
Temporal Learning for Dynamic Graph

Yue Cai Zhu

School of Computer Science
McGill University

Montréal, Québec, Canada

June 10, 2022

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Master of Computer Science

©2022 Yue Cai Zhu

i

Abstract

A graph is a data structure to model a complex system of entities connected in a particular

relation. These entities are nodes in the graph, and the connections are edges. A dynamic

graph is a graph that evolves in its nodes, edges or both. We can use it to analyze networks

that are not static, such as social networks, academic citation networks and city traffic

networks. The dynamic graph is a widely used data structure in various domains. However,

the exploration of machine learning with dynamic graphs is still in its early stage. What are

the drivers of a dynamic graph’s evolution? How can we learn the temporal information from

a dynamic graph’s history? How can we determine if we should use dynamic graph learning

algorithms to analyze a given graph? These are still open questions that are well worth to

explore. In this thesis, I try to address the research questions above by a survey of recently

developed supervised dynamic graph learning algorithms and proposing a dynamic graph

temporal learning framework. Based on the framework above, I conducted an initial study

on measuring the significance of temporal patterns to prepare for the research in predicting

performance gain from dynamic graph learning algorithms.

ii

Abrégé

Le graphe est une structure de données pour modéliser un système complexe d’entités qui

sont connectées les unes aux autres dans un certain type de relation. Ces entités sont des

sommets dans le graphe et les connexions sont des arêtes. Un graphe dynamique est un

graphe qui évolue dans le temps, dans ses sommets, ses arêtes ou les deux. On peut l’utilisé

pour analyser les réseaux qui ne sont pas statiques, tels que les réseaux sociaux, les réseaux

de citations universitaires et le réseau de trafic urbain. Le graphe dynamique est une

structure de données largement utilisée dans domaines divers. Cependant, l’exploration de

l’apprentissage automatique avec la graphe dynamique est encore à ses débuts. Quels sont

les moteurs de l’évolution d’un graphe dynamique? Comment pouvons-nous apprendre les

informations temporelles à partir de l’historique d’un graphe dynamique ? Comment

déterminer si nous devons utiliser des algorithmes d’apprentissage de graphes dynamique

pour analyser un graphe? Ce sont encore des questions ouvertes qui bien méritent à

explorer. Dans cette thèse, j’essaie de répondre les questions de recherche susmentionnées

par une enquête sur les algorithmes d’apprentissage supervisé de graphes dynamique

récemment développés, et proposer un cadre d’apprentissage temporel de graphe

dynamique. Basé sur le cadre d’apprentissage temporel mentionné, j’ai fait une étude

préalable sur la mesure de la signification des modifs temporels, et me préparer à la

Abrégé iii

recherche sur la prédiction du gain de performance offert par les algorithmes

d’apprentissage de graphes dynamique.

iv

Acknowledgements

During my study at McGill, I received in-depth training on various topics about Artificial

Intelligence (AI) and Machine Learning(ML), especially Natural Language Processing,

Network Science and the foundation theory of AI and ML. I appreciate our faculty’s effort

in developing such a fantastic program syllabus. When I worked with my supervisor

Dr.Xue Liu, I learned from him how to do research from a high-level point of view, how to

discover and focus on the high-impact research ideas, how to plan our work more

efficiently, and many other best practices in conducting scientific research. All of these are

very beneficial to my future career.

The collaboration system he established between his students and other research groups

also opened up my eyesight to different scientific domains. I am genuinely thankful to my

supervisor Dr.Xue Liu.

If there is one thing I regret during my study at McGill, that would be my giving up

on the research idea that Dr.Kieran O’Donnell helped me establish. I selected to work on

a start-up idea instead of continuing that potential high-impact work. I must say sorry to

Dr.Kieran O’Donnell for not continuing to work with him because of my greediness. I also

need to say ’thank you’ to him for all the favours he did for me. This regretful experience

taught me that I should not be greedy for money, reputation, etc. The only reason we

Acknowledgements v

do research is our joyfulness in exploring something that’s not been discovered before, the

joyfulness we had when we realized we just did some work to help science move forwards.

At last, I need to say thank you to Dr.Peter C. Rigby. He led me into the computer science

research community when I studied at Concordia University for my Bachelor’s degree. He

taught me a lot of software engineering skills that are still helping me in my current position

as a machine learning engineer and researcher. He helped me finish and publish my first

full research paper as an undergraduate student. He helped me realize my passion for doing

scientific research. Without Dr.Peter C. Rigby’s guidance, I would be on a completely

different route in my life.

vi

Contents

Abstract . i

Abrégé . ii

Acknowledgements . iv

1 Introduction 1

1.1 Introduction to Graph and Dynamic Graph 1

1.2 The Demand for Supervised Dynamic Graph Learning 2

1.3 Research Problems and the Thesis Organization 2

2 (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic

Graph: A Survey 4

Abstract . 4

2.1 Introduction . 5

2.2 Machine Learning In Dynamic Graph . 7

2.2.1 Supervised Learning in Graph . 7

2.2.2 Extrapolation and Interpolation Learning in Dynamic Graph 11

2.3 Taxonomy . 14

2.3.1 Dynamic Graph Storage Model . 14

2.3.2 Encoder And Decoder Learning Framework 15

Contents vii

2.3.3 Implicit And Explicit Learning Model 16

2.4 Temporal Pattern Learning . 18

2.4.1 Three Stages Recurrent Temporal Learning Framework 18

2.4.2 Attributes Self-Updating . 21

2.4.3 Association Process . 21

2.4.4 Message Passing . 22

2.4.5 Generalization To Attributed And Non-attributed Dynamic Graphs . 22

2.5 Discrete Time Dynamic Graph Learning . 23

2.5.1 Static Graph Encoder . 26

2.5.2 Sequential Decoder . 31

2.5.3 Dynamic DTDG Encoder . 34

2.6 Continuous Time Dynamic Graph Model . 39

2.6.1 Implicit Time CTDG Encoder . 43

2.6.2 Explicit Time CTDG Encoder . 43

2.6.3 Explicit Time CTDG Decoder . 49

2.7 Challenges And Future Works . 50

2.8 Conclusion . 52

3 Discussion and Future Works 69

3.1 Preliminary Study of Measuring the Significance of Temporal Pattern 69

3.1.1 Estimate the Significance of Temporal Pattern 70

3.1.2 Temporal Correlation Coefficient . 71

3.1.3 Normalized Jaccard Similarity . 72

3.1.4 Experiments . 72

3.2 Future Works . 74

viii

3.2.1 Evaluate The Significance of Temporal Pattern 74

3.2.2 From a Taxonomy Concept to a Real Tool Box 74

3.2.3 Synthetic Dynamic Graphs . 75

4 Conclusion 76

ix

List of Figures

2.1 Taxonomy . 8

2.2 Different Graph Learning Tasks . 10

2.3 Encoder-Decoder Learning Framework . 16

2.4 Three Stages Recurrent Temporal Learning Model 20

2.5 Different Encoder-Decoder Architectures for Dynamic Graph 26

2.6 Temporal Convolution . 38

x

List of Tables

2.1 Supervised Learning task in Dynamic Graph 13

2.2 DTDG Graph Encoders . 25

2.3 Decoders . 31

2.4 CTDG Graph Encoders . 42

2.5 List Of Notations . 54

2.6 List Of Notations . 55

2.7 List Of Abbreviations . 56

3.1 Experiment Result . 73

1

Chapter 1

Introduction

1.1 Introduction to Graph and Dynamic Graph

Our world is connected. Every object in our world is connected to other entities with a

particular relation, such as gravity, energy transmission, etc. We can model a system of

connected objects by the data structure Graph. A graph is a set of nodes with some of them

connected by a specific relation named edges. If all nodes are of the same type, then the

resulting graph is called Homogeneous Graph. Social graphs, traffic graphs, and academic

citation graphs are homogeneous graphs.

We have been studying and applying the data structure graph for a long time to analyze

different phenomena presented in our world. It has been discovered that some of the graphs

that arise from nature and human social activity evolve. These evolving graphs inspire the

idea of Dynamic Graph [57]. A dynamic graph is a graph that evolves in its nodes, edges

or both. Temporal information revealed by its evolution is the key factor that distinguishes

dynamic graphs from static graphs, the kind of graphs that do not change over time.

1. Introduction 2

1.2 The Demand for Supervised Dynamic Graph

Learning

Machine learning algorithms for analyzing dynamic graphs can be classified as supervised

and unsupervised. Unsupervised dynamic graph learning algorithms do not need the ground

truth as labels in their training. Therefore, they are more general than the supervised ones

and can be applied even if there is insufficient data. However, they are less accurate than

supervised ones. Supervised dynamic graph learning algorithms require ground-truth labels

in training. When given enough training data, supervised algorithms can be very accurate.

As the industry collects more and more data, The demand for supervised dynamic graph

learning algorithms becomes significant. More and more works exploring supervised dynamic

graph learning algorithms emerge in different application domains [72, 65, 106, 102]. The

industry is looking for accurate solutions to its graph learning projects. Supervised dynamic

graph learning algorithms have a lot of potential to meet their requirements.

1.3 Research Problems and the Thesis Organization

As discussed in the previous subsection, supervised dynamic graph learning algorithms are

one potential solution to the industry’s need for accurate machine learning models for their

graph learning projects. However, the exploration of dynamic graph learning is still in

its early stage. There needs to be more understanding of how temporal information is

learned in dynamic graph learning. Moreover, there needs to be a general paradigm of how a

dynamic graph algorithm should be structured. To address these requirements, Manuscript

one surveyed supervised dynamic graph learning algorithms in Chapter 2 and proposed a

temporal learning framework. My contributions to manuscript one include its topic selection,

1. Introduction 3

the development of the mentioned temporal learning framework, the categorization and the

review of different surveyed algorithms. Manuscript one has been submitted to the journal

’IEEE Transactions on Neural Networks and Learning Systems and is currently in the peer

review process.

In chapter 3, according to the temporal learning framework proposed in manuscript one, I

developed the Normalized Jaccard Similarity to evaluate the significance of temporal patterns

presented in a Discrete Time Dynamic Graph(DTDG) and validate it by experiment. I also

discussed my future work in the next phase.

At last, I summarize the work I have done for my learning in the master’s program in

chapter 4.

4

Chapter 2

(Manuscript 1)Intelligent

Encoder-Decoder Architecture for

Dynamic Graph: A Survey
Yue Cai Zhu, Fuyuan Lyu, Chengming Hu, Xi Chen, Xue Liu

4

Abstract

In recent years, the prevalent online services have generated a sheer volume of user

activity data. Service providers collect these data to perform client behaviour analysis and

offer better and more customized services. The majority of these data can be modelled

and stored as a graph, such as the social graph on Facebook, user-video interaction graph

on Youtube. These graphs need to evolve over time to capture the dynamics in the real

world, leading to the invention of dynamic graphs. However, the temporal information

embedded in the dynamic graphs brings new challenges in analyzing and deploying them.

Events staleness, temporal information learning and explicit time dimension usage are some

example challenges in dynamic graph learning.

To offer a convenient reference to both the industry and academia, this survey presents

the Three Stages Recurrent Temporal Learning Framework based on dynamic graph

evolution theories so as to interpret the learning of temporal information with a generalized

framework. Under this framework, this survey categorizes and reviews different intelligent

encoder-decoder architectures for supervised dynamic graph learning. We believe this

survey could supply useful guidelines to researchers and engineers in finding suitable graph

structures for their dynamic learning tasks.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 5

2.1 Introduction

In the data explosion era, the amount of data increases exponentially. Most of the data

can be viewed as a graph. A graph is a data structure that consists of nodes and edges.

It is designed to model and store data that contains not only features for different entities

but also relations between them. Graph analysis has long been an important research topic.

Previous works [26, 88, 97] assume that the underlying graph is a static graph which does not

change over time. But in the real world, the entities modelled as a graph present different

temporal dynamics in node features and relations. The dynamic graph is developed to model

and store such an evolving graph. The extra time dimension brings temporal information to

the graph’s representation and reveals the causality embedded in its network dynamic [57].

However, such temporal information also increases the difficulty of analyzing graphs.

In recent years, utilizing machine learning techniques to analyze dynamic graphs has

become an emerging research topic [74, 99, 86]. Moreover, the prevalent online services

generate a sheer volume of relational data, transaction data and interaction data. They are

modelled and stored as attributed dynamic graphs, such as the social graph on Facebook [96]

and user video interaction graph on Youtube [9]. Those dynamic graph databases with rich

attributes make supervised dynamic graph learning feasible and urge the industry to look

for effective supervised dynamic graph learning methods [72, 86, 53] . Therefore, we believe

a survey of such methods is extremely helpful for the industry and the research community

to exploit the potential of those databases.

There are multiple well-written surveys to summarize dynamic graph representation

learning algorithms. Kazemi et al. [43] focus on a broad topic of dynamic graph

representation learning. Skarding et al. [79] specialize in Graph Neural Network models for

dynamic graphs. They all follow the encoder-decoder learning framework proposed by

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 6

Hamilton et al. [32]. With this framework, the encoder generates graph embedding at the

node level, and the decoder uses the embedding to perform prediction/classification.

Practitioners could assemble different encoder and decoder combinations to best fit their

machine learning task. Moreover, the decoder can be modified to perform all dynamic

graph learning tasks introduced in later sections. However, the aforementioned surveys do

not focus on supervised learning methods, and they do not discuss how temporal

information is learnt.

Our work is different from the previous ones mainly in that we develop the Three Stages

Recurrent Temporal Learning Framework based on dynamic graph evolution theories. We

use this framework to explain how dynamic graphs evolve over time and how different

algorithms can learn temporal information. It also gives a general form of these algorithms.

In the development of the mentioned framework, we found that using time as an input

feature enables learning algorithms to recognize temporal periodicity and vector clock [51].

Vector clock is recently introduced to describe the phenomena that message sent from

neighbouring nodes to the target node requires different traversing time depending on their

connection pattern. This motivates us to categorize different algorithms by whether time is

learnt implicitly or explicitly, namely Implicit Time and Explicit Time Learning Algorithm.

Only Explicit Time learning Algorithms are capable to perform time prediction tasks

which predict when a given graph updating event would happen. Time prediction task is

recently recognized as one of the goals of dynamic graph learning. [86, 12]

In summary, we make the following contributions in this survey paper:

• The Three Stages Recurrent Temporal Learning Framework for dynamic graph

learning. Under this framework, we discuss how temporal information is learnt by

different dynamic graph learning algorithms.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 7

• A list of different goals of dynamic graph learning, which includes time prediction.

• A review of the recent development of supervised dynamic graph learning for the

Discrete-Time Dynamic Graph and the Continuous-Time Dynamic Graph.

• Some interesting future research directions in dynamic graph learning according to the

topics discussed.

The organization of this survey is as follows: Sec. 2.2 introduces some background

knowledge of machine learning in dynamic graphs; Sec. 2.3 describes the taxonomy in this

survey, mainly on the categories of dynamic graphs, the encoder-decoder learning

framework and the motivation of implicit/explicit time learning models categorization.

Fig. 2.3 illustrates the taxonomy in this survey; in Sec. 2.4, we introduce the Three Stages

Recurrent Temporal Learning Framework . With this framework, we discuss how temporal

information is learnt; We will then start the review from algorithms designed for Discrete

Time Dynamic Graph (DTDG) at Sec. 2.5, and then the algorithms designed for

Continuous Time Dynamic Graph (CTDG) at Sec. 2.6. Potential future directions are

discussed in Sec. 2.7. In Appendix, table 2.6 summarizes the notations and abbreviations

used in this work.

2.2 Machine Learning In Dynamic Graph

2.2.1 Supervised Learning in Graph

Supervised machine learning typically trains a machine learning model with historical data

and conducts prediction or classification with the trained model during inference time. In

order to perform supervised training, the ground truth must be available in the historical

data, which is referred to as a label by convention. Supervised learning in graphs differs from

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 8

Figure 2.1: Taxonomy

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 9

traditional machine learning in that it could be further categorized as node focus task, edge

focus task and graph focus task [76]. In the following section, we use classification tasks as

examples. Such a paradigm can be easily extended to regression tasks.

We can denote a graph as G = (V,E,X) with V = {v1, v2, . . . , vi, . . . , vm} as the set

of nodes in G where vi ∈ G ∧ i ∈ [1, |V |], and E = {ei,j} as the set of edges in G where

ei,j = (vi, vj, fi,j), vi, vj ∈ V and fi,j represents the feature of edge ei,j. X is the node feature

matrix with each row vector xvi
∈ X stores the features for node vi ∈ V . Namely, there

exists a one-to-one mapping between V and the row vectors in X. X ∈ R|V |×d and d is the

number of features for a given node.

Then these three tasks can be defined as:

Definition 1. Node Focus Task: given a one to one mapping between

Vknown = {v1, v2, · · · , vi} with Vknown ⊂ V and the label set Yknown = {y1, y2, · · · , yi}. The

learning purpose is to predict yk for vk ∈ Vunknown where Vunknown ∩ Vknown = φ,

Vunknown ⊆ V − Vknown.

Fig. 2.2a illustrates the idea of the node focus task. The colour represents the node

attribute. And each node has its label y. The node focus task is to predict the unknown

node labels. As an example of a node focus task, in community detection, the label assigned

to each node would be the name of its associated community. If two nodes have the same

label, they belong to the same community. It is also straightforward to see that node

classification is a node focus task.

Definition 2. Edge Focus Task: given a one to one mapping between Eknown ⊂ E and their

corresponding labels Yknown. The learning purpose is to predict yi,j for ei,j ∈ Eunknown where

Eunknown = E − Eknown

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 10

(a) Node Focus Task (b) Edge Focus Task

(c) Graph Focus Task

Figure 2.2: Different Graph Learning Tasks

As shown in Fig. 2.2b, given a graph with node attribute and observed edges, the edge

focus task is to predict whether an edge exists between two given nodes.

Definition 3. Graph Focus Task: given a collection of graphs or sub-graphs {Gi} and a

one to one mapping between {Gi} and the label set {yi}, the learning purpose is to predict

yj for Gj /∈ {Gi}.

Given multiple graphs, as in Fig. 2.2c, some of them have known labels, but some do

not. The graph focus task is to predict the unknown graph label.

To sum up, the label y to be predicted could be a cell in the adjacency matrix A or an

edge feature in edge focus tasks, one particular attribute in node attributes matrix X for

node focus tasks or a numerical interpretation of the state tuple for graph focus tasks.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 11

2.2.2 Extrapolation and Interpolation Learning in Dynamic

Graph

In real-world applications, we are facing the challenge of learning the network dynamic,

namely the repetitive pattern in a dynamic graph’s evolution over time. Dynamic graphs

have one more dimension than static graphs have, which is time. The time dimension

is usually stored as the timestamp when the observation of the graph or its components

happens.

Let’s denote a dynamic graph as GT = OT , where T = [t1 : tn] is the time span from t1 to

tn and is referred as the observation period. OT = {ot1 , ot2 , · · · , otn} is the set of observations

which are performed within the observation period T . The observation could be a snapshot

of graph Gt = (Vt, Et,Xt) where Vt,Et and Xt are the snapshot of the nodes, edges and node

features at time t, a single node updating event ot = vi,t or edge updating event ot = e{i,j},t at

time t. Supervised learning in dynamic graphs could be extrapolation learning, interpolation

learning or time prediction.

In Extrapolation Learning, the purpose is to predict the label Ytn+1 at a future time based

on the previous observations of a particular dynamic graph GT and ground truth labels YT

with the observation period T = [t1 : tn]. While in Interpolation Learning, the objective is

to estimate the missing labels Yti such that ti ∈ T and Yti /∈ YT . The extrapolation task

predicts the future based on historical data, while the interpolation task gives an estimation

for the past. Therefore, the interpolation task is mainly used in data imputation. As an

example, in stock market analysis, if the purpose is to predict the future trend, then it is

extrapolation learning; if the purpose is to fill some missing data, then it is interpolation

learning.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 12

In Time Prediction, the goal is to predict the time for a given incoming event. For

example, predicting when the next crisis event would happen in Integrated Crisis Early

Warning System (ICEWS) [86, 12]. The different learning tasks for supervised dynamic

graph learning are summarized in Table 2.1

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 13

Ex
tr

ap
ol

at
io

n
In

te
rp

ol
at

io
n

T
im

e
Pr

ed
ic

tio
n

N
od

e
Pr

ed
ic

t
th

e
ta

rg
et

no
de

’s
Es

tim
at

e
th

e
ta

rg
et

no
de

’s
Pr

ed
ic

t
w

he
n

a
gi

ve
n

no
de

Fo
cu

s
at

tr
ib

ut
e

in
th

e
fu

tu
re

m
iss

in
g

at
tr

ib
ut

e
in

th
e

pa
st

up
da

tin
g

ev
en

t
w

ill
ha

pp
en

Ed
ge

Pr
ed

ic
t

th
e

ta
rg

et
ed

ge
’s

Es
tim

at
e

th
e

ta
rg

et
ed

ge
’s

Pr
ed

ic
t

w
he

n
a

gi
ve

n
lin

k
Fo

cu
s

st
at

us
in

th
e

fu
tu

re
st

at
us

in
th

e
pa

st
w

ill
be

ad
de

d
or

de
le

te
d

G
ra

ph
Pr

ed
ic

t
th

e
gi

ve
n

dy
na

m
ic

Es
tim

at
e

th
e

gi
ve

n
gr

ap
h’

s
Pr

ed
ic

t
w

he
n

th
e

ta
rg

et
ed

gr
ap

h
Fo

cu
s

gr
ap

h’
s

at
tr

ib
ut

e
in

th
e

fu
tu

re
m

iss
in

g
at

tr
ib

ut
e

in
th

e
pa

st
w

ill
re

ac
h

to
a

gi
ve

n
st

at
e

T
ab

le
2.

1:
Su

pe
rv

ise
d

Le
ar

ni
ng

ta
sk

in
D

yn
am

ic
G

ra
ph

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 14

2.3 Taxonomy

2.3.1 Dynamic Graph Storage Model

A dynamic graph represents a graph evolving over time. Different kinds of graphs evolve

differently. Some change very fast, but some others change very slowly. For example, a

telephone SS7 voice network generates server logs in each node every second, while an

interactive social network modelled from customer reviews has no updates for days. Zaki et

el. [105] summarized that a dynamic graph could be modelled as either Discrete Time

Dynamic Graph (DTDG) or Continuous Time Dynamic Graph (CTDG) based on how the

temporal information is expressed regarding the evolution of the dynamic graph. DTDG is

a list of snapshots, each of which keeps the graph status at a certain moment. Meanwhile,

CTDG can be viewed as a stream of graph updating events. The definitions of these two

graph representation models will be given out in Sec. 2.5 and 2.6 respectively. Such

modelling paradigms are well adopted in the community [72, 100, 99, 43].

For a graph whose nodes or edges are frequently updated, it is more memory efficient

to store it with DTDG modelling due to its snapshot-based representation [57]. However,

it may induce some important temporal information loss if the observation frequency is not

appropriately set. For example, if strong periodicity presents in nodes’ updating events,

each node’s activity reaches its peak at noon every day. But the observation frequency is

set to be every 24 hours, then such a periodicity pattern is never captured in the resulting

snapshots. In comparison, CTDG can capture all temporal information as it is an event-

based representation [57, 45].

Due to their pros and cons, the most important decision to make is which storage model

to use. Such a decision must be made at the early stage of a dynamic graph learning use case.

The selected storage model also limits the options of machine learning algorithms to only

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 15

those that are compatible. Algorithms designed specifically for DTDG, such as DySat [74]

and STGCN [102], cannot be applied directly with CTDGs. Similarly, algorithms designed

for CTDG, such as TGAT [99], cannot be applied with DTDGs either. In order to offer a

fast reference for practitioners, the first hierarchy in our taxonomy to categorize different

algorithms is the compatible graph storage model.

2.3.2 Encoder And Decoder Learning Framework

Graph learning algorithms are better considered to be under the encoder-decoder

framework [32]. We follow the same framework when reviewing supervised dynamic graph

learning algorithms. As shown in Fig. 2.3, the encoder turns the observations of a dynamic

graph into its latent representation that is node-based. This latent representation is called

graph embedding. The decoder decodes the generated graph embedding and gives the

prediction or classification result. Under this framework, researchers can experiment with

different encoder-decoder combinations to find the best one fitting the particular learning

task [43].

The modification of the decoder to perform the three graph learning tasks is simple. The

node focus task is straightforward since the embedding generated by the encoder is node-

based. We can modify the decoder to take the concatenation of two nodes’ embedding as

input to perform the edge focus task, which is referred as the pair-wise decoder [32]. In the

graph focus task, practitioners need to find an aggregation method to aggregate all nodes’

embedding into the graph embedding. By modifying the decoder as described above, one can

use the same encoder and decoder combination to perform all three dynamic graph learning

problems. Therefore, algorithms fitting with an encoder-decoder framework are considered

general-purpose learning methods.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 16

Figure 2.3: Encoder-Decoder Learning Framework

2.3.3 Implicit And Explicit Learning Model

The last hierarchy of the taxonomy in this survey paper is whether a given algorithm uses

time as an input feature explicitly or implicitly. If time is used implicitly, it is not fed into the

model as an independent feature. For example, the algorithm with a static graph encoder

and LSTM decoder does not use time explicitly. The success of temporal learning relies on

the time based ordering of the input snapshots and the regular observation frequency. We

refer to this kind of learning model as Implicit Time Learning Model.

Meanwhile, if a given algorithm takes time as an independent input feature, it is referred

to as Explicit Time Learning Model. Examples include TGAT [99] and TGNN[55] which

use the time encoding Time2Vec [44] as a node feature. The explicit time learning model

is capable of periodicity recognition and vector clock recognition, for which Implicit Time

Learning Model is incapable.

Periodicity Recognition

In temporal data, periodicity is a frequently seen phenomenon. For example, 50% to 70%

of human movements can be explained by periodic behaviour pattern [18]. Periodic

patterns can be learnt by a sequential model in the DTDG setting. The learning model

infers the underlying timestamps by the ordering and position of the input snapshots.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 17

However, in CTDG, this is unfeasible without the explicit use of time. Kazemi et al. [44]

proposed Time2Vec to encode time and help the downstream learning model recognize

periodic patterns as well as linear time patterns.

TGAT [99] applies time2vec in message passing to assign more weight to neighbours with

similar periodic patterns to target nodes. Explicit use of time with Time2Vec helps CTDG

learning better learn periodical patterns.

Vector Clock Recognition

Information flowing between two given nodes needs to traverse their shortest path. The

difference in path length and edge property results in the difference in the flowing

information’s arrival time at the target node. Temporal Distance between starting nodes

and destination nodes is one metric to evaluate how much time is needed for the

information to flow from the starting one to the destination [101]. Because the temporal

distance from the target node to its neighbours has different values, the most up-to-date

information with respect to its neighbours is sent at different timestamps. This phenomena

is described by the concept Vector Clock [51]. Since different nodes have different vector

clocks, they evolve differently from each other. Temporal Point Process(TPP) [71] is one of

the temporal learning methods that are capable of learning the impact of vector clock.

With TPP and the explicit use of time, a learning algorithm could recognize the impacts of

a given node’s vector clock on its evolution.

Moreover, the explicit use of time makes time prediction tasks feasible in dynamic graph

learning. To the best of our knowledge, time prediction tasks could only be done with

explicit time learning methods. Figure 2.1 shows the overall architecture of how this survey

organizes different learning methods.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 18

2.4 Temporal Pattern Learning

In this section, we present the Three Stages Recurrent Temporal Learning Framework . This

framework describes a general form of dynamic graph learning algorithms and how they learn

and apply the temporal pattern for different graph learning tasks. In some circumstances,

node attributes are not available. Such dynamic graphs are called non-attributed dynamic

graph. Conversely, dynamic graphs with attributes are called attributed dynamic graph.

Previous works are limited to either attributed or non-attributed dynamic graphs [84, 23,

3]. To the best of our knowledge, Three Stages Recurrent Temporal Learning Framework

is the only framework which could be generalized to both attributed and non-attributed

dynamic graph learning. Subsection 2.4.1 presents the idea of the proposed framework and

briefly introduces its three stages. Subsection 2.4.2, 2.4.3 and 2.4.4 explain the three stages

in detail. Subsection 2.4.5 explains how to apply Three Stages Recurrent Temporal Learning

Framework in attributed and non-attributed dynamic graphs. The equations presented in

this section assume the given learning task is an extrapolation task. With some modification,

they can be applied to interpolation tasks as well.

2.4.1 Three Stages Recurrent Temporal Learning Framework

Three Stages Recurrent Temporal Learning Framework describes how a learning algorithm

learns the temporal pattern. A temporal pattern is a repetitive pattern in the given dynamic

graph’s evolution. A particular learning algorithm could learn the temporal pattern to

perform those mentioned graph learning tasks. Given that the state of a dynamic graph

Gt at time t is described by a timestamped state tuple (Et,Xt, t), in which Et and Xt is

the edge connections and node attributes matrix observed at time t. The temporal pattern

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 19

could be expressed in the following function:

(Êtn+1 , X̂tn+1 , tn+1) = tp({ET}, {XT}, T) (2.1)

where {ET} and {XT} are the set of observations of E and X in time period

T = [t0, t1, · · · , tn]. Êtn+1 and X̂tn+1 are the prediction of E and X for timestamp tn+1

based on the observed history.

To predict any missing entry in the state tuple, a learning algorithm needs an output

function out(·) which takes the predicted state (Êtn+1 , X̂tn+1 , tn+1) and the known state

(Etn+1 − e{i,j},tn+1),Xtn+1 , tn+1) as input. For example, in edge focus task, to predict the

status of a given edge e{i,j},tn+1 ∈ Etn+1 between vi and vj, the output function out(·) could

be written as:

e{i,j},tn+1 = out((Êtn+1 , X̂tn+1 , tn+1),

(Etn+1 − e{i,j},tn+1),Xtn+1 , tn+1))
(2.2)

A supervised dynamic graph learning algorithm needs to learn the temporal pattern tp(·)

from the ground true history.

Three Stages Recurrent Temporal Learning Framework assumes tp(·) to be a three

stages process such that it is a composite of the three functions:

X′tn+1 = asu({XT}, T, tn+1) (2.3a)

Êtn+1 = ap({ET}, {XT},X′tn+1 , T, tn+1) (2.3b)

X̂tn+1 = mp(Êtn+1 ,X′tn+1) (2.3c)

tp = mp ◦ ap ◦ asu (2.3d)

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 20

Figure 2.4: Three Stages Recurrent Temporal Learning Model

Functions asu(·), ap(·) and mp(·) each represents an intermediate stage in a dynamic

graph’s evolution which will be detailed in following subsections. The operation ◦ is

function composition.

As shown in Fig. 2.4, the first stage is the Attribute Self-Updating defined as in

Eqn. (2.3a). This stage captures the impact from the external factors to the graph

evolution and gives out X′tn+1
as an estimation of X at tn+1. Here we present a model with

only node attributes self-updating. Readers can extend it to edge attributes and graph

attributes self-updating with a similar schema. The change of attributes triggers the

second stage, named Association Process. As in Eqn. (2.3b), the association process

describes the evolution of the connection pattern. It generates new connection patterns

based on the current connection pattern, timestamp and the self-updated attributes. The

new connection pattern triggers the last stage, which is the Message Passing. As defined as

Eqn. (2.3c), this stage integrates the impact of attributes self-updating and association

process to generate the attributes for the next state. Consequently, the result of message

passing would be the starting point of attributes self-updating in the next round of

evolution. A dynamic graph’s evolution can be described as a recurrent process of these

three stages.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 21

2.4.2 Attributes Self-Updating

The first stage in Three Stages Recurrent Temporal Learning Framework is the attributes

self-updating. This stage captures the impact of external factors on the evolution of the

given dynamic graph’s attribute. Depending on the context, the attributes being impacted

could be node attributes, edge attributes or graph attributes. The change of attributes

alternatively drives the evolution of the given dynamic graph’s connection pattern [84]. As

an example, in a client-item knowledge graph, the unobserved change in the client’s status

would trigger the change in his interest.

Definition 4. Attributes Self Updating: the change of node, edge or graph’s attributes

resulted from external factors. Its equation asu(·) is defined in Eqn. (2.3a)

As in our example, this stage only takes input of the history of the node attributes and

the timestamps. Its output X′tn+1 is the estimated node attributes for the next timestamp

tn+1.

2.4.3 Association Process

The change of attributes triggers the development of a new connection pattern. The process

that describes the evolution of a dynamic graph’s connection is called Association Process.

Definition 5. Association Process: The process that a particular dynamic graph develops,

abandons or modifies the edges between its nodes. Its equation ap(·) is defined in Eqn. (2.3b).

As shown in Eqn. (2.3b), the association process outputs the future connection pattern

based on the given dynamic graph’s evolution history, the estimated future attributes from

the first stage, and the timestamps.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 22

2.4.4 Message Passing

In graph analysis, we believe nodes are impacted by their neighbours. To learn how nodes

are impacted by their neighbours, Message Passing is developed for Graph Neural

Network(GNN)s [27, 31, 88].

Definition 6. Message Passing [27], also known as Affinity Propagation [91, 22] and

Communication [85], is a local neighbourhood information aggregation method which updates

node attributes by aggregating messages received from neighbouring nodes and the connected

edges. Its equation mp(·) is defined in Eqn. (2.3c).

Recent advancements in DTDG learning apply message passing to generate node-based

graph embedding. The resulting graph embedding is considered to be a latent representation

of the underlying graph’s network structure and nodes/edges attributes [32, 97]. Therefore,

it contains important information for graph-related machine learning tasks.

2.4.5 Generalization To Attributed And Non-attributed Dynamic

Graphs

Three Stages Recurrent Temporal Learning Framework describes how attributed dynamic

graph evolves by Eqn. (2.3). Supervised dynamic graph learning algorithms learn the

temporal pattern F by optimizing the trainable weights in Eqn. (2.3) and (2.2) to best fit

the input history.

When generalized to a non-attributed dynamic graph, the impact from node attributes

is usually ignored since they are not available. The only driver considered in the graph’s

evolution is the association process. [57, 84]. In this case we can drop Eqn. (2.3a) from

Eqn. (2.3d) and setting Eqn. (2.3b) to take input only {ET} and the timestamps as follows:

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 23

Êtn+1 = ap({ET}, T, tn+1). (2.4)

TGN [72] and APAN [95] adopts Three Stages Recurrent Temporal Learning Framework

by applying the node memory units to capture the attribute self-updating.

Know-Evolve [86], DyRep [85] and TGAT [99] adopt Three Stages Recurrent Temporal

Learning Framework by setting Eqn. (2.3a) to always return the last observation in the

input attributes history {XT}.

The learning of temporal pattern F is achieved by applying temporal learning algorithms

in the dynamic graph encoder or directly in the decoder. Commonly-used temporal learning

algorithms include RNN family neural networks, 1-D convolutional networks, time series

analysis methods and attention networks. A recent trend is to explore the use of the TPP

in temporal learning [86, 85].

2.5 Discrete Time Dynamic Graph Learning

The dynamic network represented by DTDG has a discretized time dimension. Each

observation in the given dynamic graph GT is expressed as a snapshot of the given graph

attached with the observation timestamp. DTDG is defined as follows:

Definition 7. Discrete Time Dynamic Graph (DTDG): a dynamic graph GT = OT for a

time span T = [t1 : tn]is stored as DTDG, if each stored observation oti in OT is a snapshot of

the given graph oti = (Vti , Eti ,Xti) where Vti, Eti and Xti are nodes, edges and node features

matrix observed at ti .

The data pipeline that makes the observation and stores the snapshot in a database is

usually running at a regular frequency depending on the requirement, such as once per hour

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 24

or once per day. The timestamps are usually as simple as ordered integers instead of actual

date and time (e.g., T = [1, 2, 3, . . . , n]).

The most seen form of supervised DTDG learning is the static graph encoder - sequential

decoder framework. As shown in Fig. 2.5a, Algorithms following this framework use a static

graph encoder to generate embedding for each snapshot and pass those embedding to a

supervised sequential decoder for inference. Because the dynamic network has already been

sliced into snapshots, there is no explicit usage of temporal information in the encoder.

The encoder only captures the graph structure, property and attributes for each snapshot.

Temporal information is learnt through the sequential decoder.

There are some emerging attempts to learn temporal patterns as well as graph topology

and attributes in the encoder. These algorithms follow the dynamic graph encoder - simple

decoder framework as shown in Fig. 2.5b. Instead of generating node-wise graph embedding

for each snapshot in each inference, the dynamic graph encoder only generates one embedding

recursively based on inputs in the past and the current input snapshot at each inference.

Table 2.2 lists all encoders for supervised DTDG learning in this survey. So far as we

summarize, all supervised DTDG learning methods do not learn the graph attribute self-

updating process.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 25

T
im

e
M

od
el

G
ra

ph
Ty

pe
En

co
de

r
Im

pl
ic

it
no

n-
at

tr
ib

ut
ed

st
at

ic
gr

ap
h

Sh
al

lo
w

Em
be

dd
in

g
[8

,2
,1

4,
64

,9
4,

69
,1

03
,1

6,
29

,8
2]

au
to

en
co

de
r

Ba
se

d
Em

be
dd

in
g

[1
3,

90
]

at
tr

ib
ut

ed
st

at
ic

gr
ap

h
M

es
sa

ge
Pa

ss
in

g
G

N
N

[7
6,

26
,1

07
,3

1]
G

ra
ph

C
on

vo
lu

tio
n

N
et

wo
rk

[4
6,

47
,1

06
,3

1,
63

,5
6,

60
]

G
ra

ph
A

tt
en

tio
n

N
et

wo
rk

[8
8,

98
,7

4]
dy

na
m

ic
gr

ap
h

K
al

m
an

Fi
lte

r
Ba

se
d

En
co

de
r

[7
5]

Ev
ol

ve
G

C
N

[6
5]

Sp
at

ia
l-T

em
po

ra
lG

ra
ph

C
on

vo
lu

tio
n

N
et

wo
rk

[1
02

]
Ex

pl
ic

it
N

.A
.

N
.A

.

T
ab

le
2.

2:
D

T
D

G
G

ra
ph

En
co

de
rs

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 26

(a) Static Graph encoder -
Sequential Decoder Framework
for DTDG

(b) Dynamic Graph Encoder -
Simple Decoder Framework for
DTDG

(c) Dynamic Graph Encoder -
Simple Decoder Framework for
CTDG

Figure 2.5: Different Encoder-Decoder Architectures for Dynamic Graph

2.5.1 Static Graph Encoder

Non-Attributed Static Graph Encoder

Static graph encoders could be categorized as non-attributed and attributed graph encoders.

Non-attributed static graph encoders are not widely discussed in academia these days due

to their incapability to leverage graph attributes. This motivates the recent exploration of

attributed static graph embedding approaches. We will first review briefly the non-attributed

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 27

static graph embedding methods, and then provide an in-depth review of attributed static

graph embedding methods. For those interested in more detail regarding non-attributed

static graph representation learning algorithms, we refer them to read the recent work of

Hamilton et al. [32], Cui et al. [19] and kazemi et al. [43].

A basic form of non-attributed static graph encoder is the shallow embedding approach,

which aims to transform graph structure and property to node-level graph embedding [19].

However, graph attributes are not considered in shallow embedding. Shallow embedding

includes:

• Matrix Factorization based approaches such as Laplacian Eigenmaps [8], Graph

Factorization [2], GraRep [14], HOPE [64] and M-NMF [94].

• Random walk based approaches such as DeepWalk [69], TADW [103], HARP [16] and

node2vec [29].

• Other approaches, such as LINE [82] .

A shallow embedding encoder is simply an embedding lookup based on node ids, and

there is no parameter sharing between nodes. Hence, the computation is inefficient, and the

trained encoder cannot be used for new graphs with unseen nodes [32].

To overcome these challenges and leverage graph attributes in the embedding

generating process, multiple approaches are proposed to parameterized graph embedding

(i.e., parameter sharing between nodes).

Deep Neural Graph Representation (DNGR) [13] and Structural Deep Network

Embeddings (SDNE) [90] apply autoencoder [73] to map a high-dimension node similarity

matrix to a low-dimension node embedding. These two approaches enable sharing of

parameters, which can provide an efficient computation and be applied with unseen nodes.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 28

Attributed Static Graph Encoder

To leverage graph attributes in static graph embedding generation, attributed static graph

encoders are proposed. Attributed static graph encoders are based on Graph Neural Network

(GNN) [76]. Such algorithms follow a message passing schema to aggregate neighbourhood

information and generate embedding for the target node [26]. In this survey, we focus

on some widely used GNN based attributed graph encoders, which are the foundation of

dynamic graph encoders to review in later sections.

GNN assigns state hvi
to node vi of the input graph. Given mappings N(vi) to be all

neighbors of node vi, mapping E(vi) to be all edges connecting node vi and its neighbors

N(vi), fw(·) to be the neighborhood information aggregating function, state hvi
at the k

layer is defined as in Eqn. (2.5).

hkvi
= fw(hk−1

vi
, E(vi),hk−1

N(vi)), (2.5)

which can be written as Eqn. (2.6) when there is no positional information for the neighbours.

hkvi
=

∑
u∈N(vi)

fw(hk−1
vi

, e(vi, u),hk−1
u). (2.6)

The output state from the last layer n is the graph embedding zvi
:

zvi
= hnvi

. (2.7)

This state updating process is described as a message passing process in [26, 107]. In

each iteration, the message from each node is passed through the edges to their neighbours.

To learn local neighbourhood structure, k is required to be a small value, such as k = 2

in learning the 2-hop neighbourhood information. With Banach’s fixed point theorem, the

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 29

state values will converge with the update of state in iterations [6, 26]. Therefore, to learn

the global graph structure, we can continue the iterative updating until the change in the

state value between two consecutive iterations is close to 0 as shown in Eqn. (2.8). When the

state values converge, the global graph structure and property are embedded in the resulting

embedding.

hkvi
− hk−1

vi
≈ 0. (2.8)

Stacking the converged state value z of each node together to produce Z, we obtain the

node-wise embedding of the input graph. GraphSAGE [31] and column network [70] are

following the same schema with different neighborhood information aggregation functions.

Inspired by GNN, Graph Convolution Network (GCN) [46] is a generalization of

Convolution Neural Network (CNN) [48] to static graph data structure with spectral

method. GCN applies graph Laplacian to generate the feature maps, which are shared

within the whole graph as in CNN. Given the adjacency matrix A, Â = A + IN , the

diagonal degree matrix D̂ : D̂ii = ∑
j Âij, the graph Laplacian is calculated as follows:

L = D̂
1
2 ÂD̂

1
2 . (2.9)

Moreover, a convolution layer with the output of d feature maps is calculated as follows:

Z = LXW, (2.10)

where X ∈ R|V |×d is the input node feature matrix with d features and W ∈ Rd×d′ is the

layer weight matrix to generate d′ feature maps. The output Z of a hidden convolution layer

is usually passed to an ReLU activation function, and the output of the activation function

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 30

will then be passed to the next layer as the input. As an example, a classic two layers GCN

with softmax activation in the output layer has the form in Eqn. (2.11).

Z = softmax(L · ReLU(LXWhidden) ·Wout). (2.11)

One example of GCN as a static graph encoder to learn the neighbourhood structure for

each snapshot and a sequential decoder to learn the temporal pattern between snapshots is

AddGraph [106].

Similar to GCN, Graph Attention Network (GAT) [88] applies the attention mechanism [4,

87] to determine the importance of neighboring nodes in the neighborhood aggregation for

the target node:

attn(Q,K,V) = softmax(score(Q,K))V, (2.12)

where Q is the linear projection of the target node’s input state hvi
from the previous layer.

K and V are the linear projections of the input state of the vi’s neighbouring nodes:

Q = hvi
Wq

K = [hv1 ,hv2 , · · · ,hvj
, · · · ,hvn]Wk,∀vj ∈ N(vi)

V = [hv1 ,hv2 , · · · ,hvj
, · · · ,hvn]Wv,∀vj ∈ N(vi)

(2.13)

The function score(·) calculates a score representing how well Q align to K. The

alignment scores for vi’s neighborhood N(vi) are then normalized by a softmax layer. The

output of the whole attention layer is the product of the normalized alignment score and

the linear projection V.

In Transformer [87], the score function is the dot product of Q and K, while the score

function is a leaky ReLU layer in Graph Attention Network (GAT) [88, 98]. GAT is used as

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 31

Storage Model Time Model Decoder
DTDG/CTDG Implicit Time Series Analysis Methods [78, 39, 30]

RNN family [73, 35, 77, 63, 56, 60, 104, 81, 11]
1-D Convolution Network [89]
Positional Temporal Self Attention [74]

CTDG Explicit Temporal Point Process Decoder [86, 15]

Table 2.3: Decoders

a static graph encoder to learn DTDG in Dysat [74]. All attributed static graph encoders

can be used to generate embedding in a supervised or unsupervised manner [31, 47, 46, 88,

70].

2.5.2 Sequential Decoder

In supervised DTDG learning, the temporal pattern is revealed by the change between

snapshots along the time dimension. By sorting the static graph embedding generated from

the series of snapshots according to their timestamps and treating them as sequential data,

the temporal pattern can be learnt via a sequential decoder. However, the sequential decoder

does not use time explicitly and is not capable of performing time predicting tasks. Table

2.3 lists different kinds of decoders summarized in this work.

Time Series Analysis Methods

DTDG can be considered as a time series of snapshots. Hence, traditional time series

methods can be used naturally as decoders to learn temporal patterns. Exponential Moving

Average (EMA) and Auto-Regressive Integrated Moving Average (ARIMA) are two

widely-used methods, which are used as decoders in previous works [78, 39, 30]. As an

example, Eqn. (2.14) shows the equation of EMA with a predefined smoothing factor

α ∈ (0, 1).

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 32

Ztn+1 =
n∑
i=0

α(1− α)iZtn−i
. (2.14)

Recurrent Neural Network (RNN) family

RNN based methods are frequently-used as supervised sequential decoders and are capable

of learning temporal correlation. A basic form of RNN decoders is defined by a recurrent

state function which takes the previous state and the current embedding as input [73]:

hvi,tn = RNN(hvi,tn−1 , zvi,tn). (2.15)

The generated state is used as the input in the output unit, which is usually a Feed forward

Neural Network (FNN):

ovi,tn = FNN(hvi,tn). (2.16)

One frequently used RNN model is the Long Short Term Memory (LSTM) [35], which

better learns the long-term temporal pattern. For example, Seo et al. [77] applied the spectral

GCN [21] as static graph encoder and LSTM as decoder; Narayan et al. [61] used a different

GCN [63] as static graph encoder and LSTM as decoder; Manessi et al. [56] and Mohanty et

al. [60] also used different version of GCN as static graph encoder and LSTM as decoder to

perform dynamic graph learning. Yuan et al. [104] apply message passing GNN as a static

graph encoder and a four gates LSTM as a sequential decoder to learn the dynamic graph

constructed from video frames and performs object detection. DyGGNN [81] uses a gated

graph neural network [54] as encoder and LSTM as decoder. Bogaets et al. [11] apply CNN

as a static graph encoder and LSTM as a sequential decoder in traffic forecasting for the

road network in the city of Xi’an.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 33

1-D Convolution Neural Network (Conv1d)

Conv1d is used in time series analysis [52]. Therefore, it is naturally used as a sequential

decoder to learn the temporal pattern. Unlike RNN families, Conv1d only learns short-term

temporal patterns in the given time frame. The periodicity of those short-term temporal

patterns could be learnt by stacking multiple Conv1d layers. By carefully setting the size of

each feature map, Conv1d inputs the embedding of a given node for n most recent snapshots

[zvi,t1 , zvi,t2 , · · · , zvi,tn], and generates the decoded state hvi,tn for node vi at time tn:

hvi,tn = Conv1d([zvi,t1 , zvi,t2 , · · · , zvi,tn]). (2.17)

The decoded state is then passed to the output unit as in Eqn. (2.16).

GraphTCN [89] applies a GAT based static graph encoder and Conv1d as the sequential

decoder to learn the spatial and temporal information in Human Trajectory Prediction.

Temporal Self-Attention (TSA)

The attention mechanism is proved to perform very well in sequential data learning [4, 17].

As in Eqn. (2.18), given the node embedding Zvi
of the target node vi, each element encodes

a snapshot from the observation period [t1, t2, · · · , tn−1, tn], TSA uses each element in Zvi

as a query to attend over the whole input history Zvi,[t1:tn] to generate the temporal graph

embedding for the corresponding snapshot. The output of a TSA layer Hvi
has the same

time dimension as the input, such that it is feasible to stack multiple TSA layers to learn

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 34

the evolution of its local neighbourhood structure and attributes over time.

Zvi
= [zvi,t1 , zvi,t2 , · · · , zvi,tn]

Qti = (zvi,ti + Pti)Wq,

K = (Zvi
+ P)Wk,

V = (Zvi
+ P)Wv,

hvi,ti = attn(Qti ,K,V),

Hvi
= [hvi,t1 ,hvi,t2 , · · · ,hvi,tn].

(2.18)

As in Eqn. (2.12), Dysat [74] applied TSA as the sequential decoder in DTDG learning.

Their score function is shown in Eqn. (2.19).

score(Qti ,K) = QtiKT
√
d′

. (2.19)

To the best of our knowledge, there is no explicit time sequential decoder proposed

for supervised DTDG learning. Because the snapshots are taken at a regular frequency,

temporal information is revealed in the ordering and the position of the snapshots. However,

without using time as a learning feature, the implicit time sequential decoder is not capable

of performing time prediction tasks as discussed in Sec. 2.2.

2.5.3 Dynamic DTDG Encoder

Implicit Time DTDG Encoder

Recent developments commonly use attributed dynamic graph embedding as an encoder

to learn both graph structures and temporal correlations. The generated dynamic graph

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 35

embedding is then fed to a simple supervised predictive model as a decoder to conduct

prediction.

Kalman Filter Based Encoder Kalman Filter [42], also called Linear Quadratic

Estimation, is widely used in sensor signal refinement. It is efficient in handling uncertainty

caused by random external factors. When considering node properties as sensor measures,

Kalman Filter can be used to generate dynamic node embedding. A hidden state matrix

Ht−1 at time t − 1 is formed by stacking the hidden state of each node in the graph or the

local neighbourhoods. Kalman Filter based encoder is a two-step recurrent process that

includes the prediction step and the hidden state updating step. Given the hidden state

Ht−1 at snapshot t− 1 and its estimated covariance matrix P̂t−1, the embedding matrix Zt

at time t and its predicted covariance matrix Pt is calculated as in Eqn. (2.20), where W

and B are trainable parameters, and Qt is a random noise drawn from a zero-mean

Gaussian distribution, and Nt−1 is a control factor that could be simply 0 as in Sarkar et

al. [75] or neighborhood embedding aggregation.

Zt = WHt−1 + BNt−1,

Pt = WP̂t−1WT + Qt.
(2.20)

Once a new observation of node attributes Xt at time t is obtained, the Kalman gain Kt

is defined as in Eqn. (2.21), where J is a trainable parameter.

Kt = PtJT(JPtJT + Cov(Xt))−1. (2.21)

The hidden state Ht and the estimated covariance P̂t are updated as follows:

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 36

Ht = Zt + Kt(Xt − JZt),

P̂t = Pt −KtJPt.
(2.22)

EvolveGCN The idea of EvolveGCN [65] is simple and interesting. In order to to make

the model adaptable to newly added nodes, EvolveGCN focuses on training an RNN model

to learn the temporal dynamic presented in the underlying GCN. Namely, the parameters in

the underlying GCN are not learned. They are predicted by an RNN model. There are two

versions of the EvolveGCN unit, which are the hidden unit EGCU-H and the output unit

EGCU-O. EGCU-H takes the input of last layers output states Hl−1
t and the parameters

from the last time step Wl
t−1, and then outputs the parameter for the current time step Wl

t

as shown in Eqn. (2.23).

Wl
t = GRU(Hl−1

t ,Wl
t−1),

Hl+1
t = GNN(At,Hl

t,Wl
t).

(2.23)

Similarly, EGCU-O calculates the parameter for the underlying GCN at the current time

step by LSTM but takes only the parameter from the last time step as input as follows:

Wl
t = LSTM(Wl

t−1),

Hl+1
t = GNN(At,Hl

t,Wl
t).

(2.24)

Spatial Temporal Graph Convolutional Network (ST-GCN) ST-GCN is developed

to learn both the spatial and temporal patterns for human action recognition [102]. An ST-

GCN layer is composed of two operations: spatial convolution and temporal convolution.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 37

Spatial convolution learns the graph structure pattern. It adds a partitioning strategy to

spectral GCN as described in Eqn. 2.10 to assign different weights to the nodes in different

partitions so as to learn the feature importance for different partitions based on their spatial

information. There are three partitioning strategies proposed in [102]:

• uni-labelling: all nodes are assigned in the same partition.

• distance partitioning: the target node vi is assigned to partition 0, and the partitioning

of its neighbours is determined by the length of their shortest paths to vi.

• spatial configuration: the partition is determined by the given node’s distance to the

graph’s centroid, as shown in Eqn. (2.25), where ri is the distance between vi and the

graph centroid, and lti(·) is a function whose output is the partition label of the input

node vj at time t in the state calculation for node vi.

lti(vtj) =

0 if rj = ri

1 if rj < ri

2 if rj > ri

(2.25)

After the partitions are generated, the graph Laplacian will be broken down accordingly.

With uni-labelling partitioning, the resulting graph Laplacian is IN + A which is exactly

the same as the GCN proposed by Kipf et al. [47]. With distance partitioning and spatial

partitioning, the graph Laplacian is dismantled into multiple tensors Aj according to the

partition label such that the sum of those tensors equals IN + A as follows:

IN + A =
∑
j

Aj. (2.26)

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 38

Each Aj has its own learnable weight M , and the GCN encoder in ST-GCN is calculated as

shown in Eqn. (2.27) where ⊗ denotes the element-wise multiplication.

Z =
∑
j

D
1
2
j (Aj ⊗Mj)D

1
2
j XW. (2.27)

The resulting embeddings for the input snapshots are ordered based on their timestamps as

the output embedding.

As shown in Fig. 2.6, The temporal convolution performs 2-D convolution for each node

along its time dimension T and feature dimension D to learn the temporal pattern.

Figure 2.6: Temporal Convolution

An ST-GCN layer can have multiple temporal and spatial convolutions. Multiple ST-

GCN layers can be stacked together to construct a deep dynamic graph encoder for better

expressive power. The implementation in Yan et al. [102] ensembles an ST-GCN layer with

one spatial convolution in between two temporal convolutions.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 39

Explicit use of time in DTDG has not been explored in the community to the best of our

knowledge. Neither does the time prediction task for DTDG. It is an interesting direction

for future work to develop an explicit time learning model for DTDG and perform time

prediction tasks.

2.6 Continuous Time Dynamic Graph Model

DTDG is a well-explored dynamic graph model which offers plenty of learning algorithms

for downstream applications. However, as discussed above, it is possible to lose important

temporal information when DTDG storage models are applied with inappropriate

observation frequency. To preserve all temporal information, we can use Continuous Time

Dynamic Graph(CTDG) storage model. CTDG is also called a streaming graph. Under

this storage model, the dynamic graph is modelled and stored as the graph updating event

stream. Because all the changes and their timestamps are kept in the database, there is no

loss of temporal information.

Definition 8. Continuous Time Dynamic Graph (CTDG): a dynamic graph GT with T =

[t0 : tn] is regarded as a CTDG model if it is stored as GT = (Gt0 , O[t1:tn]) with O[t1:tn] to be a

collection of timestamped graph updating events observed during the time span [t1 : tn], Gt0

to be its initial state at t0. Each event oti ∈ O[t1:tn] could be either a node updating event

xvi,ti or edge updating event e{i,j},tj .

CTDG learning algorithm aims to learn the network evolution embedded in the events

stream. As shown in Fig. 2.5c, the framework for CTDG learning algorithms is very similar

to that of the dynamic DTDG encoder (the simple decoder framework in Fig. 2.5b). In this

framework, the input is the observed updating event stream, and then the dynamic CTDG

encoder transforms the input event stream to a node-wise graph embedding that learns the

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 40

graph’s temporal pattern in its evolution. The encoder learns the regular temporal pattern

as described by Eqn. (2.1). Hence it can not only be used directly with common decoders

such as MLP [25] and SVM [80] but also be used with sequential decoders introduced in

Sec. 2.5. Moreover, this framework is commonly applied to analyze interaction networks [86,

15], transaction networks [95], and knowledge graphs in recommendation systems [95].

There are three major challenges in the supervised learning of CTDG: Event

Expiration, Computational Exhaustive in Adjacency Matrix Retrieval, and Temporal

Information Learning.

Event Expiration

This is the staleness problem proposed by Kazemi et al. [43] for CTDG learning. How can we

determine if long-ago updating events have large impacts on the current nodes? For example,

the relations between users in a social network are defined by their phone call activities, and

a phone number is previously abandoned and is recently assigned to a new user. In this

case, the previous events for the node represented by this number should be expired and no

longer reflect its current owner’s social relationship, and this node should be counted as a

new user without history.

Computational Exhaustive in Adjacency Matrix Retrieval

CTDG is stored as a collection of updating events. To obtain its adjacency matrix, we need

to scan the whole history and construct the relation between nodes to fill in the cells in the

adjacency matrix for each source and destination node pair according to the observed events

and their timestamp. However, the computing resources are costly, so we try to avoid the

adjacency matrix construction in CTDG learning.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 41

Temporal information Learning

Each observation in CTDG has its own timestamp, and hence rich temporal information can

be learnt by analyzing their timestamps. The challenge of learning the temporal information

is how we can properly use the timestamps as features to learn from.

In the following sections, we will review different dynamic graph encoders for CTDG

and discuss how these graph encoders tackle the aforementioned challenges. All summarized

CTDG encoders are listed in Table 2.4:

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 42

T
im

e
M

od
el

G
ra

ph
ty

pe
En

co
de

r
Im

pl
ic

it
N

on
-a

tt
rib

ut
ed

D
yn

am
ic

G
ra

ph
Te

m
po

ra
lR

an
do

m
W

al
k-

Ba
se

d
En

co
de

r
[6

2,
20

,7
,8

5]
Ex

pl
ic

it
A

tt
rib

ut
ed

D
yn

am
ic

G
ra

ph
Te

m
po

ra
lA

tt
en

tio
n

Ba
se

d
En

co
de

r
[9

9,
10

0]
R

N
N

ba
se

d
En

co
de

r
[7

2,
49

,5
0,

86
,8

5,
95

]

T
ab

le
2.

4:
C

T
D

G
G

ra
ph

En
co

de
rs

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 43

2.6.1 Implicit Time CTDG Encoder

The temporal process regarding the graph topology can be learnt through the Temporal

Random Walk-Based Encoder. Temporal Random Walk is defined as a random walk

performed respecting the timestamp of the edge updating events [57, 36, 45, 10]. Once the

sets of temporal walks are sampled, random walk-based static graph encoders can be used

to generate the embedding. Nguyen et al. [62] propose a temporal random walk-based

encoder for non-attributed dynamic graphs with three strategies to select the next hop in a

walk. De Winter et al. [20] and Bastas et al. [7] convert the CTDG to DTDG and perform

temporal random walks. Since random walk-based approaches are generally applied in

non-attributed dynamic graphs, practitioners have to combine them with a decoder that

utilizes the graph attributes for attributed dynamic networks. One potential direction of

future works can extend temporal random walk-based encoders for attributed dynamic

graphs by biasing the hop selection based on TPP. The temporal attentive aggregation for

neighbourhood message passing in DyREP [85] is an example in which the maximum walk

length is 1, and the probability of the next hop is calculated based on TPP.

2.6.2 Explicit Time CTDG Encoder

CTDG is stored as a stream of observed updating events O(T), which could be viewed as

sequential data. Therefore sequential learning models are naturally used in dynamic CTDG

encoder to transform a given node’s updating events to its embedding. One such kind of

encoder is the temporal attention based encoder.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 44

Temporal Attention Based CTDG Encoder

Inspired by the success of the network attention mechanism in learning sequence data [87],

Xu et al. proposed the Temporal Attention mechanism as the dynamic graph encoder in

Temporal Graph Attention Network (TGAT). It assumes that more critical temporal

information is revealed in the relative time span, compared to the absolute time value.

However, attributes self-updating is not considered in its temporal learning framework.

With this assumption, Temporal Attention applies Time2Vec [44] to capture critical

temporal information from the dynamic graph. Time2Vec aims to generate a simple vector

representation of time so as to enable different learning algorithms to learn the temporal

correlation as well as the periodicity with the explicit use of time. Given a scalar notion

of time ∆t, which could be the time difference in the CTDG setting, its naive Time2Vec

encoding t2v(∆t), is a vector of predefined size d and calculated as:

t2v(∆t)[i] =

wi∆t+ ϕi if i = 1,

f(wi∆t+ ϕi) if 1 < i ≤ d,

(2.28)

where wi and ϕi are trainable weight or predefined weight, and f is a periodic function, such

as sin(·) and cos(·). Time2Vec helps the learning model to learn temporal correlation by

simple linear time projection when i = 1, and it helps learn the periodicity of time by kernel

learning when 1 < i ≤ d [99].

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 45

TGAT applied a modified version of Time2Vec to calculate the functional encoding of a

given node vi at time t:

hvi,vj
= xvj ,tj ||eij,tj ||t2v(ti − tj) (2.29a)

Hvi
= [hvi,vi

,hvi,v1 , · · · ,hvi,vj
, · · · ,hvi,vn]T

∀vj ∈ N(vi)
(2.29b)

t2v(∆t) =
√

1
d

[cos(w1∆t), sin(w1∆t), · · · ,

cos(wd∆t), sin(wd∆t)]
(2.29c)

where xvi,ti is the node feature vector for node vi at time ti; eij,tj is the edge feature vector

for the edge between node vi and vj at time tj. In Eqn. (2.29a), if vj = vi, eij,tj is vector of

zeros.

With the functional encoding, temporal attention calculates the query, key and value for

vi at time ti as:

Qvi,ti = [Hvi
]0WQ,

Kvi,ti = [Hvi
]1:nWK ,

Vvi,ti = [Hvi
]1:nWV ,

(2.30)

and the output state of the target node vi is given by Eqn. (2.12):

zvi,ti = attn(Qvi,ti ,Kvi,ti ,Vvi,ti). (2.31)

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 46

RNN based CTDG Encoder

As discussed in Sec. 2.4, external factors have a major contribution to a dynamic graph’s

evolution. RNN-based CTDG encoder follows the Three Stages Recurrent Temporal Learning

Framework to capture the external factors contributing to the node attribute self-update.

RNN-based encoder first generates an impression from the observed events related to the

target node by a memory function and then maintains its memory related to the target

node by feeding the impression to a sequential model. Node embedding is generated from

the maintained memory optionally, together with other factors, such as node embedding

from other kinds of encoders, embedding from the observed events, and embedding from the

timestamps.

Temporal Graph Neural Network (TGN) [72] provides a general framework for RNN

based encoder. TGN consists of two components which are the memory component and

the embedding component. The memory component represents the model’s memory for a

given node’s history. we can denote the memory of node vi at time t by vector svi,t. svi,t is

updated when an updating event involving node vi is encountered. If the event is a node-wise

event with new node attribute vector xvi,t, the message to svi,t will be calculated as shown

in Eqn. (2.32), where t− is the timestamp for the last observation for node vi before t and

∆t is the time span between t− and t:

mvi,t = msgn(svi,t− ,∆t,xvi,t) (2.32)

For an interaction event with new edge feature vector eij,t indicating node vi as source and

vj as destination, the message is calculated as shown in Eqn. (2.33a) and (2.33b), respectively.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 47

mvi,t = msgs(svi,t− , svj ,t− ,∆t, eij,t, (2.33a)

mvj ,t = msgd(svj ,t− , svi,t− ,∆t, eij,t). (2.33b)

For an undirected network, msgs and msgd share the same parameters.

Once the messages for all input events with the target node vi involved are generated,

they are aggregated as described in Eqn. (2.34), where t− < t1, . . . , tb <= t:

svi,t = mem(svi,t− , agg(mvi,t1 , . . . ,mvi,tb)) (2.34)

The agg(·) refers to an aggregation function, which can be a trainable deep learning layer

(e.g., RNN, LSTM) or a simple aggregation without trainable weight (e.g., the mean of

those messages, the most recent message). The mem(·) function is a deep learning layer

representing the memory of the model and should be selected from the RNN family. The

output of the memory component si,t can be used directly as the resulted node embedding

as in Jodie [49, 50], Know-Evolve [86] and DyREP [85].

However, as proposed by Kazemi et al. [43], there is a so-called memory staleness problem

for nodes that are not active for a relatively long time, depending on the context. The

memory svi,t− of this kind of node is not updated for a long time. Once a new event

arrives, the outdated memory has the same impact as a recent memory. When calculating

the new memory svi,t, this is not desirable when the events that happened a long time ago

have not much impact on the graph’s evolution. For example, two users with past frequent

connections may not be currently connected in a call social network since one of the users

changed the phone number. A new event for an abandoned number represents that this

number is recycled and used by a different user, and the history for this number is no longer

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 48

meaningful. To overcome this challenge, TGN proposed the embedding component, which

uses the time embedding [44, 99] as one of the input features that could be trained to

recognize the impact of staled memory.

The embedding component zvi,t has a general form as the following message passing

schema:

zvi,t =
∑

vj∈Nt(vi)
f(svi,t, svj ,tj , eij,tj ,xvi,t,xvj ,t), (2.35)

where f(·) is a neighbour node aggregation function and tj is the timestamp that the last

edge updating event observed between vi and vj.

The embedding component zvi,t has different implementations and can generate

embedding without neighbourhood information aggregation. For example, it could be as

simple as just the identify function of the memory svi,t; the time projection used in

Jodie [50]:

zvi,t = (1 + ∆tw) · svi,t. (2.36)

A MLP-TGAT network structure takes the states of the target node vi and its neighbors

from the last layer and the Time2Vec embedding of their last updating events’ time stamps

t2v(t − TN(vi)) as input, the input state h(1)
vi,t of the first layer is the memory svi,t and the

output state h(l)
vi,t of the last layer would be the resulting embedding:

h(1)
vi,t = svi,t

ĥ(l)
vi,t = TGAT(h(l−1)

vi,t , t2v(0),H(l−1)
N(vi), t2v(t−TN(vi)))

h(l)
vi,t = MLP(h(l−1)

vi,t , ĥ(l)
vi,t)

(2.37)

Similarly, Temporal Graph Sum is proposed in TGN [72]:

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 49

ĥ(l)
vi,t = ReLU(

∑
vj∈N(vi)

W(l)
1 (h(l−1)

vj ,tj , t2v(t− tj))),

h(l)
vi

= W(l)
2 (h(l−1)

vi,t ||ĥ
(l)
vi,t).

(2.38)

APAN [95] applies an asynchronous mail propagator to overcome the out-of-order event

arrival issue in TGN’s node memory units design. In online training, graph updating events

are not guaranteed to arrive in timestamp order. This will bring instability to RNN based

CTDG encoders such as TGN. The asynchronous mail propagator fixes this issue by storing

the incoming events in their timestamp order.

2.6.3 Explicit Time CTDG Decoder

As discussed, the decoder in CTDG learning can be a simple supervised classifier, such as

MLP [25] and SVM [80]. The application of sequential decoders is introduced in Sec. 2.5.

Temporal Point Process Based Decoder in CTDG learning is introduced in this section.

Temporal Point Process Based Decoder Know-Evolve [86] and TDIG-MPNN [15]

apply TPP as a decoder in edge focus tasks and time predicting tasks with CTDG setting.

Instead of modeling the set of observations O[0:t] as sequential data, temporal point

process models O[0:t] as a random process with parameters the input time t and the

observations O[0:t−] before t [71]:

f(t, O[0:t−]) = λ(t, O[0:t−])exp(−
∫ t

t−
λ(t, O[0:t−])dt), (2.39)

where f(t, O[0:t−]) is the probability density function representing an event occurs at time t

given the previous observations. t− is the time for the last observation right before t. λ(·)

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 50

is the conditional intensity function. Its form depends on the temporal pattern to capture,

such as the Poisson process, Hawkes process [34], Self-correcting process [40], Power Law

and Rayleigh process [59]. In Know-Evolve, the conditional intensity function λ(·) for the

target edge ei,j at time t is described as follows:

λi,j(t|t−) = exp(zT
vi,t−
·Wi,j · zvj ,t−)(̇t− t−), (2.40)

where Wi,j ∈ Rd×d is the unique trainable parameter regarding the edge ei,j. For a Rayleigh

process, the survival term in Eqn. (2.39) is calculated as:

exp(−
∫ t

t−
λi,j(t|t−)dt) = λi,j(t|t−) · (t2 − (t−)2). (2.41)

In the inference, practitioners can estimate the probability that an event happens for

the given edge in the next moment by the product of the resulting probability density and

the time duration in interest to perform edge focus task and time predicting task. Graph

Hawkes Neural Network applies the Hawkes process in its decoder [33] in a similar manner.

It would be interesting for future work to extend the TPP-based decoder for node focus

tasks as well as graph focus tasks. Also, applying a TPP-based decoder in DTDG learning

for time predicting tasks is an interesting future work as well.

2.7 Challenges And Future Works

In this section, we will highlight some challenges and interesting future works in supervised

learning for both DTDG and CTDG.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 51

Explicit Time DTDG Learning

DTDG is a very well-explored dynamic graph model. Because its snapshot-based

representation fits naturally with static graph encoder, most works focus on performing

node focusing, edge focusing and graph focusing tasks with the framework of static graph

encoder and sequential decoder. However, since time is implicitly learnt in the decoder

with this framework, it is not capable of performing time predicting tasks. To the best of

our knowledge, time predicting task is never considered with DTDG. Explicit time

prediction in DTDG learning will be an important research direction in our opinion. For

example, in financial stock price prediction, we can model each company in the investment

portfolio as a node based on the background of the companies, and then the relation

between nodes can be formulated as a graph. In addition to predicting the future price of a

particular company’s stock, investors are also interested in knowing the time required to

hold the stock until the targeted share price is reached. To facilitate explicit time

prediction in both supervised and unsupervised DTDG learning, an explicit time DTDG

encoder or decoder is required. Future works could be conducted on developing and

applying explicit time supervised DTDG learning algorithms to predict the number of

snapshots required for a particular change to happen.

Large Scale Dynamic Graph Learning

GNN-based learning models suffer from high memory and CPU power requirement, which

becomes more critical in large-scale dynamic graph learning. We observe a recent trend in

solving this challenge in static graph learning [41, 5, 24], while there is still large improvement

room to address this issue in dynamic graph learning. Optimizing existing dynamic graph

learning methods to accommodate large-scale dynamic graphs is a meaningful and interesting

future work.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 52

The Significance of Temporal Pattern

As discussed in Sec. 2.4, the evolution of a dynamic network can be described by Eqn

(2.1), where the future state of a dynamic graph is correlated to its past. The ultimate

goal of dynamic graph learning is to estimate this function and apply it in different graph

learning tasks. What if evolution is just a random event that is not correlated with a

graph’s history? Or more possibly, there is some randomness in the evolution that cannot be

explained or learnt. In this case, we believe the performance gain by applying dynamic graph

learning methods over static graph learning methods depends on how much randomness is

presented in the temporal process. Considering the additional complexity of dynamic graph

modelling and learning over static ones, the performance gain via evaluating the significance

of temporal patterns in a dynamic graph is very useful for industry practitioners in choosing

an appropriate model with low cost.

Implementation Tools for Dynamic Graph Learning

There are Tensorflow [1], Pytorch [66] and Scikit-Learn [67] to help write data pipelines

in machine learning algorithm implementations. Some necessary and useful tools, such as

DGL [93], Spektral [28], can help implement static graph learning algorithms. However,

there are fewer library supports for implementing dynamic graph learning. Future work on

creating such convenient tools will be beneficial for both the industry as well as the research

community.

2.8 Conclusion

As a data structure, graph data modelling attracts the data science community by its

extraordinary expressive power. The world is a dynamic system evolving over time, and so

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 53

does the data generated from real-world activities. The dynamic graph is the extension of

naive graph modelling to capture this temporal dynamic. Moreover, with the recent

development of big data technology and online services, recording and storing graph

attributes have become feasible. This urges the need for effective supervised dynamic

graph algorithms to perform different machine learning tasks with better accuracy. To

provide a comprehensive reference for academia researchers and industry practitioners, this

survey is conducted on the following scopes:

• Background of dynamic graph learning with a full-scale systematic summary from

storage model, learning purpose, algorithm architecture framework.

• We propose the Three Stages Recurrent Temporal Learning Framework . Based on the

proposed temporal learning framework, we discuss how temporal information is learnt

by different dynamic graph learning algorithms. Three Stages Recurrent Temporal

Learning Framework also provides a general mathematical form of dynamic graph

learning algorithms. As far as we know, this is the first and only temporal learning

framework which could be applied to both attributed and non-attributed dynamic

graph learning.

• Supervised dynamic graph learning algorithms with a detailed introduction from

DTDG compatible algorithms to CTDG compatible algorithms, from encoders to

decoders and from implicit time algorithms to explicit time algorithms.

• Future research directions according to the topics discussed.

We hope that with this survey paper, we can offer a convenient reference to industry

practitioners and facilitate future research for the academic community.

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 54

Notation Description
α The smoothing factor of EMA
G A graph
V Set of nodes V = v1, v2, · · · vn; the input value V of the attention layer
V (T) Node-wise events observed at period T
E Set of edges E = e1, e2, · · · en
E(T) Interaction events observed at period T
v A node v in V
e An edge e in E
ei,j the edge start from node i to j
eij,t the edge feature vector for edge ei,j at time t
t Time step / event time
t− Time step just before time t
T Time duration
GT Dynamic graph in time duration T
OT Observations of a dynamic graph in time duration T
Gt Dynamic graph at time t
ot Observation of a dynamic graph at time t, ot ∈ OT

ot(vi) A node updating event for node vi observed at time t
e{i,j},t) An edge updating event between node vi and vj observed at time t
Y Set of labels in a data set
yi A particular label yi in Y
X Nodes feature matrix for V
x Node feature vector in X
w, b, j, ϕ Learnable or preset model parameters in scala form
w,b, j, ϕ Learnable or preset model parameters in vector form
W,B,J Learnable or preset model parameters in matrix form
f, λ Model functions
h, c Hidden states in scala form
h, c Hidden states in vector form
H,C Hidden states in matrix form
hkvi

Hidden state of node vi at layer k in a learning model

Table 2.5: List Of Notations

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 55

Notation Description
N(vi) Neighborhood function which returns the neighboring nodes for the input node vi
E(vi) A function returns all edges connecting vi to its neighbors
Nt Neighborhood aggregation matrix, formed by stacking each node’s neighboring aggregation
Q The input query of the attention layer
K The input key of the attention layer; Kalman gain in Kalman filter
P Positional encoding in TSA; Covariance matrix in Kalman filter
KT The superscript T in bold text represents the transpose operation in matrix
zvi

Embedding vector for node vi
Z Graph embedding matrix
A Adjacency matrix
D̂ Diagonal degree matrix
L Graph labracian
mvi,t Message passed to node vi at time t
out(·) output function of a learning model
tp(·) Temporal Pattern to learn in Three Stages Recurrent Temporal Learning Framework
asu(·) Attributes Self-Updating function in Three Stages Recurrent Temporal Learning Framework
ap(·) Association Process function Three Stages Recurrent Temporal Learning Framework
mp(·) Message Passing function Three Stages Recurrent Temporal Learning Framework
attn(·) Attention layer
msg(·) message generating function in TGN
mem(·) The memory of a TGN model
agg(·) message aggregating function in TGN
t2v(·) Time2Vec embedding
⊗ Element-wise multiplication
|| Concatenation

Table 2.6: List Of Notations

2. (Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic
Graph: A Survey 56

Abbreviation Description
APAN Asynchronous Propagation Attention Network
CNN Convolutional Neural Network
Conv1d 1-d Convolution Neural Network
CTDG Continuous Time Dynamic Graph
DeepWalk A graph embedding method based on deep learning and random walk
DNGR Deep Neural Graph Representation
DTDG Discrete Time Dynamic Graph
DyGGNN Dynamic Gated Graph Neural Network
DySAT Dynamic Self-Attention Network
EvolveGCN Evolving GCN
EGCU Evolving GCN unit
EMA Exponential Moving Average
ARIMA Auto-Regressive Integrated Moving Average
FNN Feedforward Neural Network
GCN Graph Convolution Neural Network
GNN Graph Neural Network
GraRep Graph representation with global structural information
GRU Gated Recurrent Unit
HARP Hierarchical Representation Learning
HOPE High Order Proximity Preserved Embedding
Jodie a coupled recurrent neural network model that learns the embedding trajectories of users and items
Know-Evolve Deep evolutionary knowledge network for dynamic knowledge graph learning
LINE Large-scale Information Network Embedding
LSTM Long Short Term Memory
M-NMF Modularized Non-negative Matrix Factorization
RNN Recurrent Neural Network
SDNE Structural Deep Network Embedding
softmax softmax layer
STGCN Spatial Temporal Graph Convolution Network
TADW Text Associated DeepWalk
TGN Temporal Graph Network
TGAT Temporal Graph Attention Network
TGNN Temporal Graph Neural Network
TPP Temporal Point Process
TSA Temporal Self-Attention

Table 2.7: List Of Abbreviations

57

Bibliography

[1] Mart́ın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th

{USENIX} symposium on operating systems design and implementation ({OSDI}

16). 2016, pp. 265–283.

[2] Amr Ahmed et al. “Distributed large-scale natural graph factorization”. In:

Proceedings of the 22nd international conference on World Wide Web. 2013,

pp. 37–48.

[3] Oriol Artime, José J Ramasco, and Maxi San Miguel. “Dynamics on networks:

competition of temporal and topological correlations”. In: Scientific reports 7.1

(2017), pp. 1–10.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine

translation by jointly learning to align and translate”. In: arXiv preprint

arXiv:1409.0473 (2014).

[5] Youhui Bai et al. “Efficient Data Loader for Fast Sampling-Based GNN Training on

Large Graphs”. In: IEEE Transactions on Parallel and Distributed Systems 32.10

(2021), pp. 2541–2556.

[6] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales”. In: Fund. math 3.1 (1922), pp. 133–181.

Bibliography 58

[7] Nikolaos Bastas et al. “evolve2vec: Learning network representations using temporal

unfolding”. In: International Conference on Multimedia Modeling. Springer. 2019,

pp. 447–458.

[8] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality reduction

and data representation”. In: Neural computation 15.6 (2003), pp. 1373–1396.

[9] Fabricio Benevenuto et al. “Understanding video interactions in youtube”. In:

Proceedings of the 16th ACM international conference on Multimedia. 2008,

pp. 761–764.

[10] Kenneth A Berman. “Vulnerability of scheduled networks and a generalization of

Menger’s theorem”. In: Networks: An International Journal 28.3 (1996), pp. 125–134.

[11] Toon Bogaerts et al. “A graph CNN-LSTM neural network for short and long-term

traffic forecasting based on trajectory data”. In: Transportation Research Part C:

Emerging Technologies 112 (2020), pp. 62–77.

[12] E Boschee et al. “Integrated Crisis Early Warning System (ICEWS) Coded Event

Data”. In: URL: https://dataverse. harvard. edu/dataverse/icews (2015).

[13] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep neural networks for learning graph

representations”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 30, No.1. 2016.

[14] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Grarep: Learning graph representations

with global structural information”. In: Proceedings of the 24th ACM international

on conference on information and knowledge management. 2015, pp. 891–900.

[15] Xiaofu Chang et al. “Continuous-Time Dynamic Graph Learning via Neural

Interaction Processes”. In: Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 2020, pp. 145–154.

Bibliography 59

[16] Haochen Chen et al. “Harp: Hierarchical representation learning for networks”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, No.1. 2018.

[17] Yi-Hsiang Chen and Jen-Tzung Chien. “Continuous-time attention for sequential

learning”. In: Proc. of AAAI Conference on Aritificial Intelligence. 2021.

[18] Eunjoon Cho, Seth A Myers, and Jure Leskovec. “Friendship and mobility: user

movement in location-based social networks”. In: Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining. 2011,

pp. 1082–1090.

[19] Peng Cui et al. “A survey on network embedding”. In: IEEE Transactions on

Knowledge and Data Engineering 31.5 (2018), pp. 833–852.

[20] Sam De Winter et al. “Combining temporal aspects of dynamic networks with

Node2Vec for a more efficient dynamic link prediction”. In: 2018 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM). IEEE. 2018, pp. 1234–1241.

[21] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural

networks on graphs with fast localized spectral filtering”. In: Advances in neural

information processing systems 29 (2016), pp. 3844–3852.

[22] Delbert Dueck. Affinity propagation: clustering data by passing messages. Citeseer,

2009.

[23] Damien Farine. “The dynamics of transmission and the dynamics of networks”. In:

Journal of Animal Ecology 86.3 (2017), pp. 415–418.

[24] Claudio Gallicchio and Alessio Micheli. “Fast and deep graph neural networks”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, No.04. 2020,

pp. 3898–3905.

Bibliography 60

[25] Matt W Gardner and SR Dorling. “Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences”. In: Atmospheric

environment 32.14-15 (1998), pp. 2627–2636.

[26] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In:

International conference on machine learning. PMLR. 2017, pp. 1263–1272.

[27] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In:

International Conference on Machine Learning. PMLR. 2017, pp. 1263–1272.

[28] Daniele Grattarola and Cesare Alippi. “Graph neural networks in tensorflow and keras

with spektral”. In: arXiv preprint arXiv:2006.12138 (2020).

[29] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”.

In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 855–864.

[30] İsmail Güneş, Şule Gündüz-Öğüdücü, and Zehra Çataltepe. “Link prediction using

time series of neighborhood-based node similarity scores”. In: Data Mining and

Knowledge Discovery 30.1 (2016), pp. 147–180.

[31] William L Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learning

on large graphs”. In: arXiv preprint arXiv:1706.02216 (2017).

[32] William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on

graphs: Methods and applications”. In: IEEE Data Eng. Bull. 40.3 (2017).

[33] Zhen Han et al. “Graph hawkes neural network for forecasting on temporal knowledge

graphs”. In: arXiv preprint arXiv:2003.13432 (2020).

[34] Alan G Hawkes. “Spectra of some self-exciting and mutually exciting point processes”.

In: Biometrika 58.1 (1971), pp. 83–90.

Bibliography 61

[35] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[36] Petter Holme. “Network reachability of real-world contact sequences”. In: Physical

Review E 71.4 (2005), p. 046119.

[39] Zan Huang and Dennis KJ Lin. “The time-series link prediction problem with

applications in communication surveillance”. In: INFORMS Journal on Computing

21.2 (2009), pp. 286–303.

[40] Valerie Isham and Mark Westcott. “A self-correcting point process”. In: Stochastic

processes and their applications 8.3 (1979), pp. 335–347.

[41] Zhihao Jia et al. “Improving the accuracy, scalability, and performance of graph

neural networks with roc”. In: Proceedings of Machine Learning and Systems 2

(2020), pp. 187–198.

[42] Rudolph Emil Kalman et al. “A new approach to linear filtering and prediction

problems [J]”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[43] Seyed Mehran Kazemi et al. “Representation Learning for Dynamic Graphs: A

Survey.” In: Journal of Machine Learning Research 21.70 (2020), pp. 1–73.

[44] Seyed Mehran Kazemi et al. “Time2vec: Learning a vector representation of time”.

In: arXiv preprint arXiv:1907.05321 (2019).

[45] David Kempe, Jon Kleinberg, and Amit Kumar. “Connectivity and inference problems

for temporal networks”. In: Journal of Computer and System Sciences 64.4 (2002),

pp. 820–842.

[46] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph

convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

Bibliography 62

[47] Thomas N Kipf and Max Welling. “Variational graph auto-encoders”. In: arXiv

preprint arXiv:1611.07308 (2016).

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing

systems 25 (2012), pp. 1097–1105.

[49] Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Learning dynamic embeddings from

temporal interactions”. In: arXiv preprint arXiv:1812.02289 (2018).

[50] Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Predicting dynamic embedding

trajectory in temporal interaction networks”. In: Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019,

pp. 1269–1278.

[51] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”.

In: Concurrency: the Works of Leslie Lamport. Association for Computing Machinery,

2019, pp. 179–196.

[52] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and

time series”. In: The handbook of brain theory and neural networks 3361.10 (1995),

p. 1995.

[53] Jundong Li et al. “Attributed network embedding for learning in a dynamic

environment”. In: Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management. 2017, pp. 387–396.

[54] Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint

arXiv:1511.05493 (2015).

Bibliography 63

[55] Yao Ma et al. “Streaming graph neural networks”. In: Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval. 2020, pp. 719–728.

[56] Franco Manessi, Alessandro Rozza, and Mario Manzo. “Dynamic graph convolutional

networks”. In: Pattern Recognition 97 (2020), p. 107000.

[57] Naoki Masuda and Renaud Lambiotte. Guide To Temporal Networks, A. Vol. 6. World

Scientific, 2020.

[59] KS Miller, RI Bernstein, and LE Blumenson. “Generalized rayleigh processes”. In:

Quarterly of Applied Mathematics 16.2 (1958), pp. 137–145.

[60] Sudatta Mohanty and Alexey Pozdnukhov. “Graph CNN+ LSTM framework for

dynamic macroscopic traffic congestion prediction”. In: International Workshop on

Mining and Learning with Graphs. 2018.

[61] Apurva Narayan and Peter HO’N Roe. “Learning graph dynamics using deep neural

networks”. In: IFAC-PapersOnLine 51.2 (2018), pp. 433–438.

[62] Giang Hoang Nguyen et al. “Continuous-time dynamic network embeddings”. In:

Companion Proceedings of the The Web Conference 2018. 2018, pp. 969–976.

[63] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning

convolutional neural networks for graphs”. In: International conference on machine

learning. PMLR. 2016, pp. 2014–2023.

[64] Mingdong Ou et al. “Asymmetric transitivity preserving graph embedding”. In:

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 1105–1114.

Bibliography 64

[65] Aldo Pareja et al. “Evolvegcn: Evolving graph convolutional networks for dynamic

graphs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34,

No.04. 2020, pp. 5363–5370.

[66] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning

library”. In: Advances in neural information processing systems 32 (2019),

pp. 8026–8037.

[67] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal

of machine Learning research 12 (2011), pp. 2825–2830.

[69] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social

representations”. In: Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining. 2014, pp. 701–710.

[70] Trang Pham et al. “Column networks for collective classification”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. Vol. 31, No.1. 2017.

[71] Jakob Gulddahl Rasmussen. “Temporal point processes: the conditional intensity

function”. In: Lecture Notes, Jan (2011).

[72] Emanuele Rossi et al. “Temporal graph networks for deep learning on dynamic

graphs”. In: arXiv preprint arXiv:2006.10637 (2020).

[73] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning

representations by back-propagating errors”. In: nature 323.6088 (1986),

pp. 533–536.

[74] Aravind Sankar et al. “Dysat: Deep neural representation learning on dynamic graphs

via self-attention networks”. In: Proceedings of the 13th International Conference on

Web Search and Data Mining. 2020, pp. 519–527.

Bibliography 65

[75] Purnamrita Sarkar, Sajid M Siddiqi, and Geogrey J Gordon. “A latent space approach

to dynamic embedding of co-occurrence data”. In: Artificial Intelligence and Statistics.

PMLR. 2007, pp. 420–427.

[76] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on

neural networks 20.1 (2008), pp. 61–80.

[77] Youngjoo Seo et al. “Structured sequence modeling with graph convolutional recurrent

networks”. In: International Conference on Neural Information Processing. Springer.

2018, pp. 362–373.

[78] Paulo Ricardo da Silva Soares and Ricardo Bastos Cavalcante Prudêncio. “Time series

based link prediction”. In: The 2012 international joint conference on neural networks

(IJCNN). IEEE. 2012, pp. 1–7.

[79] Joakim Skardinga, Bogdan Gabrys, and Katarzyna Musial. “Foundations and

modelling of dynamic networks using dynamic graph neural networks: A survey”. In:

IEEE Access (2021).

[80] Johan AK Suykens and Joos Vandewalle. “Least squares support vector machine

classifiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[81] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. “Learning to represent the

evolution of dynamic graphs with recurrent models”. In: Companion Proceedings of

The 2019 World Wide Web Conference. 2019, pp. 301–307.

[82] Jian Tang et al. “Line: Large-scale information network embedding”. In: Proceedings

of the 24th international conference on world wide web. 2015, pp. 1067–1077.

[84] Riitta Toivonen et al. “A comparative study of social network models: Network

evolution models and nodal attribute models”. In: Social networks 31.4 (2009),

pp. 240–254.

Bibliography 66

[85] Rakshit Trivedi et al. “Dyrep: Learning representations over dynamic graphs”. In:

International conference on learning representations. 2019.

[86] Rakshit Trivedi et al. “Know-evolve: Deep temporal reasoning for dynamic

knowledge graphs”. In: international conference on machine learning. PMLR. 2017,

pp. 3462–3471.

[87] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems 30 (2017).

[88] Petar Veličković et al. “Graph attention networks”. In: arXiv preprint

arXiv:1710.10903 (2017).

[89] Chengxin Wang, Shaofeng Cai, and Gary Tan. “Graphtcn: Spatio-temporal

interaction modeling for human trajectory prediction”. In: Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI,

USA: IEEE, 2021, pp. 3450–3459.

[90] Daixin Wang, Peng Cui, and Wenwu Zhu. “Structural deep network embedding”.

In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 1225–1234.

[91] Kaijun Wang et al. “Adaptive affinity propagation clustering”. In: arXiv preprint

arXiv:0805.1096 (2008).

[93] Minjie Wang et al. “Deep Graph Library: Towards Efficient and Scalable Deep

Learning on Graphs.” In: (2019).

[94] Xiao Wang et al. “Community preserving network embedding”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 31, No.1. 2017.

Bibliography 67

[95] Xuhong Wang et al. “APAN: Asynchronous Propagation Attention Network for

Real-time Temporal Graph Embedding”. In: Proceedings of the 2021 International

Conference on Management of Data. 2021, pp. 2628–2638.

[96] Jesse Weaver and Paul Tarjan. “Facebook linked data via the graph API”. In:

Semantic Web 4.3 (2013), pp. 245–250.

[97] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE

transactions on neural networks and learning systems (2020).

[98] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional network”.

In: arXiv preprint arXiv:1505.00853 (2015).

[99] Da Xu et al. “Inductive representation learning on temporal graphs”. In: arXiv

preprint arXiv:2002.07962 (2020).

[100] Da Xu et al. Self-attention with functional time representation learning. 2019. arXiv:

1911.12864.

[101] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. “Computing shortest, fastest, and

foremost journeys in dynamic networks”. In: International Journal of Foundations of

Computer Science 14.02 (2003), pp. 267–285.

[102] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial temporal graph convolutional

networks for skeleton-based action recognition”. In: Proceedings of the AAAI

conference on artificial intelligence. Vol. 32, No.1. 2018.

[103] Cheng Yang et al. “Network representation learning with rich text information”. In:

Twenty-fourth international joint conference on artificial intelligence. 2015.

https://arxiv.org/abs/1911.12864

Bibliography 68

[104] Yuan Yuan et al. “Temporal dynamic graph lstm for action-driven video object

detection”. In: Proceedings of the IEEE international conference on computer vision.

2017, pp. 1801–1810.

[105] Aya Zaki et al. “Comprehensive Survey on Dynamic Graph Models”. In: International

Journal of Advanced Computer Science and Applications 7.2 (2016). issn: 2158107X.

doi: 10.14569/ijacsa.2016.070273.

[106] Li Zheng et al. “AddGraph: Anomaly Detection in Dynamic Graph Using Attention-

based Temporal GCN.” In: IJCAI. 2019, pp. 4419–4425.

[107] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In:

AI Open 1 (2020), pp. 57–81.

https://doi.org/10.14569/ijacsa.2016.070273

69

Chapter 3

Discussion and Future Works

3.1 Preliminary Study of Measuring the Significance

of Temporal Pattern

Because of their more complex structure, dynamic graph learning algorithms usually require

more computing resources than those for static graphs. When deciding whether we should use

a dynamic graph algorithm for a particular graph analysis task, the following two questions

help us to make the decision:

• Can we model the given graph as a dynamic graph?

• Is the performance gain offered by a dynamic graph learning algorithm worth the extra

compute resources it requires?

If the answer to these two questions is Yes, then we should use a dynamic graph learning

algorithm. While the first question is straightforward to answer, the second one is not. We

can answer the second question by experimenting with different dynamic and static graph

learning algorithms and comparing their performance. But this costs considerable time and

3. Discussion and Future Works 70

compute resources. As discussed in manuscript two presented in chapter 2, if the temporal

pattern is significant in a dynamic graph’s evolution, then analyzing it with a dynamic

graph learning algorithm may offer better performance because it can learn the temporal

information. It would have a great impact if we could estimate the performance gain by just

evaluating the significance of the temporal pattern presented in the input graph. To start

tackling this research question, I conduct a preliminary study on measuring the significance

of temporal pattern for DTDG in this section.

We experiment with the Temporal Correlation Coefficient [83] and observe that it over

estimates the significance of temporal pattern for the DTDGs that have isolated nodes. We

also develop a more efficient and robust measure named Normalized Jaccard Similarity to

estimate the significance of temporal pattern for DTDGs.

3.1.1 Estimate the Significance of Temporal Pattern

For a DTDG, if a function exists as described in Eqn. 2.1 that we can use to predict its future

without errors, then the degree of significance of its temporal pattern is 100%. However, in

reality, we better assume there is a random error εe for edges prediction and εx for nodes

feature prediction:

(Etn+1 , Xtn+1 , tn+1) = (Êtn+1 + εe,tn+1 , X̂tn+1 + εx,tn+1 , tn+1) (3.1)

And the significance of temporal pattern can be defined as:

C = (1−mean(εe,t√
|Et−1||Et|

)) ∗ (1−mean(εx,t√
|Xt−1||Xt|

)) (3.2)

3. Discussion and Future Works 71

where mean(εe,t√
|Et−1||Et|

) is the mean value of the normalized random error εe,t; and

mean(εx,t√
|Xt−1||Xt|

) is the mean value of the normalized random error εx,t. C ∈ [0, 1] and the

bigger it is, the more significant the temporal pattern presented in the particular dynamic

graph. In this preliminary study, we focus on estimating εe,t for edge prediction, assuming

the node features do not change over time and hence εx,t is always 0, which is the case of a

citation graph. Such that we have

C = (1−mean(εe,t√
|Et−1||Et|

)) ∗ (1− 0) = 1−mean(εe,t√
|Et−1||Et|

) (3.3)

3.1.2 Temporal Correlation Coefficient

In equation 3.3, εe,t depends on Eqn. 2.3b which we don’t know yet. To approximate εe,t we

can assume the identity function for Eqn. 2.3b and thus we can use the Temporal Correlation

Coefficient [83] to estimate C for DTDG that has node features that never change:

C = 1
N(tmax − 1)

tmax−1∑
t=1

N∑
i=1

∑N
j=1 Aij(t)Aij(t+ 1)√

[∑N
j=1 Aij(t)][

∑N
j=1 Aij(t+ 1)]

(3.4)

The input to calculate the Temporal Correlation Coefficient is the adjacency matrix of

all snapshots in a DTDG. Assuming the given DTDG has N nodes and no changes to its

nodes set, its time complexity is O(tmaxN2). It is inefficient for sparse dynamic graphs.

Moreover, as will be shown by the experiment, the Temporal Correlation Coefficient tends

to report a high estimate of the significance of the temporal pattern for DTDG with many

isolated nodes. To address these two disadvantages, we propose the Normalized Jaccard

Similarity, which is more efficient and robust.

3. Discussion and Future Works 72

3.1.3 Normalized Jaccard Similarity

With the same assumption that Eqn. 2.3b is the identity function, We develop a measure to

estimate the significance of temporal pattern based on the Jaccard Similarity of the given

DTDG’s edges set. The proposed measure is named Normalized Jaccard Similarity and is

described in the following equation:

C = 1
tmax − 1)

tmax−1∑
t=1

|Et ∩ Et+1|
|Et ∪ Et+1|

(3.5)

where the operation |A| represents the size of the set A. The time complexity of the

Normalized Jaccard Similarity is O(tmaxE) where E is the average number of edges in all

snapshots. Since the maximum of E is N2, which only happens in fully connected graphs,

we have E ≤ N2 =⇒ O(tmaxE)O(tmaxN2). In most cases, the Normalized Jaccard

Similarity is more efficient than the Temporal Correlation Coefficient, especially for sparse

dynamic graphs such as social graphs. And in the worse cases, the Normalized Jaccard

Similarity has the same time complexity as the Temporal Correlation Coefficient.

3.1.4 Experiments

To validate the proposed measures, we conducted an experiment to calculate the Temporal

Correlation Coefficient and the Normalized Jaccard Similarity for the ogbn-arxiv citation

graph [37], a dynamic graph that has unchanged node features, and the r8-text-classification

dataset [38], a collection of static graphs generated from different documents.

The ogbn-arxiv dataset models the citation network between all Computer Science (CS)

arXiv papers. Each edge represents one citation. The node feature is represented as a 128-

dimensional vector. This vector is the average of the words embedding encoding the title

and abstract. Each word embedding is computed by the skip-gram model [58] trained on

3. Discussion and Future Works 73

the Microsoft Academic Graph corpus [92]. The ogbn-arxiv citation network has 169, 343

nodes, 1, 166, 243 edges and 35 snapshots.

The r8-text-classification dataset is a subset of the Reuters 21578 datasets. It has 7674

documents. Each document is modelled as a graph of words with the same method as in

Huang et el. [38]. The node feature is the pre-trained GloVe word embedding [68]. Each

document mimics a snapshot in a DTDG. They are randomly ordered to simulate a dynamic

graph without any temporal patterns presented.

Because the node feature in both datasets does not change across different snapshots,

they fulfill the assumption in the study above.

The Temporal Correlation Coefficient and the Normalized Jaccard Similarity of the two

datasets are summarized in table 3.1.

dataset Temporal Correlation Coefficient Normalized Jaccard Similarity
ogbn-arxiv 0.884 0.635

r8-text-classification 0.996 0.034

Table 3.1: Experiment Result

From the experiment, we discover that, though the Temporal Correlation Coefficient

reported a high estimate of 0.884 for the ogbn-arxiv dataset, it also gave out a high estimate of

0.996 for the dataset r8-text-classification, which should have no temporal pattern presented.

If a node is isolated in two consecutive snapshots, its Temporal Correlation Coefficient would

be 1. Because text graphs have a very sparse network structure, many nodes in the graphs

are isolated nodes with only self-connection. Therefore the Temporal Correlation Coefficient

reports high estimates for DTDG with many isolated nodes.

On the other hand, the Normalized Jaccard Similarity provided a relatively accurate

estimate for both datasets. It reported a high estimate of 0.635 for the ogbn-arxiv dataset

and a low estimate of 0.034 for the r8-text-classification dataset. The Normalized Jaccard

3. Discussion and Future Works 74

Similarity is more robust than the Temporal Correlation Coefficient in estimating the

significance of temporal pattern for DTDG.

3.2 Future Works

3.2.1 Evaluate The Significance of Temporal Pattern

In chapter 2, I developed Three Stages Recurrent Temporal Learning Framework to explain

how to learn temporal information from the input graph’s evolution. And I also discussed

that the performance gain of dynamic graph learning algorithms over static ones might

depend on the significance of the temporal pattern in the given graph’s history. Considering

the additional complexity of dynamic graph modelling and learning over the static ones,

predicting the performance gain via evaluating the significance of temporal pattern presented

in a dynamic graph is very useful for the practitioners to choose an appropriate model with

low cost.

Based on Three Stages Recurrent Temporal Learning Framework , I conducted a

preliminary study on measuring the significance of the temporal patterns for DTDG in the

section above. In the future, I will extend this initial study to validate the relationship

between the significance of the temporal pattern and the performance gain with a dynamic

graph learning model over a static one. Another related future work is to extend this

research to CTDG as well.

3.2.2 From a Taxonomy Concept to a Real Tool Box

In my literature review of the recent development of dynamic graph learning algorithms

in chapter 2, I developed a taxonomy to classify the different algorithms. The first level

3. Discussion and Future Works 75

in this taxonomy is the application target, whether it is for DTDG or CTDG. The second

taxonomy level is the temporal learning schema, which includes implicit and explicit time

learning models. This taxonomy summarizes how different learning algorithms learn the

temporal information and serves as a structural foundation to build a library to offer all

reviewed dynamic graph learning algorithms to the practitioners. The proposed taxonomy

inspires one of my future works: to build a software library named SpiroGraph.

SpiroGraph is an ongoing work which aims to help practitioners with limited machine

learning knowledge to build a cloud naive machine learning pipeline for data that fits the

dynamic graph modelling. It is similar to DGL [93] and Spektral [28] which specialized in

static graph learning algorithms. I believe SpiroGraph will be a handy tool for the industry

and the research community. It will be structured similarly to the taxonomy presented in

chapter 2. Users can hence easily find the right tool based on their requirements.

3.2.3 Synthetic Dynamic Graphs

Machine learning with dynamic graphs is an emerging research topic. To provide the

community with a handy dataset to test different dynamic graph learning algorithms, I

plan to develop a synthetic dynamic graph generating algorithm and tool as part of

SpiroGraph based on the Three Stages Recurrent Temporal Learning Framework proposed

in chapter 2.

76

Chapter 4

Conclusion

Dynamic graph learning is becoming a hot topic in the research community and the industry.

To understand more about dynamic graph learning and how a learning algorithm learns the

temporal information, I conducted the following research works in this thesis:

• I summarized the recent development in supervised dynamic graph learning and

proposed a temporal learning framework in manuscript one presented in chapter 2.

• At 3, I did a preliminary study on measuring the significance of temporal patterns for

DTDG.

The above works taught me how different dynamic graph learning algorithms learn temporal

information. Based on what has been learnt, I developed a general mathematical definition of

the significance of the temporal pattern. I also proposed the Normalized Jaccard Similarity

to measure it for DTDGs with no changes in their node features.

77

Bibliography

[1] Mart́ın Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: 12th

{USENIX} symposium on operating systems design and implementation ({OSDI}

16). 2016, pp. 265–283.

[2] Amr Ahmed et al. “Distributed large-scale natural graph factorization”. In:

Proceedings of the 22nd international conference on World Wide Web. 2013,

pp. 37–48.

[3] Oriol Artime, José J Ramasco, and Maxi San Miguel. “Dynamics on networks:

competition of temporal and topological correlations”. In: Scientific reports 7.1

(2017), pp. 1–10.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine

translation by jointly learning to align and translate”. In: arXiv preprint

arXiv:1409.0473 (2014).

[5] Youhui Bai et al. “Efficient Data Loader for Fast Sampling-Based GNN Training on

Large Graphs”. In: IEEE Transactions on Parallel and Distributed Systems 32.10

(2021), pp. 2541–2556.

[6] Stefan Banach. “Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales”. In: Fund. math 3.1 (1922), pp. 133–181.

Bibliography 78

[7] Nikolaos Bastas et al. “evolve2vec: Learning network representations using temporal

unfolding”. In: International Conference on Multimedia Modeling. Springer. 2019,

pp. 447–458.

[8] Mikhail Belkin and Partha Niyogi. “Laplacian eigenmaps for dimensionality reduction

and data representation”. In: Neural computation 15.6 (2003), pp. 1373–1396.

[9] Fabricio Benevenuto et al. “Understanding video interactions in youtube”. In:

Proceedings of the 16th ACM international conference on Multimedia. 2008,

pp. 761–764.

[10] Kenneth A Berman. “Vulnerability of scheduled networks and a generalization of

Menger’s theorem”. In: Networks: An International Journal 28.3 (1996), pp. 125–134.

[11] Toon Bogaerts et al. “A graph CNN-LSTM neural network for short and long-term

traffic forecasting based on trajectory data”. In: Transportation Research Part C:

Emerging Technologies 112 (2020), pp. 62–77.

[12] E Boschee et al. “Integrated Crisis Early Warning System (ICEWS) Coded Event

Data”. In: URL: https://dataverse. harvard. edu/dataverse/icews (2015).

[13] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Deep neural networks for learning graph

representations”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 30, No.1. 2016.

[14] Shaosheng Cao, Wei Lu, and Qiongkai Xu. “Grarep: Learning graph representations

with global structural information”. In: Proceedings of the 24th ACM international

on conference on information and knowledge management. 2015, pp. 891–900.

[15] Xiaofu Chang et al. “Continuous-Time Dynamic Graph Learning via Neural

Interaction Processes”. In: Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 2020, pp. 145–154.

Bibliography 79

[16] Haochen Chen et al. “Harp: Hierarchical representation learning for networks”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32, No.1. 2018.

[17] Yi-Hsiang Chen and Jen-Tzung Chien. “Continuous-time attention for sequential

learning”. In: Proc. of AAAI Conference on Aritificial Intelligence. 2021.

[18] Eunjoon Cho, Seth A Myers, and Jure Leskovec. “Friendship and mobility: user

movement in location-based social networks”. In: Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining. 2011,

pp. 1082–1090.

[19] Peng Cui et al. “A survey on network embedding”. In: IEEE Transactions on

Knowledge and Data Engineering 31.5 (2018), pp. 833–852.

[20] Sam De Winter et al. “Combining temporal aspects of dynamic networks with

Node2Vec for a more efficient dynamic link prediction”. In: 2018 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining

(ASONAM). IEEE. 2018, pp. 1234–1241.

[21] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural

networks on graphs with fast localized spectral filtering”. In: Advances in neural

information processing systems 29 (2016), pp. 3844–3852.

[22] Delbert Dueck. Affinity propagation: clustering data by passing messages. Citeseer,

2009.

[23] Damien Farine. “The dynamics of transmission and the dynamics of networks”. In:

Journal of Animal Ecology 86.3 (2017), pp. 415–418.

[24] Claudio Gallicchio and Alessio Micheli. “Fast and deep graph neural networks”. In:

Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34, No.04. 2020,

pp. 3898–3905.

Bibliography 80

[25] Matt W Gardner and SR Dorling. “Artificial neural networks (the multilayer

perceptron)—a review of applications in the atmospheric sciences”. In: Atmospheric

environment 32.14-15 (1998), pp. 2627–2636.

[26] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In:

International conference on machine learning. PMLR. 2017, pp. 1263–1272.

[27] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In:

International Conference on Machine Learning. PMLR. 2017, pp. 1263–1272.

[28] Daniele Grattarola and Cesare Alippi. “Graph neural networks in tensorflow and keras

with spektral”. In: arXiv preprint arXiv:2006.12138 (2020).

[29] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”.

In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 855–864.

[30] İsmail Güneş, Şule Gündüz-Öğüdücü, and Zehra Çataltepe. “Link prediction using

time series of neighborhood-based node similarity scores”. In: Data Mining and

Knowledge Discovery 30.1 (2016), pp. 147–180.

[31] William L Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learning

on large graphs”. In: arXiv preprint arXiv:1706.02216 (2017).

[32] William L Hamilton, Rex Ying, and Jure Leskovec. “Representation learning on

graphs: Methods and applications”. In: IEEE Data Eng. Bull. 40.3 (2017).

[33] Zhen Han et al. “Graph hawkes neural network for forecasting on temporal knowledge

graphs”. In: arXiv preprint arXiv:2003.13432 (2020).

[34] Alan G Hawkes. “Spectra of some self-exciting and mutually exciting point processes”.

In: Biometrika 58.1 (1971), pp. 83–90.

Bibliography 81

[35] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural

computation 9.8 (1997), pp. 1735–1780.

[36] Petter Holme. “Network reachability of real-world contact sequences”. In: Physical

Review E 71.4 (2005), p. 046119.

[37] Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on graphs”.

In: Advances in neural information processing systems 33 (2020), pp. 22118–22133.

[38] Lianzhe Huang et al. “Text level graph neural network for text classification”. In:

arXiv preprint arXiv:1910.02356 (2019).

[39] Zan Huang and Dennis KJ Lin. “The time-series link prediction problem with

applications in communication surveillance”. In: INFORMS Journal on Computing

21.2 (2009), pp. 286–303.

[40] Valerie Isham and Mark Westcott. “A self-correcting point process”. In: Stochastic

processes and their applications 8.3 (1979), pp. 335–347.

[41] Zhihao Jia et al. “Improving the accuracy, scalability, and performance of graph

neural networks with roc”. In: Proceedings of Machine Learning and Systems 2

(2020), pp. 187–198.

[42] Rudolph Emil Kalman et al. “A new approach to linear filtering and prediction

problems [J]”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[43] Seyed Mehran Kazemi et al. “Representation Learning for Dynamic Graphs: A

Survey.” In: Journal of Machine Learning Research 21.70 (2020), pp. 1–73.

[44] Seyed Mehran Kazemi et al. “Time2vec: Learning a vector representation of time”.

In: arXiv preprint arXiv:1907.05321 (2019).

Bibliography 82

[45] David Kempe, Jon Kleinberg, and Amit Kumar. “Connectivity and inference problems

for temporal networks”. In: Journal of Computer and System Sciences 64.4 (2002),

pp. 820–842.

[46] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph

convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[47] Thomas N Kipf and Max Welling. “Variational graph auto-encoders”. In: arXiv

preprint arXiv:1611.07308 (2016).

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in neural information processing

systems 25 (2012), pp. 1097–1105.

[49] Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Learning dynamic embeddings from

temporal interactions”. In: arXiv preprint arXiv:1812.02289 (2018).

[50] Srijan Kumar, Xikun Zhang, and Jure Leskovec. “Predicting dynamic embedding

trajectory in temporal interaction networks”. In: Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019,

pp. 1269–1278.

[51] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system”.

In: Concurrency: the Works of Leslie Lamport. Association for Computing Machinery,

2019, pp. 179–196.

[52] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and

time series”. In: The handbook of brain theory and neural networks 3361.10 (1995),

p. 1995.

Bibliography 83

[53] Jundong Li et al. “Attributed network embedding for learning in a dynamic

environment”. In: Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management. 2017, pp. 387–396.

[54] Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint

arXiv:1511.05493 (2015).

[55] Yao Ma et al. “Streaming graph neural networks”. In: Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval. 2020, pp. 719–728.

[56] Franco Manessi, Alessandro Rozza, and Mario Manzo. “Dynamic graph convolutional

networks”. In: Pattern Recognition 97 (2020), p. 107000.

[57] Naoki Masuda and Renaud Lambiotte. Guide To Temporal Networks, A. Vol. 6. World

Scientific, 2020.

[58] Tomas Mikolov et al. “Distributed representations of words and phrases and their

compositionality”. In: Advances in neural information processing systems 26 (2013).

[59] KS Miller, RI Bernstein, and LE Blumenson. “Generalized rayleigh processes”. In:

Quarterly of Applied Mathematics 16.2 (1958), pp. 137–145.

[60] Sudatta Mohanty and Alexey Pozdnukhov. “Graph CNN+ LSTM framework for

dynamic macroscopic traffic congestion prediction”. In: International Workshop on

Mining and Learning with Graphs. 2018.

[61] Apurva Narayan and Peter HO’N Roe. “Learning graph dynamics using deep neural

networks”. In: IFAC-PapersOnLine 51.2 (2018), pp. 433–438.

[62] Giang Hoang Nguyen et al. “Continuous-time dynamic network embeddings”. In:

Companion Proceedings of the The Web Conference 2018. 2018, pp. 969–976.

Bibliography 84

[63] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning

convolutional neural networks for graphs”. In: International conference on machine

learning. PMLR. 2016, pp. 2014–2023.

[64] Mingdong Ou et al. “Asymmetric transitivity preserving graph embedding”. In:

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 1105–1114.

[65] Aldo Pareja et al. “Evolvegcn: Evolving graph convolutional networks for dynamic

graphs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34,

No.04. 2020, pp. 5363–5370.

[66] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning

library”. In: Advances in neural information processing systems 32 (2019),

pp. 8026–8037.

[67] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal

of machine Learning research 12 (2011), pp. 2825–2830.

[68] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global

vectors for word representation”. In: Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[69] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online learning of social

representations”. In: Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining. 2014, pp. 701–710.

[70] Trang Pham et al. “Column networks for collective classification”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. Vol. 31, No.1. 2017.

[71] Jakob Gulddahl Rasmussen. “Temporal point processes: the conditional intensity

function”. In: Lecture Notes, Jan (2011).

Bibliography 85

[72] Emanuele Rossi et al. “Temporal graph networks for deep learning on dynamic

graphs”. In: arXiv preprint arXiv:2006.10637 (2020).

[73] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning

representations by back-propagating errors”. In: nature 323.6088 (1986),

pp. 533–536.

[74] Aravind Sankar et al. “Dysat: Deep neural representation learning on dynamic graphs

via self-attention networks”. In: Proceedings of the 13th International Conference on

Web Search and Data Mining. 2020, pp. 519–527.

[75] Purnamrita Sarkar, Sajid M Siddiqi, and Geogrey J Gordon. “A latent space approach

to dynamic embedding of co-occurrence data”. In: Artificial Intelligence and Statistics.

PMLR. 2007, pp. 420–427.

[76] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on

neural networks 20.1 (2008), pp. 61–80.

[77] Youngjoo Seo et al. “Structured sequence modeling with graph convolutional recurrent

networks”. In: International Conference on Neural Information Processing. Springer.

2018, pp. 362–373.

[78] Paulo Ricardo da Silva Soares and Ricardo Bastos Cavalcante Prudêncio. “Time series

based link prediction”. In: The 2012 international joint conference on neural networks

(IJCNN). IEEE. 2012, pp. 1–7.

[79] Joakim Skardinga, Bogdan Gabrys, and Katarzyna Musial. “Foundations and

modelling of dynamic networks using dynamic graph neural networks: A survey”. In:

IEEE Access (2021).

[80] Johan AK Suykens and Joos Vandewalle. “Least squares support vector machine

classifiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

Bibliography 86

[81] Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. “Learning to represent the

evolution of dynamic graphs with recurrent models”. In: Companion Proceedings of

The 2019 World Wide Web Conference. 2019, pp. 301–307.

[82] Jian Tang et al. “Line: Large-scale information network embedding”. In: Proceedings

of the 24th international conference on world wide web. 2015, pp. 1067–1077.

[83] John Tang et al. “Small-world behavior in time-varying graphs”. In: Physical Review

E 81.5 (2010), p. 055101.

[84] Riitta Toivonen et al. “A comparative study of social network models: Network

evolution models and nodal attribute models”. In: Social networks 31.4 (2009),

pp. 240–254.

[85] Rakshit Trivedi et al. “Dyrep: Learning representations over dynamic graphs”. In:

International conference on learning representations. 2019.

[86] Rakshit Trivedi et al. “Know-evolve: Deep temporal reasoning for dynamic

knowledge graphs”. In: international conference on machine learning. PMLR. 2017,

pp. 3462–3471.

[87] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems 30 (2017).

[88] Petar Veličković et al. “Graph attention networks”. In: arXiv preprint

arXiv:1710.10903 (2017).

[89] Chengxin Wang, Shaofeng Cai, and Gary Tan. “Graphtcn: Spatio-temporal

interaction modeling for human trajectory prediction”. In: Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI,

USA: IEEE, 2021, pp. 3450–3459.

Bibliography 87

[90] Daixin Wang, Peng Cui, and Wenwu Zhu. “Structural deep network embedding”.

In: Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining. 2016, pp. 1225–1234.

[91] Kaijun Wang et al. “Adaptive affinity propagation clustering”. In: arXiv preprint

arXiv:0805.1096 (2008).

[92] Kuansan Wang et al. “Microsoft academic graph: When experts are not enough”. In:

Quantitative Science Studies 1.1 (2020), pp. 396–413.

[93] Minjie Wang et al. “Deep Graph Library: Towards Efficient and Scalable Deep

Learning on Graphs.” In: (2019).

[94] Xiao Wang et al. “Community preserving network embedding”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 31, No.1. 2017.

[95] Xuhong Wang et al. “APAN: Asynchronous Propagation Attention Network for

Real-time Temporal Graph Embedding”. In: Proceedings of the 2021 International

Conference on Management of Data. 2021, pp. 2628–2638.

[96] Jesse Weaver and Paul Tarjan. “Facebook linked data via the graph API”. In:

Semantic Web 4.3 (2013), pp. 245–250.

[97] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE

transactions on neural networks and learning systems (2020).

[98] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional network”.

In: arXiv preprint arXiv:1505.00853 (2015).

[99] Da Xu et al. “Inductive representation learning on temporal graphs”. In: arXiv

preprint arXiv:2002.07962 (2020).

Bibliography 88

[100] Da Xu et al. Self-attention with functional time representation learning. 2019. arXiv:

1911.12864.

[101] B Bui Xuan, Afonso Ferreira, and Aubin Jarry. “Computing shortest, fastest, and

foremost journeys in dynamic networks”. In: International Journal of Foundations of

Computer Science 14.02 (2003), pp. 267–285.

[102] Sijie Yan, Yuanjun Xiong, and Dahua Lin. “Spatial temporal graph convolutional

networks for skeleton-based action recognition”. In: Proceedings of the AAAI

conference on artificial intelligence. Vol. 32, No.1. 2018.

[103] Cheng Yang et al. “Network representation learning with rich text information”. In:

Twenty-fourth international joint conference on artificial intelligence. 2015.

[104] Yuan Yuan et al. “Temporal dynamic graph lstm for action-driven video object

detection”. In: Proceedings of the IEEE international conference on computer vision.

2017, pp. 1801–1810.

[105] Aya Zaki et al. “Comprehensive Survey on Dynamic Graph Models”. In: International

Journal of Advanced Computer Science and Applications 7.2 (2016). issn: 2158107X.

doi: 10.14569/ijacsa.2016.070273.

[106] Li Zheng et al. “AddGraph: Anomaly Detection in Dynamic Graph Using Attention-

based Temporal GCN.” In: IJCAI. 2019, pp. 4419–4425.

[107] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In:

AI Open 1 (2020), pp. 57–81.

https://arxiv.org/abs/1911.12864
https://doi.org/10.14569/ijacsa.2016.070273

	Abstract
	Abrégé
	Acknowledgements
	Introduction
	Introduction to Graph and Dynamic Graph
	The Demand for Supervised Dynamic Graph Learning
	Research Problems and the Thesis Organization

	(Manuscript 1)Intelligent Encoder-Decoder Architecture for Dynamic Graph: A Survey
	Abstract
	Introduction
	Machine Learning In Dynamic Graph
	Supervised Learning in Graph
	Extrapolation and Interpolation Learning in Dynamic Graph

	Taxonomy
	Dynamic Graph Storage Model
	Encoder And Decoder Learning Framework
	Implicit And Explicit Learning Model

	Temporal Pattern Learning
	Three Stages Recurrent Temporal Learning Framework
	Attributes Self-Updating
	Association Process
	Message Passing
	Generalization To Attributed And Non-attributed Dynamic Graphs

	Discrete Time Dynamic Graph Learning
	Static Graph Encoder
	Sequential Decoder
	Dynamic DTDG Encoder

	Continuous Time Dynamic Graph Model
	Implicit Time CTDG Encoder
	Explicit Time CTDG Encoder
	Explicit Time CTDG Decoder

	Challenges And Future Works
	Conclusion

	Discussion and Future Works
	Preliminary Study of Measuring the Significance of Temporal Pattern
	Estimate the Significance of Temporal Pattern
	Temporal Correlation Coefficient
	Normalized Jaccard Similarity
	Experiments

	Future Works
	Evaluate The Significance of Temporal Pattern
	From a Taxonomy Concept to a Real Tool Box
	Synthetic Dynamic Graphs

	Conclusion

