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summary

In order to avoid postulating quantum conditions
from the start, as done in the Heisenberg-Born-Jordan-Dirac
Hlatrix Mechanics, the writer conceived the idea of giving
concrete visualization to the elements of the pg-gqp matrix
by relating them to a classical formula leading to an action.
(See paper published in the Phil. HMag. for Sept., 1924).
This required a slightly modified way of defining the unit

If we consider a portiocn of a radiating gas

capable of sending out a series of wave-lengths according to
an observed law, then we may attribute to each periodicity a
sine element of the p and g matrices. such aggregates when
expressed in the form of an action matrix pg-gp, constitute
a8 standard diagonal matrix. In the text it has been shown
that there is an analogy also between h/2wi of matrix me-
chanics and the X-~exXpression developed on the basis of the
present matrix system.

An important distinction has also manifested

itself. On account of the special character assigned to the



P and ¢ elements in the modified matrices employed, the
squares of the p(mn) elements rather than of the g(mn)
elements are associated with the frequencies v(mn). It
must also be said that the X-function does not require the
i-term to appear in the denominator. Wor is it necessary,
for matriz processes, to assume that the value of all the
diagonal elements in the Unit lMatrix shall be unity or
even equal to each other.

The requirement for the i-factor in the numerator
has naturally led to the minus sign appearing when doubly
differentiating a matrix, as occurs when considering the
problem of a harmonic oscillator. Hevertheless, it must
be borne in mind that the harmonic oscillator functions,
heretofore used, rave not been strictly radiating systems.
This is especially true since the Hamiltonian H-function
has been considered as constant and independent of the time.
The radigting harmonic oscillagtor of the text, on the other
hand, implies that only the mean H over the cyeclic period
is constant. Thus during a quarter of a crcle absorption
of energzy is allowed for, and mathematically expressed,
whereas during the next gquarter of a cycle, radiation of
energy is presumed to take place. Besides, for a radiating
oscillator the momentum is not wholly in phase with é.

Thus the observed frequencies are interpreted to indicate an
upper level n=+1 and a lower level n=-1 with respect to a
mean level of energy Ho. Strangely enough the ratio of

upper (or lower) level energy Hn to mean level energy H0 is



is of the order of 1/3 as against the one-half obtained from
the Heisenberg=-Born mechanics for Eo‘ Considerable freedom
however is left open for specifying the "orbital frequency"
0f the generators.

The evidence goes to show that the postulates of
the Quantum lMechanics do not necessarily involve such bold
assumptions as appear to be the case at first sight. Part
of their strange character seems to be due to the use of
non-radiating harmonic oscillators, whereas those of the
radiating type are now made mathematically available.

It is significant that it should be possible to
show from purely classical considerationsg that the non-
radiating harmonic oscills tor is only then capable of be-
coming of radiating type when a discrete amount of energy
( 1/3 of the non-radiating content) is cpntinuously being
absorbed and re-radiated. This appears to suggest that
the radiating harmonic oscillator of the text is analagous

in its properties to that of an ordinary organ pipe.



The equation of the non-radiating harmonic

oscillator is . 2
_H_"—'?J:p +2'ﬂ"\f02q_2 oooco‘l)

-—

where p is the generalized momentum and q is the generalized
displacement. Consider, then, matrices of elements such

as those of the Heisenherg-Born type:s-

27i i *
q = (qmn ¢ mi v (mn)t : p: b € 21r1v(mn)9.“(2)()

It is possible to get a correspondgnce befween the matrices
p and g and the true momenta and displacements p and ¢ if we
consider the following resultant matrix:

d =pg ~qgp=10 C . vese o o o (3)
Thus let it be assumed that the process of differentiation

with respect to the fime can be performed in the following

ways * o
(L )a = a=(L)peq + p. (L)a=(&)gep =g (L)p
dt dt at dt dt
01‘ . . 3 Y PR
d =pq +Ppg - gp - gp e o o o o (&)

Let it be further assumed that we can have a matrix function

H analagous to H above such that we can have corresponding

canonical equations, viz.,
dw _ . . 8E
-Q.Q e ¢
d dq

It follows at once on substitution in (4) that

00000(5)

(¥) A different type of matrix will be further in guestion.




1< - WL _dwW ., ., ¥
: 3«5““13'35 S'E'p N
T = dH _ an
) {q. d g } {P. gg ip} £ (8

It can be shown quite generally in connection with matrices

that adopting Dirac's Poisson-bracket notation (%)

- /= .;)7 q & . &H [/ acg
[an v 3/ e

whereas

_ . 8 _Am 32m
[hLI’]p‘ sg“’a-r e

There can therefore be a correspond%nce between the canonical
equations of Hamilton and the canonical equations of Heisen-
berg for matrices generally, provided that the matrices are

such that . _
d=0 00000(8)

This means that the matrices must be of the type that

Pa - gp = constant, (independent of t) . . . (9)
The above two conditions can be met, first by interpreting
the multiplication of matrices so that the time functions
should not appear. This implies that a special me aning
needs to be given to "multiplication" for by (4) it is pre-
sumed that the p's and q's are in fact functions of the time.
Secondly, in order to meet the condition (9) a diagonal
matrix condition is necessary. This can also be satisfied

by properly interpreting the elements of the resultant

multiplication matrix.

(¥) See Appendix




Let us therefore form matrices and then develop

their products. Thus let, for example,

931%2%3 P11P12P13
a4 a4 g a4 a g
31 32 33 31 32 33

)
)

.
(Py1%17*P1290) *P15%57 ) (P1391 57 P 955Dy 5950 (P11 975 %Py 505 * Py 555

pa=| P21%11"P2a%p1*Pas%1 ) (Pe1%12"Pa2%s2*Paslss (P %5 Paeles*Peslss

‘p51q11+P52421+p53q51)‘P51q12+p52q22+P55q32)‘P51q15+P52q25+P33q35y
- [ ] L J L] .(12)

(91299423500 %99, P5q (89901 54215 P 00 %0 5000 ) (4 Py ¥ Pt 0 5D, )

)

]

ap-| (921P11 *9eaP 21 *9a5P51 ) (92121 2 ¥ 90p e 95Ps0) (45121 57 022P05* 925P55

( + + ) ( + + )q + + )
431711 %52 21 Y5551 Y5112 UsePer Yastae’ Ts1t1s 1m2les 5 3

e o o o o(13)

It will be noticed that in pq as well as in gp that the

disgonal elements are either of the form

2? Pondom Or‘égqmnpnm e o o o o(14)

The condition then needs to be imposed by definition that
B, 9" © for m3¥F s ; nzETr « ¢ « o «(15)
nys
The significance of this condition will be brought out
later and will gmount to ignoring term elements producing

expressions in which the frequency of a p,, element differs



from the frequency of a g element.
Forming now the subtraction of matrices (12) and
(13) it is at once apparent that only diagonal elements need

to be considered and we have, subject to (15) that

Pa~qp =
(P120 17999001 ) * (P10 "y Py )4 (P05 "0y 025, ), © J °
o ;o (Pey 9y ) (R 500,70, R V(00,70 P ) L ©

o , O, (Pgyy5795P5) * (Pyolns=apoPos )+ Py d55-055P5 )
-22(6)

The genersl term of any diagonal element is therefore seen

to be of the form of

Z.Wmﬂml- nPam! e o o o o(17)

The multiplication of matrices has then to be so limited
by definition that an expressicn such as (17) has no longer
to involve the time function per se. It will then result
that the canonical equations of classical mechanices can be
translated in invariant form into the domain of general
matrix mechanics. The first important thing, then, in a
rationalization of matrix mechanics, is to give a physical
basis for the interpretation of (17).

By a theorem in classical generalized mechanics
already deduced by the writer, (see Phil. lMag., Sept. 1924)

it was proved that, if we have a component of generalized

force defined by



Z{mn) = B in wt + B wt
>(mn) Lo, sin wt + 2 cos

and a consequent generalized displacement e o o o(18)

.

D(mn) = Dy sin wt + D cos wh

the rate of doing work depended on the expression

Q(mn).g D(mn) = wzéfgmnpnm - DmnEnmicosgwt + BpmPmncos 2 wt

at
+% (E D =~ - '
2 ( D 'J.E ) sin 2 U))J . [ e 0(19)

For a real activity [Force x Velocity of Displacement)

therefore, it is required that

B Oam = Dpn B O e o o o o(20)
The 2 «b terms can contribute nothing tc the real average
activity. A similer expression will be developed for the
action P (mn) -q (nm) and will be used for the interpretation

of (17). One thing is certain from (20) we can never have an

exXpression
Dmn = k = Dnm
T Enm e e o o 0(21)

where k has an ordinary real scalar value. ZAxpression (20)
would under those circumstances reduce to zero, which is
contrary to hypothesis. In other words E(mn) and D(mn) must,
for real activity, be cut of phase to some degree at least

and we should write instead
:Q=kE 10000(22)

where k for complex operands is also complex. (*)

(*) By k being complex is meant that a component k E of U
is in time phase with J but the component of magnitude kg o of y

(next mge)



That is 1let
E o= k- ks (¥*) ¢ o o o o(23)
then with
}g(mn) = (Dnm + Dmn j) uSin wt e e o o 0(24:)
(klszj)g(mn) = (Dnm+ D . i) .sin wt %
. )
E(mn) = (B + E_ J) .sin wt ) e e . . o(25)

‘e have by definition for the work done

- p.ap-=mat. Bopazp-T . (g
' at at

This follows because for a generalized Momentum P the

E = E.: ; Ii =fE‘dt e o . L) 0(27)
at

Yet it is to be borne in mind thsgt with

following obtains

a
— =(,{)j ooooo(28)
at
D ap
BF = 2 = 2 = wj?l « o« « o o(29)
k dt

showing that the generalized momentum P cannot be in time

phase with D. To deduce the latter we have

(*)(continued)is in time guadrature with respect to E. The

Heaviside~Perry method of complexes, or Resistance Operators, was
first extensively treated in Perry's "Calculus for Engineers"(see

pPp. 236 et seqg.). The method is much more powerful than that of
Steinmetz since the latter has to do with the effective values of

the variables, whereas the Heaviside operational method deals with

hﬂd@ﬂhﬂfﬂoigitaneous values throughout - an all important difference.

(**) See author's "Harmonic Algebra™ - Univ. of Calif. Publications.
Sept. 30,1919. Also Heaviside's Elec. llage. Theory. Vol.ll,p.228.



P2 _ .1, 1 8 _ -(k +k j) ap (%)
s k] 2 K at i = .+(30)
Where we define for convenience that
2 2
k =k12+k2 00000(51)

A relation corresponding to (19) can be obtained

for pq by noting first that

d]}(mn) = w(Dnm cos wt - Dmn sin UJt) ...(52)
at

@(mn) = Emn Sin w:t + Enln CcOoS (.Ut e o o o -(55)

It is the Multiplication of the right-hand eXpressions that

leads to (19). TFor (32), (33) we can therefore substitute

?(mn) =(wp’ n) cos wt - (wp? ) sin wt

)
)
q(mn) = )

Dy sin wt + 9. cos wt ee.(34)

These should lead to a form similar to (19) by using the
substitution wp' for Dy, and gy, for Ep, etec. However,
if instead we write

p(mn) = pyy eos wt = ppy sin wt e « .(35)

the result will be

(*) This important result will be employed in developing the
differential equation of a Radiating Harménic Oscillator.
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p(mn). q(mn { q P P q ) cos? ot

2wt + - in 2 g47
qnm o C0S 2w (qnmpnm P4 ) sin 2w

The mean action would thus depend on the expression

Pundpm = Y Pyy = BFO RN €12

which will be plus or minus depending on whether radiation of
energy or absorption exists. Expression (37) indicates in
what manner the matrices for p and q are to be built up, -
and moreover indicates in what manner matrix multiplication
is to be understood and more especially with regard to 4 or
U of (13).

Given that to each generator of a radiating system

Srgre to be allocated a displacement coordinate g (mn) and

a momentum coordinate p (mn), with reference to a tnit or
standard aggregation of generators ( time t = zero) acting
as reference, then the two expressions are to be written in
the form

q(mn) = sin 27v (mn) t + g cos 27v(mn)t

q
nm .« o o o o(38)

p(mn) = -p . sin 2uv (mn)t + p, cos 2uv(mn)t (59)
i [ ] L ] * L ] L 4 59

For simplicity we can write

q(mn) = (dpp*dpnd) sin 2avlmn)t= gy spn+apneny= af(om)+q(mn)
L4

e o o o o(40)
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and for the momentum function

?(mn) = (-pmn+rnmj) sin 2uv(mn)t = -p

(6] +
mnmnp

c
nm mn

= -p(]nn) + P(nm) e e ¢ o 0(4:1)

Writing out the matrix expressions for the S-system

we then have for example

p(11) p(12) p(13) qf(11) q(12) ¢(13)
p={ p(21) p(22) p(23) H a= [ q(21) g(22) q(23)
p(31) p(32) p(33) q(31) q(32) q(33)

L ] [ ] [ ] L] o (4:2)
Proper regard must, however, be paid to the fact
whereas any g(mn) in g of (42) corresponds to the cosine funec-

tion such that

g(mn) = cos 2nvimn)t

Ynn
whereas the p(mn) of p corresponds to the sine function so that

p(mn) = -p, sin 2uv(mn)t
In a similer way the following values hold

q{nm) = q sin 2uv(ma)t ; p(um) cos 2uv(mn)t.

For convenience we can set that

v(mn) = =v(um) e o o o o(43)

e can then write

q(mn)
q(nm)

q, ©°s 27 v(mn)t )

[}

. sin 27v (mn)t )
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p(mn) = p  gin g2uv(mm)t

mn
p(am) = p_ cos 2uv(mm)t e« o o o o(45)

nm

It is then the multiplication of two matrices of the form
(10) and (11) rather than (42) that will give the resultant

d according to (44) and (45) viz:

(P179377979P17 ) * (15497 =2y oPop )+ (Py 5437 ~99 3915, 0, O

Pa-qp az(p21q12'q211’12)+(P22q22'q22p22)+‘p23q52'q25p25) . O

0, 0,(pg1915-a57015)+ (Pyodss~d50P05) * (Pysd55=05 5P )
N T

A simple form of the bracket values represented by Pon 9y
“Amn Pp, in (46) will now be in order.

It has already been pointed out in (30) that the
generalized momentum £ can be expressed in terms of the generals

ized displacement D and of D. e have, in fact, that

ko+k,j
P=2 =272 (D+Dyj) sinw@t . . . . .(47)
¢+ kwj wik

It follows, therefore, that

2 . . .

(%) e« o o o o(48)

(*) Here s is employed for sinwt and ¢ for coswt. Then

dealing with the double periocdicity terms, as in the product
P D of (49) the operators must be translated into e's, and
aporopriate s's introduced for the terms involving the sine
functions of the time.
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Thus multiplying through with D to obtain the action we have

EFup ?“[(-kz Dy+k D3s + (Dzk2'31k1)£7 (D35 + Dge)
=§]?1 (kg])l'!'k]_Dg) sin zw't + DZ(D2k2'D1k1) cos 2@12}
+§Dy (Dgkp-Dyky) + Dz(k2D1+le2)fsin wt. cos wt 0]
- . [ ] L] L 4 * 49

It thus appears that the average value of the action depends

on the expression

L ¢prD 131)] {(Dz*Dz) 21Tk2}1

2 e J 2u
e e ¢ o 0(50)

Translated into the notation of (36) therefore, we have by
(38) that

p(mn).

Tk (g2, + 2
v." 9mnPam"Pmnam = 2.3 . dmn*dnm {] L
Wiy 2w

e fatm)|® T2
222 w2 27 o o o o 0(51)
Y mn ——

The latter brings out an analogy with the postulate of the

quantum theory, for we can write (instead of h/i),

(4 * ")

w &y k? (*) . ... .(52)

_ Tk
an 2

where an would be a constant for an observgtion steady state.
In any event (51) and (52) do not contain the time. There is

then justification in regarding U of (3) as a "unit" matrix.

(*) A later improved form will be whown to involve the moments
rather than the coordinates divided by the frequency.
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The following rule can, therefore, be enunciated.
In forming a matrix product of elements the ordinary multipli-
cation rule of algebraic matrices is understood, but in addition,
it is implied that average or mean time values be inserted in
the resultant. As to differentiation with respect to time, it
means that the differential of the resultant matrix is the same
as the differentisl with regard to the individual matrices com-
prising the operand originally, and then taking average time
values.

It is at once apparent from (26) that the amount of

work done, as by radiation, can be put into two forms:-

aw = D. &P ; 4w = P. 4D,
indicating that W must be a function of P, f,D, D. If then
by partial differentisgtion it is understood that

av = W ap + A gp
aD dr . e o« o(53)

then this will lead to a solution

w == (8D) e o o o o(54)
provideé that no é's or ﬁ's are presumed to appear in the
last equation. If they are to gppear at all they must do so

by substition only in the partial derivatives

w -3
AD
W =D

ar « « « o« o(B5)
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The latter equations expressing radiation conditions,
as a system, are more symmetrical even that the analagous
Hamiltonian equations.

Transposing to the notation (5) we have for matrices

. P ; aw
dq p e« .« o(56)

n
Ke

with the reservation as known from (30) that p is not in phase
with g In fact, from (34) we have
= +3 i . = wj + in wt
%(mn) (qnm qun) sin wt ; %(mn) wg(qnm qmnj) sin w

e o o « «(B7)

On the other hand, from (30) we also note that

p(ma) = - EL*2d  dg
wz kz d.'t e © e e 0(58)
Thus 1 k a .
p(mn) =-—§ k2 . __+k}q
. wzkz w at 1) =
e ¢« o o o(B9)
k ® k e
plmn) = - =5 @ - E_ g

.(60)

[ ]
[ ]
L]
®

To develope the differential equation for the
Radiating Harmonic Oscillator the Hamiltonian canonical

equations are

e o o o o(61)

=t
2hE
e

It was the above equations that were made the basis of
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treatment for the llatrix llechanics. ‘e have, however, seen

by (30) that as a condition for real activity (or actionl we

must have that

.
[ fo
]
ne e

This gives a clue for the POSSIBLE form of H. Thus by

combining (60) and (62) we have

AH 2 :
= = -~ w(k-kpjlp = -~ w2k1p+k2w ip

ap at

P .
= =~wlkop+ k,wp
1 2 00000(63)

On integrating the last equation it follows

2 2
H=-wk »p” +k

w pp + £ (q)
2 == =
2 00000(64)

Applying now the second equation of (61) it is seen that

=S p = 3 ¢ (g « e o . .(65)
dg - a_ =

whence integrating, the form of H must be

w
H = - kl pz + k_ wp
— 5 ol 2 ol

110 .
]
113

q
e o o o +(66)
IT IS’THE LATTER E.UATION AND NOT (1) that applies to the

problem of radiating systems.
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Taking now the case of equation (30) we have, dropping

subseripts,

; q = (kl-kgj) wi P

If then for convenience we let

This megans that

Turning now to tie next to the last term in (66) we

have

P = P sin wt’

q = wP(kqe + kos) .

y (")
P = wjP sinwt' = wpe

- 2.2 2
pq = WP (klc + kzsc)

. 2
PP=DPswPe = wP sc

so tiat on multiplying with kzw we have

. 2
kbwp p = kzwgP sc

o« o . o(67)

« o o o(68)

e « « +(70)

o o o o{(71)

likewise

e s o o(72)

(*) From (68) and (69) we note that for the absolute value

2.2 2

2
iPI = p? whereas Iqﬁ = wPk ., In other words

This is the result of (77)
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The remaining term gives

p? = p2gR
mzk !
—_ 1 Pz = w2P2 ﬁ' s@
2 2 e o o o o(73)

Now adding all the terms together it follows that

-H:wrz‘_k_l 32”‘1‘32}

o

szzkl[ 1+ —é— cos 2-wt1§
e o o o of(74)

The latter equation it is seen indicates a constant component
for the total energy H which is given by
-H = 2 ®p%
o 4 1 L] [ ] [} L .(75)

This type of term means NQ RADIATION. Such radiation as

does appear must come from the variable remainder represented

by 2 2

-HE =1 P k1 . cos 2w tl
4 e e« o o(786)

The amplitude of the radiation is séen to fluctuate about a
mean level H of (75) with equal ranges (energy levels) plus
and minus. This accords with the Heisenberg-Born Matrix
Condition n = - 1. In (76) such amplitude has preferably
been expressed in terms of the square of the momentum and the

frequency.
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To transform (76) as well as condition (52) use can

be made of (69) which gives

2 2.2 2 2
* L [ 4 - .(77)
vet it 1s better to refer to the moments amplitudes rather
than the coordinate ones in order to emphasize the analogies
with the quantum theory. ‘e then have that
X= 1 k2P2 = I k, ,plz
2 2 . e e o & 0(78)
which is of the order of an energy (or guantum).

The ratio of the two energies above is given by

B .
H

(e o

L] L ] L] L .(79)
0

It is significant that H0 corresponds to the constant aggregate
energy of the non-radiating harmonic oscillator heretofore
employed, whereas Hv represents the amplitude of the fluctuating
absorption and radiating component. Hothing is indicated about
the "orbital periodicity" with which the potential and kinetiec
energies interchange in the Ho systems Whether there is a
felationship of this latter with the half frequency component of
the Hernst-Lindemann formula has yet to be determined, at least
is it suggestive. In any case one thing is certain, equation

(79) has been arrived at on purely classical lines and it shows



- 21 =

as a conseguence of applying Hamilton's canonical egquations that
an unexcited harmonic oscillator when caused to radiate by

virtue of an impressed field of force only then becomes radiating
when it can absorb and re-radiate a definite, discrete guantum

of energy equal to 1/3 of its normal unexcited content. This
corresponds exactly with one of the conditions of the Planck-
Bohr developments.

Indeed an harmonic oscillator of the organ pipe type
does not give an apprecisble increase of volume with increased
blowing pressure. A point is soon reached when the dominant
frequency takes a discrete jump in conformity with Bohr re-

guirements.
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Agpendix

bracket notation of Dirac let

[%p] + U
~[q?p_7 = 5;‘17

q,p?;7 we note that

Zmploying the

Pq = gp

with

To interpret

[&-‘gip_z7= a®p - ap? = plap)-(ap)p = p(pa-ap)+(pa-ap)p
=pU+Up= 2p.U

In g similar manner it can be shown that

[;24,\13_7 =2qU

indicating quite generally

[‘é}pf7'= n pn-l. U = EE e

[qn;a. v/ = %q' a”.

In fact as a simple extension for functions of g and p express-

ible as a series we should have dropping the unity matrix that

[Floyg), 2] - %q? ; [q-_, Fo(p,0) [ = %_E (*)

(*) Kind acknowledgements are made to Dr. A.3. Eve, Director
of the Physics Devartment of Meill University, to Professor

AHe.S. Gillsom, and to Dr. J.S. Foster, for their interest

and criticisms.
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