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Abstract 

Groups where the discrete logarithm problem (DLP) is believed to be intractable have 
proved to be inestimable building blocks for cryptographie applications. They are at the 
heart of numerous protocols such as key agreements, public-key cryptosystems, digital sig­
natures, identification schemes, publicly verifiable secret sharings, hash functions and bit 
commitments. The search for new groups with intractable DLP is therefore of great im­
portance. The study of such a candidate, the so-called generalized Jacobians, is the object 
of this dissertation. The motivation for this work came from the observation that several 
practieal discrete logarithm-based cryptosystems, such as ElGamal, the Elliptie and Hy­
perelliptic Curve Cryptosystems, XTR, the Lucas-based cryptosystem LUC as weil as the 
torus-based cryptosystem CEILIDH can ail naturally be reinterpreted in terms of general­
ized Jacobians. We hext provide, from a cryptographie point of view, a global description 
of this family of algebraic groups that highlights their potential for applications. Our main 
contribution is then to introduce a new public-key cryptosystem based on the simplest non­
trivial generalized Jacobian of an elliptie curve. This work thus provides the first concrete 
example of a semi-abelian variety suitable for DL-based cryptography. 

Les groupes où le problème du logarithme discret est réputé difficile se sont avérés d'une 
importance capitale dans le développement d'applications cryptographiques. Ils sont au 
coeur de plusieurs protocoles tels les échanges de clés, les cryptosystèmes à clé publique, 
les signatures numériques, les procédés d'identification, les partages de secret publiquement 
vérifiables, les fonctions de hachage et les mises en gage de bits. La recherche de nouveaux 
groupes où le logarithme discret est difficile est donc d'une grande importance. L'étude 
de l'un de ces candidats, les Jacobiennes généralisées, fait l'objet de cette dissertation. 
Notre motivation vient de l'observation que plusieurs cryptosystèmes basés sur le logarithme 
discret, tels que ElGamal, les cryptosystèmes sur les courbes elliptiques et hyperelliptiques, 
XTR, le cryptosystème LUC utilisant les fonctions de Lucas ainsi que le cryptosystème 
CEILIDH reposant sur les tores algébriques, peuvent tous être naturellement réinterprétés 
en termes de Jacobiennes généralisées. En utilisant une approche cryptographique, nous 
présentons ensuite une description globale de cette famille de groupes algébriques mettant en 
lumière leur potentiel cryptographique. Notre principale contribution est alors de proposer 
un nouveau cryptosystème à clé publique basé sur la plus simple Jacobienne généralisée 
nontriviale d'une courbe elliptique. Nos recherches présentent donc le tout premier exemple 
d'une variété semi-abélienne pouvant concrètement être utilisée en cryptographie. 



Preface: The Making of ... 

"Lo que vale, cuesta" 
"Whatever is worthwhile, costs" 

- Spanish saying 

1 learned in high school that one should write last what is to be read first. These lines, in 

other words. Well, it may have taken me an extremely long time to reaUy understand why, but 

at least 1 think 1 know now. Indeed, 1 wrote so many lines in the past few months and still, 1 

feel that 1 have more to say (peculiar, but true). You know, things that could not 'fit' anywhere 

else, things that were simply too personal for the somehow rigid framework of a thesis. So here 

1 am, tired but happy, taking sorne time to give myself the liberty to freely transgress all rules 

pertaining to formaI scientific writing for a page or two (so yes, you have my blessing to skip 

this part, as it is absolutely not needed for the sequel). 

Obviously, this document contains the final product of my doctoral thesis, aH bright and 

shiny. The one thing that is missing though is how on earth did this old dream become tangible: 

'The making of'. 

When you liked a movie enough to take the time to listen to the extra features on a DVD, it 

seems that all Making Of have points in common: they first unveil the work of tons of people 

that work behind the cameras, away from the spotlights. It is also a good opportunity to show 

just how delicate it was to film a particular action sequence or that it took no less than fort y 

takes to perfectly capture the emotion of the script. In a nutshell, they rarely say: 'It was a 

piece of cake! AU fun and games!' But since these documentaries are promotions for the movie 

aimed at increasing the ticket sales, it's another story to decide if they faithfully relate what 

really happened behind the scene ... 

In the present case, 1 (unfortunately) do not expect to become a zillionnaire any time soon 

by selling this thesis on eBay. 1 can thus ensure you that the following events really happened 

and that the names of the people and places have not been changed. 

iii 
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This thesis was written using the typesetting system J:}.1EX, while sipping a cup of Earl 

Grey in my cheap but comfy Montreal appartment, wearing a color-faded T-shirt l , joggings and 

slippers Oust like Kathleen Thrner in the opening scene of Romancing the Stone, only much 

prettier). David Usher playing in background, and my lovely cats, Timide and Juliette, deeply 

asleep in their respective boxes2 ••. 

"80 this is the st ory of a girl who really likes cryptography, teaching, swing dancing, 

laughing, home improvement, and gelat03 • In the past few months, she was however 

hibernating and had (virtually) no time for her friends sinee she reeently discovered 

something else that she likes: writing ... " 

Now, that was a real surprise. l mean, l knew l loved to be in front of the class, but l 

had never thought that my teaching experience could ease the writing so much. WeIl l guess 

that explains the tone of this document: motivation for the problems and detailed explanations, 

surrounded by 'whatever works' to make it enjoyable (or so l hope). 

l know, l know, this is not what you want to hear. Okay, aIl right, 1'11 tell you. But at one 

condition: if you ever meet someone who is trying to find a good topic for a thesis, take a minute 

to tell him/her about the true story of the girl who liked gelato. Deal? Now listen carefully. 

The most difficult part of this thesis was without a doubt to find a good problem to work 

on. Something original, ideally about elliptic curve cryptography, not too ambitious, and most 

importantly, something that no body had done before. Hum ... Was that too much to ask for? 

At first, l was reading tons of papers and was overwhelmed by an these publications that 

seemed to be printed at the speed of light. l felt like l was running beside a train going at 100 

mph and could not figure how to jump aboard. And when l tried to tackle several problems, 

most of the time going in circle, asking myself: ls this really a dead end or is there a path to 

follow that 1 don't see yet'? ls it wise to backtrack and try something else'? Or am 1 simply giving 

up too soon'? 

To come to the rescue, l have been lucky enough to have, not only one, but two incredible 

supervisors to help me out: Henri Darmon and Claude Crépeau. They were key actors in the 

cast and crew of people who helped me create what you are about to read. 

lLike the purple and green one that says "Camp Mathématique 1994" (that 1 am simply unable to throw 
away). 

21 dare to reveal these top secret details only because people naturally tend to think that ail cryptographers 
work on supercomputers in a room that needs live access codes to get in ... 

3 Not necessarily in this order. 
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80 1 wish to thank Claude Crépeau, who had enough faith in me for suggesting to become my 

co-supervisor. Even if he has so many students under his supervision, he was constantly there 

for me: always a phone call away when 1 needed help or advice, day, night, and even weekends. 

1 also wish to thank him for letting me choose a topic that was kind of far from his speciality. 

1 also want to thank Henri Darmon, for his constant positive attitude and for all the en­

couragements he gave throughout the process. A true living encyclopedia, but all the while so 

humble, Henri is able to patiently explain the basic concepts with the same enjoyment as the 

deepest ones. 

1 am proud, honored and extremely grateful to have been able to work with such amazingly 

talented researchers, but most of aIl, who are also extremely kind human beings. Claude, Henri, 

je vous adore! 

Huge thanks also go to the people from the Centre for Applied Cryptographic Research 

(CACR) at the University of Waterloo, especially Edlyn Teske and Alfred Menezes, with whom 

1 had the pleasure to work for the last months: 1 have discovered in Waterloo a truly dedicated 

team of researchers; 1 learn a lot with you, and 1 am grateful that 1 could be within such a team. 

To maman and papa, Denise and André, thank you for your unconditional love. Maman, 

thank you for letting me try my (sometimes messy) scientific experiments: from the moth balls 

that magically moved by themselves in a solution of vinegar and p 'tite vache4 to the one time 

when a glass bottle filled with water exploded in the freezer in the middle of the night. Papa, 

thank you for guiding me into discovering this world: 1 remember playing with you in the sand 

with a magnet and be amazed by the iron filings that are naturally present in the soil. And 

most of all, thank you for teaching me that "if something deserves to be done, then it deserves 

to be well done". Thanks also to my little sister Julie who has been my very first (and utterly 

patient) student, and who already knew, in grade 5, about the square root of -1. Maman, papa, 

Juju: ensemble, nous formons une famille exceptionnelle. 

There are so many other people that 1 would like to thank. To aIl of you who closely or 

remotely contributed to the realization of this work, thank you for your time, your understanding 

and your generosity. A special thought goes to Tanja Lange who insisted that 1 attended the 

2004 ECC 8ummer 8chool: it was a truly memorable experience. Geneviève, 1 wish to thank 

you for your friendship, your homemade cookies that could say without a word "1 am behind 

you", and for your wise Japanese advices. Now it is my turn to say Gambatta koudasai! to 

you. 1 also wish to thank the MAGMA team for their gracious developer's license, so that 1 could 

explore generalized Jacobians on the computer at will. 

4This is how kids cali sodium bicarbonate in Quebec, because of the cow drawing that used ta appear on the 
box. 



Finally, 1 wish to express my deepest gratitude to Daniel Lavoie. Dan, you were beside me 

at every moment, helping and supporting me in every way you possibly could (and sometimes 

even more). From cooking to proofreading this thesis; from fixing my (numerous!) computer 

problems to driving 1300 km every weekend to see me in Waterloo; andabove aIl, for holding 

me tight, for your reassuring words and your one of a kind sense of humour, 1 wish to thank 

you. Merci Daniel. Je t'aime. 

Isabelle Déchène 
Montréal, Québec 

September 2005 
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Chapter 1 

Introduction 

«People are going to steal from you. You can't stop them. 
But everybody has their own Little personal security things - things that they think 

will foil the crooks, you know? In your own mind, right? ... You go to the beach, 
go in the water, put your wallet in the sneaker. Who 's gonna know? 

What criminal mind could penetmte this fortress of security? 
"1 tied a bow. They can't get through that". "1 put the wallet down by the toe 
of the sneaker. They never look there. They check the heel, they move on".» 

- Jerry Seinfeld 

Nowadays, everyone is using security measures in their everyday lives: from the lock on the 

door to the car alarm or the account password, chances are that even before 9 am, most people 

will already have used several security mechanisms without even thinking about it. Sorne of 

them have the mandate to protect the confidentiality of information: this is where cryptography 

cornes into play. Luckily, the implementation of cryptographie proto cols are (usually) so "user­

friendly" that virtually 'anyone can easily protect their personal dataI. Cryptography then 

provides the necessary tools to avoid ad hoc methods (such as those often seen at the beach ... ). 

1.1 The Context 

For many, a day at work starts with the coffee-and-email ritual. Sadly, the initial excitement of 

the "You've got mail" has now faded drastically, thanks to the 22 new messages in your lnbox 

since 5pm yesterday. One of them perhaps contains your forgotten password while another, ap­

parently sent by your bank, asks you to validate your personal data. In a world with 167,000,000 

lSuch an example is the freeware version of PGP (Le. Pretty Good Privacy) available at http://www.pgpLorg. 
PGP is a public-key encryption program developed by Phil Zimmermann in the 1990s that now allows to encrypt 
email messages, transform a PC into a sec ure phone or encrypt the entire content of a hard drive. 

1 



2 CHAPTER 1. INTRODUCTION 

users of Yahoo! Mail alone, 

Who should we trust? 

Happily, public-key cryptography is there tohelp protect us. Indeed, it was especially de­

signed to be used by a large number of participants having access to an insecure communication 

channel (e.g. the Internet) in the presence of malicious parties. Loosely speaking, it allows the 

participants to: 

• Encrypt messages that only the intended recipient can decrypt 

• Affix a so-called digital signature to a message so that anyone can check whether it is an 

authentic signature or a forgery 

The protocols used to achieve these tasks often rely on difficult computational problems, 

many of them inspired by number theory. Factoring integers and extracting discrete logarithms 

(DL) in a group are without a doubt the most famous hard problems used in public-key cryp­

tography. 

In a nutshell, this thesis aims at introducing generalized Jacobians (a family of groups known 

by mathematicians for over fifty years) as a new candidate for DL-based cryptography. 

1.2 Motivation 

The sine qua non security requirement on groups used for DL-based cryptography demands that 

the following computational problem be intractable: 

Discrete Logarithm Problem (DLP) 

Let G be a finite cyclic group generated by an element g. 

Given h E G, determine the smallest non-negative integer k such that gk = h. 

This integer is called the discrete logarithm of h (to the base g) and is denoted logg h. 

Now, groups where the discrete logarithm problem is believed to be intractable are not 

only used to encrypt and signed messages [EIG85a, EIG85b]. They are also at the heart of 

various other protocols such as key agreements [DH76b], identification schemes [Sch91, Oka93], 

publicly verifiable secret sharings [Sta96], pseudo-random bit generators [Gen05], hash functions 

[CvHP92], and bit commitments [BCC88]. They are therefore inestimable building blocks for 

cryptographie applications. 



1.2. MOTIVATION 3 

Nevertheless, after nearly thirty years of research, only a handful of groups currently ap­

pear to be practical candidates for DL-based cryptography. This list includes the multiplicative 

group of a finite field, the invertible elements of Zn with n a composite number, elliptic curves, 

Jacobians of hyperelliptic curves, algebraic tori as well as the ideal class group of an imaginary 

quadratic field. Another concern will always be the possibility that an efficient (classical) algo­

rithm for solving the DLP in sorne (or all) of the above groups be discovered. The search for 

new groups with intractable DLP is therefore of great importance. 

In 1985, the landmark idea of Koblitz [Kob87] and Miller [Mil86b] of using elliptic curves in 

public-key cryptography would, to say the least, change the perception of many on the tools of 

number theory that can be of practical use to cryptographers. In 1988, Koblitz [Kob89] gener­

alized this idea by considering Jacobians of hyperelliptic curves, which then led to the broader 

study of abelian varieties in cryptography. Nearly fifteen years later, Rubin and Silverberg 

[RS03] discovered that another family of algebraic groups, namely the algebraic tori2
, also are 

of great cryptographic interest. 

Now on one hand, Jacobians of curves (of small genus) gained the favor of many over the 

years, mostly because of the sm aller key size needed. This attractive characteristic is in fact 

possible since we can easily generate curves for which there are no known subexponential­

time algorithms for solving the corresponding discrete logarithm problem. On the other hand, 

rational algebraic tori over a finite field offer the convenient advantage of possessing a compact 

representation of their elements, which then decreases the amount of information needed to be 

exchanged. 

In a nutshell, cryptographers like Jacobians of curves for their security and care about alge­

braic tori for their efficiency. Thus as far as we can tell, it appears that these two sub-families 

of algebraic groups somehow possess complementary cryptographic advantages. From a mathe­

matical point of view, however, the overall picture looks quite different. Indeed, using a minimal 

background in algebraic geometry, they can both be seen as two realizations of a single concept: 

generalized Jacobians. 

As a result, several existing DL-based cryptosystems, such as the ElGamal, the Elliptic and 

Hyperelliptic Curve Cryptosystems, XTR, the Lucas-based cryptosystem LUC as well as the 

torus-based cryptosystem CEILIDH all possess an underlying structure that can be naturally 

reinterpreted in terms of generalized Jacobians3 . Figure 1.1 provides a simplified view of the 

2Recall that an algebraic group defined over Fq which is isomorphic to (Gm)d over some finite extension field 
is called an algebmic toms of dimension d over Fq. As usual, Gm 9! {x E AJI x of O} den otes the multiplicative 
group. 

3The interpretation of XTR and LUC in terms of tori is due to Rubin and Silverberg [RS03, Section 7]. 
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interrelation between the cryptosystems and their underlying structures. With this new unified 

approach, we could then assert that generalized Jacobians are a rich source of groups suitable 

for DL-based cryptography. 

Gencralizcd Jacobians 

~ 
~ (O'~7\;~ 

EIGamal LUC XTR CEILIDH ECO Hyperclliptic Curve 
Oryptosystems 

Figure 1.1: Relation between DL-based cryptosystems and generalized Jacobians 

This observation then raised the following question at the heart of our research4 : 

Is it possible ta use a generalized Jacobian that is neither a usual Jacobian 

nor an algebraic torus for DL-based cryptography'? 

An affirmative answer would then widen the c1ass of algebraic groups that are of interest in 

public-key cryptography. 

1.3 Our Work 

In a word, the main contribution of this thesis is to confidently answer yes to the above fun­

damental question. This existence result was established by considering the simplest nontrivial 

generalized Jacobians of elliptic curves. 

Before going any further, we present a brief overview of the construction of generalized 

Jacobian varieties [Ros52, Ros54, Ser88]. Let C be a smooth algebraic curve defined over an 

algebraically c10sed field K and m = L PEe m P (P) E Div( C) be an effective divisor5
, thereafter 

called a modulus. Two divisors D and D' of disjoint support with mare said to be m-equivalent, 

and we write D "'"'m D', if there exists an f in the function field of C such that div(f) = D - D' 

and ordp(l- f) ::::: mp for each P in the support of m. Let Pic~ (C) be the group of m-equivalence 

classes of degree zero divisors having disjoint support with m. Then, there exists a commutative 

4 AfteralJ, generalized Jacobians had previously been used in co ding theory [Gop88, Chapter 4], so their poten­
tial for practical applications had already been demonstrated (making them an even more attractive candidate). 

5That is, each mp is a nonnegative integer and only finitely many of them are nonzero. 
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algebraic group Jm , called the genemlized Jacobian of C with respect to m, which is isomorphic 

to Pic~(C). 

The explicit family of generalized Jacobians that we considered can now be simplly described 

as follows. Let E be a smooth elliptic curve defined over the finite field F q with q elements 

and let B E E(Fq) be a point of prime order l. Let also m = (M) + (N), where M and N 

are distinct points of E(Fqr) such that M,N f{. (B), and r ~ 1 is a chosen integer. Finally, let 

Jm be the generalized Jacobian of E with respect to m. Figure 1.2 illustrates the relationship 

between various structures of algebraic geometry in order to put these generalized Jacobians in 

perspective. 

AJgebrait! varieties 

Algebraic gl'oups 

Commutative algebraic groups 

A belÎan variet,ies 

Figure 1.2: The generalized Jacobians in perspective 

These test groups are in fact semi-abelian varieties which are extensions (of algebraic groups) 

of an elliptic curve by the multiplicative group (Gm. Recall that a commutative algebraic group 

S is called a semi-abelian variety if there exists a short exact sequence of algebraic groups6 

1 --+ T --+ S --+ A --+ 1, 

where T is an algebraic torus and A is an abelian variety. 

In order to put these groups to the test, there are several efficiency and security aspects to 

consider. Indeed, recall that there are four main requirements for a group G to be suit able for 

DL-based cryptography. Namely, 

• The elements of G can be easily represented in a compact form, 

6For information about extensions of algebraic groups, please refer to [Ser88, Chapter VII]. 
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• The group operation can be performed efficiently, 

• The DLP in G is believed to be intractable, and 

• The group order can be efficiently computed. 

In order to obtain a compact and convenient representation for the elements of Jm and a 

group law algorithm using this representation, we first obtained an explicit bijection 'l/J of sets 

between Pic~(E) and (Gm xE. Thus in this particular case, an element of Jm can be viewed as 

a pair (k,P), where k E (Gm and PEE. The known addition on Pic~(E) could then be used 

to endow, via 'l/J, the set (Gm x E with the desired group structure. More explicitly, let (kI, Pl) 

and (k2 , P2 ) be elements of Jm such that Pl, P2 , ± (Pl + P2 ) rt {M, N}. Then, 

where Cm : E X E -+ (Gm is the 2-cocycle given by 

and fp,Q denotes the equation of the straight line passing through P and Q (tangent at the 

curve if P = Q). 
As a consequence, lF~r x (B) is a finite subgroup of Jm of order (qr - 1) . l for which the 

elements are compactly represented and the group law is efficiently computable. In addition, 

we also described how to choose a suit able modulus, speed-up scalar multiplications and select 

parameters such that lF~r x (B) is a cyclic group. 

As for security, as soon as lF~r x (B) is a cyclic subgroup of Jm , we obtain the following 

reductions among discrete logarithm problems: 

The DLP in lF~r x (B) is at least as hard as the DLP in (B) ç E (lFq ) 

and at least as hard as the DLP in lF~r. 

Furthermore, extracting a discrete logarithm in lF~r x (B) can always be performed by se­

quentially computing a discrete logarithm in E followed by one in lF~r. Moreover, it is possible 

to proceed in parallel when l t (qr - 1), while this is still an open question in the case of curves 

suit able for pairing-based cryptography. 

Finally, we have also investigated several scenarios involving precomputations in order to 

further study the DLP in lF~r x (B). To this end, we empirically compared generalized Jaco­

bians with the Classical Occupancy Problem. This preliminary study suggests that none of the 

proposed scenarios is faster than the known methods described above. 
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Thus from a practical point of view, these results imply that even though generalized Ja­

cobians are newcomers in cryptography, we already know that solving their DLP cannot be 

easier than solving discrete logarithms in two of the most studied groups used in DL-based 

cryptography today. 

1.4 Guided Tour of this Dissertation 

Cryptographers come from various horizons, like engineering, computer science, physics and 

mathematies. As a result, their background knowledge greatly vary, which certainly contributes 

to the richness of this community. On a more down to earth consideration, it also inevitably 

implies that an accessible text in this domain should include a broader treatment of the under­

lying nuts and bolts. For this reason, we (tried to) rise to the challenge of writing a thesis that 

was as self-contained as possible. These lines were thus written with more than one targeted 

public in mind. 

Chapter 2 is intended as a solid introduction to the numerous uses of discrete logarithms, 

written for scientists making their first steps in the uni verse of cryptography. From the classical 

Diffie-Hellman key-exchange to the elegant coin-fiipping by telephone, this chapter covers the 

essentials of DL-based cryptography while relating its short but fascinating historieal develop­

ment7 . 

Follows Chapter 3 on algebraic curves, whieh aims at allowing cryptographers having little 

or no background in algebraic geometry to learn more about the tools cryptographers "borrow" 

from algebraic geometry. More specifically, the first underlying objective is to concisely present 

the notions and results needed to understand the arithmetie of algebraic curves (and thus set the 

table for generalized Jacobians). The second wishes to give a fiavor of the methodology followed 

to test the suitability of a group for DL-based cryptography. This goal is notably achieved by 

studying the simple hands-on example of the Pell equation8 • 

Hence both Chapter 2 and 3 may be read independently from the rest of the text. We 

believe that Chapter 2 is accessible to motivated undergraduates, while Chapter 3 should be 

within reach of master's students in both mathematics and computer science. 

Generalized Jacobians are finally presented in Chapter 4. In order to follow an approach by 

exploration, the emphasis is put on the cryptographie potential of these structures. The key 

ingredient in the construction of both usual and generalized Jacobians is the equivalence relation 

7For instance, it seems that few people know that the secret-key cryptosystem of Pohlig-Hel!man [PH78], 
which was proposed shortly before RSA [RSA78], can actually be seen as its direct ancestor. 

BTo the best of our knowledge, it is the first time that the Pel! equation is used as an introduction to torus­
based cryptography. 
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(on the divisors of the curve) one considers. Linear equivalence give rise to usual Jacobians, while 

m-equivalence characterize generalized Jacobians. Understanding the similarities and differences 

between them will help us choose the specifie candidates we will put forward in Chapter 5. Lastly, 

our coup de coeur in this chapter is the concluding section presenting several cryptosystems 

falling in the spectrum of generalized Jacobians. 

The (exciting) program of Chapter 5 is to introduce the first practical public-key cryptosys­

tem based on a generalized Jacobian that is neither a torus nor a usual Jacobian. Starting from 

the abstract definition of generalized Jacobians in terms of divisor classes, we successively prove 

that all the basic requirements for a group to be suit able for DL-based cryptography are fulfilled. 

This therefore shows that generalized J acobians are worth exploring towards the realization of 

new public-key cryptosystems. 

Finally, we conclude with a quick summary in Chapter 6, which is of course followed by an 

extensive list of open problems for further work. 



Chapter 2 

The Diserete Logarithm and its 
Cryptographie Signifieanee 

"We stand today on the brink of a revolution in cryptography." 

- Diffie f3 Hellman 

This opening chapter aims at providing the cryptographie motivation towards the hunt for 

finite groups for which the group law is efficiently computable and its discrete logarithm problem 

seems intractable. It is really just a glimpse into the universe of cryptology and by no means a 

review of the literature of discrete logarithms in cryptography. Instead, we have selected classical 

protocols that, to our eyes, suffice to demonstrate what a powerful tool discrete exponentiation 

is for cryptographers. Here and there, we also tried to include a historical perspective in order 

to link seemingly unrelated problems (and hopefully keep awake readers who already saw this 

material an exponential number of times). 

Everybody has an idea of what a cryptosystem is. Kids usually associate secret messages 

with spies l , while adults are glad they exist so that they can safely shop online. 80 before we 

even skim over the subject, it might not be a bad idea to simply set things straight and recall 

the definition of a cryptosystem we will be working with: 

Definition 2.1 A cryptosystem is a quintuple (P, C, K, t:, V), where P, C and K are finite sets 

whose elements are respectively called plaintexts (or clear texts), ciphertexts and keys. Each key 

k E K is associated with an encryption rule ek : P -> C in t: and a decryption rule dk : C -> P 

in V su ch that dk(ek(m)) = m for all mE P. 

l'Are you a spy?' is indeed the #1 question elementary school children ask me when 1 hold my workshop on 
secret messages. 

9 
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2.1 The Holy Grail of Cryptography 

Throughout this chapter, (G, 0) (or simply G), will denote a group. That is, a nonempty set G 

together with a binary operation 0 : G x G -+ G satisfying 

• ao (boc) = (aob) oc for all a,b,c E G 
• There is an e E G such that e 0 a = a 0 e = a for all a E G 
• For each a E G, there is a a' E G satisfying2 a 0 a' = e 

(associativity property) 
(existence of the identity) 
(existence of an inverse) 

Exactly, just how much algebraic background do es one need in order to build an unbreakable 

cryptosystem? The integral of Hungerford's book [Hun74]? Not quite. In fact, the above three 

seemingly innocent properties suffice to ensure perfect secrecy. 

Here is how it works. First, Alice and Bob take their favorite finite group G, say with n 

elements, and secretly agree on a (randomly chosen) element k E G which will serve as the key. 

Then, Alice chooses the message m E G she wishes to encrypt and sets the ciphertext to be 

c = m 0 k, which she then sends to Bob over an insecure channel. 

An opponent, Eve, can then try to make deductions from the value c she eavesdropped. In 

other words, she wishes to know if there is any information about the message or the key leaking 

from the ciphertext. 

Now, to the equally probable keys k l , k2 , ... , kn respectively correspond the potential mes­

sages ml := co kil, m2 := co kil, ... , m n := co k:;;l. Since G is a group, these n messages 

are distinct and so each element of G appears exactly once in this list. In other words, there 

are precisely n pairs (ml, k l ), (m2, k2), ... , (mn , kn ) of messagejkey that yields c as ciphertext. 

Therefore, given a ciphertext c and a uniform distribution on the keys, it is impossible for Eve 

to develop a bias towards or against any of the messages. That means that the knowledge of c 

is in fact useless to Eve, which is the best that one can hope for in a cryptosystem. 

Also notice that a key should never be used systematically. For if c = m 0 k and c' = m' 0 k, 

then Eve could eavesdrop c and c', compute c' 0 c- l which equals m' 0 m- l . From the n2 pairs 

of possible messages (m, m'), Eve can now narrow her search only to the n pairs satisfying 

m' 0 m- I = c' 0 c- I . As a result, a key should always be used only once. 

This so-called One-time Pad was developed during World War 1 and was described by Gilbert 

Vernam in [Ver19, Ver26] using the letters of the English alphabet and the addition provided by 

the Vigenère square [Ker83]. Vernam claims that "If [ ... ] we employa key composed of leUers 

selected absolutely at random, a cipher system is produced which is absolutely unbreakable". 

However, a formaI proof could only be provided once Claude Shannon introduced the concept 

of perfect secrecy at the end of the 1940's [Sha48, Sha49]. 

2Notice that these three properties imply that al 0 a = e as weil. 
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But despite its great elegance and simplicity, serious drawbacks arose in practice. For in­

stance, the key needed to be as long as the message and since the keys were disposable, a huge 

amount of random (or nearly random) data needed to be generated. Sorne other difficulties, as 

we will see in the next section, were common to aIl secret-key cryptosystems as weil. 

From this point on, we will drop the cumbersome notation (G, 0) and will simply write G as 

a multiplicative group (that is, a 0 b will now be written as ab or a . b). 

2.2 Limitations of Secret-key Cryptography 

With any symmetric cryptographie system, no matter how efficient, there are certain prob­

lems that seem to be inevitable. In the late 60s, the idea that each of us would have a personal 

computer connected to the Internet and that we could find an ATM around every corner (respec­

tively the so-called 'computer controlled communication network' and 'remote cash dispensers' 

of Diffie and HeIlman[DH76b, p. 644]) was already in the foreseeable future of many. It was just 

a question of time before the need for secure communications would be required by ordinary citi­

zens. From the government and the military to Alice and Bob, the typical user of cryptographie 

techniques would drastically change. However, secret-key cryptography was well-suited for a 

small number of participants only. Indeed, if the number of parties with no prior acquaintance 

was rather large, many partially or unanswered questions were left to be solved: 

• Key distribution. The key must be known only by Alice and Bob. If they have access to 

a secure channel, then this problem is readily solved. But what if they don't? 

• Amount of keys. A set of N persons want to be able to communicate two-by-two in a 

secure fashion. Then each of the (~) distinct pairs of individuals have to share a key. So, 

a total of roughly N 2 keys must be shared and each person has to securely store N - 1 

keys. Can this be improved? 

• Authentication and nonrepudiation (threat of dispute). Say Bob agreed to lend money 

to Eve. In return, Eve sends back the encrypted message: "J, Eve, hereby confirm that 

J owe 1000$ to Bob". Of course, Eve may wish to deny having sent such a message. 

But with secret-key systems, the key is also known by Bob, which means that he could 

have produced the message himself. How to ensure that Eve cannot deny having sent this 

message? 
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Certainly, it was conceivable that cryptographie proto cols that would solve each of these 

problems separately could be designed, but who would have thought that a single concept could 

simultaneously solve them aIl... 

2.3 Key Agreement 

For now, let's solely address the key distribution problem. Suppose that Alice and Bob only 

have access to an insecure channel and that they have no prior acquaintance (so that they do 

not already share a key), but are however able to mutually identify each other. They therefore 

want to agree on a key only by discussing over a public channel. Of course, by listening to this 

conversation, Eve must not be able to recover the key (and in an ideal world, not even a iota of 

information about it). 

2.3.1 A Simple Model 

But to realize such a scheme, what tools are we exactly looking for? Perhaps an easy visualization 

of this protocol could help. Assume that Alice has identical copies of a padlock PA for which 

only she knows the secret combination a. Similarly, Bob possesses padlocks PB for which he is 

the only one to know the corresponding combination b. Alice then gives a closed padlock PA to 

Bob and he also sends a closed PB to Alice: 

Simple Model for a Key Agreement 

Alice Bob 

Secret a Secret b 

Now, Alice can interlock PA and PB since she can close a PA around the PB received from 

Bob. Of course, Bob can also close a PB around PA and the resulting interlock owned by Alice 

and Bob will be identical. Moreover, Eve only has access to the two closed padlocks PA and 

PB. Henee, it seems that the only way she could produce the interlock is to be able to open at 
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least one of PA or PB. So, in this setting, the interlock shared by Alice and Bob plays the role 

of the secret key. 

Needless to say, padlocks are objects that are easy to close, but hard to open for anyone 

who does not know the secret combination. So the tool we are looking for has to be a trapdoor 

one-way function: easy to compute in one direction and hard to invert3 unless you possess a 

sensitive piece of information, called the trapdoor. Of course, the trapdoor must always remain 

secret. Now cornes the true challenge: finding such a function explicitly. In the next section, we 

make a brief digression in order to discuss one possible candidate and we will return to the key 

agreement problem in Section 2.3.3. 

2.3.2 Discrete Exponentiations and Logarithms 

It's no secret: cryptographic devices evolve with technology. So, after the widespread use of 

rotor machines4 from the 30s to the 50s and their crucial role during World War II, they began to 

be replaced by cryptosystems based on shi ft registers. And with every novel approach, numerous 

interrogations arise. "Given a possible state S of the register, how many shifts k were performed 

from the initial configuration 17" is such a natural question. The process of recovering k from S 

is called 'solving a discrete logarithm problem '. This problem can also be stated in an arbitrary 

group: 

Discrete Logarithm Problem (DLP) 
Let G be a finite cyclic group generated by an element g. Given h E G, determine the smallest 
non-negative integer k such that gk = h. This integer is called the discrete logarithm of h (to 
the base g) and is denoted logg h. 

Hence, since the 1950s, discrete logarithms (DL) played a role in cryptography. As for the 

inverse operation, the (discrete) exponentiation 

gk :=g' g ..... 9 
~ 

k times 

can be computed much faster than the k-1 multiplications that the definition suggests. Actually, 

Indian mathematicians of circa 200 B.e. already had discovered a pro cess that is still in use 

today. Their method is described in the Sanskrit book Chandah-sûtra of Acharya Pingala 

3In an average-case sense. For exact definitions, please refer to [GolOl, Section 2.2]. 
4 Like Enigma (German), Typex (British) or SIGABA (American). 
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and curiously, no trace of this rule was found outside of India for the next thousand years5 . 

Incidentally, the oldest known description of the binary numbers is also attributed to Pingala. 

Using today's terminology, their rule guarantees to compute gk by performing at most 210g2 k 

group operations. This is easy to see. Let (bmbm-l ... blboh be the binary representation of k 

(with bm = 1) so that k = 2mbm +2m- 1bm_1 + ... +2b1 +bo. Start with g = gb= and successively 

compute 

b Square & Multiply ( b)2 b 1 Square & Multiply ( 2b +b 1)2 b 2 Square & Multiply g = "Vt g = . g =- "Vt g = =- . g =- "Vt 

(g22b=+2b=_1 +b=_2? . gb=-3 Square ~ultiPly ... Square ~ultiPly (g2=-1b=+2=-2b=_1 + ... +b1)2 . gbo• 

As wanted, the last expression computed, g2=b=+2=-1 b=_1+ ... +2b1+bO, equals gk. This technique 

is nowadays often referred to as the (Ieft-to-right) binary method or 'square-and-multiply'6. It 

hence provides an efficient algorithm 7 to perform discrete exponentiations in an arbitrary group 

G. 

On the other hand, extracting discrete logarithms can be really easy in sorne groups and 

intractable in others. For example, in the additive group Z/nZ = {O, 1, 2, ... , n - 1} of integers 

modulo n, we have for g = 1 and any h E Z/nZ, 

h =1 + ... + 1= h . g, 
~ 

h times 

so that the discrete logarithm logg h = h is not hidden at ail. But we also have that 

Any two cyclic groups with the same number of elements are isomorphic. 

For if C and D are two cyclic groups of order n generated by c and d respectively, the isomorphism 

between them is given by 

(2.1) 

5 A fascinating historical account is depicted by Donald Knuth in [Knu81, Section 4.6.3], where references are 
given as weil. 

oIf the group is written additively (as in the case of elliptic curves), it is sometimes also called the 'double­
and-add' method. 

7 Of course, it can be modified and improved in various ways, using signed representations, non-adjacent forms 
(NAF) or sliding windows for instance. See [Gor98] and [MvOV96, Sections 14.6, 14.7] for details as weil as 
[BSS99, Section IV.2] for a comparison of several methods for elliptic curves. 
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This implies that for each positive integer n, aU cyclic groups of order n are isomorphic to 

(Z/nZ, +). In particular, 

Every cyclic group is isomorphic to one for which solving the DLP is trivial 

In algebra, we often regard two isomorphic groups as being 'the same' since they carry the same 

structure. However, one must really be cautious when it cornes to computational problems, as 

two isomorphic groups can behave quite differently. For example, the cost of the group operation 

in two isomorphic groups can greatly vary8. So the complexity of computational problems, like 

the DLP, crucially depends on the specific representation of the elements as well as the group 

law algorithm. 

Then why don't we use the above isomorphism (2.1) to 'transport' our problem to another 

group where it is easier to solve? Obviously, in order to have advantage to proceed this way 

in practice, the algorithm that computes this isomorphism must be faster than computing the 

discrete logarithm directly. 

A really tempting instance is to try to compute an isomorphism <p from a given group G = (g) 

of order n (in which we want to solve DLPs) to the additive group Z/nZ. Let a := <p(g), and 

so gcd(a,n) = 1 (since a has to generate (Z/nZ,+)). Now, <p(gk) = ka, which means that if 

we can solve DLPs in G, then we also know how to compute <p. Conversely, k = <p(gk) . a-1 so 

that if we can evaluate <p, then with the simple help of the extended Euclidean algorithm (to 

compute a- 1 ), we can compute DLPs as well. Hence, we have that 

The DLP in G is polynomial-time equivalent to explicitely computing the isomorphism <p. 

So in this case, computing the isomorphism is not an easier way to proceed. However, this 

approach can sometimes work. This is in fact the successful idea behind the MOV9 attack 

[MOV93]: to reduce the DLP for supersingular elliptic curves to the one in the multiplicative 

group of a finite field. 

If we now go back to 1976, it was then known that the DLP in lF; appeared to be a really 

difficult problem (where lF; is the multiplicative group of the finite field lF p with a large prime 

number p of elements). In fact, the best known algorithms required roughly vP operations. One 

such algorithm is due to Shanks [Sha71] (despite the fact that Diffie and Hellman are only citing 

Donald Knuth's Art of Computer Programming [Knu73, Exercise 5.25 with solution p.591] as 

reference). Another was the Pohlig-Hellman method [PH78] which was already submitted when 

the invited paper [DH76b] appeared, but was in fact only officially published in 1978. Thus, 

8Just think about the relative cost of a multiplication in lF~ compared to an addition in 1,/(q - 1)1,. 
9Menezes-Okamoto-Vanstone 
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only exponential-time algorithms were known back then. In 1979, however, a subexponential­

time algorithm was discovered by Adleman [AdI79]. Since then, the methods were of course 

diversified, improved and polished, but up to this date, no polynomial-time algorithm for solving 

this problem on a convention al computer is known (see Section 2.7 for details). 

2.3.3 Diffie-Hellman Key Exchange Proto col 

Recall that following the intuition given by the padlock analogy, we might be able to find a 

way to exchange a key over a public channel with the help of a trapdoor one-way function. On 

the other hand, we know that discrete exponentiations can be computed efficiently and that 

discrete logarithms seem to be hard for suitably chosen groups. These are so far the properties 

of a one-way function. We now need to determine the trapdoor, which has to enable its bearer 

to easily compute a particular instance of the DLP. But if Alice first chooses the value of the 

dis crete logarithm, she can then easily use exponentiation in order to build the instance of the 

DLP that will be hard to solve for anybody but her. Thus, an easy strategy to create a trapdoor 

is to begin by choosing the answer, and then build a tricky question from it (just like creating 

a crossword puzzle). So Alice would do the following: 

1. Pick the secret exponent a 
2. Compute h := ga in private 
3. Make her challenge h public 

(Alice first chooses her secret combination) 
(She closes her padlock) 

(She challenges anybody to open it) 

Bob also performs steps 1-3 with his secret b. One last thing that needs to be done is to find 

how to 'interlock' ga and gb such that: 

1. The interlock computed by Alice and Bob must agree (they want to share the same key). 

2. It must be (computationally) unfeasible for Eve to recover the interlock. 

Knowing a is the only advantage that Alice has over Eve: she then has to use it when com­

puting the interlock. Hence, Alice needs to combine a and gb in a nontrivial fashion. Similarly, 

Bob has to combine band ga. Two easy candidates for the interlock are ga+b = gb+a and 

gab = gba. The first choice is instantly ruled out since ga+b = ga . gb can also be computed by 

Eve. As for the second choice, can one easily compute gab from ga and gb? The obvious strategy 

for Eve would be to recover a from ga and then compute (l)a. So we really want the DLP in 

G to be as hard as possible. What else can Eve do? Nothing obvious, at least. We will come 

back to this question shortly. But first, let's write down properly what we have so far. 

From the above discussion, Alice and Bob can publicly agree on a key by first choosing a 

cyclic group G with generator 9 and then by exchanging ga and gb. And throughout this process, 
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only the values of a and b need to be secret. As soon as the key k = gab has been computed by 

both parties, Alice and Bob are free to use it with any secret-key cryptosystem they like. 

Diffie-Hellman Key Exchange Protocol (DHKE) 

Alice 

Private a 

Bob 

Once written in such a compact form, this really clever idea often seemed like 'the obvious 

thing to do'. But when venturing in new territories, it was everything but obvious. In May 1975, 

Whitfield Diflie had the revolutionary idea of splitting the key into a public and a private part. 

The conference paper 'Multiuser Cryptographie Techniques' [DH76a] was written with Martin 

Hellman in December that year, and still no concrete realization of the scheme was known. In 

the spring of 1976, Pohlig and Hellman were putting the final touch to their paper [PH78], 

where they used discrete exponentiation to build a secret-key cryptosystem. And in May 1976, 

Hellman realized how to use exponentiation to build the key exchange. This was just before 

the submission of the New Directions in Cryptography10 and right on time for their first official 

public disclosure of their results at the National Computer Conference on June 8th. So a whole 

year had passed between the spark of genius and the explicit algorithm ... 

Now, the security of this elegant proto col relies on the difficulty of solving the 'Computational 

Diffie-Hellman Problem'. 

Computational Diffie-Hellman Problem (CDHP) 
Let G be a finite cyclic group generated by an element g. Given G, g, ga and gb, determine gab. 

As noticed ab ove , this problem is no harder than the discrete logarithm problem. That is, 

CDHP::;pDLP. On the other hand, suppose that we can solve the CDHP. Then does this yields 

a method to solve the DLP? In general, this is an open question: we simply do not know if these 

two problems are polynomially equivalent. However, at CRYPTO '94, Ueli Maurer [Mau94] gave 

strong evidence of this equivalencell , which was then refined with the collaboration of Stefan 

Wolf [MW96] at CRYPTO '9612 . Antoine Joux and Kim Nguyen subsequently used their work 

lOWhose manuscript was received on June 3rd. 
11 using a modified version of Lenstra's elliptic curve method for factoring integers [Len87]. 
12 A journal version of this work is also available [MW99]. 
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in order to give con crete examples of certain elliptic curve groups where the two problems are 

provablyequivalent [JN03]. 

We now briefly return to the possible attacks that Eve might try under the assumption that 

she cannot solve discrete logs. In the vast majority of the cases, we do not know whether the 

CDHP and the DLP are equivalent or not. This implies that under our assumption, no one 

has been able to devise an efficient algorithm to solve the CDHp13, not even Eve. Hence for 

a passive adversary which merely listens to the conversation, the only known efficient attacks 

require solving discrete logarithms. 

In the case where Eve is an active adversary and can 'manipulate' the data transmitted 

between Alice and Bob, the situation is quite different. One possible game that Eve can play is 

the so-called man-in-the-middle attack. This is similar to the trick where in a completely dark 

room, Alice and Bob think that they are shaking each other hands, while in reality they are 

both shaking Eve's hands who is standing between them. Hence, Eve's strategy is to intercept 

the data and replace it with her own. 

Man-in-the-middle attack 

Alice Eve Bob 
ga a' 

Private a Private a' 9 
--> --> 

b' gb 9 Private b' Private b +-- +--

k' = (l')a k' = (ga)b' kil = (l)a' kil = (ga'? 

In doing so, Eve now shares k' with Alice and kil with Bob. However, Alice and Bob no 

longer share k. Eve can then send encrypted messages to Alice using k' and chances are that 

Alice will believe that the message really came from Bob. And with the help of kil, Eve can 

also impersonate Alice to Bob. When agreeing on a key, Alice and Bob should then be able to 

verify that the data they received truly came from the other party. In such an authenticated key 

agreement scheme, Eve will therefore no longer be able to perform a man-in-the-middle attack. 

For instance, digital signatures were used in the Station-to-station Proto col (STS) of Diffie, 

van Oorschot and Wiener [DvOW92] in order to modify the classical Diffie-Hellman and achieve 

authentication. The MT! key agreements protocols of Matsumoto, Takashima and Imai [MTI86] 

are modifications of the original scheme as weIl. Their technique exploits the idea of an implicit 

key authentication which does not rely on digital signatures. 

13Since otherwise, this would show that the two problems are not equivalent! 
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There is yet another way to ensure that Eve cannot act as a man-in~the-middle. Recall 

that the 'partial keys' ga and gb can be made public without any problem. Suppose we have 

a trusted (read only) public directory containing the name and corresponding partial key for 

each participant. Then, we can think of this directory as a predistribution of the keys sinee now, 

Aliee can compute the key (gb)a without the help of Bob. Of course, this is no longer a true 

interactive key agreement sinee the key shared by Aliee and Bob can no longer be changed at 

will. 

Diffie-H ellman Key Predistribution 

Alice 
Private a 
Message m 

k = (gb)a 

Bob 
Private b 

e~) k = (ga)b 

dk(ek(m)) = m 

Public Directory 
Name Key 
Alice ga 

Bob gb 

This predistribution scheme was also described in the landmark paper [DH76b] and this 

slightly different way of regarding this protocol really highlights the public-key nature of this 

algorithm. 

We have here described the key-exchange in a group C, which seems to be a prerequisite 

to build such a scheme. However, at CRYPTO '89, Buchmann and Williams [BW90] described 

the first version of the DH key-exchange that did not need an underlying group structure. This 

surprising result was achieved by using real quadratic fields and is described in much details in 

the Journal of Cryptology version [BSW94], with co-author Renate Scheidler. 

2.4 Public-key Cryptosystems 

Following Auguste Kerckhoffs' second 'desideratum de la cryptographie militaire' [Ker83]: 

"Il faut qu'il (le cryptosystème) n'exige pas le secret, et qu'il 
puisse sans inconvénient tomber entre les mains de l'ennemi". 

That is, the cryptosystem must not be required to be secret, and it must be able to fall into 

the hands of the enemy without inconvenienee. Therefore, aU the security must reside in the 

key. So for a really long time, people thought that keeping the key entirely secret was a sine qua 

non condition to ensure secrecy. Whitfield Diffie didn't think that way. His audacious idea of 

splitting the key into two parts such that revealing the first part did not compromise the second 

truly deserved the title of anew direction in cryptography [DH76b]. 
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2.4.1 A Simple Model 

As with key agreements, an interesting analogy with padlocks can be made. Just as before, Bob 

has identical copies of a padlock PB for which he is the only one to know the secret combination 

b. Bob then puts several copies of his open padlock at the disposaI of anyone who would like to 

send him secured messages. Notice that the fact that open padlocks are publicly available does 

not compromise b. Now, if Alice wants to send a message m to Bob, she first gets Bob's open 

padlock PB from a reliable source14 . She then places m in a safe, locks it with PB and sends it 

to Bob. FinaIly, Bob is the only one who can recover m since he is the unique person to know b. 

Simple Model for a Public-key Cryptosystem 

Alice 

Private a 
Get Bob's open padlock PB 
Put message m in safe, 
then close PB 

ûJJ············~ 
i il ! : : 
;. ~ 

Bob 

Private b 
Open the safe 
using b 
and recover m 

Public Supply 
N ame Padlocks 

Alice 

Bob 

This simplified view thus suggests that each user should now have a private key k, which is 

kept secret, and a public key K which is known to everyone. Tt must then be computationally 

infeasible to recover k from K. If Alice wishes to send a message m to Bob, she then simply looks 

up Bob's public key K B from a trustable source and then encrypts m with the public encryption 

function eKB (m). In turn, Bob can recover the plaintext by applying the decryption function 

dkB(eKB(m)) = m. Thus, each user must be able to create a pair of keys (k,K) such that 

dk(eK(m)) = m for aIl possible messages. Of course, this has to be done by either computing 

K from k or by choosing them simultaneously15. Because of this dual key system, public-key 

systems are often referred to as 'asymmetric cryptographie systems', in opposition to symmetric 

key systems where the same key is used to encrypt and decrypt messages. 

So now, Alice and Bob no longer have to share the same key. In fact, since the cryptosystem 

itself is publicly known, K B is the only other piece of information that is needed in order to send 

messages to Bob. This implies that a newcomer can send encrypted messages to Bob without 

even creating keys for himself. This property certainly contrasts with secret-key cryptography 

and with the predistribution scheme of the previous section. 

Another property of asymmetric systems is that once Alice has encrypted her message for 

14Since otherwise, Eve might try to give her own padlock to Alice and make her believe that it is in fact Bob's 
padlock. 

15Since we assumed that it is not possible to compute k from K. 
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Public-key Cryptography (PKC) 

Alice 

Private kA 

Message m 

Bob 

Private kB 

dkB(eKB(m)) = m 

21 

Public Directory 
Name Public Key 
Alice KA 
Bob K B 

Bob, she is no longer able to recover the plaintext from it. Hence, if she wants to keep a copy of 

the message, she should either keep a copy of the plaintext, or for more security, store eKA (m) 

(instead of eKB(m)). 

2.4.2 Pohlig-Hellman Secret-key Cryptosystem and RSA 

Although the concept of public-key cryptography was crystal clear in the minds of their inventors, 

they were unfortunately unable to find a concrete scheme to include in their 1976 papers. In 

[DH76a], they declared with a shrug 

"At present, we have neither a prao] that public-key 
systems exist, nor a demonstration system" 

But as we now see, they were in fact really, really close to a positive answer. The manuscript 

of the Pohlig-Hellman paper [PH78] was submitted only two weeks after [DH76bj16 had been. 

We often think of [PH78] as being an algorithm for computing discrete logs, but the paper also 

contained a secret-key cryptosystem based on discrete logarithms in lF;. The key comprised the 

two elements d and e between 1 and p - 1 such that 

de == l(mod4>(p)). 

The encryption and decryption rules on a message m and corresponding ciphertext c were 

performed as follows: 

c = me modp and m = cd modp. 

This is already similar to a PKC since the key is split in two parts. However, if the value of e 

is revealed, then 

16Notice that even if the article of Pohlig and Hellman was submitted in June 1976, it was only officially 
published in January 1978. 
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is easy to recover since 4>(p) = p - 1 is trivial to compute from the public value p. Hence, the 

prime p has to be replaced by a composite integer n such that computing Euler's totient function 

from n is computationally unfeasible. Recall that 

(2.2) 

where pr l p~2 ... pc;.N is the prime factorization of n, the Pi 's are distinct and each ai > O. From 

(2.2), we see that computing 4> is easy if the factorization of n is known. 

But what if the factorisation of n is not known? 

The answer to this simple question was indeed the bridge between secret and public-key 

cryptography. In the simplest case where n = pq is the product of two distinct primes p < q, we 

have that 

4>(n) = (p - l)(q _ 1) = (p _ 1) (~ _ 1) = (p - l)(n - p) = _p2 + np + p - n, 
ppp 

and so p2 - (n - 4>(n) + l)p + n = O. Thus, if both n and 4>(n) are known, then 

p = (n - 4>( n) + 1) - yi (n - 4>( n) + 1)2 - 4n and q = (n - 4>( n) + 1) + yi (n - 4>( n) + 1)2 - 4n. 
2 2 

Hence, if Eve is able to compute 4>(n) from the public value n, then she is able to factor n as 

weIl. 

Enters Donald Knuth, who was at Stanford just like Diffie, Hellman and Pohlig at the time. 

Knuth raised the idea that since multiplication was an easy task but factorization appeared hard, 

it could be a good candidate for a one-way function at the heart of a public-key cryptosystem 

[Lev01, p.83]. 

So under the assumption that factorisation of n = pq is computationally out of reach, Eve 

is unable to calculate 4>( n) and there is therefore no obvious way to compute the decryption 

exponent d, even if e is publicly known. 

However, the MIT group composed of Rivest, Shamir and Adleman was the first to put 

the pieces of the puzzle together. In their paper, they even acknowledge the great similarity 

between the two cryptosystems: "Pohlig and Hellman study a scheme related to ours, where 

exponentiation is done modulo a prime number" [RSA78, p.123]. For a concise treatment of 

exponentiation ciphers where Pohlig-Hellman and RSA are seen as two realizations of the same 

principle, see [Den82, Section 2.7]. 

In conclusion, the Stanford group not only invented public-key cryptography: they also set 

the table for its first concrete implementation. 
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2.4.3 EIGamal Encryption 

We keep the notation of the previous section. We have just seen how the Pohlig-Hellman secret­

key cryptosystem can be modified in order to yield the public-key system RSA. Now, the security 

of the Pohlig-Hellman scheme relies on the discrete logarithm problem in lF;. For if Eve knows a 

plaintext-ciphertext pair (m, c), she must solve c = me modp (that is, compute logm c) in order 

to recover the secret value e. But when we convert this scheme into a PKC by replacing p by n 

and publishing e, the value of logm c is now known to everyone, so that the resulting proto col 

is no longer based on discrete logarithms. In fact, a necessary condition for RSA to be secure is 

that it must be computationally infeasible to factor n (otherwise, rjJ(n) can be obtained and the 

private key d, computed). The goal of this section is then to describe a public-key cryptosystem 

whose security depends on the intractability of the DLP. 

As usual, Gis a finite cyclic group of order n generated by g. In order to be able to perform 

the computations, we want Gand 9 to be publicly known and of course, we assume that the DLP 

in G is intractable. Now, a natural choice for Alice would be to secretly choose an exponent a as 

her private key, compute ga and make it her public key. We now are in the following situation: 

Towards a Discrete Logarithm Based PKC 

Alice 
Private a 
Encrypt m using gb 
to get ciphertext c 

Bob 
Private b 

~ Decrypt c using b 
and recover m 

Public Directory 
Name Public Key 
Alice ga 

Bob gb 

The big question is how to encrypt m using l. We might try the same strategy as in the 

previous section: st art with an existing private-key system and try to convert it into a public-key 

one. Plus, we already know that the Dîffie-Hellman key agreement uses discrete exponentiations 

and that once the key is exchanged, we can use any secret-key cryptosystem we like: 

Alice Bob 

Private a 
ga 

Private b ---+ 

k = (gb)a 
gb 

k = (ga)b f--

Encrypt m using k c Decrypt c using k ---+ 

to get ciphertext c and recover rn 

First, we need to get rid of the step where Bob sends gb to Alice. This is easy since gb is 

Bob's public key and so Alice can retrieve this value directly from the directory: 
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Alice 

Private a 
k = (gb)a 

Encrypt m using k 
to get ciphertext c 

c 
--+ 

Bob 

Private b 
k = (ga)b 

Decrypt c using k 
and recover m 

Public Directory 
Name Public Key 
Alice ga 

Bob gb 

Next, the key employed should not depend on Alice's private key, but only on gb. One 

possibility would be to use another secret element, say r, instead: 

Alice 
Private a 

Secret r 
k = (gby 
Encrypt m using k 
to get ciphertext c 

c 
--+ 

Bob 
Private b 

k = (gr)b 

Decrypt c using k 
and recover m 

Public Directory 
Name Public Key 
Alice ga 

Bob gb 

Alice is free to choose any value of r, so she could certainly randomly pick a new one for 

every encryption. That way, a fresh new key k would be used each time. So Alice could try to 

use k as a one-time pad: 

Alice Bob 
Private a Private b Public Directory 

Randomly pick r 
gr 

--+ 

k = (gby k = (gr)b 

c=m·k 
c c· k- 1 = m --+ 

Name Public Key 
Alice ga 

Bob gb 

As a bonus, we even get that this encryption function is truly economical since only one 

group operation is needed once k is known. Moreover, even though Alice and Bob share the 

same k, we are really in presence of a PKC: Alice computes c = m· (gby with the help of Bob's 

public key, and Bob performs c· (gr)-b = m with his private b. We are then ready to write 

down the final version: 

ElGamal Public-key Cryptosystem 

Alice 
Private a, 1 ::; a ::; n - 1 

Randomly pick r, 1 ::; r ::; n - 1 
c = m. (gby 

Bob 
Private b, 1 ::; b ::; n - 1 

Public Directory 
Name Public Key 
Alice ga 

Bob gb 

Finally, we turn our attention to the security aspect. Since the value of c is known by Eve, 
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she will be able to deduce the plaintext m if and only if she can compute grb. Therefore, her 

task is to compute grb from gr and gb. In other words, she has to solve an instance of the 

computational Diffie-Hellman problem (p.17) in G. 

This cryptosystem was presented at CRYPTO '84 by Taher EIGamal [EIG85a, EIG85b], who 

was also at Stanford at the time17 . This simple and elegant scheme is easy to remember since 

it can be thought of as 'a key-exchange followed by a one-time pad'. And even if these two 

primitives were known by cryptographers in 1976, EIGamal was the first to make the connection 

and to propose this mndomized encryption method. This aspect is certainly an advantage of 

this cryptosystem. Notice that with deterministic encryption, Eve could tell with certainty if 

an observed ciphertext c is the encryption of a specific message ma (by means of the public 

encryption rule). This is no longer true here since each message now corresponds to many 

possible ciphertexts (depending on the choice of r). 

2.5 Digital Signatures 

In the previous sections, we have seen how the Diffie-Hellman key agreement provides a solution 

to the key distribution problem. As well, the predistribution scheme and public-key cryptosys­

tems have the property that each of the N users now has only one key to keep secret, instead 

of the (N - 1) needed in a conventional secret-key setting. However, we still have to solve the 

authentication and nonrepudiation problem. This is the object of this section. 

2.5.1 Digital Signatures from a Public-key Cryptosystem 

According to Diffie and Hellman, "Any public-key cryptosystem can be tmnsformed into a one­

way authentication system18 " [DH76b, pp.645, 650]. Loosely speaking, the idea is to turn the 

cryptosystem 'on its head'. This is done as follows. 

First recall that with any public-key cryptosystem, Bob can send an encrypted message to 

Alice with the help of her public key. Alice then uses her secret key in order to invert the process 

and recover the plaintext. That way, anyone can send enciphered messages to Alice but she is 

the only one who can decipher them. 

With digital signatures, the situation is somewhat reversed. We now need the signer of the 

message, Alice, to be the unique individual able to pro duce the corresponding signature. That 

is, the signature cannot be forged. And just like a papcr-and-pencil signature, anyone should be 

17In addition to the cryptosystem, his paper also contains a digital signature scheme that will be presented in 
Section 2.5.2. 

18 a.k.a. digital signature. 
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able to verify its validity19. As a result, it makes perfect sense to use the private key to produee 

the signature and the corresponding public key to check its authenticity. Also notiee that the 

signature must be message dependant. Otherwise, Eve could simply copy and paste Aliee's 

signature and append it to the message of her choice. 80, unlike a classical signature, Aliee's 

digital signature on two distinct messages will look completely different (but can nevertheless 

be verified by anybody). 

80 for a given public-key cryptosystem with set of possible plaintexts P and ciphertexts C, 

the encryption CA : P -+ C and decryption rule dA : C -+ P of Alice are such that 

E nery ption Decryption 

P eA C dA 
~ ~ 

m I----t CA(m) I----t 

for any message m E P. Now, to produce the digital signature, we wish to use both the secret 

key and the message. But how? An easy solution would be to compute dA(m), but this can 

only be done if P ç C. If it is the case, we can set the signature on message m to be dA(m). To 

verify its validity using the public key, we could then compute cA(dA(m)), which is possible if 

C ç P. Rence, if P = C, both dA(m) and cA(dA(m)) make sense. The last step is to verify that 

cA(dA(m)) = m for any m E P. 

But with any public-key cryptosystem, the encryption rule CA is one-to-one (for if cA(m) = 
cA(m'), then m = dA(cA(m)) = dA(cA(m')) = m'). Renee, CA has to be onto here as well since 

P = C is a finite set. Now, if cA(dA(m)) = m', then dA(m) = dA(m') and there are c,c' E P 

such that m = CA(C) and m' = CA(C'). 80, C = dA(CA(C)) = dA(CA(C')) = c', which finally 

implies that m = m'. 
Renee, as long as P = C, we have that cA(dA(m)) = m for any m EPand so the signature 

generation and verification can be performed as follows: 

P 
m 

Signature Generation 

dA 
-+ 

Signature Verification 

80 given a message m, Alice can compute the corresponding signature dA(m) which she then 

transmits to Bob together with m. Bob then aceepts Alice's signature iff cA(dA(m)) = m. 

Renee, it is possible to easily produee digital signatures from a public-key cryptosystem as 

soon as P = C. The famous example of course being the RSA signature scheme [RSA78). 

19In sorne other specifie applications, it is desirable to require that the collaboration of the signer be required in 
order to validate signatures. These so-called undeniable signatures were introduced by Chaum and van Antwerpen 
at Crypto 89 [CA89] and once more, the DLP is at the heart of their scheme. 
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But what happens when P =1- C? In the original definition of a public-key cryptosystem 

[DH76b, p.648], it is assumed that P = C, so that explains the claim that any PKC could be 

turned into a signature scheme. Now, if P =1- C, the ab ove construction does not work so we 

might have to work a little harder, as we will see in the next section. 

2.5.2 EIGamal Signature 

We now want to concretely see how one could build digital signatures from the EIGamal cryp­

tosystem. Here we have that P = Gand C = G x G. For simplicity, we will first work in the 

original setting of EIGamal, where G = lF; for a prime p and let 9 be a generator of G. It will 

then be an easy task to generalize for an arbitrary group. 

The first thing to try is to naively use the private key to produce the signature: 

Alice 

Pick a random k E G 

Compute j := m . (gk)a 

m, k 
---t 

Bob 

This obviously doesn't work since Alice could have computed j as m· (ga)k without knowing 

a. Hence, we must force Alice to really use a when producing her signature. Bob could then 

secretly pick k, transmit gk to Alice and challenge her to compute j. 

Alice Bob 
gk 

+-- Pick a random k E Z, 0 < k < ord(g) 

Compute j := m . (gk)a ~ Check if j = m . (ga)k 

For sure, Bob will be convinced that the message came from Alice. However, Bob could have 

produced this signature by himself simply by computing j as m· (ga)k, so this approach is not 

good either. Instead ofchoosing k arbitrarily, we might be able to force Alice ta compute k 

using her private key. For example, ta solve m = gak, assuming that we know that m = gl, 

we need to solve the congruence i :::::: ak(modord(g)), which can be done as soon as a is known 

and invertible (i.e. gcd(a, ord(g)) = 1). However, if it isn't, then finding k requires to compute 

the discrete logarithm logga m. Of course, in practice, recovering i from m requires to compute 

logg m. 80 instead of computing l, we could choose it first and since we need it to depend on 

the message, the canonical choice is to consider an equation of the form gm = gak: 

Alice 

Solve m:::::: ak(modord(g)) for k m, k 
---t 

Bob 

Check if gm = (ga)k 

But once Bob knows m and k, he could solve m:::::: ak(modord(g)) for a and hence learn Alice's 

private key. Thus, the signing equation gm = gak is too simple. 80 from Bob's point of view, 
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we need more than one unknown since otherwise, a can uniquely be determined. We can then 

try to add an extra variable t and modify the signing equation to, say, gm = gak . gt. As we just 

said, the value of t should be unknown to Bob, so Alice would transmit l to Bob instead: 

Alice 

Pick a random t E Z, 0 < t < ord(g) 

Solve m == ak + t(modord(g)) for k 
k 

----+ 

Bob 

But Alice can cheat once more: she could first pick k and compute the value of l by performing 

(ga)-k . gm. This tells us that we should require that Alice gives us 'a prao!, that she knows 

the value of t without revealing its actual value (recall that if Bob learns t (and k), he can then 

compute a). Hence, we could disclose only a part of t, just like in the key exchange protocol. 

So we write t = rs and by revealing only gr and s, Bob could compute gt without knowing the 

value of t: 

Alice 

Pick random r, sE Z, 0 < r, s < ord(g) 

Solve m == ak + rs(modord(g)) for k 

Bob 

On the other hand, Alice can still pick k first, compute (ga)-k . gm to deduce the value of 

i, but this time, she has to transmit s as weIl. Hence, she has to find gr and s such that 

(gr)s = gt. An easy way out is to set s = 1, or any other value for which s-roots in G are 

efficiently computable2o . She then sets gr = lis and was therefore able to forge a signature on 

the message of her choice. Since we cannot prevent Alice from first picking m, k and get the 

corresponding value of (gr)s, we really have to ensure that she won't be able to choose the s 

she wants and then get gr. The weakness that was exploited here is that the left-hand side of 

(ga)-k . gm = (gr)s is independent of gr, so that s was allowed to be chosen first. The only 

parameter of the left-hand side on which we have sorne freedom is k. The easiest thing is then 

to set k := gr and since the value of gr was already transmitted, it even decreases the amount 

of data sent to Bob. The (honest) Alice would then have to derive the corresponding value of s 

in the last step. 

The signature on message m is then the pair (gr, s). With this last improvement, first notice 

that recovering a from the signing equation requires to solve an instance of the DLP. Next, we 

examine if a signature could be forged. If r (or gr) is chosen first, then computing s requires to 

solve a DLP. Conversely, if s is fixed first, the equation 

20For instance, square roots are easy to compute in F; (see [Per86] for example), so taking 8 to be any small 
power of 2 would do. 
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ElGamal Signature Scheme 

Alice Bob 
Secretly pick a random r E Z, 0 < r < ord(g) 

such that gcd(r,ord(g)) = 1 
Solve m = agr + rs(modord(g)) for s 

(2.3) 

must be solved in G for the unknown x. So far, nobody was able to provide an efficient method 

to solve this kind of equations, so EIGamal's original challenge [EIG85a, p.470] still holds: "The 

reader is encouraged to find a polynomial-time algorithm for solving (2.3)". Another possible 

approach to forge a signature would be to devise a pro cess that simultaneously determine gr 

and s. But here again, no one was able to find a feasible way to perform this task. In fact, 

twenty years have now passed since this signature scheme was first proposed and yet, no attack 

was successful at breaking it. 

Notice that the EIGamal signature still keeps the same secret and public key for all users, 

which is quite practical. But since P =1= C, the signature-verification procedure is now really 

different from decryption-encryption. We saw why it didn't seem possible to stick really close 

to the PKC and we have complexified the verification equation step by step until we were no 

longer able to break it. However, using this trial and error procedure, we explored only one path, 

which means that there might be different verification equations that are secure and efficient 

as weIl. There are several others in facto In the handbook [MvOV96, Notes 11.70-11.71], five 

alternatives are presented. For example, the equation gS = (ga)gr . (gr)m with the corresponding 

signature (gr, s) has the advantage that the computation of s do not require to perform any 

inversion in G. So there is some freedom on the specifie verification equation used, but the 

underlying ide a really is the same. Of course, one must be extra cautious when playing with 

this equation since even a tiny modification could change the computational assumptions, and 

hence alter the security of the system. 

One well-known variant of EIGamal is the Schnorr signature scheme [Sch91], which has 

the advantage of providing shorter signatures while seemingly maintaining the same level of 

security. And the most famous variant of EIGamal's signature is certainly the Digital Signature 

Algorithm (DSA) [NloSTOO], which was the very first digital signature scheme to be approved 

by a government. 
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In practiee, of course, the message can be quite long. So instead of producing the signature 

for m, what we sign is actually the message digest h(m), where h: {O, I}* -+ 'll/p7!. is a public 

cryptographie hash function. This has many advantages. Namely, it allows to have a fixed 

length for the signature, instead of having a signature twice as long as the message in the case 

of EIGamal. AIso, in the original scheme [EIG85a, Section IV, Attack 6], given a message m 

and its corresponding signature (gr, s), it is possible to produee another message u together 

with a valid signature (v,w). Luckily, this attack does not allow tochoose u. And sinee h is a 

one-way function, it will then be impracticable to determine a message whose digest equals u. 

So with the help of the hash function, this particular attack cannot succeed. Thus, the use of 

cryptographie hash functions is not limited to the efficiency aspect, but has a role to play in the 

security of the scheme as weIl. It should therefore always be used in practice. 

2.5.3 Generalized EIGamal Signature 

So far, we have described the original EIGamal signature where the underlying group is IF; for 

a prime p. We now wish to extend this scheme to an arbitrary group G where the discrete log 

problem is believed to be intractable. Renee, we now consider g and m as elements of G. As 

discussed above, we want to sign the hash of the message, so technically, we need a hash function 

from G to 'll/n'll, where n is the order of g. In practiee, it will be easier to proeeed in two steps: 

first provide a public message embedding f from G to {O, I} * and then use a well-studied hash 

function h as follows: 

G L {O, I}* ...!::.... 'll/n'll 

If we assume that h is strongly collision resistant, then the composition he := ho f will enjoy 

this property as weIl. For ifwe find a collision on he, say x and x' in G such that he(x) = he(x') 

and x i- x', then f(x) i- f(x') (since f is one-to-one) and henee we would have found a collision 

on h as h(f(x)) = h(f(x' )). 

Now, if we look at the original scheme with hash function and we try to use it 'as is' in 

the group G, the only part that might not make sense is to encounter gr as an exponent, since 

this is in fact an element of G instead of being an integer. But as pointed out previously, the 

important point is that the exponent of ga should depend on gr in order to avoid that the value 

of s be chosen first, which would allow a forged signature. In the case of the original algorithm, 

the canonical choice was to take gr itself whereas here, the natural choice is to consider he(gr). 

Notice that this value can be computed directly from gr by Bob, so that the data sent by Aliee 

is unchanged. We henee obtain the following generalized scheme: 
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Generalized ElGamal Signature Scheme 

Alice Bob 
Secretly pick a random r E Il, 0 < r < ord(g) 

such that gcd(r,ord(g)) = 1 
Solve h(m) == ah(gr) + rs(modord(g)) for s 

As with the original EIGamal signature, nobody has been able to mount a successful attack 

on this generalized version, assuming that the DLP in G is computationally infeasible. 

2.6 Groups suitable for DL-based Cryptography 

We have now seen, in quite sorne details, three fundamental cryptographie primitives based on 

discrete logarithms in a group G: the Diffie-Hellman key exchange, the EIGamal public-key 

cryptosystem and the EIGamal signature scheme. In Section 2.8, we will give an overview of 

sorne of the numerous other applications of discrete logarithms in cryptography. In order to get 

the most out of these protocols, solid candidates for the group Gare needed. Evidently, a good 

prospect has to ally efficiency and security. That is, we need the elements to be easily handled 

by a computer, the group operation in G to be relatively inexpensive to compute and of course, 

the DLP in G to be presumably intractable. In addition, our life will be made a lot easier if 

there is also an efficient algorithm to compute the cardinality of G. 

Different applications, different needs: depending on the computing resources available, the 

short, medium or long term security needed or the nature of the information at stake, the 

choice of the group will inevitably vary. It is indeed the context that will determine what 

balance between efficiency and security is required. For instance, from smart cards to PCs to 

supercomputers, totally different criteria have to be filled. So in a nutshell: the longer the list 

of known suitable groups is, the better. 

We now want to give a brief overview of the principal members on this list. lnitially, Diffie 

and Hellman [DH76b] worked in the multiplicative group F; of a finite field with a prime number 

p of elements. It was then natural to consider finite fields F2n of characteristic 2 as well and to 

generalize to any Galois field F;n, where p is prime and n is a positive integer. 

In 1985, Neal Koblitz [Kob87] and Victor Miller [Mil86b] independently proposed to use 

the group of points on an elliptic curve over a finite field. A remarkable fact concerning these 

groups is that we can efficiently generate elliptic curves for which the only known algorithms 

to compute their discrete logarithms are exponential-time. As a result, the key length can be 
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much shorter than in a system where subexponential-time algorithms are known. Just to give 

an idea, the effort required to factor a 1024-bit RSA modulus or to extract a discrete logarithm 

in F~, where q is a 1024-bit prime, is roughly the same as to solve a DLP in a (suitably chosen) 

elliptic curve over Fp, where pis a 160-bit prime only. Hence, elliptic curves are a good example 

where the efficiency/security ratio pays off: the group operation may be more expensive, but 

since shorter keys are needed, the overa11 cost makes it a competitive choice. 

Elliptic curves are a sub-family of the hyperelliptic curves. In 1988, Neal Koblitz generalized 

his idea to create the hyperelliptic cryptosystems [Kob89]. To be more accurate, the underlying 

group where the discrete logarithm is presumably hard is the Jacobian of a hyperelliptic curve 

over a finite field. The Ph.D. thesis of Tanja Lange [LanOl] was devoted to efficiently perform 

the arithmetic in these groups. For security reasons, it is recommended in practice to use 

hyperelliptic curves of low genus g. Up to this date, taking 9 to be 1, 2 or 3 is advised (the case 

9 = 1 corresponding to elliptic curves). See Section 2.7.2 for more details. 

Aiso in 1988, Kevin McCurly suggested to use Z~, the group of invertible elements of Zn 

where n is composite, in a modified version of the EIGamal cryptosystem [McC88]. It has been 

shown that breaking his scheme is at least as difficult as factoring n. Moreover, Hâstad, Schrift 

and Shamir showed that when n is a Blum integer21 , then a11 bits of the discrete logarithm 

are individua11y hard and moreover, that the lower half of the bits, just like the upper half, 

are simultaneously hard22 [HSS93]. So, as Schrift and Shamir puts it, 'The discrete log is very 

discreet' {SS90]. 

One more proposaI was done that year: the ideal class group of an imaginary quadratic field 

Q( VD). That is, an element of this group is an equivalence class of ideals of the number ring of 

Q( VD) (where D is a squarefree negative integer). The ide a of using this structure in cryptogra­

phy is due to Johannes Buchmann and Hugh Williams [BW88]. However, a subexponential-time 

algorithm to compute this DLP was devised by Kevin McCurley the fo11owing year [McC89]. 

At CRYPTO '89, Buchmann and Williams then proposed to use real quadratic fields instead 

[BW90, BSW94]: this was the first time a key-exchange was based on a structure which was not 

a group (see p.19). 

At CRYPTO 2003, Karl Rubin and Alice Silverberg introduced the concept of torus-based 

cryptography. They described the cryptosystem CEILIDH23 for which the underlying group 

is an algebraic torus over a finite field. A Scots Gaelic word, ceilidh is a traditional Scottish 

21 A Blum integer is a product n = pq of two distinct prime numbers p and q satisfying p == q == 3(mod4). 
22Under the assumption that factoring large Blum integers is an intractable problem. 
23Pronounced 'kayley'. 
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gathering and was chosen because of the acronym 'Compact, Efficient, Improves on LUC24 and 

Improves on Diffie-Hellman'25. It has the advantage that the group elements can be represented 

in a really compact form and so it decreases the amount of information exchanged between Alice 

and Bob. Further details on this topic will be given in Section 4.6. 

That concludes our brief survey of groups suitable for DL-based cryptography. The goal of 

this thesis is now to add one more entry to this list, namely, the generalized Jacobians of an 

algebraic curve defined over a finite field. 

2.7 Solving the Discrete Logarithm Problem 

Designing proto cols whose security depends on the intractability of the discrete logarithm prob­

lem or searching for groups where this problem seems intractable is useless if we do not take the 

time to develop and refine methods to solve it. Using the state-of-the-art in these techniques 

will allow us to select the size of the group needed to meet the desired security parameter. 

In this section, we wish to present a snapshot of sorne of the methods in use today. For each 

of them, we list its main characteristics as well as the principle behind it. By definition, such 

a description is neither complete nor rigorous. However, details can be found in the surveys of 

McCurley [McC90], Odlyzko[OdlOO] and Teske [TesOl]. 

There are two types of algorithms that can be distinguished: the generic and the specific 

ones. The generic methods will work in nearly any cyclic group (see below) whereas specifie 

methods are 'custom-made' sinee they take full advantage of the representation of the group. 

It is therefore not surprising that specific algorithms generally perform better in practice than 

generic ones. 

As usual, Gis here a finite cyclic group of order n generated by g. So given h E G, we wish 

to determine the smallest non-negative integer k such that gk = h. 

2.7.1 The Baby, the Giant and the Kangaroos 

In this section, we plan to tell the tale of generic algorithms using the colorful images that have 

now become classics of the literature.. For generic algorithms, we really want to assume the 

minimum about G. That is, only the following facts can be used: 

1. Each element of G is encoded as a unique binary string 
2. We have access to a black box oracle for the group law and the inverse of elements 

24LUC is a public key cryptosystem based on Lucas functions and which was described in [L893]. 
25It was also named in the memory of Alice 8ilverberg's cat Ceilidh, to which the paper is dedicated. 



34 CHAPTER 2. THE DISCRETE LOGARITHM 

These properties imply that the identity can be identified and that we are able to decide if two 

elements are equal or not (that is, we can perform 'equality checks'). 

At EUROCRYPT '97, Victor Shoup showed that any generic algorithm solving26 the DLP 

in G must perform O(JP) group operations, where pis the largest prime dividing n [Sh097b]. 

As a result, the performance of the generic algorithms presented below should really be seen in 

the light of Shoup's lower bound. 

The principal generic algorithms are the rho and kangaroo methods, both due to Pollard, as 

well as Shanks' baby-step giant-step algorithm. And if the factorization of n is known, then one 

can also use the Pohlig-Hellman algorithm. 

BABY-STEP GIANT-STEP. The baby-step giant-step (ESaB) method is due to Daniel 

Shanks [Sha71]. It was originally designed to compute the ideal class number of a quadratic 

number field. Proposed in 1971, it was hence known prior to the Diffie-Hellman key-exchange 

proto col. The BSGS is a deterministic generic algorithm which is in fact a time-memory trade­

off of an exhaustive search. The idea behind this method is that if we set m = r Fnl, then 

h = gk = gim+j for sorne i, j such that 0 ::; i, j < m. Thus, h(g-m)i = gj and so it suffices to 

compute two sorted lists, one with all gj (the baby-steps) and one with all h(g-m)i (the giant­

steps). To get logg h, we simply find a match between the two lists. Note that the BSGS has 

a large memory requirement (needing the storage of 0 (fo) group elements) and has running 

time O( fo) group operations. 

POHLIG-HELLMAN. As mentioned earlier, the Pohlig-Hellman27 generic algorithm was 

part of the same paper as their secret-key cryptosystem [PH78]. This method requires that the 

factorisation of n be known. So let n = prlp~2 ... pc;.N, where the p;'s are distinct primes and 

each ai > O. Since this process requires to perform 0 (2:~1 ai (10g2 n + y'Pi 10g2 Pi)) group 

operations to extract a logarithm (once the factorisation of n is known)28, Pohlig-Hellman will 

be rather efficient if n has only small prime factors. In practice, it is thus advised to choose 

a group order having at least one large prime dividing it. Here is how it works: first compute 

ki := kmodpf; for each i and then use the Chinese remainder theorem to recover k. Now, to 

compute each ki , write it in base Pi as ki = lo + hPi + ... + lOi; -1pf; -1. Start by determining lo 

from the identity hn/p; = (gn/p;)lo, then find II using hn/p~ = gnlo/p~ . (gn/p;)h and so on until 

lOi; -1 is known. 

26 with probability bounded away from zero 
27This algorithm was also independently discovered by R. Silver and by R. Schroeppel and H. Block, but S. 

Pohlig and M. Hellman were the first to publish it. 
28See [PH78, Section IV] for a precise account of what can be simultaneously achieved in terms of running 

time, memory and precomputations. 
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POLLARD'S RHO. The p-method was developed by Pollard [Pol 78] in 1978. It is a proba­

bilistic algorithm based on the birthday paradox which has expected running time O( fo) group 

operations. It is preferred to BSGS in practice since it requires a negligible amount of storage. 

It can in fact be implemented in such a way that only a constant number of group elements 

have to be stored. The strategy here is to recursively define a sequence {xih~o of elements of 

G of the form Xi = ga;hb; such that Xo E G with known ao, bo (e.g. Xo = 1) and Xi+! is a 

function of Xi only. Since G is finite, then this sequence will eventually be periodic (so that a 

schematic representation of this sequence looks like the let ter p). Then find29 any two elements 

Xi and Xj of this sequence that are equal and such that bi :t bj(mod n). Finally, k can be easily 

determined from ga; (gk)b; = gaj (gk)b j • In 1999, van Oorschot and Wiener [vOW99] developed 

a parallelized version where each of the N processors utilizes the same recurrence relation, but 

with a different starting point. The search for a match is carried out through all computed values 

of the processors at once (and not merely within each sequence), yielding a linear30 speed-up. 

KANGAROO METHOD. The À method, also referred to as the 'Kangaroo method', is also 

due to Pollard and was published in the same article as the p method [PoI78]. It is a space efficient 

randomized algorithm as well, but is especially suited when we already know an interval [a, b] in 

which the discrete logarithm k lies. In fact, it is expected to require O( Vb - a) group operations 

and storage of O(log2(b - a)) group elements to extract a discrete log. The goal of this 'game' 

is now to make the paths of the tame and the wild kangaroos collide. First, the tame kangaroo 

starts at position gb and performs a set of jumps of the form gd; and then stops at position 

gb+d 1 + ... +dN, where the travelled distances di are known. Then, the wild kangaroo starts at 

position h (or hg8 where 8 is chosen to be small) and also executes a number of jumps of known 

distances until the wild kangaroo meets the tame oné1 , i.e. gb+d1 + ... +dN = hg8+d~ + ... +d~. If 

it doesn't happen, we simply try again starting the wild kangaroo at a different initial position. 

Since we kept track of the travelling distances, it is then easy to compute k. The kangaroo 

method has also been parallelized with a linear speed-up by van Oorschot and Wiener [vOW99] 

and further analysis and improvements were done by Pollard [PolOO] himself and Edlyn Teske 

[Tes01]. 

29Using for example Brent's algorithm [Bre80]. 
30That is, a speed-up by a factor of N. 
31 Each jump is completely determined from the current position. 80 if the wild kangaroo steps on a spot where 

the tame kangaroo once was, then from that point on, their two paths will coincide (and look like a>.). 
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2.7.2 Specifie algorithms 

"Les structures sont les armes du mathématicien" once said Bourbaki32 . Well, apparently, they 

are the weapons of the cryptanalyst too. In or der to develop targeted methods to solve the DLP 

in a, one has advantage to thoroughly exploit its structure. 

INDEX-CALCULUS ALGORITHM. The idea behind the index-calculus method seems 

to date back to the 1920s. Kevin McCurley [McC90] indeed attributes it to Kraitchik and 

Cunningham. In the context of public-key cryptography, Adleman [AdI79] first described and 

analyzed the algorithm for IF; while Hellman and Reyneri [HR83] worked in IFpm. And with its 

numerous improvements over the years, the index-calculus has become one of the most powerful 

techniques known to solve DLPs. Index-calculus works as follows. First choose a relatively small 

subset S = {SI, S2, ..• , SN} ç a that can serve as a 'factor base' (that is, we want to be able 

to write a significant proportion of the elements in a as sr' . S~2 ..... s''f.,r). We then want to 

build a database containing the discrete logarithms li := logg si (1 :::; i :::; N). To do so, we 

first need to build a system of linear equations with unknowns h, 12 , ... , IN' The equations 

are collected as follows. Pick a random exponent r. If we can find Œl, Œ2, ... , ŒN satisfying 

gr = sr' . S~2 ..... S~N, then r == Œlh +Œ212 + ... +ŒN1N(mod n) is added to the list of equations. 

We repeat this pro cess until this system has a unique solution (so at least N equations are 

needed). Solving this system will yield the values of h up to lN. Now, to compute logg h, we 

pick random exponents t until we can find /31' /32' ... , /3 N such that hgt = sf' . sg2 ..... sr;.r. 
Finally, logg h + t == /31 h + /3212 + ... + /3 N1N(mod n). In practice, the index-calculus in IF; and 

IF2m have expected running time33 L[P,1/2] and L[2m , 1/3] respectively (using Coppersmith's 

improvement [Cop84] for characteristic 2). Fortunately, the power of the index-calculus method 

does not seem to apply to large enough subgroups of IF; of prime order34 or to suitably chosen 

elliptic curves35 • However, index-calculus can be applied to hyperelliptic curves and with the 

latest developments [GauOO, The03], it already performs better than the generic p-method for 

genus greater than 2. 

We conc1ude this section by insisting on the fact that the above description is just the tip 

of the iceberg. Indeed, many other specific algorithms and refinements are known, such as the 

Gaussian integer method [COS86], the number field sieve [Gor93] or the function field sieve 

[AdI94]. In addition, several other tools, inc1uding the structured Gaussian elimination [OdI85], 

32That i8, "Str'uctures are the weapons of the mathematician". Created in the 19308, 'Nicolas Bourbaki' i8 in 
fact a pseudonym used by a group of (mainly French) mathematicians. 

33Recall that L[n, a] := 0 (e(C+O(l»)(lnn)"(lnln n)'-"), where c is a positive constant. 

34 Used in the Digital Signature Algorithm (DSA). 
35See [Mil86c] for a discussion of why the index-calculus method cannot be readily applied to elliptic curves. 
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the Weil [MOV93] and Tate [FMR99] pairings as well as the Weil descent [GHS02], are either 

at the heart of an attack or are employed to improve existing ones. Moreover, the difficulty of 

computing individual bits or groups of bits of a discrete logarithm is also an important issue 

which is addressed in [MvOV96, Section 3.9]. Lastly, Peter Shor designed polynomial-time Las 

Vegas algorithms for both discrete logarithms in IF; and integer factorization on a (hypothetical) 

quantum computer [Sh094, Sh097a, BL95]. At CRYPTO '95, Dan Boneh and Richard Lipton 

[BL95] used a similar method to show that the discrete logarithm problem in any finite group 

(where the group operation can be computed efficiently) can be solved in random quantum 

polynomial-time. Tt should therefore be kept in mind that we are everything but immune against 

the practical realization of polynomial-time attacks towards the discrete logarithm problem. 

2.8 Versatility of Discrete Logarithms 

We conclude this chapter with a selection of different applications of discrete logarithms in 

cryptography. Since our science aims at securing information, there is so much more to it than 

key-exchange, encryption and signatures. To reflect this reality, we chose from a wide range of 

applications three independent occurrences that will hopefully demonstrate what an ubiquitous 

and polyvalent tool discrete logarithms are for cryptographers. 

2.8.1 Coin-Flipping, Bit Commitments ... and Computer Games 

Before betting even a single penny at the roulette of an online casino, Bob should be convinced 

that the winning number can't be changed after he placed his bet. But how to make sure that 

they are playing fairly? In 1981, Manuel Blum and Silvio Micali described an algorithm that 

could answer this question and many more. Blum [Blu82] humoristically called his own work 

'a protocol for solving impossible problems '. To describe this technique, the coin-flipping by 

telephone, nothing surpasses his own words: 

"They (Alice and Bob) have Just divorced, live in different cities, want to decide who 

gets the car. Bob would not like to tell Alice HEADS and hear Alice (at the other 

end of the line) say "Here goes ... l'm flipping the coin ... Vou lostl" " 

A fair coin-flipping can be achieved using what is called a bit commitment scheme. The 

action of 'committing to a bit' can be described as follows: Alice first picks a bit b, either 0 or 

1. She places it in a safe (whose combination is only known to her), closes it and gives it to 
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Bob. Once the safe is in Bob's hands, Alice cannot change her mind: she is therefore bound to 

b. Moreover, the value of b is conceaied from Bob until Alice opens the safe for him36 . 

Now, if Alice and Bob wants to virtually fiip a coin, Alice begins by committing to a bit b. 

Bob then tries to guess what b is and publicly announces his guess b' to Alice. She then unveils 

b by opening her safe. Bob wins if b = b', and looses otherwise. Moreover, if Alice ever refuses 

to open the safe, Bob could then conclude that his guess was right. 

Once more, groups where the discrete logarithm problem is believed to be intractable can 

serve as a tool to build tangible bit commitment and coin-fiipping schemes. Not surprisingly, 

the coin-flipping protocol originally proposed by Blum and Micali was indeed relying on the 

intractability of the discrete logarithm problem. In [BCC88, Sections 6.1.2 and 6.2.2], Bras­

sard, Chaum and Crépeau describe two realizations of a bit commitment based on the discrete 

logarithm, one unconditionally secure for Alice and another which is unconditionaHy secure for 

Bob. 

2.8.2 Secret Sharing ... and National Security 

When taking decisions concerning national security, an agreement among several executives is 

required. The well-known (and extreme) instance being the launch of a nuclear missile. In 

Russia, at least two of the President, the Defense Minister and the Defense Ministry have to 

give their consent before any action can be taken37 . This 'two-man mie' in fact applies in a 

variety of contexts, from opening the vault of a bank to shutting down a central server. 

Hence, we need a way to ensure that only precise subsets of people are authorized to take a 

decision. To achieve this goal, a secret s could be shared among aH participants in such a way 

that a coalition can recover s if and only if they form an authorized subset. In such a secret 

sharing scheme, each participant Pi receives a piece of information Si (called a share) from a 

dealer. 

Notice that this method could also be used by a single individual who wishes to safeguard a 

sensitive piece of information 1: the data could be split into n parts (say such that a minimum 

of n/2 shares are required to recover 1) and each piece placed at a different (secret) physical 

location. 

A secret sharing is said to be perfect if pooling the shares of any unauthorized subset of 

participants yields absolutely no information about s. For a toy example38 , the following magic 

36Notice the difIerence with a public-key cryptosystem (c.f. Section 2.4) where Bob was the one able to open 
the safe. 

37See the Time Magazine of May 4,1992 on page 13. 
38Please take note that magic squares are used here as an illustrative example only: they are easy to understand, 

but are not practical secret sharing schemes per se. 
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square 
11 16 9 
10 12 14 
15 8 13 

with positive integer entries as shares, and where s = 36 is the sum of any line, column or 

diagonal, is not a perfect secret sharing since, for instance, the person having share 16 knows 

that s ~ 18. 

The concept of secret sharing was independently proposed by Adi Shamir [Sha79] and George 

R. Blakley [Bla79] in 1979. However, in its original formulation, the malicious Eve could provide 

a dummy share and hence prevent the reconstruction of s when desired. As well, a corrupted 

dealer could really do anything he likes depending on the bribes he received. In order to cir­

cumvent these difficulties, Chor, Goldwasser, Micali and Awerbuch [CGMA85] introduced the 

concept of a verifiable secret sharing (VSS) in 1985. In such a scheme, each participant can 

verify that the share they received is authentic and moreover, no one can successfully submit 

an invalid share when comes the time to recover s. However, it would be even better if anyone 

(and not only the participants) could verify that the shares have been distributed correctly. 

Markus Stadler[Sta96] introduced this notion at EUROCRYPT '96 and called such a scheme a 

publicly verifiable secret sharing (PVSS). He proposed a protocol using 'double exponentiations', 

i.e. exponentiations of the form g(k
n

) and consequently, 'double dis crete logarithms '. 

2.8.3 Identification Schemes ... and Your Banking Card 

An identification scheme is a proto col that will allow Alice to prove her identity to Bob in such 

a way that while Bob is convinced that he is really talking to Alice, he won't in turn be able to 

usurp her identity. Therefore, solely providing a login and password to access email, typing a 

PIN to withdraw money(with a banking card with a magnetic stripe only39) or telling a credit 

card number by telephone is by no mean considered an identification scheme. 

So instead of giving away all the secret information, an identification scheme usually takes 

the form of a challenge-and-response protocol. That is, Bob sends to Alice a (random) challenge 

which can only be answered correctly if Alice's secret information SA is know. Alice computes 

her answer using SA and sends only her answer to Bob, keeping SA secret. Finally, he verifies if 

the answer is correct or not. Since a new challenge is issued each time, Bob (or an eavesdropper) 

will have a negligible probability to impersonate Alice. 

Such a scheme can be realized with the help of a group where the DLP is believed to be 

intractable. For instance, Tatsuaki Okamoto [Oka93] presented at CRYPTO '92 a provably 

39Yes, in North America, we are still using them. 
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secure modification of the Schnorr identification scheme [Sch91]. Indeed, an elegant yet subtle 

proof shows that the Okamoto identification scheme is as secure as the discrete logarithm problem 

in IF;. In addition, the resulting scheme is still almost as efficient as the original version proposed 

by Schnorr. 

FinaBy, even if we just saw concrete examples where the discrete logarithm problem was 

playing a central role, it might still not be enough to convince a sceptical friend that the DLP is 

present in our everyday lives. WeB, let's just say that SSH (Secure SheB), SSL (Secure Socket 

Layer), PGP (Phil Zimmermann's Pretty-Good-Privacy) or OpenPGP aB rely on the discrete 

logarithm problern at sorne level. So unless your friend still believes that cornputers are not part 

of our lives yet, that should be a massive argument. 



Chapter 3 

Aigebraic Curves 

"Think geometrically, prove algebraically." 

- Silverman f3 Tate 

Not surprisingly, abstract algebra and geometry are the two underlying branches of algebraic 

geometry. Loosely speaking, algebraic-geometers study, among other things, the sets of solutions 

of systems of algebraic equations. So algebraic geometry offers us the neccessary geometric tools 

to fuel our intuition, but uses the power of algebra to provide demonstrations. 

In this chapter, we intend to study the necessary background on algebraic curves needed 

to understand generalized Jacobians. The first section on the Zariski topology will provide the 

basics of algebraic geometry required to define projective varieties and algebraic curves. The 

second section on plane curves and cryptography already gets more specific and considers three 

families of curves: Pell conics, elliptic and hyperelliptic curves. 

There is a particular goal we wished to achieve by choosing to present each of these families. 

First, Pel! equation makes the perfect introductory example of an algebraic curve suitable for 

DL-based cryptography. Indeed, this well-known equation is simple enough that within a few 

pages, it is possible to explain its cryptographic potential in detail. At the same time, we make 

the parallel with algebraic tori, so that the reader has at least one concrete example at hand. 

Next come elliptic curves: we provide the fundamental properties that make them so attrac­

tive to cryptographers. Since Chapter 5 introduces a new cryptosystem based on the generalized 

Jacobian of an elliptic curve, it is the case we treat with the most details. 

We then briefly touch upon hyperelliptic curves and introduce them as a motivation for the 

presentation of the theory of divisors that leads to the Picard group and the Jacobian. 

41 
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Our treatment of divisors will of course emphasize the role played by principal divisors. We 

then present the Riemann-Roch theorem, whose power we demonstrate in the proof on the 

Abel-Jacobi theorem. This last result will be playing a key role in the generalized Jacobians we 

consider in Chapter 5. 

Lastly, we recail the construction of the Picard group and provide a motivation for its use in 

cryptography. This will naturaily lead us to the existence theorem for the Jacobian. 

As a result, we believe that the content of this chapter, with the material it covers and the 

level of details it provides, can play the role of a self-contained introduction to the algebraic 

geometry underlying curve-based cryptography, as weil as being a relatively brief reference for 

those already familiar with this material. 

3.1 The Zariski Topology 

Considered by many as one of the most infiuential mathematicians of his field in the twentieth 

cent ury, Oscar Zariski studied in Italyl with Francesco Severi, who was the first to explicitly 

mention generalized Jacobians in the mid-1950s . Among the students of Zariski was Maxwell 

Rosenlicht, whose role in the study of generalized Jacobians is prominent, as we will see in 

Chapter 4. 

Throughout this chapter, K will denote a perfect field. That is, every algebraic extension of 

K is separable. For the cryptographie applications we have in mind, notice that K will ultimately 

be a finite field and hence this framework is general enough for curve-based cryptography. Let 

also K be a fixed algebraic closure of K. 

We alllearned cartesian product in elementary school: we now see how the same underlying 

idea is used in the case of affine spaces. 

Definition 3.1 The affine n-space over K, denoted An (K) (or simply by An when K is un­

derstood) is the set of alln-tuples of elements of K: 

Similarly, let 

The elements of An (K) are called the K-rational points of An. Also let 0 = (0, ... ,0) E An (K). 

1 He thus embraced the ltalian school of algebraic geometry, whose style was renowned to be very intuitive. 
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When seeing the chord-and-tangent rule on an elliptic curve for the first time, one without 

the appropriate background could think that 'adding a point at infinity' seems like an artificial 

procedure while it is, in fact, a very natural construction. In order to see why, we need to first 

consider an equivalence relation on the nonzero points of An+1. Given points P = (xo, ... ,xn) 

and Q in A n+1 \ {O}, we will wri te P ~ Q if there exist a constant À E K* such that 

Q = (Àxo, . .. ,Àxn) . 

Clearly, this defines an equivalence relation on the points of A n+1 \ {O}. The equivalence class 

of the point P is denoted by [xo : ... : xnl. 

Definition 3.2 The projective n-space over K, denoted pn (K) (or simply by pn when K is 

understood) is the set of these equivalence classes. In other words, 

pn (K) = {[xo : ... : xnll Xi E K for 0::; i ::; n and are not all zero} . 

Similarly, 

pn (K) = {[xo : ... : xnll Xi E K for 0::; i ::; n and are not all zero} , 

and the elements ofpn (K) are called the K-rational points ofpn. 

We can now easily see why the 'points at infinity' arise in a natural fashion for projective 

spaces. Consider for instance 

pl = {[xo: xIll XO,Xi E K}, 

and let P = [xo : xIl E pl be given. If Xl =1= 0, then 

[xo : xIl = [~~ : 1] . 
Now if Xl = 0, then Xo =1= 0, from which follows that 

[Xo : xIl = [1 : Dl· 

Thus, pl is the union of two different types of points: 

pl = {[À: III À E K} u {[1 : Ol}. 

Since the set {[À: III À E K} is in bijection with Al, we can think of pl as being 'Al together 

with the extra point [1 : Dl '. For this reason, [1 : Dl is called a point at infinity. 
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Example 3.3 This material makes the ideal introduction to see how easy it is to work with 

these concepts using MAGMA. Basic and fundamental instructions are shown below. 

> K:=GF(ll); Il Finite field (Galois field) with 11 elements 
> K; 
Finite field of size 11 
> A2<x,y> := AffineSpace(K,2); 
> A2; 
Affine Space of dimension 2 
Variables : x, y 
> p := A2! [1,2]; 
> p[l]; Il lst coordinate of the point p 
1 
> q:=A2! [2,4]; 
> P eq q; 
false 
> Pl<X,Y>:=ProjectiveSpace(K,l); 
> Points(Pl); 
{<il (0 : 1), (1 : 1), (2 : 1), (3 

(6 : 1), (7 : 1), (8 : 1), (9 

> P2<X,Y,Z>:=ProjectiveSpace(K,2); 
> P2; 
Projective Space of dimension 2 
Variables: X, Y, Z 
> P:=P2![1,9,4]; 
> P; 
(3 : 5 : 1) 
> Q:=P2![6,10,2]; 
> P eq Q; 
true 
> P2! [0,0,0]; 

» P2! [0,0,0] ; 

Il Notice the point at infinity 
1), (4 : 1), (5 : 1), 

1), (10 : 1), (1 : 0) <il} 

Il At least one of X,Y or Z must be nonzero! 

Il At least one of X,Y or Z must be nonzero! 

Runtime error in 'l': Illegal coercion 
> quit; Il To exit Magma 

Take note that this example will be continued as we add more notions. 

Our first goal is to turn Ipm into a topological space. That is, we need to identify what the 

open sets of IP'n are. But first, a few recalls. 

Definition 3.4 A topology on a set X is a collection T of subsets of X satisfying the following 

three properties: 
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1. </J,X E T, 

2. For any subcollection S of T, UUESU E T, 

3. For any Ul, ... , Un E T, Ul n ... n Un ET. 

A set X endowed with a topology T is called a topologieal spaee. The elements of Tare 

called the open sets. A set is said to be closed if its complement is open. 

Before we ean define the closed sets of our topology, we need a few more definitions. 

Definition 3.5 A polynomial f (Xo, ... , X n ) E K [Xo, ... , Xnl is said to be homogeneous of 

degree d if 

for every constant À E K. 

Example 3.6 The polynomial f(X, Y, Z) = X 3 + Y + 1 is not homogeneous, while g(X, Y, Z) = 

X3 + Y Z2 + Z3 is. 

Given P = [xo : ... : xnl E lpm and a homogeneous polynomial f (Xo, ... ,Xn ) E K [Xo, ... ,Xnl 

of degree d sueh that f(P) = 0, we have, for any À E K, 

Thus, f (P) = 0 if and only if f(Q) = 0 for every point Q sueh that P rv Q. It then makes 

sense to eonsider the zeros of f as elements of lP'n. And if we wish to eonsider more than one 

polynomial, then we ean look for the points whieh are simultaneously zeros of all of them. This 

motivates the following definitions. 

Definition 3.7 An ideal of K [Xo, . .. ,Xnl is called an homogeneous ideal if it can be generated 

by homogeneous polynomials. 

Definition 3.8 To each subset Y of lP'n, we associate the ideal l (Y) ç K [Xo, ... , Xnl gener­

ated by the set 

{J E K [Xo, ... ,Xnllf is homogeneous and f (P) = 0 for all PEY} . 

1 (Y) is simply called the homogeneous ideal of Y in K [Xo, . .. ,Xnl. 

Conversely, we ean also associate a subset of lP'n to any set of homogeneous polynomials: 
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Definition 3.9 Let T ç K [Xo, . .. ,Xn ] be a set of homogeneous polynomials. Then the set 

Z(T) = {P E Ipml f(P) = 0 for all f E T} . 

is called the zero set of T. 

lntuitively, we are interested in solutions of one or more polynomial equations. Thus, we 

wish to look at the subsets of Ipm which coincides with zero sets. 

Definition 3.10 A subset Y ofJPm is called an algebraic set (or a projective algebraic set) if 

there is a set T ç K [Xo, ... ,Xn ] of homogeneous polynomials such that Y = Z(T). 

Definition 3.11 A projective algebraic set is said to be defined over Kif its homogeneous ideal 

can be generated by homogeneous polynomials in K [Xo, ... ,Xn ]. 

Definition 3.12 Let V be a projective algebraic set defined over K. The set V(K) = VnlP'n (K) 

is called the set of K-rational points of V. 

The algebraic sets turn out to have the properties of closed sets. For more information on 

the proof, we refer to [Har77, Proposition 1.1.1]. 

Lemma 3.13 The empty set and the whole space are algebraic sets. The union of a finite 

number of algebraic sets is an algebraic set. The intersection of any family of algebraic sets is 

an algebraic set. 

We therefore have a topology on IP'n: 

Definition 3.14 A subset of IP'n is said to be open if its complement is an algebraic set. The 

topology determined by these open sets is called the Zarisky topology on IP'n. 

Remark that an the singletons of IP'n are closed sets. lndeed, let P = [xo : ... : x n ] E IP'n be 

given, say with Xk i= O. Then it suffices to consider the following homogeneous polynomials: 

fo (Xo, ... ,Xn ) 

h (Xo, ... ,Xn ) 
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Let T = {fo, fI, ... , in} and notice that P E Z(T). Conversely, let P' = [x~ : '" : x~l E Z(T) 

be given. Then xk #- 0 since otherwise, x~ = x~ = ... = x~ = 0 (which is forbidden in the 

projective space). It then follows that 

Thus, P' = P (as equivalence classes) and we conclude that Z(T) = {P}. Notice that it also 

follows by Lemma 3.13 that any finite subset of IP'n is closed as weIl. 

Moreover, IP'n equipped with the Zarisky topology fulfills the Tl separation axiom2 : given 

two distinct points Pl and P2 , there are open sets UI and U2 such that Pl E UI but P2 <f. UI , 

and P2 E U2 but Pl <f. U2 • Indeed, simply let UI = IP'n \ {P2 } and U2 = IP'n \ {Pl} . 

We only need a few more recalls from topology before we can introduce projective varieties. 

Definition 3.15 Let X be a topological space and Y be a subset of X. Then a subset of X is 

said ta be closed in Y if it is the intersection of Y with a closed set of X. 

Definition 3.16 A nonempty subset Y of a topological space X is said ta be irreducible if it 

cannat be written as a union Y = YI U Y2 , where YI and Y2 are proper subsets closed in Y. 

Notice that this definition implies that the empty set is not considered to be irreducible. 

Definition 3.17 Let X be a topological space with topology T. If Y is a subset of X, the 

collection 

Ty = {Y nUI U E T} 

is a topology on Y, called the induced topology (or the subspace topology). 

Definition 3.18 An irreducible algebraic set oflP'n, with the induced topology, is called a pro­

jective variety or a projective algebraic variety. 

Definition 3.19 The dimension of a topological space X is the supremum of aU integers d 

such that there exists a chain 

of closed irreducible subsets of x. 

Definition 3.20 The dimension of a projective variety is its dimension as a topological space. 

2However, IP'n with the Zariski topology is not Hausdorff (T2)' Recall that a topological space is Hausdorff if 
given any two distinct points Pl and P2, there are disjoint open sets Ul and U2 such that Pl E Ul and P2 E U2. 
See [Fu169, p.133]. 
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And finally: 

Definition 3.21 An algebraic curve (or simply a curve) is a projective variety of dimension 

one. 

Thus, the only closed irreducible subsets of a curve must be points. 

Remark 3.22 For us, a curve will always be projective and irreducible. 

If the polynomial is reducible, say f = gh, then f = 0 as soon as 9 = 0 or h = O. Thus, a 

necessary condition to have an irreducible set is that the polynomial itself be irreducible. More 

precisely, we have the following very useful result: 

Proposition 3.23 A projective variety of Ipm has dimension n - 1 if and only if it is the zero 

set of a single irreducible homogeneous polynomial of positive degree. 

Example 3.24 The variety L ç JP'2 defined by 

L : aX + bY + cZ = 0 

has dimension one if and only if at least one of a, b or c is nonzero. 

Definition 3.25 A line in JP'2 is an algebraic set given by a linear equation aX + bY + cZ = 0, 

with a, b, cE K not all zero. 

We now continue the MAGMA example started earlier. This time, we learn how to define an 

algebraic curve. 

Example 3.26 In thisexample, we play with homogeneous polynomials and basic curves. 

> K: =GF(l1) ; 
> P2<X,Y,Z>:=ProjectiveSpace(K,2); 
> Dimension(P2); 
2 
> P:=P2! [1,9,4]; 
> f1:=X+2*Y+5*Z; 
> Evaluate(f1,P); 
7 
> IsHomogeneous(P2,f1); 
true 
> Li := Curve(P2,f1); 
> Li; 
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Curve over GF(ll) defined by 
X + 2*Y + 5*Z 
> IsProjective(Ll); 
true 
> IsIrreducible(Ll); 
true 
> Dimension(Ll); 
1 
> R:=P2! [0,3,1]; 
> R in Ll; 
true (0 : 3 : 1) 
> Points (11) ; 
{@ (6 0 1), 

(9 4 1) , 
(1 8 1) , 

> f2:=6*X+Y+6*Z; 

(4 1 
(7 5 
(10: 9 

> L2 := Curve(P2,f2); 
> V:=Intersection(Ll,L2); 

1), (2 
1), (5 
1), (8 

Il Notice that 
2 : 1), (0 
6 : 1), (3 

10: 1), (9 

Ll contains 
3 1), 
7 1), 
1 0) @} 
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11+1 points in P2(K) 

> Points(V); Il The parallel lines Ll and L2 intersect at infinity! 
{@ (9 : 1 : 0) @} 

Straight lines are the most basic examples of algebraic curves. Nonetheless, they play a 

central role in many nontrivial situations. lndeed, we will see in this chapter how the group law 

on PeU equation and on elliptic curves can be described geometricaUy in terms of lines. We will 

also see how useful they are when we work with divisors in Section 3.3. FinaUy, they will also 

be at the heart of the explicit group law for the generalized Jacobians we consider in Chapter 

5. So let's just say thatwhile progressing through this work, chances are that lines in JP'2 will 

become our new best friends. 

Before we go any further, there is another family of curves that we wish to introduce: the 

lemniscates of Bernoulli. Surprisingly enough, they are at the origin of the study of elliptic 

curves. lndeed, from the treatment given by Michael Rosen in [Ros81], we see that the in­

trinsinc and fascinating connection with elliptic curves involves sorne of the greatest names in 

mathematics history. 

A lemniscate is defined as the locus of points such that the product of the distances to two 

foci FI and F2 is a constant c, the c1assical example being FI = (- V2/ 2, 0), F2 = ( V2/ 2, 0) 

and c = 1/2. This lemniscate is depicted over the reals in Figure 3.1. 

The lemniscate has been introduced in 1680 by the French astronomer Giovanni Dominico 
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y 

-1 1 x 

Figure 3.1: Lemniscate of Jakob Bernoulli over the real numbers 

Cassini in order to illustrate the movement of the earth relative to the sun3 . Sorne fifteen 

years later, Jakob Bernoulli independently studied various properties of this curve, and named 

it 'lemniscus', the Latin for 'suspended ribbon'. 

Abel, Gauss, Euler and many more... Great mathematicians who aIl contributed to better 

understand the various properties of the lemniscate. In particular, their work on its arc lenght 

ultimately led to the study of elliptic curves. 

To conclude this section, we briefly look at maps between projective varieties. This will 

allow us to formally define the concept of isomorphic varieties (to say the least). But before we 

do so, we recall the notion of a function field. So let V, W ç: IP'n be projective varieties and 

K (Xo, ... , X n ) denote the quotient field of K [Xo, ... ,Xn ] [Hun74, p.144]. 

Definition 3.27 The function field of V, denoted K (V), is the field whose elements are ra­

tional functions f / g, where f, g E K [Xo, ... ,Xn] are homogeneous polynomials of the same 

degree su ch that g (P) =J 0 for at least one P EV. Two su ch functions il /gl and 12 /g2 will be 

identifierf if il (P) . g2 (P) = 12 (P) . gl (P) for every P E V. 

Definition 3.28 A map 'P : V -> W is said to be rational if there are fo, ... fn E K (V) 

satisfying: 

For every P E V, 'P (P) = [fo(P) : ... : fn(P)] E W as soon as aU fi are defined at P. 

In this case, we adopt the notation 'P = lfo, ... , In]' 

3Incidentally, NASA has named Cassini its pilotless spaceship targeted at Saturn. More details can be found 
at http:j jsaturn.jpl.nasa.gov jhomejindex.cfm. 

4That is, considered equal in K (V). 
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Definition 3.29 A rational map <p = [fo, ... , fn] from V to W is said to be defined (or 

regular) at P E V if there is an f E K (V) su ch that f . fo (P) , ... ,f . fn (P) are defined but 

not all zero at P. 

Definition 3.30 A morphism is a rational map <p : V -- W that is defined at every P E V. 

Definition 3.31 The projective varieties V and W are said to be isomorphic if there are 

morphisms <p : V -- W and 'ljJ : W -- V su ch that 'ljJ 0 <p and <p 0 'ljJ are the identity maps (on 

V and W respectively). In this case, we write V ~ W and say that <p is an isomorphism (of 

projective varieties). 

3.2 Plane Curves and Cryptography: A Sneak Peek 

Now that we have formally defined what an algebraic curve is, we can without further waiting 

jump right away and try give a fiavor of why they are so useful in cryptography. This section is 

therefore just a glimpse into the cryptographie applications of algebraic curves. It also provides 

examples and motivation to keep in mind for the theory of divisors that will come next. 

We follow an approach by examples and we will try as much as possible to do things ex­

plicitely, sometimes even including small MAGMA examples. We chose to touch upon three 

examples: Pell equation, elliptic curves and hyperelliptic curves. These families of curves will 

hopefully highlight the various challenges one faces in curve-based cryptography. 

Throughout this section, C will denote a plane curve. 

Definition 3.32 An algebraic curve C in JP'2 is called a (projective) plane curve if it is the set 

of solutions in JP'2 to f(X, Y, Z) = 0, where f is a nonconstant homogeneous polynomial. 

Two other concepts are to be introduced at this point. Notice that they are not presented 

in the greater generality since we will only need to use them in the context of plane curves. 

Definition 3.33 A point P = [x: y : z] E JP'2 with z = 0 is said to be a point at infinity. 

Next we introduce the notion of a singularity. 

Definition 3.34 A point P = [x : y : z] E C is said to be singular if the partial derivatives fx, 

jy and f z all vanishes at P: 

af af af 
ax (P) = ay (P) = az (P) = o. 

Otherwise, P is called a smooth (or nonsingular) point of C. The curve C is said to be smooth 

(or nonsingular) if all the points PEe are smooth. 
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Remark 3.35 This intuitive notion of smoothness of a point on a curve in JP'2 we Just consid­

ered can in fact be extended and formalized for an arbitrary variety V, in terms of the local ring 

of P on V (that is, the ring of germs of regular functions on V near P) [Har77, p. 16, 32). We 

shall however only need the above definition in the sequel. 

Example 3.36 Consider the lemniscate C ç JP'2 defined by 

whose graph over the reals ressembles the symbol at infinity '00', as shown in Figure 3.1. 

Say we are working over a field K su ch that Char(K) =1- 2. A point P = [Xp : Yp : Zp] E C 

will be singular if and only if 

:i (P) = 2Xp (2 (X~ + Yfi) - Z~) = 0, 

Z? (P) = 2Yp (2 (X~ + Yfi) + Z~) = 0, and 

;~ (P) = -2Zp (X~ - Yfi) = O. 

If Zp = 0, then the equation f (Xp, Yp, Zp) = 0 implies that X~ + Yfi = O. Hence, 

P = [Xp : Yp : 0] is singular iff X~ + Yfi = O. 

If Zp =1- 0, then we get fram the third equation that X~ - Yfi = O. So sinee we must have 

f (Xp, Yp, Zp) = 0, it follows that X~ + Yfi = 0 as well. Thus, Xp = 0 and we get that 

P = [0: 0 : 1] is the only singular point with Zp =1- o. Let's now see how this can also be done 

using MAGMA. 

> K:=GF(13)j 
> P2<X,Y,Z>:=ProjectiveSpace(K,2)j 
> f:=(X~2+Y~2)~2-(X~2-Y~2)*Z~2j 
> Lemniscate := Curve(P2,f)j 
> IsIrreducible(Lemniscate)j 

true 
> Dimension(Lemniscate)j 

1 
> Points(Lemniscate)j 

{@ (0 0 1) , (1 : 0 
(4 5 1) , (9 : 5 
(1 7 1) , (12: 7 
(9 8 1), (5 : 1 

> IsSingular(Lemniscate)j 

1) , 
1), 
1) , 
0) , 

(12: 
(1 
(0 
(8 

0 1) , (0 : 5 1) , 
6 1) , (12: 6 1) , 
8 1), (4 8 1) , 
1 0) @} 
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true 
> P: =P2! [1, ° , 1] ; 
> IsSinguIar(Lemniscate,P); 

false 
> TangentLine(Lemniscate,P); 

Curve over GF(13) defined by X + 12*Z 
> S:=P2! [0,0,1]; 
> S in Lemniscate; 

true (0 : ° : 1) 
> IsSinguIar(Lemniscate,S); 

true 
> IsCuspCLemniscate,S); 

false 
> IsNodeCLemniscate,S); 

true 
> TangentLine(Lemniscate,S); 

» TangentLine(Lemniscate,S); 

Runtime error in 'TangentLine': Argument 2 must be nonsingular point 
of argument 1 

> Ll:=Curve(P2,X-Y); 
> L2:=Curve(P2,X+Y); 
> IsTangent(Lemniscate,Ll,S); 

true 
> IsTangent(Lemniscate,L2,S); 

true 
> SinguIarPointsCLemniscate); 

{© (0 : ° : 1), (5 : 1 : 0), (8 
> IsNodeCLemniscate,P2! [5,1,0]); 

true 
> IsNodeCLemniscate,P2! [8,1,0]); 

true 

1 0) ©} 
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The lemniscate thus has a singularity at [0 : 0 : 1]. For obvious reasons, this type of singularity 

is called anode. Remark that there are two distinct tangent lines at the origin and that in our 

example, the two points at in finit y were also singular points. 

Remark 3.37 There are various types of singularities of plane curves, like nodes, cusps, triple 

point or tacnode. Bee [Har77, Figure 4, p.36] for details. 

3.2.1 PeU Equation: A Case Study for Torus-based Cryptography 

It is now time to study concrete curves with cryptographie applications in mind. The Pell 

equation has the tremendous advantage of being simple enough to be fully and concisely treated 
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from first principles. It also makes the perfect example of how one shows that a particular group 

is relevant for cryptographie purposes. And most importantly, the Pell equation naturally leads 

to the study of algebraic tori. 

The Pell equation over a field K is of the form 

where D E K is not a square. The associated curve C, the so-called Pell conie, is thus a 

hyperbola with asymptotes 
x 

Y=±Vfj' 

Figure 3.2 illustrates the Pell conic over the real numbers. 

y 

1 

.,fI; 

x 

Figure 3.2: Pell conic over the real numbers 

From a historical point of view, Pell equation eertainly is one of the most broadly spread 

mathematical misunderstandings. lndeed, Pell himself had little to do with "his equation": the 

confusion cornes from the fact that Euler falsely attributed to Pell a method that had actually 

been found by another English mathematician, William Brouncker, in response to a challenge 

from Fermat. Besides, Brouncker's method itself might be considered as a re-discovery, sinee 

it is now known that lndians mathematicians of the lOth eentury A.D. (such as Jayadeva) had 

already developped such methods5 . For a detailed historical approach to PeU Equation, see 

[Len02]. 

5 Actually, one can find traces of such equations back to Ancient Greek, as seen in The Cattle Problem, a 
mathematical problem posed in the form of a poem commonly attributed to Archimedes. It is however not 
known whether they knew how to resolve these problems. 
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Now that we know a little about the history of these curves, we can officially start our 

cryptographie explorations. The first remark in order is that the projective equation X 2 - Dy2 = 

Z2 associated to the Pell equation does not contain any point of the form P = [x : y : z] E J1D2 (K) 

with z = O. lndeed, x2 - Dy2 = z2 yields the equation x2 = Dy2. If Y = 0, then x = y = z = 0, 

which violates the fact that at least one coordinate must be nonzero. If y#- 0, then D = (xjy)2, 

whieh is also impossible since D is not a square. For this reason, we will here sometimes work 

directly with the equation x 2 - D y2 = l. 
Before we describe the geometric group law on this conie, we present a tiny MAGMA example. 

Example 3.38 Consider the PeU conie C defined by the Equation 

overlF13 . Using exhaustive search, we readily get that the points OfC(1F13 ) are 

(1,0) 
(12,0) 

(4,4) 
(9,4) 

(3,5) 
(10,5) 

(5,6) 
(8,6) 

(5,7) 
(8,7) 

(3,8) 
(10,8) 

(4,9) 
(9,9) 

We now quickly show how one can also obtain these results using MAGMA. 

> K:=GF(13); 
> P2<X,Y,Z>:=ProjectiveSpace(K,2); 
> D:=5; 
> f:=X~2-D*Y~2-Z~2; 
> Pell:= Conic(P2,f); 
> IsIrreducible(Pell); 

true 
> Dimension(Pell)j 

1 
> Points(Pell); 

{@ (1 0 1) , 
(3 5 1) , 
(5 7 1) , 
(4 9 1), 

(12: 
(10: 
(8 
(9 : 

0 
5 
7 
9 

The Geometrie Group Law 

1) , (4 
1) , (5 
1) , (3 
1) @} 

4 1) , (9 : 4 1) , 
6 1) , (8 : 6 1) , 
8 1) , (10: 8 1) , 

In this section, we will follow the advice of Silverman and Tate as we will try to first think 

geometrieally and then to prove algebraieally. We begin by introducing the somehow forgotten 

chord-and-tangent rule on the Pell conie, which is depicted in Figure 3.3. A good account on 

this topie can also be found in Higher des cent on PeU conics III: The first 2-descent [Lem03]. 
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y 

x 

Figure 3.3: Chord-and-tangent rule on Pell conic 

Let P = (Xl, Yd and Q = (X2, Y2) be two points of C (K) and denote by CP,Q the line passing 

through P and Q if P =1= Q, and tangent to the curve at Pif P = Q. The identity element of 

this group law will be the point 0 = (1,0). Next consider the parallelline C' = Cp+Q,o to Cp,Q 

that passes through 0 = (1,0). As we will see, this line intersects C at precisely6 one other 

point R. Finally, let P + Q = R. 

Let's now compute the coordinates of R, and we of course begin with the easy cases. First, 

we can ver if y that P + 0 = P and 0 + Q = Q, and so we can now assume that P, Q =1= O. AIso, 

if Xl = X2 and Yl = -Y2, then CP,Q is a verticalline, from which follows that P + Q = O. 

Otherwise, the equation of the line Cp,Q passing through P and Q is 

where 

m= 

y =mx+h, 

{ 

Y2 - Yl if Xl =1= X2, 
X2 - Xl 

Xl 
if P = Q and Yl =1= O. 

DYl 

Remark that one way of obtaining this value of m when P = Q and Yl =1= 0 is to use implicit 

differentiation of X2 - Dy2 = 1. Aiso notice that mE K as soon as P, Q E C (K). 

By construction, the first point of intersection of C' with the hyperbola is 0 = (1,0). Now, 

the equation of C'is given by y = m (x - 1), and so we are looking for a point R = (X3, Y3) 

satisfying 

X~ - Dy~ = 1 and Y3 = m (X3 - 1). 

6 Counting multiplicities. 
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Thus, 

and so 

(3.1) 

But we already know that 1 is a solution of (3.1) since 0 = (1,0) is a point of intersection of C 

with C'. Indeed, 

In addition, we have 1 - Dm2 1= 0 (since otherwise, Dm2 = 1 with m 1= 0, and so D = (1/m)2, 

a contradiction). Thus, 

1-Dm2 Dm2 -1 

and 

(
Dm

2 + 1) 2m 
Y3 = m (X3 -1) = m Dm2 -1 -1 = Dm2 -1· 

Finally, 

(
Dm2 + 1 2m ) 

R = Dm2 _ l' Dm2 - 1 ' 

and we indeed have R E C (K). 

Example 3.39 We retum to the previous example. The multiples of P = (3,5) are shown in 

the following table. 

P= (3,5) 6P= (10,5) l1P= (8,7) 
2P= (4,4) 7P= (12,0) 12P= (4,9) 
3P= (8,6) 8P= (10,8) 13P= (3,8) 
4P= (5,6) 9P= (9,9) 14P= (1,0) 
5P= (9,4) 10P= (5,7) 

Henee, C (!FI3 ) is a cyclic group of order 14 = 13 + 1; we will see in the next section that 

this principle always apply. 

Let's now see how that could be computed with MAGMA. Sinee the beginning of our series of 

examples, we used MAGMA on a command mode. Foriunately, MAGMA also allows us to run a 

program previously typed in any text editor, as illustrated in the following example. 

K:=GF(13) j 

P2<X,Y,Z>:=ProjectiveSpaceCK,2)j 
D:=5j 
f:=X-2-D*Y-2-Z-2j 
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Pell:= Conic(P2,f); 
0: =P2! [1,0,1] ; 
P:=P2! [3,5,1]; 
Inverse := func< P 1 P2![P[1],-P[2],P[3]] >; 
print "-P =",Inverse(P); 
Add:=function(P,Q) 

if (P[l] ne Q[l]) then m:=(P[2]-Q[2])/(P[1]-Q[1]); 
el if (P[2] eq -Q[2]) then return 0; 
else m:= P[1]/(D*P[2]); 

end if; 

Il Identity element 
Il Chosen Base Point 

Il Computes -P 

Il Computes P+Q 

Il Case P =-Q 
Il Case P = Q and P+Q != 0 

Z3:= D*m-2-1; 

X3:= Z3+2; 
Y3:= 2*m; 

Il To store numerators and denominators separately 
Il to avoid inversions 

Il To save computations since X3:= D*m-2+1 

return P2! [X3,Y3,Z3]; 
end function; 
n:=O; 
Q:=P; 
repeat 

n:=n+l; 
Il Loop that prints the multiples of P until 0 is encountered 

print n," * P =" ,Q; 
Q:=Add(P,Q); 

until Q eq P; Il The last entry printed is Ord(P) * P = (1 : 0 : 1) 
print "Ord(P) =",n; 
Subtract := func< P,Q Add(P,Inverse(Q)) >; IIComputes P-Q 
print "«P+P)+P)-P =", Subtract(Add(Add(P,P),P),P); 

Take note that once a 'return' is encountered, the last part of the function is not evaluated. 

We obtain the following output when the above program is run. 

> load "C:/MAGMA/Pell.mag"; 
Loading "C:/MAGMA/Pell.mag" 
-P = (3 : 8 : 1) 
1 * P (3 5 1) 
2 * P (4 4 1) 
3 * P (8 6 1) 
4 * P (5 6 1) 
5 * P (9 4 1) 
6 * P (10 5 1) 
7 * P (12: 0 : 1) 
8 * P (10: 8 : 1) 
9 * P (9: 9 : 1) 
10 * P (5 7 1) 
11 * P = (8 : 7 : 1) 
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12 * P (4 9 1) 
13 * p (3 8 1) 
14 * P (1 0 1) 
Ord(P) 14 
«P+P)+P)-P (4 : 4 1) 

Lastly, notice that our program could have also included interactive inputs in order to change 

the basepoint P at will. 

Everyone who is familiar with the chord-and-tangent rule on an elliptic curve will have 

notieed the similarities between these two geometric group laws. However, in the case of Pell 

equation, the formulœ can be greatly simplified7 . 

lndeed, first remark that if P = Q and YI -1- 0, then 

Henee, 

and 

Thus, 

Dm2 ± 1 = D . ~ ± 1 = xi ± 1 = xi ± Dyi 
D2yr Dyr Dyr 

Y3 m (X3 - 1) = m (xi + Dyi - 1) = m (xi + Dy? - (xi - Dyi)) 
2 Xl 2 

2mDYI = 2-
D 

DYI = 2XlYI = XlY2 + X2YI· 
YI 

R = (XIX2 + DYIY2, XIY2 + X2YI) as soon as P = Q and YI -1- O. 

Moreover, if P = a = (1,0), then 

as well and by symmetry, it also holds for the case Q = O. That's not aIl. If Xl = X2 and 

YI = -Y2, then 

In order to show that R always equals (XIX2 + DYIY2, XIY2 + X2Yl), it only remains to treat 

the case where P, Q -1- 0, P -1- Q and Xl -1- X2. First, subtracting x~ - Dy~ = 1 from 

7The original motivation was to find points with integer coordinates, and not merely with rational coordinates. 
For more details, see [Lem03]. 
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xi - Dyr = 1 yields xi - x~ + D (y~ - yi) = O. That is, D (y~ - yi) = x~ - xi. Thus, 

D (Y2 - YI) (Y2 + YI) = (X2 - Xl) (X2 + Xl)' Two cases then arise: Y2 + YI = 0 and Y2 + YI #- O. 

If Y2 + YI = 0, then (X2 - xd (X2 + Xl) = 0 with Xl #- X2. Thus, X2 + Xl = 0 and so 

P = (-X2, -Y2). It then follows that m = yI! Xl and 

Dm2 + 1 (DYi + xi) / xi 2xi - 1 2 2 2 
X3 = Dm2 -1 = (Dyr _ xi)/ xi = -1 = 1- 2Xl = -xl - DYI = XIX2 + DYIY2 

and 

Y3 = m(x3 -1) = YI (1- 2xi -1) = -2XIYI = XIY2 +X2YI, 
Xl 

which shows that R = (XIX2 + DYIY2, XIY2 + X2YI) in this case as weIl. 

If Y2 + YI #- 0, then D (Y2 - Yd (Y2 + YI) = (X2 - Xl) (X2 + Xl) implies that 

Dm = D. Y2 - YI = X2 + Xl 
X2 - Xl Y2 + YI 

and 

Dm2 ± 1 = (Xl + X2) (Y2 - YI) ± 1 = (Xl + X2) (Y2 - YI) ± (X2 - Xl) (YI + Y2) 
(YI + Y2) (X2 - Xl) (X2 - Xl) (YI + Y2) . 

Therefore, 
Dm2 + 1 (Xl + X2) (Y2 - YI) + (X2 - Xl) (YI + Y2) 

X3 = = 
Dm2 - 1 (Xl + X2) (Y2 - YI) - (X2 - Xl) (YI + Y2) . 

The numerator of this last expression can be rewritten as 

while the denominator can be expressed as 

As a result, 

Now, notice that 

XiX2Y2 - X~XIYl + Dy~ . XIYl - Dy; . X2Y2 

xix2Y2 - X§XIYl + (x§ - 1) XIYl - (xi - 1) X2Y2 

XiX2Y2 - X~XIYl - XIYI + X2Y2 - XiX2Y2 + X~XIYI 
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Finally, this implies that 

X2Y2 - X1Yl (X1X2 + DY1Y2) (X1Y2 - X2Yl) D 
X3 = = = X1X2 + Y1Y2· 

X1Y2 - X2Yl X1Y2 - X2Yl 

On the other hand, 

Y3 = m(x3 _ 1) = (Y2 - Yl) (X1X2 + DY1Y2 - 1) . 
X2 - Xl 

In order to simplify this last expression, we can rewrite its numerator as follows: 

And we get that 

X1X2Y2 + Yl . Dy~ - Y2 - X1X2Yl - Y2 . Dyî + Yl 

X1X2Y2 + Yl (x~ -1) - Y2 - X1X2Yl - Y2 (xi - 1) + Yl 

X1X2Y2 + X~Yl - Yl - Y2 - X1X2Yl - XiY2 + Y2 + Yl 

X2 (X1Y2 + X2Yl) - Xl (X1Y2 + x2yd 

(X2 - Xl) (X1Y2 + X2Yl) . 

(Y2 - Yd (X1X2 + DY1Y2 - 1) (X2 - Xl) (X1Y2 + X2Yl) 
Y3 = = = X1Y2 + X2Yl· 

X2 - Xl X2 - Xl 

We can then at last conclude that R = (X1X2 + DY1Y2, X1Y2 + X2Yl). 

61 

We have therefore shown, using only simple (but tedious!) algebraic manipulations, that we 

always have 

Using this compact expression, it is now a simple matter to show that the chord-and-tangent 

rule on the Pell conic indeed defines a group law. 

Lemma 3.40 Let K be a field and C be the Pell conie 

where D E K is not a square. Then, C (K) with the chord-and-tangent rule as binary operation 

is an abelian group with identity 0 = (1,0). This group operation can be performed as follows. 

Let P = (Xl, Yl) and Q = (X2, Y2) in C (K) be given. Then, 

P + Q = (X1X2 + DY1Y2, X1Y2 + X2Yl) and - P = (Xl, -Yl) . 

The cost of computing this group law is then four general multiplications in K, plus a 

multiplication by a constant (which will be abbreviated by 4M + C). 

Remark 3.41 Notice that there is no longer a large difJerence between addition and doubling 

with the simplified formulœ; su ch "unified formulœ" present interesting cryptographie properties, 

notably because they contribute to protect against side-channel attacks. 
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Group Order 

Now that we know that C (lFq ) is a group, the next step is to determine its cardinality. Even 

without knowing it, we have parametrized the points on the curve. The natural way to proceed 

is thus to use the parametrization we first obtained with the chord-and-tangent rule. lndeed, we 

can do a projection of this conic on the y-axis, as illustrated in Figure 3.4 over the reals (notice 

that I/JD ~ Q). 

y 

x 
-1 

rn 

Figure 3.4: Projection of the PeU conic on the y-axis 

80 let P = (x, y) E C (lFq ) be a point different from 0 = (1,0). If we simply apply the 

original addition formula that we obtained, we have that 

(
Dm

2 + 1 2m ) 
P+O=P,andthusthat (x,y) = D 2 'D 2 ' m -1 m-l 

where m is the slope of the straight line C Pp passing through P and O. 80 for each m E lF q, we 

can associate a point of C (lFq ), and conversely, P = (x, y) E C (lFq )\ {O} implies that mE lFq 

since 

m={ ° ifP=(-I,O), 
Y if x ~ l. 

x-l 
We thus have a mapping 

cp: C (lFq) --+ ][1'1 (lF q) 

P = (x,y) { [1: 0] if P= 0 
1----+ 

[y: x -1] otherwise. 
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which can be seen to be a projection of the PeU conie on the y-axis8 . It is a routine exercise to 

verify that r.p is a well-defined bijection of sets with inverse 

'lj;: pl (lF q ) ---+ 

[m: 1] f---+ 

[1 : 0] f---+ 

o (lFq ) 

(
Dm2+1 2m ) 
Dm2 - l' Dm2 - 1 

(1,0) 

Thus, #0 (lF q) = q + 1. Moreover, notice that both r.p and 'lj; can be computed efficientIy. So if 

Alice wants to send a point P on this curve to Bob, then she can do so by simply sending an 

element of lF q U {oo} instead of transmitting the pair (x, y) E lF q x lF q' 

Alice Bob 

Compress P by computing P' = r.p (P) 
p' 

---+ Recover P by evaluating 'lj; (Pl) 

It is true that in this case we don't save that much since Alice could have sent x together 

with one bit to specify which square root Bob should take for y. However, this idea can be 

generalized and applied to subgroups of lF p6 for which elements can be represented using only 

two elements of lFp instead of six: this is the cryptosystem CEILIDH. This idea of reducing the 

amount of information that needs to be exchanged is the main selling feature of torus-based 

cryptography. 

Group Structure 

Now that we know that we are working with a group of order q + 1, we may wonder what its 

group structure is. To do so, the easiest way is to exploit the fact that the simplified group law 

we obtained seems quite familiar. Indeed, since D is not a square, then VJ5 ~ lFq . Thus, the 

polynomial f (x) = x2 - D = (x - VJ5) (x + VJ5) is irreducible over lFq • As a result, we know 

that (see [Hun74, Theorem V.1.6]) 

So given Xl + Yl VJ5, X2 + Y2VJ5 E lFq ( VJ5), we have 

(Xl + Yl JD) (X2 + Y2JD) = (XlX2 + DYlY2) + (XlY2 + X2yt) JD, 

8This is in fact the same idea as the parametrization of the circle. See [ST92, Section 1.1]. 
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which coincides with the group law for PeU equation obtained in Lemma 3.40 . We therefore 

have the foUowing one-to-one group homomorphism 

r.p: C(IFq) 

P = (Xl, YI) 

Thus, C (IF q) is isomorphic to a subgroup of IF~2 of order q + 1. But IF~2 is a cyclie group of order 

q2 _ 1 = (q - 1) (q + 1), and therefore contains a unique9 subgroup of order q + 1, namely 

where Xo + yoVD is a generator of IF~2' There is therefore a natural way to view the IFq-points 

on PeU conic as a subgroup of IF~2' So we know that C (IF q) alwayslO is a cyc1ie group of order 

q+ 1. 

This is where it becomes truly interesting: this subgroup of IF~2 in fact coincidesll with the 

1-dimensional algebraie torus T2 (IFq) used by Rubin and Silverberg as one of the two explicit 

cryptosystems described in their CRYPTO 2003 paperl2 [RS03]. More generaUy, we have that 

the r.p (n)-dimensional torus Tn (IFq) can be identified with the unique cyc1ic subgroup of IF~n 

containing <Pn (q) elements, where r.p is the Euler function and <Pn is the n-th cyclotomie poly­

nomial [RS03, Lemma 7]. In certain cases (e.g. if n ;::: 2 is divisible by at most two primes), the 

existence of a rational parametrization aUows to compactly represent the elements of Tn (IF q) 

using only r.p (n) elements of IFq (instead of n). 

The Discrete Logarithm Problem 

A cucial question that we have not yet addressed is the overaU difficulty of the discrete logarithm 

problem in C (IFq). Without a doubt, we should approach this problem by thinking of C (IFq) 

as 'a subgroup of IF~2 ' since the discrete logarithm problem in finite fields has been intensively 

studied since the birth of public-key cryptography. The first (and obvious) remark in order is 

that any algorithm that can extract DLPs in aU of IF~2, index-ca1culus for instance, can also be 

used to solve DLPs in C (IFq). Nevertheless, it is still possible that DLPs in C (IFq) be faster to 

solve than in IF~2' From a cryptanalysis point of view, the two main differences between 0 (IF q) 

and IF~2 are their sizes (#0 (IFq) being roughly the squareroot of #IF~2) and the fact that any 

element of 0 (IF q) can be easily and compactly represented using only one element of IF q U { 00 }. 

9Recall that if G is a cyclic group of order n and k 1 n, then G has exactly one subgroup of order k [Hun74, 
Ex 6, p.37]. 

lOIn comparison, there are many possible scenarios with elliptic curves, as we will see in the next section. 
Il l want to thank Alfred Menezes for pointing this out to me. 
12Even if they never mentionned Pel! equation in the paper! 
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The first index-calculus algorithm13 especially targeted at algebraic tori was presented at 

CRYPTO 2005 [GV05]: Robert Granger14 and Frederik Vercauteren had the idea of exploiting 

the compact representation of the elements in Tn (lF q) to carefully choose a new factor base (also 

called a decomposition base in that context) that would speed up the attack. Here is how they 

describe their algorithm: 

"[It} exploits the compact representation of elements of rational tori. 

The very existence of such an algorithm shows that the lower communication 

cost offered by these tori, may also be exploited by the cryptanalyst." 

Section 4 of the paper is devoted to explicitly describe the attack on T2 (lFqm) when q is an 

odd prime power. The complexity analysis and implementation of the algorithm reveal that it 

is already faster than Pollard's Rho method (see Section 2.7.1) as soon as m ~ 5. It therefore 

do es not yet represent a practical threat for T2 (lFp) when p > 2 is prime. 

However, at the moment these lines were written down, Granger and Vercauteren were testing 

the algorithm using a prototype implemetation inMAGMA. The running times they obtained 

should then only be considered as upper bounds of what will actually be achieved with an 

optimized code. Further developments are thus soon to be expected ... 

To sum up, we have shown in this section that the Pell conie in fact fulfills the main require­

ments for a group G to be suit able for cryptographie applications. That is, 

• The elements of G can be easily represented in a compact form, 

• The group operation can be performed efficiently, 

• The dis crete logarithm problem in G is believed to be intractable, and 

• The group order can be efficiently computed. 

Moreover, notice that we have achieved this goal 'from scratch',using elementary techniques 

throughout. It is hoped that this case study will give a flavor of what should be expected in the 

sequel, as we will need to show that these conditions are also met for a generalized Jacobian of 

an elliptic curve in Chapter 5. 

13For a general description of the principles behind index-calculus attacks, please refer to Section 2.7.2. 
141 wish to thank Robert for taking the time to patiently answer my numerous questions on this subject around 

a cup of coffee. 
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3.2.2 Elliptic Curves 

"The theory of elliptic curves is rich, varied, and amazingly vast" once wrote Joseph Silverman 

[Sil86, p.2]. Indeed, the fascination for the esthetic beauty of these curves allowed to develop the 

tools that would later turn out to play a key role in many applications, the most famous being the 

proof of Fermat's Last Theorem (FLT) [Wil95, TW95]. Their versatility is astonishing: in public­

key cryptography alone, they are used for primality testing [AM93], factoring large integers 

[Len87], digital signatures (ECDSA) [NloSTOO] and of course for encryption [Mil86b, Kob87]. 

The industry is now also falling under their charm: the shorter keys required for elliptic curve 

cryptosystems is an attractive selling feature, especially for small cryptographie devices, like 

smart cards, Personal Digital Assistants (PDAs) or cell phones [Mic02]. Moreover, government 

agencies also rely on elliptic curves to protect sensitive information: 

"National Security Agency (NSA) selected Elliptic Curve Cryptogmphy (ECC) as 

the exclusive key agreement and digital signature standard to secure sensitive but 

unclassified data within the U.S. government"15 

The goal of this section will nonetheless be very modest, as we simply wish to recall the 

milestones that make elliptic curves such a unique candidate for DL-based cryptography. First, 

there are many equivalent ways of defining elliptic curves (see [01s73, p.173]), but perhaps the 

most natural for the applications we have in mind is the following: 

Definition 3.42 An elliptic curve is an algebmic curve of genus one together with a distin­

guished point 0 E E. Moreover, we say that this elliptic curve is defined over K if 0 E E (K) 

and E is defined over K as an algebmic curve. 

Remark 3.43 So stric.tly speaking, an elliptic curve is a pair (E,O). We shall however often 

say 'let E be an elliptic curve' as soon as it is clear from the context which distinguished point 

we consider. 

Remark 3.44 By definition, notice that if (E,O) is an elliptic curve defined over K, then 

E (K) is never empty as 0 E E (K). 

Remark 3.45 Notice that this definition does not require that the curve E be smooth. 

Of course, this definition do es not say much if one is not familiar with the notion of genus. 

For now, let's just say that the genus of a curve is a nonnegative integer that somehow gives a 

15From Certicom press release, June 9, 2005. Available at 
http://www.certicom.com/index.php?action=company.press_archive&view=494. 
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measure of its complexity. For instance, JP'l and the Pell conie both have genus zero [Sil86 , Ex. 

II.5.6] and are thus among the simplest curves that we can study. The formaI definition of the 

genus is part of the Riemann-Roch theorem and requires familiarity with divisors (and so will 

have to wait until Section 3.3.4). 

WeierstraB Equations 

That being said, the very first step towards a concrete cryptographie application would be to 

see what the equation of an elliptic curve may look like. To do so, let's first consider the famous 

WeierstraJ3 equations. 

Definition 3.46 A polynomial equation 

(3.2) 

with coefficientsl6 al, a3, a2, a4, a6 in K is called a WeierstraJ3 equation. 

Now, let P = [X: Y : Z] E JP'2 satisfying (3.2) be given. If Z = 0, then we must have 

P = [0: 1 : 0]. Otherwise, let x = X/Z, y = Y/Z. Thus, P = [X : Y : Z] = [x: y: 1] and the 

equation (3.2) becomes 

(3.3) 

So for simplicity, we often write a WeierstraJ3 equations using (3.3) instead of (3.2). We shall 

also follow this convention from time to time, remembering to add the point at infinity [0 : 1 : 0] 

to the set of solutions of (3.3). 

The following theorem, whose proof can be found in [Sil86, Prop. III.3.1], also relies on 

the Riemann-Roch theorem (see Theorem 3.79): it establishes the well-known link between 

WeierstraJ3 equations and elliptic curves. 

Theorem 3.47 Any smooth curve given by a Weierstrafl equation 

with coefficients in K is an elliptic curve defined over K with distinguished point [0 : 1 : 0]. 

Conversely, if (E, 0) is ari elliptic curve defined over K, then there is an isomorphism <p 

from E onto a curve given by a Weierstrafl equation with coefficients in K, and such that 

<p (0) = [0 : 1 : 0]. 

16To remember these subscripts, notice that for each monomial aiXjyk Zl of (3.2), we have i + 2j + 3k = 6. 
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Example 3.48 The Fermat curve F3 given by A3 + B3 = 0 3 is an elliptic curve over the 

rational numbers rQ with 0 = [1 : -1 : 0]. It is isomorphic to the elliptic curve E given by the 

WeierstrajJ equation 

y 2 Z = X 3 - 432 . Z3. 

Indeed, the map 
'P: F3 ----- E 

[A : B : C] f---+ [12C : 36 (A - B) : A + B] 

is easily seen to be an isomorphism with inverse 

'l/J : E ----- F3 
[X : Y : Z] f---+ [36Z + y : 36Z - y : 6X] . 

Surprisingly, this seemingly innocent observation can be used to prove the following special case 

of Fermat's Last Theorem17
: 

If A, B, C E Il satisfy A 3 + B 3 = 0 3
, then A . B . C = O. 

This statement was already conjectured circa 900 A.D. by Arab mathematicians, while the very 

first praof was (as far as we know) provided by Fermat himself. 

As we will shortly see, WeierstraB equations are really convenient in practice since, among 

other things, the corresponding group law algorithm can be efficiently implemented. Neverthe­

less, other defining equations for elliptic curves are of cryptographie interest as weIl. For instance, 

the Hessian [JQOl] and Jacobi [L801, BJ03] families 18 can be used as (one level of) protection 

against side-channel analysis. In a nutshell, an attacker monitors side-channelleakage (like run­

ning time, power consumption or electromagnetic (EM) emanations) during the execution of a 

crypto-algorithm in the hope of recovering secret data (a private key, perhaps). It is thus some­

how fiattering that such physical attacks could have pure algebro-geometric countermeasures 

[End of digression19 !]. 

From a given WeierstraB equation, it is possible (but tedious) to explicitely write down the 

conditions that will ensure the smoothness of the curve directly from Definition 3.34. It is then 

convenient to define the following quantity before we state the smoothness condition. 

Definition 3.49 The discriminant of the WeierstrajJ equation 

Y2Z +a1XYZ +a3YZ2 = X 3 +a2X2Z +a4XZ2 +a6Z3 . 

17See [Was03, p.36] for details. 
18See [Hus86, Chapter 4] and [Con99, Chapter 1] for a general description of these families. 
19For further details regarding this fascinating duel between cryptanalysts and cryptographers, see [BSS05, 

Chapter IV, V]. 
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b2 = ai + 4a2, 
b4 = 2a4 + ala3, 
b6 = a~ + 4a6, and 
bs = aia6 + 4a2a6 - ala3a4 + a2a~ - a~. 

69 

(3.4) 

Lemma 3.50 Let E be an elliptic curve given by y 2 Z + alXY Z + a3Y Z2 = X 3 + a2X2 Z + 

a4X Z2 + a6Z3. Then, E is smooth if and only if ~ i:- o. 

The proof of the ahove result can he found in [8il86, Prop. III.1.4(a)J. Thus, one way to 

generate a smooth elliptic curve would he to randomly pick the ai 's until ~ i:- O. The ahove 

equations (as well as the group law algorithm) can however he simplified depending on the 

characteristic of K and on the j-invariant of E. 

Definition 3.52 Let E be a smooth elliptic curve given by the WeierstrajJ equation y2 Z + 

alXY Z + a3Y Z2 = X3 + a2X2 Z + a4X Z2 + a6Z3. The j-invariant of E is defined as 

where ~ is the discriminant of the WeierstrajJ equation and b2, b4 are as in (3.4). 

80 let E he a smooth elliptic curve defined over a field K. Let's first consider the case 

Char (K) = 2. Using a linear change of variahles2o , it follows that E is isomorphic to a curve 

given hy a WeierstraB equation (with coefficients in K) of the form: 

{ 
y2 + xy = x3 + ax2 + b 
y2+ cy =x3 +dx+e 

if JE i:- 0, 
if JE = O. 

The discriminants of these two equations respectively equal band é (and thus, c, b i:- 0). 

Now, if Char (K) i:- 2,3, then one can also use a linear change of variahles21 in order to get 

a curve given hy 

(3.5) 

where a, b E K and which will he isomorphic to E. Furthermore, the discriminant of (3.5) equals 

-16 (4a3 + 27b2 ). 

20See [Men93, Section 2.5] for explicit formulre. 
21See [Sil86, Section HU] or [Men93, Section 2.4]. 
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The Group Law 

In 1835, Carl Gustav Jakob Jacobi (Jacobi pour les intimes) had the wonderful idea of consid­

ering a group law on cubic curves [Jac35] . Exactly 150 years elapsed before Miller and Koblitz 

independently put forward the use of these groups in cryptography [Mil86b, Kob87]. 

Interestingly enough, the Vigenère cipher, also called Le Chiffre Indéchiffrable22
, was still 

considered secure in 1835. In fact, we had to wait until 1854, three years after the death of 

Jacobi, before the British scientist Charles Babbage23 finally found the weakness that allowed 

to break it24 . 

So who knows, maybe a century from now, we will still find new applications (that are 

currently beyond our wildest dreams) to mathematical ideas born in Y2K. .. 

We now proceed to describe Jacobi's idea, the so-called chord-and-tangent rule on a smooth 

elliptic curve E given by the WeierstraJ3 equation 

(3.6) 

with coefficients in K and distinguised point 0 = [0 : 1 : 0]. We will here follow the advice of 

Silverman and Tate, starting with a geometrical description of the method, which can then be 

easily translated into equations. 

Just as with the Pell conie, the group law on the elliptic curve E can be described in terms of 

straight lines. So let P, Q E E be given. The point P+Q E E is obtained as follows. First draw 

the line Cp,Q passing through P and Q. In the case where P = Q, Cp,p simply is the tangent 

line to E at P, as depicted (over the reals) in Figure 3.5. Now consider the points of JP'2 which 

lies both on Cp,Q and E. Since Cp,Q has degree 1 and E has degree 3, Bézout's theorem25 tells 

us that there are exactly 3 such points (counting intersection multiplicities). But we already 

know two of them: P and Q. Thus let R be the third such point of intersection (notice that 

it is possible that it coincides with P or Q). Now, draw the line CR,o passing through Rand 

O. Apply Bézout's theorem once again to get that the intersection of E with CR,o consists of 

precisely 3 points: R, 0, and S, say. We then define the sum of P and Q to be equal to S, as 

illustrated in Figure 3.5. 

Remark 3.53 Since P + Q = S, we therefore have that (P + Q) + R = S + R. So let's now 

evaluate S + R. By construction, the line CR,s intersects E at R, Sand O. Now, the line at 

22That is, 'the 'Unbreakable cipher·'. 
23Mr. Babbage also devised the blueprint of the modern computer, invented the speedometer, was the first to 

realize that the year's weather infiuenced the width of a tree ring, and much, much more [Sin99, Chapter 2]. 
24 The historical perspective of this quest is revealed in [Sin99, Chapter 2]. 
25See [FuI69, Section 5.3] or [Har77, Corollary 1.7.8]. 
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infinity eo,o given by Z = 0 intersects E at 0 with multiplicity 3 since equation (3.6) reduces 

to X 3 = 0 when Z = O. Thus, S + R = 0, and so (P + Q) + R = O. As a resuIt: 

The three points of intersection of a line with E sum up to O. (3.7) 

p 

Figure 3.5: Chord-and-tangent rule on an elliptic curve 

If there was a Hall of Fame of the most popular figures inspired by number theory, the chord­

and-tangent rule wouid be there for sure: from T-shirt designs26 to book covers [ST92, Was03], 

it is omnipresent. But beyond this pretty picture, a powerfui and deep theory is hidden. 

But we are not there yet. lndeed, from the description of the chord-and-tangent ruIe, it is 

not even obvious that this in fact defines a group Iaw. In particuIar, everyone who ever tried 

to visualize the associativity property (which invoives 8 straight lines) or work out by hand the 

details using the corresponding equations27 realizes (after a few pages) just how tedious it may 

become. However, if we are willing to wait until we introduce divisors in Section 3.3, then it 

will suddendIy appear so c1ear why it actually forms an abelian group. But for now, Iet's just 

state the desired resuit [Sil86, Prop. III.2.2]. 

Theorem 3.54 Let E be a smooth elliptic curve given by a WeierstrajJ equation with coeffi­

cients in K and distinguised point 0 = [0: 1 : 0]. Then, E with the chord-and-tangent rule 

as binary operation forms an abelian group with identity 0 = [0 : 1 : 0]. Furthermore, if E is 

defined over K, then E (K) is a subgroup of E. 

We now proceed to obtain easy to implement explicit formulœ for this group operation. Let's 

26Curious? See http://www.crm.umontreal.ca/act/theme/theme_1998-1999_fr .html. 
27See Section 2.4 of [Was03] for full details (12 pages). 



72 CHAPTER 3. ALGEBRAIC CURVES 

treat the easy cases first. Since 0 is the identity element, we know that 0 + 0 = 0, P + 0 = P 

and 0 + P = P for any PEE. 

In the case where P, Q =1= 0, we can assume without loss of generality that P = [Xp : Yp : 1] 

and Q = [XQ : YQ : 1]. The line Cp,Q is given by an equation of the form 

aX + bY + cZ = 0, (3.8) 

with a, b, c not aH zero. We now want to get the coordinates of the third point R that 

simultaneously satisfy (3.6) and (3.8). 

First, 0 = [0 : 1 : 0] is the only point on E with Z = 0, so we can start by checking whether 

it satisfies (3.8) or not (notice that this will be the case if and only if b = 0). If so, then R = 0, 

which implies by (3.7) that P + Q = O. 

Otherwise, b =1= 0 and we can assume without loss of generality that R = [XR : YR : 1]. When 

Z = 1, equations (3.6) and (3.8) become 

{ 
y2 +aIXY + a3Y = X3 + a2 X2 +a4X + a6, 
Y=mX+b, 

(3.9) 

where m = -a/b and b = -c/b are respectively the slope and Y-intercept of CP,Q and 

{ 

a=3X~+2a2Xp+a4-aIYp 
if P =1= Q and b = - (2Yp + alXp + a3) 

c = -X~ + a4Xp + 2a6 - a3Yp 
if P = Q. 

It is a high school exercise to get these values of a, band c when P =1= Q, while implicit 

differentiation of (Y + alX + a3) Y = X3 + a2X2 + a4X + a6 is used to get the slope of the 

tangent line to E at P: from (yI + al) Y + (Y + alX + a3) y' = 3X2 + 2a2X + a4, we get that 

Now, substituting Y = mX + b in (3.3) yields a cubic equation in X looking like this: 

Since X p , XQ and XR aH satisfy this equation, the left-hand side of (3.10) must equal (X - X p )' 

(X - XQ) . (X - XR) and can thus be rewritten as 

Equating the coefficient of X 2 in (3.10) and (3.11) yields 
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It only remains to find the coordinates of S = [Xs : Ys: Zs]. First notice that S '" 0 since 

otherwise, 

by Remark 3.53. So without loss of generality, Zs = 1. Since the equation of the line CR,o is 

X - XRZ = 0, we therefore have Xs = XR. Moreover, 

since both Rand S are on E. As a result, 

and thus 

In accordance with Theorem 3.54, remark that if E is defined over K and P, Q E E (K), then 

the above explicit formulœ show that SE E (K) as weIl. 

Lastly, we derive equations for the (additive) inverse of P = [Xp: Yp : 1]. We are thus 

looking for a point P' = [Xp' : Yp' : 1] such that P + P' = O. From Remark 3.53, the third 

point of intersection of Cp, P' with E is then O. The equation of Cp,P' is therefore given by 

X - XpZ = 0, which implies that Xpl = X p and Ypl = - (Yp + a1Xp + a3). And here again, 

if E is defined over K and PEE (K), notice that P' E E (K) as weIl. 

For future reference, let's compactly summarize these results. 

Theorem 3.55 Let E be a smooth elliptic curve given by the WeierstrajJ equation 

with coefficients in K and distinguised point 0 = [0: 1 : 0]. Let P = [Xp : Yp : 1], Q 

[Xp : Yp : 1] E E be given. Then, the inverse of P is 

-P = [Xp : -Yp - a1Xp - a3 : 1]. 

So if Q = -P, then P + Q = o. Otherwise, P + Q = [Xs : Ys : 1], where 

and 



74 CHAPTER 3. ALGEBRAIC CURVES 

Remark 3.56 We have here expressed the points to add in the form [X : Y : 1], the so-called 

affine coordinates. Take note that various other representations for the points of E are also 

possible, like the homogeneous projective coordinates, Jacobian coordinates, Chudnovsky Jacobian 

coordinates, modified Jacobian coordinates, mixed coordinates, etc. The choice of a coordinate 

system for a specific implementation will depend on several factors, like the relative cost of 

a finite field inversion to that of a multiplication. For a detailed account of these coordinate 

systems, we refer to ICF05, Section 13.2-13:3). 

Before we go any further, let's see sorne of the basic built-in MAGMA cornrnands for elliptic 

curves. 

Example 3.57 As shown in the following self-explanatory example, it is really easy to work 

with elliptic curves in MAGMA. In fact, this is the software we used for our prototype imple­

mentation of generalized Jacobians of Chapter 5. 

> K:=GF(7); 
> E:=EllipticCurve([Kll,4]); 
> E; 
Elliptic Curve defined by y-2 
> Discriminant(E); 
3 
> #E; 
10 
> Points (E) ; 
{@ (0 : 1 : 0), (0 : 2 : 1), (0 

(4 : 4 : 1), (5 : 1 : 1), (5 
> IsCyclic(AbelianGroup(E)); 
true 
> E!O; 
(0 : 1 : 0) 
> P:=E! [5,1,1]; 
> P [1] ; 
5 
> P+P; 
(6 : 3 1) 

> 2*P; 
(6 : 3 1) 

> -Pi 
(5 : 6 1) 

> Order(P); 
10 
> for i in [1 .. Order(P)] do 

Il Gives the details on the elliptic curve 
x-3 + x + 4 over GF(7) 

Il Number of points in E(K) 

Il Lists the points of E(K) 
5 : 1), (2 : 0 : 1), (4 : 3 : 1), 
6 : 1), (6 : 3 : 1), (6 : 4 : 1) @} 

Il Outputs 'true' iff E(K) is a cyclic group 

Il Point at infinity 

Il Sets P equal to the point [5:1:1] in E(K) 
Il Outputs the X-coordinate of P 

Il Computes the inverse of P 

Il Computes the order of P 

Il Computes the multiples of P 
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for> print ü*p) ; 
for> end for; 
(5 1 1) 
(6 3 1) 

(0 2 1) 
(4 3 1) 

(2 0 1) 
(4 4 1) 
(0 5 1) 
(6 4 1) 
(5 6 1) 
(0 1 0) 
> Q:=Random(E); 
> Q; 
(4 : 4 : 1) 
> Log(P,Q); 
6 
> 6*P eq Q; 
true 

Il Q is a pseudo-randomly chosen point in E(K) 

Il Computes the discrete log of Q to the base P 

Il Checks the correctness of the answer 

It is therefore a child's play to explore discrete logarithms with the help of MAGMA. 

So we now know that an elliptic curve naturally possesses an abelian group structure. ls 

that aIl one can say? In fact, we can also emphasize that the formulœ used to compute inverses 

and sums of points really are 'nice' functions. This idea can be formalized as follows. 

Definition 3.58 Let A be a nonsingular projective variety. Suppose that A is also an abelian 

group with identity 0 E A and that the addition law œ : A x A ~ A and inverse map e : A ~ A 

are morphisms. Then, (A, 0, œ, e) is said to be an abelian variety. 

Remark 3.59 In most cases, we simply say 'A is an abelian variety' when the underlying 

group structure is understood. 

The following result establishes the fundamental equivalence between nonsingular elliptic 

curves and abelian varieties of dimension one. The proof of this result can be found in the 

excellent article An elementary proof that elliptic curves are abelian varieties of Loren D. OIson 

[01s73, Theorem 9 and Corollary 11]. 

Theorem 3.60 A nonsingular elliptic curve is an abelian variet]J of dimension one. Con­

versely, an abelian variety of dimension one is a nonsingular elliptic curve. 
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There are various techniques that one can use to check that the explicit equations of Theorem 

3.55 indeed define morphisms. One way to proceed is to use the so-called 'translation maps', 

as used by Silverman in the proof of [Sil86, Theorem III.3.6]. A less elegant (but equally 

informative) approach is to roll up our sleeves and play with explicit equations, as outlined in 

[Sil86, Remark III.3.6.1]. 

Indeed, this direct technique allows us to modify the classical equations of the group law in 

order to get 'unified point addition formula; '. Informally, a unified formula enjoys the property 

that the corresponding group law algorithm for computing P + Q does not contain conditional 

statements that treats the case P = Q separately. Unified formulre are therefore interesting 

countermeasures against side-channel attacks. Recently, Éric Brier, Marc Joye and the author 

proposed the following family of unified formulre [rBDJ]: 

Theorem 3.61 Let E be a smooth elliptic curve given by the Weierstrafl equation 

with coefficients in a field K and let P = [Xp : Yp : 1], Q = [XQ : YQ : 1] E E(K) be given su ch 

that Q #- -P. Moreover, let f E K [Xl, YI; X 2, Y2] be a given polynomial and define 

g(XI , Y I;X2, Y2) = xl + X IX 2 + x;S - al YI + a2(XI + X 2) + a4 + (YI - Y2)f(XI, Y I;X2, Y2), 
h(Xl, YI; X 2, 1'2) = YI + 1'2 + al X 2 + a3 + (Xl - X 2)f(XI , YI; X 2, 1'2). 

{ 

g(Xp,Yp;XQ,YQ) 

m = h (Xp , Yp ; X Q , YQ ) 
9 (XQ, YQ; Xp, Yp ) 

h (XQ, YQ; X p , Yp ) 

(3.12) 

is well-defined and P + Q = [XP+Q : YP+Q : 1], where 

Moreover, the following condition is sufficient for f to be defined: 

In fa ct, there are infinitely many f satisfying (3.14) for all P, Q E E(K), Q f- -P. 

Example 3.62 If Char (K) #- 2,3, then we saw that E can be taken to have an equation of 

the form y2 Z = X3 + aX Z2 + bZ3. Thus, f = 1 satisfies (3.14) for all P, Q E E(K) such that 
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Q =1= - P and the corresponding value of m is given by 

ifYp + YQ =1= XQ - Xp, 

otherwise. 

Alternatively, a fresh value of f could also be chosen each time two points are added. As a result, 

the side-channel information leaking when computing P + Q would also depend on the choice of 

f. For further details on the choice of f, we refer to frBDJj. 

Hasse, Deuring, Schoof, and Friends 

If we want to use an elliptic curve E defined over a finite field lF q for cryptographie applications, 

we first would like to know how many bits q should have in order for #E (lF q) to be of a 

convenient size. That is, large enough to counter attacks based on generic algorithms for the 

DLP (like the Pollard Rho method), and at the same time not disproportionately large sinee we 

want the computations to be performed efficiently. 

In 1921, Emil Artin conjectured in his thesis [Art21] that #E (lFq ) should be of the order 

of magnitude of q + 1 and could never be less than q + 1 - 2,jQ nor greater than q + 1 + 2,jQ. 

His intuition was indeed right, and a decade later, Helmut Hasse [Has33] was able to provide a 

formaI proo(28 [Sil86, Theorem V.l.l]. 

Theorem 3.63 (Hasse) Let E be an elliptic curve defined over lF q' Then, 

But even if q is chosen to have, say, 160 bits and we are guaranteed that E (lFq ) has minimal 

cardinality q + 1 - 2,jQ, we still need to make sure that #E (lFq ) has at least one large prime 

factor to resist the Pohlig-Hellman attack. 

In fact, there is a deterministic polynomial-time algorithm29 , initially due to René Schoof, 

to compute the exact value of #E (lFq ) [Sch85]. Subsequently, Neal Koblitz specifically treated 

the case of characteristic two [Kob90]. In short, over the past twenty years, Schoof's idea was 

improved by several authors, including the work of Elkies and Atkin. The resulting method is 

now often referred to as the Schoof-Elkies-Atkin or SEA algorithm 30. For an up to date account 

28This result was generalized by André Weil in 1948 for curves of higher genus. See [Wei48] for the original 
exposition. 

29The original algorithm was described for Char (Fq) of 2,3 and required 0 (log9 q) bit operations. 
300ne can easily get a sense of the efficiency of this algorithm using MAGMA since it already contains an 

implementation of this method. 



78 CHAPTER 3. ALGEBRAIC CURVES 

of the point counting techniques for elliptic and hyperelliptic curves, we refer to Chapter 17 of 

[CF05]. 

Thus say we first fix the value of q and then randomly choose an elliptic curve E over lF q until 

#E (lF q) is ofthe form h ·l, where l is a large prime and h is a small integer31 called the cofactor. 

These are indeed requirements that are found in the standards for elliptic curve cryptography 

[IEE99 , NloSTOO, CROO]. It is in fact a highly nontrivial task to show that this simple method 

is a relatively efficient procedure to generate such curves. The pro of relies in part on a result of 

Max Deuring [Deu41] that establishes the close connection between Kronecker class numbers and 

the problem of counting, up to isomorphism, the number Nq,n of elliptic curves E over lF q such 

that #E (lF q) = n, where n is a given integer in the Hasse interval (q + 1 - 2vq, q + 1 + 2vq) . 

Very informally, Deuring's result implies that given n = q + 1 + t, where t E Z is such that 

Itl ~ 2vq, we have that Nq,n is roughly equal to J4q - t2 / 7r, which is represented graphically 

in Figure 3.6 [Sch04]. A concise account of Deuring's result can also be found in [Len87]. 

Figure 3.6: Visual interpretation of Deuring's result 

Lastly, let's briefly mention that it is also sometimes possible to first choose the exact number 

h . l of points we want and then construct an elliptic curve matching this requirement. This 

is the so-called complex multiplication, or CM method, for which a description can be found in 

[CF05, Chapter 18]. 

3.2.3 Hyperelliptic Curves 

The sole objective of this (outrageously) short section is to provide a motivation for the study of 

divisors, Picard groups and Jacobians that will come next. lndeed, hyperelliptic curves provide 

the perfect example of a family of curves of cryptographie interest where the group law is not 

directly defined on the set of points of the curve. 

We want to emphasize that we will thus sim ply touch upon the topic of hyperelliptic curve 

31 Usually, we choose h = 1,2,3 or 4. 
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cryptography (HECC), and consequently, that our treatment will unfortunately not do justice 

nor reflect the true value of using these curves for cryptographie purposes. We thus do not want 

to leave the impression that hyperelliptie curves are not relevant in cryptography, as the truth 

is quite the opposite! For all details32 , the interested reader is urged to refer to the excellent 

Handbook of Elliptie and Hyperelliptie Curve Cryptography [CF05]. 

In the crypto community, the term 'hyperelliptie eurves' often refers to imaginary quadratie 

hyperelliptie eurves, and we shall follow this convention as weIl. For simplicity, we also present 

the equation defining the curve in affine form, in accordance with most of the litterature of 

HECC. 

Definition 3.64 A hyperelliptic curve of genus 9 over a field K is an algebraie eurve C given 

by an equation of the form 

where h, f E K [x], deg (1) = 2g + 1, deg (h) ::::: g, and f is a monie polynomial. 

To ensure that C is smooth, it suffices to verify that the partial derivatives 2y+h and l' -h'y 

do not simultaneously vanish at any point of C (K). 

Remark 3.65 Thus, notice that an elliptie eurve ean also be seen as a hyperelliptie eurve of 

genus one. 

In order to provide a visual aid for this definition, Figure 3.7 presents an example of the 

graph of a hyperelliptic curve of genus two over the reals. 

From this graph, it is at first really tempting to try to use ad hoc methods in the hope of 

defining the equivalent of the chord-and-tangent rule for elliptic curves. However, the set of 

points on a hyperelliptie curve of genus 9 2: 2 per se do not form a group. But all is not lost 

since we can still use this set of points to turn it into a group. The clever way to proceed is to 

consider the divisors on C in order to build the so-called Picard group, PicO (C), of the curve. 

In turn, the Jacobian J(C) of the curve will be a certain abelian variety isomorphic (as abelian 

groups) to PicO (C). 80 in a nutshell, the Jacobian of a hyperelliptic curve is the group we are 

using to do discrete logarithm-based cryptogaphy. 

We conclude this section by providing an avant-goût of what the group law on the Jacobian 

look like. Figure 3.8 represents a hyperelliptic curve of genus two over the reals. With the 

notation for divisors that will be introduced at the beginning of next section, we have in this 

32The 808 pages of this work is a truly complete account of the state-of-the-art in curve cryptography. 
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y 

x 

Figure 3.7: An example of a hyperelliptic curve of genus 2 over the reals 

example that 

3.3 Divisors 

As outlined in the previous section in the case of hyperelliptic curves, divisors will be the tool 

we need to turn a set into a group. Roughly speaking, and just to give an idea, let's just say 

for now that a divisor is a concise and convenient way of keeping track of the zeros and poles of 

functions. 

3.3.1 Basic Concepts 

80 we are now ready to describe how we can create a group out of a set of elements. The 

starting point will be to consider a free abelian group. This pro cess is in fact very natural, as 

demonstrated in the following high schoollevel example (which can easily be omitted by anyone 

familiar with free abelian groups). 

Example 3.66 A stamp collector takes his passion quite seriously. To each collectible corre­

sponds a unique identification code. It is then an easy matter to write in a compact form an up 
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Figure 3.8: Visual interpretation of the group law on a hyperelliptic curve of genus two 

ta date inventory of his collection. At a glance, he can easily see what ta buy and what can be 

traded as well as updating the state of his collection ajter each transaction. 

Date 
Oct. 9 
Oct. 10 
Oct. 10 

Operation 
Inventory 
Transaction 
Inventory 

C5732 

4 
o 
4 

o 
o 
o 

5 
-2 
3 

1 
1 
2 

For quick reference, this last state could also be symbolized by the shorthand 4( C5732 ) +3(F2098 ) + 

2(854 ) + .... 80 we started with a set consisting of the different stamps and we ended up with a 

group where a typical el~ment consists of a list of integers, one for each stamp. 

Formally, let 8 be a set (not necessarily finite) and let G be the collection of formaI sums of 

the form 

L nA(A) 
AES 

where each nA is an integer and finitely many of them are nonzero. The natural addition rule 

L mA(A) + L nA(A) = L(mA +nA)(A) 
AES AES AES 

turns G into a group with identity 2:AEs O(A), denoted 0 (notice the difference between 0 and 

0). The group G is called the free abelian group on 8. 
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Now, let C be our favorite algebraic curve, defined over a perfect field K, for which we are 

collecting the points as a hobby. We then want to consider formaI sums of the form 

L np(P), 
PEC 

where each np is an integer and finitely many of them are nonzero. Call such a sum a divis or 

on C. The free abelian group generated by the points of C is called the divis or group of C and 

is denoted by Div ( C). 

The degree of a divisor D is the integer 

deg (D) = L np, 
PEC 

which is a finite sum of integers. The divisors of degree zero form a subgroup of Div(C), which 

we denote by 

DivO(C) = {D E Div(C) 1 deg (D) = O}. 

The support of D is defined as the (finite) set of points P such that np is nonzero: 

Supp (D) = {P E CI np oF O} . 

We say that D is prime to D' if D and D' have disjoint supports. Furthermore, D is called an 

effective (or positive) divisor when ail np ~ O. Lastly, we will write D ::::: D' when D - D' is an 

effective divisor. 

Now, let (J in Gal(K / K), the Galois group of K over K, be given. Then, for any point 

P = [xo : ... : X n], we let pa = [xo : ... : x~l. If DE Div(C), we also define 

Lastly, a divisor D is said to be rational over K (or defined over K) if Da = D for ail (J in 

Gal(K / K). The group of divisors defined over K will be denoted DiVK (C). Similarly, Div'k(C) 

is the group of degree zero divisors defined over K. 

3.3.2 Discrete Valuations 

We will now build a discrete valuation on the function field K(C). Before we do so, we first 

recall sorne concepts. 
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Definition 3.67 A discrete valuation (also called an order function) on a field F is a surjective 

map v : F -+ ZU { oo} such that: 

(i) v(a) = 00 if and only if a = O. 
(ii) v(a· b) = v(a) + v(b). 

(iii) v(a + b) ~ min (v(a), v(b)). 

The valuation ring of F is R = {a E Flv(a) ~ O}. Lastly, the ring R is called a discrete 

valuation ring (abbreviated DVR). 

Now to each smooth point of C, we will associate a discrete valuation, ordp , that will 

basically tell us whether a function f E K(C) has a zero or a pole at P, and if so, will also give 

the multiplicity. 

Proposition 3.68 Let C be an algebraic curve defined over K and let P E C be smooth point. 

Then the function 

ordp : K(C) ----* Z U {oo}, 

which maps 0 ta 00, and f =1- 0 ta its order of vanishing at P, is a discrete valuation. Namely, 

if ordp (f) < 0, th en f has a pole of arder - ordp (f) at P, 

if ordp (f) = 0, then f is defined and nonzero at P, 

if ordp (f) > 0, then f has a zero of arder ordp (f) at P. 

It therefore follows that the following two (intuitively clear) properties hold: 

ordp(f· g) = ordp(f) + ordp(g) and ordp(f + g) ~ min (ordp (f), ordp(g)). 

For further details on these discrete valuations, please refer to [Sil86 , Section 11.1]. 

3.3.3 Principal Divisors 

It will now be convenient to associate a divisor to each function f E K(C). The ide a is to 

'make a list' where each entry is a point P E C together with ordp(f), the order of f at P. 

A convenient way to do so is to consider the formaI sum 2:PEC ordp(f)(P). The following 

proposition from [Sil86, Proposition 11.1.2] then ensures that this indeed defines a divisor. 

Proposition 3.69 Let C be a smooth algebraic curve defined over K and f E K(C) be given. 

Then, there are a finite number of points of C at which f has a zero or pole. Moreover, if f has 

no pales, then f is constant (that is, f E K). 
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We can now formally define the divisor we associate to the function f. 

Definition 3.70 Let C be a smooth algebraic curve defined over K. The divisor of a function 

f E K(C)* is 

div(J) = L ordp(J)(P). 
PEe 

Definition 3.71 A divis or D E Div( C) is said to be principal if there is an f E K( C)* such 

that D = div(J). 

The following basic properties of principal divisors, from [Sil86, Proposition II.3.1], will prove 

to be truly useful throughout this dissertation. 

Proposition 3.72 Let C be a smooth algebraic curve defined over K and f,g E K(C)* be 

given. Then, 

(i) div(J) = 0 if and only if f E K*. 
(ii) deg( div(J)) = o. That is, ail principal divisors have degree zero. 
(iii) div(J . g) = div(J) + div(g). 
(iv) div (~) = div(J) - div(g). 
(v) div(r) = n . div(J) for ail integers n ;:: l. 

Definition 3.73 Let Princ (C) = {D E Div( C) 1 D is principal} denote the set of principal di­

visors on C. 

Remark 3.74 The above proposition in fact also shows that Princ (C) is a subgroup of Divo (C). 

Moreover, notice that given a principal divisor D = div(J) , the function f E K(C)* is only 

determined up to multiplication by a nonzero element of K. lndeed, if 9 E K(C)* is such that 

D = div(J) = div(g), then 

0= D - D = div(J) - div(g) = div (~) , 

from which follows that f / 9 E K*. Thus, f = c . 9 for sorne c E K*. 

Example 3.75 Ali divisors of degree zero on pl are principal. lndeed, let D = '2: np(P) E 

Div (pl) be given such that deg (D) = o. For each P = [x p : yp] E pl, the function ypX - x p Y 

will vanish at P only. Thus, D = div (J) where 

f = II (ypX - xPytp 
• 

PElI'l 

The key observation here is to notice that we have f E K(Pl) since deg (D) = o. 
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This simple example, as we will later see, is a key difference between elliptic curves and 

curves of genus zero, such as JP'1. 

We now define an equivalence relation on divisors, which is the first step towards the con­

struction of the Jacobian of a curve. In this chapter, we will only consider linearly equivalent 

divisors, as opposed to, say, algebraically or numerically equivalent divisors. An overview of 

these equivalence relations can be found in [Die85 , Section VII.7J. In the next chapter, we will 

see how ta modify the definition of linear equivalence in order to construct generalized Jacobians 

(c.f. Section 4.2). 

Definition 3.76 Let Dl, D 2 E Div(C) be given. If Dl - D 2 is a principal divisor, then we say 

that Dl and D 2 are linearly equivalent, and we write Dl rv D2 • 

Lastly, given a divisor D and a function f, we formalize the idea of 'evaluating f at D'. 

Definition 3.77 Let C be a smooth algebraic curve defined over K. Let D = 2: np(P) E 
PEC 

Div(C) and f E K(C)* be given su ch that D and div(l) have disjoint supports. We then define 

f(D) = II f(p)n p = II 
PEC PESupp(D) 

Notice that this is a finite product sin ce finitely np 's are nonzero by definition. 

3.3.4 The Riemann-Roch Theorem 

Initially demonstrated as Riemann's inequality [Ful69, Section 8.3], the Riemann-Roch theorem 

has gained its current form following the work of Gustav Roch, himself a student of Riemann, 

during the 1850s. This much celebrated theorem is one of the most important tool in the 

algebraic geometry of curves. 

To each divisor, we now associate a subset of K(C) as follows. 

Definition 3.78 Let D E Div (C) be given. We let 

C(D) = {f E K(C)*I div (1) 2: -D} U {O}. 

The set C(D) ç K(C) is in fact a finite-dimensional K-vector space [Sil86, Proposition II.5.2 

(b) J. Its dimension will be denoted l (D) = dim:K C ( D) . 

Technically, we would need to formally introduce canonical divisors (and thus differential 

forms33 ) in order to fully appreciate the scope of Riemann-Roch. However, the only result that 

33Indeed, a divisor KG E Div(C) is said to be canonical if there is a nonzero differential form w on C such 
that KG ~ div (w). 
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we will need in this work is a corollary of this theorem that does not involve canonical divisors. 

We have then settled for stating the general result for completeness and to refer to Section II.4 

of [Sil86] for details about differentials and canonical divisors. 

Theorem 3.79 (Riemann-Roch) Let C be a smooth algebmic curve and KG be a canonical 

divis or on C. Then, there is a nonnegative integer 9 such that 

l (D) - l (KG - D) = deg (D) - 9 + 1 

for all D E Div (C). The integer 9 is called the genus of C. 

The classical proof of Brill and Noether was reproduced by Fulton in [Ful69 , Section 8.6]. 

As for the proof of the following corollary, see [Sil86, Corollary II.5.5(c)]. 

Corollary 3.80 Let C be a smooth algebmic curve of genus 9 and let D E Div (C) be given. 

If deg (D) > 2g - 2, then l (D) = deg (D) - 9 + 1. 

3.3.5 The Abel-Jacobi Theorem 

We now see a very interesting application of the theory of divisors. At the same time, it will be 

a good occasion to get used to work with principal divisors, as this will be much needed to get 

to understand generalized Jacobians. 

As pointed out by Jean-Pierre Serre, the Abel-Jacobi Theorem is of the utmost importance 

since "The theory of the usual Jacobian has its source in the theorems of Abel and Jacobi" 

[Ser88, p.108]. As a bonus, the proof of this result is quite enlightening, one part being a 

sequence of intuitive deductions, while the other demontrates the powerfulness of the Riemann­

Roch theorem. We will thus take the time of going through this pro of. 

But before we do so, we will need to make a fundamental observation about the principal 

divisors on an elliptic curve. This simple exercise merely requires to play with secant and tangent 

lines. 

Let E be a smooth elliptic curve defined over K and let P, Q E E be given. Let also R be 

the third point of intersection of E with the straight line C P,Q passing through P and Q. Finally, 

let Cp+Q,o be the line passing through P+Q and O. For quick reference, the chord-and-tangent 

rule has been reproduced in Figure 3.9. 

Remark 3.81 In the sequel, we will often abuse notation and identify Cp,Q with both the line 

passing through P and Q and the fun ct ion defining this line. From the context, it should however 

be clear as to which notion we are referring to. 
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Figure 3.9: The chord-and-tangent rule and its interpretation in terms of divisors 

Now, Cp,Q will have zeros at P, Q and R only, which must leave a pole of order 3 at the 

point at infinity. In other words, 

div (C~Q ) = (P) + (Q) + (R) - 3(0). 

Similarly, we have that 

div (CP~Q,o) = (R) + (P + Q) - 2(0). 

Thus, 

We have therefore shown: 

Lemma 3.82 Let E be a smooth elliptic curve defined over K and let P, Q E E be given. 

Then, 

div (C Cp,Q ) = (P) + (Q) - (P + Q) - (0), 
P+Q,o 

(3.15) 

where CPt, P2 denotes the equation of the line passing through Pl and P2 (tangent at the curve if 

Pl = P2 ). 

We can now repeatedly use this result as follows. In the case where P = Q, then the above 

identity reads as 

Cpp -
div (g2) = 2(P) - (2P) - (0), where g2 = -0 -' - E K(C)*. 

~P+P,O 
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Next, 3P = P + 2P, and so we can easily find a function g3 E K(C)* such that 

div (g3) = (P) + (2P) - (3P) - (0). 

As a result, 

div (g2 . g3) = 3(P) - (3P) - 2(0). 

Likewise, 4P = P + 3P and we thus know a g4 E K(C)* satisfying 

div (g4) = (P) + (3P) - (4P) - (0). 

And this implies that 

div (g2 . g3 . g4) = 4(P) - (4P) - 3(0). 

This recursive pro cess shows that for any integer k ~ 1, there is a function !k E K(C)* such 

that 

div (Jk) = k(P) - (kP) - (k - 1) (0). 

Notice that when k = 1, we can simply let fI = 1. 

Lemma 3.83 Let E be a smooth elliptic curve defined over K and PEE be given. Then for 

any integer k ~ 1, there is a!k E K(C)* such that 

div (Jk) = k(P) - (kP) - (k - 1) (0). (3.16) 

80 the moral of the story is that we can already see how it is possible to express many divisors 

of degree zero as a divisor of a function, simply by playing with straight lines. 

Abel's Theorem 

Given a smooth elliptic curve defined over K, we may then wonder: 

To what extent can a divisor of degree zero be expressed as a divisor of a function? 

80 let's challenge ourselves and try to express an arbitrary divisor of degree zero as a divisor of 

a function. Thus, let 

be given such that ab ... , am > 0 and bl , ... , bn > O. At this point, we simply want to know 

whether or not this can be achieved (and thus we won't take efficiency considerations into 

account here). 
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The obvious thing to do first is to use identity (3.16) for each Pi and Qj. 80 we know that 

there are functions li and gj satisfying 

ai(Pi) = (aiPi) + (ai - 1) (0) + div (fi) for 1 :S i :S m, and 
bj(Qj) = (bjQj) + (bj - 1) (0) + div (gj) for 1 :S j :S n. 

8ubstituting in (3.17) then yields 

D = (alPd + ... + (amPm) - (blQd - ... - (bnQn) + (n - m) (0) + div (hh. .. f m
) , (3.18) 

glg2···gn 

where we used the fact that al + ... + am - bl - ... - bn = -c since D has degree zero. 80 

we now have aU the coefficients of the (aiPi) equal to one, and those of (bIQI) equal to -l. 

RecaU that our goal is to replace terms on the right hand side as much as possible by divisors 

of functions. An easy simplification is to read (3.15) as 

for sorne hl E K(C)* and substitute in (3.18) to get 

D = (aIPI + a2P2) + (a3P3) + ... + (amPm) - (bIQI) - (b2Q2) - ... - (bnQn) 

+ (n - m + 1) (0) + div (hh. .. fm . hl) . 
glg2···gn 

We can then repeat this pro cess to decrease the number of terms in the right until we hit 

(3.19) 

for sorne f E K(C)*. 80, as soon as alPI + a2P2 + ... + amPm = blQI + b2Q2 + ... + bnQn, 

we know that D is principal. Moreover, we were actuaUy able to keep track of all functions 

involved so that it is technicaUy possible to explicitely write down the function whose divisor is 

D, if such a function exists. And just like that, we have rediscovered Abel's theorem: 

Theorem 3.84 (Abel) Let E be a smooth elliptic curve defined over K and D = L:PEE np(P) E 

Divo(E) be given. 

If L n pP = 0, then D is principal. 
PEE 

Notice that L:PEE npP is a finite sum of points of E, and not a divisor. 

Jacobi's Theorem 

We here keep the notation of the previous section and we further let 
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Does the converse of Abel's theorem holds? That is, if Dis a principal divisor, then does it imply 

that P = Q? First, we already know that all principal divisors have degree zero by Proposition 

3.72. Next, by the method used to prove Abel's theorem, we also know that the arbitrary D we 

started with can always be written as 

D = (P) - (Q) + div(J) 

for sorne f E K(C)*. Therefore, 

D is principal if and only if (P) - (Q) is principal. 

It thus suffiees to show: 

Lemma 3.85 Let E be a smooth elliptic curve defined over K and P, Q E E be given. Then, 

(P) - (Q) is principal if and only if P = Q. 

Prao! Let's begin by the easy implication and assume that P = Q. Then, (P) - (Q) = 0 = 
div(l), and so (P) - (Q) is principal. 

As for the converse, we now assume that (P) - (Q) is principal. Then, there is a f in the 

function field of E such that div(J) = (P) - (Q). Hence, it suffiees to show that f is constant 

in order to get the desired result. Now, div(J) ~ - (Q) and 0 ~ - (Q) so that .c (( Q» contains 

both f and the constant functions. But since deg ((Q» > 2g - 2, we can apply the corollary of 

the Riemann-Roch theorem (see Corollary 3.80) to get that l ((Q» = deg ((Q» - g+ 1 = 1. We 

then conclude that fis constant. Henee, (P) - (Q) = div(J) = 0, which implies that P = Q.D 

And so we have proved the converse of Abel's theorem, which was originally due to Jacobi. 

Theorem 3.86 (Jacobi) Let E be a smooth elliptic curve defined over K and let D = 
'I:PEE np(P) E Divo(E) be given. 

If Dis principal, then L npP = O. 
PEE 

Lastly, we take the time to re-write the complete result we just shown. 

Theorem 3.87 (Abel-Jacobi) Let E be a smooth elliptic curve defined over K and let D = 
L:PEE np(P) E Div(E) be given. Then, 

D is principal if and only if deg (D) = 0 and 'I: npP = O. 
PEE 
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We therefore have an easy criterion to decide if two divisors are linearly equivalent: 

Corollary 3.88 Let E be a smooth elliptic curve defined ove". K and let 

Dl = 2: np(P), D 2 = 2: mp(P) E Div(E) 
PEE PEE 

be given. Then, 

Dl cv D 2 if and only if deg (Dl) = deg (D2 ) and 2: npP = 2: mpP. 
PEE PEE 

3.4 The Picard Group 

3.4.1 Cryptographie Motivation 

In 1985, Koblitz [Kob87] and Miller [MiI86b] independently proposed to use the group of points 

of an elliptic curve as an alternative to the multiplicative group of a finite field used by EIGamal 

[EIG85a]. Now, elliptic curves posses the remarkable property that its Jacobian coincide with 

the points of the curve themselves. Hence, we have the choice of understanding the group of 

points on an elliptic curve in two ways: 

• In terms of points, tangent and secant lines, or 

• As the natural abelian variety isomorphic to the zero part of the Picard group. 

There is no need to say that the first interpretation is by far the simplest and that the chord­

and-tangent rule can be understood by anybody. Then why should we even consider the second 

interpretation? Well, suppose that one hopes to find anothe". family of groups suitable for DL­

based cryptography. In that case, if we are only aware of the first interpretation, we might try 

to vary the curve and try to find one for which the points do form a group. Unfortunately, like 

we already mentionned fbr the case of hyperelliptic curves, there is no guarantee that a natural 

group structure exists on the points of the chosen curve. 

However, if one starts with any smooth curve C, then by construction, the Jacobian of 

C, J(C), always is (among other things) a good old abelian group. Naively, we could say that 

constructing the Jacobian of a curve is a clever process that builds a group for which the building 

blocks forming each element are the points of C. It then becomes a natural pro cess to vary C 

and look for a J(C) where the computations can be done efficiently and where the DLP seems 

intractable. Recall that the hunt for such curves was already open in 1985 when elliptic curves 

made their appearance. Two years later, David Cantor showed how to explicitely compute in 

the Jacobian of hyperelliptic curves [Can87] and shortly after, Koblitz proposed to use them in 

cryptography [Kob89]. 
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3.4.2 Construction of the Picard Group 

So our task is to start with a smooth curve C for which the points do not neeessarily form a 

group, and use them to build a group out of it. In other words, we want to interpret the group 

law on an elliptic curve in terms of divisors in such a way that this process could be applied to 

other curves as weIl. 

Let E be a smooth elliptic curve. The very first step is to know which divisor will play the 

role of a point PEE. A natural candidate is of course the divisor (P) (that is, np = 1 is 

the only nonzero coefficient). We should normally have that the point at infinity corresponds 

to the identity element of Div(E), which is not currently the case sinee (0) ~ O. An easy 

fix-up is to associate the divisor (P) - (0) to the point P, which we will informally denote 

by P +vvt (P) - (0). Now, let's see what happens when we add two points P, Q E E. Let 

R:= P + Q. Following our association, 

E 
P +vvt 

Q +vvt 

P+Q +vvt 

Div(E) 
(P) - (0) 
(Q) - (0) 

(P) + (Q) - 2(0) 

and hence the point R should correspond to the divisor (P) + (Q) - 2(0) as weIl, which means 

that we really want to view the divisors (R) - (0) and (P) + (Q) - 2(0) as representing the 

same point. We therefore want to define an explicit equivalence relation on divisors in order to 

resolve this ambiguity. 

But before that takes us too far afield, let's remark that we really don't need to consider aIl 

divisors here. lndeed, what do the divisors (P) - (0), (Q) - (0) and (P) + (Q) - 2(0) have 

in common? WeIl, they aIl have degree zero. Sinee the divisors of degree zero, Divo(C), form a 

subgroup of Div(C) , we can hereafter only work with degree zero divisors. 

We now proceed to determine this equivalenee relation. Starting from the association P +vvt 

(P) - (0), we wish to know what are the other members of DivO(E) that also correspond to P: 

E 
P +vvt 

o +vvt 

P+O +vvt 

DivO(E) 
(P) - (0) 

D 
(P) - (0) +D 

We could thus express 0 as a sum of points of E, say 0 = Pl + ... + Pk where the points are 

not necessarily distinct. Then, 

E 
P +vvt 

Pl + ... + Pk +vvt 

P + Pl + ... + Pk = P +vvt 

DivO(E) 
(P) - (0) 

(Pl) + ... + (Pk) - k(O) 
(P) + (Pl) + ... + (Pk) - (k + 1) (0) 
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Therefore, we want to require that a divisor L.PEE np(P) be equivalent to (P) - (O)precisely 

when L.PEE npP = P. 

More generally, given two divisors 

in Divo(E), we can let 

Thus, 
E 
P ;-vv-; 

Q ;-vv-; 

and we will want that Dl be equivalent to D 2 if and only if P = Q. lnteresting. This charac­

terization in fact turns out to be closely related to the Abel-Jacobi theorem. lndeed, recall that 

Corollary 3.88 states that P = Q is a necessary and sufficient condition to have Dl rv D 2 (since 

Dl and D 2 both have degree zero). The equivalence relation we were looking is thus no other 

than the linear equivalence of divisors. 

We can then remove the ambiguity in our correspondence by considering the quotient group 

DivO (E) / Princ( E). As this group is defined in terms of points and functions (and does not 

involve the group law on the elliptic curve), it can then be defined for a general curve as weIl. 

Definition 3.89 Let C be a smooth algebraic curve over K. The group Div( C) / Princ( C) is 

called the Picard group or the divisor class group of C and is denoted by Pic(C). The degree 

zero part of the Picard group, Pico (C), is simply Divo (C) / Princ( C). Furihermore, the class of 

a divis or DE DivO(C) in Pico(C) will be donoted by [D]. 

It is therefore possible to vary the curve and study the group Pico (C) from a cryptographie 

point of view. For elliptic curves, it is now a routine exercise with the tools at hand to prove 

the following result34 • 

Proposition 3.90 Let E be a smooth elliptic curve over K. Then the map 

E -T 

P 1-+ 

PicO(E) 
[(P) - (0)] 

34The proof can also be found in [Sil86, Proposition III.3.4]. 
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is a group isomorphism with well-defined inverse 

PicO(E) -+ E 

[2: np(p)] 
PEE 

Of course, the structure of Pico (C) can be as rieh as an elliptie curve, but could also be quite 

trivial in some cases. 

Example 3.91 As we saw in example 3.75 , ail divisors of degree zero on pl are principal. 

Hence, PicO (Pl) is the trivial group with only one element. 

3.4.3 The Jacobian 

So far, we know that we can start with a smooth curve C (for which the set of points does not 

necessarily form a group) and build the group PicO (C). We can however go one step further as 

it turns out that PicO (C) is naturally isomorphic to an abelian variety. 

Theorem 3.92 Let C be a smooth algebraic curve of genus 9 defined over an algebraically 

closed field. Then, there exists an abelian variety J( C) of dimension 9 and an isomorphism of 

groups 

r.p ; Pico(C) -+ J(C). 

The variety J(C) is called the Jacobian of C. 

The proof of this result can be found in [SiI94, Proposition III.2.6]. For a more complete 

treatment, please refer to [Wei48]. As weB, take note that an explicit construction of the 

Jacobians of hyperelliptie curves is given in Mumford's Tata lectures on Theta II [Mum84, 

Chapter IIIa]. 

For cryptographie applications, we of course do not work in all of J = J(C), but in a finite 

subgroup. If C is defined over a perfect field K, then we can consider the subset of J whose 

elements are of the form r.p ([D]), where D is a divisor defined over K (that is, Da = D for every 

a E Gal CR / K)). When C is understood, we often denote this set by J (K) and we have that 

J (K) is a subgroup of J. Lastly, the elements of J (K) are called the K -points of J. More 

details can be found in [CF05, Section 4.4.4]. 

Having a structure of an abelian variety to work with is certainly an attractive feature for 

cryptographic applications. However, it could just be as interesting to consider a wider family 

of algebraic varieties. For instance, an algebraic group is, loosely speaking, a variety (affine or 
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projective) that is also a good old group and for which the addition and inverse maps are also 

morphisms. As a result, the cryptographie potential of commutative algebraic groups are worth 

exploring. 

Definition 3.93 Let G be an algebraic variety. Suppose that G is also a group with identity 

o E Gand that the addition law EB : G x G -+ G and inverse map e : G -+ Gare morphisms. 

Then, (G, 0, EB, e) is said to be an algebraic group, or a group variety. Also, G is said to be a 

commutative algebraic group if the underlying group is abelian. 

For instance, elliptic curves are commutative algebraic groups. Two other fundamental 

examples of commutative algebraic groups are the additive group 

and the multiplicative group 

Gm ~ { x E Ali x =1= o} , 

which will be at the forefront of the explicit cryptosystem that we will construct in Chapter 5. 

More generally, as we will shortly see, generalized Jacobians are commutative algebraic 

groups that are not, in general, abelian varieties. A propos, we can now say that we have the 

appropriate background needed to explore the cryptographie potential of generalized Jacobians, 

which is the object of next chapter. 
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Chapter 4 

Generalized Jacobians and 
Cryptography 

"What makes dis crete log based cryptosystems work 
is that they are based on the mathematics of algebraic groups. 

An algebraic group is both a group and an algebraic variety. 
The group structure allows you to multiply and exponentiate. 

The variety structure allows you to express all elements 
and operations in terms of polynomials, and therefore 

in a form that can be efficiently handled by a computer." 

- Rubin & Silverberg 

This chapter ai ms at introducing generalized Jacobians in the context of cryptography. Sur­

prisingly, in order to use these structures in practice, only a minimum of results from this theory 

are needed. This will aJlow us to quickly foc us on concrete applications (and hopefully not 

get lost in technical details). This will indeed be possible since the underlying ideas behind 

the construction of both (ordinary) Jacobians and generalized Jacobians truly are the same. 

Namely, 

1. Start with your favorite algebraic curve 
2. Consider its divisors of degree zero 
3. (Cleverly) define an equivalence relation on them 
4. Find a canonical representative for each class 

The first two steps are identical in both approaches. Now, for generalized Jacobians, a new 

equivalence relation needs to be defined. This crucial step will ensure the very existence of the 

commutative algebraic groups we are looking for: the generalized Jacobians. 

97 
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Francesco Severi was the first to explicitly mention generalized Jacobians in his work 'Fun­

zioni quasi abeliane' of 1947 [Sev47, Chapter II], where an extensive bibliography can also be 

found. His treatment was however limited to the case where the base field was the field of com­

plex numbers. In 1950, Maxwell Rosenlicht had just completed his thesis 'Equivalence Concepts 

on an Algebraic Curve' under the supervision of Oscar Zariski at Harvard. His dissertation 

contained the construction and properties of generalized Jacobians in the most global setting. 

His trilogy of articles [Ros52, Ros54, Ros75] published in the Annals of Mathematics contains 

the essential of the results on generalized Jacobians. Another excellent reference is 'Groupes 

algébriques et corps de classes' [Ser75] of Jean-Pierre Serre, which provides the necessary back­

ground on algebraic curves as weIll. 

Throughout this chapter, and in order to avoid confusion, the term Jacobian alone will 

denote the 'usual' Jacobian as defined in the last chapter (see Section 3.4.3), whereas the qualifier 

'generalized' will always be explicitely employed when referring to generalized Jacobians. Finally, 

most of our notation concerning generalized Jacobians will follow Serre's exposition [Ser88, 

Chapter V]. 

4.1 Motivation 

We here wish to give a flavor as to 'why' generalized Jacobians are worth considering for cryp­

tographie applications. The following observations, half rigourous, half heuristic, have in fact 

been the motivation behind our research on this subject. It is hoped that sharing these first 

ideas right from the start will highlight the cryptographie potential of these structures. 

In what follows, let C be a curve defined over a finite field IF'q. As usual, let J denote its 

Jacobian variety and J(lF'q) be the finite subgroup consisting of the IF'q-points of J. We will also 

assume that we chose C such that the discrete logarithm problem in J(IF'q) is believed to be 

intractable (so we might think of C as being a carefully chosen elliptic or hyperelliptic curve, 

for example). 

As its name suggests, generalized Jacobians will be defined in such a way that the usual 

Jacobian will be subsumed under the new concept. A natural way to proceed is to modify 

the equivalence relation on the divisors of C such that it coincides with linear equivalence in 

sorne specifie cases. Since we need the new equivalence classes to forrn a group (with operation 

induced from the formaI addition of divisors), it will also be required that the set of divisors 

1 For those uncomfortable with la langue de Molière, an english translation [Ser88] is also available. 
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equivalent to the zero divisor 0 forms a subgroup. More precisely, the new equivalence relation, 

called m-equivalence2 , will enjoy the following property: 

If two divis ors are m-equivalent, then they are linearly equivalent as well. (4.1) 

This implies that each m-equivalence class will be a subdivision of an original divisor class. In 

the following schematic representation of a Jacobian versus a generalized Jacobian, the bold 

lines represent the divisor classes under linear equivalence while the thin lines show the subdivi­

sions obtained when considering m-equivalence classes. We are therefore in the presence of the 

following 'before-and-after' makeover: 

Usual Jacobian 

Linear equivalence: 

D '" D' iff 3f E K(C)* su ch that 
D - D' = div(f) 

Generalized Jacobian 

m-equivalence: 

D "'m D' iff D '" D', plus a condition 
to be determined 

Figure 4.1: Similarities between usual and generalized Jacobians 

The idea of having these two equivalence relations, one being a 'refinement' of the other, is 

somehow like the task of delivering mail on a street with appartment buildings. At a higher level, 

we can view all individuals living in one building as 'sharing the same class', while at a smaller 

scale, we could just as well define new classes according to the occupants of each appartment. 

And just like with condition (4.1), the persons sharing the same appartment must also live in 

2To be completely rigorous, we should state that m-equivalence will be defined on divisors having disjoint 
support with m. The complete details will be given when we formally define m-equivalence in Section 4.2. 
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the same building. Following this analogy, notice that we already know how to provide a unique 

street address to each building and it thus remains to determine how to systematically attach 

an appartment number to each subdivision. 

The plan is now to see how requirement (4.1) alone already gives us a feeling of the cryp­

tographie properties of generalized Jacobians. In fact, regardless of the precise definition of 

m-equivalence, it is immediately possible to deduce sorne interesting arithmetic properties of 

these algebraic groups. The following observations will of course often rely on our prior knowl­

edge about the Jacobian. 

REPRESENTATION OF ELEMENTS. In order to identify a m-equivalence class, it suf­

fices to specify a divisor class modulo linear equivalence together with an extra piece of infor­

mation that will uniquely identify in which subdivision it lies. We can then see an element of 

the generalized Jacobian as a pair, where the first component is an element of the Jacobian and 

the second is a label that specifies the subdivision. 

GROUP LAW. We now turn our attention to the group law algorithm, since it is at the heart 

of any cryptographie application using a group structure. We claim that the group operation on 

the generalized Jacobian will carry aIl the information needed to perform the addition on the 

Jacobian. In other words, suppose that we completely forgot how to add two elements P and Q 
of J but somehow managed to remember the group operation on the generalized Jacobian Jm . 

From the construction of the Jacobian, we know that P and Q respectively correspond to divisor 

classes (under linear equivalence) with representative Dp and DQ, say. We could then use the 

group law on the generalized Jacobian to compute a divisor DR such that D p + DQ "'m DR. 

Figure 4.2: Group law on a generalized Jacobian 



4.1. MOTIVATION 101 

By (4.1), this implies that Dp+DQ rv DR as well and so the last step is to recover the element 

R of J corresponding to the equivalence class (modulo linear equivalence) of DR. Finally, we 

get that P + Q = R, as wanted. Hence, it follows that the group law on the Jacobian can be 

inferred from the one of the generalized Jacobian. Of course, we are not making any affirmation 

concerning the efficiency of this reduction. What really matters here is that if we start with a 

(cryptographically) rich addition on J, it would be surprising to end up with a useless addition 

on Jm (a more precise affirmation will be made later). The ab ove remarks also tells us that we 

should expect the cost of the explicit group law on Jm to be at least as high as the one on J. 

The gap in efficiency between these two group laws will inevitably depend on 'how much effort' 

is required to determine in which subdivision (i.e. m-equivalence class) a given divisor lies. 

GROUP ORDER & POINT COUNTING. Let Jm(lFq) denote the subset of Jm formed by 

m-equivalence classes whose divisors are lFq-points. Since J(lFq) is a group, then so is Jm(lFq). 

Moreover, if we assume that the number s of m-equivalence classes within one divisor class 

(under linear equivalence) is finite, then #Jm(lFq) = S· #J(lFq) will be finite as well. We 

therefore officially designate Jm(lFq) as our chosen candidate for a new group potentially suitable 

for cryptographic applications. Notice that the order of Jm(lFq) will in general be a composite 

number. 80 in practice, we will want s or #J(lFq) to possess at least one large prime factor in 

order to thwart the Pohlig-Hellman attack (see Section 2.7.1) on discrete logarithms of Jm(lFq). In 

addition, suppose that we choose the curve C such that #J(lFq) can be determined in polynomial­

time. Then, the cardinality of Jm (lF q) can be efficiently computed if and only if scan be efficiently 

determined as weIl. 

ORDER OF ELEMENTS AND GENERATORS. The obvious statement is that by La­

grange's theorem, the order of an element of Jm(lFq) must divide S· #J(lFq). We can however go 

one step further. Let AE Jm(lFq), D be a representative of the m-equivalence class associated 

to A and let P E J(lFq) be the element corresponding to the linear divisor class of D. Denote 

by 1 the order of Pin J(lFq). Then, requirement (4.1) implies that the order of A has to be a 

multiple of 1. Moreover, if A is a generator of Jm(lFq), then P will have no choice but to generate 

all of J(lFq). 

DIS CRETE LOGARITHMS. We saw that the group laws on J(lFq) and on Jm(lFq) are 

closely related, and so that raises the possibility that their discrete logarithms could be linked 

as well. Here is a heuristic argument in the case where Jm(lFq) is a cyclic group. Recall that we 

are working under the hypothesis that the DLP in J(lFq) is computationally infeasible. 'Gan the 

DLP on Jm(lFq) be easy?', should now (hopefully) be on everybody's lips. So let's assume that it 

is and see what happens. First, let A be a generator of Jm(lFq) and let D, P, and 1 be as above. 
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As mentioned earlier, P will generate J(lFq ) so we can try to solve an instance Q = kP of the 

discrete logarithm in J(lFq ). Let DQ be a representative of the class (modulo linear equivalence) 

associated to Q. So in particular, we have that 

kD = P + D + ... + ~ '" DQ. 
v 

k times 

Moreover, aU sums of the form (k + nl)D, where n is a non-negative integer, will be linearly 

equivalent to DQ as weU. Renee, among them, there will be a (smallest) no such that (k + 
nol)D "'m DQ sinee A was a generator of Jm(lFq )). See Figure 4.3 for a tiny example with l = 7, 

k = 5 and no = 2. 

Figure 4.3: Illustrative example with l = 7, k = 5 and no = 2 

Now if we let B E Jm(lFq ) be the element corresponding to the m-equivalenee class of DQ, 

it follows that B = (k + nol)A. Under our assumption that the DLP in Jm(lFq ) is easy, we can 

therefore recover (with non-negligible probability) 10gA B ~f k + nol. Finally, we obtain the 

really neat relation 

logp Q = (logA B) mod l. (4.2) 

That of course contradicts our first assumption that the discrete logarithm problem in J(lFq ) 

was computationnaly infeasible. The moral of the story is that we should expect the discrete 

logarithm problem in Jm(lFq ) to be at least as hard as the one on J(lFq). So when trying to 

construct a Jm(lFq ) suitable for cryptographic applications, we should therefore start with a 

curve C for which the DLP in J(lFq ) is believed to be intractable. And to do so, nearly twenty 

years of research in this direction will be available for us to use. 
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4.2 Equivalence relation induced from a modulus 

Now finally cornes the time to explicitely define the m-equivalence relation which is the key 

ingredient in the construction of generalized Jacobianso As outlined in the previous section, our 

strategy will be to first work over an arbitrary algebraically closed field (having of course iFq 

in mind) in order to get acquainted with the generalized Jacobian, and right before we jump 

into the applications, we will simply specify a finite subgroup (where all computations can be 

performed over lFq ) to work witho 

So let K be an algebraically closed field and C be a smooth algebraic curve defined over Ko 

Recall that we aim at 'refining' linear equivalence in such a way that the new equivalence classes 

will be subdivisions of the originalso Ifwe let D = L,PECnp(P), D' = L,PECnj,(P) E Divo(C) 

be given such that D is linearly equivalent to D', then there is a nonzero rational function f in 

the function field K(C) of C satisfying div(f) = D - D'o That is, 

L ordp(f)(P) = L (np - nj,)(P), 
PEC PEC 

which can also be expressed as 

ordp(f) = np - nj, for all P E Co 

The whole idea behind these equivalence relations is to somehow 'measure' how much D differs 

from D'o A possible additional criterion would be to consider a specific point MEC and check 

whether nM = n~o If it is the case, then ordM(f) = 0 and so f is defined and nonzero at Mo We 

are thus led to consider the value of f(M)o But since f is determined up to multiplication by a 

nonzero constant (c.fo Section 30303 on page 84), we can then assume without loss of generality 

that we chose f such that f(M) = 1. That will now ensure that our function f is uniquely 

determinedo So now we can consider a second point NEC distinct from M and wonder if 

nN = n~o In the affirmative, compute f(N) for the recordo And we could continue just the 

same with more points if we pleaseo So let Po := M, Pl := N, P2 , 000' Pr be the chosen distinct 

points of C where we want to require that npi = nj,i (0 :::; i :::; r)o We could then define a 

tentative relation ',.:,,' as follows: 

D":"D' iff D '" D' and npi = nj,i for 0 :::; i :::; ro 

This is clearly an equivalence relation on Divo(C)o Notice that it can also be rephrased as 

D":"D' iff =jf E K(C)* such that div(f) = D - D' and ordpi(f) = 0 for 0:::; i :::; ro 
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However, that relation merely takes care of ensuring that f(Pi) is defined and nonzero. But once 

this verification is done, why not taking advantage of the value of f(Pi)? 80 suppose that we 

have computed the values f(Po), f(P1), ... , f(Pr) and wish to compare them somehow. 8inee 

we want to end up with an equivalenee relation, the safest bet is to work with equalities. We 

could then look for divisors satisfying 

1 = f(Po) = f(Pl) = ... = f(Pr) (4.3) 

(recall that f was chosen such that 1 = f(M) and that Po := M). This condition certainly is a 

much stronger requirement than before, as illustrated in Figure 4.4. 

f(x) 

l+-~--~------+-----------+------r---

Po 

Figure 4.4: A stronger requirement on the function f 

Notice that we can express condition (4.3) in a slightly different form which will be directly 

related to divisors of functions, as condition f(Pi) = 1 is equivalent to ordpi (1 - 1) ~ 1. We 

can therefore write down our second candidate: 

D~D' iff ?Jf E K(C)* such that div(f) = D - D'and ordpi(l- 1) ~ 1 for each ~ E 5, 
where 5= {PO,P1, ... ,Pr}. 

It is once again a simple matter to check that this indeed defines an equivalence relation. There 

is yet another modification that might be interesting. Indeed, the condition ordpi (1 - f) ~ 1 

says that 1 - f has a zero at Pi, but the order of this zero is not specified at aIl. Hence, for an 
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integer mi 2: 1, we could impose the stricter condition that ordpi (1 - 1) 2: mi if we want. So 

given positive integers mo, ml, ... , m r , we can consider the following relation: 

D;::" D' iff 3f E K(C)* such that div(J) = D - D' and ordpi (l- 1) 2: mi for each Pi E S. 

(4.4) 

This relation is reflexive because D- D = div(l) and ordpi (0) = 00 by convention (see Definition 

3.67 ). 

It is symmetric as well, for if D ;::., D' with D - D' = div(J), then D' - D = div(l/1) and 

Finally, it is transitive sinee if D ;::., D' and D' ;::., DI! with D-D' = div(J) and D' -DI! = div(g), 

then D - DI! = div(Jg) and we have that 

ordpi (1- fg) ordpi ((1- 1) + (1- g) - (1- 1)(1- g)) 

> min (?rdpi ((1- 1) + (1- g)))?rdpi ((1- 1)(1- gn) 
v v 

> mi· 

We have therefore convineed ourselves through this little exercise that (4.4) is an equivalence 

relation. 

We now take the time to simplify the notations a little. Sinee we need to specify each point 

Pi together with an associated positive integers mi, a compact way to do so would be to write 

it as the effective divisor 
r 

m = Lmi(Pi). 
i=O 

It is also a standard notation to write f == 1 mod m as a shorthand for the requirement ordpi (I­

f) 2: mi for each Pi E S. For this reason, it is customary to call m a modulus supported on 

Sm = {PO,Pl, ... ,Pr}. 

We also want to point out that if a divisor D is such that D ;::., 0, then D = div(J) = 
'EPEe ordp(J)(P) where ordpi (J) = 0 for 1 ::; i ::; r. That is, supp(D) is disjoint from Sm· 

Consequently, it will be convenient to define our equivalenee relation (only) on the set of divisors 

having support disjoint from Sm. We are finally ready to rewrite (4.4) with the new terminology 

and to formally define m-equivalenee. 
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Definition 4.1 Let m be an effective divisor supported on Sm and let D and D' be two divisors 

prime to Sm. We say that D and D' are m-equivalent, and write D rvm D' if 

3f E K(C)* su ch that div(f) = D - D' and f == 1 mod m. 

As promised in Section 4.1, this definition readily implies property (4.1), which said that 'If 

two divis ors are m-equivalent, then they are linearly equivalent as weil'. Since this is such an 

important property for us, we now grant it the status it deserves. 

Lemma 4.2 Let D and D' be two divisors prime to Sm. If D rvm D', then D rv D'as weil. 

If we denote by [D] (respectively [D]m) the class of D under linear equivalenee (respectively 

m-equivalence), then the above fact implies that [D]m ç [D], as wanted. We were therefore right 

when we claimed that 'each m-equivalence class is a subdivision of an original divisor class '. 

4.3 Generalized Jacobian Varieties 

We here keep the conventions and notations of the previous section and we begin by introducing 

a few more definitions in order to be able to easily work with m-equivalence. So let Divm(C) be 

the subgroup of Div(C) formed by aH divisors of C which are prime to Sm. Let also Div~(C) 

be the subgroup of Divm(C) composed of divisors of degree zero. Moreover, let Princm(C) be 

the subset of principal divisors which are m-equivalent to the zero divisor. In other words, 

Princm(C) = [O]m = {div(f) If E K(C)* and f == 1modm}. 

Sinee we want to show that the set of m-equivalence classes is indeed a group, the first step 

will be to show that Princm(C) is a subgroup of Div~(C). This is a formality. First notice that 

o E Princm (C) by definition and that Princm (C) ç Div~ (C) sinee aH principal divisors have 

degree zero (c.f. Proposition 3.72 ). Now let D rvm 0 be given. By symmetry, 0 rvm D as well 

so there is a f E K(C)* such that 0 - D = div(f) and f == 1modm. Thus, (-D) - 0 = div(f) , 

which shows that - D rvm O. Lastly, let D and D' be two divisors prime to Sm such that D rvm 0 

and D' rvm O. By the above argument -D' rvm 0, and so 0 rvm -D' (by symmetry). Then, 

D rvm 0 and 0 rvm -D' implies D rvm -D' (by transitivity). There is thus a f E K(C)* such 

that div(f) = D + D' and f == 1 mod m. It then foHows that D + D' rvm 0, as wanted. We have 

thus completed our homework and verified that Princm(C) is indeed a subgroup of Div~(C). 

We will therefore consider the quotient group Div~(C)/Princm(C), which will be denoted 

by Pic ~ (C). We are therefore in possession of an abelian group whose elements are the m­

equivalenee classes. We are. now crossing our fingers and hoping that there exists an algebraic 

group isomorphic to Pic ~ ( C) . 
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As pointed out in the introduction, this reasoning is in fact similar to the case of the (usual) 

Jacobian J, which was treated in 'Variétés abéliennes et courbes algébriques' (i.e. Abelian 

varieties and algebmic curves) [Wei48] by André Weil3 . Recall that the Jacobian of C is an 

abelian variety of dimension equal to the genus of C (c.f. Theorem 3.92). It is therefore 

a complete algebraic variety. However, the generalized Jacobians won't in general enjoy this 

property. Maxwell Rosenlicht [Ros54, p.515] summarizes the situation as follows: 

"We proceed to construct a genemlized Jacobian variety ( .. .J. The method is the same 

as that used by Weil to construct the ordinary Jacobian variety of C, but unfortu­

nately the noncompleteness of our genemlized Jacobians will considembly complicate 

the steps used in [Wei48), and that proof cannot be taken over verbatim to the present 

case." 

Regrettably, it would therefore be much too involving to reproduce his construction here. 

We will instead have to be satisfied with an outline of the technique used. But before we do 

so, we of course state the existence theorem whose complete proof can be found in the original 

article of Rosenlicht [Ros54] as weIl as in [Ser88, Chapter V, in particular Prop. 2 and Thm 

1(b)]. 

Theorem 4.3 Let K be an algebmically closed field and C be a smooth algebmic curve of genus 

9 defined over K. Then for every modulus m, there exists a commutative algebraic group Jm 

isomorphic to the group Pic ~ (C). The dimension 7r of Jm is given by 

7r-{g 
- g+deg(m)-1 

ifm = 0, 
otherwise. 

We can finally present the definition of a generalized Jacobian: 

(4.5) 

Definition 4.4 The algebmic group Jm is called the generalized Jacobian of the curve C with 

respect to the modulus m. 

As announced, we now outline the main steps of the proof4 in a quick summary, which follows 

the terminology and conventions of 'Foundations of Algebmic Geometry' of Weil [Wei46]. The 

main idea is to employ the method of generic points in order to first build a bimtional group Y 

defined over K, and then apply a result of Weil yielding the existence and uniqueness of a true 

algebraic group birationnaly isomorphic to Y (over K). The birational group Y is obtained by 

3 An amusing facto Émile Picard was the co-advisor of André Weil during his studies at the Université de 
Paris in the 1920s. 

4 Please take note that the ideas behind this proof are not needed for the sequel. 
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endowing the 1T-fold symmetric product C(11') of C with a commutative rational composition law 

® : y x Y --+ Y defined over K, where 1T is the arithmetic (or virtual) genus of the singular curve 

Cm defined by m [Ser88, Chapter IV, Section 4]. Finally, the theorem of Weil [Wei48, Wei55] 

ensures the existence of an algebraic group Jm together with a birational map <I> : C(11') --+ Jm 

defined over K satisfying <I>(P) + <I>(Q) = <I>(P ® Q), where P and Q are independent generic 

points of C( 11') • 

If we now go back to very basic properties of generalized Jacobians, notice that there are 

many Jm associated to a fixed curve C, one for each choice of modulus min facto This contrasts 

with the (usual) Jacobian which is uniquely determined from C. And of course, it might happen 

that two generalized Jacobians Jm and Jm, be isomorphic as abelian groups even if m =1- m'. The 

large quantity of generalized Jacobians we can choose from certainly is a potential advantage for 

cryptographic applications since generating a suitable curve seems a priori much harder than 

selecting (random) points for the modulus. 5 

4.3.1 Link Between Ordinary and Generalized Jacobians 

We now want to establish the existence of a canonical surjective homomorphism from Jm to J, 

which can then be used to compare various properties of these two groups. First recall that by 

Theorem 3.92, there is a natural group isomorphism 'P between J and the group Pic 0 (C) of 

divisors of degree zero modulo linear equivalence: 

(4.6) 

By Lemma 4.2, we also know that for a divisor D prime to Sm, we have [D]m ç: [D]. Hence, 

there is a surjective homomorphism (J from Pic ~ (C) to Pic 0 (C) that sends [D]m to the divisor 

class [D]: 

(J: Pic~(C) 
[D]m 

(4.7) 

Futhermore, Theorem 4.3 implied the existence of a group isomorphism 'lj; between Pic ~ (C) 

and the generalized Jacobian Jm : 

(4.8) 

5 Of course, this remark only concerns algebraic curves suitable for public-key cryptography, such as elliptic 
and hyperelliptic curves. 
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The following diagram can therefore be obtained by combining (4.6), (4.7), and (4.8): 

Pic~(G) 

al 
PicO(G) ~ J 

As a result, there is a surjective homomorphism 7 := '{J 0 CT 0 1j;-1 from Jm to J: 

7: Jm ...... J. 

If the map 7 and its inverse can be efficiently computed, then it can be used for instance to 

'transport' the group law on Jm to the one on J, as put forward in Section 4.1 lndeed, given P 

and Q in J, their sum can be computed as follows. Since 7 is onto, first find any A and B in 

Jm such that 7(A) = P and 7(B) = Q. Then add A and B using the known group operation on 

J m to obtain the element G. Then, 7(G) is the sum of P and Q as 

7(G) = 7(A + B) = 7(A) + 7(B) = P + Q. 

Notice that this is well-defined since for any choice A' and B' satisfying 7(A') = P and 7(B') = Q 

and such that A' + B' = G', we will have 

7(G') = 7(A' + B') = 7(A') + 7(B') = 7(A) + 7(B) = 7(A + B) = 7(G). 

An interesting object of study certainly is the kernel Lm of the map 7 since it it might give 

us information about the structure of Jm • 

4.3.2 Fundamental Exact Sequence 

First notice that since 7 is a homomorphism, then Lm is a subgroup of Jm. We can then consider 

the following short exact sequence (of abelian groups): 

Therefore, 

The generalized Jacobian Jm is an extension of the usual Jacobian J by Lm. 

Evidently, the direct product Lm X J whose group law is given by (ki' Pd + (k2, P2) 

(k l k2 , Pl + P2 ) can be seen as a trivial extension of J by Lm as it satisfies the exact sequence: 

0----+ Lm ~ Lm X J ~ J ----+ 0, 
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where t(k) = (k,O) and p(k, P) = P. Notice that this direct product is not really interesting 

from a cryptographie point of view since 

n(k,P) ~\k,P) + (k,P) + ... + (k,P)= (kn,nP), , ' 
v 

n times 

and therefore offers no cryptographie advantage over the cartesian product of Lm with J. It 

would therefore be really convenient to know at this point under which circumstances can Jm 

become a direct product. Luckily, as we are about to see, this almost never happens and there 

is moreover a really simple criterion to fulfill in order to avoid this degenerate case. The answer 

once again resides in a theorem of Rosenlicht, whose proof concludes the article 'Generalized 

Jacobian Varieties' [Ros54, Thm 13]: 

Theorem 4.5 (Rosenlicht) Let C be a smooth algebraic curve defined over an algebraically 

closed field, J be the Jacobian of C and Jm be the generalized Jacobian of C with respect to a 

modulus m. If the genus 9 of C and the dimension 'Tf of Jm satisfy 

O<g<'Tf, (4.9) 

then there exists no regular cross section for the natural homomorphism T : Jm ...... J. 

Recall that a regular cross section for T is an everywhere defined rational map T : J -f Jm 

such that TOT is the identity on J: 

T 

But if we consider the direct product Lm X J, there is an obvious cross section p : J -f Lm X J 

given by p(P) = (1, P) since 

p(P + Q) = (1, P + Q) = (1, P) + (1, Q) = p(P) + p(Q). 

Therefore, requirement (4.5 ) suffices to guarantee that Jm is not the direct product Lm X J. And 

since the dimension of Jm is given by (4.5), it follows that 9 < 'Tf is equivalent to deg( m) 2:: 2. 

These observations can now be stated formally: 

Corollary 4.6 Let C be a smooth algebraic curve of genus 9 defined over an algebmically 

closed field and Jm be the generalized Jacobian of C with respect to a modulus m. If 9 2:: 1 and 

deg(m) 2:: 2, then Jm is not a trivial direct product. 

This amazingly simple statement suggests to consider the case where the two lower bounds 

9 = 1 and deg(m) = 2 are simultaneously reached. For this reason, the generalized Jacobians 

of an elliptic curve with respect to a modulus m = (M) + (N), where M of- N, is the family of 

groups we chose to study and put forward for cryptographie applications in Chapter 5. 
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4.4 Group Extensions 

Sinee Jm is an extension of J by Lm, it is possible to say a little bit more coneerning the 

representation of the elements of J m as weIl as its group operation. Indeed, from the theory 

of group extensions which can be found in [HS71, Chapter III] and [Wei69, Chapter 5], the 

following classical results are availablé. 

Theorem 4.7 Let (G, +) be a group and (A,·) be a commutative group. Let also 

i - p I-+A-+G-+G-+O (4.10) 

be a short exact sequence defining the group extension a of G by A. Denote by EB the group 

operation on G. Then, 

1. Let s : G -+ a be a (set-theoretic) section for p (that is, po s is the identity on G but s 

doesn't have to be a group homomorphism). Then the map 

AxG-+O 

(a, CT) I----t a EB S(CT) 

is a bijection of sets. Hence, each element of a can be unequivocally represented as a pair 

(a,O'), where a E A and CT E G. 

2. There is a well-defined natural action of G on A given by 

(a, CT) I----t aa := x EB a e x, 

where x is any element of a satisfying p(x) = CT and ex denotes the inverse of x in G. 

3. In fact, the group operation EB : a x a -+ a can be expressed in terms of this action: 

(a, CT) EB (b, T) = (a· ba 
. C(CT, T), CT + T) , (4.11) 

where c : G x G -+ A must satisfy the following condition (since the group operation EB is 

associative) : 

C(CT, T) . C(CT + T, p) = C(T, pt· C(CT, T + p). (4.12) 

A function c satisfying (4.12) is called a 2-cocycle on G with values in A, and the set of 

all such cocycles is denoted Z2 ( G, A). 

6Remark that in order to be consistent with the litterature, we chose here to follow (for the most part) the 
usual notation for group extensions (for example, greek letters no longer represent functions, but rather elements 
of a group G). The main exception to the rule being that we will use the multiplicative (respectively additive) 
notation for the group A (respectively G) in order to be coherent with the con crete applications we have in mind. 
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4. Finally, c can be written in terms of s as 

Despite this detailed and cumbersome notation, equation (4.11) really stands out. Indeed, 

the sharp eye of the cryptographer will probably have noticed right from the start that 

n(a, a) := (a, a) EB (a, a) EB ... EB (a, 0')= (*, na) (4.13) 
, .1 

n times 

implies that the dis crete logarithm problem on Gand Gare related. Before we can say more, 

we need to derive a few more (easy) properties of G. First remark that taking T = P = 0 in 

(4.12) yields the pretty identity 

c(O,O)<7 = c(a, 0). (4.14) 

It is also a routine exercise to verify that the identity element7 of G is Oc := (c(O, 0)-1,0) 

and that the inverse of an element (a, a) E G is given by: 

We then have that n( a, a) = Oc implies na = 0, from which follows that 

The arder of a divides the arder of (a,a), 

assuming that (a, a) has finite order. 

Remark 4.8 Take note that these basic properties will be used in Chapter 5 when we derive 

an explicit group law algorithm for a specific generalized Jacobian of an elliptic curve. 

4.5 The Aigebraic Group Lm 

We have seen so far that the generalized Jacobian Jm , with respect to m = 2:PEC mp(P) of 

support Sm, is an extension of the usual Jacobian J by Lm' the kernel OfT : Jm -» J. It then 

followed that the elements of J m could be seen as pairs (k, P), where k E Lm and P E J. Using 

this representation, the group law on J m could be expressed in terms of the group laws on Lm 

and on J, and also involved a 2-cocycle on J with values in Lm. In addition, we already know 

efficient algorithms to compute in the Jacobian of a suitably chosen curves, such as an elliptic 

or an hyperelliptic curve. And at last, we now turn our attention to the mysterious group Lm. 

7Notice that the identity of Gis not necessarily (1,0), as one might first suspect. 
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Recal! that the map T : Jm -» J was defined to be the composition cp 0 a 0 'lj;-I, where both 

cp and 'lj; are isomorphisms: 

Consequently, Lm is isomorphic to ker(a), where a simply sent the m-equivalence class [D]m of 

a divisor D to its divisor class [D] under linear equivalence. Rence, a([D]m) = [0] if and only if 

Dis a principal divisor prime to Sm. That is, there is aiE K(C)* such that D = div(f) and 

ordp(f) = 0 for each P E Sm. Notice that this latter condition means that 1 is a unit (i.e. is 

invertible) at every point of Sm. We therefore know that 

[D]m E ker(a) iff 31 E K(C)* such that D = div(f) and 1 is invertible at each P E Sm. 

We would then like to have a representative for each m-equivalence class comprised of prin­

cipal divisors. Notice that since div(f) determines 1 up to a (nonzero) constant factor, then we 

can just as wel! express a representative as a function. 

Recal! that Pic~(C) = Div~(C)/Princm(C), where Princm(C) = {div(f)11 E K(C)* and 

1 == 1 mod m}. Therefore, two divisors will be m-equivalent if and only if they differ by an 

element of Princm(C). Let now 1 be any representative of the class [div(f)]m. So any given 

element ofthis class can be expressed as div(f . h), for sorne h == 1 mod m. 

Fix a point P E Sm and let t be a uniformizer for C at P [Sil86, p.22] (that is, an element 

of K(C) satisfying ordp(t) = 1). Since h satisfies ordp(h - 1) :::: mp, then h - 1 has a zero of 

order at least mp at P. Thus, h can be expressed as the formaI series 

Renee, 

where deg (f. (h - 1)) :::: mp since ordp(f) = O. Thus, we may assume without loss of generality 

that 1 has the form 1 = ao + aIt + ... + amp_Itmp-l, where ao =1- O. It will however be more 

eonvenient to write 1 as 

For example, if mp = 1, each representative consist of a nonzero constant and we therefore 

recover a copy of the multiplicative group Gm . When mp = 2, 

[div (a(1 + bt))]m + [div (c(1 + dt))]m = [div (ae (1 + (b + d) t))]m' 
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and so a copy of both Gm and Ga are involved. In general, notice that if 

then the desired representative for [div(hh)lm can just as well be computed via the following 

matrix multiplication: 

1 bl b2 b3 bmp - l 1 Cl C2 C3 Cmp-l 

0 1 bl b2 bmp - 2 0 1 Cl C2 Cmp -2 

0 0 1 bl bmp - 3 0 0 1 Cl Cmp -3 
0 0 0 1 bmp - 4 0 0 0 1 Cmp -4 

0 0 0 0 1 0 0 0 0 1 

Of course, the above semi formaI discussion concerning Lm is far from providing an actual 

proof of the following theorem of Rosenlicht [Ros 54], but somehow at least captures the un­

derlying ideas. The complete details can be found in [Ser88], Sections 13 to 17 of Chapter 

v. 

Theorem 4.9 (Rosenlicht) Let C be a smooth algebraic curve defined over an algebraicaily 

closed field, J be the Jacobian of C and Jm be the generalized Jacobian of C with respect to a 

modulus m = '2:.PEC mp(P) of supporl Sm. Let also Lm be the kernel of the natuml homomor­

phism'T from Jm onto J. Then, Lm is an algebraic group isomorphic to the product of a toros 

T = (Gm)#Sm- 1 by a unipotent group V of the form 

where each V(m p) is isomorphic to the group of matrices of the form: 

1 al a2 a3 amp-l 
0 1 al a2 amp -2 
0 0 1 al amp -3 
0 0 0 1 amp -4 

0 0 0 0 1 

Remark 4.10 Notice that since Lm, Jm and J are ail algebraic groups, then we can say that 

Jm is in fa ct an extension as algebmic groups of J by Lm. Algebmic group extensions and their 

principal properlies are discussed in Chapter VII of [Ser88j. 
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If we are in the situation where m = (Po) + (Pl) + ... + (Pr) with the Pi's distinct, then 

Lm is isomorphic to a torus T of dimension r. Moreover, since the usual Jacobian of pl is 

trivial (c.f. Section 3.91), it then follows that the generalized Jacobian of pl with respect 

to m will be isomorphic to T. As a result, algebraic tori of any dimension can be seen as 

generalized Jacobians. Algebraic tori over a finite field have interesting cryptographie properties, 

as demonstrated by Rubin and Silverberg [RS03, RS04a]. We will come back to this in Section 

4.6. 

The complete opposite situation would be to consider a module of the form m = m(P). Then 

the group Lm will be isomorphic to V(m). Observe that the discrete logarithm problem on V(m) 

alone is easy since 

1 n 
1 al a2 a3 an-l nal * * * 

0 1 al a2 an-2 0 1 nal * * 
0 0 1 al an-3 0 0 1 nal * 
0 0 0 1 an-4 0 0 0 1 * 

0 0 0 0 1 0 0 0 0 1 

and therefore n = (nal)a11. However, according to (4.11), the group law on the generalized 

Jacobian will be given by 

where Ml, M2 E V(m) and Pl, P2 E J. We therefore obtain that 

n(M, P) = (Mn. M, nP) , 

where the value of M equals c(P, P) . c(P, 2P) ..... ccP, (n - l)P). Remark that Mean be seen 

as a mask hiding the value of the DL in the unipotent group. Of course in practice the value of 

Mean (and should!) be computed differently. But the point here is that M depends on P and 

is independent of M. As a result, if it is computationnaly infeasible to compute M given P and 

n(M, P) (but not n), then the value of Mn will be just as hard to compute (the role of Mhere is 

to 'mimic a one-time pad'). Therefore, even if the discrete logarithm problem on Lm is trivial, 

it does not necessarily implies that the corresponding problem on the generalized Jacobian will 

be easy. This simple example shows that a deeper analysis of the behavior of these 'masks', 

based on the specifie 2-cocycle appearing in the group law algorithm, should be done for the 

specifie generalized Jacobians that one wishes to use for cryptographie purposes. 
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4.5.1 A Concrete (and Easy) Example 

Time for sorne hands-on practice. The goal of the following exercise is to work directly on 

divisors, from the definition of m-equivalence alone in order to recover the structure of the 

algebraic group Lm introduced in Theorem 4.9. We will work in the simple case where the 

curve is the projective line pl and the modulus is of the form m = (L) + (M) + (N), where 

L = (XL: 1), M = (XM : 1), N = (XN : 1) E pl are distinct points. Of course, it will be 

strictly forbidden to cheat and work backwards from the conclusion of the theorem: we should 

instead try to forget aIl we know so far about Lm and let the 'mathemagic' operate. 

First recall that aIl degree zero divisors of pl are principal (see Example 3.75). We are 

therefore considering m-equivalence on divisors of the form 

D = div(g), where ordL(g) = ordM(g) = ordN(g) = O. 

80 let Dl and D 2 be two such divisors, with Dl = div(h) and D 2 = div(f2). From the very 

definition of m-equivalence, we have that 

Dl "'m D2 iff 3f E K(Pl)* such that div(J) = Dl - D 2 and f == 1 mod m, 

iff 3f E K(Pl)* such that div(J) = Dl - D 2 and 
ordL(1- f) ;:::: 1, ordM(I- f) ;:::: 1, ordN(1- f) ;:::: 1, 

iff 3f E K(pl)* such that div(J) = div (j~) and f(L) = f(M) = f(N) = 1, 

iff * h(L) h(M) h(N) 1 
3e E K such that h(L) = h(M) = h(N) = ~' 

h(L) h(M) h(N) 
h(L) h(M) f2(N) , 

iff 

iff 
h(L) _ h(L) d h(M) _ h(M) 
h(M) - h(M) an h(N) - h(N)' 

It then follows that the map 

'lj;: Pic ~ (Pl) ---+ Gm x Gm 

( 
f(L) f(M)) 

[div(J)lm 1---+ f(M)' f(N) 

is well-defined and injective. As for surjectivity, let (a, b) be a given element of Gm x GIll for 

which we need to find a function f E K(pl)* satisfying 

f(L) f(M) 
orddf) = ordM(J) = ordN(J) = 0, f(M) = a and f(N) = b. 

To do so, we use the technique underlying the interpolation polynomial of Lagrange8 in order 

BTo be accurate, we should point out that it was first discovered by Edward Waring in 1779, then rediscovered 
by Leonhard Euler in 1783 and finally by Joseph Louis Lagrange in 1795. 
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to set f(X, Y) equal to 

a(X -XMY) (X - XNY) (X - XLY) (X - XNY) (X - XLY) (X - XMY) 
(XL - X M) (XL - X N) y2 + (XM - XL) (XM - X N)y2 + b(XN - XL) (XN - X M) Y2' 

Then, f(L) = a, f(M) = 1 and f(N) = b-l, which yields that 1jI ([div(f)Jm) = (a, b), as wanted. 

Thus, we have shown that 1jI : Pic ~ (Pl) --+ Gm x Gm is a well-defined bijection of sets. 

We are now ready to describe the group law in terms of this representation. Again, let 

Dl = div(h), D2 = div(h) be two divisors prime to Sm and let 

That is, Dl and D 2 respectively correspond to (aI, bd and to (a2, b2). We now want to know 

the element of Gm x Gm corresponding to Dl + D 2 . But this is easy since 

Dl + D 2 = div(h) + div(h) = div(h '12), 

and we just have to let h := h . 12, then write down 

h(L) h(L) . h(L) heM) heM) . heM) 
heM) = h(M)· heM) = al . a2 and h(N) = h(N). h(N) = bl . b2 

in order to conclude that Dl + D 2 is associated to (al' a2, bl . b2). We have thus recovered the 

torus of dimension 2 stated in Theorem 4.9. 

4.6 Cryptosystems Falling in the Spectrum of Generalized 
Jacobians 

We conclude this chapter by providing a perspective as to where cryptography based on gener­

alized Jacobians actually 'fits' within the numerous public-key protocols proposed to this date. 

This global picture will serve two purposes. First, it demonstrates that several of the most 

popular PKC based on discrete logarithms can be interpreted in the language of generalized 

Jacobians. This fundamental observation shows that seemingly unrelated structures can in fact 

be seen as realizations of the same mathematical object. Second, this unified approach further 

motivates the hunt for generalized Jacobians (where neither Lm nor J are trivial) suitable for 

cryptographie applications9 . 

Among the groups utilized in DL-based cryptography mentionned in Section 2.6, it turns out 

that the multiplicative group of a finite field, the elliptic curves, the Jacobian of hyperelliptic 

9The hunt opens next chapter where our prey will be a generalized Jacobian of an elliptic curve. 
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curves and the algebraic tori can aIl be seen as generalized Jacobians. Moreover, two more 

cryptosystems whose underlying structures do not even form a group, namely LUC and XTR, 

are also closely related to generalized Jacobians. 

Figure 4.5 provides a simplified view of the interrelation between the cryptosystems (on the 

bot tom line) and their underlying structures. Aline connecting two elements of the diagram 

means 'can be interpreted in the language of'. 

Generalized Jacobians 

~ 
Algebraic Tori (Ordinary) Jacobians 

EIGamal LUC 
Î\ 

XTR CEILIDH ECC Hyperelliptic Curve 
Cryptosystems 

Figure 4.5: Relation between DL-based cryptosystems and generalized Jacobians 

This schematic representation clearly highlights the two distinct sub-families of generalized 

Jacobians that have been used so far: the usual Jacobians and the algebraic tori. Curiously, 

the specifie strengths of each family are somehow complementary. Indeed, the popularity of 

elliptic curves and Jacobians of low genus hyperelliptic curves is due in part to their resistance 

to subexponential attacks. On the other hand, algebraic tori (and their quotients) constitute a 

very neat way to represent elements in a compact form, significantly decreasing the amount of 

information that needs to be exchanged. 

USUAL JACOBIANS. They are the generalized Jacobians corresponding to the case where 

the linear group Lm is trivial. That is, if the modulus m = '2:PEC mp(P) with support Sm 

was chosen to have degree zero or one. Indeed, if m = 0, then the condition f == 1 mod m, i.e. 

ordpi (1 - f) ~ mi for each Pi E Sm is vacuously true and therefore, m-equivalence coincides 

with linear equivalence. As well, if m = (M), then the requirement f == 1 mod m reduces to 

ordM (1 - f) ~ 1, which is equivalent to f(M) = 1. Henee, m-equivalenee in this case reads 

D "'m D' Hf 3f E K( C)* such that div(f) = D - D' and f(M) = 1. But sinee div( c· f) = div(f) 

for any nonzero constant c, the condition f(M) = 1 is superfiuous. It then follows that when 

m = (M), linear and m-equivalence also define the same divisor classes. 

Recall that the use of Jacobians in cryptography via elliptic curves goes back to 1985 
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[MiI86c, Kob87] and that since then, it has prompted an impressive amount of research on 

the cryptographie uses of algebraic curves. From special hardware for hyperelliptic curves to 

side-channel attacks or pairingslO , it seems that the frenzy surrounding them has not faded in 

nearly twenty years. This contagious enthusiasm inevitably raised the possibility that other 

abelian varieties, or more generally algebraic groups, might be of interest for cryptographers 

(and needless to say, cryptanalysts). 

ALGEBRAIC TORI. An algebraie torus T of dimension d is the generalized Jacobian of 

the projective line pl with respect to a modulus m = (Po) + (Pl) + ... + (Pd), where the Pi's 

are distinct. Indeed, we have seen that every divisor of degree zero on pl is principal, and 

consequently that its Jacobian J is trivial (c.f. Example 3.91). On the other hand, according to 

Theorem 4.9, we know that Lm is isomorphic to the product of (Gm)d by the unipotent group 

V. But since each mi = 1 (0 s:: i s:: d), it is easy to see that V is trivial in this case. Finally, we 

get that Jm has to be isomorphic to T (since it is an extension of J by Lm). 

The most obvious examples of applications of algebraic tori in cryptography are none other 

than the classical Diffie-Hellman key exchange, together with the EIGamal cryptosystem and 

signature (respectively covered in Sections 2.3.3, 2.4.3 and 2.5.2). In fact, as soon as the oper­

ations of a cryptographie scheme are performed in the multiplicative group of a finite field, we 

can say that they are based on the simplest torus, namely the multiplicative group Gm . 

However, the first explicit use of algebraic tori in cryptography is fairly recent. Recall that 

the concept of torus-based cryptography has been formally introduced by Karl Rubin and Alice 

Silverberg at CRYPTO 2003 [RS03]. The quality of Silverberg's presentation at this conference 

was impressing, at allievels, and certainly contributed to give wings to these news ideas. Inspired 

by conjectures made about XTR by Bosma, Hutton and Verheul at ASIACRYPT 2002 [BHV02], 

Rubin and Silverberg were not only able to disprove these conjectural statements, but also 

reinterpreted XTR in terms of tori. In addition, they also showed how the cryptosystem LUC 

[LS93], based on Lucas functions, could also be reconsidered in the language of tori. That's 

not all. They set the general framework for torus-based cryptography and gave two explicit 

cryptosystems, one based on a 1-dimensional torus (corresponding to the case n = 2 described 

below) and another, CEILIDH, which uses a torus of dimension 2 (where n = 6). 

More precisely, if we let Tn be the algebraie torus of dimension <p(n), then the group Tn(lFq ) 

is finite and can be identified with the cyclic subgroup of lF~n of order <I>n(q), where <I>n is the 

n-th cyclotomie polynomial [RS03, lemma 7 (i)-(ii)]. In a nutshell, let's just say that Tn(lFq ) 

IOFor instance, the web site' Pairing-based Crypto Lounge' of Paulo Barreto [Bar02] now lists over 200 articles 
related to the use of pairings in cryptography alone. 
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can be substituted in cryptographic proto cols requiring that the DLP of the underlying group 

be presumably hard. The (straightforward) torus-based versions of Diffie-Hellman, EIGamal 

encryption and signature can be found in Section 6 of [RS03]. 

As for efficiency, the group operation on Tn (IF q) is simply the usual multiplication inherited 

from IF~n, so that poses no problem. But it raises the question as to what can possibly be the 

advantage of working in Tn(IFq) instead of in the whole group. So, as l often ask my students: 

'where 's the catch?' This is precisely where it becomes interesting. The secret in fact lies in the 

way that elements of Tn(IFq) can be represented: they are just like the tiny umbrellas that can 

fit in a pocket, but once deployed offer a full size coyer. Indeed, for suitably chosen values of n, 

we know how to represent the elements of Tn(IFq) in a compact form, using only cp(n) elements of 

IFq. For instance, if n is a prime power or a product of two prime powers, then we know that such 

a compact representation must exist (see the discussion following Voskresenskii's conjecture in 

[RS03, Section 4, Conjecture 9]). Explicit formulre for converting from one representation to the 

other are given for T2 and TG in Section 5 of [RS03]. So in practice, Alice and Bob each perform 

their computations directly in Tn(IFq) ç IF~n and simply convert to the compact representation 

whenever they need to send data to the other party. 

The main advantage of CEILIDH over LUC and XTR is that its underlying structure is 

a good old group. Hence, unlike the other two which only possess a natural exponentiation, 

CEILIDH has full multiplication and exponentiation. In fact, the elements exchanged in the 

LUC cryptosystem correspond to the ones of T2/ 52, where 5k is the symmetric group on k 

letters. Even if the quotient variety T2 /52 is not an algebraic group, exponentiation is still well­

defined on this set of equivalence classes, enabling for example to perform a key exchange 'à la 

Diffie-Hellman'. Similarly, the system XTR of A. K. Lenstra and E. R. Verheul [LVOO, LVOl] is 

based on the variety TG/53 , and since exponentiation in TG preserves 53-orbits, it follows that 

the exponentiation in the quotient is well-defined. 

In the light of these observations, it is no longer mysterious as to why LUC and XTR also have 

the ability of compactly representing their elements. In a nutshell, LUC, XTR and CEILIDH 

have the discrete log security of IF;n, where n = 2 for LUC and n = 6 for XTR and CEILIDH, 

while it is possible to represent the elements using only cp(n) elements of IFp • In comparison with 

the classical Diffie-Hellman key exchange, we would have to work a priori with IF;n directly in 

order to achieve a comparable security level, but then the elements transmitted between Alice 

and Bob would consist of n elements of IFp. So interesting savings occur as soon as cp(n) is 

rather small compared to n. If we consider the ratio of the number of bits of security to the 

number of bits transmitted, we therefore obtain a standard of measure of 1 for Diffie-Hellman, 



4.6. CRYFTOSYSTEMS FALLING IN THE SPECTRUM OF GENERALIZED JACOBIANS121 

and a quotient of 210gp /(<p(2) logp) = 2 for LUC and of 610gp /(<p(6) logp) = 3 for XTR and 

CEILIDH. 

That concludes our brief overview of torus-based cryptography. More details and recent 

advancements on the work of Rubin and Silverberg can be found in [RS04a], [RS04b], [RS04c], 

[DW04], [vDGP+05], and [GV05J. 

To sum up, we are currently using two distinct types of generalized Jacobians in cryptog­

raphy: the Jacobians (corresponding to trivial Lm) and the algebraic tori (for which J is now 

trivial). Hence, we know that seperately, both Jacobians and algebraic tori are great choices for 

DL-based cryptography. Standing right here, it seems now so obvious that the natural thing to 

do next is to consider a generalized Jacobian for which neither J nor Lm is trivial. The goal 

we are after is to come up with sufficient evidences to confidently answer the following yes/no 

question: 

Gan generalized Jacobians with nontrivial J and Lm be used for cryptographie purposes? 

There are, as usual, two hidden requirements behind this question: the efficiency and the 

security aspects. And as in court, what we need is one good witness with competitive security 

and efficiency to win our case. The next step is to find a potentially good witness. Since we 

here venture in an unexplored territory, we are therefore free to choose a really simple case of 

study (and then hopefully simplify the analysis). 

For the curves we wish to consider, the two natural candidates are elliptic curves and hyper­

elliptic curves. They are equally interesting candidates from our point of view, but unfortunately 

a cruel choice must be made herell . Given that this curve will be our spokesperson for these 

new ideas and given that ECC is (to this date) considered in the community as 'the alternative 

to RSA " we are therefore opting for elliptic curves. Lastly, we have to decide upon a modulus 

m to use. Thanks to corollary 4.6, we know that once we have fixed a smooth elliptic curve E 

over a finite field IB'q, then it suffices to choose m such that deg(m) ::::: 2 in order to guarantee 

that Jm will not be a trivial direct product. In the simplest case, m = (M) + (N) with distinct 

M and N in E(Fq ). Remark that we want to assume that M =1= N, since otherwise Theorem 

4.9 tells us that Lm is isomorphic to the additive group Ga, for which the DLP is really easy. 

Luckily, when M =1= N, that same theorem ensures that Lm will be isomorphic to Gm • This is 

just perfect sinee the generalized Jacobians we get will then be a mixture of two well-studied 

cryptographic structures: elliptic curves and finite fields. So after aIl, the choice of a witness 

11 See Chapter 6 where further work is discussed. 
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was quite natural: E for popularity and m for simplicity. And as previously advertised, this 

case study will be fully investigated in the next chapter. 



Chapter 5 

A Concrete Cryptosystem 

"It is possible to write endlessly 

on elliptic curves (this is not a threat)." 

- Serge Lang 

Cryptographers like finite fields because of their efficiency and care about elliptic curves 

for their security. Unfortunately, this dichotomy appears ineluctable: when cornes the time to 

choose a group to implement a DL-based protocol, it seems that there is room for only one of 

them. 80 it sounds like we cannot have the best of both worlds... But before giving up too 

easily, let's recall a few facts for the record: 

• Elliptic curves are their own Jacobians 

• Generalized Jacobians are extensions of a Jacobian by a linear group 

• For suitably chosen moduli, this linear group coincides with Gm . 

80 if we consider a generalized Jacobian Jm which is a nontrivial extension of E by Gm , then 

we can naively picture Jm (IF q) as being an elliptic curve 'intertwined' with a finite field, just like 

a ringwire puzzle! where two pieces of metal are interlaced. In comparison, a direct product 

would then correspond to a mere juxtaposition of the two parts. 

Keeping this image in mind, we now have sorne serious work ahead of us before we can 

claim that this particular generalized Jacobian is an interesting candidate to consider for prac­

tical applications. Indeed, recall that the main requirements for a group G to be suitable for 

cryptography are that 

1 Which is sometimes also called a 'disentanglement puzzle '. 
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Figure 5.1: A ringwire puzzle: unsolved (left) and solved (right). 

• The elements of G can be easily represented in a compact form, 

• The group operation can be performed efficiently, 

• The dis crete logarithm problem in G is believed to be intractable, and 

• The group order can be efficiently computed. 

Ensuring that these requirements are fulfi11ed is the exciting program of this chapter. Once 

this is achieved, we could then right away use this generalized Jacobian as the underlying group 

of the (generalized) EIGamal cryptosystem, for instance. Thus a11 the work resides in showing 

that the above four properties hold. In the end, we will also have to keep in mind that the 

overa11 appreciation also has to take into account the relative performance obtained compared 

to other popular cryptosystems. 

5.1 Initial Setup 

This short section contains the global description of the generalized Jacobians that will be 

studied in this chapter, together with important reminders. It is also the time to make a few 

conventions in order to ease the exposition. 

First reca11 that by Coro11ary 4.6, the simplest case where the generalized Jacobian is not a 

direct product arise when the curve we consider has genus one and the modulus has degree 2. 

So throughout this chapter, we will work with a smooth elliptic curve E defined over a finite 

field K = IF'q. For the purpose of constructing the generalized Jacobian, we will view E as being 

defined over iFq , so that the results of Chapter 4 directly apply here. 

We now need to fix a modulus m = (M) + (N), where M and N are points of E(iFq ). 

Remark that for the applications we have in mind, like the generalized EIGamal cryptosystem 

and signature, we need the group Jm to be publicly known, so M and N are assumed to be 
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public parameters. Also notice that in practice, we will be free to select M and N, so that for 

a given elliptic curve, there are in fact many possible moduli to choose from. 

Now, since we ultimately want to 'intertwine' E with the multiplicative group of a finite 

field2 Fr, the generalized Jacobian we consider should be an extension of E by Gm . Nothing 

easier since having Lm isomorphic to Gm is guaranteed by Theorem 4.9 as soon as M f. N. 

One more thing: we will have to use the correspondence between Pic~(E) and Jm in order to 

'transport' the group law on divisors to Gm xE, which means that we will certainly rely on the 

known group isomorphism 

E --+ Pic O(E) (5.1) 

P I-t (P) - (0) + Princ(E) 

given in Proposition 3.90. Now, since m-equivalence is defined on divisors whose support is 

disjoint from {M, N}, we won't be able to use (5.1) directly, unless M, Nf. O. 80 to make our 

lives a little easier, we will thereafter assume that condition M, N f. 0 is also fulfilled. Hence, 

we can let M = (XM : YM : 1) and N = (XN : YN : 1). These are so far the only conditions we 

impose on m. 

Lastly, let's establish two small conventions that will also contribute to simplify our lives. 

First, we know by Theorem 4.7 that there is a bijection of sets between Jm and Gm x E, so 

byan 'element of Jm ', we will thereafter mean a pair (k, P), where k E Gm and PEE. Also, 

once an explicit bijection between Pic~(E) and Gm x E will be fixed, by 'the group Law on Jm ', 

it will be understood'the group operation on Gm xE induced from the addition on Pic~(E) 

through this particular bijection'. 

5.2 Explicit Bijection between Pic~(E) and Gm x E 

In the preceding section, we chose a tailor-made modulus that guaranteed the existence of 

a bijection of sets 'lj; : Pic~(E) --+ Gm x E. 80 we already know that the elements of our 

generalized Jacobian can be conveniently represented as pairs (k, P), where k E Gm and PEE. 

The next step is to make this bijection explicit. Although the mere existence of 'lj; suffices to 

compactly represent the elements of Jm , understanding this correspondence in depth will prove 

to be useful in the next section when comes the time to work out explicit formulœ for the group 

operation on <Gm x E. Indeed, given (kl, Pl) and (k2 , P2 ) E Jm , we will have to compute their 

sum (k3 , P3 ) E Jm. Hence if we know that (klo H) and (k2 , P2 ) respectively correspond to the 

21t will be possible to see how q and rare related once we have determined the group law in Section 5.3. 
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m-equivalenee class of Dl and D2' then (k3 , P3 ) must correspond to the m-equivalenee class of 

Dl + D 2· That is, 

Henee, exploring 'Ij; can be seen as the first step towards the obtention of the group law algorithm 

on IGm xE. 

We are now ready to begin our investigation. As mentioned earlier, we already possess a 

group isomorphism between Pic o(E) and E, so this will be our official starting point. Under 

this isomorphism, recall that the class of a divisor D = ~PEE np(P) E Divo(E) is mapped to 

the sum 8 = ~PEE npP E E. By Abel's theorem (Theorem 3.84), there is then an f E K(E)* 

such that 

D = (8) - (0) + div(f). (5.2) 

Notice that if D has disjoint support with m, then either 8 =1- M, N and ordM(f) = ordN(f) = 0, 

or else 8 E {M, N} and ordS(f) = -1. This latter case is undesirable here since we might need 

to evaluate f at both M and N, just as we did in the example on pl of Section 4.5.1. Hence, 

if 8 =1- M, N, then we can keep equation (5.2) as is. Otherwise, Abel's theorem will once more 

come to the rescue: the idea is to use, in place of (8) - (0), another simple divisor linearly 

equivalent to D which will now have disjoint support with m. Concretely, observe that if we 

translate 5 by a point TEE, we obtain 

D ~ (8) - (0) ~ (8+T) - (T), 

and thus if T .;. {O, M, N, M - N, N - M}, then both (M + T) - (T) and (N + T) - (T) have 

disjoint support with m. So from now on, we will assume that such a 'translation point' T is 

fixed and publicly known. We can now let 

R= { ~ if 8';' {M,N}, 
otherwise, 

and so there is an f E K(E)* satisfying 

D = (8 + R) - (R) + div(f)' (5.3) 

where the property ordM(f) = ordN(f) = 0 is fulfilled as soon as D has disjoint support with 

m. Remark that this way of writing out a divisor highlights the point 8 of E corresponding to 

D, so it remains to determine how to 'read' the corresponding element of IGm from (5.3). This 

is what we undertake now. 
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Since any two divisors in an m-equivalence class are mapped to the same element of <Gm xE, 

our approach will be to unravel the definition of m-equivalence until we can clearly see how 

to associate an element of <Gm x E to each class, So let Dl = (81 + RI) - (RI) + div(h), 

D2 = (82 + R2 ) - (R2 ) + div(h) E Div~(E) be given such that 

Ri = {TO if h8i ~ ,{M, N}, 
ot erWJse, 

for i = 1,2, We then have 

Dl rvm D 2 iff -::Jf E K(E)* such that div(f) = Dl - D 2 and f == 1 mod m, 

iff -::Jf E K(E)* such that div(f) = (81 + RI) - (82 + R2 ) + (R2 ) - (RI) 

+div (;~) and ordM (I- f) ;:: 1, ordN(I- f) ;:: 1, 

iff 81 + RI - (82 + R2 ) + R2 - RI = 0 and -::Jf E K(E)* such that 

div(f) = div (;~) and f(M) = f(N) = 1, 

J
'ff -* h (M) h (N) 1 

81 = 82 , RI = R2 and -::Je E K such that h(M) = h(N) = ~' 

l
'ff 8 8 d h(M) h(N) 

1 = 2 an h(M) = h(N)' 

J
'ff 8 8 d h(M) h(M) 

1 = 2 an h(N) = h(N) , 

That means that in order to check whether two given divisors are m-equivalent, we sim ply have 

to test two equalities, one in E and one in <Gm , The obvious candidate for 'ljJ is thus the map 

'ljJ: Pic~(E) --+ <Gm xE 

[Dlm ~ (k,8), 

such that the m-equivalence class of D = 2:PEE np(P) E Div~ (E) corresponds to 8 = 2:PEE npP 

and k = f(M)j f(N), where f E K(E)* is any function satisfying 

, { D-(8)+(O) 
dJv(f) = D _ (8 + T) + (T) 

if 8 ~ {M,N}, 

otherwise, 

Notice that the existence of f is guaranteed by Abel's theorem (c.f, Theorem 3,84) and that 

'ljJ is well-defined since we have just shown that for Dl = (SI + RI) - (RI) + div(fI), D 2 = 
(82 + R2 ) - (R2 ) + div(h), k1 = h(M)j h(N) and k2 = h(M)j h(N), we have: 



128 CHAPTER 5. A CONCRETE CRYPT08Y8TEM 

Moreover, 'Ij; is injective since we also already know that 

It therefore remains to show that 'Ij; is surjective as weIl. 80 given (k, 8) E Gm xE, we must find 

an f E K(E)* such that f(M)j f(N) = k. Using the idea behind the interpolation polynomial 

of Lagrange, or simply by inspection, we easily see that 

otherwise, 

fulfills the required conditions (notice that X M = X N implies that YM i= YN since we assumed 

that M i= N and Z M = ZN = 1). Hence, the divisor 

{ 
(8) - (0) + div(f) 

D-
- (8 + T) - (T) + div(f) 

if 8 tJ- {M,N}, 

otherwise, 

is mapped to (k,8), as wanted. Et voilà: we have therefore shown that 'Ij; is the bijection we 

were looking for. 

Proposition 5.1 Let E be a smooth elliptic curve defined overlF'q, TE E\{O, M, N, M -N, 

N - M} and m = (M) + (N) with M, NE E\{O}, M i= N be given. Let also 

'Ij;: Pic~(E) ---> Gm xE 

[Dl m f----7 (k, 8) , 

be su ch that the m-equivalence class of D = 2:PEE np(P) corresponds to 8 = 2:PEE npP E E 

and k = f(M)j f(N), where f E K(E)* is any function satisfying 

. { D - (8) + (0) 
dIV(f) = D - (8 + T) + (T) 

if 8 tJ- {M,N}, 

otherwise. 

Then, 'Ij; is a well-defined bijection of sets. 

Remark 5.2 Notice that sin ce the zero divis or can be written as 

0= (0) - (0) + div(c), 

where c is any nonzero constant, then 0 corresponds to the pair (1,0). That is, (1,0) is the 

identity element of Jm • 
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5.3 The Group Law Aigorithm 

We here undertake the crucial task of inferring an algorithm to compute the group operation on 

Jm • So we are just about to establish the bridge between theory and practiee: with the concrete 

equations at hand, even someone who never heard of generalized Jacobians or group cohomology 

before will just as well be able to understand the various properties of J m . 

Remember that by the theory of group extensions, we already know the basic structure of 

the addition on Jm • Actually, recall that by Theorem 4.7, we have for any kt, k2 E Gm and Pl, 

P2 EE, 

(5.4) 

where Cm : E X E ~ Gm is a 2-cocycle depending on the modulus m. It thus suffices to make Cm 

explicit. As in the example of Section 4.5.1, we will roll up our sleeves and work directly with 

divisors. So given (k l , Pl) and (k2 , P2 ) in Jm , we wish to compute their sum (k3 , P3 ). 

There are two distinct cases to study, depending if the use of a 'translation point' T is at 

all needed. Fortunately, there is an easy criterion to decide when it occurs. Indeed, suppose 

that the group we consider for cryptographie applications is the subgroup of J m generated by 

the element (k, P). By the addition rule (5.4), it immediately follows that 

If (j,Q) E ((k,P)) , then Q E (P). 

As a result, if neither M nor N is a multiple of P, then the group operation on (( k, P)) will 

never involve points of the form (*, M) or (*, N). Thus, there is no need to employa translation 

point in this case. Of course, when either M or N lies in (P), then the corresponding addition 

formulre will use translation points when appropriate in order to coyer all possible cases. This 

motivates the following definition. 

Definition 5.3 Let E be an elliptic curve defined over lF'q and BE E(lF'q) be a given basepoint. 

Let also M, NE E(lF'q) be given. Then the modulus m = (M) + (N) is said to be B-unrelated 

if M, N ~ (B). Otherwise, it will be called B-related. 

5.3.1 Group Law for B-unrelated Moduli 

As announced, the aim of this section is to transport the addition on Pie~(E) to Gm x E in 

order to get explicit equations involving the group laws on IGm and E. 80 given (k l , Pl), (k2 , P2 ) 

and (k3 , P3 ) in Jm such that 
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our task is to express (k3, P3) in terms of (k l , Pl) and (k2 , P2 ). By the explicit bijection between 

Pic~(E) and <Gm xE (see Proposition 5.1), the elements (k l , Pd and (k2 ,P2 ) are respectively 

the image of the m-equivaience class of Dl = (Pl) - (0) +div(fI) and D2 = (P2 ) - (0) +div(12). 

Notice that since Pl, P2 tJ- {M,N}, then fI and 12 are both defined and nonzero at M and N. 

That being said, we can now endow <Gm xE with the group operation inherited from Pic ~ (E). 

So basicalIy, a11 we need to know is to which element of <Gm x E does D3 = Dl + D2 correspond 

(and yes, this is the act where the hidden 2-cocycle fina11y makes its triumphai appearance). 

First, we have by definition that 

(5.5) 

so in order to get the element of <Gm x E we are Iooking for, the way to go is to express the right 

hand side of (5.5) as (P3 ) - (0) +div(fs). By Abel's theorem (c.f. Theorem 3.84), we know that 

and so there is a function L p "P2 E K(E)* satisfying 

(5.6) 

Combining (5.6) and (5.5) yields 

Phantastisch! That means that we can set P3 = Pl + P2 and fs = fI ·12 . Lp"P2' Hence, D3 

corresponds to (k3 , P3 ), where 

k3 = h(M) = fI(M)· 12(M)· LPt,P2(M) = k
l 

. k
2

• LPt,P2(M) 
fs(N) fI(N) . 12(N)· LPt,P2(N) LPt,P2(N)' 

That is, 

So we rea11y are on the right track since our addition rule so far agrees with the prediction (5.4) 

obtained from group extensions. Hence the 2-cocycle Cm : E x E --+ <Gm we were seeking is 

fina11y unveiled: 

(5.7) 

The very last step is to make L p"P2 explicit. We have to look for a function L p"P2 satisfying 

(5.6), or equivalentIy, 

(5.8) 
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That should sound familiar now (See Lemma 3.82). The natural approach is to consider the line 

ep" P2 , passing through Pl and P2 , that will inevitably hit -P3 = -(Pl + P2 ) as well. Then, 

(5.9) 

Not exactly what we want yet, so in order to introduce the term -(Pl + P2 ) and get rid of (-P3 ) 

at once, we might want to look at ep,+P2 ,O, which is of course the line passing through Pl +P2 , 

0, and a fortiori through -P3 . That is, 

div (ePl~2,o) = (H + P2 ) + (-P3 ) - 2(0). (5.10) 

Subtracting (5.10) from (5.9), we get 

div (e ep1
,P

2 
) = (Pl) + (P2 ) - (Pl + P2 ) - (0). 

Pl+P2,O 
(5.11) 

Finally, equations (5.8) and (5.11) imply that L p1 ,P2 and ep" P2 /ep1 +P2 ,o differ by a nonzero 

multiplicative constant: 

(5.12) 

Figure 5.2: Unveiling the 2-cocycle Cm 

Let's point out that our initial conditions M, N =1- 0 and Pl, P2 , P3 = Pl + P2 rt {M, N} 

are sufficient to ensure that L p1 ,P2(M) and Lp" P2(N) will both be defined and nonzero, since 

equation (5.8) tells us that the only zeros and poles of Lp" P2 occur at Pb P2 , Pl +P2 and O. But 

say we want to compute Lp" P2 (M) by evaluating ep" P2 (M) and ep,+P2 ,O(M) separately. That 

will workjust fine as long as M =1- -P3. But when M = -P3, we get ep" P2(M) = ep1+P2 ,o(M) = 
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o and so evaluating Cp" P2(M) /Cp,+P2 ,o(M) amounts to study the indeterminate form '0/0'. 

Since·the goal of this section is to obtain a group law valid for any Pl, P2 , P3 E (B) under the 

assumption that M, N ~ (B), then it follows that -P3 ~ {M, N} anyway, so we do not have 

to worry about this case now. We can then add the extra requirement -(Pl +P2) ~ {M,N} to 

the points we consider and simply move on. 

Therefore, byequations (5.7) and (5.12), it is now legitimate to write 

cm(P
l

, P
2

) = Lp
"

P2(M) = c· ChP2 (M) . Cp,+hO(N) = Cp"P2(M) . CP,+hO(N) , (5.13) 
Lp

"
P2(N) Cp,+hO(M) C· Cp" P2(N) Cp,+P2 ,O(M) Cp" P2(N) 

and our goal is achieved since the 2-cocycle Cm is now completely determined. To be on the 

safe side, we may want to double-check that expression (5.13) is well-defined since after ail, we 

have sorne freedom on both the equations of the lines (they are determined up to a constant 

factor) and on the representatives for the homogeneous coordinates of M and N. That is, for 

M = (XM : YM : 1), N = (XN : YN : 1) and ),1, ),2, Cl, C2 any nonzero constants, we have 

M", (),lXM : ),lYM : ),1), N", (),2 X N : ),2YN : ),2) and Cl . Cp" P2' C2 . Cp,+P2 ,O respectively 

defining the same line as Cp" P2 and CP, +P2 ,o. Since Cp" P2 and Cp,+P2 ,O are both homogeneous 

polynomials of degree one, it follows that 

Cl' Cp" P2(),lXM, ),lYM , ),1) 

c2 . Cp,+P2,O(),lXM, ),lYM,),t) 

),1' Cp" P2 (XM , YM , 1) 
),1' Cp,+P2 ,o(XM, YM, 1) 

Cp" P2 (M) 
Cp,+P2 ,O(M) 

C2 . Cp, +P2,O(),2 X N, ),2YN, ),2) 

Cl . Cp, ,P2 (),2 X N, ),2YN, ),2) 

),2' Cp,+P2,o(XN, YN, 1) 
),2' Cp" P2(XN, YN, 1) 

Cp,+P2 ,O(N) 
Cp" P2(N) , 

which confirms that formula (5.13) was well-defined. Finally, we are ready to properly write 

down the group law we just obtained. 

Proposition 5.4 Let E be a smooth elliptic curve and let m = (M) + (N) be given such that 

M and N are distinct nonzero points of E. If (k1, Pl) and (k2 , P2 ) are elements of J m fulfilling 

H, P2 , ± (H + P2 ) ~ {M, N}, then 

(5.14) 

where Cm : E X E -> Gm is the 2-cocycle given by 

(P P.) 
_ Cp" P2(M) Cp,+P2 ,O(N) 

Cm l, 2 - ( ) 
.cP, +P2,O M .cPl,P2(N) ' 

and Cp,Q denotes the equation of the straight line passing through P and Q (tangent at the curve 

if P = Q). 
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5.3.2 Group Law for B-related Moduli 

Inspired by the method used to obtain a group operation for B-unrelated moduli, we here treat 

the general case of adding arbitrary points of Jm . 80 let (kl , Pl), (k2 , P2 ) and (k3 , P3 ) be elements 

of Jm satisfying 

As suggested in 8ection 5.2, an easy way to proceed is to use what we caIled a 'translation point' 

each time we encounter a divisor whose support contains Mor N (see p.126 for details). 80 we 

first need to fix a point T ~ {O, M, N, M - N, N - M} of E and let, for i = 1,2, 

if Pi E {M, N}, 
otherwise. 

That way, (Pi) - (0) '" (Pi + Ri) - (~) and the support of the divisor on the right hand side 

satisfies {Pi + Ri, Ri} n {M, N} = 0. For i = 1,2, let 

(5.15) 

and notice that this implies that ordM(fi) = ordN(fi) = O. Using the bijection 'lj;: Pic~(E) ---+ 

Gm x E of Proposition 5.1, the m-equivalence class of Di (i = 1,2) can be specified by the pair 

(ki , Pi), where 
fi(M) 

ki = fi(N)' 

With aIl this information at hand, we should now be able to find an expression for k3 and 

P3 in terms of kl , k2 , Pl and P2 in the twinkling of an eye. First set D3 = Dl + D 2 and use 

equation (5.15) in order to rewrite D3 as 

Just as before, we need to find a way to express this divisor as 

where R3 will of course be defined according to the value of P3 : 

if P3 E {M, N}, 
otherwise, 

(5.16) 

and h E K(E)* is a function yet to be determined. Once more, Abel's theorem (c.f. Theorem 

3.84) will provide the intuition we need since 
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Hence, there is an L E K(E)* (involving possibly aIl of Pl, P2 , P3 , RI, R2 and R 3 ) such that 

From (5.16) and (5.17), we obtain: 

and we can sim ply let P3 = Pl + P2 and 13 = h . h . L. 80 it means that D3 is associated with 

(k3 , P3 ), where 
13(M) h(M)· h(M)· L(M) L(M) 

k3 = 13(N) = h(N). h(N) . L(N) = kl . k2 · L(N)' 

Playing with lines will once more prove to be a good tactic to deduce an explicit expression for 

L. 80 in order to see which ones we should consider, we first take the time to rewrite (5.17) as 

A quick inspection of this principal divisor suggests that the favorite candidates are the foIlowing 

six straight lines: fp"R" fp,+R,,o, f P2 ,R2' f pdR2 ,o, f P3 ,R3 and f p3 + R3 ,o (yes, this is what it 

takes). Plus, in order to exactly obtain (5.18), it might not be a bad idea to consider f P"P2 and 

f p , +P2,o as weIl. We therefore get: 

Adding these four equations yields 

(5.19) 

From (5.18) and (5.19), we have consequently determined L up to a nonzero constant. But since 

this constant will cancel out when computing L(M) / L(N) , we can without 10ss of generality 

assume that 
L = f p1 ,P2 . fp,+R,,o . f p2 + R2 ,o. f p3 ,R3 . 

f p3 ,o fp"R, f P2 ,R2 f p3+ R3 ,O 
(5.20) 
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As we can see, the term t'P I,P2 It'pl +P2,o still appears, but is now foIlowed by 'correction factors' 

that will ensure, thanks to (5.18), that the only true zeros and poles of Larise at Ri and Pi + Ri 

(i = 1, 2, 3), which are an different from M and N by construction. Henee, the quotient 

L(M) 1 L(N) will always be defined and nonzero. 

Since the group operation we just obtained holds on aIl of J m , we might wonder what happens 

when Pl, P2 , ±P3 ~ {M, N}. In this case, we have RI = R 2 = R3 = 0 and (5.20) reduees to: 

L - t'PI ,P2 t'pl,o t'P2,o t'P3,o _ t'PI ,P2 
- t'P3,O . t'pl,o . t'p2,o . t'p3,o - t'P3,O' 

which coincides with Proposition 5.4 for B-unrelated moduli. So evaluating a group operation 

on Jm will be more expensive as soon as one of the Pi's equals M or N. The relevanee of this 

differenee will be addressed in Section 5.3.4. But first, it is time to summarize what we've got. 

Proposition 5.5 Let E be a smooth elliptic curve, m = (M) + (N) be given such that M and 

N are distinct nonzero points of E and let TEE be any point such that T ~ {O, M, N, M -N, 

N - M}. Given (kb Pl) and (k2 , P2 ) in Jm , set P3 = Pl + P2 and let, for i = 1, 2, 3, 

Then, 

where 

if Pi E {M,N}, 
otherwise. 

L = t'PI ,P2 . t'PI+RI,o . t'P2+R2,O. t'P3,R3 . 

t'P3,O fpI,RI f p2 ,R2 fp3+R3,O 

As usual, fp,Q denotes the equation of the straight line passing through P and Q (tangent at the 

curve if P = Q). 

5.3.3 Toy Example 

Before going any further, we work out a tiny paper and pencil example in order to get a flavor 

of how the computations in Jm will be performed in practiee. It is also the right time to start 

looking for tricks to speed things up, sinee everyone knows that computing by hand gives us a 

strong motivation (and plenty of time!) to realize what shortcuts could be considered. 

We will work with the generalized Jacobian of the elliptic curve 

over IF'p = IF'7 with respect. to the modulus m = (M) + (N), where M = (XM,YM) = (0,5) 

and N = (XN,YN) = (5,1). An computations are performed in the subgroup of Jm generated 
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by (k, P), where k = 1 and P = (xp, yp) = (6,3). Notice that p, E, M, N, P and k are all 

publicly known quantities that determine the group ((k, P)) we are working in, and provide the 

necessary information to perform the group operation inside ((k, P)). 

Before we begin, we can quickly verify that E is nonsingular, as a = 1, b = 4 and b. = 
-16· (4a3 + 27b2 ) = 3 =1= O. Next we want to compute multiples of (1, P) in order to get an idea 

of what ((1, P)) looks like. In the present case, it is easier to work in affine coordinates since we 

do not have to worry about the cost of inversions (of course, homogeneous coordinates would 

have worked perfectly fine too). 

We now proceed to compute 2(1, P) = (1, P) + (1, P). According to Theorem 3.55, we have 

Cp,p(x, y) = y - mx - b, where 

m = 3x~ + a 3 . 6
2 + 1 = 3 and b = -xj, + axp + 2b 

2yp 2·3 2yp 
_63 + 6 + 2·4 

2. 3 = 6. 

Thus, 2P = (X2P, Y2P) = (4,3) since 

X2P = m 2 
- 2xp = 32 

- 2·6 = 4 and Y2P = -mX2P - b = -3·4 - 6 = 3. 

It follows that C2P,o(x, y) = X - X2P = X - 4, and we have 

Similarly, 

-::-Cp,-,,=-p-,;-(M::-::c-) = Cp,P(XM,YM) = YM-mxM-b = 5-3·0-6 =2 
C2P,o(M) C2P,O(XM,YM) XM - 4 -4 . 

C2P,O(XN,YN) xN-4 
CP,P(XN,YN) YN - mXN - b 

-:---::-5 _-~4---:- = 1. 
1-3·5-6 

Finally, by Proposition 5.4 , we get that 

_ ( Cp,p(M) C2P,o(N) ) _ 
2(1,P)- 1.I· C (M)'C (N),2P -(2,2P)=(2,(4,3)). 

2P,O P,P 

Almost too easy. We could then continue to compute the multiples of (1, P) by hand, and 

perhaps make it an interesting alternative to counting sheep at night... Otherwise, a small 

MAGMA program readily produces the output shown in Table 5.1. 

Since neither M = (0,5) nor N = (5,1) appear in this table, that means that m = (M) + (N) 

is a P-unrelated modulus (and this is why we did not need to specify a translation point here). 

We also have that (1, P) has order 30 = #F'7 x ord(P) and 

((l,P)) = {(i,Q)li E F~ and Q E (P)}. 

We will come back to this example a little latter, although it is overwhelmingly tempting to 

look at the DLP in ((1, P)) right away ... (Unthinkable to wait until Section 5.5? Then cogitate 

on a good general strategy3 to recover, say, 27 from the couple (3, (4, 3))). 

3We of course have to pretend that we can't do an exhaustive search here. 
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(1, P) = (1, (6,3)) 
2(1, P) = (2, (4,3)) 
3(1,P) = (4,(4,4)) 
4(1,P) = (4,(6,4)) 
5(1, P) = (3,0) 
6(1,P) = (3,(6,3)) 
7(1,P) = (6,(4,3)) 
8(1,P) = (5, (4,4)) 
9(1, P) = (5, (6,4)) 

10(1, P) = (2,0) 

11(1, P) = (2, (6,3)) 
12(1, P) = (4, (4,3)) 
13(1, P) = (1, (4,4)) 
14(1, P) = (1, (6,4)) 
15(1, P) = (6,0) 
16(l,P) = (6,(6,3)) 
17(1,P) = (5,(4,3)) 
18(1,P) = (3,(4,4)) 
19(1, P) = (3, (6,4)) 
20(1,P) = (4,0) 

21(1,P) = (4,(6,3)) 
22(1, P) = (1, (4,3)) 
23(1,P) = (2,(4,4)) 
24(1, P) = (2, (6,4)) 
25(1, P) = (5,0) 
26(1, P) = (5, (6,3)) 
27(1, P) = (3, (4,3)) 
28(1,P) = (6,(4,4)) 
29(1, P) = (6, (6,4)) 
30(1, P) = (1,0) 

Table 5.1: Multiples of (1, P) obtained with MAGMA 

5.3.4 Properties of the Group Law 
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Now that we have derived nice explicit formulée for the group operation, we take a (well­

deserved!) pause for contemplating them. That's right. This small section aims at collecting 

tricks, remarks and corollaries on the group law in or der to be fully prepared for the more serious 

efficiency and security aspects of the next sections. 

B-RELATED OR UNRELATED? That is the question, indeed. Well, the obvious remark 

is that B-related moduli offer greater generality while the group law associated to B-unrelated 

ones is simpler. But if we were to pick one for applications, which one should we choose? First 

recall that by Proposition 5.4 and 5.5, the general group law (both for B-related and unrelated 

moduli) can be rewritten as 

where 

e pl ,P2 

.eP3 ,o 
e pl ,P2 . epl+Rl,o' .eP2 + R2 ,o· e p3 ,R3 

.eP3 ,o epl,Rl . e p2 ,R2 . e p3 + R3 ,O 
otherwise . 

The straightforward implementation of this group law will then satisfy the following two prop­

erties: 

1. Computing (k l ,Pl )+(k2 ,P2 ) when {Pl ,P2 ,H + P2 , -Pl - P2 }n{M,N} f- (/) will require 

more computing time than if {Pl, P2 , Pl + P2 , -Pl - P2 } n {M, N} = 0. 

2. The code will contain conditional 'if-then-else' statements in order to compute L. 
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The obvious consequence of property 1 is that some computing time can be saved if we 

employa B-unrelated modulus. This discrepancy in efficiency is however the lesser of two evils. 

As a matter of fact, B-related moduli seem to be more susceptible to side-channel attacks. 

Recall that the general (and greatly simplified!) principle behind these attacks is to measure 

side-channel information of a cryptographic device (like running times, power consumption or 

electromagnetic emanations) in order to retrieve secret data4 • As a result, codes whose running 

time depend on secret input data have to be avoided as much as possible in practice. In addition, 

the collected side-channel information is sometimes even sufficient to retrieve which branch of 

a conditional statement was executed, therefore revealing information about the value of the 

condition tested. Therefore, the straightforward algorithm for computing a group operation for 

a B-related modulus violates two basic principles for minimizing side-channelleakage. 

These remarks show that the efficiency and security characteristics of B-related and B­

unrelated moduli differ, so they should be studied separately. The above evidences also suggest 

that B-unrelated moduli might have a higher potential for practical implementations, and since 

the ultimate objective of this chapter is to build a practical cryptosystem based on a simple 

generalized Jacobian in order to highlight the potential of these algebraic groups, B-unrelated 

moduli were chosen for our case study (inevitably relegating B-related moduli to further work). 

Thus from this point on, we will assume that the moduli we consider are all B-unrelated. 

BASIC PROPERTIES. We here present a small collection of properties of the group law that 

will prove to be very useful in the seque!. In fact, they are either remarks previously made in 

the text (that we formally state for the record) or else are easily derived from Proposition 5.4 . 

Corollary 5.6 Let E be a smooth elliptic curve and let m = (M) + (N) be given su ch that 

M and N are distinct nonzem points of E. Let also (k, P), (k l , Pd, (k2 , P2 ) E Jm be given su ch 

that Pl, P2 , ± (Pl + P2 ) ~ {M, N}. Then, 

1. (1,0) is the identity element of Jm . 

2. cm(Pt,P2) = cm(P2, Pd (This refiects thefact that Jm is abelian). 

3. If M = (XM : YM : 1) and N = (XN : YN : 1), then cm(P, -P) = fp,o(M) /fp,o(N), and 

so the inverse of (k, P) is given by 

-(k P) = (.!. . fip,o(N) -p) 
, k f (M)' P,o 

4More information concerning these attacks can be found in the original articles [Koc96, KJJ99], as weil as 
in Chapters IV and V of [BSS05]. 
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4. cm(éJ, P) = 1 for all P E E\{M, N}. Hence, 

5. Furthermore, Jm contains a subgroup isomorphic to Gm , as 

6. If E is defined over lFq, BEE (lFq) and M, NEE (lFqr) are such that mis B-unrelated, 

then lF~r x (B), together with the addition law of Proposition 5.4, is a subgroup of Jm . 

The only statement that might require a further justification is property 6. Notice that it sim­

ply fo11ows from properties 1 and 3, together with the observation that Cp"p2(M), Cp"p2(N) E 

lF~r whenever Pl, P2 E (B). So at last, we have made completely explicit the finite group 

lF~r x (B) that we will be using for cryptographic applications. 

5.4 Efficiency 

Now that we have the group law algorithm at hand, it is time to wonder about the practicality 

of generalized Jacobians: from the choice of a B-unrelated modulus to scalar multiplication, 

various efficiency aspects have to be addressed. 

5.4.1 Additions in the Group 

The first remark in order is that the group operation on Jm has mainly two parts: performing 

an addition on E and evaluating the cocycle. These two steps involve the equation of the same 

straight lines, so intermediate computations for the addition on E should be reused in order to 

get the cocycle value. As a second remark, notice that the coordinates of M = (XM : YM : 1) 

and N = (XN : YN : 1) will be much used in the evaluation of the cocycle. Since we have 

the freedom to select the modulus of our choice, this might be an opportunity to speed up 

the computations. For instance, sorne (or even a11) of XM, XN, YM and YN could be chosen 

such that the cost of a multiplication of a field element by these special coordinates becomes 

significantly faster than that of a general multiplication. For this reason, we will thereafter make 

a distinction between a general multiplication, which will be denoted by the symbol '*', and a 

multiplication by a constant, represented by '.'. 

For (k l , Pl), (k2 , P2 ) E lF~r x (B), we now wish to determine the cost of computing (k3 , P3 ) = 

(kl,PI ) + (k2,P2). We will first work in affine coordinates, so let M = (XM,YM) and N = 
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(XN, YN) be given. Recall that by property 4 of Corollary 5.6, (k3, P3) = (k l * k2, Pl + P2) as 

soon as Pl or P2 equals O. Thus in this case the computation cost is merely a multiplication 

in lF'~r plus an addition on E, which will be abbreviated by M + E. Now if Pl, P2 =1= 0 and 

Pl + P2 = 0, then 

where Pl = (Xl, YI) and P2 = (X2, Y2). Thus the associated cost is three multiplications and an 

inversion in lF'~r, together with an addition on E, or 3M + 1 + E for short. Finally, we consider 

the case where Pl, P2 , P3 =1= 0, and we let P3 = (X3,Y3)' According to Theorem 3.55 , the 

slope ID of the line passing through Pl and P2 will be computed as an intermediate result while 

evaluating P3 since 

Thus, 

which yields a cost of 5 general multiplications, two multiplications by a constant and one 

inversion in lF'~r, plus an addition on E, or 5M + 2C + 1 + E. 

However, as soon as the cost of a field inversion is significantly higher than that of a multipli­

cation, projective coordinates will be preferred. Recall that in (ordinary) projective coordinates, 

(X : Y : Z) corresponds to the affine point (XIZ, YIZ) if Z =1= 0 and to 0 otherwise. 80 let 

Pi = (Xi: Yi: Zi) (i = 1,2,3) and M = (XM : YM : 1), N = (XN : YN : 1) be the projective 

coordinates of the points. 

In the most common case where Pl, P2 , P3 =1= 0, the corresponding formulre for computing 

Pl +P2 will not evaluate ID directly (since that would require an inversion), but rather computes 

quantities a and (3 such that ID = al (3. 
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Remark 5.7 While computing a scalar multiple of an element, individually storing both the 

numerators and denominators is profitable since it allows to perform a single inversion at the 

very end of the computation. 

So with the values of et and f3 already known, we can evaluate 

"( ((YM . Zl - YI) * f3 + (Xl - XM . Zl) * et) * (XN . Z3 - X 3) and 

8 ((YN . Zl - YI) * f3 + (Xl - X N . Zl) * et) * (XM . Z3 - X 3) 

such that cm (PI ,P2 ) = "(/8. Hence if we keep track of the numerators and denominators 

separately, so that we are given al, bl , a2, b2 E lF~r such that kl = aI/bl and k2 = a2/b2, then 

k3 = a3/b3, where 

Notice that these equations hold both when Pl = P2 and Pl -1= P2. Hence, when Pl, P2, P3 -1= 0, 

the number of operations needed for computing a sum is given by 10M + 6C + E. Similarly, if 

Pl or P2 equals 0, then we simply set "( = 8 = 1, which yields a cost of 2M + E for computing 

(k3, P3). Lastly, if H, P2 -1= ° but P3 = 0, then "( = XM . Zl - Xl and 8 = XN . Zl - Xl, so 

the evaluation of (k3 , P3 ) requires 4M + 2C + E. Of course, these costs should be seen as an 

upper bound rather than a precise account of the complexity. 

lndeed, a careful analysis would first require to consider fields of characteristic two and of 

odd characteristic separately, and should simultaneously optimize the cost of an addition on E 

and the computation of k3' A separate account should also be performed for the case Pl -1= P2 

and for Pl = P2 , since the equations for adding or doubling points on E differ. Then one 

would need to compare the results obtained for various coordinate systems, like the Jacobian 

(or weighted projective) coordinates, the Chudnovsky Jacobian coordinates as weIl as various 

mixed or redundant representations. FinaIly, a similar paraIlel inspection should be performed 

when protection against side-channel attacks is required. 

Needless to say, this tedious analysis should be performed prior to any serious performance 

comparison with other cryptosystems. However, it would be premature to do so at this stage 

since the goal we are currently after is to establish the relevance of generalized Jacobians in 

cryptography. 

5.4.2 Scalar Multiplications 

In this section, we will assume that we fixed a smooth elliptic curve E over lF q together with 

a point B E E(lFq ) of prime order 1 to serve as our basepoint. Moreover, we will assume that 
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a B-unrelated modulus m = (M) + (N) was chosen such that M and N are distinct nonzero 

points of E (IFqr). By property 6 of Corollary 5.6, we know that IF~r x (B) is a finite subgroup 

of Jm . So given (k, P) E IF~r x (B) and a positive integer n, we are looking for an efficient way 

to compute the scalar multiple n(k, P). 

First notice that if P = 0, then n(k,O) = (kn,O) = (knmodord(k) , 0) by property 4 of 

Corollary 5.6. So computing this scalar multiple of (k,O) simply requires to perform the 

discrete exponentiation knmodord(k) in the finite field IFqr. 

Now if P E (B) \{O}, then P has prime order l. In order to compute n(k,P), the obvious 

remark is that a repeated application of the group law yields n(k, P) = (*, nP). Thus if we set 

no = n mod l, we get n(k, P) = (*, noP). So instead of computing n(k, P) directly, we could 

make use of the value of no(k, P). Indeed, if we let nI = ln/lJ, then n = nI' l + no and so 

n(k, P) = nIl(k, P) + no(k, P). Therefore, if we let l(k, P) = (,\ 0) and no(k, P) = (vno ' noP), 

we obtain 

n(k,P) nIl(k, P) + no(k, P) 

nI(À, 0) + (vno ' noP) 

(À n" 0) + (vno ' noP) 

(vno . >. ni, noP) 

(5.21) 

by repeated applications of property 4 of Corollary 5.6. Hence evaluating n(k, P) using this trick 

is essentially computing >., >.n, and no(k, P). So if several scalar multiples of the same element 

(k, P) need to be performed, then the value of >. may be precomputed in order to speed up the 

computations. 

Lastly, notice that the really simple equality n(k, P) = (vno . >. ni, noP) in fact relates three 

instances of the discrete logarithm problem in three different groups, namely a generalized 

Jacobian, an elliptic curve and a finite field. This expression therefore de serves to be studied 

in Section 5.5, where security matters will be addressed. For future reference, we now state it 

properly as a little lemma. 

Lemma 5.8 Let E be a smooth elliptic curve defined over IFq, B E E(IFq) of prime order l 

be given and m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero 

points of E (IFqr). For k E IF~r, P E (B) \{O} and a positive integer n, let l(k, P) = (>.,0) and 

no(k,P) = (vno,noP). Then, 

n(k, P) = (vno . >.n" noP), 

where no = nmodl and nI = ln/lJ. 
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5.4.3 Choosing a Suitable Modulus 

Since the beginning of this chapter, we have deduced various desirable properties of the public 

modulus m = (M) + (N). Namely, we want M = (XM : YM : 1) and N = (XN : YN : 1) to be 

distinct nonzero points of E (IFqr) such that m = (M) + (N) is a B-unrelated modulus. 

Remark 5.9 For efficiency, we have also previously raised the possibility of selecting some 

or ail of the coordinates of M and N in su ch a way that multiplying a field element by those 

ch os en constants is notably faster than computing a general multiplication. However, sinee it 

would take us too far afield to formalize the intuitive notion of 'notably faster multiplication', 

this supplementary requirement will not be taken into account in this section. 

The next step is to ensure that these requirements can be efficiently and simultaneously 

fulfilled. To do so, the prime power q and the positive integer r can first be fixed. For cryp­

tographie applications, we usually consider elliptic curves defined over IF 2" or IF p, where s is a 

positive integer and p > 3 is prime. Another possibility is to work over an optimal extension 

field, as described in [BP98]. 

If Char(IFq) = 2, then non-supersingular5 elliptic curves should be used in order to avoid 

the MOV attack [MOV93]. In that case, the elliptic curve can be taken to have a WeierstraB 

equation of the form 

(5.22) 

with a, b E IF q' The discriminant Ll = b must also be nonzero in order to guarantee that the 

curve be nonsingular. 

If Char(IF q) = p =1- 2,3, the elliptic curve considered is given by 

Ea,b : y2 = x 3 + ax + b, (5.23) 

where a, b E IFq and Ll = -16(4a3 + 27b2
) =1- o. 

Before we start to think about a good way of choosing a 

B-unrelated modulus, some facts are worth mentioning .. First notice that random choices of 

M and N have the advantage of being less susceptible to future attacks targeted at moduli with 

special properties: it is thus a wise choice when long-term security is seeked. Moreover, when 

the parameters of a cryptosystem are generated by a third party, Tracy, then the possibility that 

they were specifically chosen such that Tracy possesses a trapdoor compromising the security 

of the system might become an issue. However, if the parameters are verifiably pseudo-random, 

5Recall that an elliptic curve E over Fq is said to be supersingular if Char (Fq) divides q + 1- #E (Fq). 
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then it is very unlikely that Tracy knows such a trapdoor. A method for generating verifiably 

pseudo-random parameters for elliptic curves is described in the IEEE P1363 standard [IEE99, 

Sections A.12.4-A.12.7]. These two arguments show that even ifpseudo-random moduli might 

not be the optimal choice for efficiency, they can provide security advantages over moduli with 

special properties. 

So we now discuss how to efficiently generate an elliptic curve together with a pseudo-random 

B-unrelated modulus. Several methods are known to select an elliptic curve E over lB'q with good 

cryptographie properties. The requirements on E as well as various techniques for choosing a 

suit able curve are discussed in Section 5.2 of the excellent survey [KMVOO]. That Section also 

mentions heuristic arguments suggesting that pseudo-randomly choosing elliptic curves6 , until 

one fulfilling all criteria is found, is an efficient procedure to select a curve in characteristic 2 

and p. It is moreover a simple matter to choose pseudo-random points on an elliptic curve, 

both in characteristic 2 and p. Such pseudo-codes can be found in Sections A.ll.l and A.ll.2 of 

[IEE99]. The underlying idea is simply to successively generate pseudo-random values x E lF'qr, 

until there is a y E lB' qr such that (x, y) E E (lB' qr ). It is therefore a simple matter to efficiently 

generate pseudo-random M and N subject to the constraints M, Ni- 0 and M i- N. The last 

step is to check whether m is B-related or not. 

A straightforward case arises when r > 1 and both M and N lie in E (lF'qr), but are not in 

E (lB'q). Indeed, for any BEE (Fq), we have (B) ç E (lB'q) and thus M, N ~ (B). We then 

conclude that m is B-unrelated. 

There is also an easy criterion to decide if the modulus is B-unrelated when at least one of 

M or N is a point of E (lB' q). Recall that for cryptographie applications, it is recommended that 

#E (lF'q) = h ·l, where l is a large prime and the cofactor h is small, while the order of E (lF'q) 

can be determined using the Schoof-Elkies-Atkin (SEA) algorithm, which is outlined in [BSS99, 

Chapter VII]. In the standards for elliptic curve cryptography [IEE99 , NloSTOO, CROO] , it is 

specified that h should equal 1,2,3 or 4. 

As usual, let BEE (lF'q) be a point of order l. If h = 1, then (B) = E (lF'q) , which implies 

that the chosen modulus will be B-related as soon as one of M or N is in E (lB'q). However, 

if h > 1, then at least half of the elements of E (lB'q) are outside of (B). Thus when h > 1, 

pseudo-randomly choosing M and N until a B-unrelated modulus is encountered will be an 

efficient way to proceed, as long as we are able to quickly verify if Mor N is a multiple of B. 

Clcarly, wc have that 

If M E (B), then lM = O. 

6That is, selecting pseudo-random a and b in lFq that will determine the elliptic curve Ea,b' 
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For the elliptic curve we consider, it turns out that the converse also holds. Indeed, by the 

Structure Theorem for Finitely Generated Abelian Groups [Hun74, Theorem II.2.2], we know 

that E (lF'q) is isomorphic to a direct sum of the form ZIIZ EEl G, where ZIIZ is the additive 

group of integers modulo 1 and G is a group of order h. Since 1 is prime, it follows that the only 

elements of order 1 in E (lF'q) must lie in (BI. We have therefore shown that if MEE (lF'q), then 

lM = 0 if and only if M E (BI' 

We thus have an easy and efficient method to decide if a given modulus is B-unrelated. 

Alternatively, one could also use the Weil pairing in order to achieve the same goal. Indeed, 

back in 1986, Victor Miller noticed that the Weil pairing provides a solution to the subgroup 

membership problem on elliptic curves7. The following proposition, whose proof can be found 

in [GalO4, Section 8], provides an efficient method to decide if a point Q lies in the subgroup 

generated by P. 

Proposition 5.10 Let E be a smooth elliptic curve defined over a finite field lF'q, m 2: 2 be an 

integer prime to Char (Jl?q), PEE (iFq) be a point of order m and Q E E[m] be given. Then, 

Q E (P) if and only if em (P, Q) = 1, (5.24) 

where em : E[m] x E[m] -+ /-lm is the classical Weil pairing, /-lm = { ( E lF'~k 1 (m = 1} is the 

subgroup of m th roots of unit y and k is the smallest positive intege"s satisfying m 1 (qk - 1) . 

Remark 5.11 This proposition uses the original version of the Weil pairinl as defined in 

[SiI86, Section III.8}, as opposed to the modified pairings exploited in several cryptographie ap­

plications, such as for the identity-based encryption scheme of Boneh and Franklin [BF01, BF03}. 

An easy way to remember which pairing to use here is to note that for property (5.24) to hold, 

we must have em (P, P) = 1. For this same reason, the above proposition might not hold for the 

Tate-Lichtenbaum pairing either, sinee it is not neeessarily altemating. 

ln his now famous unpublished manuscriptlO "Short Programs for Functions on Curves", 

Miller presents a fast probabilistic polynomial-time algorithm to compute the Weil pairing. In 

the recent special issue "Pairings and their Use in Cryptology" of the Journal of Cryptology, 

Miller also signed an article concerned with the efficient calculation of this pairing [Mil04]. 

7This observation is in fact one of the ideas underlying his algorithm for determining the group structure of 
E(1Fq), which is dcscribed in [Mil86a, Aigorithm 3]. 

8This integer k is sometimes called the embedding degree, MDV degree, or security multiplier. 
9 This pairing was introduced by André Weil in 1940 and was used in his first pro of of the Riemann Hypothesis 

for curves over finite fields [Wei40]. 
IOWhich is now available online (see [MiI86a, Algorithm 2]). 
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To sum up, we now know how to efficiently generate a B-unrelated modulus, simply by 

choosing random affine points M #- N on the curvell until both M and N are outside (B). 

In order to test if a given point lies in the subgroup generated by B, two methods were also 

mentioned.. From a global perspective, this means that we now have all the tools at hand to 

select the generalized Jacobians we are considering for the cryptographie applications of this 

chapter. 

5.4.4 Group Order and Generators 

For a given elliptic curve E over IF'q, a basepoint BEE (IF'q) of prime order l, and a B-unrelated 

modulus m = (M) + (N) such that M and N are distinct nonzero points of E (IF'qr) , we now 

wish to make sorne observations concerning the order of the elements in IF'~r x (B), which will 

then be used to study the structure of this group. In what follows, the prime l is assumed to be 

known12 . 

ORDER OF THE ELEMENTS. Given any element (k, P) E IF'~r x (B) for which P #- 0, 

we first want to efficiently compute its order m. By definition, m is the least positive integer 

such that m(k, P) = (1,0). Sinee m(k, P) = (*, mP), we have that mP = 0, and thus that m 

is a multiple of l = ord (P). There is then a positive integer n such that m = n ·l. Renee, 

(1,0) = m(k, P) = n ·l(k, P) = n(À, 0) = (Àn
, 0), 

where À E IF'~r satisfies l(k, P) = (À,O). It thus follows that Àn = 1, for which the least solution 

is n = ord(À). As a result, 

The arder of (k, P) equals ord(À)' l. 

So in particular, 

(k, P) generates IF'~r x (B) if and only if À generates IF'~r. (5.25) 

Sinee l is already known, it only remains to determine ord( À) if we wish to compute ord (( k, P)). 

First notiee that computing À can be done by evaluating the scalar multiple l(k, P), sinee both 

land (k, P) are known. Moreover, recall that determining the order of an element in a finite 

group G can be readily achieved when the factorization of #G is known. The corresponding 

deterministic algorithm can be found in [MvOV96, Algorithm 4.79]. As a result, the order of an 

element of lF~r x (B) can be efficiently computed as soon as the factorization of qT - 1 is known. 

Il Remembering that the underlying elliptic curve should have a cofactor greater than one when r = 1. 
l2Recali that #E (Fq) can be efficiently computed and was chosen such that its factorization is of the form 

1· h, where h is a small integer. 
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STRUCTURE OF lF~r x (B). Next we turn our attention to the structure on'~r x (B). We 

first point out that this group has order (qr - 1) . l, and will therefore never have prime order. 

Consequently, lF~r x (B) might not be a cyclic group. Fortunately, it is possible to investigate 

a little further by taking a closer look at (5.25). Indeed, let 9 be a generator of lF~r and let a 

be the element of lF~r such that l(l, P) = (a, 0). In order to know if lF~r x (B) is cyclic, we can 

start by explicitly write down the values of l(1,P),l(g,P),l(g2,P), ... ,l(gqr-2,p) in terms of 

a. We have 

l (gi, p) = l ((gi, 0) + (1, P)) = l (g\ 0) + l (l,P) = (gil, 0) + (a, 0) = (agil , 0), 

for any integer i such that 0 ::::; i < qT - 1. We would therefore like to know if there is a generator 

of lF~r among a, agI, ag21 , . .. , ag(qr-2)1. Now notice that as soon as l f (qT - 1), we have that 

agil = agj1 if! il == jl (modqT -1) if! i == j (modqT -1) if! i = j, 

where 0 ::::; i, j < qT - 1. Therefore, the qT - 1 elements a, agI, ag21 , ... ,ag(qr -2)1 of lF~r are 

aIl distinct, which means that lF~r = {a, agI, ag21 , ... ,ag(qr -2)1}, and thus that this set must 

contain a generator of lF~r. FinaIly, we use (5.25) to conclude that lF~r x (B) is cyc1ic whenever 

l f(qT - 1). 

If l 1 (qT - 1), then the above counting argument no longer holds. Indeed, the order of a 

now comes into play. By hypothesis, we know that qT - 1 = ld for some positive integer d. 

Thus the order of a divides l . d. If we are in the situation where ad = 1, then (agil)d = 1 for 

0::::; i < qT - 1, which means that there is no generator of lF~r among a, agI, ag21 , ... ,ag(qr -2)1. 

This simple observation shows that the behavior of lF~r x (B) may be dif!erent when li (qT - 1), 

and thus that a further study of this case would be of interest. 

Remark 5.12 It would also be possible to work in a proper cyclic subgroup of lF~r x (B). 

However, an advantage of considering aU of lF~r x (B) is that the plaintext imbedding of a 

message is then readily achieved. Efficient methods for imbedding plaintexts in an elliptic curve 

can be found in [Kob87, Section 3j. 

FINDING A GENERATOR. Lastly, given a cyclic group lF~r x (B) for which the factor­

ization of the group order (qT - 1) . 1 is known, we describe how a generator of this group can 

be efficiently selected. First recaIl that for any cyclic group G= (g) of order n and integer 

1::::; i::::; n, 

gi is a generator of G if and only if gcd (n, i) = 1. (5.26) 

There are therefore exactly cp(n) generators of G, where cp is Euler's totient function (see Section 

2.4.2). So if we choose a random element of G, the probability that it is a primitive element is 
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</JCn)/n. But </JCn) > n/(6Inlnn) as soon as n 2: 5 [RS62]. Therefore, the probability that a 

randomly chosen element of G be a generator is at least 1 / (61n ln n). As a result, successively 

choosing random elements of G until a generator is found is an efficient C expected polynomial­

time) method to select a primitive element, as soon as there is an efficient deterministic procedure 

to decide if a given element is of maximal order. Thus if the factorization of qT -1 is known, we 

conclude that randomly choosing elements of F~r x (B) until a generator is found is an efficient 

(expected polynomial-time) procedure to obtain a primitive element of F~r x (B). 

Remark 5.13 Notice that if (k,P) is a generator ofF~r x (B), then it does not imply that k 

is a generator of F~r. lndeed, recall that in our toy example of Section 5.3.3, we saw that the 

element (1, B) was a primitive element of F'7 x (B). 

5.5 The Discrete Logarithm Problem 

Among the four essential ingredients needed for a group to be suitable for DL-based cryptography 

outlined at the beginning of this chapter, we have so far covered three of them. Namely, we now 

know how to compactly represent the elements of our generalized Jacobian, how to efficiently 

perform the group operation and how to compute the group order. Thus, the very last step is 

to study the discrete logarithm problem in F~r x (B). 

Throughout this section, E will as usual denote a smooth elliptic curve defined over Fq, 

BEE (Fq) a point of prime order l, m = (M) + (N) a B-unrelated modulus with M and N 

distinct nonzero points of E (F qr ). Finally, we will assume that these parameters have been 

chosen such that F~r x (B) is a cyclic subgroup of Jm generated by (k, P). 

5.5.1 A Natural Solution 

The first exercise that should be done in order to get a flavor of how to attack the discrete 

logarithm problem in F~r x (B) is to try to write down the most natural way we could see to 

solve this problem. If we do so, we will then have an upper bound on the complexity of the 

problem that will (hopefully) raise several relevant questions concerning the overall difficulty of 

the problem. 

Thus, given an element (j, Q) E F~r x (B), we wish to determine the least positive integer n 

such that n(k, P) = (j, Q). Notice that such an exists since ((k, P)) = F~r x (B) by hypothesis. 

While considering efficiency aspects in the prcvious section, recall that we came up with an 

interesting way of computing scalar multiples of (k, P). lndeed, by Lemma 5.8 , we have that 

(j, Q) = n(k, P) = (lino' )..n 1
, noP), 
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where no = nmodl, nI = Ln/lJ, l(k, P) = (.x,0) and no(k, P) = (vno ' noP). Thus, given the 

values of 

j = vno . .xn1 and Q = noP, 

recovering n is the goal of this game. First notice that knowing n is equivalent to know both no 

and nI (since 1 is public and n = nI ·l + no). Also observe that Q is independent of nI while j 

depends on both no and nI. 

The obvious strategy is then to start by solving an instance of the discrete logarithm problem 

on E in order to recover no from Q = noP. Once no is known, the value of vno can be easily 

computed, as no(k,P) = (vno,noP). Next derive the value of .xn1 by computing v;;:ol. j (notice 

that V no "1 0 since by construction, vno E lF~r). Then recover nI by computing the discrete 

logarithm of .xn1 to the base.x. Finally, let n = nI ·l + no. We have therefore shown: 

Lemma 5.14 Let E be a smooth elliptic curve over IFq, BEE (lFq) be a point of prime order, 

m = (M)+(N) be a B-unrelated modulus, where M and N are distinct nonzero points of E (lFqr) 

su ch that lF~r x (B) is a cyclic subgroup of Jm . Then, the discrete logarithm problem in lF~r x (B) 

is no harder than sequentially solving a discrete logarithm in E followed by one in lF~r. 

In a nutshell, the computing sequence that was performed in order to extract n can be 

visualized as follows: 

DLP 
noP ~ no -+ V no -+ .xn1 

in E 

DLP 
~ nI -+ n 

in JF~r 

Figure 5.3: Natural solution to a DLP on the generalized Jacobian 

In this figure, the triple arrow '~' emphasize that this step requires to perform a discrete 

logarithm, while the simple arrow '-+' means that this computation can be efficiently performed. 

There are therefore two bottlenecks in this solution: one for each DLP to be solved. Unfortu­

nately, the most obvious solution to a problem needs not coincide with the optimal strategy, so 

we have to wonder: 

ls it possible to do any better? 

The remainder of this chapter will attempt to answer this intuitive question. Since providing a 

clear answer to a vague question is to no avail, the first step is to draw up a list of (still informaI) 

subquestions of interest: 
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• If we know how to solve the dis crete logarithm problem in lF~r x (B), 

do we necessarily know how to solve it in E? 

• If we know how to solve the dis crete logarithm problem in lF~r x (B), 

do we necessarily know how to solve it in lF~r ? 

• Is it possible to solve a dis crete logarithm problem in lF~r x (B) 

by solving one in E and one in lF~r in parallel? 

• Can some clever precomputations be made in order to speed up 

the extraction of a discrete logarithm in lF~r x (B)? 

This list is far from being exhaustive and of course, several auxiliary questions will arise 

along the way. Before we take a closer look at them, we conclude this section with an analogy 

that has proved to be useful in Chapter 2 for providing a mental image of the inner workings of 

a cryptographie technique. 

lndeed, the process of sequentially performing two discrete logarithms in two different struc­

tures, that arise naturally with this generalized Jacobian, has a simple conceptual interpretation 

in terms of padlocks and safes. With the ab ove notation, suppose that Eve wishes to recover 

Bob's private key n from his public key (j, Q), with the help of the publicly available data (k, P) 

and À. As observed above, the knowledge of n is equivalent to the knowledge of both no and 

nI, where 

no = logp Q and nI = log,\ (v;;:~ . j) . 

Notice that the first discrete logarithm is in the elliptic curve E while the second is in the finite 

field lF~r. Thus, Bob in fact possesses two private keys: no for the elliptic curve and nI for 

the finite field. Recall that with the simple model of a public-key cryptosystem described in 

Section 2.4.1, the combination used to open the safe played the role of the private key. Thus one 

possibility here would be to consider two safes, So and SI, with respective secret combinat ions 

no and nI. 

If the two safes were side by side, then Eve and her evil friend Ed could simultaneously try 

to open both safes at the same time, thus recovering no and nI is parallel. But as depicted 

in Figure 5.3, Eve's straightforward strategy is to first recover no from noP, and then use this 

value to discover her second challenge À nl , form which she gets nI. That suggests that the safe 

SI should instead be placed inside of So. 

This interpretation correctly suggests that the obvious strategy is to first open the outer safe, 

So, which protects the inner safe, SI' Aiso notice that this physical model does not rule out the 

possibility that there might exist a smarter way to proceed (for example, if the lock of the inner 
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Simple Model for a Public-key Cryptosystem with Two Safes 

Alice 

Put message m in safe SI 
and lock it 
Put SI within the safe So 
Lock So and send it to Bob 

: ............. : 

~
l i 

r:·I";-:-::';1 
~ ......................... . 

Bob 

Open So to 
recover the closed safe SI 
Unlock SI 
and retrieve m 
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safe is controlled by an electromagnet while the lock of the outer safe is purely mechanical, then 

cutting the current could unlock the inner safe before the outer safe is opened). But enough 

Hollywood scenarios, as we now need to seriously study this discrete logarithm. 

5.5.2 Reductions among Discrete Logarithm Problems 

In the previous section, we have seen that a natural approach to solve a discrete logarithm in 

lF~r x (B) is to extract a discrete logarithm in E followed by one in lF~r. We would now like to 

say more about the interrelation between these three problems. 

Loosely speaking, the goal we are after in this section is to show that any given algorithm 

that solves DLPs in lF~r x (B) may be used as a subroutine to solve DLPs in E as weB as in 

lF~r. That means that if anyone ever discovers an efficient way to solve DLPs in lF~r x (B), he 

or she could use it to efficiently solve instances of the DLP in E and lF~r, rendering obsolete all 

cryptographie proto cols based on the discrete logarithm problem in these groups. 

Before we start, it will be best to go over two important properties of discrete logarithms that 

will be used to prove the results of this section. For this purpose, let G be any (multiplicatively 

written) cyclic group of order n generated by an element g. 

We begin with the random self-reducible property of discrete logarithms, which is based on 

the equality 

(5.27) 

We say that an algorithm A has a non-negligible probability of solving the DLP in G (to the base 

g) if for an input h uniformly chosen at random in G, there is a non-negligible probability13 that 

A outputs logg h. But in practice, it is often desirable to learn the discrete logarithm of a specifie 

element s of the group. It is however possible that the probability that A yields a = logg s on 

input s equals zerol4 . The strategy is then to 'disguise' s using equation (5.27). Indeed, if we 

13That is, there is a polynomial p such that this probability is greater than l/p(logn). 
14For instance, the algorithm could solve ail instances for which the discrete logarithm is even, but fail otherwise. 
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uniformly pick an integer r in {a, 1, ... ,n - 1}, then s· gr = ga. gr = ga+r (Take note that if ris 

uniformly selected, then so is a + r). 80 on input s· gr, there is now a non-negligible probability 

that A yields the value of a + r. If so, then a can be recovered since r is known. Thus, A 

implies the existence of a randomized algorithm A' such that for any input s E G, there is a 

non-negligible probability that A' outputs logg s. 

s 
---+ 

rER{O,l, ... ,n-l} A' 

Figure 5.5: Constructing A' from A 

a 
---+ 

The second property concerns the choice of the generator of the group. Namely, if gl and 

g2 are distinct generators of G, then any algorithm Al that has a non-negligible probability 

of solving dis crete logarithms in G to the base gl can readily be turned into an algorithm A 2 

having non-negligible probability of solving discrete logarithms in G to the base g2. lndeed, let 

h = g2 be an instance of the DLP in G to be solved. By the random self-reducible property 

of dis crete logarithms, we can assume without loss of generality that for any s E G, Al has a 

non-negligible probability of producing 10ggl s. 80 first invoke Al on input g2 in order to get, 

with non-negligible probability, an integer b such that g2 = gr and a < b < n. 8ince gl and 

g2 are both generators, it follows that gcd (n, b) = 1 (see Fact (5.26 on page 147)), and so b is 

an invertible element of (Z InZ)*. Then compute an integer c such that bc == 1 (mod n) and 

a < c < n using, for instance, the extended Euclidean algorithm [MvOV96, Algorithm 2.107]. 

Then, 
c (b) C bc g2 = gl = gl = gl· 

Next, we can obtain with non-negligible probability an integer d such that h = gr and a ~ d < n 

by invoking Al on input h. Finally, 

and so a = cd mod n, which completes the argument. 

The link between the DLP in the generalized Jacobian and in the elliptic curve appearing to 

be simple, we might want to analyze it first. We therefore want to show: 

Lemma 5.15 Let E be a smooth elliptic curve over IFq , BEE (lFq ) be a point of prime order 

l, m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero points of 
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Â 2 
92 [2J b 

---? ---? 

h a=b- 1 dmodn 
---? ---? 

h [2J d 
---? ---? 

Figure 5.6: Constructing Â 2 from Âl 

E (Fqr) such that F~r x (B) is a cyclic subgroup of J m • Then, the discrete logarithm problem in 

F~r x (B) is at least as hard as the discrete logarithm problem in (B) ç E (Fq). 

Proof. Let ÂJm be an algorithm that has a non-negligible probability of solving discrete loga­

rithms in F~r x (B) to the base (k, P), where (k, P) is a generator of F~r x (B). We wish to show 

that there is an algorithm Â E having a non-negligible probability of solving discrete logarithms 

in (B) to the base P. 80 let Q = noP be an instance of the discrete logarithm problem in (B), 

where 0 :s:: no < l. By the random self-reducible property of discrete logarithms, we can assume 

without loss of generality that given any element of F~r x (B), its discrete logarithm (to the base 

(k, P)) has a non-negligible probability of being obtained with Â Jm • Now, for a randomly chosen 

element j E F~r, invoke Â Jm on input (j, Q). With non-negligible probability, a non-negative 

integer n such that n(k, P) = (j, Q) will be obtained, yielding no = n mod l. 0 

Q 
---? 

n 
---? 

no=nmod! 
---? 

Figure 5.7: Converting an instance of the DLP in (B) into one in F~r x (B) 

Next we want to show a similar reduction between the discrete logarithm problem in F~r x (B) 

and in F~r. Notice how this proof differs from the previous one, even though the same underlying 

technique is used in both proofs. 

Lemma 5.16 Let E be a smooth elliptic curve over Fq, BEE (Fq) be a point of prime order 

l, and m = (M) + (N) be a B-unrelated modulus, where M and N are distinct nonzero points 

of E (F qr) su ch that F~r x (B) is a cyclic subgroup of Jm • Then, the discrete logarithm problem 

in F~r x (B) is at least as hard as the discrete logarithm problem in F~r. 
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Proof. Let AJm be an algorithm that has a non-negligible probability of solving discrete loga­

rithms in lF~r x (B) to the base (k, P), where (k, P) is a generator of lF~r x (B). We want to 

show the existence of an algorithm AI'" having a non-negligible probability of solving discrete qr 

logarithms in lF~r to the base g, where g is a generator of lF~r. Thus let h = gn be an instance 

of the discrete logarithm problem in lF~r, with 0 :::; n < qr - 1. As usual, we can assume without 

loss of generality that given any element of lF~r x (B), its discrete logarithm (to the base (k, P)) 

has a non-negligible probability of being obtained with A Jm (by the random self-reducible prop­

erty). Invoking AJm twice, on inputs (g, 0) and (h, 0), will yield with non-negligible probability 

integers a and b satisfying (g,O) = a(k,P), (h,O) = b(k,P) and 0:::; a,b < (qr -l)l. Notice 

that l must divide both a and b, so there are integers C and d such that a = C· l, b = d· land 

o :::; c, d < (qr - 1). 

If we now let l (k, P) = (À, 0), then À has to be a generator of lF~r by (5.25). We then have 

g = À
C since 

(g,O) =a(k,P) =c·l(k,P) =c(À,O) = (À C
, 0). 

Moreover, both g and À generates lF~r, from which follows that gcd(c, qr - 1) = 1 (by (5.26)). 

Lastly, by property 4 of Corollary 5.6, we have 

and we finally get n = c-1dmod(qr -1). o 

AlF' 

~ 
qr 

(g,o) a 
----7 ----7 

h n=c-1dmod(qr -1) 
----7 ----7 

(h,O) 
1 AJm 1 

b 
----7 ----7 

Figure 5.8: Converting an instance of the DLP in lF~r into two instances in lF~r X (B) 

From a practical point of view, the two lemmas of this section imply that even though 

generalized Jacobians are newcomers in cryptography, we already know that solving their DLP 

cannot be easier than solving discrete logarithms in two of the most studied groups used in 

DL-based cryptography today. 



5.5. THE DISCRETE LOGARITHM PROBLEM 155 

5.5.3 Precomputations and Parallelization 

Now that we have strong evidence that the discrete logarithm problem in the generalized Ja­

cobians we consider is a computationally difficult problem, we further investigate the natural 

solution proposed in Section 5.5.1. Recall that Lemma 5.14 showed that an instance of the 

DLP in lF~r x (B) can be solved by sequentially extracting a discrete logarithm in E followed 

by one in lF~r. So the next step is to try to determine under which circumstances the DLP in 

lF~r x (B) could be performed any faster. 

As usual, let (j, Q) = n(k, P) be an instance of the DLP in lF~r x (B) to be solved, where 

0:::; n < (qT - 1) l. By Lemma 5.8, we know that the scalar multiple n(k, P) can be computed 

as 

where we keep the notation n = nI . l + no, 0 :::; no < l, 0 :::; nI < qT - 1 as well as l(k, P) = 

(À, 0) and no(k, P) = (vno ' noP). Notice that the sequential solution of Section 5.5.1 performs 

computations involving v no . ), nI only once v no is known, which can be pictured as follows. 

noP 
l 

no 
l 

V no . ),n l V no 

l 
),n l 

Figure 5.9: A sequential solution to the DLP in lF~r x (B) 

We could instead attempt to extract a discrete logarithm in lF~r in parallel with the one in 

the elliptic curve. On one hand, using the identity (j,Q) = n(k,P) = (vno ' ),n\noP), one can 

start to solve Q = noP for no by extracting a discrete logarithm in E. 

In the meantime, we can also start to extract a discrete logarithm in the finite field as follows. 

This time, let 

n2 = nmod(qT -1). 

Then compute l (j, Q) which will equal, say, (j', 0). We now have: 

(j', 0) = l (j, Q) = l· n (k,P) = n·l (k,P) = n()" 0) = (),n, 0) = (),n2, 0). 
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Since j'and À are known, we can then solve the following DLP in lF'~r in order to get n2: 

Remark that this can be done in parallel with the computation of no. 

Finally, try to combine no and n2 using the Chinese remainder theorem in order to recover n. 

However, we must have gcd (l, qr - 1) = 1 in order to fully recover n with this method. Notice 

the similarity with the Pohlig-Hellman method. 

Let's now see what the situation is when l 1 qr - 1. Thus, the order of our generalized 

Jacobian lF'~r x (B) is of the form d· la, where CV ~ 2 and l t d. For cryptographie purposes, 

recall that we can think of l as being a 160-bit prime and qr to have roughly 1024 bits. 

Now just as before, let (j, Q) = n (k, P) be the instance of the discrete logarithm problem 

that we wish to solve. In order to be able to use the Chinese remainder theorem to recover n in 

this case, we will need to know 

{
nO! := nmodla 

nd:= nmodd 

This can be achieved in several steps as follows. 

1. Let's begin with the easy part. That is, the computation of nd. Start by computing 

la (j, Q) which will equal, say, (j',0). Then we get 

(j',0) = lŒ (j, Q) = lan (k, P) = nla- 1 ·l (k, P) 

= nla - 1 (À, 0) = (( ÀZ<>-l) n, 0) = (( ÀZ<>-l) nd ,0) , 

which means that 
., (Z<>-l)nd 

J = À , 

where j'and ÀZ<>-l are known. It thus suffices to solve a DLP in lF'~r in order to recover 

nd· 

2. Next we want to determine n Œ • To do so, first let no := n mod l (= nO! mod l). To get no, 

we proceed the obvious way: 

(j,Q) = n(k,P) = (*,nP) = (*,noP) , 

and we thus have Q = noP, which requires to solve a DLP in the elliptic curve. Notice 

that we have now retrieved all the information about n that Q contained. That is, we 

should expect that all other discrete logs that we have to solve from this point on will be 

in the finite field IF'~, .. Very weIl. 
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3. Then we will determine 
n-no 

nI := --l- modl. 

This is where it gets interesting. lndeed, rewrite n as no + nll + ml2 for sorne (unknown) 

integer m and compute dla- 2 (j, Q) to get, say, (j", dla- 2Q). Now remark that 

(J", dlo:- 2Q) = dlo:-2 (j, Q) = dlo:- 2 . n (k, P) = dl'''-2 (no + nll + ml2) (k, P) 

= dla- 2no (k, P) + n Idla- 2 . l (k, P) + m· dla (k, P) 

= dla- 2 (vno ' noP) + n I dl'Ji-2 (>\,0) + m (1, 0) 

= ((vno )dl<>-2 . /.1, dl Œ
-

2Q) + (( >.dl<>-2fl ,0) + (1,0) 

= ((v
no

)dl<>-2 . /.1. (>.dl<>-2) nI ,dla-2Q) , 

where /.1 is sim ply the product of the 2-cocycles from repeated applications of the group 

law. Notice that /.1 can be computed directly from Q and dla - 2 . It therefore follows that 

." J = (>.dl<>-2)n l 

( )
dl<> 2 , 

/.1. V no 

where the only unknown is nI. Thus, nI can be obtained by solving a DLP in lF~r. 

4. If a = 2, then we are done since na = no + nll. Otherwise, proceed to compute n2 such 

that 
n - no - nll 

n2 := l2 mod l, 

and then repeat this process for n3, n4, ... , na-I. Finally get na = no + nll + n2l2 + ... + 
na_I lŒ - I . 

5. At last, combine nd and na using the Chinese remainder theorem in order to get n. 

The remarkable property of this method is that 

The value of V no is used to compute nI. 

As a result, this still suggests that the value of no, obtained by solving a DLP in E, should be 

known prior to the computation of nI. In other words, to compute n Œ , the discrete logarithm 

on the elliptic curve should be performed first, and then be followed by discrete logarithms in 

lF~r. Reiterate that this sequence of operations is similar to the Pohlig-Hellman method. Now to 

the best of our knowledge, there is no version of this method that allows to retrieve nI without 

computing no first. Thus the best method we know in this case involves to sequentially extract 

a discrete logarithm in E followed by at least one in lF~r. 
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Those familiar with pairing-based cryptography will have noticed that the problem of choos­

ing a smooth elliptie curve E over lFq such that #E (lFq ) = l· h (with h small) and II qr - 1 is 

in fact identical to the problem of generating suitable curves for pairing-based applications. As 

opposed to the usual ECC, generating curves at random until a suitable one is found no longer 

is an efficient method in this case [BK98]. Fortunately, the frenzy surrounding pairing-based 

crypto stimulated the search for efficient curve generation algorithms. We now know several 

techniques allowing to efficiently choose suitable curves for various values of r of cryptographie 

interest. See [MNTOl, BS04, BW03, BN05, DEM05] for details. 

The informaI argument that "the inner workings of the Pohlig-Hellman method suggests 

that we must solve a DLP in E, followed by (at least) one in lF~r" is of course far from being 

a satisfactory answer. lndeed, there may be other techniques allowing to solve everything in 

parallel... 

We thus now explore other avenues that could lead to a general parallel solution. We start 

by considering the computing sequence presented in Figure 5.10. 

E 

lino' >..n, noP 
! ! 

(log>. lino + nd mod (qr - 1) no 
! 

lino lino 

! 
log>. lino 

! 
nI 

Figure '5.10: An alternate solution to the DLP in lF~r x (BI 

At first sight, this method appears to be even worse than the solution of Figure 5.9 sinee it 

first performs a discrete logarithm in E and one in lF~r in parallel, followed by a second discrete 

logarithm in lF~r. However, suppose that the values of log>. lino have been precomputed for aIl 

possible values of lino' That is, we possess a table T listing the possible lino along with their 

respective discrete logarithms to the base >... Then as soon as the value of lino is known, a 

simple table look-up would yield log>. lino' and thus nI. Granted that these precomputations 

have been performed, we would then only need to solve a DLP in E and in lF~r in parallei. The 

precomputation time will then determine if this strategy can be reaiistically considered. 

During the precomputation phase, a discrete logarithm in lF~r has to be computed for each 
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of the possible value of V no . Thus if we let f be the set of aIl possible vno , that is 

then 1 ~ #f ~ l represents the number of entries in T. For instance, if f is of exponential 

size, then the precomputation time will be exponential as weIl, and this strategy would then be 

impractical. Thus the next step is to study the quantity #f, but before we do so, we note a few 

observations conserning f. 

Remark 5.17 Even irIF~r x (BI is cyclic, it is still possible to have Vi = Vj with i =1- j. Indeed, 

in our toy example of Section 5.3.3, we had V3 = V4 = 4. 

Remark 5.18 The set f, as well as its size, does not only depend on the choice of the group 

lF~r x (BI, but also on the specific genemtor chosen. In the example of Section 5.3.3, we consid­

ered the genemlized Jacobian of E : y2 = x 3 +x+4 over 1F7 with respect to m = ((0,5)) + ((5,1)), 

and worked in the subgroup IF:; x (BI of order 30 genemted by (k,B) = (1,(6,3)). For that 

genemtor, we already possess ail the information at hand to form the corresponding set f = 
{1,2,4}. Another possible genemtor for this subgroup is (k',B') = 23(k,B) = (2,(4,4)) sinee 

gcd(30,23) = 1 (see fact 5.26). Using the precomputed List of multiples of (k, B) provided in 

Table 5.1, it is a simple matter to get that 

O(k',B') = (1,0), 
l(k', B') = 23(k, B) = (2, (4,4)), 
2(k', B') = 16(k, B) = (6, (6, 3)), 
3(k', B') = 9(k, B) = (5, (6,4)), 
4(k', B') = 2(k, B) = (2, (4,3)). 

Thus, f' = {l, 2, 5, 6} is the set associated to (k', B'). Henee, we have that f ç f', f ;2 f' and 

#f =1- #f', even if (k, B) and (k', B') genemte the same group. 

Remark 5.19 Lastly, 'notiee that f is simply a set, and is not neeessarily a subgroup of lF~r 

(and so #f does not have to divide qr - 1). Indeed, we Just saw that f' = {l, 2, 5, 6} and thus 

f' cannot be a subgroup ofIF7 sinee #f' f #1F7. 

The Classical Occupancy Problem 

In order to get a first idea on the size of f, a good place to start is to look at sorne empirical 

data. Using the computer algebra system MAGMA, six thousand generalized Jacobians with 

r = 1, q prime such that 214 < q < 220 and underlying elliptic curves with cofactor h = 2 were 

pseudo-randomly generated. For the time being, we leave the details of the implementation 

aside sinee we simply want to get an idea of the relative size of f at this point15 . For each 

15More details concerning the implementation can be found on page 165. 
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generalized Jacobian, the percent age 100· #r Il, representing the proportion of the number of 

distinct vno to the maximal size16 

Note that we indeed have l :::; q - 1 since by Hasse's Theorem (see Theorem 3.63), l = 

#E(IF q) Ih :::; (q + 1 + 2ytq) /2 :::; q - 1.00000 00000 of r, was tabulated. The histogram of 

Figure 5.11 was obtained. 

2000 
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600 

4,00 

200 
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% 

Figure 5.11: A first look at the relative size of r 

The obvious observation is that the mean value on this graphic is about 78,7%. So roughly 

speaking, the size of r for a typical generalized Jacobian in this sample is at least 3l14: this 

would mean that the precomputation step requires the extraction of 3l 14 discrete logarithms in 

lF~r, which is clearly out of reach. This first impression being really positive, we now need to 

take a closer look at the behavior of 100 . #r Il. 
Such a nice bell shape most probably means that more can be said about the expected value 

of the quantity 100· #r Il. In order to see how we could model this problem, we go back to the 

very definition of the v no 's. We know that for every no E {D,l, ... ,l - 1}, the value of V no E lF~r 

is obtained by evaluating no (k, P) = (vno ' noP). So each possible no is assigned to one of qr - 1 

possible values. Thus, each no could be represented by a tennis ball that is thrown into one of 

the possible qr - 1 boxes. Once each of the l balls have been placed into their respective box, 

we simply need to count the number of nonempty boxes to get #r. 
Balls and urns are to probability theory what padlocks and safes are to cryptography. In 

addition of being great didactic tools, these physical models allow us to keep in mind intuitive 

properties while helping us to make the connection between seemingly unrelated problems. Thus 
16 
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lj""" ,<, 

• 
• • • qT-l " 

Figure 5.12: The Classieal Oeeupaney Problem 

reinterpreting our really specifie problem in terms of balls and boxes might help us to have a 

more global perspective on the behavior of the generalized Jaeobians we consider. 

Perhaps the most natural experiment we can think of in terms of balls and boxes would be 

to randomly throw l balls into qr - 1 boxes. That is, the l balls are randomly and independently 

distributed among the qr - 1 equally probable boxes. At the end of this proeess, let ~ be the 

set of nonempty boxes that were obtained. 

We have then produced, with the pseudo-random number generator of MAGMA, a sample of 

six thousand pairs of r and ~ in order to compare the behavior of genuine generalized Jaeobians 

with random assignment of balls into boxes. To generate eaeh pair, a pseudo-random generalized 

Jaeobian (with r = 1, q prime sueh that 214 < q < 220 and underlying elliptic eurve of eofactor 

h = 2) was first generated, and for the eorresponding values of land q - 1, the quantities #r 
and #~ were tabulated. The results are shown in the graphie below. 
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Figure 5.13: Comparing the relative size of r and ~ 
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Looking at this histogram, it appears that there is a strong correlation between these two sets 

of data. Indeed, the mean of both samples equals 78,69%, while the sample variance obtained 

is 0,038 for data obtained from generalized Jacobians, and 0,029 for pseudo-random numbers. 

It would therefore be useful to know more about the simplified experiment where each ball is 

mndomly thrown. 

Afterall, the idea of placing balls into boxes is quite natural, so it has certainly been consid­

ered before. We are thus looking for information on a discrete distribution for which our own 

description is in terms of tennis balls and shoe boxes17 ... In the first volume of An Introduction 

to Probability Theory and its Applications [Fe168], William Feller does provide the terminology 

we are looking for. Indeed, the Classical Occupancy Problem refers to the experiment where 

B > 0 balls are distributed among C > 1 cens such that each of the CB possible outcome has 

probability (ljC)B. 

Interestingly enough, this urn model arises in a wide variety of applications, such as the 

theory of photographie emulsions, irradiation in biology, cosmic ray experiments and even gene 

distributions [Fe168, Section 1.2]. As a consequence, various results concerning this problem are 

available in the literature.. Two other general references for the Classical Occupancy Problem 

are the following books by Johnson and Kotz [JK69, JK77]. 

For the application we have in mind, we are mainly concerned with the number X of occupied 

(i.e. nonempty) cens. First, the probability that exactly t cens (1 :::; t:::; min(B,C)) are taken is 

given by 

which can be obtained using Boole's formula [JK69, Sec. 1.4], or simply by inspection. 

Closed expressions for the expected value and variance can also be found in [JK69, Section 

10.5]: 

E[X] C (1 _ (1 _ ~ ) B) , and (5.28) 

Var [X] C(I_~)B +C(C_l)(I_~)B -C2(1-~rB 

Example 5.20 If we quickly look at a smalt example, say B = 10 and C = 20, the expected 

number 01 nonempty ceUs is 8, 03 while the variance equals 1,08. visualty, the probability lunction 

is as depicted in Figure 5.14. 

17There will always be situations where Google will be helpless, and that was one of them. Luckily, hum ans 
have a lot more imagination, so wh en asked the question "You know the exper'iment of throwing balls into boxes .. , 
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Pr(X=t) 

2 3456789 
Number t of nonempty boxe~ 

10 

t 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

163 

Pr (X = t) 
1,95 x 10 -1~ 
1,90 x 1O-lj 
6,23 x 10 -0 

3,87 x 10-4 

0,00773 
0,0622 
0,224 
0,372 
0,268 
0,0655 

Figure 5.14: Probability function for the occupancy distribution with 8 = 10 and C = 20. 

We are here interested in the relative size Y =100 . X/8 of the set Do. In particular, we 

would like to say more about the expected value and variance of Y subject to the constraints 

8 = l = #E(IFq)/h and C = qr -1 when q is relatively large18 . 

To do so, we will treat the case r = 1 and r > 1 separately since they will turn out to have 

quite different behaviors. In fact, it is already possible to intuitively see why we should make 

this distinction. If r > 1, then the number of boxes is at least q2 - 1 while the number of balls 

can never exceed q + 1 + 2y'(i by Hasse's theorem (c.f. Theorem 3.63). Since the number of boxes 

is rather large compared to the amount of balls, we thus suspect that the number of nonempty 

boxes should be really close to 8. On the other hand, if r = 1, then the number of balls is at 

least (q + 1 - 2y'(i) /h while the number of boxes equals q - 1, and thus these two quantities 

are now of the same arder of magnitude. In that case, the experimental data for h = 2 shawn 

in Figure 5.13 suggest that for a given h, the expected quantity of nonempty boxes should be a 

certain fraction of 8 yet to be determined. We are now ready to turn these intuitive observations 

into factual statements. 

We begin with the case r = 1, and hence we have 8 = l = #E(IFq)/h and C = q - l. 

Also recall that we consider cofactors h 2': 2 when r = 1 since aIl moduli would otherwise be 

B-related. So as previously pointed out, this implies that 8 ::; C. We first turn our attention to 

the expected value of Y. Since 100/8 is a constant, it follows that E[Y] = 100· E[X]/8. Using 

the lower and upper bound for 8 provided by Hasse's theorem, 

q + 1 - 2y'(i < 8 < q + 1 + 2y'(i 
h - - ---h--'--' 

Does it have a name?", chances are someone will eventually remember where to look for the answer. l wish to 
thank Jose Correa of the McGill Statistical Consulting Service for suggesting to look at Feller's book [FeI68]. 

18That is, q has a minimum of 160 bits (and so is at least 1.5 x 1048 ). 
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we therefore get that 

100h(q - 1) (1 _ (1 __ 1_) q+l;;:2
il

) < E[Y] < 100h(q - 1) (1 _ (1 __ 1_) q+lt
20l

) . 
q + 1 + 2y0 q - 1 - - q + 1 - 2y0 q - 1 

Evaluating the limit of this lower and upper bound as q tends to infinity, we obtain that they 

both converge to the same quantity: 

lim 100h(q -1) (1- (1- _1_) q+l!20i) = 100h (1- _1 ). 
q->oo q + 1 ± 2y0 q - 1 {Ye 

Thus by the squeeze (or sandwich) theorem [BS82, Thm 3.2.7] of elementary real analysis, it 

follows that 

lim E[Y] = 100h (1 - h~)' 
q--->oo ye 

The convergence of E[Y] is illustrated in Figure 5.15 for r = 1, h = 2 and three particular (real) 

values of 1. 
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Figure 5.15: On the convergence of E[Y] for three particular values of 1 

We therefore have that 

lim E[Y] = { 
q->oo 

78,6939% if h = 2, 
85, 0406% if h = 3, 
88,4797% if h = 4. 

8000 
q 
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That is, for q large enough, we should expect for h = 2, 3 and 4 to have respectively 0,79· l, 

0,85 . land 0,88 . l elements in ~. The next step is then to compare these results with samples 

obtained from true generalized Jacobians. 

But before we do so, and for the sake of completeness, we now describe the procedure used 

to generate aIl the samples of this section. Given positive integers T, h, LB and UB, each 

generalized Jacobian was pseudo-randomly chosen as follows. First, a random19 prime p such 

that 2LB < p < 2u B is first fixed. Then, random a, b E lF pare generated until the curve 

E : y2 = x3 + ax + b is nonsingular and #E(lFp)/h is a prime integer20 • A random point 

B E E(lFp) is then selected until it has order #E(lFp)/h, and the basepoint is set to (k, B) for 

a randomly chosen k E lF;r. Notice that we did not require that the basepoint generates aIl 

of lF;r x (B) in order to remain as general as possible. Next, M E E(lF pr) is randomly chosen 

until M ~ (B), which is followed by a random choice of N E E(lFpr) that fulfills N =1= M and 

N ~ (B). FinaIly, we set m = (M) + (N). Then starts the determination of r: from Vo = 1, the 

elements VI, V2, ... , Vl-l are recursively computed using the relation Vi+! = k· Vi' cm(B,iB) 

(0 S; i < l - 1), which easily follows from the group law algorithm given in Proposition 5.4 : 

(Vi+l, (i + I)B) (i + l)(k, B) = (k, B) + i (k, B) 

(k, B) + (Vi, iB) = (k· Vi' cm(B, iB), (i + I)B). 

In paraIlel, each time a Vi is computed, a random element of lF;r is also generated and included 

in the separate set ~, which therefore allows to compare this generalized Jacobian with the 

Classical Occupancy Problem where B = land C = pT - 1. 

The results of our simulations for T = 1 are shown in Table 5.2, where each entry corresponds 

to the mean of a sample of size two thousand. 

h = 2 Generalized Jacobians 
Pseudo-Random 

h = 3 Generalized Jacobians 
Pseudo-Random 

h = 4 Generalized Jacobians 
Pseudo-Random 

78,6859 
78,6964 
85,0352 
85,0346 
88,4724 
88,4629 

78,6939 
78,6936 
85,0405 
85,0462 
88,4779 
88,4811 

78,6920 
78,6936 
85,0391 
85,0451 
88,4818 
88,4795 

Table 5.2: Sample means of the relative size of r and ~ for T = 1 and sample size two thousand 

19Whenever we refer to a 'random choice' of a parameter, it is understood that we used the buit-in MAGMA 

function that returns a pseudo-random element from the chosen set. For instance, Random(E) returns a pseudo­
random point on the elliptic curve E. 

20 Notice that we did not use the complex multiplication method (CM method) to generate the curves. 
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In the light of these empirical results, we now have a better idea of the accuracy of the 

theoretical predictions inspired by the Classical Occupancy Problem. As the ideal companion 

to Table 5.2 is Figure 5.16, which displays three histograms, one for each cofactor, obtained for 

generalized Jacobians with 218 < q < 220 . 

A quick glance at the graphies of Figure 5.16 reveals that the majority of the results fall 

within ±0,5% of the mean, and thus that the variance is relatively small for these samples. 80 

we now return to the Classical Occupancy Problem in order to study the behavior of Va~[Y]. 

Recall that Y =100 . XIB = 100· Xll and that a closed expression for the variance of X was 

given byequation (5.28). Thus, Var [Y] = (100jl)2 Var [X] and so 

Var [Y] 
(100h)2(q - 1) 

(#E(lFq))2 ((
1- _1_) #E~Fq) + (q _ 2) (1- _2_) #Et

q

) 

q-l q-l 

By Hasse's theorem (Theorem 3.63), we know that Var[Y] is bounded below by 

which converges to zero as q tends to infinity. 8imilarly, an upper bound for Var [Y] is given by 

which also tends to zero when q goes to infinity. It thus follows that 

lim Var [Y] = O. 
q--->oo 

Actually, it is possible to graphically see how the variance decreases as q augments for genuine 

generalized Jacobians. Figure 5.17 shows the results of our simulations for r = 1, h = 2, and 

three intervals for q, where each sample is of size two thousand. 
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Figure 5.16: Relative size of r for r = 1, 218 < q < 220 and sample size two thousand 
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We of course also include Table 5.3 showing the variances21 obtained for each sample, both for 

generalized Jacobians and for the pseudo-random case that simulates the Classical Occupancy 

Problem. 

214 < q < 216 216 < q < 218 218 < q < 220 

h=2 Generalized Jacobians 0,08480 0,02452 0,00629 
Pseudo-Random 0,06379 0,01788 0,00437 

h=3 Generalized Jacobians 0,09912 0,02389 0,00635 
Pseudo-Random 0,08686 0,02089 0,00546 

h=4 Generalized Jacobians 0,10464 0,02464 0,00669 
Pseudo-Random 0,10176 0,02471 0,00594 

Table 5.3: Sample variances of the relative size of r and ~ for r = 1 and sample size two 
thousand 

At this point, we know that our experimental results for generalized Jacobians agree fairly 

well with the Classical Occupancy Problem, both for the mean and variance. However, we only 

have a really vague ide a of 'how fast' we should expect the variance to decrease towards zero. 

For illustrative purposes, the graph of Var [Y], as a function of q, for the case r = 1, h = 2 and 

#E(lFq) = q + 1- 2vq, q + 1 and q + 1 + 2vq, is presented in Figure 5.18. 

In order to study the rate of convergence of Var[Y], we will next consider the quantity 

q . Var[Y]. Using standard methods of real analysis, one can show that lim q . Var [Y] exists 
q--->oo 

and is equal to a constant. More precisely, we have that 

1Q4h (he1/h _ h -1) {2188'46 if h = 2, 
Lh = l!.m q . Var [Y] = 2/h = 2877,76 if h = 3, 

q 00 e 3301,99 if h = 4. 

lndeed, when evaluating this limit, the only part that is a little trickier is 

. (( 2 )#E(JFq)/h ( 1 )2#E(JFq)/h) -1 
hm q 1--- - 1--- =--. 

q--->oo q - 1 q - 1 he2/ h 

So when q is of cryptographie size, we expect that for h = 2, 3 or 4, 

Lh 212 
-147 

Var [Y] ~ q < 2159 = 2 . 

These results can be interpreted as follows. By Chebyshev's inequality [Fel68, Section IX.6], 

we know that for any real number 15 > 0, 

Pr (IY - E [Y]I ~ 15) ::::; VarJY]. 
15 

21 Recall that the sample variance of a finite set {x!, ... ,Xn} of real numbers is given by n:'1 2:~=1 (Xi - x)2, 

where X = ~ 2:~=1 Xi' 
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Figure 5.18: On the convergence of Var[Y] for three particular values of 1 

So for instance, if we allow a deviation of only 1 % from the mean, we should have that 

Pr (IY - E [Y] 1 :::::: 1) ::::: Var [Y] ~ 2-147 

when q has (at least) 160 bits. Therefore, even if the upper bound given by Chebyshev's 

inequality might not be really tight22 , it is still extremely unlikely that ~ contains less than, 

say, 31/4 elements. 

Next we consider the case r > 1, for which we have B = 1 = #E('Fq)/h balls and C = qr - 1 

cells. We thus have the same number of balls as before, except that the number of boxes has 

now increased, which has made us previously remark that the expected number of nonempty 

boxes should be even larger in this case. lndeed, from equation (5.28), we get that 

[Y] = 100h (qr - 1) 
E #E('Fq) 

and thus that E[Y] is bounded below by 

100h. q . (1 - ~) . qr-1 1 _ (1 __ 1_) , ( ~) 
q + 1 + 2vq qr qr - 1 

(5.29) 

22 As it applies to any random variable for which the mean and variance exist and are finite. 
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and above by 

100h. q . (1-~) . qr-l 1 _ (1- _1_) h • ( ~) 
q + 1 - 2y'q qr qr - 1 

(5.30) 

When evaluating the limits of (5.29) and (5.30) as q --+ 00, the only term that requires a little 

work is to show that 

( ~) . r-l 1 h 1 
hm q 1 - (1 --) = -, 

q->oo qr - 1 h 

which can be done using a binomial expansion, for instance. As a result, both the lower and 

upper bound of E[Y] converge to 100, and we therefore conclude that 

lim E[Y] = 100. 
q->oo 

(5.31) 

80 as soon as r is at least two and q is large, the relative size of ~ should be near 100%. In other 

words, the number of nonempty boxes should be close to 8, which agrees with our intuitive 

deductions previously made. 

We could not hope for a better result about the Classical Occupancy Problem. Now is the 

time to put generalized Jacobians to the test: twelve samples, each containing two thousand 

generalized Jacobians with r = 2, have been generated23 to cover cofactors up to four and three 

ranges for the prime q. Before we take a close look at the experimental means we obtained, a 

quick glance at Figure 5.19 reveals that our histograms for generalized Jacobians with r = 2 

no longer have a symmetric 'bell shape' (as in the case r = 1). Instead, all the weight is now 

concentrated to the right, near the maximum value of 100% that can be observed. Notice that 

this behavior agrees with equation (5.31) obtained for the Classical Occupancy Problem. Now, 

the details of the comparative results obtained for generalized Jacobians and for simulations of 

the Classical Occupancy Problem are shown in Table 5.4, where each entry is the mean of a 

sample of size two thousand with r = 2. 

These amazingly good results imply, among other things, that all data observed in these 

samples must be strictly greater that 97%. Indeed, if even a single observation equals 97%, then 

the sam pIe mean would be at most 

97% + 1999·100% = 99 9985o/c 
2000 ,o. 

This thus indicates that we should expect the variance to be small in this case as weIl. In fact, 

if we once more go back to the Classical Occupancy Problem, we get the following surprisingly 

23Using the same method as for r = 1 (see p.165). 



172 CHAPTER5. A CONCRETE CRYPTOSYSTEM 

2000 

1800 

1600 

1400 

>. 

" 1200 
.:: 

~ 
1000 

li: 
800 

600 Cofactor 1 
400 

200 

0 i ~ ~ '" g 
f!l 0> 

i '" 0 "'. "'. i ~. m gf '" '" ~ 

% 
2000 

tBOO 

1600 

1400 

>. 1200 <.> 

ê 1000 6-
'" 800 
li: 

600 Cofactor 2 
400 

200 

0 i ~ ~ 
., 

§ ~ '" 
~~ m m 

gf gf of of o' 
co 0> 0 

~ 

% 
2000 

1800 

1600 

1400 

è 1200 
.:: 
'" 1000 

" 0' 

'" li: 
800 

600 Cofactor 3 
400 

200 

0 

~ 1 ~ ~ ~~ !. '" "!. :;:. i '" m m' 0> ~ 

% 
2000 

1800 

1600 

1400 

è 1200 
.:: 
'" 1000 6-
" li: 

800 

600 Cofactor 4 
400 

200 

~ 
.. 

~ ~ ~ 
0 

1ll 0 

'" 0 

~ 0>. g~ 0>. ~ ~. 
'" 0> 

0> '" 0> '" 0 
~ 

% 

Figure 5.19: Relative size of r for r = 2, 218 < q < 220 and sample size two thousand 
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214 < q < 216 216 < q < 218 218 < q < 220 

h=1 Generalized Jacobians 99,9986 99,9996 99,9999 
Pseudo-Random 99,9986 99,9996 99,9999 

h=2 Generalized Jacobians 99,9994 99,9998 100,0000 
Pseudo-Random 99,9993 99,9998 100,0000 

h=3 Generalized Jacobians 99,9994 99,9999 100,0000 
Pseudo-Random 99,9995 99,9999 100,0000 

h=4 Generalized Jacobians 99,9997 99,9999 100,0000 
Pseudo-Random 99,9996 99,9999 100,0000 

Table 5.4: Sample means of the relative size of r and ~ for r = 2 and sample size two thousand 

simple result: 

j2.~ l . Var [Y] = {50
0
00 ~i ~ : ~: 

where k 2: 0 is an integer. Once more, this result can be shown using standard arguments of 

real analysis (mostly involving binomial expansions, geometric series and repeated applications 

of the squeeze theorem). So when q is large, we expect that 

Var[YJ >:::;; 5000. 
qr 

Our experimental results once more concur with this theoretical prediction. Table 5.5 summa­

rizes the sample variances obtained for various cofactors and ranges for q. 

214 < q < 216 216 < q < 218 218 < q < 220 

h=1 Generalized Jacobians 5,1396 x 10 6 3,2279 x 10 7 2,1332 x 10 8 

Pseudo-Random 4, 7238 x 10-6 3,4185 X 10-7 2, 1949 X 10-8 

h=2 Generalized Jacobians 3,7712 x 10 fi 2,4373 x 10 7 1,9473 x 10 8 

Pseudo-Random 4,3389 x 10-6 3,0330 X 10-7 1,6301 X 10-8 

h=3 Generalized Jacobians 5,9096 x 10 fi 2,5674 x 10 7 1,8891 x 10 8 

Pseudo-Random 4,4577 x 10-6 3,3428 X 10-7 1,8364 X 10-8 

h=4 Generalized Jacobians 3,9478 x 10 fi 3,1000 x 10 7 2,0218 x 10 8 

Pseudo-Random 5,8625 x 10-6 2,5969 X 10-7 1, 9297 X 10-8 

Table 5.5: Sample variances of the relative size of r and ~ for r = 2 and sam pIe size two 
thousand 

It is also possible to visualize how the variance diminishes as q increases with the help of the 

frequency histograms of these samples. The results of the simulations for generalized Jacobians 

associated with r = 2 and h = 2 are shown in Figure 5.20. 

To wrap-up this (rather long) section, it might not be a bad idea to recapitulate and put in 

perspective the various results and observations we made. First recall that our main objective 
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Figure 5.20: Relative size of r for r = 2, h = 2 and sample size two thousand 
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was to investigate whether it seemed possible to practically precompute a table T of the possible 

I/no and corresponding log>. I/no. If so, we saw how the DLP in lF~r x (B) could then be solved 

by performing, in parallel, a discrete logarithm in lF~r and one in E, followed by a table look-up 

in T. That thus led us to study the size of the set f = {1/0, 1/1, 1/2, ... , I/l-r} ç lF~r. Of course, 

the larger #f is, the longer it takes to compute T. 

A natural way of determining #f is to successively compute and store aIl I/i (0 :::; i < l) 

using the recurrence relation 

{ 
1/0 = 1, 
I/i+! = k . I/i . cm(B, iB). 

Thus using this method, l elements of lF~r need to be computed and stored. Clearly, this 

can't be done for parameters that we would use in practice for cryptographic applications, as 

l = #E('Fq)lh would then have roughly 160 bits. Nevertheless, it is always possible to compute 

#f for sm aller values of l, and this is what we did with the help of MAGMA for primes q having 

between 15 and 20 bits. Altogether, a total of 42 000 generalized Jacobians have been pseudo­

randomly generated and for each of them, the quantity 100· #f Il was tabulated. Among these 

results, the minimum value that has been found was 77,4309%. Consequently, none of these 

generalized Jacobians had an associated set f of cardinality less than 3l14. In order to find 

heuristic arguments that would explain this behavior, we turned our attention to the Classical 

Occupancy Problem. This urn model was indeed simple enough to analyse its behavior as 

q --+ 00. In aIl cases, we obtained that lim E[Y] was defined and greater than 78%, while 
q->oo 

lim qk. Var [Y] = 0 when 0:::; k < rand lim qT. Var [Y] is a constant which is at most 5000. 80 
q-HX) q----too 

from Chebyshev's inequality, it follows that the probability that #D. :::; 3114 is less than 2-147 

when q has at least 160 bits (this estimate holding for r = 1 and h = 2, 3, or 4 as weIl as for 

r> 1 and h = 1, 2, 3 or 4). This is excellent news concerning the Classical Occupancy Problem 

and exactly the kind of results we were hoping for. 

The last step was then to see whether the simplified model provided by the Classical Oc­

cupancy Problem seemed to give a satisfactory approximation of the behavior of generalized 

Jacobians. Based on the results obtained from our simulations, the strong correlation between 

the two problems was manifest. Although far from being a proof, these qualitative observations 

provide a heuristic argument suggesting that in practice, it should be extremely unlikely that 

the number #f of entries in T will be less than 3l14, and consequently, that the time required 

to compute T allows to proceed in parallel as in Figure 5.10. 
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On the Amount of Balls Falling into each Box 

In the previous section, we have studied the possibility that the set f = {1/0, 1/1, 1/2"," 1/1-1} ç 
F~r be small enough to build a table T containing the elements of f together with their discrete 

logarithms to the base À. Even if we now have heuristics suggesting that this attack is unlikely to 

work, it may still be possible that an opponent gains sorne advantage in considering a particular 

(small) subset of f instead24 . Indeed, there is a possibility that there exist up to l - #f + 1 

elements among 1/0, 1/1, 1/2, •.. , 1/1-1 that are aIl equal (to, say, 1/ E F~r). In other words, each 

nonempty box would contain exactly one baIl, except one that would be filled with the remaining 

l - #f + 1 balls. From the previous section, we know25 that l - #f + 1 could be as large as 

0.2l31l. In this eventuality, precomputing log..\ 1/ would c1early be a good strategy since there 

would be over one chance out of five that solving a given instance26 of the DLP in F~r x (B) 

(as depicted in Figure 5.10) involves a table look-up of the value log..\ 1/. Besides this worst-case 

scenario, it might more generally happen that seveml elements of f each have a non-negligible 

probability to arise while solving a DLP using the method outlined in Figure 5.10. If so, an 

adversary may then choose to precompute the discrete logarithms of sorne or aIl of these values. 

80 given an integer L such that 0 < L < l, we now wish to know the likeliness that there is 

at least one box containing more than L balls. Our starting point will once more be the study 

of the Classical Occupancy Problem, where 8 balls are randomly distributed among C cells such 

that the probability that a given baIl falls into any one of the boxes is always l/C. Recall that 

the values of 8 and C we are here interested in satisfy 8 ~ C (this property will be crucial in 

the argument that follows). 

Now let Zi be the random variable that represents the number of balls in box i after the 8 

balls have been thrown (1 ~ i ~ C). For each of the 8 independent throw, box i has probability 

l/C of receiving that baIl, and thus, Zi follows a binomial distribution with 8 Bernoulli trials 

and probability of success (i.e. the current baIl goes into box i) l/C. Rence, the probability that 

exactly j balls fall into box i is 

(8) 1 ( l)B-j 
Pr (Zi = j) = j Cj 1- C (0 ~ j ~ 8), 

while the mean and variance are given by 

8 8 ( 1) E[Zil = C and Var[Zil = C 1 - C . 

24 l wish to thank Edlyn Teske for raising this possibility. 
25Indeed, when r = 1 and h = 2, we expect that / - #r + 1 ~ / - 0.7869/ = 0.21311. 
26Chosen uniformly at random, of course. 
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Notice that both this mean and variance are less or equal to one since B ~ C. The possible values 

for j being 0 up to B, we thus expect to have a positively skewed asymmetrical distribution. 27 

In other words, using the anal ogy with the center of mass28 , this means that the majority of the 

weight of the distribution will be relatively close to zero. 

Example 5.21 Here is a tiny example to illustrate. The probability mass function for B = 10 

and C = 20 is given explicitly in Figure 5.21: notice that the probability that box i contains at 

most two balls is already 98,8%. Moreover, a common mistake is to think that since we have 10 

balls and 20 boxes, the probability that a box remains empty is 50%, while in reality it is almost 

60%. However, we do have E[Zil = 0,5 (and Var[Zil = 0,475). 

o. 
Pr(Zj=j) 

j Pr(Zi = j) 
0 0,599 
1 0,315 
2 0,0746 
3 0,0105 
4 9,65 x 10 -4 

5 6,09 x 10-5 

6 2,67 x 10-0 

7 8,04 x 1O-/j 
8 1,59 x 10 -!) 

9 1,86 x 10 -11 

o 3 4 5 7 8 
10 9,77 x 10 -14 

9 10 

Numher j of halls in box i 
j 

Figure 5.21: Binomial distribution corresponding to B = 10 and C = 20 

We now want to formalize our intuition that finding a box with a large number of balls is 

very unlikely (and at the same time get a better idea of what 'large' and 'very unlikely' mean 

in this coutext). As we now see, this will be a relatively easy task since it will turn out that a 

suitable upper bound cau be obtained even if we make several gross approximations along the 

way. Concretely, for an integer L satisfying 0 < L < l, we are first seeking an (easy to analyse 

and compute) upper bound for the probability that box i contains more than L balls: 

27 As oppased ta a bel! shape that we might he tempted ta approximate by a normal distribution ... 
28 "Suppose X is a discrete random variable with values Xi and corresponding prababilities Pi. Now consider 

a weightless (horizontal) rad on which are placed weights, at locations Xi along the rad and having masses Pi 

(whose sum is one). The point at which the rad balances (its center of gravit y) is E[X]." - From Wikipedia, 
http://en.wikipedia.org/wiki/Expected_value. 



178 CHAPTER 5. A CONCRETE CRYPTOSYSTEM 

B (B) 1 ( l)B-j B (B) 1 . 2: j Cl 1 - C :::; . 2: j Cj 
J=L+1 J=L+1 

Pr(Zi > L) 

~ Bj 1 ~ ~. (!!.) j < ~ ~ 
L ., Cl L" C - L ., 

j=LH J. j=LH J. j=LH J. 
< 

BI LI 00 1 LI LI 

2: -:-; - 2: -:-; :::; 2: -:-; - 2: -:-; = e - 2: -:-;. 
j=OJ· j=OJ· j=OJ· j=OJ· j=oJ· 

Notice that this upper bound does not even depend on the particular values of Band C, but 

merely on the fact that B :::; C. We can thus build the following pocket size table (Table 5.6) to 

serve as a general rule of thumb. 

2 
4 
8 
16 
32 
64 
128 

L 1 
e- ""­L·, 

j-O J. -

0.218 
0.00995 

3,06 x 10-6 

2,98 x 10 -10 

1,19 x 10 -37 

1,23 x 10 -lil 

2,03 x 10 -W$ 

Table 5.6: Values of e - L~=o 1/ j! for small powers of 2 

From Table 5.6, we see that the probability that a given box contains more than 64 balls is 

already less than one chance over the (estimated!) number of atoms in the observable universe. 

Very weIl. However, we are here after an even st ronger result. lndeed, it is not enough for us to 

know that any pariicular box has a very small probability of containing more than L balls, since 

the statement that we wish to make is that among all C boxes, it is very unlikely to find even 

one box with more than L balls. For this purpose, let Z = max(Zl, Z2, ... , Zc) be the maximum 

number of balls found within one box. Then, 

Pr(Z > L) Pr ((Z1 > L) U (Z2 > L) U ... U (Zc > L)) 

< Pr(Z1 > L) +Pr(Z2 > L) + ... +Pr(Zc > L) 

C· Pr (Zl > L). 

A small calculation then yields the desired result when r = 1, q ::::; 2160 and L is chosen to 

equal, say, one hundred. lndeed, 
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Pr(Z> 100):::; C· Pr(Zl > 100):::; (q -1) (e -f~) ~ 1,57 X 10-112
. 

J=O J 

Thus when r = 1 and q ~ 2160 is of cryptographie size, the probability that there is a box 

containing more than a hundred balls is at most 1,57 x 10-112 . So in practice, we expect that 

all boxes will contain at most 100 balls. If a similar statement holds for generalized Jacobians, 

it would imply that for any Vi E r, there is a negligible probability that a table look-up of 

the value 10g,À Vi is needed when solving a randomly and uniformly chosen instance of the DLP 

in F~r x (B) as outlined in Figure 5.10. There would then be no significant advantage for an 

adversary (who wish to proceed as in Figure 5.10) to precompute 10g,À Vi. 

We now take a look at experimental data. For each of the samples we considered in last 

section, we had also recorded the maximal number of balls within a box that we encountered, 

both for generalized Jacobians and for the pseudo-random counterpart. The results for r = 1 

are shown in Table 5.7. 

214 < q < 216 216 < q < 218 218 < q < 220 

h=2 Generalized Jacobians 8 9 9 
Pseudo-Random 8 9 9 

h=3 Generalized Jacobians 7 7 8 
Pseudo-Random 7 8 8 

h=4 Generalized Jacobians 6 7 8 
Pseudo-Random 6 7 7 

Table 5.7: Maximal number of balls within a box encountered for r = 1 and sample size two 
thousand 

To obtain a similar result when r > 1, it suffices to be just a little more careful with the 

upper bounds we choose. First notice that the current upper bound we have on Pr (Z > L) 

depends on r: 

Pr(Z> L) :::;C·Pr(Zl > L) = (qT -1) ·Pr(Zl > L). 

It is however possible to obtain an upper bound which will solely depend on L. This can be 

achieved as follows. Instead on merely relying on the fact that BIC:::; 1, we will now make use 

of the slightly stronger inequality: 
B3 
C2 :::; l. 

This holds for any value of r > 1 (as soon as q > 7) since 

B3 :::; (q + 1 + 2Jli)3 = (Jli + 1)6 = (q3/2 + 3q + 3Jli + 1) 2 :::; (q2 _ 1) 2 :::; (qT _ 1)2 = c2. 
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We therefore have, for r > 1 and 1 < L < l, 

Thus using our pocket size Table 5.6, we now get that for any r > 1 and q > 7, the probability 

that at least one box contains more than 64 balls is at most 1,23 x 10-91 . 

Our simulations for r = 2 once more agree with this prediction: as a matter of fact, the largest 

number of balls found into one box was three. These amazingly simple results are summarized 

in Table 5.8. 

214 < q < 216 216 < q < 218 218 < q < 220 

h=1 Generalized Jacobians 3 2 2 
Pseudo-Random 2 2 2 

h=2 Generalized Jacobians 2 2 2 
Pseudo-Random 2 2 2 

h=3 Generalized Jacobians 2 2 2 
Pseudo-Random 2 2 2 

h=4 Generalized Jacobians 2 2 2 
Pseudo-Random 2 2 2 

Table 5.8: Maximal number of balls within a box encountered for r = 2 and sample size two 
thousand 

Finally, if we are ready to believe that the Classical Occupancy Problem provides a reasonable 

approximation of generalized Jacobians (in terms of the maximal number of balls that can be 

found within one box), we then infer that an adversary has no tangible gain in precomputing a 

table of chosen elements of r along with their discrete logarithms. But of course, providing a 

formaI proof instead of a heuristic argument is another story ... 

We have therefore seen in this chapter that the simple generalized Jacobian 1F~,. x (B) fulfills 

aIl the conditions for a group to be suit able for discrete logarithm-based cryptography. This 

therefore provides the first example of a generalized Jacobian with nontrivial Lm and J that 

could be used in public-key cryptography. 



Chapter 6 

Conclusion and Further Work 

"Une approche qui débouche sur de bons problèmes 
doit fatalement donner quelque chose de bien." 

"An approach leading to challenging problems 
must inevitably yield something good." 

- Henri Darmon 

Throughout this thesis, we have used an approach by exploration in order to be as transparent 

as possible concerning the paths we followed when presenting original results. We hope that 

this unusual style for research related reports provided a satisfactory motivation at every step 

of the way. 

This conclusion and further work will also follow the same lines: we will not draw a definitive 

conclusion nor provide a precise program of research for further work. The reason is simple: 

since this thesis introduced the use of generalized Jacobians to build cryptosystems, we believe 

that it would be premature, at such an early stage, to pretend that we now see enough of the 

picture to predict the future of generalized Jacobians in cryptography. In contrast, the approach 

we will follow comprises two parts: a quick summary of results, followed by a list of ideas for 

future explorations. 

6.1 Summary of Results 

In this dissertation, we have presented and studied generalized Jacobians from a cryptographie 

point of view. In particular, we have seen how several popular public-key cryptosytems can in 

fact be reinterpreted in the language of generalized Jacobians. From that point on, the relevance 

of these algebraic groups in cryptography was already established. 

181 
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However, a11 of these cryptosystems had an underlying group with either a trivial linear 

group Lm or a trivial Jacobian J. The next step was then to consider a generalized Jacobian 

with nontrivial Lm and J. 

Concretely, we chose to consider a generalized Jacobian of an elliptic curve (with respect to 

a modulus of degree 2 formed by points of E(lF qr )) which was neither an abelian variety nor a 

torus in order to provide the first instance of a semi-abelian variety suit able for cryptography. 

We have shown how the elements can be compactly represented, the group law efficiently 

computed and the group order readily determined. Lastly, we have proved that the DLP in this 

generalized Jacobian is at least as hard as the DLP in E(lFq ) and at least as hard as the DLP 

in lF~r. 

As a result, the group we obtained possesses a discrete logarithm problem that combines, in 

a natural fashion, the two most studied discrete logarithm problems to this date. 

In the meantime, we have also characterized two subfamilies of generalized Jacobians on an 

elliptie curve which present different cryptographie properties: we therefore introduced the new 

concept of B-related and B-unrelated moduli in order to distinguish these two cases. 

Fina11y, of independent interest is our discovery of an infinite family of unified point addition 

formulre for elliptic curves given by a general WeierstraB equation. This therefore provides 

countermeasures to side-channel attacks on elliptic curve cryptosystems. 

6.2 Work in Progress, Further Work and Open Problems 

In the 1970s, Whitfield Diffie was keeping with him a list of what he ca11ed Problems for an 

ambitious theory of cryptography [Fur92]: whenever he encountered a problem that seemed 

interesting, he would jot it down on his list. Unfortunately, this precious document has since 

disappeared. But the rest is history ... 

Of course, we have no pretention of comparing our work to that of Diffie; still, while pro­

gressing in this thesis, we naturally kept track of the possible topies we could see for further 

work. The list we present here is therefore not a formaI program of research, but rather a broad 

variety of problems that arose from our search; it is thus meant as a notebook in perpetuaI 

progression. 

EXTENSION OF (ALGEBRAIC) GROUPS. In Chapter 5, we have studied the DLP of 

a specifie generalized Jacobian. However, we already know sorne properties of the group law of 

an arbitrary generalized Jacobian, thanks to the theory of extensions of algebraie groups [Ser88, 
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Chapter VII]. ls it possible to use this knowledge to derive further properties of the DLP in a 

general Jm? 

ADD MORE COPIES OF Gm • From the presentation we made in Chapter 4, it was already 

clear that the simplest case of a generalized Jacobian of an elliptic curve with nontrivial Lm and 

J is the case we chose to treat in Chapter 5. Now that we know that this group is suit able for 

DL-based cryptography, we may wonder what the situation would be if we considered a modulus 

of higher degree such that Lm would now be an algebraic torus of higher dimension. Would we 

have in this case an interesting efficiency /security ratio? This analysis would of course have to 

take into account the compression factor inherited from the algebraic torus. 

COMPARISON OF THE DLP IN TWO GENERALIZED JACOBIANS. Given a 

smooth algebraic curve C and two effective divisors ml and m2 such that ml ~ m2, what can 

be said about the relationship between the discrete logarithm problem in J m! and in Jm2 ? 

HYPERELLIPTIC CURVES. Since the work of David Cantor [Can87l we are able to effi­

ciently compute in the Jacobian ofhyperelliptic curves. Since then, the method has been refined, 

and we are more than ever convinced that hyperelliptic curves of low genus are an interesting 

alternative to ECC. For more details, see Hyperelliptic Curve Cryptosystems: Closing the Per­

formance Gap to Elliptic Curves [PWGP03]. The main observation here is that since the group 

law on hyperelliptic curves of genus greater than one no longer only involves straight lines, then 

this will inevitably be reflected in the group law algorithm of their generalized Jacobians. It 

would thus be interesting to know if the efficient explicit formulre already obtained for curves 

of low genus could be extended in order to efficiently compute in the corresponding generalized 

Jacobians. 

EFFICIENCY OF THE GROUP LAW. In Section 5.3, we have derived a natural group 

law for the generalized Jacobian of an elliptic curve with respect to a modulus of the form 

m = (M) + (N), where M, N are distinct nonzero points of E. This group law was based on 

the explicit bijection between Pic~(E) and Gm xE that we obtained in Section 5.2. However, 

there may exist other ways to compute this group operation that would be more efficient. 

WEIL AND TATE PAIRINGS. Anyone familiar with the explicit methods to compute the 

Weil and Tate pairings will have noticed some similarities with the group law of the generalized 

Jacobians of Chapter 5. Can the abundant litterature on the efficient computations of pairings 

be used for generalized Jacobians as weIl? 

MUMFORD THETA GROUPS. The Mumford Theta groups, also called finite Heisenberg 

groups, are also extensions of abelian varieties by the multiplicative group Gm • Moreover, 

Miller's method for computing the Weil pairing can be reinterpreted in terms of the Theta 
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groups, as sketched in [Mil04]. It would thus be an interesting avenue to explore Theta groups 

with cryptographie applications in mind. Further details on Theta groups can be found in 

[Gor02, Section 3.2] 

THE CASE M = -N. With the settings of Chapter 5, we can easily see that the expression 

for the group law when M = - N greatly simplifies since x M = X N. Is it possible to build an 

attack based on this? Or can we demonstrate that the DLP is still believed to be intractable in 

this case? 

B-RELATED MODULI. In Section 5.3.4, we have pointed out that B-unrelated moduli 

seemed to be more efficient for concrete applications and less susceptible to side-channel attacks. 

However, this observation is based on the specific group law algorithm that we obtained. There 

is therefore more investigation to be done before we can claim that B-related moduli are less 

attractive for cryptographic purposes. 

CHARACTERISTIC TWO. The simulations of Section 5.5.3 have been made only in the 

case of odd characteristic. An analogous study for elliptic curves over fields of characteristic two 

should be undertaken, since these curves are so important for cryptographie purposes. 

PROBABILISTIC COUNTING. The simulations of Section 5.5.3 were restrieted to rela­

tively small values of q since the required computations were quite involving. An alternative 

would be to consider larger values of q, but instead of computing the exact cardinality of f, one 

may be able to improve the efficiency by considering approximations of #f. 
TO WHAT EXTENT DO THE v'S BEHAVE LIKE RANDOM NUMBERS? We 

already saw two situations where the experiments show that the values of v seem to behave like 

randomly chosen numbers. How hard is it to distinguish between such values generated from a 

generalized Jacobian and true random numbers? If this problem turns out to be easy, could it 

be used to mount an attack against a generalized Jacobian cryptosystem? 

COMPUTATIONAL DIFFIE-HELLMAN PROBLEM. In Chapter 5, we have exten­

sively studied the links between the DLP in the generalized Jacobians and the DLPs in the 

elliptic curve and in the finite field. However, the security of many protocols is based on the 

Computational Diffie-Hellman Problem (CDHP). It would therefore be relevant to study the 

potential correlation between the three following CDHPs: in the generalized Jacobian, in the 

elliptic curve and in the finite field. 

PLAY WITH THE EQUIVALENCE RELATION. In this thesis, linear and m-equivalence 

of divisors played a central role. Indeed, the former leads to usual Jacobians while the latter 

yields generalized Jacobians. Thus, it may be worthwhile to explore other equivalence relations 

on divisors, both with a cryptographic and a cryptanalytic perspective in mind. Since much 
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research on such equivalence relations has been done, it is even possible that we already possess 

all the tools at hand to use these notions in cryptology. 

KEEP THE MODULUS SECRET. Finally, we mention an avenue that may be more a 

curiosity than an actual open question. The author is far from being a specialist in protocols, 

but somehow thinks that another interesting possibility would be to keep the modulus secret. 

For instance, in the case we studied in Chapter 5, suppose that the ECC parameters are publicly 

known but that the values of M and N are shared only among a select group of individuals. 

Then, it may be advantageous to have a common public-key infrastructure (PKI) that could 

both serve for elliptic and generalized Jacobians cryptosystems. Another possibility would be 

to explore if there would be any advantage of sharing the modulus among several parties. With 

the cryptosystem of Chapter 5, suppose for instance that Alice knows M and that Bob knows 

N. Then, they can certainly compute in the generalized Jacobian Jm if they pool their shares. 

Would there be an advantage in proceeding this way? And if so, what can be said about the 

difficulty of recovering a modulus from partial information? 

This naïve list comprises the security and efficiency aspects, the possible generalizations that 

could be made as well as other directions that may be followed. Sorne of these problems appear 

to be easy, and sorne look challenging: this great diversity then shows that many avenues are 

open for future research in this area. 
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