Short Title

A SPHERICAL HARMONIC ANALYSIS OF THE
GLOBAL 1000 mb SURFACE



(

A SPHERICAL HARMONIC ANALYSIS OF THE
GLOBAL 1000 mb SURFACE FOR SEPTEMBER 1957

by
Jacob Padro

A thesis submitted to the Faculty of Graduate
Studies and Research in partial fulfillment of
the requirement for the degree of Master of -

Science.

Department of Meteorology
McGill University
Montreal April 1966



ABSTRACT

Characteristic features of the long atmospheric
‘'waves are discussed on the basis of spherical harmonic
analysis of global weather charts for September 1957.
At first, there is a discussion of the Trapezoidal and
Simpson's numerical integration rules as applied to
the computation of the Spherical harmonic coefficients.
Then, there is a variance analysis of the waves with
indices 1 == m == n ==15; this includes a discussion
of the quasi-stationary and travelling modes of some
of the waves. In the last section, there is a descrip-
tion of the behaviour of some of the tesseral and
zonal harmonics with regard to daily variance fluc-
t\iations, mean positions of the waves and vertical

slopes.
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INTRODUCTION

The atmospheric motion as it presents itself on global
weather charts can be considered as a mean flow upon which are
superimposed more or less marked disturbances. The distur-
bances however represent again a superposition of components
with horizontal scales in a very wide range. Since surface
spherical harmonics are characteristic functions of the non-
linear vorticity equation, it seems appropriate to use them in
the representation of the horizontal flow patterns. This type
of analysis was applied to geomagnetic variables long before its
introduction into meteorology by Haurwitz in 1940. Since then
more work on spherical harmonics has been done by various
people. This strengthened further the case for the use of these
functions both on theoretical and practical grounds. However,
the princ:ipal difficulty that stands in the way of a completely
fruitful use of these functions is the lack of adequate data dis-
tributed over the whole earth.

The International Geophysical Year (1957-1958) provides
data which covers much more extensive area than usual. This
. makes it possible to express the global height field in terms of
spherical harmonics and obtain more meaningful results. As
an indication of this, Figure 1b) shows the 1000 mb weather
map of September lst 1957 for the northern hemisphere, as

represented by spherical harmonics. It is in very good agree-
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Figure lb. Height distribution at the 1000 mb level for
September 1, 1957 as represented by spherical
harmonic analysis. The analysis contains the terms

for which 0 =m =n==15.



ment with the actual surface map of Figure la). To facilitate
comparison of the two maps, a géographical location will be
denoted by (9 A) in the following description., The centres of
the lows at (550, 160° W), (500, 147.5° E) in the computed map
coincide with the two respective lows on the actual map, but the
low near the pole is about 7° west of the actual map's low. The
low pressure areas at (600, 20° E) and(50°, 60° W) and the
Highs at (550, 65° E) and(40°, 55° W) of the computed map
coincide respectively with those of the actual map. It is not
worthwhile to compare the more southern systems because of

the poor analysis of the actual map near the boundary.

Background

Early pioneers in the work of spectral models for the
atmosphere are Rossby (1939) and Haurwitz (1940). Rossby has
given a simple theory relating the dimensions and velocities of
perturbations with the zonal component of the general atmospheric
circulation., He assumes that the lateral extent of these centres,
i.e., their width, in meridional direction is infinite and further-
more that the earth may be regarded as flat. Haurwitz extended
the idea to include the sphericity of the earth and gave the per-
turbations a finite lateral extent.

Haurwitz and Craig (1952)made a study of the 3 km pressure 7
field between 20N and 60N by spherical harmonics for the period
January lst to January 9th 1938. ‘Lack of data limited their
analysis to this latitude belt. Only terms with m=1, 2, 3,4 and
‘n=m+l, m+2, m+3, were used. Their results gave far too intense
and fast-moving systems. This is somewhat expected since the
theory applies well to the whole globe rather than to a limited
latitudinal belt.

J. Namias and K. Smith (1943)also analyzed by spherical

harmonics the 3 km normal pressure fields for January, April,



July and October. The analyses werel conducted for data between
20N and 60N. They found that in April and October, the terms
with m=3 become of relatively greater significance. The
behaviour of the phase constant was rather disquieting. This
seems to indicate that the harmonic analysis applied to data of a
limited area is nothing but a formal result without much physical
significance. '

In a recent study by Eliasen and Machenhauer (1965), the
analysis was done over the northern hemisphere using even waves
to represent the height field and odd waves to represent the
stream function field. Both the 1000 mb and the 500 mb surfaces
were analyzed for the 90 day period from December 1, 1956 to
February 28, 1957. They find the amplitude to be growing with
height except for the component (m, h)=(1, 4). Comparing their
values from the two levels, it is seen that for all components
with m == 3 and n == m=5, the position at 500 mb level is to the
west of the position at 1000 mb level, the distance being about
0.2 times the wavelength.

There seems to be so far only one study of the global height
field by surface spherical harmonics. These functions were
applied to 500 mb height field by Steinberg for the month of
September 1957. He suggests that components with m=1 behave
in the same manner in both hemispheres, i.e., they are mainly
quasi-stationary and have large values of variance, while com-
ponents with m=4 propagate eastward with relative phase velocities
in both hemispheres. Also, for this order of the wave (m=4), the
variances of the odd component seem to be out of phase with those
of the even components, a fact which leads him to the conclusion
that there was energy transfer between some of the odd and some

of the even components.



Data Sources

Surface pressure data over the globe were extracted from
maps issued by an I.G.Y. Special Committee. Three nations
were involved in the analysis of these maps, namely the Federal
Republic of Germany, Republic of South Africa and the United
States of America. U.S.A. handled Part I (Northern Hemisphere,
20N to the pole), F.R.G., Part II (25S to 25N), and R.S.A.,

Part III (Southern Hemisphere, 20S to the pole).

The I.G.Y. World Weather Maps consist of a daily series

of maps for the period July 1, 1957 to December 31, 1958,
These maps are published as monthly booklets, each containing
a surface and 500 mb maps for 1200 GMT each day. Each
hemispheric chart (Parts I, II) is a polar stereographic projec-
tion from ZO‘degrees to the pole with the true scale of 1 to 50
million at latitude 60 degrees. Part II is a mercator projection,

with true scale of 1 to 50 million at latitude 223 degrees.

Temperature data were extracted from the Monthly
Climatic Data for the World, sponsored by the World
Meteorological Organization in cooperation with the U.S. Weather

Bureau,

Data Extraction

The spherical harmonic series for each one of the 30 maps
contains amplitude for 136 components and phase angles for 120
‘components. These were obtained from height data of the 1000 mb
surface at a network of 1262 points (intersections of meridians
divisible by 10 and parallels of latitude divisible by 5). The height
data were calculated from surface pressure data at each grid point
and the mean monthly tempei'ature for each latitude. _

Angles of colatitude were measured from 6=0 degrees at the

north pole to 6=180 degrees at the south pole. Angles of longitude



were measured from Greenwich meridian and eastward. The
cards were processed through McGill's IBM 7044, 32000-word

digital computer.



THEORY

Height Computation

The 1000 mb heights were calculated through the

Hypsometric Equation, .
2(9,M=l~ﬁd*} T(9)n PEA)
& R

where,
Rd= 287 joules;kg-l °k, gas constant for dry air
9’2 9.80665 m-sec-z, gravitational acceleration

T is the mean virtual temperature between the
surface and the 1000 mb pressure levels.
Measured in degrees Kelvin, the mean monthly
surface temperature as a function of latitude
(or colatitude) is found sufficiently accurate.

P (9}&) is the surface pressure at (Qlk) in mb
R is the constant pressure of 1000 mb
Z is the height of the 1000 mb level at (9}/\)

in decameters

Spherical Harmonic Representation of the Height Field

As a basic material, the present study uses the height of a

surface of constant pressure at a definite time as a function of



the colatitude 6 and longitude A . Quite generally this function

may be written as the series

2o =SS [Ancosma+ BY sinm AJPR ()

WM=0N=M

D O '
=) ) Ca Palf) cos fmA- 7]
mME0N="

These series express an expansion of Z in terms of the spherical
harmonics, where the functions P: denote the Associated
Legendre functions of the first kind, m means the number of
waves round the earth, and (n-m) indicates the number of zero
points between the north pole and the south pole, In the first
form, A": and BT\ represent the spherical harmonic coefficients,

while in the second form CT; is the amplitude and Qgg\is the

phase angle of the particular component, given by

m wl m - :1"
C'ﬂx ‘Aﬂ+8ﬂ ¢-n =_t,0.n ™

n

The expansion is based upon the following condition of

orthogonality
. ol ;
[PR) P dib=0  § v
N =1 \g 'n=‘n/
and [l=cos{

When we use the Legendre functions normalized in this

fashion, the normality factor becomes

1204 (n=-m)l
2 (M+mji
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0
In terms of B, the coefficients A'?l and Bn are determined by the

following integrals

T 20 T
é’r ] (266, )cos PRIB)sin9 d dA=JA"IE) Pr(B)sim OO

An=

(1)

T2T

B2 g [ 200 N senm ER(EJ5n 46 e[ B75) FR) 26 40

- -
where ,&"(9) and B (9} are the usual Fourier coefficients and

é'a':i for n>op and 54,5:2 for ~m=0Q

Numerical Integration Methods

As we have the values 7 only at a network of points over
the sphere, the coefficients A'(f), Bm(e) and A7, B can
be evaluated from their integral formulae only by means of
quadrature sums. AN(Q) and Bm(g} are evaluated simply by
the Trapezoidal rule, using 36 equally spaced values around
each latitﬁde circle chosen, in which way the coefficients for
m«36 will be the same as the coefficients determined by the
method of least squares, regardless of the number of harmonics
used to fit the function. In order to evaluate the integrals in (1),
the following three methods have been tested,

(i) Gaussian quadrature formula
(ii) Simpson and Trapezoidal rules

The general numerical form of (1) for colatitude values of

&=1 to §:= 37 is as follows,
27

Kn=gE ) ANE) Prall)sindu
<=2

=5y 516) Falg)snti

where Wy is the weighting function which varies for different

methods of quadrature.
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(i) Gaussian Formula

For the integration of the function L=, M)pm(/_,L)
we have

f 1009 d#=§j A1) P (4) Gy (3)

where l_(h are the roots of the Legendre polynomial (PZ) and
Gk the corresponding Gaussian weights. This quadrature -
formula is of the highest algebraic degree of precision, i.e., it
is exact for (/[ ) being any polynomial of degree smaller or
equal to 2K-1.

Using the Gauss formula with K=20, we then obtain

An=y A"(4) Pall)Gy
: k=t .

- (4)
N MMy
Bn=) B (/"Lh)Pan (/'[;«JG;Z
k=1 ’

In order to compute AR and BB from the expressions (4),
A™( /L) and B(L)as well as P-‘mn(#)must be determined at the
latitudes corresponding touh . Since the heights were not
extracted at these latitudes, values for Am(,u)and Bm(,u)were
obtained by a four point Lagrangian interpolation. In each inter-

polation the 4 nearest points were chosen as follows,

(e I (U= T (M=) (M), (m— WMV (T ¢y
S T e m—m—m
e M6-1) (7)) uh-n =7,
TG ) P e oy W

where 'ﬂ:uk) is the interpolated value of the polynom1al at L{,

and £(7]), f(ﬁl)} 75(723)) -f( 77‘/) are the known values of the

polynomial at the four nearest points 7\ 7] 7)., W
. ' )
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(i1} Simpson's and Trapezoidal Rules
The Trapezoidal rule requires \; to have the following 37
values M:M:%:(_U;:..... Ceerie e :.ujs'7=j_

Simpson's rule uses the weights,
[]

» - o —'—4—

L,J"‘: LL/,;?:-%-, M:M:M:............,-Mé_ =
2

3

W= We=lh=rveerreer o =lifgs =

Interpreted geometrically, Simpson's rule gives the value
of the sum of the areas under second degree parabolas, while
the Trapezoidal rule gives the sum of the areas of the trapezoids;

it would then apply best to a first degree polynomial,

Computation of Variance

In the following, expressions are derived for the variance
of the height field, the mean variance of the flow and the variance
of the mean flow. These are used to compute the fluctuating

variance of the flow.
If we let Z{Q/IU represent the height at (9},1) and Z be

the mean height over the globe, then the deviation from the mean

is given by
7 \ - . -
Z(O,A) = 2(6) =2
and the variance would be |

o}zéTjT-_Tf ‘/:rz’Ls&neqe d\

but we have

2(6,A) =§5: AP+ ii[A’j,’wsm A+BascomA]pm(6)

=0 M= ™)
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5 15 T
Z19,0=)" APa+) Y [Ancosm L +57semm A P7(6)
=l Mzl Wis|
Hence
27 2

JZ, pr) =l W=l
I
.;.Jfl.“:lznsl[/-\ncosm) +B*n$0ﬂ'm/qp m@d@dk

]_§‘ o 15 N 2 2
Y m m
A N[ LYY A BT ]
2 Lo
M= = WA
The variance of a single component is
2 1 ‘ 2 :
<)
Ov=-35 A o=n=15
and n | W m2
05= [A'“ + B ] 1=m=y =15

To obtain the fluctuatmg varlance dmz we denote the mean
=t
over the month of AY and B by A“ and BT respectively,
then
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_ ATl & i AR R =

~ 41304 [(An-A (B B i]

_ A1 B R R,

=4 3‘0—1__“ {Aén*‘BL:'\]'[ " +B~n]]
(304

where i is a time index, the first bracketed term on the right
hand side is the mean monthly variance (mean variance of the
flow) and the éecond bracketed term is the variance of the mean
flow. Thus a small value of o?:zl indicates a strong stationafy
component,

In the case of the zonal components, the mean monthly

variance is given by

2 L2
%—[%;Am |
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ANALYSIS OF ERXRORS

The errors involved in the calculation of the variance and
phase angle are due to the following sources,

(1

2

3

Measurement of the parameters.

)

) Chart Analysis.

) Gross errors of data extraction and card punching.
)

(
(
(4) Interpolation of the pressure values to grid points.

(5). Numerical integration method.
(1) Measurement errors in surface pressure and temperature are
very small. Pressure is reported to 1/10 of a mb and temperature
is reported to a whole degree.
(2) Chart analysis errors generally tend to decrease the variance
of the field and in particular that contained in the shorter waves.
This type of error is most serious in areas with sparse data.
(3) Errors in data extractions and card punching were readily
recognized by spurious amplitude variations in the high Fourier
wave numbers. It is considered that all significant errors of this
type have been eliminated.
(4) The error caused by interpolating the pressure values to grid-
points is estimated to be + 0.5 mb and for temperature + 5.0°C.

These introduce the following error in the height calculation, at a

grid point, of the 1000 mb level.
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We have, from theory,

R
¢z =Birdta b0 Bt
g g
. 0] P , Fé o
I we choose-the following reasonable values,

P=1025 mb AP=+ 0.5 mb
T=300°K AT=+5°C
we obtain A Z=_-{_- 0.75 dm

The error in 7 is mainly pressure depend.ent.

(3) Accuracy of the Numerical Integration Techniques

The accuracy of the Trapezoidal, Simpson and in part the
Gaussian methods of quadrature have been investigated in the
present study. Physically real input values of spherical harmonic
coefficients A were chosen to generate a global height field of
the 1000 mb level. This field was in turn used to recalculate the
harmonic coefficients. The percent deviation between the input and
output field should give a measure of the accuracy of the integra-
tion method. Table 1 presents the input coefficients, while Tables
2, 3 and 4 show the percent deviation of the output from the input
coefficients as obtained by the Trapezoidal, Simpson and Gaussian
methods, respectively. The results are tabulated only to two
decimal places.

Simpson's rule appears to be more accurate for the zonal
components and the Trapezoidal method is slightly better for the
wave components. The difference which occurs mainly in the third

decimal digit of the wave components is not shown in the tables.



Table I

Input of the spherical harmonic coefficients AT

0 1 2 3 4 5 6 1 8

n 9 10 11 12 13 14 15
m

0 14.26 1.97 -4.00 3.98 -3.82 -0.85 1.06 -0.73 0.68 -0.90 0.48 -1.19 0.52 -0.33-0.20 -0.29
1 1.62 1.02 1.29 1.77 0.99.-0.73 -0.55 -0.95 0.47 0.75 0.34 0.42 0.10.-0.08 0.02
2 0.57 0.13 -0.59 -2.22 -0.91 -0.96 -0.30 0.82 -0.43 0.73 -0.65 0.25-0.08 -0.19
3 -0.65 1,05 -1.34 2.02 -0.71 0.36 -0.81 -0.33 -0.44 0.34 -0.09 0.48 0.14
4 0.43 0.30 0.00 1.22 -0.42 0.52 0.24 -0.18 0.63 0.02-0.00 0.13
5 0.23 -1.44 0,30 -1.19 0.53 0.20 0.02 -0.02 0.04-0.18 0.20
6 0.18 0.27 -0.07 0.69 0.29 0.96 0.30 0.03 0.10 -0.39
7 0.73 -1.64 0.90 -1.67 0.12 -0.76 -0.60-0.03 -0.57
8 0.07 -0.79 -0.23 -0.14 0.18 0.33 0.07 0.31
9 -0.13 0.11 -0.45 0.39 -0.51 0.00 -0.38
10 -0.07 -0.23 -0.11 -0.08-0.06 0.26
11 0.01 0.04 -0.22 0.06 -0.39
12 0.00 0.26 0.02 0.30
13 -0.07 0.05 -0.04
14 -0.08 0.19
15 -0.03

LT -



Table 2

Percent deviation of the

from the input Ar?l

spherical harmonic coefficient A 0

by the Trapezoidal Rule

n

5 6 7 8 9

0 1 2 3 4 10 11 12 13 14 15
m
0 0.02 -0.32 -0.16 -0.23 -0.22 "1.30 0.95 1.73 1.70 1.57 2.70 1.32 2.75 5.13 .7.38 1,61
1 -0.00 -0.00 -0.01 -0.00 -0.02 0.01 0.04 0.02 -0.08 -0.03 -0,14 -0.07 -0.58 0.92 -3.14
2 0.00 0.00 0.00 -0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.05 -0.00
3 0.00 0.00 0.00 0.00 o0.00 0.00 ©0.00 0.00 0.00 -0.00 -0.00 0.00 -0.00
4 60.060 o0.00 0.01 0,00 ©O0.00 0.00 0.00 -0.00 -0.00 0.00 0.02 -0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00
6 0.00 0.00 -0.,00 0.00 0.00 0.00 -0.00 0.00 0.00 0.00
7 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 -0.00 0.00 0.00 _0.00 -0.00 0.00
9 -0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 -0.00 0.00 -0.00 0.00 -0.00 0.00
11 -0.01 -0.00 -0.00 0.00 0.00
12 -0.00 0.00 0.00 0.00
13 -0.00 -0.00 -0.00
14 -0.00 -0.00
15 -0.00

- 81 -



Table 3

Percent deviation of the spherical harmonic

from the input AIII; by Simpson's Rule

2

m
coefficient A

12

. 0 1 2 3 4 5 6 7 8 9 10 11 14 15
0 -0.00 0.06. 0.01 0.06 0.03 -0.49 -0.14 -0.86 -0.34 -0.99 -0.71 -1.07 -0.96 -5.80 4.25 -14.87
1 0.01 0.01 0.03 0.02 0.08 -0.08 -0.24 -0.10 '0.45 0.20 0.93 0.56 5.02 -4.09 .35,39
2 0.00 -0.01 -0.01 0.00 -0.02 0.01 -0.11 -0.02 -0.15 -0.04 -0.19 -0.20 -2.96 0.39
3 0.00 0.00 0.00 0.00 0.00 0.0l 0.00 -0.03 0.01 0.08 0,06 0.15 - 0.02
4 0.00 -0.00 0.00 0.00 0.00 -0.00 -0.00 ©0.01 -0.00 -0.17 1,90 - 0.11
5 0.00 0.00 0.00 0.00 0.00 -0.00 0.02 0.02 0.04 0.01 0.03
6 0.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.02 -0.00 - 0.01
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 -0.00 0.00 0.00 -0.00 -0.00 - 0.00
9 -0.00 0.00 0.00 ©0.00 0.00 0,00 0.00
10 -0.00 0.00 -0.00 0,00 -0.00 0.00
11 -0.01 -0.00 -0.00 0.00 0.00
12 -0.00 0.00 0.00 0.00
13 -0.00 -0.00 - 0.00
14 -0.00 - 0.00
15 0.00
1
o
]



Table 4

Percent deviation of the spherical harmonic coefficients Ay

from the input Anill by the Gaussian method

11 12 13 14 15

0

4 5 8 9 10

1 2 3 6 7

0.54 0.15 0.23 -0.02 -0.42 0.35 1.02 0.62 1,31 0.48 -0.10 -2.12 -0.16 0.27 2.22

-OZ-
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The table also shows that the Trapezoidal method gives an over-
estimate of the values of the coefficients exactly where Simpson's
rule gives an underestimate and vice-versa. For practical
applications, the two methods can be considered equivalent since
the actual error involved does not add much to the noise-level,
which is mainly created by error 2) discussed above,

The percent deviation by the Gaussian formula (with a four
point Lagrangian interpolation) was computed only for the zonal
components. It seems to be supericr to Simpson's rule for
n =10 but inferior for n== 10. Since components with smaller
n are more important, Simpson's rule was used to obtain the

zonal harmonic coefficients.

Noise Level.

The random error of + 0.75 dm in the height computation
2
)

in the variance of an individual component and is thus considered

at a grid point introduces a very small error (about lO_4 dm

insignificant. Also errors 1) and 5) are considered insignificant.
The errors of chart analysis are the most serious and the main
contributors to the noise-level. Since they are random in nature,
it becomes very difficult to include them in the computations of the
variance and phase angle. By considering the output results, one
can make a reasonably satisfactory estimate of the noise level.
The underlying assumption is that no large jumps in the phase
angle of a low order component exist in the real atmosphere at the
1000 mb level. Hence a seguence of erratic and large phase changes
can only occur if the variance is in the noise level. This in fact
seems to occur in all the components.

The deciding factor in choosing a lower limit for the value
of the variance below which the wave would not be considered
significant was selected from the behaviour of the component (1, 4)

which is seen to have very high variance values during the month.
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) The variance of (m,n) = (1, 4) was reliatively large for the
first 25 days of the month and the wave exnibited mainly small
fluctuations about a mean position. However, on September 27,
the variance dropped to 0.27 dm‘2 and the phase change in the
period from September 26 to 28 was large. Thus a choice of
0.27 dm2 as the lowest limit of significant values of the variance
is quite a high value which eliminates the physically unreal
variances, but may at times eliminate some small but physically

real values of the variance.
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ANALYSIS OF VARIANCE

Spectral Distribution cf the Variance

On the basis of the spherical-harmonic analysis of the
height field we may now, as a fundamental characteristic, con-
sider the spectral distribution of the variance which is a measure
of the importance of the different components in the spherical '
harmonic representation. 5

The mean values of O’ﬂ:* at the 1000 mb level for
September 1957 are shown in Table 5 for m = 15 and n-m =< 15.
Exvpressed in percent, table 6 shows that the largest individual
~ccatributions are found for the components with the smaller m
end n, i.e. for the harmonics of the largest scales. Thus, the
contributions from the zonal flow, m =0 are together about 60
per cent and the contributions from wave riumbers, 1, 2, 3 and 4
are together about 31 per cent of the total contribution from all
the components in the table. It is seen that the most dominant
éomponents in table 5 are the odd tesseral harmonics (1, 4) and
(2, 5). |

Summations of the mean monthly variance over n for every
m and over m for every n for the wave components have been
included in table 5. When plotted in the form of histograms in
Figures 2a), b) and c), they illustrate the spectral distribution

of the variance. In Figure 2a), m =1 has the largest amount of
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Table b

|
|
}
;

Mcan monthly variance of the spherical harmonic components

for September 1957 (Drnz)

. Sum
mt 12 3 4 5 6 1 & 9 10 11 12 13 14 15
0 4.84 9.34 11.86 6.68 0.34 2.40 0.74 1.34 0.17 0.08 0.13 0.13 0.03 0.06 0.04 .
1 1.36 0.44 0.62 1.76 0.41 0.44 0.23 0.8z 0.32 0.12 0.12 0.09 0.04 0.05 0.03 6.84
2 0.51 0.40 0.52 1.78 0.48 0.52 0.26 0.52 0.18 0.21 0.15 0.11 0.06 0.05 5,75
3 0.18 0.19 0.45 0.61 0.50 0.35 0.25 0.20 0.16 0.11 0.06 0.06 0.04 3,17
4 0.30 0.73 0.52 0.92 0.38 0.43 0.39 0.16 0.10 0.08 0.05 0.05 4,11
5 0.15 0.23 0.30 0.28 0.31 0.26 0.1z 0.10 0.08 0.07 0.07 1.98
6 0.07 0.10 0.18 0.30 0.13 0.15 0.12 0,07 0.06 0.04 1.22
7 0.08 0.16 0.15 0.19 0.12 0.10 0.07 0.05 0.04 0.96
8 0.04 0.21 0.05 0.08 0.09 0.06 0.05 0.04 0.52
9 0.01 0.06 0.05 0.08 0.06 0.04 0.05 0,35
10 0.01 0.03 0.03 0.04 0.05 0.04 0,19
11 0.01 0.02 0.02 0.02 0.02 0,09
12 0.00 0.01 0.02 0.01 0.05
13 0.01 0.01 0.01 0.02
14 0.00 0.01 0.01
15 0.00 0.00
Sum 1.36 0.95 1,20 2.77 3.52 2.36 2.64 2.47 2.40 1.58 1.21 0.99 0.71 0.59 0.50

Note: Summation of the mean monthly variance

does not include the zonal components,

over m and n respectively

-?2-



Table 6
Mean mcuihly variance of the spherical harmonic components
expressed in percent of the total me:an monthly variance

n
m »1 2 3 4 5 6_. 7 8 2 | 10 11 12 13 14 15 Total

0 | 7.62 14,72 18.70 10.53 0.53 3,78 1.16 2.11 0.26 0,13 0.21 0.21 0.04 0.10 0.07 | 60.17

1 |1'2.14 0.69 0.98 2.78 0.65 0.69 0.36 1.30 0.50 0,18 0.19 0.14 0.06 0.08 0.04 | 10.78

2 0.81 0.63 0.81 2.80 0.76 0.82 0.41 0.83 0.29 0.33 0.24 0.17 0.09 0.08 9.07

3 0.29 0.30 0.71 0.97 0.79 0.54 0.39 0.32 0.26 0.17 0.10 0.09 0.07 5.00

4 0.47 1,16 0.82 1,45 0.61 0.68 0.61 0.25 0,16 0.13 0.07 0.08 6.49

5 0.24 0.36 0.47 0.44 0.49 0.41 0.19 0.16 0.13 0.11 0.11 3.11

6 0.11 0.16 0.28 0.47-0.21 0.23 0.18 0.11 0.10 0.06 1.91

7 0.12 0.26 0.24 0,31 0.19 0.16 0,10 0.08 0.06 1.52

8 0.06 0.17 0.08 0,13 0.14 0.10 0.08 0.06 0. 84

9 0.02 0.09 0,08 0,12 0.10 0.07 0.08 0.56
10 0.01 0.04 0.05 0.06 0.07 0.06 0.29
11 0.01 0.03 0.03 0.03 0.04 0.14
12 0.01 0.02 0.03 0.02 0.08
13 0.01 0.01 0.02 0.04
14 0.00 0.01 0.01
15 0. 00 0.00
Note:  The total zonal mean field and the waves with longitudinal wavenumber O to 4 represent 91. 5

per cent of the total variance.

-gz-
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variance and m =2 is the next in magnitude, partly because the
lower m indices contain more n indices and the number of {(m,n)
components decreases as m increases. Figure 2c¢) has been
added to illustrate the variance as a function of the meridional
dimensions of the waves. Predominant in this distribution are
the components with n-m=3. This has a remarkable resemblance
to the same type of distribution presented by Steinberg for the
500 mb level (see Figure 2d). It thus appears that components
n-m=3 contain the largest amount of variance at the two levels,

the magnitude being greater at 500 mb surface.

Stationary and Travelling Long Waves
Y fw] fw)

To study quantitatively the standing waves in the atmosphere, ‘
we may consider the spectral distribution of the fluctuating
variance as given in Table 7. Since these values are positive, it
is understood that the contributions of the variances of the mean
flow are smaller than the mean values presented in table 5, par-
ticularly so for components with larger m and n, i.e. for com-
ponents with smaller scales. The fluctuating variance is most
physically meaningful for components which have a large mean
monthly variance. In this category, we find the components with
(m,n) = (1,1), (1,4), (1,6), (1, 8) and (2,5). In table 7, these
components are found to have small values of fluctuating variance,
illustrating their semi-permanent character. The most stationary
of all the harmonics are (1,1), (1, 4) and (2, 5); their fluctuating
variances are 23.5, 31.3 and 34.0 percent of the mean variance,
respectively.

Graphically one can separate the stationary and travelling
moces of a planctary wave by Deland's two component model.

The amplitude and phase angle of the harmonics (1, 1), (1, 4),
(1, 8) and (2, 2), (2,5), (2,7) are plotted for every day of the month
on polar diagrams in Figures 3a), b), c) and 4a), b), ¢) respec-
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Figure 2. Spectral distribution of the mean monthly variance.
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Table 7

Perceni of the fluctuativg variance of the spherical hamuoenic

components for September 1957 (sz‘)

n ,, .
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 {23.51 82.98 86.72 31.33 91.09 61.48 90.96 26.15 25.64 81.37 85.62 95.87 99.13 75.94 97.97
2 38.84 64.82 91.00 34.01 77.35 85.66 89.77 32.75 65.12 02.52 74,54 41.76 96.15 78.25
3 51.41 96.¢3 95.36 92.53 98,51 92.03 87.83 76.93 99.60 73,24 98.34 99.83 77.5L4
4 31.11 57.36 94.02 90.52 81.31 83.97 40.72 74.14 ¢p.00 83.58 97.47 93.07
5 36.95 63.22 99.6897.77 96.39 81.60 91.43 g7.28 80.84 86.48 67.90
6 41.97 98.1771.04 69.66 87.45 90.19 85.07 92.81 99.35 83.09
7 27.2563.68 83.75 98.85 91.067 88.39 98.58 89.67 86.31
8 41.49 43.22 96.06 95.98 96,08 99.43 94.85 99.060
9 66.85 48.52 85.30 99,40 97.89 97.83 97.33
10 73.10 57.98 95,81 83.03 88.78 93.88
11 56.02 57.66 94.42 90.89 62.70
12 91.43 63.33 96.79 91.062
13 53.32 98.03 99.51
14 71.25 97.05
15 ' 96.12

Note: Among the long waves, those for which table 5 indicates a large mean

monthly variance, the present table indicates a small fluctuating variance.

..62..
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tively. In the case of the lower harmonics, it is apparent that
the wave vector does not describe a circle around the pole as it
should in the case of a single wave, but instead it follows a
roughly circular path as if it represented a travelling planetary
wave superimposed on a quasi stationary wave. In figure 3a)
~for (m,n) = (1, 1), the travelling wave retrogresses (clockwise
motion) in a disorganized manner due to the large changes of
its amplitude. Thus, it seems more convenient to break this
eccentric circular path of 30 days into a number of almost com-
plete circular motions., This travelling planetary wave seems
to retrogress around a mean position for the first 6 days, then
decreases greatly in amplitude and again retrogresses around
another centre for about 5 days, then increases in amplitude
greatly and again retrogresses around a different centre for
another 5 days (until the 18th day); the monthly motion is com-
pieted by another retrogressive cycie. This graph illustrates
4 main cycles of westward motion; the centre of each cycle may
be considered to be the position vector of the quasi-stationary
component and this shows a slow retrogressive motion over the
month, For (m,n) = (1, 4) in figure 3b), we see a major cycle of
retrogressive motion (clockwise) about a mean position for the
first 10 days, then a large drop in amplitude, followed by a
progressive cycle {(anti clockwise] between the 13th and the 18th
days; the motion seems to end with another progressive cycle.
In the case of component (1, 8) which is a small scale wave in the
north-south direction, the major cycles exhibit progressive motion.
The above description seems to indicate that the largest
scale planetary wave (1, 1) is completely described by a retrogres-
sive travelling wave superimposed on a fixed wave, while for
increasing n (decreasing north-south dimensions) the number of
cycles of a progressive travelling wave increases. This picture
seems to repeat itself in the analysis of a similar set of comvo-

nents in figures 4a), b) and ¢). Harmonic (2, 2) is describea only
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var gressive travelling wave, (2,5) clearly shows a cycle
ol eastward motion for the first 11 days, a cycle of retrogression
between the 12th and 19th days and a final progressive cycle
between the 20th and the 30th days. Finally (2, 7) is totally
described by 3 cycles of eastward motion. We also note that the
stationary component of (2, 2) is as pronounced as that of (1, 1).

It should be mentioned that when the amplitude is very small (in
the noise level), the phase angle loses its physical meaning.

One immplicaticn of the above discussion is that the latitu-
dinal {represented by n-m or n), as well as the longitudinal
{represented by m) scale should be taken into account in a scale
analysis of planetary waves.

As a final illustration of the quasi-staticnary character of
the large scale waves, figures 5a) and b) are presented. It is

clearly seen that the large scale features on the mean map

(figure 5a)) are very similar to the flow pattern described by the
superposition of the components 0 == m = 4 and m =< n << 10.

main features on the mean :map are z Lowover Scandinavia

E) which extends west to Iceland (20o W), a High over Asia
(centred at about 80° E), a Lowover the Pacific (160o W) and a
ridge over Western Canada (110° W}. The same disturbances
appear at almost the same geograrhical location in figure 5b)
(which includes only the ultra-long longitudinal waves of
September 1), except for the ridge over Western Canada which is
not as pronounced as that of the mean map. Thus, the long waves
which appeared on the map of September 1st show up clearly on

the mean map.
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Daily values of the harmonic (1, 1) plotted on a polar diagram;

. Figure 3a.
The graph shows cycles of retrogressive

each point represents onc day.
The averapge rotation period is 5 days.

(clockwise) motion only.
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Figure 3b. Daily values of the harmonic (1,4) plotted on a polar diagram;\
each point represents one day. This component shows more progressive’

(anticlockwise) cycles than component (1,1).

-gg-



90 —

180

270

.Figure 3c. Daily values of harmonic (1, 8) plotted on a polar diagram.

The amplitudes for most of the days are small; however, the days for
which the amplitude has physical significance, the motion is more

progressive (anticlockwise) than was found for harmonic (1, 4).
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Figure 4a. A polar diagram for harmonic (2, 2); each point represcnts
The graph illustrates cycles of retrogressive (clockwise)

one day.
motion, as is the case with the long wave (1, 1).
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A polar diagram for harmonic (2, 5). It illustrates two

Figure 4b.
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component (1,4).
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It illustrates

A polar diagram for harmonic (2, 7).

-Lg-

Figure 4c.
mainly progressive (anticlockwise) cycles of motion, similar

to component (1, 8).
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Mean map of the 1000 mb hcight field in dm

ep.ember 1957 as represented by spherical harmonic
The analysis contains the terms for which

Zn =<15.
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Tizure 5b. FHceight distribution in dm at 1000 mb level for

5
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waves in a soorericzl harmonic analysis.,

contains “he terms for which 0 == r == 4
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"TESSERAL HARMONICS

An immediate picture of the variation with time for the
different compo'nenté is obtained by plotting the variance and
phase angle as a function of time. For the components with
m=1 and n=1, 2, 3, P in Figures 6a), b), c) and d), it is seen
that a strong stationary component exists; the waves show in
general more pronounced progressive motion for larger n indices.
For example, wave (1, 1) is located at the end of the month 12.
dcgrees east of its position at the beginning of the month, while
wave (1, 4) illustrates a continuous slow progressive motion
reaching on the 26th day a position which is about 50 degrees east
of its location at the beginning of the month. In some cases, the
displacement during one day is relatively large but this always
coincides with a2 small value of the amplitude. Figures 6e) and f)
for {m,n) = (1, 5} and (1, 6) resvpectively are difficult to analyze
».iice the variance for most of the days is below or close to the
noise level. However, when the variance has physical significance,
these two components also illustrate progressive motion. The
graphs in figure 6 also illustrate the large variations in the
variance from day to day and from component to component.

Steinb.rg has presented in his paper, similar graphs for
the same components at the 500 mb level for September 1957.

It would be interesting to study some aspects of the vertical

structure of these waves on the basis of the 1000 mb and 500 mb
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levels. Harmonic (rn,'n) = (1, 1) illustrates for the 500 mb and
1000 mb levels, mean positions of 300° and 315° respectively,
resulting in an eastward slope of lSOlongitude. For (m,n) = (1, 4),
the mean positions at the 1000 mb and 500 mb levels are about

43 and 30 degrees longitude, indicating a westward slope of about
- 13 degrees longitude. Especially for these two components the
daily fluctuations of the variance and position are remarkably in
phase at the two pressure levels. The variance of (m,n) = (1, 1)
at 1000 mb seems to be of slightly larger magnitude than that at
500 mb for the first half of the month, but is generally smaller
for the second half of the month. In the case of (m,n) = (1, 4),
the variance at 500 mb is always larger than that at 1000 mb and
for the first 5 days the ratio is about 2 to 1.

A deséription of the harmonics (m,n) = (1, 2), (1, 3), (1,5)
and (1,6) is based on a smaller sample of days due to the small
values of the variance at the 1000 mb surface. Thus, when the
variance may be considered physically real, components (1, 3) and
(1,6) seem to slope generally westward with height, excepting the
days 11 to 16 when (1, 3) illustrates an eastward slope. No simple
description can be given to the slopes of components with (m,n) =
. {1,2) and (1, 5).

The description of Figure 6, indicates that components (1, 1)
and (1, 4) always slope slightly eastward and westward respec-
tively, while the other components have no preferred direction
of the vertical slope. This may suggest that either these waves
do not necessarily have the same direction of vertical tilt, or /
since their slopes are small, they may, for climatological pur-
poses be considered to have no change of position with height.

We have seen in table 5 and figure 2b) that the components
with (m, n) = (4, n) have a relatively large mean monthly variance.
It would thus be useful to consider the daily fluctuations and
variance of these tesseral harmonics. These are plotted in

figures 7a), b), c), d), e) and f)for the 1000 mb and 500 mb levels.
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The waves show, in general, motion towards the east, especially
harmonic (4, 7) which contains large magnitude of the variance
most of the days. Component (‘4, 5) shows almost no tilt in the
vertical, but (4, 7) clearly illustrates a westward slope which
varies between 5 to 8 degrees of longitude. Components (4, 8)
and (4, 6) show, where comparison is physically real, a small
westward slope. Finally, component (4, 4) is seen to be mainly
in the noise level.

The daily variations of the variance at the two levels are
remarkably in phase for component (4, 7) and to a less extent for
(m,n) = (4, 8), but almost consistently out of phase for (m,n) =
(4,5). We also see that except for (4, 4) and (4, 5), all compo-
nents amplify with height. The amplification ratio is greater

for the even component (4, 6) and (4, 8) than for the odd ones.
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Figure 6a. Successive daily values of the phase angle ¢ and
variance 0'2 at the 500 mb (After L. Steinberg) and at the 1000 mb
levels for component (m, n)=(1, 1), Non-significant values of the

phase angle may be omitted.
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Figure 6b. Successive daily values of the phase angle ¢ and the
variance 62 at the 500 mb (After L. Steinberg) and at the 1000 mb

levels for component (m, n)=(1, 2). Non-significant values of the

phase angle may be omitted.
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Figure 6c. Successive daily values of the phase angle ¢ and the
variance 62 at the 500 mb (After L. Steinberg) and at the 1000 mb
levels for component (m,n)=(1, 3). Non-significant values of the

phase angle may be omitted.
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Figure 6d. Successive daily values of the phase angle ¢ and the
variance 62 at the 500 mb (After L, Steinberg) and at the 1000 mb

levels for component (m,n)=(1, 4).
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Figure 6f, Successive daily values of the phase angle ¢ and the
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variance at the 500 mb (After L, Steinberg) and at the 1000 mb
levels for component (m, ri)=(1, 6). Non-significant values of the

phase angle may be omitted.
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Figure 7a. Successive daily values of the phase angle ¢ and the
variance 62 at the 500 mb (After L. Steinberg) and at the 1000 mb
levels for component (m,n)=(4,4). Non-significant values of the

phase angle may be omitted,
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Figure 7b. Successive daily values of the phase angle ¢ and the
variance 62 at the 500 mb (After L.. Steinberg) and at the 1000 mb

levels for component (m, n)=(4,5). Non-significant values of the

phase angle may be omitted.
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Figure 7c. Successive daily values of the phase angle ¢ and the
2

variance (J~ at the 500 mb (After L. Steinberg) and at the 1000 mb

levels for component (m,n)=(4, 6). Non-Significant values of the

phase angle may be omitted,
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Figure 7d. Successive daily values of the phase angle (]5 and the
variance (12 at the 500 mb (After L. Steinberg) and at the 1000 mb
levels for component (m,n)=(4, 7). Non-significant values of the

phase angle may be omitted,
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Figure 7e. Successive daily values of the phase angle ¢ and the
2

variance J  at the 500 mb (After L., Steinberg) and at the 1000 mb

levels for component (m,n)=(4, 8). Non-significant values of the

phase angle may be omitted.
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phase angle at the 1000 mb level for component (m, n)=(4, 9).
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ZONAL HARMONICS

The geostrophic zonal flow is described by the zonal com-
ponents, These terms are found to account for most of the height
variance (60 percent of the total variance as indicated in table 6),
a fact which indicates that the latitude is the dominant factor in
the height-field distribution. In this section of the study, the
daily fluctuations in the variance of the major components (0, 1),
(0, 2), (0, 3) and (0, 4) are discussed. ‘

Since most of the atmosphere lies above the 1000 mb
pressure level,and its mass remains constant with time, it follows
that the area weighted mean height of the global 1000 mb surface
varies very slightly with time. Figure 8 showsvthat component
(0, 0), which is the area weighted mean height, is essentially
constant with time; the mean height is about 14 decameters,

In table 6 we find that the sum of the mean monthly variance
of the odd components (0, 1) and (0, 3) and that of the even com-
ponents (0, 2) and (0, 4) contain about 26 percent and 25 percent
of the total variance, respectively. Thus, these odd and even
harmonics contribute about equally, in the mean, to the total
height field. However, figures 9a) and b) show that the even and
odd components alternate in cycles of predominance during the
month, Harmonics (0, 2) and (0, 4) dominate during the first 14 days,
while (0, 1) and mainly (0, 3) dominate during the next 10 days.
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During the last 6 days, the even components begin to dominate
again., Thus, there are fluctuations in the symmetry of the

meridional height profile, with respect to the equater.
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Figure 8. Daily values of Az, which are directly proportional

to the area weighted mean height of the global 1000 mb surface.
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Figure 9a. Successive daily values of the variance 62 of the
zonal components (0, 2) and (0, 4) at the 1000 mb level. The sum of

their variance reaches high values during the first 6 days and last

few days of the month.
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Figure 9b. Successive daily values of the variance d of the zonal
components (0, 1) and (0, 3) at the 1000 mb level. The sum of their

variance reaches high values between the 18th and 23rd days of the

month,
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MEAN TEMPERATURE OF THE LOWER TROPOSPHERE

Since spherical harmonic coefficients of the height field
at the 500 mb level (Steinberg) and those of the 1000 mb level are
available, it is a simple procedure, through the Hypsometric
Equation, to obtain the spherical harmonic coefficients of the
mean temperature between these two pressure levels, This
would permit some investigations about the lower tropospheric
temperature field,

Figures 10a) and b) illustrate that harmonic (0, 1) is
becoming less dominant with time, while the variance of (0, 2)
increases during the month. We also note that (0, 2) contributes
to the temperature field more than (0, 1) all through the month,
This indicates that although the meridional temperature profile
was largely symmetrical with respect to the equator during
September 1957, its symmetry increased during the 30 days.
These two zonal components describe most of the temperature
field.

Figures 11la), b) and c) are also presented to illustrate that
the tesseral harmonics of the lower tropospheric temperature
field indicate generally very small values of the variance. Hence,
the temperature field is mainly a function of latitude.

Finally figure 12 illustrates that the first component of the
spherical harmonic series, i.e. the area weighted global mean
temperature of the lower troposphere, to be about 2.2°%C during

September 1957,
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Figure 10. Successive daily values of the variance UT (of the lower
tropospheric temperature field) of the zonal components (0, 1) and

(0, 2).
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Figure 11. Successive daily values of the variance O:r (of the lower
tropospheric temperature field) of the components (1, 2), (1,3) and
(2,4). |
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Figure 12. Daily values of the area weighted mean temperature of

the global lower troposphere for September 1957,
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SUMMARY AND CONCLUSIONS

The present study analyzed the height field of the global
1000 mb surface on a daily basis for September 1957 in terms
of spherical harmonics, The main topics reviewed in the work
are:
(1) three possible methods of numerical
integration
(2) the variance contributions of the major
components
(3) the vertical structure of some tesseral
harmonics on the basis of the 1000 mb
and 500 mb pressure levels
(4) the zonal harmonics
and (5) the temperature field of the lower
| troposphere
Examination of these aspects led to the following conclusions:
1. Integration of the spherical harmonic coefficients by
Simpson's rule proved to be quite accurate for the zonal com-
ponents, while the Trapezoidal rule was found to be better for
the wave components. The Gaussian method was found to be
superior to the Trapezoidal rule but inferior to Simpson's rule

for the zonal harmonics.
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2. Variance Analysis:

(i) The zonal harmonics contain about 60 percent
of the total variance of the height field, while the wave com-
ponents with m=1, 2, 3, 4 contain about 31 percent, Among the
wave components, the ones with three nodes in the North-South
direction (n-m=3) contained most of the variance,

(i1} The study of the motion of planetary waves shows
their dependence on the latitudinal (represented by n-m or n) as
well as the longitudinal (represented by m) scale. It follows that
any discussion of planetary waves must also take the latitudinal
dependence into account,

3. Vertical Structure:

(i) Some of the long waves slope eastward, some
westward and others change slope with time. Hence, no one
direction of the vertical slope is likely to apply to all the long
waves.

(ii) Most of the analyzed waves show incre'ase of
amplitude with height. Notable exceptions are the sectorial
harmonics (1,1) and (1, 4),

4. The meridional height field for September 1957 alternates
in its symmetry with respect to the equator. It thus appears that
the odd and even zonal harmonics are both significant during
September.

5. The temperature field of the lower troposphere is mainly

dependent on latitude and to a much less extent on longitude.
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APPENDIX

Properties of Spherical Harmonics and Their
Introduction to Meteorology

Consider Laplace's Equation in spherical polar coordinates,

rOr (V) + b D, [sine DeV) + sz DoV = 0

where V is a potential function of r, 6, N\, the spherical polar

coordinates., ,
We assume V[[")Q}\) =Ri\r} @ [@}k (7\}
By substituting (6) into (5), we obtain

o SR, 1 dlanesd) . 1 Fa 5
R dr? Gsne de Asin?e AN
i.e. . @
2 \ felv g 2
T d(PR::_ | d(sm@%]_ I dA
R dre f8sne de . Asine d7N

left hand side is a function of r only and right hand side is a
function of A and 6. only, then each side must be equal to a constant,
say n(n+l)

| 4 &8 o
dirrl __ 1 dlswew] 1 )
dré fsne do Asinte dR

Il

= n(n+l]

(6)
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2
r d !rR!—n(n+l)=0 (7)
R d r2

1 a . _af 1 FA
— — —— e -— - -+ =

o Gsind a6 “™as T Y sim6 anx ~ 2@
sino & af - 1 fA
9 36 s:mede /\ 3=t n(n+l)s:m9 = 0

similar to the above argument, we introduce another constant

m2 so that d 59 d?./\ 5
N8 .nn+23ne———————=m
@ de M0 ds ( A d%
§ >+ m*A =0 (8)
@] i 2\
and g;!rlé_\ésm@&@ ﬂ(l’!-rl)——sl:\g— 9 =0 (9)

The general sclution of (8) for a fixed m is
M = A cos mh + Bsin m

Eqguation (9) has for one of its solutions, the associated Legendre

P i o™ (s
olynomial P, \&; given by

my 2nl m n-m . (n-m)(n-m-1) e
Pn (@) =W sin 6| s & Z(Zn"‘> Cos &

(- {n-m=Da-m-2)n-m=3) cos" " &

+ 2.4 (2n-1(2n-3)

L |

J

where m 1is the order and n the degree of the polynomial.

These P: (6) are orthogonalized in the following manner
r—f—l

m m
j Fo (w] Py fu] du

-l _ 2 (mmﬂ y —n
= Zn+l (n-m)l for n=n

O sor n % n"
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m
hus to normalize these B, (9}, the normality factor to be used
|

must be
2n+1 (n-mll
2 (nem)l
Properties of P, {6)
v 7
In Figure 13 Pg, P; e . .P.;{ are represented as functions

of 8, These curves illustrate the following general properties of
tie Associated Legendre Polynomizals,

(a) Every Assoclated Legendre Polynomial P;n(e) has n-m real
different zeros between 6=0 and 6= 7T The zonal functions Pg(e)
have the value =1 at the north pole (G:OO) and (-1)n at the south
pole (86=T7); every other function Pf(e), m > 0, is zero at both
poles as well as at (n-m) values of © between the poles.

(b) According as n-m is even or odd, Pr: is symmetrical or

antisymmetrical with respect to the equator, i.e.

o lo) = 1]

When (n-m) is odd, one of the (n-m) zeros of Pr: occurs at the
equator 8= T(/2

(c} The normalized functions P? which can be given by

=M
TR -6

A

R ) = lenN ol g0

J2 2% nl

7
are very small over an extensive region round the poles (see P7

in Fig. 13).

Tesseral and Sectorial Surface Harmonics

CoS MA
Sin mA

}vanish along (n-m)
circles of latitude and also because of the factors cos MA or sin mA

. m
The surface harmonics Pn

along 2M meridians at equal intervals T{/m. These zero lines

divide the surface of the sphere into regions in each of which the
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(After Chapman and Bartels.)
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Figure 14 . Equal area map of the zero-lines (thick lines in
diagram), over one hemisphere, of a zonal harmonic ( P(,; ),
a tesseral harmoniq ( P?] co; 7 N\ ); the central meridian
corresponds to )\ = 0. The areas in which the sign of the
function is positive are indicated by drawing the (thin-line)

circles of latitude at closer interwvals.
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sign of the surface harmonic is constant, while it is reversed on
crossing the boundary between two adjacent regions, Consequent-
ly, forn > m = 0, the surface harmonics are called tesseral
surface harmonics. When m=0; the functions are called zconal
surface harmonics. When m=n, the functions are called sectorial
surface harmonics, because there are no circles of latitude along
which the functions vanishes; the regions of constant signs are
therefore sectors of the sphere. Figure 14 shows this for P (O)COSO

, P2 C035A and PJCOSTA.

There are 2m+l1 tesseral harmonics of the nth degree. If
each of these is multiplied by a constant and their sum is taken,
this sum is called a Suriace Harmonic of the nth degree.

Pr;: (8) As a Solution of the Vorticity Equation

Sv
C :Q—s{m—é % {Sm@(u —a—\/)}— —B—%J

Conservation of vorticity yields,

Q +2 W cos© = constant

)-

Substituting the expression for { and differentiating with respect

to time, we obtain

D d \[ - vl 2 > /s, 2Lsingy
{E* CXBN NG (5 nou)~ S J V35| 56(5 nev)|= o

Using the stream function w , the vorticity equation becomes,

o/
I
Q

> 2V SY
EE '55(3‘”985) + 2w+

e
/e
pais
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this form of the vorticity equation assumes

(a) Friction is negligible

(b) Vertical velocity is negligible

(c) Perturbation velocities W ,V are so small that their second
and higher powers are negligible

(d) Density of the air parcel remains constant while in motion

(e) Density does not vary in the horizontal plane.

Assume as a solution W[f A 6] = Cos (/Bi‘ + m?\) ‘?(@)

Substituting this into (11), we obtain

(5 (Xa 31 F_ Smga [cos/‘{ (e _l_g [os ﬁt+mA)¥(e

7
L
g

)sme 30 g%l

-

+2 (w+ o()%}{cm(ﬁt ‘ m))&(e\;]——-O

M ' . .

d d o). | R (o)

e M)Smb@ SINe cos(pt + m’)\)ﬁ@)-mcm(/&t mR)mQ(e;J
+2|W *o(‘-msm(j,@w mN ) =

3‘%[2—9 Smesmﬁhmk\)f'(e) m %ne ‘Q<9)mj

sme{ Sm@xC 6/@ §‘— (@)m2}+2(w+o()m¥(9)=

; “PO\ I AN m3O( b
SING 08 sm@?e 3138 fel + NG 38 3m@¥()

mZg

e fe) + 2(w+a)mfle) =0
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For equation (12) to be the Associated Legendre Differential

Equation, we must have

2 (W +o)m
/3’ +Xm

| Hence 'g'\ =C P:{COSG]

= n(n+1) | » (13)

and W =C (o5 (/5‘c + m7\) P?[COSGJ

From (13), the Rossby-Haurwitz angular phase velocity is found
to be '



