 ABSTRACT
Tchebycheff Type Inequalities

Consider a zfaﬁdom variable X, ‘def;lned on a probabllity space
' (n,,P),whose distribution is not known completely, With probability
one we can say that, for a set AeOl, 0 < P(XGA) < 1. This probabilit:}
statement does not offer us any significant information in terms
of the upp.er or lower bounds or P(X€A), Often, a limited amoun‘g of
1nfoma:bion about the distribution' of a random variable X is available,
This limited amount of information may sometimes enable us (to meke
probability statements on the unknown random variable, When bounds
are determined from the available information, the ine-qualities thus
. formed, which offer us upper and lower probability bounds for P(XeA),
are known as ~..Tchébycheff type inequalities, This thesis contains a -
study of Tchebycheff t&pe inequalities, In the thesis we trace the
_development of a general theorem which will provide us with a method
of 'obtaining sharp Tchebycheff type inequalities for restrictec-l and
unrestricted random variables in Rj.We use this general theorem as
our background when we discuss the'development of a n.lultivariate
inequality for different types of regions in R,, We shall also
illustx;ate various methods of obtaining probability bounds for sums
of random variables. |
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CHAPTER ONE: TNTRODUCTION AND NOTATION

Consider a random variable X, defined on a probability sp;ce
(L1L,0l, P), whose distribution is not known completely. With probability
one we can say that, for a set AcOi, O.s.P(XEA).s 1, This probability
statement does not really offer us any significant information in terms
of the upper or lower bounds on P(¥eA), If X is a random variable with

2 e may intuitively expect the variance to have

mean & an“d varisnce o
some influence on the distribution of X, Ifa and.oz are knovm, to what
extent can we make a probability statement about the distribution when

the functional form of the distribution Ffunction F(x) is not known?

Such a probability statement which gives ﬁs bounds on the probability

of the deviation of the random variable X from its mean value m in terms

of the standard deviation 0 was first given by Bienaymé [13] in 1853.
Tehebycheff [113] independentily obtained ihe same result in 1867 and
Pizetti [95] did likewise in 1892, '

Most often, only a limited awount of informztion about the distribu-
tion of a random variable is availsble, Sometimes this information
consicts of expected valuss of fﬁnctions of the randdﬁ vériable, for
example, noments, cummlants, ete. At other times a general information
about the shape of the distribution is avaiiable, for example, f(x) is
monotone, unimodal, etc. This limited.amount of information may some-
times enable us to make probability statements on the unknown density
funetion, Vhen bounds are determined from the available information,
the inequalities thus formed, which offer us upper and lower probability
bounds for the unkaown function, are known as Tchebycheff tyfe inequalities.,

Eictorically we note that Tchobychefffs owiginal result was obtained
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by si%nple algebraic calculations without using any approximation or any
;:alculus. Tt ‘&Jés stated as follows and it will be proved in -chapter
two by means of a general method, ’

Theoren 1l.1l.1 [110]; let 2y, by Cyees be the mathematical expectations

of the quantities X, Y, Z4,.. and let ay, bl’ Cysese be the mathematical

expectations of their squares X2, Y2, Z%,... . The probability that the
sum X+ Y+ 2 + ... is included within the limits

a+ b+ o+ eee+0lag + by +eg+aae - a? - b? - P
and . o I (1.1.,1)

2+ b+ et qee =0lag + byt g+ eae - a® - b? - - ...)%
will always be larger than 1 - 1/0.2 , regérdless of the size of afa # 0),
Remark: Though o is chosen arbitrarily, no useful information can be
obtained for a < 1,

The first inequality which fell into the category of T'chebycheff

type inequalities was that one conje.ctured by Gauss [31:] in 1821 and
only later proved by Winckler [224] in 1866. If X is a continuous

random varisble with a unimodal distribution whose mean isa and variance

is 6%, then, for any k > 0,

fa

ey
2

N,

1-%/(3)%, k < 2/(3)%, (1.1.2)

M%z, k =2/(3)% (1.1.3)

tofs

P(/X - x/ 3 kt) s{

vwhere x, is the mode and 1;2 = 02 +. (xot~/u)2is the second moment about
the mode, I1f we now apply the Pearson measure of skewness, s = (u - xo)/o,
to (1.1.3), then, for all k > [s/,

1L+ &2 »
mm-damy<;éf§%- . (L.2.4)

~

Because of the additional information about the distribution, i. e.



unimodality, for small /s/, (1.1.4) offers a sharper bound than the
bound\obtaineq in the case of a single random variable from Theorem 1,1,1.
~ Tehebycheff type inequalities can be used in industrial/éituations

such as quality control, iﬂ éetting up tests of hypothesis and in setting
confidence intervals about a given point; These inequalities are only used
when one does not have complete knowledge of the distribution of the random
variable, Among its many applications in probability theory it is explicitly
used to prove the weak law of large numbers and Bernoulli's Theorem, |

There are several expository paperss; e.g. Godwin [33], Isii [53],
Savage [101], and books, e.g. Godwin [3#4], Walsh [121], Karlin and Studden
[60], Savage [102], concerning these types of inequalities., In this expo~
sitory work we shall attempt to restrict ourselves to the more recent ro- .
sults without neglecting some of the earlier results, We shall show how
some nevwly forinulated general theorems unite some of the previous work done
thus engbling us to obtain some of the earlier classical résults. We shall
review some work, bqth old and new, which has never been discussed in any
of the above exPositions. Ve shall construct examples to illustrate the
' sharpness of Theorem 2,1,2 and the use of Theorem 2,3.1; we shall give
sone numerical comparisons for unimodal distributions; we shall partially
answer a question raised by Mudholkar and Rao [88] and we shall illustrate
an application of Tchebycheff ﬁype inequalities to medical problems,
Throughout the paper we shall concentratc on developing sharp upper proba~
bility bounds.

In chapter two we shall concentrate on the development of a gencral
theorem and we shall show how thiS'theorem.enables us to obtain certain
vnivariate inequalities under general conditions.

Chzpter three will offer univariate insgvalities for distribution




whicﬁ-are subject to some restrictions,

In chapter four we shall discuss the development of a multivariate
inéquality for different types of regions in R,- |

Chapter five deals with inequalities for sums of random variables;
some classical 1limit theorems will be introduced but not emphasized,

In chapter six we offer some applications of these inequalities
and in general we discuss their usefulness in practical sitﬁations.

The biblioéraphy lists only those papers which have been directly ’
dealt with or referred to in this thesis, For an exhaustive bibliography
of TcheP&cheff and related Tchebychéff type inequalities, the reader
can refer to either Savage's "Bibliography of Nonparameiric Statistics"

[1027] or the bibliography in Savage's paper [101].

Notation
Throughout this paper we shall be dealing with a probability space
(fl,CﬂaP) and randém varisbles or random vectors defined on this proba-

bility space,

Notation : Definition

TeVe random variasble

R ' The Positive Orthant of R
+n n

n E(X)

nt B(X")
n .

NEY _ E(X - a)"

/C'-n . E(X -;/u)n



! Notation

1.1.d.
A
0

When A is a set, A?

IA

Vhen A is a Matrix, AY

Vhen A is a Matrix, A

When A.is a Matrix, trA
When a is a Vector, a'

When a = (aj5ee052y)

D, = diaglagseeesay)

The Vector e

Definition

B/x/"

E/X - af®
E/X « nf?

E/X =/

n
. .
X

j=1 2

n 2

35%:

n
2 Vas
o1 1

Identity Matrix
Independent Identically Distributed

oy

oigj

Cofrelation Coefficient Between Two
Random Variables

The Complement of A

The Indicator Function of the Set A

The Transpose of A

The Determinant of A

The Trace of A

The Transpose of a

diag is a Dizgonal Metrix

e = (1719.9051)




I? this paper we often choosem = 0, This can be done without any
loss of generality since a distribution with meanm can be transformed
to a distribution with mean zero by means of a linear transférmation.

In the earlier sections of this paper proofs will be offered for
continuous random veriables, Analogous proofs for the discrete r,v,
can be constructed by the reader if he wishes,

A bound will be called sharp if it is the best possible bound that

can be obtained for the situation. In most cases we shall exhibit the

sharpness of an inequality through a distribution which attains

equality in the inequality,
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CHAPTER TWO: UNIVARTATE INEQUALITIES UNDER GENERAL CONDITIONS

2,1 Introduction

If X is a r.v. and if u(x) is an arbitrary real valued function
of the real numbsr x, then ¥ = u(X) is also a r.v. With this in mind
‘we develop Tchebycheff 's inequality.
Theorem 2,1,% (Markov). Let u(X) be a nonnegative function of a r,v,
X(discrete or contimuous). If E[u(X)] exists, then, for any arbitrary

constant X > O,

P(u(X) >K) < Bu(X) /K. (2.1.1)
Remark:‘ The above theorem will be referred to throughoﬁt this paper
as Markov's inequality,
Proof: let X be a continuous r,v, with distribution function F(x).

Ilet A = {x: u(x) > K}.
Hu(x)] = j;"’ u(x)AFGe) = w(x)ar() +j; 1(x)aF(x)

> Au(x)d.F(x) ;KJidF(x) = KP(u(X) > K).

Therefore P{u(X) >K) < E[u(X)]/K. "A similar proof can be given when
X is 2 discrete valued r,v, .
Corollary. If X is a r.v. (discrete or con_tinuous) whose mean m and

variance 02

exist, theng for any coastant k > 0,
P(/X -/ 3 ko) < 2/K" (2.1.2)
Proof: ILet u(X) = (X - )% >0 and let K = k02,
(2,1.2)2 P ~m)? »k%%) g 1P
PU/X - 310) < 1,
Equivalently wve .can write

P/X - pf <k0) 31~ 1K, (2.1.3)

Tnequality (2.1.2) is knoun as the Tchebycheff inequality. For a



suitably chosen X the inequality is the best possible.
| E‘xampie. let X be a discrete valued r,v. such that
P(X = ko) = P(X = ko) = 1/2k%, P(X = 0) = 1 - 1/i°.
E(X) = 0, Var(X) = 0%, and by (2.1.2)
P(/X -nf 2¥0) = P (/%] 3 ko) < /K2,
Also, P(/X/ 3 ko) = P(X = =ko) + P(X = ko) = 1/¥°.
Thus equality is attained for this example, This implies that
Tchebycheff's inequality is sharp.
In chapter one it was indicated that for a unimodal distribution
a sharper inequality could be obtained, A much simpler restriction
than unimodality, namely that of boundedness of the r,v.,will give us
an inequality which is sharper than (2.1.2).
Theorem 2,1,2. let X be a r,v, with meanm, variance 02 and let

/X -pf <2, Then, for 0 <k <1,

2 2 .
P(/X -n/ gko) g1 - 9—5&1:-2—15—2—1 (2.1,4)
Z- - ko

: 2 22 2 2 2
Proof: 2 -0 -(X-m) +ko >0,

By Theorem 2,1.1 we have, for an arbitrary K > 0,

¥o? w (x - n)? + 0% 2K) <

E(Z - k202 - (X -,u) + %o )/K

P(Z

Iet K = 22 - K%6° > 0.

P(/Y -nf £ ko) < 1-—-@--"2-1-{—1
-ko

Exemple: (2.).3) is sharp. Consider the r.v. X distributed as follows:
P(X = - o/k) = P(X = 0fk) = kK°/2,
P(X = 0) = 1 - K2,
2 2 2 . .2 . . ~
E(X) = 05 Var(X) =0, Ilet Z =0° (1/K° - 1+ ¥°), Since 0 <k <1,

75 c?(1K° - 1) = 0%(1 - KK 3 62 /K2,



y:

Thus % a/ % /. By Theorem 2,1.2 we have

r

2 2
P/X/gko)g1- 9 L=K) -1 -2
o?(1/i2 - 1)

However, P(/X/ < ko) = P(X = 0) = 1 - k%, Thus equality is attained

for this example,

2.2

Remark: Had we considered the function 7% - (X --/u)2 + X%

would have cbtained Iurquin's result [75], namely,

2 2
P(/X ~p/ ko) g1 -2 12"‘_1.

We now consider another restriction on the r.,v, X, The folloving

theorem will be used to prove some results in section 5.6 of this

2

paper.

Theorem 2,1,3. If u(X) is a nonnegative function of the r.v, X such

that u(x) > b whenever x > a, then
P(X >2a) < Etu(x)]/b .
oo e
Proof: Eu(X)] = j u(x)dF(x) ?’fa u(x)dF(x)

-

-~
?,‘t_)[a dF(x) = bP(X > a).

We now consider the one~-sided Tchebycheff inequalities as offersd

by Cantelli [217,

Theorem 2,1, 4. If X is a r,v, with 0 mean and variance (72, then

(2.1,5)

(2.1.6)

2
P(X< k) g 5 g . . ,k<0, (2.1.7)
o + k
2
P(x ?‘ ]:) S "2"““(2’"2— 9 k > Oo (2.158)
o + Kk
Proof: The proof will be given for the con:tinuous case, E(X = k) = =k,

E(X - kf=0® + k*.  Now, for k < 0,

pos) on o2

2

¢ 2 2
k < (3k (x - k)f(x)dx) ;gjrk f(x)d}:jk (x =k) f(x)ax




‘ k2 £(1-PXg k))(k2 + 02).

Thus (2.1,7) is proven, For a discrete r.v. a similar proof .can be
given, To prove (2,1,8) we shall use a method based on The;rem 2,1.1,
Iet u(¥) = (X + c)2 be a nonnegative r.v, for ¢ > 0,

2
(x+ ) s+e) ,x3k>0.

2
P(X > k) < EX+e) | (2.1.9)
A (k + c)2 :

-

Minimizing the‘right hand side of (2.1,9) with respect to c, we get
c = 02/k. Substituting this value of ¢ in (2,1.9) gives us (2,1,8),
Under the given conditions,(2.1;7) and (2,1.8) give the sharpest

possible bounds, As an example consider a discrete r,v, taking on two

values,
2 2
P(X=k) = =@y P(X==07k)= K |
o° + X o° + k
E(X) = 0, Ver(X) = 0%, For k < 0, (2,1.7) tells us that
: . 0’2
PRSI S ==
o +k
2
However, by our example, P(X £ k) = P(X = k) = ...2_9..._2. .
0 + K

For k > 0, (2,1.8) tells us that

2
P(X>k) S —I .

02+k2

2
Hovevers P(X = k) = P(X = k) = _.?.._Q....z. o Thus (2,1,7) and (2.1,8) are
0~ + k

sharp,
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2,2 Momr—*nts and Absolute Moments of Order x», r > 2.
We now extend Markov's inequality to moments of higher order,
Theorem 2.2,1. If X is a r,v. such that E/X/" exists for r >'1, then,

for any k > 0,

P(/x/ >k) < -ﬁ;ﬁ . | ' (2.2,1)

Proots E/X/T = f SR PR R TS

v

;ﬁ,‘c/,‘ [x/7aF(x) 2 K'P(/Z/ > k)
This completes proof,
Example: Whenever k > (E/X/ )]/ inequality (2.2,1) is sharp. Let us

define the distribution of the r.,v. X as follows:
P(X:k).—.EZZ sy PX=0)=1- [{
kr
By Theorem 2.2.1 P(/X/ 2 k) < (E/%/T)/x". However, P(/X/ > k)

P(X = k) = (B/%/T)/xT. Thus (2.2.1) is sharp.
Corollary.l.Consider the r,v. /X = p/ such that E/X - afF exists and
let k = t(B/X ~ /5T, hen

P(/X ~n] > t(E/X - /")

This result was obtained by Lurquin [71,72] and by Guldberg [37].

1/r r

) < 1t5, ' (2.2.2)

Corollary 2, If r = 2s, § = ly..syny then, for the r.v. /X - u/ such

2; X
that B/X = n/ " = mp_ exists, and for k = t(E/X - nf )%,

Al
P(/X = >10) € B8, (2.2.3)

t?'smzs

This is Pearson's inequality [93]. Though this result is an improvement
over (2,1.2); it still lacks the necessary precision vhich would make it

useful in pl”aCtiéal situations requiring statistical analysis,

Corollary 3., For a r.v. /X ~ s/ such that E/X ~ ,u/ = v, exists ard v,



{
exists, and for k = tvrll r,
. 1/nm\n
v ;
P(/X =/ 3 tvr]jr) < i/ n Y}, (2.2.4)
n 1/r
t\ v,

This result was obtained by Guldberg [39,40].
Corollary 4., If X is a nonnegative r,v, such that mf exists, then,

for k = t(/u'n)l/ n,

PUX 2t )Y") < /40 . | (2.2.5)

This result is due to Guldbarg [38].

. . r
Let X be a r,v. such that for any arbitrary point x_,v,(x ) = B/X = x [/ s

»

r > 1, exists, By Theorem 2,2,1,

PU/X - % 21) ¢ Yrl%o) (2.2.6)
kr

cannot be improved upon for k > kvr(xo))llr. When x4, =, (2.2,4) indi-
cates that an improved bound is foss_ible if two absolute moments about
the mean are kunown;  however, (2.2,4) is not Sharp.A It would appsar that
if more than two absolute moments about an arbitrary point are knowm, a
sharper inequality than (2.2.4) can be obtained, Wald [119,120] offers

a method by which discrete distributions, whose valueé are all positivel
and whose absolute moments about the origin are equal to the absolute
moments about an arbitrary point of the unl?nown r.v.s can be constructed,
Probability bounds are then obtained on these constructed discrete distii-
butions, The restriction to nonnegative random variables is possible

for, if Y = /X = x /, then EY" = B/X = x /. and P(Y 2 k) = P(/X - x / > k).

If v3(%g)seess Vy(x,) of the unknovm r.v. are available, then for n even



i
the sEectrum.of the newly constructe§ distribution will consist of

either the poi;'xt k and n/2 other points or the points O, k,go’, and

%(nv- 2) other points. Zero probability ié given to all points not

in the spectrum of the discrete distribution and an infinitely small probabi-
lity is giveﬁ to the point at infinity such that this probability only af-
fects the nth order absolute moment . A discussion of the concept of plac~
ing a probability at the point cocan be found in Royden [98]. For n odd,

the distribution will consist of the points 0, k and 3(n - 1) other

points., Wald shows that the discrete distribution which is constructed

 is unique in each situation, The sharp 1owe£ probability bound of

P(/X = x,/ < k) is obtained by summing all the probabilities correspond~ .
ing to the points on the left of the point k, and the sharp upper bound
of P(/X = x5/ < k) is equal to the lower bouﬁd plus the probability at

the point k.,

Iet us illustrate the use of thié method in the case where two abso-

Jute moments are given, In order that the numbers vy, vgy s > ry be

realized as sbsolute moments of a distribution, we must have [120])
Ve >0y ve 3 ()T, - (2.2.7)
Since two absolute moments are given, we nust construct discrete
distributions vhose spectra consist of either
I) the points k and A with respective probabilities p and 1 - p
* II) +the points k, 0 andGQwith respective probabilities p, 1 - p
end{ (Fis infinitely small and only affects vg).

(vp = pX5)/ (1 = p)

]

From I), pkr + (1 - p)kr =V, s AT

k¥ (L -pn®=v,, AS

il

(vg ~ pk%)/ (1 - p)
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v

Theres_ifore ( r)s/ r = (vs - ;ng} .
l-p

l- P v (202.8)
From I1), = v, kr = vr/p . : (2.2.9)
pkS < vy plv/p)s/r < v . | (2,2,10)

let s = 2r, From (2,2,8)

2
V., - V.
13p= 2r r 5
~ o = 2V kT 4+ KT
Vop = V 2
= r-r >0, (2.2.11)
r 2
Vop =V + (K - v,)
by(2.2.7). Also v kr -V ‘ '
AV =X 2r>o, (2.2,12)
r
r
Thus from (2,2.7) either k' < v, or v K" >V, and k (>,vr.. From
(2.2.9) we require that k" > v, such thet p< 1. If K 2 vp /v,
and k¥ > Vps then, from (2.2.12) and I) we have
= (kr. - Vzljvr)/(kr/vr bl 1)0
Thus A < k and by Wald's method of obtaining upper and lower bounds
1-p<P(/X-n/<k)g 1, (2.2,13)

vhere p is defined by (2.2.11). Similarly, if k¥ < Vv, » then (2,2.,12)
and I) tell us that A >k and
< P(/X "/U./ < k) S Po (202011‘}')

r
If v, g X "Zr’ Vpsthen from (2.2.9) and II)
1~ v,;./k < P(/x -,u/ <k)glL (2.2,15)

The sbove inscqualities were first proven by Cantelli [217], If we

ot k = 10, = 1 and A= Vl/0'9 then (2.2.13) gives us Peck's
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inequ;lity [9%4] as a special case;
2

P(/X ~n/ 210) L , t >4, : (2.2,16)
t° -2ta+ 1 -
(2.2,16) is an improvement over (2.1.25 in the case where vy is known,
Equation (2,2,7) has stated the conditions which must be satisfied

such that v, and vg can be absolute moments of a distribution, 1In

general, what conditions must be satisfied in order that a set of

numbers can be realized as moments of a distribution? The answer is
given by the Hamburger moment problem [106] which states that if
1 M'l ose N'n .

1] \J
Ry Wy e Mia :
20, (2.2.17)

Ay At qee Py

i.e, nomegative definite, then the ;et of moments will determine a
probability distribulion, If the determinant is strictly positive
definite, then there will exist many distributions which are solutions
of the moment problem and the set of moments is called non-degenerate,
Shohat and Tamarkin [106] have added several other conditions which
must be satisfied in order that the set ofAmoments in (2,2,17) will
offer a unique probability distribution, In cases when either

P'yseees MYy O M'y40eay 1Yy, are given and satisfy-the moment inequality,

Shohat and Tamarkin have given methods of constructing discrete distri-
butions whose moments are egqual to Lhose of the uninovm distribution,
Their method of constructing the discrete distributions and of obtaining the

uppcr and lower beounds is similar to Wald's methed, Throughout the rest
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of th;s paper we shall assume that for any given set of momenfs the
conditions for" the solution of the Hamburger moment problem are
satisfied, | |

If F(x) and G(x) are two distribution functions determined from
the same finite set of moments, what can be said about [/F(x) - G{x)/?
Isii [52] and Khamis [63,6%4] have both offered bounds on the above
expression under very general conditions; they have sharpened their
results by imposing certain restrictions' on the r,v, X and on f(x)
and g(x).

s

2,3 A General Theorem

Theorems 2,1.1 and 2,2,1 have offered us general methods of
obtaining some non-trivial Tchebycheff .‘type inequalities which had
previously been obtained by various other metheds, In 1959 Isii [5&]
proposed a generalized method of obtaining bounds for P(X¢A) in terms |
of a given set of moments, where AeClis a closed set infl= R,. This
method offered us a unified way of obtaining many of the earlier results

vhich were based on a knowledge of moments, Let Iy be the indicator

function of some set AGO?', let a = (ao,..., an)e Rn—l—l(a real valued vec-

tor) and let fio 1= 1lyecey Ny ‘be Borel measurable functions from

fintd Ry such that £ = ag + agfy + eve + a,f, and f £dP exists.

When f 2 T, oh.f)., we have

P(XEA) —_-fIAdP sffdp = ap + agly +oees + 2 M, (2.3.1)

for all probability distributions P which realize Mygeeos My as

momcnts for flgooo 9 fno
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. P(X€A) < g.gé‘(ao + 298y + eee + 2gMy), (2.3.2)

where C ={a:a6 + aqfy + oo + 2T, 2Ty on_.Qf.
Similarly, P(X€A) > 228(5‘0 *aM) 4 eee + a M), (2.3.3)

where D = Jatag + ajfy + «e0 + 2,f;; < Iy on ﬁ]. We note that for

£i = %Xy My =p'y, Are inequalities (2.3.2) and (2.3.3) shorp? Isii

(54,55, 56] has considered the sharpness of these inequalities under the
restricted conditions of Q: (—fx;cz:),.Q. = [0, and () = [0,1], respectively,

" where the corresponding f; have respectively been defined by fj = xi,

£5 =[x/  and f; = any given function; sharp probability inequalities are
obtained through the use of linear functionals on Banach spaces, -
In 1963 Isii [57] unified the previous work and offered a general theorenm
for all abstract spaces-n- o The proof of his theorem is based on the
theory of convex sets and the separating hyperplane ‘theorém; a specific
case of the theorem was independent].y obtained by Karlin & Studden [60].

Iet (N1,5]) be a measurable space andP be a family of nonnegative

measures defined on ({1 L(X); for (A.‘E_Q, let f(w) = (fo(w),..., fn(w)) be

a Borel measurable function from-{lto Rn +1 such'that .

V f/f(@)/dl’(.’x’) <o, for all Pe::P,
and let g(w) be a real valued measurable function such that
-g [et)/ap(e) <em 4 for all Pef.
We define D (1) = (pipsD ,jf(c-‘)dP(m) =M, for all M= (Hs0ees M )e

= 1 PR

We then have the following theorem,

R L%
ne-})

Theorem 2,3.,1 [57]. I P is convex,:ﬁ:{ﬁ(m)dP(w): PrEJD is a convex
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set in Rn+1' If M= (Myseees M,) is an interior point ofJVL then
UesH) = =, f e)ap()

oottt o, (ot + g e - Baon. @

Further, if U(g;M) <co , there exist real constants agsesey 2, that at-

tain the inf in the right hand side of (2.3.4).
Proof: Since_P is convex, Afis a convex set in Ry 1[67]. For ag Ryyy

n n
S?ﬁﬁg " Zafi)d > Bep(r) .f(g B

n
= U(g;H) - igoaihi .

80seses8n i=0
We must now show that the left hand side of (2,3.4) is greater than

the right hand s:Lde of (2,3.4), The set e.-/:.{ (f deP,...,f jgd?) P& D?

n
Therefotre U(g;M) £ inf (. Z‘. ar + Etez_;j)fg - i’_Z_:Oaifi)dP). (2.3.5)

is also a convex set in Rn+2[6?]. Let(/.'-f/’ denote the closure ofy'f'": For
U(giM) <024 Z = (Mpseess Mpy U(g;Mf) is a boundary point of:ﬁ—}: Since
t/:":is a closed convex set, we can construct a supporting hyperplane at
Z, Iet the equation of the hyperplane be

n+l |

E HA%d, #$8 =0,
Since the projection of Jon Rn41 is the point M (an interior point

of /1), Sl —,.1 0 2nd the equation of the hyperplane becomes

Xni1 = 2 oi%a Ko . (2.3.6)

where a; = = “i/am-ls 1= 150009 Ny and k = = B/aml. For -every

(4 L] - ) 0 . . "’A
interior point off,/'ef‘, the definition of /i says that
n
xﬂ'*‘l 's iEOaixi + Ko
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: n
Therefore .{édP <k+ 1§ a,J} dP, for all Pef
k ;fgdP - .lgoai £4dP, for all pef, , (2.3.7)
However, since Z is a boundary point of«4/; i,e, lies on the hyperplane,
n
U(gs) = k + i§oaiMi‘ | (2,3.8)

Combining (2.3.7) and (2,3.8), we see that the left hand side of (2.3.4)
is greater than the right hand side of (2,3.4) and combining this result
with (2.3.5) we see that (2.3.4) is verified., We note that in the proof

we have showun that there exist real constants apgsessy a, that attain

the inf in the right hand side of (2.3.4).

Corollary., L(g;k) = :mf( 0 g (3 )dP ()

= sup '§F1~O 3 + 1n .ng Zoalfl)dP (2.3.9)

a{),oa-o 22n
The corollary can be proved similarly to the theoren.
Remark 1: If, for any a = (apseees a,)s
n

g 0,8(%) <;Zp24 1(‘“) onf),

sup (ﬂg alfl)
1=0 s otherwise,

n
thenao’a?t’an(1§0a1h1+ gu§§ré anifi)dP) 1nf' anlhl, (2°3f10)

where inf' is taken over all vectors (ao,..., an) such that
n
1Zpeifi(®) 2 g@) o),
U(gsH) = anft 3 oagdy, (2.3.12)

The proba blllty distribution which aotuallj attains the bound in

(2,3.11) is ezlled an extremal distribution,

n
Similarly, = L(g;}) = sup' 32024 My : (2.3.12)

vhere sup' is taken over all vectors (ao,,ec, an) such that
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Zoaufs ) < g@) ont),

Isii [58] :has also proved the above results by freating ‘Tchebychéfi‘
tyl;e inequalities as a problem in linear programming, Kingman [65],
through the use of convexity arguments offers results which are analo-
gous to those above in the case when fp(w) = 1,

Remark 2: If, as a special case, Wwe lot f(®) = 1, My = 1 and

g() = Ip(w),then inequality (2.3.2) is sherp when M is an interior
point ofe#f, As mentioned beforc, this case was treated by Isii [54,55,56].
Using game theoretic arguments, Marshall and Olkin [83 ] have proved
similar’ results when £ = x%, i = 1,i..y n andflis any of the follow-
ing: (-w,co),[O,a:),‘[o,l:]. .
Remarks 1 and 2 will be used extensively to prove several results
which had originally been proved’ by various methods, When vwe refer
back to Theorem-2,3.1 in this paper, we sha.ll‘actually be feferring
to remarks 1 and 2 of Theorem 2.3.1..
Example: let us consider establishing the Tchebychef{ inequality,
P(/X -/ 2%0) < K5 k > 0,
by means of the general theorem, If X is a r.v. such that E(X) = My
and Var(X) = 0%, then P(/X ~n/ 2 ko) = P(/¥/ > k),vhere ¥ = (X - n)/o,
E(Y) = 0 end Var(Y) = 1. Let A = (~#-k ]l [ks;»). Iet us consider a
polynomial of the form
f(y) = a + by + cyg. | (2.3.13)
Theorem 2,3,1 tells us that the sharp upper bound of P(Y:A) is attained by
inf E(f(Y)) = a + ¢, | (2.3;14)

where the inf is taken over (a,b,c) satisflying f(y) ,>/IA(y) ond1,

Since £(~k) = £(k) = 1, therefore b = 0, Thus £(¥) = a + cy~.
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Fig, 2.1 I(y)

=k 0 k
We would now like to lower f(y) subject to the condition f(k) £(=k) =

By algebra, the lowest point of f(y) occurs at =b/2c, Therefore, a = 0,
2
=1k, £(y) = Ip(y) and £(k) = £(-k) = 1, E(£(Y)) = l/k and

P(YEA) 1/k o Thus Tchebycheff's inequality is obtained.
2.4 Bounds in Terms of Mean Deviation

Peek [94] has offered us a probability Bpund for symmetrie inter~
" val about the mean in terms of the mean deviation (equation 2.2.16).
When the interval aboutm is not symmetrical, Glasser [32] offers a
probability bound in terms of the mean deviation; his bound is an.
improvement over Peek's, The reason for ghoosing vy the mean devia-
tiony rather than 0 can be attributed to the fact that exfreme values.
in the distribution will mske O considerably larger than v,
Theorem 2.,4,1. Let X be a r.v. with meanu and finite mean deviation

v > 0.
2’°1't2 <ty + by,

(2.4.1)
-—-( + -—-- , 2t1t2 tl + 't2

1=-P(-tgv< X ~m< t,v) <
Proof: Thouzh Glasser's methodlof piroof is quite simple,; we shall
prove tho result through the use of Theorein 2,3.1 following the develop-
ment given by Karlin and Studden [60]. let Y = (X -n)/v; E(Y) = 0,
EfY/ = 1 and for A =w, «t3 M t2,e) we wish to determine P(YeA), Iet
us consider a polynomial of the form
fy) = ag + a9y + az/y/. ‘ (2.4.2)

By Theoram 2,3.1 the upper bound on P(YEA) is achieved by
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i inf E(f(Y)) = ag + a5 , : (2.4.3)

*e

 where the inf is taken over all vectors (ags &1 ap) such that
£(y) 2 Iy(y) onf) . (2.4,4)

£(y) is linear for ye(=30] and y0,0). £(0) = 2g 2 0 and since by (2.4.3)
ag + ap £ 1, we can conclude that aOE[O,IJ. Subject to conditions

(2.4.2) and (2.4.4) we can say that £(-t7) = £(ty) = 1 (i.e. £(y) <‘1

on ("tlstz) ) .

f(te) = ap + a.ltz + 32"'2 =1 (2,“.6) .
Solving the above equations, we obtain
2 t+ b 2 ity

Accordingly, we must minimize

2 Ty

A

where p = $(1/t7 + 1/t5). Choosing ap appropriately, i.e. 0 or 1,

the minimum of (2.4.,7) is equal to p if p < 1 and is equel to-1 if
P ?’ 1‘ Q&EODO (zoll'tl).

Corollary 1, If tl = tz = t, then
1, tgi,
1-P(-tv<Xo-m< tv)s( YV, t31. (2.14.8)
Corollary 2, If t1%¢» and ty = t; then
1= f’(~f>-‘r‘< X<+ tv) <51’ bz (2.4.9)
{2, 3



Ebcam;ﬁ;e: Through a distribution which attains equality in (2.4.1)
‘ﬁe show that the result is the best possible, Define the distribution
of a r,v. X as follows:

PO = = t1v) = 35z, P(X = &) = 35
P(X =0) =1-1/tq + 1/t§).
E(X) = 0, E/X/ = v. By Theorem 2,41, 1 - P(~tyv <.x < tpv) £ H1/ 41/ 1),
However, for oz;r example 1 - P(=t;v < X < t,v) = P(X = ~tyv) + P(X = t5v)

= %(lltl + l/tfz).

,

Therefore, Glasser's inequali‘by' is sharp, -

2.5 Unsymmetrical Intervals |

In this section we shall not restrict ourselves to symmetric inter-
vals sbout the mean but we shall consider any arbitrary interval con-
taining the mean,
Theorem 2.5.1. Let X be a r.v. with mean u and finite va"riance 02.

Then, for B >a > 0,

2
(B - o) 3 207 (2.5.1)
Z. 2 ~ ’
2
1-P(-a < 3n < B) < 4 B =)? £ 107 | 208 3 20° S alB - o), (2.5.2)
(o + B)
1, oo | 2.5.3)

The above, knoun as Selberg's inequality [103], was first proved
through the use of Schwarz's inequality. Wé will now derive the result
through the use of Theorem 2,3,1, '

Proof: Iet ¥ = X -—')4; thus E(Y) = 0 and Var(Y) = 02.' Ve must now find

P(YGA) where A = (-2 ,-0JU[B;%). To determine P(Y:A) we must consider
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all ;olynomials of the form.

. 2(y) = ay + a3y + agyz'a I, (y) B (2.5.4)

and we ‘mus’c minimize .
E(£(y)) = 8y + a0 | | (2.5.5)

with respect to all polynomials of the form (2.5.4), The lowest +*

point of (2,5.4) occurs when y = - a;/2ay, and (2.5.4) is symmetric

—

about this point., We would like to lower (2.5.4) such that
£(- a3/223) = 0,
ag = .aiZ/Zaz + azalz/ltazz =0
ag = a12/4a2 ' | .
Thus (2.5.4) can be written as
£(y) = a.lzll}a2 + 2y + azy2 = az(jr + a:L/Z_'a.Z)2 . (2.5.6)
Lot (- ay/2ay) = s, the point about which {2.5.6) is symme.tric. Now
(2.5.6) must equal 1 at either y = - @ or y = £ depending on whether
~a<sg(B=-a)2or (B-a)2g s<B, respoctively., If y = - @, then
f(ua)=az(-a-s)2=landa2=l/(q+s)2.
Similarly if y = B, then £(B) = ay(8 - s)2 =1 and 2 = 1/( - s)z.
Thus (2.5.6) can be written as . -
(y - )% , < sg (B -a)2 (2.5.7)
£(y) =

oo, 6 - a)/2 <5< B (2.5.8)

Corresponding to (2.5.4) and (2,5.5) we rmst minimize
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i 2. 2 '
§ L +s7), _a<sg(8-a)2, (2.5.9)
(o + s)2
E(£f(y)) =

s02 -+ 522
(8 - s)?

with respect to all polynomials of the forms (2.5.7) and (2.5.8).

, B-wlz<s<B, (2.5.10)

Minimizing (2.5.9) with respect to s, we see that for s = 0/q
(2.5.9) is a minimum, The minimum value of (2.5;9) is therefore
2,, 2 2
o [( +07), ' (2,5.11)

Similarly minimizing (2.5.10) with respect to s we see that for

-

s= (B - a)/2,(2.5.10) takes on a minimum value of

2 2 .
(B~ a) s, (2.5.12)
(o« + B)

If the condition of (2,5.1) prevails, then the minimum value of

P(YEA) is given by (2.5.11) and is attained by (2.5.9). If the condi-

tion of (2.5.2) prevails, then the minimum of P(Y€A) is given by (2.5.12)

and is attained by (2.5.10). Ve have thus proved (2.,5.1) and (2.5.2).
To obtain (2,5.3) we consider a discrete distribution consisting of

two points x; and xp such that x5 and x; are not in (- a4B). Assume

/u=0.
E(X) = pxq + (1 - p)xy = 0 . . (2,5.13)

Var(X) = p,% + (1 = pli? = 0% | (2.5.1%)
Solving (2.5.13) and (2,5.14) we see that p = x5/ (0% + %,°). 1If
Xy = (p - 1)x2/p = - 02/x2 < ~ o and ya[s,cz/aj (1.e, to conform with
the condition of (245.3)), then, (2.5.3) is satisfied.
Remark 1. L60) There exist extremal distributions which satisfy these
bounds., The spectrum of the extremal distribution in the éase (2.5.1)

consists of the pointsm - a and p + Oz/a with respective probabilities
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02/ (02 + 02) and 0/(6? + a®). 1In the case of (2.5.2) the spectrum
consists of the points &1 - o, & + (ﬁ - a)/2 and u + B with respective
probabilities of [B(8 - a) + 20°J/(8 + &)®, #(Bx - 02/ (B +'0)? and

(o - Bo + 20%)/(B + a)?. The extremal distritution for (2.5.3) was
given immediately after (2.5.1%4). Note that the extremal distributions
have been transformed so as to have mean .

Iet X be a r.v, with mean m and absolute norents V. and Vope We

-

wish to determine an upper bound for the probability statement
P(XEA) = P(XE(—w,,u - BJvln - agp + adufp + mw)} . (2.5.15)
Assume m = 0, We know that if £(x) and g(x) are two density func-

tions satisfying g(x) = 0y x < 0y and g(x) = £(x) + £{-x) for x > 0, then

-~

“2 “2
jx Te(x)dx = o X To(x)dx, » > 1,
-]

«

and jikkf(X)dx ffokg(:wt)dx.

The original probability bound of P(¥€A) can be given' by the proba-
bility bound P(¥e AU[O,CC)), vhere Y is a nonnegative r.v. such that
E(Y) =sp = v and B(Y") = Apy= Vpp. The idea here of considering
a nonnegative r,v. is similar to the idea in section 2,2 of this paper.

r 2
let 2 =Y ; E(Z) =M. Var(Z) =2, = e

e p G J
P(Ye[ 0,0 Ju[Bs09) = P(ze[0,0 Ju[B s)) | (2,5,16)
From remark 1 of the above theorem we know that the exlremal distrie-
butions arc nonnegative only whensm - o > 0, Thus the upper bounds for

- )
P(XzA), when /ure(ar,B )s are the same as those for Theorem 2,5.1 provided
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that ;= Ay 0% = mpp = Ty @ =ny = 05, B = BF -y, are substituted
in th; right hand side of the inequalities, In the case when
2y @ (o 587) the probability bound is 1. :
The above development by Karlin and Studden [60] gives 2 generali-
zation of Guttmen's result [41] which states that, for A > 0,
1 = P(Xe(n = kgO o = koo W(u + koo yn + ky0)) < A2y (2.5.17)
where py, = (a? + l)ou, ky = (1 + ka)% and kp = (1 - la)%. To show
this congéctioﬁ let r = 2 and let us rewrite (2.5.2) in the form of
(2.5.15) with the notation used in (2.5,16).
1= P(XE(u = By = a)V(u + agn + B))
< (6 - 2y + & )" 4 by = 27 (2.5.18) -

(8% - o®)?

If B = ki0, @ = koo, the condition of (2.5.2) is satisfied and the right

hand side of (2,5.,18) equals k~2.

2,6 Trigoncmetric Moments

let us reconsider some of the comments made at the beginning of
section 2.3 and apply them to obtain a Tchebycheff type insquality in
a situation when trigonometric moments aré ¥novm, '
Theorem 2,6,1 [83]. If X is a random angle in [0,2m) and E(sinX) = o,

E(cosX) = B, then

1 - P(20<X<2¢)$ 1~ 0 sin (e +¢) ~ B cos (Q +_él R (2."601)
' 1 - cos (p - 8)

P(20 g X g 2f) € Lt sin (04 $) + B cos (& + f) s (2.6.2)
1+ cos (-8

vhere 0 < 6 < f < o

Proof: Let A' = (26 < x < 2 f)) where A' denotes the complement of A,
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.Y

The problem will be to find an upper bound for P(X€A), Let us con-
sider the following function. ..

£(x) = ag + a; sin x + a, cos x 2 IA(x). .,'. (2.6.3)

E(£(X)) = ag + a0 + a8 (2.6.4)
We must now £ind the minimum of (2.6.4) with respect to all poly-
nomials satisfying (2.6.3).
Subject to the conditions of the hypothesis and (2,6.1) we can let
£(20) = £(26) = 1 and £(6 + §) = 0, |
ag + ay sin (8 + f) + a5 cos (68 + f) = 0

29 + 2y sin (20) + a, cos (29).= 1 (2.6,5)

'ao+alsin(2¢)+azcos(2'ﬁ)=l .

Solving the above equations we can write (2.6,3) as

= 1 in (O ) si (é ) s
£a) = 1 -cos (p=0) Slnl(- :otss (211163; B coi - c:s 2}.’503 93){ - (2.6.6)

Accordingly (2.6.4) becomes

1.0 sin (8 +p) -B cos (8 + §) : (2.6.7)
1~ cos (f ~9)

and we have proved (2,6.1).

If we now let A = (20 < x € 2f) end let £(x) be defined as in (2.6.3),
then upon setting £(20) = £(20) = 1 and £(6 + P + M) = 0 and carrying
out ‘the same procedure as above, we obtzin (2.6.2),

The above resulis are due to Marshall and Olkin [83].

2,7 Other Inequalities
In this section we shall briefly review two Tchebycheff type inequalitics

without offering their proofs; a third inequality will also bz mentioned.
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V"qn Mises [118] considers a nonnegative r,v, X such that the
expected values of any two arbitrary functions of X are known, Let

g(X), h(X) be any two monotonic increasing functions of X satisfying

B
the condition g(0) = h(0) = 0O, . .y Mt
: 1
Fig. 2.2 g -
e l . 0 M 1;2 x

let x = g(€)y y = h(t), and let (x,y) define a curve K which is

concave upwards in R,. let O denote the point (0,0), We define

1l

E(g(X))s b = E(h(X)) and let A denote the point (a,b); p = glo),
q = h(x) and let B denote the point (p,q). We note that if either
q or p and q are infinite, we only consider the value for which

- qfp is finite, et t1 and t; be defined so as to satisfy the equa-

tions . h(t b h -b b-

ions _’(_J;)_ _b, (t5) _ q . (2.7.1)
g(ty) a g{tp) ~a a-p

For t 2> 'bl, or t < t, the equation
a-g(t) . _ b=ht) (2.7.2)

g(t") - g(t) h(t*) - h(t) _
admits only one solution ' different from t, Ilet X' = g(tt) and
y' = h(t')o

Geometrically, we can interpret tl- and 'bz as being the points
satisfying the parametric equations, x = g(t) and y = h(t), when OA
and AB meet X at Tq and Ty, respectively, For M = (g(t),h(t)), M
= (x',y') is the point obitained when MA intersects K.

Von Mises claims that the problem of finrlli.ng probability bounds

for sny distrilbution can be restricted to that of finding probability
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bounds for a distribution taking on at most three values, Through

the laws of statics he obtains the following results,

OSPOSXgt)gl - ?:ét,’%;t,

(2 = p)(b = h(t))-(a = g(t))(b ~ 9) < p(o < X < 1)
ph(t) - qg(t) b coT

ah(t) = bg(t
<1-pRET=qatt) » Sty
i-"-t'—gﬁ% gPl0gXgt)gl, 1<t | _ (2.7.3)
—g ’,

The above inequalities are sharp, The first ani third inequalities
are obtained by distributions taking on two values and the second ine-
quality’ is obtained by a distribution taking on thﬁee values,

An inequality which may be of some assistance to a statistician
dealing with control chart procedures was offered by Winsten[lZ.‘S].
Let us denote the mea;x range of .a sample of size n by W, .

W, = J R (F)ax, [62, page 339] (2.7.4)
-

where R (F) = 1 = F* = (1 = F)" and F is a distribution function.

For fixed t > 0 vwe uniquely define an integer m by

-1
I;gl Rn(i/m) < 1/t <'i§1 Bp(i/(m + 1), . (2.7.5)

Then for 1/(m + 1) < p < 1/m we define p by the following equation:

m 3
iél Ph(lp) = 1/to . (20706)

Subject to the abovey Winsten has showm that for any fixed interval

whose length is t times W,

At .
sup|_ ar(x) > p. - ' . (2.7.7)

‘ The author shows that (2.7.7) is sharp,
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_ C;rtain ways of representing £(x) for a r.v. X whose distribution
is not completely known have been given through Gram-Char]ier: series
and Hermite polynomials, £(x) is represented as an infinite series
whose terms are linear functions of the density function of a N(0,1)

r.v, and its derivatives, Aoyama [1] uses Hermite polynomials to

claim that

P(/X = pf pxo) g 233 =1) [14 glnye)]s (2.7.8)
_ K

where

2,2 31,2
22/ 2730) 7
14350+ +(2n - )[1 + g(ne)] = é?—;’}{ﬂ + L.09c ¢ 51 (Z) +4 7,? )@)+

' (?_nn.l)2 n
set (mi (n)A} s

[~}
2
c =f {g}'{g/ eXp(xz/ L)dx. and n is a positive integer,
® o

When k = 3 and n = 1,the value in the right hand side of (2,7.8)
is 0:1111; this is egual to the value obtained from TchebychesT's
inequality. However, when k = 3 and n = 2, the value in the right
hznd side of (2.7.8) is 0,0370; this is an improvement over the

value obtained from Tchebycheff's inequality.
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' CHAPTER THREE: INEQUALITIES FOR RESTRICTED UNIVARIATE DISTRIBUTIONS

3.1 Introduction

Most of the inequalities in chapter two were sharp; then.r sharpness R '

was exhibited by a distribution which attained equallty in the :mequahty. B

Under a general set of conditions, the results of chapter two camnot be |
improved upon; however, if additional informatlon about the random
variable?(, f(x) or F(x) is available, We may be able to improve our
inequalities, This sdditional information may be in the form of an
added restriction such as boundedness of the.r.,v., (Theorem »2.1.2) or
it may tell us that £(x) assumes a specific sliape, e.gs unimodal,

Throughout chapter two we assumed that the conditiohs of the Ham-
burger moment problem were satisfied.  In the case of unimodal distri-
butionsy, Johnson and Rogers [ 59] have stipulated the mement conditions
which must be satisfied so that a set of real numbers can be realized
as momerits of a unimodal distl‘ibutio;a. They have shown that for any
set of real numberss; py's.eesn !y, there exists a unimodal distribution
function F(x) with mode at zero wvhich satisfies

f;ng(x) =y, lgr<n,
iff there e/asic,os enother distribution i\lnc;cion G(x) such thzst
fmxrdG(x) =(r+1nty lgr<n,
J -G .
where n is odd, They have shown that for a r.v. with meanm, variance
02 and mode Xge their condition simplifies to | |
- xo)z < 302.

When dealing with unimodel distributions in this chapter, we shall assume

that the conditions for the unimodal moment peoblem are satisfied.
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Il:: the next two sections of this chapter we shall obtain probability
inequalities- through the use of geometrical argumenté. In the later sec-
tions we shall use remark 1 of Theorem 2,3.1 to obtain upper ’:probability
bounds., Our method of proof in the later sections of this chapter will
rely heavily on the works of Godwin Dh]Aand Karlin and Studden [60].

It is to be noted that most 6f the inequalities obtained in this
chapter are sharp; when dealing with unimodal distributions, equality
is often Lobtained by distributions which are uniform on some finite
interval and which may have some additional mass attached to one or more
points,

3.2 Restrictions on F(x) Over Some Given .Range

let X be a nommegative r.v, such that u) exists for r > 1 and let usv
consider three possible velues of Xy x5, X7, and 2, where 0 < x5.< X3 < 29
such that F(x) is ccnecave downrexd  in (>:0,7.) o 1f we join the points

(z,1) and (xl,F(xl)) and extend the line to xg, F(x), for xé(xo,z) will

lie entirely below this line, Let G-»( x) denote the equation of this line,

Fig. 3.1 “*“m::.:“’// r/ e
]
‘ ,
Then,y from geometry,
o) €0 (89 = Bl 3 1 = Flxp) (x = x,)3 (3.2.1)

2 e xl

7 2y X+ (x1 - xo)/F(-xl), | (3.2.2)
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v

2 | % z ,
/uz'- ?[ « dF(x) ?j %" dG (x) B[ xr[(l - F(x5))/ (2 = x3)Jax
X X

Xg 0 o
_ 1 - F(xl) zr+1 - xOr+1":
Z = Xy r+1
1= Flxy) € (r + 1) bz = x)/ (7 = x,™), . (3.2.3)

The right hand side of (3.2.3) assumes a unique meximum valve for some

a satisfying

he arfl - xor"'l = (r + 1)a¥(a - x1) » 2> X

by rearranging we obtain
xOJz~+1

(3.2.3) can be written independently of z; i.e.

1= Flxy) < (0 + Ludla - x)/ (@5 < x P+ |

Combining this with (3.2.4) we obtain

r _
1-Fxp)gm /e, (3.2.5)
which is the same as
r o . e
t
P(X2x)gp! [da, (3.2.6)
If a, as obtained in (3.2.4), is greater than zj in (3.2.2),
(3.2.5) is the best possible, If, however, a < Zg » (3.2.5) can be
improved upon, Lst z = zg; (3.2.3) becones ‘ . L
: L, Tl P4l -,
l - F(xl) S (r + 1)}11',(20 - xl)/(zo - xo 3 })o' ) . | (3-2.7)
By (3.2.2) we have o o
Zg = zc‘]; < (r + 1)/111',(20 - xl) |
DV > A > § ?
r+l1 r+l .
ZO -
< (l" + 1)}1;‘ . . (30208)
% .- ~
0 0

Substitnting (3.,2.8) into (3.2.6) we conclude

P(X2x) =1~ F(XJ_) < (29~ xl)/(zl - Xg)s (3.2.9)

+ra¥tl o (2 4 1)xya” = 0, . :: (3.2.4) -'
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i .
‘ where“zl_? Zq is the real root obtained from

2 -x (r + 1»u (z 7»M05'

Remark: It can be seen e“s11y that equallty ¢an be obtalned in (3.2 9),»}
for if X is unlformLy dlstrlbuted over [xo,zl],

P(X xl) = (zl - xl)/(zl - ro)

Thq*aboVe results-Were obtained by Von Mises [117], The idea‘behind'ﬁ:fﬁ“
the argumént u;ed to obtain this result seem to be quite similar to those
_argumehfs*uéed by Narumi [89] to obtain upper probability bounds for a
nonﬁégative-r;v. whose density func£ion, f(x), obeyed some constraint,
Naruml considers the cases when f(x) is either non-increasing or non-
decreasmng over some interval beginning at the origin and using geo=-
metn;cal,arguments similar to,but more tedious than the ones abovq,obn A
tained his probability bounds,

An argument somewhat similar to the one used above will be used in “”fifl
a subscquent sectlon to obtain a probabilliy bound for a unlmodal dlstrlbutlﬁn,

A much stronger restr1c»¢on on. F(x) than vsed by Von Mises Wwas 1mposed .
by Van Dantzig [116] 1n 2 p”actlcal 51tuat;on 1t may‘be very diff1cu1t to
verify his condltlon. Let X be a nonnegatmvw r.ﬁ. and let F(x) l P(y)
be its distribution funct;on.v Let P(x) be dlfferentlable to order h on
some interval [a,b] and let (~1) (J)(x) > O foz 0g 3 h and non~increas~
ing for j= h. If for some xp&[a,bl, h* is the integrel part of

(b = x3)£(x5)/ (P(x5) = P(b))s

where f£(x) = ~ dP(x) , and H = win(h h’r)9 r= gt P{P(Y ) - P(b)]/f(y
dx

and of = -yf\ (7 - a SYap () s then, Van Dantzig proves the following

theorem,
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Theorem 3.2.,1, Subject to the above conditions, (/) ;é correlation coafficient)

P(X 2 x5y < P(b) + /;—" k(a/r)oc}g/xo" ’ - ,. (3.2.10)

: 1 .
k -
where ! H’k(on) = Oi%%l{ﬂ (1 ../,)H/kj;/)rk Leq- y)de} s 0<0 <1,
can be obtained from the solution of an éque.tion of degree < H + k,

Proof: Let us consider another distribution function G(x) = 1 - Q(x)

satisfying
i) Q(x) g P(x) , for all x > 0,

i..fl..) Q(xo) = P(xo) s

-

CL'Jk A
1ii) Bk=-fode(x);Bk>0.

Here, as before, G(x) > F(x) for 21l x, Using a lemma attributed to
Kemperman, Van Dantzig shows that the conditions of the hypothesis per- .
mit vs to write Q(x) in the following form., For a < Xy < Ty '
P(X) 9 0 \< X < Qg
: h
+ P(b) + [P(xo) - PO (> - )/ (r - xo)] s <X Ty

Q(x) = :
P(b) , r<x<b,
P(X) y X Z bo
Ve must note that the best 0(x) is obtained for h = H = min(h,h*),

We shall nevertheless continue the peoof using h, The construction of

Q(x) also says that (r - xo)f(xo) = - h[P(xo) - P(b)].

By = 'fo Hdalx) = «foax_kdp(x) + {P(a) - P(b) - (P(xp) - P(b))e
[(x - /(> -_xo)]}j“ak

(S

Ty - )
_,:f x| P(xg) - P(b)] h"r -x -1 dx -[ xde(x) .
O k'r = b

a

Iect %o ==/.>r, a =-axo, b= on, and X = yra ' (3.2.,11)



‘_ -

P = 1= nrlxg) - P(6))/xo2(xo).
Thus, by a chaghge of variable, . '
' K [~ j;) axde(x)]xak -[ﬁ; q;cde(x)]xO-k

+ {P(a) - P(b) - [P(xo) - P(b)]/1 ~ ow>}:§ak
. 1 -f
+ W[P(x,) - P(b)]

N k(l /))h f/y (1- y)

{f Kap(x) - f xKap (%) K . [P(a) - P(b)] o¥
+ [P(xy) - P(B)] I(oy»/)‘(l '—,o)h . C (B2.12)

where

1l
I<a,0>=rf ¥ - ey - - a)hlf k
/0

1k
=£o (1-y)dy

_ __h! k! B qyd bl k(o \K+3
T (h k)?! - j-z-;O(—l)J STh ~ 398 k43 (CFD) >0, 0 </’)( 1.

I(OL/>) is a polynomial in Ve of degrce h -+ k. Iet /) be such that

/)k(l -T/v)h/I(oyﬁ) assumes a maximum value .for OSf\< 1, Then, by (3.2,12),

..L x aP(x) > By = ], jgaxkdp(x) -s-jbcoxde(x) + [P(a) - l"(b):]ak

+ [eeg) = PO I TRA/F QP (0.2.19)

of = - { (xk - a.k)dP(x) = --jo xar(x) !-JO xde(x) -l:ﬁb xde(x)
- a-

[:P(a) - P(b)]a-k . (3:2014)
Combining (3.2,13) and (3.2, .ll) we see that.
o > [P(x,) - P(b)]}:ok//;’k

Therefore, | A /"1 K
P(X 2 %y) < P(B) + h,k(“)al:./x()

and (3.2.10) Follows from (3.2.11).
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Van Dantzig also shows that if we wish to avoid the term !—1'1 (@)
: H

we can obtain ‘a simpler and more general result,

[onk +f0 *dP (x) +fb xde(x)]

P(X 2 x5) < P(6) +dp

Xp (l + 9)
, [PGa) - P:(Lb>] Y (3.2.15)
1+ 4
w%gre - ( ) khb
= (h+ Kk s (3.2.16)
B i (P
. Ik_’_l’h(q') w
V2 Eom s e o Forcar
| hel JL+3 htl |
I p(@) = & (LL++h - 1) a3 - o)-d '

and § = K'Y (k + n)

k+hy _ a)P, We note that both Godwin [33]

and Isii [53] have made errors in writing out equation (3.2,16)., If,

as a special case of (3,2,15), we let h=1, b =0y k = 2r,‘f;akde(x) =0
and.?’: 1, we obtain Camp's inequality [18]; if a=0s b=¢gpand h =1,

veo obtain Meidell's inequalities [8L,85].

3.3 Unimodal Distributions: Moments of Higher Order

In subsequent sections we shall obtain sharp inequalities for unimodal
distributions in terms of the first two moments, MNMotivated by Fearson's
improvenent (2.2.3) over Tchebycheff's inequalily through the use of
higher even moments, Smith [lO?] has offered a probability bound for a
bourded nonnegative r.v, whose distribution is unimodal, Iet 0 K X<k
end let E(X ) exist, > 1.

3 k . )
P(X > d) —( f(x)ax g k- Pl (x)dx .
Jda d'& d



Also '’

. | d o
'P(x;d)gazlf[pér-joaﬁlf(x)dx}_%? Ry - -

t -
where R = (1/d I')fodx Te(x)ax and d = t(n,) Ve | Lot #(x vo
k
function satisfying (d/dx)[#(x)] = £(x), P(x) = j f£(x)dx and #(x)
Jx

Integrating by parts we get

d d
\(0 xzrf(x)dx = - d P(d) + 2rf x_zr—lP(x)dx,

d
R = - P(a) + (20/d ) T (),

Combining (3.3.1) and (3.3.2) we obtain

d 2p-1
2rfox P(x)dx /qu

We now consider £(x) under three different resirictions,

ol (3.3.)

= «P(x), )

_(30302)

(3:3.3)-

Case I, Lot f£(x) be a monotone increasing function on [0sk; since the

second derivative of P(x) is negative, P(x) is concave downward,

let us

draw a line joining the points (0,P(0)) and (d,P(d)). The equation of

this line is
y = (x/a)(P(a) -~ 1) + 1,

If we substitute y for P(x) in (3.).3), we obnalﬁ

(3.2.4)

Upon integration, o o _‘ i
- P() § (g, /a0 + 1/?—r)-e._-1/2r;
1/2x : ' -
- ' Y 5
If d= t(er) s then ,
P(d) g (1/t (L + 1/2r) - 3/2x,

’ 2 1/2
In order to apply (3.3.6), k < (1-1—21')1/ r(,uz'r) [2x
consider a unifora disteibution y = £(z) on [0,’*]

2r
I‘(Z ) sk [(@r)s k = (204) \]/?'[L(Z.zr {/

Since our f£(x) is monotone incroasing in [0,k], it follows that
l/?r 2r -1/2r
)]

"> (a2

« To see this, ve

~1/2r .
= k(2r+1) / <hence our limitation on k.

(3.3.5)

-

(3.3.6)



Case.&I;t_iéiff(x)ﬂb§ ;iﬁ$;;£ohe'déeiéééiﬁg.fUnétionfoni[O,d]:.P(xjf;:gifﬁ;f”v
~is concave upwérd‘énd if.we drav a tangent to P(x) at x = ed:(o\5:9~5 1);>P:f;
?(k) willlndt cross the tengent 2t any other place, Jet | |
y = = x£(6d) + P(ed) + ear(ed) (3.3.7)
be the eguation of the tangent, As before, if we substitute (3.3.7)
into (3.3.3) and integratey we get
P(0d) + ar(ea)[e - 2r/(2r + J.)jgmz'r/dzr . (3.3.8)

We would like to minimize

#3187 - B(ea) + as(ea)[e ~ 2r/(2r + 1)]
with respect to €, IMinimizing we obtain 0 = 20/ (2r + 1) and substitui-
ing this value of 0 into (3.3.8) gives 7

P(X > [2ra/(2r + 1)) $14; [,
Al

2r - 2y
P(X > a) g fd IS N . (3:3.9)

If d = t(uér)llzr, then,

P(X > a) € T + 1/2x), (3.3.10)
Result (3.3.]0) was obtained by Meidell [84,85] as well,
Case 11T, Ieot f(3) be a monotone increasing function. in [O,q:) and
a monotone dsereasing function in [co,k . - Thus P(x) is concave down-
ward for x [0,co) and concave upwerd for x = . Let us draw a cﬁord
joining the ﬁoints (0,7(0)) and (e5,P(es)) as in case [ and let us
Qrest a tangent to soms point 0d, < dd < d, 0K O,s 1y as in case II,
If, in (3.3.3) P(x) is replaced Ey the equation of the choxd and the
equation of the tangent in the recpoctive intorvals [O,ca) and [cs,d],
theny by carrying out the procedure {1lustrated in the first two cases,

Smith [107] obtains the following resvli.
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{ - , . :
Py - S (2rp(X 3 00) + D/(2r + 1)]
. 2r .
(/) - r ’

where 0 is defined by the equation ‘

I
' 2r41 B[t2T-(c0)?"]

Smith originelly showed that P(X 3 ¢J) in the right hand sids of (3.3.11)
could be .Vreplaced by P(X > t0), however, in a subsequent paper [108] he
showed that (3.3.11) could be improved upon by replacing P(X > &J) by
1+ oP(X 2 w0) - 1]/t.
3.4 Gauss' Imequality

Until now we have used different geowotrical methods :to obtain proba-
bility bounds for random varisbles subject to some restric};ion.. In this
and the remaining sections of this chapter we shall show how remark 1 of
Theoren 2.3,1 will engble us to obta'in sormz of the classical Tchebycheff
type inequalities for unimédally distributed rendca variables, The
methods used will be bused on the works of Godwin [34] and Karlin and
Studden [60], | |

In chapter' one it was pointed out that Gauss offered an improvement
over"Tchéby(;hoff‘s inequﬁlity when the r,v. had a unimedal distribution;
we shall now prove the result.
Theoren 3.4.1 (G:':‘.USS""‘.'L']:".anlel")c If X is a v,v, such that E(X) = Al
Var(X) = o end X has a unique mode at my thong

1 .
L-x/(3)% , 3w < lo?, (3.4.1)

P(/Z - pf 2k) < :
‘ b2 /oK% 3% > o2, (3.1.2)



Remari: Through a change of variaBle Wwe can get fhe forms (1.1.2) and
(1.1.3) giveh in chapter one, ' 4
Proof: Assume m = 0, By the method discussed in the latter part of
section 2,5 of this paper the problem of (3.4,1) and (3.4,2) is reduced
to that of determining max P(X > k) where max is taken over all unimodal
distributions sé’cisfying
3 F(0) +f £(t)dt, 0 < x <G 5
{: (3.4.3)
x <0, .

where £(t) is non-increasing. We would also like f£(t) to satlsfy

f . Lar(x) = 0% j( ot 2e(t)dt.

Assume that F(0) = 0, If F(0) # 0, the distribution function F(x)
can be so adjusted thét the probability F(0) at 0 becomes'uniformly
distributed over the interval [0,€]. Using the results for the
case vhen F(0) = 0 and letting €2 0, we can obtain the requlred solu~
tion, F(0) will be defined by

'F(0) +f:ti"(t)dt =1,

Let us consider a function H(t) satisfying

dH(t) = - df(t) | (3.0, 1)
‘ w
1=Jo £(t)dt = tf(t)/ (tdf(t) J tcH(’c) (3.4.5)
Similarly, integrating by parts,
> 0 > s 3 :
o =j 2e(t)dt =( (t3/3)an(t) (3.4.6)
0 )
to co
f £(t)at =f (t - x)au(t). - (3.4.7)
k X

By (3.84.5)y (3.4.6), (3.4.7) and remavk 1 of Theorem 2,3,1 we

must consider polynomials of the fornm
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v

E}(t) = at + bt3 > g(t) ={o, Cstsh (3.4.8)
. b=k t 2k
anq we must de%ermine A
min(a + 3b0%), | : (3.4.9)
where the min is taken with resééétjio all polynomials of the form
(3.4.8). To determine a and b'we would like to lower P(t) such that
f(t) will touch the non-zero part of g(t5 at some point z¢{k¢o) and
p(t) will still satisfy (3.4.8). ‘
#(z) = az + bz3 =17 =K,
$'(z) = a + 3bz° = 1,
Solving’ the two simultaneous eguations ﬁé éé£':'f-;
a1 - 3k/22‘, b = k/22°, '
Thus (3.4.9) becomes |
. min((1 - 3k/22) + 3w0°/220), . (3.4,10)

Minimizing with respect to z, for a > 0, We obtain z = (3)20 whenever

2. Substituting these values

1o? > 3E and 2 = 3k/2 whenever I é o
of z into (3,4,10), we obtéin (3.4,1) and (3.4.2), respectively,
Remark 1: Eguality in (3.4,1) can be obtained by a uniform distribution
on [a -(3)'3'0,;; + (3)%'03. In (3.4.2) equality can be obtained by a distri-
bution which is uniform over [n ~ (3/2)k,p.+ (3/2)k] and whiéh has an
extra mass added to the point m, This extra mass is added at the mode,
Remark 2: Ulin [115] has zlso obtained probebility bounds for unimodal
distributions, His bounds, howevers arc not always sharp,

Under an additional restriction, Kerlin and Studden [60] are able to
extend Theorem 3.4.1.
Theorem 3.4.2, Lot X be a r,v. satisfying the conditions of Theorem

3.k, L end let the distribuiticn of X also satis{y the additional restriction



. ' L,l.{;

f(u - n) = f(u + m) = 0, Then,
| (1 -k, 3P h?, (3.1,11)
P(/X ~p/ 2K) g Y 6?/9®, 3> 4% , 3k < 2m, (3.4,12)
302(1 - k/m)/mz-., 3k2 >,uc2 y k< ng 3k/2, (3.4,13) °
Proof: As in Theorem 3,4,1 we let u1 = O.and our problem is again
reduced to that of determining P(X > k). Let ty = min(t:£(t) < (1/m)),
| f om[tz- t02][f(t) - 1/mjdt <0

T oo 2 m_,
fo £ (t)dt sﬂ) [t°/mlat
i.e. 0% < /3, ‘ | (3.4,14)
If 3k2\< lig? s then by (3.4.,14) we see that (3.4,11) = (3.4.1) must
hold, Similarly, if 3k2 > L'Gz, (3.4,2) will also hold whenever .

3k S Zm.

Let us consider the situvation when 31{2 > 1102 and kg mg 3k/2.

We must consider polynomials of the form

0, Otk
p(t) = at + bt3;g(t) = { A
t-% kg<tgm,

and we must determine

min(a + 3b0%)
with respect to the above polynomials, If at the poiht m, for a > O,

P(m) = am + b = - k, |
then b = [m(1 - a) - k]/x and

a + 3002 = a(1 - 36%/n?) + 3(1 - k/m)o?/v?

> 3(1 - k/m)o | (3.4,15)

since mz > 302 « The minimum of P(X > k) is given by (3.4.15) since
(3.4.15) < (3.4,2) whenever k < m < 3k/2,
Renmark: Equa]ity can be obtzined in (3,4,13) by a distribution which
is uniform over [m - RN m] and which has an extra probability added

to the point o




3.5 Royden's Inequality [98]
Theorem 3.5.1,. Let X be a r,v, such that f(x) has a unique mode at 0

and such that vi and v% exist. Then

1-k/2v), O0gkgv], (3.5.1)
vil2k 5 VI < kg 3V, (3.5.2)

P(/X] > k) << bwi?  8v1k 3v3 v,
5 -1, “2gcxg £, | (3.5.3)

w ooy w9

2
vt - Lyt

2 l 9 k ?" vz'/vi 9 (3050"")

Ba? - 8vla + 3v!
, 1 2

vhere a is defined as the largest root of

223 - (3k + hvi)az + 8vika - 3v§k = 0.

Proof: As in section 3.4 the problem is reduced to that of determin-
ing P(X > k) over all distributions (3.4.3) satisfying the moment con~

ditions v'y v!. Again, as in Theorem 3.4,1, we may assume that F(0) = 0,

1* 2

Let aH(t) = =~ tdf(t). Integrating by parts as we did in section 3,4,
1= j :Df(t)dt - | ': dE(t) (3.5.5)
v =_ﬁ°tf(t)dt =f(;b (t/2)an(t) (3.5.6)

e © ’
v =L(0 £2£(1)dt ifo (£2/3)aH(t) (3.5.7)
V) " €O

(k f£(t)at =J . (1 - k/t)an(t) (3.5.8)

Remark 1 of Theoremn 2.3,.J). and conditions (3.5.5) to (3.5.8) tell us
that in order to obtain P(X > k) wc must congider polynomials of the
form

(3.5.9)

‘ 0, 0gtgk,
¢(t)=a+bt+ct2;g(t)={ N

1-k/ty t >k,



{

and vwe must find

" cmin(a + 2bv? + Bcvé),' | , - (3.5.10)

where the min is taken with respect to all polynomials of the form
(3.5.9). Let f(t) touch the non-zero part of g(t) at z.

2.1 -z

$(z) = a + bz + cz
Differentiating with respect to z we get
. b + 2¢z = k/2%,
and solving the simultaneous equations
a=1-2kz+ cz? | b = k[2% - 2cz. ' (3.5.11)
(3.5.10) becomes .

min[ (z% - Iviz + 3vi)e + (2% - 2kz + 2vik)/zzj.  (3.5.12)

Alternately, the simultaneous equations can be solved so that
b=[2-3k/2 ~2a]/zy c = (2k/z - 1 + a)/zz. . (3.5.13)
Under these substitutions, (3.5.10) beccmes

m:in[(zz - ll—viz + 3v2')a/z2 + (ll-viz2 - (BVé + 6kv.l)z + 6vék)/23:]. (3.5.14)

Note: From our representations in (3.5.6) and (3.5.7) and Schwarz's
inequality, 3v§ > bvj® , dee. 2% - bviz + 3w > O,

We shall now determine (3.5.10) when z ranges over the intervals
[2ks@) 5 [3k/2,2k] and (k43k/2].

Let us consider the case when z 3 2k, Since f(t) > 0, (3.5.11)
tells us that a > 0 and b > 0 whenever ¢ = 0, Iet ¢ = 0; to deter-
mine (3.5.10) we need only to minimize the right hand term in (3.5.12).
Hinimizing with respect to z we get z = 2v{ when vi 2k and z = 2k
whenever v| < ko Substituting these values of z into the right hand

teim of (3.5.12) we get



‘ Ll,?

E’ ]l - k/2vi ’ vi 2 k 2 O, (30501)
P(X > k) <
vif2k 5, v!gk : (3.5.15)

Let us consider the interval when 3k/2 < z < 2k, i.e. 2kfz > 1,
and 3k/z < 2. Since f(t) > 0, we see, from (3.5.13) ythat for a = 0,
b>0and c2 O.' As before we assume that a = 0; in order to obtain
(3.5.10) ve must minimize the right hand term of (3. 5.14)_..with respect

to 2z, Mj'fximizing with respect to 2z we get z = 2k for 0 <k £ BV?:/lLvi,

‘o.
2 = 3v2'/2vi for 3v2'/’+v' <£kg vé/vi and z = 3k/2 for k ;vé/vi. Substi-
tuting these values of z into the right hand side of (3.5.1%) we get
Vi/2k s 0g<kg 3v2'/l'fvi ’ ' (3.5.162 :
: bv22 gy 3vy v
e, 2
PRK) g | == == ,4'\<k\<—f- ; (3.5.3)
3v2 9v2 vl vl
' o
] ? t
Worfo s k2w . (3.5.17)

Combining (3.5.15) and (3.5.16) we get (3.5.2),

We rust now consider the remaining intervel k < z < 31.</2. One condi~
tion which must be satisfied is that ﬁ(t.) >0, Let a and b take on the
values described in (3.5.11); we thus have a quadratic equation in t
'which must be 2 0, Examining the diseriminant D

(k/z2 - Zcz)2 - be(1 - 2k/z + czz) 5
we see that D < 0 whenever ¢ > k2/ [%3(2 ~ k)] = ¢ >0, Therefore, for
c >c*, P(t) > 0. Also, P(t) 2 1 - kf/t whenover t > k, Again, by using
the values of a and b obtained from (3. 5.,11) and rearranging the terms,
(1 - 2¢/z + kt/zz) + c(z - t)2 >1-k/t., (3.5.18)
Since the left hand term of (3.5.18) is greater than 0 whenover c > c*,

it follows that for (3.5.18) to be satisfied, ¢ > c¥,




Rewriting (3.5.12) with c replaced by c*, ve get
l&z"F - 1223 +-(8vjk + 9k2)z2 - 12vik22.+ 3v5k2

min(a+2bvi+3évg)= min
3
: bz’ (z = k)

Differentiating with respect to z and equating to 0 we obtain

WP (lz - 3k)[22° - (3K + bvi)zz + Bugkz - 3vik] = 0.

We can.immediately discard the roots z = 0 and 2z = 3k/4 since these
values of.z do not fall into our interval, We must now examine the
third degree p&lynomial for roots, Differentiating'with respect to 2
and equating to 0 wo get |

,(3z ~ hvi)(z - k) = 0.

. (3.5.19)

By examining the third degree polynomial for maximum and minimue values .

we see that the polynomial is negative between the two largest groups
end that it assumes its minimum velue at z = k. Also, by replacing z
by 3x/2 in the third degree polynomial,ws see that the largest root
will never exceed 3k/2 iff k > v3/vl, Thus the largest root of the
third degree polypomial will give a satisfactory minimizing 2z, This
polynomial of degree 3 can a2lternately be written in the following
form:

3 2
227 « Uyliy
4= 1

322 - 8viz + 3v§
If ve substitute this value of d into the right hard side of (3.5.19)
and rearrange the terms, we shall get (3.5.4).

Remark: The sbove proof is due to Karlin and Studden [60]. The
inequalities obtained are sharp. When qudén [98] first proved these
inequalities, he exhibited distributions which attained equality in

each of the four inequalities,
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- 3.6 éou.nds for a Nonnegative Random Variable with Unimodal Distribution
Karlin and Studden [60] have offered probability bounds for a non-

negative r.v. vhose distribution has a unique mode at x = xd.

Theorem 3.6.1, Let X be a nomnegative r.v, such that E(X) =, and such

that £(x) is unimodal at x = Xgs Leeo

< .
jo f(t)at 0. x< Xps f(t) is non-decreasing,
F(X) =

% .
F(xg) +f £(t)dty, x >x5 s f£(t) is non-increasing,
0

where F(xo) = F(xo+) - F(xo-).

, < 2 %
1- (k"XO)/ZOt:I-XO), k2% s 2}1-x0;k+(k --xok)2 ’

(3.6.1).
s 2 2 3
() 07 +ex)®)y X 33 5 21 = 35 < e 407 = xg0)?
P(X2k) g~ (3.6.2)
(2}1 - k)/xo s k s xo, 2}1 - xo S k, . (306.3)
1 [ k S x()’ 2}1 - Xo >/k. (30604)

Proof: As in the previous two sections, we can, without any loss of

generality, let F(x;) = 0. ILet us consider a function dH(t) which

satisfies aH(t) = ~(t ~ xp)af(L). Analogous to the last two sections,

o (72}
1 =jo £(t)dt =f0 dE(t) (3.6.5)
O [+ 4]
O:u =§0 tf(t)dt = xpf2 "Jo (t/2)au(t) : (3.6.6)

L=/ = x ) ) 5 k>

‘( © ‘ - (3.6.7)
£(t)dt = d C 0D .
k J (g = %)/ (xy = t)]8i(t) +j an(t) 5 k<x

0

0.
k

Let us consider the case when k > »g. Remark 1 of Theorem 2.3.1



i _
and conditions (3.6.5) to (3.6.7) tell us that in order to obtain
P(X > k) we mﬂst consider polynomials of the form

0, 0£tgks

B(t) = a + bt > g(t) = { ' (3.6.8)
(t=X)/(t-x) s t2k,

and we must £ind )

min(a + b(Zu - x5)), , (3.6.9)
where th;.min is taken with respect to all polynomials satisfying
(3.6.8)s let z > k be a point such that

a+bz=(z~-%)/(z~x). ' (3.6.10)
Differehtiating (3.6.20) with respect to z we get

b~—-(k--:wco)/(z--xo)2 . ’
Substituting this value of b into (3.6.10) gives }

a= (25 - 2kn + dox ) (5 = %) 20 . - (3.6.11)

and solving the quadratic equation in the numerator of (3.6.11) we

1
can see that z 2k + (k2 - xok)2 « Substituting the values of a and b
into (3.6.9) and resrranging the terns we get
min(1 - 20k = x Mz =)/ (z = x)*). (3.6.12)

Minimizing this expression with respect to z, we can get (3.6,1) and

(3.6.2),

Let us now consider the intervzls where k < xo. (3.6.7) tells us

that vie st consider polynomiels of the form :
(x0 = k)/(xg - £)s 0 t <Xk,

P(L) = a + bt 2 glt) = .
| Lo ik 3.6.13)
In order to obtain P(X > k) we wmust determine
min{a + b(Zu ~ %)) , (3.6.14)

where the min is taken with respect to all polynomials satisflying



(3.6.13). If t = 0, then a (x, = ¥)/xy; thevefore 1> a > .(x - k)/x,.

0
tion in b, (3,6.14) must be achieved when

Since (xo - %)/ (x_ =) is convex.and b(2u - xo) is an increasing func-

a + bk = (xo-k)/(xo-k);l,
i.e, b= (1 - a)/k,
Upon substituting this value of b into (3,6.14) we obtain
= min (a+ (1 = 2a)(@n - x))/k)
= min [(2n -~ xy )k = a(2p - Xy = k)/k]. (3.6.15)
If in (3.6.15) we let a take on its minimunm Valué-(xo n'k)/xo'whenever
2p - x5 <k, then we obtain (3.6.3). If in (3.6,15) we let a = 1 when-
ever 2p - Xy > ks then we get (3.6.4).
Remark: [60] If in the above theorem x5 was not specifiedswe could

still obtain a bound by maximizing each of the inequalities with respect
to XOO

Karlin and Studden exhibit distributions which attain'equality in
(3.6.1), (3.6.2) and (3.6.3).

3.7 Humerical Comparisons

In this section we shall offer some nmumerical results which compare
sonie Wwell known unimodal distributions with the appropriate Tchebycheff .
type insqualities, We shall consider the following distributions which

are symmetrical about the origin, i.e. m = 0 and the mode lies at O,
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N Nommal (2m) Fexp(=/2) ~e << 1 (3.2.0)
| (bix) /b7 ~bx<0 2

T Triangular ' 5 b /6 (3.7.2)
(b=x)/b" . 0gx<b _

c Cosine (L+cos x)/2m ~TIX T (ﬂ2/3)-2 (3.7.3)

L  Logistic [sech®(x/a)]/2d  ~wex<co (ma)%/12 (3.7.4)

LA . Laplace ¢ exp(=2¢/x/), -0XL & Zl./Zc2 (3.7.5)
c>0

We shall compare the actuai'probability values attained by each.of
the aboyé distributions with the beét Tchebycheff type inequality which
corresponds to the situation. Our legend will be as follows:

G - Gauss (Theorem 3.,4,1)
G,T. - Truncated Gagss (Theoren 3.4,2)
Without loss of generality we shall assume that 02 = 1, This can bs

done since

P(/% 2v0) = P(E/ 2 0.

"However, by assuming that 0% = 1, we must appropriately adjust the
truncation points of the triangular and cosine distributions,
The probability values used for distributions (3.7.1) to (3.7.5)

‘have been taken from Chew [22b]; they have been modified to suit our

situation,
TABLE T
P(/x/ > %)
k G, N, L. - 1A,
0.2 0,8845 0.8414 0.8206 0.7524

O.4 0.7690 0,6892 0.6524 0, 5680



—en

0.8
1.0
1,2
1.4
1.6

“1,8

2,0
2,2
R
2,6
2,8
3.0

0.2 °

0.4
0.6
0.8
1.0
1.2
1.4

0.6
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G, N,
0.6536  0,5486
0.5381 0.4238
0.4226  0,3174
0.3086  0,2302
0.2267  0.1616
0.1736 0,109%
0.1372  0,0718
0,1111  0,0456
0.0918 0,0278
0.0772  0,016L
0.0657 0,009k
0.0567  0,0052
0,094  0,0026

TABLE IT

P(/X/ > k)

G.T. C.
0.8845 0.8560
0.7690  0,7156
0.6536 0,582
0.5381 0.4596
0.4226  0,3495
0.3086 0.2544
0.2267  0.1755

L.
0. 5040
0.3796
0.2804
0.2038
0.1462
10,1040
0,0736
0,0508

0,0364 °

0.0254
0.,0178
0.0124
0.0086

1,6
1,8
2,0
2,2
2,4
2.6_
2,7662

1A,
0.4280
0.3226
0.2432
0.1832
0.1380
0.1040

0.0784

0.0592
00146
0,0336
0,025
0.0188
0,0144

G.T.
0.1736
0.1372
0,1086

0.0666.

0.0236

0,0000

c.
0,1128
0,0660
0,0336
0,0138
0.0036
0.0004
0,0000
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TABLE IIT
P(/X/ > k)

k G.T. T. k G.T. T,
0.2 0.8845  0,8630 1,6 0.1736 .0.1202
0.4 0.7690  0,6998 1,8 0.1326  0,0702
0.6 ~  0.,6536 0,5698 2,0 0.0918  0,0336
0.8 0,5381  0.4732 2,2 0,0509  0,0104

= 1,0 0.4226  0.3500 2,4 0.0101  0,0004
1.2 0.3086  0.2602 2,495  0,0000  0,0000

1.4 0.2267 0,1836

3.8 Other Inequalities

In this section we briefly mention some other probability bounds
which have been obtained for random variables which are restricted in
some way, Barlow and Marshall [2,3] obtained a set of inequalities
wvhich are of practical use., Iet X be a nonnegative r,v, such that
log(l - F(x)) is either concave or convex on [04c); if log(l - F(x))
is concave, then F(x) is said to have increasing hazard réte while if
log(1l - F(x)) is convex F(x) is said to have decreasing hazard rate,
Iet us consider q(x) = £(x)/[1 ~ F(x)]. a(x) is increasing (decreasing)
Aff log(l ~ F(x)) is concave {convex), q{x) is called the hazard rate
and when considering certzain life expectancy problems involving either
human beings or mechanicel components, the authors point out that
q(x)dx denotes the conditional. probability that A will aie'in't&me
(x,x 4dx) given that 4 has survived till tino X. Using geometrical
argunents, Barlow and Mavshall are able to obtain sharp proﬁability
bounds for distributions having either increasing or decrsasing hazard

rate,
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Ié chapter one we mentioned that Winsten [125] had obtained proba-
bility inequalities in terms of the mean range, W,, of a sample of
size n, Winsten also obtained probability bounds for unimodal sym-
metric distributions in terms of w,. The inequalities which he ob-
tained are sharp; Winsten is able to construct distributions which
attain equality,

Shohgf [105] considers bounded random variables whose distributions
are either /) shaped continuous symmetric,/w shaped continuous asymmetric,
L/shaped continuous symmetric orﬂ/’shaped continuous asymmetric, He
ob't.ained; probability bounds for 1 - P(/X/> k) in terms of u, 5 5 > 1,

k and the upper and lower boundary points of X in each of the above
cases,

Mallows [?6] has offered a method of obtaining probability bounds
through the use of "extremal distributions", He defines a distribution
function to be smooth of order k with bound A, i,e, to satisfy the smooth~
ness condition (ky\), if

i) the (k + 1)th derivative of F(x) exists and is continuous for
all x;

ii) there exists k + 2 numbers BsBysesesBy,q such that
1K+ .
0 < ( - l) FQ( ])(x) < A" Bi <x< Bi+1, 1= 0’1’.”’k.

Bo and Bk+l are the two end points of a bounded distribution; when X is

unbounded Mallows takes B = =@,y By ,q = +00 , HMHallows describes a
method of obtaining two functions L(x) and U(x) such that the distribu-~
tion function which satisfies the 2m moment conditions of the problem

and tho smootlness condition (k,\), i.e. satisfies (2myk,\) also



satis}?ies the inequality

L(x) < F(x) < U(x),
To obtain L(x) and U(x) for A = , he constructs ce:;;itain "éxtremal
distributions", E(x) , which satisfy the following conditions., Vhen

XgreessX, are the distinet values of X arranged in a nbn-decreasing

order, then,

dfr COr
i)jx E(x) = pd = | XTAF(x), T = 0y1yeess2m:
- o0 - -0 .
ii) (0, X € Xps

E(x) =Z

1, x> x i
iii) ' in each interval (xi,xi +1), E(x) is a segment of a polynomial
of degree < k;
. . (k-n;) B . -
iv) at each X9 1= Oslyeeesmy E (x) has a simple discontinuity:

n; is called the characteristic muber of X39 1 = 03lye00m and satis-

n .
fies n; 2 0, iy_"..Joni = ke (ngsesesn) is called the character of E(x);

v) E(x) is the .1:'m1it of a sequence of distribution functions each
of which satisfies the smoothness condition (k,%).

Mallows shows that the distribution function F(x) intersects any
extremal distribution function in at most 2m + 1 points and probability
bounds can thus be fourd by examining the E(x)'s over various intervals
which contain F(x), MMallows has conjectured the existence of L(x) and
U(x) if the extromal distributions satisfy some restricted conditions,
but a geuneral. solution of the problem (2myk,&) does not exist, As a
particular case he shows that when 2 r.v. Ys with zero mean and variance

1, satisfies the smoothness condition (1,0) i.e. it is unimodal, then
i LR ’



57

i
2

5= | ockgsnE,

2
“P(X >k) < )

ooy

b, ks ()R
9(2:4+°)

Mallows, in a later paper [77], extended his definition of a
smooth distribution funetion and offered an alternate method of con-
structing extremal distributions so as to obtain sharp probability
bounds for smooth and bell-shaped distributions, The interested
reader may refer to the papers by Mallows [76,77] for a thorough
study of this subject or he may refer to Karlin and Studden [60,

page 4987] for an extension of some of Mallows® results,
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CHAPTER FOUR: INEQUALITIES FOR MULTIVARIATE DISTRIBUTIONS

L,1 Introduction ' .

Iet X = (X1s4.45X,) be a random vector defined on (f1,7%P) where
L) = R,. In this chapter we shall obtain upper probability bounds for
P(XeA), AeO), in terms of knovn moments of the distribution .« The ine-

qualities obtained.for sets in R; cannot be extended to sets in R, .

Using Theorem 2.3.1 we shall concentrate on the development of a general

theorem for sets in R, and we shall show how this theorem enables us

to obtain other results, e.g. the inequality in section L,5 will be
obtained from the general theorem by the change of variable technique,
The general theorem will indicate that the solution to the problem

of obtaining sharp upper bounds for sets in R, lies in the solving of

a matrix equation; the equation, however, does not always have a simple
general solution.,
VWe shall also briefly review some of the earlier work which has

been done,

I,2 A General Theorem

Through the use of Theorem 2,3.1 we have been able to obtain many
of the inequalities in chapters two and three, In the formulation of
the theorem () was taken as any abstract space; hence in particular let
.= R, and let X = (X]4e009Xpy) be a random vector defined on (fL,C%P),

For TeC let £(x) = f(xi,...,xh) be a nonnegative function on R such

.' that £(x) > 1 for all xeT,
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i P(XeT) sf £(x)dp +f £(x)dP = Ef(X). ' (4.2,1)
" xeT x¢T

In accordance with Theorem 2.3.1' let f(x) be a nonnegative function
of the form

f(x) = ay + xa' + xAx*, (4.2,2)

where a; is a constant, a is a 1 x n row vector, A is a symmetric n x n
matrix and ' denotes transpose, Let T be a symmetric region in R, such
that T' i5 an open bounded symmetric rectangle and £(x) > 1 for all

xeT, I.et}) be a family of probability measures on (], such that

‘P(M) = {P:P:EP, E(Xi) = 0, i:l,...,n,E(Xin)=Trij,i,j=1,..'.,n ,(40203)

’ 2 : 2 2
where nii = Tl'i s 1= l,...,n,"ﬂ—.-_- <ﬂi:b’ gnd M= (1,0,...,0,‘”1 ’nlz’..'"n ).

is an interior point of the moment space
Jﬁ: (1’E(Xi) 1 0’ i = 1,...’n’E(Xin) = TTij,i,j:l’-oo’n,PEy).
Since T is a symmetric set, (4.2,2) becomes

ag + xa' + xhx' 2 In(x), - (4,2.4)

ao - xa' + XAX' ‘>'.- IT(X). . (’4’1205)
From the above equations we see that a is the null vector and we can

rewrite f£(x) as
: f(x) = ag + xAx' ;IT(X). (4.2.6)

Ef(X) = ag + trAl{and by Theorem 2,3.1

P(XT) = inflay + trAff], (4.2.7)

vwhere inf is taken with respect to all polynomials satisfying (%4.2.6).

Since P(Y£T) €1 0g ay gl Now

§
ao + xAx! .>,IT(}:):—> XAX'/(]_ - ao) '}IT(X)@ (#0208)

By owr initial assumptions we note that g(x) = xAx'/(1 ~ a;) satisfies
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all the necessary conditions of the nonnegative function f(x), and that

Eg(X) = [teaW)/ (2 - 2y)s Also, if P(XeT) < 1, then, by the sbove,

[trAT)/ (1 = 2p) = trAT+ ap([trAT}/ (1~ ap)) < tr AT+ ap. (4.2.9)
Thus for ag > 0, g(x) would provide a lower bound than f(x); therefore,

ag = 0 and .
f(X) = XAX'. ) (L,’ozolo)

| P(XeT) < min(tr AT ), 3 (4.2.11)
where min is taken over all A€ Aand
A = {A: xhx! 3 Ip(x), for all xeRr;}. (4.2.12)
We néte that A, as defined abové for the set T, is positive
definit;a. A is closed, convex and bounded from below,
To illustrate the above, let us consider a random vector Y = (Yl,Yz)

such that E(Y) = 0 and E(Yin) = 0 :9diyJy = 142, Let T' denote the

i3
set ‘in/kioi"{ <lyi= 1,2} ané consider a nomnegative function
2 2
1 y 2ay,y: ¥
£yovy) = = [y R )=, (%.2,13)
1-a” k)"0 k.k, 0.0 k “o
1 1212 2 2

-1
, 1l a
where X = (X,%) = (Yl/klﬁl,Yzlkzﬁg),az <land A= (a l) .
(%:2.13) > 1 for a1l xeT., By (4.2,11),
: l /(1 _ 220, 1
P(/Xl/ >1 or /XZ/ > 1) < E(XAX') = > (  — + 2) ’ (4.2,1%)

where /7= 012/0102. Minimizing the right hand side of (4,2,1%) with

respect to a, we obtain

2 2 2 2.2 2, 2, 2-%
R N Al N R el 2 (4.2.15)

2/')1511{2

Substituting this value of a into ()+°2.ll+) gives
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v

oot
P(/Yy/ 3 10y or [T,] 3 k0,) < % 16,2 + [(e? + 2) 2 = 412 T, (4,2,16)
“ _ ' 2k12k22
The above is Lal's inequality [68].
When ky = ky = k, (4,2,16) becomes
1
: 2.7 '
P(/Yy/ 2koy or [Tp] 2¥0,) $ 1+ 1% -0) . (4.2.17)

The above is Berge's inequality [8]; through an example which attained
equality in (4.2.,17), Berge has shown that (4.2,17) is sharp,
The method :just illustrated can be extended to an n dimensional

random vecter ¥ = (Yl,...,Y ) by choosin"'

i=1 J 1

n .
£(y) =,—%—]{§: xBo 9, Z: ii—;’——;g (4.2.18) |

ikl

-

1 =3 ses =&

where A= "2 1ese =2

LR e G060 oo

[ X ] [ X J [ XX ] 1
. n-1
is a n x n positive definite matrix; i.e. ]Al = [1-(n - 1)aJ(1 + a) > 0.
For n odd a < 1/(n-1) and for n even -1 < a < 1/(n=1). For an n dimen-
sional rectangle T' defined by -{/yi/ < kioi,:'!.:l,...,n}, f(y) > 1 for all
y&T, Therefore
P(veT) = P(/Y,/ > k04 for some i) g E£(Y)

r-‘x}"! l

n._; P s
= 42, Spe2a2, =
TAT (3=1 kg i=j=1 kgky

Minimizing the right hand side of (4.2,19) with respect to a, we obtain

(4.,2,19)

an upper bound,.
The drawbsck in the above method is that a sharp inequal:ity can only

be obtained when n = 2, In doing the above exawmples matrix. A was chosen

arbitrarily; let us see if can characterize r'{, the set of all positive
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i
1

definite matrices A satisfying (4.2,12) for some given symmetrie

region Te€R, sué:h that T' is an open bounded rectangle in R, defined

by {/xl/ < 1,:1:1,...,n}. P(XET) is equivalent to P(/X;/ > 1 for some i),
The development will be based on the works of Olkin and Pratt [91] and
Whittle [123], Note E(X'X) =TT .

Since A ié positive definite B = A-l is also positive definite,

- a a b b
41 s B= H =A"1,

at A p' By

where a and b are 1 x n-1 vectors., BA = I implies

1) blla + bAQZ = (O,ooogo); b= "bllaAzz-l H (402020)

-

"A

2) byjagq + ba' = 1; therefore by (4.2,20),
-1
bll(all - a.Azz' a') =1, (L"02021)

Ie.t % = (XZ’”"xn)‘
(x752) A(xy52)' = all:)cl2 + 2az'%y + zhyo7!

xlzall - xlzaAeza' + (Z + aAzz-lxl)Azz(Z + a.Azz-l xl)'

Xlzbll-l + (Z - bll-lbxl)Azz ( Z - bll-lbxl) ', (4.,2 .22)

1]

Since Ay, is positive definite

| xAx? 3 x77byy "%, (4.2,23)
and by (4.2.22) the minimum value of xAx' occurs when byqz = bxy,
If xp = 1, then (4,2,10) and (4.2,12) tell us that bll-l?' 1, In an

equivalent way we obtain the conditions bii.‘l?’ 1.i=1,.00sn. We summarize
the agbove results in the following lemma,

&1
Lemma U,2,1 [91]. AGASLE B = A~ is positive definite and by € 1,

i=lseee N0

Since E (JAY') = tr AT is 2 Jinear funciion of A, the minimum value
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of tr AT is realized at an extreme point of 4,
Theorem 4.2,1 [91]. A is extreme in Aiff B = A  is positive definite
aI’Id bii = 1’i=1’...,n.

Proof: Sufficiency. Assume B= A is positive definite and bjj= 1,

i=lyeee9ns If A is not extreme :‘mcﬂ ,then. A can be expressed as a con=-
vex combination of Ay and Ay, where Ay,A, el et
A=3(A +8)s A XA . (b.2,24)
1= m L A0 ' 3 '
1=minxAx'=b,, " 2 Z(Q;le!\lx + rjr%g__llxﬁ.zx Yo (4.2,25)

.2. i i ' i ' [ ] [ ] L ]
By (4.2,23) §:1L_r_31 x Al:_c >1 and &1121 x Ayx' 21, Thus by (4.2.25)

?

E;;ll xMx' = 1 = 13%21 xAox' and by (4,2,22)the min must occur at an

identical point and A; and Ap must be identical, Thus we have a con-

tradiction of (4.2,24) and A€fis extreme.

Necessity, If ACAis extreme indA, then,by Lemma 4.2.1, B'= A  is
positive definite, If B is positive’'definite but by; < 1, we would

like to show that A is not extreme and thus obtain a contradiction,

13(15)=13.+(6 °> =<bll+6 b)
00 b B,o

By Lemma %4.2,1 (B(lS))'-1 = A6 YechTor small b, Also, since AB = I,
corresponding to (4.2,20) and (4,2.21), we get
2= ~aybByy | (4.2,26)
ay1(byq = bB,, " b*) = 1, (4.2,27)
Using (4.2,26) ond (4.2,27) we can write (B((S))m:L as a function

of all(f)), . b
A(8) = 21,(8) _ - BZZ . () > (4.2.28)
\ ~B22 Yot By 'szz '
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A

Since B(5) = (A(é))-l, We can, by matrix algebra and (4.2,27) write
a17(6) =, 1/(byy + 6 = BBy, b') = 237/(1 + bagy). (4.2.29)
For 0 < © < 1, we can choose 67,060,067 # 62, to satisfy ‘

054 + (1~ 0), -
1+ 518.]_1 1+ 623.11

0

which is equivalent to
6231 (67) + (L = 0)ay,(5,) = a5,
Hence, by the above, |
OA(59) + (1~0)A(5,) = A,

Thus A is a convex combination of A(87) and A(8,) and thus not extreme.

Therefore, by = 1 and in general by = 1, i=ly.eeyne Q.E.D,
In Theorem 4,2,1 we justified having chosen A as we did in the

first example of this section; i.e., ones along the diagonal of A-l.

More generally, if from the setcA we consider matrices of the form
A=[(=~a)+aete] ™, -1f/tn-1) <ac<l, (4.2.30)

where I is the identity matrix and e = (ly.es51l) is a 1 x n vector,

We can see from the above theo.llem that, providing A is pééii;ive

definite, A will be extreme :'Lnﬂ. It is easy to see that A as defined

in (4.2,30) is positive definite, Iet B =_A-1; I.BI=(1+(n-l_)a)(l-a)n-l >0

provided that (1+(n-1)a) > 0 and (1~-a) > 0; i.,e, 1 > a > ~1(n-1). There~

fore, by (%4.2.30) B is positive definite and so is A-l.

Theoren M.2.2 [91]« Iet Y be 2 n dinensional random vector such that

Yi‘/kiaf \’Sl < 1,1:1,...,n}.

‘B(Y) = 0 and B(Y'Y) =2 . ILet T' be defined by{

Then, :
P(XeT) = P(/%;/ 2.1 for some i)

N

< (-1t - (-2)u + 2[u(nt-u)(n-1)]
n n? n<
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3 52 |
= [v® + [(nt=u) (n=-1)1°T, | (4,2.31)

n?

where E(X*X) =Tr,t = trland u = Vet
Remark, Birnbaum and Marshall [15] offer an upper bound on P(XET)
when only certain terms of T are knowm, Their inequality is not sharp,
Proof: tri(1-a)I + ae'e]-;ﬂ = t2[ (I - ae'e)TT)/(1 ~ a)
_ = (t-au)/(1-a), (4.2,32)
where o =' af(l+ (n~1)a). Differentiating (4.2,32) with respect to a
and equating to 0 ve get
t + [u(nt - uw)/(n - 1)]%
' &= u-(n-1t
By the condition of (4,2,30) only ' L
t - [ulnt —w)/(n = 1)
- ue~(n-1t N
is a satisfactory solution, Substituting (4.2,33) into (4,2,32) will

(4.2.33)

a

give (4.2,31), The value of a in (4,2,33) insures a minimum value
since (4,2,32)-2° as either a-y 1 or a~> ~1/(n-1).

If n = 2, (4.2.31) is identical to (4.2.15).

Theorem 4,2,2, however, has not yet given us an upper bound which
is sharp for all n; i.e, min tr AT, for all A satisfying (4.2,30) does not
necessarily give a sharp upper bound,

Vie restate the problem in an alternate fashion in an attempt to
establish a unique sharp upper bound, Ve must now minimize tr B—1T5‘
for 211 matrices Béﬁ s the set of positive definite matrices B such
that byy = Lyi=lyeessns |
Lemma 4.2.2 [91]. tr B 15 a strictly convex function of .B for Bf/g,

and has a unique minimum which occurs at an interior point B, oi}/d" .
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- Proof: B(t) is a linear function of a variable t; dB/dt is a symmetric

matrix and d2B/dtZ = 0.

a Lo oe=lo . =1/} 1
dttrB = ~-tr B (dt)B T

_ ~1/aB) ~1/dB| -1
=2 tr B (a—E)B (—a—E}B > 0,

since B ande a_re positive definite, tr B-177 is therefore a strictly
convex function of B and it must have a unigue minimum, We must show
that this unique minimm ocours ab an interior point B ofA3. ﬁow,

tr B'll‘[ > tr B-l(smallest characteristic root of ), (4.2.34) .
By (4,2,34) tr B-177-> was B boundary oi‘/g ; therefore, B, is an interior ’
point of/ﬁ .
Lerma 4,2,3 [91]. B, is the unique point of 43 such that Bo'l'n' Bo":L
is diagonal,
Proof: In order to determine Bys the unique minimum, we must take

derivatives and eéuate to zero. lLet by 3 be a non-diagonai element of

ByisFlyees ,n,i}\:j.

d ~1 oo=MaB \ -1 - dB -1 -1 _

vhere C = B-J‘([B—l and dB/dbs 3 is a symmetric matrix whose (i,3j)th and
(jsi)th elements are one and whose. other elements are 0, Thus by (4.2,35)
Bo'-lTTBo—l must be diagonal,

If we combine lemmas 4,2,2 and 4.2,3 w:‘l_‘l';h equation (4,2,11), we

obtain the following sharp upper bound,
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. © Theorém 4,2,3 [91]. P(/¥s/ > kio5 for some i) = P(/X3/ > 1 for some i)
-1 = s
S tr By 7 = tr By By Bo = tr By 7By s
(4,2.36)

where By is the unique positive definite matrix such that bis = 1

i=1yeu09n and such that ByfrB, ™" is diagonal,

Remark: Through an example which attains equality in (4,2,36), Olkin

and Pratt illustrate that for tr Bo-:!’lTs 1, the inequality is sharp,
A problem does arise in that the matrix B, cannot always be deter-

mined from7 ; i.e. if D is a positive definite diagonal matrix such

that
, -1 -1
D= .Bo YA Bo ’

-

B.DB, =77 (,2,37)

then

does not have a general solution which can be obtained by ordinary

matrix calculus,
Example: ILet X = (X74ee05%,) be a2 random vector such that E(X) = 0,
E(X;) = 0;%, i=1,...,n and E(¥;X5) are unknowm for i % j. By Boole's

inequality and the univariate Tchebycheff inequality

P(/X3/ 22 or [Xo/ 21 or .4u oOr /Xn/ ;1).

P(/Xi/ > 1 for some i)

n
P Ux/ >1))

n

n 2
ZPUG) 21 g 2057 (4.2,38)

/A

If By = I and the covariance values of 7/ are zero, then BO-:)I’r Bo-l

is a diagonal matrix// and by Theorem 4.2.3, ‘inequality (4.2,38) is

® sharp provided that igl 037 < L.
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L,3 A One-Sided Multivariate Inequality
CorreSpondlng to the theory of séction 4,2 of this paper, Marshall
and Olkin [80] offer a one~sided multivariate generalization of the

Tchebycheff inequality for a random vector X = (Xl,...,Xn) with 0 mean

and with variance covariance matrix of the form

2 2 2
(9] o oo )
” = : /o /: = 02[(1-/0)1 +/e'e]; -1/(1’1-1) </0< 1. (14’.3.1)

b O:zﬂ . see O
(4.3.1) is of the form (4.2,.30).

Iet T' denote a reg.ion defined by {xl <1, i=1,...,n} . We wish to
determine a sharp upper bound for P(X2T) = P(Xi > 1 for some i,i=1,,4.9n).
For a positive definite n x n matrix A and a 1 x n vector b = (by,...,b) ),
let us, by Theorem 2,3.1, consider a nonnegative function

£(x) = ag + xb' + xix', (4.3.2)
where f(x) 2 1 for all xeT, Because A is positive definite we can re-

write (&.3.2) as : .
f(x) = (x - a)A(x -~ a)' + Cy (4.3.3)

vhere a = (al,...',ah) = -—;bA-l and C = ag - aAa' >0, Similar to what

was done to equation (4,2,6), we can show that C = 0. (4.3.2) can be

rewritten as

£(x) = (x = a)A(x ~a)*s (4.3.4)
such that £(x) > IT(x).

Ef(X) = tr A(TT+ a'a), (4.3.5)
and the upper bound for P(¥ST) will be given by min tr A(77T+ a'a)
subject to £(x) > T(x)
Theorem 4.,3.1 [80]. Iet X = (Xj,...,X,) be a random vector with E(X) =

- 2
and E(X'X) =/7 where77is defined in (4.3.1). If i)1-01t >0,

1) n 2o Zn = 1)(L + ), where t = (n = 1)(1 )= 1, then,
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I;(XGT) < noz'{[(ldn-;),p)(lwzwzén-l)(l-;p))1%+(n-1)(1;p)%122 s (4.3.6)
' {mo [1+(n—1)/o]}

otherwise P(¥ET) g 1.
Remark: Through an example it is illustrated that inequality (4.3.6) is
sharp. This fact will justify an intuitive guess.and assumption which
~are used in the proof of the theorem., Karlin and Studden [60, page 520,
Theorem 5.1] justify the assumption,
Proof: Let Dy, = diag(l~ajsesesl=ay)y Z =(X = a)(Dl_-a)-l, A¥ = Dy_ AD,_,
and B = (A*)-l, where D;_, is defined-in our notation, By matrix mani~

-1 ~1
pulation A = (D) "A*(Dy.,) = and thus

tr AT + a'a] = tr B (D) (7 ata) (D) " (4.3.7)
(4.3.4) becomes . :
£(z) = le_a(Dl_a)-lA*(Dl_a)-lnl_az' = zA*z', (4.3.8)

£(z) 2> 0 for all z and f(2) 21 for all z€T. By Theorem 4.2,1, the
minimum upper bound will be attained iff (A*)-l = B is positive definite
and bys= 1,3 =1,..05n, If we consider(s , the class of matrices Q of

the form (4.2.30). o
Q = [(1-9)I + ge'e], (4.3.9)

we have already shown that Q is positive definite iff -1/(n-1) < q < 1.
Now T)“/o2 is of the form (4.3.9); intuitively, through the symmetry
conditions, we expect BEQ and 2= ae, [ < 1],
B = [(1-b)I + be'e] (4.3.10)
I1et P be an n x n orthoganol matrix such that each element of the
first row Py = LE 3 = Loasesn. .
PQP' = diag (1 +(n-1)qs 1-Gseess1-q). (4.3.11)
Using (4.3,10) and (4,3.,11) we can write (4.'3.7) as

tr AT+ ata] = t» (PBP')-J‘[PTTP' + azPe'eP']

1 -a)




n[a? + 6% b(o%t - az)].
= 2 ] . ? ’ (403-12)
(1 -a)" (2= 1)1 +(n -"1)b]

where t = (n = 1)(1 =P) - 1, Ve mst now minimize (4,3.12) with

respect to @ and b, Minimizing with respect to the conditions of the

hypothesis
ul+wm-1-w]
a-——o(1+bt)/(l-b),b— .
t t[(n -1(1-~0 t)]"'

The conditions i) and ii) of the theorem are required so as to insure
that the roots of the minimizing equation for b are real and that B
is positive definite, Substituting the values for o and b,respectively,
in (4.3.12) we get (4.3.6).
Example: Let X = (xl,...,xn) be a random vector such that E(X) =

2 2
E(X; ) =04 5 i=1y.0eyn, and E(Xin) are unknown, iz j, By Boole's
inequality and the univariate one-sided Tchebycheff inequality,

n .

Héﬁ@i>1n

1

P(Xi > 1 for some i)

n
z P(X >1) < 21 cl /(1 +0, ) (4.3.13)

i=1

We can obtaln thls sharp result from Theorem 4.3.1, For if B =T,

we must minimize (4.3.7).
n

-1 -1 2 2 2
tr(Dy_) (T+ a'a)(Dy_ ) = iiil(oi +2; )1 =25) . (43.14)
~ Minimizing (4.3.14) with respect to each aj[a; < 1],

2(1 - ai)zai + (Giz'l' ai2)2(l - ai) = O, i= lgooo’n-

2 E 2 2 22
ai = "‘ci and (&'03'1’4) = i:lci (1 + ci )/(1 -+ oi ) (I'I.J.-'B).

b.lte  Arbitrary Rectangular Region in Rp

In equation (4.2,16) we obtainsd P(YET) where T was a closed symmetric
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set W;xose complement T' was an 6pen bpunded symmetric rectangle in Ry,
However, in calculating the upper bound we assumed that E(X) = 0 and
that T' was symmetric about the mean., let Y = (Yl,Yz) be a random vector
such that E(Y) = (uqym,) and E(Y'Y) = £,

Isii [54] removes the above two restrictions and considers deter-
mining P(YéR) where R' is an open rectangle whose sides Ly Ly, ave

parallel -to the yland ¥, axis and are in the ratio of 0,:.05 Trespectively,
The new restriction added is that ("11’7'12) lies within R' on one of the

diagonals of R', By means of a linear transformation X3 = (¥; - my)/04,

i = 1,2, we obtain a new random vector X = (X1,X,) such that E(X) =

and E(X'X) =( 1 /i)r.ﬂ’Our problem is now to determine P(X€T) whers T!

is an open square, obtained from the transforming of R, with sides of
length (o + B) and with vertices (-oy-a), (~t,8), (8,8) and (Bs=x)48 >0 >0,
Theorem 4.4.1 [54]. Iet X and T' be defined as sbove, The upper bounds
of PUET) axe a5 ollove: |

i) P(XeT) g A /[x +1 +/>], B -0 > % . 2a2 >1 -/3 (4,54,1)
where A= [22a(1 ) + (2(1.7x: )(a ﬁ;a) ]/[2 - (120

i1) P(xeT) < [(B - )% + b+ (16(L - ) + 8(1 -2 (B - a) )2—_| (l» %,2)

(@ + B)

if the conditions of i) ave not satisfied and 0B > 1,

2 2 2
208 - 1) 22(1 -0 ) + (1 =2)B - )
iii) in all other cases P(XfT) < 1.
Proof: Iet A be a positive definite matr:'u:'; By Theorem 2,3.1 we con-
sider a nommegative function |

£(x) = f(Xl’XZ) = a5 + xb' + xAx', ' (&.%,.3)
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where‘?«b = (bysbp) and £(x) > Ip(x)., As shown in section 4,3, (4.4.3)
can be reduc'ed" to ‘ ‘
£(x) = (x - a)A(x = a)*, £(x) 3 Ip(x). ’ (4.b.1)
Our task is to determine min tr A[TT+ a'a] subject to the condition
‘of (L. 4.4), Ve can similarly define a function i‘l(x) = f(xz,xl) to
satisfy (4.4.4),
let us intx:oduce a new function which is a convex combination of
£1(x) and £(x); g(x) = 3[£1(x) + £(x)]. g(x) >0 for all x, g(x) >1
for all x& T and Ef(X) = Eg(X)., By the symmetry conditions involved,

we can write

g(x) = (x - a)Alx - a)! ,>_,IT(x), (4.4,5)
where a = (mym) and A =Cit -cZ) s c>0, /t/ <1, (4.4.6)‘

[t/ < 1 ascertains that A is positive definite.
tr AIT+ a'2] = 2(en (1t) + c(1~to))
2

where Ay = c(l - F)’, Ay = e(l +t), uy = (1 -70), w = (1 -/0) and

8
7= 2%m, Similarly (4.l4,5) becomes
2 : 2
g(x) = e[ (x3 = m)” + (x, - m)" = 2t(xy - m)(x, =~ m)]. (4,4.8)
By now considering the extreme points of the square,(4,4.8) can be
replaced by

2 2
2hho(a +m) =1, 209028 ~m) > 1, (4.4.9)
A o+ ).2 )‘l + ).2

If we now minimize (&4,4,7) with respsct to the conditions in (4.4,9),

we obtain the requirsd results,

L,5 A Symmetric Convex Polygon in R2

We know that the inlersection of a finite number of closed half planes
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is a convex polygon. Thus, a convex polygon, symmetric about (0,0),
can be represented by the intersection of a finite number of strips

where the ith strip Si is derived by rotating the strip {/ X1/ <wy

the intersection of two strips will give a rectangle and this problem
has been solved in section 4,2, In the case when 3 strips intersect

we obtain a hexagon,
n

let us denote a bounded convex polygon by T' = inSi; by DeMorgan's
n =
law T = jglsi' If X = (Xl,Xz) is a r_andom vector such that E(X) = 0

and E(X'X) =T],then

s

Ef(X) = tr AT7, L (4.5.1)
where A is a 2 x 2 positive definite matrix and g
| £0x) = xhrt 3 Ip(x). (4.5.2)
A = 5 A: £(x) 205 £(x) 21 for [x%3/ > w} : (4.5.3)
By Lerma %,2.1, AcAiff B =( o1y, b12>= 27t s positive definite
b2 b

2 . .
and b33 £ W « It is known [29, page 26] that the transformation matrix

used to obtain Sy by rotating Sy ‘through an angle @ is of the form

N\

cos 0. = sinQ
P =
sin a cos O

2
Thus, by rotating Sl s A becomes PAP' and b11< w becomes
b]_lcos2 o + bpo sihzo. + 2bjp sin @ cos 0 L wz.

If we have m rotations, then, for different wy, we obtain the following

set of conditions which B must satisfy such that A€.4

bllcoszai + bzzsinz(x:.L + 2b]2 sin a, cos o, g wiz, (4,5.4)

fOI" 1= lgaongné
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As in section 4.2 we must determine min tr 5177, where B£75, the
closed bounded and convex set of positive definite matrices satisfying
(4..5.11’). What are the extreme points of /6 7 ’
lemma 4,5,1 [82]. If B is an extreme point oi‘,ﬁ s then equality in
(4.5.4) holds for at least two values of i. Equality in three or more
values of i determines B and three equations determine at least one
extreme point of B,

Proof: If equaiity in (4,5.4) holds for i = 1 only, we would like to

show that B is not extreme, Iet us represent B = (Bl + Bz)/z as a
convex combination of By, By ﬁ (Bl X %), where

b1y =€ Pbi2 11 *€ b

By = y Bp= .
T\ by byy +§ b2 byy = §

If e;cos2 o = gs:i.n2 a, then (4.5.4) holds for i = 1, Also we can
appropriately choose € andg small enough such that the inequality
sign in (4.5.4) will hold for i = 2,;..,m. Thus B is not extreme and
by the contradiction we see that equality in (4.5.4) must hold for at
least two values of i, If equality holds for three values of i for

which the ai's are distinet, then we have three equations in three un-

knovmns which can be solved by Cramer's rule,
If equality in (4.5.4) holds for i = 142, then, by and by, can be

written in terms of bq,. (4.5.4) can be expressed as a linear equation

in byjoand for some value byjo and sorme 1 = 3,...,m equality can be attained

in (1“.551‘,’)0 )
Remark: :If we let u = (cos cni)/wi and vy = (sin ai)/*:!i, then, (&.5.4)

beconias

blluiz -+ bZ?,v'l.z + ?-blzuivi \<\ 1, 1= 1,o~\p;m= (}“'0505)



The bdundary line of the strip S4s defined by x3 cos a3 + Xp sin 0y = Wy,
becomes xju; + Xpv; = 1. T' is now defined by

T '—'{/XJ.U' + XZVi/ < 1, i= l’o-o’m} (LI' 5 6)
Iet/ﬁ(s) {B xB_ x' 1 for all xeS] for some SeR,, If B, satisfies

min trB]'}T trBo l7",
BeA(S)

we call {xBo-l;c' < 1} the "best ellipse.for S' " and we say that B,
is best for S', For T* defined as in (4.5.6) lemma 4,5,1 tells us that

for each S;NS; we must calculate the best B; if for a B the ellipse

J
-1

{xB x' < 1( lies in T', then this B is used to determine the bound

tr B 1T e« If none of the {xB x' < l} lie in T', we must, for each

Si/) Sj/)Sk find a best B, Among these B we determine the one such

that the ellipse {xB"lx' < 1flies in T', and we use this matrix B

to determine tr B_]IT. lemma 4,5.1 tells us that there exists a B which

is best for T', A computational procedure to determine tr B-%I' is out-
lined by Marshall and Olkin [827,

Consider the set T! ={/xlui + %ov3/ <1y 4= 1,2}. If the best
ellipse for S5yNSy is best for T', we obtain the folloxﬁng theorem,

Theorem 4,5.1 [82]. If X =(X1,X2) is a random vector such that E(X) =

and EQX'X) = cij s 14 = 1,2, then

(4.5.7)

"2 2
where ey = w3 037 + vy Ogp + 2u3vi032 » i=l, ?

Proof: Our result will be obtained from (4,2.16) by a direct change. of
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.' ' variable, From section 4,2,1 we know that if Y = (Yl’Yz) is a random
vector such that E(Y) = 0 and E(Y'Y) = T35 s then by (4.2,16),
2 - 241
= 1 - 2
P(XES)= P(/Y / =1 or /Y [/ 21) g 3[1111 SAUSSE [(‘nll + ﬂzz) I T, 1], (4.5,8)

By means of the transformation matrix

u \ -]
M= 1%
ViV

Wwe can transfor;n S' into T'. Let X = Y¥M; the corresponding nonnegative
function yB ly associated with S becomes x(M 'BII) x? and( ) mast be
replaced by (M') 1( >M If we calculate the elements of

(M) ]( )M and respectively substitute them for the elements of
1j>in (4,5.8), we shall obtain (4.5.7).

4,6 Convex Sets in Ry,

Until now the matrix A of our nonnegative function £(x) defined

such that £(x) > Ip(x), where T' is an open bounded rectangle in Rys

has been positive definite, This, however, is not so when T is a convex
sét or the union of two convex sets.as we shall illustrate, We know from
chapter two that when examples are given to illustrate the sharpness of

an inequality, probabilities are only given to those points xe¢T and x‘e’l‘
vhere £(x) = 1 and f(x) = 0, respectively, If T is a convex set or the \Jor
2 convex sets, and A is positive definite, then f(x) = O implies that

x = 0; also, since{xAx' < 1} is on ellipsoid, £(x) = 1 for all xeT says
that x can have a2t most two points in T, Since a three point distribu~
tion will not generally satisfy E(X*'X) =77: x-.;e conclude that A is not

. positive definite, Is there a matrix or vector which can replace A?



Marshall and Olkin [81] developed a general theorem for determining
sharp upper bo{mds when T is either s::. convex set or the union of two
coﬁvex sets, ‘ ’

Theorem 4,6,1. let X = (Xl,...,Xn) be a random vector with E(X) =
E(X'X) =I7. Let T = T+UtCu - xeT_t} where T, GR, is a closed convex

set, Iff = ga = (al,...,a R ¢ ax' 2 1 for all xs T} then,

-

P(XET) < inf alfa' , (4.6.1)

2e A
P(XeT,) < inf, (alfat)/ (L + alfat). - (b.6,2)
. ac..: .

Equality in (4.6,1) can be attained whenever P(XéT) 1; equality in
(4.,6.,2) can always be attained.

~ We note that (4.6,2) is the one-sided analog of (4.6.1).
Remark [88]: 1If in the conditions of the theorem we only know

2
Tes = Ty s i =1y0009n, thenT] can be written as

ii i
n o 2
'17'= (j?_l‘lﬂi )Co y
where CoéCthe set of all correlation matrices, (4.,6,1) and (%4.6.2)

are respectively equ_Lvalent to

P(XeT) < Sup :mf aiat, . (4,6.1)
P(ke'l ) < sup inf  (aTa')/ (1 + a.ra') (4,6,2)"
Cotfl a€ aESA

(&,6,1)" and (4.6.2)' are sharp.

Proof: To prove (4,6.1), let f(x) = (a"‘ . Then, £(x) >0 for all x,

and £(x) > 1 for all xzT. By Theorem 2,3.1

P(¥ET) g Ef(X) = inf, al&',
ac?

To prove (4,6,2), let £(x) = (ax' + a}"@')z/(l + a?’E')Z. £(x) >0 for
all x end £(x) 21 for all xeT,. By Theorem 2,3.1 we get (4.6.2).
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) We must now show the sharpness of the inequalities, This will be
done through two examples offered by 'the authors,
Iet q = qa) = alla', @* = q*(a) = a/(1 + q) and w = w(a) = aT/q.

Lemma 4,6,1 [81]. There exists an ay€ARsuch that i%fqa'ﬁé' = adl2e's
ags
for such an a,, W, = w(ao)eT .

Proof: Since I is positive definite, a transformation will makel/= I

and thus there exists a unique value aj&Asuch that inf a7a' = aJ&,',

It wo§§ T,, then, by the geometlry of convex sets there exists a separat-
ing hyperplane; i,e, there exists a vector p;Rn, p \.-\ 0Oy and a constant
k such that px' >k > pw,' for all xeT,, We know that aw,' = a,(aJl/aJla,")"
=1 and thus [p + (1 - Kagly' <1 and [p + (1 = Kag' 21 for all xeT, ..
Thus, if we replace p by [p + (1 ~ k)aoj, we can let k = 1, Since pw,' < 1,
ice. plagl/aglagt)! < 1, we have aglfp' < ag7a,' and for small € > 0,

€ (plip' = 221" + alay') < 2(agla,' - agip'): | '
ie. (6p+ (L -9a)T(p + (1 -é)ao)' < aJle, ‘. (4.6.3)
However, (€p + (1 =8a,)x' 2 €+ (1 =€) = 1; therefore (¢p + (1 -E)ao)eu/@
and thus a contradiction by (4.6,3) and the definition of a,e Therefore
WoET, .
Now to show that (4.6.1) is sharp, we let, q = q(ag), ¥ = q*(ay) and
v = x-rx(.ao). Let D = diag(dysesssd,) such that d > 0, 1 = 1,007y * 21,
and i§1di =1~q, Iet Mbe an r x n matrix such that M'l =T7- qwtw
and 1ot C = D 2M be 2n r X n matrix, ILet Z be a 1 x n rendom vector whose
distribution is given by .

P(Z = e3) = P(Z = =c3) = d3/2, i = LyeeasTs

. (4.6.4)
P( 2= W) = P(Z = - W) = q/2,



where cs is the ith row of C.

1

r
E(2) = § (cidi/Z - cidi/Z) +wq/2 - wg/2 =0

E(2'2) = C'DC + qw'w = M'M + qu'w =T,
By (4.6.1), P(2¢T) < q, however, by Lémma 4,6,1, wi£T and P(2T) > q.
Thus P(Z2T) = q and any random vector with distribution (4.6.4) can
| achieve equality in (4.6.1).
Lemma, 4,62 [81] Tr- qu'w is positive semi definite and TJ - q*w'w
is positive definite,
Proof: By Cauchy's inequality [5, page 69],
(xTTx')(wTFlw') _>,(xw')2.
et zaqlait)’ 3 gt ), (4.6.5)
If x% 0, one of‘the two inequalities in (4.6.5) must be strict and
the resvlt follous,
We shall now show that (4,6.,2) is éharp. By the above' lenma we know
that there exists a non-singular n x n matrix M satisfying M'M = TT - g*w'w,
let P be an orthogonal matrix such ’f,hat -q*I'IM-lP >0y let D = diag(dl,...,dn),

: 1
1p ond let C = D"2P"M, Iet Z be a random vector whose

1 -
let eD? = —g*wl
distribution is given by

P(2

ci) = dgs 1 = lyeeesny

(4.6.6)

i

P(Z W) = q*.
n ) n

To satisfy a probability distribution 'Zldi + ¥ =1, Now;‘{g}l dj = .
i= =

2 - 2 -
eDat = (q*) w(M'M) lw' = (%) w(lF~ qtwtw) lw’ = 1/(1 + q). . Since
n
L

o* = q¢f/(1 + q) we have i:il di + q* = 1, Therefore (4.6.,6) defines a

probability distribution,

E(Z) = eDC + wg* = (~q* P)(P'M) + wg* = 0




80

;z:(z'z) = C'DC + q*w'w = MM + gtw'w = 1T
By (4.6.2) P(Z€T,)  q*. However, by Lemma 4.6.1 P(Z¢T,) 3 g%,
Thérefore (4,6.,2) is sharp. |
Corollary. If X = (Xsee0sX,) and E(X) = 0 and E(X'X) =TT, then,

P(XeT) = P({ffzi/ >land X >0o0rX<0)< xg%r‘h allat, (4.6,7)
P(XT,) = PO,/ >1, X > 0) <min (aFa')/(1+aTa’). .  (4.6.8)
&=l atd ‘

L,7 Inequalities for Concave Functions

F&r any concave function f(x), Jensen's inequality says that
Ef(X) <-fE(X)., This property has been utilized by Mudholkar [87] and
Mudholkar and Rao [88] to obtain generalizations of the univariate and
one-sided univariate Tchebycheff inequalities,
Theorem 4.,7,1 [88], Let X = (Xl’°_--9xn) be a nonnegative random vector
such that E(X) = u(1l x n vector), Then, for any nonnegati{re sconcave,
homdgeneous function § de:{‘:‘meél on the nonnegative orthant R+n of Rn’
and € > 0, | '

P(P(X) 2€) < Hlu)/e. (4.7.1)

If f(u)/s €1y (%.7.1) is sharp,
Proof: P(H(X) »€) g EA(X)/e < H(E(X)]/e = f(n)/e .
We shov (4.7.1) to be sharp by constructing a distribution which attains
equaliﬁy in (%.7.1). Ilet the distribution of the random vector Y be

given by

P(Y = (¢/f(n))n) = Plu)/e ,
P(Y=0)=1-p)¢.
E(Y) = (e/p())ine[Bn)/c] = p.
Since § is a homOgcneous function,

PUSEY) 2C) = P(Y = E/P())om) = O2)/E
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Thus any random vectoi- X whose distribution is the same as that of Y

~ achieves equality in (4.7.1).

Corollary. Under the above conditions the following inequality is s.ha.rp.
P(H(X) >e) < f(m)/e . _ (%.7.2)

Proof: Since {X: ¢(Xj >€}_C_§{:¢(X) 26}', inequality (4,7.2) is

true, If (4.7.2) is not shar;.), then let there exist €, >¢€, sﬁch that for

each X such that E(X) = p, P(H(X)>€) < P(p)/e, and \éé!c‘-:'l«’xe&l . (4.7.3)

let € 0 & >€, By the theorem there exists a random vector Y such that

E(Y) = and o
Bp)/ey = P(B(Y) 2€) < PQY) >€) < Plu)le,

By (4.7.3) a coﬁti'adiction exists and thus (4.7.,2) is sharp, |

‘ Various inequalities can be obtained from this theorem by consider-
iﬁg various forms of nonnegati_x;e random vectors and certain nonnegative,
' concave, homogeneous functions on R . .

Example: If Xjyee.sX, are jointly distributed random variables such

that E(Xiz)= ciz, 3 = 14uessn, then, for any nonnegative,homogeneous,

concave function f on R,
2 2 2 2
P(b(xl ’""Xn ) ZE)& ¢(°1 I XX ,on )/6. (llf.?.ll')
2 o '
If in (Ll’.?.l) we let Xi = Xi 9 i= l,oo.,n’ (’4‘.?04) follows iJmned?.ately.
To show that (4,7.4) is sharp, we consider the joint distribution of the
random variables X9 1 = 1540090y given as follows:
i
P(Xi = :l: oi/BZ’i = l,...sn) = 8.12
P(Xif-'o,i:l,ooo’n):l-sl ; ]
2 2 2 2
IfB = gS(ol seees0, )e £ 1, then P(_ﬁ(xl seeesk ") >€) =B . Therefore
(%.7.4) is sharp. -
(%,7.4) can be rewritten as
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2 2 ‘ 2 2
N P(ﬂ(xl 9000 ,Xn ) >/6’ X>0orXc< O) S ¢(ol [ XX ) )on )/éo (40705)
We now consider a specific example of a nonnegative, homogeneous, '
concave function on R, which will enable us to obtain a shérp ineqﬁali‘ty.
' n

If t = (tl,...,tn) is a nommegative real valued vector and fa:.j 3=1
. n -
are nonnegative real numbers such that i§1°‘i = 1, then,

n
PL.(t) = (iglaitir)l/r’ r<i, (%.7.6)

is a nonnegative, homogeneous, concave function on Rine

Theorem 4.7.2 [88] let X = (Xl,...,Xn) be a random vector such that
: 2 2 . .
E(X) = 0, E(X*X) =11 and E(Xi ) = Oy s i =1y..09n, Then for any non-

negative numbers O seeesly such that igl 0y = 1l and r< 1,

P B0 /1 /7 26 x> 0) € (P M1 v (Frae Y.
(57.7)

(L;'o 7.?) iS Sharp.

n
2 2
Proof: If r< % (iélai/)(i /r)l/ ¥ is a concave function (by (4.7.6)).

T, ={x=(i{_fl/xi2/r)l/2r 21, x> 0} is a closed convex set in R, and

by Theorem 4,6.1 equation (4,6.1)', (using the notation defined there),

-

. n 2r .
P(XET) = P(iglal/xi/ >1, X>0or X <0)

< sup _inf afiz' , " (4.7.8)
CO‘S’.}CaE. ¢ : .

2)r)l/r is a2 non-

(4.?08) is Sh'd,rp. Since ¢ (xlz Sese ;xnz) = (izrz-_lai(x.i

negative, homogeneous, concave function, the above exemple (4,7.5) tells

us that n '
. 2r\1/r
2! = s - r;
é?%C :{gﬂaﬁl = (Z 040507 (4.7.9)

If we again consult Theorem L,6,1 equation (4.6.2),then, since aTa' 30,
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. n :
P(E) aiXy" 21, X > 0) g < g ;gfﬂ(avr'/(l + aTa'))
n
ey .)€ (E wm P (B s (710

(4,7.7) follows from (l&.?.ZLO).
To show that (4.7.7) is sharp, we consider the random variables Xi
with joint distribution given by

ks
P(Xi = 01/82 'Y i= 1’.."n) = B/(l + B)’

-

P(X; = =03/B% 5 i = 1,.04,m) = 1/(1 + B),

If B = ( E 21')1/ 1‘/61/ Ty We can see that equality is attained in (4,7.10).
The‘same argumentg that were used in Theorem 4,7.1 can be extended
to concave funcj:ions of symmetric random matrices,
Theorem 4,7,3 [88]. Let Z be an x n symmetric positive semi-definite
matrix such that E(Z) =77 and g(z) >0 is a homogeneous, concave function
of Z, Then, for € > 0,
P(g(2) 26) el . . (4.7.12)
If g(M/c < 1, (4.7.11) is sharp.

Proof: (4,7.11) follows immediately from Jensen's inequaiity. Ifr

glr)/e £ 1, let us consider a random matrix 2, wi'xose distribution is

given by
(e/em)) = g/e ,

0) =1~ glM/e.
E(Z,) = €T g()/ e =TT and P(g(Z,) 2£) = g(®)/e + Thus (4,7.11)

©P(Z,

]

P(z,

is sharpe
Our notation is slightly changed for thé remainder of this section,
Kudholkar [8?:] has offered an inequality for matrix valued random
variables, Iet X]_,..., siy be jointly distribuﬁed p x 1 random yectors

such that E(¥3) = 0, E(X5%3") =TT3s & = Lseoesne TT=][q + wes 7y and
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X = (X3s000sXy)s If €15eeus0p ave the characteristic roots of XX' and

ﬁi,...,ﬂp are the characteristic roots of1], then, for any nonnegative

symuetric concave function f on R+ s Mudholkar has proven the follov-

P
ing result, o -
Theorem U4,7.3. Subject to the above conditions
P(£(c1seeescp) 2 €) < £(M15000,5m)/éE,s (4.7.12)
wheré € >0, |
Proof: Marcus [78] has shown that if ClseessCp are characteristic
roots of a positive semi definite symmetric matrix A, then
, min f(yl'Ayl,yz'Ayz,...,yp'Ayp)j= f(cl,...,cp),

where f is defined as above and the min is taken over all orthonormal
sets of p x 1 vectors yl,...,yp.

If XX' = A, then, by Marcus' result

Pl£(egsensey) > €] PLE(1 Ar1s0 e sy, Ayp) €]

Ef(yl'-“-ylso .o 9Yp'Ayp>/é-:-

<
E (I hy1se e ¥ T¥R)E

S (MyseeasmfE . (4.7.12)
Mudholkar and Rao [88] wish to know whether (4.7.12) can be derived
from (4,7,11), We answer that question for a specific case,
Let the p x n matrix X be defined as above, If Z = XX', E(Z) =77,
and Z and77 commte, then (4.7.12)vwill follow from (4,7.,11). To prove
this, we note that two symmetric matrices can be diagonalized by the
same orthogonal matrix iff the two matrices cpmmute. ILet C be an or-- .
| thogonal matrix such that CtZ2C = diag(cl,...,cp) and C'7C = diag(ﬂl,...,ﬂp),

where ¢, s dl= Jseeesps are the characteristic roots of Z ami7T,
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. ' " respectively, ILet f be a nonnegative symmetric concave function
defined on the dn.agonal elements of any p x p diagonal matrzx.
By (4.7.11)
P(£(c'zc) > € ) < Ef(Crzc)/e
g f(cwic)/e

i.e, P(f(cl,...,c ) 2¢€) g £(m ,...,ﬂp)/& .

We note that the condition Z and]] cormute is too severe a restric-

tion to hold in general,

4.8 An ‘Inequality for a Continuous Stochastic Process
Vhittle [122] and Birnbawm and Marshall [157] have both offered
Tchebycheff 'ty'_oé inequalities for stochastic processes, Whittle obtains
his ineqi.{ahty by choosing a certain matrix B and minimizing tr B-%T,
where 77 is the variance covariance matrix of the process, .In the
case of a stochastiec process, Whittlé shows that the matrix B as defined
in Theorem 4,2,1 is not satisfactory since tr B-]'TT;?G? as n increases,
The following theorem and its proof are taken from Parzen [92, page 85];
the theorem coincides with ;c.hat of Whittle,
Theoream 4,8,1. let {X(t), agtg b} be a stochastic process which is
differentiable in mean square. ILet '
c(t) = {E(/x(t)/z)}% <co,
ey (1) ={RUx (02 F <om

P( afup /X(£) > x) < Ef ?épbx (t)]/}\

<[4 @) + () f c(t)ey(t)atx®  (4.8,1)

Q where k > 0,
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Proofé By Markov's inequality, the first inequality is true, For t€[a,bj, '
; t
X2(t) = ¥(a) + 2J X" ()X(u)du

- ¥ ) - zﬁcbx-(um(u)du .

t b
2X2(t) = Xz(a) + Xz(b) + 2[fa X' (u)X(u)du -ft Xt (u)X(u)du]

b
g ¥ (a) + X(b) + 2f; /X' ()X (u)/du

b
sup xz(t) < %{Xz(a) + xz(b)] + _]; /X ()X (n)/au
estch

E( oS8 (1)) < %[E(Xz(a)) + E(xz(b))] +_LbE(/X'(u?X(u)/)du
b 1
< HE0P(a) + BOE®NT of [EP@)BE? @) T . (48.2)
(4.8,1) follows directly from (4.8,2). |

Corollary, If E(X(t)) = m(t), then

P(/X(t) - m(t)/ > k) < Var(X(a)) + Var(X(b))
2
2K

b %‘ : %
o [var@(en lvarGeeN Tat -, 6,5)

k

4,9 Other Inequalities

In this section we shall briefly mention certain other multivariate
Tchebycheff type inequalities which are proved by special methods or
arguments, Historically speaking, we should note that it was K, Pearson
[93] who introduced the basic idea behind equaticn (%4.2.11), He con- |
sidered an ellipse centered about the origin defined by -

2 -2
f(xl9x2) = Mxl + NX2 + Q}:l):z, .
and a region T such that T! ='{kx1,x2):f(xl,x2)~<I{?. Pearson found

the upper bound of P({Xy,¥%,)ET) in terms of the s th order moment of

\
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1

the function f(xl,xz). If we simplify his idea to the case when

s = 1, We see fhat for a random vector X = (Xl,Xz).with zZero mean
and E(Xin) = 034915] = 1,2, he showed that
P(XET) < M07° + Noy® + Qpp. (4.9.1)

The generalizations of Berge [8] and Lal [68] are based on
Pearson's method,

let X = (Xi,...,Xn) be a random vector such that E(Xi) =y and

E(K;X3) = 0355 1y3 = 1yaeasn, and 035 = 6,2, Chapelon [22] considers
an ellipsoid defined by
iz,:;_] cij?“‘j}’-j = ]_~9 19) = Lseeushy (4'902), .

which he calls a quadridue type. Also, he considers a parallelepiped
which circumscribes (4,9.2) in such a way that its sides are parallel

to the x; axes and touch the x;th axis at +05, i = 1l,...9n. He calls

this parallelepiped a paraliélébipzde type. Chapelon proves that for

i .
t = n?, the probability that X will fall in a region similar in con-
struction and t times as large as either the quadrique or parall®lépipede

type is greater than 1 - n/t%,t > 0.

leser [69] offers a multivariate inequality in 2 situation when

a restriction is imposed on the distribution., Iet Ai, 1= 1ys409n
2 n 2 2 n 2
be positive integers and let Ag = n/[igl(l/li ) ] and o, = n/[igl(l/oi )] .

We define an ellipsoid by X
2 »n -
R2 = AO Cozlgl(Xi/XiO'i)z, ' . (’4’.9.3)

and let A(R,) be the mean value of the density function £(X3sesss%y)
n 2
vhen R assames the value R, Iet P = P(izl(xi/kjpi) £n); i, e,
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: i ' . .
P = P(R/na,s.kdoo). If £(x) causes A(R) to be a non-increasing function

P §
of R for R £ koonz, Leser obtains probability bounds for P over different

.

ranges of k., The bounds are expressed in terms of n,A, and k.
Camp [19] obtains a sharp multivariate inequality in terms of a new
statistic which he calls the "contour moment" and defines as follows,

Let £(t) = f(tl,...,tn) be a density function defined on a set TeR

such that 0.< £f(t) £ L and £(t) is Lebesgue integrable, let Q) be the

set consisting of all those points €T for which f£(t) > h:xk is the measure

of Q A* X is a unique single valued function of XA and is monotone de-
creasiné in A § 1is also a monotone decreasing function of x for

0 <x<x5<9,. We define y(x) =Xx as a single valued monotonic de-

creasing function of x, To insure that y is single valued, we define

y = minkx if'k takes on several values at a point x, If A does not

take on any values in an interval, we define y to take on the value it

had in the beginning of the interval, The rth contour moment is defined by

X
Gr = 0 0 Xr}’dX. ' (L}.g,llr)

If r = 2, we obtain the contour variance, Camp proves that

1 - (o 507 & (5, €87 Yo/ (2x + T, (.9.5)

where A satisfies X - { c?.

We shall complete this chapter by reviewing an inequality for
minimum components which is obtained from Theorem 2,3.,1 through an
appropriste chojce of f(x).

Theoren 5»9.1 [81]. If X = (Xi,;;.;Xn) is a random vector such that

E(X) = 0, E(X'X) =T, then, for T = T;\!{k: -xGT{}, where T,CR, is a

closed convex set,
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PCET) = Plnin X; 21 or min (1) 1) min [Y/(eTo0],  (2.9.6)
R

P(XeTy) = P(min ¥;3 1) § min (/1 + e'fg"le')],' (4.9.7)

vwhere the min in the right hand side of the inequalities is taken over

-1
all principal submatricesTlg of 1T such that eI > O,

Proof: Let X, be a subvector of X whose cowponents are such that
: -1 2 -1 2
E(X'%Xe) =TL. If we let £(x) = (eTf %) [(eTL e')” , £(x) satisfies
the conditions of Theorem 2,3.1 in the fegion T and taking E(£(X)) we
get (4.9.6). In a similar fashion, by letting |
£f(x) = (1 + e'ﬂ;lxg')z/(l + e'f'l::"e')2

we can obtain (4.9.7).
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CHAPTER FIVE: SUMS OF RANDOM VARIABLES

5.1 Introduction
" In this chapter we shall determine upper probability bounds for

either a sum of n random variables, S, , or for some function of S,

©.8+ X, Unless otherwise stated, we shall assume the random variables
to be independent, Ve shall mainly concéntrate on finding probability
bounds for a finite number of random variables since some classical
éentral limit fheorems tell us that, as n9e, the limiting distribution

of
S B(S)
[Var(sn)]f

~

is a normal distribution; these limit distributions have been thoroughly
discussed in the books of Gnedenko [36] and Kolmogorov and Gnedenko [66].
It is easy to see that the Markov, Tchebycheff and one-sided Tcheby-

cheff inequalities can be extended to X, If Xj,...,X, are independent

— — 2
random variables such that E(X) =, Var(X) = 0 /n, then for k > 0,
(2.102) implies
— 2 2
P(/X = pf 2 k) g07/nk"s (5.1.1)

(2.1.8) implies _ o 2 2
P(X -n 2%k) g0 /(0" + nk™), (5.1.2)

If X; >0, i = 1,..,,n, then, by Harkov's inequality,
PEX sp+t) gnf/lu+ t).
PT~mpt) saf/lu+t) (5.1,3)
The above inequalities are sharp, however, to attain equality
(n - 1) of the random variables must be identically zero and the re-

riaining X; must be chosen appropriately. To attain equality in (5.1.3)
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we le'[",' P(Xy = 0) = t/(u + t), P(X] = n(u + t)) =/(u + t), and we

defineAX2 = X3-= cee = Xn = 0,

Tt would appear that under general conditions and even ﬁore so
under restricted conditions one could obtain sharper bounds than the
three above, In this chapter we shall give improved bounds over
(50101)’ (50102) and (5.103).

5.2 Normal Approxiﬁation for a Sum of Independent Random Variables

et Xyse003X 9000 be a sequence of mﬁtually independent random

variables satisfying E(X;) =y, Var(X;) = ciz, i=1lseeesNyeces o

Also, let sn2 = igloiz <cs, When certain moment conditions, to be
indiqated, are fulfilled, then, as n¥<, the distribution of some
linear function of the sum of the independent random variables tends
to the N(0,1) distribution., The conditions under which thé above
occurs are stated in the classical limit theorems of Lindeberg-levy,
Liapunov and Lindeberg-Feller, The study of limit distributions is

in itself a complete subject and the results camnot, in a strict ssnse,
be classified as Tchebycheff type'inequalities.

In this section we shall state some theorems and their consequences
 without proving either; the proofs of the major theorems can be found
in text books such as Gnedenko [35] and Tucker [114]; comprehensive
studies of this subject can be found in Gnedenko [36] and Kolmogorov
and Gnedenko [66],

Theorem 5.2,1 . Lindeberg~Levy Central Limit‘Theorem

Iet X ,Xn,... be a sequence of i,i.d, random variables such that

l’ooo
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E(xi)»?sm and Var(Xi) = 02, 1 = LyseesNyess » Then, as n-yco , the
distribution of n%-'(-}f -n)/o tends to the N(0,1) distribution, -
Theorem 5.2,2. Liapunov Theorem ’
Iet X35eee3Xpsese be a sequence of independent random variable such

that EQX;) =y, Var(Xy) = 0-2 % 0 and E/xi - n3/3 = vy exist for

2 n
e s B .
n]—'%no 2 -0, (Liapunov condition)
n

then, as n-ow,
, P(L5 1(X /“1) /sn] X)%J (2m)~2 eXP (- £ /2)ax.
Theorem 5.2.3. Lindeberg~Feller Theorem

Let Xl,...,lg.‘,... be a sequence of independent random variables such that
P

2__ .
E(Xi) =m; and Var(Xi) = 04 <0,i=142440s o+ let G; and Fn be the
distribution functions of Xi and Yn = igl(xi- /ui)/ S, respectively,
where s, is defined as in Theorem 5.2.2, A necessary and sufficient

condition that

O. X -t

; : i =0, YimP(Y,<x) = 211) Zoxp(~x2/2 )dx

M B 3 O FRICn e o[ e el
-

0

is that for every ¢ > 0,
n

2
lim —%, .% (x =my) dG:(x) =
n-e Sn? 1":]%}('713/ >Esy *
As direct consequences of the above theorem, various people have
attempted to obtain numerical values for D,, the error or remainder

value resulting from the normal approximation.

n -
B Wy - Ay) 2n - [2)dx | € D.. (5.2,
-—-eosug . P =1 sn f (2am)” exp( /2) &£ Dye(5.2.1)
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i - ‘
Let us assume, without loss of generality, that E(X3) = O,

2

Var(¥;) = 05° and E/X3/ = v35, 1 = 1,2,... . Under these conditions

Craﬁé} [24,25] has shown that for n>1, .

Dp = 3 log nBp/sp>s (5.2.2)
In (5.2.2) the term 3 log n was changed by Bergstrom [9] to 4,8; this
nevw value of D, offers a better bound for n > 40, Through the use of

Fourier ffansforms, Berry [12] shoved that

Dn \< 1;88 ma.x(_\_rz% ,ooo’z@.), (5.2.3)
. n Gy’ o2/ . .

where oiz Y 0, 1 =1,,..yn, As pointed out By Hsu [50], the value 1,88
in (5.2.3) is incorrect. Takano [112] and Stoker [111] have replaced
1,88 by 2,031 and 1,952, respectively, Godwin [34, page 82], through
an example, shows that the numerical constant cannot be less than 0,199.. .

If the Xi's are identically distributed, then

i b}
2.OBIV3/n36 < 4.8v3/n563;

the Berry-Takano ;esplt is superior to Bérgstréh's result, For i.i.d.
random variables such that (Bn/c)z is large, i.e. ; 5, Ikeda [51] offers
a smaller approximation error thaﬁ the Berry-Takano result, He shows
that for (Bn/o)2 25, Dpg l.84076v3/n%b3: for (Bn/o)2 > 6,
D, < 1.77803v3/n%03. | .

The following theorem was proved by Offord [90],
Theoren 5.,2,4. Let X194e4sX, be mutually independent random variables
such that E(Xy) = ms, Var(X;) = oiz, E/Xi~-umi/3 = V3is 1= Loaessn,

and m%n[ci/(VSi)1/3] = 2k1/3 for some X, Then for n > 1,

n
sup P(/ m. %5 -t/ £ %) <6 lognllog n+ kx| ‘
T i=1 3 "g .
k"n* ’ﬁlﬁi
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Y3

Remark; Since (v4;)"'° 30, for all i (Holder's inequality), k < 1/8.

Though this inequality seems to fulfill the requirements of a
Tchébycheff type inequality, it is fo be noted that the proo% of the
theorem is cdependent upon the result (5.2,2); i.e. the result is ob-
tained through the use of the error term involved in the normal approxi-
mation,

Similar to the problem introduced in (5.é.l) numerical values have
aiso been obtaihed for the absolute difference between the characteristic
function of the random varigble (iglxi/sn) and of a N(0,1) variable,

Tkeda [Ql] has offered ;umerical results in the cases wﬁen fhe X are
independent and when they are i,i.d. Kolmogorov and Gnedenko [66, page
2027 also offer a remainder term for the difference of the characteristic

funetions when the Xi are i,i.d. Their result is inferior to that of

Ikeda.

5.3 An Inequality for X
As seen in chapter two, we can obtain certain inequalities by appropriately

choosing m and mip in Tchkebycheff's inequality., If, for example, the X4
are i,i.d. for i = lyecegnym = 0 and Var(Xy) = 1/n, then, by the Tcheby-

cheff inequality 2

PUT/ 5 t/n) < B/ (¢/n)° = &5, (5.3.1)

A similae result to the above was okbtained by Robbins [96]. He

showed that for n > 1, and t > n% , there exists a functioniﬁn(t) such
2
that 7P, (t)—> 1 as t-7cc and
PU/T/ 2 t/n) < £(t) < 1/, (5.3.2)
A confidence interval for X which is a function of both the sample

and population variances was cbtained by Guttman [&2]. Let Xq50005X, be



“ 95

a random sample from a population with meann and finite variance 02 .
. n
Using the maximum lJikelihood principle we define X = iglxi/n_and

2 n -2
= 2 hy - Y
s i:l(yl X)%/n

Theorem 5.3.1. Subject te the above notaijon, for k > 1,
PE - 3 1n - 1) + @0 - D/mtn - F < 1. (5.3.9)
Proof: Consider the vr.v. ¥ = (X -;u) - & /(n -1) - co? , Where ¢ is
a constant, Taking expectations we see that E(Y) = ~ 002 and
E(Yz) = 04(2/n(n - 1) + cz) By Tchebycheff's inequality,
BU/Y/ 3 KEEND) g 1.
In particular, :
{(x 1) 257 (n 1) + 0° + ko (2/n(n = 1) + ¢ )2}< Y12 (5.3.8)
Since ¢ is arbitrary, we choose an appropriate ¢ so as to minimize the
right hand side within the brackets, Minimizing we obtain ‘
c2= 2/n(n - 1)(k2 - 1) for e < 0; substituting this value into (5.3.4)
ve obtain (5.3.3). (5.3.3) can also be rewritten ag
P[/X <l 2[5/t = 1) + 0 (20 = 1/ntn - 5 PRV CER
Similar to (5.3.3),Midzuno [86] has obtained a confidence interval
for X in terms of approximate values of higher moments, He considers

— 2 2
the rove Z = (X =) - s /(n - 1) and by means of a lengthy multinomial
expansion and approximation, Midzuno shows that
n 2, .m
E(Z) = (0 /n) Hus

where

H, ( {-»1) ("‘) [2(m - n) ] /[2 (rr - h)f]}) (1 + 0o(1/n)).  (5.3.6)

By now applying Merkov's inequality, hc obtaJns

PUX - nf 2 (s2/(n-1) + ko/n)) & Hm/ K", (5.3.7)
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i :
Midzuno also used another lengthy multinomial expansion to calculate

E/X _M/ZL = 19-5~----L(2L - 1)02L{1 + 0(1/ng. : ~(5.3.8)
. n . - ‘

If we now apply Markov's inequality, we obtain

p(/-i - > ko %) Je3e5eeee(2] - 1
-/ 3 10/nf) < 25 (2L - 1) {1 + O(I/n)f. (5.3.9)

We note that both of Midzuno's inequalities are not sharp,

Remark: Since E(XZL) for a N(0,1) variate is equal to 1°3°*5°¢++(2L - 1),
we might suspect that there is a normal approximation involved when some
terms of higher order are neglected in the multinomial expansion., This

result preceded Aoyama's result [1], previously mentioned in this paper,

5.4 Bounds for the Sum of Independent Normegative Random Variables

Iet Xq54449X, be independent nonnegative randem variables satisfy-
ing E(Xi) =39 1= 1y.0e9n, Let}X denote the class of random variables

n -
S,s where S, =§1Xi. When n = 1, Markov's inequality offers a sharp

upper probability bound for P(X > t). Vhen Markov's inequality is
extended to X as in ( 5.1.3), the resulting inequality is sharp only if
(n ~ 1) of the random variables arc identically O; a éharper bound is
desirable, |

In this section we shall determine a sharp upper bound for

P(5, > t) , (5.4.1)

sup

when n = 2,
The problem in (5.4,1), for n = 2, was solved independently by
Birnbaum, Raymond and Zuckerman [16] and by Samuels [100:], Samuels

conjectures a result for 2ll n, offers some support for the conjecture,
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and proves the conjecture for n = 2 and n = 3; the proof for n= 3

is based on a theorem which offers sﬁpport for the conjecture and on
soﬁe lemmas which we shall use to obtain the result for n =f2. Birn~
baum, Raymond and Zuckerman, on the other hand, find fheir methed too
complex to extend beyond n = 2, Our proofs and discussion will be
based upon the works of both authors,

The problem will be reduced to that of finding an upper probability
bound for rand;m variables taking on two values, the lower value always
being zero, In the case of arbitrary i,i.d, random variables, Hoeffding
- and Shrikhande [49] also reduce the problem to that of finding probabi-
lity bounds for random variables taking on a finite number of values;
their method offers the best result only for n = 2, In the case when
the Xi are nommegative and i,i.d.y they offer a bound for S2 which is
only sometimes superior to that of Samuels and Birnbaum, Réymond and
Zuckerman,

Lemma 5.4.1 [16]._L¢t XiseeesX, be indeéendent nonnegative random
variables and let Xy take on the values X33 € Xq5 € s0se £ Xp¥ith
respective probaﬁilities DlsesssPpo Let X130 X1ks xli be three possible
. values of X; such that 0 xlj'\< % € ¥pe Then, for t > 0, there
exists a random varisble X;' which has the same distribution as Xy
except thal the values X1 59 X1y Xq1, assume the probabilities pj',
pk', pL', such that

E(Xi') = E(X3)s one of pj', bk" po is zero

n n .
and PO + X 2 t) 2P+ B%5 > t). (5.4
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: Remarki,': We need not worry about the case when the independent random

variables are continuous for we know [46] that if F(x) is a distribution
funétion of a continuous random variable X, F(x) can be appr;ximated
uniformly by a distribution function G(x), where G(x) is a step function
having a finite number of jumps and satisfying the moment conditions of
F(x).

Proof: For any a,8 let us denote the following:

pj' = pj + CZB, pk' = pk - B, pL' = pL + (1 - G-)BQ (501"‘03)

i.e. pj' +pk' + pL' = p._j + Pt Py

If o = (xy7, = x3 )/ (xpg, = xlj)’ then,
Xy 3P5" + Xyt + Xppyt = X3Py b Xy + Xq1Pr s

and E(xl') = E(Xl)’ for all B.

i

n m n
P(X + X >t) = ZP(3 =x) POZ X532t - xiy)
=2 r=1 i=2

A=
n n ,
- 151PI~P(i§2Xl = t - xlr)- (5.’4‘.1"')
n ) .
P+ XX 2t8) = 2 ph P(2 X 2t - x,), (5.4.5)

i=2 r=1 i=2

lyeeosm, From (5.4,3), (5.4,4) and

where P(Xy' = x34) = p3'y 1

(5.4.5) we see that

n n
P(Xy +.2.X; 2t) = aSP(iEZXi >t = x3)

n
* r.
POY' + L% > t) R

n n .
BP(iEZXi >t - xlk) + (1 - a)BP(iEZXi >t~ le)

| = BC. : (5.4.6)
(5.14,2) will hold only if BC is positive, If C is positive., let

B =p, and thus p ' = 0 by (5.4,3); if C is negative, let
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B = me’_;.x(-pj/a,-pL/(l - a)) and thus either pj' =0 or p;_‘ =0, In-

either case (5,4.2) holds.

" By repeated applications of the above lemma, we can see "that our
problen is reduced to that of determining probability bounds on random
variebles taking on at most two values, We must thus determine

S8, ™

where jo is the set of random variables Sn such that each Xi,i=1,...,n,

takes on at most two values,

Lemma 5.%,2 [16]. Let the nomnegative r.v. X take on two values X3 and

’

X, with probabilities P and Py » respectively, For a given t such that
E(X) <t < Xy there exists an 0 2 0 such that the r.v. X' with values
xl' =X + xz' = t and respective probabilities Pys Dy satisfies

0 s xl' < xz' 9 (50407)

B(X*) = E(X), - - (5.4.8)

Proof: If o = pz(x? - t)/pl , then xl' =%+, xz' =t and (5.4.8)

. . . r - - -
is satisfied. Also, x' = (plxl + pyX, pz'b)/pl =(E(X) pz't,)/pl

- =t = ',
<G -pt)p =t=x

Therefores; x,' 2 x,' > 0.
Remark: The above lemma tells us that Xi <ty 1= lyesesny Tor if the

Jarger of the two values of X is greater than t, the larger valus _could
be replaced by t.

Lemna 5.4.3 [100]. Let the r.v. £, with mean My take on the values ay

and bi such that 0 : L a, <, < b,

1 x
< 1N T4 < Ty 1= l')oaosno Also, let
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i

N /u - a. ‘ ' Ib. -
P(Xi= bi) R - 1, P(Xi = ai) = & 1 .
bi - a5 bi - a3
Ify for some i,
P(s, = t/X‘_L =b;) =0y (5.4.9)

where S, € /,50 and a3 < vy < by, then there exists an Sn"j‘Xv such that

- P(s,' 2 t) >P(5, 2 t). | (5.4,10)
Proof: Iet : |
b - A1 ' s e .
y = 206) = 2= a;l P(S, 3 t/%; = ag) + L7 2 P(S, > t/%; = b)

such that f(b;) = P(S, 2 t)s If (5.4.9) is true, then there exists a,

:g> 0 s;.lch that P(S, > t/X; = b) is constant for be(by - £, bs). It

we differentiate y with respect to b, then, for bé(by -§ s b3y

¥ =200 = [y - 23/ (o = a)?qfp(s, 2 4/K; = a)P(5, 2 t/% = by)h

If ) '
P(S, > t/%; = a;) § P(S, > t/%; = by), (5.4,11)

then y' < 0, If (5.4,11) is true, then f(b) is a decreasing function

and (5.4.10) holds, If (5.4,11) is false, then let X; = uy; since
P(S, > t/X; = by) S P(S, > H/X; = n3) 2P(S, > /%5 = a3),
P(5, = t) remains the same for Xy =y

| By the hypothesis we know that a; < n; < by; thus

P(S, > t/X = by) =P(5, > t/X{ = a;) 2 P(S, = t/X; = p3) 2 0. (5.4.12)

Thus, since (5.4,11) is false, (5.4,12) implies that P(S, > t/Xi =) = 03

b:) = 0 for all i ¥ j. Either

therefore for X; =g, P(S) = t/X, = ny, X5 = by

P(S, = t/%; = g, X5 =bj) = P(S, 2 t/%; = pysXy = 23)s (5.4,13) |

for 211 i & j, or (5,4.13) is false for some Jjo If (5.4,13) is true,
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then let Xj = P for all j: .P(Sn = t) remains the same, Also, if

n N - .
§1)11 > t, we would have P(S; >t) = 1 which is a trivial bound; we

therefore assume that ;B4 < te If this is so, P(S, = t) = 0; (5.4.1)

would not have a satisfactory upper bound if ( 5.@.13)-we-réutrue. If
(5.4.13) is false, then, as shown above, We can, by decreasing bj
inerease P(S, = t). Therefore, (5.4.10) is true, '

Remzrk: This lemma ’c-.eils us to restrict our attentioﬁ té the Sn

such that
P(S, = t/%; = b;) > 0. AR (5.4,14)

Lemna 544 [100]. If (5.4.1) is achieved for S_, where X; has ay

P . n
as its lower value, 1 = 1ly...9ny then for Yi = X3~ ai and T = .2 Yi,

T, attains (5.4,1) with t replaced by t - E a. and {JU.l} replaced
1—-
n

by gﬁli - aifi:l ‘ ;
Proof: Since E(Y ) = Ny - oags the réplaceznents are valid. Also,
n ! '
P(Sp 2t) = P(Tp 2t = T a3). L . (5.8.15)
Lemna 5.4.5 [100]. For 211 S, /cji, which take on only ;'one possible value

in [0,t)4P(S, > t) is maximized only if S, is of the form

P(Xi.:/ui) =1, 1= 350000k (5.,14,16)

K Lk
P4 =0) =1-P(X =t ~Epmg) =1 —/ai{(t ’351’“3')’
= k"l‘ 1’coo,n9
where k = 09 1,eoo,n - 10 | |

Proof: Since P(S, = t/X; = by) > 0 for all i, and since S, takes on

only one value in [0st),
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iby ~ a3y =t -4, for alli, ' (5.4,17)

‘ n
vhere A = .2

;Z124+ Ve define the foll.owing notation: if P(X; =ny) = 1

for some i, then, a; =n3 and by is defined as in (5.4.,17); " otherwise

we let a; = 0 and by =y, By the condition of Lemma 5.4.3,
n .
P(s, >t) =1 -i7=r1(t A+ ag =)/ (t - 4) . (5.4,18)
If, for fixed A, We maximize the right hand side of (5.4,18) subject to

0L a3 <Y i=1ysee9ny We see that the maximum is achieved when at

most one ai differs from 0 or A, and .this a’i mast take on a value some=-

i
where in [O,,ui:] by the given condition above, Thus the maximum is at-

tained only if aj = 0 or a3 =3, QED, (5.4.16) .

Lemma 5.4.6 [100]. If for all Sneﬂosuch that a3 = 0y 1 = 1y.4eym,
P(Sn > t) is maximized by an S * which takes on one value in [0,t), and
if this result holds for all t and for all my, i = 1,...,n; then

P(S,* 2 t) is maximum among all Sné.fg .

Proof: By lemma 5.4.4, the hypothesis and our knowledge that when T,
takes on only one value in [O,t - A),Sn takes on only one value in
[0,t)s we can by Lemma 5.4.5 construct a S,* such that P(S* >t) is

a maximm for all S & /g.'

Remark: The above lemma tells us that in determining (5.4.1) we need

only to consider those random variables Xi for which ay = 0,
Theorem 5.4.1. Let XjsXp be nonnegative independent random variables

such that E(Xi)=/ui, L = 1,24 and Mg .\<}12° .Then,for t >0,
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N : 1, TR 21t

Sg%;’-‘l}(sz 28) =AMl (t mmyds g St b (5.4.19)
1-Q -,ul/t)_(l - pz/t), t2t,
. _
where t, = %[/ul + 2 o+ (;ulz + 1;4122)7_]. Equality is attained in the

second case if by =y and by, = t ~ uq3 it is attained in the third

case if by = by, = t,
Proof: If nq o+, =2 t, the bound is obviously one and it is attained

by the random variables X, such that P(Xi = /ui) =1, i= 1,2,
By thé previous lemmas we restrict our attention to random variables
Xi taking on two values ass bi such that 8; = o, i= 1,2, 82 can take

on the four values: 0, bl, bz, bl + b2.

i) b, + b, 2t > max(bl,bz),

1

ii) by >t >Db,,

ii1) by, > t > by, ‘
iv) min(bl,bz) > t.

By lemma 5.4,3 we can neglect cases ii) and iii). Case i) will

satisfy (5.4.14) only if by + by = t,

P(S; 2 t) = (m3/by)(uy/b,)s (5.4.20)
We must thus minimize bib, subject to pj & by < t - M2, Since
by + by, =t and-/ul < o5 (5.4.20) is maximized for by =ny and by =t =y,
i.e. the second inequality. |

let us now consider case iv), Since Xi’ i = 1,2, has support in

are t and t (Lemma 5.4.3).

[0st] the only possible values for bl and b2
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E; a caleculation one can see that
/tJé/(t =2q) >1 = (1 -/ t)(1 - py/t)
iff t < %Eul + 2uy + Oulz + szz)%]. This completes the‘proof.
Corollary..  If Xy = (X - E(X))Z/sz, X = (Y—E(Y))Z/tz, s>0,t=1,
we obtain the normally referrea to Birnbaum, Raymond and Zuckerman
inequality.

We now state a result conjectured by Samuels [100]; a proof for
the case when n = 3 based on lLemmas 5.6.1 to 5.6,6 and a theorem to
support the conjecture is also given by the same author,

Conjecture: If Xj,.eesX, are independent noﬂnegative random variables

such that E(¥3) = n3 5 L = 1ys0eyn, theny -

S]il]éiyp(sn ? t) = max(Poaooo’Pn_l),

where /‘.11\<}12 \< see S)ln and for k = lgooogn"l,

Po=1- i,—’_,ll(l ~m /)
=1 =« 77 - as/(t - . .
Pe=1 i—.ﬁlé-;-l[ 23/ j=1p'3 )

The values Py, P, are obtained only if S is of ths form (5.4,16),

5.5 Inequalities of the KolmogorovlType

Kolmogorov type inequalities can be said to occupy a placé in the
over-all framework of Tchebycheff type inequalities., These inequalities
deal with the task of obtaining vpper probability bcunds for partial
suns; S 4 of independent rendem variables whose means and variances
exist; i.e. vpper bounds for

P( 1%% /Sk - E(Sk)/ 2€ )t (50501)
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i
Kolmogorov originally proved that if Xj,...X; are independent

random variables whose variances exist , then,

n 2 .
P( 121?2«1 /5, = E(5)] 2¢€) < J_LEIV«'M' Xle . (5.5.2)

If in addition /X / < k for some constant ky i = 1y...sn, then,

2D 22
P( 121?%1 /§< - E(sk)/ >e)21l-(€+%) /[i'élVar(Xi) +(€ + k) (C;?;.B)

(Proofs for (5.5.2) and (5.5.3) can be found in Tucker (114, page 107)).
Hajek and Rényi [#37] have generalized (5,5.2) and Birnbaum and Marshall
[15] have offered a much more general theorem than the latter, |
Theorem 5.5.1.(Birnbaum and Marshall. [15]). Let XysveesX, be ranaom

v’-‘
variables such that E/Xi/ <W, i = lyeeesny and r > 1, Let

E(/Xkllxlsno-’xk_l) 2 ék /Xk-1/ 24€e (5.5.4)
wWhere ék =20, k= z,poo,nt let e > 0, bk = ma'x(ak’ ak+1¢k_+1’
n
S )y kelevowehs b . = 0 and-X_ = O, The
ak+2¢k+1¢k+2’"”_anil;’;+1¢")’ kelyeesshls By = 0 and en
n r r r r
PO adBd 20 < 2 0 = o B B8RS
n
= kglbkr(E/xk/r - b B %)) (5.5.5)

Proof: Without loss of generality we can assume that r = 1 since

(5.5.4) implies r r '
EC/%, //xl goveskiq ) 2By [Hq | aeey  (5.5.6)

r r :
whers X:. = sgn/Xj /. Iet us consider the sequence of sets

J
n
Ak ={,ai/X1/ < 1, i= 19ooosk = :'l., ak/xk/ z ]}l(:l . (50507)

From (5.5.4) and the definition of conditional expectation

jAk/xj/dP = E[IAkE(/Xj/ xl,,..,xj__l)] > E_LIAk¢j/Xj-l/]

= ¢J;[Ak/xj_1/dp.
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: Contlnulng this process j - (k + 1) times, we geot
fAk /%3P > ( 7 ¢)f/xk/dp ) (5.5.8)

Also, by the hypothesis,
n o .
FPs = P5nabs) GI A1) = b > 8 (5.5.9)
and by > B .7 B .99 k = 1,e..,n, Using these facts ve get
n n
£1P3LE/Xs) = B3EIX5 1 [] = £, (by - hyabse1)B/Xy/

E Z (b T ¥ Xs/aP
> 5 05 - 5 Jﬂ)fA x5/

n n
' n n '
by (5.5.8) 25 'gk(bj ~ ¢j+1bj+l)( 'Z’ $;) /Xk/dP
= J... k
n n -1
2 k§1 Lz (b5~ 9 j+lbj+l)(i=’£+1¢i)]ak PiAy)
by (5.5.9) P(AL) = P( meE ak/Xk/

"k 1
Remark: "By exhibiting a random vector whose distribution attains equa-
Lity in (5.5.5), the authors show that (5.5,5) is sharp.

The authors also illustrate certein semi-martingale inequalities
which are consequences of (5.5.5).

Corollary 1. If YyseessY,, are random varisbles such that E(Y;) =
i = 1,9.09“, and E(Yk/Y]."“’Yk-l) =0 84Coy k = 2,...,]], 'then, for

k
ai = 1/69 i= 1,30.’1’19 r = 2, ﬂk = 1 and Xk = 'zlYi,
. 1=
2
Ef%y,/ , .
PQyax %/ 2€) < 612‘ ; : | - (5.5.30)
(5.5.10) was proved by both Doob [26, page 315] and Losve [70, page 386 ],
Corollary 2, 1Ilst Xy and Xy be random variables such that E(Xi)z 0,

2 2 _ .
B(Y; ) =0, < 4 i=1,2, and B(X X)) '"‘/”102' I E(Xz/f.l) = 2%,
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. 1
"~ i.e. ‘the regression is linear, then for the nonnegative constants
213 29 ' 2 2 2 2. 2 22

21 % +t20 1‘/’)’31 C1 2% %P
P(ay/X;/ 21 or a,/%,/ 21) g {2 2 2 2 2 pp (5:511)

Proof: In Theorem 5.5.1 we let n = r = 2, Since
- ?’ =
BXp/) = 3% = pognlo

- ‘ } oy =/)oz.
1,2) = P(a]_/Xl/ >1l.ora /X [/ >1); if in

Now P(max a./X./ >1, i
3 b A |

(5¢5.5) we let § =} s by = 27 and by = 25, we get (5.5,11),

’

Corollary 3. Iet Yj,4e45Y, be mutually independent random variables

each having O mean, If f = 1.and Xy = Y7 + eee + Yp» k = 1y0aesm,

then for any non-inecreasing sequence of positive numbers ajs i = 1525440y

and for r = 2, we obtain a particular case of the Ha/jek-Réﬁyi inequeality.
As stated and proved in Gnedenko [35] we have the following theorem

of Hajek and Rényi,

Theorem 5.5.2. If X geee ,Xn are mutually indeperdent random variables

1
-2
such that E(X;) = 0 and Var(X;) = 0y <, i = ly...sn, then, for any

non-increasing sequence of positive constants 235 i = 1,2,,.. and for

any positive integers m and n such that m < n,

P( mazn ak/Sk/ €)g ..2.( 2202-;- Z 95012), (5-'5.:‘12)

m i=1 dmtd
where £ > 0O, _
Remark: If m= 1 and a3 = 1 for all i we obtain (5.5.2).
Until now the insqualities which we have dealt with in this soction

have heen of the form (5e5,15. Marshall and Olkin [82] give simple




ineqn;lities in terms of minimum values of partial sums of independent

random variables,
Theorem 5.5.,3 [82] If X1seeesXy are mutually independent random variables

2
such that E(Xi) = 0 and Var(Xi) =01 9 1 = Lyeeesn,y then,

P(uin § > 1 or min(-§) > 1) € 012 ’ | (5.5.13)
P(min 5 2 1) § 012/ (1 +0,2), (5.5.14)
Plnin /5] 1) < 0", | (5.5.15)

Proof: '{mij(_n Sg 2 1 or min (~s¢) 2 }C{ﬂ%ﬂ /sx/ >j ﬁl/ }

Thus by the univariate Tchebycheff inequality we obtain (5.5.13) and
(5.5.15)s Similarly, {m}:(.n S 2 J:}Q {Xl > l} ; by the one-sided

' Tchebycheff inequality we get (5.5.14),
Remark: By exhibiting three different random vectors, each with mutually
independent components, whose diétributions attain equality in (5;5.13),
(5.5.14) and (5.5.15), respectively, Marshall and Olkin are able to show
that the above inequalities are sharp.

Similar to the one~-sided generalizations of the univairiate and multi~
variate Tchebycheff inequalities, Marshall [79] has proved a one-sided
generalization of Kolmogorov's inequality, .

Theorem 5.5.4 [79]. ILet XqseeesXybe random variables such that E(X;) = 0,

E(Xk/Xl’ooo’yk..'L) = 0 a.eo, k = 2,00,,1‘1, and E(X )"' <al’ 1 = 1,0..,1&.
Then, for € > 0,

Plmm Se) < s/ (& + 5, (5.5.16)
whers s Z 2

n = 3% %5 . .
PrOOf: Ilet A.1< :{Si < 6_ s i = lpo.o’k - 19 l%{ 2,(’:} ® k = 1,9..9!‘19 and

2,, 2 2 _
let £(x) = (Eigl X -+ sn) /(& + Sn) « Now,
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v

o @+ s) = [1Goer > B ﬂ e

>. ..__.____l _..____. | z ( (5sk i S ) d.P:
- e - n

> kglp(Ak) = P( 22 Sc 2 € ).
The inequalities which have been dealt with in this section have
been of the form P(max(Sl 2€1 9 S 2€5500095, 2€,) where €, =€5= ... =€n'
If thef i.; i = lyeee9n Were not all equal, what would be the resulting
change of form of the inequality? No general inequality is easily obtained

for all n, howevery Marshall [?9] has offered a bourd in the case of n = 2,
Theorem 5,5.5. If Xy,¥> are random variables such that E(X3) = 0,
: . .
E(X,/X;) = 0 a.e., and Var(Xy) = 05 <co 4 i = 1,2, then, for€, > 0 and
: 2 2 2 2 2
P(Xl ;El or Xl + xz ?€2 )\< [02 +0q (G2/011) ]/(02 + 0 /“1)’
' (5,5.17)
2
where @y = 07 + tyt;y 1 = 1,2, and t; = min(€1,6,), t, =€,.
Proof: Ilet f(xl,xz) = clflz(xl) + czfzz(xl + %), vhere
01 = 42/0q? = 4,200 + 0,202/ (0 + 0,20))% 5 ¢, = 1202/ (a)? + 0)%u)®
= .G 2 - 2 2 :

Let us consider the sets A= {Xl > t’l} Y ={X1< T Iy + X5 > 'bz.:{ ¢

Since a, 2 oy > 0y we know that él > 0, If we proceed the same way as in

Theorem 5,5.%4, we obtain .
jAlf(X]_ng)dP a P(Al)g ﬁzf(xl,XZ)dP Z-v[.&zczfzz(xl + Xz)dP :P(Az).
By integration we see that the right hand sido of (5.5,17) =jf(xl,x2)dP.
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b > P(Xy 2€q0r X3 + X 2€5),
Through an example which attains equality, Marshall is able to prove

that the inequality is sharp.

5.6 Inequalities for Bounded Random Variables

In this chapter we have not yef revieved any work in which restric-
tions vwere imposed on the individual random variables, The restrictions
which we 'shall impose on the random variables of this section are

1) boundedness from above of the absolute moments of the random

variables,
ii) boundedness of the random variable,

The impetus for introducing these restrictions has been the work of
Bernstein [10,11,23] who obtained an inequality for the sum of a finite
number of independent random variables each of whose absolute moments
are bounded from above,

Theorem 5.6.1. Let Xl"‘;’xn be rmutually independent random variables
2

s 2 r-2 ' .
Vps S5 W (r)y i = Lyeeeny v 22, (5.6.1)
) n 2 8 2
vhere W is a constant, Then for S, =i§lxi’ S, = iéhgi ’
P(/Sy | > tsy) < 2 exp(-t7/2(1 + Wtfs)). ' (5.6.2)
Proof:
r r :
- - n . (R -, '
E(exp(ch)) = 1 + Cu(Xl) - I‘):_;’Z ot ———— (506.3)
r-2 r
2 > C E(X' ) :
=1 + ’%’czo'i EJ - L - e (5-60“‘)
r=2 2
'Erzoi



“ 11

% (7]
_ r-2 r 2
Let us denote Fy = §2@ E(X;)/% o5 r!) .

'E(exp(eX;)) = 1 + 2c%0;%F; < exp(d Poy%Fy). (5.6.5)

n 122 1 2.2 6.6
E(exp(eSy)) < JI, exp(z 03°F;) < exp(3 os,°F) 5 (5.6.6)
where F = maX(Fi), 1= l,o.o’no . (5060?)

Since B(X,) < E(/%,/7), then, by (5.6.1)

- r-2 . =24 @ . PR -]
Roe 38 o 2 ™ (1 - o) ’ (5.6.8)
r=2 O'izl‘: r=2

where cW < 1, Thus by (5.6.7) _
. Fe (1-ai) (5.6.9)
However, from Theorem 2.1.3 we know that if h(y) is a nonnegative
funetion of a r,v. Y such that h(y) > b whenever y > a,
P(Y > a) < E(h(1))/b,
If h(y) = exp(cy), then for ¢ > 0y
P(Y > a) < E(exp(cY))/exp(ca). (5.6,10)
IfY =S, and a = ts,y then
P(Sy > ten) < exp(d Ps,2F ~ cts,). (5.6.11)
Ve would like to minirﬁize the right hand side of (5.6,11) for values
in e, Minimizing, we get ‘
c = t/s,F; (5.6,12)
P(S, 3 ton) € oxp(-t/2F) = exp(-4 cto). (5.6.13
Combining (5.6,12) and (5.6.,9), we obtain |
F=(tflesy) € (1~ an™,
¢ 2 4/(sy + tW) and oW 2 W/ (s, + tH).

If we put the above value of ¢ in (5.,6.13) we get



i
. P(S, > ts) < exp(~t 2121 + wt/s ) (5.6,14)
P(/Sp/ 2 ts)) g 2 exp(-t /2(1 + Witfs,)).
If we are told that X:L < K, for all i, then, since we know that for-

each X r-2 2 r-2
% v..<k o. <%-!K/3)

ri S i S
we canyby (5.6,1),conclude that W = K/3,

P(/s [ 2ts) <2 exp(~t7/2(1 + Kt/3s,)). (5.6.,15)

Two authors, Bennett [6,7] and Hoeffding [L|/8] s have used variations
of Bernstein's technique described in equations (5.6.3) to (5.6.,11) to
obtaiﬁ :'}mprovements over Bernstein's bound, | .

Theorem 5.6.2 L6]. Let us assure that the conditiéns of Theorem (5.,6.1)

prevail and that each X; is bounded from above by K; i.e.

vri < Kr-zo'izg i= 1,...,n, r > 2. Then,
P(s, > tsy) < exp(- tz/(l + Wt/sy + (1 +2Wt/sn)%>> ’ (5.6,16)
2
and : ~-(t K K
P(S, > tsy) < explts, /KL + tk/sy) (t(sn/K) + (/X)) o (5.6.17)

Remark: (5.6,17) was also obtained by Hoeffding Cus , equation (2.9)].

Proof: Through the use of (5.6.9) we can rewrite (5.6,11) as

P(Sp > tsy) € exp(czsnzl(z - 2¢W) - ctsy). (5.6.18)

Minimizing the right hand side of (5.6.18) with respect to ¢, we obtain
=1~ (1+ 2ut/ sn)m2 and substituting this value into ( 5.6.18), e
get (5.6.16), Again we can moke the substitution W = K/3 to get a new
inequality, For given values of Wi/ Sp o9 ( 5.6.,16) will always offer lover
bounds than (5.6.11}). ]

To determine (5.6.17), we note that

e (r2 Ty/1 g R & ( r=2, 02 271 2)
Fi = r?:g(c E(Xj. )/'é‘ Izo.i >S IZ:‘:?’ WC K Oi /2 r:Oi
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- rgz(("x)r—z/% r!>= 2(e% -1- oK)/ (cK)2,

K:, 2 A .
Thus F & 2(ec -1~ cX)/(cK)" , and (5.6,11) becones

P(Snz.tsn).s exp[?sn/K)z(eCK -1 - cK) - ctsé] . (5.6.19)
Minimizing the right hand side of (5.6.19) with respect to c, we get
ek = In (1 + Kt/sn),and substituting this value into (5.6,19) will give

us (5.6.17).
Bennett [?:I has also utilized this approach to obtain a bound for
the sum of independent symmetric bounded random variables,
Berfls.tein's technique will now be used to establish the following
two theoremns of Hoeffding [1L8]. The Bernstein technique is presented
in the following way similar to the approach used in the proof of

Theorem (5.6.1)s Let ¢ > 0, then

P(X - E(D)z t) = P(S_ - 5(S,) 2nt) < E exp(e(S_ = (S ))) /e

n

n .
e QZiE(éxP(c(xi - E(Xi)))> - (5.6.20)

Theorem 5.6,3 (48], 1If X15ee05X, are independent random variables such

PE-p2t)g (ou/(p. £ (- m/a -p - t))l”*“’“)“ (5.6.21)

< exp(~ntg(n)) (5.6.22)

< exp(-2nt?) » (5.6.23)
where u = M/n, g(l/(l - 2a)In((L - p)/n), O<pn< 4

g()l) = (596.2“’)

[2/2n(1 - )y 2gp<.
Remark: If we were to say a € X5 € by i = 1y.e.9ny we would have to
replace m and © by (v - a)/(b - 2) and t/(b ~ a), respectively, in the

inequalities. Lus].
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{
Proof: Ve begin by proving the following lemma,

Lemma 5.6.,1, If X is a r.v, such that a g X < b, then for any real c,

cb -
E(exp(cX)) < <b;f<§>>eca+<E(§>_":le . (5.6.25)

Proof: let us join the points (a,ex’p(ca)) and (byexp(eb)). The line joining

these two points' lies above exp(cx) since exp(cx) is convex,

(b - x)eca + (x = a)er

b-a b-a

exp(ex) < -agxghb.

Taking expectations we get (5.6.25).
We return to the proof of the theorem, For ¢ > 0, (5.6,20) tells us

that _ n
P(X = n > 1) < exp(~ent - cn}a):,zzlE(exp(cXi)). (5.6,26) .

If E(Xi) =/ 3= 1seeesn, then for a = 0, b= 1, Lemma 5.,6.1 tells us

that n n
:,;7_7; E(exp(cX;)) < Z’Q(l = My + pgexp(e)). ' (5.6.27)

Since the arithmetic mean is greater or equal to the goometric mean,

n 71/n n
@Z’_(l -2y +)Jiexp(6))j < i‘fl(l - xy + pyexple)) = 1 - n +x exp(e),

n

we can combine (5.6,26) and (5.6.27) to give
P(X -pn>t) £ {exp(—-ct ~c)(l-n+n exp(c;)}n . (5.6.28)
Minimizing (5.6.28) with respect to ¢ we get
e=1{(1~m)(m+t)/(1=n-~th],
and substituting this value into (5.6.28) we get (5.6,21),
Tet the right hand side of (5.6.21) be of the form

exp(-nt?G(t,n)),

whers t20(ton) = (u + )1l (n + )/p] + (L = p ~£)1[ (1 = 5 = £)/(1 - @)1,
Now t2 d_G(typ) = £(L/(1 = n)) = £(E/(n + ) (5.6.29)

T
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. where f(b) = (1 - 2/b)In(1l - b), For /b/ < 1 we can expand f(b);
i 2 -3 2
fb =2+ -z——g'-b g'——- -2—_"1'- oo
(b) (3 ;) +<f; 5 b o+ ol b +
Thusy for 0 < b <1, £'(b) > 0 and by calculus we know that f£(b) is an

increasing function of b, By (5.6.29)’;3_;%&,;1) >0 iff /(1 - n) > t/(u + t),

f.e, t >1=2u, If1~2u>0, then G(t,n) assumes a minimm value

at t =1 - 2p, i,e. min G(t,n) = g(p) as defined in the upper value in

(5.6.24); 42 1 = 2u < 0, then G(typn) is minimized at t = O and

min G(tyn) = 1/[2n(1 - }1)] = g(p) as defined in the lower value in

(5.642l4)s Q.E.D. (5.6422), (5.6.23) follows immediately since g(n) > g(3) = 2,
_Hoei"fding has extended the above result to the case when the X; are not

bounded by the same constants, |

Theorem 5.6.4 [48], Let X1 seessXy be independent random variables such

— n
PX-p>t)< eJCp[-antz/igl(bi - ai)z:,, : (5.6.30)
where n = E(X).
Proof: let p, = E(Xi). By lerma 5.6.1 we get

-

Blexp(e[Xy -m D)) < o P [P 2] A -2y "] _ M)

(5.6.31)
where L(h;) = ~h;p; + In(1l - p; + piehi), hy = c(by = 2;) 5 and
py = (ay = a3)/ (b = ay),
Differentiating twice we obtain
L0(hg) = = py + ps/L( 1= pg) ok # py],
Lo(ny) = —Palt TP I | (5.6.32)

LG - pi)e~hi wpy )

(5.6.32) is of the form q(1 - q) where 0 < q < 1 and
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q=[0- pi)e'hi]/[(l - pi)e"hi +p;Je L'(hy) \<.__'%.' ' Uéing the

Taylor expansion we get

L(hy) € 1(0) + L1(0)hy + hs /8 = &*(b; = a3)/8. (5.6.33)
By (5.6.20) we can write g | o
PE =p 3 t)g e tg:TlE[emccxi sl (5.6.30)

Combining (5.6.33)s (5.6.31) and (5.6.34) we get

PX-n>t) 1 25 2 :
- >t) g exp(~ent + 5° 5Z (b- - al). D (5.6.35)

Minimizing (5.6.35) with respect to ¢y We get ¢ = hnt/[ 2 (bl - al)zj
Substituting this value of ¢ into (5,6.35), ve obtaih (5.6.30),
Corollary. If YyseeesYys Zseees’, are independen:;t} random variables
defined on [a,b], then for t > 0, | |

P(Y-Z-[EY)-E7Z) ]zt \e)Cp[-Zt/(m +n )(b-a)]
© (5.6.36)

Though Bennett [6] and Hoeffding [ll8:| have bee@ able to construct
distributions which attain equality in their rGSpe%:ti.ve theorems, Kingman
[65] points out that the inequalities are in gener%é.lvvnot the best since
the independence of the random varisbles has not béeen fully exploited;
the inequalities, however, ave the sharpest that can ‘.oe obtained using

the Bernstein épproach.

5.7 Other Inmequalities , .

- In this section we shall briefly mention some 1nequa11t1es for sums
of random variables without offering any proofs. SJ‘.nrllar to the ideas
in secticn 5.4, Birnbaum [14] considers a reductlon of the problem, He
introduces the concept of comparable peakedness as. follom,. If Xl and

and X, are random variablos and 2 and ay ave any tt-ro real constants,
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|
~ then "X, is more peaked about a; than X, about a," if, for t > 0,

P(/Xy = a3/ 2 t) g PU/%, - a5/ 2 1)

Let Xl,...,Xh be a random sample from a continuous symmetrical
unimodal (mode at zero) distribution satisfying P(/X;/ > a) = 0,

i = 14eeesn, Using the concept of comparable peakedness, Birnbaum
shows that, for a random sample Zl,Q..,Zn,from a uniform distribution
on [-1,1]; X/a is more peaked about zero than Z, The problem of find-
ing probability bounds for X is reduced to that of finding probability
bounds for a sum of uniformly distributed random variables.

Antﬁors such as Hoeffding [M?] and Samuels [99] have offered ine-
qualities for the number of sucesses occuring in n independent trials,
Romanovski [97] has offered an upper bound for the sum of the deviations
between the observed and expected frequencies in n independent trials,

In this chaptér We have omitted discussion of the class of martin-
gale and semi-martingale inequalities; some results in this field can
be found in Doob [26]. Some recent contributors to this field have
been Blackwell [17] and Dubins and Savaze [27]. They concerned them~
selves with gambling problems, established certain gaﬁbling systems for
a sequence of random variables, and they have found probability bounds
for the sum of random variables occuring in some intervals, Dubins and
Savage [28] have collected the resulis into a book titled "How to Gamble
if You Mast", The title is misleading and 2 subtitle "Inequalities for
Stochastic Processes™ is given to the book, - |

Though the field dealing with inequalities for stochastic processes

can fall under the heading of Tchebycheff type inequalities, we believe



i .
‘ g it is well enough established so as to occupy a place of its own;

we have thus not dealt with the above type of inequality,
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CHAPTER SIX: APPLICATION AND CONCIUSION

Tchebycheff's inequality is a useful tool in probability” theory.

It can be used to establish the weak law of large numbers and Bernoulli's
theorem; it is often used as a background for establishing convergence
theorems [4,35]. Many of the inequalities established in chapters two,
three and five can be applied in practical situations an& in industrial
situation; such as quality control [125] and poiymer research [44,45];
they can also be used in establishing various tests of hypothesis [109].

The inequalities in chapter two can almost always be applied and
those of chapter three can be applied if one vefifies that the r,v,
obeys the restriction imposed upon it, In chapter five most of the
‘inequalities can be applied without too much difficulty whereas the
results of chapter four may be quite difficult to apply in general
since some probability bounds depend on the solution of a matrix
equation which has ro general solution,

We now offer an example to illustrate one application of a Tcheby-
cheff type inequality to a medical problem. Type A bacterial meningitis
and type B bacterial meningitis are two diseases which have adverse
effects on children, Both diseases can be treated by different drugs,
however, the treatment must start immediately so as to prevent any
permanent brain damage, Vhen a child suffering from either of the
diseases is brought to a hLospital, it is quite uncommon for the doctor
to bte able to make an immediate diegnosis; the immediate diagnosis of
the exact type of meningitis is often not possible with the available
clinical methods, Ideally the patient could be treated with an oxcess

of drugss 1.0, drugs to combet both typss of diseace, Cerlain drugs,
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howeve?, can have negative effects on the patient, Therefore an
Yeducated guess" is often used by the doctors when instituting initial
emergency therapy. | |

A survey of both types of disease has shown that, when plotted
against age, the occurence of both diseasés is unimodally distributed,
Type A disease has a mean value of five years ten months and a mode of
three years one month while type B disease has a mean value of eight
years sev;n months and a mode of four years three months, The medical
director of a hospital would like to set up certain confidence inter-
vals which would enable his doctors to make an educated guess as to
which disease the child is suffering from,

Ve illustrate the technique of making an educated guess through
the use of Theorem 3.6.1l, lLet us count the children's ages in months,
Iet X and Y represent the distributions of type A and type B meningitis,
respectively, We shall consider the age group greater or equal to
sixty months, Applying Theorem 3.6.i to the r,v, X, we obtain

P(X > 60) < 0,65,
Similarly, if we apply Theorem 3.,6.1 to the r.,v.Y, we obtain
P(Y > 60) < 0,91.
If we now consider the age group greater or equel to seventy-two
months , Theorem 3.6, tells us that
P(X > 72) £ 0,50, P(Y > 72) < 0.81.
Combining the above we see that
P(60 £ X g 72) € 0,15,  P(60 ¢ Y < 72) < 0.10,

By repeszted applications of Theoren 3e6.). the doctor could establish'

upper probabilit& bounds for various age intervals, These probability

" it L
bounds would cnable to make an educated guess as to the type of bacterial
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.mening&tis. In times of uncertainty when doctoré are forced to make
educated guesses", decisions, based on probability bounds derived
from Tchebycheff type inequalities, would prove-to be very héipful.

We have attempted in this thesis to give results which are of
value to the practising statistician without neglecting the basic
theory which led to these results, We have traced the development
of a general theorem and we have shown how certain inequalities
can be established from this general theorem, We have also given
other iﬁequalities not obtainable by the general theorem and we
have illustrated the various approaches which have led to the estab-

lishment of these sharp Tchebycheff type inequalities,
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