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i. Abstract (English) 

The precise quantification of proteins in the brain using Positron Emission Tomography 

(PET) imaging requires additional instrumentation and rigorous validation of methodology. We 

can estimate sensitive indexes to quantify the protein of interest by measuring the concentration 

of radiotracer in arterial plasma (the input function) simultaneously to image acquisition and 

applying pharmacokinetic models. However, the metabolization of the PET radiotracers results 

in the formation of radioactive metabolites in the bloodstream. Therefore, the determination of 

the input function requires accounting for the contribution of the radio-metabolites in plasma, as 

well as the radioactive species in red blood cells (RBCs), platelets, and other blood components. 

In the present study, the instruments required for arterial blood sampling were characterized, as 

well as the assessment of the quantitative methods for the full kinetic modeling of [11C]CURB, a 

radioligand that binds fatty acid amide hydrolase (FAAH) of the endocannabinoid system (eCB). 

More specifically: a) the performance of a fully programmable automatic blood sampling system 

(ABSS, Comecer®, Netherlands), used for the continuous measurement of arterial whole blood 

activity, was evaluated across a range of sampling conditions; b) The response of an automatic 

gamma counter (AMG, Hidex, Finland), used for measuring activity in samples of blood and 

plasma as well as determining the fraction of radiometabolites in plasma, was characterized for 

the range of expected experimental conditions; c) The sensitivity of different macroparameters 

derived from the kinetic modeling for detecting changes in [FAAH] with [11C]CURB was 

studied; and d) the importance of the individualized details of the initial minutes of the arterial 

input function was assessed. This study provides a significant contribution in several aspects 

related to the precise and reproducible quantification of [FAAH] in the brain using [11C]CURB 

PET imaging. 



v 

 

i. Abstrait (Français) 

La quantification précise des protéines dans le cerveau à l’aide de l’imagerie par 

tomographie par émission de positons (TEP) nécessite une instrumentation supplémentaire et une 

validation rigoureuse de la méthodologie. En mesurant la concentration du radiotraceur dans le 

plasma artériel (la fonction d’entrée) simultanément à l’acquisition de l’image et en appliquant 

des modèles pharmacocinétiques, nous pouvons estimer des indices sensibles pour quantifier la 

protéine d’intérêt. Cependant, la métabolisation des radiotraceurs TEP entraîne la formation de 

métabolites radioactifs dans la circulation sanguine. Par conséquent, la détermination de la 

fonction d’entrée doit tenir compte de la contribution des métabolites radioactifs dans le plasma, 

ainsi que des espèces radioactives dans les globules rouges. Dans la présente étude, les 

instruments nécessaires à l’échantillonnage du sang artériel ont été caractérisés, ainsi que 

l’évaluation des méthodes quantitatives pour la modélisation cinétique complète du [11C]CURB, 

un radioligand qui se lie à l’hydrolase des amides d’acides gras (FAAH) du système 

endocannabinoïde (eCB). Plus précisément: a) les performances d’un système automatique de 

prélèvement sanguin entièrement programmable (ABSS, Comecer®, Pays-Bas), utilisé pour la 

mesure en continu de l’activité du sang artériel total, ont été évaluées dans plusieurs conditions 

d’échantillonnage; b) la réponse d’un compteur gamma automatique (AMG, Hidex, Finlande), 

utilisé pour mesurer l’activité dans des échantillons de sang et de plasma ainsi que pour 

déterminer la fraction de radiométabolites dans le plasma, a été caractérisée pour la série de 

conditions expérimentales attendues; c) la sensibilité de différents macroparamètres dérivés de la 

modélisation cinétique pour détecter les changements dans la [FAAH] avec [11C]CURB a été 

étudiée; et d) l’importance des détails individualisés des minutes initiales de la fonction d’entrée 

artérielle a été évaluée. Cette étude apporte une contribution significative sur plusieurs aspects 
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liés à la quantification précise et reproductible de la [FAAH] dans le cerveau à l’aide de 

l’imagerie TEP au [11C]CURB. 
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1. Introduction  ……..….. 

1.1 Statement of Problem 

Endogenous cannabinoids (endocannabinoids) are bioactive neurotransmitters that, when 

released by the post-synaptic terminal, activate their respective cannabinoid receptors CB1 and 

CB2 [1]. Endocannabinoids play a critical role in psychological parameters (e.g. motivation, 

learning, and stress responses) and have implications in psychiatric disorders (e.g. psychosis, 

depression, and anxiety) [1]. Fatty Acid Amide Hydrolase (FAAH) is the major metabolizing 

enzyme of endocannabinoid anandamide, known to modulate the signaling of CB1 and CB2 

receptors [1]. Disturbances of FAAH activation and expression pathways have implications in 

various psychiatric behaviour and diseases [1]. Quantifying disturbances in FAAH concentration 

in the brain between healthy brain and neuroatypical brain could serve as a marker for disease 

pathogenesis [1]. 

[11C]CURB was developed as a highly specific FAAH radiotracer used to explore the 

endocannabinoid system in vivo with positron emission tomography (PET) [2]. The 

quantification of [11C]CURB binding in the brain via PET acquisition can be used as an index of 

FAAH concentration: the pharmacokinetic modeling of the PET time-activity curve defines the 

relationship between the measured data and the underlying biochemical parameters that 

influence the uptake and metabolism of the tracer [3]. The measured regional tracer distribution 

provides information about macro-scale physiological parameters in the tissue of interest that can 

be used to answer clinical and scientific inquiries about protein concentration. However, it is not 

possible without the study of the radioactive composition of arterial plasma due to the 

metabolization of parent compound post-bolus injection [4–6]. PET radiotracers are known to 

experience various chemical transformations once they enter the blood stream, which causes the 
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metabolization of the parent compound that break down into smaller component parts that can be 

easily excreted by the body [4, 7]. Arterial blood sampling is required for the accurate and 

reproducible construction of input curves defining the time course of blood radioactivity and 

tracer metabolization [4, 6]. There are many experimental and mathematical approaches 

available for the correction of tracer input functions for radiometabolite formation [4, 5, 8]. A 

common approach to radiometabolite correction uses a mixture of chromatographic procedures 

and mathematical modeling [3, 7–9]. The extraction and processing of arterial samples is 

considered a reliable method to construct reproducible results and representation of the delivery 

of radiotracer into tissue [28]. Arterial sampling requires catheterization of the radial artery for 

the extraction of whole blood radioactivity [28]. This method is however limited by its 

invasiveness and the necessity of additional instrumentation that require specially trained 

personnel and can be quite costly [6, 10, 11]. While the practice of using gamma counters and 

certain automatic blood systems are well established, the differences between hardware, 

conditions, and configurations across imaging facilities requires a careful design of customized 

operative procedures at each institution [12, 13]. 

1.2 Purpose 

The goal of this project was to develop standardized operating protocols for the instrumental 

setup designed for the acquisition of reliable PET arterial blood data and to study its utility for 

the quantification of [11C]CURB. The three specific aims within the goal of this thesis include (a) 

to setup and characterize the response of instrumentation needed for arterial blood sampling and 

radiometabolite blood composition in PET experiments, (b) to evaluate the impact of the 

temporally accurate measurement of blood radioactivity during the first 12 minutes of the 

quantification of the input function that is influenced by the rapid uptake and clearance of 
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[11C]CURB from the blood stream following a bolus injection, and (c) to compare different 

parameters provided by the irreversible two-tissue compartment model used to quantify 

[11C]CURB for the purposes of clinical experiments.   
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2.  Background Information 

2.1 Positron Emission Tomography (PET)  

PET is a state-of-the-art technique for the non-invasive in vivo study of certain biochemical, 

physiological, and pharmacological functions of biomarkers at the molecular level [3, 14, 15]. 

PET imaging involves the decay of an unstable proton-rich nuclide emitting a positron (e+) and a 

neutrino (νe),  

 𝑝 →  𝑛 + 𝑒+   + 𝑣𝑒  
Equation 1 

where p represents the unstable proton and n is the resulting neutron [7, 16]. The annihilation of 

the positron with a nearby electron produces two collinear 511-keV gamma rays that travel in 

opposite directions and can be captured in coincidence by a multi-ring PET camera. The pair of 

activated detectors of the PET camera provide information for the special localization of the 

tracer concentration in the brain [7, 16]. 

The fundamental pipeline for PET imaging of the brain includes the administration of a 

radioactively labelled molecular probe into the peripheral bloodstream, to which its distribution 

and clearance in tissue is captured through the detection of the positron emitting isotope [16]. A 

suitable molecular probe should not disturb the underlying biological system under investigation; 

therefore probes are administered at tracer dose, which is determined by the lowest dose to 

achieve a high specific activity without exceeding 5% of the target receptor being occupied by 

the amount of tracer administered [7, 16]. Commonly used isotopes used for the labelling of 

molecular probes include 11C, 13N, 15O, and 18F which have relatively short half-lives that allows 

for repeat imaging by reducing the dose of radiation exposure to participants [7].  
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Brain PET imaging can be used as a powerful diagnostic and research tool to investigate 

disturbances in the biochemical processes that underlie brain disorders including 

neurodegenerative disease, addiction, cancer, and mental illness [9, 15].  

2.2 Principles of PET Imaging in the Human Brain 

Reconstruction algorithms convert the photons counted by the cylindrical arrangement of 

detectors in the  PET scanner in to static (3D) or dynamical (4D) images [17, 18]. Reconstruction 

algorithms can be used to perform appropriate corrections to account for scatter and attenuation 

[3]. The photons created from the annihilation of the emitted positron must pass through tissue 

(skull/head) before reaching the PET detector, and this photon-tissue interaction in the field of 

view (FOV) leads to photon attenuation [18]. Photon attenuation can cause upwards of 90% 

signal reduction in some regions of interest (ROI), therefore an attenuation correction is essential 

to quantitative PET imaging practices [18]. The effect of attenuation on the PET signal can be 

described by a mono-exponential function,  

𝐼

𝐼0
= 𝑒−µ𝐿 

Equation 2 

where I is the non-attenuated and I0 is the attenuated PET signals, and the variables of the 

exponential function, μ and L, represent the linear attenuation coefficient (LAC) and thickness of 

a tissue [18]. A common technique for correcting for scatter and attenuation in dynamic PET 

imaging is the estimation of attenuation maps through a transmission scan using a gamma 

emitting radionuclide source with a long half-life, such as 68Ge/68Ga or 137Cs [18].  

The spatial and temporal resolution of the PET scan is limited due to several factors, such 

as the detector size, noncollinearity (the larger the detector ring the lower the spatial resolution), 

and head motion [7, 17]. As a result, PET quantification can be improved with additional 
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imaging modalities. The most common approach is the use of structural Magnetic Resonance 

Imaging (MRI). A MRI must be acquired for each subject undergoing PET scanning to help with 

the delineation of the anatomical structure and partial volume effect (PVE) correction [17]. This 

multi-modal method requires additional mathematical segmentation algorithms to co-register the 

MR and PET images through the segmentation of gray matter, white matter, and cerebral spinal 

fluid (CSF) to define distinct ROIs [18, 19].        

The time course of the radioligand in a given ROI depends on the physical characteristics 

of the tissue of interest (e.g. concentration of the target) as well as the Input Function (IF) [3]. 

The IF represents the time course of the net availability of radiotracer in arterial plasma. It is 

mathematically constructed from the data acquired during the continuous measurement of whole 

blood radioactivity and corrected for red blood cells (RBCs), other blood component 

contribution, and for radiometabolite concentration [3]. A common analytical technique for 

acquiring whole blood radioactivity during PET acquisition is by radial arterial sampling [2, 3, 

5]. An automatic blood sampling system (ABSS) can be used to continuously measure the 

concentration of activity in arterial whole blood [10]. While this is an efficient way to measure 

whole blood activity, it is necessary to extract additional manual arterial samples to determine 

the concentration of radioactivity in plasma and the fraction of that activity due to the 

unmetabolized radioligand [2]. 

In brain studies, PET imaging can be used to measure regional brain radioactivity, which 

comprises of the sum of brain tissue and blood volume contributions [3, 14]. Although, to 

understand the underlying biochemical parameters that influence the uptake and metabolism of 

the tracer, mathematical tracer kinetic modeling is required [3]. There are several constraints and 

assumptions on the nature of radioligand binding that must be met in order for a model to 
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accurately represent what is happening on a physiological level [3, 14]. For this reason, it is 

essential to validate the parameter(s) of interest provided by the kinetic model with experimental 

challenges (e.g. pharmacological inhibition of the target) and reproducibility studies (e.g. test-

retest paradigms) [3]. The outcome of a kinetic model is a parameter, usually as a composition of 

rate constants, which under ideal model conditions, are proportional to the concentration of the 

physiological target under investigation [7].  

2.3 Kinetic modelling 

The result from dynamical PET imaging produces a regional Time-Activity Curve (TAC) 

in distinct ROIs in the brain. The TAC is a temporal measure of the radiotracer concentration in 

the tissue of interest [7]. Mathematical compartmental models help to improve the type and 

quality of information that defines the relationship between the measurable data and biological 

parameters that affect the TAC [3]. The accuracy of the quantification using compartmental 

modeling is heavily influenced by the accuracy of the reconstruction algorithm and the level of 

noise [3]. The level of noise present in a given compartmental model is influenced by several 

factors such as the injected dose, camera sensitivity reconstruction parameters, scan length, and 

the size of the ROI [3]. The amount of noise in the TAC will determine the quantity and 

precision of extracted parameters [3]. The number of compartments that are considered in a 

given model will determine the quantity of variables of the model (usually representing the rate 

constants) [3]. A general PET compartmental system (Figure 1) consists of the total radioactivity 

in tissue concentration (CT), the parent concentration (CP), and the whole blood concentration 

(CB) [20]. The rate at which the radiotracer will undergo certain biochemical transformations as 

it moves from one compartment to another follows first-order kinetics, characterized by a rate 

constant k, and can be predicted by implementing a refined mathematical model that is 
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developed based on the expected in vivo behavior of the radiotracer [3, 21]. All constants are in 

units of inverse time (min-1) with the exception of the rate constant K1, which is capitalized to 

denote different units of measure as it represents the volume of blood (or arterial plasma) per 

volume of tissue per minute (mL × mL-1 × min-1) [22]. The term microparameter is used here to 

distinguish the global system parameters that are a function of the individual rate constants, 

which have shown to be more stable with respect to parameter estimations [14].  

 

 

 

 

 

 

Figure 1. General tissue compartmental model. 

 Compartmental models uses relatively simple algorithms to define the physical location, 

state, and potential transformations of radiotracer from one compartment to another [3]. For 

these relatively simple compartmental models to successfully represent the complex biological 

system under investigation, several assumptions must be met and validated to produce acceptable 

levels of errors in parameter estimation [3]. The two major assumptions in compartmental 

modeling are (1) each compartment is homogenous and is null of any concentration gradient 

within a single compartment, meaning that all radiotracer molecules in a given compartment 

have equal probability of exchange into other compartments without being driven by external 
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biochemical forces, and (2) the underlying physiological processes are in steady-state, meaning 

that the rate constants are actually constant throughout the time-course of the PET study [3]. In 

clinical practice, generally it is impossible for all assumptions of a given model to be met, but as 

long as they produce an acceptable level of error in the computation, the model should be 

successful in estimating parameters [3].  

2.4 PET Imaging of FAAH in the Brain with [11C]CURB 

[11C-carbonyl] 6-hydroxy-[1,10-biphenyl]-3-ylcyclohexyl carbamate ([11C]CURB) is a 

novel radiotracer for quantifying FAAH in the human brain [23]. The radiotracer was generated 

from the analog of the FAAH inhibitor URB597, 6-hydroxy-[1,10-biphenyl]-3-

ylcyclohexylcarbamate (URB694) using the [11C]CO2 fixation technique, yielding [11C-

carbonyl]URB694, otherwise known as [11C]CURB [2]. [11C]CURB makes strong covalent 

bonds by carbamylating the active site of FAAH, and is therefore irreversibly bound [2, 25, 26].   

2.4.1 The Endocannabinoid System (eCB) 

During the intricate transmission of information by chemical signals, neurotransmitters 

serve as the fundamental mode behind intercellular communication in the central nervous system 

[26]. In recent years, lipids have emerged as an interesting and important classification of 

chemical messengers in the nervous system, operating through distinct mechanisms that differ to 

the classic model for neurotransmission [26]. The synthesis of lipid transmitters is activated on-

demand, wherein the biosynthesis and subsequent release by neurons occurs at the exact moment 

of their intended operation [26]. Lipid signalling is heavily regulated by the action of metabolic 

degrative enzymes that will ultimately determine the strength and duration of activation [26]. 

The eCB is one of the most prominent lipid transmission regulatory system in the brain that 

heavily impacts neuronal synaptic communication responsible for several biological and 
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psychological functions including, eating, learning and memory, depression, anxiety, 

reproduction, growth and development, and metabolism [1, 27]. 

2.4.2 Endogenous Cannabinoid Signaling and Degradation 

Endogenous cannabinoids (endocannabinoids) are a class small molecules that activate 

G-protein coupled cannabinoid receptors CB1 and CB2, the same receptors that have 

biochemical specificity for the psychoactive component in cannabis, (-)-trans-∆9-

tetrahydrocannabinol (∆9-THC) [26]. CB1 receptors (CB1R) are primarily expressed in the CNS 

by neuronal cells, and some non-neuronal glial brain cells including oligodendrocytes, microglia, 

and astrocytes. CB1Rs are responsible for modulating neurotransmission release through 

retrograde inhibition at the pre-synaptic terminal [1]. CB2 receptors (CB2R) are mainly 

expressed in the peripheral nervous system by immune cells (e.g. B-cells and natural killer cells), 

microglia, and to a lesser degree, in neurons localized in the brainstem [1, 28–30]. In the eCB, 

the two primary endocannabinoids that activate CB1R and CB2R that have been identified in 

mammals are N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), 

which act as retrograde messengers [26].  

2.4.3 Fatty Acid Amide Hydrolase (FAAH) in the eCB  

FAAH is the major terminating and degradation enzyme of endocannabinoid 

anandamide, known to modulate the signaling of CB1 and CB2 receptors associated with 

psychiatric disorders [1]. FAAH is an integral membrane protein, heavily expressed in the 

nervous system, that possess multiple activation domains for receptor membrane association 

[26]. FAAH is a part a class of serine hydrolases composed of a catalytic triad of residues: 

Lys142-Ser217-Ser241, with Ser241 acting as the catalytic nucleophile [31]. The inhibition of 
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FAAH is known to be associated with effects that mirror those found in cannabinoid signaling 

including analgesia, hypomobility, hypothermia [32]. 

2.4.4 FAAH in Clinical Research 

In the eCB, anandamide and 2-AG are synthesized on-demand in the nervous system, and 

their specificity includes CB1Rs that play a pivotal role in neurotransmitter release [1, 26]. 

Anandamide and 2-AG are regulated by specific biosynthetic and degradative pathways, and 

their synthesis and subsequent degradation is a highly regulated process [26, 27]. During 

anandamide degradation, it will undergo chemical hydrolysis to form arachidonic acid (AA), 

primarily by FAAH at the level of the postsynaptic neuron [1, 33]. FAAH has shown to play a 

major role in a wide range of neurophysiological processes, including nociceptive pain 

mechanisms, neuroinflammation, anxiety, and depression [26, 27]. Disturbances of FAAH 

activation and expression pathways have implications in various psychiatric and mood disorders 

[1]. The in vivo mapping of FAAH in the brain by PET is a useful approach to investigate 

alterations in the eCB [34, 35].  

2.4.5 Kinetic modeling of [11C]CURB  

The distribution and nature of [11C]CURB binding was evaluated to develop 

quantification procedures for measuring FAAH in the human brain using PET. [11C]CURB 

compartmental modeling was first assessed using PET imaging of six healthy control participants 

(3 M, 3 F) [2]. It was found that an irreversible two-tissue compartmental model (denoted here as 

2-TCMi) better fit the 60 min TACs than other compartmental models, such as the two-tissue 

compartmental model (2-TCM). The identifiability of various parameters provided by the 2-

TCMi to index FAAH activity in the brain were assessed.  
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The 2-TCMi, depicted in Fig. 1, uses compartments to represent biochemical states of 

[11C]CURB as it crosses the blood-brain-barrier (BBB) from the plasma compartment (CP) into 

tissue (CT). In Fig 2, K1 represents the rate constant of transfer of [11C]CURB from plasma into 

the free and non-specifically bound compartment (CF+NS), k2 is the rate constant for the efflux of 

radioligand from the CF+NS back into CP, and k3 is the rate constant for the transformation of 

radioligand from the CF+NS to the specifically bound irreversible compartment (CS) [3, 22, 24]. 

Defining F as the perfusion or blood flow, PS as the permeability surface area product, and E is 

the first pass extraction factor: 𝐸 = 1 − 𝑒
𝑃𝑆

𝐹 , using the Renkin–Crone model [2, 36]: 

𝐾1 =  𝐹𝐸 

Equation 3 

And defining Lambda (λ=K1/k2) as the distribution volume of the ligand in the CF+NS, 

𝑘2 =  𝐾1/𝜆 
Equation 4 

Under the assumption that the radioligand is administered at tracer dose and the available density 

of target (Bavail) does not change along the PET experiment, k3 can be related to Bavail using:  

 

𝑘3 =  𝑓𝑁𝐷𝑘𝑜𝑛𝐵𝑎𝑣𝑎𝑖𝑙 

Equation 5 

where fND defines the non-displaceable fraction of tracer that is freely constituted in tissue and 

kon  represents the [11C]CURB-FAAH association rate constant,  [2, 22].  
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Figure 2. The structure for the irreversible two-tissue compartment model (2-TCMi) and its macroparameters. From 

this model two parameters are computed to quantify the nature of specific binding of radiotracer in the tissue 

compartment (CT) which is proportional to the concentration of target in the brain. 

Ki represents the unidirectional uptake rate constant, as it incorporates both net inward 

transport and trapping of the radiotracer in tissue [37]. This parameter is defined by the product 

of the terms K1 and k3/(k2 + k3), the fraction of the tracer that reaches the specifically bound 

irreversible compartment (CS) in the tissue:  

𝐾𝑖 =  
𝐾1𝑘3

𝑘2 + 𝑘3
 

Equation 6 

The results reported by Pablo Rusjan et al. (2013) support λk3 as an optimal index of FAAH due 

to its sensitivity to changes, cancellation of correlation between rate constants and independence 

of cerebral blood flow [2]. 

Blocking experiments of the FAAH enzyme in humans using a highly specific urea-based 

FAAH inhibitor (Pfizer Inc., NY), PF-04457845, were conducted to confirm the validity of the 
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2-TCMi [38]. The TACs of [11C]CURB showed a dramatic change in respect to the baseline in a 

second scan following the administration of PF-04457845. It was observed that no further 

changes in the [11C]CURB TACs appeared with the increasing single-doses higher than 1 mg, 

allowing the unequivocal characterization of the free and nonspecific binding of the radioligand 

[38]. The results from this study provided strong evidence for the validation of the use of λk3 

computed using a 2-TCMi to quantify FAAH activity in the human brain [38].  

The evidence provided also demonstrated that Ki, and k3 have excellent identifiability and 

convergence for all ROIs at 60 and 90 minutes [2]. Depending on the ratio k2/k3 the quantification 

of a radiotracer that irreversibly binds to its target could be compromised by the cerebral blood 

flow [2]. When k3>>k2, all the concentration of radioligand that crosses the BBB is immediately 

bound to the target, and the radioligand uptake is more sensitive to changes in regional cerebral 

blood flow (rCBF) than changes in the concentration of target. As [11C]CURB is an irreversible 

radiotracer, the kinetic parameters could be susceptible to varying rCBF [2]. Moreover, the net 

influx Ki. is a function of cerebral blood flow through K1 and k2. It is preferable to express 

[11C]CURB binding in terms of the composite rate constant, λk3, since it is independent of the 

influence of rCBF [2, 39]. λk3 helps eliminate the effect of rCBF when quantifying irreversible 

radioligands, because it contains the ratio K1/k2, and helps minimize the effect of the correlation 

between the parameters k3 and k2 [2]. Furthermore, λk3 is directly proportional to k3, and thus 

more sensitive to changes in specific binding than Ki which presents a non-linear dependence on 

k3 [2].  
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2.5 Determining the Arterial Input Function 

2.5.1 Radiometabolites 

Immediately following intravenous administration, PET radiotracers are exposed to 

complex chemical environments in the blood stream that include various metabolizing enzymes 

that break down the parent radiotracer into one or more metabolites [5, 40]. During radiotracer 

metabolization, a portion of the radioactive isotope tags are transferred to the forming 

radiometabolites [4, 41]. The signal detected by the PET in the FOV captures all positron 

emitting signals and represents the total amount of radioactivity, but it is unable to distinguish 

whether the signal originates from the parent compound or its radiometabolites [4, 41]. In a 

“good” radioligand, radiometabolites are more polar than the parent radioligand, and therefore it 

is expected they are unable to cross the BBB. Therefore, the activity inside of the tissue is 

expected to come only from the parent compound. 

2.5.2 The Gold Standard – Arterial Input Function  

The standard method for determining the arterial input function is through the continuous 

measurement of blood radioactivity simultaneously to the PET scan acquisition [5, 42]. It can be 

done by rapid manual sampling, integrated automated handling systems, or through the use of 

automatic sampling devices [10, 43]. Performing manual sampling for the determination of the 

arterial IF is disadvantageous due the limitation of the time resolution at which the samples can 

physically be acquired, which can introduce higher levels of uncertainty into the data analysis 

[10]. Therefore, due to the high workload and resources required for manual sampling to 

determine the arterial input function, it is generally preferable to acquire continuous blood 

activity measurements using an automated sampling system in combination with manual 

sampling for the correction of radioactivity coming from RBC, platelets, white blood cells and 
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radiometabolites [10, 43, 44]. Alternative methods for the simplification of determining the 

arterial IF have been proposed and are used by some research groups, including arterialized-

venous sampling, population-based IF (PBIF), image-derived IF (IDIF). When a region devoid 

of specific binding exists (reference tissue) binding parameters can be determined without the IF 

[42].  

2.5.3 Venous Sampling  

Venous sampling can be used as an alternative to arterial blood sampling by applying 

heat to the limb, from which the samples are withdrawn, to about 44°C, termed by many as the 

arterialization of venous blood [42]. The heating of the limb causes vascular dilation and 

increases the venous blood flow, therefore the venous blood starts to become indistinguishable 

from arterial blood [42]. The accuracy of venous sampling method for determining the input 

function curve is, however, limited by some factors including inconsistent concentrations of 

radioligand over time [45–48]. The concentration of tracer in the veins takes longer to reach 

equilibrium, and this time frame varies between radiotracer [49]. As a result, the arterial tracer 

kinetics vary significantly to that of venous [48, 49]. While arterialized-venous sampling can 

help the venous concentrations to be more consistent to that of arterial concentrations, it is still 

limited by the effect of delay and dispersion, and the uncertainty of measurements within and 

across subjects that introduces higher levels of uncertainty into the TACs [45–47, 50, 51].  

2.5.4 Population-Based Input Function (PBIF) 

PBIF scales an average input function created from the IF of a population of subjects 

previously scanned [44]. The scaled PBIF is then used for the kinetic modelling of imaging data 

for individual subjects [44, 52]. The averaging of the individual input functions entails shifting 

the individual curves to align the peaks, which are then normalized using the injected dose, and 
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body mass [44]. Typically PBIF quantification can be successfully applied if the nature of tracer 

biodistribution and metabolization that define the shape of individual IFs behave similarly to the 

population average IF, and ideally should only differ in magnitude [53]. Generally, to accurately 

scale the PBIF for each subject requires at least one or more manual arterial samples to obtain 

concordance to that of the AIF [44, 54, 55]. It is possible to accomplish successful estimations 

without the use of blood sampling, but the correlation to the original plasma input is strong and 

the variation will be smaller in metabolite corrected PBIFs [44, 54]. However, using the PBIF 

method has limited identifiability and is usually less sensitive at detecting subtle group 

differences at an individual level and therefore should be used with caution [54]. PBIF should 

not be used when the IF can be influenced by the condition that are being studied such as disease 

or pharmaceutical interventions. 

2.5.5 Image-Derived Input Function (IDIF) 

IDIF calculates an estimate of the arterial IF curve directly from the PET images to 

represent the tracer activity in blood, which eliminates the need for invasive arterial cannulation, 

blood analysis, and specialized personnel, for some radioligands [44, 49]. An IDIF generated 

input function curve is generated using the vasculature as the ROI, and in the case of brain PET 

imaging the carotid arteries are typically used [44]. The accuracy of using IDIF is dependent on 

several factors including the intrinsic spatial resolution of the PET scanner, the type of 

reconstruction algorithm implemented, as well as the definition of the ROIs [44]. IDIF methods 

for estimating the input function is a desirable alternative to arterial sampling, although there are 

several methodological challenges that limit the prevalence of IDIF in brain PET imaging [49, 

56]. IDIF methods are limited primarily by the spatial resolution and the resulting PVE, which 

causes quantitative underestimation of the activity concentrations in the reconstruction of the 
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images and therefore the underestimation of the input function curve [49, 57]. Using IDIF 

methods that do not require blood sampling relies on the number of voxels to estimate the blood 

activity, but the accuracy of these methods have shown to be unpredictable, and therefore using 

blood-sampling based IDIF methods have proven to be more reliable [56]. In general, the use of 

IDIF to calculate the input function can be used as an adequate simplification, but the success of 

its implementation can be challenging [49]. Several factors must be considered to accurately 

implement IDIF methodology, including the careful evaluation and validation the specific tracer 

of interest, the difficulty of obtaining accurate estimations of metabolite formation from the 

image input alone, and the method for PVE corrections [56, 57]. The IDIF-method has been 

studied primarily using the radiotracer [18F]FDG [58], which can provide accurate results using a 

method validated by Chen et al. (1998). However, for most radioligands the effect of tracer 

metabolization is a major concern and requires the quantification of parent compound in plasma. 

Using an estimate of the whole-blood curve will be insufficient to estimate accurate measures of 

the input function and neglects the influence of radiometabolites, and therefore using IDIF-

methods is not practical for most PET tracers [49]. In practice, to use IDIF-methods for the input 

function, it requires significant efforts put towards the validation and requires at least some 

arterial blood sampling for the adequate identifiability and to improve the parameter estimations 

[49].   

2.5.6 Reference Tissue Models  

A reference tissue (Rref) model relies on a region in the brain that fits the following 

criteria: (1) it is devoid of any specific binding of the radioligand being used, (2) the uptake of 

the radioligand is not affected by disease process or treatment, and (3) the non-specific binding 

of tracer is similar to other ROIs [44, 59, 60]. The use of a Rref compartmental model eliminates 
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the need for invasive arterial blood sampling and the need for the plasma input function, and 

instead uses measures from the TACs of the reference region [59–61]. Typically, Rref models use 

the estimates of the binding potential (BPND) from reversible radioligands, which describes the 

ratio of the total density concentration of receptors (Bmax) to that of the equilibrium dissociation 

constant (KD) [22, 62]. By comparing the kinetics of the radioligand in the target ROI with that 

in the Rref, it is possible to estimate the BPND. One commonly used reference region model is the 

Simplified Reference Tissue Model (SRTM), initially proposed by Lammertsma and Hume 

(1996). In the SRTM, assumption is that the BP in the reference region is negligible, and the 

ratio of the radioligand concentration of the target and reference regions at equilibrium is equal 

to the ratio of the binding potentials in the target and reference regions [59]. This model provides 

a simplified way to estimate BP without the need for explicit knowledge of the arterial input 

function [59]. Another widely used reference region model is the Logan Plot, using a graphical 

analysis of the PET data, in which the distribution volume ratio (DVR) is an index for 

estimations of Bvail without the need of blood sampling [63]. Both SRTM and the Logan Plot 

have been extensively applied in PET imaging of various molecular targets in the brain, 

however, it is important to note that the choice of an appropriate reference region model depends 

on the specific radioligand and target of interest, as well as the characteristics of the reference 

region itself [59, 63].  

2.6 Arterial Blood Sampling in PET Imaging 

While several approaches for estimating the plasma input function are available, the gold 

standard approach remains arterial blood sampling for each subject. Nevertheless, there is a 

demand for employing less intrusive and increasingly automated techniques in image analysis to 
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enhance the engagement of study participants and improve the dependability of analysis 

methods.  

The quantification of [11C]CURB requires the correction for radiometabolite formation in 

the plasma input function curve for the accurate full kinetic modeling of radioligand in tissue 

[42]. There are some possible complications with arterial cannulation, including bleeding, 

occlusion, infection, and blood clotting [6]. Nevertheless, arterial sampling has demonstrated to 

be a safe and reliable methodology for PET clinical studies [6]. Considering the minimal risk to 

participants, arterial sampling is used for the quantification of FAAH in the brain using 

[11C]CURB imaging, as it represents the true delivery function of parent radiotracer in arterial 

plasma [6]. 

2.6.1 Plasma Metabolite Analysis    

 Due to their lipophobicity, the radiometabolites formed during [11C]CURB PET imaging 

are confined to the periphery and are unlikely to cross the lipid bilayer of the BBB to enter into 

the brain [23]. However, in the blood, there are contributions of radiolabeled species in the 

plasma, RBC, and other blood components. In consequence, the concentration of radioactivity in 

plasma must be corrected for the radiometabolite contribution before being used as the input for 

modeling the tissue kinetics [5]. There are several approaches to measuring the fraction of 

unchanged radioligand in plasma (the Plasma Parent Fraction or PPf) for quantitative dynamic 

PET imaging [5]. The most commonly used methods of PPf measurement include high-

performance liquid-chromatography (HPLC), thin-layer chromatography (TLC), and other 

chromatographic methods such as solid-phase extraction (SPE) and column chromatography [5, 

8].  
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SPE using a universal sorbent for acidic, neutral, and basic compounds equipped with a 

ratio of two monomers, the hydrophilic N-vinylpyrrolidone and the lipophilic divinylbenzene, 

has previously been validated for the extraction of radiometabolites from parent compound for 

[11C]CURB imaging studies [2, 23]. To ascertain the contribution of radiometabolites to the 

plasma input function, individual manual samples at various time points during the scan are 

processed using Oasis® HLB filter apparatuses, which are hydrophilic-lipophilic-balanced, 

water-wettable, reversed-phase SPE sorbent cartridges. The radioactivity of the parent compound 

trapped in the Oasis® filters is measured, and this data is later used to account for percent 

metabolization in the plasma input function calculations.  

2.6.2 Automatic Blood Sampling System (ABSS)  

 The continuous measurement of the early arterial blood radioactivity was counted using 

the Programmable Blood Sampler (PBS-101, Comecer, The Netherlands). The PBS-101 ABSS is 

a fully programmable system developed specifically for the continuous measurement of arterial 

radioactivity concentration for quantitative PET analysis [11]. The ABSS is equipped for the 

detection of 511-keV annihilation photons using a 6-cm-diameter bismuth germanate (BGO) 

crystal, coupled with a photomultiplier tube (PMT), and a multichannel analyzer (MCA) [10, 

11]. Using this system, a patient’s arterial blood is withdrawn using 1-mm low-retention tubing 

at a flow rate regulated by a peristaltic pump [10, 11]. The detector system is protected by 6-cm 

lead shielding, with a 3-mm slit for positioning the tubing for the continuous measurement of 

blood [10]. The acquisition length and pump-rate intervals are all controlled remotely by an 

external PC with an established RS-232 connection to the pump, detector, PMT, and MCA [10]. 

The spectral data is acquired and sorted into two ROIs that are manually predefined during 

system calibration [10, 11]. For clinical purposes, it is necessary to perform routine calibration 
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and quality control to ensure reproducibility and accuracy during operation of the ABSS. The 

regions of interest are delineated using a gamma-emitting needle source (Germanium-68, 

Sanders (Med/Cal), PET-168/3.8, Serial No. K156-K158) to obtain total counts for both the 511-

keV and 1022-keV energy windows [10, 11].  

 Additional procedures are performed to cross-calibrate and to synchronize the internal 

clock of the ABSS to the other devices in the institution, including the Capintec™ Dose 

Calibrator, the PET scanner, and the automated gamma counter. 

2.6.3 Hidex NaI Automatic Gamma Counter (AMG) 

During [11C]CURB dynamic PET imaging, the continuous arterial sampling of 

radioactivity is supplemented with several manual arterial samples at various time points. Those 

samples are used to convert the concentration of radioactivity in blood into the plasma input 

function. It involves (1) a correction for radioactivity in RBC and other blood components, and 

(2) a correction for radiometabolite in plasma [24, 42]. The concentration of radioactivity of each 

sample of blood and plasma is measured using a high-performance automatic gamma counter 

(Hidex Automatic Gamma Counter (AMG), Hidex, Finland) with a 3-inch NaI crystal detector 

and 55-mm lead shielding. The AMG is equipped with a linear multichannel analyzer for 

powerful spectrum analysis, consisting of a total of 2,048 channels and an energy range of 15-

2000 keV. The AMG is equipped with a total of 12 racks holding 6 vials of up to 28-mm 

diameter, or 22 racks holding 10 vials up to 13-mm in diameter. Once loaded, the samples are 

individually removed from the rack by a robotic operator to be weighed and placed in the well of 

the crystal detector for measurement.  
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 Like the PBS-101 ABSS, the Hidex AMG requires cross-calibration and synchronization 

of the internal clock with the other devices in the institution such as the HRRT PET scanner. 

Cross-calibration should consider the effect of sample volume and geometry (including height, 

width, and length of tubing used) on the efficiency for the specific radioisotope under evaluation 

[64]. The practice of using NaI crystal gamma counters is well established, although 

standardization across imaging facilities is poorly defined [12, 13]. There are several factors that 

contribute to the efficiency of a gamma counter, including sample geometry (Fig. 3), the 

effectiveness of shielding, and calibration accuracy [12].   

 
Figure 3. Effect of sample volume on capture of photon emission in crystal detector. (a) Orange arrows provide an 

example of a pair of annihilation photons that contribute to coincidence sum peak in NaI well. (b) Demonstrated the 

increasing likelihood of the escape of photons from the top of the well as sample volume increases [12].  
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2.7 Rationale, Aims, and Hypotheses 

2.7.1 Aim I: Characterization of Instrumentation  

The quantitative requirements for clinical in-vivo PET studies necessitates rigorous cross-

calibration and time synchronization between instrumentation to minimize error factors, 

determine optimal isotope-specific operational range, and maximize accuracy of measurements 

[12].   

a. ABSS Calibration and Delineation of ROIs  

Before using the PBS-101 for data acquisition and the creation of the IF, it is necessary to 

experimentally find the cross-calibration factor necessary to integrate the instrument to the other 

devices in the PET center. Individual calibration is required for every imaging facility and 

environment in which the ABSS is used. Therefore, the goal of this objective was to determine 

the count efficiency, reproducibility, and effect background radiation of the radioactivity 

measurements acquired by the PBS-101 ABSS at the MNI under different experimental 

conditions.  

b. Response of the Hidex NaI AMG 

The reproducibility and performance of NaI gamma counters have an important role in 

clinical applications, including in vivo PET neuroimaging [12, 65]. The characterization of 

external influences on the gamma counts of the AMG must be experimentally determined to 

correct measurements for background noise and sample volume effects (Fig. 3), and to quantify 

the count efficiency of individual measurements for different radionuclides [12].  
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The goal of this work was to characterize the response and determine the efficiency and 

optimal counting range of activity for the isotopes 11C and 18F, with varying concentration and 

sample volumes.  

Hypothesis: The response of the AMG would be stable with minimal uncertainty and the 

calibration of the γ-counting efficiency will be stable and identifiable with respect to the 

dose calibrator. 

2.7.2 Aim II: Investigation into the Identifiability and Sensitivity between [ 
11C]CURB Macroparameters 

Is has been shown that a functional single-nucleotide polymorphism (SNP) in human the 

FAAH gene of the eCB that involves the transversion of the nucleotide cytosine to an adenine 

(rs324420, C385A) that results in lower FAAH levels in the brain [66, 67]. The prevalence of 

FAAH variants are 58% C/C, 28% A/C, and 4% A/A. [11C]CURB binding to FAAH was able to 

detect this difference. Using λk3 as an index, A-allele carriers had a 23% lower level of FAAH 

expression [66]. While it was previously demonstrated that the parameters Ki, k3, and λk3 

presented as acceptable parameters to quantify FAAH binding [2], their identifiability and 

sensitivity to detect changes in brain FAAH vary.  

 The goal of this study was to compare the sensitivity of three macroparameters of 

[11C]CURB 2-TCMi: Ki, k3, and λk3. The power of each parameter to predict the observable 

polymorphism effect between the C/C and A/C SNPs in the rs324420 FAAH gene was 

investigated to assess the most effective method for FAAH quantification using  [11C]CURB.  

Hypothesis 1: The macroparameter, λk3, will have the highest sensitivity for detecting 

changes in FAAH binding between C/C and A/C rs324420 SNPs in smaller ROIs.  



26 

 

Hypothesis 2: k3 will have the highest sensitivity for detecting changes FAAH binding in 

large ROIs. 

2.7.3 Aim III: Average Peak Arterial Input Function (APIF) 

The accurate quantification of [11C]CURB binding to FAAH requires arterial blood 

sampling. As described before we use an ABSS to sample at high frequency the peak of the 

activity in blood following the bolus injection. While the main drawback of arterial blood 

sampling is the arterial cannulation, ABSS operation has their own challenges which often 

produces the loss of the data. The arterial cannulation procedure may cause moderate to severe 

discomfort to the participant and discourage them from participating in the study as a result. In 

addition, a major obstacle that can arise during arterial blood samples experimentation is the 

clotting of blood in the tubing, causing partial or complete blockages that impedes data 

collection [10, 54]. The ABSS suffers some other artifacts influence the quantitative accuracy of 

arterial sampling, including the dispersion, delay, and affinity to tube lining during blood 

withdrawal [5, 68].  

The goal here was to develop a computational approach to overcome the potential 

complications associated with the use of the ABSS to calculate an individual automatic input 

function (AIF) and to understand the amount of detail required in the initial high frequency 

sampling immediately after bolus injection to produce robust outcomes. The present study 

evaluated the bias and variability introduced to [11C]CURB λk3 when implementing an averaged 

peak input function (APIF) for its kinetic analyses. The main purpose of this study was to 

establish a standard protocol for recovery of lost data due to a ABSS failure during data 

collection. We also evaluated the importance of individual ABSS measurements for [11C]CURB 

PET imaging.  
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Hypothesis: The macroparameter, λk3, computed using the APIF will be sufficient in 

reproducing the SNP rs324420 polymorphism effect of [11C]CURB binding to FAAH.  
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3.  AIM I: Characterization of Instrumentation for Arterial Sampling of [11C]CURB 

3.1 Methods 

3.1.1 Objective A: ABSS Calibration and Delineation of ROIs 

The energy spectrum of the PBS-101 ABSS was calibrated using a 68Ge (Sanders 

(Med/Cal) Rod Sources for PET, PET-168/3.8, t1/2 = 270.95 days, Eγ = 511/1022 keV) needle-

point source inserted into the MCA detector. After a 160 second acquisition, the peak of 511 

keVs in the spectrum was used to adjust the high tension setting of the ABSS to match the 

channel corresponding to 511-keV. Later the channels corresponding to the peaks of 511 and 

1022-keV energy peaks were used to determine two energy windows “ROIs” for counting during 

the blood acquisition. The ROIs comprise the channels 238-438 and 576-776. The process with 

the 68Ge needle-point source is repeated before the beginning of each PET scan to ensure that the 

spectrum peaks remain in the center of each ROI counting window. The cross-calibration factors 

to both the AMG and PET scanner under different experimental conditions, including shutting 
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the ABSS on/off, moving the position of the arterial catheter, and changing the count time, were 

computed.  

Figure 4. Automatic Blood Sampling System and assembly parts. (A) 500 mL saline + 0.5 mL heparin solution. The 

bag is pressure cuffed 300 mmHg. (B) IV Catheter, BD Angiocath (20G × 1.88 in). (C) Transpac™ IV monitoring 

kit with transducer, ICU Medical 42584-05. (D) Two 3-way stopcock connections for saline line, PFTE line, and 

manual sampling. (E) 100 cm PTFE line, 1.0/2.5 mm with luers, Mediman® 0598.  (F) Automated Blood Sampling 

System (ABSS), PBS-101 Commencer®. (G) Autoclaved Masterflex® 3/32 in male/female barb polypropylene luer 

adaptors, Qosina® 11535(male) and 11534(female). (H) Ismatec pump, RS-232 20 mA current loop. Rate is set and 

controlled by specific protocol script on the laptop. Pump is set to withdraw arterial blood from the patient through 

the ABSS. (I) Autoclaved PharMed® BPT 1.52 mm ID Yellow/Blue/Yellow pump tube, Cole-Parmer RK-95714-

36. (J) Leaded waste chamber. (K) Waste system (parts acquired from different kits: L-N; (L) Autoclaved 

Masterflex® 1/8 female polypropylene luer connector, Qosina® 11536; (M) Drip chamber from Ranger™ 

Blood/Fluid Warming system kit, Ref. 3M 24200; (N) Autoclaved Masterflex® 1/8 male polypropylene luer 

connector, Qosina® 11537; (O) Medtronic drainage bag, Ref. 46710. (P) hp Laptop.  

3.1.2 Objective B: Hidex AMG 

The full characterization of the Hidex AMG (Hidex, Finland) included the investigation 

into the effect of varying sample volume and defining the optimal range of sensitivity of the 

instrument. This was achieved by conducting multiple experiments using both 18F and 11C as 
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gamma-emitting sources. Prior to each experiment, a quality control, and eventually a re-

calibration was performed, using a 137Cs activity source (Hidex, Finland, 137Cs Quality Control-

3.36 kBq, t1/2 = 11,018.3 days, Eγ = 550-750 keV) to get a peak position in the channel 

corresponding to 662 ±10 keV, a resolution of 10±5% and an efficiency of 18±5% within a 550-

750-keV energy window. The stability of the QC measurement was assessed when the crystal of 

the AMG was allowed to warm up for four hours versus no warm-up time. All 18F samples were 

counted for 60 seconds unless otherwise stated, using an energy window of 400-600 keV around 

the 511-keV coincidence peak for 18F.   

Each counting acquisition will provide a series of values for individual samples, 

including counted time, dead time factor, raw counts, counts per minute (CPM). The Hidex 

AMG interface automatically calculates several outputs. Raw counts are calculated from the 

spectrum to the 400-600 keV template window using the formula,  

𝑐𝑜𝑢𝑛𝑡𝑠 = ∑ 𝑐𝑜𝑢𝑛𝑡𝑠 𝑝𝑒𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑒𝑛𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

𝑓𝑖𝑟𝑠𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

  

Equation 7 

The automatic dead time factor (DTF) implemented is determined by the dead time of the 

instrument and actual activity using the formula,  

𝑑𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐷𝑇𝐹) =  
𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑡𝑖𝑚𝑒

𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑡𝑖𝑚𝑒(𝑑𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡𝑠)
 

Equation 8 

The count and dead time factor are used to calculate the counts per minute (CPM) for each 

measurement using the formula,  
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𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐶𝑃𝑀 =  
(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑)𝑐𝑜𝑢𝑛𝑡𝑠

𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑡𝑖𝑚𝑒(𝑠)/60
∗ 𝐷𝑇𝐹 

Equation 9 

The AMG will automatically decay-correct CPM to calculate normalized CPM values. This 

normalized activity is calculated to a time of reference (t0) usually representing the time and 

activity of the first sample in the acquisition based on the half-life of radioisotope, using the 

formula,  

𝐴0 = 𝐴 ∗ 𝑒
−(

ln(2)∆𝑡
𝑇1/2

)
 

Equation 10 

Where, A0 is the normalized CPM, A is the measured CPM, T1/2 is the isotope half-life (109.8 

min for 18F, and 20.38 min for 11C) [69], and ∆t is the time respect to t0. The counting efficiency 

was calculated based on the normalized CPM values and known activity of the sources, using the 

formula,  

𝑎𝑏𝑜𝑙𝑢𝑡𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
(

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝑃𝑀
60 )

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐵𝑞)
 

Equation 11 

For the presentation of the results the activities were expressed in nanocurie (nCi).  

3.1.2.1 Experiment 1: Background Correction  

The influence of background noise and the effectiveness of the Hidex AMG shielding 

system was assessed by the repeated measurement of the activity detected from an empty 

(nonradioactive) sample, positioned next to adjacent radioactive samples in the 13-mm rack. All 

samples collected were corrected for background noise by subtracting the activity detected from 

a blank tube from the total activity of each sample. The blank tube was positioned so that it was 

always the first measurement of each rack counted in the data acquisition and contained no 
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radioactivity, with all proceeding radioactive samples placed and counted adjacent to the blank 

measurement. There were no observed significant patterns of change of the background activity 

counts therefore, the activity across all blank measurements was averaged and used as a single 

value that was subtracted from the total sample activity to obtain the final background corrected 

value.  

3.1.2.2 Experiment 2: Efficiency of Response  

The efficiency of each gamma counting instrument can be highly variable and is 

dependent on the isotope being measured. An experimental measure of counting efficiency by 

the Hidex AMG was assessed with the goal of cross-calibrate it with the other devices in the 

institution for the isotope of interest (11C and 18F).  

The cross-calibration between a Capintec™ Dose Calibrator and the AMG was 

performed to determine the efficiency of the AMG respect to the values read in the Capintec™ 

Dose Calibrator using a 18F source. The experiment began with the preparation of a 200 mL 

aqueous solution of 12,000 nCi of 18F. This solution was then used to prepare a total of eight 

samples of different geometry and volume. Samples included four 3.0 mL aliquots in 4 mL 

ETDA tubes and four 1.0 mL aliquots in 3 mL polystyrene tubes. Again, the first measurement 

was reserved for the background count with no activity. Data acquisition was recorded over the 

course of 35 hrs (n=88 paired measurements), with a counting time of 60 seconds and a decay 

correction to the time of the initial activity measurement by the synchronized dose calibrator.  

To assess the linearity of the response of the Hidex AMG respect of the activity of the 

sample, the decay per minute (DPM) of the sample given by the dose calibrator was calculated 

using the half-life of the radioactive decay. The activity measured by the AMG was background 
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corrected and converted from Becquerels (Bq) to nCi. The percent efficiency was calculated 

using the formula, [70] 

% 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐶𝑃𝑀

𝐷𝑃𝑀
∗ 100% 

Equation 12 

The average efficiency for both the EDTA and polystyrene tube were determined to evaluate the 

optimal range of activity with respect to 18F.   

3.1.2.3 Experiment 3: Sample Volume and Geometry  

The effect of sample volume on the count rate and relative efficiency of the AMG was 

assessed using an experiment to analyze samples of 18F with a constant activity and varying 

volumes. This effect can be attributed to the loss emitted photons that have a greater likelihood 

of escaping through the hole of the detector well when volume increases (depicted in Figure 3) 

[12]. The efficiencies for several types of tubes with varying volumes were determined.  

a. Validation of Effect. 

 The experimental design involved the preparation of a 1000 nCi sample of 18F in 1.0 mL 

aqueous solution. The initial time and activity at production was recorded, and 0.1 mL aliquots 

of this stock solution was then placed into two 4 mL (13-mm x 75-mm) EDTA blood tubes to 

make samples an approximate activity of 100 nCi. One additional vial was reserved for the 

background measurement with no activity. An initial count of 150 sec was acquired for both 

samples as a reference count rate with low noise. An additional forty 60 sec count measurements 

were performed, adding a 100 µL aliquot of non-radioactive water to the vials between each 

measurement. The volume of the sample was gradually increased between each measurement 

between 0.1 and 4.0 mL, while maintaining the total activity. This data was used to estimate the 

percent counting efficiency of 18F with respect to varying sample volume.   
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b. Effect of Volume on Radiometabolite Experiments  

These experiments assessed the counting efficiencies of the varying sample volumes and 

tubes used during plasma radiometabolite analysis. To begin, a radioactive sample of 18F was 

acquired with a starting activity of 2.24106 nCi in 4.0 mL of aqueous solution. This initial 

sample was diluted deionized water and mixed thoroughly to create a desired solution with a 

concentration of approximately 500 nCi/mL. To determine the individual efficiencies of all the 

possible volumes for the Oasis filter eluents during radiometabolite analysis, eight 4 mL (13-mm 

 75-mm) EDTA blood tubes were used with volumes ranging from 0.5 – 4.0 mL, increasing by 

0.5 mL between each sample. These samples were measured at five time points to acquire 

matched duplicate values of efficiency. A similar design was used for the 5 mL polystyrene tubes 

used to hold the whole blood/plasma aliquots during metabolite analysis. For this step, 0.3 mL 

radioactive sample was aliquoted into one tube, and a second 0.6 mL sample was aliquoted into a 

separate tube. Again, these were measured five times to acquire duplicate results to calculate 

averaged efficiency values between each sample volume.  

3.2 Results  

3.2.1 Objective A: Efficiency and Calibration Factor of PBS-101 ABSS 

 Table 1 shows the calibration factor of the ABSS across varying experimental conditions for 

both coincidence sum peaks at 511 – and 1022 – keV. The values seem to remain constant under 

different conditions.  
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Table 1. Experimental measurements of ABSS calibration factor under different 

acquisition parameters.  

Peak ROI 

(keV) 

Experimental Conditions Count Time (s) Calibration Factor 

(CPS/(nCi/mL)) 

511   

Static w/o pump 

60 1.20 

1022  3.71 

511   

Static w/o pump, after 

switching ABSS on/off 

60 1.20 

1022 3.69 

511   

Static w/o pump, after 

moving position of catheter 

60 1.20 

1022 3.67 

511   

Static w/o pump 

60 1.20 

1022  3.61 

 

3.2.2 Objective B: Characterization of the response of the Hidex AMG 

3.2.2.1 E1. Background correction  

The experiments did not show any systematic pattern of the background counts, including 

low and constant measurements. Therefore, the background counts across all measurements 

within a specified acquisition were averaged and subtracted from the counts for the radioactive 

samples before decay correction. The results confirmed that there is low penetration of the lead-

shielding for the environmental radiation. 

3.2.2.2 E2. Optimal Range of Activity plot 

The results displayed in Figure 3 provide information on the capacity of the NaI crystal 

detector of the AMG for capturing large volume of positron annihilation events. It is observed in 

Figure 5 that at high concentrations of activity, the dead time of the detector increases, and 
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therefore decreasing the precent counting efficiency. On the other hand, at low concentrations of 

activity, the average counting efficiencies show high levels of variability. 

Figure 5. The percent efficiency/branching ratio for 18F, accounting for the radioactive decay of the isotope, as a 

function of the logarithmic scale of the average activity between the 3 mL and 1 mL samples. Data was acquired in 

the window centered around the coincidence sum peak (400-600 keV).  

From these results, it was determined that the optimal range of activity for the capacity of 

the AMG detector was observed between 10-500 nCi. The average percent efficiency 

(mean±SD) corrected for the branching ratio of 18F (0.967) for both the 3 mL and 1 mL samples 

within the optimal range of sensitivity (10-500 nCi) were determined to be 37.5±0.2% and 

39.1±0.4% respectively (Figure 6). Experiment 3 expands on the effect of volume on counting 

efficiency.  
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Figure 6. The average percent efficiency/branching ratio for 18F the 3 mL (green) and 1 mL (blue) samples within 

the optimal range of 10-500 nCi, accounting for the radioactive decay of the isotope. Vials 1-4 consisted of 3 mL 

aliquots in 4 mL EDTA blood tubes; Vials 5-8 consisted of 1 mL aliquots in 3 mL polystyrene tubes. Data was 

acquired in the window centered around the coincidence sum peak (400-600 keV).  

3.2.2.3 E3. Sample Volume Effect on Relative Efficiency 

 The average percent efficiency (mean±SD) of the initial 150-s reference measurement 

between the two samples was determined to be 36.7±0.3% which was used to compare the 

efficiencies of the following forty measurements. Figure 7 represents the absolute efficiency as a 

function of increasing sample volume acquired in the window centered around the 511-keV 

energy window for 18F (400-600 keV). It was observed that there is an increasing likelihood of 

the escape of photons from the top of the well as sample volume increases, subsequently 

decreasing the count efficiency for those samples. It is observed in Figure 7 that between 0.1 – 

2.0 mL the percent efficiency for both samples of 18F are in close agreeance with the reference 

measurement with low levels of noise. The average percent efficiency for the two samples were 
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found to be 35.4±1% and 36.2±1% respectively. Volumes above 2.0 mL begin to have greater 

dispersion and begin to a decrease in percent efficiency. This observation provides evidence that 

the optimal range for sample volume is between 0.1 and 2.0 mL for 18F.  

 
Figure 7. Percent efficiency of the AMG for 18 F as a function of sample volume. Two samples of 100 nCi in 4 mL 

EDTA tubes were measured in the 13 mm  75 m Hidex racks. Data was acquired in the window centered around 
18F 511 keV energy window.  

Figure 8 shows the difference in efficiency of the Hidex AMG for 11C in a range of 

sample volumes from 0.3 – 4.0 mL, representing the various sample sizes required for plasma 

metabolite analysis during [11C]CURB PET imaging. The average efficiency using a window of 

energy between 400-600 keV was 32.7%. When using an energy window that is centered exactly 

±20% of the 511 keV coincidence peak (409-613 keV), the efficiency stayed relatively stable 

with an average efficiency of 33.0%.  
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Figure 8. Percent efficiency of the AMG for 11C as a function of increasing sample volume acquired during plasma 

metabolite analyses.  

3.3 Summary 

Due to the necessity of additional instruments for obtaining the arterial plasma and 

radiometabolite activity measurements, there will always be a level of variability and uncertainty 

introduced to the data across measuring instruments. Through the characterization and rigorous 

calibration of all gamma counting instruments, including the ABSS and AMG, the uncertainty 

and error introduced to the data collected can be minimized. The characterization of both the 

ABSS and AMG instruments used for arterial blood sampling showed that the response of both 

gamma counters are stable and reproducible with minimal uncertainty.  
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4.  AIM II: The Sensitivity between [11C]CURB Macroparameters 

4.1 Methods 

4.1.1 Assessment of Sensitivity between Parameters 

[11C]CURB macroparameters Ki, k3, and λk3 provided by the 2-TCMi were compared to 

predict the difference in  patterns of FAAH concentration of people who possess the C/C (n=10) 

or A/C (n=7) rs324420 FAAH gene.  

To assess the sensitivity between macroparameters to detect differences in FAAH 

concentration in a large ROI versus a small ROI, the values for Ki, k3, and λk3 were compared 

between C/C and A/C subjects using independent sample t-test (two-tailed, α=0.05). This was 

computed using two ROIs: (1) the temporal cortex (large ROI) and (2) the dorsal caudate (small 

ROI). Independent t-tests (α=0.05, two-tailed) between C/C and A/C groups were performed 

using RStudio (RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, 

Boston, MA, United States). The percent difference of the indices for FAAH levels, Ki, k3, and 

λk3 between the genetic groups and the Cohen’s d (α=0.05) values were determined for both 

ROIs.  

Mean values and standard deviation of the indices calculated in the previous experiment 

were used with Monte Carlo simulations (α=0.05, simulations = 2000, sample size per group 

from n=2 to n=100) to perform a sample size calculation (number of subjects per group) required 

to detect a 15%, 20% 25% theoretical reduction in FAAH in potential clinical experiments. The 

Monte Carlo simulation were written in MATLAB (MATLAB 2022b, The MathWorks, Inc., 

Natick, MA, United States). Two thousand MC simulations were performed for each sample size 

n per group per genotype and the percent of simulations with p<0.05 in an ANOVA test were 
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recorded. The sample size requires was that producing in 95% of the simulation a p<0.05. The 

code used can be found in Appendix I.b. 

4.1.2 Dataset  

The present study was performed with data of 17 healthy volunteers (HVs) included in  

previous publications [27, 32, 33, 37]. Only HVs, who tested negative for THC on a urine drug 

screen, were considered as cannabis use has shown to affect [11C]CURB binding [32, 44].  

4.2 Results  

The significance (P values) of the parameters estimated by the 2-TCMi in the temporal 

cortex between C/C and A/C genotypes indicated that all three, Ki, k3, and λk3, were successful at 

detecting the changes in FAAH levels. k3 showed the strongest statistical difference (P=4.18e10-

5, Cohen’s d 2.81), followed by λk3 (P=0.002, Cohen’s d 1.91), and to a lesser extent Ki, 

(P=0.021, Cohen’s d 1.27) (Figures 9-11). The percent difference between C/C and A/C 

genotypes were 13.7%, 19.9%, and 25.6% estimated by Ki, k3, and λk3 respectively. 
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Figure 9. Independent t-test (α=0.05, two-tailed) using Ki values from the temporal cortex between C/C and A/C 

genotypes (P = 0.209).  

 
Figure 10. Independent t-test (α=0.05, two-tailed) using λk3 values from the temporal cortex between C/C and A/C 

genotypes (P = 0.0015). 
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Figure 11. Independent t-test (α=0.05, two-tailed) using k3 values from the temporal cortex between C/C and A/C 

genotypes (P = 4.18x10-5). 

The results when performing the same analyses but using the dorsal caudate indicated 

that all three were again successful at detecting the changes in [FAAH] with λk3 (P=0.0002, 

Cohen’s d 2.36) demonstrating the highest statistical difference, closely followed by k3 

(P=0.0009, Cohen’s d 2.02), and to a lesser extent Ki, (P=0.012, Cohen’s d 1.40) (Figures 12-

14). The percent difference between C/C and A/C genotypes when using Ki, k3, and λk3 as an 

index were 16.3%, 29.9%, and 25.9% respectively.  
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Figure 12. Independent t-test (α=0.05, two-tailed) using Ki values from the temporal cortex between C/C and A/C 

genotypes (P = 0.0122). 

 
Figure 13. Independent t-test (α=0.05, two-tailed) using k3 values from the dorsal caudate between C/C and A/C 

genotypes (P = 0.00092). 
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Figure 14. Independent t-test (α=0.05, two-tailed) using λk3 values from the temporal cortex between C/C and A/C 

genotypes (P = 0.000243). 

The mean values and standard deviation were used to predict the samples size required to 

detect a theoretical 15%, 20% 25% reduction in FAAH levels in a potential clinical experiment 

(Figure 15) for each parameter. Figure 15 indicates that λk3 and k3 have better sensitivity and 

smaller sample size requirements for detecting changes in [FAAH], while Ki has lower 

sensitivity and requires much higher group sizes to obtain the same significance. The results 

support the first hypothesis that k3 would have the highest sensitivity for detecting change in 

[FAAH] in a large ROI such as the temporal cortex.  
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Figure 15. Estimated group sizes between Ki, k3, and λk3 in the temporal cortex using Monte Carlo simulations 

(α=0.05, simulations = 2000, max n = 100) to detect a theoretical 15%, 20% 25% reduction in FAAH.  

The predicted group sizes between each parameter shown in Figure 16 provides support 

that λk3 has the best sensitivity for detecting changes in [FAAH] in a small ROI such as the 

dorsal caudate. k3 surprisingly had almost the exact level of sensitivity despite the precited 

influence of higher levels of noise in the dorsal caudate. This observation is supported by the 

higher effect size determined for k3 (Cohen’s d 2.02), which is comparable to the effect size of 

λk3 (Cohen’s d 2.36). Ki has shown to have good identifiability [2], but has much worse 

sensitivity for detecting changes and requires significantly larger sample sizes to have the same 

significance compared to k3 and λk3. The results support the first hypothesis that λk3 would have 
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the highest sensitivity for detecting change in a small ROI that is more subjected to higher levels 

of uncertainty.  

 

 
Figure 16. Estimated group sizes between Ki, k3, and λk3 in the dorsal caudate using Monte Carlo simulations 

(α=0.05, simulations = 2000, max n = 100) to detect a theoretical 15%, 20% 25% reduction in FAAH. 

4.3 Summary  

The results supported both hypotheses that (1) k3 is a better parameter for indexing [FAAH] in 

larger ROIs and (2) λk3 would have the highest sensitivity. In addition, the identifiability 

between the three parameters in both the temporal cortex and the dorsal caudate further supports 

the initial hypotheses. Based on a previous study into the FAAH genotype effect, there is a 

statistically significant reduction in [FAAH] in subjects with the A-allele [66]. The percent 
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difference between the A/C and C/C was underestimated in both ROIs using Ki due to its non-

linear dependence on k3. The percent difference when using k3 and λk3 was more sensitive in 

detecting this change that is consistent with the previous studies, although in the temporal cortex 

both parameters detected larger percent differences than previously reported. In summary, these 

results indicate that Ki is not a convenient parameter to detect differences in FAAH levels, as the 

effect sizes expected are smaller than those from λk3 and k3. The parameters k3 and λk3 are more 

sensitive to changes in FAAH levels in the brain. The level of noise within a specified ROI will 

(1) determine the between subject variability and (2) what parameter will present a greater effect 

size. This result is consistent with the experiments of test-rest based on 6 subjects with >1 month 

between scans: for cortical ROIs k3 present better percentage test-retest variability (TRV%) than 

λk3. On the other hand, for subcortical ROIs this trend is revered, where λk3 presents better 

TRV% compared to k3.  
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5. AIM III: Average Peak Input Function (APIF) 

5.1 Methods 

5.1.1 [11C]CURB Quantification 

The TACs for each brain ROI were extracted using an in-house imaging pipeline, that 

was previously validated as a method for [11C]CURB in vivo binding [2, 68]. To begin, the 

nonlinear transformation to match the standard brain template (ICBM/MNI 152 PD) to the 

individual high-resolution MR image of the subject that we want to analyze is calculated using 

statistical parametric mapping (SPM8). The calculated nonlinear transformation is applied later 

to a set of regions of interest previously delineated in the standard brain template. The subject 

MR image is then segmented to differentiate gray matter, white matter, and CSF. The set of 

transformed ROIs is refined based on gray matter probability of voxels of the individual subjects 

MRI images. The MRI images are then co-registered to the subjects averaged PET image with a 

rigid body transformation. This new transformation is applied to re-slice the individualized ROI 

to mask the PET images. The masked dynamical PET images are used to create the TACs for 

each ROI. λk3, an index of [11C]CURB binding in a ROI, that has been validated as proportional 

to the concentration of FAAH in the brain [2, 72], is computed from the TAC and the IF using 

the 2TCMi. 

5.1.2 Dataset  

This experiment was performed with images previously acquired that were presented in 

ref [42, 43], including both healthy volunteer’s (HVs, n=9) and those who are at clinical high 

risk for psychosis (CHR, n=10)  carrying either the C/A or C/C FAAH polymorphism. As the 

shape of the peak of the input function would depends on the shape of the bolus, it is important 

to note that the radioligand was injected with an injection pump (Harvard Apparatus, Holliston, 
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MA, USA) as a 1-minute bolus. Arterial input functions were created by merging the information 

of  ABSS and manual samples using a Hill function, as described in Pablo Rusjan et al. (2013) 

IFs were delay and dispersion corrected with respect to the radioactivity in blood that would be 

measured in the FOV [2].   

5.1.3 Algorithm for the creation of the APIF and Re-Estimation of λk3  

To begin, the area under the curve (AUC) of the individual input functions were 

determined at various time points of arterial measured input function (AIF) of each subject to 

verify there were no significant differences between groups (HV A/C, HV C/C, CHR C/A and 

CHR C/C). Once this is verified, an average of the AIF expressed in SUV (normalization based 

on injected dose/weight) across all subjects were computed and the peak between 0 and 15 

minutes after injection was kept, creating the plasma-average peak (PAP). Secondly, a 

biexponential function (𝑎 ∗ 𝑒𝑏𝑡 + 𝑐 ∗ 𝑒𝑑𝑡) was used to fit the activity concentration 

measurements in the manual samples of [11C]CURB in plasma for each subject. Due to the rapid 

changes and variation in metabolization per individual during the first 12 minutes after bolus 

injection, the biexponential interpolation is more successful in accurately modeling the manual 

samples after the 12-minute mark. Therefore, the interpolation was weighed such that the only 

the samples after 12 minutes were relevant: the time points 3-7 minutes were weighted with a 

factor of 0.001 and the remaining time points 12-60 minutes were weighted with a factor of 100. 

For each subject APIF was calculated by merging a rescaled PAP up to 15 min with the 

biexponential fitted between 15 min and 60 min. The sample at 15 min was used to rescale the 

PAP such that it was equal to the biexponential fitted value at that time point. The variable time 

of injection between participants was accounted for. The same procedure was used to create an 

average peak whole-blood function (APWB). The algorithm was automatized using a script in 
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Python (Appendix I.a). The λk3 values for each subject were re-estimated using the 2-TCMi with 

the generated APIF and APWB using an in-house kinetic modeling software, fmod.  

5.1.4 Sensitivity of AIF vs. APIF for detecting FAAH rs324420 polymorphism 

Effect  

To assess the FAAH polymorphism effect between groups, the difference between means 

of λk3 values estimated using the measured AIF versus the APIF were calculated using the 

student’s two-tailed t-test for groups of unequal size and equal variance. Variance between 

groups was determined using one-tailed F-test between the two-sample means. Bland-Altman 

tests were performed using the temporal cortex, dorsal caudate nucleus, and dorsal putamen as 

the ROIs to assess biases and variability introduced to macroparameters computation between 

the AIF and APIF method [75]. 

5.1.5 Estimated Group Sizes between AIF and APIF  

Monte Carlo simulations (Appendix I.b) (α=0.05, simulations = 2000, max n = 100) were 

computed to estimate group sizes (accounting for C/C and A/C subjects) required to detect a 

theoretical 10%, 15%, 20% 25% reduction in FAAH levels in a potential clinical experiment. 

Two thousand simulations using MATLAB 2022b (The MathWorks, Inc., Natick, MA, United 

States) were performed for each sample size between 2 and 100 subjects per genotype per 

clinical group. The mean and SD resulting from the Section 5.1.4 were used as the HV values for 

the MC simulations. The group mean minus the theoretical reduction was used to represent the 

study group in the MC simulations, and the same SD was used between the control and study 

groups.  
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5.2 Results  

Bland-Altman analyses (Figures 17-19) using λk3 values from the temporal cortex, dorsal 

caudate nucleus, and dorsal putamen indicated that there were no significant biases between the 

AIF and APIF methods. The limits of agreement (LOA) were calculated between measurements 

to define the limits using +2 standard deviation (SD) to demonstrate a 95% confidence interval 

(CI; precisely defined: mean ± 1.96 standard deviations), this generates the upper LOA (mean + 

1.96 x SD) and lower LOA (mean - 1.96 x SD). LOAs are shown as dotted, red lines with 95%, 

and bias as solid, gray line.  

 
Figure 17. Bland-Altman plot of λk3 values in the temporal cortex between APIF and AIF. Bias (difference) = 

0.0009, Upper LOA = 0.0283, Lower LOA = -0.0301.  

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.05 0.1 0.15 0.2 0.25

D
if

fe
re

n
ce

 (1
/m

in
) 

Mean (1/min)

Bland-Altman Plot for λk3 in the Temporal Cortex   

Upper
LOA
Bias

Lower
LOA



53 

 

 
Figure 18. Bland-Altman plot of λk3 values in the dorsal caudate between APIF and AIF. Bias (difference) = 

0.0004, Upper LOA = 0.0269, Lower LOA = -0.0277.  

 
Figure 19. Bland-Altman plot of λk3 values in the dorsal putamen between APIF and AIF. Bias (difference) = 

0.0008, Upper LOA = 0.0299, Lower LOA = -0.0315.  
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AIF and APIF showed a significant difference in λk3 values (P=0.0003 and P=0.0234 

respectively) due to the polymorphism effect between C/C and A/C (Figure 20). However, the 

effect size was smaller for the APIF (Cohen’s d 0.96) compared to the AIF (Cohen’s d 1.70) 

caused by higher levels of inter-subject variability of the APIF.  

 
Figure 20. Comparison of the sensitivity between the AIF and APIF methods for detecting the effect on [FAAH] 

with the addition of an A-allele. The difference detected by the AIF (P=0.0003) is more significant than the 

difference detected by the APIF (P=0.0234). 

To build upon the sensitivity of using the APIF-method opposed to the AIF-method, 

estimated group sizes to detect theoretical reductions in [FAAH] between the two were 

determined. The results show that the sample size required to find a significant difference 

between groups are around double the size for APIF than for AIF (Figure 21).   
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Figure 21. Estimated group sizes for the AIF and APIF methods using Monte Carlo simulations (α=0.05, 

simulations = 2000, max n = 100) to detect a theoretical 10%, 15%, 20% 25% reduction in FAAH. The AIF method 

requires smaller samples sizes to obtain significance compared to using the APIF method.  

5.3 Summary 

The sensitivity of the APIF method for the estimation of 2-TCMi parameters was lower 

than the method of acquiring individual automated IFs. While using the APIF modeling approach 

did not produce any significant biases, using an averaged peak fails to capture the rapid changes 

in the IF during the first 15 minutes post bolus injection and produce a higher inter-subject 

variability in λk3. Therefore, it will require larger sample sizes to try to find the same difference 

between clinical conditions. This highlights the importance of the individual information about 

the availability of parent compound during the first 15 minutes post injection. In summary, the 

results demonstrate the importance of acquiring individual ABSS measurements for creating the 

AIF.  
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6. Discussion 

The present study sought to optimize the technical performance, characterization, and 

evaluate the stability of required instrumentation for radioligand quantification using arterial 

blood sampling methodologies.  

6.1 Characterization of Instruments used for Arterial Sampling 

Aim I of this study investigated the performance of the gamma counting instruments used 

for the measurement of activity in arterial blood sampling for [11C]CURB. The first sub-

objective of Aim I assessed the response of the PBS-101 ABSS under different sampling 

conditions. The varying experimental conditions were designed to test the optimal length of time 

required for the BGO crystal detector of the ABSS to warm-up and whether the suggested 2-hr 

window [11] was sufficient. In addition, the experiments were designed to be able to assess the 

influence of the counting efficiency during any unexpected events, including the ABSS 

switching off and back on, or moving the position of the catheter. Also, it was to study whether 

static radioligand in the catheter could produce a difference in the calibration factor compared to 

radioligand flowing in the catheter. A difference between the calibration factors could suggest an 

accumulative adhesion of the radioligand to the walls of polytetrafluoroethylene (PTFE) tube 

(Figure 4, Part E, Section 3.1.1) [76]. The average cross-calibration factor across all four 

experimental conditions for the 511 – and 1022 – keV peak ROIs were determined to be 

1.20±0.001 CPS/
nCi

mL
 and 3.67±0.039 CPS/

nCi

mL
 respectively. These results indicate that the effect of 

18F adhesion to the PTFE tube lining is minimal during the various counting conditions during 

the length of the experiment, and the response of the ABSS is stable. However, this experiment 

should be repeated for other radioligands which could experience more stickiness to the PTFE. 

The determination of a constant calibration factor for the PBS-101 ABSS system aids in 
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minimizing the uncertainty of measurements and can eventually help eliminate the need for long 

acquisition times needed to capture accurate input function peaks for an individual.  

The second sub-objective of Aim I characterized the response of the Hidex AMG, and the 

average efficiency and optimal range of activity were determined. Figure 5 (Section 3.2.2.2) 

depicts the average percent efficiency in both the 3.0 mL and 1.0 mL samples as a function of the 

logarithmic scale of activity (nCi), which indicated that the optimal range of activity of the AMG 

detector exists between 10-500 nCi. The results here provide information on the capacity of the 

AMG system for counting larger number of positron emission events, where at high 

concentrations of radioactivity the detector deadtime increases and therefore decreasing the 

overall counting efficiency. 

 From Figure 5, the average counting efficiency of 18F for the 1.0 mL and 3.0 mL within 

the proposed optimal range of sensitivity of 10-500 nCi (Figure 6, Section 3.2.2.2) were 

determined to be 39.1±0.4% and 37.5±0.2% respectively. The results from the final experiment 

characterized the effect of sample volume on the average counting efficiency of measurements. 

As depicted in Figure 7 (Section 3.2.2.3) there is an observable decrease in the absolute counting 

efficiency of the AMG with increasing sample volume. This can be explained by the effect of the 

loss of counted emitted photons by the detector due to the geometry of positron emission (Figure 

3, Section 2.6.3), resulting in more counts detected in the 511-keV peak ROI since there is less 

likelihood of capturing both photons in coincidence in the 1022-keV peak ROI. These results are 

consistent with the results of a similar study that characterized a commercial well-type NaI(TI) 

gamma counter for PET applications (Wizard2, PerkinElmer, Waltham, MA, USA) [77]. Here, 

Martin A. Lodge et al. (2015) reported a similar effect, where the relative efficiencies centered 
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around the 511-keV photon peak were less susceptible to changes in sample volumes than those 

of single-photon emitters.  

A similar experiment was conducted, instead to determine the average counting 

efficiency of 11C as a function of increasing sample sizes that represent the volumes required for 

plasma metabolite analysis of [11C]CURB. Again, there is an observed decrease in the counting 

efficiency of 11C as sample volumes increase. In addition, the average percent efficiency of data 

measured within the counting window of energy used in the SOP for the metabolite analyses 

(400-600 keV) was compared to that of the average percent efficiency of data acquired in an 

energy window that is centered exactly ±20% of the 511-keV peak (409-613 keV). The 

efficiency for the 400-600 keV energy window and the 409-613 keV energy window were 

determined to be 32.7% and 33.0% respectively, which validates the accuracy of the window of 

energy used for the plasma metabolite analyses. The observation that the percent efficiency for 

11C is lower than that of 18F is surprising since all data was corrected for the branching ratio of 

each radioisotope. Some possible explanations include the potential higher levels of adhesion of 

the tracer to the syringes used to transfer the solutions and any other elements used when diluting 

the solutions. In addition, the short half-life of 11C makes it particularly more challenging to 

account for measurement error corrections. 

6.2 Investigation into [11C]CURB 2-TCMi Macroparameters  

The second aim of the present study involved the investigation into the identifiability and 

reproducibility between the three macroparameters of [11C]CURB 2-TCMi: Ki, k3, and λk3. The 

macroparameter k3 could not be considered the ideal rate constant for quantifying [FAAH] due to 

the known significant correlation to k2, therefore increasing the occurrence of bias in the 

estimations of k3 and low identifiability in small ROIs [2]. On the other hand, while Ki has 
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excellent identifiability for brain FAAH [2] it present a nonlinear dependence on k3 which 

decrease the sensitivity to detect changes in [FAAH]. The composite parameter λk3 was 

considered to be the recommended index for the PET quantification for FAAH activity in the 

brain as it has shown adequate identifiability, it is independent of rCBF, and because it is directly 

proportional to k3, the irreversible trapping rate constant [2, 38]. The composition of λk3 is such 

that it is independent of cerebral blood flow because contains the ratio K1/k2 and reduces the 

correlation between k3 and k2 because it contains the ratio k3/k2 [2, 78]. The results in this thesis, 

together with the reproducibility study performed by Isabelle Boileau et al. [38] suggest that for 

large cortical ROIs, k3 is a potential alternative to quantify FAAH levels. Its correlation with k2 

does not affect its predictability of the genotype effect in the FAAH level. The validity of the 

results should be confirmed with larger sample sizes. Therefore, in Aim II of the present study, 

the main goal was to expand on these validation studies using larger samples sizes of healthy 

volunteers as well as assessing the optimum parameter for quantifying FAAH in the brain based 

on the size of the ROI.  

In PET neuroimaging, the size of the ROI influences the level of noise and variance in 

parameter to quantify the radioligand. The more counts captured from an ROI will produce more 

uniform images and less variability, therefore improving the reproducibility of measurements 

[79, 80]. In small ROIs, there will be fewer positron emission events captured by the PET 

detector [79]. Therefore, the measurements acquired will have higher levels of noise and 

variability, decreasing the statistical power of repeatability of the estimated model parameters. In 

larger ROIs, the influence of noise is not as significant, making the measurements more reliable 

and less variable. Therefore, to evaluate the identifiability and sensitivity between the 
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[11C]CURB 2-TCMi macroparameters, the values estimated by each in the temporal cortex (as 

the large ROI) were compared to the values of the dorsal caudate nucleus (as the small ROI).  

It was hypothesized that in a larger ROI k3 will have the highest sensitivity for detecting 

changes in FAAH binding between C/C and A/C rs324420 SNPs, and conversely λk3 would have 

the highest sensitivity in small ROIs. The rationale behinds these hypotheses are based on the 

levels of noise between the ROIs, where in the temporal cortex the estimated parameters will 

have less variability and uncertainty compared to the large level of uncertainty when using a 

small ROI such as the dorsal caudate. 2-TCMi k3 and k2 are known to strongly correlate for 

[11C]CURB due to noise and insufficiencies of the model, therefore the values provided by the 2-

TCMi present low identifiability (high associated error) for their individual estimations. It was 

predicted λk3 would be a more stable measure to quantify [FAAH] since it incorporated the ratio 

k3/k2 in its calculations, therefore canceling out the error related to the correlation. However, on 

the other hand, λ has information about the free and non-specific binding which is a source of 

variability between subjects when we try to quantify FAAH. The results from the temporal 

cortex support the hypothesis that k3 (P=4.18e10-5) has the highest sensitivity for detecting 

changes in [FAAH]. Furthermore, the results from the dorsal caudate support the hypothesis that 

λk3 (P=0.002) has the greatest sensitivity for detecting changes in [FAAH]. The Monte Carlo 

simulations predicts reasonable samples sizes to observe differences using λk3 in the dorsal 

caudate (n = 10, 8, 4, for 15%, 20% and 25% reductions in [FAAH] respectively). In summary, 

these results indicate that all three parameters are appropriate measures for indexing [FAAH] in 

the brain but depending on the level of noise within a specified ROI the effect size measure for 

each parameter will be different. The best index for detecting changes is dependent on the 

specified ROI.   
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6.3 Averaged Metabolization Peak Input Function  

There are several proposed approaches for estimating the arterial input function and 

metabolization of a radiotracer in tissue, all with varying levels of uncertainty and limitations. It 

is well established that the only standard approached for estimating the AIF is through arterial 

blood sampling in combination with plasma metabolite analyses [5, 42]. While arterial blood 

sampling is considered a robust and accurate measure of the true delivery function of parent 

radiotracer in arterial plasma, it is an experimentally challenging and laborious approach [6]. 

Therefore, there remains a demand for facilitating less invasive and increasingly automated 

techniques in image analysis to promote the engagement of study participants and improve the 

reliability of analysis methods. Accurate radiometabolite correction improves the estimation of 

the kinetic parameters used in the modeling of radiotracer uptake and metabolism. This 

correction can have a significant impact on the quantification of receptor binding, enhancing the 

reliability of PET imaging results. 

In Aim III of the present study, the goal was to develop a computational estimation of the 

plasma metabolization correct input function to not only reduce the potential complications 

during arterial blood sampling, but to also assess the level of detail required to accurately 

estimate parameters in [11]CURB compartmental modeling. This approach used an averaged 

value of both the whole-blood and metabolite-corrected plasma activity curves during the crucial 

first 15 minutes post bolus injection, where the changes in availability of radioligand are the 

most rapid. The normalized PAPs to the biexponential of the manual samples were used to 

determine individual APIF and APWBs for each subject. The individually normalized APIF and 

APWBs were then used in the computation and re-estimation of the macroparameter λk3 of the 

[11C]CURB 2-TCMi. The sensitivity of the APIF method for detecting the changes in [FAAH] 
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between C/C and A/C genotypes compared to the gold-standard AIF method (Figure 20, Section 

5.2) supported the hypothesis that this simplified approach would be successful in accurately 

reproducing the polymorphism effect with no apparent bias (Figures 17-19). Although, this 

approach appears to not have enough sensitivity to small changes and it would require larger 

sample sizes, in comparison to AIF, which eventually could not be feasible to recruit in a real 

clinical experiment.   

The results of Aim III taken provide support that applying the APIF modeling approach 

does not produce any significant biases and had acceptable ranges of uncertainty. The results 

indicate that this method would be an appropriate approach to still be able to correct data for 

metabolization to compute the accurate kinetic modeling when the ABSS data is lost due to 

experimental error. Although, the primary limitation of this method is by using an averaged IF 

value, the capture of individual rapid changes is lost, and it reduces sensitivity and will require 

larger sample sizes to obtain significance. In conclusion, the evidence from this study indicates 

that quantifying individual measurements of radioligand metabolization is crucial for the 

statistical power, identifiability, and sensitivity for modeling the kinetics of PET radiotracers.  
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7. Conclusion and Expected Contribution to Original Knowledge  

The present study provides the technical performance, characterization, and stability of 

required instrumentation for radioligand quantification in arterial blood sampling. It also offers 

novel investigations into the sensitivity and reliability of varying computational approaches to 

modeling FAAH binding in the brain using [11C]CURB PET imaging. It also presents a novel 

investigation into the sensitivity of the outcome parameters of the 2-TCMi (Ki, λk3 and k3) to 

quantify [11C]CURB PET imaging and an estimation of the increase of variability in [11C]CURB 

λk3 when the ABSS measurement is not available, and it is replaced by an average measurement 

based on other subjects. 

Gamma counters are necessary for the radioligand quantification in arterial blood for in-vivo 

PET imaging quantification using full kinetic modeling. The proper calibration and 

characterization of the response of the required instrumentation has an important role in the 

accuracy and reproducibility of the clinical applications [12, 65]. Here, we report the 

comprehensive characterization and calibration of a full programmable ABSS system and an 

automated gamma counter (AMG).  

In addition, we report the strengths and drawbacks of the available arterial sampling 

techniques and offer a computational alternative to simplify the protocol for extraction of arterial 

blood. Our aim was to assess the importance of individualized arterial sampling. While acquiring 

individual AIFs for each participant produces more precise estimation of 2-TCMi 

macroparameters, using the APIF is a reliable method with limited bias and variability 

introduced to parameter estimations. 
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Appendix I  Supplemental Data 

Appendix I.a Python Syntax for APIF  

New Plasma APIF: 

import re 

import math 

from datetime import datetime 

 

#You could also pass datetime.time object in this part and convert it to string. 

time_scanner = str('hh:mm:ss')  

time_inj = str('hh:mm:ss') 

 

weight=## #kg 

activity=## #mCi 

SUV_factor=(activity*(10**6))/(weight*(10**3))     #nCi/ml  at time_of_injection. 

 

coef_a=### 

coef_b=### 

coef_c=### 

coef_d=### 

 

biexpo = [(coef_a*math.exp(coef_b*t)+coef_c*math.exp(coef_d*t)) for t in 

range(900, 62*60)] 

 

# Then get the difference here.     

diff = datetime.strptime(time_inj, "%H:%M:%S") - datetime.strptime(time_scanner, 

"%H:%M:%S") 

t_of_injection = diff.seconds  

dcf=math.exp(math.log(2)*t_of_injection/1223.4) 

 

biexpodcf=[e*dcf for e in biexpo] 

 

print(dcf) 

print(SUV_factor) 

 

popif_times=[] 

popif_act=[] 

popif_actdcf=[] 
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with open('APIF_plasma_new.txt') as f: 

    line = f.readline() 

    line = f.readline() 

    while line: 

        popif=re.match('(\d+)\t[-+]?(\d+(\.\d*)?|\.\d+)',line)  

        line = popif_times.append(popif.group(1))  

        line = (popif_act.append(float(popif.group(2))*SUV_factor))   

        line = popif_actdcf.append(float(popif.group(2))*SUV_factor*dcf)  

        #print(act.group(2)) 

        line = f.readline() 

 

#for t in popif_times: 

#  print(t) 

 

print(popif_times[10]) 

 

#estimate scale factor on t_inj 

scale_factor=biexpo[0]/popif_act[900] 

print(scale_factor) 

print(SUV_factor) 

exit() 

#apply scale factor a popif 

 

#recalculate the time with the delay of t_of_injection  

 

time_sec = [t for t in range(0, 62*60+t_of_injection)] 

 

input_function=[0 for t in range(0, t_of_injection)] 

print(len(input_function)) 

print(input_function[len(input_function)-1])   

 

xxx=[float(popif_actdcf[t])*scale_factor for t in range(0,900)] 

input_function.extend(xxx) 

input_function.extend(biexpodcf) 

 

 

print(len(time_sec)) 

print(len(input_function)) 

 

#replace rescaled popbif 

 

#save outpout 

with open('CURB###_output_plasma_APIF_new.smpl', 'w') as f: 
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    f.write("Time[seconds]\tPlasma[nCi/cc]\n") 

    for item in time_sec: 
        f.write( str(item) + "\t" + str( input_function[item] ) + "\n" ) 

New Whole-Blood APIF: 

import re 

import math 

from datetime import datetime 

 

#You could also pass datetime.time object in this part and convert it to string. 

time_scanner = str('hh:mm:ss')  

time_inj = str('hh:mm:ss') 

 

weight=##  #kg 

activity=##   #mCi 

SUV_factor=(activity*(10**6))/(weight*(10**3))     #nCi/ml  at time_of_injection. 

 

coef_a=### 

coef_b=### 

coef_c=### 

coef_d=### 

 

biexpo = [(coef_a*math.exp(coef_b*t)+coef_c*math.exp(coef_d*t)) for t in 

range(900, 62*60)] 

 

# Then get the difference here.     

diff = datetime.strptime(time_inj, "%H:%M:%S") - datetime.strptime(time_scanner, 

"%H:%M:%S") 

t_of_injection = diff.seconds  

dcf=math.exp(math.log(2)*t_of_injection/1223.4) 

 

biexpodcf=[e*dcf for e in biexpo] 

 

print(dcf) 

print(SUV_factor) 

 

popif_times=[] 

popif_act=[] 

popif_actdcf=[] 
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with open('APIF_WBlood_new.txt') as f: 

    line = f.readline() 

    line = f.readline() 

    while line: 

        popif=re.match('(\d+)\t[-+]?(\d+(\.\d*)?|\.\d+)',line)  

        line = popif_times.append(popif.group(1))  

        line = (popif_act.append(float(popif.group(2))*SUV_factor))   

        line = popif_actdcf.append(float(popif.group(2))*SUV_factor*dcf)  

        #print(act.group(2)) 

        line = f.readline() 

 

#for t in popif_times: 

#  print(t) 

 

print(popif_times[10]) 

 

#estimate scale factor on t_inj 

scale_factor=biexpo[0]/popif_act[900] 

print(scale_factor) 

print(SUV_factor) 

exit() 

#apply scale factor a popif 

 

#recalculate the time with the delay of t_of_injection  

 

time_sec = [t for t in range(0, 60*62+t_of_injection)] 

 

input_function=[0 for t in range(0, t_of_injection)] 

print(len(input_function)) 

print(input_function[len(input_function)-1])   

 

xxx=[float(popif_actdcf[t])*scale_factor for t in range(0,900)] 

input_function.extend(xxx) 

input_function.extend(biexpodcf) 

 

 

print(len(time_sec)) 

print(len(input_function)) 

 

#replace rescaled popbif 

 

#save outpout 

with open('CURB###_new_output_WB_APIF.smpl', 'w') as f: 
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    f.write("Time[seconds]\tBlood[nCi/cc]\n") 

    for item in time_sec: 
        f.write( str(item) + "\t" + str( input_function[item] ) + "\n" ) 

Appendix I.b MATLAB Syntax for Monte Carlo Simulations 

clear all 

no_sim=2000; 

max_n=100; 

 

% reduction = 0.10  

% reduction=0.15  

% reduction=0.20  

% reduction=0.25  

 

for n=2:max_n    %SAMPLE SIZE SUGGESTED 

    for i=1:no_sim  %NUMBER OF SIMULATION 

clear group 

clear snp 

   % n=10 

hv_cc = 0.18 + 0.034.*randn(n,1);    %GROUP 1 mean+SD, genotype CC 

hv_ca= 0.15 + 0.019.*randn(n,1);    %GROUP 1 mean+SD, genotype CA 

dc_cc= 0.18* (1-reduction) + 0.034.*randn(n,1); %GROUP 2 mean+SD, genotype CC 

dc_ca= 0.15*(1-reduction) + 0.019.*randn(n,1); %GROUP 2 mean+SD, genotype CA 

y=[hv_cc ; hv_ca ;dc_cc;  dc_ca]; 

group(1:n*2)=1; 

group(2*n+1:n*4)=2; 

snp(1:n)=1; 

snp(n+1:n*2)=2; 

snp(2*n+1:3*n)=1; 

snp(3*n+1:n*4)=2; 

%same result as SPSS general linear models, Univariate analysis, fix factors: 

group and snp, no include intercept  

 [p,tbl,stats,terms] = anovan(y,{group 

snp},'model','interaction','varnames',{'group','snp'},'display' ,'off'); 

 P(i,n)=p(1); 

 %[H,P(i,n),CI,STATS] =ttest(hc_cc,hc_ca); 

end 

end 

 

 p=sum(P<0.05)/no_sim; 
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%PLOT  

 pp = movmean(p,10) 

 display('n per group:') 

 k = find(pp>0.95,1)  

 n=1:max_n; 

 p095(n)=0.95; 

plot(n,p,'r-',[k k],[0 1],'b-',n,p095,'g-') 
 

 

 


