert space of quantum states can then be constructed by acting creation
operators on the vacuum state |0〉a, defined as the state that is annihilated by ak:

ak|0〉a = 0, (2.28)

which defines the minimum energy state.
Physically, the vacuum |0〉a is the state which observed to be empty of parti-

cles by the inertial observer defined by the set of mode functions vk(τ). However,
a different choice of inertial observer uk(τ) would define a different set of annhila-
tion/creation operators bk, with vacuum |0〉b, and in general the bk will not annihilate
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the ak vacuum: bk|0〉a 6= 0. It follows that different observers disagree on how many
particles are observed, which is quite different from QFT in Minkowski space, where
all inertial observers agree on the choice of vacuum state.

However, there exists a limiting case where the physics simplifies. Consider
a massless canonical scalar field in a matter dominated contracting universe with
a(t) ∼ t2/3, which is precisely the initial state of the cosmology described in Chapter
4. The Mukhanov-Sasaki equation, written in conformal time dτ = a(t)−1dt, is given
by

v′′k + (k2 − 2

τ 2
)vk = 0. (2.29)

Modes that are on relevant cosmological scales today were deep inside the horizon in
the far past, where τ → −∞. It follows that the k2 term dominates in the equation
of motion for fluctuations at early times times:

v′′k + k2vk = 0 for τ → −∞, (2.30)

which is the Klein-Gordon equation in Minkowski space, and hence we have a vac-
uum state that is agreed upon by all inertial observers. Geometrically, this result
follows from the fact that any manifold is locally flat. A mode with fixed comoving
wavenumber k that corresponds to a large physical scale today was a very small phys-
ical scale in the far past, and hence the mode function at early times is effectively
living, and can be quantized, in Minkowski space.

Provided the frequency ωk = k2 − 2/τ 2 is varying adiabatically, the vacuum
state at any later time can then be built using the WKB approximation. Hence, the
vacuum state is fully specified by a choice of initial conditions for quantum mode
functions, which can be applied by solving the Mukhanov-Sasaki equation (2.29)
with said initial conditions. One example is

vk(τ) =
1√
2k
e−ikτ at τ → −∞, (2.31)

where we have identified the positive frequency mode as the minimal-energy excited
state, as in QFT in flat space. This is called the Bunch-Davies initial condition. It

11



is important to note the above condition can be imposed at a finite τ = τ0, in which
case this is only as an approximate solution for the mode function. This becomes
exact in the UV limit of k, which corresponds to imposing the initial condition at
τ0 = −∞.

In our present example, the solution to equation (2.29) is given by

vk(τ) = C1
e−ikτ√

2k

(
1− i

kτ

)
+ C2

eikτ√
2k

(
1 +

i

kτ

)
, (2.32)

where C1,2 are constants. Applying the Bunch-Davies initial condition determines
the mode function to be

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
, (2.33)

and the full solution for the quantized perturbation v̂(τ, x) is given by equation (2.25).
2.2.3 The Power Spectrum of Scalar Fluctuations

The power spectrum of long-wavelength fluctuations can be calculated by eval-
uating the vacuum expectation value of quantum fluctuations at the moment that
fluctuations cross the horizon. Let’s consider the quantum expectation value of the
fluctuation v̂ (or more specifically, a single Fourier mode):

〈0|v̂(k)v̂(k′)|0〉 = 〈0|
(
akvk + a†v∗k

) (
akvk + a†v∗k

)
|0〉 = |vk|2δ(k + k′). (2.34)

This defines the (dimensionful) power spectrum of v fluctuations:

P dim
v = |vk|2k=aH . (2.35)

The convention that will be used here is to work with a power spectrum defined as

Pv ≡
k3

2π2
|vk|2k=aH . (2.36)

which will allow the spectrum of curvature perturbations to be written in a dimen-
sionless form. The power spectrum of curvature perturbations is then given using
the definition v = aζ,

Pζ ≡
k3

2π2
|vk
z
|2k=aH . (2.37)
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For the example of a massless scalar field in a matter-dominated contracting universe,
the power spectrum has a simple form:

Pζ =
H2

16π2M2
Pl

(2.38)

This is often parametrized as a power law,

Pζ ∼ Aζk
ns−1 (2.39)

where ns is called the spectral tilt of scalar fluctuations, and Aζ is the amplitude
of the power spectrum. The example given above has ns = 1, which is known as a
scale-invariant spectrum. We will now proceed to consider tensor fluctuations.
2.3 Tensor Perturbations

Let’s now consider a tensor fluctuation to the spatial metric. This takes the
form δgij = a2hij, where hij is symmetric and traceless. Remarkably, the expansion
of the action (2.1) in terms for hij gives the action for a massless scalar field in a
curved background:

S =
M2

Pl

2

∫
dτd3xa2

[
(h′)ij − (∇hij)2

]
, (2.40)

where hij is dimensionless, and ∇ is the covariant derivative on spatial slices. This is
not a miracle, but follows from the fact that tensor fluctuations decouple from scalar
fluctuations, and hence do not back-react on the background cosmology. The tensor
field can decomposed into Fourier components,

hij(τ, x) =

∫
d3k

(2π)3/2

∑
λ

ε(k, λ)ijhk(τ, λ)eik·x. (2.41)

where the sum is over polarizations λ, which can be + or ×. The action can then be
written as

S =
∑
λ

∫
dτd3k

a2

4
M2

Pl

[
(h′k(λ))2 − k2h2

k(λ)
]
. (2.42)
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In analogy with our scalar perturbation analysis, we can define the Mukhanov-Sasaki
variable for tensor fluctuations

uk =
a

2
MPlhk, (2.43)

such that our action becomes

S =
∑
λ

1

2

∫
dτd3k

[
u′k

2 −
(
k2 − a′′

a

)
uk

]
. (2.44)

The power spectrum of tensor fluctuations is then given by

Ph =
k3

2π2
|uk
a
|2. (2.45)

This is often parametrized as
Ph ∼ ATk

nT , (2.46)

where AT is the amplitude to tensor fluctuations, and nT is the spectral index of
tensor fluctuations. An important quantity is the tensor to scalar ratio, defined as

r =
Ah
Aζ
, (2.47)

where Ah is the amplitude of Ph, and Aζ is the amplitude of Pζ .
We will now take a detour and review the essential elements of string theory,

before we return to cosmological perturbation theory in our analysis of a bouncing
universe in Chapter 4.
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Chapter 3
Short Review of String Theory

As a disclaimer, let us mention we will only cover those ideas that are crucial to
understanding the details of Chapter 5, as well as a bare minimum of background.
There will be many crucial elements of string theory which we will not cover.
3.1 Type IIB Supergravity

Type IIB string theory is a supersymmetric, chiral theory of closed and open
strings propogating in a 10 dimensional spacetime. The low energy field content of
this theory corresponds to massless excitations of strings, and is split into two sectors
according to the boundary conditions applied to the string. The closed string sector,
where Neveu-Schwarz boundary conditions are applied to both left and right moving
oscillations of the string, gives rise to a scalar field, an antisymmetric 2-form, and a
symmetric two form. These are known as the dilaton φ, the Kalb-Ramond two-form
B2, and the metric gµν .

The open string sector, where Ramond boundary conditions are imposed on
both left and right movers, gives rise to form-fields of odd-dimension, and can be
thought of as a generalization of electrodynamics to p-form electrodynamics. The
form fields, analogous to the vector potential Aµ in electromagnetism, are denoted
C0, C2, and C4. The corresponding field strengths are obtained by taking exterior
derivatives.

At a more formal level level, the spectrum of massless fields in type IIB can be
written in Light-Cone gauge as a tensor product of SO(8) supermultiplets:

(8v + 8c)⊗ (8v + 8c), (3.1)

16



where v and c denote the vector and conjugate sprinor representations of SO(8),
respectively. The bosonic part of the NS-NS sector is given by

8v ⊗ 8v = 1 + 28 + 35, (3.2)

which correspond to the dilaton, antisymmetric two-form, and metric respectively.
Similarly, the bosonic part of the RR sector is given by

8c ⊗ 8c = 1 + 28 + 35+, (3.3)

which corresponds to the RR gauge fields: p-form potentials with p=0,2,4, and with
the added condition that the four-form potential have a self-dual field strength.

The action for this theory is given, at low energies, by the supergravity action:

SSUGRA =
1

2κ2
10

∫
d10x

√
−G10

(
R− ∂Mτ∂

M τ̄

2|Imτ |2
− |F̃5|2

4 · 5!
− G3 · Ḡ3

12Imτ

)

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Imτ
. (3.4)

Here τ = C0 + ie−φ; G10 = det gMN ,M,N = 0, .., 9; gMN is the metric in Einstein
frame; G3 = F3 − τH3; F3 = dC2 is the three-form RR (Ramond-Ramond) feld
strength, F̃5 is the 5-form self-dual RR field strength, and H3 = dB2 is the three-
form NS-NS (Neveu-Schwarz Neveu-Schwarz) field strength.

Note that this action is only a perturbative description of string theory. More-
over, there are in principle two perturbative expansions, one in the expectation value
of the string coupling gs = e−φ, and another in the string length scale ls = 1√

4πα′
.

The string coupling, which has been absorbed into the fields in the above action
(this is the ‘Einstein frame’), generates loop (i.e. quantum) corrections from string
interactions, or equivalently, counts the genus of the string worldsheet. The α′ ex-
pansion is a tree-level effect, which comes from the classical description of the string
worldsheet in terms of the non-linear sigma model.

Even at the level of the supergravity action above, we are presented with a
striking deviation of String Theory from ‘standard physics’: This theory is defined in
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10 dimensions! The choice D=10 (so called ‘critical string-theory’) is made to cancel
the Weyl anomaly of the string worldsheet in flat space. In terms of Conformal Field
Theory (CFT), the trace of the stress energy tensor is proportional to the central
charge of the CFT. The type IIB string worldsheet is described by aN = (1, 1) Super-
Conformal Field Theory, with central charge given by c = D+(1/2)D−26+11, where
we have seperated the contributions from bosons, fermions, and their corresponding
ghosts. Hence by setting D = 10 we can cancel the anomaly, a feature which is
discussed in more detail in many textbooks, for example [1].

In order to describe our 3+1 dimensional universe, string theorists are thus
forced to consider splitting the 10 dimensional spacetime into our 3+1 dimensions,
and a 6-dimensional internal manifold. The simplest topology is a direct product
space:

M10 =M4 ×M6. (3.5)

This splitting lends itself to an easy derivation the 4d (low-energy) physics, which
can be obtained via Kaluza-Klein reduction, such that massless modes for each su-
pergravity field correspond to harmonic forms on the internal manifold [2]. In this
way, the low energy field content is encoded in the topology ofM6. To see how this
arises, let’s consider what happens to an RR p-form field upon compactification on
a product space, following Section 9.5 of [3]. Assuming no other background fields,
the equation of motion for Fp = dCp−1 is given by

d ? Fp = 0. (3.6)

In terms of the potential, this is

∆Cp−1 = 0, (3.7)

where ∆ is the 10d Laplacian. This can be decomposed as

∆ = ∆4 + ∆6. (3.8)
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Fluctuations of Fp in the internal space will lead to slight violations ∆6Cp−1 6=
0, which can be treated as a source term in the 4d equation of motion. These
fluctuations, and hence the 4d fields, can be written in a basis given by solutions to
the equation

∆6Cp−1 = 0. (3.9)

The solutions of this equation can be studied via the Atiyah-Singer index theorem,
which (in loose terms) gives a one-to-one correspondence between zero modes of a
differential operator and elements of the cohomology on the manifold defined by the
operator. More formally, the Atiyah-Singer index theorem equates the the analytical
index of an elliptic operator to the topological index. This allows the low-energy
fields to be read off directly from the Betti numbers of the internal manifold: com-
pactification of Fp on M4 ×M6 will lead to a 4d theory with have bn number of
n-form fields, where bn are the Betti numbers ofM6.

A similar procedure applies to the metric. For the case of a Ricci-flat internal
manifold, the analogous 6d equation is the Lichnerowicz equation, given by

∇k∇kδgmn + 2Rm
p
n
qδgpq = 0, (3.10)

where δgab is a fluctuation of the metric component gab. In complex coordinates, this
leads to the ‘Kahler Moduli’, which describe the purely holomorphic or antiholo-
morphic deformations, and ‘Complex Structure Moduli’ which describe the mixed
deformations.
3.2 Branes and Planes

There are two different approaches to introducing D-branes. The first is develop
the worldsheet theory of a p-dimensional RR-charged object, and to discover that
these branes exist as solitons of string theory. An alternative method is to consider
the background fields induced by open strings with Neumann boundary conditions
along p-directions, and Dirichlet boundary conditions along 10 − p directions, such
that the open strings can be said to ‘end’ on Dp-branes. The realization that branes
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could be treated as both classical solutions and as boundary conditions for the funda-
mental string was discovered in [4], a paper in what is now referred to as the ‘Second
Superstring Revolution’.

Recall that the action for a point particle is given by

S0 = −α
∫

ds, (3.11)

where α is a constant, and ds is the invariant length element along the worldline of
the particle. The generalization of this to a p-dimensional object is then given by

Sp = −Tp
∫

dVp, (3.12)

where Tp is the mass per unit volume, called the tension, and Vp is the p-dimensional
volume element:

dVp =
√
−detGαβdp+1σ. (3.13)

The coordinates σα, α = 1...p, are the coordinates on the brane worldvolume, and
Gαβ is the induced metric defined as

Gαβ = gµν(X)
∂X

∂σα
∂X

∂σα
, (3.14)

where gµν is the spacetime metric, and Xµ are the spacetime coordinates.
We can generalize the above action to the case with a more general background.

Specifically, we need to account for the gauge theory of open strings that end on the
brane, as well as the contribution to the closed-string background coming from the
Kalb-Ramond two-form. This leads to the DBI action, given by

SDBI = −TDp
∫

dp+1σe−φ
√
−det(Gαβ +Bαβ + Fαβ) (3.15)

where we have set α′ = 1, F is the field strength of the U(1) gauge field that lives on
the brane, and Bαβ is the pull back of the Kalb-Ramond two-form. In a setup with
N coincident branes, the U(1) gauge group is enhanced to the non-abelian group
U(N). This can be seen by a simple counting argument: the two ends of an open
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string have N choices of which brane to end on, which gives N ×N = N2 degrees of
freedom. This forms the N2 gauge bosons of a U(N) Yang-Mills theory on the brane
world-volume.

The coupling of Dp-branes to the RR fields is given by a Chern-Simons term,

SCS = µp

∫
C ∧ eB+F (3.16)

where µp is proportional to the p-form charge density. It follows that the case µp > 0

describes a positive charge object, while µp < 0 is a negatively charge object which
we call an ‘anti-brane’. Putting these two contributions together, and changing to
the Einstein frame, we arrive at the action of a Dp-brane:

SDp = −
∫
dp+1σ Tp e

φ(p+1)
4

√
−det(Gαβ +Bαβ + Fαβ)

+µp

∫ (
C ∧ eB+F

)
p+1

, (3.17)

where Cp+1 is the RR flux. Note that the sign of µp determines whether we have a
brane or an anti-brane. However both branes and anti-branes have positive tension
Tp > 0. In this convention, µp and Tp are related by |µp| = eφ|Tp|.

A seemingly similar object is the ‘orientifold plane’, or Op-plane. While a
Dp-brane enforces boundary conditions on the open strings, the Op-plane enforces
boundary conditions on the closed string spectrum. In terms of geometry: Op-planes
arise as the fixed points of an orientifold projection, which combines a spacetime re-
flection (an orbifold) with a worldsheet parity reversal and worldsheet orientation
reversal. For example, consider an orientifoldM/Γ, Γ = Z2 × Ω× (−1)FL , where Ω

and (−1)FL are worldsheet parity and orientation reversal respectively. This orien-
tifold will generically have a set of fixed points. The closed string partition function
can built directly onM/Γ, or else defined onM with boundary conditions enforced
by the Op-planes that sit at the points in M that would be fixed under M/Γ. It
follows that Op-planes are not free to move around, but rather have a fixed position.
This highlights a key difference from Dp-branes: Op-planes are topological in nature,
and thus are non-dynamical.
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The action for an Op-plane is given by

SOp = −
∫
dp+1σ TOpe

φ(p+1)
4

√
−detG+ µOp

∫
Cp+1, (3.18)

where the orientifold has negative tension, i.e. TOp < 0. Here µp is the charge of the
Op-plane and we have the relation |TOp| = e−φ|µOp|. Also note that since the Op
plane has negative charge, we have µp = eφTOp = −eφ|TOp|.

A key poiny is the relation between the tensions of a Dp-brane and an Op-plane:
TOp = 2p−4Tp (see Chapter 8 of [5]). This allows Dp-branes and Op-planes to be used
in combination to achieve many different types of compactification.
3.3 From IIB to M-theory, and back again!

Type IIB string theory can be connected to an 11-dimensional theory known as
M − theory. The field content of M-theory is considerably simpler: the only bosonic
fields are the metric, the dilaton, and a 3-form potential. There is no Kalb-Ramond
two-form, and hence M-theory is a ‘string theory’ theory without strings! Moreover,
there are no Dp-branes or Op-planes in M-theory. There are only membranes: the
M2 brane, and the M5 brane.

The bulk supergravity action for M-theory is given by

Sbulk =
1

2κ2

∫
d11x

√
−g
[
R− 1

48
G2

]
− 1

12κ2

∫
C ∧G∧G+

1

2κ2

∫
C ∧X8, (3.19)

where the C ∧ X8 term is a Chern-Simons term required for anomaly cancellation,
and X8 is a rank-8 tensor constructed out of curvatures. M-theory can be related
to type II string theories by dimensional reduction, the easiest case being M-theory
that is a T 2 fibration of a 9-dimensional manifoldM9. Dimensional reduction along
one of the torus directions leads to IIA on a circle, which can then be T-dualized to
IIB.

Let’s follow a simple example, given in [6]. Take M-theory on M9 × T2, with
metric given by

ds2
M = ds2

9 +
v

τ2

(
(dx+ τ1dy)2 + iτ 2

2 dy2
)
, (3.20)
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where (x, y) are the coordinates on the T 2, τ1,2 are the complex structure moduli of
the torus, τ = τ1 + iτ2, and ds2

9 is the metric on M9. After dimensional reduction
along x and T-duality along y, this leads to the IIB metric (in the Einstein frame):

ds2
IIB =

√
v

L

(
ds2

9 +
l2sL

2

v2
dy2

)
, (3.21)

where L is the radius of the y-direction, and ls is the IIB string coupling (which is
also given by the M-theory geometry). For the case ofM9 = R1,2 × B6, and using
L ≡
√
v, the metric is

ds2
IIB = −(dx0)2 + (dx1)2 + (dx2)2 +

l4s
v

dy2 + ds2
6. (3.22)

In the limit that v → 0, with ls held fixed, the y-coordinate decompactifies. The
metric becomes

ds2
IIB = −ηµνdxµdxν + ds2

6, (3.23)

which is 3+1 dimensional Minkowski space and a 6d internal manifold.
This will be the most relevant result for the current work, although for com-

pleteness we will note a few other results, which are given in Section 3.3 [6] as well
as Table 5 of [7]. The bulk IIB RR-fields are determined by the M-theory 3-form
potential, which can be seen by (locally) decomposing the M-theory 3-form as

C3 = C ′3 +B2 ∧ Ldx+ C2 ∧ Ldy +B1 ∧ Ldx ∧ Ldy. (3.24)

Upon taking M-theory to IIB as described above, B2 and C2 become the NSNS and
RR two-forms, and C ′3 becomes the 4-form C4 = C ′3 ∧ dy. The 1-form B1 becomes
the IIA 1-form, which mixes with the IIA metric under T-duality to give the IIB
metric a leg along on the y-direction.

Localised sources in IIB can be inferred by tracking the localised contributions
to the flux in M-theory. Specifically, space-filling M2 branes lead to space-filling
D3-branes, while singularities in the M-theory elliptic fibration lead to D7 branes,
and M2 branes wrapping vanishing cycles of the elliptic fibration lead to a stack of
D7 branes. In each case, the gauge fields on the branes can be determined by the
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decomposition of the M-theory flux at that point. For the D7, the decomposition
can be written in terms of the M-theory 4-form field strength G = dC, which takes
the following form at singular points of the torus:

G

2π
=

k∑
i=1

Fi ∧ Ωi (3.25)

where i = 1..k are the singular points, the Ωi are a basis harmonic forms localized at
the singularities and the Fi are the gauge fields on the worldvolume of the D7-branes.

This concludes the review components of this thesis. We will now proceed to
present original research.
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Chapter 4
Two Field Matter Bounce Cosmology

Yi-Fu Cai , Evan McDonough, Francis Duplessis, Robert H. Brandenberger

Abstract
We re-examine the non-singular Matter Bounce scenario first developed in [20],

which starts with a matter-dominated period of contraction and transitions into an
Ekpyrotic phase of contraction. We consider both matter fields, the first of which
plays the role of regular matter, and the second of which is responsible for the non-
singular bounce. Since the dominant matter field is massive, the induced curvature
fluctuations are initially not scale-invariant, whereas the fluctuations of the second
scalar field (which are initially entropy fluctuations) are scale-invariant. We study
the transfer of the initial entropy perturbations into curvature fluctuations in the
matter-dominated phase of contraction and show that the latter become nearly scale
invariant on large scales but are blue tilted on small scales. We study the evolution
of both curvature and entropy fluctuations through the bounce, and show that both
have a scale-invariant spectrum which is blue-tilted on small scales. However, we
find that the entropy fluctuations have an amplitude that is much smaller than that
of the curvature perturbations, due to gravitational amplification of curvature per-
turbations during the bounce phase.
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4.1 Introduction
Current high precision data from ground-based [1,2] and space-based [3,4] cosmic

microwave background (CMB) telescopes indicate that the origin of structure in
the universe is due to a primordial spectrum of nearly adiabatic and nearly scale-
invariant cosmological fluctuations. As realized long before these observations [5]
(see also [6–8]), a phase of cosmological inflation during the very early universe
will generate such a spectrum. On the other hand, inflation is not the only way
to generate such a spectrum. As realized in [9, 10], a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales is also generated during a phase of
matter-dominated contraction. In order to make contact with the present expanding
universe, new physics is required to allow for the transition between the contracting
and expanding phases. Such a transition can in principle either be singular and from
the point of view of the low-energy effective theory (as in the case of the original
Ekpyrotic scenario [11]), or non-singular. There are various ways of obtaining a non-
singular bounce, e.g. by modifying the gravitational action as in Horava-Lifshitz
gravity [12], torsion gravity [13], or by adding Null Energy Condition violating matter
such as a ghost condensate [14] or Galileon [15] field 1 . A cosmological model with
an initial phase of matter-dominated contraction and a non-singular bounce is called
the Matter Bounce scenario and it provides an alternative to cosmological inflation
for generating the observed spectrum of cosmological fluctuations (see e.g. [17] for
review articles on the matter bounce scenario) 2 .

A problem for most bouncing cosmologies is the instability against anisotropic
stress, the BKL instability [18]. An intuitive way of understanding this problem is to
note that the effective energy density in anisotropies evolves with the cosmological

1 See also [16] for a review of bouncing cosmologies.

2 Note that there are other alternatives to inflation for generating a scale-invariant
spectrum of cosmological perturbations which, however, will not be discussed in this
article.
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scale factor a(t) as ρanis ∼ a−6, and thus increases much faster in a contracting
universe than the energy densities in matter and radiation. Hence, unless the initial
anisotropies are not tuned to zero to a very high precision, no homogeneous bounce
will occur.

The solution to this problem, first implemented in the context of the Ekpyrotic
scenario [11], is to introduce a new matter field φ during the contracting phase whose
energy density scales with a higher power of a−1 than that of the anisotropy term and
which hence dominates the total energy density during the later phases of contraction.
With such a field, the BKL instability can be avoided [19]. In [20], a concrete model
was proposed in which the new field φ generates both the Ekpyrotic contraction
phase and the non-singular bounce. This is obtained by giving φ a Galileon-type
non-standard kinetic action (which yields the non-singular bounce), and by providing
it with a negative exponential potential which then yields the Ekpyrotic contraction.
If we assume that the contracting period starts with a phase of matter-domination,
we obtain a realization of the “matter bounce” scenario. In [20] the evolution of the
spectrum of cosmological fluctuations across the bounce phase was studied in detail.
In particular, it was shown that the two problems for a certain class of non-singular
bounce models discussed in [21] do not arise 3 The stability of this model against
anisotropic stress was then confirmed in [22] by following the cosmological evolution
in the context of an anisotropic Bianchi ansatz.

In the model of [20] (and in many other implementations of the “matter bounce”)
there are two matter fields, the field φ and a field ψ representing the matter which
initially dominates the phase of contraction, and which has an equation of state p = 0,
p denoting the pressure density. Thus, in general there will not only be adiabatic
cosmological fluctuations, but also entropic ones. In this paper we give a careful
analysis of the evolution of both background and cosmological perturbations in the
two field scenario in which a first field ψ generates a matter phase of contraction,

3 The anisotropy remains small during the bounce phase, and there is no dangerous
non-scale-invariant fluctuation mode which emerges in the bounce phase.
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and a second field φ which has a negative exponential potential and hence yields
a later phase of Ekpyrotic contraction, and which has a non-trivial kinetic action
which generates a non-singular bounce.

We begin in the matter-dominated period of contraction with vacuum fluctu-
ations of both scalar fields. For ψ, the resulting power spectrum is blue, since the
field has a mass. For φ, the resulting power spectrum on super-Hubble scales is
scale-invariant. In the far past, the spectrum of φ corresponds to the entropy mode,
while ψ corresponds to the adiabatic mode. However, at the transition between the
matter phase and the Ekpyrotic phase, φ becomes the adiabatic field, and thus a
scale-invariant spectrum of curvature fluctuations results. Due to the gravitational
mixing between the two modes during the matter phase of contraction, the φ fluctu-
ations induce a scale-invariant component to the spectrum of ψ fluctuations at the
end of the matter phase of contraction (this is the analog of the “curvaton” scenario of
structure formation [23] - see also [24]). Hence, the mode which becomes the entropy
mode during the later phases of evolution also inherits a scale-invariant contribution
in addition to the original contribution which has a steep blue spectrum.

The outline of the paper is as follows: in Section II we discuss the model for a
non-singular bounce proposed in [20], and how this is affected by the addition of an
additional scalar field of K-essence form. In Section III we describe the background
cosmological evolution by splitting the time history of the universe into phases: mat-
ter contraction, Ekpyrotic contraction, non-singular bounce, and fast roll expansion.
To justify this phase structure, and to serve as a evidence that this model is feasible,
we study the background numerically. In Section IV, we consider the evolution of
perturbations our model, which we then use in Section V to calculate the power
spectra at late times. We finish with some concluding remarks in Section VI.

A word on notation: We define the reduced Planck mass by Mp = 1/
√

8πG
N

where G
N
is Newton’s gravitational constant. The sign of the metric is taken to be

(+,−,−,−). Note that we take the value of the scale factor at the bounce point to
be aB = 1 throughout the paper.

29



4.2 Cosmology of a Non-Singular Bounce
As discussed in the introduction, the model of interest for the present work is

that of two scalar fields: a matter field which dominates at very early times, and a
bounce field which violates the Null Energy Condition for a brief period, inducing
the bounce. We begin with the most general Lagrangian for this class of models,
given by

L = K(φ,X) +G(φ,X)�φ+ P (ψ, Y ) , (4.1)

where φ is the bounce field of Galilean type, ψ is a K-essence scalar of general form,
and have defined

X ≡ 1

2
∂µφ∂

µφ , Y ≡ 1

2
∂µψ∂

µψ , (4.2)

as well as the d’Alembertian operator

� ≡ gµν∇µ∇ν . (4.3)

The Lagrangian terms for the bounce field are defined as

K(φ,X) = M2
p [1− g(φ)]X + βX2 − V (φ), (4.4)

G(φ,X) = γX, (4.5)

where we have parametrized the model via the positive-definite constants4 β and
γ, as well as the functions g(φ) and V (φ). The term G(φ,X) is a Galileon-type
operator which we have introduced to stabilize the gradient term of cosmological

4 The positive-definiteness of β ensures that the kinetic term is bounded from
below at high energy scales
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perturbations, and leads to a sound speed which is positive-definite at all time ex-
cept for during the bounce. Note that we have adopted the convention that φ is
dimensionless, and so we include a factor of M2

pl in K(φ,X).
The bounce is triggered when g(φ) < 1, which causes φ to form a ghost con-

densate and hence violate the Null Energy Condition. The function is negligible far
from the bounce, such that the bounce field φ will have canonical kinetic terms at
early and late times, given suitable behaviour for X. We can build this function by
setting the bounce to occur at φ = 0, and requiring that g < 1 when |φ| � 1 but
g > 1 when φ ∼ 0. We choose its form to be

g(φ) =
2g0

e
−
√

2
p
φ

+ e
bg
√

2
p
φ
, (4.6)

where g0 ≡ g(0) and p are positive constants, with g0 larger than unity, g0 > 1 and
p smaller than unity, p < 1.

The bounce field potential V (φ) is chosen to ensure that the bounce is preceded
by a phase of Ekpyrotic contraction, which is necessary to dilute anisotropy and avoid
the BKL instability. The potential can also be chosen to give an attractor solution
in both the expanding and contracting branches of the cosmological evolution, by
making use of exponential functions. We take the form of the potential to be

V (φ) = − 2V0

e
−
√

2
q
φ

+ e
bV

√
2
q
φ
, (4.7)

where V0 is a positive constant with dimension of (mass)4, q is a positive constant
that must be smaller than 1/3 in order to obtain Ekpyrotic contraction, and the
constant bV is an asymmetry parameter for the potential. The attractor solution
is induced during expansion by the positive-valued exponential, while the negative
exponential leads to an attractor solution in the contracting phase.

We now turn to the second field ψ, which we introduce to play the role of
an arbitrary matter field satisfying the Null Energy Condition. Initially, we take
its Lagrangian to be of K-essence form, P (ψ, Y ), but eventually we will consider a
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canonical massive free scalar field. It has pressure and energy density given by

pψ = P , (4.8)

ρψ = 2Y P,Y − P . (4.9)

There are two important quantities for this system: the equation of state wψ and the
sound speed square c2

ψ. These are given by

wψ ≡
pψ
ρψ

= −1 +
2Y P,Y

2Y P,Y − P
, (4.10)

c2
ψ ≡

pψ,Y
ρψ,Y

=
P,Y

2Y P,Y Y + P,Y
. (4.11)

We now consider the spatially flat FRW universe whose metric is given by

ds2 = dt2 − a2(t)d~x2 , (4.12)

where t is cosmic time, x are the comoving spatial coordinates and a(t) is the scale
factor. The evolution of the scale factor can be characterized by the Hubble rate:

H ≡ ȧ

a
, (4.13)

where the dot denotes the derivative with respect to cosmic time t.
At the background level the universe is homogenous, and thus both the bounce

field φ and the matter field ψ are only functions of cosmic time. Thus, the kinetic
terms of these two fields become

X = φ̇2/2 , �φ = φ̈+ 3Hφ̇ , Y = ψ̇2/2 . (4.14)

The pressure and energy density of the bounce field are given by

pφ =
1

2
M2

p (1− g)φ̇2 +
1

4
βφ̇4 − γφ̇2φ̈− V (φ) , (4.15)

ρφ =
1

2
M2

p (1− g)φ̇2 +
3

4
βφ̇4 + 3γHφ̇3 + V (φ) , (4.16)
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where dynamics of φ are governed by the equation of motion

Pφ̈+Dφ̇+ V,φ = 0 , (4.17)

and we have introduced

P = (1− g)M2
p + 6γHφ̇+ 3βφ̇2 +

3γ2

2M2
p

φ̇4, (4.18)

D = 3(1− g)M2
pH +

(
9γH2 − 1

2
M2

p g,φ

)
φ̇+ 3βHφ̇2

−3

2
(1− g)γφ̇3 − 9γ2Hφ̇4

2M2
p

− 3βγφ̇5

2M2
p

− 3G,X

2M2
p

(ρψ + pψ)φ̇ . (4.19)

From Eq. (4.17), it is clear that the function P determines the positivity of the
kinetic term of the scalar field and thus can be used to determine whether the model
contains a ghost or not at the perturbative level; the function D on the other hand,
represents an effective damping term. By keeping the first terms of the expressions
for P and D and setting g = 0, which is a good approximation far from the bounce
where φ̇ � MPl, one can recover the standard Klein-Gordon equation in the FRW
background. Note that the friction term D contains the contributions from the
matter fluid, which can be suppressed for small values of φ̇. However, these terms
will become important during the bounce phase where φ̇ reaches a maximal value.

For completeness, we can write down the Einstein equations in this background,

M2
p

(
Rµν −

R

2
gµν

)
= T φµν + Tψµν , (4.20)

and the corresponding Friedmann equations,

H2 =
ρ

T

3M2
p

, (4.21)

Ḣ = −ρT
+ p

T

2M2
p

, (4.22)

where ρ
T
and p

T
represent the total energy density and pressure in the FRW universe,

e.g. the sum of the contributions of the bounce field and the matter field.
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4.3 Background evolution
The initial conditions of the background are chosen such that the universe is

initially dominated by regular matter in the contracting phase, which in our model
is mimicked by the matter field ψ. Since the potential of the bounce field V (φ) has
an Ekpyrotic potential for φ� 1, the corresponding energy density grows faster than
that of regular matter. As a consequence, φ eventually becomes dominant, signaling
the end of matter contraction. After that, the Ekpyrotic phase of contraction begins,
and lasts until the non-singular bounce interval begins (this is the phase where the ef-
fects coming from new physics dominate), followed by a period of fast-roll expansion,
which in turn ends at a transition to the expansion of Standard Big Bang cosmology.
We choose the initial conditions for the density of regular matter and for the value
of φ such that the temperature at which the Ekpyrotic phase begins is higher than
that at the time of equal matter and radiation in the Standard Big Bang expanding
phase.
4.3.1 Analytic estimates

In the following we briefly investigate the evolution of the universe in each of
the periods mentioned above, and refer to [22] for a more generic analysis in which
the anisotropy was taken into account as well.

Matter contraction
We start by considering the period when the universe is dominated by the matter

field ψ. We take the Lagrangian of ψ to be that of a free canonically normalized
massive scalar field:

P (ψ, Y ) = Y − 1

2
m2ψ2 . (4.23)

Thus the matter field oscillates around its vacuum state ψ = 0 and the time-averaged
background equation of state parameter is roughly w = 0. In this phase, the scale
factor evolves as

a(t) ' aE

(
t− t̃E
tE − t̃E

)2/3

, (4.24)
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where tE denotes the final moment of matter contraction and the beginning of the
Ekpyrotic phase, and aE is the value of the scale factor at the time tE. In the above,
t̃E is an integration constant which is introduced to match the Hubble parameter
continuously at the time tE,

t̃E ' tE −
2

3HE

. (4.25)

Hence the Hubble parameter can be approximated by

〈H(t)〉 =
2

3(t− t̃E)
. (4.26)

where the angular brackets stand for averaging over time. The solution for the scalar
field ψ can be asymptotically expressed (modulo a phase) as

ψ(t) ' ψ̃(t) sin(m(t− t̃E)) , (4.27)

with a time dependent amplitude

ψ̃(t) =
1√

3πGm(t− t̃E)
, (4.28)

which yields an equation of state with has vanishing pressure when averaged over an
oscillation period of the field.

Ekpyrotic contraction
We assume a homogeneous scalar field φ which is initially placed in the region

φ � −1 in the phase of matter contraction. In this case, the Lagrangian for φ
approaches the conventional canonical form. Once φ begins to dominate the energy-
momentum tensor of matter, it then approaches an attractor solution which is given
by

φ(t) ' −
√
q

2
ln

[
2V0(t− t̃B−)2

q(1− 3q)M2
p

]
, (4.29)

where t̃B− is an integration constant which chosen such that the Hubble parameter at
the end of the phase of Ekpyrotic contraction matches with the one at the beginning
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of the bounce phase. This attractor solution corresponds to an effective equation of
state

w ' −1 +
2

3q
. (4.30)

During the phase of Ekpyrotic contraction, the scale factor evolves as

a(t) ' aB−

(
t− t̃B−
tB− − t̃B−

)q
, (4.31)

where aB− is the value of scale factor at the time tB− which corresponds to the end of
Ekpyrotic contraction and the beginning of the bounce phase. Therefore, the Hubble
parameter is given by

H(t) ' q

t− t̃B−
, (4.32)

where, in order to make H(t) continuous at the time tB−, one must set

t̃B− = tB− −
q

HB−
. (4.33)

Additionally, we require the scale factor to evolve smoothly and continuously at the
time tE. This leads to the relation

aE ' aB−

(
HB−

HE

)q
. (4.34)

Bounce phase
In our model the scalar field evolves monotonically from φ� −1 to φ� 1. For

values of φ between φ− ∼ −
√
p/2 ln(2g0) and φ+ ∼

√
p/2 ln(2g0)/bg (assuming one

term in the denominator of g(φ) dominates over the other at each transition time),
the value of the function g(φ) becomes larger than unity and thus the universe enters
a ghost condensate state. The occurrence of the ghost condensate naturally yields
a short period of Null Energy Condition violation and this in turn gives rise to a
non-singular bounce [14].
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As shown in Ref. [20], we have two useful parameterizations to describe the
evolution of the scale factor in the bounce phase. One is the linear parametrization
of the Hubble parameter

H(t) ' Υt , (4.35)

and the other is the evolution of the background scalar

φ̇(t) ' φ̇Be−t
2/T 2

, (4.36)

where the coefficient Υ is set by the detailed microphysics of the bounce. The
coefficient T can be determined by matching the detailed evolution of the scalar field
at the beginning or the end of the bounce phase, which will be addressed in next
subsection. Thus, during the bounce the scale factor evolves as

a(t) ' aBe
1
2

Υt2 . (4.37)

Note that a non-singular bounce requires that the total energy density vanishes
at the bounce point. The total energy density includes the contributions from the
matter fields and the anisotropy factors. This leads to the following result for the
value of φ̇B

φ̇2
B '

(g0 − 1)M2
p

3β

[
1 +

√
1 +

12β(V0 + ρm + ρθ)

(g0 − 1)2M4
p

]

' 2(g0 − 1)

3β
M2

p , (4.38)

where we have made use of approximations that ρm and ρθ are much less than V0

and V0 �M4
p in the second line. These approximations must be valid for the model

to hold since both ρm and ρθ are greatly diluted in the Ekpyrotic phase and V0 is the
maximal absolute value of the potential of φ which, according to the observational
constraint from the amplitude of cosmological perturbations, must be far below the
Planck scale.
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Fast-roll expansion
After the bounce, the universe enters the expanding phase, where the universe is

still dominated by the scalar field φ. During this stage, the motion of φ is dominated
by its kinetic term while the potential is negligible. Thus, the background equation
of state parameter is w ' 1. This corresponds to a period of fast-roll expansion,
where the scale factor evolves as

a(t) ' aB+

(
t− t̃B+

tB+ − t̃B+

)1/3

, (4.39)

where tB+ represents the end of the bounce phase and the beginning of the fast-roll
period, and aB+ is the value of the scale factor at that moment. Then one can write
down the Hubble parameter in the fast-roll phase

H(t) ' 1

3(t− t̃B+)
, (4.40)

and the continuity of the Hubble parameter at tB+ yields

t̃B+ = tB+ −
1

3HB+

. (4.41)

Recall that, in Eq. (4.36), we made use of a Gaussian parametrization of the
scalar field evolution in the bounce phase, with characteristic timescale T . In the
fast roll phase we find the following approximate solution for the evolution of φ:

φ̇(t) ' φ̇B+

a3
B+

a3(t)
' φ̇Be−t

2
B+/T

2H(t)

HB+

, (4.42)

where we have applied (4.36) in the second equality. This implies that

ρφ '
M2

p

2
φ̇2 '

M2
p φ̇

2
B

2e2t2B+/T
2

H2

H2
B+

. (4.43)
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Moreover, the Friedmann equation requires that ρφ ' 3M2
pH

2 in the fast-roll phase,
so that T 2 is given by

T 2 '
2H2

B+

Υ2 ln

[
M2

p (g0 − 1)

9βH2
B+

] . (4.44)

4.3.2 A (Numerical) Proof of Principle
To justify our claims that the background does exhibit this phase structure, we

numerically solve the background equations of motion. We present this solely as a
‘Proof of Principle’, in order to illustrate the occurrence of a non-singular bounce in
the model under consideration. By this we mean that the parameters are chosen to
make the effect of the matter field ψ manifest during the bounce, but this parameter
choice does not necessarily satisfy the bounds imposed by observations. Assuming
parameter values taking into account the experimental constraints would lead to an
Ekpyrotic phase which is long enough to dilute all the matter fields, which would
decrease the significance of entropy perturbations. Similarly, in the limit that the
Ekpyrotic phase stretches to the infinite past, the evolution of the background ap-
proaches that obtained in a regular isotropic bounce model realized by a single field
as studied in [20].

In the numerical calculation we work in units of the Planck mass Mp for all
variables. We specifically set a group of model parameters as,

V0 = 10−10 , g0 = 1.1 , β = 5 , γ = 10−3 ,

bV = 5 , bg = 0.5 , p = 0.01 , q = 0.1 , m = 5× 10−6 . (4.45)

Moreover we choose the initial conditions for the bounce field and matter field as
follows,

φini = −2.11 , φ̇ini = −8.87× 10−8 ,

ψini = −0.025 , ψ̇ini = −3.57× 10−8 . (4.46)
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Our numerical results are presented in Figs. 4–1 and 4–2. In order to enlarge
the details of the cosmic evolution, we introduced a parameter

Na ≡


− ln a

a0
t < tB

ln a
a0

t ≥ tB

(4.47)

(where a0 is a normalization constant) as the horizontal axis in Fig. 4–1. The vertical
axis shows the dynamics of the Hubble parameter and the equations of state of scalar
fields as well as the overall one.

From the upper panel of Fig. 4–1, one can see that the Hubble parameter evolves
smoothly through the bounce point with an approximately linear dependence on
cosmic time. However, the bounce phase is not symmetric with respect to the bounce
point in this model. The lower panel of Fig. 4–1 shows that the background equation
of state initially takes an average value w = 0 since the universe is dominated by the
oscillating matter field ψ. During the matter contraction, the bounce field slowly
becomes dominant over and triggers a period of Ekpyrotic contraction, where for our
parametrization the equation of state is approximately equal to w = 5.67. When
the universe enters the bounce phase, the background equation of state experiences
a sudden decrease to negative infinity and then evolves back to a value w = 1 which
signals a fast-roll expanding phase.

In order to better characterize the transitions between different phases, we plot
the evolution of the energy densities and density parameters in Fig. 4–2. The density
parameters are defined as

Ωi ≡
ρi
ρ

T

, (4.48)

where the subscript “i" represents φ and ψ, respectively. This figure explicitly shows
that the universe in this model experiences four phases: Matter contraction, Ekpy-
rotic contraction, the bounce, and fast-roll expansion.
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Figure 4–1: Cosmic evolution of the Hubble parameter H (blue line in the upper
panel) and the equations of state (black solid, red dashed, and blue dotted lines in
lower panel for the total background w

T
, the bounce field wφ and the matter field wψ,

respectively), in units of the reduced Planck mass Mp, with background parameters
given by (4.45) and initial conditions as in (4.46). The main plot shows that a non-
singular bounce occurs, and that the time scale of the bounce is short (it is a “fast
bounce” model). The inner insert shows a zoomed-in view of the smooth Hubble
parameter during the bounce phase as a function of cosmic time.
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Figure 4–2: Cosmic evolution of the energy densities ρ and density parameters Ω
of the background universe (orange solid line in upper panel), the bounce field (red
dashed line) and the matter field (blue dotted line), respectively. The horizontal axis
is the cosmic time. The initial conditions and model parameters are the same as in
Fig. 4–1.
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4.4 Cosmological Perturbations
4.4.1 Overview

In this section we study the dynamics of linear cosmological perturbations in
the Two Field Matter Bounce. One attractive property of a non-singular bounce
cosmology is that perturbation modes can be evolved smoothly through the bounce
phase. In linear theory, perturbations of scalar type evolve independently from those
of vector and tensor type. This reduces the number of degrees of freedom which
must be analyzed. In addition, as a consequence of linearity one can track each
Fourier mode independently (see e.g. [25] for a survey of the theory of cosmological
perturbations and [26] for an introductory overview). The evolution of the Fourier
modes depends on the background cosmology.

As per the analysis presented in the previous section, our cosmological back-
ground will first undergo matter contraction, then a period of Ekpyrotic contraction,
followed by a non-singular bounce, and then a phase of fast roll expansion. We begin
with vacuum fluctuations on sub-Hubble scales in contracting phase. During the
phase of contraction, wavelengths exit the Hubble radius (which is shrinking in co-
moving coordinates). Once they are on super-Hubble scales, the modes are squeezed.
Both the exiting of the Hubble radius and the squeezing on super-Hubble scales is
similar to what happens during the phase of accelerated expansion in inflationary
cosmology. However, in the case of inflation the Hubble length has constant physical
size while the physical wavelength of fluctuations increases exponentially. Hence,
if the period of inflation was long, the physical wavelength of the fluctuations was
initially smaller than the Planck length, leading to the ‘trans-Planckian problem’ for
fluctuations [27]. This problem does not arise in a bouncing cosmology as long as
the energy scale of the bounce is smaller than the Planck scale, as is required for the
self-consistency of any effective field treatment such as what we are presenting, since
then the physical wavelength of the fluctuation modes which we measure today were
always much larger than the Planck length scale.

As was initially realized in [9,10], a consequence of the super-Hubble growth of
fluctuations in a contracting universe is that the initial vacuum fluctuations of a mass-
less scalar field (and consequently also the curvature fluctuations in a model in which
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the only matter component is this massless field) are converted to a scale-invariant
spectrum. It is in this sense that the matter bounce can provide an alternative
to inflationary cosmology as a mechanism to form the cosmological fluctuations we
observe today.

However, the model under consideration involves two scalar fields, φ and ψ, with
ψ leading to a phase of a matter contraction at early times, and φ being responsible
for the Ekpyrotic phase and the bounce. The dominant field in the initial matter
phase of contraction is massive and hence its vacuum spectrum does not evolve into a
scale-invariant form in isolation. The field φ, on the other hand, is effectively massless
at early times and hence evolves to a scale-invariant spectrum on super-Hubble scales.
The field φ acts an entropy field during the phase of matter contraction. However,
once the Ekpyrotic phase begins, φ becomes dominant and becomes the curvature
mode, while the ψ fluctuations become the entropy modes.

As is well known, entropy modes source a growing curvature perturbation on
super-Hubble scales 5 Thus, to determine the final spectrum of curvature and en-
tropy fluctuations in our model we must carefully study the interaction of the two
fluctuation modes in each cosmological phase. As we will show, in the matter phase
of contraction, the scale-invariant φ mode (which acts as an entropy fluctuation)
seeds a curvature fluctuation (the ψ mode in the initial phase) of comparable mag-
nitude. Thus, at the end of the matter-dominated phase of contraction, both modes
are scale-invariant and have comparable amplitude. After that time, it is no longer
important to consider the sourcing of the adiabatic mode by the entropy mode since
the adiabatic mode is already larger in amplitude (and the effect of the sourcing
cannot induce a larger amplitude than that of the source)

In many non-singular bounce models it has been shown that the scale-invariance
of curvature fluctuations is preserved during the bounce phase (see, however, the
exceptions discussed in [21]). We will show that this is also the case in our model.

5 See e.g. [28] for an early discussion in the context of an axion dominated infla-
tionary universe.
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We will also evolve the entropy fluctuations on super-Hubble scales and will show
that they preserve their scale-invariance on large scales. Moreover the curvature
mode are amplified compared to the the entropy mode during the bounce phase, and
thus the final spectrum of fluctuations is almost completely adiabatic.

In both the matter contraction phase and the Ekpyrotic phase, the Lagrangian
of the bounce scalar recovers the canonical form, since the higher derivative terms are
suppressed by the small value of φ̇. In the matter contraction phase, it is convenient
to study the evolution of perturbation modes in the spatially flat gauge (ζ = 0) and
the initial conditions for two field fluctuations can be imposed inside the Hubble
radius. However once the initial conditions have been set, we can switch into the
uniform φ gauge (δφ = 0) for the Ekpyrotic and subsequent phases. In this way, the
curvature perturbation becomes manifest.

To perform this perturbation analysis we use three sets of perturbation variables.
For the initial conditions, we consider the field fluctuations in the spatially flat gauge

Qφ = Mp(δφ+
φ̇

H
Φ) , Qψ = δψ +

ψ̇

H
Φ . (4.49)

where Φ is the Bardeen potential (see Appendix A). We can change to the uniform
φ gauge, where the perturbation variables become δψ and

ζ = H
(Mpφ̇Qφ + ψ̇Qψ)

M2
p φ̇

2 + ψ̇2
δψ → Qψ . (4.50)

We lay out the general recipe for the perturbation analysis in Figure 4.4.1
4.4.2 Field fluctuations during matter contraction

At the beginning of matter contraction, the universe is dominated by the matter
field ψ which is oscillating around its vacuum point; this yields a time averaged value
of the background equation of state w ' 0 and thus the universe is in a matter
dominated phase. During this phase, the bounce field φ is subdominant and fast
rolling down along its potential with an effective equation of state wφ ' 1.

One can perturb the metric and the two scalar field to linear order, which
includes three scalar type perturbation modes, ζ, δφ and δψ, respectively. However,
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Figure 4–3: Stages of the Perturbation analysis. We begin in the matter dominated
phase by using the field fluctuations, then change gauge to study the entropy and
curvature perturbations. We match the curvature perturbations through the bounce
to solve for the behaviour in the fast roll expansion phase. We denote the phases
of the bounce by indices on the perturbation variables: m , c , b, and e, for matter
domination, Ekpyrotic contraction, bounce, and fast roll expansion.

vmζ , vmψ

Matter Contraction

vmφ , vmψ

vcζ , vcψ

Ekpyrotic Contraction

vbζ , vbψ

Bounce

veζ , veψ

Fast Roll Expansion

one of these three variable can be eliminated by making a gauge choice. We start
by considering the evolution of cosmological perturbations using the gauge invariant
field fluctuations Qφ and Qψ defined in Eq. (4.49), which are the Mukhanov-Sasaki
variables [29,30].

One can introduce the gauge invariant curvature perturbation as in Eq. (4.50),
as well as the entropy perturbation

S =

(
Mpφ̇Qψ − ψ̇Qφ

)
√
M2

p φ̇
2 + ψ̇2

. (4.51)

At early times in the matter dominated phase, ψ̇ � φ̇Mp, which implies that

ζ ' H
Qψ

ψ̇
, S ' −Qφ for t→ −∞. (4.52)

Therefore, one can immediately observe that at very early times the main contri-
bution to the curvature perturbation is from the matter field fluctuation, and the
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entropy perturbation is dominated by the fluctuation of the bounce field. However,
one can see from Eq. 4.50 that by the end of the matter contraction phase, the
contribution to the curvature perturbation from each field will become equally im-
portant. With this in mind, we follow the evolution of vφ and vψ during the matter
contraction in order to determine the resulting spectrum of vζ at tE. We will see
that the result of this is that ζ acquires a scale invariant spectrum from the bounce
field (which was initially the entropy perturbation). This is an explicit realization of
the Matter Bounce Curvaton scenario proposed in [24].

The field fluctuations evolve following the general equations of motion provided
in (4.113) as analyzed in Appendix A. The perturbation equations can be written in
terms of canonical variables

vφ = aQφ , vψ = aQψ . (4.53)

The equations of motion can then be written in Fourier space as

v′′φ + (k2 − a′′

a
)vφ = Jφψvψ + Jφφvφ , (4.54)

v′′ψ + (k2 +m2a2 − a′′

a
)vψ = Jφψvφ + Jψψvψ , (4.55)

where the prime denotes the derivative with respect to conformal time, and we define
the source (interaction) terms:

Jφφ = −9

2
H2
E

(aE
a

)4

, (4.56)

Jφψ =
3

2
mHE

aE
a

cos [ma(τ − τ̃E)] , (4.57)

Jψψ =
9

2
H2
E

aE
a
. (4.58)

We can treat this system perturbatively, using the first order Born approxima-
tion to estimate the effect of the source terms. We begin by analyzing the source-free
(‘homogeneous’) system:

v
(0)
φ
′′ + (k2 − a′′

a
)v

(0)
φ = 0 , (4.59)
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v
(0)
ψ
′′ + (k2 + a2m2 − a′′

a
)v

(0)
ψ = 0 . (4.60)

One can see from Eq. (4.59) that the k2 term will initially dominate, and so the
squeezing factor a′′/a can be neglected. Thus the dynamics for vφ corresponds to a
free scalar propagating in a flat space-time, and the initial conditions take the form
of the Bunch-Davies vacuum:

viniφ (τ, k) ' e−ikτ√
2k

. (4.61)

However, the situation for vψ is different, due to the presence of a non-zero mass.
Specifically, in Eq. (4.60) when we neglect the last term a′′/a, the mass term becomes
important in addition to the k2 term at the initial moment. Thus one can introduce
an effective frequency for vψ as

ω2
k = k2 + a2m2 , (4.62)

and Eq. (4.60) has an asymptotic solution which oscillates rapidly with this time
dependent frequency on sub-Hubble scales. This is what is expected since the adia-
baticity condition |ω′k/ω2

k| � 1 is satisfied which corresponds to a situation in which
the effective physical wavelength is much smaller than the Hubble radius. Therefore,
the modes can be regarded as adiabatic when they are in the sub-Hubble regime
with |ωkτ | � 1, and we can impose suitable vacuum initial conditions by virtue of a
Wentzel-Kramers-Brillouin (WKB) approximation

√
2ε viniψ (τ, k) ' 1√

2ωk
e−i

∫ τ ωk(τ̃)dτ̃ , (4.63)

where ε ≡ −Ḣ/H2 = 3/2 in the phase of matter contraction.
During both the matter and Ekpyrotic phases of contraction, the fluctuations

modes on scales of cosmological interest today exit the Hubble radius and become
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classical perturbations 6 . For matter dominated contraction, one has

a ∝ (τ − τ̃E)2 , τ̃E = τE −
2

HE

, (4.64)

where HE is the conformal Hubble parameter at the moment tE. The gravitational
term a′′/a leads to the squeezing of field fluctuations. Making use of the vacuum
initial condition, we obtain an exact solution to (4.59):

v
(0)
φ (τ, k) ' e−ik(τ−τ̃E)

√
2k

[
1− i

k(τ − τ̃E)

]
, (4.65)

in the phase of matter contraction. For the vψ mode, there exists a mass term in
the expression for the dispersion relation, and thus the field fluctuations do not get
squeezed on super-Hubble scales. Instead, one can neglect the k2 term and derive an
asymptotical solution as follows,

vψ
(0)(τ, k) ' e−iam(τ−τ̃E)

√
6am

. (4.66)

These homogenous solutions correspond to a scale invariant spectrum of the entropy
mode φ, and a spectrum of the initial curvature mode ψ that is deeply blue:

P
(0)
φ ≡

k3

2π2
|
v

(0)
φ

a
|2 =

H2

16π2
, (4.67)

P
(0)
ψ ≡

k3

2π2
|
v

(0)
ψ

a
√

3
|2 =

k3

12π2ma3
. (4.68)

As we now show, the entropy mode sources a growing contribution to the curva-
ture mode which then inherits the scale-invariant spectrum of the entropy mode. To
compute this effect, we use the 1st order Born approximation in which we evaluate
the form of the source terms using the zero’th order solutions. This means that the

6 The classicalization is a consequence of squeezing and decoherence via nonlinear
interactions, as discussed in [31,32].
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1st order corrections are determined using the equation of motion with the following
background-dependent source terms:

v
(1)
φ
′′ + (k2 − a′′

a
)v

(1)
φ = Jφψv

(0)
ψ + Jφφv

(0)
φ , (4.69)

v
(1)
ψ
′′ + (k2 + a2m2 − a′′

a
)v

(1)
ψ = Jφψv

(0)
φ + Jψψv

(0)
ψ . (4.70)

We solve these for modes on super-Hubble scale and obtain the homogeneous solution
plus first order correction,

vφ ' v
(0)
φ

[
1 +

1

3

(aE
a

)3
]

+
maE
3HE

[
1 + Log| 2k

HE

|
]
v

(0)
ψ , (4.71)

vψ ' v
(0)
ψ

[
1 +

9HE

4aEm

(aE
a

) 1
2

]
+

3

2
eiam(τ−τ̃E)

(aE
a

) 1
2
v

(0)
φ . (4.72)

Correspondingly, the power spectra for two field fluctuations near the end of matter
contraction are given by 7

Pφ '
16

9
P

(0)
φ +

1

9

(
m

HE

)2 [
1 + Log| 2k

HE

|
]2

P
(0)
ψ ,

Pψ '
[
1 +

9

4

HE

m

]2

P
(0)
ψ +

9

4
P

(0)
φ . (4.73)

We can see from the above expression that the gravitational interaction mixes the
spectra of the two fields, such that both fields have a scale invariant piece which is
the one which dominates in the infrared.
4.4.3 Perturbations in the phase of Ekpyrotic contraction

During the matter contraction, the energy density of the φ field becomes more
and more important since it is fast rolling along its tachyonic potential. At some

7 Note that the precise form of the mode functions actually includes an arbitrary
phase, each of which is drawn from an independent gaussian distribution. The result
of this is that the cross term of φ and ψ vanishes vanishes when averaged over both
distributions to compute the power spectrum.
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moment tE, its contribution to the background energy density starts to dominate
over that of the ψ field. We still have |φ| � 1 and φ̇�Mp and thus the Lagrangian
of φ is of canonical form with an Ekpyrotic potential. This model then yields an
attractor solution of Ekpyrotic contraction

a ∝ (τ̃B− − τ)
q

1−q , τ̃B− = τB− −
q

(1− q)HB−
. (4.74)

We have introduced the instant of time τ̃B− when the scale factor would meet the big
crunch singularity if there was no non-singular bounce. If we were not interested in
the bounce phase, it would make sense to normalize the time axis such that τ̃B− = 0,
and in this case we would find that the function g would become unity slightly earlier,
namely at a time q

(1−q)HB−
(keeping in mind that HB− is negative). This signals the

beginning moment of the bounce phase τB−.
Note that, when the universe has not yet arrived at the non-singular bounce

phase, the Lagrangian has canonical form and thus the analysis based on gauge
invariant field fluctuations (shown in the previous subsection) is still valid. However,
one can see that the main contribution to the curvature perturbation has changed
from δψ to δφ. To render the analysis of cosmological perturbations through the
non-singular bounce easier, we switch to the uniform φ gauge in the Ekpyrotic phase.
The detailed analysis of the second order action for perturbations is performed in
Appendix B. The simplified quadratic action in this phase is given by:

S2 =

∫
dτdk3 1

2

∑
i

[
v′2i −

(
k2 − q(2q − 1)

(1− q)2(τ − τ̃B−)2

)
v2
i

]
, (4.75)

the subscript ‘i’ runs over {ζ, ψ}. In Appendix B we introduce two new perturbation
variables {vσ, vs} which are linear combinations of vζ and vψ. This rotation decouples
the kinetic terms of vζ and vψ in the general evolution. However, in the model under
consider, we can find quadratic actions for vζ and vφ which allows for an easy analysis
without resorting to a field rotation.
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The quadratic action (4.75) yields the following equations of motion for pertur-
bation variables

v′′i +
(
k2 − q(2q − 1)

(1− q)2(τ − τ̃B−)2

)
vi = 0 , (4.76)

One can solve for the general solutions to the above equations of motion as follows,

vci = Ci,1
√
τ − τ̃B−Jνc(k(τ − τ̃B−)) + Ci,2

√
τ − τ̃B−Yνc(k(τ − τ̃B−)) ,

i = ζ, ψ (4.77)

where νc = (1−3q)
2(1−q) and the subscript “c" denotes the Ekpyrotic contracting phase. In

addition, Jvc and Yvc are the two linearly independent Bessel functions with indices
νc. The coefficients Ci,1 and Ci,2 are functions of comoving wave number k, and are
determined by matching the perturbations at the surface of tE, as we will address in
Section 4.5. For the moment we keep the coefficients general.

Recall that the expression of curvature perturbation ζ is given by Eq. (4.50).
When the universe evolves into the Ekpyrotic phase, the trajectory of the background
evolution becomes dominated by the bounce field and thus the curvature perturbation
is mainly contributed by Qφ, or equivalently vφ. Since the matter field ψ no longer
dominates over in the background evolution, its field fluctuation Qψ plays the role
of entropy perturbation.
4.4.4 Perturbations through the bounce

When the bounce field φ evolves into the range of the ghost condensation, the
kinetic term in its Lagrangian is no longer approximately canonical. This triggers
a violation of the Null Energy Condition. This causes the universe to exit from
the Ekpyrotic phase at some moment tB− and to enter the bounce phase. In this
period the bounce field yields a negative contribution to the energy density which will
eventually cancel all the other positive contributions, including that of the matter
field ψ, at a time we denote by tB. We normalize the time axis of the background
evolution such that tB = 0. At this moment, the Hubble parameter transits from
negative to positive values, crossing H = 0. As a result, a non-singular bounce takes
place.
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During the bounce phase, it is a good approximation to model the evolution of
the Hubble parameter near the bounce as a linear function of cosmic time:

H(t) = Υt , (4.78)

where Υ is a constant. Such a parametrization is applicable to a wide class of fast
bounce models, and the value of Υ depends on the detailed microphysics of the
bounce as shown in (4.35). In addition, the evolution of φ̇ during the bounce is given
by (4.36). Making use of the parameterizations for φ̇ and the Hubble parameter H,
we can keep the dominant terms of the quadratic action which then simplifies to

S2 =

∫
dτdk3 1

2

[
v′2ζ −

(
c2
ζk

2 − z′′

z

)
v2
ζ + v′2ψ −

(
c2
ψk

2 + a2m2 − a′′

a

)
v2
ψ

]
, (4.79)

where we discuss the role of each term below.
First, we study the gradient terms of the two perturbation modes. The stability

of the gradient terms is characterized by the sound speed square parameters, c2
ψ and

c2
ζ , which are defined in (4.126). In our explicit model, the matter field ψ takes
canonical form and thus simply leads to c2

ψ = 1. Moreover, if we make use of the
parameter choice (4.45) used in the numerical estimates in the previous section and
insert the value of φ̇2

B from (4.38) as well as the parametrization of the Hubble rate
(4.35) into the definition of c2

ζ , then it takes the following approximate form:

c2
ζ '

1

3
− 2

3
√

1 + 12βV0
M4
p (g0−1)2

, (4.80)
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in the bounce phase. If we make use of the parameter choice (4.45), we immediately
get c2

ζ ' −1/3 which implies that the perturbation ζ suffers from an gradient insta-
bility during the bounce. However, as the duration of the bounce is extremely short,
such a exponential growth does not spoil the perturbative control of the analyses 8 .

We have also introduced two quantities to characterize the effective squeezing
rates of the perturbation variables

a′′

a
' a2

B(Υ + 2Υ2t2) ,
z′′

z
' a2

B

[
Υ +

2

T 2
+
(

2Υ2 +
6Υ

T 2
+

4

T 4

)
t2
]
. (4.81)

The coefficient T is approximately one quarter of the duration of the bounce phase,
and was initially introduced in Eq. (4.36) to better understand the dynamics of φ̇
during the bounce. In the limit of a slow bounce, one finds that both squeezing rates
are equal which implies that there is no differential growth of the curvature fluctua-
tions relative to the entropy mode across the bounce. In contrast, if we consider a
fast bounce model, the gravitational terms a′′/a and z′′/z differ and lead to enhanced
growth of vζ relative to vψ. However, the overall growth during the bounce phase
is bounded from above since the duration of a fast bounce cannot be smaller than
the Planck time if the effective field theory description is to be self-consistent. The
bottom line is that given the validity of the effective field theory analysis we can
obtain a controllable amplification effect of cosmological perturbations when they
evolve through the bounce phase.

The equations of motion for cosmological perturbations during the bounce phase
are given by,

v′′ψ +
(
a2m2 + k2 − a′′

a

)
vψ = 0 , v′′ζ +

(
c2
ζk

2 − z′′

z

)
vζ = 0 . (4.82)

8 It does in the bouncing model discussed in [21] in which there is a long bounce
phase.
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The general solutions to these equations of motion are given by

vbψ(k, τ) = Dψ,1(k)e−
∫
B− ωψdτ +Dψ,2(k)e

∫
B− ωψdτ , (4.83)

vbζ(k, τ) = Dζ,1(k)e−
∫
B− ωζdτ +Dζ,2(k)e

∫
B− ωζdτ , (4.84)

with the frequencies ωψ and ωζ being

ω2
ψ ' −k2 − a2

Bm
2 + a2

B(Υ + 2Υ2t2) , (4.85)

ω2
ζ ' −c2

ζk
2 + a2

B

[
Υ +

2

T 2
+
(

2Υ2 +
6Υ

T 2
+

4

T 4

)
t2
]
, (4.86)

respectively. The subscript “b" indicates that we are discussing the solutions in the
bounce phase.

Note that we are mainly interested in the infrared modes of cosmological per-
turbations which are expected to be responsible for the large scale structure of the
universe at late times. Therefore, we neglect the k2 terms in the expression for
the frequencies and then easily find that vψ and vζ are amplified during the bounce
phase. Specifically, the amplification factor Fψ for the entropy perturbation vψ takes
the form:

Fψ ≡ e
∫B+
B− ωψdτ ' exp

[
Υ

1
2 t+

1

3
Υ

3
2 t3
] ∣∣∣∣B+

B−
, (4.87)

where B+ and B− stand for the end and beginning of the bounce phase, respec-
tively. A reasonable bounce model requires Υ to be a very small quantity (which is
equivalent to taking the ‘fast bounce’ limit), so that the amplitude of perturbations
is in agreement with observations. In this case, the amplification of the entropy mode
is in general very small. As a consequence, it is safe to approximately take Fψ ' 1.

On the other hand, the curvature perturbation experiences an exponential growth
through the bounce phase, which can be described by the amplification factor

Fζ ≡ e
∫B+
B− ωζdτ ' exp

[√
2 + ΥT 2

t

T
+

2 + 3ΥT 2 + Υ2T 4

3
√

2 + ΥT 2

t3

T 3

] ∣∣∣∣B+

B−
. (4.88)
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This result is exactly the same as the growth factor obtained in the model of single
field bounce [20], and thus shows that the amplification effect brought by the effective
tachyonic mass term during the bounce is generic. In the limit of a fast bounce
scenario, this amplification factor can be as large as of order O(105) as shown in
[20]. This effect is very important to non-singular bounce cosmologies since such a
controllable growth suppresses the tensor-to-scalar ratio, which was originally found
to be too large in matter bounce models [33].
4.4.5 Perturbations in Fast Roll Expansion

After the bounce, the potential for φ tends to zero very rapidly. Since the energy
density in φ dominates over the density in ψ, this causes us to enter a phase of fast
roll expansion, where the quadratic action is given by

S2 =

∫
dτ d3k

1

2

∑
i

[
v′i

2 − (
1

4(τ − τ̃B+)2
+ k2)v2

i

]
, (4.89)

where the subscript “i” denotes ζ and ψ, respectively. This gives the equations of
motion

v′′i + (k2 +
1

4(τ − τ̃B+)2
)vi = 0 , (4.90)

which yield the solutions

vei = Ei,1(k)
√
τ − τ̃B+J0 (k(τ − τ̃B+)) + Ei,2(k)

√
τ − τ̃B+Y0 (k(τ − τ̃B+)) , (4.91)

with
a ∝ (τ − τ̃B+)

1
2 , τ̃B+ ≡ τB+ −

1

2HB+

. (4.92)

The subscript “e" indicates that we are discussing the solutions in the fast-roll ex-
panding phase. The coefficients Ei,1(k) and Ei,2(k) can be determined by matching
the perturbations at the moment τB+. Modulo the square root term, the first mode
is constant on super-Hubble scales but the second is growing as a logarithmic func-
tion of conformal time. As a consequence, one can see the second term Y0 finally
dominates and form the power spectra of cosmological perturbations at late times.

56



4.5 Power spectra of cosmological perturbations
Having solved equations of motion for cosmological perturbations phase by

phase, now we are able to study how the solutions can be transferred from ini-
tial states to the final ones. We leave the detailed matching processes to Appendix
C and here merely provide a rough description of the analysis.

Our first matching surface is chosen at the moment τE where the Ekpyrotic
contraction starts and thus is defined by ρψ = ρφ. The matching conditions simply
require

vmζ,ψ(τE) = vζ,ψc (τE) and
d

dτ
vζ,ψm (τE) =

d

dτ
vζ,ψm (τE) . (4.93)

In the Ekpyrotic phase, the growing modes are characterized by the coefficients Cζ,2
and Cψ,2 as shown in (4.77), and we focus on super-Hubble scales as it is the long
wavelength fluctuations that we are interested in. As a consequence, we can obtain
the dominant modes of cosmological perturbations during the Ekpyrotic phase.

Similarly, we match the perturbation modes in the Ekpyrotic contracting phase
with those in bounce phase at the moment τB−. Then we can solve for the coefficients
of the growing modes in the bounce phase which are characterized by the coefficients
Dζ,2 and Dψ,2, respectively. The last matching surface is chosen at the moment τB+

where primordial cosmological perturbations just pass through the bounce phase and
enter the fast-roll expansion. In this case, we are able to determine the forms of Eζ,2
and Eψ,2 which are the coefficients of the dominant modes after the bounce.

Substituting the coefficients Eζ,2 and Eψ,2 back into the solutions (4.91), we can
solve for the asymptotic solutions of the cosmological perturbations in the final stage.
On super Hubble scales, these become

veψ '
FψHE

2
γψe

−2m/HE
[
U

(0)
ψ

1√
6aEm

+ U
(k)
ψ

aEm

k3/2

]aB−
aB+

a(t) , (4.94)

veζ '
FζHE

2
γζ

[
U

(0)
ζ

1√
6aEm

+ U
(log)
ζ

Log( −2k
aEHE

)
√

6aEm
+ U

(k)
ζ

aEm

k3/2

]aB−
aB+

a(t) , (4.95)
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where we have defined,

γζ =
1

2(1− 3q)

[
1 +

(
1−

√
2

HB+T
(1 +

t2B+

T 2
)

)
ln
aB+

a(t)

]
, (4.96)

γψ =
1

2(1− 3q)

[
1 +

[
1−
√

Υ

HB+

(1 + Υt2B+)

]
ln
aB+

a(t)

]
. (4.97)

and the U ’s are dimensionless coefficient whose detailed form are given in Appendix
C.

As a result, we can easily calculate the primordial power spectra of curvature
perturbations in the fast roll phase. Up to leading order in k, the result is scale
invariant,

Pζ(k) ' k3

2π2

∣∣∣veζ
a

∣∣∣2 ' F2
ζH

2
Ea

2
E

8π2
γ2
ζ

a2
B−

a2
B+

(m|U (k)
ζ |)

2
[
1 +O(k3/2)

]
. (4.98)

From the above expression, we can see that the curvature perturbation is domi-
nated by a scale invariant component while there are other terms which can lead to a
scale dependence at small length scales. In our model the maximal value of HE is of
the order of the mass parameter m, and thus for the perturbation modes which exit
the Hubble radius during matter contracting phase the primordial power spectrum
is nearly scale-invariant. However, if we consider the perturbation modes on small
length scales, the spectrum becomes blue which may lead to interesting observational
signals for experiments. The absence of a red tilt on large scales indicates that the
mechanism for a bounce studied here is not the full story, and other ingredients are
necessary to have a complete description of cosmology. We discuss this issue in more
detail in the discussion.

To provide a check of our analytic calculation of the power spectrum of curvature
perturbations, we numerically track its amplitude on super-Hubble scales through
the bounce. From the analytical calculation, we expect the amplitude of curvature
perturbation to be conserved before the bounce and to undergo an amplification
during the bouncing phase. Specifically, we take the same model parameters as in
the background numerics introduced in Section III, and numerically compute the
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Figure 4–4: Evolution of the power spectrum of curvature perturbation Pζ at super-
Hubble scale (with a fixed comoving wave number k = 10−20) as a function of cosmic
time. The background parameters are the same as in Fig. 4–1, and the initial
condition for the perturbation is chosen as vacuum fluctuation.

curvature perturbation for a fixed comoving wave number. We show the result in
Fig. 4–4, in which one can see that the amplitude of curvature perturbations is
nearly constant during the contracting phases. During the bounce, the curvature
perturbation obtains a dramatic amplification of order O(1010), corresponding to
an amplification factor Fζ of order O(105), in exact agreement with the analytical
analysis performed in previous subsections.

The power spectrum of the entropy modes, which is carried (except in the initial
matter phase of contraction) by the matter field ψ, is also scale-invariant on large
scales. It inherits this spectrum from the φ mode during the matter phase of con-
traction. However, the amplitude of the entropy mode is negligible in the case of a
fast bounce, as the adiabatic mode undergoes a much larger amplification during the
bounce.

Thus, this result shows that the universe after the bounce is isotropic and homo-
geneous and has a nearly scale-invariant spectrum which is almost purely adiabatic.
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In this sense, our model provides a alternative to inflationary cosmology for explain-
ing the observed spectrum of cosmological perturbations.

We expect the perturbation modes forming the above power spectrum of cur-
vature perturbations will eventually be responsible for the CMB anisotropies. It is
therefore interesting to check that the modes relevant to the CMB will exit the Hub-
ble radius during the matter contraction phase. Requiring that the modes do exit
the Hubble radius imposes a condition on the bounce. We now perform an estimate
of this condition. First, we can write down the wavelengths of the modes exiting the
Hubble radius at the beginning and the end of the Ekpyrotic phase associated with
today’s wavelength λ0 as follows,

λ(tE) =
a(tE)

a(t0)
λ0 '

a(tE)

a(tB−)

a(tB+)

a(tF )

a(tF )

a(t0)
λ0 , (4.99)

λ(tB−) =
a(tB−)

a(t0)
λ0 '

a(tB+)

a(tF )

a(tF )

a(t0)
λ0 , (4.100)

respectively, where tF denotes the end of the Fast-roll expansion with ρψ(tF ) =

ρφ(tF ). Recall that the background energy density scales as ρ ∼ a−3(1+w), which
depends on the background equation of state w. Making use of this relation, we
derive:

λE '
(
ρB−
ρE

) 2
q
(
ρF
ρB+

) 1
6
(
ρ0

ρF

) 1
3

λ0 , (4.101)

λB− '
(
ρF
ρB+

) 1
6
(
ρ0

ρF

) 1
3

λ0 . (4.102)

Since the wavelength of today’s observable mode scales as λ0 ∼ teq with teq being
the moment of equality, we require the wavelength of the mode exiting the Hubble
radius during the beginning of the Ekpyrotic phase to satisfy

λE ≥ |tE| , (4.103)

so that the observable modes were generated during matter contraction.
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Specifically, we take the density of the universe at present to be ρ0 ∼ (10−12GeV)4,
while at the end of the Fast-roll it is ρF ∼ (103GeV)4, and around the bounce
ρB . (1015GeV)4. From this, we get λE & 10−28λ0, which has to be larger than |tE|.
This requires |tE |

teq
. 10−28. Recall that ρm ∼ a−3 ∼ t−2 during matter contraction,

which yields

ρm(tE)

ρm(teq)
'
(
teq
tE

)2

& 1056 , (4.104)

in the specific case considered above. By inserting the value of the density at matter-
radiation equality ρm(teq) ∼ (10−9GeV)4, one can obtain the lower bound on the
density of the universe at the beginning of the Ekpyrotic phase,

ρm(tE) & (105GeV)4 . (4.105)

This condition needs to be satisfied in order for the modes exiting the Hubble radius
during matter contraction to be responsible for the CMB anisotropies. Note that if
we consider a bounce at lower energy scales then the above condition to be satisfied
for a large portion of parameter space .
4.6 Tensor perturbation

Similar to scalar modes, tensor perturbations are generated from vacuum fluc-
tuations on sub-Hubble scales in the matter-dominated contracting phase. As the
universe contracts, the tensor modes exit the Hubble radius. As is well known, the
equation of motion for the tensor fluctuations is the same as that of a massless scalar
field. Hence, vacuum initial conditions lead to the same amplitude of the tensor
modes and the curvature fluctuations on sub-Hubble scales. Once on super-Hubble
scales, the tensor modes are squeezed. During the phases of Ekpyrotic contraction,
bounce and fast-roll expansion the equation of motion for the tensor modes is the
same as that for the entropy mode (in the absence of mass for the latter). In partic-
ular, the squeezing factor of the modes is a′′/a. As we showed above, the amplitude
of the entropy mode at the beginning of the Ekpyrotic phase is of the same order as
that of the curvature modes, which in turn is the same order as that of the tensor
modes. After the beginning of the Ekpyrotic phase the tensor and entropy modes
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evolve the same way. Therefore, it is easy to derive the power spectrum of primor-
dial tensor modes. Making use of the expression (4.140), one obtains the following
expression for the power spectrum of primordial tensor perturbations:

PT ≡
k3

2π2
|uh
a
|2 '

F2
ψγ

2
ψH

2
E

64π2M2
p (2q − 3)2

a2
B−

a2
B+

. (4.106)

One can see the power spectrum of primordial tensor modes in our model is scale-
invariant. This spectrum is inherited from the power spectrum of primordial curva-
ture perturbations on large scales. The evolution and the amplification during the
bounce phase, however, follow the behavior of entropy perturbations.

One can define a tensor-to-scalar ratio,

rT ≡
PT
Pζ
'
F2
ψγ

2
ψ

F2
ζ γ

2
ζ

. (4.107)

This ratio is given by the ratio of amplification factors of curvature and entropy
modes during the bounce phase. Thus, this ratio can be greatly suppressed by a
large value of the factor Fζ . Considering the group of canonical values for model
parameters as given in the previous section discussing the background analysis, we
find that this ratio can be as low as of order O(10−8).
4.7 Conclusion and Discussion

We have studied the evolution of the background and of the linear cosmological
fluctuations in a two field matter bounce model in which one field (ψ) represents the
regular matter which has a time-averaged equation of state p = 0, and the second
field (φ) is responsible for both an Ekpyrotic phase of contraction which follows
the initial matter-dominated period, and which yields a non-singular bounce. As a
consequence of the Ekpyrotic phase of contraction, there is no BKL instability in this
model 9 . Thus, as long as the initial conditions are chosen such that the Ekpyrotic

9 The BKL instability to the growth of anisotropies is a problem which afflicts
most bouncing cosmological models.

62



period of contraction begins before the anisotropies dominate, the background will
evolve towards a homogeneous and isotropic state.

Since there are two matter fields present, it is important to study not only the
adiabatic fluctuations (as was done in [20]), but also the entropy mode. We have
shown that in the matter phase of contraction the adiabatic mode (which is seeded by
the massive field ψ) starts out with a deep blue spectrum, and it is only the entropy
mode (which is seeded by the effectively massless field φ) which acquires a scale-
invariant spectrum via squeezing on super-Hubble scales during the phase of matter
contraction. However, the entropy mode continuously seeds a contribution to the
curvature fluctuation. This contribution is scale-invariant, and we have shown that
its amplitude at the end of the matter phase of contraction is of the same order of
magnitude as the initial entropy fluctuation. Once the Ekpyrotic phase of contraction
begins, the roles of the adiabatic and entropy modes change: it is now the dominant
field φ which determines the adiabatic mode, and ψ becomes the entropy mode. Since
the fluctuations in φ have a scale-invariant spectrum, the curvature perturbations
inherit a scale-invariant spectrum at the beginning of the Ekpyrotic phase, whereas
the fluctuations associated with ψ which have developed a scale-invariant form (due
to the seeding mentioned above) become the entropy mode.

We followed the evolution of both the adiabatic and the entropy modes from
the beginning of the Ekpyrotic phase of contraction through the non-singular bounce
phase and into the following fast-roll phase of expansion. Both modes preserve their
scale-invariant spectrum. The curvature fluctuations are amplified during the bounce
phase, but for a fast bounce the amplification of the entropy mode is negligible.
Hence, the entropic contribution to the late time fluctuations is suppressed. It is, in
fact, suppressed by the same factor as the tensor perturbations to the scalar ones,
since the tensor modes have the same squeezing factor as the entropy field.

One serious shortcoming of the model under consideration is the lack of a pre-
diction for the spectral tilt of perturbations in agreement with CMB observations,
which require a red tilt. At best, this model is capable of producing a scale invariant
spectrum for the CMB, however scale invariance has been ruled out by Planck at
the 5σ level [5]. Given this, we emphasize that the focus of our work is the study
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of perturbations through a non-singular bounce, and hence we are primarily con-
cerned with the evolution inside of the ‘black-box’ that separates the contracting
and expanding branches of the cosmological evolution. The tilt is due to the choice
of contracting branch, and in this study we have chosen matter contraction as our
toy model, purely for the sake of simplicity.

However, there do exist mechanisms which could induce a red tilted spectrum
in this model. The simplest possibility is to generate the red tilt via a tachyonic
coupling to a curvaton field. The effect of curvatons in a matter bounce was originally
investigated in Ref. [24], where one can quickly see that a tachyonic coupling g2 < 0

will cause the the spectral index in eq. (23) of [24] to be red, without generating
any instability. Another mechanism is to change the matter field to a fluid with
slightly negative pressure, as was mentioned in [43]. We plan to investigate these
mechanisms in future work.

Finally, we would like to comment on the reheating process. In this specific
model under consideration, we assume the two fields are only coupled through grav-
itational interactions. Therefore it is straightforward to track the evolution of both
the background and perturbation modes. In a more generic case, the universe de-
scribed by our model can be reheated by several different methods, e.g. the usual
treatment of reheating in the fast roll phase, perturbative decay of the bounce field
in Ekpyrotic phase, and gravitational particle production during a phase transition
such as the bouncing phase [44]. Another mechanism of reheating the universe it
to introduce a kinetic coupling such as was done for the defrosting process in an
emergent galileon cosmology [45]. This aspect, as well as the comparison with the
CMB data, provides us with quite a few interesting topics which we will explore in
future work.
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Appendix A: Cosmological perturbations in a double field model of
canonical form

In this Appendix we shall review the equations of motion for the coupled curva-

ture and entropy modes in a model with two canonical scalar fields. Particular focus

is on the curvature modes induced by an initial mode. We will apply this theory to

the matter-dominated phase of contraction during which both of the scalar fields in

our model have kinetic terms in the action which are approximately canonical. Note

that the matter fields φi considered below have mass dimension one, and hence to

apply these formulas our Galileon field φ must be multiplied by Mp.

We shall work in longitudinal gauge in which the linearized scalar metric fluc-

tuations appear in the metric in the following way (see e.g. [25,26]):

ds2 = (1 + 2Φ)dt2 − a2(t)(1− 2Ψ)d~x2 , (4.108)

where t is cosmic time and xi are the comoving spatial coordinates. The scalar metric

fluctuations are characterized by two functions Φ and Ψ which depend both on space

and time. We take matter to consist of a set of scalar fields φi, which in our explicit

model are the bounce field φ and the matter field ψ. If the gravitational action is

the usual one, then the matter sector does not admit linearized anisotropic stress

the off-diagonal components of the perturbed Einstein equations imply Ψ = Φ. By

expanding the Einstein and matter equations to first order, we obtain the following
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perturbation equations:

δφ̈i + 3Hδφ̇i + [−∇
2

a2
δφi +

∑
j

V,ijδφj] = 4φ̇iΦ̇− 2V,iΦ , (4.109)

−3HΦ̇ + (
∇2

a2
− 3H2)Φ = 4πG

∑
i [φ̇iδφ̇i − φ̇2

iΦ + V,iδφi] , (4.110)

Φ̇ +HΦ = 4πG
∑
i

φ̇iδφi , (4.111)

where V,i denotes the derivative of the scalar field potential with respect to φi.

We can recast the above equations in terms of the Sasaki-Mukhanov variables

[29,30] which are defined as

Qi ≡ δφi +
φ̇i
H

Φ , (4.112)

and in terms of which the equations of motion are given by [10,36,37]

Q̈i + 3HQ̇i −
∇2

a2
Qi +

∑
j

[V,ij −
1

a3M2
p

d

dt
(
a3

H
φ̇iφ̇j)]Qj = 0 . (4.113)

To combine the above equations, one can define the quantity ζ which is the

curvature perturbation on the uniform density slice,

ζ = H

∑
i φ̇iQi∑
j φ̇

2
j

. (4.114)

This quantity is conserved on super-Hubble scales in an expanding universe if there

are only adiabatic fluctuations [38,39]. However, the presence of entropy fluctuations

on large scales will lead to a growth of ζ which corresponds to the seeding of an

adiabatic fluctuation mode by the entropy mode.
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At linear order, the equation for the time derivative of ζ in the case of two

matter fields φ and ψ (both with mass dimension one) is given by [36,37]

ζ̇ = −H
Ḣ

∇2

a2
Φ− H

2

(δφ
φ̇
− δψ

ψ̇

) d

dt

( φ̇2 − ψ̇2

φ̇2 + ψ̇2

)
. (4.115)

On large scales, the first term of the r.h.s of Eq. (4.115) is negligible. The second

term describes the transfer of entropy to adiabatic fluctuations, the term we are

interested in.
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Appendix B: General second order action for cosmological perturbations
in uniform φ gauge

It is useful to study perturbation theory by making use of the ADM metric.

Particularly, we focus on the part of the action involving the scalar metric perturba-

tion ζ and the matter field fluctuations δφ and δψ. It is well known that one scalar

degree of freedom can be fixed by a gauge choice. We choose the following uniform

field gauge:

δφ = 0 , hij = a2e2ζδij . (4.116)

After a lengthy calculation, the Lagrangian (4.1) expanded to quadratic order

in the fluctuations becomes

S2 =

∫
dtdx3a(t)3

[
(2M2

p ζ̇ − 2M2
pHα + φ̇3G,Xα + ψ̇P,Y δψ)

∂2
i σ

M2
pa

2

− 3M2
p ζ̇

2 − 2M2
pα
∂2
i ζ

a2
+ 6M2

pHαζ̇ − 3φ̇3G,Xαζ̇

+M2
p

(∂iζ)2

a2
− 3M2

pH
2α2 +

φ̇2

2
K,Xα

2

+
φ̇4

2
K,XXα

2 + 6Hφ̇3G,Xα
2 +

3

2
Hφ̇5G,XXα

2

− φ̇2(G,φ +
φ̇2

2
G,Xφ)α2 + 3ζ(δψP,ψ + ψ̇P,Y ˙δψ)

+
ψ̇2

2
P,Y α

2 +
ψ̇4

2
P,Y Y α

2

+ α
(
δψ(P,ψ − ψ̇2P,Y ψ)− ˙δψψ̇(P,Y + ψ̇2P,Y Y )

) ]
, (4.117)
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where α and ∂iσ are the lapse function and shift vector, respectively. Varying the

quadratic action (4.117) with respect to α and σ yields

α =
2M2

p ζ̇ + ψ̇P,Y δψ

2M2
pH − φ̇3G,X

, (4.118)

as well as the expression for σ.

Substituting α and σ back into the action, we then obtain a much simplified

form

S2 =

∫
dtdx3

{
a

2
z2
[
ζ̇2 − cζ

2

a2
(∂iζ)2

]
+
a

2
y2
[

˙δψ
2 − cψ

2

a2
(∂iδψ)2 +

2

ay2
M2

δψδψ
2
]

+C1δψζ + C2δψζ̇ + C3δψ̇ζ̇ + C4∂
iδψ∂iζ

}
, (4.119)

where C1,2,3,4 are the coefficients in front of the interaction terms

C1 = 3a3ψ̇2
(
ψ̈P,Y Y − P,Y ψ

)
, (4.120)

C2 =
2M2

pa
3

(2M2
pH − φ̇3G,X)2

(
12φ̇3ψ̇HG,XP,Y − 6M2

p ψ̇H
2P,Y + φ̇2ψ̇K,XP,Y

+ ψ̇3P,Y
2 + 3φ̇5ψ̇HG,XXP,Y + φ̇4ψ̇K,XXP,Y + ψ̇5P,Y P,Y Y

− 2φ̇2ψ̇G,φP,Y + 2M2
pHP,ψ − φ̇3G,XP,ψ − φ̇4ψ̇G,XφP,Y

− 2M2
p ψ̇HP,Y ψ + φ̇3ψ̇2G,XP,Y ψ

)
, (4.121)

C3 = −
2M2

pa
3ψ̇

2M2
pH − φ̇3G,X

(
P,Y + ψ̇2P,Y Y

)
, (4.122)

C4 =
2M2

paψ̇P,Y

2M2
pH − φ̇3G,X

. (4.123)
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The parameters z2 and y2 are defined as the coefficients of φ̇2 and ψ̇2 respectively,

and are given by

z2 =
4M4

pa
2

(2M2
pH − φ̇3G,X)2

(
6Hφ̇2G,X +

3

2M2
p

φ̇2G,X + φ̇2K,X + φ̇4K,XX

+ ψ̇2P,Y + ψ̇4P,Y Y + 3Hφ̇5G,XX − 2φ̇2G,φ − φ̇4G,φX

)
(4.124)

y2 = a2
(
P,Y + ψ̇2P,Y Y

)
. (4.125)

The sound speeds of ζ and ψ are denoted cψ,ζ , and are given by

cψ
2 =

P,Y

P,Y + ψ̇2P,Y Y
, (4.126)

cζ
2 =

2a2

z2
[ M2

p −
3M4

pH

2M2
pH − φ̇3G,X

−
3M4

p (3φ̇2φ̈G,X + φ̇4G,φX + φ̇4φ̈G,XX − 2M2Ḣ)

(2M2
pH − φ̇3G,X)2

] . (4.127)

One can define canonical variables for perturbation modes ζ and ψ as follows,

vζ ≡ zζ , vψ ≡ yδψ , (4.128)

and then the time derivative terms in the quadratic action become of canonical form

in conformal coordinates.
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Appendix C: Matching Coefficients

The matching conditions for cosmological perturbations were discussed in [40,

41]. The idea was to match two solutions of General Relavitity across some space-

like matching surface which is endowed with the localized stress-energy to enable

the transition between the two space-times. The matching conditions state that the

induced metric on the matching surface must be the same when calculated from either

side, and that the extrinsic curvature jumps by an amount given by the localized

stress-energy on the surface.

In our case, the background is continuous across the various matching surfaces

(this would not have been the case had we cut out the bouncing phase and tried

to match directly between the contracting Ekpyrotic phase and the expanding fast-

roll period). Hence, there is no jump in the extrinsic curvature across the matching

surface. Matter fields must also evolve continuously across the bounce. Hence, the

matching conditions are

v1
ζ (τm) = v2

ζ (τm) and
d

dτ
v1
ζ (τm) =

d

dτ
v2
ζ (τm) , (4.129)

at each matching time τm, where the superscripts 1 and 2 indicate the values of the

variables computed in the phases after and before the matching surface, respectively,

and

v1
ψ(τm) = v2

ψ(τm) and
d

dτ
v1
ψ(τm) =

d

dτ
v2
ψ(τm) . (4.130)
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We first match the cosmological perturbation vζ and vψ at the beginning moment

of the Ekpyrotic phase τE. The matching conditions allow us to determine the

dominant coefficients Ci,2 in the Ekpyrotic phase, with the result

Ci,2 '
π
√
τE − ˜τB−
2vcΓvc

(k(τE − τ̃B−)

2

)vc[ d
dt
vmi − vmi

1 + 2vc
2(τE − τ̃B−)

]
. (4.131)

The coefficients Di,1 and Di,2 for the solutions in the bounce phase are also

derived by matching vζ and vψ at the end moment of Ekpyrotic phase τB−. Picking

out the dominant terms yields

Dζ,2 '
−Cζ,2Γνce

∫ τB+
τB

wζdτ

22−νcπωζkνc(τB− − τ̃B−)
1
2

+νc

[
1− 2νc + 2ωζ(τB− − τ̃B−)

]
, (4.132)

Dψ,2 '
−Cψ,2Γνce

∫ τB+
τB

wψdτ

22−νcπωψkνc(τB− − τ̃B−)
1
2

+νc

[
1− 2νc + 2ωψ(τB− − τ̃B−)

]
. (4.133)

After the bounce, we match the cosmological perturbations at the moment τB+

and then determine the coefficients Eζ,i and Eψ,i. Both are important so we write

them all,

E1,i = −Di,2
e
∫ τB+
τB

widτ

2
√
τB+ − τ̃B+

[
− 2 +

(
2(τB+ − τ̃B+)wi − 1

)(
ln
[k(τB+ − τ̃B+)

2

]
+ γE

)]
,

(4.134)

E2,i = Di,2
πe

∫ τB+
τB

widτ

4
√
τB+ − τ̃B+

[
1− 2(τB+ − τ̃B+)

]
. (4.135)

By making use of these coefficients, we can extract the dominant mode of cosmolog-

ical perturbations in the fast-roll expanding phase, namely

veψ '
FψHE

2
γψe

−2m/HE
[
U

(0)
ψ

1√
6aEm

+ U
(k)
ψ

aEm

k3/2

]aB−
aB+

a(t) , (4.136)
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veζ '
FζHE

2
γζ

[
U

(0)
ζ

1√
6aEm

+ U
(log)
ζ

Log( −2k
aEHE

)
√

6aEm
+ U

(k)
ζ

aEm

k3/2

]aB−
aB+

a(t) , (4.137)

with

U
(k)
ζ = −(25 + 49q)i

HE

24m
− 27

24
q, U

(log)
ζ =

√
2
m

HE

(
1− 5

2
q
)

U
(0)
ζ =

√
2
(

1− 3

2
q − 27

8
iq +

9HE

8m
(1− q) +

m

3HE

(
1− q − 9iq

))
U

(k)
ψ = −3

8

(√
3(1− q)HE

m
− 3q

)
, U

(0)
ψ = 1 +

9

2

HE

m
−
(3

2
− 27

8
i
)
q − 9

8

HE

m
q − 3i

mq

HE

.

We have also defined the constants γζ and γψ as the coefficients who comes from the

asymptotic form of the Bessel function Y0 on large length scales,

γζ =
1

2(1− 3q)

[
1 +

(
1−

√
2

HB+T
(1 +

t2B+

T 2
)

)
ln
aB+

a(t)

]
, (4.138)

γψ =
1

2(1− 3q)

[
1 +

[
1−
√

Υ

HB+

(1 + Υt2B+)

]
ln
aB+

a(t)

]
. (4.139)

Similarly, one can track the evolution of primordial tensor modes and determine

the matching relations. Comparing with the evolution of entropy perturbation, the

tensor fluctuations differ only in the mass term and the choice of initial conditions

which only affects the evolution before the Ekpyrotic phase. During and after the

phase of Ekpyrotic contraction, the evolution of entropy perturbations and tensor

fluctuations are described by the same equation of motion. Working at the level of

homogeneous solutions, the tensor fluctuations will have the same amplitude as vφ

at the end of the matter contraction phase (both come from a massless field that

has the same vacuum amplitude). Hence we conclude that the final amplitude of the
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tensor modes will be of the form,

ueh(k, τ) ' − iFψγψHE

4aE
√

2k3(2q − 3)

aB−
aB+

a(τ) , (4.140)

in the fast-roll expanding phase.
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Chapter 5
de Sitter Vacua in Type IIB String Theory: Classical Solutions and

Quantum Corrections
Keshav Dasgupta, Rhiannon Gwyn, Evan McDonough, Mohammed Mia, Radu

Tatar
Abstract

We revisit the classical theory of ten-dimensional two-derivative gravity coupled
to fluxes, scalar fields, D-branes, anti D-branes and Orientifold-planes. We show that
such set-ups do not give rise to a four-dimensional positive curvature spacetime with
the isometries of de Sitter spacetime. We further argue that a de Sitter solution in
type IIB theory may still be achieved if the higher-order curvature corrections are
carefully controlled. Our analysis relies on the derivation of the de Sitter condition
from an explicit background solution by going beyond the supergravity limit of type
IIB theory. As such this also tells us how the background supersymmetry should be
broken and under what conditions D-term uplifting can be realized with non self-dual
fluxes.
5.1 Introduction

The hot, dense state of the early universe and its subsequent evolution offer
a unique testing ground for theories of high-energy physics; if string theory is the
correct theory of the earliest universe, it should be possible to embed all the known re-
sults from cosmology in a consistent string theory description. Our best observational
data of the early universe, from the cosmic microwave background (CMB) [1–6], and
late time acceleration [7], point to a universe that is very close to spatially flat, in
which large-scale structure was generated from an almost scale-invariant spectrum
of primordial density perturbations with a nearly Gaussian distribution. This is con-
sistent with a large class of inflationary models [5], which we will have in mind here,
as well as a variety of alternatives to inflation [8–10].
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However, the dynamics of the early universe is necessarily studied via an effective
field theory (EFT) approach. Although one might expect a decoupling of energy
scales, leading to suppression of higher-order terms in the Lagrangian by increasing
powers of the cut-off, the predictions of inflation can be highly sensitive to corrections
of both the potential or inflaton mass [11] and the kinetic terms [12,13]. This forces
one to consider the UV sensitivity of inflation, which has been addressed from many
perspectives: see [11,14] for reviews, [15] for a recent take, and [16] for a completely
different approach. The dependence of cosmological observables on the detailed
embedding of inflation into string theory offers a unique window into the high-energy
physics of the early universe, and may provide evidence that string theory could be
the correct description of physics at these scales.

A consistent string compactification with a de Sitter (or quasi de Sitter) vacuum
in the 3+1 non-compact directions is crucial to such an embedding. Achieving such a
compactification has proved to be an extremely difficult endeavour. No-go theorems
exist for supergravity [17, 18] and for string theory (without time-dependent fields
or higher-curvature corrections), the well-known Maldacena-Nunez result [19]. This
was extended to the heterotic case with higher-order corrections (but without non-
perturbative effects) included [20,21].

In Type II string theory, dS solutions have been studied in many works, for
example [22–32]. In addition, many models of inflation in string theory have been
proposed (see the reviews by [11,14]), together with ‘uplift’ mechanisms for obtaining
dS [33–35] by lifting an AdS minimum of the scalar potential to a metastable dS
minimum.

In this paper, we revisit the question from the full ten-dimensional setup of
Type IIB string theory, generalizing the analysis of Maldacena-Nunez [19] by in-
cluding extended localized sources in the gravity action. In particular we consider
the traced-over Einstein equations, identifying the conditions for achieving de Sitter
space in the non-compact dimensions for the cases of fluxes, scalar fields and differ-
ent localized sources, e.g. D-branes, anti D-branes and orientifold planes, in Type
IIB with two-derivative gravity. We find that none of these ingredients satisfy the
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required condition, suggesting that one must consider additional terms in the gravity
action.

One example of such additional terms is the set of higher-order curvature correc-
tions. We perform an explicit calculation using an M-theory uplift, so as to simplify
the form of the available fluxes. To study the effect of curvature corrections, we are
forced to take an indirect route and instead consider a generalized correction to the
action. We make an ansatz for the stress-energy tensor of the perturbative correc-
tions, noting that the correction terms are built from curvatures. We explicitly find
that positive curvature in the non-compact directions is only possible if curvature
corrections are present and satisfy a certain inequality.

We further find that the fluxes in any dS solution must be non self-dual, as is
consistent with broken supersymmetry. These fluxes, combined with D-brane instan-
tons, are enough to fix both the complex structure and Kahler moduli, including the
volume modulus. In addition to this, the instantons are one possible source for the
curvature correction terms required to give positive curvature to the non-compact
space. We do not propose a specific form for these corrections, and as the complete
set of supported corrections is not yet known, further conclusions cannot be made
at this point.

The structure of this paper is as follows: Sections 2 and 3 rederive the Gibbons-
Maldacena-Nunez No-Go theorem, and apply it to bulk fields (fluxes and scalar fields)
and localized sources. In Section 4, we set up our M-theory calculation, which we
perform in Section 5. We then examine the resulting equations of motion in Section
6 and 7, and discuss the origin of higher order curvature corrections in Section 8.
We conclude our work with a short discussion of our results in Section 9.
5.2 Einstein gravity in D dimensions

Consider the following Einstein-Hilbert action coupled to matter in D spacetime
dimensions:

Stotal =
1

KD

∫
dDx

√
−GDRD +

∫
dDxLint, (5.1)

where KD is the D-dimensional Newton constant, RD is the Ricci scalar in D dimen-
sions, GD is the determinant of the D-dimensional metric gMN ,M,N = 0, .., D − 1,
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and Lint is the Lagrangian for the local or global fields that couple to gravity. It can
contain global fluxes, scalar fields, local sources and terms that describe graviton self
coupling. In the Einstein equations, Lint enters through the stress-energy tensor

TMN = − 2√
−GD

δLint

δgMN
. (5.2)

Variation of (5.1) with respect to gMN gives the following Einstein equation:

RMN =
KD
2

(
TMN −

1

D − 2
gMNT

)
, (5.3)

where T is defined in the usual way, i.e.

T = gMNTMN . (5.4)

Now we will split the geometry into two manifolds: M4, spanned by coordinates
xµ, µ = 0, .., 3 and a transverse space MD−4, spanned by coordinates xm,m =

4, .., D − 1. We want M4 to describe our four dimensional non-compact space-time
geometry and thus choose (x0, x1, x2, x3) = (t, x, y, z), where t is timelike. MD−4

can be either a compact or non-compact D − 4 dimensional manifold, described by
spacelike coordinates xm. We will often refer to xm and xµ as describing internal and
external directions respectively. The line element is

ds2
D = ds2

4 + ds2
D−4 ≡ gµνdx

µdxν + gmndx
mdxn. (5.5)

Now if the D-dimensional manifold has a direct product topology M4×MD−4, then
the Ricci scalar for M4 is:

R4 ≡ gµνRµν . (5.6)

If R4 > 0 we obtain a positive curvature spacetime, of which de Sitter space is one
example, as is consistent with our universe. Alternatively, if R4 < 0, we have Anti-de
Sitter type geometry, which is not consistent with the current universe.
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Taking the trace of (5.3) in the µ, ν directions, we get

R4 = − KD
2(D − 2)

[
T µµ (6−D) + 4Tmm

]
. (5.7)

Thus for a positively curved spacetime, i.e. R4 > 0, we must satisfy the condition:

(D − 6)T µµ > 4Tmm . (5.8)

Whatever the content of the Lagrangian, we must satisfy (5.8) if we are to obtain a
positively curved four-dimensional universe. If we do not have a direct product space,
but rather a warped product space, then the manifold cannot be nicely separated:
MD 6= M4×MD−4. However, we can still try to obtain an effective four-dimensional
space at low energies. In this case, the transverse dimensions are not accessible,
which is possible if the size ofMD−4 is small compared to the typical distance scale
of interactions in M4. We will separately address the case of a warped product space
in the context of type IIB string theory in Section 3.2, where we will again see that
the condition (5.8) plays a crucial role.

We can now proceed to analyse different choices for the Lagrangian.
5.2.1 Fluxes and scalar fields coupled to gravity

We can reproduce the No-Go theorem of Gibbons [17,18] and Maldacena-Nunez
[19] by including fluxes in the Lagrangian. We consider the flux Lagrangian

LFint = −
√
−GDFa1...aqF

a1...aq , (5.9)

where F is a q-form. The above Lagrangian leads to the following stress-energy
tensor:

T FMN = −gMNF
2 + 2qFMa2..aqF

a2...aq
N . (5.10)

One can readily check that with the above form of the tensor, condition (5.8) will be
satisfied if

4(1− q)F 2 > −Fµa2..aqF µa2..aqq (D − 2) . (5.11)
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We will consider two types of fluxes: the first type with legs only along the internal
directions and the second type with legs in M4. Also note that the overall minus
sign in the Lagrangian is chosen to give positive energy, i.e. T00 > 0. For the first
type of flux ai = m,n for all i and F 2 ≥ 0 with Fµa2..aqF

µa2..aq = 0. Thus we find
that condition (5.8) is not satisfied for q > 1.

If q < 4 then all the legs will be alongMD−4 since otherwise the isometries of
d = 4 Minkowski or de Sitter like space will be broken. Thus when we consider the
second type of flux which has legs inM4, we will restrict to the case q ≥ 4. For q ≥ 4

we will consider 4 out of q legs along M4 i.e. flux with legs in all the directions of
M4 and the rest of its legs along the internal directions. With this condition on the
fluxes, one obtains the following identities:

F 2 = Fa1a2..aqF
a1a2..aq = C(q, 4)Fµ1..µ4a5..aqF

µ1..µ4a5..aq

Fµa2..aqF
µa2..aq = C(q − 1, 3)Fµ1..µ4a5..aqF

µ1..µ4a5..aq , (5.12)

where the coefficient C(q, k) is defined by

C(q, k) ≡ q!

(q − k)!k!
. (5.13)

This in turn gives us

Fµa2..aqF
µa2..aq =

4

q
F 2. (5.14)

Using the above relation and the fact that F 2 < 0, condition (5.8) will be satisfied if
and only if

D < q + 1. (5.15)

Thus for D > q + 1, we find that a q-form flux with legs in M4 does not give rise
to positive curvature for M4. Any flux that preserves the desired isometries of M4

can be written as a combination of the two types of fluxes described above. Thus,
whatever the form of the flux, q-form flux for D > q+ 1 does not give rise to positive
curvature for M4, as was first demonstrated by Maldacena and Nunez [19].
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Next we consider scalar fields. The most general interaction Lagrangian for a
scalar field interacting with gravity is given by

Lφint = −
√
−GD

(
∂Mφ∂

Mφ+ V (φ)
)
. (5.16)

Note that the overall minus sign is chosen so that when V (φ) = 0 (for example
massless fields with only kinetic energy), we get positive energy, i.e. T00 > 0. The
stress-energy tensor is given by

T φMN = −gMN

(
∂Kφ∂

Kφ+ V (φ)
)

+ 2∂Mφ∂Nφ. (5.17)

Then with the stress-energy tensor given above, the only way (5.8) is satisfied
is if and only if

∂µφ∂
µφ+ V (φ) > 0. (5.18)

Now if we demand that the M4 is isotropic in space but dependent on time, we
readily find ∂µφ∂µ = gtt∂tφ∂tφ < 0 since gtt < 0. Thus if V (φ) < 0, M4 will not have
positive curvature. In type IIB string theory, which will be the focus of our study,
the scalar axio-dilaton field τ has no potential and thus will not aid in constructing
positive curvature.
5.2.2 Localized matter coupled to gravity

Another possibility for the interaction Lagrangian is that of localized matter.
For a p-dimensional object embedded in D-dimensional geometry, the most general
Lagrangian that couples to the metric is the worldvolume Born-Infeld Lagrangian:

LBI
int = −Tp

√
−f̃√gD−p−1δ

D−p−1(x− x̄), (5.19)

where f̃ is the determinant of the metric f̃ab, defined in the following way:

f̃ab = fab + F̃ab, fab = gMN
∂XM

∂σa
∂XN

∂σb
and F̃ab = Fab +Bab. (5.20)
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Here Tp is the tension, Fab is the worldvolume flux, Bab is the pullback of the back-
ground magnetic flux, a, b = 1, .., p+1, and F̃ab is raised or lowered with the pullback
metric fab. Also note that δD−p−1(x−x̄) is the (D−p−1)-dimensional delta function,
x = x̄ is the location of the p-dimensional object, and gD−p−1 is the determinant of
the (D − p− 1)-dimensional metric such that we have the normalization∫

dD−p−1x
√
gD−p−1δ

D−p−1(x− x̄) = 1. (5.21)

We have picked worldsheet parameters σa = xa, a = 0, .., p− 1. Tp can be considered
as mass per unit length and thus it is typically positive.

If the Lagrangian is of the form (5.19) with positive mass term, i.e. Tp > 0, one
obtains:

T µ (BI)
µ = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

µ′ν′ δf̃
ab

δgµ′ν′
δD−p−1(x− x̄) < 0

T m (BI)
m = −Tp

1√
−GD

√
−f̃√gD−p−1f̃abg

m′n′ δf̃
ab

δgm′n′
δD−p−1(x− x̄) < 0.(5.22)

Using (5.22) in (5.7) one readily sees that (5.8) is satisfied if D < 6. For D > 6

(5.8) is not automatically satisfied. In particular string theory gives D = 10 or 11
and thus we must have Tmm non-vanishing to obtain our four-dimensional positive
curvature universe.

String theory also allows negative tension objects, i.e. Tp < 0, and higher-
derivative terms in the low-energy effective action for gravity. Then, using the form
of the localized stress-energy tensor (5.22) and adding the contributions from the
fluxes, scalar fields and higher derivative terms, it may be possible to satisfy the
condition (5.8). We will discuss this possibility in Sections 4 to 8.
5.3 dS in Type IIB String Theory with Branes and Planes

With a general understanding of gravitational coupling to fluxes and localized
matter fields in D dimensions, we will now consider the specific case of low-energy
type IIB superstring theory with the following action in Einstein frame:

Stotal = SSUGRA + Sloc, (5.23)
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where

SSUGRA =
1

2κ2
10

∫
d10x

√
−G10

(
R− ∂Mτ∂

M τ̄

2|Imτ |2
− |F̂5|2

4 · 5!
− G3 · Ḡ3

12Imτ

)

+
1

8iκ2
10

∫
C4 ∧G3 ∧ Ḡ3

Imτ
. (5.24)

Here τ = C0 + ie−φ; G10 = det gMN ,M,N = 0, .., 9; gMN is the metric in Einstein
frame; G3 = F3 − τH3; F3 is the three-form RR flux, H3 is the three-form NS-NS
flux, and F̂5 is defined by

F̂5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (5.25)

For the localized action we will consider Dp-branes and orientifold planes in
various dimensions. The action for a Dp-brane is given by

SDp = −
∫
dp+1σ Tp e

φ(p+1)
4

√
−f̃ + µp

∫ (
C ∧ eF̂

)
p+1

. (5.26)

Here f̃ is the same as in (5.19) and Cp+1 is the RR flux. As above, F̃ab is raised or
lowered with the pullback metric fab. Note that the sign of µp determines whether we
have a brane or an anti-brane. However both branes and anti-branes have positive
tension Tp > 0.

On the other hand, for an orientifold, we have the action

SOp = −
∫
dp+1σ TOpe

φ(p+1)
4

√
−f + µOp

∫
Cp+1, (5.27)

where the orientifold has negative tension, i.e. TOp < 0. Here µp is the charge of the
Op-plane and we have the relation |TOp| = e−φ|µOp|. Also note that since the Op
plane has negative charge, we have µp = eφTOp = −eφ|TOp|.
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With the above localized action and the bulk supergravity action, we can write
(5.23) in the form (5.1) with the interaction Lagrangian being1

Lint = Lbulk + LDp + LOp

Lbulk =
√
−G10

(
−∂Mτ∂

M τ̄

2|Imτ |2
− |F̂5|2

4 · 5!
− G3 · Ḡ3

12Imτ

)

LDp = −Tpe
φ(p+1)

4

√
−f̃√gD−p−1δ

10−p−1(x− x̄)

LOp = |TOp|e
φ(p+1)

4

√
−f√gD−p−1δ

10−p−1(x− x̄). (5.28)

In the above K10 has been replaced by 2κ2
10. Using the above form of the Lagrangian

we can readily obtain the stress-energy tensor (5.2) and check whether the constraint
(5.8) is satisfied or not.

To evaluate the trace of the stress-energy tensor, we will restrict the form of the
fields to ensure Poincaré invariance in the non-compact spacetime. This way even
without solving for the on-shell values of the fluxes and metric, we can check whether
the inequality (5.8) is satisfied. These conditions are the following:

•The fluxes H3 and F3 only have legs along M6, and τ depends only on xm, the
coordinates ofM6.

• F̂5 will have legs in the xµ directions. Then by imposing self duality and Poincaré
invariance, one obtains the general form

F̂5 = (1 + ∗10) dα ∧ dt ∧ dx ∧ dy ∧ dz, (5.29)

where α(xM) is a scalar field which is a function of all coordinates xM ,M = 0, .., 9.

1 The topological term cannot enter the stress-energy tensor since δSCS

δgMN = 0 where

SCS = µp
∫ (

C ∧ eF̃
)
p+1

is the Chern-Simons action. Therefore we omit it in the

Lagrangians here. For Dp-branes F̂ is not generally zero but Op-planes do not carry
gauge fields, and have F̂=0.
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Having laid down the required conditions, we will now analyze the individual
cases with branes, anti-branes and orientifold planes.
5.3.1 Direct product space with Branes and Planes

We will first consider product spaces M10 = M4 ×M6 with branes and planes,
where the transverse space M6 can be either compact or non-compact. For p = 3,
we have D3 or anti-D3 branes which fill up M4. Thus the induced metric is

fab = gab, for a, b = µ, ν

fab = 0 for a, b 6= µ, ν. (5.30)

Then we find 2

T µ
µ (D3/D̄3)

= −T3e
φ

√
−f̃√g6
√
−G10

(
4 + F̂ µ

µ

)
δ6(x− x̄)

Tmm (D3/D̄3) = 0. (5.31)

However, since the flux F̂ is anti-symmetric while the metric is symmetric, F̂ µ
µ = 0.

Thus neither the D3 nor the anti-D3 brane tensor satisfies the constraint (5.8).
The results for D3 and anti-D3 branes can easily be generalized to Dp and anti-

Dp branes with p = 5, 7. For Poincaré invariance in the noncompact dimensions,
we will fill up M4 with the Dp or anti-Dp branes and the remaining worldvolume
will fill up some Sp−3 cycle inside the transverse space MD−p−1. If xm, xn denote
coordinates of the cycle Sp−3, then we have

fab = gab, for a, b = µ, ν,m, n

fab = 0 for a, b 6= µ, ν,m, n. (5.32)

2 Note that the upper indices here and elsewhere in this section have been raised
with the metric gMN , which is free of any warping in the case of a direct product
space . For the warped compactifications studied in later sections, we will make the
distinction between the warped metric and unwarped metric, where we introduce
‘tilded’ quantities, Ãm, that are defined with respect to the unwarped metric.
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And we obtain

T µ
µ (Dp/D̄p)

= −Tpe
φ(p+1)

4

√
−f̃√gD−p−1
√
−G10

(
4 + F̂ µ

µ

)
δD−p−1(x− x̄)

Tmm (Dp/D̄p) = −Tpe
φ(p+1)

4

√
−f̃√gD−p−1
√
−G10

(
p− 3 + F̂ u

u

)
δD−p−1(x− x̄). (5.33)

Again, the worldvolume flux F̂ is anti-symmetric while the metric is symmetric.
Hence F̂ µ

µ = 0. Using the form above, we can readily see that neither the Dp nor
anti Dp-brane stress-energy tensor satisfies the constraint (5.8) for p = 5, 7.

Now for the five-form flux: using self-duality, i.e. |F̂5|2 = 0, one finds that the
constraint (5.8) for the stress-energy tensor of the F̂5 will be satisfied if and only if

F̂µabcdF̂
µabcd > 0. (5.34)

However, using the form of the flux (5.29), it is straightforward to see that F̂µabcdF̂ µabcd <

0 and thus the constraint (5.8) is not satisfied by the five-form flux. Alternatively,
F̂5 can be written as a sum of two types of fluxes as described in section (5.2.1), and
again we arrive at the same conclusion.

Finally, using the condition that G3 has legs alongM6 and τ only depends on
xm, one finds that the stress-energy tensors for G3 and τ do not satisfy the constraint
(5.8). Since stress-energy tensors arising from fluxes, scalar fields or localized Dp or
anti-Dp branes individually do not satisfy the constraint (5.8), the total stress-energy
tensor for the entire system consisting of all these ingredients will also not satisfy
the constraint.

We can generalize the case for the localized Dp or anti-Dp branes to include
smeared Dp or anti-Dp branes along the compact directions.3 The only difference
in the smeared case is that the delta function in the stress-energy tensor (5.22) will

3 A discussion of smeared sources can be found in [37–39]. This procedure is a
way to incorporate the global nature of charge cancellation into the 10d equations
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be replaced by some distribution i.e. δ(x − x̄) → Γ(xm) > 0. Smearing the branes
in this fashion will allow one to compute the Ricci curvature on the brane, which
will be a finite quantity. Again, since Γ(xm) > 0, the stress-energy tensors will not
obey the constraint (5.8). In summary, we conclude that local or non-local branes
or anti-branes in the presence of global fields do not satisfy the condition (5.8) .

The only remaining case is the Op-planes. Orientifold planes are the loci of
fixed points of some discrete symmetry group, arising from a Z2 quotient of the
theory combining worldsheet orientation reversal with an involution on the spacetime
manifold [36]. The number of fixed points of this orientifolding then gives the number
of orientifold planes, which fill all the noncompact dimensions. They have no gauge
fields on their worldvolume, and have negative fractional charge and tension. As the
planes are fixed points of a symmetry group, their location in the internal space is
fixed and cannot be arbitrarily chosen. Thus the planes are essentially localized and
cannot be thought of as smeared objects.

To construct an explicit gravity solution, we consider the localized action for
the plane coupled with the bulk action. The tension of O3-planes taken to lie in M4

is given by

T µµ (O3) = 4|TO3|eφ
√
−f√g6√
−G10

δ6(x− x̄)

Tmm (O3) = 0, (5.35)

while for Op-planes with p = 5, 7, assuming as above that the spacetime directions
M4 are filled, we find

T µµ (Op) = 4|TOp|e
φ(p+1)

4

√
−f√gD−p−1√
−G10

δD−p−1(x− x̄)

Tmm (Op) = |TOp|e
φ(p+1)

4

√
−f√gD−p−1√
−G10

(p− 3) δD−p−1(x− x̄). (5.36)

of motion, which are inherently local. Not all ‘smeared’ solutions correspond to
solutions of the full 10d equations.
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Orientifolds have negative tension, T µµ (Op) > 0, so there is a possibility that
the constraint (5.8) might be satisfied when O-planes are included. However we will
see that this does not lead to positive curvature in four dimensions. To see this
first consider the Einstein equations arising from variation of the action (5.23) with
respect to the metric:

Rµν = −gµν

[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂µabcdF̂

abcd
ν

4 · 4!
+ κ2

10Nf

(
T loc
µν −

1

8
gµνT

loc

)
,

Rmn = −gmn

[
G3 · Ḡ3

48 Imτ
+

F̂ 2
5

8 · 5!

]
+
F̂mabcdF̂

abcd
n

4 · 4!
+
G bc
m Ḡnbc

4 Imτ
+
∂mτ∂nτ

2 |Imτ |2

+κ2
10

(
T loc
mn −

1

8
gmnT

loc

)
, (5.37)

where Nf is the number of localized objects contributing to Sloc. Since we are
considering manifolds which have the product form M10 = M4 ×M6, we have the
following form for the metric:

ds2 = gµν(x
µ)dxµdxν + gmn(xm)dxmdxn. (5.38)

With this metric ansatz, taking the trace of the first equation in (5.37) gives

R4(xµ) = −G3 · Ḡ3

12 Imτ
+
F̂µabcdF̂

µabcd

4 · 4!
+
κ2

10Nf

2

(
T µ loc
µ − Tm loc

m

)
. (5.39)

The left-hand side is independent of xm, and hence the right-hand side should be as
well. It follows that we can evaluate the right-hand side at any value of xm, and
so we are free to consider xm away from the localized Op-planes, where the local
O-plane stress-energy tensor gives zero. As we have already studied, the flux and
local or smeared Dp or anti-Dp brane contributions to R4 are negative definite. Thus
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we obtain

R4 ≤ 0. (5.40)

Since we have a product space M10 = M4 ×M6, R4 is the Ricci scalar of M4. Thus
we conclude that neither Dp-branes, anti-Dp branes, nor Op-planes, in the presence
of type IIB fluxes and scalar fields, give rise to positive curvature for M4.
5.3.2 Warped Product Manifold with Branes and Planes

Now we consider the more general case where the ten-dimensional manifold is
not a direct product space, but rather a warped product. We look for solutions to
(5.37) which take the following warped form:

ds2 = gµνdx
µdxν + gmndx

mdxn

= e2Ag̃µνdx
µdxν + e−2Ag̃mndx

mdxn, (5.41)

where A(xm) is a scalar function, g̃µν(xµ) is independent of internal coordinates xm

while g̃mn(xm) depends on xm . Now, using the ansatz (5.41) for the metric, we get

Rµν = R̃µν − g̃µνe4AÕ2A, (5.42)

where the Laplacian is defined as

Õ2 = g̃mn∂m∂n + ∂mg̃
mn∂n +

1

2
g̃mng̃pq∂ng̃pq∂m, (5.43)

and R̃µν is the Ricci tensor for the metric g̃µν . Since the geometry is not a direct
product, there is no notion of a separate four-dimensional space at all energies. If
the internal space is compact and small, then at low energies we effectively have
a four-dimensional non-compact space M̃4 with metric g̃µν . Then the condition
R̃4 = g̃µνR̃µν > 0 states that M̃4 has positive curvature. Thus, for a warped product
geometry with metric of the form (5.41), we will restrict to the case where M6 is
compact and look for local and global fields in ten-dimensional type IIB theory that
can give rise to M̃4 with positive curvature.
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We take the trace of the first equation in (5.37) and use the relation (5.42) to
get

Õ2e4A = R̃4 +
e2AG3 · Ḡ3

12 Imτ
− e2AF̂µabcdF̂

µabcd

4 · 4!
+ e−6A∂me

4A∂me4A

+
κ2

10

2
e2A
(∑

i

[
Tmm (Op/Ōp)i − T

µ

µ (Op/Ōp)i

]
+
∑
j

[
Tmm (Dp/D̄p)j − T

µ

µ (Dp/D̄p)j

] )
.

(5.44)

Here T a
a (Op/Ōp)i

denotes the trace of the stress-energy tensor of the Op or anti-Op
planes localized at x̄i, and similarly T a

a (Dp/D̄p)j
denotes the trace of the stress-energy

tensor of the Dp or anti-Dp branes at ȳj. The fluxes, branes, and planes, are related
globally by charge cancellation, although we will not discuss the precise details here.
We can integrate (5.44) over the compact internal manifold M̃6 (which has the metric
g̃mn) to get

0 = Ṽ6R̂4 +

∫
d6x

√
g̃6Iglobal +

∫
d6x

√
g̃6

[κ2
10

2
e2A
(∑

i

[
Tmm (Op/Ōp)i − T

µ

µ (Op/Ōp)i

]
+
∑
j

[
Tmm (Dp/D̄p)j − T

µ

µ (Dp/D̄p)j

] )]
, (5.45)

where we have defined Iglobal and Ṽ6 as

Iglobal ≡
e2AG3 · Ḡ3

12 Imτ
− e2AF̂µabcdF̂

µabcd

4 · 4!
+ e−6A∂me

4A∂me4A ≥ 0,

Ṽ6 ≡
∫
d6x
√
g̃6 > 0. (5.46)

Since Op and anti-Op planes are localized objects, they give rise to physical singu-
larities in the manifold. The metric is not well defined at these singular points and
thus when we integrate over the manifold, we exclude these singular points. The
local stress-energy tensor for both Op and anti-Op planes is zero away from these
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singular points, and hence they do not contribute to the volume integral:∫
d6x

√
g̃6
κ2

10

2
e2A
[
Tmm (Op/Ōp)i − T

µ

µ (Op/Ōp)i

]
= 0. (5.47)

Similarly, localized Dp and anti-Dp branes will also not contribute to the integral.
However, one can smear the Dp or anti-Dp branes alongM6 and then the integral
will not be zero. As discussed in the previous section, Tm

m (Dp/D̄p)
− T µ

µ (Dp/D̄p)
≥ 0,

and thus we get

R̃4 ≤ 0. (5.48)

In summary, neither Dp nor anti-Dp branes with arbitrary worldvolume fluxes in
the presence of type IIB fluxes and scalar fields result in positive curvature in four
dimensions. Moreover, even Op or anti-Op planes with negative tension do not give
rise to positive curvature. Hence we look for higher-derivative gravity terms which
also arise in string theory.
5.4 Curvature Corrections and Background Solutions from M-theory

In the above sections we have argued that it is impossible to get a four-dimensional
de Sitter spacetime in a ten-dimensional two-derivative gravity coupled to fluxes,
scalar fields, D-branes, anti D-branes and Orientifold-planes. However string theory
can have higher-curvature corrections which, as we show below, could indeed help us
to overcome the no-go theorem.

The analysis thus far has been done solely in the context of Type IIB string
theory. However, the full set of quantum corrections in IIB is not known, and in
addition there are many fields present which can complicate the analysis. To make
the computations easier, we work in M-theory, where the bosonic field content is just
the metric, gMN , and the three-form, CMNP , and make an ansatz for the form of the
stress-energy tensor arising from any curvature corrections, given in (5.70). A T 2
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reduction of M-theory in the limit when the torus size goes to zero, will reproduce
the answer for Type IIB theory.4

We begin by setting up the M-theory uplift of the IIB system we are interested
in. The action for M-theory is given by

S = Sbulk + Sbrane + Scorr, (5.49)

where Sbulk is the standard supergravity action for M-theory with a 3-form flux C
and corresponding field strength G4, Sbrane is the contribution from M2-branes, and
Scorr is a curvature correction to the action. The supergravity and brane actions are
given by

Sbulk =
1

2κ2

∫
d11x

√
−g
[
R− 1

48
G2

]
− 1

12κ2

∫
C ∧G ∧G, (5.50)

Sbrane = −T2

2

∫
d3σ
√
−γ
[
γµν∂µX

M∂νX
NgMN − 1 +

1

3!
ε̃µνρ∂µX

M∂νX
N∂ρX

PCMNP

]
,

(5.51)
where T2 is the tension of the M2-brane, XM denotes the worldsheet coordinates of
the brane, γµν is the induced metric on the brane, and we have assumed a minimal
coupling of the brane to the fluxes.

The corrections to the action are of the form Rn or Gn (or a combination
thereof)5 and can come from several sources: instanton corrections, tree level α′

corrections, and loop corrections. We delay a proper discussion of the Rn terms
to Section 5.8. To study the effect of these corrections, we first assume that Scorr
has two types of contributions: those that depend on the metric and are therefore
non-topological, which we denote Ŝntop, and those that are topological and do not

4 Earlier studies using EOMs but without invoking quantum corrections may be
found in [41].

5 See for example [42] for more detail, up to four-point amplitudes, on this.
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depend explicitly on the metric, Ŝtop. In other words we have

Scorr = Ŝntop + Ŝtop, (5.52)

where Ŝtop can depend on the topological classes constructed out of the curvature
form R.

Both sets of corrections depend on the curvatures RMNPQ and GMNPQ of the
metric gMN and the three-form field CMNP respectively, and we brand them curvature
corrections. The contributions to Ŝntop and Ŝtop at lowest order in α′ are known
(see [44] for example, as well as Section 8) and using these we can express Ŝntop and
Ŝtop as

Ŝtop = −T2

∫
C ∧X8 + Stop(R,G)

Ŝntop =
T2

9.213 · (2π)4

∫
d11x
√
−g
(
J0 −

1

2
E8

)
+ Sntop(R,G), (5.53)

where X8 is the curvature correction eight-form built completely with curvature two-
form, such that C ∧X8 is a gravitational Chern-Simons term required to cancel the
anomaly on the fivebrane worldvolume [46]; and J0 and E8 are given in [44]. The
additional contributions Sntop and Stop are functions of both the curvatures (R,G).
Some details of Sntop and Stop have been worked out and they are given in [42] and [43]
respectively. We will give a more complete discussion in Section 8.

In Section 5.5 we will make an ansatz for the variation of the correction terms
with respect to the metric, which acts as an effective stress-energy tensor TMN

corr ,
rather than deal with the action of the correction terms directly. In other words, we
will make an ansatz for

TMN
corr ≡ −

2√
−g

δScorr
δgMN

∣∣∣
g,C

= − 2√
−g

δŜntop
δgMN

∣∣∣
g,C

, (5.54)

where the subscript denotes a given choice of the metric and the three-form flux.
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From the action (5.49), we obtain three key equations which govern the evolution
of the system. The first is the Einstein equation,6

RMN − 1

2
gMNR = TMN , (5.55)

where TMN is the total stress-energy tensor coming from fluxes, brane sources and
quantum or curvature corrections, and which we compute in Section 5.5. The second
is the flux equation [44],

d ∗11 G =
1

2
G ∧G+ 2κ2 (T2X8 + ∗11J) + SG, (5.56)

where J is the source term coming from n3 M2-branes, ∗11 is the Hodge star with
respect to the warped metric unless mentioned otherwise, and SG is the contribution
from Sntop and Stop in (5.53) that we will discuss later.

The third equation is the M2-brane equation,

�XP + γµν∂µX
M∂νX

NΓPMN =
1

3!
εµνρ∂µX

M∂νX
N∂ρX

QGP
MNQ, (5.57)

where εµνρ =
√
−γε̃µνρ. The source term at a spacetime position x is related to the

spacetime position X of the brane, and is given by

JPQR(x) =
2κ2n3T2√
−g

∫
d3σ
√
−γε̃µνρ∂µXP∂νX

Q∂ρX
Rδ11(x−X). (5.58)

We would like to find a solution to these equations that is conformally de Sitter when
brought to IIB, such that the IIB metric can schematically be written as

ds2 =
1

t2c
ηµνdx

µdxν + ds2
internal, (5.59)

6 We are assuming that the volume of the internal fourfold is large so that an
equation like (5.82) can be used to describe the metric there. This brings us to the
issue of moduli stabilization, which will be discussed towards the end of Section 7.
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where the time coordinate tc is conformal time, usually denoted τ or η, which in the
de Sitter space is related to physical time by

tc ∼ e−tphys . (5.60)

It follows that the infinite future (tphys → ∞) is given by the limit tc → 0, as is
the case during inflation. From this point onward we will drop the subscript c, and
denote conformal time as t.

We make the following ansatz for the metric in M theory:

ds2 =
1

(Λ(t)
√
h)4/3

(−dt2 + ηijdzidzj) + h1/3

[
g̃mndy

mdyn

(Λ(t))1/3
+ (Λ(t))2/3|dz|2

]
≡ e2A(y,t)(−dt2 + ηijdzidzj) + e2B(y,t)g̃mndy

mdyn + e2C(y,t)|dz|2, (5.61)

where i, j = 1, 2, g̃mn is the unwarped metric, A,B and C are warp factors that can
be written in terms of Λ(t) and h(ym), which we leave unspecified for the moment,
and

dz ≡ dx3 + idx11, (5.62)

so that the only time dependence in the system comes from Λ(t). Specifically, the
internal eight-dimensional manifold only depends on time via the warp factor Λ(t)

as we saw earlier, i.e.

ds2
8 =

g̃mndy
mdyn

Λ1/3(t)
+ Λ2/3(t)|dz|2. (5.63)

This ansatz is chosen as the M-theory uplift for the solution we want to obtain in
Type IIB, i.e. by shrinking the torus specified by coordinates (z, z̄) or (x3, x11) to zero
size one may recover type IIB theory. It is a generalization of the ansatz considered
in [44], and describes a system of M2-branes moving towards orbifold singularities
of the torus fibration of the fourfold (where the D7 fluxes are localized). This was
developed as a first step towards an M theory uplift of D3/D7 [45].
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The IIB metric that follows from dimensional reduction of the M theory metric
(5.61) is given by

ds2 =
1

Λ(t)
√
h

(−dt2 + ηijdzidzj + dx2
3) +
√
hg̃mndy

mdyn, (5.64)

so that, taking Λ(t) = Λ|t|2 (taking the absolute value to avoid any imaginary warp-
ing in the M-theory metric), we obtain

ds2 =
1

Λt2
√
h

(−dt2 + ηijdzidzj + dx2
3) +
√
hg̃mndy

mdyn. (5.65)

For this to be a dS solution, we demand that Λ be strictly positive. We also require
a suitably well-behaved functional form for h(y), to avoid any pathology. However,
for our purposes, we will leave its functional form to be completely general.

Turning now to the flux equations, the equation for the G-fluxes can be rewritten
as:

DM

(
GMPQR

)
=

1√
−g

ε̃PQRM1....M8

[
1

2 · (4!)2
GM1....M4GM5....M8 +

2κ2T2

8!
(X8)M1....M8

]
+

2κ2T2n3√
−g

∫
d3σε̃µνρ∂µX

P∂νX
Q∂ρX

Rδ11(x−X) +
1√
−g

(
δSntop
δCPQR

+
δStop
δCPQR

)
.

(5.66)

The above equation is in general hard to deal with because of the quantum corrections
etc. However the the G-fluxes are related to the membrane motion via the membrane
EOM. In the limit where the membrane motion is very slow, γµν , which is the pull-
back metric, is simply equal to the spacetime metric given in (5.61). This implies

Gmµνρ = ∂m

(
ε̃µνρ
hΛ(t)2

)
, (5.67)

which shows that the spacetime part of the three-form field Cµνρ should be time-
dependent to maintain a metric of the form (5.61) with a membrane fixed at a
point on the eight-dimensional internal space. However to solve all the background
equations we need more flux components. Let us then switch on the following three
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additional G-fluxes:

Gmnpq ≡ 4∂[mCnpq], Gmnpa ≡ 3∂[mCnpa], Gmnab ≡ 2∂[mCnab]. (5.68)

To add some flexibility to the equations we seek to solve, and since we generically
expect a mix of time-dependent and time-independent fluxes, we assume that the
components Gmnpa are time independent, whereas all other fluxes depend on the
internal coordinates ym, as well as on (a, b) – i.e. on (x3, x11) – and the time t.
5.5 The Einstein Equations

In what follows we solve the Einstein equations (5.82) by including the general
form of the stress-energy tensor TMN in Section 5.5. This way we will be able to
tabulate all the equations for the metric components satisfying (5.61), in Section
5.6. Subsequently, in Section 5.7, we study the flux equations (5.56) and resulting
consistency conditions.
5.5.1 General Form of The Stress-Energy Tensor

Like the action, the stress-energy tensor has 3 contributions:

TMN = TMN
G + TMN

corr + TMN
B , (5.69)

where G is for G-flux, corr is for correction, and B is for brane. As discussed
in Section 5.4, we will study the effect of higher-order curvature corrections to the
action by making an ansatz for the resulting T corrMN . Since our goal is to study solutions
that are de Sitter in the non-compact dimensions, we are primarily concerned with
tracking the time dependence of each component of the action and resulting Einstein
equation. In line with this, we choose an ansatz for T corrMN that allows us to keep track
of the time dependence. The stress-energy contributions are then given by

TMN
G =

1

12

[
GMPQRGN

PQR −
1

8
gMNGPQRSGPQRS

]
(5.70)

TMN
B (x) = −κ

2T2n3√
−g

∫
d3σ
√
−γγµν∂µXM∂νX

Nδ11(x− xb) (5.71)

TMN
corr =

−2√
−g

δŜntop
δgMN

∣∣∣
g,C
≡
∑
i

[Λ(t)]αi+1/3CMN, i, (5.72)
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where again xb is the spacetime position of the brane (which is generically time
dependent), and we have defined

CiMN = gMN C̃i − 2
δC̃i
δgMN

. (5.73)

In the following sections we will attempt to search for solutions, by separately exam-
ining the mn, ab, and µν components of the Einstein equation. Note that the scalars
C̃i are defined in terms of the unwarped metric, such that the only dependence on
warp factors in CMN comes from the explicit factors of the warped metric gMN .
5.5.2 Internal (m,n) components

We will start with the internal (m,n) components along the six-dimensional
base. Two set of equations need to be solved now: the Einstein equation and the flux
equation. For the Einstein equation we need the Einstein tensor from the M-theory
metric (5.61). The Ricci tensor Rmn is given by

Rmn = R̃mn + 3
[
2∂(mA∂n)B − ∂mA∂nA− g̃mn∂kA∂kB

]
+ 4

[
∂mB∂nB − g̃mn∂kB∂kB

]
−3D(m∂n)A− 2D(m∂n)C + 2

[
2∂(mC∂n)B − ∂mC∂nC − g̃mn∂kC∂kB

]
−4D(m∂n)B − g̃mn�B + e2(B−A)

[
B̈ + ȦḂ + 6Ḃ2 + 2ĊḂ

]
g̃mn, (5.74)

and the warped curvature scalar R is given by

R = −e−2B [10�B + 6�A+ 4�C + 20∂mB∂
mB]− 3e−2B [4∂mA∂

mA+ 8∂mA∂
mB]

−2e−2B [3∂mC∂
mC + 8∂mB∂

mC + 6∂mA∂
mC] + e−2B R̃

+2e−2A
[
6B̈ + 2Ä+ 2C̈ + 21Ḃ2 + 6ȦḂ + 12ĊḂ + 2ȦĊ + Ȧ2 + 3Ċ2

]
, (5.75)

where remaining raising and lowering operations are done by the unwarped internal
metric g̃mn. The Einstein tensor Gmn is found to be

Gmn = G̃mn −
∂mh∂nh

2h2
+ g̃mn

[
∂kh∂

kh

4h2
− 6Λh

]
, (5.76)

where Λ is the coefficient of t2 in Λ(t), and hence the above expression is independent
of time.
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To study the stress-energy tensor from the G-fluxes we have to first express the
various components of the G-fluxes GMNPQ in terms of their unwarped components
G̃MNPQ as:

G012m = G̃012m[Λ(t)]13/3h5/3, G012a = G̃012a[Λ(t)]10/3h5/3

G0mna = G̃0mna[Λ(t)]4/3h−1/3, G0mab = G̃0mab[Λ(t)]1/3h−1/3

Gmnpa = G̃mnpa[Λ(t)]1/3h−4/3, Gmnab = G̃mnab[Λ(t)]−2/3h−4/3

G0mnp = G̃0mnp[Λ(t)]7/3h−1/3, Gmnpq = G̃mnpq[Λ(t)]4/3h−4/3 (5.77)

where what we have done here is to simply isolate the warp factor dependences
of GMNPQ and express its components in terms of G̃MNPQ. This also means that
GMNPQ ≡ G̃MNPQ by definition. We can also isolate the warp factor from the metric
and write the determinant as

det g = −[Λ(t)]−14/3h2/3det g̃. (5.78)

The stress-energy tensor is easily expressed in the language of the unwarped G-fluxes
(5.77) and the determinant (5.78):

T (G)
mn = g̃mn

∂kh∂
kh

4h2
− ∂mh∂nh

2h2
+

1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
(5.79)

+
Λ(t)

12h

[
G̃mlkrG̃

lkr
n − 1

8
g̃mnG̃pklrG̃

pklr

]
+

1

4hΛ(t)

[
G̃mlabG̃

lab
n − 1

4
g̃mnG̃pkabG̃

pkab

]
.

The stress-energy tensor from the membrane (M2 brane) will not contribute however.
This is because the stress-energy tensor, given by [44],

T (B)
mn = −κ2T2n3g̃pmg̃qn

h1/3[Λ(t)]5/3√
g̃

∫
d3σ
√
−γγµν∂µXp∂νX

qδ11(x−X), (5.80)

where g̃ is the determinant of the metric in the m,n directions, vanishes in the limit
where the membrane motion is very slow. The only other contribution will be from
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the correction terms, which, using gmn = e2B g̃mn, gives

T corrmn = h1/3
∑
i

[Λ(t)]αi C̃imn. (5.81)

The equation that we need to solve now is

Gmn = T (G)
mn + T corrmn . (5.82)

This can be split into a time-independent piece,

G̃mn − g̃mn6Λh =
1

4h

[
G̃mlkaG̃

lka
n − 1

6
g̃mnG̃pklaG̃

pkla

]
+ h1/3

∑
αi=0

C̃imn, (5.83)

where we made use of our assumption that the Gmnpa are time independent, and a
time-dependent piece given by

Λ(t)

12h

[
G̃mpqrG̃

pqr
n − 1

8
g̃mnG̃pqrsG̃

pqrs

]
+

1

4hΛ(t)

[
G̃mpabG̃

pab
n − 1

4
g̃mnG̃pqabG̃

pqab

]
+h1/3

∑
αi 6=0

[Λ(t)]αi C̃imn = 0. (5.84)

Note that at this stage the only possible way Gmnpr and Gmnab can also be time
independent and yet still satisfy (5.116) is if the αi are allowed to take the values

αi = (1,−1, 0, 0, ....0). (5.85)

It is not clear we can have this condition for our case, and so we will assume that
the only time-independent components of the G-fluxes are Gmnpa.
5.5.3 Internal (a, b) components

The Ricci tensor for the (a, b), i.e. the x3 and x11 components, is given by

Rab = −δabe2(C−B) [�C + 3∂mC∂
mA+ 4∂mC∂

mB + 2∂mC∂
mC]

+δabe
2(C−A)

[
C̈ + ȦĊ + 6ĊḂ + 2Ċ2

]
, (5.86)
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which can be used to compute the Einstein tensor Gab. For the M-theory metric
(5.61), Gab is given by

Gab = δabΛ(t)

[
−R̃

2
− 9hΛ +

g̃pk∂ph∂kh

4h2

]
, (5.87)

where we note that there is an overall time dependence given by Λ(t). The stress-
energy tensor due to the fluxes is given by

T (G)
ab =

Λ(t)

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2
+ δab

3g̃mp∂mh∂ph

h

]

+
1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h
G̃mnpqG̃

mnpq.(5.88)

The interesting thing about the above formula is that the time dependence of the
first term (involving G̃mnpa) is exactly the same as the time dependence of the Gab.
This means that the G̃mnpa components can remain time independent, as we had
earlier. The correction term contribution to the stress-energy tensor for the (a, b)

directions is

T corrab = h1/3
∑
i

[Λ(t)]αi+1C̃iab. (5.89)

As before, we can write the resulting Einstein equation as a time-independent ex-
pression (where we collect the terms linear in Λ(t)):(

R̃

2
+ 9hΛ

)
δab +

1

12h

[
G̃amnpG̃

mnp
b − δab

G̃mnpcG̃
mnpc

2

]
+h1/3

∑
αi=0

C̃iab = 0, (5.90)

and a time-dependent expression:

1

4h

[
G̃acmnG̃

cmn
b − 1

4
δabG̃mncdG̃

mncd

]
− δab

[Λ(t)]2

4 · 4!h
G̃mnpqG̃

mnpq
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+h1/3
∑
αi 6=0

[Λ(t)]αi+1 C̃iab = 0. (5.91)

Once again, we must assume Gmnpq and Gmnab are time dependent in such a way as
to solve (5.91). Thus the conclusion of this section is perfectly consistent with the
conclusions of the previous section.
5.5.4 Spacetime (t, z1, z2) components

We now study the spacetime components. The curvature tensors R00 and Rij

are given by

Rij = −ηije2A−2B [�A+ 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.92)

+
(
Ä+ 6ȦḂ + Ȧ2 + 2ȦĊ

)
ηij

R00 = e2A−2B [�A+ 3∂mA∂
mA+ 4∂mA∂

mB + 2∂mA∂
mC] (5.93)

−
[
2Ä+ 6(B̈ + Ḃ2 − ȦḂ) + 2(C̈ + Ċ2 − ȦĊ)

]
, (5.94)

using which the Einstein tensor Gµν is found to be

Gµν = − ηµν
Λ(t)

[
R̃

2h
+
g̃mk∂kh∂mh

4h3
− �h

2h2
+ 3Λ

]
, (5.95)

where we see that the overall time dependence is provided by 1/Λ(t). The above
equation should be balanced by the stress-energy tensor from the G-flux and correc-
tions, as well as from the membrane. The latter term is there because the almost
static membrane does contribute to the stress-energy tensor along the spacetime
directions.

The stress-energy tensor from the G-flux is given by

T (G)
µν = −ηµν

[
(∂h)2

4Λ(t)h3
+
G̃mnpaG̃

mnpa

4!Λ(t)h2
+
G̃mnpqG̃

mnpq

4 · 4!h2
+
G̃mnabG̃

mnab

16h2[Λ(t)]2

]
.(5.96)

As expected, T (G)
µν has a piece that scales as 1/Λ(t), so we should be able to maintain

the time independence of the Gmnpa components.
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The stress-energy tensor coming from the correction terms can be found to be

T corrµν = h−2/3
∑
i

[Λ(t)]αi−1C̃iµν . (5.97)

Finally we will need the stress-energy tensor for the static membrane. The EOM of
the worldvolume metric gives us, in the case where the brane is moving very slowly,

γµν = ∂µX
M∂νX

NgMN ≈ gµν =
ηµν

[Λ(t)
√
h]4/3

. (5.98)

Using this we can show that the stress-energy tensor is given by

T (B)
µν = − κ2T2n3

h2Λ(t)
√
g̃
δ8(x−X)ηµν , (5.99)

which is again suppressed by 1/Λ(t), confirming the time independence of the com-
ponents Gmnpa.

Again, we can split the full Einstein equation into a time-independent part:(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2T2n3

h2
√
g̃
δ8(x−X)− 1

3h2/3

∑
{αi}=0

C̃µ,iµ (5.100)

where we have traced over the µ, ν components using ηµν , and a time-dependent
part:

ηµν

[
G̃mnpqG̃

mnpq

4 · 4!h2
+
G̃mnabG̃

mnab

4!h2Λ(t)2

]
− 1

h2/3

∑
{αi}6=0

[Λ(t)]αi−1C̃iµν = 0. (5.101)

5.6 Analysis of the EOMs and Consistency Conditions
We have now split the Einstein equations into 6 equations, 3 of which are time

dependent, and 3 of which are time independent. To deduce the properties of these
equations, it suffices to look at the traced over form of each. The traced-over time
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independent equation for the spacetime (µ, ν) components is(
R̃

2h
− �h

2h2
+ 3Λ

)
=
G̃mnpaG̃

mnpa

4!h2
+
κ2n3T2δ

8(x−X)

h2
√
g̃

− 1

3h2/3

∑
{αi}=0

C̃µ, iµ ,(5.102)

whereas for the internal (m,n) components, it is

36hΛ + h1/3
∑
{αi}=0

C̃m, im = G̃m
m. (5.103)

Note that the flux contribution in (5.83) is traceless, so it doesn’t appear in the above
equation. Finally, for the internal (a, b) components the trace equation is

R̃

2
+ 9hΛ +

h1/3

2

∑
{αi}=0

C̃a, ia = 0, (5.104)

where again the flux contributions from (5.90) do not enter. The last two equations,
(5.103) and (5.104), are quite similar and can be rewritten as∑

{αi}=0

C̃m, im = − 2

h1/3
(R̃ + 18hΛ), (5.105)

∑
{αi}=0

C̃a, ia = − 1

h1/3
(R̃ + 18hΛ), (5.106)

from which we can read off that∑
{αi}=0

C̃m, im = 2
∑
{αi}=0

C̃a, ia . (5.107)

Using (5.103) and (5.104) we can also write

R̃ = −18hΛ− h1/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im

 , (5.108)
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which allows us to rewrite the constraint (5.102) as

−�h =
G̃mnpaG̃

mnpa

12
+ 12h2Λ +

2κ2n3T2δ
8(x−X)√
g̃

+h4/3

1

2

∑
{αi}=0

C̃ a, i
a +

1

4

∑
{αi}=0

C̃ m, i
m − 2

3

∑
{αi}=0

C̃ µ, i
µ

 . (5.109)

There are three further equations that arise from (5.90) in the limit when a 6= b,
a = b = 3 and a = b = 11 respectively. These are

G̃amnpG̃
mnp
b + 12h4/3

∑
{αi}=0

C̃iab = 0,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = 24h4/3

∑
{αi}=0

(
1

2
C̃a, ia − C̃i33

)
,

G̃3mnpG̃
mnp
3 − G̃11,mnpG̃

mnp
11 = −24h4/3

∑
{αi}=0

(
1

2
C̃a, ia − C̃i11,11

)
. (5.110)

If we now consider integrating equation (5.109) over the compact eight-dimensional
manifold, we see that the LHS integrates to zero, and we get

0 =
1

12

∫
d8x
√
g̃ G̃mnpaG̃

mnpa + 12Λ

∫
d8x
√
g̃ h2 + 2κ2T2n3

+

∫
d8x
√
g̃h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

 . (5.111)

In the absence of fluxes and higher-curvature corrections the above equation implies
that the simplest solution will be Λ = 0, i.e. a four-dimensional Minkowski space.
In the presence of fluxes, and in the presence or absence of the higher-curvature
corrections, it is not difficult to see that the Λ < 0 solution is favored. However
to allow a Λ > 0 solution from (5.111), it is at least necessary to have the higher
curvature corrections, because the first three terms in (5.111) are positive definite.
Moreover, if all the curvature corrections in (5.111) add up to some positive value, a
Λ > 0 solution will again be impossible.
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This means that for a Λ > 0 solution to exist, the curvature terms in (5.111)
should integrate to a negative definite value. This conclusion should be valid for
all possible choices of the warp factor h and the internal metric g̃mn. In particular,
for certain choices of the fluxes the warp factor may be localized over a small patch
on the internal manifold (for example like a M2-brane solution). Then the integral
condition on the higher-curvature terms will have to be realized at every such patch
on the internal manifold. On a small patch, since there is no local transformation
that can make the metric flat everywhere, C̃M, i

M can be viewed as the expectation or
the average value on the patch, or more explicitly:

〈C̃M, i
M 〉 ≡

∫
d8x
√
g̃ h4/3C̃M, i

M . (5.112)

In other words, for a solution to exist we must have the following condition

1

2

∑
{αi}=0

〈C̃a, ia 〉+
1

4

∑
{αi}=0

〈C̃m, im 〉 − 2

3

∑
{αi}=0

〈C̃µ, iµ 〉 < 0. (5.113)

Since T corrmn ∼ C̃i
mn, this equation is almost analogous to (5.8) but expressed in the

language of curvature corrections.7 This makes sense because only these corrections
will allow us to overcome the Gibbons-Maldacena-Nunez [17–19] no-go theorem. Un-
der this assumption, (5.113) gives non-trivial constraints on the curvature corrections
required to have a four-dimensional de Sitter solution in Type IIB theory.

7 One subtlety however is that this constraint arises from the Einstein equations of
an 11-dimensional M theory, in which µ runs from 0 to 2, while in (5.8) it runs from
0 to 3, so the numerical factors are not expected to be the same in both expressions.
We would have to redo the calculation in IIB to get the same expression. However in
both cases the condition is that the four-dimensional curvature upon compactification
be positive.
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The curvature terms may be further constrained if we look at the time-dependent
equations. These equations are

G̃mnpqG̃
mnpq

4
+
G̃mnabG̃

mnab

Λ(t)2
= 8h4/3

∑
{αi}6=0

[Λ(t)]αi−1C̃µ, iµ , (5.114)

G̃acmnG̃
acmn − [Λ(t)]2

6
G̃mnpqG̃

mnpq = −8h4/3
∑
αi 6=0

[Λ(t)]αi+1 C̃a, ia , (5.115)

Λ(t)

6
G̃pqrsG̃

pqrs − 1

Λ(t)
G̃mpabG̃

mpab = −8h4/3
∑
αi 6=0

[Λ(t)]αi C̃m, im . (5.116)

From the first equation above, and noting that both the terms on the LHS are
positive definite, we deduce one new condition on the corrections by integrating over
the eight-dimensional manifold: ∑

{αi}6=0

aαi〈C̃µ, iµ 〉 > 0, (5.117)

where a ≡ Λ(ta) for a fixed ta. In fact (5.117) will be an infinite set of constraints
because, due to its time dependence, aαi can take any (positive) values including
arbitrary fractional numbers. Note that

〈C̃µ, iµ 〉 > 0 (5.118)

will always solve (5.117) if the αi appearing in (5.117) are not equal to each other.
However a generic statement cannot be made unless we actually solve all the EOMs.
In view of that we will only demand (5.117) as our constraint equation. The other
two equations involve relative signs and therefore tell us nothing about the signs of∑
{αi}6=0 C̃a, ia or

∑
{αi}6=0 C̃m, im .
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In total we have the following conditions on the form of the corrections:

1

2

∑
{αi}=0

〈C̃a, ia 〉+
1

4

∑
{αi}=0

〈C̃m, im 〉 < 2

3

∑
{αi}=0

〈C̃µ, iµ 〉, (5.119)

∑
{αi}6=0

aαi〈C̃µ, iµ 〉 > 0. (5.120)

5.7 Analysis of the background fluxes and additional consistency checks
The above set of conclusions was derived by analyzing the Einstein’s equations

alone. The next question is whether any conclusions are altered when the equations
of motion for the G-fluxes are taken into account. Before moving ahead with the
exact flux equations, we will do a more careful analysis of the background fluxes to
see how the type IIB fluxes should be viewed from our choices of the M-theory fluxes.
Imagine we rewrite the flux components in M-theory as [45]:

G̃ = Gµνρmdx
µ ∧ dxν ∧ dxρ ∧ dxm + G̃mnqadxm ∧ dxn ∧ dxq ∧ dxa +

N∑
i=1

F i ∧ Ωi,

(5.121)

where we have taken the time-dependent components G̃mnpq and G̃mnab to be localized
around certain singular points on the eight-dimensional internal space and we have
decomposed G̃mnpa into a delocalized and a localized piece as

G̃mnpa = G̃mnpa + G̃loc
mnpa. (5.122)

In (5.121), the localized pieces are contained in the last term, where the sum is
over the points at which the F-theory torus degenerates, the Ωi are the normalizable
harmonic forms located at these points, and the F i represent the gauge fields on the
resulting D7-branes at these points in IIB, such that only the F i are functions of
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time.8 Then it turns out that the delocalized piece G̃mnpa gives rise to the type IIB
three-forms in the following way:

G̃mnpadxm ∧ dxn ∧ dxp ∧ dxa ≡ 2(H3)mnpdx
m ∧ dxn ∧ dxp ∧ dx3

+2(F3)mnpdx
m ∧ dxn ∧ dxp ∧ dx11, (5.123)

where H3 and F3 are the NS and RR three-forms of type IIB theory respectively,
while the localized fluxes should appear as gauge-fields on the type IIB seven-branes.
A straightforward decomposition immediately gives us:∫

G ∧ ∗11G →
∫
d10x
√
g10

[
1

g2
B

(
|H3|2 + |F5|2

)
+ |F3|2

]
+

N∑
i=1

∫
d8σ F i ∧ ∗BF i,

∫
C ∧G ∧G →

∫
C4 ∧H3 ∧ F3 +

N∑
i=1

∫
d8σ C4 ∧ F i ∧ F i, (5.124)

where for the first relation, the first three terms appear in the type IIB bulk and
the last term collects the interactions on the D7-brane worldvolume. We have also
assumed that the self-duality of F5 is imposed via the EOM, so that the action is
explicitly non-selfdual. The five-form piece comes from the spacetime part of the
G-flux and the three-form fluxes come from the components Gmnqa. For the second
relation, the first term is the bulk term and the second one is the seven-brane Chern-
Simons term. The C ∧ X8 term gives rise to the couplings on the D7-branes and
O7-planes and possibly some contributions to the bulk interactions. For example we
expect some parts of C ∧X8 to reproduce

a1

∫
D7

CRR ∧
√
Â(R) + a2

∫
O7

CRR ∧
√
H(R/4), (5.125)

8 A discussion of these issues is also given in [48] and [49]. Note that the existence
of these points do not mean that the eight-dimensional manifold is singular.
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where Â(R) and H(R) are the corresponding A-roof genus and Hirzebrusch polyno-
mial respectively. We have also used the orthogonality condition for the components
of Ωi to get the interactions of the seven-brane worldvolume gauge fields. Note that
this analysis only gives the abelian part of the gauge group (i.e the Cartan subal-
gebra), which could be extended to include a non-abelian gauge group by including
M2-branes wrapping vanishing 2-cycles of the fourfold.

Once the structure of the fluxes is laid out, the physics away from the singular
points will be captured by the delocalized fluxes only. The G-flux EOM (5.66) then
gives us the following equation for the warp factor h:9

−�h =
1

12
G̃mnpa(∗8G̃)mnpa +

2κ2T2

8!
√
g̃

(X8)M1...M8 ε̃
M1....M8 (5.126)

+
2κ2T2n3√

g̃
δ8(x−X)− 2κ2T2n̄3√

g̃
δ8(x− Y ) + α1

δSntop
δC̃012

+ α2
δStop
δC̃012

,

where ∗8 is the Hodge star with respect to the unwarped metric unless mentioned
otherwise, αi are coefficients that can be derived from (5.66), and we take only the
delocalized flux components. Equation (5.126) can be compared to the Einstein
equation:

−�h =
G̃mnpaG̃mnpa

12
+ 12h2Λ +

2κ2n3T2δ
8(x−X)√
g̃

+
2κ2n̄3T2δ

8(x− Y )√
g̃

+h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

 , (5.127)

where we have re-expressed (5.109) in terms of the delocalized fluxes instead of the
total fluxes. The factors (n3, n̄3) denote the number of M2 and anti-M2 branes

9 We have defined the covariant derivative Dq in the following way: DqG
qmnp ≡

1√
−g∂q (

√
−gGqmnp).
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located at (X, Y ) respectively and X8 is defined in the usual way [50] such that∫
X8 = − 1

4!(2π)4
χ4, (5.128)

where the integral is over the eight-dimensional manifold with Euler characteristic
χ4, which could in general take any sign.

Comparing (5.127) and (5.126) we get the following consistency relation which
should be compared with the consistency condition that we had from (5.111):

1

12
G̃mnpa

[
G̃mnpa − (∗8G̃)mnpa

]
+ 12Λh2 +

4κ2T2n̄3√
g̃

δ8(x− Y )− α1
δSntop
δC̃012

− α2
δStop
δC̃012

+h4/3

1

2

∑
{αi}=0

C̃a, ia +
1

4

∑
{αi}=0

C̃m, im − 2

3

∑
{αi}=0

C̃µ, iµ

− 2κ2T2

8!
√
g̃

(X8)M1...M8 ε̃
M1....M8 = 0.

(5.129)

Firstly note that in the presence of curvature corrections and positive cosmological
constant Λ it is in general not possible to maintain the self-duality of the G-fluxes.
This may be more obvious if we re-express (5.110) using (5.123) as

|H3|2 − |F3|2 =
h4/3

12

∑
{αi}=0

(
C̃i11 − C̃i33

)
, (5.130)

which may not be consistent with H3 = − ∗6 F3 and F3 = ∗6H3, where ∗6 is the
six-dimensional Hodge star measured with respect to the unwarped metric. In other
words:

G̃mnpa − (∗8G̃)mnpa 6= 0, (5.131)

meaning that supersymmetry should be broken to allow for a positive cosmological
constant. One may also note that the contribution from the anti-M2 branes in (5.129)
allows the self-duality of the G-fluxes to be broken even for vanishing cosmological
constant Λ and vanishing higher-order corrections. This means supersymmetry can
be broken in flat space by the anti-M2 branes.
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The above relation can in fact be extended to the full G-fluxes, i.e. including
both the localized and the delocalized pieces. To show this we make use of another
component of the G-flux equation, finding

Λ(t)DqG̃
qmnp +DaG̃

amnp =
∂qh

h

[
Λ(t)G̃qmnp − 1

12

(
∗8G̃

)qmnp]
(5.132)

+
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃

)amnp]
+ β1

δSntop
δC̃mnp

+ β2
δStop
δC̃mnp

,

which is expressed in terms of the total fluxes and is again consistent with (5.131).
In deriving the above equation we have assumed

(X8)012M1....M5
≈ 0. (5.133)

Note that for the delocalized flux components G̃mnpa, away from the singular points,
(5.132) simplifies to

DaG̃amnp =
∂ah

h

[
G̃amnp − 1

12

(
∗8G̃
)amnp]

+

[
β1
δSntop
δC̃mnp

+ β2
δStop
δC̃mnp

]G̃mnpq=0

G̃locmnpa=0

(5.134)

meaning that the delocalized flux components are not covariantly constant. Another
consequence of the above equation is that the G̃mnpa components will continue to
remain time independent provided

∂

∂t

[
β1
δSntop
δC̃mnp

+ β2
δStop
δC̃mnp

]G̃mnpq=0

G̃locmnpa=0

= 0, (5.135)

giving us another constraint on the curvature corrections in the theory, although
solutions should also exist for cases which violate this constraint and hence require
a more general analysis that includes a time dependence for G̃mnpa.

Now looking at (5.131) and (5.126) we conclude that a four-fold with negative
Euler characteristic χ4 may easily accommodate fluxes of the kind (5.131) and simul-
taneously account for the supersymmetry breaking, although this is not a necessary
condition for a solution to exist. In other words, without loss of generality, we can
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demand

1

4

∫ √
g̃ G̃mnpa

(
∗8G̃
)mnpa

=

∫
H3 ∧ F3 < 0, (5.136)

which in turn can be made consistent with the first equation in (5.110), namely∫
d6x
√
g̃ (H3)mnp(F3)mnp = −3

∑
αi=0

〈Ci3,11〉, (5.137)

provided
∑

αi=0〈Ci3,11〉 > 0. This could be taken as another constraint on the curva-
ture corrections, which applies in the case that χ4 < 0. A similar constraint would
apply for the case χ4 > 0.

Yet another possible class of solutions are those with vanishing Euler character-
istic χ4 = 0. These solutions could correspond to an internal M-theory eight manifold
that is an elliptical fibration of a Calabi-Yau threefold, since the Euler characteristic
of the eight manifold is related to the Chern classes of the base by [71]:

χ4 = 12

∫
B

c1(c2 + 30c2
1). (5.138)

If the base manifold is Calabi-Yau, then c1 = 0, and hence χ4 vanishes. This, in
conjunction with the condition R̃ = 0, leads to its own set of solutions, with the
modified conditions: ∑

{αi}=0

〈C̃m, im 〉χ=0 < 0, (5.139)

∑
{αi}=0

〈C̃a, ia 〉χ=0 < 0. (5.140)

As an interesting corollary, in the absence of any curvature corrections and due
to (5.103), (5.104) or (5.105), it is impossible to get a four-dimensional de Sitter
spacetime if the internal six-dimensional base of the M-theory eight-fold is a Calabi-
Yau manifold because

R̃ = −18hΛ. (5.141)
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We now make a few observations. Note that to stabilize all the complex structure
moduli, we will have to switch on G-fluxes in the internal manifold. The G̃mnqa
components are the ones that will do the required job for us. However due to the
background constraint (5.131) we cannot allow supersymmetric fluxes. In fact we
can extend (5.131), by incorporating the localized fluxes in (5.126) and (5.127), to
full G-fluxes Gmnpa, Gmnpq and Gmnab. This means, in addition to (5.131) we will
have another relation

Gloc − ∗4G
loc 6= 0, (5.142)

where ∗4 is the Hodge star on a four-dimensional surface Σ4 inside the six-dimensional
base of our eight-manifold. Since the localized fluxes are related to the gauge fields
on the seven-branes wrapping Σ4 in type IIB theory, this immediately implies that
the gauge fluxes (both the abelian and the non-abelian pieces) will create a D-term
potential satisfying the background constraint relations (5.129) and (5.111).

In addition to that, the decomposition (5.122) switches on an FI term from the
H3 = dB2 of G̃mnqa and from the F2 = dA of G̃loc

mnqa, proportional to∫
Σ4

F− ∧ F− (5.143)

where F− ≡ F − ∗4F and we have defined F ≡ F2 −B2.
Since the background supersymmetry is broken by the G-fluxes, the F-term is

explicitly non-zero allowing us to switch on a non-zero D-term in the presence of
higher-curvature quantum corrections. The fact that the F-term and D-term are
related to each other can be inferred from the decomposition (5.122) where both
three-form and gauge fluxes in type IIB are sourced by M-theory G-fluxes. This way
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we take care of the issues raised by [69].10 Note that in the absence of the quantum
corrections, this wouldn’t have been possible.

Finally, we need to switch on D-brane instantons that would help us stabilize
all the Kähler structure moduli, including the volume moduli. As mentioned earlier,
we have to make sure that the internal manifold is stabilized at large volume so that
the dynamics can be captured by the set of EOMs described above. In the presence
of the D-brane instantons higher-curvature terms are automatically generated (some
aspect of this will be discussed in Section 5.8). These curvature terms are the last
pieces of the link required to satisfy the consistency relations (5.111) or (5.129).

Thus both the fluxes and the curvature corrections are therefore necessary con-
sequences of stabilized moduli in this set-up. As such they could lead to a positive
cosmological constant solution, and a natural realization of D-term uplifting [34].
5.8 A discussion on the curvature corrections

In this section we discuss in more detail the possible origins for the higher-order
curvature corrections11 we have argued might allow for construction of de Sitter
vacua in IIB compactifications. While our calculations were done in M-theory, it is
interesting to first look at the corrections that can appear in type IIB string theory.
These terms can be sourced by tree- and loop-level n-graviton scattering amplitudes,
or equivalently loop corrections to the underlying σ-model, and are also induced by
D-instanton corrections. The general form of these corrections is given by (adopting
the notation of [72], combined with [63] but with the substitution s = (m+ 6)/4):

(α′)n−m+1tm,nZ
(w,w′)
m D2mRn (5.144)

10 It will be interesting to compare our results with the ones in [70] regarding
D-term uplifting.

11 We will restrict ourselves to Rn corrections as these have been studied in more
detail than the Gn corrections. For an analysis of Gn corrections, the readers may
refer to [42,43].
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where tm,nD2mRn is the contraction of 2m covariant derivatives and n Riemann
tensors with a tensor tm,n. The coefficient Zw,w′

m is an eigenfunction of the Laplace
operator on the fundamental domain of SL(2,Z), with modular weight (w,w′). This
coefficient can be written as an Eisenstein series [63], and is necessary for SL(2,Z)

invariance of the corrections to the action.
The lowest-order correction can be calculated from 4-graviton scattering; see

for example [64] in type II and [65] in Heterotic, which induces a D0 R4 correction
at both tree level (at order (α′)3 ) and at the one-loop level. In the calculation by
Gross and Witten [65], this led to a gaussian path integral that can alternatively be
written as a contraction of four copies of the Riemann tensor with two copies of a
rank-8 tensor denoted t8. This allows one to write the correction as (equations 10
and 11 of Gross and Witten):∫

dψαLdψβR exp
[
ψ̄αLΓµναβψ

β
Lψ̄

α′

R Γστα′β′ψ
β′

RRµνστ

]
, (5.145)

or in terms of the t8 tensor:

tµ1µ2...µ8tν1ν2...ν8Rµ1µ2ν1ν2Rµ3µ4ν3ν4Rµ5µ6ν5ν6Rµ7µ8ν7ν8 , (5.146)

with the t8 tensor defined by√
detΓµνFµν = tµ1µ2...µ8Fµ1µ2Fµ3µ4 ...Fµ7µ8 . (5.147)

The above correction is often written in the literature as simply t8t8R4. Another
approach to calculating this correction is to consider loop corrections in the sigma
model (see for example [66]), where an n-loop effect will lead to an Rn correction
that is order (α′)n in the corresponding string theory. Collecting all the terms at
order R4 yields a correction of the form:(

1

8
ε10ε10 − t8t8

)
R4, (5.148)

where ε10 is the rank-10 totally anti-symmetric tensor .
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One might also wonder if there are R2 or R3 terms. The sigma model analysis
does not produce these terms, which would indicate that type II theories are protected
from α′2 and α3 corrections, as shown in the sigma model in [67]. This was also done
in the context of type I, II and heterotic string theory in [68], which confirmed the
result that R2 and R3 corrections do not appear. One can also check that R5 terms
do not arise, and in fact the next corrections coming from the tree-level graviton
scattering are D2R4, D2R5, and R6, all at order (α′)5 (see table I of [72]). At the loop
level, there has been recent work [73–75] showing that perhaps string loop corrections
at order g2

s(α
′)2 can become important in a certain class of compactifications (dubbed

the Large Volume Scenario).
Another contribution comes from calculating the graviton scattering amplitude

in a D-instanton background, as was done by Green and Guterperle [76], which
gives an extra contribution to Z

(w,w′)
m that is neccessary for the correction to be

SL(2,Z) invariant. The coefficient for the D0R4 correction has modular weight
(w,w′) = (0, 0), and is given by (equation 1.15 of [63] with s = 3/2, or in our
notation, m = 0):

Z0 = 2ζ(3)C(0)3/2
+ 8ζ(3)C(0)−1/2

(5.149)

+4π
∑
k 6=0

µ(k, 3/2) exp
[
−2π(|k|e−φ − ike−φ)

]√
|k|
(

1 +
3

16π|k|C(0)
+ ...

)
,

where C(0) and φ are the axion and dilaton. The first term on the RHS is the tree-
level correction, while the second term is the 1-loop correction. The set of terms
on the second line is an infinite set of D-instanton corrections, with the function
µ(k, 3/2) defined as in Appendix A of [63].

The picture in M-theory is slightly simpler, as there is only one curvature su-
perinvariant. A review of the corrections to M-theory supergravity, as well as the
supersymmetrization, can be found in [77], while the detailed derivations can be
found in [78] and [79]. A feature of the M-theory picture that is fairly well un-
derstood is the necessity of an additional Chern-Simons term to cancel the 5-brane
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anomaly, via anomaly inflow. This term takes the form

C ∧X8, (5.150)

where X8 is built out of R4. As this term includes a factor of the M-theory 3-form
flux, it will contribute to the equation of motion of the fluxes.

A key feature of these corrections is that the form of the contraction conspires
to choose only the Weyl part of the Riemann tensor, such that the corrections vanish
on manifolds with vanishing Weyl tensor. This was shown explicitly by Banks and
Green in [80], where they considered AdS5 × S5. This is great news for AdS/CFT,
since the correspondence is protected from loop corrections. However, it makes the
search for scenarios where corrections may be important a non-trivial exercise. One
possibility for finding non-negligible corrections is to consider Calabi-Yau manifolds,
and indeed this is the internal manifold used in the 4D effective picture of these
corrections in Kahler Uplifting [35, 40]. However, this introduces a new difficulty:
many Calabi-Yau manifolds can not be given an explicit metric – for example the
explicit realization of Kahler uplifting in [40] is done on CP11169.
5.9 Conclusion

This paper has been a close examination of de Sitter solutions in Type IIB
string theory, from the perspective of the 10-dimensional equations of motion (and
the corresponding 11-dimensional M-theory equations). We have reached two key
conclusions:

1. By applying the Gibbons-Maldacena-Nunez No-Go Theorem [17–19] to local-
ized static sources we have found that the inclusion in IIB supergravity of Dp-
branes, anti Dp-branes, Op-planes, and by extension any linear combination
thereof, does not lead to positive curvature in the 3+1 non-compact directions.

2. The addition of curvature corrections, sourced by D-instantons as well as tree
and loop-level graviton scattering, may lead to a de Sitter solution in the 3+1
non-compact directions, although an explicit construction of this would require
specifying a metric on the internal manifold as well as a subset of correction
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terms to consider. Furthermore, this solution naturally leads to compactifica-
tion with broken supersymmetry, all moduli stabilized, and the generation of
a D-term in the scalar potential of the 4d effective field theory.

The first result is a fairly simple extension of the analysis performed by Maldacena-
Nunez [19], and Giddings, Kachru, Polchinski [58], among others. Our assumptions
in deriving this were limited to demanding (i) maximal symmetry in the 3+1 di-
mensions, as well as (ii) positive curvature in the 3+1 dimensions. Since we only
consider time-independent matter configurations, the 3+1 dimensional non-compact
spacetime we are looking for is ‘pure’ de Sitter, as opposed to quasi-de Sitter as is
usually considered in cosmology. However, to construct any 3+1 dimensional pos-
itive curvature geometry, the stress-energy tensor must satisfy the condition (2.8)
regardless of the symmetry, and in particular regardless of time dependence.

Note that there are many existing proposals which we have not considered,
for example IIA on nilmanifolds [81], IIA on solvmanifolds [82], and non-geometric
fluxes [83]. These proposals should also be subject to condition (2.8).

The second result is a non-trivial check that curvature corrections do indeed
evade the No-Go theorems. In this calculation we have used an ansatz for the effec-
tive stress-energy tensor induced by the curvature corrections, which we view as an
appropriate way to proceed given the freedom to set the internal manifold as well as
the complicated (and not completely known) form of the curvature corrections.

A worthy question at this point would be the sensitivity of our second result to
the form of the ansatz, as it is entirely possible that some choices of internal manifold
do not lead to curvature corrections that can be parametrized in this way. Thus a
conservative restatement of our second result would be as follows: given a class of
internal manifolds that allow the time dependence of the curvature correction to be
isolated from other contributions, there do exist de Sitter solutions provided a set of
consistency conditions (5.119) - (5.120) is satisfied. This hints at interesting further
work, to clarify the consistency of our claims with the work of Sethi et al. [20] which
found that such corrections in Heterotic theory do not lead to dS solutions.

Upon studying the dS solution obtained via curvature corrections, we uncov-
ered a number of interesting features. Solutions exist for any choice of the Euler
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characteristic of the internal manifold, including an elliptic fibration of a Calabi-Yau
threefold. Furthermore, this setup generically leads to non self-dual fluxes, which
break supersymmetry, and induce a D-term in the scalar potential, suggesting that
this construction may be a realization of D-term uplifting [34]. The moduli of this
setup can be fully stabilized: the complex structure moduli are fixed by the fluxes,
while the Kähler moduli are stabilized by the D-instantons, which in turn source the
curvature corrections. Hence our analysis indicates that curvature corrections can
do the job at hand.

This work has opened up several directions for future research. One option,
motivated by the desire for a deeper understanding of string theory, is to continue the
investigation of de Sitter solutions, using dualities to relate the solutions in different
string theories. This has the potential to clarify subtleties of dualizing non-BPS
states, and to allow one to ‘map out’ the space of dS vacua in string theory.

An alternative way forward is to push this work closer to cosmology, and in par-
ticular, inflationary cosmology. While the full 10d equations do not lend themselves
to model building, this approach does provide a clear path to studying compactifica-
tions with a time-dependent scalar curvature (‘quasi-dS’). The appeal of this option
lies in building self-consistent embeddings of inflationary cosmology in string theory,
with the (albeit ambitious) goal of teasing out distinctive signatures of string theory
in the sky. As has happened before, it may be that effects from a full 10-dimensional
construction result in observational signatures which do not arise in the effective field
theory approach.
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