
Social Authentication for
Mobile Phones

by

Bijan Soleymani

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

Electrical and Computer Engineering

McGill University
Montreal, Quebec, Canada

c© Bijan Soleymani, 2009-06-10

This Thesis is dedicated to my parents.

ii

Acknowledgement

First of all I would like to express my most sincere gratitudeto my supervisor Professor

Muthucumaru Maheswaran for his support, guidance and advice throughout my graduate

research. I would like to thank each and every one of the student in the McGill Advanced

NEtworking Research Lab (ANRL) for their opinions and ideas. I would also like to thank

my parents for their encouragement throughout my studies and being there when I needed

them.

iii

Abstract

In this thesis we present a scheme for automating authentication based on social factors

using mobile phones. We test its feasibility by running simulations on an existing dataset.

We implement two protocols one based on public key infrastructure and the other on hash

chains. Then we consider possible threat scenarios.

Web applications such as online banking, online shopping carts, and so on, depend

on the user authenticating himself securely. Traditionally this involves a username and

password and if more security is required an electronic token is used in addition to this

password. Other than these two “factors” there is also biometrics, such as fingerprints,

retinal scans and voice recognition. Thus the traditional systems use some combination of

these three factors: something you know (passwords), something you have (tokens) and

something you are (biometrics).

Recently it has been suggested that a fourth factor: someoneyou know also be part of

the authentication process . This technique has been applied to the problem of emergency

authentication, as a replacement for challenge questions or calls to a help-desk. The idea

is that the user uses a token and pin to authenticate himself.If the user forgets his token,

he can ask a friend who has their token to grant him a temporarypassword. Thus fourth

factor or social authentication is based on the process of vouching. In this method a user

asks a friend to vouch for them, that is the friend must recognize the user and then issue

some proof of this recognition, which the user then uses to log in to the service. In , this

vouching was done explicitly, with the user contacting a friend and literally asking for a

vouching code. In this thesis we will use users’ cellphones to automate this process.

Whenever a user calls a friend, a token will be issued “vouching” for this contact.

iv

These tokens if obtained in sufficient numbers can then be used to prove that a user is

who he says he is. In addition to this fourth factor we will make use of other means of

authentication. These include a PIN (personal identification number) that must be entered

when validating the “vouching” tokens, possibly fingerprint recognition and outputs from

other biometric sensors, such as a wrist watch with heart-rate monitor, or a shoe with built-

in pedometer. In this case we may want two out of three or four of these to match before

authenticating the user.

v

Résumé

Dans cette thèse nous présentons un système d’automatisation de l’authentification basée

sur des facteurs sociaux, utilisant des téléphones mobiles. Nous vérifions sa faisabilité en

exécutant des simulations sur un ensemble de données disponible. Nous mettons en œuvre

deux protocoles l’une basée sur l’infrastructure à clé publiques et l’autre sur les chaı̂nes

de hachage. Ensuite, nous considérons les menaces possible.

Les applications Web telles que les services bancaires en ligne, les paniers d’achat en

ligne, etc, dépendent de l’authentification de l’utilisateur en toute sécurité. Traditionnelle-

ment, ceci néssecite un nom d’utilisateur et un mot de passeet si plus de sécurité est requis

un jeton de sécurité est utilisé en plus de ce mot de passe.Hormis ces deux facteurs il y

a aussi la biométrie, comme les empreintes digitales, empreintes rétiniennes et la recon-

naissance vocale. Donc les systèmes traditionnels utilisent une combinaison de ces trois

facteurs: quelque chose vous savez (mots de passe), quelquechose que vous avez (jetons)

et quelque chose que vous êtes (biométrie).

Récemment, il a été suggéré qu’une quatrième facteur: quelqu’un vous connaissez

fases aussi partie du processus d’authentification. Cette technique a été appliquée au

problème de l’authentification d’urgence, comme un remplacement pour les questions de

défi ou les appels à un centre d’assistance. L’idée est quel’utilisateur utilise un jeton

électronique et un NIP pour s’authentifier. Si l’utilisateur oublie son jeton, il peut deman-

der à un ami qui a son jeton de lui accorder un mot de passe temporaire. Ainsi le qua-

trième facteur ou authentification sociale est fondée surun processus d’attestation. Dans

cette méthode, un utilisateur demande à un ami à se portergarant pour lui, cet ami doit

reconnaı̂tre l’utilisateur et lui livrer une preuve de cette reconnaissance, que l’utilisateur

vi

utilise ensuite pour se connecter au service. En ce cas l’attestation a été fait de manière

explicite, l’utilisateur devant contacter un ami et demander code temporaire verbalement.

Dans cette thèse, nous utiliserons des téléphones cellulaires afin d’automatiser ce proces-

sus.

Chaque fois qu’un utilisateur appelle un ami, un jeton sera publié comme attesta-

tion de ce contact. Ces jetons si ils sont obtenus en nombre suffisants peuvent alors

être utilisés pour prouver que l’utilisateur est bien celui qu’il prétend être. En plus de

ce quatrième facteur on fera appel à d’autres moyens d’authentification. Il s’agit no-

tamment du code NIP (Numero d’Identification Personnelle) qui doit être entré lors de

la validation avec les jetons d’attestation et possiblement la reconnaissance d’empreintes

digitales et d’autres signaux en provenance de capteurs biométriques, comme une montre

avec cardio-fréquencemètre, ou des chaussures avec podomètre intégré. Dans ce cas, nous

voulons vérifier deux sur trois ou deux sur quatre de ces derniers avant l’authentification

de l’utilisateur.

vii

Contents

Acknowledgement iii

Abstract iv

Résuḿe vi

LIST OF ACRONYMS xii

1 Introduction 1

1.1 Fourth Factor Authentication .. . 1

1.2 Motivation . 2

1.3 Contribution of the Thesis . 2

1.4 Outline of the Thesis . 3

2 Background 4

2.1 Passwords . 5

2.1.1 Password Randomness . 5

2.1.2 Password Length . 6

2.1.3 Character Diversity . 7

2.1.4 Brute Force Attack . 8

2.1.5 Password Cracking Beyond Bruteforce9

2.2 Security Tokens . 10

2.3 Biometrics . 11

viii

2.4 Relative Strengths and Weaknesses of Passwords,

Security Tokens and Biometrics . 12

3 Mobile Social Authentication 15

3.1 Mobile Phone as

Authenticator . 15

3.1.1 Authenticating through the Mobile Network 15

3.1.2 Mobile Phone as Token . 16

3.1.3 Network and Token Authentication 17

3.1.4 Location Based Authentication17

3.1.5 Mobile Biometrics . 19

3.2 Social Network

as Fourth Factor . 19

3.3 Social Authentication

on Mobile Phones . 20

4 Proposed Scheme 22

4.1 Social Authentication .22

4.1.1 Obtaining Vouching Tokens . 22

4.1.2 Authentication Using Tokens . 23

4.2 Supplementary Factors . 25

5 Simulation on Reality Mining Dataset 27

6 Implementation 32

6.1 Issuing Tokens . 32

6.2 Using Tokens to Authenticate .. 33

6.3 Hash Chain Implementation . 33

6.4 Python Modules . 35

6.4.1 Sending Tokens: sendtoken.py 36

6.4.2 Client Authentication: authenticate.py 38

ix

6.4.3 Authentication Server: auth.py 39

6.4.4 Establish Shared Secrets: hashchain.py 39

6.4.5 Hash-based Tokens: hashtoken.py and hashauthenticate.py 40

6.4.6 Hash-based Server: hashsecrets.py and hashauth.py 40

7 Implementation Results 42

7.1 Battery Life . 42

7.1.1 Public-key cryptography and battery life 42

7.1.2 Bluetooth scanning and battery life 43

7.2 Estimating Bluetooth

Distance . 44

8 Threat Scenarios 46

8.1 Intruder does not have phone. .. 46

8.2 Intruder has phone . 46

8.2.1 Return phone and snoop . 47

8.2.2 Keep phone and get tokens directly 47

8.3 Stealing multiple phones .48

8.4 Once the intruder

has enough tokens . 49

9 Conclusion 50

9.1 Directions for Future Research .. . 51

A Source Code 53

A.1 sendtoken.py . 53

A.2 authenticate.py . 57

A.3 auth.py . 60

A.4 hashchain.py . 62

A.5 hashtoken.py . 65

A.6 hashauthenticate.py .70

x

A.7 hashsecrets.py . 73

A.8 hashauth.py . 77

Bibliography 81

xi

List of Acronyms

API Application Programming Interface

CPU Central Processing Unit

FMR False Matching Rate

GPS Global Positioning System

HMAC keyed-Hash Message Authentication Code

MAC Media Access Control

MD5 Message-Digest algorithm 5

PGP Pretty Good Privacy

PIN Personal Identification Number

PKI Public Key Infrastructure

SHA1 Secure Hash Algorithm 1

SIM Subscriber Identity Module

SMS Short Messaging Service

TPM Trusted Platform Module

USB Universal Serial Bus

xii

List of Figures

4.1 Process of Obtaining Tokens .24

5.1 Days with Data . 28

5.2 Days Authenticated by Calls .29

5.3 Days Authenticated by Calls and BT 30

5.4 Probability of Authentication vs Tokens Required 31

5.5 Probability of Authentication vs Token Duration 31

6.1 Using Tokens to Authenticate .. 34

xiii

1
Introduction

Web applications such as online banking, online shopping carts, and so on, depend on the

user authenticating himself securely. Traditionally thisinvolves a username and password

and if more security is required an electronic token is used in addition to this password.

Other than these two “factors” there is also biometrics, such as fingerprints, retinal scans

and voice recognition. Thus the traditional systems use some combination of these three

factors: something you know (passwords), something you have (tokens) and something

you are (biometrics).

Each of these factors has its advantages and disadvantages.For example, memorized

passwords can’t be stolen, but may end being weak due to the limitations on the password

length and complexity that can be memorized.

1.1 Fourth Factor Authentication

Recently it has been suggested that a fourth factor: someoneyou know also be part of the

authentication process [1]. J. Brainard et al. have appliedthis technique to the problem of

emergency authentication, as a replacement for challenge questions or calls to a help-desk.

The idea is that the user uses a token and pin to authenticate himself. If the user forgets

his token, he can ask a friend who has their token to grant thema temporary password.

Thus fourth factor or social authentication is based on the process of vouching. In this

method a user asks a friend to vouch for him, that is the friendmust recognize the user and

1

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

then issue some proof of this recognition, which the user then uses to log in to the service.

1.2 Motivation

Fourth factor authentication has several advantages over factors used for authentication.

The main advantage is that attacks are detectable by the user. For example if a user receives

many vouching requests from people they do not know or recognize they can report the

incident. This security is achieved at the expense of minor but regular disturbance to the

user.

In [1], the vouching was done explicitly, with the user contacting a friend and literally

asking for a vouching code. In this thesis we will use users’ cellphones to automate this

process, thus reducing the burden on the user. Whenever a user calls a friend, a token will

be issued “vouching” for this contact. These tokens if obtained in sufficient numbers can

then be used to prove that a user is who he says he is.

While this process is automated, in order to increase security in our implementation,

the user is prompted to confirm Bluetooth sightings, and given the option of not issuing a

token after a phone conversation if he doesn’t recognize theother party.

In addition to this fourth factor we will make use of other means of authentication.

These include a PIN (personal identification number) that must be entered when validating

the “vouching” tokens, possibly fingerprint recognition and outputs from other biometric

sensors, such as a wrist watch with heart-rate monitor, or a shoe with built-in pedometer.

In this case we may want two out of three or four of these to match before authenticating

the user.

1.3 Contribution of the Thesis

The contribution of this Thesis is the development of a social authentication system on mo-

bile phones based on the users’ phone conversations and Bluetooth sightings. A protocol

2

1.4. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

is proposed and tested using simulations on cellphone logs.A software system imple-

menting this protocol is written in pys60 (Python for Symbian system 60) and is tested on

Bluetooth enabled cellphones.

Encrypted messages, “tokens”, are generated and used to prove that the phone con-

versations and Bluetooth sightings took place at specified times. Two interchangeable

methods are proposed for ensuring the security and authenticity of these messages. One

method uses public key infrastructure (PKI) and the other employs hash chains.

Conversation duration is analyzed to determine whether theuser has actually talked to

an acquaintance (ruling out wrong numbers and imposters). Similarly, Bluetooth distance

is determined based on an indirect measurement of signal strength, and is used to eliminate

out-of-sight Bluetooth devices.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 willpresent the required back-

ground on the traditional authentication factors. Chapter3 will review some of the related

work. In Chapter 4, we will outline the details of our proposed scheme. In Chapter 5,

we will test its feasibility by running simulations on data from the Reality Mining project

from MIT [2]. The implementation of our authentication technique will be explained in

detail in Chapter 6. In Chapter 7 we will present the results of the implementation. In

Chapter 8 we will examine the possible threat scenarios. Theconclusion will be presented

in Chapter 9.

3

2
Background

As previously stated the three traditional factors used forauthentication are: Passwords,

Security Tokens and Biometrics. They correspond to the categories: something you know,

something you have and something you are respectively. Morerecently a new factor

(someone you know) has been proposed as a fourth authentication factor. The following is

a survey of these techniques, followed by a comparison of their strengths and weaknesses.

Social or Fourth factor authentication is considered more fully in Section 3.2 of the next

chapter.

Although we consider these factors in the context of automated authentication to com-

puter systems, the use of these factors for authentication predates the information age.

Passwords (watchwords) were employed in the Roman military. The watchword for

the night was distributed from the commander to a soldier whogave it to the leader of the

first unit, who then gave it to the leader of the second unit, and so on until it got to the last

unit, which would transmit it back to the tribunes, who couldthus ensure that the leader of

each unit had the correct watchword.

Keys a mechanical equivalent of Security Tokens, were used in the form of wooden

keys as early as 4000 years ago in Egypt.

Biometrics in the form of face recognition has existed sinceprehistoric times. Finger-

prints have been used for identification as early as 1900 BC inBabylon, to identify parties

in a contract. The parties would impress their fingerprints on the clay tablets on which the

contract had been written.

4

2.1. PASSWORDS CHAPTER 2. BACKGROUND

While social authentication is a new concept in computer systems, human authentica-

tion based on mutual acquaintances is not new. An example of this is the requirement for

two references when applying for a passport.

2.1 Passwords

A password is a secret string that is used for authentication. They are the most common

authentication factor in computer systems, due to their lowcost and ease of use. They

require no special hardware, and the only burden placed on the user is that of remembering

and typing a relatively short string.

2.1.1 Password Randomness

The security of a password system depends on creating a password that an attacker can’t

predict or guess. The predictability of a password is inversely proportional to its random-

ness. Randomness implies unpredictability, uniqueness and even distribution. In 1948

Shannon introduced the notion of entropy as a measure of unpredictability or uncertainty[3].

The entropy is defined as:

Where p(xi) is probability of xi. It can be shown that the maximum entropy of an event

(source) with n outcomes (letters) is logb(n) and is achieved when the source letters are

equiprobable. “Equivalently, the Shannon entropy is a measure of the average information

content one is missing when one does not know the value of the random variable.”[4]

Shannon showed that in the limit, the average length of the shortest representation of

the message in a given alphabet is its entropy divided by the logarithm of the number of

symbols in that alphabet.

A closely related concept is that of Kolmogorov complexity.The Kolmogorov com-

plexity of a string is defined as the length of the smallest program that can generate that

string. The Kolmogorov complexity K is approximately equalto the Shannon entropy H

if the sequence is drawn at random from a distribution that has entropy H.

5

2.1. PASSWORDS CHAPTER 2. BACKGROUND

This notion of complexity corresponds to descriptive complexity or program length.

There is also a notion of computational complexity or time complexity. The first relates

to the length of the program required to generate the string,while the second relates to

the amount of time or the number of computations required to generate that string. For

example given “n” the size of the program required to generate a string of n repeated

zeroes is constant and does not depend.on n. Similarly the size of the program required to

generate the n first digits of pi is also constant. However thecomputational complexity of

generating the digits of pi is much greater than that of generating the string of zeroes.[5]

In order to ensure that a password is secure against prediction we want to ensure that it

has a high entropy or equivalently a high complexity. This can be done through three main

means: using a random source of information (or a source withthe random properties),

increasing the number of characters in the password and increasing the size of the alphabet

used.

2.1.2 Password Length

Logically the longer a password, the harder it is to guess. This is because there are more

possible combinations of characters to go through. It also seems reasonable to assume that

the longer a password the harder it will be for the user to remember. However this is not

exactly true. It is true that a longer password will be harderto remember if it is as random

as the shorter password (that is to say it has the same per character entropy). That need

not be the case. The password could have less entropy per character but the increase in

the number of characters could still result in a similar overall entropy. For example the

password r$T56? Is 6 characters long with characters drawn randomly from a set of 94

characters (26 lowercase +26 uppercase +10 digits + 32 punctuation and symbols) results

in an entropy of log2(94)*6=39.3 bits. The password: “trouble ejections person” consists

of 24 letters drawn from words of the English language. The English language is said to

have an entropy of 1.5 bits per letter, which would give an estimated entropy of 24*1.5

= 36 bits. However this is for text that forms part of a meaningful sentence, where the

correlation between the words would be higher. Thus we wouldexpect the entropy of this

6

2.1. PASSWORDS CHAPTER 2. BACKGROUND

combination of these three random words to be slightly higher. Alternatively using the

fact that there are 100000 words in a common dictionary one would arrive at an entropy

of log2(100000)*3 = 34.54 bits if the attacker knows that exactly three words are used.

Entropy can be increased significantly if random letters areshifted to uppercase, omitted

or substituted for one another. In any case this password is probably much easier to re-

member, while its entropy is similar to short random one. Thus it is almost as hard to

predict, guess or hack.

Another advantage of this type of password, which we could refer to as a passphrase,

is that it is easier to type. It is much easier and quicker to type words than to type truly

random characters. However this only applies to computer keyboards and not to other

input methods such as the entry pad on a cellphone, where eachadditional character can

result in up to 4 or even 5 key presses.

2.1.3 Character Diversity

Adding more letters to the alphabet used to generate a password also makes it harder

to guess, since there are more possibilities for picking each character of the password.

This is the motivation behind the policies in place in many password systems that require

passwords that contain several different classes of characters e.g., lower case and upper

case letters, numbers and symbols.

In practice most passwords in use (about 60%) contain only lowercase letters. This

reduces the entropy of the password at most to log2(26*n), where n is the number of

characters. Even worse nearly 10% of password contain only numbers giving an entropy of

log2(10*n). The next most commonly used combination is lowercase letters and numbers

(most often a word followed by digits). This account for about 25% of passwords. Almost

all the remaining 5% of passwords use lowercase, uppercase and numbers. Finally a tiny

fraction (0.1%) use symbols. [6][7]

A 4 character password drawn from all 94 printable characters is about as strong as an

8 digit numerical password, since 8*log2(10) = 26.6 bit while 4*log2(94)=26.2 bit.

Of course character diversity is problematic on a cellphonebecause the input system

7

2.1. PASSWORDS CHAPTER 2. BACKGROUND

(keypad) is very limited.

2.1.4 Brute Force Attack

The simplest form of attack against password is a brute forceattack. This attack tries every

possible passwords combination. The number of attempts necessary to crack a password

is on the averagecn/2 where c is the number of letters in the alphabet and n is the number

of characters in the password. However the attacker is guaranteed to succeed after at most

cn attempts.

The fastest current computer CPUs can perform about 100 billion operations per sec-

ond. Assuming that 1000 operations are necessary per password check this mean that a

single computer could check:

100, 000, 000, 000/1000 ∗ 3600 ∗ 24 ∗ 365 = 3, 153, 600, 000, 000, 000 = 251.5

passwords per year. Thus a 51 bit long password could be cracked in a year. It would take

6000 such computers to crack a 64bit password in a year. For comparison a password, if

randomly chosen and using 94 the possible printing characters has an entropy of 52 when

8 characters long, 58 when 9 characters long and 65.5 when 10 characters long. A typical

lowercase only password when 14 characters long has an entropy of 65.8 bits. Therefore

to be fully secure we would require passwords with even higher entropy. This means either

using characters beyond the printable character set or further increasing the length of the

password. Both of these present difficulties to the user. Another solution would be to

change passwords more often, therefore thwarting the hackers attempts. However even

if users change their password every month this would give the hacker a 10% chance per

month of cracking the password. Which would result in a1−(1−0.1)12 = 71% chance of

cracking the password in one year. Even continuously changing the password still results

in a 1-1/e=63.2% chance of break in.

The above refers to randomly generated passwords, we have assumed that each of

the 94 characters is equally likely to occur and each letter is chosen independently of the

8

2.1. PASSWORDS CHAPTER 2. BACKGROUND

others, however in the case of human generated passwords this is not the case and the

entropy is much less. People have a preference for choosing certain characters more often

(lower case, numbers) and also to choose dictionary words and birthdates. According to

one estimate a typical human generated password would have 4bits of entropy for the first

characters, 2 bits each for the next 7, 1.5 bits each for the next 10 and 1 bit each for any

character beyond. Therefore this would require a 48 character long password to ensure 64

bits of entropy.[8] This is too long to comfortably type and probably too long to remember

correctly. Of course for an attacker to be able to take advantage of the low entropy requires

him or her to use an intelligent search rather than bruteforce, in order to take advantage of

this statistical information.

Of course all this only applies if the attacker can perform password checks offline. If

the attacker must attempt using the passwords through the system itself the rate or number

of trials can be limited. In that case well-chosen passwordsare relatively secure. For

example many bank PINs are only 4 digits long. However due to the fact that the user has

only 3 attempts before the card is “eaten” by the machine thisdoesn’t present much of a

problem.

However in the case of offline password cracking, it seems that given the likely future

increase in computing power, passwords will need to be so complex as to be unusable in

their current form.

2.1.5 Password Cracking Beyond Bruteforce

Smarter methods of cracking passwords involve either guessing or dictionary attacks. In

guessing the attacker uses personal information about the victim to construct passwords

that the user is likely to use: birthdate, birthplace, license plate number, family member’s

name, and so on. They may also try a list of common passwords (the most common 500

passwords account for over 10% the total).

Dictionary attacks involve using dictionary words and simple combinations of dictio-

nary words and numbers. This works because a significant number of passwords involve

a single dictionary words plus some trailing digits, in manycases simply the digit ’1’.

9

2.2. SECURITY TOKENS CHAPTER 2. BACKGROUND

2.2 Security Tokens

A security token is a piece of hardware that authenticates the user, when the user tries to

access a service and allows access to the system.

Generally there are three types of tokens: static passwords, synchronous dynamic pass-

words and asynchronous passwords also known as challenge response.

The static password token is simply an aid to the use of passwords. The token stores

the user’s password and allows for the use of passwords that are longer than what a user

can memorize or comfortably type.

Dynamic synchronous tokens generate a temporary password based on the time. This

time needs to be synchronized between the token and the server. These tokens contain a

secret similar to that stored on password tokens. This secret is used along with the time to

generate the temporary password. Since this secret is contained in the token, only someone

who has access to the token can create the proper password.

Asynchronous tokens generate a password based on a challenge from the authentica-

tion server. The server sends a random string to the token. The token uses this string and

a secret contained in the token, to generate a password. Thisavoids the need for time

synchronization.

In order to be secure the token must contain a unique secret that is not accessible,

so that it can’t be replicated. In the case of static passwordtokens it is not possible to

restrict access to the secret since it needs to be transmitted directly to the server as part of

authentication. Also it is not possible to restrict access when implementing synchronous or

asynchronous password tokens on a general purpose computer, as the secret will be stored

on disk or in memory. The solution is to use a TPM (Trusted Platform Module), which is a

chip dedicated to storing secret keys and carrying out cryptographic operations. Thus the

secret can remain in the TPM which carries out the operationsnecessary to generate the

temporary password.

Currents cellphones typically do not contain TPM modules. This means that using

them as security tokens leaves the user vulnerable to havingtheir key copied by anyone

with access to their phone.

10

2.3. BIOMETRICS CHAPTER 2. BACKGROUND

Tokens are extremely vulnerable to loss or theft. If authentication is based solely on

the token, then anyone who acquires the token can authenticate to the system as the actual

user. Therefore tokens are generally used in conjunction with passwords or biometrics, in

order to reduce the chances of compromise. In fact many commercial tokens require a PIN

to be entered before use.

The word token in the context of this thesis refers to a piece of data that is used for

authentication. A temporary password (as generated by a security token) is a token in this

sense.

2.3 Biometrics

Biometric authentication is based on using measures of one or more physical or behavioural

traits to uniquely identify a user. This includes fingerprints, iris scans, voice recognition,

signatures, etc. This type of authentication is based on pattern recognition. As any recog-

nition problem there is the chance of false acceptance and false rejection.

Since the risks of false acceptance are generally greater than those of false rejection,

usually systems are designed such that the probability of false acceptance is much lower

than that of false rejection. For example several banks in Japan use palm vein or finger

vein authentication. Palm vein authentication as developed by Fujitsu has a false accep-

tance rate of 0.01177% and a false rejection rate of 4.23%. Finger vein authentication as

developed by Hitachi has a false acceptance rate of 0.0100% and a false rejection rate of

1.26%. [9]

The main problem with biometric authentication is that unlike passwords or tokens

they are not cancelable or reissuable. Once a biometric trait is compromised there is no

way to issue new biometric credentials. This is a serious problem because most biometrics

are not secret. For example it is possible to retrieve a person’s fingerprint without their

knowledge.

Also biometrics cannot be used remotely unless the client hardware is secured. This

is because if compromised the client hardware can record thebiometric scans and replay

11

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

them at a later time.

2.4 Relative Strengths and Weaknesses of Passwords, Se-

curity Tokens and Biometrics

Passwords’ main advantage lies in their secrecy. This is an almost perfect defence against

theft. However this is assuming memorization, and doesn’t apply if the user writes down

their password. The main drawback of passwords is that in order to be secure against

search they need to be relatively long. This is particularlydifficult for the user when they

have multiple accounts with different passwords.

Besides this the main shortcomings of password are that theydo not provide compro-

mise detection nor defence against repudiation.

Compromise detection would mean that the user would know when their password is

stolen. However unless the user notices odd activity on their account there is no indication

that another individual has the password, because the password can be stolen without

physically taking anything. For example even if a password is written on a piece of paper,

the thief can simply copy the password and leave the piece of paper intact. Or someone

can use a keylogger or even a device as simple as a camera to record the user’s password

as it is typed.

Non-repudiation is the ability of the system to prove that the person accessing the

system or requesting a transaction is in fact the user herself, thus preventing the user from

denying that they carried out a given action (repudiate). Password do not provide this

guarantee, because anyone who has the password can carry outthat action. It does not

follow that the user willingly gave up their password, it mayhave been compromised

without their knowledge and against their will.

Security tokens’ main advantage lies in both strength against search attacks and excel-

lent compromise detection.

They are secure against search attacks because their secrets can be arbitrarily long,

since they need not be memorized by the user. Of course the search space is reduced in the

12

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

case where the user has to manually type the dynamic passwordgenerated by the token.

This due to the length of the temporary password being less than ideal, because of the

cumbersomeness of typing such a long string. This is solved by having the token transmit

the temporary password through USB or Bluetooth.

They offer excellent compromise detection since their losswill be detected by the user

as soon as they try to log in to the system. Of course this assumes that the token’s secret

cannot be copied. If it can (as is the case with static password tokens), the token presents

all the problems of a password written on a piece of paper.

However they are extremely vulnerable to theft. As anyone who acquires the will have

full access to the user’s account. For this reason, in practice tokens are almost never used

without a second form of authentication.

Like password, security tokens do not provide non-repudiation as the user can claim

that the token was stolen.

One final advantage of security tokens is their ability to prevent denial-of-service at-

tacks. In order to prevent brute force searches, many systems limit the number of login

attempts. If a user incorrectly enters their password more than a given number of times

in a row, then they are blocked from accessing the system. A malicious user can simply

make repeated incorrect login requests, until the legitimate user is blocked. What a se-

curity token can do to prevent this is to use its secret for data origin authentication (e.g.

cryptographically sign the dynamic password). Thus the system can detect whether an

incoming password is generated by the token or not.

Biometrics’ main advantage is their stronger defence against repudiation. It is more

difficult for an attacker to forge a biometric trait, though it is not impossible. Many bio-

metrics are not secret and can be “stolen”. The main difficulty for the attacker lies in

taking this “stolen” biometric sign and interfacing it to the biometric reader. In the case

of fingerprints the attacker may have the image of the fingerprint as obtained taken from a

file or lifted off an object, but fingerprint readers are made to scan actual fingers. Although

in one case a commercial security door was fooled with a printed version of a fingerprint

after it had been licked.[9]

13

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

Biometrics are relatively weak against search attacks. This is due to the lack of ac-

curacy of the comparison mechanism. While no two fingerprints have been shown to be

identical. Incorrect matches are common in computer systems and have also occurred

in cases involving human experts.[10] We can quantify the risk of such an attack as fol-

lows. The probability of an attacker’s randomly guessed password being the correct one

is: P(correct guess) = 1/kp where kp is the password’s keyspace (the number of possi-

ble passwords). In biometrics a false match is analogous to acorrect guess. Thus the

“keyspace” of a biometric system is given by: kb = 1/FMR, since P(false match) = FMR

= 1/kb. Applying this to the finger vein authentication above, this would give a keyspace

of 1/0.01% = 10000.[10] Thus an attacker with a database of fingerprints could gain entry

to any user’s account after trying about 10000 different fingerprints on average.

Finally biometrics do not provide compromise detection.

As each factor has its strengths and weaknesses, it would make sense to use more than

one type of authentication in a system. Passwords are secureagainst theft. Tokens provide

compromise detection. Biometrics provide non-repudiation.

14

3
Mobile Social Authentication

Our work combines two techniques that have been widely used separately: using the user’s

mobile phone as an authentication device and using the user’s social network as an authen-

tication factor.

3.1 Mobile Phone as Authenticator

There are normally two ways in which to use a mobile phone for authentication, but both

of them involve the user proving that they are in possession of the device. The first is to

use use the mobile network itself for authentication, the second is to use the phone as a

security token.

In addition to these traditional methods, authentication can also be based on location

or biometrics .

Location can be obtained from GPS, cell-tower information or static beacons.

Biometrics that have been found suitable for mobile phones include: voice recognition,

face recognition, eye (iris) recognition, keystroke patterns and acceleration or gait.

3.1.1 Authenticating through the Mobile Network

Authenticating the user through the mobile network involves contacting the user at authen-

tication time. This can be achieved by either sending the user a one-time code by SMS

[11], or by calling the user and requiring them to enter a PIN [12].

15

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

A problem with the first approach is that SMS traffic may be snooped. A solution is

to encrypt and possibly sign the SMS messages. There are bothPKI and symmetric key

based methods.

The symmetric method is based on a shared password, used to generate a key. This

has the advantage of protecting the user if the phone is stolen as the key is not stored

unencrypted on the phone. It requires software to generate akey from a password input

by the user and to encrypt/decrypt the data using this key. Onthe other hand this limits the

strength of the key.[13]

The PKI based method requires a private key on the phone. It isequivalent to treating

the phone as a token.

3.1.2 Mobile Phone as Token

Using the phone as a token usually involves making it carry a public/private key or a

certificate. At authentication time the user is asked to prove that they have the private key,

thus proving they are in possession of the phone. However as we will see in Chapter 7,

without a Trusted Platform Module (TPM) that restricts access to the key, anyone with

access to the phone will be able to read the key and possibly transfer it to another device.

In [14] the authors propose a scheme whereby a certificate is issued to each phone that

binds a public key to the device’s Bluetooth MAC address. Thus even if an attacker obtains

the user’s certificate it will only work on the phone with thatparticular MAC address.

However if the attacker can modify his Bluetooth stack to report the user’s MAC address

then the same problem occurs. The solution, securing the Bluetooth stack, is similar in

nature to using a TPM.

The alternative when a TPM is not available is to add another layer of encryption by

encrypting the private key with a password. While this adds some additional security it has

the shortcoming of allowing an attacker to perform a bruteforce attack on this encryption

if they can get the encrypted private key. Thus in that case the security of the system would

be limited to the security of the password.

16

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

With a TPM the phone can be used to securely store the user’s cryptographic creden-

tials, such as private keys. Thus the phone can provide the functionality of a smartcard,

saving the user the need to carry an extra piece of hardware. In addition the phone can

provide an interface that helps the user update and manage their credentials [15].

A distinction can be made between the device’s identity and that of the user [16]. In this

case the user proves their identity through another means (e.g. a username and password)

and the private key and certificate prove the identity of the device (e.g. the phone). Thus

access can be restricted based on either the user, the deviceor both.

3.1.3 Network and Token Authentication

There is at least one proposed system that is a hybrid betweenthese two approaches [17].

The idea is to generate a one time password using certain information unique to the user’s

phone and a PIN number. If this should fail then a one time password can be sent to the

user’s phone by SMS.

3.1.4 Location Based Authentication

As its name implies location based authentication involvesdetermining the user’s location

and making access conditional to it. In this form it is only useful when the location is

controlled and physically secure. This would apply to restricted military installations and

server farms. In this case all that is necessary is to determine the user’s proximity to the

restricted area. This can be done with a trusted hardware sensor placed at the site.

In the general case where the user wants to log in from a location that is not secure,

this method will not make sense. But we can still make use of location information in the

authentication process. But instead of granting access based on location, we would deny

access based on location. For example a user might only access his online bank account

from her home or office, in that case we can deny access from anyother location. This

would be based on the location reported by their cellphone. So a thief in addition to having

to steal her cellphone, would also need to be physically present at the user’s home or office,

17

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

which is more difficult, and more importantly risky, for the thief.

Sources of location information can be GPS, celltowers, beacons and proximity sen-

sors.

GPS based location is mainly available in open areas as it requires line of sight access

to the satellite signals, although some sensitive GPS devices have some reception indoors,

especially near windows. Since GPS is a one way system (i.e. the user’s device only

receives satellite signals and computes its location itself), it can send fake location infor-

mation. Preventing this requires a trusted or tamper-proofGPS device. Hacking such a

trusted system would present a difficult challenge, since itrequires generating fake GPS

satellite signals from at least 3 sources. Difficult but not impossible for a resourceful at-

tacker. This attack can be prevented by using the antispoofing information included in the

GPS signal. This information is ignored by civilian users, and requires an encryption key

that is only available to the defence establishment.[18]

Celltower information gives coarser location informationbut generally works indoors.

While it does not have global coverage, thus excluding very rural or remote users, it usu-

ally covers places where most of the population lives. Sincethere is secure bidirectional

communication, the celltower determine the user’s position with high confidence. Faking

location requires cloning the phone’s SIM card.

Beacons provide an alternative to GPS in an indoor environment. Being unidirectional

they present the same problems as GPS. However the signal from the beacons can be

cryptographically signed preventing a “fake signal” attack.

The operation of proximity sensors is the reverse of the beacons. They receive a signal

from the mobile device. Usually the system will issue a random challenge to the phone,

which it will forward to the sensor to prove its identity. Alternatively the device can send

a signed timestamp to the sensor.[19]

18

3.2. SOCIAL NETWORK
AS FOURTH FACTOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

3.1.5 Mobile Biometrics

As in the general case, using biometrics on mobile phones basing authentication on mea-

surements of one or more of the user’s biological traits. Many different characteris-

tic traits have been proposed for use with mobile phones: voice recognition[20], face

recognition[21], iris recognition[22], keystroke patterns[23], arm swing acceleration [24]

and gait[25]. The last two are uniquely applicable to the mobile environment.

An important problem that needs to be solved is the provisionof reliable and tamper-

proof biometric scanners on the mobile device. This would involve some combination of a

trusted computing platform and trusted biometric reader. Both are necessary if we want to

perform matching on the phone itself. Since in this case the phone tells the server that the

biometric matched, the server needs to ensure that the verification code has been tampered

with, nor is the biometric input been replayed. Performing matching on the server side

would require only a tamperproof biometric reader. In this case the only thing we need to

prevent is the replay of a previous reading by the device. This can be achieved by signing

the reading with a timestamp.[26]

3.2 Social Network as Fourth Factor

It seems that making use of a user’s social network to facilitate authentication hasn’t been

explored as fully. This may be because unlike the previous case this isn’t a simple exten-

sion of existing techniques and technologies. Rather it is acompletely new approach to

computer authentication.

There are two different ways this can be used: one involves contacting the members of

the user’s social network in order to securely authenticatethe user while the other involves

making use of the user’s account on a social networking site to securely contact members

of the user’s social network.

The first approach is the one proposed in the RSA paper [1]. As described in the

introduction it involves the user contacting a friend when he has forgotten his token. The

friend logs in with her own token, requests a “vouching” codefor the user and relays

19

3.3. SOCIAL AUTHENTICATION
ON MOBILE PHONES CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

this to the user, who can use this to log in temporarily. Our approach also falls under

this category. The user obtains “vouching” tokens from their friends, whenever they have

a phone conversation or a Bluetooth sighting. And these tokens are used to log in. The

important feature of this approach is that the user’s friends are contacted directly (by phone

or Bluetooth), and this contact is used to prove the user’s identity when logging in to a site

or service.

The second approach contacts the user’s friends through thesocial networking site. So-

cial network sites provide peer-discovery (finding friends) and secure messaging (instant

messages). Therefore it is possible to set up a secure communication channel with a friend

by sending them a key through the social network, and using that key to encrypt subse-

quent transmissions that will travel through the open Internet. This can be done manually

by the user, or it can be implemented in the application that needs to send the encrypted

data. A special API can be built to facilitate the interaction between applications and social

networking sites [27].

Another technique that has been proposed is to test the user’s ability to recognize their

friends in pictures that have been tagged on a social networking site. This approach faces

two problems. The user’s close friends may also recognize most of these faces, and could

login to the system in her place. The other issue is that facial recognition software could

be used to automatically match the faces.[28]

3.3 Social Authentication on Mobile Phones

Finally we can consider the combination of mobile phone and social networking for au-

thentication. One of the goals of the Reality Mining projectis to measure users’ social

networks using mobile phones. This can be done based on call patterns (which indicate

who the user was talking to) and Bluetooth sightings (which indicate who the user was

close to). To apply this to authentication one can take thesemeasurements and compare

them to typical values for the user. For example one can measure the devices (friends) in

the user’s Bluetooth range and compare this to the value for atypical day [29]. Our scheme

20

3.3. SOCIAL AUTHENTICATION
ON MOBILE PHONES CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

considers both call patterns and Bluetooth sightings, but does so in a slightly different way.

We count the number of conversations and sightings in a giventime period and base our

authentication on whether this number exceeds a certain threshhold [30].

21

4
Proposed Scheme

In this chapter we will outline the details of our authentication scheme. First we will

focus on social authentication based on telephone conversations and Bluetooth sightings.

We will then consider additional factors that can be used in order to minimize the risk of

intrusion.

4.1 Social Authentication

The goal of this scheme is to leverage the functionalities ofa Bluetooth capable cellphone

in order to automate the process of vouching. The user will obtain vouching tokens from

friends and will use them together with a PIN to log in to a secure service.

4.1.1 Obtaining Vouching Tokens

The user starts by declaring a list of friends that will “vouch” for him. This list is stored

on a central server. After a phone call with one of these friends the user will receive a

token indicating that this communication took place. A token is only issued after a phone

call that is longer than a minimum duration. This duration isdetermined by analyzing the

distribution of the user’s call durations. The idea is that it is unlikely that an intruder will

be able to make a phone call long enough to receive a token, without alerting the other side

that something is wrong.

While the use of vouching tokens from friends is a form of fourth factor authentication

22

4.1. SOCIAL AUTHENTICATION CHAPTER 4. PROPOSED SCHEME

(i.e. someone you know), in this case it is also implicitly a biometric factor (i.e. something

you are). This is due to the fact that in the process of obtaining the vouching token,

the user’s voice is recognized by her friend (human voice recognition). This has two

advantages. Humans are better at recognizing voices than are machines, and secondly an

attacker’s failed attempt will be instantly detected by theuser or her friends, and most

probably reported on time.

Similarly after seeing a friend using Bluetooth a token willbe received confirming

this sighting. Bluetooth sightings are trickier because the long range (10m) doesn’t imply

that the users actually made contact. Thus the Bluetooth sightings are augmented in two

ways. First a rough estimate of the distance of the other useris made by measuring the

time it takes to establish a Bluetooth connection. Secondlythe user is prompted to confirm

the sighting of the other party. After both of these take place the vouching messages are

exchanged.

In this case the Bluetooth tokens are also a form of location based authentication, with

the added advantage that the location is confirmed and definedby the user’s proximity to

their friends.

One of the reasons to include this proximity based information is that in some locations

the user is surrounded by many of their friends and is unlikely to have phone conversations

with them, since they will simply talk to them directly. In this case detecting their presence

will allow for authentication to take place, and avoid an unnecessary traffic load on the

telephone system.

Figure 4.1 shows the process of obtaining tokens from both conversations and Blue-

tooth sightings.

4.1.2 Authentication Using Tokens

The user authenticates himself to the central server by sending the required number of

fresh tokens, along with entering his PIN number. After repeated errors in the PIN number

the tokens become invalid and new tokens must be obtained.

The central server (e.g. online banking website) needs to verify the authenticity of

23

4.1. SOCIAL AUTHENTICATION CHAPTER 4. PROPOSED SCHEME

Contact to/from
other user

Is Phone call? To/from friend? Durat ion >= Min

Bluetooth? To/from friend?

Within range?

Confirmed by
othe user?

Yes Yes
Issue vouching token

Yes

Ignore

No No

Yes

Issue Bluetooth token

Yes

Yes

Yes
Ignore

No

No

No

No

Ignore

Figure 4.1 – Process of Obtaining Tokens

these tokens. There are two methods by which this can be accomplished. The server can

verify authenticity from the tokens it receives from the user in question or it can contact

the friends who are doing the vouching. The latter requires multiple session to be setup

and more importantly requires all the friends to be online atthe time of authentication.

Therefore, we use the former method.

Even in this method there are two possibilities. The user canobtain the tokens and then

send them to the server, or the friend can send the tokens to the server at some point before

authentication. The disadvantage of this is that the user doesn’t know whether or how

many contacts have been registered with the server. This canbe compared to the situation

where a student applying to University gets signed and sealed letters of reference and mails

24

4.2. SUPPLEMENTARY FACTORS CHAPTER 4. PROPOSED SCHEME

them herself rather having each referee mail the letter of reference to the University.

The electronic equivalent of the referee physically signing and sealing a letter, is the

vouching party digitally signing the message and then encrypting it. It is needless to say

that this is safer than the physical method, since the servercan reliably verify the signature,

whereas a physical recipient of the letter would need to havea copy of all the signatures of

the referees beforehand in order to be able to do the same, which is almost never the case

in practice.

This digital signing and encryption requires the phones to perform signing and encryp-

tion operations. One can tradeoff security vs simplicity. Since the time of contact is not

as important as the number of contacts, the server can generate a set of tokens and send

it to each vouching device periodically. For example the server can send each device 100

tokens a week, and the rule can be to send the first token on the first contact, the second

token on the second contact and so on. When the user logs in they send in the tokens

and once the server verifies that they are in the current set oftokens, it knows how many

contacts the user has had this week. This avoids the need for signing tokens, however this

doesn’t get rid of the encryption requirement, as we still need a way to get these tokens

from the server to the device, without malicious users beingable to eavesdrop.

This scheme requires a lot of data to be transferred periodically. We use hashing chains

to alleviate this problem. Only one token is sent by the server to each phone. This token

is then hashed repeatedly to generate the other 99 tokens that will be used. The server

can perform this same hashing operation to verify that each token was generated from the

original token.

4.2 Supplementary Factors

In addition to the “vouching” tokens which are “someone you know” (fourth factor au-

thenticators), the PIN which is “something you know” and theprivate keys (see Chapter

6) which are “something you have” we can also make use of “something you are” (bio-

metrics).

25

4.2. SUPPLEMENTARY FACTORS CHAPTER 4. PROPOSED SCHEME

Just as it is common for a user to carry a cellphone with them, we would like to make

use of other devices within the user’s reach. For example it is likely that when using this

system to authenticate to an online banking website, the user will be using her laptop,

which may be equipped with a fingerprint scanner. A fingerprint scan can then be used in

conjunction with the “vouching” tokens as an additional factor.

Use of a special-purpose wearable authentication device inthe form of a wristband has

been suggested [31]. This device would take fingerprint scans, but would also monitor the

user’s vital signs, including: heart rate, skin temperature, body capacitance and acceler-

ation. Using these readings the person wearing the device istransparently authenticated

once they are within radio range of the target computer.

Footstep characteristics have been used for personal identification [32]. Many users

carry an iPod or palmtop device with them. These may be equipped with a pedometer

that measures the user’s footsteps. The characteristics ofthe footsteps can be analyzed

and compared to the user’s baseline measurements. In the event of a match the user is

authenticated. The use of this feature further improves thereliability of the authentication.

In our system the primary means of authentication are the “vouching” tokens and the

PIN. For additional security the user may opt to require one of the above biometric factors

to authenticate herself. For example consider a user with a laptop and pedometer system.

In addition to the social authentication if either the laptop recognizes the user’s fingerprint

or the pedometer’s readings match the user’s gait, then the user will be authenticated.

26

5
Simulation on Reality Mining
Dataset

The Reality Mining project at MIT’s Media Laboratory followed 100 cellphone users over

the 2004-2005 academic year. These 100 students, faculty and staff were each given a

Nokia 6600 smartphone with an installed application that would log their usage. Data

collected includes: call logs, Bluetooth devices within range, cell tower information, ap-

plication usage and phone status [2].

Among the data collected by the Reality Mining project, the readings of most interest

to us are the call logs and the Bluetooth device sightings as these would lead to the issuing

of “vouching” tokens.

Looking through the data, we see that there are many days overthe course of the year,

when there is no call data nor any Bluetooth sightings. So thefirst thing we did was

determine the number of days that each phone logged any relevant data. This is shown

in Figure 5.1 below. As can be seen the number of days with datavaries between 0 and

a little over 250 for the different users. Looking more closely we see that 8 users never

logged any data.

In order to simulate the issuing of a “vouching” token based on phone conversations.

We tried to establish a list of friends for each user. We used the ten most popular numbers

that they talked to, which we assume to be their friends. Thisis the best case scenario,

in actuality the user may call a certain number very often andyet this number may not

correspond to a friend. So the actual results may be slightlyworse than these simulation

27

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

Figure 5.1 – Days with Data

would indicate.

We then established the minimum duration of a call before tokens are sent or received.

When choosing the minimum duration there is a trade-off between security and conve-

nience. If we choose it too small then an impostor can make random calls to the user’s

phonebook and then hang up after receiving the token. On the other hand if we put the

threshold too high then very few tokens will be generated, and it will take a long time for

a user to have enough tokens to be authenticated. In this casewe tallied the durations of

each user’s calls and took the 25th percentile as this minimum duration. We do this to

eliminate the effect of wrong numbers and such very short calls, and at the same time keep

the probability of false rejection small.

With these two pieces of data in hand we then looked at each dayand considered

the two days immediately preceding it. If two friends or morefriends were called in the

current day or those two preceding days and each at least two of those calls were longer

than the minimum duration, we assumed that two or more tokenswere generated. In this

case we only require two tokens to authenticate and thus the user can be authenticated on

28

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

Figure 5.2 – Days Authenticated by Calls

that day. Figure 5.2 illustrates the number of days where theuser could be authenticated

based on phone conversations.

On the average the users are able to authenticate themselveson 74% of the days where

they logged phone calls. We are assuming that the days where the users did not log any

phone data, were days where their phone was off or the loggingapplication was not run-

ning.

The next step was to investigate the effect of adding Bluetooth device sightings to the

authentication process. Again for each one of the top ten devices that the user sees in the

current day or the previous two days, the user receives a token. If the user has two tokens,

either two from phone calls, or two from Bluetooth sightingsor one of each, then the user

is assumed to be authenticated for that day. Figure 5.3 displays the number of days where

the user could be authenticated based on both factors.

We see that the numbers are much closer to those of Figure 5.1.In fact on the average

users can authenticate on 95% of the days with bluetooth sightings or phone conversations.

Again the assumption is that days without either of these communications were days where

29

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

Figure 5.3 – Days Authenticated by Calls and BT

the user was not using their phone or the data was not recorded.

In the above we required two tokens for authentication. Obviously there is a trade-off

between the number of tokens required and the probability ofsuccessful authentication.

We varied the number of tokens required between 1 and 10, and calculated the probability

of authentication. As Figure 5.4 shows, the probability of authentication varies between

98% and 50%. We chose 2 tokens above to have a high probabilityof authentication.

There is a similar trade-off between the number of days a token remains valid and

the probability of successful authentication. We requiredtwo tokens and then varied the

number of days between 1 day and seven days. As can be seen in Figure 5.5, the probability

of authentication varies between 82% and 98%, and levels offafter 3 days. We again

chose 3 days (the current day plus the two preceding ones) to have a high probability of

authentication.

30

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

Figure 5.4 – Probability of Authentication vs Tokens Required

Figure 5.5 – Probability of Authentication vs Token Duration

31

6
Implementation

Our main implementation uses PKI (public key infrastructure) to provide confidentiality

and integrity. In particular we use an implementation of theRSA encryption algorithm

written in Python (Pys60, Python for Nokia S60 phones). We chose to code for Pys60

because it has modules that allow easy access to a number of phone features that we need,

including: call logs, SMS inbox, SMS messaging and Bluetooth. Additional modules can

be written in Symbian C++, in order to either speed up critical sections of the code or to

provide access to low-level hardware not accessible from the standard modules. It is im-

portant to note that our system could be implemented using other programming languages

such as C or Java for phones without a Python interpreter. At the end of this section we

will present an alternate implementation using hash chainsthat avoids much of the public

key computations.

6.1 Issuing Tokens

Each node has a public/private key pair. A copy of the public key resides on the server.

When a user Bob (B) wants to give a token to user Alice (A), Bob signs (encrypts with

his private key)A’s name and the current timeTb: KBS(A, TB), and then encrypts this

with A’s public keyKAP (KBS(A, TB)) and sends it to Alice. OnlyA can decrypt this to

retrieveKBS(A, TB).

Tokens are issued when a phone conversation with a friend occurs and it is over the

32

6.2. USING TOKENS TO AUTHENTICATE CHAPTER 6. IMPLEMENTATION

minimum duration, or a friend is sighted over Bluetooth and is within a small distance.

Our software continuously scans the call logs and looks for calls that are to or from

friends. It then checks the length and if the call is long enough a token is issued as above.

Similarly our software continuously scans for friends overBluetooth. To determine

whether the friend is close or not we time the duration of the Bluetooth obex discovery

call. The Bluetooth obex discovery function, takes the target device’s MAC address and

returns a list of obex (Object Exchange) services availableon that device. It turns out that

the weaker the signal between the phone and the device it is trying to discover the longer

this function takes. We call the function four times and timethe last three. If all three calls

took less than 0.06 seconds, then we ask the user if they wouldlike to send a token to the

corresponding friend. 0.06 seconds was chosen because it was determined experimentally

to be a typical value when the device and the phone are within line-of-sight of each other.

6.2 Using Tokens to Authenticate

WhenA wants to use a token fromB, she concatenates the current timeTa and signs with

her private keyKAS: KAS(KBS(A, Tb), Ta). And then encrypts with the server’s public

key KSP : KSP (KAS(KBS(A, Tb), Ta)). This is illustrated in Figure 6.1. The server can

decrypt this to recoverTa, A andTb. The server checks thatA matches userA. ThatTa is

close to the current time. AndTb is within the allowed lifetime of a token.

Then the server issues a challenge for the PIN. IfA responds correctly then she is

authenticated.

If not the challenge is repeated. IfA fails repeatedly then the tokens is invalidated and

new tokens are required. This is done by requiring tokens with timestamp newer thanTb.

6.3 Hash Chain Implementation

In this case each user still has a public/private key pair, but it is only used to set up shared

secrets between the user and the server. Periodically (e.g.ever 3 days) the user’s phone

33

6.3. HASH CHAIN IMPLEMENTATION CHAPTER 6. IMPLEMENTATION

Figure 6.1 – Using Tokens to Authenticate

contacts the server and establishes a separate secret for each of her friends. To do this the

server signs the secretS with its private keySS, and then encrypts it with the user’s public

key UP : UP (SS(S)). Only the user can decrypt it. Once decrypted the signature can be

verified to make sure the message came from the server. The phone then takes each secret

S and hashes it (using a hash function like MD5 or SHA1) to obtain H1(S). The phone

then takes the hash of the hash to obtainH2(S) and repeats this n times, to obtainH3(S)

throughHn(S). These hashes will be used as tokens.

Tokens are issued as follows. After a successful phone conversation or Bluetooth sight-

ing between Alice and Bob, they each exchange one of the hashes. Assuming this is their

first token exchange Alice will send BobHn(S), and so will Bob. At their next exchange

they will sendHn−1(S). And this will continue throughn − 2, n − 3, . . . ,2,1. The reason

they start from the end of the hash chain is that knowing S, onecan generate all the hashes,

but knowingHn(S) reveals nothing about the other hashes. So if Alice usesHn(S) to au-

thenticate, and the token is invalidated (because she mistyped her PIN), the server can

require a fresh token by requiring the next token to precedeHn(S) in the hash chain. So

Alice could then try to authenticate withHn−1(S) if she has it.

The user can use these hash tokens to authenticate because the server can verify that the

tokens were issued by the correct friends, since each token could only have been generated

34

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

from an original secret that was previously sent to each of the user’s friends by the server

in a secure manner.

To transmit these hash tokens to the server for authentication, the user could, as in the

case of regular tokens, take the required number of tokens from different friends and sign

them with her private key and then encrypt with the server’s public key. This will ensure

that the tokens can’t be intercepted and that they are being used by the correct user. The

server could decrypt this, then verify that the request is coming from the right user and

that there are enough tokens.

However to further avoid public key computations, the user could establish an extra

shared secret with the server, during the periodic secret exchange. The user can then

use this secret to include a keyed-Hash Message Authentication Code or HMAC of the

message to the server. This is a form of Message Authentication Code, which provides

both integrity and authenticity of the message using a secret key, just as would have been

provided by the signing and encryption using public/private keys.

6.4 Python Modules

The software consists of two programs a client running on thephones and a daemon on

the authentication server.

The client usually runs one script “sendtoken.py” in the background that analyzes the

phone logs, scan for Bluetooth devices and sends tokens accordingly.

Another script “authenticate.py” is run when the user wishes to authenticate to the

server. It gathers the necessary tokens and PIN and uses themto authenticate.

The server runs “auth.py” as a daemon which accepts TCP connections from clients.

It receives the tokens, verifies them, sends a challenge for the PIN, and authenticates the

user if everything checks out.

In the case of the hash chain implementation, the client periodically runs “hashchain.py”

to set up the shared secrets with the authentication server.Typically this is done when turn-

ing on the phone, and once in a while. For example after sending 100 tokens to a friend, if

35

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

the hash chain length is 100, or equivalently after a certainperiod of time, say one week.

Once this is done “hashtoken.py” is substituted in place of “sendtoken.py”. The dif-

ference being that instead of generating (signing and encrypting) a new token, we simply

select the next token in the chain and send that instead.

Finally “hashauthenticate.py” is run by the client to authenticate. It performs the same

function as “authenticate.py” but using the hash tokens.

On the server side we have two daemons to implement the hash chain functionality:

one to generate and transmit the shared secrets “hashsecrets.py” and another to verify the

tokens and PIN “hashauth.py”.

In the following subsections a brief outline of the functionality of each of the above-

mentioned Python modules will be given. This includes the details of the built-in modules

that are invoked.

6.4.1 Sending Tokens: sendtoken.py

The sendtoken script makes use of the following modules: logs, messaging, rsa, socket,

time, e32 and pickle.

“logs” allows access to the phone’s logs. We only use the incoming and outgoing call

logs. In order to reduce processing, we only look at new calls, by taking the calls that have

occurred between the previous run and the current time. We scan for calls from friends

and then verify the duration of the call. Based on this we can decide to generate and send

a token to the friend.

We use “rsa” to generate the token. First we take the current time and concatenate the

friend’s number. Then we sign with our private key. Finally we encrypt with the friend’s

public key.

One of the shortcomings of the “rsa” module is that it does notperform padding and

so the same plaintext will always encrypt to the same cipherstring. So if the attacker

knows the time they can try to generate a set of tokens with theplaintext (time number)

where number is the phone number of one of the user’s contacts. Comparing these tokens

with the actual token transmitted the attacker may be able todetermine to whom the user

36

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

has spoken. A simple solution is to appendn random bits to the plaintext and have the

recipient discard those extra bits after decryption. This would force the attacker to generate

2n messages before being able to check for a match. In the general case this may not be

sufficient, since a sophisticated attacker can take advantage of the predictable structure of

a message.

After this the message is transmitted to the friend using “messaging”, which is a simple

interface to the phone’s messaging services. In our case we use the function smssend to

send the token as an SMS. In order for tokens to be later identified by the receiving party,

the token is prepended and appended with the string “token”.However before sending

the token the user can be prompted to verify whether the person on the other end of the

conversation was indeed the friend to whom the token is to be issued. An example of

why this would be necessary is if Alice received a call from her friend Charlie from Bob’s

phone. In this case Alice’s phone will ask her whether or not to send a token to Bob. This

will alert Alice that Charlie is actually using Bob’s phone (either maliciously or not). Alice

has to decide one way or another.

While SMS is becoming less and less expensive and many service providers allow

users practically unlimited SMS traffic, mobile internet orwifi can be used in cases where

the cost of SMS is still a concern. Theoretically an effective way to transmit this limited

information would be to overload it onto the voice channel itself, by modifying the phone

hardware to use part of the voice channel for data transmission. An added advantage

would be that since the rate is low, transmitting the token would require a call with a

specific minimum duration.

In the case of Bluetooth sighting we use the btobexdiscover function, which is part of

the socket module, to try to establish a connection to each ofthe user’s friends in turn. If

any of these connections is successful we repeat the processthree more times and measure

the connection setup time (using “time”). If the times are below a certain threshold (0.06

seconds), which would be typical of line-of-sight between the two-phones, a token is sent.

Again the user is prompted for confirmation before the token is actually sent to ensure that

the user has indeed seen her friend.

37

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

The token is generated in exactly the same way as in the call log case. But is sent using

bt obexsendfile, which sends the token directly over Bluetooth saving the need for an

extra SMS.

After analyzing the incoming and outgoing call logs, and scanning for Bluetooth de-

vices the script sleeps for 10 seconds. Using the aosleep functions from the “e32” module.

The e32 module includes Symbian specific functions. In Pys60the standard sleep function

locks the phone, while the e32 aosleep functions uses a timer that runs in the background

and doesn’t lock the phone. So the user can still use their phone when the script is not

running.

Bluetooth scanning is not done after every wakeup. If a tokenhas already been granted

we wait 2 minutes (12 times), if a token was not granted because the user didn’t respond

to a sighting we wait 1 minute (6 times), and if the other device was near but out of range

we scan again on next wakeup.

The “pickle” module is used in Python to serialize and deserialize objects. We use it

to store our data structures (arrays or hashes of keys, numbers, Bluetooth MACs, etc.).

6.4.2 Client Authentication: authenticate.py

The authenticate script uses the same modules as sentoken, with the addition of “inbox”.

“inbox” is used to access the user’s SMS inbox and retrieve all the tokens that have

been received. This is done by checking for messages that begin and end with the string

“token”.

After removing the delimiting string, each token is decrypted with the user’s private

key. The friend’s number as well as the current time is concatenated with the decrypted

token, and then the whole is encrypted with the server’s public key.

Once all the tokens are in the proper format, a TCP connectionis made to the server,

and the tokens are sent. The server verifies that the tokens are signed by the user’s friends

and have valid timestamps. Then a challenge is sent for the PIN. The user responds to the

challenge, and if successful the user is authenticated.

If the user doesn’t have internet connectivity, SMS can be used for communication

38

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

between the client and server instead. Many providers (e.g.Fido) offer unlimited SMS

with many of their plans, but mobile internet still remains somewhat expensive, and wifi

is only available on the newest phones.

6.4.3 Authentication Server: auth.py

The authentication server waits for connection from clients. It receives their tokens and

verifies that they are from the user’s friends and that their timestamps are valid. It then

generates a random challenge. This is basically a random string encrypted with the PIN

and then encrypted with the user’s public key. The user must first decrypt the challenge

with their private key and then decrypt the inner message with the PIN, perform some

function on the string (possible add a constant, reverse thestring or compute a hash) and

then reencrypt this new data with the PIN, and then encrypt with the server’s public key.

The server can then carry out a similar process to verify thatthe user has both his private

key and PIN. One this is done the user is authenticated and canaccess the system.

6.4.4 Establish Shared Secrets: hashchain.py

The hash chain implementation replaces the public key encryption and signing with tokens

generated by hashing a shared secret. This requires the server to establish shared secrets

with each user.

We do this through the use of public key encryption. The benefit of this is that public

key encryption and signing is only necessary once a week or once every 100 tokens, cutting

down on processing time and battery usage.

The client script “hashchain.py” receives three messages from the server. The first

contains the expiry date or period of validity for the secrets (initially 48 hours). The

second contains the secrets themselves (one per friend). The last one contains the hash

counters for each friend (initially 100), this is the numberof tokens that can still be issued

based on this secret.

Each of these messages is decrypted using the user’s privatekey and then the signature

39

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

is verified using the server’s public key.

Once the secrets are received the hashes are generated and stored in a file. These hashes

will later be sent as tokens by “hashtoken.py”. The hashing function used must be the

same as the one used to verify tokens by the server. There are different hashing functions.

Standard ones include MD5 and SHA. For demonstration purposes we use MD5 as it is

part of the standard Python distribution. Newer versions ofPython also include SHA1

(and even SHA2), which should be more secure against attack.Switching hash functions

is very straightforward and only involves changing a few lines of code.

If the user runs this script again, she will receive an updated version of the data. This

will give an updated value for the remaining duration of validity and the number of tokens

that can still be issued for each secret. If the period of validity has expired, the user will

receive a new set of secrets with a validity of 48 hours and a counter value of 100.

6.4.5 Hash-based Tokens: hashtoken.py and hashauthenticate.py

When sending hash-based tokens to another user the script “hashtoken.py” simply loads

the array of hashes and the current counter. It then sends thetoken at hash[counter], and

decrements counter.

When counter reaches zero, the script runs “hashchain.py” to obtain a new set of se-

crets.

When using hash-based tokens to authenticate to the server the client script “hashau-

thenticate.py” encrypts the tokens with the server’s public key and sends them to the server.

As previously mentioned the public key encryption in this step could be replaced with a

secret key encryption or an authenticated hash.

6.4.6 Hash-based Server: hashsecrets.py and hashauth.py

On the server side “hashsecrets.py” sends the most recent data and secrets to the client,

and generates new secrets when necessary.

At authentication time “hashauth.py” receives the tokens from the client and verifies

40

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

them by hashing the user’s friend’s secrets.

For example if the user Alice used token 95 from Bob and token 47 from Carolyn. The

server hashes Bob’s secret 95 times and compares this to the token from Bob and hashes

Carolyn’s secret 47 times and compares this to the token fromCarolyn. If all the tokens

match the hash computation the server grants access.

41

7
Implementation Results

Having implemented the system we can now consider its practicality. One major factor is

the battery usage. Another is our ability to measure distances using Bluetooth. And most

importantly we must consider the false acceptance and falserejection rates.

7.1 Battery Life

Both public-key cryptography and Bluetooth scanning are considered big battery drains.

We will consider each in turn.

7.1.1 Public-key cryptography and battery life

We use public-key cryptography when generating tokens and when using tokens to au-

thenticate. To test the effects of generating tokens on the phone’s battery life we ran the

code to generate a token in a continuous loop. We ran this on a phone with a full charge

and let it run until the battery ran out. The result was that 7140 tokens were generated

in 18710 seconds (or 5 hours 11 minutes and 50 seconds). This means that it takes 2.62

seconds to generate a token. This includes signing and then encrypting the message.

How this will affect battery life depends on how often the phone will be required to

generate tokens. Even generating as much as 700 tokens per day would only drain 10% of

the phone’s battery.

42

7.1. BATTERY LIFE CHAPTER 7. IMPLEMENTATION RESULTS

7.1.2 Bluetooth scanning and battery life

Our program continuously searches for friends within Bluetooth range. Therefore to mea-

sure Bluetooth scanning battery usage we can simply run our program and see how long

it takes to drain the battery. Scanning for Bluetooth connections every 10 to 20 seconds,

drained the battery in about 32 hours. This is a little over 3%battery usage per hour.

Assuming the above 700 tokens per day, and 16 hours of daily use between charges

the program as it stands would drain 60% of the phones batteryin a typical day (50%

Bluetooth scanning, 10% token generation). This leaves 40%of the battery for talk-time

and other applications. Obviously the frequency of the scanning could be decreased to

increase the battery life. But it seems that the program as itstands is still usable, if a little

battery hungry.

The Bluetooth devices embedded in current mobile phones areusually class 2 devices

that operate over a 10m range using 4 dBm (2.5 mW). However there are lower power

modes of operation for Bluetooth. Class 1 devices, for example, operate over a 1m range

using 0 dBm (1 mW), while new Wibree/Bluetooth low energy devices operate at a similar

range with power as low as -6 dBm (0.25 mW). Using such low power devices would result

in much longer battery life (up to 10 times as much).

For our application we would want a slightly larger range than 1m, probably as much

as 2m or even 3m, to give some allowance for the users’ mobility. In other words we want

to make sure that Bluetooth sightings can be recorded without requiring both users to be

within 1m of each other for 10 to 20 seconds.

Assuming we reduce the Bluetooth power consumption by a factor of 3 or 4, which

would correspond to using Wibree/Bluetooth low energy devices operating at reduced dis-

tances, this would decrease the total daily battery consumption down to 20% to 25% down

from 60%. In that case, Bluetooth would only account for halfof the power consumption.

It would then make sense to consider switching from the pubickey implementation to the

hash chain one to reduce the CPU power consumption if furtherreductions in total energy

use were to be made.

43

7.2. ESTIMATING BLUETOOTH
DISTANCE CHAPTER 7. IMPLEMENTATION RESULTS

7.2 Estimating Bluetooth Distance

The main reason we want to estimate the distance of other Bluetooth devices is so that the

user will not be prompted to send a token when a friend is within Bluetooth range, but

outside of visual range.

The signal strength measured at the received depends on the distance and is inversely

proportional to a power of the distance:

Pr(d) =
k

dα

Whered is the distance between the transmitter and receiver,k depends on the trans-

mitted power, gains of the antennas as well as, possibly, thewavelength of the signal and

α is the loss exponent, which depends on the environment. Thisexponent usually ranges

between 2 and 4 (where 2 is for free-space, and 4 is for lossy environments). In some build-

ings and indoor environmentsα can be as high as 6, while in a long corridor or tunnel it

can be lower than 2. This is due to the tunnel acting as a waveguide.

Therefore, assuming a loss model, the distance can be based on a measurement of the

power. Unfortunately the Bluetooth signal power is not accessible from applications run-

ning on most phones. Therefore, we use an indirect measurement of the signal power: the

Bluetooth discovery time. As the signal strength decreasesthe probability of bit errors and

thus the need for retransmission increases. This in turn increases the time for successful

handshaking. In our application we attempt to discover the other Bluetooth device several

times and measure the time taken for each attempt. If the maximum amongst several trials

is below a certain threshold we accept the device as being within range.

We have performed extensive measurement of the average discovery time. Based on

our measurements we found that when the phones are in very close proximity (less than

2m) this time almost never exceeds 0.06 seconds. Therefore,we use this as our threshold.

Another design parameter is the number of times to attempt discovery. We have used

numbers between 3 and 10, and while using a larger number like10 decreases the number

of false acceptances, the difference is not very much. This is because once a device is

44

7.2. ESTIMATING BLUETOOTH
DISTANCE CHAPTER 7. IMPLEMENTATION RESULTS

successfully discovered subsequent discoveries usually take less time. This is probably

due to some caching of the discovered unit’s parameters by the phone’s Bluetooth module.

The discovery time and therefore the false acceptance or rejection depends on the

orientation on the antennas. When the two devices are pointed at each other the attenuation

is much lower than when the devices are at 90 degrees. For example in one test we found

that the acceptance rate for a 10m distance was 0 to 2% when thetransmitting phone was

pointing to a direction different from the line between the transmitter and receiver. At that

same distance the acceptance rate jumped to 85% when the transmitter was pointed along

the line. This is very close to the maximum acceptance rate of90% when the phones are

in close proximity.

Different obstacles like walls, doors and furniture can have an effect as well. However

this depends on the component materials of the obstacles (metals shielding and wood and

plastic having little effect). For example one wall had a 50-70% acceptance rate at a

distance of 3m, while another had an acceptance rate of 3-10%for a similar distance.

In the case of real users, this means that depending on the orientation of their phone

they may be very likely or unlikely to receive unwanted prompts. Two factors make this

less of an issue. Firstly, in general it is rare for a user to stay in the same stance for a long

period of time. Secondly, if the user has her phone in her pocket she will most probably not

notice the prompt as it is not very audible and disappears after 10 seconds (but reappears

again once a minute as long as the other user is in range).

The need for this estimation can be reduced by reducing the transmit power of the

Bluetooth devices. This should reduce the range at which they can operate and thus limit

the number of false positives. However since the range depends not only on the transmit

power but also on the gain of the receiving device’s antenna,therefore the need for distance

estimation is reduced but not completely eliminated.

Finally, since distance information could useful for many other applications it might

make sense to have the Bluetooth devices measure the distance themselves (based more

directly on signal strength).

45

8
Threat Scenarios

Let’s consider the case where an intruder Trudy wants to authenticate herself as legitimate

user Alice. Let us consider the case with the vouching tokensand a simple PIN (no bio-

metrics). There are many possible combinations of scenarios, depending on the intruder’s

possession of the phone, the pin, and the tokens.

8.1 Intruder does not have phone.

In this case as in all cases the intruder needs to obtain enough tokens and also obtain the

PIN. Even if Trudy were to obtain the PIN, without access to Alice’s phone Trudy can’t get

tokens directly from Alice’s friends. She can’t generate false tokens without the friends’

private keys. But she can still snoop the SMS and Bluetooth traffic and grab the tokens as

they are transmitted. However without the Alice’s private key she can’t decrypt the tokens

to make use of them. Therefore the security of the tokens depend on the security of Alice’s

private key.

8.2 Intruder has phone

Now the problem is that without a TPM (Trusted Platform Module), Alice’s private key is

stored as a file or other accessible structure on her phone. Anyone with access to Alice’s

phone can copy the key, or send it to themselves over the network. Thus if Trudy can gain

46

8.2. INTRUDER HAS PHONE CHAPTER 8. THREAT SCENARIOS

physical access to Alice’s phone all bets are off. We can encrypt the key with a PIN, but

that leads to a new problem. Either the user will constantly have to enter the PIN, since

the private key is needed whenever a token is issued, or the user will enter the PIN once

and then the private key will be stored in memory unencrypted, where Trudy can get to it

if she has access to the phone.

Once Trudy has the phone there are three possibilities. If Trudy is lucky the phone

already contains enough tokens, in that case she can try to authenticate using those tokens.

If she also has the PIN it is game over for Alice. If there are not enough tokens on the

phone, Trudy has two options: either return the phone to Alice and snoop tokens off the

network, or keep the phone and try to obtain enough tokens directly.

8.2.1 Return phone and snoop

This approach is rather straightforward. The only problem is that Trudy has to return the

phone before Alice notices it has disappeared and reports itas stolen. This is a problem

if Trudy is a stranger, but if Trudy and Alice are friends thenTrudy would simply have to

borrow Alice’s phone. Once the phone is returned Trudy waits, grabs enough tokens, and

then all she needs is the PIN.

If the phone is equipped with a TPM then this approach is impossible, as there should

be no way to extract the private key from the TPM. Thus Trudy will be forced to use the

phone and get the tokens directly.

8.2.2 Keep phone and get tokens directly

There are several ways Trudy can go about trying to obtain tokens directly. For voice calls

she can impersonate Alice to her friends, but this may backfire as the friends might find

out and contact Alice or report suspicious activity on Alice’s account. If Trudy and Alice

are friends then she can call mutual friends and say that she is borrowing Alice’s phone.

Another tactic is for Trudy to call Alice’s friends, say thatshe has found the phone and

wants to return it to its owner. She may be able to drag out the conversation long enough

47

8.3. STEALING MULTIPLE PHONES CHAPTER 8. THREAT SCENARIOS

for a token to be issued.

For Bluetooth sightings, she can trail Alice and receive tokens whenever Alice crosses

a friend. Whenever they cross one of Alice’s friends, Alice’s phone will ask Trudy if she

wants to send a token. Trudy will do so. The friend will then assume he is receiving a

token from Alice and will send back a token in return. Howeverthis is dangerous, because

Trudy has to be within line of sight of Alice for this to work, so only a particularly daring

intruder would pull this off. However if Trudy and Alice are friends this may be a bit

easier to do.

While a TPM will resolve the issue of the attacker’s stealingthe key and returning

the phone to snoop traffic, this won’t address the above problem of impersonation. An

effective way to deal with this problem is to assign a weight to each friend, depending on

the number of interactions they have with the user. This willfavor the ones closer to the

user and who will be most likely to report suspicious activity.

8.3 Stealing multiple phones

Of course we hope that the intruder is unable to obtain enoughtokens either indirectly,

because the phone has a TPM, or directly, because the intruder is unable to impersonate

the user or otherwise fool her friends. However there is still a way for Trudy to get the

required tokens: steal multiple phones, from the user’s friends. This way Trudy can use

these phones to generate tokens, by going through the call orBluetooth token generation

process.

Of course to succeed this requires the theft of N phones, where N is the number of

tokens from different friends that are required to authenticate. The greater N the more

secure the system is.

48

8.4. ONCE THE INTRUDER
HAS ENOUGH TOKENS CHAPTER 8. THREAT SCENARIOS

8.4 Once the intruder has enough tokens

Even if Trudy can obtain enough tokens, she can’t authenticate without the PIN. Trudy can

try randomly guessing the PIN. With a 4 digit PIN and 3 attempts, that gives Trudy a 3 in

10000 (0.03%) chance of success, and a 99.97% chance of failure, which will invalidate

the tokens she obtained. Furthermore the system could be made to detect repeated failed

attempts (say 100 failed attempts in a row), and then requirea longer PIN or a manual

reset.

On the other hand if Trudy can obtain the PIN, by for example observing Alice enter

it while logging in, then she has all she needs to login. Thus if Trudy has only the tokens,

the security of the system depends on the security provided by the PIN. While if Trudy has

only the PIN, the security of the system depends on the security provided by the tokens.

49

9
Conclusion

In this Thesis we have developed a protocol for mobile socialauthentication based on

phone conversations and Bluetooth sightings. We have substantiated our design based

on simulation of our scheme using data from the Reality Mining dataset. We then im-

plemented the scheme on actual phones using Python. In the process of doing so we

developped a method of estimating the distance of a Bluetooth device indirectly through

the measurement of the connection setup time. We tested the system for battery life and

Bluetooth distance estimation accuracy. Finally we considered threats against the user

available to an attacker.

With a standard security token, the intruder needs the tokenand the PIN to masquerade

as the user. In our protocol the theft of a single phone would not necessarily result in a

security breach, even if the PIN is known to the intruder. To generate enough tokens the

intruder needs to have n phones. Where n is the number of tokens required for authenti-

cation. Having a large n, maintains high security. However it makes authentication more

difficult.

This is a major improvement over the current state of public key authentication on

mobile phones since nearly all phones lack a TPM. Without a TPM, access to a user’s

phone is all that is necessary to obtain their private key. Ifthe passphrase protecting

the private key is short and/or simple, which is almost a requirement given the limited

input capabilities of mobile phones, the attacker can easily bruteforce the passphrase and

compromise the system. In our system the user would need access to n of the user’s

50

9.1. DIRECTIONS FOR FUTURE RESEARCH CHAPTER 9. CONCLUSION

friends’ phones as well.

9.1 Directions for Future Research

In this Thesis we used public key encryption to securely encrypt the tokens. However

a hybrid approach which uses symmetric key cryptography andincludes the a public key

encrypted version of the symmetric key along with the message would be preferable. Since

this approach would provide all the advantages of public keyencryption, but with the speed

of symmetric encryption. This is the method employed in OpenPGP.

The only reason we didn’t implement this feature is that there was that there was no

suitable python implementation of a symmetric encryption algorithm that was faster than

the RSA implementation. Besides writing such an encryptionalgortihm in Python, the

system itself could be rewritten in Java ME. This should allow the program to run on more

phones, as Java ME is currently supported on more mobile devices.

In chapter 8 we discussed the idea of using weights to the users’ friends based on the

number of interactions that they have with them. A simple scenario would be a case where

at least one token from a “close” friend is required for authentication. Another would

be the case where a token from a “close” friend is weighted thesame as multiple tokens

from more distant acquaintances. Determining the optimal weight assignment would be a

worthwhile venture, since this threat to the system can’t besolved through purely technical

means.

We designed the authentication system, including client and server code for the general

case of authenticating a user for an online service. Thus in its current version it could be

used for logging into an online banking website, a social networking site, webmail, etc.

We can extend the work by removing the central server and making the protocol decen-

tralized and peer to peer. In this case the main issue will be key distribution. Probably the

easiest and most secure way of obtaining the necessary public keys is through Bluetooth

exchange when the user is with the friend whose key they wish to obtain.

Once that is done the system could be adapted to a wider range of applications, most

51

9.1. DIRECTIONS FOR FUTURE RESEARCH CHAPTER 9. CONCLUSION

importantly mobile and social networking ones. For examplea user might wish to share

pictures they have taken on their phone with friends. Using social authentication they

can issue tokens to friends and then require the tokens for access to the pictures. Or

alternatively if the user wants to also grant access to friends of friends, she can verify

tokens issued by their friends to these friends of friends. Similar social access controls can

be built into social networking sites to improve security.

52

A
Source Code

A.1 sendtoken.py

import e32

import globalui

import logs

import messaging

import os

import pickle

import re

import rsa

import socket

import time

#Load data structures from files

mynumberfile = open("e:/mynumber")

mynumber = pickle.load(mynumberfile)

pubfile = open("e:/pubkey")

privfile = open("e:/privkey")

pub = pickle.load(pubfile)

priv = pickle.load(privfile)

53

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)

friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)

btfile = open("e:/bt")

bt = pickle.load(btfile)

#Check for daylight savings time

if(time.daylight == 1):

t = time.time() + time.altzone

else:

t = time.time() + time.timezone

btwait = {}

for i in bt.keys():

btwait[i] = 0;

def send_calls():

global t

#get new calls (new since last time we processed them)

if(time.daylight == 1):

cin = logs.log_data_by_time(’call’, t, time.time()

+ time.altzone, mode=’in’)

cout = logs.log_data_by_time(’call’, t, time.time()

+ time.altzone, mode=’out’)

else:

cin = logs.log_data_by_time(’call’, t, time.time()

+ time.timezone, mode=’in’)

cout = logs.log_data_by_time(’call’, t, time.time()

+ time.timezone, mode=’out’)

for i in range(0,len(cin)):

#send token if there is an incoming call from a friend

54

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

for number in keyring.keys():

s = number[2:]

if(re.search(s, cin[i][’number’])):

sign = rsa.sign(str(time.time()) + " "

+ str(number), priv)

cipher = rsa.encrypt(sign, keyring[number])

message = "token" + cipher + "token"

messaging.sms_send(number, message)

t = cin[i][’time’] + 1

for i in range(0,len(cout)):

for number in keyring.keys():

#send token if there is an outgoing call to a friend

s = number[2:]

if(re.search(s, cout[i][’number’])):

sign = rsa.sign(str(time.time()) + " "

+ str(number), priv)

cipher = rsa.encrypt(sign, keyring[number])

message = "token" + cipher + "token"

messaging.sms_send(number, message)

t = cout[i][’time’] + 1

def send_bluetooth():

for i in bt.keys():

#skip this iteration if we didn’t see the peer recently

if(btwait[i] != 0):

btwait[i] = btwait[i] - 1;

else:

try:

measure handshake time repeatedly

t1 = time.clock()

55

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

b = socket.bt_obex_discover(bt[i])

del b

t2 = time.clock()

b = socket.bt_obex_discover(bt[i])

del b

t3 = time.clock()

b = socket.bt_obex_discover(bt[i])

del b

t4 = time.clock()

b = socket.bt_obex_discover(bt[i])

t5 = time.clock()

if all times low assume peer is near

and send token

if(((t3-t2) < 0.06) and ((t4-t3) < 0.06)

and ((t5-t4) < 0.06)):

globalui.global_note(u"Device in range.")

q = globalui.global_query(u"Send token to "

+ friends[i] + "?", 15)

if(q==1):

print "Generating token."

sign = rsa.sign(str(time.time()) + " " + str(i), priv)

cipher = rsa.encrypt(sign, keyring[i])

message = mynumber + "_" + str(time.time()) + "token"

+ cipher + "token"

messagefile = open("e:\\message.txt", "w")

messagefile.write(message)

messagefile.close()

print "Sending token."

socket.bt_obex_send_file(b[0],b[1].values()[0],

56

A.2. AUTHENTICATE.PY APPENDIX A. SOURCE CODE

u"e:\\message.txt")

del b

print "Token sent."

os.remove("e:\\message.txt")

btwait[i] = 10

elif(q==0):

btwait[i] = 6

except:

print "Device out of range."

btwait[i] = 0

while(1):

send_calls()

send_bluetooth()

e32.ao_sleep(10)

A.2 authenticate.py

import globalui

import inbox

import os

import pickle

import re

import rsa

import socket

import time

#Load data structures from files

mynumberfile = open("e:/mynumber")

mynumber = pickle.load(mynumberfile)

privfile = open("e:/privkey")

57

A.2. AUTHENTICATE.PY APPENDIX A. SOURCE CODE

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)

serverpubfile = open("e:/server_pubkey")

serverpub = pickle.load(serverpubfile)

friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)

tokens=[]

authenticators=[]

i = inbox.Inbox()

m = i.sms_messages()

tb = "ˆtoken"

te = "token$"

total = 0;

#count the number of tokens in the sms inbox

for j in m:

t = i.content(j)

if(re.search(tb, t) and re.search(te, t)):

total = total+1

count = 0

for j in m:

t = i.content(j)

#decrypt each token and then reencrypt for the server

if(re.search(tb, t) and re.search(te, t)):

count = count + 1

t = re.sub(tb, "", t)

t = re.sub(te, "", t)

globalui.global_note(u"" + str(count) + "/" + str(total)

+ " Decrypting")

58

A.2. AUTHENTICATE.PY APPENDIX A. SOURCE CODE

d = rsa.decrypt(t, priv)

a = i.address(j)

for k in friends:

if(re.search(a, friends[k])):

n = k

t2 = str(time.time()) + " " + str(n) + " " + str(d)

globalui.global_note(u"" + str(count) + "/" + str(total)

+ " Encrypting")

auth = rsa.encrypt(t2, serverpub)

authenticators.append(auth)

HOST = ’server.crasseux.com’

PORT = 9000

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send("START")

#send encrypted tokens to server

for i in authenticators:

l = len(i)

sent = 0

s.send("AUTHBEGIN")

while(l>0):

b = s.send(i[sent:])

sent = sent+b

l = l-b

s.send("AUTHFINISH")

s.send("END")

status = s.recv(3)

#receive authentication or failure message

if(status=="YES"):

59

A.3. AUTH.PY APPENDIX A. SOURCE CODE

globalui.global_note(u"Authenticated")

c = ’’

while 1:

data = s.recv(1024)

c = c + data

if(re.search("END$", c)):

break

c = re.sub("ˆSTART", "", c)

c = re.sub("END$", "", c)

print "c = " + c

password = rsa.decrypt(c, priv)

print "password = " + password

globalui.global_note(u"Password: " + password)

else:

globalui.global_note(u"Access Denied")

A.3 auth.py

#!/usr/bin/python

import pickle

import random

import re

import rsa

import socket

server_privkey_file = open("./keys/server_privkey")

server_privkey = pickle.load(server_privkey_file)

keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

words_file = open("/usr/share/dict/words")

60

A.3. AUTH.PY APPENDIX A. SOURCE CODE

words = words_file.read()

list = words.rsplit("\n")

HOST = ’’

PORT = 9000

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

while 1:

#accept connection

conn, addr = s.accept()

print ’Connected by’, addr

c = ’’

#receive all tokens

while 1:

data = conn.recv(1024)

c = c + data

if(re.search("END$", c)):

break

authenticators=[]

c = re.sub("ˆSTART", "", c)

c = re.sub("END$", "", c)

finished=0

while(finished==0):

c = re.sub("ˆAUTHBEGIN", "", c)

m = re.search("AUTHFINISH", c)

authenticators.append(c[:m.start()])

c = c[m.end():]

if(not re.search("ˆAUTHBEGIN", c)):

61

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

break

for i in authenticators:

#decrypt tokens, then verify signatures

#if successful send authentication else send failure message

m = rsa.decrypt(i, server_privkey)

match = re.search(" ", m)

t1 = m[:match.start()]

m = m[match.end():]

match = re.search(" ", m)

n1 = m[:match.start()]

m = m[match.end():]

v = rsa.verify(m, keyring[n1])

match = re.search(" ", v)

t2 = v[:match.start()]

n2 = v[match.end():]

conn.send("YES")

password = list[random.randint(1,len(list))]

c = rsa.encrypt(password, keyring[n2])

c = "START" + c + "END"

conn.send(c)

conn.close()

A.4 hashchain.py

import globalui

import md5

import pickle

import re

import rsa

import socket

62

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

#Load data structures from files

mynumberfile = open("e:/mynumber")

mynumber = pickle.load(mynumberfile)

privfile = open("e:/privkey")

priv = pickle.load(privfile)

serverpubfile = open("e:/server_pubkey")

serverpub = pickle.load(serverpubfile)

#connect to server and receive hash secrets

HOST = ’server.crasseux.com’

PORT = 9001

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send(mynumber)

c = ’’

while 1:

data = s.recv(1024)

c = c + data

if(re.search("END$", c)):

break

c = re.sub("ˆSTART", "", c)

c = re.sub("ˆBEGIN_EXPIRY", "", c)

m = re.search("FINISH_EXPIRY", c)

se_ciph = c[:m.start()]

c = c[m.end():]

c = re.sub("ˆBEGIN_SECRETS", "", c)

63

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

m = re.search("FINISH_SECRETS", c)

s_ciph = c[:m.start()]

c = c[m.end():]

c = re.sub("ˆBEGIN_HASH_COUNTER", "", c)

m = re.search("FINISH_HASH_COUNTER", c)

hc_ciph = c[:m.start()]

globalui.global_note(u"1/6 Decrypting Expiry Date")

se_sign = rsa.decrypt(se_ciph, priv)

globalui.global_note(u"2/6 Verifying Expiry Date")

se_string = rsa.verify(se_sign, serverpub)

secrets_expiry = pickle.loads(se_string)

globalui.global_note(u"3/6 Decrypting Secrets")

s_sign = rsa.decrypt(s_ciph, priv)

globalui.global_note(u"4/6 Verifying Secrets")

s_string = rsa.verify(s_sign, serverpub)

secrets = pickle.loads(s_string)

globalui.global_note(u"5/6 Decrypting Counters")

hc_sign = rsa.decrypt(hc_ciph, priv)

globalui.global_note(u"6/6 Verifying Counters")

hc_string = rsa.verify(hc_sign, serverpub)

hash_counter = pickle.loads(hc_string)

se_file = open("e:/secrets_expiry", "w")

s_file = open("e:/secrets", "w")

hc_file = open("e:/hash_counter", "w")

64

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

pickle.dump(secrets_expiry, se_file)

pickle.dump(secrets, s_file)

pickle.dump(hash_counter, hc_file)

h_file = open("e:/hashes", "w")

hashes = {}

for i in secrets:

h=[]

cur = md5.new()

cur.update(secrets[i])

h.append(cur.hexdigest())

for j in range(1,101):

cur = md5.new()

cur.update(h[j-1])

h.append(cur.hexdigest())

hashes[i] = h

pickle.dump(hashes, h_file)

A.5 hashtoken.py

import e32

import globalui

import logs

import messaging

import os

import pickle

import re

import rsa

import socket

import time

65

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

#Load data structures from files

mynumberfile = open("e:/mynumber")

mynumber = pickle.load(mynumberfile)

pubfile = open("e:/pubkey")

privfile = open("e:/privkey")

pub = pickle.load(pubfile)

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)

friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)

btfile = open("e:/bt")

bt = pickle.load(btfile)

hc_file = open("e:/hash_counter")

hash_counter = pickle.load(hc_file)

hc_file.close()

se_file = open("e:/secrets_expiry")

secrets_expiry = pickle.load(se_file)

s_file = open("e:/secrets")

secrets = pickle.load(s_file)

h_file = open("e:/hashes")

hashes = pickle.load(h_file)

#Check for daylight savings time

if(time.daylight == 1):

t = time.time() + time.altzone

else:

t = time.time() + time.timezone

66

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

btwait = {}

for i in bt.keys():

btwait[i] = 0;

def send_calls():

global t

#get new calls (new since last time we processed them)

if(time.daylight == 1):

cin = logs.log_data_by_time(’call’, t, time.time()

+ time.altzone, mode=’in’)

cout = logs.log_data_by_time(’call’, t, time.time()

+ time.altzone, mode=’out’)

else:

cin = logs.log_data_by_time(’call’, t, time.time()

+ time.timezone, mode=’in’)

cout = logs.log_data_by_time(’call’, t, time.time()

+ time.timezone, mode=’out’)

for i in range(0,len(cin)):

for number in keyring.keys():

#send hash token if there is an incoming call from a friend

s = number[2:]

if(re.search(s, cin[i][’number’])):

message = "hashtoken"

+ hashes[number][hash_counter[number]]

+ " " + hash_counter[number]

+ "hashtoken"

hash_counter[number]=hash_counter[number]-1

hc_file = open("e:/hash_counter", "w")

pickle.dump(hash_counter, hc_file)

hc_file.close()

67

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

messaging.sms_send(number, message)

t = cin[i][’time’] + 1

for i in range(0,len(cout)):

for number in keyring.keys():

#send hash token if there is an outgoing call to a friend

s = number[2:]

if(re.search(s, cout[i][’number’])):

message = "hashtoken"

+ hashes[number][hash_counter[number]]

+ " " + hash_counter[number]

+ "hashtoken"

hash_counter[number]=hash_counter[number]-1

hc_file = open("e:/hash_counter", "w")

pickle.dump(hash_counter, hc_file)

hc_file.close()

messaging.sms_send(number, message)

t = cout[i][’time’] + 1

def send_bluetooth():

for i in bt.keys():

#skip this iteration if we didn’t see the peer recently

if(btwait[i] != 0):

btwait[i] = btwait[i] - 1;

else:

try:

measure handshake time repeatedly

t1 = time.clock()

b = socket.bt_obex_discover(bt[i])

del b

t2 = time.clock()

68

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

b = socket.bt_obex_discover(bt[i])

del b

t3 = time.clock()

b = socket.bt_obex_discover(bt[i])

del b

t4 = time.clock()

b = socket.bt_obex_discover(bt[i])

t5 = time.clock()

if all times low assume peer is near

and send hash token

if(((t3-t2) < 0.06) and ((t4-t3) < 0.06)

and ((t5-t4) < 0.06)):

globalui.global_note(u"Device in range.")

q = globalui.global_query(u"Send token to "

+ friends[i] + "?", 15)

if(q==1):

print "Generating token."

print "Here"

number = str(i)

print number

message = "hashtoken"

+ hashes[number][hash_counter[number]]

+ " " + str(hash_counter[number])

+ "hashtoken"

print "Token Generated"

hash_counter[number]=hash_counter[number]-1

hc_file = open("e:/hash_counter", "w")

print "Counter Updated"

pickle.dump(hash_counter, hc_file)

69

A.6. HASHAUTHENTICATE.PY APPENDIX A. SOURCE CODE

hc_file.close()

print "Writing temp file"

messagefile = open("e:\\message.txt", "w")

messagefile.write(message)

messagefile.close()

print "Sending token."

socket.bt_obex_send_file(b[0],b[1].values()[0],

u"e:\\message.txt")

del b

print "Token sent."

os.remove("e:\\message.txt")

btwait[i] = 10

elif(q==0):

btwait[i] = 6

except:

print "Device out of range."

btwait[i] = 0

while(1):

send_calls()

send_bluetooth()

e32.ao_sleep(10)

A.6 hashauthenticate.py

import globalui

import inbox

import os

import pickle

import re

import rsa

70

A.6. HASHAUTHENTICATE.PY APPENDIX A. SOURCE CODE

import socket

import time

#Load data structures from files

mynumberfile = open("e:/mynumber")

mynumber = pickle.load(mynumberfile)

privfile = open("e:/privkey")

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)

serverpubfile = open("e:/server_pubkey")

serverpub = pickle.load(serverpubfile)

friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)

tokens=[]

authenticators=[]

i = inbox.Inbox()

m = i.sms_messages()

tb = "ˆhashtoken"

te = "hashtoken$"

total = 0;

#count the number of hash tokens in the sms inbox

for j in m:

t = i.content(j)

if(re.search(tb, t) and re.search(te, t)):

total = total+1

count = 0

for j in m:

t = i.content(j)

71

A.6. HASHAUTHENTICATE.PY APPENDIX A. SOURCE CODE

#encrypt hash tokens for the server

if(re.search(tb, t) and re.search(te, t)):

count = count + 1

t = re.sub(tb, "", t)

t = re.sub(te, "", t)

a = i.address(j)

for k in friends:

if(re.search(a, friends[k])):

n = k

t2 = str(n) + " " + t

globalui.global_note(u"" + str(count) + "/" + str(total)

+ " Encrypting")

auth = rsa.encrypt(t2, serverpub)

authenticators.append(auth)

HOST = ’server.crasseux.com’

PORT = 9002

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

#send encrypted tokens to server

s.send("START")

for i in authenticators:

l = len(i)

sent = 0

s.send("AUTHBEGIN")

while(l>0):

b = s.send(i[sent:])

sent = sent+b

l = l-b

s.send("AUTHFINISH")

72

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

s.send("END")

status = s.recv(3)

#receive authentication or failure message

if(status=="YES"):

globalui.global_note(u"Authenticated")

c = ’’

while 1:

data = s.recv(1024)

c = c + data

if(re.search("END$", c)):

break

c = re.sub("ˆSTART", "", c)

c = re.sub("END$", "", c)

print "c = " + c

password = rsa.decrypt(c, priv)

print "password = " + password

globalui.global_note(u"Password: " + password)

else:

globalui.global_note(u"Access Denied")

A.7 hashsecrets.py

#!/usr/bin/python

import os

import pickle

import rsa

import socket

import time

#generate hash secrets

73

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

def setup_hashchain(number):

def new_secrets():

secrets_expiry = time.time() + 2 * 24* 3600

se_file=open("secrets_expiry", "w")

pickle.dump(secrets_expiry, se_file)

se_file.close()

secrets = {}

for i in friends:

secrets[i] = rsa.urandom(32)

s_file = open("secrets", "w")

pickle.dump(secrets, s_file)

s_file.close()

hash_counter = {}

for i in friends:

hash_counter[i] = 100

hc_file = open("hash_counter", "w")

pickle.dump(hash_counter, hc_file)

hc_file.close()

os.chdir(number)

ff = open("friends")

friends = pickle.load(ff)

if(os. access("secrets_expiry", os.F_OK)):

se_file=open("secrets_expiry")

secrets_expiry = pickle.load(se_file)

s_file=open("secrets")

secrets = pickle.load(s_file)

hc_file=open("hash_counter")

74

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

hash_counter = pickle.load(hc_file)

if(secrets_expiry < time.time()):

print "secrets expired"

else:

new_secrets()

os.chdir("..")

print "Done"

setup_hashchain("+15143866409")

setup_hashchain("+15149650900")

server_privkey_file = open("./keys/server_privkey")

server_privkey = pickle.load(server_privkey_file)

keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

#listen for connections from clients

HOST = ’’

PORT = 9001

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

#send hash secrets to client

while 1:

conn, addr = s.accept()

print ’Connected by’, addr

c = ’’

while 1:

data = conn.recv(1024)

c = c + data

75

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

if(len(c)==12):

break

number = c

print number

os.chdir(number)

ff = open("friends")

friends = pickle.load(ff)

se_file=open("secrets_expiry")

secrets_expiry = pickle.load(se_file)

s_file=open("secrets")

secrets = pickle.load(s_file)

hc_file=open("hash_counter")

hash_counter = pickle.load(hc_file)

se_string = pickle.dumps(secrets_expiry)

s_string = pickle.dumps(secrets)

hc_string = pickle.dumps(hash_counter)

se_sign = rsa.sign(se_string, server_privkey)

se_ciph = rsa.encrypt(se_sign, keyring[number])

s_sign = rsa.sign(s_string, server_privkey)

s_ciph = rsa.encrypt(s_sign, keyring[number])

hc_sign = rsa.sign(hc_string, server_privkey)

hc_ciph = rsa.encrypt(hc_sign, keyring[number])

conn.send("START")

conn.send("BEGIN_EXPIRY")

l = len(se_ciph)

sent = 0

76

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

while(l>0):

b = conn.send(se_ciph[sent:])

sent = sent+b

l = l-b

conn.send("FINISH_EXPIRY")

conn.send("BEGIN_SECRETS")

l = len(s_ciph)

sent = 0

while(l>0):

b = conn.send(s_ciph[sent:])

sent = sent+b

l = l-b

conn.send("FINISH_SECRETS")

conn.send("BEGIN_HASH_COUNTER")

l = len(hc_ciph)

sent = 0

while(l>0):

b = conn.send(hc_ciph[sent:])

sent = sent+b

l = l-b

conn.send("FINISH_HASH_COUNTER")

conn.send("END")

os.chdir("..")

conn.close()

A.8 hashauth.py

77

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

#!/usr/bin/python

import pickle

import random

import re

import rsa

import socket

#Load data structures from files

server_privkey_file = open("./keys/server_privkey")

server_privkey = pickle.load(server_privkey_file)

keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

words_file = open("/usr/share/dict/words")

words = words_file.read()

list = words.rsplit("\n")

#listen for connections from clients

HOST = ’’

PORT = 9002

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

#receive encryoted hash tokens from client

while 1:

conn, addr = s.accept()

print ’Connected by’, addr

c = ’’

while 1:

data = conn.recv(1024)

78

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

c = c + data

if(re.search("END$", c)):

break

authenticators=[]

c = re.sub("ˆSTART", "", c)

c = re.sub("END$", "", c)

finished=0

while(finished==0):

if(not re.search("ˆAUTHBEGIN", c)):

break

c = re.sub("ˆAUTHBEGIN", "", c)

m = re.search("AUTHFINISH", c)

authenticators.append(c[:m.start()])

c = c[m.end():]

#decrypt hash tokens and verify signatures

for i in authenticators:

m = rsa.decrypt(i, server_privkey)

print m

match = re.search(" ", m)

t1 = m[:match.start()]

m = m[match.end():]

match = re.search(" ", m)

n1 = m[:match.start()]

m = m[match.end():]

v = rsa.verify(m, keyring[n1])

match = re.search(" ", v)

t2 = v[:match.start()]

n2 = v[match.end():]

conn.send("YES")

79

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

password = list[random.randint(1,len(list))]

c = rsa.encrypt(password, keyring[n2])

c = "START" + c + "END"

conn.send(c)

conn.close()

80

Bibliography

[1] J. Brainard, A Juels, R. Rivest, M. Szydlo and M. Yung, “Fourth-Factor Authenti-

cation: Somebody you know”, CCS’06: Proceedings of the 13thACM conference

on Computer and communications security , pp. 168-178, Alexandria,Virginia, USA,

October 30-November 3 2006,

[2] N. Eagle and A. Pentland, “Eigenbehaviors: IdentifyingStructure in Routine”, Be-

havioral Ecology and Sociobiology, Volume 63, Number 7, pp.1057-1066, May

2009.

[3] C.E. Shannon, “A Mathematical Theory of Communication”, Bell System Technical

Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948.

[4] “Entropy (information theory).” Wikipedia, The Free Encyclopedia. 11 Sep

2009, 15:13 UTC. 7 Oct 2009http://en.wikipedia.org/w/index.php?

title=Entropy_(information_theory)&oldid=313200698

[5] C.M. Thomas. and J.A. Thomas, “Elements of Information Theory 2nd Edition”,

Wiley Series in Telecommunications and Signal Processing,Wiley-Interscience,

Chapter 14, Hoboken, New Jersey, July 2006.

[6] M. Burnett, “Password Trivia: Character Sets”http://xato.com/

passwords/password-trivia-character-sets

[7] M. Burnett, “Perfect passwords: selection, protection, authentication”, Syngress,

Rockland, Massachussetts, 2006.

81

BIBLIOGRAPHY BIBLIOGRAPHY

[8] “Electronic Authentication Guideline” (PDF). NIST.http://csrc.nist.gov/

publications/nistpubs/800-63/SP800-63V1_0_2.pdf Retrieved

October 7 2009.

[9] “Biometrics.”, Wikipedia, The Free Encyclopedia. 8 Oct2009, 18:40 UTC.

11 Oct 2009 http://en.wikipedia.org/w/index.php?title=

Biometrics&oldid=318706649

[10] L. O’Gorman, “Comparing Passwords, Tokens, and Biometrics for User Authenti-

cation”, The Proceedings of the IEEE, Vol. 91, No. 12, pp. 2019-2020, December

2003.

[11] “MobileKey (Mobile Authentication Server)”, MobileKey http://www.

visualtron.com/products_mobilekey.htm .

[12] PhoneFactor “Tokenless Two-Factor Authentication”,PhoneFactorhttp://www.

phonefactor.com/how-it-works/overview/ .

[13] M. Hassinen, “SafeSMS - End-to-End encryption for SMS messages.” Proceedings

of the 8th International Conference on TelecommunicationsConTEL 2005, pp. 359-

365, Zagreb, Croatia, June 15-17 2005.

[14] R. Ghosh and M. Dekhil, “I, Me and My Phone: Identity and Personalization using

Mobile Devices”, HP Technical Reports, HPL-2007-184, 2007.

[15] M. Mont, B. Balacheff, J. Rouault and D. Drozdzewski, “On Identity-Aware Devices:

Putting Users in Control across Federated Services”, HP Technical Reports, HPL-

2008-26, 2008.

[16] M. Mont and B. Balacheff, “On Device-based Identity Management in Enterprises”,

HP Technical Reports, HPL-2007-53, 2007.

[17] F. Aloul, S. Zahidi and W. El-Hajj, “Two Factor Authentication Using Mobile

Phones”, IEEE International Conference on Computer Systems and Applications

(AICCSA), pp. 641-644, Rabat, Morocco, May 2009.

82

BIBLIOGRAPHY BIBLIOGRAPHY

[18] “SAASM”, Wikipedia, The Free Encyclopedia. 15 Sep 2009, 15:08 UTC.

14 Oct 2009 http://en.wikipedia.org/w/index.php?title=

SAASM&oldid=314120387

[19] A. Durresi et al., “Secure Spatial Authentication using Cell Phones”, Second Interna-

tional Conference on Availability, Reliability and Security (ARES’07), pp. 543-549,

Vienna, Austria, April 10-13 2007.

[20] A. Das, O.K. Manyam, M. Tapaswi and V. Taranalli, “Multilingual Spoken-password

Based User Authentication In Emerging Economies Using Cellular Phone Net-

works”, SLT 2008: IEEE Spoken Language Technology Workshop2008, pp. 5-8,

Goa, India, December 15-19 2008.

[21] A. Hadid, J. Y Heikkild, 0. Silven and M. Pietikdinen, “Face And Eye Detection

For Person Authentication In Mobile Phones”, ICDSC ’07: First ACM/IEEE In-

ternational Conference on Distributed Smart Cameras 2007,pp. 101-108, Vienna,

Austria, September 25-28 2007.

[22] D.H. Cho, K.R. Park and D.W. Rhee, ” SoftwareReal-time iris localization for iris

recognition in cellular phone”, SNPD/SAWN 2005. Sixth International Conference

on Engineering, Artificial Intelligence, Networking and Parallel/Distributed Com-

puting 2005, and First ACIS International Workshop on Self-Assembling Wireless

Networks, pp. 254-259, Towson University, Maryland, USA, May 23-25 2005.

[23] P. Campisi E. Maiorana M. Lo Bosco A. Neri, “User authentication using keystroke

dynamics for cellular phones”, IET Signal Processing, Volume 3, Issue 4, pp. 333-

341, July 2009.

[24] F. Okumura, A. Kubota, Y. Hatori, K. Matsuo, M. Hashimoto, and A. Koike, ”A

Study on Biometric Authentication based on Arm Sweep Actionwith Acceleration

Sensor”, ISPACS ’06: International Symposium on Intelligent Signal Processing and

Communications 2006. pp. 219-222, Tottori, Japan, December 12-15 2006.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[25] D. Gafurov, E. Snekkenes. and P. Bours, ”Spoof Attacks on Gait Authentication Sys-

tem”, IEEE Transactions on Information Forensics and Security, Volume 2, Issue 3,

Part 2, pp. 491-502, September 2007.

[26] Y. Zheng, D. He, W. Yu and X. Tang, “Trusted Computing-Based Security Archi-

tecture For 4G Mobile Networks”, PDCAT 2005: Sixth International Conference on

Parallel and Distributed Computing, Applications and Technologies 2005, pp. 251-

255, Dalian, China, December 5-8 2005.

[27] A. Ramachandran and N. Feamster, “Authenticated out-of-band communication over

social links”, WOSN’08: Proceedings of the first workshp on Online social networks,

pp.61-66, Seattle, Washington, August 18 2008.

[28] S. Yardi, N. Feamster and A. Bruckman, ”Photo-Based Authentication Using Social

Networks”, WOSN’08: Proceedings of the first workshop on Online social networks,

Seattle, Washington, August 18 2008.

[29] A. Frankel and M. Maheswaran, “Feasibility of a Socially Aware Authentication

Scheme”, CCNC 2009: Consumer Communications and Networking Conference

2009, pp. 1-6, Las Vegas, Nevada, 2009.

[30] B. Soleymani and M. Maheswaran, Social AuthenticationProtocol for Mobile

Phones, SIN09: International Symposium on Social Intelligence and Networking,

pp. 1-7, Vancouver, British Columbia, September 10-12 2009.

[31] S. Ojala, J. Keinanen and J. Skytta, “Wearable authentication device for transpar-

ent login in nomadic applications environment”, SCS 2008: 2nd International Con-

ference on Signals, Circuits and Systems 2008, pp. 1-6, SfaxUniversity, Tunisia,

November 7-9 2008.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[32] A. Itai.and H. Yasukawa, “Footstep classification using wavelet decomposition”,

ISCIT 2007: International Symposium on Communications andInformation Tech-

nologies 2007, pp. 551-556, Darling Harbour, Sydney, Australia, October 17-19

2007.

85

