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Abstract

Phylogenetic inference is the task to infer evolution history and relationship among bi-
ological entities. As an essential tool in modern biology, phylogenetic inference finds
crucial applications in various domains, including medical research, conservation biol-
ogy and forensic investigations. However, due to the intricate nature of phylogenetic
tree space, phylogenetic inference remains challenging for the current combinatorial and
probablistic techniques.

Generative flow networks (GFlowNets) are algorithms for learning generative mod-
els of complex distributions given by unnormalized density functions over structured
spaces. In this thesis, we present a novel phylogenetic inference algorithm that is based on
GFlowNets. To provide context, we first review the three main phylogenetic inference ap-
proaches. Subsequently, we delve into the methodology and applications of GFlowNets.
Lastly, we introduce PhyloGFN, an innovative phylogenetic inference algorithm built
upon GFlowNets.

PhyloGEN is introduced to solve two types of phylogenetic inference problems: par-
simony phylogenetic inference and Bayesian phylogenetic inference. We test the per-
formance of PhyloGFN using eight real benchmark datasets. Our results demonstrate
that for parsimony analysis, PhyloGFN can successfully retrieve all optimal parsimo-
nious trees. Furthermore, for Bayesian inference, PhyloGFN is competitive with prior
works in marginal likelihood estimation and achieves a closer fit to target distribution

than state-of-the-art variational inference methods.



Abrégé

L'inférence phylogénétique est la tiche consistant a déduire l'histoire de 1’évolution et
les relations entre les entités biologiques. En tant qu’outil essentiel en biologie mod-
erne, I'inférence phylogénétique trouve des applications cruciales dans divers domaines.
Cependant, en raison de la nature complexe de l'espace des arbres phylogénétiques,
lI'inférence phylogénétique reste un défi pour les techniques combinatoires et probabilistes
actuelles.

Les réseaux de flot génératifs (GFlowNets) sont des algorithmes permettant d’apprendre
des modeles génératifs de distributions complexes définies par des fonctions de densité
non normalisées sur des espaces structurés. Dans cette these, nous présentons un nou-
vel algorithme d’inférence phylogénétique basé sur les GFlowNets. Pour situer le con-
texte, nous passons en revue les trois principales approches en matiere d’inférence phy-
logénétique. Ensuite, nous nous penchons sur la méthodologie et les applications des
GFlowNets. Enfin, nous introduisons PhyloGFN, un algorithme innovant d’inférence
phylogénétique construit sur la base des GFlowNets.

PhyloGEN est utilisé pour résoudre deux types de problemes d’inférence phylogénétique
: I'inférence phylogénétique de la parcimonie et l'inférence phylogénétique bayésienne.
Nous avons testé les performances de PhyloGFN en utilisant huit ensembles de données
de référence réels. Nos résultats démontrent que, dans le cadre de 1’analyse de la parci-
monie, PhyloGFN est capable de récupérer avec succes tous les arbres parcimonieux op-
timaux. De plus, dans le cas de 'inférence bayésienne, PhyloGFN est compétitif avec

les travaux antérieurs en ce qui concerne 'estimation de la vraisemblance marginale et
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parvient a s’ajuster plus étroitement a la distribution cible que les méthodes d’inférence

variationnelle de pointe.
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Chapter 1

Introduction

Phylogenetic inference is the process of reconstructing and depicting the evolutionary re-
lationships and branching patterns among different species or groups based on shared
genetic, morphological, or behavioral characteristics. The complex nature of phyloge-
netic tree space poses persistent challenges for current combinatorial and probabilistic
techniques. In this thesis, we introduce an innovative phylogenetic inference algorithm
that utilizes Generative Flow Networks (GFlowNets), a generative modeling approach
proposed in (Bengio et al., 2021), capable of learning complex distributions from unnor-
malized density functions across structured spaces.

The following chapters are organized as follows: In chapter 2, we first review the three
main phylogenetic inference approaches: parimony-based phylogenetic inference, proba-
blistic phylogenetic inference and distance-based phylogenetic inference. In chapter 3, we
describe GFlowNets and review their applications. In chapter 4, we introduce PhyloGFN,
a GFlowNets based phylogenetic inference algorithm, to solve two types of phylogenetic
inference problems: parsimony phylogenetic inference and Bayesian phylogenetic infer-
ence.

We apply PhyloGEN on 8 real benchmark datasets. We show that for parsimony anal-

ysis, PhyloGFN can retrieve all optimal parsimonious tree. For Bayesian inference, Phy-



loGFN is competitive with prior works in marginal likelihood estimation and achieves a

closer fit to target distribution than the state-of-the-art variational inference methods.
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Chapter 2

Phylogenetic Inference

Phylogenetics is the study of evolution history and relationship among biological entities.
Phylogenetic inference is the task of constructing evolutionary relationships among a set
of species, typically represented as phylogenetic trees.

From a historical perspective, in 1804, Charles Darwin’s groundbreaking work, On
the Origin of Species, formalized the theory of evolution by natural selection. In 1866, the
German biologist Ernst Haeckel introduced the theory of recapitulation. Although the
theory was later disproved, it was Haeckel who coined the term “phylogeny” (originally
“Phylogenie” in German) and introduced the concept of the phylogenetic tree: a graphi-
cal representation of the evolutionary relationships among species. In 1950, the German
entomologist Willi Hennig’s Phylogenetic Systematics provided a systematic framework
for constructing phylogenetic trees. Before the advent of molecular biology, phylogenetic
inference relied primarily on the morphological characteristics (form and structure) of
species. Starting in the latter half of the 20th century, scientists began to use data from
protein, DNA, and RNA sequences to perform phylogenetic inferences.

Today, phylogenetic inference stands as an essential tool in modern biology with sig-
nificant applications across various domains. For example, in medical science, accurate
phylogenetic inference can help understanding the development of antibiotic resistance

(Aminov & Mackie, 2007; Ranjbar et al., 2020; Layne et al., 2020) and characterizing tumor



progression (Ldhnemann et al., 2020). In forensic investigations, phylogenetic inference is
performed to identify HIV transmissions between the suspect and victims (Scaduto et al.,
2010). In the realm of conservation biology, phylogenetic inference is applied to assess
the risk posed by invasive species (Hamelin et al., 2022).

There are three main types of phylogenetic inferences approaches: 1. probabilistic
phylogenetic inference, 2. parsimony phylogenetic inference, and 3. distance-based phy-
logenetic inference. This chapter provides a detailed explanation of each of these meth-
ods.

The inputs for phylogenetic inference comprise heritable traits of the studied species,
which may include genetic sequence data such as DNA, RNA, or protein sequences, mor-
phological characteristics like the size or shape of organisms, or genomic markers such
as single nucleotide polymorphisms. In this thesis, our focus is primarily on phyloge-
netic methods that utilize biological sequence data. Additionally, we assume that the se-
quences have been aligned using a multiple sequence alignment algorithm prior to their
use in the phylogenetic inference algorithms.

The results of phylogenetic inference take the form of phylogenetic trees, which are
graphical representations of the evolutionary relationships and history among species.
The leaves of a phylogenetic trees represents the investigated species. Distances between
leaves in a tree indicate the degree of relatedness between the corresponding species.
Branch splits at internal nodes correspond to speciation events, where one species di-
verges into multiple species. A phylogenetic tree can be either weighted or unweighted.
An unweighted phylogenetic tree only consists of the tree topology, while a weighted
phylogenetic tree includes both the tree topology and branches lengths. Branch lengths
denote the extent of evolutionary changes between two species situated at the ends of
a branch. Certain phylogenetic inference methods, such as parsimony analysis, focus
solely on tree topologies, while others, such as distance-based inference and probabilis-
tic inference, construct weighted phylogenetic trees. Phylogenetic trees can be rooted or

unrooted. Rooted trees reveal the directional history of evolutionary relationships, with



internal nodes signifying common ancestors and the root node representing the ancestor
of all observed species. Unrooted trees, on the other hand, illustrate relatedness among
species at the leaves without specifying an evolutionary direction. Let n!! denote the dou-
ble factorials of n. For n observed species, there are a total of (2n — 3)!! possible rooted
tree topologies and (2n — 5)!! unrooted tree topologies. A rooted tree can be converted to
an unrooted tree by removing the root, and vice versa. Phylogenetic trees have two main
branching patterns: bifurcating trees and multifurcating trees. Rooted bifurcating trees
are rooted binary trees where each parent node has exactly two children nodes, while un-
rooted bifurcating trees are unrooted binary trees where each internal node has precisely
three neighbors. Multifurcating trees do not impose limits on the number of neighbors
for internal nodes. In this project, we restrict our discussion on phylogenetic inference
methods for bifurcating trees.

To introduce some common notations: let Y = {y1,y>...y,} € £ denote the set
of biological sequences of the n investigated species. Each sequence has m characters
from alphabet ¥, for example, {4, C, G, T} for DNA sequences. We denote the i*" site of
all sequences by Y = {y[i], y2[i] ... ynli]}. A weighted phylogenetic tree is denoted by
(z,b), where z represents the tree topology with its leaves labeled by observed sequences,
and b represents the branch lengths. For a tree topology z, let E(z) denote the set of edges.

For any edge e € E(z), let b(e) denote its length.

2.1 Probabilistic phylogenetic inference

Probabilistic phylogenetic inference constructs phylogenetic trees using a predefined prob-
abilistic evolution model. Given a weighted phylogenetic tree (2, b) with leaves sequences
Y, the evolution model defines the likelihood, denoted as P(Y'|z,b) and the prior, de-
noted as P(z,b). Utilizing Bayes’ rule, the posterior likelihood is formulated as follows:

P(Y|2,b)P(z,b)

P(z,0]Y) = PIY)

2.1)



where P(Y) is the intractable marginal. There are two main types of probabilistic analysis
approaches: 1. maximum likelihood analysis (Neyman, 1971) seeks phylogenetic trees
with maximum likelihood P(Y|z,b). 2. Bayesian inference (Mau et al., 1999) models
the posterior distribution of weighted phylogenetic trees based on the equation 2.1 and
generates phylogenetic trees such that the sampling probability is proportional to the un-
normalized posterior density P(Y |z,b)P(z,b).

Probabilistic evolution models view evolution as a stochastic process in which se-
quence mutations are treated as probabilistic events occurring over time. It is a common
assumption that each site within a biological sequence evolves independently. There-
fore, the occurrence of sequence mutations can be seen as a collection of independent
events involving character mutations at different sites of the sequence. Substitution mod-
els are mathematical model that describe character mutations. For every pair of charac-
ters (c1,c2) € X2, let P(ci|ca,t) denote the probability of mutation ¢ — ¢; after a time
period t. The probability of substitution for different pairs of characters can vary. A
substitution matrix, denoted as S(t), records the substitution rates for all pairs of substi-
tutions after a time period ¢: S(t)” = P(c;|c;,t). The substitution process is a continuous-
time markov chain (CTMC). A CTMC is a mathematical model that describe a Markovian
stochastic process where transitions between different states occur continuously over
time. Similar to discrete-time Markov chains, the states at a future timestamp depend
only on the current states and events that occur between the current time and the fu-
ture timestamp. In the context of the substitution process, this means that the transition
from the current character ¢, to the character ¢, at a future timestamp ¢ depends solely
on ¢; and the events that occur between the current time and ¢. Given two time periods
t1 and t,, the substitution probability of ¢; — ¢, for the period t; + ¢ is formulated as
P(caler, ty +ta) = 3 yex; P(c2|b, ta) P(blci, t1). Such substitution models have multiplicative
substitution matrices, meaning S(¢)S(s) = S(t + s). For RNA/DNA sequences, common
CTMC substitution models include the Jukes-Cantor models (Jukes et al., 1969) and the

Kimura models (Kimura, 1980). The Jukes-Cantor model assumes equal equilibrium fre-



quencies for all bases and equal substitution rates of all base-pairs. In contrast, the Kiruma
models distinguish between substitution rates for transitions (4 <+ G and C <« T) and
transversions (other base pairs), acknowledging that transitions are generally more fre-
quent than transversions (Durbin et al., 1998). Probabilistic evolution models also defines
the priors distribution of tree topologies and branch lengths. In this thesis, we follow the
same prior models used in Zhang & Matsen IV (2018b); Koptagel et al. (2022); Mimori
& Hamada (2023): the priors over tree topologies and branch lengths are modelled in-
dependently: P(z,b) = P(z)P(b). The tree topologies prior P(z) is modeled as uniform
distribution over tree topologies space: P(z) =

P(z) =

@+—5W for unrooted trees inference and

m for rooted trees inference. The branch lengths P(b) is modeled jointly,
with each branch length being independently modeled by an exponential distribution:
P(b) =11, P(be), P(be) ~ EXP(X) with A = 10. We also follow the common assumption
that evolution at each site occurs independently (There also exist other evolution models
where the variation of evolution rate is correlated among neighboring sites. For exam-
ple: covarion models introduced in Fitch & Markowitz (1970)). Hence the total likelihood
is the product of likelihood at each site: P(Y|z,b) = [[, P(Y"|z,b). Likelihood at each
site can be calculated by marginalizing over all internal nodes and their possible charac-

ter assignment. Given a rooted phylogenetic tree (z, b) with leaves sequences Y, the site

likelihood P(Y* | z,b) is calculated as following:

2n—2 n
Pyl ynli] [ 2,0) = Y Plagr) [ Pldilab,b(e,) [ ] Puklillaluy, bs(ex))
AP J=n+1 k=1

where a,, ,...a},_, represent the internal node characters assigned to site i and (i) rep-
resent the parent of node i. P(ag,_1) is the equilibrium base frequency. P(a |%( iy 0(€5))
is the substitution probability of %( pH a’ with evolution time b(e;). The substitution
probability is obtained from the substitution model. Likelihood can be efficiently calcu-
lated with the Felsenstein’s pruning algorithm (Felsenstein, 1973) in a bottom-up fashion

through dynamic programming. Defining L, as the leaf sequence characters at site i be-



low the internal node u, and given its two child nodes v and w, the conditional probability

P(Li|a!) can be obtained from P(L!|a!) and P(L |a’)):

P(L, |ay) = Y Pla) |, ble)P(L, | a,)Play, | ay,blew))P(L, | ay,). (2.2)

ai,ai, €
This equation can be used to recursively compute P(L’|a’) at all nodes of the tree and
sites i. For each node u at site i, a real vector f! € [0,1]*! is used to store conditional
probability filc] = P(Li|a’, = c). For leaves nodes, f! is the one hot vector of the i
sequence character. The algorithm performs a post-order traversal of the tree to com-
pute conditional probability at each nodes. The likelihood P(Y"|z,b) is calculated using

the root-level conditional probability: P(Y"|z,0) = 3" o5 Plaj,)P(Y"|aj, ), where

ab,
P(a,_,) is the equilibrium base frequency.

If the substitution model is multiplicative and time-reversible (the substitution matri-
ces are symmetric), likelihood of an unrooted tree is the same to any of its rooted version.
Hence, its likelihood can be computed by firstly converting the unrooted tree to a rooted
tree, then applying the Felsenstein’s algorithm to the rooted tree.

The maximum likelihood phylogenetic inference is an NP-Hard optimization task
(Roch, 2006). Common approaches for maximum likelihood inference typically involve
two iterative steps: 1. given a fixed tree topology, optimize branch lengths to maximize
likelihood. 2. Fixing branch lengths, identify the tree topology with maximum likelihood
(Dhar & Minin, 2015). Expectation maximization algorithms and gradient-based methods
such as Newton-Raphson are used to optimize branch lengths for a fixed tree topology.
To optimize tree topology while keeping branch lengths fixed, greedy search heuristics
explore the tree shape space by performing local modifications to previously visited tree
topologies. One widely used software for maximum likelihood inference is IQ-Tree (Minh
et al., 2020). It implements the UFBoot algorithm (Hoang et al., 2018) which has been em-
ployed in various recent studies to generate maximum likelihood trees (Koptagel et al.,

2022; Zhang, 2023).



Bayesian phylogenetic inference is a more challenging problem as it requires to model
the posterior distribution over weighted tree space. Markov chain Monte Carlo (MCMC)-
based algorithms are commonly employed for Bayesian phylogenetics. Notable MCMC-
based software include MrBayes and RevBayes (Ronquist et al., 2012; Hohna et al., 2016).
Estimated lower bound of marginal log likelihood (MLL) is a a common metric to assess
the performance of bayesian phylogenetic algorithms. With Stepping-Stone method, a
variant of MCMC sampling, Mr.Bayes achieves the state-of-the-art performance on MLL
estimation on real datasets (Zhang, 2023). A known limitation of MCMC is its lack of
scalability to high-dimensional distributions with multiple separated modes (Tjelmeland
& Hegstad, 2001), which arises in larger phylogenetic datasets. Amortized variational
inference (VI) (Wainwright & Jordan, 2008) is an alternative approach that parametrically
estimates the posterior distribution. VBPI is the first variational inference algorithm for
Bayesian phylogenetics (Zhang & Matsen 1V, 2018b). A key challenge to model explic-
itly the distribution of trees is to efficiently explore the tree topology space due to the
combinatorially vast numbers of discrete tree shapes. VBPI employs subsplit Bayesian
networks (SBN) (Zhang & Matsen IV, 2018a) to model tree topologies distribution. SBN
construct tree topology with an intuitive top-down approach: given a root node and a
set of sequences Y, split Y into two sets and assign them to the two children nodes, and
continue the splitting process until each leave node is labeled by one sequence of Y. One
interesting property of this method is that every tree topology is constructed by exactly
one unique sequence of construction steps. The disadvantage of the method is that there
are O(2") ways to split N sequences. A successful VI algorithm needs to model cor-
rectly the sampling probability distribution of all O(2") splitting patterns at every step
such that the joint sampling probability of a tree is proportional to the un-normalized
posterior, which is a difficult task for large N. To simplify the problem, SBN first run a
separate algorithm, for example: an MCMC-based method, to sample high quality tree
topologies. It then limits the set of split patterns at each step of SBN by discarding all

split patterns that do not appear in the pre-generated tree set. By restricting split patterns



in SBN, majority of phylogenetic trees cannot be modeled with VBPI. Following from
this work, Zhang (2023) proposes VBPI-GNN to improve branch length modeling pro-
cess. Instead of using hand engineered features, VBPI-GNN models tree structure using
Graph Neural Network. The algorithm achieves state-of-the-rat performance in term of
MLL estimation. However, without changing the method to model tree topologies, the
method is still only able to model a small portion of tree space. There exist also VI algo-
rithms that model the entire tree space. VaiPhy (Koptagel et al., 2022) approximates the
posterior distribution in the augmented space of tree topologies, edge lengths, and an-
cestral sequences. Combined with combinatorial sequential Monte Carlo, the proposed
method enables faster estimation of marginal likelihood. GeoPhy (Mimori & Hamada,
2023) models the tree topology distribution in continuous space by mapping continuous-
valued coordinates to tree topologies, using the same technique as VBPI-GNN to model
tree topological embeddings. While both methods model the entire tree topology space,
their performance on marginal likelihood estimation underperforms the state of the art.
Probabilistic methods offer a significant advantage in their robustness and flexibility,
allowing researchers to apply complex evolutionary models that more accurately repre-
sent the true evolutionary processes. Bayesian inference, in particular, has the capability
to learn parameter distributions, thereby naturally quantifying the uncertainties associ-
ated with the estimates. The drawback of these methods lies in their high computational
complexity. For large-scale problems, they often require considerably more time to exe-
cute, and the optimization process can be challenging. Comparing with Bayesian infer-
ence, maximum likelihood inference methods are notably faster. However, since maxi-
mum likelihood inference does not produce distribution over inferred trees, it requires to

use other methods such as bootstrapping to infer the variability.
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Total mutations = 5 Total mutations = 4

Figure 2.1: Example of two sets of sequence assignments to internal nodes. The assign-
ment on the right is a parsimonious assignment resulting minimum total number of mu-

tations

2.2 Parsimony Analysis

Parsimony analysis explains the observed sequences by phylogenetic trees that involve
the minimum net amount of evolution. Given a tree topology, for any sequences assign-
ment on internal nodes, we can count the total number of substitutions by summing up
all character changes to pass from one sequence to another over all branches of the tree.
The parsimony score for a tree topology is the minimum possible character changes when
assigning ancestral sequences optimally. Figure 2.1 shows an example of 2 different in-
ternal sequences assignments on a phylogenetic trees with 4 leaves. The assignments on
the right plot is an optimal assignment that produce the minimum total of 4 character
changes in the tree. Hence the parsimony score of this phylogenetic tree is 4. Weighted
parsimony is an extension of parsimony such that instead of counting number of substi-
tution, for every substitution of ¢; to ¢, we add a cost S(cq, ¢z) based on a substitution
weight matrix S. The weighted parsimony score is thus the minimum substitution score
with optimal internal sequences assignment. The original parsimony problem can be seen
as a special case of the weighted parsimony problem where S(cy, ¢;) = 1 for any ¢; # c».
In parsimony analysis, we also assume that each site of the sequences evolves inde-

pendently. Therefore, optimal sequences assignment and parsimony score is computed
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independently for each site. Let M (z|Y;) denote the parsimony score for site i and M (z]Y")
denote the total parsimony score of the tree topology z: M (z|Y") = ). M(z|Y;). For both
weighted and original parsimony problem, the substitution weight matrix is symmetric,
hence the parsimony score for unrooted tree equals that of any of the equivalent rooted
tree’s score. Fixing the tree topology, finding the optimal internal sequences assignment
and parsimony score is referred as the Small Parsimony Problem. The problem of finding
the optimal tree topology to obtain minimum parsimony score across the entire tree space
is referred to as the Large Parsimony problem (Felsenstein, 2003).

The Small Parsimony Problem can be solved efficiently with dynamic programming.
Sankoff algorithm (Sankoff, 1975) and Fitch algorithm (Fitch, 1971) are notable methods
to solve the small parsimony problem for the weighted version and unweighted version
(see sections 2.2.1 and 2.2.2 for computation details) . There is no efficient and exact meth-
ods for the Large Parsimony problem as this discrete optimization problem is NP-hard
(Durbin et al., 1998) . When number of sequences is small, exact methods such as Branch
and Bound (Little et al., 1963) can be used to sweep the entire data space and retrieve all
parsimonious trees. For large-scale problems, heuristic algorithms are commonly used
to perform greedy search with different branch swapping mechanisms including nearest
neighbor exchange, subtree pruning regrafting and bisection reconnection. PAUP* (Swof-
ford, 1998) is one of the commonly used software for parsimony analysis with heuristics
algorithms. The main advantage of parsimony-based phylogenetic inference is its sim-
plicity. The parsimony principle is intuitive and the resulting phylogenetic trees are easy
to interpret. Parsimony methods are generally faster than probabilistic based methods.
The disadvantage of parsimony based method is that they leverage a simple model that
only considers the events of character changes themselves while ignoring other impor-
tant factors in the evolution process such as evolution time. Also, parsimony methods
do not consider the probabilistic nature of evolution. The solution for large parsimony

problem is deterministic. Similar to the maximum likelihood inference, in order to as-
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sess the variability of the results, one has to use other methods such as non-parametric

bootstrapping.

2.2.1 Fitch’s Algorithm

Given a rooted tree topology z, the Fitch algorithm assigns optimal sequences to inter-
nal nodes and computes the parsimony score in O(M NC) where M, N, C represent site
number per sequence, sequences number and characters number. At each node u, the
algorithm tracks the set of possible characters labeling for node u that can yield a most
parsimonious solution for the subtree rooted at w. This character set can be represented
by a binary vector fi € {0,1}® for site i. As in Felsenstein’s algorithm, this vector is
a one-hot encoding of the sequences at the leaves and is computed recursively for non-
leaves. Specifically, given a rooted tree with root v and two child trees with roots v and

w, the Fitch character set f! is calculated as:

fonFy fL- L, #0

fiv fi otherwise

where A and V are element-wise conjunctions and disjunctions. The algorithm first tra-
verses the tree in post-order (bottom-up) to calculate the characters set at each node. It
then traverses in pre-order (top-down) to assign optimal sequences. For the root node u
of the tree at the site 7, the character assignment y/, can be any character in f.. To calculate
the children internal node character assignments, given a node u’s assignment y/, and its

child node v’s characters set f:

Yo ify, € f,
Y, = )
any character of f otherwise
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The total number of character changes between these optimal sequences along the tree’s

edges is counted as the parsimony score.

2.2.2 Sankoff’s Algorithm

Sankoff’s algorithm computes the optimal sequence assignment and weighted parsimony
score for rooted tree topologies. The algorithm works in similar fashion as Fitch algo-
rithm. Since the substitution weight is no longer constant, at every node, we need to
track minimum parsimony score for every character assignment. Let f! € NI*/ denote
the partial parsimony scores at node  for site 7. Let S(i, j) denote the parsimony weight
for the substitution pair (7, j). Given a rooted tree with root u and two child trees with

roots v and w, the partial scores f! can be calculated using the partial scores of its children

fiand fi:
Fuli] = minges{fi[k] + S(j. k)} + minges{f5,[k] + S(j,k)}

For a leaf node u, f, is initialized as following:

" 0  if £ is the assigned character at site ¢
(2 k —

u

oo otherwise

The algorithm traverses the tree two times, first in post-order (bottom-up) to compute
partial parsimony scores at each node, then in pre-order (top-down) to assign optimal

sequences. The minimum score stored at the root node is the weighted parsimony score.

2.3 Distance-Based phylogenetic inference

Distance-based phylogenetic inferences are methods to construct phylogenetic trees based

on a pre-defined distance matrix D, where D, ; represents the expected distance between
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to two species (4, j) in a phylogenetic tree. For any particular weighted tree, the distance
d; j between the species ¢ and j in the tree can be computed by adding up branch lengths
on the path between two species. The goal of distance-based analysis to construct phy-
logenetic trees such that species distances d; ; in the tree align with the expected distance
D; ;.
The distance matrix can be defined with various distance measures. For sequences
data, the simplest distance measure is the edit distance between two sequences. The edit
distance is the minimum number of operations (insertions, deletions and substitutions)
required to transform one sequence into the other. The distance measure can also be
obtained from the substitution model. For example, using the Jukes-Cantor model, let
pi; be the portion of the sites with different nucleotides for sequences ¢ and j, the Jukes-
Cantor distance Dy; is defined as D;; = —3in(1 — 3p;;).
Given a phylogenetic tree (z,b), we define the squared distance () in the following

form:
Q= wy(Di — dy;)’
i.j

where w;; are predefined weights. Methods to find phylogenetic trees with minimum
squared distance () are called least squared methods. Given a tree topology z, one can
compute optimal branch lengths by taking gradient with respect to each pair of species
then solving the system of linear equations (Felsenstein, 2003). Constructing the optimal
phylogenetic tree (z,b) is more challenging as finding the optimal tree topologies faces
the same type of difficulties as described in parsimony analysis. There are also approxi-
mation methods that do not guarantee to find the minimal square distance phylogenetic
trees, but run much faster. One notable algorithm is called UPGMA (Sokal et al., 1958)
which restrict the search space to rooted trees that are ultrametric: total branch length from
the root to any leave equal. The Neighbor-Joining algorithm is another well-known ap-

proximation method (Saitou & Nei, 1987). The algorithm generates unrooted tree. And it
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is guaranteed to find the optimal tree if the provided distance matrix exactly records the
leaves’ distances of the optimal tree (Felsenstein, 2003).

The primary advantage of distance-based inference is its simplicity. Much like parsimony-
based inference, this method is intuitive, and the results are straightforward to interpret.
However, the effectiveness of distance-based inference is heavily reliant on selecting an
appropriate distance measure. It's important to note that the choice of a distance mea-
sure can lead to different computed phylogenetic trees, and there is no established stan-
dard procedure for selecting the optimal distance measure. Additionally, distance-based
phylogenetic inference operates based on a distance matrix as input, which restricts re-
searchers from incorporating complex evolutionary models that might better represent

the true evolutionary processes.

2.4 Estimating uncertainties with Bootstrapping methods

Non-parametric bootstrapping methods are commonly employed to estimate uncertain-
ties for parsimony-based phylogenetic inferences, distance-based phylogenetic inferences
and maximum likelihood phylogenetic inferences (Felsenstein, 2003). Given the sequences
set of msites Y = {Y',Y?... Y™}, a bootstrap sequences set is obtained by sampling
with replacement m times from sites entries {Y'!,Y?...Y™}. For each re-sampled se-
quences set, we apply the phylogenetic inference method to obtain a phylogenetic tree.
By repeating the procedure of re-sampling sequences set and generating trees, we obtain
a collection of phylogenetic trees. The variability of the phylogenetic inference method
is quantified by the variability among this collection of trees. One common method to
capture summary statistics for a large set of trees is to construct a consensus tree. A con-
sensus tree is a tree structure that shows relationship of taxa that commonly appear in
a set of phylogenetic trees. Figure 2.2 shows an example of consensus tree for 100 boot-
strapped phylogenetic trees. The sequences set is sampled from the first 10 sequences

of the data set collected in Hedges et al. (1990). The method in evaluation is parsimony
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Figure 2.2: Concensus tree of 100 phylogenetic trees calculated by PAUP* on first 10 se-

quences of dataset DS1 with parsimony method.

analysis and phylogenetic trees are generated by the software PAUP*. The consensus tree
shows grouping relations of taxa that appear in at least 50% of the 100 trees. For example,
for 85 trees out of 100, taxa 3, 5, 7 share a common ancestor. For all 100 bootstrapped
trees, taxa 1, 2, 3,5, 7, 4, 8 share a common ancestor.

In conclusion, this chapter reviews phylogenetic inference and the three main types of
computation approaches: distance-based phylogenetic inference, parsimony-based phy-
logenetic inference and probabilistic phylogenetic inference. Efficient and accurate phy-

logenetic inference remains an open problem with new approaches proposed every year.
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Chapter 3

Generative Flow Networks

Generative flow networks (GFlowNets) are algorithms proposed by Bengio et al. (2021)
that learn generative models of complex distributions given by unnormalized density
functions over structured spaces. As generative models, GFlowNets have shown great
success in scientific discovery tasks such as biological sequences design (Jain et al., 2022)
and molecule design (Bengio et al., 2021). They also show good performance on pro-
ducing diverse optimal solutions for NP-hard optimization problems such as schedul-
ing (Zhang et al., 2023a) and graph combinatorics optimization problems (Zhang et al.,
2023b). The flexibility afforded by GFlowNets to learn sequential samplers for distri-
butions over compositional objects makes them a promising candidate for performing
inference over the posterior space of phylogenetic tree topologies and evolutionary dis-
tances. This chapter introduces discrete GFlowNet, the method we leverage to perform
phylogenetic inference in PhyloGFN.

Given a data space X’ with a reward function R : x € X — R* and a sequential pro-
cedure to construct objects in &', GFlowNet learns a generative model that samples from
X through a sequence of actions. The sequential procedure to construct objects in X’ is
used to design a Markov Decision Process (MDP) to sample data. The reward function
R(x) is predefined by the user, usually in form of exp(—¢(z)) for some energy function

¢(z). Rather than finding the object z* with optimal R(z*) score, GFlowNet learns a sam-
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pler such that p(z) oc R(z). In the following sections, we first introduce Markov Decision
Process, then we introduce the GFlowNets setup and learning. Finally we discuss some

of its applications.

3.1 Markov Decision Process

Markov Decision Process (MDP) is a discrete-time mathematical framework that is used
to model sequential decision making. An MDP can be defined as a tuple of 4 components

(S, A, P,R):

* S denotes the state space, the set of states capturing all possible situations in which
an agent can find itself. Each state contains relevant information on the environment

for an agent to make decision.

¢ A denotes the action space, the set of actions an agent can take to transition from one
state to another. Note that the action pool for an agent can be different for different

states. Denote A, C A the set of available action for state s.

e P(s'|s,a) : S x § x A — [0, 1] denotes the transition probability from state s to s’

when applying action a

* R(s'|s,a) : S x S x A — R denotes the expected reward by applying action a on

state s to transit to state s’

Let S;, A;, R, defines the random variable of state, action and reward at timestamp ¢. We

define the dynamic of MDP to describe the transition probability of both state and reward:

p(s',r|s,a). = Pr[Si1 = 8, Ry = r|Sy = s, Ay = al,
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Figure 3.1: Agent and environment interaction in MDP

Expected reward and transition probability of states can be formulated using p(s’, 7|s, a)

P(s'|s,a) = Z P(s',r|s,a)

P(s' r|s,a
R(s|s,a) = XT:T—;(S/’!, a))

The process is markovian in the sense that when applying an action a over a state s,
the next transition state s’ and collected reward r are only determined by current state and
action and disregard all previous operations. The diagram 3.1 shows how an agent (the
decision maker) interacts with the environment in an MDP. Given the agent at state .5,
it performs an action A, to the environment. Based on the MDP dynamic defined above,
the environment transits the agent to state S,.; and give the agent reward R,;;. And
the agent performs a new action A, and the process continuous until some pre-defined
termination condition is met

A policy 7 : § = (a € A; — [0,1]) determine how the agent navigates in the envi-
ronment. A policy can be deterministic, i.e. for each state the policy chooses one action
to operate, or stochastic, i.e. the policy outputs a probability distribution over the actions

set. MDP is commonly used to model the environment for Reinforcement Learning (RL)
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algorithms. For GFlowNets, given a sequential construction process for data space X,
a MDP is designed to model the sampling process. A policy on this MDP determines a
sampling distribution for X. The goal of GFlowNets is to learn an optimal policy such

that sampling probability is proportional to the object reward.

3.2 GFlowNet

We first describe the sampling MDP. Figure 3.2 shows an example of the MDP states
graph. The states graph is a Directed Acylcic Graph (DAG) with an intial state s, as the
source and a terminal state s; as the sink. The initial state represents the initialization of
sampling. The terminal state represents the termination of sampling. Any states lying
between the source and the sink represent partial constructs generated based on the con-
struction procedure. States that are one step away from the sink represent data objects in
X. A trajectory 7 : 59 — --- — x — sy represent a sampling path to generate object .
The GFlowNet MDP is deterministic: applying an action to a state result in transition to
an unique subsequent state. Therefore, a policy can be defined directly by the forward
transition probabilities between adjacent states: Pp(s;41|s;). The probability of sampling
a trajectory Pr(7) is then the product of forward transition probability between pair of

states along the path:

Pp(r) = H Pr(sit1]s;)

(SiA)SHJ )ET

Mulitple trajectories can lead to the same object x, hence sampling probability P(x) is

the sum of sampling probabilities of all trajectories ending at x — s;:

P(z) = Z Pr(1)  R(x)

T:(x—sy)ET
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Figure 3.2: Example GFlowNet states graph

For large scale problems, it is unrealistic to calculate this term explicitly because the
calculation involves finding all trajectories between s, and z, and there is no efficient
method to do so. Zhang et al. (2022) proposes to estimate P(z) with importance sam-
pling. While we cannot enumerate efficiently all trajectories ending at + — s, one can
sample backwards trajectories starting at « with uniform sampling policy: at current state,
uniformly choose a parent state and transition backward until reaching sy. The uniform

backward transition probabilities are then defined as following:

1

lov(si41)|

Pg(t|r) = H Pg(silsiv1) Pg(silsit1) =
Si—Si+1ET
where a(s;;1) denote the set of parents of s;,;. With uniform backward sampling policy,
we can estimate the P(z) by first sampling K trajectories with backward policy, then
aggregating as following:
1 P F (T z)
P(r) ~ — S
@D~% 2 B

T;:80——T

Given the reward R(z), the goal of GFlowNet is to estimate a policy Pr(:|-;,6) such
that P(z) o< R(xz). Multiple Learning objectives are designed specifically for GFlowNet
(Bengio et al., 2021; Malkin et al., 2022; Pan et al., 2023; Madan et al., 2023), we review two

commonly used learning objective
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Detailed-balance (DB) The DB objective is proposed in (Bengio et al., 2021). The loss

function learns the following three functions in parametric form:

* A forward policy Pr(s'|s;, #) representing the sampling policy of the GFlowNet

* A backward policy Pg(s|s';, #) representing a probability distribution over the par-

ent states s for s € S — {s¢}.

e A state flow function F'(s,0) : S — R* representing the un-normalized probability

mass of all trajectories that pass through state s

For any pair of transition s — ', the detailed balance loss is defined as:

2
F(s,0)Pp(s']s;0) .
F(s’ﬁ)Pig(s\s’;G)) if ¢/ ¢ X

(log
ﬁDB<S, S/, (9) =

2
s, s'|s;0 .
(log %) otherwise

Trajectory-balance (TB) The TB objective is proposed in Malkin et al. (2022). The loss

function learns the three following objectives:

* A forward policy Pr(s'|s; , ) representing the sampling policy of the GFlowNet

* A backward policy Pg(s|s;, ) representing a probability distribution over the par-

ent states s for s’ € S — {s}.

* A partition function Zj representing the total reward of all objects in X

For any trajectory 7 : sg — --- — 2 — s, the TB loss is defined as:

2
Zy H’-lfol Pr(siy1 | si;0)
frd 1 =
crol) ( "8 R(x) [T, Polsialso):0

For both loss objectives, a backward policy Pg(s|s';,0) is learned to faciliate training
for the forward policy Pr(s'|s;,#). Actually, Bengio et al. (2023) shows that Pg(s|s’) can

be chosen freely as long as > ) P5(s|s’) = 1. Therefore, an alternative choice is to use

the uniform backward sampling policy: Pg(s|s’) = FEk
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Training a GFlowNet follows a similar procedure as training an RL model. The train-
ing data consists of trajectories. These can be online trajectories sampled directly using
the current GFlowNet. To encourage exploration, one can introduce random perturba-
tions when generating training trajectories. For example: with e-greedy training, ¢ per-
cent of actions to build trajectories are drawn from uniform random. Trajectories can also
be offline, we can store high reward / high loss trajectories in a replay buffer, and feed
the model with trajectories sampled from the replay buffer. Also, if we know ahead of
time some important objects in data space, we can generate trajectories that lead to these

objects with backward sampling.

3.2.1 Advantage and disadvantage of GFlowNets

The main advantage of GFlowNets lies in its representation power. With a sequential
construction procedure, complex objects can be sampled with GFlowNets through a se-
quence of simple actions. For large scale problems, while construction trajectories are in-
tractable, they are well encapsulated within the GFlowNet MDP. For any reward function
that may lead to arbitrarily complex and multiple modal target distributions, GFlowNet
provides the theoretical guarantee that there exist a GFlowNet sampler that samples from
the target distribution (Bengio et al., 2023). Moreover, GFlowNet is a machine learning
algorithm, thus it can generalize on unseen data. While GFlowNet cannot visit and learn
every object/ trajectories for a large scale problem, it can approximate their probabili-
ties as long as there are underlying learnable patterns. GFlowNet has great similarities
with RL algorithms as most of RL algorithms also operates within the MDP environment.
Therefore, research works in RL algorithms can be transferred to improve GFlowNet al-
gorithms. For example: inspired by Distributional Reinforcement Learning (Bellemare
etal.,, 2017), Zhang et al. (2023c) propose Distributional GFlowNets that can handle envi-
ronment where rewards are stochastic. Comparing with MCMC, an alternative sampling
algorithms, GFlowNet produces an amortized sampler: past sampling objects are used

to train GFlowNet. Once GFlowNet is trained, at anytime we can use the trained model
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to sample directly from the target distribution. In contrast, past samples do not impact
the decision making of MCMC, so every time to sample based on target distribution, one
has to execute a long run until convergence. The disadvantage of GFlowNet also lies
in its complexity. To train a neural-network based GFlowNet requires more hardware
resources. Also, if the target distribution does not have a learnable statistical structure,

GFlowNet will have a hard to time generalize (Bengio et al., 2023).

3.3 Applications of GFlowNet

GFlowNets have been applied to generate diverse optimal solutions for discrete opti-
mization problem. Let ¢(z) be the objective score function to be minimized for a given
optimization problem. One can design a corresponding Boltzmann distribution P(x) =
exp (%“”) where 7' is the statistical temperature. For sufficiently small 7', the distribution
will be dominated by the set of optimal solutions. GFlowNet learns to sample solutions
from the distribution P(z). One advantage to use GFlowNet is that if there exist multiple
optimal solutions, their sampling probability are the same. Therefore with an appropriate
T, an optimally learned GFlowNet can output multiple diverse optimal solutions instead
of one. Zhang et al. (2023b) use GFlowNets to solve graph combinatorial optimization
problems such as maximum independent set and maximum clique. Zhang et al. (2023a)
use GFlowNet to generate efficient plans to execute computation graphs. In section 4.5.2,
we set ¢(z) to be the parsimony score of phylogenetic tree z, and solve the parsimony
problem with GFlowNets.

GFlowNets have also been applied in Al driven design and discovery tasks. For in-
stance, Bengio et al. (2021) use GFlowNets to design small molecules for drug discovery.
Cipcigan et al. (2023) utilize GFlowNets to design reticular materials for CO, capture.
Jain et al. (2022) leverage GFlowNet to design biological sequences. Zhu et al. (2023)
use GFlowNets to incorporate multiple optimization objectives for the creation of diverse

molecules aligning with Pareto optimality. While ML algorithms have succesfully pro-
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duce Al-agent that outperforms human in various complex tasks, such as playing GO
(Silver et al., 2016), these tasks often come with clear reward metrics for optimization.
Moreover, these algorithms require extensive training on vast datasets. These conditions
can be challenging to satisfy for real-world design and discovery tasks. Jain et al. (2023)
outlines the main challenges in Al-driven scientific design tasks, which are also relevant
to design tasks in general: in many real-life problems, unlike video games or simulated
environments, the true optimization goal cannot be directly modeled as a training ob-
jective for machine learning algorithms. Consider designing drug molecules to treat a
specific disease, for example; it is not feasible to have a numerical reward that measures
the effectiveness of “treating a disease” for every type of molecule in the dataset. If we
hypothesize that the goal can be achieved by optimizing certain measurable metrics, we
can design algorithm to generate objects to maximize this auxiliary metrics. However,
there’s no guarantee that the objects with the maximum metrics score are optimal for our
true goal. Moreover, collecting a labeled dataset for training can be both expensive and
time-consuming. Labels may be noisy, especially when dealing with data generated from
biological experiments. This results in training data that is not only scarce but also noisy,
making it challenging to train a reliable machine learning model. In such scenarios, it is
ideal for the machine learning algorithm not just to output the object with the maximum
score, but also to generate diverse high-scoring objects that can be investigated by human
experts in a subsequent stage. Additionally, learning the posterior distribution allows us
to estimate uncertainties. GFlowNet learns a sampler in a way that the sampling distribu-
tion is proportional to the target reward. Consequently, it serves as a suitable algorithm
for Al-driven design tasks in real-life scenarios where the optimization goal cannot be

directly modeled or when obtaining quality training data is challenging.
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4,1 Abstract

Phylogenetics is a branch of computational biology that studies the evolutionary rela-
tionships among biological entities. Its long history and numerous applications notwith-
standing, inference of phylogenetic trees from sequence data remains challenging: the
extremely large tree space poses a significant obstacle for the current combinatorial and
probabilistic techniques. In this paper, we adopt the framework of generative flow net-
works (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and
Bayesian phylogenetic inference. Because GFlowNets are well-suited for sampling com-
plex combinatorial structures, they are a natural choice for exploring and sampling from
the multimodal posterior distribution over tree topologies and evolutionary distances.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and
high-quality evolutionary hypotheses on real benchmark datasets. PhyloGFN is compet-
itive with prior works in marginal likelihood estimation and achieves a closer fit to the
target distribution than state-of-the-art variational inference methods. Our code is avail-

able at https://github.com/zmyl116/phylogfn.

4.2 Introduction

Phylogenetic inference has long been a central problem in the field of computational
biology. Accurate phylogenetic inference is critical for a number of important biologi-
cal analyses, such as understanding the development of antibiotic resistance (Aminov &
Mackie, 2007; Ranjbar et al., 2020; Layne et al., 2020), assessing the risk of invasive species
(Hamelin et al., 2022; Dort et al., 2023), and many others. Accurate phylogenetic trees can
also be used to improve downstream computational analyses, such as multiple genome
alignment (Blanchette et al., 2004), ancestral sequence reconstruction (Ma et al., 2006),
protein structure and function annotation (Celniker et al., 2013).

Despite its strong medical relevance and wide applications in life science, phyloge-

netic inference has remained a standing challenge, in part due to the high complexity
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of tree space — for n species, (2n — 5)!! unique unrooted bifurcating tree topologies
exist. This poses a common obstacle to all branches of phylogenetic inference; both
maximume-likelihood and maximum-parsimony tree reconstruction are NP-hard prob-
lems (Day, 1987; Chor & Tuller, 2005). Under the Bayesian formulation of phylogenetics,
the inference problem is further compounded by the inclusion of continuous variables
that capture the level of sequence divergence along each branch of the tree.

One line of prior work considers Markov chain Monte Carlo (MCMC)-based approaches,
such as MrBayes (Ronquist et al., 2012). These approaches have been successfully applied
to Bayesian phylogenetic inference. However, a known limitation of MCMC is scala-
bility to high-dimensional distributions with multiple separated modes (Tjelmeland &
Hegstad, 2001), which arise in larger phylogenetic datasets. Recently, variational infer-
ence (VI)-based approaches have emerged. Among these methods, some model only a
limited portion of the space of tree topologies, while others are weaker in marginal likeli-
hood estimation due to simplifying assumptions. In parsimony analysis, state-of-the-art
methods such as PAUP* (Swofford, 1998) have extensively relied on heuristic search al-
gorithms that are efficient but lack theoretical foundations and guarantees.

Coming from the intersection of variational inference and reinforcement learning is
the class of models known as generative flow networks (GFlowNets; Bengio et al., 2021).
The flexibility afforded by GFlowNets to learn sequential samplers for distributions over
compositional objects makes them a promising candidate for performing inference over
the posterior space of phylogenetic tree topologies and evolutionary distances.

In this work, we propose PhyloGEN, the first adaptation of GFlowNets to the task of

Bayesian and parsimony-based phylogenetic inference. Our contributions are as follows:

1. We design an acyclic Markov decision process (MDP) with fully customizable re-
ward functions, by which our PhyloGFN can be trained to construct phylogenetic

trees in a bottom-up fashion.

2. PhyloGEN leverages a novel tree representation inspired by Fitch and Felsenstein’s

algorithms to represent rooted trees without introducing additional learnable pa-
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rameters to the model. PhyloGFN is also coupled with simple yet effective train-
ing techniques such as using mixed on-policy and dithered-policy rollouts, replay

buffers and cascading temperature-annealing.

3. PhyloGEFEN has the capacity to explore and sample from the entire phylogenetic tree
space, achieving a balance between exploration in this vast space and high-fidelity
modeling of the modes. While PhyloGFN performs on par with the state-of-the-art
MCMC- and VI-based methods in the summary metric of marginal log-likelihood,
it substantially outperforms these approaches in terms of its ability to estimate the

posterior probability of suboptimal trees.

4.3 Related work

Markov chain Monte Carlo (MCMC)-based algorithms are commonly employed for Bayesian
phylogenetics, with notable examples including MrBayes and RevBayes (Ronquist et al.,
2012; Hohna et al., 2016), which are considered state-of-the-art in the field. Amortized
variational inference (VI) is an alternative approach that parametrically estimates the
posterior distribution. VBPI-GNN (Zhang, 2023) employs subsplit Bayesian networks
(SBN) (Zhang & Matsen IV, 2018a) to model tree topology distributions and uses graph
neural networks to learn tree topological embeddings (Zhang, 2023). While VBPI-GNN
has obtained marginal log likelihood competitive with MrBayes in real datasets, it re-
quires a pre-generated set of high-quality tree topologies to constrain its action space for
tree construction, which ultimately limits its ability to model the entire tree space.

There exist other VI approaches that do not limit the space of trees. VaiPhy (Kop-
tagel et al., 2022) approximates the posterior distribution in the augmented space of tree
topologies, edge lengths, and ancestral sequences. Combined with combinatorial sequen-
tial Monte Carlo (CSMC; Moretti et al., 2021), the proposed method enables faster estima-
tion of marginal likelihood. GeoPhy (Mimori & Hamada, 2023) models the tree topol-

ogy distribution in continuous space by mapping continuous-valued coordinates to tree
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topologies, using the same technique as VBPI-GNN to model tree topological embed-
dings. While both methods model the entire tree topology space, their performance on
marginal likelihood estimation underperforms the state of the art.

For the optimization problem underpinning maximum parsimony inference, PAUP*
is one of the most commonly used programs (Swofford, 1998); it features several fast,
greedy, and heuristic algorithms based on local branch-swapping operations such as tree
bisection and reconnection.

GFlowNets are a family of methods for sampling discrete objects from multimodal
distributions, such as molecules (Bengio et al., 2021) and biological sequences (Jain et al.,
2022), and are used to solve discrete optimization tasks (Zhang et al., 2023a,b). With their
theoretical foundations laid out in Bengio et al. (2023); Lahlou et al. (2023), and connec-
tions to variational inference established in Malkin et al. (2023), GFlowNets have been
successfully applied to tackle complex Bayesian inference problems, such as inferring la-
tent causal structures in gene regulatory networks (Deleu et al., 2022, 2023), and parse

trees in hierarchical grammars (Hu et al., 2023).

4.4 Background

4.4.1 Phylogenetic inference

Here we introduce the problems of Bayesian and parsimony-based phylogenetic infer-
ence. A weighted phylogenetic tree is denoted by (z, b), where z represents the tree topol-
ogy with its leaves labeled by observed sequences, and b represents the branch lengths.
The tree topology can be either a rooted binary tree or a bifurcating unrooted tree. For a
tree topology z, let L(z) denote the labeled sequence set and E(z) the set of edges. For
an edge e € E(z), let b(e) denote its length. Let Y = {y;,y>...y,} € X" be a set of
n observed sequences, each having m characters from alphabet ¥, e.g., {A4,C,G, T} for
DNA sequences. We denote the i*" site of all sequences by Y = {y1[i], yai] ... yn[i]}.

In this work, we make two assumptions that are common in the phylogenetic inference
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literature: (i) sites evolve independently; (ii) evolution follows a time-reversible substi-
tution model. The latter implies that an unrooted tree has the same parsimony score or
likelihood as its rooted versions, and thus the algorithms we introduce below (Fitch and

Felsenstein) apply to unrooted trees as well.

Bayesian inference

In Bayesian phylogenetic inference, we are interested in sampling from the posterior dis-
tribution over weighted phylogenetic trees (z,b), formulated as:

P(z,b)P(Y | 2,b)

P50 Y) = =50

where P(Y | z,b) is the likelihood, P(Y') is the intractable marginal, and P(z,b) is the
prior density over tree topology and branch lengths. Under the site independence as-
sumption, the likelihood can be factorized as: P(Y | z,b) = [[, P(Y" | z,b), and each

factor is obtained by marginalizing over all internal nodes a; and their possible character

assignment:
2n—2 n
P(yili] ... ynli) [ 2.0) = > Plager) [ Plablalvle;) [T Plulillaly b-(ex)
A J=n+l k=1

where @, ...ad},_, represent the internal node characters assigned to site i and (i)
represent the parent of node i. P(ay,—1) is a distribution at the root node, which is
usually assumed to be uniform over the vocabulary, while the conditional probability
P(ajlal;),b(e;)) is defined by the substitution model (where ¢; is the edge linking a; to
a(a;))-

Felsenstein’s algorithm The likelihood of a given weighted phylogenetic tree can be cal-
culated efficiently using Felsenstein’s pruning algorithm (Felsenstein, 1973) in a bottom-

up fashion through dynamic programming. Defining L’ as the leaf sequence characters
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at site ¢ below the internal node u, and given its two child nodes v and w, the conditional
probability P(L! |a!) can be obtained from P(L{|a’) and P(L: |a’,):

P(L, |ay) = Y Pla) |, ble)P(L;, | a)Play, | ay,blew))P(L, | ay,). (4.1)

' al,al, €L
The dynamic programming, or recursion, is essentially a post-order traversal of the
tree and P(L! | a!) is calculated at every internal node u, and we use one-hot encod-
ing of the sequences to represent the conditional probabilities at the leaves. Finally, the
conditional probability for each node u at site i is stored in a data structure f: € [0, 1]
file] = P(Li|ai, = c¢), and we call it the Felsenstein feature for node u. Note that the
conditional probability at the root P(Y"|a}, ;) is used to calculate the likelihood of the

tree: P(Y'|z,0) = P(ab, ) P(Y"|ab,_,).

aén_leE

Parsimony analysis

The problem of finding the optimal tree topology under the maximum parsimony princi-
ple is commonly referred as the Large Parsimony problem, which is NP-hard. For a given
tree topology z, the parsimony score is the minimum number of character changes be-
tween sequences across branches obtained by optimally assigning sequences to internal
nodes. Let M (z|Y') be the parsimony score of tree topology = with leaf labels Y. Due to
site independence, M (z|Y) = >, M(z|Y"). The trees with the lowest parsimony score,
or most parsimonious trees, are solutions to the Large Parsimony problem. Note that
the Large Parsimony problem is a limiting case of the maximum likelihood tree inference

problem, where branch lengths are constrained to be equal and infinitesimally short.

Fitch algorithm Given a rooted tree topology z, the Fitch algorithm assigns optimal
sequences to internal nodes and computes the parsimony score in linear time. At each
node u, the algorithm tracks the set of possible characters labeling for node u that can

yield a most parsimonious solution for the subtree rooted at u. This character set can
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be represented by a binary vector fi € {0, 1}l for site i. We label this vector the Fitch
feature. As in Felsenstein’s algorithm, this vector is a one-hot encoding of the sequences
at the leaves and is computed recursively for non-leaves. Specifically, given a rooted tree

with root u and two child trees with roots v and w, f is calculated as:

PR T
fiv fi otherwise

where A and V are element-wise conjunctions and disjunctions. The algorithm traverses
the tree two times, first in post-order (bottom-up) to calculate the character set at each
node, then in pre-order (top-down) to assign optimal sequences. The total number of
character changes between these optimal sequences along the tree’s edges is counted as

the parsimony score.

4.4.2 GFlowNets

Generative flow networks (GFlowNets) are algorithms for learning generative models of
complex distributions given by unnormalized density functions over structured spaces.

Here, we give a concise summary of the the GFlowNet framework.

Setting A GFlowNet treats generation of objects x lying in a sample space X as a se-
quential decision-making problem on an acyclic deterministic MDP with set of states
S D X and set of actions A C S x S. The MDP has a designated initial state s,, which
has no incoming actions, and a set of terminal states (those with no outgoing actions)
that coincides with X. Any z € & can be reached from sy by a sequence of actions
so = s1 — -+ — s, = x (with each (s;,s;41) € A). Such sequences are called complete

trajectories, and the set of all complete trajectories is denoted 7.

34



A (forward) policy Pr is a collection of distributions Pr(s’ | s) over the children of each

nonterminal state s € S\ X'. A policy induces a distribution over 7
Pp(T = (50 = 51— -+ = sp)) = HPF(SH-l | 51).

A policy gives a way to sample objects in X', by sampling a complete trajectory 7 ~ Pp

and returning its final state, inducing a marginal distribution P} over X; P/ (z) is the

sum of Pr(7) over all complete trajectories 7 that end in « (a possibly intractable sum).
The goal of GFlowNet training is to estimate a parametric policy Pp(- | -; #) such that

the induced P} is proportional to a given reward function R : X — Ry, i.e.,

1
P (z) = ZR(x) Vz € X, (4.2)
where Z = ) _. R(x) is the unknown normalization constant (partition function).

Trajectory balance objective The direct optimization of Pr’s parameters 6 is impossible
since it involves an intractable sum over all complete trajectories. Instead, we leverage
the trajectory balance (TB) training objective (Malkin et al., 2022), which introduces two
auxiliary objects: an estimate Z, of the partition function and a backward policy. In our ex-

periments, we fix the backward policy to uniform, which results in a simplified objective:

_ Zo 111 Pr(sis1 | si50) i
,CTB(T) = <10g R($)PB(7-+’ x) ) , T | QL‘ H ’Pa (43)

where Pa(s) denotes the set of parents of s. By the results of Malkin et al. (2022), there
exists a unique policy Pr and scalar Zy that simultaneously make Lrg(7) = 0 for all
7 € T, and at this optimum, the policy P satisfies (4.2) and Zy equals the true partition
function Z. In practice, the policy Pp(- | s;6) is parameterized as a neural network that
outputs the logits of actions s — s’ given a representation of the state s as input, while Zj

is parameterized in the log domain.
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Lrp(7) is minimized by gradient descent on trajectories 7 chosen from a behaviour
policy that can encourage exploration to accelerate mode discovery (see our behaviour

policy choices in §4.5.3).

4.5 Phylogenetic inference with GFlowNets

4.5.1 GFlowNets for Bayesian phylogenetic inference

This section introduces PhyloGFN-Bayesian, our GFlowNet-based method for Bayesian
phylogenetic inference. Given a set of observed sequences Y, PhyloGFN-Bayesian learns
a sampler over the joint space of tree topologies and edge lengths X = {(z,0)|L(2) = Y}
such that the sampling probability of (z,b) € X approximates its posterior P (z,b) =
P(z,0]Y).

We follow the same setup as Koptagel et al. (2022); Zhang (2023); Mimori & Hamada
(2023): (i) uniform prior over tree topologies; (ii) decomposed prior P(z,b) = P(z)P(b);

(iii) exponential (A = 10) prior over branch lengths; (iv) Jukes-Cantor substitution model.

GFlowNet state and action space The sequential procedure of constructing phyloge-
netic trees is illustrated in Fig. 4.1. The initial state s, is a set of n rooted trees, each
containing a single leaf node labeled with an observed sequence. Each action chooses a
pair of trees and joins their roots by a common parent node, thus creating a new tree. The
number of rooted trees in the set is reduced by 1 at every step, so after n — 1 steps a single
rooted tree with n leaves is left. To obtain an unrooted tree, we simply remove the root
node.

Thus, a state s consists of a set of disjoint rooted trees s = ((21,b1),...,(z,b)), | <n
and | J; L(z;) = Y. Given a nonterminal state with [ > 1 trees, a transition action consists
of two steps: (i) choosing a pair of trees to join out of the (}) possible pairs; and (ii)
generating branch lengths for the two introduced edges between the new root and its

two children. The distribution over the pair of branch lengths is modeled jointly as a
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Figure 4.1: Left: PhyloGFN’s state space on a four-sequence dataset. Initial state s, com-
prises leaf nodes. Successive steps merge pairs of trees until a single unrooted tree re-
mains. Right: Policy model for PhyloGFN-Bayesian. Transformer encoder processes
tree-level features s; = ((21,b1) ... (2, b;)). Pairwise features e;; are derived and used by

MLPs to select tree pairs for merging and sample branch lengths.

discrete distribution with fixed bin size. Following the initial submission of the paper,
we conducted additional experiments by employing continuous distribution to model

branch lengths. Further details can be found in §4.8.5 of the appendix.

Reward function We define the reward function as the product of the likelihood and the
edge length prior: R(z,b) = P(Y |z,0)P(b), implicitly imposing a uniform prior over tree

topologies. By training with this reward, PhyloGEN learns to approximate the posterior,

since P(z,b]Y) = R(z,b) 5((;)) and P(z), P(Y') are both constant.

It is worth emphasizing that in our bottom-up construction of trees, the set of possible
actions at the steps that select two trees to join by a new common root is never larger than
n?, even though the size of the space of all tree topologies — all of which can be reached
by our sampler —is superexponential in n. This stands in contrast to the modeling choices
of VBPI-GNN (Zhang, 2023), which constructs trees in a top-down fashion and limits the
action space using a pre-generated set of trees, therefore also limiting the set of trees it

can sample.
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State representation To represent a rooted tree in a non-terminal state, we compute fea-
tures for each site independently by taking advantage of the Felsenstein features (§4.4.1).
Let (z,b) be a weighted tree with root u which has two children v and w. Let fi, f, fi €
[0,1]*! be the Felsenstein feature on nodes u, v, w at site i. The representation pi, for site i

is computed as following:

po=1ri [ P:(e))= (4.4)

e€E(z)
where P(b.(e)) = [].c,. P(b(e)) is the edge length prior. The tree-level feature is the con-
catenation of site-level features p = [p' ... p™|. A state s = (2; ... z), which is a collection

of rooted trees, is represented by the set {p1,...,p}.

Representation power Although the proposed feature representation p does not cap-
ture all the information of tree structure and leaf sequences, we show that p indeed con-
tains sufficient information to express the optimal policy. To elaborate, Bengio et al. (2023)
proves that a unique optimal GFlowNet policy Pr with a uniform backward policy Pz
exists for the defined problem. This optimal policy can be expressed by the transition
probability function Pr(s’|s), which takes the input the entirety of a non-terminal state s,
and outputs a distribution over successor states s’. Proposition 1 demonstrates that given
an optimal GFlowNet Pr with a uniform Pg, two states with identical feature sets share
the same transition probabilities. Therefore, this optimal transition probability function

is equivalent to a transition function that only takes input of the representation feature.

Proposition 1. Let s1 = {(z1,01), (22,b2) ... (21,00)} and sy = {(2],0}), (25, 05) ... (2], b))} be
two non-terminal states such that sy # sy but sharing the same features p; = p,. Let a be
any sequence of actions, which applied to s, and sy, respectively, results in full weighted trees
x = (2,b,), 2" = (¢, V), with two partial trajectories T = (s; — -+ = x), 7 = (59 — -+ = ).

If Py is the policy of an optimal GFlowNet with uniform Pg, then Pp(7) = Pp(7').
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Before proving proposition 1, we first prove the following two lemmas. First, we show
that for two states sharing the same tree features, applying the same action to the states

results in two new states still sharing the same features.

Lemma 1. Let s; = {(21,01), (22,02) ... (21, b))} and sy = {(2], b)), (25,b5) ... (2],b))} be two
non-terminating states sharing the same features p; = p;. Let a be the action that joins the trees
with indices (v, w) to form a new tree indexed u with edge lengths (b(ey,), b(eww)). By applying a
on sy, we join (z,, b,) and (z,, by,) to form new tree (z,,b,). By applying a on sy, we join (z,,b.,)
and (z,,, ) to form new tree (z,,V,). Then the new trees’ features are equal: p, = p,.

w w ur u

Proof. We show that p, can be calculated from p, and p,,:

PLlj] = P(blew))™ x P(bew))™ x Y Plal, = jlak, =k, b.(ew))ob k]

kex

3 Pl = jlal, = k.ble,)ol 1

since p, = pl, pw = p,, and (b(eyy), b(euy)) are new branch lengths for both two trees.

Therefore p, = p), ]

Next, we show that for two states sharing the same tree features, applying the same

action sequences results in two phylogenetic trees with the same reward.

Lemma 2. Let s; = {(21,01), (22,02) ... (z1,0)} and sy = {(2], b)), (25,b2) ... (2], b;)} be two
non-terminating states sharing the same features p; = p,. Let a be any sequence of actions to

apply on sy and sy to form full trees x = (z,b,), 2" = (2/,b.), R(z,b) = R(Z, V).

Proof. Let p, denote the tree feature for (z,b), p', = fi ][, P(b(e)). We first show that the

reward can be directly calculated from the root feature p,,:

[[Ptazs) - pu =TT PN ] Plan) - £

= P(b)P(Y|z,b)

= R(z,b),
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where P(as,-1) is the constant root character assignment probability. As a is applied
to s; and s, in a sequential manner, at every step we obtain two state swith the same
tree features (by Lemma 1), until, at the final state, p, = p,. It follows that R(z,b) =
R(Z',V). O

We are now ready to prove the propositions.

Proof. LetG,,, G, be sub-graphs of the GFlowNet state graph G = (S, A) defined by reach-
able states from s; and s, in G. Since s; and s, have the same number of trees, G,, and
Gs, have the graph structure. Let X, X, C X' be the terminal states reachable from s; and
sy. There is thus a bijective correspondence between X; and X: for every action set a
applying on s; to obtain z € X;, we obtain 2’ € A, by applying a on s;. Let 7 and 7/
be the partial trajectories created by applying a on s; and s, Pg(7|z) = Pg(7'|2"). More-
over, R(x) = R(a2') since s; and s, share the same set of features. We have the following

expressions for Pr(7) and Pr(7'):

R(x)Pp(r|x)
> ry iy (@) Pp(7jla;)

R(&') Py (r'|')
> 2, RO Po(rl]))

PF<7'): PF(T/):
Hence Pr(1) = Prp(7).
N

The proposition shows that our proposed features have sufficient representation power
for the PhyloGFN-Bayesian policy. Furthermore, Felsenstein features and edge length
priors are used in calculating reward by Felsenstein’s algorithm. Therefore, computing
these features does not introduce any additional variables, and computation overhead is

minimized.

4.5.2 GFlowNets for parsimony analysis

This section introduces PhyloGFN-Parsimony, our GFlowNet-based method for parsi-

mony analysis. We treat large parsimony analysis, a discrete optimization problem, as a
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sampling problem from the energy distribution exp (%) defined over tree topolo-
gies. Here, M (2|Y") is the parsimony score of z and T is a pre-defined temperature term
to control the smoothness of distribution. With sufficiently small 7', the most parsimo-
nious trees dominate the energy distribution. To state our goals formally, given observed
sequences Y, PhyloGFN-Parsimony learns a sampling policy Pr over the space of tree
topologies {z|L(z) = Y} such that P} (z) e~ As T — 0, this target distribution
approaches a uniform distribution over the set of tree topologies with minimum parsi-
mony scores.

PhyloGFN-Parsimony can be seen as a reduced version of PhyloGFN-Bayesian. The

tree shape generation procedure is the same as before, but we no longer generate branch

C—M(2]Y)

7 ), where C' is an extra hyperpa-

lengths. The reward is defined as R(z) = exp (
rameter introduced for stability to offset the typically large M (z|Y") values. Note that C
can be absorbed into the partition function and has no influence on the reward distribu-
tion.

Similar to PhyloGFN-Bayesian, a state (collection of rooted trees) is represented by
the set of tree features, with each tree represented by concatenating its site-level features.
With z the rooted tree topology with root u, we represent the tree at site i by its root level

Fitch feature f) defined in §4.4.1. The proposition below, analogous to Proposition 1,

shows the representation power of the proposed feature.

Proposition 2. Let sy = {21, 20, ... 2} and sy = {z], 2, ... 2]} be two non-terminal states such
that s, # sq but sharing the same Fitch features f.. = f.. Vi. Let a be any sequence of actions,
which, applied to s, and s,, respectively, results in tree topologies x,x' € Z, with two partial
trajectories T = (s1 — -+ — x), 7 = (s — -+ — 2'). If Pp is the policy of an optimal
GFlowNet with uniform Pg, then Pp(T) = Pp(7')

Proof. We use the same notation as in the proof of of Proposition 1. Since s; and s, have
the same number of trees, G,, and G,, have the same graph structure. Let X}, X» C X be

the terminal states reachable from s; and s,. There is a bijective correspondence between

A; and Aj: for every action set a applying on s; to obtain x € A}, we obtain 2’ € &, by
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applying a on s,. Let 7 and 7’ be the partial trajectories created by applying a on s; and
s, Pp(7|x) = Pg(7'|2").

For simplicity, we denote M (z) = M (z|L(x)). It is worth to note that for two tree
topologies sharing the same Fitch feature, their parsimony scores do not necessarily equal.
However, when applying a on two states s; and s, sharing the Fitch feature, the addi-

tional parsimony scores introduced are the same:

—ZM(ZZ) :M(x’)—ZM(z’

We have the following expressions for Pp(7) and Pp(7'):

—M(z) fM(r')
e 1 Pg(r|x) e Pg(t|2)
PF(T) — —M(z;) ) PF(T/) = 71%(3:
er,mj e~ 1 Pg(tjlz)) ZTJ, 2 € T Pp(r J/|x;)
) > 1;{(21') > M(Z ) )
We multiply :ZW by Pp(7) and ez TGy by Pr(7') and obtain:
e
i M(z) - M(= = M(2)—M(a")
eZ M( T) M( )PB(T’$) , eiM i M@ PB(Tlx/)
Pp(r) = > M(z;)—M(zy) , Pr(r') = i M(H)—M(ah)
ZT]-,J:]- € T PB(lex]) ZTJ/ z’ G#PB <TJ,‘:C;)
. > M(z;ywz;) 2 M(z)—M(z5) .
Since e T PB(T]’|5L’;> =€ T PB<7—j|xj) fOTallj, PF(T) :PF(T’), [

This shows that the Fitch features contain sufficient information for PhyloGFN-Parsimony.
Furthermore, the Fitch features are used in the computation of the reward by Fitch’s al-
gorithm, so their use in the policy model does not introduce additional variables or extra

computation.

Temperature-conditioned PhyloGFN The temperature 7" controls the trade-off between

sample diversity and parsimony scores. Following Zhang et al. (2023a), we extend PhyloGFN-
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Parsimony by conditioning the policy on 7', with reward R(z;T) = exp (C_MT(Z'Y)) and

we learn a sampler such that P"(z;T) oc R(z;T). See Appendix 4.8.4 for more details.

4.5.3 Model architecture and training

Parameterization of forward transitions We parameterize the forward transitions of
tree topology construction using a Transformer-based neural network (Vaswani et al.,
2017b), whose architecture is shown in Fig. 4.1. We select Transformer because the input
is a set and the model needs to be order-equivariant. For a state consisting of n trees,
after n embeddings are generated from the Transformer encoder, () pairwise features
are created for all possible pairs of trees, and a common MLP generates probability log-
its for joining every tree pair. PhyloGFN-Bayesian additionally requires generating edge
lengths. Once the pair of trees to join is selected, another MLP is applied to the corre-
sponding pair feature to generate probability logits for sampling the edge lengths. See

more details in 4.8.3.

Off-policy training The action model Pr(- | s;60) is trained with the trajectory balance
objective. Training data is generated from two sources: (i) A set of trajectories constructed
from the currently trained GFlowNet, with actions sampled from the policy with prob-
ability 1 — € and uniformly at random with probability e. The € rate drops from a pre-
defined €4, to near 0 during the course of training. (ii) Trajectories corresponding to
the best trees seen to date (replay buffer). Trajectories are sampled backward from these

high-reward trees with uniform backward policy.

Temperature annealing For PhyloGFN-Parsimony, it is crucial to choose the appropri-
ate temperature 7. Large 7' defines a flat target distribution, while small 7" makes the
reward landscape less smooth and leads to training difficulties. We cannot predetermine

the ideal choice of T before training, as we do not know a priori the parsimony score for
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the dataset. Therefore, we initialize the training with large 7" and reduce 7" periodically

during training. See Appendix 4.8.4 for details.

4.5.4 Marginal log-likelihood estimation

To assess how well the GFlowNet sampler approximates the true posterior distribution,
we use the following importance-weighted variational lower bound on the marginal log-

likelihood (MLL):

k

1 P T; Zi,bz’ R Zi,bi
log P(Y) 2 Er, .y log | P(2)2 > (il b (i‘)( ) (4.5)

i
TZ‘:S()*)-“H(Zi,bZ‘)

Pgp(7|z,b)R(z,b)
P (1)

Our estimator is computed by sampling a batch of K trajectories and averaging 22
over the batch. This expectation of this estimate is guaranteed to be a lower bound on
log P(Y') and its bias decreases as K grows (Burda et al., 2016).

PhyloGFN-Bayesian models branch lengths with discrete multinomial distributions,
while in reality these are continuous variables. To properly estimate the MLL and com-
pare with other methods defined over continuous space, we augment our model to a
continuous sampler by performing random perturbations over edges of trees sampled
from PhyloGFN-Bayesian. The perturbation follows the uniform distribution ¢|_ 5.,0.5.1,
where w is the fixed bin size for edge modeling in PhyloGFN-Bayesian. The resulting
model over branch lengths is then a piecewise-constant continuous distribution. We dis-

cuss the computation details as well as the derivation of (4.5) in Appendix 4.8.1.

4.6 Experiments

We evaluate PhyloGFN on a suite of 8 real-world benchmark datasets (Table 4.3 in Ap-
pendix 4.8.2) that is standard in the literature. These datasets feature pre-aligned se-

quences and vary in difficulty (27 to 64 sequences; 378 to 2520 sites). In the following
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sections we present our results and analysis on Bayesian and parsimony-based phyloge-

netic inference.

4.6.1 Bayesian phylogenetic inference

PhyloGFN is compared with a variety of baselines in terms of sampling-based estimates
of marginal log-likelihood (MLL; see details in §4.5.4). The baselines we compare to
are MrBayes SS, Stepping-Stone sampling algorithm implemented in MrBayes (Ronquist
etal.,, 2012), and three variational inference methods: VBPI-GNN (Zhang, 2023), ¢-CSMC
proposed in VaiPhy (Koptagel et al., 2022), and GeoPhy (Mimori & Hamada, 2023). The
sampling setup for MrBayes follows Zhang & Matsen IV (2018b) and otherwise show the
highest MLL reported in the respective papers. PhyloGFN MLL is estimated following
the formulation in §4.5.4, with mean and standard deviation obtained from 10 repetitions,
each using 1000 samples. See Sections 4.8.4 and 4.8.6 for additional training details, hard-
ware specifications, and running time comparison. Additional results from two repeated
experiments are in Table 4.7.

The results are summarized in Table 4.6. Our PhyloGFN is markedly superior to ¢-
CSMC across all datasets and outperforms GeoPhy on most, with the exception of DS2
and DS3 where the two perform similarly, and DS7 where GeoPhy obtains a better result.
VBPI-GNN, is the only machine learning-based method that performs on par against Mr-
Bayes, the current gold standard in Bayesian phylogenetic inference. However, it should
be emphasized that VBPI-GNN requires a set of pre-defined tree topologies that are likely
to achieve high likelihood, and as a consequence, its training and inference are both con-
strained to a small space of tree topologies.

On the other hand, PhyloGEN operates on the full space of tree topologies and, in fact,
achieves a closer fit to the true posterior distribution. To show this, for each dataset, we
created three sets of phylogenetic trees with high/medium/low posterior probabilities
and obtained the corresponding sampling probabilities from PhyloGFN and VBPI-GNN.

The three classes of trees are generated from VBPI-GNN by randomly inserting uniformly
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Table 4.1: Marginal log-likelihood estimation with different methods on real datasets
DS1-DS8. PhyloGEN outperforms ¢-CSMC across all datasets and GeoPhy on most.
*VBPI-GNN uses predefined tree topologies in training and is not directly comparable.

MCMC ML-based / amortized, full tree space

Dataset MrBayes SS VBPI-GNN* »-CSMC GeoPhy PhyloGFN

DS1 —7108.42 +0.15  —7108.41 +o. —7290.36 +7.23 —7111.55 +o.07 —7108.95 +0.06
DS2 —26367.57 +0.48  —26367.73 +0.07 —30568.49 +31.31 —26368.44 +0.13 —26368.90 +0.28
DS3 —33735.44 +05  —33735.12 +o. —33798.06 +6.62 —33735.85+0.12 —33735.6 -0

DS4 —13330.06 +0.54 —13329.94: 19 —13582.24 +3508 —13337.42+132 —13331.83 +0.19
DS5 —8214.51 028  —8214.64 +0.38  —8367.51 +8.87 —8233.89 +6.63 —8215.15 102
DS6 —6724.07 086  —6724.37 0.4 —7013.83 +16.99 —6733.91 +0.57 —6730.68 +0.54
DS7 —37332.76 +2.42 —37332.04 +0.12 —37350.77 +11.74 —37359.96 +1.14
DS8 —8649.88 +1.75  —8650.65 +0.45  —9209.18 £18.03 —8660.48 +0.78 —8654.76 +0.19

sampled actions into its sequential tree topology construction process with 0%, 30%, or
50% probability, respectively, which circumvents VBPI-GNN’s limitation of being con-
fined to a small tree topology space. Table 4.2 and Fig. 4.2 show that PhyloGFN achieves
higher Pearson correlation between the sampling log-probability and the unnormalized
ground truth posterior log-density for the majority of datasets and classes of trees. In par-
ticular, while VBPI-GNN performs better on high-probability trees, its correlation drops
significantly on lower-probability trees. On the other hand, PhyloGFN maintains a high
correlation for all three classes of trees across all datasets, the only exception being the
high-probability trees in DS7. See Appendix 4.8.9 for details and extended results and

Appendix 4.8.8 for a short explanation of the significance of modeling suboptimal trees.

Continuous branch length modeling Following the initial submission, additional ex-
periments involving continuous branch length modeling demonstrate PhyloGFN’s abil-
ity to achieve state-of-the-art Bayesian inference performance. For more details, please

see Appendix 4.8.5.
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Figure 4.2: Model sampling log-density vs. unnormalized posterior log-density for
high/medium/low-probability trees on DS1. We highlight that PhyloGFN-Bayesian per-
forms significantly better on medium- and low-probability trees, highlighting its superi-

ority in modeling the entire data space.

4.6.2 Parsimony-based phylogenetic inference

As a special case of Bayesian phylogenetic inference, the parsimony problem is concerned
with finding the most-parsimonious trees — a task which is also amenable to PhyloGFN.
Here, we compare to the state-of-the-art parsimony analysis software PAUP* (Swofford,
1998). For all datasets, our PhyloGFN and PAUP* are able to identify the same set of
optimal solutions to the Large Parsimony problem, ranging from a single optimal tree for
DS1 to 21 optimal trees for DS8.

Although the results are similar between PhyloGFN and PAUP*, once again we em-

phasize that PhyloGFN is based on a rigorous mathematical framework of fitting and

47



Table 4.2: Pearson correlation of model sampling log-density and ground truth unnor-
malized posterior log-density for each dataset on high/medium/low posterior density
trees generated by VBPI-GNN. PhyloGFN achieves a good fit on both high and low pos-

terior density regions.

No random 30% random 50% random
Dataset PhyloGFN VBPI-GNN PhyloGFN VBPI-GNN PhyloGFN VBPI-GNN
DS1 0.994 0.955 0.961 0.589 0.955 0.512
DS2 0.930 0.952 0.948 0.580 0.919 0.538
DS3 0.917 0.968 0.963 0.543 0.950 0.499
DS54 0.942 0.960 0.945 0.770 0.966 0.76
DS5 0.969 0.965 0.937 0.786 0.939 0.773
DS6 0.993 0.887 0.973 0.816 0.934 0.702
DS7 0.624 0.955 0.787 0.682 0.764 0.678
DS8 0.978 0.955 0.913 0.604 0.901 0.463

sampling from well-defined posterior distributions over tree topologies. whereas PAUP*’s
relies on heuristic algorithms. To put it more concretely, we show in Fig. 4.6 that Phy-
loGEN is able to (i) learn a smooth echelon of sampling probabilities that distinguish
the optimal trees from suboptimal ones; (ii) learn similar sampling probabilities for trees
within each group of equally-parsimonious trees; and (iii) fit all 2n — 3 rooted trees that
belong to the same unrooted tree equally well.

Finally, Fig. 4.3 shows that a single temperature-conditioned PhyloGFN can sample
phylogenetic trees of varying ranges of parsimony scores by providing suitable tem-
peratures 7' as input to the model. Also, PhyloGEN is able to sample proportionately
from the Boltzmann distribution defined at different temperatures and achieves high cor-
relation between sampling log-probability and log-reward. Although the temperature-
conditioned PhyloGFN has only been trained on a small range of temperatures between
4.0 and 1.0, Fig. 4.3 shows it can also approximate the distribution defined at temperature

8.0. Further results are presented in Appendix 4.8.10.
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Figure 4.3: A temperature-conditioned PhyloGFN is trained on DS1 using temperatures
sampled between 4.0 and 1.0. (A) The distribution of parsimony scores can be controlled
by varying the statistical temperature — an input variable to the PhyloGEN policy - from
8.0 to 1.0. 10,000 trees are randomly sampled at each temperature. (B) PhyloGFN achieves

high Pearson correlation for trees sampled within each temperature range.

4.7 Discussion and future work

In this paper, we propose PhyloGFN, a GFlowNet-based generative modeling algorithm,
to solve parsimony-based and Bayesian phylogenetic inference. We design an intuitive
yet effective tree construction procedure to efficiently model the entire tree topology
space. We propose a novel tree representation based on Fitch’s and Felsenstein’s algo-
rithms to represent rooted trees without introducing additional learnable parameters, and
we show the sufficiency of our features for the purpose of phylogenetic tree generation.
We apply our algorithm on eight real datasets, demonstrating that PhyloGFN is compet-
itive with or superior to prior works in terms of marginal likelihood estimation, while
achieving a closer fit to the target distribution compared to state-of-the-art variational in-
ference methods. While our initial experiments with continuous branch length sampling
have demonstrated notable performance enhancements, there remains a need for future
research to address training efficiency. In addition, we plan to explore the use of condi-

tional GFlowNets to amortize the dependence on the sequence dataset itself. This would
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allow a single trained GFlowNet to sample phylogenetic trees for sets of sequences that

were not seen during training.
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4.8 Appendix

4.8.1 Marginal log-likelihood estimation

Estimating the sampling likelihood of a terminal state In the PhyloGEN state space (in
both the Bayesian and parsimony-based settings), there exist multiple trajectories leading
to the same terminal state x, hence the sampling probability of z is calculated as: P (z) =
> risgosse Pr(7). This sum is intractable for large-scale problems. However, we can
estimate the sum using importance sampling(Zhang et al., 2022):

Pl ~ Seln)

(4.6)
where the trajectories 7; are sampled from Pg(7; | ). The logarithm of the right side of
(4.6) is, in expectation, a lower bound on the logarithm of the true sampling likelihood on

the left side of (4.6).

Estimating the MLL The lower bound on MLL can be evaluated using the importance-

weighted bound log P(Y') > E,, ., ~p. log % > 1;(?’(?:)) (Burda et al., 2016). However, we

cannot use it for PhyloGFN since we cannot compute the exact P”(z), only get a lower

bound on it using (4.6). Therefore, we propose the following variational lower bound:

k
1 Pp(7i|2i, bi) R(2i, bs)
logP(Y) > E ~ppl P(z)—
0g ( )— 1, Te~Pp 108 <Z)K Z PF<Tz)

i
Ti380—>~"—>(zi,bi)
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We show the derivation of the estimator and thus prove its consistency:

PY)= /bP(Y|z,b)P(b]z)P(z)

R(z,b)P(2)

2y

(z.0)P(z) Y Py(r|z,b)

7:80...2=(2,b)
:/R(z,b)P(z) > PB(T|Z’b)§§E:)

7:80...2=(2,b)

_ / Z Pe(r) Pg(7|2z,b)R(z,b)P(z)

b ris0...m=(2,b) Pr(7)
:/ Pr(r) PB(T|ZT,b;D)F]?7(—§'T,bT)P(z)
Pp(7|27,b;) R(27, b;)

Pp(7)

~—

7:80...27=(27,br)

= P(Z)ETNPF

k
1 P N> bYR(z:. b:
~ P(Z) z : B(Tz|zz> z) (Zu z)'

Pr(7;)

T,L'NPF
Ti:SQ...(Zi,bi)

One can show, in a manner identical to the standard importance-weighted bound, that
this estimate is a lower bound on log P(Y).

PhyloGFN-Bayesian models edge lengths using discrete distributions. To estimate
our algorithm’s MLL, we augment the sampler to a continuous sampler by modeling
branch lengths with a piecewise-constant continuous distribution based on the fixed-bin
multinomial distribution of PhyloGFN. We can still use the above formulation to estimate
the lower bound. However, each trajectory now has one extra step: 7/ = s — --- —
(2,b) — (z,b;) where (z,b;) is obtained from z,b by randomly perturbing each branch
length by adding noise from U[—0.5w, 0.5w], where w is the bin size used for PhyloGFN.
Let 7 = sp — --- — (z,b) be the original trajectory in the discrete PhyloGFN, we can
compute Pr(7'), Pg(1') from Pr(7), Pp(T):

1

Pp(7') = Pp(7) , Pp(r') = Pp(1)
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The term ﬁ is introduced in Pr because we additionally sample over a uniform

range w for all | E(z)| edges. The backward probability Pp stays unchanged because given

(z,b) generated from the discrete GFN, for any (z,V') resulting from perturbing edges,

(2,b) is the the only possible ancestral state.

4.8.2 Dataset information

Table 4.3: Statistics of the benchmark datasets from DS1 to DSS.

Dataset # Species # Sites Reference

DS1 27 1949 Hedges et al. (1990)

DS2 29 2520  Garey et al. (1996)

DS3 36 1812 Yang & Yoder (2003)

DS4 41 1137 Henk et al. (2003)

DS5 50 378 Lakner et al. (2008)

DSé6 50 1133 Zhang & Blackwell (2001)
DS7 59 1824 Yoder & Yang (2004)

DS8 64 1008 Rossman et al. (2001)
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4.8.3 Modeling

Given the character set 2, we use one-hot encoding to represent each site in a sequence.
To deal with wild characters in the dataset, for parsimony analysis we consider them as
one special character in ¥, while in Bayesian inference, we represent them by a vector of
1.

For both PhyloGEN-Parsimony and PhyloGFN-Bayesian, given a state with [ rooted
trees, its representation feature is the set {p; ...p;}, where p is a vector of length m|X|.
For example, for DNA sequences of 1000 sites, each p would have length 4000. Therefore,
before passing these features to the Transformer encoder, we first use a linear transforma-
tion to obtain lower-dimensional embeddings of the input features.

We use the Transformer architecture (Vaswani et al., 2017a) to build the Transformer
encoder. For a state with [ trees, the output is a set of [ + 1 features {es, €1, ..., ¢} where
es denotes the summary feature (i.e., the [CLS] token of the Transformer encoder input).

To select pairs of trees to join, we evaluate tree-pair features for every pair of trees in
the state and pass these tree-pair features as input to the tree MLP to generate probability
logits for all pairs of trees. The tree-pair feature for a tree pair (7, j) with representations
e;, s; is the concatenation of e; + e; with the summary embedding of the state, i.e., the
feature is [es; e; + €], where [-; -] denotes vector direct sum (concatenation). For a state
with [ trees, (é) = @ such pairwise features are generated for all possible pairs.

To generate edge lengths for the joined tree pair (7, j), we pass [es; €;; e;] — the concate-
nation of the summary feature with the tree-level features of trees i and j — as input to the
edge MLP. For unrooted tree topologies we need to distinguish two scenarios: (i) when
only two rooted trees are left in the state (i.e., at the last step of PhyloGFN state transi-
tions), we only need to generate a single edge; and (ii) when there are more than two
rooted trees in the state, a pair of edges is required. Therefore, two separate edge MLPs
are employed, as edge length is modeled by k discrete bins, the edge MLP used at the last

step has an output size of £ (to model a distribution over a single edge length) whereas
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the other edge MLP would have an output size of k* (to model a joint distribution over
two edge lengths).

For the temperature-conditioned PhyloGFN, as then temperature 7" is passed to our
PhyloGFN as an input, two major modifications are required: (i) the estimation of the
partition Zy is now a function of 7: Z,(7"), which is modeled by a Z MLP; (ii) the summary
token to the Transformer encoder also captures the temperature information by replacing

the usual [CLS] token with a temp MLP that accepts 7" as input.

4.8.4 Training details

Here, we describe the training details for our PhyloGFN. For PhyloGFN-Bayesian, our
models are trained with fixed 500 epochs. For PhyloGFN-Parsimony, our models are
trained until the probability of sampling the optimal trees, or the most parsimonious trees
our PhyloGFN has seen so far, is above 0.001. Each training epoch consists of 1000 gradi-
ent update steps using a batch of 64 trajectories. For e-greedy exploration, the ¢ value is
linearly annealed from 0.5 to 0.001 during the first 240 epochs. All common hyperparam-
eters for PhyloGFN-Bayesian and PhyloGFN-Parsimony are shown in Table 4.5.

Temperature annealing For PhyloGFN-Bayesian, the initial temperature is set to 16 for
all experiments. For PhyloGFN-Parsimony, T is initialized at 4. Under the cascading
temperature annealing scheme, 7" is reduced by half per every 80 epochs of training. For
PhyloGFN-Bayesian, 7" is always reduced to and then fixed at 1, whereas for PhyloGFN-
Parsimony, 7" is only reduced when the most parsimonious trees seen by our PhyloGFN

so far are sampled with a probability below 0.001.

Hyperparameter C selection For PhyloGFN-Parsimony, the reward is defined as R(z) =

exp (%) , where C'is a hyperparameter introduced for training stability and it con-
trols the magnitude of the partition function Z = ) R(x). Given that we cannot deter-

mine the precise value of C' prior to training since we do know the value of Z as a priori,
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we use the following heuristic to choose C: 1000 random tree topologies are generated
via stepwise-addition, and we set C' to the 10% quantile of the lowest parsimony score.
Similarly, C' is employed for PhyloGFN-Bayesian under the same goal of stabilizing

the training and reducing the magnitude of the partition function. Recall the reward func-

C—(—log P(Y|2,b)P(b))
T

tion R(z,b) defined in section 4.5.1, it can be rewritten as R(z, b) = exp <
when T' = 1. Note that exp (%) can be absorbed into the partition function. For selecting
the C, once again we randomly sample 1000 weighted phylogenetic trees via stepwise-
addition and with random edge length, followed by setting C' to the 10% quantile of the
lowest — log P(Y |z, b) P(b).

Temperature-conditioned PhyloGFN-Parsimony The temperature-conditioned PhyloGFN
is introduced so that a single trained PhyloGFN can be used to sample from a series of
reward distributions defined by different 7. We modify the fixed-temperature PhyloGFN-
Parsimony by introducing 7" as input in 3 places: (i) the reward function R(z;T'); (ii) the
forward transition policy Pr(z;T); and (iii) the learned partition function estimate Zy(7T').
To train the temperature-conditioned PhyloGFN, the TB objective also needs to be up-

dated accordingly:

_ 2 n
Zo(T) 11—y Pr(sis | Si;Q,T)> 1

L:TB(T;T) = (log R(ZE,T)PB(T | ZE) PB(T | ZL’) = H |Pa(si)|’

Note that Py is unaffected.

During training, values for 7" are randomly selected from the range [T1,in, Tmax]- When
training with a state from the replay buffer, the temperature used for training is resampled
and may be different than the one originally used when the state was added to the buffer.

We also employ a scheme of gradually reducing the average of sampled 7" values
through the course of training: 7"s are sampled from a truncated normal distribution
with a fixed pre-defined variance and a moving mean 7), that linearly reduces from T}«

to Tmin .
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Modeling branch lengths with discrete multinomial distribution When a pair of trees
are joined at the root, the branch lengths of the two newly formed edges are modeled
jointly by a discrete multinomial distribution. The reason for using a joint distribution is
because under the Jukes-Cantor evolution model, the likelihood at the root depends on
the sum of the two branch lengths.

We use a different set of maximum edge length, bin number and bin size depending on
each dataset, and by testing various combinations we have selected the set with optimal
performance. The maximum branch length is chosen among {0.05,0.1,0.2}, and bin size
w is chosen among {0.001, 0.002, 0.004}. Table 4.4 shows the our final selected bin size and
bin number for each dataset.

Table 4.4: Bin sizes and bin numbers used to model branch lengths for DS1 to DS8.

Dataset Bin Size # Bins

DS1 0.001 50
DS2 0.004 50
DS3 0.004 50
DS54 0.002 100
DS5 0.002 100
DSé6 0.001 100
DS7 0.001 200
DS8 0.001 100
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Table 4.5: Common hyperparameters for PhyloGFN-Bayesian and PhyloGFN-Parsimony.

Transformer encoder

hidden size 128
number of layers 6
number of heads 4
learning rate (model) 5e-5
learning rate (Z) 5e-3

tree MLP
hidden size 256
number of layers 3

edge MLP
hidden size 256
number of layers 3

Z MLP (in temperature-conditioned PhyloGFN)

hidden size 128
number of layers 1

temp MLP (in temperature-conditioned PhyloGFN)

hidden size 256
number of layers 3
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4.8.5 Continuous branch length modeling with PhyloGFN

While the original PhyloGFN-Bayesian only samples discrete branch lengths, we have
experimented with a new version of PhyloGFN that uses mixture of Gaussian to model
and sample branch lengths — effectively treating them as continuous variables. We refer
to this new version as PhyloGFN-Continuous and we point out that the edge modeling is
the only implementational detail that differs from the previous models.

Specifically, the edge MLP of PhyloGFN-Continuous now outputs the parameters of
the Gaussian mixture which models the logarithm of branch length. These include (1)
logits for selecting the components of the Gaussian mixture, (2) mean of the log branch
length in each mixture, and (3) log variance of the log branch length in each mixture.

Although PhyloGFN-Continuous continues to employ two separate edge MLP, one
for the last step of state transition where only a single edge needs to be sampled and the
other for sampling a pair of edges at the intermediate step, PhyloGFN-Continuous now
samples each edge independently as we have found this to benefit training stability.

It is also worth pointing out that we no longer perform e-greedy random exploration
on branch lengths, again for the sake of training stability, and the mean of the log branch
length is initialized at —4.0 instead of 0.0, which is a more reasonable value for log branch
length. There are five components in each Gaussian mixture.

Results are shown below. We are delighted to report that PhyloGFN-Continuous has
eliminated the quantization error introduced in the earlier discrete PhyloGFN-Bayesian
and therefore, our new model is effectively performing on par with the state of the art
MrBayes and VBPI-GNN models. In particular, PhyloGFN-Continuous has the smallest
standard deviation for the MLL estimation across all datasets, with the only exception
being DS7 where PhyloGFN-Continuous closely matches the performance of VBPI-GNN.

Note that PhyloGFN-Continuous has undergone the same training routine that is de-

scribed in §4.8.4, as is PhyloGFN-Bayesian.
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Table 4.6: Marginal log-likelihood estimation with different methods on real datasets
DS1-DS8. PhyloGFN-C(ontinuous) now outperforms ¢-CSMC, GeoPhy and PhyloGFN-
B(ayesian) across all datasets and it is effectively performing on par with the state of the
arts MrBayes and VBPI-GNN.

MCMC ML-based / amortized, full tree space
Dataset MrBayes SS VBPI-GNN* ¢-CSMC GeoPhy PhyloGFN-B ~ PhyloGFN-C
DS1 —7108.42 +0.18  —7108.41 +0.14 —7290.36 +7.23 —7111.55 +o0.07 —7108.95 t0.06  —7108.40 +0.04
DS2 —26367.57 048  —26367.73 +0.07 —30568.49 +31.31 —26368.44 +0.13  —26368.90 +0.28 —26367.70 +0.04
DS3 —33735.44 +05  —33735.12 1009 —33798.06 +6.62 —33735.85 +0.12 —33735.6 +0.35  —33735.11 +0.02
DS4 —13330.06 054  —13329.94 1019 —13582.24 +3508 —13337.42 132 —13331.83 1010 —13329.91 +0.02
DS5 —8214.51 +0.28  —8214.64 +0.38  —8367.51 +8.87 —8233.89 +6.63 —8215.15 +0.2 —8214.38 +0.16
DS6 —6724.07 086 —6724.37 +0.4 —7013.83 +16.09  —6733.91 +0.57 —6730.68 +0.54  —6724.17 +0.10
DS7 —37332.76 4242  —37332.04 +0.12 —37350.77 1174 —37359.96 +1.14  —37331.89 +0.14
DS8 —8649.88 +1.75  —8650.65 +0.45  —9209.18 1803  —8660.48 +0.78 —8654.76 +0.19  —8650.46 +0.05

4.8.6 Running time and hardware requirements

PhyloGEFEN is trained on virtual machines equipped with 10 CPU cores and 10GB RAM for
all datasets. We use one V100 GPU for datasets DS1-DS6 and one A100 GPU for DS7-DSS,
although the choice of hardware is not essential for running our training algorithms.

For Bayesian inference, the models used for the MLL estimation in Table 4.6 of the pa-
per are trained on a total of 32 million examples, with a training wall time ranging from
3 to 8 days across the eight datasets. However, our algorithm demonstrates the capac-
ity to achieve similar performance levels with significantly reduced training data. The
table 4.7 below presents the performance of PhyloGFN with 32 million training exam-
ples (PhyloGFN Full) and with only 40% of the training trajectories (PhyloGFN Short).
Each type of experiment is repeated 3 times. Table 4.8 compares running time of the full
experiment with the shorter experiment. The tables show that the shorter runs exhibit
comparable performance to our full run experiments, and all conclude within 3 days.

We compare the running time of PhyloGFN with VI baselines (VBPI-GNN, Vaiphy,
and GeoPhy) using the DS1 dataset. VBPI-GNN and GeoPhy are trained using the same
virtual machine configuration as PhyloGFN (10 cores, 10GB ram, 1xV100 GPU). The train-

ing setup for both algorithms mirrors the one that yielded the best performance as doc-
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umented in their respective papers. As for VaiPhy, we employed the recorded running
time from the paper on a machine with 16 CPU cores and 96GB RAM. For PhyloGFN, we
calculate the running time of the full training process (PhyloGFN-Full) and four shorter
experiments with 40%, 24%, 16% and 8% training examples. The table 4.9 documents
both the running time and MLL estimation for each experiment. While our most compre-
hensive experiment, PhyloGFN Full, takes the longest time to train, our shorter runs — all
of which conclude training within a day — show only a marginal degradation in perfor-
mance. Remarkably, even our shortest run, PhyloGFN - 8%, outperforms both GeoPhy
and ¢-CSMC, achieving this superior performance with approximately half the training

time of GeoPhy.

Table 4.7: PhyloGFN-Bayesian MLL estimation on 8 datasets. We repeat both full experi-

ment and short experiment (with 40% training examples) 3 times

Experiment PhyloGEN Full PhyloGEN Short (40% Training data)
Repeat 1 2 3 1 2 3

DS1 -7108.95 ~0.06  -7108.97 ~0.05  -7108.94 +0.05  -7108.97 +0.114  -7108.94 ~022  -7109.04 +0.08
DS2 -26368.9 t0.28  -26368.77 +0.43 -26368.89 1029 -26368.9 0390 -26369.03 t0.31 -26368.88 +0.32
DS3 -33735.6 +0.35  -33735.60 +0.40 -33735.68 t0.64 -33735.9 091 -33735.83 to0.62 -33735.76 +0.75
DS4 -13331.83 +0.10  -13331.80 +0.31 -13331.94 +0.42 -13332.04 ~0.57 -13331.87 031 -13331.78 +0.37
DS5 -8215.15 02 -8214.92 +027  8214.85 t02s  -8215.38 t027  -8215.37 1026  -8215.38 +0.25
DS6 -6730.68 t051  -6730.72 1026 -6730.89 1022  -6731.35 t0.31 -6731.2 104 -6731.1 0.8

DS7 -37359.96 +1.14  -37360.59 +162 -37361.51 t259 -37362.03 152 -37363.43 122 -37362.37 1265
DS8 -8654.76 +0.19  -8654.67 +039  -8654.86 +0.15 -8655.8 +0.95 -8655.65 t0.37  -8654.96 +0.46

Table 4.8: PhyloGFN-Bayesian training time

Dataset PhyloGEN Full PhyloGFN Short
DS1 62h40min 20h40min
DS2 69h16min 28h

DS3 80h20min 35h40min
DS54 103h54min 44h30min
DS5 127h50min 51h40min
DS6 135h10min 53h10min
DS7 174h3min 60h20min
DS8 190h25min 61h40min
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Table 4.9: Running time of PhyloGFN-Bayesian and VI baseline methods on DS1

Running Time

MLL

VBPI-GNN
GeoPhy
P-CSMC**
PhyloGEN - Full
PhyloGEN - 40%
PhyloGFEN - 24%
PhyloGEN - 16%
PhyloGFEN - 8%

16h10min
12h50min
~2h

62h40min
20h40min
15h40min
10h50min
5h10min

-7108.41 +o0.14
-7111.55 o007
-7290.36 +7.23
-7108.97 +0.05
-7108.97 +0.14
-7109.01 +o0.15
-7109.15 +0.23
-7110.65 +0.39
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4.8.7 Ablation study

Branch lengths model hyperparameters

PhyloGFN models branch lengths using discrete multinomial distributions. When es-
timating MLL, the branch length model is transformed into a piecewise-constant con-
tinuous form, introducing a small quantization error. Two hyperparameters define the
multinomial distribution: bin size and bin number. This analysis investigates the impact
of bin size and bin number on MLL estimation.

For the fixed bin size of 0.001, we assess four sets of bin numbers: 50, 100, 150, and
200, and for the fixed bin number of 50, we evaluate three sets of bin sizes: 0.001, 0.002,
and 0.004. For each setup, we train a PhyloGFN-Bayesian model on the dataset DS1 using
12.8 millions training examples.

Table 4.10 displays the MLL obtained in each setup. A noticeable decline in MLL
estimation occurs as the bin size increases, which is expected due to the increased quan-
tization error. However, MLL estimation also significantly declines as the number of bins
increases over 100 under the fixed bin size of 0.001. We conjecture this is because the size
of the action pool for sampling the pair of branch lengths increases quadratically by the
number of bins. For example at 200 bins, the MLP head that generates branch lengths has

40,000 possible outcomes, leading to increased optimization challenges.

Exploration policies

PhyloGFN employs the following to techniques to encourage exploration during training;:

* c-greedy annealing: a set of trajectories are generated from the GFlowNet that is
being trained, with actions sampled from the GFlowNet policy with probability 1 —e
and uniformly at random with probability e. The e rate drops from a pre-defined

€stqre to Near 0 through the course of training.
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* Replay Buffer: a replay buffer is used to store the best trees seen to date, and to use
them for training, random trajectories are constructed from these high-reward trees

using the backward probability Pg.

¢ Temperature annealing: the training of GFlowNet begins at a large temperature T

and it is divided in half periodically during training.

To assess the effectiveness of various exploration methods, we train PhyloGFN-Bayesian

on DS1 with the following setups:

1. All trajectories are generated strictly on-policy training without any exploration

methods (On-policy).
2. All trajectories are generated with epsilon-greedy annealing (¢).

3. Half of trajectories are generated with e-greedy annealing, and the other half are

constructed from the replay buffer (¢ + RP).

4. The same setup as 3, with the addition of temperature annealing. 7’ is initialized at
16 and reduced by half per every 1.5 million training examples until reaching 1 (¢ +

RP + T Cascading).

5. The same setup as 4, except the temperature drops linearly from 16 to 1 (¢ + RP + T

Linear).

For each setup, we train a model using 12.8 millions training examples. Table 4.11
displays the MLL estimation for each setup. On-policy training without any additional
exploration strategies results in the poorest model performance. Epsilon-greedy anneal-
ing significantly enhances performance, and combining all three strategies yields the op-
timal results. There is no significant difference between cascading and linear temperature

drops.
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Table 4.10: MLL estimation of PhyloGFN-Bayesian on DS1 with different combinations

of bin size and bin number to model edge lengths.

Bin Size Bin Number MLL

0.001 50 -7108.98 +0.14
0.001 100 -7108.96 +o.18
0.001 150 -7109.17 +1.14
0.001 200 -7109.3 7.3
0.002 50 -7109.95 10.29
0.004 50 -7114.48 1052

Table 4.11: ML