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Abstract 

Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disease characterized by 

impairments in behaviour, language, and/or cognition. FTD has a significant genetic component; 

up to a third of cases are caused by an autosomal-dominant genetic mutation. It is crucial to 

accurately identify FTD before extensive neuronal damage has occurred, when treatment 

interventions will likely have the greatest effect. As such, there is a critical need for early 

diagnostic and prognostic biomarkers. Improving MRI-based biomarkers is ideal, given that MRI 

is already part of standard clinical practice. However, development is limited by a lack of 

knowledge of the progression of brain changes that begins several years before symptoms occur. 

This thesis uses advancements in computational modelling, including machine learning and 

multivariate statistical modelling, to study MRI-based biomarker progression throughout the early 

stages of FTD. Chapter 1 provides a brief overview of the problem and sets out the objectives of 

the thesis. Chapter 2 provides a review of the literature on biomarker development in FTD, with a 

focus on MRI measures and disease progression modelling. Chapter 3 describes a systematic 

review of the current state of the literature using morphometric MRI and machine learning to aide 

in FTD diagnosis. We found that morphometric MRI shows potential as an early diagnostic 

biomarker of FTD, however studies which use rigorous methodology and validate findings in an 

independent real-life cohort are necessary before recommendation for clinical use. Chapter 4 

describes the methodology used to study the presymptomatic phase of FTD, using genetically at-

risk individuals, who will eventually develop FTD symptoms. In chapter 5, we show that an 

unsupervised machine learning algorithm can identify data-driven disease stages in a 

heterogeneous sample combining different mutations and disease stages of genetic FTD using only 

MRI metrics. In chapter 6, we show that MRI metrics are insufficient to recover genetic subtypes 
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in the same sample, likely due to the high number of early presymptomatic individuals included. 

Chapter 7 attempts to untangle the underlying mechanisms of disease progression in genetic FTD 

using a multifactorial mechanistic model and suggests that this challenging task may require more 

complete data from individuals across the full disease course as well as a wider variety of potential 

biomarkers in combination. Finally, chapter 8 discusses the contributions, limitations, and future 

directions of these studies. Taken together, this thesis provides novel insights into the value of 

data-driven methods of biomarker development in genetic FTD, as well as some of the challenges 

of applying these methods to complex neurodegenerative diseases. 
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Résumé 

La démence frontotemporale (DFT) est une maladie neurodégénérative hétérogène caractérisée 

par des troubles du comportement, du langage et/ou de la cognition. La DFT a une composante 

génétique importante; jusqu'à un tiers des cas sont causés par une mutation génétique autosomale 

dominante. Il est essentiel d'identifier avec précision la DFT avant que des dommages neuronaux 

importants ne se soient produits: c’est-à-dire la période de la maladie où les interventions 

thérapeutiques auront probablement le plus grand effet. Dans ce contexte, il existe un besoin 

critique pour des biomarqueurs diagnostiques et pronostiques précoces. L'amélioration des 

biomarqueurs basés sur l'IRM est idéale, étant donné que l'IRM fait déjà partie de la pratique 

clinique habituelle. Cependant, le développement des biomarqueurs est limité par le manque de 

connaissances sur la progression des changements cérébraux qui commencent plusieurs années 

avant l'apparition des symptômes. Cette thèse utilise les avancements de la modélisation 

informatique, y compris l'apprentissage machine et la modélisation statistique multivariée pour 

étudier la progression des biomarqueurs basés sur l'IRM tout au long des premiers stades de la 

DFT. Le chapitre 1 donne un bref aperçu du problème et expose les objectifs de la thèse. Le 

chapitre 2 présente une revue de la littérature sur le développement de biomarqueurs dans la DFT, 

en mettant l'accent sur les mesures IRM et la modélisation de la progression de la maladie. Le 

chapitre 3 décrit une revue systématique de l'état actuel de la littérature utilisant l'IRM 

morphométrique et l'apprentissage machine pour faciliter le diagnostic de la DFT. Nous avons 

constaté que l'IRM morphométrique présente un potentiel en tant que biomarqueur de diagnostic 

précoce de la DFT, mais des études utilisant une méthodologie rigoureuse et validant les résultats 

dans une cohorte indépendante dans la vie réelle sont nécessaires avant de recommander une 

utilisation clinique. Le chapitre 4 décrit la méthodologie utilisée pour étudier la phase 
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présymptomatique de la DFT, en utilisant des individus génétiquement à risque, qui finiront par 

développer des symptômes de la DFT. Dans le chapitre 5, nous montrons qu'un algorithme 

d'apprentissage machine non supervisé peut identifier les stades de la maladie basés sur les données 

dans un échantillon hétérogène combinant différentes mutations et différents stades de la maladie 

de la DFT génétique en utilisant uniquement des mesures de l’IRM. Dans le chapitre 6, nous 

montrons que les mesures IRM sont insuffisantes pour retrouver les sous-types génétiques dans le 

même échantillon, probablement à cause du nombre élevé d'individus présymptomatiques 

précoces inclus. Le chapitre 7 tente de comprendre les mécanismes sous-jacents de la progression 

de la maladie dans la DFT génétique à l'aide d'un modèle mécaniste multifactoriel et suggère que 

cette tâche difficile peut nécessiter des données plus complètes des individus tout au long de 

l'évolution de la maladie, ainsi qu'une combinaison d’une plus grande variété de biomarqueurs 

potentiels. Enfin, le chapitre 8 aborde les apports, les limites et les orientations futures de ces 

études. Dans son ensemble, cette thèse fournit de nouvelles informations sur la valeur des 

méthodes de développement de biomarqueurs basées sur les données dans la DFT génétique, ainsi 

que sur certains des défis liés à l'application de ces méthodes aux maladies neurodégénératives 

complexes. 
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Chapter 1  

Introduction 

1.1 Overview of the problem – general context 

Dementia is a major global health challenge, with more than 40 million people currently 

living with dementia worldwide, a number that is expected to grow dramatically as the population 

continues to age (Nichols et al., 2019; Prince et al., 2013). While much attention has focused on 

Alzheimer’s disease (AD), other less common causes of dementia remain poorly understood. 

Frontotemporal dementia (FTD) is relatively rare in the overall population, but is one of the most 

common forms of early-onset dementia, occurring with similar frequency to AD in people under 

the age of 65 (Onyike & Diehl-Schmid, 2013). The majority of cases occur between the ages of 

40-70, although up to 25% of cases occur in those over 65 (Onyike & Diehl-Schmid, 2013). FTD 

presents with unique challenges because of its young age of onset, as affected individuals are often 

still working and caring for children, and results in a substantial economic burden (Galvin et al., 

2017).  

FTD is currently difficult to diagnose, as validated diagnostic methods are inadequate, 

particularly in the early stages. The overlap between symptoms of FTD and other better known 

conditions (most significantly, behavioural changes seen in FTD and those seen in primary 

psychiatric disorders) often results in erroneous diagnosis and prolonged periods of uncertainty for 

patients and their families, which can last more than three years (Woolley et al., 2011). While there 

are several promising candidates in development (Tsai & Boxer, 2016), there are currently no 

disease-modifying treatments for FTD. The ability to enroll very early stage FTD patients and 



CHAPTER 1.  INTRODUCTION  2 

 

accurately monitor and predict disease progression in these individuals is extremely important for 

the success of any clinical trial of a potential disease-modifying treatment.  

There is therefore a critical need for improved methods of diagnosis and disease monitoring 

in FTD, but advancements have been limited. One likely reason is disease heterogeneity; FTD is 

best described as a group of related disorders, which encompass multiple clinical, genetic, and 

pathological variations, complicating diagnosis and making it difficult to accurately identify those 

individuals with similar disease progression, who may benefit from the same treatment. 

Furthermore, neurodegenerative disorders such as FTD progress for years, potentially decades, 

prior to the emergence of clinical symptoms. Individuals therefore need to be identified and 

targeted for disease-modifying treatments while still in this presymptomatic phase when 

irreversible neuronal damage is minimal and further progression can be prevented.  

For these reasons, the development of improved biomarkers (indicators of specific changes 

that characterize the disease in question) is highly relevant to aide in early diagnosis and treatment. 

The lack of validated biomarkers for FTD means a difficulty in diagnosing and monitoring early-

stage disease, both clinically and in future clinical trials of disease-modifying treatments. Sensitive 

biomarkers which characterize the full spectrum of FTD across the disease course, from 

presymptomatic stages to clinical FTD, are therefore essential.  

1.2 Objectives 

A promising tool which is already routinely used in clinical practice to aid in FTD diagnosis 

is magnetic resonance imaging (MRI). With advancements in image processing techniques, MRI-

based measures of structural and functional brain changes have been investigated extensively in 

recent years as potential biomarkers. Furthermore, computational models including discriminative 
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machine learning methods and disease progression modelling are emerging technologies for aiding 

in the diagnosis and monitoring of neurodegenerative diseases. These methods mean the ability to 

detect data-driven biological patterns in FTD, across multiple potential biomarkers in combination. 

The overall objective of this thesis is therefore to explore the use of computational methods in the 

application of MRI techniques as early-stage biomarkers in FTD. Specific objectives from each 

chapter that constitute original research are described below. 

Chapter 3 describes a systematic review of the literature on the use of morphometric MRI 

techniques on an individual level in the diagnosis of FTD. Morphometric MRI has found distinct 

patterns of atrophy in FTD; applying techniques to discriminate between subjects on an individual 

level could provide necessary assistance to clinicians in the differential diagnosis of FTD, 

particularly in the early disease stages. These methods have been widely studied, typically using 

discriminative machine learning methods, yet have not made it into clinical practice. A systematic 

review of these studies was conducted to evaluate the current state of this research and determine 

if the methods have clinical utility.  

Chapters 5, 6, and 7 present two different models of multifactorial biomarker progression 

throughout presymptomatic and symptomatic FTD using genetically at-risk individuals, while 

Chapter 4 describes the participants and image processing methods used in these analyses. 

Asymptomatic individuals who carry FTD-causing genetic mutations will eventually develop the 

clinical disease. Genetic FTD therefore provides a unique opportunity to study the presymptomatic 

disease stage. Existing research focuses on single MRI measures; there is a lack of models 

incorporating multiple measures in an integrative framework, an important step to develop data-

driven biomarkers of early stage FTD.  

Chapter 5 describes the application of a data-driven unsupervised machine learning model 
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for staging disease to presymptomatic and symptomatic individuals with genetic FTD. High 

variance in structural and functional MRI metrics across clinical and genetic FTD variants, both 

symptomatically and in presymptomatic gene carriers, makes these single measures less effective 

to stage the disease in individuals. Unifying biomarkers which can accurately stage FTD cases 

across the full disease course, despite heterogeneity, are therefore needed.  

Chapter 6 describes an extension of the unsupervised machine learning model from 

Chapter 5 to data-driven subtyping of genetic FTD. The ability to predict subsets of individuals 

with similar disease progression patterns would open the possibility of improving future clinical 

trials by selectively enrolling a more homogeneous group of participants who may benefit from 

the same treatment.  

Chapter 7 describes the application of a multifactorial causal model to genetic FTD, to 

identify in a data-driven way the earliest changes in MRI-based biomarkers in preclinical and early 

clinical stages. Studies of MRI-based biomarkers in presymptomatic genetic FTD suggest a 

possible pattern of brain changes prior to symptom onset, however research typically assumes 

biomarker independence. No studies to date have attempted to characterize the interactive 

spreading of multiple factors throughout the brain during disease progression. The model used in 

this analysis allows the data-driven exploration of multiple interacting biological factors. 

Knowledge gained from these types of models can aid the development of sensitive biomarkers. 
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Chapter 2  

Review of the literature 

2.1 Overview of FTD 

Frontotemporal dementia (FTD) is a neurodegenerative disease presenting most commonly 

with changes in behaviour, language and/or cognition. FTD has a relatively fast rate of decline, 

but progression varies widely across individuals (Garcin et al., 2009; Onyike & Diehl-Schmid, 

2013). FTD is an umbrella term describing a heterogeneous group of diseases that are associated 

with degeneration of the frontal and/or temporal lobes, referred to as frontotemporal lobar 

degeneration (FTLD). It encompasses a variety of clinical, pathological, and genetic variants.  

There are two main clinical syndromes: behavioural variant FTD (bvFTD) and primary 

progressive aphasia (PPA). bvFTD is the most common syndrome and presents with personality 

changes such as apathy, loss of empathy, and disinhibition (Rascovsky et al., 2011). Primary 

progressive aphasias (PPA) are associated with language deficits. PPA is further divided into three 

variants - semantic (svPPA), nonfluent (nfvPPA), and logopenic (lvPPA) (Gorno-Tempini et al., 

2011). Patients can also develop concomitant parkinsonism or motor neuron disease (MND), so 

that the clinical spectrum of FTLD includes amyotrophic lateral sclerosis (ALS), progressive 

supranuclear palsy (PSP), and corticobasal syndrome (CBS). FTD is associated with abnormal 

accumulation of one of several misfolded proteins; the most common being microtubule-

associated protein tau and transactive response DNA-binding protein with molecular weight 43 

kDa (TDP-43), and, less commonly, fused in sarcoma (FUS) protein (Rademakers et al., 2012). 

FTD also has a significant genetic component. Up to one third of cases are caused by an autosomal-

dominant genetic mutation, with the majority being caused by mutations in progranulin (GRN), 
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microtubule-associated protein tau (MAPT) and expansions of chromosome 9 open reading frame 

72 (C9orf72) (Rademakers et al., 2012).  

The complexity of FTD is exacerbated by the lack of clear correspondence between 

clinical, pathological, and genetic variations (Figure 2.1). Clinical presentation reflects regional 

patterns of neurodegeneration; the underlying pathology cannot be accurately predicted by clinical 

syndrome. Some clinical syndromes are more commonly associated with a specific underlying 

pathology, such as svPPA and FTD with MND (called FTD-MND or FTD-ALS) with TDP-43 

(Josephs et al., 2011). lvPPA, while frequently classified under the umbrella of FTD clinical 

syndromes, is most commonly an atypical form of Alzheimer’s disease (AD) in terms of pathology 

(Gorno-Tempini et al., 2011). bvFTD, however, does not have a strong association with a single 

pathology. Unlike sporadic cases, FTD caused by genetic mutations have predictable underlying 

pathology; GRN mutations and C9orf72 expansions have TDP-43 pathology while MAPT 

mutations are associated with tau pathology. While some clinical presentations are associated with 

specific genotypes, such as ALS with C9orf72 expansion, correlations between genotype and 

phenotype are generally poor (Lashley et al., 2015). The most common clinical presentation in all 

genetic forms is bvFTD, but all phenotypes can occur (Lashley et al., 2015).  
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Figure 2.1: Relationship between clinical, genetic, and pathological FTD variants. Genetic 

forms of FTD have predictable pathology: GRN mutations and C9orf72 repeat expansions result 

in TDP-43 pathology, whereas MAPT mutations result in tau pathology. By contrast, variable 

underlying pathologies and genetic forms are found across the clinical spectrum of FTD. VCP, 

TARDP and TBK1 are rare FTD-causing genes. bvFTD = behavioural variant FTD; CBD = 

corticobasal degeneration; FUS = RNA-binding protein FUS; nfvPPA = nonfluent variant primary 

progressive aphasia; PSP = progressive supranuclear palsy; svPPA = semantic variant primary 

progressive aphasia; TDP-43 = transactive response DNA-binding protein 43. Figure and caption 

adapted with permission from (Meeter et al., 2017). 

 

2.2 Clinical diagnosis 

FTD is currently a major challenge to diagnose. FTD symptoms overlap considerably with 

primary psychiatric disorders and other dementias (Ducharme et al., 2015). The diagnosis of 

bvFTD is especially difficult in the real-life context of patients presenting with adult-onset (i.e., 

more than 40 years old) behavioral changes. Evidence suggests as many as 50% of people with 

bvFTD are initially diagnosed with a primary psychiatric disorder (Woolley et al., 2011).  Standard 

neuropsychological test batteries of cognitive performance are unreliable to distinguish between 
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the two groups (Vijverberg et al., 2017). Furthermore, significant memory impairment can exist in 

bvFTD, comparable to that seen in AD, particularly in individuals with an older age of onset 

(Bertoux et al., 2014; Mansoor et al., 2015).  

Current diagnostic guidelines include the use of structural MRI for visualization of atrophy 

in frontal and temporal brain regions and PET using a 18 F‑fluorodeoxyglucose tracer (FDG-PET) 

for visualization of abnormalities in metabolism (Gorno-Tempini et al., 2011; Rascovsky et al., 

2011). However, these methods are insufficient in the early stages; in a mixed neuropsychiatric 

population that is representative of clinical practice, a standard MRI with visual review had 

insufficient sensitivity (70%) to identify cases of bvFTD at baseline, while specificity of FDG-

PET was poor (68%) (Vijverberg et al., 2016). There is no FTD equivalent to the concept of mild 

cognitive impairment, a clinical syndrome which often represents an early phase of AD, and helped 

transform diagnosis and treatment in that disease (Rosen et al., 2020). Although attempts have 

been made to define an MCI-like stage in FTD (Ismail et al., 2017; Jiskoot et al., 2019), these 

definitions do not capture the full range of clinical symptoms, including early stage PPA, and the 

prognostic value of this concept has not been established (Rosen et al., 2020). 

2.3 FTD biomarkers 

Over the past two decades, considerable efforts have been made to develop sensitive 

biological markers of FTD. Ideally, biomarkers should precisely and reliably detect a fundamental 

feature of the disease using a procedure that is inexpensive, noninvasive, and easy to perform 

(Meeter et al., 2017). Diagnostic biomarkers need to distinguish between FTD subtypes and non-

FTD disorders, as well as between clinical, genetic, or pathological subtypes, while staging 

biomarkers need to monitor disease progression across the full disease course, and encompass the 
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substantial heterogeneity in FTD (Meeter et al., 2017). To date, validated biomarkers for diagnosis 

and disease monitoring remain limited (Meeter et al., 2017).  

Potential biomarkers in neurodegenerative diseases include those derived from imaging 

(typically MRI and PET) and fluid-based methods (cerebrospinal fluid (CSF) and blood derived 

biomarkers). Validated diagnostic biomarkers in AD (including CSF and PET amyloid tracers) can 

be used in the differential diagnosis of FTD from AD, as FTD will likely be negative for these 

(Meeter et al., 2017), however FTD-specific CSF biomarkers or tau tracers are not currently 

available. Much research has focused on MRI-based biomarkers; MRI is non-invasive, is less 

costly than alternatives such as PET, and is already used regularly in clinical practice. MRI studies 

in FTD have focused on measures of grey matter atrophy, diffusion tensor imaging, and resting-

state fMRI. 

2.4 MRI changes in clinical FTD syndromes 

2.4.1 Grey matter atrophy 

Grey matter structural changes have been most frequently studied as potential FTD 

biomarkers using T1-weighted MRI. Quantitative morphometric MRI techniques, most commonly 

grey matter volume and cortical thickness, have demonstrated specific patterns of frontal and 

temporal grey matter atrophy on a group level in FTD clinical syndromes (Meeter et al., 2017) 

(Figure 2.3). This is distinct from psychiatric disorders such as depression and anxiety disorders, 

in which no clinically significant cortical atrophy is expected. These patterns also differ from those 

seen in other dementias (such as hippocampal atrophy found in AD). BvFTD is associated with 

atrophy primarily in the frontal lobe, insula, anterior cinguate cortex and basal ganglia (Meeter et 

al., 2017; Pan et al., 2012; Schroeter et al., 2014). PPA is primarily associated with left-sided 
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atrophy (the language dominant hemisphere) in the initial disease stages; nfvPPA with inferior 

frontal and insular atrophy, svPPA with anterior temporal atrophy, and lvPPA with posterior 

temporal and parietal atrophy (Bisenius et al., 2016; Meeter et al., 2017; Mesulam et al., 2009; 

Rogalski et al., 2014).  

 

Figure 2.2: Grey matter atrophy in clinical syndromes of FTD. Characteristic group-level 

patterns of grey matter atrophy (highlighted in red) in different clinical subtypes of FTD. Atrophy 

is typically found in frontal, insular and anterior cingulate regions in bvFTD, left-sided temporal 

atrophy is typically seen in svPPA, and left frontal and insular atrophy is typically found in 

nfvPPA. Figure and caption adapted with permission from (Meeter et al., 2017). 

 

2.4.2 Diffusion tensor imaging 

Diffusion tensor imaging (DTI) has typically been used to measure white matter changes. 

DTI uses the directional diffusion of water to obtain metrics of microstructural integrity, most 

commonly fractional ansiotrophy (FA) and mean diffusivity (MD), based on the idea that water 
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diffuses differently depending on tissue type, integrity, and the presence of barriers (Soares et al., 

2013). In white matter water tends to diffuse directionally along the axon (anisotropic). In grey 

matter diffusion is less anisotropic and in CSF is unrestricted in all directions (isotropic) (Soares 

et al., 2013). A decrease in FA and increase in MD is expected with neurodegeneration. White 

matter changes mirror grey matter atrophy patterns in FTD but extend beyond these regions, with 

overlapping patterns found in each clinical syndrome, most consistently identifying tracts in the 

frontal and temporal regions including the uncinate fasciculus, cingulum bundle, corpus callosum 

and superior and inferior longitudinal fasciculi  (Agosta et al., 2012, 2015; Lam et al., 2014; 

Mahoney et al., 2013, 2014, 2015; Schwindt et al., 2013; Tu et al., 2015; Whitwell et al., 2010; 

Zhang et al., 2013). The more widespread changes in white matter indicate that white matter 

changes could precede grey matter atrophy or that white matter DTI measures may simply be a 

more sensitive biomarker. DTI has been infrequently studied in grey matter, but one study found 

patterns of grey matter microstructure alterations (seen via increases in MD) mirrored volumetric 

grey matter atrophy in the clinical syndromes (Whitwell et al., 2010). 

2.4.3 Resting-state fMRI 

Changes in spontaneous neural activity have frequently been measured using resting-state 

functional MRI (fMRI). fMRI uses blood oxygen level–dependent (BOLD) contrast imaging to 

measure localized increases in oxygenated blood flow, which are coupled with increased neural 

activation (Lv et al., 2018). Most research focuses on changes in functional connectivity, which 

measures the correlation of spontaneous fluctuation in the BOLD signal between different brain 

regions. This method has identified several brain networks, formed from regions which are said to 

be functionally connected when they exhibit correlated fluctuations (Lv et al., 2018). Changes 

have been detected in the salience network in bvFTD and semantic variant PPA, a brain network 
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involved in emotional processing, which includes the insula and the anterior cingulate cortex. 

While several studies report decreased connectivity in this network (Barbara Borroni et al., 2012; 

Farb et al., 2013; Filippi et al., 2013; Whitwell, Josephs, et al., 2011; Zhou et al., 2010), some 

studies have found no change or increased connectivity (Hafkemeijer et al., 2015; Rytty et al., 

2013). Changes in measures of regional functional activity have also been identified, including in 

fALFF (fractional amplitude of low frequency fluctuations), which measures signal strength within 

brain regions (Zou et al., 2008). Alterations in fALFF have been detected in the insula of 

individuals with bvFTD and svPPA (Day et al., 2013; Farb et al., 2013).  

2.5 The presymptomatic phase 

It is now understood that the neurodegenerative disease process begins many years before 

symptom onset, with the symptomatic period representing the later stages of the disease. For 

instance, brain atrophy and changes in amyloid and tau were detected in familial AD up to 25 years 

before expected symptom onset (Bateman et al., 2012). This presymptomatic phase is widely 

considered to be the ideal time for intervention, when irreversible neuronal loss is minimal and 

clinical function is still preserved (Rohrer et al., 2015). The failure of several clinical trials in mild 

to moderate stage AD (Salloway et al., 2014) further indicates the importance of targeting the 

presymptomatic and early symptomatic phases for disease prevention. The development of CSF 

and PET amyloid tracers has proven massive for AD diagnosis and treatment (Cohen et al., 2019) 

and allows for the targeting of asymptomatic individuals at high risk of developing clinical AD. 

Research into these preclinical biomarkers has led to the development of neurodegenerative 

disease progression models which suggest low rates of change in biomarkers in the 

presymptomatic phase which accelerate near the start of the symptomatic phase (Rosen et al., 

2020), including the highly cited observational model of AD progression (Jack et al., 2013), which 
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hypothesized the trajectories of the most commonly researched biomarkers over the disease course. 

This type of biomarker progression model has been applied to other neurodegenerative disorders, 

including FTD (Figure 2.2). However, while knowledge of this presymptomatic stage has become 

more frequently studied in recent years (reviewed in the next sections), no presymptomatic 

biomarkers of FTD are currently available.  

 

Figure 2.3: Hypothetical model of biomarker progression in FTD. CSF and PET based 

biomarkers are hypothesized to become altered first, followed by MRI changes, with functional 

changes preceding structural changes (structural connectivity is referring to white matter 

microstructural changes). Finally, behavioural/cognitive impairment begins to immerge. Figure 

adapted with permission from (Gordon et al., 2016). 

 

2.6 Genetic FTD 

Knowledge of the brain changes occurring in the earliest disease stages is an important step 

in the development of early-stage biomarkers, but knowledge of the presymptomatic and early 

symptomatic stages remains limited in FTD. Genetic FTD provides an opportunity to study the 

presymptomatic stage which is not available in sporadic FTD; the most common FTD-causing 
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genetic mutations (C9orf72, GRN or MAPT) have near to full penetrance (Rademakers et al., 

2012), meaning asymptomatic individuals who carry the genetic mutation will eventually develop 

symptoms. Studying genetic FTD is difficult due to the relative rarity of these conditions, and 

studies were initially limited by small sample sizes. In recent years, several large multi-site studies 

have been undertaken, including the genetic frontotemporal dementia initiative (GENFI) in 

Canada and Europe, and ARTFL/LEFFTDS in the United States. Several studies have shown MRI-

based changes in presymptomatic and symptomatic gene carriers compared to non-carriers, most 

frequently in grey matter atrophy, but also in white matter alterations and functional activity. 

2.6.1 Grey matter atrophy 

Differing pattern of grey matter atrophy have been found in the three most common genetic 

variants of FTD, extending beyond the typical frontal/temporal pattern found in sporadic FTD 

(Figure 2.4A); C9orf72 expansion carriers show an especially widespread pattern of grey matter 

atrophy, encompassing noncortical regions including the thalamus and cerebellum, GRN mutation 

carriers show asymmetrical patterns of atrophy extending into the parietal lobe, and MAPT 

mutation carriers show a more focal pattern of temporal lobe atrophy (Fumagalli et al., 2018; Lee 

et al., 2014; Mahoney et al., 2012; Rohrer et al., 2010; Sha et al., 2012; Whitwell et al., 2012). 

Intersecting regions of atrophy have been found in the insula, orbitofrontal lobe, and anterior 

cingulate in all three groups (Cash et al., 2018). Fastest rates of atrophy have been found in GRN, 

while a very slow progressing group of C9orf72 has been observed (Whitwell et al., 2015). 

Similar patterns were found to a lesser extent in presymptomatic gene carriers (Cash et al., 

2018). Regional volume loss has been detected starting at least 10 years prior to the estimated 

onset of symptoms in the GENFI dataset (Rohrer et al., 2015) (Figure 2.4B). Earliest changes were 
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found in the C9orf72 expansion group; subcortical atrophy was detected up to 25 years before 

expected onset, followed by frontal and temporal lobe atrophy, and subsequently cerebellar 

atrophy. In GRN mutation carriers atrophy started in the insula, followed by the temporal and 

parietal lobes, and the striatum. In MAPT carriers atrophy began in the hippocampus and 

amygdala, followed by the temporal lobe and insula. In the ARTFL/LEFFTDS study, individual 

atrophy maps were able to separate presymptomatic from mild symptomatic subjects and predict 

conversion to symptomatic (Staffaroni, Cobigo, et al., 2020). Grey matter atrophy has been 

inconsistently detected in single site studies, with some studies detecting atrophy (Lee et al., 2017; 

Olm et al., 2018; Panman et al., 2019; Papma et al., 2017; Pievani et al., 2014) and others not (B. 

Borroni et al., 2008; Barbara Borroni et al., 2012; Dopper et al., 2014; Feis et al., 2019; Whitwell, 

Josephs, et al., 2011). Longitudinal studies have found atrophy over time, but again results are 

inconsistent (Caroppo et al., 2015; Le Blanc et al., 2020; Olm et al., 2018; Panman et al., 2019). 

A longitudinal analysis of subjects who converted from presymptomatic to symptomatic found 

steep grey matter volume loss near symptom onset in GRN and MAPT carriers (Jiskoot et al., 

2019). 
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Figure 2.4: Grey matter atrophy patterns in genetic FTD. A) Characteristic patterns of grey 

matter atrophy (highlighted in red) in each genetic subtype. Patients with GRN mutations often 

exhibit asymmetrical frontotemporoparietal atrophy. Patients with a C9orf72 repeat expansion 

present mostly with a generalized symmetrical atrophy. Patients with MAPT mutations exhibit 

marked symmetrical temporal atrophy. B) Standardized difference between all (presymptomatic 

and symptomatic) mutation carriers and non-carriers in cortical grey matter volumes versus 

estimated years from expected symptoms onset. Dotted lines on the x-axis show the time at which 

the upper 95% confidence intervals for each curve crosses zero on the y-axis (i.e., the point at 

which a significant difference exists between mutation carriers and non-carriers). Figure and 

caption adapted with permission from (Rohrer et al., 2015) and (Meeter et al., 2017). 

 

2.6.2 White matter changes 

DTI metrics found early and widespread white matter alterations in presymptomatic 

carriers in GENFI up to 30 years prior to the estimated age of onset in the C9orf72 expansion 

group, primarily in posterior tracts including the posterior thalamic radiation, splenium of the 

corpus callosum, and posterior corona radiata. (Jiskoot, Bocchetta, et al., 2018). Differing patterns 

were again found for the three main mutations, with changes occurring later in those with GRN 

and MAPT mutations. Changes included the uncinate fasciculus and cingulum in MAPT and the 
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anterior and posterior internal capsule in GRN (Jiskoot, Bocchetta, et al., 2018). Similarly, multiple 

studies have found presymptomatic changes in DTI metrics, most commonly reduced FA, in each 

genetic group compared to non-carriers (B. Borroni et al., 2008; Dopper et al., 2014; Floeter et al., 

2018; Jiskoot et al., 2019; Lee et al., 2017; Olm et al., 2018; Panman et al., 2019; Papma et al., 

2017), although results are again inconsistent (Feis et al., 2019; Panman et al., 2019; Pievani et al., 

2014). 

2.6.3 Functional activity 

Functional changes have been less frequently studied; several single-site studies reported 

altered functional connectivity in presymptomatic carriers compared to non-carriers most 

consistently in the salience network (Barbara Borroni et al., 2012; Dopper et al., 2014; Whitwell, 

Josephs, et al., 2011), with some evidence of gene specific patterns (Lee et al., 2017; Premi et al., 

2014), while some studies detected no differences (Feis et al., 2019; Pievani et al., 2014). Others 

have found altered local activity measures including fALFF in GRN carriers (Premi et al., 2014, 

2016). 

2.6.4 Cognitive changes 

Cognitive impairment has been reported in presymptomatic FTD (Cheran et al., 2019; 

Jiskoot, Panman, et al., 2018; Papma et al., 2017; Rohrer et al., 2015). Changes in cognitive, 

behavioural, and neuropsychological tests have been reported in GENFI up to five years prior to 

estimated onset (Rohrer et al., 2015), with differing patterns in each genetic group. In particular, 

language and memory decline has been observed in presymptomatic MAPT carriers (Cheran et al., 

2019; Jiskoot, Panman, et al., 2018; Olney et al., 2020; Rohrer et al., 2015). In the 

ARTFL/LEFFTDS study, differences in executive function were found between asymptomatic 
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carriers and non-carriers (Staffaroni, Bajorek, et al., 2020), as well as some impairment in those 

with mild/questionable symptoms (Olney et al., 2020). 

2.6.5 Suspected pattern/order of change based on these studies  

Taken together, there is evidence of common affected regions across genetic variants, 

(those most commonly seen in symptomatic cases, such as the insula), while specific patterns are 

observed in each genetic mutation. These patterns frequently extend beyond frontal/temporal 

regions, (including posterior, subcortical involvement in C9orf72 and parietal involvement in 

GRN, while MAPT shows more focal temporal involvement). Differing rates of progression are 

also observed; earlier changes and slower progression observed in C9orf72 expansions, while 

GRN and MAPT mutations lead to steeper declines. 

Several studies report alterations in fMRI and DTI metrics in the absence of grey matter 

atrophy (B. Borroni et al., 2008; Dopper et al., 2014; Papma et al., 2017; Whitwell, Josephs, et al., 

2011), suggesting that these may be more sensitive biomarkers in the early disease stage. However, 

this is not a consistent finding (Feis et al., 2019; Lee et al., 2017; Pievani et al., 2014). These 

studies are limited by small sample sizes and variability in included subjects; they typically do not 

account for subject disease stage. Regression against the estimated years to symptom onset (EYO; 

calculated as the participant’s age minus the mean age of symptom onset in their relatives) in the 

GENFI cohort suggests white matter changes preceding grey matter (Jiskoot, Bocchetta, et al., 

2018; Rohrer et al., 2015), while grey matter atrophy was detected earlier than clinical changes 

(Rohrer et al., 2015). In another study asymptomatic mutation carriers performed similarly to non-

carriers on all clinical measures but had decreased frontal and temporal lobe volumes (Olney et 

al., 2020). DTI metrics performed best at single subject classification of a combined group of gene 

carriers from non-carriers, over grey matter and fMRI changes (Feis et al., 2018).  
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Together these results indicate a potential sequence of degeneration, with functional 

connectivity and white matter integrity preceding grey matter atrophy, followed by cognitive 

decline, with differing patterns of disease progression in genetic variants. However, few studies 

have attempted to combine these various brain changes in an integrative model of disease 

progression. 

2.7 Computational models of disease progression 

2.7.1 Staging models 

Numerous computational models have been developed that attempt to model the complex 

cerebral changes that are occurring throughout neurodegenerative disease progression (Oxtoby & 

Alexander, 2017). These models can integrate a variety of clinical and biological data in a data-

driven way to estimate disease progression across the full disease time course. They have most 

frequently been studied in AD (Garbarino et al., 2019; Iturria-Medina et al., 2016; Jedynak et al., 

2012; Venkatraghavan et al., 2019; Young et al., 2014). They typically attempt to integrate cross-

sectional data from multiple biomarkers, making no a priori assumptions about the structure or 

relationship of the data (Oxtoby & Alexander, 2017). They usually consider each biomarker 

independently of one another and attempt to construct the typical trajectory of each over the disease 

course (Iturria-Medina et al., 2016; Jedynak et al., 2012). The event-based model is one commonly 

researched approach which estimates the sequence of biomarker changes during disease 

progression and the uncertainty associated with the ordering. It has been applied to a variety of 

biomarkers in sporadic and familial AD, Huntington’s disease, and familial FTD (Fonteijn et al., 

2012; Oxtoby et al., 2017, 2018; Panman et al., 2021; Venkatraghavan et al., 2019; Young et al., 

2014). Data-driven models of disease staging have typically included a select number of 
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biomarkers, such as grey matter atrophy throughout the whole brain, or they include only a small 

number of brain regions previously shown to be implicated in the disease. Furthermore, they 

usually assume a single disease trajectory for all subjects.  

Frequently, these models are then used to assign an individual stage, or disease severity 

score, to each subject in the analysis. As such, they provide a data-driven method for monitoring 

disease progression by combining multiple relevant biological measures into a single disease 

signature. For example, one study using a self-modelling framework to pool information from 

various biomarkers in AD found that the individual disease scores assigned by the model correlated 

strongly with the clinical classifications of AD (Jedynak et al., 2012). Individual subject staging 

derived from the event-based model has been used to classify individuals with AD from 

cognitively healthy individuals and to predict conversion to MCI or to AD, with high accuracy 

(Venkatraghavan et al., 2019; Young et al., 2014). 

Few studies have applied data-driven disease progression modelling to FTD. Group-level 

temporal patterns have been found in grey matter and white matter by regressing against the EYO. 

This method is limited by the rough accuracy of this measure (Moore et al., 2020). A recent 

adaptation of the event-based model in GRN presymptomatic and symptomatic mutation carriers 

found early changes in language and neurofilament light chain, and white matter changes 

preceding grey matter alterations (Panman et al., 2021). Individual disease severity scores derived 

from this model could classify symptomatic individuals from presymptomatic individuals with 

high sensitivity (100%) and specificity (96%). Disease severity scores correlated strongly with 

EYO (r=0.95, p=0.0003) and the FTD clinical dementia rating (FTD-CDR: r=0.84, p=0.0189) for 

those with a diagnosis of nfvPPA, but not for those with bvFTD. A study combining a variation of 

the event-based model and clustering found data-driven subtypes that corresponded with genetic 
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FTD mutations and their temporal progression patterns using lobar grey matter volumes (Young 

et al., 2018). This study focuses on disease subtyping while accounting for the differing disease 

stage of each subject but does not analyze individual staging scores for its subjects.  

2.7.2 Subtyping models 

As mentioned, data-driven disease progression models typically assume a single disease 

trajectory for all subjects. While such models can lead to a better overall understanding of temporal 

progression, the assumption that all individuals have the same phenotype is a limitation, 

particularly in a highly heterogeneous disease like FTD. Studies typically deal with this 

heterogeneity by focusing on specific clinical or genetic variants, which have broadly distinct 

patterns of neurodegeneration. Studies of genetic FTD typically focus on the more homogeneous 

genetic variants individually, due to their predictable pathology. However, patterns overlap and 

considerable variability exists within groups. One study noted significant variability within genetic 

groups via analysis of the proportion of subjects with declining grey matter volume in the same 

voxels, indicating that no one region captures all subjects well (Olney et al., 2020). Differing 

patterns are also found within genetic groups when all subjects are diagnosed with the same clinical 

syndrome (Lee et al., 2014; Sha et al., 2012; Whitwell et al., 2012). Those diagnosed with the same 

clinical syndrome can have different pathological and genetic causes, while those with genetic 

FTD causing mutations will develop different clinical syndromes, complicating the development 

of biomarkers of the presymptomatic stage.  

 The assumption of a single disease trajectory limits the utility of disease progression 

models for patient stratification. Few studies have attempted to disentangle phenotypical 

heterogeneity to identify individuals who follow a similar disease trajectory. This would allow for 

targeting individuals who would potentially respond to similar treatment. It also offers the 
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possibility of challenging the traditional clinical-based classification of FTD and, even more 

broadly, dementia; data-driven subtypes may provide more biologically based categories by 

identifying individuals following a similar disease process, lending itself to more precision-based 

medicine in dementia. 

Unsupervised machine learning, or clustering analyses, offer a data-driven method of 

subtyping diseases. This type of method has potential to uncover unknown subtypes with similar 

biological progression in heterogeneous diseases like FTD. Typical subtyping models assume all 

individuals are at the same disease stage, requiring the a priori staging and selection of subjects. 

Clustering analyses of bvFTD suggest at least four subtypes based on grey matter atrophy patterns 

(Ranasinghe et al., 2016; Whitwell et al., 2009). These models only include late-stage individuals 

who already have a clinical diagnosis, and do not account for disease stage.  

A recent study used a combination of disease progression modelling and clustering analysis 

by iteratively fitting a mixture of staging models based on the event-based model to cluster 

presymptomatic and symptomatic genetic FTD subjects with different biomarker orderings. They 

detected four sub-trajectories with common temporal progression patterns based on grey matter 

lobar volumes. These sub-trajectories corresponded with the three main genetic variants. GRN and 

MAPT carriers primarily fell into single subtypes, and C9orf72 carriers fell into two subtypes, one 

with primarily frontotemporal atrophy and one with primarily subcortical atrophy (Young et al., 

2018). The ability of this model to identify temporal patterns that map onto genetic groups provides 

validation of the method, due to the distinct patterns of neurodegeneration observed in these 

groups. It is further able to uncover individuals with more homogenous trajectories within a known 

genetic group. As well, it does not need to use a priori staging. 
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2.7.3 Network-based models 

Network-based approaches to disease progression modeling consider the spreading of 

biological alterations through brain networks, thereby offering a different approach to the 

understanding of disease progression. These models are based on the network-degeneration 

hypothesis, which suggests that the disease process begins in one or a small number of brain 

regions, then spreads through network connections (Drzezga, 2018). Under this hypothesis, the 

spatial propagation of each neurodegenerative disease should relate to structural, metabolic, and 

functional neural networks. Misfolded proteins – proteins which do not configure correctly – are 

known to be associated with various neurodegenerative disease, included tau and TDP-43 in FTD. 

Neuropathological evidence supports the prion-like hypothesis, which suggests that transneuronal 

spreading of these misfolded proteins through anatomical networks is the principal cause of 

neurodegeneration in these diseases. (Frost et al., 2009; Song et al., 2014). 

Network-propagation models typically estimate disease progression though either 

structural or functional networks. Structural connectivity refers to the white matter fiber tracks 

connecting brain regions, derived from diffusion-weighted imaging, via tractography, while 

functional connectivity typically refers to regions of correlated temporal activity, as measured by 

resting-state fMRI. Much of this work has focused on AD, although several studies have looked 

at FTD as well.  

Raj et al. (2012) developed a Network Diffusion Model which modeled disease 

propagation though structural connections; the increase in diseased fibre tracts from an affected 

cortical region to another region is a product of the disease concentration in both regions and the 

strength of the structural connection between the regions (Raj et al., 2012). After application of 

this model to healthy structural connectivity data, the obtained dissociable connectivity patterns 
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were found to correspond to grey matter atrophy patterns in both bvFTD and AD. 

Seeley et al. (2009) demonstrated that grey matter atrophy patterns of various 

neurodegenerative disorders, included the clinical syndromes of FTD, mirror distinct functional 

networks in healthy subjects, by deriving these functional networks from the peak atrophy region 

in each disease group (Seeley et al., 2009) (Figure 2.5). A follow-up study investigated all 

atrophied regions in each syndrome as the seed region to derive the functional network, and tested 

various hypotheses about the manner in which network-based disease patterns occur (Zhou et al., 

2012). They identified “epicentres” for each syndrome as those regions whose functional network 

most resembled atrophy patterns, finding similar regions to the peak atrophied regions found in 

their previous work. Furthermore, they found the most support for a transneuronal spreading model 

of disease progression; regions with shorter functional distances to the epicentres had greater 

atrophy. A recent study identified epicentres as in (Zhou et al., 2012) on a individual level and 

predicted future atrophy patterns using healthy functional connectomes; they found similar 

epicentres as previous research and distinct patterns of atrophy in bvFTD and svPPA, but 

considerable variability across individuals (Brown et al., 2019). 
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Figure 2.5: Clinical atrophy patterns mirror functional connectivity. A) Five distinct clinical 

syndromes showed dissociable atrophy patterns, whose peak atrophy regions (circled) provided 

seed regions for functional connectivity and structural covariance analyses. B) Functional 

connectivity in healthy individuals identified five distinct networks anchored by the five clinical 

atrophy seeds. C) Healthy subjects further showed grey matter volume covariance patterns that 

recapitulated results shown in (A) and (B). For visualization purposes, results are shown at p < 

0.00001 uncorrected (A and C) and p < 0.001 corrected height and extent thresholds (B). Colour 

bars indicate t-scores. ANG = angular gyrus; FI = frontoinsula; IFGoper = inferior frontal gyrus, 

pars opercularis; PMC = premotor cortex; TPole = temporal pole. SD = semantic variant PPA; 

nfvPPA = nonaffluent PPA; CBS = cortical basal syndrome. Figure and caption adapted with 

permission from (Seeley et al., 2009). 

 

The epicentres identified in this work correspond with previous research in the FTD clinical 

syndromes; bvFTD epicentres were identified in the right frontoinsula and the anterior cingulate 

cortex, regions which are atrophied in bvFTD and which make up parts of the salience network, 

involved in emotional processing. These regions are therefore hypothesized as initial onset regions 

of bvFTD; this is supported by evidence of selective loss of von economo neurons (VENs) and 

fork cells which are concentrated in these regions (Kim et al., 2012; A. F. Santillo et al., 2013; 
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Alexander F. Santillo & Englund, 2014; Seeley et al., 2006), as well as a higher proportion of 

TDP-43 inclusions in these cell types seen in bvFTD patients with TDP pathology, which 

correlates with atrophy in the salience network (Pasquini et al., 2020). However, these epicentres 

are based on the most atrophied regions in symptomatic disease; they do not necessarily represent 

the site of initial injury. The identified epicentres of the insula and anterior cingulate cortex 

correspond with research in genetic FTD, which suggests that these regions show early atrophy 

across genetic variants (Cash et al., 2018; Rohrer et al., 2015), however these studies also suggest 

differing patterns across variants, with other regions becoming altered first.  

Unlike the data-driven disease progression models discussed in the previous section, 

network propagation models of disease progression have focused on single factors. They typically 

attempt to make inferences of an overall disease progression mechanism rather than obtain a 

disease signature which aims to support diagnosis or staging (Oxtoby & Alexander, 2017). These 

models have also typically used healthy brain networks and compared them to atrophy patterns in 

symptomatic individuals (i.e., end stage atrophy patterns), instead of comparing the diseased 

individuals brain networks to atrophy patterns across the whole disease time course.  

While these studies support the spread of neuropathologic effect through network 

connections, it is unclear whether atrophy patterns are caused by misfolded protein toxicity, or if 

other factors are involved (Iturria-Medina & Evans, 2015). The current lack of multi-factorial 

models means that little is known about how various brain changes interact with each other in a 

causal manner, to influence disease progression. 
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2.7.4 Disease progression models in combination 

The different models discussed in these sections have various purposes. While staging 

models aim to combine multiple biomarkers to determine the order of changes and obtain 

individual disease signatures that have direct applications to disease diagnosis and monitoring, 

network-based models aim more to describe the mechanisms by which disease progression occurs.  

Each type of model provides complementary information that, when combined, can 

provide an integrative picture of disease progression. For example, individual disease staging 

models can be used with network-based models that require a priori staging. Mechanistic network-

based models can also be used with data-driven subtypes to identify underlying biological patterns 

in more homogeneous groups of individuals. In these ways, disease staging and subtyping models 

can inform mechanistic network-based models to obtain fully data-driven modelling frameworks. 
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Chapter 3  

Morphometric MRI as a diagnostic biomarker of frontotemporal 

dementia: a systematic review to determine clinical applicability 

 

This chapter is modified with permission from the published article in Neuroimage: Clinical 

(McCarthy et al., 2018).  

 

3.1 Overview and rationale 

Specific patterns of frontal and temporal grey matter and white matter changes have been 

studied on a group level in clinical FTD. A high discriminative power is needed to differentiate 

between diseases on an individual level, to be useful in clinical practice. However, with improving 

methods of morphometric analysis and the use of multivariate statistics and machine learning 

methods, it is becoming increasingly feasible to improve diagnosis at the individual level. 

Supervised machine learning methods can use labeled data to differentiate individuals who have a 

certain disease from those who do not, typically then testing the results in unseen data. An 

extensive body of literature exists classifying AD in this way. These studies have found overall 

high accuracy levels when comparing AD to controls (often > 90% accuracy) (Falahati et al., 2014; 

Rathore et al., 2017). In recent years several studies have attempted this type of classification for 

the diagnosis of FTD using a variety of MRI measures and machine learning algorithms.  
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The aim of this systematic review was to summarize the current literature studying the 

diagnostic classification of FTD utilizing morphometric MRI data on an individual level, with the 

aim of evaluating its potential usefulness and readiness for clinical practice. 

3.2 Methods 

This systematic review followed the recommendations of PRISMA (McInnes et al., 2018; 

Moher et al., 2009) as applicable. An initial search was conducted up to March 12, 2018, using 

PubMed and PsychINFO with the following search terms: (frontotemporal dementia OR 

frontotemporal lobar degeneration) AND MRI AND ((diagnostic OR diagnosis) AND (accuracy 

OR classification OR prediction)). The search was limited to peer-reviewed, full text articles, 

published in English within the last 10 years (2007 or later) to focus on the most advanced image 

processing methods. All resulting papers were screened by title and abstract to exclude irrelevant 

studies, and full texts of selected articles were reviewed. Studies were included if they meet the 

following criteria: (1) conducted a diagnostic classification of FTD (behavioral or language 

variant, or both variants combined) versus control subjects or versus other disorders on an 

individual subject level and (2) used classification features derived from structural MRI, either 

alone or in combination. In the case of studies which conducted classifications based on MRI 

morphometry alone and in combination with other methods, only those results pertaining to MRI 

morphometry were included in this review. Reference lists of included articles were also manually 

searched to identify other relevant articles. The risk of bias and applicability of each included study 

was assessed with the QUADAS-2 tool (Whiting et al., 2011). 
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3.3 Results 

The search produced 151 articles. Of these, 25 relevant articles were identified. Cross-

reference list searches of each relevant article yielded three additional papers, resulting in a total 

of 28 papers for inclusion in this review (Fig. 3.1). 

 

Figure 3.1. PRISMA flow chart of study selection. 
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3.3.1 Study characteristics 

 Eleven studies conducted a binary classification of FTD or specifically bvFTD from a 

control group. Seventeen studies conducted a binary classification of FTD or specifically bvFTD 

from AD. Six studies conducted a multi-class classification to differentiate FTD, AD and controls, 

while four studies conducted a multi-class classification between various dementia types and 

controls. Four studies conducted classifications of PPA; two studies differentiated PPA subtypes 

from each other and controls. One study classified PPA from controls. One study differentiated 

FTD subtypes (bvFTD and PPAs) from a combined group of all other subtypes and AD. Results 

are summarized in Tables 3.1 - 3.5.  Accuracy, sensitivity, specificity, and/or area under the 

receiver operating characteristic curve (AUC) are reported, if provided. In cases where raw 

numbers were reported, applicable performance measures were calculated from these numbers. In 

this study we considered performance of 90% or greater as high, 70-90% as moderate, and less 

than 70% as low. 

Studies varied considerably in methodology. The majority of studies looked at changes in 

grey matter structure, most commonly using voxel-based morphometry (VBM) to assess either 

grey matter concentration or volume. white matter integrity was commonly assessed using DTI 

measures. Studies used a variety of whole-brain and region of interest (ROI) based approaches, 

including a priori selection of ROIs and the use of ROIs that showed significant differences in 

group-level comparison. Studies also varied widely in classification methods. Machine learning 

classification techniques were utilized by most studies, the most common being support vector 

machines (SVM). Most studies used a k-fold cross validation (CV) approach, most commonly with 

a leave-one-out CV strategy. Only one study used independent subject data (from a different 

cohort) in a separate testing set (Klöppel et al., 2015). 
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Almost all studies used a clinically defined diagnosis as the reference standard. Six studies 

(Chow et al., 2008; Frings et al., 2014; Mahoney et al., 2014; Meyer et al., 2017; Muñoz-Ruiz et 

al., 2012; Wang et al., 2016) included a subset of patients with pathologically confirmed diagnosis 

or those with a known genetic mutation consistent with FTD. Three studies (Klöppel, Stonnington, 

Chu, et al., 2008; Lehmann et al., 2010; Vemuri et al., 2011) used pathologically defined dementia 

diagnosis as the gold standard. Two studies (Corey T. McMillan et al., 2014; Cory T. McMillan et 

al., 2012) grouped subjects as AD or FTD based on the presence or absence of CSF biomarkers 

consistent with AD. Studies also varied considerably in disease severity. Studies report a variety 

of methods for evaluating disease severity (Mini Mental State Exam, Clinical Dementia Rating, 

disease duration) making comparison difficult. Four studies used a control group consisting in part 

or entirely of those with subjective cognitive decline (Dukart et al., 2011; Koikkalainen et al., 

2016; Möller et al., 2016; Tong et al., 2017). All others consisted of healthy, cognitively normal 

subjects. Studies also varied widely in their exclusion criteria. Some studies included FTD with 

concurrent motor symptoms while others excluded these subjects. 

3.3.2 bvFTD vs controls 

Five studies classified bvFTD from a control group (Chow et al., 2008; Mahoney et al., 

2014; Meyer et al., 2017; Möller et al., 2016; Raamana et al., 2014) (Table 3.1 and Figure 3.2a). 

In general studies could distinguish FTD from controls with moderate to high accuracy, although 

results are heterogeneous. Two studies measured grey matter concentration with VBM using a 

SVM classifier. Meyer et al. (2017) achieved highest accuracy, sensitivity and specificity when 

using a ROI approach (frontal and temporal lobes – 84.6%, 80.7% and 88.5%, respectively), while 

Möller et al. (2016) reported low sensitivity (60%) but high specificity (98%) with a whole-brain 

approach. Mahoney et al. (2014) achieved moderate results using radial diffusivity from DTI. The 
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highest result was reported by Raamana et al. (2014) using surface displacements of the left lateral 

ventricle as inputs to a SVM, using a train/test approach (AUC of 0.938, sensitivity of 100% and 

specificity of 88%) The result was somewhat lower when using leave-one-out CV (AUC of 0.826, 

sensitivity of 79, specificity of 87). These results contrast with this study’s reported results for 

other regions (right lateral ventricle and left and right hippocampus) in which sensitivity is low. 

None of the studies classifying the bvFTD subtype from controls looked at different MRI metrics 

in combination. 

3.3.3 FTD vs controls 

Six studies classified a combined group of FTD clinical subtypes from a control group 

(Table 3.2 and Figure 3.2b), again with overall moderate to high accuracy (Bron et al., 2017; 

Davatzikos et al., 2008; Du et al., 2007; Dukart et al., 2011; Muñoz-Ruiz et al., 2012; Zhang et al., 

2013). Davatzikos et al. (2008) reported 100% accuracy when using grey matter and white matter 

volumetric features derived from principle component analysis as inputs to an SVM, however this 

study was small (FTD n=12) and may not have used a completely independent test set. Very high 

results were also reported by Bron et al. (2017) when using grey matter, white matter, or 

supratentorial brain volume with an SVM (AUC 0.95-0.96). This study did not report sensitivity 

and specificity numbers. In contrast, Zhang et al. (2013) reported poor results using grey matter or 

white matter volumes and logistic regression in a ROI approach extracted from group differences, 

but achieved best results using radial diffusivity (accuracy, sensitivity, specificity, and AUC of 

81.4%, 80.7%, 80.5%, 0.877, respectively). Two other studies reported moderately high results 

using various measures of grey matter structure alone (tensor-based morphometry, volumetry, 

VBM, cortical thickness) (Du et al., 2007; Muñoz-Ruiz et al., 2012). Only one study (Bron et al., 
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2017) assessed a multimodal approach (white matter volume and fractional anisotropy), which 

achieved a similar result to that by white matter volume alone (AUC 0.95).  

3.3.4 bvFTD vs AD 

Six studies classified bvFTD from AD (Canu et al., 2017; Frings et al., 2014; Mahoney et 

al., 2014; Möller et al., 2016; Raamana et al., 2014; Wang et al., 2016) (Table 3.1 and Figure 3.2c). 

In general, results indicate that this is a much harder task than distinguishing from controls and 

results are highly variable. Canu et al. (2017) achieved moderately high results using cortical 

thickness in a random forest approach to distinguish bvFTD from AD (accuracy, sensitivity, and 

specificity of 82%, 80%, and 87% respectively). These results were not majorly improved when 

combined with DTI measures. No other study looked at the accuracy of combined MRI metrics. 

Other studies reported low to moderate accuracy in classifying bvFTD from AD using a range of 

single metrics including DTI, grey matter concentration, volumetry, and surface displacements 

(Frings et al., 2014; Mahoney et al., 2014; Möller et al., 2016; Raamana et al., 2014; Wang et al., 

2016). 
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bvFTD vs Controls vs AD  

Name Sample Classification Measure ROIs Acc SS SP AUC Acc SS SP AUC 

Canu et 

al., 2017 

27 bvFTD  

62 AD 

 

Random forest 

 

Cortical thickness 

 

L inferior parietal 

Best 5 (L inferior parietal, R temporal 

pole, L isthmus cingulate, R inferior 

parietal, R precuneus) 

    78 

82  

76  

80 

 

83 

87 

 

 

DWI R uncinate, AD 

Best 5 (R uncinate; AD, RD, MD, FA, 

Genu of CC; FA) 

81  

81  

96 

89 

43 

61 

 

Combination 5 CT + 5 WM tract 

Best 5 (L inferior parietal, R temporal 

pole, R precuneus, L isthmus cingulate, L 

superior parietal) 

82 

84 

 

76 

79 

 

96 

81 

 

 

Chow et 

al., 2008 

16 bvFTD 

30 C 

Logistic 

regression 

Volumes L medial middle frontal parenchymal 87 68.8 96.6      

Frings et 

al., 2014 

15 bvFTD 

14 AD  

Logistic 

regression 

Volume caudate 

caudate + gyrus rectus GM 

    79 

83 

   

Mahoney 

et al., 

2014 

27 bvFTD 

25 AD 

20 C 

 DTI-RD Whole-brain  

CC 

L uncinate fasciculus 

L cingulum bundle  

 82 

93 

82 

74 

80 

75 

75 

70 

0.82 

0.85 

0.82 

0.83 

   0.67 

DTI-FA 

 

Whole-brain  

L uncinate fasciculus 

L cingulum bundle  

CC  

   0.73 

 

 78 

77 

63 

56 

68 

68 

80 

80 

0.74 

0.76 

0.67 

0.73 

DTI-TD 

DTI-AD 

Whole-brain 

Whole-brain 

   0.80 

0.74 

   0.66 

0.59 

Meyer et 

al, 2017 

 

52 bvFTD 

52 C 

SVM 

LOOCV 

VBM-GM density Whole-brain 

Frontal lobe 

Frontal + Basal ganglia & insula 

Temporal lobe 

Frontal & temporal lobe 

Frontal + Temporal + Basal Ganglia & 

insula 

81.7  

80.7  

82.7  

78.8  

84.6  

84.6  

78.9 

76.9  

80.7 

76.9 

80.7 

80.7 

84.6 

84.6 

84.6 

80.8 

88.5 

88.5 

     

Möller et 

al, 2016 

26 bvFTD 

42 AD  

47 C 

SVM 

 

Training 

Set 

LOOCV 

VBM-GM density Whole-brain 75 62 83  81 69 88  
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25 bvFTD 

42 AD 

47 C 

Test Set 85 60 98 0.87 82 64 

 

93 0.81 

Raamana 

et al, 2014 

30 bvFTD  

34 AD 

14 C 

SVM 

 

LOOCV Surface 

displacements 

L Hippocampus  

R Hippocampus  

L lateral ventricle 

R lateral ventricle 

 14 

43 

79 

64 

83 

83 

87 

87 

0.488 

0.631 

0.826 

0.755 

 37 

50 

60 

63 

62 

41 

82 

79 

0.492 

0.456 

0.712 

0.714 

Train/Test L Hippocampus  

R Hippocampus  

L lateral ventricle 

R lateral ventricle 

 50 

25 

100 

75 

62 

75 

88 

100 

0.562 

0.5 

0.938 

0.875 

 50 

0 

75 

62 

56 

1 

56 

67 

0.528 

0.5 

0.653 

0.646 

Wang et 

al., 2016 

55 bvFTD 

54 AD 

Naïve Bayes  

10-fold CV 

VBM-GM volume Amygdale, hippocampus, MTL, temporal 

pole, DLPFC, VMPFC, striatum and 

insula 

    51.4 36.4 66.7  

 

Table 3.1: Classifications of bvFTD versus Controls or AD.  

For FTD vs AD classifications, sensitivity is defined as the proportion of correctly classified FTD subjects and specificity as the 

proportion of correctly classified AD subjects. 

bvFTD = behavioral variant frontotemporal dementia, AD = Alzheimer’s disease, C = Controls, SVM = support vector machines, CV 

= cross-validation, LOOCV = leave-one-out cross-validation, VBM = voxel-based morphometry, DWI = diffusion weighted imaging, 

DTI = diffusion tensor imaging, GM = grey matter, WM = white matter, ROI = region of interest, Acc = accuracy, SS = sensitivity, SP 

= specificity, AUC = Area under a receiver operator characteristic curve, L = left, R = right, RD = radial diffusivity, FA = fractional 

anisotropy, MD = mean diffusivity, AD = axial diffusivity, TD = trace diffusivity, MTL = medial temporal lobe, DLPFC = dorsolateral 

prefrontal cortex, VMPFC = ventromedial prefrontal cortex, CT = cortical thickness, CC = corpus collosum.  
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3.3.5 FTD vs AD 

Eleven studies classified FTD (combined clinical subtypes, pathological subtypes, or CSF-

defined) from AD (Bron et al., 2017; Davatzikos et al., 2008; Du et al., 2007; Dukart et al., 2011; 

Klöppel et al., 2015; Klöppel, Stonnington, Chu, et al., 2008; Lehmann et al., 2010; Corey T. 

McMillan et al., 2014; Cory T. McMillan et al., 2012; Muñoz-Ruiz et al., 2012; Whitwell, Jack, et 

al., 2011) (Table 3.2 and Figure 3.2d). Again, results are highly variable. McMillan et al. (2012) 

reported highest accuracy when using a combination of grey matter density and fractional 

anisotropy (sensitivity, specificity, and AUC of 87%, 83%, and 0.938 respectively) when 

distinguishing CSF-defined FTD and AD using regression, although this study did not use an 

independent testing set. McMillan et al. (2014) also reported moderately high sensitivity, 

specificity, and AUC (89%, 89%, and 0.874 respectively) to classify CSF-defined FTD and AD 

when using a combination of cortical thickness and fractional anisotropy in a data-driven approach. 

In contrast Klöppel, Stonnington, Chu, et al. (2008) reported similar numbers using grey matter 

volume alone, in a whole-brain approach with an SVM (accuracy, sensitivity, and specificity of 

89.2%, 94.7%, and 83.3% respectively), while Whitwell et al. (2011) reported high AUC (0.93) 

using grey matter volumes of the temporoparietal cortex and hippocampus. Other studies again 

reported low to moderate accuracy in classifying FTD from AD with a range of different metrics 

(Bron et al., 2017; Davatzikos et al., 2008; Du et al., 2007; Dukart et al., 2011; Klöppel et al., 

2015; Lehmann et al., 2010; Muñoz-Ruiz et al., 2012).
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FTD  vs Controls vs AD  

Name Sample Classification Measure ROIs Acc SS SP AUC Acc SS SP AUC 

Bron et al, 

2017 

33 FTD  

24 AD 

34 C 

SVM 

4-fold CV 

VBM-GM volume 

VBM-WM volume 

VBM-Supratentorial brain 

volume 

DTI-FA 

VBM-WM volume + DTI-

FA 

Whole-brain 

 

   0.95  

0.96 

0.95  

 

0.91 

0.95 

   0.78 

0.76  

0.72   

 

0.80 

0.81 

Davatzikos 

et al., 2008 

12 FTD 

37 AD 

12 C 

SVM 

LOOCV 

RAVENS-GM and WM 

volume 

PCA 100    84.3    

Fisher's 

discriminant 

Analysis 

Volume hippocampal, ventricular, total brain 75    70.9    

Du et al., 

2007 

19 FTD  

22 AD  

23 C  

Logistic 

regression 

LOOCV 

Volume 

 

 

Frontal 

Parietal 

Temporal 

89 

81 

85 

    

79 

   

Cortical thickness Frontal 

Parietal 

Temporal 

88 

82 

85 

    

82 

   

Dukart et 

al., 2011 

14 FTD  

21 AD 

13 C 

SVM 

LOOCV 

GM 

WM 

Whole brain  

 

77.8 

77.8 

   80 

74.3 

   

GM ROI (a priori) 85.2    60    

Klöppel et 

al., 2008 

19 FTD 

18 AD 

SVM 

LOOCV 

GM volume Whole brain      89.2  

 

94.7 

 

83.3 

 

 

Klöppel et 

al., 2015 

12 FTD 

122 AD 

SVM 

Separate test set 

VBM-GM volume 

 

Whole-brain        0.78 

Lehmann 

et al., 2010 

23 FTD 

17 AD 

SVM 

2-level CV 

Cortical Thickness Whole-brain     79.4 91.3 54.5 0.87 

 

McMillan 

et al., 2012 

38 FTD 

29 AD  

Logistic 

regression 

GM density 

 

Precuneus 

Posterior cingulated 

Anterior temporal 

     82 

87 

79 

79 

66 

69 

0.883 

0.890 

0.792 

DTI-FA Corpus callosum      79 59 0.795 

Combination Corpus callosum, precuneus, posterior 

cingulated 

     87 

 

83 

 

0.938 

McMillan 

et al, 2014 

72 FTD 

21 AD 

Linear 

regression 

Train/test 

 

Cortical thickness Data-driven 

Anatomical 

     89 

100 

81  

54 

0.778 

0.802 

Volume Global GM 

Global ventricles 

     65 

100 

100 

65 

0.820 

0.826 
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DTI-FA Data-driven 

Anatomical 

     100 

56 

46 

78 

0.808 

0.649 

Combination Data-driven 

Anatomical 

     89 

78 

89 

70  

0.874 

0.742 

Muñoz-

Ruiz et al, 

2012 

37 FTD  

46 AD 

26 C 

 

Regression 

Train/Test 

 

Volume Hippocampus 83 80 84  55 55 55  

TBM 

 

Hippocampus, amygdala, posterior 

temporal lobe, lateral ventricle in frontal 

horn, central part and occipital horn, 

lateral ventricle in temporal horn, gyri 

hippocampalis et ambiens, anterior 

cingulate gyrus and superior frontal 

gyrus. 

82 90 77  62 67 56  

VBM-GM concentration 

 

83 91 77  72 76 67  

VBM-GM volume 85 89 82  69 71 66  

Whitwell 

et al., 2011 

14 FTD 

14 AD 

Logistic 

regression 

GM volume Temporoparietal cortex 

Hippocampus 

Temporoparietal cortex + hippocampus 

       0.81 

 

0.74 

0.93 

Zhang et 

al, 2013 

 

25 FTD 

19 C 

Logistic 

regression 

4-fold CV 

 

VBM-GM volume 

 

ROI1 (B frontotemporal, anterior 

callosal) 

ROI2 (L temporal) 

ROI3 (L dorsal frontal) 

65.7 

 

63.9 

45.7  

80.1 

 

77.0 

74.2 

48.7 

 

46.6 

5.4 

0.665 

 

0.722 

0.566 

    

VBM-WM volume 

 

ROI1 

ROI2 

ROI3 

59.2  

58.1  

47.4 

77.2 

71.5 

79.8 

34.6 

36.4 

5.3 

0.627 

0.657 

0.606 

DTI-RD ROI1 

ROI2 

ROI3 

76.0 

81.4 

67.6 

79.9 

80.7 

73.3 

72.3 

80.5 

58.6 

0.853 

0.877 

0.722 

 

Table 3.2: Classifications of FTD vs Controls or AD. For FTD vs AD classifications, sensitivity is defined as the proportion of correctly 

classified FTD subjects and specificity as the proportion of correctly classified AD subjects. 

FTD = frontotemporal dementia, AD = Alzheimer’s disease, C = Controls, SVM = support vector machines, CV = cross-validation, 

LOOCV = leave-one-out cross-validation, VBM = voxel-based morphometry, DTI = diffusion tensor imaging, GM = grey matter, 

WM = white matter, ROI = region of interest, Acc = accuracy, SS = sensitivity, SP = specificity, AUC = Area under a receiver 

operator characteristic curve, TBM = tensor-based morphometry, PCA = principle component analysis, L = left, R = right, B = 

bilateral, RD = radial diffusivity, FA = fractional anisotropy.
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Figure 3.2: Visual representation of the classification accuracy for the different comparisons (for 

studies which conducted more than one classification, the best result is shown): behavioral variant 

frontotemporal dementia (bvFTD) vs Controls, frontotemporal dementia (any subtype - FTD) vs 

Controls, bvFTD vs Alzheimer’s disease (AD), FTD (any subtype) vs AD. 

 

3.3.6 Multi-class classifications 

 Several studies attempted a multi-class classification with varying accuracy. Six studies 

included a three-way classification between FTD, AD, and controls (Bron et al., 2017; Dukart et 

al., 2011; Kuceyeski et al., 2012; Möller et al., 2015; Raamana et al., 2014; Wang et al., 2016) 

(Table 3.3). Kuceyeski et al. (2012) reported the highest accuracy using radial diffusivity, with 

accuracy and sensitivity of 89.09% and 97.3% but lower specificity (72.22%) using linear 

discriminant analysis. Results were similar using the LoCo metric, a measurement of the amount 
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of structural network disruption incurred by a grey matter region for a particular pattern of white 

matter integrity loss (accuracy, sensitivity, and specificity of 87.27%, 91.89%, 77.78% 

respectively). Four studies conducted a multi-class classification between various dementias and 

controls (Klöppel et al., 2015; Koikkalainen et al., 2016; Tong et al., 2017; Vemuri et al., 2011) 

(Table 3.4). Vemuri et al. (2011) reported moderate sensitivity (84.4%) and high specificity 

(93.8%) for FTD classification versus all others using whole brain grey matter density approach 

and a novel classification approach (referred to as differential-STAND), however they did not have 

a completely independent test set. Results were considerably lower for other studies (Klöppel et 

al., 2015; Koikkalainen et al., 2016; Tong et al., 2017).
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FTD, AD and controls 

Name Sample Classification Measure ROIs Acc SS (FTD) SP (FTD) AUC 

Bron et al, 

2017 

33 FTD  

24 AD 

34 C 

SVM 

4-fold CV 

VBM-GM volume 

VBM-WM volume 

VBM-Supratentorial brain volume 

DTI-FA 

VBM-WM volume + DTI-FA 

Whole brain    0.85 

0.83 

0.84 

0.83 

0.87 

Dukart et 

al., 2011 

14 FTD  

21 AD 

13 C 

SVM 

LOOCV 

GM 

WM 

Whole brain  

 

72.9 

66.7 

   

GM a priori ROIs 56.3    

Kuceyeski 

et al, 2012 

 

18 FTD 

18 AD 

19 C 

Linear 

discriminant 

analysis 

LOOCV 

 

GM volume 

DWI-FA 

DWI-RD 

DWI-LD 

Combination GM + DWI 

LoCo 

Whole-brain parcellation 

 

76.36 

76.36 

89.09 

85.45 

83.64 

87.27 

81.08 

72.97 

97.30 

89.19 

91.89 

91.89 

66.67 

83.33  

72.22  

77.78 

66.67  

77.78  

 

Möller et al, 

2015 

 

30 bvFTD 

39 AD 

41 C 

Discriminant 

function  

analyses 

LOOCV 

1st analysis: 

VBM-GM volume, Subcortical 

volumes, DWI-FA 

Significant voxels/regions from paired 

group comparisons 

 

 

91.4 

 

 

 

66.7 

 

 

 

  

2nd analysis: VBM-GM volume, 

subcortical volumes, DWI- AD, 

DWI-RD 

 86 75   

Raamana et 

al, 2014 

30 bvFTD  

34 AD 

14 C 

SVM 

Train/Test 

Volumes 

 

 

 

L Hippocampus  

R Hippocampus  

L lateral ventricle 

R lateral ventricle 

   0.5 

0.54 

0.5 

0.5 

Laplacian invariants 

 

L Hippocampus  

R Hippocampus  

L lateral ventricle 

R lateral ventricle 

   0.5 

0.49 

0.5 

0.59 

Surface displacements L Hippocampus  

R Hippocampus  

L lateral ventricle 

R lateral ventricle 

   0.66 

0.56 

0.76 

0.77 

Wang et al., 

2016 

55 bvFTD 

54 AD 

57 C 

Naïve Bayes 

10-fold CV 

VBM-GM volume amygdale, hippocampus, MTL, temporal 

pole, DLPFC, VMPFC, striatum and 

insula 

54.2    
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Table 3.3: Multi-class Classifications of FTD, AD, and Controls 

FTD = frontotemporal dementia, AD = Alzheimer’s disease, C = Controls, SVM = support vector machines, CV = cross-validation, 

LOOCV = leave-one-out cross-validation, VBM = voxel-based morphometry, DWI = diffusion weighted imaging, DTI = diffusion 

tensor imaging, GM = grey matter, WM = white matter, ROI = region of interest, Acc = accuracy, SS = sensitivity, SP = specificity, 

AUC = Area under a receiver operator characteristic curve, L = left, R = right, RD = radial diffusivity, FA = fractional anisotropy, AD 

= axial diffusivity, LD = longitudinal diffusivity, MTL = medial temporal lobe, DLPFC = dorsolateral prefrontal cortex, VMPFC = 

ventromedial prefrontal cortex, LoCo = Loss in Connectivity (the percent of WM tracts out of the total connecting to a GM region in a 

normal control that pass through voxels identified in a WM “injury” map ((Kuceyeski, Zhang, & Raj, 2012). 
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Multi Dementia Types 

Name Sample Classification Measures ROIs Acc               SS (FTD) SP (FTD) AUC (FTD) 

Klöppel et 

al., 2015 

12 FTD 

122 AD 

4 LBD 

18 C 

SVM 

Separate test 

cohort 

VBM-GM volume 

 

 

Whole brain    0.78 

Koikkalainen 

et al, 2016 

92 FTD 

223 AD 

47 LBD 

24 VaD 

118 C 

Disease State 

Index (DSI) 

10-fold CV 

Volumes 

VBM-GM concentration 

TBM 

Manifold learning 

ROI-based grading 

Vascular burden- WMH, cortical and 

lacunar infarcts volumes 

All features 

Whole-brain parcellation 

 

 

 

hippocampus and frontotemporal 

lobe 

 

50.4 

65.1 

64.3 

50.4 

58.3 

32.7 

 

70.6 

 

 

 

 

 

 

 

62 

 

 

 

 

 

 

 

95 

 

Tong et al., 

2017 

92 FTD 

219 AD  

47 DLB  

24 VaD 

118 C 

RUSBoost 

10-fold CV 

Volumes 

Grading 

Combination 

Whole-brain parcellation 58.6 

66.6 

70 

   

Vemuri et 

al., 2011 

47 FTD  

48 AD 

20 DLB 

21 C 

Differential-

STAND  

LOOCV 

 

GM density  Whole brain  84.4  

 

93.8  

 

Table 3.4: Multi-class Classifications of Dementia 

FTD = frontotemporal dementia, AD = Alzheimer’s disease, C = Controls,  LBD = Lewy body dementia, VaD = vascular dementia, CV 

= cross-validation, VBM = voxel-based morphometry, DWI = diffusion weighted imaging, DTI = diffusion tensor imaging, GM = grey 

matter, ROI = region of interest, Acc = accuracy, SS = sensitivity, SP = specificity, AUC = Area under a receiver operator characteristic 

curve, TBM = tensor-based morphometry, WMH = white matter hyperintensities, Differential-STAND = Differential Diagnosis Based 

on Structural Abnormality due to Neurodegeneration (Vemuri et al., 2011).
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3.3.7 PPA subtypes 

 Four studies included classifications of PPA (Bisenius et al., 2017; Chow et al., 2008; 

Tahmasian et al., 2016; Wilson et al., 2009) (Table 3.5). Two studies classified each PPA subtype 

against controls using SVM of grey matter atrophy, with moderate to high accuracy across studies 

(accuracy ranged from 84-100%) (Bisenius et al., 2017; Wilson et al., 2009). Both studies also 

classified subtypes against each other, with varying results. Wilson et al. (2009) reported highest 

accuracy, sensitivity, and specificity (89.1%, 84.4%, 93.8% respectively, AUC of 0.964) to 

distinguish svPPA from nfvPPA using grey matter volume and a principal component analysis 

approach. Results were very high for both studies for lvPPA vs svPPA, while Wilson et al. (2009) 

achieved highest results for lvPPA vs nfvPPA (accuracy, sensitivity, specificity, AUC of 81.3%, 

81.3%, 81.3% and 0.879 respectively). Tahmasian et al. (2016) classified each FTD subtype 

against a group of all others and AD using grey matter volume and SVM, resulting in high 

specificity (97.5% and 94.2%) but very poor sensitivity (50% and 0%) for both svPPA and nfvPPA 

vs others, while Chow et al. (2008) combined svPPA and nfvPPA subtypes together in a 

classification from a control group, achieving moderate sensitivity (78.6%) and high specificity 

(96.7%).
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 nfvPPA vs Controls lvPPA vs Controls svPPA vs Controls 

Name Sample Classification Measures ROIs Acc SS SP AUC Acc SS SP AUC Acc SS SP AUC 

Bisenius et 

al., 2017 

16 nfvPPA 

17 svPPA 

11 lvPPA 

20 C 

SVM 

LOOCV 

VBM-GM 

density 

Whole-brain 

ROI (a priori from 

meta-analyses) 

91 

84 

 

88 

81 

94 

88 

0.94 

0.90 

95 

82 

 

91 

82 

100 

82 

0.95 

0.91 

97 

100 

 

94 

100 

100 

100 

0.97 

1 

Wilson et 

al., 2009 

32 nfvPPA 

38 svPPA 

16 lvPPA 

115 C 

SVM 

2-level CV 

GM volume PCA 89.1 87.5 90.6 0.941 100 100 100 1 100 100 100 1 

 svPPA vs nfvPPA lvPPA vs svPPA lvPPA vs nfvPPA 

Bisenius et 

al., 2017 

16 nfvPPA 

17 svPPA 

11 lvPPA 

20 C 

SVM 

LOOCV 

VBM-GM 

density 

Whole-brain 

ROI (a priori from 

meta-analyses) 

78  

78 

81 

81 

75 

75 

0.88 

0.87 

95  

95 

100 

100 

91 

91 

0.93 

0.91 

55  

64 

64 

73 

45 

55 

0.59 

0.64 

Wilson et 

al., 2009 

32 nfvPPA 

38 svPPA 

16 lvPPA 

115 C 

SVM 

2-level CV 

GM volume PCA 89.1 84.4 93.8 0.964 93.8 93.

8 

93.8 0.984 81.3 81.3 81.3 0.879 

 

 PPA (svPPA and nfvPPA) vs Controls 

Acc SS SP 

Chow et 

al., 2008 

14 PPA 

30 C 

Logistic 

regression 

Volumes L anterior temporal 90.9 78.6 96.7 
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 bvFTD vs others svPPA vs. others nfvPPA vs others 

Acc SS SP Acc SS SP Acc SS SP 

Tahmasian 

et al, 2015 

11 bvFTD 

4 svPPA 

5 nfvPPA 

20 AD 

SVM 

LOOCV 

VBM-GM 

volume 

 

 

A priori based on 

the NDH 

72.5 45.4 82.7 92.5 50 97.5 82.5 0 94.2 

 

Table 3.5: PPA Classifications 

bvFTD = behavioral variant frontotemporal dementia, AD = Alzheimer’s disease, C = Controls, nfvPPA = progressive nonfluent aphasia, 

svPPA = semantic dementia, lvPPA = logopenic progressive aphasia, PPA = primary progressive aphasia, SVM = support vector 

machines, LOOCV = leave-one-out cross-validation, VBM = voxel-based morphometry, GM = grey matter, ROI = region of interest, 

Acc = accuracy, SS = sensitivity, SP = specificity, AUC = Area under a receiver operator characteristic curve, PCA = principle 

component analysis, NDH = Network Degeneration Hypothesis, L = left. 
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3.3.8 Risk of bias assessment 

The results of the QUADAS-2 evaluation are given in Table 3.6. The patient selection 

domain was rated as high risk of bias in six studies that had inappropriate exclusion criteria (e.g., 

exclusion for subjects with abnormalities on structural MRI other than atrophy, such as white 

matter hyperintensities) combined with a case-control design. The index test was rated as high risk 

of bias in eight studies which did not use separate testing data or used all data to perform ROI 

selection or dimensionality reduction prior to classification. Two studies were given an unclear 

risk of bias on this domain. One study was rated as having applicability concerns on the index test 

domain as it only looked at the overall accuracy of multi-class classification of dementia types. 

  



CHAPTER 3.  MORPHOMETRIC MRI AS A DIAGNOSTIC BIOMARKER OF FTD 49 

 

Study Risk of Bias Applicability concerns 

Patient 

selection 

Index  

test 

Reference 

standard 

Flow 

and 

timing 

Patient 

selection 

Index  

test 

Reference 

standard 

Bisenius 2017 Low Low Low Low Low Low Low 

Bron 2017 Low Low Low Low Low Low Low 

Canu 2017 High Low Low Low Low Low Low 

Chow 2008 Low High Low Low Low Low Low 

Davatzikos 2008 Low Unclear Low Low Low Low Low 

Du 2007 Low Low Low Low Low Low Low 

Dukart 2011 High Low Low Low Low Low Low 

Frings 2014 Low High Low Low Low Low Low 

Klöppel 2008 Low Low Low Low Low Low Low 

Klöppel 2015 Low Low Low Low Low Low Low 

Koikkalainen 2016 Low Low Low Low Low Low Low 

Kuceyeski 2012 Low Low Low Low Low Low Low 

Lehmann 2010 Low Low Low Low Low Low Low 

Mahoney 2014 Low High Low Low Low Low Low 

McMillan 2012 Low High Low Low Low Low Low 

McMillan 2014 Low Low Low Low Low Low Low 

Meyer 2017 Low Low Low Low Low Low Low 

Möller 2015 High High Low Low Low Low Low 

Möller 2016 Low Low Low Low Low Low Low 

MuñozYRuiz 2012 High Unclear Low Low Low Low Low 

Raamana 2014 Low Low Low Low Low Low Low 

Tahmasian 2015 High Low Low Low Low Low Low 

Tong 2017 Low Low Low Low Low High Low 

Vemuri 2011 Low High Low Low Low Low Low 

Wang 2016 Low Low Low Low Low Low Low 

Whitwell 2011 Low High Low Low Low Low Low 

Wilson 2009 Low Low Low Low Low Low Low 

Zhang 2013 High High Low Low Low Low Low 

 

Table 6: QUADAS-2 Evaluation 
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3.4 Discussion 

3.4.1 Summary of results and implications 

This systematic review provides a summary of studies attempting to classify FTD from 

non-FTD via morphometric MRI data with the aim to determine its potential for use as a diagnostic 

aide in clinical practice. Studies included in this review are highly heterogeneous in terms of 

subject selection, MRI methodology and classification methods, complicating the comparison of 

accuracy of results. However, overall studies report good levels of accuracy (see Table 3.7 for a 

summary of the best performance for each classification), indicating the potential value of MRI 

morphometry in the diagnosis of FTD. 
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 Name Sample Classification Measures ROIs Acc SS SP AUC 

bvFTD vs 

Controls 

Raamana et 

al, 2014 

30 bvFTD  

14 C 

SVM 

Train/test 

Surface displacements L lateral ventricle  100 88 0.938 

bvFTD vs 

AD 

Canu et al., 

2017 

 

27 bvFTD  

62 AD 

Random forest Cortical thickness Best 5 (L inferior parietal, R temporal pole, 

L isthmus cingulate, R inferior parietal, R 

precuneus) 

82 80 87  

FTD vs 

Controls 

Davatzikos 

et al., 2008 

12 FTD 

12 C 

SVM 

LOOCV 

RAVENS-GM and WM 

volume 

PCA 100    

FTD vs AD McMillan et 

al, 2014 

72 FTD 

21 AD 

Linear regression 

Train/test 

Combination (Cortical 

thickness & DTI-FA) 

Data-driven  89 89 0.874 

FTD vs AD 

& Controls 

Kuceyeski et 

al, 2012 

 

18 FTD 

18 AD 

19 C 

Linear 

discriminant 

analysis 

LOOCV 

DWI-RD Whole-brain parcellation 89.09 97.30 72.22   

FTD vs other 

dementias 

Vemuri et 

al., 2011  

7 FTD  

48 AD 

20 LBD 

21 C4 

Differential-

STAND  

LOOCV 

GM density Whole brain  84.4  93.8  

nfvPPA vs 

Controls 

Bisenius et 

al., 2017 

6 nfvPPA 

20 C 

SVM 

LOOCV 

VBM-GM density Whole-brain 91 88 94 0.94 

lvPPA vs 

Controls 

Wilson et 

al., 2009 

 

16 lvPPA 

115 C 

SVM 

2-level CV 

GM volume PCA 100 100 100 1 

svPPA vs 

Controls 

Bisenius et 

al., 2017 

17 svPPA 

20 C 

SVM 

LOOCV 

VBM-GM density ROI (a priori from meta-analyses) 100 100 100 1 

Wilson et 

al., 2009 

38 svPPA 

115 C 

SVM 

2-level CV 

GM volume PCA 100 100 100 1 

svPPA vs 

nfvPPA 

Wilson et 

al., 2009 

32 nfvPPA 

38 svPPA 

SVM 

2-level CV 

GM volume PCA 89.1 84.4 93.8 0.964 

lvPPA vs 

svPPA 

Bisenius et 

al., 2017 

11 lvPPA 

17 svPPA 

SVM 

LOOCV 

VBM-GM density Whole-brain 95 100 91 0.93 

lvPPA vs 

nfvPPA 

Wilson et 

al., 2009 

32 nfvPPA 

16 lvPPA 

SVM 

2-level CV 

GM volume PCA 81.3 81.3 81.3 0.879 

 

Table 3.7: Summary of studies with the best performance 
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For FTD vs AD classifications, sensitivity is defined as the proportion of correctly classified FTD subjects and specificity as the 

proportion of correctly classified AD subjects. 

FTD = frontotemporal dementia, bvFTD = behavioral variant frontotemporal dementia, AD = Alzheimer’s disease, C = Controls, 

nfvPPA = progressive nonfluent aphasia, svPPA = semantic dementia, lvPPA = logopenic progressive aphasia, LBD = Lewy body 

dementia, SVM = support vector machines, LOOCV = leave-one-out cross-validation, VBM = voxel-based morphometry, DTI = 

diffusion tensor imaging, GM = grey matter, WM = white matter, ROI = region of interest, Acc = accuracy, SS = sensitivity, SP = 

specificity, AUC = Area under a receiver operator characteristic curve, PCA = principle component analysis, L = left, R = right, RD = 

radial diffusivity, FA = fractional anisotropy, Differential-STAND = Differential Diagnosis Based on Structural Abnormality due to 

Neurodegeneration (Vemuri et al., 2011),  
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FTD could be diagnosed with high accuracy from control groups, with many studies 

finding accuracies of over 80% or 90% with good sensitivity and specificity. However, most 

studies include subjects with well characterized patients in which there is likely already significant 

atrophy, and therefore the added benefit of morphometry is uncertain. Results distinguishing FTD 

from AD were somewhat poorer. This is unsurprising given that minimal atrophy is expected in 

control subjects and that there exists overlap in atrophy patterns between FTD and AD (De Souza 

et al., 2013). Studies which conducted multi-class classifications did not all report specific 

sensitivity and specificity values for FTD, although Vemuri et al. (2011) reported good sensitivity 

and specificity (84.4% and 93.8%) in distinguishing FTD from other dementias. Only four studies 

specifically classified PPAs, generally with moderate to high accuracy. No studies attempted to 

distinguish bvFTD patients from those with psychiatric disorders, and these two disorders have 

been shown to be difficult to distinguish clinically (Woolley et al., 2011). However, it is likely that 

this distinction will be similar to that of control subjects as no atrophy is expected in most 

psychiatric disorders other than severe and persistent mental illness, such as schizophrenia with 

chronic psychotropic treatment, that have been linked to subtle volume loss over time (Andreasen 

et al., 2011). 

Most studies have looked at grey matter atrophy. Fewer studies have used DTI measures, 

proving mixed results but with some studies suggesting DTI may be more sensitive in the early 

stages of the disease (Kuceyeski et al., 2012; Zhang et al., 2013). Most studies included in this 

review only looked at single MRI measures. Hypothetically a multimodal approach combining 

various MRI modalities such as grey matter structure and white matter integrity should produce 

more accurate classification than a single modality, as these modalities should provide 

complimentary information about different aspects of the disease. This is supported by some 
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studies (Corey T. McMillan et al., 2014; Cory T. McMillan et al., 2012) while others found no 

improvement when adding white matter to cortical metrics (Bron et al., 2017; Klöppel, 

Stonnington, Chu, et al., 2008). These differences are likely due to differing patient groups and 

methodology. 

3.4.2 Comparison to visual MRI reading  

 Currently, FTD diagnosis is usually assisted via visual reading of MRI scans with or 

without semi-structured visual rating scales in clinical practice. It is therefore important that an 

effective MRI morphometry-based classification tool improves on current practices. 

  Klöppel, Stonnington, Barnes, et al. (2008) found that radiologists with different levels of 

experience varied widely in their ability to distinguish pathologically defined FTD from AD on 

visual reading of MRI (ranges for accuracy, sensitivity, and specificity were 56.8-83.8%, 55.6-

83.8%, and 57.9-90.0% respectively) and generally performed poorer than an SVM classifier of 

grey matter volume on the same cohort (Klöppel, Stonnington, Chu, et al., 2008). Accuracy was 

positively correlated with the radiologist's level of experience. Koikkalainen et al. (2016) reported 

much poorer results (overall accuracy of 46.6%, with a sensitivity of 50% for FTD versus others) 

when using a disease state index classifier on multiple visual rating scales in the multi-class 

classification of dementia types compared to their morphometric results.  

In a mixed neuropsychiatric population, visual reading of baseline MRIs by 

neuroradiologists using visual rating scales reported high specificity (93%) but only moderate 

sensitivity (70%) in distinguishing bvFTD from non-bvFTD, using clinical diagnosis at two-year 

follow-up as the gold standard (Vijverberg et al., 2016). In a cohort of pathologically defined 

dementia (Harper et al., 2016), unstructured visual assessment by experienced raters resulted in 
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moderate sensitivity (82%) and high specificity (99%) in distinguishing FTD from controls, while 

moderate sensitivity (74%) and specificity (81%) was achieved when distinguishing FTD from 

AD. These results are comparable with many of the results obtained from morphometry studies. 

Semi-structured visual rating scales were found to provide comparatively high sensitivity and 

specificity in distinguishing FTD from controls (82% and 89% using the medial temporal lobe 

atrophy (MTA) scale, and 89% and 97% when using an SVM on the results of multiple visual 

rating scales). Visual rating scales resulted in moderate specificity (81% for an orbito-frontal scale, 

and 88% when using an SVM on the results of multiple visual rating scales) but low sensitivity 

(55% and 56%) when distinguishing FTD from AD. 

Overall, the results from visual radiologists’ review appear generally poorer than the best 

reported results from MRI morphometry studies, indicating the potential usefulness of automated 

MRI morphometry for improving diagnosis of FTD. However, it is not proven at this point if 

morphometry outperforms semi-structures visual rating scales (Chow et al., 2011; Harper et al., 

2016). It is possible that morphometric approaches could improve diagnostic accuracy in settings 

where clinicians have less experience in identifying FTD neuroradiological features (Klöppel, 

Stonnington, Barnes, et al., 2008). A middle ground approach, which provides quantitative 

morphometric data to clinicians (without applying a classifier) exists as commercial products but 

has little clinical penetration and the impact on diagnostic accuracy is unclear; this method may 

provide a more easily interpretable method of aiding clinician’s diagnosis (as opposed to the 

typical black box approach of machine learning classifiers), but would be limited to a single, 

simple metric such as regional segmentations. Machine learning classification allows for the 

combination of a large number of morphometric features, which should improve accuracy. 
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Chapter 4  

Disease progression modelling in genetic FTD: methodology 

 This chapter describes the methodology used in the processing of multi-model MRI data 

used in the analyses described in Chapters 5, 6, and 7. This chapter is modified with permission 

from the manuscript “Data-driven staging of genetic frontotemporal dementia using multi-modal 

MRI” which has been accepted for publication at Human Brain Mapping. 

4.1 Dataset 

These analyses used data from the Genetic FTD Initiative (GENFI; 

http://www.genfi.org.uk/). GENFI is a large international study gathering longitudinal data on 

individuals with genetic FTD (C9orf72 expansion, GRN, or MAPT mutations) and their first-

degree relatives, which include an equal proportion of asymptomatic carriers and non-carriers. 

GENFI aims to develop markers which can identify FTD in its earliest stages as well as track 

disease progression. We used multimodal MRI (volumetric T1 and T2, resting state functional 

MRI, and diffusion weighted imaging) as well as demographic, clinical and neuropsychological 

data from the third data release of GENFI2, comprising 690 participants recruited from 23 sites in 

Canada and Europe. All participants were genotyped at their local site and underwent a 

standardized clinical assessment which consisted of a medical history, family history, and physical 

examination (Rohrer et al., 2015). Symptomatic status was based on this assessment, according to 

established diagnostic criteria (Gorno-Tempini et al., 2011; Rascovsky et al., 2011). Mutation 

carriers were defined a presymptomatic when clinical criteria were not fulfilled. 

http://www.genfi.org.uk/
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4.2 Image acquisition and processing 

 MRI scans were acquired using 3T scanners, or 1.5T at sites where 3T was not available. 

Protocols were designed to harmonize across scanners and sites as much as possible (Rohrer et al., 

2015). 

4.2.1 T1  

Volumetric T1-weighted MRI were acquired for 643 subjects. Acquisition parameters 

(median and ranges) included: slice thickness 1.1 mm (1 to 1.2 mm), repetition time 2000 ms (6.6 

to 2400), echo time 2.9 ms (2.2 to 9 ms), flip angle 8 (8 to 11), number of slices 208 (140 to 208). 

Images were processed following the steps described in (Iturria-Medina et al., 2017). In summary, 

images were segmented into grey matter, white matter, and CSF probabilistic maps using SPM12. 

The grey matter maps were normalized to MNI space using DARTEL (Ashburner, 2007) and 

modulated to preserve the total amount of signal.  

4.2.2 T2 

 Volumetric T2-weighted MRI were acquired for all available subjects (n = 530). 

Acquisition parameters (median and ranges) included: repetition time 3200 ms (2200 to 3200 ms), 

echo time 401 mm (75 to 403 mm), slice thickness 1.1 mm (1 to 1.2 mm), flip angle 120 (90 to 

120), number of slices 176 (156 to 196). All T2 images were normalized to MNI space using the 

parameters acquired for the T1 image with the closest acquisition date, using SPM12. T1/T2 ratios 

were calculated by dividing the T2 image from the T1 image with the closest acquisition date. 



CHAPTER 4.  DISEASE PROGRESSION MODELLING IN FTD: METHODOLOGY 58 

 

4.2.3 Resting-state functional MRI 

Resting state fMRI data were acquired for all available subjects (n = 619) using an echo-

planar imaging sequence. Acquisition parameters (median and ranges) included: slice thickness 

3.5 mm (2.7 to 3.5 mm), repetition time 2500 ms (2200 to 3000 ms), echo time 30 ms (30 to 50 

ms), flip angle 80 (80 to 90), number of timepoints 200 (140 to 200). Images were processed 

following steps outlined in (Iturria-Medina et al., 2017) using tools from SPM12, FSL, and the 

REST toolbox. Pre-processing steps included motion correction, slice timing correction, 

normalisation to MNI space using the parameters acquired for the T1 image with the closest 

acquisition date, and signal filtering to keep only low frequency fluctuations (0.01 – 0.08 Hz). 

Maps of fALFF (fractional amplitude of low frequency fluctuations), were calculated, to have a 

regional indicator of the brain’s functional integrity (Zou et al., 2008).  

4.2.4 Diffusion-weighted MRI 

 Diffusion-weighted images were acquired for all subjects who had the standard GENFI 

protocol (n = 483) which consisted of two sequences, with either four or five b0 images (no 

diffusion sensitization), and 64 diffusion-weighted images (b = 1000 s/mm2). The second sequence 

was used when available. Additional acquisition parameters (median and ranges) included: slice 

thickness 2.5 mm (2 to 3 mm), repetition time 7300 ms (3742 to 10300 ms), echo time 90 ms (36 

to 100 ms). Images were pre-processed using Mrtrix3 software (Tournier et al., 2019). Pre-

processing steps included denoising, Gibbs ringing correction, eddy current distortions correction, 

and bias field correction. Diffusion tensor measures of fractional anisotropy (FA) and mean 

diffusivity (MD) were calculated using FSL. Images were normalized to MNI space using the 
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parameters acquired for the T1 image with the closest acquisition date using SPM12. All 

subsequent analyses of FA and MD refer to grey matter. 

4.3 Quality control and data pre-processing 

 All modalities underwent visual inspection, and images of poor quality were excluded. 

Imaging data from 637 subjects was used in the subsequent analyses. All imaging data were 

processed using the NeuroPM-box (Iturria-Medina, Carbonell, et al., 2020) (available at neuropm-

lab.com/neuropm-box.html) “organizing input for MCM” tool, consisting of regional grey matter 

parcellation of each image, outlier detection and correction, and imputation of missing modalities. 

The NeuroPM-box is currently designed for the analysis of grey matter. As such, all modalities in 

this study are measured in the grey matter. Mean grey matter density, fALFF, T1/T2 ratio, and 

grey matter FA and MD were calculated for cortical and subcortical regions, based on the Desikan–

Killiany–Tourville  (DKT) atlas (Klein & Tourville, 2012). All baseline data with missing 

modalities were imputed using the trimmed scores regression with internal principal component 

analysis algorithm, implemented in the Missing Data Imputation Toolbox for MATLAB, which 

considers the relationship between all subjects and variables to obtain imputed data by iteratively 

fitting PCA models to the data (Folch-Fortuny et al., 2016). 

4.4 Data harmonization 

 We used ComBat to harmonize baseline data of each imaging metric by site and scanner 

type. ComBat, an empirical Bayesian method of harmonizing multi-site data originally used in 

genomics (Johnson et al., 2007), has been shown to be robust for multi-site imaging studies with 

small numbers of participants per site (Fortin et al., 2017, 2018). The biological variability in 

http://neuropm-lab.com/neuropm-box.html
http://neuropm-lab.com/neuropm-box.html
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genetic variants, disease status (non-carrier, presymptomatic carrier, symptomatic carrier), and the 

EYO was preserved, as well as age, sex, and years of education. 

4.5 Demographics of included subjects 

In all subsequent analyses, we analyzed cross-sectional data from 637 participants who had 

at least one useable T1 scan, including 269 presymptomatic carriers, 115 symptomatic carriers and 

253 non-carriers (see Table 4.1 for demographic characteristics). Of the presymptomatic carriers, 

92 had a C9orf72 expansion, 129 had a GRN mutation, and 48 had a MAPT mutation. Of the 

symptomatic subjects, 56 had a C9orf72 expansion, 40 had a GRN mutation, and 19 had a MAPT 

mutation. In terms of clinical diagnosis, 80 had a diagnosis of bvFTD (67 probable bvFTD 

(supported by imaging), 11 possible (based solely on clinical criteria), 2 unknown), 20 had a 

primary progressive aphasia (15 non fluent variant, 1 semantic variant, 4 non-specified), 4 had 

amyotrophic lateral sclerosis (ALS), 5 had FTD- ALS, 2 had corticobasal syndrome, 1 had 

progressive supranuclear palsy, and 3 had non-specified dementia. 
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 Presymptomatic Symptomatic Non-carriers 

N 269 115 253 

Mutationc 

   C9orf72 

   GRN 

   MAPT 

 

92 (34.2) 

129 (48.0) 

48 (17.8) 

 

56 (48.7) 

40 (34.8) 

19 (16.5) 

 

87 (34.4) 

126 (49.8) 

40 (15.8) 

Age (years)a 44.9 ±11.9 (20.1 – 75.5) 63.0 ± 8.6 (32.9 – 78.7) 46.8 ± 13.7 (18.6 – 85.7) 

Sex (female)b 170 (63.2) 50 (43.5) 142 (56.1) 

Education (years)a 14.3 ± 3.3 11.9 ± 4.1 14.0 ± 3.5 

CBI-Ra 5.1 ± 9.1 61.2 ± 32.0 3.9 ± 6.3 

MMSEa 29.3 ± 1.2 22.5 ± 6.3 29.4 ± 1.1 

EYOa -13.8 ± 11.5 3.4 ± 6.8 NA 

 

Table 4.1. Demographics of included subjects. 

Diagnoses in symptomatic subjects: 80 bvFTD (41 C9orf72, 20 GRN, 19 MAPT), 5 FTD-ALS 

(all C9orf72), 4 ALS (C9orf72), 15 nonfluent variant PPA (2 C9orf72, 13 GRN), 1 semantic 

variant PPA (C9orf72), 2 corticobasal syndrome (GRN), 4 dementia – not otherwise specified 

(GRN), 1 progressive supranuclear palsy (C9orf72). 

Data are n (%) or mean ± standard deviation (range). 

a p < 0.001 (1-way ANOVA), significant differences between symptomatic and presymptomatic, 

as well as non-carriers (p < 0.001, Tukey tests). 

b p < 0.001 (chi-square), difference in distribution across groups. 

c genetic mutation status in non-carriers refers to the mutation carried in family members 

bvFTD = behavioural variant frontotemporal dementia, ALS = amyotrophic lateral sclerosis, PPA 

= primary progressive aphasia, MMSE = Mini Mental State Examination, CBI-R = Cambridge 

Behavioural Inventory Revised version, EYO = estimated years to symptom onset. 
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Chapter 5  

Data-driven staging of genetic frontotemporal dementia using multi-

modal MRI 

This chapter is modified with permission from the manuscript “Data-driven staging of genetic 

frontotemporal dementia using multi-modal MRI” which has been accepted for publication at 

Human Brain Mapping. 

 

5.1 Overview and rationale 

Data-driven models of disease staging have been infrequently applied to FTD; those that 

have typically order a select number of biomarkers, either from a single modality or from select 

brain regions, or they look at a single genetic variant. Disease staging is complicated in FTD due 

to the substantial clinical, genetic, and pathological variations. To optimize therapeutic 

opportunities, staging biomarkers need to accurately track disease progression despite this 

heterogeneity, both in symptomatic FTD and in the long presymptomatic period. There are several 

disease-modifying treatments under development for genetic FTD variants (Tsai & Boxer, 2016). 

The near to full penetrance of FTD-causing gene mutations means that asymptomatic carriers 

could eventually be included in clinical trials, however, trials are impeded by the variation in age 

at onset and clinical presentation observed within gene mutations given that presymptomatic 

mutation carriers will develop different phenotypes. In the context of a relatively rare disease, 

phase 3 trials will need to merge presymptomatic carriers with symptomatic subjects into a single 
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study with unified outcome measures. It is therefore necessary to find unifying ways to stage the 

disease during both the presymptomatic and symptomatic phases. 

The contrastive trajectory inference (cTI) is a recent unsupervised machine learning 

algorithm for staging disease, which uses multi-dimensional data to order and score individuals 

along sub-trajectories of disease progression. When applied to gene expression data from 

individuals with Alzheimer’s and Huntington’s diseases, cTI-identified individual disease scores 

were significantly associated with clinical and neuropathological disease severity (Iturria-Medina, 

Khan, et al., 2020). 

The aim of this analysis was to create a unified disease staging system using multi-modal 

neuroimaging features from presymptomatic and symptomatic carriers of FTD-causing mutations 

using the cTI. We compared the cTI obtained disease scores to existing measures of disease 

severity and clinical performance as a proof of concept of cTI scores for staging disease in a 

heterogeneous dataset of genetic FTD. 

5.2 Methods 

Details of the dataset, imaging acquisition and processing, quality control, and data pre-

processing and harmonization are described in Chapter 4. 

5.2.1 cTI method 

The contrastive Trajectory Inference algorithm (cTI, implemented in the NeuroPM-

box software (Iturria-Medina, Khan, et al., 2020))) is an unsupervised machine learning method to 

analyze temporal patterns in multi-dimensional populational datasets. Data can first be adjusted 

for confounding variables using robust additive linear regression modeling with pair-wise 
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interactions. The cTI method then consists of unsupervised feature selection (for high dimensional 

datasets), dimensionality reduction via contrastive principal component analysis, and subject 

ordering to obtain individual disease scores (Iturria-Medina, Khan, et al., 2020).  

Contrastive principal component analysis (cPCA) (Abid et al., 2018) is an unsupervised 

method of data exploration and visualization which identifies patterns in a target population (i.e., 

a diseased population) by controlling against patterns in a background population (a control 

group). By adjusting for patterns identified in the background population, such as aging effects or 

noise, cPCA has be found to be more sensitive to disease progression, by identifying trends in the 

population of interest that may be missed using standard methods of dimensionality reduction (i.e., 

PCA). The model then automatically chooses the contrasted principal component space which best 

optimizes the enriched trends in the target population. Each subject’s position in the contrasted 

principal component space therefore reflects their disease state, with further distance from the 

background indicating more advanced disease.  

Subjects are ordered and assigned an individual “pseudo-time” score according to their 

proximity to the background, standardized to be between 0 and 1. Low scores indicate proximity 

to the background population while high scores indicate proximity to the most diseased subjects. 

In the context of neurodegeneration, the pseudo-time score can be interpreted as a personalized 

index of disease stage (from the continuum of young subjects that are decades away from 

symptoms up to the more advanced dementia cases). 

The cTI also estimates the specific contribution of each feature on the obtained disease 

scores. Individual weights of each feature reflect how much that feature contributed to the 

contrasted principal component space from which the subject ordering and disease scores were 
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obtained. A larger weight value therefore indicates a greater influence on the cTI-obtained disease 

scores. 

5.2.2 cTI analysis 

In this analysis we considered baseline data from five MRI-derived biomarkers in the grey 

matter (grey matter density, fALFF, T1/T2 ratio, FA, and MD). The cTI was run using all features 

due to the relatively small number of included features (5 modalities x 78 brain regions = 390 

features). Data was first linearly adjusted by age, sex, and years of education. Parameters of the 

linear regression were obtained in non-carriers only, in order to obtain estimates of healthy aging. 

Parameters were then applied to all subjects. All non-carriers were used as the background 

population. As opposed to including all gene mutation carriers in the target population, we choose 

to include symptomatic carriers only. Therefore, the symptomatic subjects only were used in the 

data exploration and visualization via cPCA, in contrast to the non-carriers, and the corresponding 

transformations of the data to the disease-associated space (contrastive principal component space) 

were then applied to all subjects. We used symptomatic subjects as the target population due to 

their more advanced disease state which should allow for better determination of the disease-

associated patterns by the cTI (as only subtle changes are expected in the presymptomatic 

participants), and due to the much larger number of presymptomatic carriers compared to 

symptomatic (many of whom are young and likely far from symptom onset) which would likely 

bias the model towards early presymptomatic cases, increasing the difficulty of finding underlying 

disease-associated trends. The cTI was run using the combination of all five-imaging metrics, as 

well as each metric individually.  
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5.2.3 Post-hoc statistical analysis 

 We compared the cTI obtained disease scores to the EYO, clinical assessment, and 

neuropsychological test scores using Pearson’s correlation. Tests included the Mini Mental State 

Examination (MMSE) for cognition, the Cambridge Behavioural Inventory Revised version (CBI-

R) for behavioural symptoms, and a neuropsychological battery measuring cognition, attention, 

memory, language, and executive function (Digit Span forwards and backwards from the Wechsler 

Memory Scale-Revised, a Digit Symbol Task, Parts A and B of the Trail Making Test, the short 

version of the Boston Naming Test, Category Fluency (animals), Letter Fluency and the Wechsler 

Abbreviated Scale of Intelligence Block Design task). Z-scores were calculated for all 

neuropsychological tests based on language-specific norms (Rohrer et al., 2015). Differences in 

disease status were tested using one-way ANOVAs. Post hoc pairwise differences between groups 

were analyzed using Tukey’s test. 

5.2.4 Sensitivity Analysis 

 To assess the impact of missing data and the subsequent imputation of this missing data on 

the analyses, the cTI was run, with all five modalities in combination, using only those individuals 

with all imaging modalities at their baseline visit (n = 282) and the above analyses repeated in this 

subgroup.  

5.3 Results 

5.3.1 cTI-identified disease scores 

The cTI identified disease scores, obtained using all imaging metrics in combination, were 

significantly correlated with MMSE (r = -0.273, p < 0.001, Figure 5.1A), CBI-R (r = 0.516, p < 



CHAPTER 5.  DATA-DRIVEN STAGING IN GENETIC FTD 67 

 

0.001, Figure 5.1B), and each neuropsychological test (all |r| 0.276 – 0.468, p < 0.001, Figure 5.2) 

for all gene mutation carriers. A higher disease score was associated with greater impairment on 

all tests and clinical scales. Correlations were not significant in presymptomatic carriers or 

symptomatic carriers alone (p > 0.05, Table 5.1), except for the MMSE which showed a significant 

positive correlation with disease scores in the symptomatic group (p < 0.05, Table 5.1). 

Correlations between cTI scores in the full group (including non-carriers) were similar to those in 

the gene mutation carriers (all p < 0.001, Table 5.1).  

Significant differences in disease scores were found for disease status (F = 270.9, p < 

0.001), with symptomatic subjects having higher disease scores than both asymptomatic carriers 

and non-carriers and asymptomatic carriers having higher disease scores than non-carriers (p < 

0.001, Figure 5.1C). Differences were not driven by a single genetic group. Disease scores were 

also significantly correlated with the EYO for all gene mutation carriers, with a higher disease 

score associated with a shorter expected time to symptom onset (r = 0.334, p < 0.001, Figure 5.1D). 

See Table 5.1 for all correlations. Figure 5.3 shows the association between disease scores and 

age, by disease status.  
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Figure 5.1: Association between cTI identified disease scores and A) MMSE, B) CBI-R, C) 

Disease status, and D) EYO. In C, points are laid over a 1.96 SEM (95% confidence interval) in 

red and at 1 SD in blue.  

MMSE=Mini Mental State Examination, CBI=Cambridge Behavioural Inventory, 

EYO=estimated years to symptom onset. 
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Figure 5.2: Association between cTI identified disease scores and neuropsychological tests.  

 

TMTA = Trail Making Test Part A, TMTB = Trail Making Test Part B, VF = Verbal Fluency 
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Figure 5.3: Association between cTI identified disease scores and age, by disease status. 
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 Carriers Presymptomatic Symptomatic All 

MMSE -0.273* -0.014 0.237** -0.337* 

CBI-R 0.516* 0.017 0.109 0.573* 

DS F score -0.276* 0.008 0.087 -0.269* 

DS B score -0.292* -0.017 0.091 -0.295* 

TMTA time 0.357* 0.019 -0.072 0.392* 

TMTB time 0.466* 0.061 0.015 0.490* 

Digit symbol -0.468* 0.025 -0.026 -0.461* 

Boston naming -0.334* 0.015 0.132 -0.385* 

VF animals -0.436* 0.043 0.057 -0.424* 

VF F -0.406* -0.007 -0.062 -0.387* 

VF A -0.386* -0.064 0.023 -0.374* 

VF S -0.398* -0.037 -0.021 -0.389* 

Block design -0.370* 0.090 0.069 -0.371* 

EYO 0.343* -0.089 0.026 0.298* 

 

Table 5.1: Correlation (r) between cTI disease scores (all modalities) and each 

clinical/neuropsychological test for all gene carriers, presymptomatic carriers only, symptomatic 

carriers only, and the full group (included non-carriers). 

MMSE = Mini Mental State Examination, CBI-R = Cambridge Behavioural Inventory Revised 

version, DS F = Digit Span forwards, DS B = Digit Span, TMTA = Trail Making Test Part A, 

TMTB = Trail Making Test Part B, VF = Verbal Fluency, EYO = estimated years to symptom 

onset. 

* indicates significant correlation (p < 0.001). 

** indicates at significant correlation (p < 0.05). 
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5.3.2 Feature contributions 

  We summed the feature weights across modalities and regions to determine the total 

contribution of each modality (Figure 5.4) and the total contribution of each brain region (Figure 

5.5) to the obtained disease scores. DTI metrics provided the highest contribution (MD followed 

by FA), while fALFF provided the lowest. Grey matter density and T1/T2 ratio had similar 

contributions. Total regional contributions indicate highest values for frontal, temporal, and 

subcortical regions.  

 

Figure 5.4: Total contribution of each modality to the cTI identified disease scores.  

GM = grey matter, fALFF = fractional Amplitude of Low Frequency Fluctuations, FA = fractional 

anisotropy, MD = mean diffusivity. 
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Figure 5.5: Total contribution of each brain region to the cTI identified disease scores.  

GM = grey matter, fALFF = fractional Amplitude of Low Frequency Fluctuations, FA = fractional 

anisotropy, MD = mean diffusivity, L = left, R = right. 

 

5.3.3 Individual modalities 

When obtained using each imaging metric individually, the cTI identified disease scores in 

all gene mutation carriers were significantly correlated with CBI-R (Table 5.2; grey matter density: 

r = 0.391, fALFF: r = 0.377, T1/T2 ratio: r = 0.373, p < 0.001), and all neuropsychological tests 

for all modalities (Table 5.2; grey matter density: |r| 0.281 – 0.447, fALFF |r|  0.277 – 0.442, p < 

0.001), and with the MMSE for all modalities except FA (Table 5.2; grey matter density: r = -

0.368, fALFF: r = -0.355, p < 0.001). A higher disease score was associated with greater 
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impairment on all tests. Significant differences in disease scores were found for disease status, 

with symptomatic subjects having higher disease scores than both asymptomatic carriers and non-

carriers (p < 0.001). Differences between asymptomatic carriers and non-carriers were not 

significant (fALFF, p = 0.15, FA, p = 0.1, T1/T2 ratio, p = 0.07; MD, p = 0.06; grey matter density, 

p = 0.97). A significant correlation was found with the EYO for all modalities (Table 5.2; |r| 0.107 

– 0.353, p < 0.05), with a higher disease score associated with a shorter time to symptom onset 

among gene carriers. 

  



CHAPTER 5.  DATA-DRIVEN STAGING IN GENETIC FTD 75 

 

 

 

GM 

Density 

T1/T2 

ratio 

fALFF FA MD 

MMSE -0.368 -0.188 -0.355 -0.093ǂ -0.24 

CBI-R 0.391 0.373 0.377 0.28 0.261 

DS F score -0.306 -0.237 -0.277 -0.107 -0.258 

DS B score -0.281 -0.258 -0.289 -0.177 -0.243 

TMTA time 0.358 0.160 0.376 0.210 0.238 

TMTB time 0.447 0.275 0.442 0.225 0.265 

Digit symbol -0.442 -0.261 -0.372 -0.264 -0.237 

Boston naming -0.415 -0.244 -0.362 -0.247 -0.216 

VF animals -0.433 -0.296 -0.355 -0.210 -0.239 

VF F -0.358 -0.285 -0.374 -0.248 -0.266 

VF A -0.336 -0.269 -0.322 -0.229 -0.258 

VF S -0.357 -0.236 -0.318 -0.220 -0.269 

Block design -0.360 -0.217 -0.350 -0.211 -0.233 

EYO 0.353 0.225 0.286 0.205 0.107 

Table 5.2: Correlation (r) between cTI disease scores for each modality and each 

clinical/neuropsychological test (in all gene carriers). 

MMSE = Mini Mental State Examination, CBI-R = Cambridge Behavioural Inventory Revised 

version, DS F = Digit Span forwards, DS B = Digit Span, TMTA = Trail Making Test Part A, 

TMTB = Trail Making Test Part B, VF = Verbal Fluency, EYO = estimated years to symptom 

onset, GM = grey matter, fALFF = fractional Amplitude of Low Frequency Fluctuations, FA = 

fractional anisotropy, MD = mean diffusivity. 

ǂ indicates non-significant correlation (p > 0.05). All other correlations are statistically significant 

for all modalities (p < 0.05). 
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5.3.4 Sensitivity Analysis 

Overall results of the analysis in the subset of subjects with full baseline imaging are similar 

to those in the full dataset; cTI disease scores were significantly correlated with all clinical and 

neuropsychological tests, and with the EYO (p < 0.001). All correlations were equal to or stronger 

than in the full analysis. Significant differences in disease scores were found for disease status (F 

= 318.6, p < 0.001). Symptomatic subjects had higher disease scores than both asymptomatic 

carriers and non-carriers (p < 0.001), but differences between asymptomatic carriers and non-

carriers were not significant (p = 0.15). The feature contribution analysis indicated a higher 

contribution of grey matter density. The ordering of regional contributions was also somewhat 

altered but highest values were again found for frontal, temporal, and subcortical regions.  

5.4 Discussion 

In this analysis we show that the cTI, a data-driven staging model, can identify the cross-

sectional progression of disease in a heterogeneous sample of genetic FTD using only 

neuroimaging metrics without clinical information. As a proof of validity, significant correlations 

were found between the data-driven cTI identified disease scores and the estimated years to 

symptom onset and to all the tested measures of clinical performance. In addition, higher mean 

cTI scores were found in presymptomatic carriers compared to non-carriers, showing that the 

staging system may be able to detect subtle pre-dementia changes in mutation carriers, although 

this change was not replicated in a subset of subjects with complete data. Grey matter DTI 

measures, particularly MD, provided the largest contribution to the model. Disease scores derived 

from individual metrics were also significantly correlated with clinical performance. Differences 

in disease scores between presymptomatic carriers and noncarriers did not reach statistical 
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significance in individual metrics, suggesting a combination of metrics may be important to 

differentiate presymptomatic carriers from asymptomatic subjects. 

This study is a proof of concept that it is possible to generate a data-driven unified staging 

system across genetic and phenotypical variations that correlates strongly with the most relevant 

clinical and cognitive measures in FTD. Previous application of the cTI model has shown strong 

associations between the model derived disease scores and clinical and neuropathological disease 

severity in both Alzheimer’s and Huntington’s diseases, as well as a cohort encompassing the 

spectrum of both diseases (Iturria-Medina, Khan, et al., 2020). Our results corroborate the use of 

cTI-derived disease scores as a marker of neurodegenerative diseases, showing that the individual 

scores reflect a combination of subtle clinical differences in the presymptomatic period and disease 

severity in symptomatic patients. We further show that the model can accurately produce a disease 

staging score in a heterogeneous population including the wide variety of clinical presentations 

and genetic mutations found in genetic FTD, factoring the presymptomatic and symptomatic 

spectrum. This association is found despite the large number of subjects in the early 

presymptomatic stage (i.e., more than 30-40 years prior to probable symptom onset). The 

association was largely driven by differences between the presymptomatic and symptomatic 

periods, as correlations in the individual subgroups were not significant; this is likely because most 

presymptomatic subjects will have normal to very mild impairment on these tests, while 

symptomatic subjects are impaired. It also may reflect the inability of the clinical and cognitive 

scales to reflect specific aspects of each individual’s subtle clinical decline.  

The cTI has previously been applied to gene expression data. This analysis shows the utility 

of this model derived using neuroimaging features. The feature contributions analysis indicates 

that DTI metrics, in particular MD, are the biggest contributors to the model. These measures have 
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rarely been studied in grey matter, although increases in MD have been reported in symptomatic 

FTD (Whitwell et al., 2010). This finding may warrant further investigation of grey matter 

microstructural changes. Of note, both DTI metrics indicate strong contributions to the model from 

similar brain regions. FA and MD attempt to measure different processes; FA is a measure of 

directional tissue coherence (in grey matter, a potential measure of neuron orientations) and MD 

is a measure of the amount of total local diffusion (in grey matter, a potential measure of 

extracellular space). However, it is likely that these measures are picking up on multiple inter-

related microstructural changes occurring in the same brain regions. 

Our results indicate moderate association between disease scores derived individually from 

grey matter atrophy, fALFF and T1/T2 ratio and clinical performance. Grey matter atrophy is the 

most frequently studied imaging biomarker in FTD, and atrophy has been consistently reported 

across phenotypes and genetics, symptomatically and presymptomatically (Cash et al., 2018; 

Rohrer et al., 2015; Staffaroni, Cobigo, et al., 2020). T1/T2 ratio and fALFF have been much less 

frequently studied. fALFF contributed the least to the combined model, a somewhat surprising 

finding given functional alterations are hypothesized to be an earlier feature of FTD than structural 

grey matter changes. Alterations in functional connectivity have been reported in both 

presymptomatic and symptomatic FTD (Dopper et al., 2014; Lee et al., 2017; Premi et al., 2016), 

however results suggesting early functional changes are inconsistent. T1/T2 ratio, as a marker of 

intracortical myelin, has not been investigated in FTD to our knowledge; results here indicate a 

change in myelin content along FTD progression. We obtained the highest correlations with 

clinical measures when using a combination of all modalities, and all modalities providing some 

level of contribution to the model, indicating an added benefit of combining information from 

multiple modalities which provide complementary information. Our results suggest that the 
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combination of metrics may be particularly important to differentiate presymptomatic carriers 

from controls.  

The regional contributions analysis indicated that along with frontal and temporal regions, 

subcortical involvement was an important contributor to the model, while the left inferior parietal 

region also showed a high contribution. Subcortical regions have traditionally received less 

attention in FTD research, however recent research suggests subcortical regions may play a key 

role in FTD (Bocchetta, Malpetti, et al., 2021). Subcortical involvement has also been reported in 

genetic FTD, including presymptomatically (Bocchetta, Todd, et al., 2021; Rohrer et al., 2015). 

Parietal involvement has been reported most commonly in GRN mutations (Rohrer et al., 2015). 

Overall, there appears to be a higher contribution from regions in the right hemisphere. This may 

be due to the asymmetric atrophy pattern typically found in GRN carriers (Rohrer et al., 2015), 

who are the largest group in this analysis. 

 The sensitivity analysis suggests that the observed associations between disease scores and 

the estimated years to symptom onset and to all the tested measures of clinical performance are 

fairly robust, while the differences between presymptomatic carriers and controls, the contribution 

of grey matter density to the disease scores are more sensitive to missing data. These findings 

should therefore be validated in a larger dataset with more complete data. 

While further validation work is required, this study provides initial evidence for the 

development of unifying, biologically based staging to monitor disease progression and treatment 

outcomes in heterogeneous neurodegenerative disorders. 
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Chapter 6  

Data-driven subtyping of genetic frontotemporal dementia using 

multimodal MRI  

6.1 Overview and rationale 

Most disease progression models assume a single disease trajectory for all individuals, 

which limits the utility of these models for patient stratification. Previous subtyping studies have 

focused on identifying distinct groupings from subjects at a similar disease stage (typically 

symptomatic individuals). One study to date has combined these two methods to obtain subtypes 

of individuals who follow similar temporal trajectories in genetic FTD (Young et al., 2018). 

Similar to other disease progression models, this model only used a small number of features (grey 

matter lobar volumes). However, it was able to identify genetic subtypes in the GENFI dataset, 

providing initial validation for this type of method, given that genetic variants have specific 

pathology and group-level differences in neuroimaging found in these groups. 

The cTI method of disease progression modelling described in Chapter 5 was able to 

identify disease stage in the heterogenous GENFI dataset using a combination of MRI-derived 

features. A recent extension of this model combines disease staging with subtyping. In an initial 

analysis, the cTI was able to distinguish between control subjects, Alzheimer’s and Huntington’s 

diseases using gene expression data. 87% of controls was assigned to subtype 1, 71% of those with 

AD were assigned to subtype 2, and 89% of those with Huntington’s disease were assigned to 

subtype 3 (Iturria-Medina et al., 2021). 
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The aim of this analysis was to obtain data-driven sub-trajectories in a heterogenous group 

of presymptomatic and symptomatic genetic FTD cases, based on MRI-derived metrics, using the 

cTI method. We validated cTI-obtained sub-trajectories against genetic groups. As well, we 

compared clinical diagnoses of symptomatic participants across subtypes. 

6.2 Methods 

Details of the dataset, imaging acquisition and processing, quality control, and data pre-

processing and harmonization are described in Chapter 4. 

6.2.1 cTI subtyping method 

This chapter describes an extension to the original cTI method described in Chapter 5 

(Iturria-Medina et al., 2021). Dimensionality reduction is performed via contrastive principal 

component analysis as described in Chapter 5, and each subject is projected onto the resulting 

disease-associated space. Each subject is then assigned to a sub-trajectory, consisting of subjects 

that cluster together in the disease-associated space. Each sub-trajectory therefore consists of a 

subgroup of subjects potentially following a common disease progression pattern. The number of 

trajectories is determined automatically, up to a previously indicated maximum number. Each 

subject may be assigned to more than one sub-trajectory, indicating that these sub-trajectories may 

overlap, especially near their beginning, where the cTI may not distinguish between these paths. 

In these cases, possible subtypes assignments are ranked from most to least probable. 

6.2.2 cTI subtyping analysis 

The cTI was run as described in Chapter 5. Data was first linearly adjusted by covariables 

(age, sex, and years of education). All non-carriers were used as the background population, and 
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all symptomatic carriers were used as the target population. A maximum of four clusters was 

indicated, representing the three genetic variants (C9orf72, GRN, MAPT) and the control group of 

non-carriers. Baseline data from grey matter density, fALFF, T1/T2 ratio and grey matter FA and 

MD were used.  

6.2.3 Post-hoc statistical analysis 

For each data-driven cTI subtype, we looked at the percentage make-up of subjects from 

each genetic group, as gene variants have specific pathology and group-level differences in 

neuroimaging. cTI subtypes were also compared to the clinical diagnoses in symptomatic subjects 

in the same manner. 

6.3 Results 

6.3.1 cTI-identified sub-trajectories 

Using all modalities in combination, the cTI, identified four sub-trajectories. 9.6% of 

subjects were assigned to more than one subtype. Based on the most probable assignment for each 

of these subjects, subtype 1 contained 51 subjects, subtype 2 contained 25 subjects, subtype 3 

contained 55 subjects, and subtype 4 contained 506 subjects. The cTI did not recover the three 

genetic variants, instead assigning most gene carriers (≥ 65%) to subtype 4, as well as 88% of non-

carriers (Figure 6.1A). All presymptomatic carriers, of all gene variants, are assigned to subtype 4 

(Figure 6.1B). Symptomatic carriers are found in all four subtypes; while C9orf72 and especially 

GRN carriers are both primarily found in subtype 3, MAPT carriers are more evenly spread out 

across subtypes 2-4 (Figure 6.1C). cTI identified subtypes also do not distinguish between clinical 
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diagnosis (Figure 6.1D); subjects of varying diagnoses are assigned primarily to subtype 3 (42% 

of bvFTD; 87% of nfvPPA, 100% of PPA-NOS). 

 

Figure 6.1: Confusion matrices comparing cTI subtyping to gene variants and non-carriers, 

asymptomatic carriers by gene variant, symptomatic carriers by gene variant, and symptomatic 

carriers by clinical diagnosis. Numbers are percentages (number of subjects). 

bvFTD = behavioural variant frontotemporal dementia, ALS = amyotrophic lateral sclerosis, PPA 

= primary progressive aphasia, PPA-nfv = nonfluent variant PPA, PPA-sv = semantic variant PPA, 

CBS = corticobasal syndrome, Dementia-NOS = dementia - not otherwise specified, PSP = 

progressive supranuclear palsy. 
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6.4 Discussion 

The subtyping analysis did not lead to the identification of clear genetic or clinical 

categorizations. The cTI has previously recovered subtypes in a cohort containing multiple 

diseases (Alzheimer’s and Huntington’s (Iturria-Medina, Carbonell, et al., 2020)). Recovering 

genetic subtypes in FTD is a more difficult task. The inability to uncover genetic variants suggests 

that genetic variants have significantly overlapping neuroimaging features at early presymptomatic 

stages. Neurodegeneration is expected to be subtle in early disease stages; there are likely not clear 

distinctions between non-carriers and early presymptomatic carriers of each gene variant. 

Subtyping may therefore require a wider variety of imaging markers, or the addition of non-

imaging biological markers. 

The subtyping results are in contrast to the previous study which recovered genetic FTD 

variants using an unsupervised machine learning algorithm and lobar grey matter volumes (Young 

et al., 2018). That study found four subtypes which corresponded to the three genetic variants 

(including two subtypes in C9orf72). This difference may be due to the different methods used by 

the model. The cTI conducts dimensionality reduction via contrastive principal component 

analysis, then clusters subjects in the dimensionally reduced space;  the model employed in (Young 

et al., 2018) iteratively fits a mixture of staging models based on the event-based model (Fonteijn 

et al., 2012) to cluster subjects with different biomarker orderings. It is possible that this method 

is better able to detect subtypes of genetic FTD. Unlike the cTI however, this model is unable to 

handle multi-model, high dimensional data. 

The cTI also did not identify subtypes based on clinical presentation, indicating that it is 

unable to predict which phenotype a presymptomatic individual will develop. The majority of 
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symptomatic subjects included in this study have been diagnosed with bvFTD, while only a small 

number of symptomatic subjects have a diagnosis other than bvFTD. It is therefore likely that there 

are not enough subjects in the non-bvFTD groups for the model to distinguish common patterns 

of these presentations.  

Overall, the cTI was unable to accurately obtain sub-trajectories of genetic FTD in this 

dataset. Predicting genetic and clinical subtypes will likely require larger datasets, as well as a 

wider variety of biological markers including serum or CSF measures such as Neurofilament Light 

Chain. 
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Chapter 7  

Multifactorial causal model of disease progression in genetic 

frontotemporal dementia 

7.1 Overview and rationale 

In contrast to the models described in the previous chapters, which aim to provide staging 

and subtyping as tools for clinical applications, particularly in clinical trials, network-based models 

of neurodegenerative disease progression are mechanistic in nature; they typically aim to describe 

the underlying mechanisms by which disease progression occurs. Most existing models study the 

propagation of a single factor through structural or functional networks and typically look at 

advanced stage disease (i.e., symptomatic individuals). Existing multi-factorial models of disease 

progression typically measure changes in magnitude of each factor independently of one another, 

reflecting sensitivity of each factor to disease progression. 

The multifactorial causal model (MCM) (Iturria-Medina et al., 2017) is a multifactorial 

network-based model which estimates disease progression by considering how multiple imaging-

based biological factors directly interact and spread throughout brain networks. The MCM 

considers that once a change occurs in a given biological factor in one region of the brain, said 

factor can directly alter the state of other factors in the same region as well as propagate through 

physical brain networks to influence factors in other regions. For example, changes in neural 

activity may directly influence grey matter atrophy, and vice versa. Concurrently, these changes 

may propagate through axonal connections to other brain areas. Similar factor-factor interaction 

and propagation mechanisms can occur in these other regions in a continuous cycle. This model 
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considers that small changes in a factor in one region can have large effects on interconnected 

factors (Iturria-Medina et al., 2016). 

The MCM can be applied on a group-level using cross-sectional data from individuals 

across the full disease course to estimate typical patterns of progression, starting from the estimated 

initial disease onset. Specifically, the MCM can characterize the initial perturbations occurring at 

the estimated onset of the biological disease process and which factors and brain regions are altered 

at this stage, as well as the direct factor-factor interactions and the tendency of each factor to spread 

through brain networks.  

The application of this model in AD on a group level has increased understanding of the 

neurobiological changes occurring in the preclinical stages, including an early causal role for 

vascular perfusion changes. It also suggests that AD is not caused by one dominant modality, 

highlighting the importance of considering multiple factors, each playing an importance role in 

disease development (Iturria-Medina et al., 2017). Application of this model in genetic FTD can 

therefore provide a more integrative understanding of disease progression, and consequently aide 

in the development of sensitive, early-stage biomarkers. 

The aims of this analysis were to apply the MCM to MRI-based biomarkers of genetic 

presymptomatic and symptomatic FTD, to characterize biomarker interactions and propagation 

and estimate initial alterations in the disease process. 

7.2 Method 

Details of the dataset, imaging acquisition and processing, quality control, and data pre-

processing and harmonization are described in Chapter 4. 
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7.2.1 Structural connectome processing 

 Structural connectomes were obtained from each preprocessed diffusion-weighted image 

using Mrtrix3. Processing steps included registration of T1 image to the average B0 image, T1 

tissue segmentation, estimation of orientation distribution functions via constrained spherical 

deconvolution (Jeurissen et al., 2014; Tournier et al., 2007), probabilistic fibre tractography using 

anatomically constrained tractography (Smith et al., 2012), spherical deconvolution informed 

filtering of tractograms (SIFT) to improve the biological plausibility of tractograms (Smith et al., 

2015), T1 parcellation using Freesurfer into 76 cortical and subcortical regions based on the DKT 

atlas (Klein & Tourville, 2012), and connectome construction to obtain region-region connections. 

Average connectomes were calculated for each combination of genetic group and disease status 

(non-carriers, presymptomatic, symptomatic). For those subjects that did not have a diffusion-

weighted image which passed quality control, the average connectome for the corresponding gene 

mutation and disease status was used. 

7.2.2 MCM method 

 The MCM is described in detail in (Iturria-Medina et al., 2017). The model considers the 

brain to be a dynamic multifactorial causal system. Each node in this system models the change in 

a given biological factor at a given brain region, over time (or disease progression). Each node is 

characterized by the current state of the biological factor, determined as the level of alteration from 

the initial state of the node (increase, decrease, or no change with regard to the baseline state). 

Therefore, at a given time the state of the system is described by a vector of the state space 

representing the alteration of each factor at each brain region. In the absence of external inputs, 

the change in state over time is characterised by (1) the direct interactions between each biological 
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factor, within each region, (2) the propagation of each factor alternation through physical networks 

(i.e., anatomical), and (3) the preservation of these changes. The model can take as input multiple 

biological factors derived from neuroimaging. When applied to a cross-sectional group analysis, 

the subjects first need to be staged according to disease severity. The subjects will then be ordered 

based on this staging, resulting in a pseudo-longitudinal dataset for MCM optimization. The 

resulting state space is therefore a vector of alteration levels from baseline (estimated from healthy 

control subjects), for each factor at each region, across disease stages.  

7.2.3 MCM analysis 

In this study the MCM was applied to the GENFI dataset cross-sectionally. As FTD is 

highly heterogeneous and distinct patterns of disease progression are expected in the three most 

common genetic mutations (Jiskoot, Bocchetta, et al., 2018; Rohrer et al., 2015; Young et al., 

2018), separate models were computed for each mutation group (C9orf72, GRN, MAPT). In this 

analysis we considered five biological factors (grey matter atrophy, fALFF, T1/T2 ratio, grey 

matter FA and MD) measured at 76 cortical and subcortical regions, covering the brain’s grey 

matter (Klein & Tourville, 2012).  Data was first linearly adjusted by covariables (age, sex, and 

years of education). The model was first analysed using the original sample. Then, we used a 

bootstrapping procedure, creating 500 different datasets with replacement for each subtype 

(genetic group). The model optimization was repeated for each dataset. 

7.2.4 Staging 

In the initial model, all subjects were grouped into categorical stages based on commonly 

used measures of disease severity in previous research. All presymptomatic subjects were staged 

according to their EYO. Symptomatic subjects were staged based on relevant measures of clinical 
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symptoms. Non-carriers served as controls (stage 0). Presymptomatic subjects were staged into 

five groups based on 10 year intervals of the EYO (stage 1: more than 30 years away, stage 2: 30-

20 years away, stage 3: 20-10 years away, stage 4: 10-0 years away, stage 5: past EYO). 

Symptomatic subjects were grouped into three stages based on the Clinical Dementia Rating Scale 

(CDR), when available: stage 6 (CDR below 1), stage 7 (CDR 1-2), stage 8 (CDR>= 2). If the 

CDR was not conducted, the same scoring was done using the mean CBI score, for those with a 

bvFTD diagnosis. Those with a PPA diagnosis were scored in the same manner based on tests of 

language fluency and grammar. The resulting matrix of the brain’s alteration from baseline across 

regions and at each disease stage was then applied to the MCM (Iturria-Medina et al., 2017). In a 

second model, subjects were staged in a continuous manner using EYO for all presymptomatic 

subjects and length of disease duration (in years) for all symptomatic subjects. In a third model, 

all subjects were staged using the disease scores obtained from the cTI (as described in Chapter 

5).  

7.2.5 Statistical (post-hoc) analysis 

 The MCM calculates the accuracy of each subtype as the percent of the variance across the 

five imaging modalities that is accounted for by the model. First, we compared the accuracy across 

each of the three staging systems. We then calculated mean and 95% confidence intervals of the 

accuracy across all generated bootstrap samples.  

The MCM estimates the initial system perturbation (i.e., the alteration of each modality at 

each brain region, at the estimated pathological disease onset). To estimate which modalities and 

brain regions are most altered at the initial disease onset, the absolute values of all factor-region 

pairs were compared. 
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The MCM also characterizes the underlying mechanisms of the disease process by 

estimating factor-factor interactions and factor spreading through physical networks. These 

processes are summarized in three measures: relative spreading, relative incoming influence, and 

relative outgoing influence (Iturria-Medina et al., 2017). Relative spreading measures the percent 

of the regional changes in each factor that are caused by alterations in that factor spreading from 

other brain regions through the brain’s physical connections (i.e., the percent of regional changes 

in functional activity that can be attributed to functional alterations spreading from other brain 

regions). The relative incoming influence measures the percent of regional changes in each factor 

that are caused by the direct influences of all the other factors, excluding self-effects (i.e., the 

percent of functional alterations that are directly caused by interactions with the remaining four 

factors). This measure reflects which factors are the most vulnerable to influence by other factors 

during the disease process. The relative outgoing influence measures the percent of regional 

changes in all considered factors that are caused by the direct influence of a given factor, excluding 

self-effects (i.e., the percent of alterations in the other four factors that can be attributed to direct 

interactions with functional alterations). This measure reflects which factors are the most 

influential during the disease process.  

7.3 Results 

7.3.1 Accuracy 

The accuracy of the categorical staging model was 2.46%, 0.97%, and 2.77% for C9orf72, 

GRN, and MAPT respectively, indicating that less than 5% of the variance in multifactorial 

regional abnormality patterns across all stages was captured by the model (Figure 7.1A). For the 

EYO/disease duration staging model accuracy was 3.11% for C9orf72, 3.41% for GRN, and 
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29.59% for MAPT (Figure 7.1B). For the cTI disease score staging model accuracy was 4.67% for 

C9orf72, 13.57% for GRN, 16.35% for MAPT (Figure 7.1C).  

 

Figure 7.1: Explained variance of the MCM for each genetic subtype, for three different staging 

methods. A) categorical EYO/clinical stages. B) continuous EYO/disease duration staging. C) 

data-driven disease scores (cTI). 

 

The remaining results are presented for the third staging system (cTI-derived disease 

scores), as this method provides a purely data-driven model of disease progression that is not based 

on any clinical information. Overall, this model had the best accuracy across all subtypes. 
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7.3.2 Initially altered factors and regions 

Figure 7.2 shows the absolute alteration for the top 20 most altered factor-region pairs, at 

the estimated disease onset. In all three subtypes, subcortical regions are the most altered. Highest 

alterations are seen in FA, T1-T2 ratio, and grey matter density, again across all three subtypes. 

 

 

 

Figure 7.2: Absolute alteration in each factor-region at the estimated initial biological disease 

onset (Top 20 most altered factor-region pairs). A) C9orf72. B) GRN. C) MAPT. 
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7.3.3 Underlying mechanisms of disease process 

Figure 7.3 shows the relative spreading, relative incoming, and relative outgoing 

influences. Relative spreading is generally low (ranging from 0 to 21% across factors and genetic 

subtypes), suggesting that spreading through structural networks is not a significant cause of factor 

alterations. Higher values are seen for C9orf72 and MAPT in fALFF, FA, and MD, while GRN 

values are low across all factors. Relative incoming and outgoing influences are slightly higher 

overall (ranging from 2.01 to 33.89), indicating that modalities may be more influenced by 

multifactorial interactions. Values are similar across factors for each subtype. fALFF is the most 

vulnerable, and least influential factor for both C9orf72 and MAPT, while values are again low 

across all factors for GRN.   
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Figure 7.3. Underlying mechanisms of the disease process. A) Relative Spreading. B) Relative 

Incoming Influences. C) Relative Outgoing Influences. 

 

7.3.4 Bootstrapping analysis 

 500 bootstrap repetitions were created (sampling with replacement) for each subtype. The 

MCM was repeated, using the cTI staging system, for each sample. Mean accuracies were slightly 

higher than in the original sample (approximately 17% for all subtypes; Figure 7.4A). 95% 

confidence intervals are wide, ranging from 0.75% to 58.32%. Histograms indicate a right-skewed 

distribution of the repetitions in all subtypes (Figure 7.4B-D), indicating the presence of subjects 

with outlier MRI values likely resulting in higher accuracy in some of the repetitions. Mean values 
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across repetitions for the initial perturbation and underlying mechanisms parameters were similar 

to values reported in the original sample. 

 

Figure 7.4: A) Mean explained variance of the MCM with 95% confidence intervals across 500 

bootstrap repetitions for each genetic subtype. B-D) Distribution of explained variance across 500 

bootstrap repetitions for B) C9orf72 C) GRN and D) MAPT. 

 

7.4 Discussion 

Overall, the MCM was unable to uncover specific patterns of disease onset and progression 

in genetic FTD subtypes. Accuracy was relatively low, indicating a poor model fit, with the 
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majority of the variance in the data not being accounted for by the model. This result contrasts 

with the application of the MCM in AD, which identified an early role for vascular perfusion 

changes. The poor model fit may be due to the relatively small number of subjects in each subtype, 

compared to the large number of features and parameters fit by the model. As well, this analysis 

included only metrics from structural and functional MRI, while the AD model was able to include 

a wider variety of factors including molecular markers of amyloid and tau. The bootstrapping 

analysis found wide confidence intervals in model fit, indicating high uncertainty in each subtype; 

results vary depending on which subjects are included in the sample. As noted, there is substantial 

heterogeneity in FTD (significantly more than in AD); differences in grey matter atrophy and 

functional activity has been previously observed within genetic groups (Lee et al., 2014; Olney et 

al., 2020; Sha et al., 2012; Whitwell et al., 2012), and individuals with the same genetic mutation 

can develop different clinical syndromes. Significantly, the model is based on cross-sectional data 

only; disease progression patterns are estimated using different individuals at different timepoints. 

It is likely that given the cross-sectional design, combined with the limited variety of MRI metrics, 

the relatively small sample sizes per subtype, and the heterogeneity in FTD, the MCM is unable 

to discern a clear average pattern of disease progression for each genetic group.  

The categorical staging had the lowest accuracy, accounting for less than 5% of the 

variance seen in the MRI metrics in all subtypes. Continuous methods should provide a more 

informative staging to the MCM, while the discrete staging obscures information into arbitrary 

categories. The first two staging systems used here rely on the EYO, which is known to be a 

imprecise measure of symptom onset in FTD (Moore et al., 2020). For symptomatic subjects, they 

rely either on measures of clinical performance or the number of years since disease onset. The 

use of this information to stage subjects prevents the model from being purely data-driven, based 
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on biological information. In contrast, the third model uses the disease scores derived from the cTI 

model as applied to MRI metrics for all subjects, which we have shown are significantly correlated 

with EYO and clinical performance in Chapter 5. This provides a method for biologically based 

modelling, by combining the cTI with the MCM. In all cases however, accuracy was relatively 

low, with the majority of the variance in the data not being accounted for by the model. 

In all three genetic groups, subcortical regions were the most altered at the estimated 

biological disease onset. Subcortical changes have previously been found in genetic FTD, 

including in presymptomatic individuals (Bocchetta, Todd, et al., 2021; Rohrer et al., 2015). These 

alterations were seen in FA, T1-T2 ratio, and grey matter density. As noted in Chapter 5, grey 

matter atrophy has been consistently reported in genetic FTD (Cash et al., 2018; Rohrer et al., 

2015; Staffaroni, Cobigo, et al., 2020), while T1/T2 ratio and grey matter FA have been much less 

frequently studied. The analysis of the underlying mechanisms of disease progression indicates 

higher influence of factor-factor interactions on the disease progression than through the 

propagation of specific factor alterations through structural brain networks. However, percentages 

are relatively low across factors and genetic groups. 

 Overall, the model is unable to account for most of the variance in the data, limiting any 

conclusions which could be drawn regarding the initial disease onset and underlying mechanisms 

of genetic FTD progression. A larger sample size and wider variety of biological metrics may be 

able to provide a better fitting model. 
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7.5 Supplementary Figure 

 

Supplementary Figure 7.1: Absolute alteration in each factor-region at the estimated initial 

biological disease onset (Top 50 most altered factor-region pairs). A) C9orf72. B) GRN. C) 

MAPT. 
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Chapter 8  

Discussion 

8.1 Summary of main findings and implications 

This thesis aimed to explore MRI-based biomarkers in early stage FTD using 

computational modelling; specifically, to explore the application of machine learning and disease 

progression modelling with MRI-derived metrics in the diagnosis, staging, subtyping, and 

underlying mechanisms of FTD. We showed that morphometric MRI can accurately distinguish 

individuals with FTD from cognitively healthy individuals and from those with other forms of 

dementia in well defined datasets using machine learning techniques, giving promise to this 

method as an aide in FTD diagnosis (Chapter 3). Focusing on genetic FTD, we then applied two 

recently developed models of disease progression (cTI and MCM) to MRI-based metrics. Using 

the cTI, we showed that presymptomatic and symptomatic gene carriers can be staged using only 

MRI-based measures, obtaining biologically based disease scores that correlate with estimated 

disease onset and clinical performance (Chapter 5). Using the same model, we showed that MRI 

metrics alone were insufficient to distinguish between genetic subtypes (Chapter 6) and to identify 

distinct patterns of disease onset and mechanisms of progression using the MCM (Chapter 7) in 

presymptomatic and symptomatic gene carriers.  

Overall, the analyses presented in this thesis indicate the potential of machine learning and 

disease progression modelling to improve understanding of FTD and indicate the potential benefits 

of MRI-based measures as effective biomarkers. They present good evidence for the continuing 

development of MRI-based computational methods for early FTD diagnosis, staging and disease 

monitoring.  
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The systematic review of FTD diagnostic classification found grey matter volumetric 

measures could accurately detect FTD, while indicating white matter DTI changes may be a 

sensitive biomarker in early stage FTD. The cTI staging model suggests that grey matter mean 

diffusivity is an important measure which may warrant further investigation of grey matter 

microstructural changes, which have been little investigated to date. Furthermore, the cTI staging 

model found that while single biomarkers may perform reasonably well on their own and have 

high clinical feasibility, the inclusion of other advanced imaging metrics increases precision, 

particularly in presymptomatic subjects and therefore could be valuable in a clinical trial setting. 

The systematic review did not find a proven benefit of a multimodal approach over single 

modalities in the few studies that did it (Bron et al., 2017; Klöppel, Stonnington, Chu, et al., 2008; 

Corey T. McMillan et al., 2014; Cory T. McMillan et al., 2012). More research is needed to 

confirm that a combination of complementary biomarkers would provide the best results in these 

analyses, although inclusion of more complex imaging metrics needs to be balanced with 

feasibility, especially in a clinical setting.  

The analyses presented in this thesis also showcase some of the difficulties in applying 

computational models to complex heterogeneous diseases, and the limitations of the dataset used 

here, which contains primarily presymptomatic subjects, many of whom are far (20 – 30 years) 

from probable symptom onset. Brain changes in these individuals are expected to be subtle, and 

therefore difficult to detect. Importantly, we were able to obtain disease scores which reflect 

disease progression despite these limitations. Data-driven subtyping and mechanistic modelling 

would likely benefit from the inclusion of a larger number of subjects across the full disease course 

and more diverse biological factors. 
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8.2 Advantages of the current data-driven approach 

There are several advantages to the current computational approach taken in this thesis. 

The chosen models are data-driven and based solely on biological information as opposed to 

clinical scales that introduce a component of subjective judgment. They are also able to combine 

information from various biomarkers, and therefore should be able to provide information above 

and beyond what clinical tests and individual biomarkers can provide. Importantly they have the 

potential to provide good biomarkers that can detect subtle changes in the earliest disease stages, 

before existing validated methods including visual reading of structural MRI and FDG-PET.  

Discriminative modelling, such as supervised machine learning models used in 

classifications tasks, should be able to pick up on differences that can’t be easily observed in very 

early-stage disease. Our systematic review shows that a wide variety of methods have been 

employed to study this task; it therefore remains to be seen what method may be the most 

appropriate to aid clinicians in early diagnosis. 

The cTI is a data-driven model which does not rely on any a priori phenotypical 

information. It is able to obtain disease staging and subtyping from cross-sectional data. 

Furthermore, it can incorporate various features from high dimensional data, and data-driven 

feature selection, eliminating the necessity of choosing select biomarkers or brain regions, seen in 

existing models (Panman et al., 2021; Young et al., 2018). It therefore provides unbiased 

biomarkers based solely on biological metrics. Further work will be needed to evaluate the 

usefulness of this type of measure as a validated outcome for clinical trials. It would be particularly 

useful for trials of potential FTD-modifying therapies which would include genetic carriers who 
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are at various disease stages, including a combination of presymptomatic and symptomatic 

individuals. 

The MCM is the first model to my knowledge which attempts to combine various 

biological factors and network-based spreading, to determine causal inference. It is also able to 

estimate the onset of the biological disease process, estimating the biological factors and brain 

regions that are most likely to be implicated in the disease origin. This is in contrast to previous 

research which has estimated epicentres based on the atrophy patterns of those with a clinical FTD 

diagnosis (Seeley et al., 2009; Zhou et al., 2012), an approach which does not necessarily indicate 

disease origin, as the most atrophied regions at late stage disease are not necessarily the regions 

where the disease originated. The MCM also uses biomarker and structural connectivity data from 

the full disease course, unlike previous models which have correlated healthy network connectivity 

patterns to end stage disease.  

When applied on a group level the MCM requires a priori staging of subjects based on 

disease severity. The model is therefore only as good as the staging used. Stages based on clinical 

data or EYO may not necessarily be indicative of underlying biological processes. Previous 

research into genetic FTD has often used EYO to study disease progression, however the age of 

symptom onset can be highly variable, with wide variations sometimes found within family 

members. This variability is larger for C9orf72 and GRN mutations than for MAPT mutations 

(Moore et al., 2020), meaning that using EYO can lead to larger errors in estimating the timing of 

disease changes, especially in C9orf72 and GRN (Rohrer et al., 2015). However, when used in 

combination with the cTI staging and subtyping the MCM becomes as purely data-driven model 

(the cTI was in fact designed with this purpose in mind).  
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8.3 Limitations 

8.3.1 Systematic review 

 Studies included in the systematic review are highly heterogeneous in terms of population 

demographics and methodology. These issues are similar to those regarding the diagnostic 

classification of AD (Falahati et al., 2014; Rathore et al., 2017). 

 Studies varied considerably on the subjects they included. Studies using small homogenous 

samples may result in the overfitting of data. A major issue with studies is the inclusion of well-

characterized subjects that tend to be at a later disease stage and therefore may find higher accuracy 

because brain changes are more substantial and easier to differentiate. Ideally studies need to 

include patients in the earliest stages of the disease when diagnoses are ambiguous, such as the 

naturalistic symptom-based inclusion approach taken by the Late-Onset Frontal lobe study 

(Krudop et al., 2014). Many studies grouped FTD clinical variants together in analysis. Others 

have indicated that this may lead to the language variants driving the classification, resulting in 

higher performance (Möller et al., 2016). Several studies conducted a group-level analysis and 

then used the significant regions from this analysis in their classification. This will reduce the 

generalizability of the results as the regions used may be biased to the specific group of patients 

included in the study. For these reasons, results reported in these studies may be artificially high. 

Most studies utilized a cross-validation approach, where k subjects are sequentially left out of the 

training group, while others split the subjects into separate training and testing sets. Ideally studies 

should also validate classifiers on a separate independent cohort. It is likely that this would result 

in lower accuracy than the numbers reported in several of the studies included in the systematic 

review, given the methodology used. 



CHAPTER 8.  DISCUSSION  105 

 

 Studies also differed in the metrics used to report results. We reported the most common 

metrics across studies (accuracy, sensitivity, specificity, and AUC). Some studies did not report 

sensitivity/specificity but only accuracy or AUC. While useful, these metrics are not sufficient on 

their own. As only a small number of studies reported balanced accuracy those numbers were not 

reported.  

 Limitations of the systematic review also include the possibility of incomplete retrieval of 

relevant papers, however more than one search engine was used and reference lists of included 

papers were reviewed for additional relevant papers, so this should be minimal. As only published 

studies were included in this review there is the potential for publication bias. The main biases 

identified in the included studies were the exclusion of subjects with abnormalities other than 

atrophy on structural MRI and the lack of an independent testing set. 

Finally, while there has been major improvement in automated structural MRI processing 

pipelines over the years, there remains significant methodological challenges to its application at 

the single-subject level. One of the main limitations to the clinical validity of such methods is the 

variability with regards to sites, scanners, and repeated image acquisitions. This variability leads 

to inconsistency in measurements that reduce the accuracy of diagnostic classifications based on 

subtle differences in atrophy or other morphometric measures. The ideal MRI processing pipeline 

needs to perform robust registration and precise cortical and subcortical segmentation across 

different scanners. It should further be able to perform intra-subject registration to measure subtle 

brain changes over time. Being able to compare subjects to a large database of healthy controls 

across ages, sex and education level is also of significant benefit. 
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8.3.2 Data-driven analyses of genetic FTD 

Data-driven models are always limited by the data in which they utilize; the ability of the 

models to give an accurate picture of disease progression depends on how well the data represent 

the underlying biological processes (Iturria-Medina, Sotero, Toussaint, Mateos-Perez, & Evans, 

2016). Our analyses in this thesis were limited to cross-sectional, group level analyses. Models 

which can use purely cross-sectional data are important and useful especially as longitudinal 

dataset are much less common. The cTI is an example of this type of model which is able to 

uncover temporal patterns and provide accurate staging from cross-sectional data.  

However, group-level studies inevitably mask some of the heterogeneity of FTD. 

Inferences from cross-sectional models make the assumption that biomarker trajectories are similar 

across all individuals. In the MCM analysis, subjects were grouped according to genetic mutation, 

meaning symptomatic subjects with different phenotypes were grouped together, while we do not 

know which clinical syndrome the presymptomatic subjects will eventually develop. This means 

that, while subjects were grouped with similar underlying pathology, the onset of biomarker 

changes and affected brain regions may be highly variable across individuals. In the MCM 

analysis, while we were able to use the cTI staging scores, the cTI was unable to find accurate 

subtypes; subjects were therefore only grouped according to gene mutation. With improvements 

in the cTI subtyping, it may be possible to observe data-driven subtypes within each genetic group, 

which may allow for an average disease trajectory to be obtained from the MCM for each data-

driven subtype. 

The current MCM analysis was limited by the number of subjects with longitudinal data 

available. As such, although the MCM has been formulated for individual analysis, it was not 
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possible to apply the model on an individual level here. Therefore, the data-driven model as applied 

to genetic FTD is not causal in nature, although the generative model itself is. 

A limitation of these analyses is the modalities used. All neuroimaging features used in the 

genetic FTD disease progression models are structural and functional MRI features derived from 

the grey matter. This is because the MCM is currently only able to be applied to grey matter 

metrics. Furthermore, we were unable to include cerebral blood flow (CBF) measures from arterial 

spin labelling (ASL) MRI, as there is currently a wide variety of ASL acquisition protocols used 

across GENFI sites, which made processing this data unfeasible. Several of the included measures 

provide similar, inter-related information to the models, and while each included metric is used as 

a proxy for a different underlying biological process, the precision of these measures may be 

limited, reducing the effectiveness of these methods.  

We were unable to use the FTD-CDR as a measure of disease severity for all subjects in 

the clinical staging in MCM and for the validation of cTI scores as it was not available in the 

majority of individuals.  Finally, we used EYO as a measure of disease severity, both in the first 

two staging systems for the MCM, as well as to validate the cTI disease scores. EYO, as discussed, 

has been shown to be imprecise as a predictor of actual onset (Moore et al., 2020). Furthermore, it 

is likely affected by varied interpretations of the timing of symptom onset. Given the known 

diagnostic delays in bvFTD (Woolley et al., 2011), the accuracy of symptom onset may vary across 

clinical syndromes. However, EYO remains the only predictive estimate of time to symptom onset 

other than age.  
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8.4 Future directions 

8.4.1 Potential biomarkers 

This thesis focuses on MRI-based biomarkers, and primarily on structural changes. The 

systematic review in Chapter 3 focuses on morphometric MRI measures as the majority of studies 

published in this area have focused on morphometry. A few recent studies have looked at the added 

benefit of ASL or fMRI, and suggest that they may provide additional discriminative power. (Bron 

et al., 2017; Tahmasian et al., 2016).  

As mentioned, the disease progression modelling in genetic FTD analyses focused only on 

MRI-based grey matter changes. They would benefit from the addition of other biomarkers, 

providing a wider variety of biological processes. ASL-derived CBF has been shown to be 

decreased in presymptomatic gene carriers (Dopper et al., 2016; Mutsaerts et al., 2019). A crucial 

step in implementing ASL is the harmonization of protocols across centres. While the MCM 

currently includes grey matter metrics only, the cTI allows for the inclusion of all types of 

biomarkers. Including DWI metrics from white matter in future models may provide increased 

benefit to the model. White matter microstructure changes may be an early feature of FTD (Feis 

et al., 2018; Jiskoot, Bocchetta, et al., 2018), and have shown to have high discriminative power 

in the systematic review. The implementation of more advanced DWI acquisitions would allow 

for the inclusion of newer DWI-based white matter metrics, such as fixel analysis, which should 

provide more precise measures of underlying microstructure compared to DTI measures 

(Dhollander et al., 2021). 

Future models would likely also benefit from non-MRI and non-imaging biomarkers. 

FDG-PET, measuring glucose metabolism, is a measure which is already used clinically; 
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hypometabolism has also been observed in presymptomatic mutation carriers (Caroppo et al., 

2015; Clarke et al., 2021; Jacova et al., 2013; Popuri et al., 2021). Neurofilament light chain, 

increased levels of which are thought to reflect axonal damage, has good potential as a prognostic 

biomarker in clinical FTD (Benussi et al., 2020; Rohrer et al., 2016) and presymptomatic mutation 

carriers (Meeter et al., 2016; Rojas et al., 2021; van der Ende et al., 2019). As well, increased levels 

of glial fibrillary acidic protein, a marker of astrocytic damage, have been found in GRN mutation 

carriers as well as in individuals with clinical FTD (Heller et al., 2020; Zhu et al., 2021). 

In including a variety of biomarkers, it is important to balance benefit with clinical 

feasibility, especially for use in clinical settings. Additional MRI sequences can be performed in 

the same session. However, while the addition of more complex imaging metrics may improve 

accuracy in a research context, this would be harder to translate into clinical settings in which long 

MRI acquisition and a stringent quality control process in image processing are not feasible. Fluid 

biomarkers which can be measured from blood samples, such as neurofilament light chain, would 

be highly feasible and minimally invasive. Ultimately, a select number of biomarkers providing 

distinct information to the models, such as a combination of imaging and non-imaging metrics 

may provide the best results.  

The current MCM analysis uses DWI-derived structural connectivity networks. The model 

allows for the inclusion of additional networks. The previous application of this model to AD 

included both structural networks and vascular networks derived from ASL (Iturria-Medina et al., 

2017). It is also possible to include functional networks in the MCM; with the limitation being that 

these networks have an unknown underlying biological basis, unlike structural connectivity, which 

estimates physical connections between brain regions. For this reason, a structural network was 

used in the current analysis. Currently, the MCM can incorporate only grey matter derived 
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neuroimaging measures. Future versions are incorporating the effects of gene expression data and 

molecular data into the model (Adewale et al., 2021). The inclusion of more biological variables, 

from imaging to protein and genes, will constitute a truly integrative mechanistic model of disease 

progression. 

8.4.2 Longitudinal, single-subject level studies 

Individual level studies will be important to help understand some of the complexity that 

is masked by group level analysis, with the availability of more longitudinal datasets. GENFI is an 

ongoing study which continues to collect longitudinal data from participants. This data will allow 

for individual subject MCM analysis. The model has been applied in this manner to AD (Iturria-

Medina et al., 2018). This will allow for the estimation of the variation in disease progression 

patterns in different genetic groups and disease stages.  

Furthermore, individual subject models can be used to predict the time of symptom onset 

in each individual, based on the predicted future trajectories of the included biological and clinical 

markers. Also, on an individual level it is possible to model the influence of external effects, such 

as medications or lifestyle factors, and their effect on the individual’s disease process. Finally, the 

MCM equations can be reversed to estimate which biomarker(s) a potential treatment would need 

to target in each individual (Iturria-Medina et al., 2018). 

8.4.3 Real-life clinical cohorts 

Disease progression models currently remain largely within the research domain. Further 

work is needed to evaluate the usefulness of these types of measures clinically and as validated 

outcomes for clinical trials. 
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Discriminative models need to be feasible for use in clinical practice; a straight-forward 

process that is not time consuming and is easy to interpret is needed, and it needs to be applicable 

across scanner types and centres. This type of method may be especially helpful for those clinicians 

with less experience diagnosing FTD, such as community hospitals and primary care physicians 

that do not have easy access to specialty FTD clinics.  

Significantly, few published studies have attempted to apply machine learning derived 

diagnostic classifiers to real-life clinical settings at the individual level. This is a crucial step given 

that clinical populations are more heterogenous than well-characterize cohorts from large-scale 

imaging studies. For instance, pre-existing brain changes (e.g., past cerebro-vascular accident) and 

co-morbidities (e.g., alcohol use disorder) are commonly seen in memory clinics but are often not 

represented by the training sets of these studies. Only one study identified in the systematic review 

attempted to replicate the typical population of a memory clinic (Klöppel et al., 2015). Although 

this comes with significant challenges and lower accuracy than in the training set (Klöppel et al., 

2015), it is an essential step before recommending the clinical use of these algorithms. In order to 

translate morphometric tools for FTD in clinical practice, it will be crucial to validate the use of 

automated morphometric MRI methods in a naturalistic mixed neuropsychiatric population, such 

as the distinction of those presenting with FTD-like symptoms at baseline into those ultimately 

diagnosed with FTD versus those not. Future studies should validate MRI automated morphometry 

methods in a mixed cohort of early disease stage patients, using final diagnosis (and ideally when 

available proven pathology at autopsy) as a gold standard.  

Biomarkers of the presymptomatic and early symptomatic stage of genetic FTD would be 

a great benefit for future disease-modifying clinical trials, including the development of data-

driven biologically based staging and subtyping. These models could potentially improve patient 
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selection and reduce required sample sizes in clinical trials (Pankov et al., 2016), which would 

accelerate drug discovery. Clear performance measures will also be needed for these applications; 

the model output needs to be easily understandable for users, including the model assumptions and 

the subsequent biases in the model’s predictions, so that the results are not misinterpreted (Oxtoby 

& Alexander, 2017).  

Studies included in the systematic review in Chapter 3 focused predominantly on sporadic 

FTD. This has been rarely studied in genetic FTD, although a recent study conducted single-

subject multimodal MRI classification in presymptomatic mutation carriers compared to non-

carriers, finding DTI metrics outperformed grey matter density and fMRI (Feis et al., 2018). It 

remains to be determined how FTD MRI biomarkers developed with sporadic FTD cohorts would 

fare in a population of genetic FTD given their less typical atrophy patterns extending beyond 

frontal and anterior temporal areas (Rohrer et al., 2015; Whitwell et al., 2012, 2015). Similarly, 

biomarkers developed in genetic FTD will require validation for use in sporadic cases of FTD.  

8.5 Conclusions 

 In summary, this thesis sought to explore the use of computational methods in the 

application of MRI techniques as early-stage biomarkers in FTD. The analyses presented here 

demonstrate the potential for data-driven methods to develop accurate biomarkers of early-stage 

disease processes, while also showcasing some of the limitations and further work required to 

implement these methods most effectively. 

We showed that current evidence provides good support for the ongoing development of 

automated morphometric MRI to improve the diagnosis and prognosis of early stage FTD in 

clinical practice. The inclusion of 3D-T1 MRI sequences in clinical imaging protocols would 
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facilitate the development of these tools, and eventually the integration of these methods in 

practice. However, more studies that use rigorous methodology and prospectively validate findings 

in independent real-life cohorts are needed before this method could be recommended in clinical 

practice.  

We also find promising evidence for the development of unifying staging of heterogeneous 

neurodegenerative disorders using data-driven, unsupervised methods. Neuroimaging features 

show promise as potential biomarkers of disease progression but would most likely benefit from 

being combined with complementary clinical and biological information for optimal staging. 

While further validation work is required, biologically based staging systems are a promising tool 

to monitor monitoring disease progression and treatment outcomes in future clinical trials of 

genetic FTD.  

We are unable to validate data-driven subtypes or uncover average trajectories of disease 

initiation and progression in genetic FTD based on MRI measures alone. A larger dataset and wider 

variety of biomarkers, as well as MCM application on an individual level, will likely lead to 

improved subtyping and understanding of causal mechanisms in future studies. 

Overall, these results contribute to an improved understanding of MRI-based biomarkers 

in early stage FTD, lending themselves to the development of improved biomarkers and clinical 

applications.
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