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Abstract  

Cancer associated fibroblasts (CAFs) play a key role in dynamically modulating the tumour 

microenvironment; they form fibrotic foci through contraction, secretion and crosslinking of the 

extracellular matrix. These CAF-dense fibrotic foci activate and recruit surrounding fibroblasts, 

leading to larger-scale tissue stiffening and enhanced cancer aggression. While the presence of 

collagen and CAF-dense fibrotic foci in the breast and corresponding changes in mechanical 

stiffness have been correlated with human breast cancer aggression, the impact of this evolving 

microenvironment on the ability of CAFs to promote metastasis remains largely unknown. Here, 

CAFs from 4 human triple-negative breast cancer patients presenting with (2) or without (2) 

lymph node metastasis were isolated and expanded to further interrogate their behavior under 

mechanical stress and the implications of this on disease progression.  

 

In Chapter 2.1, we demonstrate using 3D physiologically relevant in vitro assays, that CAFs 

isolated from primary tumours of patients with and without lymph node metastasis, retain 

functional characteristics representative of disease state. Using an engineered, stiffness tunable, 

culture model system, we deconstruct the mechanical cues presented to cancer-associated 

fibroblasts during the process of fibrotic foci formation and extracellular matrix remodelling; and 

probe the effects of local mechanical stiffness arising from the dynamic process of remodelling 

on CAF invasion into the surrounding tissue. With this, we demonstrate CAFs derived from 

patients presenting with non-metastatic disease require substrate stiffness cues to prompt 

invasion, while CAFs from patients presenting with lymph node metastasis are no longer 

mechanoresponsive.  

 

In Chapter 2.2, we explore the link between CAF invasion and substrate stiffness. By examining 

the transcriptome of CAFs derived from patients with and without lymph node metastasis using 

RNA-sequencing, we confirm the transcriptomic profile of each CAF subset is distinct, where CAFs 

derived from non-metastatic patients have significantly more genes elevated in response to 

changes in fibrotic foci stiffness. The transcription factor Aryl Hydrocarbon Receptor (AHR – 

protein, AhR – gene) previously correlated with fibrosis and migration in fibroblasts, is found to 
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be specifically elevated both at RNA and protein level in CAFs derived from metastatic patients, 

suggesting a potential role in facilitating invasion.  

 

In Chapter 2.3, this work demonstrates the role of AhR in CAF invasion. Through chemical and 

genetic inhibition of AhR, we confirm in human CAFs, for the first time, a dependence on AhR for 

CAF invasion. In CAFs derived from non-metastatic patients, we find that overexpression of AhR 

is sufficient to enhance CAF invasion. Interestingly, those CAFs derived from patients presenting 

with non-metastatic disease exhibit a substrate stiffness dependent increase in AhR expression, 

whereby culturing them on stiffnesses representative of late-stage disease increases AhR 

expression and concomitant CAF invasion.   

 

As CAF invasion has previously been demonstrated to be a key mechanism promoting cancer 

metastasis from the primary tumor, these findings indicate that mechanobiological screens of 

patient CAFs may be used to understand the current state of tumor progression, stratify patients, 

and ultimately contribute towards the selection of precision medicine therapies. This work 

identifies a novel role for transcription factor AhR in facilitating CAF invasion and finds a link with 

overall patient survival in highly fibrotic tumours. The increased protein levels of AhR suggests a 

mechanobiological mechanism responsible for clinical failure of drugs aimed at targeting CAF 

activation.  
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Abrege 

Les fibroblastes associés au cancer (cancer associated fibroblasts, CAF) jouent un rôle essentiel 

dans la régulation du microenvironnement tumoral, par le remodelage dynamique de la matrice 

extracellulaire (MEC). Une MEC riche en collagène contribue à une rigidification tissulaire, la 

fibrose tumorale, qui est associée à l’agressivité des cancers du sein. Toutefois, les conséquences 

du remodelage de la MEC sur la capacité des CAF à influencer le potentiel métastatique du cancer 

reste encore méconnu. Dans cette étude, nous avons isolé les CAF de quatre patients atteints 

d’un cancer du sein triple-négatif métastatique (2) ou non-métastatique (2), afin d’étudier leur 

réponse à la rigidification tissulaire, ou mécanotransduction, et les conséquences de ces réponses 

sur la progression métastatique du cancer. 

 

Dans le chapitre 2.1, nous avons développé un modèle de culture cellulaire physiologique en trois 

dimensions dont la rigidité matricielle est flexible et contrôlée, afin d’évaluer les propriétés 

mécano-biologiques des CAF en réponse à la rigidification tissulaire. Grâce à ce système, nous 

avons démontré que les CAF issus de tumeurs non-métastatiques deviennent invasifs lorsque 

soumis à une matrice rigide, contrairement aux CAF provenant de patients présentant un cancer 

métastatique, suggérant une désensibilisation des ces derniers à la mécanotransduction. 

 

Au cours du chapitre 2.2, nous explorons la relation entre le potentiel invasif des CAF et la rigidité 

matricielle. Des analyses de l’expression des gènes par séquençage de l’ARN démontrent que les 

CAF issus de patients présentant un cancer non-métastatique sont caractérisés par un profil 

moléculaire particulier, davantage influencé par la rigidité matricielle. L’expression du facteur de 

transcription Aryl Hydrocarbon Receptor (AhR), associé à la fibrose et au potentiel migratoire des 

fibroblastes, est significativement plus élevée chez les CAF provenant de patients présentant un 

cancer métastatique, ce qui suggère son implication dans le processus invasif de la maladie. 

 

Dans le chapitre 2.3, nous nous attardons au rôle du facteur AhR dans le potentiel invasif des 

CAF. Par des approches génétique et pharmacologique ciblant le facteur AhR, nous avons 

démontré pour la première fois que le potentiel invasif des CAF de patients atteints de cancer du 
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sein est régulé par le facteur AhR. En effet, la surexpression de ce facteur augmente 

significativement la capacité invasive des CAF provenant de patients présentant un cancer non-

métastatique. De plus, la rigidification tissulaire augmente l’expression du facteur AhR suggérant 

que les CAF issus de tumeurs non-métastatiques sont particulièrement sensibles aux propriétés 

mécaniques du microenvironnement. 

 

Les CAF sont des acteurs majeurs de la progression métastatique en facilitant l’invasion et la 

dissémination des cellules cancéreuses. Or, les propriétés mécano-biologiques des CAF 

provenant de patients peuvent aussi informer sur la progression de la maladie et faciliter la 

stratification des patients pour la médecine de précision. Ces travaux ont permis d’identifier le 

facteur de transcription AhR en tant que modulateur du potentiel invasif des CAF et facteur 

pronostique de tumeurs fibrotiques, et supporte l’importance de la mécanotransduction dans la 

réponse aux nouvelles approches thérapeutiques ciblant les CAF.  
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CHAPTER 1 : LITERATURE REVIEW  

1. TRIPLE-NEGATIVE BREAST CANCER  

Breast cancer is the most commonly diagnosed cancer among Canadian women, and the second 

leading cause of death [2].Upon diagnosis, breast cancer is typically stratified based on 

histopathological subtype, using immunohistochemistry for detection of estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor (HER2). The majority 

of diagnosed breast cancers (70%) are ER+ or ER+/PR+ tumours [3-6]. These tumours tend to 

have the best clinical outcome due to i) the tendency to present as low-grade tumours with low 

metastatic burden and rates of recurrence, and ii) prevalence of effective targeted therapeutic 

strategies. HER2+ tumours represent 20% of diagnosed cancers [7], and while they were initially 

associated with poor prognosis, the development of HER2 targeted therapies have shown 

significant clinical benefit [8-12]. The remaining 10-15% of breast tumours are negative for all 3 

of these markers (ER-/PR-/HER2-) and termed triple-negative breast cancer (TNBC) [13-15].  It 

has been challenging to treat due to the absence of well-defined molecular targets. Though it is 

considered a single clinical entity, molecular profiling with RNA sequencing and other “omics” 

approaches, has shown an unexpectedly high level of heterogeneity [16-20]. Given this, many 

researchers have instead focused on developing and using therapies aimed at targetting features 

of the tumour microenvironment (TME). Previous work from our group demonstrated that 

differential gene expression of breast cancer TME better correlated with clinical outcome than 
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with tumour subtype [21], suggesting that studying non-cancerous cell populations in the TME 

can provide further understanding for clinical failings in TNBC.   

 

1.2 CANCER ASSOCIATED FIBROBLAST OVERVIEW  

The tumour microenvironment (TME) is a complex landscape, composed of cellular and non-

cellular components; it is comprised of tumoral cells, as well as fibroblasts, endothelial cells, 

various immune cells and non-cellular matrix proteins and ligands, collectively referred to as 

stroma [22]. Cancer associated fibroblasts (CAFs) are one of the most abundant stromal 

components of the TME and have been demonstrated to play a prominent role in cancer 

pathogenesis [21-24].  

 

In normal tissue, fibroblasts remain in a quiescent state, that in response to tissue injury can be 

activated to repair and regenerate tissue. Activated fibroblasts express α-smooth muscle actin 

(αSMA) and acquire contractile properties, allowing them to produce and remodel the 

surrounding extracellular matrix (ECM) [25].  Although this repair effort is usually effective in 

healthy tissues, where fibroblasts can revert to quiescence, in cancerous lesions where the stress 

and wounding are continual, CAFs develop [25]. In this state, CAFs display a hyperactive 

fibroblastic phenotype, and are largely responsible for remodelling the tumour ECM through the 

contraction, secretion and crosslinking of surrounding collagen, and other fibrillar proteins; this 

desmoplastic reaction alters both the composition and mechanical properties of the tissue [26] 

(Figure 1-1).  
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Figure 1-1: CAF activation is step-wise. Normal quiescent fibroblasts are inert but can be 
reversibly activated upon external stimuli (stress, chemokines, cytokines, growth factors) to 
restore tissue homeostasis. Further activation by continuous injury stimuli, cancerous lesions, can 
lead to an irreversible activation of fibroblasts, termed Cancer Associated Fibroblasts.  
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Activation of CAFs depends on tumour induced signals, including transforming growth factor beta 

(TGF-β), to contract, remodel and secrete extracellular matrix proteins, ultimately altering the 

TME [25]. Many studies have established a link between patient outcome and CAF number, 

complexity, or function [27-29]. While the mechanisms of these actions remain unclear, they are 

likely to require a multidisciplinary understanding of the cancer ecosystem, as CAFs direct 

remodelling and stiffening of the extracellular matrix (ECM), phenotypes which have been 

correlated with breast cancer aggression and therefore patient outcome [26]. Fibroblast 

heterogeneity also contributes to promoting an immunosuppressive microenvironment [30] as 

well as metastatic progression [31]. Hence, CAFs have become a viable target for anticancer 

therapies.  

 

Although our knowledge of CAF complexity in the TME is still evolving [32], targeting CAF 

mediated ECM changes, and associated downstream signalling have become increasingly 

appealing strategies to modulate CAF-cancer cell communication. However, identifying such 

targets has not yet translated into clinical benefit. For example, inhibitors of the CAF-dependent 

hedgehog pathway, IPI-926, failed to recapitulate the overall survival benefits shown in mouse 

model trials [33-35], and paradoxically decreased patient survival when added to the standard of 

care [36]. While the reasons for this failure remain unclear, this example highlights the complex 

roles of CAFs in both stabilizing and supporting the TME. 

 

Since I have started my thesis in September of 2016, there has been a steady growth of papers 

published focusing on CAFs (Figure 1-2). At the time, 673 papers were published in 2015 with 
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keywords “cancer associated fibroblast”, in comparison to just 6 years later that number has 

doubled (1305 papers). Many of these early studies were focused on tumour-CAF interactions 

[37-42] and were largely limited to immortalized fibroblasts of cancerous and non-cancerous 

origins, known to acquire phenotypic and genotypic variations characteristic of continual cell 

culture and immortalization. Moreover those papers focused on CAFs were focused on 

identifying subtypes of CAFs using combinations of overlapping and non-overlapping biomarkers 

[25, 43], a static metric that has yet to prove sufficient at predicting patient outcome [30]. These 

tendencies may be due to the complexity of obtaining and culturing non-immortalized primary 

human breast CAFs. Though technically challenging, in order to identify CAF functionality driving 

stiffening and invasion in vivo, it is necessary to have assays using primary cells that capture 

cellular heterogeneity in a physiologically relevant ECM.   
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Figure 1-2: Publications in Pubmed with keyword “cancer associated fibroblast” by year.  
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In the following literature review, I outline the most current understanding of CAF biology, with 

specific emphasis on the role of CAFs in altering cancer progression. I then discuss the limitations 

of current models, as well as the complications of studying CAFs in conventional tissue culture 

systems. I conclude by proposing that specific features arising from the relationship between 

CAFs and cancer cells should be included in the next generation of ex vivo cancer biology studies 

and suggest technological approaches currently being developed that may be of value in this 

area.   
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1.3. CAFs MODULATE CANCER CELL BIOLOGY   

Recent reviews have summarized the results of therapeutic strategies focused on modulating 

CAF behaviour [32, 44-48]. The general lack of success in this area suggests that we do not yet 

fully understand the role of CAFs in altering cancer cell biology, and particularly response to 

therapeutic strategies.  It is therefore important to briefly review how CAFs are known to 

modulate cancer cell growth and drug efficacy, as this will affect patient therapeutic response 

and ultimately disease outcome.  

 

1.3.1. CAFs as positive regulators of cancer cell growth 

CAFs have been shown improve organoid and cancer cell growth [49-51] when compared with 

fibroblasts culture from normal tissue origin [51, 52]. They are a substantial source of growth 

factors, cytokines and exosomes, where fibroblast expression of TGF-β [41, 53], growth arrest 

specific protein 6 (GAS6) [54, 55], fibroblast growth factor 5 (FGF5) [56], growth differentiator 

factor 15 (GDF15) [57] and hepatocyte growth factor (HGF) [58, 59] promotes invasion and 

metastasis in cancer cells.  

 

1.3.2. Cancer cells modify drug efficacy  

Collectively, CAF subpopulations modify therapeutic efficacy in several ways.  First, CAFs are 

highly secretory cells, altering cancer cell phenotypes through paracrine cell-to-cell soluble 

signalling: modulating cancer cell stemness [60-62], increasing cancer cell epithelial to 

mesenchymal transition through TGF-β signalling [41], altering chemotherapeutic 

responsiveness [63-66], as well as immune evasion through production of chemokine C-X-C motif 
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chemokine 12 (CXCL12) or stromal cell-derived factor 1 (SDF1)  [67-69] and TGF-β [70, 71]. 

Further, a dense fibrotic stroma is also a common feature of immunotherapy resistant tumors, 

where signatures of TGF-β induced desmoplasia in the stroma is associated with restricted T cell 

infiltration into the tumor [72]. Interestingly, dual targeting of TGF-β and immune checkpoint 

inhibitor, PD-1, is currently under clinical trial and showing some promise in improving the 

success of immune checkpoint therapies [73]. Second, existing therapies can often create fibrotic 

and tissue-stiffening side effects, which are thought to be mediated by CAFs.  These fibrotic 

reactions are associated with overall worsened survival [26].  For example, the highly publicized 

B-Raf inhibitor used to treat advanced melanoma, activates stromal fibroblasts [74-76], while 

radiotherapy in general increases fibrosis [77]. Hence, CAF behaviour may unintentionally be 

triggered by conventional therapies, in turn modulating the efficacy of said therapy. Taken 

together, these findings collectively suggest that CAFs are a crucial player in therapeutic response 

and ultimately in modulating patient outcome. Understanding the effect of therapeutic agents 

on CAF function and thus the TME, is evidently crucial for the development of new therapeutic 

strategies.  
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1.4. CAF FUNCTIONALITY: COMPLICATIONS WITH STUDYING CAF BIOLOGY 

Given that CAFs play a complex role in tumour restraint and growth, studies aimed at 

understanding cancer initiation, progression, therapeutic response, and drug discovery must 

incorporate CAFs. Here, I overview CAF functionality.  

 

1.4.1. CAF heterogeneity  

CAFs are a highly heterogenous “catch-all” description for several sub-populations of activated 

fibroblasts that function differently depending on their numerous precursors (i.e., tissue-resident 

fibroblasts, trans-differentiated endothelial or epithelial cells or bone marrow-derived 

mesenchymal stem cells) [25, 30, 78, 79], and on the local microenvironmental context (i.e. 

hypoxia or distance to tumour) [49, 80, 81]. Numerous histological markers are established for 

detecting fibroblasts in the tumour stroma including fibroblast-specific protein 1 (FSP1, or 

S100A4), vimentin, αSMA, FAP, platelet derived growth factor receptor-α (PDGFRα), PDGFRβ, 

desmin and discoidin domain-containing receptor 2 (DDR2)[32, 78]; yet none of these markers 

are specific for fibroblasts or even activated fibroblasts.  

 

Sufficient evidence for the presence and impact of CAF heterogeneity now exists in both in vivo 

and in vitro models [30, 78, 79, 82-84] to support considering this complication in cancer studies.  

For example, CAF subpopulations can undergo metabolic reprogramming to provide a supportive 

niche for adjacent cancer cells [85]. Moreover, recent single cell studies have demonstrated the 

broad heterogeneity of CAFs within individual tumours in mice or humans [86-90]. The evolving 



 11 

nature of CAF subpopulations makes CAFs difficult to study in culture, as conventional culture 

methods can select and modify the populations, therefore changing the functional behaviour. 

 

It is likely that the subtypes of CAFs are plastic, with capacity to transition between CAF states; 

activated fibroblasts are known to exhibit multipotency [91-93], and CAFs are dependent on the 

microenvironment to influence their subtype [94]. Öhlund et al. demonstrated the 

interconversion of CAF subtypes based on their proximity to tumour cells [49]; where CAFs in 

direct contact with tumour cells, respond  to TGF-β signalling to form a myofibroblastic CAF 

(myCAF) subtype, and CAFs further from the tumour respond to tumour secreted IL-1, 

suppressing TGF-β signalling, to drive an inflammatory CAF (iCAF) subtype [86, 95]. Additionally, 

the heterogeneity of CAF populations is induced and stabilized by CAF signalling [53]. Current 

studies focusing on changes in CAF populations are limited, even though understanding the 

interconversion in response to therapies may be key for better patient outcome.  

 

1.4.2. CAFs and tumour invasion 

Second, CAFs play a key functional role in tumour invasion by; secreting proteases that break 

down ECM to enable cancer cell motility [21, 96, 97], clearing tunnels in the ECM [98], YAP-

dependent matrix remodelling [99], and physically pulling cancer cells through heterotypic cell 

junctions [100] (Figure 1-3). To understand drug efficacy on these CAF functional phenotypes, 

systems must track the movement of individual cells, a process that has been challenging to scale 

to high-throughput screens, while maintaining a suitable level of robustness. This is challenged 

by the fact that typical invasion assays follow cumbersome procedures [101, 102] and have 
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endpoint readouts with low signal to background ratio [103]. Moreover, they require precise, 

automated, multidimensional microscopy and analysis software, an expensive addition to these 

studies.   

 

1.4.3. CAFs are mechanically competent cells  

Finally, CAFs are mechanically competent cells that both respond to and change their physical 

environment, by remodelling the tumour ECM through contraction, secretion, crosslinking and 

aligning of the surrounding collagen and fibrillar proteins (Figure 1-3) [25]. Given the broadly-

established impact of 3D tissue mechanics on biological function [104], this can significantly 

influence the direct response of cancer tumors to candidate therapeutics.  Progressive deposition 

and remodelling of the ECM by CAFs is associated with disease transformation in human breast 

cancer [26] and in vitro analysis shows that changes in the ECM alter breast cancer aggression 

[105-109]. Moreover, remodelling also aligns, thickens and straightens ECM fibres, where 

signatures of this are an independent prognostic indicator of poor disease progression [110, 111]. 

This remodelling, thickening and deposition of the ECM also contributes to an overall increase in 

tissue stiffening, shown in mouse models and human patient samples to foster tissue 

transformation and metastasis [26, 112-114]. Although tissue stiffening is recognized as an 

important factor in cancer drug discovery [115-117] and promoting chemotherapy resistance 

[118, 119], current drug discovery models lack the dynamic interplay between CAFs and the ECM.  

In addition to stiffening the environment, aggressive tumours typically have dense and aligned 

ECM [26], providing highways for cells to invade and altering cancer cell signalling and behaviour. 

I believe capturing these mechanical phenotypes arising from CAF inclusion is therefore critical 
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to generating a more thorough understanding of tumour progression, identifying better stromal 

targeted therapies, and thereby improving patient outcome. 

 

Together this demonstrates that the functionality of CAFs is key to understanding tumour 

mechanics and progression, implying that assays with a simple live/dead readout are inadequate.  

Given the microenvironmental impacts outlined in the previous section, I believe that studies 

aimed at understanding CAF biology must consider i) the heterogeneity of CAF populations, ii) 

their role in enhancing tumour invasion, and iii) their contribution to dynamic tissue mechanics 

(Figure 1-3); all of which have been shown to impact cancer cell proliferation, invasion, immune 

evasion and drug response, and which cannot be easily recreated in standard tissue culture 

assays. 
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Figure 1-3: The dynamic, functionality of CAFs impacts ECM remodelling and cancer cell 
invasion. CAFs (Cancer Associated Fibroblasts) are a highly heterogenous population of cells, with 
distinct key features that impact cancer progression. CAFs are responsible for dynamically 
modulating the extracellular matrix (ECM), though contraction and alignment (orange), ECM 
deposition (yellow), matrix stiffening (red), and enzymatic degradation (purple). CAFs also play a 
key role in modulating tumour invasion by clearing tunnels in the ECM (blue), or physically pulling 
cancer cells through cadherins junctions (green).  
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1.5. CURRENT MODELS CAPTURING CAF FUNCTIONALITY 

The biology of CAFs has been studied using a variety of strategies ranging from conventional 2D 

culture or histology sections, to mouse models and ex-vivo tissues slices [32]. Current consensus 

is that 3D models are essential for studying CAFs, as they support the formation of oxygen, 

nutrient, and growth factor gradients similar to those that occur in vivo [120, 121]. They also 

enable the formation of 3D spatial cellular organization, so that cells simulate bidirectional cell-

cell and cell-ECM interactions critical for evaluating stroma-mediated effects on cancer 

development and progression [122]. Moreover, 2D tissue culture plastic presents mechanical and 

topographical cues that alter fibroblast behaviour [123], and renders CAFs less secretory than in 

3D [124].  Given this established knowledge, I have limited this section to 3D models that 

incorporate CAF activity for drug discovery.  

 

1.5.1 Mouse Models 

Mouse models have been used extensively to build an understanding of CAF function in vivo. 

These models demonstrate that non-specific deletion of CAFs or fibrosis causes rapid tumour 

progression rather than suppression [24, 125-127]. These findings outlined the foundation of 

future studies, promoting researchers to focus on altering CAF behaviour rather than ablating 

CAFs altogether. Although useful, mouse models are far from a perfect system.  In co-injection 

models, where human cancer samples are introduced into the mouse, host-derived fibroblasts 

will outgrow the co-injected CAFs, leading a study to focus on the interaction of mouse fibroblasts 

with foreign tissue [32]. With transgenic mouse models, activation of fibroblasts relies on a Cre-
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driver, yet no CAF-specific Cre driver exists, so intended CAF inhibition or ablation leads to off-

target cellular effects. Moreover, they are extremely low-throughput and not a direct parallel to 

human disease progression. 

 

1.5.2. Organotypic Culture Systems  

Controlled in vitro studies of CAF biology are most commonly performed today using low 

throughput, 3D, collagen or Matrigel ECM scaffolds with tumour organotropic cultures. Mixing 

epithelial tumour organoids and fibroblast cells in 3D matrices supports CAF-induced 

improvements in organoid passaging capabilities and enhanced cellular growth through direct 

cell-cell contact [49, 50, 128-130], highlighting the symbiotic interactions between tumour cells 

and CAFs. Using an organotypic culture system where cells are seeded on top of a 3D matrix, 

CAFs have also been shown to enhance ECM remodelling in a manner that supports tumour cell 

invasion [98, 99]. Moreover, conditioned media from CAF cultures can enhance tumour growth, 

invasion, and resistance [38, 65, 131], without dynamic cell-cell interactions. The use of CAFs 

instead of normal fibroblasts in these systems is essential; In both premalignant and malignant 

mammary epithelial cells, CAFs promote epithelial to mesenchymal transition, while normal 

breast fibroblasts favour the maintenance of epithelial morphology and constrain metastasis 

[132], therefore altering therapeutic response.   

 

While these organotypic approaches have defined key roles for CAFs in tumour biology, they are 

limited in throughput. To increase experimental throughput with minimal biological source 

material, microfluidic systems have been developed for CAF and cancer co-culture studies. These 
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devices have been used to demonstrate increased cancer cell growth and invasion into 

physiologically-relevant matrices [133, 134], as well as response to chemotherapy [135].  

 

1.5.3. 3D Bioprinting 

3D bioprinting is also gaining traction in studying CAF biology, as it allows the formation of 

precisely arranged cells within tissue-like structures, while simultaneously controlling the 

mechanical properties of the bio-printed ECM [136]. These specific capabilities allow the 

formation of realistic culture environments important for physiologically relevant CAF function. 

Printing lung cancer epithelial cells and CAFs in a physiologically relevant matrix stiffness [137], 

demonstrate that robust and manipulable in vitro models of human tumours can be bioprinted.  

Furthermore, Langer et al. successfully printed cancer cells, fibroblasts and epithelial cells, 

demonstrating that distinct microenvironments that differentially effect proliferation, ECM 

deposition and migration, can be recapitulated [138]. This demonstrates that these models can 

be used to interrogate complex tumour-stromal interactions in physiologically relevant and 

manipulable environment.  However, the application of these as high-throughput screening 

methods, is limited by the availability of primary cells and cell detection methods (i.e. imaging 

techniques to decipher cell types).  

 

These studies collectively demonstrate that the relationship between CAFs and cancer cells is 

both symbiotic and dynamic. While these studies have led to significant gains in the 

understanding of tumour biology, future cancer discovery models need to better encompass the 
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functionality of CAFs and their influence on tumour drug response. In this next section I aim to 

elucidate the key considerations for future studies.  
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1.6. MOVING FORWARD: EMERGING TECHNOLOGIES  

Several emerging technologies from various fields might allow us to bridge the gaps between 

cancer drug discovery and patient benefit by incorporating CAFs. While there have been major 

advances in recent work aimed at targeting CAFs and the TME, implementing these approaches 

into next-generation high-throughput screening will improve overall drug efficacy. I highlight 

emerging strategies to improve the drug development process by incorporating CAFs via high-

throughput organoid co-cultures (1.6.1), conducting assays in matrices that consider realistic 

mechano- and biological elements (1.6.2), and integrating techniques designed to measure 

functional CAF behaviours in living cultures (1.6.3) (Figure 1-4).  
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Figure 1-4: Overview of emerging technologies that could be implemented in cancer drug 
discovery to improve translational impact.  
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1.6.1. Organoid co-cultures  
 
Patient cancer cell derived organoids have gained increased traction in drug discovery. While 

they have a 3D, functional ECM for the cancer cells to interact with, conventional cancer drug 

studies with organoids lack stromal CAFs. Since CAFs play a key role in reshaping the TME, I argue 

that the addition of CAFs to such organotypic cultures is essential. In fibrosis, by incorporating 

multiple cell types, a clear resemblance between the in vitro cultures and human disease 

pathophysiology is possible [139, 140]. Similarly, in in vitro models of liver fibrosis, 3D 

multicellular tissues enable preclinical screening of antifibrotic drugs [141, 142], further 

highlighting the importance of the microenvironment in drug screening. Multiple commercially 

available systems now exist for high-throughput multi-cellular, physiologically relevant in vitro 

assays. Some examples of these include; i) organ-on-a-chip systems for mechanically realistic 

lung-blood barriers [143], ii) 3D co-culture chips that support barrier integrity-,  transport-, and 

migration assays [144], iii) tissue culture force sensors to measure human heart health [145] and 

iv) bioreactors to model human pulmonary fibrosis [146]. The use of these assays would allow 

for the interrogation of complex biological questions involving cell-cell, and cell-ECM interactions 

that would encompass the dynamic invasive and mechanical changes induced by CAFs.  

 

1.6.2. Advanced Biomaterials  

Physical characteristics of the tissue ECM vary substantially in vivo, with changes in fiber length, 

thickness, density and organization. Given that these changes are induced largely by CAF 

remodelling, building models that recapitulate the mechanobiological elements of the 

surrounding TME will reduce the need for CAFs within the system. For example, the use of pre-
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aligned matrices [147] or fibroblast preconditioned matrices could be used for invasion assays 

incorporating the dense and aligned matrix highways seen in aggressive tumours [26]. Advanced 

biomaterial formulations that consider these factors may therefore capture the mechanical 

effect of CAFs, without the need to obtain and include live CAFs themselves.  While this approach 

would not capture the dynamic interactions between CAFs and cancer cells, the ability to recreate 

this important phenotype may improve translational screening efficiency and translational 

realism while maintaining the assay robustness required for drug screening technologies. 

 

Advanced biomaterials can be tailored de novo to present specific characteristics [148], or can be 

used in blended formulations to modify the properties of existing materials.  For example, 

Matrigel is well-established in many organoid culture protocols, but is challenging to 

mechanically tune for specific applications. Interpenetrating polymer networks such as 

gelatin[149-151], hyaluronic acid[152-154], or alginates [117] may be used as a supporting 

network to modulate substrate stiffness to physiologically relevant levels, while avoiding any 

modifications to critically important ligand composition or density.    

 

In addition to linear elastic modulations, physiological ECM also exhibits more complex material 

behaviours such as stress relaxation, or viscoelasticity, parameters proving to be critically 

important in designing matrices for drug discovery [104]. For example, it has been shown that 

use of soft substrates with stress relaxation in 3D, promotes cell spreading, fibre remodelling and 

focal adhesion formation [155-157], emphasising the importance of incorporating physical cues 

from the ECM in regulating cellular phenotype and therefore drug response. Additionally, human 
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breast tumour samples exhibit ECM plasticity [158], a permanent deformation of the ECM. Given 

that, fibroblasts can produce stresses large enough to permanently deform the biomaterials [159, 

160], incorporating these forces is critical to recapitulating the effect of CAF functionality, even 

in their absence.  

 

The contribution of the ECM is more than just mechanical, and due to the diverse range of 

proteins, proteoglycans, growth factors and other enzymes, it presents a wide range of biological 

cues to the cells. The use of decellularized ECM (dECM) is well studied in idiopathic pulmonary 

fibrosis, where it activates myofibroblasts [161] and alters fibroblast gene expression [162]. By 

implementing this in gut models for intestinal fibrosis it increases the fidelity of disease modelling 

[163] and the throughput of drug screening [164]. However, the systematic use of dECM is not 

ideally suited for highly systematic drug screening processes in the context of cancer; biological 

material available for such assays is limited to the size of the excised tumour and tends to largely 

vary in composition from patient to patient. While it has proven reliable in other systems, the 

use of dECM may therefore only be relevant in the context of personalized cancer therapeutic 

screenings.  

 

1.6.3. Advanced Readouts  

If CAFs primarily modulate tumor response via mechanical activity, studies to assess the extent 

to which CAFs remodel the ECM, exert mechanical forces, and mechanically tune their 

surroundings will grow in importance. Emerging microscale-engineered technologies that allow 

quantitative measurements of mechanical changes in tissues, may prove an effective tool in 
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understanding the changes made to the environment by CAFs, to better understand and 

ultimately simulate their activity.  Several recently developed technologies can provide insight 

into fibroblast behaviour at this extremely local length-scale.  Asmani et al. developed a 3D 

fibrotic microtissue array, in which 3D-cultured fibroblasts remodel the surrounding matrix to 

deform micro-engineered pillars that anchor the matrix to the substrate. Analyzing the 

deformation of these pillars provides readouts of forces generated by the CAFs, and therefore 

enable quantification of fibrosis and drug efficacy testing [87]. This fundamental premise has 

recently been expanded towards developing dispersible microfabricated sensors that can be 

applied in a variety of culture contexts to quantify cell-generated mechanical forces [165, 166], 

mechanical compressive forces [167], residual tissue elasticity [168] and other mechanical 

properties of tissues [169, 170]. Reducing the size and accessibility of these sensors may hence 

prove quite valuable in understanding the CAF contributions to the surrounding matrix at the 

cellular level, to better understand tissue dynamics in response to therapy.  
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1.7. CONCLUSIONS AND OBJECTIVES 

It is evident that tumours can no longer be viewed as static clumps of cancerous cells; the 

complex and dynamic interactions with the surrounding tumour microenvironment play a key 

role in altering cancer cell response to therapy and therefore patient outcome. Accumulating 

work suggests improved strategies could be possible by targeting CAFs, however the disconnect 

between drug discovery and clinical benefit remains. Therefore, I believe carefully assessing the 

impact of cancer cell or TME targeted therapies on the mechanical and functional forces within 

the TME, prior to clinical translation, is critical for narrowing the translational gap. While I 

propose the use of organotypic co-cultures, advanced biomaterials, and various force sensors as 

technological advances that will be instrumental in improving the drug discovery pipeline, here I 

have focused on using advanced biomaterials to study patient derived cancer associated 

fibroblasts in a physiologically relevant 3D system. 

 

1.7.1 Rationale and objective of thesis  

Recent advances in detection and treatment have improved breast cancer survival rates; 

however, TNBC remains difficult to treat and therefore associated with poor outcome. Although 

the interactions of the TME and more specifically CAFs are now considered key targets for new 

interventions in cancer treatment and prevention, there is a clinical disconnect. Though many 

studies have suggested a putative link between CAF-driven disease progression and 

microenvironmental mechanics [26, 110, 111, 171-173], the precise role of CAF matrix 

remodelling in promoting CAF invasion and downstream metastatic dissemination remains 

poorly understood. Therefore, the overall objective of this thesis is to investigate the functional 
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role of patient derived CAF populations and response to microenvironmental mechanics in 

promoting 3D cell invasion in a patient specific manner.  The specific aims include:  

 

1. Characterize the role of internal tissue stiffness in promoting 3D cell invasion of patient-

derived heterogenous CAF populations.   

a. In Chapter 2.1 of this work, I develop novel micro-engineered approaches capable 

of working with limited primary CAF populations, to characterize the invasive 

potential of CAFs derived from human TNBC patients. I systematically develop a 

multi-material, multi-stage sequence of in vitro culture models to separately 

mimic and manipulate biophysical features of matrix remodeling, stiffening and 

invasion during CAF-mediated disease progression in a fibrotic foci-like culture 

model. Strikingly, I find that in contrast with analysis of histological markers, 

functional CAF invasive patterns and sensitivity to extracellular mechanics 

correlates with patient metastatic state, where CAFs derived from patients with 

axillary lymph node metastatic disease display no mechanosensitivity to their 

surroundings.  

 

2. Identify the mechanogenetic link between fibrotic foci stiffness and CAF invasion. 

a. In Chapter 2.2, pseudo-fibrotic foci cores were expanded to a large-scale assay for 

RNA sequencing analysis. Using this, I identify unique transcriptional signatures to 

support findings in chapter 2.1:  CAFs from patients with and without lymph node 

metastatic disease at time of surgery have distinct transcriptional responses to 
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changes in fibrotic foci stiffness. Here, I determine AHR gene expression and AhR 

protein levels are significantly increased in CAFs from metastatic patients.    

 

3. Identify the functional role of AhR in facilitating CAF invasion.  

a. In chapter 2.3, I demonstrate through inhibition and activation of AhR, that AhR 

facilitates CAF invasion. The findings demonstrate that CAFs retain characteristics 

representative of the associated human tumour in culture. Using external patient 

datasets, I validate that high AHR expression is associated with poor overall 

survival, metastatic dissemination, and CAF motility.   

 

Together these findings demonstrate that functional patient-specific CAF phenotypes are 

retained in culture and suggest that CAF activity can be used to predict patient response to 

microenvironment targeted therapies. These studies hence support AhR as a novel 

mechanobiological marker with which to stratify patients, and a target to develop precision 

treatment strategies. 
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CHAPTER 2 : RESULTS 

2.1. CHARACTERIZE THE ROLE OF INTERNAL TISSUE STIFFNESS IN PROMOTING 3D 

CELL INVASION OF PATIENT-DERIVED HETEROGENOUS CAF POPULATIONS.  

2.1.0 Introduction  

Here, I hypothesize that mechanical stimuli arising from CAF extracellular matrix remodeling, 

plays an important role in stimulating CAF invasion, a phenotype enhancing cancer cell invasion 

and metastatic progression. By using TNBC patient derived CAFs, I test their contractile and 

invasive abilities using a simple 3D tissue-engineered model to recreate the collagen- and CAF- 

dense fibrotic foci seen in vivo. I find that CAFs exhibit disease-specific contractility and invasive 

capabilities, suggesting that local metastasis may be influenced by both CAF type and local 

microenvironment. To test the role of contraction induced stiffening in promoting invasion, I 

engineered fibrotic foci cores with stiffnesses of cancer-free breast tissue and early-stage breast 

tumours. This approach effectively separates fibrotic foci formation from invasion and allows 

independent control over matrix mechanical cues presented to CAFs. Using this, I demonstrate 

that CAFs retain mechanosensitivity only at non-invasive stages of disease and become 

desensitized to mechanical cues as TNBC progresses. This work highlights the role of CAF-induced 

mechanical cues within the tumour microenvironment and suggests mechanisms responsible for 

the clinical failure of drugs aimed at targeting CAF activation.   
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2.1.1 Histological CAF abundance does not correlate with disease state.  

CAFs were isolated from four primary grade III, chemotherapy-naïve triple negative breast cancer 

tumours obtained from surgical resection with informed patient consent. Primary tumours were 

resected from two patients with axillary lymph node metastasis at time of surgery (labelled CAF-

pm1, CAF-pm2) and two with no evidence of nodal dissemination at surgery, and no subsequent 

recurrence or metastasis within 4 years (labelled CAF-pn1 and CAF-pn2) (Figure 2-1A; detailed 

clinical information Table 2-1). To characterize the tumour-CAF composition of each tumour, 

sections of formalin-fixed, paraffin-embedded (FFPE) tissue samples were assessed by H&E to 

confirm the presence of fibrotic regions within each tumour (Figure 2-1B, Si Appendix Figure 1). 

FFPE sections were immunostained for epithelial cells (via pan-cytokeratin) and activated 

fibroblasts via smooth muscle actin (αSMA), a common marker of myofibroblasts and 

desmoplasia (Figure 2-1C) [99]. 

 

Although each tumor displayed regions of fibrosis (Figure 2-1B) and expression of both markers 

(Fig. Figure 2-1C), no consistent significant differences in percentage of stromal area or 

percentage of active fibroblasts, as defined by  panCK and αSMA respectively, were found across 

whole-tumour sections from all patients (Figure 2-1D). Although activation of CAFs and ensuing 

desmoplastic responses are associated with clinical outcome, the tumours in our study cannot 

be differentiated based on relative amount of stroma or presence of activated fibroblasts.  

However, whether functional heterogeneity of the CAFs might account for variation in disease 

progression cannot be addressed by static histological differences at defined time points.  
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Figure 2-1: Quantifying epithelial content and fibroblast activation does not distinguish 
patients based on disease progression. A) Schematic depicting patient status at time of surgery. 
All CAFs were derived from the primary tumour. B) H&E staining of human patient tumour FFPE 
sections (Scale bar, 50 μm). C) Multiplexed immuno-fluorescence imaging of human patient 
tumour FFPE sections, with anti-panCK and anti-αSMA. (Scale bar, 100 μm). D) Quantification of 
percentage of stromal area by Tissue Classified Add-on algorithm (Halo) and percentage of αSMA 
positive stromal cells across whole tumour section (n=1). 
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Si Appendix Figure 1: Immunohistological staining (H&E) of human patient whole tumour 
sections. 
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Table 2-1: Patient clinical information 

Patient ID GCRC-1834 GCRC-1840 GCRC-1882 GCRC-2061 

Patient Notation CAF-pm1 CAF-pm2 CAF-pn1 CAF-pn2 

Age 72 71 80 38 
Tumour size at 
definitive 
diagnosis 
(surgery) (mm) 

20 30, 22 40 40 

Histological 
Subtype IDC-NOS IDC-NOS IDC-NOS IDC-NOS 

Nodal Status Positive Positive Negative Negative 

Staging T1N1 T2N1 T2N0 T2N0 
Breast cancer 
subtype Basal Basal Basal Basal 

Subtype by 
PAM50 Basal Basal Basal Basal 

ER <1% of cells Neg Weak (15% cells) Low pos (2%) 

PR <1% of cells <1% of cells Neg Neg 

Her2_FISH Neg Neg Neg Neg 
Grade III III III III 
Menopausal 
status post post post unknown 

Neoadjuvant 
therapy none none yes* (femara) yes*(tamoxifen) 

Adjuvant 
radiotherapy none yes no no 

Notes   
* patient refused 

chemo but wanted 
anti-hormone drugs 

* for prior IDC on 
opposite breast 
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2.1.2. CAFs isolated from primary TNBC with metastatic dissemination are significantly 

more contractile and invasive.  

To assess the functional activity of the CAFs from breast tumours, CAFs were isolated and 

minimally expanded from the primary tumours of patients with lymph node metastasis (CAF-

pm1, CAF-pm2) and without lymph node metastasis (CAF-pn1, CAF-pn2).  To determine whether 

functional contractile and invasive characteristics of the isolated CAFs correlate with disease 

state, we developed a simple 3D culture model to recreate collagen- and CAF-dense foci within 

a 3D tissue, an architectural phenotype often observed with adverse prognosis [174-177]. CAF 

invasion is necessary to facilitate tumour cell invasion [98-100], and therefore a read-out for 

downstream metastasis. Fibroblast-laden collagen gels were bioprinted using a previously-

developed aqueous two-phase printing technology [120, 178], and allowed to contract over two 

days to form a densified tissue droplet, reminiscent of high-density fibrotic foci that occur in the 

breast cancer tumour microenvironment [177]. Since activated mouse fibroblasts derived from 

malignant tissues have previously been shown to have increased contractile capacity over 

fibroblasts derived from normal or premalignant tissues [99, 179], we first asked whether human 

CAFs isolated from the primary tumour site can differentially remodel collagen in a disease-

specific manner.  To assess this, we quantified contraction of the engineered fibrotic foci over 48 

hours of culture. While all CAF populations were able to contract the collagen, CAFs from patients 

with lymph node metastasis were significantly more contractile than CAFs from non-metastatic 

conditions (Figure 2-2C).   
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After contraction, these foci were then embedded into an acellular, background collagen matrix 

(Figure 2-2A) and imaged via confocal fluorescence microscopy of fixed samples to quantify and 

characterize CAF invasion into the surrounding collagen matrix. CAFs from patients presenting 

with lymph node metastasis invaded as strands of cells, while the few invading CAFs from non-

metastatic disease migrated individually (Figure 2-2B).  CAFs that invaded into the low-density 

collagen surroundings were spindle-like in morphology (Figure 2-2 B), consistent with in vivo 

observations [25]. Based on the number of invasive cells (Figure 2-2D, Si Appendix Figure 2) and 

the distance to which they invade (Figure 2-2E), CAFs isolated from primary tumours with axillary 

lymph node metastasis are significantly more invasive than those from primary tumours that did 

not metastasize. Together this correlates with contractile behaviour, such that highly invasive 

CAFs are more contractile. These differences suggest that downstream metastasis-promoting 

invasive behaviour may be influenced by both cell type and local microenvironmental conditions. 

 

These pro-metastatic invasive behaviours are reproducible across biological and technical 

replicates, and are consistent with both the known heterogeneity of CAF populations [78], and 

the emergence of distinct CAF subtypes at various stages of disease [25]. Taken together, this 

data provides evidence that invasive CAF populations are distinct and correlate with patient 

disease status, and that a greater proportion of CAFs in the primary tumour with lymph node 

metastasizing disease are functionally invasive. Whether the observed changes in invasive 

behaviour are intrinsic to the contractile phenotype of the CAF population remains unclear.  
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Figure 2-2: CAFS isolated from primary TNBC that display metastatic progression exhibit 
greater contraction and invasive potential into the surrounding collagen matrix from 
engineered fibrotic foci. A) Schematic depicting contraction and subsequent invasion assay; cell-
dense collagen droplets are printed, contract and are embedded into Type I collagen gels and 
assayed for invasion after 24 hours. B) Imaging of filamentous actin (green) and nuclei (blue) in 
3D culture section demonstrates CAF invasion is specific to disease state, with increased collective 
invasion in CAFs associated with metastatic disease (Scale bars, 200μm). C) Collagen droplet 
contraction after 48 hours, normalized to the original size of the droplet. D) Number of CAFs 
invading from the contracted collagen gel into the surrounding matrix, (n=3 biological replicates; 
*p<0.05 by one-way ANOVA with Newman-Keuls post-hoc test for pairwise comparisons), and E) 
distance travelled by invading CAFs from the centre of the contracted droplet (n=3 biological 
replicates; *p<0.05 by two-tailed unpaired nonparametric Mann-Whitney Test), after 48 hours in 
collagen. Box plots indicate median and first to third quartile, and whiskers span the range. Blue 
lines indicate average contracted droplet radius. 
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Si Appendix Figure 2: Quantification of the number of CAFs invading from contracted collagen gel 
into surrounding matrix, after 48 hours in bulk collagen by biological replicate. Each dot 
represents one technical replicate. 
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2.1.3 Engineered pseudo-fibrotic foci with tunable stiffness.  

To better understand the specific microenvironmental factors that may drive invasive behaviour, 

we considered several deconstructed cues arising within the contracted fibrotic foci.  The 

collagen contraction process results in simultaneous microenvironmental changes in matrix 

stiffness [180], porosity [181], cell-cell contact [182, 183], soluble factor secretion [184-186], and 

cell alignment [111, 171, 187]; each of which may have competing effects on driving invasion 

[188-190]. Mechanical matrix stiffness cues in particular have been well-established to drive 

biological processes in disease [191] and breast cancer progression specifically [26], and I 

therefore hypothesized that highly contractile CAFs generate stiffer fibrotic foci, which can then 

prompt enhanced invasion. To assess the specific contribution of mechanical rigidity within 

fibrotic foci, I designed a stiffness-tunable “core” for the engineered foci.  We first estimated that 

collagen gels stiffen from ~100 Pa initial modulus [192] by approximately two orders of 

magnitude based on the densification of the material during contraction [193].  These rough 

calculations were consistent with a range of stiffnesses found in cancer-free adipose tissue (~3 

kPa Young’s modulus; Enormal conditions) through early-stage invasion in breast tumors (>10 kPa 

Young’s modulus; Edisease conditions) [194].  To recreate these stiffnesses, we generated stiffness-

tunable polyacrylamide hydrogel droplets at similar sizes to our fibrotic foci (Figure 2-3D), using 

an oil/water two-phase system (Figure 2-3A), and functionalized the surface with Type I collagen 

(Figure 2-3B) to support cell culture.  We verified the stiffness of the polymerized droplet using a 

cantilever-based mechanical characterization system (MicroSquisher; CellScale Biomaterials 

Testing Inc.; Figure 2-3C). Adhesion of CAFs to the bead surface was assessed via 
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immunofluorescence of actin (phalloidin) and nucleus (DAPI), and no significant differences were 

observed in cell area (Figure 2-3E, F) and viability (Figure 2-3G) between Enormal and Edisease foci.  
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Figure 2-3: Development of a culture model of fibrotic foci cores with tunable internal 
mechanical stiffness. A) Schematic depicting polyacrylamide bead formation. Aqueous 
polyacrylamide components were dispersed in immiscible kerosene phase and allowed to 
polymerize, coated with collagen and dispensed as an individual bead per well for cell culture. B) 
Fluorescently labelled (green) polyacrylamide beads were generated and stained for collagen I 
(red), confirming uniform extracellular matrix coating to support cell attachment and growth. 
(Scale bar, 500 μm). C) MicroSquisher measurements on engineered cores confirm that stiffnesses 
represent normal and diseased tissues (3 +/- 0.5 kPa, and 13 +/- 3.1 kPa respectively; n=5). D) 
Quantification of bead size after swelling confirmed no significant difference in size between 
Enormal and Edisease (n=3-4). E) Representative staining of filamentous actin in CAFs (scale bar, 
200μm), F) analysis of filamentous actin on cells coating the bead revealed cells spread 
equivalently on both normal and diseased cores (n=3), and G) cell viability is comparable between 
both stiffness conditions tested (n=4). Data presented as mean +/- SD. 
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2.1.4 Internal stiffness of fibrotic foci regulates CAF invasive potential in CAFs derived 

from tumours without lymph node metastasis. 

CAFs were seeded on Enormal and Edisease cores, and embedded in collagen to assess invasion into 

the surrounding matrix (Figure 2-4A). On Enormal and Edisease  foci, CAFs associated with lymph node 

metastatic disease were significantly more invasive compared to CAFs from non-metastatic 

disease (Figure 2-4C, Si Appendix Figure 3). Interestingly, comparing invasive abilities of each CAF 

population between normal and disease-stiffened foci demonstrates that CAFs isolated from 

non-metastatic tumors significantly increased invasive abilities when primed by Edisease stiffness 

cues, but those isolated from tumours that have undergone lymph node metastasis showed no 

additional stiffness-induced activation (Figure 2-4D, Si Appendix Figure 4).  Distance travelled by 

invading CAF populations was not significantly different across patients or stiffnesses (Si 

Appendix Figure 4). The stiffness-induced fold change in the fraction of invading cells confirmed 

that CAFs isolated from non-metastatic tumours were significantly more responsive to increased 

stiffness cues in the fibrotic foci core than those CAFs from tumours with lymph node metastasis 

(Figure 2-4D). Taken together, this data suggests that CAFs isolated from tumours that have 

already undergone lymph node spread are no longer mechanoresponsive or reliant on 

mechanical stiffness cues for invasion, while CAFs derived from tumours with no metastatic 

spread remain mechanoresponsive to microenvironmental stiffness cues within the fibrotic foci.  
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Figure 2-4: CAFs grown on Enormal and Edisease foci cores embedded in bulk collagen demonstrate 
loss of mechanoresponsiveness with disease progression. A) Schematic demonstrating 
measurements of CAF invasion from engineered fibrotic foci cores with tunable stiffness. B) 
Representative images of CAFs (DAPI) invading from Enormal and Edisease foci into bulk collagen 
matrix. (Scale bar, 500μm). C) Number of CAFs that invade from Enormal and Edisease foci into the 
surrounding matrix 48 hours after encapsulation. D) Fold-change in invasion on Edisease stiffness 
polyacrylamide cores relative to Enormal stiffness polyacrylamide cores. Each datapoint represents 
the number of invading CAFs per technical replicate. Grey bars represent the fold change of 
invasion on diseased to normal polyacrylamide cores. (Data presented as mean +/- SD; biological 
replicates n=3; * p<0.05 by two-tailed unpaired nonparametric Mann-Whitney Test). 
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Si Appendix Figure 3: Quantification of the number of CAFs by biological replicate invading from 
normal and disease PAA bead into surrounding matrix, after 48 hours in bulk col I.  
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Si Appendix Figure 4: A) Box-and-whisker plots of distance travelled by invading CAFs from the 
centre of the bead droplet, after 48 hours in bulk col I. Box plots indicate median and first to third 
quartile, and whiskers span the range. CAF invasion on B) normal and C) disease stiffened foci.  
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2.2. IDENTIFY MECHANOGENETIC LINK BETWEEN SUBSTRATE STIFFNESS AND CAF 

INVASION  

2.2.0 Introduction 

The mechanically tunable 3D invasion assay developed in Chapter 2.1 allows precise control over 

microenvironmental stimuli and captures the idea of bidirectional stiffness that is present in 

breast cancer. In this chapter, by scaling up the device size to complete bulk RNA sequencing 

(RNA-seq), I have identified genes and pathways differentially expressed when CAFs are cultured 

on Enormal and Edisease foci cores, as well as between CAF-pn and CAF-pm. We find functional CAF 

invasive patterns and sensitivity to microenvironmental mechanics correlates with patient 

metastatic state. Here, we find a correlative link between invasion and the expression of the 

transcription factor, aryl hydrocarbon receptor (AhR). Previous studies with the transcription 

factor AhR show a proliferation and migration role in a cell-type dependent manner: Increased 

AhR levels inhibit proliferation of breast [195], prostate [196], and liver [197] cancer cells and its 

deficiency promotes epithelial cell migration [198] and metastasis [199]. Interestingly however, 

in the context of fibroblasts, AhR has been shown to have a regulatory role, where low expression 

increases cell adhesion and high expression increases fibroblast migration [200, 201]. Here, we 

find CAFs from patients with non-metastatic disease (CAF-pn) are mechanosensitive, with AhR 

protein levels that correlate with microenvironmental stiffness, and CAFs from patients with 

lymph node metastasis (CAF-pm) have high AhR levels independent of stiffness. 
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2.2.1 CAF-pm and CAF-pn show distinct transcriptional profiles  

To determine whether a transcriptional link between mechanosensitivity in early-stage disease 

(no metastasis) and lack of mechanosensitivity in later-stage (lymph node metastasis) disease, 

we performed RNA-seq analysis of all 4 CAFs grown on Enormal and Edisease. To obtain sufficient cells 

for RNA-seq, we scaled up the fibrotic foci cores into flattened devices (Figure 2-5A), coating 

them with cells and embedding in bulk collagen. After quality control and removal of samples 

with significantly lower human read alignment a total of 19 samples (CAF-pm Enormal = 4, CAF-pm 

Edisease = 5 , CAF-pn Enormal = 4 , CAF-pn Edisease = 6) were retained for down- stream analyses (Si 

Appendix Figure 5). Batch effects among the samples were observed and corrected for. 
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Si Appendix Figure 5: A) Library complexity and B) human read alignment are not significantly 
different between groups used for RNA-seq analysis.  

 

 

 

 

 

 

 

 

 

 

 



 47 

By comparing the transcriptomes of both CAF subsets on Enormal and Edisease, we first identified the 

differentially expressed genes (DEG) in response to changes in stiffness, in CAFs from patients 

with lymph node metastasis (CAF-pm) and CAFs from patients with non-metastatic disease (CAF-

pn).  CAFs from patients with non-metastatic disease had more differentially expressed genes in 

response to changes in substrate stiffness (1186 for CAF-pm, vs. 3210 for CAF-pn; <0.5 log2fold, 

q- value <0.05; Figure 2-5A).  This 3-fold reduction in differentially expressed genes in CAFs from 

patients with lymph node metastasis (CAF-pm) further supports the notion that CAF invasion 

from later stages of disease are less sensitive to environmental mechanics.  

 

To identify pathways upregulated in each condition, we performed Gene Set Enrichment Analysis 

(GSEA) of each CAF subset on either substrates of Enormal or Edisease stiffness (Figure 2-5C). CAFs 

associated with metastatic disease showed an upregulation in invasion-associated pathways 

including epithelial-mesenchymal-transition and classical Wnt-beta catenin signaling, genes 

associated with wound healing and fibrosis[202-206].  In CAFs associated with non-metastatic 

disease, growth on Edisease-like substrates of stiffness was enriched for oxidative phosphorylation 

and mTORC1 signaling suggesting that local microenvironment can drive changes in metabolic 

state[207] and the upregulation of translation[208], rather than invasion. Given that CAFs 

associated with non-metastatic disease were invasive on Edisease, but still not as invasive as CAFs 

from patients with lymph-node metastasis, it is reasonable that signatures of invasion are not 

highly enriched for CAF-pn on Edisease. Interestingly Edisease increased TNF-α signaling via NFkB in 

both CAF subgroups, a signature previously shown to play a key role in driving cancer cell invasion 
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and in inflammatory CAF formation [40, 53, 60, 209, 210], suggesting microenvironmental 

stiffness may play a role in influencing TNF-α signaling. 

 

When we compared pro-invasive CAF cultures (CAF-pm Enormal, CAF-pm Edisease, CAF-pn Edisease) 

against non-invasive cultures (CAF-pn Enormal), fewer genes were uniquely significantly different 

between these groups (Si Appendix Figure 6). This further supports our previous findings that 

these cells are functionally distinct in their responses to mechanical cues, and that some 

consistent differences can be identified even in highly variable patient-specific samples. 
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Figure 2-5: CAF-pm and CAF-pn have distinct transcriptional responses to substrate stiffness. A) 
Schematic displaying differentially expressed genes across the various conditions tested (Q<0.10). 
B)  RNA sequencing analysis of CAFs on Enormal and Edisease. The heat map shows differentially 
expressed genes between the Enormal and Edisease for CAF-pm and CAF-pn(Q < 0.1, log2FCI>0.5). C) 
GSEA of up-regulated pathways in CAF-pm (top) and CAF-pn (bottom) on Edisease compared with 
self on Enormal. D) Working model demonstrating the response to substrate cues to support CAF 
invasion. 
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Si Appendix Figure 6: RNA sequencing analysis comparing differentially expressed genes of 
invasive CAFs (CAF-pm normal, CAF-pm disease, CAF-pn disease) compared with non-invasive 
CAFs (CAF-pn normal)(Q < 0.1, log2FCI>0.5). Heatmap supports distinct transcriptional profile 
between CAF-pm and CAF-pn.  
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2.2.2 AhR protein expression is significantly elevated in non-mechanosensitive CAF-pm  

Given the correlation between disease state and stiffness-independent invasion, we speculated 

that comparing differentially expressed genes in CAF-pm and CAF-pn independent of substrate 

stiffness, would allow for identification of differential gene expression inherent to each CAF 

grouping. (Figure 2-6A). In particular, genes associated with the Aryl Hydrocarbon Receptor (AhR) 

Pathway (AHR, CYP1B1, CYP2S1, IL1R1, SDC4, REL and IDO1) were uniquely elevated in CAF-pm 

(Figure 2-6B). Interestingly, the activation of AhR is being explored for treating fibrotic eye 

disease, as its expression leads to an increase in MMP protein levels, a phenotype associated 

with cell invasion, and a decrease in TGF-β signaling, a hallmark of fibrosis [211]. Supporting this, 

in CAF-pn (low AhR expression) we noted an increase in pro-fibrotic genes (ACTA2, JUNB, 

COL1A2, TGFBR1, LAMB2, TGFB1, LOX, LOXL3). Moreover, the expression of downstream 

cytochrome p450 enzyme (CYP1B1) is associated with activated human hepatic stellate cells 

[212], suggesting a role in CAF activation. I therefore hypothesized that elevated AhR levels were 

responsible for a pronounced invasive phenotype in CAFs derived from patients presenting with 

metastatic disease (CAF-pm).  

 

To begin validation of the gene expression data, we immortalized the primary CAFs using pLVX-

SV40-LT-IRES-tdTomato to expand their long-term culturing abilities and used immortalized CAFs 

for all subsequent experiments. Using quantitative polymerase chain reaction (qPCR), I validated 

a significant increase in mRNA expression of AHR and CYP1B1 in CAF-pm (Figure 2-6C), and a 

significant increase in AhR protein levels by western blot (Figure 2-6D). To characterize the 

cellular localization of AhR in response to microenvironmental mechanics, CAFs were cultured 
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for 72 hours on Enormal and Edisease, fixed and immunostained for AhR (Figure 2-6E, Si Appendix 

Figure 7). Consistent with western blot data, total AhR protein levels were significantly elevated 

for CAF-pm (Figure 2-6E). Consistent with previous observations [199, 200, 211], the nuclear 

accumulation of AhR was significantly higher in CAF-pm. Taken together, this data confirms that 

AhR protein expression is significantly upregulated in the primary tumour CAFs from patients 

with metastatic disease (CAF-pm).  

 

 



 53 

 

Figure 2-6: AhR protein expression is significantly upregulated in CAFs derived from patients 
with lymph node metastatic disease. A) RNA sequencing analysis of differentially expressed 
genes of CAF-pm compared with CAF-pn on Enormal and Edisease (Q < 0.1, log2FCI>0.5).  B) Heatmap 
showing normalized mRNA expression of genes encoding AhR related proteins and fibrosis 
associated proteins. C) qPCR validation of AHR and CYP1B1 in CAF-pm and CAF-pn (n=3 biological 
replicates; * p < 0.05 by unpaired t-test).  D) Western blot analysis of AhR in CAF-pm and CAF-pn.  
Analysis was normalized against β-Actin (loading control) and represented as a fold change from 
CAF-pn (n=3, p <0.05 by unpaired t-test). E) Representative immunofluorescence staining of AhR 
(green), DAPI (blue) and phalloidin (magenta) (Scale bar, 50 µm).  Quantification of total AhR 
protein levels and localization demonstrates CAFs from patients with metastatic disease have 
increased AhR protein levels and nuclear localization. Box plots indicate median and first to third 
quartile, and whiskers span the range. 
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Si Appendix Figure 7: CellProfiler pipeline for quantifying nuclear and cytoplasmic 
immunofluorescent staining of AhR per cell. A) Overview of pipeline. Algorithm for B) identifying 
nuclei based off DAPI, C) for classifying total cell based off phalloidin, and identifying cytoplasmic 
area by subtracting nuclei from total cell.  
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2.3. IDENTIFY THE FUNCTIONAL ROLE OF AHR IN FACILITATING CAF INVASION.   

2.3.0 Introduction 

Given the established link between mechanosensitivity and elevated AHR/AhR levels, we next 

aimed to assess the function role of AhR in facilitating CAF invasion. Here, using siRNA knockdown 

and chemical inhibition with clofazimine, we demonstrate AhR is needed to facilitate CAF 

invasion. Through AhR over expression experiments, we demonstrate high AhR protein levels are 

sufficient to facilitate CAF-pn invasion. Lastly, we demonstrate that late-stage disease stiffness is 

sufficient to increase CAF-pn invasion, and link this with a concomitant increase in AhR levels. 

Due to the novelty of the culture method for RNA-seq and the limited number of patient samples, 

we then validate AHR in external datasets, establishing a role for AHR expression in disease 

progression and patient outcome.  

 

2.3.1 AhR function is necessary and sufficient for CAF invasion 

To assess the functional activity of AhR in promoting CAF invasion, we used chemical inhibition 

and short interfering RNA (siRNA) knockdown of AhR. Since we aimed to compare knockdown of 

AhR against CAF invasion, both CAF-pms and -pns were seeded onto substrates of stiffness Edisease 

on which both cells exhibited invasion. Once seeded, cells were treated with clofazimine (CLF), a 

potent inhibitor of AhR nuclear translocation [213], or two siRNAs targeting AhR (Si Appendix 

Figure 8 and Si Appendix Figure 9, respectively). Importantly, we aimed to prevent CAF invasion 

without effecting cell viability, as the depletion of CAFs has had deleterious effects in vivo [24, 

125].  We first confirmed that tested concentrations of clofazimine did not significantly affect cell 

viability (Si Appendix Figure 8), and neither clofazimine nor si-AhR significantly impact CAF 



 56 

proliferation (Si Appendix Figure 8 and Si Appendix Figure 9, respectively). Clofazimine and si-

AhR (Figure 2-7B, Figure 2-7C, Si Appendix Figure 10) both significantly decreased CAF invasion, 

consistent with the previously established role for AhR in fibroblast migration [199, 200]. Hence, 

AhR function is necessary for CAF invasion. 

 

2.3.2 AhR overexpression promotes CAF-pn invasion 

We next investigated whether AhR activation or overexpression alone was sufficient to drive 

invasion in CAFs derived from non-metastatic disease. Using L-kynurenine, a metabolite of 

tryptophan known to induce AhR nuclear translocation [214], CAF-pn were seeded onto Enormal 

and treated with L-Kynurenine (same flow as Si Appendix Figure 8).  Interestingly, although CAF-

pn were trending towards an increase in CAF invasion, there was no significant increase in 

invasiveness (Figure 2-7D). We reasoned that the nuclear localization of very low levels of AhR in 

CAF-pn cells was not significant to drive invasion.  

 

To address whether AhR overexpression drives invasion, we transiently overexpressed an AhR 

plasmid under CMV promoter with a GFP tag. After plasmid transfection (Figure 2-7E) and on 

quantification, activation of AhR by overexpression significantly increased CAF-pn invasion 

(Figure 2-7E, F). Together, this data demonstrates that high levels of AhR fosters CAF invasion.  
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Figure 2-7: AhR function is required for stromal fibroblast invasion. A) Representative images of 
CAF invasion after treatment with clofazimine or siRNA knockdown of AhR (Scale bar, 300 µm). 
Arrows indicate invasive cells. B) Clofazimine significantly decreases CAF invasion at 10 µM and 
20 µM of Clofazimine in a dose dependent manner.  C) CAFs transfected with si-AhR are 
significantly less invasive. D) L-Kynurenine does not significantly increase CAF-pm or CAF-pn 
invasion on Enormal. E) Representative image of CAF-pn invasion transfected with control myc-GFP 
or AhR. F) Overexpression of AhR prompts CAF-pn invasion on Enormal. (Biological n=3) *p <0.05 by 
one-way ANOVA, Tukey post-hoc).     
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Si Appendix Figure 8: AhR inhibition does not significantly affect proliferation or viability of CAFs. 
A) Proliferation of CAFs is not significantly different between control and clofazimine treated cells 
(biological replicate n=3, p<0.05 by one way ANOVA). B) Viability is not significantly different 
between vehicle and clofazimine treated cells (biological replicates, n=3, * p < 0.05 by one-way 
ANOVA). C) Representative images of live/dead as determined by Calcien AM/DAPI staining. D) 
Schematic representing the flow of clofazimine invasion assays. E) Representative images of 
invasion assay with and without invasion inhibition as imaged using Calcien AM.  
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Si Appendix Figure 9: Confirming si-RNA knockdown of AhR. A) siRNA knockdown of AhR does not 
significantly change proliferation of CAFs. B) Western blot analysis reveals significant knock-down 
of AhR in CAF-pm2. C) CAF-pm2 were transfected with 3 siRNA (biological replicate, n=3). B) No 
significant different in normalized AhR expression in siRNA 1,2, or 3. D) HeLa cells were 
transfected with fluorescent and non-fluorescent control siRNA in 3D collagen gel. Fluorescently 
labelled cells confirm siRNA transfection in 3D. E) Schematic representing flow of siRNA 
transfection in invasion assay.  
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Si Appendix Figure 10: The effect of AhR A) inhibition by Clofazimine and B) knockdown by siRNA 
is independent of CAF lines.  
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2.3.3 AhR protein levels increase with disease stiffness in CAF-pn  

Thus far our work has shown CAFs derived from the primary tumour of patients with lymph node 

metastasis are more contractile and invasive, regardless of microenvironmental cues (Chapter 

2.1). In our models, the stiffnesses of the fibrotic foci cores are representative of cancer-free 

adipose tissue  through early-stage invasion in breast tumors [194], however it is becoming 

increasingly apparent that late-stage breast cancer reaches much higher stiffnesses [168, 215, 

216]. Given that increasing stiffness significantly increases invasion of CAFs derived from non-

metastatic disease, we asked whether generating fibrotic cores at Elate-stage (>25 kPa) would 

increase CAF-pn invasion, and if this correlated with AhR levels.   

 

Consistent with our earlier findings on non-immortalized CAFs, CAFs associated with metastatic 

disease were only slightly more invasive on Elate-stage. CAFs associated with non-metastatic disease 

showed a significant increase in invasiveness correlating with increasing foci core stiffness (Figure 

2-8E). To validate AhR protein levels, sections were immunofluorescently stained for AhR (Fig. 

6A), and quantified (Figure 2-8B). Interestingly on late-stage disease stiffness, CAF-pm and CAF-

pn had no significant difference in AhR total protein levels.  When comparing Elate-stage to Enormal, 

CAF-pm had no significant change in AhR protein levels, while CAF-pn had a strong and significant 

increase in AhR protein expression, suggesting a role for AhR in mechanono-response and 

memory. This was further validated by western blot (Figure 2-8C, D, Si Appendix Figure 11) and 

unsurprisingly, AhR chemical inhibition with clofazimine is still sufficient to decrease CAF invasion 

on late-stage disease-stiffened cores (Si Appendix Figure 11).  
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Figure 2-8: Elate-stage significantly increases AhR expression and invasion. A) Immunofluorescent 
staining of cellular localization of AhR (green), DAPI (blue) and actin cytoskeleton (magenta) in 
CAFs on Enormal and Elate-stage (Scale bar, 50 µm).  B) Quantification of total AhR protein levels 
demonstrates on Elate-stage stiffness AhR is not significantly different between CAF-pm and CAF-pn. 
CAF-pm has no significant change in AhR protein levels between Enormal and Elate-stage, while CAF-
pn has a significant increase in AhR. C) Western blot and D) quantification of AhR protein level on 
Elate-stage. (* p< 0.05 by unpaired t-test). E) Increased expression of AhR is closely associated with 
increased invasive phenotype (Biological replicate n=3, *p<0.05 by one-way ANOVA).   
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Si Appendix Figure 11: AhR expression is significantly increased for CAF-pn grown on late-stage 
disease stiffness substrate. A) Clofazimine significantly inhibits invasion at late-stage disease 
stiffness. B) Quantification of AhR protein expression by western blot, represented as fold-change 
in expression relative to the normal stiffness (n=3, p <0.05 by one-way ANOVA). C) 
Immunofluorescent staining of AhR (magenta), actin (green) and DAPI of HeLa cells (positive 
control).  
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2.3.4 AHR is associated with poor outcome & disease progression  

Finally, to address the putative link between elevated AHR expression in CAFs and clinical 

prognosis, we used various datasets. We clustered tumour samples from highly fibrotic tumours 

in larger patient datasets.  Given that AhR in epithelial cells is associated with lack of proliferation 

[195-197] and decreased migration [198, 199], we reasoned that using highly fibrotic tumours 

would enable the detection of CAF associated signatures. In cervical and pancreatic tumours, 

high AHR expression is associated with poor overall survival (Figure 2-9A, B). Furthermore using 

gene expression analysis of CAFs from the primary tumour of 26 triple negative breast cancer 

patients [30], demonstrated a significantly elevated expression of AHR in CAF subset associated 

with motility and invasion [31] (Figure 2-9C). Using gene expression analysis of normal fibroblasts, 

CAFs isolated from the primary tumour and CAFs isolated from the metastatic site [217], AHR 

RNA levels progressively increase from normal to primary to metastatic CAFs (Figure 2-9D).  

Taken together, this evidence suggests that high AHR expressing CAFs not only increase with 

disease progression, but also play a key role in leading to downstream metastatic spread.  
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Figure 2-9: High levels of AhR expression in cancer associated fibroblasts are associated with 
disease progression and motility in triple negative breast cancer patients. A, B) Kaplan-Meier 
analyses of highly fibrotic cancers, A) cervical cancer (n=82) and B) pancreatic cancer (n=178), 
associated AHR expression with overall survival (HR = hazard ratio, P value is denoted, and doted 
lines represent 95% confidence interval). C) AHR is significantly elevated in triple negative breast 
cancer tumour subtype S4 (motile CAF subpopulation) in comparison to S1 (immunosuppressive 
CAF subpopulation). D) AHR expression increases with disease state in the primary and metastatic 
tumours (p<0.05, by unpaired t-test).  
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CHAPTER 3 : DISCUSSION 

3.1 SUMMARY OF FINDINGS 

CAF activation has been shown to correlate with aggressiveness of TNBC patient disease and to 

functionally promote downstream cancer cell metastasis [26, 30]. Here by developing a 

sequentially deconstructed experimental culture model of fibroblastic activity that recapitulates 

formation of foci-like microdomains in the tumor microenvironment, we demonstrate that CAFs 

isolated from primary TNBC have distinct contractility, invasion and mechanosensing abilities 

that depend on disease state; where CAFs isolated from primary TNBC with lymph node 

dissemination are no longer dependent on mechanical cues to prompt invasive phenotypes. By 

comparing the transcriptomes of both CAF subsets by RNA-seq analysis, uniquely in 3D 

mechanically controlled assays, we confirm CAFs from primary tumours of patients with lymph-

node metastasis have distinct transcriptional responses to substrate stiffness.  In particular, we 

find a role for Aryl Hydrocarbon Receptor (AhR) in facilitating CAF invasion and validate its clinical 

significance. This indicates that in the primary tumour, CAFs with increased AhR protein levels 

are more invasive, and these CAFs retain these behaviors independent of mechanobiological 

activation cues. 

 

We first highlight in Chapter 2.1, using a microscale contraction and invasion assay, CAFs from 

primary tumours, isolated from patients presenting with lymph node metastasis have enhanced 

contractility and invasive abilities. Consistent with our findings, others have shown similar 

increases in both collagen contraction and invasion of murine fibroblasts, as a function of 
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premalignant through malignant transitions [99, 179], and our work confirms this functional 

phenotype for fibroblasts isolated from human patients.   

 

Using hydrogel-based tissue engineering strategies, we recapitulate fibrotic foci with cores of 

tunable stiffness. This approach effectively separates the process of fibrotic foci formation from 

invasion, while allowing independent control over mechanical cues presented to the CAFs. Using 

this strategy, we demonstrate that CAFs become increasingly unresponsive to 

microenvironmental mechanical cues as disease progresses: while CAFs from patients without 

metastatic disease can be mechanically induced to invade, CAFs derived from patients with 

axillary lymph node metastasis are intrinsically invasive.  Collectively, this functional in vitro 

phenotype is consistent with previous studies demonstrating that various degrees of CAF 

activation occur in vivo, where  early lesions are infiltrated or encircled by tumour suppressive 

fibroblasts [24, 125] and that subsequent events drive transition towards pro-tumorigenic 

fibroblasts [25]. Our findings capture phenotypes inherent to CAFs regardless of cancer cell cues, 

as others have shown co-culture changes CAF activation, secretion and invasive behaviors [49, 

218]. The data presented here therefore adds an understanding that CAFs that become 

mechano-insensitive retain this phenotype in culture independent of cancer cell cues, possibly 

reflecting an irreversible transition during in vivo disease progression.   

 

In Chapter 2.2, by transcriptomic analysis, we confirm CAF-pm are unresponsive to changes in 

mechanical cues and this correlates with elevated AhR gene expression and proteins levels. In 

Chapter 2.3, we highlight the role of AhR in facilitating CAF-pm invasion, consistent with previous 
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studies showing AhR activation can facilitate fibroblast migration and invasion [199, 200]. 

Interestingly however, AhR activation is associated with a non-fibrotic and non-responsive TGF-

β phenotype [211, 219], where AhR knockout mouse fibroblasts elicit higher levels of TGF-β 

secretion [198]. However, given that we established AhR protein levels were mechanoresponsive 

in CAFs derived from patients without metastatic disease (CAF-pn), where high stiffness increases 

AhR levels, we hypothesize that AhR low cells represent early stages of disease progression. 

Based on this data and previous literature, we therefore propose that high AhR expression in 

CAFs is secondary to generating a stiffened microenvironment, whereby TGF-β responsive CAFs 

can contract, remodel and secrete ECM over time to increase matrix stiffness [174, 175, 177]. 

Notably in CAF-pn, genes associated with fibrosis are uniquely upregulated (Figure 2-6B, Figure 

3-1A), suggesting they are generating a pro-fibrotic tumour microenvironment. As disease 

progresses and microenvironmental stiffness increases, AhR expression increases, inhibiting 

profibrotic mechanisms where it becomes pro-invasive and mechano-insensitive (Figure 3-1). 

This is consistent with previous studies showing CAFs have potential to transition from one state 

to another [32, 53]. In particular, Wang et al. identified CAF interconversion by analyzing PDAC 

by single-cell RNAseq. While AhR was not significantly differentially expressed in their publicly 

available dataset, CAFs associated with dense fibrotic PDAC (C3) could convert into, clusters (C0 

and C4) with elevated CYP1B1, a read out of AhR activation, where cluster 4 was associated with 

tumours with worsened prognosis [220].  
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Figure 3-1: Contraction inducing stiffening generates and maintains AhR high, mechanically 
independent CAF invasion.  A) Schematic outlining the role of AhR in blocking TGFβ induced 
collagen deposition and myofibroblast formation. B) Model outlining the role of contraction-
induced stiffening in the generation and maintenance of AhR high, mechanically independent CAF 
invasion.  
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Moreover, in support of the model, it is possible that CAFs are displaying memory, created or 

imprinted by the patient tumour state. Mechanical memory is a 2D tissue culture concept that 

cells retain behavioral features of previous mechanical environments, whereby pre-exposure to 

stiff mechanical ques, delays cell response to environments with different properties. Previous 

work highlights that extended exposure to stiffness can permanently transition lung fibroblasts 

to myofibroblast state [123], or bias mesenchymal stem cell differentiation [123, 221]. Other 

studies suggest that several mechanisms that contribute to matrix stiffening also promote 

positive feedback loops that generate and keep CAFs in an activated state [99, 222]. Therefore, 

it seems likely that extended exposure to a possibly self-generated, highly stiffened matrix may 

also foster CAFs to adapt into an irreversible, non-mechanosensitive, high AhR expressing cellular 

state. Previous studies suggest that several mechanisms that contribute to matrix stiffening also 

promote positive feedback loops that generate and keep CAFs in an activated state [99, 222], and 

our current work suggests these feedback loops may also be involved in CAF activation and AhR 

expression in vitro. 

 

The multi-stage deconstructed culture model presented in Chapter 2.1, overcomes several key 

challenges in studying CAFs in a patient-specific and physiologically relevant manner. First, CAFs 

were obtained without selection against pre-specified biomarkers. Other studies in this area 

commonly isolate primary CAFs using specific combinations of molecular markers, which 

therefore only capture a fraction of the complexity inherent in CAF populations [49, 78]. 

Moreover, these studies are largely limited to immortalized fibroblasts of cancerous and non-

cancerous origins, known to acquire functional, genetic and epigenetic changes during virus-
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based immortalization and prolonged culture in vitro [223-226]. For example, Costa et al. recently 

demonstrated that two CAF subtypes can accumulate differentially in TNBC, but that these 

subtypes do not correlate with patient survival [30]. Here by using non-immortalized, non-

selected CAFs, in relatively limited numbers needed for our initial microscale 3D assays (Figure 

2-2A, Figure 2-4A) and RNA-seq experiments (Figure 2-5A), we were able to correlate patient 

disease state with CAF functional characteristics. Given the limited cell material available and 

needed by these assays, these 3D models may ultimately allow high-throughput screening of 

functional activity in primary CAFs, to identify drug targets for patient-specific therapeutic 

development.  
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3.2 LIMITATIONS AND FUTURE DIRECTIONS  

Some limitations must be considered in interpreting the results of this work.  First, the present in 

vitro models lack the dynamics of stiffening and fibrotic foci formation that likely occur in vivo, 

where the stiffening process itself may have a different impact than the end stiffness alone [227]. 

Second, validating this proposed model of CAF activation in vivo will be challenging, due to the 

lack of suitable animal models and the difficulties associated with controlling changes in live 

fibrotic foci stiffness. Further, due to the complexity of obtaining and culturing non-immortalized 

CAFs, the cohort is limited to 4 patient samples that were immortalized for the purposes of 

validating the RNA-seq.  

 

While these findings provide evidence for a role of AHR in fibroblast driven disease progression 

and are therefore novel, the mechanism for overexpression of AHR in CAFs remains to be 

elucidated. In this study we did not include or consider the effect of cancerous epithelial cells in 

dictating the expression of AHR or the potential of epigenetic changes in CAFs. It seems plausible 

that cancerous epithelial cells can produce ligands or soluble factors responsible for activating 

AHR.  Future experiments should involve culturing CAFs with tumoral epithelial cells and 

associated conditioned media from patients with CAFs expressing high levels of AhR (CAF-pm1, 

CAF-pm2).  

 

Moreover, the mechanism for constitutive, mechano-insensitive activation of AHR and 

concomitant increase in invasiveness is not clear. Further studies are warranted to explore i) if 

priming CAFs with 3D in vitro stiffness can lead to mechano-insensitive invasion and ii) what the 
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epigenetic changes are regulating AHR activation in fibroblasts. Previous studies have 

demonstrated AhR influences chromatin remodeling in cancerous cells through interaction with 

SWI/SNF chromatin remodeling complex [228], steroid receptor co-activator-1 complex (SRC-1) 

[229] and by displacing histone deacetylase complexes [230], but how this translates to CAF 

activation remains unknown.  

 

This study also lacks 3D in vivo relevance, due to difficulties in correlating AHR expression levels 

and patient tumour stiffness. Recent data from the Moraes lab, suggests FFPE tissues lose all 

residual elasticity on fixation and therefore lack good methods to prob for the stiffness found in 

vivo.  Developing more approaches to dynamically assess matrix stiffening during disease 

progression [168] in vivo may help to understand the interplay between CAF remodeling, AhR 

expression and downstream invasion. For now, one such way to investigate the role of stiffness 

in AhR elevation might be to profile CAFs in PDX models by immunohistochemistry or 

immunofluorescence against AhR, comparing levels in models with high and low degrees of 

fibrosis. In this model, for larger scale tissue stiffness measurements the use of shear wave 

elastography [216, 231] to measure in vivo tumour stiffness during tumour progression could 

allow for quantitating changes in elastic moduli over time to correlate with AHR expression.  

Although outside the scope of this work, in order to validate the correlation of stiffness and AHR 

in vivo, one could create a much more in-depth project by employing the use of thermally 

responsive hydrogel probes as previously established by our group [168] in a knock-in mouse 

model expressing fluorescence or bioluminescent tags with AHR expression.  
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The validation of AHR gene expression in this study is limited by the availability of fibroblast 

focused cohorts with longer-term patient follow-up. At this time, databases are largely focused 

on bulk or epithelial sorted tumour cell sequencing and lack the fibroblast component. Given that 

previous studies with AhR show upregulation of AhR inhibits proliferation of breast [195], 

prostate [196], and liver [197] cancer cells and its deficiency promotes epithelial cell migration 

[198] and metastasis [199], we chose to avoid validating AhR in these settings. Moreover, cohorts 

that encompass the tumour microenvironment [21] include immune cell populations which 

confound the data because of the various roles of AhR in immune cells [232, 233].   

 

In future, data arising from single cell sequencing studies with long-term follow-up will be useful 

for validating and correlating fibroblast specific expression of AHR. Moreover, the use of single 

cell sequencing in CAFs might allow for identification of small subsets of CAFs expressing higher 

levels of AHR. It remains unknown whether it is small amounts of AHR facilitating CAF-pn invasion 

as seen on Edisease, or another mechanism at hand.  
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3.3 CONSIDERATIONS FOR CLINICAL SIGNIFICANCE OF AHR  

The lack of mechanoresponsiveness in AhR expressing CAFs, provides reasoning as to why drugs 

aimed at reducing microenvironmental stiffening have previously failed in clinical trials. However, 

given the varied roles AhR plays in different cell populations (outlined in 3.2) [195-199, 232, 233], 

simply targeting AhR may prove harmful and difficult.   

 

Most research on AhR has extensively focused on its response to man-made chemical pollutants, 

like polycyclic aromatic hydrogens, with a strong emphasis on the human carcinogen 2,3,7,8-

tetrachlorodibenzo-p-dioxin (colloquially termed dioxin, or TCDD), a high affinity ligand. 

Interestingly AhR is evolutionarily conserved across vertebrates and invertebrates, yet AhR in 

invertebrates cannot bind dioxin or other polyaromatic hydrocarbons, suggesting it is important 

for other development processes and maintaining physiological functions. For example, i) in D. 

melanogaster the AhR protein homologue, spineless, is required for eye, leg and wing 

development [234], and ii) in C. elegans AHR-1 is essential for neuronal differentiation and 

migration [235, 236]. Given this, the current view in the field is that xenobiotic dependent AhR 

function represents an adaptative mechanism in vertebrates, that overlaps with physiologically 

conserved roles. Therefore, a deeper understanding the role of AhR in homeostasis and 

development may be necessary before therapeutically targeting it.  

 

Moreover, using transgenic mouse models, a number of studies support a role for AhR in key 

physiological and homeostatic roles in the body; AhR null mice (AhR-/-) show developmental 

defects in hepatic [237, 238], hematopoietic [239], detoxification [240], and immune [238] 
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systems. In the liver, AhR has been shown to regulate metabolism, where it’s inhibition in mouse 

models leads to significant weight gain [241, 242]. Given the correlation between obesity and 

cancer [243-247], obesity as a side effect of inhibiting AhR should be explored carefully. 

Moreover, AhR-/- mice develop extensive fibrosis in the heart and kidneys [248] as well as heart 

defects [239, 249].  While fibrosis has been demonstrated to have a caging effect in cancer[24, 

125], the full body ramifications of this make it difficult to inhibit AhR. Perhaps with the growth 

in nano-based drug delivery technologies and therefore more localized treatments, specifically 

inhibiting AhR in CAFs may prove a viable target.  

 

Moreover while environmental toxicants bind AhR with high affinity, more recent work has 

demonstrated naturally derived endogenous ligands play a role in cell cycle regulation [250], cell 

differentiation [251] and immune response [238, 251-253]. These natural ligands can come from 

host metabolic breakdown, microbiota and dietary intake, where the majority of dietary AhR 

ligands are plant derived [214, 254-256].  Interestingly recent research highlights links between 

AhR levels and gut microbiota; AHR expression is attenuated in germ free mice, suggesting AhR 

acts as a mediator in communication between host and gut microbiota [257]. With a growing 

interest in microbiome mediated cancer cell response and therapy resistance, connecting 

microbiome-cancer axis with AhR protein levels may help to understand it’s mechanisms of 

activation and signaling for the purpose of therapeutically targeting.   
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3.4 CONCLUSIONS  

Unfortunately, nearly 25 years after the initial studies showing the physiological relevance of 3D 

culture systems [122, 258, 259], the vast majority of cancer biology research is still in 2D. This is 

likely due to the ease of culture, growth, and biochemical testing in 2D systems as well as the 

relative success of these technologies in identifying useful molecules.  However, it would appear 

that the low-hanging fruit of easily identifiable therapeutic molecules have already been 

identified, as evidenced by the dwindling number of novel therapeutic discoveries, despite 

increases in economic resources allocated to this problem [260].  Furthermore, the poor clinical 

translatability for many seemingly promising drugs suggests that 2D systems are no longer 

sufficient in this area, and that more complex 3D culture systems will be required to identify next-

generation therapeutics. Moving forward, I believe advanced technologies like those presented 

in this thesis will help bridge this gap, in improving the physiological relevance of discoveries, 

while also improving the ease of setting up, operating, and data analysis. Moreover, I anticipate 

the inclusion of immune cell populations will become more and more important, as numerous 

recent studies have demonstrated a key role for immune cells in tumour progression [26, 68, 72, 

73, 261]. Given that there are small subsets of patients who respond to immune checkpoint 

inhibitors [262], perhaps other microenvironmental factors dictate patient responsiveness to 

checkpoint blockade. Recent findings are demonstrating that CAFs may be critically important in 

these microenvironmental feature sets that drive immune evasion [30, 67, 70, 71, 263-268], and 

so these advanced discovery systems may better pair patient populations with successful 

therapeutics. The consideration of immune cell infiltration in future cancer biology studies will 

be significant.  
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The presented data highlights the importance of contraction-induced mechanical remodeling by 

CAFs in triple negative breast cancers. Here I have demonstrated that subsets of CAFs in primary 

TNBC tumours, transition to a state where they are expressing pro-invasive transcriptional factor 

AhR and therefore invade regardless of microenvironmental stiffness cues. The high expression 

of AhR in tumours with lymph node dissemination may explain why drugs aimed at reducing CAF 

contractility and microenvironmental stiffening fail to improve cancer outcomes [36, 269], as 

CAFs are inherently invasive. Patient levels of AhR at time of surgery may therefore be a useful 

screening strategy to identify patients likely to present with metastasis and those who might 

respond to therapies aimed at mechanically inactivating CAFs.  Furthermore, the data highlights 

the importance of the physical properties of fibrotic cores observed in poor outcome TNBC in 

vivo and underscores the necessity to study the tumour microenvironment in models of 

physiologically relevant stiffness. These findings broadly suggest that integrative multidisciplinary 

knowledge of CAF mechanical state is important in developing and testing novel therapeutics or 

biomarkers. Ultimately because of this process, patient stratification based on AHR expression 

represents a strategy to identify patients at risk for lymph node dissemination.  
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CHAPTER 4 : METHODS  

Unless otherwise stated, all cell culture materials and supplies were purchased from Fisher 

Scientific (Ottawa, ON) and chemicals from Sigma Aldrich (Oakville, ON).  

 

4.1 Clinical samples and human CAFs 

Tumour specimens and tissue samples used in this study were obtained with informed consent 

from all subjects and in accordance with the McGill University Health Center research ethics 

board (SUR-99-780). For the purposes of this study, samples were selected according to clinically 

documented lack of expression or amplification of estrogen receptor (ER), progesterone receptor 

(PR) and human epidermal growth factor receptor2 (HER2); a histological subtype assignment of 

IDC (not otherwise specific [NOS]). Briefly, CAFs were harvested from dissociated tumour 

suspensions by centrifugation at 500xg for 5 minutes at 4 °C and plated on collagen coated plates.  

This was done to minimize selection of CAFs by markers, as it is widely described that no one 

marker is exclusive to, or encompasses all, activated fibroblasts [25]. To best maintain the 

heterogeneity of the CAF population, they were cultured on collagen coated tissue culture 

plastic, to a maximum of 10 passages. 

 

4.2 Cell culture 

CAFs were isolated from patients as described above and grown on collagen coated tissue culture 

plates. They were cultured in fully supplemented Dulbecco’s Modified Eagle Medium (DMEM, 

with 10% Fetal Bovine Serum (FBS), 50 µg/mL gentamicin, 2.5 µg/mL amphotericin B) at 20% O2, 
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5% CO2. Experiments were carried out at 3% O2, and 5% CO2.  Post RNA-sequencing analysis CAFs 

were immortalized with pLVX-SV40-LT-IRES-tdTomato, generously gifted from Dr. David 

Tuveson’s lab.  

 

Functionalized polyacrylamide beads were dispensed 1 per well in ultra-low attachment, 96 well 

plates. CAFs were collected at 150,000 c/mL in complete media, dispensed into each bead 

containing well, resuspended to ensure sufficient coating (4 x 15min) and incubated overnight at 

37°C. CAF coated polyacrylamide beads were overlaid with collagen as previously described. 

Tissues were incubated for 48 hours, fixed, stained, and imaged as previously described. Cell 

invasion and distance was quantified as previously described. Due to the heterogeneity of CAFs, 

outliers were removed using the 1.5xIQR rule.  

 

4.3 Immunofluorescence on human tissue sections 

Immunofluorescence staining of nuclei and actin cytoskeleton was performed by fixing sections 

in 4% PFA. FFPE tissue was deparaffinized and underwent heat‐mediated antigen retrieval in 

citrate buffer pH6.0 or EDTA buffer pH9.0. Slides were blocked with Power Block (Biogenex, San 

Ramon, CA, United States) for 5 min at room temperature and incubated with the primary 

antibody for 30 min at room temperature followed by washing with TBST (3 x 3 min). Slides were 

incubated with secondary antibody-HRP for 30 min at room temperature, washing with TBST (3 

x 3 min) and stained with Opal fluorophore working solution for 10 min. This was followed by 

heat-mediated antibody stripping to remove the primary and secondary antibodies to repeat 

additional rounds for labeling with other primary antibodies. The primary antibodies are αSMA 
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(Cat# M0851, DAKO (Glostrup, Denmark)), Vimentin (Cat# 760-2512, Ventana (Oro Valley, AR, 

United State)), Pan-Keratin (Cat# 760-2595, Ventana (Oro Valley, AR, United States)). The 

antibody specificity and dilution were tested before multiplex assay. Tissue images were 

captured using AxioScan Z1 scanner. Quantification was done using Tissue Classifier Add-on, and 

Area Quantification FL from HALO v 3.1.1076.  

 

4.4 Collagen Contraction and Invasion Assay  

Free floating collagen microdroplets were fabricated using an aqueous two-phase droplet 

printing technique by an automated liquid handler. The 2 aqueous phases, poly(ethylene glycol) 

(PEG) and dextran were prepared as follows. 35 kDa PEG (Sigma-Aldrich, 94646) at a 

concentration of 6% w/v in supplemented DMEM was sterile filtered through a 0.22 μm pore size 

sterile filter cup. 500 kDa dextran (www.dextran.ca) at a concentration of 20% w/v in sterile RO 

water was sterilized under UV light for 45 min. Solution were stored at 4 °C when not in use.  

Free floating collagen droplets were generated as previously described [120]. Briefly, CAFs were 

passaged at 90% confluency, centrifuged at 800RPM for 5 min and resuspended at a final 

concentration of 2.7 x 106 cells/mL in collagen and supplemented DMEM containing 15% v/v 

dextran solution. 100 μL of PEG solution was robotically dispensed into each well of a round 

bottom 96-well plate by an automated liquid handler (Pipetmax, Gilson (Middleton, Wisconsin)). 

2 μL of cell-laden dextran-collagen solution was robotically dispensed into each well. The plate 

was incubated at 37 °C for 60 min to allow collagen gelation. After gelation, PEG-rich DMEM was 

removed and replaced with 100 μL of supplemented DMEM and incubated at 37 °C and 5% CO2 

over 2 days to assess contraction.  
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Contracted collagen microdroplets were overlaid with collagen gels to produce 3D constructs. 

Media was aspirated from each device and collagen was polymerized using established protocols 

[43]. Briefly, Type I bovine collagen (Advanced Biomatrix, 3 mg/mL) was diluted to 1.5 mg/mL in 

PBS and 10× DMEM solution to obtain a final 1× DMEM concentration and kept on ice. The acidic 

solution was neutralized with 1M NaOH by titration based on the color of the phenolphthalein 

indicator in DMEM. Cold collagen gel solution was dispensed over each contracted droplet and 

allowed to incubate at 37 °C for 45 min to gel. After gelation, 100 µl of complete media was added 

to each well.  

 

4.5 Polyacrylamide core preparation   

Stiffness-tunable polyacrylamide hydrogel formulations were prepared using the following 

acrylamide (Biorad, 1610140) to bisacrylamide (Bio-rad, 1610142) ratios with the stated nominal 

shear modulus values determined by shear rheology of bulk samples: 1450 Pa (3.0 wt%/0.10 

wt%); 5770 Pa (7.5 wt%/0.24 wt%). To polymerize 1 mL of pre-polymer mixture, 100 μL of 1% 

w/v ammonium persulfate (APS; Bio-rad, 1610700) in phosphate buffered saline (PBS) and 1.5 μL 

of tetramethylethylenediamine (TEMED; Sigma-Aldrich, T7024) were added to initiate and 

catalyze the polymerization reaction.  

 

Droplets of polyacrylamide pre-polymer with TEMED and ammonium persulfate initiator were 

manually dispensed, in volumes of 0.5uL and 1 uL for 400Pa and 7500Pa gels respectively, into 

kerosene with 6% w/v polyglycerol polyricinoleate (PGPR 4150). The hydrogel cores were allowed 
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to polymerize in a kerosene bath. The surfactant-rich kerosene was replaced with PBS after 

multiple centrifugations using Labnet Mini Centrifuge C-1200, before being left overnight at room 

temperature in PBS to allow for swelling. Due to the large swelling ratios of soft polymer 

formations, we optimized the aqueous polymer dispersion volume to produce cores of identical 

radius and similar in size to the starting collagen droplet from the invasion assay.  

 

Recovered cores were resuspended in 0.05mg/mL Sulfo-SANPAH (G-Biosciences, BC38) in PBS 

and irradiated under UV light for 4 min to activate the cross-linker. Microspheres were rinsed 

with PBS, resuspended in 0.05 mg/mL collagen I (VWR, CACB354231) in PBS, and stored overnight 

at 4 °C. Collagen I coated microspheres were resuspended in PBS and stored at 4 °C until use.  

 

4.6 Stiffness readings with microsquisher  

Parallel plate compression testing was performed on polyacrylamide cores with a MicroSquisher 

(CellScale Biomaterials Testing Inc. (Kitchener, ON, Canada) to determine their elastic moduli. 

Samples were loaded onto the instrument and then core diameter was measured under its 

magnification. Samples were compressed at a rate of 10 µm/s by at least 20% [nominal] strain, 

and data was collected at a rate of 5 Hz. 

 

Elastic moduli were calculated in R computing environment as follows. Core diameter was used 

to calculate cross-sectional area as an estimate of the area in contact with the compressing plate, 

and nominal stress was calculated by dividing the force data output from the MicroSquisher by 

this calculated contact area. Nominal strain was calculated from displacement data by dividing 
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the change in sample height at each collected time-point by its initial height. Plots of stress as a 

function of strain were generated, and linear regression was used to calculate the slope of the 

curve for data from 0-10% strain, yielding an estimate of the elastic modulus. 

 

4.7 Fluorescent labelling of polyacrylamide cores 

Collagen I functionalization was verified with anti-collagen I mouse primary antibody (ab6308, 

Abcam (Cambridge, United Kingdom)) and goat anti-mouse secondary antibody tagged with 

Alexafluor 594 (ab150116, Abcam (Cambridge, United Kingdom). CAFs in microdroplet or on 

polyacrylamide core assays were stained with DAPI and Alexafluor546 Phalloidin (A22283, 

Invitrogen (Carslbad, CA, United States). For viability assays, CAFs were cultured on 

polyacrylamide core of normal and diseased stiffness and the surrounding media was replaced 

with 4 μM Calcein-AM and 2 μM Ethidium Homodimer (EtHD) in PBS for 30 minutes. The media 

was washed and droplets were fluorescently imaged to assess viability.  

 

4.8 RNA sequencing  

CAF-pm1, CAF-pm2, CAF-pn1 and CAF-pn2 cultured on matrices of various stiffnesses as indicated 

were collected, and the total RNA was extracted using RNAeasy kit (Qiagen) according to the 

manufacturer’s instructions. High RNA quality was verified using the Bioanalyzer RNA 6000 Nano 

assay (Agilent). cDNA was PCR amplified for 18 cycles using poly T primer. All cDNA was produced 

the same day to avoid batch effects. The final sequence ready library was generated using 

Illumina DNA Prep and IDT for Illumina DNA/RNA UD Indexes. The sequencing-ready library was 

cleaned up with SPRIselect and quantified by qPCR (KAPA Biosystems Library Quantification Kit 
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for Illumina platforms). 1 nM sequencing libraries were loaded on an Illumina HiSeq Instruments 

and ran using the following parameter: 151 bp Read1, 8 bp I7 Index, 8 bp I5 Index and 151 bp 

Read2. 

 

Adaptor sequences and low-quality score bases (Phred score < 30) were first trimmed using 

Trimmomatic (Bolger et al., 2014). The resulting reads were aligned to the GRCh38 human 

reference genome assembly, using STAR (Dobin et al., 2012). Read counts were obtained using 

HTSeq (Anders et al 2015) with parameters -m intersection-nonempty -stranded=no. For all 

downstream analyses, we excluded lowly-expressed genes with an average read count lower 

than 10 across all samples. Raw counts were normalized using edgeR’s TMM algorithm (Robinson 

et al., 2010) and were then transformed to log2-counts per million (logCPM) using the voom 

function implemented in the limma R package (Ritchie et al., 2015). To assess differences in gene 

expression levels, we fitted a linear model with the covariates Patient_ID and 

Mycoplasma_Contamination_Rate using limma’s lmfit function (method = “robust”). Nominal p-

values were adjusted for multiple testing using the Storey’s Q-values method (R package qvalue; 

https://bioconductor.org/packages/qvalue). Gene set enrichment analysis (pre-ranked mode) 

was performed using the R package fgsea (https://bioconductor.org/packages/fgsea/). 

 

4.9 Gene expression by quantitative PCR with reverse transcription 

RNA was isolated using the RNAeasy Mini Kit (Qiagen) according to the manufacturer’s 

instructions. cDNA was synthesised using the Transcriptor First Strand cDNA Synthesis Kit (Roche) 

according to the manufacturer’s instructions. qPCR reactions were performed using SYBR Green 

https://bioconductor.org/packages/fgsea/
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I Master on a LightCycler480 (Roche). Primers sequences used are CYP1B1 forward 5’ – 

CCAAGAGACTCGAGTGGGAG – 3’ and reverse 5’ - TGCCCATGCTGCGGG – 3’, and AHR forward 5’- 

TGGTTGTGATGCCAAAGGAAG – 3’ and reverse 5’ – ATAACCTGAGCCTCTCGTGC – 3’. GAPDH was 

selected as reference. Relative quantification of the expression levels was calculated according 

to Pfaffl method[270]. For RNA-Seq gene expression validation, the data presented represent the 

merge of three biological replicates for CAF-pm1, CAF-pm2, CAF-pn1 and CAF-pn2.  

 

4.10 Western blotting 

CAF lines were lysed using RIPA Lysis Buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% Nonidet P-40, 

0.1% SDS, 0.5% sodium deoxycholate supplemented with freshly added (1 mM 

phenylmethylfulphonyl fluoride (PMSF), 1 mM Na3VO4, 1 mM NaF, 10 μg/ml aprotinin). Whole 

cell lysates were resolved by SDS/PAGE and transferred to nitrocellulose membranes. 

Membranes were blocked with 5% Bovine Serum Albumin and probed with primary antibodies 

(AhR SA210, Enzo Life Sciences and beta-actin AC15, Sigma Aldrich) overnight at 4 °C. After TBS-

Tween washes, membranes were incubated with HRP-conjugated anti-rabbit and anti-mouse 

secondary antibodies (Cell Signalling) for 1h at room temperature for signal detection using 

ChemiDoc Imaging System (Biorad) and quantified using Image Studio.   

 

4.11 Immunofluorescence (IF) on polyacrylamide gels 

Cell samples were fixed in 4% paraformaldehyde for 10 min, washed with PBS three times and 

permeabilized with 0.2% Triton-X100 solution for 20 min. Non-specific protein adsorption was 

blocked with 2% bovine serum albumin in IF buffer (phosphate buffer saline with 0.2% Triton X-
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100 and 0.05% Tween 20) for 30 minutes at room temperature. After washing with IF buffer, AhR 

primary antibody (AhR SA210, 1:100, Enzo Life Sciences) at room temperature for 2 hours and 

washed in IF buffer 3 times. Samples were incubated with secondary antibody (1:500, Alexa 

fluorophore 488 Donkey-anti-Rabbit) and phalloidin-546 (1:100, Thermofisher) for 1 hour at 

room temperature. Finally, samples were incubated with 4’,6-diamidino-2-phenylindole (DAPI) 

(Sigma) diluted in PBS for 10 min at room temperature and washed three times with PBS. All 

samples were from 3 independent biological replicates, and each replicate was processed in 

parallel.  

 

4.12 Chemical inhibition and activation of AhR  

AhR inhibition experiments were performed adding 10 µM or 20 µM of Clofazimine to CAFs on 

beads within 3D collagen gels for 48 hours. AhR activation experiments were performed adding 

100 µM of L-kynurenine to CAFs on beads within 3D collagen gels for 48 hours.  

 

4.13 Transfections 

Transient siRNA-mediated knockdown of AHR was performed using TriFECTa RNAiKit (Integrated 

DNA Technologies). For siRNA experiments, cells were transfected with 10 nM siRNA 

lipofectamine RNAiMax (Thermo Fisher) according to manufacturer’s instructions. Human aryl 

hydrocarbon receptor gene ORF cDNA clone, C-GFPSpark Tag was purchased through 

SinoBiological. Transient transfections for protein expression were performed using Invoitrogen 

Lipofectamine and Lipofectamine Plus according to the manufacturer’s instructions, and 3D 

invasion assays were conducted within 3 hours post-transfection.  
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4.14 Short term growth and cell viability assays  

Single cell suspensinos were seeded into 96-well plates and treated with DMSO, Clofazimine, si-

control or siRNA. Cells were incubated for 72 hours imaged by Incucyte S3 and analyzed using 

Incucyte analysis software.  

 

4.15 Imaging and analysis  

Live collagen microgels were imaged at selected timepoints using the EVOS FL and a 4× objective. 

Measurement of collagen droplet area was performed by analysis of threshold images and 

measuring droplet size in ImageJ (NIH). Data was generated using the change in droplet size (final 

size divided by initial) and analyzed by one-way ANOVA. Data plotted is displayed to be 

representative as a percentage of contraction.  

 

For all fixed culture experiments, fluorescent images were collected using Olympus IX73 spinning 

disc confocal microscope or LSM800 laser scanning confocal microscope (Carl Zeiss) using 4X and 

10X or 20X objectives, respectively.  

 

Using ImageJ invasion distances and count were quantified by nuclear count. Each cell was given 

a relative position within the image and used to calculate the distance to the centre of the 

droplet. Cell spread area was quantified using ImageJ to calculate the area of phalloidin 

expression relative to the number of nuclei. Percentage of viable cells on polyacrylamide beads, 

was calculated as the number of cells labeled with Calcein AM, divided by the total number of 

cells identified with Calcein AM and EtHD. Percentage of viable cells on flat assays, was calculated 
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as the number of cells labeled with Calcein AM, divided by the total number of cells identified 

with DAPI.  

 

Immunofluorescent images of AhR were analyzed using Cell Profiler v4.0 [271]. In brief, the nuclei 

and cell were identified (DAPI and phalloidin respectively) and masked to identify the cytoplasm 

only (Cell-Nuclei). AhR fluorescent intensity was quantified on a per cell basis, and reported 

expression in total cell, nuclei and cytoplasm. The same pipeline settings were used on all images 

of each immunostaining, where replicates were stained on the same day to control for 

fluorescent variation. 4 images were taken and analyzed per individual biological replicate.  

 

4.16 Statistical Analysis  

Statistical analyses were performed using Prism software (GraphPad Software Inc.). Mean values 

and standard deviation (SD) are shown on graphs that were generated from three repeats of 

biological experiments. P values were obtained from t tests with unpaired samples, with 

significance set at p < 0.05. For paired samples, one-way ANOVA test was run, followed by a post-

hoc analysis using Newman-Keuls multiple comparison test, with significance set at p<0.05. 

Graphs show either the actual p value or symbols describing it (*, p < 0.05; **, p < 0.01; ***, p < 

0.001).  

 

For Kaplan–Meier analyses of AHR in cervical cancer patients and pancreatic cancer patients, the 

TCGA database was mined on GEPIA2 server using recommended parameters[272].  
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For AHR expression analysis, the breast cancer data sets from Costa, et al.[30] 

(EGAS00001002508) and Gui, et al. [217] (ENA number PRJEB34465) were used.  
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