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Abstract

There has been considerable recent interest in representation learning for Reinforcement
Learning (RL), primarily motivated by partially observable and potentially high-
dimensional environments where a compact state representation might not be available.
One promising approach for this kind of representation learning are model-based
methods. There has been considerable progress in our understanding of model-based
methods and they have been shown to be effective in circumventing some of the
short-comings of model-free methods. In this thesis, we leverage a recently proposed
model-based reinforcement learning approach for partially observed environments,
which is called the approximate information state approach, for representation learning
in recurrent Q-learning based RL algorithms. A salient feature of the proposed
algorithm is that its computational complexity is comparable to traditional recurrent
Q-learning algorithms. We present detailed numerical experiments to compare our
proposed approach with traditional Q-learning methods such as the R2D2 approach.
Our experiments demonstrate that the AIS-based Q-learning approach performs better
than traditional Q-learning approaches, especially for high-dimensional environments
with sparse rewards.
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Résumé

Il y a eu récemment un intérêt considérable pour l’apprentissage de la représentation
pour l’apprentissage par renforcement, principalement motivé par des environnements
partiellement observables et potentiellement de grande dimension où une représentation
d’état compacte pourrait ne pas être disponible. Une approche prometteuse pour ce
type d’apprentissage de représentation sont les méthodes basées sur des modèles. Il y
a eu des progrès considérables dans notre compréhension des méthodes basées sur des
modèles et elles se sont avérées efficaces pour contourner certaines des lacunes des méth-
odes sans modèle. Dans cette thèse, nous tirons parti d’une approche d’apprentissage
par renforcement basée sur un modèle récemment proposée pour des environnements
partiellement observés, appelée approche d’état d’information approximatif, pour
l’apprentissage de la représentation dans des algorithmes d’apprentissage par renforce-
ment récurrents basés sur Q-learning. Une caractéristique essentielle de l’algorithme
proposé est que sa complexité de calcul est comparable aux algorithmes d’apprentissage
Q récurrents traditionnels. Nous présentons des expériences numériques détaillées pour
comparer notre approche proposée avec les méthodes traditionnelles d’apprentissage Q
telles que l’approche R2D2. Nos expériences démontrent que l’approche d’apprentissage
Q basée sur l’état d’information approximatif fonctionne mieux que les approches
traditionnelles d’apprentissage Q, en particulier pour les environnements de grande
dimension avec des récompenses rares.
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Chapter 1

Introduction

The combination of Reinforcement Learning (RL) with deep neural networks has

emerged as a powerful tool for solving a variety of complex tasks that seemed intractable

until a few years ago [1; 2; 3; 4]. This combination, now known as deep reinforcement

learning, has resulted in the creation of artificial agents that can achieve human-

level performance in the games of Go [1], Atari [2], and StarCraft [5]. However, most

successful use cases of reinforcement learning have been in settings with fully observable

state spaces [3; 4; 6; 2], a characteristic that is not always present in many realistic

settings. Reinforcement learning with partial observation is significantly harder because

we also need to learn state representations from histories of observations, past actions,

and rewards. Approaches aimed at solving partially observable problems are usually

too complex and are not as universally successful as methods aimed at fully observable

problems. Solving partially observable problems usually requires Recurrent Neural

Network (RNN) architectures such as Long Short-Term Memory (LSTM) [7] or Gated

Recurrent Units (GRU) [8]. There is a large body of literature on utilizing RNNs

with reinforcement learning algorithms [9; 10; 11; 12; 13; 14]. Incorporating RNNs
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into existing algorithms is especially difficult with off-policy reinforcement learning

algorithms such as Deep Q-learning (DQN) [2] and Soft Actor-Critic (SAC) [6]. These

algorithms utilize replay buffers filled with agent experience data to train a policy.

Changes to the replay buffer structure and sampling procedure are needed to make

Q-learning compatible with RNNs. Multiple solutions have been suggested to solve this

problem [9; 10] with the R2D2 method [9] generally considered the standard approach.

These methods all rely on a combination of using truncated histories, bundling data

from subsequent steps and utilizing saved hidden states of RNNs from past iterations.

Approximate Information State (AIS) [15] provides a general framework for state

representation learning in partially observable settings. Furthermore, AIS allows for

theoretical reasoning about the performance of policies learned using these learned

state representations. It has previously been shown that AIS can be used to augment a

non-recurrent policy gradient model-free method and this model-augmented algorithm

can outperform a recurrent Proximal Policy Optimization (PPO) [3] implementation

on a wide variety of partially observable environments [15].

In this thesis, we propose an AIS-based framework to augment R2D2 recurrent

Q-learning [9] with a generative model which is trained on experience data. The

AIS model allows us to learn state representations that can be used for Q-learning.

R2D2 involves learning from truncated histories and using old stored internal RNN

states to initialize the RNN components. We show that an AIS-based generative

model can be learned on the same batches of data from the R2D2 replay buffer,

and an accurate Q function can be trained using the state representations from this

generative model. We use a list of partially observable RL environments such as the

MiniGrid environments [16] with varying levels of difficulty. Our method shows a
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significant advantage over the standard recurrent Q-learning method in most tested

environments. A surprising part of our experimental results is that this advantage is

more considerable in environments with very sparse reward signals. Many of these

sparse-reward environments are very difficult to solve with vanilla RL methods, and

usually, methods with explicit exploration strategies ([17; 18; 19; 20; 21]) are needed

for successfully solving them. Our method does not rely on any such strategies but is

still quite capable of solving all the difficult tasks in these environments. Finally, we

show that our method is compatible with prioritized sampling [22] for both Q-learning

and model learning. The addition of Prioritized Experience Replay (PER) provides

a boost to our proposed method in difficult environments with very sparse reward

signals.

For chapter 2, chapter 3, and chapter 5, A. Mahajan suggested the organization, E.

Seyedsalehi wrote all the details and then A. Mahajan provided minor editorial correc-

tions. For chapter 3 and chapter 4, the high-level idea of the algorithm was suggested

by A. Mahajan. E. Seyedsalehi implemented the algorithm, did the hyperparameter

tuning, and generated all the plots, and wrote the detailed description of the results.

A. Mahajan provided minor editorial suggestions to the writing of these chapters.
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Chapter 2

Background and Related Work

2.1 Reinforcement Learning

The aim in reinforcement learning is to properly train an agent to solve a sequential

decision-making task. This agent periodically interacts with an environment and

receives scalar reward signals.

At each step t, the agent receives a state representation st or observation ot (for

partially observable environments) and has to output an action at. After taking an

action the agent receives a scalar reward rt. The reward is a function of state and

action at that time. We are interested in maximizing the sum of rewards or return

for the agent. Under an infinite horizon setup, the goal is to maximize the following

expectation.

E

[
∞∑
t=0

r (st, at)

]
(2.1)

In this setup the agent’s interactions with the environment continue unless the
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agent reaches a terminal state. In many scenarios, the agent needs to interact with the

environment in an episodic setting where interactions with an environment continue

until a maximum number of steps are taken. These scenarios are called finite-horizon

and might be desirable for some practical purposes and also to force the agent to

learn how to solve a task in a limited amount of time. An episode ends when the

terminal state (success or failure), or a maximum number of steps are taken (in the

finite-horizion setup). For the purpose of training an agent, after the end of an episode,

the problem is reset, and the agent starts another episode from the initial state.

The agent takes actions at according to a function called a policy π(st). The

policy is a mapping from the state space to a distribution over the actions space. The

action space can be either discrete or continuous based on the problem setup. In some

scenarios, π(st) can be a deterministic function that outputs at directly. The goal

of a reinforcement learning algorithm is either to learn a policy π(st) that outputs

actions in the deterministic case or, in the stochastic case, to learn the parameters of

a distribution over the action space. We want the optimal policy which can maximize

the expected cumulative reward. This optimal policy is denoted by π∗.

The state of the environment evolves according to some internal mechanics. The

standard mathematical formalism for reinforcement learning problems comes in the

form of a Markov Decision Process (MDP), which will be discussed next.

2.1.1 Markov Decision Process

A Markov Decision Process or MDP is defined by the tuple (S,A, P, R), which contains

the following:

• State space S: A set containing all valid values for state.
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• Action space A: A set containing all possible action values. This set can either

be finite where each action can be represented by a discrete value or it can be

infinite.

• Transition function P (s′|s, a): This is usually a stochastic function which formu-

lates the distribution over next state st+1 given the current state st and action

at at each time step t.

• Reward function R(s, a): A function which outputs the reward rt at each timestep

t given the state st and action at at that timestep.

We add another component to our problem formulation called the discount factor

γ which is a real value number in the range [0, 1). The discount factor is meant to

represent the current value of rewards received in future steps. A 0 discount factor

is attributed to a "myopic" scenario where any reward received in future steps is of

zero value at the present and at the other end of the spectrum a discount factor of 1

is attributed a "far-sighted" evaluation scenario where rewards are valued the same no

matter how far in the future they are received. Other than being intuitively appealing

the discount factor simplifies the convergence analysis of many reinforcement learning

algorithms.

If the reward and transition functions are known, planning algorithms can be used

to compute the optimal policy π∗. Planning algorithms and Dynamic Programming

will be discussed later in this chapter. The major problem is that in most problems,

these two functions are unknown. These could include real-world scenarios such as a

robot interacting with an environment. The main aim of reinforcement learning is to

provide algorithms that are capable of solving these problems.
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2.1.2 Dynamic Programming and Planning

We assume both the transition function and the reward function are known. The

main problems that we are interested in are policy evaluation (measuring the average

return of a given policy in any state) and policy improvement (iteratively improving

an initial policy until reaching an optimal policy). If the environment can be modeled

as an MDP, we could use a Dynamic Programming decomposition to come up with

significantly simplified solutions to both problems. These Dynamic Programming

decompositions are the basis for many model-free and model-based algorithms, which

will be discussed later.

Let τ be a sequence of state and actions (s0, a0, s1, a1, ...) starting from the initial

state s0 and first action a0 going forward. Using the discount factor γ discussed before,

we write the infinite-horizon discounted return of a trajectory τ which can be defined

as follows.

∞∑
t=0

γtrt (2.2)

We now provide additional definitions which will be useful for this chapter and

later on. The first is the value function corresponding to a policy starting from state s

which is defined as:

V π(s) = E
τ∼π,P

[
∞∑
t=0

γtrt | s0 = s

]
. (2.3)

Where the trajectories τ are generated by transition function P and actions are

taken according to the policy π. Similarly an action-value function for a policy π

starting from state s and taking initial action a can be defined as:
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Qπ(s, a) = E
τ∼π,P

[
∞∑
t=0

γtrt | s0 = s, a0 = a

]
. (2.4)

Next, we define the optimal value function as:

V ∗(s) = max
π

V π(s) = max
π

E
τ∼π,P

[
∞∑
t=0

γtrt | s0 = s

]
. (2.5)

A policy which maximizes the value function at all states is called an optimal

policy and is denoted by π∗. Similarly we define the optimal action value function as:

Q∗(s, a) = max
π

Qπ(s, a) = max
π

E
τ∼π,P

[
∞∑
t=0

γtrt | s0 = s, a0 = a

]
(2.6)

The problem of learning the value and action value functions for a fixed given policy

π is called policy evaluation. Like before, we assume we are dealing with a discrete

state and action space which are small enough allowing us to represent the values for

different states in the state space as a table. The naive way to learn the value function

is to gather many samples from the environment by having the agent interact with it

and estimate the value for each state by averaging the computed discounted returns

for the samples gathered starting from each state. With enough samples, the values

for each state can be computed with a small enough error. Furthermore, by leveraging

the Markovian structure of the problem we could come up with a more efficient way

of computing the value functions. A value function satisfies the following recursion:

V π(s) = E
a∼π
s′∼P

[r(s, a) + γV π (s′)] (2.7)

Using this recursive formulation, we can come up with a different approach to
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iteratively learning the value function for a fixed given policy. In this iterative process

we use the current estimate to update the estimated value for each state. We follow

the following update rule:

V π
k+1(s)← E

a∼π
s′∼P

[r(s, a) + γV π
k (s′)] (2.8)

With a discrete and small enough state and action space this expectation can be

computed exactly since we have access to P . At each step k we update the estimated

values for all states. It can be proven that with γ < 1, following this process will

converge to the real value function for policy π with a linear convergence rate of γ.

The same approach can be used to learn the action-value function Qπ for a given

policy π as well.

Similar to any value function, the optimal value function V ∗ can be recursively

written as:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γV ∗ (s′)] (2.9)

This is called the Bellman equation. In the tabular setting with discrete state

and action spaces, the optimal value function can be obtained via a similar update

rule as (2.8). It can be proven that with γ < 1, the following update rule will converge

to V ∗:

V ∗(s)← max
a

E
s′∼P

[r(s, a) + γV ∗ (s′)] (2.10)

Following the iterative process of applying the above update rule for every state

until convergence is called Value Iteration. Having V ∗ in the tabular setting is
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convenient since by having access to the transition probability, V ∗ can directly be used

to take actions as an optimal action by definition is:

argmax
a

E
s′∼P

[r(s, a) + γV ∗ (s′)] (2.11)

The requirement of having known transition dynamics and reward functions and

also discrete state and action spaces which are relatively small makes this algorithm

intractable for most reinforcement learning problems but this simple algorithm is the

basis for much more capable reinforcement learning algorithms which will be discussed

next.

2.1.3 Model-free Reinforcement Learning

In most reinforcement learning problems, transition and reward functions are unknown,

making the previously discussed algorithms useless. For these problems, a good policy

needs to be learned from data gathered by the agent. The agent’s interactions with the

environment give us episodes of experience in the form of tuples of state, action, next

state and reward (s, a, s′, r) which can be used to learn good policies. Reinforcement

learning algorithms can generally be put into two major categories of Model-free and

Model-based reinforcement learning. Model-free reinforcement learning algorithms

involve learning policies directly from the data gathered by the agent and model-based

algorithms involve learning the transition and reward functions from experience data

using machine learning approaches and utilizing the learned models for obtaining

a good policy. There are certain algorithms that combine components from both

model-free and model-based methods to train the agent. For now, we will discuss the

different model-free methods that can be used to train an agent. Most model-free
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reinforcement learning algorithms can generally be put into the two categories of:

• Q-learning algorithms: In these algorithms, the goal is to learn an approx-

imation of the optimal action-value function Q∗. In this family of algorithms,

we utilize the Markovian structure of the MDP and train the action-value ap-

proximation function Qθ with θ as the function parameters using the Bellman

equation for the optimal action-value functions. Training Qθ using this loss is

done in an Off-policy fashion. This means that learning Qθ can be done using

all the data gathered by the agent. In discrete action settings Q∗ can directly

be used to get the best policy as the best action a = argmax
a

Q∗(s, a). This

allows us to train the agent by only learning Qθ. These algorithms can also be

extended to be used with continuous action settings. In this case the policy

can be represented by a parametric differentiable model and Qθ is similarly

trained using the Bellman equation. If Qθ is also a differentiable model, it can

directly be used as the loss function for the policy, allowing us to train the policy.

Q-learning based algorithms are usually substantially more sample efficient than

Policy Gradient based algorithms but they generally suffer from more instability

and sensitivity to hyperparameters.

• Policy Search algorithms: In these algorithms, a policy is represented by a

parametric differentiable model and a reformulation of the episodic discounted

return is used as the loss function. The policy is then learned directly using

gradient descent based optimization methods. These methods are called On-

policy because at each step optimization is done using data gathered by the

most recent policy only. Being On policy means that a policy cannot be learned

using older data gathered at previous iterations making these algorithms less
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data efficient. The most basic algorithm in the family is REINFORCE [23].

Using a learned value function (critic) can make this algorithm significantly more

efficient resulting in the Actor-Critic family of model-free algorithms. Policy

Gradient algorithms are compatible with both continuous action and discrete

action reinforcement learning settings and they are usually stable and reliable

for a variety of reinforcement learning problems.

Model-free algorithms are responsible for some of the biggest successes of rein-

forcement learning and they are used for training agents that can solve the games of

Atari [2; 24; 22; 25], Dota [26] and Starcraft [5]. They are also used for solving a wide

variety of Robotic simulation tasks [3; 4; 6; 27]. The versatility and reliability of these

algorithms makes them a popular choice for solving reinforcement learning problems

but they generally suffer from very high data inefficiency. This high data inefficiency

makes these algorithms suitable only in scenarios where vast amounts of data can be

gathered very cheaply. Reinforcement learning problems where an efficient simulator

is available are usually the most suitable problems for these algorithms.

2.1.4 Q-learning

In discrete-action environments, optimal behaviour can be learned without directly

needing to learn a mapping πθ from the state space to action space. Instead we can

learn the optimal action-value function Q∗ and take actions by using that because by

definition π∗(s) = argmax
a

Q∗(s, a). The optimal action-value function can be written

as:
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Q∗(s, a) = max
π

Qπ(s, a) = max
π

E
τ∼π,P

[R(τ) | s0 = s, a0 = a]

= E
s′∼P

[
r(s, a) + γmax

a′
Q∗ (s′, a′)

]

In a Markov Decision Process, sequential states in a trajectory are generated

according to a transition probability function P (s′|s, a) which defines the distribution

for the state at each step according the state and action at the previous step. The

Bellman equation for value functions was discussed before. The second line of the

above equation is called the Bellman equation for action value function. This equation

is the basis of the vanilla Q-learning algorithm which learns Q∗ in the tabular setting

using the following update rule:

(s, a, r, s′) ∼ D : Q(s, a)← Q(s, a) + α
[
r(s, a) + γmax

a′
Q (s′, a′)− Q(s, a)

]
(2.12)

The vanilla Q-learning algorithm is an iterative algorithm which involves using

the above update function on agent experience data gathered in a Dataset D. In

Q-learning, two types of policy are used. The first is a behaviour policy and it is only

used to generate experience data. The above update rule is used on the gathered

data. During evaluation, we act greedily with respect to the learned Q-function which

we assume approximates Q∗. It is proven that vanilla Q-learning converges to Q∗

for an MDP as long as all state-action pairs are updated infinitely often [28]. This

means that the behaviour policy should not be a greedy policy with respect to the

learned Q-function since it will most likely miss some states. It is standard to use an
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exploratory policy such as an ϵ-greedy policy for generating experience data. This is a

policy that randomly switches between taking random actions and behaving greedily

with respect to Q. ϵ is considered a hyperparameter which needs to be tuned and

it determines the probability of the agent behaving randomly. We could extend the

tabular Q-learning case to a setting where the action-value function is approximated

by a parametric function such as a multi-layer neural network. The vanilla case of

Q-learning with gradient descent based optimization is as follows:

ϕ← ϕ + α∇ϕ E
s′∼D

[
r(s, a) + γmax

a′
Qϕ′ (s′, a′)− Qϕ(s, a)

]
. (2.13)

One important detail in this optimization objective is that the target Q-learning

approximation Qϕ′ uses different parameters from the main Q-function Qϕ. Using the

same parameterized function in both the target and the value prediction causes the

optimization to collapse and therefore a different Q-function is used as the target. It is

suggested in [2] that the target Q-function Qϕ′ should be periodically updated with the

most recent Q-function approximation Qϕ. This approach is generally followed in most

Q-learning approaches. Another alternative is to use exponential averaging to get the

target Q-function parameters after each gradient descent update [29]. Experimental

results in [30] suggest learned approximations of the Q-function can often suffer from

overestimation of the real action-values. A solution to this problem called Double

Q-learning [31] is to learn two Q-function approximations and using each as the

target for learning the other. The two approximations are then trained according to

the following:
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ϕ1 ← ϕ1 + α∇ϕ1 E
s′∼D

[
r(s, a) + γmax

a′
Qϕ2 (s

′, a′)− Qϕ1(s, a)
]

ϕ2 ← ϕ2 + α∇ϕ2 E
s′∼D

[
r(s, a) + γmax

a′
Qϕ1 (s

′, a′)− Qϕ2(s, a)
]

Q-learning can utilize data from any policy to learn the optimal behaviour. A

learning scheme was suggested in [2] in which an agent periodically interacts with an

environment according to an exploratory policy and gathers experience and stores this

experience in a large array called the Replay Buffer. The Q-learning updates are

done using uniformly sampled data from this buffer. This is the standard approach

for most Q-learning based algorithms. At any given step Qϕ can be very accurate at

predicting the action-values for some action-value pairs and it might be very inaccurate

with others. This accuracy could be because some states are visited more often and

therefore data corresponding to them might be more abundant in the replay buffer.

Updating Qϕ for states on which it is accurate could result in less meaningful updates

than updating it on states on which it is inaccurate. An approach was introduced in

[22] where every stored data in the buffer has a priority. This priority is proportional

to the action-value prediction error and it determines the probability of that data

being sampled for Q-learning. Sampling high priority data might cause Qϕ to overfit to

that data which is undesirable. According to [22], it is suggested to weigh the updates

for each sampled data in a way that higher priority samples have smaller updates.

This is intuitively telling the optimizer to do bigger updates when it sees a low priority

sample. This approach is called Prioritized Experience Replay and involves doing

Q-learning updates according to the following:
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ϕ← ϕ + α w∇ϕ E
s′∼D

[
r(s, a) + γmax

a′
Qϕ′ (s′, a′)− Qϕ(s, a)

]
w =

(
1

N
· 1
p

)β

In the above equation, p corresponds to the sampling probability of the given

data (s, a, r, s′) and N is the replay buffer size with β being a hyperparameter in

this algorithm regulating how much the update weights should differ among samples.

Prioritized Experience Replay is shown to vastly improve Q-learning performance in

many envrironments [22; 24] and is a standard approach used with many off-policy

approaches today. Another area where Q-learning performance can significantly be

improved is to use multi-step bootstrapping ideas similar to what is used with policy

evaluation. The Bellman equation for Q∗ of an arbitrary state s0 can be written as:

Q∗(s0, a) = E
s0:k,a0:k−1∼π∗,P

[
k−1∑
t=0

r(st, at) γ
t + γk max

a′
Q∗ (sk, a

′)

]
(2.14)

An update based on the multi-step Bellman equation for Q∗ can be obtained

except it requires the k-length sequence of rewards to come from the same policy being

updated. This means that we can no longer learn Q∗ off-policy removing the biggest

advantage of Q-learning based algorithms. In order to solve this, we need to readjust

the learning rate with an importance sampling ratio ρ. Assuming we are learning Q∗

from a sequence of experience (s0, a0, ..., sk−1, ak−1, sk) from an older policy πold, the

importance sampling ratio becomes ρ =
∏k

t=0
π(at|st)

πold(at|st) . This is meant to readjust for

the probability of having that experience with the new policy. Then the multi-step

Q-learning update to Qϕ with importance sampling becomes:
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ϕ← ϕ + α ρ∇ϕ E
s0:k,a0:k−1∼D

[
k−1∑
t=0

r(st, at) γ
t + γk max

a′
Qϕ (sk, a

′)− Qϕ(s0, a0)

]

ρ =
k−1∏
t=0

π (at | st)
πold (at | st)

Using the above update rule requires πold. This means we need to save π(a|s) for

every saved trajectory. In practice omitting ρ from the update often works very well

and in most experimental setups multi-step Q-learning is done without importance

sampling.

Q-learning based approaches can be extended to Actor-Critic cases as well where

we have an explicitly parameterized policy [32; 29]. This approach is useful because it

allows us to expand off-policy model-free reinforcement learning to continuous action

problems. In continuous action problems, computing argmax
a

Q∗(s, a) might not be

easy when a complex function approximator such as a multi-layer neural network is

used to model the Q-function. Instead we could learn a parametric function for the

policy πθ and directly use Qϕ to optimize that policy. Qϕ(s, πθ(s)) can be used as

the objective for learning πθ. This allows us to learn πθ using gradient descent. This

approach is the basis of Actor-Critic off-policy algorithms that are generally considered

the most sample efficient model-free methods for solving continuous control problems

[27; 6; 33].

2.1.5 Model-based Reinforcement Learning

Another approach for solving reinforcement learning problems is to first learn the

transition P (st|st−1, at−1) and reward functions R(s, a) and then use the learned
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functions to solve the RL problem. As the agent interacts with the environment, we

can save the (s, a, r, s′) tuples in a dataset and use that data to train the transition

and reward functions with standard supervised learning approaches. These approaches

all fall under the Model-based reinforcement learning umbrella and there is a wide

variety of ways in which a learned model can be utilized. We assume in this part that

the problem can be modeled as an MDP.

In scenarios where the transition function is a deterministic one meaning st =

f(st−1, at−1), we can use multilayered neural networks to learn the transition function.

In stochastic cases with continuous state spaces we can train the multilayered neural

network to output the parameters of either a Multivariate Gaussian distribution or

a Mixture of multivariate Gaussian distributions. The same can be done for the

reward function. The experience in the dataset is gathered by an agent following a

specific policy which is initially a completely random agent and in later iterations it is

improved using the model. Model-based approaches usually involve iteratively training

the models and acting in the environment using a policy which is improved after

each iteration. The new experience is then added to the dataset so that the learned

model can be further fine-tuned to the new data. Policies could be obtained using

decision-time planning approaches such as the Cross-Entropy Method (CEM) [34; 35].

Usually during the initial phases of training when the agent follows a random policy

data could be scarce and only a subset of the state-space is explored. This makes

Model-based approaches vulnerable to overfitting in the initial phases of training. It

is useful if the knowledge that the learned model is not accurate in some parts of

the environment can be encoded into the model architecture. We aim to deal with a

problem called Epistemic uncertainty which is the learned model’s lack of knowledge
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about the world. [36] suggests using an ensemble of multilayered neural networks each

outputting the parameters of a multivariate Gaussian distributions. Each of these

models are trained on a subset of the gathered experience so far. These subsets are

randomly created at each step and are reshuffled before each training step. Using

an ensamble of learned models during planning allows us to mitigate the problem of

model overfitting. The Cross-Entropy method used with ensemble model learning

shows great performance in robotic control problems [36].

Even the most data-efficient model-free algorithms such as DQN [2] and SAC [6]

are usually very data inefficient for practical real world problems. Another way a

learned model can be utilized is by generating synthetic training data for model-free

methods such as Q-learning. This approach can be very useful in problems where

interacting with the environment can be very costly. Generating data with a learned

model can be very cheap and this could potentially provide a big boost to the data

requirements of model-free methods. The first approach based on this idea is Dyna and

was first suggested in [37] and is a useful model-based technique which is especially

powerful when combined with off-policy model-free methods such as Q-learning [2]

and Soft Actor-Critic [6]. In Dyna we use the learned models as an alternative to

interacting with the real environment where generating data is significantly more

expensive. This cheap data generation allows us to significantly expand the replay

buffer with samples that could be used to learn the Q-function. In Dyna with off-policy

methods, two replay buffers are used. The first only includes agent’s interactions

with the real environment which are saved as tuples of state, action, reward and next

state (s, a, r, s′). These samples are used to train the model. In order to create more

data for the model-free algorithm, we sample from this replay buffer and generate
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new trajectories of data using the learned models and the policy. The length of these

synthetic trajectories (also called imagined trajectories) should be kept limited as

learned models are noisy and these errors can become larger the longer an imagined

trajectory becomes. The real data samples alongside imagined samples are added to

the second buffer. We sample from the second buffer to boost the training of the

Q-function for Q-learning or Soft Actor-Critic. [36] shows this approach to be very

powerful when combined with an ensemble of probabilistic models similar to [36] in

order to mitigate model inaccuracy.

Another way learned models can be used to help with model-free reinforcement

learning algorithms is by allowing for on-policy data generation for multi-step Q-

learning. As discussed, importance weights are needed to adjust the probability of a

trajectory from the replay buffer to the latest policy. A learned model can be used

to generate an on-policy multi-step trajectory starting from the sampled state. This

can be done on the fly when Q-learning update is being done. [38] combines this

approach with DDPG [33] and shows a great improvement in performance in continuous

control tasks. Model-based approaches generally help reinforcement learning in fully

observable environments by reducing the number of required interactions with the

real environment. Model-based algorithms play a big role in reinforcement learning in

partially observable environments as well and they often provide perks beyond only

data efficiency in these cases. Some of those approaches will be discussed later in this

chapter.



2 Background and Related Work 21

2.2 Partially Observable Reinforcement Learning

We assume that states are fully observable in the problems that we are interested in

modeling with an MDP. This is in contrast to partially observable environments, which

are modeled by Partially Observable MDPs (POMDP). In reality, many problems that

we encounter do not have this fully observable characteristic, as knowing the state space

requires good knowledge of the underlying dynamics and structure of the environment

and also access to some variables that might not be easily accessible. Nevertheless, full

observability significantly simplifies the reinforcement learning problem and allows us

to use very effective approaches to tackle the problem. Some of these approaches were

discussed in the previous sections. Building on those approaches, we can introduce

more complicated algorithms for partially observable settings.

2.2.1 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) can be defined by a set

(S,A, T, R,Ω, O). The first four components are identical to an MDP in their definition.

The final two components are defined as:

• Observation space Ω: A set containing all possible valid values for observation.

• Observation mapping function O: This is a function which formulates the

probability distribution over the observation space given the state st and actions

at at timestep t. We represent this distribution as O(.|s, a).

In POMDPs, the state evolves in a Markovian fashion dictated by the transition

probability. Similar to an MDP, the distribution of state at each step is dependent on

the state and action at the previous step. The crucial difference between an MDP and
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POMDP is that the agent does not see the state st but sees observations ot at each step.

The requirement of having access to state representations makes MDPs restrictive

for modelling many problems. Instead many of these problems can be modeled with

POMDPs. Observations can be low dimensional vectors or also high dimensional

vectors such as images. It is common in many partially observable problems that

observations are images representing what the agent sees when interacting with the

environment.

Not having access to state representations makes the problem of learning optimal

policies significantly harder. Unlike states in MDPs, observations at each step do

not contain all the necessary information for learning good policies and their value

functions. To alleviate this problem, the agent needs to take actions based on the

entire history of observations that it has seen so far from the start of the episode. We

define history ht of observations as a tuple (o1, o2, ..., ot) including all the observations

from the first step until timestep t. In some algorithms the history also includes all

the received rewards and actions from the first step to timestep t. A major issue that

arrises with using function approximators such as neural networks is that depending on

t the history (if represented as a concatenated vector) can constantly expand in terms

of size, meaning usual neural network architectures such as the MLP cannot be used to

process the history. A natural solution to this problem are recurrent neural networks

(RNNs) which are made to deal with variable length sequences. RNNs allow us to

work with variable length sequences while having learnable parameters. The Long

Short-Term Memory (LSTM) [7] variant of RNNs is chosen because of its improved

performance and versatility in sequential machine learning problems. Recurrent neural

networks allow us to learn a compact representation from history which then can used
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as input to simple neural network architectures such as MLPs which will be used as

approximators for the Q-function and the policy.

Most Deep reinforcement learning algorithms for solving POMDPs utilize RNNs

for compressing the history into a compact representations. Adding RNNs requires

modifications to be made to Deep RL algorithms that were discussed before. First,

we will discuss model-free approaches to partially observable reinforcement learning

problems.

2.2.2 Model-free partially observable reinforcement learning

In this section, we will discuss how model-free methods can be modified so that they

can be used for partially observable reinforcement learning problems. This requires

incorporating a memory processing structure such as an RNN into the algorithm.

Incorporating RNNs with policy-gradient based methods are generally simpler as they

do not deal with replay buffers and therefore agents are trained on entire sequences of

newly generated data. An actor-critic methods with RNNs is shown to be a powerful

approach for solving some partially observable problems [39; 5; 26].

Deep Q-learning (DQN) can also be modified to work in partially observable

settings with history of observations used to determine the policy. In DQN for fully

observable problems, agent experience was saved as tuples of state, action, reward

and next state (s, a, r, s′) in a replay buffer and was later uniformly sampled for

training the Q-function approximator Qϕ. Each step of the interaction is treated

as a separate sample here and the Q-learning update can be done on each sample

independently. Assuming we use the sequence of observations (o1, o2, ..., ot) as history

ht input to the RNN model, computing the correct Q-function for each sample requires
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the observations from all the preceding timesteps that were encountered during the

data gathering phase. Since the preceding observations are not available to us when

sampling from the DQN replay buffer, a change needs to be made to the algorithm to

accommodate recurrence with DQN.

Deep recurrent Q-learning (DRQN) [10] suggests two solutions to this problem:

• Saving a fixed length preceding history for each sample and initializing the RNN

internal state to zero at the start of this fixed length sequence. This approach is

the simplest for incorporating RNNs with DQN and allows us to do uncorrelated

sampling from the buffer which is an important part of DQN. Initializing the

RNN hidden state to zero at the start of each saved sequence is problematic as

it prevents the RNN from learning the true hidden state for each sample but it

also forces the RNN to learn representations even from an atypical initial hidden

state. A problem with this approach is the much higher memory requirement of

the replay buffer compared to non-recurrent DQN case and using this approach

forces us to save the observations from each state multiple times in the replay

buffer.

• Saving entire episodes in the buffer and doing Q-learning updates on all of the

states in the sampled episode. This fixes the issue of unreliable RNN hidden

states but causes other serious problems. First is that states in a single episode

are highly correlated and doing updates on all states from an episode can be

problematic and unstable as DQN requires uncorrelated sampling for training.

The second problem is with the varying lengths of episodes which combined

with the impossibility of parallelizing computation across a sequence results in

significant slowdowns. An advantage of this approach is memory efficiency as
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each encountered state is saved only once in the buffer. Also, this approach

provides computational benefits in a different manner that will be discussed in

more detail.

In [10] very little difference in performance was observed between the two strategies

in Atari games, and therefore the first approach was chosen due to its simplicity. Most

environments in the Atari suite [40] are almost fully observable as it is very common to

do frame-stacking with non-recurrent Q-learning to learn optimal Q-functions for these

problems [2]. [9] suggests the almost "full-observability" of Atari environments might

be the reason that very little difference in performance is observed between the two

approaches as in the first approach information from a limited number of preceding

states is only considered during training (essentially similar to frame stacking only

with RNN based architectures). Using the same approach in problems with higher

levels of partial observability such as DMLab [41] could prevent the RNN from learning

representations useful to solving the problem. [9] aims to augment the first approach

so that it is more suited to harder partially observable reinforcement learning problems.

[9] suggests saving the hidden RNN states during data gathering in the replay buffer.

During Q-learning these saved hidden states are used to initialize the RNN; Next,

similar to the first approach in [10] a fixed length sequence of preceding states (called

Burn-In) are saved with each sample in the buffer. Both the saved RNN state and the

Burn-In sequence are used to initialize the model and afterwards, Q-learning is done

on the samples. Using saved hidden states to initialize the RNN could be problematic

and cause instability during training as sampled sequences could come from older

iterations where the RNN weights were significantly different from the current RNN

weights. Having a sufficiently long Burn-In sequence length is suggested in conjuntion
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with initializing the RNN hidden state with saved values to allow the RNN to recover

good hidden states before the hidden values are used for doing Q-learning.

The second approach in [10] can suffer from training instability and computational

problems (stemming from variation in sequence length) but it provides a benefit.

Since all consecutive states in an episode share their preceding histories, the second

approach provides the benefit of doing Q-learning for all samples in an episode by

computing a sequence of RNN hidden states only once. [9] suggests bundling a

fixed length sequence of consecutive states in the replay buffer and sampling them

all together to do Q-learning updates. This is advantageous as the Burn-In and

the saved recurrent hidden state are shared for all states in a sample subsequence.

This still could lead to training instability with Q-learning updates and therefore

the length of these subsequences should be limited. The approach in [9] also utilizes

distributed reinforcement learning similar to [39] but the suggested approach can

easily be implemented without distribution of data gathering and learning between

a number of threads. Also, [9] uses prioritized experience replay with multi-step Q-

learning. The approach in [9] is called Recurrent Replay Distributed DQN (R2D2) and

is considered the best performing recurrent Q-learning based algorithm for partially

observable environments. The following is a pseudocode of the non distributed R2D2

style Q-learning algorithm with single-step Q-learning updates:

The hyperparameters in this algorithm include:

• N or "Burn-In Length" is the length of the preceding burn-in sequence used

during Q-learning sampling.

• L or "Subsequence Length" is the length of the subsequence of states from each

episode which are stored together in the replay buffer. Later Q-function training
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Algorithm 1 Recurrent Replay Q-learning with uniform sampling
1: init σ, θ to random networks, init θ′ ← θ and D← {}
2: for k ∈ 0, . . . ,M do
3: start episode, init history h← {}
4: while not done do
5: receive observation ot, append to history h
6: take some action at given by argmaxat Qθ(σ(h, 0)) with probability 1− ϵ and

uniform random action with probability ϵ {Epsilon-Greedy Action Selection}
7: Sample batch of experience sequences (h1:N , z, o1:L, r1:L, a1:L) from D
8: Initialize σ with z and burn-in history to σ and detach gradients: z′ =

σ(h1:N , z)
9: yi ← ri + γ argmaxa Q

′(σ(o1:i+1, z
′)) {Compute Target}

10: Update θ and σ by minimizing 1
L

∑L ||Q(σ(o1:i, z
′))− yi||2 {Update critic}

11: Update θ′ ← σθ′ + (1− σ)θ {Target update using exponential averaging}
12: if t mod L is 0: append (oi−L−N :i−L−1, σ(hi−L−N , 0), oi−L:i, ri−L:i, ai−L:i) to D

{Add subsequence to buffer}
13: end while
14: end for=0

will be done on all of these states together at each iteration.

The original approach in [9] uses multi-step Q-learning and prioritized experience

replay which are not included in Alg 1. Also, Alg 1 uses exponential averaging

similar to [27; 6; 33] for target Q updates which is different from the original R2D2

approach which uses hard updates for the target Q-function [9]. Alg 1 is the basis for

a more complicated model-based approach which is the focus of this thesis and will be

introduced in the next chapter. First, we need to introduce model-based techniques

for Partially observable environments.

2.2.3 Model-based Partially observable reinforcement learning

Similar to Model-free methods for partially observable problems, model-based methods

can also be extended to these problems. The problem of not having access to state
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representations forces us to change the structure of the approximate transition and

reward models. Also the observation mapping function is another unknown that needs

to be learned. Similar to model-free methods recurrent architectures are necessary for

doing model-based RL in partially observable environments. If the unknown transition,

reward and observation mapping function are learned they can be used in similar ways

that were discussed before. We could do online planning with the learned models

using the cross-entropy method (CEM) [34; 35] for continuous action environments

and Monte-Carlo tree search [42; 43] for discrete action environments.

The idea of the state in an MDP (or POMDP) is a compact representation of the

history of every observation, action and reward encountered so far and is denoted by

ht = (o1, a1, r1, ...ot) at every timestep t. A state gives us all the information about

what has happened before and what is about to happen next and it is sufficient for

taking optimal actions. If we were to create a custom hidden state representation,

we want to be able to predict the values of this hidden state representation at next

timestep t + 1. We also want to be able to predict rewards at each step rt given

the hidden state representations and action at the same timestep. The problem of

model-based RL in POMDPs then becomes:

• Learning a function which maps current observation and previous actions, rewards

and hidden states to the hidden state representations at the current step.

zt = fh(ot, at−1, rt−1, zt−1)

• Learning a function which predicts observations from hidden state representa-
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tions.

ot+1 = fo(zt, at)

• Learning a function which maps hidden state representation and action at current

step to the reward at current step.

rt = fr(zt, at)

The first component maps history at each timestep to hidden state representations.

Since history at each step is a subset of history at later stages, we can use a recursive

function which maps observations at the current step and reward, action and the hidden

state at the previous step to the hidden state at the current step. This formulation is

convenient since it allows us to process actions, rewards and observations at each step

only once but more importantly this formulation can be modelled using a recurrent

neural network (RNN) as the hidden state of the RNN at each step can be used as the

hidden state of the POMDP and (ot, at−1, rt−1) can be used as inputs to the RNN at

each step. We are assuming the hidden state can be deterministically predicted at each

step given the previous value and the latest observation, action and reward. This may

not be a correct assumption as some environments have stochastic elements in their

transitions as well. [13; 11] suggests adding stochasticity by including a stochastic

variable which is predicted from the hidden state at each step and is fed as an input

to the RNN at the next step. In this work, we assume next state transitions can be

predicted deterministically. The other two components include functions that predict

the reward and next observations given the current hidden state and action.

Since the ground truth values for the hidden state are unknown, we cannot directly
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train fh on sequences of experience data but rewards and observations are known.

Therefore, we can train fh, fo and fr together so that they can correctly predict

observations and rewards.

In many partially observable problems such as Atari [40], DMLab [41], DMcontrol

[44] and the MiniGrid environments [16], observations are high-dimensional (such as

Images) and are not well shaped be used directly as inputs to the RNN. Another

function is needed to map these high dimensional observations to lower dimensional

compact representations which are better suited to be processed by an RNN. In the

World Models approach [14] the encoder unit of a pretrained Variational Autoencoder

(VAE) [45] is used. This VAE is trained on a dataset of random policy experience

and the encoder weights are fixed in the reinforcement learning phase. More advanced

methods such as Dreamer [11] and PlaNet [13] jointly train the observation encoder

with the transition dynamics function and reward prediction function using a loss

derived from the variation lower bound on the log-likelihood of observations.

It is shown in [11; 15; 14] that if we follow the discussed process of training the

RNN encoder so that it can predict observations and rewards, then the hidden internal

state of the RNN can serve as a replacement for the state representations and it can be

used as an input to value function and parameterized policies which are modelled with

non-recurrent neural network architectures and do not have access to full histories.

This thesis proposes using the learnable state representations of a transition model

for doing non-recurrent Q-learning for partially observabele problems. The idea of

using pretrained observation encoders from the World Models approach [14] will also

be used for some of our experiments.
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2.3 Approximate Information State

In this section, we aim to go over the various topics and concepts which are relevant

to the understanding of the Approximate Information State (AIS) concept which

was introduced in [15]. This section includes a summary of parts of [15] which are

instrumental in the understanding of AIS. We will also go over the model-augmented

policy-gradient algorithm which was introduced in [15]. We will later build on these

concepts to introduce an AIS-based model-augmented recurrent Q-learning method

which is the main focus of this thesis.

In POMDPs, the belief state of the agent is the posterior belief of the unobserved

state given all the observation history gathered by the agent. It is known that Partially

Observable MDPs could be transformed into fully observable Markov Decision Processes

by utilizing the belief state as an information state [46]. This information state allows

us to use Dynamic Programming based approaches for policy evaluation and policy

iteration on POMDPs. Assuming we have a series of history compression functions

called information state generators: {σt : Ht → Zt}Tt=1. The hidden states at each

timestep t are Zt = σt (Ht). Given these definitions, the desired information state has

to satisfy the following properties:

• P1: It has to be sufficient for performance evaluation or it has to be sufficient

for reward prediction at each step. This condition can be written as:

E [Rt | Ht = ht, At = at] = E [Rt | Zt = σt (ht) , At = at]

• P2: It has to be sufficient to predict itself. The means that it has to be sufficient

to predict future hidden states given current hidden states. This condition can
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be written as:

P (Zt+1 | Ht = ht, At = at) = P (Zt+1 | Zt = σt (ht) , At = at)

While condition P1 is easier to verify, verifying condition P2 can be more com-

plicated depending on the problem setup. Instead it would be more helpful if the

following stronger conditions were verified:

• P2a: It has to evolve in a state-like manner. This means that series of functions

{φt}Tt=1 exist that for any timestep t, we have:

σt+1 (ht+1) = φt (σt (ht) , yt, at)

φt is an alternative function which uses the information state at previous steps

Zt−1 as input. The φt formulation is more useful as it can be modelled with a

recurrent neural network.

• P2b: It is sufficient for predicting future observations. This means that for any

timestep t we should have:

P (Yt | Ht = ht, At = at) = P (Yt | Zt = σt (ht) , At = at)

It is proven in [15] that if both conditions P2a and P2b hold, then P2 also holds.

It is also shown in [15] that Zt = σt (Ht) can be used to turn a POMDP into an MDP

with Zt as state representations at each step. Having the information state allows us

to used MDP algorithms on a Partially Observable problem setting.
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The most obvious examples for an information state as defined above would be

the full history of actions and observations ht = (o1:t−1, a1:t−1) and also the hidden

POMDP state st as described in 2.2.1. The first option is a hidden state representation

that linearly grows in dimensionality with each timestep making this option unsuitable

for even the simplest partially observable environments. The second option requires

knowledge and information of the hidden parts of the underlying system which is

not available as their availability would turn this problem from a partially observable

problem into a fully observable problem modelled by an MDP. Neither option is

feasible for most partially observable problems. In the case of an arbitrary partially

observable problem with no knowledge of the underlying dynamics, it is unclear if

an information state formulation (other than the above two) exists at all. Using the

definition of information state, we now move onto the Approximate Information State

(AIS) formulation. With AIS, we want to come up with approximate conditions that

are both feasible and verifiable in a data-driven experimental setting. First we have to

define Integral Probability Metrics (IPM) which are fundamental to our definition of

an approximate information state.

Let’s assume we have (X,G) as a measurable space [47] and have F as the set of all

uniformly bounded measurable functions on (X,G). The Integral Probability Metric

between two distributions µ, ν ∈ ∆(X) with respect to function class F can be written

as:

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X

fdµ−
∫
X

fdν

∣∣∣∣ (2.15)

Total variation distance [48] and Maximum mean discrepancy [49; 50; 51; 52] are

examples of IPMs [53]. We also use ρF which is the Minkowski functional defined for
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function space F:

ρF(f) := inf
{
ρ ∈ R>0 : ρ

−1f ∈ F
}

Furthermore, the contraction factor κF(ℓ) for arbitrary function l from function

space F is defined as:

κF(ℓ) = sup
f∈F

ρF(f ◦ ℓ).

Both the contraction factor and the Minkowski functional will be used later. Now

we can define the approximate conditions which are necessary for an Approximate

Information State formulation. Similar to the information state case, we have a

series of history compression functions
{
σ̂t : Ht → Ẑt

}T

t=1
which map full histories of

action and observations to hidden state representations. We also have approximate

update kernels
{
P̂t : Ẑt × A→ ∆

(
Ẑt+1

)}T

t=1
and reward approximation functions{

r̂t : Ẑt × A→ R
}T

t=1
. This collection is called an {(εt, δt)}Tt=1-AIS generator if the

process
{
Ẑt = σ̂t (Ht)

}T

t=1
satisfies the following conditions:

• AP1: It has to be sufficient for approximate performance evaluation. Meaning

reward prediction error at each timestep t should be upper-bounded as follows:

|E [Rt | Ht = ht, At = at]− r̂t (σ̂t (ht) , at)| ≤ εt

• AP2: It has to be sufficient to approximately predict itself. Meaning:

dF

(
P
(
Ẑt+1 | Ht = ht, At = at

)
, P̂t

(
Ẑt+1 | σ̂t (ht) , at

))
≤ δt
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If these conditions hold, we call this collection an {(εt, δt)}Tt=1-AIS generator.

Similar to an Information state generator, we provide an alternative to AP2 which is

more practical to work with [15]. We replace AP2 with AP2a and AP2b as follows:

• AP2a: The AIS hidden state evolves in a state-like manner. Meaning there is a

function
{
φ̂t : Ẑt × Y × A

}T

t=1
such that for history ht+1 for timestep t+ 1 we

have:

Ẑt+1 = σ̂t+1 (ht+1) = φ̂ (σ̂t (ht) , yt, at)

• AP2b: It is sufficient for predicting future observations approximately. This

condition is very similar to P2b of the Information state case. For this con-

dition to hold, there should exist a measurable observation prediction kernels{
P̂ y
t : Ẑt × A→ ∆(Y)

}T

t=1
for each timestep t then:

dF

(
P (Yt | Ht = ht, At = at) , P̂

y
t (Yt | σ̂t (ht) , at)

)
≤ δt/κF (φ̂t)

Here, κF (φ̂t) is defined as supht∈Ht,at∈At
κF (φ̂t (σ̂t (ht) , ·, at)). For example, if

Total Variation Distance is chosen as the IPM, κF (φ̂t) = 1.

Similar to the Information state case, In [15] it is proven that AP2a and AP2b

imply AP2. Working with AP2a and AP2b is significantly easier in practical

settings as both conditions can be easily verified. The significance of this Approximate

Information State formulation is that if the corresponding generator and prediction

functions exist and they satisfy the stated conditions, the hidden representations can

be used to do both value function approximation and optimal policy derivation with

provable error bounds.
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We can use history generator functions corresponding to an Approximate Infor-

mation State for value function approximation and approximately optimal policy

derivation. We now assume that the problem is infinite horizon and discounted with a

γ as the discount factor. If we have
(
{σ̂t}t≥1 , P̂ , r̂

)
as a time-homogeneous (ε, δ)-AIS

generator, we can define approximate action-value functions
{
Q̂ : Ẑ ×A→ R

}
and

value functions
{
V̂ : Ẑ → R

}
as:

Q̂(ẑ, a) := r̂(ẑ, a) + γ

∫
Ẑ

V̂ (ẑ′) P̂ (dẑ′ | ẑ, a) ,

V̂ (ẑ) := max
a∈A

Q̂(ẑ, a).

We know that the above equation has a fixed point solution for γ < 1. If the fixed

point of the above equation for the action-value function was denoted by Q̂∗ and the

corresponding value function for this fixed point solution were V̂ ∗, then the following

bounds for value function approximation was shown in [15]:

∣∣∣Qt (ht, at)− Q̂∗ (σ̂t (ht) , at)
∣∣∣ ≤ α and

∣∣∣Vt (ht)− V̂ ∗ (σ̂t (ht))
∣∣∣ ≤ α

with α =
ε+γρF(V̂ ∗)δ

1−γ
. The above bounds mean that we can get sufficiently accurate

action-value and value function approximations in a POMDP by relying on AIS

generated hidden states. We can also derive bounds over value and action-value

functions for an optimal policy π̂∗ : Ẑ → ∆(A) that satisfies:

Supp (π̂∗(ẑ)) ⊆ argmax
a∈A

Q̂∗(ẑ, a)

If we were to define policy πt : Ht → ∆(A) by πt := π̂∗ ◦ σ̂t. Then, for any timestep
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t, we have:

|Qt (ht, at)−Qπ
t (ht, at)| ≤ 2α and |Vt (ht)− V π

t (ht)| ≤ 2α.

Furthermore, [15] shows that an Approximate Information State generator satisfying

AP1, AP2a and AP2b can be used for deep reinforcement learning. As the hidden

representations generated by an AIS generator can be used to train a policy using

the vanilla policy gradient model-free algorithm. The performance of this approach

is demonstrated over a wide variety of partially observable environments. First, the

two IPMs used in [15] for constructing the AIS generators should be discussed first

as different IPMs affect both the loss functions and also the structure of the neural

network models.

One choice for the IPM is the the Total Variation Distance. Using Pinsker’s

inequality [54], we can derive an upper bound for the Total Variation Distance

involving the Kullback–Leibler divergence:

dTV(µ, ν) ≤
√
2DKL(µ∥ν).

KL divergence between two densities µ and ν over ∆(X) is defined as [55]:

DKL(µ∥ν) =
∫
X

log µ(x)µ(dx)−
∫
X

log ν(x)µ(dx)

The aim is to learn a parametric function approximating µ while ν is the real

distribution generating the real data. We can omit the second term of the above

expression as it does not depend on ν and use the first term as a loss to be used with

gradient descent based optimizers. The first term is the cross-entropy between the
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distributions µ and ν which can be easily computed over minibatches of experience

data. Another choice for the IPM is the distance-based MMD (Maximum Mean

Discrepency) which can be written as:

dFp(µ, ν) =

√
E [dX,p(X,W )]− 1

2
E [dX,p (X,X ′)]− 1

2
E [dX,p (W,W ′)]

with X,X ′ ∼ µ,W,W ′ ∼ ν and all being independent random variables. dX,p (x, x
′) =

∥x− x′∥p2 and for p = 2, we have the following simplified form of an MMD-based loss

for learning AIS generators:

(Mξ − 2X)⊤Mξ

Here Mξ is the approximated mean of the distribution and X is a sample from

the distribution. Mean of the above over minibatches of experience data can be

used to train an AIS generator. Here, for continuous valued random variables, Mξ

would be the mean of the random variable and for discrete valued variables, we would

be using one-hot encoded vectors of the random variable as X and the vector of

probabilities (the probability mass function of the multinomial distribution) as Mξ.

The random variables for which we want to learn the distribution over are the next

step observations in the case of going with AP2a and AP2b. The KL-divergence loss

includes log probability terms for data samples and therefore we are required to learn

a parametric function for the whole distribution. For continuous-valued variables,

the distributions are modelled with Mixture of Gaussians and all the components

such as the means and variances for all Gaussian distributions and the multinomial

probabilities for each Gaussians should be modelled. For the MMD-based loss, we only
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need to learn the mean of the distribution and therefore the function approximators

are much simpler. Please note that the generative models are not used for simulating

the environment and creating future trajectories as with many other model-based

approaches. The generative model component is only trained with respect to a model

loss (MMD or KL-divergence) and then the hidden states of the RNN component are

used for reinforcement learning. The aim is to seperate the RNN learning part from

the reinforcement learning part. For this purpose, the MMD-based loss is suitable

both for being simpler and also that full sample generation is not needed at all.

In [15], a time-homogeneous AIS-generator
(
σ̂, r̂, φ̂, P̂ y

)
that satisfies AP1, AP2a

and AP2b is used with the two IPM choices outlined above. σ̂ and φ̂ can be both

modelled using a time-series function approximator. In this case an LSTM [7] is

used to model these two components together. r̂ can be modelled with any function

approximator such as multi-layer perceptron. P̂ y has a different structure depending

on the IPM used and also whether observations are continuous or discrete random

variables. For the MMD case, P̂ y can be modelled with an MLP outputting the

mean of the observations distribution. For discrete valued observations, an MLP is

used with a Softmax final layer used to model the probability mass function of the

multinomial distribution for the observations. For the KL case, P̂ y has a much more

complex structure as it has to model a mixture of Gaussian distributions with three

seperate MLPs modelling the multinomial component, the means and the variances.

For discrete valued observations, the KL case is exactly the same as the MMD case.(
σ̂, r̂, φ̂, P̂ y

)
are all trained using the following loss:

1

T

T∑
t=1

[
λ
∣∣∣Rt − r̂

(
Ẑt, At

)∣∣∣2 + (1− λ)dF (µt, νt)
2

]
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with the second term being the MMD-based or the KL loss. [15] uses the above loss

to train an AIS generator to be used with a stochastic policy which in turn is trained

using the vanilla policy gradient approach [56]. The RNN-based history compression

component is only trained on the above loss and later the hidden AIS representations

are used as inputs to a stochastic policy which is trained using the policy gradient

objective:

∇̂θJ(ξ̄, θ) =
T∑
t=1

(
t∑

τ=1

∇θ log πθ

(
At | Ẑt

))
γt−1Rt

Value functions are not used and the reward-to-go approach is used for approximat-

ing returns for each state. It is demonstrated that this approach shows a performance

superior to recurrent on-policy model-free approaches (PPO+LSTM) on a wide variety

of environments ranging from simple discrete observation space environments to the

much more difficult and diverse family of MiniGrid environments [15]. For MiniGrid,

the high-dimensional observations are first compressed using a simple autoencoder

[57] and the compressed representations are used as input observations to the AIS

components. The simple autoencoder is pretrained on a dataset of random agent

experience similar to the World Models approach [14]. The autoencoder is not updated

during the reinforcement learning phase. Building on these findings, in the next

chapter, we outline an approach to augment recurrent Q-learning using AIS models.
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Chapter 3

Recurrent Q-learning with AIS models

In this chapter we outline the main proposed algorithm which is an AIS based model-

augmented recurrent Q-learning approach to solve partially observable environments.

Similar to what is done in [15] and was discussed in the previous chapter, the aim is

to learn a time-homogeneous AIS-generator
(
σ̂, r̂, φ̂, P̂ y

)
which satisfies AP1, AP2a

and AP2b but this time in conjunction with doing Q-learning. The major difference

is that the AIS components will be trained on data coming from an R2D2-style [9]

recurrent replay buffer. This means that: 1) the data is generated by various different

policies (unlike the approach in [15] in which AIS model learning was done on-policy),

2) histories for sampled trajectories will be truncated up to fixed lengths in accordance

to the R2D2 approach discussed in Alg 1.

We will use the MMD loss for future observation prediction which was outlined in

the previous chapter. The KL based loss does not perform well in our experiments

and using the MMD loss also provides computational benefits because of its simpler

structure (we only need to predict the mean). Our approach involves training the

AIS model components on the same minibatch of samples that we do Q-learning on.
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Similar to the vanilla policy gradient approach in [15] and the Dreamer approach

[11] the hidden representation of the RNN are used as state representations inputs to

the non-recurrent Q function approximator. The parameters of the AIS components

remain fixed during the Q-learning phase and the Q-learning loss is only used for

training the Q-function. We have two versions of this algorithm:

• Uniform replay buffer: Samples will be drawn from the R2D2 replay buffer

uniformly.

• Priority replay buffer: Data will be saved in a prioritized replay buffer [22].

Priorities are based on Q-funtion errors. Q-function and AIS model updates are

both done using weighted losses.

We use the standard prioritized experience replay implementation [22]. The samples

are drawn from the replay buffer with probability (δi+e)α with δi being the Q-function

prediction error. Also, e is a hyperparameter used to prevent samples with very low

error having an extremely small priority. α is also a prioritized replay hyperparameter.

More details about the PER hyperparameters are provided in appendix A. Similar to

the standard prioritized experience replay buffer approach [22], the weights for each

sample are:

wi =

(
1

N
· 1
pi

)β

Here, N is the size of the buffer, p is the sampling probability and β is another

prioritized replay hyperparameter. Smaller values of β allow for closer to uniform

weights. We start with a small value for β and slowly anneal its value to 1.
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We use the MMD-based loss discussed in the previous chapter to train the observa-

tion prediction component. Here, Yt is the observations for a sample (or observation

encodings in the Minigrid case) and Mt is: 1) The probability mass in the discrete

observation case which is modelled with a softmax layer, 2) The mean of the continuous

valued observation encodings which are in both cases predicted by P̂ y. The loss is as

follows for each sample in the batch:

(My
t − 2Yt)

⊤My
t (3.1)

For predicting rewards at each step, we use MLPs which need to predict rewards

at each step given the hidden state representations and action taken at that step. A

standard Mean Square Error (MSE) loss is used for training the reward prediction

component. The joint model loss is as follows which includes the hyperparameter λ:

1

T

T∑
t=1

wi ·
[
λ
∣∣∣Rt − r̂

(
Ẑt, At

)∣∣∣2 + (1− λ)dF (µt, νt)
2

]
(3.2)

The weight of this sum λ is between 0 and 1 and is a hyperparameter which requires

tuning during experimentation. In our experiments, it is set to numbers very close to 0

as we found the observation prediction component to have a much bigger impact on the

performance of Q-learning algorithm relying on the hidden state representations. wi is

equal to 1 for the uniform variant and equal to the previously discussed prioritized

replay weight.

The Q-function is modelled by a multi-layered MLP which receives the hidden

state representations of the RNN component and outputs approximated Q values for

all possible actions at that step. We use the multi-step TD loss to train the Q-function
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while the parameters of the RNN component are frozen. The target for the multi-step

Q-learning loss is as follows:

ŷt =
n−1∑
k=0

rt+kγ
k + γn Q

(
ht+n, a

∗; θ−
)
, a∗ = argmax

a
Q (ht+n, a; θ) . (3.3)

We use θ− to compute target Q-values. θ− refers to the target Q-function weights

which are updated via exponential averaging at every step similar to [6]. a∗ refers to

the optimal action at timestep t+ n and is obtained from the Q-function rather than

the target network. This approach is similar to the double Q-learning approach used

in [31] which was previously discussed. The length of the multi-step updates is also a

hyperparameter which requires tuning during experimentation. The following loss is

used for training the Q-function:

1

T

T∑
t=1

wi ·
[
|yt − ŷt|2

]
(3.4)

Here, similar to the model training loss, the sample weights are set to 1 for the

uniform sampling variant and to the prioritized weights for the variant using prioritized

experience replay.

Similar to the R2D2 recurrent Q-learning algorithm discussed before, samples are

drawn from an R2D2 style replay buffer and are used to train the different model

components and the Q-function. Also, for the variant with the prioritized replay,

priorities are updated after batches are used to train the different components. In the

high-dimensional environments, we use pretrained autoencoder functions to compress

the higher dimensional observations into more compact continuous representations
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before the reinforcement learning phase. The encoders are trained jointly alongside a

decoder so that together they can recreate the observations. The observations come

from a dataset of random agent experience. We follow an approach similar to [15; 14].

The following is a pseudocode of the model-augmented recurrent Q-learning algo-

rithm with a uniform sampling replay buffer:

Algorithm 2 Q-learning+AIS algorithm
1: init σ, P y,r, θ to random networks, init θ′ ← θ and D← {}
2: for k ∈ 0, . . . ,M do
3: start episode, init history h← {}
4: while not done do
5: receive observation ot, append to history h
6: take some action at given by argmaxat Qθ(σ(h, 0)) with probability 1− ϵ and

uniform random action with probability ϵ {Epsilon-Greedy Action Selection}
7: Sample batch of experience sequences (h1:N , z, o1:L, r1:L, a1:L) from D
8: Initialize σ with z and burn-in history to σ and detach gradients: z′ =

σ(h1:N , z)
9: Compute model loss for (z′, o1:L, r1:L, a1:L)

10: Update σ and P y,r , σ weights are fixed for the next part
11: yi ← ri + γ argmaxa Q

′(σ(o1:i+1, z
′)) {Compute Target}

12: Update θ by minimizing 1
L

∑L ||Q(σ(o1:i, z
′))− yi||2 {Update critic}

13: Update θ′ ← ρθ′ + (1− ρ)θ {Target update using exponential averaging}
14: if t mod L is 0: append (oi−L−N :i−L−1, σ(hi−L−N , 0), oi−L:i, ri−L:i, ai−L:i) to D

{Add subsequence to buffer}
15: end while
16: end for=0
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Chapter 4

Experiments

To evaluate the proposed algorithms, two different sets of environments are used. The

first set includes two discrete observation space environments with low dimensional

observations. The second set is a list of procedurally generated environments from

the MiniGrid family [16]. These environments include very strong elements of partial

observability and are very difficult to solve without the addition of recurrent networks.

We will compare six algorithms on these environments. The last two are included

to decouple the effect of using pretrained encoders (which can also be used with

the recurrent Q-learning algorithm) from the effect of AIS models and their learned

representations. Please note that the autoencoders are only useful in the MiniGrid

environments as they include high dimensional observations. In the discrete observation

environments, we only test the the first four algorithms.

• QL+AIS+U: In this algorithm, the recurrent unit is trained using the AIS

generative model training approach discussed in the previous chapter. The

Q-function will receive the inputs from the recurrent unit at each step and it will
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be trained with the multi-step Q-learning loss discussed previously. The data for

training the recurrent unit, the model prediction components and the Q-function

are sampled uniformly from a replay buffer. For the MiniGrid environments,

high-dimensional observations will be compressed first using an encoder unit

from a simple autoencoder. The encoder is pretrained before the Q-learning

phase alongside a decoder on a dataset of random policy interactions. The

weights of the encoder do not change during the main RL phase.

• QL+AIS+PER: This algorithm is similar to the previous algorithm as it

includes a main loop consisting of both model-learning and Q-learning for

training the recurrent unit and the Q-function respectively. The data for training

the recurrent unit, the model prediction components and the Q-function are

sampled non-uniformly from a Prioritized Experience Replay buffer and the

prioritized experience replay weights are applied to both the model-learning and

the Q-learning losses as was discussed in the previous chapter. Similar to the

previous algorithm, a pretrained encoder is used to compress the observations

for the MiniGrid environments and the weights of the encoder do not change

during the main RL phase.

• QL+U: This is the recurrent Q-learning algorithm discussed before (Alg 1).

In this method, both the recurrent unit and the Q-function are trained using

the multi-step Q-learning loss. The data for learning these two components

is sampled uniformly from the replay buffer. This component does not use a

pretrained encoder but the MLP layers for encoding the higher dimensional

observations are included in the recurrent unit.
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• QL+PER: This is our recurrent Q-learning algorithm with Prioritized Expe-

rience Replay. The recurrent unit and the Q-function are trained using the

multi-step Q-learning loss similar to the uniform variant. The prioritized weights

are used for training both components. This algorithm also does not use pre-

trained encoders for MiniGrid environments but includes the MLP layers in the

recurrent unit.

• QL+U+AE: This variant is similar to the recurrent Q-learning algorithm 1

"QL+U" but also uses pretrained encoders on input observations.

• QL+PER+AE: This variant is similar to the recurrent Q-learning algorithm

with prioritized replay "QL+PER" but also uses the pretrained encoders.

4.1 Discrete Observation Environments

(a) Rock Sampling (b) Drone Surveillance

Fig. 4.1 A visualization of the two discrete action-space environment
used in this part.

First, we will test the proposed algorithms on the following two environments. Both
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have discrete observation space. Due to the low dimensionality of the observations, the

observations can be directly fed to the recurrent unit without relying on pretrained

observation encoders.

• Rock Sampling: This environment was first introduced in [58] and involves a

rover which is tasked with exploring an area and finding rocks with good scientific

value. There are both good rocks and bad rocks in the environment. The goal

of the agent is to sample the good rocks while avoiding the bad ones and exit

the area afterwards. The number of rocks k and the size of the n × n grid is

custom but is chosen as 3 and 5 respectively. The agent needs to choose from

k+ 5 actions at each step: 4 move actions in each direction, 1 sample action and

k sense action. Each sense action corresponds to one of the rocks. The position

of these rocks are fixed for the environment but the type of the rocks (whether

each of them is a good rock or no) randomly changes at the start of each episode.

The observation space is discrete and observations can take three values. The

agent receives a null observation unless it takes a sense action corresponding to

a rock. In that case the observation can take two values according to a binomial

distribution with the p-value corresponding to the distance to the specific rock.

The sensor becomes more accurate the closer the rover gets to the specific rock.

For good rocks the probability of seeing 1 becomes larger as the rover gets

closer the the rock and for bad rocks it is the opposite. The challenge of this

environment is that the agent is effectively blind and has a very noisy tool for

learning about the rock types. Sampling good rocks gives the agent a reward of

+20 and sampling bad rocks gives the agent a -10 reward. Exiting the area also

has a +10 reward for the agent.
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• Drone Surveilance: This environment was first proposed in [59]. The goal

is to move a drone in a grid while avoiding being in the same location as a

randomly moving ground agent. If the drone and the ground agent are in the

same location a reward of -1 is received and the episode ends. The drone always

starts the episode at the bottom left corner of the grid and the goal state is

always at the upper right corner of the grid. The ground agent starts the episode

at a random location and it can never enter the start and goal location. Both

the drone and the ground agent move one tile at each step. The drone can only

see the ground agent if it is located in a 3 × 3 grid underneath the drone. The

size of the overall grid is 5 × 5.

The performance plots for these two environments can be seen in 4.2. The model-

augmented variants and especially the model-augmented variant with prioritized

replay perform worse on the Drone Surveillance environment. On Rock Sampling, the

model-aumgented variants show a significant and clear boost to performance. Another

observation is that using Prioritized Experience Replay either does not provide any

advantage or it hurts performance in these two environments. This phenomena will be

seen again on many MiniGrid environments and it is only on the significantly more

challenging MiniGrid environments that Prioritized Experience Replay starts to show

a benefit over uniform sampling. We believe the reason for this is that it will take some

time for the Q-function to have a good approximation for action-values and having

good action-values is necessary for priorities in the PER to be accurate. Also, the AIS

model takes some time to train and we generally see that in the easier environments

which can be very quickly solved with Q-learning, the model-augmented approach

provides a smaller benefit.
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(a) Drone Surveillance

(b) Rock Sampling

Fig. 4.2 The performance of recurrent Q-learning and Q-learning with
AIS model learning on Rock Sampling and Drone Surveillance environments.
Both algorithms have variants with Prioritized Experience Replay and
uniform sampling buffers.
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4.2 MiniGrid

Now we will test the six mentioned algorithms on the environments from the MiniGrid

family [16]. These are gridworld environments where the agent needs to solve a variety

of tasks from navigation to object manipulation. We consider these environments to

be significantly more challenging than the previously discussed discrete observation

space environments. First, the observation space in these environments is a 7× 7× 3

vector corresponding to the 7× 7 grid around the agent. Please note that this is not

an RGB image but is a custom encoding including information about each tile in the

7× 7 grid around the agent. Second, these environments feature very sparse rewards.

Except for the Dynamic Obstacles environments, in all MiniGrid environments the

agent only receives a nonzero reward after a successful episode. No rewards are given

before the end of the episode and only successfully solving the task results in the agent

receiving a +1 reward. Depending on the environment, there may be objects randomly

located in the world where the agent has to interact with. These objects can be boxes,

doors, keys, etc. We have divided these environments into groups based on the nature

of their respective tasks and we will analyze the performance of the two variants of

the model-augmented algorithm against the four variants of the recurrent Q-learning

algorithm.

4.2.1 Crossing Environments

The first group of environments are the Crossing environments. The goal in these

environments is for the agent to learn how to navigate an area and reach a goal. There

are two categories of environment in this group:
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(a) Simple Crossing (b) Lava Crossing

Fig. 4.3 A visualization of the Simple Crossing and the Lava Crossing
environments.

Simple Crossing: The environments in this group consist of columns of walls and a

crossing. This is the simplest MiniGrid environment used for our empirical evaluation.

The Simple Crossing environments are identified by SimpleCrossingSnNm with n being

the size of the n× n grid and m being the number of columns that the agent needs to

traverse.

Lava Crossing: In these environments the agent needs to navigate its way in a room

filled with columns of lava. Entering these columns of lava results in failing of the

episode. The Lava Crossing Environments are identified by LavaCrossingSnNm with

n being the size of the n× n room and m being the number of lava blocks.

The performance of the six algorithms on four Simple Crossing and four Lava

Crossing environments can be seen in 4.4. On Simple Crossing environments, there

is a clear gap between the model-augmented Q-learning and Q-learning algorithms.

Using prioritized Experience replay on model-augmented algorithms does not provide

any benefits in the two smaller environments but shows improvements in the two
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larger environments. Especially on SimpleCrossingS11N5, we see a big gap between

"QL+AIS+PER" and everything else. This is expected as we believe the advantage

of using PER grows in more difficult and larger environments. Using a pretrained

encoder does not provide a tangible benefit to the recurrent Q-learning approaches.

On Lava Crossing environments, the uniformly sampled Q-learning does much

better, coming very close to the model-augmented variants in the three smaller

environments. Still, the model-augmented algorithms do better on average on the

three smaller environments. On LavaCrossingS11N5, the six algorithms do not do

very well. Both "QL+AIS+PER" and "QL+U" do better than the other two with the

model-augmented algorithm leading by a small margin in terms of average performance.

Using a pretrained encoder with Q-learning algorithms shows a small advantage in

these environments.



4 Experiments 55

(a) SimpleCrossingS9N1 (b) SimpleCrossingS9N2

(c) SimpleCrossingS9N3 (d) SimpleCrossingS11N5

(e) LavaCrossingS9N1 (f) LavaCrossingS9N2

(g) LavaCrossingS9N3 (h) LavaCrossingS11N5

Fig. 4.4 Performance plots for the eight crossing environments comparing
the six algorithms.
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4.2.2 Key Corridor Environments

Fig. 4.5 A visualization of a Key Corridor environment.

In Key Corridor environments, the goal is to reach a red ball behind a locked

door. The agent has to navigate the environment and find the key to the locked

door. The environment consists of multiple hallways all including a number of closed

but unlocked doors which the agent has to learn to open. The agent needs to be

able to successfully navigate these hallways and find the key. The sequence of tasks

required to successfully solve these environment makes them significantly harder than

the previous Crossing environments. We will compare the six algorithms on three

environments in this group. The environments are identified by KeyCorridorSnRm

with n being the size of the n×n room and m being the number of columns on the grid.

The Q-learning algorithms are only able to solve the smallest environment and are

generally incapable of solving the bigger environments. Prioritized experience replay

does not provide any benefits in these environments to either the model-augmented

or the recurrent Q-learning algorithms. The performance of the six algorithms can

be seen in 4.6. Using a pretrained encoder with vanilla Q-learning provides a big

advantage in KeyCorridorS3R2 but KeyCorridorS3R3 is generally unsolvable by all

the Q-learning variants. We see that with harder environments, the model-augmented
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approach shows a bigger advantage.
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(a) KeyCorridorS3R1

(b) KeyCorridorS3R2

(c) KeyCorridorS3R3

Fig. 4.6 Performance plots for the three Key Corridor environments
comparing the six algorithms.
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4.2.3 Door Key Environments

Fig. 4.7 A visualization of the Door Key environment.

The Door Key environments consist of two rooms. First, the agent needs to

navigate the first room and find a key. The key then can be used to open a locked

door to the second room. After entering the second room, the agent has to navigate it

to find a goal and reach that goal. There are three variants of this environment with

their suffixes indicating the combined size of the two rooms. The problem becomes

significantly harder as the room sizes become larger and the largest variant of this

environment is very difficult to solve with vanilla RL methods. In all environments,

the model-augmented methods show a clear advantage. The performance of the six

approaches can be seen in 4.8.



4 Experiments 60

(a) DoorKey-5x5

(b) DoorKey-6x6

(c) DoorKey-8x8

Fig. 4.8 Performance plots for the three Door Key environments com-
paring the six algorithms.
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4.2.4 Obstructed Maze

(a) ObstructedMaze-1Dl (b) ObstructedMaze-1Dlh

Fig. 4.9 A visualization of the two variants of Obstructed Maze environ-
ment used in this section. 4.9b includes a hidden box which includes the
key to the door.

In this family of environments, the agent has to find the keys to a locked door, open

the door and reach a goal. In the "h" variant, the key is hidden in a box. Because of

their extremely sparse rewards, these environments are generally considered one of the

most difficult environments in the MiniGrid family. We see a clear advantage to using

the proposed model-augmented Q-learning approach and also using PER in these two

environments. None of the variants of the recurrent Q-learning algorithm perform well

in these environments. The performance of the six approaches can be seen in 4.10.
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(a) ObstructedMaze-1Dl

(b) ObstructedMaze-1Dlh

Fig. 4.10 Performance plots for the two Obstructed Maze environments
comparing the six algorithms.
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4.2.5 Red Blue doors environments

Fig. 4.11 A visualization of the Red Blue door environment.

In these environments, the agent has to first open a red door and next open a blue

door. The position of the doors randomly changes at each episode and the two variants

have different room sizes. We see a clear advantage in using the model-augmented

Q-learning approach in the smaller variant but the gap is smaller in the bigger variant.

Also, using a pretrained encoder with recurrent Q-learning provides a big boost to

performance in the bigger environment. The performance of the six approaches can

be seen in 4.12.
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(a) RedBlueDoors-6x6

(b) RedBlueDoors-8x8

Fig. 4.12 Performance plots for the two Red Blue door environments
comparing the six algorithms.
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4.2.6 Multi-Room environments

Fig. 4.13 A visualization of the Multi-Room environment.

In these two environments, the agent has to navigate a number of rooms and find

the final goal. Exiting each room requires finding and opening a door. The different

variants have different number of rooms and the general layout of the environment

changes with each episode. These environments also feature extremely sparse rewards.

The model-augmented approaches show a clear advantage in both environments and

they are the only algorithms capable of solving the task in the bigger environment.

Using a pretrained encoder does not provide any tangible benefits with vanilla Q-

learning. The performance of the six approaches can be seen in 4.14.
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(a) MiniGrid-MultiRoom-N2-S4

(b) MiniGrid-MultiRoom-N4-S5

Fig. 4.14 Performance plots for the two Multi room environments com-
paring the six algorithms.
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4.2.7 Unlock-Pickup environments environments

(a) Unlock (b) Unlock-Pickup

Fig. 4.15 A visualization of the two "Unlock" environments uses in this
section.

This group consists of two environments each requiring solving an extra task to

reach the goal.

• Unlock: This is the easiest environment. The goal is to find a key to a locked

door and open that door 4.15a.

• Unlock-Pickup: In this environment, the agent has to solve all the tasks in

the previous environment but after unlocking the door, it also has to pickup a

box 4.15b.

The first environment is considered one of the easiest MiniGrid environments and

all six algorithms can solve it very quickly. The second is significantly more difficult

and only the model-augmented approaches can solve the second. Again, Prioritized

experience replay shows a clear advantage in the harder exploration environments.

Even in the easiest environments, the model-augmented approaches show a clear

advantage over recurrent Q-learning. The performance of these algorithms can be seen

in 4.16.
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(a) Unlock

(b) UnlockPickup

Fig. 4.16 Performance plots for the two Unlock environments comparing
the six algorithms.
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4.2.8 Dynamic Obstacles Environments

Fig. 4.17 A visualization of the Dynamic Obstacles environment.

This family of environments are the only MiniGrid environments tested without

sparse rewards. The agent is tasked with reaching a randomly placed goal in a room

while avoiding collision with moving obstacles. Collision with obstacles results in a -1

reward and the termination of the episode. Because of the abundance of rewards, these

environments are solved much more quickly than the previously tested environments.

In some instances, the agents learns to perfectly solve the environments in less than

100K steps. These are the only tested environments in which the model-augmented

approach does worse than vanilla Q-learning. We believe the time taken to properly

learn the AIS model to be the reason for this inferior performance. The performance

of the six algorithms can be seen in 4.18. The empirical results on these environments

alongside the previous Minigrid environments suggests our proposed model-augmented

method to be more useful in sparse reward settings.
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(a) Dynamic-Obstacles-5x5 (b) Dynamic-Obstacles-Random-5x5

(c) Dynamic-Obstacles-6x6 (d) Dynamic-Obstacles-Random-6x6

(e) Dynamic-Obstacles-8x8 (f) Dynamic-Obstacles-16x16

Fig. 4.18 Performance plots for the six Dynamic Obstacles environments
comparing the six algorithms.
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Chapter 5

Conclusion and Future works

Throughout this thesis, we proposed a framework to augment standard R2D2 style re-

current Q-learning with a learned transition and reward model. The purpose of learning

this model was to obtain state representations that could improve Q-learning perfor-

mance. We showed that AIS could improve the performance of recurrent Q-learning.

Our proposed model-augmented Q-learning algorithm consistently outperformed the

vanilla recurrent Q-learning method across most tested environments. Furthermore,

we demonstrated that model-augmented Q-learning could also work with prioritized

sampling and benefit from it in more complex problems. Many model-based methods

involve separate loops (and sometimes separate datasets) for model training and

reinforcement learning, but our method is very simple as both model training and

Q-learning are done in the same loop and on the same batch of samples. We also do not

see significant differences in computation complexity between the model-augmented

and vanilla recurrent Q-learning methods. We also demonstrated that the boost in

performance provided by model-augmented Q-learning is more significant in sparse-

reward environments. The applicability of these methods in hard exploration RL
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problems could be a fruitful future avenue for research.

We can build upon our proposed method in multiple ways. In the current implemen-

tation, the learned transition models are fully trained but only used for their hidden

state representations. These trained transition models could be better utilized by

allowing for synthetic data generation. This can be through a Dyna style [37] expansion

of the replay buffer with hallucinated trajectories. It has been shown that synthetic

data generation by a learned model can improve the data efficiency of model-free

methods [38; 60]. We could further improve the performance of multi-step Q-learning

by allowing for synthetic trajectory generation for bootstrapping [38]. Furthermore, it

was shown [61] that the model loss can be a helpful signal for designating the priorities

of each sample in prioritized experience replay. Using the model loss as an auxiliary

component of sample priorities [61] was shown to boost performance of model-free

methods in fully observable environments. We believe that such an approach could be

applied to our algorithm and be potentially beneficial.
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Appendix A

Implementation details

Here, we will provide implementation details for all the algorithms used in the experi-

ments section. First, we will detail the hyperparameters that are shared among all the

environments. The discount factor γ is set to 0.99 for all environments. The learning

rate for all components (for both the Q-learning and model-augmented Q-learning

algorithms) is 0.001 and the ADAM optimizer [62] is used as the Stochastic Gradient

Descent (SGD) based optimizer. Please note that the AIS components (σ̂, r̂ and

P̂y) have a seperate optimizer from the Q̂ for the model-augmented approach. The

AIS hidden state size (dẐ) is also set to 128 for all experiments. All experiments

are run on 5 seeds. Experience data is split to subsequences of length 10 and are

stored in the buffer similar to the R2D2 approach [9]. The Burn-in length which is

the maximum length of the preceding history for each stored subsequence is set to

50 for all experiments. Batch sizes are the number of subsequences sampled at each

training step.

In all tested algorithms and their variants, epsilon-greedy is used as the exploration

strategy. At the start of the training procedure, the ϵ value is set to 1.0 and it
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is exponentially decayed until it reaches 0.05 by the end of the training procedure.

The rate of exponential decay is proportional to the number of steps taken in the

environment during training so in experiments that involve more interaction with the

environment, more exploration is conducted. During evaluation, the agent chooses

actions greedily with respect to Q̂ and all plots are generated from 10 episodes of testing

which is done in regular intervals between the training steps. For all experiments,

multi-step updates are done for training the Q-function with the multi-step length

being equal to 5.

For prioritized experience replay (PER), we follow the standard PER implemen-

tation [22] and use Min-Max heaps [63] for storing priorities and doing weighted

sampling. The PER involves two hyperparameters as was discussed before. The β

hyperparameter is set to 0.4 at the start of training and it is linearly increased until it

reaches 1 at the end of the training process. The α is set to 0.6.

The following are some environment related parameters:

Environment No. of actions nA No. of obs. nO Batch Size

Rock Sampling 8 3 64

Drone Surveillance 5 10 64

MiniGrid 7 7 ×7× 3 256

As was discussed, the model-augmented approach and the different variants of the

recurrent Q-learning algorithm all have different components which are all modelled

with neural networks using linear layers and non-linear functions in between. During

our experimentation, we have found the Exponential Linear Units (ELUs) [64] to
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peform quite well and we use this nonlinear layer alongside Rectified Linear Units

(ReLUs) for nonlinear layers. For the recurrent component, we are using an LSTM

[7] function. Linear layers with input sizes n and output sizes m are denoted by

Linear(n,m) and an LSTM cell with input of size n and a hidden vector of size m is

denoted by LSTM(n,m).

For the MiniGrid environments, we are using a simple autoencoder [57] to get

more compact representations from the relatively high-dimensional observations. The

encoders are trained alongside a decoder for 100 epochs on 4M samples of observations

gathered by a random agent for each environment. The encoder weights are frozen

during the reinforcement learning phase. We use these encoders in the model-augmented

Q-learning approach and the Q-learning variant with autoencoders. The encoder and

decoder architectures are as follows:

Encoder Decoder

Linear (147, 96) Linear (64, 96)

ReLU ReLU

Linear (96, 64) Linear (96, 147)

Tanh

Now, we will discuss model architectures used for the different components of the

model-augmented Q-learning approach (QL with AIS). This algorithm uses four differ-

ent components: the recurrent history compression fuction σ̂, the reward prediction

function r̂, the observation prediction function P̂ y and the action-value function Q̂.

For both the discrete observation environments and the MiniGrid environments, all

the components except for the P̂ y are the same. For the MiniGrid environments,
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the observations which are outputs of the pretrained encoder and for the discrete

observation environments we use the raw one-hot encoded observations. The following

are the model architectures for the σ̂, the r̂ and the Q̂:

σ̂ r̂ Q̂

Linear (nO + nA + 1, dẐ) Linear
(
nA + dẐ ,

1
2
dẐ
)

Linear (dẐ , dẐ)

ELU ELU ELU

LSTM(dẐ , dẐ) Linear
(
1
2
dẐ , 1

)
Linear (dẐ , dẐ)

ELU

Linear (dẐ , dẐ)

ELU

Linear (dẐ , nA)

For the obsevation prediction function P̂ y, we use a slightly different architecture

between the MiniGrid experiments and the discrete observation space environments.

In the MiniGrid experiments, P̂ y has to output continuous variables. For the discrete

observation space environments, we use a final softmax layer so that class probabilities

are outputted. We also add another observation category representing the final state

so that P̂ y is forced to also predict the end of an episode. This provided improvements

in performance in our experiments. The model architectures for the two P̂ y is as

follows:
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P̂ y(MiniGrid) P̂ y(Discrete)

Linear
(
nA + dẐ ,

1
2
dẐ
)

Linear
(
nA + dẐ ,

1
2
dẐ
)

ELU ELU

Linear
(
1
2
dẐ , nO

)
Linear

(
1
2
dẐ , nO + 1

)
Softmax

Next, we will discuss the model architectures used for the recurrent Q-learning

algorithm for the discrete observation space environments and the recurrent Q-learning

variant which uses pretrained encoder inputs for the MiniGrid cases. Please note

that we have divided the architecture into two components: the recurrent σ̂ and the

Q-function Q̂. This is done for simplicity of implementation but both are trained using

the Q-learning loss.

σ̂ Q̂

Linear (nO + nA + 1, dẐ) Linear (dẐ , dẐ)

ELU ELU

LSTM(dẐ , dẐ) Linear (dẐ , dẐ)

ELU

Linear (dẐ , dẐ)

ELU

Linear (dẐ , nA)

The following are the model architectures used for the different components of the

recurrent Q-learning algorithm which receives raw observations in the MiniGrid case.

The σ̂ component has an extra layer to be better able to process high dimensional
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observations.

σ̂ Q̂

Linear (nO + nA + 1, dẐ) Linear (dẐ , dẐ)

ELU ELU

Linear (dẐ , dẐ) Linear (dẐ , dẐ)

ELU ELU

LSTM(dẐ , dẐ) Linear (dẐ , dẐ)

ELU

Linear (dẐ , nA)
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