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Summary 

In order to avold postulating quantum conditions 

from the start, as done in the Heisenberg-Born-Jordan-Dirac 

l.Tatrix l~echanics, the writer conceived the idea of giving 

concrete visualization to the elements of the pq-qp matrix 

by relating them to a classical formula leading to an action .. 

(See paper published in the Phil. Mag. for Sept., 1924). 

This required a slightly modified way of defining the unit 

~.Iatrix. 
If we consider a portion of a radiating gas 

capable of sending out a series of wave-lengths according to 

an observed law, then we may attribute to each periodicity a 

sine element of the p and q matrices. Such aggregates when 

expressed in the form of an action matrix pq-qp, constitute 

a standard diagonal matrix. In the text it has been shown 

that there is an analogy also between h/2~i of matrix me­

chanics and the X-expression developed on the basis of the 

present matrix system. 

An important distinction has also manifested 

it self. On acc;ount of the special charac'!;·er assigned to the 
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p and q elements in the modified matrices employed, the 

squares of the p(mn) elements rather than of the q(mn) 

elements are associated nith the frequencies v(mn). It 

must also be said that the X-function does not require the 

i-term to appear in the denominator. Nor is it necessary, 

for matri}: processes, to assume that the value of all the 

diagonal elements in the Unit Matrix shall be unity or 

even equal t0 each other. 

The requirement for the i-factor in the numerator 

has naturally led to the minus sign appearing when doubly 

differentiating a matrix, as occurs when considering the 

problem of a harmonic oscillator. nevertheless, it must 

be borne in mind that the harmonic oscillator functions, 

heretofore used, ~ave not been strictly radiating systems. 

This is especially true since the Hamiltonian H-function 

has been considered as constant and independent of the time. 

The radiating harmonic oscillator 0f the text, on the other 

hand, implies that only the mean H over the cyclic period 

is constant. Thus during a quarte~-- of a c:.'cle absorption 

of enerf~ is allowed for, and mathematically expressed, 

whereas dt.1l"ins the next quarter of a cycle, radiation of 

energy is presumed to take place. Besides, for a radiating . 
oscillator the momentum is not wholly in phase with q. 

fhus the observed frequencies are interpreted to indicate an 

upper level n=+l and a lower level n=-1 with respect to a 

mean level of energy H
0

• Strangely enough the ratio of 

upper (or lower) level energy Hn to mean level energy H
0 

is 
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is of the order of 1/3 as against the one-half obtained from 

the Heisenberg-Born mechanics for E • Considerable freedom 
0 

however is left open for specifying the "orbital frequency" 

of the generators. 

The evidence goes to show that the postulates of 

the Quantum Mechanics do not necessarily involve such bold 

assumptions as appear to be the case at first sight. Part 

of their wtrange character seems to be due to the use of 

non-radiating harmonic oscillators, whereas those of the 

radiating type are now made mathematically available. 

It is significant that it should be possible to 

show from purely classical considerations that the non­

radiating harmonic oscilJator is only then capable of be­

coming of radiating type when a discrete amount of energy 

( 1/3 of the non-radiating content) is cpntinuously being 

absorbed and re-radiated. This appears to suggest that 

the radiating harmonic oscillator of the text is analagous 

in its properties to that of an ordinary organ pipe. 

• • • • • • • • • • • • • 
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The equation of the non-radiating harmonic 

oscillator is 
• • • • • (1) 

where p is the generalized momentum and q is the generalized 

displacement. Consider, then, matrices of elements such 

as those of the Heisenherg-Born type:-

q = ( ~ l: 2'lfi v (mn)t) ; :P e= ( :Pmn f 2'lfi v (mn) J ... ( 2 ) ( :!:) 

It is possible to get a correspond~nce befween the matrices 

p and q and the true momenta and displacements p and q if we 

consider the following resultant matrix: 

d = pq - qp = u . . . . . . . . . 
Thus let it be assumed that the process of differentiation 

with respect to the time can be performed in the following 

way: 

or 

(~)d 
dt 

• 

• 
= d=(~)p.q + p. (~)q~(d~_ )q.p -q_. (!._)p 

dt dt dt dt 

(3) 

d = 
. . . ... 
pq + pq - _qp - qp • • • • • (4) 

Let it be further assumed that we can have a matrix function 

H analagous to H above such that we can have corresponding 

canonical equations, viz., 

= q . 
' 

• • • • • { 5) 

It follows at once on substitution in {4) that 

(!) A different type of matrix will be further in question. 
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•P + q. 
~q 

It can be shown quite generally in cormection with matrices 

that adopting Dirac's Poisson-bracket notation (!) 

whereas 

• • • • • ( 7) 

There can therefore be a correspond~ce between the canonical 

equations of Hamilton and the canonical equations of Heisen­

berg for matrices generally, provided that the matrices are 

such that • 
d = 0 • • • •• (8] 

This means that the matrices must be of the type that 

pq - qp = constant, (independent of t) • • • 

The above two conditions can be met, first by interpreting 

the multiplication of matrices so that the time functions 

should not appear. This implies that a special rm aning 

( 9) 

needs to be given to "multiplicationn for by (4} it is pre­

sumed that the p's and q's are in fact functions of the time. 

Secondly, in order to meet the condition (9) a diagonal 

matrix condition is necessary. This can also be satisfied 

by properly interpreting the elements of the resultant 

multiplication matrix. 

(~) See Appendix 
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Let us therefore form matrices and then develop 

their products. Thus let, for example, 

pllpl2pl3 qllql2ql3 

q = ·q2lq22q23 
q q q 

31 32 33 

••• (10) p = p2lp22p23 ••• (ll) 
q q q 

31 32 33 

(pllqll+pl2q2l+pl3q3l)(pllql2+pl2q22+pl3~2)(pllql3+~12q23+pl3q33) 

pq= (p2lqll+p22q2l+p23q3l)(p2lql2+p22q22+p23q32)(p21~13+p22q23+p23q33) 

(p31 ql.l +p32q21 +p33q31) (p31 ql2 +p32q22 +p33q32) (p31 q=l-3+p32q23 +p33q33) 

• • • • • (12) 

(qll~ll+ql2p2l+ql3p3l)(qllpl2+ql2p22+ql3p32)(qllpl3+ql2p23+ql3p33) 

qp= (q2lpll+q22p2l+q23p3l)(q2lpl2+q22p22+q23p32)(q21pl3+q22p23+q23p33) 

(q3lpll+q32p2l+q33p3l)(q3lpl2+q32p22+q33p32){q31pl3+q32p23+q33p33) 

• • • • • (13) 

It will be noticed that in pq as well as in qp that the 

diagonal elements are either of the form 

2- pmnqnm or 2 qrnnpnm • • • • .(14) 

The condition then needs to be imposed by definition that 

'D q = 0 
'Wt"tt Y.S 

for m#s • 
t • • • • .{15) 

The significance of this condition will be brought out 

later and will amount to ignoring term elements producing 

expressions in which the frequency of a Pmn element differs 
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from the frequency of a qrs element. 

Forming now the subtraction of matrices (12) and 

(13) it is at once apparent that only diagonal elements need 

to be considered and we have, subject to (15) that 

pq-qp = 

(pllq liqllpll)+(p12q21-ql2p2l)+(pl3q31-ql3p31) J 
Q 

0 J (p21 ~2 -q21 pl2) + (p22 q22 -q22p22) + ( p23 q32 -q23p32) ) C) 

() ) 0 (p3lql3-q3lpl3)+(p32q23-q32p23)+(p33q33-q33p33) 

----(16) 
The general term of any diagonal element is therefore seen 

to be of the form of 

• • • • .(17) 

The multiplication of matrices has then to be so limited 

by definition that an expression such as (17) has no longer 

to involve the time function per se. It will then result 

that the canonical equations of classical mechanics can be 

translated in invariant form into the domain of general 

matrix mechanics. The first important thing, then, in a 

rationalization of matrix mechanics, is to give a physical 

basis for the interpretation of (17). 

By a theorem in classical generalized mechanics 

already deduced by the writer, (see Phil. Mag., Sept. 1924) 

it was proved that, if we have a component of generalized 

force defined by 
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:S(mn) = E sin wt + E cos wt ) . nm mn ) 
and a consequent generalized displacement ) 

) 
• • • • .(18) 

J)(mn) = Dnrn sin wt + Dmn cos wt ) 

the rate of doing work depended on the expression 

'i(mn) ·~t:Q(mn) = w jJ'ErunDnrn - DmnEnrn~cos 2wt + EnrnDmncos 2 wt 

+ ~ (E D - D E ) sin 2 wt 7 (19) 
nmnm mnmn ':_/ • • • • • 

For a real activity !Force x Veloctty of Displacement) 

therefore, it is required that 

• • • • • ( 20) 

The 2 wt terms can contribute nothing to the real average 

activity. A similar expression will be developed for the 

action p (mn) .q (nm) and will be used for the interpretation 
• • 

of (17). One thing is certain from (20) we can never have an 

expression 

D k Dnm mn = = -Ernn Enm • • • • • ( 21) 

where k has an ordinary :::-eal scalar value. Expression (20) 

would under those circumstances reduce to zero, which is 

contrary to hypothesis. In other words E(mn) and D(nm) must, • • 

for real activity, be out of phase to some degree at least 

and we should write instead 
D = k E • • • • • • • • ( 22) 

where k for complex operands is also complex. (*) 
• 

(*) By]} being complex is meant that a component k ~ of~ 
is in time phase with ~ but the component of magnitude k2 b of ~ 

• 
(next ];B.ge) 
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That is let 
k = k - k2 j { **) .(23) . 1 • • • • 

then with 
D(mn) = (Dnm + D j) .sin wt • • • • • ( 24) 
• mn 

(k~-k2 j)~(mn) = (D + D j) .sin wt ) 
nm mn ) 

E(mn) (E + E j) .sin wt 
) 

= ) .(25) ntl1 mn • • • • 

Yle have ·by de:fini tion for the work done 

• • • 

• 
= D.d :P = 

• • 
d~ .dD dW = E. dD = E dt. d.]J 

• •• (26) 
dt dt 

This follows because for a generalized Momentum P the 

following obtains 

dJi 
dt 

= E 
• 

p 
• 

Yet it is to be borne in mind that with 

D 
= • = 

k • 

d 

dt 

dP 
• 

dt 

= wj 

= wj ~ 

• 

••••• (27) 

••••• (28) 

••••• (29) 

showing that the generalized momentum ~ cannot be in time 
• 

phase with :Q. To deduce the latter we have 

(*)(continued)is in time quadrature with respect to E. The 
• 

Heaviside-Perry method of complexes, or Resistance Operators, was 
first extensively treated in Pe~ry's "Calculus for 'Bngineers"(see 
pp. 236 et seq.). The method is much.more powerful than that of 
Steinmetz since the latter has to do with the effective values of 
the variables, whereas the Heaviside operational method deals with 

1~/k-Vu.F~i~~taneous values througho~t - an all impo:-tant diff~rence. 
( ) See author's "Harmon1.c Algebran - Un1.v. of Call.f. Publications. 
Sept. 3o,l919. Also Heaviside's Elec. Mag. Theory. Vol.ll,p.228. 
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p ]} 
= - = 

i .kwj 
• 

1 1 d)) -· If dt 
= 

d.D (*) . 
..(30) ·-dt 

where vve define for convenience that 

• • • • • ( 31) 

A relation corresponding to (19) can be obtained 

for pq by noting first that 
• • 

QQ(mn) 

dt 
= w(Dnm cos wt - Dmn sin wt) ••• (32) 

E(mn) = E 
• run 

' sin wt + Emn cos wt • • • • • ( 33) 

It is the Multiplication of the right-hand expression~ that 

leads to (19) • For (32), (33) we can therefore substitute 

p(mn) =(wp·' ) cos wt - (wp-'mn) sin wt • nm 

q(mn) = qnm sin wt 
• 

+ fkm cos ·wt 

) 
) 
) 
) ••• ( 34) 

These should lead to a form similar to (19) by using the 

substitution wp' for Dnm and qmn for Enm etc. 

if instead we write 

However, 

p(mn) = Pnm cos wt - Pmn sin wt • • -. ( 35) 
• 

the result will be 

( *) This important result. v:ill be employed in developing the 
differential equation of a Radiating Har.mmnic Oscillator. 
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p(mn). q(mn) = rea p -p q ) cos 2 wt · . L\~nm mnnm 

+ q p cos 2wt + ~ (q p -p q ) sin 2wtJ 
nm r.an nm nm mn mn 

• • • • • ( 36) 

The mean action would thus depend on the expression 

• • • • • ( 37) 

which vill be plus or minus depending on whether radiation of 

energy or absorption exists. Expression (37) indicates in 

what manner the matrices for p and q are to be built up, -

and moreover indicates in what manner matrix multiplication 

is to be understood and more especially with regard to d or 

U of (13). 

Given that to each generator of a radiat~ng system 

S are to be allocated a displacement coordinate q (mn) and 
~ . 

a momentum coordinate~ (mn), with reference to a unit or 

standard aggregation of generators ( time t = zero) acting 

as reference, then the two expressions are to be written in 

the form 

~(mn) = qnm sin 2~v (mn) t + qmn cos 2~v(mn)t 
• • • • • ( 38) 

p(mn) = 
• 

-pmn sin 2~v (mn)t + Pnm cos 2~v(mn)t 
• • • • • ( 39) 

For simplicity we can write 

q (mn·) = ( qnm+qmnj) sin 2~v(mn) t= qnmsrrin+qmnOmn= q(nm) +q(mn) 

• 
• • • • • (40) 
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and for the momentum function 

p(mn) = (-p +r j) sin 21Tv(mn)t = -p c +p c 
• mn nm mnmn nmmn 

= -p(mn) + p(nm) • • • • • (41) 

7Jri ting out the matrix expressions for the S-system 

we then have for example 

(

p(ll) p(l2) p(l3)) 
P= p(21) p(22} p(23) 

p(31) p(32) p(33) 
• , 

( 

q ( 11 ) q ( 12 ) q ( 13 )) 

q= q(21) q(22) q(23) 
q(31) ~(32) q(33} 

• • • • • (42} 

Proper regard must, however, be paid to the fact 

whereas any q(mn) in q of (42) corresponds to the cosine func-

tion such that 
q(mn) = q cos 21Tv(mn}t mn 

whereas the p(mn} of p corresponds to the sine function so that 

p(mn) = -p sin 21rv (mn} t 
mn 

In a similar way the folluwing values hold 

q(nm) = q sin 21Tv(mn)t 
run 

p(tw~) = Pnm cos 2~v(mn)t. 

For convenience we can set that 

v(mn) = -v(nm) • • • • • (43) 

Vle can then write 

q(mn) = ~ cos 21T v(mn)t ) 
) q(nm} = qnm sin 21rv (mn)t ) 

• • • • • ( 44) 
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p(mn) = Pmn sin 2uv(nm)t 

p(nm) = Pnm cos 2uv(nm)t • • • • .(45) 

It is then the multiplicatian of two matrices of the form 

(10) and (11) rather than (42) that will give the resultant 

d according to (44) and (45) viz: 

( pll qll -qll pll) + (pl2q21 -ql2p21) + ( pl3q31 -q13pl3 )~ (J) 

pq_-qp 0,(P2lql2-q2lpl2)+(p22q22-q22p22)+{p23q32-q23p23) l O 

o, d,(p3lql3-q3lpl3)+(p32q23-q32p23)+(p33q33-q33p33) 

• • • • 

A simple form of themracket values represented by Pmn qnm 
-qmn Pmn in (46) will now be in order. 

It has already been pointed out in (30) that the 

• • (46) 

generalized momentum ~ can be expressed in terms of the general~ . 
ized displacement D and of D. ~He have, in fact, that • • 

p = :Q 
kwj 
• 

It follows, therefore, that 

• 

• • • • • ( 47) 

( *) • • • • • (48} 

( *) Here s is employed for sin~t and c for cosc.vt. When 
dealing with the double periodicity terms_, as in the preduct 
f ~ of (49) the operators must be translated into c's, and 
appropriat~ s's introduced for the terms involving the sine 
functions of the time. 
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Thus multiplying through with J) to obtain the action \Ve have . 
k2w~ I}=[ck2 D1+k1D~s + (D2k 2 -D1k 1 );; (D1 s + D2o) 

=~J?1 (k2D1+k1D2) sin 2wt + D2(D2k2-D1k1 ) cos 2wt ~ 

+1Dl(D2k2-Dlkl) + D2 (k2D1 +k1D2 )fsin wt. cos wt 
. • •••• (49) 

It thus appears that the average value of the action depends 

on the expression 

....!.._fp D dt = m n] = f ~-(Dl2 + D2
2
) 

21T • • L 'f • av ( ~ • 
w2 mn 

• • • •• (50) 

Translated into the not~tion of (36) therefore, we have by 

(38) that 

~~(mn) ·'!(mn) I av. = qmnPnm -pmnqnmf:~2 ·~ • ( qim:~nnhj ~11 

• • • • • (51) 

The latter brings out an analogy with the postulate of the 

quantum theory, for we can write (instead of h/i), 

( *) • • • • • (52) 

where X would be a constant for an observation steady state. 
mn 

In any event (51) and (52) do not contain the time. There is 

then justification in regarding U of (3) as a "unit" rnatrix. 

(*) A later improved form will be ~hown to involve the momenta 
rather than the coordinates divided by the frequency. 



- 15 -

The following rule can, therefore, be enunciated. 

In forming a matrix product of elements the ordinary multipli­

cation rule of algebraic matrices is understood, but in addition, 

it is implied that average or mean time values be inserted in 

the resultant. As to differentiation with respect to time, it 

means that the differential of the resultant matrix is the same 

as the differential with regard to the individual matrices com­

prising the operand originally, and then taking average time 

values. 

It is at once apparent from (26) that the amount of 

work done, as by radiation, can be put into two forms:-

• • 
dVI = D. dP . , dW = P. dD, 

• • indicating that VI must be a function of P, P,D, D. If then 

by partial differentiation it is understood that 

aw = Aw 
AD 

dP 
••••• (53) 

then this will lead to a solution 

Vl = f (P,D) • • • • .(54) 
. . 

provided that no P' s or D' s are presun1ed to appear in tl~e 

last equation. If they are to appear at all they rou~t do so 

by substition only in the partial derivatives 

• = p 

• = D 
••••• (55) 
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The latter equations expressing radiation conditions, 

as a system, are more symmetrical even that the analagous 

Hamiltonian equations. 

Transposing to the notation {5) we have for matrices 

~w = • :P a.q 
. 
t 

• = q 
• • ••• (56) 

with the reservation as known from (30) that p is not in phase 
• 

In fact, from .(34) we·have with q. 

q(mn)=(q +jq ) sin wt ; 
• nm mn 

q(mn)= wj(q +q j) sin wt 
nm mn • 

• •••• (57) 

On the other hand, from (30) we also note that 

p(mn) = - kl+k2j d~ • • 
w2 k2 dt • • • • .(58) 

Thus 

~2k2 { 
k2 d 

+ k) q p(mn) = • - 1 • w dt 
• • • • .(59) 

kl • k2 • • p{mn) = - q q 
w2k2 • w3k2 • .(60) • • • • 

To develope the differential equation for the 

Radiating Harmonic Oscillator the Hamiltonia~ canonical 

equations are 

• • = q 
. 
t = ~ • • • • • ( 61) 

It was the above equations that were made the basis of 
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treatment for the llatrix Uechanics. We have, however, seen 

by {30) that as a condition for real activity (or actionJ we 

must have that 

2k2 -w • • :E = q 

• • • • • ( 6 2) 

This gives a clue for the POSSIBLE form of H. Thus by 

combining {60} and {62) we have 

On integrating the last equation it follows 

2 p2 • H = - w kl + k (.L ~~ + f 2 . 
2 

Applying now the second equation of (61) it 

-<\H • - = p 
(\~ 

whence integrating, the -f'n ..,..,,...n - ._/ -· _ ... 

H = 

= 

n.a ..,..1. 

~ (q} f 
~CJ. 

H must be 

p 2 + k w :p p 
2 - -

••••• (63) 

(q) 

• • • . • ( 64) 

is seen that 

• • • • • ( 65) 

• 
- p CJ. 

• • • • • ( 66) 

IT IS THE LATTER E~_U_._:lTIOn AND NOT (1} that applies to the 

problem of radiating systems. 
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Taking now the case of equation (30) we have, dropping 

subscripts, 

p = CJ. • 
' ••••• (67) 

• kwj 
• 

If then for convenience we let 

p = P sin wt' 
• • • • • • ( 68) 

(*) ( ) • • • • • 69 

This means that 

• . p . t' p = w J SJ.n w = wPc • • • • • ( 70) 

• 2 2 2 
pq = w P (~ c + k

2
sc) 

• • • • • ( 71) 

Turning now to t.I~e next to the last term in ( 66) we likewise 

have • 2 
P p = Ps w Pc == wP se 

so t~~at on multiplying with k
2
w we have 

• 2 2 
k2 w p p = k 2 w P se 

••••• (72) 

(*) From (68) and (69) we note that for the absolute value 

IPI 2 
= P2 

whereas fqf = w
2
P

2
k

2 
• In other words 

• • 
2 ? 2 2 fpf2 I q I = 4'lf v k 

• • 
This is the result of ( 7·7) 
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The remaining term gives 

• a • • .(73) 

Now adding all the terms together it follows that 

1 
3 

cos 2wt
1 

\ 
• • • • • ( 74) 

The latter equation it is seen indicates a constant component 

for the total energy H which is given by 

- H = 0 
3 2 ?_ 
4 w P""lcl 

• • • •• (75) 

This type of term means NO RADIATION. Such radiation as 

does appear must come from the variable remainder represented 

by 
-H 

V 
= 1 

4 
W2P2kl 2 tl • cos w 

• • • • • ( 76) 

The amplitude of the radiation is seen to fluctuate about a 

mean level H of (75} with equal ranges (energy levels) plus 
0 

and minus. This accords with the Heisenberg-Born Matrix 
+ 

Condition n = - 1. In (76) such amplitude has preferably 

been expressed in terms of the square of the momentum and the 

frequency. 
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To transform (76) as well as condition (52) use can 

be made of (69) which gives 

I~ 12 = 2 2 2 w p k = 
2 

• • ••• (7'7) 

yet it is better to refer to the mom~~~~ amplitudes rather 

than the coordinate ones in order to emphasize the analogies 

with the quantum theory. ~:Je then have that 

X = 
2 ••••• (78) 

which is of the order of an energy (or quantum). 

The ratio of the two energies above is given by 

= 1 
3 • • ••• (79) 

It is signif.icant that H
0 

corresponds to the const_ant aggregate 

energy of the non-radiating harmonic oscillator heretofore 

employed, whereas H represents the amplitude of the fluctuating 
V 

absorption and radiating component. Hothing is indicated about 

the 11 orbital periodicity" with which the potential and kinetic 

energies interchange in the H system. 
0 

Whether there is a 

relationship of this latter with the half frequency component of 

the Hernst-Lindemann formula has yet to be determined, at least 

is it su~gestive. In any case one thing is certain, equation 

(79) has been arrived at on purely classical lines and it shows 
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as a conse~uence of applying Hamilton's canonical equations that 

an unexcited harmonic oscillator when caused to radiate by 

virtue of an impressed field of force only then becames radiating 

when it can absorb and re-radiate a definite, discrete quantum 

of energy equal to 1/3 of its normal unexcited content. This 

corresponds exactly with one of the conditions of the Planck­

Bohr developments. 

Indeed an harmonic oscillator of the organ pipe type 

does not give an appreciable increase of volume with increased 

blowing pressure. A point is soon reached when the dominant 

frequency takes a discrete jurnp in conformity with Bohr re­

quirements. 

• • • • • • • • • 
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Appendix 

Employing the bracket notation of Dirac let 

wit.h 

pq - qp = [ f~,P] + U 

-Cq,pJ = [P,qJ 

To interpret ~~.p2~ we note that 

fo~pg = q2p - qp2 = p(qp)-(qp)p = p(pq-qp)+(pq-qp)p 

= p U + U p = 2p.U 

In a similar manner it can be shown that 

indicating quite generally 

rq pn7 = n pn-1. u = L I l :t 

rqn pJ= d. qn. L I .J.. dq 

d n 
P• 

dp 

In fact as a simple extension for functions of q and p express­

ible as a series we should have dropping the unity matrix that 

• t ( *) 

(*) Kind acknowledgements are made to Dr. A.&. Eve, Director 
of the Physics Department of ltcGtll University, to Professor 
A.H.S. Gillson, and to Dr. J.s. )Foster, for their interest 
and criticisms. 
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