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ABSTRACT

High-field magnetic resonance imaging (MRI) is a very promising concept as it

benefits from a significant improvement in the signal-to-noise ratio (SNR), a mea-

sure that directly affects image resolution. However, as the resonant wavelength

approaches the dimensions of the object being imaged, the wave propagation effects

of the radio frequency (RF) field significantly deteriorate the uniformity of the exci-

tation pattern, thus leading to contrast aberrations and distortions in the resulting

image. Recent proof-of-concept studies have shown the merits of parallel transmis-

sion techniques in accurately controlling the RF magnetic field whereas novel coil

arrangements, such as the TEM resonator, have provided the necessary platform for

conducting truly parallel excitations experiments. The purpose of this thesis is to

provide a comprehensive study on the design of the TEM resonator by comparing

two modelling techniques. The first technique uses multi-conductor transmission line

theory to model the coil; the second technique uses the brute-force computational

algorithm called finite-difference time-domain (FDTD). The two techniques are com-

pared in terms of the S11 trends observed while varying TEM resonator design pa-

rameters such as the capacitor values and the line element geometry. A difference of

15% in the coil response was observed for an MRI system of 3-Tesla field strength.

This modelling error increases with resonant frequency and reaches the 40% mark

for a high-field MRI system of 7-Tesla field strength. Despite the diverging results

for increasing frequency, this study shows that the variation of design parameters in

each modelling technique exhibit comparable trends.
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ABRÉGÉ

L’imagerie par résonance magnétique (IRM) à haut champ est un concept très

promettant car elle bénéficie d’une amélioration importante du rapport signal-bruit,

une mesure qui affecte directement la résolution de l’image. Cependant, quand la

longueur d’onde de résonance se rapproche des dimensions le l’objet sous exami-

nation, les effets de propagation d’onde du champ radiofréquence (RF) déteriore

de faon significative l’uniformité du motif de champ d’excitation, ainsi menant à

des aberrations de contraste et des distortions dans l’image. Des études récentes

ont validé le principe de transmission parallèle pour contrler le champ magnétique

RF tandis que de nouveaux arrangements d’antennes, tel que le résonateur TEM,

ont permis des expériences avec des transmission réellement en parallèle. Le but

de ce mémoir est d’étudier la conception du résonateur TEM en comparant deux

techniques de modélisation. La première technique utilise la théorie de ligne de

transmission à conducteurs multiples; la deuxième technique utilise un algorithme

de calcul par force brute: la méthode des différences finies dans le domaine temporel

(FDTD). Les deux techniques sont comparées par rapport aux tendances observées

lorsque les paramètres du résonateur TEM, tel que la valeur des condensateurs et

la géométrie des lignes microbandes, sont variés. Une différence de 15% dans la

réponse de l’antenne a été observé pour un système d’IRM de 3 Tesla. L’erreur de

modélisation augmente avec la fréquence de résonance pour atteindre 40% dans un

système d’IRM de 7 Tesla. Malgré les résultats divergents, cette étude démontre que
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la variation des paramètres de l’antenne présente des tendances comparables dans

les deux méthodes.
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CHAPTER 1
Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging technique

that allows for visualization of internal structures of the body in a completely non-

invasive manner. It has evolved immensely since its inception in 1952, making it one

of the most useful tools in medicine today. Many important discoveries over the last

two decades have broadened the range of applications, from basic musculoskeletal

imaging to functional MRI and brain imaging. Through recent advances in magnet

fabrication, MRI systems are becoming increasingly precise and powerful. When

subject to a stronger static magnetic field, the signal-to-noise ratio (SNR) of the ra-

dio frequency (RF) coils improves drastically, resulting in greater image quality [3].

However, the increase in magnetic field strength poses many technical challenges.

According to Larmor’s equation, the natural resonant frequency, ω0 (in rads per sec-

ond), — and thus, the RF coil operating frequency — increases proportionally with

respect to the strength of the main magnetic field B0 (in teslas). In today’s standard

clinical systems, where B0 is at most 3 T, the wavelength of the RF excitation mag-

netic field propagating in the tissue, commonly referred to as the B+
1 -field (in teslas),

is large relative to the object being imaged. In these conditions, the phase-related

effects that arise in the tissues are very small and have a negligible effect on the

uniformity of the B+
1 -field. However, as the operating frequency increases with field

strengths greater than 4 T, the uniformity of the RF field quickly deteriorates [4].
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Many solutions have been proposed to compensate for the B+
1 pattern devia-

tions. The travelling wave scheme consists of RF waves radiating from an antenna

and propagating into a cylindrical waveguide which contains the subject [5]. This

approach has proven to generate a very homogeneous field, due to the minor pres-

ence of standing waves and the absence of coupling between the antenna and the

patient. However, it is not possible to spatially limit the field of excitation (FOX) to

anything other than the volume of the actual waveguide, which can have a big im-

pact on managing the noise contribution to the magnetic resonance (MR) signal [6].

Other solutions rely on more traditional MRI hardware which allows for spatially-

selective excitation. With the use of multi-element parallel transmission coils and

time-varying gradients, novel RF pulse designs are revamping well-established B+
1

correction techniques, such as static B+
1 shimming and transmit sensitivity encoding

(transmit SENSE), to improve homogeneity and reduce the risk of RF-induced tissue

heating.

The TEM resonator is an MRI RF coil which has gained a lot of attention over

the last decade. It had been shown to maintain better magnetic field homogeneity

and operate more efficiently than the traditional volume coils at frequencies above

200 MHz [7]. More recently, the multi-channel capabilities of the TEM resonator

have enabled truly parallel RF pulse transmission experiments. Given the impor-

tance of this coil, many studies focus on developing models and tools to facilitate its

design and verification. Although full-wave modelling is an essential and necessary

step for the design of any high-field MRI coil [8], simplified models have been de-

veloped to accelerate the design time. The focus of this study is to investigate on a

2



strategy for designing TEM resonators in the context of high-field MRI applications.

Two prominent coil models — the multi-conductor transmission line and the FDTD

method — are compared in terms of their performance in both the standard and

high-field MRI frequency range.

The present document is separated into five chapters. Following this introduc-

tion, a review of the relevant literature is given in order to familiarize the reader with

the important concepts of MRI. A description of the methods used to conduct the

experiment is laid out in Chapter 3. The results and the discussion are presented in

Chapter 4. Finally, a summary of the study is given in the concluding chapter.
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CHAPTER 2
Background

2.1 Magnetic Resonance Imaging

Magnetic resonance imaging relies on a phenomenon called nuclear magnetic

resonance (NMR). Atomic nuclei (i.e. protons and neutrons) have an intrinsic angular

momentum called ”spin”. Since protons are charged particles, the spinning motion

creates a magnetic moment. The proton’s angular momentum �L (in kilogram-meters-

square per second) and magnetic moment �μ (in ampere-square meters) are related by

a special quantity, called the gyromagnetic ratio γ (in radians per second per tesla):

�μ = γ�L (2.1)

Although neutrons do not exhibit a charge, there is an overall magnetic moment due

to the neutron’s sub-composition of electrically charged particles. The overall nuclear

spin and magnetic moment of an atom, and thus the overall observable gyromagnetic

ratio, depend on the number of protons and neutrons that constitute the nuclide. In

the case of hydrogen 1H, the nuclide species of interest in MRI, the gyromagnetic

ratio is 267.53 rad/s/T — or equivalently, 42.58 MHz/T.

In the absence of a magnetic field, the individual nuclear magnetic moments align

randomly, producing an overall zero magnetization at equilibrium. In the presence

of a magnetic field, the individual magnetic moments align either parallel or anti-

parallel to the field. The parallel alignment is a lower-energy state compared to the

4



anti-parallel alignment and is slightly preferred. Macroscopically, the small bias in

favour of the parallel alignment creates a net magnetization vector that points in the

same direction as the applied field.

Under a static magnetic field, the magnetic moment �μ experiences a torque �T

(in newton-meters):

�T = �μ× �B (2.2)

By definition, torque is the time rate of change of angular momentum:

�T =
d�L

dt
(2.3)

Hence, the time rate of change of �μ is related to the torque:

γ �T =
dγ�L

dt
=

d�μ

dt
= γ�μ× �B (2.4)

By summing over a unit volume, equation 2.4 is expressed in terms of the magneti-

zation vector �m (in amperes per meter):

d�m

dt
= γ �m× �B (2.5)

As per MRI convention, the main static magnetic field is denoted as �B0 and its

direction is assigned to the z-axis. Equation 2.5 can be separated component-wise

and solved for each component as follows:

mx = mx0 cos(γB0t)−my0 sin(γB0t) (2.6a)

my = my0 cos(γB0t) +mx0 sin(γB0t) (2.6b)

mz = mz0 (2.6c)
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where the vector [mx0,my0,mz0] is the initial condition of �m and B0 is the magnitude

of the applied main magnetic field. These equations describe a precessional motion

of the net magnetization vector �m about the z-axis. The angular frequency of this

motion is called the Larmor frequency and is directly related to the gyromagnetic

ratio:

ω0 = γB0 (2.7)

In today’s clinical MRI systems, the main magnetic field B0 ranges from 0.5 to 3T,

which implies resonant frequencies ranging from 21.3 to 128 MHz.

Concurrently with the precessional motion, the magnetic moments progressively

realign themselves to the B0-field to reach thermal equilibrium. This relaxation can

be thought of as two processes: the decay of the transverse magnetization mxy, the

magnetization components perpendicular to the B0-field; and the regrowth of the

longitudinal magnetization mz to equilibrium state. The longitudinal magnetization

relaxation is attributed to spin-lattice interactions. The nuclei exchange energy with

their surrounding lattice when transitioning to a lower energy state (ie. parallel

alignment). mz approaches its equilibrium state exponentially with time constant

T1:

mz(t) = Mo + (mz0 −Mo)e
−t/T1 (2.8)

The transverse magnetization mxy relaxation is attributed to spin-spin interactions.

Polarization in the transverse plane disappears more quickly than its re-appearance

in the longitudinal direction due to loss of phase coherence between the individual
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dipoles. mxy approaches its equilibrium state exponentially with time constant T2:

mxy(t) = Moe
−t/T2 (2.9)

Combining the nuclear mechanisms of precession and relaxation, the overall be-

haviour of the net magnetization vector is described by the Bloch equation:

d�m

dt
= γ �m× �B − mxî+my ĵ

T2

− (mz −Mo)k̂

T1

(2.10)

2.2 Electromagnetic Fields Due to Magnetic Moments

Ignoring the effects of relaxation, the individual nuclear magnetic moments can

be approximated as very small magnetic dipoles. The complete electromagnetic (EM)

field expression (valid in near- as well as far-field regions) for an ideal magnetic dipole

is:

Er = 0

Eθ = 0

Eφ = −Iml

4π
jβ(1 +

1

jβr
)
e−jβr

r
sin(θ)

(2.11)

Hr =
Iml

2π
jωε(

1

jβr
+

1

(jβr)2
)
e−jβr

r
cos(θ)

Hθ =
Iml

4π
jωε(1 +

1

jβr
+

1

(jβr)2
)
e−jβr

r
sin(θ)

Hφ = 0
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where Im (in amperes) is the hypothetical magnetic current; l (in meters) is the

length of the dipole; β is the phase constant and equals ω
√
εμ; and ε and μ are the

electric permittivity (in farads per meter) and the magnetic permeability (in henries

per meter), respectively [9].

By definition, the magnetic moment m is equal to Iml. The magnetic field that

results from the x-component of the excited (ie. precessing) magnetization vector in

equation 2.6c can be found by replacing Iml in the H-field expressions from equation

2.12 with mx [10]:

Hrx =
mx(t)

2π
jωε(

1

jβr
+

1

(jβr)2
)
e−jβr

r
cos(θ)

= FR(r)mx(t) cos(θ) (2.12)

Hθx =
mx(t)

4π
jωε(1 +

1

jβr
+

1

(jβr)2
)
e−jβr

r
sin(θ)

= FR(r)mx(t) sin(θ)

Similarly, the my contribution to the H-field expressions is:

Hry =
my(t)

2π
jωε(

1

jβr
+

1

(jβr)2
)
e−jβr

r
cos(θ − 90◦)

= FR(r)my(t) sin(θ) (2.13)

Hθy =
my(t)

4π
jωε(1 +

1

jβr
+

1

(jβr)2
)
e−jβr

r
sin(θ − 90◦)

= −FR(r)my(t) cos(θ)

At a given point of observation P (r, θ) as shown in Figure 2–1, the radial mag-

netic fields from the x- and y-component oscillate with a frequency of ω0. If a coil is
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placed around point P and strategically oriented such that it is normal to the radial

field, the precessing magnetization will cause a change of flux Φ (in webers) in the

coil and induce a small electromotive force (EMF) ε = −dΦ
dt

(in volts). This signal

is commonly called the free induction decay (FID) and it is the MR signal that is

picked up by the receiver coil when a sample is excited and resonating at the Larmor

frequency.

Figure 2–1: Magnetic field components due to mx(t) and my(t).

Analogous to the above description of an excited sample, a sample at equilib-

rium can be excited into a higher-energy state by absorbing photons at the Larmor

frequency. A transmitter coil applying a circularly-polarized magnetic field in the

transverse plane rotating at ω0 will cause a torque on the aligned magnetic moments.

Provided that enough energy was absorbed to steer the magnetization vector some
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angle away from equilibrium, the magnetization will start precessing about the z-axis

and relax back to equilibrium once the B+
1 -field is turned off.

2.3 Selective Excitation

The transverse magnetization is conventionally expressed as a complex repre-

sentation of the x- and y-component:

mxy(�x) = mx(�x) + jmy(�x) (2.14)

In the rotating frame of reference (FOR) with angular frequency ω0, the transverse

component is:

mr(�x) = mx′(�x) + jmy′(�x) (2.15)

where x′ and y′ are rotating axes.

In the small tip-angle regime [11], the transverse magnetization in the rotating

FOR after a B+
1 (t) pulse of time T is approximated as:

mr(�x) = jM0

ˆ T

0

γB+
1 (t)e

j�k(t)·�xdt (2.16)

where �x is the spatial coordinate vector, M0 is the longitudinal magnetization at

thermal equilibrium, γ is the gyromagnetic ratio of the excited nuclei species and

�k(t) is the trajectory traced out in the spatial frequency domain, commonly called

k-space, by �G(t):

�k(t) = −γ

ˆ T

t

�G(τ)dτ (2.17)

The quantity �G(t) corresponds to the time-varying gradient magnetic fields. These

fields are used to provide spacial localization during the excitation stage and the

imaging stage.
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Using the sifting property of the three-dimensional delta function 3δ(�k), where
´
kv
f(�k)δ(�k − �k′)d�k = f(�k′), (2.16) may be rewritten:

mr(�x) = jM0

ˆ T

0

γB+
1 (t)

ˆ
kv

3δ(�k − �k(t)) ej
�k·�x d�k dt (2.18)

where the k-space integral is defined over the entire FOX kv [12]. By changing the

order of integration and noting that δ(�k − �k(t)) = δ(�k(t) − �k) since δ(x) is an even

function,

mr(�x) = jγM0

ˆ
kv

{ˆ T

0

B+
1 (t)

3δ(�k(t)− �k) dt

}
ej

�k·�x d�k (2.19)

The inner integral describes a function of �k that is equal to zero everywhere except on

the �k(t) trajectory. Graphically, it describes a three-dimensional path defined over

�k(t) and weighted explicitly by the RF excitation B+
1 (t). There is also an implicit

weighting due to the non-unit, varying speed of �k(t). Recall the fundamental property

of the delta function: ˆ ∞

−∞
δ(t− a)dt = 1 (2.20)

making the term δ(t−a) have a unit weight. Depending on the definition of �k(t), the

expression
´∞
−∞

3δ(�k(t)−�k)dt does not necessarily evaluate to 1. One delta function

identity states that:

δ[g(t)] =
∑
i

δ(t− ti)

|g′(ti)| (2.21)

where ti are the roots of the expression g(t). The integral of the delta function

expression in (2.19) is rewritten to find the non-unit weighting factor by using the
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identity in (2.21). Note that the delta function in (2.19) has only one root, �k(t) = �k.

ˆ T

0

3δ(�k(t)− �k)dt =
1

|�k′(�k)|

ˆ T

0

3δ(t− �k)dt (2.22)

The delta function term on the right-hand side of (2.22) corresponds to a unit impulse

function, as stated by the fundamental property of the delta function in (2.20).

Therefore, it is clear that the implicit weight factor from the varying speed of �k(t)

is equal to 1

|�k′(�k)| . Furthermore, by the Second Fundamental Theorem of Calculus:

�k(t)′ = −γ
d

dt

ˆ T

t

�G(τ)dτ (2.23)

= γ
d

dt

ˆ t

T

�G(τ)dτ (2.24)

= γ �G(t) (2.25)

The expression of the k-space pattern p(�k) is thus rewritten:

p(�k) =

ˆ T

0

B+
1 (t)

|γ �G(t)|
{
3δ(�k(t)− �k) |γ �G(t)|

}
dt (2.26)

The term delimited by the curly braces in the integral is a normalized delta function

describing the k-space trajectory; the full expression corresponding to the weighting

of this trajectory is

W (�k(t)) =
B+

1 (t)

|γ �G(t)| (2.27)

Using the sifting property, (2.26) is rewritten

p(�k) = W (�k)

ˆ T

0

{
3δ(�k(t)− �k) |γ �G(t)|

}
dt (2.28)

= W (�k) S(�k) (2.29)
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The variable W (�k) defines the weighting factor over the full k-space: it is equal

to W (�k(t)) everywhere �k(t) is defined and undefined everywhere else. The variable

S(�k) represents the unit weight trajectory that follows �k(t). By replacing the inner

integral of (2.19) by the new pattern variable p(�k),

mr(�x) = jγM0

ˆ
kv

p(�k) ej
�k·�x d�k (2.30)

= jγM0 F−1
{
p(�k)

}
(2.31)

= jγM0 p(�x) (2.32)

we see a very important relationship: the transverse magnetization resulting from an

RF pulse B+
1 (t) is simply the inverse Fourier transform of the k-space pattern p(�k)

weighted by the tissue’s magnetic properties, where p(�k) is related to the RF pulse

by:

p(�k(t)) =
B+

1 (t)

|γ �G(t)| (2.33)

2.4 Parallel Transmission

Parallel transmission (pTx) is a type of selective excitation where the desired

B+
1 -field is generated by simultaneously exciting multiple RF coils, each of which

exhibits an arbitrary but different sensitivity profile, with independently designed

waveforms [13]. The central equation of parallel transmission consists of the su-

perposition in space of the individual excitation pattern from each transmit coil to

produce the desired excitation pattern pdes(�x):

pdes(�x) =
N∑

n=1

Sn(�x)pn(�x) (2.34)

13



Here, N is the number of independent coils, �x is the spatial coordinate vector and

Sn(�x) and pn(�x) are the sensitivity profile and excitation patterns of coil n, re-

spectively. In discretized spatial coordinates, pdes(�x) can be thought of as a vector

containing the values of the pattern at a finite number of voxels, M , defined over the

FOX.

As shown in section 2.3, the excitation pattern is related to the gradient and RF

coil waveforms through the k-space Fourier transform. For this reason, it is useful

to express (2.34) in k-space:

pdes(�k) =
N∑

n=1

Sn(�k) ∗ pn(�k) (2.35)

Similarly, in discretized k-space, pdes(�k) is a vector of M spatial frequency points

that are traversed by the chosen k-space trajectory. In addition, the convolution

in discretized notation amounts to a matrix/vector multiplication. The summation

term on the right-hand side of (2.35) can be simplified to a single matrix and vector

multiplication, where all sensitivity matrices Sn(�k) are grouped to form a single
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matrix Sfull(�k) and correspondingly, the individual pn(�k) to a single vector pfull(�k).

pdes(�k) =
N∑

n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sn1,1 Sn1,2 · · · Sn1,M/R

Sn2,1 Sn2,2 · · · Sn2,M/R

...
...

. . .
...

SnM,1
SnM,2

· · · SnM,M/R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pn1

pn2

...

pnM/R

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.36)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣p1
⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣p2
⎤
⎥⎥⎥⎥⎦+ · · ·+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣pN

⎤
⎥⎥⎥⎥⎦ (2.37)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. . .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣p1
⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣p1
⎤
⎥⎥⎥⎥⎦

...⎡
⎢⎢⎢⎢⎣p1
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.38)

= Sfull(�k)pfull(�k) (2.39)
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The order in which the individual Sn(�k) and pn(�k) are appended to Sfull(�k) and

pfull(�k) will not influence the outcome since it will only result in interchanging rows

and columns. Equations 2.37 and 2.38 show one way of performing the concatenation.

The factor R, present in the matrices element subscripts in equation 2.36, refers to

a k-space trajectory reduction factor and will be explained shortly. Equation (2.39)

is solved for pfull(�k) using well-known numerical techniques such as least-squares

minimization algorithms and regularization techniques. The individual pn(�k) are

then simply extracted from the resulting pfull(�k).

Finally, the B1n(t) waveform for each independent coil n is found from (2.33)

using the corresponding optimal k-space excitation profile pn(�k):

B1n(t) =
pn(�k(t))|γG(t)|

S(�k(t))
(2.40)

Assuming the trajectory was chosen adequately to avoid aliasing, the unit weight

sampling structure S(�k(t)) factor can be dropped. The mapping �k → t corresponds to

the chosen k-space trajectory �k(t). In other words, the value of the B1n(t) waveform

at time point t is related to the weighting factor of the k-space pattern pn(�k) at the k-

space coordinates k that is traversed at time point t. The factor |γG(t)| compensates

for the non-uniform k-space sampling density when the trajectory is non-Cartesian.

Parallel transmission provides many new degrees of freedom in designing RF

pulses. Assuming each pattern pn(�k) is defined for every point in the k-space trajec-

tory, the system of equations in (2.39) becomes increasingly underdetermined as N

increases. That is to say, there are more unknowns, specifically (M ×N) unknowns,

than constraining equations. One major application of pTx is the generation of
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very complex excitation patterns such as spatially-selective multidimensional pulse

patterns. These patterns are used for various purposes, such as volume selective ex-

citation [12] and patient-induced B+
1 inhomogeneities compensation [14]. However,

the improved spatial resolution and pattern definition are accomplished at the ex-

pense of prolonged pulse duration, where the length of the pulse is contingent upon

the desired k-space coverage, the sampling density and sampling rate.

Another approach is to introduce a reduction factor R in the k-space trajectory,

where R < N . The mathematical framework of this pTx approach is analogous to

the parallel imaging technique called sensitivity encoding (SENSE) [15] and thus

is commonly referred to as transmit SENSE [13]. The scan duration of a receive

coil is defined by the number of samples in its k-space trajectory and the sampling

rate. By reducing the number of samples in the trajectory while maintaining k-space

coverage, the scan duration is shortened and the image spatial resolution preserved.

In standard imaging, the reduction in sampling density causes aliasing. In parallel

imaging, each receive coil in the array acquires an aliased image weighted by its

unique sensitivity signature. The aliased pixel contributions from each intermediate

images are then unfolded back to their original positions by inversion of the cor-

responding coil’s sensitivity matrix. In the context of transmission, an analogous

concept is considered: the pulse duration can be shortened by reducing the number

of samples while preserving the excitation pattern resolution. Here, the samples refer

to the discretized points of the B1n(t) waveform. Each transmitting coil generates a

pattern calculated from (2.39). The individual patterns pn(�x) contain aliasing arti-

facts but the superposition of the contributing fields yields the desired pdes(�x). When
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transmit SENSE is used to correct for B+
1 -field non-uniformities, it is often referred

to as “dynamic RF-shimming”.

As the reduction factor R is increased beyond N , the system of equations in

(2.39) becomes overdetermined and there no longer exists an exact solution. Instead,

minimization techniques are used to find the most optimal waveforms. Increasing

deviation from the desired pattern is expected as R increases [4]. The asymptotical

limit is given by the condition where the reduction factor is equal to the number

of k-space pixels, M . In this situation, the entire k-space trajectory is reduced to

a single sample. This case is often referred to as “static RF-shimming” since each

element is excited with a different yet constant complex magnitude.
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CHAPTER 3
Transmit Coil Simulation Models

The scope of our experiment is to design an RF coil for parallel excitation

through simulations and establish the groundwork for future in vivo studies. The

following sections lay out the specifications of the coil and describe the methods by

which an accurate simulation model is generated.

3.1 The TEM Resonator

MR excitation using parallel transmission relies on the premise that multiple,

yet independent transmission coils simultaneously excite the FOX. The traditional

transmission coil — the birdcage coil — is unable to generate independent excitations

since the individual rung currents tightly couple to each other through the end-

rings. The TEM resonator is another type of volume coil used for MR excitation.

It was invented by Purcell for the very first NMR measurements in 1946 [16]. In

the 1980s, the design was improved by Krause (1985) and Röschmann (1988) for

human imaging. Through the recent works of Vaughan et al [17], it has reappeared

over the last decade as a valuable alternative to the birdcage coil for its ability to

operate efficiently at higher frequencies [7]. In addition to this, the multi-channel

capabilities of the TEM resonator makes it the prevailing coil design used in parallel

transmission applications.

Similar to the traditional birdcage coil, the TEM resonator is composed of mul-

tiple axially oriented rungs laid out in a circle. Each rung, or line element, connects
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on either end to the outer cylindrical shield through capacitive elements, as shown

in Figure 3–1a. In this arrangement, the current driven into one element returns by

the shield making the current path through each element practically independent of

one another. This current flow is illustrated in Figure 3–1b. In fact, the resonance of

the coil directly relates to the resonance of one element and a portion of the shield,

as shown in Figure 3–1c. The currents in the line elements are for the most part

directed along the main axis of the coil and propagate primarily in the transverse

electromagnetic (TEM) mode — hence, the name TEM resonator.

Coil specifications, such as coil geometry and operability, are determined while

taking into account high-field MRI system availability, compatibility and patient

comfort. The target operating frequency of the TEM resonator model is chosen

to be 300 MHz, the Larmor frequency of hydrogen subject to a 7T magnetic field.

Although successful MRI system designs have surpassed magnetic field strengths

of 11T, 7T MRI systems have become the standard for high-field imaging due to

the optimal balance between the signal-to-noise ratio and the size of the bore [18].

Additionally, a second coil model of identical geometry is designed to operate at

128 MHz (3T). This coil will provide a point of reference to standard clinical field

strength imaging, where B1-field inhomogeneities are known to be negligible. The

coil models are equipped with 8 independent line elements. A maximum number of

line elements is desirable in order to achieve maximal controllability of the B+
1 -field.

However, for design complexity reasons, most MRI systems equipped for parallel

transmission today are fitted with only 8 independent RF drive ports.
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(a)

(b) (c)

Figure 3–1: The TEM resonator: (a) the model of the an 8-element coil with the
end-capacitors and sources, (b) the current flow diagram and (c) the single-element
building block of the TEM resonator.
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Figure 3–2: The cross-sectional schematic of the TEM resonator.

Figure 3–2 shows the cross-sectional geometry of the TEM resonator. The di-

mensions are selected in accordance with standard adult head coil sizes. The shield

has an inner radius, rshield, of 190 mm and is made of 35-μm-thick copper sheet. A

cylindrical dielectric former of 130 mm inner radius (rformer) and 2.8 mm thickness

is placed coaxially within the shield. Eight copper-sheet line elements conform to

the inner wall of the former. The length of the coil is 200 mm. The end-capacitor

values and the width and thickness of the line elements are adjusted to achieve the

desired coil resonance.
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3.2 MTL Model

Several works have shown that the TEM resonator behaves very much like a

multi-conductor transmission line (MTL) terminated by capacitive loads [19][20].

The MTL model of the coil can estimate important coil parameters such as the input

impedance, the S11 parameter and the electromagnetic field distributions. These

estimations agree very closely to full-wave three-dimensional electromagnetic analysis

calculations, yet are achieved with significantly less computing power. During design

phase, the transmission line model provides a way to quickly understand the effects of

model parameters and allows for faster design turn-overs. Once the desired behaviour

is achieved, the MTL model is mapped to a three-dimensional model and solved using

computational electrodynamic analysis techniques for greater precision and design

confidence.

Transmission line theory is based on the fundamental assumption that the fields

in a transmission line propagate in the transverse electromagnetic (TEM) mode. The

TEM mode simply implies that the electric and magnetic field components in the

direction of propagation are zero. The direction of propagation is conventionally

assigned to the z-axis, and the transverse components to the xy-plane. In order to

be consistent with the TEM structure, the conductors of the transmission line must

be perfect ; otherwise, conduction losses along the length of the z-axis will result in

changes in Ez, as depicted in Figure 3–3. The transmission line must also be uniform

along the direction of propagation. In other words, the cross-sectional geometry and

electromagnetic properties of the dielectrics and conductors must not vary with z.
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Figure 3–3: The electric field resulting from conduction losses along the length of
two parallel waveguides.

The TEM resonator satisfies the requirements for TEM structure: the line ele-

ments and the shield are made from very conductive material and the cross-section

of the coil does not vary along its length. The following sections explain how an

MTL model is created for the TEM resonator and how it is used to determine the

important electrical properties of the coil.

3.2.1 MTL Equations

The transmission line equations formulate the waveguide problem in terms of

circuit theory terms. Since the EM fields have no z component in TEM mode,

Maxwell’s equations in the transverse plane simplify to those of electrostatics. This

implies that current and voltage can be uniquely defined in the transverse plane.

Moreover, since the transmission line is uniform along z, the electrodynamics at

any given cross-section are sufficient to describe the electrodynamics throughout the

entire coil.

The first set of transmission line equations describes the per-unit-length (PUL)

voltage on each conductor with respect to position z. Changes in voltage on the

i-th conductor are caused by i) resistive losses from the current Ii flowing through

the non-ideal conductor i and reference conductor; and ii) induced voltage by time-

varying magnetic fields emanating from neighbouring conductors. These effects are
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summarized by the following equation:

∂Vi(z, t)

∂z
= − [ri1I1(z, t) + · · ·+ riiIi(z, t) + · · ·+ riNIN(z, t)]

− d

dt
[li1I1(z, t) + · · ·+ liiIi(z, t) + · · ·+ liNIN(z, t)] (3.1)

where Vi is the voltage between conductor i and the reference conductor (in volts);

Ii is the current on conductor i (in amperes); rij and lij are the PUL resistance (in

ohms) and inductance (in henries) between conductors i and j, respectively; and

N is the number of conductors in the transmission line. A thorough derivation of

Equation 3.1 from Maxwell’s equations can be found in the appendix in Section A.2.

The set of N voltage equations are more easily expressed in matrix/vector form:

∂V(z, t)

∂z
= −(R+

d

dt
L)I(z, t) (3.2)

(3.3)

where the vectors V(z, t) and I(z, t) are the reference voltages and the currents on

the N conductors, respectively; and the matrices R and L, defined as:

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1N

r21 r22 · · · r2N
...

...
. . .

...

rN1 rN2 · · · rNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l11 l12 · · · l1N

l21 l22 · · · l2N
...

...
. . .

...

lN1 lN2 · · · lNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

are the PUL resistance and inductance matrices of the transmission line, respectively.

The second set of transmission line equations describes the per-unit-length cur-

rent on each conductor with respect to position z. Changes in current on the i-th
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conductor are caused by i) conduction currents from lossy dielectrics between conduc-

tor i and the neighbouring conductors; and ii) displacement currents from bounded

charges in the dielectric between conductor i and the neighbouring conductors. These

effects are summarized by the following equation:

∂Ii(z, t)

∂z
= − [gi1Vi1(z, t) + · · ·+ giiVii(z, t) + · · ·+ giNViN(z, t)]

− d

dt
[ci1Vi1(z, t) + · · ·+ ciiVii(z, t) + · · ·+ ciNViN(z, t)] (3.5)

where gij and cij are the PUL conductance (in siemens) and capacitance (in farads)

between conductors i and j, respectively; Vij is the voltage between conductors i and

j, for i �= j; and Vii is the voltage between conductor i and the reference conductor.

A thorough derivation of Equation 3.5 from Maxwell’s equations can be found in

Section A.1. Note that the voltages in Equation 3.5 are line voltages, whereas the

voltages in Equation 3.1 are in reference to the reference conductor. Rewriting

Equation 3.5 in terms of reference conductor voltages gives:

∂Ii(z, t)

∂z
= −

[
−gi1V1(z, t) + · · ·+

N∑
k=1

g1kVi(z, t) + · · · − giNVN(z, t)

]

− d

dt

[
−ci1V1(z, t) + · · ·+

N∑
k=1

c1kVi(z, t) + · · · − ciNVN1(z, t)

]
(3.6)

The set of N current equations expressed in matrix/vector form is:

∂I(z, t)

∂z
= −(G+

d

dt
C)V(z, t) (3.7)
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where the vectors V(z, t) and I(z, t) are the reference voltages and the currents on

the N conductors, respectively; and the matrices G and C, defined as:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑N
k=1 g1k −g12 · · · −g1N

−g21
∑N

k=1 g2k · · · −g2N
...

...
. . .

...

−gN1 −gN2 · · · ∑N
k=1 gNk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑N
k=1 c1k −c12 · · · −c1N

−c21
∑N

k=1 c2k · · · −c2N
...

...
. . .

...

−cN1 −cN2 · · · ∑N
k=1 cNk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.9)

are the PUL conductance and capacitance matrices of the transmission line, respec-

tively.

3.2.2 Poisson’s Equations

In order to calculate the PUL parameters of the coil, the electric and magnetic

field distributions are needed. Maxwell’s equations in point-form are:

Faraday’s Law of Induction: ∇× �E = −jωμ �H (3.10)

Ampère’s Circuital Law: ∇× �H = σ �E + jωε �E + Ji (3.11)

Gauss’s Law: ∇ · �D = ρfree (3.12)

Gauss’s Law for Magnetism: ∇ · �B = 0 (3.13)
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where �E, �D, �H and �B are the electric field intensity (in volts per meter), electric

flux density (in coulombs per square meter), magnetic field intensity (in amperes

per meter) and magnetic flux density (in teslas), respectively; μ, σ and ε are the

medium’s permeability (in webers per ampere per meter), conductivity (in siemens

per meter) and permittivity (in farads per meter), respectively; ρfree is the free charge

density (in coulombs per cube meter) and �Ji (in amperes per square meter) is the

impressed current density. Since Ez = 0 and Hz = 0 under TEM regime, Equations

3.10 and 3.11 can be rewritten as:

(∇t +∇z)× �Et = (∇z × �Et)︸ ︷︷ ︸
transverse component

+(∇t × �Et)︸ ︷︷ ︸
z-component

= −jωμ �Ht︸ ︷︷ ︸
transverse component

(3.14)

(∇t +∇z)× �Ht = (∇z × �Ht)︸ ︷︷ ︸
transverse component

+(∇t × �Ht)︸ ︷︷ ︸
z-component

= σ �Et + jωε �Et︸ ︷︷ ︸
transverse component

+ �Ji︸︷︷︸
z-component

(3.15)

where the subscripts t and z designate the transverse plane and z-axis components,

respectively. Hence, we can deduce from Equations 3.14 and 3.15 that ∇t × �Et is

always zero and ∇t × �Ht = Ji.

By the fundamental theorem of vector calculus, any vector field �F decomposes

into an irrotational (curl-free) component, �Firr = −∇φ, and a solenoidal (divergence-

free) component, �Fsol = ∇× �A. The scalar field φ and vector field �A are often called

the scalar potential and vector potential of �F , respectively. Since ∇× �Et = 0, �Et is

a curl-free field and can be fully defined in terms of a scalar potential:

�Et = −∇V (3.16)
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The scalar potential of an electric field is the electric potential — or simply, the

voltage (in volts). By Gauss’s law and by safely assuming that no free charges can

exist in the media surrounding the conductors, the following equation must always

hold under TEM conditions:

∇ · ε∇V = 0 (3.17)

Equation 3.17 is a special 2D elliptic partial differential equation (PDE) known as

Poisson’s equation. By setting up voltage boundary conditions on all the conductors,

the voltage potential in the 2D space surrounding the conductors, V (x, y), can be

solved using a numerical approach such as the finite-element method (FEM) or the

method of moments (MoM). Since the region of interest is a bounded domain en-

closed by the shield conductor, the FEM is well-suited for our PDE problem. From

the solution V (x, y), the electric field �Et(x, y) in the area around the conductors is

calculated from Equation 3.16.

By Gauss’s law of magnetism, �Ht is a divergence-free field, thus can be fully

defined in terms of a vector potential, �A (in volt-seconds per meter):

�Ht =
1

μ
∇× �A (3.18)

By vector identity, the curl of �Ht is:

∇× �Ht =
1

μ
∇×∇× �A =

1

μ
∇(∇ · �A)− �∇2 �A (3.19)

Note that �∇2 is the vector Laplacian operator and operates on the vector field �A as

�∇2 �A = ∇2Axî + ∇2Ay ĵ + ∇2Azk̂ where ∇2 is the scalar Laplacian operator. For
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simplicity, the magnetic vector potential is chosen to be fully solenoidal so that the

term (∇ · �A) in Equation 3.19 disappears. The z-component of Equation 3.15 is

rewritten in terms of the magnetic vector potential:

∇t × �Ht = − 1

μ
∇2Az = Ji (3.20)

This equation implies that, outside of the conductors, where Ji = 0, the z-component

of the magnetic potential also follows a Poisson’s equation:

∇ · 1
μ
∇Az = 0 (3.21)

Similarly to the electric potential, Equation 3.21 can be solved for Az(x, y) by FEM

for a set of magnetic potential boundary conditions on the conductors. The magnetic

field distribution is then calculated as:

�Ht =
1

μ

[(
∂Az

∂y
− ∂Ay

∂z

)
î+

(
∂Ax

∂z
− ∂Az

∂x

)
ĵ

]

=
1

μ

[
∂Az

∂y
î− ∂Az

∂x
ĵ

]
(3.22)

Note that the partial derivatives ∂Ax

∂z
and ∂Ay

∂z
are necessarily zero since the magnetic

field should not vary with respect to z in the TEM structure.

The commercially available PDE toolbox from Mathworks provides a powerful

and flexible FEM platform for solving and visualizing PDE problems. The geometry

of the coil cross-section is defined through disjointed 2D regions representing the

different dielectrics of the problem. Using the toolbox’s meshing routine, the regions

are discretized into smaller triangular sub-regions, called finite elements. The general
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elliptic PDE:

−∇ · c∇U + aU = f (3.23)

where U is the unknown potential variable and c, a and f are the PDE coefficients,

is discretized on each triangle node. When solving for the electric potential, the

coefficient c is set to the permittivity corresponding to each node; in the case of

the magnetic potential, c is set to the inverse of the permeability at each node. In

both cases, the PDE coefficients a and f are set to zero for all nodes. The system

of node equations is then solved numerically for a given set of boundary conditions.

The electric and magnetic fields are then calculated from Equations 3.16 and 3.22,

respectively.

3.2.3 Per Unit Length Parameters

The PUL capacitance C, conductance G, inductance L and resistance R ma-

trices capture specific information about how the electromagnetic fields behave in

a given transmission line. By setting up strategic boundary conditions, the coeffi-

cients of the parameter matrices are determined from the solutions to the electric

and magnetic Poisson equations.

PUL Capacitance. The capacitance matrix C models the PUL displacement

current flowing between the conductors of the transmission line. Although the MTL

equations from Equations 3.2 and 3.7 are expressed in terms of reference voltages,

displacement currents in the transmission line are more easily analysed in terms of

line voltages. By examining Equation 3.5, the PUL displacement current flowing out
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of the i-th conductor, Id,i, is:

∂Id,i
∂z

= − d

dt
[ci1Vi1(z, t) + · · ·+ ciiVii(z, t) + · · ·+ ciNViN(z, t)] (3.24)

The displacement current strictly between conductors i and j is:

∂Id,i
∂z

= − d

dt
cijVij (3.25)

where the potential differences Vik in Equation 3.24 were forced to zero for all k �= j.

By combining this result to the definition of PUL capacitance from Equation A.22,

cij is:

cij =
qi
Vij

∣∣∣∣
Vik=0 for k �=j

= ε

˛
c

�E · n̂dl

−
ˆ
c′
�E · d�l

∣∣∣∣∣∣∣∣
Vik=0 for k �=j

(3.26)

where qi is the total PUL charge on the i-th conductor (in coulombs); c is a path

around the i-th conductor; and c′ is a path from conductor j to i. When computing

cij, the boundary conditions to Poisson’s Equation 3.17 must respect the line voltages

prescribed in Equation 3.26. In other words,

V = V0, on the j-th conductor

V = 0V , on all other conductors, including the shield (3.27)

as shown in Figure 3–4. Each entry of the i-th row is determined by solving the

electric potential V (x, y) from Poisson’s Equation 3.17 with the boundary conditions
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Figure 3–4: The cross-section of the TEM resonator annotated with the path c
around the i-th conductor; the path c′ from conductor j to i; and the Poisson bound-
ary conditions prescribed in Equation 3.26

.

in Equation 3.27 for j = 1...8, and computing �E(x, y) from Equation 3.16. Alter-

natively, since capacitance is a reciprocal property, it is sufficient to solve Poisson’s

equation over one set of boundary conditions for the entire row:

V = V0, on the i-th conductor boundaries

V = 0V , on all other conductor boundaries, including the shield (3.28)
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and infer cij from cji. The self-capacitance cii is calculated implicitly from Equation

3.5 where Vij = V0 for all j = 1...8:

∂Ii
∂z

= − d

dt
[ci1Vi1(z, t) + · · ·+ ciiVii(z, t) + · · ·+ ciNViN(z, t)]

= − d

dt
V0

N∑
k=1

c1k (3.29)

By placing the path c around the i-th conductor, the result from Equation 3.26 is

simply the sum of the capacitances of the i-th row,
∑N

k=1 c1k. The remaining rows of

C can be calculated by applying the boundary conditions from 3.28 in turn to each

line element. In the case of the TEM resonator, where the line elements are identical

and uniformly spaced, the capacitance matrix is circulant. Therefore, the entries of

the first row are sufficient to calculate the full matrix.

PUL Conductance. Dielectric losses are modelled through the conductance

matrix G. These losses represent conduction currents between neighbouring conduc-

tors and losses from polarization of bounded charges. The conduction currents are

accounted for by the material’s conductivity, σ, whereas the polarization losses are

usually modelled as an imaginary component εb to the permittivity: ε = ε′ − jεb.

Ampère’s law from Equation 3.11 is rewritten to combine εb and σ into a single
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permittivity value ε̂:

∇× �H = σ �E + jωε �E + Ji

= (σ + jω(ε′ − jεb) �E + Ji

= jω(ε′ − j(
σ

ω
+ εb)) �E + Ji (3.30)

= jωε̂ �E + Ji

where ε̂(ω) = (ε′− j ωεb+σ
ω

). Using the complex permittivity in place of ε in Poisson’s

equation 3.17, a special capacitance matrix Ĉ can be calculated to include both PUL

capacitances and PUL dielectric losses. The matrices C and G are recovered from

Ĉ through:

C = �{Ĉ} (3.31)

G = −ω�{Ĉ} (3.32)

Note that by assuming that no free charges exist in the dielectric media, it is implied

that σ is zero and that ε̂ does not vary with ω. Therefore, the matrices C and G

are constant with respect to frequency.

PUL Inductance. The PUL inductance models the induced voltage on a

conductor by the time-varying currents from neighbouring conductors. By examining

Equation 3.1, the PUL induced voltage on the i-th conductor is:

∂Vd,i

∂z
= − d

dt
[li1I1 + · · ·+ liiIi + · · ·+ liNIN ] (3.33)

Unlike the calculations for cij and gij, lij cannot be isolated in Equation 3.33 by

simply setting the currents Ik to zero for all k �= j. The magnetic Poisson equation
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3.21 allows only for direct control over the magnetic potential on the conductor

boundaries. Therefore, a few more steps are required to solve for L. The magnetic

potential Az,i(x, y) is calculated by solving the magnetic Poisson equation for the

following boundary conditions:

Az = ψ0, on the i-th conductor boundaries

Az = 0, on all other conductor boundaries, including the shield (3.34)

and the magnetic field distribution �Ht,i(x, y) is calculated using Equation 3.22. From

the definition of current in Equation A.6b, we can calculate the currents on each con-

ductor due to the magnetic potential boundary conditions in Equation 3.34. These

induction currents fill the i-th row of the current distribution matrix Ĩ:

Ĩ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ı̃11 ı̃12 · · · ı̃1N

ı̃21 ı̃22 · · · ı̃2N
...

...
. . .

...

ı̃N1 ı̃N2 · · · ı̃NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.35)

where ı̃ij reads as the current on conductor j due to Az = ψ0 on conductor i and

Az = ψ0 on all other conductors. Once again, since all the line elements are identical

and uniformly spaced, the matrix Ĩ is circulant and can be filled in with one set of

boundary conditions.

The currents relate to the total PUL flux between the j-th conductor and the

shield by the PUL inductances:

ψij = ı̃i1lj1 + · · ·+ ı̃ijljj + · · ·+ ı̃iN ljN (3.36)
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where ψij reads as the total PUL flux between conductor j and the shield due to

currents from Az = ψ0 on conductor i and Az = ψ0 on all other conductors. In

matrix notation,

Ψ = LĨT (3.37)

The PUL flux between the i-th line element and the shield, ψi (in webers), is:

ψi = μ

ˆ
c′
�H · n̂ dl (3.38)

where c′ is a path from conductor i to the shield. The coefficients of Ψ can be

calculated from the magnetic field distribution using Equation 3.38. However, it

is quickly realized that the flux ψij corresponds simply to the magnetic potential

difference between the conductor i and the shield. Therefore, the PUL flux matrix

is:

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 · · · ψ1N

ψ21 ψ22 · · · ψ2N

...
...

. . .
...

ψN1 ψN2 · · · ψNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ψ0 0 · · · 0

0 ψ0 · · · 0

...
...

. . .
...

0 0 · · · ψ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.39)

and the PUL inductance matrix of the transmission line is:

L = ψ0Ĩ
−1 (3.40)

PUL Resistance. The PUL resistance accounts for resistive losses from the

line elements and shield. For applications operating in high frequency ranges such as

MRI coils, the resistance matrix most accurately models the transmission line losses
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by satisfying the power dissipation relation [20]:

P (z) =
1

2
I(z)RI(z)T (3.41)

The total power dissipated in the volume of a coil per unit length, P (in watts), is:

P =
1

2

¨
S

�E · �J∗dA

=
1

2

¨
S

ρ �J 2dA

=
1

2

˛
∂S

RsJ
2
sdl (3.42)

where ρ and J are the resistivity (in ohm-meters) and current density (in amperes

per square meter), respectively; Rs and Js are the surface resistivity and surface

current density (in amperes per meter), respectively; S is the cross-sectional area of

the conductors and ∂S is the collection of contours around each conductor. For a

given magnetic field distribution �Ht,i(x, y), the surface current density distribution

Js on all conductor boundaries is easily determined. Recall that the current on a

conductor and its surface current density are related by:

I =

˛
c

Jsdl (3.43)

where c is the contour of the conductor. Comparing this equation and the definition

of current in Equation A.6b implies that:

Js = Ht,tan (3.44)
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where Ht,tan is the transverse magnetic field tangent to the conductor boundary. The

PUL power dissipation matrix P̃ is defined as:

P̃ =
1

2
ĨRĨT (3.45)

where

P̃ij =

[
ĩi1 ĩi2 · · · ĩiN

] [
R

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ĩj1

ĩj2
...

ĩjN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.46)

Also, from the definition of ohmic power dissipation, the elements P̃ are also equal

to:

Pij =
1

2

˛
l

RsJs,iJs,jdl (3.47)

where Js,i is the current density distribution on the conductors resulting from Az = ψ0

on conductor i and Az = ψ0 on all other conductors. Although the off-diagonal

coefficients of P̃ do not physically equal to power, the equality between Equations

3.46 and 3.47 must still hold for all ij. Therefore, the matrix R is computed by:

R = 2Ĩ−1P̃(̃IT )−1 (3.48)

3.2.4 Model Measurements

Once the transmission line parameters of the TEM resonator are determined,

the voltage and current of each line element can be calculated at any position along

the length of the coil. By calculating the voltage and current at the ends of the
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line elements, the line elements and shield are regarded as a ”black box”. The

remaining components of the coil, such as the end capacitors and the drive circuit,

assemble around the black box as lumped elements. The resulting circuit model

allows for measuring important electrical characteristics of the coil when it is subject

to harmonic stimuli.

Voltage and current are tightly coupled through the transmission line equations,

where one quantity is proportional to the z-derivative of the other. In order to decou-

ple voltage and current, the two sets of transmission line equations are incorporated

into a single matrix/vector expression. Since MRI coils operate primarily with har-

monic signals, the transmission line equations are conventionally expressed in the

frequency domain in terms of the complex Laplace argument s:

∂

∂z

⎡
⎢⎣V(z, s)

I(z, s)

⎤
⎥⎦ = (D+ sE)

⎡
⎢⎣V(z, s)

I(z, s)

⎤
⎥⎦ (3.49)

where

D =

⎡
⎢⎣ 0 −R

−G 0

⎤
⎥⎦ and E =

⎡
⎢⎣ 0 −L

−C 0

⎤
⎥⎦

Equation 3.49 is a ordinary differential equation with the following solution:⎡
⎢⎣V(z, s)

I(z, s)

⎤
⎥⎦ = e(D+sE)zA (3.50)
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The constant matrix A is determined by setting z to 0:⎡
⎢⎣V(0, s)

I(0, s)

⎤
⎥⎦ = e(D+sE)·0A = A (3.51)

Therefore, the current and voltage solution is:⎡
⎢⎣V(z, s)

I(z, s)

⎤
⎥⎦ = e(D+sE)z

⎡
⎢⎣V(0, s)

I(0, s)

⎤
⎥⎦ (3.52)

where V(0, s) and I(0, s) are the boundary conditions at the input of the line ele-

ments.

The line elements and the shield are regarded in circuit theory terms as a 16-

port network, as depicted in Figure 3–5. The voltage and current at the ports of the

Figure 3–5: A 16-port network representation of the line elements and shield.
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network are related by the chain parameters Φ(s):⎡
⎢⎣V(L, s)

I(L, s)

⎤
⎥⎦ = Φ(s)

⎡
⎢⎣V(0, s)

I(0, s)

⎤
⎥⎦

=

⎡
⎢⎣Φ11(s) Φ12(s)

Φ21(s) Φ22(s)

⎤
⎥⎦
⎡
⎢⎣V(0, s)

I(0, s)

⎤
⎥⎦ (3.53)

where Φ(s) = e(D+sE)L and L is the length of the coil. The end capacitors on the

load-side of the coil, i.e. at z = L, connect between the line elements and the shield,

as depicted in Figure 3–6. The port currents relate to the port voltages in terms of

Figure 3–6: The TEM resonator network connected to the load-side capacitors ZiL,
for i = 1...8.
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the impedance. On the load side,

V1(L, s) = Z1LI1(L, s)

V2(L, s) = Z2LI2(L, s)

· · ·

V8(L, s) = Z8LI8(L, s)

or equivalently,

V(L, s) = ZLI(L, s) (3.54)

where ZL is a diagonal matrix with ZL,ii = ZiL. Similarly on the source side,

V(0, s) = Zin(s)I(0, s) (3.55)

where Zin(s) is an 8-by-8 unknown matrix. Using Equations 3.53, 3.54 and 3.55, the

input impedance matrix to the line elements of the coil, Zin(s), is calculated as:

Zin(s) = [Φ11(s)− ZLΦ21(s)]
−1 [ZLΦ22(s)−Φ12(s)] (3.56)

The end capacitors on the source side and a 50-Ω Thevenin source are added to the

circuit, as shown in Figure 3–7. The source current Is and the line element currents

Ii for i = 1...8 are solved using mesh analysis. Figure 3–7 shows the mesh loops

using red arrows and indicates the chosen current directions.

The source current Is provides some insight on the coil’s overall response to

stimulus. One useful measure is the S11-parameter, which calculates the ratio of
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Figure 3–7: The full circuit representation of the TEM resonator driven by a source
VS on the first conductor. The red arrows indicate the direction of the currents used
in the mesh analysis.

reflected power over incident power. The S11-parameter is defined as:

S11 =
Z ′

in −Rs

Z ′
in +Rs

(3.57)

where Z ′
in is the input impedance seen by the source. In the TEM resonator, the

input impedance is simply:

Z ′
in =

Vs

Is
−Rs (3.58)

By calculating Is over a range of frequencies of interest, the operating frequency

corresponding to optimal coil efficiency is found as the smallest S11(s) value.

The line element currents from the mesh analysis carry information about the

response to stimulus in different parts of the coil. The voltage boundary conditions

at the input of the line elements relate to the line element currents through Equation

3.55. From V(0, s) and I(0, s), the voltage and current on every line element can
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be calculated at any position along the length of the coil through Equation 3.52. It

also follows that the electric and magnetic fields can be determined anywhere within

the coil, one transverse slice at a time. In the case of the electric field, the electric

potential distribution V (x, y) is obtained by solving Poisson’s Equation 3.17 with the

boundary conditions prescribed in V(z, s). Alternatively, V (x, y) can be regarded as

a superposition of eight voltage distributions Vi(x, y) where the boundary conditions

are V = Vi(z, s) on the i-th conductor and V = 0 on all other conductors [20]. This

approach avoids computing new solutions to Poisson’s equations since the voltage

distributions calculated during the PUL parameter step are simply scaled versions

of Vi(x, y). Therefore, the voltage distribution at slice z is:

V (x, y) =
1

V0

8∑
i=1

Vi(z, s)Ṽi(x, y) (3.59)

where V0 is the voltage on the i-th conductor during the computation of Ṽi(x, y).

The electric field �E(x, y) then derives from the electric potential through Equation

3.16. In the case of the magnetic field, the current conditions I(z, s) are enforced by

setting the magnetic potential on each line element according to Ψ(z, s) = LI(z, s).

Similarly to the electric field approach, the solutions to Poisson’s Equation 3.21

computed during the PUL parameter step are superimposed and scaled according to

Ψ(z, s):

Az(x, y) =
1

ψ0

8∑
i=1

ψi(z, s)Ãz,i(x, y) (3.60)
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where ψ0 is the magnetic potential on the i-th conductor during the computation of

Ãz,i(x, y). The magnetic field �H(x, y) derives from the magnetic potential through

Equation 3.18.
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3.3 Three-Dimensional Full-Wave EM Model

Once the TEM resonator design is finalized using the MTL model, the coil

must be readjusted to account for the loading effect of the tissue phantom. Three-

dimensional full-wave methods are necessary to accurately capture the complex non-

TEM effects that occur in realistic transmission lines. There are three major nu-

merical methods in electromagnetics: finite-difference time-domain (FDTD), finite-

element method (FEM) and method of moments (MoM). Central to all methods is

the discretization of the problem domain into a large number of small elements, over

which one unknown electromagnetic quantity (e.g. electric field) is computed. The

methods are fundamentally different from one another in their approach to solving

Maxwell’s equations therefore, their performance in speed and accuracy can vary

significantly depending on the problem.

For the purpose of MRI coils, the FDTD method is the most common approach

[8]. The MoM is ideal for radiation (far-field) applications or problems composed of

perfectly conducting materials; however, the formulation adapts poorly to inhomoge-

neous dielectric structures, such as tissue models. For a single frequency solution, the

speed performance of FEM and FDTD are comparable. Moreover, by virtue of its

versatile meshing capabilities, an FEM model will conform more closely to the actual

geometries. However during the design of the coil where a spectrum of the solution

is desirable, FDTD is the preferred option since it computes a broadband solution at

no extra cost. Also, most commercial software packages include extensions to FDTD

to improve the geometrical accuracy [21].
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The following sections describe the 3D full-wave model of the TEM resonator.

Although a thorough discussion of the FDTD method is beyond the scope of this

thesis, a brief overview of the theory and the relevant measurements extracted from

the 3D model are presented.

3.3.1 FDTD Method

The finite-difference time-domain method is a numerical algorithm that explic-

itly calculates the electric and magnetic fields using Maxwell’s curl equations rather

than solving the wave equation, as it is done in FEM and MoM. The cornerstone of

FDTD lies in computing �E and �H on two distinct Cartesian grids that are staggered

in both space and time, a technique proposed by Kane Yee in 1966. The method was

validated by Allen Taflove in 1975, when he published the correct criterion for numer-

ical stability [22]. Despite FDTD’s straightforward implementation, the technique

only started gaining popularity in the 1980s, when the rapidly increasing memory in

commercial computers satisfied the large storage needs of FDTD. Today, commer-

cial versions, such as SEMCAD X® and CST Mircowave Studio®, include powerful

extensions to the standard algorithm and a practical user interface.

Considering a region without electric or magnetic current sources, Faraday’s and

Ampère’s law in point form from Equations 3.10 and 3.11 yield six coupled scalar
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equations. In Cartesian coordinates, these equations are:

∂Hx

∂t
=

1

μ

(
∂Ey

∂z
− ∂Ez

∂y

)
(3.61a)

∂Hy

∂t
=

1

μ

(
∂Ez

∂x
− ∂Ex

∂z

)
(3.61b)

∂Hz

∂t
=

1

μ

(
∂Ex

∂y
− ∂Ey

∂x

)
(3.61c)

∂Ex

∂t
=

1

ε

(
∂Hy

∂z
− ∂Hz

∂y
− σEx

)
(3.61d)

∂Ey

∂t
=

1

ε

(
∂Hz

∂x
− ∂Hx

∂z
− σEy

)
(3.61e)

∂Ez

∂t
=

1

ε

(
∂Hx

∂y
− ∂Hy

∂x
− σEz

)
(3.61f)

By discretizing the region of interest into small voxels, the spacial derivatives in Equa-

tions 3.61a to 3.61f are approximated by finite differences (FD). We will consider for

simplicity a regular Cartesian grid where the dimensions of a single element are Δx,

Δy and Δz in the x, y and z coordinate directions, respectively. Moreover, the time

derivatives are also expressed as finite differences by sampling �E and �H at every time

step Δt. As an example, Equations 3.61a and 3.61d at point (iΔx, jΔy, kΔz, nΔt)

are, in terms of central finite differences:

Hx|n+1/2
i,j,k −Hx|n−1/2

i,j,k

Δt
=

1

μ

[
Ey|ni,j,k+1/2 − Ey|ni,j,k−1/2

Δz

− Ez|ni,j+1/2,k − Ez|ni,j−1/2,k

Δy

]
(3.62)
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and

Ex|n+1/2
i,j,k − Ex|n−1/2

i,j,k

Δt
=

1

ε

[
Hy|ni,j,k+1/2 −Hy|ni,j,k−1/2

Δz

− Hz|ni,j+1/2,k −Hz|ni,j−1/2,k

Δy
− σ

Ex|n+1/2
i,j,k + Ex|n−1/2

i,j,k

2

]
(3.63)

where we have used the notation F (iΔx, jΔy, kΔz, nΔt) = F |ni,j,k and approximated

the conduction current σEx|ni,j,k as the average between time points (n − 1/2) and

(n+ 1/2). Assuming that the field values prior time point t = (nΔt+ 1/2) are known

(i.e. all �E|mi,j,k and �H|mi,j,k for m ≤ n), Ex|n+1/2
i,j,k and Hx|n+1/2

i,j,k in Equations 3.62 and

3.63 can be computed explicitly. Therefore, �E and �H are explicitly computed using

a time-stepping method given the initial conditions of the fields, thereby avoiding

costly matrix inversions techniques. Although other forms of finite differences exist,

the choice in central FD produces a unique arrangement between the �E and �H

components. As demonstrated in Equations 3.62 and 3.63, the magnetic and electric

field samples relate to each other in terms of a time offset of Δt/2. Moreover, the

magnetic field samples depend on four surrounding electric field components located

at half a voxel distance away, and vice versa. In this arrangement, the magnetic and

electric field samples are computed in staggered locations within each voxel and on

interleaved time points. Figure 3–8 illustrates this arrangement commonly referred

to as the Yee cell.

Since the inception of FDTD, many refinements and extensions to the method

have improved its performance and expanded the range of applications. Although an

in-depth understanding of every facet of FDTD would require years of study, many

commercial and open source softwares available today make this powerful technique
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Figure 3–8: The Yee cell (adapted from [2]).

accessible to even the most novice users. The commercial software SEMCAD X® de-

veloped by Schmid & Partner Engineering (SPEAG) is one of the leading platforms

for 3D full wave simulation using FDTD. It was selected to model the TEM resonator

for its specialization in medical applications. Following the computation of the elec-

tric and magnetic fields though FDTD, the important electrical characteristics of the

TEM resonator can be extracted from the results.

51



CHAPTER 4
Transmit Coil Model Measurements

For the purpose of carrying out a simulation experiment on parallel transmission

RF pulses, two RF coil simulation models are generated following the methodology

proposed in Chapter 3. The design of a single coil begins with the development of an

MTL model tuned to the desired resonance characteristics. Then, using a full-wave

FDTD model, the coil is refined to account for non-TEM effects and is adjusted for

the loading effects caused by coupling between the coil and the tissues. The following

sections present the results from the MTL model and the full-wave FDTD model for

an unloaded coil, and compare their agreement to the study conducted by Bogdanov

and Ludwig [20]. The final section assesses the loading effects on the coil response

and presents the corrected coil designs.

4.1 MTL Model Results

Two TEM resonator models are constructed using the MTL approach: one 128-

MHz coil for 3T MRI systems and one 300-MHz coil for 7T MRI systems. The basic

design of the TEM resonator is shown in Figures 3–1a and 3–2. By modifying certain

features of the coil, such as the geometry and the values of the lumped elements, the

electrical characteristics of the coil change. The length of the coil and the radii of the

shield and line element cylinders are fixed dimensions in accordance with standard

head coils. Therefore, there are three coil parameters that can be adjusted to tune

the resonance: the capacitors and the width and thickness of the line elements. For
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the sake of design simplicity and optimal B+
1 uniformity, each parameter is scaled

by the same amount on all line elements. By virtue of symmetry, all eight input

responses are identical thereby necessitating characterization of only one input of

the TEM resonator.

4.1.1 Coil Parameter Characterization

Figure 4–1 shows the S11 parameter in decibels of one input to the TEM res-

onator in the frequency range of interest. The coil response exhibits four resonances:

176, 200, 215 and 222 MHz. In this specific example, the capacitor values are set to

10 pF and the width and thickness of the line elements are set to 24 mm and 35 μm,

respectively. In order to understand how to tune the TEM resonator, the parameters

are altered one at a time in incremental amounts and their effect measured by the

coil response.
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Figure 4–1: The S11 spectrum of the TEM resonator predicted by the MTL model,
where the capacitor values are set to 10 pF and the width and thickness of the line
elements are 24 mm and 35 μm, respectively.
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Figure 4–2 shows the S11 parameter in decibels for varying line element thick-

nesses. Since the coil response has multiple resonances located near each other in

the frequency spectrum, the portion of the S11 curve belonging to the first resonance

is plotted for each parameter configuration. For every curve, the line element width

and capacitances are kept at a constant value of 24 mm and 10 pF, respectively. The

results show that an increase in the line element thickness produces a downward shift

in the resonant frequency and a slight decrease of the S11 at resonance. By doubling

the thickness of the line element, a decrease of approximately 1 MHz is observed in

the resonant frequency. A similar shift is observed on the portions of the S11 curves

belonging to the second and third resonances but are not plotted here for brevity.
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Figure 4–2: The comparison of the S11 spectra from the MTL model for varying
line element thicknesses. These curves show an upward shift in the resonance for
increasing line element thickness.
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Figure 4–3: The comparison of the S11 spectra from the MTL model for varying line
element widths. These curves show a downward shift in the resonance for increasing
line element width.

Figure 4–3 shows the S11 parameter of the first resonance peak for varying line

element widths, where the line element thickness and capacitances are kept at a

constant value of 35 μm and 10 pF, respectively. For an increase in the line element

width by a factor of 2, an upward shift of the resonance of 15 MHz and decrease of

the S11 at resonance are observed.

Finally, the coil response is characterized for different capacitor values. Figure

4–4 shows the S11 parameter of the first resonance peak for varying capacitor values,

where the line element width and thickness are 24 mm and 35 μm, respectively. In the

frequency spectrum of interest, doubling the capacitor value produces a downward

frequency shift of approximately 50 MHz accompanied by a slight variation in the

S11 at resonance.
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Figure 4–4: The comparison of the S11 spectra from the MTL model for varying
capacitor values. These curves show an downward shift in the resonance for increasing
capacitor values.

4.1.2 Coil Parameter Selection

Using the trends exposed in Figures 4–2 to 4–4, a coil configuration is selected

for each desired resonance. The sensitivity of the coil response to the thickness of

the line elements is negligible compared to the other two parameters. Therefore for

design simplicity, an industry-standard thickness of 35 μm is selected for both con-

figurations. Many combinations of line element widths and capacitor values produce

the desired resonance frequencies. A preference is given to pairs of combinations that

have the same line element width. Maintaining the line element width between mod-

els will help in the fabrication stage of the coil. Moreover, line element widths under

30 mm are preferred in order to minimize the patient’s claustrophobic discomfort

during scans. The selected parameters are shown in Table 4–1. Figure 4–5 shows
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the S11 curves of both coils. The electric and magnetic field distributions are also

calculated for each coil design. Figures 4–6 and 4–7 show the normalized magnitude

of the �E and �B fields of the 3T and 7T coil cross-section at z = L/2, respectively,

where the magnitude of the fields are calculated as:

|�F (�r)| =
√
Fx(�r)2 + Fy(�r)2 (4.1)
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Table 4–1: The TEM resonator parameter settings determined by the MTL model
for the 3T (128 MHz) and 7T (300 MHz) coils.

f0
(MHz)

Capacitor Value
(pF)

Line Element Width
(mm)

Line Element Thickness
(μm)

128 18.8 22 35
300 3 22 35
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Figure 4–5: The S11 spectra of the 3T (128 MHz) and 7T (300 MHz) TEM resonator
predicted by the MTL model.
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(a) (b)

Figure 4–6: The normalized (a) electric and (b) magnetic field magnitude distribution
of the 3T (128 MHz) TEM resonator predicted by the MTL model, at the z = L/2
cross-section. The two inner circles drawn in black delimit the dielectric subdomain,
whereas the intersections of the straight lines and the most inner circle mark the
edges of the line elements.

(a) (b)

Figure 4–7: The normalized (a) electric and (b) magnetic field magnitude distribution
of the 7T (300 MHz) TEM resonator predicted by the MTL model, at the z = L/2
cross-section. The two inner circles drawn in black delimit the dielectric subdomain,
whereas the intersections of the straight lines and the most inner circle mark the
edges of the line elements.

59



4.2 Full-Wave EM Model Results

A similar exercise as from Section 4.1 is carried out in SEMCAD X® on the coil

parameters to assess the equivalence between the MTL model and the full-wave EM

model. Then, using the parameters from Table 4–1 as starting points, two full-wave

EM models are constructed, one for each desired resonant frequency.

4.2.1 Coil Parameter Characterization

Figure 4–8 shows the S11 parameter in decibels of one input to the TEM res-

onator in the frequency range of interest. The coil response exhibits four resonances:

150, 159, 168 and 173 MHz. The design parameters used to generate this result are

the same as those from Figure 4–1.
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Figure 4–8: The S11 spectrum of the TEM resonator predicted by the full-wave EM
model, where the capacitor values are set to 10 pF and the width and thickness of
the line elements are 24 mm and 35 μm, respectively.
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Figure 4–9 shows the S11 parameter (in dB) for varying line element thicknesses,

where the line element width and capacitor values are 24 mm and 10 pF, respectively.

The variation of the line element thickness produces a very negligible effect on the

coil response. For an increase in thickness by a factor of 2, the S11 curve shifts

upwards by less than 100 kHz.
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Figure 4–9: The comparison of the S11 spectra from the full-wave EM model for
varying line element thicknesses. These curves show an upward shift in the resonance
for increasing line element thickness.

The effect of varying the line element width is shown in Figure 4–10, where the

line element thickness is kept at 35 μm and the capacitors at 10 pF. By doubling the

line element width, the S11 curve shifts upwards in frequency by approximately 13

MHz. A decrease in the S11 value is also observed.
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Figure 4–10: The comparison of the S11 spectra from the full-wave EM model for
varying line element widths. These curves show an upward shift in the resonance for
increasing line element withds.

Finally, the full-wave model coil response is characterized for varying capacitor

values, where the line element width and thickness are 24 mm and 35 μm, respec-

tively. From Figure 4–11, we observe a downward shift in frequency on the order of

50 MHz for an increase in capacitance by a factor of 2. Moreover, an increase in the

S11 is observed.
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Figure 4–11: The comparison of the S11 spectra from the full-wave EM model for
varying capacitor values. These curves show a downward shift in the resonance for
increasing capacitor values.

4.2.2 Comparison of the MTL Model and the Full-Wave Model

The coil responses measured by the MTL model and the full-wave EM model

show some similarities. From Figures 4–1 and 4–8, we observe that both models of

the TEM resonator predict four resonances in the frequency spectrum of interest.

There are also similarities between the models in terms of the trends observed while

varying the design parameters.

Using the results from Figures 4–3 and 4–10, the effects of varying the line

element width results are compared in Figure 4–12 in terms of two features: the

resonant frequency, f0, and the value of the S11 at resonance. In Figure 4–12a, we

observe an average 15% disparity in the resonant frequency between the two models.

The disparity increases monotonically with increasing resonant frequency. Despite
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the difference in the absolute values of the resonant frequencies, the progression of the

resonance spectrum in both models follow a similar trend. Figure 4–12b compares

the S11 parameter (in dB) at f0 for varying line element widths. The MTL model

does not accurately predict the S11 value in the full-wave EM model, nor is there an

observable trend common to both models.
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Figure 4–12: The comparison of the (a) resonance frequency, f0, and (b) the S11

parameter (in dB) calculated by the MTL model and full-wave EM model for varying
line element widths.

In a similar manner, Figure 4–13 presents the results from Figures 4–4 and 4–11

in order to compare the effects of varying the capacitor values in each model. In

Figure 4–13a, we observe a very similar trend in the resonant frequency between

the MTL model prediction and the full-wave EM model calculation. As it was the

case for varying the line element width, the MTL model curve is approximately

15% above the full-wave model curve at 150 MHz. This discrepancy increases with

resonant frequency, reaching the 40% mark at 300 MHz, the frequency of interest for
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7T MRI machines. At the The comparison of S11 in Figure 4–13b again shows no

correlation between the two models.
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Figure 4–13: The comparison of the (a) resonance frequency, f0, and (b) the S11

parameter (in dB) calculated by the MTL model and full-wave EM model for varying
capacitor values.

The results from Figures 4–2 and 4–9 show that the effect of varying the line

element thickness differs between the two methods. This inconsistency is for the

most part attributed to the fact that the FDTD algorithm models very thin metallic

structures as a 2D plane staircase. As a result of this approximation, the concept of

thickness is lost. However, since varying the thickness by a factor of 10 produces a

shift in the resonance spectrum of less than 1%, this discrepancy between the two

models is negligible.

The experiment conducted by Bogdanov and Ludwig [20] compares the coil

response predictions from the MTL model to measurements performed on real TEM

resonator coils. Two small animal coils were used, one with a 36.3 mm radius bore
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and one with a 61.4 mm radius bore. Using their results, the performance of the

human head coil MTL model is evaluated. In terms of the resonant frequency, the

MTL models of the animal coils report an error margin of 4% for the smaller coil

and 5% for the larger coil around 175 MHz; from Figure 4–13a, the human head coil

MTL model has an error margin of 10% around the same frequency. Some amount

of inaccuracy is expected since the MTL model does not account for the non-TEM

effects occurring in the coil. Moreover, the radius increase from the smaller animal

coil to the larger one showed an increase in the percent error. The human head coil

has a bore radius of 129.5 mm, which is approximately twice the size of the large

animal coil radius. Therefore, the larger discrepancy is attributed to the difference

in diameters. In terms of the S11 values, the animal coil experiment does not show

a strong correlation between the MTL model and the coil measurements. This was

also the observation in the human head coil model comparison.

4.2.3 Coil Parameter Selection

Starting from the coil configurations identified by the MTL model, a full-wave

EM model is created for each desired frequency. From the comparison study, it is

already known that the values from Table 4–1 result in slightly higher than desired

resonance spectra. Either decreasing the capacitor values, increasing the line element

widths or a combination of both yields the desired effect. By choosing to only tune

the capacitor values, the geometry agreement between the MTL and full-wave models

is maintained, which simplifies the comparison of the field distributions. Table 4–2

shows the final coil configurations for the full-wave model. Figure 4–14 shows the

S11 curves of both coils and Figures 4–15 and 4–16 show the normalized magnitude
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of the �E and �B fields in the 3T and 7T coil cross-section at z = L/2. By comparing

full-wave model Figures 4–15 and 4–16 and MTL model Figures 4–6 and 4–7, the

discrepancy between the two models in predicting the field distributions is more

pronounced in the 7T coil than in the 3T coil, a result that is consistent with the

comparison of the S11 curves.

Table 4–2: The TEM resonator parameter settings determined by the full-wave model
for the 3T (128 MHz) and 7T (300 MHz) coils.

f0
(MHz)

Capacitor Value
(pF)

Line Element Width
(mm)

Line Element Thickness
(μm)

128 14.1 22 35
300 1.3 22 35
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Figure 4–14: The S11 spectra of the 3T (128 MHz) and 7T (300 MHz) resonator
predicted by the full-wave EM model.
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(a) (b)

Figure 4–15: The normalized (a) electric and (b) magnetic field magnitude distribu-
tion of the 3T (128 MHz) TEM resonator predicted by the full-wave model, at the
z = L/2 cross-section.

(a) (b)

Figure 4–16: The normalized (a) electric and (b) magnetic field magnitude distribu-
tion of the 7T (300 MHz) TEM resonator predicted by the full-wave model, at the
z = L/2 cross-section.
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4.3 Loaded Coil Adjustments

As the final design step, the coil response is measured under loaded conditions

by inserting a phantom into the full-wave coil model. The coil parameters are then

adjusted to regain resonance at the correct frequencies.

The phantom design follows the methodology proposed in [3]. A cylindrical

phantom of 120 mm in radius, consisting of a uniform dielectric material is inserted

coaxially into the coil model. The electromagnetic properties of the material are

selected to match the average properties of the human head, as determined by [1].

Table 4–3 lists these properties for 128 and 300 MHz.

Table 4–3: The electromagnetic properties of the human head phantom as calculated
by [1].

f0
(MHz)

Relative
Permittivity

Relative
Permeability

Electrical Conductivity
(S/m)

128 63.1 1 0.46
300 52 1 0.55

Figures 4–17a and 4–17b compare the S11 curves under different conditions,

for the 3T and 7T coils, respectively. The blue line corresponds to the response

of the unloaded coil; the black line describes the response of the coil containing the

phantom. In both the blue and black line responses, the unadjusted coil designs from

Table 4–2 were used. By adjusting the capacitor values on the 3T and 7T coils, the

coil resonances are shifted back to the correct frequencies. The red lines in Figure 4–

17 show the responses of the adjusted 3T and 7T coils, where the design parameters

used are those from Table 4–4. The field distributions in Figures 4–18 and 4–19 show
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the normalized magnitude of the �E and �B fields in the coil cross-section at z = L/2

for the adjusted 3T and 7T coils, respectively.

Table 4–4: The TEM resonator parameter settings determined by the full-wave EM
model for the 3T (128 MHz) and 7T (300 MHz) coils, adjusted for the loading effects.

f0
(MHz)

Capacitor Value
(pF)

Line Element Width
(mm)

Line Element Thickness
(μm)

128 12.7 22 35
300 2 22 35
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Figure 4–17: The comparison of the S11 spectra of the unloaded (blue); loaded
(black); and loaded and adjusted (read) TEM resonators predicted by the full-wave
EM model.
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(a) (b)

Figure 4–18: The normalized (a) electric and (b) magnetic field magnitude distri-
bution of the loaded and adjusted 3T (128 MHz) TEM resonator predicted by the
full-wave model, at the z = L/2 cross-section.

(a) (b)

Figure 4–19: The normalized (a) electric and (b) magnetic field magnitude distri-
bution of the loaded and adjusted 7T (300 MHz) TEM resonator predicted by the
full-wave model, at the z = L/2 cross-section.
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CHAPTER 5
Conclusion

5.1 Summary

A comparative study was performed between two RF coil modelling methods in

the context of designing a TEM resonator for high-field MRI applications. The first

method is based on the multi-conductor transmission model (MTL), where all wave

propagations are assumed to be of transverse electromagnetic (TEM) kind. The

second method solves for all types of wave propagation through the computational

algorithm called finite-difference time-domain, which yields a more exact solution

to the expense of increased computation time. The two methods are compared in

terms of the trends observed in the coil response while varying three TEM resonator

design parameters: the end-capacitor values, the line element width and line element

thickness.

The experiment results show that variations of the end-capacitor values and line

element widths in the MTL model and the full-wave model lead to similar trends in

the S11 spectra. In both models, an increase of the capacitance causes a downward

shift of the S11 curve, whereas as an increase in the line element widths causes an

upward shift of the S11. The variation in thickness of the line elements produces a

minute shift of the S11 curve in both models therefore, it is concluded that the line

element thickness does not contribute significantly to the design of the coil.
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The MTL model predictions of the resonant frequency are within a 15% agree-

ment of the full-wave model calculations for standard MRI system coils however

this error increases with frequency. At 400 MHz, an important operating frequency

belonging to high-field MRI applications, the disparity between the models reaches

the 40% mark. Although the MTL model predictions are inaccurate, understanding

the relationship between the MTL model and the full-wave model provides valuable

insight on how to efficiently design TEM resonators for standard and high-field MRI

systems. The following summarizes the design strategy. Firstly, the coil response

trends are characterized in the MTL model for variations of the important coil design

parameters. A configuration of the design parameters is then selected to produce a

TEM resonator MTL model with the desired resonance characteristics. Using the

MTL model configuration as the starting point and the trends identified in the char-

acterization step as a guide, the coil design is refined in the full-wave model. Finally,

the full-wave model is adjusted for the loading effects caused by the neighbouring

tissues. This strategy was demonstrated throughout Chapter 4 using as examples

the design of a 3T (128 MHz) TEM resonator and a 7T (300 MHz) TEM resonator.

5.2 Future Work

With the help of new modelling techniques, we hope to accelerate the design of

RF coils such that a greater portion of the research effort can be dedicated to the

real challenges of high-field MRI, such as improving B+
1 homogeneity and reducing

the risk of RF-induced tissue heating. The conclusions from the present study build

upon current strategies to provide the reader with an improved methodology for the

design of high-field head coils. Small variations in geometry have negligible effect
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on the performance of the MTL model however, it should not be blindly extended

to the design of significantly larger TEM resonators such as body coils. Further

investigation is required to determine the validity of the MTL model in these condi-

tions. In cases where the MTL model deviates too much from the full-wave model, a

single-element coil as illustrated in Figure 3–1c could be used as a reduced full-wave

model instead of the MTL model. Some studies have reported an interesting aspect

of the TEM resonator where the response of the coil relates directly to the response

of the single-element building block.
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APPENDIX A
Transmission Line Theory

Transmission line theory is based on the fundamental assumption that the fields

surrounding conductors propagate in the transverse electromagnetic (TEM) mode.

The TEM mode simply guarantees that the electric and magnetic field components in

the direction of propagation are zero. The direction of propagation is conventionally

assigned to the z-axis, and the transverse components to the xy-plane.

Maxwell’s equations in the integral form are:

Faraday’s Law of Induction:

˛
∂S

�E · d�l = −μ
d

dt

¨
S

�H · d�S (A.1)

Ampère’s Circuital Law:

˛
∂S

�H · d�l = (σ

¨
S

+ε
d

dt
) �E · d�S +

¨
S

�Ji · d�S (A.2)

Gauss’s Law:

‹
S

�D · d�S = Qenc (A.3)

Gauss’s Law for Magnetism:

‹
S

�B · d�S = 0 (A.4)

where �E, �D, �H and �B are the electric field intensity, electric flux density, magnetic

field intensity and magnetic flux density, respectively; μ σ and ε are the medium’s

magnetic permeability, conductivity and permittivity, respectively; Qenc is the charge

enclosed within the surface and �Ji is the current density impressed on the circuit from

an external current source. If the surface S and, by extension, its contour ∂S are

chosen to lie in the transverse plane, the surface integral in Equation A.1 must equal

zero since the elementary surface vector d�S is z-directed and Hz = 0. Similarly, the
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surface integrals of �E in Equation A.2 are also zero since Ez = 0. Hence, in the

cross-sectional plane of any transmission line, Equations A.1 and A.2 always satisfy:

˛
∂S

�E · d�l = 0 (A.5a)

˛
∂S

�H · d�l =
¨

S

�Ji · d�S (A.5b)

Equations A.5a and A.5b are identical to those for electrostatics therefore, voltage

and current are uniquely defined in the transverse plane as:

V (z, t) =

ˆ
c′
�E · d�l (A.6a)

I(z, t) =

˛
c

�H · d�l (A.6b)

where c′ and c are paths defined in the transverse plane at position z. It is from

these results that Maxwell’s full-wave three-dimensional equations can be simplified

to a pair of one-dimensional circuit theory equations called the transmission line

equations. The important equation manipulations are described in the following

sections however, a more thorough exposition of transmission line theory can be

found in many reference books such as [23].

A.1 Current Equation

The law of conservation of charge — or equivalently, the continuity equation —

states that the total current flowing out of any closed surface S must be equal to the

decreasing time rate of charge Qenc enclosed by the surface:

ITotal =

¨
S

�J · d�s = − d

dt
Qenc (A.7)
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where �J is the current density. Consider placing a closed, cylindrical surface S over a

section of length Δz of one conductor of a multi-conductor transmission line (MTL),

as shown in Figure A–1. The surface is chosen to be uniform along the direction

of propagation. A z-directed current density Ji(z), originating from some external

current generator connected at either end of the conductor, flows through the small

Δz section: a current I(z) flows into the end cap surface at position z and I(z+Δz)

flows out of the end cap surface at position z + Δz. Conduction currents caused

by the electric field in the lossy dielectric also flow through the small surface. Since

Ez = 0 under the TEM regime, only transverse currents can exist and these currents

flow strictly through the sides of the surface. Using Gauss’s law to express Qenc in

terms of �E, Equation A.7 becomes:

I(z +Δz)− I(z) + σ

¨
Sc

�E · d�S = − d

dt
ε

¨
Sc

�E · d�S (A.8)

where Sc is the surface S without the end caps.

The oriented surface Sc can be defined in terms of a parametrized position vector:

�r(u, v) = x(u, v)̂i+ y(u, v)ĵ + z(u, v)k̂ (A.9)

where u and v are the parametric variables defined over some domain. Since the

transverse cross-section of the surface is the same regardless of the chosen position

z, the z coordinate is fully defined as z = v. The domain of v is D(v) = [z, z +Δ].

The coordinates x and y describe the closed contour of the surface in the xy-plane

therefore, the domain of u will depend on the parametric equation chosen for the

path. The surface integral of the electric field over Sc is parametrized in terms of u
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Figure A–1: A multi-conductor transmission line of N conductors where a cylindrical
surface S of length Δz was placed around one of the conductors.

and v as follows:

¨
Sc

�E · d�S =

ˆ z+Δz

z

ˆ u2

u1

�E(x(u, v), y(u, v), z(u, v)) · d�S (A.10)

where the elementary vector surface is:

d�S = n̂ dS =
d�r

du
× d�r

dv
du dv (A.11)

= n̂ d�l dv (A.12)
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Dividing a parametrized version of Equation A.8 by Δz and taking the limit as

Δz → 0, as follows:

lim
Δz→0

I(z +Δz)− I(z)

Δz
= −σ lim

Δz→0

1

Δz

z+Δzˆ

z

˛
c

�E · n̂ d�l dv

− ε
d

dt
lim
Δz→0

1

Δz

z+Δzˆ

z

˛
c

�E · n̂ d�l dv (A.13)

leads to the per-unit-length continuity equation around the conductor:

∂I(z)

∂z
= −σ

˛
c

�E · n̂ dl − d

dt
ε

˛
c

�E · n̂ dl (A.14)

A.1.0.1 PUL Conductance

The transverse electric field surrounding the conductor is a result of potential

differences between itself and its neighbouring conductors. The total conduction

current can be separated into current contributions flowing to or from each neigh-

bour. For example, the per-unit-length (PUL) continuity equation around the i-th

conductor in a MTL is:

∂Ii(z)

∂z
= −σ

[˛
c

�Ei1 · n̂dl + · · ·+
˛
c

�Eii · n̂dl + · · ·+
˛
c

�EiN · n̂dl
]

− ε
d

dt

˛
c

�E · n̂dl (A.15)

where Ii(z) is the current on the i-th conductor with respect to z; �Eij is the electric

field resulting from a potential difference between conductors i and j when i �= j,

and �Eii is the electric field resulting from a potential difference between conductor i
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and the reference conductor; and N + 1 is the number of conductors including the

reference conductor.

By definition, conductance is the ratio of the current flowing between two con-

ductors and the voltage separating them:

G =

σ

¨
S

�E · d�S
V (z, t)

(A.16)

where V (z, t) is the voltage with respect to z and time and is defined as:

V (z, t) = −
ˆ
c′
�E · d�l (A.17)

The per-unit-length conductance is:

g = lim
Δz→0

G

Δz
=

σ

V (z, t)
lim
Δz→0

z+Δzˆ

z

˛
c

�E · d�S

Δz
= σ

˛
c

�E · n̂dl

−
ˆ
c′
�E · d�l

(A.18)

By combining Equations A.18 and A.15, the PUL continuity equation around the

i-th conductor can be expressed in terms of the conductance characteristics of the

transmission line:

∂Ii(z)

∂z
= − [gi1Vi1(z, t) + · · ·+ giiVii(z, t) + · · ·+ giNViN(z, t)]

− ε
d

dt

˛
c

�E · n̂dl (A.19)

where gij and Vij are the PUL conductance and voltage between conductors i and

j, respectively, when i �= j, and gii and Vii are the PUL conductance and voltage

between conductor i and the reference conductor.
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A.1.0.2 PUL Capacitance

Additional to conduction currents are the displacement currents caused by time

varying electric fields in the dielectric. These currents are dependent on the per-

mittivity of the medium and the potential differences between conductors. Similar

to the exercise carried out on the conduction currents, the displacement currents of

the continuity equation are separated into individual current contributions from each

neighbouring conductor:

∂Ii(z)

∂z
= −ε

d

dt

[˛
c

�Ei1 · n̂dl + · · ·+
˛
c

�Eii · n̂dl + · · ·+
˛
c

�EiN · n̂dl
]

− σ

˛
c

�E · n̂dl (A.20)

Capacitance describes the ability of an object to store an electrical charge. It is

defined as the ratio of the charge on two conductors, Qc and −Qc, and the voltage

separating them:

C =
Qc

V (z, t)
=

ε

¨
S

�E · d�S
V (z, t)

(A.21)

where Gauss’ law was used to replace Qc. Similar to conductance, the per-unit-length

capacitance is:

c = lim
Δz→0

C

Δz
= ε

˛
c

�E · n̂dl

−
ˆ
c′
�E · d�l

(A.22)

By combining Equations A.22 and A.20, the PUL continuity equation around

the i-th conductor can be expressed in terms of the capacitance characteristics of the
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transmission line:

∂Ii(z)

∂z
= − d

dt
[ci1Vi1(z, t) + · · ·+ ciiVii(z, t) + · · ·+ ciNViN(z, t)]

− σ

˛
c

�E · n̂dl (A.23)

where cij and Vij are the PUL capacitance and voltage between conductors i and

j, respectively, when i �= j, and cii and Vii are the PUL capacitance and voltage

between conductor i and the shield.

A.2 Voltage Equation

Another useful PUL equation derives from Equation A.1, Faraday’s law of in-

duction. Consider placing an open, oriented surface between one conductor of the

MTL and the reference conductor, as shown in Figure A–2. The surface is of length

Δz and is uniform with respect to the direction of propagation. Integrating along

the contour gives:

a′ˆ

a

�Ez · d�l +
b′ˆ

a′

�Et · d�l +
bˆ

b′

�Ez · d�l +
aˆ

b

�Et · d�l = −μ
d

dt

¨
S

�H · d�S (A.24)

Since �Ez = 0, the line integrals of �E along the conductor segments are zero. The

line integrals on the transverse plane segments correspond to the voltages between

the two conductor at two different positions z:

V (z, t) =

bˆ

a

�E · d�l (A.25a)

V (z +Δz, t) =

b′ˆ

a′

�E · d�l (A.25b)
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Figure A–2: A multi-conductor transmission line of N conductors where an open
surface S of length Δz was placed between one conductor and the reference conduc-
tor.

The surface integral over the magnetic field intensity is parametrized in a similar man-

ner as Equation A.10. Combining Equations A.25a and A.25b into a parametrized

version of A.24 gives:

V (z +Δz, t)− V (z, t) = −μ
d

dt

z+Δzˆ

z

ˆ
c

�H · n̂ d�l dv (A.26)

where c is the path along the surface S from a to b in the transverse plane. Dividing

Equation A.26 by Δz and taking the limit as Δz → 0, as follows:

lim
Δz→0

V (z +Δz)− V (z)

Δz
= μ

d

dt
lim
Δz→0

1

Δz

z+Δzˆ

z

ˆ
c

�H · n̂ d�l dv (A.27)
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leads to the per-unit-length induction equation between the conductor of the trans-

mission line and the reference conductor:

∂V (z)

∂z
= μ

d

dt

ˆ
c

�H · n̂ dl (A.28)

A.2.0.3 PUL Inductance

Faraday’s PUL induction equation describes the induced voltage on a conductor

by the time varying magnetic field emanating from neighbouring conductors. Sim-

ilarly to the PUL continuity equation, the total induced voltage can be separated

into individual voltage contributions from each neighbouring conductor:

∂Vi(z)

∂z
= μ

d

dt

[ˆ
c′
�Hi1 · n̂ dl + · · ·+

ˆ
c′
�Hii · n̂ dl + · · ·+

ˆ
c′
�HiN · n̂ dl

]
(A.29)

where Vi(z) is the voltage on the i-th conductor with respect to the reference con-

ductor at position z, �Hij is the magnetic field intensity resulting from current carried

on conductors i and j when i �= j, and �Hii is the magnetic field intensity resulting

from a current carried on conductor i and the reference conductor.

Mutual inductance is the ability of a conductor carrying a time-varying current

to induce a voltage on neighbouring conductors. It relates the magnetic flux Φ

penetrating the surface area between two conductors and the current producing this

flux:

L =
Φ

I(z, t)
=

μ

¨
S

�H · d�S
˛
c

�H · d�l
(A.30)
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where Equation A.6b was used to replace the current. The PUL inductance is:

l = lim
Δz→0

L

Δz
= μ

ˆ
c′
�H · n̂ dl
˛
c

�H · d�l
(A.31)

By combining Equations A.31 and A.29, the PUL induction equation between

the i-th conductor and the neighbouring conductors can be expressed in terms of the

inductance characteristics of the transmission line:

∂Vi(z)

∂z
= − d

dt
[li1Ii1(z, t) + · · ·+ liiIii(z, t) + · · ·+ liNIiN(z, t)] (A.32)

where lij and Iij are the PUL inductance and current coupling conductors i and j,

respectively, when i �= j; and lii and Iii are the PUL inductance and current coupling

conductor i and the reference conductor.

In summary, Maxwell’s four three-dimensional electromagnetic equations sim-

plify to two partial differential equations (PDEs) for each conductor. Around the i-th

conductor of a N-conductor transmission line, the continuity and induction equations

are:

∂Ii(z, t)

∂z
= − [gi1Vi1(z, t) + · · ·+ giiVii(z, t) + · · ·+ giNViN(z, t)]

− d

dt
[ci1Vi1(z, t) + · · ·+ ciiVii(z, t) + · · ·+ ciNViN(z, t)] (A.33)

∂Vi(z, t)

∂z
= − d

dt
[li1Ii1(z, t) + · · ·+ liiIii(z, t) + · · ·+ liNIiN(z, t)] (A.34)
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Note that the voltages Vij in Equation A.33 are expressed as potential differences

between the conductors i and j whereas in Equation A.34, the conductor voltage Vi

is always relative to the reference conductor. Rearranging Equation A.33 in terms

of voltages relative to the reference conductor gives:

∂Ii(z, t)

∂z
= −

[
−gi1V1(z, t) + · · ·+

N∑
k=1

g1kVi(z, t) + · · · − giNVN(z, t)

]

− d

dt

[
−ci1V1(z, t) + · · ·+

N∑
k=1

c1kVi(z, t) + · · · − ciNVN1(z, t)

]
(A.35)

For the simple case where N = 1, one transmission line and the reference con-

ductor, the transmission line equations are:⎧⎪⎪⎨
⎪⎪⎩
∂I(z, t)

∂z
= −(g + sc)V (z, t)

∂V (z, t)
∂z

= −slI(z, t)

(A.36)

where the time derivative d
dt

was replaced by the complex Laplace argument s. For

N larger than 1, the system of transmission line equations is more easily expressed

in matrix form: ⎧⎪⎪⎨
⎪⎪⎩
∂I(z, t)
∂z

= −(G+ sC)V(z, t)

∂V(z, t)
∂z

= −sLI(z, t)

(A.37)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑N
k=1 g1k −g12 · · · −g1N

−g21
∑N

k=1 g2k · · · −g2N
...

...
. . .

...

−gN1 −gN2 · · · ∑N
k=1 gNk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑N
k=1 c1k −c12 · · · −c1N

−c21
∑N

k=1 c2k · · · −c2N
...

...
. . .

...

−cN1 −cN2 · · · ∑N
k=1 cNk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l11 l12 · · · l1N

l21 l22 · · · l2N
...

...
. . .

...

lN1 lN2 · · · lNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

...

VN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I1

I2
...

IN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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