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Abstract:  
 

Amidst the escalating global challenge posed by Alzheimer's disease (AD), this 

comprehensive exploration delves into the intricate interplay of genetic, environmental, and sex-

specific factors in shaping AD susceptibility and heterogeneity. We examined the manifestations 

of AD family risk in two extensive epidemiological cohorts, with a specific focus on the impact of 

the Apolipoprotein E (APOE) isoforms, notably the protective ε2 and deleterious ε4 variants, in 

shaping AD susceptibility in at-risk males and females. By employing a tailored analytical 

framework, our objective was to untangle sex biases within AD-related phenotypes as they 

manifest in distinct subregions of the hippocampus (HC) and default network (DN). Leveraging 

the robust UK Biobank imaging cohort, we performed a rigorous comparative analysis of brain 

imaging outcomes associated with ε2 and ε4, revealing discernible effects on brain structure and 

phenotypic traits. Our population-based approach unveils sex biases in the interaction between ε2 

and HC-DN co-variation, impacting both fixed (e.g., AD family history) and modifiable (e.g., 

social engagement, physical activity) risk indicators. No similar interaction patterns were observed 

with the commonly studied APOE ɛ4. A complementary investigation into AD genealogy within 

the Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD (PREVENT-AD) 

cohort provided further support for the presence of sex bias among individuals carrying the ε2 

allele, especially concerning cardiovascular and cognitive risk indicators. Neuroanatomical 

patterns in HC and DN subregions, influenced by ε2 vs. ε4 polymorphism, highlighted substantial 

structural variation linked to maternal vs. paternal AD lineage in subregions from which the fornix 

white-matter tract originates. Across these two prospective cohorts, the ε2 allele stood out as a 

considerable driver modulating sex differences in AD risk indicators and their neuroanatomical 

underpinnings. Our cross-generational approach accentuates the need to explore and optimize the 

relatively less-studied protective mechanisms mediated by APOE ε2. 

 

Au cœur du défi mondial complexe posé par la maladie d'Alzheimer (MA), nous entamons 

une exploration compréhensive de l'interaction entre les facteurs génétiques, environnementaux 

et spécifiques au sexe, sous-jacents à l'hétérogénéité de la MA. Pour ce faire, nous avons examiné 

les manifestations du risque familial pour la MA dans deux vastes cohortes épidémiologiques, en 

nous concentrant spécifiquement sur l'impact des isoformes de l’Apolipoprotein E (APOE), 
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notamment les variants protecteur ε2 et délétère ε4, dans la formation de la sensibilité à la MA 

chez les hommes et les femmes à risque. En utilisant un cadre analytique conçu sur mesure, notre 

objectif était de démêler les biais sexuels dans les phénotypes liés à la MA tels qu'ils se manifestent 

dans des sous-régions distinctes de l'hippocampe (HC) et du réseau du mode par défaut (MPD). 

En tirant parti de la riche cohorte d'imagerie cérébrale de la UK Biobank, nous avons effectué 

une analyse comparative rigoureuse des variations structurelles associées aux allèles ε2 et ε4, 

révélant des effets perceptibles sur les traits phénotypiques et la structure du cerveau. Notre 

approche à l’échelle de la population a révélé des biais sexuels dans l'interaction entre l’allèle ε2 

et la covariation HC-MPD, ayant un impact à la fois sur des facteurs de risque fixes (c.-à-d. des 

antécédents familiaux de MA) et modifiables (par exemple, l’engagement social et l’activité 

physique). Aucune interaction n'a été observée avec l'allèle ɛ4 couramment étudié. Une enquête 

complémentaire sur la généalogie de la MA au sein de la cohorte Pre-symptomatic Evaluation of 

Experimental or Novel Treatments for AD (PREVENT-AD) a renforcé la présence d'un biais 

sexuel chez les individus porteurs de l'allèle ε2, en particulier concernant les indicateurs de risque 

cardiovasculaire et cognitif. Des altérations neuroanatomiques dans les sous-régions de l’HC et 

du MPD, influencées par le polymorphisme de ε2 vs ε4, ont mis en évidence une variation 

structurelle substantielle liée au risque maternel et paternel de MA dans les sous-régions d'où 

proviennent les fibres du fornix. Dans ces deux cohortes prospectives, l'allèle ε2 s'est imposé 

comme un moteur considérable modulant les différences entre les hommes et les femmes dans les 

indicateurs de risque de MA ainsi que leurs fondements neuroanatomiques. Notre approche 

intergénérationnelle accentue la nécessité d'explorer et d'optimiser les mécanismes de protection 

relativement moins étudiés médiés par APOE ε2. 
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Introduction  
 

The rising number of dementia cases worldwide is a major public health crisis that affects 

50 million people around the globe and generates annual costs of >1 trillion USD$ [1]. The number 

of individuals living with Alzheimer’s disease and related dementia (ADRD) is estimated to reach 

250 million by 2050 [1]. This three-fold increase is partly attributable to higher longevity and 

improved quality of life in middle-income countries [2]. While age remains a critical risk factor 

for both genders1, women appear to exhibit a higher susceptibility to the disease beyond the risk 

attributable to their longer life expectancy [3]. Given that women constitute the majority of 

dementia caregivers and patients globally, the escalating prevalence of ADRD cases is poised to 

exert more significant consequences on women compared to men [4]. The reasons for gender and 

sex disparities in dementia care and incidence are complex and multifaceted, involving both 

societal and biological factors. At the societal level, dementia diagnosis in women is often delayed 

as symptoms tend to be overlooked or misattributed to other age-related changes [5, 6]. 

Consequently, at the time of dementia diagnosis, the severity of symptoms tends to be higher in 

women than men, potentially influencing the perceived trajectory and symptomology of ADRD 

across genders [7]. Biological variability between males and females may stem from hormonal 

and neuro-inflammatory changes in the aging brain, possibly interacting with underlying genetic 

predispositions [8]. Recent advancements in population-based cohort designs, coupled with the 

ability to track disease progression in healthy older adults prospectively, have opened new avenues 

to investigate sex biases in ADRD risk across hundreds to thousands of biological markers. These 

large-scale prospective studies allow for the reliable assessment of the phenotypic variability in 

ADRD risk attributable to sex, providing valuable insights into potential sex biases in disease 

onset, progression, and heritability. 

 

Exploring the biological underpinnings of sex biases in Alzheimer's disease (AD) 

pathogenesis, researchers have probed the influence of sex hormones, particularly estrogen, on 

neurovascular functions [9]. Estrogen is thought to exert neuroprotective effects by promoting 

 
1 We will use the term 'gender' to discuss societal distinctions between women and men, and we will use the term 
'sex' to specifically refer to the biological, hormonal, and genetic differences observed in the aging male and female 
brains. 
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synaptic plasticity and neuronal survival in brain regions with a high concentration of steroid 

receptors such as in the hippocampus (HC) [10, 11]. The HC, particularly the pyramidal cells of 

the CA1 subfield, is known to show early alteration along the AD continuum at least since the late 

1990s [12]. The CA1 and subiculum subregions serve as the primary origin of most efferent 

pathways from the HC to the broader cortical regions [13]. The dentate gyrus (DG) and CA4 

subregions primarily project within the HC to the pyramidal cells of CA3, which, in turn, project 

to the CA1 subregion [14]. Evidence from rodent models suggests that the regulation of adult 

neurogenesis in the DG and CA4 subregions is influenced by adrenal and gonadal steroids, with a 

particular emphasis on the role of estrogens. [15-18]. Estrogen promotes and sustains the 

utilization of glucose as the primary fuel source of the brain by increasing key enzymes in the 

glycolytic pathway which in turn limits brain fatty acid ketosis [19]. Following menopause, 

estrogen decline could lead to elevated ADRD susceptibility, by potentiating age-related changes 

in neuroimmune and metabolic functions [8]. The fluctuation of estrogen levels in post-

menopausal adult females has been shown to influence inflammation and cholesterol markers [20]. 

Furthermore, brain regions that exhibit a notable decline in cholesterol synthesis with aging, such 

as the HC, display a significant concentration of steroid receptors [10, 21]. The changes in 

membrane lipid composition observed in the HC of individuals with AD, which are linked to a 

decrease in cholesterol levels, underscore the importance of lipid homeostasis in the 

pathophysiology of AD [22, 23]. The reduction in estrogen levels among postmenopausal females 

might thus contribute to age-related alteration in cholesterol profiles, thereby exacerbating sex 

biases in AD pathogenesis. 

 

The apolipoprotein E (APOE)2 protein is central to the intricate web of connections 

between cholesterol metabolism and AD pathology. APOE plays a crucial role in lipid metabolism 

and cholesterol synthesis in the central nervous system (CNS) [24, 25]. The ε2 allele is the 

phylogenetically youngest APOE variant and is thought to have emerged around 80,000 years ago 

from an arginine-to-cysteine substitution on ε3 [26]. The transition from the ancestral ɛ4 to the 

now more prevalent ɛ3 haplotype can be traced back to approximately 200,000 years ago—though 

this estimate remains subject to debate [26]. Despite a single amino acid exchange differentiating 

 
2 In accordance with conventional gene nomenclature, it is customary to italicize gene names while leaving protein 
names non-italicized. 
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ɛ2 from ɛ3, and ɛ3 from ɛ4, these subsequent mutations give rise to significant alterations in the 

blood lipid profile. High-density lipoproteins (HDL) are potentially favoured over low-density 

lipoproteins (LDL) with the ɛ2 and ɛ3 variants [27]. Among all haplotypes, the ε2 variant exhibits 

the lowest affinity for LDL receptors [28]. This specific trait potentially contributes to a more 

efficient clearance of amyloid-b (Ab) deposition, a hallmark of AD pathophysiology, from the 

brain of ε2 carriers [29-32]. In contrast, the APOE ε4 allele has demonstrated a strengthened 

binding avidity to the Ab peptide [33]. This characteristic potentially contributes to a heightened 

deposition of amyloid plaques in the brain of ε4 carriers [30-32]. As is the case for the regulation 

of cholesterol balance, the impact of the ɛ4 allele on AD risk and pathophysiology is not without 

sex-specific intricacies.  

 

At the age of 65, females have an almost twofold higher remaining lifetime risk of 

developing AD compared to males [34]. The incidence rate is further elevated for female carriers 

of the ɛ4 allele [35]. The association between lipid metabolism and estrogen may underlie the 

increased risk of AD in female carriers of the APOE ε4 allele. In the aging female brain, a decline 

in mitochondrial respiration and an increase in H2O2 production are thought to promote the shift 

to ketone metabolism [36, 37]. H2O2 production activates an astrocyte-mediated ketogenic 

pathway through cytosolic phospholipase A2 (cPLA2) [37]. Astrocyte reactivity in white matter 

tracts of the HC in reproductively aging female mice is thought to be greatest in the fimbria and to 

co-occur with cPLA2 labelling [37]. The fimbria is where the axon bundles branching from the 

pyramidal cells of the CA1 and subiculum subfields converge to form the fornix, which is the 

major efferent path from the HC to the brain’s default network (DN) [13, 38]. The DN is for most 

parts composed of phylogenetically younger brain regions which together consume some of the 

highest oxygen levels in the entire brain [39]. Evidence from healthy individuals and ɛ4 carriers 

suggests that regions of late myelination are particularly susceptible to age-related degradation 

[40, 41]. In humans carrying the APOE ε4 allele, a decrease in glucose metabolism was observed 

in regions of the DN, such as the precuneus (PCu), the posterior cingulate cortex (PCC), the 

temporoparietal junction (TPJ), and the dorsolateral prefrontal cortex (dlPFc) [42, 43]. Critical 

hubs within the DN that exhibit diminished glucose metabolism as part of the aging process, 

notably the PCu and PCC, have been identified as early sites of Aβ accumulation [44]. The PCC 

and PCu are also thought to be particularly influenced by the interaction of APOE and sex, such 
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that females carrying the ɛ4 allele exhibited a pronounced reduction in functional connectivity in 

these exact subregions of the DN [45]. A plausible connection between DN hypoactivity among 

older female carriers of the ɛ4 allele and changes in brain glucose metabolism may be attributed 

to an increased reliance on ketosis following the decline in estrogen observed during menopause. 

This altered metabolic burden has the potential to disrupt the brain's lipid profile, presenting a 

contributing factor to the development of age-related neurodegenerative disorders, including AD. 

The interplay between the vulnerability associated with late myelination in regions like the DN, 

which is typical in aging, and the distinct metabolic feature of the female brain holds promise for 

understanding the mechanisms that contribute to sex biases in the risk and pathogenesis of ADRD. 

 

Despite variations in amino acid sequences and protein sizes, the APOE protein is present 

in terrestrial and marine vertebrates such as mammals, reptiles, and fish [27]. Several other species 

can naturally develop amyloid-like fibrils, including dogs and dolphins [46, 47]. However, the 

content and distribution of these fibrils across body tissues largely differ from what is found in 

clinical cases of AD. Within the aging human brain, the initial manifestation of Aβ deposition is 

especially concentrated in specific areas of the DN, such as the PCu, the PCC, and the orbitofrontal 

cortex (OFC) [44]. Regions of the DN become less active when engaging in intricate tasks that 

require substantial attention and conversely become more active when the brain is in its baseline 

or resting state [48]. While rats and nonhuman primates also have a DN, the functional 

specialization of the network is believed to largely differ across species [49, 50]. In humans, the 

DN is thought to map on cognitive functions enabled by conceptual processing such as mind 

wandering [51], remembering the past [52], envisioning the future [52], and considering the 

thoughts and perspectives of others [53]. A recent interregional analysis of DN connectivity 

singled out the fornix fibres among 48 anatomical tracts as most strongly associated with DN gray 

matter volumes in ~10,000 UK Biobank participants [54]. The fornix, which carries fibre bundle 

axons from the CA1 and subiculum subregions of the HC, propagates the only hippocampal output 

signals that directly go to the ventromedial and orbitofrontal cortices of the DN [13, 38]. This 

pathway is mainly involved in spatial memory and navigation [55, 56]. The HC subiculum, 

presubiculum, and parasubiculum are also believed to have direct connections to the hypothalamus 

via the fornix [57]. The hypothalamus plays a crucial role in regulating the release of sex hormones 

through its control of the pituitary gland. The hypothalamic–pituitary–adrenal (HPA) axis is itself 
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thought to be regulated by gonadal hormones from early life to adulthood [58]. These connections 

may serve as a potential pathway, enabling the transmission of negative human experiences that 

engage DN functions—such as rumination [59, 60], neuroticism [61], and loneliness [62]—to the 

HPA axis, influencing the stress response and aging process in sex-specific ways. Loneliness, one 

of the major risk factors for ADRD amongst older adults [63], has indeed been linked to 

microstructural covariation between the HC and DN [62]. However, the relationship between 

loneliness and ADRD may vary between sexes. Existing evidence suggests that males 

experiencing loneliness may have a higher likelihood of developing dementia compared to females 

[64]. The connection between the DN, the HC, and the HPA axis holds the potential to magnify 

sex biases in the processing of adverse life events that engage DN functions, such as loneliness. 

This, in turn, may contribute to distinct patterns of ADRD susceptibility in males and females. 

 

Several environmental, lifestyle and personality-related factors have been shown to either 

amplify or mitigate the impact of APOE alleles. Environmental pollution is believed to precipitate 

signs of cognitive deficits and amyloid pathology in ε4 carriers, as early as in childhood and 

adolescence [65, 66]. In a similar vein, engaging in physical activity could decrease the risk of 

developing dementia amongst ε4 noncarriers, while no such association was observed amongst ε4 

carriers [67]. With regards to personality traits, recent evidence has shown that having a positive 

outlook on aging, such as feelings of usefulness, can amplify the protective effect of APOE ɛ2 

against cognitive decline [68]. In this population of older adults, positive beliefs on aging seemed 

to potentiate the protectiveness of APOE ɛ2 against cognitive decline, whereas the presence of 

negative beliefs was harmful to the extent that ɛ2 carriers no longer held a significant advantage 

against ɛ4 carriers [68]. Yet, none of these previous studies systematically assessed sex differences 

in the interaction of APOE with modifiable risk factors. The extent to which males and females 

carrying ɛ4 or ɛ2 can equally benefit from improvement in underlying health and lifestyle 

determinants is still the subject of investigation. A better understanding of the intersectionality 

between genetics, sex, and lifestyle factors may lead to personalized preventive strategies for 

ADRD, tailored to an individual's unique genetic and environmental profile. 

 

By leveraging the power of machine learning and big data analytics, we aim to provide an 

unbiased, data-driven account of the phenotypic variability of familial AD risk as a function of sex 
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in two large cohorts of asymptomatic older adults. In a first step, we will capitalize on the largest 

uniformly collected epidemiological brain imaging cohort to date, the UK Biobank, to ascribe sex-

specific profiles of AD susceptibility linked to microanatomical defined subregions of the HC and 

DN, two brain systems known for showing early alteration along the AD continuum [12, 69, 70]. 

Capitalizing on ~1,000 carefully curated phenotypes, we aim to offer a thorough overview of the 

preclinical manifestation of ADRD as a function of sex, APOE polymorphism, and HC-DN co-

variation. In a second step, we aim to carry over our findings to a cohort of at-risk participants that 

was specially designed to track dementia progression in children of Alzheimer’s patients: Pre-

symptomatic Evaluation of Experimental or Novel Treatments for AD (PREVENT-AD [71]). In 

addition to externally validating our findings, this second cohort allows us to zoom in on cross-

generational sex differences in AD heritability. Precisely, we aim to address how both the sex of 

the at-risk children and of their parent diagnosed with AD influence the preclinical manifestation 

of the disease across well-established risk domains (e.g., genetics, cognition, cardiovascular health, 

blood and cerebrospinal fluid biochemistry, neurosensory assessments, and lifestyle risk factors). 

Addressing sex biases in AD risk at a population level is crucial for deriving a better understanding 

of the interplay between genetics and modifiable risk factors. We believe this work paves the way 

for personalized preventive strategies in AD prevention, where sex is not just a confounding 

variable, but rather a central factor in shaping targeted interventions, risk evaluation, and 

individualized therapeutic approaches based on distinct neurobiological characteristics and 

lifestyle susceptibilities.  
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Abstract 
 

Alzheimer’s disease is marked by intracellular tau aggregates in the medial-temporal lobe (MTL) 

and extracellular amyloid aggregates in the default network (DN). Here, we examined co-

dependent structural variations between the MTL’s most vulnerable structure, the hippocampus 

(HC), and the DN at subregion resolution in individuals with Alzheimer’s disease and related 

dementias (ADRD). By leveraging the power of the ~40,000 UK Biobank cohort, we assessed 

impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer’s disease alleles on 

these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual 

expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN 

signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix’s fimbria, and their 

cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank 

cohort further revealed male-specific HC-DN associations with air-pollution, and female-specific 

associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially 

with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in 

females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort 

reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles 

to inter-individual brain structural differences indicative of ADRD familial risk.  
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Introduction 
 

Around the globe, >50 million people are living with dementia – a global burden of >1 

trillion USD$ annually [1]. By 2050, an estimated threefold increase in affected individuals is 

projected as a result of increased longevity [2]. The anticipated explosion in the number of 

dementia cases will put a strain on the 82 billion hours of annual informal care provided by 

caretakers worldwide [1]. In contrast to this secular trend, the age-specific prevalence of dementia 

is expected to decrease in certain high-income countries, which can be attributable to improvement 

in underlying health and socioeconomic determinants [2]. A recent authoritative report on 

dementia prevention has identified about a dozen potentially modifiable risk factors that could 

explain the disparity in ADRD incidence [3]. The disparate risk dimensions include personal habits 

and lifestyle, physical and mental health, as well as societal and external factors. New public health 

policies targeted at reducing mid- to late-life risk factors (e.g., physical inactivity, social 

disengagement, loneliness) thus have the potential to delay dementia onset in the most 

disadvantaged older adults. As the global prevalence of dementia is quickly rising, there is an 

unpreceded need to characterize the impact of genetic predisposition (e.g., Apolipoprotein E 

(APOE) polymorphism [4]) and modifiable risk factors on ADRD-vulnerable brain structures 

before the onset of cognitive decline.  

 

Over the past two decades, brain-imaging studies have converged on the disruption of a 

coherent network of higher association regions that involve key nodes of the default network (DN) 

in individuals with ADRD compared to healthy controls [5]. Extensive efforts have mobilized 

resting-state functional connectivity analyses to investigate patients with ADRD, with converging 

results in the DN [6]. However, delineating a definitive profile of functional connectivity 

deviations related to ADRD risk in healthy subjects was plagued with slow progress. Most such 

biomarker studies have attempted to identify functional connectivity patterns that reliably tell apart 

ɛ4 carriers from non-carriers. Yet, most other APOE variants have been largely neglected, perhaps 

because they occur much more infrequently in the general population. The extensive literature on 

altered DN connectivity in ɛ4 carriers has yet to reach consensus as reports of both increased [7] 

and decreased [8] connectivity within nodes of the DN have repeatedly led to contradictory 

conclusions. Among the few studies that could investigate concurrent connectivity alterations in 
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the hippocampus (HC) and regions of the DN in ɛ4 carriers, the HC was typically treated as a 

monolithic structure [9] rather than appreciating its functional and structural heterogeneity. That 

is, it was studied as a single node when interrogating its coupling links to other DN nodes [10]. 

These inconsistencies are probably also due in part to data acquisition and preprocessing methods 

for functional connectivity analysis, which have made some findings in ɛ4 carriers hard to replicate 

[11]. Moreover, because of the overwhelming singular focus on ɛ4 carriers in the research 

community, the neural correlates associated with other APOE variants remain underspecified.  Of 

particular appeal, illuminating the allegedly opposing effects of APOE ɛ2 and ɛ4 on DN and HC 

integrity could be crucial in guiding potential treatment avenues, given the ɛ2-associated protective 

outcome on brain structure [12].  

 

A parallel stream of literature has focused on changes in hippocampal microstructure over 

the course of ADRD progression, mostly by performing thorough post-mortem autopsy on patients 

with probable ADRD. The hippocampus formation is known for subfield-specific vulnerability to 

ADRD, at least since the late 1990s [13]. Yet, the hippocampus is still routinely treated as if it was 

an anatomically homogeneous structure in common brain-imaging studies [9, 14, 15]. By 

extension, such an analytical approach is blind to the distinct links between HC subregions and 

DN subregions. In-vivo examinations in the macaque monkey have shown that the hippocampus 

formation receives important axon projections from the retrosplenial cortex and posterior cingulate 

cortex in the presubiculum and parasubiculum subregions [16]. Yet, the fornix, which carries the 

axons from the CA1 and subiculum subregions, forwards the only hippocampal output signals that 

directly go to the ventromedial and orbitofrontal cortex of the DN [17, 18]. Glossing over these 

known microanatomical nuances could explain reports of poor predictive value of hippocampal 

atrophy in early ADRD stages when measuring the whole hippocampus as a single unit. In a 

randomized clinical trial, baseline hippocampus volumes, manually traced and corrected for 

inhomogeneity, predicted conversion to ADRD over a 3-year period at 60.4% accuracy [19]. With 

the advent of ultra-high-resolution atlases and advanced automatic sub-segmentation techniques, 

assessment of the subfield-specific vulnerability of both hippocampi to ADRD progression in an 

observer-independent fashion is now coming into reach. Instead of relying primarily on post-

mortem autopsy from patients to ultimately confirm ADRD status, we will soon be able to directly, 

non-invasively, quantify the level of risk of a given patient based on subfield-level granular 
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information. From the perspective of clinical translation, coming up with individual profiles of 

microstructural alterations characteristic of ADRD risk could usher a principled path toward 

precision medicine in neurology. 

 

For these reasons, here we opted for structural brain-imaging to relate genetic risk to robust 

co-dependence principles between neocortical DN and allocortical HC at subregion granularity. 

Given the panoply of individual factors that may affect cortical blood flow (e.g., vigilance, mood, 

cortisol levels, and coffee intake), functional connectivity would likely paint a more circumstantial 

portrait of ADRD vulnerability. We therefore designed an analytical framework for doubly 

multivariate decomposition to zoom in on the structural correspondence between HC and DN 

subregions at the population level. The two-pronged approach was carefully tailored to derive 

coherent signatures of HC-DN co-variation sensitive to the subregion-specific vulnerability of 

these neural circuits in ADRD. We were able to quantify the level of risk by looking for structural 

deviation in individuals with and without family history of ADRD by deep inspection of 

concomitant regimes of HC-DN co-variation. Capitalizing on the rich phenotyping available for 

40,000 UK Biobank participants, our study could confront the effects of APOE ɛ2 and ɛ4 on inter-

individual expressions of HC-DN co-variation — something out of reach in traditional brain-

imaging studies involving small to medium sample sizes. In doing so, our study was also uniquely 

positioned to illuminate possible sex-specific associations across less prevalent APOE gene 

variants that previous brain-imaging investigations systematically ignored.  
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Results 
 

Rationale  

 

In post-mortem autopsy of patients with ADRD, structural alterations of 

microanatomically defined subregions composing the human HC have been described in extenso 

[20]. Despite such insights from rigorous invasive studies, the overwhelming majority of existing 

brain-imaging studies has treated the HC as a monolithic brain structure. Hence, the specific 

vulnerability of its heterogeneous subregions to ADRD pathology remains largely concealed 

today. Advances in automatic segmentation techniques for the HC using ex vivo brain-imaging 

allow for subject-specific parcellations that respect the diversity of distinct subregions identified 

post-mortem. Capitalizing on these ultra-high resolution segmentations, we are now equipped to 

assess microstructural alterations of the human HC in a newly detailed way that scales to the 

~40,000 UKB participants [21]. These advances enabled us to describe ADRD-related patterns of 

structural co-variation in DN subregions, which were in lockstep with fine-grained HC subregions. 

Working at a population scale made it possible for us to investigate the effect of rare genotypes on 

brain structure. This approach was especially fruitful for the less common APOE ɛ2/2, which has 

a prevalence of <1% amongst the general population [22]. Given this setup, our investigation was 

uniquely positioned to carry out sex-specific examinations across all APOE gene variants that 

previous brain-imaging studies systematically ignored. The availability of deep profiling of the 

UKB participants further allowed us to chart brain-behaviour associations across the whole 

phenome in an impartial data-driven approach. 

 

Population signatures of HC-DN co-variation capture subregion-level structural ties  

 

We first delineated the structural dependencies in regional grey matter volume between the 

subregion atlas of the HC and that of the DN to identify deviations that jointly go hand-in-hand. 

We benefitted from CCA, a doubly multivariate pattern-learning tool (cf. methods), to identify the 

sources of common population variation between the full sets of 38 HC subregions and that of 91 

DN subregions. This algorithmic approach finds principled signatures of structural co-variation 

between two sets of variables [23]. Patterns of shared co-variation (canonical variates, cf. 
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methods) embed the effects of HC or DN subregion sets in a new representational space where the 

two sets were most strongly correlated with each other. Pairs of canonical variates, one for the HC 

and one for the DN, are what we henceforth call modes. By construction, these are ranked by 

importance; each mode carries unique information by being uncorrelated from each other. Each 

mode thus represented a different brain signature that accounted for increasingly less shared 

variance between the neocortical and allocortical atlas at subregion resolution. 

 

We focused on the leading 25 modes, mode 1 being the most explanatory signature of HC-

DN co-variation under the elected model. The explanatory power of a given mode was quantified 

by Pearson’s correlation between inter-individual variation tracked by its associated HC and DN 

patterns (canonical correlation, cf. method). The leading signature of HC-DN co-variation (mode 

1) achieved a canonical correlation of rho = 0.51, whereas the second and third signatures achieved 

correlations of rho = 0.42 and 0.39, respectively. Canonical correlations accounted for increasingly 

less joint variation between the HC and DN subregions up to the last signature (mode 25), which 

achieved a correlation of rho = 0.06. The full list of correlation coefficients for the remaining 

modes has been published elsewhere [24] and is openly accessible online 

(https://figshare.com/articles/figure/Loneliness_Suppplement_July_22_docx/15060684). This 

multivariate decomposition served as the backbone for all subsequent analyses that aimed to 

elucidate how individual expressions of HC-DN co-variation varied in relation to ADRD risk. 

 

Signatures of HC-DN co-variation illuminate concomitant deviations in ADRD risk 

 

To interrogate the neurobiological manifestations of ADRD family history in our UKB 

cohort, we performed a rigorous group difference analysis that highlighted any statistically robust 

ADRD-related divergences in each HC-DN population signature. In doing so, we uncovered the 

precise subset of anatomical subregions contributing to structural HC-DN co-variation that 

systematically diverged in individuals with vs. without family history of ADRD. A HC or DN 

subregion observed to have a robustly different co-variation expression in individuals with and 

without family history of ADRD is henceforth termed a hit. We observed a total of 28 HC and 135 

DN hits across the leading 25 modes. As a general trend, HC hits were mainly located in the cornu 

ammonis (CA) subregions (42.9% of total divergences). Parallel DN hits were predominantly 

https://figshare.com/articles/figure/Loneliness_Suppplement_July_22_docx/15060684
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observed in the prefrontal cortex (dorsomedial prefrontal cortex (dmPFC) and ventrolateral 

prefrontal cortex (vPFC); 45.9% of total divergences), and posterior midlines structures (posterior 

cingulate cortex (PCC), precuneus (PCu) and retrospenial cortex (RSC); 27.4% of total 

divergences). 

 

In mode 1, we identified 12 HC hits as indicative for family history of ADRD, with the 

strongest subregion effects identified in CA1, CA2/3, molecular layer, and granule cell layer of 

the dentate gyrus (DG) (66.7% of HC divergences in mode 1). The remaining HC hits for mode 1 

were either located in the parasubiculum, CA4 or hippocampus tail (Fig. 1). We revealed 34 

concomitant DN hits, most of them located in the prefrontal cortex (dmPFC, and vlPFC) and 

posterior midline structures (RSC, PCC, and PCu) which represented 55.9% and 35.3% of total 

DN hits in mode 1, respectively. As for mode 2, 80.0% of the 10 identified HC hits were located 

in the left hemisphere (S1 Fig.). Of those hits, the strongest weights were found in the 

presubiculum and CA2/3. The remaining HC hits were identified in the CA1, CA4, hippocampal 

fissure, and DG. While the majority of the 30 DN divergences for mode 2 were located in the 

prefrontal cortices (dmPFC; 30.0%) and posterior midline structures (PCC and RSC; 26.6%), a 

substantial proportion of hits were located in the temporal and posterior cortices. In particular, 

23.3% of DN divergences for mode 2 were located in the temporal cortices (superior temporal 

sulcus (STS), middle temporal sulcus (MTS), and temporal pole) compared to 20.0% to the left 

posterior cortex (inferior parietal lobule (IPL) and superior parietal lobule (SPL)). Mode 3 in turn 

showed 3 statistically relevant HC hits to the fornix’s fimbria and presubiculum, in concordance 

with 56 DN divergences (Fig. 2). Of the DN hits identified for mode 3, 35.7% were located in the 

frontal lobe (dmPFC, vmPFC, vlPFC, pre-supplementary motor area (Pre-SMA), and orbitofrontal 

cortex (OFC)), 30.3% to posterior midline structures (PCC, RSC, and PCu), 17.9% to the temporal 

cortices (STS, MTS, and superior temporal gyrus (STG)), and 16.1% to the parietal cortices (IPL, 

SPL, and temporo-parietal junction (TPJ)). A minority of the modes only showed HC hits, either 

located in the fimbria (mode 8; Fig. 3) or in the hippocampus-amygdala transition area (modes 6 

and 10; S2 & S3 Figs.) without any concomitant DN hits. Inversely, some modes only showed DN 

divergences in the absence of HC hits. This was the case for mode 4 for which we identified 4 DN 

hits in the dmPFC (S4 Fig.), mode 7 for which 9 DN hits were identified in the PFC (dmPFC, and 
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OFC; S5 Fig.), mode 11 for which 1 DN hit was identified in the PCC (S6 Fig.), and mode 13 for 

which 1 DN hit was identified in the STS (S7 Fig.). 

 

Across HC-DN co-variation signatures, we noted a prominence of HC structural deviation 

in the CA1, CA2/3, and fimbria for the group analysis of ADRD risk. As for the DN divergences, 

we highlighted a constellation of structural deviations involving the prefrontal cortices and 

posterior midline structures. Modes 1 and 2 showed the highest relative numbers of HC 

divergences (i.e., 12 and 10 hits, respectively) as compared to any other modes. While the third 

signature of HC-DN co-variation only showed 3 statistically relevant HC hits, it showed the 

highest relative number of DN divergences. Together with mode 8, the focalized divergences 

found in the fimbria for mode 3 highlighted the importance of the fornix in ADRD risk. We further 

uncovered concomitant structural divergences in HC and DN subregions with known direct 

anatomical connections in macaque monkeys, such as the presubiculum with RSC [16], and 

molecular layer with OFC/vmPFC [17]. Ultimately, we revealed an intertwined collection of 

structural divergences in highly coupled HC and DN subregions which have been linked to ADRD 

risk and progression by previous research, such as the CA1, CA2/3, presubiculum, and the fornix’s 

fimbria [13, 25-28], as well as the dlPFC, OFC, PCC, and PCu [29-32].  

 

Phenome-wide fingerprints of brain-behaviour associations uncover sex-specificity in ADRD 

risk 

 

We next conducted a phenome-wide analysis to systematize domains of UKB traits in 

terms of their association with HC-DN signatures and ADRD risk. To quantify genetic risk, we 

created a bivariate dosage scale that tested for the opposing effects of APOE ɛ2, often suspected 

to confer protective benefits [33], and ɛ4, classically believed to escalate dementia risk [4]. We 

fitted linear regression models to relate inter-individual expressions of HC-DN co-variation from 

the 25 signatures to subject-level APOE ɛ2 vs. ɛ4 dosage. Subject-level APOE dosage was 

predicted from a collection of HC-DN signatures using these linear models and subsequently tested 

against 977 curated UKB phenotypes in a phenome-wide assay conducted separately in males and 

females. Only the top three modes with the most brain-behaviour associations across sexes, i.e., 

modes 1, 3, and 8, are presented below (Figs. 1-3). The phenome-wide profiles for each of the 
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remaining modes with statistically defensible deviations with respect to family history of ADRD 

are available as part of the online supplementary information (S1-7 Figs.).  

 

The phenome-wide profile for mode 1 highlighted brain-behaviour associations with 

cognitive traits in addition to male-specific correlations with environmental phenotypes (Fig. 1). 

After carrying out Bonferroni’s correction for multiple comparisons, APOE dosage pooled across 

subject-specific expressions of mode 1 yielded 31 and 13 significant associations in males and 

females, respectively. Cognitive traits represented 35.5% of significant mode-trait associations in 

males and 53.8% of those identified in females. Baseline cognitive performance on the fluid 

intelligence battery accounted for most of the cognitive associations, with 7 questions yielding 

significant associations in males compared to 6 in females. Significant associations with baseline 

prospective memory were also identified for both sexes, measured as the correct recalling of the 

object previously shown to participants on the screen. The phenome-wide profiles for both sexes 

also included ventricular rate on electrocardiogram measured at rest, the completion status of 

electrocardiogram during exercise, and bipolar and major depression status. At the more lenient 

FDR correction, we observed additional phenotypes linked with erythrocytes count for both sexes. 

The second most dominant sets of associations for mode 1 centered on environmental phenotypes, 

such as NO2 exposure, natural environment, and greenspace, representing 29.0% of significant 

mode-trait correlations identified in males. Other male-specific associations included lifestyle 

(time spent watching television and difficulty waking up in the morning) and physiological (hand 

grip strength, arm mass, and height) phenotypes. At the more lenient FDR correction, males 

showed additional brain-behaviour associations including exposure to particulate matter of 2.5 μm 

and 10 μm or less in diameter (PM2.5 and PM10). After applying Bonferroni’s correction, females 

showed unique associations with diastolic blood pressure and hematocrit percentage. When 

applying FDR correction, additional cardiovascular phenotypes showed significant associations in 

females, such as a paternal history of heart attack, systolic blood pressure, insulin-like growth 

factor 1 (IGF-1), and haemoglobin concentration. In sum, our phenotypical profiling assay 

highlighted important phenome-wide associations between APOE dosage pooled across subject-

specific expressions of mode 1 and verbal-numerical reasoning, supplemented by male-specific 

correlations with environmental phenotypes. Females instead showed a specific profile of brain-
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behaviour associations with cardiovascular phenotypes that extended beyond physical traits shared 

with males.  

 

In the phenome-wide profile for mode 3, we uncovered brain-behaviour associations with 

cognitive and environmental phenotypes, again more prominent in males than females (Fig. 2). 

After Bonferroni’s correction, APOE dosage in the context of mode 3 expressions yielded 19 and 

6 significant mode-trait associations in males and females, respectively. Environmental 

phenotypes represented 52.6% of significant associations in males and 83.3% of those identified 

in females. Significant associations with NO2 exposure and home area population density were 

observed for both sexes. Males also showed significant associations with baseline cognitive 

performance on 6 questions from the fluid intelligence battery as well as with baseline prospective 

memory. Females did not show significant associations beyond those shared with males, with the 

exception of home location. At the more lenient FDR correction, females showed additional 

associations with prospective memory and baseline cognitive performance on 5 questions from the 

fluid intelligence battery. As such, APOE dosage pooled across subject-specific expressions of 

mode 3 allowed us to uncover a rich portfolio of associations with environmental and cognitive 

phenotypes that were more robust in males than females.  

 

In comparison to the overlapping portfolio of brain-behaviour associations derived from 

modes 1 and 3, the phenome-wide profile for mode 8 emphasized a unique set of physiological 

phenotypes (Fig. 3). After Bonferroni’s correction, APOE dosage pooled across subject-specific 

expressions of mode 8 yielded 11 and 15 significant mode-trait associations in males and females, 

respectively. Physical phenotypes related to body mass and height represented 55.5% of significant 

correlations in males and 80.0% of those identified in females. After Bonferroni’s correction, 

males showed significant associations with cognitive performance on 3 questions from the fluid 

intelligence battery assessed in the online follow-up. At the more lenient FDR correction, males 

showed further associations with cognitive performance on 2 additional questions from the fluid 

intelligence battery and with the maximum number of digits remembered correctly on the numeric 

memory test, both assessed in the online follow-up. After Bonferroni’s correction, females showed 

significant associations with trunk fat mass and heel bone mineral density. In sum, we highlighted 

important phenome-wide associations between APOE dosage pooled across subject-specific 
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expressions of mode 8 and proxies of cardiovascular health, supplemented by male-specific 

correlations with cognitive phenotypes. A formal assessment of the difference in associations 

between males and females for the three modes with the most brain-phenotypic associations across 

sexes (i.e., modes 1, 3, and 8) is presented in the supplementary information (S8-10 Figs.) and 

serve as a complement to their respective Miami plots (Figures 1, 2 and 3) (cf. methods). The 

phenome-wide profiles derived across these three concomitant regimes of HC-DN co-variation 

emphasized sex differences in ADRD risk, with recurring associations with air pollution and 

verbal-numerical reasoning that were more prominent in males than females 

 

APOE gene variants are associated with distinct clusters of risk-anatomy links  

 

We next examined ADRD-specific clusters of risk-anatomy links across each unique 

APOE gene variant (i.e., ɛ2/2, ɛ2/3, ɛ3/3, ɛ2/4, ɛ3/4, and ɛ4/4). We computed the interactions 

between the subject-specific expressions of HC-DN co-variation modes (canonical variates) and 

each APOE genotype (encoded as binary variables, such that participants who do not carry a given 

genotype were zeroed out). In doing so, we obtained six new population-wide indices, one for each 

distinct APOE genotype that we correlated, using Spearman’s coefficient, with 63 curated ADRD 

risk factors (a phenotype collection used previously [34]). We then performed an agglomerative 

clustering analysis which consisted of a nested merging of correlation coefficients with similar 

variance until all observations merged in a single cluster. The ensuing dendrograms indicated the 

distance between each cluster identified when retaining three levels of branching (Fig. 4). A formal 

metric of statistical agreement between cluster models was provided as part of supplementary 

analyses (S11 Fig.).  

 

Our integrated analysis of risk-anatomy links showed the relatively early branching of 

social engagement phenotypes for ɛ2/2 (e.g., being a full or part-time student and doing unpaid or 

voluntary work), ɛ2/3 (e.g., number of full siblings, looking after one’s home or family, family 

relationship satisfaction, and number of people in household), ɛ3/4 (e.g., number of full siblings), 

ɛ4/4 (e.g., being a full or part-time student, attending adult education classes, retirement, family 

relationship satisfaction, lack of social support, and friendships satisfaction) genotypes. The 

relevance of social engagement phenotypes across most APOE gene variants suggests that the 
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contribution of social behaviours to risk-anatomy links transcend genetic risk. Ɛ3 carriership was 

characterized by the early branching of socioeconomic determinants as shown on the dendrograms 

for ɛ2/3 (e.g., past tobacco smoking frequency, time spent watching television, paid employment, 

average household income, and the number of vehicles in the household), ɛ3/4 (e.g., past tobacco 

smoking frequency, alcohol intake frequency, time spent watching television, and education 

score), and ɛ3/3 (time spent watching television, education score, past and current tobacco smoking 

frequency, alcohol consumption on a typical drinking day and alcohol intake frequency; see S12 

Fig.). We noted the early emergence of a personality cluster in ɛ2 carriers that comprised self-

reported traits related to neuroticism as shown on the dendrograms for ɛ2/2 (e.g., irritability, 

miserableness, mood swings), ɛ2/3 (e.g., being worried/anxious and easily hurt), and ɛ2/4 (e.g., 

being worried/anxious, mood swings, and miserableness; see S12 Fig.). All these personality traits 

have been identified as neurotic behaviour domains and are part of the neuroticism battery of the 

UKB (UKB data field 20127). We thus uncovered that neuroticism, which is known to be closely 

linked to loneliness (35), is a personality trait that shows distinct patterns of association with HC-

DN co-variation expressions in ɛ2 carriers.  

 

Sex-specific dependencies between APOE gene variants and signatures of HC-DN co-variation 

explain ADRD risk  

 

We next directed attention to sex-specific interactions between HC-DN co-variation 

regimes and APOE genotype status that would explain inter-individual differences in ADRD risk. 

To this end, we tested whether HC-DN signatures systematically interacted with specific APOE 

genotypes in explaining variation in a collection of 63 ADRD risk factors (cf. above). More 

formally, each risk factor was individually regressed on the subject-specific expressions of HC 

and DN patterns for each of the 25 modes. This analysis step hence supplied 50 estimated linear 

models per target risk factor. Each model treated as input variables the main effect of the HC or 

DN pattern expressions, the main effects of the six APOE genotypes, and the interaction between 

each APOE genotype with the HC or DN pattern, controlling for age. Separate analyses were 

carried out in the male (Fig. 5, leftmost panels) and female (Fig. 5, rightmost panels) subgroups of 

our UKB cohort. To ascertain the robustness of our findings, we compared each coefficient 

estimate against empirically data-derived null distributions obtained through a rigorous 
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permutation procedure (i.e., label shuffling permutation). We only interpreted the model 

coefficients that emerged as statistically relevant based on the respective null distributions at 95% 

confidence. 

 

Across a comprehensive set of analyses across 63 ADRD risk factors, we identified the 

strongest interaction effects in homozygote ɛ2 carriers. Notably, brain-APOE interactions 

accounted for more variance in several modifiable social and cardiovascular risk factors than did 

the main effects of APOE ɛ2 and ɛ4. Across both sexes, ɛ2 homozygotes showed strong interaction 

with HC and DN patterns for being a full vs. part-time student. Male ɛ2 homozygotes showed 

strong interactions with HC and DN pattern expressions for doing unpaid or voluntary work. In 

parallel, female ɛ2 homozygotes showed strong interactions with HC-DN pattern expressions for 

engagement in strenuous sports. Across the different domains of risk factors investigated, we 

singled out brain-APOE interactions specific to ɛ2 homozygotes that were not identifiable in 

heterozygotes and non-carriers. While we observed no appreciable sex effect for the interaction of 

APOE ɛ4/4 and HC-DN co-variation expressions, we found defensible sex-specificity for the role 

of APOE ɛ2/2. More precisely, we showed strong interactions between APOE ɛ2/2 and HC-DN 

co-variation patterns for social lifestyle factors in males and physical activity factors in females. 

Through our analyses of a variety of risk factors, we have thus isolated brain-APOE interactions 

unique to ɛ2 carriers that depend on sex. 

 

After examining target risk factors, we next put to the test whether expressions of HC-DN 

signatures bear relations with APOE genotypes in explaining ADRD risk. In dedicated analyses 

for males (Fig. 6, upper panels) and females (Fig. 6, lower panels), family history of ADRD was 

regressed on a single HC or DN pattern, resulting in 50 different linear models per sex. Each such 

model was fed as input variables the main effect of the HC or DN pattern, the main effects of the 

APOE genotypes, and the interactions between each APOE genotype and the HC or DN pattern, 

controlling for age. We assessed the robustness of our findings by comparing each coefficient to 

empirically built null distributions obtained through permutation testing (cf. above). We focused 

interpretation on the model coefficients that were statistically robust against their respective null 

distributions at 95% confidence. We found no statistically relevant main effect of APOE ɛ2/2 on 

ADRD risk amongst males. For APOE ɛ2/3 and ɛ3/3 carriers, we found similar effects on ADRD 
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risk in males, lowering the odds of ADRD family history by approximately 30% across the 

different models investigated. Likewise, APOE ɛ2/4 and ɛ3/4 carriers showed similar effects in 

tracking ADRD risk in males, elevating the odds of ADRD family history by more than 20% on 

average. As expected from the literature, APOE ɛ4/4 increased the odds of ADRD family history 

by more than 56% in males across the different models investigated. In females, APOE ɛ2/2 status 

decreased the odds of ADRD family history by 50% on average, while ɛ2/3 and ɛ3/3 status led to 

decreases of approximately 25% and 17%, respectively. In contrast, APOE ɛ3/4 and ɛ4/4 status 

lifted the odds of ADRD family history by approximately 35% and 86%, respectively. Among 

females, APOE ɛ2/4 carriers were associated with dampened ADRD risk relative to APOE ɛ3/4 

carriers. The odds of ADRD family history associated with APOE ɛ2/4 were only increased by 

24% in females. This ~10% reduction in ADRD risk, uniquely observed amongst females, could 

be taken to suggest that ɛ2 can still be protective against ADRD risk in the presence of an ɛ4 allele. 

Females also showed some strong brain-APOE interactions above and beyond the well-established 

risk and protective effects associated with each APOE genotype. Notably, the interaction of mode 

9 DN pattern expressions with APOE ɛ2/2 status was associated with a 2-fold increase in ADRD 

risk. It was considerably stronger than the main risk effect conferred by APOE ɛ4/4. This strong 

interaction effect can be taken to suggest that HC-DN co-variation plays a chief role in ADRD 

risk, which might have been overlooked by previous analyses restricted to genetic data. In sum, 

we identified and annotated sex-specificity in the opposing effects of ɛ2 and ɛ4 on ADRD risk, 

with demonstrably stronger brain-APOE interactions amongst females. 

 

Dominant principles of brain-behaviour associations uncovered a male-specific link with 

neuroticism 

 

In a final suite of analyses, we conducted an exploratory principal component analysis 

(PCA) to disentangle the major sources of brain-behaviour variation in our UKB cohort. We first 

computed Pearson’s correlations between the 25 pairs of expressions (i.e., canonical variates) from 

the HC and those from the DN patterns and the 63 pre-selected ADRD risk factors. This step 

yielded 3,150 distinct coefficients represented by a risk by canonical variates matrix (X63 x 50). We 

then carried out a PCA to reduce the dimensionality to three major axes of brain-behaviour. These 
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explained ~13.8%, ~9.6%, and ~8.2% of the total variance in the cross-correlation matrix, 

respectively (S13 Fig.).  

 

The leading axis of variation highlighted social phenotypes previously singled out in the 

clustering analysis (e.g., attending religious groups, attending adult education classes, and the 

number of people in the household). We also observed a strong expression of socioeconomic 

determinants among the first axis of brain-behaviour associations (e.g., age completed high school 

education, average household income, paid employment, and the number of vehicles in the 

household). The second most important axis mainly emphasized health-related phenotypes (e.g., 

stroke, hypertension, and diabetes) and lifestyle factors (e.g., alcohol intake frequency, difficulty 

getting up in the morning, being a morning person, and sleeplessness). The third most explanatory 

axis tracked neuroticism and its associated personality trait indicators (being worried/anxious, 

being easily hurt, and worrying too long after embarrassment) from the rest of the risk factors. We 

again emphasized the importance of social factors on HC-DN co-variation expressions along with 

other socioeconomic and lifestyle behaviours. 

 

To certify the robustness of our findings, we performed a split-half reliability assessment 

of our principal component solution across 1,000 bootstrap iterations. At each iteration, we drew 

37,291 participants with replacements to simulate random participant samples that we could have 

pulled from the same population. We then randomly split the sample in half to create two 

analogous subsets. We computed the Pearson's correlation between possible pairs of the 50 

canonical variates and 63 phenotypes across participants for each random subset. We then 

estimated two PCA models in parallel, one for each random half subset, on the z-scored correlation 

coefficients matrices (63 phenotypes x 50 canonical variates). We showed the average projection 

of each Pearson’s correlation coefficient on the three principal axes of brain-behaviour 

associations across the 1,000 iterations. We found that the projections of the risk-anatomy link on 

component 1 were robust. While of lesser strength than the first axis of brain-behaviour 

associations, the projections for components 2 and 3 are reminiscent of the original analysis. In 

particular, neuroticism-related personality traits are distinctly expressed on the third axis of brain-

behaviour associations, as was found in our original analysis (S14 Fig.). A formal account of 
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statistical agreement between both subsets was provided as part of the supplementary information 

(S15 Fig.).  

 

We then repeated the identical pattern-learning workflow sex-stratifying in males and 

females separately. The top three principal components explained ~12.1%, ~9.9%, and ~9.0% of 

the total variance in males, and ~13.1%, ~9.5%, and ~7.3% of the total variance in females (S16 

Fig.). The first axis of brain-behaviour associations was roughly the same in males and females as 

in our original analysis. In fact, the same set of social phenotypes was emphasized on component 

1 (e.g., attending religious groups, attending adult education classes, and the number of people in 

the household) for both sexes. In contrast, component 2 separated neuroticism-related items (e.g., 

miserableness, fed-up feelings, mood swings, and being worrier/anxious) from the rest of the risk 

factors in males only. The fact that the neuroticism-related component was the second most 

important axis of brain-behaviour associations in males but was found in third place on the whole 

population-derived PCA suggests that the association between neuroticism-related phenotypes and 

HC-DN co-variation expressions was most important in males. Lastly, the third axis of brain-

behaviour associations emphasized different categories of risk factors in males and females. The 

male-derived component 3 emphasized socioeconomic determinants (e.g., education score and the 

number of vehicles in the household). In contrast, the female-derived one emphasized lifestyle risk 

factors (e.g., alcohol intake frequency, alcohol consumption on a typical drinking day, and past 

tobacco smoking frequency). Our sex-specific analysis hence revealed that the first and most 

robust axis of brain-behaviour associations was shared across sexes, whereas the second and third 

axis emphasized sexually dimorphic groups of risk factors. 

 

We performed a bootstrap analysis of the sex-specific PCA solutions to assess the 

robustness of our findings. Across 1000 bootstrap iterations, we drew 17,561 males and 19,730 

females with replacements to simulate random participant samples that we could have gotten. At 

each iteration, we computed the Pearson's correlation between possible pairs of the 50 canonical 

variates and the remaining 62 phenotypes (as sex was used for grouping) across males and females 

separately. We then estimated two PCA models in parallel, one for each sex, on the z-scored 

correlation coefficients matrices (62 phenotypes x 50 canonical variates). A formal assessment of 

statistical agreement in the PCA solutions between both sexes was performed (S17 Fig.). We 
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observed a low agreement between the male- and female-derived PCA solutions, thus emphasizing 

the sex-specificity of our derived brain-behaviour axes. 

 

External Validation  

 

To externally validate our discovered associations between HC-DN co-variation signatures 

and ADRD risk factors, we have investigated whether our UKB-derived population signatures of 

HC-DN co-variation successfully track ADRD-related variation in unseen participants from an 

independent sample. We capitalized on the openly available PREVENT-AD dataset, one of the 

largest single-site prospective cohorts of pre-symptomatic individuals with a family history of 

Alzheimer’s disease. Our final sample included image-derived phenotypes of grey matter 

morphology and APOE SNP genotyping from 318 participants, totaling data from 799 visits. For 

each visit, we computed the level of expression of each of the 25 HC-DN co-variation signatures, 

from the UKB, for a participant from PREVENT-AD (cf. methods). To test whether distinct 

derived modes of HC-DN co-variation track distinct aspects of ADRD-related behaviors in unseen 

participants, we correlated the individual expressions of the 25 modes, represented by pairs of 

latent expressions of the UKB-derived brain signatures for the HC and DN sides, with a collection 

of 157 widely-established indicators of ADRD progression (e.g., cerebrospinal fluid and blood 

biochemistry, cognitive and neurosensory evaluations, and health and demographic profile). We 

assessed the Pearson’s correlations through permutation testing. We reported only the coefficients 

that were robustly different from the derived empirical null distribution in at least 95% of the 1,000 

permutation iterations (S18 Fig.). 

 

We found that the several categories of risk factors that emerged in the phenome-wide 

profiling in the UKB dataset were also flagged in the PREVENT-AD dataset. For example, we 

have corroborated a link between individual expressions of mode 1 in PREVENT-AD participants 

and depression, a phenotype that emerged as statistically significant in the phenome-wide profiling 

for mode 1 for males and females in the UKB. Similarly, we have replicated associations between 

mode 2 and verbal-numerical reasoning by linking mode 2 expressions in PREVENT-AD 

participants to several measures of language fluency and working memory highlighted by the 

Montreal Cognitive Assessment (MoCA) and Repeatable Battery for Assessment of 
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Neuropsychological Status (RBANS), respectively. The MoCA is a cognitive screening tool 

specially designed to track mild cognitive impairment [35]. Performance on the MoCA has 

previously been associated with grey matter volumes in subregions of the hippocampus, including 

the HATA, in middle-aged patients with diabetes [36]. Looking at the individual expressions of 

mode 6 in PREVENT-AD subjects, we found robust ties of several sub-items of the MoCa (e.g., 

attention, subtraction, and language fluency) with the same HC-DN population signature that also 

showed HATA-specific divergence in the UKB participants. 

 

The phenome-wide profiling for mode 6 further highlighted several indicators of vascular 

integrity (e.g., carotid intima-media thickness) – a cue to cardiovascular system implication that 

also emerged in PREVENT-AD participants as reflected by a correlation between mode 6 (on the 

HC side) and atrial fibrillation. Similarly, the phenome-wide profiling for mode 8 in the UKB 

highlighted several phenotypes related to body mass, while the expression of mode 8 in 

PREVENT-AD participants was related to arthritis, a joint disorder worsened by age and weight. 

In addition to replicating the UKB findings, we found complementarity in the associations between 

the HC-DN signatures and PREVENT-AD phenotypes such that distinct modes track different 

domains of ADRD risk. For example, DN variation captured by modes 6 and 8 tracks several 

global indices of the RBANS, a cognitive battery designed to monitor cognitive decline over time. 

Notably, only mode 6 tracked the visuospatial dimension of the test, as reflected by correlation 

with sub-items of the figure drawing tests. Further, only individual expressions of mode 6 in 

PREVENT-AD participants were also correlated to cognitive performance on the MoCA. These 

patterns of associations, specific to mode 6, reflect a sensitivity to general cognitive ability in 

PREVENT-AD participants, who all have a family history of ADRD. We found similar patterns 

of robust associations to PREVENT-AD phenotypes up to the 25th and last mode of HC-DN co-

variation that showed noticeable associations with tau CSF levels on the HC side and 

cardiovascular factors (e.g., systolic blood pressure, pulse, and APOE ε4/4 genotype) on the DN 

side. We have thus shown that HC-DN signatures robustly track different aspects of ADRD risk 

in a cohort fully independent from the one in which the co-variation patterns have originally been 

derived. We have thus corroborated and extended the characterization of our population-derived 

limbic-cortical co-variation signatures by linking them with several known indicators of ADRD 

risk based on new data.   
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Discussion 
 

Longstanding research has insisted on the alteration of the DN and HC in early ADRD 

development (see, for example, [14]). However, brain-imaging investigations seldom had the 

opportunity to incorporate rare genotypes such as APOE ɛ2/2. At the same time, common 

epidemiological studies that have reported the protective effect of carrying an ɛ2 allele are not 

typically equipped to perform an adequately powered brain-imaging examination at a scale of 

thousands of people. We overcame several shortcomings by capitalizing on APOE genotyping and 

structural brain scans from ~40,000 UK Biobank participants. Our mission-tailored analytical 

framework was specially designed for disentangling ADRD-specific differences in brain structure 

at the population level. Revisiting ADRD through this lens, we uncovered sex-specific associations 

between rarely investigated APOE gene variants and microstructurally defined HC-DN signatures 

hardly ever discerned in a prospective human cohort. Our collective findings paint a more concrete 

picture of the antagonistic effects of APOE ɛ2 and ɛ4 on population-wide HC-DN signatures, along 

with their interlocking divergences between men and women. 

 

Epidemiological studies, without access to brain-imaging assessments, have provided 

evidence suggesting that an ɛ2 allele typically acts to protect against late-onset Alzheimer’s disease 

[22, 33] and against Aβ accumulation [37-42]. Aβ accumulation in ɛ2 carriers could be delayed by 

30 to 50 years compared to ɛ4 carriers, who start showing Aβ positivity in their early 40s [12, 40, 

43]. The protective qualities of ɛ2 status have been noted even in the presence of an ɛ4 allele [12]. 

Nonetheless, the sex-specific impact of APOE, especially its ɛ2 gene variants, on brain structure 

could seldom be investigated at the population level. By deriving an envelope of distinct HC-DN 

signatures at a fine-grained resolution amongst thousands of healthy adults, we were able to 

uncover brain-APOE interactions systematically overlooked by traditional brain-imaging studies. 

Stratifying our population cohort by sex and APOE gene variants, we were in a position to 

conclude that the protective effect of APOE ɛ2/2 on ADRD risk was not statistically robust 

amongst males, even in a sample of ~20,000 participants. In contrast, we demonstrated a spectrum 

of ɛ2 and ɛ4 effects amongst females such that APOE ɛ2/4 was associated with milder ADRD risk 

than ɛ3/4, which in turn was associated with milder ADRD risk than ɛ4/4. Resilience towards 

cognitive decline generally observed amongst ɛ2 carriers could arise from relatively higher 
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baseline APOE steady-state levels in regions including the HC and frontal cortex as compared to 

ɛ4 carriers and ɛ3 homozygotes [44-47]. Isoform-specific effects related to the APOE protein could 

be further enhanced by microglia-driven homeostatic responses to Aβ accumulation [48, 49]. In 

fact, ɛ2 carriers are biologically more efficient at scavenging Aβ [50]. As a result, Aβ positivity in 

ɛ2 carriers with normal cognition is generally detected in much older age (~95 years) as in ɛ4 

carriers (40-55 years) [40]. Older ɛ2 carriers with amyloid pathology are likewise less likely to be 

diagnosed with dementia than ɛ3 homozygotes of the same age [51]. Cell proliferation and survival 

in the HC are thought to be particularly modulated by estrogens [52-54] which could have a 

downstream impact on microglial and astrocytic APOE synthesis [55]. The presence of an 

estrogen-dependent enhancer in the promoter region of the APOE gene is thus bound to favour 

female ɛ2 carriers [56]. These previous elements of evidence are in line with our present finding 

suggesting that the protective effect of APOE ɛ2 on ADRD risk is sex-specific and also unique to 

particular HC-DN co-variation patterns. Notably, we found that female ɛ2 homozygotes with a 

high expression of mode 9 had twice the odds of having a family history of ADRD. We have thus 

shed light on important nuances in the predominant genetic account of ADRD by questioning the 

protectiveness of ɛ2 when placed in relation to sex and brain structure. 

 

We expanded upon the discovered sex differences in ADRD risk by highlighting a female-

specific constellation of brain-behaviour associations with cardiovascular traits. As the 

neuroprotective effect of estrogen weakens with older age, women become more vulnerable to 

neurovascular disorders that can ultimately lead to dementia [57]. Cardiovascular risk factors that 

are exacerbated in females following menopause, such as trunk fat mass, have been associated 

with chronic neuroinflammation and microstructural alteration of the fornix [58, 59] – the main 

output tract from the HC that carries direct neural signals toward partner regions of the midline 

DN [60]. Building on existing literature, we identified ADRD-related divergences in the fimbria 

of the fornix in healthy participants for mode 8 that we have linked to selective brain-behaviour 

associations with proxies of cardiovascular health (e.g., water mass, fat-free mass, and weight). 

For the same HC-DN signature, we found a female-specific association with trunk fat mass, a 

correlate of estrogen declines [61]. This observation supports a link between cardiovascular health, 

female sex, and microstructural alteration of the fornix. Despite the protective effect of APOE ɛ2 

against ADRD previously discussed, carrying an ɛ2 allele has been associated with elevated risks 
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for cardio- and neurovascular disorders [62-66]. APOE ɛ2 is indeed limited in its ability to mediate 

the vascular clearance of cholesterol metabolites and triglycerides which could in turn precipitate 

the risks of cholesterol pathologies such as hyperlipoproteinemia and cardiovascular sequelae [67]. 

The variability of the protective effect of physical activity on dementia risk when stratifying 

participants by ɛ4 status might be taken to suggest that APOE ɛ2 is driving the relationship between 

physical activity and cognitive performance [68-72]. Hypothetically, engaging in physical activity 

could be particularly beneficial to older female ɛ2 carriers in counteracting the rising risk of 

neurovascular complications resulting from the combined effect of APOE ɛ2 and decreased 

estrogen levels. Bringing support for this claim, we have shown specific interactions between HC-

DN signatures and APOE ɛ2/2 genotype in explaining variation in physical activity – an effect that 

we found exclusive to females. The specificity of this effect to ɛ2 homozygotes is consistent with 

previous findings that have associated ɛ2 with increased longevity in centenarians [73]. Given that 

almost 90% of centenarians are females, the sex-specificity of our results is consistent with a 

genotype-driven behavior that favors longevity via exercise in female ɛ2 homozygotes.  

 

Epidemiological studies have provided evidence that traffic-related air pollution and 

residence near major roadways are associated with decreased cognitive abilities [74-82] and a 

higher risk of developing dementia [83-92]. Our phenome-wide assay tied mode 1 expressions to 

blood markers (e.g., erythrocytes, hemoglobin, and haematocrit) and air pollution. This phenome-

wide profiling supports an interplay between environmental stressors, vascular integrity, and 

dementia. Mode 1 also showed 19 DN hits in the PFC – a subregion in which vascular and 

perivascular white matter damage has been specifically observed in humans and canines 

chronically exposed to high levels of air pollutants [93]. Such accumulation of nanoscale 

particulate matter in endothelium cells, basement membranes, axons, and dendrites coincided with 

prefrontal white matter damage, which is in line with deficits in the blood-brain barrier [93]. 

Autopsy samples from patients with Alzheimer’s disease have further shown reduced pericyte 

coverage in CA1 and PFC (Brodmann area 9/10). These were two subregions in which we showed 

ADRD-related structural divergences in mode 1, as compared to healthy blood vessels in controls 

[94]. We have thus identified subregions that are consistent with early vascular leakage in the 

aging brain, such as CA1 and PFC, as manifesting ADRD-related structural deviation in the same 

HC-DN signature associated with air pollution in our phenome-wide analysis. In doing so, we 
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extend the alleged role of vascular integrity in protecting the brain from environmental stressors 

that might precipitate ADRD onset.  

 

In a similar vein, in-vitro analyses have suggested that exposure to air pollution can trigger 

microglial activation, which in turn can cause oxidative stress [95, 96]. Pollution-triggered 

oxidative stress could be particularly detrimental to males as they are thought to display lower 

expression of antioxidant enzymes responsible for scavenging reactive oxygen species [97, 98]. 

As a result, male mice show up to 4-fold higher rates of oxidative toxicity in astrocytes, neurons, 

and mitochondria compared to female mice [97, 99]. Our results suggest that the association 

between HC-DN co-variation and air pollution is male-specific, building on experimental findings 

primarily from rodent species. Parts of the DN are thought to be amongst the earliest sites of Aβ 

accumulation [29] and consume some of the highest oxygen levels in the entire brain [100]. As 

such, the DN sticks out as a hotspot for both oxidative stress and ADRD pathology. A previous 

study has indeed found widespread glucose hypometabolism in the DN of ADRD patients that was 

associated with increased levels of CSF lactate, a marker of mitochondrial damage, in the OFC 

and mPFC as compared to cognitively healthy controls [101]. Recent evidence suggests that Aβ1-

42 acts on reactive oxygen species to induce glucose hypometabolism [102]. One could argue that 

the combined effect of air pollution and amyloid pathology could be particularly detrimental in 

exacerbating ADRD risk amongst males. In line with an effect on escalating ADRD risk, 

specifically in males, we have linked ADRD-related structural deviation in the OFC and mPFC 

with a profile of associations with environmental phenotypes for mode 3. As was the case for mode 

1, these associations were more prominent in males than females. In addition to emphasizing a 

male-specific vulnerability to neurotoxicity, our phenome-wide analysis pointed towards a female-

specific resilience to pollution-mediated impairment and subsequent neuronal death. For example, 

our phenome-wide profile for mode 1, derived for females, did not show statistically relevant 

associations with air pollutants but displayed a significant correlation with IGF-1. Estrogen and 

IGF-1 are thought to exert synergetic, non-additive effects on neurite outgrowth and survival, 

presumably by acting on a single neuroendocrine pathway [103]. IGF-1 is secreted by neurons and 

glia and possibly acts as a neurotrophic factor regulating neuroendocrine function in the central 

nervous system [103]. Subcutaneous injection of IGF-1 has previously been associated with 

increased neurogenesis in the adult rat brain [104, 105]. In mode 1, in addition to a female-specific 
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association with IGF-1, we have shown HC hits in the granule cell layer of the DG and in CA4, 

which are two subfields in which neurogenesis has been observed in rodents [104, 106, 107] and 

primates [108]. Together with its associated divergences in HC-DN co-variation expressions, the 

phenome-wide profile for mode 1 shed light on a female-specific resilience towards pollution-

induced impairment and subsequent neuronal death. While scarcely reported in human subjects, 

these sex-specific divergences in vulnerability to neurotoxicity — observed here for both mode 1 

and 3 — are hence in accordance with experimental findings from animal models. 

 

Building on the knowledge that ADRD and verbal-numerical reasoning share overlap in 

underlying genetic architecture [109], we showed significant brain-behaviour associations 

between ADRD risk and baseline cognitive performance on the fluid intelligence battery for top 

modes 1, 2, and 3. While previous investigations of fluid intelligence and ADRD in the UKB were 

often limited to genetic evidence [109-112], we highlighted distinct HC-DN signatures related to 

verbal-numerical reasoning at the population level. In doing so, we found prominent ADRD-

related structural divergences in the left CA1, CA2/3, presubiculum, and fimbria, which are 

amongst the first and notorious regions to be affected by ADRD pathology [13, 25-27]. Some 

authors have claimed that white matter disruption may trigger grey matter degradation in the HC 

and higher-order neocortex by activating a maladaptive neuroinflammatory response [113]. 

Changes in fornix microstructure have indeed been reported in individuals at risk of ADRD before 

the onset of clinical symptoms [26] and subsequently identified as an accurate predictor of 

progression from mild cognitive impairment to ADRD [27]. Consistent with the early involvement 

of the fornix in ADRD-associated cognitive deficits, we showed structural divergence in the 

fornix’s fimbria and 56 DN regions for mode 3, which were accompanied by a profile of 

associations with questions from the fluid intelligence battery. 

 

Recent brain-imaging evidence has extended the concept of a hippocampally mediated 

cognitive map to interpersonal relationships by highlighting the involvement of the DN, and hence 

the fornix, in schematic representations of the self and others. Notably, fMRI results from Tavares 

and colleagues suggest that the HC tracks how we represent others in a social hierarchy while the 

PCC/PCu, key hubs of the DN, tracks the social distance between ourselves and others [114]. 

Consistent with a reliance on the HC-DN pathway for human-defining aspects of spatiotemporal 
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processing, we found a brain-behaviour association with navigating family relationships, a subtest 

of the fluid intelligence battery, that was significant in males for mode 3. We have thus provided 

a plausible link between verbal-numerical reasoning and ADRD risk that was accompanied by 

alterations in HC and DN subregion co-variation regimes involved in episodic processing.  

 

By exploring risk-anatomy links across the different APOE gene variants, we have tied 

social engagement measures to subject-specific expressions of HC-DN co-variation signatures. 

Notably, we found that the contribution of social behaviours to risk-anatomy links went beyond 

genetic risk and was prominent across the different APOE genotypes. In older age, a decrease in 

social activity possibly related to unemployment and/or retirement could increase feelings of 

loneliness and consequently escalate the risk of cognitive decline and ADRD [115]. Social 

disengagement has indeed been associated with the incidence of cognitive decline amongst older 

adults [116-118]. In contrast, engaging in social activities has been linked with up to a 40% 

decrease in ADRD risk [68, 116, 119]. While social support has been associated with a dampened 

stress response [120], loneliness is thought to affect not only neuroendocrine but also immune 

functions [121, 122]. Volunteering and having student status, two social engagements that have 

repeatedly been flagged in our analyses, could possibly downplay the pathological stress response 

observed in lonely older adults. Our study has thus uncovered risk-anatomy links that are 

consistent with the involvement of social factors as potentially preventing or exacerbating ADRD 

risk.  

 

Our clustering analyses also uncovered that neurotic behaviours show unique ties to HC-

DN co-variation expressions in ɛ2 carriers. Neuroticism, which is intimately related to loneliness 

[123], could predispose individuals to ADRD by weakening strong social support ties and 

increasing chronic stress through dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis 

[121, 124]. In fact, the HC subiculum, presubiculum, and parasubiculum are believed to have direct 

connections to the hypothalamus via the fornix [125]. These connections could possibly provide a 

pathway through which the subjective appraisal of one’s relationships, which can in turn result in 

loneliness or neuroticism if social needs are unfulfilled, is conveyed to the HPA to affect the stress 

response. Prospective cohort studies have indeed linked neuroticism to higher risks of developing 

cognitive impairments [126] and dementia [127-129]. Yet, no effects of ɛ4 dosage on cognitive 
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decline have been observed in neurotic individuals in these previous reports [126, 128]. The 

absence of a relationship between APOE and neurotic traits reported by previous studies might 

arise from restricting analyses to ɛ4 carriers [126, 128]. Indeed, the combined analysis of ɛ4 and 

the K variant of BCHE, another genetic risk factor associated with ADRD, revealed an intriguing 

association between the combined risk alleles, increased basal levels of serum glucocorticoids, 

cognitive performance, and lower self-esteem in older adults [130]. The ramifications of 

neuroticism for ADRD risk, which might be underscored by APOE ɛ2, have been overlooked in 

all these studies. Recent evidence has also shown that having a positive outlook on aging, such as 

a sense of purpose, amplified the protective effect of APOE ɛ2 against cognitive decline [131]. 

The protective effect of APOE ɛ2 on cognition was enhanced for individuals with positive beliefs 

about aging and reduced for those with negative beliefs to the point where ɛ2 carriers no longer 

showed a significant cognitive advantage [131]. Our results add elements to this literature by 

suggesting that having a negative outcome on life, which is characteristic of a neurotic personality 

type, is especially detrimental to ɛ2 carriers as reflected by unique patterns of brain-behaviours 

associations with specific HC and DN subregions. The opposing health effects of neuroticism and 

social activity are possibly reflected in the brain, as social and neurotic phenotypes were divided 

into two main groups when clustered based on their correlation with HC-DN co-variation regimes 

for ɛ2 homozygotes. Our study thus reinforces the detrimental effect of neuroticism on ADRD risk 

and characterized its unique interplay with HC-DN co-variation expressions in ɛ2 homozygotes. 
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Conclusion 
 

In sum, the typically protective benefits conferred by APOE ɛ2 regarding ADRD risk have 

mainly been discussed in epidemiological cohorts that were not designed to incorporate inter-

individual differences in high-resolution brain structure assessments. In contrast, neuroimaging 

investigations of healthy participants before the onset of ADRD-associated clinical symptoms have 

focused on characterizing the functional correlates of ɛ4 carriership. Our present study has 

reconciled these two approaches by contrasting profiles of brain-behaviours associations 

characteristic of APOE ɛ2 and ɛ4 in a large epidemiological cohort of ~40,000 participants. In 

doing so, we were uniquely positioned to illuminate sex-specific associations with modifiable risk 

factors that were unique to ɛ2 and ɛ4 homozygotes. Key risk factors relevant to ɛ2 carriers included 

neuroticism, social disengagement, and physical inactivity. In contrast, environmental phenotypes 

that repeatedly emerged in our results as being linked to ADRD risk were characteristic of ɛ4 

homozygotes. These distinct risk factors could guide potential clinical interventions and 

governmental policies.  
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Methods 
 

Population data source 

 

The UK Biobank (UKB) is a large-scale data-collection initiative that offers in-depth 

information on ~500,000 participants recruited from across Great Britain 

(https://www.ukbiobank.ac.uk/). This rich epidemiological cohort comprises a wide variety of 

resources, including physical and cognitive assessments, as well as demographic and health 

records. In addition to the availability of genetic data for most participants through a genotyping 

array (and more recently through whole-exome sequencing), the UKB provides multi-modal 

imaging scans that are routinely augmented and will extend to ~100,000 participants by the end of 

2022. The present study was based on the data release from February/March 2020. To ensure 

reproducibility, we adopted the uniform preprocessing pipelines designed and carried out by 

FMRIB, Oxford University, UK [132]. Building on a uniform quality-control workflow enables a 

better comparison to other and future UKB research. At the time of data release, expert-curated 

image-derived phenotypes of grey matter morphology (T1-weighted magnetic resonance imaging) 

were available for 38,292 participants. Grey matter phenotypes from these participants were used 

to compute dominant regimes of structural correspondence between the HC and DN and identify 

anatomical subregions that systematically differentiate individuals with and without a family 

history of ADRD. As for all subsequent analysis steps, we focused on the 37,291 participants with 

both APOE single nucleotide polymorphisms (SNP) genotyping (rs429358 and rs7412) and brain-

imaging measures (47% men and 53% women). When recruited, these participants were aged 40-

70 years (mean age 54.8, standard deviation [SD] 7.5 years). The demographic information for the 

UKB participants included in the present study, grouped per APOE genotypes, can be found in 

Table 1. The present analyses were conducted under UK Biobank application number 25163.  UK 

Biobank participants gave written, informed consent for the study, which was approved by the 

Research Ethics Committee under application 11/NW/0382. Further information on the consent 

procedure can be found elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200). 

 

Target phenotype for ADRD risk 

 

https://www.ukbiobank.ac.uk/
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
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 We used the self-reported family history of ADRD as a simple but accurately measurable 

estimate of ADRD risk. ADRD is the terminology adopted and recommended by the National 

Institute on Aging, one of the U.S. Federal Government's National Institutes of Health, to 

characterize the umbrella of symptoms, diagnoses, and risk factors characteristic of Alzheimer's 

disease (https://www.nia.nih.gov/health/alzheimers). The acronym 'ADRD' acknowledges the 

known heterogeneity of clinical diagnoses of dementia. Additionally, one can only ultimately 

confirm Alzheimer's disease at the highest degree of certainty based on post-mortem tissue 

analysis. In the UKB resource, maternal (UKB data field 20110) and paternal (UKB data field 

20107) history of ADRD was ascertained as part of the initial assessment (2006-2010). As per 

UKB protocol, participants were asked, "Has/did your mother ever suffer from Alzheimer's disease 

or dementia?" and "Has/did your father ever suffer from Alzheimer's disease or dementia?". This 

exact phenotype has been successfully treated as a reliable estimate of maternal/paternal history 

of late-onset Alzheimer's disease by previously published genome-wide association studies 

conducted in the UKB cohort that successfully recovered well-known genetic risk loci for this 

diagnosis [133-135]. There was a total of 9,776 (25.5%) participants with self-reported parental 

history of ADRD within the brain-imaging cohort of 38,292 participants. Of those with family 

risk, 6,820 UKB participants reported an occurrence of ADRD on their mother’s side and 3,675 

participants on their father’s side. A minority of participants reported both maternal and paternal 

history of ADRD (719 individuals).  

 

 Most genome-wide association studies have adopted a case-control framework that focused 

on the difference in allele frequency between patients with ADRD and healthy controls [136, 137]. 

While useful in identifying risk loci associated with clinical diagnosis, this approach might not be 

best suited to derive a reliable estimate of ADRD liability in the general population. When dealing 

with late-onset diseases, such as ADRD, using ‘proxy cases’, that is, the relatives of affected 

individuals, could allow for a more complete characterization of disease risk amongst individuals 

before the onset of clinical symptoms [134]. It was a key advantage that working with proxy cases 

also allowed us to boost the sample size and, thus, the statistical power of our quantitative analyses 

to identify more suitable effects. In particular, self-report of family history of ADRD in the UKB, 

precisely the same phenotype at the core of the present investigation, was found to replicate 

established risk loci from case-control investigations as well as identify novel loci [134, 135]. 
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Brain-imaging and preprocessing procedures 

Magnetic resonance imaging (MRI) scanners (3T Siemens Skyra) were matched at several 

dedicated data collection sites with the same acquisition protocols and standard Siemens 32-

channel radiofrequency receiver head coils. Brain-imaging data were defaced, and any sensitive 

meta-information was removed to protect the anonymity of the study participants. Automated 

processing and quality control pipelines were deployed [132, 138]. Noise was removed utilizing 

190 sensitivity features to improve the homogeneity of the imaging data. This approach allowed 

for the reliable identification and exclusion of problematic brain scans, such as due to excessive 

head motion. 

The structural MRI data were acquired as high-resolution T1-weighted images of brain 

anatomy using a 3D MPRAGE sequence at 1 mm isotropic resolution. Preprocessing included 

gradient distortion correction (GDC), field of view reduction using the Brain Extraction Tool [139] 

and FLIRT [140, 141], as well as non-linear registration to MNI152 standard space at 1 mm 

resolution using FNIRT [142]. All image transformations were estimated, combined, and applied 

by a single interpolation step to avoid unnecessary interpolation. Tissue-type segmentation into 

cerebrospinal fluid, grey matter, and white matter was applied using FAST (FMRIB’s Automated 

Segmentation Tool, [143]) to generate full bias-field-corrected images. In turn, SIENAX [144] 

was used to derive volumetric measures normalized for head sizes. 

Parcellation of the DN was anatomically guided by the Schaefer-Yeo reference atlas [145]. 

We extracted a total of 400 parcels among the 7 canonical networks, 91 of which were defined as 

belonging to the DN. Volume extraction for 38 HC subregions was conducted using Freesurfer 

automatic sub-segmentation [21], which drew on an ultra-high resolution (~0.1mm isotropic) 

probabilistic atlas. As part of the Freesurfer 7.0 suite, HC sub-segmentation was refined by 

carefully considering surrounding anatomical structures.  

As a preliminary procedure, these MRI-derived measures were cleaned to remove inter-

individual variation in brain region volumes that could be explained by nuisance variables. 

Building on previous UK Biobank research [146, 147], we regressed out the following variables 

of no interest from each brain-derived volume measure: body mass index, head size, head motion 

during task-related brain scans, head motion during task-unrelated brain scans, head position and 
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receiver coil in the scanner (x, y, and z), position of scanner table, as well as the data acquisition 

site, in addition to age, age2, sex, sex*age, and sex*age2. Sex was acquired from the National 

Health Service (NHS) central registry and updated by the participant if incorrect (UKB data field 

31). The nuisance-cleaned volumetric measures served as the basis of our primary co-

decomposition analysis – seeking to quantify how the 91 DN subregions co-deviate with the 38 

HC subregions in the context of ADRD risk.  

 

Population co-variation between hippocampus subregions and default-network subregions 

 

At the heart of our analysis workflow, we derived dominant regimes of structural 

correspondence that provide insights into how structural variation among the finely segregated 

HC can track structural variation among the finely segregated DN. We employed canonical 

correlation analysis (CCA), a doubly multivariate statistical technique, to identify population 

“signatures” of HC-DN co-variation. CCA was a natural choice of method as it is specially 

designed to disentangle patterns of joint correlation between two high-dimensional variable sets 

[23, 148, 149]. The first variable set, 𝑋, was constructed from subject-level grey matter volume in 

DN subregions (number of participants x 91 DN parcels matrix). The second variable set, 𝑌, was 

constructed from HC subregion volumes (number of participants x 38 HC parcels matrix). The 

two variable sets can be formally described as follows: 

 

𝑋 ∈ 	ℝ!×# 

	𝑌 ∈ 	ℝ!×$, 

 

where	𝑛 denotes the number of observations or UKB participants, 𝑝 is the number of DN 

subregions, and 𝑞 is the number of HC subregions. Subregion volumes from both variable sets 

were z-scored across participants to zero mean (i.e., centering) and unit variance (i.e., rescaling). 

CCA then addressed the problem of maximizing the linear correlation between low-rank 

projections from two variable sets or data matrices [23]. The two sets of linear combinations of 

the original variables are obtained by optimizing the following target function:  
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𝐿% = 𝑋𝑉  𝐿& = 𝑌𝑈 

𝑙%,( = 𝑋𝑣( 𝑙&,( = 𝑌𝑢( 

𝑐𝑜𝑟𝑟3𝑙%,( , 𝑙&,(5 ∝ 𝑙%,() 𝑙&,( = 𝑚𝑎𝑥, 

 

where 𝑉 and 𝑈 denote the respective contributions of 𝑋 and 𝑌,	𝐿% and 𝐿& denote the respective 

latent ‘modes’ expression of joint variation (i.e., canonical variates) based on patterns derived from 

𝑋 and patterns derived from 𝑌,  𝑙%,( is the 𝑙th column of 𝐿%, and 𝑙&,( is the 𝑙th column of 𝐿&.  

 

Our CCA application thus sought to identify linear combinations of 𝑋 and 𝑌 that optimize 

their low-rank projections in the derived latent embedding. Such an approach resulted in pairs of 

latent vectors with subject-specific expressions 𝑙%,( and 𝑙&,( (i.e., canonical variates) with 

maximized joint correlation. Corresponding pairs of latent vectors were found by iteratively 

decomposing the data matrices 𝑋 and 𝑌 into 𝑘 components, where 𝑘 denotes the number of modes 

given the model specification. In other words, CCA searched for the canonical vectors 𝑢 and 𝑣 

that maximize the symmetric relationship between the data matrices of DN subregion volumes (𝑋) 

and HC subregion volumes (𝑌). In doing so, CCA identified the two concomitant projections 𝑋𝑣( 

and 𝑌𝑢( that optimized the correspondence between structural variation in the segregated DN and 

HC.  

 

Put differently, each principled signature of HC-DN co-variation, or mode, represents the 

cross-correlation between a constellation of within-DN volumetric variation and a constellation of 

within-HC volumetric variation that co-occurred in conjunction with each other. The set of 𝑘 

modes are mutually uncorrelated by construction (orthogonality) [23]. They are also naturally 

rank-ordered based on the amount of variance explained between the embedded allocortical and 

neocortical volume sets [23]. The first and strongest mode, therefore, explained the largest fraction 

of joint variation between (linear) combinations of HC subregions and (linear) combinations of 

DN subregions. Each ensuing cross-correlation signature captured a fraction of structural variation 

that is not explained by one of the 𝑘 − 1 other modes. The Pearson’s correlation between a pair of 

canonical variates (i.e., canonical correlation) is commonly used to quantify the linear 

correspondence between HC subregions and DN subregions for a given mode. The two variable 
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sets were entered into CCA after a confound-removal procedure based on previous UK Biobank 

research (cf. above). 

 

Group difference analysis 

After constructing population signatures of conjoint HC-DN co-variation, we performed a 

rigorous group difference analysis to single out microstructural divergences in specific anatomical 

subregions with respect to ADRD family history. For each of the derived modes of HC-DN co-

variation, we aimed to isolate anatomical subregions that show statistically defensible deviation in 

individuals with and without a family history of ADRD. To do so, we carried out a principled test 

that assessed any statistically relevant differences in the solution vector obtained from the CCA 

(i.e., canonical vectors, cf. above) of individuals at ADRD risk compared to the control group 

without ADRD family history (cf. above for target phenotype).  

 Following previous UK Biobank research [24, 150], we robustly characterized the 

difference between individuals with and without a family history of ADRD by carrying out a 

bootstrap difference test of the CCA solution at hand [151]. This approach aimed to identify 

consistent patterns of deviation that differentiate subjects with and without a family history of 

ADRD. We first proceeded by constructing several alternative datasets that we could have gotten 

(with the same sample size), which capture the underlying population variation. For each of the 

100 bootstrap iterations, these alternative datasets were built by randomly pulling participant 

samples with replacements. In each such bootstrap iteration, we estimated two CCA models in 

parallel by fitting one separate model to each of the two groups. In doing so, we carried out 2 * 

100 separate model estimations of the doubly multivariate correspondence between HC subregions 

and DN subregions. 

To compare the CCA solution in individuals with and without a family history of ADRD, 

we matched corresponding modes based on sign invariance and mode rank order. Canonical 

vectors of a given mode that carried opposite signs were aligned by multiplying one with -1. The 

importance rank of the CCA modes was adjusted by sorting Pearson’s correlation coefficients 

between pairs of corresponding canonical vectors (i.e., canonical correlations) from strongest to 

weakest. To estimate a quantity of group difference in relation to ADRD risk, we performed the 
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elementwise subtraction of the corresponding canonical vector entries of a given mode k between 

the two groups. Pooling outcomes across the 100 bootstrap iterations, we thus aggregated the 

difference estimate for each canonical vector entry, thereby quantifying the uncertainty deviation 

for each particular HC or DN subregion.  

By probing the underlying population variation, we were able to quantify the degree of 

uncertainty within each of our derived modes of HC-DN co-variation. For each identified 

population signature, we therefore isolated statistically defensible group differences in 

microanatomically defined HC and DN subregions. ADRD-related structural divergences were 

determined by whether the two-sided confidence interval included zero or not according to the 

10/90% bootstrap-derived distribution of difference estimates [147]. In doing so, we obtained a 

non-parametric estimate of how ADRD risk is manifested in specific subregions for each of the 25 

examined HC-DN signatures.  

 

SNP genotyping: six variants of APOE gene 

 

We capitalized on our large sample size to demystify the HC-DN co-variation expressions 

associated with ɛ2 allele and ɛ4 allele homozygotes compared to their heterozygous counterparts 

for the ɛ2, ɛ3, or ɛ4 alleles. Genotype-level sampling and quality control procedures for the UKB 

are available online (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=263). APOE genotypes 

were determined based on two SNPs: rs429358 and rs7412. APOE ɛ4 was determined as the 

combination of rs429358(C) and rs7412(C). APOE ɛ2 was determined as the combination of 

rs429358(T) and rs7412(T). APOE ɛ3 was determined based on rs429358(T) and rs7412(C). A 

total of 37,291 participants had both APOE genotyping and brain-imaging-derived measures. 

Among those participants, 9,525 (25.5%) reported a family history of ADRD. We observed 6 

different APOE gene variants in our population sample: ɛ3/3 (59.3%), ɛ3/4 (23.1%), ɛ2/3 (12.4%), 

ɛ2/4 (2.4%), ɛ4/4 (2.2%), and ɛ2/2 (0.6%), which correspond to frequencies expected from a 

population primarily composed of people from European decent [22]. Contrasting the effect of ɛ2 

vs. ɛ4 allele dosage on inter-individual expressions of HC-DN co-variation enabled us to quantify 

the degree to which distinct APOE allelic combinations are characteristic of ADRD risk (cf. next 

section). In doing so, we aimed to interrogate gradual dosage effects in brain-APOE associations 

rather than simply look at ɛ4 carrier vs. non-carrier status.  
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Phenome-wide analysis of brain-behaviour associations in relation to ɛ2 vs. ɛ4 dosage 

 

We performed a rich annotation of the HC-DN co-variation signatures by means of their 

phenome-wide association with UKB traits. We were interested in how ɛ2 vs. ɛ4 allele dosage is 

manifested in inter-individual expressions of HC-DN co-variation and how these manifestations, 

in turn, relate to UKB traits amongst a variety of predefined risk categories. We benefited from a 

rich portfolio of phenotypes encompassing lifestyle, cognitive, mental, and physical health 

assessments to ascribe profiles of brain-behaviour associations to each of the 25 modes of HC-DN 

co-variation.   

 

We started with a raw collection of ~15,000 phenotypes that we fed into the FMRIB UKB 

Normalisation, Parsing And Cleaning Kit (FUNPACK version 2.5.0; 

https://zenodo.org/record/4762700#.YQrpui2caJ8). FUNPACK was used to extract phenotype 

information covering 11 major categories, including cognitive and physiological assessments, 

physical and mental health records, blood assays, as well as sociodemographic and lifestyle 

factors. We removed any brain-imaging-derived information. The diet category was additionally 

excluded from downstream analyses as it contained only 4 phenotypes. FUNPACK was designed 

to perform automatic refinement on the UKB data, which included removing ‘do not know’ 

responses and filling the blank left by unanswered sub-questions. For example, the amount of 

alcohol drunk on a typical drinking day for a participant who indicated not drinking would be 

scored as zero drinks, even though this sub-question was not actually asked at assessments. 

FUNPACK’s output consisted of a collection of 3,330 curated phenotypes which were then fed 

into PHEnome Scan ANalysis Tool (PHESANT [152], https://github.com/MRCIEU/PHESANT) 

for further refinement. In addition to data cleaning and normalization, PHESANT categorized the 

data as belonging to one of four datatypes: categorical ordered, categorical unordered, binary, and 

numerical. Categorical unordered variables were one-hot encoded, such that each possible 

response was represented by a binary column (true or false). The final curated inventory comprised 

977 phenotypes spanning 11 FUNPACK-defined categories. 

 

https://zenodo.org/record/4762700#.YQrpui2caJ8
https://github.com/MRCIEU/PHESANT
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 We next checked for statistically robust associations between HC-DN signatures and the 

portfolio of 977 extracted phenotypes with respect to ADRD genetic risk. We used a one-step 

stacking strategy [153, 154] to predict genetic risk as a function of individual expressions of HC-

DN co-variation. Data stacking consists of using a “base” model, often linear regression [154], to 

express an input vector in a lower-dimensional space. The output of the base model, which often 

consists of a single variable, can then be used as a single predictor in a new “stacking” model. 

Therefore, data stacking addressed the problem of selecting a single best predictor out of a 

combination of highly correlating input variables — which in our case were the HC and DN co-

variation patterns. Such an approach allowed us to re-express a whole signature of HC-DN co-

variation in terms of the degree it tracked the associated risk conferred by APOE. We formed a 

single continuous number representing how much a given HC-DN signature reflects ɛ2 vs. ɛ4 

dosage for a given individual. Investigations of APOE ɛ4 dosage effects have been prevalent in 

brain imaging research [112, 155, 156].  

 

The Alzheimer’s disease research community has widely endorsed encoding ɛ4 dosage in 

a stepwise fashion, that is, based on the number of allele copies carried by a given patient [110, 

112, 155, 156]. By adopting such target variable representation, Lyall and colleagues have found 

a significant interaction between APOE genotype dosage and coronary artery disease in estimating 

verbal-numerical scores from the fluid intelligence battery in the UK Biobank [110]. Lyall and 

colleagues, however, missed looking at ɛ2 dosage despite the well-established association between 

the ɛ2 allele and neurovascular diseases [62, 63]. More recently, APOE ɛ4 dosage, stepwise 

encoded as 0, 1, or 2, was shown to be significantly associated with right hippocampal volume and 

white matter intensity in the UK Biobank [112]. The authors, however, did not benefit from 

investigating hippocampus anatomical segmentations besides the standard head/body/tail 

subdivision [112]. Again, APOE ε2 dosage was not considered in this previous work even though 

neuroimaging evidence has lent support for a dose-dependent increase in hippocampal volume of 

769.3 mm3 per copy of the ε2 allele, on average [156]. 

 

Consequently, the present study builds on the widely shared belief that the ε2 and ε4 alleles 

have largely opposing effects on Alzheimer’s risk and pathophysiology [38, 157, 158]. We sought 

an analogous composite dosage scale that readily captures opposite effects in modeling the 
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hippocampus and DN volume variation dependent on the copy number of ε2 and ε4 alleles. We 

thus created a bivariate dosage scale by summing up positive ‘ɛ2’ and negative ‘ɛ4’ alleles, such 

that a homozygous individual carrying APOE ɛ2/2 would have a score of +2 and one carrying 

APOE ɛ4/4 a score of -2. The neutral APOE ɛ3 allele, usually considered as a baseline risk in 

epidemiological studies [22], was scored as 0. Using a bivariate dosage scale made it possible to 

investigate the antagonistic effects of ɛ2 and ɛ4 in a single model. In doing so, we stayed faithful 

to our overarching goal of unraveling their adversarial impact on HC-DN co-variation. 

 

Aiming to capture possible sex-specific effects, we regressed the ɛ2 vs. ɛ4 dosage on inter-

individual expressions of a given mode in males and females separately. We thus estimated 2 * 25 

different base models, one for each HC-DN signature and each sex, that each had two parameters: 

the pair of co-variation expressions (i.e., canonical vectors, cf. above) associated with the HC and 

DN patterns. We used these 25 regression models to explain the subject-level ɛ2 vs. ɛ4 dosage as 

a function of HC-DN co-variation expressions. For each subject and mode combination, we asked 

what would the expected ɛ2 vs. ɛ4 dosage be given this subject’s specific expression of HC-DN co-

variation? For each subject, we hence used the regression model to explain a range from -2 to +2 

for each mode, which represented the ɛ2 vs. ɛ4 dosage associated with their individual expression 

of HC-DN co-variation. For each mode, we selected the 5th and top 95th percentiles to identify the 

top 5% and lower 5% of individuals who were more vs. less likely to develop ADRD based on the 

derived ɛ2 vs. ɛ4 dosage risk. We focused on the extreme of the dosage distribution to target the 

brain-APOE associations especially linked to ɛ2 and ɛ4. The analogous approach is widely adopted 

in genome-wide analyses to remove associations not directly linked to the target genotype [159, 

160]. 

 

For each sex separately and for a given mode, the designated participants were put to a test 

of association with the 977 curated UKB phenotypes, with appropriate correction for multiple 

comparisons. The Pearson’s correlation between a phenotype and genetic risk predicted based on 

a specific HC-DN signature revealed both the association strength and accompanying statistical 

significance of the given mode-trait association. For each HC-DN signature, two widely used 

procedures were carried out to adjust for the multitude of associations being assessed. First, we 

adjusted for the number of tested phenotypes by using Bonferroni’s correction for multiple 
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comparisons (0.05/977 = 5.11e-5). Second, we used the false discovery rate (FDR), another 

popular adjustment, although less stringent than Bonferroni’s correction. The false discovery rate 

[161] was set as 5% [138, 162, 163] and computed for each HC-DN signature in accordance with 

standard practice [164]. For the sake of visualization, we used Miami plots to compare the profiles 

of brain-behaviour associations derived from males and females. For visualization purposes, 

phenotypes in Miami plots were coloured and grouped according to the category membership 

defined by FUNPACK. 

 

Clustering of risk factors based on their correlation with HC-DN co-variation expressions 

 

We next systematically explored non-linear associations between established ADRD risk 

phenotypes and HC-DN co-variation expressions across the different APOE gene variants. Our 

goal was to probe for clusters of risk factors that are interrelated with the derived patterns of HC 

and DN co-variation. To this end, we used a hierarchical clustering approach that allowed us to 

assess the relative importance of ensuing clusters in each of the different APOE genotypes to 

explore gradual APOE dosage effects on risk-anatomy links.  

 

We adopted a targeted approach by focusing on a set of 63 risk factors (collection of 

phenotypes used previously [34]), including classical cardiovascular and demographic traits, as 

well as social richness indicators recently linked to ADRD in the UKB cohort. The first step of the 

clustering analysis consisted of multiplying the z-scored canonical variates by each of the six one-

hot encoded APOE genotypes (i.e., ɛ2/2, ɛ2/3, ɛ3/3, ɛ2/4, ɛ3/4, and ɛ4/4) such that participants 

without a given genotype were zeroed out. The six ensuing matrices (number of participants x 50 

canonical variates) represented the individual expressions of HC-DN co-variation signatures for 

participants with a given APOE genotype, whereas other participants were scored as 0s. We then 

computed Spearman’s correlation between these six genotype-specific matrices and the z-scored 

risk factor matrix (37,291 participants x 63 risk factors) to investigate risk-anatomy links. 

Spearman’s correlation is a nonparametric metric of statistical dependence between the rankings 

of two variables that can be used to capture monotonic non-linear phenomena. The Spearman’s 

correlation coefficients reduce to the Pearson’s correlation between the rank values of two 

variables and hence range from -1 (inversely proportional association) to +1 (proportional 
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association). We obtained a new cross-association matrix 𝑋 ∈ R*+	-	./ which represented the 

Spearman’s correlation between the 63 risk factors and the 50 canonical variates for each of the 

six APOE genotypes. The obtained Spearman’s correlation coefficients thus carried the non-linear 

association strength of a given risk-anatomy link for a particular APOE genotype.  

 

For each of the six APOE genotypes, we performed an agglomerative hierarchical 

clustering analysis on 𝑋 to regroup risk factors based on their 50 associations with HC-DN co-

variation pattern expressions. We used Ward’s minimum variance method [165] to compute the 

linkage matrix between the Spearman’s correlation coefficients of each risk-anatomy link in 

Euclidian space. Ward’s minimum variance criterion consists in minimizing the total within-

cluster variance defined as the error sum of squares: 

 

𝑑01 = 𝑑3{𝑋0}, A𝑋1B5 = ||𝑋0 − 𝑋1||2	, 

 

where 𝑑01 represents the squared Euclidean distance between two points (or cluster of points) 𝑖 and 

𝑗. At each step, the pair of coefficients or preceding candidate clusters that give the minimum 

increase in within-cluster variance is selected for merging. The procedure was performed 

recursively until all coefficients were merged into a single cluster. For each of the six APOE 

genotypes, we could thus create a dendrogram that represented the distance in Euclidian space 

between the clusters retained after three levels of branching. The level of branching refers to the 

number of divisions from the final merge. The dendrograms allowed us to visualize the clustering 

results for each of the six APOE genotypes at the same level of branching and identify meaningful 

clusters of risk-anatomy links that are shared or unique. To provide a more direct assessment of 

the degree of dissimilarity, we have compared the spread between nodes in the analogous 

dendrograms for each APOE genotype. We used Pearson’s correlation to examine the Euclidean 

distance between the two descendent links across corresponding hierarchical merging steps in the 

six genotype-specific cluster models. 

 

Regression of ADRD risk on HC-DN signatures and APOE gene variants  
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We next tested whether specific APOE genotypes showed interaction effects with 

signatures of HC-DN co-variation in explaining inter-individual differences in ADRD risk. As our 

goal was to highlight previously overlooked sex effects, we conducted our interaction analyses in 

males and females separately. In doing so, we aimed to characterize brain-APOE interactions in 

relation to their sex-specific impact on ADRD risk.  

 

A first series of analyses consisted in regressing each of the previously investigated ADRD 

risk factors on APOE genotypes, co-variation patterns from the HC and DN sides (i.e., canonical 

variates), and the interaction between APOE genotypes and co-variation patterns, controlling for 

age. Aiming to capture possible sex-specific effects, we conducted separate analyses on males and 

females. We, therefore, looked at 61 ADRD risk factors, while age was used as a covariate and 

sex was the grouping factor for stratification. Each of the 25 modes of HC-DN co-variation was 

represented by two regression models: one for its HC pattern and one for its DN pattern. We thus 

formed 50 univariate regression models, in males and females, for each of the 61 risk factors. In 

each of these models, a given risk factor was regressed on one HC or DN canonical variate, the six 

APOE genotypes (ɛ2/2, ɛ2/3, ɛ3/3, ɛ2/4, ɛ3/4, and ɛ4/4), and six interaction terms capturing the 

non-linear association between each of the six APOE genotypes and the given HC or DN pattern, 

controlling for age. Each regression model thus aimed at explaining variance in one of the 61 risk 

factors for a given sex based on these 14 parameters.  

 

As a conjoint analysis across the regression models, we performed a rigorous permutation 

analysis to assess the robustness of each of the 14 regression coefficients. In as many as 61,000 

iterations (i.e., 61 risk factors * 1000 iterations), we randomly shuffled the outcome variable (i.e., 

a given risk) across participants. We recomputed the otherwise identical regression model based 

on the data with randomized outcomes. We recorded the regression coefficients from each of the 

61,000 iterations and used them to build empirical null distributions on which we performed two-

tail statistical tests. We considered statistically relevant coefficients that differ from their 

respective null distributions in at least 95% of the iterations, which ensured that we were at least 

5% certain that the effect was robustly different from zero. This threshold remains arbitrary as our 

post hoc interaction analyses were merely descriptive and designed to provide a coarse portrait of 

gene-brain interactions rather than claiming statistical significance. For that reason, we have made 
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publicly available masked permutations plots at the 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 

0.95 percentiles for the coefficient estimates of each regression model for males 

(https://github.com/dblabs-mcgill-

mila/HCDMNCOV_AD/tree/master/fig_5/permutation_analysis/males/masked_plots) and 

females (https://github.com/dblabs-mcgill-

mila/HCDMNCOV_AD/tree/master/fig_5/permutation_analysis/females/masked_plots). 

 

A second series of analyses consisted in regressing the family history of ADRD on a set of 

explanatory input variables including i) APOE genotypes, ii) co-variation patterns from the HC 

and DN sides (i.e., canonical variates), and iii) the interaction between APOE genotypes and co-

variation patterns, controlling for age. For each sex, we built separate logistic models for each of 

the 25 HC and 25 DN canonical variates, for a total of 50 models per sex. In each model, the family 

history of ADRD (encoded as 0 for no and 1 for yes) was regressed on one HC or DN canonical 

variate, the six APOE genotypes (ɛ2/2, ɛ2/3, ɛ3/3, ɛ2/4, ɛ3/4, and ɛ4/4), and six interaction terms 

capturing the non-linear association between each of the six APOE genotypes and the given HC 

or DN pattern, controlling for age. We thus obtained a total of 100 logistic models that sought to 

explain variance in the family history of ADRD as a function of these 14 parameters. We 

performed the analogous permutation analysis (described above) to assess the robustness of each 

of the 14 regression coefficients derived from these 100 logistic models. We have made publicly 

available the permutation distributions at the 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95 

percentiles for the coefficients of each regression model (https://github.com/dblabs-mcgill-

mila/HCDMNCOV_AD/tree/master/fig_6/permutation_analyses).  

 

Latent factor analysis of brain-behaviour associations  

 

 To finally distill latent factor embeddings of brain-behaviour associations from our HC-

DN population signatures, we used the classical linear dimensionality reduction method principal 

component analysis (PCA) [166]. PCA was a natural choice of method to uncover linearly 

independent groupings of risk factors with similar relatedness to HC-DN co-variation patterns. 

Latent factors uncovered by the PCA are naturally ordered from most to least important which 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_6/permutation_analyses
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_6/permutation_analyses
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allows us to select candidate principles of brain-behaviour association that account for the most 

inter-individual variance.  

 

We started by computing the Pearson’s correlation between the z-scored canonical variate 

matrix (number of participants x 50 canonical variates) and the z-scored risk factor matrix (number 

of participants x 63 risk factors). We obtained a new matrix 𝑀 ∈ R*+	-	./, which represented the 

Pearson’s correlation coefficients between the 63 risk factors and the 50 canonical variates. We 

next decomposed 𝑀 into latent factor groupings by using singular value decomposition (SVD). 

Every correlation coefficient in 𝑀 had already been z-scored to abide by zero mean and unit 

variance prior to computing the SVD, as per common practice [167]. More formally, solving the 

SVD problem took the following form:  

 

𝑀 = 𝑈	𝑆	𝑉) 	, 

 

where 𝑈 is a 63 x 63 orthonormal matrix, 𝑆 is a 63 x 50 diagonal matrix carrying the singular 

values, and 𝑉 is a 50 x 50 orthonormal matrix carrying singular vectors.  

 

We retained the top three singular vectors and expressed our correlation matrix in terms of 

the dot product 𝑈𝑆 ∈ 𝑅*+	3	+ to be able to represent the latent-factor projections of 𝑀 onto the new 

three-dimensional latent space. In doing so, we obtained the distinct expression levels of the 63 

risk factors for each of the top three brain-behaviour association axes (i.e., principal component 

expressions). These three axes are by construction orthonormal and rank-ordered, representing an 

uncorrelated partition of the overall variance in brain-behaviour association. The leading axis 

captured the largest fraction of variance and was, therefore, the most explanatory, as reflected by 

its associated singular value.   

 

We then conducted an acid test of the robustness of the PCA solution by performing a 

rigorous split-half reliability assessment across 1,000 bootstrap iterations. At each iteration, we 

drew 37,291 participants with replacements to simulate random participant samples that we could 

have pulled from the same population. We then derived two random subsets of equal size 

(N=18,645) from the original sample and re-computed the Pearson’s correlation matrix 𝑀 for each 
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random subset separately. SVD was then performed on both matrices in parallel according to the 

procedure described above. We retained the same number of top three singular vectors and 

expressed each correlation matrix in terms of its projection onto its corresponding latent space. In 

doing so, we were able to compare the expression levels of each risk factor along the three main 

axes of brain-behaviour associations derived from each random subset. If the PCA solution is 

robust, similar groups of risk factors should be emphasized along corresponding dimensions, 

which, in turn, should explain similar fractions of the total variance. We also provided a more 

formal assessment of statistical agreement between both random subsets by computing the 

Pearson's correlation between the weights of the three first principal components for random 

subsets 1 and 2 across the 1000 iterations. Higher Pearson's correlations are indicative of a 

substantial degree of agreement between both subsets, which in turn attests to the robustness of 

the original PCA solution. 

 

Based on the desire to audit our cohort analysis for sex-specific associations, we computed 

the Pearson’s correlation matrix 𝑀 in males and females separately and repeated the PCA 

procedure described above for each group. Once more, we retained the top three singular vectors 

and expressed the correlation matrices in terms of their projection onto their corresponding latent 

embedding. We compared the expression levels of the risk factors along corresponding latent 

dimensions to highlight sex-specific brain-behaviour associations. In the absence of major sex 

differences, similar groups of risk factors should be emphasized along analogous dimensions, 

which should correspondingly explain similar fractions of the total variance.  

 

We performed a similar bootstrap analysis of the sex-specific PCA solutions to formally 

assess the robustness of our findings. Across 1000 bootstrap iterations, we drew 17,561 males and 

19,730 females with replacements to simulate random participant samples that we could have 

gotten from the original population. At each iteration, re-computed the Pearson’s correlation 

matrix for each random subset separately and repeated the analogous SVD decomposition. As for 

the split-half reliability assessment, we Pearson's correlated the weights of the three first principal 

components for male- and female-derived solutions in each of the 1000 iterations. Lower Pearson's 

correlations would suggest a higher degree of sex-specificity in the PCA solutions. 
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External Validation 

  

Using the openly available PREVENT-AD (PResymptomatic EValuation of Experimental 

or Novel Treatments for Alzheimer’s disease (AD); [168]) cohort, we have performed a rigorous 

test of the external validation for our HC-DN co-variations signatures derived from the UKB 

cohort. The PREVENT-AD cohort is composed of older individuals with a known family history 

of Alzheimer’s disease that were cognitively unimpaired at the time of enrollment from 2011 to 

2017 (mean age 63, standard deviation [SD] 5 years) [168]. Participants of the PREVENT-AD 

initiative have undergone extensive annual health and cognitive assessments for up to five years. 

This resource creates a unique opportunity to monitor longitudinal trajectories of brain-imaging 

assessments, cerebral fluid biochemistry, neurosensory capacities, and medical charts in pre-

symptomatic individuals at Alzheimer’s risk. Our independent PREVENT-AD sample consisted 

of 386 participants (27% men, 73% women) with the following APOE genotype distribution: ɛ3/3 

(51.2%), ɛ3/4 (33.1%), ɛ2/3 (10.5%), ɛ2/4 (3.0%), ɛ4/4 (2.1%). Further information on the 

PREVENT-AD cohort and access to the open data inventory can be found online (https://prevent-

alzheimer.net). 

 

The PREVENT-AD resources provide structural brain-imaging scanning (T1-weighted 

images of brain anatomy) for up to four years of follow-up for 362 participants, totaling 980 

participant assessment visits. For the brain-imaging data from each participant visit, we first 

performed a full FreeSurfer reconstruction followed by subcortical volumetric sub-segmentation 

of the 38 hippocampal subfields, analogous to the UKB brain-imaging preprocessing pipeline. We 

next parsed the structural brain scans according to the Schaefer-Yeo parcellation (400 parcels, 7 

networks) to obtain the analogous 91 parcels defined as belonging to the DN 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal/Parcellations/project_to_individual). Age, age2, sex, sex*age, and sex*age2 

were regressed out from each brain-derived grey matter volume measure as part of the 

deconfounding procedure. The final brain-imaging sample consisted of 344 participants with a 

total of 916 individual visits (64 visits were excluded based on errors in the preprocessing 

pipeline). Of the remaining visits, 117 came from participants without APOE SNP genotyping and 

were hence excluded. 

https://prevent-alzheimer.net/
https://prevent-alzheimer.net/
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In so doing, we extracted the same collection of brain-image-derived phenotypes of grey 

matter morphology as in the UKB. We were thus in a position to compute the expression of the 25 

UKB-derived modes of HC-DN co-variation based on grey matter measurements for the 91 DN 

and 38 HC subregions in PREVENT-AD participants. For each visit, we obtained 25 pairs of 

subject-specific expressions of each of the 25 brain signatures of HC-DN structural co-variation 

(i.e., canonical variates), which served as a basis for our external validation analyses in unseen 

subjects. 

 

Across MRI visits, we tested whether 25 different signatures of HC-DN co-variations are 

associated with different subsets among the rich palette of PREVENT-AD phenotypes designed 

to track ADRD progression in pre-symptomatic individuals. To do so, using Pearson’s correlation, 

we computed the association strength between the individual expressions of the 25 modes of HC-

DN co-variation and 157 PREVENT-AD phenotypes that spanned CSF and blood samples, 

comprehensive cognitive and functional assessments, as well as demographic and health records. 

To assess the robustness of the correlation coefficients, we randomly permuted the PREVENT-

AD phenotypes across participants in 1,000 iterations and recomputed the Pearson’s correlation 

coefficients. Recording the results from these 1,000 iterations, we built an empirical null 

distribution for each correlation coefficient. We reported only the coefficients that were robustly 

different from their respective empirical null distributions in at least 95% of the 1,000 permutation 

iterations. 

 

Data and code availability 

 

All used data are available to other investigators online (ukbiobank.ac.uk, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases, https://openpreventad.loris.ca). The Schaefer-Yeo 

atlas is accessible online 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal). The individual numerical values that underlie the summary data displayed 

in all the main and supplementary figures have been publicly deposited online (DOI: 

10.5281/zenodo.7126809).  

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://doi.org/10.5281/zenodo.7126809
https://doi.org/10.5281/zenodo.7126809
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Figures  
 

Figure 1. Cognitive, environmental, and cardiovascular phenotypes show sex-specific associations with APOE 
dosage in the context of mode 1. The leftmost and central panels display structural divergences in the HC and DN, 
respectively, on mode 1 for the group difference analysis of ADRD family history. We identified 12 HC hits, mostly 
located in the cornu amonis (CA) subfields and molecular layer. We also showed 34 DN hits, most of them located in 
the prefrontal cortex and midline structures. In separate analyses for males (N=17,561) and females (N=19,730), 
APOE dosage was regressed on HC and DN co-variation patterns from mode 1. We then used these sex-specific 
models to predict APOE dosage based on inter-individual expressions of mode 1. APOE dosage predicted for each 
individual was then correlated to 977 UKB phenotypes in separate analyses for males and females. The rightmost 
panel displays the Miami plot for the correlations between predicted APOE dosage in the context of mode 1 and UKB 
traits. The upper and lower part of the Miami plot displays the correlations for males and females, respectively. The 
y-axis indicates negative decimal logarithms for the p-values of each correlation represented by a dot. We highlight 
important brain-behaviour associations between APOE dosage pooled across subject-specific expressions of mode 1 
and verbal-numerical reasoning, supplemented by male-specific correlations with environmental phenotypes. Females 
showed a specific profile of brain-behaviour associations with cardiovascular phenotypes (e.g., systolic & diastolic 
blood pressure, insulin-like growth factor 1 (IGF-1), and urea) that extended beyond physical traits shared with males 
(e.g., cardio-respiratory fitness, and ventricular & pulse rate). Data underlying this figure can be found at 
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). ML = molecular layer, Para = parasubiculum, DG = granule cell layer of the dentate gyrus, 
PCu = precuneus, RSC = retrosplenial cortex, PCC = posterior cingulate cortex, dmPFC = dorsomedial prefrontal 
cortex, vlPFC = ventromedial prefrontal cortex, IPL = inferior parietal lobule, STG = superior temporal gyrus, FDR 
= false discovery rate correction.  
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
https://doi.org/10.5281/zenodo.7126809
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Figure 2. APOE-modulated associations for mode 3 revealed a prominence of cognitive and environmental 
phenotypes in males. Shown here are ADRD-related subregion divergences for mode 3 for the HC (leftmost panel) 
and DN (central panel). We identified focalized hits to the fimbria and presubiculum with corresponding grey matter 
differences across the whole DN. In males and females separately, we regressed APOE dosage on HC and DN co-
variation patterns from mode 3. We then used these sex-specific models to predict APOE dosage based on inter-
individual expressions of mode 3. The rightmost panel displays the Miami plot for the correlations between APOE 
scores in the context of mode 3 and the portfolio of UKB phenotypes for males (upper half) and females (lower half). 
We highlighted significant associations with environmental phenotypes that were again more prominent in males than 
females. We additionally showed significant correlations with sub-questions of the fluid intelligence battery that were 
male-specific. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). PrS = presubiculum, dmPFC = 
dorsomedial prefrontal cortex, Pre-SMA = pre-supplementary motor area, PCC = posterior cingulate cortex, RSC = 
retrosplenial cortex, PCu = precuneus, vmPFC = ventromedial prefrontal cortex, OFC = orbitofrontal cortex, vlPFC 
= ventrolateral prefrontal cortex, STS = superior temporal sulcus, TPJ = temporo-parietal junction, IPL = inferior 
parietal lobe, STG = superior temporal gyrus, MTS = middle temporal sulcus, FDR = false discovery rate correction.  
 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
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Figure 3. APOE-modulated associations for mode 8 linked lipid metabolism to deviation of the fimbria. Shown 
here are ADRD-related subregion divergences for mode 8 for the HC (leftmost panel) and DN (central panel). We 
identified a focalized divergence to the fimbria with no corresponding DN hits. In males and females separately, we 
regressed APOE dosage on HC and DN co-variation patterns from mode 8. We then used these sex-specific models 
to predict APOE dosage based on inter-individual expressions of mode 8. The rightmost panel displays the Miami plot 
for the correlations between APOE scores in the context of mode 8 and the portfolio of UKB phenotypes for males 
(upper half) and females (lower half). We show associations with phenotypes related to lipid metabolism and height, 
supplemented by male-specific associations with sub-questions from the fluid intelligence battery. Data underlying 
this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
https://doi.org/10.5281/zenodo.7126809
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Figure 4. Neuroticism-related phenotypes show unique risk-anatomy links in ɛ2 carriers. To test for 
risk-anatomy links, we computed the Spearman’s correlations between the population-wide HC and DN co-variation 
patterns, multiplied by each APOE of the six genotypes and the 63 pre-selected Alzheimer’s disease risk factors. We 
performed an agglomerative clustering analysis on these Spearman’s correlations, which consists of repeatedly 
merging Spearman’s correlations with similar variance until all observations are merged into a single cluster. Here are 
shown the dendrograms which indicate the distance between each cluster identified when retaining three levels of 
branching for APOE ɛ2/2 (upper left; N=217), ɛ2/3 (lower left; N=4,625), ɛ4/4 (upper right; N=822), ɛ3/4 (lower 
right; N=8,613). The dendrograms for ɛ3/3 and ɛ2/4 can be found in the supplementary information (S12 Fig.). We 
showed the early emergence of social engagement phenotypes (e.g., doing unpaid or voluntary work, attending adult 
education classes, family relationship satisfaction, number of people in household, and number of full siblings) across 
the different APOE gene variants suggesting that the contribution of social behaviours to risk-anatomy links transcend 
genetic risk. Ɛ3 carriership was characterized by the early branching of socioeconomic determinants (e.g., paid 
employment, average household income, number of vehicles in the household, time spent watching TV, and education 
score) as shown on the dendrograms for ɛ2/3, ɛ3/4, and ɛ3/3 (S12 Fig.). While clusters of social engagement and 
socioeconomic determinants were shared across different APOE genotypes, we found that neuroticism was uniquely 
associated with ɛ2 carriership. Indeed, the dendrogram for ɛ2/2, ɛ2/3, and ɛ2/4 (S12 Fig.) showed an early emerging 
cluster of neuroticism-related phenotypes (e.g., irritability, miserableness, being worried/anxious). This personality 
cluster was especially apparent for ɛ2 homozygotes, as reflected by the relatively high Euclidean distance of the first 
branching that split the neuroticism-related phenotypes from the rest of the risk factors. Data underlying this figure 
can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis (DOI: 
10.5281/zenodo.7126809) 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis
https://doi.org/10.5281/zenodo.7126809
https://doi.org/10.5281/zenodo.7126809
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Figure 5. Brain-APOE ɛ2/2 interaction explains variance in social lifestyle in males and physical 
activity in females. We tested whether HC-DN signatures interacted with APOE genotypes in explaining variance on 
the 63 pre-selected ADRD risk factors. Separate analyses were run for males (leftmost plots) and females (rightmost 
plots). Each column on the heat maps represents the coefficients for a single linear regression model. The first 25 
columns show the coefficients for HC patterns, whereas the last 25 columns show the coefficients for DN patterns. 
We assessed the robustness of our findings by comparing each coefficient to empirically built null distributions 
obtained through permutation testing. Only the coefficients that were statistically different from their respective null 
distributions 95% of the time are presented. We displayed the modifiable risk factors for which the strongest brain-
APOE interactions were observed. In the top panels, we show that APOE ɛ2/2 interacts with HC and DN co-variations 
patterns in estimating being a full or part-time student, with stronger coefficients observed for males on the HC side 
(regression models 1-25). Similarly, on the middle panels, we show that APOE ɛ2/2 preferentially interact with HC 
and DN canonical variates in estimating doing unpaid or voluntary work in males. In the bottom panels, we show that 
APOE ɛ2/2 interact with selective HC and DN canonical variates in estimating engaging in strenuous sport in females. 
We have thus shown that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social 
lifestyle in males and physical activity in females. These interactions profiles suggest that ɛ2, and not ɛ4, is driving 
most of the brain-genes interactions in healthy individuals at risk of developing ADRD with a substantial level of sex-
specificity. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/fig_5 (DOI: 10.5281/zenodo.7126809). 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_5
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_5
https://doi.org/10.5281/zenodo.7126809
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Figure 6. The protectiveness of ɛ2 is sex-dependent and modulated by HC-DN co-variation patterns. 

In separate analyses for males and females, we tested whether HC-DN signatures interacted with APOE genotypes in 
explaining variance in family history of ADRD. Separate analyses were run for males (higher plots) and females 
(lower plots). Each column on the heat maps represents the coefficients for a single linear regression model. The first 
25 columns show the coefficients for HC patterns, whereas the last 25 columns show the coefficients for DN patterns. 
We assessed the robustness of our findings by comparing each coefficient to empirically built null distributions 
obtained through permutation testing. Only the coefficients that were statistically different from their respective null 
distributions 95% of the time are presented. We found that the main effect of APOE ɛ2/2 against ADRD risk was only 
statistically robust in females. We also showed a spectrum in the opposing effects of ɛ2 and ɛ4 amongst females, such 
that ɛ2/4 was associated with a lower increase in ADRD risk than did APOE ɛ3/4, which in turn was associated with 
lesser risk than ɛ4/4. We further found that the protectiveness of APOE ɛ2/2 interacts with brain structure and can 
even lead to an increase in ADRD risk amongst females with a strong expression of mode 9. These interactions profiles 
suggest that the protectiveness of ɛ2/2 is not only sex-specific but also modulated by HC-DN co-variation expressions. 
Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/fig_6 (DOI: 10.5281/zenodo.7126809). 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_6
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/fig_6
https://doi.org/10.5281/zenodo.7126809
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Tables 

 ɛ3/3 ɛ3/4 ɛ2/3 ɛ2/4 ɛ4/4 ɛ2/2 
N (%) 22,129 

(59.3) 
8,613 
(23.1) 

4,625 
(12.4) 

885 (2.4) 822 (2.2) 217 (0.6) 

Age, Mean ± SD 54.9 ± 7.5 54.5 ± 7.4 55.0 ± 7.5 55.0 ± 7.5 54.3 ± 7.3 54.6 ± 7.5 
Sex, n (%)       

     Females 11,579 
(52.3) 

4,634 
(53.8) 

2,464 
(53.3) 

489 (55.3) 447 (54.4) 117 (53.9) 

     Males  10,550 
(47.7) 

3,979 
(46.2) 

2,161 
(46.7) 

396 (44.7) 375 (45.6) 100 (46.1) 

Family history of ADRD, 
n (%) 

      

     Maternal 3,516 (15.9) 1,972 
(22.9) 

695 (15.0) 204 (23.1) 227 (27.6) 27 (12.4) 

     Paternal 1,871 (8.5) 1,078 
(12.5) 

382 (8.3) 100 (11.3) 136 (16.5) 18 (8.3) 

     Both 328 (1.5) 235 (2.7) 77 (1.7) 20 (2.3) 39 (4.7) 2 (0.9) 
Household income, n (%)       

Less than 18,000 £ 2,786 (12.6) 1,077 
(12.5) 

570 (12.3) 110 (12.4) 103 (12.5) 24 (11.1) 

18,000 to 30,999 £ 4,980 (22.5) 1,851 
(21.5) 

1,067 
(23.1) 

206 (23.3) 168 (20.4) 43 (19.8) 

31,000 to 51,999 £ 6,602 (29.8) 2,639 
(30.6) 

1,379 
(29.8) 

262 (29.6) 245 (29.8) 72 (33.2) 

52,000 to 100,000 £ 6,086 (27.5) 2,413 
(28.0) 

1,314 
(28.4) 

238 (26.9) 240 (29.2) 63 (29.0) 

Greater than 100,000 £ 1,675 (7.5) 633 (7.3) 278 (6.4) 69 (7.7) 66 (8.0) 15 (6.9) 
Age completed full-time 
education, Mean ± SD 17.0 ± 2.4 17.0 ± 2.4 17.0 ± 2.4 16.9 ± 2.4 16.8 ± 2.5 16.9 ± 2.0 
Fluid intelligence score, 
Mean ± SD 6.2 ± 2.2 6.2 ± 2.1 6.2 ± 2.2 6.3 ± 2.3 6.2 ± 2.2 6.1 ± 2.2 

 
 

Table 1: UK Biobank demographic information.  Distribution of the demographic information from the 
UK Biobank participants included in the present study grouped per APOE genotypes. 
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Supplementary Material 
 

 
 
S1 Fig. ADRD-related divergences in HC and DN subregions for mode 2 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 2 for the HC (leftmost panel) and DN 
(central panel). We identified 10 HC hits, most of them located in the left hemisphere. The strongest HC divergences 
were observed for the presubiculum, hippocampal fissure, and CA2/3. We found corresponding DN hits in posterior 
midline structure (posterior cingulate cortex and restrosplenial cortex), the dorsomedial prefrontal cortex, and the 
posterior and temporal cortices. In males and females separately, we regressed APOE dosage on HC and DN co-
variation patterns from mode 2. We then used these sex-specific models to predict APOE dosage based on inter-
individual expressions of mode 2. The right panel displays the Miami plot for the correlations between APOE scores 
in the context of mode 2 and the portfolio of UKB phenotypes for males (upper half) and females (lower half). We 
found significant associations with sub-questions from the fluid intelligence battery that were unique to males. Data 
underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). CA = cornu amonis, DG = 
granule cell layer of the dentate gyrus, PrS= presubiculum, PCC = posterior cingulate cortex, RSC = retrosplenial 
cortex, dmPFC = dorsomedial prefrontal cortex, IPL = inferior parietal lobule, MTS = middle temporal sulcus, and 
STS = superior temporal sulcus, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
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S2 Fig. ADRD-related divergences in HC and DN subregions for mode 6 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 6 for the HC (leftmost panel) and DN 
(central panel). We identified 1 HC hit to the hippocampus-amygdala transition area with no concurrent DN 
divergences. In males and females separately, we regressed APOE dosage on HC and DN co-variation patterns from 
mode 6. We then used these sex-specific models to predict APOE dosage based on inter-individual expressions of 
mode 6. The right panel displays the Miami plot for the correlations between APOE scores in the context of mode 6 
and the portfolio of UKB phenotypes for males (upper half) and females (lower half). We found significant 
associations with physical phenotypes and blood assays that were unique to females. Data underlying this figure can 
be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). HATA = hippocampus-amygdala transition area, IMT = intima-medial thickness, FDR = 
false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
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S3 Fig. ADRD-related divergences in HC and DN subregions for mode 10 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 10 for the HC (leftmost panel) and DN 
(central panel). We identified 1 HC hit to the hippocampus-amygdala transition area with no concurrent DN 
divergences. In males and females separately, we regressed APOE dosage on HC and DN co-variation patterns from 
mode 10. We then used these sex-specific models to predict APOE dosage based on inter-individual expressions of 
mode 10. The right panel displays the Miami plot for the correlations between APOE scores in the context of mode 
10 and the portfolio of UKB phenotypes for males (upper half) and females (lower half). We found one significant 
association with sitting height unique to males. Data underlying this figure can be found at https://github.com/dblabs-
mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). HATA = hippocampus-
amygdala transition area, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809


 71 

 
 
 

 
 
S4 Fig. ADRD-related divergences in HC and DN subregions for mode 4 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 4 for the HC (leftmost panel) and DN 
(central panel). We identified 4 DN hits to the dorsomedial prefrontal cortex with no concurrent HC divergences. In 
males and females separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 4. We then 
used these sex-specific models to predict APOE dosage based on inter-individual expressions of mode 4. The right 
panel displays the Miami plot for the correlations between APOE scores in the context of mode 4 and the portfolio of 
UKB phenotypes for males (upper half) and females (lower half). We found one significant association with receiving 
an attendance, disability, or mobility allowance that was unique to females. Data underlying this figure can be found 
at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). dmPFC = dorsomedial prefrontal cortex, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
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S5 Fig. ADRD-related divergences in HC and DN subregions for mode 7 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 7 for the HC (leftmost panel) and DN 
(central panel). We identified 9 DN hits to the frontal lobe with no concurrent HC divergences. In males and females 
separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 7. We then used these sex-
specific models to predict APOE dosage based on inter-individual expressions of mode 7. The right panel displays the 
Miami plot for the correlations between APOE scores in the context of mode 7 and the portfolio of UKB phenotypes 
for males (upper half) and females (lower half). We found one significant association with diastolic blood pressure 
that was unique to females. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). dmPFC = dorsomedial prefrontal 
cortex, OFC = orbitofrontal cortex, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
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S6 Fig. ADRD-related divergences in HC and DN subregions for mode 11 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 11 for the HC (leftmost panel) and DN 
(central panel). We identified 1 DN hit to the posterior cingulate cortex with no concurrent HC divergences. In males 
and females separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 11. We then used 
these sex-specific models to predict APOE dosage based on inter-individual expressions of mode 11. The right panel 
displays the Miami plot for the correlations between APOE scores in the context of mode 11 and the portfolio of UKB 
phenotypes for males (upper half) and females (lower half). We found one significant association with the standing 
height that was unique to females. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 10.5281/zenodo.7126809). PCC = posterior cingulate 
cortex, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
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S7 Fig. ADRD-related divergences in HC and DN subregions for mode 13 and the associated phenome-

wide profile. Shown here are ADRD-related subregion divergences for mode 13 for the HC (leftmost panel) and DN 
(central panel). We identified 1 DN hit to the superior temporal sulcus with no concurrent HC divergences. In males 
and females separately, we regressed APOE dosage on HC and DN co-variation patterns from mode 13. We then used 
these sex-specific models to predict APOE dosage based on inter-individual expressions of mode 13. The right panel 
displays the Miami plot for the correlations between APOE scores in the context of mode 13 and the portfolio of UKB 
phenotypes for males (upper half) and females (lower half). We found significant associations with physical 
measurements related to height as well as feelings of guilt that were unique to females. Data underlying this figure 
can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). STS = superior temporal sulcus, FDR = false discovery rate correction. 
  

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
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S8 Fig. Difference in associations between males and females for the phenome-wide profiling of mode 

1. Absolute difference in p-values for the 33 brain-phenotype associations that passed the Bonferroni correction for 
multiple comparisons in either males or females in the original phenome-wide profiling of mode 1. Data underlying 
this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). 
 
 

 
 
S9 Fig. Difference in associations between males and females for the phenome-wide profiling of mode 

3. Absolute difference in p-values for the 20 brain-phenotype associations that passed the Bonferroni correction for 
multiple comparisons in either males or females in the original phenome-wide profiling of mode 3. Data underlying 
this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). 
 
 

 
 
S10 Fig. Difference in associations between males and females for the phenome-wide profiling of mode 

8. Absolute difference in p-values for the 18 brain-phenotype associations that passed the Bonferroni correction for 
multiple comparisons in either males or females in the original phenome-wide profiling of mode 8. Data underlying 
this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots (DOI: 
10.5281/zenodo.7126809). 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/Miami_Plots
https://doi.org/10.5281/zenodo.7126809
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S11 Fig. Similarity between the six genotype-specific clustering models. We computed Pearson's 

correlation of the distance between the two descendent links of corresponding hierarchical merging steps among the 
cluster analyses for the six APOE genotypes (i.e., ɛ2/2, ɛ2/3, ɛ3/3, ɛ2/4, ɛ3/4, and ɛ4/4). These derived distances made 
it possible to formally compare the cluster nodes of analogous dendrograms for each genotype-specific cluster model. 
We show that ɛ2 carriers are most similar to each other, as reflected by an agglomeration of strong Pearson's correlation 
coefficients in the top left corner of the heatmap. The most dissimilar cluster models were ɛ2/4 and ɛ3/4, followed by 
ɛ2/4 and ɛ3/3, and lastly by ɛ3/3 and ɛ4/4. Data underlying this figure can be found at https://github.com/dblabs-
mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis (DOI: 10.5281/zenodo.7126809). 
 
 

 
 
S12 Fig.  Ɛ3 carriership shows risk-anatomy links with socioeconomic determinants, while ɛ2 

carriership is associated with neuroticism. We multiplied the population-wide HC and DN co-variation patterns by 
APOE genotypes ɛ3/3 (N=22,129) and ɛ2/4 (N=885) such that participants who do not carry a given genotype were 
zeroed out. We then computed the Spearman’s correlations between these two new vectors and the 63 pre-selected 
Alzheimer’s disease risk factors to test for risk-anatomy links. We performed an agglomerative clustering analysis on 
these Spearman’s correlations, which consists in repeatedly merging Spearman’s correlations with similar variance 
together until all observations are merged into a single cluster. Here are shown the dendrograms, which indicate the 
distance between each cluster identified when retaining three levels of branching for APOE ɛ3/3 (leftmost panel) and 
ɛ2/4 (rightmost panel). We found the early branching of socioeconomic determinants ɛ3/3 (time spent watching 
television, education score, past and current tobacco smoking frequency, alcohol consumption on a typical drinking 
day, and alcohol intake frequency) in the clustering model for ɛ3/3. For ɛ2/4, we found that neuroticism-related 
behaviours (e.g., being worried/anxious, mood swings, and miserableness) were singled out from the other risk-
anatomy links at the first branching, as was observed for other ɛ2 carriers. We thus confirm the association between 
ɛ3 carriership and socioeconomic determinants and between ɛ2 carriership and neurotic personality traits. Data 
underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/tree/master/clustering_analysis (DOI: 10.5281/zenodo.7126809). 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis
https://doi.org/10.5281/zenodo.7126809
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/tree/master/clustering_analysis
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https://doi.org/10.5281/zenodo.7126809
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S13 Fig. Latent factors of brain-behaviour associations emphasize satisfaction with social 

relationships, socioeconomic status, and neuroticism-related traits. We conducted an exploratory principal 
component analysis (PCA) to disentangle latent factor of brain-behaviour association in our UK Biobank sample. We 
first computed the Pearson’s correlations between the 25 pairs of co-variation patterns from the HC and DN sides and 
the 63 pre-selected ADRD risk factors. We then ran singular value decomposition on the risk by canonical variates 
matrix (X63 x 50) and retained the 3 first principal components (PCs) that explained ~13.8%, ~9.6%, and ~8.2% of the 
total variance in the data, respectively. The upper plot displays the projections of the Pearson’s correlations onto each 
of the three main axes of brain-behaviour associations. The lower plot displays the eigenvectors for the top ten HC 
and DN co-variation patterns. The first axis of brain-behaviour associations emphasizes phenotypes from the social 
cluster previously identified on the clustering analysis of risk-anatomy links (Fig. 4), e.g., attending religious group, 
attending adult education classes and number of people in household. The second axis rather accented health-related 
phenotypes and lifestyle factors. Lastly, the third axis of brain-behaviour associations separated neuroticism-related 
items (being worried/anxious, being easily hurt, and worrying too long after embarrassment) from the rest of the risk 
factors. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.7126809). 
 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA
https://doi.org/10.5281/zenodo.7126809
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S14 Fig. Reliability assessment of the principal component solution. We assessed the robustness of the 

derived brain-behaviour association axes by performing a split-half reliability assessment of our principal component 
solution across 1,000 bootstrap iterations. At each iteration, we drew 37,291 participants with replacements to simulate 
random participant samples that we could have pulled from the same population. We then derived two random subsets 
of equal size (N=18,645) from the original sample. For each subset, we re-computed the Pearson’s correlation between 
all possible combinations of the 50 canonical variates and 63 target indicators. We then estimated two PCA models in 
parallel, one for each random half subset, on the z-scored correlation coefficients matrices. We show the average 
projections of the Pearson’s correlation coefficients on the three first axes of brain-behaviour associations. We found 
that the projections on component 1 were robust and consistent across subsets. The projections on the first axis of 
brain-behaviour associations accurately depicted those of the original PCA solution, with the same set of social 
phenotypes (e.g., attending religious group, attending adult education classes, and the number of people in the 
household) and socioeconomic determinants (e.g., age completed high school education, average household income, 
and the number of vehicles in the household) emphasized. Data underlying this figure can be found at 
https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.7126809). 
 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA
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S15 Fig. Statistical agreement between the PCA solutions for random subsets 1 and 2. We computed 

the Pearson's correlation between the weights of the three first principal components for random subsets 1 and 2 across 
1000 bootstrap iterations. The weights of the first two components were robust, as reflected by a substantial degree of 
agreement between both subsets on components 1 (mean Pearson's rho: 0.59, 90% CI: [0.38,0.74]) and 2 (mean 
Pearson's rho: 0.51, 90% CI: [0.15,0.77]). In contrast, we showed volatility in the weights associated with component 
3, as reflected by a wider and right-skewed distribution (mean Pearson's rho: 0.25, 90% CI: [0.02,0.56]). Data 
underlying this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA 
(DOI: 10.5281/zenodo.7126809). 
 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA
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S16 Fig. Neuroticism-related items expressed distinctive brain-behaviour associations in males and 

females. We repeated the principal component analysis in males (left; N=17,561) and females right; N=19,730) 
separately. In each sex, we first computed the Pearson’s correlations between the 25 pairs of co-variation patterns 
from the HC and DN sides and the 63 pre-selected ADRD risk factors. We then ran singular value decomposition on 
the risk by canonical variates matrix (X63 x 50) and retained the 3 first principal components (PCs). The PCs obtained 
from males had explained variance of ~14.6%, ~11.9%, and ~9.6%, respectively. The PCs obtained from females had 
explained variance of ~14.6%, ~11.9%, and ~7.4%, respectively. The upper plots display the projections of the 
Pearson’s correlations onto each of the three axes of brain-behaviour associations for the two sexes. The lower plots 
display the eigenvectors for the top ten HC and DN co-variation patterns. The projections of the Pearson’s correlations 
onto the two first axes of brain-behaviour association were roughly the same in males and females. In contrast, 
neuroticism-related items were only emphasized on the third axis of brain-behaviour association in males. We thus 
supplemented our population analysis by showing that the relationship between neuroticism and patterns of HC-DN 
co-variation was mainly male-specific. Data underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/blob/master/PCA (DOI: 10.5281/zenodo.7126809). 
 

https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA
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S17 Fig. Statistical agreement between the PCA solutions for males and females. We computed the 

Pearson's correlation between the weights of the first three principal components for the sex-specific PCA solutions 
across 1000 bootstrap iterations. We observed a low agreement between the male- and female-derived PCA solutions 
on all three components, as reflected by the widespread of the distributions and small average values. Data underlying 
this figure can be found at https://github.com/dblabs-mcgill-mila/HCDMNCOV_AD/blob/master/PCA (DOI: 
10.5281/zenodo.7126809). 
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S18 Fig. HC-DN signatures tracked different aspects of ADRD risk in independent PREVENT-AD 

participants. We externally validated our UKB-derived population signatures of HC-DN co-variation by 
investigating their mapping to ADRD-related risk factors in an unseen, independent participant sample. We tracked 
subject-specific expressions of the 25 modes of HC-DN co-variation in PREVENT-AD participants to a collection of 
157 widely-established indicators of ADRD progression. We computed the Pearson’s correlation between the HC and 
DN pattern expressions and the PREVENT-AD phenotypes for each mode. Only the Pearson’s correlation coefficients 
that were statistically different from their respective null distributions 95% of the time are present. We replicated 
several phenotypic associations highlighted in the UKB, such as with mode 1 and depression, mode 2 and verbal-
numerical reasoning, and mode 6 and vascular integrity. We also showed that our modes of HC-DN co-variation track 
meaningful aspects of ADRD progression up to the 25th and last signature, for which we found associations with tau 
CSF levels on the HC side and cardiovascular factors (e.g., systolic blood pressure, pulse, and APOE ε4/4 genotype) 
on the DN side. We thus showed that HC-DN signatures robustly link to different aspects of ADRD risk in a 
completely independent cohort from the one in which the co-variation patterns have originally been derived. Data 
underlying this figure can be found at https://github.com/dblabs-mcgill-
mila/HCDMNCOV_AD/blob/master/external_validation (DOI: 10.5281/zenodo.7126809). 
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Bridge  
 

By harnessing the capabilities of machine learning and big data analytics, our objective is 

to furnish an impartial, data-driven portrayal of the phenotypic divergence in familial AD risk, 

considering sex differences, across two substantial cohorts of asymptomatic older adults. In the 

initial phase detailed in Chapter 1, we leveraged the comprehensive and uniformly collected brain 

imaging data from the UK Biobank (UKB) to derive population insights into neuroanatomical 

correlates of Alzheimer's disease and related dementias (ADRD) family risk. This endeavour 

sought to establish sex-specific phenome-wide profiles of ADRD vulnerability associated with 

micro-anatomically defined subregions within the hippocampus (HC) and default network (DN)—

two brain systems recognized for exhibiting early aberrations along the AD continuum [12, 44, 69, 

70]. Employing a curated set of approximately 1,000 phenotypes, we furnished a comprehensive 

overview of the incipient manifestations of ADRD in relation to sex, APOE polymorphism, and 

the co-variation between the allocortical HC and neocortical DN. 

 

Working with the UKB made it uniquely possible for us to derive distinct patterns of 

structural co-variation between 38 subregions of the HC and 91 subregions of the DN, which is 

unachievable with the overwhelming majority of other brain-imaging samples. A recent 

comprehensive examination of the performance of canonical correlation analysis (CCA)—the core 

model of our present neuroanatomical investigation—in biomedical datasets has shown that 

perhaps only the UKB offers large enough participant sample sizes to obtain stable estimates of 

our doubly-multivariate model (i.e., CCA) in the high-dimensional data setting [72]. Brain-

imaging datasets typically considered "large" according to community standards, such as the 

Human Connectome Project (n ≈ 1000), were prone to overfitting and did not reach convergence 

to stable parameter estimates for a set of 100 features. When the number of subjects is too close to 

the number of features, CCA struggles to approximate any valid latent dimensions—it fails to find 

a unique identifiable modelling solution [73]. While the UKB was the only brain imaging resource 

with the power to enable such a highly multivariate decomposition, it was not developed with the 

aim of tracking ADRD progression. For that reason, the biological and phenotypic markers 

investigated by the UKB, although covering a wide range of health-related determinants, are rather 

unspecific to dementia progression. 
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In Chapter 2, we will aim to build upon the characterization of our population-derived 

limbic-cortical regimes by linking them with widely established indicators of dementia progression 

in asymptomatic participants with Alzheimer’s disease (AD) family history. Precisely, we will 

carry over and investigate the expressions of our HC-DN signatures in a specialized cohort of 

individuals at heightened risk of developing dementia that offers one of the most rigorous 

monitoring of AD progression in offspring of diagnosed patients: the Pre-symptomatic Evaluation 

of Experimental or Novel Treatments for AD (PREVENT-AD) cohort (Tremblay-Mercier, Madjar 

et al. 2021). This rich prospective cohort contains annual assessments of most, if not all, major AD 

markers, including blood and CSF biochemistry, cardiovascular, neurosensory, and cognitive 

indicators, as well as medical and demographic records. By utilizing these two distinct datasets, 

we aim to enhance our comprehension of the comparability between broadly applicable facets of 

participants' health and clinically significant indicators of AD risk by how robustly they can be 

tracked by HC-DN co-variation. Beyond the external validation of our outcomes, this secondary 

cohort facilitates a focused exploration of intergenerational variances in AD heritability with 

respect to sex. Our precise endeavour is to investigate how the sex of both the at-risk progeny and 

the parent diagnosed with AD influences the preclinical disease manifestations across established 

and clinically relevant biological markers of AD progression. Given the deep phenotyping offered 

by the PREVENT-AD resource, our investigation was uniquely positioned to chart maternal vs. 

paternal risk effects across the whole at-risk phenome—something out of reach in most clinical 

datasets. Our novel approach builds on population-level insights into structural deviation patterns 

in the DN and HC to now quantify the extent to which maternal and paternal lineage is reflected 

in AD-vulnerable brain structures. This two-step pipeline, empowered by the robustness of the 

UKB and the precision of PREVENT-AD, is positioned to reveal unprecedented insights into 

generational sex biases in AD symptomatology and its neuroanatomical underpinnings. 
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Abstract:  
 

Alzheimer’s disease (AD) has a higher prevalence among women. Also, more women 

rather than men among AD patients pass on the disease to their children. Yet, evidence of father-

to-son transmission has been documented by epidemiological studies, which challenges the 

dominant matrilinear narrative. Here, by means of phenome-wide assays, we aimed to reconcile 

clinical reports with population-based insights as to diverging influences of maternal vs. paternal 

AD risk on first-degree relatives. We capitalized on the richest single-site cohort (PREVENT-AD) 

with a family history of AD to extract three distinct intermediate phenotypes of AD susceptibility 

across the PREVENT-AD phenome. Capitalizing on ~1,000 individual subject visits, we examined 

how much the derived intermediate phenotypes vary as a function on maternal vs. paternal AD 

lineage. Our careful cross-generational examination highlighted the influences of matri- vs. 

patrilinear AD risk on cardiovascular and cognitive risk. Notably, we identified sex bias for 

polymorphisms in the HMGCR and BDNF genes as most explanatory for AD genealogy passing 

through the mother vs. father. Zooming in on microanatomical alterations in hippocampus and 

default network subregions, we identified distinct structural patterns related to matri- vs. patrilinear 

AD risk in subregions from which the fornix white-matter tract originates. As the most systematic 

study of its kind, our cross-generational analysis ultimately delineated parents-of-origin effects in 

AD genealogy. 

 

Keywords: lineage, phenomics, PREVENT-AD, Alzheimer’s disease, family risk, parents-of-

origin effects  



 97 

Introduction 
 

Parental history of sporadic Alzheimer’s disease (AD) has been recognized as a key disease 

risk factor since the late 1980s [1]. The cumulative risk of developing dementia is ~20-65% higher 

for the offspring of AD patients than for individuals without a family history [2]. Sex, in turn, has 

been considered a non-negligible risk factor for developing AD-type dementia for at least two 

decades [2]. AD prevalence is higher in female subjects [3]. Transmission of AD risk is also more 

frequent in offspring with maternal rather than paternal history of AD [3]. Important for our present 

investigation, maternal inheritance is thought to be 1.7 to 3.6 times more frequent than paternal 

inheritance [4]. 

 

Despite these well-established sex divergences in AD genealogy, an early brain imaging 

study only recently compared maternal vs. paternal AD risk in 11 males and 13 females with a 

family history [5]. Since then, the brain imaging community has sporadically studied small clinical 

samples of at-risk individuals (typically 8-16 subjects [5-8]) to investigate the neurobiological 

correlates of AD familial risk. Importantly, working with such handpicked clinical samples did not 

allow researchers to peel apart the effects of maternal vs. paternal risk on male and female 

offspring. The statistical power, arguably too modest, often pushed for case-control investigations 

in which neither the sexes of the AD patients nor at-risk children were considered. As a result, the 

potentially diverging clinical manifestations of maternal and paternal AD risk in at-risk offspring 

remain largely unstudied. This is despite longstanding epidemiological evidence for sex-specific 

transmission of AD liability. 

 

Due to lower prevalence and narrow clinical samples, there has been limited appreciation 

of a paternal family history of AD – yet it may turn out to be a potentially separate risk phenotype. 

Indeed, recent epidemiological population estimates from more than a million participants – 

inaccessible to brain-imaging assessments at that scale – suggested that men are more vulnerable 

to developing dementia than women with the same family history [9]. Somewhat 

counterintuitively, paternal family history of AD has widely been regarded as a control group, 

similar to subjects with negative parental history, rather than studied as a disease risk category in 

its own right. Against a background of paternal risk, previous studies have established the effects 
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of maternal inheritance on brain volume [10], mitochondrial activity [11], glucose metabolism [7], 

and cerebral blood flow [12]. This common practice even reached a point where paternal and 

negative family history of AD were combined in data visualization [7] and classification analyses 

[13] to spotlight maternal effects. While population-based estimates have highlighted male-

specific generational risk, most small to medium size brain imaging experiments in a handful of 

participants have placed an overwhelming focus on the maternal transmission of AD risk.  

 

By designing a data-driven framework, we conducted the, so far, most systematic head-to-

head comparison of matrilinear (i.e., mother had AD) vs. patrilinear (i.e., father had AD) effects 

in the offspring of AD subjects, before the onset of any clinical symptoms. We capitalized on the 

largest-of-its-kind at-risk AD cohort, with ~1,000 visits of individuals from a family with a family 

history of AD: Pre-symptomatic Evaluation of Experimental or Novel Treatments for AD 

(PREVENT-AD [14]). PREVENT-AD tracks AD onset and trajectory in cognitively unimpaired 

first-degree relatives of dementia patients. We built two sex-specific partial least square regression 

models in which the APOE genotypes (e.g., ɛ3/2, ɛ3/3, ɛ3/4) were estimated based on a collection 

of 256 PREVENT-AD risk indicators. This susceptible population has a 2-3-fold relative increase 

in the risk of AD-type dementia [15, 16]. Annual screening of the healthy PREVENT-AD 

participants was scheduled to monitor AD-specific fluctuations on well-established multimodal 

markers. The broad categories of risk factors offered by the deep phenotyping of PREVENT-AD 

allowed us to design a phenome-wide screening across a rich portfolio of 256 risk indicators: 

profiling of the probands’ blood and cerebrospinal fluid (CSF) biochemistry, cardiovascular, 

neurosensory, and cognitive assessments, medical and demographics records, and brain scanning. 

The PREVENT-AD resource thus opened a unique window into how patrilinear vs. matrilinear 

AD inheritance differentially impacts risk phenotypes. We built on previous population-level 

insights into structural deviation patterns in the default network (DN) and hippocampus (HC) of 

healthy subjects with a family history of AD to quantify the extent to which maternal and paternal 

lineage was reflected in AD-vulnerable brain structures. Our novel approach to the inter-

generational pathogenesis is thus positioned to reveal unprecedented insight into the parent-of-

origin-specific nature of AD symptomatology. 
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Results 
 

Rationale 

  

Maternal history of AD is already a well-established dementia risk factor. AD has also been 

long known to entail partly diverging manifestations in males and females. It stands to reason that 

sex-specific disease processes could exercise a differential impact on the AD phenotype in the next 

generation. Nonetheless, matri- vs. patrilinear transmission of AD risk has not been systematically 

compared in male and female offspring. As a potential roadblock to progress, small handpicked 

clinical samples of typically ~20 subjects are limited in their appreciation of a paternal family 

history of AD, thus hindering assessment of a potentially distinct mode of inter-generational risk 

propagation. In parallel, population-based surveys of millions of participants are not equipped to 

perform a thorough clinical examination of well-established AD markers (e.g., CSF and blood 

biochemistry, grey matter volume, cognitive decline). To overcome several of these impasses, we 

leveraged the largest-of-its-kind family-based at-risk AD cohort to contrast matri- vs. patrilinear 

effects on AD risk in ~1,000 participant visits (PREVENT-AD). This rich prospective cohort 

contains annual assessment (mean= 65 years, ranging from 55 to 87) of most if not all major AD 

markers, including blood and CSF biochemistry, cardiovascular, neurosensory, and cognitive 

indicators, as well as medical and demographics records. Given this rich dataset, our investigation 

was uniquely positioned to chart matri- vs. patrilinear AD risk effects across the PREVENT-AD 

phenome. As a complementary analysis, we benefitted from image-derived phenotypes of grey 

matter morphology to assess whether maternal vs. paternal AD lineage was reflected in AD-

vulnerable brain structures. We adopted a data-informed framework especially tailored for the 

systematic apples-to-apples comparison of AD risk in male vs. female subjects with maternal vs. 

paternal family history of AD — something out of reach in traditional AD clinical samples.  

 

Intermediate phenotypes of AD susceptibility capture cis- and trans-generational variation in 

cognitive abilities and cardiovascular health  

 

 As the backbone of our analysis workflow, we extracted APOE-genotype-related 

intermediate phenotypes of AD susceptibility that captured different facets of AD familial risk by 
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being distinctly associated with ɛ3/2, ɛ3/3, and ɛ3/4 genotypes. We directly interrogated 256 

PREVENT-AD risk indicators that spanned seven broad categories of AD risk factors: 

cardiovascular health, cognition, clinical co-morbidities, demographics, disease progression, 

genetics, and neurosensory assessments. Each derived intermediate phenotype thus encapsulated 

a different relationship between the three most prevalent APOE genotypes and the rich collection 

of PREVENT-AD risk indicators. Our next goal was to partition the variance in APOE-related AD 

risk effects across the PREVENT-AD phenome as a function of sex and maternal vs. paternal AD 

lineage. To do so, we examined how the distinct combinations of PREVENT-AD risk indicators 

captured by the three dominant intermediate phenotypes were differently expressed in males and 

females, as well as in individuals with maternal vs. paternal AD risk. We could thus quantify how 

much of the phenome-wide similarities in AD risk attributable to the APOE gene vary as a function 

of sex and maternal vs. paternal AD familial risk.  

 

Our leading intermediate phenotype of AD susceptibility highlighted sex differences in 

genetic markers of memory performance and lipid metabolism. We found that the single nucleotide 

polymorphism (SNP) rs6265, also known as Val66Met (Fig. 1, right genetic radar plot), showed 

the most substantial sex bias. Val66Met is a missense variant in the gene that codes for the brain-

derived neurotrophic factor (BDNF) protein. BDNF is a neurotrophic factor involved in synaptic 

plasticity and cognition [17]. The BDNF protein has been associated with several neurological 

disorders including AD due to its pivotal role in the integrity of hippocampal and neocortical 

neurons [18]. Post-mortem autopsy of AD patients has revealed decreased expression of BDNF 

mRNA in the hippocampus as compared to healthy controls [19]. The BDNF Val66Met 

polymorphism has been one of the most studied genetic variants in neurocognitive brain diseases 

over the past two decades [20]. Carriers of the Met allele have shown deficits in delayed and 

immediate recall as well as abnormal hippocampus activation [21]. The Met allele has also been 

associated with an increased risk of developing AD in females, but not in males [22, 23]. We 

located ValVal homozygotes and ValMet heterozygotes at opposite poles of the sex spectrum of 

disease variation for the first intermediate phenotype of AD susceptibility (Fig. 1) — consistent 

with the Val66Met polymorphism’s reported sex bias. In addition to replicating sex-specific 

findings, we unveiled cross-generational differences in Val66Met polymorphism by highlighting 

a contingent influence of maternal vs. paternal AD liability. We have thus shown the effects of 



 101 

BDNF polymorphism, a key marker of synaptic plasticity, to be driven by the sex of the AD at-

risk subject, and secondarily also driven by the sex of the parent affected by AD.  

 

The first phenotype of AD susceptibility also pointed to another genetic variant related to 

cardiovascular health. We found that SNP rs3846662, located in intron M of the 3-Hydroxy-3-

Methylglutaryl-CoA Reductase (HMGCR) gene, was strongly dependent on family lineage. 

HMGCR is a key enzyme regulating cholesterol synthesis in mammalian cells in general [24]. 

HMGCR and APOE are thought to be involved in two separate yet interrelated pathways by which 

cholesterol is synthesized in the human brain [25, 26]. HMGCR is likely involved in the 

etiopathology of AD by regulating intracellular sterol sensing in the endoplasmic reticulum [27]. 

Being homozygous for the A allele (AA) in intron M of the HMGCR gene has been identified as 

one of the most important and common protective variants for sporadic AD, second only to APOE 

ɛ2 [28]. The A allele in intron M of the HMGCR gene possibly attenuates APOE ɛ4-mediated 

accumulation of hippocampal and neocortical amyloid plaques and tangles by acting on cholesterol 

synthesis in mammalian brain cells [28]. Amongst ɛ4 carriers, having two copies of the A allele 

has been shown to reduce AD conversion rate to a level similar to ɛ4 non-carriers [28]. Sex bias 

in HMGCR polymorphism has also been reported regarding the efficacy of statins [29]. A 

genotype-by-sex interaction was found such that women bearing the AA genotype showed 

increased overall transcription of HMGCR mRNA [29]. Similarly, post-mortem autopsies of AD 

patients have revealed increased HMGCR mRNA in the frontal cortex of women carrying the AA 

genotype [30]. Interrogating sex-specific variation in AD liability allowed us to add an additional 

level of complexity to the tight coupling between APOE and HMGCR. In particular, we located 

AA homozygotes and GA heterozygotes at opposite poles of the lineage spectrum of disease 

variation (Fig. 1, left genetic radar plot). HMGCR AA, but not GA, also showed a considerable 

variation in the sex spectrum of disease variation (Fig. 1, right genetic radar plot). Our cross-

generational analysis captured the specific interplay between APOE ɛ4 and HMGCR A in a totally 

data-driven fashion. In fact, we found that genotype ɛ4/ɛ3 was driving most of the APOE-HMGCR 

associations as compared to genotypes ɛ3/3 and ɛ3/2 (Fig. 1). As such, pooling inter-generational 

variation in AD liability across APOE genotypes allowed us to single out HMGCR AA as driving 

sex- and lineage-specific variation in AD risk. Sex bias in HMGCR polymorphism has seldom 

been investigated with regard to AD liability. We have thus added to the previous APOE-HMGCR 
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studies by highlighting underlying generation and sex effects that were measurable in the AD at-

risk subjects examined here.  

 

The second intermediate phenotype of AD susceptibility unveiled notable effects of sex 

and AD lineage on cognitive markers, whereas neurosensory and cardiovascular indicators were 

predominantly influenced by sex. Age and cognitive indicators were situated at opposing extremes 

of the spectrum of disease variation with regard to both sex and AD lineage (Fig. 2; top left and 

bottom right corners). An additional distinction between markers of disordered vs. healthy 

olfaction was most evident with regard to sex. Total anosmia was situated near age indicators in 

the lower right corner, whereas normosmia and smell identification scores were located at the 

opposite end (Fig. 2; top left and bottom right corners). Indicators of cardiovascular health (e.g., 

systolic blood pressure) were positioned adjacent to age markers and exhibited influences from 

both sex and AD lineage. While olfactory loss can occur with certain neurogenerative diseases 

including AD, it can also be naturally impaired by aging [31]. Similarly, aging is a critical risk 

factor for all cardiovascular diseases known to substantially differs as a function of sex [32, 33]. 

With regards to APOE genetic risk, the second intermediate phenotype distinguished ɛ3 

homozygotes from ɛ2 and ɛ4 carriers (Fig. 2). Commonly considered the baseline risk for AD, ɛ3 

homozygotes could be seen as indicative of typical aging. However, we found a substantial 

influence of AD lineage on cognitive indicators that extended beyond the effect solely attributable 

to sex and age. Measures of memory performance derived from the Repeatable Battery for the 

Assessment of Neuropsychological Status (RBANS), including immediate recall, delayed recall, 

and list learning, occupied the uppermost section of the lineage-specific spectrum. In contrast, 

indicators of visuospatial processing (e.g., picture naming on the RBANS) and numerical abilities 

(e.g., forward digit span score on the RBANS and backward digit span score on the Montreal 

Cognitive Assessment (MoCA)) were situated at the lowest end of the lineage-specific spectrum. 

A prospective neuropsychological evaluation of asymptomatic, middle-aged offspring of AD 

patients (N=60) has suggested that paternal vs. maternal AD liability differentially impacts 

memory and verbal-numerical abilities [34]. Subjects with maternal AD risk examined for that 

study showed deficits in delayed and immediate recall in the Loewenstein-Acevedo Scale for 

Semantic Interference and Learning, as well as on the vocabulary section of the Wechsler 

Intelligence Scale-III test, as compared to healthy controls. In contrast, a parallel evaluation of 
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subjects with paternal AD risk enrolled in that study revealed worse performance than healthy 

controls on the Mini-Mental State Exam, a clinical screening tool for cognitive impairment. 

Nevertheless, no substantial differences in cognitive performance were observed when directly 

comparing subjects with maternal versus paternal AD lineage—possibly hindered by the small 

number of subjects with paternal AD risk (N=13). In our study, involving one of the most 

comprehensive and homogenous cohorts of AD at-risk subjects, a considerable lineage effect 

surfaced in differentiating numerical and visuospatial abilities from delayed and immediate recall. 

This distinction emerged in relation to the APOE subgroup that best represented the generational 

population—specifically, ɛ3 homozygotes. This could imply that the influence of maternal vs. 

paternal AD risk on age-related cognitive decline diverges independently from the risk and 

protective effects attributed to ɛ4 and ɛ2, respectively. These generational risk effects appear to 

particularly impact cognitive functions, as no lineage effects with comparable strength were 

observed within the neurosensory and cardiovascular domains. Instead, these domains 

predominantly display sex biases previously linked to normal aging processes. 

 

Complementing existing findings, our third intermediate phenotype of AD susceptibility 

(Fig. 3) highlighted the simultaneous influence of AD lineage and sex on cardiovascular and 

cognitive risk indicators. Our analysis placed cardiovascular and cognitive risk indicators on 

opposite ends of the AD-liability space. A first risk group of effects (Fig. 3; bottom left corner) 

highlighted indicators of cardiovascular health characteristics of APOE ɛ2 carriers (e.g., 

hyperlipidemia, statins intake, diastolic and systolic blood pressure, and weight) as tied to both sex 

and AD lineage. Despite the assumed protective effect of APOE ɛ2 against dementia risk, carrying 

an ɛ2 allele has been associated with elevated risks for cardio- and neuro-vascular disorders by 

previous research groups [35-39]. More recent work by Savignac and colleagues highlighted sex-

specificity on the association between ɛ2 carriership and engaging in strenuous sports [40]. We 

now found that APOE ɛ3/ɛ2 was driving most of the differential effects on cognitive and 

cardiovascular risk indicators as compared to ɛ3/ɛ3 and ɛ3/ɛ4 genotypes (Fig. 3). Our findings are 

consistent with an interplay between the ɛ2 allele and cardiovascular fitness that depends on sex. 

At the opposite end of the AD-liability spectrum, we found a second group of driving effect 

differences (Fig. 3; upper right corner) that regrouped various dimensions of cognitive 

performance (e.g., list recognition and recall, delayed and immediate memory, and visuospatial 
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attention) affected in AD. Previous work has revealed that the ɛ2 allele is typically protective 

against global cognitive decline and dementia [41-43]. A possibility is that underlying differences 

in cardiovascular fitness between men and women could enhance ɛ2-related sex bias in cognitive 

performance. Indeed, the higher incidence of fatal vascular complications in midlife in men 

compared to women can potentially result in a selective advantage against late-life disorders [44]. 

Men who survive to an older age will likely have a healthier vascular system than women [45]. 

The onset of dementia symptoms appears earlier in women than in men [1]. As such, AD 

symptomatology, including cognitive deficits, is often more severe in women than men at the time 

of diagnosis [46]. The different aging trajectories of cognitive and cardiovascular health indicators 

in men and women appear to specifically hinge on the sex-spectrum of AD variation (Fig. 3). As 

such, the third intermediate phenotype of AD susceptibility emphasized the antagonistic effects of 

APOE ɛ2 on cardiovascular health and cognitive abilities. In particular, we located ɛ2-associated 

interlocking effects of both the sex of the at-risk offspring and of the AD-affected parent. 

 

Lineage-specific trajectories of the intermediate phenotypes over a 4-year follow-up  

 

We capitalized on the serial assessments of the PREVENT-AD cohort to track progression 

in AD risk indicators over a 4-year follow-up period. We integrated changes in susceptibility 

phenotypes across the rich collection of PREVENT-AD risk indicators over the years. We aimed 

to identify which of the seven broad categories of AD risk factors track most sex- and lineage-

specific fluctuation in AD risk captured by a given intermediate phenotype over time.  

 

For each subject's first and last follow-up visit, we computed the individual expressions of 

the three intermediate phenotypes. We then examined how the distinct combinations of 

PREVENT-AD risk indicators, captured by the three dominant intermediate phenotypes, were 

differentially expressed with regard to sex and AD lineage — analogous to the procedure 

conducted on the whole set of subject visits. For each of the seven categories of risk indicators, we 

averaged over the sex-specific and lineage-specific differences discerned by a given intermediate 

phenotype separately at the first and last visits. In doing so, we quantified the changes over the 

years in the sex- and lineage-specific AD progression trajectories, as captured by the three 

intermediate AD phenotypes.  
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The sex-specific trajectory captured by the first intermediate phenotype of AD 

susceptibility increased with regards to the cardiovascular domain (Fig. 1). By construction, the 

first intermediate phenotype captures most of the variance in the PREVENT-AD phenome that can 

be attributable to APOE genotypes. We found that polymorphic variants on the BDNF and 

HMGCR genes primarily accounted for this first relationship. As discussed above, HMGCR and 

APOE are both involved in maintaining cholesterol homeostasis within the central nervous system 

[25, 26]. It is known from stroke epidemiology that cardiovascular risk factors, such as brain 

infarction and intracerebral hemorrhage, are more commonly observed in males [33]. Yet, their 

effects appear to be more severe in females [33]. The heightened vulnerability of females to severe 

cardiovascular events could potentially be attributed to the complex interplay between cholesterol 

homeostasis and hormonal changes in the aging brain. HMGCR is a precursor of steroid hormones, 

including glucocorticoids and estrogen [25]. Estrogen interacts with HMCGR functions through 

various mechanisms, including changes in gene expression and signal transduction pathways [47]. 

Brain regions showing a pronounced reduction in cholesterol synthesis with aging, such as the HC, 

also display a significant concentration of steroid receptors, highlighting a potential overlap 

between cholesterol regulation and steroid signaling [48, 49]. Hence, the amplified sex biases in 

the trajectories of cardiovascular indicators might originate from age-related shifts in estrogen 

availability in the aging brain, particularly in post-menopausal females. Hormonal fluctuations 

potentially influence downstream cholesterol synthesis, heightening the risk of cholesterol-related 

pathologies in sex-specific ways. 

 

The second intermediate phenotype of AD susceptibility tracked variation in cognitive risk 

indicators that depended on AD lineage. The persistent variability of lineage-specific differences 

in cognitive risk indicators over time could be related to epigenetic inheritance and its effect on 

DNA methylation in older age [50]. Chromatin remodelling via histone modifications has been 

identified as a plausible epigenetic mechanism involved in age-related cognitive decline and 

neurodegenerative diseases [51]. While the specific genes that undergo epigenetic changes in the 

adult human brain remain elusive, murine models have singled out several markers of memory and 

cognition as potential targets [51]. Contextual fear learning was shown to induce bdnf DNA 

methylation in the adult rat hippocampus [52]. Epigenetic regulation was a necessary component 
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of learning as NMDA receptor blockade, which prevented bdnf DNA methylation, resulted in a 

deficit in memory consolidation [52]. Experiencing life stressors can influence offspring’s 

vulnerability to many diseases by provoking a cascade of epigenetic alterations that alter gene 

expressions over generations [53]. This process, referred to as epigenetic inheritance [50], 

represents a plausible avenue by which maternal vs. paternal AD lineage could influence cognitive 

decline over time. The time trajectory in cognitive risk associated with AD lineage could perhaps 

reflect such underlying effects of epigenetic inheritance on cognition and memory.  

 

The third intermediate phenotype of AD susceptibility exhibited the most pronounced sex 

bias in the trajectory of neurosensory processing over time (Fig. 3). Indicators of hearing 

impairment were most different on the sex-spectrum of disease variation (Fig. 3; right radar plots). 

Several studies have suggested that hearing loss, especially untreated or severe cases, may 

contribute to cognitive decline and the onset of dementia [54]. Social isolation and communication 

difficulties due to hearing loss could potentially increase the risk of developing dementia [55]. The 

quantity and depth of social interactions are thought to largely differ between males and females 

[56]. In many cases, as a heterosexual couple ages, it is often observed that the female partner 

takes on a significant role in maintaining and nurturing the social circle [57]. This phenomenon 

can be attributed to various factors, including societal norms, caregiving responsibilities, and 

personal preferences. Hence, it is conceivable that age-related hearing loss might have more severe 

consequences in females, owing to certain societal and biological factors that render them more 

prone to seek social interaction. In fact, the relationship between hearing loss and social isolation 

amongst older adults was found to be stronger for females than males [58, 59]. The escalating sex 

disparities observed in neurosensory processing trajectories over time may be attributed to varying 

patterns of social engagement between males and females, which are distinctly influenced by the 

aging process. 

 

Our longitudinal assessment of the three intermediate phenotypes of AD susceptibility has 

thus singled out cardiovascular and neurocognitive abilities as preferentially affected throughout 

AD progression as compared to other risk modalities. The first intermediate phenotype underlined 

cardiovascular health differences between males and females, possibly modulated by fluctuation 

in estrogen. The second intermediate phenotype of AD susceptibility tracked lineage-specific 
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variation in cognitive abilities, which could be related to epigenetic inheritance. Finally, the third 

intermediate phenotype underscored sex disparities in the trajectory of neurosensory processing, 

with a particular emphasis on hearing impairment. We have thus shown three distinct longitudinal 

trajectories associated with AD lineage and sex that had separable ties to cardiovascular health, 

cognitive performance, and neurosensory processing over the years. 

 

Matri- and patrilinear Alzheimer’s disease risk is reflected in anatomical subregions in 

hippocampus and default network  

 

We next assessed whether matri- vs. patrilinear AD risk differentially targeted brain 

structures known to be broadly vulnerable in AD patients. In a previous UK Biobank study, we 

identified AD population patterns of structural covariation in HC and DN subregions as a function 

of AD family risk in ~40,000 participants [40]. Here we aim to identify which of the same 38 HC 

and 91 DN target subregions show statistically relevant structural deviation regarding matri- vs. 

patrilinear AD risk in PREVENT-AD participants. As a first cursory analysis, we estimated 

classification models separately in males and females to dissociate the type of AD lineage 

(maternal=1, paternal=0) as a function of grey matter volumes in either the 38 HC or 91 DN 

subregions. We aimed to quantify how much a given micro-anatomically defined subregion 

reflects maternal vs. paternal AD liability in the context of the whole set of 38 HC subregions or 

91 DN subregions. 

 

In the brain analyses on HC subregions, we identified both cis- (father-to-son, mother-to-

daughter) and trans- (father-to-daughter, mother-to-son) generational effects of maternal and 

paternal AD risk (Fig. 4, top plots). We found an apparent lateralization effect of AD lineage in 

males for the hippocampus. All patrilinear effects were located in the left hemisphere, whereas all 

matrilinear effects were located in the right hemisphere. Maternal and paternal AD risks were not 

as clearly distinguished in HC subregions of the female brain. Indeed, all statistically relevant 

effects were observed on the left hemisphere regardless of the classification outcome. Only one 

patrilinear effect was found in females in the left presubiculum body. We have thus uncovered 

male-specific lateralization effects in HC subregions such that patri- vs. matrilinear effects were 

preferentially found in the left vs. right hemispheres, respectively.  
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In the analyses on DN subregions, the matri- vs. patrilinear classification model showed 

considerable sex-biased effects (Fig. 4, bottom plots). Notably, patrilinear effects were strictly 

identified in the DN in male subjects. Reminiscent of what we found in HC subregions, 4 of the 5 

patrilinear effects robust at 80% confidence were found in the left hemisphere. This pattern of cis-

generational variation provides a biological ground for father-to-son transmission effects reported 

by epidemiological reports [60] as possibly rooted in specific architectural brain features. Our data-

driven brain-lineage association test supports a male-specific structural association with AD 

liability most strongly reflected in phylogenetically recent (i.e., allocortical) rather than older (i.e., 

neocortical) layers of the cortex.   

 

The susceptibility phenotypes interact with HC-DN signatures in estimating matri- vs. patrilinear 

AD risk 

 

We previously leveraged the wealth of 40,000 UKB MRI visits to derive population 

signatures of structural co-variation in DN subregions that showed inter-individual variation with 

microanatomical HC subregions [40]. We are now interested in carrying over our UKB-derived 

population signatures of HC-DN co-variation in an AD-at-risk cohort. We aimed to assess whether 

our signatures of HC-DN co-variation, derived from a representative UK population, can 

successfully track targeted AD markers closely monitored in PREVENT-AD subjects. As a first 

step, we carried over this knowledge by computing the subject-specific presence of the 25 modes 

of HC-DN co-variation in the PREVENT-AD cohort (cf. above). Each participant visit was thus 

supplemented by the expression levels of the 25 HC and 25 DN patterns of structural co-variation 

corresponding to the 25 pairs of HC-DN co-variation signatures. 

 

We next tested whether we could further characterize the PREVENT-AD-derived 

intermediate phenotypes by leveraging the UKB-derived population signatures of HC-DN co-

variation. Separately for males and females, we built logistic regression models to classify 

PREVENT-AD at-risk participants with maternal vs. paternal AD lineage (maternal=1, 

paternal=0). For each sex, we built separate classification models for each of the 25 HC and 25 

DN canonical variates, yielding 50 estimated models per sex. The explanatory variables of each 
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classification model consisted of the three intermediate phenotypes (computed on the whole 

PREVENT-AD cohort), a given HC or DN co-variation pattern, and the interaction of the given 

HC or DN co-variation pattern with each of the three intermediate phenotypes. To ascertain the 

robustness of our findings, we compared each coefficient estimate against empirically data-derived 

null distributions obtained through a rigorous permutation procedure (i.e., label shuffling 

permutation). We only report strong coefficients statistically different from their respective null 

distribution at 95% confidence. 

 

We found that HC-DN co-variation patterns explained brain variation related to AD family 

lineage in sex-specific ways. HC-DN covariation patterns contributed to the classification of matri- 

vs. patrilinear AD risk in males more than in females, reminiscent of the diagnostic test. In contrast, 

the intermediate phenotypes were of relatively greater importance in females than in males to 

differentiate between maternal vs. paternal AD risk. The first intermediate phenotype of AD 

susceptibility showed a robust main effect in females associated with maternal lineage in most 

models. In most models, the third intermediate phenotype showed the opposite effect in females 

and was associated with paternal lineage. Most robust interaction effects between the first 

intermediate phenotype and HC and DN co-variation expressions were found in females and were 

specific to maternal risk. In contrast, we found robust interaction effects in males for the third 

intermediate phenotype associated with paternal risk. The second intermediate phenotype showed 

a unique pattern of sex-specific differentiation in HC and DN subregions. Brain-phenotype 

interaction effects were more robust in DN subregions for males and in HC subregions for females. 

Overall, our analysis of maternal vs. paternal AD risk revealed that the intermediate phenotypes 

derived from the PREVENT-AD cohort had more robust direct effects in explaining variance in 

the type of AD lineage in females than in males. In contrast, the HC-DN co-variation regimes were 

initially derived from the UK Biobank imaging cohort and differentiated between maternal and 

paternal AD lineage in males more than in females. Bridging across these two independently 

collected large cohorts allowed us to partition the variance in AD familial risk linked to the brain 

and the phenome. In doing so, we have provided unprecedented evidence of distinct, non-

overlapping patterns of structural variation in neocortical subregions of the DN as being jointly 

tied to male sex and paternal AD liability. 
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Cis- and trans-generational AD risk is manifested in default network and hippocampus 

subregions 

 

We next sought to quantify how matri- vs. patrilinear AD risk captured by the PREVENT-

AD-derived intermediate phenotypes were expressed in AD-vulnerable brain structures. Our goal 

was to determine which of the original 38 HC and 91 DN subregions were driving most of the 

associations between the UKB-derived HC-DN co-variation signatures and the PREVENT-AD-

derived intermediate phenotypes of AD susceptibility. We built on the classification models (cf. 

above) to closely dissect the relationship between the three intermediate phenotypes and HC-DN 

co-variation signatures encapsulated by the interaction terms. In males and females separately, we 

multiplied the interaction terms between a given intermediate phenotype and a given HC or DN 

pattern by the subject-specific expressions of that same pattern. For each subject visit, we obtained 

50 brain-phenotype association terms corresponding to the original pairs of 25 HC-DN brain 

signatures pooled across the variance in AD lineage explained by a giving intermediate phenotype. 

We projected back the 50 brain-phenotype association terms onto brain space by multiplying them 

with the respective 38 HC and 91 DN loadings of the original UKB-derived CCA model (c.f. 

methods). In doing so, we were able to assess the individual contribution of each of the 38 HC and 

91 DN subregions of the original allocortical and neocortical atlas to brain-phenotype associations 

between the three intermediate phenotypes of AD susceptibility and the 25 brain signatures of HC-

DN co-variation.  

 

The combined interaction effects of the 25 brain signatures of HC-DN co-variation with 

the first intermediate phenotype of AD susceptibility revealed sex bias in neocortical and 

allocortical subregion volumes (Fig. 6, left panels). In females, maternal AD risk highlighted 

variation in the DN's lateral structures, most pronounced in the left superior temporal gyrus (STG) 

and right orbitofrontal cortex (OFC). The opposite spatial distribution stood out in males; maternal 

AD risk was associated with structural variation in the DN's medial structures, notably the bilateral 

dorsomedial prefrontal cortex (dmPFC) and left precuneus (PCu). In contrast to the spatial 

separation of DN effects between males and females, a considerable overlap appeared in HC 

subregions. Notably, the left CA3 head was associated with paternal lineage in both sexes, whereas 

the left CA4 head, right CA1 body, and right subiculum body and head were associated with 



 111 

maternal lineage in both sexes. The association strength of these non-linear effects was noticeably 

smaller in males, which echoes the permutation results from the sex-specific classification 

analyses. All but one of the 11 brain-phenotype associations that survived the permutation test for 

the first intermediate phenotype of AD susceptibility were found in female subjects (Fig. 5). The 

spatial distribution of matri- and patrilinear effects was consistent with the existence of distinct, 

non-overlapping, anatomical connections between the HC and DN. Indeed, maternal AD risk was 

associated with variation along HC and DN subregions structurally connected via the fornix white 

matter tracts. The fornix, which carries fibre bundle axons from the CA1 and subiculum 

subregions, propagates the only hippocampal output signals that directly go to the orbitofrontal 

cortex of the DN [61, 62]. This pathway is mainly involved in spatial memory and navigation [63, 

64]. The cingulum bundle could represent an alternative route by which HC signals are conveyed 

to posterior midline structures of the DN to support pattern separation [64]. Pattern completion 

and separation could heavily rely on a dynamical system sustained by the DG and CA3, coupled 

with midline structures of the DN [64, 65]. The spatial distribution of patrilinear effects was 

reminiscent of anatomical connections between CA3 and posterior midline structures of the DN 

and contrasted with maternal effects found along the fornix tracts. Thus, we have singled out two 

functionally distinct cortical fibre bundles, the fornix and cingulum, as potential sources of the 

lineage differentiation captured by the first intermediate phenotype.  

 

The second intermediate phenotype of AD susceptibility was characterized by trans-

generational sex effects in neocortical subregions of the DN (Fig. 6, central panels). In females, 

we found that structural variation in all but two of the 91 DN subregions were related to paternal 

AD risk. Patrilinear effects were powerful in lateral structures of the DN, notably in the left 

superior parietal lobule (SPL), left medial temporal gyrus (MTG), right supramarginal gyrus 

(SMG), and right ventrolateral prefrontal cortex (vlPFC). We found the opposite generational 

effects in males; structural variation in all but five of the 91 DN subregions was related to maternal 

lineage. In contrast to what we found in females, matrilinear effects in males were found in both 

lateral (e.g., left STG) and medial structures (e.g., right PCu, right dmPFC) of the DN. 

Considerable lateralization emerged in HC subregions for both males and females. The molecular 

layer and entire DN highlighted patrilinear effects in females and matrilinear effects in males. We 

found the opposite effect for the left CA4 head, in which we located matrilinear effects in females 
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and patrilinear effects in males. The ML comprises axons branching from the pyramidal cells of 

the CA subfields and subiculum [65]. On the posterior part of the HC, the ML merged into the 

fornix’s fimbria, which supplies only direct hippocampal output signals to the DN [61, 62]. The 

congruence of the matri- and patrilinear effects, found respectively in the ML and entire DN of 

male and female subjects, is consistent with the fornix’s prominent role in sustaining HC-DN 

communication. Previous research has singled out the fornix fibres among 48 anatomical tracts as 

most strongly related to DN gray matter patterns [66]. CA4, also known as the hilar region of the 

dentate gyrus, has the lowest density of pyramidal cells of the cornu Ammonis subfields [67]. In 

addition, CA4 does not subserve temporal lobe cortical projections, as is the case for the CA1 and 

presubiculum [68]. CA4’s contribution to HC efferent signals is thus of limited reach and 

presumably bounded to local modulatory control. The sparse communication between the CA4 

and neocortex perhaps explains the incongruence of our reported matri- and patrilinear effects. 

The combined interaction effects of the 25 brain signatures of HC-DN co-variation with the second 

intermediate phenotype of AD susceptibility thus highlight the ML and, by extension, the fornix 

in sustaining HC-DN coupling.  

 

The third intermediate phenotype of AD susceptibility revealed cis-generational sex effects 

in neocortical subregions of the DN (Fig. 6, right panels). While the individual contribution of the 

HC-DN signatures to brain-phenotype associations was only robust in males (Fig. 5), their 

combined influence revealed matrilinear effects in females and patrilinear effects in males.  

Structural variation was most strongly associated with maternal AD risk in females in the left 

retrosplenial cortex (RSC), left vmPFC, and right angular gyrus (AG). In contrast, patrilinear 

effects were most prominent in males in the left dmPFC and right temporo-parietal junction (TPJ). 

We found a significant degree of overlap in HC subregions. Although the magnitude was more 

substantial for male subjects, we found matrilinear effects in both sexes in the fimbria and CA3 

head. We located corresponding matrilinear effects in the left vmPFC of both sexes—the same 

hemisphere that showed the most robust positive fimbria weights. The fimbria’s projections to the 

vmPFC via the fornix are considered unilateral [61]. We identified congruent matrilinear effects 

in the vmPFC and fimbria, consistent with the prominent role of the fornix in HC-DN coupling. 

In males, these matrilinear effects persisted even in the presence of strong patrilinear weights in 

dorsal parts of the DN (e.g., dmPFC and TPJ). Our classification models for male subjects 
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highlighted the contrasting presence of matrilinear HC weights and patrilinear DN weights (Fig. 

5). Indeed, brain-phenotype associations effects that survived the 95% permutation test in males 

were of positive signs on the HC models (i.e., associated with maternal lineage), and negative signs 

(i.e., associated with paternal lineage) on the DN models. Our structural dissection of brain-

phenotypes associations on the third intermediate phenotype of AD susceptibility has thus 

provided an anatomical basis to the contrasting matrilinear HC weights and patrilinear DN weights 

found in male-specific models. We established that patrilinear weights were mostly located on 

superficial parts of the DN. In contrast, we located some matrilinear weights in the ventral parts of 

the DN with known anatomical connections to the HC. Thus, we have found biologically grounded 

differentiation of AD lineage in HC and DN subregions reminiscent of the unilateral projections 

from the HC to the DN. 
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Discussion 
 

We have isolated and characterized a rich collection of matri- and patrilinear effects in 

APOE-related AD risk transmission from one generation to the next. This analysis was critically 

enabled by the, to our knowledge, richest homogenously acquired prospective cohort of first-

degree relatives of AD patients, with >200 carefully curated phenome markers – the PREVENT-

AD initiative. In doing so, we uncovered intermediate phenotypes of AD susceptibility that 

surfaced differently in male vs. female offspring. Concomitantly, the derived intermediate 

phenotypes were strongly dependent on the sex of the diagnosed parent. Lineage-specific 

differentiation in the phenome and brain structure became apparent in asymptomatic children of 

AD patients. Cognitive and cardiovascular risk indicators were most divergent on the lineage 

spectrum of disease variation compared to other consequences of AD family burden. 

 

These phenome traits were most evident in the associations with the putatively protective 

APOE ɛ2 carriership and placed global cognitive performance in direct opposition to 

cardiovascular risk indicators. Paternal and maternal inheritance routes showed distinct biological 

footprints in the HC and DN of at-risk subjects. Our findings pointed to HC and DN subregions, 

which are known to be anatomically connected via the fornix fibre pathway [66], as showing the 

most structural variation with regard to AD lineage. Over the past two decades, several hypotheses 

have emerged as target candidates in explaining the differential impact of maternal vs. paternal 

AD liability [69]. We will address the plausible primary sources of biases in AD transmission that 

could explain the cross-generational effects captured by our derived intermediate phenotypes. 

These biological mechanisms, potentially at play in our findings, can be regrouped into three kinds 

of candidate explanations: mitochondrial alteration, epigenetic imprinting, and chromosome X-

mediated transmission.  

 

Mitochondrial DNA (mtDNA) is categorically inherited from the mother, making it a 

biological source of sex bias that can be transmitted over generations [70]. Our first intermediate 

phenotype highlighted lineage-sex biases for two genetic markers that have previously shown to 

control mitochondrial functioning: HMGCR and BDNF polymorphisms. The Met allele of the 

BDNF gene has been associated with decreased in-vivo levels of N-acetyl aspartate, a marker of 
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mitochondrial oxidative stress, in the hippocampus of human subjects [21]. Similarly, a high dose 

of HMGCR inhibitors (statins) has been linked to mitochondrial dysfunction and intracellular 

oxidative stress in human cell cultures [71].  With almost 20 years of standing in AD research, the 

mitochondrial cascade hypothesis has challenged the brain-centric view of AD by shifting the 

object of focus to more systemic biochemical features, given that mitochondria are pervasive 

human body cells [72, 73]. In its original form, the mitochondrial cascade hypothesis holds that 

mitochondrial dysfunction precedes and potentiates deposition of b-amyloid (Ab) aggregates [73]. 

In more recent years, evidence that Ab alters mitochondrial functioning has informed and refined 

the original hypothesis [74]. In-vitro analyses have suggested that Ab42 peptides could act as a 

neurotoxin to induce oxidative stress, which impairs mitochondrial functioning [75]. Inversely, 

cells expressing mitochondrial DNA from AD subjects have shown elevated oxidative stress 

markers that, in turn, promoted Ab toxicity and programmed cell death [76]. Missense 

mitochondrial genome mutations that might lead to oxidative phosphorylation have been found at 

a higher rate in AD patients and children of affected mothers [77]. In a female mouse AD model, 

embryonic hippocampal neurons showed decreased mitochondrial respiration sustained through 

the reproductive period and most apparent during reproductive decline [78]. Mitochondrial 

amyloid load in hippocampal CA1 neurons also increased in this female mouse model, echoing 

findings from human subjects [78]. Indeed, subjects with maternal AD risk have shown elevated 

CSF levels of F2-isoprostane, a marker of oxidative stress, that co-occurred with lower CSF levels 

of Ab42/40, a marker of amyloid aggregation [13]. Estrogen-signalling pathways could further 

enhance sex biases in mitochondrial functions, particularly in hippocampal neurons [79]. In fact, 

the intact hippocampus has a relatively elevated concentration of steroid hormone receptors 

compared to other brain regions [49]. Estradiol may promote mitochondrial respiration, ATP 

generation, and antioxidant mechanisms [80]. Maternally transmitted mitochondrial DNA could 

provide a genetic ground by which protective or deleterious haplotypes are passed on from 

generation to generation. The influence of estrogens throughout females’ reproductive age up to 

senescence could further exacerbate lineage biases in mitochondrial functioning by precipitating 

Ab aggregates accumulation and AD pathogenesis. Our discovered lineage-sex biases in HMGCR 

and BDNF polymorphisms could thus reflect maternally transmitted genomic effects on 

mitochondrial functioning and be further modulated by related sex hormone pathways.  
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Another plausible avenue by which the genealogy of AD risk may be contribute to our 

results hinges on epigenetic modulation. Epigenetic inheritance (modifications of the tails of 

histones that carry DNA) refers to the phenomenon by which experiences and environmental 

changes in the parent generation are transmitted across several offspring generations [53]. It can 

be seen as part of an overarching class of imprinting mechanisms by which parental genome 

features impact the vulnerability of offspring to many pathological conditions. Epigenetic 

inheritance can occur in a sex-dependant manner, affecting transcriptional patterns in males and 

females separately and as a function of the parent’s sex. Indeed, the mechanisms by which 

methylation markers are reprogrammed after fertilization differ in time and nature for paternal and 

maternal DNA [53]. After the lineage-dependent reprogramming, gametes methylation then differs 

as a function of sex. Oocytes methylation is slower and dynamic, increases progressively until sex 

maturation, and declines to around 40% [81]. In contrast, gametes methylation is much faster in 

males and reaches 90% before birth [81]. The compartmentalization of methylation processes into 

lineage- and sex-dependent mechanisms makes epigenetic transmission a plausible source of 

maternal vs. paternal biases in AD risk [50]. The idea that maternal and paternal genomes 

contribute equally to gametes at meiosis but entail different phenotypic effects during development 

was popularized over 30 years ago, notably with regard to late-onset disorders [82]. Such 

imprinting mechanisms have been suspected for a maternal [83] and paternal history of AD [84]. 

More recently, a case-control analysis that looked at 93 genes with age-specific expression in the 

brain revealed a significantly higher number of maternal imprints in late-onset AD cases compared 

to controls [85]. A gene that can be paternally imprinted in the placenta and fetal brain could 

nonetheless be maternally imprinted in fibroblasts and lymphocytes [85]. Recent evidence indeed 

suggests that partitioned heritability for maternal and paternal AD risk differ in different tissues. 

Maternal AD was notably enriched in the thyroid, pituitary, and esophagus. In contrast, paternal 

AD risk was most prominent in the cortex. These recent insights on AD lineage suggest that 

maternal AD risk is more systemic, whereas paternal risk could be specially manifested in the 

brain. Transcriptional reprogramming during senescence could account for non-Mendelian 

lineage-specific effects in late-life neurodegenerative disorders such as AD [50, 51, 86]. These 

effects include but are not limited to parent-of-origin effects [83], differential age at onset between 

maternal and paternal cases [87], chromatin remodelling [51], and age-dependent epigenetic drift 

[86]. Parent-of-origin effects refer to the phenomena by which the degree of expressions of certain 
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genes differs by the sex of the parent from which they are inherited [88]. The differential ages at 

dementia onset of maternally vs. paternally inherited AD cases could represent an instance of 

parent-of-origin effects. Sibling pairs of affected mothers showed almost identical age at AD onset, 

independent of sex  [87]. The similarity in age at onset within sibling pairs, which these authors 

strictly observed amongst maternal, but not paternal, cases, could represent a robust clinical marker 

of maternal transmission. Nonetheless, evidence from monozygotic twin pairs has shown that 

essentially identical epigenetic profiles in early life can substantially differ in older age [86, 89]. 

The acceleration of epigenetic modulations with aging, referred to as age-specific epigenetic drift, 

could be characteristic of late-onset AD cases [86]. In particular, chromatin remodelling is 

prevalent during senescence and is thought to have impacts on longevity and age-related cognitive 

decline [51]. While epigenetic inheritance represents a promising imprinting mechanism by which 

maternal and paternal AD risk differently affect offspring's risk, more work is needed to identify 

the specific gene, tissues, and cell types in which these parent-of-origin effects are most evident. 

For these reasons, epigenetic chromatin remodelling via histone modification could represent a 

potential therapeutic target for age-related disorders because of its modifiable and highly dynamic 

nature [50, 90]. 

 

Lastly, chromosome X-mediated transmission could represent a contingent source of 

lineage biases in AD risk. While females generally inherit a chromosome X from both parents, 

males typically receive a sole chromosome from their mother. Harbouring a second X chromosome 

could represent a biological advantage in conferring resilience towards cognitive deficits in 

females. Indeed, RNA sequencing of the human dorsolateral prefrontal cortex linked several X-

chromosomal genes to slower cognitive decline in autopsy samples from older females but not 

males [91]. In contrast, the expression of X genes involved in protein folding was associated with 

neuropathological tau burden in males but not in females [91]. Animal models of AD pathology 

corroborated these patterns of X chromosome-mediated vulnerability that is specific to one sex 

[92]. In fact, neurons from wild-type mice with the XY genotype were more vulnerable to Ab-

induced toxicity when exposed to recombinant Ab1-42 than those of mice with the XX genotype 

[92]. The X chromosome likely drove this effect, as similar findings were obtained when 

comparing neurons from mice with XY and X0 chromosomes to mice with XX and XXY 

chromosomes [92]. A recent genome-wide association study in ~40,000 UK Biobank participants 
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from the imaging cohort identified two X chromosome clusters of brain-gene associations that 

statistically differ in males and females [93]. The first X chromosome cluster was linked to metrics 

of white matter integrity, with peaked effects identified for neurite density in the left superior 

longitudinal fasciculus [93]. The second cluster highlighted measures of gray versus white matter 

intensity contrast in limbic and temporal regions identified as belonging to the DN [93]. It thus 

seems that harbouring only one X chromosome leads to poorer health outcomes, possibly by 

making the brain more vulnerable to age-related neurotoxicity that eventually precipitates AD 

pathogenesis. A recent meta-analysis has indeed shown that the male sex, defined as having the 

XY genotype, increased the risk for death in AD by 62% as compared to the female sex, defined 

as having the XX genotype [92]. Candidate X genes, such as Kdm6a, have emerged from recent 

translational work from mice to human as protective against cognitive deficits and Ab toxicity 

[92]. Nonetheless, the frequency of SNPs mutations on the X chromosome is reduced by half in 

male participants. Larger, population-based genome studies of gene-trait associations are needed 

to achieve generalizability beyond hand-selected AD clinical samples. 

 

 

Conclusion  
 

 Our data-informed framework identified parent-of-origin biases in APOE-related AD risk 

in the currently available richest homogenous prospective cohort of AD-at-risk subjects. We 

extend the widely adopted brain-centric view of AD and offer a complete overview of lineage-sex 

effects in the whole set of phenotypes available in PREVENT-AD. In doing so, we disentangled a 

considerable part of the heterogeneous nature of AD risk by establishing intermediate phenotypes 

that statistically differed as a function of maternal and paternal AD risk. Our careful filtering of 

the ever-growing collection of AD risk indicators advocates for therapeutic avenues centred 

around sex-specific pathways in AD transmission. The different manifestation of maternal and 

paternal AD risk in male and female offspring is consistent with the co-existence of two distinct 

disease risk categories rooted in separate biological mechanisms.   
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Methods  

Population data source 

 

The PREVENT-AD cohort [14] is composed of older individuals with a known family 

history of Alzheimer’s disease that were cognitively unimpaired at the time of enrollment from 

2011 to 2017 (mean age 63, standard deviation [SD] 5 years). Participants of the PREVENT-AD 

initiative have undergone extensive annual health and cognitive assessments for up to five years. 

This resource creates a unique opportunity to monitor longitudinal trajectories of brain-imaging 

assessments, cerebral fluid biochemistry, neurosensory capacities, and medical charts in pre-

symptomatic individuals at Alzheimer’s risk. Our independent PREVENT-AD sample consisted 

of 386 participants (27% men, 73% women) with the following APOE genotype distribution: ɛ3/3 

(51.2%), ɛ3/4 (33.1%), ɛ3/2 (10.5%), ɛ2/4 (3.0%), ɛ4/4 (2.1%). Data used in preparation of this 

article were obtained from the Pre-symptomatic Evaluation of Novel or Experimental Treatments 

for Alzheimer’s Disease (PREVENT-AD) program (https://douglas.research.mcgill.ca/stop-ad-

centre), data release 6.0. Access to the open data inventory can be found online (https://prevent-

alzheimer.net. A complete listing of PREVENT-AD Research Group can be found in the 

PREVENT-AD database: 

https://preventad.loris.ca/acknowledgements/acknowledgements.php?date=2023-04-01.  

 

Brain-imaging and preprocessing procedures 

 

Population-based cohorts are ideally suited to tease apart subregion-level variation in AD 

risk. Advances in automatic segmentation techniques for the human HC using ex vivo brain 

imaging have allowed for subject-specific parcellations that respect the diversity of distinct 

subregions identified post-mortem [65]. Capitalizing on these ultra-high resolution segmentations, 

we previously assessed microstructural alterations of the human HC in a newly detailed way that 

scaled to ~40,000 UK Biobank (UKB) participants primarily of European genetic ancestry [40]. 

We described AD-related patterns of structural co-variation in DN subregions, which varied in 

lockstep with fine-grained HC subregions [40]. Working at a population scale made it possible for 

us to investigate the effect of rare genotypes on brain structure. Specifically, we were able to 

characterize the effects of APOE ɛ2 and ɛ4 on inter-individual expressions of HC-DN co-variation 

https://prevent-alzheimer.net/
https://prevent-alzheimer.net/
https://preventad.loris.ca/acknowledgements/acknowledgements.php?date=2023-04-01
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[40]— something out of reach in traditional brain-imaging studies involving small to medium 

sample sizes. We are now interested in carrying over our UKB-derived population definitions of 

HC-DN co-variation to unseen PREVENT-AD participants. In doing so, we aimed to examine 

whether our HC-DN co-variation signatures successfully track targeted AD markers in persons 

with a parental history of AD. While the UKB sample was designed to be representative of the 

general population, the PREVENT-AD cohort was established to monitor pre-symptomatic 

changes in first-degree relatives of AD patients. This unique population of AD-vulnerable 

individuals, with an estimated 2-3 fold relative increase in dementia risk [15, 16], allows us to 

systematically assess the expression of our HC-DN co-variation signatures in the context of AD 

progression.  

 

The PREVENT-AD resource provides brain imaging scanning (including T1-weighted 

images) for up to four years of follow-up from 386 participants. Separately for the brain-imaging 

scans from each participant visit, we first performed a full FreeSurfer reconstruction followed by 

subcortical volumetric sub-segmentation of the 38 hippocampal subfields, analogous to the UKB 

brain-imaging preprocessing pipeline. In the same way as in our previous publication, we next 

parsed the cortex volumes from the structural brain scans according to the Schaefer-Yeo 

parcellation (400 parcels, 7 networks) to obtain the analogous 91 parcels defined as belonging to 

the DN by the reference atlas 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaef

er2018_LocalGlobal/Parcellations/project_to_individual). Covariates (age, age2, sex, sex*age, 

and sex*age2) were regressed out from each brain-derived grey matter volume measure as part of 

the deconfounding procedure. Age was determined at the time of recruitment and sex was self-

reported. The final brain-imaging sample consisted of 368 participants (261 women and 107 men) 

with a total of 910 individual visits. 

 

We extracted the same collection of brain-image-derived phenotypes of grey matter 

morphology as our previous HC-DN covariation study in the UKB [40]. We were thus able to 

compute the expression of the 25 UKB-derived modes of HC-DN co-variation based on grey 

matter measurements for the identical sets of 91 DN and 38 HC target subregions. For each 

PREVENT-AD visit, we obtained the subject-specific expression levels of the 25 HC and 25 DN 



 121 

patterns of structural co-variation (i.e., canonical variates) that capture the inter-individual 

variation in the 25 pairs of HC-DN co-variation signatures. These derived brain measures were fed 

into our downstream analyses. 

 

Non-imaging data preprocessing  

 

Of the 910 visits with brain imaging and APOE genotypes, 109 came from participants 

with both maternal and paternal AD lineage and were excluded. An additional 62 visits that came 

from participants with only sibling history of AD were also excluded. We removed 57 visits from 

participants with ɛ4/4 (1 male/7 females) and ɛ2/4 (6 males/8 females) genotypes because of their 

limited sample sizes. We next balanced the percentage of males and females with ɛ3/2, ɛ3/3, and 

ɛ3/4 genotypes by dropping visits from female participants at random. We used the same procedure 

to balance the percentage of males and females with maternal and paternal AD lineage. A total of 

250 visits from female participants were dropped in this procedure. In the final balanced sample, 

the distribution of APOE genotypes was the same in males and females and consisted of ɛ3/2 at 

15%, ɛ3/4 at 35%, and ɛ3/3 at 50%. The distribution of maternal and paternal AD lineage in males 

and females was 34% paternal and 66% maternal. The final sample consisted of 432 participant 

visits, 182 of which (42%) came from male participants. 

 

Intermediate phenotypes of Alzheimer’s disease susceptibility 

 

As the backbone of our analysis workflow, we sought to derive intermediate phenotypes 

of AD susceptibility that partitioned the phenotypic expression of familial risk as a function of 

APOE genetic background. We capitalized on the rich PREVENT-AD indicators set to capture 

APOE-phenotypes associations across 256 risk indicators from 7 broad risk categories: 

cardiovascular health, cognition, clinical co-morbidities, demographics, disease progression, 

genetics, and neurosensory assessments. We designed PLS-regression (PLS-R) models in which 

the APOE genotypes (e.g., ɛ3/2, ɛ3/3, ɛ3/4) were estimated based on these 256 risk indicators. 

PLS-R was a natural choice of method as it is especially suited to disentangle the variance of a 

high-dimensional set as a function of a targeted outcome. The explanatory input variable set 𝑋 was 

constructed from the PREVENT-AD risk indicators (number of subject visits ✕ 256 phenotypes). 
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A parallel outcome variable set 𝑌 was constructed from the one-hot-encoded APOE genotypes 

(number of subject visits ✕ 3 genotypes (e.g., ɛ3/2, ɛ3/3, ɛ3/4)): 

 

𝑋 ∈ 	ℝ!×4 

𝑌 ∈ 	ℝ!×# 

 

where 𝑚 denotes the number of PREVENT-AD phenotypes, and 𝑝 the number of APOE 

genotypes. PLS-R finds latent variables that model 𝑋 and simultaneously predict 𝑌. The two sets 

𝑋 and 𝑌 are decomposed as the dot product of two matrices that represent the model scores (𝑇, 𝑈), 

and loadings (𝑃, 𝑄), respectively. The decomposition of the original variable sets is obtained as 

follows: 

𝑋 = 	𝑇𝑃) + 𝐸 

𝑌 = 	𝑈𝑄) + 𝐹 

𝑇 = 	𝑋𝑊∗ 

 

where 𝑇 and 𝑈 are matrices of size 𝑛 × 𝑙 , 𝑃 is a matrix of size 𝑚 × 𝑙, 𝑄 is a matrix of size 𝑝 × 𝑙, 

and 𝐸 and 𝐹 are matrices of normally distributed error terms for 𝑋 and 𝑌, respectively. The number 

of loadings is denoted by 𝑙	and determined by the rank of 𝑋. Following the principle of linear 

regression, 𝑌 can be estimated as a function of 𝑋 through the following equation: 

 

𝑌 = 	𝑇𝑄) + 𝐺 

 

where 𝐺 is a matrix of normally distributed residuals. This equation can be re-expressed as the 

multiple regression model: 

𝑌 = 	𝑋𝑊∗𝑄) + 𝐹 

𝐵 = 	𝑊∗𝑄) 

 

where 𝐵 is a matrix of regression weights, equivalent to the coefficients of a multiple regression 

model. PLS-R thus find a series of 𝐿 orthogonal latent variables, i.e., 𝑡(, that have maximal 

covariance with 𝑌 but are uncorrelated to each other. These latent variables are ordered according 
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to the amount of variance of 𝑌 that they explain. Formally, the optimization can be described as 

follows: 

𝑡( = 	𝑋𝑤(, such that 𝑐𝑜𝑣(𝑡( , 𝑌) = 𝑚𝑎𝑥 

 

The goal of our PLS-R application was to derive APOE-driven intermediate phenotypes of 

AD susceptibility. We focused on the first three latent variables to highlight phenotypic variation 

in AD risk associated with APOE ɛ3/2, ɛ3/3, and ɛ3/4. That way, we obtained three different 

constellations of PREVENT-AD phenotypes that were pooled across APOE genetic backgrounds. 

This approach allowed us to extract three intermediate phenotypes of AD susceptibility that 

encapsulated different relationships between the PREVENT-AD risk indicators and the three most 

prevalent APOE genotypes.  

 

Assessment of the lineage-specific and sex-specific variation in intermediate phenotypes of 

Alzheimer’s disease susceptibility 

 

We next systematically explored sex-specific and lineage-specific variation on the derived 

intermediate phenotypes of AD susceptibility. Each intermediate phenotype captures a different 

fraction of the phenome-wide variation in AD risk that can be attributed to the APOE gene. Our 

goal was to interrogate whether sex and maternal vs. paternal AD lineage influence the expression 

of AD risk markers in the three intermediate phenotypes. To do so, we ran parallel analyses in 

which the analogous intermediate phenotypes of AD susceptibility were derived from males and 

females, and maternal vs. paternal AD lineage, separately. That way, we were in a position to 

assess which aspects of the phenome-wide variation in AD risk can be attributable to sex and 

family lineage.   

 

We first separated male (N=182) and female (N=250) subject visits and built two sex-

specific PLS-R models in which the APOE genotypes (e.g., ɛ3/2, ɛ3/3, ɛ3/4) were estimated based 

on the standardized 256 PREVENT-AD risk indicators (c.f. above). The distributions of APOE 

genotypes and maternal vs. paternal AD lineage was previously balanced between male and 

females (c.f. above). In parallel, we built analogous PLS-R models for the subject visits coming 

from subjects with maternal (N=284) and paternal (N=148) AD lineage. We aimed to 
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quantitatively compare the weights of each of the 256 PREVENT-AD risk indicators on the PLS-

R models derived from males vs. females and from subjects with maternal vs. paternal AD lineage. 

Before subtracting the x-loadings of the first 3 PLS-R components of two given subgroups (e.g., 

males vs females, maternal vs. paternal) we computed the Pearson’s correlation coefficients 

between the y-loadings (i.e., the weight of the three most prevalent APOE genotypes) of the first 

5 PLS-R components of the subgroups we were aiming to compare. Our objective was to ensure 

that the PLS-R components were associated with corresponding APOE genotypes, meaning that 

they were biologically comparable. After computing Pearson’s correlation matrices, we reordered 

the components of one of the two comparison subgroups based on the strength of its Pearson’s 

correlation with the other subgroup. After hierarchically matching the components based on this 

procedure, we subtracted the x-loadings for males and females as well as for maternal and paternal 

lineages to derive category-specific estimates of the generational difference in AD risk. In doing 

so, we were able to identify which of the PREVENT-AD risk indicators showed the most sex-

specific and lineage-specific variation on a given intermediate phenotype of AD susceptibility.  

 

Longitudinal analysis of lineage- and sex-specific variation in Alzheimer’s disease intermediate 

phenotypes 

 

 We subsequently examined how the sex-specific and lineage-specific variation in AD risk 

captured by the three intermediate phenotypes of AD susceptibility changes over time. We 

capitalized on the serial assessments of the PREVENT-AD cohort to track category-wise 

progression in AD risk over a 4-year follow-up period. That way, we were able to identify which 

of the 7 broad categories of AD risk factors (c.f. above) track most of the sex-specific and lineage-

specific fluctuation in AD risk for a given intermediate phenotype.  

 

 The 432 subject visits composing the balanced sample (c.f. above) came from 233 different 

PREVENT-AD participants. Of those participants, 126 (55% females, 65% maternal AD lineage) 

had at least one follow-up visit over the 4-year period of assessment. The first and last follow-up 

visits of each of these participants served as our two grouping time variables. We ran analogous 

sex-specific and lineage-specific PLS-R models (c.f. above) on both time points. We again 

hierarchically matched the PLS-R components between males vs. females and maternal vs. 
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paternal AD lineage to compare the expressions of our three intermediate phenotypes in the 4 

comparison subgroups. Subsequently, we subtracted the x-loadings for males and females as well 

as for maternal and paternal lineages at each of the two time points to track variation in AD risk 

on the three intermediate phenotypes. We then averaged over the differences in x-loadings with 

regard to sex and AD lineage for each of the 7 categories of risk indicators at both time points: 

cardiovascular health, cognition, clinical co-morbidities, demographics, disease progression, 

genetics, and neurosensory assessments. In doing so, we were able to derive category-wise 

estimates of the sex- and lineage-specific differences in AD progression for each of the three 

intermediate phenotypes. 

 

Alzheimer’s disease lineage is expressed in hippocampus and default network subregions 

 

 As our core goal, we aimed to elucidate whether maternal vs. paternal AD lineage is linked 

to specific structural variation in HC and DN subregions. More specifically, we wanted to quantify 

how much a given subregion contributes to the classification of maternal vs. paternal AD risk in 

the context of the whole set of 38 HC subregions or 91 DN subregions. This diagnostic test enabled 

us to pin down which (if any) microstructurally defined subregions within two cortical systems 

most affected in AD were related to either maternal vs. paternal AD lineage. 

 

We built classification models (logistic regression) to estimate the type of AD lineage 

(maternal=1, paternal=0) as a function of grey matter volumes in the 38 hippocampus subregions 

of the FreeSurfer subcortical atlas (c.f. above). Two separate lineage-classification models were 

built, one for males and one for females. Each classifier took 38 input variables corresponding to 

the grey matter volumes in the HC subregions. We employed a resampling procedure to account 

for differences in the numbers of males vs. females, and individuals with maternal vs. paternal AD 

lineage, that could affect classification toward to most prevalent classes. Across 1,000 iterations, 

we have drawn 100 males and 100 females, half of which had a history of AD on their mother’s 

side, while the other half had an history of AD on their father’s side. That way, we obtain 1,000 

different subsamples where male vs. female sexes and maternal vs. paternal AD lineage were 

equally represented. At each iteration, we randomly shuffled the true outcome of the classification 

model (maternal=1, paternal=0) 1,000 times and recomputed the classification weights for each 
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resampled subject dataset. In so doing, we could empirically derive null distributions for the 38 

coefficients of the 1,000 subsamples on which we performed two-tail tests for statistical relevance. 

The analogous classification and resampling analyses were conducted on the set of 91 default 

network subregions. 

 

Regression of Alzheimer’s disease lineage on the intermediate phenotypes and hippocampus-

default network signatures 

 

We next tested whether our UKB-derived signatures of HC-DN co-variation relate to the 

PREVENT-AD-derived intermediate phenotypes in classifying the type of AD lineage. 

Capitalizing on these two independently collected datasets allowed us to identify clinically 

relevant aspects of AD risk robustly tracked by the HC-DN co-variation signatures. We thus aimed 

to build upon the characterization of our population-derived limbic-cortical regimes by linking 

them with widely established indicators of dementia progression in presymptomatic individuals. 

We examined whether we could differentiate the type of AD lineage based on a set of explanatory 

input variables including i) the three PREVENT-AD-derived intermediate phenotypes, ii) 

individual variation in expression of 25 HC-DN co-variation patterns (i.e., canonical variates), and 

iii) the interaction between the three intermediate phenotypes and the 25 co-variation pattern 

expression strengths. For each sex, we built separate classification models for each of the 25 HC 

and 25 DN canonical variates, yielding a total of 50 estimated models per sex. In each model, the 

type of AD lineage (encoded as 0 for paternal and 1 for maternal) was regressed on one HC or DN 

canonical variate, the three PREVENT-AD-derived intermediate phenotypes, and three interaction 

terms capturing possible non-linear association between each of the three intermediate phenotypes 

and the given HC or DN pattern, for a total of 7 regression parameters. We thus obtained a total of 

100 logistic model fits that sought to explain variance in the family history of AD as a function of 

these 7 parameters.  

 

As a complementary analysis integrating across the obtained classification models, we 

performed a rigorous permutation analysis to assess the robustness of each of the 7 classification 

coefficients. In 1,000 iterations, we randomly shuffled the type of AD lineage (maternal=1, 

paternal=0) across the 910 participant assessments. We recomputed the otherwise identical 
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classification models based on the data with randomized outcomes. We recorded the classification 

coefficients from each of the 1,000 iterations and used them to build empirical null distributions 

which provided the basis to perform two-tail statistical tests at a 95% confidence level.  

 

Back projection of brain-phenotype interaction onto hippocampus and default network 

subregions 

 

 We next sought to quantify how matri- vs. patrilinear AD risk captured by the PREVENT-

AD-derived intermediate phenotypes were expressed in AD-vulnerable brain structures. We used 

the interaction terms from the 100 classification models (c.f. above) to derived estimates of brain-

phenotype associations pooled across AD lineage. The interaction terms encapsulate how much a 

given HC or DN co-variation patterns is linked to a given intermediate phenotype of AD 

susceptibility in the context of matri- vs. patrilinear AD risk. We could then quantify how much 

of the brain-phenotypic variation captured by a given intermediate phenotype is reflected in 

anatomically defined HC and DN subregions.  

 

In sex-specific analyses, we multiplied the interaction terms for a given intermediate 

phenotype of AD susceptibility with the expression levels of the corresponding HC or DN co-

variation patterns. In doing so, we obtain 50 brain-phenotype associations terms pooled across AD 

lineage, corresponding to the pairs of 25 HC-DN brain signatures. For each of the three 

intermediate phenotypes of AD susceptibility, we next projected back the 50 brain-phenotype 

associations terms onto brain space by multiplying them with the respective HC and DN loadings 

of the original UKB-derived canonical correlation analysis (CCA) model (see [40]). In doing so, 

we were in a position to measure the individual contribution of the original 38 HC and 91 DN 

subregions used in the UKB-derived CCA model to the variation on the three intermediate 

phenotypes of AD susceptibility derived from the PREVENT-AD cohort. 
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Figures 

 

Figure 1. Lineage-specific and sex-biased differences in memory and lipid metabolism tracked by the leading 
intermediate phenotype of AD susceptibility. We separated male and female at-risk subjects and built two sex-
specific PLS regression (PLS-R) models in which the APOE genotypes (e.g., ɛ3/2, ɛ3/3, ɛ3/4) were distinguished 
based on 256 PREVENT-AD phenotypes (dots top middle) spanning 7 broad categories of AD risk factors (colours 
top middle, cf. legend). Two analogous lineage-specific PLS-R models were built based on at-risk subjects with the 
conferred maternal and paternal AD liability. We then subtracted the risk indicators model weights for maternal vs. 
paternal lineage (y-axis) and males vs. females (x-axis). We show the lineage-specific and sex-specific effects against 
each other for the first PLS-R component (top central panel). The bottom right subplot shows the weights associated 
with each APOE genotype across subjects, while the bottom left subplot shows the mean category-wise difference 
between maternal vs. paternal lineage and male vs. female sex over time. The accompanying radar plots show the top 
5 phenotypes associated with maternal vs. paternal lineage (left) and male vs. female sex (right); one circle for each 
category of AD risk factors. The first intermediate phenotype of AD susceptibility highlighted cross-generational 
effects on genetic markers of memory and lipid metabolism. The effect of Val66Met, a missense variant in the gene 
that codes for BDNF protein, clearly deviated by sex (right genetic radar plot). The effect of SNP rs3846662, which 
is present in intron M of the HMGCR enzyme, was mostly driven by family lineage (left genetic radar plot). The 
relative contribution of APOE ɛ4/ɛ3 to the variation in disease manifestation was stronger than for genotypes ɛ3/3 and 
ɛ3/2. The trajectory of cardiovascular risk indicators showed the most sex bias over time. The first intermediate 
phenotype of AD susceptibility thus captured cross-generational differences in how proteins are involved in memory 
and lipid metabolism that persisted through time. BchE: butyrylcholinesterase; BDNF: brain-derived neurotrophic 
factor, BP: blood pressure; CAIDE: cardiovascular risk factors, aging, and incidence of dementia; CSF: cerebrospinal 
fluid; HDL: high-density lipoprotein; HMCGR: 3-hydroxy-3-methylglutaryl-CoA reductase; IL-15: interleukin-15; 
MCI: mild cognitive impairment; MoCA: Montreal cognitive assessment; PPP2r1A: protein phosphatase 2 scaffold 
subunit Alpha; TLR4: toll-like receptor 4; TSH: thyroid stimulating hormone; VEGF: vascular endothelial growth 
factor.   
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Figure 2. Maternal vs. paternal AD lineage dissociates phonological processes from delayed and immediate 
recall. We plotted the sex-specific and lineage-specific effects against each other for the second intermediate 
phenotype of AD susceptibility (top central panel). The bottom right subplot shows the weights associated with each 
APOE genotype across subjects, while the bottom left subplot shows the mean category-wise difference between 
maternal vs. paternal lineage and male vs. female sex over time. The accompanying radar plots show the top 5 
phenotypes associated with maternal vs. paternal lineage (left) and male vs. female sex (right); one circle for each 
category of AD risk factors. The second intermediate phenotype of AD susceptibility unveiled notable effects of AD 
lineage on cognitive indicators that extended beyond the effect solely attributable to sex and age. Measures of memory 
performance and visuospatial attention were situated at the opposite extremes of the lineage-specific spectrum of 
disease variation. We also revealed a prevailing influence of sex on neurosensory (top right corner) and cardiovascular 
markers (bottom left corner), accompanied by a comparatively minor effect of AD lineage. The lineage-specific 
difference in AD risk captured by the cognitive indicators showed the most variation over time. Hence, the second 
intermediate phenotype of AD susceptibility was thus characterized by a lineage-specific separation of cognitive 
capacities, distinguishing those related to memory from those linked to numerical and visuospatial abilities. BchE: 
butyrylcholinesterase; BDNF: brain-derived neurotrophic factor; CAIDE: cardiovascular risk factors, aging, and 
incidence of dementia; CDK5RAP2: CDK5 regulatory subunit associated protein 2; CSF: cerebrospinal fluid; HbA1c: 
hemoglobin A1C; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; MCI: mild cognitive impairment; MoCA: 
Montreal cognitive assessment; PPP2r1A: protein phosphatase 2 scaffold subunit Aalpha; RBANS: repeatable battery 
for assessment of neuropsychological status; TLR4: toll-like receptor 4; VEGF: vascular endothelial growth factor. 
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Figure 3. Memory and cardiovascular health outcomes strongly depend on lineage of AD liability transmission. 
We plotted the lineage-specific and sex-specific effects against each other for the third intermediate phenotype of AD 
susceptibility (top central panel). The bottom right subplot shows the weights associated with each APOE genotype 
across subjects, while the bottom left subplot shows the mean category-wise difference between maternal vs. paternal 
lineage and male vs. female sex over time. The accompanying radar plots show the top 5 phenotypes associated with 
maternal vs. paternal lineage (left) and male vs. female sex (right); one circle for each category of AD risk factors. 
The third intermediate phenotype of AD susceptibility highlighted the combined influence of AD lineage and sex on 
cognitive abilities and cardiovascular health. The additive cross-generational effects placed cardiovascular (bottom 
left corner) and cognitive risk indicators (top right corner) in opposite directions on the AD-liability spectrum, with 
regard to both sex- and lineage-specific variation. The relative contribution of APOE ɛ3/ɛ2 to the variation in disease 
manifestation was stronger than for genotypes ɛ3/3 and ɛ3/4. Over time, the sex-specific differences in AD risk 
captured by the cardiovascular and neurosensory indicators increased in opposite directions. The combined effects of 
AD lineage and sex therefore placed cognitive and cardiovascular risk indicators at antipode on the AD-liability 
spectrum derived from the third profile of AD susceptibility. BchE: butyrylcholinesterase; BDNF: brain-derived 
neurotrophic factor; BP= blood pressure; CAIDE= cardiovascular risk factors, aging, and incidence of dementia; 
CDK5RAP2: CDK5 regulatory subunit associated protein 2; CSF: cerebrospinal fluid; G-CSF: granulocyte colony-
stimulating factor; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; MCI: mild cognitive impairment; MoCA: 
Montreal cognitive assessment; RBANS: repeatable battery for assessment of neuropsychological status; TLR4: toll-
like receptor 4; VEGF: vascular endothelial growth factor. 
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Figure 4. Maternal and paternal Alzheimer’s disease liability is tied to specific HC and DN subregions. We built 
classification models to estimate the type of AD lineage (maternal=1, paternal=0) as a function of grey matter volumes 
in the set of 38 HC subregions and that of 91 DN subregions. The goal of these analyses was to quantify how much a 
given subregion contributes to the classification of maternal vs. paternal AD risk in the context of the whole set of 
either 38 HC subregions or 91 DN subregions. For each atlas definition set, two separate classification models were 
built, one for males and one for females, that each had 38 or 91 input variables corresponding to the grey matter 
volumes in HC and DN subregions, respectively. We employed a resampling procedure to account for differences in 
the derived model effects in males vs. females and individuals with maternal vs. paternal AD lineage. We assessed 
the robustness of our findings by comparing each of the 38 HC and 91 DN coefficients from the male- and female-
specific models to empirically built null distributions obtained through permutation testing. Only the coefficients that 
were statistically different from their respective null distributions 80% of the time are presented. In the HC models 
(top panel), we found matrilinear effects located especially to the CA3 body, fimbria, and subiculum body in males, 
and in the HATA and parasubiculum body in females. We identified patrilinear effects in the CA4 body and molecular 
layer in males, and presubiculum body in females. All robust patrilinear effects were located to the left hippocampus, 
regardless of sex. The distribution of matri- and patrilinear effects in DN subregions showed more sex biases than for 
HC subregions. We identified matrilinear effects in frontal and temporal subregions of the DN that spanned both 
hemispheres in males and females (bottom panels). In contrast, patrilinear effects were only identified in males and in 
majority located in the left hemisphere (left bottom panel). No overlaps in matri- and patrilinear effects were observed 
for any HC or DN subregions. While cis- and trans-generational effects of maternal AD lineage were found in both 
brain systems, only cis-generational effects of paternal AD risk (i.e., father-to-son) were observed in neocortical 
subregions of the DN. Our in-depth pattern-learning approach, therefore, detected a male-specific structural 
association with paternal AD risk reflected in phylogenetically more recent as opposed to older layers of the cortex. 
HATA: hippocampus–amygdala-transition-area; pCUNPCC: precuneus/posterior cingulate cortex; PFC: prefrontal 
cortex; PFCv: ventral prefrontal cortex; Par: parietal cortex, Temp: temporal cortex.  
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Figure 5. PREVENT-AD phenotypes of AD susceptibility interact with HC-DN population covariation 
signatures in explaining matri- vs. patrilinear AD risk. We carried over our previously established UKB-derived 
population brain signatures of HC-DN co-variation (ref. [40]) to the AD-at-risk PREVENT-AD cohort. We assessed 
whether our HC-DN co-variation signatures, which extracted knowledge from 40,000 UKB MRI visits, can track 
variation on 256 rich AD markers captured by the three intermediate phenotypes derived from the PREVENT-AD 
cohort. We computed the expression levels of the 25 UKB-derived modes of HC-DN co-variation in PREVENT-AD 
subjects based on grey matter measurements in the exact same sets of 91 DN and 38 HC subregions. For each visit, 
we obtained 25 HC and 25 DN patterns of structural co-variation that correspond to the 25 pairs of HC-DN co-variation 
signatures. In separated analyses for males and females, we built logistic regression models in which we classified 
maternal vs. paternal AD lineage (maternal=1, paternal=0) as a function of subject-specific expressions of the 3 
intermediate phenotypes (computed on the whole PREVENT-AD cohort), a given HC or DN co-variation pattern, and 
the interaction of the given HC or DN co-variation pattern with each of the 3 intermediate phenotypes. Each individual 
classification model is represented as a distinct column on the above heatmaps, on which the HC models (top panel) 
are separated from the DN models (bottom panel). Effects that were statistically robust in males vs. females at 95% 
are distinguished with distinct hatching patterns (see legend). In rare cases where an effect was significant in both 
sexes, hatching patterns were superimposed. The relative contribution of the PREVENT-AD-derived intermediate 
phenotypes was more important in females than in males. Robust main effects of the first and third intermediate 
phenotypes were found in females and linked to maternal and paternal AD lineage, respectively. In contrast, the 
relative contribution of the UKB-derived HC-DN co-variation signatures was more important in males than in females. 
In males, robust main effects of the HC-DN signatures were found on mode 8 on the HC side, and on modes 12, 18, 
and 22 on the DN side. A single main effect of mode 2 on the DN side was observed in females. Most interaction 
effects between the first intermediate phenotype and HC and DN co-variation patterns were found in females and were 
associated with maternal risk. The opposite was found for intermediate phenotype 3; most brain-phenotype interaction 
effects were found in males and were associated with paternal risk. We have thus established that the PREVENT-AD-
derived intermediate phenotypes are relatively more important in females than in males in driving the classification 
of maternal vs paternal AD risk. Males rather showed relatively stronger main effects of the UKB-derived HC-DN 
co-variation signatures, which is consistent with the male-specific constellations of structural associations detected in 
the diagnostic test. HC: hippocampus; DN: default network; IP: intermediate phenotype of AD susceptibility, UKB: 
UK Biobank. 
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Figure 6. Cis- and trans-generational AD risk manifests in DN and HC subregions. For each of the three 
intermediate phenotypes of AD susceptibility, we multiplied the interaction terms derived from sex-specific 
classification models with the subject-specific expressions of the respective HC or DN co-variation pattern. We thus 
derived 25 new relevance quantities for the HC and DN volume features by participant for each of the three 
intermediate phenotypes. For each intermediate phenotype, we next mapped back the 25 latent variables for the HC 
and DN onto the brain by respectively multiplying the HC and DN values with the 38 HC and 91 DN loadings of the 
canonical correlation analysis (CCA) model trained on the UKB. In doing so, we obtained an expression level of each 
of the three intermediate phenotypes derived from PREVENT-AD in the original 38 HC and 91 DN subregions used 
in the CCA model. We plotted the average expression level of the three intermediate phenotypes in each HC and DN 
subregion in male and female PREVENT-AD subjects. Circles indicate females, squares males. Full shading indicates 
maternal vs. parental AD cases. The first intermediate phenotype of AD susceptibility revealed sex biases in 
neocortical and allocortical subregions (left panels). Some degree of spatial heterogeneity in matrilinear effects was 
found between sexes. Matrilinear weights were located in lateral structures of the DN in females (e.g., left STG, right 
OFC) as compared to more medial parts of the DN in males (e.g., bilateral dmPFC, left PCu). A considerable degree 
of spatial overlap was found in allocortical subregions of the HC. The left CA3 head was associated with paternal 
lineage in both sexes, whereas the left CA4 head, right CA1 body, and right subiculum body and head were associated 
with maternal lineage in both sexes. The second intermediate phenotype of AD susceptibility was characterized by 
trans-generational sex effects (i.e., father-to-daughter, mother-to-son) in neocortical subregions of the DN (central 
panels). Almost the entirety of the DN showed patrilinear weights in females, and matrilinear weights in males. While 
both the left CA4 and right ML had recurring influence on brain-phenotype associations on both sexes, only the ML 
and DN weights were of congruent sign. The third intermediate phenotype of AD susceptibility revealed cis-
generational sex effects (i.e., mother-to-daughter, father-to-son) in neocortical subregions of the DN (right panels). 
Matrilinear effects peaked in females in the left RSC, left vmPFC, and right AG. In contrast, patrilinear effects were 
most prominent in males in the left dmPFC and right TPJ. A significant degree of overlap was observed in HC 
subregions; matrilinear weights were found in the fimbria and CA3 head in both sexes. Nonetheless, the magnitude 
of these effects was stronger for male subjects. Our carefully carried structural dissection of brain-phenotype 
associations has thus grounded cis- and trans-generational effects of AD lineage in HC and DN microstructure. Across 
intermediate phenotypes, we have highlighted allocortical (e.g., CA1, ML) and neocortical subregions (e.g., vmPFC, 
OFC) structurally connected via the fornix as being jointly tied to matri- vs. patrilinear AD risk. AG: angular gyrus; 
dmPFC: dorsomedial prefrontal cortex; GC-ML-DG: granule cell layer and molecular layer of the dentate gyrus; 
HATA: hippocampus–amygdala-transition-area; ML: molecular layer of the subiculum and CA subfields; MTG: 
middle temporal gyrus; OFC: orbitofrontal cortex; PCu: precuneus; RSC: retrosplenial cortex; SPL: superior parietal 
lobule; STG: superior temporal gyrus; TPJ: temporo-parietal junction; vlPFC: ventrolateral prefrontal cortex; vmPFC: 
ventromedial prefrontal cortex.  
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Discussion 
 

We developed a mission-tailored analytical framework specially designed for 

disentangling sex biases in the phenome as a function of Alzheimer’s disease (AD) family risk and 

its associated deviations in micro-anatomically defined subregions within the hippocampus (HC) 

and default network (DN). The extensive scope of the UK Biobank (UKB) allowed us to examine 

sex effects on less common APOE genotypes, including ɛ2/2, which brain-imaging studies have 

rarely incorporated. This unique opportunity enabled a robust comparison of brain-imaging 

outcomes associated with ɛ2 and ɛ4, revealing distinct dosage effects on the brain and phenome. 

Our population neuroscience approach unveiled sex-based interaction effects between APOE ɛ2 

and HC-DN signatures, affecting both fixed (e.g., family history of Alzheimer’s disease and related 

dementias) and modifiable (e.g., social engagement, physical activity, neuroticism) risk factors. 

Surprisingly, no such interaction effects were observed with the most studied APOE ɛ4. Unlike 

conventional health policies targeting cognitive decline in vulnerable populations, our findings 

spotlight modifiable risk factors linked to the protective nature of the ɛ2 variant.  

 

Our lineage-by-sex examination of the phenotypic variability of AD family history in 

PREVENT-AD confirmed these considerable sex biases in the protective effects linked to ɛ2 while 

adding a concomitant generational influence. When assessing PREVENT-AD phenotypes across 

different APOE genetic backgrounds, we found that the combined influence of AD lineage and 

sex on cognitive and cardiovascular risk indicators was most prominent in connection with the ɛ2 

variant. Precisely, our data-informed framework positioned global cognitive performance and 

cardiovascular risk indicators at opposite extremes of the lineage-by-sex spectrum of disease 

variation in relation to the ɛ2 genetic risk. Distinct neuroanatomical patterns emerged in HC and 

DN subregions based on paternal and maternal inheritance routes. Notably, subregions known for 

their anatomical connection via the fornix fibre pathway [54] exhibited the most prominent 

structural variation with regard to AD lineage, corroborating our population insights from the 

UKB. The ɛ2 allele surfaced as associated with the most prominent sex bias in modifiable risk 

indicators for AD, underscoring the importance of redirecting efforts towards exploring and 

optimizing the lesser-studied protective factors mediated by APOE ɛ2. 
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Our examination of population patterns of grey matter variation linked to familial AD risk 

has revealed sex biases in microstructural subregions of the HC and DN that favored female ɛ2 

homozygotes. The synergy between isoform-specific effects in APOE signalling and estrogen is 

poised to provide an advantage for female ɛ2 carriers by potentiating the immune response to 

amyloid pathology. This effect may be especially pronounced in cortical areas linked to the HC, 

such as subregions of the DN, which are among the earliest sites of amyloid deposition during the 

development of AD [44]. Evidence suggests that ɛ2 carriers display elevated baseline APOE levels 

in regions such as the HC and frontal cortex when compared to ɛ4 carriers and ɛ3 homozygotes 

[74-77]. The isoform-specific effects associated with the APOE protein might be amplified by 

homeostatic responses to the accumulation of amyloid-beta (Aβ) in the brain [78]. Within the 

central nervous system (CNS), local APOE synthesis is primarily sustained by astrocytes and 

microglia [25]. Amidst neurodegeneration and Aβ deposition, microglia are thought to upregulate 

APOE expression [78]. Hormonal factors potentially play a role in the immune response against 

amyloid pathology. Estrogen is indeed believed to enhance both astrocytic and microglial APOE 

production [79]. This effect might stem from the presence of an estrogen-dependent enhancer in 

the promoter region of the APOE gene [80]. The influence of estrogens on APOE expression is 

thought to be especially prominent in regions with a high concentration of steroid hormone 

receptors such as the hippocampus’ CA1 [79]. The pyramidal cells of CA1 are also recognized for 

showing transient dendritic changes in early AD development [12]. Our leading signature of AD 

susceptibility, derived from the UKB, showed the most pronounced regional alterations in grey 

matter volume within the hippocampus’ CA1 and molecular layer, which comprises the axons of 

the pyramidal cells of CA1 (Chapter 1, Fig. 1). Moreover, we found that the protective effect of 

APOE ɛ2 on AD risk was specific to females and modulated by HC-DN co-variation patterns 

(Chapter 1, Fig. 6). This finding aligns with the notion that estrogens may play a central role in 

influencing isoform-specific effects associated with the APOE protein, which are bound to favour 

female ɛ2 homozygotes.  

 

The distinct lipid profile associated with the APOE ɛ2 allele may contribute to a more 

favorable lipid environment for neuronal health, thus supporting cognitive preservation even in the 

presence of amyloid pathology. Nonetheless, the low affinity of the ε2 variant to low-density 

lipoprotein (LDL) receptors comes with a significant drawback: a reduced capacity to efficiently 
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facilitate the vascular clearance of very low-density lipoproteins [81]. This characteristic, in turn, 

limits the effectiveness of the ε2 isoform in mediating the removal of cholesterol metabolites and 

triglycerides from blood vessels. As the neuroprotective effect of estrogen weakens with older age, 

women become more vulnerable to neurovascular disorders that can ultimately lead to dementia 

[82]. Our analysis of brain-behaviour associations across 40,000 UKB participants has indeed 

identified proxies of cardiovascular health (e.g., water mass, fat-free mass, and weight) as strongly 

related to the relation between HC-DN co-variation and APOE ɛ2 vs. ɛ4 dosage in older females 

(Chapter 1, Fig. 3). Conducting a more focused exploration of classical AD risk factors, we 

identified robust interactions between HC-DN pattern expressions and participation in strenuous 

sports unique to female ɛ2 homozygotes (Chapter 1, Fig. 5). Engaging in physical activity holds 

the potential to counteract the combined impact of genetic and age-related predispositions to 

cardiovascular complications. These converging findings underscore the interplay between 

estrogens and cardiovascular fitness in shaping AD risk, challenging the prevailing notion of the 

APOE gene's fixed association with dementia in females. 

 

Expanding on the connection between cardiovascular health and dementia risk, our leading 

intermediate phenotype of AD susceptibility derived from PREVENT-AD highlighted a 

significant contributor to cholesterol synthesis as preferentially linked to AD lineage: the HMGCR 

enzyme (Chapter 2, Fig. 1). Also known as 3-hydroxy-3-methylglutaryl-coenzyme A reductase, 

HMGCR plays a central role in the mevalonate pathway—the primary pathway for cholesterol 

production [83]. The HMGCR enzyme is crucial for ensuring an ample supply of cholesterol to 

neuronal membranes in both the brain and periphery, thereby contributing to the maintenance of 

synapses [25, 84, 85]. When intracellular concentration of cholesterol in glia cells rises, the 

inhibition of HMGCR repressed cholesterol synthesis. In parallel, the synthesis of the APOE 

protein is induced to facilitate the transfer of cholesterol to the extracellular environment. Being 

homozygous for the A allele (AA) has been identified as one of the most important and common 

protective variants for sporadic AD, second only to APOE ɛ2 [86]. The A allele in intron M of the 

HMGCR gene possibly decreases AD risk by acting as a natural statin and repressing cholesterol 

synthesis in human brain cells [86]. This effect, in turn, could compensate for lower APOE steady-

state levels measured in the CNS of ɛ4 carriers and ɛ3 homozygotes compared to ɛ2. Estrogen is 

thought to interact with HMCGR functions through various mechanisms, including changes in 
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gene expression and signal transduction pathways [87]. Indeed, HMGCR is a precursor of steroid 

hormones, including glucocorticoids and estrogen [25]. The synergistic roles of HMGCR and 

APOE in regulating cholesterol homeostasis within the CNS present a compelling avenue for 

therapeutic interventions aimed at mitigating cholesterol imbalance and its downstream impact on 

neurodegenerative processes. Our analysis of familial AD risk across generations highlights how 

HMGCR and APOE play complementary roles amid age-related metabolic changes. This gene-

gene interaction could be further accentuated by the decline in estrogen levels during aging, 

particularly in post-menopausal females. 

 

APOE genetic risk is widely examined in isolation. This approach could stem from the 

widespread notion that APOE plays a quasi “monogenic” role in late-onset AD [88]. Nevertheless, 

by employing a totally data-driven approach, we highlighted gene-gene interactions as central to 

AD familial risk across hundreds of biological markers. In addition to unveiling association 

between APOE and HMGCR polymorphisms, our leading intermediate phenotype of AD 

susceptibility emphasized the central role of the interaction between brain-derived neurotrophic 

factor (BDNF) and APOE in influencing HC integrity (Chapter 2, Figs. 1 & 6). The BDNF protein 

plays a pivotal role in the integrity of hippocampal and neocortical neurons [89]. Post-mortem 

autopsy revealed that BDNF mRNA expression is decreased in the HC of AD patients as compared 

to healthy controls [90]. The combined effects of the APOE ε4 variant and the BDNF Met allele 

have been shown to precipitate cognitive decline and Aβ deposition in healthy older adults [91]. 

In contrast, the interaction of the BDNF Met allele with the APOE ε2 variant is thought to lead to 

a lesser decline in episodic memory performance when compared to ε3 homozygotes and ε4 

carriers [92]. A plausible explanation is that APOE isoforms exert distinct regulatory effects on 

the maturation and secretion of BDNF. Indeed, human astrocytes lines treated with APOE ε4 

secreted negligible amounts of BDNF compared to those treated with the ε2 and ε3 variants [93] 

The ε4 variant is thought to epigenetically suppresses BDNF mRNA expression by acting on 

histone acetylation [94]. The impact of APOE on BDNF signaling and its downstream effects on 

neuronal integrity could be significantly contingent on adverse life events, with enduring 

repercussions on the HC microstructure. BDNF polymorphism has indeed been shown to influence 

the relationship between childhood trauma and cognitive performance [95]. This effect was 

particularly notable in the domains of executive function and verbal fluency, both of which are 
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especially impacted during the development of AD [95]. Moreover, carriers of the Met allele who 

experienced childhood abuse exhibited a significant reduction in HC grey matter volume in 

adulthood [95]. Our cross-generational analysis of AD susceptibility uncovered grey matter 

alterations in the hippocampus’ CA1 and CA3, which are crucial for spatial navigation and 

episodic memory separation, on the leading intermediate phenotype of AD susceptibility (Chapter 

2, Fig. 6). This specific intermediate phenotype has revealed associations between APOE and 

BDNF polymorphisms, reinforcing the intricate role of gene-gene interactions in shaping the 

regulatory effects of the APOE protein on AD risk. 

 

The gene-gene interactions identified in Chapters 1 & 2 appear to either enhance or 

diminish the isoform-specific effects associated with the APOE protein. Various genetic markers 

potentially play a role in shaping APOE’s homeostatic responses to neurodegeneration and age-

related metabolic alterations. This intricate network of connections, in turn, leads to distinctive 

susceptibility profiles in ɛ2 and ɛ4 carriers as compared to ɛ3 homozygotes. While APOE 

polymorphism appears to play a pivotal role in shaping AD susceptibility in humans, it lacks a 

counterpart in the animal kingdom, where a singular isoform predominates [96]. The APOE ɛ4 

allele, the ancestral haplotype, prevails to this day despite consistently demonstrating an 

association with AD [24, 97]. The prevalence of the ɛ3/ɛ4 haplotype remains substantial, second 

only to ɛ3/ɛ3, ranging from 16 to 41% across different ethnicities [97]. The persistence of the ɛ3/ɛ4 

haplotype becomes even more perplexing when considering its association with a 2-3 fold increase 

in AD risk [97]. The enduring yet highly variable distribution of the ɛ4 allele across diverse 

environmental niches and human populations poses a significant evolutionary challenge, 

potentially representing a case of antagonistic pleiotropy. Antagonistic pleiotropy is a concept in 

evolutionary biology postulating that specific genes or alleles confer disparate fitness 

consequences throughout distinct life stages of an organism [98]. The emergence of an extended 

post-reproductive lifespan, a characteristic largely distinctive to humans, has been ascribed to the 

favorable selection of haplotypes that mitigate age-related cognitive deterioration [99]. The 

presence of the ε4 allele is associated with increased age-related mortality due to cardiovascular 

pathology or cognitive decline, as well as heightened all-cause mortality, when compared to 

individuals without the ε4 allele [100]. Nevertheless, evidence indicates that bearing an ε4 allele 

could confer a substantial advantage in earlier life stages. Young carriers of the ancestral ɛ4 



 146 

haplotype, spanning from childhood to early adulthood and middle age, have shown enhanced 

memory, executive function, and verbal fluency compared to ɛ4 non-carriers [101-103]. APOE ɛ4 

has also been associated with a reduction in perinatal and infant mortality, along with 

enhancements in newborn health status, infant cognitive development, and neuronal protection in 

comparison to APOE ɛ3 [104-106]. Reproductive selection pressure for the ε3 allele might be 

negligible in a population facing an already higher risk of mortality, independently of APOE. The 

ε4 alleles is indeed relatively more frequent in indigenous populations than in population from 

European ancestry [107-111]. Hence, the shift over time from the ancestral ɛ4 allele to the more 

recent ɛ3 and ɛ2 alleles could potentially be attributed to an adaptation to modern lifestyles 

prompted by a transition away from environments characterized by fluctuating pathogenicity and 

substantial infection burden. In these earlier conditions, the ɛ4 allele could have provided enhanced 

newborn health and decreased perinatal mortality, potentially clarifying its continued prevalence 

in present times. Genetic diversity within populations is moulded by evolutionary pressures, 

resulting in the conservation of specific alleles owing to their benefits in particular environmental 

niches. Isoform-specific effects related to the APOE protein, especially prominent amongst the ɛ2 

and ɛ4 variants, thus aligns with the concept of evolutionary trade-offs. 
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Limitations and Future Directions 
 

Brain imaging and classic genetics encounter limitations in their capacity to infer neuronal 

function, primarily due to their constrained spatial and temporal resolutions. While magnetic 

resonance imaging (MRI) techniques offer valuable insights into the brain microstructure in-vivo, 

they lack the granularity to discriminate individual cell types. Distinguishing metabolic processes 

associated with neurons and glial cells in humans could be pivotal to our understanding of AD 

pathophysiology. Classical genomic analyses focus on DNA variants which are assumed to be 

uniform across the body and brain, leading to similar constraints. Emerging evidence indicates 

significant variability in protein translation across tissues and cell types. APOE isoforms could 

exert totally distinctive effects on pathways involved with lipid metabolism, inflammation, and Aβ 

clearance depending on cell types. The tendency to assume homogeneous signals in both brain 

imaging and classical genetics may impede the recognition of distinct functions among diverse 

cell populations within the same brain region. A promising avenue for overcoming these 

limitations is found in the burgeoning field of single-nucleus genetics, which offers unmatched 

spatial and temporal resolution, cell-type specificity, and precision for studying individual neurons 

and glial cells. Future research endeavors dedicated to the exploration of cellular-level metabolic 

alterations, notably within specific subgroups of neurons and glial cells, could shed light on the 

biochemical underpinnings of neurodegeneration. Such progress, in turn, could act as a catalyst 

for the formulation of increasingly precise and targeted therapeutic interventions for AD.   
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Conclusion 
 

Enhancements in quality of life and extended lifespans have brought to light the detrimental 

impacts of the ε4 allele, fundamentally influencing the trajectory of AD research until the present 

day. The ε2 allele has emerged as a distinctive player in this evolving narrative, with growing 

evidence suggesting its potential interplay with various modifiable risk factors associated with AD. 

Our comprehensive investigation highlights constellations of ε2-related susceptibilities, ranging 

from neuroticism and social engagement to cardiovascular fitness and cognitive abilities, some of 

which appear to be passed down from one generation to the next. Sex has emerged as a pivotal 

determinant in shaping the relationship between these modifiable risk factors and microstructural 

alterations of the hippocampus and default network. As we continue to uncover the intricate web 

of influences contributing to AD susceptibility, it becomes increasingly evident that a one-size-

fits-all approach is inadequate. Instead, embracing a family-centred approach holds the potential 

to finely tailor interventions to individual susceptibility profiles, thereby effectively narrowing 

down the spectrum of heterogeneous predispositions targeted. These insights underscore the 

necessity for a paradigm shift in our approach to cognitive decline, urging a proactive and 

personalized exploration of sex-specific protective factors. Shifting research focus toward APOE 

ε2-mediated pathways, which hold potential for targeted therapeutic interventions, opens a 

promising avenue for advancing precision medicine in AD, thereby harnessing the realm of genetic 

and biochemical indicators that drive cognitive resilience in older adults. 
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