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Abstract

This thesis presents a probabilistic model, specifically a nonhomogenevus Markov
model, for the description of fatigue crack growth. This model is capable of predicting
the statistics of crack growth, the mean crack size and the variance in the crack size,
at future times given two empirically determined system parameters, A and «, and an
initial crack size distribution. Prior to the mathematical development of this model
a brief review of existing crack growth models is presented. After the mathematical
development of the model has been presented the results from a previous application
in the study of pitting corrosion are presented. Following this, the results from the
modelling of several existing fatigue data sets are examined in order to determine the
necessary empirical meterial parameters and also to verify the model’s applicability.
Once the model has been verified and the empirical parameters determined one data
set is chosen in order to illustrate the uses of this model for component reliability
predictions. These uses include reliability at a future time, inspection optimization

and the effect of changes in repair policy on reliability.
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Résumé

Cette thése présente un modéle probabiliste, en particulier un modele Markov non-
homogeéne, qui décrit la propagation d’une fissure en fatigue. Ce modéle est capable de
prédire les statistiques de propagation d’une fissure, la grandeur moyenne et la variance
de la fissure, étant donné deux parametres du systéme, A et &,qui ont été déterminés
empiriquement, et la distribution initiale de la grandeur des fissures. Avant de procéder
au développement mathématique de ce modele, une bréve révision des modéles actuels
en propagation de fissure est presentée. Aprés la présentation du développement, les
résultats provenant d’une application précédente d’unc étude de piqilires de corrosion
sont présentés. Ensuite, les résultats qui ont été produits par le modelage des séries
actuelles de données sont évalués dans le but de déterminer les parametres empiriques
nécessaires du systéme et aussi afin de vérifier 'application du modele. Une fois que
le modele est verifié ct que les parameétres empiriques sont déterminés, une série de
données est choisie afin d’étudier les usages de ce modele pour prédire la fiabilité des
composants. Ces usages comprennent la fiabilité dans un temps futur, 'optimization
des inspections et 1'effet que des changements de la politique d= réparation produisent

sur la fiabilité.
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Chapter 1

INTRODUCTION AND
MOTIVATION

1.1 The Importance of Fatigue and Reliability

The phenomenon known as fatigue is the primary cause of failure of components and
structures. Fatigue is the process whereby a component will fail when subjected to
alternating stresses at a level below the limit stress of the material. These failures can
have a wide variety of effects, ranging from inconvenience to loss of life. Since almost
all engineering structures are subjected, to some degree, to fluctuating loads, it is vital
that the design engineer have the ability to account for them.

It is accepted engineering practice to treat a metal as a homogeneous continuum.
In the case of static stress analysis this is often a valid assumption which does not
usually lead to any serious errors. When performing a fatigue analysis, however, this
is no longer true. It is precisely because the material is no homogeneous that scatter
is observed in fatigue test data even in strictly controlled laboratory experiments. The
scatter is due to microscopic defects and necessitates the use of probability theory to
accurately describe both fatigue crack initiation and propagation.

This use of probabilistic methods leads directly to the concept of reliability, which
has been defined by Bompas-Smith [1] as the prabability that a component will perform
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satisfactorily for a specified period of time under specified operating conditions. By

making use of this concept engineers are able to compare their designs on a quantitative

basis and can make necessary modifications in order to reach a desired reliability level.
Petroski [2] has reviewed a recent study by the Nationa! Bureau of Standards and

Battelle Columbus Laboratories [3] which came to the conclusion that the total costs

——
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of fracture, which includes many diverse phenomenon, amount to well over $100 billion
annually in the United States alone. These costs arise not only from the replacement
of broken components but are also due to overdesign, inventory costs, inspection costs,
insurance against failure and many other sources. This report goes on to conclude that
these costs could be reduced by one-half by making better use of available technology
and also by the use of the improved techniques of fracture control expected to come
from future resear<h. Petroski also states that it is estimated that 50 to 90 % of

all structural failures are a result of crack growth. These statements illustrate the

R AR P T S  CoWAT oty e e e g e

importance of the study of fatigue crack growth and are most definitely a source of

motivation for this thesis.

It is the task of the reliability engineer to assist the design engineer with design
review procedures and statistical analyses. However, the designer still remains the
key person to ensure component and system reliability[4]. With the advent of today’s
increasingly complex structures it is no longer sufficient to depend on good design
practices to ensure structural inte-rity. Reference [5] lists some of the motivating

factors for the study of the reliability of mechanical components :

1. Lack of Design Experience. Changes in technology occur quite rapidly and
consequently mechanical designers no longer have the time to master the design,
especially when complex equipment is designed for use in aerospace or military

applications.

2. Cost and Time Constraints. Due to the costs and time involved, the designer

cannot learn from past mistakes. In other words, the trial and error approach

cannot be used.

-,




3. Optimization of resources. The workable design is no longer considered suf-
ficient. The design must be optimized subject to the constraints on reliability,

cost, weight, performance, size, etc.

4. Stringent Requirements and Severe Environments. Because of the large-
scale investments in developing systems to be used under severe environments,

such as the military or space, the reliability problem becomes morc important.

5. Influence from Electronic Reliability. The vastly improved techniques for
predicting electronic reliability, and their success, stimulated similar develop-

ments in mechanical engineering.

1.2 Thesis Objectives

It was proposed by Forsyth [6] that there are two stages in the fatigue process, this is
illustrated in Figure 1.1. Stage Iis called crack initiation where the crack, which often
forms at a local discontinuity, is extremely small. When the crack has been initiated it
propagates in a direction perpendicular to the applied stress, this is Stage I1. 1t is this
stage that is of great interest in practical applications as the crack is large enough to
be detected and its growth monitored. It is, therefore, with this stage that this report
is concerned.

Not only do engineering materials contain discontinuities but each one of a group
of supposedly identical components will have a different number and distribution of
them. This is largely responsible for the uncertainty involved with fatigue crack size
predictions. Because of this, simply predicting the mean crack size by deterministic
methods is not sufficient, probabilistic methods should be employed. This thesis will
detail the development of a non-homogeneous Markov model that will predict not only
the mean crack size but its variance as well. This mathematical model will assist the
engineer who is trying to determine: the reliability of . component at some future time;

the optimum time for an inspection procedure; and the inspection schedule necessary
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Figure 1.1: The Two-Stage Fatigue Process [6)

to maintain a certain level of reliability. By allowing the engineer to determine how
component reliability would be affected by various changes in inspection schedule,
allowable flaw size, quality of inspection procedure, etc. this model can become a

valuable tool for reliable designs.

1.3 Thesis Organization

Chapter 2 This chapter will present an introduction to fatigue and reliability, in-

cluding some of the methods that have been used for reliability calculations.

Chapter 3 This chapter will detail the mathematical development of the Markov

model to be used in this thesis.



Chapter 4 The specific research objectives of the current work will be briefly pre-

sented here.

Chapter 5 In this chapter the Markov model will be applied to several data sets
(OFHC Cu, WPF, XWPF) and the results for the modelling of crack growth will be

given.

Chapter 6 The reliability methodology used in this thesis and the results of the

reliability calculations will be presented and discussed in this chapter.

Chapter 7 This chapter will contain the conclusions and the recommendations for

future work.
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Chapter 2

INTRODUCTION TO FATIGUE
AND RELIABILITY

2.1 Fracture Mechanics and Fatigue

2.1.1 Introductory Fracture Mechanics

Fracture Mechanics concepts are used today by design engineers in order to anticipate
and control both brittle fracture and fatiguc failure. The first attempts at solving
problems involving fracture were made by Griffith {7,8] and for this he is known today
as the father of fracture mechanics theory. The Griffith energy criterion, as it is known,
considers an infinite plate of unit thickness with a central transverse crack of length
2a. With the ends fixed, a stress, o, is induced over the plate and the crack extends
by a distance, da. Figure 2.1 illustrates the changes in the load-displacement diagram,
as well as a schematic diagram of the plate.

Originally the energy contained in the plate is given by the area OAB. As the crack
grows by da the elastic energy stored in the plate decreases to OCB due to a decrease
in plate stiffness. Therefore, there is a release of energy equal to the area OAC. What

Griffith stated was that the crack will propagate if the energy released by crack growth
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Figure 2.1: The Griffith plate and load-displacement diagram [9]

provides the necessary energy for the crack to grow. This can be written as:

dU dW
= = 2.1
da da’ (2.1)
where:
U= elastic energy of the plate, and
W= energy required for crack growth or fracture energy.

Making use of the work of Inglis [10], Griffith calculated dU/da per unit thickness and
per half crack length, a, as

dU wo’a
—_—= = 2.2
da E ¢, (22)
where
E= Young’s Modulus
G= Energy release rate per unit crack extension, whose units are

energy per unit thickness, per unit of crack extension
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The energy spent in propagating a crack (dW/da) can also be denoted by R, the
crack resistance of the material. Using this, Equation 2.1 states that G must be at

least equal to R for crack propagation to occur, or, the condition for propagation can

be written as:

G>R. (2.3)

Griffith derived his equation for glass, which is extremely brittle. He assumed,
therefore, that R was related to surface energies only. In ductile materials, however,
plastic deformation occurs at the crack tip. The energy associated with the production
of this plastic zone may be considered as the erergy required for crack growth.

As aresult, Linear Elastic Fracture Mechanics (LEFM) is invalidated by the elastic-
plastic behavior and formation of large plastic zones in engineering materials. Because
of this it is necessary to determine what is meant by a large plastic zone. Provan[11]
has discussed the mathematical development of LEFM stress fields where he shows
the existence of a stress singularity term that is inversely proportional to the square
root of the radius of the plastic zone (r~'/2). Irwin[12) made his first plastic zone size

estimation as:

K,
Oy = = Oys (24)
v 2rr, Y
where:
K = Yo+ (and Y is a constant of proportionality)

rearranging, we have:

1 (K\® afco\?
v la) =3 >

The actval size of the plastic zone must be larger than r, because the load represented
by the shaded area in Figure 2.2 must be sustained. Irwin therefore modified the

plastic zone size and arrived at a value of plastic zone size, r,, of
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T

Figure 2.2: Irwin’s first estimate of plastic zone size [12]

» 2
rp = 2r, = 1 (-ﬁ—) , (2.6)

T \ Oy,

2, . .
where (a_I:T) is called the plastic constraint factor.

The plastic region for Plane Stress is larger than that for Plane Strain(for the
mathematical development see [11]), this means that, in general, plane stress failure
will be ductile while plane strain fracture will be brittle, even for a material that is
generally ductile. Considering the plastic region in front of a three-dimensional crack
front as in Figure 2.3, it is easily observed that the plastic zone is larger at the free
surfaces. This is expected since no matter how thin the specimen, plane stress must
exist at a free surface.

This explains the observed results of laboratory tests where thin samples show
higher values of fracture toughness, Kj.. Since plane stress fracture toughness is influ-
enced by specimen geometry it is important that in testing for a materials K. value
plane strain conditions are maintained. This can be accomplished by using specimens
that have a thickness larger than a limiting thickness where the critical value of stress

intensity factor reaches its minimum plane strain value.
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crack front

Figure 2.3: The Three Dimensional Plastic Zone [11]

2.1.2 Constant Amplitude Fatigue Crack Growth

In order to be able to predict how a fatigue crack will propagate under constant am-
plitude cyclic loading, experiments are performed. These experiments monitor the size
of the crack, a, as a function of the number of load cycles, N. The results of a typical
experiment of this type can be shown schematically as in Figure 2.4.

From the experimental data obtained, the rate of change of crack size with respect to
cycles, da/dN, can be determined. When da/dN is plotted against the stress intensity
factor AK; on a log-log scale there are three distinct regions on the graph as shown
in Figure 2.5. Region I contains the “threshold” value, Ky, below which the crack will
not propagate. Region III s where the crack approaches its critical size and where the
stress intensity factor approaches its critical value, Kj.. The region of interest in this
section is Region 11, where there is a linear relationship between the log of da/dN and
the log of AK].

As discussed by Provan [13], when the plastic zone at the crack tip is small compared
to the crack size, the crack growth rate is governed by the stress intensity factor, or:

da

o = [(8K). (2.7)
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{ Recalling from Section 2.1.1 that :
K =Yoyra, (2.8)
we have that:
AK =YAoVa, (2.9)
or,
da g (YAsva) . (2.10)
dN

The crack growth rate can be influenced by many factors including material micro-
structure, mean stress, loading frequency, and environment among others. This being
the case there have been many attempts to describe the da/dN vs. AK curve by
empirically determined “crack growth laws”. The two that are most familiar are those

of Paris-Erdogan [14]:

do

- =C(AK)" (2.11)

and of Forman [15]:

da _ C(AK)"
dN = (1= R)Kr.- AK

where C and m are material constants that are determined from experimental data,

(2.12)

and R is called the stress ratio, given by :

Tmin _ Kmin
k= Omazx B Koz (213)

The Paris-Erdogan law can only be used in Region II of the crack growth rate curve

while the Forman law can be used in Regions II and III.
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2.2 Reliability

2.2.1 Introduction

Although the idea of reliability, especially when human life is at risk, is not new, the
study of reliability has a relatively recent origin, its significance began to be recognized
after World War II. As discussed by Shooman [16] several studies at the end of the

war, between 1945 and 1950, revealed some startling results:

e A Navy study made during maneuvers showed that the electronic equipment was

operative only 30% of the time.

e An Army study revealed that between two-thirds and three-quarters of their

equipment was out of commission or under repairs.

e An Air Force study conducted over a 5 year period disclosed that repair and

maintenance costs were about 10 times the original cost.

These findings motivated much research into the causes and prevention of failure.

In recent times there have been much publicized accounts of some catastrophic
failures, notably in the commercial aircraft industry. These failures are by no means
the first of their kind and, unfortunately, they will not be the last. They have, however,
increased public awareness of the fact that all designs are not perfect and that there is
a degree of uncertainty involved. This has led, in turn, to a public demand for greater
safety precautions. Just what steps should be .aken are a matter of considerable
difficulty since the same public that wants lower risks associated with flying do not
wish to have airline fares raised. In order to decide which measures provide the greatest
increase in reliability for the least cost we must be able to quantify reliability just as

we can quantify costs.
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2.2.2 Empirical Reliability Distributions

One method for predicting component reliability is through the use of exhaustive labo-
ratory testing. A component or a standardized test specimen is placed in a laboratory
environment which simulates the one in which it is to be used. The behavior of the
component or its operating characteristic, which in the case of fatigue is crack length,
is monitored as a function of time. The experiment can then be repeated several times
and the data obtained can be used to develop an empirical reliability distribution.

The functions used for these empirical distributions are chosen solely for their
applicability to the data obtained and their ease of application, they are not based on
theoretical concepts. This, in fact, is the definition of an empirical model. Typically,
the number of cycles a component can withstand before failure is recorded. This data
set is then plotted as a Cumulative Distribution Function (CDF'), where the probability
of failure at a given time is equal to that percentage of components that failed prior to
that time during the experiment. This results in a figure such as Figure 2.6. The next
step is to find a function that will produce a curve that fits the obtained experimental
data well. The resulting distribution is known as time — to - failure distribution.

The rest of this section will present several of the most common empiiical distri-
butions that can be used for reliability predictions. The following information serves
only as an introduction to these distributions and it is left to texts such as Bompas -
Smith [1], Mann et.al. [17], O’Connor [18] and others to provide further information

regarding them.

THE EXPONENTIAL DISTRIBUTION

Perhaps the most commonly used time ~ to - failure distribution is the exponential
distribution. It is often chosen not for its applicability to the problem at hand but
rather because it is easy to use. This distribution has been used for life studies in the
past by Davis [20] and by Epstein [21]. The CDF for the exponential distribution is

given as :
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Figure 2.6: Typical Experimental Life-Data [19]

Fe) = [ %ewﬁ dz , (2.14)
which is simply:
F(z) =1 — ¢/, (2.15)
and the reliability is:
R(z) = e~ %/*. (2.16)

The quantity 1 / é is known as the hazard rate, which is a constant for this

distribution. This quantity, the hazard rate, is the conditional probability that a

component will fail in a given interval (z,z + Az),as Az — 0 given that it has

not failed prior to x [18]. This can be written, with h(x) being the hazard rate, as:

-5
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=) = 7—Fm _f(?(z), (2.17)

where the denominator is the probability density function and the numerator is the
reliability at x. In order to choose a form of hazard function for a particular process it
is first necessary to decide whether or not the failure rate is time homogeneous. In the
case of the exponential distribution the failure rate is time homogeneous but for many
physical phenomenon the hazard rate is not. Failure rates that are time dependent
usually fall into three categories, initial failure, chance failure and wear — out. These
can be shown using the well known bath - tub curve shown in Figure 2.7. The first
region of the curve, the initial failures, are those that appear quickly when a component
is put into service but are of decreasing frequency. This type of failure is often due
to fabrication defects and quality control limitations. The second region, the chance
failures, is usually a result of the unpredictable nature of the operating environment.
This type of failure is found in almost every area of engineering. The third region, the
wear—out failures, are due to normal material and structural degradation. This type
of failure has a small initial failure rate which increases due to some time - dependent

degradation process such as is caused by fatigue, corrosion, wear, etc.

THE GAMMA DISTRIBUTION

The gamma distribution is an extension of the exponential distribution. In fact, the
exponential distribution can be thought of as a limiting case of the gamma distribution.
This distribution is used to predict the time to failure where this quantity is the time
it takes for K subfailures to occur, and the occurrence of this K* subfailure leads
to a system failure. It has been used by Gupta and Groll [22] as a model in lifetest
problems. The gamma distributions CDF is :

oF

F(:E) = F(-B /:' tk_l e"”t dit ) (218)

where ['(k) is the well known gamma function given by:
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k
(k) = /0 251 =% dz (2.19)

which can be evaluated using the tables found in Pearson[23]. From Equation 2.18 it
can be seen that the exponential distribution is the special case where k = 1, the CDF

then becomes :

F(z) = a /: e~ dt,
=1 - e, (2.20)

where « is the hazard rate, 1 / 6, from Equation 2.15.
As the value of the parameter k changes the shape of the gamma distribution varies
dramatically (for example see Reference [17] ), this wide variety of shapes allows this

distribution to be used effectively as an empirical model.
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THE NORMAL DISTRIBUTION

The normal distribution is the most frequently used statistical model. An important
reason for this is that the distributions of many observed phenomena approach it as
the sample size increases. A well - documented example of this is the distribution of

the strength of materials (see for example Reference [24]). The CDF of the normal

distributicn is :

Flz) = a'\/12_7r [ g, (2.21)

where (u, ) are the mean and standard deviation of the data.

This function can be solved more readily by making the substitution:

resulting in the equation:

e~*/2 d 2.2
\/2_7r /:_oo S. (2.22)

This function is tabulated in almost all elementary books on statistics and so the

reliability can be found as :

R(z) = 1 — F(gz). (2.23)

This distribution is of ¢ iestionable validity as a time - to - failure model since the
variate, X, includes negative values. This is not true, however, for distributions where

¢ 2 3o since:

@ -HEE) g0 o
e /o ¢ dz ~ 1, (2.24)

to within about 0.14 %. For cases where p < 3o the distribution can be written as

1 z -
[-4(552y7]
Kovordh € de (2.25)




CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 19

where K is a normalizing constant such that when z — oo the integral approaches 1.
This distribution is not commonly used, however, since it is not very flexible and

cannot be used for data that exhibit a skew distribution.

THE LOG — NORMAL DISTRIBUTION

The log - normal distribution is more commonly used than the normal distribution
since it is more versatile. It has been used previously to describe {racture problems by
Howard and Dobson [25] and by Peck [26]. It gives a better fit to reliability data than
the normal distribution for populations with wear - out characteristics and does not
have the normal distributions disadvantage of including negative numbers. This distri-
bution is used for data where the logarithms of the lifetimes are normally distributed,
its CDF is given by :
1

Pl = o [/ Lt a9
oV2n Jo y

where (i, o) are the mean and standard deviation of the log data.
This distribution has been derived more fundamentally by Kao [27] by considering
a physical process where failure is due to fatigue cracks. This derivation seems to

justify the use of the lognormal distribution for failure problems.

THE WEIBULL DISTRIBUTION

Swedish research engineer W. Weibull proposed his statistical distribution function in
1951 [28]. It has found wide acceptance in the engineering community due to its broad
range of applicability. The distribution can have many varied shapes and can be used
to model data with a variable hazard rate, which is the case for fatigue. Another recason
why it can be used for the fatigue phenomenon is that it can account for failures that
take time to develop, i.e. the crack initiation stage. It has been successfully applied
to data from a wide range of fields such as ball - bearings [29], electron tubes [30} and

transistors [31]). The Weibull distributions CDF is :



%

CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 20

F(z) = 1 — "G (2.27)

with 8,7 > 0 ; 4,z > 0 . These three Weibull parameters, 8, 7, =, are each
determined depending on the type of data used.

The parameter v , known as the datum parameter, is the cause of most of the
complication associated with the Weibull distribution. If the failure mode takes some
time to develop ( creep, fatigue ) the distribution of failures take place at some finite
time after this latent period. The length of this period is the value of 4 and this
is then used to adjust the data such that the distribution starts at x = 0. If the
datum parameter is 0 then the distribution is often called the 2 parameter Weibull
distribution.

The parameter 7 , known as the characteristic life, is the time when 63.2 % of the
population will have failed. This parameter affects the scale of distribution in the x
direction without affecting the shape of the distribution.

The parameter # , which is the shape parameter, is the one that allows the Weibull

distribution to take on so many different forms, i.e. :

e B = 1, thedistribution has a constant failure rate and becomes the exponential

distribution with a mean life of .
e f < 1, the distribution has an decreasing failure rate.
e f > 1, the distribution has an increasing failure rate.
e B = 3.2, the distribution approximates the normal distribution.

The combination of these factors make this distribution quite flexible and applicable
to a wide range of engineering problems. Weibull probability paper is available to
facilitate the plotting of the failure curves for the evaluation of the model parameters.
However, when the Weibull distribution approximates another distribution, such as

the exponential, the latter may be “ accurate enough ” and will most likely be easier

to apply.
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THE GUMBEL DISTRIBUTION

When the failure of a component or system can be related to causes that depend on
the smallest or largest value (extreme value) of a variable, the Gumbel distribution
can be used. This is the case for fatigue where failure depends on the weakest element,
or the element with the “smallest” strength. It has been used by Lloyd and Lipow[32]
for the study of corrosion where failure depends on the depth of the largest pit.

This distribution has been used extensively by Gumbel [33] for the study of many
diverse phenomena. The Gumbel distribution can have two forms depending on the
form of the initial distribution. If the initial distribution tends to 0 exponentially as
its random variate, z, tends to —oo then this is called The Gumbel distribution of the

smallest extreme , and the CDF is given by :

F(z) = 1 — ezp|- 7], (2.28)

where —o0 < 2 < 00 ;6 > 0 ; —00 < a < 00.
If, however, the initial distribution tends exponentially to 0 as the random variable
tends to +oo then we have The Gumbel distribution of the largest eztreme , whose

associated CDF is :

F(z) = exp[- 7], (2.29)

where —00 < 2 < 00 ;6§ >0 ; -0 < a < 0.

These results are asymptotic, meaning they are derived for a sample size n where
n — oo. The applicability of these functions for smaller sample sizes depend on the
initial distributions. If the initial distribution approaches the exponential one less

observations are needed than if the distribution approaches the normal one.

2.2.3 Probabilistic Reliability

The previous section introduced some of the empirical models that have been used for

reliability predictions. A second method that can be used for component reliability
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predictions is probabilistic mathematical modelling using a model that is based on
both probability theory and the basic principles of micromechanics. This method,
which will be utilized in this report, involves three important steps : the first step
is to describe the physical phenomenon in appropriate mathematical terms; second,
the model is analyzed using the laws of probability theory; and the third step is to
determine how thc model results can be used in the context of engineering analysis.

Siddall [34] said, “in order to deal with uncertainty we must first be able to measure
it.” In order to do this, the method of probabilistic mathematical modelling will
be used here. The complete mathematical development of reliability including the
necessary background in probability theory cannot be fully explained here and must
be left to existing literature such as References [17,18,35]. What follows is merely a
brief explanation of what is meant by mechanical reliability and some of the reasons
why its study is important.

Reliability, in fatigue situations, is a function of time, even in the laboratory where
the loading cycle does not change. The continuous application of the alternating
load causes cracks in a component to grow, which then reduces its strength. This
degradation of strength increases with time and is shown schematically in Figure 2.8.
So, in terms of fatigue, reliability can be described as the probability that a component
will still have sufficient strength to perform its function. The probability of failure,
Py(t), which is simply expressed mathematically as (1 - Reliability), is equal to that
proportion of the components whose strength is no longer sufficient at the given time
to carry the applied load. In other words, P¢(t) is equal to the area between the two

curves in Figure 2.8. From this the three basic properties of the function Py(¢) can be

given as[36):
o P((t) is an increasing function of time,
o 0 < Ps(t)<1, and

o P4(0)=0 and Ps(o0) =1.
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Figure 2.8: The Degradation in Strength as a Function of Time (1]

Alternatively, the probability of failure of a component in the case of fatigue crack
growth. can also be expressed as the lhkelihood that a crack will exceed the critical
length. This is shown graphically in Figure 2.9 where the area of the region to the
right of the line is the probability of failure and the area to the left is the reliability.
This representation can be quite useful since, as long as it is possible to predict the
distribution of crack size at a future time and the critical crack size, the reliability can
be determined. This can be an advantage over th. strength - duty interference model
since it is not necessary to predict the distribution of two quantities but only of one.

It is this method of predicting reliability which will be utilized later in this report.

A DURABILITY METHODOLOGY

Another method of assessing the reliability of components is the one that has been
developed by Manning, Yang and Rudd et.al[38,39,40,41]. They have performed both

analytical and experimental analyses in developing a methodology for predicting exces-
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Figure 2.9: Fatigue Reliability — the Probability of Crack Exceedance

sive crack growth in metallic airframes. Their methodology is based on a probabilistic
fracture mechanics approach and has been developed for fatigue cracks around fastener
holes, but, the theoretical approach should apply to details like fillets, lugs, cutouts,
elc.

The objective of this methodology is to describe, quantitatively, the extent of dam-
age as a function of service time. This extent of damage is the probability of a crack
exceeding a certain size. The,e are two essential steps in this analysis: one, quantifying
the Initial Fatigue Quality(IFQ) of the structural details considered; two, predicting
the probability of crack exceedance using this IFQ and the design conditions (loaciing,
stress level, % load transfer, etc.) There are also several necessary assumptions and

limitations.

1. Crack length, measured in the direction of propagation, is the fundamental mea-

sure of durability damage.
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2. Each detail in an aircraft structure has a single dominant fatigue crack which
governs the durability of the structure. The size of this crack is considered to be

a random variable.

3. The largest fatigue crack in each detail is relatively small (e.g. < 1.27 mm
corner crack in a fastener hole) and they are statistically independent, hence,
the growth of a crack in one detail does not affect other details. Therefore the
binomial distribution can be used to quantify the extent of damage for different

details, parts, components, or the entire airframe.

4. An Equivalent Initial Flaw Size (EIF'S) distribution can be found by back extrap-
olating fractographic data using a deterministic crack growth curve. This EIFS
is @ mathematical quantity describing the IFQ for a given detail not necessarily

an actual imitial crack size.

5. This EIFS is determined for a given crack size range and can be grown from time

zero using a single deterministic crack growth curve.

6. A suitable Service Crack Growth Master Curve (SCGMC) can be determined,

either analytically or experimentally, for specific analysis conditions.

The IFQ is defined as the initially manufactured state of a structural detail or
details. The IFQ for a group of components can be represented as an Equivalent
Initial Flaw Size (EIFS) distribution. The EIFS is a mathematical quantity, it is an
artificial initial crack which results in an actual cruck size at an actual time, when
grown forward. The EIFS is a hypothetical flaw that is used as a convenient tool for
analysis purposes.

Manning, Yang, Rudd et.al.[39] have used two different methods for ‘growing’ flaws
backward in time to determine the EIFS, these are; the deterministic crack growth
approach and the stochastic crack growth approach. The deterministic approach uses
a single deterministic (average) crack growth rate equation to back extrapolate the

fractographic data. This equation is known as the EIFS master curve and is given by:
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da(t)
dt
where da(t)/dt is the crack growth rate; a(t) is the crack size at time t; and Q,b are

= Qla(t)’, (2.30)

empirical constants which depend on loading and design parameters and are different
for each specimen. The stochastic crack growth approach uses a stochastic crack growth
rate equation to back extrapolate the fractographic data, this equation is:

da(t)

—= = X Qla()’, (2.31)

where X is a lognorma’' random variable with a median of 1.0. Therefore, Equation 2.30
is the average crack growth behavior while Equation 2.31 considers the variability by

using the lognormal random variable X, These authors have found that both methods

give reasonable results.

The EIFS is found, for the deterministic model, using Equation 2.30 and the Time
To Crack Initiation (TTCI) distribution for a group of specimens. For a given reference

crack size, a,, the TTCI reference distribution is:

Fi(t) = PIT <1)= 1 - eapl~(* )", (2.32)

wheret > ¢, T = TTCI and q, 3, € are the three Weibull parameters determined for
the data set. The EIFS distribution, Fy)(x) , is found from the expression:

a(0) = EIFS = qg ezp(—Q T), (2.33)

where T = the TTCI and a(T) = ao . The upper bound on a(0) and the lower bound

of T are given respectively as:

2, = agezp(—Qe), (2.34)
e = (1/Q) In(ao/zy) . (2.35)

Therefore, the expression for the EIFS distribution is:
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e:cp[-—('—"—g—;‘,/-‘-)"’] 0<z,z,,

1.0 r>zr,.

Fyo(x) = { (2.36)

For each component the structural details are grouped into m stress regions, where
the maximum stress in each region is assumed to be equal for every location or detail.
For the :** stress region the corresponding EIFS value, y,(7), is that value which grows
to a crack size z, at time 7. The crack growth rate expression, Equation 2.31, can then

be integrated from a(0) = ¥1,(7) to a(7) = x, to obtain the value for y,,(7) as:

ni(t) =z exp(-Q, 7), (2.37)

where, if suitable fractographic data is available, @, may be expressed by the following

power function:

Q = Eo". (2.38)

In this equation, o is the maximum stress applied in the loading spectrum and &, are

constants that are determined from the data. If this suitable data is not available, the

parameter (); can be found by fitting Equation 2.31 to predict the crack size a(t) at
service time t.

This leads to the following expression for the probability of crack exceedance at a

time 7 p(z,7) = Pla(7) > z1) = 1 — Fyp)(21) ¢

plir) = 1= eapl—(PEe ey (2:39)

for all 0 < y1i(7) < z, , else the probability of exceedance is 0.

Extensive investigation of this model, both from an analytical as well as an exper-
imental viewpoint, has been performed. A comparison of actual data and predictions
indicates a very good correlation. This type of model holds much promise but is, at
present, limited to the specific application to aircraft durability analysis. Time will
tell whether or not this procedure can be used for other fatigue situations or possibly

extended to other degradation phenomena.



CHAPTER 2. INTRODUCTION TO FATIGUE AND RELIABILITY 28

STOCHASTIC MODELS

Over the past decade or so other probabilistic methods have been developed for dealing
with reliability. These methods are firmly based on the fundamentals of probability
theory, specifically, stochastic processes. One of these approaches, which is based on
a nonhomogeneous Markov process, has been developed by Provan et.al. [42,43,44,45]
and is the basis for the model developed later in this report. Another method has been
developed by Bogdanoff and Kozin [46], this method has been the subject of extensive
work and will be briefly dealt with here.

The model of Bogdanoff and Kozin is a discrete time - discrete state Markov
process called a Markov chain. A brief introduction to Markov processes is presented
in Chapter 3 and a more detailed mathematical explanation of the model of Bogdanoff
and Kozin is left to their book [46]. The aim of this model is to evaluate life data and
to predict the growth of fatigue cracks. The mean and variance of the number of cycles
required for a crack to reach a certain size are used to determine two parameters, b,
and r, , for each interval j. These parameters are: b, , the number of states in the
interval j (which must be an integer); r, , a parameter used by the model to predict
mean and variance of crack size as a function of cycles. Note that these parameters
are different for each interval j.

Bogdanoff and Kozin have shown that this model can be used to produce an em-
pirical distribution such as the one in Figure 2.10 which shows the actual data as well
as the model prediction. The information from this model can be applied to reliability
and maintainability calculations. The model of Bogdanoff and Kozin has been shown
to be a potentially valuable method of examining the variability that exists in fatigue
data.

The major difference between this model and the one presented in this thesis are:
i), the Bogdanoff and Kozin model considers the variation in the number of cycles to
reach a given crack size as opposed to the distribution of crack size at a given time;
and 17), that their model uses different parameters for each data interval whereas the

model of this thesis uses two parameters for the whole data range.
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One of the aims of this thesis is to apply a probabilistic model, based on the concepts
of micromechanics, to describe the growth of fatigue cracks. One of the advantages
of this model is that it can conceivably be applied to the modelling of degradation
processes in general with only the determination of two empirical parameters. Once
developed, this model can then be used to determine how component reliability will
change with time. The use of this model will facilitate the prediction of reliability at
future times. In addition, other predictions that may be useful to engineers, such as
the optimization of inspection schedule, can also be made. The probabilistic model to

be used is a Markov model and it will be developed in the following chapter.




Chapter 3

MATHEMATICAL
DEVELOPMENT

3.1 Stochastic Processes

3.1.1 Introduction

In fields such as engineering, the physical sciences, economics, and others, there exist
random phenomena which vary with time. It is of interest to investigators in these
fields to be able to predict the future behavior of such phenomena. It is this desire
that has led to the development of the stochastic process, which Doob [47] has dcfined
as the mathematical abstraction of an emparical process whose development 1s governed
by probabilistic laws. Bharucho-Reid [48] points out that one should be well aware that
this term, stochastic process, referc to the mathematical model and not to the empirical
process itself. This emphasizes to the engineer that sound engineering judgement must

always accompany the use of these processes or models.

3.1.2 Basic Probability Background

The basic background in probability theory is not presented (as it can be found in

many introductory level texts [49,50,51]), with the exception of the next section which

31
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introduces those concepts which are central to stochastic processes.

Due to the random nature of the phenomena which stochastic processes are used
to model, the processes are based on probability theory. This thesis will assume a
certain familiarity with probability and set theory (see, for example, references [49,50,
51,52]). However, a few concepts which are central to the mathematical development
of stochastic processes will be briefly introduced in this section. These concepts are

conditional probability and distribution and density functions.

Conditional Probability Often two or more events are connected, meaning that
their occurrences are related in some way. This means that the occurrence of one of
these events will affect the likelihood of occurrence of the other(s). If we have two
events of this type, say A and B, the probability that A occurs, given that event B has

already occurred, is written as:

P{A|B} . (3.1)
This can be read, the probability of A given B. This is called the conditional proba-
bility since only cases favourable to event B are considered, as opposed to all cases.
This probability is equal to the probability of both A and B occurring divided by the
probability of B occurring (since it has already happened) or:

P{AB}

P{B} ~
This probability will be undefined if P{B} = 0 and will be zero if events A and B are
mutually exclusive (P{AB} = 0).

An important extension of this is for the case where there exists a set of mutually

P{A|B} = (3.2)

exclusive events, By, By, ..., B, , where one of them necessarily occurs (i.e., the union
of all the events B, is the whole sample space). The probability of event A occurring

can then be written as [50]:

P{A} = 3 P{AIB)P{B;} . (3.3

i=1
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This is called the theorem of total probability and is very important for the development

of stochastic processes, as shall be shown later in this chapter.

Distribution and density functions The distribution function characterizes the
probability distribution of a random variable, X. Its domain is the set of real numbers,
for a continuous process, or a set of integers, for a discrete one, and its range is from
0 to 1. If x is a number and the event is defined as (X < x], the probability of [X < x]

is the distribution function and is represented as £;(z) where [49]:

F(z) = Prob.[X £ 7] -0 <IT<00. (3.4)
This function has four properties [52]:
1. Fy(—c0) =0.
2. Fy(o0) =0.
3. F. is a nondecreasing function, i.e. for z; < z; Fy(x;) < Fy(z2).

4. F is continuous from the right in the sense that

limg, Fu(a) = Fr(of) = Fy (o).

The distribution function is related to the density function and is written as f, where:

fz(z) = Prob|X =z]. (3.5)

where X and x are as defined for distribution furctions and f.(z) has the following

properties for discrete variables [49] :

1. fz(z) =0 if x is not in the set of points z¢,z,,73,... .
2. 0 £ fz(z;) <1 for all z; in the range.

3. Ei fz(xi) =L

The distribution and density functions are related as follows:
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Figure 3.1: The Relationship Between Distribution and Density Functions [49]

Fia)= [ f(8)d8, (3.6)

for continuous processes, or:

Fie) = 3 £.0), (3.1)

1=0

for discrete processes. Figure 3.1 illustrates the relationship between the distribution
and density functions. These probabilistic concepts will be used in the next section to

help define a stochastic process.

3.1.3 Mathematical Definition

The following mathematical description of a stochastic process was developed with the
help of many references [47,46,49,53,54], with many of the ideas being common to more

than one source.

In order to define a stochastic process a set of times, T, must be specified. This set

can be defined as:

T={t|t>0)
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or

T={t]-oo<t< oo}
which is called a continuous parameter process. 1t can also be defined as:

T =1{0,1,2,...}
or

T={..,-101,...}

which is called a discrete parameter process.
For any time, t, in the set T the random variable, X, can be observed. If this is
done over the range of t that comprise one experiment, a function, X}, is obtained. If

a sample point is denoted by x then the function can be written as:

{Xi(z),t €T}, (3.8)

this is, in mathematical terms, a random or stochastic process. The range of possible
values of X, is called the state space of the stochastic process. The values that x can
have are known as the states.

The values of X,,, X,,... can be observed over a range of times, {; <1, < ... <1y
where all t € T. Using this information the joint distribution function or density
function can be defined. It is written as, Xk, (Tny oo ,Z1), and this distribution
function can then be used to predict future behavior if past behavior is known. This

is represented mathematically by:

fx.,,,...,x‘, (mna“' ,31]) , (3'9)
fXg"_l yeon Xty (zn—la sy 1‘1)

where the left hand side of Equation 3.9 is the conditional density of X,,, given the

fXg,,ngn_l,...,Xg] (znlmn—l, seey wl) =

past behavior of the process.
As mentioned earlier, the process can have either discrete or continuous parameters,
in addition, the process itself can be either discrete or continuous. An example of a

discrete process would be a numerical count of objects; for example, the number of
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items produced by a certain machine. An example of a continuous process might be a

record of temperature in a certain location. This means that there are four types of

stochastic processes:

e discrete processes with discrete parameters,
e discrete processes with continuous parameters,
e continuous processes with discrete parameters, and

¢ continuous processes with continuous parameters.

In the next section an example of the second type, the discrete process with a contin-

uous parameter, also known as a discrete random process, will be developed.

3.2 Markov Processes

In the development of this section many of the references from the previous section
were used, additional references are also cited where appropriate.

The Markov process is a special case of stochastic process. Its distinguishing feature
is that it is a stochastic process whose future value depends only on its current state,
it is independent of all previous values. This statement explains why Markov models
have the potential to be extremely useful in engineering applications. If a thorough
inspection of a structure is carried out the current state of damage is then completely
known. Using a Markov process or model the future damage state can be predicted
without any knowledge of how the structure arrived at the current damage state. In
other words, it is not necessary to know through what damage states the structure
passed before arriving at its current one.

In order to apply this idea in the form of a stochastic model we write the mathe-

matical definition of a Markov process as:

f‘\"nnl-l II\'!n v-'vxt] (xn+] |$n’ M ml) = fxfn+lioxl" (wn+1, mn) ? (3‘10)
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where the left-hand side of Equation 3.10 is known as the conditional density and also
as the transition density for the Markov process. This equation says that knowledge
of the present state (X;,) means the future state (Xj,,,) is independent of the past
(Xtpyser s X1)

Now, suppose that for any time, ¢, , the initial distribution, fx, (z,), is known.
Given this distribution in addition to a knowledge of the transition density given by

Equation 3.10 the following distribution can be obtained from:

fxtn.“ (xn-f-l) = th,,+1|X¢,. ($n+l|$n)fz\'n(mn) . (3.11)

Future distributions can be obtained in this manner, for example:

fX¢,,+, (Tni2) = fz\’c,,“IX:,,“ (Zni2|Znt1 ) fxnp (Tasr) - (3.12)

Where this procedure can be carried out for any future time of interest by simply

repeating the process as many times as necessary.

3.2.1 Transition Probability

The distribution of interest in this report is the probability mass distribution. Using
a Markov process this may be found from the initial distribution and the transition

probabilities. The transition probabilities are given by [44] :

P(th-n = $n+1|X¢” = (L‘n) . (313)

This can be read the probability of X,,,,, being at state x4 given that X, is al state z,.
For the discrete-state, continuous parameter Markov process we write this transition

probability as :

P(X, = j1X. = i) = pi(r, 1), (3.14)

where i,j are integer states and 0 < 7 < t. This is the probability of going from state

i to state ) between time 7 and time t.
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There are several conditions that the transition probability, p;;(r,t) must satisfy,

namely:
0< pi](T’t) <1 ’ (315)
forallij and 7 20, t>0.
E p,'j(‘T,t) =1, (3'16)
J
foralli andr ,tboth> 0,
and
1 fori=j
pi,(0,0) = = (3.17)
0 fori#j,

where Equation 3.17 means the process cannot change states in an interval of 0 time

units. The transition probability must also satisfy the following equality :

pi(T,t) = D pik(T, 8)pii(s,t) (3.18)
k
where 7 < s < t, and Equation 3.18 is the time-continuous Chapman - Kolmogrov

equation.
Finally, the condition that the probability of two or more transitions between states

in a small increment of time A t is 0(A t) where 0(A t) is defined if f(A t) = 0(A t)

and:

f(at) _ (3.19)

gitl-x}o At T
3.2.2 The Kolmogrov Differential Equations

In order to solve for the transition probability, p,;(7,1) , which satisfies Equations 3.15
- 3.19, two functions are introduced. These functions are called the intensity functions
and they describe the infinitesimal transition scheme.

For an infinitely small increment of time, At , the probability of transition from

state i at time t to state j at time t + At is given by :
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pij(t,t + At) = qi;(1)At + 0(A?), (3.20)

where 0(A t) is as described in Equation 3.19.

Using the result from Equation 3.16 and summing over j for all j # i we arrive at

the result :
pi(t,t +At) = 1 — At Y q,(t) + 0(At), (3.21)
i
or.
pa(t,i+ A1) = 1 — g(t)At + 0(At), (3.22)

where ¢;(t) = ¥,4 ¢:,(1).

Now, following the development in the references,( Feller [50] for example), these
functions ¢;(t) and ¢,;(t) which are known as the intensity functions can be defined more
precisely. For every state i in the sample space assume there exists a time continuous

function ¢,(t) such that :

. 1= pu(t,t 4+ Al)
gi(t) = lim AL : (3.23)
In addition, assume that for every pair of states i and j (for i # j) there is a time

continuous function g;,(t) such that :

gi(t) = lim Palbit 28 (3:24)

At—0 At
As mentioned earlier, these intensity functions govern the infinitesimal transition
scheme. In modelling a physical phenomenon using a Markov process it is often this
infinitesimal transition scheme that is specified rather than the transition probability
itself.
Recalling Equation 3.18 it then follows :

pij(Ty t + At) = Y pulr, t)prs(t,t + At), (3.25)
P



CHAPTER 3. MATHEMATICAL DEVELOPMENT 40

using the definition of the intensity functions we obtain the two Kolmogrov equations.

By holding j and t constant where i and 7 are variables we obtain the backward

differential equation:

Fpu(nt) _ a()pii(r,t) — X qik(7)pri (1,1) . (3.26)
or k#i

If i and 7 are now kept constant with j and t as the variables the resulting equation is

the forward differential equation:

6%8(: i e®) + X s Dau(®) (3:27)
ki

Both of these equations must satisfy the initial conditions :

0 forisj.

These Kolmogrov Differential Equations are the equations that need to be solved

1 fori=j,
pi(tyt) = { (3.28)

in order to determine the transition probabilities. This can be done, either analytically

or numerically, only after the intensity functions presented in this section have been

specified.

3.3 The Nonhomogeneous Markov Law, A Recent
Application

Recently, the type of model presented in the previous section was used by Provan and
Rodriguez [44,54] for the study the phenomenon of pitting corrosion. Their model
was based on the model developed by Provan[43,55]. In order to apply this model the
intensity functions governing the infinitesimal transition scheme needed to be specified.
Several sources, Bharucha - Reid [48] and Parzen [51] for example, have presented
various forms of intensity functions as well as the solutions of the resulting Kolmogrov

Differential Equations. The pitting corrosion study began with an examination of four
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of these forms and ended with the postulation of a new form. The four forms examined
were the Poisson process, the Furry - Yule or pure birth process, the Nonhomogeneous
Linear Birth process and the Polya process. The following sections briefly outline these

processes.

3.3.1 The Poisson Process

The Poisson process is the simplest of the nonhomogeneous, time continuous Markov
processes. There are three assumptions which determine the development of this pro-

cess, they are :

o The probability of a change from state i to state i + 1 in the interval of time At
is given by A At + 0(At) where A is a positive constant.

¢ The probability of a change of two or more states in the interval A t is 0(At).

¢ The probability of staying in the same stateis 1 — A At + 0(At).

where all these probabilities are independent of the state, i, of the process.

With these three assumptions the intensity functions can be specified as follows:

a(t)=Xr for alli> 0, (3.29)
A forj=i+1,
gi;(t) = o (3.30)
0 forj#e¢,:4+1.

With this transition scheme the Kolmogrov Differential Equations become :

dp;;(t
—p_e;?(_) = Api; () + Apisa,(t) 5 (3:31)
dp:;-t(t) = =Api;(8) + Apii-a(t) (3:32)

whose solution is:
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(5-1)!
0 forj<i.

Q2 =M forj >,
py(t) = { - (3.33)

3.3.2 The Furry - Yule or Pure Birth Process

This process can be considered to be a generalized Poisson process where the intensity

functions are dependent on the state of the process.

The assumptions for this process are :

o The probability of transition from state i to state i + 1 in the interval of time

At is given by A, At + 0(At).

o The probability of a transition from state i to a state other than i 4+ 1 in the

interval A t is 0(At).
o The probability of no change in state is 1 — X; At + 0(At).

This results in the following intensity functions:

g(t)=ri ; fori=1.2,..., (3.34)
A1 forj=i+1,

0.;(t) = . (3.35)
0 forj#i,i41,

and the Kolmogrov Differential Equations become :

dp;ljt(t) ==Aipi(t) + A ipin (), (3.36)
dp:ijt(t) ==A7pi(t) + A (G = 1) pija(1) (3.37)

which has a solution:

pii(t) = (j - ) e (1 - eMyim i (3.38)

j—i
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3.3.3 The Nonhomogeneous Linear Birth Process

4

%

The nonhomogeneous linear birth process differs from the two previously presented in
that is does depend on time. In this case the probability of transition depends not only
of the state of the process but on time as well. This results in a form similar to the
pure birth process with the important difference that the intensity functions are now

functions of time, they are given as :

g(t)y=2AMt) ; fori=12,..., (3.39)
iA(t) forj=i+1, ,

gij(t) = L (3.40)
0 forj#i,i41,

which make the Kolmogrov Differential Equations:

D5l 30 i+ MO G+ D pis() (341)
25) M0 2+ A0 (G = 1) piga0) (3.42)
for which the solution is:
py(rt) = (’, - ) ¢ (1 - gy, (3.43)
j -t

where g = e(~ (B =Kr)) and h(k) = [¥A\(k) dk .

3.3.4 The Polya Process

A second example of a state and time dependent process is the Polya process. The

intensity functions for this process are:

. fori=12,..., (3.44)
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1t6i  fori=i41
go(t)={ TFme O '+ (3.45)
0 forj#i,i+1,

resulting in Kolmogrov Differential Equations of the following form :

dpi;(t) _ 1+ K5 1+ k(G —1)
G = AT O A P (8), (3.46)
dpi,(t) _ 14+ N 1+ & +1)
di =—A 1+ KAt P,,(t)-{-) 1 + Kt pi+l.J(t)a (3.47)

which can be solved numerically using a Runge — Kutta technique.

3.3.5 A New Intensity Function Form and the Results of its
Application to Pitting Corrosion

In order to determine which form, if any, was appropriate for the modelling of pitting
corrosion each was applied, in turn, to the same data set. After this analysis was
carried out it was decided to use a new form of intensity functions in order to achieve
better results. Intensity functions were chosen that could incorporate the best features
of those previously examined into a more useful form. Upon examination, a set of
intensity functions that were both state and time dependent were deemed most suitable.

The form that gave the best results was found to be :

gt)=A, forj=1.2,..., (3.48)
Aiog fori=j-1,
giiit)=14 7 (3.49)
0 otherwise ,
with:
14 M
A= At (3.50)

14 A8’
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}

where ) and &, which are positive constants known as the empirical system parameters,

¢

are found by determining the best fit to experimental data. These two parameters
include all the various effects that influence the process, such as, temperature, material,
geometry, etc. In this way all the variables are conveniently described. Therefore, if
these parameters can be found the system can be modeled, of course if the system is
changed then new system parameters must be found.

These intensity functions are then used in the kolmogrov forward differential equa-

tion, which becomes:

dpis(r,1) _
dt

In order to solve this differential equation a numerical technique, the Runge-Kutla

method [56,57], was used.

=A;Piy(7,t) + Ajmapiy-1(70 1) - (3.51)

The model in this form was found to give a very good description of the actual
behavior of a pitting corrosion system. This model was then applied to the results of
an experimental program involving the pitting corrosion of CA-15 stainless steel in a
simulated white-water environment (see Rodriguez [54] for details). By an iterative
procedure it was found that the values of the system parameters, A and «, for this

experiment which gave the best fit for the experimental results were:
A= 0.015 ; k=17

Using these values the transition probabilities were determined and then used to

find the probability of a corrosion pit being a certain size. This is represented in the
histograms in Figure 3.2 showing the probability of a pit being in a certain state (depth)
for both the experimental data and for the model prediction. From these histograms
the mean and variance of pit depth are found and are shown, along with the actual
data, in Figure 3.3. The model was also used for reliability calculations in Reference
(58].

These results have shown that a non-homogeneous Markov model can be used

effectively to model the growth of corrosion pits. This success has raised the question of

¢ 3
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Figure 3.2: Actual Data Histogram and Model Histogram [44]
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whether or not this method may be applied to other degradation processes, specifically
to the fatigue phenomenon. If this model can indeed be used for the modelling of
fatigue crack growth what information can the engineer obtain, in the form of reliability

predictions 7 These are the questions that will be addressed in the remaining chapters

of this thesis.
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Chapter 4

SPECIFIC RESEARCH
OBJECTIVES

The previous chapters have presented a brief review of some of the information avail-
able in the literature concerning the fatigue phenomenon, reliability, and stochastic
processes. The aim of the chapters that follow is to examine the use of the specific
stochastic process mentioned earlier, namely the Markov process. This process can be
used for the modelling of the mean and variance of fatigue crack growth as well as for
reliability predictions.

The first objective of the current investigation is the use of the Markov model
outlined in Chapter 3 to predict the statistics of fatigue crack growth. In order to
do this the empirical system parameters, A and x, must be established for a set of
experimental data. The following chapter will de*ail the attempt to determine these
system parameters for several specific data sets. Once these system parameters have
been found they will be used with the Markov model to predict the statistics of fatigue
crack growth.

The second objective of this research is the examination of the potential applications
of this model. One of the uses of this model is for the solution of a practical engineering
problem, namely reliability calculations. There are many different applications that

fall under this general heading, some of those which will be examined (in Chapter 6 of

49
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. this thesis) include the following:

o the prediction of component reliability at a future time,

e the scheduling of the necessary maintenance procedures to maintain a certain

minimum level of reliability, and

e the optimization of inspection and repair scheduling for the maximization of

’

reliability (or the minimization of the probability of failure) and,

o the effect of a change in repair policy on reliability.

1 e A b

One of the long term objectives of this research is the development of computer
’g programs that will not only be of use in the current investigation but that will facilitate
further work with this type of model. To this end, the program developed by Rodriguez
[54] has been extensively modified for use in this investigation and several new programs
have been written for the reliability calculations found in chapter 6. These programs

can be found, along with brief explanations of how they work, in Appendix A. It is

hoped that they will be of use for future investigations.

’-.sb,\
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Chapter 5

APPLICATION TO FATIGUE

5.1 Introduction

In Chapter 2 the deterministic laws for fatigue crack growth were presented. Since
these laws cannot account for the scatter found in laboratory results we turned to
the probabilistic model of Chapter 3, the Markov process. It has been shown that
this type of model can be used to describe pitting corrosion and it is the aim of this
chapter to examine its applicability to fatigue crack growth. Several specific aspects of
the Markov process which will be used here will be explained briefly in the following

section before moving on to the application of the model to a data set.

5.2 Fatigue Modelling

For this investigation a Markov process with discrete states is used. Although it
may appear that crack growth should be thought of as a continuous process it is
reasonable to treat crack size as a discrete quantity due to the built-in limitations of
crack detection and measuring systems. As Bogdanofl and Kozin [46] point out, this
restriction (treating crack size as discrete) is modest in terms of loss of physical reality
when compared to computational advaniages gained.

An example of how crack length can be discretized is illustrated in Figure 5.1.

51
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Figure 5.1: A Schematic Representation for Discrete Crack Size

The crack size variable, a; , can only be measured to within equipment and operator

limitations, in other words, the crack size can be given as:

am — Aa < a; < a,, + Aa, (5.1)

where a,, is the measured crack size and A a is the range of error in the measurement.

By considering the observable zones, i, this can be written as:

z, <y < z; + Az, (5.2)

where z, is the state number and A , is the width of a state or state size. This state
size, as well as the number of states that need to be considered can be determined by

the engineer.

In order to apply this model the infinitesimal transition scheme must be specified.

This transition scheme is governed by the intensity functions, ¢,(t) and ¢;;(t). In
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Section 3.3 the intensity functions used for pitting corrosion were presented. In the
current investigation these same functions will be used to describe the infinitesimal

transition scheme, these were given as:

g;(t) = A forj=1,2,..., (5.3)
Ajop fori=j-1,
g,(t) =3 "’ . (5.4)
0 otherwise ,
with:
RS ]
AJ A ] 1 + /\t" ] (0.5)

where the parameters, A and &, can be determined for any data set.

Using these intensity functions the Kolmogrov forward differential equation was:

dp,,(7,t)
dit

In order to apply the Markov model this equation must be solved to obtain the

= -’\thJ(T’ t) + )‘J—-lpt.J-l(t) . (56)

transition probabilities, p,, (7,t). This was accomplished in the present investigation
using the program SOLUTION found in Appendix A. This Appendix also presents

a brief description of what this program does and how it works.

5.3 Specific Applications

5.3.1 OFHC Copper

In order to fully explore the capabilitier of this process it was decided to try and use
it to predict the statistics of the growth of a single crack front. By examining fatigue
fractographs the penetration of a crack front at a given time, or cycle, can be measured
at many points along its length (the z3 direction as shown in Figure 5.2 ). From these

observations the mean and variance of crack length can be determined.
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Figure 5.2: A Schematic of Fatigue Cracks at a Given Cycle [55]

Work done by Provan and Mbanugo [59] included an experimental program de-
signed to measure the mean and variance of crack front penetration into OFHC Copper.
These results were then reported in terms of the mean and variance at several cycle
numbers. This data is given in Table 5.1 [59] after converting to discrete states. In ad-
dition, the initial distribution needed for the Markov model was reported in Reference
[60] and is shown in Figure 5.3.

Applying the model the empirical material parameters, A and & , that best describe

this system were found to be:

A = 0.032 ; k= 1.1 (5.7)

These parameters were found to give an adequate description of the mean crack pen-
etration but were quite inaccurate with regards to the variance. The results for the
mean crack size are shown in Figure 5.4. As for the variance the Markov process greatly

overestimates the amount of scatter. As pointed out by Provan and Mbanugo [59] this
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Figure 5.3: The Initial Histogram of Crack Size [60)
Cycle Number | Mean State | Variance
ts+ 5 2.69 1.07
s + 36 22.54 2.77
1, + 49 32.47 3.66
¢, + 69 49.88 2.05
Table 5.1: OFHC Copper Data [59], where i, is the reference cycle number
-y

¢
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Figure 5.4: Mean Crack Penetration, From Data and Markov Model

is not unexpected since, by definition, it does not take account of either boundary
effects or the effect of spatial interaction between neighboring points along the crack
front.

These findings indicate that the Markov model, in the current form, is not appro-
priate for the modelling of the mean and variance of crack penetration for a single
crack front. It was decided that instead of modifying the model for this application
it would be used for the description of the statistics of crack growth for a group of
components.

The findings for this work are presented in the following sections.
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Figure 5.5: Raw data WPF, Normalized to 0.004” (0.102 mm) {61]

5.3.2 Data Set WPF

In order to use the non-homogeneous Markov model to predict the statistics of crack
growth for a group of components a fairly large number of specimens are needed. There
are several such fractographic data sets available in the literature. In this investigation
the data set WPF [61], see Figure 5.5, which describes the growth of cracks originating
around aircraft fastener holes, has been used.

WPF contains the results for 33 specimens whose geometry is given in Figure
5.6 and whose material is 7475 - T7351 aluminum. The specimens were tested in
a laboratory air environment under fighter spectrum loading, with a maximum gross
stress of 234.4 MPa, for 16,000 flight hours or until failure. There was no pre - cracking
and the largest crack in each specimen was evaluated fractographically after testing
[39].

The intensity functions used here are the same ones presented in Section 5.2. The
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Figure 5.6;: WPF Test Specimen Geometry [39]

use of these functions necessitates the determination of the empirical material param-
eters, A and x . These are found by an iterative process of fitting the model prediction
to the experimental results.

Several steps had to be taken before this iterative process was performed. The first
step is the normalization of the data to an initial crack length of 0.004” (0.102 mm)
at time t = 0. This is done to eliminate the crack initiation stage. Secondly, the data
need to be discretized into states of width Ax. This Ax should be chosen small enough
so that the discrete data still closely resembles the continuous data yet large enough
so that the number of states needed is kept !o a reasonable amount.

The reason for limiting the number of states is that the number of non-zero tran-

sition probabilities grows as the sum of the number of states, i.e. :

N
Number of non-zero p;; 's = 37, (5.8)
J=1

which can be shown to be:

ii - LD +21) r (5.9)

=1
where N = the number of states.
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Figure 5.7: Initial Flaw Size Distribution, at 1500 Flight Hours

From Equation 5.9 it can be seen that the size of the matrix of transition probabil-
ities increases as the square of the number of states. This is important since the size
of the transition probability matrix has a significant effect on both computer storage
space used and computing time. For this data set a state size of 0.001" (0.0254 mm)
was chosen. A total of 70 states were used since this was judged as a sufficient number
for the interval of time used, t = 0 flight hours through t = 5500 flight hours.

With this information the material parameters can be determined. Using the pro-
gram SOLUTION from Appendix (A) with the initial flaw size distribution at 1500
flight hours (see Figure 5.7), Number of states = 70, T initial = 1500 hours, and T
final = 1500 to 5500 hours, A and x are found by iteration. The values of A and «

which give a good fit to experimental data were determined to be :

A = 0.26 ; k = 0.96 (5.10)

Using these parameters with the program SOLUTION the probability histograms
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Figure 5.8: WPF - Mean Crack Size, From Data and Markov Model

at future times were generated and the mean ( Equation 5.11 ) and variance ( Equation

5.12 ) calculated from :

m(t) = 3 jpilt), (5.11)

a2(t) = YU - w0 py(2) . (5.12)

J
Figures 5.8 and 5.9 show the results for the mean and variance from the model] as

well as the experiment and these results are also presented in Table 5.2. Figure 5.10
presents a probability histogram generated by the model as well as one from the ex-
perimental results. From a comparison between the actual and predicted histograms it
would appear that given a larger data set the model would be able to give quite good

predictions for these distributions.
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Figure 5.9: WPF - Crack Size Variance, From Data and Markov Model

FLIGHT MEAN VARIANCE

HOURS | ACTUAL | MODEL | ACTUAL | MODEL
1500 7.39 7.39 2.18 2.18
2000 8.70 8.43 3.97 4.01
2500 10.24 9.61 717 6.57
3000 11.42 10.97 9.94 10.10
3500 13.18 12.53 14.51 14.96
4000 15.03 14.32 20.76 21.57
4500 17.03 16.37 27.91 30.55
5000 19.36 18.73 37.57 42.66
5500 21.82 21.43 53.97 58.77

Table 5.2: Actual Data and Model Prediction For Data Set WPF
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Figure 5.10: Probability histograms from Markov model and Actual data
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Figure 5.11: Raw Data Set XWPF, Normalized to 0.004” (0.102 mm) [61]

5.3.3 Data Set XWPF

One further and final demonstration of the ability of the Markov model to predict
fatigue crack growth a second data set has been used. The data set XWPF [61] is
shown in Figure 5.11. This data was obtained for tests performed on the specimen
shown in Figure 5.12. This specimen was made of the same material as the one from
the data set WPF and was tested under the same conditions (see previous section).
The data set was again normalized to an initial flaw size of 0.004”(0.102 mm) and the
same state size of 0.001" (0.0254 mm) was used.

Since there has been a change in the system, in this case a change in the specimen
geometry, new empirical system parameters, A and &, need to be found. Values of A

and & were found, using the program SOLUTION, to be:

A = 035 ; k = 0.79. (5.13)
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Figure 5.12: XWPF Test Specimen Geometry [39]

As expected, the system parameters are indeed different due to the change in specimen
geometry. These values yielded the results for the mean and variance as given in
Table 5.3. These results are also shown graphically in Figures 5.13 and 5.14 and
again illustrate the fact that the Markov model is indeed capable of making excellent
predictions for the mean and variance of fatigue crack size as a function of time.
These figures and the ones from the previous section are an indication of the abil-
ity of this model to predict the statistics of fatigue crack growth. Thus, one of the
primary objectives of this thesis, the development of a stochastic process to model the
growth of fatigue cracks including the inherent scatter, has been achieved. The second
major objective of this renort, the application of this model to component reliability
predictions, will be examined in the following chapter. The reliability calculations in
the remainder of this thesis make use of the data set WPF, since only one data set
was necessary to illustrate the capabilities of this model, the procedures used, however,

could have been applied equally to the second data set.
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FLIGHT MEAN VARIANCE
HOURS | ACTUAL | MODEL | ACTUAL | MODEL
1500 8.50 8.50 2.31 2.31
2000 10.38 10.20 4.67 5.38
2500 12.69 12.31 9.09 10.38
3000 15.50 14.93 17.38 18.45
3500 18.00 18.21 30.19 31.41
4000 22.84 22.31 54.63 52.14
4500 27.53 27.42 89.25 84.48

Table 5.3: Actual Data and Model Prediction For Data Set XWPF
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Figure 5.13: XWPF - Mean Crack Size, From Data and Markov Model
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Chapter 6

RELTABILITY ANALYSIS

6.1 A Failure Control System

Modern engineering designs require the use of high reliability components. This is
especially true in the case of hazardous material containers, petroleum pipelines, nu-
clear power plants, aircraft structures and other applications where failure can be
life-threatening. One of the major causes of the failures of these components is the
unavoidable weakening associated with aging. This weakening of a component or struc-
ture can be caused by fatigue, wear, corrosion and other phenomena. The result of
one or more of these processes is the degradation in the strength of the component. In
order to combat this degradation the operator of the structure needs to implement a
Failure Control System such as the one introduced by Hay et all. [62] and further
developed by Rodriguez et all. [63].

There are two essential parts of the Failure Control System, namely, the degradation
module, for which the model discussed in this report can be used, and what Hay et all.
have termed the “upgradation” module. This upgradation module can also be called
the inspection-correction module as it allows for the location and repair or replacement
of components with “significant” flaws, where the operator must decide what is meant

by significant. Schematically this failure control system can be shown as in Figure 6.1.
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OPERATIONAL TERMINOLOGY
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Figure 6.1: Schematic of a Failure Control System [63]

6.1.1 The Inspection/Correction I*'rocess

This section of the failure control system involves stopping the degradation process,
locating components that pose a risk to structural integrity, and carrying out the
necessary maintenance procedure. In mathematical terms it is the censoring of the flaw
size distribution. This corrective procedure increases confidence that the structure will
continue to perform satisfactorily. The increase in confidence depends on such things
as the quality of the inspection apparatus and personnel, the definition of what is
meant by a significant fla-v and the quality of the repair procedure. All of these are

variables which can be controlled, to some degree, by the operator of the structure.

INSPECTION

There are many non-destructive inspection procedures available such as, X-ray, flux-
leakage, ultrasonic, acoustic emission, eddy current, dye penetrant and others. All of
these techniques have different accuracy, time needed for testing, complexity, limita-

tions and costs. They also introduce a degree of uncertainty which is in itself a complex
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problem and is beyond the scope of the present work.

There are four possible outcomes of an inspection procedure and their respective
probabilities depend on factors such as quality of inspection apparatus, flaw orienta-
tion and, perhaps most importantly, the quality of inspection personnel. The four

possibilities ere :
e correct identification of an existing flaw,
e failure to locate an existing flaw,
e correct identification of a component as defect-free,

e incorrectly labeling a defect-free component as flawed.

What is of interest to the engineer is the probability that the operator will be able
to make a correct identification of an existing flaw in an in-service component. Many
authors, references [64] - [68] for example, have proposed functions to describe the
probability of detecting an existing flaw in a structure. For example, that of Davidson
[66] is given by :
Po(d) = C{1 — exp[~b(d — d)]} ;d 2 da (6.1)
0 id < din

where:

C= a constant, less than 1, which indicates that even large flaws have
a probability of detection that is less than 100%,

b= a parameter which depends on the critical crack criterion, i.e.
the probability of detecting a crack of a certain critical size, d,,
should exceed a certain value, and

dy, = the detection threshold, which is the minimum size defect that

can be found.
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With a knowledge of the particular inspection process in question the constants C,b
and d,;, are determined and the probability of detection expression can then be used
for reliability calculations. In the present investigation this function has been used,
with the following values for the constants: the constant C = 0.99, which shows that
even large flaws can be missed; b was obtained using the boundary condition that

P4(0.030”) = 0.98; and the detection threshold, dix = 0.010” (0.254mm).

CORRECTION

This step concerns the actual removal of the flawed components that were located by
the inspection and their repair and/or replacement. This stage depends heavily on
the judgement of the engineer, who must decide what is meant by a significant flaw
and how to correct it. One option is to remove all flawed components and replace
them with new ones. This would result in the structure being “as good as new” if the
inspection procedure was capable of detecting all flaws. Certainly, in practice,
these procedures are not perfect and often it is not economically feasible to replace
all flawed components, no matter how small the flaw. The result is that the engineer
decides when a flaw is large enough so that it may grow to critical size before the next
scheduled inspection-correction procedure. The size is usually chosen to conform to
either company policy or a design code, but it may be considered as a variable within

certain limitations.

MODIFIED FLAW SIZE DISTRIBUTION

The modified flaw size distribution is the combination of the components that re-
main from the initial population and the components that have been repaired or their
replacements.  This can be seen from Figures 6.2[a)-[d] which are a graphical rep-
resentation of this failure control system as presented by Rodriguez and Provan[58].
Figure 6.2[a] shows the initial flaw distribution where d, is the flaw size at which com-
ponents require correction and d; is the size at which failure occurs. After some time,

t, has elapsed the components have undergone degradation, which can be predicted us-
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ing the stochastic law already developed. The result of this degradation is the flaw size
distribution of Figure 6.2[b], note that a small number of components have exceeded
the failure size, d;. The hatched area of this figure represents the probability of failure.
If a non-destructive inspection is carried out at this point some of the flaws present
will be found while others will be missed, depending on the inspection procedure. This
is shown in Figure 6.2[c] where the shaded region represents the flaws that are found.
Knowing the probability of detection the number of flaws missed can be inferred. It
can be seen that the smaller the flaw size the smaller the proportion of flaws actually
located is. The correction procedure is then carried out where all components that
have been found to have flaws greater than d, are removed and replaced (in this case
with new components). Figure 6.2[d] shows the modified distribution where the new
components are considered as a separate group from the original population. The new
components could be considered as part of the same group for the case of a time-
homogeneous process. It is important to observe that there still exists a small number
of components with flaws greater than d, but which have not been found and replaced
due tc inspection shortcomings. This modified flaw size distribution can now be con-
sidered as the initial distribution for another degradation and inspection-correction
cycle.

In these figures the replacement components have been considered with the smallest
possible flaw size, this, however, does not have to be the case. The flawed components
could have been repaired so that there were still some flaws existing but of varying
sizes. A flaw size distribution could then be specified that allows for some of these

components to have larger flaws present.

6.2 Reliability Analysis

The combination of the failure control system outlined in the previous section with the
Markov model presented in Chapters 3 & 5 can be a very powerful tool for practical

engineering reliability calculations. In order to illustrate this two specific uses will be




oy

CHAPTER 6. RELIABILITY ANALYSIS

PROBABILITY

PROBABILITY

W AL sy = - — - - ——- wm - an -

- s e - . a e = we

FLAW SIZE d;

(a)

PROBABILITY

e w4

J

‘_
t
L

Q.
—

Initial

N

(b) Transformation

PROBABILITY

t
i
t
i
i
\
'
[]
i
L
[}
]
L}
]
]
i

LT e I8 {

hude Supmne nonen > 2> - T

FLAW SIZE dr

ooy

[=%
-

FLAW SIZE dr d¢

(c)

Figure 6.2: A Graphical Representation of the Failure Control System [58]

Censoring

FLAW SiZe dr

(d)

Modified

OQfrmmmmmanom oo oo

72

[T



™%

CHAPTER 6. RELIABILITY ANALYSIS 73

explained in the following sections. The first use is for the prediction of repair times in
order to maintain a certain level of reliability (section 6.2.2), and the second is the de-
termination of the optimum time for an inspection-correction procedure (section 6.2.3).
Before these are examined a method that is central to both, the method of predicting

reliability at a future time, is presented.

6.2.1 Reliability as a Function of Time

Reliability, as was discussed earlier, has been defined as the probability a component.
will perform satisfactorily for a specified period in a specified environment. A method
for determining this probability is through the use of the mathematical model devel-
oped in this report. The first step is to use the model to generate probability histograms
for crack size at given future times. The reliability can then be found if the critical
crack length is known, it is the probability that the crack does not excecd this critical
length. This quantity can be obtained by summing up the probability of a crack being
any sub-critical size. This is illustrated in Figure 6.3 where the reliability is equal to
the sum of the areas to the left of the critical size. This method of assessing reliability

is used in the analysis contained in the remainder of this chapter.

RELIABILITY vs. TIME FOR WPF

For the data set WPF, as described in Chapter 5, predictions of reliability as a function
of time can be made following the method of Figure 6.3. To facilitate this the computer
program SOLUTION from Appendix A was used to generate crack size histograins
for times from 1500 to 5500 flight hours. This data was then used to generate reliability
as a function of time curves such as Figure 6.4. A family of curves of this nature can
be obtained by varying the critical crack size or failure state, NF. This variation allows
the user to examine the effect that changing the failure state has on reliability. For

the figure shown, as well as for the analysis in the following sections, the failure state,

NF, was taken to be a crack size of 0.040" (1.02 mm).
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6.2.2 Reliability Maintenance

The operator of a structure will often decide upon a desired level of reliability. Once
this level has been determined, perhaps by company policy, standard industry practices
or other means, it becomes necessary to determine when to schedule the maintenance
procedures that will ensure it. This can be done by using the Markov model to predict
when the probability of failure will reach the desired limit and then calling for an
inspection-correction procedure.

Before the analytical analysis is carried out the repair or maintenance policy must
be determined. This policy consists of the answers to two questions: first, ‘which
components will be replaced?’ and second, ‘what will the quality of the replacement
components be?’. In the present investigation it was decided that the size at which
components would be replaced would be smaller than the critical size. The use of a
replacement size smaller than the critical one allows for the removal of some compo-
nents that are in greater danger of failure before the next maintenance procedure. The
actual replacement size used was allowed to vary in order to illustrate the usefulness
of the model for examining the effect of changes in repair policy. For all examples in
this report the replacement components were assumed to have small initial flaws of
0.004”(0.102 mm) in order to eliminate the scatter due to initiation.

Analytically, as a result of the removal and replacement of some components, there
are two distinct populations in the structure. These populations will be referred to
as Population I, which consists of the remaining components from the initial group,
and Population II, which is the group of replacement components. The reason this
distinction is necessary is that the Markov process developed here is time-dependent
or non-homogeneous. This means that for an inspection-correction at time T\,pece the
fatigue process continues for Population I while for Population II it starts at time T
= 0 and ends at time T = Tyinat - Tinspect - As long as the fatigue loading situation
remains the same the system parameters, A and «, can be used for both populations.

After the inspection-correction procedure has been carried out the probability of

failure for the two populations is monitored in order to determine the total probability
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of failure. Following the development of Rodriguez and Provan[58], this total proba-
bility of failure is a weighted combination of the probabilities of failure of Populations
I and II. The weighting constant, K, is simply equal to the fraction of the initial

population remaining in service and the total probability of failure is given by:

Prrorar(t) = (1= R) K, + (1-RI")(1-K,), (6.2)

where R! and R!’ are the reliabilities of Populations I and II respectively at time t.
R! is calculated by first normalizing the histogram of the remaining initial components
by dividing by K,. This new population is allowed to “age” using the Markov model
until time t when its reliability is calculated. R}! is obtained by using the Markov
model with the initial distribution being all components with an initial flaw of 0.004”
(0.102 mm) and starting at time t and finishing at time t = t - T,,,,.. This process
can casily be extended to include as many inspection- correction procedures as desired.
For example, the extension to include a second procedure would result in the following

expression for the total probability of failure at a final time t, with inspections at times

t; and tg:

Prroranlt) = (1- ROK,K. + (1-RI"H(1 - K,,)K[ +

{2

(1-RIMK,(1-KL) + 1-K,)Q-KIN]; (6.3

where K/ and K/l are the predicted reliabilities of Populations I and II at time ¢,
and R! , R/ . and R!'! are the predicted reliabilities of Populations I, II and III,
respectively, at time t.

For the case where it is desired to replace components that have not yet failed
but which have flaws greater than the replacement size, the inspection procedure used
must be considered. The components that will be removed will only be those whose
flaws are detected. In other words, the normalizing constant will be the sum of the
components with flaws less than the replacement size plus the components that have

larger flaws but are missed due to the probability of non-detection associated with the
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Figure 6.5: Determining the Inspection Schedule to Maintain Reliability at .9999

inspection process.

RELIABILITY MAINTENANCE FOR WPF

Applying this method of analysis, which is contained in the program MAINTAIN
in Appendix A, is perhaps the best way to illustrate its capabilities. Defining the
replacement size, NR, to be .030"(0.762 mm) and the desired reliability level to be
9999 or Prrorar(t) = 1.0 x 1074 the total probubility of failure for times 2500 to
5500 Flight Hours were obtained as in Figure 6.5. From this figure the times for
inspection-correction procedures can be determined.

One of the interesting uses of this methodology is the examination of the effect
on repair schedule if, for all other variables constant, the desired level of reliability is
changed. In Figure 6.5 the probability of failure was 1.0 x 1074, or 1 failure in 10,000,
what if the operator decides that a probability of failure of, say, 1 in 2,000 would be

acceptable? Obviously, they would like to know how the inspection schedule would
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vary, i.e. will there be a substantial enough savings in maintenance costs to justify the
increased risks. The results for this change in acceptable reliability level, to .9995, are
presented in Figure 6.6. From a comparison with the previous figure it is immediately
apparent that not only will the first maintenance procedure be carried out at a later
time but that one fewer procedure will be necessary.

The effect of repair size on inspection interval is another useful application of this
process. Figure 6.7 shows how inspection interval is affected by a change in repair
size from 0.030"(0.762 mm) to 0.025”(0.635 mm). The first inspection will occur at
the same time for both since this does not depend on repair size. After this first
inspection, however, there is a noticeable difference between the two curves. There are
a total of four inspection-corrections for NR = 0.030” before 5500 flight hours while
for NR = 0.025” the third one would be scheduled after this time! The ability to
generate information of this nature is a powerful tool for the system operator. These

results help answer the question “what is the savings in maintenance time and costs



CHAPTER 6. RELIABILITY ANALYSIS 79

X104 MAINTAIN RELIABILITY AT .9999, FAILURE AT = 0.040 in.

2
L8k REPAIR SIZE
L6 025" e

. .030" — ]

1.4

T
1.

1.2

T
i

0.8

T
- 4.

0.6

i
i
i
i
, ,
04._ Lo [
. ;
0.2} / L S
K :

k N, ‘ .
g.S 3 35 4 4.5 5 5.5

FLIGHT HOURS (in thousands)

T

PROBABILITY OF FAILURE
bt
T

Figure 6.7: Influence of Repair Policy on Inspection Scheduling

corresponding to an increase in expenditure for the replacement of more components?”

These figures (6.5,6.6,6.7) illustrate the type of information that can be obtained
from this model concerning inspection intervals. The analysis has shown that the
engineer can make hypothetical changes in the repair and/or reliability policy and
examine, quantitatively, the effects of these changes and the potential benefits. All
of these analyses can be performed, with minimal necessary input from the operator,

using the program MAINTAIN found in Appenix A.

6.2.3 Inspection Optimization

Another useful form of reliability analysis which can be carried out with this model is
the optimization of the inspection time. As an example, suppose that it is desired to
minimize the total probability of failure at a future time, and further that there will be
only one inspection-correction process in a given interval of time. The question that

the operator must ask and answer is “when is the optimum time for this procedure?”
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If there is no repair of the structure the probability of failure can be obtained from
a curve such as the one presented in Figure 6.4 (section 6.2.1). In order to decrease
this probability of failure an inspection-correction procedure will be carried out at
some time. An inspection too early in the service life will, on the one hand, remove
few components that may subsequently fail while a later inspection may be too late
to remove components that will have failed. The optimum time for inspection will
depend on several variables such as: critical crack size, repair size, inspection process,
and the quality of replacement components [45]. The quantity to be minimized, the

total probability of failure at some time ¢snqs , is given by [58] :

PITOTAL(tfmal) = (l - Rt) + (1 - R{],Ml)l(! + (1 - Rtljlma:)(l - ](t) ) (64)

where t is the time of the inspection, R, is the reliability of the initial population at the
time of inspection, K, is the normalizing constant as explained previously, and R,’Im,
and R} I"

In order to carry out this analysis the computer program OPINSPEC was devel-

.. are the reliabilities of Populations I and II, respectively, at the final time.
oped (Appendix A). This program allows the user to control such variables as NF, NR
and the Probability of Detection. By using this program with the same probability
of detection function and with NF = 0.040”(1.016 mm) and with NR = 0.030”(0.762
mm) the results presented in Figure 6.8 are obtained. From this figure it is apparent
that the optimum time for inspection-correction is at 4700 hours and that the total
probability of failure is decrease by 60 % over the no inspection case.

By changing repair policy, such that NR is varied, different curves are obtained. By
examining several of these, as in Figure 6.9, the change in optimum inspection time as
well as total probability of failure at 5500 hours can be observed. By changing from
a repair size of 0.030”(0.762 mm) to one of 0.025”(0.635 mm) the optimum inspection
time becomes about 300 flight hours earlicr, which is to be expected since more cracks
will reach this smaller size at an earlier time. In addition, the minimum achievable

probability of failure is decreased by a further 50% to about 1/5 the value for no
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inspection-correction. These trends are also observable for a further decrease in the
repair size to 0.020”(0.508 mm).

This analysis can of course be extended to allow for two or more inspection-
corrections during the given interval. This is conceptually just a simple extension
of Equation 6.4 to include as many as desired. Each new inspection-correction adds
considerably to the amount of computer time needed so, for the present investiga-
tion, this analysis was not performed. It could, however, be easily done through some

straight-forward modifications of the program OPINSPEC.
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Chapter 7

CONCLUSIONS

It has been the objective of this thesis to develop a probabilistic model for fatigue crack
growth and apply this model to reliability analyses. The nonhomogeneous Markov
model developed has been applied to several fatigue data sets that are available in
the literature. The following can be concluded based upon the results of the current

research:

o The nonhomogeneous Markov model can be used, with the choice of appropriate
intensity functions, to provide a valid prediction of fatigue crack growth since it
can predict not only the mean crack size as a function of time but also crack size

variance as a function of time.

o A change in the fatigue system, consisting of the material, loading, temperature,

loading etc., means a change in the parameters A and k. This has been shown
by the different values for the two data sets WPF and XWPF where the only

difference in the system was a different specimen geometry.

o From the results it can be seen that the Markov model, used in combination with
a failure control methodology based upon the methodology presented in Chapter
6, can be a useful tool for obtaining valuable reliability information. The types

of information obtainable can include:

i. estimates of reliability as a function of time,

83
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ii. the determination of the maintenance schedule which will ensure a
desired level of reliability,

iii. the optimal time for a maintenance procedure, and

iv. the examination of the effect of varying quantities such as the min-

imum reliability level and the repair size.

In light of these findings this method of modelling fatigue crack growth certainly
merits further investigation. It is hoped that the computer programs developed for
this research can be of use in compiling a table of system parameters, A and «, to be

used for future fatigue and reliability analysis.
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Appendix A

COMPUTER PROGRAMS

The computer programs presented here are written for a PC - based FORTRAN com-
piler. They require user interaction as well as the use of input and output data files.
Some of the syntax would need to be changed for different computer systems, compilers
or for mainframe use, but the overall structure and the algorithms would remain the

same.

A.1 Program - SOLUTION

This program is instrumental in the numerical solution of the Kolmogrov Differential
Equation 5.6 for the transition probabilities, p,, (7,t). The algorithm for the solving
of this equation is the one developed by Rodriguez[54] These transition probabihties,
which are determined 1n subroutine TRANSP, are then used in subroutine EVOLVE to
calculate the probability histograms for crack size distribution. The program also cal-
culates the mean and variance (subroutine MOMENT) and the rehability (subroutine
EVOLVE) for each of these histograms.

The necessary mputs are

TOL the tolerance for error control.
NSTATE the number of states in the model.
PI(NSTATE) a vector of the initial probability distribution
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Ay K the einpirical material parameters
T1,T2,DT these are 7 , tyua , and the step size
NF the failure state, to use for reliability estimates

The listing of the program is as follows:

PROGRAM SOLUTION

COMPUTES THE MEAN AND VARIANCE OF THE DISTRIBUTION

AT A LATER TIME, GIVEN THE INITIAL PROBABILITY
DISTRIBUTION ON FILE INITIAL.DAT (the file contains the
probability of being in each state from 1 to NSTATE).
IT ALSO OUTPUTS THE FINAL DISTRIBUTION ON THE FILE
PROB.OUT AND THE RELIABILITY TQ THE FILE RELI.OUT

oo

DIMENSION PI(70),PJ(70)
DOUBLE PRECISION PI,PJ,TINIT,TFINAL,DT,T1,T2
COMMON/VAR/JJJ,I11,ALAMBD, AKAPP,TOL
DOUBLE PRECISION TOL,AVER,VAR,RELI
OPEN(1,"INITIAL.DAT")
OPEN(2, "PROB.OUT")
OPEN(3,"RELI.OUT")
PRINT«," ENTER TOLERANCE FOR SOLUTION : "
READ*, TOL
PRINT*, "ENTER NUMBER OF STATES : "
READx, NSTATE
D0 10 I = 1,NSTATE
10 READ(1,200) PI(I)
CALL MOMENT(PI,NSTATE,AVER,VAR)
PRINT*,'" MEAN STATE = ",AVER
PRINT*=," VARIANCE = " VAR
4 PRINT*,"  ENTE.. LAMBDA (if you want to quit type 0)
READ*, ALAMBD
IF (ALAMBD.LE.0.) GOTO 999
PRINT= " ENTER KAPPA "
READ*, AKAPP
PRINTx, " ENTER INTIAL AND FINAL TIMES AND INCREMENT "
READ*,T1,T2,DT
PRINT*," *
PRINT= " ENTER FAILURE STATE, N= "
READ* NF
IF(NF.LE.O) GOTD 999
TINIT = T1
TFINAL = T1
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20

999

99
100
101
102
150
260

10

20

WRITE(2,99)ALAMBD , AKAPP

TFINAL = TFINAL + DT

IF(TFINAL.GT.T2) GOTO 4

PRINT*," AT TIME = " TFINAL

CALL EVOLVE(TINIT,TFINAL,PI,PJ,NF ,NSTATE,RELI)
D0 20 I = 1,NSTATE

WRITE(2,200)PJ(I)

CALL MOMENT(PJ,NSTATE,AVER,VAR)

PRINT*,"  MEAN STATE = " ,AVER

PRINT*,"  VARIANCE = ", VAR

PRINT*,"  RELIABILITY IS ",RELI
WRITE(2,100)AVER

WRITE(2,101)VAR

WRITE(2,102)TFINAL

WRITE(3,150)TFINAL ,RELI,NF

GOTO 3

STOP

FORMAT(’> LAMBDA ’,F6.4,’ KAPPA ’,F6.4)
FORMAT(’> THE MEAN ' ,F8.5)

FORMAT(’> THE VARIANCE ’,F10.7)

FORMAT(® AT TIME ' ,F6.3)

FORMAT("T = ",F6.4," RELIABILITY ",F10.8," NF = ",I5)

FORMAT(E16.9)
END

SUBROUTINE MOMENT (PX,NSTATE,AVER,VAR)
DIMENSION PX(1)

DOUBLE PRECISION PX,SUM,VAR,AVER

SUM = 0.DO

DO 10 T = 1,NSTATE

SUM = SUM + FLOAT(I) = PX(I)

AVER = SUM

SUM = 0.DO

DO 20 I = 1,NSTATE

SUM = SUM + PX(I)*(FLOAT(I) - AVER).*2
VAR = SUM

RETURN

END

SUBROUTINE EVOLVE(TINIT,TFINAL,PI,PJ,NF ,NSTATE,RELI)
DIMENSION TP(2485),PI(1),PJ(1)

DOUBLE PRECISION TP,PI,PJ,SUMJ,TINIT,TFINAL,SUM,RELI
CALL TRANSP(TP,TINIT,TFINAL ,NSTATE)

DO 40 J = 1,NSTATE

SUMJ = 0.D0O

DO 30 I =1,]
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30

40

59

10

111
10

IPOS = J + NSTATE * (I-1) - X * (I-1)/2
SUMJ = SUMJ + PI(I) = TP(IPOS)

CONTINUE

PJ(J) = SUMJ

CONTINUE

SUM = 0.DO

NFM1 = NF -1

DO 50 I = 1,NFM1
SUM = SUM + PJ(I)
RELI = SUM

RETURN

END

SUBROUTINE TRANSP(TP,TINIT,TFINAL,NSTATE)
DIMENSION TP(1),Y(70)

DOUBLE PRECISION TP,Y,TINIT,TFINAL

DO 10 I = 1,NSTATE

CALL PIJ(I,NSTATE,TINIT,TFINAL,Y)

NN = NSTATE - I + 2

DO 5 J = I,NSTATE

NN = NN - 1

IPOS = J + NSTATE * (I-1) - I * (I-1)/2
TP(IPOS) = Y(NN)

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE PIJ(II,JJ,TINIT,TFINAL,Y)

INTEGER N,IND,NW,KK

DIMENSION W(70,10),Y(1),C(24)
COMMON/VAR/JJJ,III,ALAMBD,AKAPP,TOL

DOUBLE PRECISION W,X,XEND,TOL,Y,C,TINIT,TFINAL
EXTERNAL FCN

IIT = 11

JJJ = 1]

NW =JJ-1II +1
N = NW

X = TINIT

NM1 =N -1

DO 10 KK = 1,NM1
Y(KK) = 0.DO
Y(N) = 1.DO

XEND = TFINAL
CALL SOLVEDE(N,FCN,X,Y,XEND,TOL,C,NW,W)
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a0

10

RETURN
END

SUBROUTINE FCN(N,X,Y,YPRIME)
THE KOLMOGROV DIFFERENTIAL EQUATION

COMMON/VAR/JJJ,11I,ALAMBD,AKAPP,TOL

DOUBLE PRECISION TOL,X,Y(N),YPRIME(N),A,B,C

NM1 =N - 1

DO 10 I = 1,NM1

IP1 =T+ 1

A= (1.DO+ALAMBD*X)*FLOAT(JJJ-I+1)/(1.DO+ALAMBD*X**AKAPP)
B = (1.DO+ALAMBD*X)*FLOAT(JJJ-I)/(1.DO+ALAMBD*X**AKAPP)
YPRIME(I) = ~A*ALAMBD*Y(I) + B*ALAMBD*Y(IP1)

CONTINUE

C = (1.DO+ALAMBD*X)*FLOAT(III)/(1.DO+ALAMBD*X**AKAPP)
YPRIME(N) = -C*ALAMBD=*Y(N)

RETURN

END
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A.2 Program - MAINTAIN

This is the programn that is used for the reliability maintenance calculations following
the method outlined in section 6.2.2. The version presented here neglects the prob-
ability of failure of the replacement population(s). This has been done since i was
found that the probability of failure of these populations is several orders of magnitude
smaller than that for the 1mitial population for the time interval studied in this report.
This being the case, and considering the fact that each new population significantly
icreases computing time, these populations have not been considered

This program uses the subroutines presented in the previous program for the solving
of the Kolmogrov Differential Equation. It also uses the subroutine REPAIR which
can be modified by the user i order to set the probability of detection function.

The necessary mputs are the same as for SOLUTION with the addition of the

followng -

INC' an mmitial increment of time which allows the user to skip over
some increment during which previous results have shown that
reliability is high enough. If there are no previous results of
this nature set INC1 = DT

NR the crack size at which parts will be replaced

RLIMIT the level of reliability to be maintained.

The program hsting is ...

PROGRAM MAINTAIN

COMPUTES THE RELIABILITY OF THE DISTRIBUTION

AT A LATER TIME, GIVEN THE INITIAL PROBABILITY
DISTRIBUTION ON FILE INITIAL.DAT (the file contains the
probability of being in each state from 1 to NSTATE).
THE PROGRAM ASKS FOR THE LEVEL OF RELIABILITY THAT

IS TO BE MAINTAINED AND WHEN THE RELIABILITY OF THE
POPULATION DROPS BELOW THIS LEVEL, IT CARRIES 0OUT

AN INSPECTION/REPAIR OPERATION. THE INITIAL INCREMENT
SKIPS THE INITIAL INSPECTIONS WHEN WE KNOW, FROM
PREVIOUS RESULTS, THAT RELIABILITY IS HIGH ENOUGH.

IT OUTPUTS THE RELIABILITY TO THE FILE RELI.OUT

o000

DIMENSION PI(70),PJ(70)

DOUBLE PRECISION PI,PJ,TINIT,TFINAL,DT,T1,T2
COMMON/VAR/JJJ,I11,ALAMBD,AKAPP,TOL

DOUBLE PRECISICN TOL,AVER,VAR,RELI,INC1,RLIMIT
OPEN(1,"INITIAL.DAT")
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OPEN(2,"MAINTAIN.QUT")
PRINT*," ENTER TOLERANCE FOR SOLUTION : "
READ*, TOL
PRINT*,"ENTER NUMBER OF STATES : '
READ*, NSTATE
REWIND 1
DO 10 I = 1,NSTATE
10 READ(1,200) PI(I)
CALL MOMENT(PI,NSTATE,AVER,VAR)
PRINT*," MEAN STATE = ", AVER
PRINT#," VARIANCE = ",VAR
4 PRINT+," ENTER LAMBDA (if you want to gquit type 0)
READ*, ALAMRD
IF (ALAMBD.LE.O.) GOTO 999
PRINT*," ENTER KAPPA
READ*, AKAPP
PRINT*," ENTER INITIAL AND FINAL TIMES AND INCREMENT

READx,T1,T2,DT

THIS ALLOYS A JUMP IN TIME INITIALLY TO SKIP OVER
SOME INITIAL TIMES WHERE RELIABILITY IS HIGH.

aQaaOaan

PRINT*," "
PRINT*," ENTER THE INITIAL INCREMENT "
READ*,INC1
PRINT*," "
PRINT*," ENTER FAILURE STATE, N= "
READ*,NF
IF(NF.LE.O) GOTC 999
PRINT*,"  ENTER THE REPLACEMENT STATE, NR
READ*,NR
PRINT*," "
PRINT*," MAINTAIN RELIABILITY AT ? "
READ*,RLIMIT
KOUNT = O
TINIT = T1
TFINAL = T1 + INC1 - DT
REWIND 2
WRITE(2,99)ALAMBD, AKAPP
WRITE(2, 100)NF,NR
3 TF1NAL = TFINAL + DT
IF(TFINAL.GT.T2) GOTO 4
PRINT*," AT TIME = ",TFINAL
CALL EVOLVE(TINIT,TFINAL,PI,PJ,NF,NSTATE,RELI)
CALL MOMENT(PJ,NSTATE,AVER,VAR)
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QOO0

25

30

999

99
100
150
200

10

PRINT*," MEAN STATE ",AVER
PRINT=,"  VARIANCE ",VAR
PRINT%," RELIABILITY IS ",RELI
WRITE(2,150) TFINAL,RELI

CHECK RELIABILITY LEVEL, IF 0.K. THEN INCREMENT
TIME AND CONTINUE, TF NOT THEN INSPECT AND
REPLACE COMPONENTS USLNG SUBROUTINE "REPAIR"

IF(RELI.GE.RLIMIT) GOTO 3
KOUNT = KOUNT + 1
PRINT=*,"INSPECTION NUMBER " ,KOUNT
CALL REPAIR(NR,PJ)

DO 25 T = 1,NSTATE

PI(I) = PI(ID

RELI = 1.D0

D0 30 K = NF,NSTATE

RELI = RELI - PJ(K)

TINIT = TFINAL
WRITE(2,150) TFINAL,RELI

GOTO 3

STOP

FORMAT(® LAMBDA ' ,F6.4,’ KAPPA ’,F6.4)
FORMAT(’FAILURE STATE °’,IS,’ REPLACEMENT STATE’,IS)
FORMAT(F6.4,°’ ',F15.12)

FLRMAT(E16.9)

END

SUBROUTINE REPAIR(NR,PJ)
DIMENSION PJ(70)
DOUBLE PRECISION PJ,REMOVED,PDETECT

REMOVED = 0.DO
DO 10 I = NR,70

¢DETECT = .99D0*(1.DO - DEXP(-.2298DO*FLOAT(I-10)))
REMOVED = REMOVED + PJ(I)

PJ(I) = PJ(I) * (1.DO - PDETECT)
RETURN
END
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A.3 Program - OPINSPEC

This program finds the total probability of failure at some time, 4,na1 , given that there
is one inspection-correction between t,u4q1 and tsnq. The program is based on the
algorithm presented in section 6.2.3. At atime t,,,pece , between 4 and 4 | it calls
for an inspection-correction procedure (subroutine DETECT) and then assesses the
total reliability at { a1 using the subroutine TOTFAIL which is merely Equation 6.4.
This time, tipspece - 15 allowed to vary from tinuar t0 tpna by the increment DT. The
program also makes use of the I{olmogrov Differential Equation solving subroutines of
the program SOLUTION.

The necessary mputs are TOL,NSTATE,A , & , T1, T2, DT, NIF and NR, which

have been explained for the previous programs, as well as the following -

PI(NSTATE) a vector of the probability distribution for the initial
components at time {,nspeer. These are read from a file
in order to save computer time.

PI(NSTATE) a vector of the probability distribution for the replacement
components at time t,,5pe;. The are also read from a file
in order to seve computer time.

The listing of the program is :

PROGRAM OPINSPEC

COMPUTES THE RELIABILITY AT A GIVEN FUTURE TIME GIVEN
THAT THERE IS ONE INSPECTION / CORRECTION DURING THE
INTERVAL TINITIAL TO TFINAL. THE INITIAL DISTRIBUTION
OF PROBABILITIES(at several times) IS READ FROM THE

FILE INSPEC.IN ( to save computer time it has been saved
in a file) AND THE REPLACEMENT SIZE DISTRIBUTION IS

READ FROM THE FILE REPLACE.IN. THE FINAL DISTRIBUTIONS
ARE WRITTEN TO THE FILE FINPROB.OUT AND THE RELIABILITY
IS WRITTEN TO THE FILE OPINSPEC.REL

aaon

o000 a0acd

DIMENS10N PI(70),PJ(70),PI2(70)

DOUBLE PRECISION PI,PJ,PI2,R1,R2,R3,FAIL
DOUBLE PRECISION TINIT,DT,T1,T2,REMOVED
DOUBLE PRECISION ALAMBD,AKAPP,TOL
COMMON/VAR/JJJ,III,ALAMBD,AKAPP,TOL
OPEN(1,"INSPEC.IN")

OPEN(2, "REPLACE.IN")

OPEN(3,"OPINSP2.REL")
OPEN(4,"FINPROB.OUT")

PRINT*," ENTER TOLERANCE FOR SOLUTION : "
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10

15

25

READ*, TOL
PRINT* ,"ENTER NUMBER OF STATES : "
READ*, NSTATE

PRINT*," ENTER LAMBDA (if you want to quit type 0)
READ*, ALAMBD

IF (ALAMBD.LE.O.) GOTO 999

PRINT*,"  ENTER KAPPA "

READ*, AKAPP
PRINT*," ENTER INITIAL AND FINAL TIMES AND INCREMENT

READ=,T1,T2,DT
PRINT*," "

PRINT*," ENTER FAILURE STATE, NF = "

READ* ,NF

IF(NF.LE.0) GOTO 999

PRINT*," ENTER THE REPLACEMENT STATE, NR = "
READ*,NR

IF(NR.LE.0) GOTO 999

TINIT = T1

WRITE(3,99)NR,NF

TINIT = TINIT + DT

IF(TINIT.GE.T2) GOTO 1

DO 4 I = 1,NSTATE

READ(2,200)PI2(I)

DO 10 I = 1,NSTATE

READ(1,200)PI(I)

R1 = 0.D0

DO 15 I = NF,NSTATE

Rl = R1 + PI(I)

CALL THE DETECTION AND REMOVAL SUBROUTINE
CALY. DETECT(NSTATE,NR,PI,REMOVED)

'AGE’ THE INITIAL POPULATION, AFTER REMOVAL OF ’FAILED’
COMPONENTS.

PRINT*,"INSPEC. TIME =" ,TINIT,"FINAL TIME =",T2
PRINT*," PROCESS THE REMAINING INITIAL COMPONENTS"
CALL EVOLVE(TINIT,T2,PI,PJ,NSTATE)

R2 = 0.DO

D0 25 I = NF,NSTATE

R2 = R2 + PJ(I)

USE REPLACEMENT POPULATION
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- BUT ONLY IF THERE HAVE BEEN COMPONENTS REPLACED

IF REMOVED = O THEN THERE HAS BEEN NO REPLACEMENT SO
LET R3 = 0.0 AND GO TO TOTAL RELIABILITY CALCULATIOWN
ALLOWING ALL PI2 = 0.0

aaooaoaa

IF(REMOVED.GT.0.0) GOTO 30
R3 = 0.D0
DO 28 I = 1,NSTATE
28 PI2(I) = 0.DO
GOTO 36

30 R3 = 0.D0
DO 35 I = NF,NSTATE
35 R3 = R3 + PI2(I)

WRITE THE FINAL PROBABILITIES TO THE OUTPUT FILE.

Q

36 WRITE(4,240) TINIT
DO 40 I = 1,NSTATE
40 WRITE(4,250)I,PJ(I),PI2(I)

CALL THE SUBROUTINE ’TOTFAIL’ WHICH WILL COMPUTE THE
OVERALL FAILURE PROBABILITY AT THE FINAL TIME

aQaaQOaan

CALL TOTFAIL(R1,R2,R3,REMOVED,FAIL)

WRITE(3,150)TINIT,FAIL

GOTO 3
999 STap
99 FORMAT("REPAIR STATE = ",I4," FAILURE STATE = ",14)
110 FORMAT(A40)

1580 FORMAT("INSPEC. TIME ",F6.4," PROB(fail) = ",E16.9)
200 FORMAT(E16.9)
240 FORMAT(" FOR INSPEC. AT T = ",F6.4," FINAL "

&"PROBABILITIES ARE: ")
250 FORMAT("STATE ",I3," INIT.PARTS ",E16.9," REPL. ",E16.9)
END

SUBROUTINE DETECT(NSTATE,NR,PI,REMOVED)
DIMENSION PI(70)
DOUBLE PRECISION REMOVED,PDETECT,PI

REMOVED = 0.DO

D0 20 I = NR,NSTATE

PDETECT = .99D0*(1.0DO-DEXP(-.2298D0*FLOAT(I~-10)))
REMOVED = REMOVED + PDETECT * PI(I)

PI(I) = PI(I) = (1.0DO - PDETECT)



APPENDIX A. COMPUTER PROGRAMS

20

30

CONTINUE

DO 30 I = 1,NSTATE

PI(I) = PI(I)/(1.0DO - REMOVED)
RETURN

END

SUBROUTINE TOTFAIL(R1,R2,R3,REMOVED,FAIL)
DOUBLE PRECISION Ri,R2,R3,REMOVED,FAIL
FAIL = R1 + R2 * (1.DO-REMOVED) + R3 * REMOVED

RETURN
END

103




