
Hardware-based Temporal Logic Checkers for

the Debugging of Digital Integrated Circuits

Jean-Samuel Chenard

Department of Electrical & Computer Engineering

McGill University

Montréal, Canada

October 2011

A thesis submitted to McGill University in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

c© 2011 Jean-Samuel Chenard

Acknowledgements

Graduate studies for me were more than just a career change. The ability to

take the time to reflect upon a problem and begin to see what others have done

before me required time to acquire. Going from what I could do to what can be

done requires a different mindset, but offers greater rewards and more elaborate

opportunities. My industrial experience provided me with good practical skills

before I decided to pursue graduate studies. My academic experience showed me

countless ways to approach a problem and gave me appreciation for how much

has been done before and how many very talented people have solved so many

problems. It also showed me that by taking the risk to try fundamentally different

approaches, even if they appeared to be very difficult, turned out to be the most

profitable experiences.

I would like to express my gratitude towards my supervisor Professor Zeljko

Zilic for his guidance, trust and patience through all the years I spent in the In-

tegrated Microsystems Laboratory, first towards the completion of my Masters of

Engineering and now for this doctoral thesis. His constant support and under-

standing made a great difference and by far exceeded all my expectations of what

a supervisor can provide to his students.

I want to highlight the help of my good friend and colleague Stephan Bourduas

for our collaboration on Network-on-Chip development, our many co-authored

publications, and more recently for his insight on the verification methodology

used at his work for the largest microprocessor company in the world. Marc Boule

was also a key player in the work presented. His inspiring work on the MBAC

hardware assertion compiler provided the foundation for many of the ideas pre-

iii

sented in this thesis. Through our many co-authored publications I was able to

appreciate his astute mathematical abilities and enjoyed discussing and debating

with him about our proposed debug methodologies.

Thanks to my colleagues Bojan Mihajlovic, Nathaniel Azuelos, Jason Tong and

Mohammadhossein Neishabouri for the help and feedback they have provided on

this work and thanks to Amanda Greenman for her editorial assistance.

I wish to express my sincere thanks to my funding sources, notably NSERC and

McGill. Without those, I don’t believe it would have been financially possible to

support these long studies. I am also very grateful towards CMC Microsystems

for providing such high quality hardware tools, workstations and technical sup-

port over the years.

I wish to recognize the work of the many very talented open-source program-

mers who have helped realize the vision of the GNU/Linux operating system. I

used this system throughoutmy studies onmyworkstations. I used the GNU/Linux

resources as tools, reference material and as an experimental platform on many

levels. I even used it to run my online business. It provided me a low-cost solution

for selling electronic boards, contributing to paying the expenses associated with

long-term studies. Following the open source philosophy was one of the best tech-

nical decisions I made. I have made a few contributions to this community and

hope to make many more in the future.

A special thank to Edouard Dufresne, who, when I was only a kid, showed me

the basics of Ohm’s law, antenna design and electronic systems and provided me

with my first paid job. His hope was that some day, I would do well in science and

engineering. Hopefully, this work can demonstrate that I certainly did progress in

that path.

I wish to thank my parents for their never-ending faith in my abilities and their

approach tomy education. Their unconventional approach to life and how tomake

your own way without worrying too much about what others think played a key

role in the way I do my work, each and every day.

iv

Finally, I wish to thank the love of my life and my dear wife Hsin Yun. She

gave me the inspiration and support to ensure that this work came to an end. I am

forever grateful.

I wish to dedicate this thesis to my two daughters: Eliane and Livia. May you

realize that if you follow your passion and put in a lot of hard work, you can

accomplish pretty much anything that you wish.

v

Abstract

Integrated circuit complexity is ever increasing and the debug process of modern de-
vices pose important technical challenges and cause delays in production. A comprehen-
sive Design-for-Debug methodology is therefore rapidly becoming a necessity.

This thesis presents a comprehensive system-level approach to debugging based on in-
silicon hardware checkers. The proposed approach leverages existing assertion-based ver-
ification libraries by translating useful temporal logic statements into efficient hardware
circuits. Those checker circuits are then integrated in the device as part of the memory
map, so they can provide on-line monitoring and debug assistance in addition to accel-
erating the integration of performance monitoring counters. The thesis presents a set of
enhancements to the translation process from temporal language to hardware targeted
such that an eventual debug process is made more efficient. Automating the integration
of the checker’s output and control structures is covered along with a practical method
that allow transparent access to the resulting registers within a modern (Linux) operating
system. Finally, a method of integration of the hardware checkers in future Network-on-
Chip systems is proposed. The use of a quality metric encompassing test, monitoring and
debug considerations is defined along with the necessary tool flow required to support the
process.

vii

Abrégé

La complexité des circuits intégrés augmente sans cesse et à un tel point que le procés-
sus de déboggage pose de nombreux problèmes techniques et engendre des retards dans
la production. Une approche d’ensemble de conception pour le déboggage (Design-for-
Debug) devient donc rapidement une nécessité.

Cette thèse propose une approche détaillée de niveau système, intégrant des circuits
de surveillance sur puce. L’approche proposée s’appuie sur la réutilisation de déclarations
écrites en language de logique temporelle afin de les transformer en circuits digitaux effi-
caces. Ces derniers seront intégrés à la puce à travers son interface d’image mémoire afin
qu’ils puissent servir au processus de déboggage ainsi qu’à une utilisation dans le système
lorsque la puce est intégrée dans son environement. Cette thèse présente une série d’ajout
au procéssus de transformation d’instructions de logique temporelle de manière à faciliter
le procéssus de déboggage. Une méthode qui automatise l’intégration des sorties et du
contrôle des circuits de surveillance est présentée ainsi que la manière dont une utilisation
de ces circuits peut être accomplie dans le contexte d’un système d’exploitation moderne
(Linux). Finalement, une méthode globale d’intégration des circuits de vérification dans
le contexte de systèmes basés sur les réseaux-sur-puce est présentée, accompagnée de la
chaine d’outils requise pour supporter ce nouveau processus de conception. Cette méth-
ode propose l’utilisation de facteurs de qualité de test, de surveillance et de déboggage
(Test, Monitoring and Debug) permettant une meilleure sélection des circuits ainsi qu’une
intégration plus efficace au niveau des resources matérielles.

ix

Contents

Contents xv

List of Figures xviii

List of Tables xix

List of Listings xxi

1 Introduction 1

1.1 Semiconductor Manufacturing Process . 2

1.2 Debugging Process . 4

1.3 Debugging of future digital systems . 6

1.4 A Systematic Approach to Design for Debugging . 7

1.5 Properties of Debuggable Systems . 8

1.6 Thesis Contributions . 14

1.7 Self-Citations . 15

1.7.1 Earlier Work on Debug and Systems . 19

1.8 Thesis Organization . 20

2 Background and Related Work 23

2.1 Complexity Trends in Digital Systems . 23

2.1.1 The “Simple” Hardware Systems . 23

2.1.2 Programmable Logic and Reprogrammable Systems-on-Chip 25

2.1.3 Graphic Processing Unit Programming . 29

2.1.4 Computers and Virtualization . 31

2.1.5 Multi-core System-on-Chip and Network-on-Chip Evolution 32
2.2 Terminology . 35

2.3 Modern Digital Verification Methodology . 41

2.3.1 Black Box and White Box Verification . 42

xi

Contents

2.3.2 Structure of a Verification Environment . 43
2.3.3 Verification Classes . 45

2.3.4 Constrained Random-Based Verification . 46
2.3.5 Golden Reference Model and Predictor . 47

2.3.6 Measuring Coverage of the Verification . 48
2.4 Assertions and Temporal Logic in Verification . 50

2.4.1 Design for Debugging . 52
2.4.2 Follow-up work on Time-multiplexing of Assertion Checkers 55

2.4.3 Design-for-Debug in Network-On-Chip . 56
2.5 Chronological Work Overview . 59

2.5.1 NoC Research Work . 59

2.5.2 NoC Topology Consideration for Physical Implementation 60

2.5.3 The Need for Hardware-Based Monitoring Points 61

2.5.4 The Difficulty of Integrating Large Systems 63

3 Checkers as Dynamic Assistants to

Silicon Debug 67

3.1 Benefits to Designers . 68

3.2 Assertion Checkers Enhancements for In-Silicon Debugging 71

3.2.1 Antecedent and Activity Monitoring . 71

3.2.2 Assertion Dependency Graphs . 73

3.2.3 Assertion Completion Mode . 75

3.2.4 Assertion Activity and Coverage . 77

3.2.5 Hardware Assertion Threading . 78

3.2.5.1 Assertion Threading – CPU Execution Pipeline Debug Scenario 81

3.3 Temporal Multiplexing of Checkers . 82

3.3.1 Assertion Checker Partitioning Algorithm 85

3.4 Experimental Results . 86

3.4.1 Signaling Assertion Completion . 87
3.4.2 Activity Monitoring . 89

3.4.3 Hardware Assertion Threading . 91

3.4.4 Checkers Partitioning . 93

3.5 Chapter Summary . 95

4 Memory Mapping of Hardware

Checkers 97

4.1 Need for Automation . 98
4.2 Memory Mapping Concepts . 99

4.2.1 General Overview . 99

4.2.1.1 Volatile Registers . 100

xii

Contents

4.2.2 Wishbone Interconnect . 100
4.2.3 Other Interconnects . 101

4.3 Register File Structure . 102
4.4 Tool Flow . 104

4.4.1 Phase 1: Source File Processing . 104
4.4.1.1 Implicit Checker Control Structures 105

4.4.2 Phase 2: Checker Grouping . 107
4.4.2.1 Clear-on-read for Software-Based Counters 108

4.4.2.2 Atomic access of large counters 109
4.4.3 Phase 3: Register Map Generation . 110
4.4.4 Phase 4: RTL Generation . 111

4.4.4.1 RTL Language Selection . 112

4.4.4.2 HDL Classes . 112

4.4.4.3 Register Classes . 113

4.4.4.4 Checker Classes . 113

4.4.4.5 Register Decoder Class . 114

4.4.4.6 Firmware Driver Header File Generation 114

4.5 Bitfield Packing Algorithm . 116

4.5.1 Experimental Results . 119

4.5.1.1 Algorithm Execution Time . 120

4.5.1.2 Register Usage . 122

4.5.1.3 Unused Bits in Registers . 123

4.6 Operating System Integration . 123

4.6.1 Kernel Space and User Space . 124

4.6.2 Prototyping Environment . 125

4.6.3 UIO Kernel Module Details . 128

4.6.4 UIO Driver structure . 129

4.6.5 UIO Operation and Register File Access . 130
4.6.5.1 UIO Module Versus Full Physical Memory Access 131

4.6.5.2 Software Interface to UIO . 132
4.6.6 Estimating the development effort saved by using UIO 133

4.6.7 Limitations of UIO . 134
4.7 Chapter Summary . 135

5 Integration of Checkers in a NoC 137

5.1 Overview . 137

5.2 An Overview of Networks-on-Chip . 138
5.2.1 Debugging Network-on-Chip . 139

5.3 Experimental Context . 140

xiii

Contents

5.4 Distributed Hardware Checkers . 142
5.4.1 Processor Control of Checkers . 142

5.4.1.1 Flit Tracer . 143
5.4.1.2 Distributed Flow Control Monitor 144

5.4.2 Propagation of Assertion Failures . 146
5.4.2.1 Assertion Flit Generation Mechanism 147

5.5 Quality-driven Design Flow . 149
5.5.1 Major Considerations . 149

5.5.2 The Test, Monitoring and Debug Flow . 150
5.5.3 Integration in System Design Flows . 152
5.5.4 Design Space Exploration . 152

5.5.5 Quantifying Quality . 153

5.5.6 The Cost of Quality . 154

5.5.7 Optimizing Quality vs. Cost . 155

5.5.8 FPGA Emulation in Quality-driven Architecture Exploration 156

5.5.9 Networking and Quality of Service . 157

5.5.10 Other Networking Considerations . 157

5.5.11 Quality Comparison . 158

5.5.11.1 Quality of Verification . 158

5.5.11.2 Quality of TMD Infrastructure 158

5.5.11.3 Quality of NoC Architecture . 159

5.5.12 Hardware Resources and Quality . 160

5.5.13 Comparing Quality/Cost Ratios . 161

5.6 Chapter Summary . 163

6 Conclusion and Future Work 165

6.1 Conclusion . 165

6.2 Future Work . 168

6.2.1 Software Debugging and Data Integrity Checking 168
6.2.2 High-throughput Pattern Matching . 171

6.2.3 Assertion Clustering and Trigger Units . 172

Appendices 173

A Examples from the BEE2 173

A.1 UIO Range Remapping Kernel Module . 174

A.2 UIO Register Access in Python . 176

A.3 BEE2 Boot Log . 177

A.4 BEE2 Control FPGA Device Utilisation . 180

A.5 UIO and Remap-Range Memory Utilisation . 181

xiv

Contents

Bibliography 193

Glossary 195

xv

List of Figures

2.1 Small FPGA structure showing the die representation (1), a block containing many

logical elements (2), a single logic block (3) and finally, the internal details of a logic

block, highlighting the look up table and flip-flop (4) 25

2.2 State-of-the-art Xilinx [1] FPGA interconnect using through-silicon vias to integrate

multiple dies in a single package . 28

2.3 Multicore CPU versus multicore GPU showing how much more area is dedicated

for the control and cache memory in a CPU architecture when compared to the GPU

architecture. 29

2.4 Multiple CPU cores sharing a single bus suffer from limited scalability. NoC-based

systems address this problem through hierarchy, paralellism and locality of traffic. I$

stands for instruction cache and D$ stands for data cache. 33

2.5 Prototypical Verification Environment . 44

2.6 FPGA-based Network on chip and its routing localization and efficiency 60

2.7 BEE2 System-level block diagram from Chang et al. [2] 62

2.8 Modelsim simulation of FIFO occupation during heavy NoC traffic 63

3.1 Usage scenarios for hardware assertion checkers. 68
3.2 Hardware PSL checker within a JTAG-based debugging enhancements 71

3.3 Activity signals for property: always ({a;b} |=> {c[*0:1];d}). oseq corresponds to the
right-side sequence, cseq to the left-side sequence. 73

3.4 Completion automaton for always ({a} |=> {{c[*0:1];d}|{e}}). 76
3.5 Normal automaton for always ({a} |=> {{c[*0:1];d}|{e}}). 76

3.6 Counting assertions and cover statements. 77

3.7 Hardware assertion threading . 79

3.8 Using the assertion threading method to efficiently locate the cause of an instruction
execution error in the CPU pipeline example. 82

3.9 Typical SoC floorplan implementing fixed and reprogrammable assertion checkers. . 83

xvii

List of Figures

4.1 Example Wishbone Bus Cycle Timing . 101
4.2 Circuit-level (hardware) view of a hardware checker and its associated control and

status units . 108
4.3 Logical Unpacked View . 110

4.4 Packed View . 111
4.5 GNUData Display Debugger screenshot of hypothetical hardware checker abc under

debug. Top box illustrates the memory values of the hypothetical checker and the
lower box illustrates its interpretation when re-mapped to a C-based data structure . 115

4.6 Distribution of the number of bits per checker for the Coverage, Control and Status

bitfields. 120
4.7 Execution time of the packing routine when subjected to theDensest, By Type and By

Assertion packing modes. The scenario covers from 1 checker (11 bitfields) to 1000

checkers (8590 bitfields) . 121

4.8 Average number of registers used per checker for each scenario from 1 checker to

1000 checkers. 122

4.9 Unused bits left in the memory map after the packing process. 123

4.10 Userspace IO Driver Organization . 129

4.11 Userspace IO Register Mapping . 130

5.1 Variations on a hierarchical-ring NoC architecture. The hyper-ring adds a secondary

path for data at the global level. Refer to Figure 2.4b to view the details of a station. . 140

5.2 Detailed block diagram of the NoC Station showing the Assertion checkers in the In-

gress/Egress Path providing protocol checking. Also illustrated are the two possible

paths for the M-flits: via the egress FIFO or directly to the output multiplexer as High

Priority Flits (HPF). 148

5.3 The quality of design (QoD) flow incorporates system debug and monitoring infras-

tructure through the use of debug and assertion modules, and reuses the NoC for test

and verification. 151

6.1 Hardware-based temporal checkers for software-based structures. 169

xviii

List of Tables

3.1 Assertion-circuit resource usage in two compilation modes. The assertion signal def-

initions use simplified booleans (e.g. A and B and C can be viewed as a new variable

D) and the names of the signals are condensed into a single letter (e.g. READY&GNT

become a&b). They are identified by the ′ symbol. 88

3.2 Resource usage of assertion circuits and activity monitors. (′ = Simplified Booleans.) 90

3.3 Area tradeoff metrics for assertion threading. (′ = Simplified Booleans.) 92

3.4 Resource usage of assertion checkers. 94

3.5 Checker partitions for reprogrammable area. 95

3.6 Subset and full-set synthesis of a sample of hardware checkers. 96

4.1 Comparison of source code and module complexity between the base UIO driver

and a derived user level driver. Memory utilisation measured on the BEE2 Pow-

erPC kernel version: 2.6.24-rc5-xlnx-jsc-xlnx-nfs-g669cb9c0 (note that

this version is slightly older than the one presented in the CMC demonstration) . . . 133

5.1 Area and power comparison of the TMD quality in the hierarchical-ring and hyper-

ring topologies for two frequency of operations . 162

xix

List of Listings

4.1 Example C structures for assertion checker register map 115

A.1 Userspace I/O Range Remapping Kernel Driver . 174

A.2 Userspace I/O access in Python . 176

xxi

Chapter 1

Introduction

Ask any hardware engineer how they go about creating digital circuit designs

and they will typically explain that based on a set of specifications, they write code

that describes the logic of the circuit, or draw components that represent the struc-

ture of the design. Likely, they will be re-using pre-existing blocks and connect

them together to make a major part of the system, thus rapidly and efficiently con-

verging upon a final product.

After a thorough verification process, Electronic Design Automation (EDA) tools

will help them transform their high-level description of the circuit and logic blocks

into data structures that represent the primitive electronic gates. Those gates are

then transformed into transistor circuits and finally into the geometric patterns

that represent the layers’ masks. Those are sent to a factory for fabrication. The

device is powered up, works well and sells in large volumes.

This is the story that everyone in the integrated circuit world likes to hear.

A dark cloud usually floats above this pretty scenario, one that will never really

go away: a bug lurking somewhere in the circuit. The incorrect implementation

of a specification can throw an otherwise smoothly-running circuit into a behavior

that one did not predict or validate. It could be a bug that stays invisible to the

operation of the device and appears late in the product cycle, putting the entire

company at risk. Even worse than the bug that one can see and examine is the

one that seems to appear at random intervals, one that emerges and vanishes so

1

1 Introduction

quickly that only a slight trace of data destruction remains in its path. . . too little,

too late to help investigate.

It is that lack of visibility and the difficulty of tracing erroneous behavior in a

silicon circuit that motivates this research. Our primary objective is to propose a

method by which one can leave little circuits in the final device that act as small

collectors of evidence. Evidence that one hopes will never be used in the final de-

vice, but if ever needed, would cut out weeks or months of forensic search to locate

and remove the nastiest of bugs. In the quest to manage complexity, productivity

and provide systems that will be bug-free, we propose a set of guiding principles, a

design-for-debugmethodology and the design tools to assist in the debug of future

complex systems.

1.1 Semiconductor Manufacturing Process

One cannot really grasp the complexity of modern silicon devices without an

overview of the manufacturing process and its implications on the final product’s

complexity.

From the conceptual design to the final circuit in the silicon, an impressive ar-

ray of technological elements are involved. Highly accurate robots (controlled by

computers) in an assembly line of impressive accuracy and repeatability, dope,

etch, protect and polish a pure silicon wafer. Each step is carefully monitored. The

silicon wafer evolves into a product whose worth will, by weight, surpass most

of what can be produced by man. This wafer, containing hundreds of replicas of

a miniature circuit, each containing up to a billion transistors is then separated

and tested. The conceptual circuit is now a real object constrained by the laws of

physics. Each individual circuit will undergo millions of test cycles to ensure that

it meets specifications.

Each step in this amazing process relies on models, algorithms and empirical

measurements that together have to converge to a working device. The end result

is the production of an electronic device that, even for the most experienced, never

ceases to amaze with its performance and integration.

So what makes the fabrication of modern, large-scale, integrated circuits possible?

2

1.1 Semiconductor Manufacturing Process

A: Fast computers and massive amounts of advanced software.

How can those computers provide so much computing power to run this advanced

software?

A: They use modern, large-scale, integrated circuits. . .

The idea that a machine could be programmed to calculate dates back to the

1800s, but it was only around 1950 when Turing-complete machines started to be

used for generic computing. The use of the electronic transistor made the creation

of much smaller and more power efficient circuits possible. In the 1970s the first

commercial microprocessors came on the market. From then on, each new itera-

tion of microprocessor design added complexity, but made each generation faster

and more power efficient. Each computer generation assisted in the design and

verification of their future replacements. Few industries can accelerate their own

growth with the very products that they make. Some are now pondering how far

this progress can continue and where this will lead us as a species [3].

Setting aside the philosophical question of human destiny and its links with

computers, the fact remains that modern designs entirely depend on a massive

number of computers in all steps of the design, verification and manufacturing

process. From the business financial calculations to the individual layers of atoms

deposited on the wafers, not a single step evades the computer program. It simply

cannot be avoided since only the computer can handle the massive amount of data

required to model and simulate the steps of such complex designs.

From the advances in the lithography equipment [4] and semiconductor pro-

cesses to the improvement in EDA tools [5], each improvement in the design chain

contributes to maintaining an impressive rate of progress known in the industry

as Moore’s Law [6]. The use of Intellectual Property (IP) blocks and computing

cores keep the engineering productivity high enough to utilize the newly available

logic resources available in each new generation of Field Programmable Gate Array

(FPGA) and application specific integrated circuit (ASIC) processes.

Today’s high logic integration density and advanced semiconductor processes

allow ever more complex designs to be attempted, requiring tremendous engi-

neering resources and capital expenses. Those designs also involve a significant

amount of business risk, but the return on investment of a successful product is

so substantial that many companies are willing to invest fortunes for the poten-

3

1 Introduction

tial payback that a well designed product can bring to their shareholders. With

each increase in complexity, new tools and methodologies must be devised to as-

sist with the engineering of those newer systems. Unlike the computers that run

the tools, engineering resources do not scale exponentially. As future devices will

clearly not lack the technological means to support more logic resources, one has

to find a way to better use the more limited engineering resources.

This thesis proposes to leverage a verification process called assertion-based ver-

ification that recently started to be successfully used in complex designs and brings

many of its benefits all the way to the final silicon devices. This new verifica-

tion methodology was found to be very efficient [7] at finding root causes of bugs.

As logic bugs in silicon are ever more difficult to detect, analyze and eliminate, a

methodology improvement in this area can make a big impact on the industry.

As this thesis will explain, some of the formal properties of a design described

by sequences and assertions can be transformed into efficient hardware circuits that

can be used to gather evidence of circuit malfunction. This thesis then proposes

a few mechanisms to record and present the evidence such that the debugging

process can rapidly converge to the source of the problem and how to integrate

this information as part of a complete solution. This design-for-debug strategy is

presented from the perspective of a set of properties applicable to a debuggable

system and is tightly coupled with the operating system and firmware.

The use of in-silicon assertion checkers is studied in the context of future large-

scale digital systems such as Network-on-Chips. The integration of checkers such

that their output can be monitored and processed by advanced software libraries

and algorithms is covered and methods are presented to integrate the checkers in

a modern operating system.

1.2 Debugging Process

Amoth found trapped between two contact points in an early relay-based com-

puter in 1945 caused it to malfunction 1. It became known as the first recorded

computer “bug” (at least in the physical sense). However, the term bug in the con-

1. http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

4

1.2 Debugging Process

text of computer engineering sense had been used for some time.

The terms bug and debugging have become entrenched in all steps of building

complex systems. For each new generation of computers designed, many bugs are

discovered and resolved. Most of those bugs will end up recorded in log books

and may haunt those who have to spend sleepless nights tracking them down.

Some serious bugs have even “escaped” the scrutinous verification process such

as the Pentium co-processor division problem experienced by Intel 2. Such pub-

licised bugs become famous mainly due to the financial impact they have on the

company handling the recall of a flawed Integrated Circuit (IC). Those examples

serve to show howmany variables and conditions must be considered when mak-

ing a large and complex system that one wants to be bug free. Those bugs that

the public learn about in newspapers only represent the few that “made it out”.

Numerous high-profile projects are delayed by integration bugs, respins of large

ASIC devices. Countless engineering man-hours are spent tracking complex and

nasty integration bugs. Each one has the potential to cause massive loss of sales

and delays in product delivery.

With designs currently exceeding one billion transistors and still predicted to

increase in density and size for many years, one can clearly see that the verifica-

tion and debugging of those extremely large circuits pose a significant challenge.

Interestingly, verification is actually the most time and resource consuming part

of a large digital design project. Debugging has always been challenging from the

onset of complexity. It requires an in-depth understanding of the circuit, a mental

model of the interaction between its parts and a fair amount of control and visibil-

ity to be efficient. In large systems, debugging is the part of the verification effort

that consumes the most time. The ever increasing density of designs, coupled with

the large amount of external IP involved in their conception requires a change in

focus when tackling the debugging of complex integrated circuits.

Design methodologies cannot afford to simply react to problems once the de-

sign hits the proverbial laboratory bench, but must take a proactive approach to

facilitate the diagnosis and location of problems by planning the upcoming debug

phases early in the design process.

2. http://www.intel.com/support/processors/pentium/sb/CS-013007.htm

5

1 Introduction

1.3 Debugging of future digital systems

The debug process can be seen from many perspectives. It spans a continuum

from circuit-level hardware to the higher order application-level code execution.

Future generations of devices will have complex, heterogeneous structures and

the debugging process will have to consider real-time requirements that need to

be met on top of functional considerations.

To understand the above statement, take, for example baseband processing in

a portable wireless device such as a modern “smart” phone. Only a few years

ago, the radio frequency part was provided as a complete, dedicated circuit that

processed the radio signal and decoded it down to the packet-level digital com-

munication. The baseband processing required many different ICs (analog and

digital) to perform the task of recovering data from the radio signal. Modern so-

lutions integrate all of those ICs into a single die. Many analog functions are now

performed in the digital domain, increasing flexibility and reducing the need for

expensive, accurately tuned analog components. The complex process of turning

the radio signal into data packets has now turned into a parallel computing prob-

lem subjected to hard real-time requirements. By re-programming some software

and firmware elements, the same hardware can now “tune in” to other frequencies

like the global positioning system. This can transform the initial telephone into a

navigation device. As the Central Processing Unit (CPU) incorporates more cores,

more tasks that were once hardware devices will become software libraries and the

electrical signals that used to carry information between devices on a board will be

replaced by messages exchanged among the CPU cores.

This has profound implications on the debugging. Those future devices will

have to perform parallel calculations within stringent time limits. The computa-

tions will have to be performed in a distributed system that operates like a small

network of nodes, but one that offers practically no visibility of its internal activ-

ity on external pins. This transition from system-on-chip (SoC), where the various

cores on a chip are dedicated to a given task, to aNetwork-on-Chip (NoC) where the

cores are more general purpose and the software and routing strategy make it ap-

plication specific, will thus require a sophisticated debugging infrastructure. NoC

6

1.4 A Systematic Approach to Design for Debugging

solutions that aim to offer a flexible platform allowing designers to quickly deliver

a range of working products will only reach their full potential if debugging is

carefully considered at the core of the design process.

1.4 A Systematic Approach to Design for

Debugging

An overview of computing trends shows that the complexity and design size

tends to increase with time, no matter which computing paradigm one wishes to

follow. What was previously considered a complex project takingmanyman-years

to complete, for example a CPU core, can now be integrated on a SoC in a matter of

hours by a design tool. The initial complexity of the re-used IP block remains, only

hidden away by the level of abstraction that is gained from its re-use. When things

go wrong as a result of a bug (in the core or in its integration), the complexity of

the problem reappears compounded by the lack of a full understanding of each of

the parts that are integrated in the design. Regardless of who is responsible for the

bug: the IP vendor, the system integrator or an EDA tool, the problem has to be

found, fixed and tested before the device can be released.

This puts a lot of pressure on engineering teams. A lot of time will be spent

learning about the intricate details of the IP blocks used and trying to come up

with scenarios to re-produce the failure in a controlled manner. Usually, those

failures would not have showed up in simulation (otherwise the design would not

have been released). Somewhere in the circuit, an erroneous condition exists, but

only its end effect can be observed.

This is where the work presented in this thesis will attempt to assist. The main

goal is to have silicon devices that not only perform their intended function well

enough to please the customer, but also include hardware “intelligence” that can

assist the localization of the root-cause of bugs, should they crop up during the latter

phases of product design. Coupled with a database of formalized and structured

information about the device’s inner-workings, the powerful computing capabili-

ties of the hardware will come to assist the debugging phases.

7

1 Introduction

1.5 Properties of Debuggable Systems

The role of the debug engineer, when in charge of a large and complex project,

is put in perspective by veterans of the semiconductor industry in the following

quote:

“Such is the nature of silicon debug. To be successful, the debug engineer must

be able to solve problems in areas where he has no technical expertise, drive

design teams to make changes where he has no influence, and be able to predict

the future.” (Doug Josephson – Hewlet Packard ; Bob Gottlieb – Intel) [8]

Even towards the end of the 1990s, engineers at the Philips Research Laborato-

ries were aware that scan chain (a mechanism to serially shift bits in and out of the

device registers via a bypass of the usual logic function) would not be enough to

assist in the debugging of a large-scale, multiple clock domains IC [9]. In order to

aim for the best debugging process possible, one can consider a series of proper-

ties that can augment the debuggability of a given system while easing the burden

on debug engineers and design teams. As those properties are enumerated, the

relevant sections of this thesis are highlighted.

1. Increased Visibility. One needs an increased visibility in the design, ideally

as it is running and in a dynamic manner. The ability to “peek” at inter-

nal device states and monitor the various elements that affect the outcome

will have a great effect on the efficiency of the debug process, since it will

help build an understanding of the data flow. Often, in silicon ICs, one can

relatively easily observe the inputs and outputs of the device (through the

I/O pins). However, the internal data processing flow is a lot more difficult

to observe, especially in real-time. In some cases, a combination of multi-

plexers and control circuits will allow a snapshot of the device state to be

observed. This scan-based method is quite useful, but requires the complete

operations of the device (or a significant portion of it) to be stopped while

all the bits are shifted out (usually serially) from the device. Shadow scan

registers can allow the system to continue its execution while a “snapshot”

of its state is shifted out, but cannot accumulate more than one copy of the

8

1.5 Properties of Debuggable Systems

running state. Someone debugging a large multi-core system or a NoC will

want a more flexible solution. This thesis proposes a mechanism for the inte-

gration of sequence checkers and assertion checkers such that significant events

are recorded and can be propagated within the system. They could then be

automatically aggregated and stored in a larger memory as a trace of the

detected failure. This allows better capture and better dynamic understand-

ing of the operation. Chapter 5 details an approach to centralize the capture

and traces through the re-use of the NoC transport mechanism. In current

design tool flows, the visibility of an internal operation is very good in the

simulation environment, but very poor in the silicon. Conversely, the speed

of execution on the simulator is very low, but blazingly fast on the silicon.

This thesis proposes a method by which key elements in the hardware exe-

cution, monitored at runtime by hardware checkers presented in Chapter 3

can be recorded in firmware-visible hardware registers (whose generation is

covered in Chapter 4) to assist in re-creating a problem detected on-chip in a

simulation environment to facilitate the bug localization process.

2. Increased Controllability. One needs the ability to control multiple hetero-

geneous flows of control. The device must allow the person debugging it to

manipulate and alter the internal states in a way that can induce a predictable

response from the system. This manipulation of internal states needs some

hardware and firmware assistance such that one does not destroy the work-

ing state of the device under debug. Using a scan-based approach, the de-

signer would be able to stop the design and modify a few bits before contin-

uing. This method is well established as a way to insert specific test patterns

inside a circuit to validate its operation (chip testing), but for system-level

debugging, it falls short of providing an efficient and dynamic solution. In

an ideal situation, it would be possible from within the system (i.e. not us-

ing scan) to force a device into a failure mode that has a similar signature to

the system being debugged. Thus, by comparing symptoms from the buggy

device and the manipulated version, one can aim at repeating rare bugs fre-

quently. This is an important debugging rule [10]: be able to repeatedly re-

produce a problem. At that point, the debug process can efficiently resolve

9

1 Introduction

the issue and confirm that the bug has indeed been fixed completely. The

work in this thesis addresses the concern that scan-injected debug sequences or

state modifications (aimed at locating a bug) do not cause the device’s internal

circuits to go into states that would violate internal protocol requirements.

Those violations would be flagged by the hardware checkers described in

Chapter 3 and would indicate that the debugging strategy is flawed. The

debug engineer could then modify his approach.

3. Diagnostic Assistance. The system should offer assistance in diagnosing the

root cause of a bug. This is quite important when one considers how many

registers and memories a future device will be able to host. A complex SoC

can internally hold tens of thousands registers and memory addresses (ex-

cluding the billions of externally addressable memory locations). A database

of registers coupled with firmware assistance and tools must be provided

to the person debugging to help him understand the behavior of the circuit

and extract meaningful interpretations from the register states. The person

debugging a circuit is likely to only partially understand the internal oper-

ation and only from a high-level point of view. Only through abstraction

and interpretation of the information by design tools will the person debug-

ging be able to fully comprehend the underlying operation of modules and

be able to pinpoint the source of an observed problem. Chapter 4 addresses

those concerns by allowing system-level libraries within the device to lever-

age databases, graph manipulation libraries and rich I/O post-processing

such that the device can assist with its own debugging process. With the

proposed strategy and firmware assistance, the device, rather than simply

stating that an error occured and give a bit location report, can perform in-

ternal lookup in a local database and report the cause of the assertion failure,

the related IP module and the line number in the related formal specification

document. In our proposed approach, since the information is now part of

the application space of the system, advanced transmission mechanisms (e.g.

wireless or wired networking, graphical display) can be leveraged to report

the internal condition remotely. This can prove very useful for a future dis-

tributed system (sensor network, for example) as integration bugs become

10

1.5 Properties of Debuggable Systems

even more difficult to tackle since the system may not be so easily attached

to debugging hardware.

4. Data Volume Reduction. Efficient handling of exceedingly large amounts of

debugging-related data. Dynamic tracing of memory access or instruction

execution, especially in fast multi-processor or network-on-chip, hardware-

assisted pattern processing is required. A basic example of that is the trigger

logic for on-chip analyzers. The high internal bandwidth between on-chip

elements can only be observed (traced) if some form of compression and pat-

tern matching is used. Otherwise, the amount of data produced by the inter-

nal “tap” will so rapidly overflow the analysis unit that the captures will hold

little to no meaning. This thesis proposes the re-use of verification assertion

checkers as a way to extract higher-level patterns from the internal operation

of the device. Those patterns can be used to trigger the input storage of trace

buffers and reduce the acquisition storage requirements. Chapter 3 shows

how debug-enhanced checkers can be used to fulfill this need. Furthermore,

one can build more complex patterns by using temporal logic advanced se-

mantics. Section 3.3 of explains how temporal multiplexing of checkers can

be used to support on-line monitoring, yet reduce the hardware overhead.

The same programmable logic structures used in this technique can also sup-

port complex hardware-based triggering mechanisms.

5. Multi-Threaded Support. Provide support formulti-threaded execution con-

trol of relatively fine granularity. Thismeans that as hardware assisted threads

of processing progress, one must be able to monitor and control the progress

of those threads and be able to trace the blocking, dependencies and inter-

thread communication. In a multi-threaded system, execution units operate

independently. However, it is important to be able to trace through system

transitions in the software execution and qualify a given set of event order,

for example dealing with critical section locking and unlocking. By posting

these signals as hardware events, assertion checkers can monitor and pro-

vide feedback the checker’s process back into the operating system and trig-

ger an exception if an event occurs that breaks the temporal specifications.

Using the NoC transport mechanisms, one can also centralize the thread exe-

11

1 Introduction

cution events to report system-wide status. Chapter 3 and Chapter 4 provide

the foundations for the hardware structures to support this and Chapter 5

proposes an integration methodology for large and distributed systems. As

threads are spawned across multiple cores (which in a network-on-chip may

not necessarily share the same memory), the debugging process has to be

made aware of the thread locations, while abstracting the underlying hard-

ware architecture as much as possible. Although this thesis does not directly

address this problem, a few hardware elements proposed in the design for

debug infrastructure can be modified to interface with debuggers, provid-

ing more flexible breakpoints based on complex internal hardware states and

coupled with software data structures. This proposed approach is explained

for potential future work in Section 6.2.1.

6. Multiple Levels of Abstraction. Able to handle multiple levels of transac-

tions, transparently, if possible. The hardware must be able to allow low-

level monitoring of its structure, yet provide a simplified “view” of its trans-

actions for higher order analysis. For example, one could want to see the

detail on a bus-level transaction by observing each step on a hardware-based

state monitor, but would also want to have only a counter on the full trans-

action completion for higher-level analysis such as performance review. This

can be provided by the hardware checkers presented in Chapter 3. Further-

more, a technique proposed in Section 3.2.5 proposes a method to support

highly pipelined circuits where many simultaneous streams of transactions

are processed. In those instances, an assertion failure has to be correlated

with a given entry in the pipeline which is difficult since, by definition, the

pipeline is processing multiple data elements simultaneously.

7. Operating System Integration. Integrate well with OS services, outside the

kernel space. Applications running on a system must be able to track low-

level hardware “blocks” without relying on special CPU instructions or ob-

scure hardware tricks. This will allow the end user (in this case the pro-

grammer or system level engineer in charge of debugging) to fine-tune his

applications without the need to go beyond the use of an application pro-

gramming interface. The interpretation of the hardware registers should be

12

1.5 Properties of Debuggable Systems

done in user-space to gain access to the processing libraries available. Sec-

tion 4.6 proposes such a mechanism that was prototyped in a high-end hard-

ware platform using the Linux operating system as a case study.

8. Remote Control and Visibility Provide remote debug support by way of

specialized hardware interfaces, allowing the complete device to be remotely

controlled and with a deterministic way to execute the program cycle-by-

cycle the program in its multiple cores. This supports the needs of debugging

operating system integration, and low-level hardware problems. Chapter 2

of this thesis covers previouswork from the literature that cover this aspect of

the debugging problem and show the trends in the standardization of debug

for those hardware interfaces.

9. Support for Simulators and Emulators. The debugging process must also

allow transparent use of simulators and emulators, as well as in-circuit em-

ulation with multiple targets. This debug process has to handle all the steps

up to and including the physical design. From the system simulation, to the

regression testing on hardware emulators, and finally in prototypes using in-

circuit emulators or programmable logic to validate proper system integra-

tion. By leveraging assertion-based verification methodologies and carrying

their properties at each step of the verification process all the way to silicon

implementation where they can be used to correlate back to the simulations,

assertion checkers offer a uniform representation of the critical properties. A

methodology to select the assertions worthy of integration in the final silicon

is proposed in Section 5.5 of Chapter 5 and explores how it can help unify the

test, monitoring and debug of future devices.

10. Measure of Dynamic Performance. A good hardware debug infrastructure

will also facilitate performance evaluation, in addition to plain functional

evaluation, and can thus be used to solve critical real-time integration prob-

lems. At the same time, the debug infrastructure has to meet realistic cost

(silicon area) constraints. Section 5.5.7 aims at optimizing the cost/benefits

of including a hardware infrastructure by proposing a set of quality metrics

that one can use to perform optimizations.

13

1 Introduction

1.6 Thesis Contributions

The contributions presented in this thesis can be summarized in the following

points:

– A set of temporal logic assertion checker transformations that assist in sup-

porting an in-silicon design-for-debug methodology. Through a novel use

of time multiplexing of debug-enhanced hardware checkers, sequence com-

pletion counters and control points, designers can benefit from a collection

of in-silicon checkers and monitors that, by virtue of their closeness to the

hardware and their parallel processing capability, can detect and report mal-

functions in a timely manner. The hardware circuits can be directly derived

from the existing assertion-based verification process, thus limiting the work

required for their creation and can be temporally multiplexed to meet area

constraints.

– An integrationmethod for hardware-based checkers andmonitors in the con-

text of a modern operating system allowing firmware librairies to provide in-

field assistance to the bug localization and tracking process. This automated

integration method relieve the designers from the burden of integrating a

large number of checkers manually and provide assistance in creating the

supporting application interfaces to those registers. The proposed operating

system integrationmethod preserves fine granular control onmemory access

permissions through the device nodes to mitigate potential security breaches

within the system.

– A methodology to accomodate a large number of assertion checkers and se-

quence monitors in a distributed system, notably in the context of a NoC.

The approach considers the need for status aggregation in a central monitor-

ing point. It also augments the traditional ASIC or large FPGA design flow

to incorporate a Design-for-Debug methodology based on hardware check-

ers derived from assertion libraries and proposes a quality metric that can be

leveraged to automate the selection of hardware checkers to meet area and

14

1.7 Self-Citations

power constraints.

1.7 Self-Citations

The title and description of peer-reviewed publications and technical applica-

tion notes that cover significant aspects of this thesis are listed below:

– Adding Debug Enhancements to Assertion Checkers for Hardware Emulation and

Silicon Debug [11]: This paper presents techniques that enhance automati-

cally generated hardware assertion checkers to facilitate debugging within

an assertion-based verification tool flow. Starting with techniques based on

dependency graphs, the algorithms for counting and monitoring the activ-

ity of checkers, monitoring assertion completion are presented. The concept

of assertion threading is also covered. These debugging enhancements of-

fer increased traceability and observability within assertion checkers, as well

as the improved metrics relating to the coverage of assertion checkers. This

paper served as the basis for the subsequent journal publication [12]. The

contributions of JS Chenard are mainly in bringing the verification and de-

bug perspective to the temporal logic to hardware translation such that the

debug process based on assertion can be realized in-silicon like it was possi-

ble in a simulator. Those exact contributions are detailed in the third element

of this list.

– Assertion Checkers in Verification, Silicon Debug and In-Field Diagnosis [13]:

This paper presents the use of assertion checkers in post-fabrication silicon

debugging. Tools that efficiently generate the checkers from assertions for

their inclusion in the debug phase are described. The use of a checker gen-

erator that can be used as a means of circuit design for certain portions of

self test circuits, and more generally the design of monitoring circuits is ex-

plained. Efficient subset partitioning of checkers for a dedicated fixed-size

reprogrammable logic area is developed for efficient use of dedicated de-

bug hardware. In this publication, the checker generator and associated de-

scription along with the redundancy and BIST concept were contributed by

M. Boulé and Z. Zilic. The partition algorithm was developed with the co-

15

1 Introduction

authors, the automation of synthesis data extraction (providing the metrics

on which the partitioning algorithm relies) was developed and implemented

by JS Chenard.

– Debug enhancements in assertion-checker generation [12]: A set of techniques for

debugging with the assertions in either pre-silicon or post-silicon scenarios

are discussed. Assertion threading, activity monitors, assertion and cover

counters and completion mode assertions are explained. The common goal

of these checker enhancements is to provide better andmore diversifiedways

to achieve visibility within the assertion circuits, which, in turn, lead to more

efficient circuit debugging. Experimental results show that such modifica-

tions can be done with modest checker hardware overhead. In this work, the

debug enhancements of completion monitoring, assertion counters and depen-

dency tracing and logging were brought forth by JS Chenard. JS Chenard also

developed the CPU pipeline (derived from the DLX CPU and instruction set

from Hennessy and Patterson) and completed the testbenches and sample

debug session (through error injection in the pipeline) to produce the exam-

ple of hardware assertion threading. Integration of those debug enhancements

in theMBAC tool was performed byM. Boulé. The experimental results were

produced by M. Boulé using MBAC while the automated synthesis and data

extraction was done by JS Chenard. M. Boulé also provided a comparison of

checker’s generated area when compared to the FoCs tool by IBM as a way to

highlight the performance and density of the assertion checkers. This work

was done under the guidance of Z. Zilic.

– Efficient memory mapping of hardware assertion and sequence checkers for on-line

monitoring and debug [14]: This publication (currently under submission) pro-

poses an on-line monitoring infrastructure to incorporate hardware assertion

and sequence checkers in complex CPU-based systems. An efficient heuris-

tic to pack the bitfields is presented along with three different packing modes

and their trade-offs, considered from a system-level integration perspective.

The main elements of this publication are covered in the first part of Chap-

ter 4. This work was performed by JS Chenard under the supervision of Z.

Zilic.

– A RTL analysis of a hierarchical ring interconnect for network-on-chip multi-pro-

16

1.7 Self-Citations

cessors [15]: The register transfer level (RTL) architecture of a hierarchical-ring

interconnected network-on-chip is presented alongwith area and speedmea-

sures, favorably comparing this implementation to other NoC implementa-

tions in the literature. S. Bourduas provided the initial architecture and mod-

els of the hierarchical ring interconnect. JS Chenard’s contributions were in

architecturing the model to synthesizable RTL such that it can support asyn-

chronous clock domains. The contributions also included many iterations

of timing analysis and performance improvements (to reach the 250 MHz

target), floorplanning on the Virtex-II FPGA and RTL-Level test bench im-

plementation and data analysis. The integration of the Leon CPU cores was

a collaboration between S. Bourduas and JS Chenard under the guidance of

Z. Zilic.

– Hardware Assertion Checkers in On-line Detection of Faults in a Hierarchical-Ring

Network-On-Chip [16]: This paper presents a methodology for using asser-

tions in network-based designs to facilitate debugging and monitoring of

system-on-chip. Relying on an internally developed assertion-checker gen-

erator to produce efficient RTL-level checkers from high-level temporal as-

sertions, with optional debugging features. Tools to encapsulate the checkers

into network-on-chip flits are discussed. The contributions of JS Chenard

were related to the hardware architecture of the modified station, the con-

cept of automated register integration and the proposed flow. N. Azuelos

contributed the part on assertion timestamping and proposed the hp-flit con-

cept. Implemenation of the hp-flit bypass mechanismwas a collaboration be-

tween JS Chenard and N. Azuelos. M. Boulé MBAC tool was used to support

the translation of the PSL statements to hardware. S. Bourduas provided the

architecture of the NoC used in this publication. Z. Zilic provided the super-

vision and guidance along with material in the background section.

– A Quality-Driven Design Approach for NoCs [17]: This article advocates a sys-

tematic approach to improve NoC design quality by guiding architectural

choices according to the difficulty of verification and test. Early quality met-

rics are proposed for added test, monitoring, and debug hardware. The con-

cept of Quality metric was put forth by Z. Zilic. The SystemC modeling

was mostly done by S. Bourduas from data gathered from the RTL model

17

1 Introduction

provided by JS Chenard. The tracer assertion examples, the ASIC synthesis

toolflow, memory cell generation for the TSMC process along with the per-

formance and power extraction process were done by JS Chenard. The cal-

culations to derive the quality scores were done as a collaboration between

S. Bourduas and JS Chenard.

– Canadian Microelectronics Corporation Application Note Series on the Berkeley

Emulation Engine Version 2 (BEE2) rapid prototyping platform [18, 19, 20].

This series of 3 application notes cover the details of generating the FPGA

hardware, porting Linux 2.6 to the BEE2 and advanced techniques for host-

ing the user programs on this particular architecture. The first application

note titled Configuring, building and running Linux 2.6 on the BEE2 with

the BusyBox user environment details the steps to create the BEE2 control

FPGA along with a customized Linux kernel and the creation of the root file

system based on the Busybox 3 project. The second application note titled Ex-

tending the Flexibility of BEE2 by Using U-Boot to Load the Linux Kernel

via Ethernet explains how the BEE2 reprogrammable system can be made

fully controllable and re-programmable by hosting only the control FPGA

bitstream andU-Boot (a bootloader, similar to a PC BIOS) on the physical sys-

tem and having the Kernel, root file system remotely attached at boot time.

This allows full remote access to the system and more rapid design space

exploration. Finally the third application note titled Using Linux Userspace

I/O for Rapid Hardware Driver Development covers the technical details

of exporting the physical hardware registers to the user-space (application)

such that the software can transparently access the hardware devices while

keeping the system secure and physical memory access constrained to limit

the potential of crashing the system if the application code contains bugs.

All the work performed on the BEE2 system, including the port of the Linux

operating system from kernel 2.4 to kernel 2.6, FPGA core integration root

system file creation, debug and appnote creationwas the work of JS Chenard.

However, none of this would have been possible without the work of count-

less open source developpers around the world. A few indirect contributors

3. http://www.busybox.net/

18

1.7 Self-Citations

that should be highlighted are: Dr. Hayden Kwok-Hay So for his work on

the BORPH Linux platform (providing a basis for many drivers of the ported

BEE2 drivers), Grant Likely (Secret Labs) for the CompactFlash Drivers and

GIT tree aimed to support the Xilinx ML-300 platform (a close cousin of the

BEE2 architecture), Hans J. Koch (Linuxtronix) and Greg Kroah-Hartman for

their work on the UIO driver and assistance with the integration of the pro-

posed UIO PowerPC MMU bugfix in the mainline kernel. Many other open

source authors should be highlighted, but for conciseness, only their project

are listed: DENX ELDK, DENX Das U-Boot, Crossdev, Busybox, Python,

GNU GDB/DDD, kernel.org. Many of the methods used to port software

to the BEE2 system derive from studying the Gentoo Linux ebuild structure

and documentation provided by the Linux from Scratch project 4 and special-

ized books [21, 22, 23, 24].

1.7.1 Earlier Work on Debug and Systems

The following peer-reviewed publications cover some of the earlier work by JS

Chenard linked to debug technologies, education on debugging methods. Those

publications can provide insight and background material for some of the trade-

offs discussed in this thesis.

– Architectures of Increased Availability Wireless Sensor Network Nodes [25]. This

publication covers earlywork on remote debugging ofwireless nodes through

JTAGmechanisms, remote bootstrapping and redundancy support to increase

availability. The contributions of JS Chenard in this publication relate to the

hardware circuits (printed circuit board, firmware) and radio frequency ele-

ments (transceiver link and supporting circuitry). M.W. Chiang contributed

the architectural study and the digital testing aspects to the publication. Prof.

Zilic and Prof. Radecka supervised this publication.

– Design Methodology for Wireless Nodes with Printed Antennas [26]. This publi-

cation details the method to design and build printed antennas for wireless

nodes in a way that reduces the risk of having to debug complex interactions

between the circuit board and antenna. In this work, the contributions of JS

4. http://www.linuxfromscratch.org/.

19

http://www.linuxfromscratch.org/

1 Introduction

Chenard include the design and debug of the radio frequency transceiver cir-

cuit and radio frequency feed network along with the fabrication and test of

the printed circuit board. C.Y. Chu did the 2.5D and 3D modeling of the ra-

dio frequency structures and contributed to the design of the loaded dipole

antenna. Prof. M. Popovic and Prof. Z. Zilic supervised the work from a

radio frequency and circuit perspective, respectively.

– A Laboratory Setup and Teaching Methodology for Wireless and Mobile Embed-

ded Systems [27]. This Transaction on Education publication summarizes the

teaching kit that was designed and deployed by the IML Group at McGill

University. It was used during more than five years as the platform for teach-

ing the Microprocessor Systems course to undergraduate students. The de-

sign methods presented cover complex systems with a strong emphasis on

debugging methods and techniques. It summarizes many years of teaching

experience and offer insights on how to design laboratory kits for teaching of

digital microcontroller-based systems. The methodology incorporates pro-

grammable logic along with the microcontroller such that students can de-

velop and use advanced debug techniques on physical hardware. JS Chenard

developed the McGumps teaching kit along with the accessories and super-

vised the fabrication and deployment of the kit. In this task, he was assisted

by colleagues from the IML Laboratory, including Atanu Chattopadhyay

Kahn Li Lim and Milos Prokic. Advice on teaching strategies and meth-

ods were provided by Genevieve Gauthier. In this publication, M. Prokic

contributed the McZub teaching platformmaterial and assisted in the prepa-

ration of the manuscript. Prof. Z. Zilic was supervising and teaching the

course during most of the semesters and provided his expertise in the teach-

ing methodologies and grading methodologies.

1.8 Thesis Organization

Chapter 2 starts by reviewing computing trends and why they translate into a

considerable increase in complexity. The section also covers the terminology, the

details of a modern verification process and topics related to semiconductor debug

20

1.8 Thesis Organization

and hardware units. Many elements from the literature are covered from industry

experts and academics. Chapter 3 covers assertion terminology and the process

used to convert assertions to hardware checkers. Hardware assertion threading

and how this can assist in the debug of pipelined circuits, are also covered along

with the partitioning mechanisms and an algorithm allowing time sharing of as-

sertion circuits to reduce area overhead in circuits where many assertion checkers

need to monitor a subset of signals. Chapter 4 focuses on connecting those circuits

to the memory map of larger systems and provides an automation framework.

This chapter also explains how the memory map can be made more transparent

and directly accessible from the operating system while preserving memory pro-

tection mechanisms and permissions, enabling its use in large, multi-user systems.

This chapter also outlines how this was prototyped on a high-end reprogrammable

system running the Linux operating system. Chapter 5 discusses the integration

of the debug methodology in a large Network on chip and associated problems

when one considers hardware assertion and sequence checkers placement. This

chapter attempts at offering a quantitative measure of quality when one considers

the requirements of test, monitoring and debug capabilities.

21

Chapter 2

Background and Related Work

This chapter will first cover notable trends in debug support for modern digital

computing systems. To clarify any ambiguity in the semantics, an overview of the

terminology of IC design, verification and test will follow. Next, a modern verifi-

cation methodology will be covered and the techniques will be put in context such

that one can then understand why the verification process is so closely linked with

the debugging phases in digital designs. New developments in verification are

then presented, notably the use of temporal language and assertion statements in

the verification process. Then, the debugging process of silicon devices is covered,

highlighting previously accomplished work in that area. Notable trends from the

literature in Design for Debug (DfD) are highlighted.

Finally, trends in complex SoC and migration to the NoC paradigm are dis-

cussed, along with how this will affect the complexity of debugging process and

how other researchers have approached the problem.

2.1 Complexity Trends in Digital Systems

2.1.1 The “Simple” Hardware Systems

Simple digital designs, the ubiquitous kind that abound in everyday prod-

ucts from coffee makers to simple industrial controllers can afford to separate

23

2 Background and Related Work

the hardware-centric debugging from the application code and thus can provide a

working device which the software can be developed on. The debugging of those

simple designs can be approached methodically, but may not require so much ef-

fort in defining a verification and debug strategy. Most modern microcontrollers

include at minimum a debug infrastructure to control the CPU execution, exam-

ine memory content and registers. In debugging those systems, a few captures of

the device behavior and a succinct analysis is sufficient to extract enough informa-

tion from the symptoms of the device to find the solution to its problems. Since

the digital logic devices making those systems are thoroughly validated, the bugs

that remain are mostly software based and require only a change in the code to

be fixed (with the exception of the occasional silicon errata). This device segment

offers a point of interest to researchers, who try to offer more dynamic visibility

into a device’s operation as it is running, instead of requiring the execution to stop

(e.g. breakpoints) to examine the content. One has to note that those types of de-

signs represent a large market share and consume the bulk of the semiconductor

production. They are usually very cost sensitive, so the debugging support is usu-

ally minimal in order to limit the cost of the devices. For interested readers, a good

overview of debug standard description (JTAG, breakpoints) used in those devices

is provided by B. Vermeulen [28].

As future designs will be required to work on ever more complex data sets,

their analysis requires more powerful tools, especially if the data is encoded in a

non-trivial way. For example, if blocks of data are encoded to increase their ro-

bustness, segmented among multiple transfers or encrypted. A dump of states

or signal trace becomes too complex for direct analysis. Some assistance from

computer-aided tools, such as protocol analyzers, becomes beneficial.

More complex devices trickle down into the commodity product market at a

very fast pace and consumers expect their latest appliances to be "smarter". This

means that even low-end products will also see an increase in their internal com-

plexity. For example, USB ports, at one time only available on personal computers

are now part of many consumer products from digital cameras to telephones and

even picture frames. This trend has to be addressed by providing engineers tools

that will facilitate the debugging process and abstract away this new complex-

ity. Nowadays, the lowest-cost microcontrollers that sell for a dollar already in-

24

2.1 Complexity Trends in Digital Systems

clude the necessary logic to allow them to be debugged in-system. Recent updates

by leading microcontrollers manufacturers now provide dynamic modification of

memory content, hardware breakpoints and low-pin count debug interfaces in de-

vices selling well below 2 dollars 1.

Such modern, but “simple” designs are not of prime interest in this research

since their complexity is offset by the ability to control and monitor their internal

structure. However we can observe that even those “simple” design examples

would be considered considerable technological achievements only 10 years ago.

Thanks to the basic debugging support built into modern microcontrollers and

powerful logic analyzers, bugs in those systems are easier to locate and fix.

2.1.2 Programmable Logic and Reprogrammable

Systems-on-Chip

Figure 2.1: Small FPGA structure showing the die representation (1), a block
containing many logical elements (2), a single logic block (3) and finally, the
internal details of a logic block, highlighting the look up table and flip-flop (4)

In contrast to processor architectures that execute compiled code trough archi-

tectural microcode, an entirely different class of devices that differ fundamentally

1. Example include devices based on ARM Cortex-M3, such as NXP LPC1311 or ST Microelec-
tronics STM32F100

25

2 Background and Related Work

in the way they process data exist: FPGAs.

FPGAs are based on a very large number of relatively simple logic primitives

composed of look-up tables, single-bit registers (flip-flops), small and distributed

RAMmemories and sometimes dedicated hardware units for specific digital signal

processing, communication functions and advanced Phase-Locked Loops. With

enough FPGA logic primitives, one can essentially build any complex digital cir-

cuit. In their smallest offerings, FPGAs can be used to attach multiple circuits

together or perform protocol adaptation. Their flexibility allows them to replace

many different components on a circuit, often reducing the final bill-of-material.

Their re-programmability is their main advantage, allowing the engineers to ac-

cept changes in the design and increase visibility and control when embedded

in complex systems. Figure 2.1 shows the typical hierarchical structure found in

modern FPGA in ascending level of detail as one can see when zooming in on the

device representation 2.

FPGAs offer flexibility because they allow the designer to compose logic func-

tions such as OR and AND, adders, multipliers, barrel shifters, memory and so on.

By combining those primitives, one can architect an arithmetic and logical unit,

an instruction decoder and a register file. Building up from those blocks allows

the design of a custom processor optimised for a given application. The resulting

device might be slower (frequency-wise) than its ASIC equivalent. However, the

development cost of modern ASICs is constantly increasing, making FPGAs more

and more economical in new applications. Such customized processors are typ-

ically very good at manipulating low-level data streams (bit manipulations) and

can offer much lower latencies and faster response time than a software-based so-

lution running on microcontrollers.

Advanced, state-of-the-art FPGAs can perform a lot more than glue logic or pro-

tocol adaptation. By combining logic elements and instantiating IP blocks, one can

engineer an architecture that will do digital signal processing with a level of per-

formance that outperforms any standard microprocessor, especially in fixed-point

processing. Such examples can be found, for example, in large telecommunication

2. The FPGA illustrated is a low-cost Altera Cyclone III FPGA (EP3C10). The graphical repre-
sentation of the logical elements were extracted from Altera Quartus II 10.0 using the Chip Planner
utility.

26

2.1 Complexity Trends in Digital Systems

(core broadband) switches, military radar digital processing and computer-aided

tomography equipment. In some applications, the FPGA is the only type of device

that will be an economically viable solution to handle the very large input/output

data rates and keep up with the parallel processing requirements.

For low volume applications, the FPGA may also fully replace a custom ASIC.

It will be faster to develop, have lower non-recurrent engineering costs and can

tolerate a few bugs since it can be re-programmed. With the ASIC route, a bug

will result in a lot of expenses to fix. Since the FPGA manufacturer can sell a

given device to hundreds of different customers, the FPGA technology can use a

very advanced lithographic process. The increased cost will be amortized on the

larger production volumes. The FPGA is effectively slower than an equivalent

ASIC for the same logic function, but it usually benefits from a generation or two

of semiconductor process improvements and is often fast enough for the intended

application. FPGAs are very successful products and are gaining ground on what

used to be ASIC territory only a few years ago. FPGAs were once part of the glue

logic of circuits, but are now a central element of many products. They can act

as memory controller, switching matrix, protocol adaptation layer and often, are

the actual computation unit of the product. The latest generation of FPGAs are

astonishingly dense structures with over 2 million flip-flops. With those devices,

the FPGAwill definitively not be glue logic. They can integrate multiple CPU cores

and advanced memory and communication controllers.

Because of their re-programmability and their ability to emulate any digital

logic circuit, the FPGA is a very important tool in enabling rapid prototyping of

ASIC circuits. Furthermore, newer generations of FPGA allow partial dynamic

reconfiguration which allows sections of the device to be re-programmed while

keeping other parts of the device active. This has particularly interesting appli-

cations to prototype the advanced debugging methods presented in this thesis.

FPGAs will allow the emulation of complex circuits and their re-programmability

can be a great aid to debugging. Sequence and assertion checkers can be instanti-

ated inside the FPGA, next to the logic under debug. In doing so, dynamic observ-

ability of the device operation can be greatly enhanced, as will be covered in the

next chapter.

Recent advances from leading FPGA vendors [1] allow heterogenous systems

27

2 Background and Related Work

Figure 2.2: State-of-the-art Xilinx [1] FPGA interconnect using through-silicon
vias to integrate multiple dies in a single package

(Processors, FPGAs, ASICs) to be reliably packaged in a single device, allowing

even more logic density and functionality to stem from this novel interconnect

and packaging technology. Figure 2.2 shows the process of combining multiple

dies with through silicon vias and microbumps to achieve the highest integration

density.

Currently, FPGA debugging tools mostly focus on integrating the equivalent of

a small logic analyzer in the re-programmable fabric. By using some spare RAM

memory blocks, samples can be accumulated inside the device and once captured,

they can be sent out to a workstation for analysis. The triggering logic can in-

clude multiple levels or states, but generally, does not support complex temporal

expressions. The universal support for logic circuit in the FPGA allows the use of a

more advanced debugging strategy, but the code has to be provided at the register-

transfer level to the FPGA tools. This thesis addresses the automatic generation of

hardware register files to assist in this process in Chapter 4.

28

2.1 Complexity Trends in Digital Systems

2.1.3 Graphic Processing Unit Programming

One of the earlier assistants to the processor, the video card graphic acceler-

ator, is now surpassing the CPU (s) of most modern personal computers in its

parallel floating point calculation ability. As CPU architects push more hardware

resources into speculative execution, cache coherence mechanisms, virtualization

and memory management, not much area on the silicon die is left for the actual

floating point and fixed point arithmetic logic used to perform the actual compu-

tations. On the other hand, Graphic Processing Unit (GPU) architects always had

to worry about the massive computational requirements of 3D image synthesis

and manipulation. Modern games require real-time rendering of texture-mapped

three dimensional scenes composed of millions of polygons. The algorithms used

to render 3D scenes necessitate a large number of matrix operations. During its

evolution, the graphic card, which started as an accelerator for matrix multiplica-

tion, slowly evolved into a massively parallel array of very specialized processing

units capable of executing complex routines. A recent GPU video card can exceed a

teraflop – one thousand billion floating-point operations per second. Yet, that “su-

percomputer” is affordable enough for anyone to purchase at any electronic retail

store. This considerable parallel computing capability is reached using hundreds

(sometimes thousands) of relatively simple processing units executing specialized

instructions.

(a) Multicore CPU (b) Multicore GPU

Figure 2.3: Multicore CPU versus multicore GPU showing how much more area
is dedicated for the control and cache memory in a CPU architecture when
compared to the GPU architecture.

Figure 2.3 (adapted fromNVidia CUDAManual [29]) illustrates the fundamen-

tal architectural difference between a multi-core CPU architecture and the GPU ar-

29

2 Background and Related Work

chitecture. The multicore CPU has a significant area dedicated to cache memory

and control while the GPU has a lot more area dedicated to the Arithmetic and logi-

cal units (ALUs) at the expense of much less sophistication in the control structures.

This leads to a more restrictive and more complex programming style on the GPU,

but outstanding performance when all the ALUs are actively used.

The typical modern personal computer thus embodies two very different com-

puting paradigms running side-by-side. The main CPU has a few very versatile

cores capable of executing a few billion complex instructions per second. The GPU

has an array of simplified cores all running in parallel, capable of computing hun-

dreds of billions multiplications, additions or logic manipulations per second.

This dual solution approach to the design of the personal computer leads to a

few interesting attempts at utilizing the massively parallel computation power its

GPUs can acheive to solve problems outside the realm of 3D image synthesis and

rendering, such as molecular simulations and engineering finite-element analysis.

Leveraging the GPU computing power is rapidly gaining in popularity. How-

ever, the complexity of writing (and especially debugging) the specialized GPU

firmware has limited its growth. Very few programmers can write applications

that make efficient use of the computing resources available in a GPU. New pro-

gramming and debugging frameworks are helping to improve on that, but GPU

programmers are also facing the limit of parallelism that can be extracted from

a given algorithm, so both the CPU and GPU architectures are going to remain

side-by-side for quite some time.

GPU architectures also require solid support for debugging. In most cases, a

model of the GPU is used to assist the developer [30] to do the initial work of port-

ing an algorithm to a GPU and debug it. Some researchers even go to the extent

of full system simulation with hardware models to ensure proper integration of

the drivers and GPU integration [31]. A lot of effort in programming for those

architectures involve performance tuning, getting rid of subtle errors such as out-

of-bound access and race conditions, so advanced methods to trace the execution

flow were explored [32].

30

2.1 Complexity Trends in Digital Systems

2.1.4 Computers and Virtualization

When CPUs started to integrate multiple cores, many observed that in typical

systems those cores are not used all the time. In fact, CPU utilisation on a typical

workstation is very far from its theoretical limit when averaged over a long period

of time. Since computers use a significant amount of energy, multi-core systems

become under-utilized if they are running a single operating system and selected

user applications. In big corporate centers, this leads towasted resources (electrical

energy) and unnecessary costs (cooling, maintenance).

The disconnect between the hardware levels (registers, cache memory, inter-

connect) and operating system primitives (virtual memory, kernel task manage-

ment) increases as programmers attempt to abstract the machine in a way to re-

use an ever larger software code base without modification or re-compilation. The

cost of developing and maintaining software systems has become so high that full

machine virtualization is now an acceptable solution for many obsolescence prob-

lems. The cost of re-compiling (porting) the code base to the newer systems is

often exhorbitant since programmer resources are limited, expensive and the port

to newer operating system will introduce new, hard-to-fix bugs.

With virtualization, the processor microarchitecture is augmented with a few

additional instructions and memory management modes such that the processor

can effectively run multiple Operating Systems (OS) concurrently, with each OS be-

ing under the (selfish) impression that it runs alone on a dedicated machine. Infor-

mation technology departments rejoice with the physical and power reduction of

running multiple services on a single physical machine. The end user doesn’t see

any difference since network virtualization enables the virtual machine to appear

exactly as a physical workstation on the local network. Virtualization technology

helps isolate each application and OS interdependencies and allow for a more effi-

cient use of computing resources.

Virtualization is also a very powerful mechanism to assist in the debugging of

the internals of a running system. Since the operating system effectively runs in a

sandbox, a crash at the core of the virtualized OS will not bring down the entire

computer. The underlying paravirtualization layer and associated operating system

will remain operational. This method, when viewed from a debug perspective

31

2 Background and Related Work

will allow a more efficient debugging process for distributed systems [33]. It also

allows more advanced debugging and analysis of driver behavior [34]. While the

debug of virtualized systems is an interesting topic and not the primary focus of

this research, it shows that with proper hardware support (in this case specialized

instructions), debugging abilities can be greatly enhanced.

2.1.5 Multi-core System-on-Chip and Network-on-Chip

Evolution

The modern microprocessor aims at processing a given stream of instructions

as fast as possible. In a typical stream of instructions, parallel elements can be au-

tomatically extracted, leading microprocessors to implement many forms of spec-

ulative execution, which provide an overall gain in performance. Unfortunately,

speculative execution greatly increases the processor’s complexity. Performance

becomes dependent on many different factors, including how the instructions are

presented to the microprocessor and how the underlying instruction stream ac-

cesses the memory and computation resources.

Computing cores themselves have reached a level of complexity that stands to

benefit from a parallel combination of the same units rather than improvements in

the core themselves. This is shown by the relatively recent explosion of multi-core

microprocessors. A multi-core machine (where the processor cores share a com-

mon level of cache memory) was an exotic system only a few years ago, usually

spending most of its clock cycles amusing researchers in computer science and

engineering or benefiting very large military or commercial endeavours. Nowa-

days, even a low-cost handheldmusic player can includemultiple processing cores

allowing the device to run a combination of processes in a power-efficient way.

Individual core processing performance has significantly slowed from its rapid

progression in the 80s and 90s. The new processors get their performance advan-

tage from parallel computing on multiple cores enabled by the higher density of

smaller geometry lithography. To keep software complexity under control, these

cores share a level of memory. However, placing multiple cores on same memory

structure creates resource contention and the performance doesn’t scale linearly.

Intel and AMD now offer chips with 6 cores, but experts agree that further “hor-

32

2.1 Complexity Trends in Digital Systems

izontal” scaling of cores will not bring major benefits [35]. Multi-core processors

thus suffer from a performance bottleneck stemming from sharingmemory among

the computing cores. As programmers prefer to work in a system where each pro-

cessing element “sees” the same memory, the mechanisms to ensure cache consis-

tency and coherency become more complex as cores are added. Furthermore, the

physical distances and logic complexity increases the processing delays. This ul-

timately penalizes the performance of the system, negating the benefits of adding

more processing cores.

(a) Four CPUs on a Shared Bus

(b) 16-cores NoC-based System

Figure 2.4: Multiple CPU cores sharing a single bus suffer from limited scalability.
NoC-based systems address this problem through hierarchy, paralellism and
locality of traffic. I$ stands for instruction cache and D$ stands for data cache.

Researchers have thus turned to the NoC paradigm [36, 37] as a way to handle

the scaling up of the number of processing core. Figure 2.4 illustrates an example of

this transition through the use of on-chip routers. Instead of having each comput-

33

2 Background and Related Work

ing core share their memory on a single bus, the cores are tiled and interconnected

in a way that resembles a high-performance computing cluster. The interconnect is

done using on-chip networking primitives. The obvious benefit is the lower inter-

connect distances and higher density, which leads to lower power usage. This new

approach to multi-core computing can offer a path for future scaling of computing

power. This field of research is quite young [36]. Which topology, interconnect

medium or programming paradigm will prevail in the next years is far from ob-

vious (and will depend significantly on the end application), but this approach

to multi-core scaling shows great potential. One important aspect to consider is

that as multi-core systems evolve, the software’s ability to exploit these cores be-

come increasingly more difficult. This novel interconnect strategy requires careful

analysis of the traffic flow pattern since congestion and latency in the communi-

cation network will heavily penalize the performance of the final application. The

debugging of this new computing paradigm will not be simple as both the logi-

cal structure and temporal relationship between computing elements have to be

considered in parallel for the solution to work well.

As one considers the software as a dominant part of a digital logic solution, a

successful product will more and more have to incorporate a holistic debugging

strategy that leverages the visibility and control of the hardware structures with

the abstraction level of firmware libraries. In future designs of multi-core or NoC

systems, the low-level firmware that sets up the routing and data flow cannot be

seen as an afterthought since it will become an integral part of the critical path the

system, thus has to be debugged in parallel with the hardware device. As high-

lighted in the list of properties presented in Section 1.5, this work proposes away to

embed in hardware the means to dynamically observe sequences of events occur-

ing inside the multi-core system. This way, the critical performance counters that

programmers can use in multi-core sytems to help their integration of firmware

can be derived from the system-level properties defined during verification.

In summary, many different hardware architectures and computing paradigms

exist and more will evolve. In all cases, one important issue always remains:

debugging the devices first and then the system. The logic gates, microcode,

firmware and user code all have to be well integrated to obtain a stable and reliable

34

2.2 Terminology

solution. From the early days of relay-based computers to modern day, billion-

transistor multi-core systems, they all require significant debugging at every level

of their design process and integration. The evolution of digital circuits does not

converge to a single, universal and simple solution. A problem may be particu-

larly well suited to be solved using GPU computing while another may be a lot

more efficiently handled by an FPGA. Each solution has its own and unique de-

bugging strategy. The integration of debug tools in heterogeneous architectures to

form a comprehensive strategy will require a considerable abstraction effort. Even

the most dedicated and brilliant engineers will not be able to fully grasp digital

circuits of such scale.

2.2 Terminology

The semiconductor industry, being one of themajor engines ofmodern progress,

spans large industrial segments, each with its own set of terms and jargon. This

thesis will be using the technical terms presented below in the context of large-

scale digital design. Often, the general English meaning carries ambiguity, so a

few examples will try to clarify their meaning in the context of this work.

Many terms are adapted from the Property Specification Language (PSL) [38] lan-

guage referencemanual, which defines a verification language. Therefore, the terms

are well suited for a system-level approach as covered in this thesis since the ver-

ification process is situated between the conceptual design process (customer re-

quirements, specifications) and the chip production phase (actual fabrication and

automated testing of large quantity of IC devices).

– Verification: The process of confirming that, for a given design and a given

set of constraints, a property that is required to hold in that design actually

does hold under those constraints. In a more general context, the verification

process aims at checking that the logic circuit actually behaves as intended in

the design specification. Verification requires that the design specification be

written such that each requirements is unambiguous and fully describes the

intended output for a given set of inputs. Unfortunately, real-world specifi-

cations can only approximate this ideal. In most designs, natural language

35

2 Background and Related Work

(e.g. English) is used along with strong verbs aiming at emphasizing the re-

quirements and objectives of the design (e.g. the unit shall acknowledge the

transfer within 4 clock cycles). As designs get more complex, the verification

process will require the use of more formal language to record their specifica-

tions.

– Dynamic Verification: A verification process in which a property is checked

over individual, finite design behaviors that are typically obtained by dy-

namically exercising the design through a finite number of evaluation cy-

cles. Generally, dynamic verification supports no inference about whether

the property holds for a behavior over which the property has not yet been

checked. This step is often referred to as simulation by tool vendors and the

industry. Dynamic verification is simple to understand by using a small bi-

nary counter as an example. The dynamic verification of this counter would

be to check that at each clock cycle, the output is incremented by one. If

the counter has a reset input, then one must check that when this input is

asserted, the counter outputs zero. If the counter has N bits, it is easy to

visualize that after 2N clock cycles, the counter would have gone through

all its internal states and thus dynamic verification would have covered its

behavior. However, to be correctly used, the dynamic verification environ-

ment has to use some form of checker to predict the correct counter value and

at each clock cycle compare the actual logic state with the predicted value.

As one can see from this simple example, even the simplest counter requires

considerations from a dynamic verification perspective.

– Formal Verification: This verification process aims at proving or disproving

the correctness of an implementation with respect to a formally defined spec-

ification [39] using mathematical techniques. To contrast this method with

dynamic verification, the counter example can be re-used. In formal verifi-

cation, we would state formally that the counter’s next value is always the

current value + 1 with the exception that when the counter is saturated, the

next value is zero. The formal checker would then look at the counter logical

implementation and expand the current-state and next-state logic to explore

36

2.2 Terminology

all possible states. One can see that for large counter, this state expansion

will create a very large structure. A formal checker can then traverse the

generated graph and validate that at each possible state, the specifications

are met. The end result is proof that the counter either meets the formally-

defined specifications or fail them (in which case the tool would provide the

counterexample). In this method, only the formalized specifications and the

unit under test are required. A test bench is not needed. In advanced designs,

only a small percentage [40] of a complete device can be formally proven. The

most problematic part being that one needs a formal specification of the de-

vice, which in itself may be harder to define than the actual RTL implemen-

tation of it. However, many experts still agree that formal verification can add

a lot of value to the process [39, 40]. However its main use is still focused

on validating CPU microarchitecture, critical aerospace subcircuits or simi-

lar well-defined structures. Note that formal verification also carries another

meaning when discussing logic circuits. Some tool vendors call formal verifi-

cation the process of proving the equivalence of two logic circuits (flip-flops

and their associated cone-of-logic) when it should be called formal equivalence

checking. Often, that “flavor” of formal verification is used during logic syn-

thesis to ensure that transformation (optimisation) of logic functions did not

introduce bugs.

– Simulation: A type of dynamic verification, also called logic simulation. This

process is typically done on a workstation using a special software that com-

piles the HDL language into an executable form. This executable program

manages a very large number of tiny “threads” which emulates the paral-

lel activity of the modeled hardware gates, flip-flop storage elements and

similar primitives. On a physical IC, each hardware element operates inde-

pendently and in parallel. On a simulator, this is abstracted by continuously

computing state updates and advancing the time in discrete steps (delta cy-

cles). It is easy to understand that as a system grows in complexity, the sim-

ulation performance can only degrade. Thus, large systems become noto-

riously difficult to simulate efficiently, which leads to the use of a hardware

accelerated process called hardware emulation (see below). During simulation,

37

2 Background and Related Work

many checks can be done at every clock cycle to ensure that the design meets

the specifications. Simulation is used extensively to validate designs. In sim-

ulation, the design is a pure software model, thus visibility and controllability

of internal nodes is straightforward.

– Property: A collection of logical and temporal relationships between and among

subordinate Boolean expressions, sequential expressions, and other proper-

ties that in aggregate represent a set of behaviors. It is by defining a complete

set of properties that one can build up the formal specification of a design.

– Checker: An auxiliary process (usually constructed as a finite state machine)

that monitors the simulation of a design and reports errors when asserted

properties do not hold. A checker may be represented in the same HDL code

as the design (they are usually limited to non-temporal checking if the lan-

guage is VHDL or Verilog, for example) or in some other form that can be

linked with the simulation model of the design. For example, PSL or System

Verilog Assertions (SVA) are languages that offer flexible and efficient means

of writing checkers since they support temporally complex expression se-

mantics. Some verification tools offer the use of languages more apt at ab-

stracting complex behavioral statements (e.g. SystemC, “e”, OpenVera). In

this thesis, a checker can be a software process running on a simulator (in a

simulation context), but may also be a digital circuit performing the same

task such as a hardware checker in a silicon device. This thesis refers to the

checker as assertion checker since it is usually associated with an assert state-

ment. If the checker triggers, it means that an assertion has failed, indicating

that the design fails a given property.

– Coverage: A measure of the occurrence of certain behavior during verification

(typically dynamic) and, therefore, a measure of the completeness of the dy-

namic verification process. For an incremental counter, we can consider each

counter value as a coverage point. We can also consider an asserted “reset”

input as another coverage point. Coverage is an important measure of the

progress of the verification. Without coverage information, it is difficult to

judge how much of the design has been verified and how much remains be-

38

2.2 Terminology

fore one sends the chip to fabrication. Note that complete coverage of a circuit

can mean different things to different people. In formal verification, com-

pleteness means that all the possible states have been verified. This is only

feasible for very small circuits due to the state space explosion problem dis-

cussed above. More generally, the coverage is complete when a given set of

coverage measurements have been reached. In typical designs, the coverage

will rapidly grow at the beginning of the verification phase. However, as

more and more of the “low-hanging fruits” of the logic space are covered by

the verification process, ever more complicated stimuli are required to reach

certain states. For a simple counter, it is quick and easy to let it reach all

its possible values by letting it run. However, one could want the reset of

this counter to be tested for each possible counter value and the test would

need some automation to let it run to a given value and then apply the reset.

This example show that depending on the verification goals, coverage met-

rics have to be correctly defined and only then can the completeness of the

verification process be measured. In contrast, formal verification in this exam-

ple would only require an extra property stating that if the reset is asserted,

the counter falls back to zero.

– Design: A model of a piece of hardware, described in some HDL. A de-

sign typically involves a collection of inputs, outputs, state elements, and

combinational functions that compute next state and outputs from current

state and inputs. Typical hardware design languages are VHDL and Verilog.

Some designs can be described in more abstract languages such as SystemC

or SystemVerilog. New developments in synthesizing those more abstract

languages are starting to bear fruit enabling the description of algorithms to

be transformed into a design in a flexible and efficient manner. It remains

that most of the designs are still implemented at the RTL level, mostly in

VHDL or Verilog. The design representation evolves during the various steps

leading to the production of masks. It may start as a block of SystemC code,

progress to VHDL code to refine its behavior, then translated into EDIF (inter-

connected ASIC primitives) and finally transformed into GDS II (IC Layout

format defining metal layers and physical structure).

39

2 Background and Related Work

– Hardware emulation: The process of using a hardware circuit to replicate the

behavior of the final circuit. A hardware emulation system often adds sub-

stantial debugging capability by allowing the state of the design to be mon-

itored at clock cycle boundaries. Because of the high cost of hardware em-

ulators, some users will use FPGAs in a prototype to test the functionality

of an ASIC chip before it is sent to fabrication. Some hardware emulators

internally use FPGAs to support the end circuit along with monitoring and

control. The main advantage of hardware emulation is the higher execu-

tion speeds that can be obtained when compared to a software-only solution.

Simulation runs that may take many hours on a simulator may be completed

in a few seconds on a hardware emulator. A hardware emulator is a machine

built from re-programmable logic elements that will be set up with a rep-

resentation of the logic circuit, often adapted to the hardware emulator [5]

architecture. Unlike the workstation that uses a general CPU to execute the

hardware model in one fast thread, the hardware emulator will have inher-

ent parallelism and can execute many of the hardware “threads” in parallel.

However, hardware emulation typically falls short of providing the perfor-

mance of the final device.

– Testing: The process of validating the correct fabrication of a given hardware

device. Usually, the testing process will be aimed at providing a good level

of confidence that a given production IC device from a manufactured lot has

no defects. The testing process is tuned for large volumes and aim to operate

in a cost-effective manner. Since each IC produced is a copy generated from

the same masks, if the original masks are fault-free, each copy should be

“perfect”, in theory 3. However, random events during the fabrication steps

(dust particles, contaminants, process variations) can all introduce defects

which can affect the manufactured circuit and leave the final product unfit

for use. The aim of testing is thus to rapidly identify and reject the defective

dies (or in some cases, work around the defect by re-programming a section

3. If the masks used to fabricate a device have a bug (design error), then the bug will be present
on every manufactured device. From a testing process point of view the manufactured devices
would all be acceptable. The bug being due to a design error and not a physical problem during
manufacturing the device.

40

2.3 Modern Digital Verification Methodology

of the device).

2.3 Modern Digital Verification Methodology

A simple custom logic solution ASIC below a few tens of thousands of logic

gates can be modeled and realistically simulated using only the RTL source as a

basis for its verification. Small FPGAs involving a low risk and similar simple de-

signs can be “verified” simply by looking at the waveforms resulting from a simu-

lation. The advantage of this approach is that only RTL development experience is

needed. The designer can look at the waveforms, study the results of the simula-

tion and interpret them as either valid or invalid. This technique works but suffers

obvious drawbacks. The most obvious one is that every change in the design re-

quires the review of all the test cases and an interpretation of the pass/fail criteria.

A slightly more scalable approach would be to save the golden reference trace and

use it to compare the updated design. However, simple changes in the design may

result in a new waveform that renders the golden reference waveform unsuitable

for comparison, requiring a new visual analysis. The ad-hoc verification technique

using golden reference waveforms (or saved traces) falls apart very quickly for

complex systems. Many simple changes or bug fixes transform the waveforms

so significantly that the process quickly uses too many engineering resources. A

higher level of verification abstraction is needed to make the verification process

tolerant to small changes in the logic circuit (e.g. changes that are made to improve

timing of logic paths, but which do not affect the functionality).

As a design grows in complexity, size and feature set, the number of test cases

required to validate its logical functionality becomes increasingly large and the

resulting waveforms become undecipherable at the RTL and bit level (think of

time-multiplexed systems or encrypted data). Software is then required to assist

in the interpretation of the simulation data sets and as they propagates in themem-

ories, allow the designer to track the progress of abstract data units, computation

pipelines and logic gates of the circuit. The verification problem is further con-

strained by the fact that larger designs become increasingly computationally in-

tensive to simulate on a workstation. The combination of both complexity and

41

2 Background and Related Work

size requires a change in abstraction level to allow larger systems to be success-

fully verified.

To utilise the massive logic resources of newer FPGA or ASIC processes, a large

increase in abstraction has to be accomplished in the verification process. This is

becoming critical and will be a necessity to accomplish the verification and inte-

gration of large SoCs and even more for the NoCs of the future. Not only does the

verification environment have to change, but new languages have to be integrated

in the verification flow to improve the designer’s productivity.

A well-known approach to enhance the productivity is the use of pre-built

modules, commonly known as IP Cores. When used, they greatly accelerate the

design flow, but they require a different approach to verification.

2.3.1 Black Box and White Box Verification

The verification of modern designs typically employs a multi-level approach

to the problem. It can be approached in two very different manners, namely black

box verification and white box verification based on the internal controllability and

observability and intimate knowledge of the circuit under verification. Often, for

a same circuit, both approaches may be simultaneously used with the name gray

box verification.

The black box verification of a design does not assume any knowledge of the

internal circuit, thus the task is based only on the input/output behavior and com-

pares this behavior against a model or its specifications. This approach is required,

for example, to verify an IP core that is bought from an external entity in the con-

text of design re-use [41]. The source code would not be available for IP protection

reasons or because the design is the actual circuit representation and not available

in high-level code, for example when using hardware macros built from design

primitives such as LUTs in FPGAs or primitive cells in an ASIC design flow. In

the black box mode of circuit verification, the core of the verification effort will

be located at the boundary of the design unit (interface ports) such that the input

and outputs to the modules can be accurately monitored, recorded and predicted.

Often, the IP interface protocol is well specified (e.g. Advanced Microcontroller

Bus Architecture bus [42], Wishbone [43]). Verification of the IP block interfaces is

42

2.3 Modern Digital Verification Methodology

required even if the block comes from a reputable source (and is presumably thor-

oughly verified) since one has to prove that it is correctly integrated in a new design.

For example, the IP block may be used in a way that is beyond its specifications

and may cause a protocol error on its interfaces even if it was designed and veri-

fied by the provider. The IP provider could not envision their block to be driven

in such a corner case, thus did not verify it under those conditions. The use of an

assertion-based methodology can greatly assist in the integration of black-box IP

since the assertion checkers can be left as part of the IP block as a way to ensure

that the module is used as intended. Section 2.4 and Chapter 3 provide more de-

tails and usage scenarios since assertions are a key element of the presented work.

An example of white box verification would be for design blocks produced

as part of the design implementation process and usually built from RTL code

(e.g. VHDL, Verilog) or higher-level design methods such as synthesized RTL

from C or SystemC [44, 45, 46] or using automated architecture generators such

as GAUT [47]. In this case, the designer has a good visibility on the internals of the

design block and may add monitor and special logic checkers to the logic to en-

sure that the internal circuit operation respects certain fundamental assumptions.

In the case of high-level synthesis, however, the internal structures of the generated

RTL is relatively cryptic as they are the result of complex optimizations, automatic

register scheduling and state-machine generation. Therefore, pure white-box veri-

fication becomes too difficult and a compromise has to be reached where visibility

and controllability of the internal nodes is traded off. In such scenarios, a gray box

verification approach is more suitable as the internal details of the circuits are too

complex to directly address, but the data flow, internal structure and overall circuit

behavior is nevertheless well understood.

2.3.2 Structure of a Verification Environment

Although most verification environments have to be adapted to the particular

type of circuit under verification, they tend to follow a common structure with the

details varying depending on the complexity of the circuit being verified.

A prototypical verification environment is presented in Figure 2.5 and illus-

trates the Device Under Verification (DUV) being driven by two Bus Functional Mod-

43

2 Background and Related Work

Figure 2.5: Prototypical Verification Environment

els (BFMs) under the control of the Verification Controller. The DUV may represent

a sub-module of the entire design or the complete circuit (including the printed

circuit traces and multiple ICs), depending on the level of verification. Typically,

the top-level simulations are only performed as a sanity test to verify the main in-

terconnections and glue logic rather than as a way to fully verify the design com-

pliance. This is mainly because of the very long simulation times (many days)

required to run the full simulations using the complete device model. Once a cer-

tain level of confidence is achieved with the block-level simulations and top-level

simulations look sane, the designers will move on to emulation or FPGA proto-

types in order to put more simulation clock cycles on the design and attempt to

uncover the more obscure bugs that can only be triggered when a much larger set

of scenarios are performed.

The DUV is connected to a few BFMs. These address the translation from ab-

stract structures (e.g. packets, flits, memory transactions) into their time domain,

clock-accurate representations. This translation process is often a complex set of

routines, but the increase in abstraction facilitate the maintenance and creation of

verification scenarios. Most of the generation logic benefits from working at much

higher levels of abstraction and can be made independent of the exact timing de-

tails of the RTL. For example, the verification of “smart” networking switches re-

quires a detailed generator of Internet Protocol packet streams. A “smart” switch

has to keep track of connection streams starting and stopping, and those spanmul-

44

2.3 Modern Digital Verification Methodology

tiple packets. An Internet Protocol stream generator can be developed once and

re-used in multiple simulation environments without any changes at a high level

of abstraction. However, it will require a new BFM for each interface to the var-

ious internal hardware blocks. For example in one part of the chip the packets

may be present on a wide (e.g. 128-bits) bus and in the next part of the chip, the

same packet may be serialized on a single differential pair at the pins. Often, the

high level generators will be written in a programming language suitable for easy

incorporation of existing libraries (e.g. C/C++) and then integrated in a verifica-

tion environment that uses libraries to extend the representation of parallelism and

typical hardware concepts. A good example of such language is SystemC [44, 48].

Finally, the verification environment will include a few standardized simula-

tion control points that can initiate the DUV reset, setup the proper clock inputs

and perform the typical configuration of the DUV registers. This places it in a

mode where the DUV can execute the verification scenarios through the BFM.

2.3.3 Verification Classes

Keating et al. [41] separate the verification types in general categories. These

authors use the word “testing” (e.g. real code testing) as part of the names for

each verification class. However, to reduce confusion with the post-production

chip testing process, this thesis will use the word “verification” (e.g. real code

verification) for each type.

Real code verification is the core of the verification process and aims at proving

the correct operation of the DUV in normal operation and with real application

scenarios.

Compliance verification is typically done with a test suite that focuses on a de-

sign meeting some standardized specification. Sometimes, these test suites can be

acquired through the purchase of the verification IP from specialized companies.

Corner-case verification focus on the limits of the design, in contrast to the

previously mentioned real code verification. In corner-case verification the scenar-

ios will push the design into error conditions, for example by filling up FIFOs

until they overflow or by observing the recovery of transient error conditions by

introducing invalid conditions. Some conditions may not be realizable from the

45

2 Background and Related Work

external DUV inputs, so some form of gray box approach has to be used to inject

the condition directly inside the logic.

2.3.4 Constrained Random-Based Verification

Recently, the use of random-based verification has increased. This can be noted

by the dedicated tools sold by Cadence and Synopsys and the long-term goals of

SystemVerilog to provide a comprehensive language that enables both hardware

description and hardware verification.

This approach to verification does not require the engineer to anticipate each

scenario, but rather to set up the verification environment such that typical param-

eters (packet length, burst count, response latencies) are selected randomly at the

start or during of the verification scenario execution. The parameters may even be

made adaptive to the simulation in progress. The entire simulation derives from a

single random seed to allow the exact re-creation of the scenario, should a bug be

discovered. This verification approach basically allows the computer to create its

own verification scenarios within the bounds given by a set of constraints. In this

context, the simulations would be run in batches and can uncover very obscure

bugs in the design since the unpredictability of the input scenarios can force the

device in a state unanticipated by the designers. Dedicated verification languages

such as e orOpen Vera have built-in support for constrained (biased) random-based

generation. This approach to verification is very productive, but requires large

computation resources. For large ICs, this mean compute farms that can host up to

ten thousand compute nodes.

One of the reasons that constrained random-based verification has gained ground

in large projects [49] is that when verifying complex circuits it can be used for both

real code verification and corner case verification, by applying the proper constraints

to the generation unit. For example, in the verification of a network switch, a ran-

dom packet generator could be designed to produce packets containing any kind

of source/destination and protocol information along with length ranging from

0 bytes (headers only) to thousands of bytes. If that generator was used with-

out any constraints on its generation, it would produce what amounts to digital

“white noise” at the input of the DUV and would not be that helpful early in the

46

2.3 Modern Digital Verification Methodology

verification effort. To address this problem, a set of constraints is applied to this

generator such that it will produce valid packets with proper headers and a valid

body size. The generator code remains the same, only the set of overlaid constraints

has changed. If the generator produces valid packets, then the verification envi-

ronment is operating in real code verification mode.

Assuming that the engineers want to test the limits of the design by sending a

sequence of large packets, it becomes possible to constrain the generator such that

it will start producing the biggest packet that the design can support and sustain

this generation mode for a given number of cycles. The same generator is now

operating in the corner case verification mode. If the engineer wants to test an error

condition, he could temporarily force his generator to issue a packet bigger that

the maximum size that is allowed and thus enter the realm of error recovery of his

circuit. Since the same generator can now be used to produce both typical, valid

and invalid data streams, the productivity gains are significant.

A lot of research is ongoing in this area, with teams trying to generate the ran-

dom scenarios in some “intelligent” manner by tuning the probabilities of the ran-

dom generators [50]. Other researchers [51], including our group at McGill [52],

aim at directly generating the test vectors from formal temporal specifications.

2.3.5 Golden Reference Model and Predictor

The constrained, random-based generator explained in the previous section

will generate the scenarios. However, this method alone does not validate the DUV.

Two more elements must be present in the verification environment: predictors and

coverage monitors. Together they form the validation layer of the verification envi-

ronment.

One of the most difficult challenges of advanced verification is the creation of

that predictor (also called golden reference). Usually, the predictor is coded in a high

level language that will attempt to abstract out low-level clock level timing and

model the correct input-output behavior of the design based on the specifications.

As an extra safety net, the predictor is usually coded by a different team in large

projects to ensure an independent interpretation of the specifications. The verifica-

tion task becomes a comparison between the DUV output and the reference model

47

2 Background and Related Work

output. The challenge usually lies in handling subtle differences in the interpre-

tation of the system-level specification from which both the hardware design and

the reference model are derived. The specifications are usually written in English,

which inevitably creates ambiguities that lead to differences in interpretation. As-

sertion checkers derived from temporal logic are among the tools that can be used

to code the validation layer of the verification environment. Unlike predictors how-

ever, they only handle the low-level temporal checks, so predictors are still required.

Temporal languages such as PSL thus assist in the creation of predictors since they

allow parts of the predictor to be built up from smaller temporal sequences. In

most complex verification projects, there is no single solution to the verification

problem and the approach will be a mix of reference models, temporal statements

and even post-processing of log files, when simulation results have to be processed

using advanced algorithms.

Often, multiple reference models are “connected” together to emulate larger,

more complex systems. For example, Lin et Al. show how they can structure the

verification environment [53] to address the complexity of verifying networked

systems (applied in their verification of an IEEE 1394a PHY Core). They use the

design natural network topology as a way to increase the complexity of generated

verification scenarios while reducing the burden of writing their own scenarios.

Vitullo et Al. [54] offers good examples of the challenges faced when verifying

large-scale NoCs.

In industrial applications, the reference models represent a very valuable form

of IP. Some companies even specialize in selling high-quality reference models of

hardware units 4.

2.3.6 Measuring Coverage of the Verification

The last element to close the loop on constrained random-based verification en-

vironments is the process of coverage monitoring. Once a testbench structure has

been created, BFMs have been written to connect to the DUV interfaces and a ref-

erence model for the particular feature is ready, the system can then be simulated

4. Verification vendors such as Cadence, nSys or Synopsys directly sell verification models for
most of the modern complex interfaces used in large designs such as double data rate memory
controllers, PCI-Express and Ethernet.

48

2.3 Modern Digital Verification Methodology

and error conditions or inconsistencies in the DUV will be noted by the test envi-

ronment. Using randomly generated scenarios, the testbench will exercise many

different logic paths and will thus uncover quite complex bugs. However, the very

large state space defined by the design possible states make it a tremendous chal-

lenge to run in a simulation. As an example, suppose that in a NoC, one wishes to

verify a simple on-chip router unit. Assuming that the flit (transfer) size can range

from 1 to 32 clock cycles, the destination address can vary from 0 to 3, we get

32*4=128 different combinations of values which would test those two parameters

and their combined effect. More complexity stems from the temporal variations

that also need to be covered, such as a flit going to port 0, followed by one going

to port 1. This increases the number of scenarios required to cover the temporal

variations in destination addresses.

Repeating the same analysis would lead to an interest in verifying that the

router can handle one large flit followed by one small flit. The definition for a

large flit could be 20 to 32 clock cycles and the small flits could be defined as 1

to 4 clock cycles. Then a scenario would be constrained to alternate large and

small flits. However, another approach exists: instead of forcing exact scenarios

via constraints on the generator, leaving the flit size to a random number is bound

to eventually produce this scenario. However, in order to guarantee that that par-

ticular condition has occured, one needs to add coverage to the test environment.

Monitoring the current flit size entering the DUV and previous flit size, along with

performing an analysis using the last 2 sizes that entered the same unit will allow

the verification engineer to know that the particular scenario has indeed occured

at some instant in the simulation through the random generation process. The cov-

erage information is usually kept in a database such that one can answer concerns

about a particular scenario by querying the database for a match. Thorough cov-

erage of the parameters along with no detected assertion failures and no discrep-

ancies between the DUV and the predictor increases the confidence in the design

robustness and is a measurable indicator of the verification progress.

Some coverage points may be difficult or near impossible to reach by having

the scenario generator randomly try various input combinations (even with a lot

of directed constraints). Some researchers thus focus on tuning the generators to

reach complex states in the circuit by analyzing its structure [50]. They can then

49

2 Background and Related Work

obtain the required coverage a lot more rapidly.

Coverage information being the key to gauge the verification progress plays a

key role in automated verification environments [55]. As such, a lot of coverage

information has to be gathered during the verification process. As will be shown

later, coverage can be collected during simulation on workstations, but can also be

obtained by running a partially synthesized version of the DUV on emulators or

hardware prototypingmachines (based on FPGAs, for example). This thesis shows

that some of the coverage logic can be efficiently written in temporal logic by using

sequences. Those can then transformed into hardware primitives and integrated in

emulators or even in the final silicon. This way, coverage can be collected much

more rapidly and even when the device is released. Furthermore, coverage or

sequence triggers can be very beneficial in the debugging process as will be shown

in Section 3.1.

2.4 Assertions and Temporal Logic in Verification

In recent years, a new design and methodology has made great improvements

in the resulting quality of verification that offers assistance to debugging. Assertion-

based design [7] proposes using assertions in RTL code as part of the designmethod-

ology. Those assertions effectively provide layers of formalism to the specification

and at the same time can be re-used during the verification to flag instances of a

given design error detected through deviations from the specification. Temporal

sequences and assertions are derived from the mathematical branch of temporal

logic which was explored in the 1960’s [56]. Assertion-Based Verification (ABV) has

found recent supporters since it allows designers to formalize their specification in

layers. As the device specifications are translated in sequences and assertions, the

ambiguities are progressively reduced and the specification thus becomes a lot less

subject to human interpretation.

In building the set of assertions defining a given circuit, the designers are ef-

fectively creating a lot of intellectual property in the process. This information is

extremely valuable and many benefits can be drawn if it is re-used in various steps

in the design process.

50

2.4 Assertions and Temporal Logic in Verification

Using sound design principles and applying them to assertions, the teams that

verified the SUN SPARC CMT [57] cited the following as their first recommenda-

tion on using assertion-based verification:

The philosophy of assertions has to be “write once, use always”. Ideally

they should be usable across all levels of simulation, formal verification

and hardware emulation.

Our goal of using assertions in the final silicon is shared with other researchers

including notably the work of Gharehbaghi, Hessabi and his group [58, 59] at

Sharif University and the commercial endeavour of Abramovici at DAFCA [60].

This work aims to extend this idea to the final silicon prototypes (and even re-

leased devices) to keep the benefits that they bring when it comes to bug tracking.

Recent research tools have allowed temporal expressions to be transformed into

hardware circuits that perform the checks in a device [61, 62, 63].

If, ultimately, one is interested in obtaining a correct physical device, then the

verification process cannot only be considered in isolation. Re-using the verifica-

tion IP development effort and leveraging the protocol analyzers and other instru-

mentations present in the test environment such that they can be re-used in the

final silicon is a noble goal. Furthermore, future designs that will lean towards the

use of high-level synthesis, which ultimately produces code, has to be considered

as a black box, making the verification of internal operation difficult. However, the

set of properties that the design must meet are still applicable at the boundaries

and thus can be attached to the hardware block. As typical assertion languages

such as PSL or SystemVerilog attach to hardware modules under verification, they

would be applicable to validate the output of high-level synthesis tools.

As the saying goes : “trust, but verify.”. One has to trust the algorithms that

will produce the RTL code from a high-level description or algorithm, however, the

high stakes involved in delivering a functional circuit require that a fair amount of

effort also be spent in controlling the output of the high-level synthesis tools. After

all, even well-built high-level synthesis tools are not themselves immune to bugs

in their internal logic.

51

2 Background and Related Work

2.4.1 Design for Debugging

Since debugging in the process of verification consumes a significant amount

of effort, researchers and industry groups have highlighted the need for a DfD

methodology that can be followed through up to the silicon. B. Vermeulen at NXP

(a large semiconductor manufacturer) has highlighted in multiple publications the

need to integrate and plan debug as part of the design process [64, 65, 66, 67]. Their

group emphasizes the necessity to have a to have a Debug Methodology, Debug-

ger software and Design for debug Tools for a proper silicon debug program. As

design get denser and faster, the internal data rates require silicon assistance for

the debug.

In other cases, researchers want to detect specific race conditions in complex

systems such as a NoC [68] since those are typically very difficult to debug. Their

DfDmethod can classify eventual errors as timing, FIFO protocol violations or tim-

ing errors by analyzing the distributed monitor’s outputs. Goel and Al. cover [69]

the need to have special hardware when dealing with multiple clock domains

which is very common in large systems. In order to obtain consistent results, the

hardware clocks have to be stopped in a certain order. They explain well the data

invalidation problem and how to work around it in hardware.

Pyron et al presented an early paper [70] documenting the use of schmoo plots

and providing a good coverage of possible silicon defects. LeBlanc’s publica-

tion [71] clearly illustrates the problems in debugging parallel systems. Some type

of log/event order needs to be kept. However, with the new systems integrat-

ing very complex functions purely in hardware, and the very high throughput of

those systems, one cannot accept the speed penalty of using software to log hard-

ware event orders. Hardware assertion checkers can monitor conditions and with

a hardware timestampmechanisms can report the assertion firing order which will

assist in determining the root cause of the problem. Peishl et al. discuss [72] the

problem of fault localization in hardware design by reducing the model complex-

ity based on error traces which ultimately help the designer find the root cause of

the problem.

Conventional RTL debugging is based on overlaying simulation results on struc-

tural connectivity information of the HDL source. This process is helpful in lo-

52

2.4 Assertions and Temporal Logic in Verification

cating errors but does little to help designers reason about the how and why of

errors. Hsu et al. show [73] how automatic tracing schemes can shorten debug-

ging time by orders of magnitude for unfamiliar designs and how advanced de-

bug techniques reduce the number of regressions by emphasizing a methodical

approach to extract, analyze and query a design’s multi-cycle temporal behavior.

The same team explored techniques [74] that also cover the register selection anal-

ysis for DfD and multi-level design abstraction correlation for viewing values in

the RTL. Experimental results show that visibility enhancement techniques can

leverage a small amount of extracted data to provide a high amount of computed

combinational signal data. Visibility enhancement provides the needed connec-

tion between data obtained from the DfD logic and HDL simulation-related debug

systems.

Hyunbeam et al. [75] presents DfD methods for the reuse of NoC as a debug

data path in an NoC-based SoC. They propose on-chip core debug which can

support transaction-based debug. An interface unit is also presented to enable

debug data transfer through an NoC between an external debugger and a core-

under-debug. However, they make no mention of using assertion checkers in their

work. As will be explained later in Section 4.4 and Section 5.4, our work follows a

similar structure, but integrates assertion checkers in the hardware.

Abramovici et al. present a Design-for-Debug (DFD) reconfigurable infrastruc-

ture [60] for SoCs to support at-speed in-system functional debug. This is a dis-

tributed reconfigurable fabric inserted in the RTL that provides a debug platform

that can be configured and operated post-silicon via the JTAG port. The platform

can be repeatedly reused to configure many debug structures such as assertions

checkers, transaction identifiers, triggers, and event counters. This work is the

closest to the dynamic partitioning algorithm that is presented in Section 3.3. How-

ever, that publication does not detail the algorithms used to optimize the partition-

ing.

Gharehbaghi et al. covered a similar approach [76] for SoC to the one presented

in this thesis with some important differences. They use their own temporal logic

expressions. In contrast, our work focus on PSL and SVA re-use to leverage the de-

sign effort expended in the verification process. They rely on trace capture/com-

pression to extract the data outside the IC. We propose that the embedded process-

53

2 Background and Related Work

ing elements in the IC will take care of the processing. The larger bandwidth and

redirection to the system memory will provide more accurate and deeper traces

without needing additional hardware resources.

Quinton et al. proposed programmable logic core enhancements [77] for SoC

designs that enable DfD and correction of design errors after fabrication. Their

work demonstrate that the programmable logic fabric can support direct interfac-

ing with the fixed-function circuit. Our methodology does not explicitly require

programmable logic to support hardware checker since they can be implemented

as fixed functions in the logic. However, the result presented in Quinton’s work are

important as our proposed DfD is greatly enhanced by the availability of high-

performance programmable logic structures for the more advanced techniques

presented. For example, they allow the support for our proposed time-multiplexed

assertion checkers.

Nicolici et al. [78] highlight the need for DfD hardware and offer a good overview

of the research in that area. Ko and Nicolici [79] further explain how trace buffers

can be used in combination with scan to capture internal states of the device. Some

commercial techniques proposed by Veridae / Tektronix attempt to simplify this

type of interfacing and on-device probing. Our work complement quite well those

approaches. The sequence checker outputs are themselves amendable to be in-

tegrated in trace buffers. They effectively pre-compress the data by extracting

meaningful higher-level events from the low-level and boolean logic layers. By

pre-analyzing the low-level signals and extracting interesting sequence informa-

tion, the automata of the checker effectively reduces the size of the data set that

needs to be processed outside the device.

In a panel Vermeulen had the following recommendations [67] for future com-

plex systems:

Next-generation SoCs will contain (even) more programmable pro-

cessors, a scalable communication infrastructure (e.g. a network-on-

chip), and a multitude of dedicated, hard-wired functions. At run-time

many software and hardware execution threads will be active simul-

taneously. As such, solutions are required for multithreading, multi-

processor, and communication debug that go beyond the capabilities

54

2.4 Assertions and Temporal Logic in Verification

offered by DfD today. The existing DfD infrastructure will be extended

towards the system level as an integrated hardware/software debug

approach is required to debug, yet unknown, system issues from user

application software to silicon.

2.4.2 Follow-up work on Time-multiplexing of Assertion

Checkers

Our proposed approach of time-multiplexing assertion signals [13] proposed

the integration methodology and algorithms to perform the integration, but left

some unanswered questions as to how much benefit the method would bring

to a real circuit. Gao and al. used the term Time-Multiplexed Assertion Checking

(TMAC) [80] to qualify our proposed technique and applied it to an H.264 decoder

to answer the following questions (adapted from their publication):

1. Given a number of assertions, how much can a silicon debugging process

benefit from on-chip assertion checkers in terms of detecting more bugs and

isolating bugs quicker?

2. What would be the area overhead of employing TMAC, especially consid-

ering the interface and interconnection between TMAC checkers and the

design-under-checking? What is the growth trend of area overhead with re-

spect to the population of assertions implemented in the TMAC manner?

3. How do we utilize the internal information captured by TMAC checkers to

speed up the bug isolation process?

4. If the entire population of assertions is not affordable in silicon, even in the

TMAC manner, what would be the assertion selection criteria be?

A summary of their results is presented here:

“The results of a case study demonstrated that, among those hard-to-

detect bugs which cannot be detected by numerous standard H.264

video test cases, a TMAC of eighty assertion checkers detected 17.9% of

the nonpropagated bugs and 39.4% of the non-detected bugs with only

1.3% area overhead. In the bug isolation phase, TMAC reduces the av-

erage bug detection latency by 87 times which leads to more than 500

55

2 Background and Related Work

times a reduction in debugging data volume. Besides, with sufficient

checkers in each module, the first assertion violation helps directly lo-

calize the faulty module. The benefits of TMAC on both bug detection

improvement and bug root cause speedup could be more significant if

more assertion checkers are implemented.”

Those results are in line with our work with sample assertions showing how

hardware checkers result in significant compression ratios in produced data vol-

umes due to the temporal checking that is being performed by the automata in real

time.

2.4.3 Design-for-Debug in Network-On-Chip

The complexity of designing efficient and scalable on-chip communication in-

terconnects will continue to grow as increasing numbers of cores are integrated

onto a single chip. A major challenge in chip design will be to provide a scal-

able and reliable communication mechanism that will ensure correct system be-

havior [36, 37]. Traditional SoC designs have used shared-medium, or bus-based,

architectures whose limitations have now become apparent [81, 82]. In fact, for

systems consisting of more than 20 cores, a bus interconnect quickly becomes the

system bottleneck [83], degrading the performance such that it is no longer a fea-

sible solution to the communication requirements. The key problem with bus-

based approaches is in their limited scalability. To address the shortcomings of the

shared-medium architecture, concepts from the domains of networking and paral-

lel processing were adapted for on-chip use, giving rise to the idea of an on-chip

communication network, or network-on-chip (NoC) [36, 37, 84].

As discussed previously, the increase in design complexity requires a change in

the abstraction level in order to compensate for the limited engineering resources

available to complete a given project. With new devices appearing on the market

incorporating more than a billion transistors, the shift in design method becomes

evident. At this point in time, it is possible to buy a processor for home use that

integrates six processing cores sharing a common level of cache memory. A few

years ago, this was limited to the realm of server and high-end systems and re-

quired multiple IC packages.

56

2.4 Assertions and Temporal Logic in Verification

While the NoC concept addresses the shortcomings of shared-medium archi-

tectures, the vast NoC design space adds complexity to the design flow. Specif-

ically, since the network topology will have a large impact on performance and

device cost, the topology selection must now be included as part of the design

space exploration and high-level prototyping stages. Typically, designers will start

with high-level functional or transaction level models (TLM) for rapid prototyping

and design space exploration. The high-level models are then refined until they

can be synthesized to hardware. The traditional verification effort is usually left

until the final stages of development, and is usually used to verify correct system

behavior for a certain range of possible system inputs (functional coverage). Fur-

ther, design for testability, another significant quality factor, is not integrated into

the architectural exploration, where there is now a possibility to reuse the NoC as

a test access mechanism [75, 85].

A few years ago, the microprocessor race was focused on internal clock rate.

High-end microprocessor companies’ marketing departments were hammering

down the clock rate of their CPUs; the higher numbers usually winning major sys-

tem deployments. Nowadays, the competition is much more subtle. The clock rate

keeps increasing, but at a much lower pace. In 2000, Agarwal et al. [86] predicted

the tapering off of the clock rate improvement and suggested the need for a change

in the CPU microarchitectures that was observed in commercial microprocessors

at around 2005. Always pushing a single core faster and faster resulted in CPUs

using more andmore power to meet their timing constraints. The power usage per

instruction and the thermal dissipation envelope became amajor problem in server

environments and the shift towards slower clock rates and more power efficiency

became the new industry direction. Maintaining the effective computing capabil-

ity improvement for each generation, yet keeping the clock rate bounded, requires

many computation cores on the same die. Instead of having one core pushed to its

limits of thermal and process capabilities, modern scaling uses the newly available

transistors to add more computing units on the same chip and process the data in

parallel threads.

The addition of cores to a chip has the benefit that multiple parallel threads

of execution can progress simultaneously. On the other hand, one has to keep in

mind the complexity of the software. Therefore, hardware mechanisms to keep

57

2 Background and Related Work

the cache memories consistent among the multiple cores had to be implemented.

They offer a unique memory view to the software, making their task a lot easier

and keeping compatibility with legacy code. Legacy support is hugely important

as enormous amounts of capital investment are placed in the software and it must

be re-usable in newer computers.

However, this idea that one can scale the number of cores on a chip using

shared cache memory cannot be sustained beyond a certain point. In a lot of cases,

beyond 10 cores, additional processing elements will only bringmarginal increases

in computing benefits [87]. This is mainly due to the very large amount of cache

coherency message passing that must be maintained on the bus to keep the mem-

ory consistent in all the core caches coupled with the increased physical distances

and electrical load that appear due to the large interconnect.

A trend has thus emerged where instead of scaling the cores on a single bus,

cores would be working with their local memories and a on-chip networking in-

frastructure would be created to exchange the information. Moving away from

a shared bus to a set of routers effectively removes the effects of bus saturation

and will keep the industry pace of computing capability increases going forward.

NoCs effectively pipeline the communication transactions, thus increase the through-

put of the communication channels. Since routing decisions are made without giv-

ing any core “ownership” of the bus, more transactions can process in parallel.

Furthermore, the solution is very scalable.

However, this newNoC paradigm [35] is not without its share of problems. The

network topology plays a key role in the final performance of the NoC. The opti-

mal NoC topology will depend on the problem that must be solved. Several NoC

topologies were studied [35, 88], but the lack of an accepted universal NoC bench-

marking and the complex task required to appropriately model the NoCmake this

a challenging task to attempt. However, it can be shown that some topologies offer

clear advantages in the context of either routing efficiency, redundancy in the com-

munication paths (allowing the chip to be sold at a lower price, evenwith defective

“sections” as opposed to be considered scrap).

Recent developments in benchmark standardization for NoC have started to

converge [89] helping the community compare the various architectures in a uni-

form manner with real-world computational loading scenarios and standardized

58

2.5 Chronological Work Overview

workflows.

The OCP-IP group [90] discusses the standardization of on-chip debug inter-

faces such that integration of cores from many vendors can provide a uniform

debug methodology for on-chip networks.

2.5 Chronological Work Overview

This section covers the chronological work performed throughout the years

and explains the philosophy behind the proposed assertion-based DfD methodol-

ogy presented in the next chapters.

2.5.1 NoC Research Work

The author’s collaboration with Dr. S. Bourduas [91] on various topologies

analyzed under various workloads allowed a better understanding of the need for

high-level NoC characterisation andmodeling. It is this collaboration and work on

a low-level RTL implementation of a hierarchical-ring NoC interconnect [15, 17]

that led to the observations that protocol checkers and performance monitoring

circuits would have to be integrated with the assistance of EDA tools in order to

maximize the productivity. A successful initial attempt at implementing a two-

level hierarchical-ring NoC in VHDL using the Leon SPARC RISC core as a pro-

cessing element leaded to a few key observations that later were used to direct this

research.

The most important observations from this early research are covered in the

next pages. The early conclusions from this initial work lead to the acquisition

and use of hardware prototyping equipment and later the work on proposing the

integration methods for temporal logic checkers in complex digital systems such

as NoCs.

59

2 Background and Related Work

2.5.2 NoC Topology Consideration for Physical

Implementation

The physical topology of the NoC has to consider the reality of an eventual

physical implementation if one wishes to maintain efficient clock rates and good

hardware utilisation.

Figure 2.6: FPGA-based Network on chip and its routing localization and effi-
ciency

Figure 2.6 shows the clean separation of quadrants in a hierarchical ring NoC

(that has been slightly constrained in terms of floorplan) that was produced in

an early RTL implementation of a two-level hierarchical NoC [15]. The result-

60

2.5 Chronological Work Overview

ing automated place and route highlight the localization of routing and the use of

shorter routing segments, allowing faster clock rates to be achieved. Early in the

NoC implementation project there was concern about some of the topologies and

their suitability for prototyping and implementation. Any topology that requires

some form of three dimensional structure creates a routing problem on a physi-

cal chip. The outside edges of the die have to be connected (e.g. in a Torus NoC)

such that the data can flow from left to right directly. On the physical level, this

means that some wires have to span the entire die (on higher levels of metals) to

connect the outside edges. This poses problems in the routing strategy that will

ultimately lead to lower overall performance because of the longer delays in those

long lines. Addingmetal layers in a device also leads to higher cost. In our attempt

at implementing the NoC, we focused on a 2-level hierarchical ring topology (16

computing cores in total in 4 groups of 4 cores). This had the initial advantage of

a clean floorplan on a large FPGA as seen in Figure 2.6. Furthermore, for an even-

tual prototype on high-end hardware [92], one has to consider the actual physical

layout of programmable devices and communication channels.

Figure 2.7 shows the potential mapping of 16 cores (each having one of the

DRAM module in the user FPGA) on the BEE2 [2] rapid prototyping architecture.

The hierarchical ring topologywould allow the global ring to span the interconnect

between the four user FPGAs while each of the 4 local rings would map directly

inside each of the user FPGAs.

2.5.3 The Need for Hardware-Based Monitoring Points

One of our early observations was that the dynamic behavior of a NoC is very

important to its performance tuning and to locate congestion points. For example,

the usefulness of dynamically monitoring the use of FIFOs at the system-level was

a necessity to uncover bugs and improve theNoC system-level performance. To do

this, we would need global access to the FIFO performance counters in a dynamic

and transparent manner within the system. In our RTL simulator, the example

graphs were generated from plotting the analog representation of a given set of

hardware bits (e.g. FIFO utilization). Figure 2.8 shows the typical dynamic behav-

ior the buffer usage and other hardware signals in our NoC RTL implementation.

61

2 Background and Related Work

Figure 2.7: BEE2 System-level block diagram from Chang et al. [2]

At this point, it was noted that a lot of the bus transaction signals and performance

counters that were so easily accessed in a simulation tool (ModelSim from Mentor

Graphics) would disappear from view in the final hardware implementation. The

actual registers (flip-flops) would still be present on the chip, but their visibility

would be gone from within the system. This led to a search for a way to add those

debug and monitoring points such that those registers can be mapped as part of

the coverage and performance monitoring counters and reported to the software

via an internal interface covered in Chapter 4, thus making live monitoring of the

system possible.

62

2.5 Chronological Work Overview

Figure 2.8: Modelsim simulation of FIFO occupation during heavy NoC traffic

2.5.4 The Difficulty of Integrating Large Systems

Once the RTL of the NoC routing units were debugged and ready for hard-

ware implementation and the simulation models showed that we had properly

integrated the CPU cores (Leon II from Gaisler Research), the research took a turn

in a different direction as a result of the following issues:

A: The core interconnect was extensively simulated, but the simulations

became extremely long when integrating more than a few CPU cores.

Our 16-core model could only execute a few thousand instructions per

second due to the very heavy load of simulating the CPU model. This

slow execution of the full NoCmodel was unamendable to extract proper

system-level performance as so few transactions per second were gen-

erated by the CPU models. This led to the research by S. Bourduas [91]

to re-model the interconnect in SystemC and use instruction set sim-

ulator models instead of the RTL level model of the CPU. The use of

data from the RTL model made the SystemC model very accurate and

63

2 Background and Related Work

representative of the hardware performance.

B: We investigated the use of the BEE2 hardware platform as an accelera-

tor for simulation performance and to host the NoC system. However,

logistical problems due to the complexity of the task quickly came up.

One of them was the very long placement and routing time to realize

the NoC on the very large user FPGAs present in the BEE2 (tens of

hours of placement and routing for each FPGA). Adding the time to

debug each FPGA made it a prohibitively time-consuming task. The

second problem was to map the physical links to the hardware pins

of the FPGA which would have been a considerable endeavour. Large

parallel buses were needed to carry the NoC traffic and 8 links had to

be defined with hundreds of pins in each direction. High-speed serial

links were considered, but IP licensing constraints and added latency

on the interconnect were too complex to rapidly resolve. While the re-

alization of the physical NoCwould have been a very interesting proof-

of-concept technically, it would have consumed a lot of time and would

not have provided so much research benefits. On the other hand, the

attempt highlighted a dire need for a way to rapidly export internal

registers to a centralized location for ease of debugging.

C: The BEE2 came with its own operating system aimed at performing

digital signal processing (BORPH) [93]. However, this operating sys-

tem was based on the Linux 2.4 kernel and did not include any of

the advanced features of the Linux 2.6 kernel, notably the UIO driver

(whose usefulness in this work is detailed in Section 4.6). As part of this

research a lot of effort was dedicated to re-creating the Control FPGA of

the BEE2 for use with open source IP cores (UART, memory controller),

porting the U-Boot 5, the hardware drivers, the Linux Kernel 2.6 and

creating a root file system image for the BEE2 hardware such that the

newer user space IO (UIO) drivers could be tried as a proof-of-concept

for userspace hardware assisted debugging (covered in Section 4.6). A

set of application notes [18, 19, 20] and software / IP core libraries were

5. http://www.denx.de/wiki/U-Boot

64

2.5 Chronological Work Overview

documented and provided to the Canadian Microelectronics Corpora-

tion as part of this effort.

D: A large problem remained: how could we get the protocol analyzers

and performance counters in the hardware without hand-coding each

and every one? The solution came from extensive collaboration with

Marc Boulé. The concept that temporal logic would allow the verifi-

cation effort to be re-used in hardware meant that protocol checkers

and sequence monitors could be generated automatically. Performance

monitors required some modifications to the tool’s algorithms, but this

meant that statements that were used in verification could be translated

to hardware. Combining this with automatic register generation and

operating system integration meant that a tool flow was taking care of

the tedious hand coding. This motivated most of the work presented in

Chapter 4.

65

Chapter 3

Checkers as Dynamic Assistants to

Silicon Debug

As explained earlier, assertion checkers have recently been added to the verifi-

cation process toolbox that contribute significantly to enhanced productivity. Us-

ing assertions increases the design effort since it forces the designers to formalise

their specifications, but as this thesis will show, they can bring major benefits in

the silicon verification and debugging processes if they are carried along with the

design as hardware checkers.

As assertions and sequence statements provide a very consise and formal way

of specifiying design behavior and interface timing requirements, it makes sense

to use them to express hardware checkers rather than coding those checkers from

scratch in RTL. In doing so and using automated generation of hardware, the

designer’s effort to carry the benefits of the checkers into the silicon will be greatly

reduced.

The ABV methodology defines a device (or module) behavior as a set of prop-

erties. Those properties capture the essence of the temporal and logic behavior

without the ambiguity of natural languages.

As can be seen in Figure 3.1, the proposed hardware checkers with debug en-

hancements can be used in multiple scenarios, ranging from hardware emulation

to in-field deployment of the final device. This chapter will highlight key con-

tributions to hardware assertion checkers and their applications in the debug of

silicon devices. Then a mechanism to partition a large set of assertions into smaller

67

3 Checkers as Dynamic Assistants to Silicon Debug

Figure 3.1: Usage scenarios for hardware assertion checkers.

sub-groups that can be dynamically re-programmed in a section of an ASIC is pre-

sented. The partitioning algorithm is detailed along with the proposed method

of integration. Finally, the experimental results of adding debug enhancements to

assertion checkers are covered.

3.1 Benefits to Designers

Asmentioned earlier in the background chapter, the designers reap the benefits

of assertions when they have to tackle a complex debugging scenario. Aided with

the simulator support from the various assertion checkers, fired assertions will

pinpoint the moment in the simulation that a problem started to show its symp-

toms. Since assertions are layered and monitor very low-level hardware timing,

they will typically fire very quickly after the circuit deviates from the specifications.

By analyzing the assertion failure(s), designers may use elimination or root-fault

localization tools [94] to locate the source of the bug.

Assertions can also be used in hardware emulation or simulation accelerators

to obtain similar benefits; however, until recently, descriptions in high-level prop-

erty specification languages were not easily converted into efficient RTL descrip-

tions, suitable for hardware emulation platforms. To exploit the power of asser-

tions in a hardware context, our research group and most notably the work of M.

Boulé [95] contributed to this research effort to offer efficient conversion from tem-

poral logic expressions to hardware checker circuits. These checkers monitor the

68

3.1 Benefits to Designers

physical DUV for violations of assertions and raise an output signal each time a vi-

olation is observed. Circuit-level assertion checkers can then be used, not only for

pre-fabrication verification, but also for post-fabrication silicon debugging if one

leaves the checkers in the final silicon.

Assertions can clearly benefit the designer when a bug is found in the simula-

tion. If the assertion density is sufficient, the erroneous condition will be detected

and an assertion will fire. Internal virtual signals can be used to monitor the asser-

tion and allow the engineer to quickly pinpoint the failure and trace it back to the

design [7]

As assertions are written and used by the designers to help them debug their

simulations 1, they build up to form a substantial body of knowledge. As design-

ers continuously add to this library of checkers and complex sequences, it becomes

valuable reference since it contains most of the assumptions, limitations and tem-

poral behavior of the design’s hardware blocks. Naturally, one would want to

re-use this implicit design knowledge in the final silicon, ideally without expend-

ing too much effort. Low-level sequences present in the assertion library represent

very valuable abstracted states of the design and sometimes are directly applicable

as performance counters or status monitors. For example, every time the following

sequences is seen in a NoC: {worm_start; data; worm_end}; the meaning of that

sequence is clear from a hardware point of view. It represents a worm (a packet

in the context of a NoC) traversing that particular bus. Counting the occurences

of this sequence turns it into a valuable performance counter. That performance

counter would typically need to be coded manually. With our proposed approach,

engineers can dig into their assertion library and pick the ones that can effortlessly

provide system-level performance monitors, as required by the application.

The MBAC tool, developed at McGill University by our group, attempts to

address the problem of specifically converting PSL or SystemVerilog assertions

into compact and efficient hardware checkers. The book published by M. Boulé and

Z. Zilic [96] cover in details the transformation of PSL statements into a hardware

circuit. The work contributions presented in this chapter aim at expanding this

tool to support a wider range of uses such as the automatic creation of performance

1. From information gathered from colleagues and alumni working at AMD and Intel, the as-
sertion librairies represent up to tens of thousands of statements

69

3 Checkers as Dynamic Assistants to Silicon Debug

monitors that provide aids to debugging. That way, the powerful hardware-based

temporal checkers do not stay confined to support only accelerated verification.

In this emerging DfD space, several companies were quick to see the opportu-

nity and are promoting a range of solutions to address the debug problem. Tools

from companies such as Novas now support advanced debugging methods to

help find the root cause(s) of errors by back-tracing assertion failures in the RTL

code [97]. Temento’s DiaLite product accepts assertions (to a limited extent) and

provides in-circuit debugging features. DAFCA also offers this possibility, and

provides support for assertion checker synthesis and use. However, as these tools

are from commercial ventures, very few papers cover their inner-workings. In

most cases one has to gather information from those companies’ marketing mate-

rial. Futhermore, the MBAC tool outperforms other available industrial solutions

available [11, 62] and our group benefits from the fact that it was developed inter-

nally, therefore amenable to modifications.

Increasing and enhancing the visibility into the design’s temporal state transi-

tions is an important aspect in silicon debugging and DFD [98]. Increasing visibil-

ity using ABV techniques were explored [11]. From this exploration this thesis pro-

poses the following enhancements: Antecedent Monitoring, Assertion Depen-

dency Graph, Assertion Activity and Coverage, Assertion Completion Mode,

and Assertion Threading. These specific enhancements improve the debugging

capabilities of the resulting checkers in many scenarios of silicon debugging. All

debugging enhancements are implemented as a part of the checker generator, where

they can be optionally activated by the use of command-line switches when the

tool is run. The added visibility into parts of the assertion checker circuits, along

with additional ways to track assertion results, are the principal means by which

this thesis proposes to improve assertion-based debugging of physical devices.

The debug enhancements will prove more valuable as IP cores evolve in com-

plexity. Even if the blocks are sold as black boxes by the IP vendors, they still require

their interface to be driven according to specifications. Thus, they are very likely to

be sold with an accompanying assertion library readily usable in simulation. Upon

integration in, say, a large FPGA, some of those assertions can be selected and

transformed in hardware, effectively providing a continuous check on the proper

integration of the block and an assistance to debug when things go wrong.

70

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

3.2 Assertion Checkers Enhancements for In-Silicon

Debugging

Figure 3.2: Hardware PSL checker within a JTAG-based debugging enhance-
ments

This section presents the enhancements that can be optionally added to the as-

sertion checkers produced by the checker generator. These enhancements increase

the visibility within assertion circuits, and also enhances the coverage informa-

tion provided by the checkers. Figure 3.2 illustrates how the checker additions in-

tervene in the methodology. The checker generator produces monitoring circuits

from PSL statements augmented with various debug-assist circuitry. Other forms

of debug information, such as signal dependencies, can also be sent to the front-

end applications. Since the techniques are implemented at the RTL level within

the checkers, they can be used in concert with any other circuit debugging tools in-

cluding scan chain access such as JTAG, trace buffers with timestamp mechanisms

or with the proposed register-based mechanisms presented in the next chapter.

3.2.1 Antecedent and Activity Monitoring

The debugging capabilities introduced are in the assertion domain, in which

the assertion’s behaviour itself is further explored to locate the source of a prob-

lem. The approach involves augmenting the checker generation algorithms to in-

71

3 Checkers as Dynamic Assistants to Silicon Debug

strument the checkers in ways that help to locate the root causes of assertion and

circuit failures.

Example 1 illustrate a simple assertion that may require a fair amount of inves-

tigation to deduce the cause of failure if it ever fires. By enhancing the assertion

checker in hardware, one can break the sequence complexity and export valuable

debug information. It states that whenever the arbiter is ready and receives a bus

request, then the grant signal should be low in that cycle (the temporal implication

|–> is overlapping). The grant should then be given within at most 5 cycles; fur-

thermore, the arbiter’s busy signal must be true until the grant is given, when it

must then be low.

Example 1 A Typical Bus Arbitration Assertion Statement.

assert always { REQ & READY } |–> {∼GNT ; {BUSY & ∼GNT}[∗0:4] ; GNT & ∼BUSY};

Knowing only that this assertion failed will not reveal the exact cause, or even

the sequence of events responsible for the assertion failure. For example, if REQ,

READY andGNT are all asserted simultaneously, this will be a failure asmuch as if

the GNTwas never asserted. If a tool can provide the explicit knowledge about the

antecedent’s status (in this case “REQ & READY”), this avoids having to manually

create new signals in the debug environment or chase two possible sources for a

given assertion failure in silicon. In our simple example, the antecedent signal can

be easily created manually; however since PSL allows having an arbitrarily com-

plex sequence as an antecedent (one which can also be a suffix implication), some

statements would be difficult to re-create in the debug environment and evenmore

difficult to observe in physical hardware. On a physical device, by tapping into the

hardware signals that trigger the automata (antecedent completion triggering the

consequent), a monitoring point can be exported that will help the debug engineer

directly “see” that event in the assertion checker. This information can then be

exported to a register bank for in-system monitoring as covered in Chapter 4.

As one can observe, the simple REQ&READY antecedent can be quite useful to

detect the start of the sequence check. Simulators such as ModelSim 2 provide this

2. A well-known commercial hardware language simulator sold by Mentor Graphics

72

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

kind of information by annotating the waveforms during the simulation. Using

the proposed method of exporting sequence activity, this valuable debug informa-

tion can now be carried to the silicon. The example presented is simplified to ease

its presentation. However, one can build very complex and intricate temporal ex-

pressions using PSL operators, yet the sequence activity will still be as simple to

observe with a minimal effort on the part of the designer.

Figure 3.3: Activity signals for property: always ({a;b} |=> {c[*0:1];d}). oseq
corresponds to the right-side sequence, cseq to the left-side sequence.

Figure 3.3 shows themechanisms bywhich the presence of tokens in the checker’s

automata is exported to the circuit as a way to indicate activity in the checker. Ac-

tivity monitoring would mainly be used in conjuction with an internal logic ana-

lyzer allowing the visibility in the hardware where the sequence is being actively

checked. It can be used, for example, to trigger the storage of data in the logic an-

alyzer, capturing only interesting activity sequences and to make better use of the

limited buffer memory.

3.2.2 Assertion Dependency Graphs

When debugging failed assertions, it is useful to quickly determine which sig-

nals and parameters can influence the assertion output. In the toolset, all of the

73

3 Checkers as Dynamic Assistants to Silicon Debug

signal and parameter dependencies are listed as annotations for each assertion cir-

cuit in the database.

Taking Example 1 as a reference, the direct dependencies are REQ, READY,

BUSY and GNT. In a given system, the READYmay not be directly an input signal

to the hardware checker, but could be derived at the Boolean layer from a combi-

nation of signals or a decoded status bus. In such cases, the dependency graph

would trace back to the actual signals composing the READY part of the assertion

statement, simplifying the task of defining probes or waveforms to log as part of

the debug process.

The dependency graph is constructed by the tool to help pinpoint the cause

of an error, or for automatic wave script generation in an emulation environment.

When an assertion fails, the signals that are referenced in an assertion can then be

searched and automatically added to a wave window and/or extracted from an

emulator, in order to provide the necessary visibility for debugging. Dependency

graphs are particularly useful when complex assertions fail, especially when an

assertion references other sequences and/or properties, as allowed by PSL [99]. In

such cases, assertion signal dependencies will help ensure that all the signals on

which a checker depends are included in the analysis. Tracing back from the asser-

tion output through its related cone of logic can directly provide cues as the causes

of the assertion failure without requiring the person doing the debugging to know

the circuit beforehand.

This feature prevents the problem of incomplete probe set in an emulation or

FPGA system during debug. In a typical debug scenario, a set of probes are added

to the FPGA or emulator to add visibility for the signals influencing the checker

failure. Those signals are needed to find the cause of the problem. One important

issue is the time needed to re-compile the FPGA with the added probes. For large

FPGAs, this can mean hours of waiting while the probes get added to the design

(requiring re-routing of parts of the FPGA), the preparation of the bitstream and

the setup of the test case. This is why an error-proof method of adding checker

dependencies is required to avoid having to repeat this long and tedious process.

Recent work in the field [100] tends to focus notably on software solutions ad-

dressing the problem of debugging the assertions along with the circuit. Many

of the presented techniques could be used to enhance our more hardware-oriented

74

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

approach.

3.2.3 Assertion Completion Mode

For a verification scenario to be meaningful, assertions must be exercised: as-

sertions that do not trigger because the test vectors did not fully exercise them

are not very useful for verification or debug. In such cases, when the assertions

are trivially true the designers could be led to believe that the property has been

validated, and thus overlook the true cause of a non-failure. On the contrary, asser-

tions that are extensively exercised but never trigger offer more assurance that the

design is operating as specified. The dependency graphs from the previous sec-

tion efficiently determine which signals must be stimulated to properly exercise

an assertion that is found to be trivially true.

The hardware checker generator was thus enhanced such that assertions can be

alternatively compiled in a completion mode, to indicate when assertions complete

successfully and are not trivially true. The completion mode affects assertions that

place obligations on certain sub-expressions, such as the consequent of temporal

implications for example. In temporal implications, for each observed antecedent,

the consequent must occur or else the assertion will fail. As opposed to indicating

the first failure in each consequent, as is usually done, the completion mode asser-

tion indicates the first success in the consequent, for each activation coming from

the antecedent.

The completion mode has no effect on assertions such as “assert never seq”,

given that no obligations are placed on any Boolean expressions. This assertion

states that the sequence argument seq should not be matched in any cycle. Thus,

every time the sequence is matched (i.e., is detected as occurring), a violation oc-

curs and the assertion output triggers. The actual PSL syntactical elements which

are affected by the completion mode are sequences and Boolean expressions when

used directly in properties, with the following exceptions: the argument of the

never operator, and the antecedent of implications (suffix implication and prop-

erty implication).

Using terminology in [101], our technique identifies interesting witnesses, i.e.,

examples of where the property was exercised. Antecedent non-occurrence – com-

75

3 Checkers as Dynamic Assistants to Silicon Debug

monly referred to as vacuity – is only one possible cause for trivial validity. The

knowledge that an assertion completes successfully can be useful when evaluat-

ing the coverage quality of a regression suite. Completion mode creates behaviour

analogous to the cover operator for sequences, except it is at the property level.

Completion mode can also be referred to as “pass checking”, “success checking”

and “property coverage”.

The completion algorithm, illustrated with an example follows. The comple-

tion mode transformation algorithm first determinizes the automaton such that

each activation is represented by only one active state. From any given state, a de-

terministic automaton transitions into at most one successor state. Determinizing

automata with Boolean expressions on transitions is more involved than in con-

ventional automata [102]. The determinization step is required so that when the

first completion is identified, no other subsequent completions will be reported for

the same activation.

Figure 3.4: Completion automaton for always ({a} |=> {{c[*0:1];d}|{e}}).

Figure 3.5: Normal automaton for always ({a} |=> {{c[*0:1];d}|{e}}).

The second step in the completion mode algorithm is to remove all outgoing

edges of the final states, when applicable (in Figure 3.4, there were no such edges

to remove). Any unconnected states resulting from this step are removed dur-

ing automata minimization. Both the failure and completion transformation al-

gorithms take as input the detection automaton that corresponds to the sequence

being handled. The completion-mode algorithm can also be used to implement

the SVA operator first_match(), and is a dual of the FirstFail algorithm [103]. The

FirstFail algorithm is normally applied to Booleans and sequences that are used

76

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

directly as properties. In completion mode in the checker generator, all calls to

the FirstFail algorithm are replaced by calls to the FirstMatch algorithm (also called

the completion mode algorithm). Assertion completion is best visualized using an

example.

Example 2 Test Assertion for Assertion Completion.
assert always ({a} |=> {{c[*0:1];d}|{e}});

The assertion above is normally compiled as the automaton in Figure 3.5, where

the final state is triggered when the assertion fails. The completion mode automa-

ton for this example is shown in Figure 3.4. The sequence of events a; c; d, for

example, will make the automaton in Figure 3.4 trigger (completion); however,

the failure automaton will not reach a final state given that the sequence conforms

to the specification indicated by the assertion. In the automata graphs, the high-

lighted state s1 indicates the initial state, which is the only active state when reset is

released. The PSL abort operator has the effect of resetting a portion of the checker

circuitry [104], and thus applies equally to the normal mode or completion mode.

3.2.4 Assertion Activity and Coverage

Figure 3.6: Counting assertions and cover statements.

Automatically creating counters on assert and cover statements offers a rapid

way to transpose coverage information to hardware devices. Counting assertion

failures is straightforward, as observed in the top half of Figure 3.6; however,

counting the cover directive requires some modifications. In dynamic verification,

cover is a liveness property which triggers only at the end of execution. In order

to count occurrences for coverage metrics, a plain matching (detection) automaton

77

3 Checkers as Dynamic Assistants to Silicon Debug

is built for the sequence argument 3, and a counter is used to count the number of

times the sequence is matched. The cover signal only triggers at the end of execu-

tion if the counter is at zero, as shown in the lower half of Figure 3.6. If no counters

are desired, a one-bit counter is implicitly used. The counters are width parame-

terized, and by saturation arithmetic, do not roll-over when the maximal count is

reached. The counters are also initialized by a reset of the assertion checker circuit

or by a control register as explained in Section 4.4.

As will be covered in Chapter 4, a more granular control on the counters is

provided by the hardware interface generator such that each counter in a group

can be individually controlled. This thus allows to keep the device state (i.e. not

force a device-wide reset), yet restart specific coverage counters which will become

particularly useful during the debug process as a way to isolate a problem.

Counters can be used with completion mode (Section 3.2.3) to construct more

detailed coverage metrics for a given scenario. Knowing how many times an as-

sertion completed successfully can be just as useful as knowing how many times

an assertion failed during debugging. For example, if a predetermined number of

bus transactions is initiated, the related assertion should see itself complete suc-

cessfully the same number of times. In general, by signaling successful witnesses,

completion mode provides an indication that if an assertion never failed, it was

not because of a lack of proper stimulus.

3.2.5 Hardware Assertion Threading

Assertion threading is a technique by which the checker generator instantiates

multiple copies of a sequence checking circuit, and alternately activates these cir-

cuits. This allows a violation condition to be separated from the other concurrent

activations in the assertion circuit. This helps visualize the exact start condition

that caused a failure. In general, by using a single automaton-based recognizer, all

temporal checks become intertwined in the automaton during processing. The ad-

vantage is that a single automaton can catch all failures and it reduces the hardware

overhead of the checker. However the disadvantage is that it becomes difficult to

correlate a given failure with its input conditions. During the debugging phases

3. In PSL, a property is not a valid argument for the cover operator.

78

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

of a design, one may want a more direct localization of the failure. The assertion

threading in effect separates the concurrent activity to help identify the root cause

of the sequence of events leading to an assertion failure. Threading applies to PSL

sequences, which are the typical means for specifying complex temporal chains of

events.

Figure 3.7: Hardware assertion threading

Figure 3.7 illustrates the mechanisms used to implement assertion threading.

The hardware dispatcher redirects the activation signal to the multiple sequence-

checker units in a round robin sequence. The tokens indicate the progress through

the sequence automata. In the figure, hardware thread #2 has identified a failure.

With this information, one can trace back to the antecedent expression that initiated

the sequence checking in thread #2. An example will follow illustrating how this

method can be used in tracing back an execution error in a CPU.

In assertion threading, entire failure-matching sequence-automata are repli-

cated in hardware. Since a single automaton can detect all sequence failures, repli-

cating the automaton and sending tokens into different copies still ensures that no

failure is missed even if the number of threads is below the concurrency level (depth)

of the monitored sequence. The dispatcher rotates a one-hot encoded register such

that each activation is sent to one of the hardware threads. If a token enters a

thread for which a previous token is still being processed, identifying the precise

79

3 Checkers as Dynamic Assistants to Silicon Debug

cause of a failure becomes more difficult, but still feasible. In such cases, increasing

the number of hardware threads can assist in the process of properly isolating the

faulty sequence. Evidently, increasing the hardware resources to assist in the de-

bugging is only possible in systems where programmable logic is present such as

FPGA-based accelerators or in devices that integrate re-programmable logic fabric

as well as fixed silicon, application-specific resources.

Threading also applies to the plain matching sequence automata (as opposed

to the failure matching automaton discussed above). In such cases, the plain occur-

rence matching automaton is threaded for increased causality visualization. The

nuance between plain matching and failure-matching modes (called conditional

and obligation modes [103]) can be observed by comparing the automata for both

sequences appearing in the assertion in Figure 3.3 (b). In this example, the occur-

rence and failure modes correspond to the left and right sides of the |=> operator,

respectively.

To complete the threading, the sequence output is defined as the disjunction

of the threaded automata outputs. Seen from the sub-circuit boundary, a multi-

threaded sub-circuit’s behaviour is identical to that of a non-threaded sub-circuit.

Threading applies to any PSL property in which one or more sequences appear.

Threading of a simple Boolean expression used at the property level is obviously

not performed. A tradeoff is required between an accurate location of the source

of the failure and hardware resources usage, as will be shown in Section 3.4.

An example scenario where assertion threading is useful is in the verification of

highly pipelined circuits such as a CPU pipeline or a packet processor, where tem-

porally complex sequences are modeled by assertions. In such cases, it is desirable

to partition sequences into different threads in order to separate a failure sequence

from other sequences. Once the sequence processing is temporally isolated, the

exact cause of the failure can be more easily identified. The following case study

shows how assertion threading can be used to quickly identify incorrect instruc-

tion executions in a CPU.

80

3.2 Assertion Checkers Enhancements for In-Silicon Debugging

3.2.5.1 Assertion Threading – CPU Execution Pipeline Debug Scenario

A simplified CPU execution pipeline, similar to the DLX [105] RISC CPU with

5 levels of pipeline, was coded in RTL and two classes of instructions were con-

sidered, namely memory writes and register writes. This CPU is used to execute

instructions that contain memory and register manipulation. An error injection

mechanism is also incorporated into the instruction decoder, such that errors can

be inserted in the execution pipeline. Memorywrites are committed at the 4th level

(MEM Stage) in the pipeline, and register writes are committed at the 5th level (WB

Stage) in the pipeline. For a given WRITE instruction only a single destination is

allowed by the architecture (Memory or Register).

Example 3 shows the PSL code used to create an assertion checker circuit for

monitoring thememorywrite or register write instructions. The sequences Smemwr

and Sregwr are built to ensure that a write is either to the register file or to exter-

nal memory. In this CPU pipeline, those temporal expressions represent the same

“store” instruction at two different pipeline stages. The sequence Swr_instrmodels

the instruction decoder detecting the presence of a write instruction. The property

Pcorrect_wr ensures that this write instruction will either result in a memory write

or a register update (but never both for the same pipelined instruction execution

cycle).

Example 3 Assertion checker built from sequences to illustrate a pipelined CPU
write instruction.
default clock = (posedge Clk);
// Memory write sequence
sequence Smemwr = {[*2] ; MemWr ; ∼RegWr};
// Register write sequence
sequence Sregwr = {[*2] ; ∼MemWr ; RegWr};
// Write Instruction
sequence Swr_instr = {InstrValid && Instruction[31]==1’b1 &&

(Instruction[30:29]==2’b10 || Instruction[30:29]==2’b01) };
// Write works ?
property Pcorrect_wr = always { Swr_instr } |=> { {Smemwr} | {Sregwr} };
assert Pcorrect_wr;

The above PSL code is given to the assertion and sequence compiler along with

the CPU RTL code in Verilog. The resulting checker is instantiated in the CPU

architecture. The CPU along with its checker are exercised by a testbench running

81

3 Checkers as Dynamic Assistants to Silicon Debug

Figure 3.8: Using the assertion threading method to efficiently locate the cause
of an instruction execution error in the CPU pipeline example.

various verification scenarios.

Figure 3.8 shows the resulting simulation trace. The dependency graph is used

to determine the list of signals that relate to the assertion being debugged, and

by extension the signals that need to be logged in the wave window. The As-

sertFailOut signal is asserted at a given time point, indicating a violation in the

correctness of the write instruction behaviour. In this example, the instruction was

committed to both the memory and the register file, which is impossible in this ar-

chitecture. Tracing back through the Thread-Results vector, it is found that thread

#2 has detected the failure. Working back through the activations of this thread,

it can be observed that the instruction causing the error is highlighted by the cur-

sor in the Figure. The assertion threading helps to isolate the source of the faulty

sequence, and allows us to quickly determine which specific instruction was re-

sponsible for the assertion failure. In our example, for the sake of simplicity, the

CPU executes one instruction per clock. In more complex problems, some instruc-

tions could take a variable number of cycles to execute; assertion threading would

become an even more important asset to help debug these types of circuits.

3.3 Temporal Multiplexing of Checkers

Hardware assertion checkers can be incorporated as a part of the final silicon

as dedicated checkers that continuously monitor the circuit for abnormal condi-

82

3.3 Temporal Multiplexing of Checkers

tions. In a typical ASIC, some of the IP cores are known to be quite robust from

previous use or because they are provided by a third party vendor with multiple

previous successful tape-outs. Therefore, a balance between risk mitigation and

on-chip assertion capabilities has to be calculated. Programmable-logic fabric or

reconfigurable elements are increasingly inserted into ASICs to allow corrections

of silicon bugs or to bypass faulty modules. Since this reconfigurable fabric should

be unused at the initial tape-out, it represents an excellent opportunity to include

assertion monitors with no cost impact.

As a way to increase the number of assertions that can be monitored under area

constraints, this thesis proposes to time-multiplex groups of assertion checkers.

By continuously re-programming the reconfigurable fabric, it is thus possible to

support a much larger assertion coverage.

Figure 3.9 shows different levels of core confidence, as could be encountered in

a typical System-on-Chip (SoC) design, for example. Core1 could have been used

in a previous design, thus the confidence is high and a limited number of con-

nectivity points are shared with the programmable fabric. Core3 could be a new

design and thus being more risky, more re-programmable resources are dedicated

to potential bug fixing, while additional checkers can be built into the silicon as

extra precaution and to assist post-silicon debug.

Figure 3.9: Typical SoC floorplan implementing fixed and reprogrammable as-
sertion checkers.

The assertion checkers benefit from observability on the main system buses for

protocol checking and assertion-based debugging enhancements. Before tape-out,

an analysis of each checker circuit is performed and the routing overhead is esti-

83

3 Checkers as Dynamic Assistants to Silicon Debug

mated based on each assertion’s input dependencies. Once the design is locked

with a specified list of available monitoring points, the tool can provide the de-

signer with all the assertion checkers that will be supported by the future ASIC.

New assertion checkers can be generated after tape-out as long as they respect the

silicon area constraints and primary input requirements. In this scenario, the mi-

croprocessor can coordinate the instantiation of the proper checkers for each test

sequence in the reprogrammable fabric. Checker groups (also called partitions, or

subsets) are instantiated one after the other in the reconfigurable area, to corre-

spond with the set of test sequences being run.

This process of in-system re-programming of logic cells is called Partial Dy-

namic Reconfiguration or Run-Time Reconfiguration and is well understood. Platzner

et al. have a great number of publications related to this area [106]. Most of the re-

search is done on FPGAs since modern devices support the methodology. An good

example of the method and applications outside the scope of assertion checkers

can be seen in the work of Abel et al [107].

As a final interesting use of re-programmable checkers is their use as a flex-

ible trigger mechanism for storage buffers. Since they implicitly support complex

temporal expressions, the output of a sequence checker can be used to enable the

capture of a given bus transaction in a buffer. A complex triggering problem may

be put forward like in this example: “Capture the data bus values during cycles

3,4,5 of a delayed-grant burst transfer initiated by device A”. In this case, the com-

pletion mode logic of a sequence checker can be used with a precondition given

by the detection of a delayed-grant burst transfer from device A. In PSL, the de-

layed grant sequence would be a temporal property. The source of the transfer

along with the grant sequence temporal property would form subsequences that

are used to trigger the consequent in the completion mode automata. The checker

would then assert its output when cycles 3,4,5 are in progress. Those hardware

signals, when asserted enable the storage buffers and thus only the requested data

would end up in the captured trace. In such system one would simply have to

temporarily remove the on-line assertion checkers and re-program the logic for

the trigger logic of the storage buffer. The mechanisms to create the trigger logic is

the same as the ones used to make the on-line assertion checkers.

In contrast, most modern logic capture systems offer trigger mechanisms that

84

3.3 Temporal Multiplexing of Checkers

are expressed through a simple boolean layer and with a few programmable state

machines. Those usually involve learning a new interface for the particular instru-

ment and offer far less flexibility and expressiveness than the use of a full temporal

language such as PSL.

3.3.1 Assertion Checker Partitioning Algorithm

This tool builds a database of each of the checker modules by automating their

synthesis and extracting all the relevant metrics. In the current proof-of-concept

implementation, the Xilinx XST synthesis tools for VirtexII FPGA devices are used.

Once the checkers have been individually synthesized and their sizing metrics

are obtained, Algorithm 1 is used to create subsets of checkers suitable for mul-

tiple reconfigurations in the reprogrammable logic area. This algorithm is based

on solving the subset-sum problem by dynamic programming [108]. However, be-

cause the circuit metrics comprise two variables, namely # of flip-flops (FF) and

of lookup tables (LUT), the typical subset-sum procedure can not be employed

directly on its own. This thesis therefore presents a two-phase algorithm, which

returns a near-optimal partition, given the circuits’ metrics and the size of the re-

programmable area (also specified as # of flip-flops and # of lookup tables).

Phase 1 in the algorithm (lines 3-8) uses flip-flops as the dominant metric and

performs subset-sum on this metric (line 5). The subset-sum algorithm requires

that the circuits be sorted in increasing order according to the dominant metric

(line 4). A search is then performed for the best subset according to the size limit

of this dominant metric which also respects the maximum size for the secondary

metric (line 6). Once the best subset has been determined, it is logged and removed

from the set (lines 7 and 8). This procedure continues until the set of checkers is

empty (line 3).

The dominant / secondary metrics are interchanged and the same procedure is

repeated (lines 9 to 14). A comparison is then made between both phases (lines 15

to 18), and the solution with the fewest subsets is logged. When both phases have

the same number of subsets, it was empirically observed that the more balanced

partition is the one for which the dominant metric corresponds to the metric which

is the most constrained by the area limits (smallest freedom).

85

3 Checkers as Dynamic Assistants to Silicon Debug

It can be shown by counterexample that the algorithm is not guaranteed to cre-

ate an optimal partition; however, our experiments show that it drastically outper-

forms the brute force approach in computation time. Furthermore, when one of the

metrics has a large amount of freedom with respect to its constraint, the problem

tends toward a single variable subset sum for which our algorithm is optimal.

Algorithm 1 Assertion circuit partitioning algorithm.
1: FUNCTION: SUBSET-CIRCUIT(set C of circuit metrics (FF, LUT), areaFF,

areaLUT)
2: D ← C
3: while there are circuits left in C do {phase 1 (dominant metric is #FFs)}
4: sort circuits C according to #FFs
5: build dynamic programming table T for subset-sum on #FFs
6: search T for best subset S such that ∑si∈S

#LUTs(si) < areaLUT

7: log subset circuits in S as a group in phase 1 results
8: remove circuits S from C
9: end while

10: while there are circuits left in D do {phase 2 (dominant metric is #LUTs)}
11: sort circuits D according to #LUTs
12: build dynamic programming table T for subset-sum on #LUTs
13: search T for best subset S such that ∑si∈S

#FFs(si) < areaFF
14: log subset circuits in S as a group in phase 2 results
15: remove circuits S from D
16: end while
17: if number of subsets in both phases differs then {analysis}
18: return results of phase which has the fewest subsets (groups)
19: else
20: return results of phase for which the subset-sumwas performed onmetric

with smallest freedom
21: end if

3.4 Experimental Results

The effects of assertion threading, assertion completion and activity monitors

were explored by synthesizing the assertion circuits produced by the checker gen-

erator using ISE 8.1.03i from Xilinx, for a XC2V1500–6 FPGA. The checker gen-

erator used is MBAC version 1.71 and the synthesis is optimized for speed (as

86

3.4 Experimental Results

opposed to area). The dependency graphs from Section 3.2.2 do not influence the

circuits generated by the checker generator, while the assertion and coverage coun-

ters from Section 3.2.4 contribute a hardware overhead that is easily determined a

priori. The number of flip-flops (FF) and four-input lookup tables (LUT) required

by a circuit is of primary interest, given that assertion circuits are targeted towards

hardware emulation and silicon debug. Since speed may also be an issue, the max-

imum operating frequency for the worst clk-to-clk path is reported.

This section demonstrates the use of the algorithms. The checker generator

is used to produce assertion checkers for two suites of assertions. Some of the

assertions are used to verify an AMBA slave device and AMBA AHB interface

compliance, and were taken from Chapter 8 in the PSL book [109] by Cohen et

al., while others were taken from the book [7] by Foster et al. Finally some come

from examples in the text or were created during the development to exercise the

checker generator. The AMBA, PCI and CPU example assertions appearing in the

tables are derived from our publication [12]. Because of the temporal nature of the

assertions and simple storage mechanism (single bit for each state), the assertion

checkers utilize more combinational cells than flip-flops. This effect is even more

pronounced when large comparators are used in the boolean layer. However, the

proposed partitioning algorithm can operate on any type of circuits whether they

are balanced or biased towards either flip-flops or combinational logic.

The checkers only monitor the internal circuit signals. This imposes a small ex-

tra loading that can at worst add small delays, which can be kept low by following

standard synthesis techniques. For instance, for the signals in the critical path that

are monitored by an assertion, isolation buffers can be inserted to minimize the

loading of the circuit under debug.

3.4.1 Signaling Assertion Completion

The effect of changing an assertion checker into completion mode show that

in the checker’s complexity remain about the same and logic usage sometimes

decreases a bit. Table 3.1 shows the result of using this debug monde on a selection

of assertion statements.

87

3 Checkers as Dynamic Assistants to Silicon Debug

N
o
rm

a
l

A
ss
e
rt
io
n
C
o
m
p
le
ti
o
n

A
ss
e
rt
io
n

FF
L
U
T

M
H
z

FF
L
U
T

M
H
z

as
se
rt
al
w
ay

s
{a
&
b}
|–
>

{∼
c;
{d
&
∼
c}
[*
0:
4]
;c
&
∼
d
};

6
8

43
3

6
7

44
4

as
se
rt
al
w
ay

s
({
a}
|=
>

{{
c[
*0
:1
];d

}|
{e
}}
);

3
3

61
0

3
2

61
0

as
se
rt
al
w
ay

s
({
a;
b}
|=
>

{c
[*
0:
1]
;d
})
;

4
3

61
1

4
3

61
1

as
se
rt
al
w
ay

s
{a
}
|=
>

{{
[*
2]
;b
;∼

c}
|
{[
*2
];
∼
b;
c}
};
′

6
3

56
4

6
3

56
4

as
se
rt
al
w
ay

s
{a
}
|=
>

{b
;c
;d
;e
};
(A

M
B
A

as
r.
[1
09
])
′

5
5

51
4

5
4

61
1

as
se
rt
al
w
ay

s
{a
;∼

a}
|=
>

{(
∼
a)
[*
0:
15
];a

}a
bo

rt
b;

(A
M
B
A

as
r.
[1
09
])
′

18
17

61
1

18
23

31
2

as
se
rt
al
w
ay

s
{a
;b
}
|=
>

{c
;{{
d
[*
];e

}[
+
];f
}&

&
{g
[*
]}
}a

bo
rt
h;

(P
C
Ia

sr
.[
7]
)
′

5
10

46
8

5
7

47
0

as
se
rt
al
w
ay

s
{a
}
|=
>

{e
;d
;{b

;e
}[
*2
:4
];c

;d
};

15
21

32
9

15
15

43
0

as
se
rt
al
w
ay

s
{a
}
|=
>

{b
;{
c[
*0
:2
]}
|
{d
[*
0:
2]
};

e}
;

7
12

33
3

7
9

41
4

as
se
rt
al
w
ay

s
{{
{b
;c
[*
1:
2]
;d
}[
+
]}
:{
b;
{e
[–
>
]}
;d
}}
|=
>

ne
xt

a;
8

7
47

3
8

7
47

3
as
se
rt
al
w
ay

s
{a
}
|=
>

{{
{c
[*
1:
2]
;d
}[
+
]}
&
&

{{
e[
–>

2:
3]
};d

}}
;

16
38

30
4

16
31

38
6

as
se
rt
al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&

{b
;{e

[–
>
2:
3]
};d

}}
;

44
14
1

26
0

44
13

9
25

0
as
se
rt
al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&
&

{b
;{e

[–
>
2:
3]
};d

}}
;

35
11
8

25
1

35
10

0
28

1
Ta

b
le

3
.1
:
A
ss
e
rt
io
n
-c
irc

u
it
re
so

u
rc
e
u
sa

g
e
in

tw
o
c
o
m
p
ila

ti
o
n
m
o
d
e
s.

Th
e
a
ss
e
rt
io
n
si
g
n
a
l
d
e
fin

it
io
n
s
u
se

si
m
-

p
lifi
e
d

b
o
o
le
a
n
s
(e

.g
.
A

a
n
d

B
a
n
d

C
c
a
n
b
e
v
ie
w
e
d

a
s
a

n
e
w

v
a
ri
a
b
le

D
)
a
n
d

th
e
n
a
m
e
s
o
f
th
e
si
g
n
a
ls
a
re

c
o
n
d
e
n
se

d
in
to

a
si
n
g
le

le
tt
e
r
(e

.g
.
R
E
A
D
Y
&
G
N
T
b
e
c
o
m
e
a
&
b
).
Th

e
y
a
re

id
e
n
ti
fie

d
b
y
th
e
′
sy
m
b
o
l.

88

3.4 Experimental Results

3.4.2 Activity Monitoring

Table 3.2 show that adding activity monitoring only slightly increases the com-

plexity of the hardware checker by a few extra LUTs. This table also shows that the

final maximum operating frequency of the checker decreases slightly. Fortunately,

in FPGAs of that family, designs are not typically aiming at frequency targets in the

300-400 MHz range. Typical Virtex-II designs are targeted to run between 100-200

MHz (at least for most of the logic), which shows that the hardware checker’s logic

is not likely to be part of the critical timing path. In the event a given checker end up

loading a critical timing path, they could be isolated by adding a set of flip-flops at

their inputs which would only delay the assertion results by a clock cycle, which

would not affect the final outcome.

89

3 Checkers as Dynamic Assistants to Silicon Debug

B
a
se
li
n
e

B
a
se
li
n
e
+
A
ct
.M

o
n
.

A
ss
e
rt
io
n
(a
ss
er
t
x
)

FF
L
U
T

M
H
z

FF
L
U
T

M
H
z

al
w
ay

s
{a
&
b}
|–
>

{∼
c;
{d
&
∼
c}
[*
0:
4]
;c
&
∼
d
};

6
8

43
3

6
11

42
9

al
w
ay

s
({
a}
|=
>

{{
c[
*0
:1
];d

}|
{e
}}
);

3
3

61
0

3
4

61
0

al
w
ay

s
({
a;
b}
|=
>

{c
[*
0:
1]
;d
})
;

4
3

61
1

4
5

56
4

al
w
ay

s
{a
}
|=
>

{{
[*
2]
;b
;∼

c}
|
{[
*2
];
∼
b;
c}
};
′

6
3

56
4

6
5

55
9

al
w
ay

s
{a
}
|=
>

{b
;c
;d
;e
};
(A

M
B
A

as
r.
[1
09
])
′

5
5

51
4

5
6

50
9

al
w
ay

s
{a
;∼

a}
|=
>

{(
∼
a)
[*
0:
15
];a

}a
bo

rt
b;

(A
M
B
A

[1
09
])
′

18
17

61
1

18
23

56
4

al
w
ay

s
{a
;b
}
|=
>

{c
;{{
d
[*
];e

}[
+
];f
}&

&
{g
[*
]}
}a

bo
rt
h;

[7
]
′

5
10

46
8

5
12

41
1

ne
ve

r
{a
;d
;{b

;a
}[
*2
:4
];c

;d
};

12
11

56
4

12
15

55
9

al
w
ay

s
{a
}
|=
>

{e
;d
;{b

;e
}[
*2
:4
];c

;d
};

15
21

32
9

15
26

31
2

al
w
ay

s
{a
}
|=
>

{b
;{
c[
*0
:2
]}
|
{d
[*
0:
2]
};

e}
;

7
12

33
3

7
14

33
1

ne
ve

r
{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&
&

{b
;{e

[–
>
2:
3]
};d

}}
;

16
19

39
5

16
24

38
1

al
w
ay

s
{a
}
|=
>

{{
{c
[*
1:
2]
;d
}[
+
]}
&
&

{{
e[
–>

2:
3]
};d

}}
;

16
38

30
4

17
40

29
3

al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&

{b
;{e

[–
>
2:
3]
};d

}}
;

44
14
1

26
0

44
15

0
25

9
al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&
&

{b
;{e

[–
>
2:
3]
};d

}}
;

35
11
8

25
1

35
12

8
24

3
Ta

b
le

3
.2
:
R
e
so

u
rc
e
u
sa

g
e
o
f
a
ss
e
rt
io
n
c
irc

u
it
s
a
n
d
a
c
ti
v
it
y
m
o
n
it
o
rs
.
(′
=
Si
m
p
lifi
e
d
B
o
o
le
a
n
s.
)

90

3.4 Experimental Results

3.4.3 Hardware Assertion Threading

Table 3.3 show the overhead cost of using assertion threading as a hardware as-

sistance to debug. As expected from the replication of the checker circuit, the area

scales proportionally to the number of parallel “threads” the hardware is using

with the slight overhead introduced by the dispatcher. In the case of A7 and A8, 8-

way threading is not required since the assertion automata does not have enough

“depth” to be useful and the extra hardware threads would serve no purpose.

91

3 Checkers as Dynamic Assistants to Silicon Debug

N
o
n
e

2
-w

a
y

4
-w

a
y

8
-w

a
y

A
ss
e
rt
io
n

FF
L
U
T

M
H
z

FF
L
U
T

M
H
z

FF
L
U
T

M
H
z

FF
L
U
T

M
H
z

A
1

6
8

43
3

15
18

38
6

29
33

30
6

57
62

24
1

A
2

12
11

56
4

25
23

56
4

49
46

43
3

97
91

40
8

A
3

15
21

32
9

33
44

29
8

65
83

25
2

12
9

16
4

23
5

A
4

16
19

39
5

33
39

39
5

65
77

39
5

12
9

16
0

31
8

A
5

26
80

24
6

57
16
5

25
2

11
3

29
7

20
5

22
5

57
0

17
7

A
6

35
11
8

25
1

73
23
5

23
9

14
5

43
0

21
3

28
9

88
1

18
6

A
7

6
3

56
4

15
11

44
2

29
20

36
2

no
tr
eq

u
ir
ed

A
8

5
5

51
4

13
16

32
3

25
24

32
6

no
tr
eq

u
ir
ed

A
9

18
17

61
1

39
38

44
2

77
75

36
4

15
3

14
4

29
7

A
10

5
10

46
8

13
23

31
1

25
39

27
8

49
67

23
5

A
1:

as
se
rt
al
w
ay

s
{a
&
b}
|–
>

{∼
c;
{d
&
∼
c}
[*
0:
4]
;c
&
∼
d
};
(E
xa

m
p
le

1)
A
2:

as
se
rt
ne

ve
r
{a
;d
;{b

;a
}[
*2
:4
];c

;d
};

A
3:

as
se
rt
al
w
ay

s
{a
}
|=
>

{e
;d
;{b

;e
}[
*2
:4
];c

;d
};

A
4:

as
se
rt
ne

ve
r
{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&
&

{b
;{e

[–
>
2:
3]
};d

}}
;

A
5:

as
se
rt
al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
:{
b;
{e
[–
>
]}
;d
}}
;

A
6:

as
se
rt
al
w
ay

s
{a
}
|=
>

{{
{b
;c
[*
1:
2]
;d
}[
+
]}
&
&

{b
;{e

[–
>
2:
3]
};d

}}
;

A
7:

as
se
rt
al
w
ay

s
{a
}
|=
>

{{
[*
2]
;b
;∼

c}
|
{[
*2
];
∼
b;
c}
};
(E
xa

m
p
le

3)
′

A
8:

as
se
rt
al
w
ay

s
{a
}
|=
>

{b
;c
;d
;e
};
(A

M
B
A

as
r.
[1
09
])
′

A
9:

as
se
rt
al
w
ay

s
{a
;∼

a}
|=
>

{(
∼
a)
[*
0:
15
];a

}a
bo

rt
b;

(A
M
B
A

as
r.
[1
09
])
′

A
10
:a

ss
er
ta

lw
ay

s
{a
;b
}
|=
>

{c
;{{
d
[*
];e

}[
+
];f
}&

&
{g
[*
]}
}a

bo
rt
h;

(P
C
Ia

sr
.[
7]
)
′

Ta
b
le

3
.3
:
A
re
a
tr
a
d
e
o
ff
m
e
tr
ic
s
fo
r
a
ss
e
rt
io
n
th
re
a
d
in
g
.
(′
=
Si
m
p
lifi
e
d
B
o
o
le
a
n
s.
)

92

3.4 Experimental Results

3.4.4 Checkers Partitioning

Table 3.4 shows the individual resource usage of checkers for the assertions

in the AHB and mem_slave examples. In the table, N.A. means Not Applicable,

and occurs for circuits containing only one FF with no feedback path (the MHz

performance being a clk-to-clk estimate). Table 3.5 shows how the synthesized

assertion circuits from Table 3.4 are partitioned into a minimal number of sets by

the subset-circuit algorithm, for a target area of 50 FFs and 50 four-input LUTs.

In both cases, phase two results were logged (dominant LUTs). The right-most

column lists the sums of the circuit metrics in each group.

Table 3.6 shows how the actual resource usage can be slightly diminished when

the circuits that form a subset are actually synthesized together. As a general re-

sult, it can be expected that, as the number of circuits per subset increases, the

resource sharing (a side effect of the synthesis process) becomes more important,

and the overall metrics for a given subset become smaller. For comparison pur-

poses, Table 3.6 also lists the full-set metrics, which are obtained by synthesizing

all checkers as a single module.

93

3 Checkers as Dynamic Assistants to Silicon Debug

A
H
B
ex
am

p
le
:

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

ah
b_

A
1

2
2

66
7

ah
b_

A
10

1
6

N
.A

.
ah

b_
A
19

3
3

66
7

ah
b_

A
2

2
3

61
1

ah
b_

A
11

2
30

66
7

ah
b_

A
20

3
2

66
7

ah
b_

A
3

2
3

66
7

ah
b_

A
12

2
18

66
7

ah
b_

A
21

1
23

N
.A

.
ah

b_
A
4

2
2

61
1

ah
b_

A
13

2
18

61
1

ah
b_

A
22

1
21

N
.A

.
ah

b_
A
5

2
2

66
7

ah
b_

A
14

1
12

N
.A

.
ah

b_
A
23

1
21

N
.A

.
ah

b_
A
6

2
2

66
7

ah
b_

A
15

1
36

N
.A

.
ah

b_
A
24

1
19

N
.A

.
ah

b_
A
7

2
2

66
7

ah
b_

A
16

2
20

66
7

ah
b_

A
25

1
6

N
.A

.
ah

b_
A
8

2
2

66
7

ah
b_

A
17

2
2

61
1

ah
b_

A
26

18
17

61
1

ah
b_

A
9

2
2

66
7

ah
b_

A
18

3
2

66
7

m
em

_s
la
ve

ex
am

p
le
:

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

A
ss
e
rt
io
n

F
F
s

L
U
T
s

M
H
z

m
em

_s
la
ve

_A
1

1
4

N
.A

.
m
em

_s
la
ve

_A
10

5
16

45
6

m
em

_s
la
ve

_A
19

1
5

N
.A

.
m
em

_s
la
ve

_A
2

2
4

66
7

m
em

_s
la
ve

_A
11

5
22

46
9

m
em

_s
la
ve

_A
20

1
6

N
.A

.
m
em

_s
la
ve

_A
3

2
2

66
7

m
em

_s
la
ve

_A
12

2
3

66
7

m
em

_s
la
ve

_A
21

1
6

N
.A

.
m
em

_s
la
ve

_A
4

2
2

66
7

m
em

_s
la
ve

_A
13

2
3

66
7

m
em

_s
la
ve

_A
22

1
1

N
.A

.
m
em

_s
la
ve

_A
5

1
2

N
.A

.
m
em

_s
la
ve

_A
14

2
3

66
7

m
em

_s
la
ve

_A
23

2
5

66
7

m
em

_s
la
ve

_A
6

1
7

N
.A

.
m
em

_s
la
ve

_A
15

2
3

66
7

m
em

_s
la
ve

_A
24

1
4

N
.A

.
m
em

_s
la
ve

_A
7

1
2

N
.A

.
m
em

_s
la
ve

_A
16

2
7

66
7

m
em

_s
la
ve

_A
25

1
3

N
.A

.
m
em

_s
la
ve

_A
8

1
7

N
.A

.
m
em

_s
la
ve

_A
17

1
2

N
.A

.
m
em

_s
la
ve

_A
26

1
18

N
.A

.
m
em

_s
la
ve

_A
9

4
9

41
7

m
em

_s
la
ve

_A
18

4
12

44
2

Ta
b
le

3
.4
:
R
e
so

u
rc
e
u
sa

g
e
o
f
a
ss
e
rt
io
n
c
h
e
c
ke

rs
.

94

3.5 Chapter Summary

AHB example:
Subset Assertion circuits in partition ΣFF,ΣLUT

#1 {A9, A14, A15} 4, 50
#2 {A8, A22, A23, A25} 5, 50
#3 {A7, A10, A21, A24} 5, 50
#4 {A6, A11, A13} 6, 50
#5 {A1, A2, A3, A4, A5, A12, A16} 14, 50
#6 {A17, A18, A19, A20, A26} 29, 26

Total: 63, 276

mem_slave example:
Subset Assertion circuits in partition ΣFF,ΣLUT

#1 {A6,A8,A19,A20,A21,A22,A26} 7, 50
#2 {A1, A11, A15, A18, A23, A24} 15, 50
#3 {A2, A3, A5, A7, A9,

A10, A14, A16, A17, A25} 21, 50
#4 {A4, A12, A13} 6, 8

Total: 49, 158
Table 3.5: Checker partitions for reprogrammable area.

The end result is an efficient partition of checkers which minimizes the number

of times the reprogrammable logic area must be reconfigured. A test procedure

can then run a batch of test sequences with a given subset of checkers, then in-

stantiate a new set of checkers, re-run the test sequences, and so forth. Once the

verification with checkers is finished, the reprogrammable fabric can be re-used

for the functionality of the intended design.

3.5 Chapter Summary

This chapter described a set of specific enhancements to temporal logic to hard-

ware translation tools that are increasing the usefulness of the generated hardware

when used in the context of debug. Some of the proposed debug enhancements in-

cur little hardware overhead, yet provide very important information that is intrin-

sically close to the logic structures and can thus record a very accurate signature

of a hardware bug. Using this signature and external data analysis, designers can

create accurately targeted verification scenarios in their simulation environment to

95

3 Checkers as Dynamic Assistants to Silicon Debug

AHB example:
Subset FFs, LUTs

#1 4, 50
#2 5, 50
#3 5, 49
#4 6, 34
#5 13, 48
#6 29, 26
Total: 62, 257

Full-Set (FFs, LUTs)

60, 250

mem_slave example:
Subset FFs, LUTs

#1 7, 43
#2 15, 47
#3 21, 47
#4 6, 8
Total: 49, 145

Full-Set (FFs, LUTs)

48, 129

Table 3.6: Subset and full-set synthesis of a sample of hardware checkers.

address the problems in a faster, more direct manner.

96

Chapter 4

Memory Mapping of Hardware

Checkers

The previous chapter showed a series of enhancements that can be added to

hardware assertion and sequence checkers to increase their usefulness during de-

bug. Hardware checkers augmented with debug enhancements alone are useful,

but only up to a point. Their benefit to debug are greatly enhanced when many

assertion checkers, sequence monitors and coverage counters are considered to-

gether as a more complete “health report” of the device under debug.

In this chapter, the assertion monitors, coverage counters and sequence mon-

itors will be referred to as checkers or hardware checkers. This chapter will explain

how hardware checkers can be integrated into larger systems by grouping them

via the use of CPU-accessible addressing space. In doing so, the control points,

coverage counters and debug enhancement outputs from the checkers will be ac-

cessible in the same manner as other hardware peripherals. The addressing space,

which is an abundant resource in modern systems, especially in newer 64-bit ar-

chitectures, allows the virtual concatenation of checkers from different physical

areas of the system to appear contiguous when observed from the point of view

of a given CPU. The proposed toolset allows direct use of the on-chip resources

to monitor the checker’s output via a register file that the local CPU resources can

access. An algorithm is proposed to automatically pack registers to maximise the

use of the memory addresses and its runtime is demonstrated by packing up to

1000 checkers and their respective controls.

97

4 Memory Mapping of Hardware Checkers

Later in this chapter, a mechanism is proposed to integrate the generated asser-

tion checker groups in the context of an operating system. The proposed mecha-

nism leverages the device file abstraction offered by the operating system to carry

the virtual to physical memory mapping process. This method allows applications

to directly interface with the hardware checkers and is demonstrated to be scalable,

secure and easy to adapt to operating system updates, while saving considerable

development effort.

4.1 Need for Automation

It is possible to benefit from the hardware checker’s debug enhancements pre-

sented in Chapter 3 in a CPU-based system bymanually connecting the output of the

checker to a hand-coded register file. One would then validate the resulting sys-

tem by issuing CPU reads through a BFM performing the low-level steps involved

in accessing the embedded register. This would be done in a testbench executed

by a hardware simulator. The final qualification of the register access would be

performed on a hardware prototype. However, the tediousness of connecting the

output of many assertion checkers (hundreds or thousands) along with the error-

prone process of defining and mapping the resulting address location and bit po-

sition will use a lot of expensive hardware engineering time. To improve efficiency

and acceptance of the proposed methodology, automating the connection and gen-

eration of hardware interfaces to the memory map is our primary objective.

The hardware engineer only has to provide the PSL file to the register generator

tools and the proposed process will reliably connect the checkers to the appropri-

ate control structures and maintain a database of the resulting connections. Since

this automatedmapping process can be thoroughly validated through unit testing,

post-synthesis simulations and regression testing, it will be able to rapidly and re-

liably connect a large number of checkers to the memory map without increasing

the engineering workload. As a side benefit, the internal database can also be used

to output C-based data structures or output a database that can then be used in-

system to interpret the memory bit mappings.

98

4.2 Memory Mapping Concepts

4.2 Memory Mapping Concepts

This section proposes a quick overview of the memory mapping concept and

the supporting hardware required. It will help illustrate the system-level consid-

erations needed to integrate hardware checkers as slave peripherals in a memory-

mapped system.

4.2.1 General Overview

In modern IC architecture that is comprised of processors and peripherals,

there is one (sometimes more) well-defined bus architecture that allows the CPUs

to communicate with the peripherals. Generally, a given CPU has direct access

to a high-speed cache memory and then, one level below, to a local bus intercon-

nect. The cache memory grants repetitive accesses to the same memory region to

be performed with a comparatively lower delay on a copy of the data than directly

manipulating the main memory content. This advantage of locality of information

brought about by cachememory offers great speed in normal use and explains why

most performance-oriented embedded processors make use of this technique.

A transaction that is not handled by the cache memory will propagate to the

high-speed peripherals that are directly connected to the bus and possibly through

a bridge unit to lower-speed secondary buses. What determines the destination

of the transaction is its address range. In most systems, when the CPU issues a

transaction, the intended recipient will perform the operation (read or write) and

provide an acknowledgement. On the other hand, if the transaction is sent to an

address where no decoding is performed and no peripheral is present to process it,

the transaction typically terminates with a bus error and an exception mechanism

is triggered in the software.

A bus-based architecture thus allows the addition of peripherals by allocating

a new address range and providing hardware resources to decode and respond to

requests targeted to this new area of memory space.

99

4 Memory Mapping of Hardware Checkers

4.2.1.1 Volatile Registers

The term Volatile Register is often used to describe a memory location (a specific

address) that is mapped to a hardware-based structure, subject to change with-

out any CPU intervention. This is in contrast to Random Access Memory (RAM)

where the content is always under the control of the CPU. The RAM regions bene-

fit from being cacheable, which improve performance. On the other hand, the hard-

ware based resources are not cached 1 since they may change independently of any

CPU activity. The operating system must know about the hardware-based regis-

ters or other volatile areas of the memory and enable the processor-specific modes

to perform the hardware accesses with the caching mechanisms disabled. The ex-

act mechanism used to bypass the cache memory varies from one architecture to

another. Generally, if the system supports virtual memory then the caching behav-

ior can be defined for each page and controlled by the OS kernel. In other systems,

the cache memory behavior is defined per block or per chip select line (hardware

signal used to access the peripheral).

4.2.2 Wishbone Interconnect

Some form of standardization of the high-speed and low-speed bus internal

buses benefits SoC architectures as they allow the re-use of components and rapid

integration. A candidate of interest when building custom SoC in a research envi-

ronment is the Wishbone [43] interface. The specification is open source and anyone

can implement Wishbone-compatible hardware blocks without seeking licensing

permissions. Furthermore, a lot of available open source hardware cores have al-

ready been implemented using this specification, providing numerous examples

and useful hardware modules.

Figure 4.1 illustrates two of the fundamental Wishbone bus cycles, namely the

pipelined read and pipelined write cycles. With only those two bus cycle types,

one can build a memory-mapped block. The cycles are synchronous and use a

1. They could support caching, but some invalidation mechanism must be put in place to sup-
port hardware-based invalidation messages to be triggered when registers are updated. If those
registers are subject to constant changes (e.g. activity counters), then they could generate many
invalidation messages and affect the system’s performance.

100

4.2 Memory Mapping Concepts

(a) Pipelined Read (b) Pipelined Write

Figure 4.1: Example Wishbone Bus Cycle Timing

system-wide clock illustrated as CLK_I. The bus master (typically the CPU unit)

drives ADDR_O and asserts STB_O to indicate the transfer. The slave peripheral

responds with ACK_I and in the case of a read, drives the DAT_I.

The Wishbone specification also proposes a non-pipelined version of read and

write that is a bit less efficient when scaled to larger systems due to the loading

on the bus and the longer time between transfers. The Wishbone specification also

details more advanced bus cycles [43] (block transfers, atomic modifications) and

optional signals to improve transfer efficiency and to support multiple masters.

The Wishbone interconnect has been used in a similar research project at the

TIMA laboratory in France, also based on an assertion-based methodology and

on-line checkers [110]. Their research project proves that there is the possibility for

continuous on-line monitoring of the memory mapping hardware layer itself. This

could be used in addition to the monitoring of components in the system.

4.2.3 Other Interconnects

Wishbone is not the only interconnect available to build up complex SoC. Core-

Connect from IBM, used in this research to connect the PowerPC processor of the

FPGAs in the BEE2 prototyping machine, is one example with a set of features

similar to the Wishbone interconnect.

The AMBA AHB interconnect [42] is also very prevalent due to the large num-

ber of ARM-based systems in the marketplace. Some companies offer AMBA com-

patible cores, notably Aeroflex Gaisler, who makes the Leon II processor (SPARC

instruction set) that was used in early development of our NoC-based RTL-level

101

4 Memory Mapping of Hardware Checkers

prototypes.

4.3 Register File Structure

Once the interconnect has been selected, one can focus on the actual register

file’s internal format. A properly implemented register file interface can consid-

erably reduce the resulting firmware and software complexity. The term firmware

register is used in this chapter to describe a group of bits accessible from the local CPU

interconnect. This terminology differs from the one used when describing logic

hardware, where a hardware register simply describes a collection of bits present in

the circuit. A Firmware register is therefore a hardware register from the point of view

of the logic circuit.

A hardware register can’t be seen by the firmware and is not considered in the

algorithms presented below. For example, the sequence checking automata state

information is not made visible to the firmware. Some automata state information

is visible by the firmware only when explicitly requested as part of a debug en-

hancement, for example when performing Antecedent Monitoring (Section 3.2.1). In

that case, a firmware-visible register is created.

From experience (which one can gain by reading many datasheets from differ-

ent IC vendors), firmware registers are usually defined using a single bit for control

or status information that is Boolean. An example of this would be assertion check

failed or coverage counter enabled. Multi-bit registers are used to control parameters

requiring encoding (e.g. multiplexing different sources of information) or to report

multi-bit values such as in the case of coverage counters in this application.

Registers have different possible access types:

– Read Only (RO): A register that reports information. Writing to this register

has no effect.

– Read Write (RW): A register that reports an internal control value state and

which can be manipulated by the firmware.

– Clear on Write 1 (CW1): A register that typically reports an event recorded

state and that can be cleared by writing a 1 to the location.

– Clear on Read (CR): This type of register has a value that can only be read

102

4.3 Register File Structure

once for each event recorded. Once read, the value will be affected. It can be

used to report counts and perform an atomic clear when the count is read.

Generally, it is not a recommended practice to have this kind of register type

as they are difficult to debug. If the memory range is watched by a software

debugger, the value will constantly be read and effectively becomes useless 2.

This type of register offers a performance advantage which is why they are

considered as an option in the RTL generation of the hardware checker reg-

ister file.

– Set on Write 1 (SW1): A register that can be written by the CPU and that can

only be set. The hardware usually clears the register after an operation com-

pletes. It is usually used to start processing sequences and can be monitored

by the CPU to know the end of activity.

– Write Only (WO): A seldom used type of register which can accept write

commands and will typically initiate an operation in the hardware. Nor-

mally, this type of register is not appreciated by firmware programmers since

it is quite difficult to know if it was accessed correctly or not due to lack of

feedback from the hardware. An advantage would be to hide a certain set of

proprietary control or test registers or to save a few logic gates.

For detailed discussion and guiding principles for making efficient firmware

interfaces to the hardware, one can refer to Gary Stringham’s book [111]. The rules

and principles presented in this reference were acquired over many years of en-

gineering practice and, when followed, will lead to higher firmware performance

and easier integration.

In this work, the automatic generation of hardware registers interfacing to the

assertion checkers has to produce efficient register partitioning and bit ordering

by adhering to as many of the book’s proposed rules and guidelines as possible.

Those registers may end up in the final silicon (those most useful for post-silicon

debugging). Ensuring that they can be used efficiently by firmware to assist in

debugging, gathering coverage and as in-systemmonitoring points is an important

concern.

2. Unless the debugger has information about this register type and handles it properly

103

4 Memory Mapping of Hardware Checkers

4.4 Tool Flow

This section details the required data structures needed by the checker Aggre-

gator Tool to properly generate in-system registers that can be read by the device

processing units as part of the system memory map.

The Python programming language was chosen for the implementation of the

tool. Python is an open source software project, supports object oriented program-

ming and offers many advanced text manipulation libraries and parsers on top of

a very good integration with the operating system.

Python was already used to automatically launch syntax check, synthesis and

output log parsing to produce the results presented in Chapter 3. It was also used

to launch the Xilinx tools used to automate the process of extracting synthesis data

from hardware checkers to obtain post-fitting timing information.

Python is an interpreted language, thus allowing rapid prototyping of ideas

since code changes can immediately be tested. Python’s powerful list manipu-

lation is used to organize and extend the data structures during the register gener-

ation process. The slower execution speed of Python when compared to a compiled

language such as C/C++ is not an issue as it takes less than a second to generate the

RTL for a typical set of assertions. The synthesis process to translate this generated

RTL to gates is much slower (a few minutes) ; FPGA place-and-route is even more

time consuming (up to a few hours for large FPGAs, for example those present in

the BEE2 system when they were configured to include a CPU and peripherals).

4.4.1 Phase 1: Source File Processing

The first part of the process is to associate the source file and assertion line

number with the resulting hardware sequence monitor or assertion checker. This

is a process that starts by parsing the PSL sources and the associated generated

Verilog sources.

The problem can then be formulated with the following data structures avail-

able to the algorithm:

– Original PSL file name.

– Line defining the assertion statement.

104

4.4 Tool Flow

– Assertion status bit name (signal name in the HDL), provided by the hard-

ware generator.

– Special debug-enhancement compilation flags used their associated signal

outputs.

– Width and name of associated counters. The width of the counter can default

to the register interface bus width, but can be changed by a tag in a comment

just before the PSL statement.

4.4.1.1 Implicit Checker Control Structures

Each hardware checker unit requires a few control points. First, a reset signal

to force the checker’s automata in its default state. Note that this is different from

the device reset that will also reset the circuit along with the checkers. An end of

execution control signal is required (per vunit) to tell the hardware automata that

any pending eventualities are reported as errors by the checkers [96]. This allows

the use of the PSL statement eventually. Finally, a way to reset latched assertion

failures or sequence completion in the event that a subset of the checkers have to be

re-started to monitor the re-apperance of a failure condition. Those control points

are labeled as control register and must be accessible via the register interface as

read-write elements.

The actual output from the automata generation is a single bit per mode (as-

sertion failure, sequence completion, coverage, pre-condition) that pulses when an

event occurs. A checker output can thus be turned into a multi-bit counter by us-

ing cover or assert statements and provide options in the comment preceding the

PSL statement.

It may not be immediately obvious why a count of assertion failures can be

useful for debug, so to explain, consider the following scenario. Suppose that in a

system, a burst transaction of 10 cycles is performed. The assertion checkers cap-

ture that a protocol error has happened. This is certainly useful and is covered by

a single assertion failure event latch in the hardware. However, having the knowl-

edge that 5 assertion failures happened can hint that the problemmay be related to

the burst length or to the fact that cycles are occurring in pairs, for example. As a

way to confirm or invalidate this hypothesis, a burst of 11 cycle or 12 cycles could

105

4 Memory Mapping of Hardware Checkers

be generated within the system and based on the number of protocol violations

cumulated, one can more rapidly identify the underlying cause of the assertion

failures. With simple counters, isolating the problem by modifying the stimuli and

repeating the tests will produce a signature that can then be used to better charac-

terize the problem or prepare a directed test case in the simulation environment.

If an on-chip problem can be replicated in the simulation environment, the task of

locating and fixing it is tremendously reduced.

Thus, from the above discussion, the database will include the following:

1. References to the signals indicating an assertion failure, sequence completion

or pre-condition completion status. Those signals are recorded for transfor-

mation into Read-Only (RO) status bits. In some generation modes, they can

also be considered as Clear on Write 1 (CW1) control bits since this will help

re-start many checkers in a single CPU write instruction.

2. Control points: For assertion failures, sequence completion or pre-condition

completion, signals acting as control points can be used to hold in reset some

checkers monitor such that the results of those checkers can be easily ignored.

This allows the debug process to be re-started by partially enabling the hard-

ware checkers to isolate a problem and eventually corner up a bug. These

control points are recorded to map into Read-Write (RW) single-bit control

registers and originate from inside the unit (they don’t come from the circuit

under debug or from the generated hardware checkers).

3. Assertion coverage counters or pre-condition counters: as opposed to single-

bit status or control registers, the multi-bit values of those counters must be

read in one atomic operation to avoid any race conditions or erroneous read-

ings. From the system’s point of view, these counters are Read-Only (RO)

multi-bit vectors. Associated with each counter are control lines to allow

them to be reset. Depending on the tolerable hardware overhead their con-

trol bits can all be independent or grouped.

106

4.4 Tool Flow

4.4.2 Phase 2: Checker Grouping

In this phase, the checkers and their monitor/control are grouped in clusters

that represent a sub-section of one of the targeted hardware unit. In our work, the

natural grouping unit is a PSL vUnit. However, this doesn’t have to be a "hard"

rule, as more than one vUnits could be merged from the point of view of the gen-

eration of hardware registers, making the address decoding more efficient and re-

ducing the hardware overhead of the implicit control structures. Typically, vUnits

are self-contained entities in PSL so they are better suited to be encapsulated as

a set of registers with a dedicated address decoder. Furthermore, vUnits tend to

attach quite specifically to a given entity in a design. Keeping the required hard-

ware signals localized limit the span (physical proximity) of metal wires feeding

the hardware checkers. The last thing one needs in a large IC is assertion checker

wires covering a large area of the die and causing routing problems and possi-

ble reductions clock rates due to the checker’s circuit becoming part of the critical

timing path.

Each checker group has a specific bus size associated with it. To avoid build-

ing the inter-locking logic that allows reads of counters larger than the bus width,

the biggest single counter width in a register group must be less than or equal to

the selected bus width. In typical systems, this means that the counters should be

limited to 8, 16, 32 or 64 bits, depending on the bus size chosen for the decoder

unit. This limitation can be circumvented by adding the interlock mechanism pre-

sented in Section 4.4.2.2, but this was not implemented in the RTL generator. The

interlock mechanism, if implemented, would have to be added during this phase

in the object database since the shadow register will be shared by a group of regis-

ters. The current automated register file generator tool will abort with an error if a

counter is requested to be larger than the bus width of the module.

The event counters are all based on a binary counter with saturation logic which

avoids wrap around when the counter reaches its maximum value. Therefore, the

counters do not have to be very wide to provide useful information or to gather

coverage. The degenerate case is a counter of width = 1 which becomes a "latch" of

the condition. If in-silicon verification coverage has to be gathered, the saturating

counter solution will provide at least a lower bound on the number of recorded

107

4 Memory Mapping of Hardware Checkers

events.

A complete hardware checker is thus comprised of an automata produced by

the checker generator connected to the circuit being monitored, a set of control reg-

isters and a set of event latching circuits and counters. The event latching circuit,

counters and automata control is generated by the tool. The automata core circuit

is produced by the MBAC tool which is detailed in the book by M. Boulé and Z.

Zilic [96].

Figure 4.2: Circuit-level (hardware) view of a hardware checker and its associ-
ated control and status units

Figure 4.2 illustrates the hardware view of the assertion checkers in terms of

registers bitfields (control or status). The dashed line surrounding the set of control

and status registers represent the hardware that will be generated outside of the

MBAC automata. The arrows entering the dashed line will represent input ports

on the generated module. The figure doesn’t show the local interconnect interface.

At this point in the tool flow, registers are created based on the generation mode

of MBAC and only exist as objects and are not yet bound to specific addresses.

4.4.2.1 Clear-on-read for Software-Based Counters

A clear-on-read is optionally supported by the HDL generator allowing the

counters to be scanned in rapid succession, even though this breaks one of the

firmware rules [111]. This alternate generation mode allows the read of the reg-

ister without requiring any write access to the register control to reset its count.

That way, the firmware can continuously accumulate counters without requiring

double-buffering of the values (expensive in hardware). The clear-on-read method

in combination with a firmware driver provides larger coverage counter values,

108

4.4 Tool Flow

while reducing the hardware overhead, since the large counters end up residing

in the main system memory which is a resource more abundant than hardware

flip-flops. In that mode, it helps to avoid letting the register packing algorithm

place multiple clear-on-read registers on the same address line. Multiple counters

on the same address will add complexity to the firmware interface (requiring the

firmware tomask, shift and add values to those many independent software-based

counters). Hardware-based event counters have to be made sufficiently large with

respect to the possible assertion firing rate (worst possible case is one firing per

clock cycle) to impose a “refresh requirement” on the firmware such that it can

easily be performed in the context of a standard operating system (1 ms being

a realistic objective). Should the deadline be missed, the counters will saturate,

indicating to the firmware that the count is not exact anymore. However, the infor-

mation remains usable for debugging.

4.4.2.2 Atomic access of large counters

In applications where the data bus width to the register interface is less than the

counter value that needs to be read, some hardware assistance is needed to correctly

access those registers. If a counter value spans two addresses and its counting rate

is low enough to guarantee that the lowest portion of the counter cannot overflow more

than once within two consecutive read cycles, one can use a known firmware tech-

nique to read the least-significant part of the counter, followed by a read of the

most-significant part, and finally re-read the least-significant part a second time.

This should be done with the interrupts disabled to prevent a possible task switch

which could violate the condition that the lower portion of the counter cannot

overflow more than once. By noting the presence or absence of overflow in the

lower-portion of the counter, the firmware can obtain a valid reading without in-

creasing the hardware overhead.

The more usual approach is to use extra hardware such that when a CPU ac-

cesses the lower part of a multi-address register, the upper part is automatically

saved during the same clock cycle and presented in one (or many) shadow regis-

ter(s) that will be read subsequently by the firmware. This adds hardware cost

(storage for the upper part of the register), but makes it simpler to interface to a

109

4 Memory Mapping of Hardware Checkers

firmware library. Again, if multiple threads can possibly access the same counter,

mutual exclusion to the register unit must be implemented to avoid losing the

shadow register value mid-way through the transaction.

4.4.3 Phase 3: Register Map Generation

Figure 4.3: Logical Unpacked View

This phase considers each element (control, status or counter) as an object hav-

ing a few attributes, namely access type, bit width, bit position and offset from base

address. Initially, the collection of objects derived from the database of checkers

have some parameters that are yet undefined, such as their bit position and their

address offset from the base of the module. They can be viewed as a loose collection

of objects as illustrated in Figure 4.3. The packing algorigthm is then used on those

objects. Upon its completion, the objects will have a complete representation in the

system address space. With this method, it is also possible to incorporate some ob-

jects with a pre-defined position and offset information which will be placed first

in the memory map and then the newly generated registers can be overlaid. This

way, it is possible to run the algorithm on a pre-existing map to “fill in” check-

ers without losing the previous bit positions. This could prove to be important if,

for example, older firmware already assumes the presence of checkers at specific

locations (for example in a previous revision of the physical device).

A few trade-offs are possible in this phase, especially on how to place the var-

ious control/status elements bitfields in each address location. The approach fol-

110

4.4 Tool Flow

lows the bin packing problem for which algorithms exist in the literature [112]. In

our implementation, an optimal solution is not required (the abstract bin packing

problem being NP-complete [112]), and a heuristic approach (first-fit decreasing)

was used to provide an acceptable solution. Section 4.5 details the packing algo-

rithm.

Figure 4.4: Packed View

Figure 4.4 summarizes the final step in the process of aggregating the checker’s

outputs. At this point, all the objects now have a memory map representation and

from this a set of firmware structures can be derived.

4.4.4 Phase 4: RTL Generation

The last phase requires that all the bitfield objects have their members unam-

biguously defined by the previous step. As explained in Section 4.2.2 and Sec-

tion 4.2.3 a few ways exist to interface the register block to the CPU interconnect.

Internally, the register file and address decoder do not depend much on the inter-

connect except at the handshaking level. The implementation targets theWishbone

interconnect, but trials were also done on the CoreConnect architecture used in the

BEE2.

The first phase in the generation of the RTL is the creation of the system ports

(clock, reset), the bus interconnect ports, and finally the control outputs and even-

t/status inputs. Then a set of internal Verilog reg is created, such that the mem-

ory elements are defined. For each event input requiring a counter, a saturating

counter unit (used to avoid counter wrapping) is instantiated, parametrized with

its width and connected to the corresponding signal coming from the generated

checker. Finally, the address decoder and logic is generated such that all the inter-

nal control and status points end up accessible from the SoC interconnect interface.

111

4 Memory Mapping of Hardware Checkers

In this research, only single access cycles were supported, but with a more com-

plex implementation of the interface controller, it is feasible to support burst or block

transfers. This would improve the efficiency for modules with a large number of

checkers.

4.4.4.1 RTL Language Selection

A first version of the HDL Generator (used to produce the RTL that will link

the assertion checker outputs to the register file) was attempted using the VHDL

language as the RTL output for familiarity reasons. However, VHDL being a

strongly typed language, a lot of overhead was incurred in defining the software

classes handling data types, type conversion functions and other elements needed

to properly produce understandable RTL from the software-based object collection.

In the end, Verilog was selected as the language of choice for the hardware RTL

output. Verilog code is simpler to abstract as software-based objects and does not

have any of the complexities of VHDL’s strong typing.

4.4.4.2 HDL Classes

To make the software structure of the generator more efficient, an abstract base

classHDLObjectwas created as a placeholder fromwhich nets, registers and ports

can be derived since they share a few common attributes. Other base classes were

derived, each representing a different element of the hardware structures present

in RTL. The list below outlines the main classes of the HDL generator:

– HDLObject: The abstract base class for the low-level RTL objects. It is used

to hold notable attributes: Name, a Comment String (useful to document the

generated RTL output), a Width (number of bits) and a Weight which allow

the generator to later sort out signals such that “lighter” ones “float” to the

top of long lists. The Weight attribute is useful to control the RTL output

and change the order of port declarations for example, to ensure that general

signals like clock and reset are listed first. From this abstract base class, the

following child classes are derived:

– Net: Represents a net in the RTL (verilogwire)

– Register: Represents storage in the RTL (verilog reg)

112

4.4 Tool Flow

– Port: Represents a port on the module.

– Module: Represents a hardware module. Member attributes include a list of

Port, list of Net, list of Register. The module thus contains the objects above

in the same way that the final Verilog RTL module is structured.

– ModuleInstance: Represents an instance of a hardware module. This is used

to instantiate many Verilog primitives (manually coded blocks) within the

generated code. As with Module class, the manually-coded hardware in-

stances have to be described as Module objects instances in Python before they

can be instantiated so their ports will end up automatically connected to the

enclosing module internal nets.

4.4.4.3 Register Classes

A set of classes are used to describe registers. Here, the term register represents

a single or group of bits that is accessible from the access port (typically for access

by a CPU).

This code layer defines two classes, namely the BitField class and the Register

class. The Register class can contain an arbitrary number of BitField instances, but

practially speaking, the number of bitfields in a Register is never greater than the

bit Width of the register. The BitField also carries a Width attribute, so they can

represent either single or multi-bit elements. It also carries the access mode of the

group of bits, for example Read Only (R) or Read Write (RW).

This Register class is also re-usable in any other context where automatic reg-

ister generation is required. Defining a group of Registers containing control or

status BitField members can be passed on to the HDL generator to generate a

module that can interface to the local processor bus.

4.4.4.4 Checker Classes

In parallel to the hardware description classes, another set of classes describes the

assertion and sequence checkers elements in an abstract way. At the level of this tool,

they are represented by a name that matches the checker generator’s output signal

for the given checker/counter. Each assertion will contain a set of register classes

by a name with extension (e.g. asrchk_14_rst) connected to the control registers

113

4 Memory Mapping of Hardware Checkers

that are provided by the infrastructure.

4.4.4.5 Register Decoder Class

Once all the data structures are in place, the top-level objects are passed on to

the RegisterDecoder class where it the registers along with the hardware checker

classes will be transformed into RTL.

4.4.4.6 Firmware Driver Header File Generation

Section 4.6 explains how the register mapping can be integrated at the operat-

ing system level to be used by application code. To facilitate this process, we sug-

gest that along the hardware generation phases, some firmware code be produced

to later assist in the diagnostic. Since the register file definition for the hardware

checkers is present in object form, one can derive the data structures represent-

ing the bitfields such that when this data structure is overlaid on the hardware

memory map, the software can use meaningful names to manipulate the assertion

checkers and control registers.

By mapping the hardware checkers to a C-based software structure, the de-

bug process can be assisted by writing firmware routines that dynamically mon-

itor and react on specific assertion checkers firing. As a benefit, debuggers such

as GNU Data Display Debugger 3 will be able to interpret the overlayed memory

structure and provide a way to browse meaningful data structures when examin-

ing the hardware checker outputs as illustrated in Figure 4.5.

It is very easy to introduce errors in this hardware-to-C bit mapping process

if done manually. The mapping is also dependent on data bus width and target

endianness due to the ambiguity in the definition of C-based bitfields. An auto-

mated mapping process can properly pad the data structures to maintain proper

bit position and alignment to hardware registers in addition to eliminate human

errors.

The associated C data structures expressing the register bit positions are given

in the following listing to highlight the key elements.

3. http://www.gnu.org/software/ddd/

114

http://www.gnu.org/software/ddd/

4.4 Tool Flow

Figure 4.5: GNU Data Display Debugger screenshot of hypothetical hardware
checker abc under debug. Top box illustrates the memory values of the hy-
pothetical checker and the lower box illustrates its interpretation when re-
mapped to a C-based data structure

Listing 4.1: Example C structures for assertion checker register map

/∗ Next two p r e p r o c e s s o r d i r e c t i v e s ad ap t e d from ARM CMSIS ∗ /

#define __I vo l a t i l e const /∗ d e f i n e s r e ad on ly p e rm i s s i o n s ∗ /

#define __IO vo l a t i l e /∗ d e f i n e s r e ad / w r i t e p e rm i s s i o n s ∗ /

/∗ Hyp o t h e t i c a l c h e c k e r ’ abc ’ c o n t r o l ∗ /

typedef s t ru c t {

unsigned a s r _ r s t : 1 ;

unsigned as r_eo t : 1 ;

unsigned cov_rs t : 1 ;

unsigned pad : 2 9 ;

} a b c _ c t r l _ t ;
/∗ [. . .] S t a t u s s k i p p e d t o a b b r e v i a t e example ∗ /

typedef s t ru c t {
__IO ab c _ c t r l _ t a b c _ c t r l ;

__I abc_s t a tus_ t abc_s ta tus ;

__I u in t32_ t cover_abc_asr ;

__I u in t32_ t cnt_abc_precond ;

} asr_map_t ;

A great source for inspiration in creating a proper firmware interface is ARM

CMSIS [113] as it provides a well-defined, compatible way of assigning C data

115

4 Memory Mapping of Hardware Checkers

structure overlays for memory-mapped hardware registers 4.

4.5 Bitfield Packing Algorithm

The packing algorithm can generate different memory layouts from a set of

input bitfields:

1. Densest : Mapping as many bitfields as possible in the smallest numbers of

registers (addresses). The advantage is that reading all the status and con-

trol register information will be faster and more efficient. Another benefit is

that it will reduce the decoder overhead. One major inconvenience of this

mode is that status, coverage and control may end up in the same address.

“Clear-on-read” operations will affect many bitfields simultaneously which

will make the firmware more complex. It will also be very difficult to intu-

itively understand the assertion state of the unit (for example by examining

a dump of the memory) in the context of a debug session.

2. By Type : Separate the registers by type (Control, Assertion Status, Cover-

age) and pack bitfields accordingly. This allows the control registers to reside

in their own address space that can then be protected from accidental writes.

The assertion failure status (one bit per assertion checker) can be read out

very efficiently and are maximally packed (all the bits in a given address are

used since assertion failures are represented with a single bit per checker).

Intuitively, by dumping the memory range representing the assertion fail-

ures, debuggers (even humans) can rapidly see if all the values are zero (no

assertion failure) of if a bit is set. For example, a typical hardware block may

host a few hundred assertion checkers which could be represented by a very

small block of memory of a few 10s of addresses. Finally, the coverage coun-

ters can be packed in separate addresses as they are not as critical as assertion

registers.

3. By Assertion: This is the least dense packing method. This generates a few

addresses per assertion (depending on how much control and counters are

4. More specifically, refer to the templates and information located in the CMSIS/Template_-
DeviceSupport of the CMSIS source archive.

116

4.5 Bitfield Packing Algorithm

enabled for that assertion). This packing is the easiest to use in debugging

as each address relates only to one assertion. The drawback is that it will

use many addresses and each address has little information associated with

it. The address decoder overhead will also be more important. Propagat-

ing those assertions in a NoC (as will be explained in Chapter 5) will waste

bandwidth asmany addresses will have unused bits that are needlessly prop-

agated.

The above memory layout options are not exclusive to each other. Within the

hardware interface to the SoC bus, the address decoder can be expanded to of-

fer multiple memory layout decoding options simultaneously (provided one can

support the hardware overhead). For example, in a given block, offset 0x0000 to

0x00FF could address the assertion checkers organized using the densest packing

style, while offset 0x0100 to 0x01FF could address the assertion checkers with the

by assertion packing style. In such case, during the HDL generation, the signals

are only declared once, but the read/write decoder appears twice to perform the

address decoding logic for each modes.

To draw a parallel where multiple different accesses to the same hardware

structures has been implemented, one can look at the latest ARM Cortex-M3 pro-

cessing core and its use in embedded systems. To allow efficient atomic single

bit manipulation, a process called bit-banding is used to re-map a portion of the

RAMmemory into a much larger address space such that a single bit in the RAM is

mapped to a 32-bit address. This effectively “wastes” 31 bits in the address space

for those remapped address. However, since no hardware is attached to those 31

“wasted” bits and typical embedded processors do not use all their memory space,

this provides a good practical example of trading off address space for functional-

ity.

One has to make a distinction between using a large addressing space to sim-

plify the access to the information and the need to minimize the “wasted” memory

bits for each address. The end use of the register file will dictate which packing

mode to select. The algorithm presented can compact the checker outputs into

as little address space as possible (dense packing mode) to allow faster (higher-

performance) transfer of the status from the register file. This, for example, helps

117

4 Memory Mapping of Hardware Checkers

when propagating the information inside a NoC. Thus the densest packing mode

aim at improving bus utilisation when performing transfers. However, less dense

packing modes offer a simpler way for the firmware to interpret the information.

Algorithm 2 BitField packing algorithm for the assertion checker bit fields
Require: List of bit fields (BFs) and associated width, BusWidth

Ensure: width(BF) in BFs ≤ BusWidth

1: Sort BFs in descending width

2: AvailableWidth = BusWidth

3: Allocate RegisterTable and allocate Reg at base address

4: while list of BFs not empty do

5: Pick first bitfield BF in BFs such that width(BF) ≤ AvailableWidth

6: if Not Found then

7: Allocate new Reg in RegisterTable

8: AvailableWidth = BusWidth

9: else

10: AvailableWidth = AvailableWidth - width(BF)

11: Link BF to Reg

12: end if

13: end while

14: for all Reg do

15: for all BF do

16: Assign bit position (right-justified) of BF in the register

17: end for

18: end for

Algorithm 2 details the problem of minimizing the number of empty bits in

each address, with the first-fit decreasing heuristic. The algorithm can be called with

different lists of bitfields. Thus, the tool ends up applying the algorithm multiple

times in the by type and the by assertion packing modes since they separate the

bitfield types.

118

4.5 Bitfield Packing Algorithm

4.5.1 Experimental Results

The assertion checker, sequence monitoring and coverage packing algorithm

has been run against a generated set of checker outputs and coverage registers.

While the set of assertions used to carry tests on MBAC are comprehensive in their

coverage of possible temporal statement syntax and keywords, it is too limited in

its number of assertions to properly exercise the assertion packing algorithms.

The packing algorithm does not depend on the complexity of the checker’s ex-

pression. This complexity being abstracted out by the temporal automata, only

the resulting output of the checker matters from the register generation perspec-

tive. The performance of the packing algorithm under various scenarios and pack-

ing modes is thus derived from a generated set of checkers, similar to constrained

random-based verification when applied to a digital circuit. The use of randomly

generated bitfields, constrained to emulate the typical distribution given by con-

ventional checkers simplifies the testing of the packing routines by providing a

larger data set.

A scenario is made up of a set of checkers, each having a set of control fields

(between 2 and 5 control points), a set of coverage points (1 to 4 counters, each

between 1 and the 32-bit of width) and finally a set of status flags (1 to 4 status

bits, for the checker output and potential debug enhancements flags). As a result,

some checkers will have bigger counters and a higher number of control and out-

put flags, while others will have only a few control points and a few status bits.

An histogram of the distribution of checkers used to create the largest scenario is

shown in Figure 4.6

In order to show the algorithm behavior more consistently, the scenarios are

setup such that the number of bitfields is monotonically increasing as checkers are

added. Each scenario is thus a subset of the final 1000 checkers scenario.

Such scenarios provides ample variations between assertions checkers bitfield

organization and better reflect how the packing algorithm will perform. The pack-

ing algorithm is tested with up to 1000 checkers.

119

4 Memory Mapping of Hardware Checkers

0 20 40 60 80 100 120
Bits of coverage per checker

0

20

40

60

80

100

120

#
 o

f c
he

ck
er

s

Distribution of the checkers characteristics

0 1 2 3 4 5 6 7 8
Bits of Status per checker

0

50

100

150

200

250

#
 o

f c
he

ck
er

s

0 1 2 3 4 5 6 7 8
Bits of Control per checker

0

50

100

150

200

250

#
 o

f c
he

ck
er

s

Figure 4.6: Distribution of the number of bits per checker for the Coverage,
Control and Status bitfields.

4.5.1.1 Algorithm Execution Time

The register packing problem is run on the various scenarios. A set of checkers

subject to the constraints explained above are generated, then packed with the

three different methods presented Section 4.5. Figure 4.7 illustrates the effect on

the runtime of the packing process. By specifically excluding the generation of the

scenario and post-processing computations, factors non-related to the algorithm

execution are excluded.

The packing process execution time is measured on an Intel Q6600 workstation

operating at 2.40 GHz and running Python 2.6.5 (compiled with GCC 4.4.3) with a

120

4.5 Bitfield Packing Algorithm

data set size varying between 1 and 1000 checkers. Note that Figure 4.7 reports the

execution time versus checker count on a log-log graph.

The By Assertion packing mode only has to pack a few bitfields in a small set

of registers for each checker, thus the complexity of the problem is significantly re-

duced and mainly proportional to the number of checkers.

A notable observation is that for a set of 1000 checkers (8590 bitfields in this

particular scenario), the packing time is just above one second. It is important

to note that 1000 checkers represents a very large library and would represent an

upper bound on what a practical design block would need in terms of memory

mapped checkers. In designs containing more checkers, it is unlikely that they

would be packed in the same entity (sharing the same address decoder logic) for

physical reasons. This confirms that the comparatively slower execution time of

Python will not be an issue.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Packing Algorithm Execution Time

E
x
e
c
u
ti

o
n

ti
m

e
(s

e
c
o
n
d
s)

Number of Checkers

Densest

By Type

By Assertion

Figure 4.7: Execution time of the packing routine when subjected to the Dens-
est, By Type and By Assertion packing modes. The scenario covers from 1
checker (11 bitfields) to 1000 checkers (8590 bitfields)

121

4 Memory Mapping of Hardware Checkers

4.5.1.2 Register Usage

Figure 4.8 reports the average number of registers required to hold the checkers

in a scenario, for the three packing modes. One can observe that pre-classifying

registers by type end up using only a few more registers in total when a lot of

assertions are packed together. Clearly, the By Assertion packing mode ends up

taking themost registers since it only allows bitfields related to the same checker to

be put in the same registers. In addition, this packing mode segregates the control,

status and coverage fields in their own set of registers, allocating a minimun of 3

registers per checker.

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

4.5

5
Register Usage per Checker

R
e
g
is

te
r(

s)
p

e
r

C
h
e
c
k
e
r

Number of Checker

Densest

By Type

By Assertion

Figure 4.8: Average number of registers used per checker for each scenario
from 1 checker to 1000 checkers.

122

4.6 Operating System Integration

4.5.1.3 Unused Bits in Registers

Figure 4.9 reports the total number of unused bits after the packing is per-

formed. Unused bits have few consequences in terms of hardware resources (only

a higher decoder overhead), but bring performance limitations when the checkers

are integrated with the firmware or when one considers the resulting bus utilisa-

tion in the NoC utilisation presented in Section 5.4.2.1. The Densest packing mode

can insert control and status bits between coverage counters, thus this packing

mode result in the least number of unused bits after the algorithm completes.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

Total Number of Unused Bits

U
n
u
se

d
B

it
s

Number of Checkers

Densest

By Type

By Assertion

Figure 4.9: Unused bits left in the memory map after the packing process.

4.6 Operating System Integration

As covered previously, to extract the full benefits of the hardware checkers at

the system level, they have to be supported by a firmware layer that can inter-

123

4 Memory Mapping of Hardware Checkers

pret the various hardware bits and their more abstract meaning along with corre-

late events to provide a high-level “health report” on the device operation. The

firmware thus has to be an integral part of the solution.

Systems that are complex enough to require hardware assisted assertion check-

ers are also likely to be using a modern operating system. In most cases, these

will support virtual memory and user processes. The research carried on the in-

tegration of hardware assertion checkers focused on the well-know GNU/Linux

operating system. The main factors in selecting this operating system is its suit-

ability for integration in medium to large embedded system, the unfettered avail-

ability to the source code and documentation along with a very large and active

developer community. GNU/Linux can also run on most modern processors mak-

ing it suitable for integration with hard-IP CPU core FPGAs and prototyping on a

personal computer. GNU/Linux makes use of virtual memory and separates user

code from kernel code. This way, processes are isolated from each other and the

virtual memory layer helps to build more stable systems for times when a lot of

processes run simultaneously. This operating system is thus representative of what

one can expect to run on a large SoC or NoC used in future applications.

4.6.1 Kernel Space and User Space

In Linux, code running as part of the OS and using physical (hardware) ad-

dresses is called kernel space code and in contrast, the code that runs in virtual

address space is referred to as user space code. The distinction is important. Kernel

space code has full, raw access to the hardware resources (in our case, the register

file of the hardware checkers). However, the supporting libraries are limited. The

kernel code is written in C and assembly and has access to only a small subset of

libraries. As most of the code running in a GNU/Linux system is in user space, ad-

vanced libraries, scripting languages and database engines are all accessible only

in user space.

In almost all cases, the designers will want an Application Programming Interface

(API) to access the hardware devices. Instead of directly manipulating addresses

and bits, an API will abstract away and make the hardware locations. This is not

different when integrating hardware checkers. Some form of device driver has to be

124

4.6 Operating System Integration

implemented. However, writing a full-featured kernel-based device driver running

inside the OS address space (physical memory) is quite complex and requires a

significant development effort.

Leveraging the extensive user space libraries from kernel space is possible, but

necessitates building two separate code structures, one residing in the kernel space

and one in user space. This adds development effort due to the need to code the

communication mechanism required to pass the data back and forth between the

two domains.

To address the complexity problem, this section suggests moving most of the

data manipulation in user space to simplify the integration and leverages on an

existing kernel module called User space I/O (UIO) (detailed in Section 4.6.3) to

assist in this process.

4.6.2 Prototyping Environment

In order to understand and evaluate the suitability of the proposed approach,

the integrationwas prototyped on a re-programmable system running a customized

Linux kernel. The BEE2 [2] prototyping system was selected as the platform. This

hardware was generously provided to our laboratory by the Canadian Microelec-

tronics Corporation. The BEE2 system offers what amounts to an infinitely re-

programmable machine with the capabilities to emulate a vast array of different

computer architectures. The BEE2 consists of 5 large Xilinx Virtex-II Pro FPGAs at-

tached to a single board with multiple dedicated memory interfaces as detailed in

Figure 2.7. The system also includes a networking interface and a centralized con-

figuration manager IC that can load the individual FPGA configurations from a

central CompactFlash card. Through a mechanism called SelectMAP, in-system,

dynamic reprogramming of the user FPGAs is also possible. This driver was

ported from the BORPH project (kernel 2.4) to the latest 2.6 Linux kernel at the

time, allowing the control FPGA to re-program very rapidly (in less than a sec-

ond), from the command-line, the 4 large user FPGAs provided by the BEE2. A

notable feature of the Virtex-II Pro FPGAs is the presence of two PowerPC 405

hard IP CPU cores embedded in the FPGA fabric. By creating a SoC architecture

that uses a PowerPC core along with a bank of DRAM memory, one can run one

125

4 Memory Mapping of Hardware Checkers

(or many) instances of a modern OS.

The BEE2 proved to be a very good fit for the research on NoC architectures

and also allowed system-level prototyping of hardware checker integration. The

ease of re-programming the FPGA along with the presence of a network interface

allowed the system to be highly flexible. Instead of hosting the kernel and user

space code directly on the BEE2, the network interface was used to tether the BEE2

to a PC workstation running Linux.

Porting the U-Boot 5 system loader (similar to a PC BIOS) such that it could

support the network interface of the BEE2 and allow the Linux kernel to be down-

loaded from the workstation on boot was addressed first. This allowed rapid up-

dates to the kernel, an essential feature for efficient prototyping with a mix of ker-

nel development and hardware.

By using another mechanism supported by Linux called a Networked File Sys-

tem (NFS), thewhole user-space storagewas effectively a remote file system served

through a PCworkstation. Using this NFS-mounted root file system allowed rapid

modifications to the software image since any updates (PowerPC cross-compilation

outputs) performed on the workstation were immediately reflected on the embed-

ded system image, ready to be tried out on the PowerPC architecture. This method

is also used with networked embedded systems that are lacking the required stor-

age [22] space during prototyping and debug. Another benefit of this approach

to assist debugging is the ability to store very large log files since they effectively

reside on the workstation’s hard disk and not on the embedded system.

The prototyping software environment, derived in part from the BEE2 BORPH

Linux [93], from the ML-310 development platform by Xilinx and from Secret

Lab’s 6 open source device drivers allowed rapid integration of the multiple soft-

waremodules required to bring the system up and running on the Linux 2.6 kernel.

The source files and set of drivers were combined to allow the use of the various

peripherals that were programmed in the control FPGA of the BEE2. Notable fea-

tures of the resulting prototyping environment include:

– Flexible booting architecture including CompactFlash drivers for the kernel

and network boot support.

5. http://www.denx.de/wiki/U-Boot
6. http://www.secretlab.ca

126

4.6 Operating System Integration

– Ability to re-program any of the User FPGAs by running a cat bitfile.dat >

fpga<n> command at the Linux prompt.

– Support for read/write to the physical compact flash device allowing the

Control FPGA bitstream to be re-programmed by the control FPGA itself (the

changes would take effect after a power cycle).

– Two root file systems support : Busybox 7 and ELDK 8.

– Cross-compiled Python support with mmap() library for UIO experimenta-

tion. This allowed command-line scripting of hardware checker register ac-

cess to experiment with dynamic debugging scenarios.

– Secure shell support (via the networking) for multi-terminal sessions to the

BEE2 system allowingmultiple processes to be simultaneously launched and

controlled.

– Custom designed power control box designed with a solid-state relay allow-

ing full remote power control on the BEE2 machine through the workstation

and a small shell script.

This prototyping environment setup proved to be a very efficient way to exper-

iment with various hardware and software combination, but also a very powerful

mechanism to locate and fix bugs in drivers. The Busybox root file system offered

fewer user space libraries, but would boot very rapidly (in less than 5 seconds)

which allowed a very rapid cycle of tests in the event of kernel crashes. The more

full-featured ELDK root file system supported many libraries, including database

support (SQLite) and the Python programming language.

As a case in point to show the high flexibility of the prototyping environment

and its efficiency for debugging, a subtle corruption bug due to incorrect flagging

of non-cached pages was uncovered in the UIO driver present in the latest Linux

kernel sources at the time (unknown to the community). By using a combination

of hardware and software-based traces, the bug was corrected and the patch sub-

mitted to the kernel maintainer for integration in future releases of Linux 9. This

7. http://www.busybox.net/
8. http://www.denx.de/wiki/DULG/ELDK
9. Interestingly, submitting this patch to fix the UIO drivers for the PowerPC architecture

showed how efficient and streamlined the Linux OS bug reporting and fixing process is. It only
took a few days for the patch to be integrated in the PowerPC kernel source tree and within the
next release, it was merged into the mainline kernel. This patch fixed problems on other Motorola

127

4 Memory Mapping of Hardware Checkers

patch is now part of the mainline Linux kernel, so the technique presented for as-

sertion checkers hardware interfacing should work for the foreseeable future, no

matter the architecture used.

Bugs in the kernel space are notoriously difficult to track and fix since they can

cause corruption and hardware lock-up requiring the whole system to be restarted

and the debug process re-started. Having a flexible development environment

with support for multiple versions of kernel and user file systems proved to be an

important factor in successfully tackling the most complex integration bugs.

4.6.3 UIO Kernel Module Details

In early 2007, a new kernel module called UIO was added to the Linux 2.6 ker-

nel (2.6.23). This new module caters to users who want to control a hardware,

memory-mapped device through its registers, but that do not require special han-

dling from the Linux kernel itself. For example, a simple I/O card, or a specialized

FPGA-based co-processor often only requires memory mapping and read/write

access to those memory-mapped registers from the user application point of view.

In contrast, specialized drivers such as networking or USB have to be adapted to

the pre-existing kernel code infrastructure as they require extensive support from

the kernel libraries. The UIO module handles best those hardware devices that

require a direct memory-mapped interface to perform their intended function,

but that do not benefit from the special handling provided by the kernel code.

Memory-mapped assertion checkers and coverage counters directly fall into this

category.

The UIO project goal is simply stated in the osasdl.orgweb site as follows:

“Provide a generic framework for handling devices in userspace. The device

driver is split into a small kernel part, which contains the device setup and the

primary interrupt handling, and a user space part, which handles the device func-

tionality.”

In short, this means that a small part of the driver has to reside in kernel space

(the one performing the memory allocation reservation and device node bindings)

processors such as the MPC5200 and sparked many discussions since not all architectures handle
page caching in the same manner. For the patch details, the commit hash starts with c9698d6b1a
and can be looked up in kernel.org.

128

4.6 Operating System Integration

and the rest resides in user space. To help with the research, the implementation

of the user UIO module can take parameters to customize the UIO module at load

time such that one can specify which base address and which range of memory is

going to be remapped. This way, the kernel module is more flexible and enables

more rapid prototyping by eliminating the need to re-compile de kernel module

when accessing different memory maps. The driver also provides the option of re-

serving (locking) the memory range such that other drivers do not accidentally (or

voluntarily) request the same memory range which could lead to race conditions

or raise data security issues.

One of the major benefits of using user space drivers to monitor and con-

trol hardware checkers is that if the device hardware is accessed incorrectly, such

as outside the bounds of the memory range dedicated to the checkers, the user

program will be terminated by the kernel but the system will stay up and run-

ning without side effects. Working in userspace through the UIO mechanism thus

makes the system more tolerant to programming mistakes.

Finally, a driver running in kernel space also has to be constantly maintained

as new kernel revisions are released due to the API changes in the kernel during

its evolution. In contrast, the UIO mechanism benefit from one more level of sepa-

ration from the kernel API and is subject to a much lower rate of change, reducing

the maintenance burden. From the user-space program point of view, only major

changes such as going from a 32-bit to 64-bit architecture would require mainte-

nance.

4.6.4 UIO Driver structure

Figure 4.10: Userspace IO Driver Organization

In the Linux kernel, the base UIO driver (uio.ko), will take care of providing

the basic UIO support layer. This part of the driver is maintained with the Linux

129

4 Memory Mapping of Hardware Checkers

kernel and updated at each release to follow internal kernel API modifications.

This module performs the management of the virtual files that are created in the

sysfs virtual file system and similar supporting function that are typically required

from regular in-kernel drivers. As illustrated in Figure 4.10, one can dynamically

load user drivers. The user driver mainly provides information about the memory

maps such as the base address, size of thememorymap, a representative name and

provide some parameters related to access type (exclusive, caching mechanism).

This approach has the advantage that most of the complexity of writing the

device driver and attaching the filesystem hooks (to have it appear in /dev, /sys)

are handled by the base UIO driver. The only thing left is define the memory maps

and register them via the user driver part of UIO.

The end result of loading the user UIO module is the ability to access the

mapped memory range from a new device entry residing in the /dev folder that

provides direct access to the hardware memory. In a properly set up Linux system,

loading the user UIOmodulewill trigger an event with udev and a new /dev/uiox

entry will appear in the filesystem (for example /dev/uio0).

4.6.5 UIO Operation and Register File Access

Figure 4.11: Userspace IO Register Mapping

The UIO user driver used for this research has expanded the example code that

is part of the Linux kernel. The driver was modified to accept base address and

130

4.6 Operating System Integration

region locking parameter when loading the driver into the kernel. One can thus

use the UIO device (/dev/uiox) and have it mapped to a parameterizable location

in memory. Usually, this location will be set to point at the base of the device’s

address space of interest. In our case this was the hardware checker control and

status information that was generated from the previously discussed register inter-

face generator. From this point on, the userspace program will “see” the registers

of the hardware unit from offset 0x0 of the virtual file. Thus the offset values for

registers can directly be correlated with the datasheet of the IP hardware checkers

generated previously.

4.6.5.1 UIO Module Versus Full Physical Memory Access

Users familiar with the details of the Linux operating system know that the

special device file /dev/mem already allows memory mapping or hardware reg-

ister in user space. It also allows it to be done without any special kernel module.

However, this raw access mechanism to physical memory has many implications

in larger systems and cannot realistically be considered a scalable solution. The

single /dev/mem virtual file enables the reader to access anywhere in the system

memory. Though quite useful to observe memory in a live system, this mechanism

bypasses any memory protection and permissions. In a multi-user system, giving

one user read or write access to /dev/mem breaks all the built-in permission in-

frastructure and leaves the system extremely vulnerable to attacks and breaches of

information. Any keystrokes typed by any user in the system end up somewhere

in the RAM memory and thus could then be observed by another user through

this mechanism. In general, only the superuser has access to /dev/mem and its

permissions are set to be very restrictive 10.

In contrast to the unbridled access to physical memory of /dev/mem, the UIO

mechanism offers fine and granular permission support. Therefore, hardware

checkers aimed to be user-accessible could be defined with specific permissions

on the /dev/uiox file associated with the checkers’ memory map, such that only

those with the privilege can read or control the checkers. In such cases, the users

10. Some of the security concerns of /dev/mem are being addressed in the kernel from 2.6.27
through the CONFIG_STRICT_DEVMEM compilation option, including limiting the direct access
to the RAM resources.

131

4 Memory Mapping of Hardware Checkers

(most likely a daemon process) being granted access to this specific region of hard-

ware memory still has a very restricted window on the physical memory. Further-

more, the user program does not require any information on the physical memory

location of the checkers since this is handled when the module is loaded in the

kernel. Therefore, by using all the built-in mechanisms for file permissions present

in GNU/Linux, UIO offers a scalable, secure solution for the large systems envi-

sioned in the future, yet provides a quick and efficient infrastructure for research

and prototyping on memory-mapped hardware interfaces.

4.6.5.2 Software Interface to UIO

The use of the mmap() system call is required on the /dev/uiox file to access

the physical registers. The mechanisms involved require the Memory Management

Unit (MMU) to perform the translation from the virtual memory of the user space

to the physical addresses of the system. Since this translation is universal in all

MMU-based systems, it is very fast and extremely optimized, leading to little loss

of performance. After the call to mmap(), the pointer provided by the call can

simply be read or written and this will result in a direct access to the underlying

hardware registers.

The Python scripting language also supports the mmap() call, meaning that

the registers could be accessed interactively during a debug session. In conjunction

with the database of assertion and sequence checkers (Python offers libraries that

interface to almost every databases format), the scripting interface can be used to

"query" the device interactively from the Python prompt. In the support of inter-

active debugging scenario, only a set of supporting libraries (database interface,

memory map location information) would be required to support the methodol-

ogy. The debug tool interface can be the Python interpreter itself.

Python does suffer from performance limitations, especially if registers have to

be read in rapid sequences or if a lot of data is being generated by the hardware. A

combination of an optimized C driver linked to the Python interpreter can address

those concerns.

132

4.6 Operating System Integration

4.6.6 Estimating the development effort saved by using UIO

The development effort of the UIO driver can be estimated using the COCOMO [114]

basic model and a utility called sloccount by David A. Wheeler 11. By analyzing the

number of lines of source code needed for a given piece of software, along with a

set of metrics gathered from analyzing various projects, the COCOMO model can

provide an estimate of the work required to produce a body of source code. This

is a rough estimate, but nevertheless, it can help evaluate how much time can be

saved by using UIO as an alternative to coding a full kernel driver with a similar

set of features.

uio.c remap-range.c
Source Lines of code 702 80
Development Effort Estimate
(Person-Month)

2.02 0.18

Memory Utilisation on the BEE2
(bytes)

13720 4328

Table 4.1: Comparison of source code and module complex-
ity between the base UIO driver and a derived user level driver.
Memory utilisation measured on the BEE2 PowerPC kernel version:
2.6.24-rc5-xlnx-jsc-xlnx-nfs-g669cb9c0 (note that this version is
slightly older than the one presented in the CMC demonstration)

Using the semidetached COCOMO model parameters (to account for the more

difficult task of writing kernel code) and running it on the uio.c sources of kernel

2.6.37-rc2 we can obtain a measure of its complexity. Since the uio.c source code

contains the necessary procedure calls to support a well-behaved driver that will

properly translate the user space to kernel space system calls, driver registration

and other maintenance routines, it relieves the designer from having to support

this boilerplate code and focus on the interesting part, namely the hardware regis-

ter access. The same sloccount routine is executed on the remap-range.c, an example

UIO driver provided by the author as an application note for the Canadian Micro-

electronics Corporation (the source is provided in Appendix A.1). The result of the

comparison is summarized in Table 4.1. The remap-range.c driver, if coded to sup-

11. http://www.dwheeler.com/sloccount/

133

http://www.dwheeler.com/sloccount/

4 Memory Mapping of Hardware Checkers

port all the features offered by the uio.c code, would represent approximately the

same complexity as uio.c itself. Furthermore, the structure of the remap-range.c

driver is amendable to template-based code generation and thus fit well in the

proposed methodology.

The skills and experience of the programmer can make those estimates vary

significantly, but it remains that the creation of the user driver of UIO is quite sim-

ple and straightforward, saving the designer a significant amount of development

effort.

Finally, another benefit is that the UIO driver is maintained as part of the op-

erating system and does not need to be adapted at every kernel revision. The ab-

straction layer provided by the de-coupling from the kernel source dependencies

will further minimize long term maintenance efforts.

4.6.7 Limitations of UIO

One limitation of UIO in its current embodiment would be the size of the mem-

ory map. UIO has a small granularity (working in multiple of kernel pages of

4kB). In most assertion checker applications, a few pages of 4kB would be suffi-

cient since one page can hold 32 thousands assertion checker outputs. Usually, a

checker group (re-programmable cluster of assertion checkers and sequence moni-

tors) would map to a few pages of kernel space. As checker groups are distributed

within the physical system, their memory map would also reflect the hardware

topology since address decoding is better performed in a hierarchy to speed it up

and re-use the comparator circuits.

UIO opens up a few memory address pages in the userspace so that program

can entirely take over the hardware interfaces. It does limit the use of hardware-

based features like DMA and interrupts (only partially supported by UIO), but

otherwise, frees up the software to manipulate the hardware at will. One can relate

this to smaller embedded systems in which the software has direct control of the

registers.

There is no absolute limit on howmanyUIO drivers can exist on a given system

and the number of memory maps per UIO device is a compile-time option of the

driver which can be adjusted at the expense of higher RAM utilisation by the base

134

4.7 Chapter Summary

driver. The /dev entries themselves have numbered names (uio0, uio1, uio2), but

that can be changed to give them meaningful names (e.g. /dev/unita_assertions,

/dev/unitb_checkers). Furthermore, the driver can detail the memory map giving

it meaningful static information in such a way that the drivers can be dynamically

located in the sysfs virtual filesystem (/sys/*) [21].

Choi et al. have proposed to generate the device driver based on a set of XML

specifications [115] which offers a different framework from the proposed UIO-

based system. Their approach is more suitable for specific drivers that benefit

from full ioctl() call flexibility, specialized /sys interface control points or where

the interface deals with FIFO buffers or similar streaming hardware units. The

UIO driver may not be the best solution in those specific cases. Generating drivers

using the approach proposed by these authors appear to require more develop-

ment effort, but could offer better support for more uncommon type of hardware

interfaces.

4.7 Chapter Summary

This chapter provided amethod to package assertions and sequence checkers in

a scalable representation amendable to large-scale automated integration. Open-

ing up the visibility on the assertion checking mechanisms to the user software in

complex systems enables many advanced bug analysis methods to be carried on

the available information. Exporting internal hardware status to the higher-level

applications also enables remote diagnostics and other uses of the internal check-

ers as means to increase reliability and data security.

135

Chapter 5

Integration of Checkers in a NoC

5.1 Overview

This chapter proposes a generalized extension to the memorymapping concept

of hardware checkers when applied to envisioned future NoC-based systems. The

underlying register-grouping algorithms that aggregate the checkers in a memory

map are still used, but hardware mechanisms are added to autonomously scan the

status information of the memorymapped checkers and propagate those to a sepa-

rate module for aggregation. The resulting NoC-based system will end up having

distributed hardware checkers capable of autonomously centralizing failures in ad-

dition to supporting the local CPU-based register mapping.

Since NoC-based systems are built by repeating (tiling) similar hardware struc-

tures (router unit, processor interface), hardware checkers could end up replicated

many times in a NoC. The replication of all those checkers offers great support

for debug. However, the added cost (silicon area and power) may not always be

justifiable.

To address this new problem, a method based on computed metrics derived

from the size overhead of the checkers along with an assessment of their debug

value will assist the engineers in their selection and placement of hardware check-

ers in those types of distributed systems. The proposed approach aims at reducing

the overhead while maintaining an acceptable cost/benefit compromise.

137

5 Integration of Checkers in a NoC

This proposed design methodology was designated as the Test, Monitoring and

Debug (TMD) infrastructure. In an ASIC design flow process, one can expect it to

result in a reduction in the total cost of the infrastructure, yet maintain a quantifi-

able measure of the final device support for debug. Some of the structures are also

applicable to monitoring the operation of the system and can also be used in the

chip testing process, hence the reasons behind the TMD naming of the method.

The term Quality of Design (QoD) is proposed as a way to evaluate the value

of hardware checkers positioned within the NoC-based system based on their ef-

fectiveness for debugging. Fully characterizing the benefits to the debugging pro-

cess and producing accurate metrics of the QoD is a significant undertaking and

requires multiple silicon iterations, field failures and many debug sessions to pro-

duce the factors.

The approach is thus proposed from a design methodology point of view, with

experimental results gathered from the ASIC synthesis of a RTL-level model rep-

resentative of a sample checker and trace monitor. This chapter attempts to ob-

jectively measure the worth of dedicated circuits in terms of their test, debug and

monitoring contributions to a system.

5.2 An Overview of Networks-on-Chip

The progression of silicon technology has allowed engineers to build systems

with increasing levels of complexity in each generation. As discussed in Sec-

tion 2.1.5, at a certain integration level, the NoC [36, 37] paradigm becomes ap-

pealing, but also confronts designers with new challenges, especially in ensuring

reliable and failure-free operation when those devices are deployed in the field.

While application software errors occurring during the system operation above

the NoC hardware layer can be, to a large extent, dealt with by the system, com-

munication failures inside the NoC can often be catastrophic. In an analogy to

traditional computer systems, a double bus fault error is often an unrecoverable fail-

ure, leading to system downtime, while other higher-level failures are correctable

and the system can recover.

During their operation, systems employing NoCs can experience errors due to

138

5.2 An Overview of Networks-on-Chip

a multitude of conditions such as single-event upsets [116], faults due to untested

or unverified corner cases or network deadlocks/livelocks. Thus, it becomes im-

portant to detect imminent failures or errors within the IC and to be able to address

their effects whenever possible. The detection must be carried out as close as pos-

sible to the source of the failure such that any inconsistencies can be reported as

early and accurately as possible. This capability facilitates the diagnostics of the

problem and may provide a solution to circumvent it and possibly recover from it,

for example by re-initializing a part of the device and re-starting the process.

In a NoC, a single error may also trigger a slew of consequent errors in a way

similar to alarm showers in supervisory environments [117]. Furthermore, the cir-

cuit may operate on several clock domains, a feature required to lower the power

consumption through the use of frequency and voltage scaling techniques. Thus,

errors detected by hardware checkers can be reported in an unpredictable order,

giving the wrong impression of the original cause for the shower of errors. Hav-

ing information on the temporal sequence of errors will simplify diagnostics by

facilitating the identification of the root cause of the failure.

5.2.1 Debugging Network-on-Chip

Different methods have been proposed to replace the functionality of a logic

analyzer with more powerful on-chip alternatives. The IBM team that worked

on the Cell microprocessor [118] is a prime example of this effort. They chose to

include on-chip a parallel bus architecture to specifically route debug information

packets.

While attractive, this approach adds a significant amount of area and wiring.

Ciordas [119, 120] and a team at Philips research labs have studied the reuse of the

existing network for purposes of debugging and monitoring targeting specifically

theirÆtherealNoC platform and its trade-offs, and found that re-use of networking

resources saves a large silicon area compared to a dedicated debug bus. Other

efforts [121] in the testing field have considered the re-use of the on-chip network,

but did not consider their real-time debugging uses.

139

5 Integration of Checkers in a NoC

5.3 Experimental Context

(a) Hierarchical-ring Architecture (b) Hyper-ring Architecture

Figure 5.1: Variations on a hierarchical-ring NoC architecture. The hyper-ring
adds a secondary path for data at the global level. Refer to Figure 2.4b to
view the details of a station.

Our work focuses mainly on a few specific topologies of NoC, namely the two-

level hierarchical-ring [15] architecture and some of its variants. Figure 5.1a illus-

trates the basic topology along with the hyper-ring of Figure 5.1b, which adds a

redundant path for the traffic at the global level. The NoC is built from the follow-

ing key components:

– Processing Element (PE) . This represents a CPU along with some instruc-

tion and data cache memory. It may also be attached, via the local bus, to a

dedicated memory controller allowing a Non-UniformMemory Architecture

(NUMA) to be built.

– Ring Interface (RI) . This is the bridge between the CPU local bus (which

can be Wishbone, AMBA or CoreConnect, for example) and the high-speed,

on-chip network. The Ring Interface can be associated with a network adapter

if one wishes to use a workstation analogy.

– Station. A station is the combination of the Processing Element and Ring

Interface.

– Local Ring. This is the first level of interconnection between Processing El-

ements. This local ring allows low-latency communication between the Pro-

cessing Elements situated at this level. The traffic between those stations will

140

5.3 Experimental Context

not affect other local rings.

– Global Ring. This is the second level, global data exchange medium. It al-

lows messages to pass between Stations that are not on the same Local Ring.

– Inter-Ring Interface (IRI) . This structure allows the messages to be passed

on to the Global Ring from the Local Ring when required, based on the ad-

dressing information.

Our prototyping architecture proposed four low-level local rings attached to

one central high-level global ring. Every flit (flow control digit, the smallest unit of

data between stations) passing on the ring contains information about the sender’s

as well as the target’s address ring and station. The encoding was selected to be

very explicit and optimized for speed and decoding simplicity. In doing so, the

acheivable clock rate on an FPGA architecture was ahead of similar NoC architec-

tures proposed at the time [15].

The rings are designed to account for the case in which each station is operating

in a different clock domain. Therefore, most of the FIFO queues in the rings are

asynchronous. Furthermore, all the rings are unidirectional, that is, flits sent by

a station in any ring are not immediately accessible by the other stations with the

exception of the next one in the directional ring order. This property ensures that

data is received by the target nodes in the order they were sent within the same

end-to-end link. This simplifies the routing and reduces the hardware overhead as

no re-ordering buffers are needed.

The in-order arrival of flits is quite helpful in the context of debugging. In our

case, however, a problem occurs when data must pass from one ring to another

through the central, top-level ring. In that case, the temporal order of the data

generation is lost in the network. Data traversing the network is buffered at each

station; two flits generated at a specific time in two different rings might not at-

tain a target node in an exact temporal order due to the differential propagation

delay of the information. This delay is based on local congestion levels and rela-

tive clock domain frequencies in the network. All of this is further complicated by

the dynamic clock scaling supported by our experimental platform. A timestamp

mechanism at the architectural level has been investigated by colleages [16], but

will not be covered in this thesis.

141

5 Integration of Checkers in a NoC

5.4 Distributed Hardware Checkers

In order to carry the methodology presented in the previous chapters in a NoC,

a subset of the PSL statements are selected for hardware implementation follow-

ing an analysis of their hardware cost overhead. These statements are then trans-

lated to synthesizable RTL by the checker generator. The assertion circuits are then

mapped into CPU-accessible registers, as explained previously. During normal ex-

ecution, the outputs of the checkers are monitored by local PE CPU resources in

order to provide the monitoring part of the methodology. An eventual assertion

failures would be used as a starting point for the debugging process as explained

in Chapter 3.

5.4.1 Processor Control of Checkers

Checkers can be controlled by the local Station’s processor for testing or on-

line monitoring through one or more CPU-writable registers which can control the

values of parameters within the assertion checker.

This contrasts to the method covered in Chapter 4 in which the CPU-accessible

registers were dedicated to providing control and statue to the hardware checkers,

but had no influence on the temporal logic (besides the reset of the automaton).

The approach presented here allows some CPU-accessible registers to modify

the behavior of the checker’s automata in real-time. In doing so, a layer of flex-

ibility is added, namely that some CPU-programmable registers can manipulate

the checker’s function in a dynamic manner. This allows novel uses of checkers

beyond validating internal static sequences. One example of this type of checker

in a NoC context is flit (or worm) tracing. In this example, the checker has in-

puts that can be programmed by a CPU to track a particular set of flits throughout

the system. They could represent a cache coherency message or any other specific

protocol-related transaction usually present in a NoC. This monitor can be repli-

cated in many parts of the NoC and thus provide means to obtain a distributed

trace. As NoC-based systems use memory address space to offer a uniform pro-

grammer’s view of the registers, a single CPU can monitor and control a distributed

set of checkers via the built-in NoC memory mapping mechanism.

142

5.4 Distributed Hardware Checkers

The following example shows how to leverage the expressive temporal logic

possiblities of PSL.

5.4.1.1 Flit Tracer

A flit tracing module is written in PSL and some elements of the flit (for exam-

ple the source and destination addresses) are left as inputs in the PSL code, thus

they will be translated as primary inputs by the checker generator. Those signals

are then attached to a CPU-controlled register bank allowing the modifications of

parameters within the tracer.

A cover statement is written in PSLwhich automatically infers a CPU-accessible

register in hardware, allowing the events in the flit tracer to be counted.

Example 4 A flit tracer written in PSL.

vunit IRI_north(InterRingIF) {

default clock = (posedge NR_Clk_p);

sequence NR_P1 = {

NR_DIng_DataValid == 1

&& NR_DIng_SrcGlobalRing == Reg_Src1Global

&& NR_DIng_SrcLocalRing == Reg_Src1Local

&& NR_DIng_Data == Reg_Src1Data

};

// NR_P2 and NR_P3 are defined similarly

// but with different register inputs (Reg_)

assert always NR_P1 |->

eventually! {NR_P2; [*]; NR_P3};

cover NR_P1;

cover NR_P2;

cover NR_P3;

}

Example 4 lists the code required to build this tracer. Once transformed into a

hardware module by the tool flow, several interesting debug features are added to

the station. The three cover statements allow 3 types of flits to be counted when

they pass on an interface. They can be used as monitoring points within the sta-

tion. The assert . . . eventually! statement shows how to structure a PSL statement

to monitor a particular trio of flits (programmable by the CPU interface) that are

143

5 Integration of Checkers in a NoC

required to pass on the interface in sequence, but that could be interleaved with

traffic from other stations. The data bus content of the flit is also used as part of

the sequence.

In this particular example, an assertion failure simply indicates that the three flits

did not pass in the expected order, but not that the hardware is misbehaving in any

way 1.

This tracer is simplified to keep the example concise and easy to follow. A

more practical tracer would use a PSL sequence as the basis for its pre-condition

check allowing it to monitor deeper in the protocol of the NoC packet since that

would allow it to analyzeworm headers (sequences of flits) spanningmultiple clock

cycles.

When synthesized for an Altera Stratix II architecture, that particular hardware

checker uses 75 ALUTs and 9 flip-flops (exclusive of the hardware overhead of

the register bank storing the parameters). Most of the ALUTs are used inside the

automata to compare the 32-bit NR_DIng_Data bus with the CPU Registers. Inter-

estingly, only a few flip-flops are required to define the temporal expression of the

assert statement.

5.4.1.2 Distributed Flow Control Monitor

Example 5 PSL FIFO Flow Control Monitor

// default clock and reset removed to keep example concise

property StopBurst = always

{ LowThresh } |=>

{ [*2] ; ~BurstEn };

property FlowCtlDown = always

{ StopDown & DataValid } |=>

{ [*2] ; ~DataValid };

assert StopBurst;

assert FlowCtlDown;

Example 5 illustrates two simple assertions that can be translated to hardware

and are used to assess the proper behavior of the output FIFO in a given NoC

1. It could be re-written as a sequence that has an associated cover statement with similar results.

144

5.4 Distributed Hardware Checkers

station.

The first property validates that when the FIFO threshold is getting low, the

station stops bursting data and goes to an interleaved mode of transmission as a

way to reduce the traffic rate (eventually blocking the sender through backpres-

sure propagation). The second property validates the proper operation of the flow

control itself. It states that when StopDown is asserted while the station is sending

data, the station should stop sending within 2 clock cycles. In the NoC implemen-

tation, this delay was due to the pipeline effect of the upstream controller, taking

some time to react to the StopDown signal that is being asserted. Finally, the com-

plete assertion requires the sampling clock to be fully defined (the local clock for

the FIFO) and may include reset conditions to abort the sequence checking.

Those two assertion statements, when compiled in hardware, will constantly

monitor the station’s FIFO behavior and latch the assertion failure within one clock

cycle of its occurrence. In this specific case, an assertion failure is a real failure in the

sense that it indicates a problem with the backpressure flow-control mechanism of

the NoC. Such simple assertion statements have minimal hardware requirements

and benefit from being present at every FIFO in a NoC. From experience gained

in building a RTL hierarchical-ring NoC, a flow-control bug between NoC RIs re-

sult in very complex data corruption problems that are tough to pinpoint since the

problem can originate from any relay point in the path and its symptoms manifest

themselves much later when a given CPU receive an incorrect cache lines or cor-

rupted message. The corruption problem would initially be flagged as a software

bug and could result in many wasted hours trying to find the cause when the real

culprit is the underlying NoC transport layer 2.

As a last point to consider, the flow-control problems monitored by the above

PSL checkers would only manifest themselves when the NoC experiences heavy

traffic scenarios (required to fill up the interconnect FIFOs). In the FPGA-based

hierarchical-ring NoC that was developed, ”heavy NoC traffic” represents a data

throughput of approximately 6.4 Gbps [15] between every station in the design, in

2. Note that some proposed NoC architectures perform data integrity checks at the worm level
to detect transport layer failures. The proposed method does not preclude the use of link-level data
protection mechanisms. In the event that a data integrity failure is detected, the assertion checker
log will certainly help to confirm if the error is due to a transient failure or a bug in the flow control,
for example.

145

5 Integration of Checkers in a NoC

the worst case. With this level of in-system throughput, even the simple data flow

control mechanisms presented cannot be practically analyzed externally to the de-

vice. To give an order of magnitude of the task at hand, a 16-station NoC, at full

capacity, would need the FlowCtlDown property checked at rates up to 4 billion

(16 checkers x 250 MHz checking speed) times per second. Since that property

is very simple, it depends on only two single-bit signals, namely StopDown and

DataValid. Supposing that one wishes to export those flow controls externally to

the device to debug an internal problem, this would amount to exporting 32 wires

with an uncompressed aggregate bandwidth of 8 gigabits per second (2 signals x

250 MHz operation x 16 stations egress FIFO). While possible with data compres-

sion and a hardware serializer, it is clear that those checkers are better off staying

buried deep inside the silicon.

5.4.2 Propagation of Assertion Failures

Each group of assertion checkers within a station can be aggregated and mon-

itored by a dedicated unit, central to the NoC. If one module detects a particular

assertion failure, it records it and also propagates a special management flit (M-flit)

within the NoC to relay the information to the station responsible for analyzing

failures. For practical purposes, a M-flit is exactly like a regular flit, but has an

extra bit present in its addressing field. Using the NoC routing structure to prop-

agate assertion failures is much faster than relying on the local station CPU to

handle the error via software-based mechanisms. Furthermore, as the results are

centralized, a more accurate picture of assertion failure event chains can be ob-

tained by recording the arrival of assertion failure m-flits from a single location.

The assertions failure messages within the network are always associated with

their source address (as part of the NoC transport layer), thus clearly identifying

the hardware unit responsible for the message. In the event of a failure in the NoC

data transport mechanism (interconnect), the assertion information can still be ac-

cessed through the local station CPU interface as it remains stored in the assertion

checker’s flip-flop, but may require more debugging effort to correlate with other

assertion failures.

146

5.4 Distributed Hardware Checkers

5.4.2.1 Assertion Flit Generation Mechanism

As explained previously, when an assertion checker automata detects a viola-

tion, it latches the event. By adding a second register that monitors the previous

event latch with the current event latch, a digital difference detector can be created

(xor on the vectors followed by or_reduce). The digital difference acts as the trigger

for the following process. Even with a very large assertion status vector, the digital

difference can be built with pipelining to perform the or_reduce operation to avoid

affecting the critical timing path 3. The overall system-level is not sensitive to the

minute delay of detecting the assertion failure vector difference since it will also

take some time to propagate it to the aggregation unit.

Once a scan of the assertion status failure table is initiated via the trigger, the

hardware process prepares aworm, by first setting up up the header flit and specify

the destination for the assertion failure. The destination is the station (or a dedi-

cated NoC unit) that will perform the aggregation. The assertion status decoder

table must have been generated in the By Type mode described in Section 4.5 to

maximize the utilisation of the data bus as the hardware will simply scan the reg-

isters using a counter as the address pointer. In a way very similar to the CPU

accessesing the register table, the assertion status table is read out word by word,

building up the worm that will be propagated to the aggregator unit. The NoC

routing mechanism is used, so from the Station’s point of view, the hardware as-

sertion unit is just another source of NoC traffic.

A propagation problem can appear when attempting to debug a deadlocked

NoC when the debug messages are carried by the networking infrastructure. Thus

an extra bit is added to the M-flit bit enabling it to follow a bypass mechanism.

This makes those flits propagate faster through the NoC around congested nodes.

By virtue of its simplicity, this mechanism is also a lot easier to verify prior to the

silicon release. This new type of flit was called a High Priority Flit (HPF). As can be

seen in Figure 5.2 The HPFs effectively bypass all FIFOs and therefore can be lost

during their transport if multiple errors occur simultaneously in the NoC (due to

the usual output buffer requirements). As a result this architecture will transport

3. An hypothetical thousand bits wide assertion failure vector cannot complete an or_reduce
operation within one clock cycle in a fast system. In addition, the difference detector is inherently
a multi-cycle timing path since it does take many clock cycles to prepare and send the worm.

147

5 Integration of Checkers in a NoC

a certain number of HPFs before starting to drop information.

A more sophisticated NoC architecture may use Virtual Channels, and give a

high priority channel to assertion failure reporting flits, effectively obtaining a simi-

lar deadlock bypass mechanism. Our NoC architecture does not use Virtual Chan-

nels mainly because they add significant hardware overhead in the controller and

require larger on-chip memories.

Figure 5.2: Detailed block diagram of the NoC Station showing the Assertion
checkers in the Ingress/Egress Path providing protocol checking. Also illustrated
are the two possible paths for the M-flits: via the egress FIFO or directly to the
output multiplexer as High Priority Flits (HPF).

Our proposed architecture contrasts with the proposed assertion processor struc-

ture by Kakoee et al. [122]. In their architecture, assertion processors shift out se-

rially the assertion failure(s) and propagate them between assertion processors in

a way analogous to a scan chain. In this work, the assertions are memory mapped

for in-system processing by localized firmware in addition to being transported by

the NoC layer to a central aggregation unit.

148

5.5 Quality-driven Design Flow

5.5 Quality-driven Design Flow

One could think that improving quality through the addition of test, debug,

andmonitoring infrastructure can be achieved in a relatively straightforwardman-

ner, by distributingmany checkers inside a device. However, even if future devices

will provide considerable logic density, the repetition of large circuit structures

like hardware checkers and their associated register interface can end up using

too many resources when the same circuit is replicated multiple times. In addi-

tion, the physical location of the checkers within the NoC along with its topology

play a key role in augmenting the value of this additional debug hardware. The

checker’s value is further enhanced if they can assist in the post-production testing

of the device.

To address the complexity of selecting which checkers can be converted to sil-

icon and their eventual physical location within the NoC, a quality-driven flow is

proposed to maximise the debug benefits.

5.5.1 Major Considerations

Intuitively, all that is needed to improve design quality is to add the infrastruc-

ture IP and possibly add redundancy to compensate against failures. The difficulty

lies in integrating the quality effort into the traditional design flow in a systematic

approach during pre- and post-fabrication stages. In our view, there are two as-

pects of the design that improve the final quality:

1. Verification can be performed at the block and system levels. Block level ver-

ification checks that individual components conform to specifications, and

system level verification checks that the components function correctly when

interacting with each other.

2. A Testing, monitoring, and debugging (TMD) infrastructure:
– The NoC reuse as a test access mechanism [85] is appealing, yet it poses its

own challenges in guaranteeing the bandwidth and latency for streaming

the tests to all subsystems. The communication bandwidth and processing

capabilities of the PE are needed to predictably route test data, but possibly

also for the self-tests and on-line testing.

149

5 Integration of Checkers in a NoC

– Runtimemonitoring includes the ability of the system to detect error condi-

tions. Those error conditionsmight be caused by unverified corner cases or

by the presence of a timing fault or silicon defect that might have escaped

initial testing.

– Integrated debugging hardware enables the system to diagnose the cause

of errors, and to react appropriately (e.g. re-route traffic around a faulty

node). The added visibility gained by the presence of the debugging mod-

ules will facilitate the localization of the root cause of problems during both

pre- and post-fabrication debug.

5.5.2 The Test, Monitoring and Debug Flow

Figure 5.3 illustrates the design flow when high-level verification and a Test,

Monitoring and Debug (TMD) infrastructure is added.

Typically, system-level verification is performed after block-level verification.

So, in addition to verification typically being performed late in the development

process, system-level verification is usually performed last. This fact has profound

implications for NoC development because of the paradigm shift from computa-

tion centric to communication centric design [37]. The performance of current SoCs

is mainly limited by the computational cores, and so the system interconnect can

be selected almost as an afterthought. Conversely, the large SoCs and NoCs of

the future will be limited by the available communication bandwidth. The band-

width utilisation can be very dynamic and performance degrades very rapidly

when the interconnect saturates. This makes the design of the interconnect archi-

tecture critically important. If system-level verification is performed at late stages

of development, problems with a chosen interconnect architecture will have signif-

icant schedule impacts. It is therefore necessary to start system-level verification

as early as possible and to include it in the architectural exploration cycle. Further-

more, verification components can be reused and refined during the implementa-

tion phases for regression testing. To gain proper execution speed of the model,

higher-level, more abstract simulations are needed and can be done in SystemC.

This will result in a better understanding of the effects of the NoC topology on the

application performance. This exploration phase also helps clarify which moni-

150

5.5 Quality-driven Design Flow

Figure 5.3: The quality of design (QoD) flow incorporates system debug and
monitoring infrastructure through the use of debug and assertion modules, and
reuses the NoC for test and verification.

151

5 Integration of Checkers in a NoC

toring points are needed in the NoC to observe the dynamic system performance.

Those monitoring points can then be recorded as valuable for in-silicon implemen-

tation.

In addition, the reliability aspect of the NoC architecture can be considered in

the evaluation of the final quality of the architecture. This recent work is being ad-

dressed in our group by M.H. Neishaburi [123] and his work on Reliability Aware

NoC Router (RAVC).

5.5.3 Integration in System Design Flows

As future designs will start with high-level design that may incorporate, for

example, SystemC synthesis as part of an Electronic System Level (ESL) design flow,

one can expect to see PSL-type of expressions used at the higher levels of abstrac-

tion [124]. As such, it will be possible to incorporate PSL into the high-level Sys-

temC models used for architectural exploration; that is, the “Monitoring” box in

the SystemC portion of the design flow shown in Figure 5.3 would be replaced by

PSL that could be fed into the checker generator tool directly, obviating the need

to translate SystemC assertion and hand-coded temporal checkers to PSL.

When an error condition has been detected by the monitoring hardware, the

systemwill be required to diagnose the problem and take appropriate action. There-

fore, to complement the checker hardware, debugmodules are added to the design

as shown in Figure 5.3. The interaction between debug and checker hardware will

be further discussed in later sections; specifically, we will show a concrete example

of howwe applied the quality design flow to the two ring-based interconnects. The

debug hardware provides a mechanism for the diagnosis of, and possible recovery

from detected runtime errors.

5.5.4 Design Space Exploration

Design space exploration is the process of comparing the properties (e.g area,

speed, power) of several system configurations for the purpose of selecting the

most appropriate candidate. Figure 5.3 shows how high-level cost models are in-

tegrated into the SystemC prototyping phase to help drive early design space ex-

152

5.5 Quality-driven Design Flow

ploration. The cost models, developed by using FPGA or ASIC synthesis results

of a specific design instance are being fed back in the design process. For exam-

ple, the synthesis results of a specific configuration of a hierarchical ring intercon-

nect [15] can be used to develop a cost function that takes as input certain design

parameters (e.g. bus-width, FIFO depths), and allows different configurations to

be compared without the need to synthesize each instance. The use of cost models

early in the design phase increases the probability that resource and performance

constraints will be met by the final implementation, and thus is an important step

in improving quality of design.

One of the contributions of our work was to automate the process from PSL to

RTL, synthesis and extraction of the hardware cost. In doing so, PSL statements

can directly be weighted against each other based on their hardware cost and use-

fulness in silicon.

While verification is an extremely important part of the usual design flow, it

does not have an impact on the resource usage of the final implementation. How-

ever, the TMD infrastructure used in our QoD flow will eventually translate struc-

tures into hardware. It is therefore necessary that the overhead of the TMD infras-

tructure also be characterized and included in the cost models so that its resource

requirements are accounted for during the design space exploration stages. Also,

TMD cost models can be used to optimize the included TMD components to meet

resource constraints. For example, it is probably too expensive to include all of

the assertion checkers, or to instantiate all the debug modules at every node in the

network.

5.5.5 Quantifying Quality

Improving quality by adding the TMD infrastructure to the design flow seems

quite directly related to the extent of the hardware additions. However, how does

one quantify the improvement? And, how can the quality of two different designs

be compared when performing the architectural exploration?

A representative quantitative measure will enable the quality evaluation of sev-

eral architectures such that the one with the best score can be selected. A quality

153

5 Integration of Checkers in a NoC

function that aims at measuring the quality of a specific design instance di is:

Q(di) = λQV(di) + ρQTMD(di) + σQNoC(di) , (5.1)

where QV is a numerical representation of verification quality of the components

used in the design, QTMD is a measure of the quality of the TMD infrastructure

hardware, and QNoC is a measure of the quality of the network architecture/topol-

ogy. QNoC can also factor in the reliability aspect of the router when one has to

trade-off this parameter during the design exploration phase.

The term QV can be a combination of the functional coverage of each compo-

nent and the completeness of the system-level verification effort (i.e. the higher the

coverage, the higher the quality score) and can come from the coverage database

or an evaluation by qualified engineers.

To facilitate the comparison of architecture with differing numbers of nodes,

the terms terms QV and QTMD can be expressed as an average value per node. For

example, the value of QTMD can be computed by solving

QTMD(di) =
αQT(di) + βQM(di) + γQD(di)

|di|
, (5.2)

where QT, QM, QD are the quality scores of the test, monitoring, and debug hard-

ware, respectively. Dividing by |di|, the number of nodes in the architecture, yields

an average QTMD value per node. The calculation of QTMD described by (5.2) as-

sumes that the capabilities of the TMD infrastructure hardware can be numeri-

cally represented. One possible way to score assertions is to simply rank each one

using a numeric value. The calculation of QNoC will be discussed further in Sec-

tion 5.5.11.3. The constants {α, β,γ,λ, ρ, σ} in (5.1) and (5.2) assign relative weights

in the calculation of Q.

5.5.6 The Cost of Quality

Under ideal circumstances, one would wish to add as much extra TMD hard-

ware as possible to maximize quality. However, the added functionality comes at

the cost of extra resource requirements, which may exceed the budget allowed for

154

5.5 Quality-driven Design Flow

the design. It will therefore be necessary to find a way to balance quality against

the required overhead. Similar to the calculation of quality, we express the resource

requirement of a design instance di as:

R(di) = R0(di) + RTMD(di) , (5.3)

where R0 is the resource requirement of the design without TMD infrastructure,

and RTMD is the resource requirement of the TMD infrastructure components,

which can be expressed similarly to (5.2).

5.5.7 Optimizing Quality vs. Cost

In addition to integrating TMD infrastructure to increase quality, the design

flow shown in Figure 5.3 is also used to support design space exploration and op-

timization such that performance and resource constraints can be met. To achieve

this end, cost models are developed with the aid of FPGA and ASIC synthesis

results, which are used to drive exploration at higher levels of abstraction using Sys-

temC instead of RTL. The feedback loop in Figure 5.3 shows how synthesis re-

sults from the lower abstraction levels are used at the SystemC level to develop

better cost models. Only a subset of the possible configuration of parametrizable

components are synthesized to obtain a few data points, which can be used to in-

fer relatively accurate estimates for the range of possible configurations. This is

key to enabling rapid high-level exploration and optimization, because synthesiz-

ing every possible design instance variation and comparing resource requirements

would require significant computation resources.

Under resource constraints, optimizing quality versus cost (resource require-

ments) is a multi-objective optimization problem where the goal is to maximize

quality and minimize cost. The objective function used for optimization can be

defined as the ratio Q : R, thus the optimal design di can be found by solving

max
[

Q(di)

R(di)

]

, (5.4)

where R and RTMD can be constrained if desired. When comparing two designs,

155

5 Integration of Checkers in a NoC

the one with the greatest Q : R ratio exhibits the best quality versus cost tradeoff.

The RTL box in Figure 5.3 shows how the checker/assertion hardware is se-

lected from large libraries (a significant portion of those come from re-use of the

verification assertions, cover and sequence statements converted to hardware). A

practical design will have resource constraints, so only a subset of the TMD capa-

bilities will go in hardware, and the problem becomes one of how to efficiently

select the best subset such that the quality is maximized for the resource con-

straint RTMD. The problem of packing the assertion checkers under resource con-

straints has been addressed through temporal multiplexing of assertion checkers

as explained in Section 3.3. In practical designs, this means incorporating pro-

grammable logic fabric on the ASIC SoC device [125] 4.

5.5.8 FPGA Emulation in Quality-driven Architecture

Exploration

It is accepted that FPGA emulation/prototyping can bring decisive advantages

to the multiprocessor and computer architecture research. Using such platforms,

a number of NoC topologies have been studied, where the transaction-level Sys-

temC models were augmented with RTL modules to be run directly on FPGAs.

The modeling can be made more accurate when needed, but also, the inherent

complexity and difficulties in validating a given proposal will only be possible by

accurate models executed at the speed of FPGA circuits (to reach an acceptable

verification quality QV).

The NoC architectural studies performed can be augmented with the energy

and area models, derived from more refined RTL block implementations. In short,

quality considerations benefit well from FPGA emulation to advance architectural

research and offer a flexible testing ground to refine the quality metrics.

4. Companies such as Menta S.A.S. offer such type of IP products in soft (RTL) or hard-IP for-
mat.

156

5.5 Quality-driven Design Flow

5.5.9 Networking and Quality of Service

The networking protocol and data structures require careful considerations to

incorporate support for the TMD infrastructure. The networking header defini-

tions have to include fields such that the routers can autonomously terminate

transactions that are destined to the monitor and debug units, or the router itself.

The NoC may need to support virtual channels that allow differentiated services

of TMD traffic. One such service is the transport of assertion information, which

is characterized by small messages (i.e. low bandwidth) requiring low latency and

best effort delivery. To support debugging, the NoC has to have at least one com-

munication channel that can bypass all the flow control and force the delivery of

the payload without considering the congestion level in the FIFOs (e.g. overwrite

user data to break out of a deadlock situation). These bypass channels (refer to

Figure 5.2 for an example) need to support complex error conditions in the NoC

and to be able to control the PE at a very low level.

5.5.10 Other Networking Considerations

Bypass mechanisms can assist in increasing the yield if the full NoC capabilities

are not required (e.g. a reduced functionality, lower-cost device). Bypass logic

and associate control points have a small overhead, but their benefit during debug

(isolating a complete station) would weigh in very favorably for their presence in

the silicon. Though bypass requires a time-to-live counter as part of protocols such

that packets destined to a disabled endpoint do not endlessly loop in the device,

the ability to bypass nodes as a way to improve yield is likely to be an important

consideration for very large and dense designs which inherently have a greater

probability of on-chip defect.

For an arbitrary NoC architecture, the maximal number of hops can be pre-

determined and the time-to-live counter size adjusted accordingly. Built-in per-

formance monitors report expired packets to the software layers so that they are

aware of the incorrect routing tables. Since the network includes the necessary in-

terfaces to take over the control of the PE resources (the CPU, mostly), debugging

and diagnostic transactions can be initiated while the NoC is still operating with

157

5 Integration of Checkers in a NoC

one (or more) of the PEs in bypass mode. In many applications, this can mean a

reduced level of service to the end-user, but not a complete failure of the NoC.

5.5.11 Quality Comparison

The proposed quality-driven flow will be presented by comparing the quality

versus cost of the hierarchical and hyper ring topologies. The aim is to show how

this integrates the TMD infrastructure hardware into the NoC.

To compare the quality of both architectures, we consider the individual terms

of (5.1).

5.5.11.1 Quality of Verification

As previously discussed, the value of QV from (5.1) is meant to quantify the

thoroughness of the verification effort performed on each individual component

as well as at the system level (i.e. QV can be expressed as a function of block and

system level verification completeness). Since both architectures are constructed

using the same components (i.e. RIs and IRIs), the block-level verification value

contributed toQV is approximately the same. Furthermore, the similarity of the ar-

chitectures allowed the reuse the same application code and synthetic test benches

to perform system-level verification. Therefore, one can reason that

QV(dhierarchial−rings) ≈ QV(dhyper−rings) . (5.5)

For the purposes of this example, they are close enough to be considered equal.

5.5.11.2 Quality of TMD Infrastructure

The quality index of the TMD infrastructure is different for the two architec-

tures because the monitoring and debugging capabilities is higher in the hyper-

rings architecture. The calculation of QTMD is dependent on several factors such

as location (or placement) and capabilities of the TMD infrastructure hardware.

For example, the placement of debug and monitoring hardware at the inter-ring

interfaces brings more quality to the design because they are the bridge between

the global and local rings, hence more of the traffic will pass through those nodes.

158

5.5 Quality-driven Design Flow

The number of network input ports of each component can be used to quantify the

QTMD values of the ring-interface (RI) and inter-ring interface components as:

QTMD(dRI) = 1 ,

QTMD(dIRI) = 2 .
(5.6)

The hierarchical ring architecture is composed of 16 RIs, and 4 IRIs (20 nodes),

and the hyper-rings architecture has 8 IRIs (24 nodes). Using (5.6) and (5.2), the

quality index for the TMD infrastructure for both architectures is:

QTMD(dhierarchial−rings) =
16 ·QTMD(dRI) + 4 ·QTMD(dIRI)

20
= 1.20 ,

QTMD(dhyper−rings) =
16 ·QTMD(dRI) + 8 ·QTMD(dIRI)

24
= 1.33 .

(5.7)

It should be noted that (5.7) assumes that the all the components in the ar-

chitecture contain TMD infrastructure hardware, and as such, the comparison is

straightforward. However, under resource constraints, one may wish to restrict

the number of IRI and/or RI components that are TMD enabled, thereby resulting

in an asymmetric distribution of TMD hardware. In this case, the comparison and

selection between the two architectures becomes an optimization problem with a

potentially large solution space.

5.5.11.3 Quality of NoC Architecture

The calculation of QNoC from (5.1) is an open problem as there are a large num-

ber of network characteristics that may be taken into account when comparing the

quality of two NoC architectures. For example, the bisection bandwidth, an often

studied property, may be included along with the node degrees, network diame-

ter, path diversity, etc. For the purpose of this example, it is sufficient to evaluate

the relative quality of each architecture by using a general understanding of their

properties. The hyper-ring architecture has a higher bisection bandwidth and path

diversity, which is important for debugging as one global ring can be reserved for

debug traffic to provide quality-of-service. In this example, the property of path

159

5 Integration of Checkers in a NoC

diversity is of primary concern, so the quality of the NoC topology is based on the

number of paths between any two nodes in network. For the two architectures

under consideration, QNoC is defined as

QNoC(dhierarchial−rings) = 1 ,

QNoC(dhyper−rings) = 2 ,
(5.8)

since the hyper-ring architecture has 2 possible paths between any two nodes.

Our representation of QNoC has been deliberately kept simple, but for a real

application, we would factor in other architectural characteristics such as node de-

gree, network diameter, etc. The difficulty in defining the quality index of a specific

architecture lies in the large number of properties that can be considered. Also, the

importance of each property can vary depending on the application domain, prob-

lem, resource and packaging constraints.

The NoC community is putting forth a lot of effort to agree on benchmarks

that, ultimately, would allow various NoC architectures and implementations to

be compared [89].

5.5.12 Hardware Resources and Quality

A distinction is made between hardware checkers derived from temporal logic

and debug units which are purposely designed. Hardware checkers derived from

temporal logic tend to focus on a very particular aspect of the design such as a

protocol property that should remain valid at all times. One such example would

be the following PSL statements that check for valid worm length and proper end-

ing of worms in a NoC:

The ValidWormLen checker from Example 6, when translated to hardware, is

quite small (comparable to a 6-bit counter). The ExpectEnd checker uses only one

to two flip-flops (depending on the output buffering settings) and a few gates of

logic. The QTMD value for such a checker could be weighed quite highly and since

their hardware overhead is small, they would be good candidates to be preserved

in silicon.

A faulty behavior in a module of the NoC will trigger the chain of events dis-

160

5.5 Quality-driven Design Flow

Example 6 NoC Worm Checker in PSL.

property ValidWormLen = always StartOfWorm |=>

{ [*63] ; EndOfWorm };

property ExpectEnd = {StartOfWorm |=> eventually! EndOfWorm

abort AbortedWorm};

assert ValidWormLen;

assert ExpectEnd;

cussed above and will result in a meaningful error message being logged after a

lookup in the assertion database is performed via the user-space monitoring dae-

mon software. One or more assertion failures in an operation might indicate, for

example, that a certain part of the circuit is faulty (timing errors, defective gates or

electromigration failure, to name a few possible sources of problems). The NoC de-

bug infrastructure can then make use of local scan test access to run more specific

tests to assist in isolating the fault.

Debug units, hand-crafted to provide advanced capabilities that are beyond

what can be created from statements in PSL, can also be considered. In a NoC, an

example would be a worm backtrace buffer that can memorize the last n worms

that were routed out of a module along with a time stamp of the interval between

those worms. Such hardware monitors can be quickly designed in an ESL flow

and imply memory (n entries deep and with a bit width capable of holding routing

information about the worm and its time stamp). The QTMD of this debug monitor

can be high, but it carries a significant area overhead. A good compromise would

be to instantiate it in only a specific subset of stations (located at key, high-traffic

points in the NoC) such that they would benefit the most in troubleshooting a

problem. For the hierarchical and hyper ring topologies studied, this type of debug

unit yields the greatest benefit when located at the inter-ring interfaces since they

tend to process more NoC traffic.

5.5.13 Comparing Quality/Cost Ratios

The topology quality metric QTMD can be better illustrated with an example.

A comparison between the hierarchical-ring and hyper-ring topologies was per-

161

5 Integration of Checkers in a NoC

Table 5.1: Area and power comparison of the TMD quality in the hierarchical-
ring and hyper-ring topologies for two frequency of operations

Target Total Cell Area Total Power Q Q : RA Q : RP

Frequency (mm2) (W) Quality Area Score Power Score

Hierarchical-ring

500 MHz 5.10 2.26 2.20 0.43 0.97
250 MHz 4.95 1.11 2.20 0.44 1.98

Hyper-ring

500 MHz 5.98 2.66 3.33 0.55 1.25
250 MHz 5.82 1.31 3.33 0.57 2.54

formed using the RTL version of the two NoC interconnects. They were synthe-

sized using Synopsys DC Ultra (Version X-2005.09) targeting the TSMC 0.18 µm

standard-cell [126] library and operating at 1.8 V. A selection of results for two dif-

ferent target frequencies are summarized in Table 5.1. Note that for this example,

we assign equal weights to each term in (5.1) and (5.2) (i.e. the multipliers are

equal to 1). As previously discussed, the weights can be adjusted depending on

the design constraints and requirements.

From the QTMD values from (5.7) and the synthesis results obtained in Sec-

tion 5.5.13, we can solve for the Q : R ratio (5.4) of each topology. Those results

are summarized in Table 5.1. The higher ratio obtained for the hyper-rings tells us

that the quality increase due to the addition of the second global ring and the TMD

infrastructure can be achieved at a relatively low cost. We can therefore observe

that the hyper-rings obtain a superior Q : R score than the hierarchical-rings.

Using only the QTMD scores, this topology would already be selected for its

higher quality. In many designs where the redundancy in the center ring and

higher bandwidth offsets the slightly higher resource usage, theQNoC for the hyper-

ring is also going to be higher (the exact factor is application dependant). There-

fore, those calculations would lead us to use the hyper-ring instead of the hierar-

chical ring for a better quality.

This simplified example is only meant to convey the general spirit of the pro-

posed method. The application domain, cost constraints and weighting coeffi-

cients for the various elements driving the overall quality scores must be carefully

162

5.6 Chapter Summary

selected using heuristics or analysis of prototyping results. The optimization prob-

lem can then be solved using known algorithms, aiming for the highest quality

while meeting the constraints.

5.6 Chapter Summary

This chapter has shown that by using appropriate hardware support, the mem-

orymapped assertion and sequence checkers can be integrated in future distributed

systems using the NoC paradigm such that they can benefit from the centralization

of assertion and sequence status information.

Through the provision of specialized virtual channels and priority routing of in-

formation, assertion checker failures triggered across multiple locations in a NoC

can be reported with some information on the source of the error and also a rel-

atively accurate temporal relationship. Finally, it is proposed that a set of quality

scores be used in the design exploration process as a mean of optimizing the cost

benefit tradeoffs of integrating a large number of checkers in future NoC-based

systems.

163

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Since the complexity of hardware systems is not going to decrease in the imme-

diate future, one has to mitigate the project risks by following a design flow that

assists in the debugging at every level. By proposing a method that re-uses existing

verification checker libraries, the proposed workflow aims to reduce the burden

of integrating meaningful checkers in digital hardware systems. The proposed ap-

proach is scalable andmodular because of its use of memory space and independent

user-space drivers.

Systems integrating hardware assertion checkers and their associated firmware

libraries will have a self-contained debug infrastructure that can be leveraged even

as the devices are deployed in the field. Checkers that are in close proximity to the

source of a problemwill assist the debugging process, making it more efficient and

more focused. A system-level crash on a multi-core NoC would be a nightmare to

analyze with only a snapshot of the device’s state. However, with a multitude of

very pinpointed and low-level checkers, the signature of a complex bug can be

analyzed with software tools and the order of event, location and nature of the

hardware modules involved in the crash can be extracted. The debugging process

thus has a solid foundation to proceed through the reproduction of the failure in

the verification environment.

165

6 Conclusion and Future Work

Already, the verification process dominates large design schedules. Only through

a comprehensive validation plan that includes coverage analysis, and ideally for-

mal verification of critical components, can companies hope to deliver nearly flaw-

less devices that make somany useful products possible. Hardware-based verifica-

tion acceleration seems like the only feasible approach when tackling system-level

integration of the larger devices. Workstations simply cannot cope with the bur-

den of simulating ever larger silicon designs. Hardware-based coverage at or near

speed of operation will thus be required to guarantee a proper level of confidence

required to tape-out future silicon designs.

It is clear that the proposed method involves a certain level of hardware over-

head. Projects need to weigh and score the benefits of each hardware checker that

will end up in the silicon against their overhead and cost. The proposed TMD

methodology can assist in selecting the appropriate checkers and physically locate

them in large NoC or complex SoC so as to maximize their benefits. The hard-

ware overhead of checker integration could be significant, but so are the benefits

when one has to debug such systems. In the end, compromises will have to be

made as with any other design process. As technology evolves, the cost related

to adding debugging support hardware will go down while the complexity and

cost of debugging complex problems will go up. This only strengthens the need

for a comprehensive debug methodology that work across the design flow and in

all layers of the system, from the low-level bus interfaces to the operating system

integration.

Finally, the proposed method of integration of hardware sequence checkers as

user-space, software-accessible modules has many other potential uses. The mas-

sively parallel architecture offered by FPGA-based sequence checkers has appli-

cations well beyond debugging or verification coverage. A few examples were

proposed, but many other applications can be explored.

The combination of the automated translation of temporal language to digital

hardware coupled with the generation of the corresponding software interface can

bring performance benefits to many applications that require timely and efficient

analysis of patterns in very large data sets.

The technical nature of the proposed debug infrastructure, while complex, can

166

6.1 Conclusion

be tackled with algorithms, design automation and logic gates. Yet, there remains

one problem that is not so technical in nature: there is a really strong need for

teaching advanced verification methods and debug methodology to future digital

engineers. The ABV techniques and use of temporal logic as a way to express hard-

ware specifications has been proven to be beneficial in many large design projects.

The largest IC design houses use it extensively in their design flows. Yet, very few

courses in electrical engineering (even at the graduate level) target these topics.

Perhaps because of the maturity required to understand the usefulness of formally

specifying designs, or the already complex nature of hardware assignments given

out to students and their lack of experience with hardware design languages, ver-

ification is very often relegated as a secondary problem.

As noted by teachers [127, 128, 129, 130], if the verification methodology is

taught up front with as much emphasis as the tools and techniques to make the cir-

cuit, students with a solid background in verification and debugging would have

the insight that will help them efficiently perform their hardware design process

and deliver quality results.

167

6 Conclusion and Future Work

6.2 Future Work

In addition to addressing the need for a more efficient and flexible debug-

ging process, other applications can be derived from the combination of hardware

checkers and memory mapping automation. The following ideas can provide re-

alistic and interesting research paths that would reuse the mechanisms and extend

the reach of the concepts to other computer engineering problems.

6.2.1 Software Debugging and Data Integrity Checking

Besides its usefulness in pinpointing hardware problems and guiding the sili-

con debug process, hardware sequence checkers can assist advanced software de-

bugging. One has to view a part of the presented solution in the reverse direction;

in other words, from userspace software to hardware checkers.

Dynamic query-based debugging has been proposed as a way to rapidly iden-

tify a problem [131] in software systems. In typical implementations, the system

will dynamically monitor a set of properties, for example the relationship between

variables. The software monitors those elements to ensure that they meet their

properties. However, this adds considerable overhead since the system has to dedi-

cate a lot of CPU time to monitoring properties. Furthermore, those properties are

only validated periodically as the CPU also needs time slices to perform useful cal-

culations. In multi-core systems, another CPU can be reserved for checking. Once

again, if there are many variables involved requiring many concurrent checks, the

dedicated core will run out of processing power to handle all those operations. In

presenting their approach [131], the authors noted: "The dynamic query debugger

does not allow to query temporal properties of the objects. [. . .] Such functionality

would involve using temporal logic and program execution tracing and is beyond

the scope of this system."

Our presented hardware assisted approach to temporal checking could address

the problem of temporal execution tracing and monitor temporal properties of ob-

jects. The hardware processes performing property checking in real time are in-

herently parallel. To support this software debugging approach, one would need

a set of tools similar to the proposed hardware sequence and assertion checkers,

168

6.2 Future Work

namely a system with access to programmable fabric (a FPGA compute card with

access to a memory-mapped system bus, such as PCI or PCI-Express), the checker

generator, the hardware register layer and a user-space driver enabled to expose

the hardware-mapped memory address range to the user program.

Software objects (variables) would have to be forced to be located into the UIO

memory space map. This can be done by allocating the data structure that needs

to be monitored such that its base address coincides with the memory map pointer

provided by the mmap() call.

Figure 6.1: Hardware-based temporal checkers for software-based structures.

The hardware registers would have to be generated based on a selection of soft-

ware data structures that need to be temporally checked. Those variables would

then be assigned to corresponding hardware registers by means of the memory

map. In this approach, the hardware doesn’t need to modify the variables; it

simply provides register-based storage and a secondary access for the hardware

checkers to constantly monitor those variables. Figure 6.1 illustrates this proposed

mechanism. Since the software variables would directly correspond to a hardware

register, they can also be simultaneously read by multiple hardware “threads”.

Temporal expressions could then be written using the variable names (they

would have a corresponding hardware signal name) like in the current process

when dealing with hardware signals. The checker generator can create the hard-

ware automata required to simultaneously check all the temporal relationships be-

169

6 Conclusion and Future Work

tween the variables. Using the same process for monitoring the assertion checkers

and coverage counters, software debugging based on temporal properties of ob-

jects would be possible. Instead of a hardware "clock", each read or write access

strobe to the variable block would be used to trigger a change in the hardware

automata.

The limitations of this method would be:

– The hardware resources are finite and one cannot create temporal checkers

that end up requiring too much corresponding hardware.

– Dynamic data structures would not be directly supported.

– The frequency of operation (access) to those variables would impose a small

performance penalty. The software variables accessed often are cached by

the CPU. Depending on the logic depth required by the checkers and exter-

nal bus performance, the access would be slower than a cache hit. In most

systems, the access time for those variables would be similar to SDRAM or

SRAM access on an external peripheral, so overall, the speed penalty would

be acceptable.

– The method would be limited to monitoring "simple" data types, for exam-

ple, characters, integers or Booleans. It would not be possible to monitor

indirection (pointers) except for address bound checking.

The method could be very valuable as a way to ensure that critical pieces of

software always respect a set of properties, for example assuming a set of variables

A,B,C:

– A is always written before B

– At all time, A+B must be greater than C

– If A < B it implies that within some amount of time C < 0 will occur.

This proposed mechanism would be able to detect any deviance from the rules

within a few clock cycles, which from a software point of view, is quasi-instantaneous.

In addition to the software front-end tomap the objects to the hardwarememory-

mapped structure, the error reporting would be similar to the case of hardware

assertion checking. An assertion failure in the hardware or the software would be

reported by a bit indicating the failure, which can trigger an exception mechanism

(e.g. interrupt) to signal the problem to a high-level layer.

Open problems remain in the definition of the sampling event when dealing

170

6.2 Future Work

with the software variables. Languages such as PSL are defined with a clock acting

as the sampling event. Translating this sampling mechanism to software accesses

to a variable can be addressed in multiple ways, with clocked time intervals or

hits in memory as possible sampling events. One could consider hardware events

as part of the Boolean layer of the language and some syntax sugaring added to

support implicit events such as reading or writing a variable.

Once properly refined, this new hardware-assisted debugging process could

lead to applications of particular interest in the software domain, for example crit-

ical pieces code that have to always obey certain fundamental relationships under

all conditions. One could conceivably accompany a software device driver with

its corresponding hardware checker unit that would be used to constantly mon-

itor the software data structures. As more advanced process technology merges

the CPU with in-system re-programmable logic, this could allow novel debugging

methods to be developed.

6.2.2 High-throughput Pattern Matching

In many applications, there is a need to rapidly check for patterns in data

streams. Telecommunication systems often call network elements capable of in-

specting packets passing in their structures and keeping track of high-level pro-

tocol states “smart switches”. A common example is a TCP/IP connection that

go through a few states to be established. “Smart switches” are able to monitor

connection attempts and can observe that, for example, a remote address attempts

many connections in a small period of time. This could mean that an attacker is

trying to breach the system. For low-bandwidth applications a CPU can inspect

the header of packets passing through a switch. However, in core routers (those

handling the traffic of entire companies or cities), the problem becomes quite dif-

ficult to handle due to the very high rate of packets passing through the router.

Using temporal expressions along with a variation on the Assertion Threading

method presented in Section 3.2.5, one can utilize the expressive power of a tem-

poral language to filter through sequences of packets.

The difference from Assertion Threading is that in this method, the dispatcher

is not trying to inspect pipelined events, but rather context-based events. The dis-

171

6 Conclusion and Future Work

patcher would use the context information of the packet (in IP-based hardware

switches, this is typically a hash computed from the source and destination ad-

dresses and ports) to launch tokens in banks of hardware-based checker automata.

If the initiation rate on each bank is low enough, each assertion checking automa-

ton state can be saved in RAMmemory and the hardware checkers themselves can

be time-multiplexed to allowmany contexts to be checked for patterns, while keep-

ing the flip-flop and LUT overhead acceptable. This process is known as pipeline

sharing and many examples can be found in the literature.

In such an application, the sampling event is the packet itself since the protocols

changes state by exchanging bits in the packet headers. The problemwith timeouts

and similar autonomous behavior from the sender and receivers can be explored

further should one wish to refine this proposed idea.

This work is presentedwith the hope that someonewith a totally different back-

ground and application domain will one day find a novel use for this technology

to benefit a new and different area of research.

6.2.3 Assertion Clustering and Trigger Units

The proposed memory mapping and register packing algorithm presented in

Chapter 4 treats each checker as an independent unit and processes them as such.

Recent work by M.H. Neishaburi [132] was shown to be able to extract common

fan-in among checkers. Through modifications of the packing algorithm, a pre-

selection of checkers could be performed such that they share as many primary

inputs as possible (or allocate a score to those who do).

In doing this check before the packing process, a set of checkers could be par-

titioned into different memory map decoders such as to minimize the required

physical fan-in for a given checker group.

Even more recent work by M.H. Neishaburi et al. [133] shows the application

of the sequence checkers for hierarchical trigger generation and other uses in post-

silicon debugging. Their work highlights the broad range of uses for sequence

checkers. At the time of this writing, the publications are not yet indexed, but

interested readers can refer to the bibliography for the article titles [134, 135, 136].

172

Appendix A

Examples from the BEE2

This Appendix provides more details and source code to give a better under-

standing of the BEE2 support files needed to enable UIO integration. The kernel

boot log of the BEE2 is also shown to better understand how the system starts up

and provides insight on the required device drivers and order of operations.

173

A Examples from the BEE2

A.1 UIO Range Remapping Kernel Module

The following listing shows the small kernel device driver that can be loaded

to enable User-Space IO re-mapping of a programmable hardware base address.

Some C programmers tend to shy away from using the goto statements. In

Linux kernel drivers, however, the goto statement is used to unwind the loading

process should some error occur during the various memory and device allocation

processes that are part of setting up the driver. Using goto statements help ensure

that the de-allocation process follows a mirror of the allocation and that the code

does not end up too nested up in if / else statements.

Listing A.1: Userspace I/O Range Remapping Kernel Driver

/∗

∗ UIO d r i v e r f o r mapping an a d d r e s s range t o u s e r s p a c e

∗ Accep t s b a s e add r e s s , s i z e and r e s e r v a t i o n p a r ame t e r s a t module l o a d i n g

∗

∗ (C) 2008 Jean−Samuel Chenard

∗

∗ L i c e n s e d under GPLv2 on ly .

∗

∗ /

include <l inux/module . h>
include <l inux/device . h>
include <l inux/plat form_device . h>
include <l inux/uio_dr iver . h>
include <l inux/iopor t . h>
include <l inux/moduleparam . h>

include <asm/io . h>

#define UIO_NAME "UIO Range Map - CMC Demonstration"

#define UIO_VERSION "0.1.1"

s t a t i c unsigned in t uio_baseaddr = 0x00000000 ;
s t a t i c unsigned in t uio_addrrng = 16 ;
s t a t i c in t uio_reserve_mem = 1 ;

/ / Accep t module p a r ame t e r s a t l o a d t ime

module_param (uio_baseaddr , uint , S_IRUGO) ;
module_param (uio_addrrng , uint , S_IRUGO) ;
module_param (uio_reserve_mem , bool , S_IRUGO) ;

s t a t i c s t ru c t uio_ in fo ∗simhw_uio = NULL;

s t a t i c in t setup_uio_mem (s t ru c t uio_ in fo ∗uio , const char ∗name ,
unsigned char index , unsigned long addr , unsigned long s i z e) {

s t ru c t resource ∗p_res = NULL;

uio−>mem[index] . name = name ;
uio−>mem[index] . addr = addr ;
uio−>mem[index] . s i z e = s i z e ;
uio−>mem[index] . memtype = UIO_MEM_PHYS; / / We want p h y s i c a l memory mapping (hardware)

pr in tk (KERN_INFO "UIO Setup Memory baseaddr=0x%lX, size=0x%lX\n" , addr , s i z e) ;

174

A.1 UIO Range Remapping Kernel Module

i f (uio_reserve_mem) {
p_res = request_mem_region (uio−>mem[index] . addr ,

uio−>mem[index] . s ize , name) ;
i f (p_res == NULL) {

pr in tk (KERN_ALERT "I/O Region Reservation failed\n") ;
return −ENODEV;

}
}

uio−>mem[index] . in terna l_addr = ioremap (uio−>mem[index] . addr ,
uio−>mem[index] . s i z e) ;

i f (uio−>mem[index] . in terna l_addr == NULL) {
pr in tk (KERN_ALERT "I/O Remap failed for %s\n" , name) ;
goto out_re l ease_reg ion ;

}

return 0 ;

out_re l ease_reg ion :
i f (uio_reserve_mem)

release_mem_region (uio−>mem[index] . addr , uio−>mem[index] . s i z e) ;
return −ENODEV;

}

s t a t i c void release_uio_mem (s t ru c t uio_ in fo ∗uio , unsigned char index) {
iounmap ((vo l a t i l e void∗) simhw_uio−>mem[index] . in terna l_addr) ;
i f (uio_reserve_mem) {

release_mem_region (simhw_uio−>mem[index] . addr , simhw_uio−>mem[index] . s i z e) ;
}

}

s t a t i c in t _ _ i n i t simhw_init (void) {
pr in tk (KERN_INFO "UIO SimHW Loading\n") ;

simhw_uio = kza l l o c (s izeof (s t ru c t uio_ in fo) , GFP_KERNEL) ;
i f (! simhw_uio)

return −ENOMEM;

simhw_uio−>name = UIO_NAME;
simhw_uio−>vers ion = UIO_VERSION ;
simhw_uio−>i rq = UIO_IRQ_NONE;

/ / When c a l l i n g setup_uio_mem , one can g i v e mean ing fu l names t o t h e mapping (s)

i f (setup_uio_mem (simhw_uio , "some_registers" , 0 ,
uio_baseaddr , uio_addrrng) != 0)

goto out_ f ree ;

i f (u io_ reg i s t e r_dev i c e (&platform_bus , simhw_uio))
goto out_ re l ease_regs ;

return 0 ; / / A l l i s good !

out_ re l ease_regs :
release_uio_mem (simhw_uio , 0) ;

out_ f ree :
k f ree (simhw_uio) ;
return −ENODEV;

} ;

s t a t i c void __ex i t simhw_rel (void)
{

pr in tk (KERN_INFO "Removing UIO\n") ;
u io_unreg i s te r_dev ice (simhw_uio) ;
release_uio_mem (simhw_uio , 0) ;

175

A Examples from the BEE2

kf ree (simhw_uio) ;
}

module_init (simhw_init)
module_exit (simhw_rel)

MODULE_LICENSE("GPL v2") ;
MODULE_AUTHOR("Jean-Samuel Chenard") ;

A.2 UIO Register Access in Python

The following snippet of Python code shows how easy the user access to the

registers become once the kernel user module is loaded.

Listing A.2 Userspace I/O access in Python
Python−ba s e d a c c e s s t o UIO memory map example

import mmap
import b i n a s c i i

Po in t s t o t h e UIO d e v i c e (v i r t u a l f i l e)
uio_name = ’/dev/uio0’

f = open (uio_name ,’r+b’)
MMAP a chunk o f d a t a (512 b y t e s) from t h e u i o0 v i r t u a l f i l e
map = mmap.mmap(f . f i l e no () , 5 1 2)

Read a 32 b i t r e g i s t e r be tween by t e o f f s e t s 0x000 and 0x004 from t h e
hardware memory map
t e s t _ r eg = map[0 x000 : 0 x004]

print "Read from the mem map : " , b i n a s c i i . h ex l i f y (t e s t _ r eg)

176

A.3 BEE2 Boot Log

A.3 BEE2 Boot Log

Below is the boot log capture of the BEE2 showing the custom bootloader, net-

work kernel loading and networked file system. The command line shows the

customized kernel version and the shutdown sequence. Some settings were in-

correct in the root file system, such as the swap file setting (unnecessary in the

application). However, those small configuration issues did not prevent the sytem

from working well.

The boot log also shows how fast the system starts up. On powerup, there is

about a 2 second delay for the control FPGA to load up and initiate the U-Boot

from the CompactFlash card. U-Boot has a 3 second delay to allow the user to stop

the boot process and edit commands or perform register manipulations. Then, the

kernel is transfered via tftp from the PC workstation. This process takes approxi-

mately 3 seconds. De-compressing the kernel then takes approximately 1 second.

From that point, the kernel displays the system time, from which one can see that

the initialization of the peripherals takes approximately 4 seconds. Once initial-

ized, most of the remaining time spent to finish is taken by the network intializa-

tion and mounting of the network root file system (approximately 5 seconds).

U-Boot 1.3.1-gb7e58b32 (Jan 25 2008 - 22:54:27)

HW ID not found in environment

* Welcome to the BEE2 - U-Boot session *

* Brought to you by the *

* McGill Integrated Microsystems Laboratory *

* *

* Ported to BEE2 by Jean-Samuel Chenard *

* Release 1.0a *

DRAM: 128 MB

Using default environment

In: serial

Out: serial

Err: serial

Hit any key to stop autoboot: 0

TFTP from server 192.168.0.110; our IP address is 192.168.0.105

Filename ’uImage’.

Load address: 0x400000

Loading: T ###

################

done

Bytes transferred = 1187568 (121ef0 hex)

Booting image at 00400000 ...

Image Name: Linux-2.6.24-rc5-xlnx-jsc-xlnx-n

177

A Examples from the BEE2

Image Type: PowerPC Linux Kernel Image (gzip compressed)

Data Size: 1187504 Bytes = 1.1 MB

Load Address: 00000000

Entry Point: 00000000

Verifying Checksum ... OK

Uncompressing Kernel Image ... OK

[0.000000] Linux version 2.6.24-rc5-xlnx-jsc-xlnx-nfs-g669cb9c0 (jsamch@amirix) (gcc

version 4.0.0 (DENX ELDK 4.1 4.0.0)) #9 Thu Jan 24 12:49:33 EST 2008

[0.000000] Xilinx Generic PowerPC board support package (Xilinx ML300) (Virtex-II Pro)

[0.000000] Zone PFN ranges:

[0.000000] DMA 0 -> 32768

[0.000000] Normal 32768 -> 32768

[0.000000] Movable zone start PFN for each node

[0.000000] early_node_map[1] active PFN ranges

[0.000000] 0: 0 -> 32768

[0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 32512

[0.000000] Kernel command line: console=ttyUL0

ip=192.168.0.105:192.168.0.110:192.168.0.1:255.255.255.0:bee2:eth0:off mem=512M

nfsroot=/home/jsamch/busyfs root=/dev/nfs rw

[0.000000] Xilinx INTC #0 at 0x40614000 mapped to 0xFDFFF000

[0.000000] PID hash table entries: 512 (order: 9, 2048 bytes)

[0.000197] Console: colour dummy device 80x25

[0.001067] Dentry cache hash table entries: 16384 (order: 4, 65536 bytes)

[0.002325] Inode-cache hash table entries: 8192 (order: 3, 32768 bytes)

[0.033519] Memory: 127360k available (1848k kernel code, 616k data, 104k init, 0k highmem)

[0.124533] Mount-cache hash table entries: 512

[0.129590] net_namespace: 64 bytes

[0.134211] NET: Registered protocol family 16

[0.137778] Registering device uartlite:0

[0.138716] Registering device xsysace:0

[0.139667] Registering device xilinx_emac:0

[0.173786] NET: Registered protocol family 2

[0.208774] IP route cache hash table entries: 1024 (order: 0, 4096 bytes)

[0.211466] TCP established hash table entries: 4096 (order: 3, 32768 bytes)

[0.211910] TCP bind hash table entries: 4096 (order: 2, 16384 bytes)

[0.212253] TCP: Hash tables configured (established 4096 bind 4096)

[0.212293] TCP reno registered

[0.225551] sysctl table check failed: /kernel/l2cr .1.31 Missing strategy

[0.225633] Call Trace:

[0.225653] [c7c17e80] [c00084f4] show_stack+0x4c/0x174 (unreliable)

[0.225748] [c7c17eb0] [c00305d8] set_fail+0x50/0x68

[0.225824] [c7c17ed0] [c0030c60] sysctl_check_table+0x670/0x6bc

[0.225878] [c7c17f10] [c0030c74] sysctl_check_table+0x684/0x6bc

[0.225929] [c7c17f50] [c001df0c] register_sysctl_table+0x5c/0xac

[0.225997] [c7c17f70] [c0258b78] register_ppc_htab_sysctl+0x18/0x2c

[0.226052] [c7c17f80] [c0252848] kernel_init+0xc8/0x284

[0.226121] [c7c17ff0] [c0004af8] kernel_thread+0x44/0x60

[0.233110] Installing knfsd (copyright (C) 1996 okir@monad.swb.de).

[0.234397] io scheduler noop registered

[0.234440] io scheduler anticipatory registered (default)

[0.234465] io scheduler deadline registered

[0.234647] io scheduler cfq registered

[0.303732] uartlite.0: ttyUL0 at MMIO 0x40600003 (irq = 1) is a uartlite

[0.303804] console [ttyUL0] enabled

[0.562715] RAMDISK driver initialized: 4 RAM disks of 10000K size 1024 blocksize

[0.572798] System ACE at 0x40618000 mapped to 0xC9002000, irq=0, 125184KB

[0.578796] xsa: xsa1 xsa2

[0.595698] tun: Universal TUN/TAP device driver, 1.6

[0.599554] tun: (C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>

[0.607517] xilinx_emac xilinx_emac.0: MAC address is now 2: 0: 0: 0: 0: 0

[0.613276] XEmac: using sgDMA mode.

[0.616825] XEmac: not using TxDRE mode

[0.620572] XEmac: not using RxDRE mode

[0.629295] XEmac: Detected PHY at address 0, ManufID 0x0013, Rev. 0x78e2.

[0.635045] eth0: Dropping NETIF_F_SG since no checksum feature.

[0.643891] eth0: Xilinx 10/100 EMAC at 0xFFFD0000 mapped to 0xC9008000, irq=2

[0.649925] eth0: XEmac id 1.1a, block id 32, type 1

178

A.3 BEE2 Boot Log

[0.655819] mice: PS/2 mouse device common for all mice

[0.660274] TCP cubic registered

[0.663217] NET: Registered protocol family 1

[0.667695] NET: Registered protocol family 17

[0.672918] RPC: Registered udp transport module.

[0.676601] RPC: Registered tcp transport module.

[4.184141] IP-Config: Complete:

[4.185925] device=eth0, addr=192.168.0.105, mask=255.255.255.0, gw=192.168.0.1,

[4.193699] host=bee2, domain=, nis-domain=(none),

[4.198921] bootserver=192.168.0.110, rootserver=192.168.0.110, rootpath=

[4.207522] Looking up port of RPC 100003/2 on 192.168.0.110

[4.229133] Looking up port of RPC 100005/1 on 192.168.0.110

[9.290755] VFS: Mounted root (nfs filesystem).

[9.294447] Freeing unused kernel memory: 104k init

init started: BusyBox v1.8.1 (2008-01-30 14:51:17 EST)

starting pid 139, tty ’’: ’/etc/init.d/rcS’

=====================================

Welcome to JSC’s BEE2 Root filesystem

=====================================

Mounting kernel file systems...done.

Starting System loggers...done.

Bringing up the lo and eth0 network interface (IP=192.168.0.105)...done.

Starting the dropbear ssh server...done.

Starting the telnet server...done.

Setup completed. System is ready.

Please press Enter to activate this console.

starting pid 160, tty ’’: ’/bin/sh’

uname -a

Linux bee2 2.6.24-rc5-xlnx-jsc-xlnx-nfs-g669cb9c0 #9 Thu Jan 24 12:49:33 EST 2008 ppc unknown

poweroff

starting pid 165, tty ’’: ’umount’

umount: cannot remount /dev/root read-only

umount: cannot umount /: Device or resource busy

umount: cannot remount rootfs read-only

umount: cannot umount /: Device or resource busy

starting pid 167, tty ’’: ’swapoff’

swapoff: /etc/fstab: No such file or directory

The system is going down NOW!

Sending SIGTERM to all processes

Sending SIGKILL tRequesting system poweroff

[34.129069] Power down.

[34.130250] System Halted

179

A Examples from the BEE2

A.4 BEE2 Control FPGA Device Utilisation

The following log shows the size of the control FPGA of the BEE2 when the sys-

tem is built to support the ported Linux 2.6 kernel, Ethernet, DDR DRAM, UART

console and in-system reprogramming port (SelectMAP).

Design Summary:

Number of errors: 0

Number of warnings: 63

Logic Utilization:

Number of Slice Flip Flops: 7,543 out of 66,176 11%

Number of 4 input LUTs: 7,966 out of 66,176 12%

Logic Distribution:

Number of occupied Slices: 7,861 out of 33,088 23%

Total Number of 4 input LUTs: 10,613 out of 66,176 16%

Number used as logic: 7,966

Number used as a route-thru: 606

Number used for Dual Port RAMs: 1,580

(Two LUTs used per Dual Port RAM)

Number used as Shift registers: 461

Number of bonded IOBs: 247 out of 996 24%

IOB Flip Flops: 276

IOB Master Pads: 1

IOB Slave Pads: 1

IOB Dual-Data Rate Flops: 109

Number of PPC405s: 2 out of 2 100%

Number of JTAGPPCs: 1 out of 1 100%

Number of Block RAMs: 93 out of 328 28%

Number of GCLKs: 8 out of 16 50%

Number of DCMs: 3 out of 8 37%

Number of GTs: 0 out of 20 0%

Number of GT10s: 0 out of 0 0%

Number of RPM macros: 36

Total equivalent gate count for design: 6,472,048

Additional JTAG gate count for IOBs: 11,856

Peak Memory Usage: 617 MB

Total REAL time to MAP completion: 14 mins 48 secs

Total CPU time to MAP completion: 12 mins 34 secs

180

A.5 UIO and Remap-Range Memory Utilisation

A.5 UIO and Remap-Range Memory Utilisation

Capture of the kernel uio.ko and remap-range.ko modules loaded on the BEE2.

Note that the machine states ML300 but the actual hardware running the com-

mands is the BEE2. The reason is that the ML300 is the ancestor reference platform

to the BEE2 design and some of the Linux driver code still refers to the ML300 in

some areas of the kernel (and there is little incentive to modify it).

cat /proc/cpuinfo

processor : 0

cpu : Virtex-II Pro

clock : 300MHz

revision : 8.160 (pvr 2001 08a0)

bogomips : 297.98

machine : Xilinx ML300

plb bus clock : 100MHz

./lsuio

uio0: name=UIO-Remapper, version=0.0.1, events=0

map[0]: addr=0x40600000, size=16

lsmod

Module Size Used by Not tainted

remap_range 4328 0

selectmap 9580 0

uio 13720 1 remap_range

ls -l uio.ko remap-range.ko

-rw-r--r-- 1 root root 113808 Mar 22 2008 remap-range.ko

-rw-r--r-- 1 root root 146895 Mar 22 2008 uio.ko

uname -a

Linux bee2 2.6.24-rc5-xlnx-jsc-xlnx-nfs-g669cb9c0

#9 Thu Jan 24 12:49:33 EST 2008 ppc unknown

181

Bibliography

[1] P. Dorsey, “Xilinx stacked silicon interconnect technology delivers breakthrough fpga capac-

ity, bandwidth, and power efficiency,” tech. rep., Xilinx, Oct. 2010. Accessed Jan 31, 2011.

[2] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-end reconfigurable computing

system,” IEEE Design & Test of Computers, vol. 22, pp. 114–125, Mar./Apr. 2005.

[3] B. Goertzel, “Human-level artificial general intelligence and the possibility of a technological

singularity: A reaction to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique

of Kurzweil,” Artificial Intelligence, vol. 171, no. 18, pp. 1161 – 1173, 2007. Special Review

Issue.

[4] R. Gronheid, G. Vandenberghe, K. Ronse, E. Hendrickx, V. Wiaux, A.-M. Goethals, P. Jansen,

M. Maenhoudt, and R. Jonckheere, “Lithography options for the 32 nm half pitch node and

beyond,” IEEE Transactions on Circuits and Systems, vol. 56, pp. 1884–1891, Aug 2009.

[5] L. Scheffer, L. Lavagno, and G. Martin, Electronic Design Automation for Integrated Circuits

Handbook. Taylor & Francis, 2006.

[6] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,

April 1965.

[7] H. Foster, A. Krolnik, and D. Lacey,Assertion-based design. Kluwer Academic Pub, second ed.,

2004.

[8] D. Josephson and B. Gottlieb, “The crazy mixed up world of silicon debug,” in Proceedings of

the IEEE Custom Integrated Circuits Conference, pp. 665 – 670, oct 2004.

[9] G. Van Rootselaar and B. Vermeulen, “Silicon debug: scan chains alone are not enough,” in

International Test Conference Proceedings, pp. 892–902, Sept. 1999.

[10] D. Agans, Debugging: the 9 indispensable rules for finding even the most elusive software and hard-

ware problems. Amacom Books, 2002.

183

Bibliography

[11] M. Boule, J.-S. Chenard, and Z. Zilic, “Adding debug enhancements to assertion checkers
for hardware emulation and silicon debug,” in International Conference on Computer Design,

pp. 294–299, Oct 2006.

[12] M. Boule, J.-S. Chenard, and Z. Zilic, “Debug enhancements in assertion-checker generation,”

IET Computers & Digital Techniques, vol. 1, pp. 669–677, nov 2007.

[13] M. Boule, J.-S. Chenard, and Z. Zilic, “Assertion checkers in verification, silicon debug and
in-field diagnosis,” in International Symposium on Quality Electronic Design, pp. 613–620, mar

2007.

[14] J.-S. Chenard and Z. Zilic, “Efficient memory mapping of hardware assertion and sequence

checkers for on-line monitoring and debug,” Under submission, 2011.

[15] S. Bourduas, J.-S. Chenard, and Z. Zilic, “A RTL-level analysis of a hierarchical ring inter-

connect for Network-on-Chip multi-processors,” in Proceedings of the International SoC Design

Conference, October 2006.

[16] J.-S. Chenard, S. Bourduas, N. Azuelos, M. Boule, and Z. Zilic, “Hardware assertion checkers

in on-line detection of faults in a hierarchical-ring network-on-chip,” inWorkshop on Diagnos-

tic Services in Network-on-Chips, pp. 371–375, DATE, Apr. 2007.

[17] S. Bourduas, J.-S. Chenard, and Z. Zilic, “A quality-driven design approach for NoCs,” IEEE

Design & Test of Computers, vol. 25, pp. 416–428, Sept-Oct 2008.

[18] J.-S. Chenard, “Application note: Configuring, building and running linux 2.6 on the bee2

with the busybox user environment,” tech. rep., CMC Microsystems, June 2009.

[19] J.-S. Chenard, “Application note: Extending the flexibility of bee2 by using u-boot to load the

linux kernel via ethernet,” tech. rep., CMC Microsystems, Mar. 2010.

[20] J.-S. Chenard, “Application note: Using linux userspace i/o for rapid hardware driver devel-
opment,” tech. rep., CMC Microsystems, Feb. 2011.

[21] D. P. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly, 3rd ed., Nov. 2005.

[22] K. Yaghmour, Building Embedded Linux Systems. O’Reilly, 1st ed., Apr. 2003.

[23] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers. O’Reilly, 3rd ed., Feb.

2005.

[24] C. Hallinan, Embedded Linux Primer: A Practical Real-World Approach. Prentice Hall PTR,
1st ed., Sept. 2006.

184

Bibliography

[25] M. W. Chiang, Z. Zilic, K. Radecka, and J.-S. Chenard, “Architectures of increased availabil-
ity wireless sensor network nodes,” in Proceedings of the 2004 International Test Conference,

pp. 1232 – 1241, oct. 2004.

[26] J.-S. Chenard, Z. Zilic, C. Y. Chu, and M. Popovic, “Design methodology for wireless nodes

with printed antennas,” in Proceedings of the 42nd Design Automation Conference, pp. 291 – 296,
june 2005.

[27] J.-S. Chenard, Z. Zilic, and M. Prokic, “A laboratory setup and teaching methodology for

wireless and mobile embedded systems,” IEEE Transactions on Education, vol. 51, pp. 378
–384, aug. 2008.

[28] B. Vermeulen, N. Stollon, R. Kuhnis, G. Swoboda, and J. Rearick, “Overview of debug stan-

dardization activities,” IEEE Design & Test of Computers, vol. 25, pp. 258–267, May-June 2008.

[29] NVidia Corporation, NVIDIA CUDA C Programming Guide, 2010 (accessed March 1, 2011).

http://www.nvidia.com/object/cuda_home_new.html.

[30] V. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and E. E, “ATTILA: a cycle-level execution-

driven simulator for modern GPU architectures,” in Performance Analysis of Systems and Soft-

ware, 2006 IEEE International Symposium on, pp. 231 – 241, 2006.

[31] S.-T. Shen, S.-Y. Lee, and C.-H. Chen, “Full system simulation with QEMU: An approach to

multi-view 3D GPU design,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE Inter-

national Symposium on, pp. 3877 – 3880, June 2010.

[32] Q. Hou, K. Zhou, and B. Guo, “Debugging GPU stream programs through automatic

dataflow recording and visualization,” ACM Trans. Graph., vol. 28, pp. 153:1–153:11, Decem-

ber 2009.

[33] A. Ho, S. Hand, and T. Harris, “Pdb: pervasive debugging with xen,” in Proceedings of the

Fifth IEEE/ACM International Workshop on Grid Computing, pp. 260 – 265, nov. 2004.

[34] E. Borghei, R. Azmi, and A. Ghahremanian, “Improving driver reliability through inlined

reference monitor based on virtualization,” in IEEE International Conference on Intelligent Com-

puting and Intelligent Systems, vol. 3, pp. 324 – 328, oct. 2010.

[35] G. De Micheli and L. Benini, Networks on Chips: Technology and Tools. Morgan Kaufmann,

2006.

[36] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnection networks,” in

Proceedings of the Design Automation Conference, 2001.

185

http://www.nvidia.com/object/cuda_home_new.html

Bibliography

[37] L. Benini and G. D. Micheli, “Networks on chips: a new SoC paradigm,” IEEE Computer,
vol. 35, Jan. 2002.

[38] I. S. 1850-2005, IEEE Standard for Property Specification Language (PSL). New York, NY, USA:
Institute of Electrial and Electronic Engineers, Inc., 2005.

[39] R. Beers, “Pre-rtl formal verification: An intel experience,” in Design Automation Conference,

2008. DAC 2008. 45th ACM/IEEE, pp. 806–811, 2008.

[40] M. Vardi, “Formal techniques for systemc verification; position paper,” in Design Automation

Conference, 2007. DAC ’07. 44th ACM/IEEE, pp. 188–192, 2007.

[41] M. Keating and P. Bricaud, Reuse MethodologyManual for System-on-a-chip Designs: For System-

on-a-chip Designs. Springer, 2002.

[42] ARM Ltd., ARM AMBA Documentation, 2011 (accessed March 31, 2011). http://

infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/

index.html.

[43] Opencores,WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores,

2011 (accessed March 1, 2011). http://cdn.opencores.org/downloads/wbspec_b4.

pdf.

[44] SystemC Version 2.0 User’s Guide —Update for SystemC 2.0.1, 2010. Available at http://www.

systemc.org.

[45] M. Smirnov and A. Takach, “A SystemC superset for high-level synthesis,” in Forum on Spec-

ification Design Languages, pp. 1 –6, Sept. 2009.

[46] P. Coussy, D. Gajski, M. Meredith, and A. Takach, “An introduction to high-level synthesis,”

IEEE Design Test of Computers, vol. 26, no. 4, pp. 8 –17, 2009.

[47] P. Coussy and A. Morawiec, GAUT: A High-Level Synthesis Tool for DSP Applications From C

Algorithm to RTL Architecture. Springer, 2008.

[48] Functional specification for SystemC 2.0, 2010. Available at http://www.systemc.org.

[49] C. Montemayor, M. Sullivan, J.-T. Yen, P. Wilson, and R. Evers, “Multiprocessor design ver-

ification for the PowerPC 620 microprocessor,” in IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pp. 188–195, Oct 1995.

[50] Y.-M. Kuo, C.-H. Lin, C.-Y. Wang, S.-C. Chang, and P.-H. Ho, “Intelligent random vector

generator based on probability analysis of circuit structure,” in International Symposium on

Quality Electronic Design, pp. 344–349, March 2007.

186

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.systemc.org
http://www.systemc.org
http://www.systemc.org

Bibliography

[51] K. Shimizu and D. Dill, “Deriving a simulation input generator and a coverage metric from
a formal specification,” in Proceedings of the Design Automation Conference, pp. 801–806, 2002.

[52] J. Tong, M. Boule, and Z. Zilic, “Airwolf-TG: A test generator for assertion-based dynamic
verification,” in IEEE International High Level Design Validation and Test Workshop, pp. 106 –

113, nov. 2009.

[53] C. Y. Lin, S. Cao, J. An, F. Han, and Q. Fan, “A network based functional verification method
of IEEE 1394a PHY core,” in IEEE Computer Society Annual Symposium on VLSI, pp. 245–250,

April 2008.

[54] F. Vitullo, S. Saponara, E. Petri, M. Casula, L. Fanucci, G. Maruccia, R. Locatelli, and M. Cop-

pola, “A reusable coverage-driven verification environment for network-on-chip communi-

cation in embedded system platforms,” in Workshop on Intelligent solutions in Embedded Sys-

tems, pp. 71–77, June 2009.

[55] A. Piziali, Functional verification coverage measurement and analysis. Springer, 2004.

[56] A. Pnueli, “The temporal logic of programs,” inAnnual Symposium on Foundations of Computer

Science, pp. 46–57, Nov 1977.

[57] B. Turumella and M. Sharma, “Assertion-based verification of a 32 thread SPARC CMT mi-

croprocessor,” inDesign Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp. 256–261,

2008.

[58] S. Hessabi, A. Gharehbaghi, B. Yaran, and M. Goudarzi, “Integrating assertion-based verifi-

cation into system-level synthesis methodology,” in Proceedings of the 16th International Con-

ference on Microelectronics, pp. 232–235, 2004.

[59] A. Gharehbaghi, M. Babagoli, and S. Hessabi, “Assertion-based debug infrastructure for SoC

designs,” in Internatonal Conference on Microelectronics, pp. 137 –140, 2007.

[60] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, “A recon-

figurable design-for-debug infrastructure for SoCs,” in Proceedings of the Design Automation

Conference, (New York, NY, USA), pp. 7–12, ACM, 2006.

[61] I. H. R. Laboratory, “FoCs formal verification,” Feb. 2010. https://www.research.ibm.

com/haifa/projects/verification/focs/.

[62] M. Boule and Z. Zilic, “Efficient Automata-Based Assertion-Checker Synthesis of PSL Prop-

erties,” in Proceedings of the IEEE International High Level Design Validation and Test Workshop,

pp. 69–76, 2006.

187

https://www.research.ibm.com/haifa/projects/verification/focs/
https://www.research.ibm.com/haifa/projects/verification/focs/

Bibliography

[63] M. Boule and Z. Zilic, “Efficient Automata-Based Assertion-Checker Synthesis of SEREs for
Hardware Emulation,” in Proceedings of the 12th Asia and South Pacific Design Automation Con-

ference, pp. 324–329, IEEE Computer Society, 2007.

[64] W. de Boer and B. Vermeulen, “Silicon debug: avoid needles respins,” in Electronics Manu-

facturing Technology Symposium, 2004. IEEE/CPMT/SEMI 29th International, pp. 277–281, July
2004.

[65] K. Goossens, B. Vermeulen, and A. Nejad, “A high-level debug environment for

communication-centric debug,” in Design, Automation and Test in Europe, pp. 202–207, April
2009.

[66] J. Geuzebroek and B. Vermeulen, “Integration of Hardware Assertions in Systems-on-Chip,”

in IEEE International Test Conference, ITC Proceedings, pp. 412–421, 2008.

[67] B. Vermeulen, “Design-for-debug to address next-generation SoC debug concerns,” in Test

Conference, ITC 2007. IEEE International, p. 1, Oct. 2007.

[68] E. Larsson, B. Vermeulen, and K. Goossens, “A distributed architecture to check global prop-

erties for post-silicon debug,” in Test Symposium (ETS), 2010 15th IEEE European, pp. 182 –187,

May 2010.

[69] S. Goel and B. Vermeulen, “Data invalidation analysis for scan-based debug on multiple-

clock system chips,” in European Test Workshop, 2002. Proceedings. The Seventh IEEE, pp. 61–66,

Nov. 2002.

[70] C. Pyron, R. Bangalore, D. Belete, J. Goertz, A. Razdan, and D. Younger, “Silicon symptoms

to solutions: applying design for debug techniques,” in Test Conference, 2002. Proceedings.

International, pp. 664 – 672, 2002.

[71] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging parallel programs with instant replay,”

IEEE Trans. Computers, vol. 36, no. 4, pp. 471–482, 1987.

[72] B. Peischl and F. Wotawa, “Error traces in model-based debugging of hardware description

languages,” in Proceedings of the International Symposium on Automated Analysis-driven Debug-

ging, pp. 43–48, 2005.

[73] Y.-C. Hsu, B. Tabbara, Y.-A. Chen, and F. Tsai, “Advanced techniques for rtl debugging,” in

Proceedings of the Design Automation Conference, (New York, NY, USA), pp. 362–367, ACM,
2003.

[74] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibility enhancement for silicon debug,” in

Proceedings of the Design Automation Conference, (New York, NY, USA), pp. 13–18, ACM, 2006.

188

Bibliography

[75] H. Yi, S. Park, and S. Kundu, “A design-for-debug (dfd) for noc-based soc debugging via
noc,” in Asian Test Symposium, 2008. ATS ’08. 17th, pp. 289–294, Nov. 2008.

[76] A. Gharehbaghi, M. Babagoli, and S. Hessabi, “Assertion-based debug infrastructure for soc

designs,” in Microelectronics, 2007. ICM 2007. Internatonal Conference on, pp. 137 –140, Dec.
2007.

[77] B. Quinton and S. Wilton, “Programmable logic core enhancements for high-speed on-chip
interfaces,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17, pp. 1334

–1339, sept. 2009.

[78] N. Nicolici and H. F. Ko, “Design-for-debug for post-silicon validation: Can high-level de-
scriptions help?,” in High Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE

International, pp. 172–175, Nov. 2009.

[79] H. F. Ko and N. Nicolici, “Combining scan and trace buffers for enhancing real-time observ-

ability in post-silicon debugging,” in Test Symposium (ETS), 2010 15th IEEE European, pp. 62 –

67, may 2010.

[80] M. Gao and K.-T. Cheng, “A case study of time-multiplexed assertion checking for post-

silicon debugging,” in High Level Design Validation and Test Workshop (HLDVT), 2010 IEEE

International, pp. 90 –96, June 2010.

[81] V. Raghunathan, M. B. Srivastava, and R. K. Gupta, “A survey of techniques for energy ef-

ficient on-chip communication,” in Design Automation Conference, 2003. Proceedings, pp. 900–

905, June 2–6, 2003.

[82] C. A. Zeferino, M. E. Kreutz, L. Carro, and A. A. Susin, “A study on communication issues for

systems-on-chip,” in Integrated Circuits and Systems Design, 2002. Proceedings. 15th Symposium

on, pp. 121–126, 2002.

[83] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of network-on-chip,”

ACM Computing Surveys, vol. 38, no. 1, 2006.

[84] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched interconnec-
tions,” in Proc. of DATE, pp. 250–256, ACM Press, 2000.

[85] A.M. Amory, K. Goosens, E. J. Marinissen, M. Lubaszewski, and F.Moraes, “Wrapper Design

for the Reuse of a Bus, Network-on-chip, or Other Functional Interconnect as Test Access

Mechanism,” IET Computers and Digital Techniques, vol. 1, no. 3, pp. 197–206, 2007.

[86] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock rate versus IPC: the end of the

road for conventional microarchitectures,” in Proceedings of the 27th International Symposium

on Computer Architecture, pp. 248–259, 2000.

189

Bibliography

[87] C. Nicopoulos, V. Narayanan, and C. R. Das, Network-on-Chip Architectures: A Holistic Design

Exploration (Lecture Notes in Electrical Engineering). Springer, Oct. 2009.

[88] E. Salminen, A. Kulmala, and T. D. Hämäläinen, “Survey of network-on-chip proposals,”
tech. rep., OCP-IP, Mar. 2008.

[89] C. Grecu, A. Ivanov, R. Pande, A. Jantsch, E. Salminen, U. Ogras, and R. Marculescu, “To-

wards open network-on-chip benchmarks,” in Networks-on-Chip, 2007. NOCS 2007. First In-

ternational Symposium on, pp. 205–212, May 2007.

[90] N. Stollon, B. Uvacek, and G. Laurenti, “Standard debug interface socket requirements for
OCP-Compliant SoC,” tech. rep., OCP-IP Debug Working Group, 2007.

[91] S. Bourduas,Modeling, evaluation, and implementation of ring-based interconnects for network-on-

chip. PhD thesis, McGill University, 2008.

[92] B. Team, “Building BEE2: a case for high-end reconfigurable computer (HERC),” tech. rep.,

UC Berkeley, Jan. 2004. Accessed Oct 5, 2007.

[93] H. K.-H. So and R. W. Brodersen, “Improving usability of FPGA-Based reconfigurable com-

puters through operating system support,” Proceedings of 16th International Conference on Field

Programmable Logic and Applications, pp. 1–6, 2006.

[94] G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault localization for property check-

ing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,

pp. 1138 – 1149, june 2008.

[95] M. Boulé and Z. Zilic, “Incorporating Efficient Assertion Checkers into Hardware Emula-

tion,” in Proceedings of the 23rd IEEE International Conference on Computer Design (ICCD’05),

pp. 221–228, 2005.

[96] M. Boule and Z. Zilic, Generating Hardware Assertion Checkers for Hardware Verification, Emula-

tion, Post-Fabrication Debugging and On-Line Monitoring. Springer Science, 2008.

[97] Yu-Chin Hsu, B. Tabbara, Y. Chen, and F. Tsai, “Advanced techniques for RTL debugging,”

in Proceedings of the 40th Design Automation Conference (40th DAC), pp. 362–367, 2003.

[98] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibility Enhancement for Silicon Debug,” in

Proceedings of the 43rd Design Automation Conference (43rd DAC), pp. 13–18, 2006.

[99] Accellera Organization, Inc., “Property Specification Language – Reference Manual, v.1.1.”

www.eda.org/vfv/docs/PSL-v1.1.pdf, 2004.

190

www.eda.org/vfv/docs/PSL-v1.1.pdf

Bibliography

[100] M. Siegel, A. Maggiore, and C. Pichler, “Untwist your brain - efficient debugging and diag-
nosis of complex assertions,” in 46th ACM/IEEE Design Automation Conference, pp. 644 – 647,

july 2009.

[101] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient Detection of Vacuity in Temporal

Model Checking,” Formal Methods in System Design, vol. 18, no. 2, pp. 141–163, 2001.

[102] S. Ruah, D. Fisman, and S. Ben-David, “Automata Construction for On-The-Fly Model
Checking PSL Safety Simple Subset,” Tech. Rep. H-0234, IBM, 2005.

[103] M. Boulé and Z. Zilic, “Efficient Automata-Based Assertion-Checker Synthesis of SEREs for
Hardware Emulation,” in Proceedings of the 12th Asia and South Pacific Design Automation Con-

ference (ASP-DAC2007), pp. 324–329, 2007.

[104] M. Boulé and Z. Zilic, “Efficient Automata-BasedAssertion-Checker Synthesis of PSL Proper-

ties,” in Proceedings of the 2006 IEEE International High Level Design Validation and TestWorkshop

(HLDVT’06), pp. 69–76, 2006.

[105] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. San

Francisco, California: The Morgan Kaufmann Series in Computer Architecture and Design,

third ed., 2003.

[106] M. Platzner, “Reconfigurable Computer Architectures.” http://citeseer.ist.psu.

edu/490784.html.

[107] N. Abel, S. Manz, F. Grull, and U. Kebschull, “Increasing design changeability using dynamic

partial reconfiguration,” IEEE Transactions on Nuclear Science, vol. 57, pp. 602–609, Apr. 2010.

[108] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. McGraw-Hill Book Com-

pany, 1999.

[109] B. Cohen, S. Venkataramanan, and A. Kumari, Using PSL/ Sugar for Formal and Dynamic Veri-

fication. Los Angeles, California: VhdlCohen Publishing, 2004.

[110] Y. Oddos, K.Morin-Allory, and D. Borrione, “Assertion-based verification and on-line testing

in horus,” in 3rd International Design and Test Workshop, pp. 249 –254, Dec. 2008.

[111] G. Stringham, Hardware/Firmware Interface Design: Best Practices for Improving Embedded Sys-

tems Development. Newnes, 2009.

[112] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case perfor-
mance bounds for simple one-dimensional packing algorithms,” SIAM Journal on Computing,

vol. 3, no. 4, pp. 299–325, 1974.

191

http:// citeseer.ist.psu.edu/490784.html
http:// citeseer.ist.psu.edu/490784.html

Bibliography

[113] ARM Ltd., ARM CMSIS V2.00, 2011 (accessed March 31, 2011). http://www.onarm.com/
cmsis/download/.

[114] B. W. Boehm, Software Engineering Economics. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 1st ed., 1981.

[115] Y. H. Choi, W. I. Kwon, and H. N. Kim, “Code generation for linux device driver,” Interna-

tional Conference on Advanced Communication Technology, vol. 1, pp. 734–737, 2006.

[116] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, “Exploring Fault-Tolerant

Network-on-Chip Architectures,” in Proceedings of the International Conference on Dependable

Systems and Networks (DSN’06), pp. 93–104, 2006.

[117] D. Spoor and R. Chu, “Building causal models for operator aiding in a supervisory control

environment,” in Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, pp. 344–

347, 1993.

[118] M. Riley, N. Clestrom, M. Genden, and S. Sawamura, “Debug of the cell processor: Moving

the lab into silicon,” in IEEE International Test Conference, pp. 1–9, October 2006.

[119] C. Ciordas, K. Goossens, A. Rădulescu, and T. Basten, “Nocmonitoring: Impact on the design

flow,” in IEEE International Symposium on Circuits and Systems, pp. 1981–1984, 21-24May 2006.

[120] C. Ciordas, T. Basten, A. Rădulescu, and K. Goossens, “An event-based monitoring ser-

vice for networks on chip,” in ACM Transactions on Design Automation of Electronic Systems,

pp. 702–723, October 2005.

[121] É. F. Cota, M. E. Kreutz, C. A. Zeferino, L. Carro, M. Lubaszewski, and A. A. Susin, “The

impact of NoC reuse on the testing of core-based systems,” in VLSI Test Symposium, pp. 128–

133, 2003.

[122] M. Kakoee, M. Neishaburi, M. Daneshtalab, S. Safari, and Z. Navabi, “On-chip verification
of nocs using assertion processors,” in 10th Euromicro Conference on Digital System Design

Architectures, Methods and Tools, pp. 535 – 538, aug. 2007.

[123] M. H. Neishaburi and Z. Zilic, “Eravc: Enhanced reliability aware noc router,” in International

Symposium on Quality Electronic Design (ISQED), pp. 591 – 596, Mar. 2011.

[124] A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal, L. Benalycherif, R. Kami-

dem, and Y. Lahbib, “Combining system level modeling with assertion based verification,”

in Quality of Electronic Design, 2005. ISQED 2005. Sixth International Symposium on, pp. 310 –

315, march 2005.

192

http://www.onarm.com/cmsis/download/
http://www.onarm.com/cmsis/download/

Bibliography

[125] S. Wilton and R. Saleh, “Programmable logic ip cores in soc design: opportunities and chal-
lenges,” in IEEE Conference on Custom Integrated Circuits, pp. 63 – 66, 2001.

[126] Artisan Components Inc., Sunnyvale, California, USA, TSMC 0.18µm Process 1.8-Volt SAGE-

X Standard Cell Library Databook.

[127] M. Velev, “Integrating formal verification into an advanced computer architecture course,”

IEEE Transactions on Education, vol. 48, p. 216, May 2005.

[128] M. Radu and S. Sexton, “Integrating extensive functional verification into digital design ed-

ucation,” IEEE Transactions on Education, vol. 51, pp. 385 – 393, Aug. 2008.

[129] S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, and C. Zander, “Debugging from

the student perspective,” IEEE Transactions on Education, vol. 53, p. 390, Sept. 2009.

[130] P. Nagvajara and B. Taskin, “Design-for-debug: A vital aspect in education,” in Microelec-

tronic Systems Education, 2007. MSE ’07. IEEE International Conference on, pp. 65 –66, June

2007.

[131] R. Lencevicius, Advanced Debugging Methods. Kluwer Academic Publishers, 2000.

[132] M. Neishaburi and Z. Zilic, “Enabling efficient post-silicon debug by clustering of hardware-

assertions,” in Design, Automation Test in Europe Conference Exhibition (DATE), pp. 985 – 988,

march 2010.

[133] M. Neishaburi and Z. Zilic, “Hierarchical trigger generation for post-silicon debugging,” in

VLSI Design, Automation and Test (VLSI-DAT), 2011 International Symposium on, pp. 1 –4, april

2011.

[134] M. Neishaburi and Z. Zilic, “A fault tolerant hierarchical network on chip router,” in Proceed-

ings of IEEE International Symposium on Defect and Fault Tolerance, pp. 120–128, Oct. 2011.

[135] M. Neishaburi and Z. Zilic, “Debug-aware axi-based network interface,” in Proceedings of

IEEE International Symposium on Defect and Fault Tolerance, pp. 399–407, Oct. 2011.

[136] M. Neishaburi and Z. Zilic, “Hierarchical embedded logic analyzer for accurate root-cause
analysis,” in Proceedings of IEEE International Symposium on Defect and Fault Tolerance, pp. 445–

453, Oct. 2011.

193

Glossary

ABV

assertion-based verification. 50, 67, 70, 167

ALU

arithmetic and logical unit. 30

AMBA

advanced microcontroller bus architecture. 42

API

application programming interface. 124, 129

ASIC

application specific integrated circuit. 3, 5, 26–28, 40–42, 68, 138, 155, 156

BFM

bus functional model. 44, 45, 48, 98

CPU

central processing unit. 6, 12, 27, 29–31, 40, 57, 63, 97–100, 103, 109, 111, 124, 125, 137, 140,

142, 145, 157, 171

DfD

design for debug. 23, 52–54, 59, 70

DUV

device under verification. 43–50, 69

EDA

electronic design automation. 1, 3, 7, 59

ESL

electronic system level. 152, 161

195

Glossary

FPGA

field programmable gate array. 3, 26–28, 35, 40–42, 50, 64, 70, 74, 80, 84, 89, 101, 124, 125, 155,

156

GPU

graphic processing unit. 29, 30, 35

HDL

high-level description language. 37–39, 52, 53

IC

integrated circuit. 5, 6, 8, 23, 35, 37, 40, 44, 46, 56, 99, 102, 107, 125, 139, 167

IP

intellectual property. 3, 5, 7, 26, 42, 43, 45, 48, 70, 131

IRI

inter-ring interface. 141

LUT

look-up table. 42, 89

MMU

memory management unit. 132

NoC

network-on-chip. 6, 9, 14, 17, 23, 33, 34, 42, 48, 49, 52, 53, 58–61, 63, 64, 69, 101, 118, 123, 124,

126, 137–139, 141, 142, 144–150, 152, 156–163, 165, 166

OS

operating system. 31, 100, 124–127

PE

proccessing element. 140

PSL

property specification language. 35, 38, 48, 69, 72, 98, 104, 105, 107, 142, 152, 161, 171

QoD

quality of design. 138

RAM

random access memory. 100

196

Glossary

RI

ring interface. 140, 145

RTL

register transfer level. 17, 39, 41, 43, 44, 50–53, 61, 63, 67, 111, 155, 156, 162

SoC

System-on-a-Chip. 6, 7, 23, 42, 53, 54, 100, 101, 111, 117, 124, 125, 150, 156, 166

SVA

system verilog assertions. 38

TMD

test, monitoring and debug. 150, 153–159, 162, 166

UIO

User space I/O. 125, 127–129, 132, 133, 135

197

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Semiconductor Manufacturing Process
	Debugging Process
	Debugging of future digital systems
	A Systematic Approach to Design for Debugging
	Properties of Debuggable Systems
	Thesis Contributions
	Self-Citations
	Earlier Work on Debug and Systems

	Thesis Organization

	Background and Related Work
	Complexity Trends in Digital Systems
	The ``Simple'' Hardware Systems
	Programmable Logic and Reprogrammable Systems-on-Chip
	Graphic Processing Unit Programming
	Computers and Virtualization
	Multi-core System-on-Chip and Network-on-Chip Evolution

	Terminology
	Modern Digital Verification Methodology
	Black Box and White Box Verification
	Structure of a Verification Environment
	Verification Classes
	Constrained Random-Based Verification
	Golden Reference Model and Predictor
	Measuring Coverage of the Verification

	Assertions and Temporal Logic in Verification
	Design for Debugging
	Follow-up work on Time-multiplexing of Assertion Checkers
	Design-for-Debug in Network-On-Chip

	Chronological Work Overview
	NoC Research Work
	NoC Topology Consideration for Physical Implementation
	The Need for Hardware-Based Monitoring Points
	The Difficulty of Integrating Large Systems

	Checkers as Dynamic Assistants to Silicon Debug
	Benefits to Designers
	Assertion Checkers Enhancements for In-Silicon Debugging
	Antecedent and Activity Monitoring
	Assertion Dependency Graphs
	Assertion Completion Mode
	Assertion Activity and Coverage
	Hardware Assertion Threading
	Assertion Threading – CPU Execution Pipeline Debug Scenario

	Temporal Multiplexing of Checkers
	Assertion Checker Partitioning Algorithm

	Experimental Results
	Signaling Assertion Completion
	Activity Monitoring
	Hardware Assertion Threading
	Checkers Partitioning

	Chapter Summary

	Memory Mapping of Hardware Checkers
	Need for Automation
	Memory Mapping Concepts
	General Overview
	Volatile Registers

	Wishbone Interconnect
	Other Interconnects

	Register File Structure
	Tool Flow
	Phase 1: Source File Processing
	Implicit Checker Control Structures

	Phase 2: Checker Grouping
	Clear-on-read for Software-Based Counters
	Atomic access of large counters

	Phase 3: Register Map Generation
	Phase 4: RTL Generation
	RTL Language Selection
	HDL Classes
	Register Classes
	Checker Classes
	Register Decoder Class
	Firmware Driver Header File Generation

	Bitfield Packing Algorithm
	Experimental Results
	Algorithm Execution Time
	Register Usage
	Unused Bits in Registers

	Operating System Integration
	Kernel Space and User Space
	Prototyping Environment
	UIO Kernel Module Details
	UIO Driver structure
	UIO Operation and Register File Access
	UIO Module Versus Full Physical Memory Access
	Software Interface to UIO

	Estimating the development effort saved by using UIO
	Limitations of UIO

	Chapter Summary

	Integration of Checkers in a NoC
	Overview
	An Overview of Networks-on-Chip
	Debugging Network-on-Chip

	Experimental Context
	Distributed Hardware Checkers
	Processor Control of Checkers
	Flit Tracer
	Distributed Flow Control Monitor

	Propagation of Assertion Failures
	Assertion Flit Generation Mechanism

	Quality-driven Design Flow
	Major Considerations
	The Test, Monitoring and Debug Flow
	Integration in System Design Flows
	Design Space Exploration
	Quantifying Quality
	The Cost of Quality
	Optimizing Quality vs. Cost
	FPGA Emulation in Quality-driven Architecture Exploration
	Networking and Quality of Service
	Other Networking Considerations
	Quality Comparison
	Quality of Verification
	Quality of TMD Infrastructure
	Quality of NoC Architecture

	Hardware Resources and Quality
	Comparing Quality/Cost Ratios

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Software Debugging and Data Integrity Checking
	High-throughput Pattern Matching
	Assertion Clustering and Trigger Units

	Appendices
	Examples from the BEE2
	UIO Range Remapping Kernel Module
	UIO Register Access in Python
	BEE2 Boot Log
	BEE2 Control FPGA Device Utilisation
	UIO and Remap-Range Memory Utilisation

	Bibliography
	Glossary

