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ABSTRACT

Continuum approaches for modeling lipid bilayers are developed and applied to

two-phase lipid vesicles and discoidal high-density lipoprotein (HDL) particles. First,

relying on a three-dimensional model, the mechanics of a lipid bilayer with sponta-

neous curvature is considered. Kinematics, material symmetry, stress relations, and

coherency of lipid bilayer leaflets are discussed. Treating a lipid bilayer as a thin

structure, the areal energy density of a lipid bilayer with spontaneous curvature is

obtained using a dimension-reduction procedure. Attention is paid on the source of

spontaneous curvature in the well known Canham–Helfrich energy density. Also, the

effect of constitutive asymmetry of the leaflets on the areal energy density of a lipid

bilayer is highlighted.

Considering a two-phase vesicle as system of coexisting spherical domains, its

equilibrium is studied using a simple continuum model. Multidomain and ground-

state configurations are considered. Whereas in the former case multiple budded

lipid domains coexist on a vesicle, in the latter case the vesicle is composed of two

large lipid domains. Variations of the net potential-energy of a multidomain vesicle

with the number of lipid domains and osmotic pressure are studied. Based on an

energy comparison argument, two ground-state configurations corresponding to min-

imum energy levels are identified: pinched-off and complete sphere configurations.

The results indicate that osmotic pressure and initial excess radius play key roles in

the final shape of attaining ground-state configurations. The critical values of these

parameters are identified.
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Lastly, the equilibrium and stability of a discoidal HDL particle are studied.

A model in which the lipid bilayer and double-belt apoA-I components of discoidal

HDL particle are represented by a material surface and a material curve perfectly

bonded to the edge of the surface is proposed. The curvature energy and surface

tension of lipid bilayer and the bending energy of apoA-I chain are included. Adopt-

ing a variational scheme, nonlinear equilibrium equations of a discoidal HDL particle

in a general configuration are derived using both direct, geometrically-based and

parametrized formulations. The linearized equilibrium equations of a flat circular

HDL particle are obtained and its linear stability is investigated using the second

variation method. An energy comparison method is applied and is found to offer

a handy approach for ascertaining linear stability. Numerical results are provided

for the equilibrium and stability of flat circular HDL particle. A stability plane

indicating different stable and unstable regions of underlying dimensionless input

parameters is provided. Possible pathways of stability change and instability mode

shapes are identified. It is shown that the first transverse and planar instability

modes resemble nonplanar saddle-like and planar elliptic shapes, respectively.
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ABRÉGÉ

Des méthodes de milieux continus pour la modélisation de bicouches lipidiques

sont développées et appliquées à des vésicules lipidiques à deux phases et à des partic-

ules discöıdes de lipoprotéines de haute densité (HDL). Tout d’abord, en s’appuyant

sur un modéle tridimensionnel, la mécanique d’une bicouche lipidique possédant une

courbure spontanée est considérée. La Cinématique, la symétrie matérielle, les re-

lations de stress, et la cohérence de bicouches lipidiques sont discutées. En traitant

une bicouche lipidique comme une structure mince, la densité d’énergie surfacique

d’une bicouche lipidique ayant une courbure spontanée est obtenue à l’aide d’une

procédure de réduction de dimension. L’attention est portée sur la source de cour-

bure spontanée de la densité d’énergie bien connue de Canham–Helfrich. En outre,

l’effet de l’asymétrie constitutive des sur la densité d’énergie surfacique d’une bi-

couche lipidique est mis en évidence.

Considérant une vésicule à deux phases comme système de domaines sphériques

coexistants, son équilibre est étudié à l’aide d’un modèle simple de milieu continu.

Des configurations multi-domaines et de l’état fondamental sont considérées. Alors

que, dans le premier cas, plusieurs domaines lipidiques bourgeonnés coexistent sur

une vésicule, dans le dernier cas, la vésicule est composée de deux grands domaines

lipidiques. La variation de l’énergie potentielle nette d’une vésicule multi-domaine en

fonction du nombre de domaines lipidiques et de la pression osmotique est étudiée.

En se basant sur la comparaison de l’énergie, deux configurations de l’état fondamen-

tal correspondant à des niveaux d’énergie minimaux sont identifiés: la configuration
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étranglée et la sphère complète. Les résultats indiquent que la pression osmotique et

le rayon excédentaire initial jouent un rôle clé dans la forme finale des configurations

à l’état fondamental. Les valeurs critiques de ces paramètres sont identifiées.

Enfin, l’équilibre et la stabilité d’une particule HDL discöıde sont étudiés. Un

modèle dans lequel la bicouche lipidique et les composants d’ApoA-I à double bande

de la particule de HDL discöıde sont représentées par une surface de matériau et

une courbe de matériau parfaitement collée sur le bord de la surface est proposé.

L’énergie de courbure et la tension de surface de la bicouche lipidique ainsi que

l’énergie de flexion de la châıne apoA-I sont incluses. En adoptant un schéma varia-

tionnel, les équations d’équilibre non-linéaire d’une particule de HDL discöıdale dans

une configuration générale sont calculées d’après des formulations directes, basées sur

la géométrie, ou paramétrées. Les équations d’équilibre linéarisées d’une particule

de HDL circulaire plane sont obtenues et sa stabilité linéaire est étudiée en util-

isant la seconde méthode de variation. Une méthode de comparaison de l’énergie

est appliquée et se trouve à offrir une approche pratique pour déterminer la sta-

bilité linéaire. Des résultats numériques sont présentés pour l’équilibre et la stabilité

des particules de HDL circulaires planes. Un plan de stabilité indiquant différentes

régions stables et instables des paramètres d’entrée adimensionnels sous-jacents est

fourni. Certaines possibilités de changement de stabilité et les formes modales

d’instabilité sont identifiées. Il est démontré que les premiers modes d’instabilité

transversale et plane ressemblent aux formes de selle non planes et d’ellipse plane,

respectivement.
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CHAPTER 1
Introduction

1.1 Preface

In this chapter, first, a general background on lipid bilayers, multiphase vesi-

cles, and high-density lipoprotein (HDL) is provided. Attention is focused on their

structures, properties, and their applications. Also, various relevant definitions and

terminology are introduced. Next, the motivation and objectives of the thesis are

presented. For this purpose, salient aspects of the mechanical and physical modeling

of lipid bilayers and of multiphase vesicles and discoidal HDL particles are reviewed

and the objectives of the thesis are expressed. Finally, the organization of the thesis

in the following chapters is given.

1.2 Background

1.2.1 Lipid bilayer

A lipid bilayer forms by the self-assembly of lipid molecules in aqueous solution.

These structures are encountered in various biological systems. The primary example

is the biomembrane—which is an essential part of the outer layer of eukaryotes and

their internal organelles, red blood cells (RBC), bacteria, and viral capsids. Lipid

bilayers also comprise the interior part of discoidal high-density lipoprotein (HDL)

particles. Secondary examples of lipid bilayers include synthetic systems such as

liposomes, giant vesicles, and supported lipid bilayers. These model membranes have

found and continue to find extensive biomedical and pharmacological applications.
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In addition, they provide a useful platform for studying various biophysical aspects

of biomembranes.

The elementary units of lipid bilayers are phospholipid molecules 1 . A phospho-

lipid molecule is comprised by a hydrophilic head attached to two roughly parallel

hydrophobic flexible tails (Figure 1–1). The specific structure of the lipid bilayer

relates to the amphiphatic property of phospholipid molecules [6]. The polar (hy-

drophilic) heads of phospholipid molecules are water-soluble and, hence, tend to be

in contact with water. On the other hand, the nonpolar (hydrophobic) tails have

a strong tendency to avoid contact with water. As a result, when present in the

solution above a certain sufficient concentration and in an appropriate temperature

range, phospholipid molecules spontaneously self-assemble to form lipid bilayers. In

a lipid bilayer, the head groups face the solution and the tail groups are confined

to the core of the bilayer where they are protected from the solution by the head

groups [7] (Figure 1–2a). The typical thickness of a bilayer is on the order of few

nanometers, usually about 5 nm.

For open lipid bilayers, the arrangements of the phospholipid molecules in the

interior region and near the edge are completely different. In the former region, as

with the molecular architecture in closed lipid bilayer, phospholipid molecules are

aligned perpendicular to the midsurface of the bilayer. However, in a vicinity of

the edge, they are packed so that their tails are radially aligned towards the edge

(Figure 1–2b). This kind of arrangement shields the hydrophobic tails from the

1 These molecules may referred to simply as “lipid molecules.”
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Hydrophilic (water-soluble) head

Hydrophobic (water-insoluble) tails

Figure 1–1: Schematic of a phospholipid showing the hydrophilic (water-soluble)
head and hydrophobic (water-insoluble) tails.

(a) (b)

Figure 1–2: Schematic of phospholipid arrangements: (a) on a closed lipid bilayer
and the interior region of an open lipid bilayer (b) around the edge of an open lipid
bilayer.

aqueous solution. The highly localized change of phospholipid orientations near the

edge induces an excess energy—usually known as the “edge energy”—concentrated
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along it [8, 9, 10, 11]. Due to this excess energy, open lipid bilayers have the tendency

to close on themselves to form vesicles. The edge energy of an open lipid bilayers has

a crucial role in vesicle formation—for example, using electroformation [7]. However,

an open lipid bilayer may be stabilized in different ways, for example, using electric

field [12] and sonication [13], and by accumulation of active chemical agents near the

edge [14]. In addition, processes wherein open lipid bilayers form by the bursting

of cell membrane and lipid vesicles using electroporation is currently a subject of

intensive study [15].

The physical properties of lipid bilayers are very sensitive to temperature. For

example, with increasing temperature, lipid bilayers usually undergo several transi-

tions with different phases from subgel, gel, ripple, to liquid-crystalline fluid phases [16].

In most biological processes, a lipid bilayer possesses the liquid-crystalline fluid phase

where molecules are statistically aligned perpendicular to the surface separating two

leaflets (which is referred to as the midsurface of the bilayer) and can easily migrate

laterally in each leaflet without any considerable shear renitence. Lipid molecules

can also transit across the leaflets in a process known as the flip-flop diffusion. How-

ever, the time scale of flip-flop diffusion in phospholipid bilayers is on the order of

hours [17] and, hence, flip-flop diffusion is much slower than lateral diffusion. Thus,

for sufficiently small time scales, the lipid exchange between the leaflets may be

ignored.

Lipid bilayers are very flexible biological structures. Apart from the undulations

due to statistical fluctuations, they deform readily under external stimuli, such as

applied forces and moments or changes of temperature or osmotic pressure in case of
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closed bilayers. The dominant deformational mode of lipid bilayers is bending. From

the molecular point of view, the energy cost due to bending may be caused by the

relative misalignment of adjacent lipid molecules. Lipid bilayers show high resistance

to changes of area induced by stretching or contraction compared to changes of

curvature induced by bending [18]. Due to packing constraints and intermolecular

interactions, lipid molecules usually prefer to stay perpendicular to the midsurface.

This, however, need not true in settings wherein the phospholipid molecules tend

to be tilted, for example in the vicinity of inhomogeneities such as transmembrane

proteins or other types of biological molecules [19, 20].

The conventional quantitative description of a lipid bilayer bending deformation

hinges on endowing it an energy density, measured per unit area, which takes curva-

ture changes into account. A well-known energy density proposed by Canham [21]

and Helfrich [22] takes the form

ψ = 1
2
κ(H −H◦)2 + κ̄K, (1.1)

in which H and K are respectively the mean and Gaussian curvatures of the mid-

surface of the lipid bilayer. Also, κ and κ̄ are usually referred to as the splay and

saddle-splay moduli which measure the respective costs of changes of H and K. The

parameter H◦, which is known as the spontaneous (mean) curvature, may be viewed

as the natural mean curvature of lipid bilayer.

Nonzero spontaneous curvature usually reflects an asymmetry between two sides

of the lipid bilayer midsurface [23]. The asymmetry may be manifested in different
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Figure 1–3: Different mechanisms inducing the natural curvature in biomem-
branes [1]. Reprinted by permission from Macmillan Publishers Ltd: [NATURE]
(H. T. McMahon and J. L. Gallop, “Membrane curvature and mechanisms of dy-
namic cell membrane remodelling,” Nature, vol. 438, no. 7068, pp. 590–596, 2005),
copyright (2005).

ways. For example, a presence of different lipid molecules in two leaflets with dif-

ferent molecular geometries may lead to non-flat natural state [1]. Also, differences

between the solutions on either side of the lipid bilayer may be another cause of asym-

metry [24]. Other potential origins for asymmetry include interaction of lipid bilayer

with cytoskeleton and clathrin coat, or the presence of helical or transmembrane

proteins on one side of the bilayer [1, 25, 26] (Figure 1–3).
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1.2.2 Multiphase lipid vesicles

A lipid vesicle or liposome is a closed lipid bilayer with no boundary. Vesicles

exists in different sizes and with different numbers of lamellae [27].2 Unilamel-

lar vesicles consist of a single bilayer in the thickness direction (see e.g., Fig. 1–

2a), while multilamellar vesicles consist of numbers of lipid bilayers stacked in the

through-thickness direction. Vesicles have thicknesses of a few nanometers and their

characteristic size (for example, the diameter in case of a spherical vesicle) may vary

from 50 nm to tens of micometers [27]. Vesicles may be categorized according to their

size. Very large vesicles are commonly known as giant vesicles. Giant unilamellar

vesicles (GUVs) have received considerable attention [27]. This is due to their exten-

sive biological, biomedical, and pharmacological applications—for example in gene

therapy and drug delivery [28, 29, 30], medical diagnosis [31], immunology [32, 33],

and analytical biochemistry [34, 35].

An important feature of lipid bilayers is semipermeability. For vesicles, where

the lipid bilayer separates the interior and exterior solutions, the passage of large

molecules (e.g., sugar molecules) or ions across the lipid bilayer occurs very slowly [23].

Asymmetric distribution of solute concentrations between the inside and outside of a

vesicle then result in a nonvanishing excess pressure, known as the osmotic pressure.

GUVs can possess various shapes with different topologies [23]. Prolate, dis-

cocyte, stomatocyte, tubular, pear-shape, starfish, and toroidal GUVs have been

2 If there is no chance of confusion, a “lipid vesicle” may simply be referred to as
“vesicle.”
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observed. For example, for some of possible configurations which GUVs may adopt

due to changes in the osmotic pressure, see [36]. Depending on the time scale of

the shape change, the volume enclosed inside a vesicle may be assumed fixed or

variable. When the deformation occurs much faster than the diffusion rate of the

solvent across the lipid bilayer (which is driven by the osmotic pressure), the enclosed

volume may be treated as fixed to a very good approximation. However, for long

enough processes, solvent exchange across the lipid bilayer may be appreciable and,

thus, typically leads to vesicular swelling or shrinking.

Apart from their extensive applications, GUVs may also serve as model systems

for biophysical studies of naturally occurring biomembranes. Biomembranes are ex-

tremely complex systems composed of large number of lipid species, cholesterol, and

proteins. Multicomponent GUVs, usually composed of two types of lipid molecules

and cholesterol, have been widely studied. Particularly, they provide a model plat-

forms for understanding the biological activities of the biomembranes associated with

very small domains, commonly known as “lipid rafts” [37]. Lipid rafts, with typical

sizes in range of 10–200 nm, are very small domains in the liquid-ordered phase sur-

rounded by the host membrane in the liquid-disordered phase. The liquid-ordered

phase is populated by saturated lipids and cholesterol while the liquid-disordered

domain is primarily enriched by unsaturated lipid molecules [38]. Cholesterol is

dominantly accommodated between the saturated lipids. Such arrangements allow

the saturated lipids to exist in the liquid-ordered phase [39, 40]. Figure 1–4 shows a

schematic of a lipid raft [2].
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Figure 1–4: Schematic of a lipid raft in the liquid-order phase surrounded by the
liquid-disordered phase [2]. Reproduced from [2] with permission of The Royal So-
ciety of Chemistry.

A lipid raft is distinct from the host membrane by a larger thickness, as saturated

lipid molecules are generally longer than the unsaturated ones. Various studies have

revealed the important role of lipid rafts in the sorting of membrane proteins [41, 42].

Larger rafts can be formed by the coalescence of smaller rafts. They play a crucial

role in various cellular activities such as trafficking, immune responses, signaling, and

endocytosis [37, 41, 42]. Another important feature of lipid rafts is linked to their

role in interaction of certain pathogens, including the bird flu virus and HIV, with

the cell membrane. It is widely accepted that lipid rafts may serve as gateways for

these pathogens to mount attacks on cells [37, 41, 42, 43] and virus replication [44].

For a comprehensive list of diseases in which lipid rafts are involved, see [45].

The notion of a lipid raft is a controversial concept in cell biology [46, 47].

Despite their importance, lipid rafts are not fully characterized [38]. This controversy
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is partially due to challenges involved in the observation of lipid rafts as they are

too small to be captured using conventional optical techniques. Studies of lipid

domains on multicomponent GUVs composed of saturated and unsaturated lipids

and cholesterol have provided an alternative platform for the description of lipid

rafts on cell membranes [38, 42]. Compared to lipid rafts on cell membranes, lipid

domains on model membranes can be studied much more easily under controlled

experimental conditions. In addition, the characteristic size of lipid domains on

model membranes is on the order of 1–10 μm, which allows for their observation

using light microscopy [48]. Lipid domains on multiphase GUVs are seen in different

forms. A very common mode of lipid domain formation in biphasic GUVs is shown in

Fig. 1–5, where multiple domains, in liquid-ordered phase, bud from the background

domain in the liquid-disordered phase. In another case, scattered domains have

coalesced and a GUV is fully phase-separated into two distinct liquid-ordered and

liquid-disordered regions (Figure 1–6).

Configurations of phase-separated GUVs are primarily dictated by the compe-

tition between the underlying energetics, such as the bending energy of lipid bilayer,

the line tension (energy) of the phase boundary, and the volumetric energy asso-

ciated with the osmotic pressure. Line tension reflects the stored energy near a

phase boundary. Generally, two separate mechanical and chemical sources create

line tension. The chemical contribution is a manifestation of the large gradient of

dissimilar lipid species in the thin transition layer between two pure phases. The me-

chanical contribution accounts for energy costs due to deformation of lipid molecules
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Figure 1–5: Two-phase GUVs with multiple domains [3]. Blue and red colors cor-
respond to liquid-ordered and liquid-disordered phases, respectively [3]. The bar is
5 μm in length. Reprinted by permission from Macmillan Publishers Ltd: [NATURE]
(T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in
biomembrane models coupling curvature and line tension,” Nature, vol. 425, no.
6960, pp. 821–824, 2003), copyright (2003).

Figure 1–6: Cross section of fully-phase separated two-phase GUVs [4]. Red and
green regions correspond to liquid-disordered and liquid-ordered phases, respectively.
The bar is 10 μm in length. Reproduced from [4] with permission from American
Society for Biochemistry and Molecular Biology.

in the transition layer, such as the splay and tilt of lipid molecules or the stretch-

ing/contraction of their tail groups. The latter deformation typically arises due to

hydrophobic mismatch between two phases with different thicknesses.
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1.2.3 High-density lipoprotein (HDL) particles

Lipoprotein particles are essential to cholesterol metabolism in the body [49].

Since cholesterol is not solvable in water, it must be packaged properly to circulate

in the blood stream. Lipoprotein particles are responsible for the cholesterol pack-

aging and transport in the body. A particular type of lipoprotein particles, called

high-density lipoprotein (HDL) particles, collect cholesterol from tissues and deliver

it to the liver for excretion into bile in a process known as “reverse cholesterol trans-

port (RCT).” In the first step of RCT, lipid-free apolipoprotein, known as apoA-I,

absorbs lipid molecules and free (unesterified) cholesterol from the blood stream to

form discoidal HDL particles. Next, discoidal HDL particles transform to spheroidal

HDL particles by absorbing triglycerides and more free cholesterol. In this step,

free cholesterol is converted to esterified cholesterol and together with triglycerides

accumulate at the core of spheroidal particles. The core of such a particle is coated

by lipid monolayer and apoA-I. As spheroidal HDL particles become larger, they

pick up another type of apolipoprotein, called apo-E, which has an affinity to liver

receptors. Lastly, after absorption by the liver, the liver transfers cholesterol to bile

and releases apoA-I to commence a new cycle.

A discoidal HDL particle consists of a lipid bilayer bounded by a double-belt

apoA-I chain (Fig. 1–7). The typical diameter of discoidal HDL particles is about

10 nm [50, 51, 52, 53, 54, 55]. ApoA-I chain is very flexible and has an important

role in stability of discoidal HDL particles [56]. The major part of apoA-I double-

belt structure is α-helical segments which are amphipathic [56]. Hence, apoA-I and

lipid bilayer form a favorable architecture of discoidal HDL particle, where α-helical
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segments bound to the hydrophobic core of the lipid bilayer at the edge. In this way,

the hydrophobic tail groups of lipid bilayer is also protected from exposure to the

aqueous solution [56].

Figure 1–7: A discoidal HDL particle in the coarse-grained illustration, showing the
lipid bilayer with a double-belt apoA-I chain bounding the edge of lipid bilayer [5].
Reprinted (adapted) with permission from (A. Y. Shih, A. Arkhipov, P. L. Fred-
dolino, S. G. Sligar, and K. Schulten, “Assembly of lipids and proteins into lipoprotein
particles,” The Journal of Physical Chemistry B, vol. 111, no. 38, pp. 11095–11104,
2007). Copyright (2007) American Chemical Society.

1.3 Motivation and objectives

Mechanical and physical studies of lipid bilayers are essential for characterizing

various biological structures in which they appear as components. The present thesis

includes three main parts. After a fundamental study on the mechanical modeling

of a lipid bilayer itself (first part), two prominent examples where lipid bilayers

have crucial importance in the biological systems are addressed: multiphase vesicles

(second part) and discoidal HDL particles (third part) (Figure 1–8).

In this section, the motivations and objectives of the thesis are reviewed.
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(a)

(b) (c)

Figure 1–8: (a) Schematic cross section of a lipid bilayer. Two prominent examples
where lipid bilayer is an essential element of a biological structure: (b) multiphase
vesicles and (c) discoidal HDL particles.

1.3.1 Mechanical modeling of lipid bilayer

The continuum modeling of lipid bilayers has been topic of research for over forty

years. Adapting the common approach in structural mechanics of elastic beams, Can-

ham [21] showed that the famous biconcave shape of the red-blood cell (RBC) can be

explained by minimization of its net bending energy. The energy density, measured

per unit area of the RBC surface, was assumed to be a quadratic function of the

principal curvatures of the surface. In a seminal work, Helfrich [22] proposed the

energy density given in (1.1) for a lipid bilayer as a function of the mean curvature

H, the square H2 of that quantity, and the Gaussian curvature K. By including a

term proportional to H in the energy density, Helfrich [22] introduced the notion of

16



spontaneous (mean) curvature H◦. Helfrich [22] interpreted the presence of sponta-

neous curvature as a reflection of chemical asymmetry between the two leaflets of

lipid bilayer. Using simplifying geometrical and constitutive assumptions and imple-

menting the approach similar with bending analysis of elastic thin shells, Evans [57]

studied the bending of lipid bilayers. He explained how chemical changes within the

leaflets may induce bending of lipid bilayer. Studying both connected and slipping

leaflets, he also emphasized the effect of leaflets coherency on the bending behavior

of lipid bilayers.

The Canham–Helfrich energy density (1.1) describes the bending deformation of

lipid bilayers. As mentioned earlier, lipid bilayers show very high resistance to change

of the area. Such behavior has convinced many researchers to commonly assume that

the area of lipid bilayer is preserved in the deformation. This, however, does not mean

that area changes are completely irrelevant. Since the stretching modulus of a lipid

bilayer is much larger than its bending rigidity, even very small amounts of stretch

can result in considerable energy changes. Apart from certain circumstances in which

lipid bilayers expand under large tension, local area changes at junctions between

lipid molecules and a boundary or heterogeneity are observed. Due to the volumetric

incompressibility of lipid bilayer [58, 59, 60], changes in area are accompanied by

changes in thickness. For example, in the vicinity of a transmembrane protein, due

to a mismatch between the lengths of hydrophobic part of the protein and the tail

groups of the lipid molecules, those groups elongate/shorten to compensate for the

hydrophobic mismatch. As another example, different phases of a multiphase lipid

bilayer exhibit different thicknesses. The tail groups of two phases must therefore
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adjust their lengths at an interface to compensate for their different thicknesses (see,

e.g., Fig. 1–4). Local area changes are relevant in both of these examples.

An important distinction between a lipid bilayer and an elastic shell is a conse-

quence of their material symmetries. To understand the material symmetry of a lipid

bilayer, it is necessary to identify classes of deformation which leave its constitutive

response unchanged. The first important feature of a lipid bilayer is the in-plane

isotropy, which means that there is no directional dependence of the mechanical re-

sponse of a lipid bilayer within its tangent plane. Thus, the constitutive response of a

lipid bilayer is invariant under any rigid-body rotation within the tangent plane. The

second feature of a lipid bilayer is the in-plane fluidity. Consistent with the observa-

tion that lipid bilayer shows very low resistance to shear flow on the tangent plane,

in-plane fluidity implies that the constitutive response of lipid bilayer is not affected

under any such deformations. Consistent with the material symmetry of a lipid

bilayer and adopting the Cosserat surface theory, Jenkins [61] developed the equilib-

rium equations of a lipid bilayer. He also discovered that the energy density of a lipid

bilayer must be invariant under all two-dimensional unimodular transformations—

i.e., transformations that preserve the local area and, consequently, the local mass

density per unit area. Steigmann [62] provided a fundamental understanding for

mechanical theory of fluid films possessing bending elasticity. Considering the set

of all two-dimensional unimodular transformations as the material symmetry group,

Steigmann [62] showed that the energy density must, in general, be a function of the

mean and Gaussian curvatures H and K and the areal stretch J . This conclusion
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provides a solid theoretical basis for the problems in which lipid bilayers undergo

bending and/or stretching.

Although lipid bilayers are very thin structures, they may deform in the thick-

ness direction. In addition, the bending and stretching of a lipid bilayer are linked to

through-thickness deformations. For example, when a lipid bilayer is bent, the mate-

rial points located on the upper and lower leaflets experience different deformations.

In particular, when one leaflet is stretched, the other leaflet shrinks. Generally, the

deformation at a material point in a lipid bilayer varies in the through-thickness di-

rection. Considering a lipid bilayer as a three-dimensional structure, Zurlo [63] and

Deseri et al. [64] developed an areal energy density as a function of the mean and

Gaussian curvature H and K of the midsurface, the areal stretch J of the midsur-

face, and the surface gradient of J . They also included chemical effects, which are

important for multicomponent lipid bilayers. In their works, the derivation of areal

energy density is based on a dimension reduction procedure in which a volumetric

energy density is integrated through the thickness of lipid bilayer. The volumetric

energy density has a hyperelastic form and is a function of three kinematical invari-

ants. Such a volumetric energy density is derived by imposing a material symmetry

describing the in-plane isotropy and fluidity of lipid bilayer.3 Recently, relying on

[63, 64], Deseri and Zurlo [65] show how the stretching response of a lipid bilayer can

3 For the discussions on the material symmetry and the steps leading to derivation
of the volumetric energy density, Zurlo [63] and Deseri et al. [64] refer to a paper in
preparation which was and remains unavailable to this date.
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be used to determination its bending moduli and the line tension arising between

different phases with different thicknesses.

The physical behavior and molecular arrangement of lipid molecules in a lipid

bilayer are very similar to those in a smectic liquid crystal. This has encouraged

some researchers to describe the energy density and mechanics of lipid bilayer based

on liquid crystal theories. Recently, Seguin and Fried [66], using a microphysical

approach and, considering the lipid molecules as system of interacting rods [67], de-

rived the Canham–Helfrich energy density (1.1). Their analysis provides expressions

for the spontaneous curvature and the bending moduli based on the pair potential

of lipid molecules. Just recently, using a three-dimensional liquid crystal model for a

lipid bilayer, Steigmann [68] presented a dimensionally-reduced areal energy density

incorporating the tilt and distension of lipid molecules. Based on the dimensionally-

reduced areal energy density as a function of mean and Gaussian curvatures H and

K, areal stretch J , and the surface gradient of J , Steigmann [68] derived the equi-

librium equations and determined the Legendre–Hadamard condition necessary for

existence of an energy minimizer.

The first objective of this thesis is a fundamental study of the me-

chanics of lipid bilayers with spontaneous curvature using continuum-

mechanical ideas. Focus will be paid on deformation, material symmetry, and the

derivation of a dimensionally-reduced areal energy density. Our approach is guided

by the works of Zurlo [63] and Deseri et al. [64], who considered a lipid bilayer as

a three-dimensional structure. Zurlo [63] and Deseri et al. [64] did not account for

spontaneous curvature in their considerations. An important goal of this study is to
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provide a solid and clear theoretical basis for the concept of spontaneous curvature

in the conventional Canham–Helfrich energy density (1.1). Also, the effect of leaflets

asymmetry, leaflets incoherency, and the incompressibility of the lipid bilayer will be

taken into account. In addition, the general stress relations within a lipid bilayer

will be derived.

1.3.2 Mechanics of multiphase lipid vesicles

In view of their promising biophysical and biochemical applications, multiphase

vesicles are the subject of considerable theoretical and experimental research. Both

equilibrium and dynamical studies of multiphase vesicles have been performed. On

the dynamical side, either in supported lipid bilayers or vesicles, most attention has

been paid on the growth, clustering, and coalescence of lipid domains [69, 70, 71, 72,

73]. Studies of the equilibrium of multiphase vesicle have been primarily dedicated

to fully phase separated vesicles, usually composed of two large coexisting domains

(e.g., see [74, 75, 3, 76, 77, 78, 79, 80, 81]). Most analytical works on the mechanics

of multiphase vesicles are concerned with solving the system of equations and associ-

ated boundary conditions for axisymmetric configurations of two-phase vesicles. The

system of equations consists of a fourth-order partial differential equation, known as

the shape equation, in each phase augmented by a junction condition at interfaces

between two phases. As a consequence of the axisymmetry, the shape equation

simplifies to an ordinary differential equation (ODE). Instead of a sharp kink-like in-

terface between lipid phases, some researchers have considered a thin transition layer

(also referred to as a boundary layer), usually exhibiting high curvature, between the

phases [82, 77, 83, 84].
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Numerous existing experimental observations show that, except for narrow re-

gions surrounding their junctions, the shape of lipid domains in multiphase vesicles

is essentially spherical [48, 3, 76, 72, 4, 85]. This is valid for both multidomain

and fully phase separated configurations, as, e.g., observable in Figs. 1–5 and 1–6.

This argument is specially more accurate for tense vesicles under an internal osmotic

pressure. If considered as a spherical cap, a lipid domain is geometrically charac-

terized only by two parameters, e.g., the radius of curvature and the opening angle.

This significantly simplifies the equilibrium analysis of a multiphase vesicle; as such,

instead of solving the shape equation in each domain, only the radii of curvature

and opening angles must to be determined. Of course, the force balance and the

geometrical compatibility at the junction must also be satisfied in equilibrium.

As introduced in Section 1.2.2, the primary energetic contributions to the net

potential energy of a multiphase vesicle are the bending, lineal, and volumetric

parts. The latter contribution becomes relevant when the enclosed volume of vesicle

changes. Otherwise it must be imposed as a constraint. The constraint may either

be considered implicitly or be included in the net potential energy using a Lagrange

multiplier, representing an unknown pressure. In addition, if area changes are ne-

glected (which is a common assumption for vesicles), the net area of each phase

must be fixed among all possible configurations. Confining our attention to vesicles

with spherical domains, the bending energy of each domain can easily be calculated

using the Canham–Helfrich energy given in (1.1), granted knowledge of the radius of

curvature. The line energy is proportional to the total length of the phase interfaces.

The force balance at a junction between phases relates the line tension (i.e., the
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line energy per unit length of the junction) to the surface tensions of the domains

and their slopes at their junction (see, e.g., [3, 86, 87] for the junction condition).

Hence, the line tension in multiphase vesicles should not be viewed as an arbitrarily

prescribable quantity.

Yanagisawa et al. [72] and Semrau et al. [85] considered multidomain configura-

tions of two-phase vesicles in which each of the domains is a spherical cap. However,

at interfaces between domains, they satisfied only the requirements of geometrical

compatibility without considering force balance. Allain and Ben Amar [88] studied

the effect of protein adsorption on the instability of a fully phase separated two-

phase vesicle. Assuming that the vesicle consists of two connected spherical caps,

they also derived the equilibrium equations and the necessary junction conditions

at the interface of domains. Later, Allain and Ben Amar [77] studied budding and

fission in two-phase vesicles composed of spherical caps. With particular attention

to tense vesicles, at the first step, they used a capillary model for each lipid domain

in which bending energy is ignored. Next, they refined their model by replacing the

sharp kink-like interface with a smooth, thin transition layer endowed with bending

energy. Employing an asymptotic method, Trejo and Ben Amar [84] studied equi-

librium of a two-phase vesicle with the geometry of two connected spherical caps.

A boundary layer between those caps was also considered. The results of Trejo

and Ben Amar [84] concentrated on an effective line tension and the contact angles

between two phases.

The second objective of this thesis is to present a simple and efficient

continuum mechanical tool for studying the equilibrium of a two-phase
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vesicle. Both multidomain and ground-state (fully phase separated) configurations

will be studied. In view of many experimental observations, the focus will be on

vesicles comprised of lipid domains with the geometry of spherical caps. The net

potential energy will consist of all three relevant sources—bending, line, and volu-

metric. For both multidomain and the ground-state configurations, apart from the

geometrical compatibility of lipid domains at their interfaces, the force balance will

also be satisfied. While, consistent with relatively short time scales required for the

formation of multidomain configurations, the enclosed volume of multidomain config-

urations will be assumed fixed, the enclosed volume at the ground-state configuration

will be allowed to vary. In this case, following Seifert [23], the osmotic pressure will

vary as a consequence of change of solute concentration inside the vesicle due to its

volume change. Attention will be paid on the roles of osmotic pressure and the initial

geometry of vesicle (specifically, its excess radius) prior to phase separation on its

shape in the ground state.

1.3.3 Equilibrium and stability of discoidal HDL particles

The biological functionality of HDL particles is thought to hinge primarily on the

conformation of apoA-I [89]. Despite their crucial role in the cholesterol metabolism,

the structure and functionality of HDL particles still demand extensive research. In

this vein, Vuorela et al. [90] state that: “The functionality of HDL has remained

elusive, and even its structure is not well understood.”

The careful understanding and classification of the different conformations of

discoidal HDL particles are subject of ongoing experimental and theoretical studies.

Recent works have revealed that the flat circular shape is not the only configuration
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in which discoidal HDL particles are found. All-atom molecular dynamics (MD)

simulations of Catte et al. [91] demonstrate the existence of nonplanar saddle-like

configurations. Catte et al. [91] observed that gradual removal of lipid molecules

from the surface of a discoidal HDL particle induces a transformation from a flat

circular to a non-flat saddle-like configuration. Their results lead them to suggest

that the midsurface of lipid bilayer of the discoidal HDL may be well represented by a

minimal surface (a surface with zero mean-curvature). Saddle-like shapes of discoidal

HDL particles have later been confirmed in other MD simulations and experiments

[92, 93, 94, 95, 96, 94, 50]. In another experimental observation, Skar-Gislinge et

al. [97] have shown that discoidal HDL particles can adopt flat elliptical shape.

MD simulations of discoidal HDL particles have provided valuable and enlighten-

ing results. Nevertheless, these simulations have practical limitations. In particular,

current computational limitations make it impossible to perform simulations long

enough to draw conclusions regarding equilibrium and stability. Continuum models

provide a complementary alternative to studying the equilibrium and stability of

discoidal HDL particles. Continuum models have been used extensively, and with

considerable success, to study the equilibrium and stability of biological membranes

and biomolecules; for revenant reviews, e.g., see [23, 98, 99, 100].

The third, and final, objective of this thesis is to develop a continuum

model for studying the equilibrium and stability of discoidal HDL par-

ticles. The model will consist of a surface, representing the lipid bilayer, attached

on its edge to a curve, representing the bounding double-belt apoA-I. From an ener-

getic perspective, the surface will be endowed with a uniform surface tension and a
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bending energy in form of Canham–Helfrich (1.1). Also, the bounding curve will be

considered inextensible and will be endowed with a bending energy. In view of high

flexibility of apoA-I chain [56] and the amphipathic consistency of apoA-I and lipid

bilayer, a condition of perfect bonding between the surface and the bounding curve

will be imposed. In the first step, using a variational approach, the general non-

linear equilibrium equations of a generally-distorted discoidal HDL particle will be

derived based on a direct, geometrically-based formulation. Next, on choosing a flat

circular shape as a reference configuration, the equilibrium equations will be refor-

mulated using parametrization that describes the shape of the surface and the edge

of discoidal HDL particle. While the direct formulation provides a clear interpreta-

tion of equilibrium equations without relying on any particular parameterization, the

parametrized formulation creates a platform for numerical investigations and, hope-

fully, for finding closed-form solutions for the equilibrium equations. Later, based on

a small-slope approximation, a linearized formulation will be developed. That for-

mulation will be used for understanding the equilibrium and stability of flat circular

HDL particles under small deformation. Closed-form solutions will be derived for

the linearized equilibrium equations. It is hypothesized that the observed nontrivial

shapes of discoidal HDL particles (such as nonplanar saddle-like or planar elliptic)

might represent post-buckled configurations of unstabilized flat circular shapes. To

explore the veracity of this hypothesis, in the first step, it is reasonable to deter-

mine the linear stability of flat circular HDL particles under general (transverse or

in-plane) perturbations. Stability will be addressed using the second variation of

the energy functional. Lastly, as an alternative approach to stability, inspired by
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Giomi and Mahadevan [101], an energy comparison criterion based on an assumed

trial solution will be employed.

1.4 Thesis organization

The present thesis is manuscript-based including published or in preparation

manuscripts.

Chapter 1 includes the introduction and comprises a background, motivation

and objectives, and thesis organization.

Chapter 2 includes a fundamental continuum mechanical study of a lipid bilayer

with spontaneous curvature. This chapter is reprinted from the published paper:

M. Maleki, B. Seguin, and E. Fried, “Kinematics, material symmetry, and energy

densities for lipid bilayers with spontaneous curvature,” Biomechanics and Modeling

in Mechanobiology, vol. 12, pp. 997–1017, 2013.

Chapter 3 covers a continuum mechanical approach for studying two-phase vesi-

cles in both multidomain and ground-state configurations. This chapter is reprinted

from the published paper:

M. Maleki and E. Fried, “Multidomain and ground state configurations of two-

phase vesicles,” Journal of The Royal Society Interface, vol. 10, no. 83, 20130112,

2013.

Chapter 4 presents a continuum mechanical approach for dealing with the equi-

librium of discoidal HDL particles under general deformation. It also includes a

handy tool based on energy comparison for the linear stability of flat circular HDL

particles. This chapter presents the following in preparation manuscript:
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M. Maleki and E. Fried, “Equilibrium of discoidal high-density lipoprotein par-

ticles,” (in preparation).

Chapter 5 covers the linear stability of flat circular HDL particle using the

variational approach. This chapter is reprinted from the published paper:

M. Maleki and E. Fried, “Stability of discoidal high-density lipoprotein parti-

cles,” Soft Matter, vol. 9, pp. 9991–9998, 2013.

Chapter 6 contains closing remarks, including discussions of primary conclusions,

original contributions to knowledge, and directions for future work.

References appearing in all chapters are listed at the end of the thesis.
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CHAPTER 2
Kinematics, material symmetry, and energy densities for lipid bilayers

with spontaneous curvature

2.1 Preface

As explained in Section 1.3.1, despite their very small thickness, deformation

of lipid bilayers is linked to the three-dimensional distortions within the thickness.

This chapter presents a fundamental treatment for the mechanics of lipid bilayers

with spontaneous curvature by considering a lipid bilayer as a three-dimensional

shell-like structure with finite-size thickness. After studying the kinematics and

material symmetry of a lipid bilayer, the areal energy density for lipid bilayers with

spontaneous curvature is extracted. Besides other discussions (also, including the

stress relations and the leaflets incoherency), an important outcome of this chapter

is providing a continuum mechanical basis for the notion of spontaneous curvature

in the conventional Canham–Helfrich areal energy density (1.1). This chapter is

reprinted from the published paper

M. Maleki, B. Seguin, and E. Fried, “Kinematics, material symmetry, and energy

densities for lipid bilayers with spontaneous curvature,” Biomechanics and Modeling

in Mechanobiology, vol. 12, pp. 997–1017, 2013.

with kind permission from Springer Science and Business Media, and from the coau-

thors Prof. Eliot Fried and Dr. Brian Seguin.
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2.2 Abstract

Continuum mechanical tools are used to describe the deformation, energy den-

sity, and material symmetry of a lipid bilayer with spontaneous curvature. In contrast

to conventional approaches in which lipid bilayers are modeled by material surfaces,

here we rely on a three-dimensional approach in which a lipid bilayer is modeling

by a shell-like body with finite thickness. In this setting, the interface between the

leaflets of a lipid bilayer is assumed to coincide with the midsurface of the corre-

sponding shell-like body. The three-dimensional deformation gradient is found to

involve the curvature tensors of the midsurface in the spontaneous and the deformed

states, the deformation gradient of the midsurface, and the transverse deformation.

Attention is also given to the coherency of the leaflets and to the area compatibility

of closed lipid bilayers (i.e., vesicles). A hyperelastic constitutive theory for lipid

bilayers in the liquid phase is developed. In combination, the requirements of frame-

indifference and material symmetry yield a representation for the energy density

of a lipid bilayer. This representation shows that three scalar invariants suffice to

describe the constitutive response of a lipid bilayer exhibiting in-plane fluidity and

transverse isotropy. In addition to exploring the geometrical and physical properties

of these invariants, fundamental constitutively-associated kinematical quantities are

emphasized. On this basis, the effect on the energy density of assuming that the

lipid bilayer is incompressible is considered. Lastly, a dimension reduction argument

is used to extract an areal energy density per unit area from the three-dimensional

energy density. This step explains the origin of spontaneous curvature in the areal

energy density. Importantly, along with a standard contribution associated with the
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natural curvature of lipid bilayer, our analysis indicates that constitutive asymmetry

between the leaflets of the lipid bilayer gives rise to a secondary contribution to the

spontaneous curvature.

2.3 Introduction

Biomembranes are essential to the functions of cells, bacteria, and viruses [102,

103]. Basic to all biological membranes are lipid bilayers, which are thin, sheet-

like structural elements composed of two adjacent monomolecular leaflets joined by

weak, noncovalent bonds [104]. In the liquid phase, lipid bilayers are very flexible in

bending but highly resistant to lateral stretching [18]. The architecture of lipid bi-

layers hinges on the amphiphatic chemical properties of the constituent phospholipid

molecules [6]. Such molecules consist of hydrophilic head groups and hydrophobic

tails. When suspended in aqueous solutions under suitable temperature conditions

and at appropriate concentrations, they form various self-assembled complexes with

hydrophobic tails facing one another and hydrophilic head groups in contact with the

solution [7]. These complexes include closed bilayers, known as vesicles or liposomes,

which are typically a few nanometers thick and can range between fifty nanometers

and tens of micrometers in diameter [27].

Biomembranes are generally heterogeneous multicomponent systems involving

hundreds of lipid species along with various proteins and hydrocarbons. The inher-

ent complexity of such systems has driven the development of biomimetic model sys-

tems [105]. These model systems include Giant Unilaminar Vesicles (GUVs), which

may be composed of as few as two lipid species and a single type of cholesterol.

Aside from providing platforms for focused investigations of processes mediated by
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biomembranes [59, 106], GUVs are of potential value in various pharmaceutical and

technological applications, including biocompatible microcapsules for targeted drug

delivery and gene therapy [28, 29], adjuvants for immunization [32, 33], signal car-

rying and enhancement in medical diagnostics and analytical biochemistry [34, 35],

and biochemical reactors [107, 108, 109, 110].

Lipid bilayers readily change shape in response to shifting osmotic and thermal

conditions and applied mechanical loads [111]. Efforts to model such shape changes

date back somewhat more than four decades. Canham [21] emulated the methodology

commonly applied in the bending analysis of beams to yield a simplified model capa-

ble of predicting the shapes available to a red blood cell. Treating a cell membrane

as a surface, Canham [21] showed that the shapes it manifests in equilibrium emerge

as a consequence of bending-energy minimization. Independently, Helfrich [22] at-

tributed a surface bending-energy to lipid bilayers. In the models of Canham [21]

and Helfrich [22], energy changes induced by relative molecular misalignment are in-

corporated through deviations of the principal curvatures (or alternatively, the mean

and Gaussian curvatures) of the surface that serves as a proxy for the lipid bilayer.

Specifically, according to Canham–Helfrich theory, the bending-energy density (that

is, the energy per unit surface area) is given by

ψ = 1
2
κ(H −H◦)2 + κ̄K, (2.1)

where H and K are the mean and Gaussian curvatures, respectively, and H◦ is

the spontaneous mean curvature, which embodies the curvature of the bilayer in its

natural state. In (2.1), changes of H and K are respectively penalized by bending
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moduli κ and κ̄, known, respectively, as the splay (or ordinary) and saddle-splay

(or Gaussian) moduli. As the brothers Cosserat [112] noted in their work on elastic

surfaces, Germain [113] previously derived a energy density quadratic in the mean

and Gaussian curvatures equivalent to (2.1) and the particular case corresponding

to zero spontaneous curvature (H◦ = 0) was obtained by Poisson [114]. See also the

historical remarks of Nitsche [115].

The Canham–Helfrich energy is perhaps the simplest model believed suitable

to situations where the shape of the lipid bilayer is dominated by bending and the

radius of curvature of the lipid bilayer is much larger than its thickness. It can never-

theless be argued that (2.1) neglects energetic contributions associated with changes

of local area or thickness and merely considers the lipid bilayer as a two-dimensional

fluid surface that resists curvature deviations. Moreover, the Canham–Helfrich the-

ory does not allow for changes in overall area. This constraint is imposed by adding

a term proportional to the area of the surface that models the lipid bilayer to the

net bending-energy determined by integrating (2.1) over that surface. However, as

is clear from the discussion of the global and local area preservation provided by

Steigmann et al. [116], this approach does not rule out the local area changes. Im-

portantly, local area or thickness changes can occur in the vicinity of phase interfaces

in multi-component lipid bilayers or heterogeneities such as protein molecules [117].

In contrast to an elastic shell, a lipid bilayer in the liquid phase does not have

the ability to resist in-plane shear forces. This is because the lipid molecules may

move freely within a lipid bilayer. Due to the absence of preferred directionality tan-

gent to their surfaces in the liquid phase, lipid bilayers also exhibit in-plane isotropy.
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Bearing in mind that the general theory of elastic shells allows for a broad range

of possible material symmetries, any shell-like model for a lipid bilayer should be

consistent with the observed in-plane fluidity and isotropy. Working in the con-

text of modern shell theory, Jenkins [61] derived the general equations governing the

mechanical equilibrium for a shell with material symmetry consistent with that of

a lipid bilayer. Steigmann [62] subsequently reconsidered the mechanical modeling

of fluid films with bending elasticity from a fundamental perspective. By treating

the lipid bilayer as a two-dimensional (inviscid) fluid and choosing the full set of

two-dimensional unimodular transformations as the appropriate material symmetry

group, Steigmann [62] obtained a general energy density depending not only on the

mean and Gaussian curvatures H and K but also on the areal stretch J . The areal

stretch J represents local expansion/contraction within the tangent plane of the bi-

layer. Since a lipid bilayer shows no resistance to in-plane shear forces, but rather

only to the local area changes, the areal stretch J is the sole kinematical ingredient

needed to reckon in-plane deformation of the lipid bilayer. A new free-energy density

for biomembranes, based on treating the lipid bilayer as a three-dimensional body

rather than a two-dimensional surface, was proposed by Zurlo [63] and Deseri et

al. [64]. An important feature of the formulation of these authors involves the in-

troduction of a symmetry group that describes in-plane fluidity and isotropy at the

level of the bulk, three-dimensional, material. However, a proof of the corresponding

representation theorem was not provided. Additionally, the analysis of Zurlo [63] and

Deseri et al. [64] is based on considering a flat reference configuration, which means
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that spontaneous curvature is tacitly assumed to vanish. Following a dimension re-

duction from a three-dimensional shell-like structure to a two-dimensional material

surface, Zurlo [63] and Deseri et al. [64] obtained the superficial energy density per

unit area of the reference surface.

Several explanations for the existence of spontaneous curvature have been re-

ported in the literature. Spontaneous curvature is believed to be a measure of the

extent to which the upper and lower leaflets of the lipid bilayer are asymmetric [23].

Asymmetry may arise due to differences between the molecular compositions of the

leaflets, different properties of the aqueous solutions adjacent to the sides of the lipid

bilayer [24], or interactions with a cytoskeleton (for a review see [1]). For instance, the

presence of molecules with different headgroup or tailgroup conformations can lead

to spontaneous curvature [1]. Asymmetry between the upper and lower leaflets of a

bilayer can also be caused by helix insertion, scaffolding, transmembrane proteins,

and clathrin coating [1, 25, 26]. Importantly, the presence of different species on a

lipid bilayer is not generally sufficient to generate non-zero spontaneous curvature.

In fact, spontaneous curvature appears to arise only when the flip-flop diffusion of

unlike molecules between two leaflets is very slow compared to other time scales un-

derlying shape changes. Numerical models of vesicles that incorporate spontaneous

curvature reveal novel predictions of equilibrium shapes that appear to agree more

closely with experimental observations [27, 118, 119, 120] than otherwise.

In the present paper, continuum mechanical tools are used to study the defor-

mation, material symmetry, and energy density of a lipid bilayer with spontaneous

curvature. Attention is restricted to lipid bilayers in the liquid phase. Inspired
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from Zurlo [63] and Deseri et al. [64], these thin structural elements are treated as

three-dimensional bodies rather than material surfaces. Specifically, the formulation

encompasses bending, in-plane stretching, and thickening/thinning of the bilayer. It

also enables characterizations of leaflet coherency and area compatibility; whereas

leaflet coherency concerns the local coupling or sliding of upper and lower leaflets,

area compatibility concerns the integrity of closed lipid bilayers (i.e., vesicles). After

discussing geometry and kinematics, constitutive behavior is considered. Treating

the lipid bilayer as a three-dimensional body leads not only to a more precise under-

standing of the deformation of lipid bilayers but also affords insight regarding the

material symmetry of lipid bilayers from a bulk material perspective. In particu-

lar, stipulating that the lipid bilayer is hyperelastic and invoking suitable material

symmetry requirements leads to a representation for the energy density of a lipid

bilayer. In addition, the impact of imposing the notion of incompressibility is con-

sidered. Finally, dimension reduction is used to derive an areal (two-dimensional)

energy density from the three-dimensional energy density. As such, it includes the

Canham–Helfrich energy density as a particular case. More broadly, however, it

incorporates possible asymmetry and incoherency of the leaflets.

2.4 Geometry and kinematics

2.4.1 Basic considerations

Consider a lipid bilayer, either closed or open, represented by a three-dimensional

body B (Figure 1). Suppose that the lipid bilayer is in its spontaneous (natural)

state. Assume that the thickness of the bilayer in that state is uniform. Allow,

however, for the possibility that the upper and lower leaflets may have different,

36



but constant, thicknesses h+
◦ and h−

◦ , respectively, in which case the thickness of

the bilayer in its spontaneous state is simply h+
◦ + h−

◦ . It is useful to introduce a

reference surface separating the leaflets. This surface is referred to as the midsurface

and is denoted by S◦. The unit normal vector on S◦, directed outward from the

region enclosed by the vesicle, is denoted by � (Figure 1). The curvature tensor of

the midsurface S◦ is denoted by �◦, as defined in (2.179),1 and is referred to as the

spontaneous curvature tensor. Furthermore, H◦ and K◦ denote the corresponding

spontaneous mean and Gaussian curvatures, as defined in (2.180). It is assumed that

S◦ does not intersect itself. Additionally, h+
◦ and h−

◦ are assumed to be sufficiently

small relative to the radius of curvature of S◦ to ensure that the inner and outer

surfaces of lipid bilayer Si and So do not fold back on themselves. A generic material

point X located on a material surface Sξ◦ in B can then be uniquely described using

its projection X̂ onto S◦ and a local coordinate ξ◦ ∈ [−h−
◦ , h

+
◦ ] that reckons the

normal distance between X and X̂; specifically,

X = X̂+ ξ◦�(X̂) = X̃(X̂, ξ◦). (2.2)

Consider a deformation χ that maps the lipid bilayer in its spontaneous state

into the observed space. Under χ, the reference placement of the body B, midsurface

S◦, and the normal � to S◦ map to the observed placement B, midsurface S◦, and

unit normal � to S◦, respectively (Figure 1). The curvature tensor of the surface S◦

1 To streamline the presentation, the precise definitions of �◦ and various other
useful geometrical objects are relegated to Appendix 2.11.1.
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Figure 2–1: Two-dimensional schematic of a closed lipid bilayer in its spontaneous
state and its deformation to a generic spatial configuration.

is �, as defined in (2.179), with corresponding mean and Gaussian curvatures H and

K, as defined in (2.181). In general, the thickness of the deformed bilayer may be

nonuniform. As is customary, it is assumed that the deformation χ is such that the

images S◦, S i, and So of S◦, Si, and So (see Figure 1) do not fold back on themselves.

Hence, there is, for each x in B, a unique X in B such that x = χ(X). In view of

38



(2.2), the spatial point x can be described as

x = χ(X) = x̃(X̂, ξ◦), X̂ ∈ S◦, ξ◦ ∈ [−h−
◦ , h

+
◦ ]. (2.3)

The deformation gradient describing the local distortion of B is given by

F = ∇χ(X), (2.4)

where ∇ indicates the gradient in the reference space.

Consider a material point Xξ◦ on Sξ◦ along with a generic point X located at

a normal elevation z from Sξ◦ . Since the tangent planes T◦ and Tξ◦ at the points X̂

and Xξ◦ are parallel (see Figure 1), the unit normal � on S◦ is also normal to Sξ◦

and, hence, can also be viewed as a function defined on Sξ◦ . Thus, bearing in mind

that X coincides with Xξ◦ for z = 0, X can be expressed as X = Xξ◦ + z�(Xξ◦).

The spatial point x corresponding to X, can thus also be described via

x = χ(X) = x̄(Xξ◦ , z), (2.5)

where Xξ◦ ∈ Sξ◦ and z∈ [(−h−
◦ − ξ◦), (h+

◦ − ξ◦)]. In view of (2.5), the deformation

gradient F for a material point located on Sξ◦ can be expressed as

F = ∇x|z=0 =
(
∇Sξ◦ x̄+

∂x̄

∂z
⊗�

)∣∣∣
z=0

, (2.6)

where ∇Sξ◦ indicates the surface gradient on Sξ◦ , defined as

∇Sξ◦ x̄|z=0 = (∇x̄|z=0) ��, (2.7)
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where �
�

= 1 − � ⊗ � is the projection tensor onto the tangent plane T◦ (or,

equivalently, Tξ◦).

Consider a material line element dXξ◦ tangent to the surface Sξ◦ and the corre-

sponding line element dxξ◦ tangent to the spatial image Sξ◦ of Sξ◦ . According to the

description of x in (2.3),

dxξ◦ = dx̃(X̂, ξ◦)|ξ◦=constant

= (∇x̃(X̂, ξ◦)|ξ◦=constant) dX̂

= (∇x̃(X̂, ξ◦)|ξ◦=constant)��dX̂

= (∇S◦x̃(X̂, ξ◦)|ξ◦=constant) dX̂, (2.8)

where ∇S◦ indicates the surface gradient on S◦, as defined by

∇S◦x̃(X̂, ξ◦)|ξ◦=constant = (∇x̃(X̂, ξ◦)|ξ◦=constant)��. (2.9)

Similarly, for the description given in (2.5) we have

dxξ◦ = (∇x̄(Xξ◦ , z))|z=0dXξ◦

= (∇x̄(Xξ◦ , z))|z=0�mdXξ◦

= (∇Sξ◦ x̄(Xξ◦ , z)|z=0)dXξ◦ . (2.10)

Comparing (2.8) and (2.10) yields the identity

(∇Sξ◦ x̄|z=0)dXξ◦ = (∇S◦x̃|ξ◦=constant)dX̂. (2.11)
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Using (2.2) and elementary properties of the curvature tensor �◦ (see (2.179)) it is

easy to arrive at the identity

dXξ◦ = dX̂+ ξ◦d�

= dX̂− ξ◦�◦dX̂, (2.12)

which, on introducing

�◦ = �
�
− ξ◦�◦, (2.13)

can alternatively be written as

dXξ◦ = �◦dX̂. (2.14)

Notice that dX̂ is a tangent line element on S◦ at the point X̂. Since the tangent

planes T◦ and Tξ◦ are parallel, dXξ◦ and dX̂ can be viewed as elements of the same

tangent space, say T◦.

The tensor �◦ defined in (2.13) is fully tangential (see Appendix 2.11.1 for the

definition of such a tensor) and, thus, can be viewed as a mapping from T◦ to T◦. By

(2.13), the second principal invariant I2(�◦) of �◦ can be expressed as

I2(�◦) = 1
2
[(I1(�◦))2 − I1(�

2
◦)]

= 1− 2ξ◦H◦ + ξ2◦K◦. (2.15)

Let c◦1 and c◦2 denote the principal curvatures of S◦, so that H◦ = 1
2
(c◦1 + c◦2) and

K◦ = c◦1c◦2. Then, by (2.15),

I2(�◦) = (1− ξ◦c◦1)(1− ξ◦c◦2). (2.16)
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Granted the assumption (imposed to ensure avoiding folding back of outer and inner

surfaces So and Si on themselves) that the thicknesses h+
◦ and h−

◦ of upper and lower

leaflets are very small relative to the radius of curvature of S◦, ξ◦ must satisfy

ξ◦c◦α �= 1, α = 1, 2, (2.17)

and (2.16) implies that I2(�◦) �= 0. Thus, as described in Appendix 2.11.2, �◦ has a

pseudoinverse �◦ given by

�◦ = (I2(�◦))−1(I1(�◦)�� − �◦), (2.18)

where

I1(�◦) = tr(�
�
− ξ◦�◦)

= 2(1− ξ◦H◦) (2.19)

is the first principal invariant of �◦, and, since, as noted above, dXξ◦ and dX̂ can be

viewed as elements of the same tangent space, (2.14) is equivalent to

dX̂ = �◦dXξ◦ . (2.20)

As regards �◦, it is convenient to introduce

γ◦(ξ◦) = I2(�◦) (2.21)

and, thus, using (2.13), (2.15), and (2.19) in the representation (2.18) yields

�◦ = (γ◦(ξ◦))−1(�
�
− 2ξ◦H◦�� + ξ◦�◦). (2.22)
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Bearing in mind (2.14), (2.11) can be expressed as

(∇Sξ◦ x̄|z=0)dXξ◦ = (∇S◦x̃|ξ◦=constant)�◦dXξ◦ . (2.23)

Since (2.23) holds for an arbitrary line element dXξ◦ , we conclude that

∇Sξ◦ x̄|z=0 = (∇S◦x̃|ξ◦=constant)�◦. (2.24)

The second term on the far right-hand side of (2.6) includes the normal derivative

(∇x)�, as is clear from (2.176). Notice that, according to the descriptions x =

x̃(X̂, ξ◦) and x = x̄(Xξ◦ , z), changes of x in the � direction are controlled by ξ◦ and

z, respectively. Thus,

(∇x)� =
∂x̃

∂ξ◦

=
∂x̄

∂z
, (2.25)

which, in combination with (2.6), implies that the deformation gradient F may be

written as

F = (∇S◦x̃)�◦ +
∂x̃

∂ξ◦
⊗�. (2.26)

2.4.2 Orientation of phospholipid molecules at the midsurface

Compatible with physical observations of amphiphilic fluid films, we assume

that, due to interatomic interactions and packing requirements, the phospholipid

molecules comprising the bilayer tend to remain perpendicular to the midsurface S◦.

This constraint is embodied by the kinematical requirement that: during a deforma-

tion, straight line elements perpendicular to S◦ remain straight and perpendicular to

43



S◦ (Figure 1). This assumption resembles Kirchhoff’s [121] hypothesis in theories of

thin plates and shells. However, at variance with that hypothesis, the kinematical

constraint imposed here does not restrict the through-thickness deformation of the

lipid bilayer.

To provide an analytical characterization of our constraint, it is useful to repre-

sent a generic spatial point x in the deformed body in the form x = x̂+ξ�(x̂), where

ξ indicates normal distance of x from S◦. Since x is the image of X in the observed

space, and also X can be described by X̂ and ξ◦ through (2.2), the out-of-plane

coordinate ξ in the body can be expressed in the form

ξ = ξ̃(X̂, ξ◦). (2.27)

Moreover, as a result of the constraint, the projection x̂ of x onto S◦ coincides

with the placement of the spatial image of the material point X̂ on S◦ (Figure 1).

Consequently, bearing in mind (2.26) and (2.27), it transpires that

F = (∇S◦(x̂+ ξ�))�◦ +
∂(x̂+ ξ�)

∂ξ◦
⊗�, (2.28)

where ∇S◦(x̂+ ξ�) and ∂(x̂+ ξ�)/∂ξ◦ are given by

∇S◦(x̂+ ξ�) = ∇S◦x̂+ ξ∇S◦�+ �⊗∇S◦ξ (2.29)

and

∂(x̂+ ξ�)

∂ξ◦
=

∂ξ

∂ξ◦
�, (2.30)

respectively.
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It is now convenient to introduce some shorthand notation. Specifically, given

a quantity g dependent either explicitly or implicitly on ξ◦, let

g|◦ := g|ξ◦=0 (2.31)

denote its value at the referential midsurface S◦. With this convention in mind,

and according to the definition of surface gradient of a vector field provided in Ap-

pendix 2.11.1, we have

∇S◦x̂ = (∇x)|◦��

= F|◦��

=: �◦, (2.32)

where �◦, which designates the superficial deformation gradient on the midsurface

S◦, maps material line elements on S◦ to spatial line elements on S◦.

Having introduced �◦, the areal stretch

J := I2(�◦) (2.33)

represents any changes in the area of the midsurface that may accompany deforma-

tion.

In general, � is a superficial field defined on S◦—that is, � can be expressed as

a function of points x̂ on S◦. However, � may be extended to all of B. In particular,

consider a normally constant extension �
e of �. Then, in view of developments
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presented in Appendix 2.11.1,

∇S◦� = (∇�e(χ(X)))|◦��

= (∇x�
e(x))|ξ=0∇x|◦��, (2.34)

where∇x indicates the spatial gradient. Next, using properties of the surface gradient

(see (2.175)1), we have

∇x�
e(x) = ∇Sξ◦�

e(x) +
∂�e(x)

∂ξ
⊗ �e(x), (2.35)

and, since �e does not change in the ξ-direction, we arrive at the identification

(∇x�
e(x))|ξ=0 = (∇Sξ◦�

e(x))|ξ=0

= ∇S◦�

= −�. (2.36)

In view of (2.32) and (2.36), ∇S◦� as defined by (2.34), can be expressed as

∇S◦� = −�(∇x)|◦��

= −��◦, (2.37)

which, in combination with (2.28), yields a useful alternative representation,

F = (�◦ − ξ��◦ + �⊗∇S◦ξ)�◦ +
∂ξ

∂ξ◦
�⊗�, (2.38)

for the deformation gradient.
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Notice that, for a trivial deformation (that is, a deformation for which F = 1

everywhere on B), �, �, �◦, and ξ are given by � = �, � = �◦, �◦ = �
�
, and ξ = ξ◦.

Under these circumstances, bearing in mind (2.22), (2.38) specializes to

F = (γ◦(ξ◦))−1(�
�
− ξ◦�◦)(�� − 2ξ◦H◦�� + ξ◦�◦)

+�⊗�

= (1− 2ξ◦H◦ + ξ◦
2K◦)−1

× (�
�
− 2ξ◦H◦�� + 2ξ2◦H◦�◦ − ξ2◦�

2
◦) +�⊗�. (2.39)

Further, on applying the Cayley–Hamilton theorem (see Appendix 2.11.2) to the

spontaneous curvature tensor �◦, (2.39) becomes

F = �
�
+�⊗� = 1, (2.40)

which is consistent with what must be true under a trivial deformation. Moreover, it

can be immediately checked that (2.38) reduces to a result of Zurlo [63] and Deseri

et al. [64] when the spontaneous curvature vanishes (in which case, (2.18) reduces to

�◦ = �
�
).

2.4.3 Transformation of normal vectors

If the thickness of the lipid bilayer in the spatial configuration is not uniform, the

unit normal vectors of its outer and inner surfaces So and S i may differ, respectively,

from the midsurface unit normal � and its negative −�. In this case, let the unit

normal vectors of inner and outer surfaces of bilayer in the reference and the spatial

configuration be denoted by mi = −�, mo = �, and ni, no, respectively. Whereas
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ni and no must transform according to

n =
F−�m

|F−�m|
∣∣∣∣
ξ◦=h±◦

, (2.41)

wherein n and m take the values consistent with

(n,m) = (ni,mi) or (n,m) = (no,mo), (2.42)

� transforms according to

� =
�◦�1◦ × �◦�2◦
|�◦�1◦ × �◦�2◦|

, (2.43)

for any two linearly independent tangent vectors �1◦ and �
2
◦ on the midsurface S◦.

Substituting (2.38) into (2.41) and invoking (2.43) shows that n and � differ unless

∇S◦ξ|ξ◦=h±◦ −→ 0, (2.44)

meaning that any change of bilayer thickness on the spatial midsurface S◦ must

be negligibly small. However, since this need not be the case, it is important to

maintain a distinction between � and n. Existing two-dimensional approaches based

on modeling the lipid bilayer as a material surface, as exemplified by the theory of

Steigmann [62], work solely with �.

2.4.4 Coherency of leaflets

The extent to which the upper and lower leaflets are coherent across the midsur-

face S◦ may influence the mechanical response of of a lipid bilayer [122, 123, 124, 23].

When lipid molecules of opposite leaflets are interdigitated, their connection is very

nearly coherent [38]. If this is not the case, the leaflets may slide relative to one an-

other. To describe leaflet coherency, consider the Hadamard compatibility condition
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at S◦. Let F+ and F− denote the respective limiting values of the deformation gradi-

ent at S◦ from the outer and inner sides of the bilayer. To facilitate the calculation,

we will introduce some notation. Given a quantity g with potentially different limits

on either side of the referential midsurface S◦, define its jump [[g]] and average 〈g〉 at
S◦ by

[[g]] := g+ − g−, 〈g〉 := 1
2
(g+ + g−). (2.45)

In view of (2.38), the jump [[F]] of the deformation gradient at the midsurface (i.e.,

at ξ◦ = 0), is given by

[[F]] = [[�◦]] +
[[

∂ξ

∂ξ◦

]] ∣∣∣∣
◦
�⊗�. (2.46)

For [[�◦]] = 0, (2.46) represents the Hadamard condition for a coherent surface. This

condition corresponds to the local interdigitation or coupling of the leaflets. However,

for [[�◦]] �= 0, the midsurface is an incoherent interface across which the leaflets may

slide relative to one another. In general, [[∂ξ/∂ξ◦]]|◦ need not vanish—as occurs if

the lipid bilayer is not symmetric and its constitutive properties are discontinuous

across the midsurface S◦. As mentioned earlier, a disparity between the molecular

compositions of the leaflets is a potential reason for the existence of spontaneous

curvature. For lipid bilayers with such induced spontaneous curvature, the jump

[[∂ξ/∂ξ◦]]|◦ therefore does not generally vanish.

2.4.5 Area compatibility

For closed lipid bilayers, an additional global compatibility condition becomes

important. During the deformation of a vesicle, whether or not the leaflets are coher-

ent, their bounding surfaces at the common interface (what is called here midsurface)

must share the same area. Otherwise, the leaflets may loose their integrity. In view
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of the definition (2.33) of the areal stretch, this condition can be codified in the form

∫
S◦

[[J ]] dA◦ = 0, (2.47)

where, bearing in mind (2.45)1, [[J ]] denotes the jump of the areal stretch at the

midsurface S◦ and dA◦ represents the referential area element of S◦.

2.5 Energy densities

Any change of energy that accompanies a change in the shape of a lipid bilayer

must be due to the displacement of neighboring phospholipid molecules. Various

types of lipid molecules with different physical properties can be present in a lipid

bilayer. As long as no phase separation occurs and, thus, the chemical energy remains

fixed, any energy change can be attributed to purely mechanical phenomena. In this

setting, a multi-component biomembrane can be viewed as an effectively homogenous

body. For a single-component lipid bilayer, no such assumption is needed.

Molecular displacements are accompanied by changes in the amount of elastic

energy stored within the lipid bilayer. This is modeled by introducing an energy

density W (per unit referential volume) as a function Ŵ of the deformation gradient

F, so that the lipid bilayer is modeled as a hyperelastic material:

W = Ŵ (F). (2.48)

As in the case of a conventional elastic body, we require that the energy density of

a lipid bilayer has a local minimum at the spontaneous state:

Ŵ (F) has local minimum at F = 1. (2.49)
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Also, since the energy density of each material point may be additively scaled [125],

we impose, without loss of generality, the normalization

Ŵ (1) = 0. (2.50)

Zurlo [63] and Deseri et al. [64] studied the chemo-mechanical coupling of a lipid

bilayer undergoing phase separation and elastic deformation. Under these circum-

stances, Ŵ would also be a function of species concentrations and, potentially, also

their gradients, which would penalize the formation of phase interfaces on the bilayer.

Requiring the energy density in (2.48) to be frame-indifferent leads, in con-

ventional fashion, to the conclusion that it may depend on the deformation gradient

through at most the right Cauchy–Green tensor C = F�F, whereby (2.48) is replaced

by

W = W̄ (C). (2.51)

An important point concerning leaflet asymmetry should now be clarified. An

asymmetric distribution of lipid molecules with different molecular shapes requires

the shape of the lipid bilayer in its natural state to be curved [1]. This effect might be

modeled by allowing for nontrivial spontaneous curvature �◦. There is also consid-

erable evidence pointing to marked differences between the chemical compositions of

lipid molecules in the inner and outer leaflets of animal cells [126, 127, 128]. Observed

differences in mechanical properties [127] might therefore be attributed to differences

in molecular packing, chemical composition, or both. To encompass differences in

the mechanical properties of the leaflets, it might be sufficient to allow the expression

determining the energy density function W̄ to be distinct in each leaflet.
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2.6 Material symmetry

The constitutive relation (2.51), which holds for all hyperelastic materials, is very

general. To incorporate the properties of a lipid bilayer, the response function W̄

must obey certain requirements of material symmetry. Two distinguishing features of

biomembranes are in-plane fluidity and in-plane isotropy. Specifically, experimental

observations demonstrate unambiguously that phopholipid molecules on the surface

of a lipid bilayer in the liquid phase can freely migrate. Additionally, there is no

preferred direction in the tangent plane of its midsurface and therefore the lipid

bilayer exhibits in-plane isotropy. In view of these observations, when modeled as

three-dimensional, a lipid bilayer is like a transversely isotropic material with� being

the axis of isotropy and Sξ◦ being the surface of isotropy, where the range of ξ◦ covers

the thickness of the lipid bilayer. Bearing this in mind, we next derive an appropriate

representation theorem for an energy density which correctly incorporates both in-

plane fluidity and transverse isotropy. To achieve this, it is necessary to determine a

proper unimodular symmetry transformation H of the reference configuration which

the leaves response of the body to deformation unchanged. As is customary, the set

of all such symmetry transformations is designated by G and is referred to as the

symmetry group.

2.6.1 Symmetry transformations

Let H be a a symmetry transformation. To encompass the transverse isotropy of

the lipid bilayer, H should preserve the direction of any material line element parallel

to�. In addition, it is necessary to require thatH preserve the length of any material

line element parallel to �. If H does not do so, the phospholipid molecules deform
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along the direction of the tail groups and, consequently, their physical characteristics

will generally change. These two requirements simply imply that H should map any

normal material line element to itself. Consistent with the in-plane fluidity of lipid

bilayers, H should also map any material line element perpendicular to � to a

material line element perpendicular to �. Thus, given a unit normal vector �, H

should satisfy

H� = �,

if e ·� = 0, then He ·� = 0,

detH = 1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.52)

Under a symmetry transformation, the deformation gradient F becomes FH

and, hence, the right Cauchy–Green tensor C becomes H�CH, while the energy

measured by the response function W̄ must be invariant:

W̄ (H�CH) = W̄ (C). (2.53)

As a first step toward determining a representation for the symmetry group G
consistent with (2.52) and (2.53), choose two arbitrary linearly independent tangent

vectors �1 and �2 satisfying �1 · � = �2 · � = 0 and, therefore, belonging to the

tangent space Tξ◦ . Without loss of generality, H can be represented as

H = �1 ⊗ f + �2 ⊗ g +�⊗ h, (2.54)

with f , g, and h being linearly independent. Since (�1 ⊗ f + �2 ⊗ g +� ⊗ h)� =

(f · �)�1 + (g · �)�2 + (h · �)� and �1 and �2 are linearly independent tangent
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vectors, (2.52)1 implies that f and g must obey

f ·� = g ·� = 0 (2.55)

and, hence, must be tangent vectors and that h must obey

h ·� = 1. (2.56)

Next, since (�1⊗ f +�2⊗g+�⊗h)e = (f ·e)�1+(g ·e)�2+(h ·e)� for any tangent

vector e, on defining α1 = f · e and α2 = g · e, it follows that

He = α1�1 + α2�2 + (h · e)�. (2.57)

However, by (2.52)2, h must satisfy

h · e = 0, (2.58)

which, in combination with (2.56), yields h = �. Thus, H must admit a representa-

tion of the form

H = �+�⊗�, (2.59)

where, bearing in mind (2.55),

� := �1 ⊗ f + �2 ⊗ g (2.60)

is a fully tangential tensor and therefore obeys

�� = �
�
� = 0,

� = �
�
� = ��

�
= �

�
��

�
.

⎫⎪⎬
⎪⎭ (2.61)
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Notice that, granted the representation (2.59) for H, the condition (2.52)3 is equiv-

alent to the following condition on �:

I2(�) = 1. (2.62)

2.6.2 Representation theorem for the energy density of a lipid bilayer

Observe that the right Cauchy-Green tensor C can be expressed in the form

C = �+ �⊗�+�⊗ �+ (� ·C�)�⊗�, (2.63)

where � is a fully tangential tensor defined by

� = (F�
�
)�(F�

�
) = �

�
C�

�
(2.64)

and � is a tangent vector belonging to Tξ◦ defined by

� = C�− (� ·C�)�. (2.65)

In view of (2.51) and (2.63)–(2.65), the energy density W can be expressed as a

function W̃ depending on �, �, and � ·C�:

W = W̄ (C)

= W̃ (�, �,� ·C�). (2.66)

Additionally, by (2.59) and (2.63), H�CH can be expressed as

H�CH = �
�
��+��

�⊗�+�⊗��
�+ (� ·C�)�⊗�, (2.67)
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and, hence, the symmetry property (2.53) takes the form

W̃ (��
��,��

�,� ·C�) = W̃ (�, �,� ·C�). (2.68)

Being fully tangential (see Appendix 2.11.1), � and � can be viewed as mappings of

the tangent space Tξ◦ to itself, in which case the transformation rule

� −→ �
�
�� (2.69)

can be interpreted as one involving tensors that map the tangent space Tξ◦ to itself.

Similarly, since � belongs to Tξ◦ , the transformation rule

� −→ �
�
� (2.70)

can be interpreted as one involving two-dimensional referential tangent vectors be-

longing to Tξ◦ .

Consider the subgroup of the unimodular group comprised by all rotations in

the tangent plane with normal vector �. Bearing in mind that, like � and �, any

element of that subgroup can be viewed as a mapping of the space of two-dimensional

referential tangent vectors to itself, a representation theorem due to Zheng [129] can

be applied to arrive at the following representation for the energy density:

W = ˜̃W (I1(�), I2(�), � · �, � · ��,� ·C�). (2.71)

However, since, by (2.63),

� · �� = detC− (� ·C�)I2(�) + I1(�)[� · �− (� ·C�)2], (2.72)
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(2.71) can be written as

W = W̆ (I1(�), I2(�), � · �, detC,� ·C�). (2.73)

The five arguments of W̆ are mutually independent. To see this, first, notice that

the tensor C has six independent components and, hence, that the decomposition in

(2.63) defines three independent quantities �, �, and � ·C�. Since � is symmetric,

it admits a spectral decomposition

� = ω1�1 ⊗ �1 + ω2�2 ⊗ �2 (2.74)

involving eigenvalues ω1 and ω2 corresponding, respectively, to eigenvectors �1 and

�2 tangent to Tξ◦ with the property �1 × �2 = �. Additionally, in terms of the basis

{�1, �2}, � can be expressed in the form

� = v1�1 + v2�2, (2.75)

where vα denote the component of � in the �α direction (α = 1, 2). Also, since�·C�
indicates the component of C in the direction perpendicular to the tangent space

Tξ◦ , it can be chosen independently of the remaining arguments. Put τ = � · C�,

bearing in mind that, since C is positive-definite, τ must obey τ > 0. The arguments
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of (2.73) can then be expressed as

I1(�) = ω1 + ω2,

I2(�) = ω1ω2,

� · � = v21 + v22,

detC = ω1ω2τ − ω1v
2
2 − ω2v

2
1,

� ·C� = τ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.76)

Since ω1, ω2, v1, v2, and τ are independent, (2.76) can be used to show that the

numbers I1(�), I2(�), detC, and � · ��, � ·C� can be varied independently.

We next show that, of the five arguments upon which W̆ may depend, as indi-

cated on the right-hand side of (2.73), only I2(�), detC, and � ·C� are invariant

under any unimodular symmetry transformationH consistent with (2.61) and (2.62).

This elucidates the distinction between the symmetry properties of a lipid bilayer

with in-plane fluidity (that is, a lipid bilayer with symmetry group consisting of all

fully tangential unimodular transformations �) with those of a solid transversely

isotropic about �. Further insight regarding the symmetry properties of fluid films

and transversely isotropic solids due, respectively, to Steigmann [62] and Green and

Adkins [130] are particularly relevant.

To substantiate the foregoing assertion, choose orthonormal unit tangent vectors

�1 and �2 spanning the tangent space Tξ◦ . A generic tangent vector � in (2.73) can

be represented in the form � = λ1�1 + λ2�2, with λ1 and λ2 being scalars. Without

loss of generality, assume that �1 is chosen in the � direction, so that �1 = �/|�|. To
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show that W̆ can depend at most on I2(�), detC, and � · C�, it sufficies to: (i)

show that they are invariant under all unimodular symmetry transformations of the

kind described in (2.52), and (ii) find specific tranformations under which I1(�) and

� ·� are not properly invariant. Bearing in mind (2.52)3, (2.59), (2.61)1, and (2.184),

it is straightforward to show that, for any H satisfying (2.52),

I2(�
�
��) = I2(�),

det(H�CH) = detC,

� ·H�CH� = � ·C�.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.77)

Consider, now, the tensor

�1 = �1 ⊗ �1 + �2 ⊗ �2 + α�2 ⊗ �1, α ∈ R (2.78)

which satisfies (2.61) and (2.62) for all choices of the parameter α. Then, since

I1(�
�
1��1) = I1(�) + ϕ(α), (2.79)

with ϕ(α) = 2α(�1 · ��2) + α2(�2 · ��2), and since

�
�
1� ·��

1� = � · �, (2.80)

W̆ must obey

W̆ (I1(�) + ϕ(α), ·, � · �, ·, ·) = W̆ (I1(�), ·, � · �, ·, ·) (2.81)

for all α. It is possible to choose α in (2.81) such that ϕ(α) = νI1(�) for an arbitrary

ν ≥ 0. Also, on defining x := I1(�) and y := (1 + ν)I1(�), fixing I2(�), � · �, detC,
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and � · C�, and defining f via f(x) := W̆ (x, I2(�), � · �, detC,� · C�), it is

evident that f(y) = f(x). Hence, since x and y may be chosen arbitrarily, f must

be constant. It follows that W̆ must be independent of the argument I1(�). Next,

consider the tensor

�2 = β�1 ⊗ �1 +
1

β
�2 ⊗ �2, β ∈ R, β �= 0, (2.82)

which satisfies (2.61) and (2.62) for all choices of the parameter β �= 0. Then, since

�
�
2� ·��

2� = β2
� · �, (2.83)

W̆ must obey

W̆ (·, β2
� · �, ·, ·) = W̆ (·, � · �, ·, ·) (2.84)

for all β �= 0. On choosing β in (2.84) such that β2 = (� ·�)−1, it follows that W̆ must

be independent of the argument � · �. Consequently, we conclude that the energy

density W of a lipid bilayer must admit a representation of the form

W = Φ(I1, I2, I3), (2.85)

with

I1 = I2(�), I2 = detC, I3 = � ·C�. (2.86)
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2.7 Kinematical discussions

With the representation (2.38) for the deformation gradient F, the right Cauchy–

Green tensor C = F�F can be expressed as

C =�◦�◦�◦ − 2ξ�◦�
�
◦��◦�◦ + ξ2�◦�

�
◦�

2
�◦�◦

+ (�◦∇S◦ξ)⊗ (�◦∇S◦ξ)

+
∂ξ

∂ξ◦
((�◦∇S◦ξ)⊗�+�⊗ (�◦∇S◦ξ))

+
( ∂ξ

∂ξ◦

)2

�⊗�, (2.87)

where we have introduced

�◦ = �
�
◦�◦. (2.88)

In addition, on comparing (2.64) and (2.87), it follows that the fully tangential tensor

� can be expressed as

� = �◦�◦�◦ − 2ξ�◦�
�
◦��◦�◦ + ξ2�◦�

�
◦�

2
�◦�◦ + (�◦∇S◦ξ)⊗ (�◦∇S◦ξ). (2.89)

2.7.1 The invariants I1, I2, and I3

Prior to formulating specific constitutive relations, it seems necessary to under-

stand the geometric properties of the invariants I1, I2, and I3 entering the represen-

tation (2.85) of the generic energy density for a lipid bilayer.

The invariant I1

We now show that the invariant I1 = I2(�) controls changes in the area of

infinitesimal area elements parallel to the midsurface S◦ (Figure 2). Toward this

goal, choose linearly independent vectors �1 and �2 belonging to the tangent space
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χ

S◦

Sξ◦

X̂

Xξ◦

Sξ◦

S◦

x̂

xξ◦

dA◦

dAξ◦

dAξ◦

dA◦

Figure 2–2: Schematic depiction of changes of volume and tangent area elements.

Tξ◦ that satisfy �1 × �2 = �. Further, choose infinitesimal material line elements

dX1
ξ◦ and dX2

ξ◦ directed along �1 and �2 such that they span the infinitesimal area

element

dAξ◦ = |dX1
ξ◦ × dX2

ξ◦ |. (2.90)

With reference to (2.20), define elements �1◦ and �
2
◦ of T◦ by �1◦ = �◦�1 and �2◦ = �◦�2

and let the infinitesimal line elements dX̂1 and dX̂2, as described in (2.20), denote

the images of dX1
ξ◦ and dX2

ξ◦ directed along �1◦ and �2◦ on S◦. Obviously, dX̂1 and

dX̂2 span the image

dA◦ = |dX̂1 × dX̂2| (2.91)

of dAξ◦ on S◦. The area element dAξ◦ corresponding to dAξ◦ in the deformed body

is

dAξ◦ = |F�1 × F�2| dAξ◦ . (2.92)
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Since �1 and �2 are tangent vectors, the deformation gradient F in (2.92) can be

replaced by the superficial deformation gradient

� := F�
�
, (2.93)

giving

dAξ◦ = |��1 × ��2| dAξ◦ , (2.94)

whereby the area ratio Jξ◦ = dAξ◦/dAξ◦ takes the form

Jξ◦ = |��1 × ��2|

= |�c(�1 × �2)|

= |�c
�|, (2.95)

with �c being the cofactor of �. By (2.95),

J2
ξ◦ = |�c

�|2

= �
c
� · �c

�

= � · (�c)��c
�

= � · (��
�)c�

= � · �c
�. (2.96)

By (2.183), � · �c
� = I1, which with (2.96) yields

I1 = I2(�) = J2
ξ◦ =

(dAξ◦

dAξ◦

)2

, (2.97)
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confirming the assertion that I1 controls changes in the area of infinitesimal area

elements parallel to S◦. Evaluating (2.97) at the midsurface S◦ gives

J2 =
(dA◦
dA◦

)2

= I2(�◦), (2.98)

where J is defined in (2.33) and dA◦ is the image, on S◦, of area element dA◦.

According to the definition (2.172) of the surface gradient and the chain rule,

∇S◦ξ in (2.89) can be replaced by ��
◦∇S◦ξ, where ∇S◦ξ = �

�
∇xξ is the surface

gradient of ξ on S◦, and

�
�
= 1− �⊗ � (2.99)

is the projection tensor onto the tangent plane of S◦. Since �◦ is symmetric, (2.89)

can be reorganized as

� = �◦�
�
◦��◦�◦, (2.100)

where we emphasize that

� = �
�
− 2ξ�+ ξ2�2 + (∇S◦ξ)⊗ (∇S◦ξ) (2.101)

is a fully tangential tensor which can be viewed as a mapping from the tangent space

of S◦ to itself. From (2.184)2, it follows that

I1 = I2(�) = I22 (�◦)I2(�◦)I2(�). (2.102)

The definition (2.196) of the second principal invariant I2 and a straightforward

calculation lead to

I2(�) = γ2(ξ) + |((2Hξ − 1)�
�
− ξ�)∇S◦ξ|2, (2.103)
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with

γ(ξ) := 1− 2ξH + ξ2K. (2.104)

In view of (2.21), (2.98) and (2.184)2, (2.102) can be expressed as

I1 = J2(γ◦(ξ◦))−2(γ2(ξ) + |((2Hξ − 1)�
�
− ξ�)∇S◦ξ|2). (2.105)

The invariant I2

It is evident that the invariant I2 = detC = (detF)2 controls volume changes of

infinitesimal material regions (Figure 2–2). However, it is useful to obtain I2 in terms

of relavant kinematical quantities. According to the definition of the determinant

and upon using (2.38),

detF = [(F�1)× (F�2)] · F�.

=
∂ξ

∂ξ◦

(
(g1

◦ × g2
◦) · �− ξ[(�g1

◦ × g2
◦) · �

+ (g1
◦ × �g2

◦) · �] + ξ2(�g1
◦ × �g2

◦) · �
)
, (2.106)

where g1
◦ = �◦�1◦ and g2

◦ = �◦�2◦ are tangent to S◦ and span dA◦.
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In view of (2.183), (2.184)2, and (2.21)

�1◦ × �2◦ = �◦�1 ×�◦�2

= �
c
◦(�1 × �2)

= �
c
◦�

= I2(�◦)�

= (I2(�◦))−1�

= (γ◦(ξ◦))−1� (2.107)

which, with (2.96) and (2.98) implies that

(g1
◦ × g2

◦) · � = |�◦�1◦ × �◦�2◦|

= (γ◦(ξ◦))−1|�c
◦�|

= (γ◦(ξ◦))−1J. (2.108)

By (2.108), (2.177), (2.181)–(2.183), and elementary properties of the trace and

cofactor of �, (2.106) simplifies to

detF = J
∂ξ

∂ξ◦

γ(ξ)

γ◦(ξ◦)
, (2.109)

and, consequently, I2 becomes

I2 = detC = J2
( ∂ξ

∂ξ◦

)2( γ(ξ)

γ◦(ξ◦)

)2

. (2.110)
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The invariant I3

Finally, it is evident that the invariant

I3 = � ·C�

=
( ∂ξ

∂ξ◦

)2

(2.111)

controls the stretch of infinitesimal material fibers perpendicular to the midsurface

S◦.

2.7.2 Constitutively-associated kinematical variables

In view of (2.105), (2.110), (2.111), we may use (2.196) in (2.105) to conclude

that the energy density in (2.85) depends upon the referential variables

H◦, K◦, ξ◦, (2.112)

and the spatial variables

H, K, ξ,
∂ξ

∂ξ◦
, |∇S◦ξ|2, (∇S◦ξ) · �(∇S◦ξ). (2.113)

Consistent with existing two-dimensional theories, H and K—which are paramount

importance in the areal Canham–Helfrich energy density (2.1)—represent the depen-

dence on the curvature of the spatial midsurface S◦ and the areal stretch J—which is

present in the areal energy density of Steigmann [62]—embodies localized changes in

the area in going from the referential midsurface S◦ to the spatial midsurface S◦. In

addition to through-thickness dependence via ξ, (2.85) accounts for the potential in-

fluence of transverse normal strain (and, consequently, thickness changes) via ∂ξ/∂ξ◦
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as well as both transverse shear strain and thickness nonuniformity via |∇S◦ξ|2. Po-
tential coupling between curvature and deviations in thickness is embodied by the

quantity (∇S◦ξ) · �(∇S◦ξ), which includes information regarding the orientation of

∇S◦ξ relative to the principal axes of the curvature tensor �. Notice that, for ex-

ample, when ∇S◦ξ coincides with one of the principal axes of � dependence upon

the coupling term (∇S◦ξ) ·�(∇S◦ξ) is redundant. In particular, this occurs when the

spatial midsurface S◦ is spherical.

2.7.3 Incompressibility

Various studies suggest that lipid bilayers are very nearly incompressible [58, 59,

60]. If, to model this observation, the deformation χ is stipulated to be isochoric,

then (2.110) has the elementary consequence

I2 = 1. (2.114)

Accordingly, the energy density must be independent of I2 and the representation

(2.85) reduces to

W = Φ̃(I1, I3). (2.115)

In addition, using (2.114) in (2.110) along with (2.15), (2.21), and (2.104) yields

the differential equation

∂ξ

∂ξ◦
=

1

J

γ◦(ξ◦)
γ(ξ)

=
1− 2ξ◦H◦ + ξ2◦K◦
(1− 2ξH + ξ2K)J

, (2.116)
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which with (2.27) integrates to yield ξ(1−ξH+ 1
3
ξ2K)J = ξ◦(1−ξ◦H◦+ 1

3
ξ2◦K◦)+φ(X̂).

However, on using the condition ξ|◦ = 0, the integration constant φ(X̂) vanishes,

giving

ξ(1− ξH + 1
3
ξ2K)J = ξ◦(1− ξ◦H◦ + 1

3
ξ2◦K◦). (2.117)

The relation (2.117) reveals that, for an incompressible lipid bilayer, H, K, J , and ξ

are not generally independent. For instance, when J , H, and K at any point on the

spatial midsurface S◦ are given, (2.117) can be solved to determine the distance ξ of

a spatial point on S◦ corresponding to the material point at the distance ξ◦ on S◦

in the spontaneous state. In addition, the purely geometrical and kinematical result

(2.117) suggests that the thickness of an incompressible lipid bilayer in its spatial

configuration will not generally be uniform unless its midsurface is uniformly bent or

stretched and has uniform spontaneous curvature. Zurlo [63] and Deseri et al. [64]

assume that ξ is linearly proportional to ξ◦, or, alternatively, that ∂ξ/∂ξ◦ is the ratio

of thickness of the deformed and referential lipid bilayer and refer to this condition

as “quasi-incompressibility.” In such a case, the incompressibility condition is only

satisfied at the spatial midsurface S◦ and leads to

ξ

ξ◦
=

1

J
. (2.118)

However, this assumption is valid only if the spontaneous mean and Gaussian cur-

vatures H◦ and K◦ and the mean and Gaussian curvatures H and K of the spatial

midsurface are very mild (or, more precisely, if ξH, ξ2K, ξ◦H◦, and ξ2◦K◦ are negli-

gible in comparison with unity).
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(a)

(b)

Figure 2–3: Illustrative isochoric deformations of a lipid bilayer: (a) Thickness change
due to pure bending. (b) Thickness change due to pure stretching. While the dashed
lines are the sptial midsurface S◦, the grey lines are spatial placements of few material
surfaces with constant ξ◦ in the reference configuration.

Notice that (2.117) can be viewed as a cubic equation for ξ. However, only

a unique physically meaningful root of this equation is of interest. First, the root

must be real. Also, to guarantee its uniqueness, the root should be an increasing

function of ξ◦. In addition, to satisfy the requirement that ξ|◦ = 0, the sign of

ξ must match that of ξ◦. These conditions limit the range of the coefficients in

(2.117). In particular, the sign of the discriminant of the cubic equation provides

some information about the nature of the roots. A simpler case occurs if the lipid
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bilayer only has curvature in a two-dimensional space and is uniformly extended in

one direction. In this circumstance, K = 0 (for simplicity also assume that K◦ = 0)

in which case (2.117) reduces to a quadratic equation with the admissible root

ξ =
1−√

1− 4ξ◦H(1− ξ◦H◦)/J
2H

, (2.119)

which is real if and only if

4ξ◦H(1− ξ◦H◦) ≤ J. (2.120)

For there to exist an admissible root ξ satisfying the incompressibility condition

(2.117), the ratio ξ◦H/J of the deformed lipid bilayer must be small enough to

satisfy (2.120) for all ξ◦ ∈ [−h−
◦ , h

+
◦ ].

To provide a qualitative insight regarding incompressibility-induced changes of

thickness, we restrict attention to situations where the spontaneous mean curvature

H◦ vanishes and consider two illustrative examples. Figure 2–3a shows a lipid bilayer

under pure bending (in which case J = 1) with spatial midsurface S◦ having a

sinusoidal shape. It is evident that the thickness of the upper (lower) leaflet decreases

(increases) as the curvature H of S◦ increases. Figure 2–3b shows a lipid bilayer

with a flat sptial midsurface (in which case H = 0) subject to an areal stretch

that decreases exponentially toward the left side. Notably, the thicknesses of lipid

bilayer leaflets increase symmetrically as the areal stretch decreases from right to left.

Thickening phenomena of this kind are well-known to occur in the presence of trans-

membrane proteins, in which case hydrophobic mismatch leads to stretching of the

lipid molecules in the through-thickness direction (here, the left side of Figure 2–3b).
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2.8 Stress relations

Consistent with the procedure pioneered by Coleman and Noll [131], the elastic

Cauchy stress tensor corresponding to an energy density of the form (2.85) is given

by

T =
2√I2

F
( 3∑

i=1

αi
∂Ii

∂C

)
F�, (2.121)

where αi = ∂Φ/∂Ii (i = 1, 2, 3). Straightforward calculations based on the definitions

(2.86) lead to

∂I1

∂C
= tr(�)�

�
− �, ∂I2

∂C
= I2C

−1,
∂I3

∂C
= �⊗�. (2.122)

Using (2.122) in (2.121) results in

T =
2√I2

(
α1(I1(�)�− �2) + α2I21+ α3F�⊗ F�

)
, (2.123)

where � = ��
T. Notice that, in contrast to �, � need not be a fully-tangential

tensor. When the lipid bilayer is incompressible, (2.123) should be replaced by

T = −p1+ 2(α̃1(I1(�)�− �2) + α̃3F�⊗ F�), (2.124)

where α̃i = ∂Φ̃/∂Ii (i = 1, 3), and p is an unknown Lagrange multiplier that penalizes

the incompressibility.

2.9 Dimension reduction for an incompressible lipid bilayer

The derivation of two-dimensional models of shell-like structures from three-

dimensional elasticity has long been a subject of interest. For a comprehensive review

of this subject, see Ciarlet [132]. Simmonds [133], Stumpf and Makowski [134],

Taber [135, 136, 137], and Yükseler [138] have all used the procedure to develop
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hyperelastic shell theories. However, Zurlo [63] and Deseri et al. [64] were the first

to apply it to biomembranes. In contrast to the present work, Zurlo [63] and Deseri

et al. [64] neglected spontaneous curvature.

2.9.1 General strategy

Granted that a lipid bilayer has thickness considerably smaller than its lateral

dimensions, it is very reasonable to attribute to it an energy density, per unit area.

The main goal of the dimension reduction described in this section is to obtain an

areal energy density ψ◦ from the volumetric energy density W in accord with the

condition ∫
D◦

ψ◦ dA◦ =
∫
P

W dv, (2.125)

where ψ◦ is measured per unit area on the referential midsurface S◦, dv is the refer-

ential volume element, D◦ ⊂ S◦ is an arbitrary area on S◦, and P ⊂ B is the material

region associated with D◦, the lateral faces of which are normal to S◦ and extended

to the inner and outer surfaces Si and So (see Figure 2–4).

In view of (2.90), (2.91), and (2.107), we conclude that

∫
D◦

ψ◦ dA◦ =
∫
D◦

h+◦∫
−h−◦

Φ(I1, I2, I3)γ◦(ξ◦) dξ◦dA◦. (2.126)

Since D◦ is an arbitrary domain, (2.126) implies that

ψ◦ =

h+◦∫
−h−◦

Φ(I1, I2, I3)γ◦(ξ◦) dξ◦. (2.127)
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W : Volumetric energy density ψ◦: Areal energy density

D◦P

Figure 2–4: Schematic of the dimension reduction.

Regarding (2.105), (2.110), and (2.111), and bearing in mind that Φ is an arbitrary

function of the invariants I1, I2, and I3, it is evident that the integrand of (2.127)

may, in general, depend on ξ◦ in a complex manner. This makes integrating (2.127)

difficult. A suitable approximate approach is to expand the integrand in (2.127)

about ξ◦ = 0 and truncate consistent with some desired degree of accuracy.

2.9.2 Expansion

Consistent with the consensus regarding the near incompressibility of lipid bi-

layers, we conduct this expansion only for an energy density of the form (2.115), in

which case (2.127) is replaced by

ψ◦ =

h+◦∫
−h−◦

Φ̃(I1, I3)γ◦(ξ◦) dξ◦. (2.128)

Notice that, by (2.105), (2.111), and (2.116), the values of the invariants I1 and

I3 at S◦ are

I1|◦ = J2 (2.129)
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and

I3|◦ = J−2. (2.130)

In view of (2.129) and (2.130), the values of Φ̃ and any of its partial derivatives at

ξ◦ = 0 may depend at most on the areal stretch J . Anticipating the need to expand

Φ̃ up to second order in ξ◦, it is therefore convenient to introduce J-dependent

quantities f0, f1, f3, f11, f13, and f33 via

f0 = Φ̃(I1, I3)|◦,

fk =
∂Φ̃(I1, I3)

∂Ik

∣∣∣∣
◦
, k = 1, 3,

fkl =
∂2Φ̃(I1, I3)

∂Ik∂Il

∣∣∣∣
◦
, k, l = 1, 3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.131)

Expanding Φ̃ to second order in ξ◦ also requires the values of the first and second

derivatives, with respect to ξ◦, of the invariants I1 and I3 at ξ◦ = 0. On introducing

H̃ = HJ−1 −H◦, K̃ = KJ−2 −K◦, (2.132)

it follows that

I ′
1|◦ = −4J2H̃,

I ′
3|◦ = 4J−2H̃,

I ′′
1 |◦ = −2J2(12H◦H̃ − 2K̃ − J−4|∇S◦J |2),

I ′′
3 |◦ = 4J−2(8H̃2 + 6H◦H̃ − K̃).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.133)

75



Expanding Φ̃ then yields

ψ◦ =

h+◦∫
−h−◦

(f0 + α1ξ◦ + 1
2
α2ξ

2
◦ + o(ξ2◦))γ◦(ξ◦) dξ◦, (2.134)

where α1 and α2 are given by

α1 = (f1I ′
1 + f3I ′

3)|◦ (2.135)

and

α2 = (f1I ′′
1 + f3I ′′

3 + f11(I ′
1)

2 + 2f13I ′
1I ′

3 + f33(I ′
3)

2)|◦, (2.136)

respectively.

2.9.3 Restriction to mild areal stretch

Hereafter, we confine our attention to circumstances under which the areal

stretch J of the referential midsurface S◦ is sufficiently mild to ensure that

h◦J−1|∇S◦J | � 1. (2.137)

The gradient term on the right-hand side of (2.133)3 is then negligible in comparison

to other terms. With this in mind, substituting (2.131), (2.135), and (2.136) in

(2.134), performing the integration, and truncating yields an expression for the areal

energy density ψ◦, measured per unit area of S◦, yields an expression that depends on

H◦, K◦, H, K, and J . The dimension reduction therefore provides an areal energy

density which includes the effects of spontaneous mean and Gaussian curvatures,

deformed mean and Gaussian curvatures, and areal stretch.
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In addition, an areal energy density ψ, measured per unit area in the deformed

state, has the form

ψ = J−1ψ◦ (2.138)

and, thus, depends on the same quantities upon which ψ◦ depends.

2.9.4 Specialization to symmetric bilayers

Suppose that the leaflets of the bilayer have identical thickness h◦ = h+
◦ =

h−
◦ and molecular composition, in which case they should be described by a single

response function Φ̃. The areal energy density ψ◦ determined by the dimension

reduction argument then simplifies to

ψ◦ = ψm + 1
2
κ(HJ−1 − H̄◦)2 + κ̄K̃, (2.139)

where ψm, H̄◦, κ, and κ̄ are given by

ψm = 2h◦(1 + 1
6
h2
◦K◦)f0

+ 4
3
h3
◦H

2
◦ (J

2(1− ν)f1 − J−2(1 + 7ν)f3),

H̄◦ = H◦(1 + ν),

κ = 32
3
h3
◦J

2μ, κ̄ = 4
3
h3
◦J

2η.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.140)

with

ν =
η

4μ
, η = (f1 − J−4f3),

μ = 2J−4f3 − 2J−2f13 + J−6f33 + J2f11,

⎫⎪⎪⎬
⎪⎪⎭ (2.141)

Notice that the bending moduli κ and κ̄ given in (2.140)3,4 scale with the cube

of the leaflet thickness h◦. Moreover, those moduli differ from those obtained by
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Zurlo [63] and Deseri et al. [64]. The difference stems from our use of the exact

incompressibility condition (2.116) in place of their use of the quasi-incompressibitlity

condition (2.118). For instance, the bending moduli in (2.140) include derivatives of

Φ̃ with respect to I3, derivatives which are absent from the result of Zurlo [63] and

Deseri et al. [64].

2.9.5 Alternative interpretations of the splay and saddle-splay moduli

We now provide alternative interpretations of the splay and saddle-splay moduli

κ and κ̄. Consider the state of stress at the spatial midsurface S◦ of an incompressible

lipid bilayer. Since �◦ is a tangential tensor, ��
◦� = 0 and �◦ = �◦�

�
◦ is a fully

tangential tensor. Using (2.196), it can be shown that I2(�◦) = I2(�◦) = J2. As a

consequence of these facts, (2.124) yields

T◦ := T|ξ=0

= −p1+ 2(J2f1��
+ f3(F�⊗ F�)|◦). (2.142)

Consistent with the kinematical assumption regarding the orientation of the

phospholipid molecules, consider a deformation with the property

F|◦� = φ�, φ > 0, (2.143)

where φ is an arbitrary constant. Also, as is customary in the theory of thin shell-like

structures, assume that the normal stress � ·T� is very small compared to all other

relevant stress components. Then, in view of (2.143) and the assumption �·T◦� = 0,

(2.142) can be written as

T◦ = 2(f1J
2 − φ2f3)��

. (2.144)
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Moreover, (2.143) reduces C in (2.63) to

C|◦ = �◦ + φ2
�⊗�. (2.145)

Since the deformation must be isochoric, we find that

φ2 = (I2(�◦))−1 = J−2, (2.146)

which allows us to reduce (2.144) to

T◦ = 2J2(f1 − J−4f3)��
,

=: Σ�
�
.

(2.147)

Notice that T◦ is an isotropic tensor on the tangent space of S◦. Also, Σ can be con-

sidered as the in-plane tension or compression at the spatial midsurface S◦. Invoking

the definitions of Σ in (2.147) and η provided in (2.141)2, we find that

η = 1
2
J−2Σ. (2.148)

In addition, we may define

Λ :=
∂Σ

∂J
, (2.149)

as the areal stiffness of the lipid bilayer at S◦, which, with (2.141) and (2.147), can

be expressed as

Λ = 4J(μ+ η). (2.150)

Using (2.148), relation (2.150) becomes

μ =
JΛ− 2Σ

4J2
. (2.151)
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Then, on using (2.148) and (2.151), the splay and saddle-splay moduli defined in

(2.140) can be expressed in terms of Σ and Λ as

κ = 8
3
h3
◦(JΛ− 2Σ), κ̄ = 2

3
h3
◦Σ. (2.152)

2.9.6 Canham–Helfrich-type energy density

In many studies, due to high in-plane resistance, the lipid bilayer is stipulated to

be inextensible and this constraint is imposed by adding a suitable term to the areal

energy density. Necessarily, the introduction of such a constraint is accompanied

by the need for a Lagrange multiplier. In this case, the deformation of the lipid

bilayer is dominated by bending. To address this limit in our setting, consider the

limiting case of J ≈ 1. Regarding the definition of ν in (2.141)1, and using (2.148)

and (2.151), it can be concluded that

ν =
Σ

2(JΛ− 2Σ)
. (2.153)

In accordance with the high in-plane resistance of the lipid bilayer, the ratio of the

areal stress Σ and stiffness Λ should be very small (i.e., ΣΛ−1 ≈ 0), leading to ν ≈ 0.

Thus, the areal energy density is well approximated by

ψ◦ = ψm + 1
2
κ(H −H◦)2 + κ̄(K −K◦), (2.154)

with

ψm = 2h◦(f0(1 + 1
6
h2
◦K◦) + 2

3
ηh2

◦H
2
◦ ), (2.155)
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and

κ = 32
3
h3
◦(2f3 − 2f13 + f33 + f11),

κ̄ = 4
3
h3
◦(f1 − f3).

⎫⎪⎬
⎪⎭ (2.156)

Also, using the approximations J ≈ 1 and ΣΛ−1 ≈ 0 in the expression (2.152)1 for

the splay modulus yields

κ = 8
3
h3
◦Λ; (2.157)

however, the expression (2.152)2 for the saddle-splay modulus remains unchanged

with these approximations.

Assuming that the lipid bilayer is very thin, the membranal energy given in

(2.155) reduces to ψm = 2h◦f0. Since f0 only depends on J , the membranal energy

can be represented as ψm = ϕ◦(J). Therefore, it is natural to introduce an effective

surface tension

σ :=
dϕ◦
dJ

(2.158)

and an effective areal stiffness

λ :=
d2ϕ◦
dJ2

, (2.159)

for the lipid bilayer. On using the definitions of η, Σ, and Λ in (2.141)2, (2.147),

and (2.149), respectively, and performing straitforward differentiation, it is possible

to verify that

η = 1
2
J−1df0

dJ
, Σ = J

df0
dJ

, Λ = ΣJ−1 + J
d2f0
dJ2

, (2.160)

which, in view of the approximations J ≈ 1 and ΣΛ−1 ≈ 0, and (2.152)2 and (2.157),

yields

κ = 4
3
h2
◦
d2ϕ◦
dJ2

, κ̄ = 1
3
h2
◦
dϕ◦
dJ

; (2.161)
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thus, on referring to (2.158) and (2.159), the splay and saddle-splay moduli can be

expressed as

κ = 4
3
h2
◦λ, κ̄ = 1

3
h2
◦σ. (2.162)

From relations (2.162) it is evident that κ and κ̄ are directly proportional to the

effective areal stiffness and surface tension of the lipid bilayer, respectively.

When the bilayer is in a state of pure bending (i.e., J = 1), I1, and I3 are both

equal to unity on the spatial midsurface S◦, and thus S◦ corresponds to the natural

state—that is,

Φ̃(I1, I3)
∣∣
ξ◦=0;J=1

= 0, (2.163)

whereby f0 = 0. Thus, ψm = 0, and

ψ◦ = 1
2
κ(H −H◦)2 + κ̄(K −K◦). (2.164)

Since the areal energy density is determinable only up to an arbitrary additive con-

stant, (2.164) is equivalent to the the Canham–Helfrich energy density (2.1).

When the lipid bilayer is assumed inextensible, the areal energy density (2.164)

should be considered, while the inextensibility constraint should be penalized by

considering a Lagrange multiplier.

2.9.7 Effect of asymmetric chemistry of the leaflets

Now suppose that, due to possible trans-bilayer asymmetric chemistry of the

leaflets [126, 127, 128, 1], the response functions Φ̃+ and Φ̃− in the upper and lower

leaflets differ. This situation is very probable when the spontaneous curvature is

induced due to asymmetric distribution of lipid molecules with different molecular

shapes across the midsurface of the lipid bilayer [1].
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The dimension reduction then leads to an energy density of the form

ψ◦ = ψm + 1
2
κ(HJ−1 − Ĥ◦)2 + κ̄K̃, (2.165)

where ψm, Ĥ◦, κ, and κ̄ are given by

ψm = 2h◦(〈f0〉 − 1
2
[[f0]]h◦H◦ + 1

6
h2
◦〈f0〉K◦)

+ 4
3
h3
◦H

2
◦ (J

2(1− ν̂)〈f1〉 − J−2(1 + 7ν̂)〈f3〉)

− κν̂H◦Hc,

Ĥ◦ = H◦(1 + ν̂) +Hc,

κ = 32
3
h3
◦〈μ〉J2, κ̄ = 4

3
h3
◦〈η〉J2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.166)

with

Hc = 2
h2
◦J

2

κ
[[η]] , ν̂ =

〈η〉
4〈μ〉 , (2.167)

In addition, for the approximation J ≈ 1, the counterpart of (2.154) takes the

form

ψ◦ = ψm + 1
2
κ(H − (H◦ +Hc))

2 + κ̄(K −K◦), (2.168)

where ψm, Hc, κ, and κ̄ are given by

ψm = 2h◦〈f0〉,

Hc = 2
h2
◦
κ

[[f1 − f3]] ,

κ = 32
3
h3
◦〈2f3 − 2f13 + f33 + f11〉,

κ̄ = 4
3
h3
◦〈f1 − f3〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.169)

83



If, moreover, the lipid bilayer is in a state of pure bending then (2.168) reduces to

ψ◦ = 1
2
κ(H − (H◦ +Hc))

2 + κ̄(K −K◦). (2.170)

Let Hc denote the constitutively-induced spontaneous mean curvature and introduce

the net spontaneous curvature Hsp = H◦+Hc. The net spontaneous mean curvature

Hsp for an asymmetric lipid bilayer is then seen to incorporate two contributions:

(i) a geometrical contribution H◦, which stems from the spontaneous geometry of

the lipid bilayer, due to asymmetric distribution of phospholipid molecules with

different molecular shapes or due to other possible sources [1, 24]; (ii) a constitutive

contribution Hc, which stems from differences between the constitutive properties of

the leaflets.

Also, notice that the alternative representations of κ and κ̄ in (2.152), (2.157),

(2.161), and (2.162) remain valid under the present circumstances, except that Σ, Λ,

and ϕ◦ should be replaced by 〈Σ〉, 〈Λ〉, and ϕ◦ = 2h◦〈f0〉, respectively.
2.9.8 Effect of the incoherency between the leaflets

The areal energy density obtained by dimension reduction may be generalized to

include the effect of incoherency between the leaflets. In such case, the invariants I+
k

and I−
k (k = 1, 3) and the areal stretches J+ and J− in the upper and lower leaflets

differ. The integration in (2.128) must therefore be performed piecewise. Being very

similar to the steps leading to (2.134), the steps involved are not shown. The final

form of the areal energy density depends, as before, on H◦, K◦, H, and K; however,

instead of J , it includes dependence on both J+ and J−.
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2.9.9 Remarks

• The Canham–Helfrich energy density is an acceptable areal energy density

when (i) the leaflets have identical thickness and the same response function

(ii) the ratio of the thickness to the principal radii of curvature is very small,

and (iii) the lipid bilayer has pure bending or it is inextensible.

• In contrast to the classical Canham–Helfrich energy density (2.1), our theory

predicts that the spontaneous Gaussian curvature should be included in the

areal energy density in a manner analogous to the spontaneous mean curva-

ture. Moreover, in contrast to (2.1), the energy density (2.164) vanishes at the

spontaneous state. This issue is not important in the case of homogeneous lipid

bilayers because the energy density can be additively scaled by any constant.

However, for heterogeneous lipid bilayers, such as multi-phase GUVs (e.g., see

Baumgart et al. [76]), where the saddle-splay modulus or the spontaneous cur-

vature are nonuniform, this distinction should be considered.

• As long as the response function Φ̃ is known, the bending moduli κ and κ̄

cannot be be arbitrary chosen. Rather, they derive from the response function

Φ̃. This is consistent with the conclusions of Zurlo [63] and Deseri et al. [64].

• The bending moduli κ and κ̄ scale with the cube of the leaflet thickness h◦.

This is in harmony with the deformation of a thin elastic sheet, for example,

as described by the classical Föppl–von Kármán theory, where the bending

rigidity is proportional to the cube of the sheet thickness. In addition, just as

the bending rigidity of an isotropic homogeneous elastic sheet is linearly pro-

portional to its Young modulus, the splay modulus κ is linearly proportional to
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the in-plane stiffness of the lipid bilayer. In contrast, the saddle-splay modulus

κ̄ is linearly scaled with the surface tension in the lipid bilayer.

• The membranal energy ψm includes not only a term proportional to h◦ but also

a secondary term proportional to h3
◦. This term also contains the spontaneous

mean and Gaussian curvatures of the lipid bilayer. However, as long as the

lipid bilayer is very thin, the contribution of this secondary term is negligible.

• Ostensibly, the areal energy density ψ◦ obtained from the dimension reduc-

tion argument should provide a basis for formulating variational problems to

determine minimum energy configurations of lipid bilayers. However, to gener-

ate well-posed variational problems, the areal energy density ψ◦ should at very

least satisfy the Legendre–Hadamard condition and thereby guarantee that the

second (weak) variation of the underlying functional is positive. For example,

based on the established Legendre–Hadamard condition for elastic surfaces of

second-grade (see, for instance, Hilgers and Pipkin [139]), Steigmann [62] and

Agrawal and Steigmann [78] derived the Legendre–Hadamard condition rele-

vant to a lipid bilayer with an areal energy density depending generically on H,

K, and J—which encompasses the result of the dimension reduction obtained

here. If, in the present context, the assumption of mild areal stretch embodied

by (2.137) does not hold, then, as is the case in the work of Zurlo [63] and

Deseri et al. [64], the areal energy density ψ◦ will include an extra contribu-

tion proportional to |∇S◦J |2. However, there is no reason to expect that the

Legendre–Hadamard conditions for an areal energy density depending on H,

K, J , and |∇S◦J | should always be satisfied by the areal energy density arising
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from the dimensional reduction argument, even if the three-dimensional energy

density Φ̃ leading to ψ◦ satisfies the appropriate three-dimensional Legendre–

Hadamard condition. To see this consider, for example, a flat lipid bilayer, in

which the energetic contribution of curvature is absent, so that

ψ◦ = ϕ◦(J) +
2

3
h3
◦J

−2f1|∇S◦J |2. (2.171)

The approach of Hilgers and Pipkin (1993) can then be used to show that the

Legendre–Hadamard condition is satisfied only if f1 > 0. A precise understand-

ing of the sign of f1 depends on the specific structure of the response function

Φ̃ and the value of areal stretch J on the midsurface. Nevertheless, in view of

(2.147), it can be observed that f1 may depend on the in-plane stress at the

midsurface of the lipid bilayer. As long as f1 is positive, the second variation

of ψ◦ is positive and the equilibrium configuration of the lipid bilayer is stable

(locally, at least). However, if f1 is negative, due to a possible contraction in

the lipid bilayer, then the Legendre–Hadamard condition is violated, implying

that the configuration of the lipid bilayer is unstable. One way to cure this

problem is to add a term to ψ◦, as Hilgers and Pipkin [140] did in their study

of the equilibrium of elastic membranes with strain-gradient energies.

2.10 Summary

A continuum approach to modeling the deformation of lipid bilayers with spon-

taneous curvature was provided. In a departure from prevailing tradition, a lipid

bilayer was modeled by a three-dimensional body. Apart from a kinematical con-

straint incorporating natural aspects of the behavior of lipid molecules, no further

87



restrictions were imposed on the deformation. In this context, a general represen-

tation for the deformation gradient was derived. That representation involves the

curvature tensor of the midsurface in the spontaneous (or reference) state, the cur-

vature tensor of the midsurface in the deformed state, the deformation gradient of

the midsurface, and changes in transverse thickness. The coherency of the leaflets

that comprise a lipid bilayer, which entails considering local coupling or sliding of

those leaflets, was explored, as was the topic of area compatibility.

Geometry and kinematics aside, the material symmetry of lipid bilayers that ex-

hibit in-plane fluidity and transverse isotropy was studied. Moreover, modeling the

bilayer as a hyperelastic material, a representation theorem for the energy density

was developed. Three invariants were found to be sufficient to describe the consti-

tutive behavior of a lipid bilayer. It was shown that these invariants describe local

strecth of area elements parallel to the midsurface, volume change, and through-

thickness stretching. Explicit expressions for these invariants were determined and

presented in terms of fundamental kinematical quantities. Among these kinemati-

cal quantities are the referential and spatial midsurface curvatures, the areal stretch

of the mid-surface, the transverse normal and shear strains (which, in the present

setting, control thickness change and nonuniformity, respectively), and a coupling

term between the surface gradient of the transverse deformation and the midsurface

curvature tensor.

The special case of a lipid bilayer that—in accord with experimental observations—

is incompressible was considered. Under this constraint, transverse deformation (with

respect to the midsurface) of the lipid bilayer is coupled to midsurface deformation.
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This purely geometrical and kinematical consideration suggests that when the mid-

surface of an incompressible lipid bilayer has nonuniform bending and/or stretching

or when the spontaneous curvature is nonuniform, its thickness in the deformed state

is, in general, nonuniform.

Granted that the lipid bilayer is sufficiently thin, a dimension reduction argument

was used to extract an areal (two-dimensional) energy density from the volumetric

energy density. The conditions under which a Canham–Helfrich-type energy den-

sity is derivable were discussed. An energy density for lipid bilayer with asymmetric

leaflets was also obtained and it was shown that, for such a medium, the spontaneous

curvature can be interpreted as combination of two contributions. The first contri-

bution represents the preferred geometry (i.e., the spontaneous shape) of the lipid

bilayer. The second contribution—which may be called the constitutively-induced

spontaneous curvature—arises due to differences between the response functions of

the leaflets. Lastly, the general form of the areal energy density for a lipid bilayer

with incoherent leaflets was considered.

2.11 Appendices

2.11.1 Superficial fields

A field defined only on a surface is called superficial. For instance,� is a superficial

unit vector field defined on the midsurface S◦. The three-dimensional gradient of

such a field is undefined. However, a smooth extension of a superficial field to

a three-dimensional neighborhood of the surface on which it is defined provides a

means for defining its three-dimensional gradient (on the relevant neighborhood).

The normally constant extension, in which a superficial field is stipulated to be
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constant along lines perpendicular to the surface on which it is defined, provides the

simplest such extension [141]. For example, consider a scalar-valued superficial field

f defined on S◦ and let f e denote a smooth extension of f to a neighborhood of S◦.

This extension can be used to define the surface gradient ∇S◦f of f on S◦ in terms

of the three-dimensional gradient ∇f e of f e by

∇S◦f = �
�
∇f e, (2.172)

where

�
�
= 1−�⊗� (2.173)

is the projection tensor onto the tangent space T◦ of So. Notice that ∇f e in (2.172)

must be evaluated at points on the surface S◦. It should be mentioned that ∇S◦f

as determined by (2.172) is independent of the particular features of the extension

f e. It is easily shown that ∇S◦f is tangent to the surface S◦. Similarly, the surface

gradient ∇S◦� and surface divergence divS◦� of vector-valued superficial field � are

defined as

∇S◦� = (∇�e)�
�
,

divS◦� = tr(∇S◦�) = �
�
· ∇�e,

⎫⎪⎬
⎪⎭ (2.174)

where �e is a smooth extension of �. Here, as with ∇f e in (2.172), ∇�e is evaluated
at the point on S◦. Additionally, in a suitably determined neighborhood of S◦, the

gradient ∇g and divergence divg of a vector field g defined on a three-dimensional

90



region containing S◦ decomposes according to

∇g = ∇S◦�+
∂g

∂�
⊗�,

divg = divS◦�+
∂g

∂�
·�,

⎫⎪⎬
⎪⎭ (2.175)

where � = g|S◦ is the restriction of g to S◦ and

∂g

∂�
= (∇g)� (2.176)

is the normal derivative of g.

A superficial tensor field G, besides being defined only on a surface, must satisfy

G� = 0. (2.177)

For example, the surface gradient ∇S◦� of superficial vector field � is a superficial

tensor field. If G also obeys

G
�� = 0, (2.178)

then G is said to be a fully tangential tensor field. For example, the projection tensor

�
�
is fully tangential.

Other examples of fully tangential tensor fields are the curvature tensors �◦ and

� of the surfaces S◦ and S◦, as defined by

�◦ = −∇S◦�, � = −∇S◦�. (2.179)
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�◦ and � each possess at most two nontrivial scalar invariants. Convenient choices

for these are the mean and Gaussian curvatures. Specifically, while

H◦ = 1
2
I1(�◦) = 1

2
tr(�◦),

K◦ = I2(�◦) = 1
2
[(tr(�◦))2 − tr(�2

◦)],

⎫⎪⎬
⎪⎭ (2.180)

define the mean and Gaussian curvatures H◦ and K◦ of the surface S◦,

H = 1
2
I1(�) =

1
2
tr(�),

K = I2(�) =
1
2
[(tr(�))2 − tr(�2)],

⎫⎪⎬
⎪⎭ (2.181)

define the analogous quantities for S◦.

A useful property of any fully tangential tensor � is the relation

�
c = �2 − I1(�)�+ I2(�)1 (2.182)

determining its cofactor �c, where I1(�) and I2(�) are first two principal invariants

of �. A simple, but useful consequence of (2.182) is that

�
c
� = I2(�)�. (2.183)

Notice that I2(�) can be viewed as the determinant of a two-dimensional matrix

representation of �. Having this in mind, other useful identities can be established,

including

I2(�
�) = I2(�), I2(��) = I2(�)I2(�), (2.184)

with � also being a fully tangential tensor.
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2.11.2 Pseudoinverse of a fully tangential tensor

Let � be a fully tangential tensor. Then

�� = ��
� = 0 (2.185)

and

� = �
�
� = ��

�
. (2.186)

Since the determinant of �
�
vanishes, (2.186) implies that the determinant of �

must also vanish. Consequently, as a mapping from three-dimensional vector space

to itself, � is not invertible. However, from (2.186), � maps any vector from the

tangent space T◦ to a vector in T◦. If �, considered as a mapping from T◦ to T◦, is

one-to-one and, thus, invertible, then there exists a tensor �† satisfying

��
† = �†

� = �
�
. (2.187)

In view of (2.187), �† provides an inverse for � as a mapping from T◦ to T◦. However,

�
† does not provide an inverse of � considered as a mapping from three-dimensional

vector space to itself. Thus, �† may be thought of as a pseudoinverse of �.

To obtain the pseudoinverse �† of a fully tangential tensor � that is a one-to-one

mapping from T◦ to T◦, consider the Cayley–Hamilton equation

�
3 − I1(�)�

2 + I2(�)� = 0, (2.188)

for �. (Notice that, since � is fully tangential, its third principal invariant I3(�)

obeys I3(�) = det� = 0. Hence, a term proportional to I3(�) is absent from

(2.188).) On applying the left-hand side of (2.188) to an arbitrary vector t and
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introducing the vector � = �t, it follows that

(�2 − I1(�)�+ I2(�)��)� = 0. (2.189)

Since � is a tangent vector and, thus, �
�
� = �, keeping 2.185 and (2.186) in mind,

(2.189) yields

� = �[(I2(�))
−1(I1(�)�� − �)]�

= [(I2(�))
−1(I1(�)�� − �)]��. (2.190)

Since, for any invertible tensor T,

TT−1
� = T−1T�, (2.191)

it follows from (2.190) that

�
† = (I2(�))

−1(I1(�)�� − �) (2.192)

provides a pseudoinverse of the fully tangential tensor � that is one-to-one as a

mapping from T◦ to T◦.

In view of (2.192), a fully tangential tensor � is pseudoinvertible if and only if

I2(�) �= 0. (2.193)

Granted that � is fully tangential, �† defined by (2.192) is also fully tangential—that

is, �† defined by (2.192) obeys

�
†
� = (�†)�� = 0, (2.194)
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and

�
† = �

�
�

† = �†
�
�
. (2.195)

Also multiplying (2.192) by � and using (2.187), while invoking (2.193), yields the

relation

�
2 − I1(�)�+ I2(�)�� = 0, (2.196)

which can be viewed as the Cayley–Hamilton equation for a fully tangential tensor

(see also Simmonds [133] for a discussion of the Cayley–Hamilton equation for a

linear mapping of two-dimensional vector space into itself). Finally, using (2.196) in

(2.182) leads to

�
c = I2(�)�⊗�. (2.197)
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CHAPTER 3
Multidomain and ground-state configurations of two-phase vesicles

3.1 Preface

Chapter 2 was devoted to a continuum approach to mechanics of lipid bilayers with

spontaneous curvature, leading to an areal energy density describing the bending of

lipid bilayers. Prominent examples of biological structures composed of lipid bilay-

ers are lipid vesicles. These vesicles, with very good approximation, can be modeled

as fluid surfaces endowed with elastic bending energy. In this chapter, mechanical

equilibria of two-phase vesicles are studied. Two general classes of configurations,

namely multidomain and ground-state configurations, are studied. The present chap-

ter shows how different underlying physical parameters contribute to the attainment

of equilibrium configurations of two-phase vesicles. This chapter is reproduced from

the published paper

M. Maleki and E. Fried, “Multidomain and ground state configurations of two-phase

vesicles,” Journal of The Royal Society Interface, vol. 10, no. 83, 20130112, 2013.

with permission from the Royal Society, and from the coauthor Prof. Eliot Fried.

3.2 Abstract

A simple model is used to study the equilibrium of lipid domains on two-phase

vesicles. Two classes of configurations are considered, multidomain and ground-state

configurations. For multidomain configurations, the vesicle has a finite number of
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identical lipid domains. For ground-state configurations, the vesicle is fully phase

separated into two coexisting domains. Whereas the volume enclosed by a vesicle

with multidomains is fixed, the volume enclosed by a vesicle in a ground state is

allowed to vary with the osmotic pressure. Guided by experimental observations,

all domains are assumed to be spherical caps. In a multidomain configuration, the

line tension is found to decrease with the number of domains present, with possi-

ble exceptions when the number of domains is very small. The importance of a

critical osmotic pressure and a critical excess radius on ground-state configurations

is explored. Emphasis is placed on understanding the variations of these critical

quantities with relevant parameters.

3.3 Introduction

It is widely believed that lipids and proteins on the cell membrane interact to

form very small stable regions called rafts [37]. Usually in the size range of 10–

200 nm, rafts are domains in the liquid-ordered phase, enriched by saturated lipids

and cholesterol, and surrounded by the background cell membrane in the liquid-

disordered phase [38]. Rafts are crucial in protein sorting [41, 42]. They also coalesce

to form larger regions that serve as platforms for cellular functions such as signaling,

trafficking, endocytosis, and immune responses [37, 41, 42]. Moreover, it has been

shown that pathogens such as viruses use rafts as gateways during attacks on cells [37,

41, 42, 43]. Despite many experimental and theoretical investigations, a definitive

understanding of the size, stability, and lifetime of rafts remains elusive [38].

97



A major difficulty encountered in studying rafts is their observation. Nanoscopic

rafts on the cell membrane are much smaller than the resolution of optical micro-

scopes. Model membranes, namely Giant Unilamellar Vesicles (GUVs) composed of

unsaturated phospholipids, saturated sphingolipids, and cholesterol, have a compo-

sition similar to the dominant composition of the cell membrane. On vesicles, phase

separation provides a practical pathway for characterizing rafts in biological mem-

branes [38, 42]. On GUVs, raft-like lipid domains, usually in the size range of 1–10

μm, are observable via conventional light microscopy [48]. The size and distribu-

tion of lipid domains arise due to competition between different energetic influences

such as bending energy and line tension. Line tension is a manifestation of energetic

interactions between phases at their interface.

Phase separation on GUVs and supported bilayers has been studied extensively

both theoretically and experimentally. A significant part of the relevant literature

focuses on studying microdomains from a nonequilibrium perspective, addressing

issues such as growth dynamics and the recycling mechanism [69, 70, 71, 72, 73].

Numerous studies have also been devoted to understanding equilibrium configura-

tions of multiphase vesicles [142, 74, 75, 143, 48, 3, 76, 77, 72, 78, 79, 144, 80, 81]. For

recent reviews, see [145, 146]. Most theoretical works in this area involve solving an

Euler–Lagrange equation (known as the shape equation), which hold in each domain,

associated with boundary conditions at the interface between the domains.

Experimental observations on multiphase vesicles in the liquid phase reveal con-

figurations in which the phase separated domains on vesicle very closely resemble
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spherical caps, usually in the liquid-ordered phase, surrounded by a spherical back-

ground, usually in the liquid-disordered phase [48, 3, 76, 72, 4, 85]. Configura-

tions including both multiple ordered domains or only one large ordered domain are

commonly observed. Such piecewise spherical configurations are more likely to be

observed for vesicle under tension, due to osmotic pressure. These observations re-

garding the geometry of multiphase vesicles seem to have convinced more than a few

researchers [72, 85] to confine attention to models in which the domains are taken to

be spherical. This assumption obviates the need to solve the shape equation and thus

significantly simplifies the calculations. The net potential energy becomes a function

of the geometrical parameters, namely the radii of curvatures of the domains and

contact angles, and equilibrium configurations result from minimizing with respect

to those parameters.

Although the results of Yanagisawa et al. [72] and Semrau et al. [85] compare fa-

vorably with experimental observations and, thus, support the applicability of models

based on piecewise spherical configurations, more careful attention to the conditions

at interfaces remains necessary. In particular, while Yanagisawa et al. [72] and Sem-

rau et al. [85] consider geometrical compatibility at interfaces they do not require

satisfaction of the force balance. Force balance at an interface on a piecewise spheri-

cal vesicle relates the surface tensions of the adjacent areas and the line tension of the

interface [76, 3, 77, 88, 86]. Notably, the interfacial force balance has been previously

used to estimate of the line tension from experimental data [3, 86, 87]—from which

it follows that the line tension in such modeling cannot generally be chosen arbi-

trarily, as it must be compatible with force balance. In addition, piecewise spherical
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models can overlook potentially important energetic information. This may occur on

replacing thin transition layer with very high curvature by a sharp interface endowed

with a (given constant) line tension. Comprehensive discussions of such transition

(or boundary) layers appear for example in the works of Fournier and Ben Amar [82],

Allain and Ben Amar [77], Das and Jenkins [83], and Trejo and Ben Amar [84]. The

energy stored in a transition layer consists of two general sources. The first source is

the chemical energy due to very high gradients of lipid species concentrations. The

second source is the mechanical energy due to distortion and misalignment of lipid

molecules. For example, the stretching/contraction of different lipid molecules with

different hydrophobic tails, splay and tilt of lipid molecules are all mechanical sources

of this kind. Then, representing the energy of a transition layer by a sharp interface

endowed with line tension is very delicate and requires evaluation of the underlying

energies at the boundary layer. Comprehensive studies of the line tension in multi-

phase lipid membranes have been undertaken [147, 148, 149, 150, 84]. In particular,

Fournier and Ben Amar [82], Towles and Dan [150], and Trejo and Ben Amar [84]

demonstrate that the line tension may be influenced by the contact angle at the

junction between two phases. Questions regarding the suitability of taking the line

tension to be constant therefore arise.

In a study of the instability of the vesicle due to protein adsorption, Allain and

Ben Amar [88] obtain the equilibrium equations and associated interface conditions

for a biphasic vesicle composed of two spherical caps. Working with the same ge-

ometrical assumptions, Allain and Ben Amar [77] develop a model for the budding

and the fission of biphasic vesicles under tension. In accord with the property of
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tense vesicles, they implement a capillary solution in which the bending energies of

two spherical caps are negligible in comparison to the line and the osmotic-pressure

induced energies. They then improve the capillary solution by replacing the sharp

interface (across which the slope is discontinuous) with a smooth boundary layer

where the bending energy of the lipid domains is considered. Their analysis leads

to an effective line tension which takes the elasticity of the boundary layer into ac-

count. Further discussion of their work appears at the end of the section in which we

present our numerical results. Trejo and Ben Amar [84] use an asymptotic approach

to explore the equilibrium of a biphasic vesicle composed of two spherical domains

connected by a boundary layer. They conduct a detailed analysis taking into account

various macroscopic and microscopic energetics, including local area-difference elas-

ticity and the thickness change of the membrane. Within the spherical caps, which

are referred to as “outer layers,” they account for bending energy. In addition, they

take the volume of the vesicle to be fixed. The analysis of Trejo and Ben Amar [84]

focuses on understanding the contact angle and effective line tension at a junction

separating the phases.

In this paper, we first discuss the local equilibrium of piecewise spherical vesicles,

the junction conditions, and different energetics. Next, we consider two different

classes of equilibrium configurations, multidomain and ground-state configurations.

Our analysis of multidomain configurations builds on the works of Yanagisawa et

al. [72] and Semrau et al. [85]. Although our analysis accounts only for the bending

and line energies, by ensuring that the interfacial force balance is satisfied, we provide
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a more complete physical description. As a natural consequence of this and consis-

tent with the works of Baumgart et al. [3], Tian et al. [86], and Hutchison et al. [87],

we view the line tension as a dependent variable that can be obtained by satisfying

the interfacial force balance. In contrast, the osmotic pressure is considered as the

independent parameter that influences the surface tension in the domains. For mul-

tidomain configurations, we assume that the volume of the vesicle is fixed. Although

the osmotic pressure does not change the volume of the system (and, hence, has no

energetic contribution), we find that it influences the net potential-energy of the sys-

tem through modulation of the line energy. For instance, Akimov et al. [148] discuss

how the line tension increases with the surface tension. Importantly, our results show

that line tension decreases with the number of domains, despite possible exceptions

that may occur for very small numbers of domains. We next focus on ground-state

configurations, which represent equilibria resulting from the coalescence of multiple

domains into a single domain. In contrast to our treatment of multidomain configu-

rations, we allow the volume enclosed by the vesicle in a ground-state configuration

to change. In so doing, we explore the effect of osmotic pressure and initial excess ra-

dius of a vesicle on its equilibrium configuration. We determine critical values of the

osmotic pressure and the initial excess radius and investigate their effect on the final

shape of a vesicle in a ground-state configuration. Finally, we discuss and compare

our approach to ground state configurations with that of Allain and Ben Amar [77].
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3.4 Formulation

3.4.1 Local equilibrium of spherical vesicles

Consider a vesicle with superficial energy density ψ = ψ̄(H,K), where H and K

are the mean and Gaussian curvatures, respectively. The shape equation for such

membrane is (see alternative expressions provided, for example, by Steigmann [62]

and Steigmann et al. [116])

(2H2 −K)ψ̄H + 1
2
Δsψ̄H + 2KHψ̄K+2Δs(ψ̄KH)− divs(�∇sψ̄K)

− 2∇sψ̄K · ∇sH − 2ψ̄KΔsH − 2H(ψ̄ + σ) = p, (3.1)

where ψ̄H and ψ̄K represent the partial derivatives of ψ̄ with respect to H and K, ∇s

and divs indicate the surface gradient and divergence, and �, σ, and p respectively

denote the curvature tensor, surface tension, and osmotic pressure.

Assume now that the vesicle is spherical with radius R, so that

H = − 1

R
, K =

1

R2
, (3.2)

and the shape equation (3.1) specializes to

1

R2
ψ̄H − 1

R3
ψ̄K +

2

R
(ψ̄ + σ) = p. (3.3)

Suppose, further, that ψ̄ is of the Canham–Helfrich [21, 22] form, but with zero

spontaneous curvature, so that

ψ̄ = 1
2
κH2 + κK, (3.4)
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Figure 3–1: A two-dimensional cross section of a spherical cap under pressure p,
surface tension σ, and transverse shear force q.

where κ and κ̄ are the splay and saddle-splay moduli. Substituting (3.4) in (3.3)

yields

σ = 1
2
pR, (3.5)

which is the classical Young–Laplace equation. The reduction of the shape equa-

tion to the Young–Laplace equation in the absence of the spontaneous curvature is

also discussed by Allain and Ben Amar [88], Baumgart et al. [76] and Idema and

Storm [81]. A generalization of (3.5) that incorporates spontaneous curvature is

provided by Ou-Yang and Helfrich [151, 152]. Trejo and Ben Amar [84] provide a

similar relation which, in addition to considering spontaneous curvature, accounts

for variations in membrane thickness.

Consider now a spherical cap, with arbitrary opening angle 2θ, cut from a spherical

vesicle and subject to uniform pressure p, as depicted in Figure 3–1. Suppose that,

in addition to the surface tension σ, the bilayer supports a transverse shear force q.
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The force balance in the vertical direction then requires that

p
(
π(R sin θ)2

)
= σ sin θ(2πR sin θ) + q cos θ(2πR sin θ), (3.6)

which upon using (3.5) yields q = 0. Thus, a spherical bilayer described by the

Canham–Helfrich bending energy (in the absence of the spontaneous curvature) un-

der uniform pressure cannot support transverse shear force.

3.4.2 Junction condition

Consider a two-phase vesicle, composed of phases α and β, as depicted in Figure 3–

2. Suppose that the domains occupied by phases α and β are spherical caps, with

respective radii of curvature Rα and Rβ. Denote the radius of curvature of the

junction between the phases by ρ. As a consequence of force balance at the junction

in the direction perpendicular to the plane in which the junction resides, it follows

that

σα sin θα = σβ sin θβ, (3.7)

where σα and σβ are the surface tensions in phases α and β, respectively, and the

angles θα and θβ are as indicated in Figure 3–2. In view of (3.5) and the geometrical

relation

Rα sin θα = Rβ sin θβ = ρ, (3.8)

(3.7) is satisfied identically. Further, the balance of force in the plane within which

the junction resides yields

−(σα cos θα + σβ cos θβ)ρ = τ. (3.9)
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Figure 3–2: A junction between spherical caps occupied by two phases α and β.

The surface tensions σα and σβ are determined by the Young–Laplace equation (3.5)

through

σα = 1
2
pRα, σβ = 1

2
pRβ. (3.10)

In view of (3.8) and (3.10), (3.9) can be written as

cot θα − cotφ = − 2τ

pρ2
, (3.11)

with φ = π−θβ. Equation (3.11) or equivalent versions of that equation were derived

previously by Baumgart et al. [3, 76], Allain and Ben Amar [88, 77], Tian et al. [86],

and Hutchison et al. [87].

3.4.3 Geometrical relations

Consider a vesicle consisting of N identical spherical caps of phase α surrounded

by a background phase β with constant radius of curvature Rβ. Straightforward

calculations show that the net areas Aα and Aβ occupied by the phases α and β are
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given by

Aα = 2πNρ2(1 + cos θα)
−1,

Aβ = 4πR2
β − 2πNρ2(1 + cosφ)−1.

⎫⎪⎬
⎪⎭ (3.12)

Since the interface separating each domain of phase α from phase β has length 2πρ,

the total length s of the interface between the phases is

s = 2πNρ. (3.13)

Further, the volume enclosed by the vesicle is

V = 4π
3
R3

β +
π
3
Nρ3

[
(1−cos θα)2(2+cos θα)

sin3 θα
− (1−cosφ)2(2+cosφ)

sin3 φ

]
. (3.14)

In view of (3.12), the net area A of the vesicle is simply

A = Aα + Aβ. (3.15)

Let Ra and Rv be defined such that

A = 4πR2
a, V = 4

3
πR3

v, (3.16)

Notice that the areal inextensibility of the vesicle requires that Ra be fixed.

Since a sphere encloses the maximum volume for a given area, it is evident that

Ra > Rv and it seems reasonable to work with the excess radius

ζ =
Ra −Rv

Rv

(3.17)

introduced by Yanagisawa et al. [72]. Consideration of (3.17) shows that ζ measures

of the extent to which the lipid domains of phase α are allowed to bud outward from
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phase β. An alternative to this measure is the reduced volume V/
(
(4π/3)R3

a

)
used

by Seifert et al. [153], Jülicher and Lipowsky [74] and Baumgart et al. [76].

Species conservation requires that the net area occupied by each phase be fixed.

On defining the ratio ξ = Aα/A of the net area of phase α to the net area of the

vesicle, it follows that

ξ = constant. (3.18)

Further, by (3.12)1 and (3.16)1,

ξ =
Nρ̃2

2(1 + cos θα)
, (3.19)

where

ρ̃ =
ρ

Ra

(3.20)

is a dimensionless version of the radius of curvature of the junction between the

phases. Next, using (3.12), (3.8), and (3.19) in (3.15) gives

2

sin2 φ
− N

1 + cosφ
=

2(1− ξ)

ρ̃2
, (3.21)

which can be solved for φ to yield

φ = cos−1

(√
N2 + 4a(a+N − 2)−N

2a

)
, (3.22)

with

a =
2(1− ξ)

ρ̃2
. (3.23)
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3.4.4 Energetics

The net potential-energy Ψ of the system can be expressed as

Ψ = Ψb +Ψl +Ψv, (3.24)

where Ψb and Ψl are bending and line contributions. Assuming that the compositions

of phases α and β are uniform, the bending moduli and the line tension must also

be uniform and it follows that

Ψb =
κ̂αAα

2R2
α

+
κ̂βAβ

2R2
β

,

Ψl = τs,

⎫⎪⎪⎬
⎪⎪⎭ (3.25)

where κ̂α = κα + 2κ̄α and κ̂β = κβ + 2κ̄β serve as effective bending-moduli. Notice

that this reduction stems from the assumption that the domains occupied by phases

α and β are spherical.

The volumetric (or pressure) contribution Ψv to (3.24), defined by

Ψv = −
∫ Vf

V◦
p dV, (3.26)

is relevant only if the volume of the vesicle changes. In (3.26), V◦ and Vf represent

the initial and final volumes of the vesicle. Also, the osmotic pressure p is viewed as

a known (that is, experimentally controllable) input.
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3.4.5 Scaling

To streamline the presentation and interpretation of results, we work exclusively

with dimensionless quantities. Specifically, we introduce:

R̃α =
Rα

Ra

, R̃β =
Rβ

Ra

, Ãα =
Aα

R2
a

,

Ãβ =
Aβ

R2
a

, Ṽ =
V

R3
a

, s̃ =
s

Ra

,

Ψ̃ =
Ψ

κ̂α

, p̃ =
pR3

a

κ̂α

, τ̃ =
τRa

κ̂α

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.27)

Accordingly, the dimensionless net potential-energy Ψ̃ of the system can be expressed

as

Ψ̃ = Ψ̃b + Ψ̃l + Ψ̃v, (3.28)

where Ψ̃b, Ψ̃l, and Ψ̃v are dimensionless counterparts of Ψb, Ψl, and Ψp given by

Ψ̃b =
Ãα

2R̃2
α

+
κ̃βÃβ

2R̃2
β

,

Ψ̃l = τ̃ s̃,

Ψ̃v = −
∫ Ṽf

Ṽ◦
p̃ dṼ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.29)

with

κ̃β =
κ̂β

κ̂α

(3.30)

being the dimensionless effective bending-modulus of phase β.

In view of (3.27), the junction condition (3.11) can be expressed alternatively as

τ̃ = −1

2
p̃ρ̃2(cot θα − cotφ). (3.31)
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Baumgart et al. [3], Tian et al. [86], and Hutchison et al. [87] use counterparts of

(3.31) to evaluate the line tension using experimental data. If θα, θβ, and ρ̃ are held

fixed, it is evident from (3.31) that the dimensionless line tension scales linearly with

the dimensionless osmotic pressure and, consequently, with the surface tension.

For brevity, the adjective “dimensionless” is suppressed from here on.

3.4.6 Equilibrium configurations

In this section, we consider two distinct classes of equilibrium configurations. The

first of these classes emerges when a uniform multispecies vesicle undergoing phase

separation is transformed to a multidomain vesicle (see the transformation from (a)

to (b) depicted in Figure 3–3). In the second class of configurations, the lipid domains

have coalesced into a single domain (see the transformation from (b) to (c) depicted

in Figure 3–3).

Multidomain configurations

Granted that osmotic-pressure driven solvent transport across the vesicle occurs

much more slowly than the phase separation process leading to multiple lipid do-

mains, when considering multidomain configurations we assume that the volume

enclosed by the vesicle is fixed. In view of (3.14), we must therefore satisfy the

condition

4π
3
R3

β +
π
3
Nρ3

[
(1−cos θα)2(2+cos θα)

sin3 θα
− (1−cosφ)2(2+cosφ)

sin3 φ

]
= V◦. (3.32)

Additionally, the conservation of lipid species and the areal inextensibility of the

vesicle demand satisfaction of (3.19) and (3.21). Solving (3.32), (3.19), and (3.21)

for a given number N of domains determines the unknowns ρ̃, θα, and φ. Also, for a

111



(a)

(b) (c)

Figure 3–3: Schematic of a phase separation process: (a) a multispecies membrane
before phase separation, (b) a multidomain configuration, and (c) a ground-state (or
fully phase separated) configuration.

given osmotic pressure p̃, the line tension τ̃ can be obtained from (3.11), as is needed

to determine the line energy Ψ̃l.

Ground-state configurations

After a sufficiently long time, scattered lipid domains may coalesce into a single

domain. We refer to such a state as a ‘ground-state configuration.’ Yanagisawa et

al. [72] and Semrau et al. [85] observe that the net potential-energy of a multidomain

configuration decreases with the number of domains. Consistent with this, it seems

reasonable to expect that ground-state configurations should correspond to minima

of the net potential-energy Ψ̃.
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Lipid domains usually coalesce very slowly. One reason for this is that coalescence

can be resisted by an interdomain repulsive forces that become significant when two

domains approach one another sufficiently closely [72, 85, 144]. In view of this fact

and because the time required to reach a ground-state configuration is likely to be

long enough to allow for solvent transport across the membrane owing to osmotic

pressure, it seems reasonable to allow the volume of the vesicle in a ground-state

configuration to vary. This stands in contrast to our treatment of multidomain

configurations. In particular, the volume enclosed by the vesicle in a ground-state

configuration is determined as a consequence of energy minimization.

When the volume enclosed by the vesicle is allowed to vary, the volumetric energy

Ψv defined in (3.26) must be considered in addition to the bending and line energies

Ψb and Ψl. Moreover, it is important to account for the dependence of the osmotic

pressure on the solute concentration. If the osmotic pressure is assumed to be linearly

proportional to the solute concentration, we may consider the interior fluid as an

ideal solution [23]. For the sake of simplicity, we neglect the ion concentration in

the exterior region. Then, since the pressure vanishes in the fluid surrounding the

vesicle, the osmotic pressure p and the pressure in the fluid enclosed by the vesicle

coincide. Thus,

pV = p◦V◦, (3.33)

where p◦ is the initial osmotic pressure—that is, the osmotic pressure in the vesicle

before phase separation and also in a multidomain configuration. Using (3.33) in

(3.26) yields

Ψv = −p◦V◦ ln
(
Ṽ

Ṽ◦

)
, (3.34)
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which, since p◦ and V◦ are both constant, can be additively scaled according to

Ψv = −p◦V◦ ln Ṽ . (3.35)

In view of (3.27), the energy Ψ̃v therefore reads

Ψ̃v = −p̃◦Ṽ◦ ln Ṽ . (3.36)

Also using (3.16)2, (3.17), and (3.27), we have

Ṽ◦ =
4π

3(1 + ζ◦)3
, (3.37)

in which

ζ◦ =
(
Ra −Rv

Rv

)
◦

(3.38)

is the initial excess radius of the vesicle. Substituting (3.37) in (3.36) gives

Ψ̃v = −4
3
πΠ◦ ln Ṽ , (3.39)

where

Π◦ =
p̃◦

(1 + ζ◦)3
(3.40)

denotes the reduced osmotic pressure. Seifert [23] and Allain and Ben Amar [77]

perform similar calculations and explore the importance of the volumetric energy

with varying pressure.

Using (3.33), the osmotic pressure can be expressed alternatively as

p̃ = 4
3
πΠ◦/Ṽ . (3.41)
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As for multidomain configurations, the conservation of lipid species and the con-

straint of areal inextensibility require satisfaction of (3.19) and (3.21). In addition,

the line tension depends on the solution through the junction condition (3.11). At

equilibrium, the net potential-energy Ψ̃ is minimized. Solving the three equations

(3.11), (3.19), and (3.21), while requiring that the net potential-energy be minimized

delivers the ground-state configuration.

The capillary approximation for the ground-state configuration

For sufficiently large values of the osmotic pressure, the net potential-energy of

a vesicle is dominated by the osmotic pressure effect, rendering the bending energy

negligible. Under such conditions, Allain and Ben Amar [77] adopt and study a

capillary approximation in which the net potential-energy of a mutiphase vesicle

includes only the line and volumetric contributions. In terms of the dimensionless

quantities defined in (3.29)2,3, this approximation leads to

Ψ̃cap = Ψ̃l + Ψ̃v. (3.42)

On invoking (3.29)2, (3.31), (3.41), and (3.39) and introducing the purely geometrical

quantity

g = π
ρ̃3

Ṽ
(cot θα − cotφ) + ln Ṽ , (3.43)

(3.42) simplifies to

Ψ̃cap = −4
3
πΠ◦g, (3.44)

showing that Ψ̃cap scales linearly with Π◦. Modulo a different nondimensionalization,

(3.44) is equivalent to the expression given by Allain and Ben Amar [77].
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Figure 3–4: Variations of the net potential-energy Ψ̃ (upper row), bending energy Ψ̃b

(gray lines in the lower row), and line energy Ψ̃l (black lines in the lower row) with
the number N of lipid domains, for the excess radius ζ equal to ζ = 0.02, different
values of the area ratio ξ and the osmotic pressures p̃ (solid line: p̃ = 1; dashed line:
p̃ = 10; dash-dotted line: p̃ = 40).

3.5 Numerical results

We next explore various features of multidomain and ground-state configurations.

Without loss of generality, we take κ̂α/κ̂β = 1.25. Further, for simplicity, we take

the ratio of the effective bending moduli equal to the value of the ratio of the splay

moduli reported by Baumgart et al. [3].

116



3.5.1 Multidomain configurations

The variations of the net potential-energy Ψ̃, the bending energy Ψ̃b, and the

line energy Ψ̃l with the number N of lipid domains for different values of the area

ratio ξ and the osmotic pressure p̃ are depicted in Figure 3–4. Notably, Ψ̃ increases

with N and achieves an absolute minimum at N = 1, verifying that ground state

configurations correspond to minimizers of the net potential energy. For sufficiently

large values of N , Ψ̃ increases almost linearly with N , consistent with a result due

to Yanagisawa et al. [72]. In addition, Ψ̃ increases with the osmotic pressure p̃. The

net potential-energy Ψ̃ behaves consistently for different area ratios ξ, except that

for smaller values (e.g., ξ = 0.2) it is less sensitive to the osmotic pressure p̃. The

bending and line energies Ψ̃b and Ψ̃l increase with the number N of domains. Thus,

there is no competition between these contributions to the net potential-energy Ψ̃.

Importantly, Ψ̃b is independent of p̃. This is because the geometry of a multidomain

configuration is completely dictated by the geometrical constraints—i.e., by (3.19),

(3.21), and (3.32). Also, the ratio τ̃ /p̃ of the line tension to the osmotic pressure

is determined from (3.11) and, therefore, is independent of p̃. However, in view of

(3.11), τ̃ and, accordingly, Ψ̃l varies linearly with p̃. For this reason, Ψ̃l, as apposed

to Ψ̃b, increases with p̃, and naturally is the source of the dependence of Ψ̃ on p̃. As

p̃ increases, the energy difference between configurations with high and low numbers

of domains increases, especially for higher values of the area ratio ξ. This potentially

favors higher tendency for domain coarsening when p̃ increases. We believe that this

argument is consistent with the experimental observation of Morales-Penningston et

al. [146] which reveals the osmotic pressure increase can induce the coalescence of
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small domains. According to these authors, this process is accompanied by swelling

of the vesicles into spheres composed most often of two large domains.

The variations of the characteristic size ρ̃, the slopes θα and φ, and the ratio τ̃ /p̃

of the line tension to the osmotic pressure with the number N of the domains are

depicted in Figure 3–5 for different values of the area ratio ξ and the excess radius

ζ. For smaller values of the excess radius (e.g., ζ = 0.02), the results show that ρ̃

decreases with N , which is not very surprising since the net area occupied by phase

α is fixed. Also, both θα and φ decrease with N , while θα > φ indicates that the

domains are dimpled from the vesicle toward the exterior region. In addition, the

ratio τ̃ /p̃ decreases with N , meaning that for p̃ fixed τ̃ decreases with the number N

of domains. As the excess radius increases (from ζ = 0.02 to ζ = 0.07), ρ̃ decreases,

θα increases, and φ is essentially unchanged. This behavior seems reasonable because,

for larger values of the excess radius, domains have more latitude to bud from the

vesicle with higher slope θα and smaller neck ρ̃. For smaller area ratios ξ (e.g.,

ξ = 0.2), the influence of ζ on the ratio τ̃ /p̃ is more tangible. Moreover, for larger

excess radius (e.g., ζ = 0.07), the solution experiences a jump between N = 1 and

N = 2. This is because the configuration of the vesicle for a constant net area A,

the net area Aα of the domains, and volume V enclosed by the vesicle dramatically

changes between N = 1 and N = 2. However, as N increases, the vesicle geometry

and net potential-energy become less sensitive to the number N of domains. As such,

no perceptible jump of the solution occurs for N > 2.
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3.5.2 Ground-state configurations

In this section, we explore the consequences of regarding the reduced osmotic

pressure Π◦ as a control parameter. (For brevity, the adjective ‘reduced’ is dropped

hereafter in referring to Π◦.) Under these circumstances, θα and φ are determined

from (3.19) and (3.22) in terms of ρ̃. Accordingly, using (3.14) and (3.27), the volume

Ṽ is calculated. Next, the osmotic pressure p̃ is provided by (3.41). Finally, (3.31)

is used to obtain the line tension τ̃ .

The variations of the net potential-energy Ψ̃, the slopes θα and φ, and the line

tension τ̃ with the domain size ρ̃ are depicted in Figure 3–6 for the area ratio ξ = 0.5

along with two values Π◦ = 1 and Π◦ = 10 of the osmotic pressure. For the smaller

value of Π◦, the results show that Ψ̃ decreases monotonically with ρ̃, achieving an

absolute minimum at ρ̃ = 1. This corresponds to a ground-state configuration in

which the vesicle is composed of two spherical caps (in this case, two hemispheres)

of phases α and β with identical radii (see also from the second row of Figure 3–6,

which indicates that θα = φ = π/2 at ρ̃ = 1). For the higher value of Π◦, the results

show that Ψ̃ possesses a local minimum at ρ̃ = 0 and, much like what arises at

lower osmotic pressures, an absolute minimum at ρ̃ = 1. The size ρ̃ = 0 corresponds

to a ground-state configuration wherein the domain occupied phase α is about to

pinch off from the vesicle (see also the second row of Figure 3–6, which shows that

θα = π and φ = 0 at ρ̃ = 0). The other ground-state configuration occurs at ρ̃ = 1,

corresponding to the complete sphere configuration. In the third row, we see how

the line tension τ̃ changes with the domain size ρ̃. Importantly, at the ground-state

configurations arising for ρ̃ = 0 and ρ̃ = 1, the model predicts that the line tension
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vanishes. This result is consistent with the observation that, by (3.11), τ̃ vanishes

for ρ̃ = 0 and ρ̃ = 1. As it might seem unreasonable to allow τ̃ to vanish, we will

return to this issue shortly.

On the basis of Figure 3–6, we notice that the structure of the net potential-energy

curve is strongly influenced by the value of the osmotic pressure Π◦. For Π◦ = 1, Ψ̃

has an absolute minimum at ρ̃ = 1. However, for Π◦ = 10, in addition to an absolute

minimum at ρ̃ = 1, Ψ̃ has a local minimum at ρ̃ = 0. Notice that ρ̃ = 1 is the locus

of the absolute minimum only for ξ = 0.5. Regardless of the value of the area ratio ξ,

numerical results verify that the location of the absolute minimum of Ψ̃ corresponds

to a configuration in which the vesicle resembles a complete sphere composed of two

spherical caps of the phases α and β with the same radii of curvature and identical

slopes (i.e., θα = φ) at their interface. Under these conditions, the geometrical

relations (3.19) and (3.21) simply imply that the size ρ̃ corresponding a completely

spherical ground-state configuration is

ρ̃ = 2
√

ξ(1− ξ). (3.45)

Importantly, the transition from the case where Ψ̃ exhibits a single absolute minimum

at ρ̃ = 2
√
ξ(1− ξ) to that wherein Ψ̃ exhibits two minima (specifically, one local

minimum at ρ̃ = 0 and one absolute minimum at ρ̃ = 2
√

ξ(1− ξ)) occurs for Π◦ in

excess of a critical value Πc. Figure 3–7 shows the variation of Πc with ξ. The circles

in the figure indicate the distinct values of Πc determined by numerical trial and

error for various choices of ξ. The graph of Πc versus ξ seems to be almost symmetric

about the line ξ ≈ 0.5. The critical value Πc is very large for ξ close to either zero
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or unity and achieves a minimum at approximately ξ = 0.5, for which Πc ≈ 1.8. For

Π◦ < Πc, the only ground-state configuration is a complete sphere. For Π◦ > Πc, two

ground-state configurations, one a complete sphere and the other pinched-off, exist.

Although the pinched-off configuration can be considered as metastable relative to

the complete sphere configuration, it qualifies as an equilibrium configuration as long

as Ψ̃ does not pass the energy barrier between the two configurations.

We propose that the initial excess radius ζ◦ is a key parameter that determines

which configuration, the pinched-off or the complete sphere, is likely to be selected

as the ground state. Figure 3–8 shows the variations of the net potential-energy

Ψ̃ and the excess radius ζ with the size ρ̃ of the domain for Π◦ = 10 > Πc and

two choices ξ = 0.5 and ξ = 0.2 of ξ. Notably, Ψ̃ has an absolute maximum at a

critical size ρ̃c. For this value of ρ̃, the excess radius is ζc; this justifies referring

to ζc as the critical excess radius. We propose that the ground-state configuration

is pinched-off for initial excess radii greater than ζc (i.e., ζ◦ > ζc). Otherwise, for

ζ◦ < ζc, the ground-state configuration is a complete sphere. In fact, ζ◦ serves as

an initial value which, depending on its value compared to the critical excess radius,

leads to different ground-state configurations.

The variations of the critical excess radius ζc and the critical domain size ρ̃c with

the initial osmotic pressure p̃◦ are depicted in Figure 3–9 for two choices ξ = 0.5

and ξ = 0.2 of the area ratio ξ. Obviously, p̃◦ exceeds the critical value exhibited in

Figure 3–7. The critical excess radius ζc attains a maximum at the critical pressure

(equal to 2.5 and 4.4 for ξ = 0.5 and ξ = 0.2, respectively). It also decreases
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with p̃◦. In addition, schematic representations of the corresponding ground-state

configurations are shown above and below the critical excess radius line.

Returning to the consideration of Figure 3–6, the present model predicts zero line

tension for the two possible ground-state configurations corresponding to ρ̃ = 0 and

ρ̃ = 2
√

ξ(1− ξ). In practice, however, it seems likely that, consistent with the results

of Towles and Dan [150] and Trejo and Ben Amar [84], the line tension should have a

positive nonzero lower bound. To rule out the vanishing of the line tension without

recourse to any fundamental analysis of its nature, we may simply stipulate that it

be greater than some chosen value. To illustrate the outcome of this strategy, we

take the lower bound to be τ̃ /Π◦ = 0.1. Accordingly, only values of ρ̃ for which τ̃ /Π◦

exceeds 0.1 must be considered. Instead of adopting pinched-off or complete sphere

configurations, the ground-states then consist of a budded configuration (in which

two spherical phases are connected by a very narrow neck) and a very slightly budded

spherical domain of phase α on an otherwise spherical vesicle, as shown in Figure 3–

10. Both of these configurations are commonly observed in experiments [3, 76, 4].

It is important to investigate the extent to which including the bending energy

in the net potential-energy influences the equilibrium configurations of a two-phase

vesicle. With this aim, we next compare the net potential-energy given in (3.28)

with the energy, given in (3.42), arising in the capillary limit. The variations of

Ψ̃/Π◦ and Ψ̃cap/Π◦ with ρ̃ are depicted in Figure 3–11 for different values for the

osmotic pressure Π◦ and two different choices ξ = 0.5 and ξ = 0.2 of the area ratio ξ.

To allow comparisons of the results for different values of the osmotic pressure in the

same plot, the net potential-energies have been divided by Π◦. Notice from (3.44)
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that Ψ̃cap/Π◦ = −4
3
πg, implying that Ψ̃cap/Π◦ is independent of Π◦. Comparing

the curves associated with each osmotic pressure value with the curve corresponding

to the capillary approximation indicates that the bending energy is significant for

the lower values of the osmotic pressure. Including the bending energy also changes

the structure of the net potential-energy function. From Figure 3–11, the capillary

approximation to the net potential-energy function has a fixed local maximum and

a global minimum at ρ̃ = 2
√
ξ(1− ξ). However, including the bending energy alters

the structure of the net potential-energy function. It is noteworthy that the critical

osmotic pressure Πc arises only in the presence of the bending energy. Finally, as

Figure 3–11 reveals (in agreement with an observation of Allain and Ben Amar [77]),

for sufficiently large values of the osmotic pressure the bending energy has a negligible

contribution and the capillary approximation is acceptable.

As part of their study, Allain and Ben Amar [77] apply a methodology similar to

that presented in Section 2 to consider the capillary limit of equilibrium of a two-

phase vesicle composed of two spherical caps. By neglecting the bending energy of

the domains and taking the osmotic pressure to be constant while varying the volume

enclosed by the vesicle, they arrive at a net potential-energy that, apart from the

geometrical parameters, depends only on the dimensionless quantity τ/pR2
a. If this

quantity is taken to be a control parameter, their equations deliver two solutions

for the equilibrium configurations. Allain and Ben Amar [77] present a plot similar

to those in the third row of Figure 3–6 or that in Figure 3–10 (with horizontal and

vertical axis interchanged). For any given τ/pR2
a, only the lowest energy solution is

kept, while ruling out the remaining solution as unstable. The importance of a critical
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value of τ/pR2
a, corresponding to the maximum value of τ̃ in Figure 3–6 or τ̃ /Π◦ in

Figure 3–10, is addressed as well. For this critical value, the neck size ρ̃ is finite (cf.,

e.g., Figure 3–10, where ρ̃ ≈ 0.5). Allain and Ben Amar [77] mention that if τ/pR2
a

exceeds this critical value then no solution exists for the equilibrium configuration,

but two disconnected spheres of each phases can provide a solution. However, a

more detailed analysis would be needed to explain such a discontinuous transition.

Indeed, Allain and Ben Amar [77] state that “The transition is a dynamical process

and has similarities with the breaking of a soap film between two rings (the catenoid

instability) [41]. Nevertheless, complete fission requires a microscopic reorganization,

such as hemifission [42] which occurs at small scales and is out of reach of the present

treatment. A detailed analysis may be found in [43] for example. It is why we cannot

predict if the two daughter vesicles remain connected by a small filament of lipids or

prefer to separate.” After discussing the capillary solution, Allain and Ben Amar [77]

replace the sharp interface between the domains with a smooth boundary layer in

which the bending energy of the boundary layer is incorporated.

A subtle difference between our approach to ground-state configurations and the

approach of Allain and Ben Amar [77] should be clarified. Since we consider the

bending energy of the domains, our solution cannot be characterized by the single

ratio τ/pR2
a. Indeed, we consider Π◦ as a control parameter. Since the volume of

the vesicle is allowed to change, we allow the system to take on different values for ρ̃

between 0 ≤ ρ̃ ≤ 2
√

ξ(1− ξ), spanning from the pinched-off to the complete sphere

configurations. Next, for each value of Π◦ and each set of ρ̃, θα, and φ, the line

tension τ̃ is calculated from (3.31). As our numerical results show, ρ̃ = 2
√

ξ(1− ξ)
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correspond to equilibrium configurations for Π◦ < Πc. For Π◦ > Πc, we have two

equilibrium configurations corresponding to ρ̃ = 0 and ρ̃ = 2
√
ξ(1− ξ). In this case,

we do not rule out the configuration with larger net potential-energy. Rather, since

there is an energy barrier between the two configurations, and as long as the energetic

fluctuations are not large enough compared to the height of this barrier, we believe

that both configurations are possible; consistent with this, we regard ρ̃ = 2
√
ξ(1− ξ)

as stable and ρ̃ = 0 as metastable. However, as mentioned previously, in view of other

studies indicating a positive non-zero lower bound for the line tension [150, 84], by

setting a lower bound for τ̃ /Π◦, we may exclude the extreme cases corresponding

to ρ̃ = 0 and ρ̃ = 2
√
ξ(1− ξ) in which τ̃ = 0. Also, as shown, the initial excess

radius ζ◦ of the vesicle has a strong influence on the nature of the final configuration

adopted in any ground state.

3.6 Summary

A simple model was used to study the equilibrium of the domains on a two-

phase vesicle. Multidomain and ground-state configurations were considered. In a

multidomain configuration, the vesicle is covered by identical partially budded lipid

domains. In a ground-state configuration, the vesicle is composed of two coexisting

lipid domains. Inspired by experimental observations in which lipid domains appear

to be closely approximated by spherical caps, we assumed that all domains have

constant radii and, for multidomain configurations, the host phase is assumed to

have constant radius.

For multidomain configurations, we studied the net potential-energy, the shape

of the domains as characterized by their size and slope at the junction, and the
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line tension at the junctions for various sets of input parameters. In contrast to

Yanagisawa et al. [72] and Semrau et al. [85], we ensured that force is balanced at

the domain junctions. In this sense, our work is consistent with studies of fully

phase-separated configurations conducted by Baumgart et al. [3, 76], Allain and

Ben Amar [77], and Tian et al. [86]. Since the area of the each phase and the

volume of the vesicle are fixed, the geometry of the vesicle is independent of the

osmotic pressure. But, as a result of the force balance at the domain junctions, the

line tension depends linearly on the osmotic pressure. Thus, although the osmotic

pressure increase does not energetically contribute by itself (because the volume is

fixed), it increases the line tension and consequently the net potential-energy of the

system. Consistent with observations of Morales-Penningston et al. [146], this result

suggests a preference for domain coalescence at sufficiently high osmotic pressures.

Also, the numerical results showed that the line tension decreases by increase of

number of domains. However, while this observation is valid for more than three

domains, it might not hold in the transition from a pair of domains to a single

domain.

A vesicle in a ground-state configuration was assumed to be formed by coalescence

of distributed domains of a vesicle in the multidomain configuration. Since the char-

acteristic time needed to attain such a configuration may be comparable to or greater

than that associated with solvent transport across the membrane, we allowed the vol-

ume enclosed the vesicle to be nonconstant. This stands in contrast to our study of

multidomain configurations, which generally form on a time scale short compared to

that associated with solvent transport across the membrane. Allowing for variations
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of the volume enclosed by the vesicle requires that a volumetric contribution involv-

ing the osmotic pressure be included in the net potential-energy. In this context, we

considered the consequences of following Seifert [23] and invoking the van’t Hoff [154]

relation, wherein the osmotic pressure is linearly proportional to the solute concen-

tration. Treating the osmotic pressure as a control parameter, the dependence of net

potential-energy as a function of the size of domain was shown to depend on whether

the osmotic pressure Π◦ is below or above a critical value Πc. For osmotic pressures

below Πc, the net potential-energy has an absolute minimum at a configuration in

which the vesicle resembles a complete sphere divided into two domains of identical

radius. For osmotic pressures above Πc, aside from a complete sphere configuration

like that arising for osmotic pressures below Πc, the net potential-energy possesses a

local minimum, corresponding to two pinched-off spheres of pure phase. These two

configurations are separated by an energy barrier which allows both configurations

be possible, at least in the absence of energy fluctuations sufficiently large to induce

transitions from well to well. We proposed a criterion for determining which of these

ground-state configurations will prevail based on comparing the value of the excess

radius of the vesicle prior to phase separation (or in a multidomain configuration) to

a critical excess radius. We also showed that this critical excess radius decreases by

increase of the osmotic pressure p̃◦. Motivated by works of Towles and Dan [150] and

Trejo and Ben Amar [84], we considered a positive non-zero lower bound for the line

tension, leading to slight modifications of two possible ground-state configurations.
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Finally, we studied the effect of the bending energy of the phases. The results re-

vealed that, for sufficiently small values of the osmotic pressure, the bending energy

can significantly influence the ground-state configuration of a two-phase vesicle.
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CHAPTER 4
Equilibrium of discoidal high-density lipoprotein particles

4.1 Preface

Besides multiphase vesicles of the kind considered in Chapter 3, another object

of interest, in which the lipid bilayer is an essential element, is a discoidal high-

density lipoprotein (HDL) particle. In a discoidal HDL particle, an open lipid bilayer,

in a discoidal shape, is bound on its edge to a flexible double-belt apoA-I chain.

In this chapter, continuum approaches and variational tools are implemented to

describe the equilibrium of discoidal HDL particles in general configurations. Both

geometrically-based and parametrized formulations are provided. Also, a small-slope

approximation is used to obtain linearized conditions of equilibrium. The linearized

formulation presented in this chapter paves the road for a comprehensive stability

analysis performed in Chapter 5. Nevertheless, here, a simple method is considered

to deal with the linear stability of flat circular HDL particles. This chapter presents

the (currently in preparation) manuscript

M. Maleki and E. Fried, “Equilibrium of discoidal high-density lipoprotein particles,”

(in preparation).

with permission from the coauthor Prof. Eliot Fried.
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4.2 Abstract

The equilibrium conditions of a discoidal high-density lipoprotein (HDL) particle

with a general configuration are studied using the continuum mechanics tools and

variational approach. The discoidal HDL particle consisting of a lipid bilayer looped

by a double-belt apoA-I chain is modelled as an open fluid surface endowed with cur-

vature elasticity and surface tension perfectly bonded on its edge to an inextensible

one-dimensional elastic filament with bending energy. First, relying on vanishing the

first variation of the underlying energy functional, the general equilibrium equations

on the surface and the edge of a discoidal HDL particle are derived and interpreted

using a direct, geometrically-based formulation. The problem is next reformulated

using parameterization of the surface and the boundary, and the equilibrium equa-

tions are derived alternatively in the parametrized form. Next, considering a flat

circular HDL particle, the linearized equilibrium conditions are derived using small-

slope deformation approximation. Lastly, a handy energy comparison method is used

to examine the linear stability of flat circular HDL particle with respect to planar

elliptical and transverse saddle-like perturbations. Numerical results reveal that the

energy comparison method is an efficient tool for the planar stability and, in specific

ranges of the physical parameters values, for the transverse stability.

4.3 Introduction

Over the past few decades, considerable attention has been paid to high-density

lipoprotein (HDL) particles, as they are essential to the cholesterol metabolism

in the human body. Studying their biological functions is crucial for controlling

atherosclerosis. The primary building blocks of an HDL particle are lipid molecules
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Figure 4–1: Schematic of a generic configuration of a discoidal HDL particle com-
posed of a lipid bilayer bound at its edge by an apoA-I chain. The left inset depicts
the arrangement of the lipid molecules at a generic point away from the edge of
the particle. The right inset depicts the arrangement of the lipid molecules and the
apoA-I chain at a generic point on the edge of the particle.

and apolipoprotein A-I (apoA-I) chains. In a process known as “reverse choles-

terol transport” (RCT), HDL particles collect and carry cholesterol from cells and

bloodstream for delivery to liver. RCT involves a sequence of steps during which

an HDL particle undergoes various shape transitions from discoidal to spheroidal

shapes. Importantly, shape transitions of HDL particles are accompanied by sig-

nificant changes in the conformation of apoA-I chains. As Davidson and Silva [89]

observe, the conformation of apoA-I influences its biological functionality and, hence,

that understanding its conformational diversity is important. A discoidal HDL par-

ticle consists of an open lipid bilayer bound at its edge by a pair of apoA-I chains.
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The major part of double-belt apoA-I structure is composed of amphipathic α-helical

polypeptide. As a result, α-helical segments of apoA-I attach to the hydrophobic

tail groups of the lipids at the edge of the bilayer in a way that the lipid tails groups

are shielded from the surrounding solution (Figure 4–1) [56]. Experimental studies

and numerical simulations have recently been devoted to understanding the assembly

and conformation of discoidal HDL particles. Experiments and all-atom molecular

dynamics (MD) simulations reported by Catte et al. [91] reveal that depleting a flat,

circular discoidal HDL particle of lipid molecules results in a shape change to a non-

planar saddle-like configuration. The saddle-like discoidal HDL particles have been

later confirmed by MD simulations [92, 93, 94] and experimentally [95, 96, 94, 50].

Another interesting study due to Skar-Gislinge et al. [97] showed that the discoidal

HDL particle may be flat and elliptical. Motivated by the experimental and MD

simulation studies, Maleki and Fried [155] studied the linear stability of a discoidal

HDL particle is a flat, circular configuration. Their analysis revealed that the first

in-plane and transverse unstable modes correspond to planar elliptical and nonplanar

saddle-like perturbations.

Although the model of Maleki and Fried [155] explains the equilibrium and sta-

bility of a flat, circular HDL particle, it is unable to capture the large distortions

observed in experiments and MD simulations. In the present paper, a nonlinear

theory for studying the equilibria of a discoidal HDL particle subject to arbitrary—

small or large—distortions is developed. Within this theory, the lipid bilayer and

double-belt apoA-I chain that comprise a discoidal HDL particle are identified with

an open surface and its boundary curve, respectively. An implicit consequence of
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these identifications is that the lipid bilayer and the apoA-I are perfectly bonded at

their interface, which is consistent with high flexibility of apoA-I in adapting different

conformations [56]. Aside from supporting a uniform tension, the surface is endowed

with curvature elasticity as embodied by a free-energy density of the type familiar

from Canham–Helfrich–Evans [21, 22, 57] theory for lipid bilayers. Like the surface

tension, the associated splay and saddle-splay moduli are taken to be uniform and

spontaneous curvature is neglected. The boundary curve is treated as a twist-free,

inextensible, elastic filament, endowed with a bending energy density in a quadratic

form of the curvature of the lipid bilayer boundary and derivative of the curvature

with respect to the arclength of the boundary. In view of the potential high curva-

ture kinks along apoA-I chains [156, 157, 56], the latter dependency is considered to

take the effect of large curvature change into account. For simplicity, we consider

uniform rigidity coefficients. Variational arguments are applied to the net potential-

energy arising from these assumptions, leading to conditions that describe nontrivial

equilibria.

The paper is organized as follows. Necessary mathematical preliminaries, includ-

ing the differential geometry of the surface (i.e., the lipid bilayer) and its boundary

(i.e., the apoA-I chain), are presented in Section 4.4. The assumptions underlying

the energetics of a discoidal HDL particle are presented in Section 4.5. A direct,

geometrically-based derivation of the Euler–Lagrange equations for the surface and

its boundary is presented in Section 4.6. Relying on a parametrization of the sur-

face and its boundary, a reformulation of the variational description of the problem

is presented in Section 4.7. Aside from providing a potentially useful platform for
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continuum-based numerical simulations, the parametrized description leads natu-

rally to a small-slope approximation of the equilibrium conditions, a comprehensive

derivation of which appears in Section 4.8. These approximate conditions coincide

with those used by Maleki and Fried [155] to study the equilibrium and linear stabil-

ity of a flat, circular discoidal HDL particle. An energy comparison method is used

to obtain a handy criterion for the in-plane and transverse (linear) stability of a flat,

circular discoidal HDL particle. Lastly, numerical results are provided in Section 4.9.

4.4 Preliminaries

4.4.1 Two-dimensional representation of a discoidal HDL particle

Consider a discoidal HDL particle consisting of a lipid bilayer and an apoA-I

chain. Identify the bilayer with a smooth, open, orientable surface S. Further,

consistent with the aforementioned arguments about the flexibility of double-belt

apoA-I structure and its affinity with the tail groups of lipid bilayer due to their

hydrophobic compatibility [56], assume that the bilayer and the chain are perfectly

bonded at their interface, and identify the chain with the boundary C = ∂S (Figure 4–

2) of S. Smoothness of S naturally results in the smoothness of C. In addition, we

exclude the circumstances wherein either S or C can have self intersection.

Let n denote a unit-vector valued orientation on S and let e denote a unit tangent

to C, defined such that, on restricting n to C,

ν = e× n (4.1)
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Figure 4–2: (a) Schematic of a portion of a discoidal HDL particle modeled as a
surface S with boundary C = ∂S. A Darboux frame is shown at a generic point
on C. The curvature vector κ and its components κnn and κg in the normal and
tangent to the surface directions are also depicted. In addition, the unit normal n
is depicted at a generic point on S. (b) Geometrical interpretation of the geodesic
torsion τg at the boundary C of a discoidal HDL particle.

is the unit tangent-normal of C, directed outward from S. The vector triad {e,n,ν},
which is orthonormal and positively-oriented, is commonly referred to as the Darboux

frame (Figure 4–2) of C.
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4.4.2 Superficial fields, differential operators, and useful identities

Fields that are defined exclusively on S are called superficial. A superficial vector-

field g is tangential if

g · n = 0. (4.2)

Similarly, a superficial tensor-field A is tangential if

An = 0 (4.3)

and fully-tangential if

An = A�n = 0. (4.4)

A useful example of a fully-tangential superficial tensor field is the perpendicular

projector

P = 1− n⊗ n. (4.5)

Let f be a smooth superficial scalar-field. Consider a point x in the interior of S
and a unit vector m tangent to S at x, so that

|m| = 1 and m · n(x) = 0. (4.6)

The surface gradient ∇Sf of f is the unique tangential superficial vector-field defined

such that

lim
h→0

f(x+ hm)− f(x)− h[∇Sf(x)] ·m
h

= 0. (4.7)
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Analogously, the surface gradient of a smooth superficial vector field g is the unique

tangential superficial tensor-field ∇Sg defined such that

lim
h→0

g(x+ hm)− g(x)− h[∇Sg(x)]m

h
= 0. (4.8)

Alternatively, given smooth extensions f e and ge of f and g to some neighborhood

of S, ∇Sf and ∇Sg are related to the conventional three-dimensional gradients ∇f e

and ∇ge of f e and ge by

∇Sf = P∇f e and ∇Sg = (∇ge)P , (4.9)

where ∇f e and ∇ge are necessarily evaluated on S. Importantly, as Fried and

Gurtin [141] explain, ∇Sf and ∇Sg are independent of the strategy used to extend

f and g.

In view of the foregoing definitions, the surface divergence divSg of g and the

surface Laplacian ΔSf of f are given by

divSg = tr(∇Sg) = P · ∇ge. (4.10)

and

ΔSf = divS (∇Sf) = tr(∇S∇Sf). (4.11)

Given a superficial scalar field f and superficial vector fields g and h, Gurtin and

Murdoch [158] establish the following useful identities

divS (fg) = f divSg + g · ∇Sf,

∇S(g · h) = (∇Sh)
�h+ (∇Sh)

�g.

⎫⎪⎬
⎪⎭ (4.12)
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4.4.3 Differential geometry of the surface

Like the perpendicular projector P , the curvature tensor L of S, defined as

L = −∇Sn (4.13)

is both fully-tangential and symmetric; that is, L satisfies

Ln = 0 and L = L�. (4.14)

The mean and Gaussian curvatures H and K of S may be represented in terms of

the scalar invariants trL and tr(L2) of L via

H = 1
2
trL = −1

2
divSn,

K = 1
2

(
(trL)2 − tr(L2)

)
,

⎫⎪⎬
⎪⎭ (4.15)

Eliminating trL between (4.15)1 and (4.15)2 yields the useful corollary

tr(L2) = 2(2H2 −K). (4.16)

4.4.4 Surface divergence theorem

With reference to the definition (4.1) of the unit tangent-normal ν, the surface

divergence theorem implies that [158]

∫
C
g · ν =

∫
S
(divSg + 2Hg · n). (4.17)
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4.4.5 Differential geometry of the boundary curve

Let a prime represent differentiation with respect to the arclength s along C. The
arclength derivatives of the elements e, n, and ν of the Darboux frame then obey

e′ = κnn− κgν,

n′ = −κne− τgν,

ν ′ = κge+ τgn,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.18)

where

κn = e′ · n = −n′ · e, κg = −e′ · ν = ν ′ · e, (4.19)

and

τg = ν ′ · n = −n′ · ν (4.20)

are, respectively, the normal curvature, geodesic curvatures, and geodesic torsion of

C. Geometrical interpretations of κn, κg, and τg are provided in Figure 4–2.

The differentiation properties (4.18) provide a representation

κ = e′ = κnn− κgν (4.21)

for the curvature vector κ of C and suggest introducing a geodesic curvature vector

κg = κ− κnn = −κgν (4.22)

for C. In view of (4.21) and (4.22), κnn and κg = −κgν are the normal and tangential

components of the curvature vector κ and the magnitude κ = |e′| = |κ| of κ, which
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is also known as the scalar curvature of C, is determined by κn and κg through

κ =
√

κ2
n + κ2

g, (4.23)

where, using (4.21) and (4.22), the normal and geodesic curvatures κn and κg can

alternatively be expressed as

κn = κ · n, κg = −κ · ν. (4.24)

Since n′ is simply the derivative of n in e direction, using the definition of the

curvature tensor L in (4.13) yields

n′ = (∇Sn)e = −Le. (4.25)

Using (4.25) in (4.19)1 and (4.20) leads to representations

κn = −n′ · e = −e · (∇Sn)e = e ·Le (4.26)

and

τg = −n′ · ν = −ν · (∇Sn)e = e ·Lν (4.27)

for the normal curvature and geodesic torsion in terms of the restriction to C of the

curvature tensor L of S. In contrast, it is evident from (4.19)2 that the geodesic

curvature κg cannot be expressed in terms of n′ and, thus, cannot be represented in

terms of the restriction of L to C. Hence, κg must be viewed as a geometric quantity

which is independent of L.
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4.5 Energetics of a discoidal HDL particle

Consider a discoidal HDL particle comprised by a lipid bilayer and an apoA-I

chain. Assume that the particle is thermally and chemically isolated and free of

applied forces and moments. Then net potential-energy of the particle must then be

the sum of the free-energy of the bilayer and the free-energy of the chain. Moreover,

a stable equilibrium configuration of the particle must minimize that sum. Having

identified the bilayer and chain with an open surface S and its boundary C = ∂S, any
study of the equilibrium configurations available to the particle rests on providing

suitable model expressions for the free-energy densities of S and C.
4.5.1 Free-energy density of the lipid bilayer

The prevailing approach to modeling lipid bilayers as surfaces dates to the seminal

works of Canham [21], Helfrich [22], and Evans [57], who independently recognized

the critical importance of bending elasticity. For a surface with mean and Gaussian

curvaturesH andK, the Canham–Helfrich–Evans free-energy density has the general

form 1
2
μ(H − H◦)2 + μ̄K, with μ and μ̄ the splay and saddle-splay moduli and H◦

the spontaneous (mean) curvature. However, as there is currently no compelling

evidence to suggest that discoidal HDL particles possess spontaneous curvature, it

seems reasonable to take H◦ = 0 and work with the resulting specialization,

ψ = 1
2
μH2 + μ̄K, (4.28)

of the Canham–Helfrich–Evans expression.

148



Additionally, following Farago and Pincus [159], S is endowed with a uniform

surface tension σ, so that its net free-energy per unit area is

σ + ψ. (4.29)

Farago and Pincus [159] discuss that the surface tension σ can be viewed as a

unified quantity in two different possible processes. In the first process, the number

of lipid molecules are fixed and the surface tension is induced as a result of change

of area per unit molecule. Consistent with this viewpoint, considering the discoidal

HDL particle as a closed system, we consider σ as a uniform and constant tension.

In the second process discussed by Farago and Pincus [159], when the system is

not closed and the exchange of lipid molecules is allowed, σ plays the role of the

chemical potential of lipid molecules when they are added or removed from the

lipid bilayer. For this case, change of the net area is a result of change of net

number of lipid molecules on its surface. However, confining our attention to a

chemically-isolated discoidal HDL particle, such treatment does not apply to our

case. Apart from the former porcess where the area of lipid bilayer is not fixed,

the presented formulation may also be applied to another possible case, when the

area of lipid bilayer is locally inextensible. Areal inextensibility of lipid bilayer is a

common assumption in mechanical modeling of giant unilamellar vesicles (GUVs) [27,

23]. For this example, σ plays the role of an unknown Lagrange multiplier which

penalizes the areal inextensibility of lipid bilayer. By adapting such assumption,

the equilibrium equations is augmented by the constraint equations by which the

unknown Lagrange multiplier can be determined. Steigmann et al. [116] show that
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the Lagrange multiplier σ must be uniform on the surface of lipid bilayer to guarantee

its tangential equilibrium. An important difference between a GUV and discoidal

HDL particle is the considerable size difference. The typical diameter of a spherical

GUV is in order of few micrometers while the latter has the typical diameter of

about 10 nm. However, they both have same thickness—i.e., the thickness of a lipid

bilayer. From the structural point of view, GUVs are very thin structures whose

typical radii of curvature are usually much larger than their thickness. Naturally,

deformation of GUVs is primarily dominated by bending and, hence, the area change

has very minor contribution. However, generalization of such reasoning for lipid

bilayer in discoidal HDL particles does not seem trivial and requires careful study.

This is particularly because discoidal HDL particles are much thicker than GUVs

(comparing their ratio of thickness to the lateral characteristic length), and also the

radii of curvature in the observed non-flat configurations of discoidal HDL particles

are comparable with their thickness (e.g., see [91] and [94]). For example, relying on

the assumption of volumetric incompressibility of lipid bilayer [58, 59, 60], Maleki et

al. [160] show how the thickness of lipid bilayer, radii of curvatures (or alternatively,

the mean and Gaussian curvatures) and areal stretch of lipid bilayer midsurface

may depend on each others. It can be observed that when the radii of curvature of

the lipid bilayer midsurface are much larger than its thickness, no coupling arises

between the bending and stretching. The presented formulation in this paper can

be applied for either scenarios, i.e., whether or not the area of lipid bilayer is locally

persevered in deformation of a discoidal HDL particle. However, for the constrained
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case, as mentioned earlier, the equilibrium conditions must be augmented by the

areal inextensibility constraint equation.

4.5.2 Free-energy density of the apoA-I chain

The bounding double-belt apoA-I chain is a flexible structure which can easily

conform to the boundary of the discoidal lipid bilayer by bending. A mechanical

model with minimal complexity which can efficiently describe the energetics of the

apoA-I double-belt chain relies on the energy density ϕ (per unit arclength of C)
which takes the change of curvature κ of C into account. Additionally, in view of the

observed large variation of the curvature across apoA-I chain around very localized

kink-like regions [156, 157], we may augment ϕ with an additional term depending

on the arclength derivative κ′ of κ. A simple expression of such energy density can

have the quadratic form of [155]

ϕ = 1
2
ακ2 + 1

2
β(κ′)2, (4.30)

where α > 0 is the bending modulus of C. In addition, β ≥ 0 is the constant

generalized bending modulus which penalizes nonuniformity of the curvature κ along

C. Notice that since C is closed, inclusion of a coupling term proportional to κκ′ =

1
2
(κ2)′ in ϕ is irrelevant because it is ruled out after integrating ϕ over C.
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4.5.3 Net potential-energy of a discoidal HDL particle

Granted that the particle is isolated, both thermally and chemically, and is not

subject to externally applied forces and moments, the net potential-energy of a dis-

coidal HDL takes the form

E =

∫
S
(σ + ψ) +

∫
C
ϕ. (4.31)

The inextensibility of apoA-I chain can be incorporated by working with the aug-

mented net potential-energy (e.g., see [101] for a similar augmentation)

F = E +

∫
C
λ, (4.32)

where λ is an unknown Lagrange multiplier.

Since S is a smooth, orientable open surface with smooth boundary C, applying
the Gauss–Bonnet theorem to (4.31) leads to

F = Fa + Fl + 2πμ̄, (4.33)

where

Fa =

∫
S
(σ + 1

2
μH2) (4.34)

and

Fl =

∫
C
(1
2
ακ2 + 1

2
β(κ′)2 − μ̄κg + λ) (4.35)

represent effective measures of areal and lineal potential energy.

4.6 Direct formulation

In this section, a direct, geometrically-based approach is employed to address the

equilibrium of a discoidal HDL particle.
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4.6.1 Variation of the net potential-energy

At equilibrium, the first variation Ḟ of the energy functional F must vanish.

Consider a general variation v defined on S and C. Any such variation may be

decomposed into a sum [116]

v = vt + Un. (4.36)

of tangential and normal variations vt = Pnv and Un. It is advantageous to consider

separately the first variations Ḟa and Ḟl of Fa and Fl in (4.33).

Areal contribution

Using the variation of superficial integral in (4.188) and keeping in mind that σ is

uniform, it follows from (4.34) that the variation Ḟa of the areal contribution (4.34)

to the net potential energy F takes the form

Ḟa =

∫
S

(
μHḢ + (σ + 1

2
μH2)(divSvt − 2HU)

)
. (4.37)

Since σ is constant,

σ(divSvt − 2HU) = −2σHU + divS (σvt). (4.38)

Further, substituting the expression for variation Ḣ of the mean curvature H pro-

vided in (4.181) and using the identity (4.12)1 yields

HḢ + 1
2
H2(divSvt − 2HU)

=
(
1
2
�SH +H(H2 −K)

)
U − 1

2
divS

(
(∇SH)U −H2vt −H∇SU). (4.39)
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Thus, by the surface divergence theorem (4.17), it follows that

Ḟa =

∫
S

1
2

(
μ�SH + 2μH(H2 −K)− 4σH

)
U

+

∫
C

[
1
2
μ
(
H2ν · vt +H∇SU · ν − (∇SH) · νU)

+ σvt · ν
]
. (4.40)

Lineal contribution

Consider the variation Ḟl of the lineal contribution Fl in the net potential-energy

F . In view of (4.35) the general expression (4.212) for the variation of an integral

over C, it follows that

Ḟl =

∫
C

[
ακκ̇+ βκ′κ̇′ − μ̄κ̇g +

(
1
2
ακ2 + 1

2
βκ′2 − μ̄κg + λ

)
v′ · e]. (4.41)

Substituting the expressions (4.201), (4.202), and (4.209) for the variations κ̇, κ̇′, and

κ̇g in (4.41), integrating by parts, using (4.25) and the properties ν · n = ν · e = 0

and ν · ν = 1, results in

Ḟl =

∫
C

[
a′ · n− (a · e)κn +

(
ακ2 − β

(
κκ′′ − κ′2)

)
κn

− (1
2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)κn + μ̄c

]
U +

∫
C
μ̄κn(∇SU · ν)

+

∫
C

[
Pna

′ − (
a′ · e+ a · κ)e− (a · e)κg +

(
ακ2 − β

(
κκ′′ − κ′2)

)′
e

+
(
ακ2 − β

(
κκ′′ − κ′2)

)
κg − (1

2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)′e

− (1
2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)κg + μ̄κnLν + μ̄b

]
· vt, (4.42)
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where a, b, and c are defined by

a = ακ′ − β
(
(κ−1κ′′′ − κ−2κ′′κ′)κ+ κ−1κ′′κ′),

b = −(τgLe+ κ′
ge+ κgκg),

⎫⎪⎬
⎪⎭ (4.43)

and

c = τ ′g − κgκn. (4.44)

4.6.2 Euler–Lagrange equations

Stipulating that the the variation

Ḟ = Ḟa + Ḟl (4.45)

of the net potential-energy F to be stationary delivers the Euler–Lagrange equations.

Since, the variations U , vt, and ∇SU · ν are independent fields, the fundamental

lemma of calculus of variations can then be used to obtain the governing Euler–

Lagrange equations. These consist of the shape equation

μ�SH + 2μH(H2 −K)− 4σH = 0, (4.46)

which must hold on S, and the boundary conditions

− 1
2
μ(∇SH) · ν + a′ · n− (a · e)κn +

(
ακ2 − β

(
κκ′′ − κ′2)

)
κn

− (1
2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)κn + μ̄c = 0, (4.47)

1
2
μH + μ̄κn = 0, (4.48)

155



(1
2
μH2 + σ)ν + Pna

′ − (
a′ · e+ a · κ)e

− (a · e)κg +
(
ακ2 − β

(
κκ′′ − κ′2)

)′
e+

(
ακ2 − β

(
κκ′′ − κ′2)

)
κg

− (1
2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)′e− (1

2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)κg

+ μ̄κnLν + μ̄b = 0, (4.49)

must be satisfied on C. Using (4.43) and (4.44) in (4.47) yields

− 1
2
μ(∇SH) · ν + α(κ′′

n − 2κ′
gτg − τ ′gκg +

1
2
κ3
n − κnτ

2
g + 1

2
κ2
gκn)

+ μ̄τ ′g − κnλ+ β
[− (

κ−1κ′′′′ − 2κ−2κ′′′κ′ + 2κ−3(κ′)2κ′′ − κ−2(κ′′)2
)
κn

− 2(κ−1κ′′′ − κ−2κ′′κ′)(κ′
n − κgτg)− κ−1κ′′(κ′′

n − κgτ
′
g − κ3

n − κnτ
2
g − 2κ′

gτg − κ2
gκn

)
− 2κnκκ

′′ + 1
2
(κ′)2κn

]
= 0. (4.50)

Also, (4.49) is a vectorial (tangential) equation including two independent scalar

equations. Using (4.43) in boundary conditions (4.49) and dot producting it with ν

and e respectively lead to

(1
2
μH2 + σ) + α(−κ′′

g − τ ′gκn − 2τgκ
′
n + τ 2g κg − 1

2
κgκ

2) + λκg + μ̄K

+ β
[(
κ−1κ′′′′ − 2κ−2κ′′′κ′ + 2κ−3(κ′)2κ′′ − κ−2(κ′′)2

)
κg

+ 2(κ−1κ′′′ − κ−2κ′′κ′)(κ′
g + κnτg)− κ−1κ′′(−κ′′

g − τ ′gκn − 2τgκ
′
n + τ 2g κg + κgκ

2
n + κ3

g)

+ 2κgκ
′′κ− 1

2
κg(κ

′)2
]
= 0, (4.51)

and

λ = constant. (4.52)
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The shape equation (4.46) governs the local curvature of the lipid bilayer. In

addition, the boundary conditions (4.48), (4.50), (4.51), and (4.52) must be satisfied

on C. We may also interpret the physical meanings of the boundary conditions

(4.48), (4.50), (4.51), and (4.52) by checking their energetic kinematical conjugates

in (4.45). As a result, (4.50) explains the equilibrium of the boundary curve C in

the normal n direction. Also, (4.48) governs the slope of S in ν direction at its

boundary C and, thus, implies the balance of bending moments at the boundary of

S in that direction. Equation (4.51) describes the shape of C in the tangent plane

of S at C—i.e., the plane spanned by e and ν. The boundary condition (4.51) can

be viewed as lineal analogous of the shape equation (4.46). Lastly, (4.52) implies

that the Lagrange multiplier λ must be uniform on C for forces to be balanced in

the direction e tangent to C of S. Consistent with the absence of external forces or

moments applied to C, the boundary conditions (4.48), (4.50), (4.51), and (4.52) are

homogeneous.

The derived equilibrium equations are accompanied by the local inextensibility

constraint of C. However, since λ is uniform on C, we may also use the global form

of that constraint, which implies that

L = L◦, (4.53)

where L is the perimeter of C and L◦ is the corresponding reference value.

4.6.3 Planar disk

Consider the limiting case in which the shape of a discoidal HDL particle has

a flat circular configuration of radius R. This configuration may be considered as
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the reference configuration (Figure 4–3a). In such case, the shape equation (4.46)

is trivially satisfied on the surface and, on the boundary, the only nonvanishing

equation is (4.51) as

− α

2R3
+

λ

R
+ σ = 0. (4.54)

Equation (4.54) is consistent with the a result obtained by Giomi and Mahade-

van [101] in studying a soap film looped by an inextensible elastic circular curve. A

more special case is when the bounding loop has negligible bending energy. Then,

(4.54) reduces to

λ

R
+ σ = 0. (4.55)

Equation (4.55) can be viewed as a two-dimensional Young–Laplace equation. In

addition,

λ = −σR (4.56)

indicates that λ has the nature of the line tension—or, the compression in this case.

4.6.4 Discoidal HDL particles with locally-preserved area

Following the discussions in Section 4.5.1, we may use the presented formulation

in Section 4.6 and the following Section 4.7 for the possible case that the area of

lipid bilayer is locally preserved. Under this circumstance, as opposed to our current

treatment of σ by assuming it as a uniform constant input, we need to consider σ

as an unknown Lagrange multiplier on S and to include its spatial derivative in the

calculations. In doing so, in the absence of external force and moments of the surface

of lipid bilayer, consistent with the result of Steigmann et al. [116], we conclude that

σ must be uniform on S as a consequence of local tangential equilibrium of lipid
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R

Figure 4–3: Schematic of a reference flat circular HDL particle and a generic config-
uration of a discoidal HDL particle in the observed space. The polar coordinate is
used for parametrization of the surface S and the boundary C of the discoidal HDL
particle.

bilayer. Now, since σ is uniform on S, the constraint equation may advantageously

be used in its global form as

A = A◦, (4.57)

where A is the area of S and A◦ is the corresponding reference value. Equation (4.57)

along with the existing derived equilibrium conditions suffice description of the equi-

librium state and determination of σ.

4.7 Parameterized formulation

In this section, we reformulate the problem by parametrization of the surface S
and its boundary C. Parametrized reformulation of the problem is particularly crucial

towards finding closed-form solutions for the equilibrium equations, and more prac-

tically, for implementation of numerical approaches, such as finite element method.
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Consider a circular disk D of radius R as a reference configuration. Using the

polar coordinate (r, θ), the domain D can be expressed as

D = {(r, θ) : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π}. (4.58)

We view S as the deformed configuration or image of D as

S = {x ∈ R
3 : x = x(r, θ), (r, θ) ∈ D}, (4.59)

and C, the image of ∂D, as

C = {x ∈ R
3 : x = x(R, θ), 0 ≤ θ ≤ 2π}. (4.60)

The areal and lineal parts Fa and Fl of the energy functional F in (4.33) can be

expressed parametrically as

Fa =

∫ 2π

0

∫ R

0

(σ + 1
2
μH2)|xr × xθ| dr dθ (4.61)

and

Fl =

∫ 2π

0

(1
2
ακ2 + 1

2
β(κ′)2 − μ̄κg + λ)|xθ| dθ, (4.62)

where subscripts r and θ indicate the partial derivative with respect to r and θ,

respectively.

4.7.1 Parameterized geometrical quantities

In this section, geometrical quantities which are used in the following formulation

have been presented in terms of parametrization (4.59) and (4.60).
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Areal quantities

Parametric expressions of the mean and Gaussian curvature H and K are

H =
n · (xθ × nr + nθ × xr)

2|xr × xθ| (4.63)

and

K =
(n · xrr)(n · xθθ)− |n · xrθ|2

|xr × xθ|2 , (4.64)

where the normal n is given by

n =
xr × xθ

|xr × xθ| . (4.65)

Lineal quantities

The curvature κ, curvature derivative κ′, the normal curvature κn, and the geodesic

curvature κg are

κ =
|xθ × xθθ|

|xθ|3
∣∣∣∣
r=R

, κ′ =
κθ

|xθ|
∣∣∣∣
r=R

,

κn =
xθθ · n
|xθ|2

∣∣∣∣
r=R

, κg =
n · (xθ × xθθ)

|xθ|3
∣∣∣∣
r=R

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.66)

Also, the lineal inextensibility of C can be expressed as

|xθ|r=R = R. (4.67)

Two useful consequences of (4.67) are

(xθ · xθθ)r=R = 0, |xθ × xθθ|r=R = R|xθθ|r=R. (4.68)
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In view of the constraint (4.67) and the subsequent results (4.68), the lineal quantities

in (4.66) take the form

κ =
|xθθ|r=R

R2
, κ′ =

(|xθθ|θ
)
r=R

R3
,

κn =
(xθθ · n)r=R

R2
, κg =

n · (xθ × xθθ)

R3

∣∣∣∣
r=R

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.69)

4.7.2 Variation of the net potential-energy

Areal contribution

Since the integration domain D in (4.61) is fixed, only the variation of its integrant

must be calculated. Then

Ḟa =

∫ 2π

0

∫ R

0

[
μHḢ|xr × xθ|+ (σ + 1

2
μH2)

˙|xr × xθ|
]
dr dθ. (4.70)
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Substitution of the variations Ḣ and
˙|xr × xθ| from (4.216) and (4.213) in (4.70)

results

Ḟa =

∫ 2π

0

∫ R

0

[{
1
2
μHA−1|xθ|2n · vrr +

1
2
μHA−1

[
A(n× nθ)

− 3n · (xθ × nr)(xθ × n)− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ)

+ xθ(xθ · nr − n · xrθ) +
(
xθ · xrθ − xr · xθθ − ArA

−1|xθ|2 + AθA
−1(xr · xθ)

)
n

− |xθ|2nr + (xr · xθ)nθ

]
· vr − μHA−1(xr · xθ)n · vrθ

+ 1
2
μHA−1

[
A(nr × n) + 3n · (xθ × nr)(xr × n) + 3n · (nθ × xr)(xr × n)

+ xr(xr · nθ − xrθ · n) + xθ(xrr · n− xr · nr) +
(
xr · xrθ − xθ · xrr

+ArA
−1(xθ · xr)−AθA

−1|xr|2
)
n+ (xr · xθ)nr − |xr|2nθ

]
· vθ

+ 1
2
μHA−1|xr|2n · vθθ

}
+ (σ + 1

2
μH2)

(
(xθ × n) · vr − (xr × n) · vθ

)]
dr dθ,

(4.71)

where A = |xr×xθ| indicates the areal Jacobian. Implementing integration by parts

changes (4.71) to

Ḟa = ḞS
a + ḞC

a , (4.72)
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where

ḞS
a =

∫ 2π

0

∫ R

0

[(
1
2
μHA−1|xθ|2n

)
rr
−

(
1
2
μHA−1

[
A(n× nθ)

− 3n · (xθ × nr)(xθ × n)− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ)

+ xθ(xθ · nr − n · xrθ) +
(
xθ · xrθ − xr · xθθ − ArA

−1|xθ|2 + AθA
−1(xr · xθ)

)
n

− |xθ|2nr + (xr · xθ)nθ

])
r
− (

μHA−1(xr · xθ)n
)
rθ

−
(

1
2
μHA−1

[
A(nr × n) + 3n · (xθ × nr)(xr × n) + 3n · (nθ × xr)(xr × n)

+ xr(xr · nθ − xrθ · n) + xθ(xrr · n− xr · nr) +
(
xr · xrθ − xθ · xrr

+ArA
−1(xθ · xr)−AθA

−1|xr|2
)
n+ (xr · xθ)nr − |xr|2nθ

])
θ

+
(
1
2
μHA−1|xr|2n

)
θθ
− (

(σ+ 1
2
μH2)(xθ×n)

)
r
+
(
(σ+ 1

2
μH2)(xr×n)

)
θ

]
·v dr dθ,

(4.73)

and

ḞC
a =

∫ 2π

0

[
− (

1
2
μHA−1|xθ|2n

)
r
+ 1

2
μHA−1

[
A(n× nθ)

− 3n · (xθ × nr)(xθ × n)− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ)

+ xθ(xθ · nr − n · xrθ) +
(
xθ · xrθ − xr · xθθ − ArA

−1|xθ|2 + AθA
−1(xr · xθ)

)
n

− |xθ|2nr + (xr · xθ)nθ

]
+
(
μHA−1(xr · xθ)n

)
θ
+ (σ + 1

2
μH2)(xθ × n)

]
· v dθ

+

∫ 2π

0

(
1
2
μHA−1|xθ|2n

) · vr dθ. (4.74)
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Lineal contribution

Analogous to the areal integral of Fa, since the integration domain ∂D of the

lineal contribution Fl of the net-potential energy F is constant, variation Ḟl only

demands including the variation of the integrand as

Ḟl =

∫ 2π

0

[
(ακκ̇+ βκ′κ̇′ − μ̄κ̇g)|xθ|+ (1

2
ακ2 + 1

2
βκ′2 − μ̄κg + λ)

˙|xθ|
]
dθ. (4.75)

Substitution of variations
˙|xθ|, κ̇, κ̇′, and κ̇g from (4.218), (4.221), (4.223), and

(4.225) into (4.75) and using κ, κ′, and κg given in (4.69) yield

Ḟl =

∫ 2π

0

{(
− 3α

2R5
|xθθ|2xθ − β

2R7

(
5(|xθθ|θ)2xθ + 4|xθθ|θ|xθθ|xθθ

)
− μ̄

R2

[
A−1

[
(xr · xθ)xθθ − (xr · xθθ)xθ +

(
n · (xθ × xθθ)

)
(xr × n)

]
+ (xθθ × n)− 2

R2

(
n · (xθ × xθθ)

)
xθ

]
+

λ

R
xθ

)
· vθ

+

(
α

R3
xθθ +

β

R5

[ |xθθ|θxθθθ

|xθθ| − (|xθθ|θ)2xθθ

|xθθ|2 − 2|xθθ|θ|xθθ|xθ

R2

]
− μ̄

R2
(n× xθ)

)
· vθθ

+
β

R5

|xθθ|θxθθ

|xθθ| · vθθθ +
μ̄

R2
A−1

[
R2xθθ +

(
n · (xθ × xθθ)

)
(xθ × n)

]
· vr

}
dθ. (4.76)
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Implementing integration by parts leads to

Ḟl =

∫ 2π

0

[(
α

R5

(3
2

(|xθθ|2xθ

)
θ
+R2xθθθθ

)
+

β

2R7

[(
5(|xθθ|θ)2xθ +4|xθθ|θ|xθθ|xθθ

)
θ

+ 2R2
( |xθθ|θxθθθ

|xθθ| − (|xθθ|θ)2xθθ

|xθθ|2 − 2|xθθ|θ|xθθ|xθ

R2

)
θθ
− 2R2

( |xθθ|θxθθ

|xθθ|
)
θθθ

]

+
μ̄

R2

[
A−1

[
(xr · xθ)xθθ − (xr · xθθ)xθ +

(
n · (xθ × xθθ)

)
(xr × n)

]
+ (xθθ × n)− 2

R2

(
n · (xθ × xθθ)

)
xθ−(n× xθ)θ

]
θ
− (λxθ)θ

R

)
· v

+
μ̄

R2
A−1

[
R2xθθ +

(
n · (xθ × xθθ)

)
(xθ × n)

]
· vr

]
dθ. (4.77)

4.7.3 Euler–Lagrange equations

Using the decomposition (4.72), the variation of the energy functional F given in

(4.33) reads

Ḟ = ḞS
a + (ḞC

a + Ḟl), (4.78)

with ḞS
a , ḞC

a , and Ḟl given in (4.73), (4.74), and (4.77). Since variables v and vr

are independent, according to the fundamental lemma of calculus of variations, the
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following Euler–Lagrange equation must hold on S

(
1
2
μHA−1|xθ|2n

)
rr
−

(
1
2
μHA−1

[
A(n× nθ)− 3n · (xθ × nr)(xθ × n)

− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ) + xθ(xθ · nr − n · xrθ)

+
(
xθ · xrθ − xr · xθθ − ArA

−1|xθ|2 + AθA
−1(xr · xθ)

)
n− |xθ|2nr + (xr · xθ)nθ

])
r

− (
μHA−1(xr · xθ)n

)
rθ
−

(
1
2
μHA−1

[
A(nr × n) + 3n · (xθ × nr)(xr × n)

+ 3n · (nθ × xr)(xr × n) + xr(xr · nθ − xrθ · n) + xθ(xrr · n− xr · nr)

+
(
xr · xrθ − xθ · xrr+ArA

−1(xθ · xr)−AθA
−1|xr|2

)
n+ (xr · xθ)nr − |xr|2nθ

])
θ

+
(
1
2
μHA−1|xr|2n

)
θθ
− (

(σ + 1
2
μH2)(xθ × n)

)
r
+
(
(σ + 1

2
μH2)(xr × n)

)
θ
= 0,

(4.79)

and the following boundary conditions must hold on C

α

R5

(3
2

(|xθθ|2xθ

)
θ
+R2xθθθθ

)
+

β

2R7

[(
5(|xθθ|θ)2xθ + 4|xθθ|θ|xθθ|xθθ

)
θ

+ 2R2
( |xθθ|θxθθθ

|xθθ| − (|xθθ|θ)2xθθ

|xθθ|2 − 2|xθθ|θ|xθθ|xθ

R2

)
θθ
− 2R2

( |xθθ|θxθθ

|xθθ|
)
θθθ

]

+
μ̄

R2

[
A−1

[
(xr · xθ)xθθ − (xr · xθθ)xθ +

(
n · (xθ × xθθ)

)
(xr × n)

]
+ (xθθ × n)− 2

R2

(
n · (xθ × xθθ)

)
xθ−(n× xθ)θ

]
θ
− (λxθ)θ

R

− (
1
2
μHA−1|xθ|2n

)
r
+ 1

2
μHA−1

[
A(n× nθ)− 3n · (xθ × nr)(xθ × n)

− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ) + xθ(xθ · nr − n · xrθ)

+
(
xθ · xrθ − xr · xθθ − ArA

−1|xθ|2 + AθA
−1(xr · xθ)

)
n− |xθ|2nr + (xr · xθ)nθ

]
+
(
μHA−1(xr · xθ)n

)
θ
+ (σ + 1

2
μH2)(xθ × n) = 0, (4.80)
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μ̄

R2
A−1

[
R2xθθ +

(
n · (xθ × xθθ)

)
(xθ × n)

]
+ 1

2
μHA−1|xθ|2n = 0. (4.81)

Lengthy calculations can verify that the only nonvanishing component of (4.79) is

the normal component which corresponds the shape equation (4.46) derived using

the direct formulation. In doing such verification, the parametric description of the

surface Laplacian �S operator given by 1

�S =
[
A−1(xθ × n) · (A−1(xθ × n)

)
r
+ A−1(n× xr) ·

(
A−1(xθ × n)

)
θ

] ∂

∂r

+
[
A−1(xθ × n) · (A−1(n× xr)

)
r
+ A−1(n× xr) ·

(
A−1(n× xr)

)
θ

] ∂

∂θ

+ A−2|xθ|2 ∂2

∂r2
+ A−2|xr|2 ∂2

∂θ2
− 2A−2(xr · xθ)

∂2

∂r∂θ
, (4.82)

and the mean and Gaussian curvatures in (4.63) and (4.64) are necessary. Also, it can

be verified that the vectorial equation (4.80) is the parametrized analog of (4.50),

(4.51), and (4.52). Lastly, upon the dot product of the vectorial equation (4.81)

with xθ and xr, and in view of the conditions (4.67) and (4.68)1, it follows that the

tangential components of (4.81) vanish and it reduces to its normal component given

by

1
2
μH + μ̄

xθθ · n
R2

= 0, (4.83)

1 For brevity, the derivations leading to (4.82) are not provided here. Also, it can
be shown that the surface Laplacian operator in (4.82) and what is known as the
Laplace–Beltrami operator (e.g., used in [151] and [161]) are equivalent. Again, we
avoid providing such verification due to space limitations.
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which, regarding the parametric description of the normal curvature κn in (4.69)3,

coincides with (4.48) obtained previously using the direct formulation.

4.7.4 Dimensionless formulation

It is very desirable to express the results in a nondimensional format. Towards

this goal, we may choose the following change of variables

x(r, θ) = Rξ(ρ, θ), r = Rρ. (4.84)

In view of the change of variables (4.84), R, the dimensionless counterpart of the

domain D may be defined as

R = {(ρ, θ) ∈ R
2 : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π}. (4.85)

In addition, consider the following dimensionless quantities

(H, η, η̄, ν, ι, ε
)
:=

(FR

α
,
μR

α
,
μ̄R

α
,
σR3

α
,
λR2

α
,

β

αR2

)
. (4.86)

In view of the dimensionless group (4.86), the decomposition of the energy functional

F in (4.33), the expressions (4.61) and (4.62) of the areal and lineal contributions Fa

and Fl of F , the dimensionless augmented net potential-energy H can be expressed

as

H = Ha +Hl + 2πη̄, (4.87)

where

Ha =

∫ 2π

0

∫ 1

0

(ν + 1
2
ηR2H2)|ξρ × ξθ| dρ dθ, (4.88)
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and

Hl =

∫ 2π

0

(1
2
R2κ2 + 1

2
εR4(κ′)2 − η̄Rκg + ι

)|ξθ|ρ=1 dθ. (4.89)

Hereafter, the adjective ‘dimensionless’ is suppressed for the sake of brevity.

4.8 Component-wise description and small-slope formulation

In this section, we aim to furnish a small-slope deformation approximation to

study the linearized equilibrium equation and stability of a discoidal HDL particle.

To this end, first, it is very useful to express the problem based on component-wise

displacement field. The position of a generic point on S can be expressed as

ξ(ρ, θ) = o+ (ρ+ u(ρ, θ))er + v(ρ, θ)eθ + w(ρ, θ)ez, (4.90)

where o indicates the origin of the reference disk and u, v, and w are the displacement

components in er, eθ, and ez directions, respectively (Figure 4–3). In addition, the

inextensibility constraint (4.67) can be expressed as

|ξθ(1, θ)| = 1, 0 ≤ θ ≤ 2π. (4.91)

Straightforward calculations lead to

ξρ = (1 + uρ)er + vρeθ + wρez, ξθ = (uθ − v)er + (ρ+ u+ vθ)eθ + wθez,

ξρ × ξθ = Cρer + Cθeθ + Czez, |ξρ × ξθ| =
√

(Cρ)2 + (Cθ)2 + (Cz)2,

n =
Cρer + Cθeθ + Czez√
(Cρ)2 + (Cθ)2 + (Cz)2

, |ξθ|ρ=1 =
√
(uθ − v)2 + (1 + u+ vθ)2 + w2

θ

∣∣∣
ρ=1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.92)

where

Cρ = Cρ
1 + Cρ

2 , Cθ = Cθ
1 + Cθ

2 , Cz = ρ+ Cz
1 + Cz

2 , (4.93)
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with

Cρ
1 = −wρρ, Cρ

2 = wθvρ − wρ(u+ vθ),

Cθ
1 = −wθ, Cθ

2 = wρ(uθ − v)− wθuρ,

Cz
1 = uρρ+ u+ vθ, Cz

2 = uρ(u+ vθ)− vρ(uθ − v).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.94)

To develop the linearized equilibrium equations and boundary conditions, it is

necessary that all terms in the net potential-energy are kept up to the second order

of u, v, w, and their partial derivatives. In view of the definitions of the curvature

κ and the geodesic curvature κg in (4.66)1,4 and relations (4.90) and (4.92), after

lengthy but straightforward derivations, expressions of the terms |ξρ × ξθ|, R2H2,

|ξθ|ρ=1, R
2κ2, R4κ′2 and Rκg, appearing in the net potential-energy H in (4.87),

expanded up to the second order of u, v, and w, are given as 2

|ξρ × ξθ| = ρ+ [ρuρ + u+ vθ] +
[
uρ(u+ vθ)− vρ(uθ − v) +

ρw2
ρ

2
+

w2
θ

2ρ

]
, (4.95)

R2H2 = 1
4
[Δw]2, (4.96)

|ξθ|ρ=1 = 1 + [u+ vθ]ρ=1 +
1

2

[
(uθ − v)2 + w2

θ

]
ρ=1

, (4.97)

2 Derivations leading to (4.95)–(4.100) can effectively be optimized using proper
decomposition of the relevant terms based on the order of u, v, and w, similar to
what presented in (4.93). The middle-step calculations are avoided due to the space
limit.

171



R2κ2 = 1− 2[u+ uθθ]ρ=1 +
[− 3(uθ − v)2 + 10(u+ vθ)

2

+ 8(−u− 2vθ + uθθ)(u+ vθ) + (−u− 2vθ + uθθ)
2

+ 2(uθ − v)(2uθ − v + vθθ) + w2
θθ − 2w2

θ

]
ρ=1

, (4.98)

R4κ′2 = [(uθ + uθθθ)
2]ρ=1, (4.99)

Rκg = 1− [u+ uθθ]ρ=1 +
[
− 3

2
(uθ − v)2 + 3(u+ vθ)

2

+ 2(u+ vθ)(−u− 2vθ + uθθ)+(uθ − v)(2uθ − v + vθθ)

− w2
θ − wρwθθ −

w2
ρ

2

]
ρ=1

, (4.100)

where Δ = 1
ρ
()ρ + ()ρρ +

1
ρ2
()θθ is the two-dimensional Laplacian in the polar co-

ordinate. Also, each bracket [ ] contains the terms with the same order of the

displacement components u, v, and w. Substitution of (4.95)–(4.100) in the net

potential-energy (4.87) and keeping the terms with the relevant orders result

Ha =

∫ 2π

0

∫ 1

0

η

8
[Δw]2ρ dρ dθ +

∫ 2π

0

∫ 1

0

ν

{
ρ+ [ρuρ + u+ vθ]

+
[
uρ(u+ vθ)− vρ(uθ − v) +

ρw2
ρ

2
+

w2
θ

2ρ

]}
dρ dθ, (4.101)
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and

Hl =

∫ 2π

0

1

2

{
1 +

[− u− 2uθθ + vθ
]
+
[
− 5

2
(uθ − v)2

− 2(u+ uθθ)(u+ vθ) + 10(u+ vθ)
2 + 8(−u− 2vθ + uθθ)(u+ vθ)

+ (−u− 2vθ + uθθ)
2 + 2(uθ − v)(2uθ − v + vθθ)− 3

2
w2

θ + w2
θθ

]}
dθ

+

∫ 2π

0

ε

2
[uθ + uθθθ]

2 dθ −
∫ 2π

0

η̄

{
1−w2

θ

2
− wρwθθ −

w2
ρ

2

}
dθ

+

∫ 2π

0

ι
{
1 + [u+ vθ] +

1

2

[
(uθ − v)2 + w2

θ

]}
dθ. (4.102)

4.8.1 Equilibrium equations and boundary conditions

The first variation of the net potential-energy (4.87) yields

Ḣ = ḢS + ḢC, (4.103)

where

ḢS =

∫ 2π

0

∫ 1

0

[η
4
Δ2w − νΔw

]
ẇρ dρ dθ, (4.104)

and

ḢC =
η

4

∫ 2π

0

[
(Δw)ẇρ − (Δw)ρẇ

]
dθ+ ν

∫ 2π

0

[
(1 + u+ vθ)u̇− (uθ − v)v̇ +wρẇ

]
dθ

+
1

2

∫ 2π

0

{[− 1 + (2u+ 5uθθ + 2uθθθθ − vθ)
]
u̇+ (uθ − v)v̇ + (3wθθ + 2wθθθθ)ẇ

}
dθ

− ε

∫ 2π

0

[uθθ + 2uθθθθ + uθθθθθθ]u̇ dθ − η̄

∫ 2π

0

[
(wθθ − wρθθ)ẇ + (−wθθ − wρ)ẇρ

]
dθ

+

∫ 2π

0

{[
ι− (

ι(uθ − v)
)
θ

]
u̇+

[− ιθ − ι(uθ − v)
]
v̇ − (ιwθ)θẇ

}
dθ. (4.105)
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The Euler–Lagrange equations resulting from the requirement Ḣ = 0 are the

partial-differential equation (PDE)

Δ2w − ζ2Δw = 0 on R, (4.106)

with ζ = 2
√

ν/η, and boundary conditions

u̇ :
[
(ι+ ν − 1

2
) + ν(u+ vθ) +

1
2
(2u+ 5uθθ + 2uθθθθ − vθ)

− ε
(
uθθ + 2uθθθθ + uθθθθθθ

)− (
ι(uθ − v)

)
θ

]
ρ=1

= 0, (4.107)

v̇ :
[
ιθ + (ι+ ν − 1

2
)(uθ − v)

]
ρ=1

= 0, (4.108)

ẇ :
[
− η

4
(Δw)ρ + νwρ +

1
2
(3wθθ + 2wθθθθ)

− η̄(wθθ − wρθθ)− (ιwθ)θ

]
ρ=1

= 0, (4.109)

ẇρ :
[η
4
Δw + η̄(wρ + wθθ)

]
ρ=1

= 0. (4.110)

Also, the linearized form of the inextensibility constraint (4.91) is expressed as

(u+ vθ)ρ=1 = 0. (4.111)

The equilibrium equation (4.106) is the linearized counterpart of the general

shape equations (4.79) and (4.46). In addition, boundary conditions (4.107)–(4.110)

are linearized version of the general boundary conditions (4.80) and (4.81) in the

parametrized form or (4.48), (4.50), (4.51), and (4.52) using the direct formulation.

Equation (4.106) reveals that, up to the small-slope approximation, the displacement

components u and v do not play any role in the shape equation. Moreover, u and v
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are absent in the boundary conditions (4.109) and (4.110). Thus, using the system

of equations (4.106), (4.109), and (4.110), the transverse displacement can be de-

termined independently. In addition, the boundary conditions (4.107) and (4.108),

and the constraint (4.111) suffice the in-plane equilibrium. This clearly signifies the

decoupling of in-plane and transverse equilibria in the linearized formulation.

Notice that all equations (4.106)–(4.111) must be trivially satisfied at the reference

configuration under which the solution is trivial (u = v = w = 0). Equation (4.107)

results

ι = 1
2
− ν, (4.112)

which determines the Lagrange multiplier up to zeroth order—i.e., at the trivial

solution. Notice that zeroth order coefficient (ι + ν − 1
2
) = 0 suffices the linear

equation (4.108). Hence, it follows

ι = constant, (4.113)

implying that the tangential force balance in of the boundary in eθ direction requires

the constancy of the Lagrange multiplier ι along the apoA-I belt. Equation (4.113)

is analog of the condition (4.52) in the direction formulation.

Using the relations (4.112) and (4.113) and the inextensibility condition (4.111),

the boundary conditions (4.107), (4.109), and (4.110) take the form

u̇ :
[
u+ 2uθθ + uθθθθ + ν(uθθ + u)− ε(uθθ + 2uθθθθ + uθθθθθθ)

]
ρ=1

= 0, (4.114)
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ẇ :
[
− η

4
wρρρ − η

4
wρρ + (

η

4
+ ν)wρ + (η̄ − η

4
)wρθθ

+ wθθθθ +
(
ν + 1− η̄ +

η

2

)
wθθ

]
ρ=1

= 0, (4.115)

ẇρ :
[η
4
wρρ +

(η
4
+ η̄

)
wρ +

(η
4
+ η̄

)
wθθ

]
ρ=1

= 0. (4.116)

4.8.2 Solving the equilibrium equations and boundary conditions

In this section, we aim to present the solution of the equilibrium equation (4.106)

and the associated boundary conditions (4.114)–(4.116).

In-plane equilibrium

The boundary condition (4.114) suffices the in-plane equilibrium of the boundary

C. Also, in view of the constraint (4.111), the tangent displacement v(1, θ) of the

boundary can be obtained as

v(1, θ) = −
∫

u(1, θ) dθ. (4.117)

Ordinary-differential equation (ODE) (4.114) with constant coefficients admits the

general solution

u(1, θ) = U sin(mθ) (m ∈ Z), (4.118)

which is consistent with the periodicity condition u(1, θ) = u(1,θ + 2πk), ∀k ∈ Z.

Substituting the general solution (4.118) into the ODE (4.114) delivers the charac-

teristic equation

(m2 − 1)
[
(m2 − 1) +m2(m2 − 1)ε− ν

]
= 0. (4.119)
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Excluding the solution m = 1 corresponding to the in-plane rigid body translation,

(4.119) results the critical surface tension

ν i
m = m2 − 1 +m2(m2 − 1)ε, (4.120)

for each mode number m of the in-plane deformation. The first nontrivial mode is

m = 2 attributed to an elliptical distortion of the boundary. Since ε, defined in

(4.86), is non-negative, the lowest critical value ν i
m is associated with m = 2 given as

ν i
c = ν i

2 = 3 + 12ε. (4.121)

In the absence of the curvature derivative effect (i.e., for ε = 0), ν i
c = 3 retrieves

the critical value obtained by Chen and Fried [162] for stability and bifurcation of a

circular soap film spanning an inextensible, elastic filament.

Transverse equilibrium

The system of equations (4.106), (4.115), and (4.116) suffices the transverse equi-

librium. It can be shown that fourth-order PDE (4.106) has the general solution (see

Section 4.11.2 of Appendix for the proof)

w(ρ, θ) = c0 + a0I0(ζρ) +
∞∑
n=1

(
cnρ

n + anIn(ζρ)
)
cos(nθ)

+
∞∑
n=1

(
dnρ

n + bnIn(ζρ)
)
sin(nθ), (4.122)

with Ii, i ∈ N being the modified Bessel function of the first kind. Notice that c0

can be neglected as it represents a rigid body translation which has no physical role.

Substitution of the general solution (4.122) in the boundary conditions (4.115), and
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(4.116) results

A1
0a0 = A2

0a0 = 0,

[A]n[an cn]
� = [A]n[bn dn]

� = [0 0]� (n ∈ N),

⎫⎪⎬
⎪⎭ (4.123)

where A1
0 and A2

0 are two coefficients and [A]n is a 2× 2 matrix provided in (4.251).

Notice that A1
0, A

2
0, and [A]n are functions of η, η̄, and ν.

We may consider ν as the control parameter and η and η̄ as the known input.

Then, since we have two independent equations in (4.123)1 for one unknown a0, in

general, it can be concluded that a0 = 0. Thus, it follows that the axisymmetric

solution (i.e., n = 0), except at the trivial solution, does not exist. Also, the terms

including c1 and d1 in (4.122) are associated with rigid body rotations about the

diameter of the reference domain R and have no physical importance. Moreover, to

satisfy the conditions (4.123)2 for n = 1, the requirements a1 = b1 = 0 must exist.

Hence, the first nontrivial mode for the transverse deformation w corresponds to

n = 2 which represents a saddle-like mode shape.

Conditions (4.123)2 define the eigenvalue problem

det[A]n = 0, n ≥ 2, (4.124)
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leading to the dispersion relation

[
− η

4

(
ζ3I ′′′n (ζ) + ζ2I ′′n(ζ)

)
+ (

η

4
+ ν)ζI ′n(ζ)

+ (
η

4
− η̄)n2ζI ′n(ζ) + n4In(ζ)− (ν + 1− η̄ +

η

2
)n2In(ζ)

][
η̄n(1− n)

]
−

[
− η

4
n(n− 1)2 + (

η

4
+ ν)n+ (

η

4
− η̄)n3 + n4 − (ν + 1− η̄ +

η

2
)n2

]
[η
4
ζ2I ′′n(ζ) + (

η

4
+ η̄)

(
ζI ′n(ζ)− n2In(ζ)

)]
= 0. (4.125)

In addition, granted satisfaction of (4.125), (4.123)2 results

cn = γnan, dn = γnbn, (4.126)

where

γn = −A(1,1)
n /A(1,2)

n = −A(2,1)
n /A(2,2)

n . (4.127)

Using (4.251)5,6, γn can be expressed as

γn =
η
4
ζ2I ′′n(ζ) + (η

4
+ η̄)

(
ζI ′n(ζ)− n2In(ζ)

)
η̄n(n− 1)

. (4.128)

Accordingly, w can be written as

w(ρ, θ) =
∞∑
n=1

ωn(ρ)Θn(θ), (4.129)

where

ωn(ρ) = In(ζρ) + γnρ
n,

Θn(θ) = an cos(nθ) + bn sin(nθ).

⎫⎪⎬
⎪⎭ (4.130)
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Since sin(nθ) and cos(nθ) are orthogonal functions, the deformation w for each mode

number n is decoupled from the remaining modes. Hence, each mode n can be studied

separately.

We denote the root of the dispersion relation (4.125), resulting the critical surface

tension for each transverse mode n, by νt
n. Numerical solution of the dispersion

relation (4.125) is given in the numerical results Section 4.9.

4.8.3 Energy comparison method

In this section, we implement a simple method based on an energy comparison to

study the stability of a flat circular disk due to a very small perturbation from the

trivial solution u = v = w = 0. Such method can be viewed as a handy stability

analysis compared to more sophisticated ones such as the one presented by Maleki

and Fried [155] using the second variation of the energy functional. Towards this

goal, we will consider the net potential-energy H given in (4.87) for a circular HDL

particle under very small in-plane or transverse perturbations. Recently, similar

approach has been efficiently employed by Giomi and Mahadevan [101] in studying

the stability of a circular soap film bounded by a twist-free, inextensible elastic frame.

Because the transverse and in-plane deformations are—up to the small-slope

approximation—decoupled, we will apply the energy comparison for each deforma-

tion type separately. Obviously, such method directly depends on the excitation or

the test function. In theory, there are infinite number of candidates for the excitation

function. However, we may use functions which are as simple as possible and, at the

same time, mimic realistic deformations inspired from, for example, experimental

observations. In view of (4.87) and (4.112), the net potential-energy Htrivial at the
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trivial deformation is

Htrivial = π(2− ν). (4.131)

The sign of the energy difference ΔH = H−Htrivial is used to interpret the stability.

If ΔH > 0, the trivial configuration is stable; if ΔH = 0, it is at the critical status;

if ΔH < 0, it is unstable.

In-plane stability

The net potential-energy Hi := H|w=0 for a general in-plane deformation is given

by

Hi =

∫ 2π

0

∫ 1

0

ν
[
ρ+ ρuρ + u+ vθ + uρ(u+ vθ)− vρ(uθ − v)

]
dρ dθ

+

∫ 2π

0

1

2

[
1− u− 2uθθ + vθ − 5

2
(uθ − v)2 − 2(u+ uθθ)(u+ vθ)

+ 10(u+ vθ)
2 + 8(−u− 2vθ + uθθ)(u+ vθ) + (−u− 2vθ + uθθ)

2

+ 2(uθ − v)(2uθ − v + vθθ)
]
dθ +

∫ 2π

0

ε

2
[uθ + uθθθ]

2 dθ

+

∫ 2π

0

ι
[
1 + u+ vθ +

1

2
(uθ − v)2

]
dθ. (4.132)

By straightforward calculations, imposing the constraint (4.111), and implementing

the zeroth order equilibrium equation (4.112), (4.132) can be simplified as

Hi = ν

∫ 2π

0

1

2
(u2 − u2

θ) dθ +

∫ 2π

0

(
− u2

θ +
u2

2
+

u2
θθ

2

)
dθ

+
ε

2

∫ 2π

0

(
u2
θ + u2

θθθ + 2uθuθθθ

)
dθ + π(2− ν). (4.133)
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Consider the excitation function in the form of radial displacement given in (4.118).

Substitution of (4.118) in (4.133) results

ΔHi =
π

2
U2(m2 − 1)

[
m2 − 1− ν +m2(m2 − 1)ε

]
. (4.134)

The sign of the energy difference ΔHi determines the following stability criteria

ν < ν i
m : stable

ν > ν i
m : unstable

⎫⎪⎬
⎪⎭ (4.135)

where the critical value ν i
m for the surface tension is

ν i
m = (m2 − 1) +m2(m2 − 1)ε. (4.136)

Surprisingly, ν i
m in (4.141) exactly coincides with the critical value given in (4.120).

The first unstable mode m = 2 corresponds to planar elliptical perturbation.

As recently emphasized by Maleki and Fried [155], the observed planar elliptical

shapes for discoidal HDL particles in experiment [97] might represent stabilized post-

buckled configuration of initially unstable flat circular shape whose linear stability

is characterized by (4.135).
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Transverse stability

The net potential-energy Ht := H|u=v=0 for a general transverse deformation is

given by

Ht =

∫ 2π

0

∫ 1

0

η

8
[Δw]2ρ dρ dθ +

∫ 2π

0

∫ 1

0

ν
[
ρ+

ρw2
ρ

2
+

w2
θ

2ρ

]
dρ dθ

+

∫ 2π

0

1

2

[
1− 3

2
w2

θ + w2
θθ

]
dθ −

∫ 2π

0

η̄
[
1−w2

θ

2
− wρwθθ −

w2
ρ

2

]
dθ

+

∫ 2π

0

ι
[
1 +

w2
θ

2

]
dθ+2πη̄. (4.137)

Now, in view of various experiments and numerical simulations [91, 92, 93, 95, 96,

94, 50], consider a saddle-like excitation function as

w(ρ, θ) = cnρ
n cosnθ. (4.138)

Substituting (4.138) in (4.137) results

Ht = π(2− ν) +
π

2
c2nn(n− 1)

[
n(n+ 1)− ν − 2nη̄

]
, (4.139)

or alternatively,

ΔHt =
π

2
c2nn(n− 1)

[
n(n+ 1)− ν − 2nη̄

]
. (4.140)

Based on the sign of coefficient of ΔHt in (4.140), the following stability criteria

ν < νt
n : stable

ν > νt
n : unstable

⎫⎪⎬
⎪⎭ (4.141)
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describe the transverse stability of the trivial solution, where critical value νt
n for the

surface tension is given by as

νt
n = n(n+ 1)− 2nη̄. (4.142)

Excluding the modes n = 0 and n = 1 corresponding to the rigid body translation

in ez direction and the rigid body rotation about the diameter of the region R,

the first nontrivial mode corresponds to n = 2. Obviously, in contrast with the in-

plane stability, the critical surface tension νt
n in (4.142) and the root of the dispersion

relation (4.125) are not equal. In addition, νt
n in (4.142) does not depend on the splay

modulus η, because the saddle-like perturbation (4.138) corresponds to a minimal

surface with H = 0. Thus, in view of the Canham–Helfrich–Evans energy (4.28), the

spay modulus μ and, subsequently, its dimensionless form η do not play any role in

the stability of the discoidal HDL particle under the saddle-like perturbation (4.138).

4.9 Numerical results

Generating analytical solution based on the system of equations (4.79), (4.80)

and (4.83) for a general large deformation, except for simple geometries such as the

axisymmetric case, seems very challenging. However, excluding the trivial, axisym-

metric, flat, circular shape, none of the existing experimental or MD simulations

indicate any axisymmetric configurations for discoidal HDL particles. Alternative

approach for dealing with the complicated geometries of the discoidal HDL particles,

e.g. the saddle-like shape with large deformation, could be the continuum-based

numerical methods, including the finite element method. As the finite element so-

lutions use a variational setting (particularly the weak form of the Euler–Lagrange
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equations) and rely on the parametrization of the problem, they can directly benefit

from the formulation provided in Section 4.7.

In this section, we exclusively provide some numerical results based on the analysis

described in Section 4.8 presenting the small-slope formulation. Particular numerical

result of the interest in the small-slope regime is numerical solution of the dispersion

relation (4.125) which can deliver the critical surface tension νt
n for each transverse

mode n. According to Maleki and Fried [155], the root of dispersion relation (4.125)

indicates the condition under which the the stability of a flat circular discoidal HDL

particle changes. We also numerically investigate the stability analysis based on the

energy comparison method discussed in Section 4.8.3.

Considering the dimensionless surface tension ν as the control parameter, we need

to provide the input parameters for the dimensionless bending moduli η and η̄. Re-

garding the dimensionless group in (4.86), determining the dimensionless parameters

η and η̄ hinges on knowing the radius R of the circular flat discoidal HDL particle,

splay and saddle-splay mouldi μ and μ̄ of the lipid bilayer, and the bending rigidity

α of the apoA-I chain. Consistent with the existing literature [50, 51, 52, 53, 54], the

representative diameter 2R ≈ 10 nm is considered as the characteristic size of the

reference flat circular discoidal HDL particle. Also, the typical value μ ≈ 0.5×10−19J

is considered for the splay modulus of the lipid bilayer [163]. We do not consider

any specific value for the saddle-splay modulus μ̄ as its value and sign have been

subject of controversy. Nevertheless, we consider both positive and negative values

for its dimensionless form η̄ with relatively wide range of magnitudes. Since, as

far as we know, no data exists for the bending rigidity or the persistence length of
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apoA-I chain, we use the data for the persistence length 36 nm of an apolipopro-

tein C-II chain [164], which is the apolipoprotein element of other types of lipopro-

teins. The corresponding bending rigidity is (36 nm)kBT , while kB and T indicate

the Boltzmann’s constant and the absolute temperature, respectively. Considring a

double-belt structure for the apoA-I chain around the discoidal HDL particle, the

approximate value α ∼ (70 nm)kBT is assumed for the bending rigidity of the bound-

ary. Finally, with these input parameters, we have considered the approximate value

η = 1 in part of the results, while we also consider other choices for η in another

part. In general, the flexibility in choosing the input parameters η and η̄ are useful

because, as mentioned earlier, there seems no definitive value exists for the bending

rigidity α of the apoA-I.

The solid lines in Fig. 4–4 depict variation of the root νt
n of the dispersion relation

(4.125) with the saddle-splay modulus η̄ for the fixed value η = 1 of the splay modulus

and first few transverse modes n = 1 to n = 4. The dashed lines correspond to the

critical values of νt
n predicted by the energy comparison method given in (4.142).

Maleki and Fried [155], using the second variation test, indicate that the domains

confined between the solid lines and the horizontal axis is stable and the outside

domains are unstable. The stability criteria (4.141) of the energy comparison method

indicate that the domains confined between the dashed lines and the horizontal axis

are stable and the domains above the dashed lines are unstable. Considering the

solid lines as the benchmarks for the stability analysis, it is notable that the energy

comparison method—which might be viewed as a handy approach—provides very
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Figure 4–4: Variation of the numerically-determined critical surface tension νt
n, i.e.

the root of dispersion relation (4.125), with the saddle-splay modulus η̄ (the solid
lines). The splay modulus is kept fixed at η = 1. The first four transverse modes
n = 1 to n = 4 are considered. The dashed lines correspond to νt

n given by the
energy comparison method in (4.142).

good stability criteria for small magnitudes of η̄ and becomes a fairly good tool for

larger magnitudes of η̄.

Figure 4–5 shows variation of the critical surface tension νt
2 with the splay modulus

η for the first nontrivial transverse mode n = 2 and two values of the saddle-splay

modulus η̄ = −1 and η̄ = 1. Also, the dashed lines show the corresponding values

of the energy comparison method given by (4.142). It can be observed that the

behaviors of νt
2–η diagrams for positive and negative η̄ are different. Particularly,

for η̄ > 0, the critical surface tension νt
2 monotonically increases with the splay
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Figure 4–5: Variation of the critical surface tension νt
2, shown by solid lines, with η

for two positive and negative values of η̄. The dashed lines correspond to the value
νt
n = n(n + 1) − 2nη̄ predicted by the energy comparison method in (4.142). Also,
various potential pathways of the stability change are shown using red arrows.

modulus η. However, for η̄ < 0, νt
2 first increases with decreasing η and then, at

some point, it starts to monotonically increase with η. This confirms the previous

observation of Maleki and Fried [155] that, for negative saddle-splay modulus η̄, the

dispersion relation (4.125) can have two roots. The stability analysis of Maleki and

Fried [155] can be applied to verify that the domains confined by the solid lines

and the horizontal axis indicate the stable domains while the domains above the

solid lines correspond to unstable domain. Thus, the solid lines define the change of

stability.
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Catte et al. [91], using the MD simulations, showed that gradual depletion of

the lipid molecules from the surface of a discoidal HDL particle, while the keeping

the length of the apoA-I belt fixed, leads to shape transition from flat circular to

nonplanar saddle-like shape. Decreasing the number of lipid molecules in a constant

area increases the distance between adjacent lipid molecules and elevates the tension

in the lipid bilayer. Such effect may be compared with stretching of a lipid bilayer

under which the spacing between the molecules increases due to the area increase.

However, for the stretching case, the number of lipid molecules remains constant.

First two red arrows in Fig. 4–5, labeled with by numbers 1 and 2, show two possible

pathways in which the change of surface tension ν can induce the change of stability

of a flat, circular discoidal HDL particle. Particularly, increasing enough the surface

tension (a process equivalent to the lipid depletion in the MD simulations of Catte et

al. [91]), for example, from the bottom points of the arrows to the top ones, makes a

flat circular discoidal HDL particle unstable under the saddle-like perturbations. In

fact, the observed saddle-like shapes may represent the post-buckled configurations

of a flat circular discoidal HDL particle. For η̄ < 0, however, there also exist a reverse

mechanism, labeled with number 3, in which the surface tension decrease may induce

the instability. However, the range of values of η for which such reverse mechanism

exists is very smaller than the rest of the range of values of η.

Lastly, the stability criteria (4.141) of the energy comparison method predict that

the domains below the dashed lines in Fig. 4–5 are stable while the domains above

them are unstable. It is noteworthy that the energy comparison method serves as
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an efficient tool for larger values of η, where the solid and dashed lines tend towards

each other.

4.10 Conclusions

A comprehensive continuum mechanical framework with a variational approach

was developed to study the equilibrium of a discoidal HDL particle with a general

configuration. The model relies on the simplifying assumptions including identifying

the lipid bilayer with a smooth open surface S and the bounding double-belt apoA-I

chain with the boundary C = ∂S of S. Consistent with high flexibility of apoA-I chain

and amphipathic properties of apoA-I and lipid molecules, a perfect bonding was

assumed between apoA-I chain and the lipid bilayer edge. Lipid bilayer was endowed

with the bending energy density ψ (per unit area of S) in form of Canham [21],

Helfrich [22], and Evans [57], and a uniform surface tension σ. The double-belt

apoA-I chain was modeled as an inextensible, twist-free, elastic filament with bending

elasticity, endowed with an energy density (per unit length of C) with a quadratic

expression depending on the curvature κ of C and its derivative κ′ with respect to

the arclength of C [155].

First, mathematical preliminaries including definitions, conventions, identities and

differential geometry discussions used through the paper were introduced. After con-

structing the energy functional comprising areal and lineal parts, using its first vari-

ation, the general equilibrium conditions (i.e., the Euler–Lagrange equations) were

derived based on a direct, geometrically-based formulation. Taking the advantage

of the direct formulation, clear physical interpretations of the equilibrium conditions

were given. Conventionally, on the lipid bilayer, the shape equation governs the local
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curvature of S. On the boundary C, four distinct scalar equilibrium equations were

identified. Three of them describes the force balance in the directions of the unit

normal n of S restricted on C, unit tangent-normal ν of C, and unit tangent e of

C. The latter equation reduces to condition implying that the Lagrange multiplier

introduced due to the inextensibility of apoA-I chain to be uniform on C. It is also

mentioned that how the presented formulation can be applied to the case in which

the lipid bilayer is considered locally inextensible.

Following the direct formulation, the problem was reformulated based on parametriza-

tion of S and C. Using the parametrization is an important step for developing ana-

lytical solutions for equilibrium equations. In addition, numerical approaches, such

as finite element method, rely on the parametrization of the problem domain. As a

natural choice, the flat circular configuration of a discoidal HDL particle and polar

coordinates within that configuration were used to parametrize a general configura-

tion. The parametric form of the of equilibrium equations on S and C were derived

using the first variation of the energy functional.

Adapting the component-wise version of the parametrized reformulation, a small-

slope deformation theory (which is recently introduced in the brief format by Maleki

and Fried [155]) was derived in details. As shown by Maleki and Fried [155], the

small-slope approximation is necessary for derivation of the linearized equilibrium

equations and, additionally, in studying the linear stability of a flat circular HDL

particle. In the linearized formulation, the equilibrium of a flat circular HDL particle

in the transverse and in-plane directions are decoupled. The equilibrium equations

on the boundary C deliver two distinct dispersion relations, each associated with the
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transverse and planar deformational modes. The roots of the dispersion relations

correspond to the critical (or buckling) conditions [155]. Comparing with the more

comprehensive stability analysis introduced in Maleki and Fried [155], an alternative

handy stability analysis was employed based on an energy comparison method. In

this approach, the sign of the energy change from the flat circular configuration

(i.e., the trivial state) to slightly perturbed configuration is used as a criterion to

determine the nature of the stability of a flat circular HDL particle. Consistent with

the observed flat elliptical or nonplanar saddle-like configurations of discoidal HDL

particles, two separate planar elliptical and nonplanar saddle-like modes were chosen

for the infinitesimal perturbations.

Lastly, numerical results for the linearized formulation were provided. The results

corresponded to the solutions of the dispersion relation for the transverse deforma-

tion and showed the variation of the critical dimensionless surface tension with the

dimensionless splay and saddle-splay moduli. As studied by Maleki and Fried [155],

the curves associated with the roots of the dispersion relations correspond to the

change of stability and separate domains of the physical input parameters where a

circular flat HDL particle is stable or unstable. In addition, comparison between the

handy energy comparison method and the recently developed analysis based on the

second variation [155] was made. Interestingly, they have completely similar results

for the planar stability. For the transverse stability, the numerical results indicate

that the energy comparison method serves as an efficient tool for small magnitudes of

dimensionless saddle-splay modulus or large values of dimensionless splay modulus.
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4.11 Appendices

4.11.1 Variations of various quantities

In this section, variations of different quantities are derived for both direct and

parametrized formulations introduced in Sections 4.6 and 4.7. For the direct for-

mulation, we adapt the variational approach developed by Fosdick and Virga [165]

and later extended by Rosso and Virga [166] who derived variations of various rele-

vant quantities. For the sake of completeness and being self-consistent, this section

contains derivations of all variations used in this paper.

Variation of a field

Consider an arbitrary field � defined on the discoidal HDL particle represented by

the surface S and the boundary C. Suppose that the surface S and the boundary C
undergo very small perturbation which maps them to Sε and Cε = ∂Sε, respectively.

The small scalar number ε ≥ 0 is called the perturbation parameter which is used

for labelling the virtual placement of the body—i.e., the discoidal HDL particle. The

conventional method for describing variations of superficial or lineal quantities relies

on a virtual velocity v—which we simply refer it to as the ‘variation’—restrictively

defined on S and C. However, guided by Fosdick and Virga [165], we implement

an alternative approach based on the assumption that S is a surface embedded in

an arbitrary material region P—i.e., S ⊂ P . Notice that the only requirement for

the arbitrary material region P is that it must include S and C. Now, the virtual

deformation χε can be defined as a mapping from an arbitrary point x in P to its

image in Pε as

xε = χε(x) = x+ εv + o(ε). (4.143)
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On S, the variation v can advantageously be decomposed as sum of tangential and

normal components vt = Pv and Un as (4.36).

Consistent with the variational description (4.143), the first variation of an arbi-

trary field � defined on S and C can be given as

�̇ = lim
ε→0

�ε − �

ε
. (4.144)

Using (4.143), the virtual deformation gradient F ε = ∇χε is derived as

F ε = ∇χε(x) = 1+ ε∇v + o(ε), (4.145)

where ∇ is the gradient with respect to the spatial points x. Based on the defini-

tion (4.144) of the first variation, variation of F is obtained as

Ḟ = lim
ε→0

F ε − 1

ε

= lim
ε→0

1+ ε∇v + o(ε)− 1

ε
= ∇v. (4.146)

Notice that the virtual deformation gradient

F := lim
ε→0

F ε = 1 (4.147)

indicates no variation. Also, trivial, but useful, consequence of (4.147) is

F−1 = F� = F−� = 1. (4.148)

Differentiating the identity F εF ε
−1 = 1 with respect to ε at ε = 0, it follows that

(
Ḟ εF

−1
ε + F ε

˙
F−1

ε

)
ε=0

= 0, (4.149)
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which, in view of the commutation of the variation and the transposition, can be

rearranged as

˙
F−1 = (

˙
F−1

ε )ε=0 = −F−1Ḟ F−1. (4.150)

Lastly, upon substitution of F−1 from (4.148) and using Ḟ from (4.146),
˙

F−1 in

(4.150) is expressed as

˙
F−1 = −∇v. (4.151)

Again, using the commutation of the variation and the transposition, variation
˙

F−�

can be derived by transposition of (4.151), given by

˙
F−� = −(∇v)�. (4.152)

Variation of the volumetric virtual Jacobian Jε = detF ε can be determined by

differentiation of (detF ε) with respect to ε at ε = 0 as

J̇ =
( ˙detF ε

)
ε=0

=
[
(detF ε)tr(Ḟ εF

−1
ε )

]
ε=0

= (detF )tr(Ḟ F−1), (4.153)

where, upon substitution of F , F−1, and Ḟ from (4.147), (4.148), and (4.146), it

follows

J̇ = tr(∇v) = divv. (4.154)

Obviously, the volumetric Jacobian in the limit of zero variation is unity, i.e.

J := lim
ε→0

Jε = 1. (4.155)
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Areal quantities

• Unit normal:

The unit normal nε to Sε convects under the virtual deformation χε as

nε =
F−�

ε n

|F−�
ε n| . (4.156)

Variation ṅ of the unit normal n can easily be determined upon differentiation of

the right-hand side of (4.156) with respect to ε at ε = 0 as

ṅ =

[ |F−�
ε n| ˙

(F−�
ε n)− ˙|F−�

ε n|(F−�
ε n)

|F−�
ε n|2

]
ε=0

. (4.157)

Substitution of F−� = 1 from (4.148) in (4.157) yields

ṅ =
˙

F−�n− ˙|F−�
ε n|ε=0n. (4.158)

Using the identity |F−�
ε n|2 = (F−�

ε n) · (F−�
ε n), it follows

˙|F−�
ε n|ε=0 =

(
˙

F−�n) · (F−�n)

|F−�n| , (4.159)

which, using F−� and
˙

F−� from (4.148) and (4.152), results

˙|F−�
ε n|ε=0 = −n · (∇v)n. (4.160)
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Substitution of
˙|F−�
ε n|ε=0 and

˙
F−� from (4.160) and (4.152) into the expression of

ṅ in (4.158) yields

ṅ = −(∇v)�n+ [n · (∇v)n]n

= −(1− n⊗ n)(∇v)�n = −[(∇v)P ]�n

= −(∇Sv)
�n. (4.161)

Since n is unit vector, ṅ must be orthogonal to n—i.e., ṅ ·n = 0. This can be easily

verified using the second-line expression of ṅ in (4.161) as ṅ·n = −(
[(∇v)P ]�n

)·n =

−(∇v)Pn · n = 0, because Pn = 0.

• Projection tensor:

Variation of the projection tensor P can be determined using the definition (4.5) as

P ε = 1− nε ⊗ nε. (4.162)

Differentiating P ε in (4.162) with respect to ε at ε = 0 results

Ṗ = −ṅ⊗ n− n⊗ ṅ, (4.163)

which, by substituting ṅ from (4.161), can be expressed as

Ṗ = (∇Sv)
�n⊗ n+ n⊗ (∇Sv)

�n. (4.164)

• Curvature tensor:

Based on the definition of the curvature tensor L in (4.13) and the definition (4.9)2

of the surface gradient of a vector-valued superficial field, the perturbed curvature
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tensor Lε can be expressed as

Lε = −(∇ne)εP ε, (4.165)

where ne denotes the extension of n. Straightforward differentiation of (4.165) leads

L̇ = −( ˙∇ne)P − (∇ne)Ṗ . (4.166)

According to the definition (4.144) of the first variation and using the variation
˙

F−1

from (4.151), it follows

˙∇ne = lim
ε→0

∇εn
e
ε −∇ne

ε

= lim
ε→0

(∇εn
e
ε −∇εn

e) + (∇εn
e −∇ne)

ε

= ∇ṅe + (∇ne)
˙

F−1

= ∇ṅe − (∇ne)∇v. (4.167)

Substitution of ˙∇ne and Ṗ from (4.167) and (4.164) into (4.166) yields

L̇ = −∇ṅeP + (∇ne)∇vP

−∇n[(∇Sv)
�n⊗ n+ n⊗ (∇Sv)

�n]

= −∇Sṅ+ (∇ne)∇Sv −∇ne(n⊗ n)∇Sv

+L(∇Sv)
�n⊗ n

= −∇Sṅ+ (∇ne)P∇Sv +L(∇Sv)
�n⊗ n

= −∇Sṅ−L∇Sv +L(∇Sv)
�n⊗ n. (4.168)
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Lastly, using ṅ from (4.161) in (4.168) results in

L̇ = L[(∇Sv)
�n⊗ n−∇Sv] +∇S[(∇Sv)

�n]. (4.169)

• Mean curvature:

Regarding the definition (4.15) of the mean curvature H, its variation Ḣ is given by

Ḣ = 1
2

˙trL = 1
2
trL̇, (4.170)

which, using the variation L̇ in (4.169) and properties of the curvature tensor L in

(4.14), takes the form

trL̇ = L�n · (∇Sv)
�n− tr(L∇Sv) + tr [∇S((∇Sv)

�n)]

= −tr(L∇Sv) + tr [∇S((∇Sv)
�n)]. (4.171)

Now, according to the decomposition (4.36), we separately consider the normal and

tangential contributions of the variation v to the mean curvature H.

First, consider the normal variation v = Un, resulting in

∇Sv = U∇Sn+ n⊗∇SU = −UL+ n⊗∇SU, (4.172)

which yields

∇S((∇Sv)
�n) = ∇S∇SU. (4.173)
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Using ∇S((∇Sv)
�n) and ∇Sv from (4.173) and (4.172), and regarding the property

(4.16), (4.171) can be expressed as

trL̇ = tr(UL2) + tr(∇S∇SU) = tr(L2)U +ΔSU

= (4H2 − 2K)U +ΔSU. (4.174)

Substituting (4.174) in (4.170) delivers the normal variation Ḣn of the mean curvature

H given by

Ḣn = (2H2 −K)U + 1
2
ΔSU. (4.175)

Now, consider the tangential contribution v = vt of the variation. According to the

property vt · n = 0 and the identity (4.12)2, it follows that

(∇Svt)
�n = −(∇Sn)

�vt. (4.176)

Using the definition of the curvature tensor L in (4.13) and its symmetry, (4.176)

becomes

(∇Svt)
�n = Lvt. (4.177)

Substituting (∇Svt)
�n from (4.177) into the expression (4.171) for (trL̇) and subse-

quently in (4.170) delivers the tangential contribution of the variation of the mean

curvature Ḣt as

Ḣt =
1
2
tr(∇S(Lvt)−L∇Svt). (4.178)
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Using the definition L = −∇Sn of the curvature tensor, it can be concluded that [167]

∇S(Lvt) = (∇SL)vt +L∇Svt, (4.179)

which, upon its substitution in (4.178), and in view of Noll [167] and the definition

of the mean curvature H in (4.15)1, results in

Ḣt =
1
2
tr [(∇SL)vt] =

1
2
[∇S(trL)] · vt = ∇SH · vt. (4.180)

The normal and tangential contributions Ḣn and Ḣt of the variation of the mean

curvature H can eventually be combined delivering

Ḣ = Ḣn + Ḣt

= (2H2 −K)U + 1
2
ΔSU +∇SH · vt. (4.181)

• Virtual areal Jacobian:

Variation of the virtual areal Jacobian jε is needed for deriving the variation of a

surface integral. It is well known that areal and volumetric Jabobians are related

through

jε = Jε|F−�
ε n|. (4.182)

Differentiating (4.182) with respect to ε at ε = 0 yields

j̇ = J̇ |F−�n|+ J
˙|F−�
ε n|ε=0, (4.183)
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which upon substitution of J̇ , F−�, J , and
˙|F−�
ε n|ε=0 from (4.154), (4.148), (4.155),

and (4.160) simplifies to

j̇ = divv − (∇v)�n · n

= (∇v)� · P = tr((∇v)P )

= divSv. (4.184)

Finally, using the decomposition (4.36), the identity (4.12)1, and the definition

(4.15)1 of the mean curvature H, it follows

j̇ = divSvt + divS (Un)

= divSvt − 2HU. (4.185)

• Surface integral of a spatial field:

Various extensive quantities emerge as surface integrals of spatial fields. Consider Γ,

the integral of an arbitrary spatial field γ defined on S as

Γ =

∫
S
γ. (4.186)

In calculating the variation Γ̇ of Γ, variation of both integrand γ and the boundary

of the integral S must be included, i.e.

Γ̇ =
˙∫
S
γ = lim

ε→0

1

ε

(∫
Sε

γε −
∫
S
γ
)
. (4.187)
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Using the change of variable, integral over Sε can be transferred into integral over

S. Next, using the variation of the areal Jacobian j in (4.185), it can be concluded

Γ̇ = lim
ε→0

1

ε

(∫
S
γεjε −

∫
S
γ
)

=

∫
S
lim
ε→0

(γεjε − γε) + (γε − γ)

ε

=

∫
S

(
γj̇+ γ̇

)
=

∫
S
[γ̇ + γ(divSvt − 2HU)]. (4.188)

Lineal quantities

In this section, variations of various quantities defined on the boundary C are

derived.

• Virtual lineal stretch:

Consider an infinitesimal material element on the curve C with e being the unit

tangent to that. Then, the lineal stretch defined as

λε = |F εe| (4.189)

describes the evolution of the ratio of the the infinitesimal material line element and

its original length under variation v. Using the identity |F εe|2 = (F εe) · (F εe),

variation of λε can be derived as

λ̇ =
˙|F εe|ε=0 =

[
(Ḟ εe) · (F εe)

|F εe|
]
ε=0

=
(Ḟ e) · (Fe)

|Fe| (4.190)
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which, upon substituting Ḟ and F from (4.146) and (4.147), can be expressed as

λ̇ = e · (∇v)e. (4.191)

Evidently, (∇v)e represents the directional derivative of v in e direction, i.e.

(∇v)e =
∂v

∂s
= v′. (4.192)

Lastly, using (4.192) in (4.190) results in

λ̇ = v′ · e. (4.193)

• Unit tangent:

The variations of various lineal quantities such as the curvature, the curvature deriva-

tive, and the geodesic curvatures involve the variation of the unit tangent e. To de-

termine the variation ė of e, it is necessary to calculate the derivative of the virtual

unit tangent eε convecting with the boundary Cε as

eε =
F εe

|F εe| . (4.194)

Thus

ė =

[ |F εe|(Ḟ εe)− ˙|F εe|(F εe)

|F εe|2
]
ε=0

=
|Fe|(Ḟ e)− ˙|F εe|ε=0(Fe)

|Fe|2 . (4.195)

Regarding (4.190),
˙|F εe|ε=0 is equal to variation of the lineal stretch λ̇ given in

(4.193). Also, Ḟ and F can be substituted from (4.146) and (4.147) into (4.195)
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leading to

ė = (∇v)e− (v′ · e)e

= v′ − (v′ · e)e. (4.196)

• Arclength derivative of a spatial field:

Arclength derivatives present in some lineal quantities, such as the curvature κ = e′

and the curvature derivative κ′. Suppose that ξ represents a general spatial field on

the curve C. Following the definition of the first variation in (4.144) and using λ̇

from (4.193), the variation ξ̇′ is calculated as

ξ̇′ = lim
ε→0

1

ε

(∂ξε
∂sε

− ∂ξ

∂s

)

= lim
ε→0

1

ε

(∂ξε
∂s

∂s

∂sε
− ∂ξ

∂s

)

= lim
ε→0

1

ε

(∂ξε
∂s

∂s

∂sε
− ∂ξε

∂s
+

∂ξε
∂s

− ∂ξ

∂s

)

=
(
lim
ε→0

∂ξε
∂s

)[
lim
ε→0

1

ε

( ∂s

∂sε
− 1

)]
+

∂

∂s

[
lim
ε→0

(ξε − ξ

ε

)]

=
∂ξ

∂s
˙

(λ−1) +
∂ξ̇

∂s

= −λ̇ξ′ +
∂ξ̇

∂s

= (ξ̇)′ − (v′ · e)ξ′. (4.197)

• Curvature vector and (scalar) curvature:
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According to the definition (4.21) of the curvature vector κ = e′, variation κ̇ of the

curvature vector κ can be expressed using the identity (4.197) as

κ̇ = (ė)′ − (v′ · e)κ, (4.198)

which, upon substitution of variation ė of the unit tangent e from (4.196), can be

expanded as

κ̇ = (v′ − (v′ · e)e)′ − (v′ · e)κ. (4.199)

In addition, using the definition (4.23) of the scalar curvature κ, it follows that

κ̇ = κ−1(κ̇ · κ). (4.200)

Using κ̇ from (4.199) yields

κ̇ = κ−1(v′ − (v′ · e)e)′ · κ− (v′ · e)κ. (4.201)

• Curvature derivative:

The variation κ̇′ of the curvature derivative κ′ can be easily calculated using the

general variation of the derivative of a spatial field given in (4.197) and the variation

κ̇ of the curvature κ in (4.201) as

κ̇′ =
(
κ−1(v′ − (v′ · e)e)′ · κ− (v′ · e)κ)′ − (v′ · e)κ′. (4.202)

• Geodesic curvature:

Variation κ̇g can be obtained using (4.24)2 as

κ̇g = −κ̇ · ν − κ · ν̇. (4.203)
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Regarding (4.21), the curvature vector κ in (4.203) can be replaced by its normal

and tangential components leading to

κ̇g = −κ̇ · ν − κnn · ν̇ + κgν · ν̇. (4.204)

Since ν is unit vector and perpendicular to n, it follows that

ν̇ · ν = 0, n · ν̇ = −ṅ · ν. (4.205)

Substituting (4.205) into (4.204) results in

κ̇g = κnṅ · ν − κ̇ · ν, (4.206)

which, in view of the variations ṅ and κ̇ in (4.161) and (4.199), and alternative

definition (4.24)2 of κg, can be written as

κ̇g = −κn(∇Sv)
�n · ν − (v′ − (v′ · e)e)′ · ν − κg(v

′ · e). (4.207)

Considering the decomposition (4.36) of the variation v and regarding the relations

(4.172) and (4.177), the term (∇Sv)
�n in (4.207) can advantageously be expressed

as

(∇Sv)
�n = ∇SU +Lvt, (4.208)

which can be substituted in (4.207) delivering

κ̇g = −κnν ·Lvt − κn∇SU · ν − (v′ − (v′ · e)e)′ · ν − κg(v
′ · e). (4.209)

• Curve integral of a spatial field:
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Extensive lineal quantities usually emerge as the curve integrals. Consider the curve

integral Ξ of a generic spatial field ξ defined on the curve C as

Ξ =

∫
C
ξ. (4.210)

Similar to the variation of a surface integral Γ of a spatial field γ defined on the surface

S, variation of the curve integral Ξ of the spatial field ξ on C involves variations of

both the boundary of the integral and the integrand. Thus, the variation Ξ̇ can be

expressed as

Ξ̇ =
˙∫
C
ξ = lim

ε→0

1

ε

(∫
Cε
ξε −

∫
C
ξ
)
. (4.211)

Using the change of variable, integral over Cε can be transferred into integral over C.
Thus, using the variation of λ in (4.193), it follows that

Ξ̇ = lim
ε→0

1

ε

(∫
C
ξελε −

∫
C
ξ
)

=

∫
C
lim
ε→0

(ξελε − ξε) + (ξε − ξ)

ε

=

∫
C

(
ξλ̇+ ξ̇

)
=

∫
C
(ξ̇ + ξv′ · e). (4.212)

Variations of the geometrical quantities based on the parameteriza-
tion of the surface and boundary

In this section, variations of different geometrical quantities required in our anal-

ysis in Section 4.7 are derived. Section 4.7 includes the parametric descriptions of

various quantities are expressed in terms of the spatial point x(r, θ) parametrized by
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coordinates r and θ. Calculating the first variation of such quantities easily relies

on the straightforward differentiation with respect to the variation parameter ε at

ε = 0, while r and θ have no variations. Thus, variation and partial derivatives with

respect to r and θ can readily commute.

• Areal Jacobian:

Areal Jacobian |xr × xθ| emerges in the surface integrals over the domain D of the

reference configuration. In view of the property |xr × xθ|2 = (xr × xθ) · (xr × xθ)

and the definition (4.65) of the unit normal n, it follows that

˙|xr × xθ| = n · ( ˙xr × xθ)

= n · (vr × xθ + xr × vθ)

= (xθ × n) · vr − (xr × n) · vθ. (4.213)

• Unit normal:

Based on the definition (4.65) of the unit normal n, its variation ṅ can be derived

as

ṅ =
( ˙xr × xθ)

|xr × xθ| −
˙|xr × xθ|

|xr × xθ|n, (4.214)

which, upon substituting
˙|xr × xθ| from (4.213), leads to

ṅ =
1

|xr × xθ|
{
vr × xθ + xr × vθ −

[
(xθ × n) · vr − (xr × n) · vθ

]
n
}
. (4.215)

• Mean curvature:

Variation Ḣ of the mean curvature H can be derived using the parametric expres-

sion (4.63) of the mean curvature. Lengthy but straightforward differentiation of
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(4.66)1 with respect to variation parameter ε at ε = 0 and substituting the varia-

tions
˙|xr × xθ| and ṅ from (4.213) and (4.215) yield

Ḣ =
1

2|xr × xθ|2
{
|xθ|2n · vrr +

[
|xr × xθ|(n× nθ)− 3n · (xθ × nr)(xθ × n)

− 3n · (nθ × xr)(xθ × n) + xr(n · xθθ − xθ · nθ) + xθ(xθ · nr − n · xrθ)

+

(
xθ · xrθ − xr · xθθ − |xr × xθ|r

|xr × xθ| |xθ|2 + |xr × xθ|θ
|xr × xθ| (xr · xθ)

)
n

− |xθ|2nr + (xr · xθ)nθ

]
· vr − 2(xr · xθ)n · vrθ

+

[
|xr × xθ|(nr × n) + 3n · (xθ × nr)(xr × n) + 3n · (nθ × xr)(xr × n)

+ xr(xr · nθ − xrθ · n) + xθ(xrr · n− xr · nr)

+

(
xr · xrθ − xθ · xrr+

|xr × xθ|r
|xr × xθ| (xθ · xr)−|xr × xθ|θ

|xr × xθ| |xr|2
)
n

+ (xr · xθ)nr − |xr|2nθ

]
· vθ + |xr|2n · vθθ

}
. (4.216)

It is worth-mentioning that the superficial variations
˙|xr × xθ|, ṅ, and Ḣ given in

(4.213), (4.215), and (4.216) are valid for any general—orthogonal or non-orthogonal—

curvilinear coordinate system. Thus, the polar coordinates r and θ can be replaced

by any other curvilinear coordinates.

• Lineal Jacobian:

The lineal Jacobian |xθ|r=R emerges in the curve integrals over ∂D. Based on the

definition (|xθ|2)r=R = (xθ · xθ)r=R, it can be concluded

˙|xθ|r=R =
(vθ · xθ

|xθ|
)
r=R

, (4.217)
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which upon use of the inextensibility constraint (4.67) reduces to

˙|xθ|r=R =
(vθ · xθ)r=R

R
. (4.218)

• Curvature:

Variation of the scalar curvature κ can be determined using its parametric description

in (4.66)1 as

κ̇ =

( ˙|xθ × xθθ|
|xθ|3 − 3|xθ × xθθ| ˙|xθ|

|xθ|4
)

r=R

. (4.219)

Regarding the property |xθ × xθθ|2 = (xθ × xθθ) · (xθ × xθθ), it follows that

˙|xθ × xθθ| =
˙

(xθ × xθθ) · (xθ × xθθ)

|xθ × xθθ|

=
(vθ × xθθ + xθ × vθθ) · (xθ × xθθ)

|xθ × xθθ|

=
(vθ · xθ)|xθθ|2 − (vθ · xθθ)(xθθ · xθ)

|xθ × xθθ|

+
|xθ|2(vθθ · xθθ)− (xθ · xθθ)(vθθ · xθ)

|xθ × xθθ| . (4.220)

Substituting
˙|xθ|r=R and

˙|xθ × xθθ| from (4.217) and (4.220) into (4.219), and in

view of the constraint (4.67) and the subsequent conditions (4.68), the variation κ̇

in (4.219) takes the form

κ̇ =

(
1

R2

vθθ · xθθ

|xθθ| − 2
|xθθ|
R4

(vθ · xθ)

)
r=R

. (4.221)

• Curvature derivative:
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Using the parametric definition (4.66)2 of κ′ and the expression (4.217) of
˙|xθ|r=R,

it can be concluded that

κ̇′ =
((κ̇)θ|xθ| − ˙|xθ|κθ

|xθ|2
)
r=R

=
((κ̇)θ
|xθ| − (vθ · xθ)

κθ

|xθ|3
)
r=R

, (4.222)

which, using the variation κ̇ in (4.219) and regarding the constraint (4.67), can be

expressed as

κ̇′ =
{

1

R3

xθθ

|xθθ| · vθθθ +
( 1

R3

xθθθ

|xθθ| −
|xθθ|θxθθ

R3|xθθ|2 − 2|xθθ|xθ

R5

)
· vθθ

− 1

R5
(3|xθθ|θxθ + 2|xθθ|xθθ) · vθ

}
r=R

. (4.223)

• Geodesic curvature:

Using the parametric description (4.66)4 of the geodesic curvature κg, it follows that

κ̇g =

{
1

|xθ|3
[
ṅ · (xθ × xθθ) + n · (vθ × xθθ) + n · (xθ × vθθ)

]

− 3
˙|xθ|
[
n · (xθ × xθθ)

]
|xθ|4

}
r=R

. (4.224)

By substituting ṅ and
˙|xθ| from (4.215) and (4.217), using the constraint (4.67) and

the subsequent properties (4.68), and in view of the vector identity (a×b) ·(c×d) =
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(a · c)(b · d)− (a · d)(b · c), the expression of κ̇g in (4.224) can be expanded as

κ̇g =
1

R3

{ −1

|xr × xθ|
[
R2xθθ +

(
n · (xθ × xθθ)

)
(xθ × n)

]
· vr

+

(
1

|xr × xθ|
[
(xr · xθ)xθθ − (xr · xθθ)xθ +

(
n · (xθ × xθθ)

)
(xr × n)

]
+ (xθθ × n)− 3

R2

(
n · (xθ × xθθ)

)
xθ

)
· vθ + (n× xθ) · vθθ

}
r=R

. (4.225)

4.11.2 General solution of the PDE (4.106)

In this section, it is proved that the general solution of the fourth-order PDE in

(4.106) as

Δ2w − ζ2Δw = 0 on R, (4.226)

is in the form given in (4.122).

To begin with, consider the change of variable

y(ρ, θ) := Δw, (4.227)

by which, (4.226) simplifies to the second-order PDE

Δy − ζ2y = 0 on R. (4.228)

Using the separation of variables y(ρ, θ) = Ω(ρ)Θ(θ) and in view of the periodicity

condition Θ(θ) = Θ(θ + 2πn), ∀n ∈ N, it is easy to show that

Θ′′ + n2Θ = 0,

ρ2Ω′′ + ρΩ′ − (n2 + ζ2ρ2)Ω = 0.

⎫⎪⎬
⎪⎭ (4.229)
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From (4.229)1, it follows that sin(nθ) and cos(nθ) are two solutions of Θ(θ). Also by

change of variable γ := ζρ and defining Y (γ) := Ω(ρ), (4.229)2 changes to

γ2Y ′′ + γY ′ − (n2 + γ2)Y = 0, (4.230)

which is the modified Bessel equation with the bounded solution In(γ). Thus, the

general solution for y(ρ, θ) is expressed as

y(ρ, θ) = α0I0(ζρ) +
∞∑
n=1

[
αnIn(ζρ) cos(nθ) + βnIn(ζρ) sin(nθ)

]
, (4.231)

with αn and βn (n ∈ N) being unknown coefficients. Notice that, the modified Bessel

function of the second kind is excluded from the solution because it is singular at

ρ = 0. Substituting the solution (4.231) back into (4.227) leads to

Δw = α0I0(ζρ) +
∞∑
n=1

[
αnIn(ζρ) cos(nθ) + βnIn(ζρ) sin(nθ)

]
. (4.232)

In view of the change of variable γ = ζρ, the Fourier expansion of w is

w(ρ, θ) = W0(γ) +
∞∑
n=1

[
Ŵn(γ) cos(nθ) + W̌n(γ) sin(nθ)

]
. (4.233)

Substituting the expansion (4.233) in (4.232) yields

W ′′
0 + γ−1W ′

0 = α̃0I0(γ), (4.234)

and

Ŵ ′′
n + γ−1Ŵ ′

n − n2γ−2Ŵn = α̃nIn(γ),

W̌ ′′
n + γ−1W̌ ′

n − n2γ−2W̌n = β̃nIn(γ),

⎫⎪⎬
⎪⎭ (4.235)

where α̃n = ζ−2αn and β̃n = ζ−2βn.
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To solve the nonhomogeneous linear ODE’s (4.234) and (4.235), we use the method

of variation of parameters [168].

Let start from the system of equations (4.235). Obviously, W 1
n = γn and W 2

n =

γ−n are two independent solutions of the homogeneous equations in (4.235). Thus,

following the method of variation of parameters, the general solution of (4.235) is

given as

Ŵn(γ) = Ĉ1
n(γ)γ

n + Ĉ2
n(γ)γ

−n,

W̌n(γ) = Č1
n(γ)γ

n + Č2
n(γ)γ

−n,

⎫⎪⎬
⎪⎭ (4.236)

where

Ĉ1
n(γ) = −α̃n

∫
γ−n

W (W 1
n ,W

2
n)

In(γ) dγ + ĉ1n,

Ĉ2
n(γ) = α̃n

∫
γn

W (W 1
n ,W

2
n)

In(γ) dγ + ĉ2n,

Č1
n(γ) = −β̃n

∫
γ−n

W (W 1
n ,W

2
n)

In(γ) dγ + č1n,

Č2
n(γ) = β̃n

∫
γn

W (W 1
n ,W

2
n)

In(γ) dγ + č2n,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.237)

which, upon substituting the Wronskian

W (W 1
n ,W

2
n) =

∣∣∣∣∣∣∣
W 1

n W 2
n

(W 1
n)

′ (W 2
n)

′

∣∣∣∣∣∣∣ = −2nγ−1,

simplify to

Ĉ1
n(γ) =

α̃n

2n

∫
γ1−nIn(γ) dγ + ĉ1n, Ĉ2

n(γ) = − α̃n

2n

∫
γ1+nIn(γ) dγ + ĉ2n,

Č1
n(γ) =

β̃n

2n

∫
γ1−nIn(γ) dγ + č1n, Č2

n(γ) = − β̃n

2n

∫
γ1+nIn(γ) dγ + č2n,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.238)
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where ĉ1n, ĉ
2
n, č

1
n, and č2n are integration constants. In view of the integration proper-

ties of the modified Bessel functions, it follows

Ĉ1
n(γ) =

α̃nγ
1−n

2n
In−1(γ) + ĉ1n, Ĉ2

n(γ) = − α̃nγ
1+n

2n
In+1(γ) + ĉ2n,

Č1
n(γ) =

β̃nγ
1−n

2n
In−1(γ) + č1n, Č2

n(γ) = − β̃nγ
1+n

2n
In+1(γ) + č2n.

⎫⎪⎪⎬
⎪⎪⎭ (4.239)

Substituting the coefficients (4.239) into the general solution (4.236) yields

Ŵn(γ) = ĉ1nγ
n + ĉ2nγ

−n +
α̃nγ

2n

(
In−1(γ)− In+1(γ)

)
,

W̌n(γ) = č1nγ
n + č2nγ

−n +
β̃nγ

2n

(
In−1(γ)− In+1(γ)

)
,

⎫⎪⎪⎬
⎪⎪⎭ (4.240)

where, in view of the property In(γ) =
γ
2n

(
In−1(γ)− In+1(γ)

)
, simplify to

Ŵn(γ) = ĉ1nγ
n + ĉ2nγ

−n + α̃nIn(γ),

W̌n(γ) = č1nγ
n + č2nγ

−n + β̃nIn(γ).

⎫⎪⎬
⎪⎭ (4.241)

Notice that the solution γ−n must be excluded as it is singular at γ = 0. Hence,

Ŵn(γ) = ĉ1nγ
n + α̃nIn(γ),

W̌n(γ) = č1nγ
n + β̃nIn(γ).

⎫⎪⎬
⎪⎭ (4.242)

Now, we consider the nonhomogeneous equation (4.234). The homogeneous solu-

tions of (4.234) are W 1
0 = ln γ and W 2

0 = 1. Similarly, the general solution (4.234)

is given by

W0(γ) = C1
0(γ) ln γ + C2

0(γ), (4.243)
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where C1
0(γ) and C2

0(γ) are given as

C1
0(γ) = −α̃0

∫
1

W (W 1
0 ,W

2
0 )

I0(γ) dγ + c10,

C2
0(γ) = α̃0

∫
ln γ

W (W 1
0 ,W

2
0 )

I0(γ) dγ + c20,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.244)

which, upon substituting the Wronskian

W (W 1
0 ,W

2
0 ) =

∣∣∣∣∣∣∣
W 1

0 W 2
0

(W 1
0 )

′ (W 2
0 )

′

∣∣∣∣∣∣∣ = −γ−1,

simplify to

C1
0(γ) = α̃0

∫
γI0(γ) dγ + c10,

C2
0(γ) = −α̃0

∫
γ(ln γ)I0(γ) dγ + c20,

⎫⎪⎪⎬
⎪⎪⎭ (4.245)

where c10 and c20 are two integration constants. Equations (4.245), using the integra-

tion properties of the modified Bessel functions, can be simplified to

C1
0(γ) = α̃0γI1(γ) + c10,

C2
0(γ) = α̃0I0(γ)− α̃0γ(ln γ)I1(γ) + c20.

⎫⎪⎬
⎪⎭ (4.246)

Substituting the coefficients (4.246) back into the general solution (4.243) yields

W0(γ) = c20 + c10 ln γ + α̃0I0(γ), (4.247)

where upon excluding the singular term (ln γ) reduces to

W0(γ) = c20 + α̃0I0(γ). (4.248)
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Finally, on substituting Ŵn(γ) and W̌n(γ) from (4.242) and W0(γ) from (4.248)

into the expression of w(γ, θ) in (4.233), and defining

c0 := c20, a0 := α̃0, an := α̃n,

bn := β̃n, cn := ζnĉ1n, dn := ζnč1n,

⎫⎪⎬
⎪⎭ (4.249)

the solution for the PDE (4.106) is obtained as

w(ρ, θ) = c0 + a0I0(ζρ) +
∞∑
n=1

(
cnρ

n + anIn(ζρ)
)
cos(nθ)

+
∞∑
n=1

(
dnρ

n + bnIn(ζρ)
)
sin(nθ). (4.250)

4.11.3 Coefficients A1
0 and A2

0 and the matrix [A]n

The coefficients A1
0 and A2

0 and the matrix [A]n = [A11
n A12

n ;A21
n A22

n ] in (4.123)

are

A1
0 = −η

4

(
ζ3I ′′′0 (ζ) + ζ2I ′′0 (ζ)

)
+ (

η

4
+ ν)ζI ′0(ζ),

A2
0 =

η

4
ζ2I ′′0 (ζ) + (

η

4
+ η̄)ζI ′0(ζ),

A11
n = −η

4

(
ζ3I ′′′n (ζ) + ζ2I ′′n(ζ)

)
+ (

η

4
+ ν)ζI ′n(ζ)

+ (
η

4
− η̄)n2ζI ′n(ζ) + n4In(ζ)−

(
ν + 1− η̄ +

η

2

)
n2In(ζ),

A12
n = −η

4
n(n− 1)2 + (

η

4
+ ν)n+ (

η

4
− η̄)n3 + n4 − (

ν + 1− η̄ +
η

2

)
n2,

A21
n =

η

4
ζ2I ′′n(ζ) + (

η

4
+ η̄)

(
ζI ′n(ζ)− n2In(ζ)

)
,

A22
n = η̄n(1− n). (4.251)
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CHAPTER 5
Stability of discoidal high-density lipoprotein particles

5.1 Preface

Motivated by the ongoing desire for characterizing configurations of discoidal HDL

particles, in Chapter 4, methods of continuum mechanics were applied to formulate

equilibrium conditions for such particles possessing general configurations. In recent

simulations and experiments [92, 93, 94, 95, 96, 94, 97, 50], besides the trivial shape

(i.e., the usual flat circular shape) of discoidal HDL particles, two interesting nontriv-

ial shapes are observed: nonplanar saddle-like and planar elliptic. In this chapter, it

is hypothesized that these nontrivial shapes may reflect post-buckled configurations

of discoidal HDL particles after instability in their trivial configuration. Towards

verification of this hypothesis, based on the linearized formulations derived in Chap-

ter 4, and relying on the second-variation condition, the linear stability of discoidal

HDL particles in their trivial state is studied. Connections between the instability

modes and the observed nontrivial shapes of discoidal HDL particles are made. This

chapter is reproduced from the published paper

M. Maleki and E. Fried, “Stability of discoidal high-density lipoprotein particles,”

Soft Matter, vol. 9, pp. 9991–9998, 2013.

with permission from The Royal Society of Chemistry, and from the coauthor Prof.

Eliot Fried.
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5.2 Abstract

Motivated by experimental and numerical studies revealing that discoidal high-

density lipoprotein (HDL) particles may adopt flat elliptical and nonplanar saddle-

like configurations, it is hypothesized that these might represent stabilized config-

urations of initially unstable flat circular particles. A variational description is de-

veloped to explore the stability of a flat circular discoidal HDL particle. While the

lipid bilayer is modeled as two-dimensional fluid film endowed with surface tension

and bending elasticity, the apoA-I belt is modeled as one-dimensional inextensible

twist-free chain endowed with bending elasticity. Stability is investigated using the

second variation of the underlying energy functional. Various planar and nonplanar

instability modes are predicted and corresponding nondimensional critical values of

salient dimensionless parameters are obtained. The results predict that the first pla-

nar and nonplanar unstable modes occur due to in-plane elliptical and transverse

saddle-like perturbations. Based on available data, detailed stability diagrams indi-

cate the range of input parameters for which a flat circular discoidal HDL particle is

linearly stable or unstable.

5.3 Introduction

The packaging and transport of water-insoluble cholesterol in the bloodstream are

mediated by lipoprotein particles. In “reverse cholesterol transport,” high-density

lipoprotein (HDL) particles scavenge cholesterol from tissues and other types of

lipoprotein particles and deliver it to the liver for excretion into bile or other use.

A comprehensive understanding of the biophysical basis for the vasculoprotective
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functionalities of HDL particles is essential to developing effective strategies to pre-

vent, diagnose, and treat atherosclerosis. However, as Vuorela et al. [90] observe:

“The functionality of HDL has remained elusive, and even its structure is not well

understood.”

During reverse cholesterol transport, an HDL particle sustains shape transitions

that are accompanied by changes in the conformation of its apolipoprotein build-

ing block apoA-I. Davidson & Silva [89] explain that the functionality of apoA-I

is linked to its conformational variations and emphasize the need to understand

the diverse range of conformations that it adopts in its lipid-free and lipid-bound

forms. A discoidal HDL particle consists of a lipid bilayer bound by an apoA-I

chain. Camont et al. [169] argue that the low lipid content and high surface fluidity

of discoidal HDL particles induces conformational changes of apoA-I that result in

enhanced exposure to its aqueous surroundings and, thus, in an increased capac-

ity to acquire blood lipids. Using all-atom molecular dynamics (MD) simulations,

Catte et al. [91] predict that assembling a flat circular HDL particle from a lipid-free

apoA-I chain involves the formation of intermediate nonplanar, twisted, saddle-like

particles. Coarse-grained molecular dynamics simulations of Shih et al. [5, 170] and

experiments of Silva et al. [171], Miyazaki et al. [95], and Huang et al. [172] con-

firm this prediction. In addition, experimental results of Skar-Gislinge et al. [97]

reveal that HDL particles exhibit an intrinsic tendency to adopt planar, elliptical

configurations.

Simulations have provided valuable insight regarding the molecular interactions

that govern the assembly and dynamics of discoidal HDL particles. However, the
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small time steps needed to correctly capture the highest frequency of molecular

vibrations and preserve numerical accuracy make it difficult to access time scales

long enough to determine equilibria or draw conclusions regarding stability. For

these purposes, continuum models provide a valuable complement to simulations. In

particular, continuum models have been used with remarkable success to determine

equilibria and study stability in biomembranes and biomolecules.

Inspired by the aforementioned experiments and simulations, a continuum me-

chanical model for the equilibrium and stability of a flat circular HDL particle is pre-

sented. Guided by prevalent continuum models of biomembranes and biomolecules,

the bilayer is treated as a two-dimensional fluid film endowed with surface tension

and resistance to bending and the apoA-I chain as a one-dimensional inextensible,

twist-free, elastic filament endowed with resistance to bending. The bilayer and

apoA-I chain are required to be perfectly bonded, in which case the boundary of the

fluid film and the elastic filament must have the same shape. A variational descrip-

tion of the equilibrium of a discoidal HDL particle is provided. A flat, circular shape

is chosen as a reference configuration. To study the linear stability of the reference

shape, infinitesimal perturbations involving both planar and transverse components

are considered. Such perturbations can be caused by thermal fluctuations of the

lipid bilayer or the apoA-I chain or by interactions between the HDL particle and

its environment. Closed-form analytical solutions for the linearized equilibrium con-

ditions are obtained and stability is explored via the second-variation condition. In

addition, available values of the physical parameters that enter the model are used

to determine the range of inputs under which a flat, circular HDL particle is linearly
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stable or unstable. Lastly, connections between our result and previous experimental

measurements and numerical simulations are made.

5.4 Energetics of a discoidal HDL particle

Geometrically, a discoidal HDL particle is treated as a smooth, orientable surface

S with boundary C = ∂S. The interior and boundary of S correspond, respectively,

to the bilayer and apoA-I components of the particle. Following convention, H and

K denote the mean and Gaussian curvatures of S and κ denotes the curvature of C.
To capture the energetics of the bilayer, S is endowed with a uniform surface

tension σ and an areal bending-energy density

ψ = 1
2
μH2 + μ̄K, (5.1)

of the type put forth by Canham [21] and Helfrich [22], where μ > 0 and μ̄ are

the splay and saddle-splay moduli. The relevance of spontaneous curvature, which

ordinarily appears in the Canham–Helfrich model, to discoidal HDL particles has yet

to be investigated and, thus, is omitted from (5.1).

To capture the energetics of the apoA-I chain, C is endowed with a lineal bending-

energy density ϕ depending on the curvature κ of C and its arclength derivative κ′.

The latter dependence is included to account for the energetic cost of large, localized

curvature variations associated with kinks on the apolipoprotein chain discussed by

Brouillette et al. [156] and Klon et al. [157]. For simplicity, it is assumed that

ϕ = 1
2
ακ2 + 1

2
β(κ′)2, (5.2)
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where α > 0 is the constant flexural rigidity of C and β ≥ 0 is a higher-order gener-

alization thereof. Since C is closed, including a quadratic coupling term proportional

to 2κκ′ = (κ2)′ in ϕ would not alter the net potential energy and no generality is

lost by neglecting such a contribution. The particular choice (5.2) of ϕ is a special

case of a general expression for the lineal free-energy density of a polymer chain

proposed by Zhang et al. [173], who allow for arbitrary dependence on κ, κ′, and the

torsion τ of C. Granted the foregoing assumption and that external forces associated

with gravity, van der Waals interactions, or flow-related forces are negligible, the net

potential-energy of a discoidal HDL particle is given by

E =

∫
S
(σ + ψ) +

∫
C
ϕ. (5.3)

As a surface with boundary, S has Euler characteristic equal to unity. On using (5.1)

and (5.2) in (5.3) and applying the Gauss–Bonnet theorem (taking into consideration

that C is assumed to be smooth), the net potential-energy E becomes

E = Ea + El + 2πμ̄, (5.4)

where

Ea =
∫
S
(σ + 1

2
μH2) (5.5)

and

El =
∫
C

(
1
2
ακ2 + 1

2
β(κ′)2 − μ̄κg

)
, (5.6)

denote the effective areal and lineal potential energies, with κg being the geodesic

curvature of C. Without loss of generality, the additive constant 2πμ̄ in (5.4) is

disregarded hereafter.
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The assumed inextensibility of the apoA-I chain is imposed by working with the

augmented net potential-energy

F = Ea + El +
∫
C
λ, (5.7)

where λ is an unknown Lagrange multiplier.

5.5 Parameterization and nondimensionization

Let D = {(r, θ) ∈ R
2 : 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π} denote the disk of radius R. The

surface and boundary of a discoidal HDL particle can then be described by a smooth

function

x : D → R
3. (5.8)

Due to the inextensibility of C, x must satisfy

|xθ(R, θ)| = R, 0 ≤ θ ≤ 2π. (5.9)

With this choice, the bilayer and apoA-I chain are represented by

x(r, θ), 0 ≤ r < R, 0 ≤ θ ≤ 2π, (5.10)

and

x(R, θ), 0 ≤ θ ≤ 2π. (5.11)

On determining expressions for the geometrical objects H, κ, κ′, and κg consistent

with the parametrization (5.10)–(5.11), the augmented net potential-energy F de-

fined in (5.7) can be expressed as a functional of x.
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Figure 5–1: Schematic of a slightly perturbed discoidal HDL particle and its flat
circular reference configuration (in grays). The transverse deformation is exaggerated
for illustrative purposes.

It is convenient to present results in dimensionless form via the change of variables

x(r, θ) = Rξ(ρ, θ), r = Rρ, (5.12)

in which case the dimensionless reference domain is a disk of radius unity denoted

by R. In addition, it is convenient to introduce the following group of dimensionless

quantities (H, η, η̄, ν, ι, ε
)
:=

(FR

α
,
μR

α
,
μ̄R

α
,
σR3

α
,
λR2

α
,

β

αR2

)
. (5.13)

In particular, the dimensionless counterpartH of the augmented net potential energy

defined (5.7) takes the form

H =

∫ 2π

0

∫ 1

0

(ν + 1
2
ηR2H2)|ξρ × ξθ| dρ dθ

+

∫ 2π

0

(1
2
R2κ2 + 1

2
εR4(κ′)2 − η̄Rκg + ι

)|ξθ|ρ=1 dθ. (5.14)

For brevity, the adjective ‘dimensionless’ is dropped hereafter. To obtain linearized

equilibrium equations and study the stability of a discoidal HDL particle, it suffices
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to use an infinitesimal displacement approximation in which the position of a generic

point on S is given by (5.12), with

ξ(ρ, θ) = o+ (ρ+ u(ρ, θ))er + v(ρ, θ)eθ + w(ρ, θ)ez, (5.15)

where o indicates the origin of the reference disk and u, v, and w are the components

of ξ in er, eθ, and ez directions, respectively (Fig. 5–1). The inextensibility condition

(5.9) becomes

|ξθ(1, θ)| = 1, 0 ≤ θ ≤ 2π. (5.16)

The expansion (5.15) can be used to express (5.14) componentwise. The linearized

equilibrium conditions arise on expanding all terms in (5.14) up to the second order of

u, v, w, including their partial derivatives. For brevity, the intermediate calculations

are suppressed.

5.6 Equilibrium conditions

At equilibrium, the first variation Ḣ of the functional H in (5.14) vanishes. Notice

that a superposed dot indicates the first variation. Imposing the requirement Ḣ = 0

yields the partial-differential equation

Δ2w − ζ2Δw = 0 on R, (5.17)

with Δ the Laplacian on R and ζ = 2
√
ν/η, and boundary conditions

[
(ι+ ν − 1

2
) + ν(u+ vθ) +

1
2
(2u+ 5uθθ + 2uθθθθ − vθ)

− ε
(
uθθ + 2uθθθθ + uθθθθθθ

)− (
ι(uθ − v)

)
θ

]
ρ=1

= 0, (5.18)

[
ιθ + (ι+ ν − 1

2
)(uθ − v)

]
ρ=1

= 0, (5.19)
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[
− η

4
(Δw)ρ + νwρ +

1
2
(3wθθ + 2wθθθθ)− η̄(wθθ − wρθθ)− (ιwθ)θ

]
ρ=1

= 0, (5.20)[η
4
Δw + η̄(wρ + wθθ)

]
ρ=1

= 0. (5.21)

Moreover, the linearized version of the inextensibility condition (5.16) requires that

(u+ vθ)ρ=1 = 0. (5.22)

The equilibrium condition (5.17), which governs the local geometry of the lipid

bilayer, is the linearized version of the shape equation familiar from works on vesicles.

The boundary conditions (5.18), (5.19), and (5.20) express force balance on C in the

er, eθ, and ez directions, respectively. The remaining boundary condition (5.21)

involves the slope of the edge in the er-direction and, thus, expresses moment balance

on C.
Up to the order considered, the partial-differential equation (5.17) imposes no

restrictions on the in-plane displacements u and v. Hence, w and the in-plane com-

ponents u and v are coupled only on the boundary of R. Also, u and v are absent

from the boundary conditions (5.20) and (5.21). Thus, (5.17) and the associated

boundary conditions (5.20) and (5.21) may be used to determine w, independently.

Satisfaction of (5.17) and (5.18)–(5.21) at the trivial solution (u = v = w = 0)

results in a relation,

ι = 1
2
− ν, (5.23)

for the Lagrange multiplier λ which is analogous to a result obtained by Giomi &

Mahadevan [101] in their work on soap films bound by inextensible, elastic filaments.
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Next, using (5.23) in (5.19) yields

ι = constant. (5.24)

The eθ-component of force balance on the boundary of a discoidal HDL particle

therefore requires that the Lagrange multiplier ι be uniform.

5.7 Solving the system of equations

Along with conditions (5.23) and (5.24), the partial-differential equation (5.17)

and boundary conditions (5.20) and (5.21), suffice to completely determine the trans-

verse displacement w. In addition, using (5.23) in (5.18) yields

[
u+ 2uθθ + uθθθθ + ν(uθθ + u)− ε(uθθ + 2uθθθθ + uθθθθθθ)

]
ρ=1

= 0, (5.25)

which ensures the in-plane balance of forces at the boundary and should be accom-

panied by (5.22) (or an equivalent integrated version thereof).

5.7.1 In-plane deformation

Equation (5.25) is an ordinary-differential equation with constant coefficients. In

view of the periodicity of u (i.e., u(1, θ) = u(1, θ + 2πk), ∀k ∈ Z), (5.25) admits a

representation of the form

u(1, θ) = U sin(mθ) (m ∈ Z). (5.26)

Substitution of (5.26) in (5.25) yields a characteristic equation

(m2 − 1)
[
(m2 − 1) +m2(m2 − 1)ε− ν

]
= 0. (5.27)
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One solution of (5.27) is m2 = 1, which corresponds to the planar rigid body trans-

lation and is of no physical interest. Otherwise, (5.27) yields a critical value,

ν i
m = m2 − 1 +m2(m2 − 1)ε, (5.28)

of ν for each planar mode m. Granted that ε ≥ 0, the lowest critical value of ν

corresponds to m = 2 and is given by

ν i
c = ν i

2 = 3 + 12ε. (5.29)

The value ν i
c = 3 arising for ε = 0 is consistent with the results obtained by Chen &

Fried [162] for a circular soap film bound by an inextensible, elastic filament.

5.7.2 Transverse displacement

Modulo a rigid translation, the general solution of the partial-differential equation

(5.17) is

w(ρ, θ) = a0I0(ζρ) +
∞∑
n=1

(
cnρ

n + anIn(ζρ)
)
cos(nθ)

+
∞∑
n=1

(
dnρ

n + bnIn(ζρ)
)
sin(nθ), (5.30)

where Ii, i ∈ N, is a modified Bessel function of the first kind. Substituting (5.30)

into the boundary conditions (5.20) and (5.21) and invoking (5.23) and (5.24) results
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in an eigenvalue problem leading to the dispersion relation

[
− η

4

(
ζ3I ′′′n (ζ) + ζ2I ′′n(ζ)

)
+ (

η

4
+ ν)ζI ′n(ζ)

+ (
η

4
− η̄)n2ζI ′n(ζ) + n4In(ζ)− (ν + 1− η̄ +

η

2
)n2In(ζ)

][
η̄n(1− n)

]
−

[
− η

4
n(n− 1)2 + (

η

4
+ ν)n+ (

η

4
− η̄)n3 + n4 − (ν + 1− η̄ +

η

2
)n2

]
[η
4
ζ2I ′′n(ζ) + (

η

4
+ η̄)

(
ζI ′n(ζ)− n2In(ζ)

)]
= 0. (5.31)

The terms involving c1 and d1 in (5.30) represent rigid body rotations about the

diameter of domain R and, thus, are physically irrelevant. In addition, the require-

ments a0 = a1 = b1 = 0 must be met to satisfy the boundary conditions (5.20)

and (5.21) for n = 0 and n = 1. Thus, n = 2 is the first nontrivial mode of the

transverse deformation w. Due to its complexity, (5.31) will be studied numerically

and discussed in Section 5.9. Whereas ν is treated as a control parameter, η and η̄

are treated as known input parameters. The solution of (5.31), which distinguishes

the critical surface tension for each transverse mode n, is denoted by νt
n. Thus, w

can be written as

w(ρ, θ) =
∞∑
n=1

ωn(ρ)Θn(θ), (5.32)

with

ωn(ρ) = In(ζρ) + γnρ
n,

Θn(θ) = an cosnθ + bn sinnθ,

⎫⎪⎬
⎪⎭ (5.33)

and

γn =
η
4
ζ2I ′′n(ζ) + (η

4
+ η̄)

(
ζI ′n(ζ)− n2In(ζ)

)
η̄n(n− 1)

. (5.34)
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5.8 Stability of a flat circular HDL particle

The stability of the equilibrium configuration can be addressed by checking the

sign of the second variation Ḧ of the functional H. Consistent with the notation

for the first variation, a superposed double dot indicates the second variation. The

quantity Ḧ can be decomposed into a sum

Ḧ = Ḧi + Ḧt, (5.35)

of a purely planar component

Ḧi =

∫ 2π

0

[
(ν + 1)u̇+ (ν + 2− ε)u̇θθ + (1− 2ε)u̇θθθθ + u̇θθθθθθ

]
u̇ dθ (5.36)

and a purely transverse component

Ḧt =

∫ 2π

0

∫ 1

0

[η
4
Δ2ẇ − νΔẇ

]
ẇρ dρ dθ

+

∫ 2π

0

[(
ν +

η

4

)
ẇρ − η

4
ẇρρ − η

4
ẇρρρ

+ (ν + 1− η̄ +
η

2
)ẇθθ +

(
η̄ − η

4

)
ẇρθθ + ẇθθθθ

]
ẇ dθ

+

∫ 2π

0

[(η
4
+ η̄

)
ẇρ +

η

4
ẇρρ +

(η
4
+ η̄

)
ẇθθ

]
ẇρ dθ. (5.37)

5.8.1 Planar and transverse modes

The decoupling of the planar and transverse displacements in (5.35) enables sep-

arate studies of the stability of a discoidal HDL particle to planar and transverse

perturbations.

Planar stability requires that

Ḧi > 0. (5.38)
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Using a Fourier expansion, the in-plane variation u̇ may be expressed as

u̇(1, θ) =
∞∑

m=1

fm sinmθ, (5.39)

which, on substitution into (5.38), yields

∞∑
m=1

f 2
m(m

2 − 1)
[
(m2 − 1) +m2(m2 − 1)ε− ν

]
> 0. (5.40)

Since the variation u̇ is arbitrary, the coefficients fm in (5.39) are independent and

each term of the summand in (5.40) must separately satisfy the inequality (5.40). In

response to planar perturbations, a flat, circular HDL particle therefore obeys

ν < ν i
m : stable,

ν > ν i
m : unstable,

⎫⎪⎬
⎪⎭ (5.41)

with ν i
m given in (5.28).

Transverse stability requires that

Ḧt > 0. (5.42)

Similar to the strategy used to investigate stability with respect to planar perturba-

tions, a general transverse variation ẇ can be expanded in a Fourier series. However,

since the coefficients of each mode in the Fourier expansion of ẇ are independent, it

is, without loss of generality, possible to consider

ẇ(ρ, θ) = χn(ρ) cos(nθ), n ∈ N, (5.43)
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with χn being an arbitrary function. Determination of conditions necessary and suf-

ficient to ensure (5.42) for χn arbitrary appears to be challenging. An alternative

approach invokes the Rayleigh–Ritz variational method, in which χn is approximated

by sum of known functions multiplied by unknown coefficients. The known functions

must satisfy the geometrical boundary conditions but may otherwise be chosen arbi-

trarily. Guided by the structure of the general solution (5.30), consider the Ansatz

χn(ρ) = gnρ
n + hnIn(ζρ), (5.44)

where gn and hn are independent unknown coefficients. Substitution of (5.44) in

(5.43), and subsequently in (5.42), and evaluating the relevant integrals yields

Ḧt =
π

2
[V ]�[M ][V ] > 0, (5.45)

for each n, with [V ] = [gn hn]
� and [M ] a 2×2 matrix provided in the Appendix. The

condition necessary and sufficient for (5.45) to be satisfied is that [M ] be positive-

definite, namely that its components obey

M11 > 0, M11M22 > (M12)
2. (5.46)

As a consequence of (5.46)1, it follows that

ν < n(n+ 1)− 2nη̄. (5.47)

Due to its complexity, (5.46)2 will be studied numerically and discussed in Section 5.9.
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5.8.2 Onset of instability

The onset of instability corresponds to the vanishing of the second variation Ḧ
of H. It can be shown that the critical values ν i

n and νt
n of the surface tension

correspond, respectively, to the onset of the planar and transverse instability. For

ν = ν i
n and ν = νt

n, the solutions (5.26) and (5.32) can be used in (5.36) and (5.37),

respectively. Specifically, for each m and n, u̇ and ẇ can be expressed as

u̇(1, θ) = U̇ sin(mθ),

ẇ(ρ, θ) = ωn(ρ)(ȧn cosnθ + ḃn sinnθ),

⎫⎪⎬
⎪⎭ (5.48)

where U̇ , ȧn, and ḃn are the variations of the coefficients U , an, and bn. Regarding

(5.48)1 and (5.25), it is readily observed that Ḧi vanishes identically. Thus, (5.27)

determines the planar instability requirement and delivers the critical surface tension

ν i
m given in (5.28). Also, in view of (5.48)2 and the equilibrium conditions (5.17),

(5.20), and (5.21), Ḧt vanishes. Thus, the dispersion relation (5.31) furnishes the

condition necessary for the onset of transverse instability.

The connection between the stability conditions (5.46) and the critical value νt
n

at the onset of instability will be discussed in the next section.

5.9 Numerical results and discussion

Results from numerical studies based on the model are described next. Regarding

the various input parameters, it seems reasonable to fix some of them. In particular,

the splay modulus μ and the bounding loop bending stiffness α are kept fixed, unless

mentioned otherwise. Due to the lack of data for the bending stiffness or persistence

length of apoA-I, existing data for the persistence length of apolipoprotein C-II
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Figure 5–2: Stability plane showing the domains where a flat circular discoidal HDL
particle is stable or unstable under transverse perturbations. Solid lines show νt

n,
namely the solution of the dispersion equation (5.31). Regions below the dashed
lines are the domains where the stability requirement (5.46)1 is met.

chains, which are another common component of lipoprotein particles, are used. The

input parameters are merely used to illustrate the primary features of the problem;

modest deviations from their exact values should not significantly affect the nature of

the stability. Hatters et al. [164] report that the persistence length of apolipoprotein

C-II is approximately 36 nm, which corresponds to a bending stiffness of (36 nm)kBT ,

with kB Boltzmann’s constant and T the absolute temperature. Assuming a double-

belt apolipoprotein structure for the bounding loop yields α ∼ (70 nm)kBT . A

representative value μ ≈ 0.5 × 10−19 J is used for the splay modulus of a lipid

bilayer [163] and it is assumed [50, 51, 52, 53, 54, 55] that the reference HDL particle
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Figure 5–3: Stability plane for a flat circular HDL particle subjected to transverse
(n = 2) and planar (m = 2) perturbations, including four distinct regions (a)–(d).
While the solid line shows the variation of νt

2, the dashed line shows ν i
2 = 3 for

ε = 0 (as provided in (5.29)). Also depicted are side and top views of post-buckled
configurations corresponding to the regions (a)–(d).

has diameter 2R ≈ 10 nm. With these choices, (5.13)2 yields η ≈ 0.83. It thus seems

reasonable to use η = 1.

Figure 5–2 depicts the transverse stability of a flat circular HDL particle for dif-

ferent values of the surface tension ν and the saddle-splay modulus η̄. Only the first

four modes are considered. The solid lines indicate the variation of the critical sur-

face tension νt
n with η̄ for each mode, obtained from the dispersion relation (5.31).

The numerical technique used to solve the dispersion relation (31) involves systemat-

ically checking the sign of its left-hand side for wide ranges of the input parameters η̄

and ν. Careful numerical checks have been performed to ensure the accuracy of the
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Figure 5–4: Effect of η on the variation of the critical surface tension νt
2 with η̄.

Requirement (5.46)1 is met in the region below the dashed line.

solution. For various values of ν and η̄ in the stability plane, the second variation

condition (5.46) has been used to carefully determine the nature of stability in dif-

ferent regions of the (ν, η̄)-plane. Whereas the necessary condition (5.46)1 limits the

stable domain to the region below the dashed lines, (5.46)2 limits the stable domain

exactly into the region enclosed by each solid line. The intersection of (5.46)1 and

(5.46)2 determines the shaded region enclosed by each solid line as the domain where

a flat circular HDL particle is stable under a transverse perturbation with mode

n. Outside each enclosed region, the particle is unstable under a perturbation with

mode n. Evidently, the solid lines correspond to the onset of instability, namely the

point at which an exchange of stability occurs. Interestingly, for each n, the stable
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region for mode n is contained in the stable region of mode n + 1. It is therefore

evident that within the stable region for n = 2 the particle is stable with respect

to all higher modes. It is also found that, within the stable region enclosed by each

solid line, stability is enhanced by negative values of the saddle-splay modulus η̄, as

the stable domain for η̄ < 0 is larger than that for η̄ > 0. Finally, it is noteworthy

that, while the dispersion relation (5.31) has two roots for sufficiently large negative

η̄, it otherwise has only one root.

Figure 5–3 depicts the stability plane of a flat circular HDL particle under trans-

verse (saddle-like) and planar (elliptical) perturbations. While the solid line corre-

sponds to νt
2, the dashed line corresponds to ν i

2 = 3 for ε = 0 (given in (5.29)).

For other values of ε ≥ 0, the dashed line is merely shifted upward while remaining

straight and horizontal. According to (5.41), in the region below the dashed line,

a planar discoidal HDL particle is stable. The intersection of the transverse and

planar stable and unstable regions determines four distinct regions. In region (a),

a discoidal HDL particle is stable under both transverse and planar perturbations.

Thus, a flat, circular particle should be observable only for values of ν and η̄ in

region (a). In region (b), a discoidal HDL particle is stable under planar pertur-

bations but is destabilized by transverse saddle-like perturbations. In region (c), a

discoidal HDL particle is stable under transverse perturbations but is unstable to

planar perturbations. Thus, for values of ν and η̄ in region (c), a noncircular flat

HDL particle should be observed. Lastly, in region (d), a discoidal HDL particle

is unstable under both transverse and planar perturbations. Hence, for values of ν

and η̄ in region (d), flat and saddle-like HDL particles with circular projections onto
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the reference plane are not observable. To aid in visualizing the various possibili-

ties, schematic configurations of a discoidal HDL particle in regions (a)–(d) are also

provided in Figure 5–3. However, it should be emphasized that the linear analysis

presented here is unable to exactly predict final post-buckled configurations involving

large distortions. The schematic configurations provided in Figure 5–3 are merely

based on the stability/instability of a circular flat HDL particle under elliptic and

transverse saddle-like perturbations.

So far, it has been assumed that the dimensionless parameter η is fixed while

allowing the other dimensionless parameters ν and η̄ to vary. Regarding (5.13)2, if

the radius R is held fixed, the constancy of η requires that the ratio μ/α of the splay

modulus μ of the lipid bilayer and the bending rigidity α of the apoA-I chain to

be constant. However, to have a more complete picture of the results, considering

different values of η reveals the influence of μ or α on the stability of discoidal HDL

particles. Particularly, the effect of α, due to lack of information on the bending

modulus of apoA-I, seems essential. The variation of the critical surface tension

νt
2 with η̄ has been obtained for different values of η and is plotted in Fig. 5–4.

On increasing η, the region confined between each curve and the horizontal axis is

magnified and extends toward more negative values of η̄. For larger values of μ or

smaller values of α, the domain of stability for a discoidal HDL particle therefore

grows.

5.10 Concluding remarks

Simulations of Catte et al. [91] reveal that gradually removing lipid molecules

from discoidal HDL particles induces a transition from planar circular to nonplanar

241



saddle-like configurations. Since the length of the apoA-I chain does not change

during the depletion of lipid molecules from the bilayer of an HDL particle, decreasing

the number of lipid molecules while keeping the surface area of HDL particle fixed

should increase the average spacing between neighboring lipid molecules and, hence,

the tension on the surface of particle. This is analogous to increasing the distance

between the lipid molecules in each leaflet of the bilayer by imposing an areal stretch.

It is evident from the results of Figs. 5–2 and 5–3 that increasing the surface tension

ν diminishes the range of stable values for the saddle-splay modulus η̄ and favors

instability. For ν > ν i
c, with ν i

c given in (5.29), a flat circular HDL particle loses

its shape under in-plane perturbations. Similarly, for values of the surface tension

ν > νt
n, a flat circular HDL particle becomes unstable to transverse perturbations.

To reiterate, the first planar and nonplanar unstable modes correspond respectively

to planar elliptical and nonplanar saddle-like shapes.

Although the linear analysis performed here is incapable of specifying the final

shape that a discoidal HDL particle might adopt, our results, the simulations of

Catte et al. [91] and Shih et al. [5, 170], and the experimental observations of Silva et

al. [171], Miyazaki et al. [95], Huang et al. [172], and Skar-Gislinge et al. [97], suggest

that the observed planar elliptical and nonplanar saddle-like shapes of discoidal HDL

particles might represent stabilized post-buckled configurations of initially-flat circu-

lar particles which have become unstable due to identical types of perturbation—i.e.,

the planar elliptic (mode m = 2) and nonplanar saddle-like (mode n = 2). This hy-

pothesis is based on a longstanding tradition of analogous observations in structural

mechanics, a tradition wherein linearized stability analysis predicts the critical or
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buckling conditions under which a structure adopts a nontrivial configuration, usu-

ally a configuration with the same mode shape of the driving perturbation. The

linearized analysis presented in this paper determines conditions necessary for insta-

bility of a flat circular HDL particle. Nevertheless, a comprehensive understanding of

the equilibrium and stability of discoidal HDL particles requires a nonlinear analysis

capable of determining nontrivial configurations involving large distortions [174].

An important next step would be to compare the predictions of the linearized

analysis to results from experiments or numerical simulations. The numerical results

presented here predict the stability of a flat circular HDL particle for tentative values

of the salient dimensionless parameters. Although the qualitative features of these

results should not change significantly for modest deviations from parameter values,

access to more realistic values for these parameters would naturally allow for more

accurate predictions. For example, the bending rigidity α of the apoA-I chain is

unavailable and has been approximated by the a reported value for apolipoprotein

C-II. Also, the surface tension σ (and perhaps the bending moduli μ and μ̄) may vary

with the composition of the lipid bilayer and the number density of lipid molecules,

which are sensitive to experimental conditions and assumptions underlying simula-

tions. The existing simulations [91, 5, 170] and experiments [171, 95, 172, 97] do not

provide quantitative information guidelines for comparisons. Further experiments or

simulations designed to evaluate the underlying physical parameters and to deter-

mine the conditions under which flat noncircular and saddle-like configurations arise

therefore seem worthy of the required effort.
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5.11 Appendix

The components of the matrix [M ] in (5.45) are

M11 = 2n(n− 1)
(− 2nη̄ − ν + n(n+ 1)

)
,

M12 = M21 = (η/4)
(
ζI ′n(ζ)(n

2 + n+ 1)

− In(ζ)n
2(n+ 2) + ζ2I ′′n(ζ)(n− 1)− ζ3I ′′′n (ζ)

)
+ η̄(1− n)

(
2nζI ′n(ζ) + 2n2In(ζ)

)
+ ν

(
ζI ′n(ζ) + nIn(ζ)(1− 2n)

)
+ 2n2(n2 − 1)In(ζ),

M22 = (η/4)
(
2ζ2(I ′n(ζ))

2 + 2ζ3I ′n(ζ)I
′′
n(ζ) + 2ζI ′n(ζ)In(ζ)

− 4n2I2n(ζ)− 2ζ2I ′′n(ζ)In(ζ)− 2ζ3I ′′′n (ζ)In(ζ)
)

+ η̄
(
2ζ2(I ′n(ζ))

2 − 4n2ζIn(ζ)I
′
n(ζ) + 2n2I2n(ζ)

)
+ ν

(
2ζI ′n(ζ)In(ζ)− 2n2I2n(ζ)

)
+ 2n2(n2 − 1)I2n(ζ). (5.49)
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CHAPTER 6
Concluding remarks

In this chapter, the key conclusions and original contributions of the thesis are

provided. Also, possible future extensions are outlined.

6.1 Conclusions

This thesis presented continuum-based modeling and analysis of lipid bilayers.

Two applications were considered: multiphase vesicles and discoidal HDL particles.

• Mechanical modeling of lipid bilayer

First, the origins of spontaneous curvature in lipid bilayers were considered. Guided

by Zurlo [63] and Deseri et al. [64], the lipid bilayer was considered as a three-

dimensional shell-like structure. As a natural choice, the spontaneous state (the state,

at which the lipid bilayer midsurface exhibits a particular spontaneous curvature ten-

sor), was considered as a reference configuration. A comprehensive description of the

kinematics of the lipid bilayer under a general deformation was presented. Effect of

leaflets coherency in the local and global forms (area compatibility) were considered.

The material symmetry of the lipid bilayer concerning its in-plane isotropy and fluid-

ity was studied and a proof leading to the representation theorem of the volumetric

energy density was provided. Geometrical expressions of the kinematical invariants

appearing in the volumetric energy density were given. The volumetric incompress-

ibility of lipid bilayer was highlighted, along with its effect on thickness changes of
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the lipid bilayer under stretch or bending. Adopting the Coleman–Noll [131] proce-

dure and using the volumetric energy density, general relations for the stress in the

lipid bilayer were derived.

The areal energy density of a lipid bilayer with spontaneous curvature was derived

after the dimension reduction procedure involving integration of the volumetric en-

ergy density across the lipid bilayer thickness. Attention was paid to deformations

in which the areal stretch exhibits mild changes on the midsurface. The areal energy

density, in general, is a function of the spatial (observed) mean and Gaussian curva-

tures H and K, the spontaneous counterparts H◦ and K◦ of those quantities, and the

areal stretch J of the midsurface. Based on the derived stress relations, an alternative

explanation for the bending moduli in terms of areal stiffness and tension was given.

The limiting case under which the areal energy density reduces to an expression of

Canham–Helfrich type was studied. An important observation—also, just recently

observed by Seguin and Fried [66] based on a microphysical approach—was that the

Canham–Helfrich type energy, apart from the spontaneous mean curvature H◦ also

involves the spontaneous Gaussian curvature K◦. The effect of leaflet asymmetry

was also studied. While leaflet asymmetry may contribute to a nonzero spontaneous

curvature (e.g., through different molecular geometries of the leaflets), the constitu-

tive asymmetry (i.e., the different mechanical responses of the leaflets) must also be

considered. It was revealed that the constitutive asymmetry can emerge as a sec-

ondary contribution Hc to the spontaneous mean curvature H◦, combining together

to yield a net spontaneous curvature Hsp.

• Mechanics of multiphase lipid vesicles

246



The equilibrium of two-phase vesicles was explored in the context of a simple

continuum model. Two classes of configurations were studied. In the first class, a

two-phase vesicle consists of multiple lipid domains budded from the host lipid mem-

brane. The second class involves ground-state configuration, in which the multiple

domains have coalesced and formed a single, large vesicle of pure phase. Inspired by

numerous configurations observed in the existing experimental studies of two-phase

vesicles, each lipid domain was assumed to be a spherical cap. While multidomain

configurations form rapidly (over time intervals on the order of seconds), ground-

state configurations take considerably longer (over time intervals up to the order of

hours) to form. Accordingly, it was assumed that the enclosed volume of vesicle

in a multidomain configuration is fixed, as the solvent does not have enough time

to diffuse across the membrane over relevant time scales. However, volume changes

were allowed for ground-state configurations. In this case, guided by Seifert [23], the

osmotic pressure inside the vesicle was allowed to change with the volume of vesicle

in accord with the van’t Hoff [154] relation. For both classes of configurations, geo-

metrical compatibility and force balance were satisfied across the junctions of lipid

domains. The force balance, as observed previously by Baumgart et al. [3, 76], Al-

lain and Ben Amar [77], and Tian et al. [86], links the line tension at the interface

with the surface tensions of the lipid domains. The surface tension in spherical lipid

bilayers depends on the osmotic pressure through the Young–Laplace equation (e.g.,

see [88, 76, 81, 151, 152]). Thus, as opposed to the common treatment of line tension

in multiphase vesicles, the line tension was considered as a dependent variable while

the osmotic pressure was chosen as a control parameter.
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In multidomain configurations with fixed volume, the osmotic pressure cannot

contribute to the net potential energy of a vesicle through a change of volume. How-

ever, it can indirectly change the energy through the lineal contribution in which the

line tension depends on the osmotic pressure. Our results showed that higher osmotic

pressure increases the net potential energy of multidomain configurations and also

its energy difference with that of the configuration with coalesced domains. As a

result, it was concluded that the osmotic pressure increase may facilitate coalescence

of lipid domains.

Next, equilibrium of a two-phase vesicle in ground states were considered. For dif-

ferent values of the osmotic pressure Π◦, variations of the net potential energy were

explored in different possible configurations characterized by the radius of contact

circle of two domains. The results indicated the existence of at most two mini-

mum energy states. The first minimum energy state corresponds to a pinched-off

configuration where two lipid domains resemble complete spheres. The other state

corresponds to a complete sphere configuration where two lipid domains have same

radii of curvatures and, together, form a complete spherical vesicle. Emphasis was

placed on the role of a critical osmotic pressure Πc below which the complete sphere

configuration is the only minimum energy state. However, above Πc, both minimum

energy states may exist and these states are separated by an energy barrier. These

two minimum energy states may be considered as ground states. For osmotic pres-

sures Π◦ greater than Πc, it was proposed that whether a vesicle takes the pinched-off

or complete sphere configuration can be determined based on the excess radius of the
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vesicle before the phase separation. Accordingly, a critical excess radius depending

on the initial osmotic pressure was identified.

• Equilibrium and stability of discoidal HDL particles

A model for investigating the equilibrium and stability analysis of discoidal HDL

particles was developed. Inspired from the shape and the general assembly of dis-

coidal HDL particles, a simple mathematical model was proposed. The model in-

cludes a smooth material surface (representing the lipid bilayer) bound on its edge by

an inextensible material curve (representing the double-belt apoA-I). Based on phys-

ical justifications, it was assumed that the surface and curve are perfectly bonded at

their interface. The energy of an isolated discoidal HDL particle was associated with

the surface tension (or energy per unit area) and bending energy of the lipid bilayer

and the flexural energy of double-belt apoA-I. In addition, the relevant dimensionless

parameters were identified.

Based on a variational approach and adopting a direct, geometrical formulation,

the general nonlinear equilibrium equations were derived and physically interpreted.

It was revealed that, while on the surface the local equilibrium is governed by the

conventional shape equation, the equilibrium of the boundary is governed by four dis-

tinct equations expressing the local force and moment balances. It was also explained

how the formulation might easily be adapted for the case in which the lipid bilayer is

locally inextensible. Next, an alternative presentation for formulating the problem in

a parameterized form was generated. For that purpose, the conventional flat circular

configuration of an HDL particle was used to parametrize a general configuration in

the observed space. The parametric counterparts of equilibrium equations on the
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surface and boundary were derived. In addition, confining attention to deformations

involving small slopes, the relevant linearized versions of equilibrium equations of

a flat circular HDL particle were obtained. It was shown that the transverse (out

of plane) and in-plane deformations of a flat circular HDL particle are decoupled

in the small-slope regime. The closed-form analytical solutions were provided for

the linearized equations for different deformational modes. Two dispersion relations

were identified as requirements for satisfaction of the equilibrium conditions on the

boundary in the in-plane and transverse directions. Physically, these relations indi-

cate conditions necessary for existence of nontrivial solutions.

Next, the stability of discoidal HDL particles was investigated. The main moti-

vation for this investigation was recent experimental observations and simulations

[92, 93, 94, 95, 96, 94, 97, 50] revealing that discoidal HDL particles can adopt non-

trivial configurations involving nonplanar saddle-like and planar elliptical shapes. It

was hypothesized that these nontrivial shapes may represent post-buckled configu-

rations of a flat circular HDL particle. To confirm this hypotheis, the linear stability

of a flat circular HDL particle was explored. First, using a second variation analysis,

both transverse and planar stabilities were studied. While an exact analysis was

performed for the planar stability, analysis of the transverse stability was assisted

using the approximate Rayleigh–Ritz variational method. Conditions necessary and

sufficient for linear stability were presented. It was shown that the first planar and

transverse instability modes are planar elliptical and nonplanar saddle-like, respec-

tively. In addition, motivated by the recent work of Giomi and Mahadevan [101], a

simple energy comparison method was used for the linear stability analysis. In this
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method, the sign of energy change under small perturbations was used to determine

whether or not a flat circular HDL particle is stable.

Detailed numerical results were provided for the equilibrium and stability in the

small-slope regime. It was observed that the dimensionless splay and saddle-splay

moduli η and η̄ and the surface tension ν play important physical roles. Transverse

and planar stabilities were investigated for wide ranges of input parameters and dif-

ferent deformational modes. Particularly, for a fixed value of dimensionless parameter

η, stable and unstable regions of the (η̄, ν)-plane were detected. It was shown that

the loci of stability changes exactly coincide with those corresponding to the roots

of the relevant dispersion relations. As a general observation, it was revealed that

at each fixed value of η̄, increasing the dimensionless parameter ν (or equivalently

increasing the surface tension σ) until the critical values ν i
c and νt

c leads, respectively,

to loss of stability under in-plane and transverse perturbations, although exceptions

exist for large magnitudes of negative η̄. Hence, the results suggest possible shape

transitions from flat circular to flat elliptic or nonplanar saddle-like shapes. It was

shown that the stable domain for negative η̄ is larger than that associated with pos-

itive values of η̄. Also, it was observed that larger values of η favor more transverse

stability. The efficacy of the energy comparison method was examined in comparison

with the second variation analysis. It was concluded that for small magnitudes of η̄

or large values of η, the energy comparison method is an efficient tool for analysis

of transverse stability. For planar stability, its result matches nicely with that of the

second variation analysis.
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6.2 Original contributions to knowledge

Original contributions of this thesis are:

1. The general stress relation within a lipid bilayer were derived based on a hy-

perelastic model consistent with in-plane isotropy and fluidity of lipid bilayer.

2. A dimensionally-reduced areal energy density was derived for lipid bilayers

with spontaneous curvature. Also, the connection with the existing and highly

popular Canham–Helfrich model incorporating spontaneous curvature was es-

tablished.

3. The presented model justifies the appearance of spontaneous curvature in the

Canham–Helfrich model in a clear and rational way. Apart from the conven-

tional spontaneous mean curvature, the dimensionally-reduced energy density

contains a spontaneous Gaussian curvature. Also, the effect of differences be-

tween the constitutive descriptions of the leaflets on the spontaneous mean

curvature in the Canham–Helfrich type energy density was discussed.

4. Equilibrium of multidomain and ground-state configurations of a two-phase

vesicle were studied using a simple mechanical model.

5. The effect of osmotic pressure on the energy of a multidomain configuration

was studied. The proposed model predicts two pinched-off and complete sphere

shapes as the ground-state configurations of a two-phase vesicle.

6. The importance of a critical osmotic pressure and a critical excess radius of a

vesicle before phase separation on the ground-state shape of a two-phase vesicle

was clarified.
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7. A continuum mechanical model was developed to explore the equilibrium and

stability of discoidal HDL particles.

8. Using the variational approach and a direct, geometrically-based formulation,

the equilibrium conditions of a discoidal HDL particle under general nonlinear

distortion were derived.

9. An alternative formulation based on a parametrization of the surface and

boundary of a discoidal HDL particle was derived. Accordingly, the equilibrium

conditions were reformulated in parametrized form.

10. The linearized equilibrium conditions were derived based on the small-slope

approximation (about the flat circular shape). It was shown that the transverse

and in-plane equilibria of a discoidal HDL particle decouple in the linearized

formulation. Different deformational mode shapes were identified and closed-

form solutions to the linearized equilibrium conditions were given.

11. The linear stability analysis for a flat circular HDL particle was developed using

the second variation of the energy functional. Also, a simple energy comparison

method was used to study linear stability.

12. Numerical investigations were provided for linear stability of a flat circular

HDL particle. Various stable and unstable regions (of input dimensionless

parameters) with respect to small transverse and planar perturbations were

detected. Nonplanar saddle-like and planar elliptic mode shapes were identified

as the first transverse and planar instability modes. The critical conditions for

such instabilities were obtained.
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13. Qualitative connections between the presented instability results and the non-

trivial saddle-like or flat elliptic shapes observed in the existing simulations and

experiments were made. Consistent with the first saddle-like and flat elliptic

instability modes predicted by the presented stability analysis, it was hypoth-

esized that the observed nontrivial shapes of a discoidal HDL particle in the

simulations and experiments might be post-buckled states of destabilized flat

circular HDL particles.

6.3 Future works

Following issues can be addressed in future works:

1. The role of constitutively-induced spontaneous curvature can be addressed ex-

perimentally or numerically.

2. The effect of spontaneous Gaussian curvature K◦ can be studied in nonuniform

lipid systems such as multiphase vesicles.

3. The importance of critical osmotic pressure Πc and critical excess radius can

be confirmed experimentally or by numerical simulation.

4. Stability of discoidal HDL particles can be addressed by numerical simulations

or experimentally and quantitative comparisons with the presented results can

be performed.

5. Experiments or MD simulations can be used to determine the surface tension

and bending moduli of lipid bilayer in a discoidal HDL particle. In addition,

to best of the author’s knowledge, the bending stiffness or persistence length

of apoA-I chain is not yet measured. Upon provision of more realistic values of
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these input parameters, the presented results on the stability of discoidal HDL

particles can be refined.

6. The presented parametrized description and the variational setting provide a

useful platform for implementation of numerical tools such as finite-element

method.
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[14] P. Fromherz, C. Röcker, and D. Rüppel, “From discoid micelles to spherical
vesicles. the concept of edge activity,” Faraday Discussions of the Chemical
Society, vol. 81, pp. 39–48, 1986.

[15] W. Neu and J. Neu, “Mechanism of irreversible electroporation in cells: Insight
from the models,” in Irreversible Electroporation (B. Rubinsky, ed.), Series in
Biomedical Engineering, pp. 85–122, Springer Berlin Heidelberg, 2010.

[16] J. F. Nagle and S. Tristram-Nagle, “Structure of lipid bilayers,” Biochimica et
Biophysica Acta (BBA)-Reviews on Biomembranes, vol. 1469, no. 3, pp. 159–
195, 2000.

[17] J. Liu and J. C. Conboy, “1,2-diacyl-phosphatidylcholine flip-flop measured di-
rectly by sum-frequency vibrational spectroscopy,” Biophysical Journal, vol. 89,
no. 4, pp. 2522–2532, 2005.

[18] M. Bloom, E. Evans, and O. G. Mouritsen, “Physical properties of the fluid
lipid-bilayer component of cell membranes: a perspective,” Quarterly Reviews
of Biophysics, vol. 24, no. 03, pp. 293–397, 1991.

[19] S. May, “Protein-induced bilayer deformations: the lipid tilt degree of free-
dom,” European Biophysics Journal, vol. 29, no. 1, pp. 17–28, 2000.

[20] A. Lee, “Lipid–protein interactions in biological membranes: a structural per-
spective,” Biochimica et Biophysica Acta (BBA)-Biomembranes, vol. 1612,
no. 1, pp. 1–40, 2003.

[21] P. B. Canham, “The minimum energy of bending as a possible explanation
of the biconcave shape of the human red blood cell,” Journal of Theoretical
Biology, vol. 26, no. 1, pp. 61–81, 1970.



258

[22] W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experi-
ments.,” Zeitschrift für Naturforschung. Teil C: Biochemie, Biophysik, Biolo-
gie, Virologie, vol. 28, no. 11, pp. 693–703, 1973.

[23] U. Seifert, “Configurations of fluid membranes and vesicles,” Advances in
Physics, vol. 46, no. 1, pp. 13–137, 1997.
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