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Abstract

The human brain is a complex network of anatomically connected and functionally inter-
acting neuronal populations. Neural activity and functional interactions between brain
areas are naturally variable from moment to moment, resulting in dynamic configurations
of brain activity. Connectome architecture shapes the functional associations between brain
areas, constraining both local and global brain dynamics. Contemporary theories of brain
structure and function also emphasize systematic variations in cortical micro-architecture
that are concomitant with macroscale variation in anatomical connectivity and functional
interactions among neuronal populations. How the confluence of microscale gradients and
macroscale network architecture manifests as dynamic neural activity remains unknown.
This thesis explores the dynamical signature of haemodynamic and electromagnetic re-
gional spontaneous neural activity and its association with cortical micro-architecture
and large-scale network organization. Chapters 1 and 2 provide a brief introduction on
spontaneous neural activity in the human brain and outline the main research questions
presented throughout this thesis. Chapter 3 examines the interplay of local dynamics and
global network interactions, using a single time-series property. Specifically, this chapter
investigates how pharmacological manipulation of dopamine affects regional neural dy-
namics and how the observed changes in dynamics relate to global functional connectivity.
The results demonstrate that disruption in normal levels of dopamine leads to increased
haemodynamic signal variability and decreased functional connectivity, consistent with
the stabilizing effects of dopamine on neural signaling. Chapter 4 takes an exploratory,
data-driven approach to characterize the topographic organization of intrinsic dynamics
across the cortex. Specifically, I derive a comprehensive, unbiased list of time-series fea-
tures to quantify the dynamical fingerprint of spontaneous haemodynamic brain activity.
The findings demonstrate a link between microscale gradients and macroscale connectivity,
intrinsic dynamics, and cognition. Chapter 5 expands on the previous chapter and studies
regional dynamics using neurophysiological activity with high temporal resolution instead
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of slower haemodynamic fluctuations. This chapter assesses the relationship between fast-
oscillating neural activity and network embedding and determines the micro-architectural
basis of neurophysiological activity. Chapter 6 seeks to jointly consider haemodynamic
and neurophysiological activity by investigating the cross-modal correspondence between
functional network architectures recovered from these two types of neural activity. The
presented analyses indicate that the cross-modal coupling is regionally heterogeneous,
reflecting cortical functional hierarchy and laminar differentiation. Finally, Chapter 7
provides an overview of the primary findings of this thesis and discusses their significance
and implications for future research on human neural dynamics.
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Résumé

Le cerveau humain est un réseau complexe de populations neuronales anatomiquement
connectées et interagissant fonctionnellement. L’activité neuronale et les interactions fonc-
tionnelles entre les aires cérébrales varient naturellement à travers le temps, entraînant
des reconfigurations dynamiques de l’activité cérébrale. L’architecture du connectome
façonne les associations fonctionnelles entre les aires cérébrales, contraignant les dy-
namique cérébrales locales et globales. Les théories contemporaines de la structure et
de la fonction du cerveau mettent également l’accent sur des variations systématiques
de la micro-architecture corticale concomitantes à des variations à grande échelle de
la connectivité anatomique et des interactions fonctionnelles entre les populations neu-
ronales. La manière dont la confluence des gradients à petite échelle et de l’architecture du
réseau cérébral à grande échelle se manifeste sous forme d’activité neuronale dynamique
demeure inconnue. Cette thèse explore la signature dynamique de l’activité neuronale
hémodynamique et électromagnétique spontanée évaluée au niveau régional, ainsi que
son association avec la micro-architecture corticale et l’organisation à grande échelle du
réseau cérébral. Les chapitres 1 et 2 fournissent une brève introduction sur l’activité
neuronale spontanée dans le cerveau humain et décrivent les principales questions de
recherche présentées tout au long de cette thèse. Le chapitre 3 examine la relation entre
les dynamiques locales et les interactions globales au sein du réseau cérébral en utilisant
une seule propriété des séries temporelles. Spécifiquement, ce chapitre étudie comment
la manipulation pharmacologique de la dopamine affecte les dynamiques neuronales
régionales et comment les changements de dynamiques observés sont liés à la connectivité
fonctionnelle globale. Les résultats démontrent que la perturbation des niveaux normaux
de dopamine entraîne une augmentation de la variabilité du signal hémodynamique et
une diminution de la connectivité fonctionnelle, conformément aux effets stabilisateurs de
la dopamine sur la signalisation neuronale. Le chapitre 4 adopte une approche exploratoire
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axée sur les données pour caractériser l’organisation topographique des dynamiques intrin-
sèques à travers le cortex. Spécifiquement, je développe une liste exhaustive et objective de
caractéristiques de séries temporelles pour quantifier l’empreinte dynamique de l’activité
cérébrale hémodynamique spontanée. Les résultats présentent un lien entre les gradients à
petite échelle et la connectivité à grande échelle, ainsi qu’entre les dynamiques intrinsèques
et la cognition. Le chapitre 5 développe les idées présentées au chapitre précédent et étudie
les dynamiques régionales en utilisant l’activité neurophysiologique, qui a une résolution
temporelle plus élevée que les fluctuations hémodynamiques. Ce chapitre évalue le lien
entre les oscillations rapides de l’activité neuronale et l’intégration du réseau cérébral, et
identifie la base micro-architecturale de l’activité neurophysiologique. Le chapitre 6 vise à
considérer conjointement l’activité hémodynamique et neurophysiologique en étudiant la
correspondance intermodale entre les architectures de réseaux fonctionnels reconstruits
à partir de ces deux types d’activité neuronale. Les analyses présentées indiquent que le
couplage intermodal est régionalement hétérogène, reflétant la hiérarchie fonctionnelle
et la différenciation laminaire du cortex. Finalement, le chapitre 7 donne un aperçu des
principaux résultats de cette thèse et discute de leur importance et de leurs incidences sur
les recherches futures portant sur les dynamiques neuronales humaines.
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Chapter 1

Introduction

1.1 General context

The human brain is a complex network of interacting neuronal populations. Connectome
architecture and its spatial embedding shape global network interactions and local dy-
namics. Inter-regional anatomical projections promote signaling among remote neuronal
populations, resulting in patterned neuronal co-activation and coherent dynamics. The
dynamic neural activity is reflected in regional neurophysiological and haemodynamic
time-series and can be measured at different timescales, from milliseconds to several sec-
onds, using magneto- and electro-encephalography (MEG/EEG) and functional magnetic
resonance imaging (fMRI), respectively. Moreover, the functional organization of the hu-
man cortex—as well as anatomical markers such as intracortical myelin, cortical thickness,
and gene expression—display a hierarchical organization, principally along an axis that
spans unimodal sensory areas and higher order transmodal regions (Huntenburg et al.,
2018). However, the dynamic consequences of these microscale gradients and macroscale
network organization remains unclear.

Multiple lines of evidence suggest that local computations in the brain reflect systematic
variation in microscale properties and macroscale network embedding, manifesting as
diverse temporal properties of regional activity. The objective of this thesis is to comprehen-
sively assess intrinsic temporal dynamics across the human brain and to characterize the
link between regional brain dynamics and network embedding using temporal properties
of localized brain activity measured at different timescales. Most of the conventional
computational analyses use a single measure or a few specific, manually selected mea-
sures of intrinsic dynamics to characterize regional brain activity from haemodynamic
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and electrophysiological signals. However, the time-series analysis literature is vast and
interdisciplinary, providing additional metrics of temporal structure of regional brain
activity. In this thesis, I use commonly used measures of intrinsic dynamics as well as
near-exhaustive, unbiased lists of time-series features to map the dynamical signature of
regional haemodynamic and electromagnetic neural activity to microscale gradients and
macroscale network architecture. Specifically, I use non-invasive neuroimaging techniques
such as fMRI with high spatial precision and MEG with high temporal precision to study
human brain function at rest. These modalities are two of the commonly used techniques
to quantify neural activity at multiple scales and to examine the large-scale brain network
organization. In the work presented here, I leverage the complementary strengths of
fMRI and MEG in imaging spatiotemporal brain dynamics and investigate the dynamical
properties of slow- and fast-fluctuating neural activity, respectively, and their association
with cortical micro-architecture and multi-modal brain networks.

1.2 Objectives

Chapter 3

Chapter 3 examines the interplay of local dynamics and global network interactions, using
a single, commonly used time-series property. Specifically, this chapter investigates how
disruption in normal levels of dopamine, caused by pharmacological manipulation of
dopamine precursor, influences regional neural dynamics and how the observed changes
in dynamics relate to global functional interactions. Moreover, this study examines the
stabilizing effects of dopamine on neural signaling in the system level.

Chapter 4

Chapter 4 applies an exploratory, data-driven approach to characterize the topographic
organization of intrinsic dynamics across the cortex. Rather than manually selecting a
single or a few measures of intrinsic dynamics, I derive a comprehensive, unbiased list of
time-series features to quantify the dynamical fingerprint of spontaneous haemodynamic
brain activity. I then examine the link between microscale gradients and macroscale
connectivity, intrinsic dynamics, and cognition.
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Chapter 5

Chapter 5 extends the previous chapter and examines regional neural dynamics using
spontaneous neurophysiological activity with high temporal resolution instead of slower
haemodynamic fluctuations. I use both conventional measures of neurophysiological
intrinsic dynamics and data-driven, comprehensive list of time-series properties to assess
the relationship between fast-oscillating neural activity and network embedding and
identify the micro-architectural basis of neurophysiological activity.

Chapter 6

Chapter 6 presents a joint analysis of slow haemodynamic and fast neurophysiological
fluctuations and investigates the cross-modal correspondence between functional network
architectures recovered from these two types of neural activity. I map electromagnetic
networks to haemodynamic networks and examine the relationship between the regionally
heterogeneous cross-modal coupling and macroscale network embedding and cortical
cytoarchitecture.

1.3 Contributions to original knowledge

Collectively, the research presented in this thesis provides important insight into funda-
mental aspects of brain function and integration and elucidates how neural communication
patterns are organized across multiple scales, from regional dynamics to global functional
interactions. Distinct scientific contributions of each research project are highlighted below.

Chapter 3

• Dopamine signaling modulates the stability and integration of intrinsic brain net-
works.

• Dopamine-related increases in haemodynamic signal variability appear to be con-
comitant with decreased functional connectivity and localized to specific intrinsic
networks.

• Findings support a link between local node dynamics and network architecture.
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Chapter 4

• Dynamic fingerprint of regional brain activity is related to the macroscale network
embedding.

• Regional dynamics are hierarchically organized across cortex, recapitulating the
unimodal-transmodal hierarchy.

• Spatial gradients of intrinsic dynamics reflect functional and microstructural hierar-
chical organization and support distinct functional activation patterns.

Chapter 5

• Topographic organization of dominant neurophysiological intrinsic dynamics reflects
variations in characteristics of power spectral density.

• Long-term memory in neurophysiological activity follows large-scale gradients of
micro-architecture.

• Dynamic signature of neurophysiological activity reflects the anatomical hierarchy
and cortical metabolic demands.

• Findings emphasize the importance of conventional approaches in studying the
characteristics of neurophysiological dynamics and introduce novel ones.

Chapter 6

• Superposition of electromagnetic functional connectivity in multiple rhythms pre-
dicts haemodynamic functional connectivity.

• Cross-modal correspondence is regionally heterogeneous, reflecting the macroscale
unimodal-transmodal cortical hierarchy and cytoarchitectural variation.

• Hierarchical decoupling of haemodynamic and electromagnetic connectivity suggests
that the two modalities may capture partially non-overlapping functional patterns.
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Chapter 2

Review of the literature

2.1 Macroscale brain networks

The brain is a complex network of anatomically connected and perpetually interacting
neuronal populations that collectively support perception, cognition and action (Sporns,
2011; Sporns and Betzel, 2016; Sporns et al., 2005). This complex network of neuronal
populations and synaptic projections are organized into a hierarchical organization, form-
ing increasingly polyfunctional neural circuits (Bazinet et al., 2021; Hilgetag and Goulas,
2020; Jones and Powell, 1970; Mesulam, 1998). The macroscale hierarchy of processing
reflects the topographic distributions of microscale molecular and cellular properties and
spans the unimodal—transmodal cortices (Huntenburg et al., 2018). Neuronal populations
receive the incoming signals and integrate those signals based on the neuron’s specific
cellular and molecular characteristics, such as its resting membrane potential and its
threshold to generate action potentials (Kandel et al., 2000). The transformed neuronal
signal is then transmitted to other neuronal populations through synaptic projections,
either through electronic synapses via gap junction channels or chemical synapses via
neurotransmitter release and postsynaptic neurotransmitter receptors (Kandel et al., 2000).
The information flow and neural signaling on microscale circuits manifests as patterned,
macroscale neurophysiological activity and can be measured using neuroimaging tech-
niques, including electromagnetic and haemodynamic imaging modalities (Baillet, 2017;
Fries, 2005; Sadaghiani et al., 2022). Variations in microscale cellular and molecular prop-
erties are also reflected in cortical gradients of gene expression (Burt et al., 2018; Fulcher
et al., 2019), neurotransmitter receptors and transporters (Hansen et al., 2021), intracortical
myelin (Huntenburg et al., 2017), cortical thickness (Wagstyl et al., 2015) and laminar
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and cytoarchitectonic profiles (Paquola et al., 2019, 2021; Wagstyl et al., 2020). Recent
advances in noninvasive neuroimaging techniques (Raichle, 2009), have coincided with
the large-scale data collection and data sharing initiatives (DuPre et al., 2020; Frauscher
et al., 2018; Gordon et al., 2017; Griffa et al., 2019; Hansen et al., 2021; Hawrylycz et al.,
2012; Miller et al., 2016; Niso et al., 2016; Sudlow et al., 2015; Taylor et al., 2017; Van Essen
et al., 2013). These efforts have resulted in large samples of increasingly detailed maps
of brain structure and function, making it possible to comprehensively study microscale
circuit properties and macroscale network architecture (Eickhoff et al., 2018; Glasser et al.,
2016; Markello et al., 2022; Paquola et al., 2021; Schaefer et al., 2018).

2.1.1 Graph reconstruction of the brain

One of the most common approaches in modeling and studying the brain as a complex
system is to reconstruct a graph model of the brain (Bassett et al., 2018; Khambhati et al.,
2018; Sporns et al., 2005). Data sharing efforts and growing number of advanced analytical
tools and image processing techniques allow for building high-quality models of the brain
(Griffa et al., 2019; Tournier et al., 2019; Van Essen et al., 2013). In the graph representation
of the brain, network nodes correspond to grey matter that is subdivided into parcels or
regions and network edges correspond to white matter, anatomical pathways connecting
brain regions to each other (Sporns, 2011). The anatomical organization of the brain,
namely the “structural connectivity” or the “connectome” can be reconstructed using non-
invasive neuroimaging techniques, such as diffusion weighted imaging and streamline
tractography (Hagmann et al., 2007), and has unique properties that distinguishes it
from random networks. For example, brain networks are small-world networks with
short path lengths, such that distant regions are connected to each other with only a few
connections, and high clustering coefficients, such that neighbours of a region tend to
be neighbours of each other (Bassett and Bullmore, 2006; Watts and Strogatz, 1998). The
small-world topology of brain networks facilitates information processing by minimizing
wiring costs and maximizing local and global efficiency (Bassett and Bullmore, 2006; Betzel
and Bassett, 2018; Watts and Strogatz, 1998). Moreover, the structural connectivity network
has a power-law degree distribution with a long tail, suggesting that some regions make
disproportionately large number of connections with the rest of the brain (Hagmann et al.,
2007). These highly connected and central regions tend to form a densely inter-connected
hub complex, commonly referred to as a “rich club” or backbone of the connectome,
and have a key role in exchanging signal and integrating information in brain networks
(Hagmann et al., 2008; Van Den Heuvel et al., 2012).



CHAPTER 2. REVIEW OF THE LITERATURE 7

The distinct connectome architecture supports, and simultaneously constrains, local
and global communication processes and dynamics. Regional neural dynamics and long-
range functional associations between distant regions are shaped by inter-regional connec-
tivity that promotes signaling through anatomical pathways (Avena-Koenigsberger et al.,
2018; Suárez et al., 2020). Neural activity is reflected in haemodynamic or blood oxygen
level-dependent (BOLD) signals as well as electromagnetic signals and can be measured
by different modalities such functional as magnetic resonance imaging (MRI) (Poldrack
and Farah, 2015; Raichle, 2009) and electro- and magneto-encephalography (EEG/MEG)
(Baillet, 2017; Hämäläinen et al., 1993; Niedermeyer and Silva, 2005), respectively. Given
the inter-regional coupling imposed by the underlying anatomical connections, activity of
distant neural populations may fluctuate synchronously (Baillet, 2017; Baillet et al., 2001;
Biswal et al., 1995). This generates spatiotemporal patterns of correlated dynamics that can
be quantified as statistical dependencies between time courses of pairs of brain regions,
resulting in functional connectivity networks. Spontaneous regional neural activity at
different timescales is inferred from resting-state or intrinsic functional patterns that are
highly organized (Baker et al., 2014; Bellec et al., 2006; Brookes et al., 2011a,b; De Pasquale
et al., 2010; Power et al., 2011; Yeo et al., 2011), reproducible (Brookes et al., 2012; Col-
clough et al., 2016; Gordon et al., 2017; Noble et al., 2019) and comparable to task-driven
co-activation patterns (Brookes et al., 2012; Cole et al., 2014; Smith et al., 2009). Numerous
studies have investigated the relationship between structural and functional networks
using intrinsic brain activity (Damoiseaux and Greicius, 2009; Suárez et al., 2020).

2.1.2 Structure-function relationship in brain networks

The network representation of the brain has been previously employed to explore the
relationship between large-scale structural and functional networks (Damoiseaux and
Greicius, 2009; Honey et al., 2010; Suárez et al., 2020). Previous studies have reported mod-
erate structure-function coupling using whole-brain associative analysis and predictive
modeling, where the inter-regional connection strengths were compared with each other
(Cabral et al., 2014; Deco and Jirsa, 2012; Deco et al., 2014b; Honey et al., 2007; Honey et al.,
2009; Mišić et al., 2016). Structural and functional networks have also been investigated
at the regional level, identifying a regionally heterogeneous correspondence between the
two along a cortical hierarchy that spans unimodal, sensory areas and transmodal, higher
order regions (Baum et al., 2020; Preti and Van De Ville, 2019; Vázquez-Rodríguez et al.,
2019; Zamani Esfahlani et al., 2022). Moreover, both structural and functional networks
have modular organizations, such that partially over-lapping modules or communities



CHAPTER 2. REVIEW OF THE LITERATURE 8

can be identified in both networks (Mišić et al., 2015; Power et al., 2011; Suárez et al.,
2020; Van Den Heuvel et al., 2009b; Yeo et al., 2011). Specifically, lower order intrinsic
functional networks, namely visual and somatomotor networks, are consistently recov-
ered from structural and functional connectivity networks as they consist of regions that
are densely inter-connected with direct anatomical pathways (Betzel et al., 2018, 2017;
Mišić et al., 2015), whereas intrinsic networks consisting of distant regions with no direct
anatomical connections, such as default mode network, can only be partially recovered
by structural networks (Betzel et al., 2017; Honey et al., 2010; Mišic et al., 2015). Thus,
the correspondence between structural and functional networks may be constrained by
network geometry and spatial embedding of brain regions, given that proximal regions
tend to be anatomically connected and as a result have stronger functional associations
compared to distant areas (Bettinardi et al., 2017; Liu et al., 2021; Roberts et al., 2016).
The large-scale network organization, particularly functional networks, has also been
used to study individual variations in behaviour and cognition both in resting-state and
task-based experimental settings (Bassett et al., 2011; Mirchi et al., 2018; Mišić and Sporns,
2016; Rosenberg et al., 2016; Smith et al., 2015; Van Den Heuvel et al., 2009a).

Altogether, as mentioned above, graph reconstruction of the brain is one of the most
common approaches in studying the brain as a complex system (Bullmore and Sporns,
2009). However, in the graph model of the brain, brain areas are usually treated as
identical nodes that are connected with weighted edges based on the strength of structural
or functional connections. While this type of graph notation of the brain has proven to
be useful in various research areas in neuroscience, it lacks information regarding local
properties of brain areas that are essential in understanding the function and integrity of
the brain (Khambhati et al., 2018; Suárez et al., 2020).

2.2 Regional heterogeneity of cortical properties

More recently there has been a growing interest in incorporating a wide range of local
properties in studies of large-scale brain networks (Khambhati et al., 2018; Suárez et al.,
2020). Adding local attributes to the network nodes and constructing “annotated networks”
help to better understand the structure-function relationships by linking microscale and
macroscale brain organization (Khambhati et al., 2018; Suárez et al., 2020). Large-scale
network architecture both shapes, and is shaped by, the regional microscale properties such
that regions with similar local properties are more likely to have inter-regional anatomical
connections and functional interactions (Beul et al., 2017; Goulas et al., 2019; Hilgetag et al.,
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2019; Wei et al., 2018). Examples of these local attributes are cellular (Anderson et al., 2020;
Hansen et al., 2021; Müller et al., 2020; Scholtens et al., 2014), molecular (Anderson et al.,
2018; Fulcher and Fornito, 2016; Richiardi et al., 2015; Zheng et al., 2019) and temporal
(Fallon et al., 2020; Gao et al., 2020; Sethi et al., 2017; Shafiei et al., 2020) properties.

Previous studies report a hierarchical organization in the neural systems that reflects the
systematic variations in regional cytoarchitectonic properties, such as neuron density, spine
count, branching and neurotransmitter receptor profiles (Hansen et al., 2021; Hilgetag and
Goulas, 2020; Margulies et al., 2016; Mesulam, 1998). Macroscale gradients of structural
and functional attributes mirror such variations in the underlying laminar architecture
(Huntenburg et al., 2018). For example, large-scale hierarchical cortical organization was
found in gene expression (Burt et al., 2018; Fulcher et al., 2019; Hansen et al., 2020), cortical
thickness (Wagstyl et al., 2015), intracortical myelin (Huntenburg et al., 2017), laminar
differentiation (Paquola et al., 2019; Wagstyl et al., 2020) and excitability (Demirtaş et al.,
2019; Markicevic et al., 2020; Straub et al., 2020; Wang, 2020).

The hierarchical organization of micro-architectural properties is thought to manifest
as spatial variation in characteristics of regional neural activity (Gao et al., 2020; Murray
et al., 2014; Shafiei et al., 2020; Vinck and Bosman, 2016; Wang, 2020). Regional intrinsic
dynamics are associated with local excitation and inhibition ratios (Deco et al., 2014a, 2021;
Wang et al., 2019; Wang, 2020) and reflect microscale and macroscale cortical hierarchies,
including measures of intracortical myelin (Demirtaş et al., 2019; Gao et al., 2020; Shafiei
et al., 2020), cytoarchitecture and recurrent subcortical inputs (Wang et al., 2019) and
functional hierarchy (Shafiei et al., 2020). In particular, multiple studies have reported faster
timescales of intrinsic neural activity in unimodal sensory cortex, and slower timescales
in transmodal cortex (Gao et al., 2020; Ito et al., 2020; Kiebel et al., 2008; Mahjoory et al.,
2020; Murray et al., 2014; Raut et al., 2020). This hierarchy of timescales is thought to
support a hierarchy of temporal receptive windows: time windows in which a newly
arriving stimulus will modify processing of previously presented, contextual information
(Baldassano et al., 2017; Chaudhuri et al., 2015; Chien and Honey, 2020; Hasson et al., 2008;
Honey et al., 2012; Huntenburg et al., 2018). As a result, unimodal cortex needs to adapt to
rapid, uncertain changes in sensory input, while transmodal cortex sustains its activity
for a longer period of time, resulting in greater sensitivity to contextual information. The
hierarchical organization of neural circuit properties and cortical micro-architecture both
influence and are influence by spatial embedding and network architecture. Neural circuit
properties, however, are mainly quantified using a small number of manually selected
time-series features, potentially precluding the possibility that different types of local
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computations, that may be better captured by other, less commonly used time-series
properties, manifest as different topographic organizations (Fulcher, 2018; Sethi et al., 2017;
Shafiei et al., 2020).

2.3 Interplay of local attributes and global network

organization

Previous literature suggests that regional heterogeneity in microscale properties of the
brain is associated with macroscale network organization (Huntenburg et al., 2018; Suárez
et al., 2020). For example, regional cytoarchitectonic features of the macaque cortex are
correlated with large-scale structural connectivity (Scholtens et al., 2014). Moreover, highly
connected hub complexes in the mouse connectome display a unique transcriptomic
signature, reflecting the regional metabolic demands and macroscale network embedding
(Fulcher and Fornito, 2016). Patterns of covariation in regional transcriptomic properties
are also associated with large-scale functional connectivity (Richiardi et al., 2015). Several
studies have also reported significant relationships between local microstructural and
circuit properties and large-scale structural and functional networks in humans, using
neurotransmitter receptors and transporters (Hansen et al., 2021), gene expression (Burt
et al., 2018; Richiardi et al., 2015), laminar differentiation and cytoarchitecture (Paquola et
al., 2019), intracranial myelin (Huntenburg et al., 2017), morphometric properties (Seidlitz
et al., 2018) and intrinsic dynamics (Baracchini et al., 2021; Demirtaş et al., 2019; Gao et al.,
2020; Shafiei et al., 2020).

Regional neural dynamics are shaped by the spatial embedding of neural circuits in
macroscale networks and gradients of the underlying molecular and cellular properties
(Cocchi et al., 2016; Gollo et al., 2015; Kiebel et al., 2008; Murray et al., 2014; Wang, 2020).
Local micro-architecture and global network interactions together influence the neural
signals generated by neuronal populations as well as the communication patterns between
groups of neuronal populations. Particularly, heterogeneity of local circuit properties reflect
cytoarchitectural variations and cell type compositions of brain regions, which have a
crucial role in signal generation, transmission and integration (Murray et al., 2018; Payeur
et al., 2019). Indeed, neural activity captured by electromagnetic and haemodynamic
recordings is influence by cytoarchitecture and the laminar organization of brain regions
(Bastos et al., 2020; Scheeringa and Fries, 2019; Scheeringa et al., 2016). Previous reports
suggest that cortical rhythms have distinct laminar origins, such that deep infragranular
cortical layers (layers V-VI) facilitate the top-down, feedback projections from higher-order



CHAPTER 2. REVIEW OF THE LITERATURE 11

transmodal regions to sensory unimodal areas via alpha and beta rhythms, while bottom-
up feedforward signals are transferred through superficial cortical layers (supragranular
layers I-III and granular layer IV) via gamma oscillations (Bastos et al., 2018, 2020; Bastos
et al., 2015; Buffalo et al., 2011; Maier et al., 2011, 2010; Smith et al., 2013). Haemodynamic
activity is also associated with the cortical laminar structure and microvascular density of
cortical layers (Drew, 2019; Scheeringa and Fries, 2019; Schmid et al., 2019). Specifically, the
BOLD response appears to be more sensitive to neural activity from the highly vascularized
cortical layer IV (Uludağ and Blinder, 2018). This is consistent with the notion that the
BOLD response mainly reflects local field potentials from feedforward projections that
mainly target layer IV (Douglas and Martin, 2004; Harel et al., 2006).

Therefore, regional neural activity and the characteristics of electromagnetic and haemo-
dynamic signals mirror the cytoarchitectonic and microstructural gradients. Cortical
micro-architectural properties can be directly measured using histological data (Amunts
et al., 2013) or indirectly inferred from other measurements, such as microarray gene
expression (Hawrylycz et al., 2012), neurotransmitter systems (Hansen et al., 2021), cortical
thickness (Wagstyl et al., 2015) and intracortical myelin (Burt et al., 2018; Huntenburg et al.,
2017). This has made it possible to characterize neural signal properties and regional brain
dynamics with respect to microscale circuit properties and macroscale network topology
(Cocchi et al., 2016; Deco et al., 2014b, 2021; Demirtaş et al., 2019; Gao et al., 2020; Ito et al.,
2020; Mahjoory et al., 2020; Murray et al., 2018, 2014; Raut et al., 2020; Shine et al., 2019;
Wang, 2020).

Previous reports have also examined the relationship between global network organi-
zation and regional brain dynamics (Suárez et al., 2020). An emerging literature suggests
that spontaneous neural activity is inexorably linked with brain function and integration
(Baracchini et al., 2021; Burzynska et al., 2013; Garrett et al., 2011, 2013b, 2018; Misic et al.,
2011; Shafiei et al., 2019, 2020; Sorrentino et al., 2021; Uddin, 2020) and supports complex
behaviour and cognition (Gao et al., 2020; Garrett et al., 2013b, 2015; Uddin, 2020; Waschke
et al., 2021). Highly organized patterns of intrinsic dynamics have also been associated
with inter-individual differences in cognitive function across the adult lifespan (Garrett
et al., 2013a, 2015, 2022; Grady and Garrett, 2018; Reinhart and Nguyen, 2019; Uddin, 2020;
Voytek et al., 2015; Waschke et al., 2017, 2021). For example, signal variability of brain
regions, usually quantified as standard deviations or temporal entropy of inherent neural
activity, used to be disregarded as noise (Garrett et al., 2013b; Uddin, 2020). However,
previous studies found that signal variability of the BOLD signal changes with working
memory task demands and varies between younger and older adults (Garrett et al., 2015;
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Grady and Garrett, 2018; Waschke et al., 2021). Moreover, variability of electromagnetic
neural activity increases during development and healthy aging (McIntosh et al., 2008;
Mišić et al., 2010; Waschke et al., 2017, 2021). Other measures of neural dynamics, such
as properties of power spectral density, have also been reported to reflect task demand
and cognitive performance and vary across the lifespan (Dave et al., 2018; Gao et al., 2020;
Voytek et al., 2015).

More generally, local temporal features of BOLD signal have been related to the topo-
logical characteristics of structural brain networks (Fallon et al., 2020; Sethi et al., 2017),
demonstrating that signals generated by regions with greater connectivity have greater
autocorrelation or self-affinity (Fallon et al., 2020; Sethi et al., 2017). The relationship
between magnitude of the BOLD signal and large-scale functional connectivity, and its
influence on modular organization of the human brain, has been studied using using
task-based functional MRI data in a motor learning paradigm (Murphy et al., 2016). Power
spectral properties of resting state magnetoencephalography (MEG) signal have unique
properties that distinguish the intrinsic functional networks (Keitel and Gross, 2016) and
can be used to identify individuals from a larger group with high accuracy using “finger
printing” analysis (Silva Castanheira et al., 2021). Moreover, the heterogeneous temporal
organization in the brain, that follows the anatomical and functional hierarchy (Baldassano
et al., 2017; Cocchi et al., 2016; Gao et al., 2020; Honey et al., 2012; Huntenburg et al., 2018;
Ito et al., 2020; Kiebel et al., 2008; Raut et al., 2020), have been incorporated in large-scale
computational and biophysical modeling of large-scale network organization (Demirtaş
et al., 2019; Gollo et al., 2015; Murray et al., 2018). Computational models of structurally
coupled neuronal populations (Breakspear, 2017) have found that highly interconnected
hub regions exhibit slow dynamic fluctuations whereas sensory areas that are tightly
coupled to changes in the environment exhibit fast fluctuating neural activity (Gollo et al.,
2015). Multiple studies have demonstrated that considering heterogeneity of local circuit
properties in predictive models of functional brain networks improves the model fit to the
empirical networks (Burt et al., 2021; Cocchi et al., 2016; Deco et al., 2021; Demirtaş et al.,
2019; Wang et al., 2019).

Altogether, earlier work has examined the relationship between regionally heteroge-
neous cortical properties, including local circuit properties, and global network organiza-
tion. However, most of the conventional computational analyses have often used a single
or a small number of manually selected features-of-interest, linking a single dynamical
feature to measures of micro-architecture and network embedding. This potentially ob-
scures contributions of other important measures of intrinsic dynamics from the wider
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time-series literature that may reflect different types of local computations and circuit
properties. Recent advances in modern neuroimaging techniques and increasing number
of data sharing initiatives offer new opportunities to comprehensively study local and
global brain dynamics. The work presented in this thesis builds on previous research and
explores the characteristics of regional spontaneous neural activity, and offers a compre-
hensive mapping between dynamic signatures of brain activity and gradients of cortical
micro-architecture and network organization. In Chapter 3, I first examine regional neural
activity and its relationship with large-scale functional interactions using a pharmacologi-
cal manipulation that affects the stability of neural dynamics. Focusing on a commonly
used characteristic of neural activity, I find that regional neural dynamics and large-scale
network organization are indeed related to one another, such that perturbations in one
results in changes in the other. Next, in Chapter 4, I expand on the previous chapter and
use an unbiased, data-driven set of measures of intrinsic dynamics from time-series litera-
ture to comprehensively characterize spontaneous haemodynamic activity. I find that the
dynamic fingerprint of haemodynamic activity mirrors systematic variations in multiple
microstructural properties and is associated with macroscale network embedding. In
Chapter 5, directly inspired by the work presented in the previous chapter, I investigate the
properties of fast-oscillating neural activity using intrinsic neurophysiological recordings.
Using a comprehensive list of time-series properties and multiple micro-architectural maps,
I find that the dynamic signature of neurophysiological activity predominantly reflects
characteristics of power spectral density and follows gradients of cortical circuit properties
and metabolic demands. Finally, in Chapter 6, I identify commonalities between haemo-
dynamic and neurophysiological networks by examining the correspondence between
the inter-regional functional associations recovered from the two modalities. I find that
the correspondence between the two network architectures is regionally heterogeneous,
reflecting the unimodal-transmodal cortical hierarchy and the underlying cytoarchitecture.

2.4 Summary and conclusions

In summary, previous studies report that the local characteristics of brain areas, including
micro-architectural properties as well as intrinsic neuronal dynamics, are highly associated
with the large-scale structural and functional organization of brain networks. Multiple
lines of evidence suggest that gradients of molecular and microstructural properties
and macroscale network embedding reflect systemic patterns of variation in local circuit
properties. Local computations are reflected in haemodynamic and electromagnetic signals
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and manifest as diverse time-series features of regional neural activity. How microscale
gradients of cellular and molecular properties and macroscale network embedding shape
regional dynamic fingerprint of neural activity across the cortex remains unclear. The
current thesis builds on previous literature and investigates the relationship between
micro-architectural gradients, large-scale network organization and dynamical signatures
of neural activity. Comprehensive mapping between regional time-series properties and
microscale and macroscale gradients provides important insight into fundamental aspects
of brain function and integration and offers new avenues for future research on mechanistic
links between neural dynamics and human cognition and complex behaviour.
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3.1 Preface

A prominent feature of brain function is the dynamic repertoire of neural activity. Regional
neural dynamics are highly variable and inter-regional functional interactions perpetually
reconfigure to support a wide range of sensory, motor and cognitive functions. How these
local and global functional properties are linked and modulated remains unknown. A
prominent hypothesis holds that dopamine signaling serves to stabilize neural activity,
and may therefore mediate how individual areas are integrated into the wider network.

https://doi.org/10.1093/cercor/bhy264
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However, the stabilizing influence of dopamine has not been demonstrated at the systems
level. The work presented here examines the relationship between regional neural dy-
namics and large-scale functional interactions and investigates the effects of dopamine
precursor depletion on local and global functional architecture. The results highlight the
stabilizing influence of dopamine signaling at the systems level and demonstrate that
the local dynamics of a brain region are inseparable from its embedding in large-scale
networks. This work was published in Cerebral Cortex in 2019 (Shafiei et al., 2019).

3.2 Abstract

Dopaminergic projections are hypothesized to stabilize neural signaling and neural repre-
sentations, but how they shape regional information processing and large-scale network
interactions remains unclear. Here we investigated effects of lowered dopamine levels
on within-region temporal signal variability (measured by sample entropy) and between-
region functional connectivity (measured by pairwise temporal correlations) in the healthy
brain at rest. The acute phenylalanine and tyrosine depletion (APTD) method was used
to decrease dopamine synthesis in 51 healthy participants who underwent resting-state
functional MRI (fMRI) scanning. Functional connectivity and regional signal variability
were estimated for each participant. Multivariate partial least squares (PLS) analysis was
used to statistically assess changes in signal variability following APTD as compared with
the balanced control treatment. The analysis captured a pattern of increased regional signal
variability following dopamine depletion. Changes in haemodynamic signal variability
were concomitant with changes in functional connectivity, such that nodes with greatest
increase in signal variability following dopamine depletion also experienced greatest
decrease in functional connectivity. Our results suggest that dopamine may act to stabilize
neural signaling, particularly in networks related to motor function and orienting attention
towards behaviorally-relevant stimuli. Moreover, dopamine-dependent signal variabil-
ity is critically associated with functional embedding of individual areas in large-scale
networks.

3.3 Introduction

The brain is a complex network of interacting neuronal populations that collectively
support perception, cognition, and action. Transient episodes of synchrony establish brief
windows for communication among remote neuronal populations, manifesting as patterns
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of functional connectivity and large-scale resting state networks (Damoiseaux et al., 2006;
Power et al., 2011; Yeo et al., 2011). Thus, regional neural activity reflects computations that
result from network interactions, but also drives those interactions (Avena-Koenigsberger
et al., 2018; Deco et al., 2011). Greater connectivity may promote greater signal exchange,
leading to variable dynamics (Mišić et al., 2011; Rubinov et al., 2009); alternatively, densely
interconnected regions may be more likely to synchronize, rendering their dynamics less
variable and more stable (Gollo et al., 2015). How the balance between local dynamics and
global functional interactions (connectivity) is modulated remains a fundamental question
in systems neuroscience.

Dopamine is thought to stabilize neuronal signaling by modulating synaptic activity
and signal gain (Seamans and Yang, 2004). Dopamine, acting in cortex or striatum, could
regulate cortical representations by facilitating or suppressing neural signaling. These
effects may also play a role in reinforcement learning, based on the theory of dopaminergic
reward prediction error signaling (Schultz, 2002). In humans, transient decreases in
dopamine synthesis (which we term “dopamine depletion”) have been shown to disrupt
multiple aspects of perception, motor control, and executive function (Coull et al., 2012;
Nagano-Saito et al., 2008, 2012; Ramdani et al., 2015), consistent with a role in the regulation
of sustained cortical activity (Seamans and Yang, 2004). Similar effects have also been
demonstrated in various animal models including rodents and monkeys (Seamans and
Robbins, 2010). Furthermore, death of dopamine neurons in Parkinson’s disease (PD)
leads to unstable and increasingly variable motor output (Björklund and Dunnett, 2007;
McAuley, 2003). Thus, by stabilizing neuronal signaling, dopamine may influence the
stability of regional activity and its potential for functional interactions at a network level.

Here we use resting-state functional magnetic resonance imaging (fMRI) to investigate
the effects of dopamine depletion on within region signal variability and intrinsic brain
networks in healthy brain at rest. We applied acute phenylalanine and tyrosine depletion
(APTD) to transiently decrease dopamine levels in healthy participants (Carbonell et al.,
2014; Leyton et al., 2000; Leyton et al., 2004; McTavish et al., 1999b; Montgomery et al.,
2003; Palmour et al., 1998). We hypothesized that dopamine depletion would destabilize
regional haemodynamic activity, manifesting as increased signal variability. We further
hypothesized that regions with increased signal variability may be less likely to interact
with other regions, resulting in decreased functional connectivity defined by temporal
statistical association of fMRI time series.
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3.4 Materials and methods

3.4.1 Participants

Altogether, n = 51 healthy young individuals (right-handed, 23.6 ± 5.9 years old, 32
male/19 female) participated in 3 separate dopamine precursor depletion studies (two
published (Coull et al., 2012; Nagano-Saito et al., 2012) and one unpublished studies). The
protocol, acquisition site, scanner and sequence were identical across the 3 studies. Partici-
pants with a history of drug abuse, neurological or psychiatric disorder were excluded.
Informed consent was obtained from all participants.

3.4.2 Dopamine depletion

The acute phenylalanine and tyrosine depletion (APTD) technique (Leyton et al., 2000;
McTavish et al., 1999b; Palmour et al., 1998) was used to reduce dopamine synthesis in
healthy participants, following the procedure described previously (Coull et al., 2012;
Nagano-Saito et al., 2012). In short, each participant was tested twice on 2 separate days,
once following administration of a nutritionally balanced amino acid mixture (BAL) and
once following acute phenylalanine/tyrosine depletion (APTD), in a randomized, double-
blind manner, such that neither the participants nor the experiment conductors had any
information regarding the label of the condition (BAL vs. APTD) being tested on each day.
It should be noted that although APTD leads to depletion of dopamine precursors and
only reduces the dopamine synthesis and availability, the term “dopamine depletion” is used
throughout this manuscript to refer to “dopamine precursor depletion” and APTD. Although
APTD might also theoretically decrease norepinephrine synthesis, several reports have
shown that the release of norepinephrine is not affected under resting state conditions
(Le Masurier et al., 2014; McTavish et al., 1999a).

3.4.3 Data acquisition and preprocessing

T1-weighted, three-dimensional structural MRIs were acquired for anatomical localization
(1-mm3 voxel size), as well as two resting-state echoplanar T2-weighted images with
blood oxygenation level-dependent (BOLD) contrast (3.5-mm isotropic voxels, TE 30
ms, TR 2 s, flip angle 90◦) from all participants using a Siemens MAGNETOM Trio 3T
MRI system at the Montréal Neurological Institute (MNI) in Montréal, Canada. Each
participant was scanned for 5 minutes (150 volumes) with eyes open, on 2 separate days,
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once following administration of a nutritionally balanced amino acid mixture (BAL) and
once following acute phenylalanine/tyrosine depletion (APTD). The resting state fMRI
data was preprocessed through the following steps: slice timing correction, rigid body
motion correction, removal of slow temporal drift using a high-pass filter with 0.01 Hz cut-
off, physiological noise correction. Head motion parameters were estimated by spatially
re-aligning individual time points with the median volume, which was then aligned
with the anatomical T1 image of the individual. Further motion correction was done by
scrubbing (Power et al., 2012): time points with excessive in-scanner motion (>0.5mm
framewise displacement) were identified and removed from time series, along with the
two volumes before and two volumes after. All preprocessing steps were performed using
the Neuroimaging Analysis Kit (NIAK) (Bellec et al., 2010, 2012).

Anatomical MRI data was parcelled into 83 cortical and subcortical areas using the
Desikan-Killiany atlas (Desikan et al., 2006), and then further subdivided into 129, 234,
463 and 1015 approximately equally sized parcels following the procedure described
by Cammoun and colleagues (Cammoun et al., 2012). The Desikan-Killiany atlas is a
commonly-used, anatomical (as opposed to functional), automated labeling system, where
nodes are delineated according to anatomical landmarks. It has been shown that the
Desikan-Killiany atlas is comparably reliable to manual parcellations of human cortex
(Desikan et al., 2006). The atlas exists at 5 progressively coarser resolutions (the so-called
“Lausanne” parcellation (Cammoun et al., 2012)), allowing us to verify the experimental
effects on various spatial scales. The parcellations were used to extract BOLD time series
from functional MRI data. The time series of each parcel were estimated as the mean of all
voxels in that parcel. All analyses were repeated at each resolution to ensure that none of
the conclusions were idiosyncratic to a particular spatial scale.

3.4.4 Sample entropy

Sample entropy (SE) analysis was used to estimate within-region signal variability (Rich-
man and Moorman, 2000). The algorithm quantifies the conditional probability that any
two sequences of time points with length of m + 1 will be similar to each other, given that
the first m points of these sequences were similar (Figure 3.1). SE is then measured as the
natural logarithm of this quantity, such that large values are assigned to unpredictable
signals, and small values to predictable signals. The algorithm is subject to two parame-
ters: the pattern length (m), which determines the segment length used to find repeating
patterns, and the similarity criterion (r), which is the tolerance for accepting matches in
the time series. The sample entropy of a time series with length N is estimated as
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Figure 3.1: Sample entropy of a time series | (a) An example of a BOLD signal is shown, where the
x-axis is time and the y-axis is the amplitude. Signal variability is calculated using sample entropy
analysis. Sample entropy (SE) measures the conditional probability that any two sequences of data
points with length m + 1 will be similar to one another under the condition that they were similar for
the first m points. The similarity criterion r represents the tolerance of algorithm to accept matches in
the time series. (b) An example of a BOLD signal in its original form (left). The same signal, with the
time points re-ordered by amplitude (right). (c) Standard deviation of the signal is the same for both the
original and reordered signal; however, sample entropy of the re-ordered signal drastically decreases
compared to sample entropy of the original signal.

SE(m, r, N) = ln
∑N−m

i=1 nm
i

∑N−m
i=1 nm+1

i

(3.1)

where nm
i is the number of m-length segment of time series (e.g. segment j with length

m) that are similar to the m-length segment i within to the similarity criterion, excluding
self-matches (i ̸= j; i.e., the algorithm does not compare patterns with themselves) (Costa
et al., 2005). The sample entropy of a time series corresponds to ‘scale 1’ of the well-known
multi-scale entropy analysis procedure (Costa et al., 2005).

Following the optimization proposed by Small & Tse (Small and Tse, 2004), we set m = 2
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as the pattern length. We set the similarity criterion to r = 0.5 times the standard deviation
(SD) of the time series following the method proposed by Richman & Moorman (Richman
and Moorman, 2000). Although these values of m and r have been used extensively in
previous reports (Beharelle et al., 2012; Heisz et al., 2012; McIntosh et al., 2008; Mišić et al.,
2016), we sought to ensure that the reported results were robust across multiple choices of
m and r. We therefore re-calculated SE using different values for m and r and re-ran the
PLS analysis described below (see Statistical assessment). Figure S3.2 shows the correlation
between new bootstrap ratios (i.e., changes in signal variability) with bootstrap ratios
that were originally estimated by setting m = 2 and r = 0.5 × SD. The correlations were
generally greater than 0.7 across a range of similarity criteria r, and greater than 0.3 across
a range of pattern lengths m, suggesting that the results were relatively insensitive to
choice of parameters.

We operationalized signal variability using SE rather than other popular measures,
such as standard deviation (SD). The primary reason for this choice is that SE is sensitive
to temporal dependencies in the signal, while variance-based measures, such as SD, are
not. This distinction is illustrated in Figure 3.1b and Figure 3.1c. Figure 3.1b (left) shows a
typical BOLD signal from the present study (a randomly selected condition, participant
and node). Figure 3.1b (right) shows the same signal, but with the time points reordered
by amplitude. The sample entropy and standard deviation of the original and reordered
signals were then measured (Figure 3.1c). Sample entropy is sensitive to this change,
because the reordered signal monotonically increases and is trivially predictable. Critically,
standard deviation is blind to this change; although the temporal complexity of the
signal has been profoundly altered by reordering, standard deviation measures only the
dispersion of points and cannot detect any temporal change (Figure 3.1c).

3.4.5 Statistical assessment

We used partial least squares (PLS) analysis to investigate within-participant changes in
regional signal variability following the BAL versus APTD conditions. PLS analysis is a
multivariate statistical technique that is used to analyze two “blocks” or sets of variables
(McIntosh and Mišić, 2013; McIntosh and Lobaugh, 2004). In neuroimaging studies, one
set may represent neural activity, while the other may represent behaviour or experimental
design (e.g. condition and/or group assignments). PLS analysis seeks to relate these two
data blocks by constructing linear combinations of the original variables such that the new
latent variables have maximum covariance (Krishnan et al., 2011).
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In the present report, one block (X) corresponded to regional signal variability in each
participant estimated by sample entropy of BOLD time series following BAL versus APTD
conditions. The rows of matrix X correspond to observations (participants nested within
conditions) and the columns correspond to variables (regional signal variability). For p
participants, c conditions, and v variables, matrix X will have p × c rows and v columns.
Within-condition means are computed for each column and centered to give the matrix M.
Singular value decomposition (SVD) is applied to M

USV′ = M (3.2)

resulting in a set of orthonormal left singular vectors, U, and right singular vectors, V, and
a diagonal matrix of singular values, S. The number of latent variables is equal to the rank
of the mean-centered matrix (here c), so U will have c columns and v rows, and V and S
will both have c columns and c rows.

The decomposition results in a set of latent variables that are composed of columns
of singular vectors, U and V, and a set of singular values from the diagonal matrix of S.
In the present study, the v elements of column vectors of U are the weights of original
brain activity variables (i.e., signal variability) that contribute to the latent variable and
demonstrate a pattern of changes in signal variability following dopamine depletion. The
c elements of column vectors of V are the weights of experimental design variables that
contribute to the same latent variable and are interpreted as a contrast between experi-
mental conditions. The latent variables are mutually orthogonal and express the shared
information between the two data blocks with maximum covariance. This covariance is
reflected in the singular values from the diagonal elements of matrix S that are associated
with each given latent variable.

We assessed the statistical significance of each latent variable using permutation tests
(Edgington and Onghena, 2007). During each permutation, condition labels for each
participant are randomized by reordering the rows of matrix X. The new permuted
data matrices were then mean-centered and subjected to SVD as before. The procedure
was repeated 10,000 times to generate a distribution of singular values under the null
hypothesis that there is no relationship between neural activity and study design. A
p-value was estimated for each latent variable as the proportion of permuted singular
values greater than or equal to the original singular value.

We assessed the reliability of singular vector weights using bootstrap resampling. Here,
the rows of data matrix X were randomly resampled with replacement while keeping
the original condition assignments. Mean-centering and SVD were then applied to the
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resampled data matrices as before. The results were used to build a sampling distribution
for each weight in the singular vectors U and V. A “bootstrap ratio” was then calculated
for each original variable (i.e., for each node) as the ratio of the singular vector weight
to its bootstrap-estimated standard error. Bootstrap ratios are designed to be large for
variables that have a large weight (i.e., large contribution) as well as a small standard error
(i.e., are stable). Bootstrap ratios are equivalent to z-scores if the bootstrap distribution
is approximately unit normal (Efron and Tibshirani, 1986). In this case, 95% and 99%
confidence intervals correspond to bootstrap ratios of ±1.96 and ±2.58, respectively.

PLS was chosen as the primary analytic method (instead of univariate statistical tech-
niques) because we sought to identify patterns of nodes whose signal variability collec-
tively changes due to dopamine depletion. However, the results of PLS analysis were
nearly identical with the results obtained by a more conventional univariate paired t-test
(correlation between t-values and bootstrap ratios; r ≈ 1).

3.4.6 Community detection

Functional networks were partitioned into communities or intrinsic networks using the
assignment derived in (Mišić et al., 2015), which we describe below. As we show in the
Results section, the main conclusions also hold for the partitions reported by Yeo and
colleagues (Yeo et al., 2011) and Power and colleagues (Power et al., 2011).

A Louvain-like greedy algorithm was used to identify a community assignment that
maximized the quality function, Q (Newman and Girvan, 2004; Rubinov and Sporns, 2011)

Q(γ) =
1

m+ ∑
ij
(W+

ij − γp+ij )δ(σi, σj)

− 1
m+ + m− ∑

ij
(W−

ij − γp−ij )δ(σi, σj)
(3.3)

where W+
ij and W−

ij are the functional connectivity (correlation) matrices that contain only
positive and only negative coefficients of correlation, respectively. p±ij is the expected den-
sity of only positive or only negative connectivity matrices according to the configuration
null model and is given as p±ij = (s±i s±j )/2m±. m± = ∑i,j>i W±

ij is the total weight of all
positive or negative connections of W±

ij (note that the summation is taken over i, j > i
to ensure that each connection is only counted once). The total weights of positive or
negative connections of i and j are given by s±i = ∑i W±

ij and s±j = ∑j W±
ij , respectively.
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The resolution parameter γ scales the importance of the null model and effectively controls
the size of the detected communities: larger communities are more likely to be detected
when γ < 1 and smaller communities (with fewer nodes in each community) are more
likely to be detected when γ > 1. Furthermore, σi defines the community assignment
of node i. The Kronecker function δ(σi, σj) is equal to 1 if σi = σj and is equal to zero
otherwise (σi ̸= σj), ensuring that only within-community connections contribute to Q.

Multiple resolutions γ were assessed, from 0.5 to 10 in steps of 0.1. The Louvain
algorithm was repeated 250 times for each γ value (Blondel et al., 2008). The resolution
γ = 1.5 was chosen based on the similarity measures (Rand index) of pairs of partitions
for each γ value, such that the similarity measures of a more stable set of partitions for
a given γ value would have a larger mean and smaller standard deviation compared
to similarity measures at other γ values (i.e., larger z-score of similarity measure) (Red
et al., 2011). Finally, a consensus partition was found from the 250 partitions at γ = 1.5
following the method described in Bassett et al., 2013. Eight communities or networks were
detected, including visual (VIS), temporal (TEM), default mode (DMN), dorsal attention
(DA), ventral attention (VA), somatomotor (SM) and salience (SAL) (Mišić et al., 2015).
The subcortical areas (SUB) were added to the list as a separate network based on the
anatomical Desikan-Killiany parcellation.

3.4.7 Cohesion and integration

Connectivity between and within modules was assessed as the participation coefficient
and within-module degree z-score (Guimera and Amaral, 2005), using Brain Connectivity
Toolbox (BCT) (Rubinov and Sporns, 2010). The participation coefficient quantifies how
evenly distributed a node’s connections are to all modules. Values close to 1 indicate that a
node is connected to many communities, while values close to 0 indicate that a node is
connected to few communities. The participation coefficient of node i, Pi, is given by:

Pi = 1 − ∑
m∈M

(
ki(m)

ki

)2

(3.4)

where m is a module from a set of modules M, ki is the weighted degree (i.e., connection
strength) of node i, and ki(m) is the number of connections between node i and all other
nodes in module m (Guimera and Amaral, 2005; Rubinov and Sporns, 2010). To find
participation coefficients of resting state networks, we first found the average participa-
tion coefficient of each node across all participants and then compared the participation
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coefficients of the nodes that belong to the same module following the BAL versus APTD
conditions.

The within-module degree is estimated as the weighted degree (i.e., strength) of the
connections that node i makes to other nodes within the same module. The measure is
then z-scored, expressing a node’s weighted degree in terms of standard deviations above
or below the mean degree of the nodes in the given module (Zi). A positive within-module
degree z-score indicates that a node is highly connected to other nodes within the same
module, while a negative within-module z-score indicates a node participates in less than
average connections within its own module. We estimated the within-module degree
z-score of each node for each participant and then calculated the average Zi over all
participants. Finally, we compared the within-module degree z-scores of the nodes of a
given module following the BAL and APTD conditions.

3.5 Results

Task-free, eyes-open resting-state fMRI was recorded in n = 51 healthy young participants
on two separate days, once following administration of a nutritionally balanced amino
acid mixture (BAL) and once following acute phenylalanine/tyrosine depletion (APTD).
Anatomical MRI data were parcelled into five progressively finer resolutions, comprising
83, 129, 234, 463 and 1015 nodes (Cammoun et al., 2012)), which were used for extraction
of blood-oxygen-level dependent (BOLD) time series. We investigated how dopamine
depletion affects (a) local, region-level haemodynamic activity, (b) global, between-region
temporal statistical association of BOLD time series (termed as functional connectivity) and
(c) the relationship between the two.

3.5.1 Dopamine depletion increases signal variability

We estimated within region signal variability using sample entropy (SE), a measure of the
unpredictability of a time series (Richman and Moorman, 2000). Briefly, the SE algorithm
quantifies the conditional probability that any two sequences of m + 1 time points will be
similar to each other given that the first m points were similar (Figure 3.1). We then used
multivariate partial least squares (PLS) analysis to statistically assess within-participant
changes in signal variability at each brain region following administration of the BAL
versus APTD mixtures (McIntosh and Mišić, 2013). PLS results in a set of latent variables
(LV), that are weighted combinations of experimental design (i.e., a contrast) and signal
variability patterns that optimally covary with each other. The analysis revealed a single
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Figure 3.2: Dopamine depletion increases signal variability | (a) PLS analysis identified a significant
contrast between patterns of signal variability in depletion (APTD) versus non-depletion (BAL) condi-
tions (permuted p = 0.014). (b) The change in signal variability of each node is given by a bootstrap
ratio for that node: such that a positive bootstrap ratio shows increase in signal variability of the node
following dopamine depletion, while a negative bootstrap ratio shows the opposite. Bootstrap ratios are
depicted at the finest resolution (1015 nodes), showing that dopamine depletion increases signal vari-
ability at most nodes. (c) Bootstrap ratios are shown in 3D space sagittally and axially. Corresponding
results are shown for all resolutions in Figure S3.1

statistically significant latent variable (permuted p = 0.014 for the finest parcellation reso-
lution with 1015 nodes), showing broadly increased signal variability following dopamine
depletion (Figure 3.2). Bootstrap resampling was used to estimate the reliability with which
individual nodes contribute to the overall multivariate pattern. Specifically, the weight
or loading associated with each node was divided by its bootstrap-estimated standard
error, yielding a measure (“bootstrap ratio”) that is high for nodes with large weights (i.e.,
large contributions) and small standard errors (i.e., are stable) (McIntosh and Lobaugh,
2004). Note that bootstrap ratios may be interpreted as z-scores if the sampling distribu-
tion is approximately unit normal (Efron and Tibshirani, 1986). Positive bootstrap ratios
indicate an increase in signal variability, while negative bootstrap ratios indicate decreased
variability. Figure 3.2c depicts a brain projection of this statistical pattern, showing that
the greatest increase in signal variability was observed in somatomotor cortex. This effect
(increased regional haemodynamic variability following depletion) and the spatial pattern
were consistent across all five spatial resolutions (Figure S3.1).
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3.5.2 Increased signal variability in somatomotor and salience networks

We next investigated the effect of APTD on resting state networks (Power et al., 2011;
Yeo et al., 2011). Figure 3.3a depicts the nodes displaying the greatest increase in signal
variability following dopamine depletion in descending order and colour-coded by resting
state network membership (Mišić et al., 2015). The most affected nodes appear to belong
primarily to the somatomotor (yellow) and salience (green) networks suggesting that the
signal variability may selectively affect certain large-scale networks.

To directly investigate the network-selectivity of dopamine depletion, we first esti-
mated the mean change in signal variability across all nodes in a given network, using
PLS-derived bootstrap ratios for the finest resolution (1015 nodes). To determine which
network-level changes were statistically significant and not due to differences in network
size, spatial contiguity or lateralization, we used a label permuting procedure. Network
labels were randomly permuted within each hemisphere (preserving the number of nodes
assigned to each network) and network means were recomputed 10,000 times, generating
a distribution under the null hypothesis that network assignment does not influence the
overall change in signal variability. A p-value was estimated for each network as the pro-
portion of cases when the mean for the permuted network assignment exceeded the mean
for the original empirical network assignment. Figure 3.3b,c shows that changes in signal
variability were observed for all intrinsic networks, but that increased variability was
greatest and statistically significant for the somatomotor and salience networks (p < 10−4,
FDR corrected (Benjamini and Hochberg, 1995)).

To ensure that these results are independent of how intrinsic networks are defined,
we repeated the procedure using partitions reported by Yeo and colleagues (Yeo et al.,
2011) and by Power and colleagues (Power et al., 2011) (Figure S3.3). The results were
consistent across the three partitions, indicating significant increased signal variability in
somatomotor and ventral attention networks among Yeo networks (note that the “ventral
attention network” overlaps with the “salience network” shown in Figure 3.3), and in
somatosensory and auditory networks among Power networks. No significant decrease
in signal variability was observed in any intrinsic networks, regardless of which network
assignments were used.
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Figure 3.3: Node- and network-level effects of dopamine depletion | (a) The top 10% of the nodes
(i.e., top 100 nodes) that had the largest increase in signal variability (largest bootstrap ratios) following
dopamine depletion. Each bar shows the magnitude of bootstrap ratio of a node and is colored based on
the community assignment of that node (Mišić et al., 2015). Somatomotor (yellow) and salience (green)
networks appear over-represented compared with other networks. (b) The mean change in signal
variability is calculated for each network and assessed by permutation tests (10,000 repetitions). Signal
variability increases most in the salience and somatomotor networks following dopamine depletion, and
these are the only two networks where this effect is statistically significant. (c) Changes in mean signal
variability are depicted for somatomotor and salience networks (significance obtained by permutation
tests; FDR corrected (Benjamini and Hochberg, 1995)). SM = somatomotor, SAL = salience, FPN =
fronto-parietal, VA = ventral attention, SUB = subcortical areas, DMN = default mode, VIS = visual, DA
= dorsal attention, TEM = temporal.

3.5.3 Increased signal variability correlates with decreased functional

connectivity

Given that changes in signal variability were highly network dependent, we next investi-
gated whether increased signal variability is related to patterns of functional connectivity.
Functional connectivity was estimated as a zero-lag Pearson correlation coefficient between
regional time series for each participant in each condition. To relate patterns of signal
variability with functional connectivity, we estimated a group-average functional connec-
tivity matrix by calculating the mean connectivity of each pair of brain regions across all
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participants. We then estimated the mean connectivity (i.e., strength of the functional
correlations) for each brain region.

We observed a weak relationship between increased signal variability and decreased
functional connectivity, such that nodes with the greatest increase in signal variability
following dopamine depletion also experienced the greatest decrease in functional con-
nectivity (r = −0.23, R2 = 0.053, p = 1.04 × 10−13; Figure 3.4a). Although statistically
significant, effect was small, suggesting that the relationship was not sustained over the
bulk of data points (nodes), but that it may have been driven by a subset of nodes instead.

To investigate this possibility, we assessed mean dopamine-dependent changes in
functional connectivity in each of the intrinsic networks separately and correlated the net-
work specific changes in functional correlation with the network specific changes in signal
variability. Note that these analyses did not estimate subject error, but modeled group-
averaged effects. Although there is a significant negative correlation between changes in
functional connectivity and signal variability in more than half of the participants (29 out
of 51), positive or no correlation was observed in others (7 and 15 out of 51 participants,
respectively). In other words, the group-level effect is consistent with individual-level
effects in the majority of participants. This result is broadly consistent with previous
studies of group- versus individual-level effects of dopaminergic manipulations (Alavash
et al., 2018; Garrett et al., 2015) and indicates that further investigation is required to assess
the effects of dopamine depletion at the individual participant level. The results provided
in the present work mainly address the group-level effects of dopamine depletion.

Thus, on the group-level, we observed an anti-correlation between the two measures
such that the networks with greatest increase in haemodynamic signal variability also
experience the great decrease in functional correlations (r = −0.59; Figure 3.4b). Changes
in functional connectivity were statistically assessed using the same label permuting proce-
dure outlined above (randomly permuting the network label of all nodes and re-computing
network means, with 10 000 repetitions). Mean functional connectivity significantly de-
creased in 3 intrinsic networks: temporal, salience, and somatomotor networks connectivity
(p = 9.0 × 10−4, p < 10−4 and p = 9.0 × 10−4 respectively; FDR corrected; Figure 3.4c,d).
Critically, the salience and somatomotor networks also experienced the greatest increase in
signal variability after APTD (Figure 3.3), suggesting that changes in signal variability and
functional connectivity may be related. Overall, these results suggest that the effects of
dopamine depletion are stronger in specific large-scale systems, and that changes in local
dynamics are related to global functional interactions.
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Figure 3.4: Relating signal variability and functional connectivity | (a) Mean changes in functional
connectivity following dopamine depletion were estimated across all nodes and correlated with changes
in within-region signal variability. Changes in functional connectivity are related to changes in signal
variability, such that the larger the increase in signal variability, the larger the decrease in functional
connectivity. (b) Mean changes in functional connectivity for intrinsic networks are correlated with
mean changes in local signal variability in those networks. There is a clear anti-correlation between
the two, consistent with the result in part (a). (c) The mean changes in functional connectivity was
calculated for each network and assessed by permutation tests (10,000 repetitions). Mean connectivity
significantly decreases in temporal, salience and somatomotor networks. Somatomotor and salience
networks also experience significant increase in local variability (Figure 3.3). (d) Mean functional
connectivity in depletion (APTD) vs. non-depletion (BAL) conditions, shown for nodes belonging to the
temporal (TEM), somatomotor (SM) and salience (SAL) networks. Functional connectivity decreases in
all instances (permutation test; FDR corrected).

3.5.4 Selective disconnection of intrinsic networks

Dopamine-related increases in signal variability appear to be concomitant with decreased
functional connectivity and localized to specific intrinsic networks. However, it is unclear



CHAPTER 3. STABILITY AND INTEGRATION OF INTRINSIC BRAIN NETWORKS 31

Figure 3.5: Effects of dopamine depletion on cohesion and integration of specific intrinsic networks
| (a) Mean participation coefficient, indexing the diversity of inter-network connectivity, significantly
decreases in somatomotor (SM) and salience (SAL) networks after dopamine depletion (using 10,000
permutation tests; FDR corrected). (b) Within-module degree z-score, indexing within-network connec-
tivity, remains unaffected.

whether decreased connectivity in the somatomotor and salience networks is driven by
weakened within-network or between-network connections, or both. To address this
question, we calculated the participation coefficient and within-module degree z-score
of every node (Guimera and Amaral, 2005). The participation coefficient quantifies the
diversity of a node’s connectivity profile. A participation coefficient with a value close to
1 indicates that a node’s connections are evenly distributed across communities, while a
value close to 0 indicates that most of the node’s connections are within its own community.
The within-module degree z-score of a node is a normalized measure of the strength of
connections a node makes within its own community.

Figure 3.5 shows that the participation coefficient significantly decreases in somatomo-
tor and salience networks following dopamine depletion (p < 10−4 and p = 2.4 × 10−3

respectively, assessed by label permuting (see above); FDR corrected), while the within-
module degree z-score does not (p > 0.5). In other words, dopamine depletion selectively
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reduced functional interactions between these networks and the rest of the brain (partici-
pation coefficient; Figure 3.5a), but did not affect within-network cohesion (within-module
degree z-score; Figure 3.5b). Overall, these results suggest that dopamine depletion effec-
tively segregates these intrinsic networks from the rest of the brain, but does not affect their
internal cohesion. Note that the two networks with significantly decreased participation
coefficient are also the ones with greatest increases in signal variability. We also investi-
gated average changes in participation coefficient and within-module degree z-score in
other intrinsic networks, where we did not observe any significant changes in either of the
two measures.

3.5.5 No systematic effect of study

The data used in this study were consolidated from three different experiments (two
published (Coull et al., 2012; Nagano-Saito et al., 2012) and one unpublished studies), so
it is possible that the observed effects were idiosyncratic to one or two of the constituent
datasets and do not necessarily generalize across all three studies. To investigate this
possibility, we used a multi-way ANOVA to assess differences between studies: participant-
specific scores were calculated for the signal variability pattern and the three studies were
treated as separate groups. The analysis did not reveal any significant difference among
the three studies (F(2, 45) = 1.7, p = 0.19), nor any condition by study interaction
(F(2, 45) = 0.68, p = 0.51). There was a significant condition difference, with greater scores
in the depletion versus non-depletion condition (F(1, 45) = 131.06, p ≈ 0), but this is
expected given that the scores were derived by PLS to maximize this condition difference.

3.5.6 Comparing sample entropy and standard deviation

A popular alternative measure of signal variability is the simple standard deviation (SD).
Although we opted to use SE over SD because the latter is not sensitive to temporal
dependencies in the signal (see Figure 3.1), for completeness we directly compared the
effects of depletion using the two measures. A priori, we expect the two measures to be
anti-correlated, because sample entropy estimation explicitly incorporates the SD of a
given signal to define the similarity criterion r (the tolerance of the algorithm to accept
matches in the time series). For a deeper discussion of this practice, including potential
limitations, see Grandy et al., 2016. In other words, the similarity criterion for the sample
entropy algorithm will be greater for a signal with a greater SD. Consequently, the sample
entropy algorithm is more likely to identify matches in signals with a larger SD, resulting
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in a lower sample entropy value. To demonstrate this claim, we correlated the SD and
sample entropy of regional time series for both APTD (depletion) and BAL (no depletion)
conditions, as well as the changes in each measure following dopamine depletion. The
results are shown in Figure S3.4, confirming the anti-correlation between sample entropy
and SD of a given signal at a brain region in the (a) no depletion condition, (b) depletion
condition. Panel (c) further shows that depletion-driven changes in signal variability are
also anti-correlated with changes in standard deviation.

To further assess whether the effects of dopamine depletion are specific to SE or SD, or
both, we repeated the PLS analysis using the SD of the BOLD time series before and after
dopamine depletion. The analysis revealed no significant effects of dopamine depletion
on SD (permuted p = 0.38). We then regressed out SD from SE in each region for each
participant and condition using a linear regression model and repeated the PLS analysis
on the SD-residualized SE values. No statistically significant differences were detected
using the SD-residualized SE values (permuted p = 0.9), indicating that SD and SE are
not wholly independent of each other. Altogether the results suggest that SD and SE
are both sensitive to the variance of the signal, but that SE captures additional temporal
irregularities, making it more likely to detect the effects of dopamine depletion.

3.6 Discussion

We investigated the effect of dopamine depletion on the balance between local node
properties and global network architecture. We report 2 key results: (1) dopamine depletion
selectively destabilizes neural signaling, measured at the haemodynamic level, in salience
and somatomotor networks, and (2) increased local variability in these intrinsic networks
is accompanied by their disconnection from the global functional architecture. Altogether,
these results point to a stabilizing influence of dopamine on neural signaling and highlight
the link between local, node-level properties and global network architecture.

3.6.1 Linking local and global dynamics

The present results highlight the relationship between local haemodynamic signal variabil-
ity and functional embedding. Increased variability in salience and somatomotor networks
was concomitant with decreased functional connectivity with the rest of the brain. It is
possible that low dopamine states disrupt local neuronal signaling, making it less likely for
remote populations to synchronize. Alternatively, dopamine depletion may disrupt inter-
regional synchrony through a separate mechanism, resulting in greater local variability.
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The correlative nature of the results cannot be used to disambiguate these two possibilities
and further causal experiments are necessary. The within-condition relationship between
local variability and global connectivity remains an open question. In any case, the present
report demonstrates that functional interactions span multiple topological scales, such that
local and global dynamical properties cannot be fully appreciated in isolation (Bolt et al.,
2018; Cabral et al., 2011).

Interestingly, dopamine depletion was associated with reduced between-module con-
nectivity but not with within-module connectivity (Figure 3.5). The effect was highly
specific: reduced between-module connectivity was significantly observed only in net-
works that also experienced increased regional signal variability. In other words, dopamine
depletion affected how nodes within these networks communicated with the rest of the
brain, but did not affect their internal cohesion. A recent study demonstrated a similar
effect at the level of resting state networks: networks with greater temporal variability dis-
played greater within-network cohesion and lower between-network integration (Lee and
Frangou, 2017). Altogether, the present results highlight a simple principle: the tendency
for nodes to form functional networks depends on their ability to synchronize with one
another. Thus, functional interactions between regions must be studied together with the
temporal properties of their local signals.

Recent theories emphasize dynamic over static brain function. At the network level,
reconfiguration of functional interactions is increasingly recognized as an informative
attribute of healthy brain function and dysfunction (Calhoun et al., 2014). Functional
reconfiguration has been observed across multiple temporal scales, both at rest (Betzel
et al., 2016; Zalesky et al., 2014) and with respect to a variety of cognitive functions (Shine
et al., 2016b), including learning (Bassett et al., 2015; Mohr et al., 2016), attention (Shine
et al., 2016a) and working memory (Kitzbichler et al., 2011), and even conscious awareness
(Barttfeld et al., 2015; Godwin et al., 2015). In parallel, the dynamic range of local signal
fluctuations has emerged as a node-level marker of brain function (Garrett et al., 2013b;
Roberts et al., 2017). Traditionally disregarded as “noise”, changes in signal variability
have been reported across the lifespan (Garrett et al., 2011; Guitart-Masip et al., 2015;
McIntosh et al., 2008; Nomi et al., 2017), in multiple perceptual, cognitive and affective
tasks (Garrett et al., 2013a; Mišić et al., 2010; Pfeffer et al., 2018; Samanez-Larkin et al., 2010)
and in a variety of psychiatric and neurological diseases (Bertrand et al., 2016; Mišic et al.,
2015; Mišić et al., 2016).

While most methods for estimating variability focus on node-level time series, several
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recent studies have conceptualized variability with respect to functional network embed-
ding (Mišić et al., 2016; Shen et al., 2015b). For instance, local variability can be defined as
the tendency for a node to switch network allegiance or to interact with multiple networks
(Braun et al., 2015; Zhang et al., 2016). This dynamic network switching is conditioned
by an underlying anatomy (Shen et al., 2015a; Zhang et al., 2016), but is also likely to be
influenced by a variety of neurotransmitters. A prominent hypothesis is that dopamine
modulates signal-to-noise ratio (Mohr and Nagel, 2010; Samanez-Larkin et al., 2010). We
turn to the specific role of dopamine next.

3.6.2 Dopamine and signal dynamics

Our results suggest that dopamine may act to stabilize neural signaling at the haemo-
dynamic level, particularly in networks associated with motor control (somatomotor
network) and orienting attention towards behaviorally-relevant stimuli (salience network).
Dopamine depletion was simultaneously associated with increased within region signal
variability and decreased extrinsic connectivity, indicating that dopaminergic signaling
influences both local information processing and network-wide interactions. Importantly,
the effects of depletion were not confined to a single locus but distributed over two
large-scale networks, suggesting that even transient decreases in dopamine availability
can disrupt local neuronal signaling and have far-reaching effects on synchrony among
multiple systems.

There are two possible mechanisms by which dopamine depletion could cause the
observed changes in cortical signal variability. The first possibility is that depletion
modulates synaptic activity and signal gain directly via cortical receptors (Seamans and
Yang, 2004). Mechanistic studies in vitro have demonstrated that dopamine influences
intrinsic ionic currents and synaptic conductance (Durstewitz et al., 2000; Kroener et al.,
2009). These modulatory effects may facilitate or suppress neural signaling, helping to
stabilize neural representations. In addition, dose–response effects of dopamine release
may be both tonic and phasic (Goto et al., 2007), with the two modes thought to be mediated
by distinct signaling pathways and receptors, and manifesting in distinct behavioral
outcomes (Cox et al., 2015). For instance, striatal medium spiny neurons of the direct
pathway express D1 receptors and are thought to promote movement and the selection
of rewarding actions. Neurons in the indirect pathway mainly express D2 receptors and
are thought to inhibit cortical patterns that encode maladaptive or non-rewarding actions
(Surmeier et al., 2011). Although our results are consistent with the broad notion that
dopamine stabilizes neural representations to facilitate reward learning and movement,
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further experiments are necessary to determine whether the observed effects can be
attributed to tonic or phasic modulation, and to D1 or D2 receptor transmission.

The second possibility is that the effects of dopamine depletion may originate in
the striatum, an area with dense dopaminergic afferents as well as projections to both
the somatomotor and salience networks (Alexander and Crutcher, 1990; Alexander et
al., 1986; Zhang et al., 2017). Prominent projections from dorsal striatum terminate in
the somatomotor system (forming the motor loop), while projections ventral striatum
terminate in the salience system. A dopaminergically-depleted striatum may therefore
disrupt ongoing cortico-striatal signaling, resulting in downstream cortical effects, such as
increased variability. Importantly, the two accounts are not mutually exclusive, and it is
possible that the observed effects depend on both mechanisms.

Dopamine depletion can thus have local and global consequences, influencing a range
of sensory-motor and higher cognitive functions. Age-related decline in dopaminergic
transmission is hypothesized to lead to greater signal variability, influencing the distinc-
tiveness of neural representations and, ultimately, performance (Mohr and Nagel, 2010;
Samanez-Larkin et al., 2010). The stabilizing role of dopamine can also be observed in
diseases associated with dopaminergic dysfunction, such as Parkinson’s disease (PD),
attention deficit hyperactivity disorder (ADHD), and schizophrenia. In PD for instance,
cell death in substantia nigra leads to reduced dopaminergic transmission, with extensive
motor symptoms. Intriguingly, dopamine depletion in PD is associated with reduced
cortico-striatal functional connectivity patterns and reduced gait automaticity (Gilat et al.,
2017). Similarly, in ADHD, reduced dopamine signaling is associated with deficits in
goal-directed behavior and reward learning (Campo et al., 2013).

Finally, the present results draw attention to an overlooked assumption of graph-based
models of brain structure and function: that all nodes are identical, except for their connec-
tivity patterns. In other words, graph representations often ignore important inter-regional
differences that could influence neural activity and synchrony, including morphology,
cytoarchitectonics, gene expression, and receptor densities (Lariviere et al., 2019). How
dopaminergic modulation interacts with modulation by other neurotransmitters is an
exciting open question (Shine et al., 2018).

3.6.3 Measuring signal variability

Finally, we note that several recent reports have also investigated the role of dopaminergic
signaling in the context of local signal dynamics, but drew an altogether different conclu-
sion: that dopamine up-regulation “increases” signal variance. Specifically, Alavash et al.,



CHAPTER 3. STABILITY AND INTEGRATION OF INTRINSIC BRAIN NETWORKS 37

2018 reported that L-dopa administration increased BOLD standard deviation during an
auditory working memory task (a syllable pitch discrimination task). Similarly, Garrett
et al., 2015 reported that d-amphetamine administration also increased signal standard
deviation during a working memory task (a visual letter n-back task). Although we used a
different method to manipulate dopamine (APTD vs. L-dopa and d-amphetamine) and
to record haemodynamic activity (resting state vs. task), we believe that the primary dif-
ference between these studies and our own is how signal variability was operationalized.
Namely, both Alavash et al., 2018 and Garrett et al., 2015 defined signal variability in terms
of standard deviations. The results shown in Figure 3.1 and Figure S3.4 demonstrate that
sample entropy and variance based measures (e.g., standard deviation) capture different
aspects of signal variability. Most importantly, because of the way that sample entropy is
used to detect repeating patterns in a signal, we find that in practice, the two measures
are often anti-correlated, which explains the seemingly different results. Altogether, these
studies demonstrate a need to further refine the concept of signal variability and for greater
plurality of methods (Fulcher and Jones, 2017). While some measures are sensitive to
signal dispersion (e.g., standard deviation), others are sensitive to temporal regularity (e.g.,
sample entropy).

3.6.4 Methodological considerations

Our results may depend on a number of methodological choices and potential limitations,
which we consider in detail here. Methodological choices include the type of parcellation
and resolution, intrinsic network definition, and parameter settings for SE. The reported
effects are consistent across 5 resolutions (from 83 to 1015 nodes; Figure S3.1), three network
partitions (detected using clustering, Infomap, and Louvain methods; Figure S3.3) and a
range of parameter settings (Figure S3.2). Although we took steps to mitigate concerns
about these choices, the present results are based on a finite sampling of a multifactorial
methodological space.

More generally, we studied the effects of dopamine depletion in the context of task-
free, resting state fMRI, which presents 3 significant challenges for interpretation. First,
dopaminergic transmission is inherently related to specific cognitive functions, which may
be accessible without overt task demands. We find evidence that dopamine depletion
affects information transfer in two intrinsic networks with specific functional properties,
but more research is necessary to investigate how dopamine affects the function of these
networks in the presence of task demands. Second, dopaminergic transmission within
specific subcortical and cortical circuits occurs at time scales that may be inaccessible
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with BOLD imaging. The present results can be used to draw conclusions about slow,
modulatory effects of dopamine, but more electrophysiological evidence is necessary to
relate these effects to faster phasic dopaminergic responses. Third, the present data were
collected during an eyes-open resting state scan, which may potentially entail different neu-
rocognitive demands than eyes-closed, including recruitment of visuomotor and attention
networks (Jao et al., 2013; Patriat et al., 2013).

3.6.5 Summary

Our results support a link between local node dynamics and network architecture. Phar-
macological perturbation may selectively target and disconnect specific networks without
altering their internal cohesion. These results demonstrate that the effect of dopamine on
synaptic signaling ultimately manifests at the level of large-scale brain networks.
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Figure S3.1: Replicating results using alternative parcellation resolutions | In all parcellation resolu-
tions, PLS analysis identifies a contrast between the patterns of signal variability in depletion (APTD)
vs. non-depletion (BAL) conditions, (permuted p-values for the 5 resolutions from 83 nodes to 1015
nodes are as following: p = 0.047, p = 0.023, p = 0.006, p = 0.013, and p = 0.014). Changes in signal
variability of each node is given by a bootstrap ratio for that node, such that a positive bootstrap ratio
shows increased variability of the node following dopamine depletion, while a negative bootstrap ratio
shows the opposite. The bootstrap ratios are ordered and depicted at all resolutions by bar graphs (first
row) and on each node of the brain network (second row).
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Figure S3.2: Choosing parameters for sample entropy analysis | The whole analysis was repeated
several times to ensure that results are not affected by the choice of parameters used to estimate signal
variability. For this purpose, signal variability was calculated for various m and r values. Results of
each m and r value were subjected to PLS analysis and new bootstrap ratios were estimated each time.
(a) New bootstrap ratios estimated for varying similarity criterion, r, were correlated with original
bootstrap ratios that were estimated with r = 0.5 × SD. The correlation coefficient at each r is shown in
this figure. Note that pattern length was kept constant as m = 2. The correlation of bootstrap ratios
for r = 0.4 × SD and r = 0.6 × SD with the original bootstrap ratios (r = 0.5 × SD) are shown as
examples. (b) Keeping similarity criterion unchanged at r = 0.5 × SD, the correlation coefficients of new
bootstrap ratios for varying pattern length, m, with original bootstrap ratio with m = 2 were estimated.
Correlation of bootstrap ratios for m = 1 and m = 3 with original bootstrap ratios (m = 2) are depicted
to show examples of varying m.
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Figure S3.3: Replicating results using alternative network partitions | Mean local signal variability and
mean functional connectivity across nodes were estimated at each resting state brain network using two
of other well-known community assignments defined by (a) Yeo and colleagues (Yeo et al., 2011), and (b)
Power and colleagues (Power et al., 2011). The significance of the mean signal variability and functional
connectivity in each network was determined by 10,000 permutation tests. Mean network-wise changes
in functional connectivity and local variability were correlated (scatter plots; r = −0.93 in (a) and
r = −0.60 in (b)). The results are consistent with Figure 3.3 and Figure 3.4, confirming that our analysis
is independent from the methods used to identify community assignments.

Figure S3.4: Sample entropy versus standard deviation | Sample entropy (SE) and standard deviation
(SD) of the BOLD signal at each brain region were calculated and correlated for (a) BAL (no dopamine
depletion) and (b) APTD (dopamine depletion) conditions. SE and SD are anti-correlated in both
conditions, such that larger SE of the BOLD signal in a brain region corresponds to smaller SD. (c)
Changes in sample entropy (∆SE) and standard deviation (∆SD), following dopamine depletion, are
also anti-correlated.
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Figure S3.5: Replicating results after performing global signal regression | The analysis was repeated
following global signal regression. The results are consistent with the ones shown before: (a) Mean
signal variability increases significantly in the somatomotor and salience networks following dopamine
depletion. (b) Changes in mean signal variability are depicted for somatomotor and salience networks
(significance obtained by permutation tests; FDR corrected). (c) Mean functional connectivity signifi-
cantly decreases in somatomotor and salience networks following dopamine depletion. (d) Changes in
mean functional connectivity are depicted for somatomotor and salience networks (significance obtained
by permutation tests; FDR corrected). SM = somatomotor, SAL = salience, FPN = fronto-parietal, VA =
ventral attention, SUB = subcortical areas, DMN = default mode, VIS = visual, DA = dorsal attention,
TEM = temporal.
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4.1 Preface

Contemporary theories of brain structure and function emphasize systematic variation
in cytological properties across the cortex, including neuron density, dendritic branching
and excitability. These microscale gradients are concomitant with macroscale variation in
anatomical connectivity and functional interactions among neuronal populations. How-
ever, the dynamic consequences of these microscale and macroscale gradients remain
unknown. Most of the conventional computational analyses use a single measure or a
few specific, manually selected measures of intrinsic dynamics to characterize regional
neural activity. However, the time-series analysis literature is vast and interdisciplinary,
providing additional metrics of temporal structure of regional brain activity. The work
presented here expands on Chapter 3 and, rather than manually selecting a few measures,
attempts to comprehensively chart intrinsic dynamics across the cerebral cortex, mapping

https://doi.org/10.7554/elife.62116
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temporal organization to structural and functional brain organization. This work was
published in eLife in 2020 (Shafiei et al., 2020b).

4.2 Abstract

The intrinsic dynamics of neuronal populations are shaped by both microscale attributes
and macroscale connectome architecture. Here we comprehensively characterize the rich
temporal patterns of neural activity throughout the human brain. Applying massive
temporal feature extraction to regional haemodynamic activity, we systematically esti-
mate over 6,000 statistical properties of individual brain regions’ time-series across the
neocortex. We identify two robust spatial gradients of intrinsic dynamics, one spanning a
ventromedial-dorsolateral axis and dominated by measures of signal autocorrelation, and
the other spanning a unimodal-transmodal axis and dominated by measures of dynamic
range. These gradients reflect spatial patterns of gene expression, intracortical myelin
and cortical thickness, as well as structural and functional network embedding. Impor-
tantly, these gradients are correlated with patterns of meta-analytic functional activation,
differentiating cognitive versus affective processing and sensory versus higher-order cog-
nitive processing. Altogether, these findings demonstrate a link between microscale and
macroscale architecture, intrinsic dynamics, and cognition.

4.3 Introduction

The brain is a complex network of anatomically connected and perpetually interacting neu-
ronal populations (Sporns et al., 2005). Inter-regional connectivity promotes signaling via
electrical impulses, generating patterned electrophysiological and haemodynamic activity
(Avena-Koenigsberger et al., 2018; Suárez et al., 2020). Neuronal populations are organized
into a hierarchy of increasingly polyfunctional neural circuits (Bazinet et al., 2020; Hilgetag
and Goulas, 2020; Jones and Powell, 1970; Mesulam, 1998), manifesting as topographic
gradients of molecular and cellular properties that smoothly vary between unimodal and
transmodal cortices (Huntenburg et al., 2018). Recent studies have demonstrated cortical
gradients of gene transcription (Burt et al., 2018; Fulcher et al., 2019), intracortical myelin
(Huntenburg et al., 2017), cortical thickness (Wagstyl et al., 2015) and laminar profiles
(Paquola et al., 2019).

The topological and physical embedding of neural circuits in macroscale networks and
microscale gradients influence their dynamics (Gollo et al., 2015; Kiebel et al., 2008; Wang,
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2020). For a neuronal population, the confluence of local micro-architectural properties and
global connectivity shapes both the generation of local rhythms, as well as its propensity to
communicate with other populations. Specifically, cell type composition, their morphology
and their configuration in local circuits determine how signals are generated, transmitted
and integrated (Payeur et al., 2019). These micro-architectural properties – increasingly
measured directly from histology or inferred from other measurements, such as microarray
gene expression – provide a unique opportunity to relate circuit architecture to temporal
dynamics and computation. Indeed, multiple studies have focused on how intrinsic
timescales vary in relation to microscale and macroscale attributes (Gao et al., 2020; Ito et
al., 2020; Mahjoory et al., 2019; Murray et al., 2014; Raut et al., 2020; Shine et al., 2019). The
primary functional consequence of this hierarchy of timescales is thought to be a hierarchy
of temporal receptive windows: time windows in which a newly arriving stimulus will
modify processing of previously presented (i.e. contextual) information (Baldassano et al.,
2017; Chaudhuri et al., 2015; Chien and Honey, 2020; Hasson et al., 2008; Honey et al.,
2012; Huntenburg et al., 2018). Thus, areas at the bottom of the hierarchy preferentially
respond to immediate changes in the sensory environment, while responses in areas at the
top of the hierarchy are modulated by prior context. Altogether, previous work highlights
a hierarchy of a small number of manually selected time-series features, but it is possible
that different types of local computations manifest as different organizational gradients.

The relationship between structure and dynamics is also observed at the network
level (Suárez et al., 2020). Intrinsic or “resting state” networks possess unique spectral
fingerprints (Keitel and Gross, 2016). The signal variability of brain areas, measured in
terms of standard deviations or temporal entropy, is closely related to their structural and
functional connectivity profiles (i.e. network embedding) (Burzynska et al., 2013; Garrett et
al., 2017; Misic et al., 2011; Shafiei et al., 2019). More generally, the autocorrelation of blood
oxygenation level-dependent (BOLD) signal is correlated with topological characteristics
of structural brain networks, such that areas with greater connectivity generate signals
with greater autocorrelation (Fallon et al., 2020; Sethi et al., 2017). Finally, in computational
models of structurally coupled neuronal populations (neural mass and neural field models
(Breakspear, 2017)), highly interconnected hubs exhibit slower dynamic fluctuations, while
sensory areas exhibit fast fluctuating neural activity (Gollo et al., 2015). Indeed, these
models offer better fits to empirical functional connectivity if they assume heterogeneous
local dynamics (Cocchi et al., 2016; Deco et al., 2020; Demirtaş et al., 2019; Wang et al.,
2019).

Altogether, multiple lines of evidence suggest that local computations may reflect
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Figure 4.1: Temporal phenotyping of regional dynamics | The highly comparative time-series analysis
toolbox, hctsa (Fulcher and Jones, 2017; Fulcher et al., 2013), was used to extract 6,441 time-series
features of the parcellated time-series for each brain region and participant, including measures of
autocorrelation, variance, spectral power, entropy, etc. Regional time-series profiles were then entered
into two types of analyses. In the first analysis, pairs of regional time-series feature vectors were
correlated to generate a region × region temporal profile similarity network. In the second analysis,
principal component analysis (PCA) was performed to identify orthogonal linear combinations of
time-series features that vary maximally across the cortex.

systematic variation in microscale properties and macroscale network embedding, mani-
festing as diverse time-series features of regional neural activity. How molecular, cellular
and connectomic architecture precisely shapes temporal dynamics, and ultimately, cortical
patterns of functional specialization, is poorly understood. A significant limitation is that
conventional computational analysis is based on specific, manually selected time-series
features, such as the decay of the autocorrelation function, bands of the Fourier power
spectrum, or signal variance. Yet the time-series analysis literature is vast and interdisci-
plinary; how do other metrics of temporal structure vary across the brain and what can
they tell us about cortical organization?

Here we comprehensively chart summary features of spontaneous BOLD signals across
the cerebral cortex (hereafter referred to as “intrinsic dynamics”), mapping temporal
organization to structural organization. We apply massive temporal feature extraction to
resting state BOLD signals to derive a near-exhaustive time-series profile for each brain
region. We then systematically investigate the relationship between local time-series
features and gene expression, microstructure, morphology, structural connectivity and
functional connectivity. Finally, we map time-series features to a meta-analytic atlas of
cognitive ontologies to investigate how temporal dynamics shape regional functional
specialization. We show that intrinsic dynamics reflect molecular and cytoarchitectonic



CHAPTER 4. TOPOGRAPHIC GRADIENTS OF INTRINSIC DYNAMICS 54

gradients, as well as patterns of structural and functional connectivity. These spatial
variations in intrinsic dynamics ultimately manifest as patterns of distinct psychological
functions.

4.4 Results

All analyses were performed on four resting state fMRI runs from the Human Connec-
tome Project (Van Essen et al., 2013). The data were pseudorandomly divided into two
samples of unrelated participants to form Discovery and Validation samples with n = 201
and n = 127, respectively (Wael et al., 2018). External replication was then performed
using data from the Midnight Scan Club (Gordon et al., 2017). Massive temporal feature
extraction was performed using highly comparative time-series analysis, hctsa (Fulcher
and Jones, 2017; Fulcher et al., 2013), yielding 6,441 features per regional time-series,
including measures of frequency composition, variance, autocorrelation, fractal scaling
and entropy (Figure 4.1). The results are organized as follows. We first investigate whether
regions that are structurally and functionally connected display similar intrinsic dynamics.
We then characterize the topographic organization of time-series features in relation to
microstructural attributes and cognitive ontologies.

4.4.1 Inter-regional temporal profile similarity reflects network

geometry and topology

We first assessed the extent to which intrinsic dynamics depend on inter-regional physical
distance, anatomical connectivity and functional connectivity. We estimated similarity
between inter-regional dynamics by computing Pearson correlation coefficients between
regional time-series feature vectors (Figure 4.1). Two regional time-series are judged to
be similar if they have similar temporal profiles, estimated across a comprehensive and
diverse set of time-series features (e.g. similar entropy, stationarity, linear correlation
properties) (Fulcher, 2018). This measure of similarity identifies pairs of regions that
have similar dynamical features, but not necessarily coherent or synchronous dynamics
(Figure 4.2a). We refer to correlations between regional time-series feature profiles as
“temporal profile similarity”.

Figure 4.2b shows a negative exponential relationship between spatial proximity and
temporal profile similarity, meaning that regions that are spatially close exhibit similar
intrinsic dynamics. Interestingly, regions that share an anatomical projection have greater
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Figure 4.2: Inter-regional temporal profile similarity reflects network geometry and topology |
(a) Temporal profile similarity networks are constructed by correlating pairs of regional time-series
feature vectors. Brain regions are ordered based on their intrinsic functional network assignments
(Schaefer et al., 2018; Yeo et al., 2011). (b) Temporal profile similarity between regions significantly
decreases as a function of Euclidean distance between them. The black line represents an exponential
fit as y = 0.37e−0.03x + 0.01, where y is temporal profile similarity and x is Euclidean distance. (c,
d) Regional time-series features are compared between pairs of cortical areas using their structural
and functional connectivity profiles. Pairwise temporal profile similarity is significantly higher among
structurally-connected areas (c), and among regions that belong to the same intrinsic functional networks
(d). Asterisks denote a statistically significant difference of the means (two-tailed t-test; p ≈ 0). For
structural networks, statistical significance of the difference of the mean temporal profile similarity
of connected and unconnected node pairs is also assessed against a null distribution of differences
generated from a population degree- and edge length-preserving rewired networks (Betzel and Bassett,
2018)(c, right-most panel). For functional networks, statistical significance of the difference of the mean
temporal profile similarity of within and between intrinsic networks is also assessed against a null
distribution of differences generated by spatial autocorrelation-preserving label permutation (“spin
tests”; (Alexander-Bloch et al., 2018))(d, right-most panel). (e) Temporal profile similarity is positively
correlated with functional connectivity. This relationship remains after partialling out Euclidean
distance between regions from both measures using exponential trends. rs denotes the Spearman rank
correlation coefficient; linear regression lines are added to the scatter plots for visualization purposes
only. Connections are colour-coded based on the intrinsic network assignments (Schaefer et al., 2018;
Yeo et al., 2011). VIS = visual, SM = somatomotor, DA = dorsal attention, VA = ventral attention, LIM =
limbic, FP = fronto-parietal, DMN = default mode.

temporal profile similarity than those that do not (Figure 4.2c; two-tailed t-test; t(79, 798) =
40.234, p ≈ 0). To test whether this anatomically-mediated similarity of time-series features
is not due to spatial proximity, we performed two additional comparisons. First, we
regressed out the exponential trend identified above from the temporal profile similarity
matrix, and repeated the analysis on the residuals, yielding a significant difference in
temporal profile similarity between connected and non-connected regions (two-tailed



CHAPTER 4. TOPOGRAPHIC GRADIENTS OF INTRINSIC DYNAMICS 56

t-test; t(79, 798) = 9.916, p ≈ 0). Second, we generated an ensemble of 10,000 degree-
and edge length-preserving surrogate networks (Betzel and Bassett, 2018), and compared
the difference of the means between connected and non-connected pairs in the empirical
and surrogate networks. Again, we observe a significant difference in temporal profile
similarity between connected and non-connected regions (two-tailed; prewired = 0.0001;
Figure 4.2c).

Likewise, regions belonging to the same intrinsic functional network have greater
temporal profile similarity compared to regions in different networks (Figure 4.2d; two-
tailed t-test; t(79, 798) = 61.093, p ≈ 0). To confirm this finding is not driven by spatial
proximity, we repeated the analysis with distance-residualized values (Mišić et al., 2014),
finding a significant difference (two-tailed t-test; t(79, 798) = 47.112, p ≈ 0). We also
repeated the analysis using a nonparametric label-permutation null model with preserved
spatial autocorrelation (10,000 repetitions) (Alexander-Bloch et al., 2018; Markello and
Misic, 2020), again finding significantly greater within- compared to between-network
temporal profile similarity (two-tailed; pspin = 0.006; Figure 4.2d). These results are
consistent when applying the 17 network partition of intrinsic networks (Schaefer et al.,
2018; Yeo et al., 2011) (Figure S4.1).

More generally, we find a weak positive correlation between temporal profile similarity
and functional connectivity (original: Spearman rank rs = 0.23, p ≈ 0; distance-corrected:
rs = 0.18, p ≈ 0; Figure 4.2e), suggesting that areas with similar time-series features
exhibit coherent spontaneous fluctuations, but that the two are only weakly correlated.
Figure 4.2e shows the correlation between temporal profile similarity and functional
connectivity; points represent node pairs and are coloured by their membership in intrinsic
networks (Schaefer et al., 2018; Yeo et al., 2011). The results are consistent when functional
connectivity is estimated using partial correlations (Figure S4.2). In other words, two
regions could display similar time-series features, but they do not necessarily fluctuate
coherently. Thus, representing time-series using sets of features provides a fundamentally
different perspective compared to representing them as the raw set of ordered BOLD
measurements.

As a final step, we sought to assess the distinct contributions of distance, structural
connectivity and functional connectivity to temporal profile similarity. Dominance analysis
revealed the relative importance of each predictor (collective R2 = 0.28; distance = 56%,
structural connectivity = 20.4%, functional connectivity = 23.6%; Table S4.1), suggesting
that distance contributes the most to temporal profile similarity, while structural and func-
tional connectivity make distinct but approximately even contributions (Azen and Budescu,
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2003; Budescu, 1993) (https://github.com/dominance-analysis/dominance-analysis).
Altogether, we find that the organization of intrinsic dynamics is closely related to both
the geometric and topological embedding of brain regions in macroscale networks.

4.4.2 Two distinct spatial gradients of intrinsic dynamics

We next investigate the topographic organization of time-series features. The hctsa library
generates 6,441 time-series features, with the aim of being comprehensive in coverage
across scientific time-series analysis algorithms and, as a result, contains groups of features
with correlated outputs (Fulcher et al., 2013). We therefore sought to identify groups of
correlated features that explain maximal variance and that span different conceptual types
of time-series properties. Applying principal component analysis (PCA; Scikit-learn (Pe-
dregosa et al., 2011)) to the region × feature matrix yielded mutually orthogonal patterns
of intrinsic dynamics (Figure 4.1), with the top two components collectively accounting for
more than 70% of the variance in time-series features (Figure 4.3a). Figure 4.3a shows the
spatial distribution of the top two components. The first component (PC1) mainly captures
differential intrinsic dynamics along a ventromedial-dorsolateral gradient, separating
occipital-parietal cortex and anterior temporal cortex. The second component (PC2) cap-
tures a unimodal-transmodal gradient, reminiscent of recently reported miscrostructural
and functional gradients (Huntenburg et al., 2018). Both components show considerable
hemispheric symmetry. In the following sections, we focus on these two components
because of their (a) effect size (percent variance accounted for), (b) close resemblance
to previously reported topographic gradients, and (c) reproducibility (only the first two
components were reproducible in both the HCP and MSC datasets; see Sensitivity and
replication analyses below). Note that neither spatial maps were significantly correlated
with temporal signal-to-noise ratio map, computed as the ratio of the time-series mean to
standard deviation (tSNR; PC1: rs = 0.28, pspin = 0.19; PC2: rs = 0.21, pspin = 0.16).

Which time-series features contribute most to these topographic gradients of intrinsic
dynamics? To address this question, we systematically assess the feature composition
of PC1 and PC2. We compute univariate correlations (i.e. loadings) between individual
time-series feature vectors and PC scores (Figure 4.3b). Each loading is assessed against
10,000 spin tests and the results are corrected for multiple comparisons by controlling
the false discovery rate (FDR (Benjamini and Hochberg, 1995); α = 0.001). The top 5%
positively and negatively correlated features are shown in word clouds. The complete list of
features (ranked by loading), their definitions, loadings and p-values for both components
is presented in machine-readable format in online Supplementary Files 3,4. Altogether,

https://github.com/dominance-analysis/dominance-analysis
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Figure 4.3: Topographic gradients of intrinsic dynamics | (a) PCA analysis identified linear combi-
nations of time-series features with maximum variance across the cortex. Collectively, the first two
components (PC1 and PC2) account for 75% of the total variance. To estimate the extent to which
cortical regions display the patterns of intrinsic dynamics, hctsa matrices were projected back onto the
PC weights (eigenvectors), yielding spatial maps of brain scores. Spatial maps are depicted based on
the standard deviation σ of their respective distributions. (b) To understand the feature composition
of the intrinsic dynamic patterns, feature loadings were computed by correlating individual hctsa
feature vectors with the PC score maps. Time-series features are ordered by their individual loadings.
Grey indicates non-significance based on 10,000 spatial permutation tests (FDR corrected). Features
corresponding to the top and bottom 5% are visualized using word clouds. Complete lists of features,
their definitions, correlations and p-values are presented in machine-readable format in online Supple-
mentary Files 3,4. Feature nomenclature in hctsa is organized such that the term prefix indicates the
broad class of measures (e.g. AC = autocorrelation, DN = distribution) and the term suffix indicates
the specific measure (for a complete list, see https://hctsa-users.gitbook.io/hctsa-manual). (c)
Spatial distributions of two high-loading representative time-series features are depicted for each compo-
nent, including lag-1 linear autocorrelation (AC_1) and lag-[0,2,3] nonlinear autocorrelation (AC_nl_023,
estimated as average < xt

2xt−2xt−3 > across time-series x) for PC1; and kurtosis (DN_Moments_4)
and entropy (EN_DistributionEntropy_ks__02) of the time-series points distribution for PC2. To build
intuition about what each component reflects about regional signals, three regional time-series from one
participant are selected based on their lag-1 autocorrelation and kurtosis (circles on the brain surface:
pink = 5th percentile, green = 50th percentile, purple = 95th percentile).

https://hctsa-users.gitbook.io/hctsa-manual
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we find that PC1 is sensitive to temporal dependencies in BOLD signals, while PC2 is
sensitive to the distribution shape of time-series amplitudes. For PC1, in line with previous
reports, we observe strong contributions from multiple measures of autocorrelation (e.g.
linear autocorrelation; nonlinear autocorrelation; automutual information). Short-lag
autocorrelation measures load positively, while long-lag autocorrelation measures load
negatively, consistent with the notion that autocorrelation decays with increasing time
lag (Gao et al., 2020; Murray et al., 2014; Raut et al., 2020) (Figure S4.3). For PC2, we
observe strong contributions from measures of distribution shape, captured by measures of
distributional entropy (e.g. entropy of kernel-smoothed distribution; kurtosis; distribution
balance about the mean). In other words, PC2 captures the spread of time-series amplitudes
away from the mean. Interestingly, none of the odd moments (distribution asymmetry) are
high in the PC2 loading list, just even moments, suggesting that PC2 captures the shape
of the deviations of time-series data points in both directions from the mean. Thus, PC2
indexes the range or diversity of values that a regional time-series can realize. Hereafter,
we refer to the time-series profile of PC1 as “autocorrelation” and PC2 as “dynamic range”.

To illustrate the spatial organization and time-series attributes of these components,
Figure 4.3c shows the spatial distributions of two high-loading representative time-series
features for each component. Ventromedial areas (lower in the PC1 gradient) have lower
linear and nonlinear autocorrelation, while doroslateral areas (higher in the PC1 gradient)
have greater autocorrelation. Sensory areas (lower in the PC2 gradient) have greater
distributional entropy and kurtosis, while transmodal areas (higher in the PC2 gradient)
have lower distributional entropy and kurtosis. Finally, to build intuition about what
each component reflects about regional signals, we select three regional time-series from
one participant based on their lag-1 autocorrelation and kurtosis (Figure 4.3c; pink = 5th

percentile, green = 50th percentile, purple = 95th percentile). For the former, going from
low-ranked to high-ranked regions results in a slowing down of BOLD fluctuations. For
the latter, going from low-ranked to high-ranked regions results in increasingly heavier
symmetric tails of the signal amplitude distributions.

4.4.3 Intrinsic dynamics reflect microscale and macroscale hierarchies

To assess whether the dominant variation in time-series features of BOLD dynamics
varies spatially with structural and functional gradients, we next quantify the concor-
dance between PC1/PC2 and multiple microstructural and functional attributes (Fig-
ure 4.4). Specifically, we compare PC1 and PC2 with the following microscale and
macroscale features: (1) the first component of microarray gene expression computed
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Figure 4.4: Hierarchical organization of intrinsic dynamics | PC1 and PC2 brain score patterns are
compared with four molecular, microstructural and functional maps. These maps include the first
principal component of microarray gene expression data from the Allen Human Brain Atlas (Burt et al.,
2018; Hawrylycz et al., 2012), the first (principal) gradient of functional connectivity estimated using
diffusion map embedding (Coifman et al., 2005; Langs et al., 2015; Margulies et al., 2016), group-average
T1w/T2w ratio, and group-average cortical thickness. The three latter indices were computed from the
HCP dataset (Van Essen et al., 2013). Statistical significance of the reported Spearman rank correlation rs
is assessed using 10,000 spatial permutations tests, preserving the spatial autocorrelation in the data
(“spin tests”; (Alexander-Bloch et al., 2018)). Linear regression lines are added to the scatter plots for
visualization purposes only.

from the Allen Institute Human Brain Atlas (Burt et al., 2018; Hawrylycz et al., 2012)
using PCA analysis, (2) the principal gradient of functional connectivity estimated using
diffusion map embedding (Coifman et al., 2005; Langs et al., 2015; Margulies et al., 2016)
(https://github.com/satra/mapalign), (3) T1w/T2w ratio, a putative proxy for intracor-
tical myelin (Huntenburg et al., 2017), (4) cortical thickness (Wagstyl et al., 2015). We use
Spearman rank correlations (rs) throughout, as they do not assume a linear relationship
among variables. Given the spatially autocorrelated nature of both hctsa features and

https://github.com/satra/mapalign
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other imaging features, we assess statistical significance with respect to nonparametric
spatial autocorrelation-preserving null models (Alexander-Bloch et al., 2018; Markello and
Misic, 2020).

PC1 topography is correlated with the first principal component of gene expression
(rs = 0.57, pspin = 0.03), but no other attributes. PC2 topography is significantly correlated
with the first principal component of gene expression (rs = −0.45, pspin = 0.0008), with
the principal gradient of functional connectivity (rs = 0.77, pspin = 0.0001), with T1w/T2w
ratio (rs = −0.57, pspin = 0.0001), and with cortical thickness (rs = 0.43, pspin = 0.008).
Altogether, the two topographic gradients of intrinsic dynamics closely mirror molecular
and microstructural gradients, suggesting a link between regional structural properties
and regional dynamical properties. Figure S4.4 further confirms this intuition, showing
the mean score of each component for three well-known cortical partitions, including
intrinsic functional networks (Schaefer et al., 2018; Yeo et al., 2011), cytoarchitectonic
classes (Economo and Koskinas, 1925; Economo et al., 2008; Vértes et al., 2016) and laminar
differentiation levels (Mesulam, 2000).

For completeness, we also tested associations with two maps that were previously
related to cortical hierarchies: evolutionary expansion (indexing enlargement of cortical
areas in the human relative to the macaque) (Baum et al., 2020; Hill et al., 2010) and node-
wise functional participation coefficient (indexing the diversity of a node’s links) (Baum
et al., 2020; Bertolero et al., 2017). PC2 is significantly correlated with evolutionary expan-
sion (rs = 0.52, pspin = 0.0002), but neither component is correlated with participation
coefficient (Figure S4.5).

4.4.4 Spatial gradients of intrinsic dynamics support distinct functional

activations

Given that topographic patterns of intrinsic dynamics run parallel to microstructural
and functional gradients, and are marked by specific time-series features, we next asked
whether these topographic patterns of intrinsic dynamics are related to patterns of func-
tional activation and psychological processes. To address this question, we used Neu-
rosynth to derive probability maps for multiple psychological terms (Yarkoni et al., 2011).
The term set was restricted to those in the intersection of terms reported in Neurosynth
and in the Cognitive Atlas (Poldrack et al., 2011), yielding a total of 123 terms (Table S4.2).
Each term map was correlated with the PC1 and PC2 score maps to identify topographic
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Figure 4.5: Spatial gradients of intrinsic dynamics support distinct functional activations | We used
Neurosynth to derive probability maps for multiple psychological terms (Yarkoni et al., 2011). The term
set was restricted to those in the intersection of terms reported in Neurosynth and in the Cognitive
Atlas (Poldrack et al., 2011), yielding a total of 123 terms (Supplementary File S4.2). Each term map was
correlated with the PC1 (a) and PC2 (b) score maps to identify topographic distributions of psychological
terms that most closely correspond to patterns of intrinsic dynamics. Grey indicates non-significance
based on 10,000 spatial permutation tests (Bonferroni correction, α = 0.05). Statistically significant terms
are shown on the right.

distributions of psychological terms that most closely correspond to patterns of intrin-
sic dynamics (Bonferroni corrected, α = 0.05; Figure 4.5). Consistent with the intuition
developed from comparisons with intrinsic networks, PC1 intrinsic dynamics mainly
defined a cognitive-affective axis (e.g. “attention” versus “stress”, “fear”, “loss”, “emotion”;
Figure 4.5a), while PC2 dynamics defined a sensory-cognitive axis (e.g. “perception”, “mul-
tisensory”, “facial expression” versus “cognitive control”, “memory retrieval”, “reasoning”;
Figure 4.5b).
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4.4.5 Sensitivity and replication analyses

As a final step, we sought to assess the extent to which the present findings are replicable
under alternative processing choices and in other samples (Figure 4.6). For all comparisons,
we correlated PC1 and PC2 scores and weights obtained in the original analysis and in
each new analysis. Significance was assessed using spatial autocorrelation preserving nulls
as before. We first replicated the results in individual subjects in the Discovery sample by
applying PCA to individual region × feature matrices and aligning PCA results through an
iterative process using Procrustes rotations (https://github.com/satra/mapalign (Langs
et al., 2015)). The mean individual-level PC scores and weights were then compared
to the original findings (Figure 4.6a). We next replicated the results by repeating the
analysis after grey-matter signal regression (similar to global signal regression as the global
signal is shown to be a grey-matter specific signal following sICA+FIX) (Glasser et al.,
2016, 2018), with near identical results (Figure 4.6b). To assess the extent to which results
are influenced by choice of parcellation, we repeated the analysis using the 68-region
Desikan-Killiany anatomical atlas (Desikan et al., 2006), which were then further divided
into 200 approximately equally-sized cortical areas. Again, we find near-identical results
(Figure 4.6c).

In the last two analyses we focused on out-of-sample validation. We first repeated the
analysis on the held-out Validation sample of n = 127 unrelated HCP subjects, with similar
results (Figure 4.6d). Finally, we repeated the analysis using data from the independently
collected Midnight Scan Club (MSC) dataset, again finding highly consistent results
(Figure 4.6e).

https://github.com/satra/mapalign
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a | subject-level analysis

b | grey-matter signal regression

c | anatomical parcellation (200 nodes)

d | HCP validation dataset

e | Midnight Scan Club (MSC) dataset
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Figure 4.6: Sensitivity and replication analyses | For all comparisons, we correlated PC1 and PC2
scores and weights obtained in the original analysis and in each new analysis. Significance was assessed
using spatial autocorrelation preserving nulls. Specific analyses include: (a) comparing group-level and
individual subject-level results, (b) comparing data with and without grey-matter signal regression, (c)
comparing functional (Schaefer) and anatomical parcellations (Desikan-Killiany), (d) comparing HCP
Discovery and Validation datasets, (e) comparing HCP Discovery and Midnight Scan Club datasets.
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4.5 Discussion

In the present report, we comprehensively characterize intrinsic dynamics across the cortex,
identifying two robust spatial patterns of time-series features. The patterns, capturing
spatial variation in signal autocorrelation and dynamic range, follow microscale gradients
and macroscale network architecture. Importantly, the two patterns underlie distinct
psychological axes, demonstrating a link between brain architecture, intrinsic dynamics,
and cognition. These findings are robust against a wide range of methodological choices
and were validated in two held-out samples.

Our results demonstrate that regional haemodynamic activity, often overlooked in
favour of electrophysiological measurements with greater temporal resolution, possesses
a rich dynamic signature (Bolt et al., 2018; Garrett et al., 2013; Li et al., 2019; Lurie et
al., 2020; Preti et al., 2017; Uddin, 2020). While multiple reports have suggested the
existence of a timescale or temporal receptive window hierarchy (Golesorkhi et al., 2020;
Hasson et al., 2008; Honey et al., 2012; Ito et al., 2020; Kiebel et al., 2008; Murray et
al., 2014; Watanabe et al., 2019), these investigations typically involved (a) incomplete
spatial coverage, making it difficult to quantitatively assess correspondence with other
microscale and macroscale maps, and (b) a priori measures of interest, such as spectral
power or temporal autocorrelation, potentially obscuring other important dynamical
features. Here we comprehensively benchmark the entire dynamic profile of the brain,
by near-exhaustively estimating 6000+ features from the wider time-series literature. We
identify a much broader spectrum of time-series features that relate to microstructure,
connectivity and behavior. As we discuss below, feature-based time-series phenotyping
offers a powerful, fundamentally new and entirely data-driven method to quantify and
articulate neural dynamics.

Applying a data-driven feature extraction method to high-resolution BOLD fMRI,
we decompose regional signals into two intrinsic modes, with distinct topographic or-
ganization and time-series features. One pattern, characterized by variation in signal
autocorrelation, follows a ventromedial-dorsolateral gradient, separating the limbic and
paralimibic systems from posterior parietal cortex. Another pattern, characterized by
dynamic range, follows a unimodal-transmodal gradient, separating primary sensory-
motor cortices from association cortex. The first is closely associated with gene expression
PC1 (itself closely related to cell type composition, synaptic physiology and cortical cy-
toarchitecture (Burt et al., 2018)), suggesting a molecular and cellular basis for regional
differences in temporal autocorrelation. The second is closely associated with the principal
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functional gradient, as well as with intracortical myelin and cortical thickness, suggesting
that the dynamic range of BOLD signals is related to regional variation in macroscale cir-
cuit organization. Taken together, we find evidence that molecular and cellular properties
(gene expression PC1) relate to regional autocorrelation, while micro-circuit properties
(T1w/T2w, cortical thickness) and macroscale network embedding (principal functional
gradient) relate to regional dynamic range.

An emerging literature emphasizes the hierarchical organization of neural systems,
whereby systematic variation in laminar architecture across the cortical sheet is mirrored
by multiple cytological properties, including neuron density, spine count, branching and
neurotransmitter receptor profiles (Hilgetag and Goulas, 2020; Margulies et al., 2016;
Mesulam, 1998). These variations manifest as spatially ordered gradients of structural
and functional attributes (Huntenburg et al., 2018), including gene expression (Burt et al.,
2018; Fulcher et al., 2019; Hansen et al., 2020), cortical thickness (Wagstyl et al., 2015),
intracortical myelin (Huntenburg et al., 2017), laminar differentiation (Paquola et al., 2019;
Wagstyl et al., 2020) and excitability (Demirtaş et al., 2019; Markicevic et al., 2020; Straub
et al., 2020; Wang, 2020). Indeed, we find that the two patterns of intrinsic dynamics are
closely related to gene expression, intracortical myelin and cortical thickness. Our results
build on this literature, demonstrating that microscale and connectional hierarchies leave
an indelible mark on intrinsic dynamics (Lurie and D’Esposito, 2020), perhaps through
variation in local excitability (Deco et al., 2020; Demirtaş et al., 2019; Wang et al., 2019;
Wang, 2020). How these patterns are related to underlying cell types and subcortical
afferent input – in particular, thalamocortical feedback – is an important ongoing question
(Abeysuriya et al., 2015; Garrett et al., 2018; Muller et al., 2020; Paquola et al., 2020; Shine
et al., 2019; Wang et al., 2019).

Importantly, the two patterns are related to two dominant axes of meta-analytic func-
tional activation. We show that topographic variations in microcircuitry and connectomic
embedding yield variations in intrinsic dynamics and may explain regional differences
in functional specialization. The ventromedial-dorsolateral autocorrelation pattern differ-
entiates affective versus cognitive activation (mainly visual cognition and visuo-spatial
attention), whereas the unimodal-transmodal dynamic range pattern differentiates pri-
mary sensory versus higher-order cognitive processing. Collectively, these results provide
evidence that local computations reflect systematic variation in multiple anatomical circuit
properties, and can be measured as unique temporal signatures in regional activity and
patterns of functional specialization.

More generally, the present findings are part of a larger trend in the field to understand



CHAPTER 4. TOPOGRAPHIC GRADIENTS OF INTRINSIC DYNAMICS 67

structure-function relationships by considering molecular (Anderson et al., 2018; Fulcher
and Fornito, 2016; Richiardi et al., 2015; Zheng et al., 2019), cellular (Anderson et al., 2020;
Muller et al., 2020; Scholtens et al., 2014; Shafiei et al., 2020a) and physiological (Fallon
et al., 2020; Sethi et al., 2017) attributes of network nodes, thereby conceptually linking
local and global brain organization (Khambhati et al., 2018; Suárez et al., 2020). In such
“annotated networks”, macroscale network architecture is thought to reflect similarity in
local properties, and vice versa, such that areas with similar properties are more likely
to be anatomically connected and to functionally interact with one another (Beul et al.,
2017; Goulas et al., 2019; Hilgetag et al., 2019; Wei et al., 2018). Indeed, we find that
two regions are more likely to display similar intrinsic dynamics if they are anatomically
connected and if they are part of the same functional community, suggesting that network
organization and local intrinsic dynamics are intertwined (Cocchi et al., 2016; Gollo et al.,
2015). A significant corollary of the present work is that functional connectivity – presently
conceptualized as coherent fluctuations in neural activity and operationalized as correlated
BOLD values over time – misses out on an important set of inter-regional relationships.
Namely, two regions may display identical time-series profiles, suggesting common circuit
dynamics and function, but unless they also display time-locked activity, current methods
would miss out on this potentially biologically meaningful inter-regional relationship.

The present results are consistent with contemporary theories linking brain struc-
ture and function, but they must be interpreted with respect to several methodological
caveats. First, all analyses were performed on BOLD time-series with lower sampling
rate compared to electromagnetic recordings, potentially obscuring more subtle dynamics
occurring on faster timescales. To mitigate this concern, all analyses were performed in
high-resolution multiband HCP data with multiple runs, and replicated in MSC data, but
in principle, these analyses could be repeated and validated in magnetoencephalographic
recordings (Watanabe et al., 2019). Second, all analyses were performed on haemody-
namic time courses that may not completely reflect the underlying neuronal population
dynamics. Despite this caveat, we observe a close correspondence between the isolated
patterns of intrinsic dynamics and molecular, structural, functional, and psychological
gradients. Third, the pattern of temporal signal-to-noise ratio in the BOLD is known to
be non-uniform, but it is not correlated with the intrinsic dynamics patterns observed
in the present report. Fourth, the analysis included all features from hctsa, potentially
biasing results towards specific properties of BOLD signals. We attempted to mitigate this
challenge by applying PCA to directly examine correlation patterns among features, but
PCA components may still lend greater weight to over-represented feature classes (Fulcher
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et al., 2013). This may obscure the contribution of under-represented feature classes, and
should be investigated further in future work.

Altogether, the present results point towards highly patterned intrinsic dynamics across
the neocortex. These patterns reflect prominent molecular and microstructural gradients,
as well as macroscale structural and functional organization. Importantly, spatial variation
of intrinsic dynamics parallels spatial variation of meta-analytic cognitive functional
activation. These findings demonstrate that structural organization of the brain shapes
patterns of intrinsic dynamics, ultimately manifesting as distinct axes of psychological
processes.

4.6 Methods

4.6.1 Dataset: Human Connectome Project (HCP)

Following the procedure described in (Wael et al., 2018), we obtained structural and
functional magnetic resonance imaging (MRI) data of two sets of healthy young adults
(age range 22-35 years) with no familial relationships (neither within nor between sets) as
Discovery (n = 201) and Validation (n = 127) sets from Human Connectome Project (HCP;
S900 release (Van Essen et al., 2013)). All four resting state fMRI scans (two scans (R/L and
L/R phase encoding directions) on day 1 and two scans (R/L and L/R phase encoding
directions) on day 2, each about 15 minutes long; TR = 720 ms), as well as structural MRI
and diffusion weighted imaging (DWI) data were available for all participants.

4.6.2 HCP Data Processing

All the structural and functional MRI data were pre-processed using HCP minimal pre-
processing pipelines (Glasser et al., 2013; Van Essen et al., 2013). We provide a brief
description of data pre-processing below, while detailed information regarding data acqui-
sition and pre-processing is available elsewhere (Glasser et al., 2013; Van Essen et al., 2013).
The procedure was separately repeated for Discovery and Validation sets.

4.6.2.1 Structural MRI

T1- and T2- weighted MR images were corrected for gradient nonlinearity, and when
available, the images were co-registered and averaged across repeated scans for each
individual. The corrected T1w and T2w images were co-registered and cortical surfaces
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were extracted using FreeSurfer 5.3.0-HCP (Dale et al., 1999; Fischl et al., 1999; Wael et al.,
2018). For each individual, cortical thickness was estimated as the difference between
pial and white matter surfaces and T1w/T2w ratio was calculated as a putative proxy for
intracortical myelin content. The pre-processed data were parcellated into 400 cortical
areas using Schaefer parcellation (Schaefer et al., 2018).

4.6.2.2 Resting state functional MRI

All 3T functional MRI time-series were corrected for gradient nonlinearity, head motion
using a rigid body transformation, and geometric distortions using scan pairs with opposite
phase encoding directions (R/L, L/R) (Wael et al., 2018). Further pre-processing steps
include co-registration of the corrected images to the T1w structural MR images, brain
extraction, normalization of whole brain intensity, high-pass filtering (> 2000s FWHM;
to correct for scanner drifts), and removing additional noise using the ICA-FIX process
(Salimi-Khorshidi et al., 2014; Wael et al., 2018). The pre-processed time-series were then
parcellated into 400 areas as described above. The parcellated time-series were used to
construct functional connectivity matrices as a Pearson correlation coefficient between
pairs of regional time-series for each of the four scans of each participant. A group-average
functional connectivity matrix was constructed as the mean functional connectivity across
all individuals and scans.

4.6.2.3 Diffusion weighted imaging (DWI)

DWI data was pre-processed using the MRtrix3 package (Tournier et al., 2019) (https:
//www.mrtrix.org/). More specifically, fiber orientation distributions were generated
using the multi-shell multi-tissue constrained spherical deconvolution algorithm from
MRtrix (Dhollander et al., 2016; Jeurissen et al., 2014). White matter edges were then
reconstructed using probabilistic streamline tractography based on the generated fiber
orientation distributions (Tournier et al., 2010). The tract weights were then optimized
by estimating an appropriate cross-section multiplier for each streamline following the
procedure proposed by Smith and colleagues (Smith et al., 2015) and a connectivity matrix
was built for each participant using the same parcellation as described above. Finally,
we used a consensus approach to construct a binary group-level structural connectivity
matrix, preserving the edge length distribution in individual participants (Betzel et al.,
2018; Mišić et al., 2015, 2018; Shafiei et al., 2020a).

https://www.mrtrix.org/
https://www.mrtrix.org/
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4.6.3 Replication dataset: Midnight Scan Club (MSC)

We used resting state fMRI data of n = 10 healthy young adults, each with 10 scan sessions
of about 30 minutes long, from Midnight Scan Club (MSC (Gordon et al., 2017)) dataset as
an independent replication dataset. Details about the participants, MRI acquisition, and
data pre-processing are provided by Gordon and colleagues elsewhere (Gordon et al., 2017).
We obtained the surface-based, pre-processed resting state fMRI time courses in CIFTI
format through OpenNeuro (https://openneuro.org/datasets/ds000224/versions/1.
0.0). The pre-processing steps include motion correction and global signal regression
(Gordon et al., 2017). Following the pre-processing methods suggested by Gordon and
colleagues (Gordon et al., 2017), we smoothed the surface-level time-series data with
geodesic 2D Gaussian kernels (σ = 2.55mm) using the Connectome Workbench (Marcus
et al., 2011). Finally, we censored the motion-contaminated frames of time-series for
each participant separately, using the temporal masks provided with the dataset. The
pre-processed data were parcellated into 400 cortical regions using Schaefer parcellation
(Schaefer et al., 2018). One participant (MSC08) was excluded from subsequent analysis
due to low data reliability and self-reported sleep as described in (Gordon et al., 2017). The
parcellated time-series were then subjected to the same analyses that were performed on
the HCP Discovery and Validation datasets.

4.6.4 Microarray expression data: Allen Human Brain Atlas (AHBA)

Regional microarray expression data were obtained from six post-mortem brains provided
by the Allen Human Brain Atlas (AHBA; http://human.brain-map.org/) (Hawrylycz
et al., 2012). We used the abagen (https://github.com/netneurolab/abagen) toolbox to
process and map the data to 400 parcellated brain regions from Schaefer parcellation
(Schaefer et al., 2018).

Briefly, genetic probes were reannotated using information provided by (Arnatkevičiūtė
et al., 2019) instead of the default probe information from the AHBA dataset. Using
reannotated information discards probes that cannot be reliably matched to genes. The
reannotated probes were filtered based on their intensity relative to background noise
levels (Quackenbush, 2002); probes with intensity less than background in ≥50% of
samples were discarded. A single probe with the highest differential stability, ∆S(p), was
selected to represent each gene (Hawrylycz et al., 2015), where differential stability was
calculated as:

https://openneuro.org/datasets/ds000224/versions/1.0.0
https://openneuro.org/datasets/ds000224/versions/1.0.0
http://human.brain-map.org/
https://github.com/netneurolab/abagen
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∆S(p) =
1

(N
2 )

N−1

∑
i=1

N

∑
j=i+1

ρ[Bi(p), Bj(p)] (4.1)

Here, ρ is Spearman’s rank correlation of the expression of a single probe p across regions
in two donor brains, Bi and Bj, and N is the total number of donor brains. This procedure
retained 15,656 probes, each representing a unique gene.

Next, tissue samples were mirrored across left and right hemispheres (Romero-Garcia et
al., 2018) and then assigned to brain regions using their corrected MNI coordinates (https:
//github.com/chrisfilo/alleninf) by finding the nearest region, up to 2mm away. To
reduce the potential for misassignment, sample-to-region matching was constrained by
hemisphere and cortical/subcortical divisions (Arnatkevičiūtė et al., 2019). If a brain region
was not assigned any sample based on the above procedure, the sample closest to the
centroid of that region was selected in order to ensure that all brain regions were assigned
a value. Samples assigned to the same brain region were averaged separately for each
donor. Gene expression values were then normalized separately for each donor across
regions using a robust sigmoid function and rescaled to the unit interval (Fulcher and
Fornito, 2016). Scaled expression profiles were finally averaged across donors, resulting in
a single matrix with rows corresponding to brain regions and columns corresponding to
the retained 15,656 genes. The expression values of 1,906 brain-specific genes were used
for further analysis (Burt et al., 2018).

4.6.5 Massive temporal feature extraction using hctsa

We used the highly comparative time-series analysis toolbox, hctsa (Fulcher and Jones,
2017; Fulcher et al., 2013), to perform a massive feature extraction of the time-series of each
brain area for each participant. The hctsa package extracted over 7,000 local time-series
features using a wide range of operations based on time-series analysis (Fulcher and
Jones, 2017; Fulcher et al., 2013). The extracted features include, but are not limited to,
distributional properties, entropy and variability, autocorrelation, time-delay embeddings,
and nonlinear properties of a given time-series (Fulcher, 2018; Fulcher et al., 2013).

The hctsa feature extraction analysis was performed on the parcellated fMRI time-
series of each run and each participant separately (Figure 4.1). Following the feature
extraction procedure, the outputs of the operations that produced errors were removed
and the remaining features (6,441 features) were normalized across nodes using an outlier-
robust sigmoidal transform. We used Pearson correlation coefficients to measure the
pairwise similarity between the time-series features of all possible combinations of brain

https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
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areas. As a result, a temporal profile similarity network was constructed for each individual
and each run, representing the strength of the similarity of the local temporal fingerprints
of brain areas (Figure 4.1). The resulting similarity matrices were then compared to the
underlying functional and structural brain networks.

4.6.6 Neurosynth

Functional activation probability maps were obtained for multiple psychological terms
using Neurosynth (Yarkoni et al., 2011) (https://github.com/neurosynth/neurosynth).
Probability maps were restricted to those for terms present in both Neurosynth and the Cog-
nitive Atlas (Poldrack et al., 2011), yielding a total of 123 maps (Supplementary File S4.2).
We used the volumetric “association test” (i.e. reverse inference) maps, which were pro-
jected to the FreeSurfer fsaverage5 mid-grey surface with nearest neighbor interpolation us-
ing Freesurfer’s mri_vol2surf function (v6.0.0; http://surfer.nmr.mgh.harvard.edu/).
The resulting surface maps were then parcellated to 400 cortical regions using the Schaefer
parcellation (Schaefer et al., 2018).

4.6.7 Null model

A consistent question in the present work is the topographic correlation between time-
series features and other features of interest. To make inferences about these links, we
implement a null model that systematically disrupts the relationship between two topo-
graphic maps but preserves their spatial autocorrelation (Alexander-Bloch et al., 2018;
Markello and Misic, 2020) (see also (Burt et al., 2018, 2020) for an alternative approach).
For the anatomical atlas, we first created a surface-based representation of the Cam-
moun atlas on the FreeSurfer fsaverage surface using the Connectome Mapper toolkit
(https://github.com/LTS5/cmp; (Daducci et al., 2012)). For the functional atlas, we used
the Schaefer-400 atlas in the HCP’s fsLR32k grayordinate space (Schaefer et al., 2018;
Van Essen et al., 2013). We then used the spherical projection of the surfaces to define
spatial coordinates for each parcel by selecting the vertex closest to the center-of-mass of
each parcel (Shafiei et al., 2020a; Vázquez-Rodríguez et al., 2019; Vazquez-Rodriguez et al.,
2020). The resulting spatial coordinates were used to generate null models by applying
randomly-sampled rotations and reassigning node values based on the closest resulting
parcel (10,000 repetitions). The rotation was applied to one hemisphere and then mirrored
to the other hemisphere.

https://github.com/neurosynth/neurosynth
http://surfer.nmr.mgh.harvard.edu/
https://github.com/LTS5/cmp
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Table S4.1: Dominance analysis | Dominance Analysis was used to quantify the distinct contribu-
tions of inter-regional distance, structural connectivity, and functional connectivity to temporal pro-
file similarity (Azen and Budescu, 2003; Budescu, 1993) (https://github.com/dominance-analysis/
dominance-analysis). Dominance analysis is a method for assessing the relative importance of predic-
tors in regression or classification models. The technique estimates the relative importance of predictors
by constructing all possible combinations of predictors and quantifying the relative contribution of
each predictor as additional variance explained (i.e. gain in R2) by adding that predictor to the models.
Specifically, for p predictors we have 2p − 1 models that include all possible combinations of predictors.
The incremental R2 contribution of each predictor to a given subset model of all the other predictors
is then calculated as the increase in R2 due to the addition of that predictor to the regression model.
Here we first constructed a multiple linear regression model with distance, structural connectivity
and functional connectivity as independent variables and temporal profile similarity as the dependent
variable to quantify the distinct contribution of each factor using dominance analysis. The total R2

is 0.28 for the complete model that includes all variables. The relative importance of each factor is
summarized in the table, where each column corresponds to: Interactional Dominance is the incremental
R2 contribution of the predictor to the complete model. For each variable, interactional dominance is
measured as the difference between the R2 of the complete model and the R2 of the model with all other
variables except that variable; Individual Dominance of a predictor is the R2 of the model when only
that predictor is included as the independent variable in the regression; Average Partial Dominance is
the average incremental R2 contributions of a given predictor to all possible subset of models except
the complete model and the model that only includes that variable; Total Dominance is a summary
measure that quantifies the additional contribution of each predictor to all subset models by averaging
all the above measures for that predictor; Percentage Relative Importance is the percent value of the
Total Dominance.

Interactional Individual Average Partial Total Percentage Relative
Dominance Dominance Dominance Dominance Importance

Euclidean distance 0.095 0.245 0.128 0.156 56.015
functional connectivity 0.030 0.130 0.038 0.066 23.591
structural connectivity 2.97e-05 0.142 0.029 0.057 20.393

https://github.com/dominance-analysis/dominance-analysis
https://github.com/dominance-analysis/dominance-analysis
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Table S4.2: List of terms used in Neurosynth analyses | The overlapping terms between Neurosynth
(Yarkoni et al., 2011) and Cognitive Atlas (Poldrack et al., 2011) corpuses used in the reported analyses
are listed below.

action encoding loss reward anticipation
adaptation episodic memory maintenance rhythm
addiction expectancy manipulation risk
anticipation expertise meaning rule
anxiety extinction memory salience
arousal face recognition memory retrieval search
association facial expression mental imagery selective attention
attention familiarity monitoring semantic memory
autobiographical memory fear mood sentence comprehension
balance fixation morphology skill
belief focus motor control sleep
categorization gaze movement social cognition
cognitive control goal multisensory spatial attention
communication hyperactivity naming speech perception
competition imagery navigation speech production
concept impulsivity object recognition strategy
consciousness induction pain strength
consolidation inference perception stress
context inhibition planning sustained attention
coordination insight priming task difficulty
decision integration psychosis thought
decision making intelligence reading uncertainty
detection intention reasoning updating
discrimination interference recall utility
distraction judgment recognition valence
eating knowledge rehearsal verbal fluency
efficiency language reinforcement learning visual attention
effort language comprehension response inhibition visual perception
emotion learning response selection word recognition
emotion regulation listening retention working memory
empathy localization retrieval
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Figure S4.1: Intrinsic networks: 17 network partition | (a) Regional time-series features are compared
between pairs of cortical areas using their functional connectivity profiles. Cortical areas are ordered
based on their intrinsic network assignments (17-network partition) (Schaefer et al., 2018; Yeo et al.,
2011). (b) Pairwise temporal profile similarity is significantly higher among regions that belong to the
same intrinsic functional networks. Asterisk denotes a statistically significant difference of the mean
temporal profile similarity (two-tailed t-test; t(79, 798) = 31.151; p ≈ 0). The results are consistent when
the distance effect is regressed out from temporal profile similarity using the exponential trend identified
in Figure 4.2b (two-tailed t-test; t(79, 798) = 21.193; p ≈ 0). Statistical significance of the difference of
the mean temporal profile similarity of within and between intrinsic networks is also assessed against a
null distribution of differences generated by spatial autocorrelation-preserving label permutation (“spin
tests”; (Alexander-Bloch et al., 2018)) (10,000 spatial permutations; right-most panel).
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Figure S4.2: Functional connectivity measured by partial correlations | For completeness, all functional
connectivity analyses were repeated using partial correlations, as implemented in Nilearn (Abraham
et al., 2014). Temporal profile similarity is positively correlated with functional connectivity estimated
using partial correlations. This relationship remains after partialling out Euclidean distance between
regions from both measures using exponential trends. rs denotes Spearman rank correlation coefficients;
linear regression lines are added to the scatter plots for visualization purposes only. Connections
are colour-coded based on the intrinsic network assignments (Schaefer et al., 2018; Yeo et al., 2011).
VIS = visual, SM = somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP =
fronto-parietal, DMN = default mode.
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Figure S4.3: Linear autocorrelation function | Linear autocorrelation function is depicted on the brain
surface at varying time lags. The autocorrelation values are normalized between 0 and 1 using an
outlier-robust sigmoidal transform and spatial maps are depicted based on the standard deviation σ of
their respective distributions. Short-lag autocorrelation measures load positively on PC1, while long-lag
autocorrelation measures load negatively, consistent with the notion that autocorrelation decays with
increasing time lag (Figure 4.3).
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Figure S4.4: Intrinsic dynamics across intrinsic networks, cytoarchitectonic classes and laminar
differentiation levels | Mean PC1 and PC2 scores were computed for the constituent classes in three
commonly used anatomical and functional partitions of the brain: (a) intrinsic fMRI networks (Schaefer
et al., 2018; Yeo et al., 2011), (b) cytoarchitectonic classes (Economo and Koskinas, 1925; Economo et al.,
2008; Vértes et al., 2016), laminar differentiation levels (Mesulam, 2000). Intrinsic networks: VIS = visual,
SM = somatomotor, DA = dorsal attention, VA = ventral attention, LIM = limbic, FP = fronto-parietal,
DMN = default mode. Cytoarchitectonic classes: PM = primary motor cortex, AC1 = association cortex,
AC2 = association cortex, PSS = primary/secondary sensory, PS = primary sensory cortex, LB = limbic
regions, IC = insular cortex.



CHAPTER 4. TOPOGRAPHIC GRADIENTS OF INTRINSIC DYNAMICS 87

PC1 score

-2σ

2σ

PC2 score

-2σ

2σ

participation coefficient

-2σ

2σ

rs = -0.14, pspin = 0.16

PC
1 

br
ai

n 
sc

or
e

participation coefficient

-100

0

-50

100

150

50

0.800.700.60

rs = -0.10, pspin = 0.32
PC

2 
br

ai
n 

sc
or

e

participation coefficient

-80

0

-40

40

0.800.700.60

evolutionary expansion

-2σ

2σ

rs = 0.52, pspin = 0.0002

evolutionary expansion

PC
2 

br
ai

n 
sc

or
e

rs = 0.01, pspin = 0.95
PC

1 
br

ai
n 

sc
or

e

evolutionary expansion
210-1-2

-100

0

-50

100

150

50

210-1-2

-80

0

-40

40

Figure S4.5: Topographic organization of intrinsic dynamics compared to evolutionary expansion
and participation coefficient | The evolutionary expansion map (Baum et al., 2020; Hill et al., 2010)
was obtained through https://github.com/PennLINC/Brain_Organization and parcellated into 400
cortical areas using the Schaefer parcellation (Schaefer et al., 2018). Regional weighted participation
coefficients (Brain Connectivity Toolbox; (Rubinov and Sporns, 2010)) were estimated from functional
connectivity graphs with respect to the 7-network partition of intrinsic networks (Schaefer et al., 2018;
Yeo et al., 2011). We then compared the maps to the PC1 and PC2 brain score patterns. The evolutionary
expansion map was significantly correlated with PC2 topography, but not PC1 topography. The regional
participation coefficient map was not significantly correlated with either PC1 or PC2 topography.
Statistical significance of the reported Spearman rank correlation rs is assessed using 10,000 spatial
permutations tests, preserving the spatial autocorrelation in the data (“spin tests”; (Alexander-Bloch
et al., 2018)). Linear regression lines are added to the scatter plots for visualization purposes only.

https://github.com/PennLINC/Brain_Organization
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5.1 Preface

A large body of literature has used neural oscillations to characterize regional brain
dynamics and neural communication patterns. Power spectral properties of neurophys-
iological activity are often used for this purpose. However, the dynamic signature of
neurophysiological activity and its association with cortical micro-architecture have not
been characterized with respect to the broader range of inter-disciplinary time-series
analysis. The work presented here expands on Chapter 4 and examines regional neural
dynamics using spontaneous neurophysiological activity with high temporal resolution
instead of slower haemodynamic fluctuations. Resting-state magnetoencephalography
(MEG) data is used here to quantify neurophysiological activity. MEG is a non-invasive
neuroimaging technique that measures the magnetic fields generated by electrical currents
from the ongoing neural activity and provides whole-brain maps of neural dynamics
with high temporal resolution (below millisecond precision) (Baillet, 2017; Baillet et al.,
2001; Hämäläinen et al., 1993). Using both conventional measures of neurophysiological
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dynamics and data-driven, near-comprehensive lists of time-series properties, the goal of
this study is to identify the dynamic fingerprint of neurophysiological activity and assess
the relationship between fast-oscillating neural activity and cortical micro-architecture.
This project will be submitted for publication in 2022.

5.2 Abstract

Systematic variations in cortical circuit properties are observed across the cortex. These mi-
croscale gradients are reflected in the neural activity, which can be captured by neurophys-
iological time-series. How the spontaneous neurophysiological dynamics are organized
across the cortex and how they arise from the heterogeneous cortical micro-architecture
remains unknown. Here we comprehensively assess intrinsic neural dynamics of magne-
toencephalography (MEG) signal across the human brain. Applying massive temporal
feature extraction to regional neurophysiological activity, we estimate over 6,800 time-
series features across the neocortex. We identify dynamical signature of neurophysiological
activity and map regional dynamics to cortical micro-architecture. We find that dynamic
fingerprint of neurophysiological activity reflects characteristics of power spectrum density
and long term memory of the signal, emphasizing the importance of conventional mea-
sures of electromagnetic dynamics while introducing novel ones. Moreover, the main axis
of variation in neurophysiological activity reflects the anatomical hierarchy and cortical
metabolic demands.

5.3 Introduction

Signals, in the form of electrical impulses, are perpetually generated, propagated and
integrated via multiple types of neurons and neuronal populations (Bargmann and Marder,
2013; Swanson and Lichtman, 2016). The wiring of the brain guides the propagation of
signals through networks of nested polyfunctional neural circuits (Avena-Koenigsberger
et al., 2018; Bullmore and Sporns, 2009). The resulting fluctuations in membrane potentials
and firing rates ultimately manifest as patterned neurophysiological activity (Baillet, 2017;
Baillet et al., 2001; Hämäläinen et al., 1993).

A rich literature demonstrates links between cortical micro-architecture and dynamics.
Numerous studies have investigated the cellular and laminar origins of cortical rhythms
(Bastos et al., 2020; Buzsáki et al., 2012; Buzsaki and Draguhn, 2004; Buzsáki et al., 2013;
Engel et al., 2001; Wang, 2020). For instance, electro- and magneto-encephalography
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(EEG/MEG) signals appear to be more sensitive to dipoles originating from pyramidal
cells of cortical layers II-III and V (Murakami and Okada, 2006; Zhu et al., 2009). More-
over, specific time-series features of neuronal electrophysiology depend on neuron type,
morphology and local gene transcription, particularly genes associated with ion channel
regulation (Bomkamp et al., 2019; Tripathy et al., 2015, 2017). However, many previous
studies have focused on single or small sets of features-of-interest, often mapping single
micro-architectural features to single dynamical features. Starting with the discovery of
8-12 Hz alpha rhythm in the electroencephalogram (Berger, 1929), conventional time-series
analysis in neuroscience has typically focused on canonical electrophysiological rhythms
(Donoghue and Voytek, 2022; Donoghue et al., 2020; Picton et al., 2000; Silva Castanheira
et al., 2021; Wiesman et al., 2022). More recently, there has also been a growing interest in
studying the intrinsic timescales that display a hierarchy of temporal processing from fast
fluctuating activity in unimodal cortex to slower encoding of contextual information in
transmodal cortex (Baldassano et al., 2017; Gao et al., 2020; Hasson et al., 2008; Honey et al.,
2012; Ito et al., 2020; Kiebel et al., 2008; Mahjoory et al., 2020; Murray et al., 2014; Raut
et al., 2020; Watanabe et al., 2019). How ongoing neurophysiological dynamics arise from
specific features of neural circuit micro-architecture remains a key question in neuroscience
(Bargmann and Marder, 2013; Swanson and Lichtman, 2016; Wang, 2020).

Recent analytic advances have opened new opportunities to perform neurophysiolog-
ical time-series phenotyping by computing comprehensive feature sets that go beyond
power spectral measures, including measures of signal amplitude distribution, entropy,
fractal scaling and autocorrelation (Fulcher, 2018; Fulcher and Jones, 2017; Fulcher et al.,
2013). Concomitant advances in imaging technologies and data sharing offer new ways to
comprehensively measure brain structure with unprecedented detail and depth (Hunten-
burg et al., 2018; Markello et al., 2022; Sydnor et al., 2021), including gene expression
(Hawrylycz et al., 2012), myelination (Glasser and Van Essen, 2011; Huntenburg et al.,
2017), neurotransmitter receptors (Beliveau et al., 2017; Dukart et al., 2021; Hansen et al.,
2022; Knudsen et al., 2020; Martins et al., 2021; Nørgaard et al., 2021; Norgaard et al., 2022;
Zilles and Palomero-Gallagher, 2017), cytoarchitecture (Amunts et al., 2013; Finnema et al.,
2018; Paquola et al., 2021), laminar differentiation (Amunts et al., 2013; Wagstyl et al., 2020),
cell type composition (Di Biase et al., 2022; Hawrylycz et al., 2012; Seidlitz et al., 2020),
metabolism (Raichle and Mintun, 2006; Vaishnavi et al., 2010) and evolutionary expansion
(Hill et al., 2010; Reardon et al., 2018).

Here we comprehensively characterize the dynamical signature of neurophysiological
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Figure 5.1: Feature-based representation of neurophysiological time-series | Highly comparative time-
series analysis (hctsa; (Fulcher et al., 2013)) toolbox was used to perform time-series feature extraction
on regional MEG time-series. This time-series phenotyping procedure generated 6, 880 time-series
features for each region, including measures of autocorrelation, entropy, power spectrum and amplitude
distribution.

activity and relate it to the underlying micro-architecture. We first derive whole-brain spon-
taneous regional neurophysiological activity using source-resolved magnetoencephalogra-
phy (MEG) from the Human Connectome Project (HCP; (Van Essen et al., 2013)). We then
apply highly comparative time-series analysis (hctsa; (Fulcher and Jones, 2017; Fulcher
et al., 2013)) to estimate a near-exhaustive set of > 6, 800 time-series features for each brain
region (Figure 4.1). At the same time, we construct a micro-architectural atlas of the brain
using the neuromaps toolbox (Markello et al., 2022), including maps of microstructure,
metabolism, neurotransmitter receptors, laminar differentiation and cell types (Figure 5.2).
Finally, we map these extensive micro-architectural and dynamical atlases to one another.

5.4 Results

Regional neurophysiological time-series were estimated by applying locally constrained
minimum variance (LCMV) beamforming to resting state MEG data from the Human
Connectome Project (HCP; (Van Essen et al., 2013)) using Brainstorm software (Tadel
et al., 2011)(see Methods for details). Highly comparative time-series analysis (hctsa) was
then applied to regional time-series to estimate 6, 880 time-series features for each region,
including measures of autocorrelation, fluctuation analysis, entropy, power spectrum and
amplitude distribution (Figure 4.1; (Fulcher et al., 2013)). This time-series phenotyping
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procedure yields a comprehensive, data-driven dynamic “fingerprint” for each brain
region.

To estimate a comprehensive set of multi-modal micro-architectural features, we used
the recently-developed neuromaps toolbox to transform and compile a set of 45 features,
including measures of microstructure, metabolism, cortical expansion, receptors and
transporters, layer thickness and cell types (Markello et al., 2022) (Figure 5.2).

5.4.1 Topographic distribution of neurophysiological dynamics

The hctsa time-series phenotyping procedure generated 6, 880 time-series features per
brain region. Since many time-series measures and features potentially capture related
dynamical behaviour, we first seek to identify dominant macroscopic patterns or gra-
dients of neurophysiological dynamics (Shafiei et al., 2020b). Applying singular value
decomposition to the region × feature matrix, we find evidence of a single dominant com-
ponent that captures 48.7% of the variance in regional time-series features (Figure 5.3a).
The dominant component or “gradient” of neurophysiological dynamics (PC1) mainly
spans the posterior parietal cortex and sensory-motor cortices on one end and the anterior
temporal, orbitofrontal and ventromedial cortices on the other end (Figure 5.3a). Focusing
on intrinsic functional networks, we find that the topographic organization of the domi-
nant neurophysiological dynamics varies along a sensory-fugal axis from dorsal attention,
somatomotor and visual networks to limbic and default mode networks (Yeo et al., 2011)
(Figure 5.3a).

We next investigate the top-loading time-series features on the first component, by
correlating each of the original feature maps with the PC1 map. All correlations are
statistically assessed using spatial autocorrelation-preserving null models (“spin tests”
(Alexander-Bloch et al., 2018; Markello and Misic, 2021); see Methods for details). Fig-
ure 5.3b shows that numerous features are positively and negatively correlated with PC1;
the full list of features, their correlation coefficient and p-values is available in the online
Supplementary File S1. Inspection of the top loading features reveals that the majority are
either direct measures of the power spectrum or measures closely related to the power
spectrum. Examples include the area under the curve at different frequency bands, param-
eters of different model fits to the power spectrum, the aperiodic exponent of the power
spectrum, and measures mathematically related to the power spectrum, such as the shape
of the autocorrelation function and measures of fluctuation analysis. Figure 5.3b shows
how the power spectrum varies across the cortex, with each line representing a brain
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Figure 5.2: Multimodal brain maps | neuromaps toolbox was used to to transform and compile a
set of 45 micro-architectural brain maps, including measures of microstructure, metabolism, cortical
expansion, receptors and transporters, layer thickness and cell types (Markello et al., 2022) (see Methods
for more details). Note that the microstructure maps include principal gradients of gene expression
and neurotransmitter profiles, for which we have also separately included feature sub-sets (specific
receptor maps and cell type specific gene expression). Brainstorm software was used to pre-process
the resting-state MEG data and obtain power maps at six canonical electrophysiological bands (i.e.,
delta (δ: 2-4 Hz), theta (θ: 5-7 Hz), alpha (α: 8-12 Hz), beta (β: 15-29 Hz), low gamma (lo-γ: 30-59 Hz),
and high gamma (hi-γ: 60-90Hz)) (Tadel et al., 2011) (see Methods for more details). FOOOF algorithm
was used to parametrize power spectral density and estimate the intrinsic timescale (Donoghue et al.,
2020; Gao et al., 2020) (see Methods for more details). Note that log-10 transformed intrinsic timescale
map is shown here. Principal component analysis was used to estimate the principal component of the
neurophysiological time-series features obtained from the hctsa toolbox (see Figure 5.3).

region. Regions are coloured by their position in the putative unimodal-transmodal hier-
archy (Margulies et al., 2016); the variation suggests that unimodal regions display more
prominent alpha and beta power peaks. Collectively, these results empirically demonstrate
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Figure 5.3: Topographic distribution of neurophysiological dynamics | (a) Principal component
analysis (PCA) was used to identify linear combinations of MEG time-series features with maximum
variance across the cortex. The fist principal component (PC1) accounts for 48.7% of the total variance in
neurophysiological time-series features. The spatial organization of the dominant time-series features
captured by PC1 is depicted across the cortex (95% confidence intervals). The distribution of PC1
brain score is also depicted for intrinsic functional networks (Yeo et al., 2011). (b) To examine the
feature composition of the time-series features captured by PC1, feature loadings were estimated as the
correlation coefficients between each hctsa time-series feature and PC1 brain score. Time-series features
are ordered by their individual loadings. Grey indicates non-significant features based on 10 000 spatial
autocorrelation-preserving permutation tests (FDR corrected). The top loading features were mainly
related to the power spectrum of regional time-series and its organization. Regional power spectral
densities are depicted, with each line representing a brain region. Regions are coloured by their position
in the putative unimodal-transmodal hierarchy (Margulies et al., 2016). (c) To contextualize the principal
component of variation in MEG time-series features, the PC1 brain score was correlated with MEG
power maps at 6 canonical frequency bands and intrinsic timescale. PC1 score is significantly correlated
with intrinsic timescale and hi-gamma power (FDR-corrected).

that the traditional focus on the power spectrum in electrophysiology is well-founded.
Given the hierarchical organization of PC1 and its close relationship with power spectral

features, we directly tested the link between PC1 and conventional spectral measures
(Donoghue et al., 2020; Silva Castanheira et al., 2021; Wiesman et al., 2022), as well as a
measure of intrinsic timescale (Gao et al., 2020). Figure 5.3c shows the correlations between
PC1 and delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), lo-gamma (30-59
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Hz) and hi-gamma (60-90Hz) power maps, and intrinsic neural timescale (Gao et al., 2020;
Ito et al., 2020; Mahjoory et al., 2020; Murray et al., 2014; Raut et al., 2020; Watanabe et al.,
2019; Wolff et al., 2022). We find that PC1 displays large spatial correlations with most
(|r| > 0.36), and significant correlations with intrinsic timescale (rs = 0.84, pspin = 0.03;
FDR-corrected) and hi-gamma (rs = 0.87, pspin = 0.005; FDR-corrected). The fact that PC1
correlates with intrinsic timescale is consistent with the notion that both capture broad
variations in the power spectrum.

5.4.2 Neurophysiological signature of micro-architecture

How do these regional neurophysiological time-series features map onto multi-modal
micro-architectural features? To address this question, we implement a partial least squares
analysis (PLS; (McIntosh and Mišić, 2013; McIntosh and Lobaugh, 2004)) that seeks to
identify linear combinations of time-series features and linear combinations of micro-
architectural features that optimally covary with one another. Figure 5.4a shows that
the analysis identifies multiple such combinations, termed latent variables. Statistical
significance of each latent variable was assessed using spatial autocorrelation-preserving
permutation tests (Hansen et al., 2021). The first latent variable was statistically significant,
capturing the greatest covariance between time-series and micro-architectural features
(covariance explained = 76.6%, pspin = 0.0069).

Figure 5.4b shows the spatial topography of time-series features and micro-architectural
scores for the first latent variable. These are the weighted sums of the original input features
according to the weighting identified by the latent variable. The correlation between
the score maps is maximized by the analysis (rs = 0.75, pspin = 0.0033). We therefore
sought to estimate whether the same mapping between time-series and micro-architectural
features (a) can be observed out-of-sample, and (b) goes beyond the background effect
of spatial autocorrelation in the two maps. We therefore adopted a distance-dependent
cross-validation procedure where “seed” regions were randomly chosen and the 75% most
physically proximal regions were selected as the training set, while the remaining 25%
most physically distal regions were selected as the test set (Hansen et al., 2021) (see Methods
for more details). For each train-test split, we fit a PLS model to the train set and project
the test set onto the weights (i.e. singular vectors) derived from the train set. The resulting
test set scores are then correlated to estimate an out-of-sample correlation coefficient. The
procedure is then repeated for 1, 000 randomly rotated (spin) nulls to estimate a null
distribution for the out-of-sample correlation coefficients. Figure 5.4b shows that the mean
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out-of-sample score correlation is r = 0.55 and statistically significant compared to the
spatial autocorrelation-preserving null correlation coefficients (pspin = 0.03).

We next examine the corresponding time-series and micro-architecture feature loadings
and identify the most contributing factors to the spatial patterns captured by the first
latent variable (Figure 5.4c,d). The top loading time-series features were mainly related
to the long-term memory and self-affinity of the neurophysiological signal, quantified by
fluctuation analysis (Figure 5.4c). Fluctuation analysis quantifies self-affinity and long-
range autocorrelation of time-series (Bryce and Sprague, 2012; Hardstone et al., 2012;
Talkner and Weber, 2000). For example, the Hurst exponent or the alpha parameter of the
detrended fluctuation analysis, which is a measure of long-term memory of the time-series,
is depicted across the cortex in Figure 5.4c (left panel). The spatial distribution of this
measure shows that unimodal cortex, such as the area marked with the pink circle, has
shorter long-term memory compared to transmodal cortex, such as the area marked with
the purple circle. Long-term memory of the signal captured by the detrended fluctuation
analysis is also reflected in the shape of the autocorrelation function, and more specifically,
at the zero crossing point of the autocorrelation function (Figure 5.4c, left). For example,
the autocorrelation function of unimodal cortex (pink circle) crosses zero autocorrelation
earlier than the autocorrelation function of transmodal cortex (purple circle). A more direct
example of the long-term memory of the signal is the linear autocorrelation estimated at
longer lags. Autocorrelation at lag 24 is also depicted in Figure 5.4c (right panel), showing
lower autocorrelation in unimodal cortex and higher autocorrelation in transmodal cortex.
Although the Hurst exponent of the detrended fluctuation analysis and long-range autocor-
relation are measures of long-term memory and are shown in Figure 5.4c as two examples
of high loading features, they can both be related to the power spectral density and broader
structure of the power spectrum (Talkner and Weber, 2000). The full list of time-series
feature loadings for the first latent variable is available at the online Supplementary File S2.

Figure 5.4d shows the corresponding micro-architectural loadings. The most contribut-
ing micro-architectural factors to the spatial patterns captured by the first latent variable
are the principal component of gene expression (gene expression PC1; a potential proxy
for cell type distribution (Burt et al., 2018; Hansen et al., 2021; Hawrylycz et al., 2012)),
T1w/T2w ratio (a proxy for intracortical myelin), principal component of neurotransmitter
receptors and transporters (neurotransmitter PC1), and oxygen and glucose metabolism
that have strong positive loadings. We also find high contributions (strong negative load-
ings) from specific neurotransmitter receptor and transporters, in particular metabotropic
serotonergic and dopaminergic receptors, as well as from cell type-specific gene expression
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of oligodendrocyte precursors (opc), which are involved in myelinogenesis (Bergles and
Richardson, 2016; Bergles et al., 2000; Fernandez-Castaneda and Gaultier, 2016; Miller,
1996; Simons and Nave, 2016). Consistent findings were obtained when we used univariate
analysis to relate regional time-series features and the top loading micro-architectural
maps, in particular principal component of gene expression and T1w/T2w ratio, which
have previously been extensively studied as archetypical micro-architectural gradients
(Burt et al., 2018; Demirtaş et al., 2019; Fulcher et al., 2019; Gao et al., 2020; Huntenburg et
al., 2018) (Figure S5.1). Altogether, this analysis provides a comprehensive chart or “lookup
table” of how micro-architectural and time-series feature maps are associated with one
another. These results demonstrate that cortical variation in multiple micro-architectural
features manifests as a gradient of time-series properties of neurophysiological signals,
particularly long-term memory and power spectral density.
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Figure 5.4: Neurophysiological signature of micro-architecture | (a) Partial least square (PLS) analysis
was used to assess the multivariate relationship between micro-architectural and time-series features.
PLS identified a single significant latent variable (pspin = 0.0069, covariance explained = 76.6%). (b)
Spatial patterns of micro-architecture and time-series features scores are depicted for the first latent
variable. The two brain score maps are significantly correlated. To assess the out-of-sample correlation
of brain scores, a distance-dependent cross-validation analysis with spatial autocorrelation-preserving
nulls was used (see Methods for more details). Mean out-of-sample (test set) correlation was statistically
significant compared to 1,000 null correlations (mean rtest = 0.55, pspin = 0.03). (c) Top loading time-
series features were related to the long-term memory of the signal. Hurst exponent or alpha parameter
of the detrended fluctuation analysis (DFA), a measure of long-term memory of time-series (Talkner and
Weber, 2000), is depicted as an example of top loading features. Fluctuation analysis also reflects the
shape of the autocorrelation function. Lag-24 autocorrelation is depicted as another example (each time
lag is 2 ms). For each map, three regions are selected based on the alpha parameter of DFA and lag-24
autocorrelation (circles on the brain surface: pink = 5th percentile, green = 50th percentile, purple = 95th

percentile). Values inside the parenthesis (bottom row) are the raw feature values and the ones on the
top are the normalized ones. (d) Feature loadings are shown for micro-architectural brain maps.
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5.5 Discussion

In the present study, we use time-series phenotyping analysis to comprehensively chart
the dynamic fingerprint of neurophysiological activity from the resting-state MEG signal.
We then map the resulting dynamical atlas to a micro-architectural atlas to identify the
neurophysiological signatures of cortical micro-architecture. We demonstrate that cortical
variation in neurophysiological time-series properties mainly reflects power spectral den-
sity and is closely associated with intrinsic timescale and long term memory of the signal.
Moreover, the spatial organization of neurophysiological dynamics follows gradients of
micro-architecture, such as neurotransmitter receptor and transporters, gene expression
and T1w/T2w ratios, and reflects cortical metabolic demands.

Numerous studies have previously investigated neural oscillations and their relation-
ship with neural communication patterns in the brain (Buzsaki and Draguhn, 2004; Buzsáki
et al., 2013; Engel et al., 2001; Fries, 2005). Previous reports also suggest that neural oscilla-
tions influence behaviour and cognition (Engel et al., 1997; Fries, 2005; Voytek and Knight,
2015; Voytek et al., 2015; Wang, 2010) and are involved in multiple neurological diseases
and disorders (Kopell et al., 2014; Voytek and Knight, 2015). Neural oscillations manifest
as the variations of power amplitude of neurophysiological signal in the frequency domain
(Buzsáki et al., 2013; Donoghue et al., 2020; Frauscher et al., 2018; He, 2014). Power spectral
characteristics of the neurophysiological signal, such as mean power amplitude in canoni-
cal frequency bands, have previously been used to investigate the underlying mechanisms
of large-scale brain activity and to better understand the individual differences in brain
function (Das et al., 2022; Florin and Baillet, 2015; Mahjoory et al., 2020; Silva Castanheira
et al., 2021; Voytek et al., 2015; Wiesman et al., 2022). Other time-series properties, that can
be related to the power spectral density, have also been used to study neural dynamics,
such as measures of intrinsic timescale and self-affinity or self-similarity of the signal (e.g.
autocorrelation and fluctuation analysis) (Gao et al., 2020; Hardstone et al., 2012; Kiebel
et al., 2008; Talkner and Weber, 2000).

The goal of this study was to expand on the previous literature and identify potentially
relevant, but less-commonly used time-series properties of neurophysiological brain ac-
tivity. Applying an unbiased, data-driven time-series feature extraction analysis, we find
that the topographic organization of neurophysiological time-series signature follows a
sensory-fugal axis, separating somatomotor, occipital and parietal cortices from anterior
temporal, orbitofrontal and ventromedial cortices. This dynamic fingerprint of neurophysi-
ological activity is characterized by measures of power spectrum and the broader structure
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of power spectral density across the cortex. Interestingly, this dominant pattern resembles
the spatial distribution of intrinsic timescale, which is also related to the characteristics of
power spectral density (Gao et al., 2020; Ito et al., 2020; Murray et al., 2014). Altogether,
while the findings highlight a few under-represented time-series features such as mea-
sures of fluctuation analysis, they are mostly confirmatory emphasizing the importance
of conventional methods and the key role of power spectral properties in characterizing
neurophysiological activity.

Earlier reports found that regional neural dynamics, including measures of power
spectrum and intrinsic timescale, reflect the underlying circuit properties and cortical
micro-architecture (Gao et al., 2020; Kiebel et al., 2008; Murray et al., 2014). The relationship
between neural dynamics and cortical micro-architecture is often examined using a single,
or a few microstructural features. Recent advances in data collection and integration and
the increasing number of data sharing initiatives have provided a unique opportunity
to comprehensively study cortical circuit properties and micro-architecture using a wide
range of multimodal datasets (Amunts et al., 2013; Hansen et al., 2022; Hawrylycz et al.,
2012; Markello et al., 2022; Paquola et al., 2021; Van Essen et al., 2013; Wagstyl et al., 2018).
Here we use such datasets and compile multiple micro-architectural maps, including
measures of microstructure, metabolism, cortical expansion, receptors and transporters,
layer thickness and cell type-specific gene expressions, to chart the relationship between
neurophysiological dynamics and cortical micro-architecture in a multivariate analysis.

Our findings build on previous reports by showing that neurophysiological dynamics
follow the underlying cytoarchitectonic and microstructural gradients. In particular, our
findings confirm that MEG intrinsic dynamics are associated with the heterogeneous
distribution of gene expression and myelination (Demirtaş et al., 2019; Gao et al., 2020)
and neurotransmitter receptors and transporters (Hansen et al., 2022), which are proxy
measures for cellular and molecular circuit properties (Burt et al., 2018; Hansen et al.,
2021; Hawrylycz et al., 2012). In addition, we link the dynamic signature of ongoing
neurophysiological activity with multiple metabolic attributes (Raichle, 2015; Raichle
and Mintun, 2006); for instance, we find that regions with greater oxygen and glucose
metabolic metabolism tend to display lower temporal autocorrelation and therefore more
variable moment-to-moment intrinsic activity. We also find a prominent association
with cell type-specific gene expression of oligodendrocyte precursors (opc), potentially
reflecting the contribution of these cells to myelin generation by giving rise to myelinating
oligodendrocytes during development (Bergles and Richardson, 2016; Bergles et al., 2000;
Fernandez-Castaneda and Gaultier, 2016; Miller, 1996; Simons and Nave, 2016) and to
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myelin regulation and metabolic support of myelinated axons in the adult neural circuits
(Bergles and Richardson, 2016; Simons and Nave, 2016; Xiao et al., 2022). Finally, we find
that the dominant dynamic signature of neural activity covaries with the granular cortical
layer IV, consistent with the idea that this layer receives prominent subcortical (including
thalamic) feedforward projections (Douglas and Martin, 2004; Scheeringa and Fries, 2019).

The present findings must be interpreted with respect to several methodological con-
siderations. First, we used MEG data from a subset of individuals with no familial
relationships from the HCP dataset. Although all the presented analysis are performed
using the group-level data, future work with larger sample sizes can provide more gen-
eralizable outcomes. Larger sample sizes will also help go beyond associative analysis
and allow for predictive analysis of neural dynamics and micro-architecture in unseen
datasets. Second, MEG is susceptible to low signal-to-noise ratio and has variable sen-
sitivity to neural activity from different regions. Thus, electrophysiological recordings
with higher spatial resolution, such as intracranial electroencephalography (iEEG and
ECoG), may provide more precise measures of neural dynamics that can be examined
with respect to cortical micro-architecture. Finally, despite the fact that we attempt to use a
near-comprehensive list of time-series properties and multiple micro-architectural features,
neither the time-series features nor the micro-architectural maps are exhaustive sets of
measures. Moreover, micro-architectural features are group-average maps that are com-
piled from different datasets. Multi-modal datasets from the same individuals are required
to perform individual-level comparisons between the dynamical and micro-architectural
atlases.

Altogether, using an unbiased, data-driven approach, the present findings show that
neurophysiological signatures of cortical micro-architecture are hierarchically organized
across the cortex, reflecting the underlying circuit properties. Importantly, these findings
highlight the importance of conventional approaches in studying the characteristics of neu-
rophysiological activity, while also introducing less-commonly used time-series features
that covary with cortical micro-architecture, such as fluctuation analysis. Collectively, this
work opens new avenues for studying the anatomical basis of neurophysiological activity.
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5.6 Methods

5.6.1 Dataset: Human Connectome Project (HCP)

Resting state magnetoencephalography (MEG) data from a sample of healthy young adults
(n = 33; age range 22-35 years) with no familial relationships were obtained from Human
Connectome Project (HCP; S900 release (Van Essen et al., 2013)). The data includes resting
state scans of approximately 6 minutes long (sampling rate = 2034.5 Hz; anti-aliasing
low-pass filter at 400 Hz) and noise recordings for all participants. MEG anatomical data
and 3T structural magnetic resonance imaging (MRI) data of all participants were also
obtained for MEG pre-processing.

5.6.2 Resting state magnetoencephalography (MEG)

Resting state MEG data was analyzed using Brainstorm software, which is documented
and freely available for download online under the GNU general public license (Tadel et al.,
2011; http://neuroimage.usc.edu/brainstorm). The MEG recordings were registered to
the structural MRI scan of each individual using the anatomical transformation matrix pro-
vided by HCP for co-registration, following the procedure described in Brainstorm’s on-
line tutorials for the HCP dataset (https://neuroimage.usc.edu/brainstorm/Tutorials/
HCP-MEG). The data were downsampled to 1/4 of the original sampleing rate(i.e 509 Hz)
to facilitate processing. The pre-processing was performed by applying notch filters at
60, 120, 180, 240, and 300 Hz, and was followed by a high-pass filter at 0.3 Hz to remove
slow-wave and DC-offset artifacts. Bad channels were marked based on the information
obtained through the data management platform of HCP for MEG data (ConnectomeDB;
https://db.humanconnectome.org/). The artifacts (including heartbeats, eye blinks, sac-
cades, muscle movements, and noisy segments) were then removed from the recordings
using automatic procedures as proposed by Brainstorm. More specifically, electrocar-
diogram (ECG) and electrooculogram (EOG) recordings were used to detect heartbeats
and blinks, respectively. We then used Signal-Space Projections (SSP) to automatically
remove the detected artifacts. We also used SSP to remove saccades and muscle activity as
low-frequency (1-7 Hz) and high-frequency (40-240 Hz) components, respectively.

The pre-processed sensor-level data was then used to obtain a source estimation on
HCP’s fsLR4k cortical surface for each participant. Head models were computed using
overlapping spheres and the data and noise covariance matrices were estimated from the
resting state MEG and noise recordings. Linearly constrained minimum variance (LCMV)

http://neuroimage.usc.edu/brainstorm
https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG
https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG
https://db.humanconnectome.org/
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beamformering from Brainstorm was then used to obtain the source activity for each
participant. We performed data covariance regularization to avoid the instability of data
covariance inversion due to the smallest eigenvalues. Data covariance regularization was
performed using the “median eigenvalue” method from Brainstorm (Tadel et al., 2011),
such that the eigenvalues of the eigenspectrum of data covariance that were smaller than
the median eigenvalue were replaced with the median eigenvalue itself. The estimated
source variance was also normalized by the noise covariance matrix to reduce the effect of
variable source depth. Source orientations were constrained to be normal to the cortical
surface at each of the 8,000 vertex locations on the fsLR4k surface. Finally, source-level
time-series were parcellated into 100 regions using the Schaefer-100 atlas (Schaefer et al.,
2018), such that a given parcel’s time series was estimated as the first principal component
of its constituting sources’ time series.

5.6.3 Power spectral analysis

Welch’s method was used to estimate power spectrum density (PSD) from the source-level
time-series, using overlapping windows of length 4 seconds with 50% overlap. Average
power at each frequency band was then calculated for each vertex (i.e. source). Source-level
power data were parcellated into 100 regions using the Schaefer-100 atlas (Schaefer et al.,
2018) for each participant at six canonical electrophysiological bands (i.e., delta (δ: 2-4 Hz),
theta (θ: 5-7 Hz), alpha (α: 8-12 Hz), beta (β: 15-29 Hz), low gamma (lo-γ: 30-59 Hz), and
high gamma (hi-γ: 60-90Hz)). The vertex-level power maps are publicly available via the
neuromaps toolbox on the fsLR4k surface (Markello et al., 2022).

5.6.4 Intrinsic timescale

The intrinsic timescale of each brain region was estimated using spectral parameterization
with the FOOOF algorithm (Donoghue et al., 2020). Specifically, the source-level power
spectral density were used to extract the neural timescale at each vertex and for each
individual using the procedure described by (Gao et al., 2020). The FOOOF algorithm
decomposes the power spectra into periodic (oscillatory) and aperiodic (1/ f -like) com-
ponents by fitting the power spectral density in the log-log space and identifying the
oscillatory peaks as the periodic components and the “knee parameter” k that controls for
the bend in the aperiodic component (Donoghue et al., 2020; Gao et al., 2020). The knee
parameter k can then be used to calculate the “knee frequency” as fk = k1/2, which is the
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frequency where a knee or a bend occurs in the power spectrum density (Gao et al., 2020).
Finally, the intrinsic timescale τ is estimated as (Gao et al., 2020):

τ =
1

2π fk
(5.1)

We used the FOOOF algorithm to fit the power spectral density with with “knee”
aperiodic mode and maximum number of 2 peaks over the frequency range of 1-60 Hz.
Note that since the first notch filter was applied at 60 Hz during the pre-processing
analysis, we did not fit the model above 60 Hz. Intrinsic timescale τ was estimated for each
vertex and was parcellated using the Schaefer-100 atlas (Schaefer et al., 2018). Vertex-level
intrinsic timescale map is publicly available at the neuromaps toolbox on the fsLR4k surface
(Markello et al., 2022).

5.6.5 Time-series feature extraction using hctsa

We used the highly comparative time-series analysis toolbox, hctsa (Fulcher and Jones,
2017; Fulcher et al., 2013), to perform a massive feature extraction of the time-series for
each brain area for each participant. The hctsa package extracted over 7 000 local time-
series features using a wide range of operations based on time-series analysis (Fulcher and
Jones, 2017; Fulcher et al., 2013). The extracted features include, but are not limited to,
measures of data distribution, temporal dependency and correlation properties, entropy
and variability, parameters of time-series model fit, and nonlinear properties of a given
time-series (Fulcher, 2018; Fulcher et al., 2013).

The hctsa feature extraction analysis was performed on the parcellated MEG time-
series. Given that applying hctsa on the full time-series is computationally expensive,
we used 80 seconds of data for feature extraction after dropping the first 30 seconds.
Previous reports suggest that relatively short segments of about 30 to 120 seconds of
resting-state data are sufficient to estimate robust properties of intrinsic brain activity
(Wiesman et al., 2022). Nevertheless, to ensure that we can robustly estimate time-series
features from 80 seconds of data, we calculated a subset of hctsa features using the
Catch-22 toolbox (Lubba et al., 2019) on subsequent segments of time-series with varying
length for each participant. Specifically, we extracted time-series features from short
segments of data ranging from 5 to 125 seconds in increments of 5 seconds. To identify the
optimal time-series length required to estimate robust and stable features, we calculated the
Pearson correlation coefficient between features of two subsequent segments (e.g. features
estimated from 10 and 5 seconds of data). The correlation coefficient between the estimated
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features started to stabilize at time-series segments of around 30 seconds, consistent with
previous reports (Wiesman et al., 2022) (Figure S5.2). Following the feature extraction
procedure, the outputs of the operations that produced errors were removed and the
remaining features (6,880 features) were normalized across nodes using an outlier-robust
sigmoidal transform.

5.6.6 neuromaps data

We used the neuromaps toolbox (https://github.com/netneurolab/neuromaps) (Markello
et al., 2022) to obtain micro-architectural and neurotransmitter receptor and transporter
maps in their native spaces. Details about all maps and their data sources are available in
(Markello et al., 2022). Briefly, all data that were originally available in any surface space
were transformed to the fsLR32k surface space using linear interpolation to resample data
and were parcellated into 100 cortical regions using the Schaefer atlas in fsLR32k space
(Schaefer et al., 2018). All volumetric data were retained in their native MNI152 volumetric
space and were parcellated into 100 cortical regions using the volumetric Schaefer atlas
in MNI152 space (Schaefer et al., 2018). Micro-architectural maps included T1w:T2w as
a proxy measure of cortical myelin (Glasser et al., 2016), cortical thickness (Glasser et al.,
2016), principal component of gene expression (Hawrylycz et al., 2012; Markello et al.,
2021), principal component of neurotransmitter receptors and transporters (Hansen et al.,
2022), synapse density (using [11C]UCB-J PET tracer that binds to the synaptic vesicle
glycoprotein 2A (SV2A)) (Bini et al., 2020; Chen et al., 2018, 2021; Finnema et al., 2016,
2018, 2019, 2020; Holmes et al., 2019; Mecca et al., 2020; O’Dell et al., 2021; Radhakrishnan
et al., 2021; Smart et al., 2021; Weiss et al., 2021), metabolism (i.e. cerebral blood flow
and volume, oxygen and glucose metabolism, glycolytic index) (Vaishnavi et al., 2010),
evolutionary and developmental expansion (Hill et al., 2010), allometric scaling from
Philadelphia Neurodevelopmental Cohort (PNC) and National Institutes of Health (NIH)
(Reardon et al., 2018). Neurotransmitter maps included 18 different neurotransmitter
receptors and transporters across 9 different neurotransmitter systems, namely serotonin
(5-HT1a, 5-HT1b, 5-HT2a, 5-HT4, 5-HT6, 5-HTT), histamine (H3), dopamine (D1, D2,
DAT), norepinephrine (NET), acetylcholine (α4β2, M1, VAChT), cannabinoid (CB1), opioid
(MOR), glutamate (mGluR5), and GABA (GABAa/bz) (Hansen et al., 2022).

https://github.com/netneurolab/neuromaps
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5.6.7 BigBrain histological data

Layer thickness data for the 6 cortical layers (I-VI) were obtained from the BigBrain
atlas, which is a volumetric, high-resolution (20 × 20 × 20µm) histological atlas of a post
mortem human brain (Amunts et al., 2013; Paquola et al., 2021; Wagstyl et al., 2020). In
the BigBrain atlas, sections of the post mortem brain are stained for cell bodies using
Merker staining technique (Merker, 1983). These sections are then imaged and used to
reconstruct a volumetric histological atlas of the human brain that reflects neuronal density
and soma size and captures the regional differentiation of cytoarchitecture (Amunts et al.,
2013; Paquola et al., 2019, 2021; Wagstyl et al., 2018, 2020). The approximate cortical
layer thickness data obtained from the BigBrainWarp toolbox (Paquola et al., 2021), were
originally generated using a convolutional neural network that automatically segments the
cortical layers from the pial to white surfaces (Wagstyl et al., 2020). Full description of how
the cortical layer thickness was approximated is available elsewhere (Wagstyl et al., 2020).
The cortical layer thickness data for the 6 cortical layers were obtained on the fsaverage
surface (164k vertices) from the BigBrainWarp toolbox (Paquola et al., 2021) and were
parcellated into 100 cortical regions using the Schaefer-100 atlas (Schaefer et al., 2018).

5.6.8 Cell type-specific gene expression

Regional microarray expression data were obtained from 6 post-mortem brains (1 fe-
male, ages 24.0–57.0, 42.50 ± 13.38) provided by the Allen Human Brain Atlas (AHBA,
https://human.brain-map.org; (Hawrylycz et al., 2012)). Data were processed with the
abagen toolbox (version 0.1.3-doc; https://github.com/rmarkello/abagen; (Markello
et al., 2021)) using the Schaefer-100 volumetric atlas in MNI space (Schaefer et al., 2018).

First, microarray probes were reannotated using data provided by (Arnatkevičiūtė
et al., 2019); probes not matched to a valid Entrez ID were discarded. Next, probes were
filtered based on their expression intensity relative to background noise (Quackenbush,
2002), such that probes with intensity less than the background in ≥ 50.00% of samples
across donors were discarded. When multiple probes indexed the expression of the same
gene, we selected and used the probe with the most consistent pattern of regional variation
across donors (i.e., differential stability; (Hawrylycz et al., 2015)), calculated with:

∆S(p) =
1

(N
2 )

N−1

∑
i=1

N

∑
j=i+1

ρ[Bi(p), Bj(p)] (5.2)

https://human.brain-map.org
https://github.com/rmarkello/abagen
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where ρ is Spearman rank correlation of the expression of a single probe, p, across regions
in two donors Bi and Bj, and N is the total number of donors. Here, regions correspond to
the structural designations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via non-
linear registration using the Advanced Normalization Tools (ANTs; https://github.

com/chrisfilo/alleninf). To increase spatial coverage, tissue samples were mirrored
bilaterally across the left and right hemispheres (Romero-Garcia et al., 2018). Samples were
assigned to brain regions in the provided atlas if their MNI coordinates were within 2 mm
of a given parcel. If a brain region was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the nearest tissue sample from the
donor in order to generate a dense, interpolated expression map. The average of these
expression values was taken across all voxels in the region, weighted by the distance
between each voxel and the sample mapped to it, in order to obtain an estimate of the
parcellated expression values for the missing region. All tissue samples not assigned to a
brain region in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing tissue sample expression values
across genes using a robust sigmoid function (Fulcher et al., 2013):
where ρ is Spearman’s rank correlation of the expression of a single probe, p, across regions
in two donors Bi and Bj, and N is the total number of donors. Here, regions correspond to
the structural designations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via non-
linear registration using the Advanced Normalization Tools (ANTs; https://github.

com/chrisfilo/alleninf). To increase spatial coverage, tissue samples were mirrored
bilaterally across the left and right hemispheres (Romero-Garcia et al., 2018). Samples were
assigned to brain regions in the provided atlas if their MNI coordinates were within 2 mm
of a given parcel. If a brain region was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the nearest tissue sample from the
donor in order to generate a dense, interpolated expression map. The average of these
expression values was taken across all voxels in the region, weighted by the distance
between each voxel and the sample mapped to it, in order to obtain an estimate of the
parcellated expression values for the missing region. All tissue samples not assigned to a
brain region in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing tissue sample expression values
across genes using a robust sigmoid function (Fulcher et al., 2013):

https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
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xnorm =
1

1 + exp(− (x−⟨x⟩)
IQRx

)
(5.3)

where ⟨x⟩ is the median and IQRx is the normalized interquartile range of the expression
of a single tissue sample across genes. Normalized expression values were then rescaled
to the unit interval:

xscaled =
xnorm − min(xnorm)

max(xnorm)− min(xnorm)
(5.4)

Gene expression values were then normalized across tissue samples using an identical
procedure. Samples assigned to the same brain region were averaged separately for each
donor and then across donors, yielding a regional expression matrix of 15,633 genes.

Finally, cell type-specific gene expression maps were calculated using gene sets iden-
tified by a cell type deconvolution analysis (Di Biase et al., 2022; Hansen et al., 2021;
Seidlitz et al., 2020). Detailed description of the analysis is available at (Seidlitz et al., 2020).
Briefly, cell-specific gene sets were compiled across 5 single-cell and single-nucleus RNA
sequencing studies of adult human post-mortem cortical samples (Darmanis et al., 2015;
Habib et al., 2017; Lake et al., 2018; Li et al., 2018; McKenzie et al., 2018; Zhang et al.,
2016). Gene expression maps of the compiled study-specific cell types were obtained from
AHBA. Unsupervised hierarchical clustering analysis was used to identify 7 canonical
cell classes that included astrocytes (astro), endothelial cells (endo), microglia (micro),
excitatory neurons (neuron-ex), inhibitory neurons (neuron-in), oligodendrocytes (oligo)
and oligodendrocyte precursors (opc). We then used the resulting gene sets to obtain
average cell type-specific expression maps for each of these 7 cell classes from the regional
expression matrix of 15,633 genes.

5.6.9 Partial Least Squares (PLS)

Partial least squares (PLS) analysis was used to investigate the relationship between
resting-state MEG time-series features and micro-architecture maps. PLS is a multivariate
statistical technique that identifies mutually orthogonal, weighted linear combinations of
the original variables in the two datasets that maximally covary with each other, namely
the latent variables (McIntosh and Mišić, 2013; McIntosh and Lobaugh, 2004). In the
present analysis, one dataset is the hctsa feature matrix (i.e. Xn×t) with n = 100 rows
as brain regions and t = 6880 columns as time-series features. The other dataset is the
compiled set of micro-architectural maps (i.e. Yn×m) with n = 100 rows (brain regions)
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and m = 45 columns (micro-architecture maps). To identify the latent variables, both data
matrices were normalized column-wise (i.e. z-scored) and a singular value decomposition
was applied to the correlation matrix R = X

′
Y as follows:

R = X
′
Y = USV′ (5.5)

where Ut×m and Vm×m are orthonormal matrices of left and right singular vectors and
Sm×m is the diagonal matrix of singular values. Each column of U and V matrices cor-
responds to a latent variable. Each element of the diagonal of S is the corresponding
singular value. The singular values are proportional to the covariance explained by latent
variable and can be used to calculate effect sizes as ηi = s2

i / ∑J
j=1 s2

j where ηi is the effect
size for the i-th latent variable (LVi), si is the corresponding singular value, and J is the
total number of singular values (here J = m). The left and right singular vectors U and
V demonstrate the extent to which the time-series features and micro-architectural maps
contribute to latent variables, respectively. Time-series features with positive weights
covary with micro-architectural maps with positive weights, while negatively weighted
time-series features and micro-architectural maps covary together. Singular vectors can
be used to estimate brain scores that demonstrate the extent to which each brain region
expresses the weighted patterns identified by latent variables. Brain scores for time-series
features and micro-architectural maps are calculated by projecting the original data onto
the PLS-derived weights (i.e., U and V):

Brain scores for time-series features = XU

Brain scores for micro-architecture = YV

Loadings for time-series features and micro-architectural maps are then computed as
the Pearson correlation coefficient between the original data matrices and their correspond-
ing brain scores. For example, time-series feature loadings are the correlation coefficients
between the original hctsa time-series feature vectors and PLS-derived brain scores for
time-series features.

The statistical significance of latent variables was assessed using 10,000 permutation
tests, where the original data was randomized using spatial autocorrelation-preserving
nulls (see Null model for more details). The PLS analysis was repeated for each permutation,
resulting in a null distribution of singular values. The significance of the original singular
values were then assessed against the permuted null distributions (Figure 5.4a). The
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reliability of PLS loadings was estimated using bootstrap resampling (Efron and Tibshirani,
1986), where rows of the original data matrices X and Y are randomly resampled with
replacement 10,000 times. The PLS analysis was then repeated for each resampled data,
generating a sampling distribution for each time-series feature and micro-architectural
map (i.e. generating 10,000 bootstrap-resampled loadings). The bootstrap-resampled
loading distributions are then used to estimate 95% confidence intervals for loadings (e.g.
see Figure 5.4d).

Finally, given that PLS-derived brain scores are by design highly correlated, we used
a distance-dependent cross-validation analysis with spatial autocorrelation-preserving
nulls to (a) assess the out-of-sample correlations between brain scores, and (b) ensure that
the observed association between brain scores goes beyond the spatial autocorrelation
inherent to the data (Hansen et al., 2021). Specifically, 75% of the closest brain regions in
Euclidean distance to a random “seed” region were selected as training set, while the 25%
remaining distant regions were selected as test set. We then re-ran the PLS analysis on
the training set (i.e. 75% of regions) and used the resulting weights (i.e. singular values)
to estimated brain scores for test set. The out-of-sample correlation was then calculated
as the Pearson correlation coefficient between test set brain scores of time-series features
and micro-architectural maps. We repeated this analysis 99 times, such that each time a
random brain region was selected as the seed region, yielding distributions of training
set brain scores correlations and test set (out-of-sample) correlations. Note that 99 is the
maximum number of train-test splits here given that brain maps consist of 100 regions. The
significance of the mean out-of-sample correlation was assessed against 1,000 permuted
null models, where the cross-validation analysis was repeated using randomized data
with preserved spatial autocorrelation and a null distribution of out-of-sample correlations
were generated (Figure 5.4b).

5.6.10 Null model

To make inferences about the topographic correlations between any two brain maps, we
implement a null model that systematically disrupts the relationship between two topo-
graphic maps but preserves their spatial autocorrelation (Alexander-Bloch et al., 2018;
Markello and Misic, 2021; Váša and Mišić, 2022). We used the Schaefer-100 atlas in the
HCP’s fsLR32k grayordinate space (Schaefer et al., 2018; Van Essen et al., 2013). The spher-
ical projection of the fsLR32k surface was used to define spatial coordinates for each parcel
by selecting the vertex closest to the center-of-mass of each parcel (Shafiei et al., 2020a;
Vázquez-Rodríguez et al., 2019; Vazquez-Rodriguez et al., 2020). The resulting spatial
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coordinates were used to generate null models by applying randomly-sampled rotations
and reassigning node values based on the closest resulting parcel (10,000 repetitions). The
rotation was applied to one hemisphere and then mirrored to the other hemisphere.

5.6.11 Code and data availability

Code used to conduct the reported analyses is available on GitHub (https://github.com/
netneurolab/shafiei_megtimeseries). Data used in this study were obtained from the
Human Connectome Project (HCP) database (available at https://db.humanconnectome.
org/).
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Figure S5.1: Univariate analysis of neurophysiological time-series features | Spearman’s rank corre-
lation coefficients (rs) were used to investigate the univariate associations between hctsa time-series
features of neurophysiological signal and two commonly-used micro-architectural maps: (a) T1w/Tw2
ratio as a proxy measure of myelination, and (b) principal component of gene expression. The result-
ing correlations were compared with null distributions of correlations obtained from 10,000 spatial
autocorrelation-preserving nulls. Grey indicates non-significant time-series features (FDR corrected).
Examples of high loading time-series features are shown for each micro-architectural map. Alpha
parameter or Hurst exponent of detrended fluctuation analysis (DFA), a measure of long term memory
of the signal, is shown for T1w/T2w ratio. The fluctuation analysis also reflects the shape of the autocor-
relation function. Lag-24 autocorrelation is shown for principal component of gene expression (each
time lag is 2 ms). For each map, three regions are selected based on the alpha parameter of DFA and
lag-24 autocorrelation (circles on the brain surface: pink = 5th percentile, green = 50th percentile, purple
= 95th percentile). Values inside the parenthesis are the raw feature values while the ones outside the
parenthesis are the normalized values. Full lists of features, their correlation coefficients and p-values
are available for T1w/T2w ratio and gene expression in the online Supplementary Files S3,4.
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Figure S5.2: Stability of time-series features | To identify the time-series length required to robustly
estimate the time-series features, we calculated a subset of hctsa features using the Catch-22 toolbox
(Lubba et al., 2019) on subsequent segments of time-series with varying length for each participant. We
extracted time-series features from short segments of data ranging from 5 to 125 seconds in increments
of 5 seconds. To identify the optimal time-series length required to estimate robust and stable features,
we calculated the Pearson correlation coefficient r between features of two subsequent segments (e.g.
features estimated from 10 and 5 seconds of data). The group-average correlation coefficient between
the estimated features started to stabilize at time-series segments of around 30 seconds, consistent with
previous reports (Wiesman et al., 2022) (left). To compare the stability analysis of Catch-22 features
with full hctsa features, the correlation coefficients between subsequent segments of time-series are
shown for one random participant (right).
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6.1 Preface

Previous chapters investigated how temporal properties of regional neural activity are
related to global network organization and cortical micro-architecture. Local neural
activity can be measured at different timescales, from milliseconds to several seconds,
using different neuroimaging modalities such as functional magnetic resonance imaging
(MRI) and electromagnetic imaging (MEG/EEG). Despite complementary strengths to
image spatiotemporal brain dynamics, the links between MEG and fMRI are not fully
understood and the two fields have diverged. These imaging modalities are different
in nature as they are sensitive to different mechanisms and measure neural activity at

https://doi.org/10.1371/journal.pbio.3001735
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slow and fast timescales (functional MRI and electromagnetic imaging, respectively).
However, given that both types of signals are generated by the same underlying biological
organization, some level of alignment is expected between the estimated dynamics from
the two modalities (Sadaghiani et al., 2022). The work presented here quantifies the
correspondence between inter-regional functional associations recovered from MEG and
fMRI and bridges the two disciplines by comprehensively mapping haemodynamic and
electromagnetic network architectures. This work was published in PLOS Biology in 2022
(Shafiei et al., 2022).

6.2 Abstract

Whole-brain neural communication is typically estimated from statistical associations
among electromagnetic or haemodynamic time-series. The relationship between func-
tional network architectures recovered from these two types of neural activity remains
unknown. Here we map electromagnetic networks (measured using magnetoencephalog-
raphy; MEG) to haemodynamic networks (measured using functional magnetic resonance
imaging; fMRI). We find that the relationship between the two modalities is regionally
heterogeneous and systematically follows the cortical hierarchy, with close correspondence
in unimodal cortex and poor correspondence in transmodal cortex. Comparison with
the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is
driven by laminar differentiation and neuron density, suggesting that the mapping be-
tween the two modalities can be explained by cytoarchitectural variation. Importantly,
haemodynamic connectivity cannot be explained by electromagnetic activity in a single
frequency band, but rather arises from the mixing of multiple neurophysiological rhythms.
Correspondence between the two is largely driven by MEG functional connectivity at the
beta (15-29 Hz) frequency band. Collectively, these findings demonstrate highly organized
but only partly overlapping patterns of connectivity in MEG and fMRI functional net-
works, opening fundamentally new avenues for studying the relationship between cortical
micro-architecture and multi-modal connectivity patterns.

6.3 Introduction

The structural wiring of the brain imparts a distinct signature on neuronal co-activation pat-
terns. Inter-regional projections promote signaling and synchrony among distant neuronal
populations, giving rise to coherent neural dynamics, measured as regional time series of
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electromagnetic or haemodynamic neural activity (Fries, 2005). Systematic co-activation
among pairs of regions can be used to map functional connectivity networks. Over the past
decade, these dynamics are increasingly recorded without task instruction or stimulation;
the resulting “intrinsic” functional connectivity is thought to reflect spontaneous neural
activity.

The macro-scale functional architecture of the brain is commonly inferred from elec-
tromagnetic or haemodynamic activity. The former can be measured using electroen-
cephalography (EEG) or magnetoencephalography (MEG), while the latter is measured
using functional magnetic resonance imaging (fMRI). Numerous studies – using both
MEG and fMRI – have reported evidence of intrinsic functional patterns that are highly
organized (Baker et al., 2014; Bellec et al., 2006; Brookes et al., 2011a,b; De Pasquale et al.,
2010; Power et al., 2011; Tewarie et al., 2014; Yeo et al., 2011), reproducible (Brookes et al.,
2012; Colclough et al., 2016; Gordon et al., 2017; Noble et al., 2019) and comparable to
task-driven co-activation patterns (Brookes et al., 2012; Cole et al., 2014; Smith et al., 2009).

How do electromagnetic and haemodynamic networks relate to one another? Although
both modalities attempt to capture the same underlying biological process (neural activity),
they are sensitive to different physiological mechanisms and ultimately reflect neural
activity at fundamentally different time scales (Baillet, 2017; Hall et al., 2014; Hari and
Parkkonen, 2015; Sadaghiani et al., 2022; Sadaghiani and Wirsich, 2020). Emerging theories
emphasize a hierarchy of time scales of intrinsic fluctuations across the cortex (Gao et al.,
2020; Murray et al., 2014; Raut et al., 2020; Shafiei et al., 2020b), where unimodal cortex is
more sensitive to immediate changes in the sensory environment, while transmodal cortex
is more sensitive to prior context (Baldassano et al., 2017; Chaudhuri et al., 2015; Chien and
Honey, 2020; Hasson et al., 2008; Honey et al., 2012; Huntenburg et al., 2018). This raises
the possibility that the alignment between the relatively slower functional architecture
captured by fMRI and faster functional architecture captured by MEG may systematically
vary across the cortex.

Previous reports have found some, but not complete, global overlap between the two
modalities. Multiple MEG and fMRI independent components – representing spatiotem-
poral signatures of resting-state intrinsic networks – show similar spatial topography,
particularly the visual, somatomotor and default mode components (Baker et al., 2014;
Brookes et al., 2011a,b; Hipp et al., 2012). The spatial overlap between large-scale net-
works has also been reported in task-based studies and with networks recovered from
other modalities, such as EEG and intracranial EEG (Das et al., 2022; Freeman et al.,
2009; Liljeström et al., 2015; Menon et al., 1997; Musso et al., 2010). Moreover, fMRI
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and MEG/EEG yield comparable fingerprinting accuracy, suggesting that they encode
common information (Demuru and Fraschini, 2020; Fraschini et al., 2019; Sareen et al.,
2021; Silva Castanheira et al., 2021). Finally, global edge-wise comparisons between fMRI
networks and electrocorticography (ECoG) (Betzel et al., 2019), EEG (Deligianni et al., 2014;
Wirsich et al., 2017, 2021) and MEG (Garcés et al., 2016; Hipp and Siegel, 2015; Tewarie
et al., 2016) also yield moderate correlations. Although global comparisons are more
common when different modalities are studied, regional and network-level relationships
have also been explored using electrophysiological and intracranial EGG recordings (Das
et al., 2022; Logothetis, 2003; Mukamel et al., 2005) as well as EEG and MEG recordings
(Hipp and Siegel, 2015; Singh, 2012; Stevenson et al., 2012). Regional comparisons of
electrophysiological and fMRI recordings also suggest that the relationship between the
two may be affected by distinct cytoarchitecture and laminar structure of brain regions,
particularly in visual and frontal cortex (Bastos et al., 2018; Bastos et al., 2015; Buffalo
et al., 2011; Maier et al., 2011, 2010; Scheeringa and Fries, 2019; Scheeringa et al., 2016;
Smith et al., 2013). How the coupling between fMRI and MEG connectivity profiles varies
from region to region, and how this coupling reflects cytoarchitecture, is still not fully
understood. Furthermore, previous studies have mostly assessed the association between
haemodynamic and electromagnetic networks for separate frequency bands, investigating
independent contributions of individual rhythms to haemodynamic connectivity. This
effectively precludes the possibility that superposition and mixing of elementary electro-
magnetic rhythms manifests as patterns of haemodynamic connectivity (Hipp and Siegel,
2015; Mantini et al., 2007; Tewarie et al., 2016).

How regional connectivity profiles of MEG and fMRI functional networks are associated
across the cortex and how their correspondence relates to the underlying cytoarchitecture,
remains an exciting open question. Here, we use a linear multi-factor model that allows to
represent the haemodynamic functional connectivity profile of a given brain region as a
linear combination of its electromagnetic functional connectivity in multiple frequency
bands. We then explore how the two modalities align across the neocortex and investigate
the contribution of cytoarchitectonic variations to their alignment.
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Figure 6.1: Relating haemodynamic and electromagnetic connectivity | (a) A multi-linear regression
model was applied to predict resting state fMRI connectivity patterns from band-limited MEG functional
connectivity (amplitude envelope correlation; AEC (Bruns et al., 2000)). The model is specified for each
brain region separately, attempting to predict a region’s haemodynamic connectivity profile from its
electromagnetic connectivity profile. (b) The overall relationship between fMRI and MEG functional
connectivity is estimated by correlating the upper triangle of fMRI FC (i.e. above diagonal) with the
upper triangles of band-limited MEG FC, suggesting moderate relationship between the two across
frequency bands. (c) Regional multi-linear model shown in panel (a) is used to predict fMRI FC
from band-limited MEG FC for each brain region (i.e. row) separately. The empirical and predicted
fMRI FC are depicted side-by-side for the regional model. The whole-brain edge-wise relationship
between the empirical and predicted values is shown in the scatter plot. Each grey dot represents
an edge (pairwise functional connection) from the upper triangles of empirical and predicted fMRI
FC matrices. (d) A global multi-linear model is used to predict the entire upper triangle of fMRI FC
from the upper triangles of the MEG FC matrices. The empirical and predicted fMRI FC are depicted
side-by-side for the global model. The whole-brain edge-wise relationship between the empirical and
predicted values is shown in the scatter plot. Each grey dot represents en edge from the upper triangles
of empirical and predicted fMRI FC matrices. (e) The distribution of regional model fit quantified
by R2 is shown for regional model (grey histogram plot). The global model fit is also depicted for
comparison (pink line). The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

6.4 Results

Data were derived using task-free MEG and fMRI recordings in the same unrelated par-
ticipants from the Human Connectome Project (HCP (Van Essen et al., 2013); n = 33).

https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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We first develop a simple regression-based model to map regional MEG connectivity to
regional fMRI connectivity using group-average data. We then investigate how regionally
heterogeneous the correspondence between the two is, and how different rhythms con-
tribute to this regional heterogeneity. Finally, we conduct extensive sensitivity testing to
demonstrate that the results are robust to multiple methodological choices.

6.4.1 Relating haemodynamic and electromagnetic connectivity

To relate fMRI and MEG functional connectivity patterns, we apply a multi-linear re-
gression model (Vázquez-Rodríguez et al., 2019) (Figure 6.1). The model is specified for
each brain region separately, attempting to predict a region’s haemodynamic connectivity
profile from its electromagnetic connectivity profile. The dependent variable is a row
of the fMRI functional connectivity (FC) matrix and the independent variables are the
corresponding rows of MEG FC matrices for six canonical electrophysiological bands,
estimated using amplitude envelope correlation (AEC (Bruns et al., 2000)) with spatial
leakage correction (see Methods for more details). For a model fitted for a given node i,
the observations in the model are the connections of node i to the other j ̸= i regions
(Figure 6.1a). The model predicts the fMRI FC profile of node i (i.e. i-th row) from a linear
combination of MEG FC profiles of node i in the six frequency bands (i.e. i-th rows of MEG
FC matrices). Collectively, the model embodies the idea that multiple rhythms could be
superimposed to give rise to regionally heterogeneous haemodynamic connectivity.

Indeed, we find that the relationship between haemodynamic and electromagnetic
connectivity is highly heterogeneous. Band-limited MEG connectivity matrices are moder-
ately correlated with fMRI connectivity, ranging from r = −0.06 to r = 0.36 (Figure 6.1b; r
denotes Pearson correlation coefficient). The regional multi-linear model fits range from
adjusted-R2 = −0.002 to adjusted-R2 = 0.72 (R2 denotes coefficient of determination;
hereafter we refer to adjusted-R2 as R2), suggesting a close correspondence in some re-
gions and poor correspondence in others (Figure 6.1c,e). Band-specific regional model
fits are depicted in Figure S6.1, where each band-specific MEG connectivity is separately
used as a single predictor in the model. For comparison, a single global model is fitted
to the data, predicting the entire upper triangle of the fMRI FC matrix (i.e. all values
above the diagonal) from a linear combination of the upper triangles of six MEG FC
matrices (i.e. all values above the diagonal)(see Methods for more detail). The global model,
which simultaneously relates whole-brain fMRI FC to the whole-brain MEG FC, yields an
R2 = 0.15 (Figure 6.1d,e). Importantly, the global model clearly obscures the wide range of
correspondences, which can be considerably greater or smaller for individual regions.
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Figure 6.2: Regional model fit | (a) Spatial organization of fMRI-MEG correspondence is depicted
for the regional model fit (95% interval). The cross-modal correspondence of connectivity profiles
of brain regions is distributed heterogeneously across the cortex, representing regions with low or
high correspondence. Strong cross-modal correspondence is observed in sensory areas whereas poor
correspondence is observed for higher order regions. (b) Spatial organization of the cross-modal
correspondence is compared with the functional hierarchical organization of cerebral cortex (Margulies
et al., 2016). The two are significantly anti-correlated, confirming poor fMRI-MEG correspondence in
connectivity profile of higher-order, transmodal areas compared to strong correspondence for sensory,
unimodal regions. (c) Regions are stratified by their affiliation with macro-scale intrinsic networks
(Yeo et al., 2011). The distribution of R2 is depicted for each network, displaying a systematic gradient
of cross-modal correspondence with the highest correspondence in the visual network and lowest
correspondence in the default mode network. (d) The model fit is related to the cytoarchitectural
variation of the cortex, estimated from the cell staining intensity profiles at various cortical depths
obtained from the BigBrain histological atlas (Amunts et al., 2013; Paquola et al., 2021). Bigger circles
denote statistically significant associations after correction for multiple comparisons by controlling the
false discovery rate (FDR) at 5% alpha (Benjamini and Hochberg, 1995). The peak association between
cross-modal correspondence and cytoarchitecture is observed approximately at cortical layer IV that has
high density of granule cells. Staining intensity profiles are depicted across the cortex for the most pial,
the middle and the white matter surfaces. (e) Microarray gene expression of vasoconstrictive NPY1R
(Neuropeptide Y Receptor Y1) was estimated from the Allen Human Brain Atlas (AHBA; (Hawrylycz
et al., 2012)). The MEG-fMRI cross-modal correspondence R2 map (i.e. regional model fit) is compared
with NPY1R gene expression. rs denotes Spearman rank correlation. Intrinsic networks: vis = visual;
sm = somatomotor; da = dorsal attention; va = ventral attention; lim = limbic; fp = frontoparietal;
dmn = default mode. The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

6.4.2 Hierarchical organization of cross-modal correspondence

We next consider the spatial organization of fMRI-MEG correspondence. Figure 6.2a
shows the spatial distribution of regional R2 values, representing regions with low or

https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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high correspondence. Regions with strong cross-modal correspondence include the visual,
somato-motor and auditory cortex. Regions with low cross-modal correspondence include
the posterior cingulate, lateral temporal and medial prefrontal cortex.

Collectively, the spatial layout of cross-modal correspondence bears a resemblance
to the unimodal-transmodal cortical hierarchy observed in large-scale functional and
microstructural organization of the cerebral cortex (Huntenburg et al., 2018). To assess
this hypothesis, we first compared the cross-modal R2 map with the principal functional
hierarchical organization of the cortex, estimated using diffusion map embedding (Langs
et al., 2015; Margulies et al., 2016) (Figure 6.2b; see Methods for more details). The two are
significantly anti-correlated (Spearman rank correlation coefficient rs = −0.69, pspin =

0.0001), suggesting strong cross-modal correspondence in unimodal sensory cortex and
poor correspondence in transmodal cortex. We then stratify regions by their affiliation
with macro-scale intrinsic networks and computed the mean R2 in each network (Yeo
et al., 2011) (Figure 6.2c). Here we also observe a systematic gradient of cross-modal
correspondence, with the strongest correspondence in the visual network and poorest
correspondence in the default mode network.

We relate the cross-modal R2 map to the cytoarchitectural variation of the cortex (Fig-
ure 6.2d). We use the BigBrain histological atlas to estimate granular cell density at multiple
cortical depths (Amunts et al., 2013; Paquola et al., 2021). Cell-staining intensity profiles
were sampled across 50 equivolumetric surfaces from the pial surface to the white matter
surface to estimate laminar variation in neuronal density and soma size. Figure 6.2d shows
the correlation between MEG-fMRI correspondence and cell density (y-axis) at different
cortical depths (x-axis). Interestingly, the model fit is associated with cytoarchitectural
variation of the cortex, with the peak association observed approximately at cortical layer
IV that has high density of granular cells and separates supra- and infra-granular lay-
ers (Paquola et al., 2019, 2020; Wagstyl et al., 2020). Layer IV predominately receives
feedforward projections and has high vascular density (Douglas and Martin, 2004; Harel
et al., 2006; Schmid et al., 2019). We further assess the relationship between MEG-fMRI
cross-modal correspondence and vascular attributes. We obtain the microarray gene ex-
pression of the vasoconstrictive NPY1R (Neuropeptide Y Receptor Y1) from Allen Human
Brain Atlas (AHBA; Hawrylycz et al., 2012; see Methods for more details), given previous
reports that the BOLD response is associated with the vasoconstrictive mechanism of
Neuropeptide Y (NPY) acting on Y1 receptors (Uhlirova et al., 2016). We then compare the
cross-modal association map with the expression of NPY1R and identify a significant asso-
ciation between the two (Figure 6.2e; rs = −0.60, pspin = 0.0023). This demonstrates that
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regions with low cross-modal correspondence are enriched for NPY1R whereas areas with
high cross-modal associations have less NPY-dependent vasoconstriction. Altogether, the
results suggest that the greater coupling in unimodal cortex may be driven by the underly-
ing cytoarchitecture, reflecting higher density of granular cells and distinct vascularization
of cortical layer IV.

We also relate cross-modal R2 map to the variation of structure-function coupling
across the cortex, which has also been shown to follow the unimodal-transmodal hierarchy
(Baum et al., 2020; Preti and Van De Ville, 2019; Suárez et al., 2020; Vázquez-Rodríguez
et al., 2019; Zamani Esfahlani et al., 2022). We estimate structure-function coupling as
the Spearman rank correlation between regional structural and functional connectivity
profiles (Baum et al., 2020) (Figure S6.2; see Methods for more details). We then correlate the
identified map with the regional model fit, identifying a significant association between
the two (Figure S6.2; rs = 0.40, pspin = 0.0025). This is consistent with the notion that
both haemodynamic and electromagnetic neural activity are constrained by the anatomical
pathways and the underlying structural organization (Cabral et al., 2014; Sarwar et al.,
2021; Sorrentino et al., 2021).

6.4.3 Heterogeneous contributions of multiple rhythms

How do different rhythms contribute to regional patterns of cross-modal correspondence?
To address this question and to assess the effects of cross-correlation between MEG con-
nectivity at different frequency bands (Figure S6.5), we perform a dominance analysis for
every regional multi-linear model (Azen and Budescu, 2003; Budescu, 1993). Specifically,
dominance analysis is used to examine the separate effects of each band-limited MEG func-
tional connectivity, as well as the effects of all other possible combinations of band-limited
MEG FC, on the regional model fit. This technique estimates the relative importance
of predictors by constructing all possible combinations of predictors and re-fitting the
multi-linear model for each combination. The possible combinations of predictors include
sets of single predictors, all possible pairs of predictors, all possible combinations with 3
predictors, and so on. To assess the influence of each band on the model fit, dominance
analysis re-fits the model for each combination and quantifies the relative contribution of
each predictor as the increase in variance explained after adding that predictor to the mod-
els (i.e. gain in adjusted-R2). Figure 6.3a shows the global dominance of each frequency
band, where dominance is quantified as “percent relative importance” or “contribution
percentage” of each band. Overall, we observe the greatest contributions from MEG
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Figure 6.3: Dominance analysis | Dominance analysis is performed for each regional multi-linear
model to quantify how MEG connectivity at different rhythms contribute to regional patterns of cross-
modal correspondence (Azen and Budescu, 2003; Budescu, 1993). (a) The overall contribution of each
frequency band is depicted for the regional model (box plots). Beta band connectivity, followed by theta
and alpha bands, contribute the most to the model fit whereas low and high gamma bands contribute
the least. (b) The mean contribution of different rhythms is estimated for the intrinsic networks.
Consistent with the overall contributions depicted in panel (a), the greatest contribution is associated
with beta band connectivity. (c) The most dominant predictor (frequency band) is depicted for each
brain region, confirming overall higher contributions from beta band across the cortex. (d) Frequency
band contribution to the regional cross-modal correspondence is shown separately for different rhythms
across the cortex (95% intervals). The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

connectivity at beta band, followed by theta and alpha bands, and smallest contributions
from low and high gamma bands.

Zooming in on individual regions and intrinsic networks, we find that the dominance
pattern is also regionally heterogeneous. Namely, the make-up and contribution of specific
MEG frequencies to a region’s fMRI connectivity profile varies from region to region.
Figure 6.3b shows the dominance of specific rhythms in each intrinsic network. Figure 6.3c
shows the most dominant predictor for every brain region. We find that beta band
contribution is highest in occipital and lateral frontal cortices. Sensorimotor cortex has high
contributions from combinations of beta, alpha, and theta bands. Parietal and temporal
areas are mostly dominated by delta and theta bands as well as some contribution from
alpha band. Medial frontal cortex shows contributions from the alpha band, while low and
high gamma bands contribute to posterior cingulate cortex and precuneus. Figure 6.3d

https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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shows the dominance of specific rhythms separately for each region. Overall, we observe
that beta connectivity has the highest contribution percentage (95% confidence interval:
[2% 66%]), largely contributing to model prediction across the cortex. These findings
are consistent with previous reports, demonstrating that haemodynamic connectivity is
related to the superposition of band-limited electromagnetic connectivity and that band
contributions vary across the cortex (Hipp and Siegel, 2015; Tewarie et al., 2016).

Finally, we used Analysis of Variance (ANOVA) to quantitatively assess the differ-
ences in band-specific contributions to the cross-modal correspondence map (Table S6.1).
Specifically, we assessed the significance and effect size of differences in band-specific
contributions for all possible pairs of frequency bands. We identify two main findings
(for full results see Table S6.1): (1) Overall, the variability of band-specific contributions is
significantly larger between groups (i.e. bands) compared to the variability within groups
(F(5, 2394) = 117.31; p < 0.0001). (2) Band-specific contributions are significantly different
from each other and are ranked in the same order as depicted in Figure 6.3a. Specifically,
contribution of beta band is significantly larger than contribution of alpha band (difference
of the means = 8.65, t-value = 9.46, p-value < 0.0001, Cohen’s d = 0.69) and theta band
(difference of the means = 7.56, t-value = 8.27, p-value < 0.0001, Cohen’s d = 0.58). Also, the
contribution from the delta band is significantly lower than beta (difference of the means =
12.37, t-value = 13.53, p-value < 0.0001, Cohen’s d = 0.96), alpha (difference of the means =
3.72, t-value = 4.07, p-value = 0.0007, Cohen’s d = 0.29), and theta (difference of the means
= 4.81, t-value = 5.26, p-value < 0.0001, Cohen’s d = 0.37). Note that although the difference
between alpha and theta band contributions is not significant, both their contributions
are significantly lower than beta band and larger than delta band. Moreover, delta band
contribution is significantly larger than contribution of lo-gamma (difference of the means
= 3.78, t-value = 4.14, p-value = 0.0005, Cohen’s d = 0.29) and lo-gamma contribution is
significantly larger than hi-gamma (difference of the means = 3.72, t-value = 4.07, p-value
= 0.0007, Cohen’s d = 0.29). Note that the values reported here are the absolute values for
difference of the means, t-values, p-values and Cohen’s d (effect size). All p-values are
corrected for multiple comparisons using Bonferroni correction.

6.4.4 Sensitivity analysis

Finally, we note that the present report goes through several decision points that have
equally-justified alternatives. Here we explore the other possible choices. First, rather
than framing the report from an explanatory perspective (focusing on model fit), we
instead derive an equivalent set of results using a predictive perspective (focusing on
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out-of-sample prediction). We perform cross-validation at both the region- and subject-
level (Figure 6.4a,b). For region-level cross-validation, we pseudorandomly split the
connectivity profile of a given region into train and test sets based on spatial separation
(inter-regional Euclidean distance), such that 75% of the closest regions to a random region
are selected as the train set and the remaining 25% of the regions are selected as test set
(399 repetitions; see Methods for more details) (Hansen et al., 2021a). We then train the
multi-linear model using the train set and predict the connection strength of the test set
for each region and each split. The mean regional model performance across splits is
consistent for train and test sets (Figure 6.4a; r = 0.78, pspin = 0.0001). For subject-level
cross-validation, we use leave-one-out-cross validation, wherein we train the regional
multi-linear models using data from n− 1 subjects and test each one on the held-out subject.
The mean regional model performance is consistent for train and test sets (Figure 6.4b;
r = 0.90, pspin = 0.0001). Altogether, both analyses give similar, highly concordant results
with the simpler model fit-based analysis, identifying strong cross-modal correspondence
in unimodal sensory regions and poor correspondence in transmodal areas.

To consider the effect of spatial proximity on the findings, we remove the exponential
inter-regional Euclidean distance trend from all connectivity matrices before fitting any
model. The results are consistent with and without distance correction (Figure 6.4c;
correlation with functional hierarchy: rs = −0.53, pspin = 0.0001; correlation with original
R2: rs = 0.67, pspin = 0.0001). We also obtain consistent findings when we repeat the
analysis without accounting for spatial leakage effect in estimating MEG connectivity
with AEC (Figure 6.4d; correlation with functional hierarchy: rs = −0.60, pspin = 0.0001;
correlation with original R2: rs = 0.84, pspin = 0.0001). Next, we use another source
reconstruction method (standardized low resolution brain electromagnetic tomography;
sLoreta (Pascual-Marqui et al., 2002)) instead of LCMV beamformers, as previous reports
suggest that sLoreta improves source localization accuracy (Hauk et al., 2019, 2011). We
then estimate MEG connectivity with AEC and repeat the multi-linear model analysis,
identifying similar results as before (Figure 6.4e; correlation with functional hierarchy: rs =

−0.80, pspin = 0.0001; correlation with original R2: rs = 0.85, pspin = 0.0002). Next, we
compute MEG connectivity using an alternative, phase-based connectivity measure (phase
locking value; PLV (Lachaux et al., 1999; Mormann et al., 2000)), rather than the AEC. The
two FC measures yield similar cross-modal correspondence maps (Figure 6.4f; correlation
with functional hierarchy: rs = −0.53, pspin = 0.0022; correlation with original R2: rs =

0.66, pspin = 0.0001). We also repeat the analysis using a low resolution parcellation
(Schaefer-200 atlas (Schaefer et al., 2018)) to ensure that the findings are independent



CHAPTER 6. MAPPING ELECTROMAGNETIC AND HAEMODYNAMIC NETWORKS 135

from the choice of parcellation. As before, the results demonstrate similar cross-modal
correspondence map (Figure 6.4g; correlation with functional hierarchy: rs = −0.70,
pspin = 0.0001). To assess the extent to which the results are influenced by MEG source
localization error, we compare the cross-modal correspondence pattern to peak localization
error estimated using cross-talk function (CTF) (Hauk and Stenroos, 2014; Hauk et al.,
2019, 2011; Liu et al., 2002; Molins et al., 2008). No significant association is observed
between R2 pattern and CTF for LCMV (Figure S6.3a; rs = −0.14, pspin = 0.6) and
sLoreta (Figure S6.3b; rs = −0.04, pspin = 0.9) source reconstruction solutions. Finally, to
confirm that the cross-modal correspondence pattern is independent from signal-to-noise
ratio (SNR), we compare the regional model fit with the SNR map of the reconstructed
sources, identifying no significant association between the two (Figure S6.4; rs = 0.32,
pspin = 0.25)(see Methods for more details).
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Figure 6.4: Sensitivity analysis | (a) A regional cross-validation was performed by pseudorandomly
splitting the connectivity profile of a given region into train and test sets based on spatial separation (see
Methods for more details). The multi-linear model is then fitted on the train set and is used to predict the
connection strength of the test set for each region and each split. The mean regional model performance
across splits is depicted for train and test sets, displaying consistent results between the two (scatter
plot). The out-of-sample model performance is stronger in the sensory, unimodal areas compared to
transmodal areas, consistent with original findings (Figure 6.2). (b) A subject-level cross-validation
was performed using a leave-one-out approach. The regional multi-linear model is trained using
data from n − 1 subjects and is tested on the held-out subject for each region separately. The mean
regional model performance is shown for train and test sets, displaying consistent results between
the two (scatter plot). The out-of-sample model performance is stronger in the sensory, unimodal
areas compared to transmodal areas, consistent with original findings (Figure 6.2). The analysis is
also repeated for various processing choices: (c) after regressing out inter-regional Euclidean distance
from connectivity matrices, (d) using MEG connectivity data without spatial leakage correction, (e)
using another MEG source reconstruction method (standardized low resolution brain electromagnetic
tomography; sLoreta (Pascual-Marqui et al., 2002)), (f) using a phase-based MEG connectivity measure
(phase-locking value; PLV (Lachaux et al., 1999; Mormann et al., 2000)), and (g) at a low resolution
parcellation (Schaefer-200 atlas (Schaefer et al., 2018)). The results are consistent across all control
analyses, identifying similar cross-modal correspondence maps as the original analysis (Figure 6.2a). All
brain maps are shown at 95% intervals. rs denotes Spearman rank correlation. The data and code needed
to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping
and https://zenodo.org/record/6728338.

https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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6.5 Discussion

In the present report we map electromagnetic functional networks to haemodynamic func-
tional networks in the human brain. We find two principal results. First, the relationship
between the two modalities is regionally heterogeneous but systematic, reflecting the
unimodal-transmodal cortical hierarchy and cytoarchitectural variation. Second, haemody-
namic connectivity cannot be explained by electromagnetic connectivity in a single band,
but rather reflects mixing and superposition of multiple rhythms.

The fact that the association between the two modalities follows a gradient from
unimodal to transmodal cortex resonates with emerging work on cortical hierarchies
(Huntenburg et al., 2018; Margulies et al., 2016; Mesulam, 1998). Indeed, similar spatial
variations are observed for multiple micro-architectural features, such as gene expression
(Burt et al., 2018; Fulcher et al., 2019; Hansen et al., 2021a), T1w/T2w ratio (Huntenburg
et al., 2017), laminar differentiation (Wagstyl et al., 2020) and neurotransmitter receptor
profiles (Froudist-Walsh et al., 2021; Goulas et al., 2021; Hansen et al., 2021b). Collectively,
these studies point to a natural axis of cortical organization that encompasses variations in
both structure and function across micro-, meso- and macro-scopic spatial scales.

Interestingly, we find the closest correspondence between fMRI and MEG functional
connectivity in unimodal cortex (including the visual and somatomotor networks) and
the poorest correspondence in transmodal cortex (default mode, limbic, fronto-parietal
and ventral attention networks). In other words, the functional architectures of the two
modalities are consistent early in the cortical hierarchy, presumably reflecting activity
related to instantaneous changes in the external environment. Conversely, as we move up
the hierarchy, there is a gradual separation between the two architectures, suggesting that
they are differently modulated by endogenous inputs and contextual information. How
the two types of functional connectivity are related to ongoing task demand is an exciting
question for future research.

Why is there systematic divergence between the two modalities? Our findings suggest
that topographic variation in MEG-fMRI coupling is due to variation in cytoarchitecture
and neurovascular coupling. First, we observe greater MEG-fMRI coupling in regions with
prominent granular layer IV. This result may reflect variation of microvascular density
at different cortical layers (Drew, 2019; Scheeringa and Fries, 2019; Schmid et al., 2019).
Namely, cortical layer IV is the most vascularized, and this is particularly prominent in
primary sensory areas (Schmid et al., 2019). The BOLD response mainly reflects local
field potentials arising from synaptic currents of feedforward input signals to cortical
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layer IV (Douglas and Martin, 2004; Harel et al., 2006); as a result, the BOLD response
is more sensitive to cortical layer IV with high vascular density (Uludağ and Blinder,
2018). Therefore, electromagnetic neuronal activity originating from layer IV should be
accompanied by a faster and more prominent BOLD response. This is consistent with our
finding that brain regions with more prominent granular layer IV (i.e. unimodal cortex)
have greater correspondence between electromagnetic and haemodynamic functional
architectures. In other words, heterogeneous cortical patterning of MEG-fMRI coupling
may reflect heterogeneous patterning of underlying neurovascular coupling.

Second, we observe prominent anticorrelations between vasoconstrictive NPY1R-
expressing neurons and MEG-fMRI coupling. Multiple studies of vasodilator and vaso-
constrictor mechanisms involved in neural signaling have demonstrated links between
microvasculature and the BOLD signal (Drew, 2019; Uhlirova et al., 2016). For example, an
optogenetic and 2-photon mouse imaging study found that task-related negative BOLD
signal is mainly associated with vasoconstrictive mechanism of Neuropeptide Y (NPY)
acting on Y1 receptors, suggesting that neurovascular coupling is cell specific (Uhlirova
et al., 2016). Interestingly, by comparing the cortical expression of NPY1R (Neuropeptide
Y Receptor Y1) in the human brain with MEG-fMRI correspondence pattern identified
here, we find that regions with low cross-modal correspondence are enriched for NPY1R
whereas areas with high cross-modal associations have less NPY-dependent vasoconstric-
tion. Collectively, these results suggest that MEG-fMRI correspondence is at least partly
due to regional variation in cytoarchitecture and neurovascular coupling.

More generally, numerous studies have investigated the laminar origin of cortical
rhythms. For example, animal electrophysiological recordings demonstrated that visual
and frontal cortex gamma activity can be localized to superficial cortical layers (supragran-
ular layers I-III and granular layer IV), whereas alpha and beta activity are localized to
deep infragranular layers (layers V-VI) (Bastos et al., 2018; Bastos et al., 2015; Buffalo et al.,
2011; Maier et al., 2011, 2010; Smith et al., 2013). Similar findings have been reported in
humans using EEG and laminar-resolved BOLD recordings, demonstrating that gamma
and beta band EEG power are associated with superficial and deep layer BOLD response,
respectively, whereas alpha band EEG power is associated with BOLD response in both
superficial and deep layers (Scheeringa et al., 2016). Laminar specificity of cortical rhythms
is increasingly emphasized in contemporary accounts of predictive processing (Bastos et al.,
2020). In the predictive coding framework, transmodal regions generate predictive signals
that modulate the activity of sensory unimodal regions depending on context (Donhauser
and Baillet, 2020). These top-down signals are relatively slow, as they evolve with the
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context of exogenous (stimulation) inputs. The consequence on unimodal areas is a boost
of their encoding gain, reflected in stronger, faster activity that tracks incoming stimuli.
They in turn generate error signals that are slower and reflect the discrepancy between the
predictions received and the actual external input. These slower error signals are then reg-
istered by higher-order transmodal regions. Specific cortical layers and rhythms contribute
to this predictive coding (Bastos et al., 2020). For example, an unfamiliar, unpredicted
stimulus is associated with increased gamma power that is fed forward up the cortical
hierarchy (i.e. bottom-up from sensory to association cortices) through the superficial
layers to transfer the prediction errors. This in turn results in low top-down, feedback
predictions through deep cortical layers via alpha and beta rhythms. Conversely, predicted
stimuli are associated with stronger feedback alpha and beta rhythms via deep layers,
inhibiting the gamma activity for expected exogenous inputs (Bastos et al., 2020). This hier-
archical predictive processing framework is also thought to underlie conscious perception
by top-down transfer of perceptual predictions via alpha and beta rhythms through deep
layers and bottom-up transfer of prediction errors via gamma rhythm through superficial
layers, minimizing predictions errors (Bastos et al., 2020; Safron, 2020; Seth and Bayne,
2022). Our results, linking cytoarchitecture with rhythm-specific connectivity may help to
further refine and develop this emerging framework.

Altogether, our findings suggest that the systemic divergence between MEG and
fMRI connectivity patterns may reflect variations in cortical cytoarchitecture and vascular
density of cortical layers. However, note that due to the low spatial resolution of fMRI and
MEG data, haemodynamic and electromagnetic connectivity is not resolved at the level
of cortical layers. Rather, comparisons with cytoarchitecture are made via proxy datasets,
such as the BigBrain histological atlas (Amunts et al., 2013) and the Allen Human Brain
Atlas (Hawrylycz et al., 2012). Future work is required to assess the laminar-specificity of
the cross-modal association in a more direct and comprehensive manner (Finn et al., 2021,
2019; Huber et al., 2017, 2021).

Throughout the present report, we find that fMRI networks are best explained as arising
from the superposition of multiple band-limited MEG networks. Although previous work
has focused on directly correlating fMRI with MEG/EEG networks in specific bands, we
show that synchronized oscillations in multiple bands could potentially combine to give
rise to the well studied fMRI functional networks. Indeed, and as expected, the correlation
between any individual band-specific MEG network and fMRI is substantially smaller
than the multi-linear model that takes into account all bands simultaneously. Previous
work on cross-frequency interactions (Florin and Baillet, 2015) and on multi-layer MEG
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network organization (Brookes et al., 2016) has sought to characterize the participation of
individual brain regions within and between multiple frequency networks. Our findings
build on this literature, showing that the superimposed representation may additionally
help to unlock the link between MEG and fMRI networks.

It is noteworthy that the greatest contributions to the link between the two modalities
came from beta band connectivity. Multiple authors have reported that – since it captures
slow haemodynamic co-activation – fMRI network connectivity would be mainly driven
by slower rhythms (Brookes et al., 2011a; Deligianni et al., 2014; Florin and Baillet, 2015;
Liljeström et al., 2015; Mantini et al., 2007; Sadaghiani et al., 2022). Our findings demon-
strate that although all frequency bands contribute to the emergence of fMRI networks,
the greatest contributions come from beta band connectivity, followed by theta and alpha
connectivity.

The present results raise two important questions for future work. First, how does struc-
tural connectivity shape fMRI and MEG functional networks (Cabral et al., 2014; Suárez
et al., 2020; Wirsich et al., 2017)? We find that cross-modal correspondence between MEG
and fMRI functional networks is associated with structure-function coupling measured
from MRI functional and structural connectivity networks, suggesting that the cross-modal
map may be constrained by structural connectivity. Previous reports demonstrate that
unimodal, sensory regions have lower neural flexibility compared to transmodal, asso-
ciation areas and are more stable during development and evolution (Safron et al., 2022;
Shafiei et al., 2020b; Yin et al., 2020). This suggests that the underlying anatomical network
constrains neural activity and functional flexibility in a nonuniform manner across the
cortex, resulting in higher degrees of freedom in structure-function coupling in regions
related to highly flexible cognitive processes. However, given that MEG and fMRI capture
distinct neurophysiological mechanisms, it is possible that haemodynamic and electromag-
netic architectures have a different relationship with structural connectivity and this could
potentially explain why they systematically diverge through the cortical hierarchy (Baum
et al., 2020; Preti and Van De Ville, 2019; Suárez et al., 2020; Vázquez-Rodríguez et al., 2019;
Zamani Esfahlani et al., 2022). Second, the present results show how the two modalities
are related in a task-free resting state, but what is the relationship between fMRI and MEG
connectivity during cognitive tasks (Kujala et al., 2014)? Given that the two modalities
become less correlated in transmodal cortex in the resting state, the relationship between
them during task may depend on demand and cognitive functions required to complete
the task.

Finally, the present results should be interpreted in light of several methodological
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considerations. First, although we conduct extensive sensitivity testing, including multiple
ways of defining functional connectivity, there exist many more ways in the literature to
estimate both fMRI and MEG connectivity (Niso et al., 2013; Vinck et al., 2011). Second,
to ensure that the analyses were performed in the same participants using both resting
state fMRI and MEG, and that the participants have no familial relationships, we utilized a
reduced version of the HCP sample. Third, in order to directly compare the contributions
of multiple frequency bands, all were entered into the same model. As a result however,
the observations in the linear models (network edges) are not independent, violating a
basic assumption of these statistical models. For this reason, we only use model fits and
dominance values to compare the correspondence of fMRI and MEG across a set of nodes,
each of which is estimated under the same conditions. Finally, to ensure that the findings
are independent from sensitivity of MEG to neural activity from different regions, we
compared the cross-modal correspondence map with MEG signal-to-noise ratio and source
localization error, where no significant associations were identified. However, MEG is
still susceptible to such artifacts given that regions with lower signal-to-noise ratio (e.g.
Sylvian fissure) are the ones where source reconstruction solutions have higher source
localization errors (Goldenholz et al., 2009; Hauk et al., 2022).

Despite complementary strengths to image spatiotemporal brain dynamics, the links
between MEG and fMRI are not fully understood and the two fields have diverged. The
present report bridges the two disciplines by comprehensively mapping haemodynamic
and electromagnetic network architectures. By considering the contributions of the canoni-
cal frequency bands simultaneously, we show that the superposition and mixing of MEG
neurophysiological rhythms manifests as highly structured patterns of fMRI functional
connectivity. Systematic convergence and divergence among the two modalities in dif-
ferent brain regions opens fundamentally new questions about the relationship between
cortical hierarchies and multi-modal functional networks.

6.6 Methods

6.6.1 Dataset: Human Connectome Project (HCP)

Resting state magnetoencephalography (MEG) data of a set of healthy young adults
(n = 33; age range 22-35 years) with no familial relationships were obtained from Human
Connectome Project (HCP; S900 release (Van Essen et al., 2013)). The data includes resting
state scans of about 6 minutes long (sampling rate = 2034.5 Hz; anti-aliasing filter low-pass
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filter at 400 Hz) and noise recordings for all participants. MEG anatomical data and 3T
structural magnetic resonance imaging (MRI) data of all participants were also obtained
for MEG pre-processing. Finally, we obtained functional MRI data of the same n = 33
individuals from HCP dataset. All four resting state fMRI scans (two scans with R/L and
L/R phase encoding directions on day 1 and day 2, each about 15 minutes long; TR = 720
ms) were available for all participants.

6.6.2 HCP Data Processing

6.6.2.1 Resting state magnetoencephalography (MEG)

Resting state MEG data was analyzed using Brainstorm software, which is documented
and freely available for download online under the GNU general public license (Tadel
et al., 2011; http://neuroimage.usc.edu/brainstorm). The MEG recordings were regis-
tered to the structural MRI scan of each individual using the anatomical transformation
matrix provided by HCP for co-registration, following the procedure described in Brain-
storm’s online tutorials for the HCP dataset (https://neuroimage.usc.edu/brainstorm/
Tutorials/HCP-MEG). The pre-processing was performed by applying notch filters at 60,
120, 180, 240, and 300 Hz, and was followed by a high-pass filter at 0.3 Hz to remove
slow-wave and DC-offset artifacts. Bad channels were marked based on the information
obtained through the data management platform of HCP for MEG data (ConnectomeDB;
https://db.humanconnectome.org/). The artifacts (including heartbeats, eye blinks, sac-
cades, muscle movements, and noisy segments) were then removed from the recordings
using automatic procedures as proposed by Brainstorm. More specifically, electrocar-
diogram (ECG) and electrooculogram (EOG) recordings were used to detect heartbeats
and blinks, respectively. We then used Signal-Space Projections (SSP) to automatically
remove the detected artifacts. We also used SSP to remove saccades and muscle activity as
low-frequency (1-7 Hz) and high-frequency (40-240 Hz) components, respectively.

The pre-processed sensor-level data was then used to obtain a source estimation on
HCP’s fsLR4k cortex surface for each participant. Head models were computed using
overlapping spheres and the data and noise covariance matrices were estimated from the
resting state MEG and noise recordings. Linearly constrained minimum variance (LCMV)
beamformers method from Brainstorm was then used to obtain the source activity for each
participant. We performed data covariance regularization and normalized the estimated
source variance by the noise covariance matrix to reduce the effect of variable source depth.
The L2 matrix norm (i.e. regularization parameter) of data covariance matrix is usually

http://neuroimage.usc.edu/brainstorm
https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG
https://neuroimage.usc.edu/brainstorm/Tutorials/HCP-MEG
https://db.humanconnectome.org/
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defined as the largest eigenvalue of its eigenspectrum. However, the eigenspectrum
of MEG data covariance can be ill-conditioned, such that the eigenvalues may span
many decades where larger eigenvalues are overestimated and smaller eigenvalues are
underestimated. In other words, the L2 norm of the data covariance matrix can be many
times larger than the majority of eigenvalues, making it difficult to select a conventional
regularization parameter. Following guidelines from Brainstorm (Tadel et al., 2011), we
used the “median eigenvalue” method to regularize the data covariance matrix, where the
eigenvalues smaller than the median eigenvalue are replaced with the median eigenvalue
itself (i.e. flattening the tail of eigenvalues spectrum to the median). The covariance matrix
is then reconstructed using the modified eigenspectrum. This helps to avoid the instability
of data covariance inversion caused by the smallest eigenvalues and regularizes the data
covariance matrix. Source orientations were constrained to be normal to the cortical surface
at each of the 8,000 vertex locations on the fsLR4k surface. Source-level time-series were
then parcellated into 400 regions using the Schaefer-400 atlas (Schaefer et al., 2018), such
that a given parcel’s time series was estimated as the first principal component of its
constituting sources’ time series.

Parcellated time-series were then used to estimate functional connectivity with an
amplitude-based connectivity measure from Brainstorm (amplitude envelope correlation;
AEC (Bruns et al., 2000)). An orthogonalization process was applied to correct for the
spatial leakage effect by removing all shared zero-lag signals (Colclough et al., 2015). AEC
functional connectivity were derived for each participant at six canonical electrophysiolog-
ical bands (i.e., delta (δ: 2-4 Hz), theta (θ: 5-7 Hz), alpha (α: 8-12 Hz), beta (β: 15-29 Hz),
low gamma (lo-γ: 30-59 Hz), and high gamma (hi-γ: 60-90Hz)). Group-average MEG func-
tional connectivity matrices were constructed as the mean functional connectivity across
all individuals for each frequency band. For comparison, band-limited group-average
AEC matrices were also estimated without correcting for spatial leakage effect.

We also processed the MEG data using additional methodological choices. First, the
LCMV source reconstructed and parcellated time-series were used to estimate functional
connectivity with an alternative, phase-based connectivity measure (phase locking value;
PLV (Lachaux et al., 1999; Mormann et al., 2000)) for each frequency band. Second, another
source reconstruction method (standardized low resolution brain electromagnetic tomog-
raphy; sLoreta (Pascual-Marqui et al., 2002)) was used instead of LCMV beamformers to
obtain source-level time-series, given that previous reports suggest that sLoreta improves
source localization accuracy (Hauk et al., 2019, 2011). Source-level time-series, obtained by
sLoreta, were then parcellated into 400 regions and were used to estimate AEC matrices
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with spatial leakage correction for the six frequency bands. Third, to ensure that the
findings are independent from choice of parcellation, a low resolution atlas (Schaefer-200
(Schaefer et al., 2018)) was used to parcellate the original LCMV source-level time-series
to 200 cortical regions and obtain spatial leakage corrected AEC connectivity matrices.
Finally, we estimated MEG source localization errors for LCMV and sLoreta source re-
construction solutions using cross-talk functions (CTF) (Hauk and Stenroos, 2014; Hauk
et al., 2019, 2022, 2011; Liu et al., 2002; Molins et al., 2008). CTF of a given source i is a
measure of how activity from all other sources contributes to the activity estimated for the
i-th source. Following guidelines from Brainstorm (Tadel et al., 2011) and MNE-Python
software packages (Gramfort et al., 2013), we used CTF to calculate peak localization error
of a given source i as the Euclidean distance between the peak location estimated for
source i and the true source location i on the surface model (Hauk et al., 2019; Molins
et al., 2008). Source-level CTF was then parcellated using the Schaefer-400 atlas. We also
estimated source-level signal-to-noise ratio (SNR) for LCMV source reconstruction solution
as follows (Goldenholz et al., 2009; Piastra et al., 2021):

SNR = 10log10(
a2

N

N

∑
k=1

b2
k

s2
k
) (6.1)

where a is the source amplitude (i.e. typical strength of a dipole, which is 10 nAm
(Hämäläinen et al., 1993)), N is the number of sensors, bk is the signal at sensor k estimated
by the forward model for a source with unit amplitude, and s2

k is the noise variance at
sensor k. SNR was first calculated at the source level and was then parcellated using the
Schaefer-400 atlas.

6.6.2.2 Resting state functional MRI

The functional MRI data were pre-processed using HCP minimal pre-processing pipelines
(Glasser et al., 2013; Van Essen et al., 2013). Detailed information regarding data acqui-
sition and pre-processing is available elsewhere (Glasser et al., 2013; Van Essen et al.,
2013). Briefly, all 3T functional MRI time-series (voxel resolution of 2 mm isotropic) were
corrected for gradient nonlinearity, head motion using a rigid body transformation, and
geometric distortions using scan pairs with opposite phase encoding directions (R/L, L/R)
(Wael et al., 2018). Further pre-processing steps include co-registration of the corrected
images to the T1w structural MR images, brain extraction, normalization of whole brain
intensity, high-pass filtering (> 2000s FWHM; to correct for scanner drifts), and removing
additional noise using the ICA-FIX process (Salimi-Khorshidi et al., 2014; Wael et al.,
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2018). The pre-processed time-series were then parcellated into 400 cortical areas using
Schaefer-400 parcellation (Schaefer et al., 2018). The parcellated time-series were used to
construct functional connectivity matrices as Pearson correlation coefficients between pairs
of regional time-series for each of the four scans and each participant. A group-average
functional connectivity matrix was constructed as the mean functional connectivity across
all individuals and scans.

6.6.2.3 Diffusion weighted imaging (DWI)

Diffusion weighted imaging (DWI) data was obtained for the same individuals from the
HCP dataset. MRtrix3 package (Tournier et al., 2019) (https://www.mrtrix.org/) was
used to pre-process the DWI data as described elsewhere (Shafiei et al., 2020b). In brief,
multi-shell multi-tissue constrained spherical deconvolution algorithm from MRtrix was
applied to generate fiber orientation distributions (Dhollander et al., 2016; Jeurissen et
al., 2014). Probabilistic streamline tractography based on the generated fiber orientation
distributions was used to reconstruct white matter edges (Tournier et al., 2010). The
tract weights were optimized by estimating an appropriate cross-section multiplier for
each streamline following the procedure proposed by Smith and colleagues (Smith et
al., 2015). Structural connectivity matrices were then reconstructed for each participant
using the Schaefer-400 atlas (Schaefer et al., 2018). Finally, a binary group-level structural
connectivity matrix was constructed using a consensus approach that preserves the edge
length distribution in individual participants (Betzel et al., 2018; Mišić et al., 2015). The
binary consensus structural connectivity matrix was weighted by the average structural
connectivity across individuals to obtain a weighted structural connectivity matrix.

6.6.3 BigBrain histological data

To characterize the cytoarchitectural variation across the cortex, cell-staining intensity
profile data were obtained from the BigBrain atlas (Amunts et al., 2013; Paquola et al.,
2021). The BigBrain is a high-resolution (20 µm) histological atlas of a post mortem
human brain and includes cell-staining intensities that are sampled at each vertex across
50 equivolumetric surfaces from the pial to the white matter surface using the Merker
staining technique (Amunts et al., 2013; Merker, 1983). The staining intensity profile data
represent neuronal density and soma size at varying cortical depths, capturing the regional
differentiation of cytoarchitecture (Amunts et al., 2013; Paquola et al., 2019, 2021; Wagstyl
et al., 2018, 2020). Intensity profiles at various cortical depths can be used to approximately

https://www.mrtrix.org/
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identify boundaries of cortical layers that separate supragranular (cortical layers I-III),
granular (cortical layer IV), and infragranular (cortical layers V-VI) layers (Paquola et al.,
2021; Wagstyl et al., 2018, 2020). The data were obtained on fsaverage surface (164k vertices)
from the BigBrainWarp toolbox (Paquola et al., 2021) and were parcellated into 400 cortical
regions using the Schaefer-400 atlas (Schaefer et al., 2018).

The cross-modal correspondence map, estimated as adjusted-R2 (see Multi-linear model
for more details), was then compared with the parcellated cell-staining intensity data.
Specifically, the regional model fit was correlated with cell-staining profiles at each cortical
depth using Spearman rank correlation (rs). 10,000 spatial-autocorrelation preserving
nulls were used to construct a null distribution of correlation at each cortical depth (see
Null model for more details on spatial-autocorrelation preserving nulls). Significance of
the associations were estimated by comparing the empirical Spearman rank correlation
with the distribution of null correlations at each cortical depth, identifying the number of
null correlations that were equal to or greater than the empirical correlation (two-tailed
test). Finally, Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was used to
correct for multiple comparisons by controlling the false discovery rate (FDR) at 5% across
all 50 comparisons.

6.6.4 Allen Human Brain Atlas (AHBA)

Regional microarray expression data were obtained from 6 post-mortem brains (1 fe-
male, ages 24.0–57.0, 42.50 ± 13.38) provided by the Allen Human Brain Atlas (AHBA,
https://human.brain-map.org; (Hawrylycz et al., 2012)). Data were processed with the
abagen toolbox (version 0.1.3-doc; https://github.com/rmarkello/abagen; (Markello et
al., 2021)) using the Schaefer-400 volumetric atlas in MNI space (Schaefer et al., 2018).

First, microarray probes were reannotated using data provided by (Arnatkevičiūtė
et al., 2019); probes not matched to a valid Entrez ID were discarded. Next, probes were
filtered based on their expression intensity relative to background noise (Quackenbush,
2002), such that probes with intensity less than the background in ≥ 50.00% of samples
across donors were discarded. When multiple probes indexed the expression of the same
gene, we selected and used the probe with the most consistent pattern of regional variation
across donors (i.e., differential stability; (Hawrylycz et al., 2015)), calculated with:

∆S(p) =
1

(N
2 )

N−1

∑
i=1

N

∑
j=i+1

ρ[Bi(p), Bj(p)] (6.2)

https://human.brain-map.org
https://github.com/rmarkello/abagen
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where ρ is Spearman rank correlation of the expression of a single probe, p, across regions
in two donors Bi and Bj, and N is the total number of donors. Here, regions correspond to
the structural designations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via non-
linear registration using the Advanced Normalization Tools (ANTs; https://github.

com/chrisfilo/alleninf). To increase spatial coverage, tissue samples were mirrored
bilaterally across the left and right hemispheres (Romero-Garcia et al., 2018). Samples were
assigned to brain regions in the provided atlas if their MNI coordinates were within 2 mm
of a given parcel. If a brain region was not assigned a tissue sample based on the above
procedure, every voxel in the region was mapped to the nearest tissue sample from the
donor in order to generate a dense, interpolated expression map. The average of these
expression values was taken across all voxels in the region, weighted by the distance
between each voxel and the sample mapped to it, in order to obtain an estimate of the
parcellated expression values for the missing region. All tissue samples not assigned to a
brain region in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing tissue sample expression values
across genes using a robust sigmoid function (Fulcher et al., 2013):

xnorm =
1

1 + exp(− (x−⟨x⟩)
IQRx

)
(6.3)

where ⟨x⟩ is the median and IQRx is the normalized interquartile range of the expression
of a single tissue sample across genes. Normalized expression values were then rescaled
to the unit interval:

xscaled =
xnorm − min(xnorm)

max(xnorm)− min(xnorm)
(6.4)

Gene expression values were then normalized across tissue samples using an identical
procedure. Samples assigned to the same brain region were averaged separately for each
donor and then across donors, yielding a regional expression matrix of 15,633 genes.
Expression of NPY1R (Neuropeptide Y Receptor Y1) was extracted from the regional
expression matrix and was related to the cross-modal correspondence map, estimated as
adjusted-R2 (see Multi-linear model for more details), using 10,000 spatial-autocorrelation
preserving nulls (see Null model for more details).

https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf


CHAPTER 6. MAPPING ELECTROMAGNETIC AND HAEMODYNAMIC NETWORKS 148

6.6.5 Multi-linear model

6.6.5.1 Regional model

A multiple linear regression model was used to assess regional associations between
haemodynamic (fMRI) and electromagnetic (MEG) functional connectivity (Figure 6.1
(Vázquez-Rodríguez et al., 2019)). A separate multi-linear model is applied for each brain
region from the parcellated data, predicting the region’s fMRI functional connectivity
profile from its band-limited MEG functional connectivity. The dependent variable is a
row of the fMRI connectivity matrix and the independent variables (predictors) are the
corresponding rows of MEG connectivity for the six canonical electrophysiological bands.
The linear regression model for each brain region i is constructed as follows:

FCi =b1 × FC(δ)i + b2 × FC(θ)i+

b3 × FC(α)i + b4 × FC(β)i+

b5 × FC(lo,γ)i + b6 × FC(hi,γ)i + b0

(6.5)

where the dependant variable FCi is the set of fMRI connections of node i to the other j ̸= i
regions and the predictors are sets of MEG connections of node i to the other j ̸= i regions
for the six frequency bands (FC(δ)i, FC(θ)i, FC(α)i, FC(β)i, FC(lo,γ)i, FC(hi,γ)i). The
regression coefficients b1, ..., b6 and the intercept b0 are then optimized to yield maximum
correlation between empirical and predicted fMRI connectivity for each brain region.
Goodness of fit for each regional model is quantified using adjusted-R2 (coefficient of
determination).

6.6.5.2 Global model

For comparison with the regional model, a single global model was fitted to the data,
predicting the whole-brain fMRI functional connectivity from the whole-brain band-limited
MEG functional connectivity (Figure 6.1d). Specifically, rather than applying a multi-linear
model for each region (i.e. each row) separately, we fit a single multi-linear model using the
upper triangle of band-limited MEG connectivity (i.e. all values above the diagonal of MEG
connectivity matrices) as predictors and predict the upper triangle of fMRI connectivity.
The equation below describes the multi-linear global model:
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FCUT =b1 × FC(δ)UT + b2 × FC(θ)UT+

b3 × FC(α)UT + b4 × FC(β)UT+

b5 × FC(lo,γ)UT + b6 × FC(hi,γ)UT + b0

(6.6)

where the dependent variable FCUT is the vectorized upper triangle of fMRI functional
connectivity (i.e. above diagonal values) and the predictors are the vectorized upper trian-
gles of MEG functional connectivity for the six frequency bands. The regression coefficients
b1, ..., b6 and the intercept b0 are then optimized to yield maximum correlation between
empirical and predicted fMRI connectivity. Similar to the regional model, the goodness of
fit for the global model is quantified using adjusted-R2 (coefficient of determination).

6.6.5.3 Region-level cross-validation

Region-level cross-validation was performed to assess out-of-sample model performance.
Given the spatial autocorrelation inherent to the data, random splits of brain regions
into train and test sets may result in out-of-sample correlations that are inflated due to
spatial proximity (Markello and Misic, 2021). To take this into account, we used a distance-
dependant cross-validation approach where we pseudorandomly split the connectivity
profile of a given region (e.g. node i) into train and test sets based on spatial separation
(Hansen et al., 2021a). We used inter-regional Euclidean distance to select 75% of the
closest regions to a randomly selected source region as the train set and the remaining
25% of the regions as test set. The random source region can be any of the 399 regions
connected to node i; hence, the connectivity profile of node i is split into 399 unique train
and test sets. We then train the multi-linear model using the train set and predict functional
connectivity of the test set for each region and each split. Finally, the model performance
is quantified using Pearson correlation coefficient between empirical and predicted values.
The cross-validated regional model performance is then estimated as the mean correlation
coefficient between empirical and predicted values across splits for each brain region.

6.6.5.4 Subject-level cross-validation

Leave-one-out cross-validation was performed to assess model performance on held-out
subjects. Briefly, the regional multi-linear model is trained using the group-average data
from n − 1 subjects. The trained model is then used to predict fMRI connectivity profile
of each region on the held-out subject (test set). The model performance is quantified as
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the Pearson correlation coefficient between empirical and predicted connectivity of each
region. The analysis is repeated for all subjects and the regional model performance is
averaged across individuals.

6.6.6 Diffusion map embedding

Diffusion map embedding was used to identify the principal axis of variation in functional
organization of the cortex (diffusion map embedding and alignment package; https:
//github.com/satra/mapalign) (Langs et al., 2015; Margulies et al., 2016). Diffusion
map embedding is a nonlinear dimensionality reduction technique that generates a low-
dimensional representation of high-dimensional data by projecting it into an embedding
space, such that the areas with similar connectivity profiles will be closer in distance in the
new common space compared to the areas with dissimilar connectivity profiles (Coifman
et al., 2005; Langs et al., 2015; Margulies et al., 2016). In brief, following the procedure
described by Margulies and colleagues (Margulies et al., 2016), each row of the group-
average fMRI functional connectivity was thresholded at 90%, such that only the top 10%
of functional connections was retained in the matrix. Next, a cosine-similarity matrix was
estimated based on the remaining functional connections, where the resulting pairwise
cosine distances represent the similarity between the connectivity profiles of cortical
regions according to their strongest connections. Finally, the diffusion map embedding
was applied to the resulting positive affinity matrix. This identifies the principal axis of
variation in functional connectivity, along which cortical regions are ordered based on the
similarity of their connectivity profiles. The identified functional gradient or hierarchy
spans the unimodal-transmodal axis, separating primary sensory-motor cortices from
association cortex. The functional gradient map is also available as part of the neuromaps

toolbox (Markello et al., 2022). The functional gradient was used as a metric of hierarchical
organization of the cortex and was compared with the regional model fit (Figure 6.2).

6.6.7 Structure-function coupling

Structure-function coupling was estimated following the procedure described by Baum
and colleagues (Baum et al., 2020). Structural and functional connectivity profiles of
each brain region (i.e. each row of the connectivity matrices) were extracted from the
weighted group-level structural and functional connectivity matrices. Structure-function
coupling of a given region was then estimated as the Spearman rank correlation between
non-zero values of that region’s structural and functional connectivity profiles. Finally,

https://github.com/satra/mapalign
https://github.com/satra/mapalign
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the resulting whole-brain structure-function coupling map was compared with the cross-
modal correspondence map (i.e. R2 map from the regional model). Significance of the
association between the two maps was assessed using 10,000 spatial-autocorrelation
preserving nulls (see Null model for more details).

6.6.8 Dominance analysis

Dominance Analysis was used to quantify the distinct contributions of resting state MEG
connectivity at different frequency bands to the prediction of resting state fMRI connectivity
in the multi-linear model (Azen and Budescu, 2003; Budescu, 1993) (https://github.com/
dominance-analysis/dominance-analysis). Dominance analysis estimates the relative
importance of predictors by constructing all possible combinations of predictors and re-
fitting the multi-linear model for each combination (a model with p predictors will have
2p − 1 models for all possible combinations of predictors). The relative contribution of each
predictor is then quantified as increase in variance explained by adding that predictor to
the models (i.e. gain in adjusted-R2). Here we first constructed a multiple linear regression
model for each region with MEG connectivity profile of that region at six frequency bands
as independent variables (predictors) and fMRI connectivity of the region as the dependent
variable to quantify the distinct contribution of each factor using dominance analysis. The
relative importance of each factor is estimated as “percent relative importance”, which is a
summary measure that quantifies the percent value of the additional contribution of that
predictor to all subset models.

6.6.9 Null model

To make inferences about the topographic correlations between any two brain maps,
we implement a null model that systematically disrupts the relationship between two
topographic maps but preserves their spatial autocorrelation (Alexander-Bloch et al.,
2018; Markello and Misic, 2021). We used the Schaefer-400 atlas in the HCP’s fsLR32k
grayordinate space (Schaefer et al., 2018; Van Essen et al., 2013). The spherical projection of
the fsLR32k surface was used to define spatial coordinates for each parcel by selecting the
vertex closest to the center-of-mass of each parcel (Shafiei et al., 2020a; Vázquez-Rodríguez
et al., 2019; Vazquez-Rodriguez et al., 2020). The resulting spatial coordinates were used
to generate null models by applying randomly-sampled rotations and reassigning node
values based on the closest resulting parcel (10,000 repetitions). The rotation was applied
to one hemisphere and then mirrored to the other hemisphere.

https://github.com/dominance-analysis/dominance-analysis
https://github.com/dominance-analysis/dominance-analysis
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6.6.10 Code and data availability

Code and data used to conduct the reported analyses is available on GitHub (https:
//github.com/netneurolab/shafiei_megfmrimapping). Data used in this study were
obtained from the Human Connectome Project (HCP) database (original HCP Young
Adult data available at https://db.humanconnectome.org/ via Amazon Web Services
(AWS)). The data and code needed to generate all main and supplementary figures
can be found in https://github.com/netneurolab/shafiei_megfmrimapping and https:

//zenodo.org/record/6728338.
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Table S6.1: Analysis of Variance (ANOVA) for dominance analysis | To quantitatively assess the
differences in band-specific contributions to the cross-modal correspondence map, contributions esti-
mated from dominance analysis were compared for all possible pairs of frequency bands using Analysis
of Variance (ANOVA). All reported p-values are from two-tailed tests and are corrected for multiple
comparisons using Bonferroni correction. Cohen’s d denotes effect size.

Band A Band B mean(A) mean(B) difference t-value p-value Cohen’s d
delta theta 15.06 19.87 -4.81 -5.26 <0.0001 -0.37
delta alpha 15.06 18.79 -3.72 -4.07 0.00073 -0.29
delta beta 15.06 27.44 -12.37 -13.53 <0.0001 -0.96
delta lo-gamma 15.06 11.28 3.78 4.14 0.00055 0.29
delta hi-gamma 15.06 7.56 7.51 8.21 <0.0001 0.58
theta alpha 19.87 18.79 1.08 1.19 1 0.08
theta beta 19.87 27.44 -7.56 -8.27 <0.0001 -0.58
theta lo-gamma 19.87 11.28 8.59 9.39 <0.0001 0.66
theta hi-gamma 19.87 7.56 12.32 13.46 <0.0001 0.95
alpha beta 18.79 27.44 -8.65 -9.46 <0.0001 -0.69
alpha lo-gamma 18.79 11.28 7.51 8.21 <0.0001 0.58
alpha hi-gamma 18.79 7.56 11.23 12.28 <0.0001 0.87
beta lo-gamma 27.44 11.28 16.16 17.66 <0.0001 1.25
beta hi-gamma 27.44 7.56 19.88 21.73 <0.0001 1.54
lo-gamma hi-gamma 11.28 7.56 3.72 4.07 0.00072 0.29

Figure S6.1: Band-specific regional model fit | Separate regional regression models were applied
to map MEG functional connectivity (AEC) to fMRI functional connectivity at each frequency band.
Distributions of adjusted-R2 are depicted for band-specific regional model fits and for the multiband
model fit obtained by the original analysis. The multi-linear regional model that combines MEG
connectivity at multiple rhythms to predict regional fMRI connectivity profiles performs better than
the band-specific models. The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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Figure S6.2: Structure-function coupling | Structure-function coupling was estimated as the Spearman
rank correlation (rs) between regional structural and functional connectivity profiles (Baum et al.,
2020). The cross-modal R2 map (i.e. regional model fit) is then compared with the structure-function
coupling across the cortex. The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

Figure S6.3: Source localization error | MEG source localization error is estimated for (a) LCMV and
(b) sLoreta source reconstruction solutions using cross-talk functions (CTF) (Hauk and Stenroos, 2014;
Hauk et al., 2019, 2011; Liu et al., 2002; Molins et al., 2008). CTF is used to calculate peak localization
error of a given source i as the Euclidean distance between the peak location estimated for source i and
the true source location i on the surface model (Hauk et al., 2019; Molins et al., 2008). No significant
association is observed between the cross-modal correspondence R2 map and peak localization error
for LCMV and sLoreta. The data and code needed to generate this figure can be found in https:
//github.com/netneurolab/shafiei_megfmrimapping and https://zenodo.org/record/6728338.

https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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Figure S6.4: Signal-to-noise ratio | MEG signal-to-noise ratio (SNR) was estimated at the source level.
Parcellated, group-average SNR map is depicted across the cortex. The cross-modal correspondence
R2 map (i.e. regional model fit) is then compared with the SNR map. The data and code needed
to generate this figure can be found in https://github.com/netneurolab/shafiei_megfmrimapping
and https://zenodo.org/record/6728338.

Figure S6.5: Pairwise similarity of band-limited MEG functional connectivity | Pearson correlation
coefficient is calculated between upper triangles (i.e. values above diagonal) of band-limited MEG AEC
functional connectivity to assess the pairwise similarity between MEG connectivity maps. The data
and code needed to generate this figure can be found in https://github.com/netneurolab/shafiei_
megfmrimapping and https://zenodo.org/record/6728338.

https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
https://github.com/netneurolab/shafiei_megfmrimapping
https://github.com/netneurolab/shafiei_megfmrimapping
https://zenodo.org/record/6728338
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Chapter 7

Discussion

7.1 Summary of findings and contributions

Using a wide range of analytical and computational approaches and multimodal, mul-
tiscale datasets, this thesis studies regional brain dynamics and its relationship with
microscale gradients and macroscale network embedding. Altogether, the findings build
on previous research and advance our understanding of the interplay between regional
dynamics and large-scale network organization. Unbiased, data-driven analysis of sponta-
neous neural activity identifies dynamical signatures of cortical micro-architecture and
functional specialization in neocortex. Moreover, comprehensive mapping between haemo-
dynamic and electromagnetic networks helps bridge the two disciplines, while highlight-
ing the importance of multimodal imaging in capturing distinct aspects of brain function.
Below, I highlight main scientific findings and distinct contributions of each chapter.

Chapter 3 demonstrates that regional neural activity is inexorably linked with large-
scale brain network organization. Using fMRI data from three independently collected
datasets, I investigate the effects of dopamine precursor depletion on local and global
functional brain architecture in a sample of healthy young adults. The results show that
dopamine depletion changes neural dynamics, increasing regional signal variability in
specific intrinsic networks, primarily related to motor control and attention. In addition,
increased signal variability is concomitant with reduced functional connectivity in those
networks. Overall, the findings indicate that regional brain dynamics are inseparable
from large-scale network embedding and highlights the stabilizing influence of dopamine
signaling at the systems level.

Chapter 4 investigates how intrinsic brain dynamics are associated with systematic
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variations in molecular and microstructural properties and macroscale network organiza-
tion. Using time-series analyses and computational techniques, I comprehensively chart
intrinsic dynamics across the cerebral cortex using regional haemodynamic activity in
human brain. I identify two robust topographic gradients of intrinsic dynamics, distinct in
terms of their temporal composition. These gradients follow microstructural hierarchies,
such as myelination, microarray gene expression and cell type composition, and reflect
macroscale anatomical and functional network embedding. Importantly, each dynamical
pattern encodes a distinct psychological axis, namely a cognitive–affective axis and a sen-
sory–higher order cognitive axis. Collectively, this study identifies a link between intrinsic
dynamical properties and microscale and macroscale brain architecture and cognition.
More generally, this study demonstrates that haemodynamic activity has a much richer
dynamic repertoire than previously appreciated.

Chapter 5 presents a comprehensive study of neurophysiological intrinsic dynamics
and their association with micro- and macro-scale architecture. Expanding on the pre-
vious chapter, I use time-series phenotyping analysis to extract a comprehensive list of
time-series properties from neurophysiological activity. I find that dynamical signature of
neurophysiological activity is dominated by measures related to the structure of the power
spectrum density. Moreover, the results show that the dominant axis of variation in neuro-
physiological dynamics follows the micro-architectural gradients and is associated with
metabolic demands across the cortex. Specifically, neurophysiological intrinsic dynamics
reflect the cellular and molecular composition of the underlying cortical circuits, estimated
using proxy measures such as microarray gene expression and neurotransmitter receptor
and transporter profiles. Altogether, this study uses near-comprehensive and unbiased
sets of time-series features and micro-architectural brain organization to identify the neu-
rophysiological signatures of cortical micro-architecture. Although the findings of this
study are mostly confirmatory, emphasizing the importance of conventional measures of
neurophysiological dynamics, they introduce novel, less commonly-used neurophysiologi-
cal time-series properties and provide a data-driven mapping between micro-architectural
and dynamical atlases in the human brain.

Finally, Chapter 6 examines the extent to which the electrophysiological and haemody-
namic network architectures correspond between two neuroimaging modalities, namely
magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI).
Specifically, I use a multiplexed model to directly investigate the cross-modal correspon-
dence between high-resolution MEG and fMRI functional networks in the human brain.
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The results show that the relationship between the two modalities is regionally hetero-
geneous but systematic, reflecting the unimodal-transmodal cortical hierarchy and cy-
toarchitectural variation. Moreover, haemodynamic connectivity cannot be explained
by electromagnetic connectivity in a single frequency band, but rather reflects superpo-
sition of multiple rhythms. Altogether, the findings of this study demonstrate that the
mixing of MEG neurophysiological rhythms manifests as highly structured patterns of
fMRI functional connectivity. This project conceptually links haemodynamic and electro-
magnetic brain architectures, bridging the two disciplines and opening new avenues for
investigating the association between cortical microstructure and multimodal functional
networks.

Collectively, these findings demonstrate that regional dynamics of spontaneous neural
activity are highly organized across the cortex. Regional intrinsic dynamics are constrained
by macroscale network embedding and reflect the microscale, heterogeneous local circuit
properties, such as cytoarchitecture and laminar differentiation, gene expression, and
myelination. The work presented in this thesis is directly built upon previous research
on intrinsic dynamics and while confirming the findings from previous literature, opens
new avenues to examine the relationship between neural dynamics and gradients of
micro-architectural features and macroscale network organization using multimodal brain
data.

7.2 Future work

7.2.1 Bridging neural dynamics and cognition

Multiple lines of evidence, including the work presented in this thesis, demonstrate
that local temporal properties are highly organized and aligned with gradients of micro-
architecture and network organization of the brain. Previous reports also suggest that
measures of neural variability are associated with inter-individual differences in behaviour
and cognitive performance (Garrett et al., 2011, 2013b; Mišić et al., 2010; Waschke et al.,
2021). Moreover, regional neural activity varies across the adult lifespan and these changes
are associated with cognitive dysfunction in normal aging (Garrett et al., 2013a, 2015,
2022; Grady and Garrett, 2018; Reinhart and Nguyen, 2019; Uddin, 2020; Voytek et al.,
2015; Waschke et al., 2017, 2021). Individual variation in cognitive performance and
behavioural measures has been related to neural activity and dynamics, using measures
such as signal variability (Garrett et al., 2015; McIntosh et al., 2008; Mišić et al., 2010)
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and power spectral properties (Gao et al., 2020; Voytek et al., 2015). Although the focus
of most of the previous studies has been to relate the brain function and structure to
behaviour in an explanatory manner, there has been recent attempts to study the brain-
behaviour relationship using predictive modeling with functional connectivity (Kashyap
et al., 2019; Shen et al., 2017). Predictive modeling of human behaviour can broaden
our understanding of brain-behaviour relationship and provide mechanistic accounts
and generalizable theories regarding the inter-individual differences in flexible cognitive
operations and complex behaviour (Varoquaux and Poldrack, 2019; Yarkoni and Westfall,
2017). Using predictive modeling based on regional intrinsic dynamics can help elucidate
the brain-behaviour relationship. However, in order to go beyond associative brain-
behaviour analysis and perform predictive modeling, and importantly, reproducible and
generalizable analysis of brain-behaviour relationships, high quality brain data and well-
defined cognitive and behavioural data from large samples of individuals are required
(Buzsáki, 2020; Marek et al., 2022). Recent technological advances and data collection
and data sharing efforts have made this more accessible by providing cross-sectional and
longitudinal data from a large number of individuals (Feczko et al., 2021; Sudlow et al.,
2015; Van Essen et al., 2013), offering new opportunities for generalizable and reproducible
research on the relationship between brain activity and complex behaviour and cognition.

7.2.2 Neural dynamics during naturalistic stimulus

As mentioned above, a large body of research is available on inter-individual differences
in regional neural dynamics and the relationship between neural variability and cognition
both in young adults and across the lifespan. However, most previous reports rely on
either task-based approaches or resting-state functional neuroimaging. These studies
suggest that intrinsic neural activity is inexorably linked with microscale and macroscale
brain organization, reflects inter-individual differences in behaviour and cognition, and
evolves during healthy aging. Task-based paradigms are mainly used to study brain
function in highly controlled setups, focusing on specific tasks and cognitive processes.
While task-based experimental designs have proven to be useful in studying the brain
function and its influence on cognition, they potentially miss on broader characteristics of
spontaneous neural activity and their relationship with behaviour and cognitive function.
On the other hand, resting-state studies that measure brain activity without any external
stimuli or task-based manipulations are commonly used to assess the intrinsic neural
dynamics and ongoing brain function. However, resting-state research only focuses on
spontaneous brain activity and does not allow for any control over ongoing cognition.
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More recently, there has been a growing evidence that new experimental paradigms,
such as naturalistic stimuli that incorporate task-like manipulations while preserving
properties of spontaneous neural activity, are required to better understand brain function
and integration (Finn, 2021). Naturalistic paradigms impose constraints on brain activity
and cognition, offering an unprecedented opportunity to study individualized neural
dynamics. Given the growing demand, naturalistic datasets have become increasingly
available over recent years (DuPre et al., 2020). Previous reports suggest that natural-
istic settings are well suited for studying brain-behavior relationship as they amplify
individual differences in brain activity (Finn and Bandettini, 2021). However, it remains
unclear whether unconstrained “resting” designs, constrained “task” designs, or natu-
ralistic designs are more optimal for capturing inter-individual heterogeneity in brain
function. Another exciting open question is to determine how regional neural activity
during naturalistic stimuli evolves across the lifespan, and how age-related changes in
regional brain dynamics translate to individual differences in cognitive function. Natural-
istic stimuli datasets are well suited for this purpose, as such paradigms enhance signals
that are unique and sensitive to individuals, allowing us to map individualized neural
dynamics to cognition in a controlled setting. Future work is required to use multimodal
datasets and integrate novel scientific disciplines to characterize regional neural activity
during naturalistic stimuli and identify individualized neural dynamics that manifest as
individual differences in cognitive function and complex behaviour. Using naturalistic
paradigm provides complementary information to our understanding of brain function
at rest and opens new opportunities to investigate the mechanistic links between neural
dynamics and cognition.

7.3 Conclusions

This thesis explores the link between regional neural dynamics and global organization of
the human brain. There is a large body of literature available on how the underlying cellular
and molecular properties of local cortical circuits give rise to neural activity, captured
by a wide range of measurement techniques and imaging modalities at different scales.
This thesis is built on and is inspired by earlier work on neural dynamics and years of
research on this topic. The work presented in this thesis aims to bring multiple, multimodal
datasets together and investigate the association between local brain dynamics and micro-
architecture and macroscale network embedding in a data-driven, comprehensive manner.
Collectively, this body of work emphasizes how data-driven approaches can be applied in
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future research to study multi-scale network dynamics and fundamental aspect of brain
function and integration using multiple data modalities and modern analytic tools.
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Murray, J. D., M. Demirtaş, and A. Anticevic (2018). “Biophysical modeling of large-scale
brain dynamics and applications for computational psychiatry”. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 3(9), pp. 777–787.

Murray, J. D. et al. (2014). “A hierarchy of intrinsic timescales across primate cortex”. Nat
Neurosci, 17(12), p. 1661.

Niedermeyer, E. and F. L. da Silva (2005). Electroencephalography: basic principles, clinical
applications, and related fields. Lippincott Williams & Wilkins.

Niso, G. et al. (2016). “OMEGA: the open MEG archive”. Neuroimage, 124, pp. 1182–1187.
Noble, S., D. Scheinost, and R. T. Constable (2019). “A decade of test-retest reliability

of functional connectivity: A systematic review and meta-analysis”. Neuroimage, 203,
p. 116157.

Paquola, C. et al. (2019). “Microstructural and functional gradients are increasingly disso-
ciated in transmodal cortices”. PLoS Biol, 17(5), e3000284.

Paquola, C. et al. (2021). “The BigBrainWarp toolbox for integration of BigBrain 3D histol-
ogy with multimodal neuroimaging”. eLife, 10. Ed. by S. Jbabdi et al., e70119.

Payeur, A., J.-C. Béïque, and R. Naud (2019). “Classes of dendritic information processing”.
Curr Opin Neurobiol, 58, pp. 78–85.

Poldrack, R. A. and M. J. Farah (2015). “Progress and challenges in probing the human
brain”. Nature, 526(7573), pp. 371–379.

Power, J. D. et al. (2011). “Functional network organization of the human brain”. Neuron,
72(4), pp. 665–678.



BIBLIOGRAPHY 180

Preti, M. G. and D. Van De Ville (2019). “Decoupling of brain function from structure
reveals regional behavioral specialization in humans”. Nature communications, 10(1),
pp. 1–7.

Raichle, M. E. (2009). “A brief history of human brain mapping”. Trends in neurosciences,
32(2), pp. 118–126.

Raut, R. V., A. Z. Snyder, and M. E. Raichle (2020). “Hierarchical dynamics as a macroscopic
organizing principle of the human brain”. Proceedings of the National Academy of Sciences,
117(34), pp. 20890–20897.

Reinhart, R. M. and J. A. Nguyen (2019). “Working memory revived in older adults by
synchronizing rhythmic brain circuits”. Nature neuroscience, 22(5), pp. 820–827.

Richiardi, J. et al. (2015). “Correlated gene expression supports synchronous activity in
brain networks”. Science, 348(6240), pp. 1241–1244.

Roberts, J. A. et al. (2016). “The contribution of geometry to the human connectome”.
Neuroimage, 124, pp. 379–393.

Rosenberg, M. D. et al. (2016). “A neuromarker of sustained attention from whole-brain
functional connectivity”. Nature neuroscience, 19(1), p. 165.

Sadaghiani, S., M. J. Brookes, and S. Baillet (2022). “Connectomics of human electrophysi-
ology”. NeuroImage, 247, p. 118788.

Schaefer, A. et al. (2018). “Local-global parcellation of the human cerebral cortex from
intrinsic functional connectivity MRI”. Cerebral cortex, 28(9), pp. 3095–3114.

Scheeringa, R. and P. Fries (2019). “Cortical layers, rhythms and BOLD signals”. NeuroImage,
197, pp. 689–698.

Scheeringa, R. et al. (2016). “The relationship between oscillatory EEG activity and the
laminar-specific BOLD signal”. Proceedings of the National Academy of Sciences, 113(24),
pp. 6761–6766.

Schmid, F. et al. (2019). “Vascular density and distribution in neocortex”. Neuroimage, 197,
pp. 792–805.

Scholtens, L. H. et al. (2014). “Linking macroscale graph analytical organization to mi-
croscale neuroarchitectonics in the macaque connectome”. Journal of Neuroscience, 34(36),
pp. 12192–12205.

Seidlitz, J. et al. (2018). “Morphometric similarity networks detect microscale cortical
organization and predict inter-individual cognitive variation”. Neuron, 97(1), pp. 231–
247.



BIBLIOGRAPHY 181

Sethi, S. S. et al. (2017). “Structural connectome topology relates to regional BOLD signal
dynamics in the mouse brain”. Chaos: An Interdisciplinary Journal of Nonlinear Science,
27(4), p. 047405.

Shafiei, G. et al. (2019). “Dopamine signaling modulates the stability and integration of
intrinsic brain networks”. Cerebral Cortex, 29(1), pp. 397–409.

Shafiei, G. et al. (2020). “Topographic gradients of intrinsic dynamics across neocortex”.
Elife, 9, e62116.

Shen, X. et al. (2017). “Using connectome-based predictive modeling to predict individual
behavior from brain connectivity”. nature protocols, 12(3), pp. 506–518.

Shine, J. M. et al. (2019). “The low-dimensional neural architecture of cognitive complexity
is related to activity in medial thalamic nuclei”. Neuron, 104(5), pp. 849–855.

Silva Castanheira, J. da et al. (2021). “Brief segments of neurophysiological activity enable
individual differentiation”. Nature communications, 12(1), pp. 1–11.

Smith, M. A. et al. (2013). “Laminar dependence of neuronal correlations in visual cortex”.
Journal of neurophysiology, 109(4), pp. 940–947.

Smith, S. M. et al. (2009). “Correspondence of the brain’s functional architecture during
activation and rest”. Proceedings of the national academy of sciences, 106(31), pp. 13040–
13045.

Smith, S. M. et al. (2015). “A positive-negative mode of population covariation links brain
connectivity, demographics and behavior”. Nature neuroscience, 18(11), pp. 1565–1567.

Sorrentino, P. et al. (2021). “The structural connectome constrains fast brain dynamics”.
Elife, 10, e67400.

Sporns, O. (2011). “The human connectome: a complex network”. Annals of the New York
Academy of Sciences, 1224(1), pp. 109–125.

Sporns, O. and R. F. Betzel (2016). “Modular brain networks”. Annual review of psychology,
67, pp. 613–640.

Sporns, O., G. Tononi, and R. Kötter (2005). “The human connectome: a structural descrip-
tion of the human brain”. PLoS computational biology, 1(4), e42.

Straub, I. et al. (2020). “Gradients in the mammalian cerebellar cortex enable Fourier-like
transformation and improve storing capacity”. eLife, 9, e51771.

Suárez, L. E. et al. (2020). “Linking structure and function in macroscale brain networks”.
Trends Cogn Sci.

Sudlow, C. et al. (2015). “UK biobank: an open access resource for identifying the causes
of a wide range of complex diseases of middle and old age”. PLoS medicine, 12(3),
e1001779.



BIBLIOGRAPHY 182

Taylor, J. R. et al. (2017). “The Cambridge Centre for Ageing and Neuroscience (Cam-
CAN) data repository: structural and functional MRI, MEG, and cognitive data from a
cross-sectional adult lifespan sample”. Neuroimage, 144, pp. 262–269.

Tournier, J.-D. et al. (2019). “MRtrix3: A fast, flexible and open software framework for
medical image processing and visualisation”. NeuroImage, p. 116137.

Uddin, L. Q. (2020). “Bring the Noise: Reconceptualizing Spontaneous Neural Activity”.
Trends in Cognitive Sciences.
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