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Abstract 

This thesis presents a probabilistic model, specifically a nonhomogeneuus Markov 

model, for the description of fatigue crack growth. This model is capable of predicting 

the statistics of crack growth, the mean crack sbe and the variance in the crack size, 

at future times given two empirically determined system parameters, À and K, and an 

initial crack size distribution. Prior to the mathematical developmel1t of this model 

a brief review of existing crack growth models is presented. After the mathematical 

development of the model has been presented the results from a previous application 

in the study of pitting corrosion are presented. Following this, the results from the 

modeIIing of several existing fatigue data sets are examined in order to determine the 

necessary empirical mô.terial parameters and also to verify the mode} 's applicability. 

Once the model has been verified and the empirical parameters determined one data 

set is chosen in order to illustrate the uses of this model for component reliability 

predictions. These uses include reliability at a future time, inspection optimization 

and the effect of changes in repair policy on reliability. 
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Résumé 

Cette thèse présente un modèle probabiliste, en particulier un modèle Markov non­

homogène, qui décrit la propagation d'une fissure en fatigue. Ce modèle est capable de 

prédire les statistiques de propagation d'une fissure, la grandeur moyenne et la variance 

de la fissure, étant donné deux paramètre~ du système, À et K,qui ont été déternùnés 

empiriquemen~, et la distribution initiale de la grandeur des fissures. Avant de procéder 

au développement mathématique de ce modèle, une brève révision des modèles actuels 

en propagation de fissure est presentée. Après la présentation du développement, les 

résultats provenant d'une application précédente d'une étude de piqùres de corrosion 

sont présentés. Ensuite, les résultats qui ont été produits par le modelage des séries 

actuelles de données sont évalués dans le but de détermmer les paramètres empiriques 

nécessaires du système et aussi afin de vérifier l'application du modèle. Une fois que 

le modèle est verifié d que les paramètres empiriques sont déterminés, une série de 

données est choisie afin d'étudier les usages de Cf' modèle pour prédire la fiabilité des 

composants. Ces usages comprennent la fiabilité dans un temps futur, l'optiITÙzation 

des inspections et l'effet que des changements de la politique d~ réparation produisent 

sur la fiabilité. 
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Chapter 1 

INTRODUCTION AND 

MOTIVATION 

1.1 The Importance of Fatigue and ReHability 

The phenomenon known as fatigue is the prirnary cause of failure of cornponents and 

structures. Fatigue is the pro cess whereby a component will fail when subjected to 

alternating stresses at a level below the limit stress of the material. These failures can 

have a wide variety of effects, ranging from inconvenience to loss of lire. Since almost 

aIl engineering structures are subjected, to sorne degree, to fluctuating loads, it is vital 

that the design engineer have the ahility to account for them. 

It is accepted engineering practice to treat a metal as a homogelleous continuum. 

In the case of static stress analysis this is often a valid assumption which does not 

usually lead to any serious errors. When performing a fatigue analysis, however, this 

is no longer true. It is precisely because the rnaterial is no homogencous that scatter 

is observed in fatigue test data even in strictly controlled laboratory experirnents. The 

scatter is due to microscopie defects and necessitates the use of probability theory to 

accurately describe both fatigu~ crack initiation and propagation. 

This use of probabilistic methods leads directly to the concept of rcliability, which 

has been defined by Bompas-Smith [1] as the probability that a component will perJorm 

1 
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satisfactorily for a specified period of time under specified operating conditions. By 

making use of this concept engineers are able to compare their designs on a quantitative 

basis and can makc necessary modifications in order to reach a desired reliability level. 

Petroski [2J has reviewed a recent study by the Nationa! Bureau of Standards and 

BaUclIe Columbus Laboratories [3] which came to the conclusion that the total (..~sts 

of fracture, which includes many diverse phenomenon, amount to weB over $100 billion 

annually in the United States alone. These costs arise not only from the replacement 

of brokcn components but are also due to overdesign, inventory cost8, inspection costs, 

insurancc against failure and many other sources. T~is report goes on to conclude that 

thcse costs coulù be reùuced by one-half by making better use of available technology 

and also by the use of the improved techniques of fracture control expected to come 

from future resear-:h. Petroski also states that it is estimated that 50 to 90 % of 

ail structural failures are a result of crack growth. These statements illustrate the 

importance of the study of fatigue crack growth and are most definitely a source of 

moti vation for this thesis. 

It is the task of the reliability engineer to assist the design engineer with design 

review procedures and statistical analyses. However, the designer still remains the 

key person to ensure component and system reliability[4]. With the ad vent of today's 

increasingly complex structures it is no longer sufficient to depend on good design 

practices to ensure structural int.f',~"ity. Reference [5] lists some of the motivating 

factors for the study of the reliabIlity of mechanical components : 

1. Lack of Design Experience. Changes in technology occur quite rapidly and 

consequently mechanical designers no longer have the time to master the design, 

especially when complex equipment is designed for use in aerospace or military 

applications. 

2. Cost and Time Constraints. Due to the costs and time involved, the designer 

cannot learn from past mistakes. In other words, the trial and error approach 

cannot be used. 
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3. Optimization of resources. The workable design is no longer considered suC­

ficient. The design must be optimized subject to the constraints on reliability, 

cost, weight, performance, size, etc. 

4. Stringent Requirements and Severe Environments. Because oC the large­

scale investments in developing system" to be used under severe environments, 

such as the military or space, the reliability problem becomes more important. 

5. Influence from Electronic Reliability. The vastly improvcd techniques for 

predicting electronic reliability, and their success, stimulated similar develop­

ments in mechanica.1 engineering. 

1.2 Thesis Objectives 

It was proposed by Forsyth [6] that there are two stages in the fatigue process, this is 

illustrated in Figure 1.1. Stage lis called crack initiation where the crack, which oCten 

forms at a local discontinuity, is extremely small. When the crack has been initiated it 

propagates in a direction perpendicular to the applied stress, this is Stage Il. lt is this 

stage that is of great interest in practical applications as the crack is large enough to 

be detected and its growth monitored. It is, therefore, with this stage that this report 

is concerned. 

Not only do engineering materials contain discontinuities but each one of a group 

of supposedly identical components will have a different number and distribution of 

them. This is largely responsible for the uncertainty involved with fatigue crack size 

predictions. Because of this, simply rredicting the mean crack size hy detcrministic 

methods is not sufficient, probabilistic methods should be employcd. This thcsis will 

detail the development of a non-homogeneous Markov mode! that will prcdict not only 

the mean crack size but its variance as weil. This mathematical model will assist the 

engineer who is trying to determine: the reliability of . component at sorne future time; 

the optimum time for an inspection procedure; and the inspection schedule nccessary 
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Figure 1.1: The Two-Stage Fatigue Process [6] 
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to maintain a certain level of reliability. By allowing the engineer to determine how 

cornponent reliability would be affected by various changes in inspection schedule, 

allowable flaw sit:;e, quality of inspection procedure, etc. this model can become a 

valuable tool for reliable designs. 

1.3 Thesis Organization 

Chapter 2 This chapter will present an introduction to fatigue and reliability, in­

cluding sorne of the methods that have been used for reliability calculations. 

Chapter 3 This chapter will detail the mathematical development of the Markov 

mode} to be used in this thesis. 

1 

j 
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Chapter 4 The specifie research objectives of the current work will be briefly prc­

sented here. 

Chapter 5 In this chapter the Markov model will be applied to several data sets 

(OFHC Cu, WPF, XWPF) and the results for the modelling of crack growth will be 

given. 

Chapter 6 The reliability methodology used in this thesis and the results of the 

reliability calculations will be presented and discussed in this chapter. 

Chapter 7 This chapter will contain the conclusions and the recommendations for 

future work. 
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Chapter 2 

INTRODUCTION TO FAr.rIGUE 

AND RELIABILITY 

2.1 Fracture Mechanics and Fatigue 

2.1.1 Introductory Fracture Mechanics 

Fracture Mechanics concepts are used today by design engineers in order to anticipate 

and control both brittle fracture and fatigue failure. The first attempts at solving 

problems involving fracture were made by Griffith [7,8] and for this he is known today 

as the father of fracture mechanics theory. The Griffith energy criterion, as it is known, 

considers an infini te plat.! of unit thickness with a central transverse crack of length 

2a. With the ends fixed, a stress, a, is induced over the plate and the crack extends 

by a distance, da. Figure 2.1 illustrates the changes in the load-displacement diagram, 

as weIl as a schematic diagram of the plate. 

Originally the energy contained in the plate is given by the area OAB. As the crack 

grows by da the clastic energy stored in the plate decreases to OCB due to a decrease 

in plate stiffness. Therefore, there is a release of energy equal to the area OAC. What 

Griffith stated was that the crack will propagate if the energy released by crack growth 

6 
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Figure 2.1: The Griffith plate and load-displacement diagram [9] 

provides the necessary energy for the crack to grow. This can be written as: 

where: 

U = elastic energy of the plate, and 

W = energy required for crack growth or fracture energy. 

7 

(2.1 ) 

Making use of the work of lnglis [10], Griffith calculated dU/da per unit thickness and 

per half crack length, a, as : 

where: 

dU = lI"u
2
a = G , 

da E 

E = Young's Modulus 

G = Energy release rate per unit crack extension, whose units are 

energy per unit thickness, per unit of crack extension 

(2.2) 



( 

CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 8 

The energy spent in propagating a crack (dW Ida) can also he denoted by R, the 

crack resistance of the material. Using this, Equation 2.1 states that G must he at 

least equal to R for crack propagation to occur, or, the condition for propagation can 

he written as: 

G?:.R. (2.3) 

Griffith derived his equation for glass, which is extremely hrittle. He assumed, 

therefore, that R was related to surface energies only. In ductile materials, however, 

plastic deformation occurs at the crack tip. The energy associated with the production 

of this plastic zone may he considered as the epergy required for crack growth. 

As a result, Linear Elastic Fracture Mechanics (LEFM) is invalidated hy the elastic­

plastic hehavior and formation of large plastic zones in engineering materials. Because 

of this it is necessary to determine what is meant hy a large plastic zone. Provan[ll] 

has discussed the mathematical development of LEFM stress fields where he shows 

the existence of a stress singularity term that is inversely proportional to the square 

root of the radius of the plastic zone (r- 1/ 2). Irwin[12] made his first plastic zone size 

estimation as: 

(2.4) 

where: 

/(1 = Yu~ (and Y is a constant of proportionality) 

rearranging, we have: 

(2.5) 

The actual size of the plastic zone must he larger than ry because the load represented 

hy the shaded are a in Figure 2.2 must he sustained. Irwin therefore modified the 

plastic zone size and arrived at a value of plastic zone size, r p' of 



-

CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 9 

Figure 2.2: Irwin's first estimate of plastic zone size [12] 

r p = 2r y = - _\-1 (r)2 
7r (1ya 

(2.6) 

where (.K.) 2 is called the plastic constraint factor. 
(11/_ 

The plastic region for Plane Stress is larger than that for Plane Strain(for the 

mathematical development see [11)), this meé1.ns that, in general, plane stress failure 

will be ductile while plane strain fracture will he hrittle, even îor a material that is 

generally ductile. Considering the plastic region in front of a three-dimensional crack 

front as in Figure 2.3, it is easily observed that the plastic zone is larger at the Cree 

surfaces. This is expected sinee no matter how thin the specimen, plane stress must 

exist at a free surface. 

This explains the ohserved results of laboratory tests where thin samples show 

higher values of fracture toughness, Kle. Since plane stress fracture toughness is influ­

enced by specimen geometry it is important that in testing for a maLerials 1< le value 

plane stra.in conditions are maintained. This can he accomplished hy using specimens 

that have a thickness larger than a limiting thickness where the critical value of stress 

intensity factor reaches its minimum plane strain value. 

1 
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crack front 

Figure 2.3: The Tluee Dimensional Plastic Zone [11] 

2.1.2 Constant Amplitude Fatigue Crack Growth 

In order to he able to predict how a fatigue crack will propagate under constant am­

plitude cyclic loading, experiments are performed. These experiments monitor the size 

of the crack, a, as a function of the number of load cycles, N. The results of a typical 

experiment of this type can be shown schematically as in Figure 2.4. 

From the experimental data obtained, the rate of change of crack size with respect to 

cycles, da/dN, can be determined. \Vhen da/dN is plotted against the stress intensity 

factor !:::J.J(I on a log-log scale there are three distinct regions on the graph as shown 

in Figure 2.5. Region 1 contains the "threshollf' value, J(th, below which the crack will 

not propagate. Region III JS where the crack approaches its critical size and where the 

stress intensity factor approaches its critical value, J(]c' The region of interest in this 

section is Region II, where there is a linear relationship hetween the log of da/dN and 

the log of tl.l\ 1. 

As discussed by Provan [13], when the plastic zone at the crack tip is small compared 

to the crack size, the crack growth rate is governed hy the stress intensity factor, or: 

da 
dN = f(tl.I() . (2.7) 
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Recalling from Section 2.1.1 that : 

K = YuJ;M, (2.8) 

we have that: 

!:lI( = Y!:luva , (2.9) 

or, 

(2.10) 

The crack growth rate can he influenced by many factors including material micro­

structure, mean stress, loading frequency, and environment among others. This heing 

the case therc have been many attempts to describe the dajdN vs. t::.I< curve by 

empirically determined "crack growth laws". The two that are most familiar are those 

of Paris-Erdogan [14]: 

(2.11) 

and of Forman [15]: 

da C(t::.I<)m 
-= , 
dN (1 - R)Klc - t::.K 

(2.12) 

where C and mare material constants that are determined from experimental data, 

and R is caUed the stress ratio, given by : 

R = f7min = I<min . 
Umaz I<maz 

(2.13) 

The Paris-Erdogan law can only be used in Region II of the crack growth rate curve 

while the Forman law can be used in Regions II and III. 
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2.2 Reliability 

2.2.1 Introduction 

Although the idea of reliability, especially when human life is at risk, is not new, thc 

study of reliability has a relatively recent origin, its significance began to be recognized 

after World War II. As discussed by Shooman [16] several studies at the end of the 

war, between 1945 and 1950, revealed sorne startling results: 

• A Navy study made during maneuvers showed that the electronic equipmcnt was 

operative only 30% of the time. 

• An Army study revealed that between two-thirds and three-quarters of lhcir 

equipment was out of commission or un der repairs. 

• An Air Force study conducted over a 5 year period disclosed thal repair and 

maintenance costs were about 10 times the original cosl. 

These findings motivated much research into the causes and prevention of failure. 

In recent times there have been much publiclzed accounts of son1t' catastrophic 

failures, notably in the commercial aircraft industry. These failures are by no ITlcans 

the first of their kind and, unfortunately, they will not be the last. They have, however, 

increased public awareness of the fact that aIl designs are not perfect and that lhere is 

a degree of uncertainty involved. This has led, in turn, to a public demand for grcater 

safety precautions. Just what steps should be .aken are a matter of considerable 

difficulty since the same public that wants lower risks associated with flying do not 

wish to have airline fares raised. In order to decide which measureh provide the grcalest 

increase in reliability for the least cost we must be able to quanlify rcliability just as 

we can quantify costs. 
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2.2.2 Empirical Reliability Distributions 

One method for prcdicting component reliability is through the use of exhaustive labo­

ratory testing. A componcnt or a standardized test specimen is placed in a laboratory 

environment which simulates the one in which it is to be used. The behavior of the 

component or its operating characteristic, which in the case of fatigue is crack length, 

is monitorcd a:. éI function of time. The experiment can then be repeated several times 

and the data obtained can be used to develop an empirical reliability distribution. 

The functions used for these empirical distributions are chosen solely for their 

applicability to the data obtained and their ease of application, they are not based on 

theorclica/ concepts. This, in fact, is the definition of an empirical mode!. Typically, 

the number of cycle<; a component can withstand before failure is recorded. This ciata 

set is thcn plotted as a Cumulative Distribution Function (CDF), where the probability 

of failure at a giVCIl time is equal to that percentage of components that failed prior to 

that time during the experiment. This results in a figure such as Figure 2.6. The next 

step is to find a fUIlctlOn that will produce a curve that fits the obtained cxperimental 

data weIl. The r('sulting distribution is known as time - to - failure distribution. 

The rest of this section will present severà.! of the most common empil ical distri­

butions tllat cali he' used for reliah:lity predictions. The following information serves 

only as an introduction to these distributions and it is left to texts such as Bompas -

Smith [1], Mann et.al. [1 ï], O'Connor [18] and others to provide further information 

regarding them. 

THE EXPONENTIAL DISTRIBUTION 

Perhaps the most commonly used time - to - failure distribution is the exponential 

distribution. lt is often chosen not for its applicability to the problem at hand but 

rather because it is casy to use. This distribution has been used for life studies in the 

past by Davis [20] and by Epstein [21]. The CDF for the exponential distribution is 

glven as : 
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Figure 2.6: Typical Experimental Life-Data [19] 

F(x) _ lZ ! e-z / 6 dx 
-00 6 ' (2.14) 

which is simply: 

F(x) - 1 - e-z / 6 , (2.15) 

and the reliability is: 

R(x) = e- z / 6 • (2.16) 

The quantity 1 / 6 is known as the hazard rate, which is a constant for this 

distribution. This quantity, the hazard rate, is the conditional probahility that a 

component will fail in a given interval (x, x + ~x) , as ~x --t 0 given that it has 

not failed prior to x [18]. This can he written, with h(x) heing the hazard rate, as: 
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f(x) 
h(x) = 1 _ F(x) , 

16 

(2.17) 

where the dellominator is the probability density function and the numerator is the 

reliability at x. In order to choose a form of hazard function for a particular pro cess it 

is first necessary to decide whether or not the failure rate is time homogeneous. In the 

case of the exponcntial distribution the failure rate is time homogeneous but for many 

physical phenomenon the hazard rate is not. Failure rates that are time dependent 

usually fall into three categories, initial failure, chance failure and wear - out. These 

can be shown using the weil known bath - tub curve shown in Figure 2.7. The first 

region of the curve, the initial failures, are those that appear quickly when a component 

is put into service but are of decreasing frequency. This type of failure is often due 

to fabrication defects and quality control limitations. The second region, the chance 

failures, is usually a result of the unpredictable nature of the operating environment. 

This type of failure is found in almost every area of engineering. The third region, the 

wear-out failures, are due to normal material and structural degradation. This type 

of failure has a srnall initial failure rate which increases due to sorne time - dependent 

degradation process such as is caused by fatigue, corrosion, wear, etc. 

THEGAMMAD~TruBUTION 

The gamma distribution is an extension of the exponential distribution. In fact, the 

exponential distribution can be thought of as a limiting case of the gamma distribution. 

This distribution is used to predict the time to failure where this quantity is the time 

it takcs for K subfailures to occur, and the occurrence of this /{th subfailure leads 

to a system failure. It has been used by Gupta and Groll [22] as a model in lifetest 

problems. The gamma distributions CDF is : 

a
k 

Iox 
F(x) = -- t k- 1 e-at dt 

r(k) 0 ' 
(2.18) 

where r(k) is the weil known gamma function given by: 
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Figure 2.7: The Classical Bath-Tub Curve 

(2.19) 

which can be evaluated using the tables found in Pearson[23]. From Equation 2.18 it 

can be seen that the exponential distribution is the special case where k = 1, the CDF 

then becomes : 

F(x) = Ct fox e-at dt, 

= 1 - e-ax , 

where Cl! is the hazard rate, 1 / 6, from Equation 2.15. 

(2.20) 

As the value of the parameter k changes the shape of the gamma distribution varies 

dramatically (for example see Reference [17] ), this wide variety of shapes allows this 

distribution to be used effectively as an empirical model. 
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THE NORMAL DISTRIBUTION 

The normal distribution is the most frequently used statistical model. An important 

reason for this is that the distributions of many observed phenomena approach it as 

the sample size increases. A weIl - documented example of this is the distribution of 

the strength of materials (see for example Reference [24]). The CDF of the normal 

distribution is : 

1 1:1: [1 ( -'::l!. rZ] F(x) = uJ2i -00 e -2 ~ de , 
where (p" 0') are the mean and standard deviation of the data. 

This function can be solved more readily by making the substitution: 

resulting in the equation: 

s = {-p. 
u 

(2.21 ) 

(2.22) 

This function is tabulated in almost aIl elementary books on statisties and so the 

reliability can be found as : 

R(x) = 1 - F(x) . (2.23) 

This distribution is of <pestionnble validity as a time - to - failure model sinee the 

variate, x, includes negative values. This is not true, however, for distributions where 

p, ;::: 30' sinee: 

1 100 
[ l ( :.=J! )2] -- e- 2 ~ dx ~ 1 

uJ2i 0 ' 
(2.24) 

to within about 0.14 %. For cases where p, < 30' the distribution can be written as 

(2.25) 
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where K is a normalizing constant sueh that when x -+ 00 the integral approaches 1. 

This distribution is not commonly used, however, since it is not very flexible and 

cannot be used for data that exhibit a skew distribution. 

THE LOG-NORMAL DffiTRIBUTION 

The log - normal distribution is more commonly used than the normal distribution 

sinee it is more versatile. It has been used previously to describe fracture problems by 

Howard and Dobson [25] and by Peck [26]. It gives a better fit to reliability data than 

the normal distribution for populations with wear - out charactcrislics and <locs not 

have the normal distributions disadvantage of including negative numbcrs. This distri­

bution is used for data where the logarithms of the lifetimes are normally distributed, 

its CDF is given by : 

1 lX 1 [1.(!!!W.::J! )2) F(x) = - e -2 fT dy , 
0'.;2; 0 Y 

(2.26) 

where (/-l,0') arc the mean and standard deviation of the log data. 

This distribution has been derived more fundamentally by Kao [27] by considering 

a physical pro cess where failure is due to fatigue cracks. This derivation seems to 

justify the use of the lognormal distribution for failure problems. 

THE WEIBULL DISTRIBUTION 

Swedish research engineer W. Weibull proposed his statistical distribution function in 

1951 [28]. It has found wide acceptanee in the engmeering community due to its broad 

range of applicability. The distribution can have many varied shapes and can be used 

to model data with a variable hazard rate, which is the case for fatigue. Another reason 

why it can be used for the fatigue phenomelllm i~ that it cali account for [ailures that 

take time to develop, i.e. the crack initiation stage. Il has been successfully applied 

to data from a wide range of fields sueh as baIl - bearings [29], electron tubes [30] and 

transistors [31]. The Weibull distributions CDF is : 
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F(x) = 1 - e[-(7)''I, (2.27) 

with {3, TI > 0 ; " x ;::: 0 . These three Weibull parameters, {3 , 77 , i, are each 

determined depending on the type of data used. 

The parameter , , known as the datum parameter, is the cause of most of the 

complication associated with the Weibull distribution. If the failure mode takes sorne 

time to develop ( creep, fatigue ) the distribution of failures take place at sorne finite 

time after this latent period. The length of this period is the value of , and this 

is then used to adjust the data such that the distribution starts at x = O. If the 

datum parameter is 0 then the distribution is oftcn called the 2 parameter Wei bull 

distribution. 

The parame ter 7] , known as the characteristic life, is the time when 63.2 % of the 

population will have failed. This parame ter affects the scale of distribution in the x 

direction without affecting the shape of the distribution. 

The parametcr f3 , which is the shape parameter, is the one that allows the Weibull 

distribution to take on so many different forms, i.e. : 

• {3 = 1, the distribution has a constant failure rate and becomes the exponential 

distribution with a mean life of 7]. 

• {3 < l , the distribution has an decreasing failure rate. 

• {3 > l , the distribution has an increasing failure rate. 

• {3 ~ 3.2, the distribution approximates the normal distribution. 

The combination of these factors make this distribution quite flexible and applicable 

to a wide range of engineering problems. Weibull probability paper is available to 

facilitate the plotting of the failure curves for the evaluation of the model parameters. 

However, when the Wei bull distribution approximates another distribution, such as 

the exponential, the latter may be " accu rate enough " and will most likely be easier 

to apply. 
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THE GUMBEL DISTRIBUTION 

When the failure of a component or system can be related to causes that depelld on 

the smallest or largest value (extreme value) of a variable, the Gumbcl distribution 

can be used. This is the case for fatigue where failure depends on the wcakest element, 

or the element with the "smallest" strength. It has been used by Lloyd and Lipow[32] 

for the study of corrosion where failure depends on the depth of the largest pit. 

This distribution has been used extensively by Gumbel [33] for the study of many 

diverse phenomena. The Gumbel distribution can have two forms dcpcnding on the 

form of the initial distribution. If the initial distribution tends to 0 exponentially as 

its random variate, X, tends to -00 then this is called The Gumbel dzsiribution of the 

smallest extreme , and the CDF is given by : 

F(x) = 1 - exp[- /:'6"] , (2.28) 

where -00 < x < 00 j 8 > 0 j -00 < 0' < 00. 

If, however, the initial distribution tends exponentially to 0 as the random variable 

tends to +00 then we have The Gumbel distribution of the largest extreme , whose 

associated CDF is : 

F(x) = exp[- e~] , (2.29) 

where -00 < x < 00 j S > 0 j -00 < 0' < 00. 

These results are asymptotic, meaning they are derived for a sam pie size n where 

n ..... 00. The applicability of these functions for sm aller sample sizes depend on the 

initial distributions. If the initial distribution approaches the exponential one less 

observations are needed than if the distribution approaches the normal one. 

2.2.3 Probabilistic Re liab ilit y 

The previous section introduced sorne of the empirical models that have been used for 

reliability predictions. A second method that can be used for component reliability 
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predictions is probabilistic mathematical modelling using a model that is based on 

both probability theory and the basic principles of rnicrornechanics. This method, 

which will be utilized in this report, involves three important steps : the first step 

is to describe the physical phenornenon in appropriate rnathematical termsj second, 

the model is analyzed using the laws of probability theorYj and the third step is to 

determine how the mode! results can be used in the context of engineering analysis. 

Siddall [34] said, "in order to deal with uncertainty we must first be able to measure 

it." In order to do this, the method of probabilistic mathematical modelling will 

be used here. The complete mathematical development of reliability including the 

necessary background in probability theory cannot be fully explained here and must 

be left to existing literature such as References [17,18,35]. What follows is rnerely a 

brief explanation of what is meant by mechanical reliability and sorne of the reasons 

why its study is important. 

Reliability, in fatigue situations, is a function of time, even in the laboratory where 

the loading cycle does not change. The continuous application of the alternating 

load causes cracks in a component to grow, which then reduces its strength. This 

degradation of strength increases with time and is shown schematically in Figure 2.8. 

So, in terrns of fatigue, reliability can be desr::ribed as the probability that a cornponent 

will still have sufficient strength to perform its function. The probability of failure, 

PJ(t), which is simply expressed rnathematically as (1 - Reliability) , is equal to that 

proportion of the components whose strength is no longer sufficient at the given time 

to carry the applied load. In other words, PJ(t) is equal to the are a between the two 

curves in Figure 2.8. From this the three basic properties of the function PJ(t) can be 

given as[36]: 

• PJ (t) is an increasing function of time, 

• 0 < P,(t) < 1, and 

and 
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Figure 2.8: The Degradation in Strength as a Function of Time [1] 

Alternatively, the probability of failure of a component in the case of fatigue crack 

growth. can also be expressed as the Melihood thaf a crack will exceed the critical 

length. This is shown graphically in Figure 2.9 where the area of the region ta the 

right of the line is the probability of failure and the are a to the left is the reliability. 

This representation can be quite useful since, as long as it is possible to predict the 

distribution of crack size at a future time and the critical crack size, the reliability can 

be determined. This can be an advantage over th,-, strength - dut y interference model 

since it is not necessary to predict the distribution of two quantities but only of one. 

It is this method of predicting reliabilitll which will be utilized later in this report. 

A DURABILITY METHODOLOGY 

Another method of assessing the reliability of components is the one that has been 

developed by Manning, Yang and Rudd et.al[38,39,40,41]. They have performed bath 

analytical and experimental analyses in develaping a methodology for predicting exces-
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Figure 2.9: Fatigue Reliability - the Probability of Crack Exceedance 
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sive crack growth in metallic airframes. Their methodology is based on a probabilistic 

fracture mechanics approach and has been developed for fatigue cracks around fastener 

holes, but, the theoretical approach should apply to details like flUets, lugs, cutouts, 

etc. 

The objective of this methodology is to describe, quantitatively, the extent of dam­

age as a function of service time. This extent of damage is the probability of a crack 

exceeding a certain size. The,'e are two essential steps in this analysis: one, quantifying 

the Initial Fatigue Quality(lFQ) of the structural details consideredj two, predicting 

the probability of c:rack exceedance using this IFQ and the design conditions (loading, 

stress level, % load transfer, etc.) There are also several necessary assumptions and 

limitations. 

1. Crack length, measured in the direction of propagation, is the fundamental mea­

sure of durability damage. 
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2. Each detail in an aircraft structure has a single dominant fatigue crack which 

governs the durability of the structure. The size of this crack is considered to be 

a random variable. 

3. The largest fatigue crack in each detail is relatively small (c.g. < 1.27 mm 

corner crack in a fastener hole) and they are statist.ically indcpcndent, hence, 

tbe growth of a crack in one detait does not affect other details. Therefore the 

binomial distribution can be used to quantify the extent of damage for different 

details, parts, components, or the entire airframe. 

4. An Equivalent Initial Flaw Size (EIFS) distribution can be round by back extrap­

olating fractographic data using a deterministic crack growth curve. This EIFS 

is a mathemallcal quantzty descrzbing the IFQ for a given delail not neccssarily 

an actual inzllal crack Slze. 

5. This EIFS is determined for a given crack size range and can be grown from time 

zero using a single deterministic crack growth curve. 

6. A suitable Service Crack Growth Master Curve (SCGMC) can be determined, 

either analytically or experimentally, for specifie analysis conditions. 

The IFQ is defined as the initially manufactured state of a structural detail or 

details. The IFQ for a group of components can be represented as an Equivalent 

Initial Flaw Size (EIFS) distribution. The EIFS is a mathematical quantity, it is an 

artificial initial crack which results in an actual cr..l.ck size at an actual time, when 

grown forward. The EIPS is a hypothetical flaw that is used as a convenient tool for 

analysis purposes. 

Manning, Yang, Rudd et.al.[39] have used t.wo different methods for 'growing' flaws 

backward in time to determine the EIFS, these are; the deterministic crack growth 

approach and the stochastic crack growth approach. The deterministic approach uses 

a single deterministic (average) crack growth rate equation to back extrapolate the 

fractographic data. This equation is known as the EIFS master curve and is given by: 
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da(t) b 
dt = Q[a(t)] , (2.30) 

whcre da(t)/dt is the crack grùwth ratej a(t) is the crack size at time tj and Q,b are 

empirical constants which depend on loading and design parameters and are different 

for each specimen. The stochastic crack growth approach uses a stochastic crack growth 

rate cquation to back extrapolate the fractographic data, this equation is: 

d~~t) = X Q[a(tW , (2.31) 

where X is a lognorma1 random variable with a median of 1.0. Therefore, Equation 2.30 

is the average crack growth behavior while Equation 2.31 considers the variability by 

using the lognormal random variable X. These authors have round that both methods 

give reasonable results. 

The EIFS is found, for the deterministic mode!, using Equation 2.30 and the Time 

To Crack Initiation (TTCI) distribution for a group of specimens. For a given reference 

crack size, au, the TTCI reference distribution is: 

t-e 
FT(t) = P[T < t] = 1 - exp[-( T )()] , (2.32) 

where t > e , T = TTCI and Q, (3, ê are the three Weibull parameters determined for 

the data set. The EIFS distribution, Fa(Q)( x) , is found from the expression: 

a(O) = EIFS = ao exp( -Q T), (2.33) 

where T = the TTCI and a(T) = ao . The upper bound on a(O) and the lower bound 

of Tare given respectively as: 

Xu = aoexp(-Qe) , 

ê = (l/Q) In(ao/xu ) • 

Therefore, the expression for the EIFS distribution is: 

(2.34) 

(2.35) 
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{ 

exp[-(/n~.àI.r)Cl'] 0 < X,Xu , 
Fa(O)(x) = 

1.0 x > X u • 

(2.36) 

For each component the structural details are grouped into 111 stress rcgions, where 

the maximum stress in each region is assumed to be equal for evcry location Of detail. 

For the i th stress region the corresponding EIFS value, YI.(r), is that value which grows 

to a crack size Xl at time r. The crack growth rate expression, Equation 2.31, can then 

be integrated from a(O) = Yll(r) to a(T) = XI to obtain the value for YI.(r) as: 

Yli(r) = Xl exp( -QI r) , (2.37) 

where, if suitable fractographic data is available, QI may be expressed by the following 

power function: 

(2.38) 

In this equation, u is the maximum stress applied in the loading spectrum and e, ï are 

constants that are determined from the data. If this suitable data is not available, the 

parameter Qi can be found by fitting Equation 2.31 to predict the crack size a(t) at 

service time t. 

This Ieads to the following expression for the probability of crack excecdance at a 

time r p(i,r) = P[a(r) > Xl] = 1- Fa(T)(XI) : 

( . ) _ 1 _ [_(ln(xu/YlI(r)))Cl'] p Z, r - exp Q{3 , (2.39) 

for ail 0 < Yli( r) ::; X u , eise the probability of exceedance is O. 

Extensive investigation of this model, both from an analytical as weIl a.r; an exper-

imental viewpoint, has been performed. A comparison of actual data and predictions 

indicates a very good correlation. This type of model holds much promise but is, at 

present, limited to the specifie application to aircraft durability analysis. Tirne will 

tell whether or not this procedure can he used for other fatigue situations or possihly 

extended to other degradation phenomena. 
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STOCHASTIC MODELS 

Over the past decade or so othcr probabiHstic methods have been developed for dealing 

with reliability. These methods are firmly based on the fundamentals of probahility 

theory, spccifically, stochastic processes. One of these approaches, which is based on 

a nonhornogencous Markov proce.3S, has been developed by Provan et.al. [42,43,44,45] 

and is the hasis for the mode! developed later in this report. Another method has been 

developed by Bogdanoff and Kozin [46], this method has been the subject of extensive 

work and will he briefly dealt with here. 

The mode! of Bogdanoff and Kozin is a discrete time - discrete state Markov 

process called a Markov chain. A brief introduction to Markov processes is presented 

in Chapter 3 and a more detailed mathematical explanation of the model of Bogdanoff 

and Kozin is left to their book [46]. The aim of this model is to evaluate life data and 

to predict the growth of fatigue cracks. The mean and variance of the number of cycles 

required for a crack to reach a certain size are used to determine two parameters, bJ 

and rJ , for each interval j. These parameters are: bJ , the number of states in the 

interval j (which must be an integer)j rJ , a parameter used by the model to predict 

me an and variance of crack size as a function of cycles. Note that these parameters 

are different for each interva! j. 

Bogdanoff and Kozin have shown that this model can he used to produce an em­

pirical distribution such as the one in Figure 2.10 which shows the actual data as well 

as the model prediction. The information from this mode} can he applied to reliahility 

and maintainahility ca1cu!ations. The mode! of Bogdanoff and Kozin has been shown 

to he a pot.cntially va!uah!e method of examining the variability that exists in fatigue 

data. 

The major ditTerence between this mode! and the one presented in this thesis are: 

il, the Bogdanoff and Kozin model considers the variation in the numher of cycles to 

reach a given crack size as opposed to the distribution of crack size at a given time; 

and ii), that their model uses different parameters for each data interval whereas the 

mode} of this thesis uses two parameters for the who}e data range. 



-

CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 29 

a = 148 mm 

F 05 

900 1125 
x'l(Y 

1350 

Figure 2.10: Comparison of Data and Model of Bogdanoff & Kozin [46] 
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One of the aims of this thesis is to apply a probahilistic model, hased on the concepts 

of micromechanics, to describe the growth of fatigue cracks. One of the advantages 

of this model is that it can conceivahly he applied to the modelling of degradation 

processes in gencral with only the determination of two empirical parameters. Once 

developed, this model can then be used to determine how component reliahility will 

change with tirnc. The use of this model will facilitate the prediction of reliability at 

future times. ln addition, other predictions that rnay he useful to engineers, such as 

the optimization of inspection schedule, can also he made. The probahilistic model to 

be used is a Markov model and it will he developed in the following chapter. 



--------------------------

Chapter 3 

MATHEMATICAL 

DEVELOPMENT 

3.1 Stochastic Pro cesses 

3.1.1 Introduction 

In fields such as engineering, the physical sciences, economics, and others, therc cxist 

random phenomena which vary with time. It is of interest to investigators in these 

fields to be able to predict the future behavior of such phenomena. It is this desire 

that has led to the development of the stochastic process, which Doob [47] has dcfined 

as the mathematical abstraction of an empzTzcaI process whose developmenl zs govcrned 

by probabilistic laws. Bharuch,,-Reid [48] points out that one should he weil awarc that 

this term, stochastic process, refer.: to the mathemat.lcal model and not to the empirical 

process itself. This emphasizes to the ~ngineer t hat sound engineering judgement must 

always accompany the use of these pro cesses or models. 

3.1.2 Basic Probability Background 

The basic background in probability theory is not presented (as it can be round in 

many introductory level texts [49,50,51]), with the exception of the next section which 

31 
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introduces those concepts which are central to stochastic processes. 

Due to the random nature of the phenomena which stochastic proeesses are used 

to model, the pro cesses are based on probability theory. This thesis will assume a 

certain familiarity with probability and set theory (see, for example, references [49,50, 

51,52]). Howcvcr, a few concepts which are central to the mathematical development 

of stochastic pro cesses will be briefly introduced in this section. These concepts are 

conditional probability and distribution and density functions. 

Conditional Probability Often two or more events are connected, meaning that 

their occurrences are related in sorne way. This means that the occurrence of one of 

these cvents will affect the likelihood of occurrence of the other(s). If we have two 

events of this type, say A and B, the probability that A occurs, given that event B has 

already occurred, is written as: 

P{AIB} . (3.1) 

This can be read, the probability of A given B. This is called the conditional proba­

bility since only cases favourable to event B are considered, as opposed to aIl cases. 

This probability is equal to the probability of both A and B occurring divided by the 

probability of B occurring (sinee it has already happened) or: 

P{AIB} = P{AB} 
P{B} . (3.2) 

This probability will be undefined if P{B} = 0 and will be zero if events A and B are 

mutually exclusive (P{AB} = 0). 

An important extension of this is for the case where there exists a set of mutually 

exclusive events, BI, B2 , •• • , Bn , where one of them necessarily occurs (i.e., the union 

of aIl the events BI is the whole sample space). The probability of event A occurring 

can then be written as [50]: 

n 

PiA} = LP{AIBdP{Bi}' (3.3) 
Î=1 
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This is called the theorem of total probability and is very important for the development 

of stochastic processes, as shaH be shown later in this chapter. 

Distribution and density functions The distribution function characterizes the 

probability distribution of a random variable) X. Its domain is the set of real numbers, 

for a continuous process, or a set of integers, for a discrete one, and its range is from 

o to 1. If x is a number and the event is defined as [X ~ x], the probability of [X ~ x] 

is the distribution function and is represented as Fx(x) where [49J: 

Fx(x) = Prob.[X ~ xJ -oo<x<oo. 

This function has four properties [52]: 

1. F:/:( -00) = o. 

2. F:/:(oo) = O. 

3. F:/: is a nondecreasing function, i.e. for Xl < X2 Fx(Xl) ~ FAx2)' 

4. Fx is continuous from the right in the sense that 

lima .... aoFx{a) = F:/:(aci) = Fx(ao). 

(3.4) 

The distribution function is related to the density function and is written as f:r where: 

fx(x) = Prob[X = x] . (3.5) 

where X and x are as defined for distribution furetions and I:/:( x) has the following 

properties for discrete variables [49] : 

1. I:/:(x) = 0 if x is not in the set of points xo, Xil X2,' ••• 

2. 0 < fx(Xi) ~ 1 for all Xi in the range. 

The distribution and density funetions are related as follows: 
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Figure 3.1: The Relationship Between Distribution and Density Functions [49] 

(3.6) 

for continuous pro cesses, or: 

Il' 

Fx(a) = ~fx(i) , (3.7) 
1=0 

for discrete processes. Figure 3.1 illustrates the relationship between the distribution 

and density functions. These probabilistic concepts will be used in the next section to 

help define a stochastic process. 

3.1.3 Mathematical Definition 

The following mathcmatical description of a stochastic pro cess was developed with the 

help of rnany references [47,4&,49,53,54], with rnany of the ideas being cornmon to more 

than one source. 

In order to define a stochastic process a set of times, T, must be specified. This set 

cau be defined as: 

T = {t 1 t ~ D} 
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or 

T={tl-oo<t<oo} 

which is called a continuous parameter process. lt can also he defined as: 

T = {D, 1,2, ... } 

or 

T = { ... , -l,D,l, ... } 

which is called a discrete parameter process. 

For any time, t, in the set T the random variahlt:, X, can be observed. If this is 

done over the range of t that comprise one experiment, a function, Xt, is obtaincd. If 

a sample point is denoted by x then the function can b<> written as: 

{Xt(x),t ET}, (3.8) 

this is, in mathematical terms, a random or stochastic process. The range of possible 

values of X t is called the state space of the stochastic process. The values that x can 

have are known as the states. 

The values of X t ] ,Xt2 , ••• can he observed over a range of times, t l < t2 < ... < tn 

where aIl t E T. Using this information the joint distribution function or density 

function can be defined. It is written as, !xln, ... ,X
'
] (xn , .•. ,xd, and this distribution 

function can then be used to predict future behavior if past behavior is known. This 

is represented mathematically by: 

where the left hand si de of Equation 3.9 is the conditional density of Xtn , given the 

past hehavior of the process. 

As mentioned earlier, the process can have either discrete or continuous parameters, 

in addition, the process itself can he either discrete or continuous. An example of a 

discrete process would be a numerical count of objects; for examplc, the number of 
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items produced hy a certain machine. An example of a continuous pro cess might he a 

record of temperature in a certain location. This means that there are four types of 

stochastic processes: 

• discrete pro cesses with discrete parameters, 

• discrete processes with continuous parameters, 

• continuous processes with discrete parameters, and 

• continuous processes with continuous parameters. 

In the next section an example of the second type, the discrete process with a contin­

uous parameter, also known as a discrete random proeess, will he developed. 

3.2 Markov Processes 

In the development of this section many of the references from the previous section 

were used, additional references are also cited where appropriate. 

The Markov process is a special case of stochastic process. Its distinguishing feature 

is that it is a stochastic pro cess whose future value depends only on its current state, 

it is independent of aIl previous values. This statement explains why Markov models 

have the potential to be extremely useful in engineering applications. If a thorough 

inspection of a structure is carried out the current state of damage is then completely 

known. Using a Markov process or model the future damage state can he predicted 

without any knowledge of how the structure arrived at the eurrent damage sta.te. In 

otller words, it is not necessary to know through what damage states the structure 

passed before arriving at its current one. 

In order to apply this idea in the fOrITI of a stochastic model we write the mat he­

matical definition of a Markov pro cess as: 

(3.10) 
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where the left-hand side of Equation 3.10 is known as the conditional density and also 

as the transition density for the Markov process. This equation says that knowledgc 

of the present state (XtJ means the future state (Xtn+t ) is independent of the past 

(Xtn_l'" . ,Xl)' 

Now, suppose that for any time, tn , the initial distribution, fxn(x n) , is known. 

Given this distribution in addition to a knowledge of the transition density given by 

Equation 3.10 the following distribution can be obtained from: 

fXtn+l (XnH) = fXtn+dXtJxn+llxn)fxn(Xn) • 

Future distributions can be obtained in this manner, for example: 

(3.11) 

(3.12) 

Where this procedure can be carried out for any future time of interest by simply 

repeating the pro cess as many times as necessary. 

3.2.1 Transition Probability 

The distribution of interest in this report is the probability mass distribution. Using 

a Markov pro cess this may be found from the initial distribution and the transition 

probabilities. The transition probabilities are given by [44] : 

(3.13) 

This can be read the probability of Xtn+1 being at state Xn+l given that X tn is at state Xn. 

For the discrete-state, continuous parameter Markov process we write this transition 

probability as : 

P(Xt = jlX,. = i) = Pij{T, t) , (3.14) 

where i,j are integer states and 0 :5 T < t. This is the probability of going from state 

i to state j between time T and time t. 
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There are several conditions that the transition probability, Pij( T, t) must satisfy, 

namely: 

o ~ Pi) ( T, t) ~ l , (3.15) 

for aIl i,j and T ~ 0, t ~ o. 

2: Pij ( T, t) = 1, (3.16) 
j 

for an i and T , t both ~ o , 
and 

Pi,(O,O) = { 
1 for i = j , 

0 for i ~ j , 
(3.17) 

where Equation 3.17 means the process cannot change states in an interval of 0 time 

units. The transition probability must also satisfy the following equality : 

Pi, ( T, t) = E Pik( T, oS )Pkj(S, t) , (3.18) 
k 

where T < s < t, and Equation 3.18 is the time-continuous Chapman - Kolmogrov 

equation. 

Finally, the condition that the probability of two or more transitions between states 

in a small increment of time ~ t is O(~ t) where O(A t) is defined if f(~ t) = O(~ t) 

and: 

Hm J(At) _ 0 
dt .... O At 

3.2.2 The Kolmogrov DifferentiaI Equations 

(3.19) 

In order to solve for the transition probability, Plj(T, t) , which satisfies Equations 3.15 

- 3.19, two functions are introduced. These functions are caUed the intensity functions 

and they describe the infinitesimal transition scheme. 

For an infinitely small increment of time, ~t , the probability of transition from 

state i at time t to state j at time t + ~t is given by : 
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Pij(t, t + ~t) = qij{t)At + O(At) , (3.20) 

where O(A t) is as described in Equation 3.19. 

Using the rer:;uIt from Equation 3.16 and summing over j for aIl j =1- i we arrive at 

the result : 

or: 

pii(t, t + At) - 1 - ~t L q,)(t) + O(At) , 
Ni 

where qi(t) = LJ1êi qj,(t). 

(3.21 ) 

(3.22) 

Now, following the development in the references,( Feller [50] for example), these 

functions qj(t) and q,j(t) which are known as the intensity funclions can be defined more 

precisely. For every state i in the sample space assume there exists a time continuous 

function q,(t) such that : 

( ) l
' 1 - PII(t, t + At) 

~t = lm A • at-o ut 
(3.23) 

In addition, assume that for every pair of states i and j (for i =1- j) there is a time 

continuous function qi,(t) such that : 

.(t) - l' p,,(t,t + At) q,) - lm A ' 
at ..... o ut 

(3.24) 

As mentioned earlier, these intensity functions govern the infinitesimal transition 

scheme. In modelling a physical phenomenon using a Markov process it is often this 

infinitesimal transition scheme that is specified rather than the transition probability 

itself. 

Recalling Equation 3.18 it then follows : 

pij(r, t + At) - L Pik(r, t)pkj(t, t + At) , 
k 

(3.25) 
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using the definition of the intensity functions we obtain the two Kolmogrov equations. 

By holding j and t constant where i and T are variables we obtain the backward 

differentiaI equation: 

ÔPij ( T, t) () ( ) "" () ( ) = q. T Pij T, t - ~ qik T Pkj T, t . 
ôr krFi 

(3.26) 

If i and Tare now kept constant with j and t as the variables the resulting equation is 

the forward differential equation: 

Ôpi)(T,t) () () " ( ) () ô = - Pij T, t qj t + i..J Pik T, t qkj t . 
t k~i 

Both of these equations must satisfy the initial conditions: 

P,j(t, t) = { ~ for i = j , 

for i # j . 

(3.27) 

(3.28) 

These Kolmogrov DifferentiaI Equations are the equations that need to be solved 

in order to determine the transition probabilities. This can be done, either analytically 

or numerically, only after the intensity functions presented in this section have been 

specified. 

3.3 The Nonhomogeneous Markov Law, A Recent 

Application 

Recently, the type of model presented in the previous section was used by Provan and 

Rodriguez [44,54] for the study the phenomenon of pitting corrosion. Their model 

was based on the model developed by Provan[43,55]. In order to apply this model the 

intensity functions governing the infinitesimal transition scheme needed to be specified. 

Severa} sources, Bharucha - Reid [48] and Parzen [51] for example, have presented 

various forms of intensity functions as weIl as the solutions of the resulting Kolmogrov 

DifferentiaI Equations. The pitting corrosion study began with an examination of four 
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of these forms and ended with the postulation of a new form. The four forms examined 

were the Poisson process, the Furry - Yu le or pure birth process, the Nonhomogeneous 

Linear Birth process and the Polya process. The following sections briefly outline these 

processes. 

3.3.1 The Poisson Pro cess 

The Poisson process is the simplest of the nonhomogeneous, time continuous Markov 

processes. There are three assumptions which determine the development of this pro­

cess, they are : 

• The probability of a change from state i to state i + 1 in the interval of time !:lt 

is given by À Dot + O(Dot) where À is a positive constant. 

• The probability of a change of two or more states in the interval!:l t is O(!:lt). 

• The probability of staying in the same state is 1 - À Dot + O(Dot). 

where aU these probabilities are independent of the state, i, of the process. 

With these three assumptions the intensity functions can be specified as foUows: 

q;j(t) = { ~o 

for aU i > 0 , 

for j = i + l , 

for j ~ i , i + 1 . 

With this transition scheme the Kolmogrov DifferentiaI Equations become : 

whose solution is: 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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{ 

(.\t)1-1 -.\t 

P'J(t) = ~j-l)' e 
for j > i , 
for j < i . 

3.3.2 The Furry - Yu le or Pure Birth Process 

42 

(3.33) 

This pro cess can he considered to he a generalized Poisson process where the intensity 

functions are dependent on the state of the pro cess. 

The assumptions for this pro cess are : 

• The prohability of transition from state i to state i + 1 in the interval of time 

t::.t is gi ven by À, t::.t + O( t::.t), 

• The probability of a transition from state i to astate other than i + 1 in the 

interval t::. t is O(t::.t), 

• The probahility of no change in state is 1 - Ài tl.t + O(tl.t). 

This results in the following intensity functions: 

{

À i 
q,;(t) = 0 

for i = 1,2,." , 

for j = i + 1 , 

for j =f:. i , i + 1 , 

and the Kolmogrov Differentiai Equations become : 

dPi; (t) \' () \' ( ) dt = - A t Pij t + 1\ t PH l,; t , 

dPij (t) \. () \ ( ') ( ) 
dt = -1\ J Pi; t + A J - 1 Pi ,; -1 t , 

which has a solution: 

--(JJ', ~.) Pij(t) ~ 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
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3.3.3 The N onhomogeneous Linear Birth Pro cess 

The nonhomogeneous linear birth pro cess differs from the two previously presented in 

that is does depend on time. In this case the probability of transition depends not only 

of the state of the process but on time as weIl. This results in a form similar to the 

pure birth process with the important difference that the intensity functions are now 

functions of time, they are given as : 

{ 
i À(t) 

qij(t) = 0 

for i = 1,2, ... , 

for j = i + 1 , 

for j =1= i , i + 1 , 

which make the Kolmogrov Differentiai Equations: 

dp~t(t) = -À(t) j Pij(t) + À(t) (j - 1) Pi,j-l(t) , 

for which the solution is: 

= (JJ'. ~.) Pi3( T, t) • ql (1 - ql)3 - 1 , 

where q - e(- (h(t) -h("'))) and h(k) = Jok À(k) dk . 

3.3.4 The Polya Pro cess 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

A second example of a state and time dependent process is the Polya process. The 

intensity functions for this pro cess are: 

for i = 1,2, ... , (3.44 ) 
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for j = i + l , 

for j =f: i , i + l , 

rcsulting in Kolmogrov DifferentiaI Equations of the following form : 

dpi,(t) _ ->. 1 + Kj .. () >. 1 + KU - 1) .. (t) 
dt - 1 + K>.t PI; t + 1 + K>.t PI,,-l , 

dpi,(t) _ ->. 1 + K-i .. (t) >. 1 + K(i + 1) . .(t) 
dt - 1 + K>.t PI' + 1 + K>.t PI+l" , 

which can be solved numerically using a Runge - Kutta technique. 
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(3.45) 

(3.46) 

(3.47) 

3.3.5 A New Intensity Function Form and the Results of its 

Application to Pitting Corrosion 

In order to determine which form, if any, was appropriate for the modelling of pitting 

corrosion each was applied, in turn, to the same data set. After this analysis was 

carried out it \Vas decided to use a new form of intensity functlOns in order to achieve 

better results. Intensity functions were chosen that could incorporate the best features 

of those previously examined into a more useful form. U pon examination, a set of 

intensity functions that were both state and time dependent were deemed most suitable. 

The form that gave the best results was found to be : 

with: 

q,(t) = À, 

{ 

"\j-l 
qij{t) = 0 

for j = 1,2,... , 

for i = j - 1 , 

otherwise, 

>.. _ >. . 1 + ,.\t 
; - J 1 + ,.\tf( , 

(3.48) 

(3.49) 

(3.50) 
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where..\ and Ii" which are positive consta.nts known as the empirical system parameters, 

are found by determining the best fit to experimental data. These two parameters 

include all the various effeds that influence the process, such as, temperature, material, 

geometry, etc. In this way aIl the variables are conveniently described. Therefore, if 

these parameters can be found the system can be modeled, of course if the system is 

changed then new system parameters must be found. 

These intensity functions are then used in the Kolmogrov forward differential eqlla­

tion, which becomes: 

dPij(T,t) () \ () 
dt = -ÀjPiJ T, t + Aj-lP',J-l T, t . (3.51 ) 

In order to solve this differential equation a nllmerical technique, the Runge-Kutta 

method [56,57], was used. 

The model in this form was found to give a very good description of the act II al 

behavior of a pitting corrosion system. This mode} was then applied to the results of 

an experimental program involving the pitting corrosion of CA-15 stainless steel in a 

simulated white-water environment (see Rodriguez [54] for details). By an iterative 

procedure it was found that the values of the system parameters, ..\ and 1\., for this 

experiment which gave the best fit for the experimental results were: 

..\ = 0.015 li, = 1.7 

Using these values the transition probabilities were determined and then used to 

find the probability of a corrosion pit being a certain size. This is representcd in the 

histograms in Figure 3.2 showing the probability of a pit being in a certain state (dcpth) 

for both the experimental data and for the model prediction. From thcsc histograms 

the me an and variance of pit depth are found and are shown, along with the actual 

data, in Figure 3.3. The model was also used for reliability calculatiolls in Reference 

[58]. 

These results have shown that a non-homogeneous Markov model can be uscd 

effectively to model the growth of corrosion pits. This success has raised the question of 

1 
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Figure 3.3: Mean and Variance of Pit Depth, from Data and Model [44] 
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whether or not this method may be applied to other degradation pro cesses, specifically 

to the fatigue phenomenon. If this mode) can indeed be used for the modelling of 

fatigue crack growth what information can the engineer obtain, in the form of reliability 

predictions? These are the questions that will be addressed in the remaining chapters 

of this thesis. 
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Chapter 4 

SPECIFIC RESEARCH 

OBJECTIVES 

The previous chapters have presented a brief review of sorne of the information avail­

able in the literature concerning the fatigue phenomenon, reliability, and stochaslic 

processes. The aim of the chapters that follow is to examine the use of the specifie 

stochastic process mentioned earlier, namely the Markov process. This process can be 

used for the modelling of the mean and variance of fatigue crack growth as well as for 

reliability predictions. 

The first objective of the current investigation is the use of the Markov model 

outlined in Chapter 3 to predict the statistics of fatigue crack growth. In order to 

do this the empirical system parameters, À and K, must be established for a set of 

experimental data. The following chapter will de· ail the attempt to determine these 

system parameters for sever al specifie data sets. Once these system parameters have 

been found they will be used with the Markov model to predict the statistics of fatigue 

crack growth. 

The second objective of this research is the examination of the potential applications 

of this model. One of the uses of this model is for the solution of a practical engineering 

problem, namely reliability ca1culations. There are many different applications that 

fall under this general heading, sorne of those which will be examined (in Chapter 6 of 

49 
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this thesis) includc the following: 

• the prediction of component reliability at a future time, 

• the scheduling of the necessary maintenance procedures to maintain a certain 

minimum level of reliability, and 

• the optimization of inspection and repair scheduling for the maximization of 

reliability (or the minimization of the probability of failure) and, 

• the effect of a change in repair poliey on reliabili ty. 

One of the long term objectives of this research is the development of computer 

programs that will not only be of use in the current investigation but that will facilitate 

further work with this type of model. To this end, the program developed by Rodriguez 

[54] has been extensively modified for use in this investigation and several new programs 

have been written for the reliability calculations found in chapter 6. These programs 

can be found, along with brief explanations of how they work, in Appendix A. It is 

hoped that they will be of use for future investigations. 
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Chapter 5 

APPLICATION TO FATIGUE 

5.1 Introduction 

In Chapter 2 the deterministic laws for fatigue crack growth wcre prcsented. Since 

these laws cannot account for the scat ter found in laboratory results we turned to 

the probabilistic model of Chapter 3, the Markov process. It has been shown that 

this type of model can he used to describe pitting corrosion and it is the aim of this 

chapter to examine its applicability to fatigue crack growth. Several specifie aspects of 

the Markov pro cess which will he used here will he explained briefly in the following 

section before moving on to the application of the model to a data set. 

5.2 Fatigue Modelling 

For this investigation a Markov process with discrete states is used. Although it 

may appear that crack growth should be thought of as a continuous process it lS 

reasonable to treat crack size as a discrete quantity due to the built-in limitations of 

crack detection and measuring systems. As Bogdanoff and Kozin [46] point out, this 

restriction (treating crack size as discrete) is modest in tcrms of loss of physical reality 

when compared to computational advantages gained. 

An example of how crack length can be discretized is illuslrated in Figure 5.1 . 

51 
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1 

Figure 5.1: A Schematic Representation for Discrete Crack Size 

1 
2 
3 
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The crack size variable, at , can only be measured to within equipment and operator 

limitations, in other words, the crack size can be given as: 

(5.1) 

where am is the measured crack size and ~ a is the range of error in the measurement. 

By considering the observable zones, i, this can be written as: 

XI < a, < Xi + Â Xi , (5.2) 

where XI is the state number and Â XI is the width of a state or state size. This state 

size, as well as the number of states that need to be considered can be determined by 

the engineer. 

In order to apply this model the infinitesimal transition scheme must be specified. 

This transition scheme is governed by the intensity functions, qJ(t) and qij(t). In 
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Section 3.3 the intensity functions used for pitting corrosion were presented. In the 

current investigation these same functions will be used to describe the infinitesimal 

transition scheme, these were given as: 

with: 

for j = 1,2, ... , 

for i = j - 1 , 

otherwise, 

\ \. 1 + Àt 
AJ = A ) 1 + ).,tt< ' 

where the parameters, )., and K, can be determined for any data set. 

(5.3) 

(5.4 ) 

(5.5) 

Using these intensity functions the Kolmogrov forward differential equation was: 

(5.6) 

In order to apply the Markov model this equation must be solved to obtain the 

transition probabilities, PIJ ('T, t). This was accomplished in the present investigation 

using the program SOLUTION found in Appendix A. This Appendix also presents 

a brief description of what this program does and how it works. 

5.3 Specifie Applications 

5.3.1 OFHC Copper 

In order to fully explore the capabilitie~ of this pro cess it was decided to try and use 

it to predict the statistics of the growth of a single crack front. By examining fatigue 

fractographs the penetration of a crack front at a given time, or cycle, can be measured 

at many points along its length (the X3 direction as shown in Figure 5.2 ). From these 

observations the mean and variance of crack length can be determined. 
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Figure 5.2: A Schematic of Fatigue Cracks at a Given Cycle [55] 

Work done by Provan and Mbanugo [59] included an experimental program de­

signed to measure the me an and variance of crack front penetration into OFRC Copper. 

These results were then reported in terms of the mean and variance at several cycle 

numbers. This data is givcn in Table 5.1 [59] after converting to discrete states. In ad­

dition, the initial distribution needed for the Markov model was reported in Reference 

[60] and is shown in Figure 5.3. 

Applying the model the empirical material parameters, À and li , that best describe 

this system were round to be: 

À = 0.032 li = 1.1 (5.7) 

These parameters were found to give an adequate description of the mean crack pen­

etration but were qui te inaccurate with regards to the variance. The results for the 

mean crack size arc shown in Figure 5.4. As for the variance the Markov pro cess greatly 

overestimates the amount of scat ter. As pointed out by Provan and Mbanugo [59] this 
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Figure 5.3: The Initial Histogram of Crack Size [60] 

Cycle N umber Mean State Variance 

i8 + 5 2.69 1.07 

i8 + 36 22.54 2.77 

i8 + 49 32.47 3.66 

i8 + 69 49.88 2.05 

Table 5.1: OFHC Copper Data [59], where i8 is the reference cycle number 
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Figure 5.4: Mean Crack Penetration, From Data and Markov Model 

is not unexpected since, by definition, it does not take ac.count of either boundary 

effects or the effect of spatial interaction between neighhoring points along the crack 

front. 

These findings indicate that the Markov model, in the current form, is not appro­

priate for the modelling of the mean and variance of crack penetration for a single 

crack front. It was decided that instead of modifying the mode} for this appIication 

it would he used for the description of the statistics .Jf crack growth for a group of 

components. 

The findings for this work are presented in the following sections. 
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5.3.2 Data Set WPF 

6000 

57 

In order to use the non-homogeneous Markov model to predict the statistics of crack 

growth for a group of components a fairly large number of specimens are needed. There 

are several such fractographic data sets available in the literature. In this investigation 

the data set WPF [61], see Figure 5.5, which describes the growth of cracks originating 

around aircraft fastener holes, has been used. 

WPF contains the results for 33 specimens whose geometry is given in Figure 

5.6 and whose material is 7475 - T7351 aluminum. The specimens were tested in 

a laboratory air environment under fighter spectrum loading, with a maximum gross 

stress of 234.4 MPa, for 16,000 flight hours or until failure. There was no pre - cracking 

and the largest crack in each specimen was evaluated fractographically after testing 

[391· 

The intensity functions used here are the same on es presente<! in Section 5.2. The 



}' 

\ 

CI-IAPTBR 5. APPLICATION TO FATIGUE 58 

.... ________ 12 .... ___ ...... 

t-o--..... --.. 

Figure 5.6: WPF Test Specimen Geometry [39] 

use of these functions necessitates the determination of the empirical material param­

cters, >. and 1\, • These are found by an iterative pro cess of fitting the model prediction 

to the experimental results. 

Several steps had to be taken before this iterative process was performed. The first 

step is the Hormalization of the data to an initial crack length of 0.004" (0.102 mm) 

at time t = O. This is done to eliminate the crack initiation stage. Secondly, the data 

necd to be discrctizro into states of width ~x. This ~x should be chosen small enough 

sa that the discrete data still closely rpsembles the continuous data yet large enough 

sa that the Humber of states needed is kept ta a reasonable amount. 

The reason for limiting the number of states is that the number of non-zero tran­

sition probabilities grows as the sum of the number of states, i.e. : 

N 

Number of non-zero Pij 's = L:i, 

which can be shown to be : 

N 

L:i-
)=1 

whcre N = the Humber of states. 

(N + 1) N 
2 

)=1 

(5.8) 

(5.9) 
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Figure 5.7: Initial Flaw Size Distribution, at 1500 Flight Hours 

From Equation 5.9 it can be seen that the size of the matrix of transition probabil­

ities increases as the square of the number of states. This is important sincc the sizc 

of the transition probability matrix has a significant effect on both computer storage 

space used and computing time. For this data set astate size of 0.001" (0.0254 mm) 

was chosen. A total of 70 states were used since this was judged as a sufficicnt numbcr 

for the interval of time used, t = 0 flight hours through t = 5500 flight hours. 

With this information the material parameters can be determined. Using the pro­

gram SOLUTION from Appendix (A) with the initial flaw size distribution at 1500 

flight hours (see Figure 5.7), Number of states = 70, T initial = 1500 hours, and T 

final = 1500 to 5500 hours, >. and K are found by iteration. The values of >. and K 

which give a good fit to experimental data wcre determined to be : 

>. = 0.26 K = 0.96 (5.10) 

Using these parameters with the program SOLUTION the probability histograms 
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Figure 5.8: WPF - Mean Crack Size, From Data and Markov Model 

at future times were generated and the mean ( Equation 5.11 ) and varian.ce ( Equation 

5.12 ) calculated from : 

/l)(t) = L j Pj(t) , (5.11 ) 
) 

(5.12) 
J 

Figures 5.8 and 5.9 show the results for the me an and variance from the model as 

weil as the experiment and these results are also presented in Table 5.2. Figure 5.10 

presents a proLability histogram generated by the model as well as one from the ex­

perimcntal results. From a comparison between the actual and predicted histograms it 

would appear that given a larger data set the model would be able to give quite good 

predictions for these distributions. 
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FLIGHT MEAN VARIANCE . 
HOURS ACTUAL MODEL ACTUAL MODEL 

1500 7.39 7.39 2.18 2.18 

2000 8.70 8.43 3.97 4.01 

2500 10.24 9.61 7.17 6.57 

3000 11.42 10.97 9.94 10.10 

3500 13.18 12.53 14.51 14.96 

4000 15.03 14.32 20.76 21.57 

4500 17.03 16.37 27.91 30.55 

5000 19.36 18.73 37.57 42.66 

5500 21.82 21.43 53.97 58.77 

Table 5.2: Actual Data and Model Prediction For Data Set WPF 

61 , 

6 
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Figure 5.11: Raw Data Set XWPF, Normalized to 0.004" (0.102 mm) [61] 

5.3.3 Data Set XWPF 

One further and final demonstration of the ahility of the Markov model to predict 

fatigue crack growth a second data set has heen used. The data set XWPF [61] is 

shown in Figure 5.11. This datù was obtained for tests performed on tbe specimen 

shown in Figure 5.12. This specimen was made of the same matcrial as the one from 

the data set WPF and was tested under the same conditions (see previous section). 

The data set was again normalized to an initial flaw size of 0.004"(0.102 mm) and the 

same state size of 0.001" (0.0254 mm) was used. 

Since there has heen a change in the system, in this case a change in the specimen 

geometrYI ne\\' empirical system parameters, À and "-, need to he found. Values of À 

and Il. were found, using the program SOLUTION, to he: 

À - 0.35 Il. - 0.79. (5.13 ) 
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Figure 5.12: XWPF Test Specimen Geometry [39] 

As expected, the system parameters are indeed different due to the change in specimen 

geom<>try. These values yielded the results for the mean and variance as given in 

Table 5.3. These results are also shown graphically in Figures 5.13 and 5.14 and 

again illustrate the fact that the Markov model Îs indeed capable of making excellent 

predictions for the mean and variance of fatigue crack size as a function of time. 

These figures and the on es from the previous section are an indication of the abil­

ity of this modcl to predict the statistics of fatigue crack growth. Thus, one of the 

primary objectives of this thesis, the development of a stochastic process to model the 

growth of fatigue cracks including the inherent scatter, has heen achieved. The second 

major objective of this r('')ort, the application of this model to component reliability 

predictions, WIll he examined in the following chapter. The reliability calculations in 

the remainder of this thesis make use of the data set WPF, since only one data set 

was necessary to illustrate the capahilities of this model, t.he procedures used, however, 

could have been applied equally to the second data set. 
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1 FLIGHT MEAN VARIANCE 

HOURS ACTUAL MODEL ACTUAL MODEL 

1500 8.50 8.50 2.31 2.31 

2000 10.38 10.20 4.67 5.38 

2500 12.69 12.31 9.09 10.38 
, 

3000 15.50 14.93 17.38 18.45 

3500 18.00 18.21 30.19 31.'11 

4000 22.84 22.31 54.63 52.14 

4500 27.53 27.42 89.25 84.48 

Table 5.3: Actual Data and Madel Prediction For Data Set X"VPF 
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Figure 5.13: XWPF - Mean Crack Size, From Data and Markov Madel 
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Chapter 6 

RELIABILITY ANALYSIS 

6.1 A Failure Control System 

Modern engineering designs require the use of high reliability components. This is 

especially true in the case of hazardous material containers, petroleum pipelines, nu­

clear power plants, aircraft structures and other applications where failure can be 

life-threatening. One of the major causes of the failures of these components is the 

unavoidable weakening associated with aging. This weakening of a component or struc­

ture can be caused by fatigue, wear, corrosion and other phenomena. The result of 

one or more of these processes is the degradation in the strength of the component. In 

order to combat this degradation the operator of the structure needs to implement a 

Failure Control System such as the one introduced by Hay et aIl. [62] and further 

developed by Rodriguez et aIl. [63]. 

There are t \VO f'ssential parts of the Failure Control System, namely, the degrada/ion 

module, for whlch the model discussed in this report can be used, and what Hay et ail. 

have termed :he "upgradation" module. This upgradation module can also be called 

the inspection-correction module as it aIlows for the location and repair or replacement 

of components with "significant" flaws, where the operator must decidc what is meant 

by significant. SchematicaIly this failure control system can be shown as in Figure 6.1. 
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Figure 6.1: Schematic of a Failure Control System [631 

6.1.1 The Inspection/Correction Process 

This section of the failure cont.rol system involves stopping the degradation process, 

locating components that pose a risk to structural integrity, and carrying out the 

necessary maintenance procedure. In mathematical terr'1S it is the censoring of the flaw 

size distribution. This corrective procedure increases confidence that the structure will 

continue to perform satisfactorily. The increase in confidence depends on such things 

as the quality of the inspection apparatus and personnel, the definition of what is 

meant by a significant fla", and the quality of the repair procedure. AlI of these are 

variables which can be controlIed, to sorne degree, by the operator of the structure. 

INSPECTION 

There arc many non-destructive inspection procedures available such as, X-ray, flux­

leakagc. ultrasonic, acoustic emission, eddy current, dye penetrant and others. AIl of 

thesc techniques have different accuracy, time needed for testing, complexity, limita­

tions and costs. They also introduce a degree of uncertainty which is in itself a complex 
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problem and is beyond the scope of the present work. 

There are four possible outcomes of an inspection procedure and their respective 

probabilities de pend on factors su ch as quality of inspection apparatus, flaw orienta­

tion and, perhaps most importantly, the quality of inspection personnel. The four 

possibilities é.re : 

• correct identifie ation of an existing flaw, 

• failure to locate an existing flaw, 

• correct identification of a component as defect-free, 

• incorrectly labeling a defect-free component as flawed. 

What is of interest to the engineer is the probability that the operator will be able 

to make a correct identification of an existing flaw in an in-service component. Many 

authors, references [64] - [68] for example, have proposed functions to describe the 

probability of detecting an existing flaw in a structure. For example, that of Davidson 

[66] is given by : 

where: 

{ 
C{l - exp[-b(d - dth )]} 

PD(d) = 
o 

jd ~ dth 

jd < dth 

(6.1 ) 

C = a constant, less than 1, which indicates that even large flaws have 

a probability of detection that is less than 100%, 

b = a parameter which depends on the critical crack criterion, i.e. 

the probability of detecting a crack of a certain critical size, de, 

should exceed a certain value, and 

dth = the detection threshold, which is the minimum size defect that 

can be found. 
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With a knowledge of the particular inspection process in question the constants C,b 

and dth are determined and the probability of detection expression can then be used 

for reliability calculations. In the present investigation this function has been used, 

with the following values for the constants: the constant C = 0.99, which shows that 

even large flaws can be missed; b was obtained using the boundary condition that 

Pd(0.030") = 0.98; and the detection threshold, dth = 0.010" (0.254mm). 

CORRECTION 

This step concerns the actual removal of the flawed components that were located by 

the inspection and their repair and/or replacement. This stage depends heavily on 

the judgement of the engineer, who must decide what is meant by a significant flaw 

and how to correct it. One option is to remove aIl flawed components and replace 

them with new ones. This would result in the structure being "as good as new" if the 

inspection procedure was capable of detecting ~dl flaws. Certainly, in practice, 

the.,e procedures are not perfect and often it is not economically feasible to replace 

aIl flawed components, no matt":!r how smaIl the flaw. The result is that the engineer 

decides when a flaw is large enough so that it may grow to critical size before the next 

scheduled inspection-correction procedure. The size is usually chosen to conform to 

either company policyor a design code, but it may be considered as a variable within 

certain limitations. 

MODIFIED FLAW SIZB DISTRIBUTION 

The modified flaw size distribution is the combination of the components that re­

main from the initial population and the components that have been repaired or their 

replacements. This can be seen from Figures 6.2[a]-[d] \\ hich are a graphical rep­

resentation of this failure control system as presented by Rodriguez and Provan[58]. 

Figure 6.2[a] shows the initial flaw distribution where dr is the flaw size at which com­

ponents requirc correction and d J is the size at which failure occurs. After sorne time, 

t, has elapsed the components have undergone degradation, which can be predicted us-
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ing the stochastic law already developed. The result of this degradation is the flaw size 

distribution of Figure 6.2[b], note that a small number of componC'nts have <'xcœded 

the failure size, d f' The hatched area of this figure represents t.he probability of failure. 

If a non-destructive inspection is carried out at this point sorne of the flaws present 

will be found while others will be missed, depending on the inspection procedure. This 

is shown in Figure 6.2[c] where the shaded region represents the flaws t.hat. are found. 

Knowing the probability of detection the number of flaws missed can be inferred. It. 

can be seen that t.he smaller the flaw size the smaller the proportion of flaws actually 

located is. The correction procedure is then carried out where ail components that 

have been found to have flaws greater than dr are removed and replaced (in this case 

with new components). Figure 6.2[d] shows the modified distribution wherc the new 

components are considered as a separate group from the original population. The new 

components could be considered as part of the same group for the case' of a tirne­

homogeneous process. It is important to observe that there still exists a srnall number 

of components with flaws greater than dr but which have not been found and replaccd 

due te inspection shortcomings. Th;s rnodified flaw size distribution can now be con­

sidered as the initial distribution for another degradation and inspection-correction 

cycle. 

In these figures the replacement cornponents have been \..unsidered with the smallest 

possible flaw size, this, however, does not have to be the case. The flawed components 

could have been repaired so that there were still sorne flaws existing but of varying 

sizes. A flaw size distribution could then be specified that allows for sorne of these 

components to have larger flaws present. 

6.2 Reliability Analysis 

The combinat ion of the failure control system outlined in the previous section with the 

Markov model presented in Chapters 3 & 5 can be a very powerful tool for practical 

engineering reliability calculations. In order to illustrate this two specifie uses will be 
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explained in the following sections. The first use is for the prediction of repair timcs in 

order to maintain a certain level of reliability (section 6.2.2), and the second is the de­

termination of the optimum time for an inspection-correction procedure (section 6.2.3). 

Before these are examined a method that is central to both, the mcthod of predictillg 

reliability at a future time, is presented. 

6.2.1 Re liab ilit y as a Function of Time 

Reliability, as was discussed earlier, has been defined as the probability a compollcllt. 

will perform satisfactorily for a specified period in a specified environment. A mcthod 

for determining this probability is through the use of the mathematical modcl dcvcl­

oped in this report. The first step is to use the mode} te generatc probability histograrns 

for crack size at given future times. The reliability can then be round if the critil'al 

crack length is known, it is the probability that the crack does not cxcecd this critical 

length. This quantity can be obtained by summing up the probability of a crack bcing 

any sub-critical size. This is illustrated in Figure 6.3 where the reliability is equal to 

the sum of the areas te the left of the critical size. This method of assessing reliability 

is used in the analysis contained in the remainder of this chapter. 

RELIABILITY vs. TIME FOR WPF 

For the data set WPF, as described in Chapter 5, predictions of reliability as a function 

of time can be made following the method of Figure 6.3. To facilitate this tbe computer 

program SOLUTION from Appendix A was used ta generate crack size histograms 

for times from 1500 to 5500 fiight hours. This data was then used to gellerate reliability 

as a function of time curves such as Figure 6.4. A family of curves of this nature can 

be obtained by varying the critical crack size or failure state, NF. This variation allows 

the user to examine the effect that changing the failure state has on reliability. For 

the figure shown, as well as for the analysis in the following sections, the failure state, 

NF, was taken to be a crack size of 0.040" (1.02 mm). 
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6.2.2 Re liab ilit y Maintenance 

The operator of a structure will often decide upon a desired level of reliability. Once 

this level has been determined, perhaps by company policy, standard industry pracLices 

or other means, it becomes necessary to determine when to schedule the maintenance 

procedures that \vill ensure il. This can be donc by using the Markov model to prcdict. 

when the probability of failure will reach the desired limit and then calling for an 

inspection-correction procedure. 

Before the analytical analysis is carried out the repair or maintenance poliey must 

he determined. This policy consists of the answers to two questions: first, 'which 

components will be replaced?' and second, 'what will the quality of the replacement 

components be?'. In the present investigation it was decided that the size at whîch 

components would be replaced would be smaller than the critical size. The use of a 

replacement size smaller than the critical one allows for the removal of some compo­

nents that are in greater danger of failure before the next maintenance procedure. The 

actual replacement size used was allowed to vary in order to illustrate the uscfulness 

of the model for examining the effect of changes in repaîr policy. For aU examples in 

this report the replacement components were assumed to have small initial flaws of 

0.004"(0.102 mm) in order to eliminate the scatter due to initiation. 

Analytically, as a result of the removal and replacement of sorne components, thcrc 

are two distinct populations in the structure. These populations will he rcferred to 

as Population l, which consists of the remaining components from the initial group, 

and Population II, which is the group of replacement components. The reason this 

distinction is necessary is that the Markov pro cess developed here is time-dependcnt 

or non-homogeneous. This means that for an inspection-correction at time Tm,pect the 

fatigue procec;s continues for Population 1 while for Population II it starts at time T 

= 0 and ends at time T = T/inal - Ttnspect • As long as the fatigue loading situation 

remains the same the system parameters, .À and K, can be used for both populations. 

After the inspection-correction procedure has been carried out the probahility of 

failure for the two populations is monitored in order t() determine the total prohahility 
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of failure. Following the development of Rodriguez and Provan[58], this total proba­

bility of failure is a weighted combination of the probabilities of failure of Populations 

1 and II. The weighting constant, Kt! is simply equal to the fraction of the initial 

population remaining in service and the total probability of failure is given by: 

(6.2) 

where Rf and R{ / are the reliabilities of Populations 1 and II respectively at time t. 

Rf is calculated by first normalizing the histogram of the remaining initial components 

by dividing hy 1\1' This ne\\' population is allowed to "age" using the Markov model 

until time t whcn its reliability is calculated. Rfl is obtained by using the Markov 

mode} with the initial distribuf;on being aIl components with an initial flaw of 0.004" 

(0.102 mm) and starting at time t and finishing at time t = t - Tmllpec' This process 

can easily be extended to include as many inspection- correction procedures as desired. 

For example, the extension to include a second procedure would result in the following 

expression for the total probability of failure at a final time t, with inspections at times 

il and t2: 

PJ1'OTAd t ) = (1 - R:)KtJ<~ + (1 - Rf/)(l - Ktl)[(t~1 + 
(1 - R{/l)[I<t, (1 - K{J + (1 - [(tl )(1 - I(~/)] ; (6.3) 

where Kt~ and K{/ are the predicted reliabilities of Populations 1 and II at time t2 

and Rf , Rfl . and R{II are the predicted reliabilities of Populations l, II and III, 

respectively, at time t. 

For the case where it is desired to replace components that have not yet faHed 

but which have flaws greater than the replacement size, the inspection procedure used 

must be considered. The components that will be removed will only be those whose 

flaws are detected. In other words, the normalizing constant. will be the sum of the 

components with flaws less than the replacement size plus the components that have 

larger flaws but are missed due to the probability of non-detection ~-'''sociated with the 
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Applying this method of analysis, which is contained in the program MAINTAIN 

in Appendix A, is perhaps the best way to illustrate its capabilities. Defining the 

replacement size, NR, to be .030"(0.762 mm) and the desired n'liability level to be 

.9999 or PfToTAL(t) = 1.0 x 10-4 the total prob..tbility of failure for times 2,~00 to 

5500 Flight Hours were obtained as in Figure 6.5. From this figure the times for 

inspection-correction procedures can be determined. 

One of the interesting uses of this methodology is the examination of the effcd 

on repair schedule if, for aIl other variables constant, the desired level of reliability is 

changed. In Figure 6.5 the probability of failure was 1.0 x 10-4 , or 1 failure in 10,000, 

what if the operator decides that a probability of failure of, say, 1 in 2,000 would be 

acceptable? Obviously, they would like to know how the inspection schedule would 
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Figure 6.6: Detcl'mining the Inspection Schedule to Maintain Reliability at .9995 

vary, i.e. will there be a substanlial enough savings in maintenance costs to justify the 

zncrcascd 7'isks. The results for this change in acceptable reliability level, to .9995, are 

prescnted in Figure 6.6. From a comparison with the previous figure it is immediately 

apparent that nOL only will the first maintenance procedure be carried out at a later 

time but that one fewer procedure will be necessary. 

The effect of repair size on inspection interval is another useful application of this 

process. Figure 6.7 shO\.s how inspection interval is aft'ected by a change in repair 

size from 0.030" (0.762 mm) to 0.025" (0.635 mm). The first inspection will occur at 

the same time for both since this does not depend on repair size. After this first 

inspection, however, there is a noticeable difference between the two curves. There are 

a total of four inspection-corrections for NR = 0.030" before 5500 flight hours while 

for NR = 0.025" the third one would be scheduled after this time! The ability to 

generate information of this nature is a powerful tool for the system operator. These 

results help answer the question "what is the savings in maintenance time and costs 
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Figure 6.7: Influence of Repair Policy on Inspection Scheduling 

corresponding to an increase in expfmditure for the replacement of more componcllts?" 

These figures (6.5,6.6,6.7) illustrate the type of information that can be obtaincd 

from this mode! concerning inspection intervals. The analysis has shown that the 

engineer can make hypothetical changes in the repair and/or reliability policy and 

examine, quantitatively, the effects of these changes and the potential bencfits. AIl 

of these analyses can be performed, with minimal necessary input from the opcrator, 

using the program MAINTAIN found in Appenrfix A. 

6.2.3 Inspection Optimization 

Another useful form of reliability analysis which can be carried out with this model is 

the optimization of the inspection time. As an example, suppose that it is desired to 

minimize the total probability of failure at a future time, and further that there will be 

only one inspection-correction pro cess in a given interval of time. The question that 

the operator must ask and answer is "when is the opt.imum time for this procedure?" 
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If there is no repair of the structure the probability of failure can be obtained from 

a curvc such as the one presented in Figure 6.4 (section 6.2.1). In order to decrease 

this probability of failure an inspection-correction procedure will be carried out at 

sorne time. An inspection too early in the service life will, on the one hand, remove 

fcw components that may subsequently fail while a later inspection may be too late 

to remove components that will have failed. The optimum time for inspection will 

depend on several variables such as: critical crack size, repair size, inspection process, 

and the quality of replacement components [45]. The quantity to be minimized, the 

total probability of failul'e at sorne time tfmal , is given by [58] : 

whcre t is the time of the inspection, Rt is the reliability of the initial population at the 

lime of inspection, ](t is the normalizing constant as explained previously, and Rf/ lnol 

and RUonol are the reliabilities of Populations 1 and II, respectively, at the final time. 

In order to carry out this analysis the computer program OPINSPEC was devel­

oped (Appendix A). This program allows the user to control su ch variables as NF, NR 

and the Probability of Detection. By using this program with the same probability 

of detection function and with NF = 0.040" (1.016 mm) and with NR = 0.030"(0.762 

mm) the results presellted in Figure 6.8 are obtained. From this figure it is apparent 

that the optimum time for inspection-correction is at 4700 hours and that the total 

probability of failure is decft .. ase by 60 % over the no inspection case. 

By changing repair policy, such that NR is varied, different curves are obtained. By 

examining several of these, as in Figure 6.9, the change in optimum inspection time as 

well as total probability of failure at 5500 hours can be observed. By changing from 

a repair size of 0.030"(0.762 mm) to one of 0.025"(0.635 mm) the optimum inspection 

time becomes about 300 flight hours earli!!r, which is to be expected since more cracks 

will reach this smaller size at an earlier time. In addition, the minimum achievable 

probability of faHure is decreased by a further 50% to about 1/5 the value for no 



CHAPTER 6. RELIABILITY ANALYSIS 

-.... 1 
0 .... 

>< ........ 
UJ 
~ 

:3 -< tJ.. 
tJ.. 
0 
>-
f--...J 
5 
< 
a:l 
0 
c::.:: 
Q.. 

...J 

~ 
~ 

,-.. ..... 
1 

0 ..... 
>< ........ 

UJ 
~ 
::J 
...J :;: 
u.. 
u.. 
0 
>-
f--...J -~ 
a:l 

~ 
Q.. 

~ 
~ 

0.4 

0.35 

0.3 

0.25 r 
1 

1 

O'2t 
0.15 

1 

0.1 r 
D,OSt 

°3 3.5 4 4.5 5 

FLIGHT HOURS (in thousands) 

-1 
1 

~ 
1 

J 
1 
1 

" ~ 
1 
1 

! 

Î 
1 

1 

ï 

j 
5.5 

Figure 6.8: Total Probability of Failure as a Function of Inspection Time 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 
'. 

0.1 

0.05 

°3 

. . 

. 
' . . 

............ 
'. 

'. 
............... 

. . . 

' . 
.............. 

3.5 4 4.5 

REPAIR SIZE 

.030" 

.025" 

.020" 

5 

FLIGHT HOURS (in thousands) 

Figure 6.9: Influence of Repair Policy on Optimum Inspection Timc 

5.5 

81 



CHAPTER 6. RELIABILITY ANALYSIS 82 

inspection-correction. These trends are also observable for a further decrease in the 

repair size to 0.020"(0.508 mm). 

This analysis can of course he extended to allow for two or more inspection­

corrections during the given intervaJ. This is conceptually just a simple extension 

of Equation 6.4 to include as many as desired. Each new inspection-correction adds 

considerahly to the amount of computer time needed so, for the present investiga­

tion, this analysis was not performed. It could, however, be easily done through sorne 

st.raight-forwal'd modifications of the program OPINSPEC. 



" 

Chapter 7 

CONCLUSIONS 

It has been the objective of this thesis to develop a probabilistic mode} for fatigue Cl'dck 

growth and apply this model to reliability analyses. The nonhomogeneous Markov 

model developed has been applied to several fatigue data sets that are available in 

the literature. The following can be concluded based upon the rcsults of the current 

research: 

• The nonhomogeneous Markov mode} can be used, with the choice of appropriatc 

intensity functions, to provide a valid prediction of fatigue crack growth since it 

can predict not only the me an crack size as a function of time but also crack size 

variance as a function of time. 

• A change in the fatigue system, consisting of the material, loading, temperature, 

loading etc., means a change in the paramcters >. and K. This has been shown 

by the different values for the two data sets WPF and XWPF where the only 

differenee in the system was a different specimen geometry. 

• From the results it ean be seen that the Markov model, used in eombination with 

a failure control methodology based upon the methodology presented in Chapter 

6, can be a useful tool for obtaining valuable reliability information. The types 

of information obtainable can include: 

i. estimates of reliability as a function of time, 

83 
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11. 

iii. 

iv. 

the determination of the maintenance schedule which will ensure a 

desired level of reliability, 

the optimal time for a maintenance procedure, and 

the examination of the effect of varying quantities such as the min­

imum reliability level and the repair size. 

In light of these findings this method of modelling fatigue crack growth certainly 

merits further investigation. It is hoped that the computer programs developed for 

this research can be of use in compiling a table of system parameters, À and K., to be 

used for future fatigue and reliability analysis. 



r.; ... 

j , 

t 
r , 
~ 

Bibliography 

[1] Bompas-Smith J.H., Mechanical SU1'vival: The Use of Reliability Data, McGraw 

Hill, (1973). 

[2] Petroski, H., To Engineer Is Human, St. Martin's Press,(1985). 

[3] Duga, J.J. et al., The Economie Effects of Fracture in the United States. Part 

2 - A Report to NBS by Battelle Columbus Laboratories, V.S. Dcpartment of 

Commerce, (1983). 

[4] Dhillon, B.S., and Singh, C., Engineering Reliability : New Techniques and Ap­

plications, John Wiley & Sons, (1981). 

[5] Mechanical Reliability Concepts, ASME Design Engineering Conference, ASME, 

(1965). 

{6] Forsyth, P.J .E., Fatigue Damage and Crack Growth in Aluminum Al/oys, Acta 

Metallurgica, Vol. 11, (1963). 

[7] Griffith, A.A., The Phenomena of Rupture and Flow in Solids, Phil. Trans. Royal 

Society of London, (1921). 

[8] Criffith, A.A., The Theory of Rupture, Proc. First lnt. Congress of Applied Me­

chanics, Biezeno and Burgers(eds.), Waltman Press, (1924). 

[9] Broek, D., Elementary Engineering Fracture Mechanics, Martinus Nijhoff, (1986). 

85 



BIBLIOGRAPHY 86 

[10] Inglis, C.E., Stresses in a Plate Due to the Presence of Cracks and Sharp C01·llCrS, 

Trans. Inst. of Naval Architects, Vol. 55, (1913). 

[11] Provan, J.W., An Introdllclton to Fracture Mechao ics, Journal of Matcrials Edu­

cation, Vol. 10(4), (1988). 

[12] Irwin, G.R., Analysis of Stresses and Strams Near the End of a C:mck Tmvc1"sl1Ig 

a Plate, Trans. ASME, J. Applied Mechanics, Vol. 24, (1957). 

[13] Provan, J.W., An Introduction to Fatzgue, Journal of Matcrials Education, Vol. 

11(1 & 2), (1989). 

[14] Paris,P.C. and Erdogan, F., A Critzcal Analysis of Crack Propagatzon Laws, Trans. 

ASME, J. Basic Engrg., Series D, Vol. 85, (1963). 

[15] Forman, R.G. et al., Numerzcal Analyszs of Crack P1'OpagailOn zn Gyclzc Loadcd 

Structllres, Trans. ASME, J. Basic Engrg., Series D, Vol. 89, (1967). 

[16] Shooman, M.L., Probabzlzstic Relzabzlzty : An Engmeenng Approach, McGraw 

Hill, (1968). 

[17] Mann, N.R. et aL, Methods for Statistical Analyszs of Relzabzlzty and Lzfc Data, 

John Wiley & Sons, (1974). 

[18] O'Connor, P.D.T., Practzcal Relzability Engiueering, Heyden & Son, (1981,. 

[19] Provan, J.W. and Theriault, Y., An Experimental InvestigatlOn of Fatzgue Rclza­

bility Laws, in "Defects, Fracture and Fatigue", G.C. Sih and J.W. Provan (cds.), 

Martinus Nijhoff, (1983). 

[20] Davis, D.J., An Analysls of Some Failure Data, Journal of the American Statistical 

Association, Vol. 47, pp. 150 - 173, (1952). 

[21] Epstein, B., The Exponentzal Dzstributton and zls Role in Lzfe - Teslmg, Industrial 

Quality Control, VoU5, No. 6, (1958). 

, 



BIBLIOGRA PlI Y 87 

[22] Gupta, S. and Groll, P., Gamma Distribution in Acceptance Sampling Based on 

Lifc Tes/s, Journal of the American Statistical Association, Vol. 56, pp. 943 - 970, 

(1961). 

[23] Pearson, K., Tables of the Incomplete Gamma FuncttOn, Biometrika Office, Uni­

versity Collcgc, London, (1957). 

[24] MeLals IIandbook, Arnerican Society for Metals, Vol. 1, f.th Edition, (1967). 

[25] Howard 0.1'. and Dùbson, G.A., High Stress Aging to Failure of Semiconduc­

Lor Devlces, Procccdings of the Seventh National Symposium on Reliability and 

Quality Control, (1961). 

[26J Peck, O.S. Uses (lf ScmicoTlductor Life Distrzbutions, Semiconductor Reliability, 

Vol. 2, pp. 10 - 28, (1962). 

[27] Kao, J.II.K., Statzstzcal Models in Mechanical Relzabi!zty, Proceedings of the 

Elevcnth l\ational Symposium on Reliability and Quality Control, (1965). 

[28] Weibull, W., A Statistzcal Dzstnbutzon Of Wide Applicability, Journal of Applied 

Mechanics, Vol. 18, pp. 293 - 297, (1951). 

[29] Leiblen, J. and Zelen, M., Statzstical Investzgatzon of the Fatzgue Life of Deep -

Groove Bali Bearzng!), Journal of Research, National Bureau of Standards, Vol. 

57, pp. 273 - 316, (1956). 

[30] Kao, J.n.K., A Graphzcal Estzmatzon of Mixed Weibul/ Parameters in Life - Test­

ing of Elect1YJ1l Tubes, Technometrics, Vol. l, No. 4, (1959). 

[31] Perry, J.N., SemzcondurLor Burn - zn and Weibull Statistics, Semiconductor Re­

liability, Vol. 2, pp. 80 - 90, (1962). 

[32J Lloyd, D.I\. and Lipow, M., Reliabzlity : Management, Methods, and Mathematics, 

Prentice - Hall, (1962). 



BIBLIOG.RAP Hl' 88 

[33J Gumbel, E.J., Statistics of Extremes, Columbia U niversi ty Pres~, (1908). 

[34J Siddall, J.N., Probablhsiic Engtneermg Design: principlcs and upplzcatlO7IS. ~L 

Dekker, (1983). 

[35J Haugen, E.B., Probabilzstlc Mechanzcal DesIgn, John Wilcy .\: SOIlR, (InRO). 

[36] Provan, J.\V., Probabzlzstic Approaches to the Afatcrzal-Rdalcd Rdzabzhly of 

Fracture- Sensztzve Structures, Probabilistic Fracture Mechanics and H('liabilit.y, 

J.W. Provan(ed.), Martinus Nijhoff, (1987). 

[37] Manning, S.D. and Yang, J.N., USAF Durabzizty Deszgn lIa1ldbook: GUldfil1lfS 

for the Ana/ysls and DesIgn of Durab/e Annaft Structures, AF'\\'AL-TH-8:J-:W27, 

(January 198·1). 

[38J Manning, S.D., Yang, J.N, and Rudd, J.L. Durabdzty of Azreraft Structures, Prob­

abilistic Fracture Mechanics and Reliability, J.W.Provan(ed.), Martinus Nijhoff, 

(1987). 

[39J Yang, J.N., Manning, S.D. and Rudd, J L., Stochastlc Approach for Predzclmg 

Functional Impairment of Meta/Izc Azrframes, AIAA/ASME/ASCE/AHS 28th 

Structures, Struct.ural Dynamics and Materials Conference, Monter<,y, Califorma, 

(1987). 

[40J Manning, S.D. and Yang, J.N., Advanced Durabzlzty Analysl5, l'o/ume [ - Ana/yt­

ica/ Methods, AFWAL - TR - 86 - 3017, Air Force Wright Aeronautical Lahora­

tories, (Nov. 1986). 

[41J Manning, S.D. and Yang, J.N., Advanced Durabzllty Ana/yszs, Volume II - Ana/yt­

ical Predictions, Test Results, and AnalyticaljExperzmenia/ Co rre/at IOns, AFWAL 

- TR - 86 - 3017, Air Force Wright Aeronautical Laboratoncs, (î'ov. H)86). 

[42J Provan, J.W. The Mzcromechanzcs Approach to the Fatzgue ['àz/llrc of POI:J'xys­

talline Meta/s, in "Cavities and Cracks in Creep and Fatiguc", .J.Gittus(cd.), EI­

sevier's Applied Science Publishers Ltd., (1982). 

, 



BIBLlOGRP.PI/Y 89 

[43J Provan, J.W., A FatIgue Rellabillty DIstributIOn Based on Probabilzstic Microme­

chamcs, in "Dcfectsand Fracture", c.e. Sih and H. Zorski (eds.), Martinus Nijhorf 

Pu blishcrs, (1 !\82). 

[44J Provan, J W. aIld Rodrigucz III, E.S., Part 1: Development of a fvlarkov Descrip­

tion of PlI/mg Co rroslO1l , Corrosion, Vol. 45, No. 3,(1989). 

[45J Provan, .LW. and Bohn, S.R., Stochasttc FatIgue Crack Growlh and the Reliability 

of Deterwratmg SlructU1'es, to be presented at "Fatigue 90" in Hawaii. (July 1990). 

[46J Bogdanoff, .LL. and Kozin, F., Probabilisttc Models of Cumulalwe Damage, John 

Wiley & SOIl-" (198.1). 

[47J Doob, J.L., Slochasllc Processes, John Wiley & Sons, (1953), 

[48] Bharueha-Hcid, A.T., Elements of the Theory of Markov Processes and Their 

Applzcatwn8, MeGraw-Hill Book CCITIpany. Ine., (1960). 

[49] Clarkc, A.il and Disney, R.L., Probabdzty and Random Processes: A Fzrst Course 

wlth ApplicatIOns, John vViley & Sons, (1985). 

[50J Fellcr, W., A n IntroductIOn to Probability Theory and lis Applications, John 'iViley 

& Sons, (1968). 

[51] Parzcn, E.,Alodcrn Probabtlzty Theory and /ts Applzcations, John Wiley & Sons, 

( 1960). 

[52] Melsa, J.L. alld Sagc, A.P. An lntroduclzon to Probabilliy and Stochastlc Processes, 

Prcntiee-I1all, (1973). 

[5~J] Taylor, Il M. and Karlin, S., An Introduct70n to Stochastic Modeling, Academie 

Press, Ine , (1984). 

[54] Rodrigucz Ill. E.S., On a New Markov Mode/ for the Pitting Corrosion Process and 

Ils App17cailO71 to Re/labdzly, Ph.D. Thesis, McGill University, Montreal,(1986). 



BIBLIOGRAPHY 90 

[55] Prové:a.n, J.W., The Mzcromcchanics Approach to Failgue Fat/ure of Polyc1'ystalllllc 

Metals, in "('avitles and Cracks in Cr<,ep and Fatigu<,",.1. Gittus(ed ). Ellw\'ier's 

Applied Scicnce Publtshcrs Ltd. (1981). 

[56] Boyce, W.E. and DiPnma. R.C., E/cmentary Differentiai EqllatlOT/." and IJ01l11da/'y 

Value Problcms, John \VIley & Sons, (19ïï). 

[57] Froberg, C.E.,Int1'OductlOn ta Nllmerzca/ Ana/ys/s, Addison-Wcsl('y Publishing 

Company Inc .. (196.5). 

[58J Rodrigucz III. E.S. and Provan, ,1.W., Pari Il:Developmenl of (l Gr7!cral Fui/ure 

Control Syslcm fOT' Esflmafzng Ihe Reliabzlzly of DclrrlOrall1l.'l Slructure8. Corro­

sion, Vol ·15. Ko. 3.(1989). 

[59J Provan, J. W. and Mbanugo, C.C.l., Siochastzc Fatzgue CmcJ.- (,'mw/II - A 11 E:r­

pC1'lmcntai Silldy, Res Mechanica, Vol. 2, (1981). 

[60] Mbanugo, C.C.L, Stochastlc Fat1gur Crack Growth - A Tl Experzmental Stluly, 

Ph.D. Thcsi~, McGIll Ull1\'crsiLY, Montreal, (1979). 

[61] Noronl1a, P.J , Henslee, S.P. and Gordon, D.E .. Fastener 1I0/r Qualzty, Tcdmical 

Rerort AFFDL - TR - ï8 - 206, Vol. II, (1978). 

[62] Hay, D.R., Puglisi, F. and Mustafa, V., A Systems Approach 10 Faz/wc Control 

zn Load-Beanng Structures, Canadian Mctallurgical Quartcrly. Vol 19, (1980). 

[63] Rodriguez III, E.S., Hay, D.R. and Provan, J W., A Stochaslu' Inlcrprcia/w1I of 

Matenal DcgradatlOn Processes, in "Der~cts, Fracture and Fatigu<,", C.C. Sil! aTld 

J.W. Provan (eds.), Martinus Nijhoff, (1983). 

[64] Berens, A.P. and Il o vey, P.W., Statzstlca/ Methods for Estzmatmg Cmck Dclf'clzon 

Probabzlztles, Probabilistic Fracture Mcchanics and Fatigue l'vlcthocb, ASTM STP 

798, (1983). 



BIBLIOGRAPlIY 91 

[65] Arnett, L.M., Optzmizatwn of ln-service Inspection of Pressure Vessels, Du Pont 

Savannah River Laboratory Report DP-1428, (1976). 

[66] Davidson, J R., Re/zablilly and Structural Integrity, Presented at the 10th Anniver­

Bry Meeting of the Society Jf Engineering Science, NASA-TM-X-71934, (1973). 

[67] Yang, .J N. alld Trapp, W.J., Joznt A ircraft Loadmg-Slrucfure RLsponse Statistics 

of Time to SenJlee Craek lnztzatwn, J. of Aircraft, Vol. 13(4), 1976. 

[68] Harris, n.o., A Means of Assesszng the Effects of NDE on the Rclzability of Gycli­

cal/y Loadec! Structures, Materials Evaluation, Vol. 35(7), (1977). 



Appendix A 

COMPUTER PROGRAMS 

The computer prograrns prescnted here are writtcn for a PC - ba.<,cd FORTHAN com­

piler. They require user interaction as weil as the lIS(' oi input and out put data files. 

Sorne of thf' syntax would need to be changed for dlfferent computer ~.Y~t<'Ill~, cOlllpders 

or for mainframe lise, but the overall structure and tlw algorithms w()uld n' 1IlctiIl t1H' 

same. 

A.1 Program - SOLUTION 

This program is instrumental in the numerical solution of the Kolmogrov Diffprentidl 

Equation 5.6 for the transition probabilities, PI) (T,t). The algonthm for tl«, so)vlJIg 

of this equation is thc one developed by Rodriguez[54] These trdrlsltioll probabihtl('l->. 

which are dctcrrnined ln subroutine TRAI\SP, arp then Ilsed in ~Ilbrollt 11)(' EVOLVE t.o 

calculate the probability histograrns for crack size distribution. The program abo cal­

culates the mean and variance (subroutine MOMENT) and the r('habihty (sllbroutiIl<' 

EVOLVE) for each of these histograms. 

The necessary lIlputs are' 

TOL 

NSTATE 

PI(NSTAl'E) 

the tolerancc for error control. 

the nurnber of states in the model. 

a vector of the initial probability distribution 
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the (,Inpirical material pararncters 

these arc T , t fmal , and the step size TI,T2,DT 

NF the failure state, to use for reliability estimates 

The listing of tlw program is as follows: 

PROGRAM SOLUTION 
c 
C COMPUTES THE MEAN AND VARIANCE OF THE DISTRIBUTION 
C AT A LATER TIME, GIVEN THE INITIAL PROBABILITY 
C DISTRIBUTION ON FILE INITIAL.DAT (the file contains the 
C probabili ty of being in each state from 1 to NSTATE). 
C IT ALSO OUTPUTS THE FINAL DISTRIBUTION ON THE FILE 
C PROB. OUT AND THE RELIABILITY TO THE FILE REL!. OUT 
C 

DIMENSION PI(70) ,PJ(70) 
DOUBLE PRECISION PI,PJ,TINIT,TFINAL,DT,Tl,T2 
COMMON/VAR/JJJ,III,ALAMBD,AKAPP,TOL 
DOUBLE PRECISION TOL,AVER,VAR,RELI 
OPEN (1 , "INITIAL. DAT") 
OPEN(2, "PROB.OUT") 
OPEN(3, "REL!. OUT") 
PRINT. ," ENTER TOLERANCE FOR SOLUTION 
READ., TOL 
PRINT. , "ENTER NUMBER OF STATES: 1\ 

READ., NSTATE 
DO 10 l = l,NSTATE 

1\ 

10 READ(l,200) PI(I) 

4 

CALL MOMENT(PI,NSTATE,AVER,VAR) 
PRINT.," MEAN STATE = ",AVER 
PRINT. ," VARIANCE = ", VAR 
PRINT. , " ENTE .. LAMBDA (if you want to quit type 0) 
READ., ALAMBD 
IF (ALAMBD. LE.O.) GOTO 999 
PRINT.," ENTER KAPPA Il 

READ., AKAPP 

" 

PRINT. , " ENTER INTIAL AND FINAL TIMES AND INCREMENT " 
READ., Tl, T2 ,DT 
PRINT.," " 
PRINT. , " ENTER F AlLURE ST ATE, N = Il 

READ. ,NF 
IF(NF.LE.O) GoTD 999 
TINIT = Tl 
TFINAL = Tl 
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WRITE(2,99)ALAMBD,AKAPP 
3 TFINAL = TFINAL + DT 

IF(TFINAL. GT. 1'2) GOTO 4 

PRINT* , ,. AT TIME = ". TFINAL 
CALL EVOLVE(TINIT,TFINAL,PI,PJ,NF,NSTATE,RELI) 
DO 20 l = 1,NSTATE 

20 WRITE(2,200)PJ(I) 
CALL MOMENT(PJ,NSTATE,AVER,VAR) 
PRINT*, Il MEAN STATE = ",AVER 
PRINT* ," VARIANCE = " ,VAR 
PRINT*," RELIABILITY IS ",RELI 
WRITE(2,100)AVER 
WRITE(2,101)VAR 
WRITE(2,102)TFINAL 
WRITE(3,150)TFINAL,RELI,NF 
GOTO 3 

999 STOP 
99 FORMAT ( , LAMBDA ' ,F6.4,' KAPPA' ,F6.4) 

100 FORMAT ( , THE MEAN ' ,FB.5) 

101 FORMAT(' THE VARIANCE ' ,FlO. 7) 
102 FORMAT(' ATTIME ',F6.~) 

150 FORMAT("T = ",F6.4," RELIABILITY ",F10.B," NF = ",15) 
200 FORMAT(E16.9) 

END 

SUBROUTINE HOMENT(PX,NSTATE,AVER,VAR) 
DIMENSION PX(1) 

DOUBLE PRECISION PX,SUM,VAR,AVER 
SOM = O. DO 
DO 10 l = l,NSTATE 

10 SOM = SUM + FLOAT(I) • PX CI) 
AVER = SUM 
SOM = O. DO 
DO 20 l = l,NSTATE 

20 SOM = SUM + PX(I)*(FLOAT(I) - AVER).*2 
VAR = SUM 
RETURN 
END 

SUERO~lINE EVOLVE(TINIT,TFINAL ,PI ,PJ,NF,NSTATE,RELI) 
DIMENSION TP(2485) ,PI(l),PJ(l) 
DOUBLE PRECISION TP,PI,PJ,SUMJ,TINIT,TFINAL,SUM,RELI 
CALL TRANSP(TP,TINIT,TFINAL,NSTATE) 
DO 40 J = l,NSTATE 
SOMJ = 0.00 
DO 30 l = l,J 



------------- ------
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IPOS = J + NSTATE * (1-1) - I • (1-1)/2 
SUMJ = SUHJ + PI(I) * TP(IPOS) 

30 CONTINUE 
PJ(J) = SUHJ 

40 CONTINUE 
SUM = 0.00 
NFMl = NF -~ 

DO 50 I = l, NFM 1 
50 SUM = SUM + PJ(I) 

RELI = SUM 
RETURN 
END 

SUBROUTINE TRANSP(TP,TINIT,TFINAL,NSTATE) 
DIMENSION TP(1),Y(70) 
DOUBLE PRECISION TP,Y,TINIT,TFINAL 
DO 10 I = 1,NSTATE 
CALL PIJ(I,NSTATE,T1NIT,TFINAL,Y) 
NN = NSTATE - I + 2 
DO 5 J = I,NSTATE 
NN = NN - 1 
IPOS = J + NSTATE * (1-1) - 1 • (1-1)/2 
TP(IPOS) = Y(NN) 

5 CONTINUE 
10 CONTINUE 

RETURN 
END 

SUBROUTINE P1J(II,JJ,TINIT,TFINAL,Y) 
INTEGER N,1ND,NW,KK 
DIMENSION W(70,10),Y(1),C(24) 
COMMON/VAR/JJJ,III,ALAMBD,AKAPP,TOL 
DOUBLE PRECISION W,X,XEND,TOL,Y,C,TINIT,TFINAL 
EXTERNAL FeN 
III = 11 
JJJ ::: JJ 
NW = JJ - II + 1 
N = NW 
X = TINIT 
NMl = N - 1 

111 DO 10 KK = l,NMl 
10 Y(KK) = O.DO 

yeN) = 1.00 
XEND = TFINAL 
CALL SOLVEDE(N,FCN,X,Y,XEND,TOL,C,NW,W) 
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C 

RETURN 
END 

SUBROUTINE FCN(N,X,Y,YPRIME) 

C THE KOLHOGROV OIFFERENTIAL EQUATION 
C 

COMMON/VAR/JjJ,III,ALAMBD,AKAPP,TOL 
DOUBLE PRECISION TOL,X,Y(N),YPRIME(N),A,B,C 
NMl = N - 1 
DO 10 1 = !., NMl 
IPl = 1 + 1 
A= (1.00+ALAMBO*X)*FLOAT(JJJ-I+l)!(1.DO+ALAMBD*X**AKAPP) 
B = (1.00+ALAMBO*X)*FLOAT(JJJ-I)/(1.00+ALAMBO*X**AKAPP) 
YPRIME(I) = -A*ALAMBO*Y(I) + B*ALAMBO*Y(IP1) 

10 CONTINUE 
C = (1.00+ALAMBO*X)*FLOAT(III)/(1.00+ALAMBO*X**AKAPP) 
YPRIME(N) = -C*ALAMBO*Y(N) 
RETURN 
END 

96 



APPBND/X A COMPUTER PROGRAMS 97 

A.2 Program - MAINTAIN 

This i~ the program that i~ u~ed for the rt:liability maintenance ca1culations following 
the lIIcthod olltllllcd in sectIOn 6.2.2. The version presented here neglects the prob­
ability of failulf' of t/J(' replacement population(s). This has been donc since i was 

found t hat tlw prohahdlty of fadure of thf'se populations is severa! orders of magnitude 

~fJl(dlcr than tbctl for the 1I1ltJaJ population for the lHlle mterval studzcd ln thzs report. 

Thl" 1)('lIlg tll(' ,a:-.(', and cOIl~lderIng the fact that each new popula.tlOn significantly 
III( f('dM'S comput IIIg tlme, tlJ('~e populations have not bcen considcred 

TllIS progrdll1 lI'>e~ the subroutines presented in the previous program for the solving 
of the Ko!mogro\' DiffereIltirll Equation. It also uses the subroutmc REPAIR which 
can 1)(' modlfi('d hy the user III order to set the probability of detf'ctloll function. 

The Il('cc~~rtry Illpllts are the ~ame ~ for SOLUTION with the addition of the 
followlIIg . 

C 

li':('l 

NH 
RLIMIT 

an Il1Itlal Increment of time which allows the user to skip over 
sorne incrernent during whlch previous results have shown that 
reliabihty is high enough. If there are no previous results of 
this nature set INCl = DT 
the crack size at \'.rhlCh parts will be replaced 
the level of rehability to be maintained. 

TIl(' program hstlIlg is '" 

PROGRAM MAINTAIN 

C COMPUTES THE RELIABILITY OF THE DISTRIBUTION 
C AT A LATER TIME, GIVEN THE INITIAL PROBABILITY 
C DISTRIBUTION ON FILE INITIAL.DAT (the file contains the 
C probabill ty of being in each state from 1 to NSTATE). 
C THE PRO GRAM ASKS FOR THE LEVEL OF RELIABILITY TH AT 
C IS TO BE MAINT4INED AND WHEN THE RELIABILITY OF THE 
C POPULATION DROPS BELOW THIS LEVEL, IT CARRIES OUT 
C AN INSPECTION/REPAIR OPERATION. THE INITIAL INCREMENT 
C SKIPS THE INITIAL INSPECTIONS WHEN WE KNOW, FROM 
C PREVIOUS RESULTS, THAT RELIABILITY IS HIGH ENOUGH. 
C 

C IT OUTPUTS THE RELIABILITY TO THE FILE RELI. OUT 
C 

DIMENSION PI(70),PJ(70) 
DOUBLE PRECISION PI,PJ,TINIT,TFINAL.DT.Tl,T2 
COMMON/VAR/JJJ,III,ALAMBD,AKAPP,TOL 
DOUBLE PRECISICN TOL,AVER,VAR,RELI,INC1,RLIMIT 
OPEN (1 ,"INITIAL.DAT") 
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" 

C 

C 

C 

C 

OPEN(2, "MAINT AIN. OUT") 
PRINT. ," ENTER TOLERANCE FOR SOLUTION 
REAO., TOL 
PRINT. , "ENTER SUMBER OF STATES : 
REAO., NSTATE 
REWIND 1 
DO 10 l ~ l,NSTATE 

" 

10 REAO(l,200) PI(I) 

4 

CAl~ MOMENT(PI,NSTATE,AVER,VAR) 
PRINT.," MEAN STATE = Il , AVER 
PRINT.," VARIANCE = ",VAR 
PRINT"," ENTER LAMBDA (if you want to quit type 0) 
REAO., ALAMBD 
IF (ALAMBD.LE.O.) GOTO 999 
PRINT. , " ENTER KAPPA .1 

READ., AKAPP 
PRINT. , " ENTER INITIAL AND FINAL TIMES AND INCREMENT 

READ., Tl, T2,DT 

THIS ALLOtJS A JUMP IN THŒ INITIALLY TO SKIP OVER 
SOME INITI.\L TIMES WHERE RELIABILITY IS HIGH. 

PRINT., Il 10 

PRINT., " 
REAO.,INCl 
PRINT.," 10 

ENTER THE INITIAL INCREMENT 10 

PRINH," ENTER FAILURE STATE, N = " 
REAO.,NF 
IF(NF.LE.O) GOTO 999 
PRINT. , Il ENTER THE REPLACEMENT STATE, NR " 
REAO.,NR 
PRINT.," 10 

PRINT.," MAINTAIN RELIABILITY AT ? 
READ. , RLIMIT 
KOUNT = 0 
TINIT = Tl 
TFINAL = Tl + INCl - DT 
REWIND 2 
WRITE(2,99)ALAMBD,AKAPP 
WRITE(2,100)NF,NR 

Il 

3 TFINAL = TFINAL + DT 
IF(TFINAL.GT.r2) GOTO 4 
PRINT., " AT TIME = Il, TFINAL 
CALL EVOLVE(TINIT,TFINAL,PI,PJ,NF,NSTATE,RELI) 
CALL MOMENT(PJ,NSTATE,AVER,VAR) 

98 
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C 
C 

C 

C 
C 

PRINT*, " MEAN STATE = Il,AVER 
PRINT*," VARIANCE = Il. VAR 
PRINT*," RELIABILITY IS Il .RELI 
WRITE(2,150)TFINAL.RELI 

CHECK RELIABILITY LEVEI .• IF O.K. THEN INCREMENT 
TIME AND CONTINUE. TF NOT THEN INSPECT AND 
REPLACE COMPONENTS US~.NG SUBROUTINE IlREPAIRIl 

IF(RELI.GE.RLIMIT) GOTO 3 
KOUNT = KOUNT + 1 
PRINT*, "INSPECTION NUMBER Il .K01JNT 
CALL REPAIR(NR,PJ) 
DO 25 l = 1,NSTATE 

25 PI(I) = PJ(I) 
RELI = l.DO 
DO 30 K = NF,NSTATE 

30 RELI = RELI - PJ(K) 
TINIT = TFINAL 
WRITE(2,150)TFINAL,RELI 
GOTO 3 

999 STOP 
99 FORMAT(' LAMBDA '.F6.4,' KAPPA' .F6.4) 

100 FORMAT ( 'FAILURE STATE ',15, J REPLACEMENT STATE' ,15) 
150 FORMAT(F6.4.' ',F15.12) 
200 FLRMAT(E16.9) 

END 

SUBROUTINE REPAIR(NR,PJ) 
DIMENSION PJ(10) 
DOUBLE PRECISION PJ,REMOVED,PDETECT 
REMOVED = 0.00 
DO 10 l = NR,10 
rDETECT = .99DO*(1.DO - DEXP(-.2298DO*FLOAT(I-l0») 
REMOVED = REMOVED + PJ(I) 

10 PJ(I) = PJ(I) * (1.00 - PDETECT) 
RETURN 
END 
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A.3 Program - OPINSPEC 

This program finds the total probability of failure at some time, t fmal , givcn that. t!wre 
is one inspection-correction between tmlhal and t final. The program il' ha...:;ed 011 the 
algorithm presented ln section 6.2.3. At éL time tm1rt'ct , betwœn tlflltlal and t fmal , it caUs 
for an inspection-(ûrrection procedure (subroutine DETECT) al.d tllell ass('~s('~ 1,11<' 
total reliability at t fmal using the subroutine TOTFA IL which is mer el)' Equation 6A. 
This time, tmsPt'ct , is allowed to valy from tmlltal to t fmal hy the IIlcrement DT. The 
program ;>lso makes use of the ;{olmogrov Differentiai EquatIOn solvlIIg ~uhrotlt.in('s of 
the program SOLUTION. 

The necessary Inputs are TOL,NSTATE,À , 1\, , Tl, T2, DT, NF cUld NH, which 
have been explained for the previous programs, as weil as the followi Ilg . 

PI(NSTATE) 

PI(NSTATE) 

a vector of the probability distribution for t.he initial 
components at time t mspect. These arc r('ad fIOIlI a file' 
ID order to save computer time. 
a vector of the probability distributIOn fOi the replacetllent. 
components at time tm~pect. The are also rcad [rom cl. file 
in order to Sé've computer time. 

The listing of the program is : 

PRO GRAM oPINSPEC 
C 

C COMPUTES THE RELIABILITY AT A GIVEN FUTURE TIME GIVEN 
C THAT THERE IS ONE INSPECTION / CORRECTION DURING THE 
C INTERVAL TINITIAL To TFINAL. THE INITIAL DISTRIBUTION 
C OF PROBABILITIES(at saveral times) IS READ FROM THE 
C FILE INSPEC.IN ( to save computer tima it has been saved 
C in a file) AND THE REPLACEMENT SIZE DISTRIBUTION IS 
C READ FROM THE FILE REPLACE. IN. THE FINAL DISTRIBUTIONS 
C ARE WRITTEN TO THE FILE FINPROB.oUT AND THE RELIABILITY 
C IS WRITTEN To THE FILE oPINSPEC.REL 
C 

DIMENSION PI(70),PJ(70),PI2(70) 
DOUBLE PRECISION PI,PJ,PI2,Rl,R2,R3,FAIL 
DOUBLE PRECISION TINIT,DT,Tl,T2,REMOVED 
DOUBLE PRECISION ALAMBD,AKAPP.TOL 
COMMoN/VAR/JJJ,III,ALAMBD,AKAPP,ToL 
OPEN(l,IINSPEC.IN") 
OPEN(2, "REPLACE. IN") 
OPEN (3, "OPINSP2 . REL ") 
OPEN (4, Il FINPRoB . OUT") 
PRINT. ," ENTER TOLERANCE FOR SOLUTION Il 
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c 

" 

C 

1 

READ., TOL 
PRINT., "ENTER NUMBER OF STATES 
READ., NSTATE 

" 

PRINT.," ENTER LAMBDA (if you vant to quit type 0) 
READ., ALAMBD 
IF (ALAMBD.LE.O.) GOTO 999 
PRINT.," ENTER KAPPA Il 

READ., AKAPP 
PRINT. , " ENTER INITIAL AND FINAL TIMES AND INCREMENT 

READ* , Tl, T2 ,DT 
PRINT.," " 
PRINT. ," ENTER FAILURE STATE, NF = Il 

READ. ,iJF 
IF(NF.LE.O) GOTO 999 
PRINT., Il ENTER THE REPLACEMENT STATE, NR = " 
READ. ,NR 
IF(NR.LE.O) GOTO 999 
TINIT = Tl 
WRITE(3,99)NR,NF 

3 TINIT = TINIT + DT 
IF(TINIT.GE.T2) GOTO 1 
DO 4 I = l,NSTATE 

4 READ(2,200)PI2(I) 
DO 10 1 = l,NSTATE 

10 READ(l,200)PI(I) 
Rl = 0.00 
DO 15 1 = NF,NSTATE 

15 Rl = Rl + PI(I) 

C CALL THE DETECTION AND REMOVAL SUBROUTINE 
C 

CAL~ DETECT(NSTATE,NR,PI,REMOVED) 
C 

" 

C 'AGE' THE INITIAL POPULATION, AFTER REMOVAL OF 'FAILED' 
C COMPONENTS. 
C 

C 

PRINT*, "INSPEC. TIME =", TINIT, "FINAL TIME :::11, T2 
PRINT. , " PRO CESS THE REMAINING INITIAL COMPONENTS II 

CALL EVOLVE(TINIT,T2,PI,PJ,NSTATE) 
R2 = 0.00 
DO 25 1 = NF,NSTATE 

25 R2 = R2 + PJ(I) 

C USE REPLACEMENT POPULATION 
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C - BUT ONLY IF THERE HAVE BEEN COMPONENTS REPLACEO 
C IF REMOVED = 0 THEN THERE HAS BEEN NO REPLACEMENT 50 
C LET R3 = 0.0 AND GO TO TOTAL RELIABILITY CALCULATION 
C ALLOWING ALL PI2 = 0.0 
C 

28 

C 
30 

35 
C 
C 
C 

36 

40 
C 
C 
C 
C 

C 

IF(REMOVED.GT.O.O) GOTO 30 
R3 = O.DO 
DO 28 l = l,NSTATE 
PI2(I) = 0.00 
GOTO 36 

R3 = 0.00 
DO 35 l = NF,NSTATE 
R3 = R3 + PI2(I) 

WRITE THE FINAL PROBABILITIES TO THE OUTPUT FILE. 

WRITE(4.240)TINIT 
DO 40 l = l,NSTATE 
WRITE(4,250)I,PJ(I),PI2(I) 

CALL THE SUBROUTINE 'TOTFAIV WHICH WILL COMPUTE THE 
OVERALL FAILURE PROBABILITY AT THE FINAL TIME 

CALL TOTFAIL(Rl,R2,R3,REMOVED,FAIL) 

WRITE(3.150)TINIT,FAIL 
GOTO 3 

999 STOP 
99 FORMAT("REPAIR STATE = Il,14,11 FAILURE STATE = ",14) 

110 FORMAT (A40) 
150 FORMAT(IIINSPEC. TIME Il,F6.4,1I PROB(fail) = Il,E16.9) 
200 FORMAT(E16.9) 
240 FORMAT(II FOR INSPEC. AT T = Il ,F6.4." FINAL Il 

tllPROBABILITIES ARE: Il) 
250 FORMAT(IISTATE Il,13,11 INIT.PARTS Il,E16.9,1I REPL. ",E16.9) 

END 

SUBROUTINE OETECT(NSTATE,NR,PI,REMOVED) 
DIMENSION PI(70) 
DOUBLE PRECISION REMOVED,PDETECT,PI 
REMOVED = 0.00 
DO 20 l = NR,NSTATE 
PDETECT = .99DO*(1.0DO-OEXP(-.2298DO*FLOAT(I-l0») 
REMOVED = REMOVED + PDETECT * PI(I) 
PI(I) = PI(I) * (1.000 - PDETECT) 
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20 

30 

CONTINUE 
DO 30 l = 1.NSTATE 
PI(I) = PI(I)/(1.0DO - REMOVED) 
RETURN 
END 

SUBROUTINE TOTFAIL(R1.R2.R3.REMOVED.FAIL) 
DOUBLE PRECISION R1.R2.R3.REMOVED.FAIL 
FAIL = R1 + R2 * (1.DO-REMOVED) + R3 * REMOVED 
RETURN 
END 
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