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AABSTRACT 
The measurements of human respiration signal caused by the actions of the chest wall respiratory 

muscles can help predict health crises. As technology matures, there exists a large potential for 

effective techniques that can develop the capabilities of health care systems in diagnostics and 

treatment of respiratory disorders. One recent area of interest is applying wearable Micro-Electro-

Mechanical Systems (MEMS) to detect small movements of the body that occur during expansion 

and contraction of the lungs in each respiration cycle. This thesis presents a newly developed 

experimental system via wearable sensing technology and wireless communication.  

In this dissertation, we make use of accelerometer sensors to model the interior and posterior 

movements of the chest wall during breathing function at rest positions. These motions are 

analyzed in order to explore different respiratory parameters with high accuracy versus the medical 

references. To do so, first the problems of self-recalibration of multi-sensory systems as well as 

fault-tolerant multi-sensor data fusion are considered.  

Next, an accelerometer-based approach is developed to accurately estimate the breathing signal, 

respiratory timing variables and the phase shift between chest wall compartments, which is used 

for paradoxical breathing detection. Since it is essential to determine the critical events caused by 

sudden rise or fall in per breath tidal volume of the people, a technique is provided to automatically 

find accurate threshold values according to each individual’s breath characteristics. Moreover, we 

integrate the use of inertial sensors with machine learning techniques to model a wide range of 

human respiratory patterns for the goal of cloud-based recognition of respiratory problems. Novel 

approaches are discussed for extracting information-rich features from the respiration signal to 

improve the performance of the classifiers. Furthermore, a hierarchical tree model is proposed 

based on multiobjective Evolutionary Algorithm (EA) to optimize two performance metrics of 

classification, simultaneously. 

Finally, an innovative biofeedback mechanism is introduced based on Dynamic Time Warping 

with a fast segmentation method to provide a real-time quantitative feedback during breathing 

therapy. So that, the proposed platform potentially lifts the people's motivation up towards 

treatment while precisely tracks their practice quality improvement at low cost. 
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AABRÉGÉ 
La prédiction de crises respiratoires chez les patients peut être facilitée ou assistée par des mesures 

du mouvement des muscles respiratoires de la paroi thoracique.  Avec les avancées technologiques, 

plusieurs nouvelles techniques de détection et d’analyse de signaux s’avèrent efficaces et offrent 

un bon potentiel d’aide au diagnostic des désordres respiratoires et au suivi de leur traitement. Une 

avenue intéressante est l’utilisation de microsystèmes électromécaniques (MEMS) non intrusifs et 

facilement portables par le sujet, qui permettent de détecter les mouvements d’expansion et de 

contraction de la cage thoracique et des muscles respiratoires durant chaque cycle respiratoire.  

Cette thèse présente un nouveau système expérimental basé sur cette nouvelle technologie de 

détection par MEMS combinée au téléchargement des données à distance par télécommunication 

sans fil. La recherche utilise des capteurs d’accélération afin de modéliser les mouvements 

antérieurs et postérieurs de la région thoracique du sujet au repos. Ces signaux sont ensuite traités 

et analysés afin d’identifier avec haute précision les caractéristiques des paramètres respiratoires 

par rapport aux conditions médicales de référence. À cette fin la thèse traite d’abord des questions 

d’auto-calibration des systèmes de détection à canaux multiples ainsi que la fusion des données 

collectées par de tels systèmes.  

Par la suite, l’auteure présente son approche basée sur la mesure des accélérations afin de 

caractériser avec précision le signal respiratoire en termes de variables temporelles et du déphasage 

entre les compartiments du thorax, dans le but de détecter des conditions respiratoires paradoxales. 

La détermination des événements respiratoires critiques causés par les fluctuations soudaines du 

volume respiratoire du sujet étant essentielle, une technique est proposée qui permet d’établir 

automatiquement les valeurs limites précises associées au profil respiratoire caractéristique de 

chaque individu testé. De plus, l’auteure a intégré des techniques d’apprentissage machine aux 

systèmes de détection afin de modéliser une large gamme de profils respiratoires humains. Cette 

base de données pourrait mener au développement d’un outil de reconnaissance de problèmes 

respiratoires en ligne associée à la technologie de stockage de données en nuage. La thèse discute 

d’approches nouvelles pour l’extraction des caractéristiques saillantes du signal respiratoire afin 

d’améliorer la performance des critères de classification retenus. Pour ce faire, l’auteure propose 

un modèle hiérarchique en arborescence basé sur l’Algorithme évolutionnaire polyvalent afin 

d’optimiser simultanément les indicateurs de performance par paire. 
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Enfin, la recherche utilise un système de biofeedback innovant basé sur la distorsion dynamique 

temporelle du signal par segmentation rapide et qui permet le feedback quantitatif en temps réel 

en cours de thérapie respiratoire. La plate-forme de détection et monitorage proposée dans cette 

recherche encourage la motivation des sujets au traitement et suit précisément l’amélioration de 

leur condition à faible coût. 
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CChapter 1 

1 INTRODUCTION 

This chapter includes an overview of the thesis, along with a description of the problem definition. 

A summary is also given on contributions that were brought forth into this thesis. 

1.1 Research Problem and Scope 
Recent technological advances in wearable sensors and wireless communications make it possible 

to design low-cost, intelligent, and lightweight monitoring system [1]. As technology matures, 

there exists a large potential for effective techniques, which can develop the capabilities of health 

care systems in order to improve diagnostics and monitoring while maximizing the individual’s 

independence. The measurement of human respiratory signal is crucial in cyber-biological 

systems, since a disordered breathing pattern can be the first symptom of different physiological, 

mechanical, or psychological dysfunctions. Thus, a real-time monitoring of respiratory parameters 

such as inspiratory/expiratory time, total time of the respiratory cycle as well as respiration rate is 

an important diagnostic method in planning of medical care. The process of discerning valuable 

respiratory information from motion sensors data is a non-trivial task and is an on-going research 

area. Additionally, the current medical sensing system specifications require high accuracies, as 

well as tolerance to external noise and potential faults. There might be different methods and 

devices, which are able to partially satisfy these domains, however the following have to be taken 

in to account when dealing with medical applications.  
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• Accuracy: Concerns about the estimation accuracy is a considerable challenge to the 

development of respiration monitoring systems in e-health applications. The monitoring 

systems constructed based on sensory systems may suffer from large calibration shifts 

resulted from inherent deficiency or aging. Calibration, which is defined as the process of 

mapping raw sensor readings into corrected values can be used to compensate the 

systematic offset and gain. This can help to increase the accuracy in the single-sensor 

systems; however, fusion techniques are efficient approach, which combines data from 

multiple sensors to achieve more accurate readouts compared to single-sensor systems.  

• Fault-Tolerance: It is essential for any medical systems to be able to continue operating 

properly in the event of the failure since the technology trends indicate that sensing has by 

far the highest fault rates [2]. The health applications are included in the life-critical system 

category, which failure or breakdown may result in death or serious injury to patients. To 

support this criterion, the platform should be able to first detect the fault, quickly, and then 

discard the impact of faulty sensors in the final result.  

• Multi-Functional: The ability of performing different tasks with high accuracy and quality 

in a single platform gives more credit to a monitoring system and is stated as a principle of 

the design.  

• Computation Power and Storage Capacity: Deployment of low-power and high-speed 

algorithms and architecture that are suitable and well-aligned with health care monitoring 

systems is critical.  Buffer size, storage capacity and battery lifespan are some limitations 

of the on-board sensor data processing, especially when dealing with a large population 

and round-the-clock monitoring systems.  

• Convenience: Generally, remote monitoring system brings more convenience to the 

patients with less frequent visits to the hospital for the therapy. However, it is worth noting 

that, making the integrated nodes low-weight, wireless, and low-power will guarantee the 

patients and physicians satisfactions. The sensor placement is also another factor, which 

has to be taken into account when designing a convenient system. For example, in 

polysomnogaphy, the electrodes are taped on the skin. Therefore, removing the adhesive 

bonding caused the skin tissue injury as shown in Figure 1-1 [3]. 
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• Easy setup: There is a growing recognition that simple setup with a user-friendly platform 

is important to achieve interoperability among e-health solutions. Indeed, easy setup allows 

the users to apply the device without the need of medical experts.  

• Cost: Although remote monitoring systems are decreasing the expenses by reducing the 

use of emergency department and hospitalization, the cost of the system should also be 

considered. The affordable design of a portable breathing monitoring system makes it 

suitable to be used by individuals of different socioeconomic statuses.  

• Safety and Privacy: The safety of e-health products must be addressed in a similar way as 

for medical devices especially when the system is designed for critical community such as 

infants, elderly people, pregnant and parturient women. The privacy concern is less while 

employing on-body sensors compared to ambient sensors such as cameras or microphones 

since the recorded data is not understandable to the general users.  

Given the importance and the challenges of designing a real-time monitoring and detection system, 

this thesis will focus on proposing a wireless and low-power respiration monitoring system in 

which different critical respiratory information are extracted by means of MEMS sensors while 

providing a comprehensive analysis and evaluations based on the described design criteria. The 

motivations behind the design of such a system are described in the next section.  

11.2 Motivations behind the Research 
During the last years, many research areas have focused on sensor-based applications to better 

understand and meet people’s needs and demands. Population ageing is widespread across the 

world and it is most advanced in the developed countries. A majority of older adults are challenged 

 

Figure 1-1: Skin tissue injury caused by electrodes with adhesive bonding [3][4]  
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by chronic and acute illnesses which follow a rise in costs of health care [5]. Due to the fact that 

increasing health care and nursing costs place a tremendous stress on the society and the 

government, assistive smart technology that promotes independent living amongst elderly and 

individuals with cognitive impairment is a major motivating factor for sensor-based systems. The 

U.S. health care system reports a cost reduction of nearly $200 billion during the next 25 years if 

remote monitoring tools were utilized in congestive heart failure, diabetes, Chronic Obstructive 

Pulmonary Disease (COPD), and chronic wounds or skin ulcers [5]. It is estimated that, about 7% 

of the population of the developed countries suffers from COPD and it is a growing problem in 

developing countries. The COPD is a progressive lung disease that makes it difficult to breathe. 

An estimate of 3.7 million people live with COPD in UK, predicted to increase by one-third by 

2030, costing £1.2 billion/year [6]. As stated by the National Pressure Ulcer Advisory Panel [7], 

one of the ulcer prevention methods is to reposition the patients at least every two hours. Because 

people such as nurses, caregivers or medical staffs are usually immersed in busy and often trivial 

duties, a position monitoring system would be a good solution to inform them about the patients’ 

body positions. It also helps to increase their awareness of pressure ulcers without increasing their 

memory loads when a multitasking schedule is arranged for them.  

In addition to elderly people, it is also required to monitor the babies at sleep for Sudden Infant 

Dead Syndrome (SIDS) prevention. SIDS is the unexpected, sudden death of a child under age 1. 

This syndrome continues to be the major reason of death for infants in developed countries [8]. To 

avoid SIDS, sleeping on the back has been suggested by the American Academy of Pediatrics in 

1992. SIDS decreased dramatically in some countries where the “Back to Sleep” recommendation 

has been widely adopted, such as the U.S. and New Zealand [9]. Therefore, providing a monitoring 

system, which is able to transmit the respiration signal and body positions, is one of the main 

interests in this thesis. Furthermore, while monitoring the baby's respiration signal, one must avoid 

using wiring in such devices since not only the baby might play with the wiring which resulted in 

failure of the system, but also he has been exposed to the risk of choking [10]. 

One of the famous breathing disorders is sleep apnea characterized by pause in breathing or 

infrequent breathing during sleep [11]. There are three types of sleep apnea: obstructive, central, 

and mixed. Obstructive Sleep Apnea Syndrome (OSAS) is the most common form of cessation of 

breathing (apnea) which repeated by complete or partial blockage of the upper airway during sleep. 
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After about 10 seconds, the brain reacts with a loud gasp when the oxygen level gets too low. The 

apnea mechanism is shown in Figure 1-2. This pattern might occur 30 times per hour in the night 

without any recollection in the morning. It may also cause irregular heart rhythms due to the lack 

of oxygen to vital organs. According to the National Heart, Lung, and Blood Institute (NHLBI), 

about 18 million people in the U.S. have sleep apnea; however, most of them remain undiagnosed. 

Undiagnosed OSAS may increase the risk of developing cardiovascular diseases such as stroke 

and heart failure [13]. Central sleep apnea is a less common type of sleep apnea. In contrast with 

OSA, in central sleep apnea, breathing is disrupted regularly during sleep because of brain 

dysfunction. Although the airway is not close as happen in OSA, the brain doesn’t have control on 

muscles to breathe [14]. OSA can be also diagnosed by analyzing the movements of the Rib Cage 

(RC) and Abdomen (AB) at the same time. Based on [15], OSA was characterized by paradoxical 

motion of the RC and AB in 91% of patients; however, in central sleep apnea there is a synchronic 

movement on the chest compartments. In patients with OSA, it is also believed that body position 

effects on apnea frequency. Sleeping on the side often results in significantly fewer apneas. 

However, as illustrated in Figure 1-3, based on the American Sleep Apnea Association, the 

positional therapy generally helps the patients with mild OSA and snoring [16]. The diagnosis of 

sleep apnea is based on the results of a formal sleep study using Polysomnography (PSG). PSG is 

a comprehensive recording of the biophysiological changes that occur during sleep. Although PSG 

remains as the de facto gold standard technique for diagnosis of respiration problems at sleep, it is 

complicated, expensive, time consuming and has to be conducted in a sleep laboratory [17]. 

Moreover, it is unavailable for everyone since there are very few hospitals which provide PSG test 

especially in rural areas [18]. Therefore, a need has arisen for an affordable real-time portable 

Figure 1-2: The apnea mechanism [12] 
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system with acceptable accuracy and simple setup to be used as a diagnosis system for breathing

disorders. Additionally, it will help people to change their sleep style according to the positional 

therapy in case of mild sleep apnea.  

There are different types of breath disorders, which are characterized by different respiration 

patterns. These abnormal breathings are defined as follows: 

• Bradypnea is regular in rhythm but slower than normal in rate. It may cause by OSA, which

resulted in continuous disruption of breathing during sleep or from heart attack. It is an 

age-dependant breathing disorder and defines as follows [19]: 

Age 0–1 year < 30 breaths per minute (bpm) 

Age 1–3 years < 25 bpm  

Age 3–12 years < 20 bpm 

Age 12–50 years < 12 bpm  

Age 50 and up < 13 bpm  

• Tachypnea is the condition of rapid breathing, with respiration rate higher than 20 

respirations per minute (rpm) at rest. Tachypnea may occur due to physiological or 

pathological problems [20]. 

• Cheyn-stokes breathing pattern is determined by gradually increasing, then decreasing the 

lung volume with a period of apnea. Therefore, this type of breath disorder is characterized 

by a high oscillatory tidal volume. This type of respiration problem is seen in people with 

Figure 1-3: OSA Treatment Options [16] 
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heart failure, strokes [21], traumatic brain injuries and brain tumors. People suffering from 

Central Sleep Apnea Syndrome (CSAS) have the same breathing pattern at sleep [22]. 

• Kussmaul that is defined as a rapid, deep and labored breathing type usually occurs in 

diabetic ketoacidosis. It is known as a type of hyperventilation, which reduces carbon 

dioxide in the blood due to the increased rate and depth of respiration [23]. 

• Biot’s breathing is characterized by periods of rapid respirations followed by regular 

periods of apnea. There are different reasons which cause Biot’s breathing, such as damage 

to the medulla oblongata by stroke or trauma, or pressure on the medulla due to uncal or 

tentorial herniation and prolonged opioid abuse [24]. 

• Apneustic respiration is an abnormal pattern of breathing characterized by a prolonged 

inspiration phase with each breath, followed by an expanded expiratory phase. It is usually 

caused by damage to the upper part of the pons, which is the uppermost section of the brain 

stem as depicted in Figure 1-4. According to [26] the pons can be considered as one of the 

"respiratory center" parts of the brain.  

• Sighing breathing, known as hyperventilation syndrome, is characterized by high irregular 

breathing punctuated by deep periodic inspirations. Sighing breathing is observed in people

suffering from anxiety with no apparent organic disease [27]. 

11.3 System Configuration and Thesis Contributions  
The main contribution behind this research comes from the interest in using inertial wearable 

sensor technology to remotely estimate and monitor respiratory parameters of human beings 

precisely, as well as providing quantifying and qualifying biofeedback. For this purpose, first the 

Figure 1-4: The Brainstem and Pons [25]
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system configuration is described in which different elements are selected based on the design 

criteria described in the previous section. Then, the major contributions that were made from this 

research are summarized. These contributions are organized by the presented topics within this 

thesis. 

11.3.1 System Configuration 

In the proposed hardware setup, we have integrated the use of wearable sensors, Bluetooth Low 

Energy (BLE) and cloud, which surpasses the traditional methods in accuracy, hardware cost, and 

convenience. 

• Wearable sensors  

In this thesis, the sensory node is referred as a complete system which is capable of sensing, 

measuring, transducing and delivering the data associated to the motion experienced by a 

given body part. Accelerometer sensors are among cheap, small and low-power nodes, 

which deliver rich information especially in movement analysis applications. 

Accelerometers produce voltage signals that are proportional to the experienced 

acceleration in different dimensions. In our system, we start with SensorTag shown in 

Figure 1.5 from Texas Instruments as our sensory node, which is the first Bluetooth Low 

Energy development kit on the market focusing on wireless sensor applications. In addition, 

its design has passed FCC (US), ETSI (Europe), IC (Canada) and ARIB (Japan) RF 

certifications [28]. It includes 6 low-power MEMS sensors (TMP006 infrared temperature, 

SHT21 digital humidity, T5400 barometric pressure, KXTJ9 tri-axis accelerometer, IMU-

3000 tri-axis gyroscope and MAG3110 3D magnetic sensors). SensorTag is equipped with 

the Bluetooth Smart radio powered by a single CR2032 coin cell battery and Texas 

Instruments  released its SDK for developers. The sensor and the battery supply are 

presented in Figure 1-5 (a). After SensorTag, the second sensory node is the OLP425 that 

is a stand-alone product with no additional hardware required [29]. It also includes 

Bluetooth Smart, temperature sensor, an ultra-low-power LIS3DH 3-axis accelerometer 

with 12-bit resolution and LEDs. Compared to SensorTag, OLP425 has become smaller in 

size (15×22 ×3mm) which makes it more convenient to be worn on body. The sensory node 
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is shown in Figure 1-5 (b). The module is using an internal Surface-Mounted Device (SMD) 

antenna with a range of 50m, which is included in FCC, IC, R&TTE and TELEC radio tests. 

The IDE from IAR Systems is used to configure the sampling rate of accelerometer sensor 

to suit our application. Both sensory nodes can communicate with any BLE enabled devices, 

for instance a smart phone or a tablet. In our specific configuration, sensor data are sent to 

the smartphone every 20ms (50Hz). The iOS software module on the iPhone is the modified 

version of the source code provided by connectBlue for developers. It is worth noting that,

CC2540 USB dongle can also be used to record the data from computer and as a packet 

sniffer for analyzing the BLE protocol. 

• Data Transmission 

Bluetooth Low Energy or Bluetooth Smart, is a wireless technology designed for novel 

applications in the health care, fitness, security, and home entertainment industries which 

consumes only a fraction of the classic Bluetooth power [30]. The power-efficiency of 

Bluetooth Smart makes it ideal for round-the-clock monitoring applications in order to run 

off a tiny battery for long periods. BLE can form connection and data transfer in less than 

3ms, letting an application to make a connection and then transfer authenticated data in 

few milliseconds. Therefore, in our application where a single data plays an important role 

either in diagnosis, treatment or emergency actions, applying a fast communication 

technique is essential.  Bluetooth Smart technology provides strong encryption and 

authentication of data packets resulted from a full AES-128 encryption. In this thesis, we

used the standard BLE services and device specific services such as device information, 

battery, LED, and accelerometer services.

• Cloud 

(a)                                     (b) 

Figure 1-5: (a) SensorTag [28], (b) ConnectBlue OLP425 [29] 
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Another issue for respiration monitoring systems is the limited on-board storage space and 

signal processing. Logging the data on the cloud makes it possible for the physicians to 

track their patients wherever they are with devices such as an iPhone, iPad or the web 

regardless of their proximity to the patients. Therefore, in the proposed system we use cloud 

database, which can offer significant advantages over traditional methods, including 

increased online accessibility, scalability, automatic failover and fast automated recovery 

from failures. In our configuration, the new raw data are sent to the cloud every 5 sec (250

samples) and then it can be manipulated and processed by the authorized people. There are 

different types of cloud backend such as Dropbox [31], Parse [32], and IBM Bluemix [33]. 

For the baseline prototype, we used Dropbox as a cloud option in the iOS application. 

Therefore, each subject has its own account with unique username and password. The users’ 

data will be shared with authorized people, and finally the proposed algorithms are run on 

data receiving from Dropbox on either desktop computer, smartphone or tablet. It is worth 

mentioning that in case of network disconnection, the data is saved on the local data store 

of the intermediate interface, so any changes can be kept up-to-date while offline. In some 

cases, the online monitoring is also done in a cloud [34]. For example, recently, cloud 

providers like Amazon and Microsoft have attracted developers’ attention by offering 

cloud-enabled machine learning as an easy way to integrate the power of machine learning 

into our applications. In this thesis, the proposed signal processing and algorithms are kept 

computationally unexpansive and are also implemented on cloud due to the flexible capacity 

Figure 1-6:  Overall view of the proposed cloud-based respiration 
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for both storage and computation.  The overall view of the used configuration is summarized 

in Figure 1-6. 

11.3.2 Thesis Contributions 

The main contributions in this thesis are summarized as follows: 

• A new data fusion algorithm is introduced for tolerating multiple faults in an arbitrary 

central multi-sensor system with measurable post-calibration statistical characteristics. 

The results are compared with previous work and show that it is suitable for real-time 

health care applications, where it is crucial to keep the overall precision and accuracy 

of the system high, and where sensor failures of even short duration could be fatal. This 

work has been addressed in [35]-[38]. Moreover, for the calibration of multi-sensory 

systems, a user may have no access to special calibration hardware or expert data 

analysis, therefore the need of automatic methods for jointly calibrating medical multi-

sensor systems have been discussed in [39][40]. 

• A signal processing procedure is proposed by the author to extract the respiration signal, 

respiration rate, respiratory time parameters such as inspiration time, expiration time 

and total time of a breath cycle as well as the body angles during rest positions with a 

single accelerometer sensor mounted on the subjects’ chest wall. Additionally, an 

accelerometer-based approach is developed to accurately estimate the phase shift 

between the chest wall compartments for paradoxical breathing diagnosis as well as Hi-

Lo breathing test. The results are evaluated based on medical references including 

spirometer and respiration monitoring belt. This work has been addressed in [41][42]1.  

• A new algorithm is proposed to calculate the Tidal Volume variability ( ) from 

modeling the anterior-posterior motions of the chest wall during breathing function. 

This has been addressed in [43]2. This work is extended for including an emergency 

1 This publication was among finalists for BIBE’14 Best Paper Awards 
2 This publication was awarded Mobihealth’14 Best Paper Award 
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alarm detection system proposed in [44]. Since it is essential to detect the critical events 

caused by sudden rise or fall in per breath tidal volume of the patients, we provide a 

technique to automatically find the accurate threshold values based on each individual 

breath characteristics to be used in an emergency alert system.  

• A hierarchical classification technique is proposed to distinguish among six different 

breathing models associated with normal and pathological respiration patterns. Different 

evaluations on performance parameters are reported in [41] considering both multi-class 

and binary classifications [45]. Further enhancement is achieved through applying two 

accelerometer sensors with a new informative feature set. These novel time domain 

features are computed based on individual set of tests and subjects in order to distinguish 

among nine different breathing patterns brought in [46]. The proposed classification 

method is extended to develop a multi-objective hierarchical classification architecture 

based on pareto-based multi-objective optimization methodology. The new 

configuration is built to improve two conflict objectives of multi-class classification: 

classification rate and classification rate for each class.  The second objective is 

considered to guarantee a high precision in each class in real problems. This work has 

been addressed in [47]. 

• To complete our platform, we propose a new real-time biofeedback during “Breathing 

Therapy” as an advance way to assist people to learn the science of breath and help the 

patients successfully restore their health in a systematic way. This section of the thesis 

introduces the use of Dynamic Time Warping (DTW) with a new segmentation 

technique to provide the quality biofeedback, properly. Graphical signs are used to 

provide feedback on the quality of each breath taken in real-time. The performance of 

the system is evaluated based on five well-known yogic breathing patterns. This work 

has been addressed in [48]. 

As part of the work of this thesis, ethical approval was received from McGill University Ethics 

Committee. All the participants were informed about the experimental procedures before starting 

the trial sessions.   

The rest of this thesis is organized as follows. Chapter 2 discusses the background and related 

work. Chapter 3 introduces our fault-tolerant data fusion as well as self-recalibration techniques 

for multi-sensor applications. Chapter 4, proposed a procedure to estimate an accelerometer-
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derived respiration signal, respiration rate as well as respiratory timing parameters. The body 

angles and positions have been also investigated while the synchronous and paradoxical breathing 

patterns are analyzed based on the proposed system, as well. Chapter 5 introduces a new algorithm 

to design an intelligent remote tidal volume variability monitoring system. Chapter 6 presents a 

comprehensive description of novel machine learning techniques for breath disorders 

classification. Chapter 7 addresses our proposed methodical breathing therapy framework based 

on wearable technology. Finally, the future works and conclusion are drawn in Chapter 83. 

3 Majid Janidarmian contributed to the experimental setup, collection of the data, discussion of results and final papers structures. The 
experimental measurements on temperature sensors and technical modifications (Chapter 3) have been done by Omid Sarbishei, Benjamin Nahill 
and Majid Janidarmian at the Integrated Microsystems Lab (IML), McGill.   
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CChapter 2

2 BACKGROUND AND RELATED WORK 
This chapter begins with describing the background and previous work on accuracy analysis, 

calibration, and fault-tolerant designs in the multi-sensor systems. A brief background is given on 

exploring respiratory parameters with medical devices. Then, some discussions on previous 

accelerometer-based approaches to obtain the respiration signal and body positions are provided. 

Since, up to our knowledge, there have been seldom investigations in using wearable motion 

sensors for estimating different respiration parameters discussed in this thesis, we also illustrate 

the related studies, which applied other types of sensors and devices.  Subsequently, different 

previous classification techniques for breathing disorders recognition are described. This chapter 

ends with a survey of the health-related research, work on the impact of breathing therapy on 

various health conditions. 

2.1 Calibration and Fault-Tolerant Data Fusion 
In this section, we address the related work on accuracy analysis, calibration, and fault-tolerant 

data fusion techniques in multi-sensor systems. Calibration is a crucial step in improving the 

accuracy of individual sensors exist in a multi-sensor system. Certain systems might require 

dedicated calibration procedures, which in general can be categorized under online or offline 

methods. Offline methods are mostly based on curve fitting, such as, the Least-Square (LS) 

method, to map raw sensor readings into corrected values [49] and compensate the systematic 

offset and gain. On the other hand, online methods are based on time series and prediction in real-
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time, such as Kalman filters [50]. In [51], Bychkovskiy et al. suggests a methodology for localized 

calibration of the light sensors. It first considered the physically close sensors and used temporal 

correlation of signals received from neighboring sensors to derive a function relating their bias in 

amplitude. Then in the next part, it obtained the most consistent way to provide all pairwise 

relationships by modeling the system as an optimization problem. Feng et.al [49], have focused 

on both offline and online calibration of light sensors. The calibration problem is formulated as a 

nonlinear minimization function which solved by the standard conjugate gradient approach. The 

results are shown on a set of photovoltaic optical sensors considering the point-lights model. In 

offline calibration of the light sensors, they make use of linear Least Square (LS) method on two 

separate sets of recorded data versus the reference data captured by high-quality and high-cost 

light meters. [52] presents two methods for smart temperature sensors calibration that are based 

on voltage measurements rather than temperature values. In the first method, the sensor’s 

measurements after calibration report the error of ±0.15°  over the temperature range from -55°  

to 125° . However, due to the use of small voltages, the implementation of such a method might 

be infeasible in a production environment. To overcome this problem, their second method uses 

larger external reference voltage to the chip during calibration and the chip’s temperature is 

determined via the Analogue to Digital Convertor (ADC). Therefore, any errors caused by ADC 

would effect on the quality of their calibration. Although, this technique obtains an error of ±0.25 

° over the same range of temperature, its specs compared favorably to the current commercial 

temperature sensors [53]. The approach described in [54] introduces a system of temperature 

sensors, which adopts ARM processor LM3S1138 as its controlling core. The LS method is 

applied to fit the temperature sampling values in connection with the readouts from the temperature 

sensors. In this method, the maximum and minimum readouts of ten measured data at each 

sampling point are extracted, and then the average of the remaining eight readouts is used as the 

reference model for the purpose of calibration. They use polynomial of degree three for each range 

of temperature, independently.  

In general, faults at sensor level can be categorized as either complete sensor failure (permanent 

faults), such as stuck-at faults, or transient faults, which might happen over only a limited period 

of time. There exist in the literature approaches that aim to detect the faults in sensor readouts 

based on the typical fault models in [55]-[57]. Such approaches are based on first capturing the 

sensor readouts for a reasonably long amount of time, and then comparing the results with the 
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given statistical characteristics of the sensors in their normal operation mode. Next, if the results 

of a sensor deviate from the expected characteristics by a particular threshold, then the sensor is 

assumed to be faulty. The approach in [55] also proposes a technique to find the optimal threshold 

value for such a purpose. Albeit useful, these techniques are not applicable to the applications, 

where it is required to detect the faulty sensors in a short amount of time, e.g., in health systems 

[58]. In fact, sensor failures may occur within relatively short intervals. Hence, it is a must to 

provide data fusion techniques to detect faults periodically within a relatively short amount of time. 

The approach provided in [58] is more suitable for such purposes. However, they can only handle 

single fault and are not efficient when multiple faults occur. It presents a fault-tolerant technique 

for glucose sensor readouts based on an average computation over multiple sensor readouts. The 

basic idea is to throw away the sensor readout, which is furthest from the average. That way, faults 

caused by the complete failure of a sensor, body rejection, etc, can be detected relatively fast to 

increase the robustness of the average computation. The major inefficiency of this approach is that, 

it is unable to detect multiple failures that lead to a specific adverse outcome. Multiple faults are 

usually hard to detect and tolerate. Some approaches such as [59] focus on diagnosing multiple 

faults in a multi-sensor system using a conventional fuzzy soft clustering. This method contains of 

two phases, first, a fused signal is generated by the sensor readouts by the c-means algorithm [60] 

and next, the information provided by the sensors and the fused signal are used to detect the faulty 

sensors. This approach is computationally expensive to be performed in real-time due to the 

potential convergence issues of the c-means algorithm. From an accuracy point of view, a basic 

data fusion approach to increase the accuracy of sensor readouts in a multi-sensor system is to 

perform a simple average computation over the results [61]. This technique improves the Mean-

Square-Error (MSE) by factor of , if all sensors are identical in terms of the statistical 

characteristics, where  is the number of sensors measuring the same data. However, the normal 

average computation is not robust enough against faults. A weighted average computation can be 

performed to minimize MSE. The solution in [62] uses a neural-network-based training heuristic 

to optimize the weights for the purpose of average computations.  

We propose a new self-calibration and data fusion algorithms in Chapter 3, which are applicable 

to a central multi-sensor architecture, for which the post-calibration statistical characteristics of 

sensors can be experimentally measured. In a central multi-sensor architecture, the sensors 

communicate through a central processor and they capture the same reference data.  
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22.2 Respiration Signal, Parameters, and Body Positions  
There have been a variety of direct and indirect methods for estimating respiratory parameters 

[63][64]. For instance, the flow meters including pressure transducers, thermal flow meters, and 

ultrasonic flow meters are known as the direct methods. The method based on the blood oxygen 

level [65] is an example of indirect technique. This technique does not provide a reliable indication 

of changes in breathing pattern while has slow reaction to breath disturbance. This time lag 

depends on the complexity of the algorithms and might exceed 15 to 20 seconds [65].  The pulse 

oximetry has several limitations including ambient lighting, skin pigmentation, tissue perfusion, 

and hemoglobin concentration [66]. It is shown that, this device is more likely to overestimate the 

oxygen concentration at low saturations in individuals with darker skin. The work presented in 

[67] also shows that the monitoring respiration signal based on pulse oximetry has the restriction 

of electromagnetic interference caused by electrosurgical cauterization units or cellular phones. In 

addition, in case of perfusion reduction and small pulse amplitude, the device will be prone to error 

and be unable to obtain a reading resulted in generating false alarms [67]. The light emitted from 

the device is harmful to the eyes, so the users should not stare at the light. The pulse oximeters are 

not recommended for long time monitoring since painful feeling might appear if using the device 

ceaselessly, especially for the children. Another indirect method is based on the measurements of 

tracheal breath sounds. Although it is an efficient method for detecting deep and low breathing 

sound amplitude, it does not exceed the background noise whereas the relationship between the 

sound amplitude and air flow is very difficult to detect [68]. Respiratory waveform was obtained 

by using a piezoelectric respiration transducer in [69]. The sensor, placed around the thorax, 

generates a high-level linear signal in response to changes in thoracic circumference, associated 

with respiration. They also proposed a Patient Personal Server (PPS) to collect the data from the 

breathing module, processing the signal and then transmit it to a database stored on a 

telemonitoring server. Recently, [70] proposed a non-contact system based on the COTS TX-RX 

Pair. The results are investigated on three types of experiments for one person in lying position 

and different postures. The mean absolute error of 0.12 respiration per minute (rpm) is obtained 

for the respiration rate estimation.  Nepal et al. [71] applied an abdominal strain gauge transducer 

for classifying the breath signal into apnea, normal respiration or respiration with motion 

categories. They used second order autoregressive modelling and zero-cross algorithm in which 



Background and Related Work 18 

the square root of energy index is considered as the baseline for respiration rate calculation. 

Another monitoring method is the vision-based system. [72] proposed a camera-based technique 

for real-time respiration signal and breath rate extractions. Their method includes image and signal 

processing techniques to extract chest and abdominal movements' information from a sequence of 

video recorded by a single video camera. Their assessments indicated an estimation error of 3% 

for respiration rate considering a 3-10 minutes test on a single subject in sitting position. Such a 

monitoring system not only demands high cost, but also may be considered to be an invasion of 

patients’ privacy. Furthermore, the accuracy directly depends on the patients’ cloths patterns as 

well as their distance from the camera. There are medical mattresses which can calculate the 

patient's respiration and pressure distribution [73]. When using a transducer under the mattress, 

the changes of pressure produced by the respiration movements are partially absorbed by the 

mattress, therefore it is subject to error and inaccurate results. Watson et al. [74], proposed a 

method for monitoring respiration signal by measuring the inductance of an extensible electrical 

conductor closely looped around the body to calculate the variations in the patient’s chest and 

abdomen areas. 

An ECG-based technique for calculating the respiration frequency on both simulated and real data 

during stress testing is discussed in [75]. The respiration error rate of 0.5% ± 0.2% is reported for 

simulated signal while this error increases to 5.9% ± 4% considering 12 leads worn by 34 subjects 

in a real test. Likewise, [76] described a method for respiration rate estimation based on the ECG 

signal. They tried different combination of 12-lead ECG, which was digitalized, with a sampling 

rate of 1 kHz, and an airflow-thermistor-based technique was used with sampling rate 50Hz as the 

reference device. The best error in respiration rate estimation with normal breathing pattern is 

achieved 1.07% ± 8.86% based on using 3 Vectorcardiographic leads (VCG). The solution in [77] 

makes use of a combination of information from several ECG-Derived Respiration (EDR) signals 

to provide an estimation of respiration rate. A relative error of 0.50% ± 4.11% for tilt test and 

0.52% ± 8.99% for stress test are computed from VCG leads. The issue with ECG is that the 

electrodes are taped directly on the skin. Therefore, removing the adhesive bonding will cause the 

skin tissue injury and contact skin dermatitis if they are in use for long time [78]. Due to this fact, 

they are not recommended to be used for round-the-clock monitoring applications. In the proposed 

framework, there is no need to connect the sensory node directly on the skin, which may cause 

sweating or irritations for sensitive skins such as for newborn infants or children. Furthermore, the 
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previous studies are mostly based on recording the ECG data from the laboratories or hospital 

facilities.  

One recent area of interest is applying motion sensors to detect the small movements of the body 

that occur during expansion and contraction of the lungs in each respiration cycle. In [79], an 

accelerometer and pressure sensors are worn on the body to obtain the respiratory rate. In this 

work, the data were collected by the data acquisition card, and then the processing has been run in 

LabVIEW software. In this assessment, respiratory rates deviating less than 0.5 bpm from Finapres 

as the reference signal. An oximeter combined with an accelerometer sensor is used in [17] to 

diagnose sleep apnea, COPD and asthma. They investigated the impact of body posture in 

analyzing the respiratory movements. They also proposed a method to detect the apnea and 

hypopnea events in real-time and then Apnea/Hypopnea Index (AHI) is calculated. The analyzed 

data are recorded on a PC or cellphone to be sent to the remote center or physicians. However, the 

limited data storage might bring problem especially for daily monitoring applications. A validation 

of respiratory signal derived from suprasternal notch acceleration has been investigated by [80] 

for different body positions. They show that the respiration rate from the accelerometer has 1.55% 

error with respect to the spirometer. Their data storage and processing are performed on a computer 

with their custom build LabVIEW Virtual Instrument. Moreover, the respiration rate is estimated 

by strain gauge transducer and the error rate of 4.9% is achieved with respect to the spirometer 

signal. In [81], the respiratory component is also extracted from the accelerometer mounted on the 

suprasternal notch of the subjects. The vibrations are recorded with a Transducer Electronic Data 

Sheets (TEDS) lightweight piezoelectric accelerometer. The results are evaluated versus the sleep 

laboratory polysomnography as the reference. The data acquisition is done with a compact system 

and a laptop where data were stored to be used later. Their results represent the feasibility of 

implementing an accelerometer-based portable device for respiration recording. 

Electrocardiography, 3-axis accelerometer, and respiration belt data were used and analyzed in 

[82] from ten healthy volunteers. Respiration rate and flow waveform are also estimated in [83] 

from a tri-axial accelerometer data attached on the left lower costal margin under the ribs of the 

subject. The estimations are calculated through utilizing the angular rates of breathing motion. The 

assessments are based on cannula measurements as their reference device. The respiration signal 

and heart rate are extracted offline from the accelerometer sensor and compared with the reference. 

The data is collected in a memory stick and analyzed later in a computer. Silva et al. [10] evaluated 
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a system comprised of a microprocessor with an accelerometer sensor for breath study in both 

animals and humans. This method is based on on-board signal processing and alarm means. The 

authors in [84] introduced a fusion algorithm for accelerometer and gyroscope signals to calculate 

the respiration rate. They considered two types of exercises, and the respiration rate errors are 

calculated as 4.6% and 9.54% versus the piezoelectric respiratory belt for the treadmill and leg 

press, respectively. Table 2-1 summarizes the previous methods that have been used for respiratory 

parameters estimation. 

In addition to obtaining an accurate respiration signal, several methods and approaches investigate 

the impacts of body positions for different breath disorder problems. For example, Fernandes et 

al. investigates the effect of the body position in Obstructive Sleep Apnea for children. They 

conclude that, unlike adults, children with OSA breathe best when in the supine position [85]. 

After the “Safe to Sleep” campaign was introduced in 1994, the SIDS rates have been decreased 

sharply. Recently, [86] reposts that, the rate of putting infants in prone position at sleep has 

decreased 50-90%, which resulted in reduction of 50-90% of infant mortality caused by SIDS. 

Different studies have shown the effectiveness of “positional therapy” for mild to moderate 

positional OSA [87][88]. In [89], sixteen patients with positional OSA were considered and 

instructed how to perform the treatment for a test night and for three months’ duration. The mean 

Apnea-Hypopnea Index (AHI)—the number of apnea and hypopnea events per hour of sleep—

decreased from 26.7 ± 17.5 to 6.0 ± 3.4 during the test night. At three months test, the improvement 

persists the same in AHI compared to the night test. Therefore, the selected volunteers could be 

effectively treated by a positional therapy for 73.7%. Lee et al. has also examined the body position 

in patients suffering from sleep apnea and reported the effectiveness of the lateral position in 

reducing sleep disorder symptoms particularly in mild and moderate sleep apnea [90]. In addition, 

40° rotation  from the supine position with slightly more than 20mm elevation of the upper trunk 

levels were recommended to reduce the OSA events of more than 80%. Gastro Esophageal Reflux 

Disease (GERD) is a condition in which the stomach contents leak backwards from the stomach 

into the esophagus. This can irritate the esophagus and cause heartburn and other symptoms. 

According to [91] and Dr. David A. Johnson, Professor of Medicine and Chief of Gastroenterology 

at Eastern Virginia School of Medicine, for people suffering from GERD, the left lateral position 

is preferable. In Chapter 4, we make use of an accelerometer sensor to remotely calculate the body 

angles associated with different body positions in terms of pitch and roll angles.  
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Table 2-1: Previous methods in respiratory parameters estimation 
REF 

# Sensor Type # of 
Sensors 

Sensor's 
Location Wireless Privacy 

Problem 
# of 

Subjects Portable Technique Outcome 

[69] Piezoelectric belt 1 Around the 
thorax Yes No 0 Yes 

Described a wireless 
system to be applied 

for breathing 
monitoring 

Display respiration 
signal for patients as 
well as sending to a 

telemonitoring 
system 

[68] Microphone 1 

Trachea at the 
level of the 

thyroid 
cartilage 

No No 11 Yes 

Respiratory waveform 
was obtained by using 

a piezoelectric 
respiration transducer 

vs. pneumotach  

Estimating the tidal 
volume in different 
positions with error 

of 13.2% ± 8%  

[70] Single COTS 
TX-RX pair 1 Attached on the 

bed Yes No 1 No 

Profiltering is applied 
to increase the SNR of 
noisy signals, it uses 
real-time spectrum 

analyser as the 
reference 

Respiration rate 
estimation error of 

0.12 bpm  

[80] Stain gauge  1 Around the 
thorax No No 9 Yes 

Calculating respiration 
rate and correlation vs. 

spirometer 

Respiration rate 
estimated by error 

4.9% with correlation 
coefficient 

 0.68 ± 0.21 

[72] Camera 1 

In different 
angles in front 
of subject with 

different 
distances 

Yes Yes 2 No 

Technique to extract 
chest and abdominal 

movements' 
information from a 
sequence of video 

recorded applying a 
single video camera 

An estimation error 
of 3% for respiration 
rate considering a 3-

10 minutes test  
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REF 
# Sensor Type # of 

Sensors 
Sensor's 
Location Wireless Privacy 

Problem 
# of 

Subjects Portable Technique Outcome 

[75] ECG 12 leads 
Different 

places of the  
body 

No No 34 No 

Exploits the 
oscillatory pattern of 
the rotation angles of 
the heart’s electrical 
axis as induced by 

respiration 

The respiration error 
rate 5.9% ± 4% in 

real test 

[77] ECG 3 VCG 
leads NA No No 29 No 

The proposed method 
is  based on QRS 

slopes 

Estimation relative 
error of 0.5% ± 

4.11% for tilt test and 
0.52 ± 8.99% for 

stress test 

[76] ECG 3 VCG 
leads NA No No 29 No 

The slope between the 
peak of Q and R 

waves, the peak of R 
and S waves, and the 
R-wave angle were 

combined for 
respiration rate 

estimation 

The respiration error 
rate 1.07% ± 8.86% 

with normal 
breathing pattern 

[17] 

Accelerometer+ 
Micro 

respiratory 
sensor+  

Pulse oximetry 

3 
Upper body+ 

Nasal cannula+ 
 on fingertip 

Yes 
(Bluetooth) No 1 Yes 

Investigates the 
impact of body 

posture in analyzing 
the respiratory 

movement 

Respiration airflow/ 
blood oxygen/ body 

position 

[80] Accelerometer 1 Suprasternal 
notch No No 9 Yes 

Calculating respiration 
rate and correlation vs. 

spirometer 

Respiration rate 
estimated by error 

1.55% with 
correlation 

coefficient 0.88 ± 
0.09 
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REF 
# Sensor Type # of 

Sensors 
Sensor's 
Location Wireless Privacy 

Problem 
# of 

Subjects Portable Technique Outcome 

[79] Accelerometer+ 
Pressure sensors 3 Chest No No 1 Yes 

Constructs a special 
respiratory rate sensor 

belt, data were 
collected by the data 

acquisition card 

Respiration rate with 
less than 0.5 bpm 

deviation from 
Finapres as the 
reference signal 

[81] Accelerometer 1 Suprasternal 
notch  No No 15 Yes 

Estimating respiration 
rate w.r.t. 12 PSG 

sensors 
(exclusive focus in the 

case of 
the PSG thermistor as 

the reference)  

The precision 
oscillates 
around ±3 

breathings/min 

[82] 
Accelerometer+ 

ECG+ 
Respiration belt 

3 Sternum region No No 10 Yes 

The respiration signal 
and heart rate are 

extracted offline from 
the accelerometer 

sensor  

The mean correlation 
coefficient of 0.99 

considering normal, 
slow and fast 

breathing patterns 

[84] Accelerometer+ 
Gyroscope 2 Around the 

thorax Yes No 10 Yes 

Introduced a fusion 
algorithm for 

accelerometer and 
gyroscope signals to 

calculate the 
respiration rate 

Respiration rate 
errors of 4.6% and 

9.54% vs. 
piezoelectric 

respiratory belt for 
the treadmill and leg 
press, respectively 

[83] Accelerometer 1 
Left lower 

costal margin 
below the ribs 

Yes No 
1 healthy 

and  
Patients 

Yes 

Estimating respiration 
rate  by angular  rates 
of  breathing  motion 
vs. nasal cannula as 

the baseline 

Respiration rate 
estimated by error 

0.38 bpm with 
correlation 

coefficient 0.98 
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22.3 Rib Cage and Abdomen Synchrony Analysis  
The other factor, which might help for diagnosis and treatment of breath problems, is the analysis 

of the rib cage and abdominal synchrony during breathing function. Based on [92][93], 

asynchronous breathing is defined as the difference in time of expansion or retraction between the 

compartments of the chest wall. However, in case of extreme phase difference, the movement 

among the compartments becomes opposite, and then the paradoxical movement occurs [93]. 

Paradoxical behavior of the chest wall in COPD patients is recognized for many years [94][95]. 

Recently, [96] provides a literature review on OptoElectronic Plethysmography (OEP) as an 

indirect measurement of pulmonary ventilation. They applied 89 passive markers, which were 

placed on different parts of upper body with a sampling frequency of 50Hz. Four CCD cameras 

are used to capture the 3D coordinates of each marker. The cameras operate at up to 120Hz and 

are synchronized with axial diodes that emit infrared light. The system showed good intra – and 

inter-rater reliability, with intra-class correlation coefficients above 0.75 for most of the analyzed 

variables. OEP is also used for movement analysis of the rib cage and abdomen. Even though OEP 

is a new reliable method for breath analysis, it is impossible to use it for remote monitoring of 

respiratory parameters since the use of OEP requires laborious and complex calibration 

procedures. 

Paradoxical motion of the chest compartments could alter the normal pressure relationships 

between the thoracic and abdomen during inhalation and exhalation [97] . This probably affects the 

amplitude of rhythmic fluctuations of blood volume, which activates homeostatic reflexes 

involved in maximizing optimal cardiorespiratory interaction and regulating blood pressure 

[98][99]. Therefore, habitual existence of pathological breathing such as paradoxical pattern may 

damage the function of homeostatic reflexes. Despite their critical significance, the abnormal 

respiration patterns are often overlooked resulted from a lack of diagnostic and therapeutic tools. 

Therefore, to address this problem, in Chapter 4, a novel solution that takes in this idea and 

leverages the potential of the wearable motion sensors is presented. 

2.4 Tidal Volume Variability 

Based on study in [100] for patients suffering from breath disorders, the destruction of lung 

capacity occurs over an initial period of two to four days. Thus, continuous monitoring of the tidal 
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volume variability plays an important role in respiratory disorder diagnosis. According to [101] 

for a fixed set of patient conditions, the alveolar ventilation depends on tidal volume variability. 

Alveolar ventilation refers to the amount of air reaches the alveoli for gas exchange with blood per 

unit time.  At normal rates of positive pressure ventilation, if the tidal volume goes less than or 

close to total dead space (about 26% of the resting normal tidal volume [102]), it will cause the 

lack of alveolar gases, regardless of the respiratory rate and minute volume. This would cause 

carbon dioxide retention in the bloodstream rapidly as well as progressive lung disease, 

deteriorating ventilation-perfusion matching and eventually, impaired oxygenation.  

Pneumothorax is another respiration disorder known as “air in the pleural cavity” which has two 

major signs including shortness of breath (low breath volume) and Tachypnea [102]. According 

to Chang and Mukherji [103], the incidence of primary pneumothorax in the USA is 7.4-18 cases 

and 1.2-6 cases per 100,000 persons per year for men and women, respectively. Without 

continuous monitoring, people often do not seek medical attention after their symptoms develop 

more serious due to comorbidity causing Secondary Spontaneous Pneumothorax (SSP). 

Furthermore, emphysema known as a common cause of SSP is a Chronic Obstructive Pulmonary 

Disease (COPD) where there is over-inflation of the alveoli in the lungs, resulted in breathlessness. 

Therefore, the symptoms associated with pneumothorax, emphysema and COPD are most likely 

diagnosed through analyzing respiration patterns, such as Tachypnea and shallow breathing 

pattern.  

At the opposite side, too large tidal volume may produce alveolar and airway over distension which 

may lead to lung injury such as over-expansion, pulmonary interstitial emphysema and 

pneumothoraces. Dreyfuss et al. has shown that breathing with large tidal volumes causes the fluid 

accumulation in the air spaces and parenchyma of the lungs resulted in pulmonary edema [104]. 

Hernandez et al. [105] explored the effects of high tidal volume on immature rabbits and 

demonstrated the major role of volume distension of the lung in the progress of lung injury. In 

Chapter 5 of this thesis, we focus on proposing a remote monitoring system which will enable 

proactive home monitoring with estimating the tidal volume variability as well as triggering an 

alarm signal to a health care center or caregiver in case of any unexpected event. These are essential 

features especially for an aging population and can result in lowering the cost of health care by 

moving some of the eligible patients from hospital to home. 
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22.5 Breathing Disorders Recognition 
Different machine learning techniques, such as linear and quadratic discriminant model [106], 

regression tree method [107], Bayesian hierarchical [108] and Support Vector Machine (SVM) 

[109] have been used for automatic recognition of Obstructive Sleep Apnea (OSA) based on the 

features extracted from Heart Rate Variability (HRV) and ECG-derived respiration (EDR) signals. 

In [110], the authors applied the wavelet transform and an Artificial Neural Network (ANN) 

algorithm to the electroencephalogram (EEG) signal in order to identify sleep apnea episodes. The 

EEG signals are classified into four frequency bands of basis waves: delta (δ), theta (θ), alpha (α) 

and beta (β). In case of apnea the EEG signal shifts above the delta frequency band. Then, sleep 

EEG activity shifts from a delta wave to theta and alpha waves frequency bands in the range of 

4~14Hz once episode of apnea ends. The system’s identification achieved a sensitivity of 

approximately 69.64% and a specificity of approximately 44.44%. In 2013, Koley et al. [111] 

presented a real-time portable apnea and hypoapnea detection system based on SVM with 

Gaussian Radial Basis Function (GRBF) kernel and oronasal airflow signal. They achieved the 

detection accuracy of 93.4% and 91.8% on 8 different subjects in the offline and online tests, 

respectively. Although useful, all these methods require signals, which are only available in 

hospitals or laboratories and could not provide automated wireless remote detection. 

There exist in the literature approaches that aim to classify the abnormal breathing from normal 

respiratory conditions [112]-[114]. For instance, [112] used a multi-layer perceptron neural 

network classifier applied on spirometry data. The total accuracy, sensitivity and specificity of 

97.6%, 97.5% and 98.8% are achieved, respectively. Mahesh et al. [113] discussed the problem of 

binary classification with 92% accuracy through pulmonary function test and neural network. A 

Radial Basis Function neural network is described in [114] with flow-meter spirometer to 

differentiate between normal and obstructive abnormality. The validity of their result was tested 

with the accuracy 90%. In [115], the authors provide a combined two sequential binary neural 

network classifiers to detect normal, obstructive and restrictive breathing models. The first 

classifier separates the normal and abnormal patterns followed by the second binary classification 

between obstructive and restrictive breathing models. They could obtain an average accuracy of 

92.5%.   

Breath sound has been widely used in diagnosing of respiratory diseases, such as flu, pneumonia 
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and bronchitis.  Palaniappan et al. [116]  ,  proposed a method which used MelFrequency Cepstral 

Coefficients (MFCC) as features extracted from respiratory sounds. They applied SVM classifier 

to distinguish normal, obstruction pathology airway and parenchymal pathology. They achieve an 

average classification accuracy of 90.77%. Recently, [117] proposed a binary classification 

technique based on the maximum likelihood approach by using Hidden Markov Models (HMMs). 

They include the impacts of both lung and heart sounds in their feature extraction phase. The 

classification rate of 81.3% is reported for distinguishing between healthy people and patients 

when the classifier is trained only by the lung sound (Baseline) [118]. However, this rate increases 

to 83% with both lung and heart sound parameters. The lung sound classification is also used for 

Pulmonary Emphysema (PE) diagnosis in [119]. The accuracy of 83.9% between healthy subjects 

and patients is achieved. All these techniques are based on classification of breath sounds either 

alone or combined with heart sound. Breath sound is often considered as a band-limited or 

broadband noise [120] and needs enhanced signal processing to be integrated in a reliable breath 

disorders diagnosis. In this way, this work seeks to contribute to a better understanding of the 

requirements of remote detection systems and aims to help paving the path to a new generation of 

accelerometer-based respiration monitoring approaches for their use in the real world. 

22.6 Breathing Therapy  
Breathing therapy has been proven itself to be an effective, drug free remedy for a host of various 

health conditions. Indeed, this reduces symptoms and improves the health of patients suffering 

from asthma, anxiety, speech disorders, chronic muscular skeletal dysfunction and medically 

unexplained physical symptoms [121].   

Various studies have shown the effectiveness of yoga-based breathing techniques in asthma 

[122][123], hypertension [124], diabetes, and ischemic heart disease [125]. A research study [126] 

also showed a positive outcome in the application of yoga-derived breathing as a therapeutic 

method for patients suffering from COPD. [127] compares the patients who received standard 

cardiac rehabilitation with those getting additional training in breathing therapy after Myocardial 

Infarction (MI). It was concluded that the group with breathing therapy had about 30% decrease 

in cardiac events at 5-year follow-up. Dixhoorn et al. showed that exercise training in patients with 

MI was not always successful in avoiding future cardiac events; however, the risk of treatment 

failure is decreased by half when breathing therapy was added to exercise training [128]. The 
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breathing therapy has been discussed based on yoga breathing patterns. It also found to be useful 

to improve hemodynamic and various cardio respiratory risk factors in cardiac patients [129]. The 

Buteyko breathing is a technique, which aims to correct the acute and chronic hypocapnia. It 

includes a unique set of breathing exercises that uses breath control and breath-holding to treat a 

wide range of health conditions related to hyperventilation and low carbon dioxide .The BBT 

exercises try to augment the  level while may also be useful in reducing hyperinflation [130]. 

According to Australian Department of Health, the quality of Buteyko is known stronger than any 

other supplementary medicine treatment of asthma [131]. Concretely, it is very important for 

patients to follow exact instructions since otherwise it may cause lung problems such as over-

expansion. Therefore, Chapter 7 aims at providing a system that helps people evaluate their 

progress during practicing the prescribed breathing exercises, quantitatively.
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CChapter 3 

3 FAULT-TOLERANT DATA FUSION AND SELF- 

RECALIBRATION OF MULTI-SENSOR SYSTEMS 

Multi-sensor data fusion is an efficient method to provide both accurate and fault-tolerant sensor 

readouts. Furthermore, detection of faults in a reasonably short amount of time is crucial for 

applications dealing with high risks. In order to deliver high accuracies for the sensor 

measurements, it is required to perform a calibration for each sensor. This chapter considers the 

problem of self-recalibration of multi-sensor systems for health applications after detecting the 

decalibrated sensors using a real-time screening technique. The least squares method is applied to 

calibrate each sensor using a linear curve fitting function. Three methods are introduced for jointly 

calibrating the system and finally an analytical technique is proposed to carry out a fault-tolerant 

multi-sensor data fusion, while minimizing the Mean-Square-Error (MSE) for the final sensor 

readout. Although all these approaches are generic and applicable to different systems, the 

experimental results are evaluated on digital temperature sensors due to their simple and reliable 

setup. 
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33.1 Motivation  
The last decade has witnessed vast biomedical applications for sensing and monitoring devices. 

The current medical sensing systems specifications require high accuracies, as well as tolerance to 

faults which could be produced by decalibration or external noise [132]. Hence, numerous 

researches are dedicated to improve such parameters [133]-[134]. The error occurring at a single 

sensor’s readout can be distinguished as a systematic offset and gain as well as a random noise 

[49]. The systematic offset and gain are deterministic values. However, the random noise, which 

is often caused by environmental conditions and hardware noise, is time-variant, and is mostly 

assumed to have a Gaussian distribution [133]. Calibration, which is defined as the process of 

mapping raw sensor readings into corrected values [135], can be used to compensate the systematic 

offset and gain. Note that when the gain and offset are both constant values and independent from 

the sensor measurements, then the calibration is translated into a linear curve-fitting function.  

In the cyber-biological systems due to inherent deficiency or aging, the sensors can suffer from 

large calibration shifts. For example, the current push for Closed-Loop Insulin Control (CLIC) 

systems must guarantee the continuous supply of insulin to the patient without causing the possibly 

dangerous state of hypoglycemia. This task is not possible to achieve without multi-sensor 

platform. Meanwhile, for the recalibration of the sensory systems, a patient will have no access to 

special calibration hardware or expert data analysis. Therefore, a blind sensor recalibration method 

is required with high accuracy coupled with reasonable complexity for multi-sensor devices. 

Manual calibration of every sensor is an unfeasible task, as a typical multi-sensor system can 

incorporate even tens of sensing devices [134]. Blind-recalibration requires no user intervention, 

but were demonstrated only for specific cases. Since health care applications need more accurate 

measurements than these provided by uncalibrated low-cost sensors, the need of automatic 

methods for jointly calibrating the medical multi-sensor systems has to be considered.  

Data fusion is another efficient approach, which combines data from multiple sensors to achieve 

more accurate readouts compared to the case where a single sensor is used alone [136]-[139]. A 

straightforward approach to increase the accuracy of sensor readouts in terms of the error measure 

Mean-Square-Error (MSE) is to perform an average computation over the results [61]. This 

technique can improve the MSE by the factor of , where  is the total number of sensors. Data 

fusion methods can also be used to detect faulty sensors [58] and deliver fault-tolerant 
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measurements. This is crucial, since the technology trends indicate that sensing has by far the 

highest fault rates [2]. Furthermore, fault tolerant sensor readout in a reasonably short amount of 

time is a critical task for applications dealing with high risks such as medical cases. 

This chapter considers the problems of both non-blind and blind calibration of multi-sensor 

systems. In addition, we focus on designing a fault-tolerant system with tolerance to multiple 

faults. While all these approaches are generic and applicable to different systems, the experimental 

results are evaluated on temperature sensors due to their simple and reliable setup. Note that in a 

central multi-sensor architecture, the sensors communicate through a central processor, and they 

capture the same reference data. Certain applications such as wireless systems often make use of 

a distributed architecture [140], where each sensor is capable of communicating with all or some 

of the other sensors. Such applications are not considered in this chapter. 

33.2 Calibration 
The least squares method is applied to calibrate each sensor using a linear curve fitting function 

with respect to a reference system. Linear curve fitting is the most commonly used approach, which 

approximates the output  as a polynomial with respect to the input , i.e.

. Note that the output  is linear with respect to the coefficients , …, . The first-degree 

polynomial, i.e.,  is mostly sufficient to approximate the output-input characteristics, 

where  is the reference data, and  is the raw sensor readout. This is due to the fact that the raw 

sensor readout mostly involves a constant offset and gain, which can be compensated using least 

squares method. The coefficients  and  must be set to minimize the Sum of Square Error (SSE) 

function, which is defined as follows: 

 (3-1) 

Where  and , are the reference and calibrated values at the  measurement, 

and the value of  is the raw sensor readout. 

3.2.1.1 Self-Recalibration Techniques 

All medical equipment needs to be periodically calibrated to guarantee accurate measurements. 

Automatic recalibration at the point of use is generally quicker and if the device can self-calibrate, 
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even for just the most important points, then it will be more effective than if it must be moved to 

other place for calibration. In this section, first, the proposed screening process is explained which 

quickly detects the potentially faulty sensors online. The following notations are used in this 

section in Algorithm 3-1: 

 : The  sensor readout ( ), where  is the total number of sensors, 

: The reference data to be measured, 

: The error of the  sensor readout after non-blind calibration, that is: ,   

: The maximum absolute error of the  sensor readout after non-blind calibration, that is,

. Note that  is obtained through experimental measurements,  

: The indices of the decalibrated sensors, 

: The Minimum Mean Square Error (MMSE) coefficients for sensor , 

: The gain and offset values for recalibrating sensor , respectively, 

: The reference readout of  sensor in the dataset with samples, 

 : The estimated reference value for self-recalibration of sensor,  

: The recalibrated value of sensor , 

: The identity number of  sensor. 

The initial phase in the recalibration process performs a screening of all the sensors in the system 

in order to exclude faulty or decalibrated sensors. The screening process is addressed in Algorithm 

3-1. The for loop in step 1 is executed  times, where  is the number of potentially 

decalibrated sensors, which deviate from the average of other sensor readouts by a distance higher 

than  (step 8). The list of the decalibrated sensors is returned in . The primary idea for self-

recalibration is to consider the average of sensors readouts as a reference to be fitted linearly using 

the method of least squares while excluding the decalibrated nodes. The acquired gain and offset 

are to be used for further readouts. The algorithm for self-recalibration of a single decalibrated 

sensor  with index  is presented in Algorithm 3-2. This solution has a low 

complexity, which makes it suitable for real-time blind calibration. However, the quality of 

recalibration suffers, and has to be improved especially in the critical areas such as health 

monitoring devices. For that purpose, in Algorithm 3-3, we propose a second method of 

recalibration. In this method, first a dataset is generated during the operation of the multi-sensor 

platform when all sensors are work properly. For each sensor , all combinations of other sensors
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are obtained and in each combination, the average of sensors readouts is compared with sensor 

readouts  using the correlation as the criteria. The sensor set with the maximum correlation with 

the decalibrated sensor is stored in . 

For example, in our experiment, sensor readouts 8 have the best correlation with the average of 

sensors readouts 1, 2, and 6. Therefore, the average of these three sensors is used to estimate the 8th

sensor behavior for recalibration purpose. This approach leverages the correlation in the subset of 

Algorithm 3-1 

( ) { 
// Inputs: ,     Output:  

 
1-  
2- ; 
3-   
4- /*Average computation excluding */

5-   } /*Deviation from the average of others*/
6-  ( ++){ 
7-    = ( ) ;} /*Find the furthest from average of others*/ 
8-   { 
9-         ; 
10-         Throw away  
11-          } 
12- ;}}/*Return the identity number of decalibrated sensors*/ 

 
 

Algorithm 3-2 

 
// Inputs: , f     Output:  
 

1- ; 
2-
3- } 
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sensors without requiring a dense deployment. For each sensor, there are maximum 

combinations, which have to be checked in order to find the maximum correlation. . This procedure 

is performed offline and only once to compute the best correlations. This method improves the 

accuracy of the recalibration comparing to the simple average method.  

A weighted average computation can be performed to minimize MSE in order to obtain the 

reference of the recalibration. In Algorithm 3-4, the Minimum Mean Square Error (MMSE) 

estimator [141] is used to linearly find the optimum reference for recalibration.  The Mean Square 

(MS) estimator of  given the set of non-decalibrated sensors readouts ( ) is defined as: 

 (3-2) 

Here, the formal definitions for a single error is presented, however it could be expanded for 

multiple errors, as well. The homogenous linear MS estimator of  given = 

 is: 

    (3-3) 

} (3-4) 

This means that the error must be orthogonal to each of the data in . After solving this problem,

we obtain: 

Algorithm 3-3 

 
// Inputs: , f, Output:

 
1-  /*  is the Sensors Subset having the maximum 

correlation with sensor  obtained from offline experimental measurements*/ 
2-  
3- } 
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 (3-5) 

Where:

After calculating the coefficients in step 1 in Algorithm 3-4, the recalibration reference is generated 

in step 2. It is then used for calculating the appropriate gain and offset. The evaluation of each 

method is discussed on a real dataset in details in section 3.4.2.1. The final recalibrated value of 

sensor  is calculated as: .  

33.3 Fault-Tolerant Data Fusion 
In this section, we present a fault-tolerant data fusion technique for the multi-sensor system. 

3.3.1 Statistical Distributions and Assumptions 

For the purpose of this analysis, we make use of a number of assumptions, which are discussed 
below: 

Sensor Normal Operation Mode: The proposed data fusion approach is based on average 

computations as well as computing the difference between sensor readouts and the average

Algorithm 3-4 

 
// Inputs:           Output:  

 
1- ; /*procedures of equation (3-5)*/ 
2-  
3-  
4- } 
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value. Hence, we have derived the statistical characteristics of the error between the 

calibrated sensor readout and the average of all readouts from all sensors when they are 

operating in their normal operation mode, i.e., the sensor is not faulty. The experimental 

measurements have shown that such an error fits student’s t-distribution (See Figure 3-1). 

The t-distribution is useful when estimating the mean of a normally distributed population, 

where the sample size is small and population standard deviation is unknown. It is symmetric 

and bell-shaped, like the normal distribution. However, it has heavier tail, which makes it 

more inclined to producing values that fall far from its mean. As depicted in Figure 3-1, the 

t-distribution is a better fit to our measurements compared to the normal distribution.  

- Sensor Failure Probability: Each sensor has a probability of complete failure, e.g., , 

where  is a very small value, e.g., . Note that since  is a small value, we assume 

in this section that only one sensor is probable to completely fail at a time (no multiple 

faults). 

- Sensor Failure Readout Distribution: When a sensor completely fails, the sensor readout 

could be anything. We make use of the fault model in [134] to assume that the sensor readout 

has a uniform distribution among the effective range of the sensor readouts, i.e.,  

for the temperature sensors in this section. In fact, it is assumed that the temperature readout 

is stuck at a particular temperature. Furthermore, the fault model in [134] requires adding a 

Gaussian noise to the sensor readout. Therefore, we make use of the Gaussian noise model 

obtained by our experimental measurements (See Figure 3-2) to add to the fault model.  

- Sensor Failure Original Data Distribution: The original data that the failed temperature 

sensor is supposed to read could be anything in the range of  as well. In this 

section, we assume a uniform distribution for the original data among the full-scale. 

However, other distributions can be chosen for the original data as well. In fact, it might be 

possible that in some particular cases, specific original values are more probable to be read 

by the sensor.  

- Sensor Failure Error Distribution: Based on the uniform distributions of the original data 

and the sensor readout in the failure mode, the sensor error has a triangular distribution in its 

failure mode within the range of ], added by a Gaussian noise.  
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It is notable that any other statistical distributions considered for the above variables, can also be 

handled by the proposed analytical framework and MSE optimization in this section. 

33.3.1 Proposed Data Fusion 

The proposed fault-tolerant data fusion approach, which is based on an average computation, is 

presented in this section. We assume that  multiple-sensor readouts, i.e., ,…, , measuring the 

Figure 3-1: T-distribution and normal fitting of the error between each 
calibrated sensor and the average of all measurements 

Figure 3-2: Fitting the error of 16 calibrated sensors to a normal 
distribution
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same thing, are available at a time, and the goal is to return a single readout, , such that MSE is 

minimized and sensor failures are also handled. 

The proposed data fusion algorithm is outlined in Algorithm 3-5. First, corresponding to each 

sensor readout , an average computation excluding the variable  is performed in steps 1 and 2. 

Furthermore, the variable  computed at step 3 shows the absolute difference (deviation) of  

from the average of others. Next, we find the sensor readout resulting in the maximum deviation, 

i.e., , in steps 4 and 5. Finally, if the deviation is higher than a given threshold , then we exclude 

 within the final average computation in step 8, since it is most likely that the sensor is faulty. 

Otherwise, a normal average computation is performed (when ). Note that through the rest 

of this section we aim to find the most suitable value of  to minimize the MSE at the terminal 

output (single measurement ). The error occurring at the final measurement  in Algorithm 3-5, 

as well as MSE can be computed as follows: 

 (3-6) 

Where  ( ) is the error of the calibrated  sensor readout,  is the error of the sensor 

readout, which is furthest from the average of the rest of the sensor readouts (See step 5 in 

Algorithm 3-5). Hence, MSE can be obtained as follows: 

 

 

 

(3-7) 
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Where  is the expectation function. Furthermore, based on the code in Algorithm 3-5 we have: 

 (3-8) 

Where, 

Algorithm 3-5 

 
// Inputs:           Output:  

 
1-  

2-  /*Average computation excluding */ 
3-   /*Deviation from the average of others*/ 
4-  
5-   = ( ) ;} 
6-     ;  /*Throw away */ 
7- ; /*Do not throw away */ 

8-  ;} /*Final average computation*/ 

 

Algorithm 3-6 

 
 

//Inputs ,…,  , , …,    
//Output:  
/* MSE_no_fault is the value of MSE when: , and MSE_ fault is MSE when: 

, */ 
 

1- Set an initial ; 
2- Find the optimal , such that: 
3- MSE_no_fault  MSE_avg,  
4- MSE_fault = minimized, 

/*MSE_avg is the MSE of normal average computation when   */ 
 

 



Fault-Tolerant Data Fusion and Self- Recalibration of Multi-Sensor Systems 40 

The statistical characteristics of  depends on whether the  sensor is faulty or not. Hence, we 

re-write  as: 

                                             (3-9) 

Where  is the probability of Sensor#i to completely fail, while  and  are the 

values of errors  in the normal and complete failure modes, respectively. According to the 

discussion in subsection 3.3.1,  has a student’s t-distribution (See Figure 3-1), while 

 has a triangle-like distribution over the range of ], which is also added by the 

Gaussian noise in Figure 3-2. Equations (3-6) to (3-9) indicate that there is a complex correlation 

between ,  and  ( ). Hence, computing the MSE in Eq. (3-7) analytically requires 

knowing the value of  in Eq. (3-9) and then solving a complicated -dimensional joint 

probability distribution integral corresponding to  ( ), which becomes hard as  

increases. However, as typically the value of  (number of multiple sensor readouts) is small, we 

aim to compute an almost accurate value of MSE in Eq. (3-7) by making use of a numerical 

method. Particularly, we divide the input intervals into a number of smaller ones and then compute 

the integral by doing the summation instead. We then gradually increase the number of intervals, 

e.g., by multiplying it by two after each iteration, until the computed value of MSE converges. 

Please note that the run-time is not an issue, since these computations unlike the data fusion 

algorithm in Algorithm 3-5 are performed offline and only once to compute MSE. Next, on the 

top of the MSE computation using the Newton method, we aim to find the optimal threshold  to 

minimize the MSE in Eq. (3-7). 

The proposed algorithm to set the threshold value  is shown in Algorithm 3-6. The inputs to the 

algorithm are the statistical characteristics of , …, , , …, , 

while the outputs are the optimal threshold , MSE_no_fault, which is the MSE in Eq. (3-7) when 

no fault occurs, i.e., when  in Eq. (3-9) ( ), as well as MSE_fault, which is the 

MSE in Eq. (3-7) when only one sensor, e.g.,  sensor , fails (

, ). Note that other heuristics could be used instead of the Newton method to find 

the optimal threshold  as well. 
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33.4 Experimental Results 
In this section, we present the results on calibration, self-calibration and the MSE minimization 

using Algorithm 3-5 and Algorithm 3-6 compared to the normal average computation [61], and 

the fault-tolerant data fusion technique in [58]. The algorithms have been implemented in 

MATLAB and executed on an Intel 2.1 GHz Core 2 and 2 GByte running under Windows XP. 

3.4.1 Test Setup 

Although all the proposed approaches are generic and applicable to different medical multi-sensor 

systems, the experimental results are evaluated on temperature sensors due to their simple and 

reliable setup. First, the temperature sensors are calibrated with respect to Temptronic TP4500 

environmental thermal chamber as the reference model. The Temptronic TP4500 temperature 

environmental thermal chamber (shown in Figure 3-3) is ideal for lab testing and failure analysis 

of micro-systems due to its fast temperature transitions and high airflow over its wide operating 

range between -45°C and +225°C. It is also capable of traversing the full range within 12 seconds 

[142]. The TP4500 works by placing a thermal shroud around a device under test, and directing a 

flow of air over the sample at a controlled temperature. After collecting raw data from sensors, the 

least squares method is applied to obtain the offset and gain. We use STTS751, a 6-pin digital 

temperature sensor that supports different slave addresses. The STTS751 communicates over a 2-

wire serial interface compatible with the SMBus 2.0 standard. The STTS751 is available in two 

versions. Each version has 4 slave addresses determined by the pull-up resistor value connected to 

the Addr/Therm pin. In our experiments, the configurable temperature reading precision is set to 

12 bits, or 0.0625°C per LSB. The data of eight temperature sensors is collected by an STM32F407 

microcontroller, which uses an ARM Cortex-M4 32-bit core [54], as the  master. To 

accommodate eight sensors with only four distinct addresses, a second  bus is used. The 

schematic of the proposed design is shown in Figure 3-4. In order to have more data for calibration 

and experiments, two systems with the mentioned design characteristics are considered. 

3.4.2 Calibration Results 

In our experiment 16 sensors are placed on two 5.2 4.7cm boards. We assume that after some 

periods of time the sensor readings become relatively stable in order to conduct the calibration.  
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Twelve minutes for each set point of the Temptronic is considered in order to obtain stable 

temperature values. In our experiment, we generate a dual-slope temperature ramp with 

Temptronic TP4500. The temperatures are changed in 4°C steps between 10°C and 30°C with start 

points 10°C and 12°C. It is worth noting that after calibration most of the data converges to the 

reference temperature as shown in Figure 3-5. The results of independently calibrating sixteen 

STTS751 temperature sensors within the temperature range from 10°C to 30°C are addressed in 

Table 3-1.  

Figure 3-3: The Temptronic TP4500 with STTS751 temperature sensors under test 

Figure 3-4: Schematic of the proposed multi-sensor system on the STMF432 board 
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Figure 3-5: (a) Temperature readouts and calibrated values for eight sensors, when using a 
dual-slope ramp for the reference temperatures and start point , (b) zooming a portion of 

(a) for temperature readouts and calibrated values, (c) temperature readouts and references, 
(d) calibrated and reference values 

Table 3-1: Optimal coefficients to calibrate our sensors. 
Sensors on board #1 

 1  2  3  4  5  6  7  8 
Offset -3.684  -3.829  -3.906  -3.901  -4.068  -4.029  -3.701  -3.901 
Gain 1.034  1.042  1.034  1.038  1.053  1.055  1.037  1.044 

Sensors on board #2 
 9  10  11  12  13  14  15  16 

Offset -4.439  -4.610  -4.400  -4.729  -4.691  -4.672  -4.450  -4.685 
Gain 1.074  1.076  1.063  1.068  1.070  1.074  1.070  1.076 

Table 3-2: Confidence level of the error of 16 calibrated sensors w.r.t. the  
reference chamber over different intervals 

Confidence Interval (  ͦC)  Confidence Level (%) 
 [-0.1,0.1]  45.32 
 [-0.2,0.2]  79.15 
[-0.3,0.3]  97.58 
[-0.4,0.4]  99.4 
[-0.5,0.5]  99.4 
[-0.6,0.6]  99.7 

[-0.6535,0.6535]  100 
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We have also evaluated the confidence level of the calibrated results with respect to different 

confidence intervals as addressed in Table 3-2. As can be seen the confidence interval of 

 covers most of the measurements, i.e., 97.58% of the data. Note that the calibration 

can be performed similarly for other temperature ranges as well. The maximum and minimum 

absolute values of error before and after calibration are also shown in Table 3-3.  

To provide an acceptable fault-mode for the purpose of fault-tolerant data fusion, we require the 

statistical characteristics of noise. The results indicate that we can distinguish between the 

systematic bias/gain error and the random noise component of the error. It is observed that within 

the temperature range of 10°C to 30°C, there exists a small difference between the reference 

temperature and the calibrated data, which corresponds to the random noise. We expect the random 

noise to have a normal distribution. Hence, we have evaluated the difference between reference 

and calibrated temperatures for as many measurements as we can to get the distribution of this 

error. Namely, more than 100,000 reference temperature samples have been evaluated for all the 

16 temperature sensors. The results have shown that such an error can be fitted into a normal 

distribution as depicted in Figure 3-2. In this figure, the fitted normal distribution corresponds to 

the log-likelihood value of 150.067, which indicates a good fit. We apply this normal distribution 

to represent noise in the fault-model of the proposed fault-tolerant data fusion approach, which is 

discussed in section 3.4.3. 

33.4.2.1 Self-Calibration Results 

The proposed blind recalibration methods have been applied on eight post-calibrated digital 

temperature sensors. Based on the uniform distributions of the original data, the sensor errors 

uniformly distributed in interval ], have been injected to simulate the decalibrated 

behaviors of sensors which is also added by the Gaussian noise in Figure 3-2.  

The accuracy comparisons of three proposed methods are depicted in Table 3-4. As can be seen 

Algorithm 3-3 improves sum of mean square error by 23.44% comparing to the simple average 

method in Algorithm 3-2. Further, the proposed MMSE recalibration method delivers the superior 

precision compared to the other methods. The impact of the size of the dataset has been also 

evaluated in Figure 3-6. In particular, we have swept the number of samples (t) from 3000 to 9. As 

expected, experiments show that by decreasing the size of dataset, the accuracy of the recalibration 

will suffer.  
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Table 3-3: Maximum and minimum absolute values of error before and after calibration 

Parameters 
 Before 

Calibration 
 

After Calibration 

Maximum Absolute 
Error  
( ͦ C) 

 
3.6 

 
0.6535 

Minimum Absolute 
Error 
 ( ͦ C) 

 
2.2 

 
0.0015 

Table 3-4: Error comparison of different recalibration algorithms on 8 temperature sensors 

    Number of 
decalibrated sensors 

Sum of Mean Square Errors 

Algorithm 3-2 Algorithm 3-3 Algorithm 3-4 

1 0.0319 0.0098 0.0094
2 0.4561 0.3681 0.1407
3 2.111 2.0401 0.7068
4 4.8859 4.9768 1.8748

Average Improvement w.r.t. average 23.44% 61.63% 

Average Improvement w.r.t. average based on correlation 48.57% 

Figure 3-6: The impact of the dataset size (t) on errors in MMSE method
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The percentages on Figure 3-6 show the accuracy reduction compared to the case where 3000 

samples are used and there are four decalibrated sensors in the system. Therefore, it is important 

to choose an appropriate dataset according to the required accuracy for a given specific application. 

For example, when we reduce the number of samples in MMSE estimation, from 3000 to 1500, we 

need to tolerate the error of 10.63% where there are four decalibrated sensors. The presented 

methods make it possible to recalibrate multiple sensors fast. The run time of either Algorithm 3-2 

or Algorithm 3-3 is about 0.7ms for single and multiple recalibrations. The MMSE method 

(Algorithm 3-4) takes about 1.8ms to estimate the reference, therefore, it is not only suitable to 

recalibrate sensors in real time, but also it can provide high accuracy. The proposed algorithms can 

be applied to maintain the correct operability of other sensors such as CGM, which current frequent 

recalibrations from blood reference are a tedious task. 

33.4.3  Fault-Tolerant and Data Fusion Evaluation 

In the first experiment we look into the MSE of the proposed data fusion compared to the normal 

average computation and the approach in [58] over different probabilities for a sensor to 

completely fail, i.e., the value of  in Eq. (3-9). 

We have swept the value of  from 0 to 0.01, and the results are shown in Figure 3-7, where the 

number of sensors is set to 3. It is also notable that while the Algorithm 3-6 is performed only once 

and offline to find the MSE and the optimal threshold T, the data fusion technique in Algorithm 

3-5 has to be performed online and periodically. As shown in Figure 3-7 the proposed fault-tolerant 

data fusion technique improves the MSE obtained by the approach in [58] by 34% in average. 

Furthermore, the optimal threshold in Algorithm 3-6 is obtained as =0.235°C.               

Observation: If the sensors are identical in terms of probability distributions and statistical 

characteristics, the optimal threshold obtained by the Algorithm 3-6 is independent from the 

number of sensors.  

Hence, if the statistical characteristics of the sensors are identical to each other, which is mostly 

the case, e.g., in our system configuration, the optimal threshold obtained for the case with   

(which can be obtained relatively fast according to the reduced dimensions for the computation of 

the integrals and MSE), can be used as the optimal threshold for the cases with   as well. 
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Figure 3-7: MSE analysis of three data fusion techniques versus different complete 

failure probabilities

Figure 3-8: Finding the potential faulty sensors using the t-distribution derived from 
experimental measurements as well as the optimal threshold of

Table 3-5: Wrong fault detection probability w.r.t.  for the system of 16 
temperature sensors

 
Probability of wrong fault detections 

0  

0.001   

0.01   

0.1  
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An example is our multi-sensor system, which involves 16 temperature sensors. In the second 

experiment, we address the probabilities for a wrong fault detection using the proposed data fusion. 

Note that regarding the normal average computation, since faults are not being detected, there is 

no wrong detection. Furthermore, the approach in [58] is based on throwing away the sensor 

readout that is furthest from the average of others. Hence, the probability of wrong detections is 

equal to 1, when all the sensors are working fine. Even when the probability of a sensor to 

completely fail is relatively high, e.g.,  the probability of a wrong fault detection for the 

approach in [58] is still high (more than 80% when ). 

We evaluate the probability of a wrong fault-detection for the proposed method, when the number 

of sensors  is set to 16, which corresponds to our system of 16 temperature sensors. The t-

distribution derived from the experimental measurements, which is shown in Figure 3-1, is used 

for this purpose. Figure 3-8 highlights the wrong decisions when the sensors are in their normal 

operation mode (no faults) with . Table 3-5 tabulates the final results including the 

probability of a wrong fault-detection with respect to the probability of a single sensor to fail, 

i.e. . Note that since the proposed data fusion approach is performed periodically, it can resolve 

its previous wrong decisions within the next measurements. 

33.5 Summary 
In this chapter, the problems of non-blind calibration as well as jointly recalibrating the multi-sensor 

systems were addressed. In fact, early identification of faulty sensors through such technique and 

timely recalibrating the sensors can decrease the risk and cost in applications that deal with high 

risks such as patients’ health. For instance, regarding closed-loop insulin control systems for 

managing glucose levels, sensor readouts should not only have a high accuracy, but also must be 

robust enough to recalibrate the sensors, quickly. The proposed generic self-recalibration 

approaches are particularly evaluated on a system of 8 temperature sensors. Among three analyzed 

methods, the MMSE resulted in the best accuracy in a reasonable short amount of time. We also 

presented a fault-tolerant data fusion technique aiming to minimize the MSE of sensor 

measurements in a calibrated multi-sensor system. The approach makes it possible to detect the 

potentially faulty sensors fast, while improving the accuracy of the final measurement. The 

statistical characteristics of the calibrated sensors are computed using thousands of measurements 
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and finally, the proposed data fusion algorithm is implemented for the system to deliver both low 

MSE (high accuracy) as well as high fault-tolerance. The experiments compared the efficiency of 

the proposed data fusion technique in terms of MSE with the normal average computation [61] and 

the data fusion technique presented in [58]. 
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CChapter 4 

4 ANALYSIS OF THE CHEST WALL 

COMPARTMENTS MOVEMENTS 

In the last decades, wearable technology appears to provide new services to empower people in 

every age to better manage their health concerns in a transparent manner. However, transparency 

is not only obtained through concealing technology in the design, physically, but when an accurate 

calculations and algorithms on the medical parameters are attained. In this chapter, a procedure is 

suggested to extract the respiratory parameters from modeling the anterior/posterior movements 

of the chest wall compartments during respiration function. Respiration rate, respiratory timing 

variables such as inhalation time (  and exhalation time (  are obtained via wearable sensing 

technology. In addition, the goal is to obtain an accurate technique based on motion sensors for 

calculating the phase shift between chest wall compartments to be used in remote detection of 

breathing problems. In the following, different body positions at rest are also determined by means 

of tilt measurement using a low-power 3-axis accelerometer.   

4.1 Motivation 

A reliable long-term monitoring of respiratory parameters and diagnosis of breath disorders at an 

early stage provides an improvement of medical act, life expectancy and quality of life while 
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decreasing the costs of treatment and medical services. Therefore, a real-time unobtrusive 

monitoring of respiration patterns, as well as breath parameters is a critical need in medical 

researches. 

There are different conventional methods for respiration signal and breath frequency 

measurements including spirometer, nasal thermocouples, impedance plethysmography, strain 

gauge for measurements of thoracic circumference, whole-body plethysmography [143], 

pneumatic respiration transducers, the fiber-optic sensor method [144], and ECG-based derived 

respiration measurements [145]-[147]. In spite of their accuracy, these methods are expensive and 

inflexible, which may bring discomfort to the patients and physicians. There is also Doppler radar 

[148] for respiration signal extraction; however, one major disadvantage of this method is the 

amount of DC offset introduced by the system that causes difficult demodulation. It is due to the 

low frequency of the vital signal, which is very close to the DC value of the signal [149]. In 

addition, most of the conventional methods are infeasible to be integrated in a wireless body sensor 

network. In a study comparing the accuracy of nurses’ breathe rate measurements who were not 

aware of being tested, the accuracy was found to be poor, and nurses typically counted breathing 

for only 15 seconds [150]. Hence, it shows the problem of manual measurement that may cause 

due to constrained usage of respiratory rate monitoring where not specifically mandated. Applying 

motion sensors is of special interest to detect the small movements of the chest wall that occur 

during expansion and contraction of the lungs. In preliminary trials on hospital, it has been shown 

that with proper signal processing; this approach can produce results that match closely to the 

measurements of nasal cannula pressure [83].  Therefore, in this dissertation, we make use of 3-

axis accelerometers which outstand among other types of Inertial Measurement Units (IMU) due 

to their stability characteristics, low energy consumption, robustness to environmental changes, as 

well as low cost. In addition, these miniaturized sensors are truly embeddable in different type of 

devices and items.  

44.2 Accelerometer-derived Respiration Parameters 
Discovering most frequent vital signs remotely, such as respiration rate has been in the interest of 

the medical research community in recent years. In this section, a procedure is described to 

estimate the respiration rate with accelerometer signal at rest positions considering the spirometer 
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as our medical reference. In order to deliver high accuracies for the sensor measurements, we first 

perform a calibration technique using Least Square method proposed by [151]. 

44.2.1 3-axis Accelerometer Calibration 

There exit different types of technological or hardware anomalies which may happen to occur on 

electronic devices. Due to decalibration or battery failures, wearable inertial sensors are subject to 

changes in the offset, scale factors, non-linearity or electronic noise among others [152]. 

Calibration, as a means of mapping raw sensor readings into the corrected values, can be used to 

compensate the systematic offset and gain. Note that when the gain and offset are both constant 

values and independent from the sensor measurements, then the calibration is translated into a 

linear curve-fitting function.  

Generally, different special tools with specialists’ experience are required for sensors calibration; 

however, a straightforward method to calibrate an accelerometer is performed at 6 stationary 

positions. We need to collect a few seconds of accelerometer raw data at each position. The 

misalignment of the sensor in these stationary positions will influence the calibration procedure. 

Therefore, to minimize the impact of misalignment, two boxes were used to help fix the module in 

different positions to obtain stable acceleration measures.  In our setting, the boxes are put on a flat 

surface and the module was placed between two boxes where it faces of one box, and the other box 

was used to stop the module from gliding. The two boxes keep the module in a stationary position 

for at least 10 seconds. Then the least square method is applied to obtain the 12 calibration 

parameters. The sensor quality and criticality of the application determine the calibration frequency 

that can be manually performed. The calibration procedure can be formalized as follows: 

 (4-1) 

 (4-2) 

Where: 

• Vector  is accelerator sensor raw data collected at 6 stationary positions, 
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• Vector  is the known normalized Earth gravity vector, 

• Matrix  is the calibration parameters that is determined as below: 

 (4-3) 

The calibration matrix is calculated once, and after that, all samples of data will be multiplied by 

 to output the calibrated values. Our analysis is based on the acceleration signals recorded with a 

3-axis accelerometer mounted on the subject’s chest. The place of wearable sensor on the body has 

a direct effect on the accuracy of the algorithms, because different positions provide different signal 

patterns. In fact, in each breathing cycle the volume of the thoracic cavity is changed, caused by 

the displacements of the rib cage and diaphragm, therefore, in our experiments the sensor is worn 

on the chest, where can also provide more convenience compared to other locations such as 

suprasternal notch. In addition, it is among the top four selected placements derived from statistics 

on patient’s perspective [153]. Accordingly, this location has practical benefits in our platform, 

since different estimated parameters such as tidal volume variability or quantitative feedback in 

our breathing therapy framework are closely depend on the chest wall motions during respiration 

cycle.   

44.2.2 Respiration Rate and Time Parameters Estimation 

Indeed, the normal breathing rate for a human being is usually between 0.2-0.3Hz and the 

maximum frequency is not likely to go over 0.7-0.8Hz [71]. Therefore, the breathing signal can be 

considered as a low-frequency signal, which must be filtered using a low-pass filter to remove the 

unnecessary and unwanted high-frequency components. To eliminate the disruption movements, 

the raw sensor data is filtered through a 10th order Butterworth low-pass filter with cutoff frequency 

1Hz. In order to estimate the respiration signal, first the estimated parameters are evaluated based 

on the airflow signal obtained from the spirometer. There was a negligible difference in calculating 

respiration rate via volume instead of flow signal. The signal characteristics of volume is much 

closer to acceleration signal. For example, when a subject holds his breathing, the flow signal 

drops to zero, while the accelerometer signal stays in the maximum inspiration point exactly the 

same as the volume waveform from the spirometer. In this way, we apply a numeric integration 

algorithm in which the trapezoidal rule was used to estimate the area under the flow curve shown 
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in Figure 4-1 (a) and obtain the respiratory volume from the spirometer signal drawn in red in 

Figure 4-1 (b). These figures illustrate a part of volume signal for the normal breathing pattern of 

a 29 years old man. As can be seen, even though two signals seem similar, there is a cumulative

error [84] over time affected on their synchronization. Indeed, this type of error on signals is due 

to different sampling frequencies. Although, the sampling rates of accelerometer and spirometer 

are both set to 50Hz, due to the architecture of the Inertial Measurement Unit (IMU), there might 

be a small difference between the sampling rate and measured frequency. Thus, to compare the 

 
Figure 4-1: (a) The normalized flow of spirometer, (b) The cumulative error of accelerometer 
and spirometer normalized volume signals over time before resampling (c) Two signals after 

resampling procedure 
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respiration rate, it is essential to ensure that both signals have identical frequencies. For this 

purpose, after rational fraction estimation, we resample our data by an anti-aliasing low-pass FIR 

filter during the resampling process. In our experiments, the sampling rate of the accelerometer 

sensor was set to 50Hz, however; the data was logged with about 51Hz (measured frequency). 

With resampling process explained above, we could compensate the time lead about 0.02 per 

second. The solid black line in Figure 4-1 (c) represents the final signal after resampling procedure. 

Note that the system automatically checks the number of samples in each analysis window to find 

the measured frequency of the sensor. Now, the respiration rate can be computed based on the 

number of local maxima in the breathing signals per minute. In order to compare the correlation 

of respiration waves of accelerometer and spirometer as well as the respiration rate, the best 

starting points of two signals are obtained based on the peak value of their cross correlation. The 

Pearson correlation between the accelerometer and spirometer signals is calculated from the 

following equation. 

 
(4-4) 

Where  and  denote the accelerometer and spirometer data with  samples, correspondingly. 

We have also calculated per breath inspiratory time ( ), expiratory time ( ), and total time of the 

respiratory cycle ( ) from the accelerometer-derived respiration waveform by peak and valley 

detections, described in Figure 4-1 (c).  The applied peak/valley detector defined a customized 

threshold to decide whether each peak (or valley) is significantly larger (or smaller) than the local 

data. In fact, these time parameters are used to calculate the  ratio defined as a ratio of the 

inspiration time to the duration of expiration . In healthy people, the expiration is 

about two to three times longer than inspiration resulted in the  ratio from 1:2 to 1:3 [154]. In 

patients with breath problems e.g., COPD, the expiratory time is typically prolonged. This cause 

lower  ratio, such as 1:4 or 1:5. A prolonged  or low  ratio is a major sign of expiratory 

airflow obstruction [154]. This ventilation parameter is considered as an important feature in 

hyperinflation treatment [155]. Respiration rate and tidal volume are respiratory variables typically 

known to modulate Respiratory Sinus Arrhythmia (RSA). The impact of  is studied in [156] 

which indicates that RSA can also be modulated by inspiratory/expiratory time ratio. 
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44.2.3 Body Position and Angle Calculation 

Body position is an important parameter that must be considered for several breathing disorder 

problems. The method used in this chapter helps to identify the rest and sleeping positions with 

the representation of roll and pitch angles. For a stationary object, the pitch and roll angles can be 

obtained with 3-axis accelerometer [157]. We measure the tilt angles with trigonometric formulas 

as follows [151] (see Figure 4-2): 

(4-5) 

 (4-6) 

 
Figure 4-2: The accelerometer sensors' placements on the body and tilt angles 

Table 4-1: pitch and roll angles for five different positions based on the sensor location 

Postures 
Angles 

Pitch (Degree) Roll (Degree) 

Sitting 0 ͦ -90 ͦ 
Resting 0 ͦ -45 ͦ 
Supine 0 ͦ 0 ͦ 

Left side +90 ͦ 0 ͦ 
Right side -90 ͦ 0 ͦ 
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Where , and  are calibrated data of 3-axis accelerometer. In this chapter, five different 

body positions are evaluated and the corresponding body angles are defined in Table 4-1.  

44.2.4 Breath Synchronization Analysis 

In this section, we analyze the synchronous and asynchronous breathing patterns with our 

accelerometer sensors. For this goal, the chest wall is modelled in two compartments: Rib Cage 

(RC) and Abdomen (AB) shown in Figure 4-2. Indeed, in healthy people, the inspiration occurs 

by cause of systematic actions of the diaphragm and intercostal muscles, which resulted in RC and 

AB expansion synchronously during spontaneous breathing, at rest. Asynchronous breathing, in 

contrast, is defined as the difference in time of expansion or retraction between the compartments 

of the chest wall [92][93]. However, in case of extreme phase difference, the movement among 

the compartments becomes opposite, and then the paradoxical movement occurs [93].  

In this section, the phase shift between RC ( ) and AB ( ) is calculated based on the degree 

of opening of Lissajous figure or Konno-Mead loop on accelerometer-derived respiration signals 

[96]. The phase angle ( ) is measured in degrees (º), changing from 0º to 180º.  0º and 180º 

represent the perfect synchronous pattern and paradoxical movement of the chest wall 

compartments, respectively. In Lissajous figure, the movements of one compartment are plotted 

versus the excursion of the second compartment in an X-Y graph during a single respiratory cycle 

[158][159].  is defined in Eq. (4-7). 

 (4-7) 

Where  represents the per breath normalized volume of the signal on the X-axis and  is the 

distance between the two intercepts of the loop with the ordinate at abscissa equal to 50% of the 

volume of the signal on the Y-axis [160]. If the slope of the main diagonal of the loop is negative 

e.g. in paradox breathing (Figure 4-3 (c)), the phase angle is greater than 90 º, thus: 

,  (4-8) 

Here, after signal processing described earlier, the respiration signals derived from both sensors 

are normalized by , where  and or . Then the phase 
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angles are calculated from their Lissajous figures as depicted in Figure 4-3. The figure shows the 

Lissajous figures of one of our subjects in resting position during his normal and paradoxical 

breathing. The solid dot corresponds to the onset of inspiration and arrows denote the direction of 

the loop. The phase shift between his RC and AB in this breath cycle for normal breathing is 

calculated as 0.2155º while in his paradoxical breathing shown in Figure 4-3 (c) and (d) it is 

calculated as 179.80º, which indicates a significant increase in the degree of rib cage and abdomen 

asynchrony. We have also investigated the impacts of posture and body angle on the 

synchronization of RC and AB in both normal and paradoxical breathing maneuvers in the 

experimental results section. 

44.3 Experimental Results 
To verify the effectiveness of our proposed techniques, the results are evaluated on different groups 

of subjects explained in the next section.  

Figure 4-3: (a) The Lissajous figure of  normal breathing of one subject, (b) The normalized 
volume derived from the accelerometer sensors mounted on the chest and abdomen in normal 

pattern, (c) The Lissajous figure of paradoxical breathing and (d) The normalized volume 
derived from the accelerometer sensors in paradoxical pattern 
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44.3.1 Test Setup  

The experiments were conducted on two different groups, one with 10 healthy volunteers (5 males 

and 5 females) aged from 18 to 46 with (Mean ± SD) 30.70 ± 8.87 and second group with 8 healthy 

subjects (4 males and 4 females) aged from 18 to 46 with (Mean ± SD) 30.70 ± 8.29. They were 

instructed how to perform each breath exercise before their recording sessions. The experimental 

trials lasted for about 100 minutes per subject (4 breathing signals in 5 positions plus 5 breathing 

signals in one position) resulted in a total of about 800 different signals including accelerometers, 

spirometer and respiration monitor belts. We asked the first group to perform normal, fast, slow 

and paradoxical patterns, each for 1 minute (3000 samples), in five different body positions: sitting, 

resting, supine, left and right sides. We assigned a 3-minute rest interval after performing each 

pattern. Based on the definitions, for normal breathing we consider 12 to 20 respiration per minute 

(rpm), in slow pattern less than 12 rpm and for fast breathing, the subjects are asked to breathe 

more than 20 respirations per minute. For simulating paradoxical breathing, we instructed the 

subjects to reverse their abdomen movement in inhalation and exhalation. There was no limitation 

in the number of respiration for paradoxical breathing maneuver. In addition, the second group are 

coached on performing Bradypnea, Tachypnea, and Kussmaul patterns, each for 1 minute, Cheyn-

stokes and Biot’s each for 2 minutes in lying position. These patterns are associated with breathing 

problems explained in Chapter 2. For simulating apnea in Cheyn-stokes and Biot’s breathing 

exercises, according to definition of apnea, we requested the participants to pause breathing for 

more than 10 sec. In our system, we used a 22.3×14.8mm, cB-OLP425 Bluetooth low energy 

module, which includes an ultra-low-power LIS3DH 3-axis accelerometer with 12-bit resolution. 

The sensor was mounted on the subject’s chest in the middle of sternum region and secured by a 

soft and elastic strap, which is easy to use and comfortable to wear. The SPR-BTA spirometer 

shown in Figure 4-4 (a) is used as our reference, which measures the oral breathing. A nose clip 

was used to prevent nasal breathing during recordings. The removable flow head (22 mm ID/30 

mm OD) makes it easy to clean and sterilize. The Go!Link USB sensor interface (bottom figure in 

Figure 4-4 (b)) is used as the data logger of our spirometer. In paradoxical and normal breathing 

experiments, our second sensor is attached on the subjects’ umbilical region. In our tests, both 

sensors are sampling with 50Hz. Two Vernier Respiration Monitor Belts (RMB) are worn in the 

same locations of the body for breath synchrony validation. The belt is used with the Honeywell 
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SSCMRNN030PAAA5 Gas Pressure Sensor (top figure in Figure 4-4 (b) and (c)) to measure 

human respiration. The belt simply strap around the chest and pumping air into the belt with the 

hand bulb provides pressure signals associated with the expansion and contraction of the chest 

during breathing. To summarize it up, we investigated four different breath models including 

normal, fast, slow and paradoxical patterns in five different positions in addition to five respiration 

patterns associated with breathing disorder problems resulted in total of 800 recording signals with 

accelerometers, spirometer and Respiration Monitor Belts.  

44.3.2 Accelerometer-derived Respiration Signal Validation  

In this section, first the correlation between the spirometer and accelerometer signal is calculated 

on 10 different subjects with various ages, each for three types of respiration listed in Figure 4-5

conducted in 5 different body positions. The assessments are repeated on another group of 8

subjects with five more types of breathing models in lying position shown in Figure 4-6. The 

results are brought in Table 4-2 and Table 4-3. It is worth noting that, based on the body movement 

mechanism in different positions; the major axes could be chosen either Z or Y depending on the 

postures. The mean value of the correlation coefficient between accelerometer and spirometer for 

all subjects and three respiration maneuvers in five positions is obtained 0.84 ± 0.03 summarized 

in Table 4-2. In other experiments with five breathing models in lying position, the average 

correlation is achieved 0.84 ± 0.06 and 0.84 ± 0.04 based on spirometer volume signal depicted in 

Table 4-3 and flow signal, correspondingly. The results demonstrate a very close correspondence 

 

Figure 4-4: (a) SPR-BTA spirometer with nose clip and flow heads [161], (b) Gas pressure 
sensor [162], and Go!Link [163], (c) Respiration Monitor Belt [164] 
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between accelerometer and spirometer signals. The error rate for respiration rate estimation in 

each window is derived from Eq. (4-9). 

 (4-9) 

Where,  and  are the respiration frequency from accelerometer signal and reference 

spirometer, respectively. The overall average error rate is obtained 0.29% ± 0.33% (See Table 4-3) 

and 0.58% ± 0.84% versus spirometer volume and flow signals on five breathing patterns, 

respectively. As depicted in Table 4-3, the worst-case errors in all subjects occur in Bradypnea 

pattern where patients breathe slower than normal respiration rate. The results shown in Figure 4-7 

(a) demonstrate that we could obtain the best accuracy for respiration rate measurement compared 

to [80], dual strain gauge [80], [72], [75]-[77] in lying position using a single accelerometer. In 

other words, the average absolute error (  of 0.05 ± 0.01 (bpm) is achieved based on 

all breath models and subjects. Therefore, the proposed technique can also surpass the previous 

methods in terms of average absolute error including [70] with 0.12 bpm, [79] with 0.5 bpm, [81] 

with 3 bpm, and [83] with 0.38 bpm depicted in Figure 4-7 (b). Besides, per breath time parameters 

through accelerometer and spirometer are calculated and listed in Table 4-4. The results of 

accelerometer-derived respiration parameters are validated against the spirometer results in terms 

of Mean Square Error (MSE) represented in Eq. (4-10). MSE is one of the most common 

reasonable criterion used to forecast accuracy in a predicted model [165]. 

 (4-10) 

Where  is a vector of  predicted values with accelerometer signal, and is the vector of timing 

values corresponding to the spirometer signal (our ground truth). The average MSE for three 

breathing types are listed in Table 4-4. The results also show the impact of body position on the 

correlation as well as time variables. For all subjects, the mean correlation on different positions 

and breathing patterns are more than 0.8 shown in the last column of Table 4-2. 
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Figure 4-5: Accelerometer and spirometer signals for (a) Normal, (b) Slow and (c) Fast respiration 
patterns for one subject 

Figure 4-6: (a) Accelerometer-derived respiration and spirometer signals for Normal breathing, (b) 
Bradypnea, (c) Tachypnea, (d) Cheyn-stokes, (e) Kussmaul and (f) Biot’s breathing patterns 
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Table 4-2: Correlation values of spirometer and accelerometer for all subjects and body positions 

Subject 

ID 

Gender

/Age 

Body Position 
Average 

Sitting Resting Supine Left side Right side 

Fast Normal Slow Fast Normal Slow Fast Normal Slow Fast Normal Slow Fast Normal Slow  

S1 F/46 0.97 0.85 0.91 0.79 0.71 0.74 0.91 0.80 0.83 0.78 0.80 0.72 0.79 0.72 0.97 0.82 

S2 M/43 0.84 0.92 0.92 0.58 0.88 0.92 0.80 0.85 0.81 0.80 0.79 0.82 0.89 0.71 0.83 0.82 

S3 F/37 0.82 0.89 0.97 0.92 0.93 0.95 0.72 0.76 0.74 0.74 0.77 0.93 0.85 0.70 0.76 0.83 

S4 F/30 0.87 0.90 0.90 0.83 0.95 0.90 0.85 0.98 0.97 0.74 0.73 0.89 0.91 0.98 0.98 0.90 

S5 F/29 0.83 0.96 0.63 0.90 0.98 0.92 0.97 0.97 0.97 0.68 0.56 0.81 0.83 0.89 0.96 0.86 

S6 M/29 0.93 0.80 0.72 0.91 0.86 0.79 0.95 0.90 0.94 0.82 0.59 0.86 0.67 0.55 0.68 0.80 

S7 M/28 0.86 0.95 0.93 0.63 0.86 0.63 0.75 0.92 0.77 0.91 0.84 0.87 0.90 0.88 0.72 0.83 

S8 M/25 0.81 0.86 0.70 0.95 0.98 0.99 0.86 0.91 0.92 0.80 0.74 0.88 0.79 0.73 0.73 0.84 

S9 F/22 0.94 0.91 0.96 0.88 0.87 0.94 0.86 0.95 0.95 0.78 0.80 0.82 0.70 0.78 0.96 0.87 

S10 M/18 0.78 0.79 0.94 0.73 0.82 0.84 0.76 0.75 0.98 0.74 0.76 0.71 0.76 0.82 0.88 0.80 

Average Correlation for all subjects with all conditions (Mean ± SD) 0.84± 0.03 
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Table 4-3: Accelerometer-derived respiration rate errors versus spirometer with the correlation values 

 

Subject 
ID 

Gender/Age Score 

Respiration Rate Errors (%) vs. spirometer Correlation with spirometer 

Normal Bradypnea Tachypnea Kussmaul 
Cheyn-
stokes 

Biot’s Normal Bradypnea Tachypnea Kussmaul 
Cheyn-
stokes 

Biot’s 

S1 F/46 8 0.52 0.72 0 0.56 0.05 0.11 0.74 0.88 0.86 0.86 0.82 0.89 

S2 F/30 8 0 1.51 0.54 0 0 0.11 0.96 0.93 0.76 0.78 0.82 0.74 

S3 F/29 10 0.14 0.95 0.09 0.02 0 0.06 0.96 0.87 0.9 0.91 0.71 0.81 

S4 M/29 9 0.06 0.51 0.3 0.18 0.07 0.03 0.95 0.89 0.77 0.83 0.73 0.87 

S5 M/28 10 0 1.59 0.23 0.07 0.05 0.11 0.97 0.89 0.97 0.58 0.83 0.72 

S6 F/22 9 0.16 1.14 0.24 0.06 0.16 0.11 0.97 0.94 0.96 0.68 0.75 0.68 

S7 M/24 7 0.14 0.46 0.05 0.2 0.13 0.03 0.91 0.87 0.92 0.82 0.75 0.74 

S8 M/18 10 0.22 0.74 0.34 0.58 0.34 0.08 0.82 0.98 0.78 0.94 0.93 0.77 

Average 8.875 0.16 0.95 0.22 0.21 0.1 0.08 0.91 0.91 0.87 0.8 0.79 0.78 
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Figure 4-7:  (a) Accelerometer-derived respiration rate error rates, (b) Average 
absolute error of accelerometer-derived respiration rate  

Figure 4-8: (a) Pitch and roll angles on three respiration patterns for all subjects in 
different body positions, (b) Average roll angles of all subjects and patterns for five 

different positions with absolute errors in degree (c) Average pitch angles of all 
subjects and patterns for five different positions with absolute errors in degree 
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Table 4-4: Average MSE of inspiratory time ( ), expiratory ( ), and total time of the respiratory cycle ( ) on three breath patterns 
derived from accelerometer vs spirometer and the pitch and roll angles during different body positions  
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The goal is to provide a model in such a way that when its outputs are analyzed, the MSE is close 

to zero. The average MSE obtained from all subjects and postures are 0.16, 0.16 and 0.07 for , 

 and , correspondingly. Therefore, the predicted accelerometer-based time parameters are 

very close to the spirometer observations, as evidenced by the small MSE. As described earlier, 

another potential application of the presented remote monitoring respiratory platform is the body 

position tracking. In our experiments, the subjects were asked to stay at specific angles described 

in Table 4-1 for different body positions. 

The average results of their body angles for slow, normal and fast patterns at the end of each 

experiment are shown in Table 4-4. Since the subjects are kept in specific positions during the 

experiment, our system reports 3.62º average displacement in the pitch and 1.85º in the roll angles 

which are negligible for body position detection at sleep or rest conditions. These error values are 

calculated based on the MAE on all subjects and patterns. The pitch and roll angles on normal, fast 

and slow breath patterns for all 10 subjects are presented in Figure 4-8 (a). As an example, it could 

be observed that switching from sitting to rest position, angle  decreased in average from -85.72º 

to -46.72º (Figure 4-8 (b)) while angle  almost kept 0 degree (changing from -0.62º to 1.82º). 

Similarly, angle  started to increase in positive range (in average from 1.59º to 85.50º) when the 

subject changes his position from supine to left side shown in Figure 4-8 (c). 

44.3.3 Results of Breath Synchronization Analysis 

In this section, we have analyzed the accelerometer-derived respiration signals from both rib cage 

and abdomen, simultaneously. The impact of the body positions on RC and AB movements have 

been evaluated, as well. Different studies show the importance of body posture on RC and AB 

movements. For instance, according to [166], in approximately one-half of the COPD patients, the 

RC and AB paradox was noticed while sitting. In contrast, in supine position, the rib cage paradox 

disappeared which resulted from the improvement of the diaphragm mechanism. Therefore, in this 

study we aim to calculate the phase shift between RC and AB with low-cost and portable sensors 

along with high accuracy and performance. Here, we choose three different breaths from each 

individual in paradoxical and normal breathing maneuvers. Note that, since we have º and 

º for synchronous and paradoxical breathings, we test these two models in our system. 

The average phase shift measured from the Lissajous figure for different postures are shown in 

Figure 4-9 (a) and (c).  
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Figure 4-9: Average θ (a) For different body positions on three selected paradoxical breath 
cycles for all subjects (b) On all subjects for different body positions (c) For different body 

positions on three selected normal breath cycles for all subjects (d) On all subjects for different 
body positions 

Figure 4-10: Phase angle between RC and AB compartments of different positions with the 
variances 
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The overall error for paradoxical experiments in all conditions versus the RMBs is 0.13º ± 0.12º 

derived from  where  is the calculated phase shift from two RMBs and  is the 

estimated shift angle from accelerometer signals (see Figure 4-9 (b)). Similarly, for normal 

breathing in which we expect to have º, the average measured error in all body postures and 

subjects is obtained 0.21º ± 0.08º shown in Figure 4-9 (d). The results show that using two 

accelerometer sensors reliably estimates phase shift from the rib cage and abdomen motions. 

Figure 4-10 represents the phase angle between RC and AB compartments of different positions 

for 10 subjects. In this assessment, the effect of posture on the changes of the phase angles is 

discussed based on their variances depicted in Figure 4-10. It is observed that, in case of 

performing paradoxical test, the greatest variability is belong to the right side position while in 

sitting position all subjects have very close phase angles resulted in the least variability value. 

Finally, to evaluate the usability and flexibility of the proposed system, we asked our subjects to 

provide us a number between 0 and 10 to score the ease of use and flexibility of our system. The 

results are depicted in Table 4-3. The average score is obtained 8.875, which demonstrates the 

comfort and flexibility of the proposed intelligent system while giving more credits to 

accelerometer-based approaches as a simple and cost effective solution for m-health applications.  

Figure 4-11: The overall procedures proposed in this chapter 
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44.4 Summary 
In this chapter, we discussed about estimating different parameters in a real-time respiration 

monitoring platform. Indeed, the proposed system is able to achieve and monitor different critical 

respiratory parameters with prominent benefits of cost, convenience, patient comfort and quality 

of service. We showed that there is a very close correspondence of the accelerometer-derived 

respiration waveform and spirometer data in terms of both correlation and three timing variables. 

Furthermore, the platform is capable of tracking the body position and tilt angles during rest 

positions and sleep. Since changing body position induces differences in the chest wall behavior, 

the impact of different postures on rib cage and abdominal asynchrony with different subjects have 

been investigated. The overall procedures are summarized in Figure 4-11. 
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CChapter 5 

5 TIDAL VOLUME VARIABILITY ESTIMATION IN 

AN EMERGENCY SYSTEM 
In this chapter, an intelligent system capable of measuring Tidal Volume variability ( ) via a 

wearable sensing technology is proposed. This system is designed particularly to help in diagnosis 

and treatment in people with pathological breathing e.g. respiratory complications after surgery or 

sleep disorders. Furthermore, since it is essential to detect the critical events caused by sudden rise 

or fall in per breath tidal volume of the people, a technique is provided to automatically find the 

accurate threshold values based on each individual breath characteristics. 

5.1 Motivation 
The accurate and precise detection of human respiration parameters poses several complex 

challenges. Although it might seem trivial at the first glance, the complexity and diversity of 

breathing models make truly difficult to elaborate a clear definition of them. In fact, the way people 

breathe varies from person to person. Therefore, there exists the need of an effort to collect rich 

general-purpose datasets as it occurs in other research fields such as activity recognition and 

computer vision. With the lack of complete datasets, the task of reproducing research turns to be 

quite difficult, which is found to be crucial in a research discipline. Therefore, in this part of this 

thesis, an appropriate dataset with motion sensors is provided on which the system will be 
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evaluated. The use of a tri-axial device allows the inclination changes to be measured regardless 

of the body orientation. In fact, during a normal respiration, in each breathing cycle the volume of 

the thoracic cavity is changed, resulted from the displacement of the rib cage and diaphragm that 

is closely correlated with the tidal volume variability.  

The measurement of tidal volume variability requires devices such as spirometer or 

pneumotachometr connected to the patient with a mouthpiece and nose clip or face masks. Indeed, 

the patients might have to wear nose clips during the procedure to prevent air leakage from the 

nose and they should breathe from the mounts with sealing their lips around the mouthpiece. These 

types of equipment are uncomfortable, and may cause a sensation of smothering [167] whereas 

they are impractical and not easy-to-use for long time monitoring or during sleep, especially for 

babies and children. The spirometers are mostly used in Pulmonary Function Test (PFT), which 

has to be conducted at the bedside, in a physician's office, or in a pulmonary laboratory under the 

expert’s supervision. Even though this type of test is short in time, patients may become 

lightheaded or dizzy after the test. Therefore, a monitoring method with simple setup and good 

accuracy for remotely estimating  on a breath-by-breath basis is crucial. The study in [168] 

shows that an increase in children tidal volume variability is a better sign of opioid-induced 

respiratory depression than decreased respiratory rate. It is due to the fact that an increasing in 

 is 10 times of a drop in respiratory rate. Besides, rising in  also correctly predicts 

respiratory depression twice as often as decreased respiratory rate.  

Indeed, the advantages of tidal volume variability monitoring as an indicator of impending 

respiratory depression are that  is more sensitive than the respiratory rate and the magnitude 

of the changes is larger. It is worth noting that, the tidal volume variability is independent of age-

related variations unlike respiratory rate [169]. Figure 1-4 shows the tidal volume variability and 

respiratory rate along with increasing doses of remifentanil in a typical patient. Remifentanil is a 

strong ultra-short-acting synthetic opioid analgesic drug, which is given to the patients during 

surgery to relieve pain and as an adjunct to an anaesthetic. In Figure 1-4 the patient was given 5 

doses of remifentanil starting with 0.04 µg/kg/min and ending with 0.127 µg/kg/min. [169] 

demonstrates that an increase in tidal volume variability correctly identified that the next dose 

would cause respiratory depression in 41% of patients. The respiratory rate less than 10 breaths 

per minute correctly identified imminent respiratory depression in only 22% of the patients. 

Furthermore,  increased by 336% over baseline during the penultimate dose and by 668%
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during the last dose. However, the respiratory rate, in contrast, decreased by 32% during the 

penultimate dose and by 56% during the last dose [169].  

It is also well known that severe lung impairment in Cystic Fibrosis (CF) may compromise 

respiratory muscle function at rest. Patients with pulmonary disease caused by CF are known to 

have changes in their breathing pattern at rest. Hart et al. [170] reported these changes, specifically 

by a rapid rate and low tidal volume pattern associated with further impairment of gas exchange. 

Hence, monitoring of the tidal volume changes provides early identification and timely treatment 

of exacerbations with decreasing the hospital admissions, disease costs and slow deterioration. 

As a method of improving patient care systems, hospitals often utilize patient monitoring and 

alerting systems in which the patient data stream is rapidly analyzed to recognize the emergency 

situations. The notifications regarding the presence of these critical events can come in the form 

of reminders or alerts. In this chapter, a new approach is proposed to find the appropriate threshold 

values based on respiration characteristics without the need of expert input. Therefore, this 

technique has significant potential to provide wide and positive effects on clinical care, in the 

future.  

55.2 Tidal Volume Variability Estimation 
In this section, we introduce a new method to accurately estimate  with a single accelerometer

from outside of medical centers. According to study in [74], the breath volume is equal to a 

corresponding change in the compartmental volume of the torso which is found to be fairly 

Figure 5-1: Tidal volume variability and respiratory rate versus the 
dose of remifentanil of a typical patient [169] 
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accurately represented by a changes in the cross sectional area of the chest during a breath cycle. 

So, in our experiments the accelerometer is attached on the chest to measure the inclination changes, 

which are closely correlated with tidal volume variability. In addition, we focus on providing an 

efficient technique to obtain  in stationary positions, because people spend up to one-third of 

their lives at sleep and rest positions. This number grows for patients whom the respiratory 

condition during rest positions has an important role in their health management. The respiration 

signal obtained quite precisely from a calibrated accelerometer sensor in Chapter 3. Subsequently, 

the tidal volume variability is assessed based on the estimated volume signal. To eliminate the 

impacts of the postures, first we rescale the respiration signal to scale the range in [0, 1] and then 

calculate the per breath tidal volume. Indeed, this technique makes the breath volume to be 

independent of body position. The following notations are used through the rest of this section: 

: Normalized accelerometer signal after signal processing proposed in Chapter 3,  

: Tidal volume variability of the window, 

: Tidal volume of the breath cycle after signal normalization, 

:  Window size for linear regression, 

: breath (inhale) in each window, 

:  peak and valley values respectively. 

The spirometer and accelerometer respiration signals are first normalized and then the volume of 

each breath is calculated from Eq. (5-1) shown in Figure 5-2. Steps 2 to 3 of Algorithm 5-1 show 

the procedures for obtaining  for  inhales. 

 (5-1) 

The calculated volumes are linearly fitted with different window sizes to obtain the trend of 

oscillations for both spirometer and accelerometer depicted in lines 5-9 in Algorithm 5-1. The 

window size refers to the number of breaths to obtain the tidal volume trend. In function (line 

6 in Algorithm 5-1), we make use of the linear least square curve fitting for obtaining  in each 

window as follows: 

 (5-2) 
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Here,   is obtained based on the slopes (regression coefficients) of the linear fits for window 

size . The window size should be chosen wisely based on the require sensitivity prescribed by the 

doctor.  must be set to minimize the Sum of Square Error (SSE) function, which is defined as 

follows: 

 
(5-3) 

is the calculated normalized tidal volume from Eq. (5-1) and   refers to the estimated 

normalized tidal volume with least square technique. The proposed tidal volume estimation 

algorithm is also outlined in Figure 5-3. It shows about 42 sec of the accelerometer and spirometer 

signals of Biot’s respiration for a 29 years old female. Per breath tidal volumes are first obtained 

from the normalized signals in Figure 5-3 (b) and (f). Then in Figure 5-3 (c) and (g), the least square 

fitted lines of each window as well as their slopes are shown while the window size is set to 3 and 

incremented by 2. Finally,  is obtained as Figure 5-3 (d) from accelerometer sensor and (h) 

from SPR-BTA spirometer.  

Algorithm 5-1 

 ( ){ 

// Inputs: // Output:  

1-   [ ; /*  
function extracts the peaks and valleys amplitudes */ 

2-    
3-           );  
4-   ; /* Initialize the boundary*/ 
5-   1 { 
6-           The regression coefficient derived from the 
linear polynomial curve fitting function*/                                      
7-            
8-           /* Sliding window with  overlap*/ 

9-   return } 
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Figure 5-2: The tidal volume calculation after signal normalization 

 

 

 
Figure 5-3: (a)-(d) The proposed procedures for tidal volume variability estimation with 

accelerometer signal, (e)-(h) The proposed procedures for tidal volume variability 
estimation with spirometer signal 
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Indeed, it indicates that there are negative and positive peaks of tidal volume in the 4th and 7th 

windows, respectively. These changes are due to the rapid respiration epochs followed by regular 

periods of apnea (Figure 5-3 (a) and (e)) in Biot’s respiration pattern.  

55.3 Dynamic Threshold Adjustment & Alarm Generation  
Continuous respiration monitoring with high sensitivity for detection of critical events is essential. 

In this section, a new method is proposed to detect the critical points of tidal volume variability 

using Symbolic Representation of Time Series [171] in real-time. This method can be included in 

the platform to provide immediate feedback mechanism for round-the-clock breathing monitoring. 

Therefore, in case of sniffing a problem, it activates the sound alarm systems immediately or sends 

an email or SMS alert to the caregiver, family members or physicians.  

People have different breathing characteristics such as rate, volume, tidal volume variability and 

pattern, which result in various threshold values for the recognition of an alarm. In this thesis, we 

apply SAX with a new segmentation technique in order to dynamically find the accurate threshold 

values based on each individual’s breath characteristics in a short amount of time (~0.2 sec). The 

main goal is generating real-time alert based on monitoring the tidal volume variability if the 

condition of the patients are not suitable to make a call. 

5.3.1 Symbolic Aggregate approXimation (SAX) 

Lin et al. [171] introduced the Symbolic Aggregate approXimation (SAX) which allows a time 

series  of length  to be represented in a  dimensional space by a vector . The  

is calculated as follows [172]: 

 (5-4) 

The average value of the data within an episode is calculated and a vector of these values over w 

intervals shows the dimensionality reduced representation. Before this transformation, which 

shows the Piecewise Aggregate Approximation (PAA) of the time series, we have standardized 
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the data to have a mean of zero and a standard deviation of one. If a time series is plotted in a 

Cartesian space, the PAA divides the x dimension into a set of intervals with an equal size [173]. 

Figure 5-4 (a) depicts the tidal volume of a subject after signal normalization and his PAA. A 

further transformation is applied to obtain a discrete representation known as Discretization.  We 

need to have a technique that produces symbols with equiprobability [174][175]. This is easily 

achieved due to Gaussian distribution of the normalized time series [176]. We have applied SAX 

on per breath tidal volume achieved from the accelerometer data after signal normalization. The 

results show an accurate feedback alarm while there are major changes in tidal volume; however,

in case of constant tidal volume this technique suffers from the problem of false alarms. Therefore, 

to avoid this and keep the data in an appropriate range, we have modified the data by injecting a 

square pulse at the end with zero and maximum value of the signal. The length of the pulse is 

considered either an episode size or the data size. The results are brought in section 5.4 while 

considering three scenarios: per breath tidal volume, per breath tidal volume with small pulse and 

large pulse. 

Lin et al. [171] have found empirically using 50 different datasets that, the normalized time series 

have highly Gaussian distribution. There are two main methods of assessing normality: graphically 

and numerically. Figure 5-5 represents the normal probability plots of the cumulative distribution 

Figure 5-4: The main steps of SAX a) Piecewise Aggregate 
Approximation, b) Symbolic Discretization 
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from all considered respiration patterns. It shows the results from three scenarios with episode size 

3 for 8 different volunteers. The linear nature of the plots suggests that the data derived from a 

highly Gaussian distribution [171]. In other words, the Kurtosis values for all scenarios are 

achieved between +1 to -1 [177], which numerically indicates that the data are following normal 

 Figure 5-5: A normal probability plot of the cumulative distribution of data after 
normalization from all patterns and 8 subjects (a) Without pulse, (b) With small square pulse 

(c) With large square pulse 

Table 5-1: A lookup table with the breakpoints that divide a Gaussian
 distribution in 3 to 6 of equiprobable regions [171] 

 3 4 5 6 

 -0.43 -0.67 -0.84 -0.97 

 0.43 0 -0.25 -0.43 

  0.67 0.25 0 

0.84 0.43

    0.97 
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distribution. Now, the “breakpoints” can be determined to produce  equal-sized areas under 

Gaussian curve [176].  

Definition: “Breakpoints are a sorted list of numbers     such that the area under 

a  Gaussian curve from   to  ( , )”[171]. 

These breakpoints are determined in a statistical table. Table 5-1 gives an example of the 

breakpoints for values of  from 3 to 6. Based on the equiprobable regions, Figure 5-4 (b) shows 

a sample of the alphabetic representation of per breath tidal volume with α equal to 4. The goal is 

to identify the critical points of tidal volume remotely and generate an alert in case of transaction 

to “a” or “d” sections. The SAX process is linear in time, which makes it suitable for stream 

processing in our real-time monitoring. The proposed method is briefly described in Algorithm 

5-2. The new notations are defined as below: 

: Alarm state for  episode 

 : Symbol (Alphabet) for  episode 

:  letter  

In step 1 of Algorithm 5-2, we standardized the data to have a mean (  of zero and a standard 

deviation (  of one. Then in steps 2 to 6 the original time series with length  is transformed into 

PAA representation with size . From step 7 to 16, the symbolic discretization is done considering 

the previous lookup table with the breakpoints that divide a Gaussian distribution into α 

equiprobable regions. Finally, the alarm detection is performed in lines 18 to 23. Since we set α to 

4, the proposed system will generate an alert in case of transition to or sections due to our 

observations brought in subsection 5.4.3. 

55.4 Experimental Results 
For the evaluation of the proposed techniques, the results are derived from different subjects and 

breathing patterns explained in the next section. 

5.4.1 Test Setup 

The participants of this study were 4 males and 4 females aged 18 to 46. They were trained to 

perform each breath exercise before their recording sessions based on aforementioned definitions. 
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The experimental trials lasting for about 45 minutes (7 breathing signals) per subject resulting in 

a total of 112 different signals. In the test setup, we asked the subjects to perform normal (P1), 

Bradypnea (P2), Tachypnea (P3), and Kussmaul (P4) patterns, each for 1 minute, Cheyn-stokes 

(P5) and Biot’s (P6) each for 2 minutes and finally a pattern with different tidal volumes (P7) 

lasted for about 3 minutes. We assigned a 3-minute rest interval after performing each pattern. The

LIS3DH 3-axis accelerometer was mounted on the subject’s chest in the middle of sternum region 

and secured by a soft and elastic strap which is easy to attach and comfortable to wear over the 

cloths. In the trial session, the subjects were in the lying position (torso at about 45 ̊ angle to the 

Algorithm 5-2 

 ( ) { 
// Inputs:  // Output:  

 
1- ;  /*Data standardization*/ 
2-  
3-  
4-  
5-  
6- } 
7-  
8- if  
9- ′ ′  
10-       elsif     
11- ′ ′  
12- elsif  
13- ′ ′  
14- …
15- elsif  
16-      ′ ′ } /* We obtained  so far */ 
17- ′ ′  /* Only for the first iteration*/ 
18-  

19- ′ ′ ′ ′  /* and are “a” and “d” respectively*/ 
20-
21-
22-                    Trigger_an_alarm;}} 
23- }
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floor) on a chair; however, the rest positions or activities in which rib cage is stationary could be 

considered. The SPR-BTA spirometer signal is used as our reference that measures the oral 

breathing. 

55.4.2 Accelerometer-derived Tidal Volume Variability Validation 

We consider three types of pattern for tidal volume variability evaluation. In Biot’s breathing, we 

expect to have reduction in tidal volume in each apnea with no significant changes during breathing 

cycles. However, in Cheyn-stokes pattern the tidal volume increases gradually and then decreases 

to start an apnea epoch. Additionally, we analyzed the changes in tidal volume for normal to deep, 

deep to shallow and shallow to normal conditions (P7). Figure 5-6 shows three respiration patterns 

for one of the subjects with his tidal volume variability obtained from accelerometer signal. There 

are positive changes from normal to deep as well as from shallow to normal breathing. As shown 

in Figure 5-6 (b), the variation from deep respiration to normal is less than changing pattern from 

deep to shallow breathing. We also obtain negative changes from deep to normal and deep to 

shallow breathing. The directions of the changes in  are always the same as the spirometer 

in major changes. However, the different directions are resulted from the small acceleration 

movement of the body during constant tidal volume. To show the impact of size, we have swept  

from 2 to 10 breaths. Indeed,  shows the sensitivity of the method. As can be seen in Table 5-2, 

there is a tradeoff between  and correlation. Larger window size resulted in better correlation of 

accelerometer versus the spirometer. This is due to unwanted motions of the rib cage during 

constant tidal volume epochs. Applying larger window size removes the trends of constant tidal 

volume while keeping the major changes. It is worth noting that, based on our patterns introduced 

earlier; we increase the size of window up to 10 breaths, because there are always more than 10 

breaths per cycle in all of our patterns (P5, P6 and P7). Based on the respiration disorder, if the 

tidal volume of the patient changes frequently, the small window size is preferable; otherwise, 

larger size show the trend of tidal volume accurately over time. Therefore, in our portable platform 

we could manage the appropriate sensitivity value for the graphical representation of  based 

on different breath disorders characteristics.  The overall correlation is obtained 0.87 whereas it 

proves that  derived from the accelerometer is strongly correlated with spirometer.  
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Figure 5-6: (a), (d), (g) P7, P6 and P5 breathing patterns derived from an accelerometer signal, 
(b), (e), (h) Tidal volume variability for P7, P6 and P5, (c), (f), (i) Symbolic representation of 

normalized tidal volume for alert detection system in P7, P6 and P5. 

Table 5-2: Correlation values between tidal volume variability from accelerometer and 
spirometer of three different patterns 

Subject 
ID 

                                                          Correlation values 

P5  P6  P7  

t=2 t=3 t=5 t=10  t=2 t=3 t=5 t=10  t=2 t=3 t=5 t=10 Average 

S1 0.90 0.94 0.96 0.98  0.74 0.81 0.86 0.84  0.86 0.89 0.91 0.95 0.89 

S2 0.77 0.81 0.84 0.93  0.56 0.69 0.77 0.88  0.71 0.79 0.82 0.87 0.79 

S3 0.63 0.80 0.88 0.93  0.70 0.80 0.85 0.94  0.68 0.77 0.81 0.89 0.81 

S4 0.96 0.96 0.96 0.98  0.72 0.89 0.90 0.95  0.81 0.91 0.94 0.96 0.91 

S5 0.88 0.92 0.95 0.98  0.59 0.71 0.91 0.97  0.80 0.86 0.92 0.93 0.87 

S6 0.68 0.91 0.96 0.96  0.73 0.81 0.91 0.96  0.80 0.83 0.84 0.86 0.85 

S7 0.74 0.77 0.82 0.91  0.77 0.87 0.92 0.96  0.77 0.81 0.85 0.87 0.84 

S8 0.98 0.99 0.99 1.00  0.94 0.96 0.97 0.99  0.96 0.96 0.96 0.97 0.97 

Average 0.82 0.89 0.92 0.96  0.72 0.82 0.89 0.94  0.80 0.85 0.88 0.91 0.87 
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The average Mean Square Errors (MSE) of the estimated tidal volume variability versus the 

reference for three types of patterns are 3.06E-05, 1.86E-03, 1.07E-03 and 4.33E-04 with standard 

deviations 7.27E-03, 4.36E-03, 2.31E-03 and 8.41E-04 for t = 2, 3, 5 and 10, respectively. The 

errors do decrease at the larger window sizes due to less sensitivity in the constant tidal volume 

variability periods. 

Observation 1: The computed MSE for each subject can be fitted into a normal distribution, 

depicted in Figure 5-7. In this figure, the fitted normal distributions correspond to the average log-

likelihood value of 124.8 ± 28.60 on different , which indicates a good fit. 

Figure 5-7 also shows the impact of the window size on MSE distributions. When the window is 

small the standard deviation is larger compared to the case with larger window sizes. For example

with t = 10, the MSEs have less dispersion from the average value of zero. Therefore, a very high 

correlation between accelerometer-derived  and spirometer indicates that the proposed 

method is promising to be used in a respiration tracking system specially for real-time monitoring 

of breath diseases during rest positions. Furthermore, the low MSE values suggests excellent 

consistency between actual and expected estimated tidal volume variability values.  

55.4.3 Proposed Alert System Evaluation 

So far, we have assessed a graphical representation of tidal volume variability in our remote 

monitoring platform. This section evaluates the method we developed for discovering the critical 

Figure 5-7: Normal fittings of the MSEs between accelerometer and 
spirometer for P6 of subject S2 considering different window sizes 
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turning points in per breath tidal volume. As mentioned earlier, finding an accurate threshold value 

to identify the emergency alarms during critical and major changes is required, either in circadian 

remote monitoring or in e-health centers. We propose a new method to detect these changing points 

using symbolic representation of time series [171].  

The evaluation are performed on three scenarios: per breath tidal volume, per breath tidal volume 

with small pulse and large pulse for 8 people and all seven patterns. From pattern P1 to P4 there 

is no major changes in tidal volume and we expect to have constant volume with no alarm; however 

for patterns P5, P6 and P7 the system should alert 5, 2 and 3 times in the considered window, due 

to the sudden increments and decrements of tidal volume. In other words, we define the critical 

points as transition into a high or very low breath volume as well as the apnea events. 

Indeed SAX method removes the small redundant acceleration movement of the body during 

constant tidal volume. Note that in our experiments, we focus on extracting the major changes and 

we experimentally set the alphabet size to 4. However, to have a more sensitive alert system the 

users are able to increase the number of alphabets. In Figure 5-8, we compare the symbolic 

representation of all patterns for three scenarios and episode size 3. For example, in Figure 5-8 

(m), there are two false alarms generated by the system when there is no pulse in the data; however, 

injecting large pulse reduces the number of false alarms into one and with small pulse, we can 

achieve zero false alarm. In Cheyn-stokes pattern, the system is supposed to alert in sudden 

increment and decrement of the volume. For instant, in Figure 5-8 (k) the system alerts 5 times 

with no false or undetected alarms. In other example, considering Figure 5-8 (l), the system 

generates true alarms in both ninth episode due to the sudden reduction of tidal volume and in 

twelfth episode after coming back into high constant tidal volume in Biot’s pattern. It is worth 

mentioning that, in our proposed system the alert is generated when the tidal volume enters into 

“a” or “d” sections based on the following observation. Furthermore, Figure 5-6 (c) shows the 

alerts when tidal volume goes from normal to deep and deep to shallow breathing (3 alerts). 

Observation 2: The best results are achieved by considering “a” and “d” as critical sections among 

all 15 combinations of four symbols. However, in case of any changes in the number of symbols, 

the condition might be changed for the emergency alert generation.  

The average accuracy values of alarm system with different episode sizes are shown in Figure 5-9. 

We have changed the episode size from 3 to 10 sec. Figure 5-9 (a) depicts the accuracy of the 
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alarm system for patterns with constant tidal volume on three scenarios. We note that the accuracy 

is almost constant for different episode size in patterns with constant volumes whereas for patterns 

with major changes (Figure 5-9 (b)), the larger the episode size, the smaller the accuracy of alarm 

system. Moreover, the figures demonstrate the improvement of the proposed alarm system after 

injecting both small and large square pulses. The overall accuracy for all patterns is plotted in 

Figure 5-9 (c) in which the blue sign corresponds to the best accuracy of 98.28% based on the 

small square pulse with episode size equal to 3. In Figure 5-10, we brought the accuracy of three 

patterns P5, P6 and P7, individually. It can be seen that the augmentation of episode size more 

affects the accuracy rates of Cheyn-stokes patterns in which there exist gradual changes, rather 

than the Biot’s and P7 patterns in both large and small pulse injections. The results of Positive 

Predictive Alarm (PPA), Negative Predictive Alarm (NPA), False Positive Alarm Rate (FPAR) 

and False Negative Alarm Rate (FNAR) are listed in Table 5-3. PPA and NPA denote the rates of 

true predicted existing and non-existing alarms. False positive and false negative alarms refer to 

false alarms and undetected alarms, respectively. The formulas are summarized as follows:  

Table 5-3 highlights the parameters for three patterns with major changes. It is shown that the 

accuracy values of our alarm detection system suffers when the episode size is incremented 

resulted from high information loss values.  

 

 (5-5) 

 (5-6) 

 (5-7) 

(5-8) 

 (5-9) 
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Figure 5-8: (a) Normal, (b)Tachypnea,  (c) Bradypnea, (d) Kussmaul, (e) Cheyn-stokes, (f) Biot’s 
breathing patterns from both accelerometer and spirometer, (g), (h), (i), (j), (k), and (l) The SAX of 

normal, Tachypnea, Bradypnea, Kussmaul, Cheyn-stokes and Biot’s breathing, correspondingly with 
injecting small square pulse, (m), (n), (o), (p), (q) and (r) The SAX of all three considered scenarios for  

normal, Tachypnea, Bradypnea, Kussmaul, Cheyn-stokes and Biot’s, respectively 
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Figure 5-9: (a) Average accuracy of alarm system for P1, P2, P3, P4 with three scenarios on 
all subjects, (b) Average accuracy of alarm system for P5, P6, P7 with three scenarios on all 

subjects, (c) Average accuracy of alarm system for all patterns with three scenarios on all 
subjects 

Figure 5-10: (a) Average accuracy of alarm system for P5, P6 and P7 with small square pulse 
injection on all subjects, (b) Average accuracy of alarm system for P5, P6 and P7 with big 

square pulse injection on all subjects
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Table 5-3: Average quality parameters of alert detection with both small and big square pulse injections for 
different episode sizes on all subjects 

Ep
iso

de
 S

iz
e Parameters of tidal volume alert detection when injecting small square pulse (%) 

P5  P6  P7 

PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy 

3 97.78 99.09 0.91 2.22 98.71  94.44 100 0.53 0 99.51  100 98.55 0 12.90 98.67 

4 100 97.26 0 4.26 98.31  83.33 100 2.12 0 98.08  100 99 0 6.89 99.12 

5 77.78 100 16.67 0 89.47  66.67 99.06 5.41 7.69 94.35  100 99.35 0 3.57 99.45 

6 73.33 100 25.53 0 85  61.11 99.06 6.25 8.33 93.55  100 100 0 0 100 

7 48.89 100 47.92 0 67.14  55.56 100 10 0 91.11  100 100 0 0 100 

8 42.22 100 60.47 0 58.06  61.11 100 10.14 0 91.25  100 100 0 0 100 

9 33.33 100 75.00 0 45.45  38.89 100 17.19 0 84.51  96.29 100 1.27 0 99.04 

10 28.89 100 86.48 0 36.00  50.00 100 16.07 0 86.15  96.30 100 1.51 0 98.91 

Ep
iso

de
 S

iz
e Parameters of tidal volume alert detection when injecting big square pulse (%) 

P5  P6  P7 

PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy 

3 91.11 99.09 3.54 2.38 96.77  83.33 98.40 1.60 16.66 97.07  92.59 100 0 0.71 99.34 

4 73.33 100 14.12 0 89.83  83.33 98.55 2.16 11.76 96.79  92.59 99.50 0.98 3.84 98.69 

5 62.22 100 25.37 0 82.11  83.33 100 2.75 0 97.58  92.59 100 1.27 0 98.91 

6 48.89 100 39.66 0 71.25  61.11 100 7.44 0 93.33  88.89 98.45 2.30 7.69 96.79 

7 35.55 100 53.70 0 58.57 50 100 9.38 0 91.42 92.59 99.06 1.85 3.84 97.76

8 31.11 100 64.58 0 50.00  61.11 100 10.14 0 91.25  85.19 97.85 4.21 8.00 95.00 

9 31.11 100 75.61 0 43.64  27.78 100 19.69 0 81.69  92.59 97.47 2.53 7.41 96.22 

10 22.22 100 87.50 0 30.00  44.44 100 17.54 0 84.61  85.19 97.10 5.63 8.00 93.75 
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Table 5-4: Average quality parameters of our alert detection with considered scenarios for different episode sizes on all subjects 

Episode 
Size 

Parameters of tidal volume alert detection for all patterns and subjects 

Without pulse 
 

With small pulse 
 

With big pulse 

PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy  PPA NPA FPAR FNAR Accuracy 

3 97.78 90.87 0.28 45.34 91.41  97.77 98.34 0.21 12.87 98.28  90.00 97.56 1.17 19 96.77 

4 97.78 89.49 0.39 40.54 90.62  93.33 98.77 1.05 7.69 98.03  81.11 98.25 2.93 12.05 95.92 

5 95.56 88.91 1.00 36.29 90.03  82.22 98.19 3.56 9.76 95.49  75.55 98.42 4.81 9.33 94.55 

6 88.89 90.03 2.98 31.03 89.80  78.89 98.06 5.09 8.97 94.23  63.33 97.79 8.55 12.31 90.90 

7 82.22 91.11 6.11 24.49 88.88  65.55 98.32 9.60 7.81 90.69  54.44 97.97 12.34 10.90 87.86 

8 75.56 91.70 8.66 23.59 87.46  63.33 98.42 11.70 6.56 89.21  53.33 98.02 14.48 9.43 86.30 

9 64.84 90.08 12.8 28.92 83.18  53.33 99.09 16.22 4.00 85.76  48.88 98.63 17.55 6.39 84.14 

10 63.74 87.89 16.50 28.40 80.07  53.33 98.42 18.34 5.88 83.92  45.55 98.42 20.76 6.82 81.42 
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Furthermore, the rates of false and undetected alarms are low dramatically in small episode size 

while we could obtain high true positive and negative alarm rates. Therefore, in case of facing a 

problem, the alert system will function properly as a sound alarm, email or SMS alert to the users. 

As an example, based on Table 5-3, with episode size 3 and 4 (with injecting small square pulse), 

we could obtain more than 98% accuracy in all three patterns with various types of tidal volume 

oscillations. In addition, the worst-cases of positive and negative predictive alarms with episode 

size 3, are 94.44% and 98.55%, correspondingly. Besides, our intelligent alarm system is designed 

to take care of the people and meanwhile, it should not be so sensitive that leads to excessive false 

alarms. Hence, from Table 5-3, it is observed that the low rates of both false negative and positive 

alarms (FPAR and FNAR) clearly demonstrate the robustness of the proposed technique. SAX 

technique depends on the size of data; here we apply SAX on all recorded data of our individuals. 

However, after different executions we conclude the following observation.  

Observation 3: Smaller size of data will result in more sensitivity for the proposed alarm system, 

so that the rate of positive predicted alarm increases whereas the negative predicted alarm do 

decrease at the same time. Therefore, according to the criticality of the breath disorder, the data 

size should be chosen based on the require sensitivity prescribed by the doctor.  

The overall rates and accuracies based on all patterns (P1 to P7) and conditions are outlined in 

Table 5-4. Our  experimental results show that applying SAX method on tidal volume after small 

square pulse injection can attain at least 83.92% accuracy with episode size 10 whereas the best 

accuracy of 98.28% is achieved with episode size 3 (bold line in Table 5-4). In the proposed 

technique, the false negative and positive alarm rates are also very low which show considerably 

low false and undetected alerts.  

55.5 Summary 
In this chapter, a method was introduced to obtain tidal volume variability from an accelerometer 

data as a reliable and unobtrusive technique over extended periods. A new data-driven alert system 

was also designed and evaluated for tidal volume emergency situation feedback which can filter 

the false alarms and provide a high detection accuracy. This method applied a technique to 
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dynamically calculate the alarm thresholds to effectively reduce the false alarm occurrences. 

Therefore, the platform can perform essential functions to fashion the signals received from the 

cloud, process them and eventually setoff the emergency alarm. The overall procedures are 

summarized in Figure 5-11. 

Figure 5-11: The overall view of the proposed procedures  
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CChapter 6 

6 RESPIRATION DISORDERS CLASSIFICATION 
Respiratory disorder is a highly prevalent condition associated with many adverse health problems. 

As the current means of diagnosis are obtrusive and ill-suited for real-time e-health applications, 

we explore a reliable and accurate automatic approach based on on-body inertial sensing system. 

In this chapter, we integrate inertial sensors with machine learning techniques to model a wide 

range of human respiratory patterns. A set of sensors is deployed on the user's body to register 

their upper body movements when performing a particular breathing pattern. An extensive 

evaluation is provided on different well-known classifiers with novel lightweight features as well 

as hierarchical tree-structured classification models. In addition, the effects of the number of 

sensors, sensor placement, feature selection and different sampling rates on accuracy as well as 

accuracy versus sensitivity are discussed. The different assessments of classification parameters 

are provided by measuring the specificity, F1-score and Matthew Correlation Coefficient (MCC).  

6.1 Motivation 
An accurate identification of breathing disorders requires direct measurement of upper airway 

airflow and respiratory effort. Although the Polysomnography (PSG) is known as the de facto gold 

standard mean in respiration disorders diagnosis, it is complicated, expensive, time consuming and 

has to be conducted in laboratory. Furthermore, it is scarce for everyone since there are few 

hospitals, which provide PSG test especially in rural areas. Due to this fact, a vast majority of 

patients with breathing disorder problems remain undiagnosed which may increase the risk of 
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developing cardiovascular diseases such as stroke and heart failure. Another traditional technique 

for diagnosis of breath problems resulted from lung diseases is stethoscope. It is a widely used tool 

for the identification of various lungs’ disorders. However, the interpretation of lung sounds 

strongly depends on the experience of the physician [178]. 

The advent of mobile health technology and maturity of pervasive sensing, wireless technology as 

well as data processing techniques enables us to provide an effective solution for remote detection 

of breathing problems and promote individual’s health. Mobile health or m-health market was 

estimated to be valued at USD 1,950 million in 2012, with an estimated Compound Annual Growth 

Rate (CAGR) of 47.6% from 2014 to 2020 [179]. The previous available techniques and devices, 

albeit their accuracy, are expensive and could not be integrated in m-health applications. This 

unmet need for unobtrusive monitoring of respiration signal for the goal of respiration illnesses 

diagnosis has triggered research in introducing the use of wearable MEMS sensors. Therefore, 

such a system can help reducing the use of emergency department and hospital services resulted 

in increased health care team productivity. There are several methods for classification of normal 

and pathological breathing patterns, which are described in Chapter 2. For instance, [112] used a 

multi-layer perceptron neural network classifier applied on spirometry data. The total accuracy, 

sensitivity and specificity of 97.6%, 97.5% and 98.8% are achieved, respectively. Mahesh et al. 

[113] discussed the problem of binary classification with 92% accuracy through pulmonary 

function test and neural network. A neural network is described in [114] with flow-meter 

spirometer to differentiate between normal and obstructive abnormality. The validity of their result 

was tested with the accuracy 90%. In [115], the authors provide a combined two sequential binary 

neural network classifiers to detect normal, obstructive and restrictive breathing models. The first 

classifier separates the normal and abnormal patterns followed by the second binary classification 

between obstructive and restrictive breathing models. They could obtain an average accuracy of 

92.5%.  In this chapter, robust models are extracted and evaluated based on acceleration signals to 

distinguish among 2 to 9 different pathological breathing patterns, accurately.  

66.2 The Proposed Methods 
Breathing disorders recognition means identifying the patterns of one or more individuals using a 

series of observations and environmental conditions as formulated as follows: 
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Definition: With  extracted features from the motion sensors, given a set  

of labeled and equal-sized time windows, and a set of respiration patterns’ 

labels, the goal is to find the best classifier model , such that for any  which contains a feature 

set , the predicted label  is as identical as possible with the 

actual breathing model performed during . 

The recognition procedure starts with collecting data from the motion sensors. In order to capture 

the dynamics of the signals, the data are partitioned into segments of either fixed or variable size. 

Afterward, a feature extraction procedure is carried out to enhance the characteristics unique to 

each breath model and provide a more tractable representation of the signals for the respiration 

pattern classification. These features are inputted to a classifier, which ultimately yields the 

recognized breathing model to one of the considered patterns.  

There are two main types of data features: time and frequency domain features. The time domain 

features are cheaper than the frequency domain features, because for the frequency domain features 

the sampling rate should be high enough to capture all of the relevant frequencies in each window. 

Although, a higher sampling rate may increase the accuracy, it will cause higher battery 

consumption. Therefore, in this thesis, we make use of time domain features, which are lightweight 

and can help to reduce latency and power consumption as the key factors during our online 

classification. These features might have different ranges resulted in a failure in classifier and 

recognition system. Therefore, to overcome this issue, rescaling the range of features and 

standardization are used. If  is an original value, the standardized value  is determined based 

on the mean and standard deviation values of each feature (linearly scale to mean 0 and variance 

1) [180].

 (6-1) 

In this thesis, we focus on supervised learning methods that create a predictor model based on 

known input objects (typically a vector) and known responses to the input data. Then, this model 

generates predictions for the response to a new window of data. The best extracted classification 

model can run through cloud computing to provide remote online detection of abnormal breathing 

patterns. The Windows Azure is an example of public cloud solution among different other 

providers such as Amazon Web Service, Google App Engine, Cloud Foundry, Engine Yard, 
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Heroku, Mendix and OpenShift. Windows Azure is provided in the model of pay-per-use by 

Microsoft [181] which has main advantages such as the support of different programming 

languages, excessive documentation (MSDN Library) and availability of new learning courses. 

These advantages encourage us to choose Windows Azure as our cloud-computing environment.  

66.2.1 Hierarchical Support Vector Machine (HSVM)  

The main preprocessing steps for breath patterns classification are calibration, filtering and 

resampling explained in Chapter 3. The data segmentation is a requirement for feature/knowledge 

extraction. The window size is an important factor in data analysis and classification performance 

and should be large enough to contain a span of target event and avoid overlapping two unrelated 

data. Another main aspect is the percentage of adjacent windows overlap. There are different 

segmentation techniques including Fixed-size Non-overlapping Sliding Window (FNSW), Fixed-

size Overlapping Sliding Window (FOSW), Top-Down (ToD), Bottom-UP (BUp), Sliding 

Window and Bottom-up (SWAB), and Variable-size Sliding Window (VSW) [182]. In this 

section, we make use of FOSW with window size and overlap values equal to 10sec and 0.8, 

respectively. Once the data are segmented, they must be labeled based on the different classes and 

then a hierarchical tree structure is built for modeling the classification problem. At each level of 

the tree, a SVM classifier is used based on the extracted features and data are separated into one 

of the branches. Once we reach a leaf node, a final classification is made.  

6.2.1.1 Feature Extraction 

Features can be thought of as statistically unique elements of the sensor data, which are used to 

differentiate diverse classes or states. In the proposed system, classes are the different respiration 

patterns inferred from various types of breath disorders such as normal, Bradypnea, Tachypnea, 

Kaussmal and two types of constraint breathing, such as Cheyn-stokes and Biot’s respiration 

patterns. Features such as Energy ( ), Mean, Maximum ( ), Standard Deviation ( ), Inter-

axes Correlation ( ) and the number of local maxima ( ) are calculated on three axes  

of the accelerometer and the magnitude of them . The features are listed 

in Table 6-1. Here  corresponds to the acceleration signal, and  is the number of samples. 

Besides, we extract the Approximate Entropy (ApEn) from the accelerometer signals as one of the 
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main features in our classifier explained in the next subsection. Indeed, there are a vast number of 

diverse features providing freedom in selection best suit for each application.  

66.2.1.1.1 Approximate Entropy (ApEn)  

ApEn is a technique introduced by Pincus [183] to quantify the regularity/irregularity of a signal. 

It has been applied to describe changes in physical activity measures as well as other movement 

tasks [184]. ApEn has two user-specified parameters: , a positive integer, indicates the length of 

compared window, and  is the tolerance range. It is worth mentioning that, although  and  are 

critical in determining the outcome of ApEn, there is no established consensus for choosing these 

parameters in short datasets, especially for biological data [184]. In our experiments we set  and 

 to 5 and 0.15  respectively.  

For a  sample time series  , given , form vector sequences  through  

as follows: 

 (6-2) 

For each , let  be times the number of vectors  within r of  

which means [185]:  

 (6-3) 

 (6-4) 

ApEn is obtained from Eq. (6-5) as follow [183]: 

 (6-5) 

 (6-6) 

The ApEn calculation returns a nonnegative number where higher value shows irregularity of the 

signal and more regularity resulted from the lower ApEn. Note that ApEn can be used even for 

small data samples in real time, which makes it suitable for our cloud-based monitoring platform. 
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66.2.1.2 Feature Selection 

The problem of reducing the dimension of the features (an optimal subset of q features out of the 

extracted set of P features) in order to improve performance and most likely accuracy is called 

feature selection. In [186] the feature selection algorithms are categorized into three ways i.e. 

complete, heuristic and random. Complete or exhaustive category includes algorithms which 

examine all combinations of feature subset and the order of search space is ), where P is the 

number of features. However, as discussed in [187] a complete search can be non-exhaustive 

without jeopardizing the chances of finding the optimal subset such as Branch & Bound algorithm.

Table 6-1: The features for HSVM classification 

Features  Description 

Mean  , where  corresponds to the samples,  

Standard 

Deviation 

 
, where  corresponds to the samples,  

Inter-axis 

Correlation 

  

where  and  are samples from two axes,  

Energy  , where  corresponding to the samples,  

Approximate 

Entropy 

 

n is the number of samples in time series ,  is the tolerance range and  

is the length of compared window and  is the correlation integral [185] 

Maximum  Max (  The maximum value of  in window size w. 
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In the heuristic techniques, the selection is directed under certain guideline and optimal subset may 

not be achieved. However, the search space is smaller and faster than complete methods. In random 

category, there is no predefined way to select feature candidate, and features are picked at random 

e.g. based on a probabilistic approach. In each random generation procedure, some input 

parameters should be carefully assigned for achieving good results [187]. In this section, a heuristic 

feature selection technique is used which performs an exhaustive search on all pair of extracted 

features resulted in a complexity of ).  

The proposed tree-structured model is shown in Figure 6-1.  represents the  group and  is 

the  feature of the branch. The best selected pair of features are brought in “Experimental 

Result” section. First, the data are automatically separated into  and  groups, employing the 

assigned labels in “Labelling” section shown in Figure 6-2 and then are passed in to the second 

and third levels. For classifying between different groups in each branch all pairwise of extracted 

features are analyzed in terms of accuracy and then the best pair is chosen for the specific branch. 

This procedure is repeated for each branch, separately. Finally, the breathing data are categorized 

into six classes based on the selected features.  

66.2.1.3 HSVM Classification 

The key advantage of SVM classifier is the ability of minimizing both structural and empirical 

risks [188]. These properties make SVM to be a strong generalization for new data classification 

even in case of limited training dataset. Therefore, in this chapter, the classification procedure on 

breathing disorders starts by evaluating linear and non-linear SVM classifiers. SVM is based on 

constructing one or a set of hyperplanes in a high dimensional space. It constructs linear functions 

from a set of labeled training dataset. The linear separator is constructed considering maximum 

distance from the hyperplane to a fraction of the data points, named support vectors [189] shown 

in Figure 6-2. SVM is designed for binary-classification problems with  training samples. Each 

sample is indicated by  where  For a given dataset , , 

 , ,   is either 1 or −1, indicating the class to which  belongs, and  is 

a d-dimensional real vector. The notation  refers to the Cartesian product of  copies of , 

which is a d-dimensional vector space over the field of the real numbers. The SVM classifier is 

formulated as Eq. (6-7). 



Respiration Disorders Classification 100 

 
Figure 6-1: Tree-like structure of proposed hierarchical SVM classifier 

 

Figure 6-2: Respiration disorders classification procedure using different kernel functions in 
HSVM classifier. 
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 (6-7) 

The optimization problem is a convex quadratic optimization with quadratic function subject to 

linear constraints, which is transformed into the Lagrangian dual with the Karush-Kuhn-Tucker 

(KKT) conditions. Lagrange multiplier  is linked with every inequality of the linear constrains 

in the primal problem. A kernel function  gives the inner product value 

of  and  in the feature space and  presents the number of the support vectors. Three types 

of kernels are evaluated in this chapter: 

• Linear kernel:  

• Polynomial kernel with degree 3:    

• Radial basis function (RBF) kernel:  

The performance of SVM depends on the choice of the kernel function to transform data from 

input space to a higher dimensional feature space. There are no defined rules for choosing the 

kernel type, except satisfactory performance by simulation study [189]. Figure 6-2 depicts the 

whole system flow of breathing disorders recognition architecture. 

66.2.2 Robust classification based on Informative Features 

In this section, new sets of time domain features are introduced to enhance the robustness of the 

classifier model. These informative features are obtained based on the respiration parameters 

explored from acceleration signal and individually evaluated in Chapters 4 and 5 on different 

groups of subjects. In addition, the number of breathing patterns (classes) are augmented from 6 

to 9 in order to provide a more comprehensive model. An extensive evaluation is provided on six 

well-known classifiers as described in the following sections.  

After preprocessing of the raw readouts, the stream of sensory data requires segmentation in order 

to facilitate effective feature extraction. We apply two window-based segmentation methods 

FNSW and FOSW to investigate the effectiveness of these techniques with respect to the window 

length and the percentage of adjacent windows overlap in obtaining the highest event classification 

accuracy. These techniques provide low complex implementations and reasonable performance, 

which will be discussed in details later.  
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66.2.2.1 Feature Extraction 

The choice of features with high information content for classification purpose is a fundamental 

phase and a highly problem-dependent task. Therefore, we make use of features, which are 

evaluated, individually on different groups of subjects. The features are extracted from each 

separate window of data and then used as the inputs to the classifiers. The proposed features are 

simple, easy to calculate and will interpret the respiration parameters, properly. These features 

include Mean, Standard Deviation ( ), Respiration Rate ( ;  is the number of local 

maxima and  represents the window size in second), average respiratory time parameters: 

inspiration time ( ) and expiration time ( ), average tilt angles (roll and pitch), mean tidal volume 

variability ( ; with ), average accelerometer-based breath volume ( ; with ), 

mean phase shift ( ) and Symbolic Aggregate approXimation ( ; with   and ) of 

the data. We choose mean and standard deviation, since they are widely used in different 

classification problems [190]-[192] and carry discrimination potential and ease of interpretation in 

the acceleration domain. Besides, the standard deviation, provide insights into the intensity and 

magnitude of the respiration function. The rest of features are validated with medical references in 

Chapters 4 and 5. Likewise, six of the most extensively and successfully used machine learning 

techniques are considered for classification. 

6.2.2.2 Feature Selection 

Generally, feature selection is used to reduce redundancy among features, as well as to minimize 

dimensionality. The fundamental hypothesis in feature selection is that good feature sets include 

features which are highly correlated with the class, but uncorrelated with each other [193]. Indeed, 

by recognizing the most relevant features extracted from all accelerometer axes for our 

classification training, those aspects of the data, which are most useful for analysis and future 

prediction, are considered. The feature selection techniques that select features regardless of the 

model are called filter methods. The wrapper method, in contrast, evaluates subsets of features 

based on the target learning algorithm. In this section, we use the Correlation-based Feature 

Selection (CFS), which is categorized as a filter technique. The results indicate that, in general, 

CFS can outperform the wrapper on small datasets [193], therefore, it is an appropriate feature 

selection for our classification. Furthermore, CFS as a filter, does not suffer from the high 
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computational cost associated with repeatedly invoking the learning algorithm. The CFS algorithm 

attempts to maximize the following objective in its heuristic search strategy [193]. 

 (6-8) 

 

Where  is the heuristic merit of feature subset  with  features,  is the average feature-class 

correlation and  is the mean feature-feature inter-correlation. Here, CFS starts from an empty 

set of features and uses a forward best first search. The search is considered completed once five 

consecutive fully expanded subsets resulted in no improvement over the current best subset. 

66.2.2.3 Classification Algorithms 

In this section, we are dealing with the supervised methods, which use the class label when 

discretizing features. Thus, after data segmentation and feature selection, the training set is 

labelled, determining the corresponding classes. Here, we aim to provide a comprehensive 

evaluation over different classification algorithms including Decision Tree (DT), Decision Tree 

Bagging (DTB), Linear Discriminant Analysis (LDA), k-Nearest Neighbors (kNN), Support 

Vector Machines (SVM) and Multilayer Artificial Neural Networks (ANN). 

DT classifies the instances by sorting them down the tree from the root to some leaf nodes, which 

indicate the classification results of an instance. Indeed, the internal nodes contain attribute test 

conditions to separate the instances that have different characteristics. Among different 

methodologies to combine classification models, ensembles of decision trees are described as the 

most accepted approaches [194]. DTB builds an ensemble of classification trees (in our tests 50) 

and uses bagging to combine the predictions. This family of classifiers are simple and very easy 

to interpret. The principle idea of LDA is to find a linear transformation that best discriminates 

among multiple classes. The classification is then performed in the transformed space based on 

metric such as Euclidean distance [195]. k-Nearest Neighbors algorithms have been used since 

1970 in various applications such as statistical prediction and pattern recognition. It is a 

straightforward classifier, where instances are classified based on the “k” closest training examples 

in the feature space. This classifier stores all cases and classify new cases based on the similarity 

measurement [196].  is set to 10 in our experiments. SVM is based on finding optimal separating 
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decision hyperplanes between classes with the maximum margin between patterns of each class. 

The main advantage of this classifier as mentioned before is the ability of minimizing both 

structural and empirical risks. These properties make SVM to be a strong generalization for new 

data classification even in case of limited training dataset. In this section, we make use of SVM 

with Error Correcting Output Codes (ECOC) with One-Versus-One (OVO) coding design in our 

multi-class classification. The idea of using ECOC [197] is to break the multiclass task into several 

binary classification tasks and then combining the results of these classifiers to obtain the final 

outcome. Since SVM is very popular in binary classification, we choose to use ECOC for 

combining  multiple binary SVMs with linear kernel function [198] where  refers to 

the number of classes and is nine in the proposed classification.  

Artificial neural networks provide a robust tool which helps people analyze, model and make sense 

of big clinical data across a wide range of medical applications [199]. It has proven itself to be 

widely used for diagnosis of diseases such as acute nephritis and heart problems. NN is inspired 

from simulation of biological nervous system and is represented as a set of neurons and 

connections between them [199]. The basic neural network architecture has three layers including

input, hidden and output layers. The data is propagated through successive layers, and the final 

result is available at the output layer. Multilayer perceptron neural network (MLP) uses more than 

one hidden layer in its structure which might help in solving complex problems where a single 

hidden layer cannot provide an acceptable result [200]. We have used 20 hidden layers in our 

experimental results. In the next section, we compare the results of all described classifiers based 

on the proposed feature extraction and selection for distinguishing among nine different breathing 

Figure 6-3: Respiration disorders classification procedures
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patterns. Furthermore, our classification problem is also modeled as a binary classification for 

detecting normal and abnormal breathing patterns. The experimental results of the proposed binary 

model is also provided in section 6.3.3.4. Figure 6-3 depicts the whole system flow of breathing 

disorders recognition. In the next section, an innovative classification model is introduced by 

considering the proposed informative features and binary classifiers to optimize the accuracy rates 

and worst-case sensitivity of our multi-class problem, simultaneously.  

66.2.3 Evolutionary Hierarchical Model for Breathing Disorders 
Classification  

In this section, an evolutionary hierarchical classification model is proposed, which not only 

maximizes the accuracy of the classification, but also tries to optimize the classification rate for 

each class. In general, the second objective is not usually discussed in recognition systems, but is 

considered here to obtain high precision in each class in real problems. To solve this machine-

learning problem, we use a Pareto-based multi-objective optimization methodology based on 

Genetic Evolutionary Algorithm. One of the potential benefits of Pareto-based learning approach 

is that using multiobjective techniques may help the learning algorithm to less likely get trapped 

at local optima, which results in improving the accuracy of the model [201]. 

6.2.3.1 Hierarchical Binary Tree Structure 

The proposed top-down hierarchical structure is constructed based on a binary tree where each 

inter nodes represents a binary classifier and leaf nodes are the breathing patterns (classes). The 

tree is built from top to bottom by starting with a binary classifier with two groups of  and  

classes, , where , , and and  in our problem. 

So,  and  denotes the root and leaf, correspondingly, and the number of classifiers are . 

In particular, binary tree-based hierarchical multi-class classifications have been widely accepted 

due to their high accuracy and low computational complexity. The total number of trees is obtained 

from Eq. (6-9), where  denotes a set of classifiers with  number of methods. Of course, such 

a complete search is impossible due to millions of feasible binary trees (>3,000,000 in our case).  

Consequently, there is a great interest in evolutionary algorithm that attempts to discover near-

optimal solutions within a reasonable time while effectively sampling large search spaces.  
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 (6-9) 

Here, we choose multiobjective Genetic Algorithm (GA) as an optimization technique. It is a 

variant of NSGA-II [202] that uses a controlled elitist genetic algorithm. A controlled elitist GA 

takes into account both individuals with better fitness value and those can help increase the 

diversity of the population even if they have a lower fitness value. As the first step, a chromosome 

is defined with two layers as . The first layer,

, is the sub-chromosome representing the terminal node to which 

the point  is attached. It is an integer number within the interval . The 

second layer  represents the type of classifier 

in each node where ; so that it is an integer within 

interval . There are two conditions to determine whether the chromosome is a feasible 

candidate as follows: 

 (6-10) 

 (6-11) 

Where: 

 (6-12) 

The first condition in Eq. (6-10) insures that the graph is a binary tree and each node has at most 

two children. The second condition in Eq. (6-11) checks if there exists a place  to add 

either a class or classifier in the next step.  returns the total number of places 

where  is equal to . Algorithm 6-1 presents the binary tree generation procedure and the 

conditions. The algorithm starts with the first node  in the root of the tree shown in the first line.  

 is an array to store the available places in the tree in each iteration. In other words, 

  in the iteration. Therefore, in line 3, the second condition in 

Eq. (6-11) is validated. For example, if  (  in line 13), then it is corresponding 

to the left child as a leaf (line 14) and consequently node  will be the root of right sub tree shown 

in line 16 of the Algorithm 6-1. If ,  node  and node  are added as the roots of 

left and right sub trees in lines 9-12. And in case of  the corresponding class labels 
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are added as the left and right leaves in lines 18 and 19. Otherwise,  and

 indicates that this chromosome is not a valid tree to be considered as out 

classification model. In addition, in line 5, the type of classifier is determined based on the 

 values.  

Algorithm 6-1 

 { 
// Inputs:    Output:  /*if the chromosome is a valid binary tree*/ 

 
1.  /*Initialization*/ 
2.    
3.  /*Checking the second condition in Eq. (6-11)*/ 
4.              ; 
5. /*Determining the classifiers model for node */
6.               
7.               
8.               
9.                         
10.                         
11.                         
12.                         
13.               
14.                          
15.                         
16.                         
17.               
18.                          
19.                          
20.               /*The first condition in Eq. (6-10) */ 
21.                        ; 
22.                         
23.            
24.               
25.              }} 
26.    
27.     
28. } /*The chromosome is invalid */ 
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This procedure is repeated downward for each node based on the explained conditions. Figure 6-4

depicts an example of the proposed hierarchical binary tree structure with a sample chromosome.  

In this section, the Fixed-size Overlapping Sliding Window (FOSW) is used where the window 

and overlap values are set according to the best results of the section 6.2.2. The features are also 

based on the informative features derived from the accelerometer sensors in section 6.2.2.1. The 

CFS feature extraction algorithm is applied where six binary classifiers, DT, NN, kNN, DA, Naïve 

Bayes (NB) and SVM are used in each node of the tree. So, 

and is equal to 6 in our experiments. 

Figure 6-4: Example of the chromosome and corresponding hierarchical tree-structured 
classification 
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66.2.3.2 Fitness function 

In this section, we define a new model to maximize the accuracy of the classification as well as 

obtain an acceptable level of accuracy for each class. The accuracy rate is used as the performance 

measure, which is defined as the proportion of correct classifications with respect to the total 

classified instances as Eq. (6-14) [152]. Each row in confusion matrix  indicates the instances 

in a true class, while each column represents the instances in a predicted class. We also consider 

the minimum of the sensitivities of all classes, i.e. the lowest percentage of trials correctly 

predicted for each class with respect to the total number of trials in the corresponding class. These 

two objectives, after certain levels, are usually in conflict in the optimization process. Here, the 

sensitivity for multi-class classification is defined in Eq. (6-15): 

 (6-13) 

 (6-14) 

 (6-15)     

is the number of patterns correctly predicted to be in class  with respect to the total 

number of patterns in class  (sensitivity for class ). From the above equation, we define the 

sensitivity of the classifier as the minimum value of the sensitivities for each class as follows: 

 (6-16) 

Therefore, the main objective is summarized in Eq. (6-17): 

 (6-17) 

The 2-D measure associated with a given classifier is considered in this study. It is important 

to note that  and  are not cooperative in general. At the beginning of a learning process, accuracy 

and sensitivity could be cooperative, but after a certain level, these objectives become competitive 

while an increase in one objective tends to cause a decrease in the other one. This property have 
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been also proved in [201] considering 17 classification benchmark problems. Since we have equal 

number of trials for training and testing in different classes, we consider the percentage rates for 

both accuracy and sensitivity. The example in Figure 6-5 shows that  and  are conflicting 

objectives in general. For that balanced two-class example, in the left graph, the linear classifier 

obtains , and . If we want to improve the sensitivity, the decision boundary should be 

moved to separate the green star class from the circle one resulted in reduction of the accuracy. 

We aim to find the hierarchical tree-structured model, which simultaneously optimizes two 

objectives: the global performance in the whole dataset and the performance in each class. 

66.2.3.3 Genetic operators 

The basic genetic operators in GA are selection, crossover, and mutation. We used the gamultiobj()

function in MATLAB with Tournament selection, Adaptive Feasible mutation and Two points 

crossover with their default settings. The population size is set to 30 with 50 generations.  

To verify the effectiveness of our proposed classification methodologies, we have considered two 

groups of dataset illustrated in the next subsection. 

6.3 Experimental Results  
This section aims to quantitatively analyze the capabilities of the proposed classification models 

on different groups of subjects.  

Figure 6-5: Accuracy and minimum sensitivity as conflicting objectives 
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66.3.1 Test Setup 

The described three classification techniques are evaluated on two different groups. The first group 

includes 9 healthy volunteers, 3 men and 6 women aged 24 to 48 with (Mean ± SD), 31 ± 7.26. 

The experimental trials lasted for about 45 minutes per subject. We asked the subjects to perform 

normal, Bradypnea, Tachypnea, and Cheyn-stokes patterns, each for 2 minutes (6000 samples) 

and the other two types for 1 minute with a 3-minute rest interval. For simulating apnea in Cheyn-

stokes and Biot’s breathing exercises, we requested the participants to pause breathing for at least 

10 seconds. In the trial sessions, the subjects were in the lying position. The second group consists 

of 10 healthy volunteers, 5 males and 5 females aged 27 to 48 with (Mean ± SD) 34.80 ± 6.89. 

The tests lasted for about 35 minutes per subject. The subjects are asked to perform nine introduced 

breathing patterns, each for 1 minute in sitting position (torso at about 90 ̊ angle to the floor). For

simulating apnea in Cheyn-stokes, Biot's and OSA breathing exercises, the subjects paused their 

breathing for at least 10 sec. They are also asked to prolong their inspiration and expiration during 

Apneustic maneuver for at least 5 sec. Finally, for Sighing pattern, they perform normal breathing, 

which is followed by deep periodic of inspiration every 3-7 sec. Figure 6-6 shows 30-second 

samples of eight normalized respiration patterns derived from an accelerometer sensor. OSA 

breathing pattern is similar to Biot’s breathing pattern; however, considering two accelerometer 

Figure 6-6: (a) Normal, (b) Bradypnea, (c) Tachypnea, (d) Kussmaul, (e) Apneustic, (f) 
Biot’s, (g) Sighing and (h) Cheyn-stokes breathing patterns from accelerometer sensor 

mounted on the subject’s chest
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sensors, it has different phase shift between chest and abdomen compared to Biot’s breathing. The 

SPR-BTA spirometer is also used in all tests to make sure that the subjects were not over 

emphasizing the breathing movements.  

In the first classification algorithm presented in section 6.2.1, we provide experimental results on 

12-bit resolution data derived from one SensorTag with 3-axis KXTJ9 accelerometer sensor. The 

sensor was mounted on the subject’s chest in the middle of sternum and secured by a soft and 

elastic strap which is easy to attach and comfortable to wear. Two LIS3DH 3-axis accelerometers 

with 12-bit resolution are also worn by the second group to obtain the performance results on 

classification techniques proposed in section 6.2.2. The first sensor (Acc1) is mounted on the 

subject’s chest in the middle of sternum region and the second accelerometer (Acc2) sensor is 

attached on the subjects’ umbilical region.  In our tests, the sensors are sampling with 50Hz rate.    

66.3.2 Performance Evaluation of HSVM Classification 

We have evaluated the performance of the proposed classification while it is individualized to each

subject (case 1) as well as considering all subjects’ data (case 2). The average volume of air that 

was inhaled/exhaled per breath for each subject is also calculated with spirometer and listed in 

Table 6-2. It confirms that the subjects were not over emphasizing the breathing movements. 

 

 
Table 6-2: The average volume of air (liter) inhaled/exhaled per breath for each subject 

Subject ID Normal Bradypnea Tachypnea Cheyn-stokes Kussmaul Biot’s

1 0.58±0.0036 0.72±0.0249 1.22±9.58E-04 2.78±0.412 3.20±0.003 2.78±0.003 

2 0.67±0.0088 1.15±9.33E-04 0.53±6.67E-05 1.32±0.266 2.22±0.0048 2.25±0.0048 

3 0.54±0.0015 1.54±0.0021 0.53±6.25E-04 0.88±0.3938 1.34±0.0044 1.70±0.0044 

4 0.64±3.00E-04 3.12±0.0171 0.41±0.0014 1.38±0.1649 2.85±0.0033 3.50±0.0033 

5 0.80±0.0023 0.93±0.0013 1.51±0.0065 1.27±0.2107 1.83±0.0028 1.36±0.0028 

6 0.72±0.0016 1.50±0.0017 0.46±1.00E-04 1.00±0.2632 1.22±0.0013 1.03±0.0013 

7 0.40±2.33E-04 0.71±0.0016 0.65±4.33E-04 1.02±0.0544 1.31±0.0018 1.59±0.0018 

8 0.64±0.0025 1.71±0.0305 0.58±0.0028 1.15±0.2871 1.42±2.33E-04 1.78±2.33E-04 

9 0.59±0.0019 0.79±0.0032 0.83±0.0043 0.93±0.078 2.39±0.0036 2.51±0.0036 
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Table 6-3: Five samples of pairwise feature combinations and training accuracies for different 
branches of the proposed classification for case 1 with RBF kernel function 

Branch #1  Branch #2  Branch #3  

            

  98    100    100  

  96   ( ) 100    100  

  96    100    100  

  94    98  ( ) ( ) 100  

94  97 95

Branch #4 Branch #5

       

  100  SD   100 

  100    100 

100  
( ) 100

 ( ) 100    97 

  92   94 

,  and  correspond to , Z and after removing the DC levels, ,  and  are the 
normalized values of the accelerometer data, P(.) is the number of local maxima derived from corresponding signal. 

 

Table 6-4: The best selected pairs of features and training accuracies for different branches of 
the proposed classification in case 2 with RBF kernel function

Branch #1  Branch #2  Branch #3  

            

  92    94    98  

Branch #4  Branch #5 

       

  99    99 
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Table 6-5: Selected features and training accuracies for different branches of the proposed classification 
with different kernel functions for both cases 

Case 1 

Best 
Features 

Branch #1  Branch #2  Branch #3 

            

Linear    93    97    100 

Polynomial    97  (Y) 100    100 

Best 
Features 

 Branch #4  Branch #5 

   (%)     

Linear   ( ) 100    100 

Polynomial    100    100 

Case 2 

Best 
Features 

Branch #1  Branch #2  Branch #3 

            

Linear  ( )  81   86    94 

Polynomial  ( )  89   90    95 

Best 
Features 

 Branch #4  Branch #5 

   (%)     

Linear   ( ) 97    99 

Polynomial    97    99 
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As expected, the standard deviation in Cheyn-stokes pattern is more than other types, meaning that 

subjects were able to correctly change their air volumes in this exercise. Five samples of extracted 

pairs of features and accuracies in training phase for an individual subject are listed in Table 6-3. 

The highlighted line corresponds to the best selected features. Table 6-4 also provides the best 

extracted features in terms of training accuracy while the system is trained with all subjects’ data. 

All simulations are carried out using the Radial Basis kernel Function (RBF) with . The 

columns labelled  in Table 6-3, Table 6-4, and Table 6-5 denote the training accuracy 

 

Figure 6-7: Selected features for (a) The first branch (b) Second branch, (c) Third branch, (d) 
Forth branch (e) and fifth branch of our classification structure with RBF kernel function 

considering all subjects’ data. 
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calculated by our HSVM classifier for each branch. We use linear and non-linear SVM classifiers 

on each level of our HSVM structure while training the system with randomly chosen 70% of the 

data (hold-out cross validation). The performance evaluation is done by testing the remaining 30% 

of the data. Figure 6-7 (a) shows the energy along axes  of the accelerometer versus the cross-

correlation along dimensions  and . The ApEn is applied on the normalized data while energy 

performs on ,  and  dimensions after removing DC levels. 

Figure 6-7 shows the nonlinear trends plot for the different features in all branches of our 

classification structure while the system was trained with all subjects’ data (case 2). There are 

totally 168 and 42 training trials for  and  in case 1, correspondingly. The numbers of trials 

for training all subjects’ data are 1512 and 378, respectively. The processing window for testing 

data was experimentally selected to be 10sec, which is shifted in increments of 2sec (80% overlap). 

The average classification accuracy of 94.52% is obtained with RBF kernel function for 9 subjects 

while the proposed classification is individualized to every subject. In this case, the system is 

effectively tuned to every individual and the subjects can use the system either at home or during 

periodic visits to specialist or a physician. The classification performance of 81.29% is also 

attained when only a single system is trained with using all subjects’ data. As performance of SVM 

depends on the choice of the kernel function, we also evaluate the linear and polynomial kernel 

functions. Table 6-5 shows the selected features and accuracy for other two types of kernel 

functions in both cases 1 and 2. The classification of the dataset using the selected features in case 

1 gives average accuracies of 94.52%, 93.15% and 84.93% for RBF, polynomial and linear kernel 

functions, respectively. In addition, we have also executed 10-fold cross validation. In this case, 

the available dataset is randomly split into 10 folds, where, in turn, 9 subsets are used for the 

training phase and the remaining as a validation set. The results from evaluating different kernel 

functions with cross validation are 95.89%, 86.19% and 84.93% for RBF, polynomial and linear 

kernel functions, respectively. These results demonstrate that there is no over-fitting in the final 

model. In case 2, the accuracy rates are obtained 81.29%, 78.12% and 69.95% for RBF, polynomial 

and linear kernel functions, respectively. Therefore, we conclude that for our system (in both cases) 

the radial basis function results in the best accuracy compared to the other methods. 
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66.3.2.1 Normal and Impaired Respirations Classification 

In another aspect, our classification problem could be modeled as a binary classification for 

detecting healthy (positive) or unhealthy (negative) subjects. In this case, , , ,  stand 

for true positive, false positive, false negative and true negative, correspondingly. The performance 

of the classifier was quantified based on its sensitivity, specificity and the overall accuracy. It is 

worth mentioning that sensitivity is also called positive class accuracy or true positive rate, while 

specificity called negative class accuracy or true negative rate. Another parameter often used is the 

geometric mean of sensitivity and specificity (G-mean) which is defined as the square root of the 

product between sensitivity and specificity as Eq. (6-21). The average values of sensitivity, 

specificity and G-mean of SVM classifications for 9 subjects with different kernel functions are 

shown in Table 6-6. The values of , , ,  are presented according to the logged data of 

normal and impaired breaths, e.g. there are 18 and 72 testing trials for each subject’s normal and 

impaired breathing patterns, respectively. 

 (6-18) 

 (6-19) 

 (6-20) 

Table 6-6: Performance metrics of the classification for case 1 (average of 9 subjects) and case 2
Case 1 

Evaluation 
parameters           

 

RBF 18 72 0 0 1 1 1 1 

Polynomial  18  67.97  0  4.03  1  0.94 0.95 0.97 

Linear  16.28  72  1.72  0  0.90  1 0.98 0.95 

Case 2 
Evaluation 
parameters           

RBF  137   617   25   31   0.85   0.95   0.93   0.90 

Polynomial  131   611   31   37   0.81   0.94   0.92   0.87 

Linear  120   596   42   52   0.74   0.92   0.88   0.83 
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 (6-21) 

Therefore, the best classification parameters are achieved for distinguishing between normal and 

impaired respiration patterns while using RBF kernel function.  

66.3.3  Performance Evaluation of Recognition System based on 
Informative Features 

The evaluation of the breath problems classification is performed first through a 10-fold random-

partitioning cross-validation process applied across all subjects and breathing patterns. This 

process is repeated 10 times for each method to ensure the statistical robustness. Then, a Leave-

One-Subject-Out cross validation is evaluated in which a single subject is iteratively left out from 

the training dataset and considered in the test set. The procedure is then repeated for all 10 subject. 

In fact, as summarized in [203] and according to [204] Leave-One-Subject-Out is the best 

technique for risk estimation, whereas 10-fold is the most accurate approach for model selection.  

The effects of the segmentation, sensor placement, number of sensors as well as different sampling 

rates on the classification performance are discussed in the next sections. 

6.3.3.1 Data Segmentation Analysis 

In this section, we analyze the effects of the windowing operation on the breath disorders 

classification process. The results for different window sizes of two segmentation techniques, i.e.  

FNSW and FOSW, for each specific classifier are depicted in Figure 6-8. These results are 

obtained based on two accelerometer sensors and all features. We have swept the window size 

from 5 to 15 sec while five different overlap values including 0.10, 0.25, 0.50, 0.75 and 0.90 are 

considered. The best performance accuracy of FNSW and FOSW with all overlap values are 

highlighted in Figure 6-8 (a)-(f). For example, Figure 6-8 (a) indicates that the best accuracy 

reaches 91% with DTB classifier and non-overlap fixed size windowing method. Obviously, the 

outermost layers in Figure 6-8, indicate high performance accuracy. It can be observed that SVM 

obtains the maximum accuracy of 97.50% with the window size 13 sec and overlap 0.90  
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Figure 6-8: Accuracy rates with two sensors and all features for (a) FNSW segmentation, 
(b)(c)(d)(e)(f) FOSW with 0.10, 0.25, 0.50, 0.75 and 0.90 overlap values, respectively 

 Figure 6-9: (a)The classification accuracy for six methods with overlap = 0.9 and different 
window sizes considering three scenarios with all features and (b) after CFS feature selection 

(c) the best accuracy rates with all features and with FS for three scenarios 
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(see Figure 6-8 (f)). The accuracy decreases by 6.93% considering Leave-One-Subject-Out 

evaluation.  

66.3.3.2 Discussions on the Number of Sensors, Sensor Placement and 
Feature Selection 

The effect of the number of sensors on accuracy rate is shown in  Figure 6-9. The DTB and SVM 

models are shown to be quite robust considering their moderate performance drop by reducing the 

number of sensors. DTB proves to be the most accurate model in case of using a single 

accelerometer. The best accuracies of 92.77% and 94.49% are achieved for sensors on chest (Acc1) 

and abdomen (Acc2) with all features (Figure 6-9 (a), (c)), respectively. These rates drop by 7.19% 

and 6.83% with Leave-One-Subject-Out cross validation. The assessments are computed based on 

FOSW segmentation with overlap value 0.9 and widow size 14 sec and 15 sec for Acc1 and Acc2. 

An improvement is observed for the case of using both sensors with SVM classifier by 

approximately 4%. Therefore, decreasing the number of sensors represents a reduction of 

classification accuracy. It is also worth mentioning that using the accelerometer on the abdomen 

umbilical region overcomes the performance obtained from the sensor on the middle of sternum 

region. This is due to the movement mechanism of upper rib cage (RC) and lower rib 

cage/abdomen (AB) during respiration function [121]. Based on [121] the lower six ribs have a 

greater ability to move independently compared to the upper six ribs. Due to this fact, the breathing 

signals collected from Acc2 resulted in better classification accuracy compared to Acc1.  

The impacts of CFS feature selection is also plotted in Figure 6-9 (b) and (c). In order to avoid 

overoptimistic performance evaluation in the machine learning models, the feature selection has 

been applied only on training dataset. After feature selection, the number of features for the best 

accuracy cases are reduced from 55 to 19 for two sensors and 26 to 14 for a single sensor either on 

the chest or abdomen locations (listed in Table 6-7). The results depicted in Figure 6-9 (a) and (b) 

are achieved with the same segmentation methods, window sizes and overlap values. At first 

glance, the performance tendency is decreased in most cases after feature selection; however, using 

kNN classifier with two sensors or kNN/DT with one sensor on abdomen, the situation is quite 

opposite. The best results after feature selection are obtained 92.61%, 93.67% with DTB and 

97.37% with SVM, using Acc1, Acc2 and both sensors, respectively. Therefore, despite a small 

drop in accuracy (less than 1%), we could reduce the redundancy among features by 65.45% for 
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two sensors and 46.15% for a single sensor conditions. Figure 6-9 (c) is devised as a good means 

to visually inspect the performance trade-off in applying feature selection. Figure 6-10 summarizes 

the achieved classification and misclassification rates for each class. These results are for the best 

classifiers in terms of overall accuracies with all features and after feature selection. The 

classification parameters are computed as follows: 

   

(6-22) 

  

(6-23) 

Where, the is the proportion of predicted class  which actually belongs 

to  class. And  indicates the false predicted portions of class  into 

class . Figure 6-10 (a)-(c) identify the misclassification rates with all features and after feature 

selection as well as the classification rates when a single sensor is used on the subjects’ chest. For 

example, in Figure 6-10 (a), to determine whether a respiration disorder is the OSA breathing 

pattern, the classifier misclassifies it as Sighing breathing for 5% and normal for 3.68%, resulted 

in classification rate of 91.32% shown in Figure 6-10 (c). After feature selection, in Figure 6-10 

(c) the classification rate reduces to 90.53% representing the misclassification rates of 5% and 

4.47% with Signing and normal breathing patterns plotted in Figure 6-10 (b). Therefore, the use 

of more features could be of interest to separate as much as possible the diverse classes and reduce 

the breath patterns’ confusion likelihood. Furthermore, based on the observations in Figure 6-10 

(g)-(i), in case of using two accelerometer sensors, all misclassification rates are kept below 5.5% 

which indicates a high recognition rate (> 94.5%) for each class, individually. The accuracy values 

after feature selection with Leave-One-Subject-Out cross validation are obtained 85.15%, 88.44%, 

and 89.75% with Acc1, Acc2 and both sensors, respectively. This is due to the subject-to-subject 

variation that occurs during validation of the models. 

66.3.3.3 Sampling Rate Analysis 

Another important point of discussion is how to reduce computations, storage, and energy 

consumption by means of reducing sampling rate in our online recognition system.  
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Figure 6-10: Misclassification rates for the best obtained classifiers based on 10-fold cross 

validation with (a) Acc1, (d) Acc2 and (g) two sensors with all features, Misclassification rates 
for the best obtained classifiers with (b) Acc1, (e) Acc2 and (h) two sensors with CFS feature 

selection, Classification rates for the best obtained classifiers with (c) Acc1, (f) Acc2 and (i) two 
sensors 

Table 6-7: Feature sets with two sensors and single sensor 

Feature set for a single sensor 

      SAX( ) 

    (y) ( ) SAX( ) 

               Feature set for two sensor 

    
(Acc2)     

SAX 
 

       SAX 
 

SAX
 

Indices “1” and “2” refer to Acc1 (Accelerometer on the chest of subject) and Acc2 (Accelerometer on the 
    abdomen of subject). 
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The sampling rate should be carefully chosen to guarantee a reasonable response time and battery 

life while keeping the accuracy sufficiently high. We test whether the classification problem can 

allow the sampling rate to be reduced so that we can increase energy efficiency. This would permit 

to use smaller size batteries and hence increase the comfort of the wearable system. In our 

experiment, we have swept the sampling rate (by resampling explained in Chapter 4) from 1Hz to 

50Hz for the best model obtained from either two sensors or single accelerometer on the upper 

Figure 6-11: Accuracy values for different sampling rates in applying (a) two sensors, (b) 
Acc1, and (c) Acc2 

Figure 6-12: Accuracy rates for (a) DT, (b) DTB, (c) DA, (d) kNN, (e) SVM, (f) ANN 
classifiers for all overlap values in binary classification 
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body of the subjects with all features. Figure 6-11 displays the behavior of the recognition accuracy 

as a function of the accelerometer sampling rate in all six classifiers.   

Interestingly, we found that no significant gain in accuracy is achieved for sampling rate above 4

Hz. In other word, the performance of breathing disorders classification was insensitive to a 

reduction in sampling rate from 50Hz to 4Hz for inertial sensors. Therefore, it is concluded that 

low-frequency sampling of accelerometer data can lead to classification results competitive with 

previous results with much higher sampling rates. 

66.3.3.4 Binary Classification 

In this section, the results corresponding to the evaluation of the proposed binary classification are 

presented. Six classifiers are tested in three scenarios: accelerometer on the chest (Acc1), on the 

abdomen (Acc2) and in both locations.  The best overall accuracy of 99.54% is obtained with DTB 

classifier for the case of applying two sensors with all features. As shown in Figure 6-12 (b) the 

best accuracy occurs when window size is set to 14 sec with overlap 0.9. The lowest performance 

is achieved for a window size of 14 sec, with DA classifier and overlap 0.75 depicted in Figure 

6-12 (c). Nevertheless, the DA classifier provides the second best performance of 99.48% along 

with window size 15 sec and overlap value 0.9. For the single sensor scenarios (Acc1, Acc2), the 

overall accuracy rates of 98.83% and 98.80% are obtained, correspondingly. All results are based 

Figure 6-13: The best results in terms of accuracy with all features and 10-fold cross validation (a) 
Acc1 (b) Acc2 and (c) two sensors, the best results in terms of accuracy after feature selection and 10-

fold cross validation (d) Acc1 (e) Acc2 and (f) two sensors 
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on a 10-fold cross validation process within 10 iterations. We also provide results with CFS feature 

selection summarized in Figure 6-13. The upper plots (Figure 6-13 (a), (b) and (c)) show the best 

results which are obtained in terms of accuracy with all features.  

Due to the imbalanced normal and abnormal datasets, there is no single statistic, which can 

adequately evaluate or rank the classifiers. Therefore, in this section, we adopted six evaluation 

measures to show the performance of selected model: sensitivity (Eq. (6-18)), specificity (Eq. 

(6-19)), accuracy (Eq. (6-20) ), precision, F1-score and Matthews Correlation Coefficient (MCC), 

as defined below. 

 (6-24) 

 (6-25) 

 (6-26) 

Where  is the number of true positives, i.e., proportion of actual healthy patterns, which are 

predicted as “healthy”.  is the number of true negatives, i.e., proportion of actual unhealthy 

patterns which are predicted as “unhealthy”,  (False Positive) refers to the proportion of actual 

healthy patterns which are predicted as “unhealthy”, and  (False Negative) defines as the 

proportion of actual unhealthy patterns which are predicted as “healthy”. Sensitivity is the 

probability that a test pattern will be classified as “healthy” among those healthy patterns. While 

the specificity is the fraction of those with breath problems who will have an “unhealthy” test 

result. Precision shows the proportion of predicted healthy pattern, which are actual “healthy”. The 

F1-score is a combination of precision and sensitivity measures. It has a range between , 

where one represents an optimal recognition capability, whilst zero corresponds to a system that 

is not capable of recognition at all. Finally, the MCC is a measure of how well the predicted class 

labels correlate with the actual class labels. An MCC of 1 corresponds to the perfect prediction, -

1 indicates the worst possible prediction; and an MCC of 0 corresponds to a random guess. 

We could achieve all performance parameters above 0.94 when all features are considered listed 

in Figure 6-13 (a), (b) and (c). For example, with single accelerometer sensor, the selected models 

provide the Matthews Correlation Coefficient above 0.94. Whereas for the best model with two 
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sensors and all features, the MCC is close to one (0.98). Besides, the high sensitivity and specificity 

values (> 0.98) denote that how well the achieved models predict both categories. After feature 

selection, all best models are obtained from overlap value 0.25 and DTB classifiers. Indeed, the 

classification with subset of features leads to performance degradation for the cases of using Acc1 

(Figure 6-13 (d)) and two sensors (Figure 6-13 (f)). Conversely, accelerometer on the abdomen 

(Figure 6-13 (e)) copes with the challenge of decreasing the number of features while providing 

better performance parameters compared to the results shown in Figure 6-13 (b). Furthermore, the 

F1-score values are more than 0.99 in all cases specifying optimal discrimination capabilities of 

the final classification models. It can be also concluded that, two sensors deliver a bit stronger 

discrimination accuracy by approximately 0.72% (with all features) and 0.23% (after feature 

selection) compared to a single sensor either on the chest or abdomen location. 

Table 6-9 listed the previous related studies described in Chapter 2. It is worth mentioning that, 

the accuracy rate for each study is computed with different sets of subjects as well as various 

settings and methods. Based on this assumption, the proposed accelerometer-based binary 

classification can outperform the results obtained from the prior models trained by sound, airflow, 

ECG or the combination of these signals.  

66.3.4 Performance Evaluation of the Evolutionary Hierarchical 
Model 

The experimental results are validated on the second group of subjects explained in section 6.3.1 

with 10-fold cross validation. The recognition of each test pattern starts from the root of the tree. 

At each intermediate node of the binary tree, a decision is made about the assignment of the input 

pattern into one of the two possible groups: left or right sub-tree. Each of these groups may contain 

multiple classes. This is repeated recursively downward the tree until the sample reaches a leaf 

node that represents the class in which the pattern belongs to. Figure 6-14 shows the accuracy 

versus sensitivity for all population and generations.  

The worst-case sensitivity is represented in the horizontal axis and accuracy rate  on the 

vertical axis. A point (tree) in  space dominates another if it has higher accuracy and equal 

or greater , or if it has greater  and equal or better accuracy rate. The accuracy and minimum 

sensitivity measures verify that: 
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Figure 6-14: Feasible and unfeasible regions in the 2-D (S, A) space for (a) Acc1 with all 
features, (b) Acc2 with all features, (c) Acc1 after feature selection, (d) Acc2 after feature 

selection (e), (f) , (g), (h) Pareto fronts for all cases in testing with 10-fold and 50 iterations, 
correspondingly. 
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Figure 6-15: (a)-(b) The best classification models before and after feature selection with 
two sensors, (c)-(d) feasible and unfeasible regions in the 2-D (S, A) space with two sensors 

and  all features, (e)-(f)   feasible and unfeasible regions in the 2-D (S, A) space with two 
sensors after feature selection 
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Where  is the minimum of the estimated prior probabilities and in our balanced classification 

problem with  classes is equal to .  Therefore, each tree is denoted as a point in the white region 

in Figure 6-14 (a)-(d) and the gray area is marked as the unfeasible regions. Figure 6-14 (a) and 

(b) show the results when we have one sensor on the chest and abdomen, respectively. Figure 6-14

(e)-(h) show zoomed portions of the feasible solutions. In the first scenario (Acc1) we could obtain 

three points distributed on the Pareto front. The maximum accuracy of 95.94% is obtained with 

88.89% worst-case sensitivity while the maximum  is obtained 91.43% by 93.92% accuracy rate. 

In case of using accelerometer sensor on the abdomen region (Acc2) the best point (95.12%, 

98.55%) is achieved for  which again dominates the results derived from Acc1. 

Figure 6-14 (c), (d), (g), (h) show the results after CFS feature selection. The redundancy among 

features is reduced by an average of 66.66% (from 27 to 9 features) for a single sensor condition

while the best points shifted to (87.23%, 92.06%) for Acc1 and {(89.74%, 94.77%), (88.64%, 

95.06%)} for Acc2. Thus, the system suffers by less than 5.5% for both accuracy and worst-case 

sensitivity. Therefore, the use of more features could be of interest to separate as much as possible 

the diverse classes and reduce the possibility of the breathing patterns confusions. 

The best classification models with two sensors are obtained with (97.78%, 99.25%) and (93.02%, 

95.44%) with all features and after feature selection, correspondingly (see Figure 6-15). The best 

models are depicted in Figure 6-15 (a) and (b). The mean number of features is reduced from 55 

to 14 (74.55%) by a drop of less than 4% in accuracy and 5% in worst-case sensitivity. Therefore, 

the results guarantee that each class is individually classified with more than 97% with all features 

and 93% after feature selection. Table 6-8 compares the previous results explained in section 6.3.3 

Table 6-8: Comparison between single objective and multiobjective techniques

The best results of single objective techniques (section 6.3.3) 

  Acc1+Acc2  Acc1  Acc2  

(%)  97.50%  92.77%  94.49%  

(%)  95.12%  82.38%  90.51%  

The results of multiobjective technique 

Acc1+Acc2 Acc1 Acc2

(%) 99.25 93.92 95.28 95.94 98.55

(%)  97.78  91.43 90.24 88.89  95.12  
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and the new results based on the proposed hierarchical tree-structured models. It is demonstrated 

that, in all scenarios, the introduced models can surpass the previous single objective techniques 

in terms of both accuracy and sensitivity. The results verified that, the combination of the results 

obtained by different hierarchical classifiers improves the outcomes that each provides, 

individually.  

66.4 Summary  
With the growth of sensor technology and the data analysis methods, diagnosis systems based on 

wearable sensors carry the advantages of simple setup, high reliability and accuracy as well as 

providing useful information for health-related applications. In this chapter, we exploited recent 

advances in wearable sensing and machine learning principles to provide innovative decision 

making capabilities for subjects’ breathing characteristics and to discern valuable information. 

First, we start with designing a hierarchical tree-structured SVM classifier with well-known time 

domain features and a low-cost feature selection technique. The results were evaluated for two 

cases: each individual and with all individuals’ data. Then, novel approaches were discussed for 

extracting information-rich features to enhance the machine learning model while the number of 

breathing patterns were increased, as well. The selected features feed six different classifiers and 

the best models are obtained considering extensive sets of performance metrics. Finally, a 

multiobjective approach was developed to optimize the accuracy rate as well as the worst-case 

sensitivity on our multi-class classification problem. An evolutionary algorithm was applied which 

attempts to intelligently get closer and closer to the best hierarchical model. The assessments 

indicated that, the combination of the classifiers in a hierarchical structure outperforms the results 

obtained by each classifier in a single objective problem.      
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Table 6-9: List of previous related work for binary classification of normal and abnormal breathing patterns 

Ref# Technique Detection Wireless  

This work DTB Normal/Abnormal (9 types) Yes  

     

[119] HMM Normal/Abnormal No  

[118] HMM Normal/Abnormal No  

[117] HMM Normal/Abnormal No  

[116] SVM Normal/Abnormal (2 types) No  

     

[115] NN Normal/Obstructive+Restricted No  

[114] RBF NN Normal/Obstructive breathing No  

[113] NN Normal/Restricted breathing No  

[112] NN Normal/Obstructive+Restricted+Mix No  

[111] SVM Normal/Apnea/Hypoapnea No  

     

[109] SVM Normal/Apnea No  

[108] Hierarchical Bayesian Normal/Apnea No  

[107] Regression Tree Normal/OSAS No  

[106] Quadric Discrimination (QD) Normal/Apnea(OSA or Mixed) No  
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7 A REAL-TIME BIOFEEDBACK DURING 

BREATHING THERAPY 
To complete our platform, we have added the concept of “Breathing Therapy” as an innovative 

way for helping people to learn the science of breath in a systematic way. We employ Dynamic 

Time Warping (DTW) to identify all subsequences within a continuous sensor data stream that are 

similar to a given reference pattern. An online biofeedback is provided based on the distance vector 

derived from DTW to make aware the users about their practices quality. So that, it potentially lifts 

the people's motivation up towards treatment while accurately tracks their real condition and 

improvement at low cost. The proposed technique could be further integrated in virtual reality 

frameworks, as well. 

7.1 Motivation 
Human beings naturally do not need any instruction in breathing. They breathe, the way nature 

intended them to do, however they have contracted wrong methods of walking, standing and 

sitting, which have robbed them of their birthright of natural and correct breathing [122]. Different 

researches [122] show that the physical health depends very materially upon correct breathing. In 

addition to the physical benefit derived from correct habits of breathing, people’s mental power, 
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happiness, self-control, clear-sightedness, morals, and even their spiritual growth may be increased 

by an understanding of the "Science of Breath" [122]. 

The breath exercises as well as yoga breathing maneuvers were widely used as a means of self-

regulation and restoration of mental and emotional balance in India and now are also in the area of 

modern respiratory psychophysiology [205]. Ancient systems such as Indian yoga pranayama 

which refers to the “Control of breath in specific postures” directs the curative power of air energy 

to the certain parts of human body and through this benefit the health of the mind and body [205]. 

According to [122], if one does not breathe in a sufficient quantity of air, the blood circulation 

system does not work properly, which may cause various disease symptoms. The blood of people 

who breathe improperly is of a bluish, dark colour, lacking the rich redness of pure arterial blood 

resulting in a poor complexion. In contrast, correct breathing function, and a consequent good 

blood circulation can result in a clear, bright complexion. Breathing is highly sensitive to 

physiological and psychological arousal and metabolic activity [206] and can be controlled 

voluntarily to serve as an entry point for physiological and psychological regulation [207]. 

An average people takes about 21,000 breaths per day and 10.5 million breaths per year. Breathing 

is often denoted as a bridge, connector or channel between the body and mind since there is an 

inter-relationship between emotions, mental processes, patterns of body tension and breathing 

[208]-[210]. It is also worth noting that visualizing something in the brain can encourage the body 

to make it happen. For that reason, in this section, we introduce a new technique based on wearable 

and wireless sensory system to bring cutting edge technology into breathing therapy area. Such a 

system enthuses people with a vision for quality and informs them of their progress in performing 

the prescribed breathing models. We utilize a robust algorithm to analyze the signals and provide 

rich feedback on performance accuracy in breathing therapy. Although the present cutting edge 

technologies are predominantly in the research domain, they will almost certainly enter routine 

clinical use in the near future.  

77.2 The Proposed Breathing Therapy Framework 
In this section, we have analyzed the motion of humans’ chest compartments via a motion sensor 

in different yogic breathing practices for designing our online biofeedback breathing therapy 

platform. In the proposed system, first the users are asked to perform the breathing patterns under 

supervision of specialists to record a golden standard profile (reference pattern) while the 
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accelerometer sensor is worn on their abdomen. Then, the testing patterns are compared with the 

reference automatically, once the users are performing the prescribed exercises on their own at 

home. Through visual feedback on performance accuracy of each breath, people are informed how 

well they are executing the patterns.  

The samples received from motion sensors carry noise and applying denoising algorithms is 

essential to facilitate accurate assessment of human respiration signal. Hence, both test and 

reference patterns are smoothed by a 29-point frame third order Savitzky-Golay (SG) smoothing 

filter since it does not delay the signal and is able to preserve features such as local minima and 

maxima. This filter is optimal in the sense that it minimizes the Least-Squares Error (LSE) in 

fitting a polynomial degree three to frames of noisy data. To provide the biofeedback, we make 

use of Dynamic Time Warping with our proposed new segmentation technique, which is described 

in the next sections.  

77.2.1 A Brief Review of Dynamic Time Warping (DTW) 

DTW has been originally used to compare different speech patterns and also extensively studied 

in the clustering algorithms [211]. It is very applicable for measuring similarity between time series 

by providing metric that summarizes the Euclidean distance along the warping path. Indeed, DTW 

leverages the impacts of amplitude variance and speed variance of the time series signal [212]. 

We employ DTW to identify all subsequences within a continuous sensor data stream that are 

similar to a given reference pattern. Here is the formal definition of classical DTW [213]. Assume 

that we have two time sequences,  and , of length  and , respectively, where: 

 (7-1) 

 (7-2) 

An -warping path is a sequence  with  for 

 which assigns the element of  to the element of  and should satisfy the 

following conditions: 

(i) Boundary condition:  and  

(ii) Monotonicity condition: and  



A Real-Time Biofeedback During Breathing Therapy 135 

(iii) Step size condition:  for . 

The cost of a warping path p between  and  is defined as: 

 (7-3) 

Which is the Manhattan distance (absolute value of the difference) between  and . 

A warping path actually defines an alignment between two sequences  and . The alignment is 

optimal in the sense that a cumulative distance measured between the aligned samples is 

minimized [214]. It means we require to find the optimal warping path ( ) between  and  which 

has the minimum total cost among all possible warping paths. The matching cost considered as an 

indicator of the similarity of two patterns is defined as:  

 
(7-4) 

To determine an optimal path , the exhaustive search leads to an exponential computational 

complexity; however, applying dynamic programming makes it possible to compute the cost 

matrix  with  operations. The accumulated cost matrix  satisfies the following identities:  

 (7-5) 

 (7-6) 

 

 
(7-7) 

 (7-8) 

This study introduces the use of DTW with a new segmentation technique to calculate the 

similarity between the reference and test patterns while providing a graphical feedback in real-

time. Therefore, such a system can support abnormal breathing detection as well as a systematic 

breathing therapy visualization component. 
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77.2.2 The Proposed Method 
 In our experiments, the data stream is segmented according to the reference pattern, and the 

similarity is computed on each window. Algorithm 7-1 summarizes the proposed breathing therapy 

procedure. For calculating the signal similarity, the algorithm checks whether a window of new 

instances is ready in our data stream ( ) in line 6. Otherwise, the procedure keeps 

collecting the new instances of accelerometer data in lines 3, 4 and 5. The dissimilarity/distance 

of reference and test signals is calculated in line 7. Here,  and  are the reference and test signals, 

correspondingly. The processing window size (  is set to a value equal to the length of the 

reference pattern ( ). The variable  refers to the starting point of the window. This variable is 

updated in lines 9 and 11 based on the overlap value ( , which is set to 0.9 in our experiments. 

When the DTW distance of the current window is larger than the previous window (line 8), the 

starting point will be updated to the end of the last window (line 9) resulted in skipping (

processing windows to speed up the procedure. Otherwise, it is updated to the next processing 

window based on  value. Figure 7-1 briefly describes the segmentation method for one selected 

breathing pattern derived from the accelerometer. The arrows show the starting points of the 

windows.  In this example, as you can see, there are 5 cases in which the sliding window jumps 

forward (e.g. from window 2 to 3) resulted in reducing the number of processing windows by 

about 77%. After DTW calculation, an overall score is given in the form of graphical signs in line 

13 according to the obtained distance value . This scoring function is based on our intervals 

assigned to various graphical representations shown in Figure 7-2. We experimentally consider 

seven intervals to feedback the quality of the practice patterns.  

 
Figure 7-1: The proposed segmentation on the accelerometer-derived 

respiration signal of one subject 
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Algorithm 7-1 

  
 
// Inputs  

     //  is updating every 20 msec! 
 

1. /*Initialization*/ 

2.  /*Stop/Start condition*/ 
3.  

4. ; 
5.  
6. /*A window of new instances of data is ready*/ 
7. /*In our experiments */ 
8.  {
9.  
10. } 

11.  

12. } 

13. /*A function to display the corresponding graphical 
sign of value */ 

Figure 7-2: (a), (b), (c) Graphical representaions of three intermediate pranayama testing, (d)(e)(f) 
The distance matrix and warping path to compare the reference signal with three intermediate 

pranayama breahitng cycles of one subject ((the colorbar represents the absolute difference 
between them)) 
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The margins of different signs can be changed based on the patient’s disease and the breathing 

patterns prescribed by the doctor. The smaller the margins, the more sensitive visualization 

feedback is achieved. The feedback display is shown in Figure 7-2 on three samples. The dashed 

lines in the upper plots represent the reference and the solid lines show the test patterns of one 

subject during his intermediate pranayama breathing practices. As can be found out in Figure 7-2 

(a), the test pattern has a large distance from the reference pattern, which may cause due to both 

timing and breathing volume mismatches. However, in Figure 7-2 (b) the matching cost of 

reference signal with test pattern is 0.23. It denotes that the subject was not able to breath with the 

analogous volume of the prescribed model. Finally, in Figure 7-2 (c) he could mimic the reference 

pattern almost perfectly. Figure 7-2 (d), (e) and (f) describe the obtained cost matrix as well as 

warping path to compare the reference and test signals.  

77.3 Experimental Results 
In this section, we present the experimental results on evaluating the proposed breathing therapy 

framework. Different yoga-based breathing exercises are chosen from recent medical researches 

to test the new developed biofeedback mechanism.  

7.3.1 Test Setup 

The investigation were carried out with 10 healthy volunteers (5 males and 5 females) aged 18 to 

46 with (Mean ± SD) 30.70 ± 8.87. An accelerometer sensor was mounted on their umbilical 

region. We asked the subjects to perform five different yogic breathing patterns in sitting position 

including Buteyko and pranayama breathing exercises. The Buteyko ( : 2 sec, : 2 sec) with 5-

10% less breath volume than normal breathing, basic1 pranayama breathing pattern ( : 4 sec, : 

7 sec), basic2 pranayama breathing ( : 3 sec, sustain time: 6 sec and : 5 sec), intermediate 

pranayama ( : 5 sec, sustain time: 4 sec and : 7 sec), and advanced pranayama ( : 4 sec, retain 

time: 7 sec, : 5 sec and sustain time:3 sec).  In yoga, deep breathing is part of the practice of 

pranayama. In Sanskrit, prana is the vital energy or life force that is refers to respiration. 

Pranayama exercise slows down the rate of breathing and expands chest and lung capacity. In our 

tests, the subjects are asked to fulfill the yogic breathing requirements such as, keeping the upper 

body straight and erect, the head, neck and back are in alignment and the body remains motionless 

during the practices. To test our framework, first, the supervised reference patterns are recorded 
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and then the test patterns are performed by each volunteer for all yogic breathing, each for one 

minute. The platform was able to graphically score the user’s performance on a series of 

repetitions.  

77.3.2 Results of Real-Time Biofeedback Mechanism 

In this section, we provide an assessment of our proposed breathing therapy framework. The 

evaluations are based on five different breathing exercises. Four models are chosen from 

pranayama patterns and one from Buteyko control breath pattern. Previous clinical researches on 

pranayama as the art and science of yogic breathing techniques have indicated that pranayama 

might be of profit in the conditions such as, insomnia [215], heart disease [129][216], asthma 

[217]-[220], non-insulin dependent diabetes [221], epilepsy, obsessive compulsive disorder and 

depression [222]-[224]. While the pranayama breathing concentrates on reduction of breathing 

frequency, the core Buteyko exercises consciously reduce either breathing rate or breathing 

volume [224]. During our experiments, we coach our subjects to breathe the specified breathing 

models to record the reference patterns. Then, they are requested to practice the models based on 

the instruction with our proposed graphical feedback framework. Figure 7-3 (a)(d)(g)(j)(m) depict 

five reference patterns of one subject. For instance, the circle in Figure 7-3 (g) indicates that the 

subject should inhale for 3 sec, and then he should retain his breathing for 6 sec and finally exhale 

within 5 sec. Therefore, this breathing pattern results in respiration rate equal to 4.29 rpm. Since 

our technique decides based on each subject’s reference pattern individually rather than a fixed 

breath model, the potential influences of age, gender and body size are already implicated in the 

results. The results of DTW technique for the first ten windows of each individual with all patterns 

are shown in Figure 7-3 (b)(e)(h)(k)(n). It is observed that, most subjects have high distance from 

the reference pattern at the first minutes of the tests; however, they gradually refine their breathing 

patterns in terms of the respiration rate and volume. Furthermore, considering Figure 7-3 (b) and 

(n), one can conclude that in easy breathing exercises the distances between reference and test 

patterns are less than 0.05 in most cases while for advanced practices there exist lots of peaks 

indicating the high distances between the reference and test patterns. It means that, in most cases 

the subjects achieved worse results when the breathing patterns tend to become complex. This 

feature is signified by the plots in Figure 7-3 (c)(f)(i)(l)(o). 
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These plots show the average distance of each subjects from the reference patterns for all breath 

maneuvers. For example, considering Figure 7-3 (f), Subject#8 has the maximum average distance 

during his ten sequential iterations while performing the basic1 pranayama pattern. This is also 

signified in Figure 7-3 (e). In the first three iterations, Subject#8 has large mismatches between 

his reference and test patterns; however, he could improve his poor breathing in the final iterations. 

Figure 7-3: (a), (d), (g), (j), (m) Buteyko reduced breathing, basic1, basic2, intermediate and advanced 
reference patterns of one subject obtained from an accelerometer sensor, respectively, (b), (e), (h), (k), 

(n) The distance values of each segment of Buteyko reduced breathing, basic1, basic2, intermediate and 
advanced test patterns of 10 subject correspondingly, (c), (f), (i), (l), (o) The average distance on all 

testing patterns of each subject 
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The average distance values on all subjects derived from Figure 7-3 (c)(f)(i)(l)(o) are: 0.02, 0.06, 

0.07, 0.11 and 0.11. Therefore, these results show that, moving from easy to difficult breathing 

maneuvers, there are cases where the volunteers are not able to properly perform the considered 

patterns and need to keep practicing to modify their respiratory function. This is more likely to 

happen for poor breathers who get stuck and struggle to return to their normal breathing. It is worth 

mentioning that, during the experimental sessions, subjects were curious to know their average 

quality to be able to compare it with others. Therefore, it elaborates on this interesting point that 

our proposed breathing therapy platform motivates people’s mentality of competition.   

77.4 Summary 
In this chapter, a breathing therapy framework have been proposed based on DTW with a fast and 

simple segmentation technique. With this biofeedback mechanism people are able to check their 

breathing quality during practicing the prescribed breathing exercises, quantitatively. For this 

Figure 7-4: The overall view of the proposed system
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purpose, different breathing maneuvers were modeled from different medical references. Generally, 

these exercises are recommended at a frequency of a couple of time per day or week. The proposed 

algorithm helps patients to follow exact instructions since otherwise it may cause lung problems 

such as over-expansion. The breathing retraining through such a quality feedback system might be 

helpful because it can induce relaxation, provide motivations to practice the prescribed exercises 

when the symptoms occur and promote a sense of mastery, as well. The overall view of the proposed 

respiration monitoring system is summarized in Figure 7-4.
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8 CONCLUSIONS AND FUTURE WORK 
This chapter summarizes the work that was presented in this thesis, along with some suggested 

future work. 

8.1 Conclusions 

In this thesis, we present a remote monitoring system with the capability of different parameters 

estimations of respiration signal, accurately. Indeed, the proposed system is an integration of 

cutting-edge technology such as wearable sensors, BLE and backend cloud with prominent 

benefits of cost, convenience, and quality of service. Therefore, in the first phase, the hardware 

modules are chosen in a way that addresses issues such as power consumption, safety and privacy, 

user’s comfort, easy setup and affordability. Then the novel algorithms are proposed to thoroughly 

fulfil the design requirements such as accuracy, fault tolerant, multifunctional, with low 

complexity. 

• We introduced a MMSE self-recalibration algorithm to obtain the best reference model to 

compensate the systematic bias occurs during decalibration. For this purpose, first the fault-

screening algorithm was presented with constant threshold to detect the decalibrated 

sensors and exclude them from the fusion. Then, the best coefficients were obtained in 

terms of MMSE to jointly calibrate the faulty sensors. In addition, we make use of linear 

MMSE to calculate the best threshold value to design the fault-tolerant sensor fusion using 
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convex optimization. Therefore, the screening algorithm can exclude multiple decalibrated 

sensors in real-time from the fusion. We have also evaluated the precision efficiency of the 

proposed fault-tolerant algorithm compared to the previous related work.  

• A signal processing procedure were proposed to obtain the respiration signal, respiration 

rate, respiratory time parameters such as inspiration time, expiration time and total time of 

a breath cycle, as well as the body angles during rest positions with a single accelerometer 

sensor mounted on the subjects’ chest. The use of a tri-axial device allows inclination 

changes to be measured regardless of the orientation. Additionally, an accelerometer-based 

approach was developed to accurately estimate the phase shift between chest wall 

compartments for paradoxical breathing diagnosis. The results were evaluated based on 

medical references including spirometer and Respiration Monitor Belt.  

• A new technique was proposed to estimate the tidal volume variability based on the chest 

compartments movements obtained from acceleration signal during inhalation and 

exhalation. As a method of improving patient care systems, hospitals often utilize patient 

monitoring and alerting systems in which the patient data stream is rapidly analyzed to 

recognise the emergency situations. Therefore, a new real-time alarm detection technique 

was proposed to obtain the threshould values dynamically considering each individual’s 

respiration characteristics. This technique is applicabale in an emergency alarm system to 

trigger an alert based on monitoring the tidal volume variability if the condition of the 

patients are not suitable to make a call. 

• Remote diagnosis as an act of determining a person’s illnesses by observation from a 

distance is an integral and very large part of biomedical education. Therefore, in this 

dissertation we have developed decision-making algorithms to distinguish among different 

pathological breathing patterns with high accuracy. For this purpose, two sensor-equipped 

belts were worn around the subjects’ chest and abdomen to record the motions during 

simulating different breathing patterns derived from definitions in medical researches. 

First, a hierarchical support vector machine which uses famous time domain features was 

proposed to differentiate among six different breathing patterns. A feature selection was 

introduced to reduce the features dimensionality in each level of our proposed tree-

structured model. The solution was obtained in  time, where we have totally  

number of features. Further improvements were achieved by considering our proposed 
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feature extraction technique based on estimated breathing parameters with our sensory 

system. An extensive evaluation on 6 well-known classifiers was performed with new time 

domain features while the number of pathological breathing patterns were also increased 

into nine. Concluding this, the effects of different window sizes, overlap values, sensor 

placement, feature selection, and sampling frequencies were assessed with regard to 

classification accuracy. Furthermore, a new tree-structured model was presented on a 2-D 

performance measure associated with our multi-class problem. Sensitivity and accuracy 

measures express two key parameters associated with a recognition system. Different 

assessments showed that, optimizing these two measures results in obtaining models that 

combine a high classification level in the dataset with a good classification rate for each 

class. 

• Behind our simple breathing, there exists a process that affects our thoughts and feelings, 

creativity, and the way we function in our daily life. The therapeutic breathing exercises as 

well as yoga-based breathing maneuvers were widely used as a means of self-regulation 

and restoration of physical, mental and emotional balance. In this thesis, we showed the 

applicability of DTW to invent a biofeedback system based on wearable and wireless 

technology in “breathing therapy”. The reference respiration exercise was recorded under 

the expert’s supervision, and then the users can practice these patterns on their own at 

home. A new segmentation technique was proposed in DTW for comparing the reference 

breathing pattern with the test patterns in real-time. The experimental results showed that, 

such a system can motivates people’s mentality of competition to reach to a high degree of 

treatment.  

These contributions has been extensively analyzed and evaluated based on medical references on 

database of real subjects.  

88.2 Future Work 
Given the novelty of this work, there is still much room to investigate new methods and 

approaches. In this section, possible future directions to continue and extend the work presented 

in this thesis are described. 
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• One of the major limitations of the accelerometer-derived respiration signal refers to the 

lack of available datasets to benchmark new models and compare them with prior work. 

Consequently, a strong effort must be put by the wearable scientific community to collect 

new datasets that may serve to validate accelerometer-based respiration signals. Future 

studies to test the validity of these techniques should be performed in a clinical setting on 

individuals with actual rather than simulated breathing pattern disturbances.  

• A user might misplace a sensor during the self-placement process as a consequence of a 

mistake, therefore, the effect of sensor displacement in diagnosis system is also found very 

interesting area. 

• Applying different types of medical sensors e.g. Oximeters and motion sensors such as 

gyroscopes and magnetometers to extend the proposed sensor fusion technique is another 

interesting potential future work specially to extract other vital signs such as heart rate. 

• It would also be a promising future work avenue to mainly investigate on the brain wave 

characteristics (electroencephalogram, EEG) during different breathing patterns to be used 

as features in breathing disorders classification. In addition, investigating EEG signals 

during breathing meditation can provide feedback from the minds to enhance the 

performance of the proposed biofeedback mechanism. 
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