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observer performance suffers. When insufficient features are tracked, the
IMM performance suffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.9 IMM model probabilities depending on how the sa is constant assumption is
broken and number of matches in Trajectories 7 and 8. Mode 1 corresponds
to σ2

m = 10−6 and mode 2 corresponds to σ2
m = 1. Evolution of IMM and

observer’s error rk is shown in bottom plots. Green shaded regions represent
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Abstract

This thesis considers homography estimation in a Bayesian filtering framework using rate-gyro
and camera measurements. Homography estimation is a fundamental problem in computer
vision. A homography describes the transformation between two images of a planar scene, and
is typically estimated using a set of corresponding points in the two images. Environments
with planar features are common in many robotics applications, and homography estimation
enables the navigation of robots in these environments.

The use of rate-gyro measurements facilitates a more reliable estimate of homography in
the presence of occlusions, while a Bayesian filtering approach generates both a homography
estimate along with an uncertainty. Uncertainty information opens the door to adaptive
filtering approaches, post-processing procedures, and safety protocols. In particular, herein
an iterative extended Kalman filter, a sigma-point Kalman Filter and an interacting multiple
model (IMM) filter are tested using both simulated and experimental datasets. The IMM
is shown to have good consistency properties and better performance when compared to
the state-of-the-art homography estimator in simulation, while the IMM has comparable
performance when evaluated on experimental data.
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Résumé

Cette thèse porte sur l’estimation de l’homographie dans un cadre de filtrage bayésien en
utilisant des mesures de gyroscope et de caméra. L’estimation de l’homographie est un
problème fondamental en vision par ordinateur. Une homographie décrit la transformation
entre deux images d’une scène plane et est généralement estimée à l’aide d’un ensemble de
points correspondants dans les deux images. Les environnements avec des caractéristiques
planes sont courants dans de nombreuses applications de robotique, et l’estimation de
l’homographie permet la navigation des robots dans ces environnements.

L’utilisation des mesures de gyroscope facilite une estimation plus fiable de l’homographie
en présence d’occlusions, tandis qu’une approche de filtrage bayésien génère à la fois une
estimation d’homographie et une incertitude. Les informations sur l’incertitude ouvrent la
voie à des approches de filtrage adaptatif, des procédures de post-traitement et des protocoles
de sécurité. En particulier, dans cette thèse, un filtre de Kalman étendu itératif, un filtre de
Kalman à points sigma et un modèle multiple interactif (IMM) sont testés à l’aide de jeux de
données simulés et expérimentaux. L’IMM présente de bonnes propriétés de cohérence et de
meilleures performances par rapport à l’estimateur d’homographie de pointe en simulation,
tandis que l’IMM a des performances comparables lorsqu’il est évalué sur des données
expérimentales.
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Contributions

The contributions of this thesis that are original to the author’s knowledge are as follows.

• Chapter 4

– Employing a Bayesian filtering approach to homography estimation using camera
and rate-gyro measurements.

All texts, plots, figures and results in this thesis are original to the author’s knowledge unless
explicitly stated otherwise.
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Chapter 1

Introduction

Autonomous robots, such as unmanned aerial vehicles (UAVs) and autonomous ground vehicles
(AGVs), present engineers with challenging navigation, guidance, and control problems. The
navigation problem consists of estimating the state of the robot given the sensor readings.
The guidance problem consists of determining a trajectory to follow given the knowledge
about the robot’s state and its environment. The control problem consists of activating the
robot’s actuators to follow the plan as close as possible. Robust and reliable solutions to these
navigation, guidance, and control problems are needed for safe and trustworthy operation of
autonomous robots.

The focus of this thesis is navigation. In many robotics applications, the sensors available are
low quality due to cost limitations, requiring robust navigation algorithms that can extract
information from these low quality sensors. The state of the robot encodes how the robot
evolves in a given physical space. The position and the orientation of the robot are the most
common ways to represent the state, but the state can also be represented with a homography.

A homography is a mapping that relates two views of the same planar scene. It is exploited
in robotics applications when the structure of the environment is sufficiently planar, such as
indoor hallways, man made experimental settings, and aerial coverage. Robotics applications
that have successfully used homography include visual-servoing [1], image stabilization [2],
ego-motion [3, 4], and monocular SLAM initialization [5]. Homographies can better explain
the structure of planar scenes and low parallax compared to using the epipolar constraint [6],
which is commonly employed for unstructured scenes.

Homography is usually estimated using feature correspondences between a pair of images,
such as points, lines, conics or a combination thereof [7, 8]. Direct methods [9] and learning-
based approaches [10, 11] are alternative means to estimate homography. All of these
methods consider camera measurements independently and ignore any temporal correlations,
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thus making them susceptible to failures in the presence of occlusions or lack of feature
correspondences.

In [12], temporal information is exploited to estimate homography by designing a nonlinear
deterministic observer. Angular velocity measurements are used to provide a more robust
estimate of the homography, but at the cost of assuming the camera’s velocity is constant
parallel to the plane or exponentially converging towards to the plane. Homography is
parameterized as an element of the special linear group SL(3) and Lie group properties
are exploited in the observer structure to prove local asymptotic stability under various
assumptions.

Nonlinear deterministic observers aim to show a priori stability properties, and they do not
take into account stochastic processes, such as noise in sensor measurements, which is present
in all real systems. This thesis leverages the tools of Bayesian filtering that takes into account
noise statistics to produce an accurate and consistent estimate, with a covariance describing
the error distribution. A Bayesian filtering approach opens the door for procedures such
as smoothing [13, Ch. 8], loop-closure detection [14], adaptive approaches [15, Ch. 11], or
simply monitor the filter’s quality [15, Sec. 5.4].

1.1 Objectives

This thesis presents a Bayesian filtering approach to homography estimation using rate-gyro
and camera measurements. The same assumption on the camera’s inertial-frame velocity from
[12] is made to enable the use of a simple process model. Because this assumption is violated
from time to time in practice, focus is placed on a specific type of Bayes filter, the interacting
multiple model (IMM) filter. The IMM filter adapts the noise level of the process model
when the velocity assumption of the process model is violated. This approach is similar to
the IMM application found in [16]. The IMM used here is composed of two iterated extended
Kalman filters (EKFs). This thesis clearly demonstrates improved performance, along with
consistency, in simulation, as well as comparable performance in experiments, of the IMM
relative to a nonlinear deterministic observer. As such, the contribution of this thesis is the
combination of

(1) a Bayesian filtering framework,

(2) utilizing the camera velocity assumption of [12] thus providing a simple process model,

(3) considering the IMM structure to account for violations of the camera velocity assump-
tion, and
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(4) simulating and experimentally testing the proposed IMM filter.

Deterministic and Bayesian approaches to homography estimation are not mutually exclusive
nor competitors. The choice to use one or the other, or perhaps both in “primary" and
“back-up" roles, or even in synergy, will be application dependent. In situations where a
computationally simple observer is needed, but covariance information is not needed, a
deterministic observer is a natural choice. On the other hand, in situations where covariance
information is needed, and computational resources not so limited, a Bayesian filter is
appropriate. As such, this thesis does not advocate for the displacement of [2, 4, 12] and
similar work. Rather, this thesis build on [12] by providing a means to use both a rate-gyro
and camera to generate a homography estimate along with a covariance in a way that accounts
for the limitations of the assumed process model of [12].

1.2 Organization

This thesis is structured as follows. First, preliminaries related to homography and matrix
Lie groups are presented in Chap. 2. Then, Bayesian filtering is presented in Chap. 3. The
nuances of estimating homography within a Bayesian framework are presented in Chap. 4.
Furthermore, simulated and experimental data are used to validate the proposed algorithm
and compare its performance relative to a state-of-the-art nonlinear deterministic observer are
presented in Chap. 5. Conclusions and future work directions are presented in Chap. 6. The
appendix of this thesis contains a more in-depth explanation of the aforementioned nonlinear
deterministic observer.
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Chapter 2

Preliminaries

2.1 Overview

Before introducing the problem of homography estimation, certain topics must be reviewed.
In particular, the concepts of matrix Lie groups and homography will be reviewed in this
chapter.

2.2 Homography

As shown in Figure 2.1, a homography mapping relates features on a plane from two distinct
views. A point pi lying on a plane has coordinates resolved in the camera frame Fa given by

ρi
a =

[
x y z

]T
. The normalized image coordinates are

pi
a =

x/zy/z

1

 =
1

z
ρi
a. (2.1)

It is possible to obtain the projection of pi
a on the image plane qi

a by using the intrinsic
parameter matrix K, written as

qi
a =

uv
1

 =

fu 0 cu

0 fv cv

0 0 1


︸ ︷︷ ︸

K

pi
a, (2.2)

where fu and fv are the horizontal and vertical focal lengths and cu and cv are the optical
center coordinates in pixels. As the camera’s pose changes by Tab ∈ SE(3) [17, Sec. 8.1], it
is possible to relate a new observation qi

b of pi to qi
a by a homography matrix Hab [12], To

4



derive the homography matrix, the plane constraint resolved in Fa is utilized,

nT
aρ

i
a + da = 0, (2.3)

where na is the normalized plane direction resolved in Fa, da is the orthogonal distance from
the origin of Fa to the plane and ρi

a is the direction from the origin of Fa to pi. Now, the
pixel coordinates of pi seen from the origin of Fa are given byuv

1

 = qa =
1

za
Kρi

a, (2.4)

where za is the depth of point pi. Substitution of (2.4) into (2.3) and solving for za yields

za = −
da

nT
a K−1qi

a

, (2.5)

which means that if the plane parameters are known, depth can be inferred from a single
camera image. Next consider the following question: if the camera’s pose changes by Tab,
how will pi look from the origin of Fb? First, the direction to the point from the origin of Fb

resolved in Fb is determined considering the previous information,

ρi
b = T−1

ab ρ
i
a (2.6)

= CT
abρ

i
a − CT

abr
ba
a , (2.7)

where Cab ∈ SO(3) is the direction cosine matrix that encodes the orientation of Fa relative
to Fb, rbaa is the position of the origin of Fb relative to the origin of Fa resolved in Fa, and

Tab =

[
Cab rbaa
0T 1

]
∈ SE(3), T−1

ab =

[
CT

ab −CT
abrbaa

0T 1

]
∈ SE(3) (2.8)

is the robot pose. In pixel coordinates,

zbK
−1qi

b = zaCT
abK

−1qi
a − CT

abr
ba
a , (2.9)

qi
b =

za
zb

KCT
abK

−1qi
a −

za
zazb

KCT
abr

ba
a , (2.10)

Using (2.5) in 1/za in the second term of (2.10) results in

qi
b =

za
zb

KCT
abK

−1qi
a +

za
zb

KCT
abr

ba
a

nT
a K−1qi

a

da
(2.11)

=
za
zb

KCT
ab

(
1 +

1

da
rbaa nT

a

)
K−1qi

a (2.12)

= KHbaK−1qi
a, (2.13)
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Tab

Fa
−→

pi
n
−→

ρ
i
a ρ

i

b

F b
−→

db

da

Figure 2.1: A change of perspective from a camera tracking a point on a plane can be
described by homography transformation.

where

Hba =
za
zb

CT
ab

(
1 +

1

da
rbaa nT

a

)
, (2.14)

is the homography matrix. As can be observed, by knowing the pose transformation and the
plane parameters, the projection of a point onto the image plane in a new position can be
predicted. Also, since qi

b has homogeneous coordinates, it is common to drop the za/zb scale
factor and change it by a scalar γ ≜ za/zb since the true pixel coordinates can be readily
recovered by dividing all terms by the bottom entry of the vector.

The homography inverse can be obtained following a similar procedure. It can be verified
that

H−1
ba = Hab =

zb
za

Cab

(
1 +

1

db
rabb nT

b

)
. (2.15)

2.3 Homography Estimation from Point Correspondences

Given a set of pixel points and a set of corresponding points in two different images, obtained
by a camera observing a plane, how is the homography Hab between the two images obtained?

First, as seen in Sec. 2.2, the homography has 8 degrees of freedom, since it is defined only up
to the scalar γ. Since each point correspondence qi

a ↔ qi
b in pixel coordinates produces two

constraints, coming from the x and y coordinates in the image, a minimum of 4 noncolinear
points are required to define and compute a homography.
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The most basic algorithm to compute a homography from 4 points is the Direct Linear
Transform (DLT) algorithm [6]. First, the relation between a pair of points is

c

ub

vb

1

 = Hba

ua

va

1

 (2.16)

where in this case

Hba ≜ KHbaK−1 =

h1 h2 h3

h4 h5 h6

h7 h8 h9

 (2.17)

is the image homography, and c is a scale factor. Equation (2.16) can be rewritten as

c

ub

vb

1

 =

h1ua + h2va + h3

h4ua + h5va + h6

h7ua + h8va + h9

 . (2.18)

Given that c is unknown and unobservable, it is set equal to 1, and the system of equations
in (2.18) can be rewritten as[

0 0 0 ua va 1 −vbua −vbva −vb
ua va 1 0 0 0 −ubua −ubva −ub

]
︸ ︷︷ ︸

Ai

h = 0, (2.19)

where h is the vectorization of all the elements of Hba. Given i = 1, . . . , n point correspondences
of the form (2.19) results in a larger system of equations,

A1

A2
...

An


︸ ︷︷ ︸

A

h = 0, (2.20)

which means solving for homography involves finding the null-space of A. If 4 noncolinear
point correspondences are used, A ∈ R8×9 which means A has a column rank of 8, and the
null-space is 1-dimensional. To find the null-space of A, the singular value decomposition
(SVD) of A is computed, A = UΣVT, and the solution corresponds to the last column of V.
If more than 4 point correspondences are used and the points are exact, then A will still have
a column rank of 8, since the extra points are redundant. A more realistic scenario is when
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the points are noisy. In the noisy case, the problem can be set up as a least squares problem,

h⋆ = argmin
h

∥Ah∥2 , (2.21)

such that ∥h∥2 = 1, (2.22)

where the constraint is applied to avoid the trivial solution of h⋆ = 0. To solve this least squares
problem, let A = UΣVT. Then, ∥Ah∥2 =

∥∥UΣVTh
∥∥
2
=
∥∥ΣVTh

∥∥
2
. Given ∥h∥2 =

∥∥VTh
∥∥
2
, a

change of variable is proposed, y = VTh, which results in

y⋆ = argmin
y

∥Σy∥2 , (2.23)

such that ∥y∥2 = 1. (2.24)

Since Σ is a diagonal matrix with its entries in descending order, the solution must be

y⋆ =
[
0 0 · · · 1

]T
. It follows that h⋆ equals the last column of V.

2.4 Matrix Lie Groups

Matrix Lie groups are relevant in many robotics applications because they can better
represent states, such as orientation and poses, and measurement models, achieving thus
better performance, consistency and stability [18]. In this thesis, the focus will be on the
special linear group, SL(3), which is intimately related to the homography estimation problem.

2.4.1 Overview

A Lie group G is a smooth manifold whose elements, given a group operation ◦ : G×G→ G,
satisfy the group axioms [18]. A Matrix Lie group is a Lie group whose elements are matrices
and the group operation is matrix multiplication [19]. For any G, there exists an associated
Lie algebra g, a vector space identifiable with elements of Rm, where m is referred to as the
degrees of freedom of G. The Lie algebra is related to the group through the exponential
and logarithmic maps, denoted exp : g → G and log : G → g. For matrix Lie groups, the
exponential map is the matrix exponential and the logarithmic map is the matrix natural
logarithm. The “vee” and “wedge” operators are denoted (·)∨ : g→ Rm and (·)∧ : Rm → g,
and are used to associate group elements with vectors with

X = exp(ξ∧), ξ = log(X)∨, (2.25)

where X ∈ G, ξ ∈ Rm. The adjoint operator Ad : G× g→ g is defined as

Ad(X)Ξ = XΞX−1, (2.26)
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where Ξ ∈ g. The adjoint matrix Ad(X) can be obtained by (Ad(X)Ξ)∨ = Ad(X)ξ. The Lie
bracket [·, ·] : sl(3)× sl(3)→ sl(3) is defined as

[Ξ1,Ξ2] = Ξ1Ξ2 −Ξ2Ξ1, (2.27)

and a little adjoint matrix can be defined also as, [Ξ1,Ξ2]
∨ = ad(ξ1)ξ2. The (·)⊙ : Rn → Rn×m

operator is also relevant in this thesis and it is defined as ξ∧p = p⊙ξ, where p ∈ Rn.

The most common Lie groups appearing in robotics are SO(n), representing rotations in
n-dimensional space, and SE(n), representing poses. In this thesis, the focus is in the special
linear group, SL(3).

2.4.2 Uncertainty Representation

In this thesis, x ∼ N (µ,Σ) is used to denote a Gaussian random variable x with mean µ

and covariance matrix Σ. For a random variable X evolving in a Lie group G, a “Gaussian”
distribution can be represented on a vector space by two different ways,

X = exp(ξ∧)X̄, (2.28)

X = X̄ exp(ξ∧), (2.29)

where ξ ∼ N (0,Σ) [20], and the two uncertainty representations are defined as right and
left-invariant respectively, although it can also be said they are left and right perturbations,
respectively. Note that X is not normally distributed. Also, two additional related uncertainty
definitions can be added,

X = exp(−ξ∧)X̄, (2.30)

X = X̄ exp(−ξ∧). (2.31)

These two additional definitions are also right and left-invariant, respectively.

2.4.3 Linearization

An element of a group G can be represented as

X = exp(ξ∧). (2.32)

The matrix exponential can be written as

exp(ξ∧) =
∞∑
i=0

1

k!
(ξ)∧ . (2.33)

For a small ξ, terms of second order or higher can be neglected, yielding

X ≈ 1 + ξ∧, (2.34)
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which will prove very useful in this thesis when linearizing various functions.

2.4.4 Lie Groups Derivatives

Recall that for a multivariate function g : Rn → Rm, the Jacobian matrix is defined as [18]

J(x̄) =
∂g(x)
∂x

∣∣∣∣
x̄
≜


∂g1(x)
∂x1

· · · ∂g1(x)
∂xn...
...

∂gm(x)
∂x1

· · · ∂gm(x)
∂xn


∣∣∣∣∣∣∣∣
x̄

(2.35)

=
[
j1 · · · jn

]
, (2.36)

where each of the columns ji are defined in turn as

ji =
∂g(x)
∂xi

∣∣∣∣
x̄
≜ lim

h→0

g(x̄ + hei)− g(x̄)
h

, (2.37)

where ei is the ith vector of the natural basis of Rn. These columns ji can be compacted as,

J(x̄) = lim
h→0

g(x̄ + h)− g(x̄)
h

, (2.38)

where h ∈ Rn. This definition is only for compactness, since division by the vector h is
undefined, and the computation of the Jacobian is done utilizing (2.37). Using these facts, it
is possible to present the group Jacobian of a matrix Lie group G,

Jℓ
(
ξ̄
)
=

∂ log
(
exp

(
ξ̄∧ + ξ∧

)
exp (−ξ∧)

)∨
∂ξ

∣∣∣∣∣
ξ=0

, (2.39)

Jr
(
ξ̄
)
=

∂ log
(
exp

(
−ξ̄∧

)
exp

(
ξ̄∧ + ξ∧

))∨
∂ξ

∣∣∣∣∣
ξ=0

, (2.40)

where Jℓ(·), Jr are the left and right group Jacobians, respectively. When the function
g : G → Rm takes a Lie group element, using a right-invariant uncertainty representation,
the left Jacobian is defined as

J(X̄) =
Dg(X)

DX

∣∣∣∣
X̄
≜

∂g(exp(ξ∧)X̄)

∂ξ

∣∣∣∣
ξ=0

(2.41)

= lim
ξ→0

g(exp(ξ∧)X̄)− g(X̄)

ξ
. (2.42)

A right jacobian can be obtained by using a left-invariant uncertainty representation.

2.4.5 Special Linear Group

There are 6 degrees of freedom associated with rotation and translation, and 3 degrees of
freedom associated with relative distance. However, a homography matrix only has 8 degrees
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of freedom, and not 9, because it is defined only up to the scalar γ. One way to parameterize
homography is by the Special Linear Group SL(3),

SL(3) ≡ {H ∈ R3×3 | detH = 1}. (2.43)

Any non-singular matrix X ∈ R3×3 can be projected to SL(3) by

X
(detX)1/3

∈ SL(3). (2.44)

As with any Lie group, there is a Lie algebra associated to SL(3),

sl(3) ≡ {Ξ ∈ R3×3 | tr(Ξ) = 0}. (2.45)

A vector can be uniquely associated to an element of sl(3) by (·)∧ : R8 → sl(3), which is
defined as [21],

ξ∧ =

ξ4 + ξ5 −ξ3 + ξ6 ξ1

ξ3 + ξ6 ξ4 − ξ5 ξ2

ξ7 ξ8 −2ξ4

 . (2.46)

Given this parametrization, the adjoint matrix can be defined as

Ad(H) = A⋆B(H)A, (2.47)
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where

A =



0 0 0 1 1 0 0 0

0 0 −1 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 −1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 −2 0 0 0 0


∈ R9×8, (2.48)

A⋆ =



0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 −1
2

0 1
2

0 0 0 0 0
1
2

0 0 0 1
2

0 0 0 0
1
2

0 0 0 −1
2

0 0 0 0

0 1
2

0 1
2

0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0


∈ R8×9, (2.49)

B(H) =

H11H−T H12H−T H13H−T

H21H−T H22H−T H23H−T

H31H−T H32H−T H33H−T

 . (2.50)

The little adjoint matrix associated with SL(3) is defined as well, that being

ad(ξ) =



3ξ4 + ξ5 −(ξ3 − ξ6) ξ2 −3ξ1 −ξ1 −ξ2 0 0

ξ3 + ξ6 3ξ4 − ξ5 −ξ1 −3ξ2 ξ2 −ξ1 0 0
ξ8
2

− ξ7
2

0 0 2ξ6 −2ξ5 ξ2
2

− ξ1
2

− ξ7
2

− ξ8
2

0 0 0 0 ξ1
2

ξ2
2

− ξ7
2

ξ8
2

2ξ6 0 0 −2ξ3 ξ1
2

− ξ2
2

− ξ8
2

− ξ7
2

−2ξ5 0 2ξ3 0 ξ2
2

ξ1
2

0 0 ξ8 3ξ7 ξ7 ξ8 −3ξ4 − ξ5 −(ξ3 + ξ6)

0 0 −ξ7 3ξ8 −ξ8 ξ7 ξ3 − ξ6 −(3ξ4 − ξ5)


.

(2.51)

The projection matrix B that projects w ∈ R3 to R8, such that (Bw)∧ = w∧
sl(3) ∈ sl(3), can be

derived by noting that w×∨
=
[
w2 −w1 w3 0 0 0 −w2 w1

]T
. Thus, the projection
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matrix is

B =



0 1 0

−1 0 0

0 0 1

0 0 0

0 0 0

0 0 0

0 −1 0

1 0 0


. (2.52)

2.5 Homography Kinematics

From [12], it is possible to find an expression for the kinematics of Hab. Consider the frame
Fa as an inertial frame, which will serve as reference frame and Fb as the body frame. The
body kinematics are given by

Ċab = Cabω
ba
b

×
, (2.53a)

ṙbaa = Cabv
ba
b , (2.53b)

where ωba
b is the angular velocity of the body w.r.t. the inertial frame resolved in Fb, vba

b

is the linear velocity of the body w.r.t. the inertial frame resolved in Fb, and the operator
(·)× : R3 → so(3) where so(3) is the Lie algebra of SO(3) ⊂ SL(3). It can be verified that

nb = CT
abna, (2.54)

db = da + nT
a rbaa , (2.55)

therefore, since the plane parameters relative to the reference frame do not change, meaning
ṅa = 0, ḋa = 0. It can be deduced that

ḋb = nT
a ṙbaa (2.56)

= nT
b CT

abCabv
ba
b (2.57)

= nT
b vba

b . (2.58)
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With these results in mind, it is possible to find an expression for the kinematics of Hab =

γCab

(
1 + 1

db
rabb nT

b

)
,

Ḣab = γĊab

(
1 +

1

db
rabb nT

b

)
+ γCab

(
ṙabb nT

b + rabb ṅT
b

db
− ḋbrabb nT

b

d2b

)
+

γ̇

γ
Hab (2.59)

= γCabω
ba
b

×
(

1 +
1

db
rabb nT

b

)
+ γCab

(
(−ωba

b
×rabb − vba

b )nT
b + rabb nT

b ω
ba
b

×

db
− rabb nT

b vba
b nT

b

d2b

)
+

γ̇

γ
Hab

(2.60)

= γCab

([
1 +

rabb nT
b

db

]
ωba

b

× −
[

1 +
rabb nT

b

db

]
vba
b nT

b

db

)
+

γ̇

γ
Hab (2.61)

= Hab

(
ωba

b

× − vba
b nT

b

db
+

γ̇

γ
1
)

(2.62)

= HabU
ab
b , (2.63)

where Uab
b ∈ sl(3) and is referred as the group velocity, which has the interpretation of being

an infinitesimal variation of Hab. The fact that tr (Ξ) = 0 for Ξ ∈ sl(3) can be exploited to
determine the value of the undefined scalar γ̇

γ
. Noting that tr

(
Uab

b

)
= 0, it follows that

0 = tr

(
ωba

b

× − vba
b nT

b

db
+

γ̇

γ
1
)

(2.64)

= −nT
b vba

b

db
+ 3

γ̇

γ
, (2.65)

which means

Uab
b =

(
ωba

b

×
+ Γba

b

)
, Γba

b = −vba
b nT

b

db
+

nT
b vba

b

3db
1, (2.66)

where 1 is the identity matrix. As can be noticed, Γba
b depends on the plane parameters nb

and db, which are unmeasurable. A simple kinematic model can be derived if sab ≜
ṙbaa
db

is
assumed to be constant [12]. Using vba

b = CT
abṙbaa ,

Γ̇ba
b = −ĊT

abṙbaa nT
b + CT

abr̈baa nT
b + CT

abṙbaa ṅT
b

db
+

ḋbCT
abṙbaa nT

b

d2b
(2.67)

+
ṅT
b CT

abṙbaa + nT
b ĊT

abṙbaa + nT
b CT

abr̈baa
3db

1− ḋbnT
b CT

abṙbaa
9d2b

1

= −ĊT
abṙbaa nT

b + CT
abṙbaa ṅT

b

db
+

ṅT
b CT

abṙbaa + nT
b ĊT

abṙbaa
3db

1, (2.68)
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where the terms eliminated are due to the assumption on sab. Then, substituting Ċab using
(2.53a), and ṅb using (2.53a) and (2.54),

Γ̇ba
b =

ωba
b

×CT
abṙbaa nT

b − CT
abṙbaa nT

b ω
ba
b

×

db
+

nT
b ω

ba
b

×CT
abṙbaa − nT

b ω
ba
b

×CT
abṙbaa

3db
1 (2.69)

=
ωba

b
×vba

b nT
b − vba

b nT
b ω

ba
b

×

db
(2.70)

=
[
Γba

b ,ωba
b

×
]
. (2.71)

It can be noted that Γab ∈ sl(3). This simplified process model depends only on angular
velocity, which is easily measured by a rate-gyro. However, assuming sa is constant restricts
the trajectory of the camera to have constant velocity parallel to the plane, or to exponentially
converge towards the plane [12]. Without the assumption that sa is constant, the kinematic
model for Γba

b is

Γ̇ba
b =

[
Γba

b ,ωba
b

×
]
+ Γba

b

2
+

CT
abr̈baa nT

b

db
− nT

b CT
abr̈baa

3db
1. (2.72)
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Chapter 3

Bayesian Filtering

3.1 Overview

Bayesian inference provides the tools to make optimal decisions when uncertainties are
provided. In the context of state estimation in robotics applications, Bayesian filters are used
to find the optimal state from noisy, uncertain measurements. A probabilistic state space
model is needed, composed of two parts [13].

1. Process model: The process model encodes the prior beliefs of how the state evolves
in time. Markov assumption is used, implying that

xk ∼ p(xk|xk−1,uk−1), (3.1)

where uk−1 is a process model input that typically provides information about the
movement of the robot, such as accelerometer and rate-gyro readings.

2. Measurement model: The measurement model encodes the distribution of the
measurements given the state,

yk ∼ p(yk|xk). (3.2)

The measurements provide information of the state of the robot with respect to
the environment, such as camera measurements or Global Positioning System (GPS)
measurements.

The purpose of a Bayesian filter is to estimate the posterior distribution of the current state
given the whole history of measurements and inputs,

p(xk|y1:k,u1:k−1, x̌0). (3.3)

Notation-wise, unless stated otherwise, the indefinite integral sign is taken to be from −∞ to
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Prediction

uk−1 yk

Correction

p(xk|xk−1,uk−1) p(yk|xk)
p(x̌0)

p(xk|y1:k,u1:k−1, x̌0)

Figure 3.1: General structure of a Bayesian filter.

∞, ∫
f(x) dx ≜

∫ ∞

−∞
f(x) dx, (3.4)

with f(x) representing any integrable function. The structure of a Bayesian filter is shown in
Figure 3.1. It consists of a prediction and correction steps. Initializing the state with a prior
guess p(x̌0), the exact equations for these steps are

1. Prediction step: Before a new measurement yk arrives, the state’s distribution is
predicted using the process model,

p(xk|y1:k−1,u1:k−1, x̌0) =

∫
p(xk|xk−1,uk−1)p(xk−1|y1:k−1,u1:k−1, x̌0) dxk−1. (3.5)

2. Correction step: When a new measurement yk arrives, the distribution is updated by

p(xk|y1:k,u1:k−1, x̌0) =
1

c
p(yk|xk)p(xk|y1:k−1,u1:k−1, x̌0), (3.6)

where c is a normalization constant.

3.2 Gaussian Filter

In the context of filtering, it is difficult to compute the whole distribution p(xk|y1:k,u1:k−1, x̌0),
so a Gaussian filter assumes that the state distribution is Gaussian,

p(xk|y1:k,u1:k−1, x̌0) ≈ N
(

xk|x̂k, P̂k

)
. (3.7)

Therefore, only a mean and covariance are computed, ignoring higher order moments. This
assumption suffices in many applications, but can be limiting in some cases, especially when
the state distribution is multimodal [13].
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To derive the Gaussian filter and its variants, the process model and measurement models can
be posed alternatively as discrete-time nonlinear state space models, instead of a probabilistic
state space model as in (3.1) and (3.2). In particular, the state-space form of the process and
measurement models, respectively, are

xk = f(xk−1,uk−1,wk−1), wk−1 ∼ N (0,Qk−1), (3.8)

yk = g(xk, vk), vk ∼ N (0,Rk), (3.9)

where wk−1 and vk are zero-mean Gaussian noise processes with covariance matrices Qk−1

and Rk, respectively.

Consider a Gaussian random variable x ∼ N (µ,Σ) that is transformed by a nonlinearity
y = g(x). The mean ȳ and covariance S of such transformation are given by

ȳ =

∫
g(x)N (x|µ,Σ) dx, (3.10a)

S =

∫
(g(x)− ȳ) (g(x)− ȳ)TN (x|µ,Σ) dx. (3.10b)

Using the Gaussian assumption that p(xk|y1:k−1,u1:k−1, x̌0) ≈ N
(
xk|x̌k, P̌k

)
, it follows that

the prediction step of the Gaussian filter is

x̌k =

∫
f(xk−1,uk−1,wk−1)N

(
xk−1|x̂k−1, P̂k−1

)
N (0,Qk−1) dxk−1 dwk−1, (3.11)

P̌k =

∫ (
f(xk−1,uk−1,wk−1)− x̌k

) (
f(xk−1,uk−1,wk−1)− x̌k

)T×
N
(

xk−1|x̂k−1, P̂k−1

)
N (0,Qk−1) dxk−1 dwk−1.

(3.12)

In the correction step, given that the joint probability density function p(xk, yk) of the state
and measurement is [

xk

yk

]
∼ N

([
xk

yk

]∣∣∣∣∣
[

x̌k

ȳk

]
,

[
P̌k Ck

CT
k Sk

])
. (3.13)

The posterior p(xk|yk) ≈ N
(

xk|x̂k, P̂k

)
can be obtained in closed form using the Lemma
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Prediction

uk−1 yk

Correction

x̌k, P̌k
x̌0, P̌0 x̂k, P̂k

f(xk−1,uk−1,wk−1) g(xk,vk)

Figure 3.2: General structure of a Gaussian filter.

from [13, Lemma A.2]. Therefore, the correction step is,

ȳk =

∫
g(xk, vk)N

(
xk|x̌k, P̌k

)
N (0,Rk) dxk dvk, (3.14)

Sk =

∫
(g(xk, vk)− ȳk) (g(xk, vk)− ȳk)

T

×N
(
xk|x̌k, P̌k

)
N (0,Rk) dxk dvk,

(3.15)

Ck =

∫ (
f(xk−1,uk−1,wk−1)− x̌k

)
(g(xk, vk)− ȳk)

T

×N
(
xk|x̌k, P̌k

)
N (0,Rk) dxk dvk,

(3.16)

x̂k = x̌k + K (yk − ȳk) , K = CkS−1
k , (3.17)

P̂k = P̌k −KSkKT. (3.18)

The structure of the filter is shown in Figure 3.2.
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3.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a type of Gaussian filter. In this filter, the approach
taken to compute (3.10a) and (3.10b) is linearization [13],

ȳ =

∫
g(x)N (x|µ,Σ) dx (3.19)

≈
∫ (

g(µ) +
dg(x)
dx

∣∣∣∣
µ

δx

)
N (δx|0,Σ) dδx (3.20)

= g(µ), (3.21)

S =

∫
(g(x)− ȳ) (g(x)− ȳ)TN (x|µ,Σ) dx (3.22)

≈
∫ (

dg(x)
dx

∣∣∣∣
µ

δx

)(
dg(x)
dx

∣∣∣∣
µ

δx

)T

N (δx|0,Σ) dδx (3.23)

=
dg(x)
dx

∣∣∣∣
µ

Σ
dg(x)
dx

∣∣∣∣T
µ

. (3.24)

Given these results, the prediction and correction steps can be easily derived. The prediction
step is given by

Fk−1 =
∂f(xk−1,uk−1,wk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k−1,wk−1=0

, (3.25)

Lk−1 =
∂f(xk−1,uk−1,wk−1)

∂wk−1

∣∣∣∣
xk−1=x̂k−1,wk−1=0

, (3.26)

x̌k = f(x̂k−1,uk−1, 0), (3.27)

P̌k = Fk−1P̂k−1F
T
k−1 + Lk−1Qk−1L

T
k−1. (3.28)

The correction step is given by

Gk =
∂g(xk, vk)

∂xk

∣∣∣∣
xk=x̌k,vk=0

, (3.29)

Mk =
∂g(xk, vk)

∂vk

∣∣∣∣
xk=x̌k,vk=0

, (3.30)

K = P̌kGk(GkP̌kGT
k + MkRkMT

k )
−1, (3.31)

zk = yk − g(x̌k, 0), (3.32)

x̂k = x̌k + Kzk, (3.33)

P̂k = (1−KGk)P̌k. (3.34)

For a more in-depth discussion, the reader is referred to [13].
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3.4 Iterated Extended Kalman Filter

The iterated EKF inherits the EKF prediction step, but its correction step is formulated
as a nonlinear least squares solved with Gauss-Newton algorithm [22]. The iterated EKF
evaluates multiple times the correction step of a typical extended Kalman filter, but updating
the evaluation points at each time,

Gk =
∂g(xk, vk)

∂xk

∣∣∣∣
xk=x̌k,vk=0

, (3.35a)

Mk =
∂g(xk, vk)

∂vk

∣∣∣∣
xk=x̌k,vk=0

, (3.35b)

K = P̌kGk(GkP̌kGT
k + MkRkMT

k )
−1, (3.35c)

z = yk − g(x̂k, 0) + Gk(x̂k − x̌k), (3.35d)

δxk = Kz, (3.35e)

and then updating the current estimate x̂k ← x̌k + δxk. Equations (3.35) are continuously
iterated, updating the estimate each time, until convergence. The covariance is updated at
last when the estimate has converged, with P̂k = (1−KGk)P̌k. The estimate is initialized
with x̂k ← x̌k. It can be noted that the EKF is an iterated EKF with only one iteration.

3.4.1 Extension of Iterated EKF to Matrix Lie Groups

Thus far the Bayes’ filter and its variants have been derived for states evolving in a vector
space x ∈ Rn. When the state evolves in a matrix Lie group, some changes are needed to
account for the non-Euclidean geometry of the state space [23]. The changes are applied here
to the iterated EKF, which is relevant in this thesis.

As mentioned in Sec. 2.4.2, the uncertainty in a matrix Lie group element is represented
locally. Using a right-invariant perturbation X = exp(−δξ∧)X̄, and a process model of the
form F : G→ G, the prediction step is given by

Ak−1 =
DF(Xk−1,uk−1,wk−1)

DXk−1

∣∣∣∣
Xk−1=X̂k−1,wk−1=0

, (3.36)

Lk−1 =
∂F(Xk−1,uk−1,wk−1)

∂wk−1

∣∣∣∣
Xk−1=X̂k−1,wk−1=0

, (3.37)

X̌k = F(X̂k−1,uk−1, 0), (3.38)

P̌k = Ak−1P̂k−1A
T
k−1 + Lk−1Qk−1L

T
k−1. (3.39)
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The correction step is given by

δϵk = log
(

X̂kX̌−1
k

)∨
(3.40)

J = −Jℓ(δϵk) (3.41)

Gk =
Dg(Xk, vk)

DXk

∣∣∣∣
Xk=X̂k,vk=0

, (3.42)

Mk =
∂g(Xk, vk)

∂vk

∣∣∣∣
Xk=X̂k,vk=0

, (3.43)

K = JP̌kJTGk(GkJP̌kJTGT
k + MkRkMT

k )
−1, (3.44)

zk = yk − g(X̂k, 0) + GkJδϵk, (3.45)

δξk = Kz, (3.46)

and the state must be updated at each iteration with

X̂k ← exp(−δξk)X̌k. (3.47)

The covariance is updated at last when the estimate has converged, with

P̂k = (1−KGk)JP̌kJT. (3.48)

3.5 Sigma-Point Kalman Filter

The sigma-point transform generates a set of sigma-points ξi from a prior distribution, then
passes them through a nonlinearity to then approximate the mean and covariance of the
transformed distribution [13]. The way (3.10a) and (3.10b) are solved is

ȳ =

∫
g(x)N (x|µ,Σ) dx (3.49)

=

∫
g(µ+

√
Σξ)N (ξ|0, 1) dξ (3.50)

≈
n∑

i=0

wig(µ+
√
Σξi), (3.51)

S =

∫
(g(x)− ȳ) (g(x)− ȳ)TN (x|µ,Σ) dx (3.52)

=

∫ (
g(µ+

√
Σξ)− ȳ

)(
g(µ+

√
Σξ)− ȳ

)T
N (ξ|0, 1) dξ (3.53)

≈
n∑

i=0

wi
(

g(µ+
√
Σξi)− ȳ

)(
g(µ+

√
Σξi)− ȳ

)T
. (3.54)

Three popular sigma-point transformations are: unscented, spherical cubature, and Gauss-
Hermite [13]. The differences between each transformation lie in which type of functions
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they try to better approximate. For example, Gauss-Hermite computes the exact mean and
covariance when the nonlinearity is a polynomial.

For the prediction step, the sigma-points are then calculated by

P̃k−1 = diag(P̂k−1,Qk−1) ≜ LLT, (3.55)[
δxiT δwiT

]T
= Lξi, (3.56)

where ξi is the ith unit sigma-point generated by one of the three available methods, along
with a corresponding weight wi. The sigma-points are propagated as follows,

x̌i
k = f(x̂k−1 + δxi,uk−1, δwi), (3.57)

x̌k =
n∑

i=1

wix̌i
k, (3.58)

P̌k =
n∑

i=1

wi
(
x̌i
k − x̌k

) (
x̌i
k − x̌k

)T
. (3.59)

For the correction step, the sigma-points are calculated by

P̃k = diag(P̌k,Rk) ≜ LLT, (3.60)[
δxiT δviT

]T
= Lξi. (3.61)

Propagating and obtaining new estimates,

ȳk =
n∑

i=1

wiyi
k, yi

k = g(x̌k + δxi, δvi
k), (3.62)

Sk =
n∑

i=1

wi
(
yi
k − ȳk

)(
yi
k − ȳk

)T
, (3.63)

Ck =
n∑

i=1

wiδxi
(
yi
k − ȳk

)T
, (3.64)

x̂k = x̂k + K (yk − ȳk) , K = CkS−1
k , (3.65)

P̂k = P̌k −KSkKT. (3.66)

3.5.1 Extension of SPKF to Matrix Lie Groups

The SPKF can also be extended to matrix Lie groups [24]. A right-invariant perturbation
X = exp(−δξ∧)X̄, and a process model of the form F : G→ G is used as in Sec. 3.4.1. For
the prediction step, once the sigma-points are computed, they are propagated as follows,

X̌i
k = F(exp(−δxi)X̂k−1,uk−1, δwi). (3.67)
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The mean X̌k is computed in an iterated manner, where the first of the propagated states
is set as the initial mean estimate, X̌k ← X̌1

k, and the error with the rest of the propagated
states is computed with a weighted mean. The mean is updated until a convergence criteria
is met,

δξj =
n∑

i=1

wi log
(

X̌kX̌i

k

−1)∨
, X̌k ← exp(−δξj)X̌k.

The covariance is computed given the converged mean estimate with

δξi = log
(

X̌kX̌i

k

−1)∨
, (3.68)

P̌k =
n∑

i=1

wiδξiδξi
T
. (3.69)

For the correction step, once the sigma-points are computed, the updates are done as
follows,

ȳk =
n∑

i=1

wiyi
k, yi

k = g
(
exp(−δxi∧)X̌k, δvi

k

)
, (3.70)

Sk =
n∑

i=1

wi
(
yi
k − ȳk

)(
yi
k − ȳk

)T
, (3.71)

Ck =
n∑

i=1

wiδxi
(
yi
k − ȳk

)T
, (3.72)

z = K (yk − ȳk) , K = CkS−1
k , (3.73)

X̂k = exp(−z∧)X̌k, (3.74)

P̂k = P̌k −KSkKT. (3.75)

3.6 Interacting Multiple Model

An IMM manages multiple models of a dynamic system in estimation tasks. The model at
time step k is assumed to be among n possible models θ(k) = {θi}ni=1. The model switching
is assumed a Markov chain with known transition probabilities

pij ≜ P
(
θ(k) = θi|θ(k − 1) = θj

)
. (3.76)

In robotics applications, the IMM is used to mix the estimates of multiple filters each with
their own process model of the system, where the ith process model fi(·) is written

xi
k = fi(x

i
k−1,uk−1). (3.77)
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To avoid the exponential complexity of accounting for all possible nk combination of models
at time step k, the IMM runs n process models in parallel at all times, each with a weight
wi

k ≜ P (θ(k) = θi|y1:k). When a new measurement yk arrives, the IMM executes the following
three steps.

1. Interaction. Mixing probabilities are calculated by

µij
k−1 = P

(
θ(k) = θj|θ(k − 1) = θi

)
P
(
θ(k − 1) = θi|y1:k−1

)
(3.78)

=
1

c
pijw

i
k−1, (3.79)

where c is a normalization constant. The mixing probabilities represent how likely a
switch is to happen given the history of measurements or current knowledge of the
trajectory. Every model i computes mixing probabilities with the rest of the models
including itself.

2. Mixing. Since it is assumed the states are Gaussian distributed, a Gaussian mixture
is carried out to update the state and covariance of each filter considering the mixing
probabilities,

x̌i
k−1 ←

n∑
j

µij
k−1x̌j

k−1, (3.80)

P̌i
k−1 ←

n∑
j

µij
k−1

(
P̌j
k−1 + (x̌j

k−1 − x̌i
k−1)(x̌

j
k−1 − x̌i

k−1)
T
)
. (3.81)

3. Weights update. Once each filter has a mixed state estimate, the correction step is
performed within each filter. The likelihood that each filter i generated the measurement
yk is computed to update the filters’ weights,

Λi
k = p(yk|xi

k−1, θk−1), (3.82)

wi
k =

1

c
Λi

k

n∑
j

wj
k−1pij, (3.83)

where c is a normalization constant.

Figure 3.3 shows how these previous steps are taken in the case of using two Gaussian filters.
A more in-depth description of the IMM can be found in [15, Sec. 11.6].

3.6.1 Extension of IMM to Matrix Lie Groups

The mixing step is straightforward for states in vector space. To mix distributions in Lie
groups, three steps are carried out [25].
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Figure 3.3: General structure of the IMM using two Gaussian filters.

1. Distribution unfolding. For states that evolve in a Lie group G, random variables are
represented using the tools found in Sec. 2.4.2. For example,

Xj
k−1 = exp

(
−ξjk−1

∧
)

X̌j
k−1, ξjk−1 ∼ N (0, P̌j

k−1). (3.84)

It can be noticed that the covariance P̌j
k−1 is defined in the Lie algebra g, and is relevant

only to the tangent space of the mean X̌j
k−1. When performing the mixing for filter i, a

reparametrization in vector space or “unfolding" of each estimate’s Xj
k−1 distribution is

needed about the tangent space of X̌i
k−1, as shown in Fig. 3.4b. To this end,

ξjik−1 = log
(

X̌i
k−1X

j−1

k−1

)∨
(3.85)

≈ ξ̄jik−1 + Jr(ϵ̄jik−1)
−1ξjk−1, (3.86)

ξ̄jik−1 = log
(

X̌i
k−1X̌

j−1

k−1

)∨
, (3.87)

P̌ji
k−1 = Jr(ξ̄jik−1)

−1P̌j
k−1J

r(ξ̄jik−1)
−T, (3.88)

where ξ̄jik−1 and P̌ji
k−1 are the mean and covariance of (3.86). They define the reparametrized

distribution in vector space of Xj
k about X̌i

k−1. Equation (3.86) is a first-order approxi-
mation of (3.85), with Jr(ξ̄jik−1) being the right group Jacobian of SL(3) about ξ̄jik−1,
calculated using a backward finite-difference.

2. Gaussian mixture. Since the reprojected means and covariances ξ̄jik−1 and P̌ji
k−1 describe

a distribution in vector space, as can be seen in Figure 3.4c, (3.81) and (3.80) can be
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applied to produce ξ̄ik−1 and P̌i
k−1,

ξ̄ik−1 ←
n∑
j

µij
k−1ξ̄

ji
k−1, (3.89)

P̌i
k−1 ←

n∑
j

µij
k−1

(
P̌ji
k−1 + (ξ̄jik−1 − ξ̄ik−1)(ξ̄

ji
k−1 − ξ̄ik−1)

T
)
. (3.90)

3. Distribution folding.To finalize the Gaussian mixture on SL(3), these values are then
projected onto the SL(3) manifold as follows,

X̌i
k−1 ← exp

(
−ξ̄ik−1

)
X̌i

k−1, (3.91)

P̌i
k−1 ← Jr(ξ̄ik−1)P̌

i
k−1Jr(ξ̄ik−1)

T. (3.92)

3.7 Linearization then Discretization

In this chapter, a process model in discrete time (3.8) is assumed to derive the Bayes’ filter
and all its variants. However, in many cases, the process model is given in continuous time,

ẋ = f(x,u,w), w ∼ N (0,Qδ(t− τ)), (3.93)

where w is a white noise random process and Q is the power spectral density of such signal.
When carrying out a linearization-based prediction step as found in the EKF, to obtain
a discrete-time model, the continuous-time model can be either discretized first and then
linearized, or linearized first about the most recent state estimate x̄k−1, the input ūk−1 and
noise w̄k−1 and then discretized. First, the Jacobians of (3.93) are needed to linearize the
process model,

F =
∂f
∂x

∣∣∣∣
x̄,ū,w̄

, B =
∂f
∂u

∣∣∣∣
x̄,ū,w̄

, L =
∂f
∂w

∣∣∣∣
x̄,ū,w̄

, (3.94)

which yield a linear continuous-time model,

δẋ = Fδx + Bδu + Lδw, δw ∼ N (0,Qδ(t− τ)), (3.95)

which is then discretized. Van Loan’s method [17], [26, Sec.4.7] allows carrying out the
discretization of (3.95) by means of the matrix exponential. First,

Ψ =


F LFLT 0 0
0 −FT 0 0
0 0 F B
0 0 0 0

 (3.96)
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is constructed. Then, the matrix exponential is computed using the ∆t time step over which
the discretization is carried out,

M = exp(∆tΨ) =


M11 M12 ⋆ ⋆

0 ⋆ ⋆ ⋆

0 0 ⋆ M34

0 0 0 ⋆

 , (3.97)

where ⋆ denotes irrelevant nonzero entries. The linear discretized model is then

Fd = M11, Bd = M34, Qd = M12MT
11, (3.98)

δxk+1 = Fdδxk + Bdδuk + wk, wk ∼ N (0,Qd). (3.99)

The Jacobians needed in the EKF’s prediction step, are then obtained from this linear
discretized model.
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Figure 3.4: Gaussian mixture procedure for matrix Lie groups. Figure inspired by [25].
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Chapter 4

Homography Estimation Using the IMM
Filter

4.1 Overview

The states to be estimated are Hab and Γab. An IMM is implemented employing two (iterated)
EKFs. Both EKFs share the same measurement and process model, but have different process
model noise levels, similar to [16]. Although the true noise levels are unknown in this work,
the same principle will be used to manage how confident the filter is in the assumption that
sa, defined in Sec. 2.5, is constant. To implement an EKF, the Jacobians of the process and
measurement models must be obtained. A SPKF is also implemented using the same process
and measurement models.

4.2 Process Model

The process model has access to a rate-gyro measurement u = ωba
b + w resolved in the

body frame Fb. It is assumed that the rate-gyro is unbiased and is only corrupted by white
Gaussian noise w(t) ∼ N

(
0,Qgδ(t− τ)

)
. From (2.63) and (2.71), the process model is

Ḣab = Hab

(
(u× − w×) + Γab

)
, (4.1)

Γ̇ab =
[
Γab,u× − w×]+ wm∧. (4.2)

As previously discussed in Sec. 2.5, assuming sa is constant in time comes at the cost of
process model inaccuracies when the assumption is broken. One way to account for modeling
errors is adding a noise term wm(t) ∼ N (0,Qmδ(t− τ)) ∈ R8. The power spectral density
(PSD) is modeled as Qm = σ2

m1. The size of σ2
m represents how confident the filter is on the

motion model for Γab.
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The IMM introduced in Sec. 3.6 is a common adaptive method that weights the available
motion hypotheses on a Bayesian framework to produce an estimate. The idea is to have two
similar models, with different values of σ2

m. Low values accommodate for scenarios where
the assumption that sa is constant is respected, and higher values can deal with scenarios
where the motion violates this assumption. The IMM should provide an estimate with better
consistency properties than using a single filter in cases where the trajectory is more varied,
switching from slow to aggressive maneuvers.

4.2.1 Jacobians of the Process Model

Recalling Sec. 2.4.2, consider the right-invariant error definitions,

δH ≜ exp(δξ∧) = H̄H−1, (4.3)

δγ∧ = Γ− Γ̄, (4.4)

Using (4.3) and (4.4) in (4.1) and (4.2) results in a perturbed process model,

−δH−1
ab δḢabδH−1

ab H̄ab + δH−1
ab

˙̄Hab = δH−1
ab H̄ab

(
u× + Γ̄ab + δΓab − δw×) , (4.5)

˙̄Γab + δΓ̇ab =
[
Γ̄ab + δΓab,u× − δw×]+ δwm∧. (4.6)

After algebraic manipulations,

−δḢabδH−1
ab = H̄ab

(
δΓab − δw×) H̄−1

ab , (4.7)

δΓ̇ab =
[
δΓab,u×]− [Γ̄ab, δw×]+ δwm∧, (4.8)

where δΓabδw× ≈ 0 has been used. Using 1 + δξR
∧ ≈ δHR and γ∧ = Γ,

−δξ̇∧ab (1− δξ∧ab) = H̄ab

(
δΓab − δw×) H̄−1

ab , (4.9)

δγ̇∧
ab =

[
δγ∧

ab,u×]− [γ̄∧
ab, δw×]+ δwm∧. (4.10)

Assuming δξ̇∧abδξ
∧
ab ≈ 0, the linearized process model evolving in the Lie algebra is

δξ̇∧ab = −Ad
(
H̄ab

)
δγ∧

ab +Ad
(
H̄ab

)
δw×, (4.11a)

δγ̇∧
ab = −ad (u) δγ∧

ab − ad (γ̄ab) δw× + δw∧
m. (4.11b)

When applying the linear (·)∨ operator on (4.11), δw× has to be addressed. A projection
matrix B can be found such that, δw×∨

= Bδw. As such, the linearized process model is thus

δξ̇ab = −Ad
(
H̄ab

)
δγab +Ad

(
H̄ab

)
Bδw, (4.12a)

δγ̇ab = −ad (u) δγab − ad (γ̄ab)Bδw + δwm. (4.12b)
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Setting δxab =
[
δξab

T δγab
T
]T

, and δwab =
[
δwT δwmT

]T
, the linearized process model

can be written as

δẋab =

[
0 −Ad

(
H̄ab

)
0 −ad (u)

]
︸ ︷︷ ︸

A

δxab +

[
Ad

(
H̄ab

)
B 0

−ad (γ̄ab)B 1

]
︸ ︷︷ ︸

L

δwab. (4.13)

At this point, the linearized process model given by (4.13) can be discretized using the matrix
exponential [17, 26], as discussed in Sec. 3.7. The resulting discrete-time Jacobians are then
used in a standard iterated EKF framework.

4.3 Measurement Model

From (2.13), given a point correspondence obtained from camera measurements of a point
feature pi lying on a plane, the pair can be related by a homography transformation Hk ≜ Hab

as follows,

yi
b = g(H−1

k pi
a) + vk, (4.14)

where pi
a represents the measurement of pi resolved in Fa, in normalized image coordinates,

yi
b the noisy measurement in pixel coordinates of the same feature resolved in Fb, and

vk ∼ N (0,Rk) ∈ R2 models white noise on the pixel measurement. Setting rib ≜ H−1
k pi

a =[
x y z

]T
,

g
(
rib
)
≜

1

z
DKrib, (4.15)

where D =
[
12×2 02×1

]
and K is the previously introduced intrinsic parameter matrix to

model a pinhole camera.

4.3.1 Jacobians of the Measurement Model

The linearized measurement model is,

δyi
b ≈

∂g(rib)
∂rib

[
Drib(Hk)

DHk

∣∣∣
H̄k

∂rib(Γk)

∂Γk

∣∣∣
Γ̄k

]
δxk + δvk, (4.16)

where

∂g(rib)
∂rib

=
1

z

[
fu 0 −fu x

z

0 fv −fv y
z

]
. (4.17)

To find the Jacobians of rib, a perturbation is again applied to linearize rib,

r̄ib + δrib = H̄−1
k δHkpi

a. (4.18)
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Using 1 + δξR
∧ ≈ δHR,

r̄ib + δrib ≈ H̄−1
k pi

a + H̄−1
k δξ∧k pi

a, (4.19)

δrib = H̄−1
k pi

a

⊙
δξk. (4.20)

Thus, this yields [
Drib(Hk)

DHk

∣∣∣
H̄k

∂rib(Γk)

∂Γk

∣∣∣
Γ̄k

]
=
[
H̄−1

k pi
a
⊙ 03×8

]
. (4.21)

With these derived jacobians, the prediction and correction steps can be determined for an
iterated EKF.

4.4 Robust Loss

Point matching in real applications is subject to outliers even after outlier-removal procedures
like RANSAC. Robust M-estimation is a popular method that downweighs outliers in an
optimization procedure to find the estimate. In a nonlinear least squares formulation,

J(x) =
1

2
e(x)Te(x) =

1

2
r(x)2, (4.22)

a robust loss function is added to decrease the influence of outliers,

J ′(x) =
∑
i

ρ (ri(x)) . (4.23)

It can be shown that this redefined optimization problem is equivalent to an Iteratively
Reweighted Least-Squares (IRLS) problem [27],

J ′(x) =
1

2

∑
i

w(ri(x̄))ri(x)
2, (4.24)

where x̄ is the current best estimate and w(·) is a weight function associated to the robust
loss function. An iterated EKF’s correction step can be formulated as a weighted nonlinear
least squares problem [22] solved by Gauss–Newton,

e(xk)
T =

[
(x̌k − xk)

T P̌− 1
2

k (yk − g(xk))
T R− 1

2
k

]
, (4.25)

J(xk) =
1

2
e(xk)

Te(xk) (4.26)

=
1

2
(x̌k − xk)

T P̌−1
k (x̌k − xk) +

1

2
(yk − g(xk))

T R−1
k (yk − g(xk)) (4.27)

=
1

2
rprior(x)

2 +
1

2
rmeas(x)

2, (4.28)
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Figure 4.1: Front view of an Intel Realsense D453i, shown by the red circle, used to obtain
both camera and angular velocity measurements. It is mounted on an T-slot aluminum
profile. The numerous small gray spheres are the markers that the OptiTrack system uses to
track the sensor head and generate ground truth data.

If the robust loss is applied solely on the measurement errors, it is straightforward to modify
the weighting matrix to account for that change,

J ′(xk) =
1

2
rprior(x)

2 + ρ (rmeas(x)) (4.29)

=
1

2
(x̌k − xk)

T P̌−1
k (x̌k − xk) +

1

2
w(rmeas(x̄)) (yk − g(xk))

T R−1
k (yk − g(xk)) (4.30)

=
1

2
e(xk)

T

[
1

w(rmeas(x̄))1

]
e(x). (4.31)

The SC/DCS robust loss was picked due to the properties explained in [27]. Its weight
function is given by

w(r) =

 4c2

(c+r2)2
if r2 ≥ c

1 otherwise.
(4.32)

4.5 Experimental Setup

To collect experimental data, an Intel Realsense D435i is used, shown in Figure 4.1. It has
an IMU included, which provides angular velocity measurements at 200 Hz. The left camera
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Figure 4.2: The experimental setup. The Intel Realsense D435i is moved in this space,
observing the pages spread in the floor, employed to generate distinctive features on a plane.
The OptiTrack system tracks the sensor head maneuvering in this space. A close-up of the
tracked plane is shown in the right image.

of the stereo rig is used for camera measurements of 640× 480 pixels at 30 Hz. Ground truth
data is collected using an OptiTrack optical motion capture system at 120 Hz. The whole
setup is shown in Figure 4.2.

4.5.1 Sensor Calibration

From (4.14), it can be noticed that the intrinsic parameter matrix K from the camera is needed.
Many tools are available to automate obtaining this matrix from camera measurements.
Observations of a checkerboard with known dimensions is a common way to determine the
camera intrinsics. In this thesis, the Kalibr toolbox was used to determine the camera
intrinsics, which has the calibration solution from [28] implemented. The checkerboard shown
in Figure 4.3 was used.

Additionally, from (2.63), it can be observed that the angular velocity measurement needs to
be resolved in the camera’s frame, but this measurement is offered by the IMU and therefore
resolved in the IMU’s frame. To transform the measurement to the camera’s frame, the pose
Tbc from the IMU’s frame Fb to the camera’s frame Fc must be known. It can be shown
using (2.53a) that

Ċac = Cac CT
bcω

ba
b

×Cbc︸ ︷︷ ︸
ωca

c
×

. (4.33)

Again, Kalibr has the tools to perform a Camera-IMU calibration, by implementing the
solution presented in [29]. It requires again camera measurements of a board with known
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Figure 4.3: Checkerboard employed to calibrate the Intel Realsense D435i camera intrinsics
parameters and the pose between the camera and the IMU.

dimensions and features, as well as accelerometer and angular velocity measurements, provided
by the IMU.

4.5.2 Point Correspondences

Homography estimation as proposed in this thesis requires point correspondences from
different camera measurements. To accomplish this task, ORB descriptors are used as
implemented in OpenCV [30]. Descriptor-based feature matching consists of two steps [31].

1. Detection. Keypoints are found in this step, which are usually corners. Corners are
regions in the image with large variation in intensity in all the directions. Many different
methods exist to find corners, but in a descriptor-based approach, a descriptor is assigned
to each detected corner. A descriptor essentially encodes the region surrounding the
extracted keypoint.
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Figure 4.4: Examples of how detected keypoints, denoted with red, in two images with
overlapping features get matched with a descriptor approach. Obtained from [33].

2. Matching. Once keypoints with their descriptors are computed for two images, the
matching procedure consists in comparing the descriptors with a brute force approach
to distinguish which keypoints are present in both images. Those descriptors that are
similar by a norm sense, are considered to belong to the same feature.

After the matches are obtained, the distance ratio test from from [32, Sec. 7.1], is applied
to remove spurious matches. In this thesis, the homography is estimated w.r.t. a reference
frame, so that means all the features are matched against those from a reference image. No
outlier rejection methods are used besides robust M-estimation, used in all filters. No other
procedures are done for point correspondences.
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Chapter 5

Results and Discussion

5.1 Overview

In this chapter, the proposed IMM filter is tested in simulation and on experimental data.
The performance is compared relative to the observer of [2] and two versions of the iterated
EKF. An implementation of the sigma point Kalman filter (SPKF) is also tested in simulation
but not in experimental data since it has undesirable properties, later discussed. More details
about the observer can be found in Appx. A.1 of this thesis.

5.2 Simulation Results

The proposed IMM filter is first tested in simulation. A set of trajectories are generated,
where a camera tracks 4 points on a plane at all times, the minimum number of point
matches to define a homography [6]. The rate-gyro and camera provide data at 90Hz and
30Hz, respectively. Gyroscope and camera measurements are corrupted by additive Gaussian
noise, simulated using Qg = σ2

g1, Rk = σ2
r1, with σg = 0.01 rad s−1, σr = 1pixel. Initial

uncertainty is set to P̂0 = 1e−11. Although an additive Gaussian noise model for pixel
coordinates has shortcomings in real world conditions, such as accounting for outliers in the
point correspondence procedure, it is a typical assumption in the robotics community [34].
Outliers in the point correspondence problem are handled in the experimental case with a
robust loss function, described in Sec. 4.4.

100 Monte Carlo runs with varying initial conditions and noise realizations are performed for
each trajectory to evaluate the filters’ consistency and accuracy when the assumption that sa
is constant is broken in different ways. Among the tested filters are 2 versions of the iterated
EKF. The first is EKF tight, which is confident in the assumption that sa is constant, by
setting σ2

m = 1e−7. The second is EKF loose, with σ2
m = 1e−1, which has little confidence in
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Figure 5.1: Simulated trajectories.

the assumption that sa is constant. A SPKF is also included in the tests, with σ2
m = 5e−4.

An IMM composed of both versions of the EKFs is also tested, as well as the observer from
[2].

To evaluate the accuracy of the filters on each trajectory, the error

rk = ∥ log
(

ĤkH−1
k

)∨
∥2 (5.1)

is used to compare homography estimates to the true homography value at each time step.
In Figure 5.2, it is shown how rk is distributed across all time steps in all trajectories from
Figure 5.1. The average of rk across all trials and then averaged across all time steps is
displayed in Table 5.1. EKF tight performs the best on this metric when the trajectories
respect the assumption that sa is constant as in trajectories 1 and 2, or closely do, as in
trajectory 3. In the remaining trajectories, the performance of EKF tight degrades. In
general, the IMM offers the best performance when the assumption is less respected. Only in
trajectory 7, when the assumption is severely broken, EKF loose outperforms the IMM by
a small margin. The SPKF does not offer the best performance in any of the trajectories
but it is still better than the observer of [2] and than the EKF tight when the assumption
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that sa is constant is broken, except in the last one, which might be due to the fact that the
SPKF is not tuned for this trajectory. The observer of [2] has higher homography estimation
error in all trials, since all the filters are characterizing the sensor noise properly and tuned
accordingly. When tuning the observer it was observed that that modifying the gains did not
change the observer’s performance drastically. The observer is, in effect, constant gain, while
the IMM filter changes the gain at each time step. Assessing consistency is done using the
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Figure 5.2: Violin plots to show distributions of rk in tested trajectories from simulated data.
EKF tight/loose, IMM, and observer are tested.

normalized estimation error squared (NEES) test [15, Sec. 5.4] on Monte Carlo runs. The
NEES test involves computing a ϵk ∼ χ2

8 statistic using the error trajectory and the predicted
covariance of such error, where χ2

8 is the Chi-square distribution with 8 degrees of freedom,

ξk = log
(

ĤkH−1
k

)∨
, ϵk = ξTk P̂−1

hh,kξk, (5.2)

where P̂hh,k is the block on the diagonal of P̂k corresponding to the homography state. To
assess with 3σ ≈ 99.73% confidence if the estimator is consistent, ϵk should remain between
an upper and lower threshold [15]. In Figure 5.6, ϵk is averaged across all 100 trials, and then
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Table 5.1: Performance among the proposed filters and the observer. The metric used is rk
averaged across all Monte Carlo trials and then timesteps. A 100 Monte Carlo trials were
run for each filter on each trajectory tested.

E[rk]

Traj. EKF
tight

EKF
fat

SPKF IMM Observer % Diff.
IMM
to ob-
server

1 0.0108 0.0140 0.0184 0.0121 0.0201 39.5%
2 0.0212 0.0269 0.0316 0.0237 0.0424 44.1%
3 0.0207 0.0266 0.0294 0.0235 0.0433 45.7%
4 0.0274 0.0266 0.0272 0.0231 0.0429 46.1%
5 0.0319 0.0158 0.0194 0.0143 0.0308 53.4%
6 0.0897 0.0273 0.0290 0.0242 0.0684 64.6%
7 0.1319 0.0383 0.0442 0.0388 0.1268 69.4%
8 0.0501 0.0299 0.1064 0.0272 0.1062 74.4%

plotted as a function of time. EKF tight is a consistent estimator when the assumption that
sa is constant is respected, but as soon as the assumption is broken, the NEES values diverge,
as shown in Figure 5.3. This is expected, since the errors are large. For EKF loose, the
NEES value is below the lower threshold, producing inconsistent results since the covariance
estimate is too large. However, having a large covariance is preferable to having the error be
too large for the covariance, as shown in Figure 5.4. For the SPKF, the filter is sensitive to
initializations with big error, showing an undesirable transient response in the first seconds
of estimation, as shown in Figure 5.5. Out of the 100 Monte Carlo trials, 1 to 3 were not
completed due to the filter’s estimate diverging. For these reasons, the SPKF was not tested
on experimental data. For the IMM, the NEES value goes below the lower threshold in some
trajectories for the same reasons as EKF loose does, but stays closer to the lower threshold,
indicating that the covariance is better modulated than EKF loose, as shown in Figure 5.6.
Out of all filters tested, the IMM is the one with the most consistent results.

5.3 Experimental Results

An Intel Realsense D435i is used to collect data. Angular velocity measurements are provided
by a built-in rate-gyro at 200 Hz. The left camera of the stereo rig is used for camera
measurements of 640×480 pixels at 30 Hz. Ground truth data is collected using an OptiTrack
optical motion capture system at 120 Hz. The noise parameters used are σg = 0.022 rad s−1,
σr = 1pixel.

41



0 1 2 3 4 5
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 1

0 1 2 3 4 5 6
0

500

1000

1500

N
E

E
S

Traj. 5

0 1 2 3 4
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 2

0 2 4 6 8 10 12 14
0

2000

4000

6000

N
E

E
S

Traj. 6

0 1 2 3 4 5 6
0

10

20

30

N
E

E
S

Traj. 3

0 2 4 6 8 10 12 14
0

5000

10000

N
E

E
S

Traj. 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0

100

200

N
E

E
S

Traj. 4

0 2 4 6 8 10 12 14

Time (s)

0

500

1000

N
E

E
S

Traj. 8

EKF tight Expected NEES

3 sigmabound c.i.

Figure 5.3: NEES plots for Monte Carlo trials of EKF tight approach.

Nine trials are recorded, all about 1 minute long. In each trial the camera tracks a plane
about 1.5m away, consisting of magazine pages spread on the floor, so salient features can
be detected by the front-end system, as shown in Figure 5.10. The camera moves above
this plane while rotating, with different paces in all trials to test how well the filters work
when the assumption that sa is constant in time is broken. The camera does not observe the
plane for brief moments of time, and occlusions are also added in some trials to assess the
robustness of the proposed approaches.

All the estimators tested, including the observer from [2], need a front-end to find point
correspondences. ORB descriptors are used in its OpenCV implementation [30], as explained
in 4.5.2. Since the goal is to estimate homography w.r.t. a reference frame, the feature points
from each image are all matched against those from a reference image, which is picked from
the first few frames in the trials. The outlier rejection used on each filter is the robust loss
described in Sec. 4.4.

The state estimate is initialized as Ȟ0 = 1, Γ̌0 = 0 with P̌0 = 10−41 for all trials since the
reference frame was set as one of the frames recorded and the filter initialized at that same

42



0 1 2 3 4 5
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 1

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 5

0 1 2 3 4
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 2

0 2 4 6 8 10 12 14
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 6

0 1 2 3 4 5 6
0.0

2.5

5.0

7.5

N
E

E
S

Traj. 3

0 2 4 6 8 10 12 14
0

5

10

15

N
E

E
S

Traj. 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Time (s)

0.0

2.5

5.0

7.5

N
E

E
S

Traj. 4

0 2 4 6 8 10 12 14

Time (s)

0

5

10

N
E

E
S

Traj. 8

EKF loose Expected NEES

3 sigmabound c.i.

Figure 5.4: NEES plots for Monte Carlo trials of EKF loose approach.

frame, so the initial error is very small. The IMM is composed in this case of two iterated
EKFs, the first one with σ2

m = 10−6 and the second with σ2
m = 1. The robust loss function

implemented to reject outliers is SC/DCS from [27], with c = 9.5, which was obtained

heuristically. The transition probabilities are set as Π =

[
0.9 0.1

0.1 0.9

]
.

The error rk defined in (5.1) is used for performance evaluation. In Table 5.2, it can be seen
that in the recorded trajectories, the observer and the IMM have a comparable performance,
with the observer performing the best in 4 out of 9 trajectories and the IMM in 4 out of 9.
In Trajectory 9, the performance of the observer and the IMM is essentially the same.

To explain the different performance across the recorded trajectories, in Figure 5.7 it can be
observed how in Trajectory 1, where the observer performs better, there is a period going
from 41 s to 42 s where not enough features are tracked. When the plane is slowly seen again
after that period, the observer is able to recover and maintain a low error, while the IMM
error grows. Nonetheless, the IMM is still able to converge back to a reasonable homography
estimate. Meanwhile in Trajectory 4, where the IMM performs better, in the time frames
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Figure 5.5: NEES plots for Monte Carlo trials of SPKF approach.

where the assumption that sa is constant is violated to a larger degree, the observer’s error is
bigger than the IMM.

Additionally, in time frames where the assumption is violated or where there are not enough
features to track, the IMM relies more on Model 2, which corresponds to the EKF loose,
which is expected. In the first case, the process model is inaccurate, and it cannot be trusted.
In the second case, the IMM grows uncertain of its estimate since it is mostly deadreckoned.

In Figure 5.8, the performance in Trajectories 5 and 6 is shown. Again, in Trajectory 5 there
are many time frames where the observer has more error that the IMM and they align with
time frames where the assumption that sa is constant is violated. The time frames where the
IMM error grows are the ones right after where there are not enough features tracked.

By analyzing also Figure 5.9, with Trajectories 7 and 8, a pattern appears. The IMM
outperforms the observer in the situations where the assumption that sa is constant is
violated, as long as the number of point matches is enough to determine the homography. On
the other hand, the observer performs best when there are not enough point correspondences
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Figure 5.6: NEES plots for Monte Carlo trials of IMM approach.

for a short period of time.

Unlike in simulations, the IMM is not the clear winner over the observer in an experimental
setting. However, even if the observer shows good robustness in an experimental setting,
especially when the estimate drifts away, the IMM offers better performance in varied
trajectories while also offering covariance information.
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Table 5.2: Performance of EKF loose, IMM, and observer using experimental data. The error
rk is averaged across all time steps.

E[rk]

Traj.EKF
loose

IMM Observer % Diff.
IM-

M/Obs.

1 0.0897 0.0896 0.0589 -52.1%
2 0.1256 0.0982 0.0943 -4.2%
3 Diverged 0.0785 0.2915 73.1%
4 0.0912 0.0765 0.1852 58.7%
5 0.0928 0.0690 0.1043 33.8%
6 0.0887 0.0634 0.0485 -30.9%
7 0.0994 0.0801 0.0948 15.6%
8 Diverged 0.0699 0.0585 -19.6%
9 0.1434 0.1237 0.1238 0.1%
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Figure 5.7: IMM model probabilities depending on how the sa is constant assumption is
broken and number of matches in Trajectories 1 and 4. Mode 1 corresponds to σ2

m = 10−6

and mode 2 corresponds to σ2
m = 1. Evolution of IMM and observer’s error rk is shown in

bottom plots. Green shaded regions represent time frames where ∥ṡa∥ > α = 155. Orange
shaded regions represent time frames where number of tracked features goes below 4. When
∥ṡa∥ > α, the observer performance suffers. When insufficient features are tracked, the IMM
performance suffers.
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Figure 5.8: IMM model probabilities depending on how the sa is constant assumption is
broken and number of matches in Trajectories 5 and 6. Mode 1 corresponds to σ2

m = 10−6

and mode 2 corresponds to σ2
m = 1. Evolution of IMM and observer’s error rk is shown in

bottom plots. Green shaded regions represent time frames where ∥ṡa∥ > α = 155. Orange
shaded regions represent time frames where number of tracked features goes below 4. When
∥ṡa∥ > α, the observer performance suffers. When insufficient features are tracked, the IMM
performance suffers.
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Figure 5.9: IMM model probabilities depending on how the sa is constant assumption is
broken and number of matches in Trajectories 7 and 8. Mode 1 corresponds to σ2

m = 10−6

and mode 2 corresponds to σ2
m = 1. Evolution of IMM and observer’s error rk is shown in

bottom plots. Green shaded regions represent time frames where ∥ṡa∥ > α = 155. Orange
shaded regions represent time frames where number of tracked features goes below 4. When
∥ṡa∥ > α, the observer performance suffers. When insufficient features are tracked, the IMM
performance suffers.
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Figure 5.10: Experimental method which consisted of tracking features on the ground. The
white square is used to visualize the estimated homography. The frame at the illustrated
timestamp has the pattern, which is partially out of camera view, approximately realigned
with the reference frame by the current homography matrix estimate. The current image is
warped by the homography estimate on the left bottom.
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Chapter 6

Closing Remarks and Future Work

6.1 Conclusion

In this thesis, the problem of estimating homography using rate-gyro and camera measure-
ments is addressed. This thesis’ novelty lies in the use of the Bayesian filtering framework in
concert with a simplified process model. In particular, two iterated EKFs are used within
an IMM filter. The approach was compared to a nonlinear deterministic observer in both
simulation and experiments where better or comparable performance is realized, depending
on the situation.

The proposed algorithm performs better than the observer in the situations it was designed
for, that is, varied trajectories that may or may not break the assumption used. The observer
on the other hand, shows good robustness in cases where the error between homography
estimate and true value is big, showing good convergence properties.

Reiterating, this thesis does not propose to displace the homography observer, but rather
present an alternative approach to estimate homography. In situations where it is known
that the assumption will be constantly violated, an IMM could be a better choice over the
observer. If it is known that many occlusions will pervade the dataset, with slow-varying
trajectories, the observer could be preferable.

Also, the proposed Bayesian approach offers covariance information, unlike the observer. This
opens the avenue for adaptive filtering, as in this thesis, but also post-processing procedures
such as low-confidence estimate removal, smoothing, loop-closure detection, and quality
control.
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6.2 Future Work

This work can be improved upon in several directions. First, a smoothing algorithm that
takes advantage of the covariance information could be applied for the IMM filter. This
would provide a complete framework for estimating homography in real-time with an IMM
filter and post-processing capabilities to remove outliers from the estimated values.

In this work, feature-based approaches where employed in the front-end to find point corre-
spondences. The approach implemented using ORB descriptors needs to be further validated
and compared to other feature-based approaches. Also, other options exist that were not
explored. Direct methods, that take the whole image into account and not only selected points
to find the best homography estimate can be explored. They have shown promise in texture-
less environments, that is, with few salient features. Underwater or indoor environments are
examples that can tend to have planar features, but not many salient, distinctive features to
track. A direct method could enable homography estimation in those environments.

Another area of improvement is implementing a better robust loss function in the correction
step of the EKF. The robust loss was tuned manually and it is unable to adapt to distinct
distributions of the residuals. An adaptive robust loss function is expected to offer better
robustness.

Another limitation of this work is that no rate-gyro biases are estimated. Biases can degrade
the performance of the estimator. Estimating them and taking them into account could
improve this algorithm.

In this work, the state estimated was homography, and while it has many uses, other states
such as attitude or position have more applications. In the future a Bayesian filter can be
developed to take advantage of homography constraints to estimate a more “standard” state,
such as attitude and position.
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Appendix A

Nonlinear Observer

A.1 Homography Estimation Employing an Observer

In [12], the authors proposed a nonlinear deterministic observer to estimate the homography
including not only point correspondences, but also rate-gyro measurements via the kinematic
model described in Sec. 2.5, with stability properties known a priori. The advantage of this
approach is that it is more robust against occlusions, when not enough point correspondences
are available to compute homography, as in the Direct Linear Transform (DLT) algorithm.

The observer, similar to the Bayesian filter structure, has a prediction step and a correction
step. The observer uses (2.63) and (2.71) to include the rate-gyro measurements in the
prediction step, more frequent, and correct them with point correspondences from a plane,
which are less frequent. The observer is designed as

˙̂Hab = Ĥab

(
ωba

b

×
+ Γ̂ba

b

)
+ kpZabĤab (A.1a)

˙̂
Γba

b =
[
Γ̂ba

b ,ωba
b

×
]
+ kiAd(Ĥ

T
ab)Zab (A.1b)

where kp, ki are constant gains, Zab ∈ sl(3) is the innovation term obtained from the point
correspondences. The error in the estimation is going to be defined in a right invariant
manner,

H̃ab = ĤabH
−1
ab (A.2)

Γ̃ba
b = Γba

b − Γ̂ba
b (A.3)

where Ĥab is the estimated value and Hab corresponds to the true value of homography. The
goal of the observer is to drive H̃ab → 1 and Γ̃ba

b → 0. In other words, to drive the error to
zero.
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A.1.1 Measurement Model

The measurement model employed in the observer uses Hab ≜ KHabK−1 as well, that is, the
image homography,

q̂i
a =

Ĥabqi
b∥∥∥Ĥabqi
b

∥∥∥
2

(A.4)

=
ĤabH

−1
ab qi

a∥∥∥ĤabH
−1
ab qi

a

∥∥∥
2

(A.5)

=
H̃abqi

a∥∥H̃abqi
a

∥∥
2

, (A.6)

where q̂i
a is the estimated pixel coordinates of the point pi in the image plane resolved in the

camera frame Fa and qi
a is the true value.

A.1.2 Stability Proof of the Observer

The stability of the observer is proven in [12] using the Lyapunov stability tools. An important
definition from [12] for the subsequent stability proofs is the following.

Definition A.1.1. A set of n ≥ 4 measurementsMn of qi
a where i ∈ {1, · · · , n} is consistent

if there isM4 ⊂Mn such that any combination of three vectors are linearly independent.
This also implies that any qi

a ∈M4 can be written as a linear combination of the remaining
three vectors.

Theorem A.1.1. Consider a camera moving with the kinematic model described in (2.53)
viewing a planar scene where Fa is static, ωba

b
× is bounded and the homography kinematics

are described with (2.63) and (2.71). Consider the observer in (A.1), assume Hab is bounded,
and consider an innovation Zab defined as

Zab =
n∑

i=1

gi
aqi

aq̂i
a

T
. (A.7)

where gi
a =

(
1− q̂i

aq̂i
a
T
)
. Then, ifMn is consistent, the equilibrium point (H̃ab, Γ̃

ba
b ) = (1, 0)

is asymptotically stable.

Proof. First, a Lyapunov function candidate is defined as

L(Ĥab, Γ̂
ba
b ) =

n∑
i=1

1

2

∥∥q̂i
a − qi

a

∥∥2
2
+

1

2ki

∥∥∥Γ̃ba
b

∥∥∥2
F
, (A.8)
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which is positive definite. Differentiating, the Lyapunov function candidate results in

L̇(Ĥab, Γ̂
ba
b ) =

n∑
i=1

(
q̂i
a − qi

a

)T ˙̂qi
a +

1

ki
tr
(
Γ̃ba

b

T ˙̃Γba
b

)
(A.9)

=
n∑

i=1

(
q̂i
a − qi

a

)T ˙̂qi
a +

1

ki
tr
(
Γ̃ba

b

T
([

ωba
b

×
,Γba

b

]
−
[
ωba

b

×
, Γ̂ba

b

]
− kiAd(Ĥ

T
ab)Zab

))
(A.10)

=
n∑

i=1

(
q̂i
a − qi

a

)T ˙̂qi
a +

1

ki
tr
(
Γ̃ba

b

T
([

ωba
b

×
, Γ̃ba

b

]
− kiAd(Ĥ

T
ab)Zab

))
(A.11)

=
n∑

i=1

(
q̂i
a − qi

a

)T ˙̂qi
a − tr

(
Γ̃ba

b

T
Ad(ĤT

ab)Zab

)
, (A.12)

where Γ̃ba
b

T
([

ωba
b

×
, Γ̃ba

b

])
evaluates to 0 since the products in

[
ωba

b
×
, Γ̃ba

b

]
are orthogonal to

Γ̃ba
b . As can be seen, ˙̂qi

a is needed. By using (A.4) and differentiating,

˙̂qa =
˙̂HabH

−1
ab qa + ĤabḢ

−1
ab qa∥∥H̃abqa

∥∥
2

−
H̃abqaqT

a H̃T
ab

(
˙̂HabH

−1
ab qa + Ĥab

˙H−1
ab qa

)
∥∥H̃abqa

∥∥3
2

(A.13)

= gi
a

˙̂HabH
−1
ab qa + Ĥab

˙H−1
ab qa∥∥H̃abqa

∥∥
2

(A.14)

= gi
a

Ĥab

(
ωba

b
×
+ Γ̂ba

b

)
H−1

ab qa + kpZabĤabH
−1
ab qa − Ĥab

(
ωba

b
×
+ Γba

b

)
H−1

ab qa∥∥H̃abqa

∥∥
2

(A.15)

= gi
a

(
kpZab − Ad(Ĥab)Γ̃

ba
b

)
q̂a. (A.16)

Substituting (A.16) back into (A.12),

L̇(Ĥab, Γ̂
ba
b ) =

n∑
i=1

(
q̂i
a − qi

a

)T gi
a

(
kpZab − Ad(Ĥab)Γ̃

ba
b

)
q̂a − tr

(
Γ̃ba

b

T
Ad(ĤT

ab)Zab

)
(A.17)

= −
n∑

i=1

qi
a

Tgi
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(
kpZab − Ad(Ĥab)Γ̃

ba
b

)
q̂a − tr

(
Ad(Ĥ−1

ab )Z
T
abΓ̃
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(A.18)

= −tr
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q̂aqi
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ba
b

)
+Ad(Ĥ−1

ab )Z
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abΓ̃
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)
(A.19)

= −tr
(
kp

n∑
i=1

q̂aqi
a

Tgi
aZab +Ad(Ĥ−1

ab )

[
ZT

ab −
n∑

i=1

q̂aqi
a

Tgi
a

]
Γ̃ba

b

)
, (A.20)

applying the proposed innovation in (A.7),

L̇(Ĥab, Γ̂
ba
b ) = −kp ∥Zab∥2F (A.21)
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which shows that the derivative of the Lyapunov function is negative semidefinite and equals
0 when Zab = 0. It can be seen that L(Ĥab, Γ̂

ba
b ) ≤ L(Ĥ0, Γ̂0). Considering also that ωba

b
× is

bounded, Ĥab and Γ̂ba
b are bounded. Therefore, to show by Barbalat’s Lemma that Zab → 0

as t→∞, it remains to show that L̈(Ĥab, Γ̂
ba
b ) is bounded,

L̈(Ĥab, Γ̂
ba
b ) = −2kptr

(
ZT

abŻab

)
(A.22)

= −2kptr
(

ZT
ab

n∑
i=1

(
ġi
aqi

aq̂i
a

T
+ gi

aqi
a
˙̂qi
a

T
))

(A.23)

= −2kptr
(

ZT
ab

n∑
i=1

((
˙̂qi
aq̂i
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T
+ q̂i

a
˙̂qi
a

T
)

qi
aq̂i

a

T
+ gi

aqi
a
˙̂qi
a

T
))

(A.24)

From the previous results, Zab and Żab are bounded, showing L̈(Ĥab, Γ̂
ba
b ) boundedness and

Zab → 0.

Now, to prove that H̃ab → 1, first consider

ZabH̃
−T
ab =

n∑
i=1

(
1− H̃abqi

aqi
a
TH̃T

ab∥∥H̃abqi
a

∥∥2
2

)
qi
aqi

a
T∥∥H̃abqi
a

∥∥
2

. (A.25)

Computing the trace,

tr
(
ZabH̃

−T
ab

)
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1∥∥H̃abqi
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2
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2
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When Zab → 0, the trace equals 0, therefore∥∥H̃abq
i
a

∥∥
2

∥∥qi
a

∥∥
2
= (H̃abq

i
a)

Tqi
a, (A.28)

which can be rewritten as

H̃abq
i
a = λiq

i
a, (A.29)

for a non-zero λi =
∥∥H̃abqi

a

∥∥
2
. This means that λi and qi

a and the eigenvalues and eigenvectors
of H̃ab, correspondingly. Using the fact that the measurements produce a consistent set, any
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point measurement can be written as the linear combination of some three point measurements,

λkqk
a = λk

3∑
i=1

αiq
i
a (A.30)

=
3∑

i=1

αiH̃abq
i
a (A.31)

=
3∑

i=1

αiλiq
i
a (A.32)

with αi ̸= 0 such that
∥∥qk

a

∥∥
2
= 1. Since λk can be seen as a fourth eigenvalue of H̃ab, and

det(H̃ab) =
∏n

i=1 λi = 1, it follows that λk = λi = 1, so H̃ab → 1 when Zab → 0. With this
result in mind, by inspecting the Lyapunov function (A.8), it can be deduced that over time
Γ̃ba

b becomes a constant. To prove that it converges to 0, the derivative of H̃ab is computed,

˙̃Hab =
˙̂HabH

−1
ab − ĤabH

−1
ab ḢabH

−1
ab (A.33)

= Ĥab

(
ωba

b

×
+ Γ̂ba

b

)
H−1

ab + kpZabĤabH
−1
ab − Ĥab

(
ωba

b

×
+ Γba

b

)
H−1

ab , (A.34)

since Zab = 0 and H̃ab = 1 at the limit,

lim
t→∞

˙̃Hab = −Ad(Ĥab)Γ̃
ba
b = 0, (A.35)

and considering Ĥab is bounded, Γ̃ba
b → 0.
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