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ABSTRACT 

Characteristic features of the long atmospheric 

waves are discussed on the basis of spherical harmonie 

analysis of global weather charts for September 1957. 

At first, there is a discussion- of the Trapezoïdal and 

Simpson' s numerical integration rules as applied to 

the computation of the Spherical harmonie coefficients. 

Then, there is a variance analysis of the waves with 

indices 1 ...::::: m ~ n ~·15; this includes a discussion 

of the quasi- stationary and travelling modes of sorne 

of the waves. In the last section, there is a descrip­

tion of the behaviour of sorne of the tesseral and 

zonal harmonies with regard to daily variance fluc­

tuations, mean positions of the waves and vertical 

slopes. 
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INTRODUCTION 

The atmospheric motion as it presents itself on global 

weather charts can be considered as a mean flow upon which are 

superimposed more or less marked disturbances. The distur­

bances however represent again a superposition of components 

with horizontal scales in a very wide range. Since surface 

spherical harmonies are characteristic functions of the non­

linear vorticity equation, it seems appropriate to use them in 

the representation of the horizontal flow patterns. This type 

of analysis was applield to geomagnetic variables long before its 

introduction into meteorology by Haurwitz in 1940. Since then 

more work on spherical harmonies has been done by various 

people. This strengthened further the case for the use of these 

functions. both on theoretical and practical grounds. However, 

the principal difficulty that stands in the way of a completely 

fruitful use of these functions is the lack of adequate data dis­

tributed over the whole earth. 

The International Geophysical Year (1957-1958} provides 

data which covers rouch more extensive area than usual. This 

makes it possible to express the global height field in terms of 

spherical harmonies and obtain more meaningful resulte. As 

an indication of this, Figure lb) shows the 1000mb weather 

map of September 1 st 1957 for the northern hemisphere, as 

represented by spherical harmonies. It is in very good agree-

1 
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Figure la. Analyzed surface chart for September l, 

1957. 
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~igure 1 b. Height distribution at the 1000 mb level for 

September 1, 1957 as represented by spherical 

harmonie analysis. The analysis contains the terms 

for which 0 :=:;;rn n ~ 15. 
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ment with the actual surface map of Figure la). To facilitate 

comparison of the two maps, a geographicallocation will be 

denoted by <B )J in the following description. The centres of 

the lows at (55°, 160° W), (50°, 147.5° E) in the computed map 

coïncide with the two respective lows on the actual map, but the 

low near the pole is about 7° west of the actual map1 s low. The 

low pressure areas at {60°, 20° E) and(50°, 60° W) and the 

Highs at (55°, 65° E} and(40°, 55° W) of the computed map 

coïncide respectively with those of the actual map. It is not 

worthwhile to compare the more southern systems because of 

the poor analysis of the actual map near the boundary. 

Background 

Early pioneers in the work of spectral models for the 

atmosphere are Rossby (1939) and Haurwitz {1940). Rossby has 

given a simple theory relating the dimensions and velocities of 

perturbations with the zonal component of the general atmospheric 

circulation. He assumes that the lateral extent of these centres, 

i.e., their width, in meridional direction, is infinite and further­

more that the earth may be regarded as flat. Haurwitz extended 

the idea to include the sphericity of the earth and gave the per­

turbations a finite lateral extent. 

Haurwitz and Craig (1952}made a study of the 3 km pressure 

field between 20N and 60N by spherical harmonies for the period 

January l st to J anuary 9th 1938. Lack of data limited the ir 

analysis to this latitude belt. Only terms with m=l, 2, 3, 4 and 

. n=m+l, m+2, m+3, were used. Their results gave far too intense 

and fast-moving systems. This is somewhat expected since the 

theory appl~es well to the whole globe rather than to a limited 

latitudinal belt. 

J. Namias and K. Smith (1943) also analyzed by spherical 

harmonies the 3 km normal pressure fields for January, Apr~l, 
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July and October. The analyses were conducted for data between 

20N and 60N. They found that in April and October, the terms 

with m=3 become of relatively greater significance. The 

behaviour of the phase constant was rather disquieting. This 

seems to indicate that the harmonie analysis applied to data of a 

limited area is nothing but a formai result without much physical 

significance. 

In a recent study by Eliasen and Machenhauer (1965), the 

analysis was done over the northern hemisphere using even waves 

to represent the height field and odd waves to represent the 

stream function field. Both the 1000 mb and the 500 mb surfaces 

were analyzed for the 90 day period from December l, 1956 to 

February 28, 1957. They find the amplitude to be growing with 

height except for the component (rn, n)={l, 4). Comparing their 

values from the two levels, it is se en that for all components 

with rn~ 3 and n ::::::= m=5, the position at 500 mb level is to the 

west of the position at 1000mb level, the distance being about 

O. 2 times the wavelength. 

There seems to be so far only one study of the global height 

field by surface spherical harmonies. The se functions were 

applied to 500 mb height field by Steinberg for the month of 

September 1957. He suggests that components with m=l behave 

in the same manner in both hemispheres, i.e., they are mainly 

quasi- stationary and have large values of variance, while com­

ponents with m=4 propagate eastward with relative phase velocities 

in both hemispheres. Also, for this order of the wave (m=4), the 

variances of the odd component seem to be out of phase with those 

of the even components, a fact which leads him to the conclusion 

that there was energy transfer between sorne of the odd and sorne 

of the even components. 
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Data Sources 

Surface pressure data over the globe were extracted from 

maps issued by anI. G. Y. Special Committee. Three nations 

were involved in the analysis of these maps, namely the Federal 

Re public of German y, Re public of South Africa and the United 

States of America. U.S.A. handled PartI (Northern Hemisphere, 

20N to the pole), F.R.G., Part II (25S to 25N}, and R.S.A., 

Part Ill (Southern Hemisphere, 20S to the pole}. 

The I.G.Y. World Weather Maps consist of a daily series 

of maps for the period July 1, 1957 to December 31, 1958. 

The se maps are published as monthly bookléts, each containing 

a surface and 500 mb maps for 1200 GMT each day. Each 

hemispheric chart {Parts I, II} is a polar stereographie projec­

tion from 20 degrees to the pole with the true s cale of 1 to 50 

million at latitude 60 degrees. Part II is a mercator projection, 

with true scale of 1 to 50 million at latitude zzt degrees. 

Temperature data were extracted from the Monthly 

Climatic Data for the World, sponsored by the World 

Meteorological Or ganization in cooperation with the U. S. Weather 

Bureau. 

Data Extraction 

The spherical harmonie series for each one of the 30 maps 

contains amplitude for 136 components and phase angles for 120 

components. The se were obtained from height data of the 1000 mb 

surface at a network of 1262 points {intersections of meridians 

divisible by 10 and parallels of latitude divisible by 5). The height 

data were calculated from surface pressure data at each grid point 

and the mean monthly temperature for each latitude. 

Angles of colatitude were measured from 9=0 degrees at the 

north pole to 9=180 degrees at the south pole. Angles of longitude 



were measured from Greenwich meridian and eastward. The 

cards were processed through McGill's IBM 7044, 32000-word 

digital computer. 
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THEORY 

Height Computation 

The 1000 mb heights were calculated through the 

Hypsometrie Equation, 

where, 

Rd= 287 joules .kg -l 0 k, gas constant for dry air 

~= 9. 80665 m-sec- 2 , gravitational acceleration 

T is the mean virtual temperature between the 

surface and the 1000mb pressure levels. 

Measured in degrees Kelvin, the mean monthly 

surface temperature as a function of latitude 

(or colatitude) is found sufficiently accurate. 

p ( e,).) is the surface pressure at (e, À) in mb 

Pc is the constant pressure of 1000mb 

Z is the height of the 1000mb level at (8
1
À) 

in decameters 

Spherical Harmonie Representation of the Height Field 

- 8 -

As a basic material, the present study .uses the height of a 

surface of constant pressure at a definite time as a function of 
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the colatitude 9 and longitude À. Quite generally this function 

may be written as the series 

z(_e )J==tf[A~cosmÀ+ 8~ SilnrmÀ]P~(9) 
'\'1\:t0)\;"1\'\ 

«:) co 

=LL c~ P~(eJ cos [m,t-<t>~] 
1ll:::OTI;'Jll 

These series express an expansion of Z in terms of the spherical 

harmonies, where the functions pm denote the Associated 
" Legendre functions of the first kind, m means the number of 

waves round the earth, and (n-m) indicates the number of zero 

points between the north pole and the south pole. In the first 

form, A~ and 8~ represent the spherical harmonie coefficients, 

while in the second form c~ ~s the amplitude and cp~is the 

phase angle of the particular component, given by 

cp'Ji') t _l . 8~ _ a:n 
, - A~ 

The expansion is based upon the following condition of 

orthogonality 
""1 

jP~(fJ.) P~~(fJ.) djl =0 
-1 

=1 

and jJ. =COS8 

When we use the Legendre functions normalized in this 

fashion, the normality factor becomes 

2TJ+1 
2 

(-n-m)l 
(n+mJ! 
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In tenus of e, the coefficients A~ and B~ are determined by the 

following integrais 

r~~ ~ 
A~= ~~ ~ Z~ ).)cos m)._ P~(eJs<.: 9 d9 cÙ: 1A "'i8) P~(9)s<m 9 d8 

Ta T 

s~= aMI z(e )J5hn11l..l.. P~W)S419 ue d.k_[s"'(e) P:~)Si-ne dB 
. ~- 0 . . . 

where t;'(e} and B"'N'\(8} are the usual Fourier coefficients and 

d.= 1 for m> o and <5..:,=2 for ""m=O 
~J d 

Numerical Integration Methods 

As we have the values Z only at a network of points over 

the sphere, the coefficients Am( 8) , Bm(e) and A~ , 8~ can 

be evaluated from their integral formulae only by means of 

quadrature sums. A-n'l (9) and B-m(8} are evaluated simply by 

the Trapezoïdal rule, using 36 equally spaced values around 

each latitude circle chosen, in which way the coefficients for 

mL36 will be the same as the coefficients determined by the 

method of least squares, regardless of the number of harmonies 

used to fit the function. In arder to evaluate the integrals in (1), 

the following three methods have been tested, 

(i) Gaussian quadrature formula 

(ii) Simpson and Trapezoidal rules 

The general numerical form of ( 1) for colatitude values of 

6( = 1 to 8-'= 37 is as follows, 

37 

A~ =3~ 2: A-m(e;) p~(e~)ske-r: W'i 
;::::1 

s';;= 3~ r s"'(e.-J p~(8.-)Sün8c W".( 
(.:::1 

where ~· is the weighting function which varies for different 

methods of quadrature. 

( 1) 

(2} 
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(i) Ga us sian Formula 

For the integration of the function f(Jl)=if(Jl)p~(/J.) 
we have 

0 
where Jlp, are the roots of the Legendre polynomial (Pl() and 

Gk the corresponding Gaussian weights. This quadrature 

formula is of the highest algebraic degree of precision, i.e., it 

is exact for f( J1 } being any polynomial of degree smaller or 

equal to 2K-l . 

Using the Gauss formula with K=20, we then obtain 

20 

A~ LA~~) p~~G~ 
k=l 
.'"~0 

B~ L B'"l1)(~)P~ (/1~ G~ 
k..:l 

(3) 

(4) 

In arder to compute A"R and B~ from the expressions (4), 

Am(Jl) and B-m(j.J.)as well as P~·(U)must be determined at the 

latitudes corresponding to JlR. . Since the heights were not 

e>..-tracted at these latitudes, values for A-m(Jl.)and B"m(Jl)were 

obtained by a four point Lagrangian interpolation. In each inter-

polation, the 4 nearest points were chosen as follows, 

where f(jlFJ is the interpolated value of the polynomial at f.J...k 

and f(7(,)J f(7(,.) J f(7(
3
)) f( T{Ji) are the known values of the 

polynomial at the four nearest points Il Tl Y1 YI 
, (Il 1 12) 1 G) , (V. 
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(ii) Simpson' s and Trapezoïdal Rules 

The Trapezoida..l rule requires WC, to have the following 37 

values W.=L.-!= U{=~ · · · · · · · · · · · · · · • =(LÇ7 = 1 
Simpson' s rule uses the weights, 

Interpreted geometrically, Simpson' s rule gives the value 

of the sum of the areas under second degree parabolas, while 

the Trapezoïdal rule gives the sum of the areas of the trapezoids; 

it would then apply best to a first degree polynomial, 

Computation of Variance 

In the following, exp res siens are derived for the variance 

of the height field, the mean variance of the flow and the variance 

of the mean flow. These are used to compute the fluctuating 

variance of the flow. 

If we let zre ,)J represent the height at ( e;À) and z be 

the mean height over the globe, then the deviation from the mean 

given by 

and the variance would be 

but we have 
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and Z= ;\, p: so that 

:5 15 "n 

z''(8,)J-[ An P~+ 2:I[F~c.osinÀ+B~SVn1llÀ]P~(eJ 
-n=l 11.:::1 1ü:::l 

He nee 

By the use of the orthogonality property_, we obtain 

The variance of a single component is 

Qc::::::'jj ...:::::'15 

and 

2 To obtain the fluctuating variance cf_"m we denote the mean 
-rn -t F "0 -i: 

over the month of A~ and 8'11 by A':;, and 8~ respectively, 

th en 
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where i is a time index, the fir st bracketed term on the right 

hand side is the mean monthly variance (mean variance of the 

flow) and the second bracketed term is the variance of the mean 

flow. Thus a small value of c},:~ 2 indicates a strong stationary 

component. 

In the case of the zonal components, the mean monthly 

variance is given by 
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ANALYSIS OF ERRORS 

The errors involved in the calculation of the variance and 

phase angle are due ta the following sources, 

( 1) Measurement of the parameters. 

(2) Chart Analysis. 

(3) Gross errors of data e.>..1:raction and card punching. 

(4} Interpolation of the pressure values to grid points. 

(5) Numerical integration method. 

( 1) Measurement errors in surf.ace pressure and temperature are 

very small. Pressure is reported to 1/10 of a mb and temperature 

is reported to a whole degree. 

(2) Chart analysis errors generally tend ta decrease the variance 

of the field and in particular that contained in the shorter waves. 

This type of err or is most serious in areas with sparse data. 

(3) Errors in data extractions and card punching were readily 

recognized by spurious amplitude variations in the high Fourier 

wave numbers. It is considered that all significant errors of this 

type have been eliminated. 

(4) The error caused by interpolating the pressure values ta grid­

points is estimated ta be .± 0. 5 mb and for temperature.± 5. 0°C. 

These introduce the following error in the height calculation, at a 

grid point, of the 1000 mb level. 



Vfe have, f::."om theo::y, 

Z(91À) ==~-Tt.,_ P(g)J 
c 

i.e. 

If we choose the following reasonable values, 

P=l025 mb 

T=300°K 

we obtain tJ. Z =.± 0. 75 dm 

.6.P=+0.5mb 

flT=+ 5°C 

The err or in Z is mainly pressure dependent. 

( 5) Accuracy of the Numerical Integration Techniques 

- 16 -

The accuracy of the Trapezoïdal, Simpson and in part the 

Gaussian methods of quadrature have been investigated in the 

present study. Physically real input values of spherical harmonie 

coefficients A;~ were chosen to generate a global height field of 

the 1000mb level. This field was in turn used to recalculate the 

harmonie coefficients. The percent deviation between the input and 

output field should give a measure of the accuracy of the integra­

tion method. Table 1 presents the input coefficients, while Tables 

2, 3 and 4 show the percent deviation of the output from the input 

coefficients as obtained by the Trapezoïdal, Simpson and Gaussian 

methods, respectively. The results are tabulated only to two 

decimal places. 

Simpson• s rule appears to be more accurate for the zonal 

components and the Trapezoïdal method is slightly better for the 

wave components. The difference which occurs mainly in the third 

decimal digit of the wave components is not shown in the tables. 
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n 

m 
0 1 

Table I 

Input of the spherical harmonie coefficients A~ 
n 

2 3 4 5 6 7 8 

e 

----- -----"'--'--

9 10 11 12 13 14 15 

o 1 z6 1. 97 -4. oo "3.98 -3. sz---:-o-:ssi~o6----=--o. 73 0.68 -0.90 0.48 -1.19 o. 52 -0. 33 -0. 20 -0.29 
1 1. 62 1. 02 1. 2.9 1. 77 o. 99 --0. 73 -0. 55 
2 o. 57 o. 13 -0.59 -2.22 -0.91 -0.96 
3 -0.65 1.05 -1.34 2. 02 -0.71 
4 0.43 0.30 0.00 1.22 
5 0.23 -1.44 0.30 
6 0.18 0.27 
7 
8 
9 

10 
Il 
12 
13 
14 
15 

0.73 

-0.95 
-0.30 
0.36 

-0.42 
-1. 19 
-0.07 
-1.64 
o. 07 

0.47 0.75 0.34 0.42 0.10~-0.08 0.02 
0.82-0.43 o. 73 -0. 65 o. 25 -0. 08 -0. 19 

-0. 81 -0. 33 -0. 44 o. 34 -0. 09 o. 48 0.14 
o. 52 0.24 -0.18 0.63 o. 02 -0.00 0.13 
0.53 0.20 0.02 -0.02 0.04-0.18 0.20 
0.69 0.29 0.96 0.30 0.03 o. 10 -0.39 
o. 90 -1. 67 o. 12 -0. 76 -0. 60 -0.03 -0. 57 

-0. 79 -0. 23 -0. 14 o. 18 0.33 0.07 0.31 
-0.13 O. Il -Ô 45 o. 39 -0. 51 0.00 -0.38 

-0. 07 -0. 23 -0. 11 -0.08-0.06 0.26 
0.01 o. 04 -0. 22 o. 06 -0.39 

0.00 0.26 0.02 0.30 
-0.07 o. 05 -0.04 

-0.08 0.19 
-0.03 

.. 
....... 
-J 
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Table 2 

Percent deviation of the spherical hannonic coefficient A rn 
n 

from the input A~ by tbe Trapezoïdal Rule 

--·- ·-·------- ----·~--· __ ... __ 
ll 6 9 10 0 1 2 3 4 5 7 8 11 

rn 
--· 

0 0.02 -0.32 -0.16 -0.23 -0.22 '1.30 0.95 1. 73 1. 70 1. 57 2.70 1. 32 
1 -0.00 -0.00 -0.01 -0.00 -0.02 0.01 o. 04 0.02 -0.08 -0.03 -0. 14 
2 0.00 0.00 o. 00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.01 o.oo 0.00 0.00 0.00 -0.00 
5 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 
6 0.00 0.00 -0.00 0.00 0.00 0.00 
7 0.00 o.oo 0.00 o.oo 0.00 
8 0.00 0.00 -0.00 0.00 
9 -0.00 0.00 0.00 

10 -0.00 0.00 
Il -0.01 
12 
13 
14 
15 

e 

·-·-···---
12 13 14 

2.75 5. 13 -7.38 
-0.07 -0.58 0.92 
0.00 -0.01 0.05 

-0.00 -0.00 0.00 
. o. 00 o.oo 0.02 

0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 o.oo 0.00 
0.00 0.00 -0.00 
0.00 0.00 0.00 

-0.00 0.00 -0.00 
-0.00 -0.00 o.oo 
-0.00 o.oo o.oo 

-0.00 -0.00 
-0.00 

15 

1. 61 
-3.14 
-0.00 
-0.00 
-0.00 
-0.00 
o.oo 
o.oo 
o.oo 
0.00 
0.00 
0.00 
0.00 

-0.00 
-0.00 
-0.00 

,_. 
(X) 
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Table 3 

----------· ------- ---------------
Percent deviation of the spherical har:rnonic coefficient 

fron"l the input A1
;: by Simpson's Rule 

---------~-----··--- 1 
n 

m 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Il 
12 
13 
14 
15 

0 1 2 

-0.00 0.06 0.01 
0.01 0.01 

0.00 

3 4 

0.06 0.03 
0.03 0.02 

-0.01 -0.01 
0.00 0.00 

0.00 

5 6 7 8 

-0. 49 -0. 14 -0.86 -0. 
0.08 -0.08 -0.24 -0. 10 
0.00 -0.02 0.01 -0. Il 
0.00 0.00 0.00 0.01 

-0.00 0.00 o.oo o.oo 
o.oo 0.00 0.00 0.00 

0.00 0.00 -0.00 
o.oo o.oo 

o.oo 

9 10 Il 12 

-0. 99 -0.71 -1.07 -0.96 
0.45 0.20 0.93 o. 56 

-0.02 -0. 15 -0.04 -0.19 
0.00 -0.03 0.01 o. 08 

-0.00 -0.00 0.01 -0.00 
0.00 -0.00 0.02 0.02 
0.00 0.00 0.00 -0.00 
o.oo 0.00 o.oo o.oo 
0.00 -0.00 o.oo 0.00 

-0.00 0.00 0.00 0.00 
-0.00 0.00 -0.00 

-0.01 -0.00 
-0.00 

13 

- 80 
5.02 

-0.20 
0.06 

-0.17 
0.04 
0.02 
0.00 

-0.00 
o.oo 
o.oo 

-0.00 
o.oo 

-0.00 

14 15 

4.25 -14.87 
-4.09 '35. 39 
-2.96 0.39 
0.15- 0.02 
l. 90 - O. Il 
0.01 0.03 

-0.00- 0.01 
0.00 0.00 

-0.00 - 0.00 
o.oo 0.00 

-0.00 o.oo 
0.00 0.00 
0.00 0.00 

-0.00 - o.oo 
-0.00- 0.00 

- 0.00 

...... 
...0 
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n 
m lo 1 2 3 4 

. --· ---------------· 

Table 4 

---··-------· ---------------· 
m 

Percent deviatio11;. of the sphcrical harmonie coefficients A 11 

from the A~ by the Gaussian rnethod 

_,,-----~ ··----·-----·-· -----------· 

5 6 7 8 9 10 Il 12 13 14 15 
;----------------~------------,------------'- ___________________ ,. .. , 

o o. 54 o. 15 o. 23 -O. 02 k.o. 42 o. 35 1. 02 o. 62 1. 31 o. 48 -O. 10 .. 2. 12 -o. I6 o. 21 2. 22 

• 

N 
0 
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The table also shows that the Trapezoïdal method gives an over­

e stilnate of the values oî the coefficients exactly where Simpson' s 

rule gives an underes'~inJ.ate and vice-versa. For practical 

applications, the two methods can be considered equivalent since 

the actual error involved does not adà. much to the noise-level, 

which is mainly created by error 2) dis eus sed ab ove. 

The percent deviation by the Gaussian formula (with a four 

point Lagrangian interpolation) was computed only for the zonal 

cornponents. It seems to be superior to Simpson's rule for 

n -~ l 0 bu: inierior for n ~ l 0. Since components with smaller 

n are 1nore important, Simpson' s rule was used to obtain the 

z o:1.al harmonie coefficients. 

Noise Level. 

The random error of.± 0. 75 dm in the height computation 

at a grid point introduces a very small error (about 10- 4 dm 2 ) 

in the variance of an individual component and is thus considered 

insignificant. Also err ors 1) and 5) are cons ide red insignificant. 

The errors of chart analysis are the most serious and the main 

contributors to the noise-level. Since they are random in nature, 

it becomes very difficult to include them in the computations of the 

variance and phase angle. By considering the output results, one 

can make a reasonably satisfactory estimate of the noise level. 

The underlying assumption is that no large jumps in the phase 

angle of a low order component exist in the real atmosphere at the 

1000mb le.vel. Bence a sequence of erratic and large phase changes 

can only occur if the variance is in the noise level. This in fact 

seems to occur in all the components. 

The de ciding factor in choosing a lower limit for the value 

of the variance below which the wave would not be considered 

significant was selected from the behaviour of the component (1, 4} 

which is seen to have very high variance values during the month. 
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The variance of (:r.::1, n) = (l, 4} w;;;.,s relatively large :for the 

st 25 da ys of the month and w<:..ve exbibited mainly small 

fluctuations about a mean position. However, on September 27, 

the variance dropped to 0. 27 dm
2 

and the phase change in the 

period from September 26 to 28 was large. Thus a choice of 

0.27 dm 2 as the lowest limit of significant values of the variance 

is quite a high value which eliminates fne physically unreal 

variances, but may at times eliminate sorne small but physically 

real values of the variance. 
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ANALYSIS OF VARIANCE 

Spectral Distribution cf the Var:.ance 

On the basis of the spherical- harmonie analysis of the 

height field we may now, as a fundamental characteristic, con­

sider the spectral distribution of the variance which is a measure 

of the importar.ce of the different components in the spherical 

harmonie representation. 

cf
m2. 

The mean values of -n at the l 000 mb level for 

September 1957 are shown in Table 5 for m =:::: 15 and n-m ~ 15. 

ssed in percent, table 6 shows that the largest individual 

cc:1.tributions are found for the components with the smaller rn 

;;..:-:d n, i.e. for the harmonies of the largest scales. Thus, the 

contributions from the zonal flow, m = 0 are together about 60 

per cent and the contributions from wave numbers, 1, 2, 3 and 4 

are together about 31 r cent of the total contribution from all 

the components ::.n table. It is seen that the most dominant 

components in 5 are the odd tes seral harmonies ( l, 4) and 

(2, 5). 

Summations of the mean monthly variance over n for every 

m and over m for every n for the wave components have been 

included in table S. When plotted i:"> ::he form of histograms in 

Figures 2a), b} and c), they illustrate the spectral distribution 

of the variance. In Figure 2a), rn= 1 has the largest amount of 
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Table 5 

1\1can variance the snheric,ü h<trrnonic components 

for r 1957 2 (Dn1 ) 

-·---- -··· ·~-----.___...__ ___ -~- ______ .,., ·--·~--···-----
---~- --·--·· 
Sum 

2 3 4 5 6 7 i; 9 10 Il 12 13 14 15 ----- --- ....... ~~ - ~-~--- .. ------ -----"'··~----~·-· ~~. ----------
9.34 11. 86 6. 68 o. 34 2. 40 0,74 l. >1 0 • 1 '/ 0 . 0 8 0 • 13 0. 13 0.03 0.0 o. 04 

1 0.44 0.62 1. 76 o. 41 o. 0.23 o. 82 0.32 o. 1? o. 12 o. 09 o. 04 o. 05 o. 03 6 •. 84 
2 o. 51 0.40 o. 52 1.78 0.48 0.52 0.26 0.52 0.18 0.21 o. 15 o. Il 0.06 0.05 75 
3 0.18 o. 19 o. 45 o. 61 0.50 0.35 0.25 0.20 o. 16 o. 11 0.06 0.06 0.04 3. 17 
4 0.30 o. 73 o. 52 o. 92 o. 38 o. 4_3 o. 39 o. 16 o. lO 0.08 0.05 0.05 4. li 
5 0.15 0.23 0.30 0.?8 0.31 o. 26 o. 12 o. 10 o. 08 o. 07 o. 07 1. 98 
6 o. 07 o. 10 0.18 0.30 0.13 0.15 0.12 0.07 0.06 0.04 1.22 
7 Q.08 0.16 0.15 0.19 0.12 0.10 o. 07 o. 05 o. 04 0.96 
8 0.04 0.21 0.05 0.08 0.09 0.06 0.05 0.04 o. 52 
9 0.01 0.06 0.05 0.08 0.06 0.04 0.05 0.35 

10 0.01 o. 03 o. 03 0.04 0.05 0.04 0,. 19 
11 0.01 o. 02 o. 02 o. 02 o. 02 0~09 
12 o.oo 0.01 0.02 0.01 o. 05 
13 0.01 0.01 0.01 0.02 
14 o.oo 0.01 o.:o1 
15 o.oo 0.00 

Sum 1. 36 0.95 1. 20 2.77 3. 52 2. 36 2. 64 2. 47 2.40 1. 58 1. 21 0.99 0.71 o. 59 o. 50 
1 

N 

*" Note: Summation of the mean monthly variance over m and n respectively 

does not i.nclude the zonal c01nponents. 
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---~--... --" -- ----------- ~--··---~~- ~·-·-·----~---· - ,.,. __ . 
Table 6 

·---- --------- . ------·-------------!-----· ____ , 
Mean n:1 vai'iancc of the splîerical harrn.onic conlponents 

cxprcssed in percent of the tot&-1 me:an n1onthly variance 

--------------------- ---·--·-·-
n 

rn 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 Total --- -~-~------ .. ~--·- -----------~-~---
.. --· .. ··----

0 7.62 14.72 18. 70 10. 53 o. 53 3. 78 1.16 2.11 o. 2.6 o. 13 o. 21 o. 21 o. 04 o. 10 o. 07 60.17 
1 2. 11 0.69 0.98 2.78 0.65 0.69 0.36 I. 3 0 0. 50 0. 1 8 0. 1 9 0. 14 0. 0 6 0. 0 8 0. 0 4 10.78 
2 o. 81 0.63 0. 81 2. 80 0.76 0.82 0.41 0.83 0.29 0.33 0.24 0.17 0.09 0.08 9.07 
3 0.29 o. 30 o. 'li 0.97 0.79 0.54 0.39 0.32 0.26 0.17 0.10 0.09 O.Oï 5.00 
4 0.47 1.16 o. 82 1.45 0.61 0.68 0.61 0.25 0.16 0.13 0.07 0.08 6.49 
5 0.24 0.36 0.47 0.44 0.49 0.41 0.19 0.16 0.13 0.11 0.11 3. II 
6 0.110.16 0.28 0.47·0.21 o. 23 o. 18 o. ll o. 10 o. 06 1. 91 
7 0.12 0.26 0.24 0.31 0.19 0.16 0.10 0.08 0.06 l. 52 
8 0.06 0.17 0.08 0.13 0.14 0.10 0.08 0.06 0.84 
9 o. 02 o. 09 o. 08 o. 12 o. 10 o. 07 o. 08 0.56 

10 0.01 0.04 0.05 0.06 0.07 0.06 0.29 
Il 0.01 0.03 0.03 0.03 0.04 o. 14 
12 0.01 0.02 0.03 0.02 0.08 
13 0.01 0.01 0.02 0.04 
14 o. 00 o. 01 0.01 
15 0.00 0.00 

--- .J 
Note: The total zonal mean field and the waves with longitudinal wavenumber 0 to 4 represent 91. 5.' 

per cent of the total variance. 
N 
\JI 
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va::.-iance and m = 2 is "i:he next in magnitude, partly be cause the 

lower rn indices contain more n indices and the number of (rn, n) 

components decreases as rn increases. Figure 2c) has been 

added to illustrate the variance as a function of the meridional 

dimensions of the wave s. Predominant in this distribution are 

the components with n-m=3. This has a remarkable resemblance 

to the same type of distribution presented by Steinberg for the 

500mb level (see Figure 2d). It thus appears that components 

n-m'"'3 contain the largest amount of variance at the two levels, 

the magnitude beLn.g greater at 500 mb surface. 

Stationary and Travelling Long Waves 

To study quantitatively the standing waves in the atmosphere, 

we may consider the spectral distribution of the fluctuating 

variance as given in Table 7. Since these values are positive, it 

is 1.::1der stood that the contributions of the variances of the mean 

flow are smaller than the mean values presented in table 5, par­

ticu~arly so for components with larger rn and n, i.e. for com­

ponents with smaller scales. The fluctuating variance is most 

physically meaningful for components which have a large mean 

monthly variance. In this category, we find the components with 

(m,n) = (1,1), (1,4), (1,6), (1,8) and (2,5). Intable 7, these 

components are found to have small values of fluctuating variance, 

illustrating their semi-permanent character. The most stationary 

of all the harmonies are (1, 1), (1, 4) and (2, 5); their fluctuating 

variances are 23.5, 31.3 and 34.0 percent of the mean variance, 

respectively. 

Graphically one can separate the stationary and travelling 

moèe s of a pla:1etary wave by Deland 1 s two component model. 

The amplitude and phase angle of the harmonies (1, 1), (1, 4), 

(1, 8) and (2, 2), (2, 5), (2, 7) are plotted for every day of the month 

on polar diagrams in Figures 3a), b), c) and 4a), b), c) respec-
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9 11 13 15 

(b) The mean monthly variance shown 

~ 

as a function of n(the two dime nsional 

wave number). 

L­
L-...., 

i ~ 1 l ~ • ll 1 
i3 i5 

rn 

(a) The mean monthly variance shown as a function 

of rn (the longitudinal wave number). 

Figure 2. Spectral distribution of the mean monthly variance. 
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2 

cf 
7l 

6J n 
5 -~ ! 1 

1 1 l 
~-\ 1 

i 1 

(d) 

1-1 . ~ 

The mean monthly variance 
shown as a function of (n-m) 
(latitudinal wave number). 

l L..-.,_, 
01 --....._.,_ b 2 · 4 l 6 ' 's i o 1 1

1
2 ' t 4 

( c) The mean monthly variance shown as a 
function of (n-m) (the latitudinal wave 
nur..:1ber) at the 1000 mb level. 

2. Spectral distribution of the mean monthly variance in 
tl:e meridional direction. 
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1'a1>lc 7 
,_, _____ '---· __________ , __ _ 

rconl of the u-,, g variance the h<:tl'lll 

components r Scptem ber 1957 (Drn 2} 

98.34 
83. 58 . -

80.84 
92.81 
98.58 
99.43 

.. 97.89 
-- - --- 83.03 

94.42 
63.33 

32 

Note: Among the long waves, those for which table 5 indicates a la n1ean 

monthly variance, the present ta ble indicates a s1nall fluctua ting variance. 

N 
-;:) 
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tively. In case of the lower harmonies, it is apparent that 

the wave vector does not describ.::.: a circle around the pole as it 

should in the case of a single wave, but instead it follows a 

roughly circular path as if it represented a travelling planetary 

w;:.ve superimposed on a quasi stationary wave. In figure 3a) 

fo:r (m,n);::; (l, 1), the travelling wave retrogresses (clockwise 

motion) in a disorganized manner due to the large changes of 

its amplitude. Thus, it se ems more convenient to break this 

eccentric circular path of 30 days into a number of almost com­

plete circular motions. This travelling planetary wave seems 

to retrogress around a r..J.ean positio:1. for the first 6 d<::-ys, then 

decreases greatly in amplitude and again retrogresses around 

anothe:ë centre for about 5 days, then increases in amplitude 

greatly and again retrogresses around a different centre for 

another 5 da ys (until the 1 Sth day); the rnonthly motion is com­

pleted by another retrogressive cycle. This graph illustrates 

4 main cycles of westward motion; the centre of each cycle may 

considered to be the position vector of the quasi- stationary 

con'1ponent and this shows a slow retro gres sive motion over the 

r..J.onth. For (rr., n) ;;:: (1, 4} in figure 3b). we see a major cycle of 

ret:ëogressive motion (clockwise) about a mean position for the 

iirst 10 days, a large drop in amplitude, followed by a 

progressive cycle (anti clockwise) between the 13th and the l8th 

days; the motion seems to end w~.-;;~-. another progressive cycle. 

Ir: the c&se component (1, 8) which is a small scale wave in the 

nort~- south direc-::io:::1, the major cycles exhibit progressive motion. 

The ab ove description seenJ.s to indicate that the largest 

scale planetary wave (1, 1) is com?letely described by a retrogres­

sive travelling wave superimposed on a fixed wave, while for 

increasing n (decreasing north- south dimensions) the number of 

cycles of a progressive travelling wave increases. This picture 

see::-.ns to repeat itself in the analysis of a similar set of compo-

nents in s 4a), b) and c). Harmonie (2, 2) is des cri'!:ï.::.:ci only 
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wave, (2, 5) clearly shows a cycle 

first l J. days, a cycle of retrogression 

between the 12th and 19th è.ays and a final progressive cycle 

between the 20th and the 30th days. Finally (2, 7} is totally 

described by 3 cycles of eastward motion. We also note that the 

stationary co:-r1poner..t of (2, 2) is as pronounced as that of ( 1, l). 

It should be mentioned that when tZ:e amplitude is very small (in 

the noise level), the phase angle lose s its physical meaning. 

One implication of above dis eus sion is that the latitu-

di:~al (:;.·ep:::-escnted by n-m or n). as well as the :!.ongitudi:-:al 

(::;:epresented by rn} scz..!e shoulcl ';:;e taken into account in a scale 

analysis of planetary waves. 

As a final illustration the qt;.asi- stationary char acter of 

the large scale waves, s 5a) and b) are presented. It is 

clearly se en that the large s cale feature s on the mean map 

(:figt:re Sa)) are ve:ry similar to the flow pattern des cribed by the 

s1..:perposition of the components 0 ~ rn L 4 and m L n L l 0. 

T~le mai:::1 features on the mean :::nap are a Low over Scandinavia 

( 15 ° E) which e:>....'tends west to Iceland (20° W). a High over Asia 

(centred at about 80° E), a :..ow over the Pacifie (160° W) and a 

ridge over Western Canada (11 0° W). The same disturbances 

appear at a1most the same ographical location in figure 5b) 

(which includes only the ultra-lo:::1g longitudinal waves of 

September 1), except for the over Western Canada which is 

not as pronounced as that of mean map. Thus, the long waves 

which appeared on the map of September lst show up clearly on 

the mean map. 
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. Figure 3a. Daily values of the harmonie ( l, 1) plotted on a polar diagram; 

each point represents one day. The gr shows cycles of retrogressive 

(clockwise) motion only. The avcr;q:~e rotation period is 5 days. 
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Figure 3b. Daily values of the harmonie (1 ,4) plotted on a polar diagram; 

each point represents one day. This cmnponent shows 1norc progressive: 

(anticlockwisc) cycles than component (l' 1). 
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which the amplitude has physical significance, the rnotion is more 
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Figure 4a. A polar diagram for harr:nonic (2, 2); each point represcnts 

one day. The graph illustrates cycles of retrogressivc (clockwise) 

motion, as is the case with the long wave ( 1, 1). 
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major cycles of progressive (anticlockwise) r:n.otion, simnar to 
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Figure 4c. A polar diagram for harmonie (2, 7). It illustrates 

mainly progressive (a.nticlockwisc) cycles of motion, similar 

to component ( l, 8). 
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at 1000 mb level for 

Septe:r-.;,b-.:;r l st, 295 7 as representee: by the ultr2. long 

waves in a i harrnonic analysis. The ar.alysis 

C0!1tair:s ·::1e terres for which 0 _::::: r_:: 10. 
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. TESSERAL HARMONICS 

An immediate picture of the va::::-iation with for the 

different components is obtained by plotting variance and 

phase angle as a function of time. For the components with 

m land n::;l, 2, 3, 4 in Figures 6a), b). c) and d), it is seen 

that a strong stationary component exists; the waves show in 

general more pronounced progressive motion for larger n indices. 

For example, wa ve ( 1, 1) is loc ated at the end of the month 12. 

degrees east of its position at the beginnir~g of.the mon'i:h, while 

wave (l, 4) illustrates a continuo;.;..:; s:cw progressive motion 

reaching on the 26tn day a position whic:'l is about 50 degrees east 

of its location at beginning the month. In sorne cases, the 

displacement du::.·ing one day is relatively large but this always 

coïncides 

ior (m, n) 

a s:::na:l value of the a:::nplitude. Fi;;;ures ôe) and f) 

(1, 5) anC: (1, 6) respectively are difficultto analyze 

·--~lee the variance for most of the days is below or close to the 

noise level. However, when the variance has physical significance, 

these two components also illustrate progressive motion. The 

graphs in figure 6 also illustrate the large variations in the 

variance from day to day and from component to component. 

Steir~b'-'rg has presented in his paper, similar gr a phs for 

the same components at the 500 mb level for September 1957. 

It would be interesting to study sorne aspects of the vertical 

.st::.·ücture of these waves on the basis of the 1000mb and 500mb 
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levels. Harmonie (m, n) = (l, 1) illustrates for the 500 mb and 

1000mb levels, mean positions of 300° and 315° respectively, 

resulting in an eastward slope of 15°1ongitude. For (m, n) = (1, 4), 

the mean positions at the 1000 mb and 500 mb levels are about 

43 and 30 degrees longitude, indicating a westward slope of about 

13 degrees longitude. E speciéilly for the se two components the 

daily fluctuations of the variance and position are remarkably in 

phase at the two pres sure levels. The variance of (m, n) = ( 1, 1) 

at 1000 mb seems to be of slightly larger magnitude than that at 

500 mb for the fir st half of the month, but is generally smaller 

for the second half of the month. In the case of (m, n) = (1, 4), 

the variance at 500 mb is always larger than that at 1000 mb and 

for the first 5 days the ratio is about 2 to 1. 

A description of the harmonies (m,n) = (1, 2), (1, 3), (1, 5) 

and (1, 6) is based on a smaller sample of days due to the small 

values of the variance at the 1000mb surface. Thus, when the 

variance may be considered physically real, components (1, 3) and 

( 1, 6) seem to slope generally we stward with h~ight, excepting the 

days 11 to 16 when (1, 3) illustrates an eastward slope. No simple 

description can be given to the slopes of components with (m, n) = 

( 1, 2) and ( 1, 5). 

The description of Figure 6, indicates that components ( 1, 1) 

and (1, 4) always slope slightly eastward and westward respec­

tively, while the other components have no preferred direction 

of the vertical slope. This may suggest that e.ither the se waves 

do not necessarily have the same direction of vertical tilt, or 

since their slopes are small, they may, for climatological pur­

poses be considered to have no change of position with height. 

We have seen in table 5 and figure 2b} that the components 

with (m, n) = (4, n) have a relatively large mean monthly variance. 

It would thus be useful to consider the daily fluctuations and 

variance of these tesseral harmonies. These are plotted in 

figures 7a), b), c), d), e) and f)for the 1000mb and 500mb levels. 
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The waves show, in general, motion towards the east, especially 

harmonie (4, 7) which contains large magnitude of the variance 
~ 

most of the days. Component (4, 5} shows almost no tilt in the 

vertical, but (4, 7) clearly illustrates a westward slope which 

varies between 5 to 8 degrees of longitude. Components (4, 8) 

and (4, 6) show, where comparison is physically real, a small 

westward slope. Finally, component (4, 4) is seen to be mainly 

in the noise level. 

The daily variations of the variance at the two levels are 

remarkably in phase for component (4, 7) and to a less extent for 

(rn, n) = (4, 8}, but almost consistent! y out of phase for (rn, n) = 
(4, 5}. We also see that except for (4, 4) and (4, 5), all compo­

nents amplify with height. The amplification ratio is grea ter 

for the even component (4, 6) and (4, 8) than for the odd ones. 
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Figure 6a. Successive daily values of the phase angle cp and 

variance (f2 
at the 500 rob (After L. Steinberg) and at the 1000 rob 

levels for component (rn, n)=(1, 1). Non-signüicant values of the 

phase angle may be omitted. 



:1. 2 
cf (DM) 

+ + 

.J • . 

+ 

• "i" 

+ 

1\ 
. 1 \ -'i· . 

i 

. \ 
( \+ 

/'- \ . ~ \ . 

.-.. 1 1 \ . . \ 1 1 .......... 

DAY m=l, n=2 

- 44-

..:. • • ,. 

Figure 6b. Successive daily values of the phase angle cp and the 

variance 02. at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (m, n)=(l, 2). Non-significant values of the 

phase angle may be omitted. 
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(500) 

m=l, n=3 

Figure 6c. Successive daily values of the phase angle cp and the 

variance (/
2 

at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (mln)=(l, 3}. Non-significant values of the 

phase angle may be omitted. 
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Figure 6d. Successive daily values of the phase angle cp and the 

variance (f2 
at the 500mb (After L. Steinberg) and at the 1000mb 

levels for compone nt (rn, n)=( 1, 4). Non- significant values of the 

phase angle may be omitted. 
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Figure 6e. Successive daily values of the phase angle cp and the 
2 

variance cf at the 500 rob (Mter L. Steinberg) and at the 1000 rob 

levels for component (m,n)=(l, 5). Non-significant values of the 

phase angle may be omitted. 
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Figure 6f. iuccessive daily values of the phase angle cp and the 

variance cf at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (rn, n)=(l, 6). Non-significant values of the 
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Figure 7a. Successive daily values of the phase angle cp and the 

variance (f2 
at the 500mb (After L. Steinberg} and at the 1000mb 

levels for component (rn, n)=(4, 4). Non- significant values of the 

phase angle may be omitted. 
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Figure 7b. Successive daily values of the phase angle (jJ and the 

variance 0 2 
at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (m, n)=(4, 5). Non-significant values of the 

phase angle may be omitted. 
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Figure 7c. Successive daily values of the phase angle cp and the 

variance cf"J. at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (m, n}=(4, 6). Non-Significant values of the 

phase angle may be omitted. 
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Figure 7d. Successive daily values of the phase angle cp and the 

variance cf:J.. at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (m, n)=(4, 7). Non·significant values of the 

phase angle may be omitted. 
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Figure 7e. tuccessive daily values of the phase angle cp and the 

variance Û at the 500mb (After L. Steinberg) and at the 1000mb 

levels for component (m, n)=(4, 8). Non-significant values of the 

phase angle may be omitted. 

30 

24 

18 

! 
' l? r .. ~ 



:l. 2 
cf (DM) 

+ 

l 

.1· • + 
. ·­• 

·r 

. -:-

' ... • 

+ ~· 

,J. 
f 

. 

- 54-

<P (1 0°) 

.,...;.· 36 

·t· 

. ... • 30 

24 

18 

12 

6 

1 3 5 7 9 13 15 17 19 21 23 25 27 29 

DAY m=4, n=9 

:l 
Figure 7f. Successive daily values of the variance cf at the 

500 mb (After L. Steinberg) and at the 1000 mb levels and the 

phase angle at the 1000mb level for component (m,n}=(4, 9). 
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ZONAL HARMONICS 

The geostrophic zonal flow is described by the zonal com­

ponents. The se terms are found to account for most of the height 

variance (60 percent of the total variance as indicated in table 6), 

a fact which indicates that the latitude is the dominant factor in 

the height-field distribution. In this section of the study, the 

daily fluctuations in the variance of the major component s ( 0, l), 

(0, 2), (0, 3) and (0, 4) are discussed. 

Since most of the atmosphere lies above the 1000 mb 

pres sure level, and its mas s remains constant with time, it follows 

that the are a weighted mean height of the global l 000 mb surface 

varies very slightly with time. Figure 8 shows that component 

(0, 0), which is the area weighted mean height, is essentially 

constant with time; the mean height is about 14 decameters. 

In table 6 we find that the sum of the mean monthly variance 

of the odd components (0, 1) and (0, 3) and that of the even com­

ponents (0, 2) and (0, 4) contain about 26 percent and 25 percent 

of the total variance, respectively. Thus, these odd and even 

harmonies contribute about equally, in the mean, to the total 

height field. However, figures 9a) and b) show that the even and 

odd components alternate in cycles of predominance during the 

month. Harmonies (0, 2) and (0, 4) dominate during the first 14 days, 

while (0, 1) and mainly (0, 3) domina te during the next 10 da ys. 
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Du ring the last 6 da ys, the even components begin to dominate 

again. Thus, there are fluctuations in the symmetry of the 

meridional height profile, with respect to the equater. 
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Figure 9a. Successive daily values of the variance ~ of the 

zonal components (0, 2} and (0, 4) at the l 000 mb level. The sum of 

their variance reaches high values during the first 6 days and last 

few days of the month. 
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Figure 9b. Successive daily values of the variance cf of the zonal 
components (0, 1) and (0, 3) at the 1000mb level. The sum of their 

variance reaches high values between the 18th and 23rd days of the 

month. 
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MEAN TEMPERATURE OF THE LOWER TROPOSPHERE 

Since spherical harmonie coefficients of the height field 

at the 500 mb level (Steinberg) and tho se of the 1000 mb level are 

available, it is a simple procedure, through the Hypsometrie 

Equation, to obtain the spherical harmonie coefficients of the 

mean temperature between these two pressure levels. This 

would permit sorne investigations about the lower tropo?pheric 

temperature field. 

Figures 1 Oa) and b) illustrate that harmonie (0, 1) is 

be coming les s dominant with time, while the variance of (0, 2) 

increases during the month. We also note that (0, 2) contributes 

to the temperature field more than (0, 1) all through the month. 

This indicates that although the meridional temperature profile 

was largely symmetrical with respect to the equator during 

September 195 7, its symmetry increased during the 30 da ys. 

These two zonal components describe most of the temperature 

field. 

Figures lla), b) and c) are also presented to illustrate that 

the tesseral harmonies of the lower tropospheric temperature 

field indicate generally very small values of the variance. Hence, 

the temperature field is mainly a function of latitude. 

Finally figure 12 illustrates that the first component of the 

spherical harmonie series, i.e. the area weighted global mean 

temperature of the lower troposphere, to be about 2. 2°C during 

September 19 57. 
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Figure 12. Daily values of the area weighted mean temperature of 

the global lower troposphere for September 1957. 
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SUMMARY AND CONCLUSIONS 

The present study analyzed the height field of the global 

1000 mb surface on a daily basis for September 1957 in terms 

of spherical harmonies. The main tapies reviewed in the work 

are: 

{ 1) three possible methods of numerical 

integration 

(2) the variance contributions of the major 

components 

(3) the vertical structure of sorne tesseral 

harmonies on the basis of the 1000 mb 

and 500mb pressure levels 

(4} the zonal harmonies 

and (5) the temperature field of the lower 

troposphere 

Examination of the se aspects led to the following conclusions: 

1. Integration of the spherical harmonie coefficients by 

Simpson1 s rule proved to be quite accurate for the zonal com­

ponents, while the Trapezoïdal rule was found to be better for 

the wave components. The Gaussian method was found to be 

superior to the Trapezoïdal rule but inferior to Simpson1 s rule 

for the zonal harmonies. 
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2. Variance Analysis: 

(i) The zonal harmonies contain about 60 percent 

of the total variance of the height field, while the wave com­

ponents with m=1, 2, 3, 4 contain about 31 percent. Among the 

wave components, the cnes with three nodes in the North-South 

direction (n-m=3) contained most of the variance. 

(ii) .The study of the motion of planetary waves shows 

their dependence on the latitudinal (represented by n-m or n) as 

well as the longitudinal (represented by m) scale. It follows that 

any discussion of planetary waves must also take the latitudinal 

dependence into account. 

3. Vertical Structure: 

(i) Sorne of the long waves slope eastward, sorne 

westward and ethers change slope with time. Hence, no one 

direction of the vertical slope is likely to apply to all the long 

waves. 

(ii) Most oî the analyzed waves show increase of 

amplitude with height. Notable exceptions are the sectorial 

harmonies (1,1) and (1, 4). 

4. The meridional height field for September 1957 alternates 

in its symmetry with respect to the equator. It thus appears that 

the odd and even zonal harmonies are beth significant during 

September. 

5. The temperature field of the lower troposphere is mainly 

dependent on latitude and to a much less extent on longitude. 
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Consider Laplace' s Equation i::-. spherical polar coordinates, 

where v is a potential function of r 1 e," 1 the spherical polar 

coordinates. 

We assume V [r;e),) = R(r) 8 [e) À (À) 
By substituting (6) into (5), we obtain 

..r_ d'"( r R) '[ del ,2. À 
+ d .sme de + 1 ..Q_=O 

R d r2. G Stne de Àsrn2e dÀ'l. 
i.e. 

2( ' d (51 ne â~) d
2
À _r_ d rR) - 1 J 

R d re - 8sme de Àstn 2e d~ 

left band side is a function of r only and right hand side is a 

fun ct ion of 7t and e only, then each side must be equ.al to a constant, 

say n(n+l) 

2( \ _r_ d rRJ 
R d r 2 

d~ = 
dÎ\'2. 

n(n+ 1] 

(5) 

(6) 
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and 

r d2(rR) - n(n + 1) = 0 
R d r2 

1 d . ede - sln --
8si~ô de de 

1 d2.À 

) 26 d...,.z.- n(n+1) = 0 
1.. sin '' 

11 
sine .9_ . d C7 e de Sln9de 

2.. ' .·. 1 d A 
+ À d ?-.;.: + n (n+1) sin

2e = o 

similar to the above argument, we introduce another constant 
2 

rn so that Sln8 d S o d8 ("' \S'n2.8- 1 d~À- 2. e -ae lnv de+ n ll+l; 1 --À dÎ\2.- m 

d<:~ + m~À = o 
,-lA-

, u \ d · c19 ( ( ' m
4 

'J n _ 0 ana. stnë d6 'Sti1G de + n n+l)- Stn?.e C7 -

The general solution of (8) for a fixed rn is 

À { Î·-1 = A cos m À + B s' n m Â 

(7) 

Equation (9) has for one of its solutions, the as sociated Legendre 

P 1 . 1 Dm ( ,,\ . b o ynom1a _._ n \_o; g1ven y 

-, 
-1 

+ 0 • G . . 
1 

.J 

wl:ere rn is the order and n the degree of the polynomial. 

These P~ (e J are orthogonalized in the following manner 

+l 

~P~(u) P~'(u) du - 0 \or h ~ n' 

(n-+m]! -1 2 for n =n' - (n-rn)l 2.n+l . 

( 8) 

( 9) 

( 1 0) 
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s to normalize these P~( 91,. the normality factor to be used 

mt:.s<- be v 
" 2. n + 1. tn-m )1 

. m 2. n+m)l 
Properties of P 0 {e J 

In Figure 13 P~, P~ ...• P~ are represented as functions 
' of e. The se curves illustrate the following general :noperties of 

::·.·~e Associated Legendre Polynomials, 

(a) Every Associated Legendre Polynomial Pm(El) bas n-m real 
n 

different zeros between 8=0 and 6= T(: The zonal fun etions P
0

(9) 
n 

o n 
have the value =1 at the north pole (9=0 ) and (-1} at the south 

pole (8=7f); every other function Pm(G), m > 0, is zero at bath 
n 

poles as well as at (n-m} values of e between the poles. 

(b) According as n-m is even or odd, Pm is symmetrical or 
n 

antisymmetrical with respect to the equator, i.e. 

rn (n-m) rn 
Pn {e) = {-1} Pn ( T(- e) 

When {n-m) is odd, one of the (n-m) zeros of Pm occurs at the 
n 

equator 8= Tf/2 

( c) The normalized functions P~ which can be given by 

~mr 
n l 

~~ 

) - J (2. \î + 1)( 2 'Ill! 
{2 2.n nl 

7 
are very small over an extensive region round the pales (see P

7 
in . 13). 

Tesseral and Sectorial Surface Harmonies 

The surface harmonies Pm {cos m~l vanish along (n-m) 
n Sin m"S 

circles of latitude and also because of the factors cos mA or sin mÂ 
along 2 hl meridians at equal intervals T(/m. The se zero lines 

divide the surface of the sphere into regions in each of which the 
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Fra.I3 .. The nssociated hnrmonics J1,P~, ... ,Pf as functions of8. 
(After Chapman and Bartels ·.) 
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Figure 14. Equal area map the zero-lines (thick lines in 

diagrarn), over one hcrnisphere, of a zonal harn1onic ( P~ ), 

a tcsseral harmonie ( P~ co~ 7 À ); the central mcridian 

corresponds to À::: O. The areas in which the sign of the 

function is positive are indicated by drawing the (thin-line) 

circles of latitude at closer inter vals. 
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of the surface harn:onic is canstant, while it is reversed on 

cros sing the boundary between two adjacent regions, Consequent­

ly, for n > m > 0, the surface harmonies are called tesseral 

surface harmonies. When m=O, the functions are called zonal 

surface harmonies. When m=n, the functions are called sectorial 

surface harmonies, because there are no circles of latitude along 

which the functions vanishes; the regions of constant signs are 

therefore sectors of the sphere. Figure 14 shows this for P 0

7
(0)C0S0 

- 7 
, P~ C0$5Â and P

7 
COS 7 À. 

There are 2m+l tesse:::-al harmonies of the nth degree, If 

each of these is multiplied by a constant and their sum is taken, 

this sum is called a Surface Harmonie of the nth degree. 

Pm (9) As a Solution of the Vorticity Equation 
n 

t = t [Q_ {sm e ( lL .,.. V )} - o vjl 
S a. ~~ne ôe è;\ 

Conservation of vorticity yields, 

( + 2 LJ cos e == con sto.nt 

Substituting the e.>..7ression for ( and differentiating with respect 

to time, we obtain 

rô -cxg_)l_l __ r~ (s:ne u.)- èvl+v 2.._ 1_ .2_ (stnev~ =? wsmev 
lot -ô ?-JLO.. ~~~"e 6e oÂb oe lO.su'l$ oe J a.. 

Using the stream function YJ , the vorticity equation becomes, 



this form of the vorticity equation assumes 

(a) Friction is negligible 

(b) Vertical velocity is negligible 
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(c) Perturbation velocities LL , v- are so small that their second 

and higher powers are negligible 

(d) Density of the air parcel remains constant while in motion 

(e) Densi ty does not vary in the horizontal plane. 

Assume as a solution Vi ( t> À, 6) = COS (pt + m À)~ (9) 
Substituting this into (11), we obtain 

(9_ · cx2_\_1_lr Q_ Slne2_[cos(j3t + m?-.)f(e)1 + ~ê ~ Jcos(J3t+ml)f(G)l~. 
\ (Jt -r o~} Sine oe èe . ..~ Hl v?\ l J~ 

+ 2 ( w + d.) ~,J co:,(fot+ mÀ)He~ = 0 

i.e. . ..., 

f Q_ +ex .L) _1 l1 
g_ s 1n ecos (At. ... m Â) fl(e)- _Le éo5(j3t -r mÀ) rn~~ (e) \ 

\ 2>t o/\ sme ôe r s1n j 

+ c( w • oZ} m Sl n (8t"' m Â)f(e) = o 

·• 51~e[~e Sln8sln~t+mfH'(e)m-~,~e t(e)m
3J 

+ 51 ~ 6 [ ~e s1net'(e)p- s 1 ~ 6 t (e) mf J +ê (w • a:) mf(e) =o 

- ~~ t(e) + é'. ( w +ex) mf(e) = o 



s~:e (j +ex m) t{e) + 3 ,~ e ~e [sme (J3 +ex m)f'(el] 

+ ê.(W +CX)mt(e) = o 

--=-' ...,.,... è [ e è f ) ml fie) 2 ( w +ex) m (\ 1 ) 0 
S1ne èe sm ôe - sma.e li ...... fo+C<m He = 

. \ 
---=--1- A_ [stne d +) + ( 2(W +CX)m - m1- ) t (s) =O (12) 
s1ne de de fi +a: m sm 2B 

For equation (12) to be the Associated Legendre Differentia! 

Equation, we must have 

Z(LJ +a:)m = n(n+l) 
j3+a:m 

Hence -Ç = ( p~ r (OS6) 

and y; = c ( 0 s 0B t. ~ tn t.J p ~ tc os e J 

From (13), the Rossby:-Haurwitz angular phase velocity is found 

to be 

/=CX. 2. (w +ex) 
n(n + 1) 

( 13) 


