Social A

uthentication for
Mobi

le Phones

by

Bijan Soleymani

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering

Electrical and Computer Engineering

McGill University
Montreal, Quebec, Canada

(© Bijan Soleymani, 2009-06-10

This Thesisis dedicated to my parents.

Acknowledgement

First of all | would like to express my most sincere gratitdideny supervisor Professor
Muthucumaru Maheswaran for his support, guidance and adkioughout my graduate
research. | would like to thank each and every one of the studehe McGill Advanced
NEtworking Research Lab (ANRL) for their opinions and idelagould also like to thank
my parents for their encouragement throughout my studigdamg there when | needed
them.

Abstract

In this thesis we present a scheme for automating authénticeased on social factors
using mobile phones. We test its feasibility by running dettions on an existing dataset.
We implement two protocols one based on public key infrastme and the other on hash
chains. Then we consider possible threat scenarios.

Web applications such as online banking, online shoppimtg,cand so on, depend
on the user authenticating himself securely. Traditigntdis involves a username and
password and if more security is required an electronicriakeused in addition to this
password. Other than these two “factors” there is also binose such as fingerprints,
retinal scans and voice recognition. Thus the traditiopstiesns use some combination of
these three factors: something you know (passwords), $mmgeyou have (tokens) and
something you are (biometrics).

Recently it has been suggested that a fourth factor: somamanknow also be part of
the authentication process . This technique has been dyplibe problem of emergency
authentication, as a replacement for challenge questiooalis to a help-desk. The idea
is that the user uses a token and pin to authenticate himic&ie user forgets his token,
he can ask a friend who has their token to grant him a temp@asgword. Thus fourth
factor or social authentication is based on the processwéhiag. In this method a user
asks a friend to vouch for them, that is the friend must reaegthe user and then issue
some proof of this recognition, which the user then usesdando the service. In, this
vouching was done explicitly, with the user contacting arid and literally asking for a
vouching code. In this thesis we will use users’ cellphooemutomate this process.

Whenever a user calls a friend, a token will be issued “vauwghfor this contact.

iv

These tokens if obtained in sufficient numbers can then bé tserove that a user is
who he says he is. In addition to this fourth factor we will realse of other means of
authentication. These include a PIN (personal identificetiumber) that must be entered
when validating the “vouching” tokens, possibly fingerpri@cognition and outputs from
other biometric sensors, such as a wrist watch with heggtmanitor, or a shoe with built-
in pedometer. In this case we may want two out of three or foétihese to match before
authenticating the user.

Résumé

Dans cette these nous présentons un systeme d’autatiatide I'authentification basée
sur des facteurs sociaux, utilisant des téléphones emliNous vérifions sa faisabilité en
exécutant des simulations sur un ensemble de donnéesiig Nous mettons en ceuvre
deux protocoles 'une basée sur I'infrastructure a albligiues et l'autre sur les chaines
de hachage. Ensuite, nous considérons les menaces possibl

Les applications Web telles que les services bancairegeea, lles paniers d’achat en
ligne, etc, dépendent de I'authentification de l'utilmaten toute sécurité. Traditionnelle-
ment, ceci néssecite un nom d’utilisateur et un mot de petsEglus de sécurité est requis
un jeton de sécurité est utilisé en plus de ce mot de passenis ces deux facteurs il y
a aussi la biométrie, comme les empreintes digitales, eimgs rétiniennes et la recon-
naissance vocale. Donc les systemes traditionnelsarttlisne combinaison de ces trois
facteurs: quelque chose vous savez (mots de passe), qublose que vous avez (jetons)
et quelque chose que vous étes (biométrie).

Récemment, il a été suggéré qu’une quatrieme factquelgu’un vous connaissez
fases aussi partie du processus d’'authentification. Cettentque a été appliquée au
probleme de I'authentification d’urgence, comme un regi@ent pour les questions de
défi ou les appels a un centre d’assistance. Lidée est’gtigsateur utilise un jeton
électronique et un NIP pour s’authentifier. Si l'utilisat@ublie son jeton, il peut deman-
der a un ami qui a son jeton de lui accorder un mot de passeotaimg Ainsi le qua-
trieme facteur ou authentification sociale est fondéeusuyprocessus d’attestation. Dans
cette méthode, un utilisateur demande a un ami a se pggatant pour lui, cet ami doit
reconnaitre I'utilisateur et lui livrer une preuve de eattconnaissance, que l'utilisateur

Vi

utilise ensuite pour se connecter au service. En ce casdtation a été fait de maniere
explicite, l'utilisateur devant contacter un ami et demamnecbde temporaire verbalement.
Dans cette these, nous utiliserons des télephonedaissiafin d’automatiser ce proces-
Sus.

Chaque fois qu'un utilisateur appelle un ami, un jeton seralip comme attesta-
tion de ce contact. Ces jetons si ils sont obtenus en nomiffisasus peuvent alors
étre utilisés pour prouver que l'utilisateur est bienucgju’il prétend étre. En plus de
ce quatrieme facteur on fera appel a d’autres moyens ltkatification. |l s’agit no-
tamment du code NIP (Numero d’ldentification Personnell@)dpit étre entré lors de
la validation avec les jetons d’attestation et possiblart@ereconnaissance d’empreintes
digitales et d’autres signaux en provenance de capteunsébimues, comme une montre
avec cardio-frequencemetre, ou des chaussures avemptr@antégré. Dans ce cas, hous
voulons vérifier deux sur trois ou deux sur quatre de cesi@sravant I'authentification
de l'utilisateur.

vii

Contents

Acknowledgement
Abstract

Résumé

LIST OF ACRONYMS

1 Introduction
1.1 Fourth Factor Authentication
1.2 Motivation. e
1.3 ContributionoftheThesis
1.4 OutlineoftheThesis

2 Background
2.1 Passwords e

Vi

Xii

2.1.1 Password Randomness e

2.1.2 PasswordLength
2.1.3 CharacterDiversity
214 BruteForceAttack Lo
2.1.5 Password Cracking Beyond Bruteforce
2.2 Security TOKENS e
2.3 BIOMEtricS

2.4 Relative Strengths and Weaknesses of Passwords,
Security Tokens and Biometrics

3 Mobile Social Authentication
3.1 Mobile Phone as
Authenticator
3.1.1 Authenticating through the Mobile Network
3.1.2 MobilePhoneasToken.
3.1.3 Network and Token Authentication
3.1.4 Location Based Authentication.
3.1.5 Mobile Biometrics
3.2 Social Network
asFourthFactor
3.3 Social Authentication
onMobilePhones

4 Proposed Scheme
4.1 Social Authentication L L L
4.1.1 Obtaining Vouching Tokens
4.1.2 AuthenticationUsingTokens
4.2 Supplementary Factors

5 Simulation on Reality Mining Dataset

6 Implementation
6.1 IssuingTokens e
6.2 Using Tokensto Authenticate
6.3 Hash Chain Implementation
6.4 PythonModules
6.4.1 Sending Tokens: sendtoken.py
6.4.2 Client Authentication: authenticate.py

7

6.4.4 Establish Shared Secrets: hashchain.py 39
6.4.5 Hash-based Tokens: hashtoken.py and hashauthemgica . . . 40
6.4.6 Hash-based Server: hashsecrets.py and hashauth.py 40
Implementation Results 42
7.1 BatteryLife 42
7.1.1 Public-key cryptography and batterylife 42
7.1.2 Bluetooth scanning and battery life 43
7.2 Estimating Bluetooth
Distance 44
Threat Scenarios 46
8.1 Intruderdoes nothavephone.. 46
8.2 Intruderhasphone 46
8.2.1 Returnphoneandsnoop a7
8.2.2 Keep phone and gettokensdirectly 7 4
8.3 Stealing multiplephones oL 48
8.4 Once the intruder
hasenoughtokens 49
Conclusion 50
9.1 Directionsfor Future Research 51
Source Code 53
A.l sendtoken.py 53
A.2 authenticate.py 57
A3 auth.py 60
A.4 hashchain.py 62
A.5 hashtoken.py 65
A.6 hashauthenticate.py 70

6.4.3 Authentication Server: auth.py 39

A.7 hashsecrets.py
A.8 hashauth.py .

Bibliography

Xi

List of Acronyms

APl Application Programming Interface
CPU Central Processing Unit

FMR False Matching Rate

GPS Global Positioning System

HMAC keyed-Hash Message Authentication Code
MAC Media Access Control

MD5 Message-Digest algorithm 5

PGP Pretty Good Privacy

PIN Personal Identification Number
PKI Public Key Infrastructure

SHA1l Secure Hash Algorithm 1

SIM Subscriber Identity Module

SMS Short Messaging Service

TPM Trusted Platform Module

USB Universal Serial Bus

Xii

List of Figures

4.1

5.1
5.2
5.3
5.4
5.5

6.1

Process of Obtaining Tokens 24
DayswithData

Days Authenticatedby Calls 29
Days Authenticated by Callsand BT 30
Probability of Authentication vs Tokens Required 31
Probability of Authentication vs Token Duration 31
Using Tokens to Authenticate 34

Xiii

Introduction

Web applications such as online banking, online shoppingcand so on, depend on the
user authenticating himself securely. Traditionally thi®lves a username and password
and if more security is required an electronic token is useaddition to this password.
Other than these two “factors” there is also biometricshaagfingerprints, retinal scans
and voice recognition. Thus the traditional systems useescombination of these three
factors: something you know (passwords), something yoe lfeokens) and something
you are (biometrics).

Each of these factors has its advantages and disadvantegesxample, memorized
passwords can't be stolen, but may end being weak due tantlitations on the password
length and complexity that can be memorized.

1.1 Fourth Factor Authentication

Recently it has been suggested that a fourth factor: somemnknow also be part of the
authentication process [1]. J. Brainard et al. have apphisctechnique to the problem of
emergency authentication, as a replacement for challemggtigns or calls to a help-desk.
The idea is that the user uses a token and pin to authenticaselfi If the user forgets
his token, he can ask a friend who has their token to grant tnheamporary password.
Thus fourth factor or social authentication is based on thegss of vouching. In this
method a user asks a friend to vouch for him, that is the frrandt recognize the user and

1.2. MOTIVATION CHAPTER 1. INTRODUCTION

then issue some proof of this recognition, which the usar tiges to log in to the service.

1.2 Motivation

Fourth factor authentication has several advantages aetwrs used for authentication.
The main advantage is that attacks are detectable by theRaserxample if a user receives
many vouching requests from people they do not know or regzeghey can report the
incident. This security is achieved at the expense of minorégular disturbance to the
user.

In [1], the vouching was done explicitly, with the user cantilag a friend and literally
asking for a vouching code. In this thesis we will use useefipbones to automate this
process, thus reducing the burden on the user. Whenever ealisea friend, a token will
be issued “vouching” for this contact. These tokens if algdiin sufficient numbers can
then be used to prove that a user is who he says he is.

While this process is automated, in order to increase ggdarour implementation,
the user is prompted to confirm Bluetooth sightings, andrgttie option of not issuing a
token after a phone conversation if he doesn’t recognizetier party.

In addition to this fourth factor we will make use of other mesaf authentication.
These include a PIN (personal identification number) thadtrha entered when validating
the “vouching” tokens, possibly fingerprint recognitiordasutputs from other biometric
sensors, such as a wrist watch with heart-rate monitor, oa with built-in pedometer.
In this case we may want two out of three or four of these to mha&fore authenticating
the user.

1.3 Contribution of the Thesis

The contribution of this Thesis is the development of a d@ithentication system on mo-
bile phones based on the users’ phone conversations antb8ineightings. A protocol

1.4. OUTLINE OF THE THESIS CHAPTER 1. INTRODUCTION

is proposed and tested using simulations on cellphone Idgsoftware system imple-
menting this protocol is written in pys60 (Python for Symbgystem 60) and is tested on
Bluetooth enabled cellphones.

Encrypted messages, “tokens”, are generated and usedue hrat the phone con-
versations and Bluetooth sightings took place at specifireds. Two interchangeable
methods are proposed for ensuring the security and authtgrdf these messages. One
method uses public key infrastructure (PKI) and the othguleys hash chains.

Conversation duration is analyzed to determine whetheuske has actually talked to
an acquaintance (ruling out wrong numbers and impostens)la8ly, Bluetooth distance
is determined based on an indirect measurement of sigealgttr, and is used to eliminate
out-of-sight Bluetooth devices.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2pdbent the required back-
ground on the traditional authentication factors. Chapteill review some of the related
work. In Chapter 4, we will outline the details of our propdseheme. In Chapter 5,
we will test its feasibility by running simulations on datarn the Reality Mining project
from MIT [2]. The implementation of our authentication textue will be explained in
detail in Chapter 6. In Chapter 7 we will present the resultdhe implementation. In
Chapter 8 we will examine the possible threat scenarios.cdhelusion will be presented
in Chapter 9.

Background

As previously stated the three traditional factors usedatdhentication are: Passwords,
Security Tokens and Biometrics. They correspond to thegoaies: something you know,
something you have and something you are respectively. Marently a new factor
(someone you know) has been proposed as a fourth authéntiattor. The following is

a survey of these techniques, followed by a comparison af strengths and weaknesses.
Social or Fourth factor authentication is considered mahy fn Section 3.2 of the next
chapter.

Although we consider these factors in the context of autethatithentication to com-
puter systems, the use of these factors for authenticatemages the information age.

Passwords (watchwords) were employed in the Roman militelhne watchword for
the night was distributed from the commander to a soldier gdne it to the leader of the
first unit, who then gave it to the leader of the second und,smon until it got to the last
unit, which would transmit it back to the tribunes, who cotlids ensure that the leader of
each unit had the correct watchword.

Keys a mechanical equivalent of Security Tokens, were uséldd form of wooden
keys as early as 4000 years ago in Egypt.

Biometrics in the form of face recognition has existed sipghistoric times. Finger-
prints have been used for identification as early as 1900 EBabylon, to identify parties
in a contract. The parties would impress their fingerprim$h® clay tablets on which the
contract had been written.

2.1. PASSWORDS CHAPTER 2. BACKGROUND

While social authentication is a new concept in computetesys, human authentica-
tion based on mutual acquaintances is not new. An examplaistthe requirement for
two references when applying for a passport.

2.1 Passwords

A password is a secret string that is used for authenticafitiey are the most common
authentication factor in computer systems, due to theirdogt and ease of use. They
require no special hardware, and the only burden placedeounstér is that of remembering
and typing a relatively short string.

2.1.1 Password Randomness

The security of a password system depends on creating a pastvat an attacker can'’t
predict or guess. The predictability of a password is indgrproportional to its random-
ness. Randomness implies unpredictability, uniquenedseaen distribution. In 1948
Shannon introduced the notion of entropy as a measure oédigability or uncertainty[3].
The entropy is defined as:

Where p(xi) is probability of xi. It can be shown that the nraxim entropy of an event
(source) with n outcomes (letters) is logb(n) and is acldewvben the source letters are
equiprobable. “Equivalently, the Shannon entropy is a nmeasf the average information
content one is missing when one does not know the value ofahdom variable.”[4]
Shannon showed that in the limit, the average length of tlogtast representation of
the message in a given alphabet is its entropy divided byadparithm of the number of
symbols in that alphabet.

A closely related concept is that of Kolmogorov complexityhe Kolmogorov com-
plexity of a string is defined as the length of the smallesgmm that can generate that
string. The Kolmogorov complexity K is approximately eqt@the Shannon entropy H
if the sequence is drawn at random from a distribution thatdmropy H.

2.1. PASSWORDS CHAPTER 2. BACKGROUND

This notion of complexity corresponds to descriptive coemfiyy or program length.
There is also a notion of computational complexity or timenptexity. The first relates
to the length of the program required to generate the stringje the second relates to
the amount of time or the number of computations requiredettecate that string. For
example given “n” the size of the program required to gemesastring of n repeated
zeroes is constant and does not depend.on n. Similarlyzbe§the program required to
generate the n first digits of pi is also constant. Howeverctmputational complexity of
generating the digits of pi is much greater than that of geivay the string of zeroes.[5]

In order to ensure that a password is secure against padigg want to ensure that it
has a high entropy or equivalently a high complexity. This loa done through three main
means: using a random source of information (or a source twélrandom properties),
increasing the number of characters in the password angdsitrg the size of the alphabet
used.

2.1.2 Password Length

Logically the longer a password, the harder it is to guesss iBrbecause there are more
possible combinations of characters to go through. It aeots reasonable to assume that
the longer a password the harder it will be for the user to rebex. However this is not
exactly true. Itis true that a longer password will be hatdeemember if it is as random
as the shorter password (that is to say it has the same perctéraentropy). That need
not be the case. The password could have less entropy perctérabut the increase in
the number of characters could still result in a similar allegntropy. For example the
password r$T56? Is 6 characters long with characters dramtiomly from a set of 94
characters (26 lowercase +26 uppercase +10 digits + 32 ymtiar and symbols) results
in an entropy of 10g2(94)*6=39.3 bits. The password: “trleubjections person” consists
of 24 letters drawn from words of the English language. Thglish language is said to
have an entropy of 1.5 bits per letter, which would give amestied entropy of 24*1.5
= 36 bits. However this is for text that forms part of a meafuhgentence, where the
correlation between the words would be higher. Thus we wexfict the entropy of this

2.1. PASSWORDS CHAPTER 2. BACKGROUND

combination of these three random words to be slightly higiAdternatively using the
fact that there are 100000 words in a common dictionary onddvarrive at an entropy
of log2(100000)*3 = 34.54 bits if the attacker knows thatakathree words are used.
Entropy can be increased significantly if random lettersshiited to uppercase, omitted
or substituted for one another. In any case this passwortblzaply much easier to re-
member, while its entropy is similar to short random one. SThus almost as hard to
predict, guess or hack.

Another advantage of this type of password, which we couiel t® as a passphrase,
is that it is easier to type. It is much easier and quicker pe@tyords than to type truly
random characters. However this only applies to computgbdads and not to other
input methods such as the entry pad on a cellphone, whereaglaitonal character can
resultin up to 4 or even 5 key presses.

2.1.3 Character Diversity

Adding more letters to the alphabet used to generate a padsisn makes it harder
to guess, since there are more possibilities for pickindhedmaracter of the password.
This is the motivation behind the policies in place in manggveord systems that require
passwords that contain several different classes of cteaisae.g., lower case and upper
case letters, numbers and symbols.

In practice most passwords in use (about 60%) contain omgrcase letters. This
reduces the entropy of the password at most to log2(26*ngrevim is the number of
characters. Even worse nearly 10% of password contain amhbers giving an entropy of
log2(10*n). The next most commonly used combination is lmase letters and numbers
(most often a word followed by digits). This account for ab®b% of passwords. Almost
all the remaining 5% of passwords use lowercase, uppercasewumbers. Finally a tiny
fraction (0.1%) use symbols. [6][7]

A 4 character password drawn from all 94 printable charagteabout as strong as an
8 digit numerical password, since 8*log2(10) = 26.6 bit whitlog2(94)=26.2 bit.

Of course character diversity is problematic on a cellphoeeause the input system

2.1. PASSWORDS CHAPTER 2. BACKGROUND

(keypad) is very limited.

2.1.4 Brute Force Attack

The simplest form of attack against password is a brute fatteek. This attack tries every
possible passwords combination. The number of attemptsssacy to crack a password
is on the average” /2 where c is the number of letters in the alphabet and n is théoeum
of characters in the password. However the attacker is gtesd to succeed after at most
¢ attempts.

The fastest current computer CPUs can perform about 100rbdlperations per sec-
ond. Assuming that 1000 operations are necessary per pakshweck this mean that a
single computer could check:

100, 000, 000, 000/1000 * 3600 * 24 * 365 = 3,153, 600, 000, 000, 000 = 2°1.5

passwords per year. Thus a 51 bit long password could beedtacla year. It would take
6000 such computers to crack a 64bit password in a year. Fopa&oson a password, if
randomly chosen and using 94 the possible printing chasabtes an entropy of 52 when
8 characters long, 58 when 9 characters long and 65.5 whehat@aters long. A typical
lowercase only password when 14 characters long has arpgraf®5.8 bits. Therefore
to be fully secure we would require passwords with even hightropy. This means either
using characters beyond the printable character set drefumcreasing the length of the
password. Both of these present difficulties to the user. tgrosolution would be to
change passwords more often, therefore thwarting the haeikeempts. However even
if users change their password every month this would gigehticker a 10% chance per
month of cracking the password. Which would result in-a(1—0.1)!2 = 71% chance of
cracking the password in one year. Even continuously cimgritje password still results
ina 1-1/e=63.2% chance of break in.

The above refers to randomly generated passwords, we hauenad that each of
the 94 characters is equally likely to occur and each lestehbsen independently of the

2.1. PASSWORDS CHAPTER 2. BACKGROUND

others, however in the case of human generated passwosdss thot the case and the
entropy is much less. People have a preference for choositajrc characters more often
(lower case, numbers) and also to choose dictionary wordbathdates. According to
one estimate a typical human generated password would Haiteaf entropy for the first
characters, 2 bits each for the next 7, 1.5 bits each for tkelfeand 1 bit each for any
character beyond. Therefore this would require a 48 charémg password to ensure 64
bits of entropy.[8] This is too long to comfortably type andipably too long to remember
correctly. Of course for an attacker to be able to take adggnof the low entropy requires
him or her to use an intelligent search rather than brutefancorder to take advantage of
this statistical information.

Of course all this only applies if the attacker can perforragweord checks offline. If
the attacker must attempt using the passwords through shersytself the rate or number
of trials can be limited. In that case well-chosen passwardsrelatively secure. For
example many bank PINs are only 4 digits long. However dubedact that the user has
only 3 attempts before the card is “eaten” by the machinedbesn’t present much of a
problem.

However in the case of offline password cracking, it seemtsgfilran the likely future
increase in computing power, passwords will need to be s@tmaas to be unusable in
their current form.

2.1.5 Password Cracking Beyond Bruteforce

Smarter methods of cracking passwords involve either gugss dictionary attacks. In
guessing the attacker uses personal information aboutitkienwto construct passwords
that the user is likely to use: birthdate, birthplace, Ieeplate number, family member’s
name, and so on. They may also try a list of common passwdrdsr{bst common 500
passwords account for over 10% the total).

Dictionary attacks involve using dictionary words and siengombinations of dictio-
nary words and numbers. This works because a significant euaflpasswords involve
a single dictionary words plus some trailing digits, in maages simply the digit '1".

2.2. SECURITY TOKENS CHAPTER 2. BACKGROUND

2.2 Security Tokens

A security token is a piece of hardware that authenticatesitier, when the user tries to
access a service and allows access to the system.

Generally there are three types of tokens: static passw&ydshronous dynamic pass-
words and asynchronous passwords also known as challesyyanse.

The static password token is simply an aid to the use of paslswdhe token stores
the user’s password and allows for the use of passwords thdbager than what a user
can memorize or comfortably type.

Dynamic synchronous tokens generate a temporary pass\aeedilon the time. This
time needs to be synchronized between the token and the.séhese tokens contain a
secret similar to that stored on password tokens. This sisansed along with the time to
generate the temporary password. Since this secret iscedta the token, only someone
who has access to the token can create the proper password.

Asynchronous tokens generate a password based on a clalfengthe authentica-
tion server. The server sends a random string to the tokemtden uses this string and
a secret contained in the token, to generate a password. avbids the need for time
synchronization.

In order to be secure the token must contain a unique se@aeistmot accessible,
so that it can’t be replicated. In the case of static passwakens it is not possible to
restrict access to the secret since it needs to be trandrditectly to the server as part of
authentication. Also it is not possible to restrict accessmimplementing synchronous or
asynchronous password tokens on a general purpose corrgsautiee secret will be stored
on disk or in memory. The solution is to use a TPM (Trustedf®at Module), which is a
chip dedicated to storing secret keys and carrying out ogfaiphic operations. Thus the
secret can remain in the TPM which carries out the operatiecgssary to generate the
temporary password.

Currents cellphones typically do not contain TPM modulesisTmeans that using
them as security tokens leaves the user vulnerable to h#veigkey copied by anyone
with access to their phone.

10

2.3. BIOMETRICS CHAPTER 2. BACKGROUND

Tokens are extremely vulnerable to loss or theft. If auticatibn is based solely on
the token, then anyone who acquires the token can authentacthe system as the actual
user. Therefore tokens are generally used in conjunctitimpésswords or biometrics, in
order to reduce the chances of compromise. In fact many coamhtokens require a PIN
to be entered before use.

The word token in the context of this thesis refers to a pidagata that is used for
authentication. A temporary password (as generated byuaigetoken) is a token in this
sense.

2.3 Biometrics

Biometric authentication is based on using measures of omere physical or behavioural
traits to uniquely identify a user. This includes fingergsinris scans, voice recognition,
signatures, etc. This type of authentication is based denpatecognition. As any recog-
nition problem there is the chance of false acceptance dsel fgjection.

Since the risks of false acceptance are generally greaartiose of false rejection,
usually systems are designed such that the probabilityled facceptance is much lower
than that of false rejection. For example several bankspadase palm vein or finger
vein authentication. Palm vein authentication as develdpeFujitsu has a false accep-
tance rate of 0.01177% and a false rejection rate of 4.23%geFivein authentication as
developed by Hitachi has a false acceptance rate of 0.010@% #&alse rejection rate of
1.26%. [9]

The main problem with biometric authentication is that kelpasswords or tokens
they are not cancelable or reissuable. Once a biometricisrabmpromised there is no
way to issue new biometric credentials. This is a serioublpro because most biometrics
are not secret. For example it is possible to retrieve a p&rs$mgerprint without their
knowledge.

Also biometrics cannot be used remotely unless the cliertviere is secured. This
is because if compromised the client hardware can recortitimeetric scans and replay

11

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

them at a later time.

2.4 Relative Strengths and Weaknesses of Passwords, Se-
curity Tokens and Biometrics

Passwords’ main advantage lies in their secrecy. This israost perfect defence against
theft. However this is assuming memorization, and doegptyaif the user writes down
their password. The main drawback of passwords is that ieral be secure against
search they need to be relatively long. This is particuldififcult for the user when they
have multiple accounts with different passwords.

Besides this the main shortcomings of password are thatdhewt provide compro-
mise detection nor defence against repudiation.

Compromise detection would mean that the user would knownvtiheir password is
stolen. However unless the user notices odd activity om #ugiount there is no indication
that another individual has the password, because the pegsan be stolen without
physically taking anything. For example even if a passwsngritten on a piece of paper,
the thief can simply copy the password and leave the piecepépintact. Or someone
can use a keylogger or even a device as simple as a cameratd tke user’s password
as it is typed.

Non-repudiation is the ability of the system to prove that frerson accessing the
system or requesting a transaction is in fact the user ligtise$ preventing the user from
denying that they carried out a given action (repudiate)ssi®ard do not provide this
guarantee, because anyone who has the password can cathabattion. It does not
follow that the user willingly gave up their password, it magve been compromised
without their knowledge and against their will.

Security tokens’ main advantage lies in both strength agamarch attacks and excel-
lent compromise detection.

They are secure against search attacks because theirsseanebe arbitrarily long,
since they need not be memorized by the user. Of course thehsgzace is reduced in the

12

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

case where the user has to manually type the dynamic pasg@ostated by the token.
This due to the length of the temporary password being lems ifheal, because of the
cumbersomeness of typing such a long string. This is solydthking the token transmit
the temporary password through USB or Bluetooth.

They offer excellent compromise detection since their Wadde detected by the user
as soon as they try to log in to the system. Of course this asstimat the token’s secret
cannot be copied. If it can (as is the case with static pasttaens), the token presents
all the problems of a password written on a piece of paper.

However they are extremely vulnerable to theft. As anyone adquires the will have
full access to the user’s account. For this reason, in m@atbkens are almost never used
without a second form of authentication.

Like password, security tokens do not provide non-repiuatiaas the user can claim
that the token was stolen.

One final advantage of security tokens is their ability tovpré denial-of-service at-
tacks. In order to prevent brute force searches, many sgdierit the number of login
attempts. If a user incorrectly enters their password muae & given number of times
in a row, then they are blocked from accessing the system. licimas user can simply
make repeated incorrect login requests, until the legiemeer is blocked. What a se-
curity token can do to prevent this is to use its secret foa daigin authentication (e.g.
cryptographically sign the dynamic password). Thus theéesgscan detect whether an
incoming password is generated by the token or not.

Biometrics’ main advantage is their stronger defence agjaepudiation. It is more
difficult for an attacker to forge a biometric trait, thoudhs not impossible. Many bio-
metrics are not secret and can be “stolen”. The main difficidt the attacker lies in
taking this “stolen” biometric sign and interfacing it toetbbiometric reader. In the case
of fingerprints the attacker may have the image of the fingerps obtained taken from a
file or lifted off an object, but fingerprint readers are maalsdan actual fingers. Although
in one case a commercial security door was fooled with aguinersion of a fingerprint
after it had been licked.[9]

13

2.4. RELATIVE STRENGTHS AND WEAKNESSES OF PASSWORDS,
SECURITY TOKENS AND BIOMETRICS CHAPTER 2. BACKGROUND

Biometrics are relatively weak against search attackss iEhdue to the lack of ac-
curacy of the comparison mechanism. While no two fingerprivatve been shown to be
identical. Incorrect matches are common in computer systama have also occurred
in cases involving human experts.[10] We can quantify tek af such an attack as fol-
lows. The probability of an attacker’s randomly guessedywasd being the correct one
is: P(correct guess) = 1/kp where kp is the password’s kegsfthe number of possi-
ble passwords). In biometrics a false match is analogousdarr@ct guess. Thus the
“keyspace” of a biometric system is given by: kb = 1/FMR, sif{false match) = FMR
= 1/kb. Applying this to the finger vein authentication abowes would give a keyspace
of 1/0.01% = 10000.[10] Thus an attacker with a database géfjrints could gain entry
to any user’s account after trying about 10000 differentdmpgnts on average.

Finally biometrics do not provide compromise detection.

As each factor has its strengths and weaknesses, it would sgaise to use more than
one type of authentication in a system. Passwords are saganest theft. Tokens provide
compromise detection. Biometrics provide non-repudmatio

14

Mobile Social Authentication

Our work combines two techniques that have been widely usgarately: using the user’s
mobile phone as an authentication device and using thesusmial network as an authen-
tication factor.

3.1 Mobile Phone as Authenticator

There are normally two ways in which to use a mobile phone dithentication, but both
of them involve the user proving that they are in possessidheodevice. The first is to
use use the mobile network itself for authentication, theosd is to use the phone as a
security token.

In addition to these traditional methods, authenticatiam also be based on location
or biometrics .

Location can be obtained from GPS, cell-tower informatiostatic beacons.

Biometrics that have been found suitable for mobile phonelside: voice recognition,
face recognition, eye (iris) recognition, keystroke paiteand acceleration or gait.

3.1.1 Authenticating through the Mobile Network

Authenticating the user through the mobile network invelegentacting the user at authen-
tication time. This can be achieved by either sending the asme-time code by SMS
[11], or by calling the user and requiring them to enter a PIR] [

15

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

A problem with the first approach is that SMS traffic may be gmab A solution is
to encrypt and possibly sign the SMS messages. There ard’BdtAnd symmetric key
based methods.

The symmetric method is based on a shared password, useddmtea key. This
has the advantage of protecting the user if the phone isnstdehe key is not stored
unencrypted on the phone. It requires software to generkéy &om a password input
by the user and to encrypt/decrypt the data using this keyh®nother hand this limits the
strength of the key.[13]

The PKI based method requires a private key on the phoneetfusalent to treating
the phone as a token.

3.1.2 Mobile Phone as Token

Using the phone as a token usually involves making it carrublig/private key or a
certificate. At authentication time the user is asked to @tbat they have the private key,
thus proving they are in possession of the phone. Howevereasilvsee in Chapter 7,
without a Trusted Platform Module (TPM) that restricts ascé the key, anyone with
access to the phone will be able to read the key and possé#bigfer it to another device.

In [14] the authors propose a scheme whereby a certificagsugd to each phone that
binds a public key to the device’s Bluetooth MAC address.sléxen if an attacker obtains
the user’s certificate it will only work on the phone with thzdrticular MAC address.
However if the attacker can modify his Bluetooth stack toorephe user's MAC address
then the same problem occurs. The solution, securing thet®th stack, is similar in
nature to using a TPM.

The alternative when a TPM is not available is to add anotgerl of encryption by
encrypting the private key with a password. While this adaeeadditional security it has
the shortcoming of allowing an attacker to perform a brutsgattack on this encryption
if they can get the encrypted private key. Thus in that casedlaurity of the system would
be limited to the security of the password.

16

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

With a TPM the phone can be used to securely store the usgpsographic creden-
tials, such as private keys. Thus the phone can provide thatifunality of a smartcard,
saving the user the need to carry an extra piece of hardwaraddition the phone can
provide an interface that helps the user update and managetadentials [15].

A distinction can be made between the device’s identity bhatdf the user [16]. In this
case the user proves their identity through another meagsge@isername and password)
and the private key and certificate prove the identity of tbeick (e.g. the phone). Thus
access can be restricted based on either the user, the dewoth.

3.1.3 Network and Token Authentication

There is at least one proposed system that is a hybrid betinesa two approaches [17].
The idea is to generate a one time password using certainmat@mn unique to the user’s
phone and a PIN number. If this should fail then a one timewastcan be sent to the
user’s phone by SMS.

3.1.4 Location Based Authentication

As its name implies location based authentication invotletermining the user’s location
and making access conditional to it. In this form it is onlyefus when the location is
controlled and physically secure. This would apply to iestd military installations and
server farms. In this case all that is necessary is to deterthie user’s proximity to the
restricted area. This can be done with a trusted hardwas®splaced at the site.

In the general case where the user wants to log in from a tocdhtat is not secure,
this method will not make sense. But we can still make useation information in the
authentication process. But instead of granting accessdbas location, we would deny
access based on location. For example a user might onlysabcesnline bank account
from her home or office, in that case we can deny access fronotligy location. This
would be based on the location reported by their cellphonea thief in addition to having
to steal her cellphone, would also need to be physicallygmtest the user’'s home or office,

17

3.1. MOBILE PHONE AS
AUTHENTICATOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

which is more difficult, and more importantly risky, for tHaef.

Sources of location information can be GPS, celltowersctes and proximity sen-
sors.

GPS based location is mainly available in open areas asutresgjline of sight access
to the satellite signals, although some sensitive GPS dgeViave some reception indoors,
especially near windows. Since GPS is a one way system fe.user's device only
receives satellite signals and computes its locationfjtsetan send fake location infor-
mation. Preventing this requires a trusted or tamper-p@f®$ device. Hacking such a
trusted system would present a difficult challenge, sinceqtiires generating fake GPS
satellite signals from at least 3 sources. Difficult but mopossible for a resourceful at-
tacker. This attack can be prevented by using the antisgpwfiarmation included in the
GPS signal. This information is ignored by civilian usersd aequires an encryption key
that is only available to the defence establishment.[18]

Celltower information gives coarser location informattmrt generally works indoors.
While it does not have global coverage, thus excluding verglror remote users, it usu-
ally covers places where most of the population lives. Stheee is secure bidirectional
communication, the celltower determine the user’s pasiwth high confidence. Faking
location requires cloning the phone’s SIM card.

Beacons provide an alternative to GPS in an indoor enviromniBeing unidirectional
they present the same problems as GPS. However the signaltfi® beacons can be
cryptographically signed preventing a “fake signal” atac

The operation of proximity sensors is the reverse of thedr@acThey receive a signal
from the mobile device. Usually the system will issue a randinallenge to the phone,
which it will forward to the sensor to prove its identity. Athatively the device can send
a signed timestamp to the sensor.[19]

18

3.2. SOCIAL NETWORK
AS FOURTH FACTOR CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

3.1.5 Mobile Biometrics

As in the general case, using biometrics on mobile phondadpasithentication on mea-
surements of one or more of the user’s biological traits. Wdifferent characteris-
tic traits have been proposed for use with mobile phonescevaecognition[20], face
recognition[21], iris recognition[22], keystroke patisf23], arm swing acceleration [24]
and gait[25]. The last two are uniquely applicable to the ireadnvironment.

An important problem that needs to be solved is the provieiaeliable and tamper-
proof biometric scanners on the mobile device. This wowdlwve some combination of a
trusted computing platform and trusted biometric readethBre necessary if we want to
perform matching on the phone itself. Since in this case Hump tells the server that the
biometric matched, the server needs to ensure that thecatioin code has been tampered
with, nor is the biometric input been replayed. Performingteching on the server side
would require only a tamperproof biometric reader. In tlasecthe only thing we need to
prevent is the replay of a previous reading by the devices ¢an be achieved by signing
the reading with a timestamp.[26]

3.2 Social Network as Fourth Factor

It seems that making use of a user’s social network to fatdiauthentication hasn’'t been
explored as fully. This may be because unlike the previoas tais isn’'t a simple exten-
sion of existing techniques and technologies. Rather itderapletely new approach to
computer authentication.

There are two different ways this can be used: one involvetacting the members of
the user’s social network in order to securely authentiteg@iser while the other involves
making use of the user’s account on a social networking siseturely contact members
of the user’s social network.

The first approach is the one proposed in the RSA paper [1]. essribed in the
introduction it involves the user contacting a friend whenhas forgotten his token. The
friend logs in with her own token, requests a “vouching” cddethe user and relays

19

3.3. SOCIAL AUTHENTICATION
ON MOBILE PHONES CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

this to the user, who can use this to log in temporarily. Owragach also falls under

this category. The user obtains “vouching” tokens fromrtirg@nds, whenever they have
a phone conversation or a Bluetooth sighting. And thesenwlkee used to log in. The
important feature of this approach is that the user’s frssgm@ contacted directly (by phone
or Bluetooth), and this contact is used to prove the useestity when logging in to a site

or service.

The second approach contacts the user’s friends througlotie networking site. So-
cial network sites provide peer-discovery (finding friendsd secure messaging (instant
messages). Therefore it is possible to set up a secure coication channel with a friend
by sending them a key through the social network, and usiagkiy to encrypt subse-
guent transmissions that will travel through the open hgerThis can be done manually
by the user, or it can be implemented in the application tleatds to send the encrypted
data. A special API can be built to facilitate the interactietween applications and social
networking sites [27].

Another technique that has been proposed is to test thesud®slity to recognize their
friends in pictures that have been tagged on a social neimgdite. This approach faces
two problems. The user’s close friends may also recogniz& nfdhese faces, and could
login to the system in her place. The other issue is that lfaetgnition software could
be used to automatically match the faces.[28]

3.3 Social Authentication on Mobile Phones

Finally we can consider the combination of mobile phone araad networking for au-
thentication. One of the goals of the Reality Mining projecto measure users’ social
networks using mobile phones. This can be done based onat#drps (which indicate
who the user was talking to) and Bluetooth sightings (whratidate who the user was
close to). To apply this to authentication one can take thesgasurements and compare
them to typical values for the user. For example one can medlse devices (friends) in
the user’s Bluetooth range and compare this to the valuetigrieal day [29]. Our scheme

20

3.3. SOCIAL AUTHENTICATION
ON MOBILE PHONES CHAPTER 3. MOBILE SOCIAL AUTHENTICATION

considers both call patterns and Bluetooth sightings, besdo in a slightly different way.
We count the number of conversations and sightings in a giwes period and base our
authentication on whether this number exceeds a certastihold [30].

21

Proposed Scheme

In this chapter we will outline the details of our authentica scheme. First we will
focus on social authentication based on telephone coni@rsand Bluetooth sightings.
We will then consider additional factors that can be usedd®oto minimize the risk of
intrusion.

4.1 Social Authentication

The goal of this scheme is to leverage the functionalitiess Bluetooth capable cellphone
in order to automate the process of vouching. The user willinbsouching tokens from
friends and will use them together with a PIN to log in to a se@ervice.

4.1.1 Obtaining Vouching Tokens

The user starts by declaring a list of friends that will “vatiéor him. This list is stored
on a central server. After a phone call with one of these @isethhe user will receive a
token indicating that this communication took place. A tkgonly issued after a phone
call that is longer than a minimum duration. This duratiodeésermined by analyzing the
distribution of the user’s call durations. The idea is thad unlikely that an intruder will
be able to make a phone call long enough to receive a tokemymtitilerting the other side
that something is wrong.

While the use of vouching tokens from friends is a form of thdactor authentication

22

4.1. SOCIAL AUTHENTICATION CHAPTER 4. PROPOSED SCHEME

(i.e. someone you know), in this case it is also implicitlyi@betric factor (i.e. something
you are). This is due to the fact that in the process of obigitihe vouching token,
the user’s voice is recognized by her friend (human voicegsition). This has two
advantages. Humans are better at recognizing voices thanachines, and secondly an
attacker’s failed attempt will be instantly detected by tiser or her friends, and most
probably reported on time.

Similarly after seeing a friend using Bluetooth a token vl received confirming
this sighting. Bluetooth sightings are trickier becauselting range (10m) doesn’t imply
that the users actually made contact. Thus the Bluetoottisgs are augmented in two
ways. First a rough estimate of the distance of the otherigs@ade by measuring the
time it takes to establish a Bluetooth connection. Secotindiyiser is prompted to confirm
the sighting of the other party. After both of these take @l vouching messages are
exchanged.

In this case the Bluetooth tokens are also a form of locatamet authentication, with
the added advantage that the location is confirmed and ddiyndte user’s proximity to
their friends.

One of the reasons to include this proximity based inforamais that in some locations
the user is surrounded by many of their friends and is unjiteehave phone conversations
with them, since they will simply talk to them directly. Inistcase detecting their presence
will allow for authentication to take place, and avoid an ecessary traffic load on the
telephone system.

Figure 4.1 shows the process of obtaining tokens from botiversations and Blue-
tooth sightings.

4.1.2 Authentication Using Tokens

The user authenticates himself to the central server byirsgrlde required number of
fresh tokens, along with entering his PIN number. After egpd errors in the PIN number
the tokens become invalid and new tokens must be obtained.

The central server (e.g. online banking website) needs tiby\vithe authenticity of

23

4.1. SOCIAL AUTHENTICATION CHAPTER 4. PROPOSED SCHEME

Contact to/from
other user

Duration >= Min

Issue vouching token

Ignore

Ignore

Yes
Confirmed by
othe user?
Y
Ignore

Yes ¢
Issue Bluetooth token

Figure 4.1 — Process of Obtaining Tokens

these tokens. There are two methods by which this can be gdistvad. The server can
verify authenticity from the tokens it receives from the mgequestion or it can contact
the friends who are doing the vouching. The latter requiraftiple session to be setup
and more importantly requires all the friends to be onlinghattime of authentication.
Therefore, we use the former method.

Even in this method there are two possibilities. The useotaain the tokens and then
send them to the server, or the friend can send the tokens setlier at some point before
authentication. The disadvantage of this is that the usesmbknow whether or how
many contacts have been registered with the server. This&eaompared to the situation
where a student applying to University gets signed and déetters of reference and mails

24

4.2. SUPPLEMENTARY FACTORS CHAPTER 4. PROPOSED SCHEME

them herself rather having each referee mail the letterfefeace to the University.

The electronic equivalent of the referee physically sigramd sealing a letter, is the
vouching party digitally signing the message and then goiory it. It is needless to say
that this is safer than the physical method, since the searereliably verify the signature,
whereas a physical recipient of the letter would need to hasapy of all the signatures of
the referees beforehand in order to be able to do the samehwaalmost never the case
in practice.

This digital signing and encryption requires the phonesetrégem signing and encryp-
tion operations. One can tradeoff security vs simplicitinc® the time of contact is not
as important as the number of contacts, the server can derest of tokens and send
it to each vouching device periodically. For example thereslecan send each device 100
tokens a week, and the rule can be to send the first token orrshedntact, the second
token on the second contact and so on. When the user logsyirséimel in the tokens
and once the server verifies that they are in the current gekehs, it knows how many
contacts the user has had this week. This avoids the neejfong tokens, however this
doesn't get rid of the encryption requirement, as we sti#cha way to get these tokens
from the server to the device, without malicious users baiolg to eavesdrop.

This scheme requires a lot of data to be transferred peatgi&\Ve use hashing chains
to alleviate this problem. Only one token is sent by the setveach phone. This token
is then hashed repeatedly to generate the other 99 tokenwithhe used. The server
can perform this same hashing operation to verify that ealodrnt was generated from the
original token.

4.2 Supplementary Factors

In addition to the “vouching” tokens which are “someone ymow” (fourth factor au-
thenticators), the PIN which is “something you know” and fhivate keys (see Chapter
6) which are “something you have” we can also make use of “soimg you are” (bio-
metrics).

25

4.2. SUPPLEMENTARY FACTORS CHAPTER 4. PROPOSED SCHEME

Just as it is common for a user to carry a cellphone with theewvawuld like to make
use of other devices within the user’s reach. For exampgelikely that when using this
system to authenticate to an online banking website, the wilebe using her laptop,
which may be equipped with a fingerprint scanner. A fingetm@an can then be used in
conjunction with the “vouching” tokens as an additionaltac

Use of a special-purpose wearable authentication deviteiform of a wristband has
been suggested [31]. This device would take fingerprintsdaut would also monitor the
user’s vital signs, including: heart rate, skin tempemtinody capacitance and acceler-
ation. Using these readings the person wearing the devitarisparently authenticated
once they are within radio range of the target computer.

Footstep characteristics have been used for personaifidation [32]. Many users
carry an iPod or palmtop device with them. These may be eedipyth a pedometer
that measures the user’s footsteps. The characteristiteedbotsteps can be analyzed
and compared to the user’s baseline measurements. In theava match the user is
authenticated. The use of this feature further improvesahwbility of the authentication.

In our system the primary means of authentication are thackimg” tokens and the
PIN. For additional security the user may opt to require drtb@above biometric factors
to authenticate herself. For example consider a user wilptap and pedometer system.
In addition to the social authentication if either the Igptecognizes the user’s fingerprint
or the pedometer’s readings match the user’s gait, thensdewill be authenticated.

26

Simulation on Reality Mining
Dataset

The Reality Mining project at MIT’s Media Laboratory folled 100 cellphone users over
the 2004-2005 academic year. These 100 students, facudtgtaff were each given a
Nokia 6600 smartphone with an installed application thatlddog their usage. Data
collected includes: call logs, Bluetooth devices withinga, cell tower information, ap-
plication usage and phone status [2].

Among the data collected by the Reality Mining project, teadings of most interest
to us are the call logs and the Bluetooth device sightingsesetwould lead to the issuing
of “vouching” tokens.

Looking through the data, we see that there are many daystweourse of the year,
when there is no call data nor any Bluetooth sightings. Sdfiteething we did was
determine the number of days that each phone logged anyargldata. This is shown
in Figure 5.1 below. As can be seen the number of days with\datas between 0 and
a little over 250 for the different users. Looking more clgsee see that 8 users never
logged any data.

In order to simulate the issuing of a “vouching” token baseghbone conversations.
We tried to establish a list of friends for each user. We ubede¢n most popular numbers
that they talked to, which we assume to be their friends. &htke best case scenario,
in actuality the user may call a certain number very often wetdthis number may not
correspond to a friend. So the actual results may be sligilge than these simulation

27

CHAPTER 5. SIMULATION ON REALITY MINING DATASET
Number of Days with Data

180
o | || | | | [l I | l

1 4 7101316192225 28 31 34 37 40 4345 40 52555861 6467 70 7376 79828586 919497

Days with Data

8

User#

Figure 5.1 — Days with Data

would indicate.

We then established the minimum duration of a call beforernslare sent or received.
When choosing the minimum duration there is a trade-off betwsecurity and conve-
nience. If we choose it too small then an impostor can makedarancalls to the user’s
phonebook and then hang up after receiving the token. Onttiex band if we put the
threshold too high then very few tokens will be generated,iawill take a long time for
a user to have enough tokens to be authenticated. In thisreasalied the durations of
each user’s calls and took the 25th percentile as this mimrduration. We do this to
eliminate the effect of wrong numbers and such very shold,cahd at the same time keep
the probability of false rejection small.

With these two pieces of data in hand we then looked at eachaddyconsidered
the two days immediately preceding it. If two friends or mbtends were called in the
current day or those two preceding days and each at leastftthoge calls were longer
than the minimum duration, we assumed that two or more tokems generated. In this
case we only require two tokens to authenticate and thussireaan be authenticated on

28

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

250

Days Autherticated by Calls
200

1 4 7 101316 19 22 2528 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 62 B5 86 91 84 97

Days Authenticated

o
=1

User#

Figure 5.2 — Days Authenticated by Calls

that day. Figure 5.2 illustrates the number of days whereaiiee could be authenticated
based on phone conversations.

On the average the users are able to authenticate themealvd$s of the days where
they logged phone calls. We are assuming that the days whenesers did not log any
phone data, were days where their phone was off or the loggpplication was not run-
ning.

The next step was to investigate the effect of adding Bluetdevice sightings to the
authentication process. Again for each one of the top teicedgsvhat the user sees in the
current day or the previous two days, the user receives atdkte user has two tokens,
either two from phone calls, or two from Bluetooth sightimgone of each, then the user
is assumed to be authenticated for that day. Figure 5.3ajisphe number of days where
the user could be authenticated based on both factors.

We see that the numbers are much closer to those of FigurénFdct on the average
users can authenticate on 95% of the days with bluetoothisgghor phone conversations.
Again the assumption is that days without either of thesemsamcations were days where

29

CHAPTER 5. SIMULATION ON REALITY MINING DATASET
Days Authenticated By Calls and BT

50 ‘ “ “ “ N ‘h | “ ‘ ‘ | “‘|‘ ‘ |‘| ‘” ‘|||
o | I| | | [] | 1 | I

1 4 710131861922 25 28 31 34 37 40 43 45 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Days Aulhenticated
]

]

User#

Figure 5.3 — Days Authenticated by Calls and BT

the user was not using their phone or the data was not recorded

In the above we required two tokens for authentication. Olsly there is a trade-off
between the number of tokens required and the probabiliguo€essful authentication.
We varied the number of tokens required between 1 and 10,aadlated the probability
of authentication. As Figure 5.4 shows, the probability wth@ntication varies between
98% and 50%. We chose 2 tokens above to have a high probaijibiythentication.

There is a similar trade-off between the number of days antokenains valid and
the probability of successful authentication. We required tokens and then varied the
number of days between 1 day and seven days. As can be seguiia 5i5, the probability
of authentication varies between 82% and 98%, and levelaftéf 3 days. We again
chose 3 days (the current day plus the two preceding onegvi® d high probability of
authentication.

30

CHAPTER 5. SIMULATION ON REALITY MINING DATASET

Probability of Authentication vs Tokens Required

Probability of Authentication

Tokens Required

Figure 5.4 — Probability of Authentication vs Tokens Regdir

Probability of Authentication vs Token Duration

Probability of Authentic ation

1 2 3 4 5 B

Token Duration (Days)

Figure 5.5 — Probability of Authentication vs Token Duratio

31

Implementation

Our main implementation uses PKI (public key infrastruejuo provide confidentiality
and integrity. In particular we use an implementation of R®A encryption algorithm
written in Python (Pys60, Python for Nokia S60 phones). Wesehto code for Pys60
because it has modules that allow easy access to a numbesrté fdatures that we need,
including: call logs, SMS inbox, SMS messaging and Bludtoédditional modules can
be written in Symbian C++, in order to either speed up criitsextions of the code or to
provide access to low-level hardware not accessible frarstandard modules. It is im-
portant to note that our system could be implemented usimgy girogramming languages
such as C or Java for phones without a Python interpreterhé\end of this section we
will present an alternate implementation using hash chhisisavoids much of the public
key computations.

6.1 Issuing Tokens

Each node has a public/private key pair. A copy of the pubdig iesides on the server.
When a user BobR) wants to give a token to user Alicel), Bob signs (encrypts with
his private key)A’s name and the current timB,: Kpzg(A,T5), and then encrypts this
with A's public key K4p(Kps(A, Tp)) and sends it to Alice. Onlyl can decrypt this to
retrieve Kps(A, Tp).

Tokens are issued when a phone conversation with a friengr®emnd it is over the

32

6.2. USING TOKENS TO AUTHENTICATE CHAPTER 6. IMPLEMENTATIN

minimum duration, or a friend is sighted over Bluetooth amdithin a small distance.
Our software continuously scans the call logs and looks &is ¢hat are to or from
friends. It then checks the length and if the call is long eyioa token is issued as above.
Similarly our software continuously scans for friends oéwmetooth. To determine
whether the friend is close or not we time the duration of the&eioth obex discovery
call. The Bluetooth obex discovery function, takes theatdgvice’'s MAC address and
returns a list of obex (Object Exchange) services availablthat device. It turns out that
the weaker the signal between the phone and the device yingtto discover the longer
this function takes. We call the function four times and tiime last three. If all three calls
took less than 0.06 seconds, then we ask the user if they Vikaltb send a token to the
corresponding friend. 0.06 seconds was chosen becaussg dtetermined experimentally
to be a typical value when the device and the phone are witierdf-sight of each other.

6.2 Using Tokens to Authenticate

When A wants to use a token fror8, she concatenates the current tifjeand signs with
her private keyK 4s: Kas(Kps(A,T,),T,). And then encrypts with the server’s public
key Ksp: Ksp(Kas(Kps(A,Ty),T,)). This is illustrated in Figure 6.1. The server can
decrypt this to recover,, A andT7,. The server checks that matches used. That7, is
close to the current time. Arf, is within the allowed lifetime of a token.

Then the server issues a challenge for the PINA ifesponds correctly then she is
authenticated.

If not the challenge is repeated. Affails repeatedly then the tokens is invalidated and
new tokens are required. This is done by requiring tokenis tivitestamp newer thdf,.

6.3 Hash Chain Implementation

In this case each user still has a public/private key patritlisionly used to set up shared
secrets between the user and the server. Periodically éeay.3 days) the user’s phone

33

6.3. HASH CHAIN IMPLEMENTATION CHAPTER 6. IMPLEMENTATION

Server

Kep(KagKgslA Ty Ta))
Ksp(KasKesh Tk Ta))

| Kap(Kpg(ATg) ﬁ Kap(KesATe)

= < R . | ¢ ©
= : o

— oo
e Eo®
Bob Alice

Charlie

Figure 6.1 — Using Tokens to Authenticate

contacts the server and establishes a separate secretlfioofdzer friends. To do this the
server signs the secr8twith its private keySs, and then encrypts it with the user’s public
key Up: Up(Ss(S)). Only the user can decrypt it. Once decrypted the signaturébea
verified to make sure the message came from the server. Time phen takes each secret
S and hashes it (using a hash function like MD5 or SHA1) to abtdi(S). The phone
then takes the hash of the hash to obtdii.S) and repeats this n times, to obtdify(5)
throughH,,(.S). These hashes will be used as tokens.

Tokens are issued as follows. After a successful phone ceatven or Bluetooth sight-
ing between Alice and Bob, they each exchange one of the faslssuming this is their
first token exchange Alice will send Bati,,(S), and so will Bob. At their next exchange
they will sendH,,_(.S). And this will continue through — 2, n — 3, ... 2,1. The reason
they start from the end of the hash chain is that knowing Scanegenerate all the hashes,
but knowingH,,(.S) reveals nothing about the other hashes. So if Alice B5€%) to au-
thenticate, and the token is invalidated (because she peidther PIN), the server can
require a fresh token by requiring the next token to predégdes) in the hash chain. So
Alice could then try to authenticate with,,_, (S5) if she has it.

The user can use these hash tokens to authenticate becagsestr can verify that the
tokens were issued by the correct friends, since each takdd only have been generated

34

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

from an original secret that was previously sent to eachetter’s friends by the server
in a secure manner.

To transmit these hash tokens to the server for authericatie user could, as in the
case of regular tokens, take the required number of tokens different friends and sign
them with her private key and then encrypt with the serveulslioc key. This will ensure
that the tokens can’t be intercepted and that they are beied by the correct user. The
server could decrypt this, then verify that the request imiog from the right user and
that there are enough tokens.

However to further avoid public key computations, the usmrl@d establish an extra
shared secret with the server, during the periodic secretasge. The user can then
use this secret to include a keyed-Hash Message Autheanticdbde or HMAC of the
message to the server. This is a form of Message Authemtic&tode, which provides
both integrity and authenticity of the message using a s&esg just as would have been
provided by the signing and encryption using public/peMeatys.

6.4 Python Modules

The software consists of two programs a client running orptienes and a daemon on
the authentication server.

The client usually runs one script “sendtoken.py” in thekgmound that analyzes the
phone logs, scan for Bluetooth devices and sends tokensdaugly.

Another script “authenticate.py” is run when the user wsshe authenticate to the
server. It gathers the necessary tokens and PIN and usesdtzithenticate.

The server runs “auth.py” as a daemon which accepts TCP ctans from clients.
It receives the tokens, verifies them, sends a challeng&éoPIN, and authenticates the
user if everything checks out.

In the case of the hash chain implementation, the clienbderally runs “hashchain.py”
to set up the shared secrets with the authentication sdiygically this is done when turn-
ing on the phone, and once in a while. For example after sgridif tokens to a friend, if

35

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

the hash chain length is 100, or equivalently after a cegaimod of time, say one week.

Once this is done “hashtoken.py” is substituted in placesehtitoken.py”. The dif-
ference being that instead of generating (signing and etiog) a new token, we simply
select the next token in the chain and send that instead.

Finally “hashauthenticate.py” is run by the client to auttieate. It performs the same
function as “authenticate.py” but using the hash tokens.

On the server side we have two daemons to implement the hash ftimctionality:
one to generate and transmit the shared secrets “hastsspgiend another to verify the
tokens and PIN “hashauth.py”.

In the following subsections a brief outline of the functadity of each of the above-
mentioned Python modules will be given. This includes thaitieof the built-in modules
that are invoked.

6.4.1 Sending Tokens: sendtoken.py

The sendtoken script makes use of the following moduless,logessaging, rsa, socket,
time, e32 and pickle.

“logs” allows access to the phone’s logs. We only use thermng and outgoing call
logs. In order to reduce processing, we only look at new dajlsaking the calls that have
occurred between the previous run and the current time. Ak & calls from friends
and then verify the duration of the call. Based on this we caoidk to generate and send
a token to the friend.

We use “rsa” to generate the token. First we take the curi@etand concatenate the
friend’s number. Then we sign with our private key. Finallg encrypt with the friend’s
public key.

One of the shortcomings of the “rsa” module is that it doespssform padding and
so the same plaintext will always encrypt to the same ciphegs So if the attacker
knows the time they can try to generate a set of tokens witlpldiatext (time number)
where number is the phone number of one of the user’s cont@otaparing these tokens
with the actual token transmitted the attacker may be abtketermine to whom the user

36

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

has spoken. A simple solution is to appendandom bits to the plaintext and have the
recipient discard those extra bits after decryption. Thosh force the attacker to generate
2" messages before being able to check for a match. In the deaseathis may not be
sufficient, since a sophisticated attacker can take adgarbthe predictable structure of
a message.

After this the message is transmitted to the friend usingsvaging”, which is a simple
interface to the phone’s messaging services. In our casesevéhe function smsend to
send the token as an SMS. In order for tokens to be later faahby the receiving party,
the token is prepended and appended with the string “toketswever before sending
the token the user can be prompted to verify whether the peyadhe other end of the
conversation was indeed the friend to whom the token is tcsbged. An example of
why this would be necessary is if Alice received a call fromfiiend Charlie from Bob’s
phone. In this case Alice’s phone will ask her whether or osend a token to Bob. This
will alert Alice that Charlie is actually using Bob’s phorethier maliciously or not). Alice
has to decide one way or another.

While SMS is becoming less and less expensive and many sepvaviders allow
users practically unlimited SMS traffic, mobile internetxfi can be used in cases where
the cost of SMS is still a concern. Theoretically an effectivay to transmit this limited
information would be to overload it onto the voice channgtlit, by modifying the phone
hardware to use part of the voice channel for data transomssAn added advantage
would be that since the rate is low, transmitting the tokemuldloequire a call with a
specific minimum duration.

In the case of Bluetooth sighting we use theobex discover function, which is part of
the socket module, to try to establish a connection to eatheofiser’s friends in turn. If
any of these connections is successful we repeat the pritwesanore times and measure
the connection setup time (using “time”). If the times ar&tea certain threshold (0.06
seconds), which would be typical of line-of-sight betwelea two-phones, a token is sent.
Again the user is prompted for confirmation before the tokeactually sent to ensure that
the user has indeed seen her friend.

37

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

The token is generated in exactly the same way as in the ¢atdse. But is sent using
bt obexsendfile, which sends the token directly over Bluetooth saving tieed for an
extra SMS.

After analyzing the incoming and outgoing call logs, andnsiag for Bluetooth de-
vices the script sleeps for 10 seconds. Using thslaep functions from the “e32” module.
The e32 module includes Symbian specific functions. In Pylsé8tandard sleep function
locks the phone, while the e32 ateep functions uses a timer that runs in the background
and doesn't lock the phone. So the user can still use theinglden the script is not
running.

Bluetooth scanning is not done after every wakeup. If a tdleenalready been granted
we wait 2 minutes (12 times), if a token was not granted bex#us user didn’t respond
to a sighting we wait 1 minute (6 times), and if the other dewi@s near but out of range
we scan again on next wakeup.

The “pickle” module is used in Python to serialize and dedize objects. We use it
to store our data structures (arrays or hashes of keys, msnitlaetooth MACs, etc.).

6.4.2 Client Authentication: authenticate.py

The authenticate script uses the same modules as sentakethevaddition of “inbox”.

“inbox” is used to access the user's SMS inbox and retrievthaltokens that have
been received. This is done by checking for messages that aed end with the string
“token”.

After removing the delimiting string, each token is decegptvith the user’s private
key. The friend’s number as well as the current time is carated with the decrypted
token, and then the whole is encrypted with the server’sipkily.

Once all the tokens are in the proper format, a TCP connediorade to the server,
and the tokens are sent. The server verifies that the tokerssgared by the user’s friends
and have valid timestamps. Then a challenge is sent for theTie user responds to the
challenge, and if successful the user is authenticated.

If the user doesn’t have internet connectivity, SMS can kedusr communication

38

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

between the client and server instead. Many providers (€dp) offer unlimited SMS
with many of their plans, but mobile internet still remaimsrewhat expensive, and wifi
is only available on the newest phones.

6.4.3 Authentication Server: auth.py

The authentication server waits for connection from cBerit receives their tokens and
verifies that they are from the user’s friends and that theiestamps are valid. It then
generates a random challenge. This is basically a randang €ncrypted with the PIN

and then encrypted with the user’s public key. The user misttdecrypt the challenge
with their private key and then decrypt the inner messagh thié PIN, perform some

function on the string (possible add a constant, reversettirgg or compute a hash) and
then reencrypt this new data with the PIN, and then encryfit thie server’s public key.

The server can then carry out a similar process to verifyttiatiser has both his private
key and PIN. One this is done the user is authenticated andawass the system.

6.4.4 Establish Shared Secrets: hashchain.py

The hash chain implementation replaces the public key @tioryand signing with tokens
generated by hashing a shared secret. This requires ther semstablish shared secrets
with each user.

We do this through the use of public key encryption. The bénéthis is that public
key encryption and signing is only necessary once a weekaw every 100 tokens, cutting
down on processing time and battery usage.

The client script “hashchain.py” receives three messagmen the server. The first
contains the expiry date or period of validity for the sesr@nitially 48 hours). The
second contains the secrets themselves (one per friend) lafhone contains the hash
counters for each friend (initially 100), this is the numbétokens that can still be issued
based on this secret.

Each of these messages is decrypted using the user’s kexatand then the signature

39

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

is verified using the server’s public key.

Once the secrets are received the hashes are generatedraddrst file. These hashes
will later be sent as tokens by “hashtoken.py”. The hashimgfion used must be the
same as the one used to verify tokens by the server. Theréffaret hashing functions.
Standard ones include MD5 and SHA. For demonstration pegpo® use MD5 as it is
part of the standard Python distribution. Newer version®ython also include SHAL
(and even SHA2), which should be more secure against at&eitching hash functions
is very straightforward and only involves changing a feve$irof code.

If the user runs this script again, she will receive an updiggrsion of the data. This
will give an updated value for the remaining duration of g@#yi and the number of tokens
that can still be issued for each secret. If the period ofdiglihas expired, the user will
receive a new set of secrets with a validity of 48 hours anduatew value of 100.

6.4.5 Hash-based Tokens: hashtoken.py and hashauthenttegy

When sending hash-based tokens to another user the scaggttken.py” simply loads
the array of hashes and the current counter. It then sendskée at hash[counter], and
decrements counter.

When counter reaches zero, the script runs “hashchaingpgbtain a new set of se-
crets.

When using hash-based tokens to authenticate to the sbeveliént script “hashau-
thenticate.py” encrypts the tokens with the server’s putely and sends them to the server.
As previously mentioned the public key encryption in thispstould be replaced with a
secret key encryption or an authenticated hash.

6.4.6 Hash-based Server: hashsecrets.py and hashauth.py

On the server side “hashsecrets.py” sends the most recenaidd secrets to the client,
and generates new secrets when necessary.
At authentication time “hashauth.py” receives the tokenafthe client and verifies

40

6.4. PYTHON MODULES CHAPTER 6. IMPLEMENTATION

them by hashing the user’s friend’s secrets.

For example if the user Alice used token 95 from Bob and tokéfi@gim Carolyn. The
server hashes Bob’s secret 95 times and compares this tokitre from Bob and hashes
Carolyn’s secret 47 times and compares this to the token €amolyn. If all the tokens
match the hash computation the server grants access.

41

Implementation Results

Having implemented the system we can now consider its geaditti. One major factor is
the battery usage. Another is our ability to measure diggnising Bluetooth. And most
importantly we must consider the false acceptance and ffajeetion rates.

7.1 Battery Life

Both public-key cryptography and Bluetooth scanning anesatered big battery drains.
We will consider each in turn.

7.1.1 Public-key cryptography and battery life

We use public-key cryptography when generating tokens amehwsing tokens to au-
thenticate. To test the effects of generating tokens on lioe@s battery life we ran the
code to generate a token in a continuous loop. We ran this droaepwith a full charge
and let it run until the battery ran out. The result was that0rfokens were generated
in 18710 seconds (or 5 hours 11 minutes and 50 seconds). Haasrhat it takes 2.62
seconds to generate a token. This includes signing and tieeping the message.

How this will affect battery life depends on how often the paawill be required to
generate tokens. Even generating as much as 700 tokensypsodkl only drain 10% of
the phone’s battery.

42

7.1. BATTERY LIFE CHAPTER 7. IMPLEMENTATION RESULTS

7.1.2 Bluetooth scanning and battery life

Our program continuously searches for friends within Bbo#t range. Therefore to mea-
sure Bluetooth scanning battery usage we can simply runmgrgm and see how long
it takes to drain the battery. Scanning for Bluetooth cotinas every 10 to 20 seconds,
drained the battery in about 32 hours. This is a little overt&¥ery usage per hour.

Assuming the above 700 tokens per day, and 16 hours of da@\oesveen charges
the program as it stands would drain 60% of the phones baitteaytypical day (50%
Bluetooth scanning, 10% token generation). This leaves dDfte battery for talk-time
and other applications. Obviously the frequency of the sitancould be decreased to
increase the battery life. But it seems that the programstaiiids is still usable, if a little
battery hungry.

The Bluetooth devices embedded in current mobile phonessarally class 2 devices
that operate over a 10m range using 4 dBm (2.5 mW). Howevee thiee lower power
modes of operation for Bluetooth. Class 1 devices, for exengperate over a 1m range
using 0 dBm (1 mW), while new Wibree/Bluetooth low energyides operate at a similar
range with power as low as -6 dBm (0.25 mW). Using such low palegices would result
in much longer battery life (up to 10 times as much).

For our application we would want a slightly larger rangentian, probably as much
as 2m or even 3m, to give some allowance for the users’ mpHdititother words we want
to make sure that Bluetooth sightings can be recorded witlemuiring both users to be
within 1m of each other for 10 to 20 seconds.

Assuming we reduce the Bluetooth power consumption by &faxt3 or 4, which
would correspond to using Wibree/Bluetooth low energy devioperating at reduced dis-
tances, this would decrease the total daily battery conomgown to 20% to 25% down
from 60%. In that case, Bluetooth would only account for loélhe power consumption.
It would then make sense to consider switching from the pkéycimplementation to the
hash chain one to reduce the CPU power consumption if furéaerctions in total energy
use were to be made.

43

7.2. ESTIMATING BLUETOOTH
DISTANCE CHAPTER 7. IMPLEMENTATION RESULTS

7.2 Estimating Bluetooth Distance

The main reason we want to estimate the distance of othetdgitiedevices is so that the
user will not be prompted to send a token when a friend is wiBluetooth range, but
outside of visual range.

The signal strength measured at the received depends orstheat and is inversely
proportional to a power of the distance:

Pray = dﬁa

Whered is the distance between the transmitter and recetvdepends on the trans-
mitted power, gains of the antennas as well as, possiblyvéwvelength of the signal and
« is the loss exponent, which depends on the environment. ékpisnent usually ranges
between 2 and 4 (where 2 is for free-space, and 4 is for losgsoements). In some build-
ings and indoor environmentscan be as high as 6, while in a long corridor or tunnel it
can be lower than 2. This is due to the tunnel acting as a wadegu

Therefore, assuming a loss model, the distance can be basetheasurement of the
power. Unfortunately the Bluetooth signal power is not asdae from applications run-
ning on most phones. Therefore, we use an indirect measuatahhe signal power: the
Bluetooth discovery time. As the signal strength decrettseprobability of bit errors and
thus the need for retransmission increases. This in tumeases the time for successful
handshaking. In our application we attempt to discover therdBluetooth device several
times and measure the time taken for each attempt. If thermariamongst several trials
is below a certain threshold we accept the device as beirignviinge.

We have performed extensive measurement of the averagevdigdime. Based on
our measurements we found that when the phones are in vesg ploximity (less than
2m) this time almost never exceeds 0.06 seconds. Thereferase this as our threshold.

Another design parameter is the number of times to attenspbuery. We have used
numbers between 3 and 10, and while using a larger numbetQikkecreases the number
of false acceptances, the difference is not very much. Ehizectause once a device is

44

7.2. ESTIMATING BLUETOOTH
DISTANCE CHAPTER 7. IMPLEMENTATION RESULTS

successfully discovered subsequent discoveries usw@gyless time. This is probably
due to some caching of the discovered unit's parameterseogttbne’s Bluetooth module.

The discovery time and therefore the false acceptance ecti@p depends on the
orientation on the antennas. When the two devices are pbénach other the attenuation
is much lower than when the devices are at 90 degrees. Fompdxamone test we found
that the acceptance rate for a 10m distance was 0 to 2% wheratisenitting phone was
pointing to a direction different from the line between thansmitter and receiver. At that
same distance the acceptance rate jumped to 85% when teaittan was pointed along
the line. This is very close to the maximum acceptance rag®% when the phones are
in close proximity.

Different obstacles like walls, doors and furniture canéham effect as well. However
this depends on the component materials of the obstaclaal@shielding and wood and
plastic having little effect). For example one wall had aZA% acceptance rate at a
distance of 3m, while another had an acceptance rate of 3ta0&osimilar distance.

In the case of real users, this means that depending on thetation of their phone
they may be very likely or unlikely to receive unwanted prasaplwo factors make this
less of an issue. Firstly, in general it is rare for a useray 8t the same stance for a long
period of time. Secondly, if the user has her phone in her g@istke will most probably not
notice the prompt as it is not very audible and disappeaes 4@ seconds (but reappears
again once a minute as long as the other user is in range).

The need for this estimation can be reduced by reducing #msrmit power of the
Bluetooth devices. This should reduce the range at whichdhe operate and thus limit
the number of false positives. However since the range dipeaot only on the transmit
power but also on the gain of the receiving device’s antetimeaefore the need for distance
estimation is reduced but not completely eliminated.

Finally, since distance information could useful for martlgey applications it might
make sense to have the Bluetooth devices measure the didtemselves (based more
directly on signal strength).

45

Threat Scenarios

Let's consider the case where an intruder Trudy wants toestittate herself as legitimate
user Alice. Let us consider the case with the vouching tokensa simple PIN (no bio-
metrics). There are many possible combinations of sces\at@pending on the intruder’s
possession of the phone, the pin, and the tokens.

8.1 Intruder does not have phone.

In this case as in all cases the intruder needs to obtain érntokgns and also obtain the
PIN. Even if Trudy were to obtain the PIN, without access tm&k phone Trudy can't get
tokens directly from Alice’s friends. She can’t generatisdaokens without the friends’
private keys. But she can still snoop the SMS and Bluetoeffidcrand grab the tokens as
they are transmitted. However without the Alice’s privagy khe can’t decrypt the tokens
to make use of them. Therefore the security of the tokensriepe the security of Alice’s
private key.

8.2 Intruder has phone

Now the problem is that without a TPM (Trusted Platform Maguklice’s private key is
stored as a file or other accessible structure on her phongon&nwith access to Alice’s
phone can copy the key, or send it to themselves over the netWbus if Trudy can gain

46

8.2. INTRUDER HAS PHONE CHAPTER 8. THREAT SCENARIOS

physical access to Alice’s phone all bets are off. We canygid¢he key with a PIN, but

that leads to a new problem. Either the user will constardilyehto enter the PIN, since
the private key is needed whenever a token is issued, or #reni enter the PIN once

and then the private key will be stored in memory unencrypigtere Trudy can get to it
if she has access to the phone.

Once Trudy has the phone there are three possibilities. udiyfts lucky the phone
already contains enough tokens, in that case she can trytterdicate using those tokens.
If she also has the PIN it is game over for Alice. If there aréemmugh tokens on the
phone, Trudy has two options: either return the phone toefdisd snoop tokens off the
network, or keep the phone and try to obtain enough tokeesttir

8.2.1 Return phone and snoop

This approach is rather straightforward. The only problerthat Trudy has to return the
phone before Alice notices it has disappeared and repaatsstolen. This is a problem
if Trudy is a stranger, but if Trudy and Alice are friends thiemdy would simply have to
borrow Alice’s phone. Once the phone is returned Trudy wattgbs enough tokens, and
then all she needs is the PIN.

If the phone is equipped with a TPM then this approach is irsides, as there should
be no way to extract the private key from the TPM. Thus Trudy vé forced to use the
phone and get the tokens directly.

8.2.2 Keep phone and get tokens directly

There are several ways Trudy can go about trying to obtaierteklirectly. For voice calls
she can impersonate Alice to her friends, but this may backfrthe friends might find
out and contact Alice or report suspicious activity on Acaccount. If Trudy and Alice
are friends then she can call mutual friends and say thatssheriowing Alice’s phone.
Another tactic is for Trudy to call Alice’s friends, say thette has found the phone and
wants to return it to its owner. She may be able to drag out dimgersation long enough

47

8.3. STEALING MULTIPLE PHONES CHAPTER 8. THREAT SCENARIOS

for a token to be issued.

For Bluetooth sightings, she can trail Alice and receiveetekwhenever Alice crosses
a friend. Whenever they cross one of Alice’s friends, Akcghone will ask Trudy if she
wants to send a token. Trudy will do so. The friend will theswase he is receiving a
token from Alice and will send back a token in return. Howeties is dangerous, because
Trudy has to be within line of sight of Alice for this to workg ®nly a particularly daring
intruder would pull this off. However if Trudy and Alice areidnds this may be a bit
easier to do.

While a TPM will resolve the issue of the attacker’s stealing key and returning
the phone to snoop traffic, this won't address the above proldf impersonation. An
effective way to deal with this problem is to assign a weigh¢ach friend, depending on
the number of interactions they have with the user. This failbr the ones closer to the
user and who will be most likely to report suspicious acyivit

8.3 Stealing multiple phones

Of course we hope that the intruder is unable to obtain endokgns either indirectly,
because the phone has a TPM, or directly, because the inisudeable to impersonate
the user or otherwise fool her friends. However there i$ &tay for Trudy to get the
required tokens: steal multiple phones, from the usergntts. This way Trudy can use
these phones to generate tokens, by going through the dalletooth token generation
process.

Of course to succeed this requires the theft of N phones, evNeis the number of
tokens from different friends that are required to autteaté. The greater N the more
secure the system is.

48

8.4. ONCE THE INTRUDER
HAS ENOUGH TOKENS CHAPTER 8. THREAT SCENARIOS

8.4 Once the intruder has enough tokens

Even if Trudy can obtain enough tokens, she can’t autheetigithout the PIN. Trudy can
try randomly guessing the PIN. With a 4 digit PIN and 3 attesnfitat gives Trudy a 3 in
10000 (0.03%) chance of success, and a 99.97% chance aé&faNbich will invalidate
the tokens she obtained. Furthermore the system could be toatktect repeated failed
attempts (say 100 failed attempts in a row), and then requitnger PIN or a manual
reset.

On the other hand if Trudy can obtain the PIN, by for exampleeobing Alice enter
it while logging in, then she has all she needs to login. Thiisudy has only the tokens,
the security of the system depends on the security provigélaeoPIN. While if Trudy has
only the PIN, the security of the system depends on the dgquovided by the tokens.

49

Conclusion

In this Thesis we have developed a protocol for mobile scaighentication based on
phone conversations and Bluetooth sightings. We have anistted our design based
on simulation of our scheme using data from the Reality Mjnidataset. We then im-
plemented the scheme on actual phones using Python. In titegs of doing so we
developped a method of estimating the distance of a Bluetdetice indirectly through
the measurement of the connection setup time. We testegshens for battery life and
Bluetooth distance estimation accuracy. Finally we cosrsd threats against the user
available to an attacker.

With a standard security token, the intruder needs the takdrthe PIN to masquerade
as the user. In our protocol the theft of a single phone wooldnecessarily result in a
security breach, even if the PIN is known to the intruder. @ograte enough tokens the
intruder needs to have n phones. Where n is the number ofgokepired for authenti-
cation. Having a large n, maintains high security. Howetvearakes authentication more
difficult.

This is a major improvement over the current state of pubdig &uthentication on
mobile phones since nearly all phones lack a TPM. Without M ,T&cess to a user’s
phone is all that is necessary to obtain their private keythdf passphrase protecting
the private key is short and/or simple, which is almost a irequent given the limited
input capabilities of mobile phones, the attacker can gésiiteforce the passphrase and
compromise the system. In our system the user would needgstoen of the user's

50

9.1. DIRECTIONS FOR FUTURE RESEARCH CHAPTER 9. CONCLUSION

friends’ phones as well.

9.1 Directions for Future Research

In this Thesis we used public key encryption to securely yrtcthe tokens. However
a hybrid approach which uses symmetric key cryptographyirgeiddes the a public key
encrypted version of the symmetric key along with the messaguld be preferable. Since
this approach would provide all the advantages of publicgteyyption, but with the speed
of symmetric encryption. This is the method employed in G{@R.

The only reason we didn’t implement this feature is thatéheas that there was no
suitable python implementation of a symmetric encryptilgoathm that was faster than
the RSA implementation. Besides writing such an encrypélgortihm in Python, the
system itself could be rewritten in Java ME. This shouldwalibe program to run on more
phones, as Java ME is currently supported on more mobileegvi

In chapter 8 we discussed the idea of using weights to the'usends based on the
number of interactions that they have with them. A simplexace would be a case where
at least one token from a “close” friend is required for antiwtion. Another would
be the case where a token from a “close” friend is weightedséimee as multiple tokens
from more distant acquaintances. Determining the optingadiiat assignment would be a
worthwhile venture, since this threat to the system candddeed through purely technical
means.

We designed the authentication system, including cliedisgnver code for the general
case of authenticating a user for an online service. Thus icuirrent version it could be
used for logging into an online banking website, a socialvoeking site, webmail, etc.

We can extend the work by removing the central server andmgdke protocol decen-
tralized and peer to peer. In this case the main issue wilkyedistribution. Probably the
easiest and most secure way of obtaining the necessarycxayl is through Bluetooth
exchange when the user is with the friend whose key they wisivtain.

Once that is done the system could be adapted to a wider rdraggplications, most

51

9.1. DIRECTIONS FOR FUTURE RESEARCH CHAPTER 9. CONCLUSION

importantly mobile and social networking ones. For exangpleser might wish to share
pictures they have taken on their phone with friends. Usimgad authentication they
can issue tokens to friends and then require the tokens fiesacto the pictures. Or
alternatively if the user wants to also grant access to dseof friends, she can verify
tokens issued by their friends to these friends of friendil&r social access controls can
be built into social networking sites to improve security.

52

Source Code

A.1 sendtoken.py

i nport e32

i mport globalui

i mport logs

i nport messaging
i mport os

i nport pickle

i nport re

i nport rsa

i nport socket

i mport time

#Load data structures fromfiles
mynumberfile = open("e:/mynumber"”)
mynumber = pickle.load(mynumberfile)
pubfile = open("e:/pubkey")

privfile = open("e:/privkey")
pub = pickle.load(pubfile)
priv = pickle.load(privfile)

53

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

keyringfile = open("e:/keyring")
keyring = pickle.load(keyringfile)
friendsfile = open("e:/friends")
friends = pickle.load(friendsfile)
btfile = open("e:/bt")
bt = pickle.load(btfile)
#Check for daylight savings tine
i f(time.daylight == 1):
t = time.time() + time.altzone
el se:
t = time.time() + time.timezone
btwait = {}
for i in btkeys():
btwait[i] = 0;
def send_calls():
gl obal t
#get new calls (new since last tine we processed then)
i f(time.daylight == 1):
cin = logs.log_data by time(call’, t, time.time()
+ time.altzone, mode=’in’)
cout = logs.log_data_by time('call’, t, time.time()
+ time.altzone, mode="out’)
el se:
cin = logs.log_data by time(call’, t, time.time()
+ time.timezone, mode='in’)
cout = logs.log_data_by time('call’, t, time.time()
+ time.timezone, mode="out’)
for i in range(0,len(cin)):
#send token if there is an incomng call froma friend

54

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

for number in keyring.keys():
S = number[2:]
i f (re.search(s, cin[i]number?)):
sign = rsa.sign(str(time.time()) + "
+ str(number), priv)
cipher = rsa.encrypt(sign, keyring[number])
message = "token" + cipher + "token"
messaging.sms_send(number, message)
t = cin[i]['time’] + 1
for i in range(0,len(cout)):
for number in keyring.keys():
#send token if there is an outgoing call to a friend
S = number[2:]
i f (re.search(s, cout[i]number)):
sign = rsa.sign(str(time.time()) + "
+ str(number), priv)
cipher = rsa.encrypt(sign, keyring[number])
message = "token" + cipher + "token"
messaging.sms_send(number, message)
t = cout[ij[time’] + 1
def send_bluetooth():
for i in btkeys():
#skip this iteration if we didn’t see the peer recently
i f (btwait[i] != 0):
btwait[i] = btwait[i] - 1;
el se:
try:
measure handshake tinme repeatedly
t1 = time.clock()

55

A.1. SENDTOKEN.PY APPENDIX A. SOURCE CODE

b = socket.bt_obex_discover(bt[i])
del b

t2 = time.clock()

b = socket.bt_obex_discover(bt[i])
del b

t3 = time.clock()

b = socket.bt_obex_discover(bt[i])
del b

t4 = time.clock()

b = socket.bt_obex_discover(bt[i])
t5 = time.clock()

if all times |ow assune peer is near
and send token

i f(((t3-t2) < 0.06) and ((t4-t3) < 0.06)
and ((t5-t4) < 0.06)):
globalui.global_note(u"Device _in _range.")
g = globalui.global _query(u"Send _token _to
+ friends[i] + "?", 15)
i f(g==1):
print "Generating _token."
sign = rsa.sign(str(time.time()) + " L+ str(i), priv)
cipher = rsa.encrypt(sign, keyring][i])
message = mynumber + " " + str(time.time()) + "token"

+ cipher + "token"
messagefile = open("e:\\message.txt", "w")
messagefile.write(message)
messagefile.close()
print "Sending _token."
socket.bt_obex_send_file(b[0],b[1].values()[O],

56

A.2. AUTHENTICATE.PY

APPENDIX A. SOURCE CODE

u"e:\\message.txt")
del b
print "Token _sent."
os.remove("e:\\\message.txt")
btwait[i] = 10
el i f (g==0):
btwait[i] = 6
except:

print "Device _out of range."

[}

btwait[i] = 0

whi | e(1):
send_calls()
send_bluetooth()
e32.a0_sleep(10)

A.2

i nport
i nport
i npor t
i npor t
i nport
i nport
i npor t
i npor t

#Load

authenticate.py

globalui
inbox
0S
pickle
re

rsa
socket
time

data structures fromfiles

mynumberfile = open("e:/mynumber"”)

mynumber = pickle.load(mynumberfile)

privfile

= open('e:/privkey")

57

A.2. AUTHENTICATE.PY APPENDIX A. SOURCE CODE

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)
serverpubfile = open("e:/server_pubkey")
serverpub = pickle.load(serverpubfile)
friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)
tokens=([]

authenticators=([]

i = inbox.Inbox()

m = i.sms_messages()
tb = ""token"

te = "token$"

total = O;

#count the nunber of tokens in the sms inbox
for j in m:
t = i.content())
i f(re.search(tb, t) and re.search(te, t)):
total = total+1
count = 0
for j in m:
t = i.content())
#decrypt each token and then reencrypt for the server
i f(re.search(tb, t) and re.search(te, t)):
count = count + 1
t = re.sub(th, "™, t)
t = re.sub(te, ", t)
globalui.global_note(u™ + str(count) + "/* + str(total)
+ " _Decrypting")

58

A.2. AUTHENTICATE.PY APPENDIX A. SOURCE CODE

d
a

rsa.decrypt(t, priv)
i.address(j)
for k in friends:

i f (re.search(a, friends[k])):
n =k
t2 = str(time.time()) + " L+ str(n) +0 L+ str(d)
globalui.global_note(u™ + str(count) + "/* + str(total)
+ " _Encrypting”)
auth = rsa.encrypt(t2, serverpub)
authenticators.append(auth)
HOST = ’'server.crasseux.com’
PORT = 9000
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send("START")
#send encrypted tokens to server
for i in authenticators:
I = len(i)
sent = 0
s.send("AUTHBEGIN")
whi | e(I>0):
b = s.send(i[sent:])
sent = sent+b
| = I-b
s.send("AUTHFINISH")
s.send("END")
status = s.recv(3)
#recei ve authentication or failure nessage
i f(status=="YES"):

59

A.3. AUTH.PY APPENDIX A. SOURCE CODE

globalui.global _note(u"Authenticated")
c o=
while 1:
data = s.recv(1024)
c = c + data
i f (re.search("END$", c)):
br eak
re.sub(""START", ", ¢)
re.sub("END$", ", ¢)
print "c_="+¢C

[}

C

c

password = rsa.decrypt(c, priv)

print "password _=_" + password

globalui.global_note(u"Password: "+ password)
el se:

globalui.global_note(u"Access _Denied")

A.3 auth.py

#! [usr/ bi n/ pyt hon
i mport pickle

i nport random

i nport re

i mport rsa

i nport socket

server_privkey file = open("./keys/server_privkey")
server_privkey = pickle.load(server_privkey file)
keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

words_file = open("/usr/share/dict/words")

60

A.3. AUTH.PY APPENDIX A. SOURCE CODE

words = words_file.read()
list = words.rsplit("\n")

HOST = ”
PORT = 9000
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
while 1:
#accept connection

conn, addr = s.accept()
print 'Connected _by’, addr
c o=
#receive all tokens
while 1:
data = conn.recv(1024)
c = c + data
i f (re.search("END$", c)):
br eak

authenticators=[]

c = re.sub("START", ™, ¢)
c = re.sub("END$", ™, ¢)
finished=0
whi | e(finished==0):
c = re.sub("AUTHBEGIN", "™, ¢)

m = re.search("AUTHFINISH", c)
authenticators.append(c[:m.start()])

¢ = c[m.end():]

i f(not re.search("AUTHBEGIN", c)):

61

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

br eak
for i in authenticators:
#decrypt tokens, then verify signatures
#if successful send authentication else send failure nessage
m = rsa.decrypt(i, server_privkey)
match = re.search(" L,om)
tl = m[:match.start()]
m = m[match.end():]
match = re.search(" L,om)
nl = m[:match.start()]
m = m[match.end():]
v = rsa.verify(m, keyring[nl])
match = re.search(" ERRY)|
t2 = v[:match.start()]
n2 = v[match.end():]
conn.send("YES")
password = listfrandom.randint(1,len(list))]
c = rsa.encrypt(password, keyring[n2])
c = "START" + ¢ + "END"
conn.send(c)
conn.close()

A.4 hashchain.py

i nport globalui
i mport md5

i nport pickle

i nport re

i nport rsa

i mport socket

62

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

#Load data structures fromfiles
mynumberfile = open("e:/mynumber”)
mynumber = pickle.load(mynumberfile)
privfile = open("e:/privkey")

priv = pickle.load(privfile)

serverpubfile = open("e:/server_pubkey")
serverpub = pickle.load(serverpubfile)

#connect to server and receive hash secrets
HOST = ’server.crasseux.com’
PORT = 9001
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(mynumber)
c =
while 1:
data = s.recv(1024)
C = c + data
i f (re.search("END$", c)):

br eak
c = re.sub("START", "™, c¢)
c = re.sub("BEGIN_EXPIRY", "™, ¢)

m = re.search("FINISH_EXPIRY", c)
se_ciph = c[:m.start()]
¢ = c[m.end():]

¢ = re.sub("BEGIN_SECRETS", "™, ¢)

63

A.4. HASHCHAIN.PY APPENDIX A. SOURCE CODE

m = re.search("FINISH_SECRETS", c¢)
s_ciph = c[:m.start()]
¢ = c[m.end():]

¢ = re.sub("BEGIN_HASH_COUNTER", "™, c)
m = re.search("FINISH_HASH_COUNTER", ¢)
hc_ciph = c[:m.start()]

globalui.global_note(u"1/6 _Decrypting _ Expiry _Date")
se_sign = rsa.decrypt(se_ciph, priv)
globalui.global_note(u"2/6 _Verifying _Expiry _Date")

se_string = rsa.verify(se_sign, serverpub)
secrets_expiry = pickle.loads(se_string)

globalui.global_note(u"3/6 _Decrypting _ Secrets")
s_sign = rsa.decrypt(s_ciph, priv)

globalui.global _note(u"4/6 _Verifying _Secrets")
S_string = rsa.verify(s_sign, serverpub)

secrets = pickle.loads(s_string)

globalui.global _note(u"5/6 _Decrypting _ Counters")
hc_sign = rsa.decrypt(hc_ciph, priv)
globalui.global_note(u"6/6 _Verifying _Counters")
hc_string = rsa.verify(hc_sign, serverpub)

hash_counter = pickle.loads(hc_string)

se_file = open("e:/secrets_expiry", "w")

s _file = open("e:/secrets”, "w")
hc_file = open("e:/hash_counter”, "w")

64

A.5. HASHTOKEN.PY

APPENDIX A. SOURCE CODE

pickle.dump(secrets_expiry, se_file)
pickle.dump(secrets, s_file)
pickle.dump(hash_counter, hc_file)

h_file = open("e:/hashes", "w")
hashes = {}
for i in secrets:
h=[]
cur = md5.new()
cur.update(secrets]i])
h.append(cur.hexdigest())
for j in range(1,101):
cur = md5.new()
cur.update(h[j-1])
h.append(cur.hexdigest())
hashes|i] = h
pickle.dump(hashes, h_file)

A.5 hashtoken.py

i nport e32

i mport globalui

i mport logs

i nport messaging
i mport os

i nport pickle

i nport re

i nport rsa

i nport socket

i mport time

65

A.5. HASHTOKEN.PY

APPENDIX A. SOURCE CODE

#Load data structures fromfiles
mynumberfile = open("e:/mynumber”)
mynumber = pickle.load(mynumberfile)
pubfile = open("e:/pubkey")

privfile = open("e:/privkey")

pub = pickle.load(pubfile)

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")
keyring = pickle.load(keyringfile)
friendsfile = open("e:/friends")
friends = pickle.load(friendsfile)

btfile = open("e:/bt")

bt = pickle.load(btfile)

hc_file = open("e:/hash_counter")
hash_counter = pickle.load(hc_file)
hc_file.close()

se_file = open("e:/secrets_expiry")
secrets_expiry = pickle.load(se_file)
s _file = open("e:/secrets")

secrets = pickle.load(s_file)

h_file = open("e:/hashes")

hashes = pickle.load(h_file)

#Check for daylight savings tine
i f (time.daylight == 1):

t = time.time() + time.altzone
el se:

t = time.time() + time.timezone

66

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

btwait = {}
for i in btkeys():
btwait[i] = 0;
def send_calls():
gl obal t
#get new calls (new since last tine we processed then)
i f(time.daylight == 1):
cin = logs.log_data by time(call’, t, time.time()
+ time.altzone, mode='in’)
cout = logs.log_data_by time('call’, t, time.time()
+ time.altzone, mode="out’)
el se:
cin = logs.log_data by time(call’, t, time.time()
+ time.timezone, mode='in’)
cout = logs.log_data_by time(’call’, t, time.time()
+ time.timezone, mode="out’)
for i in range(0,len(cin)):
for number in keyring.keys():
#send hash token if there is an incomng call froma friend
S = number[2:]
I f (re.search(s, cin[i]numberT)):
message = "hashtoken"
+ hashes[number][hash_counter[number]]
+ " _" + hash_counter[number]
+ "hashtoken"
hash_counter[number]=hash_counter[number]-1
hc_file = open("e:/hash_counter”, "w")
pickle.dump(hash_counter, hc_file)
hc_file.close()

67

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

messaging.sms_send(number, message)
t = cin[i]['time’] + 1
for i in range(0,len(cout)):
for number in keyring.keys():
#send hash token if there is an outgoing call to a friend
S = number[2:]
i f (re.search(s, cout[i]number?)):
message = "hashtoken"
+ hashes[number][hash_counter[number]]
+ " " + hash_counter[number]
+ "hashtoken"
hash_counter[number]=hash_counter[number]-1
hc_file = open("e:/hash_counter”, "w")
pickle.dump(hash_counter, hc_file)
hc_file.close()
messaging.sms_send(number, message)
t = coutij['time’] + 1
def send_bluetooth():
for i in btkeys():
#skip this iteration if we didn’t see the peer recently
i f(btwait[i] != 0):
btwait[i] = btwait[i] - 1;
el se:
try:
measure handshake tine repeatedly
t1 = time.clock()
b = socket.bt_obex_discover(bt[i])
del b
t2 = time.clock()

68

A.5. HASHTOKEN.PY APPENDIX A. SOURCE CODE

b = socket.bt_obex_discover(bt[i])

del b

t3 = time.clock()

b = socket.bt_obex_discover(bt[i])

del b

t4 = time.clock()

b = socket.bt_obex_discover(bt[i])

t5 = time.clock()

if all tinmes | ow assune peer is near
and send hash token

i f(((t3-t2) < 0.06) and ((t4-t3) < 0.06)
and ((t5-t4) < 0.06)):
globalui.global_note(u"Device _in _range.")
g = globalui.global_query(u"Send _token _to "
+ friends[i] + "?", 15)
i f(g==1):

print "Generating _token."

print "Here"

number = str(i)

print number

message = "hashtoken"

+ hashes[number][hash_counter[number]]
+ " _" + str(hash_counter[number])

+ "hashtoken"

print "Token _Generated"
hash_counter[number]=hash_counter[number]-1
hc_file = open("e:/hash_counter”, "w")
print "Counter _Updated"
pickle.dump(hash_counter, hc_file)

69

A.6. HASHAUTHENTICATE.PY

hc_file.close()

print "Writing _temp_file"

messagefile = open("e:\\message.txt", "w")

messagefile.write(message)

messagefile.close()

print "Sending _token."

socket.bt_obex_send_file(b[0],b[1].values()[O],
u"e:\\message.txt")

del b

print "Token _sent."

os.remove("e:\\\message.txt")

APPENDIX A. SOURCE CODE

btwait[i] = 10
el i f (q==0):
btwait[i] = 6
except:

print "Device _out of range."

btwait[i] = 0
whi | e(1):
send_calls()
send_bluetooth()
e32.a0_sleep(10)

A.6 hashauthenticate.py

i nport globalui
i mport inbox

i mport os

i nport pickle

i nport re

i mport rsa

A.6. HASHAUTHENTICATE.PY

APPENDIX A. SOURCE CODE

i nport socket
i nport time

#Load data structures fromfiles
mynumberfile = open("e:/mynumber"”)
mynumber = pickle.load(mynumberfile)
privfile = open(“e:/privkey")

priv = pickle.load(privfile)

keyringfile = open("e:/keyring")

keyring = pickle.load(keyringfile)
serverpubfile = open("e:/server_pubkey")
serverpub = pickle.load(serverpubfile)
friendsfile = open("e:/friends")

friends = pickle.load(friendsfile)
tokens=([]

authenticators=([]

i = inbox.Inbox()

m = i.sms_messages()
tb = ""hashtoken"

te = "hashtoken$"
total = O;

#count the nunber of hash tokens in the sns i nbox

for j in m:
t = i.content())
i f(re.search(tb, t)
total = total+1
count = 0
for j in m:
t = i.content())

71

and re.search(te, t)):

A.6. HASHAUTHENTICATE.PY APPENDIX A. SOURCE CODE

#encrypt hash tokens for the server
i f(re.search(tb, t) and re.search(te, t)):
count = count + 1
t = re.sub(tb, ", t)
t = re.sub(te, "™, t)
a = i.address())
for k in friends:
i f (re.search(a, friends[k])):
n =Kk
t2 = str(n) + " ot
globalui.global_note(u™ + str(count) + "/" + str(total)
+ " _Encrypting")
auth = rsa.encrypt(t2, serverpub)
authenticators.append(auth)
HOST = ’server.crasseux.com’
PORT = 9002
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
#send encrypted tokens to server
s.send("START")
for i in authenticators:
I = len(i)
sent = 0
s.send("AUTHBEGIN")
whi | e(I>0):
b = s.send(i[sent:])
sent = sent+b
| = I-b
s.send("AUTHFINISH")

72

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

s.send("END")
status = s.recv(3)
#recei ve authentication or failure nessage
i f(status=="YES"):
globalui.global _note(u"Authenticated")
c o=
while 1:
data = s.recv(1024)
C = c + data
i f (re.search("END$", c)):

br eak

c = re.sub("START", "™, c¢)

c = re.sub("END$", ™, ¢)

print "c_="+¢C

password = rsa.decrypt(c, priv)

print “"password _=_" + password

globalui.global_note(u"Password: "+ password)
el se:

globalui.global_note(u"Access _Denied")

A.7 hashsecrets.py

#! [usr/ bi n/ pyt hon
i mport os

i nport pickle

i mport rsa

i mport socket

i nport time

#generate hash secrets

73

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

def setup_hashchain(number):
def new_secrets():
secrets_expiry = time.time() + 2 * 24+ 3600
se_file=open('secrets_expiry", "w")
pickle.dump(secrets_expiry, se file)
se_file.close()

secrets = {}
for i in friends:

secrets[i] = rsa.urandom(32)
s_file = open('secrets”, "w")
pickle.dump(secrets, s file)
s_file.close()

hash_counter = {}
for i in friends:

hash_counter[i] = 100
hc_file = open("hash_counter", "w"
pickle.dump(hash_counter, hc_file)
hc_file.close()

os.chdir(number)

ff = open("friends")

friends = pickle.load(ff)

i f(0os. access("secrets_expiry”, 0s.F_OK)):
se_file=open("secrets_expiry")
secrets_expiry = pickle.load(se_file)
s_file=open('secrets")
secrets = pickle.load(s_file)
hc_file=open("hash_counter")

74

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

hash_counter = pickle.load(hc_file)
i f (secrets_expiry < time.time()):
print "secrets _expired"
el se:
new_secrets()
os.chdir("..")
print "Done"
setup_hashchain("+15143866409")
setup_hashchain("+15149650900")

server_privkey file = open("./keys/server_privkey")
server_privkey = pickle.load(server_privkey file)
keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

#listen for connections fromclients
HOST =~
PORT = 9001
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
#send hash secrets to client
while 1:
conn, addr = s.accept()

print 'Connected by, addr
c="
while 1:

data = conn.recv(1024)

C = c + data

75

A.7. HASHSECRETS.PY APPENDIX A. SOURCE CODE

I f (len(c)==12):
br eak

number = ¢
print number
os.chdir(number)
ff = open("friends")
friends = pickle.load(ff)
se_file=open("secrets_expiry")
secrets_expiry = pickle.load(se_file)
s_file=open("secrets")
secrets = pickle.load(s_file)
hc_file=open("hash_counter")
hash_counter = pickle.load(hc_file)
se_string = pickle.dumps(secrets_expiry)
s_string = pickle.dumps(secrets)
hc_string = pickle.dumps(hash_counter)

se_sign = rsa.sign(se_string, server_privkey)

se_ciph = rsa.encrypt(se_sign, keyring[number])
S_sign = rsa.sign(s_string, server_privkey)

s_ciph = rsa.encrypt(s_sign, keyring[number])
hc_sign = rsa.sign(hc_string, server_privkey)
hc_ciph = rsa.encrypt(hc_sign, keyring[number])

conn.send("START")
conn.send("BEGIN_EXPIRY")

| = len(se_ciph)
sent = 0

76

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

whi | e(I>0):
b = conn.send(se_ciph[sent:])
sent = sent+b
| = I-b
conn.send("FINISH_EXPIRY")

conn.send("BEGIN_SECRETS")

| = len(s_ciph)
sent = 0
whi | e(I>0):

b = conn.send(s_ciph[sent:])

sent = sent+b

| = I-b
conn.send("FINISH_SECRETS")

conn.send("BEGIN_HASH_COUNTER")

| = len(hc_ciph)
sent = 0
whi | e(I>0):

b = conn.send(hc_ciph[sent:])

sent = sent+b

| = I-b
conn.send("FINISH_HASH_COUNTER")
conn.send("END")

os.chdir("..")
conn.close()

A.8 hashauth.py

77

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

#! [usr/ bi n/ pyt hon
i nport pickle

i mport random

i nport re

i nport rsa

i nport socket

#Load data structures fromfiles
server_privkey _file = open("./keys/server_privkey")
server_privkey = pickle.load(server_privkey _file)
keyring_file = open("./keys/keyring")

keyring = pickle.load(keyring_file)

words_file = open("/usr/share/dict/words")

words = words_file.read()

list = words.rsplit("\n")

#listen for connections fromclients

HOST ="~

PORT = 9002

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
S.bind((HOST, PORT))

s.listen(1)

#recei ve encryoted hash tokens fromclient
while 1:

conn, addr = s.accept()

print 'Connected _by’, addr

c =
while 1:

data = conn.recv(1024)

78

A.8. HASHAUTH.PY

Cc = c + data
i f (re.search("END$", c)):
br eak
authenticators=[]

c = re.sub(""START", ™, ¢)
c = re.sub("END$", ™, ¢)
finished=0

whi | e(finished==0):

i f(not re.search("AUTHBEGIN", c)):

br eak

C = re.sub("AUTHBEGIN", ™,)

m = re.search("AUTHFINISH", c)

authenticators.append(c[:m.start()])

c = c[m.end():]
#decrypt hash tokens and verify signatures
for i in authenticators:

m = rsa.decrypt(i, server_privkey)

print m

match = re.search(" ,om)
tl = m[:match.start()]

m = m[match.end():]

match = re.search(" L,om)

nl = m[:match.start()]

m = m[match.end():]

v = rsa.verify(m, keyring[nl])

match = re.search("

t2 = v[:match.start()]

n2 = v[match.end():]
conn.send("YES")

" V)

[}

79

APPENDIX A. SOURCE CODE

A.8. HASHAUTH.PY APPENDIX A. SOURCE CODE

password = listfrandom.randint(1,len(list))]
rsa.encrypt(password, keyring[n2])
"START" + ¢ + "END"
conn.send(c)

c

C

conn.close()

80

Bibliography

[1] J. Brainard, A Juels, R. Rivest, M. Szydlo and M. Yung, tifih-Factor Authenti-
cation: Somebody you know”, CCS’06: Proceedings of the ¥3IiM conference
on Computer and communications security , pp. 168-178,aldKa, Virginia, USA,
October 30-November 3 2006,

[2] N. Eagle and A. Pentland, “Eigenbehaviors: IdentifyfBigucture in Routine”, Be-
havioral Ecology and Sociobiology, Volume 63, Number 7, pp57-1066, May
20009.

[3] C.E. Shannon, “A Mathematical Theory of CommunicatioBé&ll System Technical
Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948

[4] “Entropy (information theory).” Wikipedia, The Free Eyclopedia. 11 Sep
2009, 15:13 UTC. 7 Oct 200&xtp://en.wikipedia.org/w/index.php?
titte=Entropy_ (information_theory)&oldid=313200698

[5] C.M. Thomas. and J.A. Thomas, “Elements of Informatidredry 2nd Edition”,
Wiley Series in Telecommunications and Signal Processilidey-Interscience,
Chapter 14, Hoboken, New Jersey, July 2006.

[6] M. Burnett, “Password Trivia: Character Setdittp://xato.com/
passwords/password-trivia-character-sets

[7] M. Burnett, “Perfect passwords: selection, protectianthentication”, Syngress,
Rockland, Massachussetts, 2006.

81

BIBLIOGRAPHY BIBLIOGRAPHY

[8] “Electronic Authentication Guideline” (PDF). NISTttp://csrc.nist.gov/
publications/nistpubs/800-63/SP800-63V1_0_2.pdf Retrieved
October 7 2009.

[9] “Biometrics.”, Wikipedia, The Free Encyclopedia. 8 O2009, 18:40 UTC.
11 Oct 2009 http://en.wikipedia.org/w/index.php?title=
Biometrics&oldid=318706649

[10] L. O’'Gorman, “Comparing Passwords, Tokens, and Bioioetfor User Authenti-
cation”, The Proceedings of the IEEE, Vol. 91, No. 12, pp. 22020, December
2003.

[11] “MobileKey (Mobile Authentication Server)”, Mobile&y http://www.
visualtron.com/products_mobilekey.htm

[12] PhoneFactor “Tokenless Two-Factor Authenticatid?fipneFactonttp://www.
phonefactor.com/how-it-works/overview/

[13] M. Hassinen, “SafeSMS - End-to-End encryption for SM&ssages.” Proceedings
of the 8th International Conference on Telecommunicat@msTEL 2005, pp. 359-
365, Zagreb, Croatia, June 15-17 2005.

[14] R. Ghosh and M. Dekhil, “I, Me and My Phone: Identity aner$bnalization using
Mobile Devices”, HP Technical Reports, HPL-2007-184, 2007

[15] M. Mont, B. Balacheff, J. Rouault and D. Drozdzewski @lentity-Aware Devices:
Putting Users in Control across Federated Services”, HRnieal Reports, HPL-
2008-26, 2008.

[16] M. Mont and B. Balacheff, “On Device-based Identity Mayement in Enterprises”,
HP Technical Reports, HPL-2007-53, 2007.

[17] F. Aloul, S. Zahidi and W. El-Hajj, “Two Factor Autheottion Using Mobile
Phones”, IEEE International Conference on Computer Systend Applications
(AICCSA), pp. 641-644, Rabat, Morocco, May 2009.

82

BIBLIOGRAPHY BIBLIOGRAPHY

[18]

[19]

[20]

[21]

[22]

[23]

[24]

“SAASM”, Wikipedia, The Free Encyclopedia. 15 Sep 20095:08 UTC.
14 Oct 2009 http://en.wikipedia.org/w/index.php?title=
SAASM&oldid=314120387

A. Durresi et al., “Secure Spatial Authentication us®ell Phones”, Second Interna-
tional Conference on Availability, Reliability and Sedyr{ARES’07), pp. 543-549,
Vienna, Austria, April 10-13 2007.

A. Das, O.K. Manyam, M. Tapaswi and V. Taranalli, “Mlikigual Spoken-password
Based User Authentication In Emerging Economies Using uGellPhone Net-

works”, SLT 2008: IEEE Spoken Language Technology Worksko@8, pp. 5-8,

Goa, India, December 15-19 2008.

A. Hadid, J. Y Heikkild, 0. Silven and M. Pietikdinen, &€e And Eye Detection
For Person Authentication In Mobile Phones”, ICDSC '07: sFiACM/IEEE In-
ternational Conference on Distributed Smart Cameras 200.7101-108, Vienna,
Austria, September 25-28 2007.

D.H. Cho, K.R. Park and D.W. Rhee, " SoftwareReal-tims iocalization for iris

recognition in cellular phone”, SNPD/SAWN 2005. Sixth Imtational Conference
on Engineering, Artificial Intelligence, Networking andrBlel/Distributed Com-
puting 2005, and First ACIS International Workshop on 2eembling Wireless
Networks, pp. 254-259, Towson University, Maryland, USAgWwR3-25 2005.

P. Campisi E. Maiorana M. Lo Bosco A. Neri, “User autheation using keystroke
dynamics for cellular phones”, IET Signal Processing, Yodu3, Issue 4, pp. 333-
341, July 2009.

F. Okumura, A. Kubota, Y. Hatori, K. Matsuo, M. Hashiropiand A. Koike, "A
Study on Biometric Authentication based on Arm Sweep Actigtin Acceleration
Sensor”, ISPACS '06: International Symposium on InteligBignal Processing and
Communications 2006. pp. 219-222, Tottori, Japan, Deceibd5 2006.

83

BIBLIOGRAPHY BIBLIOGRAPHY

[25]

[26]

[27]

[28]

[29]

[30]

[31]

D. Gafurov, E. Snekkenes. and P. Bours, "Spoof Attack&ait Authentication Sys-
tem”, IEEE Transactions on Information Forensics and SgcMolume 2, Issue 3,
Part 2, pp. 491-502, September 2007.

Y. Zheng, D. He, W. Yu and X. Tang, “Trusted ComputingsBd Security Archi-
tecture For 4G Mobile Networks”, PDCAT 2005: Sixth Interioatl Conference on
Parallel and Distributed Computing, Applications and Temlbgies 2005, pp. 251-
255, Dalian, China, December 5-8 2005.

A. Ramachandran and N. Feamster, “Authenticated &itaod communication over
social links”, WOSN’08: Proceedings of the first workshp amli®e social networks,
pp.61-66, Seattle, Washington, August 18 2008.

S. Yardi, N. Feamster and A. Bruckman, "Photo-Basedh&atication Using Social
Networks”, WOSN’'08: Proceedings of the first workshop oni@abkocial networks,
Seattle, Washington, August 18 2008.

A. Frankel and M. Maheswaran, “Feasibility of a Sogialware Authentication
Scheme”, CCNC 2009: Consumer Communications and Netwgr&ionference
2009, pp. 1-6, Las Vegas, Nevada, 20009.

B. Soleymani and M. Maheswaran, Social Authenticatfenotocol for Mobile
Phones, SINO9: International Symposium on Social Intefige and Networking,
pp. 1-7, Vancouver, British Columbia, September 10-12 2009

S. Ojala, J. Keinanen and J. Skytta, “Wearable autbatitin device for transpar-
ent login in nomadic applications environment”, SCS 200&d thternational Con-
ference on Signals, Circuits and Systems 2008, pp. 1-6, Sfaxersity, Tunisia,

November 7-9 2008.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[32] A. Itai.and H. Yasukawa, “Footstep classification gsivavelet decomposition”
ISCIT 2007: International Symposium on Communications brfidrmation Tech-

nologies 2007, pp. 551-556, Darling Harbour, Sydney, Aalisty October 17-19
2007.

85

