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Abstract

This thesis is based on recent work by Paige which gave a formal-
ism for presenting and analyzing the class of algorithms which manip-
ulate an appropriate Krylov subspace in solving large sparse systems
of lincar equations. This formalism — a way of dividing a method
of solution into a Krylov process and an associated subproblem — is
described and then applied to several of the more popular algorithms
in use today including the methods of Conjugate Gradients and Bi-
Conjugate Gradients. The aim is to clarify these algorithms to make
them easier to understand, analyze and use. Several of the methods
presented in this thesis were developed in exactly this way — notabiy
the Symmetric LQ method and the Generalized Minimum Residnal
method — and required little or no effort to characterize using the
formalism. [t was successfully applied to Conjugate Gradients and
BiConjugate Gradients, already recognized as being closely related to
the symmetric and unsymmetric Lanczos processes respectively. The
newer algorithms such as Conjugate Gradients Squared -and BiCon-
jugate Gradients Stabilized, with less obvious relation to a specific

Krylov process, provided more difficulty in their clarification.



Résumé

Ce mémoire est basé sur le travail récent de Paige sur un forma-
listne pour présenter ¢t analyser une classe d’slgorithmes manipu-
lant un sous-espace de Krylov approprié dans la résolution de larges
systemes creux d’équations linéaires. Ce formalisme — une facon de
diviser une méthode de résolution en un processus de Krylov et un
sous-probleme associé — est décrit et ensuite appliqué & plusieurs
des alporithines les plus populaires en ce moment, dont la méthode
des Gradients Conjugués et celle des Gradients BiConjugués. Le but
de ce mémoire est de clarifier ces algorithmes pour les rendre plus
faciles & comprendre, analyser et utiliser. Plusieurs des méthodes
ici présentées ont justement été développées de cette fagon — la
méthode des LQ Symétriques et la méthode des Résidus Minimums
Genéralisés en particulier — et leur caractérisation a 1’zide du for-
malisme n’a requis que peu d’efforts. Le formalisme a été appliqué
aux Gradients Conjugués et aux Gradients BiConjugués, connus pour
étre liés respectivement aux processus symétriques et asymétriques
de Lanczos. Les algorithmes plus récents, tel que les Carrés des Gra-.
dients Conjugués et les Gradients BiConjugués Stabilisés, dont le lien
avec un processus de Krylov spécifique est moins évidente, ont été

plus difliciles & clarifier.
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1 Introduction

1.1 Formalism

Based on idcas in [PS75), Paige [Pai94] states a simple formalism for mo-
tivating, presenting and studying Krylov subspace methods for problems
involving a matrix A. These mcthods are useful for example in solving the
cigenproblem Ax = Az or solution of cquations Az = b when A is large and
sparse,

Given a matrix A € R"*" and a starting vector v, a Krylov Process

procuces vectors {vy, va, ..., v} which span the k-th Krylov subspace
K¥(Arw) = spanfv,Av,..., A" v}

Krylov subspace methods seck clements of these subspaces which are in
sonic sense good approximations to the solutions of the original problems.

The formalism for Krylov subspace methods is as follows:

A Krylov subspace process <+  Solving a subsidiary problem

— A Krylov subspace method.

The terms used above were chosen carcfully to distinguish the parts of the
algorithm.

Process refers to the particular process we are considering, for example,
the Lanczos process, i.c. the way in which the vectors are formed to span
the Krylov subspace in question. Many processes are presented in § 2.

Method refers to the theoretical method used to solve the problem. For
example [BBC*94] gives one implementation of the Conjugate Gradients, or
CG mcthod for solving Az = b; another implementation using the Lanczos
process and then considering iterates z; € K¥(A;b) obtained by manipulat-

ing the Lanczos vectors is well known, see for example [GL89, § 9.3.1] and



[PS75) and § 4.1 in this thesis. Although the implementations are different,
the resulting methods are theorctically the same (using exact arithmetic).

For any underlying Krylov process, the manipulation of the vectors ob-
tained in that process is known as the subproblem for this process used to
obtain this method.

A significant advantage of this approach is that both the process and
the subsidiary problem may be presented as clear matrix formulations, and
these malke the method casy to understand and analyse. The less transparent
vector representations (i.c. the implementations) of the method can then
be obtained from these matrix formulations. The vector represcutation
is important for implementation, but the matrix representation is a far
more powerful tool for teaching, for understanding, for relating and deriving
different methods, and for analysing their propertics.

Paige and Saunders [PS75] implicitly used this formalism to understand
old mecthods, and to develop new methods. However, several of the more
rccent methods in this arca appear to be significantly more complicated
than those in [PS75], and not nearly as well motivated. The result is that
many users of these algorithms have little understanding of them, a fact
which docs not help cither their usc or implementation.

In this thesis the formalism is applied to the more successful Krylov sub-
space methods for Az = b used today - for example GMRES (Generalized
Minimum Residunal), BiCG (BiConjugate Gradients), QMR (Quasi-Minimal
Residual), CGS (Conjugate Gradients Squared) - all of which are summa-
rized, usnally in vector form, in [BBC*94].

The aim is to see if the formalism described here, wiich was so successful
in clarifying carlier methods, can also help to simplify the understanding

and development of today’s more complicated methods.



1.2 Notation

e Matrices are represented by upper case Roman letters such as A4 or

By

Vectors are represented by lower case Roman letters such as vy, in-
cluding the columns of matrices, for example w; is the j-th column of
We. Usually columns of a matrix use the same letter as the matrix
itself; one prominent exception is e; which denotes the j-th column
of a unit matrix / of appropriate dimension. Occasionally, for clarity,

superscripts such as the & in eEk} will be used to specify the dimension.

l.ower casc Greek letters represent scalars. The scalar entries of ma-
trices or vectors may be represented by lower case Greek letters or by
lower casc Roman letters the same as the entity itself, with appropri-
ate subscripts. For example, the entries of the vector 2, are (;; the

entrics of the matrix Hy are h;;.

¢ and s; represent cos(0;) and sin(6,) respectively in those algo-

rithms which involve a QR or LQ decomposition.

e || -|| is used throughout to denote the 2-norm.



1.3 Table of Abbreviations

QR

LQ

CG
SYMMLQ
MINRES
CGNE
LSQR
GMRES
BiCG
QMR
CGs
BiCGSTAB
SPD

referring to the decomposition of a matrix into

an orthogonal matrix and an upper triangular matrix
referring to the decomposition of a matrix into

a lower triangular matrix and an orthogonal matrix
Conjugate Gradicnts

Symmetric LQ

Minimum Residual

Conjugate Gradients on the Normal Equations
Least Squares with the QR decomposition
Generalized Minimum Residual

BiConjugate Gradients

Quasi-Minimal Residual

Conjugate Gradients Squared

BiConjugate Gradients Stabilized

Symmetric Positive Definite

1.4 A note on the literature review

This thesis is required to have a review of the literature. In that the body

of this thesis describes popular methods of solution of large sparsc systems

of lincar cquations and clearly refers to the original papers and subsequent

articles written on these methods, it is our belief that this review is implicit

and necd not be presented scparately.



2 Krylov Processes

2.1 The general Krylov process

We first state a very general Krylov process, then derive some of the more
popular processes from this by manipulating its matrix formulation. We
feel this is bricfer and clearer than the more usual approaches to deriving
Lhese processes.

The general Krylov process with a given matrix A € R**" and starting

vector v € R™ forms a sequence of vectors vy, vs,... € R™ as follows

,l-l'uU[ = v

I¢J+|,jv,+; = Av_,'— _,-ij—----huvh J=1,2,..., (1)

where if £;415v541 = 0 the process is stopped. Later the coefficients A; ; will
be chosen to give different processes. Clearly after £ — 1 steps {v;}¥ spans

the k-th Krylov subspace
K*(A;v) = span{v, Av,...,A¥ v}, (2)

After & steps (1) corresponds to the columns of

AV = Vil + hrgrsvisres = VigrHiorx (3)

Vi = vy Y2 -+ Uk ] *

hl,l hx.: . . hl.l:

hay haa - - by

¥ ] H
I, = . . . - |y Hepp = r
Reyrpep
] b Be |

Notice that Hiyy s is just the upper Hessenberg H supplemented by a row
of zcros except for the last element. If Ayy; 1viyy = 0 then AVi = Vi H}, and

10



K*(A;v) is an invariant subspace of A, which we usually want. However
the reverse need not hold for the general process, so the specific Krylov
processes we consider will (in theory, that is in the absence of rounding

crrors) ensure termination, i.e. Akyy kUtsr = 0, immediately the columns of

Vi span an invariant subspace of A.
Houscholder [Hou74] gives a detailed treatment of Krylov's method

[Kry31] and its relation to other algorithms for the algebraic cigenvalue

problem.

2.2 The Arnoldi algorithm

One obvious choice to ensure termination is to derive orthogonal veclors
1. ta. ... in (1), Here and later we will use simple inductive arguments to

obtain expressions for coefficients. Suppose we have nonsingular
VIVi = Dy = diag(p1y..., k) (4)
which is trivially obtained for &k = 1, then from (3)
VT AVi = DiHi + higr oVl vicyrer,
and to ensure VT veyq = 0 in theory we take
ki = v,-TAvk/p;, i=1,...,k (5)

If we were to compute the vectors via (5) and then (1), this would correspond
1o the numerically inadequate classical Gram-Schmidt approach, sce for
example [GLSY, § 5.2), so a more numerically reliable computation is via a

modified Gram-Schmidt approach

U = Avk

for ¢ = 1,...,k

11



ki = vIui/p;
Uk = Uk — Ri k¥

and then hk.|.1,k‘vk+1 = U
This gives (3) with
VIVi =Dy, Vv =0, VIAV. = D H,. (6)

Il 41 4 Us41 38 then nonzero we take ek to be whatever we want. For or-
thonormal vectors we choose hpyy x to give [|ves1]| = 1, and we can continue

the process. So in this case (5) and (6) become

hiv = v',rAvk, t=1,...%, (7)

VIVe=1, Vi = 0, VIAV=H. (8)

This was proposed by Arnoldi for solving the eigenproblem: on termination

all the cigenvalues of H,. are eigenvalues of A, see [Arn51].

2.3 The Lanczos process for symmetric A
If A is symmetric in the Arnoldi algorithm with arbitrary k;4;; leading to
(6), we sec VT AVi = DiH, = HT Dy is tridiagonal and symmetric. That
means h;; =0, 1=1,2,...,7—2in (1), and from the j — 1, j element, sce
(1),

pi-thi—1; = pikjj1. (9)
Let us define o; = k5, B; = hjj-1, % = j=1,. This leads to Lanczos’

3-term process with arbitrary normalization

0

Yoo
By = v, B #0 arbitrary,
for 3 = 1,...,k

12



a; = v] Av;/p;
i = Bipil pi-1 (10)
Bi+1vin1 = Avj — ajv; — 950521, (11)
Bj+1 # 0 arbitrary
stop il Bjp1vj41 = 0.
Notice the definition (10) of +; agrees with the original (5) both from sym-
metry {9) which says
pi-17 = Pibis (12)

or from the use of the symmetry of A and orthogonality of the v; in Arnoldi's

algorithm

i

Y = hioy
= vl Avi/p;r = v Avj_y/p; (13)
vj-145/pjm1 = vj Avj_a [P

= v (Biv; + Qjm1¥i1 + Yi-1Vi-2)/pim1

]

Bipilpi-1.

Note by using the matrix representation (6), the symmetry of A gave (12)
immediately, while the usual vector approach required more effort. It was
shown in [Pai72] that (10) is an efficient and more numerically reliable way
of computing v; than (13).

In matrix form the result is, using tridiagonal T} = H,,

AVi = ViTi + Bemrvirrer = Vi Tesr e (14)
VIVi = Dy, Vv =0, VIAVi=DTe=5:, say, (15)
[ a7 -
T. = e o2 - s Tewrn = [ Tkr]s (16)
A | * k1 Cp
I Be o |

13



Sk

1o M2

pb2 proa

PxBr

Phk=17Tk

Pretk |

(17)

where obviously Sk = VT AV, is symmetric by (12). Again, if we choose 841

to enforce orthonormality of the vectors, we notice p; =1 for j = 1,2,...

gives 7; = B;. The normalized symmetric Lanczos process is now

Bovo = 0

T

ﬂlvl = v, "yZwny =11

for 7 = 1,...,k

.= vT Av.
a; = v; Av;

Bjs1vi41 = Avj — ajv; — Bivja,

stop if ;419541 =0 else make v?_*_lv_,-.,.l =1.

And in matrx form

AV, =

TkE

this is

ViTi + Brsrvisrer = VigrTiprk

I, Vo =0,

a, B
B2 e

-

B

Br o |

VIAV. =T,

v T = [

(18)
(19)
(20)
T
Bryr€l .

The Lanczos process (which is closely related to the 3-term recurrence for

orthogonal polynomials) was suggested by Lanczos [Lan50] for finding eigen-

values of symmetric A, and also used in Lanczos’ [Lan52] variant of the
Conjugate Gradients method (see also [HS52]) for solving Azx = b with

syminetric positive definite A.

14



Since the difference between the above two versions is only onc of nor-
malization, they will have the same sort of numerical behaviour — which is
surprisingly cffective. Orthogonality of the v; is soon lost, but ecigenvalues
arc still found to almost machine precision by the Lanczos method (sce for
example [PaiTl], and later works by him and many others), and solution
of cquations with symmetric positive definite A is also very effective using
cither the [HS52] CG algorithm (sec Reid [Rei71} and many later works) or

the [Lan32] variant, see [PS75).

2.4 The Lanczos process for unsymmetric 4

Clearly (18) is far more efficient than (1) with (7), and we would like a
similar simplification with unsymmetric A. Lanczos {Lan50] suggested such
a process. This produces two mutually orthogonal sequences of vectors,
{r,}} and {#;}¥ spanning the subspaces KX*(A;v) and K*(AT;%) respec-
tively. These vectors will be seen to produce a tridiagonal matrix from
unsymmetric A. This is achieved by considering the process (1) applied to
AT and 7, as well as to A and v.

The resulting equivalents of the Krylov process (3) are, with obvious

notation, after k steps

AVi = ViHi+ hegrpvenmel, (21)
AT‘—/}: = Vkﬁk + .}-lk+1'kﬁk+1e:£, (22)

but now we seck elements k; ; and h; ; which make 17,3_;1 Vi41 diagonal. Again
wc assume we stop whenever we reach an invariant subspace. However we
will scc this process will actually break down at the first case of 47 v; = 9,
s0 we will assume v and ¥ are (fortuitously) chosen to avoid this.

An inductive argument will show how this mutual orthogonality may be

15



obtained, Suppose after step & — 1 we have diagonal and nonsingular
f}g'vk = -Dk = diag(ph rery pk)i (23)

(almost all choices of v and  will ensure this for & = 1), then with (21) and
(22)

r/nl:r.‘”/k = D.H+ hk“‘kﬂrvﬂl e{ (24)
= H{ D¢+ exhipy1aip Ve (25)

Since Hy and Hy are upper Hessenberg, cquating the right hand sides shows
that for 7 = 1,...,k — 2, taking hjs = 0 gives %] vpe1 = 0, and taking
ﬁ.j_;,. = 0 gives -v}"-r':bH = 0. Next the (k, %) elements of (24) and (25) show

5 Vet = Ty v = 0 if we take
bgge = Iy = B3 Avfpr = 0y, say. (26)

Next the (k, k — 1) clement of (25) shows 7, ve—1 = 0 if we take

i = T Av-1/pe-1 =5 say, (27)
while the (A & = 1) clement of (24) shows for the normalizer of v, that

Igey = 7 Aveer/pie = Br,  say. (28)
Finally the (k — 1, %) clement of (24) shows 77_;ve4 = 0 if we take

herx = T Avfpoi =Y, s2y, (29)
while the (% = 1, k) clement of (25) shows for the normalizer of 7, that

hagmt = F_yAv/pi = Be,  say. (30)

These show that T = H;. and Tk = H, are tridiagonal, and also show why

nonzero &} v; is required to avoid breakdowns. If now 7, ;%41 is nonzero we

16



have VT, Vi4 diagonal »nd nonsingular, and we can continue the process.
Note the process has not been fully defined, as (at each step) the normalizers

B+t = hiyr ik of Vg, and Bk+l = fzk.;.l‘k of ¥p4y may be chosen arbitrarily
nonzero. Here we consider two possibilities.

By the standard unsymmetric Lanczos process we will mean the Lanczos
process where §8; is arbitrarily chosen, for example to give v;rv,- =1, j=

l.2,..., but whatever the choice of 8;, ,éj must be chosen to give
t';?'v,- - 1., ] = 1,2,...

so that D, = [ and from (24) and (2F) T, = H; = HT, giving (sce also (27)
and (28), and (29) and (30))

:Tj=ﬂj1 Bj=7js j=1121---9

and for (21) and (22)

Vi = | v, vy »- vk], f/kE[ﬁl vy --- ﬁk],
a2
52 Q2
Tk = ?
. a
I Be o |
L4 i Tk
Fk-}-l,k = r L] Tk,kd}-l = [ Tk I Tk+1€k ]’
i Brsrei
AVi = WT + Bk+lvk+ch = Ve e ,er (31)
ATV, = WTIT + mrieef = “;7:+1Tz,'k+u
i?,_.TVk = 1, v}?”k+l = VkTﬁk+1 =0,

Vrav = T, VAT =1L

17



'The detailed algorithm is then (where fy,...,8;41 may be chosen arbitrar-

ily)

n
f=)
]

Vg =0

By
for 7 = 1,...,k

MU =U so that 63'1:1 =1,

]
=

a; = 5}'Av,-
Bi+1vj41 = Avj = 005 = YVja1
1Bt = ATD; — ity — ByE;
Vi+1Vjst = 3 3V = Pivi-1
StOp if }95+1v_,-.|.1 =0 or —7,-.,.11'},-.,.1 =0 or
T & mes =
Bi+1vj1 041741 = 0

otherwise choose 7,41 togive 3l ,vi=1. (32)

By the alternative unsymmetric Lanczos process we will mean the (ap-

parently new variant of the) Lanczos process where f3; is arbitrarily chosen,

but then we take

BJ = ﬂJa j = 1121°“ (33)

With this choice it follows from (28) and (30) that

o7 Ave = 57 Av_y, (34)

so {rom (27) and (29)
T = Bh_y Avk/ Pr1 = Yhy (35)

giving
ar T
— o .
Tk = Hk=Hk= 52 2 (36)
MR
| Br o |

18



T
Tk+1.k = T
Brirer
AVi = ViTi+ Brrvinier = Vier Tt po (37)
ATV, = VT + Benitpel = Vo Tegrpy (38)

VIVi = Di=diag(pi,...,pn).
VIAV, = DT, =S, issymmetric. (39)

The surprising outcome is that the two Krylov processes (with A and AT)

usc the coeflicients in the same way. At the j-th step we could take, sce
(26), and (34) and (35),

p; = v

o; = ] Av;/p; (40)

G = U Av/pia (41)
Binvisn = Avj — ajvj — 101 (42)
Bisnbimn = ATH; — ;b — % (43)

B;+1 # 0 arbitrary.

Again, as with (5) in our first approach to the Arnoldi algorithm, and
our comments on the Lanczos process for symmetric A, we find that the
above computation is unnecessarily numerically inaccurate. Thus we use

the following alternative to (41).
v = PB;pi/pj—1 from (29), (30) and (33), (44)

which is identical to the choice (10) recommended for the symmetric case.

This alternative unsymmetric Lanczos process is actually just a diag-
onally scaled version of the standard unsymmetric Lanczos process. This
is clear since both processes produce mutually orthogonal vectors span-

ning the same subspaces — the only difference is the first process produces

19



Vka = [, the sccond one does not. Although the standard process is usu-
ally considered the underlying process in the BiCG method, we will use the
alternative process to produce a pleasingly simple and clear derivation of
BiCG in § 1.6,

Apart [rom this surprising new variant of the unsymmetric Lanczos pro-
cess, so far the only original work here has been the matrix based derivation
of these algorithms. This is much briefer and, we think, easier to follow than
the usual approach, sce for example [GL89, § 10.2], but the originality is in
the approach alone. However we can now obtain a minor insight into the
computational behaviour of these two variants of the unsymmetric Lanczos
process.,

Il A is symmetric, the unsymmetric Lanczos process becomes the sym-
metric Lanczos process (taking ¥ = v of course, which appears to be the
only cfficient choice ~ halving the work). In this case the main step of the

unsymmetric Lanczos process with orthonormal vectors (32) becomes

a; v;-rAv,-
Binvin = Avj— v — Bjvjq,
since v; = B
which is just the normalized symmetric Lanczos process (18).
Similarly the alternative unsymmetric Lanczos process becomes

pi = vjv;

a; = vjAvi/p;

v = Bipilpi

Bimvisn = Avj— o =i

Bisw # 0 asbitrary,

which is the same as the arbitrarily normalized Lanczos process for sym-

20



. metrie A. Thus we can hope that thesc two unsymmetric processes will
maintain some of the well-known good numerical properties of their equiv-

alent symmetric processes.

21



3 Preliminaries — The QR decomposition

Some of the algorithms presented in this paper, for example LSQR, GM-
RES(m) and QMR, require the reduction of a sequence of matrices, each
of which contains the previous as leading submatrix, to upper triangular
form. To this end, one may perform a sequence of QR decompositions.
The notation and method presented in this section will be used in those
algorithms for this purpose. For the decomposition one may choose from
2 % 2 rotation matrices, 2 x 2 reflection matrices (2 x 2 Householder trans-
formations), or fast Givens transformations. For simplicity, 2 x 2 rotation
matrices were used here. The matrices arising in these algorithms are of a
specific shape - in general upper Hessenberg, more specifically tridiagonal
or lower bidiagonal, with an additional row containing a nonzero clement
in the last column only. The upper triangular result may in these special

cases be upper tridiagonal or upper bidiagonal. For the general matrix

hn hl2 " h'lk
h21 hn * h?k

Hiprpe = .. . | e porux
hig—1 Rk
] hepry |

(hi; may be zero for 7 > i+ 1 or j > i) the decompostion is

Ry
QT Hur = o |’

where @ € REIX*+) 5 orthogonal,

and Ry € R** isupper triangular.



This is achieved using rotations embedded at the i,¢ position of & + 1-

dimensional identity matrices, as

liy
Qix = G € R+ x(k+1)
=3 G
I Ty |
such that QT = QZ:,‘ Q;’:k
L]
= Qif,k .
1
The effect of the appropriately embedded QF_, on Hyypy s is
. ) ;
[ T tk
ik
. Ry
Qf- Hegr | %
= Tk-1,k
1 Rk - - ’
Tik
ALY
| 0 Ak |

while QT ., which alters only rows k and k + 1, zeros his1

Cx —Sk Frk Tk
?
Sk €k B,k 0
=i = \[Th+ Al

Cx = Trrfrik

Sk = —hRigrn/rik-

The orthogonality of the Q;  leads to that of Q.

A scalar multiple of the first column of Q7 is given by

& |
gk = BQICI = ﬁQ{k"‘ Q{kcl = { .fk ] = : ' (45)
a4 Px
| rsr |




. where

fk - l: fk—x ] ,
-1
fi=¢ = B¢
52 = 331
bk = cupx = BcSkr -8
Fesr = Skdx = Bsi--sn. (46)

Note: This notation - Qg, Qi.xy ks fk, Gks Pk Cky 3% — is used throughout this
document with exactly these meanings, except in algorithms SYMMLQ and
MINRES where the Q, ¢k, s refer to the LQ decomposition of the matrices
involved.

Reference: for example [GL89, § 5.1 5.2)



4 Algorithms for Solving Linear Systems

We now consider most of the more common Krylov subspace methods for
solving lincar systems of equations. Each of the following algorithms has
been converted into the matrix formalism presented in § 1.1. Each sub-
scction is begun with the problem statement, either large systems of lincar

cquations, or the lincar least squares problem, that is
Az =b, A€R™ or Iop|b—Az|, AeR™".

The type of matrix A, for example symmetric or not, positive definite or
indefinite, is given.

We examine different methods, where sometimes these are just different
variants of onc method. We continue to use the word method rather than
itplementation or algorithm, as there could also be more than one imple-
mentation for a given variant. For each such method the process used to

form vectors {v,...,v;} spanning some associated subspace is named, as

is the subspace.

Next for cach method the subproblem arises as a result of considering

successive solutions of the form
zp = To+ Vivs

for some initial guess zo. For simplicity, 2o will usually! be taken as zero.

So the iterates look like

zr = Viwe € R(VL), (47)

where V, = [‘01 vg e vk],

and the way in which this subproblem arises and is solved is described.

'Except in GMRES(m) where with each restart a new nonzero z; is used.



For some methods, where it is important for the development here, we

will deseribe the basic implementation of the method, showing how the

vectors from the process can be combined via the solution of the subproblem
1o produce an efficient (although not yet optimized) algorithm.
Then, to facilitate the most likely implementation of a stopping condi-

tion for cach algorithm, the norm of the residual of the current iterate
re=b— Az, =b— AViys (48)

is considered.

Finally (when we can, and when it is appropriate) we relate this ma-
trix derivation to one or more of the standard vector implementations usea
today, thus closing the circle by showing how what are usually confusing
(to the non-expert) vector presentations can be easily derived and well-

mnotivated using the matrix approach recommended here.

26



4.1 The Lanczos (Conjugate Gradients) Miethod

Problem: Solve Ax = b for x when A is symmetric positive definite (SPD).
First we derive what will later be shown to be the Conjugate Gradients

approximations ;. from the normalized symmetric Lanczos process (18).

We refer to this as:

The unit norm Lanezos-CG method.

Process: the normalized Lanczos process (18) for symmetric A to produce
orthonormal {ry.... 1} spanning K¥(A; ), starting with v; = b/8,, where
1 = 4.

To derive the subproblem we use (19) and consider iterates of the form

= Wiy as suggested in (47), and take Ty = freg, so that

i

e b= Azxe =b— AV
= b—WVTwm — 5k+lvk+lezyk

= Vi(Bier = Tetk) = BrsrVes1€l U

—Brt V411 Y- (49)

In theory Biq1vre; =0 forsomek < n,. the dimension of A, and the problem
will be solved.
Subproblem: Solve T = 3¢, where Tj. is symmetric tridiagonal.

This has shown in simple matrix terms how the Lanczos process (19)
Ak = VT + Sipr e ¢f and the subproblem Tiy, = Bie; give approxima-
tions . = Vi to the solution of Az = b. However we now have to combine
these two {Process and Subproblem) to produce a useful implementation.

Implementation: For A SPD, Ti. = VT AV, is as well, therefore the sub-

problem always has a solution and it is possible to perform a Cholesky
factorisation of Ty = L¢LT, where L; is lower bidiagonal. In order to ob-

tain objects (., wy. that can be computed scquentially and discarded after
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use — an important efficiency for large sparse problems — define
G
(2

ELZ‘yk, WkE[w1 Wy =+ ‘wk]EVkLJ:T1

L4
b~
mn

Ci

so the system is transformed to

Ty = LaLTye = Lizi = Lyzi = Brey,
Vivie = illg TLT e =z = Wiz,

Now, Li 1s formed one row at a time:

Ly Lf.x
T, = 0 bi
I 0 & ]'ﬂ: 00 I Tk
[ 0
Lk-lLZ'—l Tk-l
= Y16k = B
| 0 Sk ' G412 0 B | o
= n= \/a_h
6 = Brfri-1, m=Vex~8, k>L (50)

And so 2 is formed one entry at a time:

Ly yzey
= ﬂ:el
8xCi—1 + Vil

=2 G=05/n & = ~&lafn, Fk>1L (51)

Wy is also formed one column at a time (Wi LT = Vi)

0
L,
[ Wit wi ] Sk = [ Wiar LT, Sxwies + T ]
0 0| ™



S w =v/n, W = (Ve—Gawa)/n, k>
Finally,

Sh—1

zy, = Wiz = [ Wit wg ]
Ce

= Wiciskar + Gwr = Ty + Gwr, k2 1.

Again we sce how each step of the implementation makes obvious sense
when approached via this matrix formulation.

For large sparse problems we would like to stop in & << n steps, and
since a solution with sufficiently small residual is what is often wanted, we
look at how the residual norm behaves here.

Residual Norm: The following estimation of the norm of the residual r, as

defined in (49) can be used.

T
re = —PrrVer1i Ve = —Bks1Vis1Yik

Irell = Brsr|yax], where yrx is the k-th entry of ys.

Since y;. is not computed directly, one must consider

LTye = z
0 Y .
[‘Z.-x . : Lh—1
61: . = =
TeYik Ck
0 0| 7 Yhk
e = G/
= fIrell = BeralCe/e]

= Brs1lbeCe-1/7k| by (51)
= ﬁknlﬂk(&—l/‘n-x[/‘ﬁ by (50)
= Bimlireali/vd, k21



This matrix approach also tends to make analysis of such algorithms
fairly casy. For example, since r; is a scalar multiple of v;41 and VTVi =/,

the residuals r; are orthogonal. Next
WIAW, = LP'WVTAVLL;T = L' T LT = 1,

so the w, (Lhe search vectors in moving from ;1 to z;) are A-orthogonal.

That x, is the same as the ordinary CG solution follows for example from
[PPdV95, § 3], since z, = Viyr € K*(A4;0) and re = b— Az L K¥(A;b),
and so zy, is the Galerkin solution from K*(A4;b) to Az = b, which is exactly
what CG delivers. )

This unit norm Lanczos-CG method, based upon the Lanczos process,
has the nice property that the vectors vy, vz, ... are orthonormal. However,
let us derive a method which more closely mimics the standard CG mcthod
in that v,,vs,... are the residual vectors themselves. Because it gives a
more direct analogy with the standard CG method, we call it:

The Lanczos-CG method

Process: the Lanczos process (11) for symmetric A, starting with v, = b.

The normalization 854, is unspecified as yet.
Using {14) and considering iterates of the form z; = Viy; as suggested

in {47) and solving for Thyi = €y,

e = b— Az, =b-~ AViy
= Vi(er — Tevk) — Brs1ves €L vs
= = Brt 1Yk Va1 (52)
Subproblem: Solve T.y: = e;, where T} is tridiagonal, but not necessarily
symmectric.

Implementation: We choose to perform an LDU decomposition of Ti =
DSy, see (15). Si = VTAVi is SPD, and D, is a diagonal matrix with
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positive clements, so the LDU decomposition without piveting appears to

be a sale choice. There is considerable freedom in such a decomposition,

and the one which suits our purpose is as follows. With the as yet unknown

D = =diag(B2y. .., Brs1), write

T. = LDU:
0 0 0
, Ly Dy Uk
T = 0 0 -3
K
o-1|1 oo]—ﬂm ool1
[ 0
Ly 1Dy Ui
i 0 B |—(‘7k+ﬂk+1)

Notc that a simpler method could be obtained by combining D and U/, and

using for example & = DU instead, but the approach here will produce the

cquivalents of various elements of CG that we want.

We can now determine our normalizers §;41 by equating the right side

ol the above equation with T} in (16). Clearly

ap = —fo

= [ = —ay;

ar = =( + Brs1)y k> 1,
Brs1 = —(ax +1). k> 1L (53)

We will show below that this 8;41 # 0, and so is a satisfactory normalizer

for the process, and Upy, exists, but first we complete this implementation.

Define
Gt
C2 — — -] =
% = | = Uk, Wk=[wl wy ce- wk]=VkUk (54)
5y
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50 LDz = e is our subproblem, and z; = Wz, is our solution. Solving

—-B261
LiDeze = B2y - Pala e
| BiCi-1 = Bres1Ce |
1
= = —_——
C1 A
- 1
Ck —] ﬂck-l 3 &Ck—2 = e = —--—._’ k > 1.
.Bk+1 k41 Blc-{-l
Solving W Ui = V, gives
e

w = v,

Finally

wk=vk+ﬂkw;,_1, k> 1.

zr = Wie1 2kt + Gtk = Tim + Gewey, K21

Residual Norm:

Ty =

= i)l =

—Brsr¥revesr by (52)
—Br41levesr by (54)
1
—=Bi+1 X G by (53)
ket
1

Ukt

llvsall-

(85)

(56)

So the Lanczos process (11} for symmetric A, with v, = b, can be used to

produce the (CG) residual vectors ry = b— Az, themselves, as long as 841

is chosen as in (53).

It remains for us to prove that no 8;41 found this way can be zero. Since

A is SPD, a; is nonzero and so B2 is nonzero. Suppose B,..., §; obtained

from (33) are nonzero. Then with e =11,...,1}, T; = 0,...,0, a; +7;],
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which must be nonzero since Tj is nonsingular. Thus no 8;4, will be zero,
and this algorithm will not break down if A is SPD. It is also clear that the
LUy ‘Tactorization’ is numerically well behaved, with the only computation
being B;41 = —(ea; + 4;), and there is no large element growth in ;.
Equivalence of the Lanczos-CG method with CG:

"This Lanczos-CG method is just a scaling of the unit norm Lanczos-CG
method, and provides the same solution in a marginally different way. It
is therefore also the CG solution. However we would like to compare the

resulting algorithms closely, so we give a proof which shows clearly what

equivalences occur.

The CG Mcthod — slightly altered from ‘Templates’ [BBCt94] — is as
follows.

rg=b

fori=1,2,...

Pi=1 = r?;m'-:

if(z=1)
Pi = Tim
else

Biet = pit/pi-2
Pi = Timy + Bic1pic
% = Ap;
i = pi1/pl ¢
Ti = Ti-y + Qipi
Fi = Tie) — Qigi
check convergence; continue if necessary

end

To avoid confusion we will use superscript € to distinguish ‘Templates’

terms from those here, where it will also make life easier if we re-index two
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of the ‘Templates’ terms as follows:

pf = ‘Templates’ p;_,
Bf = ‘Templates’ §;.,.
We now write the algorithms side by side for comparison, where in the

Lanczos-CG algorithm we replace v;4; by r;, see (56), and introduce u; =

Av;. To handle the z = 1 case we define

CG Lanczos-CG
=1 p=1, pi=0
:::g:o, pg=0 .'.!.'o=0, wo=0, 1‘_1:0

Then fori =1,2,3,... we have

CG Lanczos-CG
¢ =18l pi =rLaria

BF = p, €108, % = Bipil pir
o =rC, +B8CpE, w; = rimp + (1) B)wi—r
qf = AS u; = Ari
of = p¢[pST E o; =rl uifp:

Bis1 = —(oi + )

2¢ =28, + ofpf Z; = Zimy — (1/Biga )i
ré=rf, - afqf ri = (ui — airicy ~ Yiric2)/Bina

The only significant difference in cost occurs in the last line -— n extra
multiplications, subtractions and divisions in the Lanczos-CG algorithm.
However note the Lanczos-CG here was written for comparison, not effi-

ciency. The equivalences are

Pi plcv 'ﬁ/ﬂi = 3:61 wy = p?

18z = of, zm=2zf, rn=rf. (57)
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A straightforward examination shows this is true for 7 = 1. Suppose it is
true for i = 1,2,..., k= 1. Then it is clear that
Pk = Pf& 'Wclﬂk = 161?1 Wy = Pf»
We now nced only prove
-~ 1/Bes = of, (58)

so that zr = €, and their residuals 7, and r{ must then also be cqual,
sinee r€ is clearly the residual for ¢ by examining the last two lines of CG,
and we have shown r; is the residual of z; in the Lanczos-CG. We can prove

(58) using our matrix formulation of the Lanczos-CG algorithm. We know
W = VkU,:I, S0

WEAW, = U7TVIAVUD =UTDTUS!
= U7TD( LD U = UZT D LDy,

which, by the way, is lower triangular and symmetric, and therefore diago-

nal, showing A-orthogonality again. The (i,£)-element of this is

wl Aw; = eT U T (pies — pirr€isn)(=Binr)-

But TUST = (%,...,%,1,0,...,0) is zero after the i-th element, so since

¥ =wi,i=1,...,k,
pSTAPY = wl Awi = —pifia,  i=1,...,k.
From the CG algorithm we then see
of = pf/ofTef = pifp{T AP = —1/Bin1, i=1,...,k,

and so (58) holds, and the induction proof of (57) is complete, .showing
that in theory these algorithms not only compute the same iterates (as
was obvious earlier), but also several of the intermediate quantities are
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identical. However the algorithms are clearly not identical, as the last line
of each clearly highlights, and may have different numerical behaviours.
This suggests a matrix development of CG would be useful, but we leave

this for future work.
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4.2 Symmetric LQ Method (SYMMLQ)

Problem: Solve Az = b with A nonsingular symmetric, but indefinite.
Process: the normalized Lanczos process (18) for symmetric A on K*(A;b)
starting with v, = b/||b||.

In this scction itcrates of the form z§ = Vi3 are produced as well as
iterates af = Vigwf. (The superscript C denotes the solution that would
he obtained by the method of Conjugate Gradients, while the superseript
L refers to the SYMMLQ method.) Using (19) and solving T = bre,
31 = ||b]], onc ohtains the result (49) as for the Lanczos method.

Subproblem (Conjugate Gradients method): Tiy$ = Byer, where the ma-

trix T}, is symmetric tridiagonal. T may be singular for some %, in which
case this subproblem will not have a (unique) solution, see later, (p. 38, 39).

Implementation: Since A is indefinite, there is a possibility that T} is as well.

Therefore a Cholesky factorisation may break down. Instead, consider an

LQ decomposition.
TQF =L, QiQx=1,

wlhere one method of factorising has the QT = Qq i+ +- Quy & as orthogonal
products of (reflection) matrices embedded in the k-dimensional identity
starting in the {i.7) entry.

-~ -

Iioy

Qix = . € Rixk (59)
S —¢G

Timicy |

These are designed to zero the superdiagonal (7,i++1) entry of T, L is the 7
lower tridiagonal result. The notation Ly is used to distinguish it from L
— the leading k x k part of Lis1 — from which it differs only in the (k, k)
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clement, (4 becomes 44 ). The first two steps illustrate the process:

T,
[ ] a
0 By

TsQ3

il

I

Thus after & steps

)
82 12

- Cy 63
[Jk =

oy 52
<
B2 az [
S
0 B
i
62 T2 B
€3 33 24}
0
L
0
i €3 53 I’-YS
Ta

€x—1 Ok—1 Te=1

€k 6&

S

-

e |

N
b2 2| =
e & o b
N
=16 7
~C2 & 0 T
0
e (60)
0
| 0 e b | W

Notc that 7% in (20) may be singular, in which case L; is singular. But

since B2+ -+ By # 0, Lg—y is nonsingular. For ease of calculation define

ﬁ" r =

so the system

| G

G

- k=i
G

Crmt

Tkykc = ﬁlcl ’

] = Qkyf

c
T = kaE

38
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is transformed to
L 2, = B Cc - W.z
k=k = €1, T = Wil

At cach step, v, o and s; are calculated:

=T+ By k=Tl 8k = Bewr /1 (62)

while the last row of Ly, is devcloped at the same time:

Yeqr = _(ﬂkﬂck—lsk + 0k+xck), 5k+1 = Qg8 — Bk+lck—lck1
€1 = Brp1Se-1. (63)

By comparing the last entry of L;Zx with the k-th entry of Liq13isr (both

should be zero):

=l = G =Wle/ M = el (64)
Using (59) and (61):

t = 0
[?I’k Vi1 ] |:Ck * :l = [‘wk Wiyl ]v (65)
Sk —Ck
so passing (rom {@x, vi+1} to {wk, Wis1} is painless. The above algorithm is
not implemented, since if Ly is singular, then Z; is undefined. This led Paige
and Saunders [PS75] to consider the following alternative subproblem.

Subproblem (SYMMLQ): The minimum 2-norm solution to the problem

y ﬂl.ky,f' = Bie1, where Tiqrx is as in (19). The matrix Tiyyx has full
column rank, and the subproblem always has a unique solution.

This is solved by performing an LQ decomposition of T, ,,
Tl iQin = [ T I Br+rex ] [ QT I T ] = [ Ly I 0 ]
SOIViIlg Lk:."k = 5161
and setting y& = Q72

Finally ;:i‘ = VH,‘yf =Vin szk =Wz = a,’£'_1 + Crwe.
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Now L is nonsingular if B4 # 0, so 2, does exist and we can safely

compute the SYMMLQ solution. Notice 2§ can easily be computed using
J:f = Wi = Wi—12pe1 + Ekﬁk = .‘z:‘z‘_l + (:'kt'f)k. (66)

The SYMMLAQ solution is more easily updated than z§ (when z§ exists),

but the latter may be more desirable at the finish.

Residual Norms: For the Conjugate Gradients solution

rf = b— AW,z = b— AViQTz,

b = Virr Tea1 £ Q% 2

Ly _ ~
b— Vk+1 ke (6[ )
0 0 Br+18k-1 —Br+16k—1

= b~ Viu{bier + Brpr(Sp-16k—1 — Ck-lfk)ek-n}

= —Bk+1(3k-1Ck—1 - Ck-lfk)vkq-x (GSj

c
= |7l

il

Brs1 |kt (et — k1 lk|-

Now, for the SYMMLQ residual,

re = b— Azl =b— A(zf,, — Ca1Bis1) by (66)

= i + G A

= 15, + G AVinnQieerr by (61)

= 1841 + Getr ViseTeazn1 Qa1

= 180 + CGerr Vesz(Tes1€es1 — Brszcrers2) by (60) and (67)
= 101 + Cerr (Tt Ves1 — PrazCiVisa)
= Cit1Tes1Vesr =

{Bisa(seCe — cxlen) + CearBrazci}visa by (68)

= Cit1Tit1Vks1 — €420kVes2 Dy (63) and (64)

= |Irel

C§+17E+1 + Ci.nc:f-
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. Because the implementation of SYMMLQ was originally obtained from this
sort of approach in [PS75), there is no need to show any equivalence of this

with a standard “vector” form here.
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4.3 Minimum Residual Method (MINRES)

Problem: ,’2}{.’. ||b— Az|| for A symmetricindefinite, where A can be singular,
and where Az = b need not be a consistent set of equations.
Process: the normalized Lanczos process for symmetric A on K*( A; b) start-
ing with vy = /8y, By =||b].

Iterates of the form z, = Viyw are considered. Using (18),(19),(20) and
(48),

re = b= AViyk = Viqr(Brer — T 3k)
Irell = [Brer — Do, kvl
Subproblem: ;2}3 |B1e1 = Tkt x¥xll, that is in theory solve the normal equa-
tions (T2 + B2, exel)yM = p1Tiey, for Ti symmetric tridiagonal. (The su-
perscript M indicates the iterates =¥ = Viy¥ are of the MINRES method.)
The matrix Tes1,. has full column rank, so the subproblem always has a

unique solution.

limplementation: As for SYMMLQ, consider an LQ decomposition of k.

T.QT L, QiQu=1I
TosTine = TE+Biaecer = Ty + Brpenel

The last equality follows by considering the {k, k)-element of the matrices
and (62). So the subproblem becomes:

LiLTyl = BLiQrer
or LTy = B DiQrer,

since Ly is nonsingular if B4, # 0, and from (62)

Li= LDy where D,=diag(l,...,1,c).
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For casc of computation define

71

.
i Cme | SWLET, (69)

Le = B10:Qien, Mk'='[m1 my ..

Tk

which transforms the system to

M :L'f! = ka}y = VAL;TLnyI = Mil.

L.{yk = tkv

By continuing the sequence

<1
- Ci -
Q261 = Qt.zel = [ ] , (aer= Qz.an.aex =1 281 |
S1
S28)
we sce the entries of ¢, are given by:
n= ﬂlch Ti Eﬂ131 «* 816, 1= 2,...k. (70)

The columns of M), satisfy a three term recurrence (M LT = Vi) (scc (60)):

- 0 -
€2+
L{-x €k T
[ML._.; mk] 5 = Mk-lLk-x bxmi—1+
)3
Yei
[ 0 o0 | m |

= my=u/n, me=(v2-bm)/r

my = (Uk - &Jnk..; - Ckmk—2)/7ks k>2.

Finally:

.‘l:f = Mt = .n“:l,:"_l + 7M.
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One may also consider the Conjugate Gradient solution, zf§.

z
where  Thyg
QuTevs

2

So zf is available from

n

Viyk

= fe

= L{yi = Qubrer

= WLTTLTyS = My LTy§

= Mi(LeDg"Vys = M D Ly§

= MD;'Qubrer = M D (DieQuBrer)
= M.D;*,, by (69)

= Ifr + 'r;‘(c,:2 - 1)my

= a:ﬂ" +rk(sk/ck)2mk.

zM although the reverse does not appear to be

true, that is, we have not derived a simyle way of computing z from the

Conjugate Gradient solutions method.

Residual Norm: To calculate ||r]| or [|r¥]|, it is helpful to consider the
rclationship between the my, and the wy as defined in (61) in SYMMLQ .

Since we are considering the theoretical Lanczos process, it must stop in at

most n steps. If it stops at B+ =0, then

AV,, =

Vme, Tm = LQOa Mm = VmL;;T

AM, = VoTo LT =V.QT =W,

Am, = we, k=1,...,m.

Now for the residuals

M —
rL —'rk =

rf.’

]

Az — M) = 1efse/cx) wr
b— Az} = r{ + Ti(se /o)

Bis1* - - Sx(Sxwe — vep1 ) ex by (70)



= 181+ SkWik41 by (65)
7 = Balss--- sl
= |exllirEll-
As with SYMMLQ, the implementation of MINRES was originally obtained

fromn this sort of approach in [PS75). Thus there is no necd to show any

equivalence of this with a standard “vector” form here.
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4.4 Conjugate Gradients on the Normal Equations
(CGNE) - LSQR implementation

Problem: Solve Az = b if A € R™*" is consistent, otherwise ,"E‘% i[> —
Az| for general A, by (theoretically) performing the Conjugate Gradient

algorithm on the Normal Equations?,
ATAz = AT, (71)

which s a SPD system when A has rank n.

Process: the normalized Lanczos process for symmetric matrices applied to
give o basis for K¥(AT A; ATD).

The practical implementation does not use A”A to compute the Lanczos
veetors, [nstexd it considers two bidiagonalization procedures for the un-
syunnetric A called Bidiagl and Bidiag2 respectively.

Bidiagl: This reduces A to lower bidiagonal form using

Buy = b

oy = ATy,
Bttt = Ave — artte (72)
Operterr = ATtir — Berite (73)

where the a; and §; are chosen to normalize v and u; respectively, so
lu|f = |jve]l = 1. The process stops when either (72) or (73) is zero. With

the definitions

U = [ul Ha ... u;.], VkE['Ul V2 ... v;,]

2Sce Claim at the end of this subsection, p. 51.
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L3
B, ez
Bs -

. ak

21

By
' BH-IJ: = [

i

Brerei

the recurrence relations may be written as

Uk+1(ﬂ131)
AV,

ATUpr

b

Ukg1 By i

7
Vi1 Bieyy.-

(74)
(75)

The beauty of this is that the choice of coefficients ensures in theory (prior

to stopping)

T T
Uk+1Uk+1 =l= Vk.y.l Vk+h

Prool by induction:
B,
uru,
Suppose U{ Ur
From (72) BestUT i
SO Uf_,_lUk.,.x
and from (74) UL ,AVi

From (73) a1 VI vk

so ViiuVen

and from (75) UL, AVis

UE.HAVk-H = Bk+l-

o = o] ATy; = UT AV,
I=VIV.
I=VIV,, UTAV.=B..
UEAvk — arer = Brep — arer =0,
I

Biy1k-

VETATUH-I = Brsrex

Bz;l.kek - Bf-i-l.kck =0,

I

By

Bidiagl is rclated to two Lanczos processes, as can be seen by combining

(71) and (73).

AATY,

AViBT = U1 Beyr BT,
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ATAV: = ATUi1Brsrk = Vi BE B i (76)

Clearly {u;}% spans the krylov subspace K*(AAT; b), while {v;}* spans the
krylov subspace K*(AT A; ATb).

Bidiag2: This reduces A to upper bidiagonal form using

Ovy = ATb (77)
pp = An

Orirviss = ATpe— prvy

Pe1Pier = Avkqr — Orpapic

where the 0i and p; are chosen to give vy and pr unit norm respectively.

With the definitions
b = | P1 P2 .-
P 02
P2 05
RL- =

. y  Repn = [ R; l Ox 16k ] )

the recurrence rclations may be written as

Vk(oxex)
ATP,
AV
Pl Pist

Pl AV

ATH

ViRT + Opavinel = Vi R,
Pk-i-l R’H-l

qu-;-ch-a-l =1

R

The last two lines follow since this recurrence is essentially Bidiagl with

b replaced by ATb, and AT replaced by A. Again we have two Lanczos
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processes
AATP, = P\ Rip R py  ATAVe = Vet RE 1 Rk (78)

s0 {p}} spans K¥(AAT; AATD), and {v;}¥ spans K*(AT A; AT)).
Relationship between Bidiagl and Bidiag2: The Vi are the same in Bidiagl

and Bidiag2, that is they are the result of applying the Lanczos process Lo
develop K*(ATA; ATh). This follows since {v;}* spans this same Krylov
subspace in Bidiagl and Bidiag2. The Lanczos processes with AT A in (76)

and (78) arc therelore identical, and
B;{+IBE+|J€ = R‘{.kﬂRk-

Dropping the last row of this gives

T
Bz-n.kBkH.k = R; Re.

This cquality shows that Ry is the upper bidiagonal factor of By in its

QR factorisation.

R
0
B QI"-: as in (45).

QI Biyix = [ for Qi asin § 3,

9k

The problem could be solved using either Bidiagl or Bidiag2. Becausc of
its greater numerical reliability in certain circumstances, LSQR was based
on Bidiagl. and it is given here. It carries out the above QR factorization
of Byyy4 as the process progresses.

To solve 2}3 |i6 — Azx|| using quantities from Bidiagl, let

T = kak
tie1 = Brer = Begrxye
re = b— Az
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UrpiBrer = U1 Besr jk = Uggrteqr by (74)
Irell = [Vesrtrrrll = Ntesll

e Irdl = e ltenll

Subproblem: y?g,%. |B1€1— Bis1,k¥xl|, for Begrp € REFUXX Jower bidiagonal
supplemented by an extra row. This always has a solution.

linplementation: This is solved using the QR factorisation of Bi4y i which

with (45) transforms the subproblem to
yf‘lilg* "Q {Blel - Q{Bkﬂ,kyk"

) R.
= jere llge — [ } Y|
0
; S Ry
= el . - Yell-
Prst 0

Ry = fi
g1 = Ber—Qu [};k]yk=0kyk—0e[{:]

0N
D41

IFor casc of calculation define

This is equivalent to

Dy,

[d; dz ena dk]=V;¢R:1
Wi

[ w wy ... wk] = Didiag(py,..-,p1)
e = Vi = Vil 'S = D fe.

Now the d; {and their scalar multiples, the wy) are easily calculated from
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VI=nrIDT:

-UT- P W-JT-
v _ 02 - d7
: - Pi=1

] L w omla
(dp = 0, wo=0)

di = (ve = Ordi1)/pr

we = U — ey /pr
and hence the zy:°

zi = Dife = Dt fem1 + drdie = Tie—y + drds.

Residual Norm:

0 -
Urtrtesr = Urp1Qs [ - ] = Grg1Uks1 Qrers

e =
L 1%}
Irell = |@ket]l =Bilsi---se] by (46)
= |Irell = [selllre—]l-

Claim: LSQR is cquivalent to CG on the Normal Eqautions (NE).
Proof: By ~ denote the quantities from CG on the NE, that is
Az = b,

where A = ATA is SPD and b = AT6. Now it has already been shown that
Vi produced in Bidiagl is the same as Vi produced in the Lanczos process
on K*(A,b). To show the theoretical equivalence of the two methods, we

must prove

Vige isequivalentto zi = Viyx

a}
x>
Il

or Y Yk
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Now the i, satisly Reye = fi, while the i are obtained from

Teie
BT R

e

Bneiﬂ
01ef¥) by (77) and (78)
R;To.ef9,

So it remains to prove the equivalence of i and yi using

Ry

Now RI f,

).

= Je

The two methods produce the same iterates and therefore are the same.
However naively applying the CG method to the Normal Equations has un-

satisfactory behaviour on ill-conditioned systems. Thus it is more favourable

to use LSQR.

The LSQR implementation of CGNE was obtained from this sort of
approach in [PS82]. The mathematical equivalence of LSQR with CGNE is

shown above.

- References: [GK65, PSS2]

R;T0el and Ruyi = fi

RY
first k£ entries of > G-

RY
Bi1QTerHY

( [& T
Q@ Brett+t)
\ 0

s
Bisrx } B cgk-n}

alﬁlcglﬁ-l) = olcgk-]-l]

R;Toe0,
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4.5 Generalized Minimum Residual Method with re-
starts (GMRES(m))

Problem: Solve Az = b for  when A is general nonsingular.
Process: Arnoldi algorithm applied to K*(A;r), where rg = b — Azg for
some initial guess zo. Define ki o = [|roll, 1 = ro/h1p.

This algorithm considers iterates of the form zy = 20+ Viyr so that ||ri|

is minimized over (z; — zg) € K*, that is
cmmeerr 16— Aze]l =TGR 1|6 = A(zo + Vigr)l| =
peens lre — AVigell = prere IVier(Broer = Hiprhus)ll by (3).

Subproblem: ,ﬂ’f;’u ks 0es = Hegr x¥ell, for Hepy € REFIXE ypper Hessen-
berg supplemented by an extra row. This clearly always has a solution.

Iinplementation: This may be solved by performing a QR factorisation on

gy n
Je

Prt1

R
QI”:.-H.&- = [ Ok } , G = hl,oQ'fq = [ ] as in (45).

So by solving for y. = R;'f. by backward substitution, the subproblem

becomes
T8 g | | = el
Residual Norm:
Irell = [@ert] = hrolsi---sl by (46)
= llrell = [selllre-tll.

As a practical note, since the vy,va,... are kept, it is not necessary to

compute z; until iteration m, at which time

rm = b— Az,
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are calculated and the algorithm is restarted with zo = 2z, and rg = rpp..
AL any iteration, based on the magnitude of ||ri|l, the algorithm may be
stopped and z; calculated.
The drawback of GMRES(n) requiring an increasing amount of work and
storage as the iteration count rises is overcome by restarting every m iter-
ations, for some n < n. Unfortunately the optimal value of m is difficult
to determine and in certain cases the method will not converge for m < n.
Too large a value of m results in unneccessary work and storage. On the
other hand, too small a value may give slow convergence or fail to converge
at all.

Becanse the implementation of GMRES was originally obtained from
this sort of approach in [SS86], there is no need to show any equivalence
of this with a standard “vector” form here. The GMRES(m) method —

slightly altered from ‘Templates’ — is as follows.

zp initial guess

for j =1,2,...

I = ||b— Azol|

m = {(b— Azg)fhio
QF =]

5: =hy0

fori=1,2,...,m
u; = Av;
for k=1,2,...,1
hi; = vlu; (or, k-th entry k; gets kg ;)
u; = Ui = heive
hivri = |l

Vi1 = Uifhigr



R = Rioy
0

QL hi ]
Fig = Tij

. 4 2
Pig = \/ L + hi-l-l.i

ci=Fiifriiy si= =higifrig
o = qf, |- 2=
' 1
éi = Gid;
fi= [ fiet ]
&
‘5i+l = Siai

il [$i41] < tol
update(z, i) and quit
update(z, m)

end

update(z, j):
solve Ry, = f; by back substitution
form x; = Viy;

end



4.6 The Unsymmetric Lanczos (BiConjugate Gradi-
ents) Method

Problem: Solve Az = b for z when A is general nonsingular.

First we derive what will later be shown to be the BiConjugate Gradients
approximations z; from the standard unsymmetric Lanczos process. We
refer to this as:

The standard unsymmetric Lanczos-BiCG method.

Process: the standard unsymmetric Lanczos process (32) to produce mutu-
ally orthogonal {v,...,v} and {#,...,0;} spanning the krvlov subspaces
K*(A; b) and K*( AT; b) respectively, starting with v, = b/8; and %, = b/,
where 8y = 44 = ||b]], where Bj4.1 is chosen to normalize vj4,.

To derive the subproblem we use (31) and consider iterates of the form

21 = Viye as suggested in (47), and take Ty = Bre1, so that

re = b= Az, =b- AViy,

Il

b — ViTiyx — Brervisrer ve

Vi(Brer — Tetk) — Brs1vrsr€n s

i

= = Bii1Ves1€L Vs (79)

much the same as (49) in the unit norm Lanczos method. In theory we have
Bi+1tesr = 0 for some & < n, the dimension of A, and the problem will be
solved.

Subproblem: Solve Tiy: = Fie1, where T} is tridiagonal.

When T is singular this subproblem does not have a (unique) solution,
but as we are only intent on giving a new approach to the general BiCG
idea, we do not go into such aspects here. One very satisfactory approach
to avoiding such difficulties is to use the Quasi-Minimal Residuals method

discussed later in § 4.7 . This work on BiCG will motivate that.
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mplementation: This may be solved using an LU factorisation (when it

exists) of Ty, = LeUk, where Ly is lower bidiagonal and U; is chosen to be

unit upper bidiagonal. There is nothing special about T}, so the use of this

decomposition without pivoting may not be stable. For further insights on

this, see the following alternative unsymmetric Lanczos-BiCG method.

For casc of calculation and savings on storage, define

¢ ]

G -
a=| | = U Wh%wlm-~wdEW%5

[ G |

50 the system is transformed to

Tiye = LeUiye = Lz = Lizi = Biey,
Viyr = VkU{‘Ukyk = zp= Wz

Now. Ly is formed one row at a time; Uy one column at a time:

0 0
Ly Uk
T, = 0 M
0 ¢ l Sk 00 I 1
[ 0
Ly Ury Te
= Src1 M = RL
0 & Iquk'l"sk 0 B I o
= 61=Q|

€ =Pr, Me=Yfb-1, G=ar—am, k>1L

And so z; is formed one entry at a time:

0
LL--: { k=1 ]
0
Ce
0 Sk

Lioyzey
= Bier
€xCe~1 + 8uCi
€

20G=5/0 G = —al-/b k>
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1 is also formed one column at a time (Wi U, = Vi):

0
Uy
[ I’V,g._l uy ] Nk = [ Wk-IUk-l NeWiay + W ]
00 1
Sw =v, W = Vk—PWk-1, k>

Finally,
zr = Wiz = Wiy ey + Gowee = Tpmr + G, k2 1.

Residual Norm: The following estimation of the norm of the residual ., as

defined in (79) can be used.

7., —
e = *ﬁk+lvk+xck!}k— -ﬂk+1vk+1ykk

hrell = Brsrlyrel, where yux is the k-th entry of y;.

Since yi is not computed directly, one must consider

Uy = 2
0 k
Uk y.l : Zk—1
Nk : = =
Yk Ck
00 | 1 Yik
Ve =
= [Ire]l = Bresr|Gl

= Brsr|exle-1/0:] by (81)

= Brw1BelCe-1/6:] Dby (80)

irell = Berllre—ail/16el, &2 1.
Although this solves the problem in much the same way as BiCG in ‘Tem-
plates’, [BBC+94], it gives different scalings for equivalent vectors. Let us
now derive a method which, as with the BiCG method of [BBC*+9%4), pro-

duces the residual vectors themselves.
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The alternative unsymmetric Lanczos-BiCG method

Process: the alternative unsymmetric Lanczos process, sce (33) to (44),
starting with v; = ¢, = b (B; = 1). The normalization 8;41 is unspecified

as vet,
Using (37) and and considering iterates of the form z, = Viy, as sug-

gested in (47) and solving for Tiyr = ey,
re = b—Azr=b- AV
= b= ViTiyk — Bes1Vesrer v
= Viler — Teie) — BrsrVesr el ve
= —Br+1Vkst efya-- (82)
Subproblem: Solve Tiy. = ey, where T} is tridiagonal. Again T: may be

singular, in which case this approach, and ordinary BiCG, fails.

Implementation: This may be solved using an LDU decomposition of Tj.

The one shown below suits our purposes. With the as yet unkown Dy =

—'diag(ﬁb reey ﬂk-H )s write

Ty = LiDU

0 0 0
Ly Diy Uk—1

= 0 0 —3 (83)
0-1|1 ool—ﬂm 00 1

Lia1Dic iUy
= Tk

0 B I —(7 + Brs1)

A simpler method could be obtained by combining D and U, and using for
example U = DU instead, but the approach here will produce the equiva-
lents of various elements of BiCG that we want.

Our normalizers 8;4: may now be determined by equating the right side
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of the above equation with the tridiagonal T in (36). So

a = =P o=—(T+Bn) k>,

=ph = —a; B =—(atm), k>1 (84)

We will show later that if 8;41 = 0 the ordinary BiCG breaks down too,
otherwise this is a satisfactory normalizer for the process, and Uy, exists.

In the meantime define

€1
C2 _ -1 -
n=| 1=y WiesS|w w, - wg ] = V.U (85)

Cr

For our later analysis, we also define
~ . . P
"VI::[U)] Wy e wk]=vl.tUk ,

although this is not used in the algorithm itself.

The system is transformed to

Ty = LiDUsyr = LiDrzie = LiDizi = e

Vive = WlU Uiy = 20 = Wiz,

Now 33 is formed onc entry at a time:

- -

—B26
LD = B2 - Bal2 — e,
| BiCe—r — BerGi |
=0 = —i
G = ﬁf:f"" = Z:—:c,,_g - -ﬁ%“, E>1. (86)
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Solving Wil = Vi and W Ui = Vi,

&k
w, = v, wWp=vr+ j—w;‘_;, k>1
B
. - - - T .
w = vy, wp=tet Ewk-n k> 1.

Finally,
wr = Wisizker + Gowe = Timy + Qe

Residual Normn: The following estimation of the norm of the residual =, as

defined in (82) may be used.

Tk = —Brr1YkrVis
= —Be+1lkvesr by (85)
= w41 by (86) (87)
= llrell = lloeaall-

So the alternative unsymmetric Lanczos process, with v, = b, can be used
to produce the (BiCG) residual vectors ri = b~ Az, themselves, as long as
i3,41 1s chosen as in (84).

It remains to cxamine under what conditions ;4 can be zero. Suppose
H2.....8; obtained from (84) are nonzcro. Then with 7 = [1,...,1), we
have ¢7T; = [0,...,0,¢a; +v;], which will be nonzero if T; is nonsingular.
However if a; +4; = 0 then T; is singular, and both this and the standard
BiCG method fails. Otherwise, it is clear that the Ll ‘factorization’ is
possible. However small 85 could cause large element growth in Us.

Equivalence of unsymmetric Lanczos-BiCG with BICG: The BiCG method

— slightly altered from ‘Templates’ — is as follows.

To =[)

Fo=To
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for +=1,2,...
flit = f‘:-r_ﬁi-l
il pi—y =0, the method fails, stop
if{i=1)

M =Tia
Pi =Tl
clse

Bi-t = pimr[pi-2
Pi = rim1 + Bi=1pi~y
i = Fiwt + Bici1Pic
4i = Ap;
%= ATHi
& = piey [l @i
T = Tioy +oogp;
i S Tiey — 04
i = Fim — aifi
check convergence; continue if necessary

end

To avoid confusion we will use the superscript ? to distinguish “Tem-
plates’ terms from those here, where it will also make life easier if we re-

index two of the ‘Templates’ terms as follows:

p? = ‘Templates'p; 4,

B2 = ‘Templates’f;_;.
We now write the algorithms side by side for comparison, where in the
alternative unsymmetric Lanczos-BiCG algorithm we replace vy by r;, sce
(87). introduce u; = Av; and @t; = AT#; and redefine 7; = ;4,. For ease of

comparison in handling the : = 1 case we assume 1/oco = 0 and define
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BiCG
pf =1
zf =0, pf=0, p§=0

B=rB=p

Then for ¢ = 1,2,3,... we have

BiCG
5 =BT,
ﬂ‘ =p /pl-l

p? =rl, +BPpE,
Pc = rl-l + ﬁBPl—

unsymmetric Lanczos-BiCG
Po = ©Q, ﬁl =1
Iog = 0

T'...1=0 1:-1=0,f'o=ro=b

alt. unsym. Lanczos-BiCG
pi = F’iz:-lrl'-l

% = Bipi/pi-1 from (44)
w; = ricy + (1 Bi)wizy

W; = Fimy + (1:/8i) Wi

qF = ApP U = Ari-y
G = AT;‘)B i; = ATFi,
P =pl5PTq? ai = 7L uifp; from (40)

Bivr = —(ai + %)

zP =zB  + oFpf T; = Tioy — (1/Bia )wi

rf =rl, —afqf i = (u; — oiricy — YiTic2)/Bin
7= —afgf i = (; — ouficy — Yific2)/Bin

The main difference in cost between the two is in the calculation of
the residuals and shadow residuals (the 7;) — 2n extra multiplications,
subtractions and divisions in the alternative unsymmetric Lanczos-BiCG
algorithm — which are partially offset by the n extra multiplications and
additions in the BiCG calculation of 72 (%; is not actually calculated). The

cquivalences are

p{Ba 'hlﬂ: - , uy = p'-B, fﬁ;_ = ﬁl.a
-1Bin = of, == z?, ri=rP, fi=7b (88)

pi

A straightforward examination shows this is true for i = 1. Suppose it is
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truc for i = 1,2,...,k — 1. Then it is clear that

pr=pl, wlBe=BL, wi=pf, w=rpL.

We now need only prove
— 1/Brsr = i, (89)
for then z, = =2, and their residuals ry and rf must then also be equal, since
rf is clearly the residual for 2 by examining the last two lines of BiCG,
and we have shown r; is the residual of x; in the zliernative unsymmetric
Lanczos-BiCG. In this case 7 = #F follows from the equality of the ry
and r? residuals, since we know that . = (A)b and r2 = Yy (A)b for
lwo & degree polynomials ¢ and ¥, and ¢x = . But we can also show
fr = o AT)b and 78 = ,(AT)b, so these must also be equal. We can
prove (89) using our matrix formulation of the unsymmetric Lanczos-BiCG

a.]gorit.hm'. We know W, = LU! and Wk = fkak'l, so

WIAW, = UTTVTAVUD = UTTD.TUD!
UsTDu(Le DRUR)US! = U T D LD,

I

which, by the way, is lower triangular and symmetric (see (39)), and there-
forc diagonal, showing “A-biorthogonality” of the w; and ;, where ¢,j < k.
The (z,1)-clement of this is (see (83))

ti‘:;-rAw.- = e?UI T(Piei = pisr€is1)(=Bis1).

But JTUTT = (x,...,%,1,0,...,0) is zero after the i-th element, so since

pP=wi pP=wi i=1,....k
f’iBTAP? = -?Awn‘ = —piBis1, 1=1,...,k
From the BiCG algorithm we then see

O' "‘P. qB pilb; APB—-llﬂl-!-h t=1,...,k
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and so (89) holds, and the induction proof of (88) is complete, showing that
in theory these algorithms not only compute the same iterates, but also sev-
cral of the intermediate quantities are identical. However the algorithms are
clearly not identical, as the last two lines of each clezrly highlights, and may
have different numerical behavionrs. This suggests a matrix development

of BiCG would be useful, but we leave this for future work.



4.7 Quasi-Minimal Residuals (QMR)

Problemn: Solve Az = b for z when A is general nonsingular.

Process: an unsymmetric Lanczos process which produces mutually or-

thonormnal {vy,..., v} and {y,...,5x} spanning the krylov spaces K*( A; b)
and K*(AT,b) respectively, starting with vy = b/B; and &, = b/8,, where
# = By = ||bl|. We choose B;4+1 to make v;4; unit length and f;4; to make
Dyt unit length. We define pjya = 37,54,

To derive the subproblem we use (21) (where T = H} is tridiagonal)

and consider iterates of the form z, = Viy, as suggested in (47).
r. = bh- Az, = Blvx - Akak = VJ:+: {ﬂlcl - Tk+1.kyk)' (90)

Since Viqy does not have orthonormal columns, it is difficult to minimize
Irefl. The reduced system below is considered, and this gives rise to the
name ‘Quasi’, since the residual is not actually minimised.

From (23) VB Vier = Diq, s0 Vyre = Dipa(Brer — Tegravi). QMR
wminimizes ||Bre1 = Thy14¥x||, so in reality (in theory) QMR is minimizing
N5 VT rell, ot il

Subproblem: y?éifz';. Bier — Tigryill, for Tipyx € REHIXK tridiagonal
supplemented by an extra row. This always has a solution. _

lImplementation: This may be solved using a QR factorisation of Tuy s as
was donc on Hiiyx in GMRES in § 4.5.

Q{TK-HJ: = [ };k ] s G = BlQch = [ _fk ] -

k41

However R is upper tridiagonal, not just upper triangular. Solving for
yr = R fi the subproblem becomes

i R, -
sers llgx — [ 0 ] gell = (rs- (91)
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For case of calculation define

The wy satisly a three term recurrence (Wi R, = Vi ):

0
Ry Th-2,k
[ Wiy wy ] = [ Wia Ry e ]
Ttk
| 000 Tk

=  wy=wnfrg, w=(v2—r0w)/r22

we = (vk = Fea2 kWh-2 = rk-l.kwk-l)/ Thks k>2.
Finally,
e = Viye= ViR fi = Wifi
= Wioificr + drwr = Teey + drws.

Residual and Residual Norm: The following estimation of the norm of the

residual i, as defined in (90) is used.

| rel| [Virr (Brer — Tear avie)ll
< Vi +1||pies — Teprpyx|| (columns of Viyy are unit length)
VE+1)gisa| by (91)

Bivk+1|s,---s] by (46).

Once this bound on the residual norm reaches a sufficently low value, the

following calculation of the actual residual is used for the few remaining

iterations.

re = Vip(Brer — Tenra Ryt fi)
= Gut1 VerrQecin (92)
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- Qx-1
= Grp1 Vi ] (skex + cxeryr)
= Orar (36 ViQumres + CkVk+1)
= 3L ViQuar6s + CkPrsrvisr by (46)

= 8;2;7‘::—1 + C&$k+1vk+: by (92).

Finally, here is the unpreconditioned algorithm with no look-ahead or scal-

ing from the original paper [FN91].

Ta=0

A=1bll, Bi=48
v=0{p, T =wv
m= ffTUl

uy = Ay, i, = AT3,
=1

5: = 31

rapatway =0, roqwe=0

Uyt = Uj = Q505
Bivr = llvinl|

Vit = Ui /B

Djbt = it = a5,

Bj+| = "i’j-i-lll

f"j+l = ﬁj+l/3j+l

Pis1 = D10

T = 5:‘+1Pj+1/ P;
uip) = Avjp — Y4105

Y+t = Bisipia/p;



it = ATOj01 = F19;
> 2
Fpm2y = =%j8j=2
ifj>1
Ti=tj = VjCj=16j=2 = Q;Sj1
Tjd = Vj8i-16i-2 + @jCim
rii =755+ B
¢ =Fiilrii 8i = =Bim/rij
¢ = CiGjs B4l = 39
wj = (v5 = Tim2gWjm2 = Tim1 jW0i-1)/75
;= Tjer + djw;
check convergence; continue if necessary

end
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4.8 Conjugate Gradients Squared (CGS)

Mativation

I'he Conjugate Gradients Squared (CGS) method was so named becausc
in a sense (that will become clear) it gives the “square” of some quantities in
the BICG method, and the best introduction to it appears to be via a new
CGS algorithm derived from the alternative unsymmetric Lanczos-BiCG
algorithm of § 4.6, which we reproduce here for ease of reference. First the

initial conditions are (where again we use 1/00 = 0):
m=00, =1, 2g=0, roy=0=7_, =0, ro=fp=4.
Then for 1 =1,2,3,... we have

alternative unsymmetric Lanczos-BiCG
pi = Tin

7 = Bipi/ pi-1 from (44)

w; = rioy + (/B wioy

Wi = Ticy + (%] Bi)oiay

u; = Ar;,

it; = ATF,

a; = #1_,u;/p; from (40)

Bisr = —(ai + %)

T = Timy — (1/Bigr)wi

re = (u; = oiriy — 1iri-2)/ Bias

Fi = (it — aifiy — Titi-2)/ Bina
We see from the initial conditions and last two lines that

To

b,

e = (Ao, T =wi(A)re, k20,
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where the polynomial in A, @i(A), cxpressed as a scalar polynomial ¢, =

@u(0) is given by

i}

1
Yo l, o= 32‘(0“01)‘#‘0:

1
P Bers (0 = ak)pr—1 = Tpi-2], k> 1. (93)
k+1

Now since the BiCG residuals are constructed to be mutually orthogonal,

ey rawilA)pi(Aro =0 for i#j,
= rToH Ao #0 for i=j.

It is the squared polynomial in this last line which is important in CGS.
Noticc in BiCG that multiplication by A and AT was required in going from
rie1 to ryi; that is from ;1 (A)rg to i A)rg. Using CGS we will see that it is
possible to go from @?_,(A)re to 3 A)ro using only two multiplications by
A. The advantages of this are that multiplications by AT are not required
{and sometimes it is cumbersome to produce code to do such multiplica-
tions), and 2i matrix multiplications are required to produce a polynomial
of degree 2¢ (whereas it is only degree ¢ in BiCG). A disadvantage is that
although ;(A)ro has useful properties in BiCG, it is not clear what the
uscful properties of ¢?(A)rp are. Nevertheless we now derive a new variant

of CGS. Define

’;CG‘S

= T,
r$C% = @i(A)re, k20,
and s{%° = pu{A)per(A)ro, k21
Then (F°®S)Ts{ = rfpu(A)prar(A)ro

= Fire =0, k>1. (94)

Now we show how these new polynomials 3 and e~ may be constructed
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recursively, using (93). From the resulting expressions we give the corre-

sponding recurrences for r§G5 and S5,

1 1
vive = @1 =—(0—a), or {9 =0 =—(A-al)r,
B2 B2
1
Pk = m (0~ O'k)sﬂi-n ‘*‘rks’k-nsok-z], k>1,
.o 1
K = glA - )i - sl k> 1. (95)
" l 1
vro= [3—2(0 — ay)pipo, or 150 = E;(A - oy 1)sF95,

and for k> |

a 1
Y = '6—;_,—[(0 - Gk)2§9§_: = 270 — i Yorerpi—2 + 7299%-2],
1

l
= E[ﬂw(ﬂ — a)PrPr-1 — (0 — er)Pr-19r-2 + Vi),
i+

S 1 -
£ = mlBenld - a)s{T — (A - al)s{ + S (97)
k41

The key to this new CGS algorithm is that the o, 4+ and Br+1 are
exactly those in the Lanczos-BiCG algorithm above, and may be computed

froan the CGS vectors as follows.

COTLLCS, i1, (98)

pi = Flyric = 7ol (A)ro = (F T
N = 0, %=P8pfpic, i>1,
ai = FL,Arisi/pi = 73 pie1(A)Apii(A)ro/ pi
= (FEOSYTAGE,(AYrofpi = (FOCSYT ArESS [, i3 1
= (FOOSYT(ArSSS — 4:sSGS) [y i2 2, (99)
since (FEG5)Ts€GS = 0 for i > 2. Finally §2 = -y and Siy; = —(ai + %),
for 7 > |, are immediately available.
We can now combine the above expressions to give the full computation

for the r£65 and s{CS vectors — we call this the “CGS process™ — without

vet showing the computation for the solution, which is given later.



New CGS method

Problem: Solve Az = b for z when A is general nonsingular.

CGS Process: We drop the superscript CGS from s;, and write § = 766% =

roi e = r€65 § > 0, and for efficient computation define @, = Awvy;

t; = Avj — vj5521 for 7 > 1, and {5 = As; for § 2 1. Again, 1/00 = 0.

po = 00, B=1 $0=0, vu=0
vy = v=>b
for 7 = 1,2,...

p; = 97v; from (98)

p;
v = =
77 pima
;= Avj = 7581

3

o; =97 1;/p; [from (99)

Bis1 = ~(a; + ;) (100)
Biy1s; = u; — a;v; from (95) (101)
tJ' = AS,‘
Bis1vip =t — ajs; — l‘(tj-l — @;8j-1)
Bis1
+ v (102)
Bin

this last coming from (97). A healthy aspect of this is that, as required in
(94).

BiwitTs; = 374 — ;T vj = ajp; —aip; =0, j2 1, (103)

follows immediately from the jth step without any recourse to additional
tliecory or induction. |

Despite the elegance of the above motivation for the new CGS method
and process, the reader should be warned that the following is essentially



“work in progress”, and the matrix representation is somewhat complicated,

and probably not eptlimal.

Matrix representation

If we nse (101) for the odd columns and (102) for the even columns the

CGS process becomes, in matrix form

Vau

A ‘22 +Gae

where Gy

1
o
Fatgr2e

]

H

[ Uy Vg +r+ Ugkey Uok ] (104)
[ v 8 Uy 8 ]
‘721:]?2}: + ﬂkq»lﬁzk-}-lcg;‘ = Vﬂ:{-l Fopqr26 (103)
Gax-2
1 —_——
, Gu= E:J , k>1
1 1
1
23]
i B ay
-2
Forez s
T -%:iﬂ: , k>1 (106)
Be | o
] B Ok |
Fay
| Brsrely

Using (103) and solving for Fa g2 = €1, we cons’-er iterates z; not quite

the same as in (47),

=

Ik

Tt

Zar = VorGarfiar

b— Az, =b—- Az =b- A\./gkczkﬁgg

(107)

b = (VaxFak + Bra1 Bair€az) Fok
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o = Tuler = Padiar) — Besrvisrelidin

= =Bt 1P2k2kVk+1- (108)

Subproblemn: Solve Fydar = €y, where Fyy is upper Hessenberg as in (106).
‘I'his doces not have a solution if [, is singular, and at that time this imple-
mentation of the CGS method would fail. However, we continue assuming
that this is not the case.

linplementation: This may be solved using an LDU decomposition of Fa.

The one which suits our purposes is shown below.

Py = LaDa0y

1 -8 1 alc
B -llH —B:H l}z[& ‘B’}
Py = l';:kl-)zx:(-"zk . ) -
Lagen Daig
. b = -1 11 Bk =B
. -1 1 | - =B |
U = - —
L -&5
L ! -
La—2 D3 Uzi—2 - ::1
-y = Y Zo= (1 + Besr)
B —( + Brs1)
\. Biar ~(v& + Brs1)

Our normalizers B;4; are now verified by equating the right sides of the
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above equations with /2 and Fa. So
ar = =P or=—(T+Ben) k>1
=8 = —a; B =—(a+n) k>1L (109)

T'his was the choice of 841 that we made in § 4.6. As long as it is nonzcro,
it. is a satisfactory normalizer for the process, and x4z exists. For case of

calculation, we make the following definitions.

W W, W2 v Wkl u-’zk]

G
3 G2 o
and S = . EUzkyzk
| Coe |
= (e = Jakke

So our system is transformed to

Loy DaZoy = €1, Tax = WarZas.

Solving
[ -B:Gy ]
Bay — B
Lot Doriae = Baa — Bl =e

-
-

Bilax—2 — Brsr1aer

| Brsror—1 — BrnrGoe |

- 1
= H = ——

- - 1
Q=G=-E

o
n



Br

Coemt = ——Cokcz, k> 1
ekt
G = Gou=Clomr = —ﬂlfzk-z (110)
B+t
Bi-1 : i
= Tl =crr=——e—— k>,
3:.-+|C2k ! Brsr
Consider the odd columns of WarlUai = VorGas.
= u = wy=t =
Mo = k) = Taket + Sothgrs = v + 2 ety k> 1. (111)
B B

The even columns give a less pleasing result.

N = w2=38
. % k %
e = W = sp— ﬁ‘:—(Sk-n +u) + %(%-: - ﬂ: ), k> 1.
+1 +1
Now 7 = —Brpiforatiss = —Big1lokVipr = Vgt (112)

- = - 1
and 1 = Top-2 + o1tk + CouGr = T—y — K(uk + qx) (113)
+1

so this CGS process produces vectors vj4; which are the residual vectors r;
of the method.

It remains to examine under what conditions f;4, can be zero. Supose
Baeo... 3; obtained from (109) are nonzero. The with e = [1,...,1], we

have

Y o1Yie
v :3 - ,13% =+ ajot + Bjr i+ 7]
J 7

T Fyoy = [0,--

=31 = @jm1¥i=1 = Q1051 + Y1) + (@i + 7521

B;

e Fyjoiegjee =

= 0

=>CTF2J'_: = [09"'90301' +7.f]7

which willl be nonzero if F3;_; is nonsingular. However if a; +4; = 0

then f%;_, is singular, and both this and the standard CGS method fails.
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Otherwise it is clear that the Lok D702 ‘factorization’ is possible. However
small B; could cause large clement growth in U,
Let us introduce vectors P, = [p, pz2, ..., Pk}, not used in the algorithm,

but useful for this analysis.

P = WaMuiErD!

Mapeaz k-1
Eer

where My = y , B = .z
B "
1 1

0

So pp o= w
Pe = Ut (Gt + Bopror), k> L (114)
B B

Equivalence of this method with the vector form:

The CGS method — slightly altered from ‘Templates’ -~ is as follows.

ro==b

F=ry

fori=1,2,...
pi-y = FTricy

il piw1 = 0, method faiis

ifz=1
u; = ri—1
i =u;
clse

Bici = picr [ pi-2
u; = ricy + Bic1gim

Pi = u; + Bicy(gi=1 + BiatPi-1)



o= Ap;

a; = Pu‘-l/f‘Tﬁ
qi = 1; — ot
it=u; +q
= Ty + oGl
= At
TP = Tie) — i

check convergence: continue if necessary

el

To avoid confusion we will use the superscript € to distinguish ‘Tem-
plates’ terms from those here, where it will also make life casier if we re-

index two of the ‘Templates’ terms as follows:

pf = ‘Templates’p;y,

B,-c = ‘Templates’;.;.

We now write the algorithms side by side for comparison, where in this new

CGS algorithm we replace viyy by r;, see (112). To handle the i = 1 case

we define

CGS new CGS
5 =1 po =00, =1
P5:=0,qg=0 ug=0,p0 =0,50=0,90=10

Then for i =1,2,3,... we have

CGS new CGS

g =7Trg, pi =iy

8F = o pE, % = Biri/ pir

uf =rf, +BCqC, Ui = Tic1 + F i

79



ne =l + B (e, +BPPL))  pi= i+ Fgier + Fpict)
af = pf [FT Apf o = FT(Aricy — %isi=1)/ pi
Binr = —(ai + 1)

8; = (Aricy — oricy = ¥isi=1) /[ Bisa

af = u® - of Apf %= 8= g (-1 + )
+ﬂ§(‘h‘-1 - zﬁ';ua‘-l)

z€ =z, + of (uf + ¢F) Ti = Tiey = 1/ Bis1 (ui + ¢:)

r¢ =rf, ~ af A(uf + ¢F) T = 3&,‘(‘435 - aisi)

- :’ﬂ (Asi—1 — osi1) + 3:-?:-'-1'.'-2

There are several differences between the two algorithms — they don't even
use all the same vectors — the new CGS uses the s, which are orthogonal
tor #, while CGS produces the p§. The other vectors are the same; the exact

relationships are

w/B: = BE, i>1
pi =, =1fBip=df

¢ c
Ui = Uy, Pi=p

si =t —afAf, g=qf
i = zF, ri=rf. (115)

A straightforward examination shows this is true for i = 1. Suppose it is

truclori=1,2,...,k—=1. Then it is clear that

pe=p5, W/Be=8S, w=uf, p=pgk.

We now need only prove

~1/Bes = of (116)
se = 18, —afAul (117)
@ = QE



so that 2, = z§. The cquality of r; and r{ follows since we have shown that
ri is the residual of zx and r{ is obviously the residual of 2§ by examining
the last two lines of CGS. We can prove (116) using our matrix formulation
of the new CGS algorithm. Consider
ﬁTAPk = ﬁTAWQkMQk'kE:‘
= 3T AV G5! Mas kB!

-T \/ 4 7= -1
3 Vargt Farr 26U Mar o B,

]

-7 A -1
U Vakgr Lakgr,26 D2k Mawe i B,

= [Pl 0 pp --- 0 Pk.n]L2k+t.2kbsz'.‘k,kE;l-

The (7.7)- clement of this is

A =y :
(BR)

)2
Ay = [—plﬂ: (72— Ba) -+ Pk(‘rk—ﬂkﬂ)] (%i)

0

= —pifiss
alter much cancellation. Now since ¢ = ¢ and pf =p;, i=1,...,k,
FCTAp? = i':TAp.- =—piBis1, t=1,...,k
From the CGS algorithm we then see
af = pf 7T AP = pifFST APE = =1/Biy1, i=1,...,k,

and so (116) holds. Now, to show s, = 7€ — o Auf = re_y + 1/Br41 Auy,

look at

Ay, = AWszciq
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= Varsr Lokerae Dareai-y
= —5£+:(Ui - 8-‘)-
So & is alternatively (and more simply) given by the above expression and

(117) falls out. Finally, gx = ¢£. For lack of a simpler way to show this,

consider the matrix equation

A‘Pk = Angﬁfgk.kE;I

- _ _ _ -
- = W1 Unet1Goipy Laegr 2 Do Mok E .

l. is not obvious, but this has i-th column

Ap; = W2k+1ﬁi+1(82i—¢z.‘-1)
= Bilg—w), i=1,...,k

= gk e + 1/Bes1 Ape

c C 4. C
= u; "'C!kApk.

The induction proof (115) is complete, showing that in theory these algo-
rithms not only compute the same iterates, but also several of the inter-
mediate quantities are identical. However the algorithms are clearly not
identical, as the use of different vectors shows, and may have different nu-
merical behaviours. This suggests a matrix development of CGS would be
useflul. but we leave this for future work.

Reference: {Son89]



4.9 BiConjugate Gradients Stabilized (BiCGSTAB)

Motivation

The BiConjugate Gradients Stabilized (BiCGSTAB) mcthod was so
named hecause it increases the convergence of BiCG but in a more sta-
ble way than blindly “squaring” the residual vectors r; as in CGS. Instead
we forin ry = 2;(A)0(A)ro, where 0;(0) = (1 =w;0)0;., is an ith degree poly-
nomiat describing a steepest descent update — w; is chosen to minimize the
norm of r; — in the hope that these new iterates will converge more reg-
ularly than the ?¥(A)rg of CGS. Here is our new variant of BiCGSTAB.
Using i = 9;(0) from § 4.8, define

bo=1, O = (1 =—wrl)lpmy, k21, (118}
?BCS = To,
O = o (A(A)ro, k20,
29 = @u(Aer(A)ro, k21,

and uf% = e (AV(A)ro, k2 1.

Then (759 = rgou(A)0r(A)ro

T (0e—1(A)ro) = 0 (119)
since Fr L Op_y(A)ro € K¥(A;ro).

These new polynomials, k-1, wili-1 and @bk, may be constructed re-
cursively using (93) and {118). From these expressions we give the corre-

sponding recurrences for rB¢5, s8CS and ufCS,

@il = (1 - wal)pr-10km, k21
or ufcs = (I—ng)rf_clS, k> 1.

scs _ )

1
1;100 = B—;(O—al)gaoﬂo, T S 2‘.\ ‘0|I)To,

1
Pileey = =—[(0 — ar)Pr-10x1 — ePraalian), k> 1
Brs
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s 1
or P65 = —[(A - akf)l"f_c,s - YrUp cs], k> 1.
k+1
wolp = 1, or ré’cs = ro,
eele = (1 —we)pplimy, or rPS = (I —wA)BCS, k21,

As in CGS, ax, Bi and +; are scalars from the unsymmetric Lanczos-BiCG
algorithm and may be computed from the BICGSTAB vectors by expanding

the polynomials involved and using the simple fact
FTih;i(A)ro =0

for any polynomial ¥; of degree j < 1.

B, @=]I]ws

Define  f;

i=1 J=1
g = ’:;‘r-l"i-l = 7-'.‘1'-1('5'_'1'_—144‘_1"0 + )
= 3.1., AL A, P21
pBCS = (7BCS)T BCs
= (FBCSY i1 {AY0;1(A)ro
= (@i Ao+ --)
= Gif, AT
= p; = pPCS(&ia1Bicr)-
mn =0

T = ﬂipi/ﬂi-l = piacs/(P.B_c;swt—-l)a 1> 1.

Now (FBCS)T(A,.‘B;CS it .B;CIS
= (FPCT(Apioi(A)0i—1(A) — Yivi—2(A)0i—1(A))ro
= (FBCSY(Bin10i(A) + ai( A)iz1(A))0:cy (A)ro
= Bifs 0i-1{A)ro + aiir_y0;1(A)ro
= 0+ a.-i‘?_, (@1 A""lro de0e)

84



i

aiu'.'i_lf'?_l A'-l To

= oi@i—1Bio1pi

= opl®
= oy = (FPO)(ArZ ~ ull¥) P, (120)

Finally 82 = —ay and B4 = —(ai+4), for i > 1, are immediately available.
We can now combine the above expressions to give the full computa-

B

tion for the 753, s8CS and uPCS vectors — we call this the “BiICGSTAB

process” — without yet showing the computation for the solution, which is
given later.

New BiCGSTAB method

Problem: Solve Az = b for z when A is general nonsingular.

BiCGSTARB Process: We drop the superscript BCS from s; and uj, and
write & = #PCS = ryyv4, = rfcs, 7 >0, and for more efficient comnputa-
tion define ¢y = Avy; ¢ = Av; —pujy forj > 1land ¢; = As; for j 2> 1.

Again, 1 /oo = 0.

po = 00, wo=o00, Mm=0, u=0
vy, = v=0b (121)
for 7 = L2,...
pi =07y

% = —Pil (Pi-1wj-1)
g; = Avj = 1u (122)

a; = i}qu/ Pia

Bisr = =(a; + ;) (123)
Bis18;5 = g; — a;v; (124)
f.j = .48_,'

T T
wj = tj s,-/t, L
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Notice that, as required in (119),

iTs. = 5Tq. 5Ty = s ;= ;
Biwd78; =87 q; — a0’ vj = ajpj —@jp; =0, j21,

Uy = V5 ~ ijvj

Vit = 85 — Wil

[ollows iinmediately from the jth step.

(125)
(126)

We are again obliged to warn the reader that what follows is “work

in progress”, and the matrix representation is somewhat complicated, and

probably not optimal,

Matrix Representation

If we use (122) and (125) substituted into (124) for the odd columns and

(126) 1or the even columns the BICGSTAB process becomes, in matrix form

2k

AV G

where Ga

i

[vl 3)

/78 sk]

- 1 r -
Vay oy ~ == Vkt1€2, = Vaigr Forsa 26
%

G-z We17k
1
N sz = 0
1
1
r —
ay
| A 5
Forz Ve
0 k>1
—_—t o
L/ 8 |
i Beart o |

k>1

(128)



P P
ek =
+1 LT

— o Can

Using (127) and solving for Faifai = e, we consider iterates zp as in (107),

T = Za = VarGarfak
= r, = b= Az =b— ATy = b— AVarGoeyak
1
= b— (VaxFox — ~vpp1el )i
( 2k 424 o vk+xc,;,)y.k

N ) 1 )
= u.‘.k(cl - FZkka) + “—U};.{.;cg.kyzk
43

= Pekak, o (129)
Wi

Subproblem: Solve Fydiae = €1, where Fi is upper Hessenberg as in (128).
This does not have a solution if Fop is singular, and at that time this in-
plementation of the BiICGSTAB method would fail. However, we continuc
assuming that this is not the case.

Iinplementation: This may be solved using an LDU decomposition . The

one which suits our purposes is shown below.

- 1 — 1
= | ! A 1 _| l J (130)
-1l oy L B
Fa. = LoxDala _ ) .
Loz Dok
I.:z; = , Dzk= )
-111 —Brs1
- -1 1 | I ;': |
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Upe =

Urema | =3
ket Th
1
1

Lzta2 Dot 20—z Y

0
- =7k + Bir)
Biear o

Our normalizers 8,4, are now verified by equating the right sides of the

above equations with /5 and f. So

=Pﬁ2 =

ap =

—Ba;

ad 5 £

ar = ={Y + Beg1 )
Brar = —(ar + ),

k>1

k> 1. (131)

This was the choice of Bi4; that we made in § 4.6. As long as it is nonzero,

it is a satisfactory normalizer for the process, and Uay» exists. For ease of

calenlation, we make the following definitions.

Wy

and 3o

= (e =

w2

I
§|

So our system is transformed tc

Lok DagZor = €4,

88

= Uik

Ti = WorZax.

- - — 17 F7—1
Wek—1 Wk ] = VzchmcUzk

(132)



Solving

Lot DyZae =

(-t =

-B:6;
B‘.‘El + ;l"fz
"C‘,,'E'.' - ﬂnfa
w,,'_, Cak—2 — Biet1Cait
ﬁk+lfzk-1 + &kfgk

_-I/BZi
1

ﬂk+1wk-1

62 =uw

Cokmzy k> 1

- wk -
—ﬂk+lwkC2k-: = ;'—'Czk-z = Wi, k>1

k=1

1

Bryr’ k> 1.

Consider the odd and even columns of Warlax = VarGar.

uh = "

Waka) =

wa = Sk,

This causes us to redefine W, = [ S

and (134) as

Whmt MVt = Skt )} + Ui+ %ﬁ?zk-m k>1

k21,

m = n
Yk
P = Ukt wWeerYie(Vker — Sk1) + Bt k>1.
Now m = 2% _ Q‘:’fvm = Uiyl
Wi Wik

and =z

= Tge1— 'B—Pk + WSk

k+1

Wak1Z26-2 + Copmy Wak—1 + (2O

(133)
(134)

- Pr Sk ] and rewrite (133)

(135)

(136)

so this BICGSTAB process produces vectors v;4, which are the residual

vectors r; of the method.
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I, remains Lo examine under what conditions 8;4, can be zero. Supose
Pay....B; obtained from (131) are nonzero. The with ¢ = [1,...,1], we

hivve

1 1
T r+
c ['2j-l = {0’...’;?:—5’03.-{-71']

= [0,...,0,a; + ],
which willl be nonzero if F%;_; is nonsingular. However if a; +v; = 0
then Fa;_y is singular, and both this and the standard CGS method fails.
Otherwise it is clear that the Law Dol “factorization’ is possible. However
stnall B could cause large clement growth in ;.

Equivalence of this method with the vector form: The BICGSTAB method

- slightly altered from ‘Templates’ — is as follows.

ruzb
F=r(,
fori=1.2,...

fli-1 = ;'T"i-l
if p,oy = 0, method fails
=1
Pi = Ti-1
clse
Bict = (pi=1/pi-2 Y er-1 fwiz1)
P = rict + Bic(pic1 — WimWicy)
w; = Ap;
oi = piny [FTw;
S =Ty —oaw;
check norm of s; if small enough: set z; = z;_; + a;p; and stop
L= As;

wi = t?s;/t:—rh
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4 =iy b ooip b Wisi

reo= s —whl

check for convergence; continue if necessary

for continuation it is necessary that w; # 0

end

To avoid conlusion we will use the superscript £ to distinguish “Templates’

terms from those here, where it will also make life easier il we re-index two

of the “femplates’ terms as follows:

o? =

8 =

‘Templates’p;.;,

‘Templates’S;_, .-

\We now write the algorithms side by side for comparison, where in this new

BICGSTAB algorithm we replace viyy by 7, see (135). To handle thei = |

ease we Jefine

BiCGSTAB
=18 =0,uf =0
=0

Then for ¢ = 1,2,3,... we have

BiCGSTAB
if i=1

88 =0

{

olse

3B = (P?/ﬂﬁl)(“?-lfwia-l)

pP=rB + 8RB, - B,ApE;)

new BiCGSTAB
po=18 =1lw =0

'U0=0,80=0,p0 =0,u0=0

new BiCGSTAB

pi =TTy
if i1=1

=0
clse

% = —(pi/ pi-1)(1fwizt)
pi=ria+ %"..'Pi-:

+wimyYi(Tiaz = sio1)



“:H — /I:]/I.'HTAI),B

= B

8, =i

- alP ApP

wl = (AsB)TBj(AsB)T(AsP)

oD = ull, + aPpP 4 wfs?

n_ .n N B
r" = b.‘ - LU‘ A.‘ii

a; = DT (Aricy — viui)/pi

Bivr = =(ai + %)

8i = (Arjer = airicy — Yittia1)/ Bit
w; = (As.-)Ts.-/(As.-)T(As,-)

u; =ricg —wiArioy

Ti = Ticy — 1/Bipipi + wis;

Ti = 8 —wids;

T'here are noticeable diffcrences between the two algorithms — the new

BICGSTAB algorithm has more complicated expressions for p; and s; and

also forms an intermediate vector u;, which the ‘Templates’ algorithm does

not, lowever relationships exist between the two; the exact equivalences

e

/B =
pi =
pi o=

T, =

BB, i>1

PP ~1fBr =B, =P

P?7 si=sp, w= éa;t - ‘-‘":'A"e'B—x

2B, ri=rB. (137)

A straightforward cxamination shows this is true for ¢ = 1. Suppose it is

true for z = 1,2,...,k = 1. Then it is clear that
pi = pey /B = BE.
The following will be uscful in proving the rest.

P = Walus

De_2i1

where fope =




So AP, = AWadusx= A\-/szku-:k'lzk.k

1l

Vit Faiir 26U e = Vargr Loigeak Dasc Fe i (138)
 FYSry o

= Vag . (139)
=B

Beti
0

To show py = pP, consider the i-th column of (139).
.’1]),‘ = ﬁ.‘+1(8i - r"_[), i = 1,2,.. . ,k (I‘l())

M = rea+ wk-l‘Tk(""k-! - Sk-l) + ‘Yk/ﬁkl’k-l

re ) = whey T/ BeApier + BEPE.,
= i, - WE—lﬁEApf—l + BEPE—I = pp-
To show =1/8k4, = aff, consider the scalar product of & with (140)
FTAp = Bipd (si— Tie1)
= —=piBis1, 1=12,...,k
So of = pR/FTAPE = pie/VT Api = ~1/Bis.
{110} makes it casy to prove sp = sP.

B
S

= rf—: - QEAPE = re—1 + 1/ Bett Aps
= Phel + Sk — Tk-1 = 8.
Finally, it is obvious that

— B — B
u..'k=(d.:f, I =Zpy Tip=TL.

The induction proof {137) is complete, showing that in theory these algo-
rithms not only compute the same iterates, bui also several of the inter-

inediate quantities are identical. However the algorithms are clearly not

93



. identical, as the use of different vectors shows, and may have different nu-
merical behaviours. This suggests a matrix development of BiCGSTAB
wonld be useful, but we leave this for future work.

Relerence: [vdV92)



5 Conclusion

IFromn the point of view of developing the research, the most interesting and
satisfactory applications of the formalism stated in § 1.1 were to the methods
ol Conjugate Gradients and BiConjugate Gradients. In these, connections
with the imderlying symmetric and unsymmetric Lanczos processes respec-
tively were exposed. In each case two methods were developed — one with
unit norm vectors spanning X*(A; 6) and one which produced the residual
vectors of the method to span the Krylov subspace. In the case of BiCG,
the Krylov process which produced the residual vectors was rather surpris-
ingly shown to usc the same coefficients in the formation of the “shadow
residuals™, as opposed to the familiar unsymmetric Lanczos process which
“transposed” the coefficients. It was the second method in each case which
was shown to be mathematically equivalent to the “vector” form, since the
resulting algorithm more closely resembled the vector form. An understand-
ing of the quantities used in the vector form of the algorithm was obtained
and in general the algorithm was clarified.

The methods of SYMMLQ, MINRES, LSQR, and GMRES were origi-
nally implicitly developed using the formalism. Thus the Krylov processes
and associated subproblems were easy to determine for these and there was
no difference between the algorithm derived from the matrix development
and the corresponding vector form.

The method of Quasi-Minimal Residuals as developed in [FN91] also
inplicitly used the formalism. The Krylov process and subproblem were
obvious and implementation details were also given in the paper. However,
the “Templates’ version of QMR differs from that in the original paper — al-
Lhough theoretically the two are the same, the vector form has been derived

[rom a subproblem whose solution implementaion is less strightforward, in
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the interests of time and storage of the algorithin, As future work, a ma-
trix development of that “Templates’ vector form of QMR to determine the
INrylov process and subproblem and hence show the resulting method is
QMR would make § 4.7 more complete,

Attempts to apply the formalism to CGS and BiCGSTAB, algorithms
which double the complexity of BiCG in an attempt to halve the time,
requited a small modification to the approach suggested in § 4. Since these
two methods produce residual vectors which are elements of every other
Krylov subspace, it was nccessary to consider auxiliary vectors, elemnents
of the missed subspaces, as well. Using both sets of vectors, we achieved a

matrix equation of the form

AVGr = VikaFrax

= AV = VepHrax (141)

where Hpqx

M

Fr kG is upper Hessenberg

and K 2k.

The lorm of {141) is exactly the same as for the general Krylov process (3)

in§ 2,
T'he next difference came in the iterates we used. The original idea was

to form iterates z; = Viys, but here we chose

e = Ix = VkGrik (142)
= Vkik (143)
where #xr = Gxixk,

thus a simple matter of relabelling (142) gives (143) just as (47) in § 4.
With this slightly different approach, attempts to reveal the process and

subproblem were successful although not as elegant as might have been
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hoped.  As was stated in those two subsections, the work done is really
“work in progress” and certainly further improvements may be made.

On the whole the formalism appears to be very useful in the analysis of
algorithms and definitely makes the more mysterious “vector” forms much
casier Lo understand and learn. Unfortunately, as was observed in the cases
of CGS and BiCGSTAB, it appears somewhat difficult in the more complex
algorithns to determine an optimally clear, simple and elegant division into

process and problem.
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