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ABSTRACT 

 

The need for rapid and inexpensive techniques for soil quality determination has led to the 

investigation of modern technologies. Infrared spectroscopy in the near-infrared region has been 

traditionally used, while the mid-infrared region (4000 – 400 cm-1) has been less studied. In this 

research, the feasibility of employing attenuated total reflectance-Fourier transform mid-infrared 

(ATR-FTIR) spectroscopy in soil quality determination was studied. The soil quality of 278 soil 

samples from four Canadian provinces was evaluated by measurement of 10 selected soil 

properties: total carbon (TC), total nitrogen (TN), carbon-to-nitrogen ratio (C/N), ammonium 

(NH4
+), nitrate (NO3

-), sand, silt, clay, N uptake, and yield. Partial least-squares regression 

(PLSR) was used to build calibration models for the prediction of these properties from ATR-

FTIR spectra of soils. Based on evaluation of the coefficient of determination (r2) and the 

residual; predictive deviation (RPD), it was found that the models for TC, TN, C/N, sand, silt, 

and clay showed very reliable performance (r2 ˃ 0.90, RPD ˃ 2.00). Similar results were found 

when the same set of samples were analyzed using diffuse reflectance infrared Fourier transform 

near-infrared (DRIFT-NIR) spectroscopy. Comparison of the prediction results obtained by 

ATR- FTIR and DRIFT-NIR spectroscopy demonstrated that the ATR-FTIR models showed 

better prediction accuracy than the DRIFT-NIR models, with an RPD increment between 12% 

and 36%. This result indicates that ATR-FTIR spectroscopy coupled with PLSR has the potential 

to model and predict certain important soil properties and therefore may assist in achieving large-

scale precision farming.  

In the second part of the research, the target of study moved from agricultural soils to bitumen-

contaminated tailing soils, where the content and quality of bitumen residues in a tailings 

remediation process were determined by FTIR spectroscopy. The application of ATR-FTIR and 

DRIFT-NIR spectroscopy as rapid tools for determination of bitumen residues in tailings and 

remediated tailings was investigated. In this work, bitumen residues were directly determined in 

neat samples without any chemical separations or extractions. ATR-FTIR spectroscopy coupled 

with PLSR yielded the best calibration, with a r2 of 0.99 and a 1.76 wt% RMSEC over the 

bitumen range between 0.70 and 40.70 wt%. These methods were reproducible with an average 

0.91 wt% difference among triplicate analyses. The classification of unremediated and 
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remediated tailing soils by principal component analysis (PCA) of their ATR-FTIR spectra was 

investigated. Soils were successfully classified according to their level of bitumen content, but 

classification based on discrimination between unremediated and remediated soils was not 

successful. This result implied the lack of a direct relationship between bitumen content and the 

remediation process, which was attributed to the variable bitumen content of the feedstocks and 

the use of an un-optimized remediation process. Therefore, the on-line FTIR-PCA classification 

as well as the FTIR-PLS quantification is necessary for feedstock categorization based on 

bitumen level in order to optimize the remediation process and for subsequent evaluation of the 

remediation process to ensure the remediation goal has been met. In an extension of this work, 

the use of the green solvent 2-methyltetrahydrofuran (2-MeTHF) for extraction of bitumen from 

tailing soils was evaluated. Based on gravimetric determination of the bitumen recovery yield, it 

was found that 89 wt% of the total bitumen was recovered by a room-temperature single-stage 2-

MeTHF extraction, which was 9% and 14% higher than the recovery obtained with the 

traditionally used organic solvents toluene and dichloromethane (DCM) under the same 

conditions. The quality of the bitumen extracted by the three solvents was analyzed by FTIR 

spectroscopy, which indicated that less migration of clay minerals into the bitumen product 

occurred during extraction with 2-MeTHF. However, under the elevated-temperature conditions 

of Soxhlet extraction, protonation, ring-opening and polymerization reactions of 2-MeTHF were 

postulated to form oil-like products, which were detected in the FTIR spectrum of the extracted 

bitumen as well as by atmospheric-pressure chemical ionization mass spectroscopy (APCI-MS). 

These results indicate that 2-MeTHF has potential to serve as a bitumen extraction solvent, 

providing a higher recovery yield and better product quality than toluene and DCM. 

Nevertheless, high-temperature conditions should be avoided in the extraction and solvent 

recovery processes to prevent polymerization reactions.  
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RÉSUMÉ 

 

La nMcessitéessitd be avoided in the extraction and pour la détermination de la qualittides sols a 

excité xcitétude des technologies modernes. La spectroscopie infrarouge dans le proche 

infrarouge a été beaucoup utilisée, tandis que la spectroscopie de l’infrarouge moyen (4000-400 

cm-1) a été moins étudiée. Dans cette étude, on a étudié la faisabilité de l'utilisation de la 

spectroscopie moyen infrarouge à transformée de Fourier à réflexion totale atténuée (ATR-FTIR) 

dans la détermination de la  qualité du sol. La  qualité du sol de 278 échantillons en provenant 

des quatre provinces canadiennes a été évaluée par mesure de 10 propriétés du sol sélectionnées: 

Le carbone total (TC), l'azote total (TN), le rapport carbone-azote (C/N), l'ammonium (NH4 
+), le 

nitrate (NO3
-), le sable, le limon, l'argile, l'absorption de N et le rendement. La régression des 

moindres carrés partielle (PLSR) a été utilisée pour construire des modèles d'étalonnage pour la 

prédiction de ces propriétés à partir des spectres ATR-FTIR des sols. Sur la base de l'évaluation 

du coefficient de détermination (r2) et de l’écart prédictif résiduel (RPD), on a constaté que les 

modèles pour TC, TN, C/N, sable, limon et argile présentaient des performances très fiables (r2 ˃ 

0,90, RPD ˃ 2,00). Des résultats similaires ont été trouvés lorsque le même ensemble 

d'échantillons a été analysé en utilisant la spectroscopie de réflexion diffuse dans le proche 

infrarouge (DRIFT-NIR). La comparaison des résultats de prédiction obtenus par spectroscopie 

ATR-FTIR et DRIFT-NIR a démontré que les modèles ATR-FTIR ont montré une meilleure 

précision de prédiction que les modèles DRIFT-NIR, avec un incrément RPD entre 12% et 36%. 

Ce résultat indique que la spectroscopie ATR-FTIR combine avec PLSR a le potentiel de 

modéliser et de prédire certaines propriétés importantes du sol et peut donc aider à réaliser une 

agriculture de précision à grande échelle.  

Dans la deuxième partie de la recherche, la cible d'étude est passée des sols agricoles aux sols de 

résidus contaminés par le bitume, où la teneur et la qualité des résidus bitumineux dans un 

processus d'assainissement des résidus ont été déterminées par FTIR spectroscopie . 

L'application de la spectroscopie ATR-FTIR et DRIFT-NIR comme outils rapides pour la 

détermination des résidus bitumineux dans les résidus et les résidus traités a été étudiée. Dans 

cette étude, les résidus bitumineux ont été déterminés directement dans des échantillons purs 

sans aucune séparation ou extraction chimique. La spectroscopie ATR-FTIR combine avec PLSR 
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a donné le meilleur étalonnage, avec un r2 de 0,99 et un RMSEC de 1,76% en poids pour une 

gamme de bitume entre 0,70 et 40,70 %m. Ces méthodes étaient reproductibles avec une 

différence moyenne de 0,91%m parmi les analyses en triple. On a étudié la classification des sols 

de résidus non réadaptés et traités par l'analyse en composantes principales (PCA) de leurs 

spectres ATR-FTIR. Les sols ont été classés avec succès en fonction de leur teneur en bitume, 

mais la classification fondée sur la discrimination entre les sols non remis en état et les sols remis 

en état n'a pas été couronnée de succès. Ce résultat implique l'absence d'une relation directe entre 

la teneur en bitume et le processus d'assainissement, ce qui a été attribué à la teneur variable en 

bitume des charges d'alimentation et à l'utilisation d'un processus d'assainissement non optimisé. 

Par conséquent, la classification FTIR-PCA en ligne ainsi que la quantification FTIR-PLS sont 

nécessaires pour la catégorisation des matières premières basée sur le bitume afin d'optimiser le 

processus d'assainissement et d'évaluer ultérieurement le processus d'assainissement pour 

s'assurer que l'objectif d'assainissement a été atteint. Dans l’extension de ce travail, on a évalué 

l'utilisation du solvant vert 2-méthyltétrahydrofurane (2-MeTHF) pour l'extraction de bitume 

dans les sols de résidus. Sur la base de la détermination gravimétrique du rendement de 

récupération du bitume, on a constaté que 89%m du bitume total ont été récupérés par une 

extraction à 2-MeTHF à une étape à température ambiante, qui était de 9% et 14% supérieure à 

la récupération obtenue avec les solvants organiques traditionnellement utilisés comme toluène et 

dichlorométhane (DCM) dans les mêmes conditions. La qualité du bitume extrait par les trois 

solvants a été analysée par FTIR spectroscopie, ce qui a indiqué qu'une moindre migration de 

minéraux argileux dans le bitume produit s'est produite lors de l'extraction avec du 2-MeTHF. 

Cependant, dans les conditions de température élevée d'extraction de Soxhlet, les réactions de 

protonation, d'ouverture de cycle et de polymérisation du 2-MeTHF ont été postulées pour 

former des produits similaires à l'huile, qui ont été détectés dans le spectre FTIR du bitume 

extrait ainsi que par spectroscopie de masse à ionisation chimique à pression atmosphérique 

(APCI-MS). Ces résultats indiquent que le 2-MeTHF a le potentiel d’utiliser comme solvant 

d'extraction de bitume, fournissant un rendement de récupération plus élevé et une meilleure 

qualité du produit que le toluène et le DCM. Néanmoins, les conditions de température élevée 

doivent être évitées dans les procédés d'extraction et de récupération du solvant pour empêcher 

les réactions de polymérisation. 
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CONTRIBUTIONS TO KNOWLEDGE 

 

1. Demonstrated the utility of the attenuated total reflectance (ATR) mode of spectral acquisition 

as a means of monitoring soil quality by Fourier transform infrared (FTIR) spectroscopy. 

2. Evaluated the utility of a calibration approach based on the use of ATR-FTIR and DRIFT-NIR 

soil spectra as calibration set and partial-least-squares regression (PLS) for the development of 

FTIR and NIR methods for the prediction of 10 selected soil properties, namely, total carbon 

(TC), total nitrogen (TN), carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), nitrate (NO3

-), 

sand, silt, clay, N-uptake, and yield. 

3. Provided experimental evidence that both ATR-FTIR spectroscopy and DRIFT-NIR 

spectroscopy successfully monitor certain major soil properties, such as TC, TN, C/N, sand, silt, 

and clay. Based on the model prediction performances, ATR-FTIR spectroscopy was proved to 

better model soil quality than DRIFT-NIR spectroscopy. 

4. Developed a method for the direct determination of bitumen residues in Alberta oil sands 

tailings soils without any extraction process by ATR-FTIR spectroscopy coupled with PLS.  

5. Established a method using ATR-FTIR spectroscopy in conjunction with cluster analysis (CA) 

and principal component analysis (PCA) for the categorization of tailings soils based on bitumen 

level, which is beneficial in optimization of tailings remediation processes and in verifying that 

the remediation goal is met.   

6. Provided experimental evidence that the green solvent 2-methyltetrahydrofuran (2-MeTHF) is 

a potential alternative to the traditionally used organic solvents in bitumen solvent-extraction and 

provides higher extraction efficiency and better quality extracts than toluene and 

dichloromethane.  

7. Determined the differences between the soluble, less-soluble, and insoluble fractions of 

bitumen on a structural basis and achieved the quantification of each fraction by using ATR-

FTIR spectroscopy.  
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8. Provided experimental evidence that 2-MeTHF is reactive when heated in the presence of 

Lewis acids, forming oil-like by-products that cannot be removed from the Soxhlet-extracted 

bitumen extracts.  
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 CHAPTER 1 

 

INTRODUCTION 
 

Soil is a vital component of the natural environment that plays an important role in agriculture, 

the environment, nature protection, landscape architecture, and urban planning (Blum 1993). It is 

difficult to rate the importance of these roles, since all are vital to our well-being to some extent. 

However, its function of supporting agriculture and food production is fundamental for the 

preservation and advancement of human life (FAO and ITPS 2015). 

 

1.1. Soil Quality in Canadian Agriculture 

Agriculture is one of the most important activities of human society as food produced from 

agriculture sustains life. Soil is critical to successful agriculture, since it is the original source of 

the nutrients and supports the growth of the crops. Therefore, the quality of soil determines the 

quality and the quantity of the crops. Consequently, soil quality has become the major focus in 

farming management practices in order to produce the best and highest yield.  

However, loss of soil quality and soil degradation phenomena in Canada have been ongoing 

since the turn of last century. The main causes are erosion by wind and water, salinity, acidity, 

and improper agricultural management practices (Forge 1998). The improper farming 

management includes the use of fertilizers which are applied to compensate for the loss of 

quality but lead to poorer soil quality due to the excessive and homogenous application. Owing 

to the lack of initial nutrient information prior to fertilizer spraying activities, it is difficult for the 

farmers to apply the proper amount. In addition, the nutrient levels in soils constantly change 

over time, but these changes cannot be taken into account by the farmers due to the time-

consuming nature of traditional soil analysis, so that the amount of fertilizer sprayed does not 

match the current need. Furthermore, the homogeneous application over the whole field leads to 

sub-optimal production due to the spatial variability of many factors within the field (Schueller 

1992). Therefore, soil quality and the nutrient input should be better monitored and managed 

with a new strategy, which can provide detailed, accurate and repeatable information describing 

the levels of nutrients and their variabilities across the field in a fast and economic manner.  
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Precision agriculture (PA) is an innovative farm management strategy which was initiated in the 

early 1980s in the United States and is being rapidly adopted in many developed countries, such 

as the US, Germany, Canada, Australia, and the UK, in recent decades.  PA focuses on effective 

resource utilization through the management of spatial and temporal variability of the soil. It is 

defined as the application of information and technologies to manage spatial and temporal 

variability associated with agricultural production for the purpose of improving crop 

performance and environmental quality (Pierce and Nowak 1999). It allows farmers to better 

manage the field, reduce costs, improve yield quantity and quality, and reduce environmental 

impacts (Reichardt and Jürgens 2009).  

PA is information-intensive, as a lot of data covering the variabilities across the field is required 

to generate a reliable map, according to which treatment of the soil is tailored to each spot within 

the field. Therefore, a technique that can acquire large amounts of data in a fast, economical, and 

reproducible manner is in demand. Fourier transform infrared spectroscopy (FTIR) is a rapid, 

nondestructive, and cost-effective technique that can capture information on the chemical and 

physical characteristics of soils in seconds owing to the absorption of infrared light by a wide 

range of soil components. The information captured by FTIR spectroscopy can be used to 

develop calibration models, which can subsequently be used to monitor the initial nutrient level 

across a field, design the fertilizer spraying, and predict the crop yield.  

 

1.2. Soil Contamination in the Canadian Environment 

Soil contamination is caused by the presence of man-made chemicals or other alterations in the 

natural soil environment. The exposure of the environment to contaminated soil can cause health 

risks by direct contact or from secondary contamination of water supplies. In the Canadian 

province of Alberta, large amounts of bitumen-contaminated soils are produced by oil sands 

mining activities. As of 2015, over 895 km2 of land had been disturbed due to oil sands mining 

(Natural Resources Canada 2015). The disturbed land is required by Alberta’s Directive 074 to 

be reclaimed by filling with the mined-out soils, which are contaminated by bitumen residues 

(Alberta Oil Sands Industry 2009).  
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The mined-out soils are produced and stored in tailing ponds, which contain approximately 1.8% 

bitumen residues, 27.4% soil minerals and 70.8% wastewater (Energy Resources Conservation 

Board 2011). After removal of the water, the bitumen residues are enriched in the soils to a level 

of about 6.16%, as the bitumen is adsorbed on the soil surface or is trapped within the pores of 

the soil, and therefore cannot be removed with the water. The bitumen-concentrated soils pose 

environmental concerns and threaten wildlife if they are released back to the environment 

without a proper remediation process. According to the data provided by Environment Canada’s 

National Pollutant Release Inventory (NPRI), between 2006 and 2009, pollution by polycyclic 

aromatic hydrocarbons (PAHs) on site increased by 15.5% (Alberta Oil Sands Industry 2009).  

Considering the risks to the environment associated with the bitumen-contaminated tailing soils, 

as well the more and more severe land disruption and larger production of contaminated tailing 

soils due to the expanding mining operations, sufficient recovery of the tailing soils is necessary. 

As of 2011, there were about 130 approved primary recovery projects (Energy Resources 

Conservation Board 2011). Nevertheless, the performance of the recovery cannot be guaranteed 

without a reliable monitoring technology. With the aid of such a monitoring technology, the 

recovery of the soil can be evaluated by the determination of the bitumen residue content. In 

addition, a technology that is amenable to on-line monitoring is desirable, as real-time feedback 

benefits decision making and on-line assessment.  

FTIR spectroscopy is a fast and reliable technology that is used in a standard method for bitumen 

content determination (US Environmental Protection Agency 2007). However, in this standard 

method, solvent extraction is required prior to FTIR analysis, which has disadvantages of solvent 

and labor cost, is time-consuming, and cannot meet the need for on-line analysis (Schwartz, Ben-

Dor et al. 2012). Therefore, there is a need for an FTIR method that can determine bitumen 

residues directly in the soil matrix.  

 

1.3. Objectives of the Research 

The present research aimed at exploring the application of FTIR spectroscopy in conjunction 

with partial-least-squares regression (PLSR) for the assessment of soil quality with soils 
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collected from across Canada and for the quantification of bituminous contamination in Alberta 

oil sands tailing soils.  The specific objectives of this research were as follows: 

(1) To establish an FTIR spectral library of Canada-wide agricultural soils containing both 

mid-infrared (MIR) and near-infrared (NIR) spectra acquired using the attenuated total 

reflectance (ATR) and the diffuse reflectance infrared Fourier transform (DRIFT) 

technique, respectively.  

(2) To develop ATR-FTIR PLSR calibration models for the assessment of soil quality 

through the determination of 10 selected soil properties: total carbon (TC), total nitrogen 

(TN), carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), nitrate (NO3

-), sand, silt, clay, 

N-uptake, and yield. 

(3) To develop DRIFT-NIR PLSR models for the assessment of soil quality through the 

determination of 10 selected soil properties:  total carbon (TC), total nitrogen (TN), 

carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), nitrate (NO3

-), sand, silt, clay, N-

uptake, and yield. 

(4) To compare the performances of ATR-FTIR and DRIFT-NIR spectroscopy for the 

assessment of soil quality and for use in support of precision agriculture. 

(5) To establish an ATR-FTIR PLSR calibration model for the determination of bitumen 

residues in Alberta tailing soils. 

(6) To investigate the bitumen recovery performance of the green solvent 2-

methyltetrahydrofuran (2-MeTHF) by using ATR-FTIR and DRIFT-NIR spectroscopy. 

 

The thesis consists of seven chapters. Chapter 2 is a review of the literature related to topics and 

concepts used to undertake the research work. Chapter 3 describes the development and the 

evaluation of ATR-FTIR PLSR calibration models for 10 selected soil properties related to soil 

quality. Chapter 4 reports the development and evaluation of DRIFT-NIR PLSR calibration 

models for the same soil properties and compares the performances of the ATR-FTIR and 

DRIFT-NIR calibration models. Chapter 5 concerns the direct quantification of bitumen residues 

in Alberta tailing soils through the development of an ATR-FTIR PLSR calibration model as 

well as the categorization of the tailing soils based on their bitumen content by using ATR-FTIR 

spectroscopy coupled with principal component analysis (PCA). Finally, the evaluation the 
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bitumen recovery performance of the green solvent 2-MeTHF by ATR-FTIR spectroscopy and 

the understanding of the structural differences among different bitumen fractions, which affect 

their solubility in the solvent and therefore affect the solvent extraction performance, are 

presented in Chapter 6. An overall conclusion made in this research is provided in Chapter 7. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1. Introduction 

Soil quality determines the quality and quantity of crop yield. Soil quality assessment is routine 

in farm management and many conventional soil analytical techniques with a wet-chemical 

extraction process are used. Historically, our understanding of soil and the assessment of its 

quality has been gained through this type of analysis. However, this approach has two main 

disadvantages, soil integrity damage and low efficiency. With regard to soil integrity damage, the 

extraction process disrupts soil’s complex structure and multi-component interactions, making 

the analysis result more difficult to interpret. Moreover, the extraction requires large amounts of 

solvents, labor, and time, making the efficiency low (Rossel, Walvoort et al. 2006). These 

disadvantages of the conventional techniques became more problematic in the 1990s, when 

precision agriculture was introduced.   

Precision agriculture aims at optimizing farm management to achieve targeted crop yield while 

reducing the excess application of fertilizers. It requires precise measurement and control of the 

nutrients in soil (Mintert, Widmar et al. 2016). In order to precisely tailor the use of fertilizers, 

soils across the field should be characterized. Therefore, precision agriculture requires a soil 

analytical technique that can deal with large amounts of samples in a low-cost and efficient way. 

(Terra, Demattê et al. 2015). The disadvantages of the conventional techniques make them 

unsuitable for use in precision agriculture. Consequently, other analytical techniques need to be 

developed, such as infrared spectroscopy, which can better characterize the soil as a complete 

system and can analyze large numbers of soil samples economically and efficiently. 

Precision agriculture aims at environmental sustainability, which is a shared goal with the 

Alberta oil sands industry. Tailings produced from Alberta oil sands mining receive much 

concern due to their negative environmental impact and their vast and increasing accumulation. 

Much attention has been paid in searching new techniques which are of benefit in tailings 
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volume reduction, mature fine tailings reduction, tailings water reclamation, tailing soil 

reclamation, and bitumen residue reclamation (Alberta Oil Sands Industry 2009).  

 

2.2. Precision Agriculture  

2.2.1. Definition  

Precision agriculture (PA) is a concept initiated for site-specific crop management based on 

observing, measuring, and responding to the variability in soils or in crops, in order to optimize 

the profitability of the production and the sustainability by reducing the environmental impact 

(Zarco-Tejada, Hubbard et al. 2014). The first definition of PA came from the US House of 

Representatives (1997), which defined PA as “an integrated information- and production-based 

farming system that is designed to increase long term, site-specific and whole farm production 

efficiency, productivity and profitability while minimizing unintended impacts on wildlife and the 

environment” (Whelan and Taylor 2013).  

Site-Specific Crop Management (SSM), another commonly used term, which narrows PA’s 

philosophy down to its implementation in cropping systems, is defined by (Whelan and 

McBratney 2000) as “a form of PA whereby decisions on resource application and agronomic 

practices are improved to better match soil and crop requirements as they vary in the field”. 

Many complex definitions of PA exist, but all of them can be summarized into one simple 

description, which is “apply the right treatment in the right place at the right time” (Gebbers and 

Adamchuk 2010).  

 

2.2.2. Benefits 

The PA concept has been considered worldwide for most common crops, such as rice, cotton, 

and potato. It has seen adoption in most U.S. states and Canadian provinces, most countries of 

Western Europe, Australia and New Zealand and some Asian countries, such as Japan, Malaysia, 

and some regions of China (Robert 2002). As the main function of PA, a better decision making 

can provide a wide range of benefits. (Griffin, Lambert et al. 2005) reported an average of 68% 

profit increase due to PA based on 234 studies between 1988 and 2005. In addition to the 

increased profitability, PA can bring additional benefits due to better management practices and 
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the application of information technologies. It is able to increase crop quality, improve 

sustainability, minimize environmental impact and risk, and enhance food safety associated with 

product traceability (Robert 2002; Gebbers and Adamchuk 2010). 

 

2.2.3. Applications 

PA was initiated in the mid-1980s to improve the application of fertilizers with varying rates and 

blends as needed within fields to prevent over- or under-application by using Variable Rate 

Application (VPA) methods (Robert 2002). However, PA is more than the management of soil 

variability; it is an information technology that can be used in all areas of agriculture. Presently, 

PA has been adapted to a variety of practices. For example, PA has been able to reduce 

machinery to avoid unnecessary crop damage and soil compaction and to reduce input costs 

while increasing crop yield (Bowman 2008). In addition, in the case of fruit and vegetable 

farming, PA allows a better product grading as well monitoring of quality and safety based on 

the use of automated systems to record parameters related to product quality (Njoroge, Ninomiya 

et al. 2002). The tracking information on chemical spraying and the use of fertilizers is beneficial 

to the risk management and to the food traceability (Zarco-Tejada, Hubbard et al. 2014). The 

benefits of PA related to profitability, risk, and environmental effects, which are key concerns in 

the late 20th century, resulted in a research boost in the late 1990s (Fig. 2-1). 

 

Fig. 2-1. Cumulative number of journal publications referring to precision agriculture from 1960 

to 2006 using exact search phrase “precision” and “agriculture” 
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2.3. Soil Quality 

PA technologies are being developed to optimize farm profitability while minimizing the 

environmental impact by adjusting the production inputs, such as fertilizers and herbicides, based 

on the specific needs within the field. Among all the applications of PA, one of the first and the 

most important is the management of soil quality (Thomasson, Sui et al. 2001). Proper 

understanding of soil quality is necessary to achieve precision farming, since only after an 

accurate measurement of soil quality can the production inputs be optimized based on the 

information obtained within the field (Kim, Sudduth et al. 2009).  

 

2.3.1. Definition 

Soil quality is a commonly used concept in soil science. It is a function of soil properties, such as 

soil nutrients, moisture, minerals, organic matter and so on. The concept of soil quality or soil 

quality was defined by some researchers as “the soil’s capacity or fitness to support crop growth 

without resulting in soil degradation or otherwise harming the environment” (Acton and 

Gregorich 1995). For a simpler definition, “quality” implies the concept of “fit for purpose” 

(Dexter 2004). Soil quality is the total concept of soil physical, chemical and biological quality, 

and each of them is correlated and interdependent (Dexter 2004). Soil quality is very 

comprehensive and therefore cannot be measured directly but it can be evaluated on the basis of 

some other soil properties, such as soil nutrients, moisture, minerals, organic matter and so on 

(Bautista-Cruz, Carrillo-González et al. 2007).    

 

2.3.2. Soil Properties 

2.3.2.1. Soil Organic Matter (SOM) 

SOM is a group of complex organic compounds which come from the remains of dead 

organisms, such as plants and animals, and also their waste products released to the environment. 

These compounds are generated by the decomposition of carbohydrates, proteins, lipids, lignins, 

and cellulose by series of specific reactions (Brady and Weil 1996). Generally, organic matter 

contains 45 – 55% carbon, 35 – 45% oxygen, 3 – 5% hydrogen, and 1 – 6% nitrogen, by weight 

(Cabaniss, Madey et al. 2005).  
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In dried soil, SOM only comprises a small portion by weight, between 1 and 6% (Hesse 1971), 

but its influences on soil physical, chemical, and biological properties extend far out of 

proportion to the small quantities present. For example, SOM provides much of the cation 

exchange and water-holding capacities of surface soils; it contains large amount of nutrients 

required for plant growth and certain organic compounds found to have direct growth-

stimulation effect on plants (Brady and Weil 1996).  

 

2.3.2.1.1. Total Carbon (TC) 

The concepts of SOM and TC easily cause confusion, since all organic substances contain 

carbon. However, SOM and TC are not identical and it is improper to use SOM to describe TC. 

SOM includes all the elements that are components of organic compounds, such as carbon, 

oxygen, hydrogen, and nitrogen whereas TC is the sum of three carbon forms, organic, 

elemental, and inorganic. Elemental carbon includes coal, graphite and so on; inorganic carbon 

usually refers to carbonates, hydrogen carbonate, and carbon dioxide (Hesse 1971).   

Compared to SOM, TC is easier to measure directly. Therefore, TC is commonly measured and 

is converted to SOM by multiplying it by the conversion factor of 1.72, which assumes that SOM 

contains 58% carbon by weight. However, according to soil type, the percentage of carbon in 

SOM varies and therefore the conversion factor can be as high as 2.5, such as in the case of sub-

soils (Page 1982).  

 

2.3.2.1.2. Total Nitrogen (TN) 

Nitrogen limits plant growth more than any other element (Hesse 1971). Plants can utilize CO2 

and H2O to produce carbohydrates via photosynthesis, but they cannot produce other essential 

constituents, such as proteins, nucleic acids, enzymes, and energy transfer materials such as 

chlorophyll, ADP and ATP (adenosine di- and triphosphate), without available nitrogen. 

Although nitrogen is rich in the atmosphere, which contains 78% nitrogen, it cannot become the 

nitrogen source of plants until it is chemically combined with hydrogen, oxygen, or carbon. This 

process is called nitrogen fixation and is usually accomplished in nature by certain 

microorganisms and lightning. However, the fixed nitrogen amount is far from enough for plant 
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growth. In addition, the natural nitrogen content in soil is low, normally ranging from 0.02 to 

0.5% (Hesse 1971), and cannot meet the demands of plant growth requirement (Troeh and 

Thompson 2005).  

In most soils, nitrogen sources are in organic forms, coming from protein and other complex 

molecules, such as humic compounds (Hesse 1971). Many of them are in amine form (-NH2) and 

cannot be used by plants directly. They must be at least partially ionized to become available for 

plant uptake. “Ammonification” first happens, where the amine group is gradually decomposed 

by microbes and then absorbs the third hydrogen atom when the carbon-to-nitrogen bond breaks, 

ammonia (NH3) or ammonium cation (NH4
+) is released. Ammonia can be absorbed as a 

nitrogen source by certain plants but the types of nitrogen most efficiently utilized are nitrite 

(NO2
-) and nitrate (NO3

-). This is because the availability of the ammonium cation is lower due 

to the cation-exchange site adsorption, while nitrate ions usually freely exist in the soil solution. 

After ammonification, ammonia is further oxidized to nitrite and then nitrate. This step is called 

nitrification. Ammonification and nitrification can be called mineralization, where the organic 

form of nitrogen (-NH2) is converted to inorganic mineral forms (NH4
+ and NO3

-). Nitrite (NO2
-) 

is rarely retained in soil, since it is immediately oxidized to NO3
-, which is the end product of 

these series of reactions, and it is the form of nitrogen optimally utilized by plants (Troeh and 

Thompson 2005). 

 

2.3.2.1.3. Ratio of Carbon to Nitrogen (C/N ratio) 

Not only are carbon and nitrogen key elements of organic matter, but also their relative 

proportions are important. The C content of dry organic matter is about 44 – 45%, while the N 

percentage is much lower and varies widely from 1 to 6%. The C/N ratio varies widely between 

8/1 and 600/1 in soils, plants, and microbes. C/N ratio is very important to soil quality 

management.  It helps to determine the amount of plant-available nitrogen, the rate of organic 

decay, and the level of total organic matter (Brady and Weil 1996).  

In nature, microbes play an important role in decomposition of organic residues, which become 

the nutrient sources for crops. C/N ratio determines how well the decomposition is performed 

and therefore indicates the level of the available mineralized nitrogen in soil. Organic 
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decomposition is the way that microbes consume nutrients to build up their cells. On average, 

microbes need 8 parts of C for every part of N to build their cells. Furthermore, microbes can 

only incorporate 1/3 of total C and respire the rest as carbon dioxide (CO2) when decomposing 

the C from the organics. Therefore, the C/N ratio of the organics that satisfies the microbes most 

is 24/1. However, C/N ratios vary widely from 18/1 for alfalfa hay to 600/1 for sawdust. Those 

organic residues with C/N ratio exceeding 30/1 cannot provide enough N to the microbes, which 

will then compete with the crops for the N from the soil solution, causing the crop yield to 

decrease (Brady and Weil 1996).    

Therefore, C/N ratio is able to indicate the soil’s nutrient level in terms of plant-available N. If 

the C/N ratio is lower than 30/1, soils are rich in mineralized N which comes from the 

decomposition of organic residues. On the other hand, if the C/N ratio is higher than 30/1, soils 

are short of plant-available N, as microbes consume extra N resources apart from the organic 

residues (Troeh and Thompson 2005).  

In addition to plant-available N, C/N ratio can also indicate soil quality. Commonly, the C/N 

ratio in soil ranges from 8/1 to 15/1. If the ratio is higher than 30/1, the soils are probably under 

acidic and highly leached conditions. Therefore, proper soil management practices are required, 

such as changing the soil’s pH by addition of lime to make it more suitable for farming. 

Furthermore, the C/N ratio can be used as a parameter when selecting a fertilizer. The proper 

fertilizer can regulate the C/N ratio of soil to make the nutrients more balanced for the crops. The 

selected fertilizer must provide sufficient N; otherwise, the crops will suffer from N deficiency 

or oversupply, leading to weak crops, low-quality crops or disease-susceptible crops (Brady and 

Weil 1996).   

 

2.3.2.2. Minerals 

About half of soil is composed of minerals (45%) and these minerals can be classified as sand, 

silt, and clay according to their particle size. The relative proportions of these three minerals 

determine soil texture, which has association with soil quality. For example, (Sorensen 1981) and 

(Ladd, Amato et al. 1985) found that organic residues decompose more rapidly in sandy soils 

than in clay soils. Soil texture has profound effects on the behavior of soils, such as water 
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holding capacity, nutrient retention and supply, nutrient leaching, and oxygen supply (Cass, 

Hansen et al. 2002).  

 

2.3.2.2.1. Sand, Silt, and Clay 

Excluding the large solids (stones and gravel), soil particles range in size from 2.0 mm to smaller 

than 0.0002 mm (0.2 𝜇𝑚) in diameter. According to the particle size, the mineral constituents of 

soils can be classified into three categories: sand, silt and clay. Sand particles (2.0 to 0.05 mm) 

are large enough to be seen by the naked eye. When rubbed between fingers, sand feels gritty 

and not sticky, since sand particles do not adhere to one another. Silt particles (0.05 to 0.002 

mm) are too small to feel individually, so it feels smooth but not sticky. Unlike sand, silt cannot 

be seen without a microscope. Clay particles are the smallest (<0.002 mm) and adhere together 

to form a sticky mass when wet. Clay particles have colloidal properties when the particle size is 

less than 0.001 mm and can only be seen under an electron microscope (Brady and Weil 1996). 

Such extremely small size provides clay with a tremendous amount of surface area per unit mass. 

Since the surfaces of clay exhibit electromagnetic charges that attract positive and negative ions 

as well as water, most of the soil physical and chemical activities occur in this fraction. Some 

general properties of these three soil particles are summarized in Table 2-1.   

 

Table 2-1. General properties of sand, silt, and clay 

 

 

Property Sand Silt Clay 

Range of particle diameters (mm) 2.0 – 0.05 0.05 – 0.002 ˂ 0.002 

Attraction of particles for each other Low Medium High 

Attraction of particles for water Low Medium High 

Ability to hold chemicals and nutrients Low Medium High 
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2.3.2.2.2. Colloidal Properties of Clay  

Clay has colloidal properties. It is the seat of soil chemical and physical activity. When particle 

size is down to 1 𝜇𝑚 (0.001 mm) in diameter, it is considered to behave as a colloid. Clay is also 

a highly reactive material due to the electrically charged surfaces. The extremely small size 

provides an enormous amount of active surface per unit mass.    

The main colloidal properties of soil are ion and water adsorption properties. Due to the chemical 

structure of clay, it normally carries negative charges and therefore mainly attracts cations, such 

as Al3+, Ca2+, Mg2+, K+, H+, and Na+. This property plays a main role in cation exchange in soil 

solution, which is important to nutrient cycling. In addition, the colloidal particles attract the 

oppositely charged end of the water molecules and hold the water in the soil (Brady and Weil 

1996). 

 

2.3.3. Determination of Soil Quality 

Monitoring soil quality receives much interest due to the increasing emphasis on precision 

farming, productive farming and sustainable farming. Therefore, certain soil properties that can 

be soil quality indicators need to be monitored to help the evaluation of the soil quality.   

 

2.3.3.1. Laboratory Methods 

Historically, conventional soil chemical and physical laboratory analyses have been used to 

understand soil, assess its quality and function, and correlate soil’s physical and chemical 

properties with individual soil components (Rossel, Walvoort et al. 2006).  In the routine 

laboratory analysis, a soil solution instead of soil itself is commonly analyzed. To obtain soil 

solution samples, a series of procedures are required, such as sample extraction, targeted 

component isolation, and targeted component concentration (Ure 1996). For example, cation 

exchangeable capacity (CEC), which is an important indicator of soil quality and nutrient 

retention capacity, is measured by atomic absorption spectroscopy after BaCl2 exchange 

reaction.   
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Some laboratory analysis methods take a relatively long time to measure each soil property. For 

example, for the study of soil texture, as measured by the Bouyoucos hydrometer, a uniform soil 

suspension is obtained by 15 min of mixing, and then the buoyant force on a hydrometer is 

determined directly by the density of the soil suspension at 40 seconds and 7 hours after mixing 

stops and sitting starts. Each sample measurement takes about 8 hours to complete (Pansu and 

Gautheyrou 2007). Some laboratory methods for analysis of soil attributes are summarized in 

Table 2-2.   

Since these conventional methods are destructive, the sample cannot be reused for other 

measurements after one analysis. Consequently, the number of required subsamples and their 

consistency, as well their representativeness of the bulk sample, need to be paid attention to by 

the analyst. However, the introduction of precision agriculture requires a more efficient, precise, 

economic, and simultaneous analysis method, and accordingly the traditional laboratory methods 

are no longer the best-suited methods for soil quality assessment (Janik, Merry et al. 1998).   

  

Table 2-2. Recommended laboratory methods for analysis of selected soil attributes            

(Hesse 1971) 

 

 

2.3.3.2. Fourier Transform Infrared (FTIR) Spectroscopy 

In precision agriculture, accurate site-specific data on the whole field are required, which 

requires that larger numbers of samples covering the variety and heterogeneity within the field  

Attribute Methods Reagents 

TC Dry combustion Copper oxide 

TN Kjeldahl digestion 
Sulfuric acid, sodium hydroxide, boric acid-indicator, 

hydrochloric acid, catalyst mixture 

NH4
+ Extraction and 

distillation 

Potassium chloride, magnesium oxide, boric acid indicator, 

hydrochloric acid 

NO3
- Extraction and 

distillation 

Potassium chloride, magnesium oxide, boric acid indicator, 

hydrochloric acid 
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should be characterized (Bramley and Janik 2005). In addition, crop yield mapping can be 

achieved since a close relationship between certain soil properties, such as electrical 

conductivity, and crop yield has been found (Lund, Colin et al. 1999; Corwin and Lesch 2003). 

Furthermore, some specific properties, such as soil nitrate, require a rapid measurement due to 

their easily leaching and denitrification nature (Kim, Sudduth et al. 2009). Consequently, PA 

requires a fast, economic, and accurate method which can handle large numbers of samples 

within the acceptable time frame. In recent years, many instruments have been invented based on 

direct contact technology (Sudduth, Hummel et al. 1997), such as FTIR and near-infrared (NIR) 

spectroscopy, which can determine soil properties in a rapid and non-destructive way (Kim, 

Sudduth et al. 2009). The research on the determination of selected soil properties by using 

direct spectroscopic measurements on soil that has been published in the last 10 years is 

summarized in Table 2-3.  

 

Table 2-3. Publications of quantitative predictions of various soil attributes using PLS statistical 

technique and spectral response in near-infrared (NIR) or visible/near-infrared (Vis/NIR) and 

mid-infrared (MIR) regions 

 

 

 

 

 

Attributes 
Spectral 

range 
Range ncali|nvali

 a rc
2 b RMSECV

 c RPD d Authors 

Total C 

(g kg-1) 

DRIFT-

MIR 
0.98-104 177|60 0.95 3.4 NA 

(McCarty, 

Reeves et al. 

2002) 

DRIFT-

MIR 
0.6-127.4 293|127 0.98 2.4 2.1 

(Minasny, 

Tranter et al. 

2009) 

DRIFT-

NIR 
0.98-104 177|60 0.86 5.4 NA 

(McCarty, 

Reeves et al. 

2002) 

DRIFT-

NIR 
5-122 228|71 0.85 17 2.6 

(Rajendram and 

Devey 2011) 
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Table 2-3.  cont. 

a ncali – number of calibration samples; nvali – number of validation samples 

b rc
2 – coefficient of determination in calibration  

c RMSECV – root-mean-square error in cross-validation  

d RPD – ratio of performance to deviation, RPD > 2, “excellent” 

 

 

Attributes 
Spectral 

range 
Range ncali|nvali

 a rc
2 b RMSECV

 c RPD d Authors 

Total N 

(g kg-1) 

DRIFT-

MIR 
0.07-4.5 252|90 0.94 0.2 2.0 

(Minasny, 

Tranter et al. 

2009) 

DRIFT-

MIR 
0.64-3.6 42|18 0.77 0.3 2.1 

(Vohland, 

Ludwig et al. 

2014) 

NIR 0.1 – 16.2 228|101 0.84 1.1 2.5 
(Rajendram and 

Devey 2011) 

NIR 0.64-3.6 42|18 0.37 0.49 1.22 

(Vohland, 

Ludwig et al. 

2014) 

Nitrate-N 

(mg kg-1) 

DRIFT-

NIR 
0-115 817|363 0.72 3.63 0.9 

(Minasny, 

Tranter et al. 

2009) 

Sand 

(g kg-1) 

ATR-FTIR 150-880 180|90 0.90 78 3.14 
(Ge, Thomasson 

et al. 2014) 

DRIFT-

NIR 
0-910 881|371 0.87 21.42 NA 

(Terra, Demattê 

et al. 2015) 

DRIFT-

NIR 
30 - 990 518|215 0.94 64.7 2.3 

(Minasny, 

Tranter et al. 

2009) 

Vis-NIR 0-910 881|371 0.85 22.16 NA 
(Terra, Demattê 

et al. 2015) 

Clay 

(g kg-1) 

ATR-FTIR 20-500 180|90 0.94 37 3.38 
(Ge, Thomasson 

et al. 2014) 

DRIFT-

NIR 
0-930 881|371 0.88 84.48 NA 

(Terra, Demattê 

et al. 2015) 

DRIFT-

NIR 
6-890 518|217 0.90 52.7 2.6 

(Minasny, 

Tranter et al. 

2009) 
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2.3.3.2.1. Near Infrared (NIR) Spectroscopy 

NIR spectroscopy was first introduced into soil science in the 1960s (Bowers and Hanks 1965). 

Nowadays, NIR spectroscopy has been successfully applied in many areas of soil science, such 

as soil biochemistry, biology, chemistry and physics. Its ability to simultaneously characterize 

and quantify various soil attributes using a single spectrum per soil sample makes this technique 

attractive for soil analysis (Rossel, Walvoort et al. 2006). Due to this feature, NIR spectroscopy 

is estimated to save at least 80% of the laboratory cost associated with conventional reference 

methods (Foley, McIlwee et al. 1998). Specifically, by using NIR spectroscopy, the expected 

reduction of analytical cost is estimated to be about 63% in Canada (Nduwamungu, Ziadi et al. 

2009).   

 

2.3.3.2.1.1. Theory 

The molecular bonds of an organic material continually vibrate at specific frequencies that are 

characteristic of the bond or the functional group. When an organic material is irradiated by an 

incident beam of light, the frequencies of the incident light that match the frequencies of the 

vibrations of its bonds are absorbed whereas other frequencies are reflected or transmitted 

(Foley, Mcllwee et al. 1998). Therefore, the spectrum of light reflected by or transmitted through 

the sample contains detailed information about the chemical composition of that sample (Shenk 

and Westerhaus 1991).    

Near-infrared radiation, with wavelengths between 750 and 2500 nm, is absorbed mainly by C – 

H, N – H, and O – H bonds, which are the primary components of organic compounds (Osborne, 

Fearn et al. 1993). However, the bands in an NIR spectrum are not sharp or distinct because they 

correspond to overtones and combinations of fundamental absorptions in the mid-infrared region. 

In addition, light scattering is another factor giving rise to the lack of distinct bands. 

Consequently, it is difficult to directly correlate sample attributes to the peaks and therefore, a 

multivariate statistical model needs to be developed to describe the relationship between NIR 

spectral absorbance and the components of interest (Foley, Mcllwee et al. 1998). 
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2.3.3.2.1.2. Applications and Limitations 

NIR spectroscopy has been widely used for determination of soil properties. There are several 

advantages associated with the use of NIR spectroscopy by comparison with mid-IR 

spectroscopy. Firstly, the optics are less expensive. In addition, in situ and on-site applications 

are possible. Moreover, minimum sample preparation is needed. Although the NIR absorption 

bands due to overtones and combinations are weak and overlapping, the rapid advancement of 

computational and multivariate modelling capabilities makes it efficient to extract relevant 

information from NIR spectra (Ge, Thomasson et al. 2014). Another point that has been 

discussed regarding the reliability of NIR soil analysis is that NIR spectroscopy is insensitive to 

quartz, a major component of most soils. However, NIR spectroscopy is well supported 

commercially, is well suited to field portability and remote sensing, and can deal with larger bulk 

soil samples. Therefore, NIR spectroscopy is still widely studied and applied in soil analysis. 

 

2.3.3.2.2. Mid Infrared (MIR) Spectroscopy 

The use of MIR spectroscopy for soil analysis has been continuously increasing. MIR 

spectroscopy in most of the early work focused on soil classification and qualification by relating 

spectral bands to soil chemical groups including organic matter (Baes and Bloom 1989; 

Niemeyer, Chen et al. 1992; Janik, Skjemstad et al. 1995) and soil minerals (Nguyen, Janik et al. 

1991). Later, when Fourier transform instruments became widely available, diffuse reflectance 

infrared Fourier transform spectroscopy (DRIFTS) was used for quantitative analysis of many 

soil properties including sand, clay, water potential, total nitrogen content, carbon content, cation 

exchange capacity (CEC) and pH (Janik, Merry et al. 1998; Rossel, Walvoort et al. 2006). More 

recently, different fractions of carbon were quantified using MIR spectroscopy (McCarty, 

Reeves et al. 2002; Bellon-Maurel and McBratney 2011). 

 

2.3.3.2.2.1. Theory 

As described previously, infrared spectroscopy is based on the vibrations of covalent bonds of a 

molecule. In the MIR region, fundamental vibrations occur where molecules transit from the 

vibrational ground state to the first excited vibrational state. The energy absorbed by part of the 
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molecule corresponds to the frequency of the vibration and is observed as a peak in an IR 

absorption spectrum. In contrast to the bands in NIR spectra, the bands due to fundamental 

absorptions observed in MIR spectra are intense and distinct (Du, Ma et al. 2015). Broadly, MIR 

spectroscopy can be classified as transmission and reflectance (internal and external) 

spectroscopy.   

 

2.3.3.2.2.2. Applications and Limitations 

The main advantage of MIR spectroscopy is that the fundamental vibrational bands are strong 

and can be distinctively associated with certain bonds or functional groups. This also becomes a 

limitation of MIR spectroscopy, where the absorption bands are usually so strong, causing band 

distortion (Ge, Thomasson et al. 2014). To address this problem, in the early research, sample 

dilution with potassium bromide (KBr) was used. However, the sample preparation is time-

consuming and the KBr dilution may cause interference due to ion exchange between the 

samples and the KBr matrix. Consequently, its application is limited in many cases, especially in 

soil analysis where large numbers of samples need to be analyzed.  

DRIFTS allowing for soil analysis without sample dilution emerged in the early 1990s, but its 

application was restricted to qualitative analysis (Nguyen, Janik et al. 1991). It is commonly 

used with non-mirror or rough surfaces where the radiation is absorbed, refracted, reflected and 

scattered in the bulk material. Due to the surface reflections, DRIFT spectra are nonlinear even 

after the linearizing transforms such as log-transform into absorbance or Kubelka-Munk 

transform using a scaling factor (Kattner, Lilek et al. 2011). This problem is partly addressed by 

applying multivariate analysis which can effectively correct this nonlinearity problem and yield 

satisfactory results, which was proved by researchers who successfully used DRIFT coupled 

with multivariate analysis to quantify various soil properties (Janik and Skjemstad 1995).  

Attenuate total reflectance (ATR) as spectroscopic sampling technique that has been widely 

applied in many fields including food, agriculture, and environmental science (Oliveira, 

Montalvão et al. 2006). The great advantage of ATR is that it requires minimum sample 

preparation. It enables samples to be examined directly in the solid or liquid state. The 

applications of ATR-FTIR spectroscopy in soil analysis mainly focus on soil identification and 
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nitrate determination, which was first reported in 2001 (Kemsley, Tapp et al. 2001). Lately, 

ATR-FTIR spectroscopy in soil analysis was further developed but still was primarily applied for 

nitrate determination (Shaviv, Kenny et al. 2003; Linker, Shmulevich et al. 2005; Jahn, Linker et 

al. 2006). ATR-FTIR spectroscopy has not received much attention in soil analysis and only a 

few publications report on the use of ATR-FTIR spectroscopy to determine other soil 

components (Ge, Thomasson et al. 2014).  

 

2.3.3.3. Multivariate Analysis 

In both NIR and MIR soil spectra, peaks overlap and cannot be directly assigned to a specific 

soil component. Furthermore, some soil properties are collinear. Therefore, using simple 

correlation to set up a relationship between the selected infrared peak intensities and the soil 

attributes is inappropriate. Pioneering work demonstrated that simple, univariate methods of 

analysis can be replaced by much more effective multivariate methods, such as principal 

components analysis (PCA) and partial least-squares (PLS) analysis (Haaland and Thomas 1988; 

Janik and Skjemstad 1995).  

 

2.3.3.3.1. PCA 

PCA is a data compression process which reduces a complex multidimensional dataset (e.g. 

spectra) into a smaller number of principal components (PCs) which reflect the underlying 

structure and still contain most of the information in the original dataset. Each PC describes part 

of the variation within the dataset in decreasing order; the first PC describes the most variation in 

the dataset and each succeeding component accounts for as much of the remaining variation as 

possible. Because the PCs are orthogonal to one another, they can be interpreted independently.  

By plotting the PCs in a two-dimensional data space, interrelationships between samples and 

variables can be examined (Yang and Mouazen 2012). 

 

2.3.3.3.2. PLSR 

PLSR is a regression extension of PCA, which connects the information in x and y variables to 

each other. PLSR is a bilinear regression modeling method where the original x variables are 
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projected onto a much smaller number of PLS components, which are commonly referred to as 

“latent variables” or “factors”. These factors are calculated according to the same mathematical 

procedures as PCs, but the data in the Y-matrix are also incorporated in the calculation. The 

regression establishes the relationship between the X-matrix (e.g. soil spectra) and the Y-matrix 

(e.g. reference data), with the aim being to predict the y variables by using the most relevant 

factors (Nieuwoudt, Prior et al. 2004). 

 

2.4. Alberta Oil Sands 

2.4.1. Definition 

Canada has the third-largest oil reserves in the world, after Saudi Arabia and Venezuela. 

According to the latest governmental report (Alberta Oil Sands Industry 2016), it is estimated 

that the total oil reserves of Canada is about 1.8 trillion barrels. The oil resources in Canada are 

called “oil sands” because the oil is very viscous and is bound to the soil minerals surrounded by 

a thin layer of water (Fig. 2-2). Oil sand is basically a mixture of bitumen, minerals, and water. 

The bitumen content is variable, averaging 12 wt% of the deposit, but ranging from zero to 18 

wt%. Water typically constitutes 3% to 6% of the mixture, increasing as bitumen content 

decreases. The mineral content, predominantly quartz, is relatively constant, ranging from 84% 

to 86 %. For a typical sand grain of 100 µm diameter, the water film thickness is believed to be 

on the order of 2 µm, and the bitumen film thickness is 5-6 µm (Friesen 1996). 

 

Fig. 2-2. Composition of oil sands 
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2.4.2. Tailings 

2.4.2.1. Formation 

Oil companies have been extracting bitumen from Alberta’s oil sands for four decades using a 

process which leaves behind large amounts of toxic sludge, namely, “tailings”. The toxic sludge 

is stored and accumulated to form lakes, which are called tailing ponds (Rezac 2010).  

The extraction process was designed based on the unique properties of oil sands, where the 

coarse sands are hydrophilic and are attached to the water film, while the bitumen is hydrophobic 

and repels wetted surfaces. Consequently, a special technique, “Hot Water Extraction Process 

(HWEP)”, which was patented in 1929, has been commercially used to extract bitumen since 

1967. The process mixes hot water heated to between 35 and 80 ℃ with crushed ore and 

additional sodium hydroxide to separate the ore into its constituent parts (Rezac 2010). Bitumen, 

which has similar density to water, floats to the top as froth via attachment to the injected air 

bubbles and is later skimmed off to achieve the recovery. The “tailings”, which are the by-

product from the extraction process, are sent to and stored in ponds constructed near the mining 

site (Clark and Pasternack 1932). 

 

2.4.2.2. Composition 

Tailings are composed mostly of water (70.8%), soil minerals (27.4%), and a small amount of 

bitumen residues, which is about 1.8% (Kessick 1977). When deposited in a tailing pond, the 

sand settles out quickly to form dykes and beaches. However, in the case of the fine materials, 

such as clays, their destiny in the tailing pond varies. Depending on the makeup of the tailings 

stream and the method of deposition, only 1/3 to 1/2 of the fine materials are retained in the 

tailings sand deposits. The majority of the fines separates during tailings sand deposition and 

becomes suspended in the water to form mature fine tailings (MFT). It is reported that about 

33% of the solids content in fluid tailings is almost all fines (Scott and Ozum 2010). 

 

2.4.2.3. Concerns 

The HWEP technique and the accompanying tailings give rise to many concerns due to their 

environmental impact. Some of these concerns are related to the huge water consumption and 
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contamination. To produce one barrel of bitumen, seven to nine barrels of water are required. 

Although only 1/3 of the water is fresh water from the Athabasca River and most of the water is 

recycled from the tailing ponds, large amounts of non-recycled tailing waters are still generated, 

resulting from the large daily bitumen production, which reaches 1.7 million barrels per day and 

is projected to more than double to 3.7 million barrels per day by 2019. Currently, Alberta’s 

inventory of tailing ponds is about 720 million cm3, which cover an area of about 130 km2 

(Steward and Williams 2013). Various types of compounds are found in the tailing waters such 

as naphthenic acids, polycyclic aromatic hydrocarbons (PAHs), BTEX compounds (benzene, 

toluene, ethylbenzene and xylene), metals, salts and residual bitumen, which are believed to be 

toxic to aquatic organisms (Strosher and Peake 1978; Rezac 2010). Another concern is the 

disrupted mining area and the bitumen-contaminated tailing soils. It was reported that as of 2015, 

over 895 km2 of land had been disturbed by oil sands mining activities (Natural Resources 

Canada 2015).   

 

2.4.2.4. Regulations 

These hazards of oil sands tailings were documented as early as 1973, but they did not receive 

much attention and did not become a high priority for government, industry, academia, and the 

news media until 2000. In 2008, tailings became the focus of intense discussion after the “1,600 

ducks died” issue occurred in Syncrude tailings (Steward and Williams 2013). In 2009, Directive 

074 was announced by Alberta’s Energy Resources Conservation Board (ERCB) to set tailings 

performance criteria and to ensure the environmentally sustainable development of Alberta’s oil 

sands (Alberta Oil Sands Industry 2009). It requires the amount of fluid tailings to be reduced; 

the size of the storage ponds to be minimized and eventually eliminated; and the fine tailings to 

be converted to reclaimable landscapes (Alberta Energy Regulator 2009). In March 2015, 

Directive 074 was suspended since new requirements for tailings management, the Tailings 

Management Framework for Mineable Athabasca Oil Sands (TMF), was released by the 

Government of Alberta. In addition to the requirements addressed in Directive 074, the TMF 

emphasizes the requirement of performance-monitoring to keep industry on track (Alberta 

Energy Regulator 2015). 
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2.4.2.5. Remediation 

Currently, there are 33 approved oil sands exploitation projects; and there are about 130 primary 

recovery projects (Energy Resources Conservation Board 2011). They are all directed toward 

minimizing the release of contaminants to the surrounding environment, as well turning tailings 

into reclaimable dry and wet landscapes (Rezac 2010). Farkish and Fall (2013) proposed a new 

technique to remove sufficient amounts of water from MFT by using a super-absorbent polymer 

(SAP), which is a remarkable class of hydrophilic gels capable of absorbing and retaining large 

volumes of water or any other fluids (Rosa and Casquilho 2012). Their results showed that the 

solids content of MFT dewatered by a SAP can reach values up to 80% by weight, and the 

undrained shear strength can reach values between 2 and 10 kPa, depending on the amount of 

SAP used. Afshar, Mirmontazeri et al. (2014) proposed using naphthenic acids as a surfactant to 

remediate the oil residues trapped in tailing soils. Naphthenic acids dislodge residual oil by 

reducing the capillary forces that retain the oil in the void spaces, thereby lowering the oil-water 

interfacial tension (IFT) and reducing the contact angle at the oil-water interface. Other 

commercial methods have also been adopted, such as adding gypsum as a coagulant to change 

the chemical properties of the suspended fine clay particles, thus enabling the fines to bind to 

heavier sand particles to form consolidated tailings (Syncrude Canada Ltd. 2008); mixing MFT 

with a polymer flocculent (anionic polyacrylamide) and depositing the mixture onto beach areas 

in thin layers to evaporate the water (Suncor Energy Inc. 2010); and centrifugation to obtain dry 

tailings (Suncor Energy Inc. 2009). 

 

2.5. Bitumen 

2.5.1. Definitions 

Bitumen, also known as asphalt, is a glossy black, very sticky and viscoelastic liquid at room 

temperature and is the residue fraction obtained by fractional distillation of crude oil. Among all 

the fractions distilled from crude oil, such as fuels, lubricating oils, and waxes, bitumen is the 

heaviest fraction and the one with the highest boiling point. At room temperature, it is even more 

viscous than molasses, and it is denser than water. Therefore, bitumen does not flow freely. 
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According to the current European specifications, bitumen is now defined as a “virtually 

involatile, adhesive and waterproofing material derived from crude petroleum, or present in 

natural asphalt, which is completely or nearly completely soluble in toluene, and very viscous or 

nearly solid at ambient temperatures” (European Committee for Standardization 2000).  Another 

still widely used term, “tar”, generates somewhat confusing nomenclature. The properties of tar 

are similar to those of bitumen, but tar, as a by-product of coke production, is extracted from coal 

rather than from crude oil. However, for economic reasons, such as the decline of the coal 

industry and the rise of the petroleum industry in the 1950s, the use of tar has almost disappeared 

(Lesueur 2009). 

 

2.5.2. Physical and Chemical Properties 

The density of bitumen at room temperature is typically between 1.01 and 1.04 g/cm3. The 

chemical properties of bitumen are very complex; as there are many different chemicals 

presenting in it. Bitumen mainly consists of carbon and hydrogen atoms (Table 2-4). Therefore, 

the main component of bitumen is hydrocarbons, whose content is greater than 90 wt%. 

 

Table 2-4. Elemental analysis of bitumen from oil sands 

 

Bitumen can be separated into four components (saturates, aromatics, resins, and asphaltenes, 

SARA) based on solubility in n-heptane and toluene. Bitumen can be firstly separated into two 

main components, asphaltenes and maltenes, by using n-heptane, where the former component is 

insoluble in n-heptane and the latter component is soluble in n-heptane. The maltene fraction can 

be further separated into saturates, aromatics, and resins by using n-heptane, toluene and 

pyridine. The chemical properties of bitumen and each fraction are presented in Table 2-5 (Ali, 

Bukhari et al. 1989; Peramanu, Pruden et al. 1999; Rudzinski, Aminabhavi et al. 2000).  

 

 C H C+H H/C S O N 

Wt % 83.9 10.0 93.9 1.43 5.5 0.6 0.5 
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Table 2-5. Chemical properties of bitumen and SARA fractions 

 

 

According to the elemental analysis, the asphaltene fraction has the lowest H/C ratio and 

contains the highest content of heteroatoms (including 8% sulfur). According to the hydrogen 

distribution obtained from 1H NMR analysis, the asphaltene fraction contains more fused 

aromatic rings and is highly branched. On the other hand, the saturate fraction has the highest 

H/C ratio and is composed mostly of aliphatic chains. Aromatics constitute one of the two most 

abundant fractions in bitumen, with the second highest H/C ratio. It is composed of aromatic 

rings with a few aliphatic side chains. Resins are the other most abundant fraction in bitumen 

with a similar H/C ratio to aromatics. Therefore, they are of similar polarity. Nevertheless, resins 

have more heteroatoms than aromatics, making them a bit more polar than aromatics (Spiecker, 

Gawrys et al. 2003).  

 

2.5.3. Bitumen Determination 

2.5.3.1. Solvent Extraction 

Solvent extraction coupled with FTIR spectroscopy for bitumen quantification was once a 

commonly used method for assessing total petroleum hydrocarbons in soil (US Environmental 

Protection Agency 2007; Schwartz, Ben-Dor et al. 2012). The commonly used solvent was 1,1,2-

trichloro-1,2,2-trifluoroethane (Freon 113), which was banned in 2007 due to its negative impact 

on ozone (US Environmental Protection Agency 2007). Other methods of bitumen quantification 

were proposed by other agencies, such as using gas chromatography (ISO 16703:2004), using 

liquid chromatography (ISO 13877:1998), or using gravimetric method (ASTM D 5765-95) 

instead of FTIR quantification. These methods still have the limitation of requiring a sample 

 Bitumen Saturates Aromatics Resins Asphaltenes 

Percentage of total bitumen  100 5 – 15 30 – 45 30 – 45 5 – 20 

H/C 1.5 1.9 1.5 1.4 1.1 

Average molecular weight 557 381 408 947 2005 
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extraction step, where it is indicated that the repeatability (intra-laboratory) and the 

reproducibility (inter-laboratory) of solvent extraction are low, with an average variation of the 

results of 20% (intra-laboratory) and 103% (inter-laboratory). This variability results from the 

solvent extraction efficiency and differences in the properties of the samples (Schwartz, Ben-Dor 

et al. 2012). In addition, solvent extraction also poses other disadvantages, such as organic 

solvent consumption, long processing time, and labor requirements. 

 

2.5.3.1.1. Green Solvents 

In bitumen extraction, solvents are used in large quantities. In particular, organic solvents such as 

toluene, dichloromethane, and tetrahydrofuran (THF) have been reported in the bitumen 

extraction (Yoon, Bhatt et al. 2009; Schwartz, Ben-Dor et al. 2012). These solvents have large 

impacts on the environment, cost, safety and health issues. The concept of green solvents has 

emerged, which aims to minimize the environmental impact. There are four main features of 

green solvents. Firstly, they have better environmental, health and safety properties, such as 

increased biodegradability or reduced ozone depletion potential. Secondly, they are bio-solvent, 

produced from renewable resources such as ligno-cellulosic materials instead of fossil resources 

(Capello, Fischer et al. 2007). In addition, they can be supercritical fluids that are 

environmentally harmless. As well, they can be ionic liquids that have low vapor pressure and 

thus less emission into the air (Lévêque and Cravotto 2006; Scammells, Scott et al. 2005). Using 

ionic liquids as replacements for organic solvents for bitumen recovery has been reported by 

several researchers (Painter, Williams et al. 2009; Li, Sun et al. 2011; Pulati, Lupinsky et al. 

2015). They reported that the bitumen recovery by ionic solvents can be up to 95% at room 

temperature. In addition, much less clay fines were present in the recovered bitumen than when 

using organic solvent extraction.  

2-Methyltetrahydrofuran (2-MeTHF) is considered a green solvent and a good substitute for THF 

and dichloromethane. 2-MeTHF can be produced from renewable resources by using substrates 

such as furfural or levulinic acid (Huber, Iborra et al. 2006). In addition, 2-MeTHF can be 

degraded by sunlight and air, presumably via oxidation and ring-opening (Pace, Hoyos et al. 

2012). Furthermore, its miscibility in water is limited (14g/100g), which make it easy to recover 
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from water. As well, it has a low heat of vaporization, resulting in less solvent loss and less 

energy requirement during distillation.  

 

2.5.3.2. Direct Determination by FTIR Spectroscopy  

Long, Dabros et al. (2004) successfully determined the asphaltene content in bitumen from oil 

sands froth using NIR spectroscopy and partial least-squares regression (PLS). The predictions 

were accurate, where the standard errors of calibration were 0.2 wt% for 0 to 20 wt% asphaltene 

in bitumen and 1.1 wt% for 20 to 100 wt% asphaltene in bitumen. Aske, Kallevik et al. (2001) 

reported a successful direct determination of four components (saturates, aromatics, resins, and 

asphaltenes) in crude bitumen using both MIR and NIR spectroscopies coupled with PLS 

chemometrics. The prediction uncertainties by MIR spectroscopy were found to be 2.5, 2.2, 1.4, 

and 1.3 wt% for these four components respectively were even lower than the uncertainties 

obtained from high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection. 

Yuan, Chu et al. (2006) also reported their achievement in determination of physical and 

chemical parameters of bitumen residues, such as saturates, aromatics, resins, asphaltenes, 

density, and viscosity, using ATR-FTIR spectroscopy coupled with PLS. They reported an 

accurate and consistent calibration model which can determine multiple properties from a single 

spectrum. Yoon, Son et al. (2009) proposed a simple prediction method of bitumen content in oil 

sands without solvent extraction. They established a quantification equation using FT-MIR 

spectroscopy and linear least-squares fitting by correlating the bitumen IR signal to the bitumen 

content spiked into the clean sand. They reported an accurate bitumen prediction (10.5 wt%) 

using the equation, which was similar to the result obtained by solvent extraction (9.1 wt%).  
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CHAPTER 3 

 

CONNECTING STATEMENT  
 

Although soil quality modeling by FTIR spectroscopy has already been studied by other 

researchers, only a few properties related to soil quality have been modeled by using ATR-FTIR 

spectroscopy. Chapter 3 covers the development of ATR-FTIR calibrations by the PLSR 

technique to model 10 soil properties, which are closely related to soil quality, using a set of 278 

soil samples from four Canadian provinces. In addition, the correlation between the physical and 

chemical properties of the soils as well as between these properties and the MIR spectral 

information is studied.  
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CHAPTER 3 

 

SOIL QUALITY DETERMINATION BY ATR-FTIR SPECTROSCOPY BASED ON MODELING OF SELECTED 

PROPERTIES OF SOIL USING PRINCIPAL COMPONENT ANALYSIS AND PARTIAL-LEAST-SQUARES 

REGRESSION 

 

 

Abstract 

The need for rapid and inexpensive techniques for soil quality determination has led to the 

investigation of modern technologies. Infrared spectroscopy in the near-infrared (NIR) region has 

been traditionally used, but the mid-infrared (MIR) region (400 – 4000 cm-1) is less studied. 

However, due to the specificity of the absorption bands in the mid-infrared region, the adoption of 

MIR spectroscopy for soil quality determination has been increasingly investigated. In this study, 

the feasibility of employing attenuated total reflectance mid-infrared (ATR-FTIR) spectroscopy in 

soil quality determination was evaluated by examining 10 selected soil properties: total carbon 

(TC), total nitrogen (TN), carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), nitrate (NO3

-), sand, 

silt, clay, N uptake, and yield. A total of 278 soil samples from four Canadian provinces were 

collected to built the partial-least-squares regression calibration models. By using r2 and residual 

predictive deviation (RPD) values for the evaluation of model predictive performance, it was found 

that the models for TC, TN, C/N, sand, silt, and clay showed very reliable performance (r2 ˃ 0.90, 

RPD ˃ 2.00), while the models for NH4
+, NO3

-, N uptake, and yield showed less reliable 

performance. This result indicates that ATR-FTIR spectroscopy coupled with PLSR has the 

potential to model and predict certain important soil properties and therefore can help in achieving 

large-scale precision farming.  

Keywords    soil quality    precision farming    ATR-FTIR    PLSR 

 

3.1. Introduction 

Soil is the essential resource of earth, providing a medium for the growth of plants, animals, and 

microbes. Furthermore, soil quality or quality determines the growth of these living things and it 

is closely related to the production of food. Therefore, soil quality assessment is a routine task in 

soil management and crop production. Dating back a century, soil chemists have developed a range 
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of methodologies for soil quality assessment, but they have highly relied on wet-chemical methods 

via soil extraction (Janik, Merry et al. 1998). Although these methods play a vital role in soil 

analysis, they are relatively slow and labor-intensive, consume large amounts of chemicals, and 

are expensive, constraining their usage. These drawbacks have become especially marked in recent 

decades with the introduction of prescription farming, which requires a fast, accurate, and low-

cost methodology to monitor soil quality on the field and farm scale. 

Working with the solid soil matrix directly as the experimental sample can overcome the problems 

associated with the tedious soil extraction procedure required by wet chemistry methods. This 

makes infrared spectroscopy an interesting alternative as a soil analysis technique. It is a non-

destructive technique and does not require any chemical solvents or extensive sample preparation. 

It is rapid and less expensive than wet-chemical methods and therefore is more efficient when a 

large number of samples need to be tested. An additional merit of infrared spectroscopy is that all 

the attributes that can be determined by this technique are captured in a single measurement.  

Papers on soil analysis using infrared spectroscopy have been published since the 1970s and the 

number of papers published has increased since the 1990s, with an even more rapid increase in the 

last 10 years (Du, Ma et al. 2015). Near-infrared (NIR) spectroscopy was first studied and applied 

for the determination of organic matter, moisture, and texture (Bowers and Hanks 1965). Later, 

many researchers reported the success application of NIR spectroscopy to measure many soil 

properties. For instance, McCarty et al. (2002) reported a calibration for TC with an r2 of 0.86, Xie 

et al. (2011) reported an r2 of 0.97 for TN and an  r2 of 0.94 for C/N, and Cozzolino and Moron 

(2003) reported r2  values of 0.90 for clay, 0.84 for silt, and 0.80 for sand. However, in the 1990s, 

interest in soil analysis by infrared spectroscopy gradually moved to mid-infrared spectroscopy 

(MIR), mainly focusing on diffuse-reflectance mid-infrared spectroscopy (DRIFT-MIR). Due to 

their origin in fundamental vibrations, signals in the MIR spectral region are more intense and 

distinct than the signals in the NIR spectral region, where combinations and overtones of the 

fundamental vibrations occur. Furthermore, one of the main components in soil, sand, is NIR 

inactive but has strong MIR absorption, making MIR spectroscopy a promising alternative for soil 

analysis. In the last few decades, many publications on applications of DRIFT-MIR spectroscopy 

in soil analysis provided convincing evidence of the potential utility of this technique in soil 
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analysis. For example, the DRIFT-MIR calibrations reported by Minasny et al. (2009) had r2 

values of 0.98 for TC, 0.94 for TN, 0.94 for sand, and 0.90 for clay.  

Attenuated total reflectance mid-infrared (ATR-FTIR) spectroscopy emerged later and its 

application to soil analysis has not been widely reported. It is a simple technique that requires 

minimal sample preparation and can be readily employed with solid, liquid, and gaseous samples. 

The application of ATR-FTIR spectroscopy in soil analysis has mainly been focused on nitrate 

quantification in wet soil or soil paste (Shaviv, Kenny et al. 2003; Linker, Kenny et al. 2004; 

Linker, Shmulevich et al. 2005), soil characterization (Linker, Weiner et al. 2006), and organic 

carbon speciation (Solomon, Lehmann et al. 2005). In the last few years, only a few papers were 

published on ATR-FTIR quantification of various soil properties, as summarized in Table 3-1.  

In order to fill the gap and be able to provide evidence when choosing the best suited infrared 

spectroscopic technique for soil analysis, the present study focused on soil quality determination 

by using ATR-FTIR spectroscopy coupled with PLSR. Soil quality is a concept defined as the 

ability of soil to support plant growth in a sustainable way (Acton and Gregorich 1995). It is a 

function of soil properties including soil nutrients, moisture, mineral, and organic matter (Desbiez, 

Matthews et al. 2004). Therefore, soil quality is very comprehensive and cannot be measured 

directly but can be evaluated on the basis of other properties (Bautista-Cruz, Carrillo-González et 

al. 2007). In this study, a total of ten properties closely related to soil quality were chosen to be 

quantified. Among the properties, eight of them relate to soil nutrients and soil texture, including 

total carbon (TC), total nitrogen (TN), carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), nitrate 

(NO3
-), sand, silt, and clay. The other two properties, N uptake and yield, are two parameters 

directly indicating plant nutrient condition and soil productivity. This study will be the first study 

to model these 10 properties in soils from across Canada by using ATR-FTIR spectroscopy with 

PLSR chemometrics.  
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Table 3-1. Literature published in past 10 years on soil analysis using ATR-FTIR spectroscopy 

a nc – number of calibration samples; nv – number of validation samples 

b rc
2 – coefficient of determination in calibration  

c RMSECV – root-mean-square error in cross-validation  

d RPD – ratio of performance to deviation, RPD > 2, “excellent” 

e LVs – number of latent variables  

 

Attributes Range nc|nv
 a rc

2 b RMSEcv
 c RPD d LVs e Authors 

Total C 

(g/kg) 
9.5-34.1 122|0 0.89 NA 3.02 6 

(Yang and 

Mouazen 

2012)  

Organic C 

(g/kg) 

5-58 180|90 0.80 5.1 2.26 
11  

(PLS) 

(Ge, 

Thomasson 

et al. 2014)  

8.5-30.2 122|0 0.89 NA 3.10 6 

(Yang and 

Mouazen 

2012)  

Inorganic C 

(g/kg) 

0-95 189|90 0.92 6.6 3.52 6 

(Ge, 

Thomasson 

et al. 2014)  

0-6.4 122|0 0.72 NA 1.93 5 

(Yang and 

Mouazen 

2012) 

Total N 

(g/kg) 
0.9-3.1 122|0 0.92 NA 3.75 6 

(Yang and 

Mouazen 

2012)  

Nitrate 

(mg/kg) 
0-1000 NA 0.99 24 NA 

Peak  

integration 

(Jahn, 

Linker et al. 

2006)  

Sand 

(g kg-1) 
150-880 180|90 0.90 78 3.14 

6 

(PLS) 

(Ge, 

Thomasson 

et al. 2014)  

Clay 

(g kg-1) 
20-500 180|90 0.94 37 3.38 

6 

(PLS) 

(Ge, 

Thomasson 

et al. 2014)  
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3.2. Materials and Methods 

3.2.1. Samples 

3.2.1.1. Description of Agricultural Sites 

The soil samples (n = 278) were originally collected from the top 0-15 cm of the soil layer from 

experimental sites in four Canadian provinces (British Columbia, Ontario, Quebec and New 

Brunswick). Among these samples, 76% (n = 210) were collected from Quebec between 2007 

and 2009.  A total of 30 sites, 32 sites and 15 sites in 2007, 2008, and 2009 were sampled in 3 or 

4 replicates and the sampling sites each year were different. Corn was grown at these sites with 

phosphorus and potassium fertilizers being applied before planting at rates of 50 kg P and 75 kg 

K ha-1 as triple superphosphate and potassium chloride. The corn hybrids varied across the three 

years and sites according to local recommendations. Weed was controlled by using glyphosate as 

herbicide at 1.75 L ha-1 (Nyiraneza, N'Dayegamiye et al. 2010).   

The other soil samples (n = 68) were collected from 2000 to 2007 from sites in 4 or 5 replicates 

in four Canadian provinces: one site in British Columbia (Agassiz, 49°10’ N, 124°15’ W), one 

site in Ontario (Woodslee, 42°13’ N, 107°43’ W), five sites in Quebec (L’Acadie, 45°17’ N, 

73°20’ W; St-Catherine, 46°49’ N, 71°39’ W; St-Basile, 46°48’ N, 71°46’ W; St-Louis, 45°51’ 

N, 73°00’ W; and Harlaka, 46°47’ N, 71°08’ W), and two sites in New Brunswick (Sussex, 

45°43’ N, 65°32, W and Keswick-Ridge, 45°52’ N, 66°31’ W). All the sites were for corn 

production with starter nitrogen fertilizer up to 50 kg N ha-1, except the sites in British Columbia 

and Ontario where no nitrogen fertilizer was applied. Phosphorus and potassium fertilizers were 

applied according to local recommendations. Conventional tillage was practiced at all sites and 

weed control followed local recommendations (St Luce, Ziadi et al. 2012).  

All soil samples were collected in spring before fertilizer application, air-dried, and ground to 

pass a 0.25-mm sieve. A small amount of soil was used for chemical analysis, whereas the 

majority of the sample was kept for spectroscopic measurement. All the samples were stored in 

sealed containers in a dark environment to minimize sample degradation.  
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3.2.1.2. Soil Textures 

The 278 soil samples used in this study had various proportions of sand, silt, and clay and 

therefore belonged to nine soil textures: clay, silt clay, clay loam, sandy clay loam, silty clay 

loam, loam, sandy loam, silt loam, and loamy sand (Figure 3-1 & Table 3-2), according to the 

United States Department of Agriculture (USDA) triangular diagram of soil texture 

classifications. 

According to the clay content in the soil, the soil samples were further divided into a fine-texture 

subset (≥ 350 g clay kg-1 soil, n = 100) and a coarse-texture subset (< 350 g clay kg-1 soil, n = 

178).  

 

 

 

Fig. 3-1. Soil texture of 278 soil samples according to USDA triangular diagram  

(red: fine-texture subgroup; green: coarse-texture subgroup) 
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Table 3-2. Description of the sites in the four targeted provinces 

Year  Province a  Sand % b Silt % b Clay % b Soil type c  

2007 

QC  

34.1 34.1 31.8 Clay loam 

2008 36.2 29.9 33.9 Clay loam 

2009 32.0 33.5 34.5 Clay loam 

2000 – 2007 

BC 27.1 58.8 14.1 Silt loam 

ON 30.4 33.4 36.2 Clay loam 

QC 47.2 30.2 22.6 loam 

NB 39.4 46.7 13.9 loam 

a QC – Quebec; BC – British Columbia; ON – Ontario; NB – New Brunswick.   

b Average value of the soils from the same provinces or from the same sampling year. 

c According to USDA triangular diagram relating particle size distribution to soil texture.  

 

3.2.2. Reference Methods 

Particle size analysis was performed by the pipette method after the destruction of organic matter 

with hydrogen peroxide (H2O2) and dispersion with sodium polymetaphosphate (Gee, Bauder et 

al. 1986; Nyiraneza, N'Dayegamiye et al. 2010). 

Total carbon (TC) and total nitrogen (TN) were determined by dry combustion using a CNS-

1000 (Leco Corp., St. Joseph, MI) following the protocol from the supplier (St Luce, Ziadi et al. 

2012). 

Nitrate (NO3
-) concentration was determined with nitrate-test strips (EM Quant cat. no. 10020-1, 

EMD chemicals, Gibbstown, NJ) and a hand-held reflectometer (Nitrachek 404, QuoMed Ltd, 

West Sussex, England) following the protocol from the supplier (Nyiraneza, N'Dayegamiye et al. 

2010). 

Ammonium (NH4
+) concentration was measured colorimetrically at 660 nm (Lachat QuikChem 

8500 Flow Injection Analyzer).  
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Corn nitrogen uptake (N uptake) was calculated for the whole plant (plant tissue and grain) as the 

product of the TN concentration and dry matter yield. About 800 g of plant tissue or grain were 

taken and dried at 65 °C to a constant mass to determine dry matter and TN content (Nyiraneza, 

N'Dayegamiye et al. 2010). 

Corn grain yields were determined by harvesting the two center rows from each plot. Each plot 

was 10- to 12-meter long and 3-meter wide, containing 4 rows of corn with 0.75-meter row 

spacing (Nyiraneza, N'Dayegamiye et al. 2010). 

 

3.2.2.1. Normalization of Data Distribution 

The normality of the distribution of the reference data was tested by using the Kolmogorov-

Smirnov normality test at 95% confidence level. The “skewness” value from each variable’s 

normality test was used to determine the normality of the data distribution; this value measures 

the asymmetry of the probability distribution of a random variable about its mean. Skewness can 

be positive, negative, and zero. When it is positive, the data is left-skewed, meaning that the 

mass of the distribution is concentrated on the right causing the “tail” on the left side of the 

probability density function to be longer. Conversely, negative skewness means the mass of the 

distribution is concentrated on the left and the data is right-skewed. When skewness is equal to 0, 

the dataset is normal distributed. Therefore, the closer the absolute value of skewness to 0, the 

closer the distribution of the dataset is to a normal distribution.  

Logarithmic transformation (log10) was used in this study to normalize data to obtain a normal 

distribution. The skewness values of the raw dataset and the log10 transformed dataset were 

compared. A box-and-whisker plot was used to study the distribution, and the data falling below 

the 1st quartile (Q1, median of the lower half of the data set) or above the 3rd quartile (Q3, the 

median of the higher half of the data set) were considered as outliers and removed from the 

reference data. Both the raw reference dataset and the log10 transformed reference dataset were 

used to build the calibration models and the performances of the models were compared to study 

whether the normality of the reference dataset affects the model performance.  
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3.2.3. Spectroscopic Method 

3.2.3.1. Principle of ATR-FTIR Spectroscopy 

ATR-FITR spectroscopy operates by measuring the changes of an internally reflected infrared 

beam when contacting a sample (Figure 3-2). The infrared beam entering a crystal with high 

refractive index (e.g., diamond or ZnSe) at the critical angle will undergo total internal reflection. 

The internal reflectance creates an evanescent wave that extends beyond the surface of the 

crystal into the sample placed on the crystal. The evanescent wave only extends a few microns 

(0.5 – 5 µm) beyond the crystal surface, and therefore a good contact between the sample and 

crystal surface is required. The sample selectively absorbs the evanescent wave, causing 

attenuation of the evanescent wave. The resultant evanescent wave is passed back to the infrared 

beam, which exits at the other end of the crystal and is passed to the detector in the IR 

spectrometer. The IR beam is then measured and plotted as a function of wavenumber to 

generate the absorption spectrum characteristics of the sample (Du, Ma et al. 2015).  

 

 (www.chromacademy.com) 

 

 

3.2.3.2. ATR-MIR Spectral Acquisition 

ATR-FTIR spectra were collected by an ALPHA Fourier transform infrared (FTIR) spectrometer 

equipped with a ZnSe ATR crystal sampling accessory (Bruker Optics, Billerica, MA, USA). 

The spectral range collected was 4000 – 400 cm-1 with 2 cm-1 resolution, and 128 scans were co-

added. Spectra were scanned directly into a computer using OPUS software (Bruker) and were 

saved in .spc format. An initial background spectrum was run to test the spectrometer 

Fig. 3- 2. Schematic drawing of a multiple-reflection ATR device 

http://www.chromacademy.com/
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performance and as a reference for calculating the sample spectra in absorbance units. Each 

spectral acquisition (128 scans) took about 1 minute per sample.  

 

3.2.4. Spectral Processing and Development of Calibration Models 

3.2.4.1. Principal Component Analysis (PCA) 

PCA is a data compression process that reduces complex multidimensional data (e.g. spectra) 

into a smaller number of principal components (PCs) which reflect the underlying structure and 

still contain most of the information in the original dataset. Each PC describes part of the 

variation among the dataset in decreasing order; the first PC describes the most variation in the 

dataset and each succeeding component accounts for as much of the remaining variation as 

possible. Because each PC is orthogonal to all the others, PCs can be interpreted independently.  

By plotting the PCs in two dimensions, interrelationships between samples and variables can be 

examined (Yang and Mouazen 2012).  

The complete dataset, defined by the variables in the columns (in this study, 1800 wavenumbers) 

and the samples in the rows (in this study, 278 soil samples), can be viewed as the original data 

matrix, defined by X(n,m) (in this study, X(278,1800)). PCA models the maximum directions of 

variation in the original data matrix by projecting the objects (in this study, the FTIR spectra) as 

a swarm of points in a new plane defined by PCs. The first PC represents the dimension or 

direction where the most variability occurs in the original dataset, and the second PC represent 

the orthogonal dimension where the second most variability occurs in the remaining dataset. The 

new co-ordinate value of the observations (278) projected onto each of the new co-ordinate lines 

(PC-lines, k) is known as a score. The scores of all the observations form a matrix T(n,k), as in 

this study, T(278,k). The correlation between PCs and the original variables is called loadings, 

which indicate the amount of variation in the original variables (1800 wavenumber) explained by 

each PC. The loadings of all the PCs form a matrix P(m,k), as in this study, P(1800,k). The PCA 

algorithm describing the data matrix decomposition is presented as: 

 

X(278,1800) = T(278,k)P(1800,k)T + E(278,1800) ………………………………….(3-1) 
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where, X is the independent variable matrix, T is the scores matrix, P is the loadings matrix, E is 

the error matrix, 278 is the number of observations, 1800 is the number of variables, and k is the 

number of PCs used ((Nieuwoudt, Prior et al. 2004; Eriksson, Byrne et al. 2013).  

 

3.2.4.2. Partial Least Squares Regression (PLSR) Analysis 

PLSR is a regression extension of PCA, which connects the information in x and y variables to 

each other. PLSR is a bilinear regression modeling method where the original x variables are 

projected onto a much smaller number of PLS components, which are commonly referred to as 

“latent variables” or “factors”. These factors are calculated according to the same mathematical 

procedures as PCs, but the data in the Y-matrix are also incorporated in the calculation. The 

regression establishes the relationship between the X-matrix (in this study, soil spectra) and the 

Y-matrix (in this study, the reference data for a given soil property), with the aim of predicting 

the y variables by using the most relevant factors (Nieuwoudt, Prior et al. 2004). 

In an analogous but different manner to PCA, both the X(n,m) matrix (in this study, 

X(278,1800)) and the Y(n,l) matrix (in this study, the column vector Y(278,1)  as each property 

was modeled individual1y) are projected as a swarm of points in a new plane, and the 

corresponding scores matrices T(n,l) of the X-matrix and U(n,l) of the Y-matrix and the loadings 

matrices P(m,l) of the X-matrix and Q(p,l) of the Y-matrix are obtained. The PLS algorithm is 

presented as: 

 

X(278,1800) = T(278,l)P(1800,l)T + E(278,1800) ……………..……….………… (3-2) 

 

Y(278,1) = U(278,l)Q(1,l)T + F(278,1) ………………………………….…….. (3-3) 

 

where X is the independent variable matrix, T is the scores matrix of X , P is the loadings matrix 

of X, E is the error matrix of X, Y is the dependent variable matrix, U is the scores matrix of Y, Q 

is the loading matrix of Y, F is the error matrix of Y, 278 is the number of observations, 1800 is 

the number of variables, the number “1” indicates  that a single property is modeled by the PLS 

calibration, and l is the number of latent factors used. In the PLS algorithm of PLS, covariance 
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between the scores matrixes T and U is maximized. Thus, the information contained in the Y-

matrix (usually, concentration data) is employed in the decomposition of the X-matrix, which is 

not the case in PCA. Therefore, most of the variation in the Y-matrix is explained by the first few 

latent factors, where the first PLS factor explains the variation in the X-matrix that provides the 

highest correlation with the Y-matrix and hence provides an estimate of a “pure component 

spectrum.”  

 

3.2.4.3. Spectral Pre-processing and Model Calibration 

Before the absorbance spectra were employed to develop calibration models for the prediction of 

soil properties, they were subjected to various spectral pre-processing algorithms to reduce or 

eliminate noise and baseline tilts and offset in the raw spectra. Commonly used spectral pre-

processing algorithms were investigated in this research including Savizky-Golay smoothing, 

standard normal variate (SNV), multiplicative scatter correction (MSC), 1st and 2nd derivative, 

and spectral normalization. The performance of the spectral pre-processing algorithms cannot be 

assessed until the resulting spectra have been used to develop calibration models. In the Results 

section of this chapter, only the pre-processing algorithms that resulted in the calibration models 

with the best performance are reported.  

PCA analysis was conducted using the UnscramblerX10.3® software package (CAMO, Oslo, 

Norway). Spectral pre-processing and PLSR were conducted using the TQ Analyst™ software 

package (Professional Edition 7.2.0.161, Thermo Fisher Scientific, USA). The PLSR algorithm 

was used to decompose the raw or pre-processed spectra into a maximum of 10 factors. In order 

to obtain the optimized calibration model for each soil property according to their unique spectral 

information, the model for each property was built separately. All PLSR models were validated 

with a full cross-validation approach (leave-one-out) where each spectrum was in turn excluded 

from the calibration set and was predicted from the model calibrated on the remaining spectra. 

The optimal number of factors was determined by minimizing the predicted residual error sum of 

squares (PRESS) in the cross-validation.  
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3.2.4.4. Model Assessment 

To evaluate the overall performance of a model, the distance between the predicted and reference 

results is central from a statistical perspective (Hastie, Tibshirani et al. 2001). These distances 

are related to the concept of “goodness-of-fit” of a model. A good model should have small 

distances between predicted and reference results (Steyerberg 2009).  

The parameters commonly used to evaluate the goodness-of-fit of a model are the coefficient of 

determination (r2), root mean square error (RMSE), and residual predictive deviation, also 

referred to as ratio of performance to deviation (RPD). The value of r2 represents the degree of 

correlation between two sets of data. It is widely used by many researchers but it is strongly 

related to the range of values spanned by the sample set, where r2 increases as the range of values 

increases (Daviesa and Fearnb 2006).  The accuracy of a model is given by the RMSE, which is 

a measure of the differences between the predicted and reference values for a set of samples. The 

RMSE obtained for a validation set determines the limits of the confidence interval in which a 

future prediction is to be found for a new sample (Draper, Smith et al. 1966): 

 

RMSE =  √
∑ (𝑋𝑖−𝑌𝑖)2

𝑁

𝑁
  …………………………………………………… (3-4) 

 

where, Xi is the predicted value of the ith sample, Yi is the reference value of the ith sample, and N 

is the number of samples. RMSE includes contributions from several sources, such as the errors 

from modeling and errors in the reference measurements. It is also sensitive to the range of 

values spanned by the sample set, where RMSE increases as the range of values increases 

(Daviesa and Fearnb 2006).  

In order to standardize the value of RMSE, with respect to the natural dispersion of the samples, 

RPD has been proposed. It is the ratio of the standard deviation of the reference values to the 

RMSE of the calibration set obtained by cross-validation: 

 

RPD =
𝑆𝐷

𝑅𝑀𝑆𝐸
 ………………………..………………………………… (3-5) 
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It was first used in soil science in 1993 (Sudduth and Hummel 1993) and later it was commonly 

used as a threshold to gauge the performance of the prediction (Chang and Laird 2002; Yang and 

Mouazen 2012).  The RPD value still depends on the range and distribution of the population, 

and the relevance of this parameter is highly questionable (Bellon-Maurel, Fernandez-Ahumada 

et al. 2010). However, it is widely adopted by many researchers, and hence in this study it is 

included in our model performance evaluation. A larger value of RPD indicates better 

performance of the model but currently, there is no critical level of RPD for infrared analysis in 

soil science. Three categories based on RPD in the ranges ˃2.0, 1.4 – 2.0, and <1.4 were used to 

indicate decreasing reliability of predicting (Chang, Laird et al. 2001). Other researchers 

reported the similar results of suitable limits for RPD (Dunn, Batten et al. 2002; Pirie, Singh et 

al. 2005).  

In this study, the values of r2, RMSE, and RPD obtained from cross-validation of calibration 

models were assessed to determine the performance of the calibration models. The reliability of 

the models was categorized based on the following criteria: very reliable (VR) models with r2 

˃0.9 and RPD ˃2.0; reliable (R) models with 0.75≤ r2 ≤0.9 and 1.4≤ RPD ≤2.0; less reliable (LR) 

models with r2 <0.75 and RPD <1.4.  

 

3.3. Results 

3.3.1. Statistical Description of Reference Values 

Means and distributions of the reference values of the 10 soil properties selected in this study 

(total carbon (TC), total nitrogen (TN), carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), 

nitrate (NO3
-), sand, silt, clay, N uptake, and yield) for the whole sample set (n=278 and the fine-

texture (n=100), and coarse-texture subsets (n=178) are summarized in Table 3-3, 3-4, and 3-5. 

The concentration ranges of TC, TN, and C/N are in accordance with those studied by other 

researchers (Yang and Mouazen 2012). The coefficient of variation (c.v.) and the differences 

between the mean and the median value of NH4
+, NO3

-, and N uptake in the three sample sets are 

large, leading to large skewness of the distributions of these three properties.  

The skewness values of the original and the log10 transformed datasets are summarized in Table 

3-6. Log10 transformation performed well for the properties TC, NH4
+, and N uptake in all three 
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sample sets, causing a more symmetric distribution with a much smaller skewness value. After 

logarithmic transformation, the skewness values for the whole set were reduced from 0.88 to -

0.01 for TC, from 3.47 to 0.9 for NH4
+, and from 1.89 to 0.33 for N uptake. In the case of the 

other properties, log10 transformation did not significantly improve the normality of the 

distribution, except for the distribution of TN and yield in the fine-texture subset, with a 

reduction in skewness from 0.55 to -0.16 for TN from 1.45 to -0.27 for yield. However, in the 

case of the properties sand, silt, and clay, log10 transformation decreased the symmetry of the 

distribution.   

The box-and-whisker plots of the whole dataset for the property NH4
+ obtained for the original 

and the log10 transformed data are shown in Figure 3-3. The histogram displays the distribution 

of all the data points while the box-and-whisker plot graphically depicts how the data points 

cluster through the quartiles and identifies possible outliers. The box includes the data points 

within the 1st and 3rd quartile range, and the diamond in the box represents the 95% confidence 

interval for the mean. The lines (whiskers) extend vertically from the boxes to the outermost data 

point that falls within the distances computed as: 

 

1st quartile – 1.5 × interquartile range …………………………………… (3-6) 

 

3rd quartile + 1.5 × interquartile range …………………………………… (3-7) 

 

where the interquartile range is the difference between the 1st and 3rd quartiles. The data points 

that do not fall within the computed ranges are shown as dots and are the potential outliers. The 

red bracket outside of the box shows the densest 50% of the data points. The distribution of the 

original data points for the property NH4
+ was highly right-skewed with a long right tail. The 

mass of the distribution was highly concentrated on the right, which was the low concentration 

side in this study. The interquartile range was narrow with the 1st quartile of 1.10 mg/kg and 3rd 

quartile of 4.18 mg/kg. Twenty-eight data points with high concentrations were considered as 

outliers. After log10 transformation, the data points were distributed much more symmetrically 



 
 

 

46 
 

and were more evenly spread out instead of being concentred within a narrow range. Most of the 

data were included within the whiskers region with only 3 potential outliers out of range.  

 

Table 3-3. Statistical description of the reference values of 10 properties of soils in the whole 

sample set and the fine-texture and coarse-texture subsets 

a Standard deviation; b coefficient of variation (= 100s.d./mean) 

 

 

 

 

 

 

Soil property 

Whole sample set 

Mean Median Range s.d. a c.v. b 

TC (g/kg) 17.15 16.02 5.41-39.06 5.87 34.20 

TN (g/kg) 1.56 1.53 0.47-3.36 0.49 31.53 

C/N 11.07 10.96 6.05-18.41 1.78 16.12 

NH4
+ (mg/kg) 4.34 1.80 0.39-49.19 6.75 155.44 

NO3
- (mg/kg) 10.30 8.93 0.09-51.3 7.25 70.36 

Sand (g/kg) 370.28 335.50 0.00-860.00 211.83 57.21 

Silt (g/kg) 334.23 340.00 60.00-619.40 129.44 38.73 

Clay (g/kg) 295.48 280.00 42.00-750.00 149.47 50.59 

N uptake (kg N/ha) 42.38 29.88 6.36-198.25 37.00 87.31 

Yield (kg/ha) 4534.05 4255.00 820.00-11532.00 1873.79 41.33 
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Table 3-4. Statistical description of the reference values of 10 properties of soils in the fine-

texture subset 

a Standard deviation; b coefficient of variation (= 100s.d./mean) 

 

 

 

 

 

 

 

 

 

Soil property 

Fine-texture subset 

Mean Median Range s.d. a c.v. b 

TC (g/kg) 19.06 18.07 8.51-39.06 5.99 31.45 

TN (g/kg) 1.76 1.65 0.84-3.36 0.51 28.74 

C/N 10.83 10.83 8.49-13.43 1.03 9.53 

NH4
+ (mg/kg) 4.29 2.04 0.39-29.71 5.97 139.24 

NO3
- (mg/kg) 9.14 7.35 0.09-51.3 7.20 78.76 

Sand (g/kg) 187.93 185.00 0.00-480.00 109.61 58.33 

Silt (g/kg) 358.70 350.00 160.00-570.00 95.54 26.63 

Clay (g/kg) 453.37 409.00 351.00-750.00 104.48 23.05 

N uptake (kg N/ha) 37.06 23.88 9.67-141.84 29.62 79.92 

Yield (kg/ha) 4777.33 4248.00 941.00-11532.00 1939.79 40.60 
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Table 3-5. Statistical description of the reference values of 10 properties of soils in the coarse-

texture subset 

a Standard deviation; b coefficient of variation (= 100s.d./mean) 

 

 

 

 

 

 

 

 

 

 

Soil property 

Coarse-texture subset 

Mean Median Range s.d. a c.v. b 

TC (g/kg) 16.08 14.94 5.41-33.86 5.53 34.37 

TN (g/kg) 1.45 1.41 0.47-2.73 0.45 31.07 

C/N 11.21 11.08 6.05-18.41 2.08 18.57 

NH4
+ (mg/kg) 4.37 1.68 0.43-49.19 7.12 162.83 

NO3
- (mg/kg) 10.96 10.00 0.36-41.64 7.22 65.86 

Sand (g/kg) 472.73 446.00 150.00-860.00 184.84 39.10 

Silt (g/kg) 320.48 323.5 60.00-619.40 143.48 44.77 

Clay (g/kg) 206.79 210.00 42.00-346.00 82.87 40.07 

N uptake (kg N/ha) 45.51 33.13 6.36-198.25 40.50 88.99 

Yield (kg/ha) 4396.69 4262.00 820.00-9380.00 1827.88 41.57 
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Table 3-6. Skewness values of the original and log10 transformed datasets for the total, fine-

texture, and coarse-texture sample sets 

 

 

 

 

 

Soil 

property  

Total set Fine-texture subset Coarse-texture subset 

Original Log10 Original Log10 Original Log10 

TC  0.83 -0.01 0.80 -0.01 0.88 0.05 

TN  0.42 -0.44 0.55 -0.16 0.22 -0.50 

C/N 0.51 -0.46 -0.17 -0.43 0.36 -0.52 

NH4
+  3.47 0.90 2.89 1.00 3.61 0.91 

NO3
-  1.88 -1.50 3.19 -1.94 1.23 -1.28 

Sand  0.50 -2.85 0.29 -2.65 0.44 -0.36 

Silt  -0.07 -1.14 0.16 -0.57 0.05 -0.86 

Clay  0.63 -0.77 1.17 0.90 -0.09 -1.04 

N uptake  1.89 0.33 1.70 0.58 1.81 0.20 

Yield  0.83 -0.81 1.45 -0.27 0.42 -0.89 
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Fig. 3-3. Box-and-whisker plot showing distribution of values for the property NH4
+ in the total 

sample set in the original (left, 3.47 skewness) and the log10 transformed (right, 0.90 skewness) 

data format 

 

 

3.3.2. ATR-FTIR Spectral Analysis and Model Calibration 

3.3.2.1. ATR-FTIR Soil Spectral Analysis 

Different MIR absorption bands respond to different chemical components in soils. Figure 3-4 

shows the ATR-FTIR spectra of three selected soil samples, denoted as A, B, and C, from two 

types of soil: clay (A and B) and loamy fine sand (C), with high and low TC content. All the 

spectra have a similar pattern, where the major absorption peaks occur in the regions 3700 – 

2800 cm-1 and 1720 – 1300 cm-1 and the region below 1200 cm-1. These major absorption peaks 

are attributed to specific chemical constituents including sand, clay, and organic carbon. The 

peaks in the region 1720 – 1300 cm-1 are overlapping and cannot be assigned to a specific 

component. In general, the broad band between 1720 and1500 cm-1 may be due to C=O 

stretching (1725 – 1720 cm-1); aromatic C=C stretching, O-H bending in the lattice of clay, H-O-

H bending in water, and N-H bending (1620 – 1600 cm-1); COO- stretching, C=C stretching, N-

H deformation, and C=N stretching (1590 – 1520 cm-1). The weak broad band between 1480 and 

1330 cm-1 may be due to the C-H bending and O-H deformation (1460 – 1450 cm-1); C-H 

deformation of methyl and methylene groups, and COO- asymmetric stretching in the region 

between 1400 and 1390 cm-1 (Yang and Mouazen 2012; Janik, Merry et al. 1998). The region 

below 1200 cm-1 is the fingerprint region of soil, where the absorptions are mainly due to clay, 
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silt and sand. It is difficult to assign the peaks in that region to a specific compound or chemical 

bond but the soil mineral structure can be reflected. Therefore, the absorption pattern in the 

fingerprint region is unique to each soil.  

 

 

Fig. 3-4. ATR-FTIR spectra (4000 – 400 cm-1) of soil samples of two soil textures with high and 

low TC content 

 

 

Both sample A and B are high in clay content, 75% and 60%, respectively. Clay absorption 

bands at 3620 and 3550 cm-1, due to the O-H stretching of inner-surface hydroxyl groups, are 

observed in the spectra of A and B (Fig. 3-5). Sample C is low in clay but is high in sand. Hence, 

no O-H band is observed in the 3600 cm-1 region and also the fingerprint region is very different 

from those of samples A and B, which have similar clay content. The high sand content in 

sample C has strong O-Si-O absorption, which appears as a shoulder at 1080 cm-1.  

Organic carbon has strong absorption in the MIR region. The absorption due to the C-H 

stretching vibration of methyl and methylene groups occurs between 2950 and 2850 cm-1. The C-

H absorption bands are clearly observed in the spectra of samples B and C, which contains 

relatively high amounts of TC, 39 and 24 g/kg, respectively.  In the case of sample A, in which 

TC is low, 15 g/kg, the C-H band is not intense enough to be observed by eye.  
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Fig. 3-5. ATR-FTIR spectra (4000 – 2400 cm-1) of soil samples of two soil textures with high 

and low TC content 

 

 

3.3.2.2. PCA of ATR-FTIR Spectra 

The complete data matrix including all the samples (n=278) and all the wavenumbers (4000 – 

400 cm-1) was modeled. The first two PCs accounted for 85% (PC1) and 11% (PC2) of the total 

variance of the data, cumulatively contributing 96% of the variance (Fig. 3-6), and the rest of the 

PCs only explain the rest of the variance, which is only 4%. Therefore, only the first two PCs 

were selected to analyze.  

 

 

Fig. 3-6. Explained variance of the sample set by 10 PCs 
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Loadings are the correlations between the components (PCs) and the original variables 

(wavenumbers), and each PC’s loadings plot indicates how much of the variations in a variable 

(wavenumber) is explained by the PC (Fig. 3-7). The higher the loadings value, the more 

variation is explained. Therefore, by examining the loadings plot, it is clear at which 

wavenumbers the most variations explained by that PC occur. Figure 3-7 (a) is the loadings plot 

of PC1, which is similar to the ATR-FTIR spectrum of soil. In the PC1 loadings plot, the 

loadings values are high in the region below 1200 cm-1, which is the specific absorption region 

of soil minerals. In addition, there are relative high variations in the regions 3620 – 3550 cm-1 

and 1700 – 1570 cm-1, which are characteristic of clay minerals and organic matter, respectively. 

Therefore, PC1 mainly represents the variations of soil minerals and organic matter. Moreover, 

these correlations between PC1 and these variations are positive, as indicated by the positive 

loadings values. Figure 3-7 (b) is the loadings plot for PC2, which is also similar to the ATR-

FTIR spectrum of soil, but with weak absorption intensity. In the loadings plots, relatively high 

loadings values are observed in the region below 1200 cm-1, which indicates that the variations 

of soil minerals are explained by PC2. Overall, the loadings value of PC2 is low compared to the 

loadings values of PC1. This illustrates that the variations explained by PC2 are small, which is 

true since this PC accounts for only 11% of the total variance.  

Scores plots are another important type of information obtained from PCA, as they show the 

relationships among samples and the PCs. Thirteen scores plots (PC1 versus PC2) for 13 

parameters, including the 10 selected properties (TC, TN, C/N, NH4
+, NO3

-, sand, silt, clay, N-

uptake and yield) and 3 additional parameters (texture, sampling locations and sampling years), 

based on PCA of the 278 ATR-FTIR spectra in the full dataset are presented in Fig. 3-8. For the 

interpretation of the scores plots for the 10 selected properties, the total of 278 samples were 

separated into two groups according to their reference value for the property, where samples with 

values smaller than the median were grouped together, as were those with values greater than the 

median. For the texture parameter, samples were grouped into fine-texture and coarse-texture 

groups; while for sampling location, samples were grouped based on the sampling provinces and 

for sampling years, samples were placed in three groups, corresponding to 2007, 2008, and 2009, 

respectively. In these 13 scores plots, each point represents a sample and those points in the same 

color are from the same group. In addition, points that are close together indicate that the 
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samples they represent are similar. Therefore, the similarity among samples is revealed by 

examination of the distribution of the colored points.  

 

 

Fig. 3-7. PCA loadings plots: (a) PC1; (b) PC2. 

 

The scores plots show a distinct clustering of the samples in relation to the properties sand, clay, 

and texture (Fig. 3-8-f; -h; -k). The clustering of these properties is due to the PC1 scores, either 

negative or positive. However, the points are randomly spread in the PC2 dimension. This 

indicates that the original values of the properties sand, clay, and texture are overwhelmingly 

explained by PC1. In the scores plot for clay, samples with high values (greater than the median) 

are clustered on the positive side of PC1, which suggests that the variation of clay minerals is 
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positively correlated to PC1. This is proved by the positive loadings values in clay-specific 

absorption regions in the PC1 loadings plot. In the case of the property sand, the opposite is 

observed, where samples with high sand content are clustered on the negative side of PC1. This 

suggests that the correlation between the variation of sand and PC1 is negative, as well as that 

the correlation between sand and clay is negative. This finding is in agreement with the 

correlation analysis where a -0.80 correlation coefficient (r2) is found between sand and clay. 

Since soil texture is determined by the content of clay and sand, the clustering of samples in the 

soil texture scores plot is comparable to their clustering in the scores plots for clay and sand, 

where fine-texture samples with high clay content are grouped on the positive side of PC1, while 

coarse-texture samples with high sand content are grouped on the negative side of PC1. 

However, with respect to the other properties examined, no distinct clustering is observed in the 

scores plots. This might be due to the weak intensity of the signals of these properties are weak 

and their masking by the relatively strong mineral signals.  

There is a moderate clustering on the scores plot for sampling locations (Figure 3-8-l), where the 

QC cluster is mainly located toward the negative end of PC1; points representing NB are 

clustered in the center and points representing ON are clustered toward the positive end of PC1. 

However, there is no significant clustering of BC soils. It is not surprising that the clustering 

based on sampling location exists, since the sampling location is inherently related to soil 

texture. On the other hand, no clustering pattern is found in the scores plot for sampling year 

(Figure 3-8-m).  
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Fig. 3-8. PCA scores plots for selected properties derived from ATR-FTIR spectra (n = 278); 

(a) TC; (b) TN; (c) C/N; (d) NH4
+; (e) NO3

-; (f) sand; (g) silt; (h) clay; (i) N-uptake; (j) yield; (k) 

texture; (l) sampling locations (n = 87); (m) sampling years. 
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Fig. 3-8. Cont. 

 

 

3.3.2.3. Correlation Analysis 

The correlation coefficients among 10 properties of soil and the scores of PC1 and PC2 are 

summarized in Table 3-5 (original values of the 10 properties) and Table 3-6 (log10 transformed 

values of the 10 properties). The closer the absolute value of the coefficient to 1.00, the stronger 

the linear relationship between the two variables; the positive and negative values indicate 

whether the two are positively or negatively correlated. The analysis (Table 3-5) showed strong 

relationships between TC and TN, sand and silt, and sand and clay, with correlation coefficients 
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of 0.87, -0.72, and -0.80 respectively. In addition, the results showed a moderate correlation 

between N uptake and yield, with a 0.63 correlation coefficient. The relationships between TC 

and TN as well as between N uptake and yield were much stronger in the fine-texture subset, 

while the relationships among sand, silt, and clay were generally stronger in the coarse-texture 

subset. However, there were no significant correlations among other properties, except N uptake, 

NH4
+, and NO3

-, which were moderately correlated. The relationships among the properties 

appear complex, and therefore it is impossible to predict one from another.  

The correlations among the properties and the spectra were examined by studying the correlation 

coefficients between the scores of the first two PCs and the properties, which are summarized in 

Table 3-7. PC1 had strong correlations with sand, silt, and clay and moderate correlations with 

TN and C/N. This is in accordance with the loading spectrum of PC1, which showed most 

variation in the mineral absorption region. A correlation between PC1 and TN existed but it was 

weak, which may be due to the weak intensity of the signals associated with TN in the ATR-

FTIR spectra. It is not surprising that the relationships between PC1 and other properties did not 

exist, as the concentrations for many of these properties were low and others (yield and N 

uptake) cannot be directly measured by infrared spectroscopy. However, no relationship was 

observed between PC1 and TC, which had relatively high concentration values and strong 

spectral signals. The correlations between PC2 and all the properties were weak due to the low 

amount of variance explained by PC2.  

After using logarithmic data transformation, the correlations between some variables were 

improved, but some were weakened, as shown in Table 3-8. For example, in the total set, the 

correlation coefficient of PC1 and silt increased from 0.36 to 0.44, while the correlation 

coefficient of PC1 and sand decreased from 0.74 to 0.64. The changes of the correlations caused 

by the log10 data transformation were not considered significant.  
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Table 3-7. Correlation matrix between 10 properties of soils (original dataset) and the first two 

PC scores obtained by principal component analysis of the ATR-FTIR spectra of the total sample 

set, the fine-texture subset, and the coarse-texture subset 

 

 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Total set 

TC 1.00          

TN 0.87 1.00         

C/N 0.32 -0.18 1.00        

NH4
+ 0.15 0.34 -0.34 1.00       

NO3
- 0.00 0.09 -0.20 0.05 1.00      

Sand -0.14 -0.30 0.29 -0.06 0.06 1.00     

Silt  -0.04 0.11 -0.27 0.14 0.14 -0.72 1.00    

Clay  0.23 0.33 -0.19 -0.03 -0.22 -0.80 0.15 1.00   

N uptake -0.02 0.17 -0.36 0.58 0.44 0.07 0.17 -0.25 1.00  

Yield  0.06 0.13 -0.10 0.13 0.41 0.04 -0.03 -0.03 0.63 1.00 

PC1 0.15 0.35 -0.36 0.23 -0.15 -0.74 0.36 0.74 0.02 -0.02 

PC2  -0.06 -0.10 0.05 0.01 -0.09 -0.01 -0.06 0.07 -0.07 0.09 

 Fine-texture subset 

TC 1.00          

TN 0.94 1.00         

C/N 0.38 0.07 1.00        

NH4
+ 0.11 0.31 -0.47 1.00       

NO3
- -0.08 -0.10 0.02 -0.20 1.00      

Sand -0.37 -0.27 -0.32 0.18 0.02 1.00     

Silt  0.17 0.10 0.22 -0.09 0.16 -0.49 1.00    

Clay  0.23 0.19 0.14 -0.10 -0.17 -0.61 -0.40 1.00   

N uptake 0.08 0.08 0.10 0.37 0.25 0.00 0.09 -0.08 1.00  

Yield  0.01 0.02 0.04 0.00 0.38 0.02 0.14 -0.16 0.91 1.00 

PC1 0.11 0.22 -0.28 0.27 -0.30 -0.31 -0.20 0.51 0.18 0.06 

PC2  -0.12 -0.18 0.09 0.05 -0.09 0.07 0.00 -0.07 0.00 0.03 
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Table 3-7. Cont. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Coarse-texture subset 

TC 1.00          

TN 0.80 1.00         

C/N 0.37 -0.24 1.00        

NH4
+ 0.18 0.38 -0.32 1.00       

NO3
- 0.10 0.28 -0.29 0.16 1.00      

Sand 0.17 -0.10 0.40 -0.14 -0.04 1.00     

Silt  -0.18 0.06 -0.34 0.20 0.17 -0.90 1.00    

Clay  -0.06 0.13 -0.30 -0.03 -0.22 -0.65 0.28 1.00   

N uptake -0.03 0.31 -0.45 0.58 0.52 0.00 0.21 -0.41 1.00  

Yield  0.06 0.16 -0.14 0.13 0.45 0.19 -0.12 -0.22 0.55 1.00 

PC1  -0.05 0.24 -0.40 0.28 -0.01 -0.64 0.52 0.54 0.11 -0.23 

PC2  -0.07 -0.10 0.05 0.00 -0.08 0.05 -0.10 0.07 -0.09 0.12 
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Table 3-8.  Correlation matrix between 10 properties of soils (log10 transformed dataset) and the 

first two PC scores obtained by principal component analysis of the ATR-FTIR spectra of the 

total sample set, the fine-texture subset, and the coarse-texture subset 

 

 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Total set 

TC 1.00          

TN 0.88 1.00         

C/N 0.27 -0.22 1.00        

NH4
+ 0.19 0.37 -0.38 1.00       

NO3
- -0.04 0.00 -0.09 -0.28 1.00      

Sand -0.25 -0.30 0.29 -0.05 0.03 1.00     

Silt  -0.04 0.13 -0.27 0.17 0.08 -0.45 1.00    

Clay  0.16 0.26 -0.19 -0.10 -0.14 -0.67 0.39 1.00   

N uptake 0.07 0.23 -0.31 0.50 0.48 0.10 0.15 -0.29 1.00  

Yield  0.15 0.23 -0.15 0.05 0.52 -0.02 0.00 0.00 0.66 1.00 

PC1 0.20 0.37 -0.33 0.28 -0.18 -0.62 0.44 0.72 -0.01 -0.02 

PC2  -0.09 -0.13 0.07 -0.03 -0.09 -0.03 -0.02 0.07 -0.06 0.07 

 Fine-texture subset 

TC 1.00          

TN 0.95 1.00         

C/N 0.36 0.04 1.00        

NH4
+ 0.11 0.29 -0.48 1.00       

NO3
- -0.07 -0.16 0.25 -0.51 1.00      

Sand -0.31 -0.24 -0.27 0.08 -0.10 1.00     

Silt  0.15 0.12 0.14 -0.12 0.14 -0.20 1.00    

Clay  0.24 0.20 0.16 -0.11 -0.03 -0.63 -0.37 1.00   

N uptake 0.05 0.04 0.07 0.13 0.25 0.06 0.06 -0.11 1.00  

Yield  0.08 0.08 0.06 -0.09 0.40 -0.02 0.13 -0.19 0.81 1.00 

PC1 0.14 0.24 -0.29 0.35 -0.25 -0.35 -0.14 0.52 0.14 0.02 

PC2  -0.18 -0.22 0.08 0.08 -0.09 -0.02 0.00 -0.07 -0.02 0.03 
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Table 3-8. Cont. 

 

 

3.3.2.4. PLSR Calibration Models Based on ATR-FTIR Spectra 

Tables 3-9, 3-10, and 3-11 summarize the calibration and cross-validation statistics of the PLSR 

models developed for the total set and the fine-texture and coarse-texture subsets, with various 

pre-processing options (baseline correction, standard normal variate, or multiplicative signal 

correction). The ATR-FTIR spectra in both the original and log10 transformed data format were 

employed to develop calibration models. Several spectral pre-processing methods were used but 

only the methods resulting in the best calibrations are shown. For the total sample set (Table 3-

9), PLSR models produced excellent prediction accuracy for TC, TN, C/N, sand, and clay with 

Rc
2 (calibration) of 0.86 – 0.94, Rcv

2 (cross-validation) of 0.83 – 0.91, and RPD of 1.76 – 2.45. 

The correlations between the measured and predicted values as well as the predicted residual 

error sum of squares (PRESS) plots for these five properties are shown in Fig. 3-9. PRESS plots 

indicate how the predicted residual error sum of squares decreases with the number of latent 

variables used. The number of latent variables used in each calibration corresponded to the 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Coarse-texture subset 

TC 1.00          

TN 0.84 1.00         

C/N 0.30 -0.27 1.00        

NH4
+ 0.20 0.40 -0.37 1.00       

NO3
- 0.01 0.13 -0.21 -0.17 1.00      

Sand 0.08 -0.12 0.35 -0.11 0.03 1.00     

Silt  -0.17 0.07 -0.41 0.22 0.10 -0.86 1.00    

Clay  -0.10 0.05 -0.27 -0.25 -0.12 -0.63 0.45 1.00   

N uptake 0.12 0.38 -0.40 0.56 0.57 0.10 0.21 -0.39 1.00  

Yield  0.13 0.26 -0.19 0.07 0.58 0.22 -0.06 -0.13 0.63 1.00 

PC1  0.02 0.25 -0.40 0.28 -0.10 -0.62 0.54 0.53 0.02 -0.22 

PC2  -0.08 -0.13 0.08 -0.09 -0.08 0.07 -0.04 0.05 -0.08 0.88 
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minimum value in the PRESS plot. To prevent overfitting, the maximum number of latent 

variables was less than 10 in all cases.  

For the properties silt, N uptake, and NH4
+, PLSR models had moderate prediction accuracy with 

Rc
2 of 0.80 – 0.83, Rcv

2 of 0.64 – 0.77, and RPD of 1.29– 1.55. For the remaining properties, 

NO3
- and yield, for which the Rc

2 was below 0.73, Rcv
2 was below 0.58, and RPD was below 

1.22, where the PLSR model predictions were not considered accurate. 

For the fine-texture subset (Table 3-10), similar results to those obtained for the total set were 

found, where the PLSR models for TC, TN, CN, sand, and clay were considered to have 

excellent prediction performances, with Rc
2 of 0.84 – 0.96, Rcv

2 of 0.73 – 0.92, and RPD of 1.45 

– 2.52. The prediction performances for silt, N uptake, NH4
+ and yield were acceptable, with Rc

2 

of 0.76 – 0.89, Rcv
2 of 0.51 – 0.76, and RPD of 1.11 – 1.52. However, the prediction of NO3

-, for 

which the Rc
2 was below 0.30, Rcv

2 was below 0.10, and RPD was below 0.99, was considered 

unsuccessful. 

For the coarse-texture subset (Table 3-11), excellent PLSR prediction performances were found 

for the properties TC, TN, C/N, sand, and clay, for which the Rc
2 was above 0.85, Rcv

2 was above 

0.77, and RPD was above 1.54. For the property silt, PLSR also provided excellent modelling 

performance (Rc
2 0.83, Rcv

2 0.73, and RPD 1.44), whereas the silt calibration models for the 

other two sample sets did not perform as well. In addition, in the case of the properties NO3
- and 

yield, for which PLSR models were not successfully built in the case of both the total and fine-

texture sample sets, the models obtained with the coarse-texture subset were much improved, 

with Rc
2, Rcv

2, and RPD values of 0.75, 0.65, and 1.31 for NO3
- and 0.72, 0.58, and 1.22 for 

yield. Although there was an improvement in the coarse-texture subset, PLSR still cannot 

quantitatively model these two properties according to the RPD criteria.  

The RPD values of the calibration models developed with the total, fine-texture, and coarse-

texture sample sets in the original and the log10 transformed data format are plotted for the 10 

properties in Fig. 3-10. The two horizontal lines divide the plot into three zones, corresponding 

to RPD above 2.0, RPD between 1.4 and 2.0, and RPD below 1.4. These three zones indicated 

the reliability of the PLSR model to be very reliable, reliable or less reliable, respectively. 

According to this criterion, the models of TOC, TN, C/N, NH4
+, sand, silt, and clay were all 
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considered reliable. Moreover, the prediction performances of TC, TN, and clay in the fine-

texture subset and of sand and silt in the coarse-texture subset were even better, and these models 

were considered very reliable. However, for the properties NO3
-, N uptake and yield, their PLSR 

models were considered less reliable in quantification, but acceptable in classification. Among 

these three properties, the model for N uptake showed improved prediction accuracy in the 

coarse-texture subset and the quantification was considered reliable.  

Log10 transformation, in general, did not effectively improve the models. However, for the 

properties TN and clay in all the sample sets and NH4
+ in the coarse-texture subset, log10 

transformation improved model performances, making the models reliable or even very reliable. 

However, opposite results were found for the TC and silt models in all the sample sets, as well as 

the C/N and sand models in the total sample set, where log10 transformation significantly reduced 

the model’s reliability. 
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Table 3-9. Calibration (C) and cross-validation (CV) of PLSR models with original and log10 

transformed datasets: Total sample set (n = 278) 

 

 

 

 

 Model information Evaluation parameters 

Property Dataset  
Spectral  

pre-treatment 

Calibration 

regions  

(cm-1) 

Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

TC 

Original 
Baseline 

correction a 

2990 – 2798 

1732 – 1350  
0.88|0.86 2.61 2.88 8 1.95 

Log10 SNV e 
2982 – 2816 

1766 – 1278  
0.86|0.83 0.07 0.08 9 1.76 

TN 

Original 
Baseline 

correction a 1903 – 1350  0.88|0.83 0.24 0.30 8 1.78 

Log10 
Baseline 

correction b 

1844 – 1270 

860 – 800 * 
0.87|0.83 0.07 0.07 10 1.82 

C/N 
Original - 

2974 – 2827 

1740 – 1301  
0.92|0.89 0.63 0.73 10 2.19 

Log10 - 1849 – 1301 0.88|0.83 0.03 0.04 7 1.81 

NH4
+ 

Original 
Baseline 

correction c 

3526 – 3013 

1852 – 1253 

848 – 787 * 

0.62|0.55 2.12 2.25 6 1.20 

Log10 MSC f 

3537 – 3183 

* 

1769 – 1240 

0.83|0.74 0.23 0.33 7 1.48 

NO3
- 

Original -  

1950 – 1275 

896 – 784  
0.65|0.58 4.14 4.45 10 1.22 

Log10 
Baseline 

correction c 

1605 – 1240 

871 – 797  
0.40|0.27 0.26 0.28 8 1.03 
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Table 3-9. Cont. 

a Piecewise linear correction: minimum in range; b average in range; c quadratic removed                    
d maximum in range; e standard normal variate (SNV); f multiplicative signal correction (MSC);  

* first derivative 

 

 

 

 

 

 

Model information Evaluation parameters 

Property Dataset  
Spectral  

pre-treatment 

Calibration 

regions  

(cm-1) 

Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

Sand 
Original MSC f 1246 – 417  0.94|0.91 68.60 87.06 8 2.45 

Log10 SNV e 1246 - 423 0.90|0.87 0.13 0.15 7 2.03 

Silt  

Original 

MSC f; 

Baseline 

correction a 

3738 – 3588 

1235 – 410 * 
0.88|0.73 59.80  87.20 7 1.44 

Log10 
Baseline 

correction d 

3732 – 3593 

1228 – 442  
0.83|0.77 0.10 0.12 6 1.55 

Clay  
Original MSC f 

3732 – 3521 

1253 – 409  
0.94|0.88 46.30 69.70 9 2.05 

Log10 -  1009 – 405  0.92|0.90 0.09 0.11 8 2.29 

N 

uptake 

Original SNV e 
3755 – 3468 

1264 – 429 * 
0.80|0.64 18.80 24.30 8 1.29 

Log10 -  

3734 – 2519 

1252 – 444 * 
0.82|0.68 0.18 0.24 9 1.35 

Yield  
Original -  831 – 419 * 0.73|0.47 1230 1660 8 1.09 

Log10 -  821 – 412  0.65|0.54 0.14 0.16  8 1.18 
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Table 3-10. Calibration (C) and cross-validation (CV) of PLSR models with original and log10 

transformed datasets:  Fine-texture sample set (n = 100) 

 

 

Model information Evaluation parameters 

Property Dataset  
Spectral  

Pre-treatment 

Calibration  

regions  

(cm-1) 

Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

TC 

Original -  

2982 – 2818 

1712 – 1350  
0.93|0.88 2.07 2.62 6 2.13 

Log10 
Baseline 

correction b 

2984 – 2817 

1712 – 1350  
0.94|0.86 0.05 0.07 8 1.93 

TN 

Original SNV e 3407 – 1187  0.93|0.89 0.18 0.22 6 2.23 

Log10 MSC f 
3300 – 1406 

920 – 785  
0.96|0.92 0.04 0.05 10 2.52 

C/N 
Original SNV e 

3508 – 1240 

617 – 567  
0.92|0.77 0.40 0.76 5 1.57 

Log10 SNV e 3507 – 1252  0.95|0.81 0.01 0.02 10 1.72 

NH4
+ 

Original MSC f 

3507 – 3010 

1803 – 1300 

* 

802 – 746 * 

555 – 440  

0.89|0.76 2.54 3.58 8 1.52 

Log10 -  

1500 – 1400 

1124 – 733 * 

563 – 440 * 

0.83|0.61 0.21 0.32 7 1.23 

NO3
- 

Original -  

1552 – 1250 

1264 – 784 * 
0.30|0.10 3.84 4.10 3 0.99 

Log10 MSC f 

1410 – 1340 

* 

860 – 800 * 

0.33|0.14 0.18 0.19 2 1.00 
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Table 3-10. Cont. 

a Piecewise linear correction: minimum in range; b average in range; c quadratic removed                    
d maximum in range; e standard normal variate (SNV); f multiplicative signal correction (MSC);  

* first derivative  

  

Model information Evaluation parameters 

Property Dataset  Property Dataset  Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

Sand 

Original 

SNV e; 

Baseline 

correction c 

3738 – 3494 * 

1227 – 436 * 
0.84|0.73 51.50 66.20 4 1.45 

Log10 

SNV e; 

Baseline 

correction c 

3773 – 3006 

1251 – 799  
0.92|0.81 0.12 0.20 6 1.70 

Silt  
Original SNV e  

1227 – 818 * 

814 – 618 

636 – 417 * 

0.86|0.70 42.80 61.70 6 1.39 

Log10 SNV e 1270 – 429 * 0.83|0.51 0.06 0.10 5 1.11 

Clay  

Original MSC f 

3724 – 3581 

1250 – 814 

770 – 625  

0.88|0.81 47.50 59.80 4 1.70 

Log10 -  

3736 – 3521 

1252 – 802 

769 – 625  

0.90|0.86 0.04 0.05 5 1.98 

N 

uptake 

Original SNV e 
1421 – 1300 * 

985 – 779 * 
0.76|0.55 15.80 20.60 6 1.18 

Log10 -  

1421 – 1241 * 

979 – 750 * 
0.80|0.65 0.18 0.23 6 1.31 

Yield  
Original 

Baseline 

correction d 

3749 – 2498 

1450 – 1300 

983 – 769  

0.70|0.54 1200 1450 7 1.17 

Log10 MSC f 1250 – 414  0.81|0.61 0.08 0.12 8 1.22 
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Table 3-11. Calibration (C) and cross-validation (CV) of PLSR models built with original and 

log10 transformed datasets: Coarse-texture sample set (n = 178) 

 

 

 

 

 

Model information Evaluation parameters 

Properties Dataset  

Spectral  

pre-

treatment 

Calibration 

regions 

(cm-1) 

Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

TC 

Original MSC f 
2980 – 2823 * 

1736 – 1336 * 
0.94|0.85 1.89 2.86 7 1.90 

Log10 SNV e 
2989 – 2823 

1801 – 1299 * 
0.91|0.84 0.06 0.07 6 1.85 

TN 

Original SNV e 1979 – 1336  0.90|0.80 0.19 0.26 9 1.65 

Log10 MSC f 
3299 – 1405 

919 – 784  
0.85|0.80 0.08 0.09 8 1.67 

C/N 

Original -  

3589 – 2820 * 

1495 – 1339 * 
0.85|0.72 1.03 1.38 4 1.44 

Log10 -  

3572 – 2790 * 

1807 – 1219 * 
0.95|0.80 0.02 0.05 7 1.68 

NH4
+ 

Original MSC f 
3563 – 3033 * 

1551 – 1269  
0.76|0.71 1.31 1.43 4 1.42 

Log10 
Baseline 

correction a 

3531 – 3205 * 

1556 – 1255  
0.87|0.78 0.20 0.26 8 1.57 

NO3
- 

Original SNV e 
1506 – 1198 * 

985 – 795 * 
0.75|0.65 3.64 4.18 7 1.31 

Log10 MSC f 
1604 – 1251 * 

979 – 797 * 
0.78|0.61 0.19 0.24 8 1.24 
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Table 3-11. Cont. 

a Piecewise linear correction: minimum in range; b average in range; c quadratic removed                    
d maximum in range; e standard normal variate (SNV); f multiplicative signal correction (MSC);  

* first derivative  

 

Model information Evaluation parameters 

Properties Dataset  

Spectral  

pre-

treatment 

Calibration 

regions 

(cm-1) 

Rc
2|Rcv

2 RMSEC RMSECV LVS RPD 

Sand 
Original 

MSC f; 

Baseline 

correction a 

1210 – 420  0.89|0.86 81.70 92.50 6 1.96 

Log10 MSC f 1210 – 415  0.89|0.86 0.07 0.08 6 1.96 

Silt  

Original MSC f 
3726 – 3598 

1216 – 411  
0.89|0.87 63.50 69.60  5 2.04 

Log10 MSC f 
3738 – 3596 

1200 – 401  
0.86|0.83 0.11 0.12 5 1.80 

Clay  

Original 
Baseline 

correction d 
1203 – 416  0.87|0.77 39.90 53.00 7 1.54 

Log10 
Baseline 

correction a 

3741 – 3557 

1220 – 411  
0.88|0.84 0.10 0.11 8 1.82 

N uptake 

Original 
Baseline 

correction b 

1938 – 1228 

1240 – 411  
0.87|0.79 14.60 18.45 7 1.63 

Log10 
Baseline 

correction c 

3579 – 2801 

1891 – 1201 

1251 – 405  

0.83|0.75 0.19 0.22 8 1.52 

Yield  

Original MSC f 
3572 – 2790 

1252 – 411  
0.70|0.54 1260 1510 8 1.18 

Log10 
Baseline 

correction a 

3586 – 2790 

1873 – 1240 

1234 – 411  

0.72|0.58 0.14 0.17 8 1.22 
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Fig. 3-9. Calibration (left) and PRESS plots (right) of PLSR calibrations based on the ATR-FTIR 

spectra of the total sample set for the properties TC (a), TN (b), C/N (c), sand (d), and clay (e) 
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Fig. 3-10. Comparison of RPD values of the models for 10 properties developed with the total 

sample (TS) set and the fine-texture (F) and coarse-texture (C) subsets in the original and the 

log10 transformed data format. 

 

 

3.3.2.5. Statistical Spectral Displaying Correlation between Spectral and Reference Information 

Figure 3-11 shows the stacked statistical spectra of the 10 properties generated by correlating the 

spectral and concentration information of all the samples. These spectra represent the spectral 

regions that correlate with changes in component concentration. According to the spectral 

information, the spectra are divided into 4 regions: 2950 – 2850 cm-1 (A), 3620 – 3550 cm-1 (B), 

1750 – 1350 cm-1 (C), and < 1200 cm-1 (D), which represent the presence of carbon; clay; 

nitrogen and carbon; and minerals, respectively. The statistical spectra showed a good correlation 

between the spectral and concentration information of the 278 standards for TC, TN, sand, silt, 

and clay properties, all of which have primary mid-infrared signals. The statistical spectra for TC 

and TN showed strong correlation in regions A and C, but weak or zero correlation in regions B 

and D. This finding is not surprising since regions A and C are the absorption regions for the 

vibrations involving bonds to carbon and nitrogen. The statistical spectra for TC and TN are 

similar since there is a high correlation between the levels of TC and TN in the samples, with a  
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Fig. 3-11.  Statistical spectra for 10 properties showing correlation between spectral data and 

reference values for the total of 278 total samples. 

 

0.94 correlation coefficient. Sand, silt, and clay, on the other hand, showed positive correlation in 

regions B and D, which are the characteristic and fingerprint regions for soil minerals. In the case 

of NH4
+ and NO3

-, which should exhibit MIR absorptions in the regions 3410 – 3030 cm-1, 1390 

– 1340 cm-1, and 840 – 730 cm-1 (Miller and Wilkins 1952); there were no significant 

correlations observed in the statistical spectra, which may be due to their low concentration in 

the soil samples. For the properties C/N, N uptake, and yield, which do not have a primary MIR 

signal, no significant correlations between the reference values and spectral signals were 

observed from the statistical spectra. Moreover, since these properties have no significant 
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correlations to those with a strong primary MIR signal, their statistical spectra show weak 

relationships between the spectral information and the reference values (Table 3-7).  

 

3.3.2.6. Pure Component Spectra derived from PLSR Analysis of ATR-FTIR Spectra 

Figure 3-12 shows the pure component spectra for the 10 properties, which are extracted from 

the overlapping spectra of the soil samples by the PLS analysis. Similar to the spectrum of the 

soil matrix, the pure component spectra are also divided into 4 absorption regions: 2950 – 2850 

cm-1 (A), 3620 – 3550 cm-1 (B), 1750 – 1350 cm-1 (C), and < 1200 cm-1 (D). In the pure 

component spectra of TC, TN and C/N, a significant absorption band is observed in region A, 

which represents the presence of organic carbon. However, in the case of the pure component 

spectra for the other properties, no bands are observed in region A. This indicates that the bands 

in region may be considered characteristic of TC. In the pure component spectrum of TN, 

absorptions were observed in region B, which includes vibrations involving bonds to N. Due to 

the high correlation between TC and TN, absorption bands specific for organic carbon were also 

included in the TN pure component spectrum.  

The pure component spectra of sand, silt and clay were similar in region B, which is the 

characteristic region for clay. They all have strong absorption in region D, but the patterns of the 

absorption are different due to the different mineral structures and compositions.  

In the case of NH4
+ and NO3

-, their pure component spectra show absorption in region C, but the 

bands in this region are broad and overlapping, and therefore they cannot characterize NH4
+and 

NO3
-. Absorptions in regions B and D, which are irrelevant to NH4

+and NO3
-, are also observed. 

This might be due to the spectral variability caused by variation in the particle size, which is also 

modeled by PLSR and is mistakenly considered as chemical variability. Therefore, these bands 

related to minerals are also found in the pure component spectra of TC, TN, and C/N. For N 

uptake and yield, no significant bands are found in any of the four regions. This might be due to 

the fact that there are no MIR absorptions directly related to these two properties. Moreover, 

there are no significant correlations between these two properties and other properties that are 

directly related to MIR absorptions. The pure component spectra of these two properties are also 

noisy, which might be due to overfitting of the models.  
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Fig. 3- 12. Pure component spectra for10 soil properties obtained from PLSR modeling of 

ATR-FTIR spectra against original reference data of the total sample set; left: whole MIR 

region (4000 – 400 cm-1); right: zoomed-in MIR region (4000 – 2500 cm-1). 
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Fig. 3-12.  Cont. 

 

 

3.4. Discussion 

3.4.1. Quality of ATR-FTIR-PLSR Models of 10 Soil Properties 

How good are the models obtained in this study? According to the assessment criteria, where 

models with r2 ≥ 0.90 and RPD ≥ 2.00 are considered very reliable; models with 0.75 ≤ r2 < 0.90 

and 1.40 ≤ RPD < 2.00 are reliable; and models with r2 < 0.75, and RPD < 1.40 are less reliable. 

Models for the properties TC, TN, C/N, sand, silt, and clay are regarded as reliable to very 

reliable, whereas the models for the properties NH4
+, NO3

-, N uptake, and yield are less reliable.  
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It is not surprising that PLSR models well the properties TC, TN, C/N, sand, silt, and clay. 

Except for C/N, all these properties have assigned MIR absorption signals, with distinct and 

characteristic bands or regions observed in MIR soil spectra. TC, TN, sand, silt, and clay are the 

major components in the soil matrix, where the sum of TC and TN makes up around 6% of the 

total volume of soil; sand, silt, and clay comprise the mineral portion of soil, which accounts for 

45% of the total volume. Their high mass in soil provides intense absorptions, leading to a 

stronger correlation between the spectral signals and reference values. An interesting point raised 

by some researchers is whether the prediction of TN relies on its high correlation to TC or on 

independent measurement of vibrations involving bonds to N (Chang and Laird 2002; Martin, 

Malley et al. 2002; Yang and Mouazen 2012). In our study, the excellent prediction of TN may 

be due to its high correlation with TC (r2 0.94), as indicated by the similar pure component 

spectra of TN and TC (Fig. 3-12). Moreover, the C-H stretching band between 2900 and 2800 

cm-1 was also observed in the pure component spectrum of TN, but its intensity was not as strong 

as that observed in the pure component spectrum of TC.   

Models of good quality were also published by other researchers. For example, Minasny, Tranter 

et al. (2009) reported r2 0.98 and RPD 2.1 for TC; r2 0.94 and RPD 2.0 for TN; r2 0.94 and RPD 

2.3 for sand; r2 0.90 and RPD 2.6 for clay using the DRIFT-MIR technique to analyze soil 

samples collected from three repositories in Australia. ATR-FTIR spectroscopy with 

chemometrics has been less extensively used to model soil properties than DRIFT-MIR 

spectroscopy. Recently, Ge, Thomasson et al. (2014) reported the modeling of 4 properties by 

ATR-FTIR spectroscopy with PLSR, with r2 0.80 and RPD 2.26 for organic carbon; r2 0.92 and 

RPD 3.52 for inorganic carbon; r2 0.90 and RPD 3.14 for sand; and r2 0.94 and RPD 3.38 for 

clay. By comparing our results to those of other researchers, it is apparent that the performance 

of the models obtained by ATR-FTIR spectroscopy coupled with PLSR in our work is in 

accordance with that of others. However, the methods employed by other researchers are diverse. 

Therefore, when comparing the performance of the models, in addition to model assessment 

parameters such as r2 and RPD, we should also carefully examine the models with regard to 

several considerations. These include the type of technique used (DRIFT-MIR/ATR-FTIR, 

or/DRIFT-NIR) and the way it is applied (in the laboratory with dried and ground samples or 

fresh/moist samples, or in the field on extracted cores or top-soils, or on-the-go with sensors 
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embedded on machines); in addition, the range and diversity of the soils tested in the study 

(samples from a single field versus large-scale or nationwide study) must be considered; last but 

not least, an important consideration is the way in which the model was validated by either using 

samples of the same origin as the calibration samples or by using fully independent validation 

sets (Bellon-Maurel and McBratney 2011).  

In our study, a total of 278 Canada-wide soil samples were modeled in the calibration. The type 

of soil varied from clay/silty clay to loamy sand according to the soil texture triangular diagram 

(Figure 3-1). The ranges of the major properties in our samples are in accordance with the 

reference value (Brady & Weil, 1996), where TC ranges from 5.41 to 39.06 g/kg (reference 

value 6 – 36 g/kg), TN ranges from 0.47 to 3.36 g/kg (reference value 0.2 – 5 g/kg), and C/N 

ranges from 6.05 to 18.41 (reference value 8 – 15). For calibration, in order to prevent model 

overfitting, a total of 10 latent variables (LVs) were considered, while 15 LVs were used in the 

work of (Ge, Thomasson et al. 2014).  The optimal number of factors was selected at the first 

minimum of the root mean squared error (RMSE) in leave-one-out cross-validation.  

For the properties, NH4
+, NO3

-, N uptake, and yield, the model performances were considered as 

less reliable when the models were developed using the total sample set. In the two texture 

subsets, the prediction reliability for NH4
+ and N uptake increased and these models were 

considered reliable. Generally speaking, the prediction performance of these 4 properties is 

weak, and there are several reasons leading to this result. 

One of these reasons is the low concentration of NH4
+ (4.34 mg/kg ± 6.75 S.D.) and NO3

- (10. 30 

mg/kg ± 7.25 S.D.) in the soils and their weak absorption signals in the ATR-FTIR spectra of 

soils. The MIR absorption bands of NH4
+ and NO3

- occur in the regions 3410 – 3030 cm-1, 1390 

– 1340 cm-1, and 840 – 730 cm-1 (Miller and Wilkins 1952), but are masked by the stronger 

bands of minerals and organic matter. Linker, Shmulevich et al. (2005) reported that the 

absorption band of NO3
- located around 1370 cm-1 might be overshadowed by the large CO3

2- 

peak found at approximately 1450 cm-1. 

Moreover, the NO3
- content in soil samples changes with time. Unlike NH4

+, NO3
- is negatively 

charged, causing repulsion by soil particles, which mainly have negative charges. As a 

consequence, NO3
- does not attach to soil but dissolves in and travels with water (Page 1982). 
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This may lead to an accuracy problem when measuring NO3
- content in soil, since it changes 

with the water travel pathway in soil and with water content. After sampling, NO3
- content may 

change with changes in the moisture content of the soil over time during storage. In addition, the 

ATR-FTIR spectra were obtained from dried and ground samples. Therefore, the content of NO3
- 

in the sample employed for the spectroscopic analysis would be different from that of the sample 

employed for chemical analysis, leading to error in the calibration, which was built based on the 

correlation between the spectral signals caused by the property measured and the reference 

values. Rossel, Walvoort et al. (2006) reported an r2 of -0.02 for a NO3
- calibration using 

DRIFT-MIR spectroscopy with PLSR developed with 49 dried soil samples from one 

agricultural field in Australia. Linker, Shmulevich et al. (2005) reported a better NO3
- 

quantification using ATR-FTIR spectroscopy with Beer’s law. However, this work was done 

with moist saturated soil spiked with up to 1000 mg KNO3/kg. Although the final result was 

converted to a dry soil basis, the high concentration range of NO3
- makes the comparison to our 

result less meaningful. 

In addition, the weak relationship between the reference values of N uptake and yield and soil 

spectral signals may lead to the poor performance of the models for these properties. In our 

study, soils for chemical and spectroscopic analysis were sampled before seeding and fertilizer 

application. However, after soil sampling, routine farming management proceeded, such as the 

application of fertilizer and herbicide. Therefore, the information from the sampled soil which 

was used in our study to model yield is very limited, since yield is also determined by many 

other factors, such as the application of fertilizer, pesticide, and herbicide, as well as farming 

management and weather. Among these factors, the impact of soil properties on yield is not 

significant enough to be modeled, which can be proved by the correlation analysis between yield 

and other properties, with r2 < 0.13 (Table 3-5). On the other hand, N uptake is measured as the 

total nitrogen from the crop. The nitrogen taken up by the crop comes from the inorganic form of 

nitrogen, NH4
+ and NO3

- in soil. Therefore, a correlation between N uptake and NH4
+ and NO3

- 

was found but the correlation was not strong (r2 0.58 and 0.44, respectively) since external N 

sources were applied as fertilizer during cultivation. Since there is no N uptake information 

directly carried by the spectrum, and the correlation between NH4
+ and N uptake was weak, N 

uptake cannot be fully modeled by ATR-FTIR spectroscopy with chemometrics.  
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3.4.2. Effect of Soil Texture on Model Performance 

How does soil texture affect model performance? This question may be addressed by comparing 

the models obtained with the fine-texture and coarse-texture sample sets. Soil texture is 

determined by the content of clay. Soils with more than 350 g clay/kg are considered as fine-

textured, whereas those with less than 350 g clay/kg are considered as coarse-textured. In the soil 

matrix, there is a positive correlation between clay and soil organic matter, where both show 

surface activity and colloidal activities (Brady and Weil 1996). On the other hand, the proportion 

of sand, silt, and clay determines the size of the soil particles and therefore the light scattering 

effects when detected by infrared spectroscopy.  

For the properties TC, TN, C/N, and clay, the models showed better prediction performances for 

the fine-texture set than for the coarse-texture set, with increases in the RPD value of 12%, 35%, 

8%, and 10%, respectively. It is not surprising to see a better model of clay for the fine-texture 

set, as the higher content of clay provides a stronger signal in the infrared spectrum and therefore 

a more significant correlation is established. The positive correlation between soil organic matter 

and clay content in the soil matrix and the stronger correlation between TC and TN in the fine-

texture set (r2 0.94) than in the coarse-texture set (r2 0.80) both contribute to the improvement of 

the prediction performance. This improvement is most notable in the case of TN, and the model 

for the fine-texture set is considered very reliable.  

Conversely, for the properties sand, silt, NH4
+, NO3

-, and N uptake, the model performances are 

better for the coarse-texture set than for the fine-texture set. Similar to the case of clay 

considered above, sand has a more intense spectral signal in coarse-textured samples, leading to 

a stronger correlation between spectral signals and sand content. Silt is measured by the 

subtraction of sand and clay and shows a much higher correlation with sand (r2 0.90) than with 

clay (r2 0.28). Consequently, prediction of silt shows a better accuracy for the coarse-texture 

subset. In the case of the properties NH4
+, NO3

-, and N uptake, although their model 

performances are regarded as reliable to less reliable, the performances for the coarse-texture 

subset are relatively better. This is not due to correlation with sand content but rather to the 

stronger scattering effect caused to the infrared spectra. The scattering effect due to the larger 

particle size in the coarse-texture set causes the variations in the spectral signal related to the 
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physical information instead of the chemical information, which are modeled. This is apparent in 

Figure 3-12, where mineral contributions are integrated into the pure component spectra of 

NH4
+, NO3

-, and N uptake.  

For the property yield, the prediction performances were considered less reliable in both soil 

texture subsets. The effect of texture on the prediction performance is not significant, given that 

the RPD value is not significantly altered in the texture subsets. As can be seen in Figure 3-12 

mainly noise was modeled in the pure component spectrum for this property.  

 

3.4.3. Effect of Data Pre-treatments on Model Performance 

How do data pre-treatments affect model performance? Most soil properties such as TOC, TN, 

and exchangeable cations were non-normally distributed but follow a lognormal-like 

distribution, which means the data is in a normal distribution after logarithmic transformation 

(Reimann and Filzmoser 1999, Brejda, Moorman et al. 2000). In our study, by assessing the 

skewness value from the parametric test, which measures the asymmetry about the mean, 9 out 

of 10 properties are not normally distributed (with 95% confidence interval) but are positively 

skewed, where the presence of a few exceptionally large values lengthens the right tail (Figure 3-

3). In fact, most soil properties are positively skewed since most of them cannot have negative 

values, therefore constraining the left tail at zero (Brejda, Moorman et al. 2000). Logarithmic 

transformation with the base of 10 (log10) is one of the commonly used data transformation 

techniques, especially in soil science, and is suitable to the situation with all positive 

observations and right skewness. In our study, log10 transformation was applied to all the 

reference values of each soil property. By comparing the skewness value before and after 

transformation, the skewness of the properties TC, NH4
+, and NO3

- was greatly decreased and 

they were approximately normally distributed after log10 transformation. However, in the case of 

other properties, such as TC, C/N, NO3
-, clay and yield, log10 transformation did not improve the 

normality. In the case of the properties sand and silt, the normality even decreased (Table 3-6). 

Therefore, other distribution patterns in addition to log-normal distribution may occur in the case 

of some properties, and the normality of their distribution may be increased by using other types 

of transformation techniques. However, in our study, only log10 transformation was studied.  



 
 

 

82 
 

There are several reasons for transforming the reference data prior to modeling. Firstly, it can 

reduce the influence of extreme observations on the model and prevent their domination over 

other observations. It is undesirable to build a model based on the variation in a property mainly 

coming from the extreme and odd values. However, one should carefully understand the concept 

of sample variety when making a calibration, since a robust calibration should cover as much of 

the variety of the property as possible. Therefore, an extreme value should be carefully treated in 

order to identify whether it is the true value of the sample or an erroneous value. Secondly, data 

transformation can reduce the risk of unnecessarily removing samples as potential outliers 

because they fall outside the whisker region. The number of potential outliers is greatly reduced 

via data compression and the deviation from the mean decreases after log10 transformation. In 

our study, as shown in Figure 3-3, only 3 of the log10 transformed NH4
+ reference values were 

considered as potential outliers instead of 26 before log10 transformation. Other benefits of data 

transformation include stabilizing the variance of the residuals, making the distribution of the 

residuals more normal, making data spread more equally, and making the dataset easier to handle 

owing to the much smaller scale (Eriksson, Byrne et al. 2013). 

In our study, both the original and log10 transformed reference data were used to build the 

calibrations for each property to study the effect of data transformation on calibration 

performance, which was evaluated by the RPD value (Table 3-12). Among the 10 properties, the 

models for TN, NH4
+, silt, N uptake, and yield showed better RPD values when using the log10 

transformed data instead of the original data. However, the increase in RPD was only 5 – 8% 

except in the case of the model for NH4
+, with a 23% increase in RPD, thereby promoting the 

model reliability from less reliable to reliable.  

Reducing skewness and normalizing the distribution of the dataset is one of the main functions 

of log10 normalization. However, there is a lack of information about the relationship between 

the skewness value of the dataset and the RPD value. In our results, most of the model 

performances do not show a trend with the data normality, with the exception of the models for 

NH4
+, where log10 transformation resulted in 23% increase in RPD and 74% reduction in 

skewness, and sand, where log10 transformation resulted in 21% decrease in RPD and 82% 

increase. Among all the properties examined in this study, these two represent the most extreme 
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skewness changes after log10 transformation, where the NH4
+ dataset was almost normalized but 

the normality of the sand dataset decreased and the distribution became highly left-skewed. 

These results may suggest that the contribution of data normality to calibration performance 

exists but only becomes significant when the normality is significantly changed. In addition to 

data normality, the decrease of residual variances and the pulling in of some extreme values 

otherwise considered as potential outliers may also have more or less impact on the calibration 

performance.  

 

Table 3-12. Comparison of skewness and RPD value of calibrations built with original or log10 

transformed reference dataset 

Properties 
Original Log10 transformed  

Skewness RPD Skewness RPD Improvement a 

TC 0.83 1.95 -0.01 1.76  

TN 0.42 1.78 -0.44 1.82 * 

 C/N 0.51 2.19 -0.46 1.81  

NH4
+ 3.47 1.2 0.9 1.48 * 

NO3
- 1.88 1.22 -1.5 1.03  

Sand 0.5 2.45 -2.85 2.03  

Silt -0.07 1.44 -1.14 1.55 * 

Clay 0.63 2.05 -0.77 2.29  

N uptake 1.89 1.29 0.33 1.35 * 

Yield 0.83 1.09 -0.81 1.18 * 
a Models with higher RPD (better performance) following log10 transformation. 

 

3.5. Conclusion 

ATR-FTIR spectroscopy coupled with PCA and PLSR was applied for soil classification and 

prediction of 10 properties closely related to soil quality, including TC, TN, C/N, NH4
+, NO3

-, 

sand, silt, clay, N uptake, and yield. Results of PCA indicated that the information captured in 

ATR-FTIR spectra was adequate to discriminate among soil textures based on the strong IR 

absorption of minerals. A total of 278 soils collected from four Canadian provinces were 

successfully clustered into fine-texture and coarse-texture groups by PCA of their ATR-FTIR 

spectra.  
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Calibration models for the 10 properties examined were built using PLSR. Six out of the 10 

models, including those for TC, TN, C/N, sand, silt, and clay, were considered reliable to very 

reliable on the basis of evaluation criteria widely adopted by other researchers. However, for 

other properties, such as NH4
+, NO3

-, N uptake, and yield, the calibrations were less reliable and 

therefore ATR-FTIR spectroscopy is not recommended to be used in quantification of these 

properties but is suitable for their qualitative analysis. Results also indicated that soil texture and 

data transformation had a certain impact on model prediction performance, but the magnitude of 

the impact is strongly related to the nature of the property and the degree of normality of the 

dataset.  

By comparing the results obtained in this study with those published by other researchers, we 

suggest that ATR-FTIR spectroscopy, coupled with proper spectral pre-processing and data 

transformation, has the potential for successful prediction of soil TC, TN, C/N, sand, silt, and 

clay.  
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CHAPTER 4 

CONNECTING STATEMENT  

 

 

The development of calibration models for 10 soil properties based on ATR-FTIR spectra was 

presented in Chapter 3. Among the 10 properties, the properties TC, TN, C/N, sand, silt, and clay 

were successfully modeled by ATR-FTIR spectroscopy, while the properties NH4
+, NO3

-, N 

uptake, and yield could not be modeled with acceptable accuracy. In order to investigate whether 

the modeling of these properties can be accomplished based on spectral features in the near-

infrared region, DRIFT-NIR spectroscopy was used to model these properties, as described in 

Chapter 4. Furthermore, the suitability of ATR-FTIR and DRIFT-NIR spectroscopy in soil 

quality modeling is compared in terms of accuracy, feasibility, and cost.  
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CHAPTER 4 

 

SOIL QUALITY DETERMINATION BY MODELING OF SELECTED PROPERTIES OF SOIL USING DRIFT-

NIR SPECTROSCOPY COUPLED WITH PCA AND PLSR AND MODEL PREDICTION PERFORMANCE 

COMPARISON BETWEEN DRIFT-NIR AND ATR-FTIR SPECTROSCOPY 

 

 

Abstract  

Near-infrared (NIR) spectroscopy has been widely adopted in precision agriculture to determine 

some properties of interest, such as SOM and clay minerals. However, several minor components 

and comprehensive properties have rarely been modeled by NIR spectroscopy.  In our study, we 

use DRIFT-NIR spectroscopy with PCA and PLSR to characterize 278 soil samples from four 

Canadian provinces and quantify 10 selected soil properties, including chemical properties, such 

as TC, TN, C/N as well as the minor components, NH4
+ and NO3

-; physical properties, such as 

sand, silt, and clay; and the comprehensive properties N-uptake and yield. Our results show 

successful classification of the soils into fine-texture and coarse-texture groups by using PCA. In 

addition, the properties TC, TN, C/N, sand, and clay are successfully modeled by PLSR based on 

the correlation coefficient (r2), the ratio of performance to predictive deviation (RPD), and the 

ratio of performance to interquartile range (RPIQ), where models for TC and TN are considered 

very reliable with RPD ≥ 2.0 and RPIQ ≥ 2.5, while models for C/N, sand, and clay are 

considered reliable with RPD ≥ 1.40 and RPIQ ≥ 2.0. However, in the case of the properties 

NH4
+, NO3

-, silt, N-uptake, and yield, calibrations were not successfully built, with both RPD 

and RPIQ values below 1.4. Comparison of the performance of these DRIFT-NIR calibration 

models with those developed using the ATR-FTIR spectra of the same sample set indicates that 

the ATR-FTIR calibration models have better prediction accuracy than the DRIFT-NIR models, 

especially in the case of SOM and mineral properties, with RPIQ increments between 12% and 

36%. However, considering the higher cost and more sample preparation required by ATR-FTIR 

spectroscopy, DRIFT-NIR spectroscopy is suitable for use in precision agriculture, especially for 

in-field applications, where cost and efficiency are important.     

Key words    soil quality    precision agriculture    DRIFT-NIR    PCA PLSR 
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4.1. Introduction 

Soil quality determines the quality and quantity of crop yield. Soil quality assessment has been 

routine practice in farm management and many conventional soil analytical techniques involving 

a wet chemical extraction process are used. Historically, our understanding of soil and the 

assessment of its quality has been gained through this type of analysis. However, these 

techniques have two main disadvantages, soil integrity damage and low efficiency. The first of 

these refers to the disruption of the soil’s complexity and multi-component interactions during 

the extraction process, making the analytical results more difficult to interpret. Moreover, the 

extraction requires large amounts of solvents, labor, and time, making the efficiency low (Rossel, 

Walvoort et al. 2006). These disadvantages of the conventional techniques became more 

problematic in the 1990s, when precision agriculture was introduced.   

Precision agriculture aims at optimizing farm management to achieve targeted crop yield while 

reducing the application of excess fertilizers. It requires precise detection and control of the 

nutrients in soil (Mintert, Widmar et al. 2016). Therefore, to precisely tailor the usage of 

nutrients and fertilizers, soils from multiple sampling sites within the field should be 

characterized. Hence, precision agriculture requires a soil analytical technique that is capable of 

handling large numbers of samples in a low-cost and efficient way (Terra, Demattê et al. 2015). 

In this context, the disadvantages of the conventional techniques make them unsuitable for use in 

precision agriculture. Consequently, we need to further develop an analytical technique, such as 

infrared spectroscopy, that allows a better understanding of the soil as a complete system and can 

be used to characterize large numbers of soil samples economically and efficiently.  

Although near-infrared (NIR) spectroscopy for soil analysis was first introduced in the 1970s 

(Bowers and Hanks 1965), the study of this approach boomed starting in 2000 (Rossel, Walvoort 

et al. 2006). Numerous investigations have been carried out with NIR spectroscopy to 

characterize many properties of soil, such as total carbon, organic carbon, inorganic carbon, total 

nitrogen, and soil minerals. McCarty, Reeves et al. (2002) and St Luce, Ziadi et al. (2012) 

successfully measured two important soil properties, total carbon (TC) and total nitrogen (TN), 

by using NIR spectroscopy, with coefficients of determination (r2) of 0.86 and 0.89, respectively, 

which represent high accuracy of TC and TN determination. Since soil organic matter (SOM) 
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and clay minerals have proved to be successfully modeled by NIR spectroscopy, and in addition 

they are the most important properties determining soil quality, many researchers have worked 

on these major components. However, other minor components, such as mineralized nitrogen, 

namely, NH4
+ and NO3

-, which are the nutrients directly available for crop uptake, are rarely 

studied and modeled using NIR spectroscopy. In addition, some comprehensive properties, such 

as N-uptake and yield, are more straightforward to interpret as they indicate the production of the 

farm and the quantity of N-nutrients the crops need. However, these comprehensive properties 

lack a basis in chemical, physical, or biological information that can be directly measured. 

Moreover, the relationship between these comprehensive properties and other chemical, 

physical, and biological properties is unclear, making the evaluation of these comprehensive 

properties difficult.   

In this chapter, our goal is to establish calibration models for 10 selected soil properties using 

DRIFT-NIR spectroscopy coupled with PLSR chemometrics. The selected soil properties 

include chemical properties, such as TC, TN, carbon-to-nitrogen ratio (C/N), ammonium (NH4
+), 

and nitrate (NO3
-); physical properties, such as particle size, including sand, silt, and clay; as 

well as comprehensive properties, such as N-uptake and yield. The reliability of the models will 

be assessed by using the commonly adopted evaluation criteria of RPD and RPIQ. In addition, 

since the absorption bands in NIR spectra are generally weak and overlapping, and some soil 

components are even NIR-inactive, the underlying basis behind the calibration against NIR 

information is usually unclear, making the explanation of the NIR quantification models 

difficult. Therefore, to better understand the PLSR calibration using NIR soil spectra, the 

relationship between soil properties and the absorption signals from NIR spectra is studied. In 

addition, the pure component spectrum of each model extracted by PLSR is analyzed to 

understand which regions of the NIR spectra are most related to the soil property. Furthermore, 

the models built by using DRIFT-NIR spectral information are compared to those built by using 

ATR-FTIR spectral information in terms of prediction accuracy, cost, and sample preparation 

requirements, in order to provide the evidence to the farmers who are interested in precision 

farming and want to select a suitable technique to do so.  

 



 
 

 

89 
 

4.2. Materials and Methods 

4.2.1. Description of the Samples 

The soil samples used for NIR spectral acquisition were identical to those used for ATR-FTIR 

spectral acquisition, described in Chapter 3. After drying and grinding, approximately 10 g of 

soil representing each sampling plot was taken for both NIR and ATR-FTIR spectroscopic 

analysis.  

A total of 278 soil samples were studied, which were further separated into two texture subsets 

according to the clay content, namely, a fine-texture subset (≥ 350g clay kg-1 soil, n = 100) and a 

coarse-texture subset (< 350 g clay kg-1 soil, n = 178). The detailed statistical description of the 

reference values for the 278 soil samples is presented in Chapter 3, Table 3-3, 3-4, and 3-5.   

 

4.2.2. Spectroscopic Method 

4.2.2.1. Principle of DRIFT-NIR Spectroscopy 

Near-infrared radiation, with wavelengths between 750 and 2500 nm, is absorbed mainly by C – 

H. N – H, and O – H bonds, which are the primary components of organic compounds (Osborne, 

Fearn et al. 1993). However, the bands in an NIR spectrum are not sharp or distinct because they 

correspond to overtones and combinations of the fundamental absorptions observed in the mid-

infrared region. In addition, light scattering is another factor giving rise to the lack of well-

defined bands in NIR spectra. Consequently, it is difficult to directly correlate sample attributes 

to specific peaks. 

Diffuse reflectance occurs when light impinges on a rough surface of a material, where it is 

partially reflected, absorbed and transmitted. The light passing into the material may also be 

absorbed or reflected. Therefore, the radiation that is reflected from the material is composed of 

surface-reflected and bulk re-emitted radiation, which is summed as the diffuse reflectance of the 

sample (Yang and Mouazen 2012). DRIFT-NIR analysis is conducted by directing NIR light 

onto the soil and the reflected light is collected by the IR detector. According to the Beer-

Lambert law, absorbance is linearly related to the analyte concentration. Therefore, the 

reflectance signal is converted to absorbance using the equation 
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𝐴 = 𝐿𝑜𝑔
1

𝑅
 ………………………………………………………………. (4-1) 

 

where A is absorbance and R is the reflectance signal.  

 

4.2.2.2. DRIFT-NIR Spectral Acquisition  

DRIFT-NIR spectra were collected by a TANGO Fourier transform infrared (FTIR) 

spectrometer (Bruker Optics, Billerica, MA, USA). Approximate 5 g of soil sample contained in 

a clean glass vial was placed into a measurement window with 10 mm diameter. All spectra were 

recorded in diffuse reflectance mode over the wavenumber range of 4000 – 12,500 cm-1 (2500 – 

800 nm) with 4 cm-1 resolution by co-addition of 128 scans (spectral acquisition time of about 1 

minute). These spectra were transformed into absorbance spectra by computing log(1/R), as 

absorbance is directly proportional to the concentration of the absorber according to the Beer-

Lambert law. The absorbance spectra were generated using OPUS spectroscopic software 

(Bruker) and were further saved in SPC format.  

Each soil sample was scanned in duplicate and the duplicate spectra were later averaged to 

produce a single spectrum per sample. Before sample spectral acquisition, an initial blank 

spectrum was recorded to test the spectrometer performance and as a reference for calculating 

the sample spectra in absorbance units.  

 

4.2.3. Spectral Processing and Development of Calibration Models 

4.2.3.1. PCA 

PCA is a data compression process, which reduces a data matrix into a smaller number of 

principal components (PCs), which reflect the underlying structure of the original dataset. A 

more detailed description of PCA is provided in Chapter 3, Section 3.2.4.1. In the present study, 

PCA was applied to extract the information containing the most variations from the spectra. By 

plotting the PCs in two dimensions, interrelationships between the samples and variables can be 

examined.  
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4.2.3.2. PLSR 

PLSR is an extension of PCA, where PLSR shows the correlations between the property values 

and the spectral features. The advantage of PLSR over PCA is that both the spectral (X-matrix) 

variation and the property (Y-matrix) variation are extracted to provide the highest correlation in 

the regression calculation. A more detailed description of PLSR is provided in Chapter 3, Section 

3.2.4.2. In the present study, PLSR was applied to establish quantitative calibration models for 

10 selected soil properties using the total set of soil spectra as well as the fine-texture and coarse-

texture subsets. 

 

4.2.3.3. Spectral Pre-processing and Development of Calibration Models 

Spectral pre-processing aims to eliminate or minimize variability unrelated to the property of 

interest. For example, solid powdered samples vary greatly in particle size distribution, sample 

packing density, and sample morphology, leading to light scattering effects, which are 

particularly severe in NIR spectroscopy. The light scattering appears as baseline shifts, tilt or 

curvature, which are unrelated to the chemical response and may mask the subtle chemically 

induced variation in the spectra. Thus, in order to model the chemical response more effectively, 

it is critical to apply appropriate pretreatment to minimize such physical effects on the spectra.  

The most commonly used spectral pre-processing methods in NIR spectroscopy are derivatives, 

de-trending baseline correction, Standard Normal Variate (SNV), and Multiplicative Scatter 

Correction (MSC). In this study, a Savitzky-Golay filter with 7 data points and a 2nd-degree 

polynomial in combination with multipoint baseline correction and 1st derivative were used to 

minimize unwanted variations while maintaining the signals of interest.  

PCA was conducted using UnscramblerX10.3® (CAMO, Oslo, Norway). Spectral pre-

processing and PLSR calibration were conducted using TQ Analyst™ (Professional Edition 

7.2.0.161, Thermo Fisher Scientific, USA). The PLSR algorithm was used to decompose the raw 

or pre-processed spectra into a maximum of 10 factors. In order to obtain the optimized 

calibration model for each soil property, an individual model was developed for each property. 

All PLSR models were validated using a full cross-validation approach (leave-one-out) where 

each spectrum was in turn excluded from the calibration sample set and was predicted by the 
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model calibrated with the remaining spectra. The optimal number of factors was determined by 

minimizing the predicted residual error sum of squares (PRESS) in cross-validation. 

 

4.2.3.4. Model Assessment 

In addition to the parameters mentioned in Chapter 3, another widely proposed evaluation 

parameter was adopted to estimate the usefulness of the model predictions, namely, the ratio of 

performance to interquartile range (RPIQ). It is determined as the ratio of the interquartile range 

of the reference values to the error of prediction in cross-validation: 

 

𝑅𝑃𝐼𝑄 =  
𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑅𝑎𝑛𝑔𝑒

𝑅𝑀𝑆𝐸
 ………………………………………………… (4-2) 

 

In contrast to RPD, RPIQ accounts for the spread of a population in a dataset with a skewed 

distribution by using the interquartile range instead of the standard deviation. The RPIQ statistic 

was proposed by Bellon-Maurel, Fernandez-Ahumada et al. (2010), and it is better suited to data 

that does not fit a normal distribution, for which high skewness of the dataset is found.  

In our study, models are divided into performance categories in a manner similar to that 

employed by other researchers (Chang, Laird et al. 2001; Veum, Sudduth et al. 2015; Ji, Li et al. 

2016) using the statistics r2, RPD, and RPIQ. Models in the first category are considered very 

reliable (r2 ≥ 0.75, RPD ≥ 2.00, and RPIQ ≥ 2.50), while those in the second category are 

considered reliable (r2 ≥ 0.63, RPD ≥ 1.40, and RPIQ ≥ 2.00), and those in the third category are 

considered less reliable (r2 < 0.63, RPD < 1.40, and RPIQ < 2.00).  

 

4.3. Results 

4.3.1. Statistical Description of Reference Values 

A total of 278 soil samples were used in the NIR spectroscopic study. The statistical information 

for these samples is presented in Table 4-1. According to the clay content, the set of samples is 

divided into fine-texture and coarse-texture groups, and the statistical information for these two 
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subgroups is also presented in Table 4-1. Most of the soil properties do not follow a normal 

distribution, as can be evaluated by the skewness value. All the properties in our study are 

skewed to a certain extent, with most of them being right-skewed, which means that the mass of 

the distribution is concentrated in the small values. In particular, the distribution of NH4
+ and N-

uptake are highly skewed. However, in the case of the property C/N in all the sets, sand in the 

fine-texture set, and clay in the coarse-texture set, the distribution is left-skewed with a negative 

skewness, where the population is concentrated more in the higher values.  

 

Table 4-1. Statistical description of the reference values of 10 properties of soils in the whole set 

of samples and the fine-texture and coarse-texture subsets 

 

 

 

 

 

 

 

 

Soil properties 
Total set 

Mean  Range  Skewness  SD a IQ b 

TC (g/kg) 17.15 5.41-39.06 0.75 5.87 8.33 

TN (g/kg) 1.56 0.47-3.36 0.47 0.49 0.69 

C/N 11.07 6.05-18.41 -0.29 1.78 1.70 

NH4
+ (mg/kg) 4.34 0.39-49.19 2.74 6.75 2.56 

NO3
- (mg/kg) 10.30 0.09-51.3 0.51 7.25 7.44 

Sand (g/kg) 370 0-860 0.47 212 290 

Silt (g/kg) 334 60-619 -0.11 129 180 

Clay (g/kg) 296 42-750 0.64 150 191 

N-uptake (kg N/ha) 42.38 6.36-198.25 1.96 37 31.28 

Yield (kg/ha) 4534 820-11532 0.47 1874 2026 
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Table 4-1. Cont. 

Soil properties 
Fine-texture set 

Mean  Range  Skewness  SD a IQ b 

TC (g/kg) 19.06 8.51-39.06 0.87 5.99 7.97 

TN (g/kg) 1.76 0.84-3.36 0.63 0.51 0.73 

C/N 10.83 8.49-13.43 -0.44 1.03 1.37 

NH4
+ (mg/kg) 4.29 0.39-29.71 1.39 5.97 2.79 

NO3
- (mg/kg) 9.14 0.09-51.3 0.48 7.20 5.40 

Sand (g/kg) 188 0-480 -0.11 110 169 

Silt (g/kg) 359 160-570 0.38 96 115 

Clay (g/kg) 453 351-750 1.28 105 170 

N-uptake (kg N/ha) 37.06 9.67-141.84 1.71 29.62 27.31 

Yield (kg/ha) 4777 941-11532 1.66 1940 1839 

Soil properties 
Coarse-texture set 

Mean  Range  Skewness  SD a IQ b 

TC (g/kg) 16.08 5.41-33.86 0.79 5.53 7.48 

TN (g/kg) 1.45 0.47-2.73 0.26 0.45 0.69 

C/N 11.21 6.05-18.41 -0.32 2.08 1.97 

NH4
+ (mg/kg) 4.37 0.43-49.19 2.96 7.12 2.40 

NO3
- (mg/kg) 10.96 0.36-41.64 0.40 7.22 8.84 

Sand (g/kg) 473 150-860 0.41 185 284 

Silt (g/kg) 320 60-619 0.11 144 223 

Clay (g/kg) 207 42-346 -0.17 83 131 

N-uptake (kg N/ha) 45.51 6.36-198.25 1.92 40.50 33.80 

Yield (kg/ha) 4397 820-9380 0.37 1828 2125 

a Standard deviation; b interquartile range 

 

4.3.2. DRIFT-NIR Spectral Analysis and Development of Calibration Models 

4.3.2.1. DRIFT-NIR Soil Spectral Analysis 

Absorptions in the NIR region are due to the combinations and overtones of the fundamental 

vibrations occurring in the MIR region. The overtones and combinations detected in the NIR 
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region are of low probability and hence give rise to weak absorption.  Generally, the bands in 

NIR spectra are characterized as broad, overlapping, and weak. As illustrated in Fig. 4-1-a, the 

NIR spectra of soil only exhibit a few broad features as well as a pronounced baseline tilt with 

increasing wavenumber.   

Due to the broad and superimposed bands, soil NIR spectra contain fewer bands than MIR 

spectra and the interpretation of these NIR bands is more difficult. Three broad bands were 

observed in the combination and 1st overtone region of the soil NIR spectra. However, not much 

information was found in the 2nd overtone region and only noise was observed in the 3rd overtone 

region (Fig. 4-1-a). Due to the overlapping of the bands, it is impossible to directly associate 

them with specific functional groups. Nevertheless, these bands carry important information 

about the organic matter and minerals in soil. As reported in the literature (Madari, Reeves et al. 

2006; Stenberg, Rossel et al. 2010; Xie, Yang et al. 2011), bands between 7300 and 6900 cm-1 

(1370 – 1450 nm) are due to the 1st overtone of the H-O-H bending vibration of free water and 

water in the lattice of clay minerals, as well as the 1st overtone of aliphatic C-H bending. Bands 

between 5360 and 4930 cm-1 (1865 – 2028 nm) are due to the combinations of O-H stretching 

and organic matter vibrations such as N-H and C-H stretching. Bands between 4630 and 4410 

cm-1 (2160 – 2268 nm) are due to phenolic O-H, amine N-H, amide N-H, and aliphatic C-H 

groups, as well as the mineral lattice (Madari, Reeves et al. 2006; Stenberg, Rossel et al. 2010; 

Xie, Yang et al. 2011).  

The NIR spectrum of soil is strongly influenced by soil texture. The stacked spectra in Fig. 4-1-a 

show representative raw NIR spectra of three selected samples of different soil types, i.e., fine- 

texture, clay type (sample A), coarse-texture, sandy clay loam type (sample B), and fine-texture, 

clay loam type (sample C). Shifts and tilts of the overall baselines are observed, which is due to 

the scattering effect caused by the different particle size distribution in the three soil samples 

(Madari, Reeves et al. 2006; Yang and Mouazen 2012). The degree of scattering is more 

pronounced at shorter wavelength (larger wavenumber), therefore, stronger shift is observed in 

the overtone compared to the combination region. In addition, spectrum B has a higher baseline, 

which is caused by the stronger scattering effect of larger particles. However, the higher 

absorption coefficients for the clay fraction dominate over the particle size effect, resulting in 
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higher absorbance. Therefore, samples A and C, which are high in clay content, exhibit stronger 

absorbance than sample B, which has the lowest clay content.  

 

(a) 

(b) 

Fig. 4-1. DRIFT-NIR spectra (12,500 – 4000 cm-1) of selected samples of fine and coarse texture 

with different TC and TN content. (a) Original spectra; (b) magnified 1st derivative spectra 

 

In order to minimize the undesirable scattering effect, soil spectra were converted to their 1st 

derivatives (Fig. 4-1-b). Derivative spectral pre-treatment is mainly used to eliminate baseline 

drift between samples and resolve overlapping peaks. However, it can also increase noise. 

Compared to the raw spectra, the 1st derivative spectra exhibit increased noise in the 2nd and 3rd 

overtone regions.  
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In addition to soil type variations, the three selected samples in Fig. 4-1 have different TC and 

TN contents: sample A contains the highest amount of TC and TN, followed by sample C and 

then sample B. The difference in band absorbance due to variations in TC and TN content is 

more clearly revealed after resolving the overlapping peaks via the 1st derivative (Fig. 4-1-b).; 

bands between 5370 and 5200 cm-1 (1862 – 1923 nm) and between 4730 and 4530 cm-1 (2114 – 

2208 nm), which are related to organic matter C-H and N-H functional groups, have highest 

absorbance in spectrum A, followed by spectra C and B. In addition, the band between 7370 and 

7070 cm-1 (1357 – 1414 nm) is due to the O-H bond of clay; hence, the intensity of this band is 

highest in spectra C and A. 

 

4.3.2.2. PCA of DRIFT-NIR Spectra 

The complete data matrix including all samples and all the wavenumbers (12,500 – 4000 cm-1) 

was modeled by PCA. The first two PCs explained 99% of the total variance of the data set, with 

PC1 and PC2 accounting for 92% and 7%, respectively (Fig. 4-2). The rest of the PCs explain 

only 1% of the variance. Therefore, the first two PCs were selected for later analysis.  

 

 

Fig. 4-2. Explained variance of the sample set by 10 PCs 
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Loadings are the correlations between the PCs and the original variables. The loadings plots for 

PC1 and PC2 presented in Fig. 4-3 indicate how much of the variation in a variable 

(wavenumber) is explained by each component. The higher the loadings value for the variable, 

the more variation of that variable is explained by the PC. In addition, loadings can be negative 

or positive, which indicates whether the PCs and variables are negatively or positively 

correlated. Figure 4-3-a is the loadings plot for PC1, which resembles an inverted NIR spectrum 

of soil. The loadings values are high at wavenumbers in the regions between 7280 and 6862 cm-1 

(1373 – 1457 nm), 5358 and 4902 cm-1 (1866 – 2040 nm), and 4655 and 4408 cm-1 (2148 – 2268 

nm). These NIR regions contain the bands characteristic of clay minerals and organic matter. 

Therefore, PC1 mainly accounts for the variations of clay minerals and organic matter within the 

set of 278 soil samples. Nevertheless, the negative values of the loadings indicate that the 

correlations between PC1 and the variations of clay minerals and organic matter are negative.  

 

Fig. 4-3. PCA loadings plots: (a) PC1; (b) PC2 
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Figure 4-3-b is the loadings plot for PC2, which resembles the tilted baseline in soil NIR spectra. 

Moreover, there is a small bump in the region between 5296 and 5049 cm-1 (1888 – 1980 nm), 

which is characteristic to clay minerals. PC2 explains 7% of the total variance of the dataset, 

where the explained variation is mainly from the baseline tilt. As well, a small part of the 

variation of clay minerals is also explained by PC2.  

Scores are the values of the original data for each sample projected onto the new coordinate 

system formed by the PCs. By plotting the scores value between two PCs, the relations among 

samples and the PCs can be revealed. Eleven scores plots (PC1 versus PC2) generated from PCA 

of the 278 DRIFT-NIR spectra are presented in Fig. 4-4. In each scores plot, a specific property 

of the samples is examined. These 11 properties are TC, TN, C/N, NH4
+, NO3

-, sand, silt, clay, 

N-uptake, yield, and texture. For the interpretation of the scores plots for each of the first 10 

properties, the samples were separated into two groups according to the property’s reference 

values, where the samples with values below the median are grouped together, as are those with 

values above the median. For the property of soil texture, the samples were separated into fine-

texture and coarse-texture sets. In the scores plots, each point represents a sample; and points in 

the same color represent samples from the same group. In addition, points that are close together 

indicate that the samples they represent are similar. Therefore, by examining the distribution of 

the colored points, the relationships among samples and PCs are revealed.  

The scores plots show a distinct clustering of the samples related to the properties silt, clay, and 

texture (Fig. 4-4-g; -h; -k). The two clusters observed for each of these properties are located at 

the two extremes of PC1, while the points are randomly spread in the PC2 dimension. This 

indicates that the original values of the properties silt, clay, and texture are overwhelmingly 

explained by PC1. Samples high in clay content have negative scores in PC1 (Fig. 4-4-h), which 

is explained by the negative loadings for clay signals in PC1. Fine texture is related to high clay 

content, and therefore points representing fine texture are clustered at the left extreme of PC1, 

where the scores values are negative (Fig. 4-4-k). However, samples with high silt content are 

clustered in the region where the scores of PC1 are positive (Fig. 4-4-g). This indicates that silt is 

positively correlated to PC1.  However, in the case of the other properties, no distinct clustering 

is observed in the scores plots. This might due to masking of the signals of these properties by 
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the relatively strong mineral signals. Sand is the biggest component in soil, but no cluster is 

found in its scores plot. This is because sand is NIR-inactive and thus no information on sand can 

be captured in NIR spectra.  

 

Fig. 4- 4. PCA scores plots for selected properties derived from DRIFT-NIR spectra of 

278 soil samples: (a) TC; (b) TN; (c) C/N; (d) NH4
+; (e) NO3

-; (f) sand; (g) silt; (h) 

clay; (i) N-uptake; (j) yield; (k) texture 
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Fig. 4-4.  Cont. 

 

4.3.2.3. Correlation Analysis 

The correlation coefficients among 10 properties of soil and the scores of PC1 and PC2 are 

summarized in Table 4-2. The closer the absolute value of the coefficient is to 1.00, the stronger 

the linear relationship between the two variables; the positive and negative values indicate 

whether the two are positively or negatively correlated. The analysis (Table 4-2) shows strong 

relationships between TC and TN, sand and silt, as well as sand and clay, with correlation 

coefficients (r2) of 0.86, -0.72, and -0.81 respectively. In addition, a moderate relationship exists 

between N-uptake and NH4
+, N-uptake and yield, as well as NO3

- and yield, with r2 values of 

0.64, 0.63 and 0.42, respectively. The correlation between N-uptake and yield in the fine-texture 

set dramatically increases to an r2 of 0.91. In addition, in the coarse-texture set, a similar 

increased correlation is found between sand and silt, with an r2 value of -0.91. Other correlations 

among the rest of the properties are weak for the total sample set as well as for the two texture 

subsets.  

In the total sample set, the scores of PC1 are mainly correlated to sand (r2 0.45), clay (r2 -0.35), 

and C/N (r2 0.32). However, no correlation between scores and properties are found for PC2. 

This result is consistent with the loadings plot for PC2 in Figure 4-3, which shows that this PC 

mainly accounts for the variation of the baseline. Similar results are found for the coarse-texture 
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subset, where the scores for PC1 have stronger correlations with the properties, mainly the 

minerals and organic matter, such as TC, than the scores for PC2. In contrast, for the fine-texture 

subset, the scores for PC2 show stronger correlations with sand and silt than the scores for PC1.  

 

Table 4-2. Correlation matrix between 10 properties of soils and the first two PC scores obtained 

by principal component analysis of the DRIFT-NIR spectra of the total sample set, the fine-

texture subset, and the coarse-texture subset 

 

 

 

 

 

 

 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Total set 

TC 1.00          

TN 0.86 1.00         

C/N 0.36 -0.16 1.00        

NH4
+ 0.16 0.34 -0.29 1.00       

NO3
- 0.06 0.10 -0.10 -0.02 1.00      

Sand -0.15 -0.29 0.25 -0.05 0.06 1.00     

Silt  -0.02 0.11 -0.22 0.10 0.12 -0.72 1.00    

Clay  0.23 0.33 -0.17 -0.01 -0.19 -0.81 0.18 1.00   

N uptake -0.02 0.17 -0.33 0.64 0.43 0.07 0.17 -0.24 1.00  

Yield  0.05 0.12 -0.12 0.16 0.42 0.04 -0.02 -0.05 0.63 1.00 

PC1 (NIR) 0.28 0.11 0.32 -0.27 0.24 0.42 -0.28 -0.35 0.09 0.03 

PC2 (NIR) 0.11 0.04 0.12 -0.09 -0.07 -0.04 0.07 0.00 -0.05 0.10 
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Table 4-2. Cont. 

 TC TN C/N NH4
+ NO3

- Sand Silt Clay N uptake Yield 

 Fine-texture subset 

TC 1.00          

TN 0.89 1.00         

C/N 0.46 0.02 1.00        

NH4
+  0.09 0.32 -0.33 1.00       

NO3
- -0.05 -0.10 0.07 -0.21 1.00      

Sand -0.37 -0.27 -0.27 0.18 0.01 1.00     

Silt  0.15 0.09 0.13 -0.10 0.17 -0.49 1.00    

Clay  0.25 0.19 0.17 -0.10 -0.17 -0.61 -0.40 1.00   

N uptake 0.05 0.08 -0.02 0.36 0.24 0.00 0.09 -0.09 1.00  

Yield  -0.02 0.01 -0.06 -0.01 0.37 0.03 0.15 -0.17 0.91 1.00 

PC1 (NIR) 0.35 0.24 0.26 -0.38 0.06 -0.14 -0.23 0.36 0.08 -0.07 

PC2 (NIR) 0.37 0.26 0.29 -0.05 -0.15 -0.50 0.53 0.04 -0.29 -0.23 

 Coarse-texture subset 

TC 1.00          

TN 0.81 1.00         

C/N 0.37 -0.22 1.00        

NH4
+ 0.21 0.38 -0.27 1.00       

NO3
- 0.18 0.30 -0.20 0.07 1.00      

Sand 0.17 -0.09 0.39 -0.12 -0.03 1.00     

Silt  -0.17 0.04 -0.31 0.15 0.14 -0.91 1.00    

Clay  -0.09 0.12 -0.35 0.00 -0.17 -0.68 0.31 1.00   

N uptake -0.01 0.30 -0.44 0.65 0.52 0.00 0.21 -0.39 1.00  

Yield  0.06 0.16 -0.14 0.17 0.46 0.17 -0.11 -0.20 0.54 1.00 

PC1 (NIR) 0.44 0.25 0.32 -0.26 0.28 0.36 -0.25 -0.39 0.06 0.11 

PC2 (NIR) -0.03 -0.08 0.05 -0.11 -0.03 0.05 -0.10 0.06 0.06 0.34 
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4.3.2.4. PLSR Calibration Models for DRIFT-NIR Spectra 

Tables 4-3, 4-4, and 4-5 summarize the calibration and cross-validation statistics of the PLSR 

models developed for the 10 soil properties with the pre-processed DRIFT-NIR spectra of the 

total sample set and the fine-texture and coarse-texture subsets. For the total sample set (Table 4-

3), the PLSR models for TC, TN, C/N, sand, and clay produced excellent prediction accuracy, 

with Rc
2 values of 0.85 – 0.93, Rcv

2 values of 0.72 – 0.83, and RPD values of 1.45 – 1.80. The 

correlations between the measured and predicted values as well as the PRESS plots for these five 

properties are shown in Figure 4-5. PRESS plots indicate how the predicted residual error sum of 

squares decreases with the number of latent variables used. The number of latent variables used 

in each calibration corresponded to the minimum PRESS value.  

 

Table 4-3. Calibration (C) and cross-validation (CV) of PLSR models developed with pre-

processed DRIFT-NIR spectra: Total sample set (n = 278) 

 

For the properties NH4
+, NO3

-, silt, and N-uptake, the correlations between the predicted and 

reference values are lower, with Rc
2 values of 0.66 – 0.79 and Rcv

2 values of 0.46 – 0.61. Based 

Model information Evaluation parameters 

Property 
Spectral  

pre-treatment 

Calibration  

region (cm-1) 
Rc

2|Rcv
2 RMSEC RMSECV LVs RPD RPIQ 

TC 

Savitzky-

Golay 

smoothing 

with 1st 

derivative in 

calibration 

region 

7506 - 4050 0.93|0.80 1.93 3.22 6 1.65 2.28 

TN 8009 - 4157 0.89|0.72 0.22 0.33 6 1.45 1.95 

C/N 8009 - 4157 0.85|0.75 0.75 0.93 4 1.51 1.73 

NH4
+ 7766 - 4157 0.79|0.61 1.06 1.38 3 1.26 0.90 

NO3
- 7515 - 4112 0.69|0.45 3.60 4.55 5 1.09 1.37 

Sand 9986 - 4182 0.85|0.76 107 135 7 1.60 2.15 

Silt 9986 - 4182 0.66|0.48 96 112 3 1.14 1.59 

Clay 9986 - 4182 0.93|0.83 55 81 6 1.80 2.23 

N-uptake 8009 - 4157 0.66|0.46 24 28 4 1.11 0.99 

Yield 9987 - 4050 0.35|0.20 1510 1600 1 1.01 1.85 
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on their RPD values between 1.09 and 1.26, the models are classified as less reliable. For the 

property yield, the correlation between the predicted and reference values is poor with a Rc
2 of 

0.35 and an Rcv
2 of 0.20. As well, the model for yield is classified as less reliable, with an RPD 

of 1.01.   

 

 

 

Fig. 4-5.  Calibration (left) and PRESS plots (right) of PLSR calibrations based on the 

DRIFT-NIR spectra of the total sample set for the properties TC (a), TN (b), C/N (c), 

sand (d), and clay (e). 
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For the fine-texture subset (Table 4-4), similar results to those for the total sample set were 

found, where the PLSR models for TC, TN, CN, and clay showed excellent prediction 

performances. The correlation coefficients and model performances for these properties 

improved for the fine-texture subset, with Rc
2 values of 0.86 – 0.96, Rcv

2 values of 0.73 – 0.91, 

and RPD values of 1.44 – 2.43. However, the performance of the model for sand deteriorated, 

with an RPD value of <1.40. The correlations between the predicted and reference values for the 

other properties generally improved for the fine-texture subset, with Rc
2 values of 0.62 – 0.87. 

Nevertheless, based on RPD values, the models for these properties were still classified as less 

reliable.   

 

 

Table 4-4. Calibration (C) and cross-validation (CV) of PLSR models developed with pre-

processed DRIFT-NIR spectra: Fine-texture subset (n = 100) 

 

For the coarse-texture subset (Table 4-5), excellent PLSR prediction performances were found 

for the properties TC, TN, C/N, sand, clay, and N-uptake, with Rc
2 values of 0.79 – 0.97, Rcv

2 

Model information Evaluation parameters 

Property 
Spectral  

pre-treatment 

Calibration  

region (cm-1) 
Rc

2|Rcv
2 RMSEC RMSECV LVs RPD RPIQ 

TC 

Savitzky-

Golay 

smoothing 

with 1st 

derivative in 

calibration 

region 

7506 - 4050 0.96|0.91 1.49 2.28 7 2.43 3.10 

TN 8009 - 4157 0.96|0.88 0.14 0.22 7 2.20 3.19 

C/N 8009 - 4157 0.86|0.73 0.49 0.67 5 1.44 1.81 

NH4
+ 7766 - 4157 0.71|0.61 0.61 0.69 3 1.28 1.30 

NO3
- 7515 - 4112 0.62|0.21 3.07 3.99 1 0.98 1.08 

Sand 9986 - 4182 0.82|0.64 53 72 3 1.29 2.01 

Silt 9986 - 4182 0.76|0.57 57 73 2 1.19 1.09 

Clay 9986 - 4182 0.90|0.74 44 69 6 1.47 2.18 

N-uptake 8009 - 4157 0.87|0.44 13 25 5 1.10 1.07 

Yield 9987 - 4050 0.86|0.51 954 1630 4 0.95 0.95 
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values of 0.71 – 0.88, and RPD values of 1.42 – 2.08. Among them, the calibration for N-uptake 

showed great improvement, where the performance of the model for the coarse-texture subset is 

considered to be very reliable. This may be due to the stronger correlations between N-uptake 

and TN and between N-uptake and clay in the coarse-texture subset, where the correlation 

coefficients increase from 0.08 to 0.33 and from -0.09 to -0.39, respectively, between the total 

sample set and the coarse-texture subset (Table 4-2). For the other properties, the correlation 

coefficients and the prediction performance of the models are improved for the coarse-texture 

subset but the RPD values still remain less than 1.40. Hence, PLSR cannot quantitatively model 

these properties.   

 

 

Table 4-5. Calibration (C) and cross-validation (CV) of PLSR models developed with pre-

processed DRIFT-NIR spectra: Coarse-texture subset (n = 178) 

 

The RPD values of each property for the total, fine-texture, and coarse-texture sample sets are 

compared in Figure 4-6. The two horizontal lines divide the plot into three zones corresponding 

Model information Evaluation parameters 

Property 
Spectral  

pre-treatment 

Calibration  

region (cm-1) 
Rc

2|Rcv
2 RMSEC RMSECV LVs RPD RPIQ 

TC 

Savitzky-

Golay 

smoothing 

with 1st 

derivative in 

calibration 

region 

7506 - 4050 0.97|0.88 1.19 2.47 7 2.08 2.85 

TN 8009 - 4157 0.91|0.76 0.18 0.29 5 1.54 2.31 

C/N 8009 - 4157 0.94|0.85 0.55 0.85 4 1.88 2.05 

NH4
+ 7766 - 4157 0.81|0.62 0.97 1.29 3 1.28 0.82 

NO3
- 7515 - 4112 0.72|0.60 3.73 4.37 2 1.24 1.78 

Sand 9986 - 4182 0.79|0.73 106 119 3 1.46 2.24 

Silt 9986 - 4182 0.77|0.64 90 109 4 1.29 1.97 

Clay 9986 - 4182 0.80|0.71 49 57 5 1.42 2.29 

N-uptake 8009 - 4157 0.88|0.78 17 23 4 1.59 1.30 

Yield 9987 - 4050 0.71|0.45 1250 1620 2 1.10 1.26 
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to RPD values above 2.00, between 1.40 and 2.00, and below 1.40. These three zones indicated 

the reliability of the PLSR model to be very reliable, reliable or less reliable, respectively.  

According to this criterion, the models for TC, TN, C/N, sand, and clay are all considered 

reliable. Moreover, the prediction performances for TC and TN improved for the fine-texture 

subset and hence these models are considered very reliable. However, for the properties NH4
+, 

NO3
-, silt, N-uptake and yield, the quantification performance of the PLSR models was 

considered less reliable. Among these five properties, N-uptake showed improved prediction 

accuracy in the coarse-texture subset and the quantification is considered reliable.  

 

 

 

Fig. 4-6. Comparison of RPD values of the models for 10 properties developed with the total 

sample set and the fine-texture and coarse-texture subsets. 

 

4.3.2.5. Pure Component Spectra Derived from PLSR Analysis of DRIFT-NIR Spectra 

The 1st derivative pure component spectra for the 10 properties, which are extracted from the 

spectra of the total sample set by PLS analysis, are stacked in Figure 4-7. Compared to the 1st 

derivative soil spectrum (first spectrum in Fig. 4-7), the 1st derivative pure component spectra for 

TC, TN, NH4
+, and clay show a similar absorption pattern, containing the absorption band in the 

region between 5400 and 5150 cm-1 characteristic of O-H, C-H, and N-H functional groups. 

Absorption bands in this region are also found in the pure component spectra for other 
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properties; however, the bands are either inverted (in the case of C/N, NO3
+, silt, N-uptake, and 

yield) or shifted (in the case of sand). Since there is no direct relationship between these 

properties and absorption in this region, the inverted and shifted bands may result from the 

negative correlation between these properties and TC, TN, or clay minerals, all of which have 

absorptions in this region.  

Fig. 4-7. 1st derivative pure component spectra for 10 soil properties obtained from PLSR 

modelling of the 1st derivative DRIFT-NIR spectra of the total sample set against the reference 

values for each property 
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Absorptions in the region between 7260 and 6860 cm-1, which are due to O-H bending in the 

mineral lattice, are also observed in the 1st derivative pure component spectra for TC, TN, sand, 

silt, clay, and N-uptake. It is not surprising to observe these bands in the case of silt and clay, 

since absorption in this region is characteristic of minerals. However, the band found in the pure 

component spectrum is not due to absorption by sand since it is NIR inactive, but rather is due to 

its close correlation to clay, which has strong NIR absorption in this region. This explanation 

also applies to the pure component spectra for TC, TN, and N-uptake, in which the same 

absorption in the region 7260 – 6860 cm-1 specific to minerals is observed, but with   much 

weaker intensity. In the case of the pure component spectra for NH4
+, NO3

-, and yield, no band in 

this region is observed.  

The 1st derivative pure component spectra for all 10 properties show absorptions below 4630 cm-

1. The region below 4630 cm-1 is the combination region of the fundamental vibrations of various 

functional groups, such as aliphatic C-H, phenolic O-H, amine N-H, and amide N-H, as well as 

the mineral lattice. It is impossible to assign the bands in this region to a specific functional 

group since the bands due to the various functional groups are highly overlapped. Furthermore, 

the pattern of absorptions in this region varies among the properties. This may be due to different 

correlations and interactions between these functional groups.  

 

4.3.2.6. Evaluation of Performances of DRIFT-NIR-PLSR Models Based on RPD and RPIQ 

RPD and RPIQ values as model performance indicators are summarized and compared in Figure 

4-8. In general, models with high RPD values have high RPIQ values. For example, for all three 

sample sets, the RPIQ values of the models for TC, TN, sand, and clay are all greater than their 

RPD values, and they are all above the upper threshold value of 2.00, which is the criterion for 

very reliable performance. Therefore, by basing the evaluation of model performances on RPIQ 

values, the models for TC, TN, sand, and clay are all classified as very reliable. Similar 

improvements are found in the case of the models for C/N and silt, where their RPIQ values are 

greater than 1.40, indicating reliable performance. However, in the case of other properties such 

as NH4
+, NO3

-, N-uptake, and yield, in general, the RPIQ values are similar to the RPD values. 

In addition, some RPIQ values are lower than the corresponding RPD values, such as the values 
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for the NH4
+ model in the case of both the total sample set and the coarse-texture subset. Overall, 

the models for the properties, NH4
+, NO3

-, N-uptake, and yield are classified as less reliable, no 

matter which indicator is used. Exceptions are the model of NO3
- in the case of the coarse-texture 

subset and the model for yield in the case of the total set, for which the RPIQ values are much 

higher than the RPD values, making the models reliable based on the RPIQ criterion.  

 

 

Fig. 4-8. RPD and RPIQ values of DRIFT-NIR calibration models for 10 soil properties built 

using the total, fine-texture, and coarse-texture sets. 

 

 

4.4. Discussion 

4.4.1. Quality of DRIFT-NIR-PLSR Models of 10 Soil Properties 

According to the performance evaluation criteria, the DRIFT-NIR models for TC, TN, C/N, 

sand, and clay developed using the total sample set are considered reliable. This result meets our 

expectations, since soil organic matter and clay minerals are the fundamental constituents of the 

soil and have well-recognized absorption features in NIR spectra. For these reasons, TC is the 

constituent that has most frequently modeled by NIR spectroscopy over the past few decades, 

followed by clay content and TN (Rossel, Walvoort et al. 2006; Stenberg, Rossel et al. 2010). 
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Although sand is NIR-inactive and C/N does not have a primary NIR signal, these two 

components show significant correlation to components that have primary NIR signals, such as 

clay and TC, resulting in the successful modelling of these two components by the PLSR 

calibrations.   

 

4.4.1.1. SOM 

The performances of calibration models for TC, OC, and SOM reported in the literature are 

variable (Table 4-6), with some models being considered very reliable.  In our study, variability 

in the performance of the TC calibration models was also found among the three datasets (total, 

fine-texture, and coarse-texture). A possible explanation for this is the low percentage (6%) of 

TC in soil and the weak TC signal in NIR spectra. In addition, the model performance is very 

sensitive to the large values of TC in a dataset, since TC in agricultural soils is expected to 

exhibit natural skewness of the data toward low values. Stenberg, Rossel et al. (2010) 

summarized the relationship between r2 of OC calibrations and the standard deviation of the 

reference values from the published data (Martin, Malley et al. 2002; Udelhoven, Emmerling et 

al. 2003; McCarty and Reeves 2006; Rossel, Walvoort et al. 2006; Wetterlind, Stenberg et al. 

2008), where r2 increased from 0.6 to 0.9 when the SD increased from 2.5 to 10 mg/g. However, 

this effect of the SD of the reference values is not pronounced in our TC models since the SD 

values and skewness of the three datasets are similar, with SD values between 5.13 and 5.32 g/kg 

and skewness between 0.75 and 0.87.  

Another factor influencing the performance of the TC calibration models is the highly variable 

mineral matrix among soil samples. Because the TC signal in the NIR spectra is much weaker 

than signals due to the mineral matrix, it may be masked by mineral variations, especially in the 

situation when the soil dataset examined includes many different soil types and soils from 

different geological conditions. For this reason, it is often reported that field- or farm-scale 

calibrations would have better performance than larger-scale calibrations based on soils collected 

over larger geographic areas. Stenberg, Jonsson et al. (2002) found that OC calibrations were 

improved if the sandiest soils were removed. Stenberg, Rossel et al. (2010) later reported that 

SOC was overestimated and caused larger errors if the sample population contained large 
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amounts of sand. Udelhoven, Emmerling et al. (2003) suggested that stratification of the samples 

according to their geological condition can produce better results. In our results, the TC 

calibrations for the two texture subsets have better performance than the calibration for the total 

set. Therefore, in our study, variation in soil type had a pronounced effect on the performance of 

TC calibrations.  

Similar results were found for our TN calibrations, where the performances ranged from reliable 

to very reliable. These performances are similar to those reported in the literature (Table 4-6). 

Moreover, as in the case of the TC calibrations, the TN calibrations for the fine-texture and 

coarse-texture subsets again performed better than the calibration for the total set. This may 

again be attributed to the larger variation of the mineral matrix which masks the variation of TN, 

which is general below 1% and only comprises 1/10 of the SOM (Stenberg, Rossel et al. 2010). 

The mechanism behind TN prediction is debatable. Some authors argue that TN is predicted on 

the basis of specific absorption since it is associated with specific overtone and combination 

absorptions in the NIR region (Chang and Laird 2002). However, N-specific absorptions in NIR 

spectra are very weak, and therefore some authors argue that TN is predicted through its 

correlation to TC. Consequently, TN calibrations rarely perform better than the calibrations for 

TC or SOM (Rossel, Walvoort et al. 2006). Martin, Malley et al. (2002) reported that the 

calibration of TN failed when the correlation between C and N was only 0.67, while the 

calibration of TN became successful when the correlation was as high as 0.96. This may suggest 

that when the correlation between C and N is strong, the good performance of the TN calibration 

is based on its correlation to TC. When such correlation is absence, the TN calibration is based 

on N-specific absorption in NIR spectra (Stenberg, Rossel et al. 2010). In our study, the 

correlation between TC and TN is strong in all three datasets, with an r2 of 0.86 for the total 

sample set, and the performances of the TN calibrations are good but not as good as those of the 

TC calibrations. It may be noted that the largest performance discrepancy between the TC and 

TN calibration was that for the coarse-texture subset, which also has the least strong correlation 

between TC and TN, with an r2 of 0.81. 
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4.4.1.2. Minerals 

For the three datasets, the calibration models for clay were all very reliable and the models for 

sand ranged between very reliable and reliable, while the models for silt were less reliable. Our 

findings are in accordance with the literature, where models for clay have been reported to 

perform well (Chang, Laird et al. 2001; Islam, Singh et al. 2003; Stenberg, Rossel et al. 2010). 

This is because clay minerals have strong and specific NIR absorption. On the other hand, sand 

is NIR-inactive; and therefore calibration must be based on correlations between sand content 

and other components that have NIR signals. For this reason as well as due to the important 

properties that clay minerals provide, such as formation of soil aggregates, nutrient adsorption 

and release, and water dynamics, modeling of clay content has received more focus in NIR 

studies (Stenberg, Rossel et al. 2010). 

The performances of calibrations for sand, silt, and clay reported in the literature are variable. A 

possible explanation for this variability may be the differences in the calibration ranges among 

the different studies published in the literature. For example, in the case of calibration models for 

sand, Chang, Laird et al. (2001) reported a 2.32 RPD, Islam, Singh et al. (2003) reported a 1.50 

RPD, and Veum, Sudduth et al. (2015) reported a 1.00 RPD. The RPD values are related to the 

SD of the reference values for the population, where the SD values in these three studies were 

278 g/kg, 231 g/kg, and 49 g/kg, respectively. In addition, the higher the geological 

heterogeneity, the less robust the model performance will be. For example, in the case of 

calibration models for clay, Wetterlind, Stenberg et al. (2007) reported a 2.80 RPD with samples 

collected from a single field in South Sweden, while Islam, Singh et al. (2003) published a 1.90 

RPD with samples representing 11 types of soil in Australia. Although the SD of the population 

in the latter study (187 g/kg) was larger than that in the former study (108 g/kg), the performance 

of the model was poorer since the samples were much more geologically heterogeneous.  
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4.4.1.3. Other Properties 

Other properties including two chemical properties, the mineralized N (NH4
+ and NO3

-), and two 

comprehensive properties, N-uptake and yield, were not reliably estimated, where the RPD and 

RPIQ values fell below the lowest boundary. There are several possible explanations to these 

unsuccessful calibrations. In the case of mineralized N, the first is the low content in soil, less 

than 50 mg/kg in our dataset. Therefore, not much information on mineralized N is captured in 

the NIR spectra. Furthermore, all four properties are uncorrelated with TC and clay content (r2 < 

0.24). Furthermore, N-uptake and yield may be affected due to the anthropogenic inputs of 

fertilizers, whereby the relationship between N-uptake or yield and the primary soil properties 

producing spectral features, such as TC, TN, and clay, is disrupted. Hence, calibrations cannot be 

achieved via correlation to other properties with primary NIR absorptions. These results 

emphasize the importance of primary or secondary associations between soil properties and NIR 

spectral features for reliable calibration. The inability to model comprehensive properties is not 

limited to yield and N-uptake, as other researchers reported that comprehensive properties such 

as aggregate stability, bulk density, and water-filled pore space were not successfully estimated 

by NIR spectroscopy (Veum, Sudduth et al. 2015).  
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Table 4-6. Summary of literature on modeling of soil properties using NIR spectroscopy with 

multivariate calibration 

Attribute Range  ncali|nvali 
b rc

2 c RPD d RPIQ e LVs f Authors 

Total Carbon 

(g/kg) 
1.3-285.8 743 0.87 2.79 NA 7 

(Chang, Laird et 

al. 2001)  

Total Nitrogen 

(g/kg) 

2.3-16.5 744 0.85 2.52 NA 7 
(Chang, Laird et 

al. 2001)  

1.0-3.4 125|104 0.84 2.4 4.1 8 
(Veum, Sudduth 

et al. 2015)  

Mineralizable 

Nitrogen (mg/kg) 

0.4-555.1 764 0.72 1.84 NA 8 
(Chang, Laird et 

al. 2001)   

0-133 125|104 0.57 1.5 2.1 8 
(Veum, Sudduth 

et al. 2015) 

Sand (g/kg) 

12-952 743 0.82 2.32 NA 8 
(Chang, Laird et 

al. 2001)  

83-983 121|40 0.53 1.5 NA NA 
(Islam, Singh et 

al. 2003)  

0-250 125|104 0.11 1.0 1.0 10 
(Veum, Sudduth 

et al. 2015)  

Silt (g/kg) 

31-853 743 0.84 2.52 NA 8 
(Chang, Laird et 

al. 2001) 

0-400 121|40 0.05 0.9 NA NA 
(Islam, Singh et 

al. 2003)  

58-86 125|104 0.30 1.1 1.6 7 
(Veum, Sudduth 

et al. 2015)  

Clay (g/kg) 

7-352 743 0.67 1.71 NA 12 
(Chang, Laird et 

al. 2001)  

17-717 121|40 0.72 1.9 NA NA 
(Islam, Singh et 

al. 2003)  

120-620 52 0.86 2.8 NA 3 

(Wetterlind, 

Stenberg et al. 

2007) 

84-167 125|104 0.67 1.7 1.9 5 
(Veum, Sudduth 

et al. 2015)  

0.2-543 70|32 0.82 2.34 3.4 2 

(Nawar, 

Buddenbaum et 

al. 2016)  
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4.4.2. Effect of Soil Texture on Model Performance 

Based on comparison of both the RPD and RPIQ values for each property’s model among the 

total sample set and the two texture subsets, only the models for TC and TN show significant 

improvement in the two texture subsets. For example, in the case of models for TC, the 

performance of the model for the fine-texture subset is the best, followed by that for the coarse-

texture subset, with increases in the RPIQ value of 36% and 25%, respectively, compared to that 

for the total sample set; the corresponding increases in RPD value are 47% and 26%, 

respectively. However, in the case of the models for the other properties, the performances did 

not vary substantially among the three sample sets, with < 20% difference in RPD or PRIQ 

values.  

There are several possible explanations for the variations in the performance of the TC and TN 

models. (Stenberg, Rossel et al. 2010) indicated that the variation in SOM itself is the key factor 

causing the variation of the model performance. However, in our case, the variation of TC and 

TN is similar in the three sample sets; the SD of TC in the total, fine-texture, and coarse-texture 

sample sets is 5.32, 5.53, and 5.13 g/kg, respectively; while the SD of TN in three sets is 0.48, 

0.48, and 0.45 g/kg respectively. Hence, in our case, the extent of variation of the properties is 

not the key factor causing variation in the model performance.  

Another possible explanation is the physical variation caused by differences in particle size. The 

distribution of particle sizes affects the extent of light scattering, where the coarser particles 

scatter light more and thereby increase the interactions of the light with the sample, effectively 

increasing the path length and, consequently, increasing the absorbance. However, in our results, 

both the models for the fine-texture and coarse-texture subsets performed similarly in terms of 

accuracy. In addition, compared to the contributions of chemical variations to the NIR spectra, 

the contributions of the physical variation are minor, as shown by the PCA analysis:  the loading 

plot for PC1 indicates that the most significant variations in the spectra are associated with SOM 

and clay minerals while the physical variation (leading to baseline shift and tilt) is accounted for 

by PC2, which only explains 7% of the total variance (Fig. 4-3). These effects of physical 

variation are eliminated or minimized after the spectral pre-processing steps (Savitzky-Golay 

smoothing and transformation to 1st derivative spectra) performed prior to calibration. 



 
 

 

118 
 

Our results indicate that less variability in soil texture within the calibration set of samples 

results in a better calibration. Stenberg, Jonsson et al. (2002) divided soils into different soil 

classes according to clay content, and the results showed that SOM could be better predicted if 

the models were restricted to soils with a fairly high clay content or with a limited texture 

variability (Fig. 4-9). Our results agree to those of Stenberg, Jonsson et al. (2002), where the 

best-performing TC model was that for the fine-texture subset, in which the clay content of the 

soils is >350 g/kg. In addition, the TC model for the coarse-texture subset had better predictive 

accuracy than the TC model for the total sample set, which may be attributed to the higher 

textural variability in the latter set. The same trends were observed for the performance of the 

TN models developed for the three sample sets. This is to be expected owing to the significant 

correlation between TN and TC.  

 

 

Fig. 4-9. Differences in calibration performance for soil organic carbon (SOC) between different 

texture classes 

  

 

4.4.3. Comparison of the Performance Indicators RPD and RPIQ 

Traditionally, the evaluation of NIR model performance is based on the parameters of coefficient 

of determination (r2) and RMSE. Rossel, Walvoort et al. (2006) summarized literature results 
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published between 1986 and 2003 by tabulating the r2 and RMSE parameters, in order to 

compare the quantitative predictions of various soil attributes using multivariate statistical 

analysis techniques applied to spectral responses in the ultraviolet (UV), visible (VIS), NIR, and 

MIR regions. However, these parameters are related to the population range; and therefore, they 

cannot be used for comparison of results obtained with different sets of soils,  

To address this issue, RMSE is standardized to remove the effect of the population range, which 

is done by taking a ratio of RMSE and any statistical index representing the population, such as 

standard deviation (SD). Consequently, the RPD value, which is the ratio of the SD to RMSE, 

has become the most commonly used indicator for evaluation of calibration performance (Chang, 

Laird et al. 2001; Bellon-Maurel, Fernandez-Ahumada et al. 2010). RPIQ is another 

standardized RMSE value, where the RMSE value is standardized against the interquartile 

distance (IQ). The adoption of RPIQ has gradually increased since it was first proposed by 

Bellon-Maurel, Fernandez-Ahumada et al. (2010).  

According to Figure 4-8, where the RPD and RPIQ values of all models for the total sample set 

are plotted, the models of TC, TN, C/N, NO3
-, sand, silt, clay, and yield have RPIQ values that 

are increased relative to RPD values. These increases are due to the larger range of the 

population spanned by the IQ as compared to the SD. In general, when the distribution is normal 

or approximately normal, the interquartile range is about 1.3 times the SD. This relationship 

changes depending on how normal the distribution is. However, when the distribution is highly 

skewed, this relationship is no longer valid, and it may become the case that the SD is much 

greater than the IQ, especially if the dataset contains outliers. For the properties listed above, the 

skewness of their distribution is less than 1.00, which is not considered highly skewed. In 

contrast, in the case of the models for NH4
+ and N-uptake, the RPIQ values are lower than the 

RPD values. This is due to the high skewness in the distributions of these two properties, with 

skewness values for the calibration set of 2.74 and 1.96 for NH4
+ and N-uptake, respectively. 

These two properties follow a log-normal distribution, where after logarithmic transformation 

(log10) of the data, the skewness is notably reduced to 0.91 and 0.33 for NH4
+ and N-uptake, 

respectively. In the case of RPD, the SD of the sample set is used to normalize RMSE but can 

only suitably describe the distribution of the population if it follows a normal or approximately 
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normal distribution. In a normal population, a 2SD interval (±1 SD) around the mean includes 

66% of the population; whereas it represents 93% of the population spread in the log-normal 

population (Bellon-Maurel, Fernandez-Ahumada et al. 2010). This accounts for a much larger 

range of values and leads to a larger RPD value. Therefore, the RPD value of a dataset having a 

log-normal distribution gives an artificially good performance. On the other hand, the IQ value 

accounts for 50% of the population around the median, which better represents the spread of the 

populations, especially for those in a log-normal distribution. Therefore, RPIQ is a better 

performance indicator since IQ accounts much better for the spread of the population. In our 

results, based on the RPD values, the models for NH4
+ and N-uptake have an artificially better 

performance, especially in the case of N-uptake for the coarse-texture subset, which has reliable 

performance.  However, the performance decreases and the models become less reliable when 

evaluated on the basis of the RPIQ values. A similar trend is also found in the literature, where 

the RPD value for a log-normal population distribution is higher than the RPD value for a normal 

population distribution of the same RPIQ (Bellon-Maurel, Fernandez-Ahumada et al. 2010; 

Veum, Sudduth et al. 2015). 

Overall, the RPD values correlate weakly with the RPIQ values across all 10 models, with a r2 of 

0.49 (Fig. 4-10). This indicates that RPD and RPIQ values cannot be predicted from one another. 

Furthermore, this shows that the distributions of the properties are non-normal; therefore, the 

population spreads described by SD and IQ are not correlated. However, after the removal of the 

points representing NH4
+ and N-uptake, the r2 value increases to 0.64. Therefore, whether RPD 

or RPIQ better describes the performance of a model depends on the distribution of the 

population. For many soil properties, which do not follow a normal distribution but follow more 

closely a log-normal distribution, the use of RPD values to evaluate models may be 

inappropriate. Therefore, in our study, both RPD and RPIQ are adopted to better evaluate the 

performance of the models. However, there is no statistical basis for the evaluation criteria. The 

criteria based on RPD values used in our study follow those proposed by Chang, Laird et al. 

(2001), In the case of RPIQ, it has been suggested in the literature that similar criteria to those 

based on RPD values be used (Nduwamungu, Ziadi et al. 2009). However, some properties 

follow an approximate-normal distribution, where the IQ is around 1.3 times the SD, so that a 

value of 2.50 instead of 2.00 should be used as the upper threshold of RPIQ-based criteria. In 
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general terms, only models that fall in the upper range of both RPD and RPIQ can be considered 

very reliable.  

 

 (a) 

 (b) 

 

Fig. 4-10. Correlation between RPD and RPIQ for the models developed using the total sample 

set. (a) correlation for all 10 models; (b) correlation after removal of the models for NH4+ and 

N-uptake 
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4.4.4. Comparison between ATR-FTIR and DRIFT-NIR Calibration Models of Soil Properties 

based on RPIQ 

The RPIQ indicators of each of the calibration models based on ATR-FTIR or DRIFT-NIR 

spectra are presented in a bar chart in Figure 4-11. In general, both techniques, ATR-FTIR and 

DRIFT-NIR spectroscopy, coupled with PLSR, display promising capability to model the 

properties TC, TN, sand, and clay, in terms of prediction performance. All the models for these 

properties, for either the total set of samples or the two texture subsets, are classified as very 

reliable, with RPIQ values greater than 2.00. This result is not surprising since all these 

components have specific signals in both MIR and NIR regions, except for sand, which does not 

have an NIR signal but had significant correlation to clay.  

ATR-FTIR spectroscopy displays better modeling capability than DRIFT-NIR spectroscopy for 

the properties TN, sand, and clay, with average RPIQ increments of 11.68%, 36.25%, and 

11.61%, respectively. The improved modeling of these properties may be due to their more 

intense and more characteristic signals in ATR-FTIR soil spectra as compared to DRIFT-NIR 

soil spectra.  In addition, the RPIQ increment is much more significant in the case of sand, which 

has strong MIR absorption; consequently, the ATR-FTIR calibration for sand is directly based on 

spectral signals due to sand. However, because sand is NIR-inactive; the DRIFT-NIR calibration 

for sand is based on the correlation to other soil components, such as clay, which is NIR-active. 

In the case of the TC calibrations, the DRIFT-NIR models perform slightly better than the ATR-

FTIR models for the two texture subsets; however, for the total set of samples, which includes 

various soil types, the ATR-FTIR model performs better than the DRIFT-NIR model. This is 

because the TC signal in the NIR region is weak and is masked by the signals from clay 

minerals, which have much higher variations. In contrast, in the MIR region, TC has distinct and 

characteristic absorption bands that are not be masked by absorptions by minerals. Overall, our 

results agree to the literature, where it was reported that MIR spectroscopy predicted soil organic 

matter and sand as well as clay minerals better than NIR spectroscopy (Rossel, Walvoort et al. 

2006). 

In the case of the properties C/N, and silt, both ATR-FTIR and DRIFT-NIR models were 

classified as reliable. The two spectroscopic techniques had similar prediction performances 
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except in the case of silt, where ATR-FTIR spectroscopy performed better than DRIFT-NIR 

spectroscopy. However, in the case of the properties NH4
+, NO3

-, N-uptake, and yield, both 

spectroscopic techniques failed to provide reliable calibrations, yielding RPIQ values below 

1.40.  

Overall, our results show that both ATR-FTIR and DRIFT-NIR spectroscopy can be used for the 

simultaneous assessment of various soil properties. The choice of which technique is to be used 

will depend on the accuracy of the predictions. For example, ATR-FTIR spectroscopy is 

recommended if soil texture is to be assessed. In addition, the cost of the technology and the 

required amount of sample preparation are other considerations when making the decision. For 

example, if TC is property to be evaluated, the 11% improvement in prediction accuracy (11% 

reduction in RMSECV) achieved by using ATR-FTIR spectroscopy instead of DRIFT-NIR 

spectroscopy may not be significant, considering that more sampling preparation is required and 

that the cost of the ATR-FTIR instrumentation is higher. For in-field implementation, cost and 

efficiency are important, and therefore these trade-offs are more pronounced for in-field soil 

analysis. As time progresses and technologies develop, portable MIR spectrometers of lower cost 

and requiring less sample preparation may become available for in-field soil analysis (Janik, 

Merry et al. 1998; Rossel, Walvoort et al. 2006).  
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Fig. 4-11. Comparison of RPIQ values of ATR-FTIR and DRIFT-NIR calibration models for 10 

soil properties built using the total set of samples as well as the fine-texture and coarse-texture 

subsets 

 

 

4.5. Conclusion 

DRIFT-NIR spectroscopy coupled with PCA and PLSR was applied for soil classification and 

prediction of 10 properties closely related to soil quality, including TC, TN, C/N, NH4
+, NO3

-, 

sand, silt, clay, N uptake, and yield. The results of PCA indicated that the information captured 

in DRIFT-NIR spectra was adequate to classify soils according to their texture based on the 

specific NIR signals of clay minerals. A total of 278 soils collected from four Canadian 

provinces were successfully clustered into fine-texture and coarse-texture groups by DRIFT-NIR 

spectroscopy with the use of PCA.  

Calibrations for 10 properties were built using PLSR. Six out of 10 models, including TC, TN, 

C/N, sand, silt, and clay, were considered successful with reliable to very reliable prediction 

performances according to evaluation criteria widely adopted by other researchers. However, in 

the case of other properties, such as NH4
+, NO3

-, N uptake, and yield, the calibrations were less 

reliable and therefore DRIFT-NIR spectroscopy is not recommended to be used in quantitative 
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analysis of these properties. In agreement with the literature, this study suggests that DRIFT-NIR 

spectroscopy, coupled with proper spectral pre-processing, has the potential for successful 

prediction of soil TC, TN, C/N, sand, silt, and clay. 

Both ATR-FTIR and DRIFT-NIR spectroscopy yielded very reliable models for TC and TN. 

However, in the case of properties related to soil texture, ATR-FTIR spectroscopy exhibited 

better performance than DRIFT-NIR spectroscopy, where the ATR-FTIR calibration models for 

sand, silt, and clay are very reliable to reliable, while the DRIFT-NIR calibration models are 

reliable to less reliable. For other properties, including NH4
+, NO3

-, N uptake, and yield, neither 

technique provided reliable calibrations. When choosing the proper technique to evaluate soil 

quality, prediction accuracy, cost, and sample preparation should all be considered. Although 

ATR-FTIR spectroscopy provides more accurate predictions for many soil properties, DRIFT-

NIR spectroscopy is more economical and requires less sample preparation and so is more 

suitable for in-field soil analysis.  
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CHAPTER 5 

 

CONNECTING STATEMENT 

 

 

 

In the previous two chapters, the quality of agricultural soils was successfully modeled by 

both ATR-FTIR and DRIFT-NIR spectroscopy, and it was demonstrated that IR 

spectroscopy is able to capture both chemical and physical variations in soil. In Chapter 5, 

the research target shifted to bituminous-contaminated soil, where the bitumen residues in 

Alberta tailing soils were quantified by using ATR-FTIR and DRIFT-NIR spectroscopy 
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CHAPTER 5 

 

DIRECT DETERMINATION OF BITUMEN RESIDUES IN OIL SAND TAILINGS BY FTIR SPECTROSCOPY 

BEFORE AND AFTER A REMEDIATION PROCESS  

 

 

Abstract  

The FTIR spectroscopic determination of bitumen residues in oil sand tailings as a technique for 

monitoring remediation processes was investigated. The application of both mid- and near-

infrared (MIR and NIR) spectroscopy as rapid tools for determination of bitumen residues in 

tailings and remediated tailings was examined. In both cases, bitumen residues were directly 

determined from the neat samples without any chemical separations or extractions. Attenuated 

total reflectance mid- infrared (ATR-FTIR) spectroscopy coupled with partial-least-squares 

regression (PLSR) yielded the best calibration for bitumen determination, where an r2 of 0.99 

and a 1.76 wt% RMSEC were obtained for a calibration model built using artificial tailing soils 

with bitumen content ranging between 0.70 and 40.70 wt%, and an r2 of 0.90 and a 1.55 wt% 

RMSEC were obtained for a model built using natural Athabasca tailing soils with bitumen 

content ranging between 9.70 and 26.59 wt%. These methods were reproducible with an average 

0.91 wt% difference among triplicate analyses. The classification of unremediated and 

remediated tailing soils by principal component analysis (PCA) of their ATR-FTIR spectra was 

investigated. Soils were successfully classified according to their level of bitumen content, but 

classification based on discrimination between unremediated and remediated soils was not 

successful. This result implied the lack of a direct relationship between bitumen content and the 

remediation process, which was attributed to the variable bitumen content of the feedstocks and 

the use of an un-optimized remediation process. Therefore, the on-line MIR-PCA classification 

as well as the MIR-PLSR quantification is necessary for feedstock categorization based on 

bitumen level in order to optimize the remediation process and for subsequent evaluation of the 

remediation process to ensure the remediation goal has been met. 

 

Keywords    bitumen residues    FTIR    quantification   remediation process 
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5.1. Introduction  

Canada has the third-largest oil reserves in the world, after Saudi Arabia and Venezuela. 

According to the latest government report (Alberta Oil Sands Industry 2016), it is estimated that 

the total oil Canada’s oil reserves is about 1.8 trillion barrels. The Canadian oil is very viscous 

and is bound to the soil minerals surrounded by a thin layer of water, which makes the oil 

resources in Canada called “oil sands”. A special technique called the “Hot Water Extraction 

Process HWEP” is required to extract the bitumen from oil sands, whereby hot steam water is 

added into the oil sands to strip bitumen from the individual sand grains by a strong shearing 

force (Clark and Pasternack 1932). Since bitumen has similar density to water, it floats to the top 

attached to the injected air bubbles and is later skimmed off to achieve the recovery. The 

“tailings”, which is the by-product from the extraction process, is stored in ponds constructed 

near the mining site.  

The tailings are mostly composed of water (70.8%) and soil minerals (27.4%) and contain a 

small amount of bitumen residues, which is about 1.8% (Kessick 1977). When deposited in a 

tailing pond, the sand settles out quickly to form dykes and beaches. However, in the case of the 

fine materials, such as clays, their destiny in the tailing pond varies. Depending on the makeup of 

the tailings stream and the method of deposition, only 1/3 to 1/2 of the fine materials is retained 

in the tailings sand deposits. The majority of the fines separates during tailings sand deposition 

and is suspended in the water to form fluid fine tailings. It is reported that about 33% of the 

solids content in fluid tailings is almost all fines (Scott and Ozum 2010).  

The HWEP technique and the accompanying tailings are the subject of much concern due to 

their large environmental impact. Firstly, to produce one barrel of bitumen, seven to nine barrels 

of water are required. Although only 1/3 of the water is the fresh water from the Athabasca River 

and most of the water is recycled from the tailing ponds, large amounts of non-recycled tailing 

waters are still generated as a result of the large daily bitumen production, which reaches 1.7 

million barrels per day and is projected to double to 3.7 million barrels per day by 2019. 

Currently, the volume of Alberta’s tailing ponds is about 720 million cm3, covering an area of 

about 130 km2 (Steward and Williams 2013). The tailing waters are found to contain various 

types of compounds that are believed to be toxic to aquatic organisms, such as organic acids, 



 
 

 

129 
 

phenolic compounds, sulfur compounds, nitrogen compounds, and hydrocarbons (Strosher and 

Peake 1978). Another concern is the disrupted mining area and the bitumen-contaminated tailing 

soils. It was reported that as of 2015, over 895 km2 of land had been disturbed by oil sands 

mining activities (Natural Resources Canada 2015).   

These hazards of oil sands tailings were documented as early as 1973, but they did not receive 

much attention and did not become a high priority for government, industry, academia, and the 

news media until 2000. In 2008, tailings became an intense focus of discussion after the “1,600 

ducks died” issue occurred in Syncrude tailings (Steward and Williams 2013). In 2009, the 

Directive 074 was announced by Alberta’s Energy Resources Conservation Board (ERCB) to 

regulate the management of tailings and to ensure the environmentally sustainable development 

of Alberta’s oil sands (Alberta Oil Sands Industry 2009). It requires that the amount of fluid 

tailings be reduced; that the size of the storage ponds be minimized and eventually eliminated; 

and that the fine tailings be converted to reclaimable landscapes (Alberta Energy Regulator 

2009). In March 2015, the Directive 074 was suspended with the release of new requirements for 

tailings management, the Tailings Management Framework for Mineable Athabasca Oil Sands 

(TMF) by the Government of Alberta. In addition to the requirements addressed in Directive 074, 

the TMF emphasizes the requirement of performance-monitoring to keep industry on track, 

where the monitoring should assess air and water quality as well as the quality and quantity of 

tailings (Alberta Energy Regulator 2015).  

Currently, there are 33 approved oil sands exploitation projects and about 130 primary recovery 

projects (Energy Resources Conservation Board 2011). They all have a specific focus on 

minimizing the release of contaminants to the surrounding environment. The bitumen residues in 

tailings are one of the main contaminants that are considered toxic to wildlife; for example, 

chronic health effects on marine birds include triggering tumors and higher mortality rates, 

causing hypothermia when the bitumen becomes coated onto the feathers. In addition, bitumen is 

very resistant to microbial degradation; therefore, it can persist in the environment for years if it 

is not removed (Peterson, Rice et al. 2003). Therefore, prior to being released back to the 

environment, tailings must be remediated to remove bitumen residues to prevent or minimize any 

adverse effects on the environment. 
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The TMF requirement that monitoring should be in place to ensure that remediation is on-track 

relies heavily on the availability of analytical techniques for performance monitoring to evaluate 

the remediation progress. Therefore, to help the industry meet the monitoring requirement, to 

evaluate the reclamation quality, and to determine the reclamation performance in a timely 

manner, a fast, reliable and economical analytical technique that is amenable to on-line use is in 

demand. 

Fourier transform infrared (FTIR) spectroscopy is a rapid and sensitive technique that enables 

the analysis of complex mixtures with minimum, or even without the need for any, sample pre-

treatment. This technique can be used to detect all organic compounds that undergo dipole 

moment changes when irradiated by infrared light. Each type of IR-active functional group has 

its own characteristic absorption frequency, which can be used to identify as well as quantify 

different functional groups simultaneously from a single IR spectrum without any chemical 

separations or extractions. Compounds prevalently found in oil sand tailings, such as bitumen, 

can be determined by FTIR spectroscopy.  

In this study, a fast and on-line method for bitumen quantification based on FTIR spectroscopy 

was established, designed for use in the tailings remediation plant for initial bitumen content 

evaluation at the feedstock reception point, evaluation of remediation progress, and final 

assessment to ensure that the clean-up goal has been met. By using this method, bitumen content 

can be directly evaluated from the neat soil sample without any bitumen extraction processes. 

Both ATR-FTIR and DRIFT-NIR spectroscopies, as well as two different quantification 

methods, namely, a simple Beer’s law linear regression and partial-least-squares (PLS) 

regression, were used and compared to determine the approach best suited to on-line bitumen 

quantification in the remediation plant. Furthermore, an FTIR-based classification method was 

also established to assist the remediation plant in classifying and categorizing the initial 

feedstocks based on its bitumen content, which eventually benefits optimization of the 

remediation process.  
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5.2. Materials and Methods 

5.2.1. Materials 

5.2.1.1. Natural Athabasca Tailing Soils 

The natural Athabasca tailing soils were received directly from different processing batches of 

the pilot plant (Gradek Energy Inc.), where the soils were undergoing a remediation process. A 

total of 32 tailing soil samples were received, where half (n=16) were unremediated and the other 

half (n=16) had undergone a remediation process. All the samples were first dried in the open air 

at room temperature overnight and then were ground and passed through a 2-mm sieve. The 

sieved soils were stored for later chemical and spectroscopic analysis.  

 

5.2.1.2. Artificial Tailing Soils 

The artificial tailing soils were prepared in the laboratory by spiking clean Athabasca tailing soils 

with bitumen. To obtain clean bitumen-free tailing soils, the Athabasca tailing soils were mixed 

with 2-methyltetrahydrofuran (2-MeTHF) in a 1:9 (wt/wt) soil-to-solvent ratio and the resulting 

solution was vortexed for 5 min and then centrifuged at 8000 rpm for 15-min. The supernatant 

containing the extracted bitumen and the solvent was collected and the sediment was mixed with 

2-MeTHF again to perform the second extraction. This procedure was repeated three times until 

the supernatant was clear and colorless. All the supernatants were combined and were dried in a 

fume hood overnight to obtain the bitumen. The bitumen was measured gravimetrically to 

estimate the bitumen content in the tailing soils, and this bitumen was later used for the 

preparation of artificial tailing soil. The sediment fraction was dried in a fume hood overnight to 

obtain the clean Athabasca tailing soils.  

To prepare artificial tailing soils with bitumen contents ranging between 0 and 40 wt%, a 50-mL 

stock solution of bitumen in 2-MeTHF solvent (bitumen/2-MeTHF = 1 g/5 mL) was prepared. 

The solution was considered homogeneous such that each unit volume (1 mL) of the solution 

contained 0.2 g of bitumen. To prepare each artificial tailing soil, the required volume of this 

solution was added to 5 g of clean Athabasca tailing soils, and the soils were suspended into the 

bitumen solution by vigorously stirring using a mechanical stirrer at 300 rpm for 20 min. After 

20 min, the mixture was removed from the stirrer and was dried in a fume hood overnight. After 
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solvent evaporation, the samples were ground and passed through a 2-mm sieve. The samples 

prepared in this manner were stored for later IR spectroscopic measurement.  

 

5.2.2. Methods 

5.2.2.1. Determination of Tailing Soil Type by Hydrometer Method 

Soil type was analyzed using the hydrometer method, which is based on the different sinking 

rates exhibited by mineral particles of different sizes. The density at a specific time point was 

measured by a hydrometer and was later used to calculate the proportion of different soil 

components.  

Since the adsorbed bitumen in tailing soils affects the density of the mineral components; 

bitumen was removed from the tailing soils by washing with 2-MeTHF solvent at a 1:9 (wt/wt) 

soil-to-solvent ratio until the final extract was clear. The washed tailing soils were dried at room 

temperature in a fume hood overnight and stored for analysis by the hydrometer method.  

For the analysis, 40 g of dried cleaned tailing soil was soaked in the Calgon solution (50 g/L, 

sodium hexametaphosphate) overnight to completely disperse soil minerals. The samples were 

then well mixed using an electric blender and transferred into a 1-L cylinder. After mixing of the 

sample several times using the plunger, the hydrometer was placed down once the mixing had 

stopped. The reading on hydrometer was recorded at 40 s and at 7 h. At every reading, the 

temperature was measured to correct for the buoyancy variation caused by the temperature 

(Sheldrick and Wang 1993). The same procedures were applied for the blank measurement. 

The percentages of clay, sand, and silt in the tailing soils were calculated using the following 

equations:  

 

𝐶𝑙𝑎𝑦 % =
𝑅7ℎ−𝑅𝑏𝑙𝑎𝑛𝑘

40
×100% ……………………………………..……. (5-1) 

 

𝑆𝑎𝑛𝑑 % = 100 −
𝑅40𝑠−𝑅𝑏𝑙𝑎𝑛𝑘

40
×100% …………………………….……. (5-2) 

 



 
 

 

133 
 

𝑆𝑖𝑙𝑡 % = 100 − (𝐶𝑙𝑎𝑦 % + 𝑆𝑎𝑛𝑑 %) …………………………..………. (5-3) 

 

where, R7h, R40s, and Rblank represent the hydrometer readings at 7 h and 40 s and the reading of 

the blank. The corrected hydrometer reading at 40 s represents the percentage of material still in 

suspension at the end of 40 seconds. Subtraction of the corrected hydrometer reading at 40 s 

from 100 yields the percentage of material that settled out at the end of 40 seconds, which 

represents all the sand in the soil (particle size of 2.00 – 0.05 mm). The corrected hydrometer 

reading at 7 h represents the material still in suspension at the end of 7 hours, which is the clay 

(particle size< 0.002 mm). The percentage of silt, with particle size between 0.05 and 0.002 mm, 

is obtained by difference (Bouyoucos 1962). The soil type was determined according to the 

relative proportions of the three fractions based on the reference values from the United States 

Department of Agriculture (USDA) triangular diagram.  

 

5.2.2.2. Bitumen Content Determination by Total Combustion 

Bitumen content of the natural Athabasca tailing soils was determined as elemental carbon 

percentage in the soil (C %) by using total combustion (FlashEA® 1112 Organic Elemental 

Analyzer, Thermo Scientific). A precise amount of sample (0.1 g) was weighed into a tin capsule 

and introduced into the combustion reactor, where a special furnace is heated at 900 – 1000 °C. 

A small volume of pure oxygen was added to the system to help burn the samples and convert 

them into elemental gases, which were quantified by gas chromatography with a thermal 

conductivity detector (GC-TCD). Standards of known carbon content were analyzed along with 

the unknowns to calibrate the instrument.  

 

5.2.2.3. Background Bitumen Content Determination 

To prepare the artificial tailing soil samples, bitumen was removed prior to spiking. After 

bitumen was removed, the “clean” tailing soil was sent to determine the amount of bitumen 

residues by using the total combustion method (FlashEA® 1112 Organic Elemental Analyzer, 

Thermo Scientific). The amount of bitumen residues determined was regarded as the background 
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bitumen content of the “clean” tailing soil and was added to each of the spiked amounts to obtain 

the total bitumen contents of the spiked samples.  

 

5.2.2.4. FTIR Measurements 

5.2.2.4.1. ATR-FTIR Spectroscopy 

ATR-FTIR spectra were collected by an ALPHA FTIR spectrometer equipped with a ZnSe ATR 

crystal sampling accessory (Bruker Optics, Billerica, MA, USA) over the spectral range of 4000 

– 400 cm-1 at 4 cm-1 resolution by co-addition of 128 scans. Spectra were scanned using OPUS 

software (Bruker) and were saved in .spc format. An initial background spectrum was collected 

to test the spectrometer performance and as a reference for calculating the sample spectra in 

absorbance units. Spectral acquisition time was about 1 minute per sample.  Before further 

analyzing the spectra, vector normalization and baseline correction were applied to each 

spectrum using OMNIC™ Series Software (version 7.3; Thermo Scientific). 

 

5.2.2.4.2. DRIFT-NIR Spectroscopy 

DRIFT-NIR spectra were collected by a TANGO FTIR spectrometer (Bruker Optics, Billerica, 

MA, USA). Approximately 5 g of sample contained in a clean glass vial was placed into a 

measurement window with a diameter of 10 mm. All spectra were recorded in diffuse reflectance 

mode over the range of 4000 – 12,500 cm-1 (2500 – 800 nm) at 4 cm-1 resolution by co-addition 

of 128 scans. Each spectral acquisition took about 1 minute per sample. 

Diffuse-reflectance spectra were transformed into absorbance spectra using log(1/R), as 

absorbance is directly proportional to the concentration of the absorber according to the Beer-

Lambert law. The absorbance spectra were generated using OPUS software (Bruker) and were 

saved in .spc format.  

Each soil sample was scanned in duplicate and the duplicate spectra were averaged. Before 

sample spectral acquisition, an initial background spectrum was collected to test the spectrometer 

performance and as a reference for calculating the sample spectra in absorbance units. 
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5.2.2.5. Spectroscopic Characterization Methods 

5.2.2.5.1. Cluster Analysis (CA) 

CA was applied to cluster the natural Athabasca tailing soils into groups based on spectral 

similarity. The samples were labeled as either “Before” or “After” based on whether they had 

undergone the remediation process prior to spectral acquisition. In addition, the samples were 

also labeled as either “High” or “Low” based on their bitumen content. Those labeled as “High” 

had bitumen content higher than the median value, while those labeled as “Low” had bitumen 

content below the median.  

In cluster analysis, samples with similar spectral features will cluster together. In theory, samples 

having the same label should cluster together if their similarity is reflected by the spectral 

information.  

 

5.2.2.5.2. Principal Component Analysis (PCA) 

In order to examine whether the information contained in ATR-FTIR spectra is sufficient to 

distinguish between the remediated and the unremediated natural Athabasca tailing soils, PCA 

was conducted to extract and analyze the most variations from the spectra. By interpreting the 

scores and loadings of the extracted principal components (PCs) and variables, the components 

causing the most spectral differences between the remediated and unremediated soils were 

revealed. 

 

5.2.2.6. Quantification of Bitumen in Tailing Soils 

5.2.2.6.1. Simple Beer’s Law Linear Regression 

Since the intensity of an IR signal is linearly related to the concentration of the absorbing 

component, and given that bitumen has a strong, distinct, and characteristic IR absorption band 

between 2768 and 2989 cm-1, a simple Beer’s law linear regression for the quantification of 

bitumen in soil was examined. Since Beer’s law is valid only when the path length is constant, it 

was necessary to compensate for the path length variation caused by light scattering before the 

regression was performed. To correct for the path length variation, the integrated area under the 

bitumen band was divided by the integrated area under the clay band between 3577 and 3746 cm-
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1, and this bitumen/clay area ratio was regressed against the bitumen content determined by 

chemical analysis.  

 

5.2.2.6.2. Partial-Least-Squares Regression (PLSR)  

In addition to the simple linear regression, multivariate regression, in the form of PLSR, was 

used to build a bitumen calibration model based on the bilinear regression between the principal 

components, which are extracted from the original X-matrix, and the Y-matrix.  

Before the regression, all the spectra underwent baseline correction, path length correction, and 

smoothing using the Savitzky-Golay algorithm (using a 7-point averaging interval and a second-

order polynomial). The spectra pre-treatments and the PLSR were conducted using TQ 

Analyst™ software (version 7.2; Thermo Scientific).  

 

5.2.2.6.3. Model Validation 

To more thoroughly validate the established model, a set of validation samples completely 

independent of the calibration set may be used. In this work, two sets of calibration samples were 

used to build two PLSR calibration models; one set was composed of natural Athabasca tailing 

soils, and the second set was composed of artificial tailing soils. Each of these two calibration 

models was validating by employing the other model’s calibration samples as a validation set; 

given the unreliability of model extrapolation, only the samples in the validation  set having a 

bitumen content within the bitumen calibration range of the model being tested were chosen as 

validation samples. The validation error, accuracy, and precision were chosen as the parameters 

for evaluation of the models.  

 

5.3. Results 

5.3.1. Characterization of Tailing Soils 

5.3.1.1. ATR-FTIR Spectral Characterization 

The ATR-FTIR spectrum of bitumen is presented in Figure 5-1. Bitumen is mainly composed of 

hydrocarbons with aliphatic and aromatic carbons, as well a small quantity of heteroatoms, such 
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as O, N, and S. As observed in the pure bitumen spectrum, bitumen has strong MIR absorption in 

two main regions, 2768 – 2989 cm-1 and 1350 – 1487 cm-1, where the absorption in the former 

region is due to the C-H stretching vibrations of methyl (–CH3) and methylene (–CH2) group and 

the absorption in the latter region is due to their bending vibrations.  In more detail, the peaks in 

the stretching region represent the asymmetric C-H stretching vibration of –CH3 (2951 cm-1), the 

asymmetric C-H stretching vibration of –CH2 (2921 cm-1), and the symmetric C-H stretching 

vibration of –CH2 (2853 cm-1). In the bending region, the peaks at 1455 cm-1 and 1376 cm-1 are 

due to the asymmetric bending of –CH3 and –CH2 and the symmetric bending of –CH2, 

respectively.  

Fig. 5-1. ATR-FTIR spectrum of bitumen 
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In addition to the aliphatic carbons, the unsaturated carbons are also revealed by the spectrum, 

where a small band at 1602 cm-1 and a series of weak bands between 864 and 746 cm-1 are due to 

vibrations of carbon-carbon double bonds. Furthermore, the carbonyl moiety (C=O) and 

sulfoxide moiety (S=O) are also reflected in the spectrum by a small broad band at 1701 cm-1 

and a band at 1028 cm-1, respectively. However, the bands characteristic of C-H stretching 

vibrations of aromatic rings in the region between 3100 – 3000 cm-1 are not observed in the 

spectrum. This may be attributable to the relatively low absorptivity of these bands by 

comparison with aliphatic C-H stretching absorptions but may also indicate a low percentage of 

aromatic hydrocarbons in the bitumen as well as their polycyclic nature, resulting in a reduced 

number of C-H bonds per molecule by comparison with mono-aromatics. 

The ATR-FTIR spectra of 3 tailing soil samples with low (0.70%), medium (12.70%), and high 

(25.70%) bitumen content are presented in Figure 5-2. The tailing soil spectrum contains the 

absorptions of bitumen (2768 – 2989 cm-1) and clay (3578 – 3745 cm-1), as well as the 

absorptions of sand and clay (below 1200 cm-1). The broad band between 1300 and 1500 cm-1 

may be the combination of the bitumen C-H bending vibration between 1330 and 1487 cm-1 and 

the Al-O bending vibration of soil minerals between 1347 and 1360 cm-1 (Saikia and 

Parthasarathy 2010).  

Apart from the changes in the intensity of the bitumen band among the three samples, the 

intensity of the spectra in other regions shows slight variations, which might be caused by path 

length variation among the samples.  
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Fig. 5-2. ATR-FTIR spectra of 3 tailing soils with different bitumen content 
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5.3.1.2. DRIFT-NIR Spectral Characterization  

The DRIFT-NIR spectrum of bitumen is presented in Figure 5-3. Since most of the useful 

information occurs in the combination and 1st overtone regions, only the spectral range between 

9000 and 4000 cm-1 is presented.  

Fig. 5-3. DRIFT-NIR spectrum of bitumen 
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As seen in Figure 5-3, the NIR absorption of bitumen mainly occurs in the region between 6000 

and 5600 cm-1 (1666 – 1785 nm) and the region between 4327 and 4175 cm-1 (2311 – 2395 nm). 

The absorption in the higher wavenumber region is caused by the overtone of methyl and 

methylene stretching vibrations, while the absorption in the lower wavenumber region is due to 

the combination of these groups’ stretching and bending vibrations. Since most absorptions in 

the NIR region are caused by X-H (X = C, O, N) functional groups, only the C-H groups of 

bitumen are reflected in the NIR spectrum, making it less informative and less useful for bitumen 

characterization than the MIR spectrum.  

Fig. 5-4. DRIFT-NIR spectra of 3 tailing soils with different bitumen content 
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The DRIFT-NIR spectra of 3 tailing soils with low (0.70 wt%), medium (12.70 wt%), and high 

(25.70 wt%) bitumen contents are presented in Figure 5-4. Dried tailing soil is mostly composed 

of soil minerals, bitumen, and a small amount of intermolecular water, where the compounds 

containing X-H (X = C, O, N) may generate NIR absorption signals. In Figure 5-4, the spectra 

are divided into several regions, where the bands in the region between 7250 and 7000 cm-1 

(1379 – 1429 nm) and the region between 5325 and 5000 cm-1 (1878 – 2000 nm) are due to the 

O-H bonds of water; a broad band in the region between 6000 and 5600 cm-1 (1666 – 1785 nm) 

and two small peaks between 4327 and 4175 cm-1 (2311 – 2395 nm) are due to the C-H bonds in 

bitumen; and a sharp band in the region between 4550 and 4475 cm-1 (2198 – 2235 nm) is due to 

the Al-OH bonds in clay minerals (Rivard, Lyder et al. 2010).  

NIR absorption intensity is proportional to the constituent’s concentration. However, due to the 

overlapping of some peaks, as well as the sloping baseline, it is difficult to correlate the peak 

intensity to the concentration of the constituent by using the original NIR spectrum. By further 

processing the spectrum, such as taking the 2nd derivative, the bands are better resolved and the 

sloping baseline can be eliminated (Fig. 5-5). After taking the 2nd derivative, the bands in the 

region between 4575 and 4200 cm-1 representing the clay mineral and bitumen constituents are 

well resolved. The intensity of three resolved bands between 4450 and 4200 cm-1 is proportional 

to the bitumen content in soil; therefore, the integrated area of these bands can be regressed 

against the bitumen content to obtain a calibration equation.  
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Fig. 5-5. Second derivative of DRIFT-NIR spectra of bitumen and tailing soils with different 

bitumen content  
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5.3.2. Bitumen Quantification in Tailing Soils 

5.3.2.1. Calibration with Artificial Tailing Soils 

5.3.2.1.1. Description of Samples 

After washing of Athabasca tailing soils with 2-MeTHF, the clean tailing soil was obtained. Part 

of the soil was sent for determination of the soil texture by the hydrometer method. According to 

the United States Department of Agriculture (USDA) triangular diagram of soil texture 

classification, the clean tailing soil is classified as loam soil. Another part of the soil was sent for 

determination of the bitumen residue in the clean soil by the total combustion method. A bitumen 

concentration of 0.70 wt% was determined and this value was incorporated into the calculation 

of the concentrations of the spiked samples as background bitumen content. The range of the 

bitumen content in the artificial tailing soil samples was between 0.70 wt% and 40.70 wt%, with 

an average of 19.64 wt% (Table 5-1).  

 

Table 5-1. Statistics of artificial tailing soil samples 

 

 

5.3.2.1.2. Path Length Correction 

The ATR-FTIR spectra acquired in triplicate from two soil samples with high and low bitumen 

content are presented in Fig. 5-6. Among the triplicates, the intensity of both the bitumen and 

clay bands varies. This phenomenon can be explained by two reasons. Firstly, the composition of 

different portions of the sample may be different, due to the heterogeneity of tailing soil. In 

addition, the optical variation caused by differences in the optical path length is another possible 

cause for the intensity variation.  

Background  

bitumen wt% 

Bitumen range  

in soil wt% 

Average 

bitumen  

wt% 

Sand 

wt% 

Silt 

wt% 

Clay 

wt% 

Soil 

type 

0.70 0.70 – 40.70 19.64 42.5 41.2 16.3 Loam 
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To eliminate the optical variation, the bitumen band area was ratioed against the clay band area, 

as the effect of the optical variation can be considered constant over a limited wavenumber 

range. After the correction, the coefficient of variation (CV) of the bitumen band among 

triplicate spectra decreased from 9.00% to 2.91% for the soil with the higher bitumen content 

and from 5.13% to 3.71% for the soil with the lower bitumen content (Table 5-2). The corrected 

bitumen spectral intensity instead of the original bitumen band intensity was used for the 

calibration.  

 

Fig. 5-6. Triplicate ATR-FTIR spectra of two tailing soils with high (30.49 wt%) and low (12.70 

wt%) bitumen content. 

 



 
 

 

146 
 

Table 5-2. Variance of integrated area of bitumen band among triplicates 

 

 

 

5.3.2.1.3. ATR-FTIR Beer’s Law Calibration 

The calibration information and performance of the ATR-FTIR Beer’s law calibration are 

presented in Table 5-3 and Figure 5-7. The calibration built using the ATR-FTIR spectra of the 

artificial tailing soils and a simple Beer’s law regression shows excellent linearity between the 

actual and predicted bitumen content, with a rc
2 of 0.98. The model performs with high accuracy 

with a 2.12 wt% RMSEC in the range of bitumen content between 0.70 and 40.70 wt%.  

 

 

Table 5-3. Statistical information of ATR-FTIR Beer’s law calibration for bitumen in artificial 

tailing soils 

a ncali: number of calibration samples; nvali: number of validation sample 

b rc
2: correlation coefficient of calibration;  

Sample  Replicate  
Bitumen 

area 

CV 

(%) 

Bitumen/clay 

band area 

CV 

(%) 

Tailing soil with  

30.49 wt% bitumen 

1 8.28 

9.00 

2.52 

2.91 2 9.29 2.625 

3 10.33 2.44 

Tailing soil with  

12.70 wt% bitumen 

1 1.96 

5.13 

1.01 

3.71 2 1.96 0.93 

3 1.75 0.94 

Bitumen range 

(wt%) 

Calibration region 

(cm-1) 
ncali|nvali 

a rc
2 b RMSEC 

(%) 

RMSECV 

(%) 

0.70 – 40.70 3000 - 2795 28|6 0.98 2.12 NA 
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5.3.2.1.4. ATR-FTIR PLSR Calibration 

The calibration information and performance of the PLSR calibration are presented in Table 5-4 

and Figure 5-8. The calibration built using the ATR-FTIR spectra of the artificial tailing soils 

and multivariate PLS regression shows excellent linearity between the actual and predicted 

bitumen content, with a rc
2 of 0.99. The model performs with high accuracy with a 1.76 wt% 

RMSEC and a 2.34 wt% RMSECV in the range of bitumen content between 0.70 and 40.70 

wt%. 

 

Table 5-4. Statistical information of ATR-FTIR PLSR calibration for bitumen in artificial tailing 

soils 

a ncali: number of calibration samples; nvali: number of validation samples. 

b rc
2: correlation coefficient of calibration; rcv-1

2: correlation coefficient of leave-one-out cross-

validation. 

 

Bitumen 

range  

(wt%) 

Calibration 

region 

(cm-1) 

ncali|nvali 
a rc

2|rcv-1
2 b RMSEC 

(%) 

RMSECV 

(%) 
LVs 

0.70 – 40.70 3745 - 2795 26|6 0.99|0.98 1.76 2.34 1 

Fig. 5-7. ATR-FTIR Beer’s law calibration plot for bitumen in artificial 

tailing soils 
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The graph of the predicted residual error sum of squares (PRESS) is shown in Fig. 5-9, showing 

the RMSECV as a function of the number of latent variables (LVs) included in the calibration 

model. In this calibration, the RMSECV value reaches a minimum with the use of the 1st LV. 

This means that the information contained in the 1st LV is sufficient to describe most of the 

variation of bitumen in the soil samples, making the calibration successful. The incorporation of 

other LVs into the model will not decrease the RMSECV and, consequently, will not improve 

the quantification performance.  

 

 

Fig. 5-8. ATR-FTIR PLSR calibration plot for bitumen in artificial tailing soils 
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5.3.2.1.5. DRIFT-NIR Beer’s Law Calibration 

The calibration information and performance of the DRIFT-NIR Beer’s law calibration are 

presented in Table 5-5 and Figure 5-10. The calibration built using 2nd derivative DRIFT-NIR 

spectra of the artificial tailing soils and simple Beer’s law regression shows excellent linearity 

between the actual and predicted bitumen content, with a rc
2 of 0.99. The model performs with 

high accuracy with a 1.23 wt% RMSEC in the range of bitumen content between 0.70 and 40.70 

wt%. 

 

Table 5-5. Statistical information of DRIFT-NIR Beer’s law calibration for bitumen in artificial 

tailing soils 

a ncali: number of calibration samples; nvali: number of validation samples. 

b rc
2: correlation coefficient of calibration 

 

Bitumen range 

(wt%) 

Calibration region 

(cm-1) 
ncali|nvali 

a rc
2 b RMSEC 

(%) 

RMSECV 

(%) 

0.70 – 40.70 4350 – 4312  31|6 0.99 1.23 NA 

Fig. 5- 9. PRESS plot of ATR-FTIR PLSR calibration for bitumen in artificial 

tailing soils 
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5.3.2.1.6. DRIFT-NIR PLSR Calibration 

The calibration information and performance of the DRIFT-NIR PLSR calibration are presented 

in Table 5-6 and Figure 5-11. The calibration built using 2nd derivative DRIFT-NIR spectra of 

artificial tailing soils and multivariate PLS regression shows excellent linearity between the 

actual and predicted bitumen content, with a rc
2 of 0.99. The model performs with high accuracy 

with a 0.77 wt% RMSEC and a 2.51 wt% RMSECV in the range of bitumen content between 

0.70 and 40.70 wt%. 

 

Table 5-6. Statistical information of DRIFT-NIR PLSR calibration for bitumen in artificial 

tailing soils 

a ncali: number of calibration samples; nvali: number of validation samples. 

b rc
2: correlation coefficient of calibration; rcv-1

2: correlation coefficient of leave-one-out cross-

validation 

Bitumen  

range  

(wt%) 

Calibration region 

(cm-1) 
ncali|nvali 

a rc
2|rcv-1

2 b RMSEC 

(%) 

RMSECV 

(%) 
LVs 

0.70 – 40.70 4698 - 3996 31|5 0.99|0.98 0.78 2.51 4 

Fig. 5-10. DRIFT-NIR Beer’s law calibration plot for bitumen in 

artificial tailing soils 
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The PRESS plot for this calibration is shown in Fig. 5-12.  In this calibration, the RMSECV 

value reaches a minimum with the use of the first 4 LVs, where the RMSECV drops most 

sharply with the use of the 1st LV. The 1st LV carries the most useful information required by the 

bitumen calibration model. The other 3 LVs also contain extra information which benefits the 

model performance. However, their contribution is not considered significant.  

 

 

Fig. 5-12. PRESS plot of DRIFT-NIR calibration for bitumen in artificial tailing soils 

 

Fig. 5- 11. DRIFT-NIR PLSR calibration plot for bitumen in artificial 

tailing soils 
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5.3.2.2. Calibration with Natural Athabasca Tailing Soils 

5.3.2.2.1. Description of Samples  

The statistical information about the 32 natural Athabasca tailing soil samples employed in this 

study is listed in Table 5-7. Bitumen content was measured as total carbon and ranges between 

9.70 and 26.59 wt%. The distribution of the population is slightly right-skewed, with a -0.58 

skewness, indicating the distribution is concentrated on the left side, corresponding to the high 

values of total carbon content (Fig. 5-13).  

 

 

Table 5-7. Statistical information of natural Athabasca tailing soil samples (n = 32) 

 

 

 

 

 

Constituent Range (wt%) Median (wt%) Skewness 

Total carbon 9.70 – 26.59 19.98 -0.58 

Fig. 5-13. Distribution of natural Athabasca tailing soil samples according to total 

carbon (TC) content (n = 32) 
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5.3.2.2.2. ATR-FTIR PLSR Calibration  

The calibration information and performance of the ATR-FTIR PLSR calibration are presented 

in Table 5-8 and Fig. 5-14. The calibration built using the path length-corrected ATR-FTIR 

spectral information and multivariate PLS regression shows excellent linearity between the 

actual and predicted total carbon content, with a rc
2 of 0.90. The model performs with high 

accuracy with a 1.55 wt% RMSEC and a 1.87 wt% RMSECV in the range of bitumen content 

between 9.70 and 26.59 wt%. The RPD value is another model performance indicator and is not 

influenced by the sample population. A 2.55 RPD is obtained from the model, indicating the 

prediction performance of the model is excellent.  

Table 5-8. Statistical information of ATR-FTIR PLSR calibration for bitumen in natural 

Athabasca tailing soils 

a ncali: number of calibration samples; nvali: number of validation samples. 

b rc
2: correlation coefficient of calibration; rcv-1

2: correlation coefficient of cross-validation. 

c RPD: ratio of performance to deviation = SD/RMSECV 

 

 

Bitumen 

range  

(wt%) 

Calibration 

region 

(cm-1) 

ncali|nvali 
a rc

2|rcv-1
2 b 

RMSEC  

(wt%) 

RMSECV  

(wt%) 
LVs RPD c 

9.70 – 26.59 
3748 – 2714 

1885 – 1208  
70|10 0.90|0.86 1.55 1.87 4 2.55 
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The PRESS plot for this calibration is shown in Figure 5-15. In this calibration, the RMSECV 

value reaches a minimum with the use of the first 4 LVs, where the RMSECV drops most with 

the 1st LV, followed by the 2nd LV. These 2 LVs carry the most useful information required by 

the bitumen calibration model. The remaining two LVs contain extra information that benefits 

the model performance. However, this contribution is not considered significant. 

 

 

 

 

Fig. 5- 14. ATR-FTIR PLSR calibration plot for bitumen in natural 

Athabasca tailing soils 

Fig. 5- 15. PRESS plot of ATR-FTIR PLSR calibration for bitumen 

in natural Athabasca tailing soils 
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5.3.2.3. Validation of Bitumen Calibrations 

The prediction performances of the three ATR-FTIR calibrations described above were 

evaluated with an independent validation set. The results are presented in Table 5-9 in terms of 

the prediction error, the prediction accuracy and the prediction precision. The first two 

parameters measure the closeness of the prediction to the true value, while the third parameter 

evaluates the repeatability of the predictions. The smaller the error, as well as the closer the 

accuracy is to 1.00, the more accurate the calibration is. In addition, the smaller the precision 

value, the more reproducible and reliable the calibration is.  A totally independent validation set 

is used to avoid the calibration’s “memorizing effect”, which may be manifested when the 

validation samples are similar to the calibration samples. In addition, to reduce the uncertainty of 

the prediction and to reduce the risk of producing meaningless results, only the validation 

samples containing bitumen content within the range of the calibration set are predicted.  

For the validation of the calibrations developed with a calibration set consisting of artificial 

tailing soils, the natural Athabasca tailing soils were employed as the validation set, and vice 

versa. The range of bitumen content in these two sets of soils is similar, 13.42 - 26.34 wt% as 

compared to 15.70 - 25.70 wt%. Regarding the accuracy of the models, they all provide a similar 

percentage of error, ranging between 9.89 and 12.99 %, and similar accuracy, ranging between 

0.98 and 1.08. These results indicate the high accuracy of these three models when predicting a 

completely independent set of tailing soil samples. Furthermore, considering the repeatability of 

the models, the models built using artificial tailing soils show higher precision, where the 

predictions among three replicates vary within ±0.51 to ±0.69 wt% difference. However, in the 

case of the model built using natural Athabasca tailing soils, the variation of the predictions 

among triplicates doubles, where the predictions vary within ±1.30 wt%.   
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Table 5-9. Model prediction performances using an independent validation set 

a Artificial: artificial tailing soils; b Natural: natural Athabasca tailing soils 

c 𝐸𝑟𝑟𝑜𝑟 % =
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙|

𝑎𝑐𝑡𝑢𝑎𝑙
 ×100% 

d 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑎𝑐𝑡𝑢𝑎𝑙
 

e 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑖)−𝑚𝑒𝑎𝑛|𝑖=3

3
 

 

5.3.3. Characterization of Tailing Soils Remediated by the Re-usable Hydrocarbon Sorbent 

(RHS) Technology 

5.3.3.1. ATR-FTIR Analysis of RHS Beads before and after Tailing Soils Remediation Process 

The RHS technology for tailing soil remediation developed by Gradek Energy Inc. 

(http://www.gradekenergy.com/) is based on the use of beads that have the ability to retain 

hydrocarbons and repel water. The RHS beads have an oval form and are light blue in color 

when clean. After the tailing soil remediation process, the bead surface is coated with bitumen 

and the color turns black (Fig. 5-16). The ATR-FTIR spectra of RHS beads before and after the 

remediation process are presented in Figure 5-17. In the spectrum of the coated RHS beads, 

characteristic bands of bitumen corresponding to methyl and methylene stretching (2768 – 2989 

cm-1) and bending (1350 – 1487 cm-1) vibrations are observed. In addition, clay bands are also 

observed in the region of 3578 – 3745 cm-1 and the region below 1150 cm-1. The clean beads 

also exhibit a C-H signal in the region between 2768 and 2989 cm-1. This background C-H signal 

does not interfere with the ATR-FTIR analysis of the bitumen coating, since the depth of 

penetration of the evanescent wave generated at the surface of the ATR crystal is only 0.5 to 2 

µm (depending on the wavelength) and thus does not extend into the interior of the bead. This is 

Calibration 

set 

Independent 

validation set 

Prediction range 

(wt%) 

Calibration 

method  

Error d        

± SD (wt%) 

Accuracy d ± 

SD 

Precision e ± 

SD (wt%) 

Artificial a 

(n=36) 

Natural b 

(n=48) 
13.42 – 26.34 

Beer’s law 3.89 ± 3.30 1.04 ± 0.12 0.69 ± 0.34 

PLSR 4.55 ± 2.50 0.98 ± 0.14 0.51 ± 0.28 

Natural b 

(n=70) 

Artificial a 

(n=21) 
15.70 – 25.70 PLSR 2.85 ± 1.40 1.08 ± 0.10 1.30 ± 0.81 

http://www.gradekenergy.com/
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proved by the absence of the characteristic bands of the clean beads in the region between 1760 

and 1150 cm-1 from the coated bead spectrum.  

 

 

Fig. 5-16. Clean RHS beads (left) and RHS beads after remediation of tailing soils (right) 
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Fig. 5- 17. ATR-FTIR spectra of RHS beads before and after remediation of tailing soils 
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5.3.3.2. ATR-FTIR Analysis of Natural Athabasca Tailing Soils Remediated by RHS Beads 

Since bitumen has distinct and characteristic MIR absorption and the absorption intensity is 

linearly related to the bitumen content in soil, ATR-FTIR spectra can be analyzed to quickly 

determine the drop in bitumen content resulting from the RHS remediation process and therefore 

quickly assess the performance of the process. Spectra of tailing soils before and after RHS 

remediation are shown in Figure 5-18. The unremediated and remediated soils have a similar 

spectral profile but with differences in relative intensity. The most pronounced difference is in 

the region between 2768 and 2989 cm-1 (Fig. 5-18), where the intensity of the bitumen bands 

drops to half after one pass of the remediation process.  

In order to eliminate the effect of path length variation, the bitumen band area (area2768-2989) and 

the clay band area (area3578 – 3745) were normalized to the integrated area under the full spectrum 

(∑ 𝑎𝑟𝑒𝑎). The corresponding indices, the clay index (ICLAY = area3578 – 3745/∑ 𝑎𝑟𝑒𝑎) and the 

bitumen index (IBITUMEN = area2768 – 2989/∑ 𝑎𝑟𝑒𝑎), were used to evaluate the performance of RHS 

remediation of tailing soils (Fig. 5-19). The bitumen index value drops to half after one pass of 

the remediation process. However, after the 2nd pass, the value does not continue to decrease but 

slightly increases. In general, after 1 or 2 passes of the remediation process, the bitumen index 

value decreases 50% compared to its value prior to remediation. The clay index value remains 

consistent during the remediation. Although the value increases slightly after one pass of the 

remediation process, this increase is not considered significant and is attributed to the sample 

heterogeneity.  
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Fig. 5-18. ATR-FTIR spectra of tailing soils before and after 1 and 2 passes of the  

RHS remediation process. The inset is a magnification of the 4000 – 2700 cm-1 spectral region 
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Fig. 5-19. Bitumen and clay indices before and after 1 and 2 passes of the RHS remediation 

process 

 

5.3.3.3. Remediated Tailing Soils Cluster Analysis (CA) 

The cluster analysis results are shown in constellation graphs, where the longer the stem, the less 

similar the spectra. There is no clear clustering reflecting the RHS remediation process; instead, 

the green spots representing “After remediation” are intermingled with the orange spots, which 

represent “Before remediation” samples (Fig. 5-20). This indicates that the chemical and 

physical changes caused by the remediation process are not reflected in the spectra, or that the 

spectral differences are not large enough to be distinguished in cluster analysis.  

 

 

Fig. 5-20. Constellation graph obtained by cluster analysis of 96 spectra of tailing soils labeled 

based on RHS remediation 
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Cluster analysis successfully clusters samples based on bitumen content, as shown in Figure 5-

21. Most of the red and blue spots representing soils with high and low bitumen content are 

nicely separated into two groups and are located on opposite sides of the constellation graph 

(Fig. 5-21). This indicates that the bitumen content of the soils is reflected in their ATR-FTIR 

spectra and can be distinguished in cluster analysis.  

 

 

Fig. 5-21. Constellation graph obtained by cluster analysis of 96 spectra of tailing soils labeled 

based on bitumen content 

 

 

However, a few samples are grouped in the wrong category and are considered as outliers. The 

ATR-FTIR spectra of the outliers and the sample with median bitumen content are presented in 

Figure 5-22. The outliers, which are labeled as “Low” bitumen content but are grouped into the 

“High” bitumen content category, indeed have higher bitumen absorbance than the median; 

meanwhile, those outliers labeled as “High” bitumen content but grouped into the “Low” 

bitumen content category have weaker bitumen absorbance than the median. This indicates that 

ATR-FTIR spectroscopy is capable of capturing the information truly reflecting the bitumen 

level. These outlier samples may be associated with the issue of representative sampling, which 

is particularly significant when samples are naturally heterogeneous, such as tailing soils. The 

portion of the sample sent for chemical analysis, which was used to label the sample as being of 
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“High” or “Low” bitumen content, is different from the portion of the sample employed for 

spectroscopic analysis, which is used in the cluster analysis. However, this representative 

sampling problem is not prevalent in our study, since only 7 out of 96 spectra are incorrectly 

grouped.  

 

 

 

5.3.3.4. PCA of ATR-FTIR Spectra of Remediated Tailing Soils 

The cluster analysis described above is mainly based on spectral similarity. In order to study 

further the remediated tailing soil classification by ATR-FTIR spectroscopy, PCA was used to 

extract the most significant information from the data matrix. By studying this extracted 

information, we can understand what the key information is for determining the remediated soil 

classification.  

Fig. 5- 22. ATR-FTIR spectra in the bitumen absorption region of samples with median 

bitumen content and outliers labeled as “low” and “high” bitumen level 
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5.3.3.4.1. PCA Loadings of RHS Remediated Tailing Soil 

The complete data matrix including all the spectra (n=96) and the wavenumbers in the selected 

region of 4000 – 2500 cm-1 was modeled by PCA. The first two PCs accounted for 95.6% (PC1) 

and 2.0% (PC2) of the total variance of the data, cumulatively accounting for 97.6% of the 

variance, and therefore only the first two PCs are considered here.  

Loadings are the correlations between the components (PCs) and the original variables 

(wavenumbers). In addition, a loadings plot for a given PC indicates how much of the variations 

in a variable (wavenumber) is explained by that PC. The higher the loadings value, the more 

variation is explained. Therefore, by examining the loadings plot, it is clear at which 

wavenumbers the most variations explained by that PC occur. The loadings plot for PC1 is 

presented in Figure 5-23-a and resembles an inverse ATR-FTIR spectrum of tailing soils. In 

PC1, the loadings values are high in the regions between 2768 and 2989 cm-1 and between 3578 

and 3745 cm-1, which are the absorption regions specific to bitumen and clay, respectively. 

Therefore, PC1 mainly carries the variations of soil minerals and bitumen. Figure 5-23-b is the 

loadings plot for PC2, which is also similar to the ATR-FTIR spectrum of tailing soils. In the 

loadings of PC2, a similar profile to the loadings of PC1 is observed, where two peaks in the clay 

and bitumen absorption regions are found. However, compared to the intensity of the PC1 

loadings, the intensity of PC2 loadings is much weaker. This illustrates that the variations 

explained by PC2 are small, which is true since only 2.0% of the total variance is extracted by 

this PC. In general, the most variations among the 96 spectra representing the raw tailing soils 

and RHS remediated tailing soils lie in the bitumen and clay absorptions, which are mainly 

captured in PC1.  
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Fig. 5-23. PCA loadings plots: (a) PC1; (b) PC2 

 

 

5.3.3.4.2. PC Scores of RHS Remediated Tailing Soils 

By plotting the PC1 and PC2 scores of each spectrum, the relationship among the spectra and the 

PCs is revealed. In order to examine the relationship among the properties of the tailing soils and 

PC1 and PC2, the 96 spectra are labeled as “Before” or “After” RHS remediation and as “High” 

or “Low” bitumen content. Each category is assigned a specific color and symbol. By examining 

the distribution of the colored symbols in the scores plot, the relationship among the properties 

and PCs is shown.  

Similar to the result of cluster analysis, PCA does not produce any separation between 

unremediated and remediated tailing soils (Fig. 5-24-a). Most of the points are centered in the 

scores plot, and neither PC1 nor PC2 separates the “Before” spectra from the “After” spectra. 

This indicates that the most significant spectral variations caused by the chemical or physical 

differences among the samples are not related to the remediation process.  

However, in the case of the property of bitumen content, there is a clear separation of the two 

classes by PCA (Fig. 5-24-b). The colored points are nicely separated by PC1, where the blue 

spots representing “Low” bitumen content are located on the negative side of PC1, while the red 

spots representing “High” bitumen content are grouped on the positive side of PC1. However, 

when looking at the PC2 dimension, all the points are intermingled and located in the center of 

PC2. This indicates that the information on bitumen content is overwhelmingly contained in 
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PC1, which is proved by the loadings of PC1, where the most spectral information extracted into 

PC1 is assigned to bitumen.  

 

 

Fig. 5-25. Examination of clustering of spectra on PC scores plots based on two properties: (a) 

before and after RHS remediation; (b) bitumen content 

 

 

5.4. Discussion  

5.4.1. Performance of Bitumen Quantification Models 

Bitumen quantification in both artificial tailing soils and natural Athabasca tailing soils using 

either ATR-FTIR or DRIFT-NIR spectroscopy coupled with simple linear regression (Beer’s 

law) or multivariate regression (PLS) was successfully achieved, with low RMSE values being 

obtained for all the models (Table 5-10). The performances of our models are comparable to 

those published in the literature; for example, Forrester et al.  (Forrester, Janik et al. 2010) 

reported a rcali
2 of 0.81 and a 4.5 wt% RMSECV for their MIR PLS model based on natural 

petroleum-contaminated soil with bitumen content ranging between 0 and 60 wt%. They also 

reported that a similar result was obtained using NIR spectroscopy but with a higher RMSECV 

(6.3 wt%).  
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Table 5-10. Comparison of bitumen calibrations based on MIR or NIR spectra with Beer’s law or 

PLS 

 

Both simple linear regression (Beer’s law) and PLSR yielded accurate calibrations for bitumen in 

tailing soils, with the PLSR models performing better than the Beer’s law calibrations, in terms 

of higher r2 and lower RMSEC (Table 5-10). In Beer’s law regression, a standard curve is 

generated to correlate the absorbance of a single characteristic band to concentration (Smith 

2011), (Qiu, Song et al. 2013), while a multivariate method such as PLS regression extracts 

much more spectral information from complex spectra to build up a calibration model for the 

prediction of concentration or other physicochemical properties (Chu 2011). In the tailing soils 

studied in this work, bitumen intermingles with clay minerals to form a complex mixture. 

Therefore, the inclusion of the spectral signal of clay minerals (3745 – 3578 cm-1) in the PLS 

regression provides additional information that improves the prediction accuracy of the model.  

Comparison among the four calibrations based on artificial tailing soils in terms of accuracy led 

to the selection of MIR spectroscopy coupled with PLSR as the best suited method to establish a 

calibration with natural Athabasca tailing soils. The performance of the latter model is acceptable 

and comparable to that based on artificial tailing soils. The slightly lower accuracy of the natural 

Samples Bitumen range (wt%) 
IR 

range 

Calibration 

method 

Region(s) 

(cm-1) 
rcali

2|rvali
2 

RMSEC 

(wt%) 

RMSECV 

(wt%) 

Artificial 

tailing soils 
0.70 – 40.70 

MIR 

Beer’s law 
3000 – 

2795 
0.98|0.97 2.12 NA 

PLSR 
3745 – 

2795 
0.99|0.98 1.76 2.34 

NIR 

Beer’s law 
4350 – 

4312 
0.99|0.99 1.23 NA 

PLSR 
4698 – 

3996 
0.99|0.98 0.78 2.51 

Natural 

Athabasca 

tailing soils 

9.70 – 26.59 
 

MIR 
PLSR 

3745 – 

2795 

1885 – 

1208 

0.90|0.86 1.55 1.87 
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Athabasca tailing soils model is probably due to the inherent heterogeneity of the natural soils in 

terms of bitumen chemistry and distribution, as well as the bitumen-soil interactions (Schwartz, 

Ben-Dor et al. 2012). This inherent heterogeneity reduces the modeling accuracy; relative to the 

models based on the artificial tailing soils, which were all prepared by spiking “cleaned” 

reference soils with bitumen from the same source. In addition, the interactions between bitumen 

and soil in the artificial tailing soils should be identical, since all the artificial soils were spiked 

under identical condition. It is suspected that the bitumen-soil interactions occurring in the 

spiked samples, which are mainly via surface adsorption, are different from the interactions 

occurring gradually over time in the Athabasca tailing soils under the natural environmental 

conditions. Under the latter conditions, water, salinity, and various types of ions all impact the 

formation of the bitumen-soil matrix, where bitumen-soil interactions may occur via surface 

adsorption, physical retention, or binding of bitumen in the intermolecular layers of the minerals 

(Lagaly, Ogawa et al. 2013). Furthermore, Forrester et al. (Forrester, Janik et al. 2010) indicated 

that the porosity of the minerals shields the bitumen trapped within the internal structures of soils 

from the IR beam, which would adversely affect the performance of the calibration model.   

The effect of sample heterogeneity on the accuracy of the PLS calibration model developed with 

the natural Athabasca tailing soils can be estimated by the parameter of precision, where the 

average deviation of the replicate predictions from their mean is calculated (Table 5-9). The 

calibrations based on artificial tailing soils exhibited higher precision, with an average ± 0.60 

wt% difference. In the case of the PLS calibration model based on natural Athabasca tailing 

soils, the variation of the replicate predictions doubles, with an average difference among 

triplicates of ±1.30 wt%.  

 

5.4.2. Remediation by RHS Beads 

According to the results presented in Sections 5.3.3.1 and 5.3.3.2, showing that bitumen is held 

on the surface of RHS beads and that the bitumen content of tailing soils is reduced in half after a 

single pass of the RHS remediation process, the RHS beads are effective in removing bitumen 

from tailing soils. Furthermore, a reduction in clay minerals after the remediation process is also 

observed, indicating that clay minerals are recovered by the beads along with bitumen. The RHS 
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beads have strong affinity for all hydrophobic hydrocarbons. When the polymeric beads are 

mixed with the tailing soils, the high interfacial tension at the surface of the beads causes them to 

strongly attract and hold the hydrocarbons. However, clay is an ultra-fine particle less than 2 µm 

in diameter, which provides an enormous amount of active surface with high charge density. 

Clay interacts with and adsorbs the bitumen, forming clay-bitumen complexes. Apparently, the 

RHS beads are unable to compete with the fine clays for bitumen. The clay minerals have a 

much larger active surface area per unit mass compared to the RHS beads. Therefore, clay 

minerals are strongly attached to the bitumen that is stripped out of the tailing soil by the RHS 

beads. 

 

5.4.3. Relationship between RHS Remediation and Bitumen Content Explained by PCA 

From the FTIR analysis of bitumen content in tailing soils and on the RHS bead surface after the 

soil remediation process, bitumen is successfully removed from tailing soils and ends up on the 

RHS bead surface (Sections 5.3.3.1 & 5.3.3.2). Therefore, a relationship between RHS bead 

remediation and bitumen content would be expected. However, according to the results of PCA 

of 96 spectra obtained from the before- and after-remediation samples, the relationship between 

the remediation process and bitumen content does not exist, as there is no clear separation of 

these 96 spectra based on RHS remediation while there is a good separation based on bitumen 

content. (Section 5.3.3.4.2).  

There are several possible explanations for this finding. First of all, the heterogeneity of the 

feedstocks may be a factor. Athabasca oil sands deposits are extremely heterogeneous with 

respect to geometry, mineralogy and mineral chemistry, aqueous fluid distribution and chemistry 

such as the salinity, and the distribution and chemistry of bitumen. These interrelated properties 

reflect the origin and quality of the ore and determine the bitumen stripping and extraction 

techniques, the quantity and quality of the extracted bitumen, as well as the quality of the tailings 

(Larter, Adams et al. 2008). For example, the high-quality ore has a higher amount of bitumen 

with an average bitumen content of 13.7 wt%, lower water content with an average of 1.0 wt%, 

and much less mineral fines (< 44 µm) with an average content of 7.5 wt% in the total solids. On 

the other hand, the low-quality ore has lower bitumen content with an average content of 7.6 
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wt%, a higher amount of water with an average water content of 6.3 wt%, and a much higher 

amount of fines with an average content of 34.6 wt%. After the extraction process, which is 

tailored and optimized according to the ore quality, 98 wt% of the total bitumen is recovered 

from the high-quality ore, leaving a small amount of bitumen residue in the tailing soils; while in 

the case of  the low-quality ore, only 76 wt% of the total bitumen is recovered, leaving 24 wt% 

of bitumen in the tailings (Romanova, Valinasab et al. 2006).  

Therefore, the feedstocks sent to the remediation pilot plant, which were the tailing slurries 

containing most of the processing water, soil minerals and bitumen residues, varied from batch to 

batch in the content of bitumen and fines in the soils. In addition, the fines, which are mainly the 

clay minerals, play an important role in the formation of bitumen-water emulsions and therefore 

determine the recovery of bitumen from the tailing slurries. These clay minerals are ultra-fine 

and biwettable, strongly adsorb bitumen, and become suspended in the middle layer of the tailing 

slurries. When the RHS beads are added to the tailing slurries, the part of the bitumen that is 

mechanically entrained in the coarse sand grains is easily removed by the RHS beads. However, 

the fine clay minerals, which also adsorb part of the bitumen, adversely affect the separation of 

bitumen. The biwettable fines attach at the bitumen-water interface and stabilize the bitumen-

water emulsions by forming a rigid barrier between water droplets and the continuous bitumen 

phase. Moreover, the fines are porous and may internally trap bitumen and thereby adversely 

affect the extraction of bitumen by the RHS beads (Sparks, Kotlyar et al. 2003). Therefore, the 

variation of the bitumen content and fine clay content in the feedstocks, as well as the different 

degrees to which the fines inhibit the bitumen separation, make the remediation process 

inconsistent and consequently lead to the unsuccessful clustering of IR spectra of samples from 

different remediation batches.  

 

5.5. Conclusion  

In this study, IR spectroscopy coupled with Beer's law or with the PLS algorithm has been 

successfully employed for quantitation of bitumen directly from neat tailing soils without any 

chemical extractions. The spectral information provided by both near-IR and mid-IR 

spectroscopy allowed the development of calibrations of high accuracy and precision. The 
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inclusion of clay spectral information in the PLS modeling is beneficial to the accuracy of the 

bitumen calibration. The robustness, accuracy, and reliability of the models are proved by 

examination of the prediction performance using a set of completely independent validation 

samples.  

The application of IR spectroscopy coupled with the PCA algorithm for the classification of 

tailing soils and the evaluation of a remediation process has also been investigated in this study. 

This method successfully clusters the tailing soils according to the bitumen content level. 

However, the bitumen content level fails to serve as an indicator of the RHS-bead remediation 

process, as the bitumen content in some “After-remediation” samples is higher than that in some 

“Before-remediation” samples. To avoid this inconsistent remediation outcome, an IR-PCA 

spectroscopic method could be implemented at the material reception point to characterize and 

categorize the feedstocks based on the initial bitumen content level to ensure the remediation 

process is optimized according to the initial bitumen content. Furthermore, the same IR-PCA 

technique can also be applied during the remediation process as well as at the end of the process, 

where it could play a screening role to ensure the clean-up goal has been met.  
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CHAPTER 6 

 

CONNECTING STATEMENT  

 

 

In Chapter 6, bitumen recovery from Alberta tailing soils was studied by using green solvent 

extraction. The recovery performance was evaluated in terms of the product quality, as well as 

quantify of the recovered bitumen and the non-recovered bitumen. The bitumen fractions were 

quantitated by using an ATR-FTIR-PLSR model, which was developed in Chapter 5. In addition, 

the chemical structures of the recovered and non-recovered bitumen were investigated by using 

ATR-FTIR spectroscopy.  

  



 
 

 

173 
 

CHAPTER 6 

 

USE OF ATR-FTIR SPECTROSCOPY FOR QUANTITATIVE AND QUALITATIVE ANALYSIS OF BITUMEN 

 

EXTRACTED BY THE GREEN SOLVENT 2-METHF FROM ALBERTA OIL SANDS 

 

Abstract 

2-MeTHF is a green solvent that is widely used as a substitute for organic solvents such as 

toluene and dichloromethane (DCM). Toluene and DCM have been widely used in the bitumen 

extraction process as the extracting solvents. In this study, 2-MeTHF was examined as an 

alternative extraction solvent for bitumen. In a room-temperature 2-min vortex extraction, 2-

MeTHF was able to recover 89% of the total bitumen in Alberta tailing soils, which was 9% and 

14% higher than the recovery obtained with toluene and DCM, respectively. In addition, the 

extraction was optimized when the solvent-to-soil ratio was 2:1 wt/wt, beyond which there was 

no increase in the extraction efficiency; when toluene or DCM was used, a larger solvent-to-soil 

ratio was required to reach a similar extraction efficiency to that obtained with 2-MeTHF. 

Moreover, the bitumen obtained from 2-MeTHF extraction had higher quality as less clay 

migration was found in the final products by DRIFT-NIR analysis.  

The bitumen residues after the single-stage extraction were further separated into less-soluble 

and insoluble fractions, where those resistant to room-temperature extraction were regarded as 

the less-soluble fraction and those resistant to Soxhlet extraction were regarded as the insoluble 

fraction. An MIR-PLSR calibration was used to quantify these two fractions. The less-soluble 

fraction accounted for 14.36% of the total bitumen and the insoluble fraction accounted for 

8.77% of the total bitumen.  The less-soluble fraction was further characterized by using ATR-

FTIR spectroscopy, and it was found that it contained longer aliphatic chains and less branched 

structure with higher amounts of aromatic carbons and carbonyl groups than the easily soluble 

fraction. 

2-MeTHF is a promising bitumen extraction solvent, considering its higher extraction efficiency, 

higher product quality, and lower environmental impact. However, 2-MeTHF is unstable when 

heat and Lewis acids are present, which trigger 2-MeTHF protonation, ring-opening and 

consequent polymerization reactions. The polymerized 2-MeTHF is in oil form, which mixes 



 
 

 

174 
 

with and ends up in the final bitumen product and cannot be removed during solvent recovery. 

The presence of the polymerized 2-MeTHF by-products in the bitumen extracted by boiling 2-

MeTHF was evidenced by the results obtained from ATR-FTIR, MS-PACI, and elemental 

analysis.  

Key words    green solvent    2-MeTHF    bitumen    extraction performance    IR spectroscopy 

 

6.1. Introduction  

Alberta’s oil sands resources are the third largest crude oil reservoir in the world, after Saudi 

Arabia and Venezuela. As the conventional oil reserves of the Middle East decrease, the demand 

for unconventional oil sources, which usually refers to the oil sands of Canada, dramatically 

increases (Attanasi and Meyer 2010). It is estimated that crude oil production in Alberta will 

increase from 1.3 million barrels/day in 2008 to 3 million barrels/day in 2018 (Burrowes, Teare 

et al. 2011). The traditional recovery of crude oil, which is commonly referred to as bitumen, 

from the oil sands employs the water-based extraction process, which was first introduced by 

Karl Clark in the 1920s and was first commercially applied in 1967 (Masliyah, Zhou et al. 2004). 

The characteristic feature of oil sands, which is that a thin layer of water separates the 

hydrophobic bitumen and the hydrophilic sand grains, makes the simple water-based extraction 

feasible. However, this method has several disadvantages, which are mainly related to the 

environmental impact, such as large water consumption, the tailing ponds formed by the 

accumulation of the wastewater, which are a risk to wildlife (Board 2006), and the high energy 

consumption and high greenhouse gas emission (Wu and Dabros 2012). Therefore, new 

technologies need to be developed to overcome the environmental shortcomings of the water-

based extraction.  

Solvent-based extraction is a good alternative to the water-based process, as it greatly decreases 

fresh water demand and eliminates the tailing ponds. A wide range of solvents that can dissolve 

bitumen have been investigated. For example, (Graham, Helstrom et al. 1987) patented the use 

of heptane to recover bitumen with centrifugation, filtration and steam stripping. (Farcasiu and 

Whitehurst 1977) used the combination of light naphtha and methanol as the solvent system to 
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extract bitumen, where the most desirable and non-polar fractions were recovered from the light 

naphtha phase while the more polar fractions were recovered from the methanol phase and the 

less desirable asphaltenes precipitated. used hot toluene and centrifugation to recover bitumen 

from tar sand. (Wu and Dabros 2012) suggested using cyclopentane to extract bitumen from oil 

sands as it provided comparable extraction to the water-based extraction and it was easily 

recovered.  

The selection of extracting solvent for use in bitumen extraction has been focused on naphtha, 

benzene, toluene, chloroform, methanol, alkanes, and cycloalkanes (Wang, Robbins et al. 2004). 

However, various factors need to be considered in solvent selection, such as the source, cost, 

recovery, volatility, and toxicity as well as the solubility of bitumen. For example, naphtha is 

considered a good solvent as it is cheap and has low toxicity but it fails to extract the heavy 

components in bitumen. Bitumen has high solubility in toluene, but this solvent is difficult to 

recover owing to its high boiling point.  

Solvents is the most consumed material where more than 80% of the material consumption 

comes from solvent (Constable, Jimenez-Gonzalez et al. 2007). In addition, solvent use also 

consumes about 60% of the overall energy and accounts for 50% of the post-treatment 

greenhouse gas emissions (Jiménez-González, Curzons et al. 2004). Therefore, considering the 

large quantities of solvent to be consumed in the bitumen extraction process, a proper solvent 

selection significantly affects the energy savings as well as the environmental impact. Recently, 

the concept of “green solvents” has emerged, which expresses the goal of minimizing the 

environmental impact resulting from the use of solvents in chemical production (Capello, Fischer 

et al. 2007). In general, the concept of green solvents has developed in four directions; 

substitution of hazardous solvents with ones that show better EHS (environmental, health, and 

safety) properties (Gani, Jiménez-González et al. 2006); substitution of organic solvents with 

either supercritical fluids that are environmentally harmless or with ionic liquids that show low 

vapour pressure and thus less emission into air (Nalawade, Picchioni et al. 2006) and use of “bio-

solvents” that are produced from renewable resources (Capello, Fischer et al. 2007).  

2-Methyltetrahydrofuran (2-MeTHF) is a green solvent, as it can be derived from renewable 

resources, such as furfural or levulinic acid; therefore, it can reduce the use of petrochemically 
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fabricated solvents, which leads to an avoidance of fossil resource use and fossil fuel CO2 

emissions to the environment (Capello, Fischer et al. 2007). In addition, it has low miscibility in 

water, a low boiling point, and a higher production yield, which makes it a popular substitute for 

tetrahydrofuran (THF), toluene, and dichlromethane (DCM) in many applications, such as 

organocatalysis, biomass processing, and biocatalysis (Pace, Hoyos et al. 2012).  

The use of 2-MeTHF in bitumen extraction as a substitute for the traditionally used organic 

solvents, such as toluene and DCM, is seldom reported. Similar to toluene and DCM, 2-MeTHF 

is able to dissolve both light and heavy components in bitumen, but 2-MeTHF is more easily 

recovered than toluene as it has a lower boiling point. In addition, unlike DCM, 2-MeTHF is 

immiscible in water, making it easier to separate and recover from water and thereby reducing 

the waste stream. Therefore, 2-MeTHF shows great potential as a green extraction solvent for 

use in solvent-based bitumen extraction processes.   

In this study, 2-MeTHF was examined as the solvent for the extraction of bitumen from Alberta 

tailing soils. The extraction performances of 2-MeTHF as well as the traditional solvents toluene 

and DCM were studied and compared based on a comprehensive analysis, including extraction 

efficiency, bitumen recovery, extraction rate, and the extraction loss. Optimization of solvent 

usage was also studied to minimize the solvent input. However, the optimization of the 

extraction and drying process, such as the extraction time, extraction technique, number of 

extraction stages, and drying temperature, was not the purpose of the present study. In addition, 

the quality of the final bitumen products was evaluated in terms of the fine clay migration, since 

from a bitumen production viewpoint; it is desirable if the fine solids coagulate less with 

bitumen.   

 

6.2. Materials and Methods 

6.2.1. Materials 

6.2.1.1. Soil Samples 

The soil samples used in this study come from the Athabasca tailing soils provided by Gradek 

Energy Inc., as described in Chapter 5. In order to minimize the sample variability, the soil 
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samples were taken from the same batch. The soils were air-dried in a fume hood for a week, 

then were finely ground and passed through a 2-mm sieve and stored in a sealed 1-L glass bottle.  

6.2.1.2. Solvents 

Three organic solvents were used independently in this study: 2-methyltetrahydrofuran (2-

MeTHF), toluene, and dichloromethane (DCM). They were anhydrous grade with ≥99.0% purity 

purchased from Sigma-Aldrich. The physical and chemical properties of the three solvents are 

listed in Table 6-1.  

 

Table 6-1. Physical and chemical properties of 2-MeTHF, toluene, and DCM solvents 

 

 

Solvent 2-MeTHF Toluene DCM 

Chemical formula C5H10O C7H8 CH2Cl2 

Chemical structure 

 

 

 

Molar mass (g/mol) 86.13 92.14 84.93 

Density (g/mL) 0.85 0.87 1.33 

Boiling point (℃) 80.2 111.0 39.6 

Water solubility (g/L at 25 ℃) 0.14 0.52 22.81 

Hildebrand solubility 

parameter(MPa1/2) 
16.9 18.2 20.2 

Dynamic viscosity (mPa.s at 

25℃) 
0.51 0.56 0.41 

Kinematic viscosity (cSt at 25℃) 0.60 0.65 0.31 
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6.2.2. Methods 

6.2.2.1. Room-Temperature Bitumen Extraction 

Exactly 6.00 ± 0.05 g of dried tailing soils was weighed and added into a 50-mL screw-cap 

centrifugation tube. A controlled amount of organic solvent was added into the tube.  In order to 

compare the extraction efficiency among the solvents, each solvent was independently added. 

The soil-solvent mixture was vortexed at room temperature for 2 min to complete the extraction. 

The extracts were separated from the soil by centrifugation at 8000 rpm for 15 min. The 

supernatant was collected and dried in a fume hood at room temperature (25 ℃) for 3 days to 

obtain the recovered bitumen. The precipitate, which was the solvent-extracted soil, was dried in 

the fume hood at room temperature overnight to obtain the solvent-free extracted soil.  

 

6.2.2.2. Optimization of Solvent Extraction 

As mentioned in Section 6.2.2.1, the amount of solvent added into the samples was controlled at 

seven different solvent-to-soil ratios (wt/wt), 1:1, 1.25:1, 1.5:1, 1.75:1, 2:1, 2.5:1, and 3.24:1. 

The recovered bitumen and the washed and dried soil were measured gravimetrically to calculate 

the extraction recovery (%), extraction loss (%), and extraction efficiency (%) by using the 

following equations (Alenyorege, Hussein et al. 2015): 

 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =  
𝐵1 

𝑆1
 ×100% ……………………………….. (6-1) 

 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 (%) =  
𝑆1−(𝐵1+𝑆2)

𝑆1
 ×100% ………………………………. (6-2) 

 

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝐵1

𝐵𝑇×𝑆1
 ×100% ……………………….…… (6-3) 

 

where B1 is the weight of recovered bitumen; BT is the percentage of bitumen in the soil; S1 is the 

weight of soil before extraction; and S2 is the weight of soil after extraction and solvent 

evaporation.  
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6.2.2.3. Calculation of Viscosities of Tailing Soils Solutions 

The viscosities of the extraction systems were calculated using the double-logarithmic Refutas 

equation in a three-step procedure, which is commonly used in the petroleum industry for 

petroleum blending purpose (Tat and Van Gerpen 1999): 

 

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝐵𝑙𝑒𝑛𝑑𝑖𝑛𝑔 𝐼𝑛𝑑𝑒𝑥 (𝑉𝐵𝐼) = 14.534×𝐼𝑛[𝐼𝑛(𝑣𝑋 + 0.8)] + 10.975 …….. (6-4) 

 

𝑉𝐵𝐼(𝑏𝑙𝑒𝑛𝑑) = (𝑊𝐴×𝑉𝐵𝐼𝐴) + (𝑊𝐵×𝑉𝐵𝐼𝐵) + ⋯ + (𝑊𝑋×𝑉𝐵𝐼𝑋) …………….… (6-5) 

 

Kinematic Viscosity of the blend system (ν) =  𝑒𝑒(𝑉𝐵𝐼−10.975)÷14.534
− 0.8……...… (6-6) 

 

where, 𝑣𝑋 is the kinematic viscosity of the Xth component in the system and 𝑊𝑋 is the weight 

fraction of the Xth component in the system.  

In this study, the extraction system is the binary system obtained by blending the tailing soil with 

controlled amount of organic solvent. The kinematic viscosities of the three selected solvents are 

listed in Table 6-1, whereas the kinematic viscosity of tailing soil is 0 cSt. According to the 

literature, the kinematic viscosity of tailings relates to the solids content and remains 0 cSt until 

the solid contents is greater than 68% (Johnson, Moghaddam et al. 2013). In this study, the 

tailing soil contents in all the extraction systems were below 60%. The kinematic viscosity of 

each extraction system is presented in Table 6-2.  
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Table 6-2. Kinematic viscosities of the extraction systems 

 

 

Solvent 
Solvent-to-soil 

ratio (wt/wt) 

Solvent  

(wt%) 

Tailing soil 

(wt%) 

Blend viscosity 

(cSt) 

2-MeTHF 

1:1 50 50 0.99 

1.25:1 56 44 0.93 

1.5:1 60 40 0.88 

1.75:1 63 37 0.85 

2:1 67 33 0.82 

2.5:1 71 29 0.78 

3.24:1 76 24 0.75 

Toluene 

1:1 50 50 1.04 

1.25:1 56 44 0.98 

1.5:1 60 40 0.94 

1.75:1 63 37 0.90 

2:1 67 33 0.88 

2.5:1 71 29 0.84 

3.24:1 76 24 0.80 

DCM 

1:1 50 50 0.58 

1.25:1 56 44 0.53 

1.5:1 60 40 0.49 

1.75:1 63 37 0.47 

2:1 67 33 0.45 

2.5:1 71 29 0.42 

3.24:1 76 24 0.39 
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6.2.2.4. Soxhlet Extraction of Bitumen 

Soxhlet extractions were conducted using 2-MeTHF, toluene, and DCM to determine the content 

of bitumen in tailing soil. The Soxhlet apparatus consisted of a 250-mL round-bottomed flask, 

fitted with a condenser and extractor tube, seated in a temperature-controlled heating mantle. The 

tailing soil (5 g) was added carefully into the thimble, while the solvent (150 mL) with several 

glass beads was added into the flask. The heating temperature was set according to the boiling 

point of the solvent, where 80℃, 110℃, and 40℃ were set for 2-MeTHF, toluene, and DCM, 

respectively. The extraction was carried out for 4 h. After the extraction, the solvent was 

evaporated on a rotary evaporator. The residue, which is the extracted bitumen, was measured by 

gravimetric method. Duplicate extractions with each solvent were carried out.  

 

6.2.2.5. Examination of Bitumen Extracted by ATR-FTIR Spectroscopy 

The bitumen extracts and the soils obtained from both the room-temperature extraction and 

Soxhlet extraction were scanned by ATR-FTIR spectroscopy over the full MIR range (4000 – 

400 cm-1) at 4 cm-1 resolution with co-addition of 128 scans. The quality of the bitumen extracts 

was evaluated by the characterization of the bitumen fractions as well as the fine minerals. The 

quantification of bitumen residues after extraction was conducted by using the MIR-PLSR 

bitumen calibration model presented in Chapter 5.  

 

6.2.2.6. Characterization of Bitumen Extracts by APCI-MS 

The bitumen extracts obtained from different organic solvents were characterized by using a 

mass spectrometer equipped with an atmospheric-pressure chemical ionization (APCI) source 

(MaXis Impact, Bruker) with the capillary voltage set at 4000 V and heated to 450 ℃. Spectra 

were acquired in the positive ion mode over the range of 100 to 1000 m/z with a scan time of 1.5 

min.  
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6.3. Results 

6.3.1. Bitumen Room-Temperature Extraction Efficiency Comparison among 3 Solvents 

6.3.1.1. Mass Balance of the Extraction 

The mass balance of the solvent extraction is presented in Table 6-3. Under this scenario, no 

chemical reactions occurred during the solid-liquid extraction but simply the mass transfer 

between phases. Therefore, the mass balance equation is simplified as “input = output”, where 

“input” refers to the soil samples before extraction, while “output” refers to the sum of the 

extracted bitumen and the soil after extraction. The difference between the input and output is the 

loss during the extraction process.  

 

Table 6-3. Mass balance of bitumen room-temperature extraction by three different solvents 

 

Raw data (average of duplicates)  Result 

Solvent  

Solvent-to-

soil ratio 

(wt/wt) 

Soil 

sample 

(g) 

Recovered 

bitumen  

(g) 

Extracted 

soil  

(g) 

 

Extraction 

recovery  

(%) 

Extraction 

loss  

(%) 

Extraction 

efficiency  

(%) 

2-MeTHF 

1:1 6.011 0.253 5.668  4.210 1.507 59.301 

1.25:1 6.003 0.310 5.635  5.157 0.974 72.635 

1.5:1 6.063 0.328 5.686  5.417 0.800 76.289 

1.75:1 6.084 0.373 5.651  6.122 1.024 86.232 

2:1 6.017 0.378 5.539  6.289 1.650 88.574 

2.5:1 6.064 0.377 5.570  6.222 1.562 87.635 

3.24:1 6.039 0.368 5.616  6.098 0.908 85.881 

         

Toluene 

1:1 6.025 0.263 5.730  4.360 0.530 60.389 

1.25:1 6.019 0.276 5.690  4.582 0.887 63.465 

1.5:1 6.006 0.291 5.672  4.837 0.722 66.995 

1.75:1 6.012 0.308 5.561  5.127 2.373 71.008 

2:1 6.020 0.305 5.600  5.059 1.911 70.063 

2.5:1 6.007 0.337 5.556  5.612 1.893 77.724 

3.24:1 6.002 0.346 5.501  5.758 2.587 79.749 

         

DCM 

1:1 6.018 0.248 5.594  4.126 2.926 58.112 

1.25:1 6.004 0.255 5.605  4.247 2.403 59.818 

1.5:1 6.001 0.266 5.630  4.426 1.756 62.337 

1.75:1 6.002 0.278 5.632  4.633 1.546 65.256 

2:1 6.022 0.309 5.523  5.133 3.142 72.300 

2.5:1 6.001 0.330 5.531  5.492 2.408 77.347 

3.24:1 6.005 0.326 5.577  5.422 1.695 76.372 
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The extraction recovery and the loss for each treatment are presented in Figure. 6-1. In general, 

the bitumen recovery increases with increasing solvent-to-soil ratio. In particular, the recovery 

obtained with the solvent 2-MeTHF is the highest at 6.3%, which accounts for 88.7% of the total 

bitumen. The bitumen recoveries obtained with toluene and DCM are similar, with the highest 

recoveries being 5.76% and 5.49%, respectively. However, both toluene and DCM reach their 

highest recoveries at a higher solvent-to-soil ratio (about 1.5 times higher) than 2-MeTHF (Fig. 

6-1-a).  

Fig. 6-1. Bitumen room-temperature extraction by 2-MeTHF, toluene, and DCM; (a) extraction 

recovery; (b) extraction loss 
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In terms of loss, the extractions conducted with 2-MeTHF generated the lowest loss, with an 

average of 1.20 % ± 0.33 %. The losses occurring in the toluene and DCM extractions were 

about 1.3 and 1.8 times greater, with an average loss of 1.58 % ± 0.77% and 2.27% ± 0.58 %, 

respectively. Nevertheless, the recovery loss is randomly distributed among the extractions; 

therefore, there is a lack of a relationship between the degree of loss and the amount of solvent 

used in the extraction (Fig. 6-1-b).  

 

6.3.1.2. Bitumen Extraction Efficiency 

The extraction efficiency among the three solvents is compared in Figure 6-2. 2-MeTHF shows 

stronger bitumen extraction power than the other two solvents. As can be seen, the extraction 

efficiency increases with increasing solvent-to-soil ratio until it reaches 2:1; the efficiency then 

levels off. At the solvent-to-soil ratio of 2:1, the 2-MeTHF bitumen extraction efficiency of a 

single-stage extraction can reach around 90%. The extraction efficiency of toluene and DCM are 

similar but lower than that of 2-MeTHF, with the maximum extraction efficiency around 80% 

(Fig. 6-2-a).  

In addition, the extraction rate is revealed by plotting the recovered bitumen content against the 

solvent volume (Fig. 6-2-b). The changes of the extraction rates by the three solvents are in a 

similar pattern, where the extraction increases at a constant rate until reaching the maximum 

point, and then the extraction levels off. Among these three solvents, the extraction rate of 2-

MeTHF is the highest, followed by DCM and toluene. The extraction rate of 2-MeTHF is 0.0214 

g/mL, which is 1.6 times higher than that of DCM (0.013 g/mL), and 3.1 times higher than that 

of toluene (0.0069 g/mL). 

As well, the volume of the solvent required to reach the extraction plateau is the smallest for 

DCM (11.28 mL), followed by 2-MeTHF (12.35 mL) and toluene (17.24 mL). However, at the 

extraction plateau, the amount of bitumen recovered is the highest for 2-MeTHF extraction (0.38 

g), followed by toluene (0.35 g) and DCM extraction (0.33 g). This indicates that the solubility 

of bitumen is the highest in 2-MeTHF, followed by DCM and toluene. In addition, under these 

extraction conditions, where single-stage extraction at room temperature for 2 min is applied, the 
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diffusion efficiency of bitumen into 2-MeTHF is the highest, resulting in the highest extraction 

performance, in terms of the extraction efficiency and the extraction rate.  

 

 

Furthermore, the viscosities of all the extraction systems formed by the different solvents and the 

various solvent amounts are compared in Figure 6-3. In general, the viscosity decreases with 

increasing solvent-to-soil ratio. Among the three solvents, the viscosity of the system formed by 

DCM is the lowest, followed by 2-MeTHF and toluene. The viscosity of the system can have an 

impact on the extraction performance, where lower viscosity is more beneficial to the process. 

When the bitumen content of the tailing soil is low (i.e. ≤ 0.3 g, ≤ 5% in soil, Fig. 6-2-b), the 

extraction performance by DCM is the best, where the amount of recovered bitumen is the 

Fig. 6- 2. Bitumen room-temperature extraction by 2-

MeTHF, toluene, and DCM; (a) extraction efficiency; 

(b) extraction rate 
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highest. However, when the bitumen content increases (i.e. > 0.3 g, > 5% in soil), the extraction 

performance by 2-MeTHF is superior.  

 

 

 

Fig. 6-3. Change of system viscosities (Pa.s) with solvent type and solvent-to-soil ratio 

 

 

6.3.1.3. Characterization of Recovered Bitumen 

6.3.1.3.1. ATR-FTIR Spectroscopy 

The bitumen extracted by the 3 different solvents at the lowest (1:1) and the highest (3.24:1) 

solvent-to-soil ratio was characterized by ATR-FTIR spectroscopy. The distributions and 

abundances of the functional groups are illustrated in Figure 6-4.  
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Fig. 6-4. Original spectra of extracted bitumen and the 

deconvolved spectra in the aliphatic region between 

3000 and 2800 cm-1 
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The particular interest is the aliphatic stretching region (3000 – 2800 cm-1). The aliphatic 

stretching region, which is better resolved after band deconvolution, is used to calculate a -CH3/-

CH2 ratio that provides information about the chain length and the degree of branching of 

aliphatic compounds (Table 6-4). The -CH3/-CH2 ratios are identical (0.70) for the extracts 

obtained by the 3 different solvents at a 1:1 solvent-to-soil ratio. This indicates that the three 

bitumen extracts are structurally identical, in terms of the degree of branching and the length of 

the aliphatic chains.  

 

Table 6-4. A2954/A2923 index of bitumen extracted by different solvents at room temperature with 

the lowest and highest solvent-to-soil ratio 

Extraction condition Solvent 
Solvent-to-soil ratio 

 (wt/wt) 

A2954 

(-CH3) 

A2923 

(-CH2) 

A2954/A2923 

(-CH3/-CH2) 

Room temperature 

2-MeTHF 
1:1 13.381 19.180 0.70 

3.24:1 13.495 19.587 0.69 

Toluene 
1:1 13.671 19.390 0.71 

3.24:1 13.500 19.537 0.69 

DCM 
1:1 13.835 19.837 0.70 

3.24:1 13.858 19.853 0.70 

 

Nevertheless, among all the extracts, the -CH3/-CH2 ratios obtained at the highest solvent-to-soil 

ratio (3.24:1) are slightly lower than those obtained at the lowest ratio (1:1). This suggests that 

bitumen extracted by a larger amount of solvent (higher solvent-to-soil ratio) contains more 

long-chain and unbranched aliphatic groups. This is due to the lower solubility of the larger size 

molecules with longer carbon chains, which are outcompeted by the shorter carbon chain 

molecules when only a small amount of extracting solvent is employed (ratio 1:1). Therefore, 

when the bitumen is extracted at a solvent-to-soil ratio of 1:1, the solvents are saturated by the 

fractions with shorter carbon chains, which are dissolved first. When the amount of the solvent 

increases (ratio 3.24:1), the non-saturated portions of the solvents start to dissolve the bitumen 
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fractions with longer carbon chains. Consequently, the bitumen extracted at a solvent-to-soil 

ratio of 3.24:1 is composed mostly of the short carbon chain fractions together with part of the 

long carbon chain fractions. The inclusion of the longer carbon chain fractions decreases the -

CH3/-CH2 ratios, which is reflected by the ATR-FTIR spectra.  

 

6.3.1.3.2. DRIFT-NIR Spectroscopy 

The DRIFT-NIR spectra of the bitumen recovered by solvent extraction with the three different 

solvents are presented in Figure 6-5. All the bitumen extracted by the different solvents shows a 

similar NIR spectral pattern, with absorption bands representing the presence of water, 

hydrocarbons, and clay minerals. However, the spectral signal is very weak and noisy throughout 

the whole spectrum. This is because only a small fraction of light is reflected back to the 

detector, as most of the light is absorbed by the bitumen due to its naturally dark color.  

The DRIFT-NIR spectra were mathematically processed by taking the 2nd derivative to resolve 

the broad bands, and the resulting spectra in the range between 5000 and 4000 cm-1 are presented 

in Figure 6-6. The three bands between 4450 and 4280 cm-1 are due to the combination of methyl 

and methylene stretching and bending vibrations. In the region between 4550 and 4500 cm-1, 

there is a sharp band representing the presence of clay minerals. In the spectrum of the clean soil, 

there is no absorption in the hydrocarbon region but strong absorption in the clay region, as there 

is no bitumen in the clean soil sample. In turn, in the spectrum of the recovered bitumen, there 

should be only hydrocarbon absorptions. However, a small clay band is observed in the spectra 

of the toluene- and DCM-recovered bitumen. This suggests that a small portion of the clay is 

recovered along with bitumen when toluene and DCM are used as extraction solvents. The 

presence of clay in the bitumen aids light reflection, causing the relatively stronger and less noisy 

signals in the spectra of toluene- and DCM-recovered bitumen as compared to the signals in the 

spectrum of 2-MeTHF-recovered bitumen.  
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Fig. 6-5. Stacked DRIFT-NIR spectra of bitumen recovered from tailing soil by 2-MeTHF, 

toluene, or DCM extraction 
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Fig. 6-6. Second derivative DRIFT-NIR spectra of clean soil and bitumen recovered from tailing 

soil by 2-MeTHF, toluene, or DCM extraction 
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6.3.2. Determination of Bitumen Residues by ATR-FTIR Spectroscopy 

6.3.2.1. ATR-FTIR Spectra of Bitumen Residues from Room-Temperature Extraction and Soxhlet 

Extraction 

6.3.2.1.1. Determination of Less-Soluble Bitumen by Room-Temperature Extraction  

To evaluate the extraction performance under different extraction conditions, the tailing soil 

samples obtained after different extraction treatments were examined by ATR-FTIR 

spectroscopy. The extraction performance was evaluated based on the bitumen content left in the 

tailing soil samples after the different extraction treatments.  

Based on the hydrocarbon band intensity in the ATR-FTIR spectra, the content of bitumen 

residues decreases with increased amount of organic solvent (Fig. 6-7). After the extraction at the 

lowest solvent-to-soil ratio (1:1), the bitumen band intensity is more than 50% reduced relative 

to the band intensity in the spectrum of the raw tailing soil. In the case of extraction by 2-

MeTHF, the amount of bitumen extracted gradually increases with increasing amount of 2-

MeTHF used, which is reflected by the ATR-FTIR spectra, where the band intensity drops 

gradually and smoothly as a function of the amount of solvent used. However, in the case of the 

other two solvents, toluene and DCM, the removal of bitumen is not in proportion to the amount 

of solvent used. For example, the bitumen residues after toluene extraction at solvent-to-soil 

ratios of 1:1 and 1.5:1, as well as after DCM extraction at solvent-to-soil ratios of 1:1 and 1.75:1, 

are almost identical, as revealed by the ATR-FTIR spectra, where the spectra representing 

different solvent usages are nearly overlaid with similar bitumen band intensity. This indicates 

that under the same extraction conditions, the extraction efficiency of toluene and DCM is not as 

good as that of 2-MeTHF, since increasing the amount of the former two solvents used in 

bitumen extraction did not reduce the bitumen residues content of the treated soil as much as 2-

MeTHF did.  

In addition, the decrease in the bitumen residues content of the treated soil ceases when the 

solvent-to-soil ratio reaches a certain point. In the case of 2-MeTHF, beyond a solvent-to-soil 

ratio of 2.5:1, the bitumen band intensity no longer decreases. In the case of toluene, the bitumen 

band becomes stable beyond a solvent-to-soil ratio of 1.75:1. This fraction of bitumen, which 

cannot be further extracted by the solvent under the room-temperature 2-min vortex extraction 



 
 

 

193 
 

conditions, is assumed to be the less-soluble bitumen. Under such extraction conditions, 

additional amounts of organic solvent cannot remove the rest of the bitumen.  

 

Fig. 6-7. ATR-FITR spectra of tailing soils after room-temperature extraction at different 

solvent-to-soil ratios and after Soxhlet extraction by (a) 2-MeTHF, (b) toluene, and (c) DCM 
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6.3.2.1.2. Determination of Insoluble Bitumen by Soxhlet Extraction  

In order to verify whether the less-soluble bitumen can be extracted by the organic solvents, 

Soxhlet extraction, which provides much harsher extraction conditions involving heating in the 

boiling solvent for 4 h, was used to extract the tailing soil sample. The spectrum of the extracted 

tailing soil was scanned by ATR-FTIR spectroscopy and the bitumen region between 2975 and 

2750 cm-1 was examined (Fig. 6-7). By comparing the band intensities among the spectra from 

room-temperature extraction and from Soxhlet extraction, it is observed that the bitumen band in 

the spectra of the Soxhlet extraction samples has the lowest intensity. This indicates that the 

Soxhlet method extracts more bitumen than the room-temperature method with the highest 

solvent-to-soil ratio. Thus, the Soxhlet method is able to extract part of the less-soluble bitumen 

fraction. However, the Soxhlet method is unable to extract all of the bitumen, as the bitumen 

band is still observed in the ATR-FTIR spectrum of the extracted tailing soil sample. That 

bitumen fraction resistant to Soxhlet extraction is therefore considered to be the insoluble 

bitumen. The ATR-FTIR spectra of the less-soluble and insoluble fractions obtained with each 

extraction solvent are presented in Figure 6-8. The hydrocarbon band in the spectra of the 

insoluble fractions is about 50% less intense than in the spectra of the less-soluble fractions. This 

indicates that about half of the less-soluble bitumen can be extracted under the vigorous 

conditions of Soxhlet extraction.   

Fig. 6-8. Bitumen absorption region in the ATR-FTIR spectra of tailing soils 

after room- temperature extraction (dashed line) and after 3.5-h reflux extraction 

(solid line) by 2-MeTHF, toluene, and DCM 
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6.3.2.2. Quantification of Bitumen Residues by ATR-FTIR-PLSR 

To determine the bitumen residues in soil after different extractions, the MIR-PLSR calibration 

model based on the ATR-FTIR spectra of artificial tailing soils presented in Chapter 5 was used 

to quantify bitumen residues. This calibration model is valid within the bitumen content range 

between 0.70 and 40.70 wt%. As shown in Chapter 5, this model has a 2.34 wt% RMSECV and 

12.99% error within that range.  

 

6.3.2.2.1. Quantification of Less-Soluble Bitumen 

The MIR-PLSR calibration model was used to determine the less-soluble bitumen from the 

tailings after room-temperature extraction at different solvent-to-soil ratios. The recovered 

bitumen and the less-soluble bitumen (resides) of each treatment are presented in Table 6-5 and 

Figure 6-9. It is estimated that after the extraction at the highest solvent-to-soil ratio, the less-

soluble fraction in 2-MeTHF extracts is the least (1.64 wt%) followed by the residues from 

toluene (1.86 wt%) and that from DCM (2.21 wt%). 
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Table 6-5. Determination of less-soluble bitumen following  

room-temperature extractions by using MIR-PLSR calibration model 
 

Solvent 
Solvent-to-soil 

ratio (wt/wt) 

  Bitumen  

extracted a 

(wt%) 

Less-soluble 

bitumen b 

(wt%) 

2-MeTHF 

1:1 4.21 1.87 

1.5:1 5.42 2.28 

1.75:1 6.12 1.74 

2:1 6.29 2.08 

2.5:1 6.22 1.81 

3.24:1 6.10 1.64 

Toluene 

1:1 4.36 2.62 

1.5:1 4.84 2.44 

1.75:1 5.13 2.18 

2:1 5.06 2.41 

2.5:1 5.61 2.16 

3.24:1 5.76 1.86 

DCM 

1:1 4.13 2.87 

1.5:1 4.43 2.81 

1.75:1 4.63 2.06 

2:1 5.13 2.65 

2.5:1 5.49 2.35 

3.24:1 5.42 2.21 

      a Bitumen extracted: determined gravimetrically (weight difference). 

b Less-soluble bitumen: determined by ATR-FTIR spectroscopy coupled with PLS 

calibration. 
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6.3.2.2.2. Quantification of Insoluble Bitumen 

The same MIR-PLSR calibration was also applied to quantify the insoluble fraction and the 

results are presented in Table 6-6. In the room-temperature extraction with the highest solvent-

to-soil ratio (3.24:1), the residues are 54%, 43%, and 42% removed by 2-MeTHF, toluene, and 

DCM by comparison with the 3.5-h reflux extraction condition, respectively. The rest, which 

cannot be further removed under these reflux conditions, is the non-extractable fraction. The 

non-extractable bitumen content in tailing soil following Soxhlet extraction with 2-MeTHF, 

toluene, and DCM is 0.60, 0.59, and 0.45 wt%, which corresponds to 9.55 %, 9.29%, and 7.48% 

of the total bitumen, respectively. 

 

Table 6-6. Soxhlet extraction of tailing soil sample after  

room-temperature extraction at 3.24:1 solvent-to-soil ratio 
 

 

 

6.3.2.2.3. Total Bitumen Content Determination without Compensation for Insoluble Bitumen  

Total bitumen in dried tailing soils was first predicted from the MIR-PLSR calibration model and 

then compared to the Soxhlet extraction results (Table 6-7; Fig. 6-10). In general, the MIR-PLSR 

predictions for replicate soil samples are consistent, giving a range of bitumen content between 

6.90 and 7.24 wt% among 9 replicates, with an average of 7.14 ± 0.13 wt%. In the case of the 

Soxhlet extraction, the bitumen content obtained varies among the three organic solvents 

employed, where the bitumen content extracted by 2-MeTHF is the highest with an average 6.42 

Soxhlet extraction  Insoluble fraction  

Solvent 
Solvent-to-soil  

ratio (wt/wt) 

Less  

soluble  

(wt%) 

Insoluble 

(wt%) 

Insoluble / Less 

soluble (%) 

Insoluble / Total 

bitumen (%) 

2-MeTHF 40:1 1.64 0.60 36.59 8.45 

Toluene 40:1 1.86 0.59 31.72 8.17 

DCM 40:1 2.21 0.45 20.36 6.34 
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wt%, followed by toluene and DCM, with an average of 5.93 wt% and 5.53 wt% bitumen, 

respectively. The average bitumen content determined by Soxhlet extraction is 6.07 ± 0.34 wt%. 

The bitumen content determined by Soxhlet extraction varies more, with a 0.34 wt% standard 

deviation (SD), than the MIR-PLSR predictions, which have a 0.13 wt% SD.  

 

Table 6-7. Total bitumen content determination by using MIR-PLSR prediction compared to 

Soxhlet extraction without compensation for insoluble bitumen 

 

Raw tailing soil 

Bitumen content by 

Soxhlet extraction 

(wt%) 

Bitumen content 

by MIR-PLSR 

(wt%) 

Prediction 

difference 

(wt%) 

Prediction 

error  

(%) 

2-MeTHF 

Replicate-1 6.40 7.18 0.78 12.19 

Replicate-2 6.38 6.90 0.52 8.15 

Replicate-3 6.47 7.22 0.75 11.59 

Average ± SD 6.42 ± 0.04 7.10 ± 0.14 0.68 ± 0.12 10.64 ± 1.78 

Toluene  

Replicate-1 5.94 7.35 1.41 23.74 

Replicate-2 5.87 7.06 1.19 20.27 

Replicate-3 5.98 7.24 1.26 21.07 

Average ± SD 5.93 ± 0.05 7.22 ± 0.12 1.29 ± 0.09 21.69 ± 1.48 

DCM 

Replicate-1 5.52 7.12 1.60 28.42 

Replicate-2 5.43 7.02 1.59 29.28 

Replicate-3 5.63 7.15 1.52 27.00 

Average ± SD 5.53 ± 0.08 7.10 ± 0.06 1.57 ± 0.04 28.42 ± 1.01 

     

Average among 9 

extracts 
6.07 ± 0.34 7.14 ± 0.13 1.07 ± 0.39 18.02 ± 7.45 
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Comparing the MIR-PLSR bitumen predictions with results of the Soxhlet extraction, which is 

the reference method for bitumen quantification, the MIR-PLSR calibration model overestimates 

the bitumen content. The MIR-PLSR method estimates 0.68 wt% more bitumen content when 

compared to 2-MeTHF Soxhlet extraction, 1.29 wt% more compared to toluene Soxhlet 

extraction, and 1.57 wt% more compared to DCM Soxhlet extraction. These overestimations 

represent 10.64 to 28.42 % prediction error relative to the reference method. The extent of the 

error is related to the type of extraction solvent used in the reference method, where the 

prediction error is the largest when DCM is used (Fig. 6-10).  

 

 

Fig. 6-10. Bitumen determination by Soxhlet extraction (without compensation for residues) and 

by MIR-PLSR prediction 

 

6.3.2.2.4. Total Bitumen Content Determination with Compensation for Insoluble Bitumen 

The prediction error from the MIR-PLSR calibration is exaggerated when the results are 

compared to those provided by Soxhlet extraction as the reference method because in the latter 

case only the fraction of bitumen that is soluble in the extraction solvent is determined as the 

bitumen content. Therefore, the Soxhlet extraction underestimates the total bitumen content in 

tailing soil since the insoluble fraction is still trapped in the tailing soil and is not accounted for. 
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In contrast, the MIR-PLSR prediction includes all the bitumen that gives rise to C-H absorption 

in the MIR spectrum of the sample.  

 

Table 6-8. Total bitumen content determination by using MIR-PLSR prediction compared to 

Soxhlet extraction with compensation for insoluble bitumen 

Raw tailing soil 

Bitumen content by 

Soxhlet extraction  

with compensation for 

bitumen residues (wt%) 

Bitumen content 

by  

MIR-PLSR 

(wt%) 

Prediction 

difference  

(wt%) 

Prediction 

error % 

2-MeTHF with 0.60 % residues 

Replicate-1 7.02 7.18 0.16 2.28 

Replicate-2 7.00 6.90 0.10 1.43 

Replicate-3 7.09 7.22 0.13 1.83 

Average ± SD 7.04 ± 0.04 7.10 ± 0.14 0.13 ± 0.02 1.85 ± 0.35 

Toluene with 0.59 % residues 

Replicate-1 6.53 7.35 0.82 12.56 

Replicate-2 6.46 7.06 0.60 9.29 

Replicate-3 6.57 7.24 0.67 10.20 

Average ± SD 6.52 ± 0.05 7.22 ± 0.12 0.70 ± 0.09 
10.68 ± 

1.37 

DCM with 0.45% residues 

Replicate-1 5.97 7.12 1.15 19.26 

Replicate-2 5.88 7.02 1.14 19.39 

Replicate-3 6.08 7.15 1.07 17.51 

Average 5.98 ± 0.08 7.10 ± 0.06 1.12 ± 0.04 
18.75 ± 

0.82 

     

Average among 9 

extracts 
6.44 ± 0.46 7.14 ± 0.13 0.65 ± 0.41 

10.42 ± 

6.97 
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This situation is made evident by the ATR-FTIR spectra of tailing soils after 3.5-h Soxhlet 

extraction in Figure 6-7, where a small hydrocarbon band in the region between 2990 and 2750 

cm-1 is observed. Therefore, this small fraction of non-extractable bitumen should be added to 

the total bitumen content determined by Soxhlet extraction. According to the results of Section 

6.3.2.2.2, the non-extractable bitumen fraction is predicted using the MIR-PLSR calibration as 

0.60, 0.59, and 0.45 wt% for 2-MeTHF, toluene and DCM extraction respectively.   

After the insoluble fraction is incorporated into the total bitumen content obtained by Soxhlet 

extraction, the MIR-PLSR prediction error relative to the Soxhlet results decreases. The 

difference and error of the MIR-PLSR prediction decrease to 0.13 wt% and 1.85 % relative to 2-

MeTHF Soxhlet extraction; the corresponding values relative to toluene Soxhlet extraction are 

0.88 wt% difference and 10.68 % error and those relative to DCM Soxhlet extraction are 1.16 

wt% difference and 18.75 % error (Table 6-8; Fig. 6-11). Although the MIR-PLSR predictions 

are still higher by an average of 0.65 wt% than the values obtained by the Soxhlet reference 

method, the accuracy of the MIR-PLSR method for fast and direct bitumen determination is 

acceptable, and this method provides a high degree of reproducibility.  
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Fig. 6-11. Bitumen determination by Soxhlet extraction (after 

compensation for residues) and by MIR-PLSR prediction 
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 6.3.3. Characterization of Bitumen Recovered from Room-Temperature and Soxhlet 

Extraction by ATR-FTIR Spectroscopy 

6.3.3.1. General Analysis of the Soluble Fraction 

6.3.3.1.1. Bitumen Recovered from Room-Temperature Extraction 

The ATR-FTIR spectra of room-temperature-extracted and Soxhlet-extracted bitumen obtained 

by extraction with the three solvents examined in this study are presented in Figure 6-12. The 

bands are identified and assigned based on the functional group assignment table (Table 6-9).  

 

Table 6-9. Bitumen band assignments 

(Yut and Zofka 2011; Odebunmi and Olaremu 2015) 

Wavenumber (cm-1) 
Peaks observed in the spectra 

(cm-1) 
Assignment  

3700 – 3580   Sharp band  Hydroxyl -OH (free) stretching 

3550 – 3220   Broad band 
Hydroxyl -OH (intermolecular H-bonded) 

stretching  

3080 – 3000  3060  Aromatic C-H stretching  

2953 – 2850  2953, 2920, 2854  Methyl -CH3 and methylene -CH2 stretching  

1705 – 1680  1702 Carbonyl C=O stretching  

1650 – 1580  1602  
C=C bonds and aromatic ring stretching; 

Hydroxyl -OH bending  

1455 – 1450  1455 -CH3 and -CH2 bending 

1380 – 1370  1375  -CH3 and cyclic -CH2 vibrations  

1250 – 1230  1230  Phenolic C-O bond 

1030  1030  
Sulfoxide S=O stretching; 

Aromatic amines  

980 – 890   C=C bonds  

900 – 700  866, 811, 748 Aromatic out-of-plane deformation  

725 – 650   
Aliphatic chains longer than C4; 

Aliphatic halogen compounds  
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The MIR spectra show a combination of aliphatic and aromatic structures. In the room-

temperature-extracted bitumen spectra (Fig. 6-12-a), the spectral profiles of the bitumen 

extracted by the three solvents are similar, where the absorption bands are observed in the same 

location to within ±1 cm-1. In addition to the bands due to aliphatic and aromatic moieties, bands 

due to C=C, C=O, and S=O bonds are also found in the spectra, but their relative intensity is low. 

The region below 900 cm-1 is considered the fingerprint region and it provides detailed 

information related to the aromatic structures and the aliphatic chain length. Apart from the 

hydrocarbon fraction, the presence of clay minerals is also observed from the spectra, with a 

small band located at 3670 cm-1, representing the O-H bond in the clay structure. The presence of 

clay in bitumen is due to their strong attachment to each other; therefore, clay enters into the 

solvent extracts along with bitumen. However, since clay is hydrophilic but the solvent is 

hydrophobic, not much clay is able to transit to the organic layer, only clay strongly adsorbed to 

bitumen can.  

 

6.3.3.1.2. Bitumen Recovered by Soxhlet Extraction 

In the case of the Soxhlet-extracted bitumen, aliphatic chains are the main structural component, 

as indicated by the strong aliphatic C-H band in the region 2953 – 2850 cm-1 (Fig. 6-12-b). 

Carbonyl and aromatic bonds are also observed in the spectra. In general, the toluene or DCM 

Soxhlet-extracted bitumen has a similar spectral profile to the bitumen extracted by these 

solvents at room temperature. However, in the case of the bitumen extracted by 2-MeTHF, the 

spectral profile following Soxhlet extraction differs from that following room-temperature 

extraction.  

In the spectrum of the 2-MeTHF Soxhlet-extracted bitumen, a set of new bands (highlighted by 

the yellow box) is observed in the region below 1300 cm-1, which is the fingerprint region of the 

MIR spectrum. In this region between 1300 and 1000 cm-1, the bands in the spectrum are mainly 

due to S=O, C-N, O-H, and C-O bonds. The new bands indicate that the structure and the 

composition of the bitumen extract after extraction in boiling 2-MeTHF is changed.  
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(a) 
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(b) 

Fig. 6- 12. ATR-FTIR spectra of bitumen soluble in 2-MeTHF, toluene or 

DCM under (a) room-temperature and (b) Soxhlet extraction conditions 
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In general, the changes may be attributed to the formation of C-O single bonds, which have 

characteristic stretching bands located at 1320 – 1210 cm-1, 1300 – 1000 cm-1, and 1100 – 1040 

cm-1 (Table 6-10). In addition, a sharp band at 3644 cm-1 is observed, which is due to the free O-

H bond stretching. However, in the case of the bitumen extracted by 2-MeTHF under room-

temperature conditions, no such changes in composition of the extract are indicated by the 

spectrum.  

 

Table 6-10. Band positions for C-O stretching vibrations 

 

 

6.3.3.2. Analysis of Aliphatic Bands in the 300 – 2800 cm-1 Region 

6.3.3.2.1. General Observations 

As mentioned in the previous chapter, the region between 3000 and 2800 cm-1 is characteristic of 

bitumen, which is mainly composed of hydrocarbons. Deconvolution was performed to enhance 

the resolution of the bands in this region. This assists in the determination of the positions, 

widths and areas of the aliphatic bands, which helps in elucidation of the structure of the bitumen 

based on the relationship between the intensities of the absorptions due to methyl (-CH3) and 

methylene (-CH2) groups.  

The deconvolved bands of bitumen from different extractions are presented in Figure 6-13. 

These spectra show no differences in band positions, but only in their intensities. In the case of 

the room-temperature extraction, the composition of the aliphatic moiety of the bitumen 

extracted by different solvents is almost the same, as indicated by the identical position, shape 

and intensity of the deconvolved bands of bitumen (Fig. 6-13-a). In contrast, in the case of the 

Soxhlet extraction, the deconvolved bands change in intensity among the three solvents, where 

Wavenumber (cm-1) 
Peaks observed in the 

spectra (cm-1) 
Assignment 

1320 – 1210 (two peaks) 1311, 1230 

C-O stretching 
1100 – 1040  1021  
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the change is greatest in the case of the bitumen extracted by 2-MeTHF (Fig. 6-134-b).  This 

indicates that the composition of the aliphatic moiety in 2-MeTHF Soxhlet extracts is 

dramatically different from that in toluene and DCM Soxhlet extracts.  

 

(a) 

(b) 

  

 

 

 

Fig. 6- 13. Deconvolution of the region from 3000 to 2800 cm-1; (1) original spectra; (2) 

deconvolved bands of bitumen extracted by (a) room temperature extraction; (b) Soxhlet 

extraction 
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6.3.3.2.2. Methyl-to-Methylene Index 

To further study the structure of the aliphatic moiety, the ratio of the bands at 2954 cm-1 and 

2922 cm-1 was calculated. These two bands are assigned to the methyl and methylene groups 

(Table 6-11) and are selected due to their strong intensity. The ratio of these two bands provides 

information on the aliphatic-chain length and the degree of branching of the bitumen. If the ratio 

has low values, the structure is dominated by long and straight aliphatic chains. On the other 

hand, higher values of the ratio indicate shorter and more branched aliphatic chains. 

Table 6-11. Mid-infrared band assignment in the region between 3000 and 2800 cm-1 after band 

convolution (Socrates 2004) 

 

The values of this ratio for the bitumen extracted by the three solvents under room-temperature 

and Soxhlet extraction conditions are presented in Table 6-12. In the case of the bitumen 

extracted at room temperature by the three solvents, the ratio values are almost identical, which 

indicates that the structure of the hydrocarbon soluble in these three solvents is identical. 

However, the ratio values for the bitumen from the Soxhlet extraction differ among the three 

extraction solvents and are also all different from the values for the bitumen extracted at room 

temperature, the 2-MeTHF-Soxhlet extracted bitumen has the highest A2954/A2923 value, which 

indicates that it is composed of shorter and more branched aliphatic chains. The DCM-Soxhlet 

extracted bitumen has the lowest ratio value, indicating that it has fewer -CH3 terminals. The 

toluene-Soxhlet extracted bitumen has a slightly lower ratio value than the bitumen from the 

toluene room-temperature extraction.  

 

Wavenumber (cm-1) Assignment  

2953 Asymmetric stretching of -CH3 

2922 Asymmetric stretching of -CH2 

2894 Stretching of -CH 

2872 Symmetric stretching of -CH3 

2850 Symmetric stretching of -CH2 
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Table 6-12. A2954/A2923 index of bitumen extracted by different solvents under different 

extraction conditions 

 

 

6.3.3.3. Structural Comparison between Soluble and Less-Soluble Fractions by ATR-FTIR 

Spectroscopy 

As mentioned in Sections 6.3.2.1 and 6.3.2.2, bitumen cannot be totally extracted under room-

temperature conditions; about 80 – 90% of total bitumen was extracted depending on the type of 

extraction solvent employed. This fraction is considered the soluble fraction. When the bitumen 

residues were further extracted by Soxhlet extraction, an additional 6 – 11% of bitumen was 

extracted, which is considered the less-soluble fraction, and the remaining bitumen trapped in the 

soil is considered the insoluble fraction. To study how the chemical structure affects the 

solubility, ATR-FTIR spectroscopy was used to study the structural differences between the less-

soluble and insoluble fractions. The ATR-FTIR spectra and the variance between the two 

fractions are presented in Figures 6-14, 6-15, and 6-16.  

 

6.3.3.3.1. Soluble and Less-Soluble Fractions of Toluene Extracts 

The soluble and less-soluble fractions extracted by toluene have the identical spectral profile in 

terms of the band positions of the aliphatic hydrocarbon bands in the regions 2953 – 2850 cm-1 

Extraction solvent  A2954 (-CH3) A2923 (-CH2) 
A2954/A2923  

(-CH3/-CH2) 

Room-Temperature Extraction  

2-MeTHF 16.97 22.80 0.75 

Toluene 16.79 22.85 0.74 

DCM 16.96 23.21 0.73 

Soxhlet Extraction  

2-MeTHF 18.44 22.57 0.82 

Toluene 21.57 30.73 0.70 

DCM 21.16 32.01 0.66 
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and 1455 – 1370 cm-1 (Fig. 6-14). However, they vary in intensity, where the soluble fraction 

contains a higher amount of aliphatic groups compared to the less-soluble fraction. To better 

understand the difference in branching of the aliphatic structure, the A2954/A2923 index was 

calculated from the band area measurements after the band deconvolution process (Table 6-13). 

The two fractions show very similar A2954/A2923 index values, indicating a similar extent of 

branching. On the other hand, the spectra show higher variance in the band at 1706 cm-1 and in 

the fingerprint region below 1350 cm-1. The higher absorption intensity of the less-soluble 

fraction in these regions suggests a higher content of carbonyl and aromatic C=C bonds, which 

increases the polarity and consequently decreases solubility in the non-polar toluene solvent.  

 

Table 6-13. A2954/A2923 index of soluble and less-soluble  

bitumen extracted by different solvents 

Solvent  
Bitumen 

fraction  
A2954 A2923  A2954/A2923 

2-MeTHF 
Soluble  12.22 15.25 0.80 

Less-soluble  14.84 9.63 1.54 

Toluene  
Soluble  14.69 19.85 0.74 

Less-soluble  12.79 18.04 0.71 

DCM 
Soluble  14.12 20.23 0.70 

Less-soluble  13.18 20.66 0.64 
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Fig. 6- 14. ATR-FTIR spectra of soluble and less-soluble 

bitumen extracted by toluene room-temperature and 

Soxhlet extraction, respectively, and their variance 
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6.3.3.3.2. Soluble and Less-Soluble Fractions of DCM Extracts 

In the case of the fractions obtained by DCM, similar results to those described above for toluene 

extraction were found, where the soluble fraction has a higher amount of aliphatic groups than 

the less-soluble fraction (Fig. 6-15). In addition, the less-soluble fraction contains a higher 

amount of C=O groups and also contains more hydrocarbon with longer carbon chains, as 

indicated by the bands below 535 cm-1 in the spectrum of the less-soluble fraction. Regarding the 

structure of the aliphatic moiety, the less soluble fraction has a lower value of the A2954/A2923 

index, indicating longer aliphatic chains and less branched structure. However, this structural 

difference between the two fractions is not considered significant.  

6.3.3.3.3. Soluble and Less-Soluble Fractions of 2-MeTHF Extracts 

As mentioned in Section 6.3.3.1, the structure of the bitumen obtained by 2-MeTHF Soxhlet 

extraction was different from that of the bitumen from the room-temperature extraction. 

Therefore, it is not comparable between the soluble bitumen extracted under room temperature 

condition and the structurally changed less-soluble bitumen obtained from Soxhlet extraction. 

Hence, both the soluble and the less-soluble fractions of bitumen used for comparison are from 

Soxhlet extraction (Fig. 6-16). The less-soluble fractions were Soxhlet extracted from the 

samples pre-treated by room temperature extraction, where the soluble fractions were removed.    

In general, these two fractions show similar spectral profiles apart from the band intensity. The 

less-soluble fraction has higher C=O, C-O, and C=C band intensities. Furthermore, the profile of 

the aliphatic hydrocarbon band is very different between the two fractions. In terms of the values 

of the A2954/A2923 index, the value for the less-soluble fraction is almost double the value for the 

soluble fraction (Table 6-13). This suggests that the less-soluble fraction is composed of a much 

higher amount of branched aliphatic chains. To further understand in what manner, the aliphatic 

structure has changed in the boiling 2-MeTHF environment, the soluble fractions obtained from 

the Soxhlet extraction are compared to those obtained from room-temperature extraction. The 

value of the A2954/A2923 index for the Soxhlet-extracted bitumen, which is 0.80, is higher than the 

value for the room-temperature extracted bitumen, which is 0.75 (Table 6-12). This suggests that 

the boiling condition favours branching, or possibly the breaking of a long aliphatic chain into 

smaller segments, causing the higher amount of -CH3 groups. Similar reactions occurred more 
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extensively in the less-soluble fraction during the Soxhlet extraction, resulting in a high 

A2954/A2923 index value (1.54).  

Fig. 6- 15. ATR-FTIR spectra of soluble and less-soluble bitumen 

extracted by DCM room-temperature and Soxhlet extraction, 

respectively, and their variance 
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Fig. 6- 16. ATR-FTIR spectra of soluble and less-soluble bitumen 

extracted by 2-MeTHF Soxhlet extraction and their variance 
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6.3.4. Characterization of Bitumen from Soxhlet Extraction by APCI-MS 

6.3.4.1. APCI-MS Spectral Information of 2-Me-SEB and T-SEB 

The DIP-APCI mass spectra of two bitumen samples are presented in Figure 6-17. The average 

resolution is 10176 and 9324 in the case of 2-MeTHF- and toluene-Soxhlet extracted bitumen 

between m/z 100 and 3000. The 2-Me-SEB and T-SEB MS spectra are presented on the identical 

intensity scale. The mass range for the 2-MeTHF-Soxhlet extracted bitumen (2-Me-SEB) is from 

100 ˂ m/z ˂ 1050, centered at m/z 615.  Similarly, the mass range for the toluene-Soxhlet 

extracted bitumen (T-SEB) is from 105 ˂ m/z ˂ 1522, centered at m/z 680. The average masses 

of 2-Me-SEB and T-SEB are 482 and 607 Da, respectively. The average mass is calculated using 

the following equation (Kim et al., 2011),  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑠𝑠 =
∑ 𝑀𝑖𝐼𝑖𝑖

∑ 𝐼𝑖𝑖
 ………………………………………………. (6-7) 

                                                             

where Mi is the mass of peak i, and Ii is the relative intensity of peak i.  

To reduce the amount of information, those ion fractions with intensity greater than 6000, which 

account for 2% of the total ion fractions, were selected and studied. In particular, the ion 

fractions with m/z 411.39 or 411.40 in both spectra were removed, as they originated with the 

glass capillary which was used as the sample introduction accessory. The potential formula of 

each ion fraction with the lowest mass error is presented in Table 6-14.  
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Fig. 6- 17. DIP-APIC mass spectra of bitumen: (a) 2-Me-SEB and (b) T-SEB 
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Table 6-14. Chemical information on the ion fractions obtained from two bitumen samples, 2-

Me-SEB and T-SEB 

2-Me-SEB T-SEB 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity 

(%) 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity 

(%) 

119.0878 C9H11 14.482 11.1 215.1563 C14H19N2 6.862 17.2 

129.0556 C6H9O3 3.338 8.2 219.1831 C11H25NO3 1.568 40.3 

133.1024 C10H13 5.068 10.5 231.2198 C13H29NO2 0.126 38.3 

147.0658 C6H11O4 0.45 7.2 243.1868 C16H23N2 2.781 35.2 

147.118 C11H15 4.245 10.4 255.1862 C17H23N2 0.299 28.5 

149.0237 C8H5O3 1.134 7.5 257.2018 C17H25N2 0.102 41.5 

161.1339 C12H17 5.427 13.3 257.2544 C13H31N5 13.789 99.1 

163.1133 C11H15O 6.191 10.6 269.2013 C18H25N2 1.76 34.3 

197.1202 C14H15N 6.243 6.6 271.2169 C18H27N2 1.932 39.6 

203.1807 C15H23 3.565 46 283.2164 C19H27N2 3.615 25.8 

204.184 C10H24N2O2 1.087 5.9 285.2321 C19H29N2 3.415 34.8 

205.1602 C14H21O 4.678 74.8 297.2316 C17H31NO3 4.058 28.3 

206.1633 C9H22N2O3 1.249 10 299.2472 C17H33NO3 3.863 34 

219.1754 C15H23O 2.325 100 313.2625 C18H35NO3 2.573 31.5 

220.183 C15H24O 1.293 93 325.2616 C19H35NO3 0.289 22.6 

221.1865 C8H23N5O2 5.99 21 327.2777 C19H37NO3 1.088 26.8 

229.1621 C13H25OS 2.23 7.7 339.2773 C20H37NO3 0.13 18.7 

235.1683 C13H21N3O 0.69 15.5 341.2929 C20H39NO3 0.276 20.7 

241.1801 C14H25O3 1.118 6.5 353.2926 C21H39NO3 1.116 14.9 

243.1781 C14H27OS 0.663 7.9 355.3083 C21H41NO3 0.969 15.7 

246.9696 C3H7N2O7S2 0.539 18.3 359.367 C29H47 1.964 11.4 

255.1777 C15H27OS 2.199 6.8 361.261 C13H33N10S 0.102 7.4 
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Table 6-14. Cont. 

 

2-Me-SEB T-SEB 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity  

(%) 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity 

 (%) 

257.1934 C15H29OS 1.988 8.8 363.2763 C20H35N4O2 0.822 9.1 

257.2468 C14H31N3O 0.34 13.5 365.2912 C20H37N4O2 1.236 13.2 

259.1922 C14H27O4 0.277 6.9 367.3081 C22H41NO3 1.482 13.3 

269.193 C14H27N3S 1.603 7.8 369.3554 C24H49S 0.263 49.1 

271.209 C16H31OS 2.07 9.1 381.3238 C23H43NO3 1.296 12.6 

283.2087 C15H29N3S 1.7 6.1 409.3839 C30H49 1.156 20.5 

285.2242 C15H31N3S 1.162 8.6 419.3372 C22H41N7O 0.141 9.8 

297.2244 C16H31N3S 1.788 6.4 433.3538 C25H45N4O2 1.042 10.1 

299.2409 C18H35OS 0.129 7.5 447.3678 C24H53N3S2 0.648 11.2 

301.0405 C7H7N7O7 0.65 6.1 461.3831 C24H51N3O5 0.495 10.3 

311.2404 C19H35OS 1.483 5.4 545.4104 C36H53N2O2 0.557 14.3 

325.2556 C18H35N3S 1.326 4.8 547.4241 C26H57N7O3S 0.474 13.8 

327.2714 C18H37N3S 1.776 6.4 559.3379 C30H49N5OS2 0.085 16.1 

353.2873 C22H41OS 1.448 3.4 561.3525 C29H47N5O6 0.239 17.3 

355.3027 C20H41N3S 1.635 3.6 563.3667 C27H55N4O4S2 0.404 16.9 

371.3158 C22H43O4 0.902 6 565.4696 C32H61N4O4 0.563 13 

413.3771 C27H47N3 0.245 7.2 573.4403 C36H63NS2 0.188 17.6 

459.3905 C24H51N4O4 1.156 2.5 574.3554 C31H50N4O4S 0.214 12.1 

461.3168 C30H41N2O2 0.008 3.3 575.368 C30H57NO5S2 0.321 18.3 

461.379 C33H49O 1.428 2.8 575.4574 C38H59N2O2 0.442 17.1 

463.3328 C23H43N8S 0.732 3.2 577.3822 C28H57N4O4S2 0.091 17.9 

465.3467 C28H43N5O 0.131 3 577.5161 C31H63N9O 0.939 24.9 
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Table 6-14. Cont. 

 

2-Me-SEB T-SEB 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity  

(%) 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity 

 (%) 

497.4096 C30H51N5O 0.48 3.4 579.397 C34H53N5OS 0.142 18.1 

505.3786 C25H53N4O4S 0.301 3.7 581.4122 C34H63NS3 0.109 19.1 

509.4088 C23H55N7O3S 0.178 3.5 589.4705 C35H57N8 0.202 17.8 

511.4254 C31H53N5O 0.76 3.8 591.4869 C29H65N7O3S 0.101 17.3 

519.3945 C26H55N4O4S 0.189 4 593.5002 C34H65N4O4 0.643 15.6 

523.4243 C24H57N7O3S 0.114 3.6 595.4281 C28H59N4O9 0.176 20.4 

525.3505 C24H53N4O4S2 0.614 4.1 601.4723 C38H59N5O 0.563 19.3 

525.4405 C32H55N5O 0.307 3.7 607.4292 C30H63N4O4S2 0.209 21.6 

537.4396 C32H59NO5 0.514 3.9 609.4439 C29H61N4O9 0.075 22.6 

539.3661 C31H49N5OS 0.59 4.3 611.4585 C35H65NO5S1 0.254 22.6 

553.3819 C26H57N4O4S2 0.402 4.6 613.4724 C25H61N10O7 0.113 21.2 

567.4866 C34H65NO5 0.574 4.2 615.4881 C33H67N4O4S 0.329 21.9 

573.4412 C30H61N4O4S 0.265 5.1 617.504 C33H69N4O4S 0.077 21.5 

575.4573 C30H63N4O4S 0.517 5.2 627.4866 C39H65NO5 0.519 21 

579.4877 C36H61N5O 0.153 4.7 629.5016 C38H61N8 0.507 21.2 

581.5028 C36H71NS2 0.013 4.7 631.5158 C37H75O3S2 0.059 20.1 

587.4572 C31H63N4O4S 0.344 5 639.4886 C35H67N4O4S 0.465 22.5 

603.488 C32H67N4O4S 0.501 5.1 643.5176 C40H69NO5 0.04 21.9 

611.4596 C36H61N5OS 0.135 5.4 645.4466 C35H59N5O6 0.101 23.1 

613.4742 C35H67NO5S 0.334 5.5 647.4605 C33H67N4O4S2 0.196 22.7 

615.4896 C34H63N8S 0.065 5.6 659.5482 C32H71N10O2S 0.026 21 

617.5046 C41H65N2O2 0.007 5.4 681.5356 C46H69N2O2 0.447 23.9 
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Table 6-14. Cont. 

 

 

6.3.4.2. Distribution of Oxygen Atoms in 2-Me-SEB and T-SEB 

The content of the main elements composing bitumen is presented in Table 6-15. Both 2-Me-

SEB and T-SEB are mainly composed of C (80%) and H (10%) atoms in a similar percentage. 

However, the O content in 2-Me-SEB is almost doubled (6.0%) compared to the O content in T-

SEB (3.7%).  Both bitumen samples are low in N and S content, which is less than 1%.  

 

Table 6-15. Elemental analysis of 2-Me-SEB and T-SEB 

 

The distribution of oxygen atoms in 2-Me-SEB and T-SEB is clearly indicated by plotting the 

number of oxygen atoms against the number of carbon atoms (Fig. 6-18). The numbers of 

2-Me-SEB T-SEB 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity  

(%) 

Measured 

m/z 
Ion formula 

Error 

(ppm) 

Intensity 

 (%) 

621.5336 C31H71N7O3S 0.499 4.6 695.5512 C39H75N4O4S 0.428 23.3 

623.46 C37H61N5OS 0.51 4.7 707.5525 C42H77NO5S 0.36 23.4 

623.5492 C38H73NO5 0.552 4.5 709.5668 C40H77N4O4S 0.074 23.2 

627.4029 C31H57N5O6S 0.088 3.3 713.5959 C45H79NO5 0.106 22.8 

627.4884 C34H67N4O4S 0.156 4.8 721.5682 C43H79NO5S 0.422 23.2 

627.5789 C36H75N4O4 0.108 3.3 727.6117 C48H81NO5 0.31 22.6 

629.4172 C29H57N8O5S 0.1 3.6 763.6997 C55H89N 0.259 23.7 

629.5033 C40H63N5O 0.061 5     

Sample C % H % C/H O % N %  S %  

2-Me-SEB 80.06 9.95 0.67 6.03 < 1 < 1 

T-SEB 83.34 9.88 0.70 3.74 < 1 < 1 



 
 

 

221 
 

oxygen and carbon atoms were obtained from the ion formulas listed in Table 6-14. By 

observing the distribution of the points representing each ion fraction, it can be seen that the 

portion of the plot corresponding to 0 – 20 carbon atoms (Fig. 6-18, upper left) is dominated by 

the orange points, which indicates that 2-Me-SEB is rich in small-size fractions composed of a 

small number of carbon atoms (˂ 15) with 1 to 7 oxygen atoms. The blue points representing 

fractions from T-SEB are not found in this portion of the plot but start to show up when the 

number of carbon atoms is greater than 15. In the case of the medium-size fractions containing 

between 21 and 35 carbon atoms, both 2-Me-SEB and T-SEB show similar oxygen distributions. 

These fractions mainly contain 0 – 4 oxygen atoms, while there is a small group of fractions 

containing up to 10 oxygen atoms (Fig. 6-18, upper right). In the case of the large-size fractions 

composed of up to 50 carbon atoms, T-SEB contains more such fractions than 2-Me-SEB. These 

fractions also contain 1 to 5 oxygen atoms (Fig. 6-18, lower left).   

Fig. 6-18. Plots of number of oxygen atoms as a function of number of carbon atoms 

for ion fractions from APIC-MS spectra of 2-Me-SEB (orange) and T-SEB (blue) 
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6.3.4.3. Alkylation and Aromaticity Distribution in 2-Me-SEB and T-SEB 

According to the number of atoms provided in the potential chemical formula, the double bond 

equivalents (DBEs), carbon numbers, and the extent of alkylation were determined. DBE is the 

sum of the number of rings and double bonds calculated from the molecular formula using the 

following equation (Wang, Robbins et al. 2004), 

𝐷𝐵𝐸 = 𝑐 −
1

2
ℎ +

1

2
𝑛 + 1 (𝑓𝑜𝑟 𝐶𝑐𝐻ℎ𝑁𝑛𝑂𝑜𝑆𝑠) ………………………………. (6-8) 

                                                    

The average carbon numbers of 2-Me-SEB and T-SEB are 17.2 and 26.8, respectively. The 

average DBEs of 2-Me-SEB and T-SEB are 3.9 and 4.7, respectively. The average carbon 

numbers and average DBEs are calculated using equations similar to equation (6-7), where the 

masses of the peaks in the equation are replaced by the carbon numbers and DEB values, 

respectively. The compositional differences between 2-Me-SEB and T-SEB can be visualized by 

color-coded iso-abundance plots of DBE value versus carbon number (Fig. 6-19). The x-axis is 

the carbon number, which indicates the extent of alkylation, the y-axis indicates the aromaticity 

and the third dimension is the relative intensity (I%) represented by color.  

According to equation (6-8), the simplest aromatic compound, benzene (C6H6), has a DBE value 

of 4. Therefore, the non-aromatic compounds have DBE values between 0 and 3. The relative 

intensity of compounds with DBE values between 0 and 3 is relatively high in T-SEB, which is 

shown by the purple to red area in Fig. 6-19-b. In addition, almost half of the contour graph with 

20 – 40% relative intensity denoted by yellow to orange color has DEB values between 6 and 14. 

For 2-Me-SEB, the most concentrated compounds denoted by purple to red color are located 

primarily in the DEB 4-6 range. Moreover, about 1/3 of the graph in yellow color representing 

low intensity (< 10%) locates in the DEB 6 – 12 range, whereas the rest of the graph has DBE 

below 6 (Fig. 6-19-a). The DBEs of the simplest polycyclic aromatics, naphthalene (C10H8) and 

anthracene (C14H10), are 7 and 10, respectively. This suggests that the aromatic hydrocarbons in 

2-Me-SEB are primarily mono-aromatics, while in T-MEB, the hydrocarbons are mainly 

composed of non-aromatics and polyaromatics with more than two benzene rings.  
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In addition, the length of the alkyl chains attached to the aromatic group can be estimated from 

the carbon number distributions. A higher carbon number with the same DBE value indicates 

that longer alkyl chains are attached to the aromatic group. The carbon number distribution at 

each DBE value for T-SEB is wider and higher than that for 2-Me-SEB, which suggests that T-

SEB contains more alkyl side chains than 2-Me-SEB. In general, T-SEB contains primarily 

aliphatics with lower carbon numbers and polyaromatic hydrocarbons with longer, or a greater 

number of, alkyl side chains; while 2-Me-SEB contains mainly small aliphatic (< 10 carbons) 

and mono-aromatic hydrocarbons with shorter, or a lower number of, alkyl side chains.  

 

 

6.4. Discussion  

6.4.1. Factors Affecting Bitumen Extraction by Organic Solvents 

6.4.1.1. Water Content 

Bitumen extraction from tailing soil matrices by organic solvents is affected by several factors. 

Water content is one of the most significant factors, as water can produce oil-in-water emulsions 

that reduce the extraction efficiency (McGill and Rowell 1980). Yeung, Johnson et al. (1994) 

showed that the Soxhlet extraction efficiency decreased with increasing water content, where the 

bitumen recovery was reduced from 97% to 58% when the moisture content increased from 0% 

Fig. 6-19. Color-coded iso-abundance contour plot of DBE values versus carbon 

number of bitumen Soxhlet-extracted by (a) 2-MeTHF and (b) toluene 
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to 70%. Air- or oven-drying can improve bitumen recovery by reducing the moisture content. 

However, about 4% and 6% of crude oil was lost by air-drying at room temperature and oven 

drying at 40 ℃ for 7 hours, respectively. In this study, air-drying of tailing soil at room 

temperature was used to avoid the effect of water on extraction efficiency.  

 

6.4.1.2. Extraction Methods 

The extraction methods determine the quantity and quality of the extracted bitumen. In Soxhlet 

extraction, bitumen recovery increases significantly with longer extraction times and sample 

stirring. It was reported that bitumen recovery increased from 85% to 95% when the extraction 

time was increased from 3 hours to 7 hours (Yeung, Johnson et al. 1994). The result from the 

present study is consistent with the reported finding, as Soxhlet extraction for 4 hours resulted in 

around 82 to 93% recovery of bitumen.  

When comparing the bitumen recovery among different methods, the methods of extraction do 

not have a significant influence, but they have significant influences on other factors such as 

solvent consumption, energy input, length of extraction time, efficiency, and so on. For example, 

sonication is another commonly used method for bitumen recovery from soil as it is relatively 

low-cost, consumes small volumes of solvent, and eliminates the need for elaborate glassware. 

(Guerin 1999) reported similar bitumen recovery by using Soxhlet extraction (86% recovery 

after 4 h) and rigorous sonication (95% recovery after 15 h) with dichloromethane and acetone 

mixtures. However, the recovery by Soxhlet extraction was lower, which was explained by the 

losses of the volatile bitumen components after 1-4 hours of extraction. Therefore, sonication 

may be a better method if the lower molecular weight and more volatile components are the 

analysis targets of interest.  

Accelerated solvent extraction (ASE), which combines elevated temperatures and pressures with 

organic solvents, has been reported as a method for bitumen recovery from soil. Richter, Jones et 

al. (1996) reported a similar bitumen recovery to Soxhlet extraction when the extraction 

conditions were set to 15 min, a solvent volume 1.5 times the sample volume, elevated 

temperature between 50 and 200 ℃, and elevated pressure between 500 and 3000 psi.  
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6.4.1.3. Extraction Temperature 

The use of liquid solvents at elevated temperature and pressure provides enhanced extraction 

performance compared to extraction at room temperature and atmospheric pressure. The higher 

temperatures increase the capacity of solvents to solubilize analytes, such as bitumen in this 

study. It was reported that the solubility of hydrocarbons such as n-eicosane can increase several 

hundred-fold as the temperature increases from 50 to 150 ℃ (Pitzer and Brewer 1961). In 

addition, faster diffusion rates occur as a result of increasing the temperature of the extraction, 

where the diffusion rates increase roughly 2 to 10-fold upon increasing the temperature from 25 

to 150 ℃ (Perry and Green 1999). Moreover, the fresh solvent introduced in Soxhlet extraction 

increases the concentration gradient between the solution and the sample matrix, resulting in an 

improved mass transfer and hence an enhanced extraction performance. Furthermore, the strong 

solute-soil matrix interactions caused by van der Waals forces, hydrogen bonding, and dipole 

attractions can be disrupted by the increased temperatures (Richter, Jones et al. 1996). As well, a 

better penetration of matrix particles and, therefore, an enhanced extraction is provided by the 

decreased viscosity of the solvents at higher temperature (Perry and Green 1999). Therefore, in 

this study, the bitumen recovery obtained from Soxhlet extraction is higher than that obtained 

from room-temperature extraction by around 5 wt%.  

 

6.4.2. Bitumen Room-Temperature Extraction Performance Comparison among 3 Solvents 

6.4.2.1. Quantitative Comparison 

Bitumen recovery by single-stage short-time room-temperature extraction reached 90%, which is 

similar to recoveries under similar extraction conditions reported in other publications, where 86 

– 95% recoveries were reported (Nikakhtari, Vagi et al. 2013). In this study, the ranking of 

bitumen recovery among the three solvents is 2-MeTHF (88.57%) > toluene (79.75%) > DCM 

(77.35%) at their optimized solvent-to-soil ratios. When compared to the recovery obtained from 

Soxhlet extraction, the order of the ranking is the same, where 2-MeTHF is the highest with 

93.22% recovery, followed by toluene with 90.70% recovery and DCM with 92.48% recovery.  
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6.4.2.2. Solvent Viscosity 

In the early stage of the solvent extraction, convective mass transfer dominates the extraction 

speed. It is reported that up to 85% of the extraction is mainly due to the convective mass 

transfer (Nikakhtari, Vagi et al. 2013). The viscosity of the solvent may have an impact on the 

mass transfer rate, where lower viscosity is more beneficial to mass transfer. Among the three 

solvents, DCM has the lowest viscosity (0.41 mPa.s), followed by 2-MeTHF (0.51 mPa.s) and 

toluene (0.56 mPa.s). Therefore, at the very beginning of the extraction, the amount extracted 

would be the highest in DCM extraction, as the solvent viscosity is the predominant factors 

determining the mass transfer. When the bitumen concentration increased in the extracting 

solvent, the amount extracted by 2-MeTHF became the greatest as other factors, such as solute 

concentration, temperature, and diffusive effect started contributing to the mass transfer.    

 

6.4.2.3. Solvent Diffusion Rate 

Mass transfer can only occur by convection and diffusion. In solvent extraction, convective mass 

transfer is dominant up to about 85% extraction, beyond which the solvent diffusion into 

aggregates becomes rate-limiting (Nikakhtari, Vagi et al. 2013). Before calculating the diffusion 

rate, the diffusion coefficients of the molecules must be obtained, preferably via experiments. 

However, there is a lack of information about the diffusion coefficients of hydrocarbon solvents 

in bitumen and therefore, the solvent diffusion rate into bitumen substrates cannot be compared 

among the three solvents. (Fu and Phillips 1979) initiated experiments to determine the 

diffusivities of several light hydrocarbons in semi-solid bitumen. They indicated that the 

diffusivities of hydrocarbons in bitumen depend on the molecular structures of the hydrocarbons, 

where the diffusivities decrease with increasing molecular weight, increasing branching, and the 

presence of ring structures. In particular, non-planar cyclic molecules, such as cyclohexane, 

show lower diffusivity than aromatics, such as benzene and toluene.  

 

6.4.3. Qualitative Comparison of Extracts 

The presence of fine solids in the extracted bitumen is one of the most important parameters in 

evaluation of the quality of the extraction method, as the fine solids content determines the 



 
 

 

227 
 

acceptability of the extracts to downstream refineries and upgraders. In this study, fine solids 

were found in the extracts, where the ranking of extracting solvents was DCM > toluene > 2-

MeTHF.  

 

6.4.3.1. Solvent Solubility Parameter 

There are several reasons explaining the migration of fine solids into the product bitumen during 

solvent extraction. Properties of the solvent in terms of the solubility parameter and density are 

among the factors affecting the migration of fine solids. Solvents with higher solubility 

parameters are more effective in dispersing fine solids (Nikakhtari, Vagi et al. 2013). Therefore, 

the behavior of the fine solids in the solution is dominated by dispersion, resulting in the 

decrease of the sedimentation rate. In this study, the solubility parameter ranking (Barton 1991) 

of the selected solvents is DCM (20.2 MPa1/2) > toluene (18.2 MPa1/2) > 2-MeTHF (16.9 

MPa1/2), which explains the observation in this study that the content of the fine solids is the 

highest in the product bitumen extracted by DCM, followed by the toluene extracts and 2-

MeTHF extracts, as the fine solids are more dispersed in the DCM-bitumen supernatant after the 

centrifugation and hence, more fines are left in the product bitumen after solvent evaporation.  

 

6.4.3.2. Relative Density 

In addition, the relative density between the solvent and the fine solids is another factor affecting 

the migration of the fine solids. In this study, centrifugation was used to separate the supernatant, 

which is the solvent with dissolved bitumen, from the precipitate, which is composed of the soil 

minerals.  

In the centrifugation, the force applied to the particles is called centrifugal force (Fc) and is 

calculated from the Newton equation: 

 

𝐹𝑐 = 𝑚×𝑎 = 𝑚×𝑣2×𝑟 ……………………………..……………… (6-9) 
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where m is the mass of the particle, a is the acceleration, v is the angular velocity, and r is the 

radius of the particle.  This equation is applicable to vacuum conditions. However, when the 

solution system is centrifuged, the particles are not in a vacuum but in a solvent and therefore the 

centrifugal force acts on both the particles and the solvent medium. Hence, a buoyancy factor 

(1 −
𝜌

𝜌𝑟
) is incorporated to describe the relationship between the surrounding medium and the 

particles in the centrifugation system: 

 

𝐹𝑐 = 𝑚×(1 −
𝜌

𝜌𝑟
)×𝑣2×𝑟 ……………………..……………………. (6-10) 

 

where ρ is the density of the solvent and ρr is the density of the particle. Consequently, the 

particle sediments if the density of the particle exceeds that of the solvent; while the particle 

floats if the density of the particle is lower than that of the solvent. When the density of the 

particle equals the density of the solvent, the particle will not move relative to the solvent and no 

separation occurs. Therefore, the larger the difference in density between the solvent and the fine 

solids, the better is the separation that can be obtained. The fine solids, which are mainly clay 

minerals, have a bulk density around 1.10 g/cm3, which is closest to the density of DCM (1.33 

g/cm3), followed by the density of toluene (0.87 g/cm3) and 2-MeTHF (0.85 g/cm3).  

 

6.4.3.3. Water Content 

The fine solids show a range of surface properties, from hydrophobic to hydrophilic (Kotlyar, 

Ripmeester et al. 1988; Sparks, Kotlyar et al. 2003). Kotlyar, Ripmeester et al. (1988) and 

Nikakhtari, Wolf et al. (2014) reported that the hydrophobic solids tend to appear in the bitumen 

product in both the solvent extraction and the water-based process. In the presence of water, 

migration of the hydrophilic solids into the bitumen product is prevented by hydrogen bonding to 

water. Nikakhtari, Wolf et al. (2014) reported an optimum range of water content between 3.4 

and 14% to bind the fine solids to the sands. Furthermore, when the water was removed by 

drying or when too much water was added, more fine solids were carried into the bitumen 

product. As well, they indicated that within this water range, bitumen recovery was 
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insignificantly affected. In the present study, the water was removed by air-drying before the 

solvent extraction, which favors the migration of fines into the bitumen product.  

In addition to water removal by drying, water extraction by organic solvents can also increase the 

amount of fine solids in the final product. Among the three solvents, DCM is the only solvent 

that is fully miscible in water, while 2-MeTHF and toluene are immiscible with water. Hence, 

DCM can extract both water and bitumen at the same time by solubilizing both phases, giving a 

miscible mixture and having more fine solids in the mixture. This result agrees to the finding of 

Nikakhtari, Wolf et al. (2014), who reported that the content of fine solids in bitumen 

significantly increased from less than 0.2% to 3.7% when ethanol was used as the extracting 

agent.   

 

6.4.4. Potential Reactions in 2-MeTHF Soxhlet Bitumen Extraction System 

6.4.4.1. Information from ATR-FTIR Spectroscopy 

According to the bitumen characterization based on the ATR-FTIR spectra, the bitumen 

extracted by the three solvents in either room-temperature extraction or Soxhlet extraction shows 

a similar spectral profile, except in the case of the bitumen extracted by 2-MeTHF Soxhlet 

extraction, where boiling temperature was applied. The ATR-FTIR spectra of the bitumen 

extracted by 2-MeTHF under Soxhlet and room-temperature extraction conditions are presented 

in Figure 6-20. The main differences between these spectra are in the aliphatic region (3000 – 

2800 cm-1), where the -CH3/-CH2 ratio of 2-Me-SEB is high, which indicates that there is a 

higher amount of shorter or more branched aliphatic chains in 2-Me-SEB. In addition, there is a 

group of new bands in the region below 1300 cm-1, which indicates the presence of C-O, S=O, 

and H-O groups. In particular, the new bands centered at 1311, 1230, 1155, and 1117 cm-1 are 

assigned to the C-O bonds of ether or ester compounds (Table 6-16).  As well, a new sharp band 

is observed at 3644 cm-1, which represents the free O-H group of alcohols.  

 



 
 

 

230 
 

 

Fig. 6-20. ATR-FTIR spectra of bitumen extracted by Soxhlet 

extraction (red) and by room- temperature extraction using 2-MeTHF 
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Table 6-16. Postulated infrared band assignments for the new bands observed following 2-

MeTHF Soxhlet extraction (Socrates 2004) 

 

 

6.4.4.2. Information from APCI-MS and Elemental Analysis 

2-Me-SEB and T-SEB, which is regarded as the reference bitumen, were sent for elemental 

analysis and MS-APCI analysis in order to obtain additional information in order to understand 

the chemical differences between the two bitumen samples. From the elemental analysis, it was 

found that the oxygen content was doubled in 2-Me-SEB compared to that of the reference 

bitumen. The results from MS analysis further prove that there is a group of ion fragments from 

2-Me-SEB in the lower molecular weight range, between m/z 119 and 219, which are not 

observed in the case of T-SEB. This group of ion fragments contains between 5 and 10 carbon 

atoms. In addition, it is found that the oxygen atoms in 2-Me-SEB are mainly distributed in the 

ion fragments with shorter carbon chains and lower molecular weight. Furthermore, the amount 

of oxygen atoms in this shorter carbon chain group is relatively high, between 3 and 6. In 

contrast, the oxygen atoms in the ion fragments of T-SEB are mainly found in the higher 

molecular weight range (Fig. 6-18).  

 

6.4.4.3. Potential Reaction and Mechanism 

All the information above suggests that chemical reaction(s) occurred in the system in which 

bitumen and 2-MeTHF solvent were mixed together at the boiling temperature of around 90 ℃. 

After the reaction(s), a series of low-molecular-weight compounds with short carbon chains and 

oxygen atoms was produced. There are many potential reactions that could have occurred in the 

Peak (cm-1) Range (cm-1) Vibrational mode Functional group 

3643 3660 – 3593  Stretching  Hydroxyl from alcohol (free) 

1311 1338 – 1287  Stretching  Aromatic ester  

1230 1287 – 1199  Stretching  Alkyl aryl ether  

1155 1177 – 1136 Stretching  Ester  

1117  1136 – 1095  Stretching  Aliphatic ether  
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system; but it is very important to note that there are no such findings when toluene or DCM is 

present instead of 2-MeTHF. Therefore, the reaction(s) that occurred /may be attributed to the 

properties of 2-MeTHF, such as its cyclic ether structure.  

One possible reaction is the ring-opening reaction and polymerization of 2-MeTHF when 

exposed to Lewis acids and high temperature. It is known that cyclic ethers having 3-, 4-, and 5-

membered rings (e.g., epoxides, oxetanes, THF) can undergo ring-opening polymerization and 

yield polymeric ethers. Polymerization can be initiated by Lewis acids, such as metal cations, 

which can accept an electron pair provided by a Lewis base such as THF, in which the oxygen 

atom has two lone electron pairs that it can donate (Braun, Cherdron et al. 2012). Delaney, 

Johnstone et al. (1986) reported a simple ring-opening with simultaneous dimerization by 

reacting a variety of cyclic ethers with TiCl4 under refluxing conditions. The reaction of TiCl4 

with excess THF produces 1,9-dichloro-5-oxanonane. The generation of this product gives rise to 

mid-infrared absorption bands at 3420 and 1055 cm-1, which represent the presence of O-H and 

C-O-C groups, respectively. They also reported that 2-MeTHF can also undergo ring-opening 

and dimerization reactions with Lewis acids, which required longer reaction time. There are also 

other studies showing that 2-MeTHF undergoes ring-opening under acidic conditions (Pace, 

Hoyos et al. 2012). 

The reaction scheme of 2-MeTHF with Lewis acids is presented in Figure 6-21. In general, the 

reaction can be described as consisting of three steps. In the initial step, 2-MeTHF is protonated 

by the Lewis acids and forms the cyclic ether ion (Fig. 6-21-a). The less substituted carbon atom 

in the ether group is activated and is attacked by a 2-MeTHF molecule in an SN2-reaction, 

resulting in the opening of the ring (Fig. 6-21-b). Chain growth proceeds via the same 

mechanism (Fig. 6-21-c). The reaction products are black and oil-like, which makes them more 

soluble in bitumen. After the Soxhlet extraction is finished and the excess 2-MeTHF solvent is 

removed by evaporation, the end product containing the recovered bitumen mixed with the 

polymers is obtained, which gives rise to the new ATR-FTIR bands related to the free-OH and 

C-O bonds of the polymers.  
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In bitumen recovered from the Athabasca oil sands, there are many potential Lewis acids that can 

initiate the reaction, such as naphthenic acids, N-containing cations, and other trace amounts of 

cations. The decrease of the carboxyl absorption in the carbonyl region of the ATR-FTIR 

spectrum of bitumen after Soxhlet extraction suggests the participation of Lewis acids containing 

carboxylic groups in the ring-opening reactions (Fig. 6-22). 

 

  

 

 

6.5. Conclusion  

The bitumen extraction performance of the green solvent 2-MeTHF was evaluated in terms of 

extraction efficiency and product quality. The extraction was performed under mild conditions, 

where room-temperature 2-min vortex was applied. 2-MeTHF showed powerful bitumen 

Fig. 6-22. Deconvolution of ATR-FTIR spectra of Soxhlet extracted and room-temperature extracted 

bitumen in the region between 1850 and 1500 cm-1. The extraction solvent was 2-MeTHF 

Fig. 6-21. Ring opening and polymerization reaction of 2-MeTHF with Lewis acids 
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extraction ability whereby half of the bitumen in tailing soil samples was recovered in a single-

stage extraction at the lowest solvent-to-soil ratio examined. In addition, 2-MeTHF provided 

higher bitumen extraction efficiency than the traditionally used organic solvents, toluene and 

DCM.  Furthermore, according to ATR-FTIR and DRIFT-NIR analysis, the bitumen recovered 

by 2-MeTHF had higher quality as less clay migration was found in the final bitumen products.  

The solvent usage in the room-temperature extraction was optimized by measuring the yield in 

relation to the solvent usage. The extraction yield was maximized when the amount of the 

solvent 2-MeTHF was double the amount of soil sample used. Beyond that ratio, the yield did 

not increase with increasing solvent usage. When toluene or DCM was used, larger amounts of 

solvent were required to reach a bitumen yield similar to that obtained by extraction with2-

MeTHF. Therefore, considering the higher extraction yield, less clay migration, and less 

environmental impact, 2-MeTHF can be used as an alternative to the traditional organic solvents, 

such as toluene and DCM, in the bitumen room-temperature solvent extraction process.  

The non-extractable bitumen under the mild extraction condition was further studied by using 

ATR-FTIR spectroscopy. According to the -CH3/-CH2 index, the less-extractable fraction 

contains longer aliphatic chains and less branched structure. In addition, it contains a higher 

content of carbonyl and aromatic groups, making this fraction more polar and therefore 

decreasing its solubility in the non-polar organic solvent.   

2-MeTHF is a good substitute for the traditionally used extracting solvents. However, when heat 

is applied during the extraction process, such as in Soxhlet extraction, 2-MeTHF is unstable and 

may undergo ring-opening and polymerization reactions, which are triggered by the Lewis acids 

present in the bitumen samples. The polymerized 2-MeTHF products are oil-like and thus mix 

with the recovered bitumen and end up in the final product. Therefore, the use of 2-MeTHF is 

not recommended when heat is to be applied during the extraction process. In addition, 

distillation cannot be employed to recover 2-MeTHF from the final product.  
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CHAPTER 7 

 

GENERAL CONCLUSIONS  

 

 

Soil quality is one of the main focuses in agricultural practice as it determines crop quality and 

yield. Improper farm management practices have resulted in a loss of soil quality and soil 

degradation (Forge 1998), leading to an urgent need for new farm management techniques. 

Precision agriculture (PA) is an innovative farm management strategy, which focuses on 

effective resource utilization and ultimately improves production and reduces the environmental 

impact of farming (Reichardt and Jürgens 2009). The success of PA requires the implementation 

of many techniques, among which is data collection on and analysis of soil quality across the 

whole field. Soil quality is traditionally analyzed by wet-chemical techniques, which are not 

suited for application in PA due to various limitations, such as the amount of time and labour 

required to perform them and high cost. Fourier transform infrared (FTIR) spectroscopy is 

considered as a potential alternative method considering its significant advantages, particularly 

the speed of the analysis and amenability to automation (Ismail, van de Voort et al. 1997).  

Soil contamination is also related o soil quality from the environmental point of view. 

Contamination of soil by bitumen residues is severe in Alberta due to the large-scale exploitation 

of oil sands and improper handling of tailings. The reclamation of the contaminated tailings prior 

its release is enforced by Directive 074. In addition, the reclamation performance, particularly 

the quantity and quality of the remediated tailings, must be monitored to meet the requirements 

of the Tailings Management Framework for Mineable Athabasca Oil Sands (TMF) issued by the 

Government of Alberta (Alberta Energy Regulator 2015).  The advantages of FTIR 

spectroscopy, such as direct analysis of soils and on-line monitoring capability, make it a 

promising technique for this monitoring application.  

In this context, two forms of FTIR spectroscopy were investigated and compared in this thesis. 

The first involves the use of the mid-infrared (MIR) region and employs a single-bounce 

attenuated total reflectance (ATR) sample-handling accessory. In the MIR region, absorptions 

due to the fundamental vibrations of molecules occur, giving rise to intense and distinct 

absorption bands in MIR spectra. The ATR technique allows MIR spectra to be acquired from 
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semi-solid and solid samples with minimal sample preparation. The second form of FTIR 

spectroscopy investigated in this thesis involves the use of the near-infrared (NIR) region, in 

which absorptions are due to the overtones and combinations of the fundamental vibrations 

measured in the MIR region. Although the signals associated with NIR absorption are less 

intense than those observed in the MIR region, the less expensive optics and the amenability to 

in situ and on-site applications make NIR spectroscopy a widely used technique.  

The contributions to knowledge stemming from this research on the potential application of these 

techniques in agricultural soil quality modeling and in monitoring of remediation of bitumen-

contaminated tailings are summarized in the following paragraphs.  

The feasibility of employing ATR-FTIR spectroscopy to monitor 10 selected soil properties, 

including chemical properties such as total carbon (TC), total nitrogen (TN), carbon-to-nitrogen 

ratio (C/N), ammonium (NH4
+), and nitrate (NO3

-), physical properties such as the percentages of 

sand, silt, and clay making up the soil, and comprehensive properties such as N-uptake and yield 

was demonstrated in Chapter 3. Ten partial-least-squares (PLS) calibration models were 

developed to model these properties using the ATR-FTIR spectra of 278 agricultural soil 

samples collected across four Canadian provinces. The properties TC, TN, C/N, sand, silt, and 

clay were successfully modeled, as evidenced by r2 values of >0.90 and RPD values of >2.00. In 

addition, the effect of dataset normalization by logarithmic transformation was studied but the 

performance of the models was not significantly improved, ATR-FTIR spectroscopy was shown 

to be convenient for the analysis of dry soil samples, with only a small amount of sample being 

required. Based on these results, it was concluded that ATR-FTIR spectroscopy coupled with 

PLS provides a rapid, reliable, and simple means of soil quality monitoring for PA.  

The utility of DRIFT-NIR spectroscopy for the assessment of soil quality and comparison of its 

performance with that of ATR-FTIR spectroscopy were explored in Chapter 4. To better evaluate 

the performance of calibration models, the RPIQ index was used instead of RPD, as it takes into 

account the spread of the dataset distribution. According to the criteria of r2 >0.90 and RPIQ > 

2.50, the calibration models for the prediction of the properties TC, TN, C/N, sand and clay were 

considered reliable. The ATR-FTIR calibration models for the same properties had better 

prediction accuracy with 12% to 36% RPIQ increment. However, when cost and feasibility for 
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in-field use are considered, DRIFT-NIR spectroscopy is a more suitable technique for PA 

practice.  

Chapter 5 addressed the possibility of using ATR-FTIR and DRIFT-NIR spectroscopy to directly 

quantify bitumen residues in Alberta tailing soils. Calibrations were developed by both PLSR 

and simple linear regression using artificial bitumen-spiked samples as the calibration set. The 

combination of ATR-FTIR spectroscopy and PLSR yielded the best calibration, with an r2 of 

0.99 r2 and a 1.76 wt% RMSEC over the bitumen content range between 0.70 and 40.70 wt%, 

and was selected for the development of a calibration using natural tailing soil samples, which 

provided an r2 of 0.90 and a 1.55 wt% RMSEC over the bitumen content range between 9.70 and 

26.59 wt%. In addition, the classification of tailing soils by principal component analysis (PCA) 

of their ATR-FTIR spectra was studied. Classification based on the bitumen residue content was 

successfully achieved, but classification based on discrimination between unremediated and 

remediated soils did not succeed, as the remediatiom process had not been optimized and 

consequently there was a lack of a direct relation between bitumen residue content and the 

remediation process. Based on the results of this study, ATR-FTIR spectroscopy coupled with 

PLS and PCA techniques showed potential as a technique for on-line remediation monitoring to 

determine the remediation performance and aid in optimization of the remediation process.  

Chapter 6, as an extension of the study presented in Chapter 5, evaluated the use of the green 

solvent 2-methyltetrahydrofuran (2-MeTHF) for extraction of bitumen from tailing soils. The 

extraction was conducted under room-temperature/2-min vortex conditions and the solvent 

amount was optimized based on bitumen recovery. According to gravimetric measurements, 

89% of the total bitumen was recovered by extraction into 2-MeTHF with an optimized solvent-

to-soil ratio of 2:1 wt/wt. The bitumen recovery obtained using 2-MeTHF was shown to be 

higher than that obtained with the traditionally used solvents toluene and dichloromethane 

(DCM), where these two solvents recovered 9% and 14% less bitumen, respectively. The less-

extractable and non-extractable bitumen fractions were quantified using the calibration models 

described in Chapter 5. It was estimated that these two fractions accounted for 5.59 and 8.77% of 

the total bitumen. The quality of the recovered bitumen was studied by using ATR-FTIR 

spectroscopy and it was found that less clay migration into bitumen occurred when 2-MeTHF 
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was used as the extraction solvent. However, under the elevated-temperature condition of 

Soxhlet extraction, 2-MeTHF was postulated to form oil-like products via protonation, ring-

opening, and polymerization reactions. Evidence for the presence of such products in the 

extracted bitumen was obtained by ATR-FTIR spectroscopy and atmospheric-pressure chemical 

ionization mass spectroscopy (APCI-MS). Thus, if 2-MeTHF is to be applied in solvent 

extraction of bitumen, high-temperature condition should be avoided in the extraction and 

solvent recovery processes.  

 

The research summarized above has laid the foundation for the application of ATR-FTIR and 

DRIFT-NIR spectroscopy in soil analysis. Especially, this research was undertaken in the 

Canadian context, entailing the creation of a spectral library of Canadian agricultural soils and 

the development of calibrations modeling soil quality condition across four Canadian provinces. 

In addition, the bitumen-contaminated soils studied in this research were from the province of 

Alberta.  The rapid, accurate, and reagent/solvent-free FTIR spectroscopic methods for soil 

analysis established in this research can find application in the agricultural sector and in the 

tailings remediation industry, which will consequently benefit from the reductions in time, labor 

costs and solvent use associated with the replacement of the traditionally used wet-chemical 

methods by these instrumental methods.  
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