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Abstrnct

This thesis is based on recent work by Paige which gave a for mal·

ism for presenting and analyzing the class of algorithms which manip·

ulate an appropriate Krylov subspace in solving large sparse systems

of linear equations. This formalism - a way of dividing a method

of solution into a Krylov process and an associated subproblem - is

dcscri!>ed and then applied to several of the more popular algorithms

in nse today including the methods of Conjugate Gradients "nd Lli·

Coujugate Gradients. The aim is to clarify these algorithms to makc

them easier to understand, analyze and use. Several of the methods

presented in this thcsis were developed in eJC"ctly this w"y - not:Lbly

the Symmetric LQ method and the Generalized Minimum Residu"l

method - and required little or no effort to characterize using the

form:dism. It was successfully applied to Conjugate Gradients and

HiConjn~ate Gradients, already recognized as being closely related to

the symmetric and unsymmetric Lanczos processcs rcspectively. The

newer algorithms such as Conjugate Gradients Squared and DiCon­

jugate Gradients Stabilized, with less obvious relation to a specific

Krylov process, provided more difliculty in their clarification.
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Résumé

Cc mémoire est basé sur le travail récent de Paige sur un forma·

lisme pour présenter ct analyser une classe d'algorithmes manipu­

lant un sous-espace de Krylov approprié dans la résolution de larges

systèmes creux d'équations linéaires. Ce formalisme - une façon de

diviser IIne méthode de résolution en un processus de Krylov et un

sOlls·problème associé - est décrit et ensuite appliqué à. plusieurs

df.'s ,ùgorithmes les plus populaires en ce moment, dont la méthode

des c: radients Conjugués et celle des Gradients BiConjugués. Le but

de cc mémoire est de clarifier ces algorithmes pour les rendre plus

faciles il. comprendre, analyser et utiliser. Plusieurs des méthodes

ici présentées ont justement été développées de cette façon - la

méthode des LQ Symétriques et la méthode des Résidus Minimums

Généralisés en particulier - et leur caractérisation à. l'aide du for­

malisme n'a requis que peu d'efforts. Le formalisme a été appliqué

aux Gradients Conjugués et aux Gradients BiConjugués, connus pour

être liés respectivement aux processus symétriques et asymétriques

de Lanczos. Les algorithmes plus récents, tel que les Carrés des Gra­

dients Conjugués et les Gradients BiConjugués Stabilisés, dont le lien

avec un processus de Krylov spécifique est moins évidente, ont été

pins <Iilliciles à. clarifier.
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• 1 Introduction
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1.1 Formalism

I3IL~ed on idens in [P575], Paige [Pai94] states a simple formalism for mo­

t.ivnt.ing, prcsenting and stlldying Krylov subspace methods for problems

iJl',n1Yiug l' uHltrix A. These methods arc uscful for example in solving the

dg"uprohlelll A.T. =>':r: or solution of equations Ax =b when A is large and

spnrse.

Giyell a matrix il E R"x", and a starting vector v, a Krylov Process

procluc"" Yect.ors {11J, 1J2,' ••• vd which span the k-th Krylov subspace

I~k( 4') - {A Ak- I }1'\,; •• 11 = span v, nU, ... , V •

l,rylnY sullspace lIIethods seek clements of these subspaces which are in

sOllle seuse good approximations 1.0 the solutions of the original problems.

The formalism for Krylov subspace methods is as follows:

A KrylO\' subspace proccss + 50lving a subsidiary problem

- A Krylov subspace method.

The terms used ahoye were chosen carefully to distinguish the parts of the

algorithm.

Proccss refers to the particlllar process we are considering, for exarnple,

t.he Lanc'l.os proccss, i.e. t.he \Vay in which the vectors are formed to span

t.he Krylo\' slIhspacc iu question. Many processes are presented in § 2.

M,:tllOti r'{"rs t.o t.h" t.hcoretical method used to solve the problem. For

('xalllple [I3I3C·!J4] gi\""; olle implementation of the Conjugate Gradients, or

CG mcthod for soh;ng .'Ix = b; :t.I1other implcmentation using the Lanczos

proccss and then considering iterates Xk E K;k(A;b) obtained by manipulat­

in~ the Lanc'l.os \'cctors is weIl known, sec for exarnple [GL89, § 9.3.1] and

6
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[PSi5] and § 4.1 in this thesis. Although the implementations arc different,

the resulting methods arc theoretieally the same (using exact arithmetie).

For any underlying Krylov proeess, the manipulation of the veetors ob­

tained in that proeess is known as the subproblem for this process used to

obt.ain t.his ll1ethod.

A signifieant advantage of this approach is that both the process and

the subsidictnj prablcm may be prcsented as c1car matrix formulations, ann

t.hese make the lIIcthacl easy to undcrstand and analyse. The less transparent

\'eet.or represent.at.ions (i.e. the implementations) of the method can then

be oht.aillcd from t.hese matrix formulations. The veetor represeutation

is illlporr.ant. for implelllentation, but the matrix reprcsentation is a far

IIlOI'I' ]lo\\'l'rfnl tool for t.eaehing, for llnderstanding, for relating and deriving

dilfcrent. met.hods, and for analysing their propertics.

Paige and Saunders [PSi5] implicitly uscd this formalism to understand

old met.hods, and to de\'clop new methods. However, several of the more

l'eccnt lIlethods in this area appear to be signifieantly more complicated

than those in [PSi5], and not nearly as weil motivated. The result is that

many nscrs of thcse algorithms ha\'e little understanding of them, a fact

which docs not hclp either their use or implementation.

In this thcsis the formalism is applied to the more ~uceessful Krylov sub­

space methods for Ax =b used today - for c."(ample GMRES (Generalizcd

Minimulll Rcsidual), BiCG (BiConjugate Gradicnts), QMR (Quasi-Minimal

RC'Sicl11al). CGS (Conjugate Gradients Squarcd) - ail of which arc summa­

ri7.ed, uSllally in ,"cctOI' form. in [BBC+94].

The ailll is to sec if the formalism dcscribed here, w:lich was 50 succcssful

in c1arifying earlier mcthods, cau also hclp to simplify the understanding

and de\'clopment of today's more eomplicatcd methods.

7
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1.2 Notation

• M"trices arc reprcsented by upper case Roman letters such as A or

Bk.

• V<:<:l.OI'S arc reprc.'sented by lower case Roman letters such as Vk. in·

c1l1ding the co)umns of matrices, for example Wj is the j-th column of

Wk. Usually columns of a matrix use the same letter as the matrix

itself; one prominent exception is Cj which denotcs the j-th column

or a unit matrix 1 of appropriate dimension. Occasionally, for clarity,

sllperscripts sucb as the k in clk
) will be used to specify the dimension.

• Lower case Greek letters represent sca.lars. The sca.lar entrics of ma­

trices or vectors may be represented by lower case Greek letters or by

lowcr case Roman letters the same as the entity itself, with appropri­

ate subscripts. For example, the entries of the vector Zk are (j; the

entrics of the matrix Hk are hij •

• Ck and Sk rcpresent COS(Ok) and sin(Ok) respectively in those algo­

rithms which involve a QR or LQ decomposition.

• Il, Il is used throughout to denote the 2-norm.

8



• 1.3 Table of Abbreviations

QI(

LQ

CG

SYMMLQ

MINltES

CGNE

LSQIl

GMIlES

BiCG

Ql'vlll

ces• BiCGSTAI3

SPD

referring to the decomposition of a matrix into

au orthogonal matrix and an upper triangular matrix

referring to the decomposition of a matrix into

a lowcr triangular matrix 'Uld an orthogonal matrix

Conjugate Gradients

Symmetric LQ

Minimum Rcsidual

Conjugate Gradients on the Normal Equations

Least Squares with the QR decomposition

Generalized Minimum Residual

BiConjugate Gradients

Quasi-Minimal Rcsidual

Conjugate Gradients Squared

BiConjugate Gradients Stabilized

Symmetric Positive Definite

•

1.4 A note on the literature review

This thcsis is required to have a review of the literature. In that the body

of this thcsis dcscribes popular methods of solution of large sparse systems

of lincar equations and clearly refers to the original papers and subsequent

articles written on these methods, it is our belief that this review is implicit

aud uccd not be presented scparately.

9
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2 Krylov Processes

2.1 The general Krylov process

We first statc a very general Krylov proccss, then derive sorne of the morc

poplllar proccsscs from this by rnanipulating its matrix formulation. Wc

rcd this is bricfcr and dearer than the more usual approaches to deriving

these proccsscs.

The gencral Krylov process with a. given matrix A E 'R,nxn and starting

'o'ector v E nn forms a sequence of vectors Vit V2, ••• E 'R,n as follows

whcrc if hj+J,ivj+l = 0 the process is stopped. La.ter the coefficients hi'; will

be chosen to give different processcs. Clea.rly aIter k - 1 steps {v,i}t spans

the k-th Krylov subspa.ce

X:"(A;v) = spa.n{v,Av, .•• ,A"-tv }.

Arler k steps (1) corresponds to the columns of

AVk - Vklh + hk+t."vk+1 cI =Vk+1 Hk+1,k

V" - [vt V2 • • • vk ]'

hl ,l hl ,2 . h l ,k

h2,1 h2,2 . h2,k

Ih - H>+... =[ H. ] .
h/c+l,keI

hk,k-l hl:,k

(2)

(3)

•
Notice that HI:+l,k is just the upper Hessenberg Hk supplemented by a. row

of ?oeros cxccpt for the last element. If hl:+1,k'V/c+l = 0 then Al'sc =VitHI" and

10
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K;k(A; v) is an invariant subspace of A, which we usua.lly want. However

the reverse necd not hold for the genera.l process, 50 the specifie Krylov

proccsscs we consider will (in theory, that is in tht; absence of rounding

errars) ensure termination, i.e. hk+I,kVk+1 = 0, immeciiately the columns of

Vk span an invariant subspace of A.

Householder (Houï4] givcs a dctailed trcatmcnt of Krylov's method

[Kry3L] and its relation to othcr a.lgorithms for the a.lgebraic eigenvalue

problem.

2.2 The Arnoldi algorithm

01", o\)\'ious choice to ensure termination is to dcrive orthogonal vectors

",. "~.... in (1). Herc and Iater we wiII use simple inductive arguments to

obtain expressions for coefficients. Suppose wc have nonsingular

(4)

which is trivial1y obtained for k = l, then from (3)

and to ensure V!Vk+l = 0 in theory wc takc

hi,k =vTAvk/Pi, i =l, ... ,k. (5)

•

1f we were to compute the vectors via (5) and then (1), this would correspond

to the nUllleric;ùly inadequate classica.l Gram-Schmidt approach, sec for

cXillllple (GLS9. § 5.2], 50 a more numerica.lly reliable computation is via a

modified Gram-Schmidt approach

Uk - AVk

for i - l, ... ,k

11



•
This giv<.'s (3) with

(6)

Ir hk+l.k"k+l is then nonzero we take hk+I,k to be whatever wc want. For or­

tholloJ'lllal vcctors wc choose hk+I,k to give IIvk+dl = l, and we can continue

t.he prOCl.'SS. 50 in this case (5) and (6) become

This was proposed by Arnoldi for solving the eigenproblem: on termination

ail the eigenvalucs of Hk arc eigenvalues of A, sec [Arn5l).•
hi,k - vrAVk, i = l, ... k,

VtVk = l, Vtvk+1 - 0, vtAlli: = Hk.

(ï)

(8)

2.3 The Lanczos process for symmetric A

If A is syrnmetric in the Arnnldi a1gorithm with arbitrary hj+l,j leading to

(6), wc sec V[AVk = DkHk = slDk is tridiagonal and symmetric. That

HwallS hi.) = 0, i = l,2, ... ,j-2in (1), and from thej -l,j element,scc

(·1) •

(9)

•

.
Let us define aj =hj,j, /3j == hj,j-h 'Yj =hj_I,j. This leads ta Lanczos'

3-tcrm proccss with arbitrary normalization

iovo - 0

/31VI - V, /31 '" 0 arbitrary,

for j - l,o •• ,k

12



• 0" - VTAv"/p"J - J J J

(10)

(11)

(3j+! i: 0 arbitrary

stop if (3j+1 Vj+1 = O.

Not.iœ t.he deônition (10) or"fj agrees \Vith the original (5) both from sym­

lIIet.ry (!J) which says

(12)

or from the use of the symmetry of A and orthogonality of the V; in Arnoldi's

algorithm

•
"fj - hj-IJ

- VJ_I AVj/Pj-I = vJAVj_dPH

- vJ((3jVj +OHVj_1 +"fHVj-2)/PH

- (3jPj/PH·

(13)

Note by using the matrix representation (6), the symmetry of A gave (12)

ilTllllediatcly, while the usual vector approach required more e/fort. It \Vas

shown in [Paii2]that (10) is an efficient and more numerically reliable \Vay

of computing"fj than (13).

ln matrix form the result is, using tridiagonal Tk == Hk,

13
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(li)

wlJel'e ohviously Sk =V[ AVk is symmetric by (12). Again, if we choose /3i+l

1.0 cnforcc orthonorrnality of the vectors, we notice Pi = 1 for j = 1,2, ...

givcs Îj = {3j. The normalized symmetric Lanczos process is now

/3ovo - 0

•
for j - 1, ... , k

Qi =vJAVi

f3i+1Vi+I = AVj - QiVj - Pivi-h

stop if Pi+IVi+l = 0 else make V;+IVi+I = 1.

"ud in malrix forro this is

(18)

•

AV.!: - VkTk + f'k+l Vk+lef =Vk+ITk+I,k (19)

V[Vk - f, Vtvk+l =0, V[AV!: =Tk, (20)

QI f3.z

Tk
f32 02

TJo+I,. =[ T. T ].- ,
Pk PIc+Iek

{J1c Qk

The Lanczos process (which is closely related to the 3-term recurrence for

orthogonal polynomîals) was suggested by Lanczos [LanSO] for finding eigen­

values of symmetric A, and also used in Lanczos' [Lan52] variant of the

Conjugale Gradients inethod (see aIso [H5521) for solving Az = b with

symmetric positive definite A•

14
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Since the difference betwecn the above two versions i~.only one of nor­

tnali~a.l.ion. they will have the same sort of numerical behaviour - which is

slIrpl'isingly effective. Orthogonality of the Vj is soon lost, but eigenvalucs

are still found to almost machine precision by the Lanczos method (sec for

example [Paiil], and later works by him and many others), and solution

of equations with symmetric positive definite A is also very effective using

either the [HS52] CG algorithm (sec Reid [Rei71] and many later works) or

the [Lan32] variant, sec [PSi5].

2.4 The Lanczos process for unsymmetric A

Clearly (18) is far more efficient than (1) with (i), and we would like a

similar simplification with unsymmetric A. Lanczos [Lan50] suggcsted such

a proœss. This produces two mutually orthogonal sequences of vectors,

{,·)}t and {Vj}t spanning the subspaces K:k(Ajv) and K:k(ATjv) respec­

tÏ\·ciy. These vectors will be secn to produce a tridiagonal matrix from

unsymmetric"A. This is achieved by considering the process (1) applied to

AT and V, as well as to A and v.

The rcsulting equivalents of the Krylov process (3) are, with obvious

notation, after k steps

- VkHk +hk+l,kVk+leI,

- - - T- VkHk +hk+l,kVk+lek'

(21)

(22)

•

but now we seck eIements hiJ and hiJ which make~lVi:+l diagonal. Again

we assume we stop whenever we reach an invariant subspace. However we

will sec this process wiII actually break down at the first case of vTVi = 0,

so w" will assume V and vare (fortuitously) chosen ta avoid this.

An inductive argument will show how this mutual orthogonality may be

15



• n1>l.aincrl. Snpposc aft,cr sl.cp k - 1 we have diagonal and nonsingular

(23)

(almost ail choices of 1) and jj will ensure this for k = 1), then with (21) and

(22)

(24)

(25)

Since fh and HI: are lIpper Hessenberg, equating the right hand sides shows

l.hnl. fol' j = 1, ... , k - 2, taking hj,1: = 0 gives vJVk+l = 0, and taking

hj.1: = 0 p;ivcs IJJill:+1 = O. Next the (k, k) elements of (24) and (25) show

iI{ "1:+1 = Ü{+i"l: = 0 if we take

• Next the (I~,k - 1) clement of (25) shows Vk+lVI:-l =0 ifwe take

(26)

say, (27)

\l'hit<- tllf' (".~. - 1) clemcnt of (24) shows for the normalizer of VI: thal.

(28)

Finally thc (k - 1,k) element of (24) shows VLIVk+l = 0 ifwe take

(29)

while the (k - 1, k) clement of (25) shows for the normalizer of VI: that

(30)

•
Thcse show that TI: =HI: and ~h =HI: are tridiagonai, and also show why

nonzero vTVi is rcquired 1.0 avoid breakdowns. Ifnow V41Vk+l is nonzero we

16



• have Vl~'lVk+1 diagonal pnd nonsingular, and we can continue the proccss.

Note the process has not becn fully defined, as (at each step) the normalizers

/h+l == hk+l.k of Vk+b and ~k+1 == i1k+I.k of Vk+l may be chosen arbitrarily

nonzero, Berc we considcr two possibilitics.

By the standard unsymmetric Lanczos process wc will mean the Lanczos

process where /3j is arbitrarily chosen, for example to give vJVj = 1, ] =
1,2"", but whatever the choicc of /3j, ~j must be chosen to give

-T 1Vj Vj = , j = 1,2, ...

so that Dk = 1 and from (24) and (2.<) Tk == Hk = lf[, giving (sec also (27)

ilIOC[ (2S), and (29) and (30))

and for (21) and (22)

•
j=I,2, ... ,

•

AVk - VkTk +I3k+lvk+lcI =Vk+lTk+l.k,

ATVk
- T - T - T- VkTk +'l'k+IVk+ICk =~+ITk.k+l'

-T l, V[Vk+t = V[Vk+1 = 0,Vk Vk -
V[AVk Tk, v1 T- T- kAV'k=Tk •

(31)

17
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The detailed algorithm is then (where {JI, ••• , (ij+l ma.y be chosen arbitrar·

ily)

Va - 0, Va =a
{Jlva - V, 11Vl = V so that viVI = l,

for i - l, ... , k

.TAai = Vi Vj

/3;+1 vi+l =AVi - QiVj - 'Yi vi-l

• AT~ • R. •
;i+1 Vj+1 = Vi - ajvj - ,..,jVj-l

stop if {Ji+l Vi+l = a or 1;+1Vi+l =0 or

/3i+l VJ+l Vj+l1j+l = 0,

otherwise choose 1i+l to give VJ+lVi+l = 1. (32)

By the (l/ternative unsymmetric Lanczos process we will mea.n the (a~

parently new variant of the) Lanczos process where {3; is arbitrarily chosen,

but then wc take

Pi = {3;, j = 1,2, ••.

With this choice it fol1ows from (28) and (30) that
.'

~o from (2i) and (29)

g1Vmg

(33)

(34)

(35)

•
(36)

18 -.



• Tk+l,k
[ Pk:~cI ]

-

AVk - VkTk +Pk+IVk+ICI =Vk+ITk+I,k, (3;)

ATVk - - T - (38)= VkTk +Pk+lVk+1 Ck = \I.'+ITk+l,k,

-T
. Dk =diag(PI .... , Pk)'Vk Vk -

-T
DkTk == Sk is symmetric. (39)Vk AVk =

The surprising outcome is that the two Krylov processes (with A and AT)

nse the coefficients in the same way. At the j-th step we could take, sec

(26), and (34) and (35),

-T
Pj - Vj Vj

a· - vTAVj/pj (40)J

;j - vT_1 AVj/Pj_1 (41)

• Pj+lVj+1 - AVj - ajvj - ;jVj_1 (42)

Pj+lVj+1 AT- - - (43)- Vj - ajvj - ;jVj_1

PHI :F 0 arbitrary.

:\gain. lL~ with (5) in our first approach to the Arnoldi algorithm, and

onr comments on the Lanczos process for symmetric A, we find that the

above computation is unnecessarily numerica1ly inaccurate. Thus we use

the following alternative to (41).

;j = {3jPj/Pj_1 from (29), (30) and (33), (44)

•

which is identica1 to the choice (10) recommended for the symmetric case.

This alternative unsymmetric Lanczos process is actua1ly just a diag­

onally sca1ed version of the standard UDsymmetric Lanczos proœss. This

is cIcar since bath processes produce mutua1ly orthogonal vectors span­

ning the same subspaces - the only difference is the first process produccs
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•

iitVk = l, the second one docs not. Although the standard proccss is usu­

aJly l:OlIsidered the underlying proccss in the BiCG method, we will use the

;dt"rIIative proc<.:ss to produce a pleasingly simple and c1ear derivation of

lliC(; ill fi 1.6.

Apart from this surprising new variant of the unsymmetric Lanczos pro­

cess, so far the only original work here has becn the matrix based derivation

of th<.'Se algorithms. This is much briefer and, we think, ea.sier to follow than

the IIsual approach, sec for example [GL89, § 10.2), but the originality is in

the approach aJone. However we can now obtain a minor insight into the

cornputational behaviour of these two variants of the unsymmetric Lanczos

proccss.

Ir A is symmetric, the unsymmetric Lanczos proccss becomes the sym­

rnclric Lanczos proccss (taking ii = v of course, which appears to be the

only dTicient choice - halving the work). In this case the main step of the

ulIsyrnllletric Lanczos proccss with orthonormal vectors (32) becomes

Qj - vTAVj

Av- - Q-V- - {3-v- 1J J J J J- ,

•

since "fj - {3j,

which is just the normalized symmetric Lanczos proccss (18).

Similarly the alternative unsymmetric Lanczos process becomes

T
Pj - Vj Vj

Q- - v7'Av-/p-J J J J

"fj - {3jpj/PH

{3j+1Vj+1 - AVj - Qj - "fjVj-l

{3j+l :F 0 arbitrary,

which is the S<"UDe as the arbitrarily norma.lized Lanczos process for sym-
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•

•

Il1dri<: 1\. '['hus wc can hope that these two unsymmetric processes will

rnaintain sorne of the well·known good numerical properties of their equiv­

aIent symmetric processes.
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• 3 Preliminaries - The QR decomposition

•

•

Sorne of the algorithms presented in this paper, for example LSQR, GM·

RES( rn) a.nd QM R, require the reduction of a sequence of matrices, each

of which contains the previous as leading submatrix, to upper triangular

forrn. To this end, one may perform a sequence of QR decompositions.

The notation and method presented in this section will be used in those

algorithms for this purpose. For the decomposition one may choose from

2 x 2 rotatioll matrices, 2 x 2 ref!ection matrices (2 x 2 Householder trans­

formatiolls), or fast Givens transformations. For simplicity, 2 x 2 rotation

matrices were used here. The matrices arlsing in these algorithms are of a

specifie shape - in general upper Hessenberg, more specifically tridiagona.l

or lower bidiagonal, with an additional row containing a nonzero clement

in the last column only. The upper triangular result may in these special

cases be upper tridiagonal or upper bidiagonal. For the general matrix

hn h 12 hlk

h21 h 22 h 2k

fh+l.k == E ,Rlk+1)xk

hk,k-l . h
kk

h k+1,k

(h;j may be zero for j > i + 1 or j > i) the decompostion is

_ [ROk],QfHlc+l,k

where Qk E R(k+1)x(k+l) is orthogonal,

and Rë E R!'xk is upper triangular.
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• This is ê\chicvcd using rotations cmbcddcd at the i, i position of k + 1­

dimcnsional idcntity matrices, as

Ii-l

Ci Si

-Si Ci

I k- i

such that Qr - QI,k'" Qr.k

- Qt. [QL, 1]'
The eITcct of th~ appropriately embedded Qk-l on Hk+l.k i5

rlk
hlk

Rk-l

[ Qi-,
1 ]

Hk•Ic- 1

- rk-l.k
hlck

0 rkk• 0 hk+l,k
0 hk+l.k .

whilc QI,k, which alters only rows k and k +1, zeros hlc+l.1c

[
Ck -Sic] [ rlck ] _ [rkk],
Sic C/c hk+l.k 0

=> rlclc - Viik + h~+l,k

Ck - rlclc/ru

The orthogonality of the Qi.1c leads te that of QIc.

A scalar multiple of the first column of QI is given by

•
(45)
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• whcrc

fk - [ f:~1 ],

fI = tPl = {3CI

~ = {3SI

tPk = ckfi;k ={3CkSk_1 ., •SI

fi;k+1 - skfi;k ={3sk' - -SI_ (46)

NoLe: This notation - Qk, Qi,k,9k, fk, fi;k, tPk, Ck, Sk - is use<! throughout this

document with exactly these meanings, except in a1gorithms SYMMLQ and

MINRES where the Qk,Ck,Sk refer to the LQ decomposition of the matrices

involved.

•

•

Reference: for cxample [GL89, § 5.1 5.2]
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• 4 Algorithms for Solving Linear Systems

We I1O\\' COti sider most of the more common Krylov subspace methods for

solvillg lincar systems of equations. Each of the following a.1gorithms has

becn convcrted into the rnatrix forrnalisrn presented in § 1.1. Each sub­

scction i5 bcgun \Vith the problem statement, either large systems of tinenr

cquations, or the Hncar least squares problem, that is

Ax = b, A E Rnxn or

•

The type of matrix A, for example symmetric or not, positive definite or

indefinite, is given.

\Ve examine different rnethods, where sometimes these are just difTerent

variants of one rnethod. We continue ta use the word mcthod rather than

implementation or aIgorithm, as there couid aIso he more than one impIe­

trU'lll.atiofl for il. givcn variant. For cach such method the process used to

rorrn vcctors {V., ... ,vd spanning sorne associated subspace 1S narned, as

is the subspace.

Ncxt for cach method the subproblem arises as a result of considcring

successivc solutions of the fonn

for sorne initial guess zoo For sîmplicity, Zo will usuallyl he takcn as zero.

So the iterates look like

Zle - VieY" e 'R(V,,),

where Vk - [VI V2 • • • v,,],
(47)

•
and the way in which this subproblem arises and is solved is describcd.

1Except. in GMRES(m) where "with each restart a Dew noDZerO %Q Î8 uaed•
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• For ~ome methods, where it is important for the development here, we

will dcsC:l'ibc the ba.sic implementation of the method, showing how the

vcc:l.or~ rrom the process can be combined via the solution of the subproblem

1.0 produce an efficient (aithough not yet optimized) aIgorithm.

Then, to facilitate the most Iikely implementation of a stopping condi­

tion for each algorithm, the norm of the residual of the current iterate

(48)

•

•

i~ con~idered.

F'inally (when we can, and when it is appropriate) we relate this ma­

trix derivation to one or more of the standard vedor implementations used

Lod,LY, thus c10sing the circle by showing how what are usually confusing

(1.0 the non-expert) vector presentations can be easily derived and weIl­

lIlol.iv'Ll.cd using the matrix approach recommended here.
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• 4.1 The Lanczos (Conjugate Gradients) Method

Prohlmn: Solve Ar. =b for x when .4 is symmetrie positive definite (SPD).

First. wc c1crÏ\'e what wi11later be shown to be the Conjugate Gradients

approximations Xk from the normalized symmetrie Lanczos proccss (18).

Wc rcfer 1.0 this as:

Th" unjt. norlll L'l11ezos-CG Ill"t.hoc!.

Proc,...ss: t.he nOl'lnalized Lanczos proccss (18) for symmetric A to produce

ol'thonontml {/·1 ....• 'r'k} spanlling I(;k(Aj b), starting with VI = b//310 where

.·J1 == Il'111.

To dcri\'c t.hc snbproblclIl we use (19) and consider iteratcs of the form

;1:,. = l'kYk as suggcsted in (4ï), and take TkYk = /3lelo 50 that

Tk - b - AXk =b - AVkYk

- b - l'kTkYk - /3k+lVk+le[Yk

• - l'd/3l e l - TkYk) - /3k+IVk+l ekYk

- -/3k+IVk+l ekYk. (49)

•

In theory /3HIVk+1 = 0 for some k ::; n, the dimension ofA, and the problem

will be solved.

Suhprohlem: Solvc T"!lk =tJICJ, where Tk is gymmetric tridiagonal.

This h;~~ shown in simple matrix tcrms how the Lanczos process (19)

..1 1i.. =1i..T,. + :h+1 "k+1 cf and the subproblem Tk]Jk = /3lel give approxima­

tions :Ck = l'k!lk 1.0 the solution ofAx = b. However we now have to combine

thcsc two (Proccss and Subproblem) to produce a uscful implementation.

Implementation: For A SPD, Tk = VlAVk is as weil, therefore the sub­

problem always has a solution and it is possible to perform a Cholcsky

factorisation of Tl' = LkL[, wbere Lk is lower bidiagonal. In order to ob­

t.ain objects (j", mk that can be computcd scquentially and discardcd after
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• use - an important efIidcncy for large sparse problems - define

- LT= kYkt

so tllcsystcm is transformed to

TkYIe = LkLkYk = L/C%k ::::> Lk%1e =f31eh

VkYk = VkLk'TLIYk ::::> ::Cie =Wk%le.

Now ~ IJ~. is forrncù one row at a time:

o
o

•
o 0 "Ile

o o
{3k

o Ok""(Ie-l

::::> "Il = ,fOi,

Ok ={3k/"Ik-b 'Yk =JQIe - Si,

Anel so =1.: 15 fonned one entry at a time:

k> 1. (50)

o
o

o 6k 'Yle

::::> (1 =131/'Yl' (le = -Ote(k-tl"Ik,

Wle is rusa forrned one column at a time (WkLr =1;}):

k> 1. (51)
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•

Filla.lIy,

[ ]
[

Zk-l ]
Xk - WkZk = Wk- t Wk (A:

- Wk-1ZA:-l +(kWk =Xk-l + (A:Wk, k ~ 1.

Aga.in wc sec how each step of the implementation makcs ohvious sense

wh(~n <Lpproa.chcd via this matrix formulation.

For la.rg(~ sparsc problcms wc would Hke to stop in k « n steps, a.nd

sincc a. solution with sufficiently small residual is what is oftcn wantcd, wc

look at how the rcsidual norm behaves here.

ilcsic!tml Norm: The following estimation of the norm of the residual rk, as

dcfincd in (49) can he used.

1Ir,~1I - PA:+t!YA:k[, where Ykk is the k-th entry of YA:.

Since Yk 1S not computed directly, one must consider

LIYk - Zk

I~T-l
0 Ykl [ : ] [Z~l]Ok -

"fkYkk = (k
o 0 "fk Ykk

Ykk - (kl"1k

=> lIrkll - .8k+ll(kl"1kl

= .8k+l16k(k-l/"1il by (51)

- .8k+ll.8k(k-d"1lc-ll/"fl by (50)

- 8k+! IIrk-llllil, k ~ l.
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•

This matrix approach also tends to make analysis of such algorithms

[airly e<L~Y. For example, sinee rj is a scalar multiple of Vj+1 and V{Vk = l,

the residuals rj arc orthogonal. Ncxt

so the l/J) (the scarch vectors in moving from Xj_1 to Xj) are A-orthogonal.

Tlmt Xk is the same as the ordinary CG solution fo))ows for example from

[PPdV95, § 3J, since Xk = lI"Yk E }Ck(Aj b) and rk == b - AXk J.. }Ck(Aj b),

and sa Xk is the Galerkin solution from }Ck(Aj b) to Ax = b, which is cxactly

what CG dclivers.

This unit norm Lanczos-CG method, based upon the Lanczos process,

has the nice property that the vectors Vh V2,'" are orthonormal. However,

let liS derive a method which more closely mimics the standard CG method

ill that VI, V2,'" are the residual vectors themselves. Because it gives a

more direct analogy with the standard CG method, we calI it:

Th" Lanc~os·CG method

Process: the Lanczos process (11) for symmetric A, starting with VI = b.

TI ... lI()rlllali~ation /3j+1 is unspecified as yet.

lJsillg (H) and considering iterates of the fonn Zk = VkYk as suggested

in (·lï) alld solving for TkYk = eh

rk - b-A:&k=b-AYr.Yk

- Vk(el - TkYk) - Pk+lVk+leIYk

(52)

•

Subproblem: Solve TkYk = et. where Tk is tridiagonal, but not necessarily

symmetric.

Implementation: We choose to perfonn an LDU decomposition of Tk =
D;;ISk, sec (15). Sk = vtAYr. is SPD, and Dk is a diagonal matrix with
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•

positive clements, so the LOU decomposition without pivoting appears to

he a sare choice. There is considerable Creedom in such a decomposition,

and the one which suits our purposc is as follows. With the as yet unknown

'VI; =-diag(,B2' ... , Pk+l), write

Tk - Lk'DkUk

0 0 0
Lk-l 'DI:-l UI:- 1

Tk = 0 0 -~

0 -1 1 0 0 -PI:+l 0 0 1

0
Lk - 1'DI:-l Uk-l

= ik

0 Pk - (-Yk + f3k+.)

Not.e that a simpler method could be obtained by combining 'D and U, and

lIsing for cxample U ='DU instead, but the approach here will produce the

cquivalcnts oC various e1ements of CG that we want.

\Vc cati now determine our normalizers f3j+l by equating the right sicle

<lf the abovc cquation with Tk in (16). Clearly

0'1 - -f32;

:::} f32 - -0'1;

ak =-(-yk + f3k+.), k > 1,

f3k+l = -(aA: +11:), k> 1. (53)

Wc will show below that this f3j+l #- 0, and so is a sa.tisCa.ctory nonna.lizer

for the proccss, and Uk+l exists, but first we complete this implementa.tion.

Define
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• liO /.I/DkZk = CI 18 our subproblem, and XI.: = Wk%1.: is our solution. Solving

/31.:(1.:-1 - 131.:+1("

1

/32
/3" /31.:-1 1

(" - --(1.:-1 = --(1.:-2 =... =--,
/31.:+1 /31.:+1 /31.:+1

k> 1. (55)

k> 1.

•

•

Finally

Hcsidual Norm:

rk - -{3"+IYl.:kVk+l by (52)

- -/31.:+1(kVI.:+I by (54)
1

by (55)- -/31.:+1 x ---VI.:+!
131.:+1

- vl.:+tl (56)

~ IIr kll - IIvk+llI·

So the Lanczos process (11) for symmetric A, with Vt = b, can be used to

producc the (CG) residual vectors TI.: =b- hl.: themse1ves, as long as {3j+1

il' choscn as in (53).

It rcrnains for us to prove that no /3j+! found this way ca.n he zero. Since

:l is SPO, 01 is nonzero and 50 ~ is nonzero. Suppose 132, ••• ,{3; obtained

from (53) are nonzero. Then with eT =[1, .•• ,1], e:TTj =[0, ••. ,0, Cli +"Yi],
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•

•

which must be nonzero since Tj is nonsingular. Thus no Pj+1 will be zero,

and this algorithm will not break down iC A is SPD. It is also c1ear that the

[,kUk 'Cactorization' is numerically weil behaved, with the only computation

being I3j+t = -(OIj +ij), and there is no large element growth in Uk.

Equivalence of the Lanczos-CG method with CG:

This Lanczos·CG method is just a scaling oC the unit norm Lanczos·CG

method, and provides the same solution in a marginally different \Vay. It

is thereCore also the CG solution. However we would like to compare the

resulting algorithms closely, so we give a praoC which shows clearly what

cquivalcnccs occur.

The CG Method - slightly altered Crom 'Templates' [BBC+94) - is as

follow5.

ru = il

fori=I,2, ...

pi-I = rT-1 ri_1

if(i = 1)

Pi = Ti-l

cise

l3i-1 = Pi-tlPi-2

Pi = ri_1 + Pi-IPi-1

qi = Api

Qi = pi-tlpTqi

Xi = Xi_1 +OIiPi

check convergence; continue iC necessary

end

To avoid confusion we will use superscript C ta distinguish 'Templates'

terms from those here, where it will also make life casier if we re-index two
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• oC the 'Templatcs' terms as Collows:

pf - 'Templates' Pi-l1

{if - 'Templates' {ii-I-

Wc now write the algorithms side by side Cor comparison, where in the

Lanczos-CG algorithm we replace Vi+! by ri, see (56), and introducc Uj ==

Av;. To handle the i =1 case we define

•

CG

Pc - 1Il -

xf = 0, p~ = 0

Then Cor i = 1,2,3, we have

CG

P
ç = rÇTl rç 11 1- 1-

Pf = pf/Pf-I

pf =rf-, + f'fpf-,

qf =Apf

of = pf/pfI'qf

xf =xf_, +ofpf
r C = r Ç 1 - oçqç1 1- ••

Lanczos-CG

po=l, {i1=0

Xo =0, Wo =0, r -1 =0

Lanczos-CG

P•-rT r·• - i-l 1-1

'"fi = f'iP;/Pi-I

Wi = ri_1 +b;/f'i)Wi-1

Ui = Ari_1

Oi = rf-IUi/Pi

f'i+1 = -(Oi + '"fi)

xi = Xi_1 - (l/f'i+l)wi

ri = (Ui - 0iri_1 - '"firi-2)/f'i+!

The only significant dilference in cast occurs in the last line - n extra

multiplications, subtractions and divisions in the Lanczos-CG algorithm.

However note the Lanczos-CG here was written for companson, Dot effi­

ciency. The equivalences are

. c
p. - Pi' U7.=pf

Xi =xf.

34

Ti = Tf. (Si)



• A strnightforwa.rd exa.mination shows this is true for i = 1. Suppose it is

truc for i = l, 2, ... , k - 1. Then it is clear that

Wc now nccd only prove

-1/f3k+l = of, (58)

•

sa l.hat Xk = xf, and their residua.1s rk and rf must then a.1so be equ:l!,

since rf is clearly the residua.1 for xf by exa.mining the last two !ines of CG,

and wc ha.ve shawn ri is the residua.1 of Xi in the Lanczos-CG. We ca.n prove

(58) using our matrix formulation of the Lanczos-CG a.1gorithm. We know

Wk = VkU;;I, 50

wlAWk - U;;TV{AVi,U;;l = U;;T DkTkU;;1

- U;;TDk(Lk'DkUk)U;;1 = U;;TDkLk'Dk,

which, by the way, is lower triangular and symmetric, and therefore diago­

nal, showing A-orthogona.1ity again. The (i, i)-element of this is

l1ut cTU;;T = (x, ... ,x,I,O, ... ,O) is zero after the i-th element, 50 since

pf = lOi, i = l, ... ,k,

PfTApf =wtAWi = -Pif3i+h

From the CG algorithm we then sec

i =l, ... ,k.

•

Cif = pf/pfTqf = p;fpfTApf = -1/f3i+h i = l, ••• ,k,

and 50 (58) holds, and the induction praof of (5i) is complete, showing

that in theory these a.1gorithms not only compute the sa.me itera.tcs (as

was obvious earlier), but a.lso severa.! of the intermedia.te quantities are
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•

•

idcntiœl. However the aIgorithms are cIearly not identical, as the last line

of each cIcarly highlights, and may have different numerical behaviours.

This suggcsts a matrix development of CG would be useful, but we leave

this for future work.
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•

4.2 Symmetric LQ Method (SYMMLQ)

prohlC'l11: Solvc Ax = b with A nonsingular symmetric, but indefinite.

Pl'or.ess: t.he normalir.cd Lanczos proccss (18) for symmetric A on K;k(A; b)

starting with v} = b/l1bll.
In this section itcrates of the fonn x~ =Vkyf' are produccd as weIl as

iteratcs .7~[~ = lIk+1ut. (The supcrscript C denotes the solution that would

Iw ohtninec1 by t.he met.hod of Conjugate Gradients, while the supcrscript

L l'cfcl'S 1.0 t.he SY~\'lM~Q mcthod.) Using (19) and solving Tk'!!i = {llel,

{JI =IIbll. one ohtains t,he rcsult (49) as for the Lanczos method.

Snbproblcm (Conjugate Gradients mcthod): Tkyf = PleX, whcre the ma.­

trix Tk is symmetric tridiagonal. TI.: may be singular for sorne k, in which

case this subproblcm will not have a (unique) solution, see later, (p. 38, 39).

Implementation: Since A is indcfinitc, there is a possibility that Tk is as weIl.

Thereforc il Cholesky factorisation may break down. Instead, consider an

LQ dccomposition.

whcrc one mcthod of factorising has the QI =Ql.k· •. Qk-l,k as orthogonal

prodllct~-; of (rcficction) matrices embeddcd in the k·dimensional identity

stmtil1~ in the (i. i) cntry.

Qi.k=

1;-1

Ci Si

Si -Ci

Ik-i-l

(59)

•
Thcse arc dcsigncd ta zero the superdiagonal (i, i +1) entry of TI:. LI: is the

lo\\'cr tridiagonal rcsult. The notation LI: is used to distinguish it from LI:

- the lc«'lC1ing k x k part of L"'+t - from which it differs only in the (k,k)
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• d(~lrlent (-h becorncs ;k). The first two steps illustrate the proccss:

[
'f.J ] QI _

o Pa
= [

Thus arter k steps

o
o =L3•

1----+---1
f3 63 '13

•
o

o
(60)

_ [%k_l ] _ - C= _ =QkYk
(k .

•

fk-l 6k- 1 1k-l

fk 6k '11t

Note that Tk in (20) may he singula.r, in which case Lie is singular. But

since th. ..• Pk :fi 0, Lk-l is nonsingular. For case of ca1cula.tion define

(k-l

(k

H',.. - [101 ••• lOk-l WIt] = [Wk- 1 WIt] =\/kQI, (61)

so thc~ system
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• ili lfil.Tlsfonned to

At cach stcp, "'Yk, Ck and Sie are calculated:

"fI.: =Vil + 13,+1' Cie =ile/'YIe, Sk = J3k+t!''Y/c,

while lhe last row of Lie+! i5 developed at the same time:

-rH 1 = -(J3k+1 Ck-1 8 1e +Ok+ICk), SHI = Ok+l S k - /3k+!Ck-1 CI.:,

fk+l = I3HI 8 1.:-1'

(62)

(63)

By comparing the last entry of Lkzk with the k-th entry of LI.:+l':l.:+1 (both

shoulcl he ~cro):

(64)

•

•

UsiTlg (59) and (61):

(65)

so passing from {Wk, Vl.:+l} to {WI.:, WI.:+l} is painless. The abovc algorithm i8

nol implcrncnted, since if LI.: is singular, then %k is undefined. This Jed Paigc

and Saunders [PS75} to consider the following alternative subproblcm.

SubprobJcm (SYMMLQ): The minimum 2-nonn solution to the problem

T!.rl.kyt = 131et, where Tk+l.k is as in (19). The matrix TI.:+l.k has ful1

column rank, and the subproblem a1ways has a unique solution.

This i5 solvcd by perfonning an LQ decomposition of T41,k'

T -T
[ Tic 1J31c+l elc ] [ QT 1qt+1 ] = [ LI.: 10 ]Tk+l ,,,Qk+1 -

~lvillg Lk::k - /31 el

and sctting y~ - QIZk.

Finally :rf - Vk+lyf =Vk+lQfzk =WkZk =:rf-l + (kWk.
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• Now /./,: is nonsingular if {3k+1 :f. 0, sa Zk does exist and wc can safdy

compute the SYMMLQ solution. Notice x~ can easily he computed using

(66)

The SYMMLQ solution is more easily updated than x~ (when x~ exists),

bllt the latter may he more desirahle at the finish.

ll(to;irluaJ Norms: For the Conjugate Gradients solution

c - -T
rI.: - b- AWkZk = b-AVkQkzk

-T- b - Vk+lTk+1.kQkZIe

b- V'+t [
Lk

] Z.-
0 0 {3k+l Sk-l -{3k+1 Ck-l

- b - Vk+d,81el +{3k+l(Sk-l(k-l - Ck-l(k)ek+tl

- -{3k+1(Sk-l(k-l - Ck-l(k)Vk+l

• ~ Il r fll - .Bk+I!Sk-l(Ie-1 - cle-l(kl·

(67)

(68)

•

Now, for the SYMMLQ residual,

L L c-
rie - b- AXk = b- A(Xk+1 - (k+lWk+l) by (66)

C -
- rk+l + (k+l Awk+l

C - T
- rk+l + (k+l AVk+IQk+l ek+1 by (61)

C - QT
- rk+l + (k+1 Vk+ZTk+Z.k+l HlCk+l

C - )- rk+l + (01:+1 Vk+2(Ï'k+l Ck+1 - ,8k+2Ckek+2) hy (60) and (67

C -
- r k+1 + (1e+1 (ik+l VIe+1 - ,8k+2CkVk+Z)

= (k+l'1k+l VIe+1-

{,8k+Z(Sk(k - Ck(k+.) + (k+l,8k+2Ck}Vk+2 by (68)

- (k+l'Yk+l Vk+l - ~k+2(kVk+2 by (63) and (64)

~ Ilrtll2
- (41'141 + ~k+2(~·
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•

•

Because the implementation of SYMMLQ was originally obtained from this

sort or approach in [PS75], there is no nccd to show any equivalcncc or this

wi t h a standard "vcctor" forro hcrc.
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•

4'.3 Minimum Residual Method (MINRES)

Problcm: ~h~ IIb- Axll for A symmetric indefinite, wherc A can be singular,

and where Ax = bneed not be a consistent set of equations.

ProC'-css: the normalized Lanczos process for symmetric A on K:k(A; b) start­

ing with !J1 = b//3.. /31 =IIbll.
Itetates of the form Xk = VkYk are considered. Using (18),(19),(20) and

(-IS),

Subprobk'TI1: ~h~ 11/31 el - Tk+I,kYkll, that is in theory solve the normal equa·

tions (T~ + /3f+1ekeny~ = /3ITkeh for Tk symmetric tridiagonal. (The su­

perscript M indicates the iterates~ = VkY~ are of the MINRES method.)

The matrix Tk+t,k has full column rank, 50 the subproblem always has a

unique solution.

hnplementation: As for SYMMLQ, consider an LQ decomposition of Tk'

TkQI - Lk, QIQk = 1

T~I,kTk+I,k - Tf + /3i+tekeI = TkTl + /3i+tekeI
- -T 2 T T

- LkLk + /3k+tekek = LkLk•

The last cquality follows by considering the (k, k)-element of the matrices

and (62). So the subproblem becomes:

LkLIytt - t3tLkQkel

or LIYtt - t3tDkQkeh

sincc Lk is nonsingular if /3k+l :F 0, and from (62)

Lk=LkDk where Dk=diag(l, ..• , l, q,).
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• Fol' casc of computation define

whi<:h t.mnsforrns the system to

•

By continuing the sequence

wc sec thc cntries of tl.: are given by:

(70)

Thc columns of MI.: satisfy a three term recurrence (MkLI ::: Vk) (sec (60)):

o

o ... 0 il.:

=> ml =vi/il, m2 = (V2 - 02m l)!i2

•
Finally:
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•

Olle rnay also consider the Conjugate Gradient solution, xk'

Xk - VkYk

whcre TkYf, - /31 el

QkTkYk -T C Q /3- LkYk = k lei

C V.L-TLT c-MLT CXk - k k kYk - k kYk

= M (L D-I)T C M D-ILT Ck k k Yk = k k kYk

= MkD'kIQk/3lel =Mk D'k2(DkQk/3l el)

- MkD'k2tk, by (69)

= xf;1' +Tk(c'k2- 1)mk

- xf;1' +Tk( skiCk?mk.

50 xk is available from xf;1', a1though the reverse does not appear to bc

lruc, lhal is, we have not derived a sim?le way of computing xf;1' from the

Conjugale Gradient solutions methoà.

Hcsidual Norm: To calculate IIrkli or IIrrll, it is helpful to consider the

rclalionship between the mk, and the Wk as defined in (61) in SYMMLQ .

Siul:" wc are considering the theoretical Lanczos process, it must stop in at

mosl 71 slcps. If it slops at /3m+1 = 0, then

AVm - VmTm, Tm = LmQm, Mm = vmL;;;T

AM'm - VmTmL;;.T = VmQ~ = Wm,

Amk - Wk, k = 1, ... ,m.

Now for lhe rcsiduals

r'U r C A(x~ - xf;1') = Tk(Sklck)2Wkk - k -
~f - b- Axr = r~ +Tk(Sklck)2Wkk

- /3IS1 '''Sk(SkWk - Vk+I)/Ck by (70)
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•

•

- /3ISI'" SkWk+1 by (65)

IIrt'1I - /3dsl'" ski

- ICklllr~lI·

As wit.h 5YI'I'll'1'l LQ, thc implementation of MIN RES was original1y obtaincd

rrom this sort of approach in [PS75]. Thus there is no need to show any

cCJ11ivnlcncc of this with a standard "vector" form herc.
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• 4.4 Conjugate Gradients on the Normal Equations

(CGNE) - LSQR implementation

Prohl"m: Solve Ax = b if A E Rmxn is consistent, otherwise ~Ji; IIb­

Axll for general A, by (theoretically) performing the Conjugate Gradient

algorithm on the Normal Equations2,

(71)

•

•

which is a SPD system when A has rank n.

Proces.~: the normali7.cd Lanczos proeess for symmetric matrices applied to

givc a hasis for K;k(ATA; ATb).

TIl<' pmct.icnl implementatioll does not use ATA to compute the Lanczos

,·..dors. lllsl.,,,,d it considers two bidiagonalization procedures for the un­

SYllIlIlCl.ric A callcd Biding! and Bidiag2 respeetively.

Bidiagl: This rcduces A to lower bidiagonal form using

PtUt - b

!rtVl - ATUt

PHt1lk+l - AVk - !rkUk (72)

!rk+lVk+! - ATUk+l - Pk+tVk (73)

wherc the !rk and Pk arc chosen to normalize Vk and Uk respective1y, 50

1I1lkli = IIvkll =1. The process stops when either (72) or (73) is zero. With

thc dcfinitions

's"" Claim at the end of thi.. subsection, p. 51.
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•
I3k -

o al'

the recurrence relations may be written as

AVl' - Uk+lBlc+l,k

ATUk+t - Vk+1Bf+lo

(;4)

(75)

•

•

The bcauty of this is that the choice of coefficients ensures in thcory (prior

to stopping)

Proof by induction:

urUI - 1 =vtV;.
Suppose Uru" - 1 =V{V", UlAV" =B"o

From (72) f3k+t UrU"+l - li[Av" - Ctkei; =Bkek - QkCk =0,

so U'[+t U"+l - 1

and from (74) U'[+t AVk - Bk+Uo

From (73) Qk+tV{V"+l - V[ATUk+l -f3k+tCk

- Bf+1,kC" - Bf+l,kek =0,

50 V~IVk+l - 1

and from (75) U'[+l AVk+l - Bk+l'

Bicliagl is rclatcd to two Lanczos processes, as can he seen by combining

(j'l) and (j5) .
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• (i6)

Clcarly {lli}t spans the krylov subspa.ce K:l:(AAT; b), while {Vi}t spans the

krylov subspacc K:k(ATA; ATb).

rJidiag2: This rcduccs A to upper bidiagonal form using

OIVI - ATb (ïi)

PIPI - AVI

01:+IVk+1 - ATPk - Pl:Vl:

Pl:+1Pk+1 - AVl:+l - Ol:+lPl:

whcrc the Ok and Pk are chosen to give VI,: and Pk unit uorm respectivcly.

With t.he der.nitions

•
Pk - [ Pl P2 ... Pk ] ,

Pl O2

P2 03

Rk -

•

the rccurrcl1ce relations may he written as

Vk(Olel) - ATb

ATPk - VkR! + Ok+lVk+1e! =Vk+1R!,k+l

AVk+1 - P1:+1 Rk+l

P~IPk+1 - V~l Vk+l =1

P[+l AVk+l - R.J:+l.

The last. two Iines follow since this recurrence is esse:ntially Bidiagl with

b repJaccd by ATb, and AT replaced by A. Again we ha.ve two Lanczos
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•

processcs

so {pdt spans A;;k(AAT; AATb), and {viH spans A;;k(ATA; ATb).

Relalionship betwccn Bidiagl and Bidiag2: The Vk are the same in Bidiag!

and Bidiag2, that is they are the result of applying the Lanczos process lo

devclop A;;k(ATA;ATb). This fo11ows since {viH spans this same Krylov

sl1bspace in Bidiagl and Bidiag2. The Lanczos proccsscs \Vith ATA in (ï6)

allli (ïS) arc lherefore identical, and

Dropping the last row of this gives

This eql1ality shows that Rk is the upper bidiagonal factor of Bk+l.k in iL~

QR factorisation:

for Qk as in § 3,

The problem could be solved using either Bidiagl or Bidiag2. Bccausc of

ils grcater numcrical reliability in certain circumstanccs, LSQR \Vas based

ou BidiagL and il is given here. It ca.rries out the above QR factorizatioll

of Bk+ l •k as the process progresses.

To solve~~ lib - Axll using quantities from Bidiagl, let

Xk - VkYk

tHI - Plel - Bk+I,kYk

• Tk - b-Axk
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•

•

Ihll = IIUk+l tk+dl = II tk+dl

=>~k~ Ihll - ~~JR. II t k+11I

Subproblcm: ~r:'eiR. 11131cI-Bk+l,kYkll, for Bk+I,k e nlk+l)xk lower bidiagonal

supplemented byan cxtra row. This always has a solution.

Implementation: This is solved using the QR factorisation of Bk+l.k which

wit.h (~r») transforms the subproblem 1.0

This is cquivalent ta

For ea", of calculation define

Dk - [ dl d2 ... dk ] = Vr.Rk
I

Wk - [ Wl W2 ... Wk ] = Dkdiag(Ph'" ,Pk)

%k - Vr.Yk = VkRk I fk = Dkfk.

No\\' the dk (and their scalar multiples, the Wk) are easily calculated from
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•

\!.T - RTDT.
k - k k·

VT Pl l cff1

VT O2 . 4'2 - . Pk-l
T Ok Pk cffVI>:

(do - 0, Wo =0)

and hcncc the XI,:: •

Res; c! ual Norm:

rI,: - Uk+t tk+1 =Uk+lQk [ _
0

] = ~k+tUk+tQkek+l
<l>k+1

lIrkll - l~k+t1 = PdSl ... skI by (46)

=> Ilrkll - ISklllrk-lll·

CliLim: LSQR;s equivalent to CG on the Normal Eqautions (NE).

Proof: il)' • dcnote the quantities from CG on the NE, that is

Âx= b,

where Â == ATAis SPD and b=ATb. Now it has already been sho\\o"Tl that

VI: produced in Bidiagl is the same as Vit produced in the Lanczos process

on A,:k(Â, b}. To show the theoretical equivalence of the two mcthods, wc

must prove
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• Now Lhe !lk satisfy RWk = /k, while the Yk arc obtained from

'.hYk - Plc\k)

RfRkYk - Olc\k) by (77) and (78)

RkYk R;:TO c Ck)- kil •

So iL rellliLills Lo prove the equivalence of Yk and Yk using

RkYk - RkT01c\k) and RkYk = /k.

Now RUk - first k entries of [4] 9k·

[4]9
k - [4] P,QkC\k+')

- H4]r~·\~"• [ BJ;l.k ] PIc\k+1)-

Q Pc(k+l) _ 0 (k+1)- 1 1 1 - ICl

~fk R;:TO (k)- k ICI·

The two methods produce the same itera.tes and therefore are the same.

((owever naively applying the CG method ta the Normal Equations has un­

satisfactory behaviour on ill-conditioned systems. Thus it is more favourable

to IISC LSQIl.

The LSQR implementation of CGNE was obtained nom this sort of

approach in [PSS2]. The mathematical equivalence of LSQR with CGNE is

shown abave.

•
References: [GI<65, PS82]
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• 4.5 Generalized Minimum Residual Method with re-

starts (GMRES(m»

l'l'Ohl<-rn: Solve Ax =b for x when A is general nonsingular.

l'I''H'''SS: :\1'IIoldi algorithrn applied to }Ck(A; ro), where ro == b - Axo for

sollle initial gucss Xo. Define hl,o == IIroll, VI = ro/hl,o.

This algorithm considers iterates of the fonn Xk =xo+ VkYk 50 that IIrkll

is rninimizcd over (Xk - xo) E }Ck, that is

...~~~.c. lib - AXkll = ~r:e~. lib - A(xo +VkYk)1I =

~r:eW. lira - AVkYkll - ~r:eili. 1lVi:+I(hl•ocl - Hk+I,kYk)1I by (3).

T [fk]9k =hl,oQkCI = _ as in (45).
t/>k+1

So hy solving for Yk = R;;I fk by backward substitution, the subproblem

SlIhproblem: ~r:eili. IIh l,ocl - Hk+I.kYkll, for Hk+1 E R(k+l)xk upper Hessen­

berg supplcmcntcd by an extra row. This c1ea.rly a1ways has a solution.

hnp!cmcnlation: This may be solvcd by perfonning a QR factorisation on

Ih+l.k

T [Rk ]Qk Ih+l.k = 0 '•
bccomes

Rcsidual Norm:

IIrkll - I~c.,.d = hl,olsl •.. ski by (46)

~ Ihll - ISkllh-dl·

As a practical note, sinee the Vt. V2, • •• are kept, it is not neccssary to

compute Xk until iteration m, at which time

• 53



•

•

•

an: calclllated and the a1gorithm is restarted with Xo == X m and ra == rm'

Al allY ileration, based on the magnitude of IIrkll, the a1gorithm may be

sl.oJlped and Xk calculated.

The c1mwback of GMRE5(n) requiring an increasing amount of work and

slomge 'L~ the iteration count rises is overcome by restarting every m iter­

.. I.iolls, fOI' sorrI<: TrI «Tt. Unfortunately the optimal value of m is difficult

1.0 ddel'lllille and in certain cases the method wiJl not converge for m < n.

'Iè)o large a value of m results in unneccessary work and storage. On the

other hand, too small a value may give slow convergence or fail to converge

at ail.

Becallse the implementation of GMRE5 was originally obtained from

this sort of approach in [5586], there is no need to show any equivalencc

of this with a standard "vector" forro here. The GMRE5(m) method ­

slightly altered from 'Tcmplates' - is as follows.

xo initial guess

for j = 1,2, ...

h,.o = Il'' - Axoll

/'\ = (" - Axo)/hl •o

Qi: = [1]

~I = h1,o

for i = 1,2, ... , m

Ui = AVi

for k = 1,2, ... , i

hk.; = vrU; (or, k-th entry h; gets hk,;)

Ui = U; - hk,;Vk

Vi+1 =u;/h;+I,;
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• Q'[.., hi ]

•

•

r" - r'-1,1 - 1,1

s' = -h'il -Ir' .1 IT ,1 l,'

CJT =Qr.i [ 0;..,11 ]
lPi = Ci~i

~i+t = Si~i

if l~i+ll < toI

updatc(x, i) and quit

updatc(x, m)

end

llpdate(x~j):

solve Ilj!/) = fj by back substitution

rOfm Xj = \.jYj

end
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• 4.6 The Unsymmetric Lanczos (BiConjugate Gradi­

ents) Method

1'1',,1,1,,111: Solve Ax =b for x when A is gencral nonsingular.

First we derive what williater be shown to be the BiConjugate Gradients

approximations Xk from the standard unsymmetric Lanczos process. We

rcCer to this as:

The standard lInsymmetric Lanczos·BiCG method.

l'ro<:,,,;s: the standard unsymmetric Lanczos process (32) to producc mutu·

allyorthogonal {V..... ,Vk} and {vt.""Vk} spanning the krylov subspaccs

K;k(A; b) and K;k(AT; b) respectively, starting with VI =bl(31 and VI =bhh

where (3, =il = 11h11, where (3j+1 is chosen to normalize Vj+l'

Ta derive the subproblem we use (31) and consider itcrates of the form

"k = \lkYk a.~ suggcsted in (4;), and take TkYk = (3iC" so that

• rk - b - AXk = b- AVkYk

- b - VkTkYk - (3k+lVk+lCrYk

- Vk((3ICI - TkYk) - (3k+iVk+lCrYk

- - (3k+iVk+l crYk, (;9)

•

mllch the same as (49) in the unit norm Lanczos method. In theory we have

(3HI Vk+l = 0 for sorne k $ n, the dimension of A, and the problem will he

soh·cd.

Subproblcm: Solve TkYk = (3ICt. where Tk is tridiagonal.

Whcn Tk is singular this subproblem does not have a (unique) solution,

bllt a.~ wc are only intent on giving a new approa.ch to the general BiCG

id.:a. we do not go into such aspects here. One very satisfa.ctory approa.ch

to ;\\'oiding SlIch difficulties is to use the Quasi-Minimal Residuals mcthod

discllss<"d later in § 4.i . This work on BiCG will motivate that.
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• 1111 plcmclIt.iLtion: This may be solved using an LU factorisation (\\'hen it

t·;.:i~ts) of n· = l.kUk, whcrc LI.: i5 lower bidiagonal and VII' is chosen to he

uuit. upper bidiagona1. Thcre is nothing special about Til', so the use oC this

c1ecornposition without pivoting may not be stable. For Curther insights on

this, sec the following alternative unsyrnmctric Lanczos-BiCG melhod.

For case of calculation and savings on storagc, define

•

so th(: systcm is transCormed to

TkYI.: = LkUI.:Yk = Lk=" ~ Lk=k = PIe.,

V"y" = V"U;lUkYk ~ XII' = Wk=k.

No\\'. LI.: is formed one ro\\' at a limc; Uk one column at a timc:

0 0
Lk-1 Uk-1

Til' - 0 71k

0 CI.: Sk 0 0 1

0 0
Lk-1Uk-t Tk- t

- Sk-t1Jk - '1k

0 Ck lk1Jk +Sk 0 Pk Qk

~ SI =01

lI.: = Pk, 1Jk = '1k/Sk-1, S" = Ok - (k1Jk, k> 1. (80)

And 50 =11' is forrned one entry at a time:

0

[ Z~I ]
1'''-1 [ L~IZ'-l ]0 - = 131cr

S"
fk("-t + S"(k

0 (Il'

~ (1 = 131/6., (Il' - -(kCt-11SIn k> l. (81)• 57



• IV~. is iLlso fOrrTu:cJ one column at a time (WkUk = Vk ):

0

[ 11''''_1 Wk ]

Uk-l
[ Wk_ 1Uk_1 7JkWk-1 +Wk ]7Jk -

0 0 1

~ Wl = VI, Wk - Vk - 1/kWk-l, k> l.

Fi Il il.lly,

H(~idllal Norm: The following estimation of the norm of the residual rk, as

dl~nllcd in (i9) can be used.

Tt.- - -{3k+1Vk+ICrYk = -{3k+IVk+lYkk

Il'·1.'11 = 13"'+lIYkkl, where Ykk i5 the k-th entry of Yk.

Silice YI; is not computed directly, one must consider

• UkYk - Zk

0 Ykl

[y~]= [ Z~I ]

Uk-l

1/k -
o 0 1 yu

Yu - (i:

~ II r kll - l'k+1l(kl

- l'Ic+ll f i:(Ie-tfSki by (81)

- l'k+1l'kl(k-tfSki by (80)

Il rk Il - 13k+1llr k-l iI/ISlel, k?: 1.

•
Although this solvcs the problem in much the same way as BiCG in 'Tem­

platcs·. [BBC+9'1J~ it gives different sca1ings for equivalent vectors. Let us

now derive a method which, as ,..ith the BiCG method of [BBC+94], pro­

duces the rcsidual vectors themselves.
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•

Tbe alternative unsymmetric Lanczos-BiCG method

Pl'OCC~~: the alternative unsymmetric Lanczos proccss, sec (33) ta (44),

starling with VI = VI = b (/31 == 1). The normalization /3j+l 1S unspecificd

as yet.

lJ~ing (3i) and and considering iteratcs of the form Xk = VkYk a.s sug­

gestcd in ('li) and solving for TkYk =el!

rk - b- AXk = b- AVkYk

- b - VkTkYk - /3k+l Vk+l crYk

- Vk(ci - TkYk) - /3k+1 Vk+1 erYk

- -13k+IVk+lerYk. (82)

Sl1bproblcm: Solve TkYk = eh where Tk i5 tridiagonal. Again Tk may he

sitlgular! in which case this approach, and ordinary BiCG, fails.

hnplcrnentation: This may he solved using an LOU dccomposition of Tk'

The one shown be10w 5uits our purposes. With the as yet unkown 'Dk ==

-diag(t1:z! ... ,l3k+I)' write

Tk - Lk'DkUk

0 0 0
Lk-I 'Dk- 1 Uk- I

= 0 0 -~ (83)

0 -1 1 0 0 -Pk+I 0 0 1

0
Lk-l'Dk-l Uk-I

= ""fk

0 Pk -bk +Pk+d

A simplcr method could be obtained by cornbining 1) and a, and using for

e'xamplc U ='DU instcad, but the approach here will produce the cquiva­

lents of various clements of BiCG that wc want.

Our normalizers Pj+l may DOW he determined by cquating the right side
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• of lhc~ iLbovc cqua,tion \Vith the tridiagonal Tk in (36). So

QI - -f32; Qk = -(;k +f3k+d, k> l,

=> /32 - -QI; /3k+l =-(Qk + 'Yk), k> 1. (S4)

We will show taler that if I3j+l = 0 the ordinary BiCG breaks clown too,

ot!lerwisc: titis is a, satisfactory norrnalizer for the process, and Uk+1 exists.

III the.' m<:iLutirnc dctinc

(85)

•
For 0111' tiller ana,tysis, we also define

r-v - [- - - ] - l/j- U-1
l' k = WI W2 •• • Wk = k k ,

iLllltOllgh this is not used in the algorithm itself.

The system is transforrned to

TkYk =Lk'DkUkYk =Lk'Dk%k => Lk'Dk%k = el

VkYk = Vk U;l UkYk => :Ck = Wk%k.

Now :::. is formcd one cntry at a. time:

•
Pk(k-l - Pk+l(k

1

f3:
Pk Pk-l 1

(k - -(k-l = --Ck-2 = ... =---,
Pk+l Pk+l Pk+l

60
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• '"'Ik
101 = VI> Wk =Vk + {3k Wk-t.

Û!l Vh . . + '"'Ik •= Wk =Vk {3k Wk-t.

k>1

k> 1.

Fillally.

Residllal Norrn: The following estimation of the norm of the rcsidual rk, as

ddined in (S2) may be used.

Sa the alternative unsymmetric Lanczos process, with VI = b, can be used

1,0 "roduce the (BiCG) rcsidual vectors rk = b- AXk themselvcs, as long as

iJ)+ 1 is chosen as in (S4).

It r"lllains to examine under what conditions {3j+! can be zero. Suppose

3~..... i1j obtained from (84) are nonzero. Then with eT == [1, ... ,1], we

h,we (~TTj = [0, ... ,0, Qj +'"'Ij], which will be nonzero if 1j is nonsingular.

However if aj +'"'Ij = °then 1j is singular, and both this and the standard

niCG method fails. Otherwise, it is cIear that the LJJlk 'factorization' is

possible. However small {3k could cause large clement growth in Uk.

Equivalence of unsyrnmetric Lanczos-BiCG with BiCG: The BiCG method

- slightly a1tcred from 'Templates' - is as follows.

•
= -(3k+!(kVk+1 by (S5)

- Vk+1 by (86)

=> IIrkli - II vk+!lI·

(Si)

•
ro ="
ro = To
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ror ; = 1,2, ...

ir Pi-I = 0, the method fails, stop

ir(;=l)

p; = ri-I

cise

fJi-1 = Pi-IIPi-2

Pi = ri-I +fJi-IPi-l

. . + fJ -TJi = Ti-l i-lPi-1

'Ii = Api

qi = ATpi
O· - p' Ip-Tq'• - .-1 i 1

Xi = xi_1 + OIiPi

c:hc<:k convergence; continue if necessary

end

1'0 avoid confusion we will use the superscript B to distinguish 'Tem­

plates' tenns from those here, where it will aIso make life casier if we re­

index two of the 'Templates' terms as follows:

pf - 'Templates'pi_h

pp _ 'Templates'Pi_lo

We now write the aIgorithms side by side for comparison, where in the

alternative unsymmctric Lanczos-BiCG aIgorithm we replace Vi+l by ri, sec

(8i). introduce ui == AVi and Ùi =ATiii and redefine ri =iii+l- For case of

nllnparisoll in handling the i =1 case we assume 1/00 =0 and define
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lliCG

f'ff = l

xff = 0, pe = 0, fie = 0

roB - r B - bo - a -

Then for i = 1,2,3, ... we ha.ve

BiCG

(3P =pflPP-I
13 _ 8 + fJ8 8Pi - ri_t i Pi-t

-13 _ -13 (38-8
Pi - ri_1 + i Pi-I

'If = ApP

'ii = ATiW
oB =I,B/ p-8TqB
• 1 • 1 •

xp = XP-I +cr~pfl

rf = rP-1 - cr?q?
-13 -8 8-8
ri = ri_l - Qi qi

unsymmetric La.nczos·BiCG

Po = oc, fJl = l

Xo =0

r_I=O T_I=O,To=ro=b

aIt. unsym. Lanczos·BiCG

P· - roT r·
1 - i-l .-1

'Yi = fJiP;fPi-1 from (44)

Wi = ri_1 +b;ffJi)Wi-1

Wi = Ti_1 +b;f(3i)Wi-1

Ui = Ari_1

Üi = ATTi_1

cri = j'LIu;fPi from (40)

fJi+1 = -(cri +'Yi)

Xi = Xi_1 - (l/fJi+r)wi

ri = (Ui - criri_1 - 'Yiri-2)/fJi+1

Ti = (Üi - criTi_1 - 'YiTi-2)/(3i+l

The main difference in cost between the two is in the calculation of

the rcsiduals and shadow residuals (the ri) - 2n extra multiplications,

subtractions and divisions in the alternative unsymmetric Lanczos·BiCG

algorithm - which are partially offset by the n extra multiplications and

additions in the SiCG calculation of pP (Wi is not actually calculated). The

cC]uivalenccs are

A straightforward examination shows this is true for i = 1. Suppose it is•
8 'YdfJi = fJf, Wi = pfJ, - -8Pi = Pi , Wi =Pi

-1/(3i+l 8
Xi = zr, Ti =rf, ri = Tf·- Qi , (88)
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• true for i =1,2, ... , k - 1. Then it is c1ear that

- -B
Wk = Pk'

We now nccd only prove

(89)

•

for then Xk = x:, and their residuals rk and rf must then also be equal, since

rf is c1early the residual for xf by exa.mining the last two Hnes of BiCG,

and we have shown ri is the residual of Xi in thp. ::l~ernative unsymmctric

Lanczos-BiCG. In this case 1'k = if follows from the equality of the rk

and rr rcsiduals, since we know that rk = 'Pk(A)b and rf = tPk(A)b for

I.W() k degrœ polynomials 'Pk and tPk, and 'Pk = tPk. But we cao also show

h = 'Pk(AT)1J and 1': = tPk(AT)b, 50 these must also be equal. We cao

prove (89) using our matrix formulation of the unsymmetric Lanczos-BiCG

algorithm'. Wc know Wk = VkU;1 and Wk = iikU;I, 50

MirAWk - U;Ty[Av,.U;l = U;TDkTkU;1

_ U;TDk(Lk1)kUk)U;l = U;TDkLk1)k,

which, by the way, is lower triangular and symmetric (sec (39)), and there­

fore diagonal, showing "A-biorthogonality" of the Wi and iD;, where i,j < k.

The (i, i)-clement of this is (sec (83))

But cTU;;T = (x, ... , x,l,O, ... ,O) is zero aCter the i-th element,5O since

l'P = lt'i pp = tôi .. i = l, ... ,k,

i = l, ... ,k.

•
From the BiCG algorithm we then sec

of =pf/f1Fqfl =p;/f1FApf =-l/fJi+h i =l, ..• ,k,
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and so (89) holds, and the induction proof of (88) is complete, showing that

in theory these algorithms not only compute the sarne iteratcs, but a1so seY­

era! of the intermediate quantitics are identical. Howeyer the aigorithms arc

c1early not identical, as the last two !ines of cach c1~l!.!'1~ :.ighlights, and may

have dilTercnt nurncrical behaviol:::;. This suggcsts a matrix dcvclopment

of I3iCG would be useful, but we leave this for future work.

65



•

•
---

4.7 Quasi-Minimal Residuals (QMR)

Prohlc:rn: Solve Ax = b for x when A is general nonsingular.

Pro""ss: an unsyrnmetric Lanczos process which produces mutua.lly or·

thouorrnal {II" ... , Vk} and {v., ... ,Vk} spanning the krylov spaccs JCk(A; b)

ôlml .\:k( AT;,,) respcctively, starting with VI = bl/31 and VI = bl/31' where

111 = {l, = Il''11. Wc choose /3j+l to make Vj+l unit length and /3j+l to make

Ii)+. uuit Icngth. Wc define pj+l == V;+lVj+l'

To deriv(~ the subproblem wc use (21) (where Tk == Hk is tridiagonal)

and consider iteratcs of the form Xk =VkYk as suggcsted in (47).

Since \lk+' docs nol, have orthonormal columns, it is diflicult to minimize

Ihll. The reduccd system below is considered, and this givcs rise to the

name 'Quasi', since the rcsidual is not actually minimised.

From (23) V41 Vk+l = Dk+tt so V41rk = Dk+l(/31Cl - Tk+l.kYk). QMR

miuimizcs 1I/31cI - Tk+l.kYkll, so in rea1ity (in theory) QMR is minimizing
• -TIl /);;+' \Ii +1 rkll, not IIrkll·

Suhprohlcrn: ~~~Ik~ 1I/31Cl - Tk+l.kYkll, for Tk+l.k E ·R.lk+l)xk tridiagonal

supplernentcd byan extra row. This always has a solution.

Implementation: This may he solved using a QR factorisation of Tk...l.k as

\Vas donc on lh+l.k in GMRES in § 4.5.

1l0\VCV<'T I4 is upper tridiagonal, not just upper triangular. Solving for

Yk = Rj;1!k the subproblem becomcs

•
min Il [ 14 ] ,- 1••eR" 9k - 0 ?ikll = I?k+l •
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• For eil..'ie of calculation dcfinc

~Vk ; [Wl W2 ••• Wk]; VkRk'l.

The Wk satisfy a thrcc term rccurrcncc (WkRk = Vk):

o

•

o 0 0 ru

=> tut = Vt/rl,h W2 = (V2 - rl,2wl)/r2,2

toI.: = (VI.: - rA:-2.kWk_2 - rk-l,kWk-l )/rl:,k, k > 2.

Finally,

Xk - VkYk = Vk R;;l fI: = Wk/ k

- Wk-dk-l + tPkWk = Xk-l + tPkWk•

He-sjchml and Residual Nonn: The Collowing estima.tion of the norm o[ the

rcsicltml rI.:, CL') defincd in (90) is uscd.

II r t·1I = II Vk+1 (PICl - Tk+l,kYk)lI

< Jk + IllPlcl - Tk+l,kYkll (columns of Vk+1 are unit length)

- Jk+ 11~k+d by (91)

- Pl Jk + 1Is1··· Ski by (46).

Once this bound on the residual norm rea.ches a. sufficently low value, the

Collowing calculation oC the a.ctual residual i5 used Cor the Cew remaining

iterations.

•
rk - Vk+l (Plel - Tk+l.kR;1 fic)

- ~Ic+lVIc+I Qlcelc+1
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- [~]= tPk+1 Vk+1~ (Skek +Ckek+l)

= ~k+! (Sk VkQk_lek +CkVk+t>

2- -
= SktPkVkQk-lek +CktPk+IVk+1 by (46)

2 -
- skrk-I +CktPk+IVk+1 by (92).

FinlLlly, hcre is the unpreconditioned a1gorithm with no look-ahead or scal­

ing from the original papcr [FN91).

x() = 0

"1 =bl{3a, VI = VI

-T
1'1 = "I VI

("-0 = 1

~I = i~1

r_I.I"'_1 = 0, rO.IWO = 0

fur j = 1,2, ...

Oj = vTujlpj

{3j+!.= IIvj+11I

Vj+! = Vj+tI{Jj+!

Vj+1 = lij - ajvj

~j+1 = IIvj+!1I

';j+1 = Vj+tI fJj+1

-T
P1+! = "1+1 Vj+!

;1+1 = fJJ+!Pj+!1Pj

Uj+1 = AVj+1 - "rj+!Vj

7j+1 = 8j+IPj+tIPi
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if j > :!

if j > 1

rj_l.j = "fjCj_ICj_2 - OIjSj_1

i'j,j = 'YjSj-1Cj_2 +OIjCj_1

rj.i = Jr;,j +{3;+1

Cj =rj,j/rj.j Sj = -{3j+drjJ

</Ji = c/~j, ~j+l = Sj~j

lOj = (Vj - rj-2JWj-2 - rj_IJwj_1 }/rjJ

xi =Xi-l + tPjWj

c1lt:ck convergence; continue if ncecssary

end
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4.8 Conjugate Gradients Squared (CGS)

Mot.ivation

The Conjugate Gradients Squared (eGS) rnethod was so named because

in" sense (that will becorne dear) it gives the "square" of sorne quanti tics in

th,: BiCG rnethod, and the bcst introduction to it appcars to be via a new

CGS algorithm derived frorn the alternative unsyrnrnetric Lanczos-BiCG

aigoritllln of § 4.6, which we reproduce here for case of reference. First the

initial conditions are (where again we use 1/00 = 0):

f'()=oo, 131=1, xo=O, r_I=O=T_I=O, ro=To=b.

Th"" for i = 1,2,3, ... we have

alternative unsyrnrnetric Lanczos-BiCG

P· - roT r·• - i-t 1-1

7i = l3iP;/Pi-1 frorn (44)

lOi = ri_1 +bi/l3i)wi-1

lVi = Ti_1 +boll3i)wi-1

Ui = Ari_1

lli = ATTi_1

Oi = TLI U;/Pi frorn (40)

Pi+! = -(Oi +7i)

Xi = Xi_1 - (1/l3i+!)wi

r. =(Ili - Oiri_1 - 7iri-z)/l3i+1

ri = (Ùi - Qiri_1 - 7;Ti-z)/l3i+1

We sec from the initial conditions and last two lines that

ro _ b,
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where thc polynomial in A, "'k(A), expressed as a scalar polynomial "'k ==

<,:'k(O) is given by

1
"'0 - 1, "'1 = f3-z (0 - 0.)"'0,

1
"'k = -{3 [(0 - Ok)"'k-I - ik'f'k-2), k> 1. (0:1)

HI

Now since the I3iCG residuals arc constructed to be mutually orthogonal,

FTrj - rr",;(A)"'j(A)ro =0 for i '# j,

= rr",f(A)ro '# 0 for l = J.

It is the squareù polynomial in this last line which is important in CGS.

Notice in 13iCG that multiplication by A and AT was requircd in going from

ri_1 to ri; that is from "';_I(A)ro to 'f';(A)ro. Using CGS wc will sec that it is

possible to go from "'r-I (A)ro to ",r(A)ro using only two multiplications by

A. The advantagcs of this are that multiplications by AT arc not rcquireù

(anù sometimcs it is cumbersome to produœ code to do such multiplica·

tions). anù 2i matrix multiplications arc rC<luired to produce a polynomial

of c1egrcc 2i (\\'hercas it is only dcgrre i in BiCG). A disadvantage is thnt

althollgh ",;(A)ro has useful properties in BiCG, it is not c1ear what the

lIsd1l1 propertics of ",HA)ro are. Nevertheless we now derive a new variant

of (:(;5. Dcllne

No\\' \\'e sho\\' ho\\' thcsc ne\\' polynomia1s ",l and "'k"'k-I may he constructed

•

Fces - ra,

rfcs - ",~(A)ro, k ~ 0,

and sCcs - "'k(A)'f'k-1 (A)ro, k~ 1.k

Then (rccsfsfcs - r't'f'k(A)'f'k-l (A)ro

-T 0 k~ 1.- TkTk-l = , (94)
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• rc,;ursiveiy, using (93). From the resu1ting expressions we give the corre­

sponding recllrrences for rfGS and sfGs.

(95)

'PI 'Pa -

'-.'k<;k-I =
cc;s =," ~.

"
Yi =

1 ) GGS 1 ('PI = {32 (0 - CCI , or SI ='PI = {32 A - CCIJ)ra,

_{31 [(0 - cck)'PL - Îk'Pk-l'Pk-2], k> 1,
k+1

1 [( A 1) CGS CGS]-{3 - CCk rk_1 - Îksk_l' k > 1.
k+1

1 CGS 1 CGS
{32 (0 - cctl'PI'Pa, or ri = {32 (A - CCIJ)SI ,

•

(96)

and for k> 1

<;~ = {3; [(0 - CCd'P~_1 - 2Îk(0 - CCk)'Pk-l'Pk-2 + Î~"~-2J,
k+1

= {3; [{3k+l(O - CCk)'Pk'Pk-1 - Îk(O - CCk)'Pk-l'Pk-2 +Î~'PL2J,
k+1

rfcs - {3; [Pk+l(A - cckl)s~GS - Îk(A - cckJ)s~~f +Î~r~~;]. (9i)
k+1

The key to this new CGS algorithm is that the CCk, Îk and PHI are

exactly those in the Lanczos-BiCG algorithm above, and may be computed

frnm the ces vectors as foIIows.

~il - 0, Îi = PiPitPi-h i "> 1,

CCi - rL Ari_dPi = r5'Pi-I(A)A'Pi_I(A)ra/Pi

- (rCGSf A'PL(A)ra/Pi = (rCGSfArf-~S/ Pi, i ~ 1

- (rCGS f(Arf-1s - Îisf-1s)/Pi, i ~ 2, (99)

•

silice (rCGSfsl:.C;s = 0 for i ~ 2. Finally 132 = -CCI and Pi+! = -(CCi + Îi),

for i > l, are immcdiately available.

We cao now combine the above expressions ta give the full computation

for the rfGS and sfGS vectors - we cali this the "CGS process" - without

yet showing the computation for the solution, which is given later.



• NI'''' COS rnethod

Pl'Ohlem: Solve .'lx =b for x when A is general nonsingular.

C(;S Pror.ess: Wc drop the superscript CGS from Sj, and ",rite ÏJ == reGS =
",,; ".1+1 == rfGS, j ~ 0, and for efficient computation dcfine û\ == AVI;

,;, == il"j - :j"j_1 for j > l, and !j == ASi for j ~ 1. Again, 1/00 =o.

flu - 00, {31 = l, So == 0, Vo == 0

VI = ÏJ =b

for ] = 1,2, ...

flj = ÏJTVj from (98)

p'"lj = _J_{3j
Pj-\

Ûj = AVj - "ljSi-1

•
Qi = ÏJTÛj / Pj from (99)

{3i+1 = -(Qi +"Ii)

{3H1Sj = Ûj - QiVi from (95)

(100)

(101 )

!i = ASi

"Ii
PJ+1 Vj+l = Li - QjSj - -{3(Li-\ - QjSi-d

i+l
"1;

+-Pvi-I (102)
j+l

this last corning from (9;). t'. healthy aspect of this is th11.t, as requircd in

P -T -T - -T 0 . > 1i+lv Si = V ui - QjV Vi = QjPi - QjPj = , ] _ , (103)

•

follo",s immcdi11.tcIy from the jth stcp without any recoursc to additional

thl..'Ory or induction.

Dcspite the cIegance of the 11.bove motivation for the new CGS method

and proccss, the reader should he warned th11.t the following is esscntially
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• "\\'01'1\ ili progress", and the matrix reprcsentation is somewhat complicated,

;11If1 prohahly not optimal.

i\lil1.rix n!prescntation

Ir \\'c~ lise (lOt) for the odd columns and (102) for the even columns the

ces proccss becomcs, in matrix form

- [v, V2 V21c-l V21c ]

- [v, SI Vic Sk]

- - T -= ~kF2k + 'sk+1 V 2k+le2k = V2k+1 F21c+l.2k

(104)

(105)

[ 1 J
G2k-2

wllc:rc G2 G2k = -if!:;
k>l-

1

1

• J'i - [~ oJ
F2k-2

F2k - Îk

Pk Ok

131:+1

k>l (106)

Using (105) and solving for F2kY2k = eh we coni.-ter iterates :rit not quite

the same as in (47),

•
;rie - X2k = ~k~Y2k

rk - b - Arlt = b - M 2k =b - AV2kG2kY2k

- b- (V2IcF2k + ,8k+l~leië)j2k
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SlIbproblern: Solve F2kY2k = et, where F2k is upper Hessenberg as in (106).

This uocs not ha.ve a solution if F2k is singular, and at that time this implt.'­

Ilwnt.atiotl or the CGS rnethod would fail. However, wc continue a.....suming

that this is not the case.

ltnplcrncntation: This may he solvcd using an LOU dccomposition or "21,;.

The one which suits our purposcs is shown bclow.

J'~ - IJ2 iJ2Ü2

= [~I 1][ -~ _~][ 11] = [-: _~]

• -1 1

-1 1

-~

1

D2k = 1----+-------1

1

•
Pk -bk +Pk+l)

PIt+l -bit +Pk+!)

Our normalizers Pi+! are now verified hy equating the right side; of the
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abovc: cqualions \Vith F2 and F2k. So

01 - -(J2; Ok = -bk + .8k+.), k> 1

=>.82 - -01; .8Hl;:; -(O'k +"Yk), k> 1. (109)

This was the choicc of .8j+l that we made in § 4.6. As long as it is nonzcro,

il. is a salisfêlclory normalizcr for the process, and Ü2k+2 exists. For case of

ca1cuJation, wc make the following definitions.

W1k - [ Wl W2 ... W2k-I W2k ]

[ Ul
] - - 1- 91 ... UA: qk =V2kG2kU2i.:

(1

and =2k
(2 =Ü2k fi2k-

(2k

=> (2k - Y2k.2k.

So our system is transformed to

Solving

-{J·il

132(1 - 132(2

132(2 - PJ~

fJA:~-2 - {Jk+1(2k-1

{Jk+I(2k-1 - fJk+l~

1

th
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• (2k-1 =

(k -

=

( llO)

k>\.(lll)

Tite even co\umns give a less pleasing rcsult.

Now rk - -)3k+tfhk.2kVk+t = -)3k+I(2kV k+1 = Vk+t (Ll2)

• and - - 1
( 113)Xk - X2k-2 + (2k_I Uk + (2kqk = Xk_1 - p-(Uk + qk)

HI

so lltis CGS proccss produccs vectors Vj+t which are the rcsidual vectors rj

or t.he melhod.

Il remains lo examine under what conditions f3j+t can be zero. Suposc

;12'" .• 11j oblained rrom (109) are nonzero. The with eT == [1, •.. ,1], wc

Tt:' [0 -if-I aj-l'Yj_1 . Q ]
e 1'2j_1 - ," " - )3j - )3j + aj_1 '1" l'j, aj + 'Yj

T -'YI-I - aj-l'Yj-1 - aj_l(aj_1 + 'Yj-I) + (aj_1 + 'Yj_tl2
C F2j_ 1C2j_2 - f3

j

- 0

=> cT F2j_ 1 - [O,···,O,aj +'Yj],

•
wlticlt \\;111 be nonzero if F2j_1 is nonsingular. Howevcr if aj + 'Yj = °
then F2j_1 is singular, and bath this and the standard CGS method rails.
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• OLilcrwis(: it il) dear that the L2kÏJ2kÜ2k 'factorization' is possible. However

srnall Pk could cause large clement growth in Ù2k.

LeL us introduce vectors Pk :: [Ph 'P2, ••• , Pk}, not used in the a.lgorithm,

hut lIserul for this analysis.

1

o
1

(114)k>l.

So PI - Ut

"'tir "'tic
Pk - Uk + Pit (qk-l +p,:PIc-l),

Equivalence of this method with the vector fonn:

'l'Ile CGS method - slightly altered from 'Templatcs' -- is as follows.•
ru = /,

r = ru

for i =l, 2, •..

Pi-l = fTrj_l

HPi-l = 0, rnethod fails

Hi=l

Uj = r.-l

P. =u.

•

cise

8i-1 = Pi-t/Pi-2

Ui =ri-l +Pi-lqi-l
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Î> = APi

0i =(li_l/rTÛ

flj = Ilj - Ct;V

li = lIi + fi.

Xi = Xi_l + QjÛ

li = A1Ï

check convergence: continue if necessary

ell<l

1'0 avoid confusion we will use the supcrscript C to clistinguish ''rem­

plates' terms from those here, where it will also rnake life easier ir we r..~

index two or the 'Ternplates' terms as fo11ows:

pf - 'Templates'pi_t.

{3f - 'Templates'{3i_1 o

We now write the algorithms sicle by sicle ror comparison, where in this new

ces algorithrn we replace Vi+1 by ri, see (112). 1'0 hanclle the i =1C.lSe

we define

•

ces

Then for i = 1,2,3, _.0 we have

ces
(lc = rOTrC 1. ,-
8f =(If/pf..t
tIC = rC 1 + aCqC 1, 1_ Joli t-

new ces
Po =OC,{31 = 1

ua = O,Po = O,so =O,qo =°

new ces
Pi = fI"ri-1

'Yi =PiPitPi-1

U ·-r· +~q.• - .-1 P' 1-1
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• "f = IIf +{3f(qf-1 +{3fpf-,)

llf =If/rCT Apf

lIt:' - ,F - oC ApÇ
1 -. 1 1

Pi = Ui +~(qi-l +~Pi-l)

ai = ;:T(Ari_1 - "'{iSi-,)/Pi

{3i+1 = -(ai + "Yi)

si = (Ari_1 - airi_1 - "YiSi-I)/{3i+1

qi = Si - il?!. (Si_1 + Ui)

+~(qi-I - ïJ?~1 Ui_l)

Xi = Xi_1 -l/t3i+l(Ui + qi)

r· = .".L(As· - o'S')• "'i+l • ••

-..:li-(Asi_1 - U!iSi_l) + .:fLri_2
Pt.1 Pt. 1

TI",n: arc several difTerences betwccn the two algorithms - they don't even

liS" "II tlae sallie v<.'Ctors - the new CGS uses the S~ which are orthogonal

tn r. white CGS produces the pf, The other vcctors arc the same; the exact

rdatiollships arc

• "Y;/t3i - t3f. i> 1

C
-l/Pi+l = ofPi - Pi •

Ui C p'_pC- Ui , 1 - i

Si C CA C q _ qC- Ti_l - Qi Uj' i - i

Xi C r'-rC- xi , • - i· (115)

A straightfon\'ard examination shows this is true for i = 1. Snppose it is

trne for i =1,2"", k - 1. Then it is clear that

\\,,, 1")\\' 1""-'<1 ollly prove

•
-l/P1<+1 - oC

"
S" C CA C- r"_1 - 0" u"

q" - qf

(116)

(l1i)

..,~

_0
.---_.
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•

!l0 tltat Xk =xr. The equality of rlc and rf follows since wc have shown that

rJ~ is the rcsidual of Xk and rf is obviously the rcsidual of xf by e:<amining

t.he last t\\'o Hnes of COS. We can prove (116) using our matrix formulation

of t.Iw ne\\' CGS algorithm. Consider

vTAPk _ vTAW2leM2k.IcE;l

-TA;; G u,--lM E-1- v "'21e 21e 21e 21e,k le

- VT \i2k+1F2k+l,2IcÜ2itl M2k,kE;1

T- - 1= V \t21c+l L2k+l,2kD2IcM2Ic,IcE;

- [PI 0 Pz • • • 0 PIc+l] L21c+l,2kD2kM2k,Ic E;1.

TIIC" (i. i)- c1em<..-nt of this is

(~)2/h ..·P.

( :n.:.:::li.)2
113···/1•

o

art(~r mueh c"l.ncel1ation. Now sincc ;'C =û and pf =Pl' i = l, ... , k,

fCT Apf = ûT APi =-PiPi+lt i = l, ... , k.

From the CGS algorithm wc thcn see

C c/-CTA C /-CTA C l/ tl
0i = Pi r Pi = Pi r Pi = - fo'l+lt i = 1, •.• , k,

•
and 50 (116) holds. Now, ta show Sic = rf_l - ofAuf = rlc-l +1/PIc+1Aulc,

look al
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•

•

So "i is altcrnativcly (and more simply) given by the above expression and

(11 i) falls out. Finally, qk = qf. For lack of a simpler way to show this,

CClllsidcr the rnatrix equation

- 1= AW2kM2k.kE;

= ~"jr2k+1 Ü2k+l G2~+1L2k+l,2dhkM2k,kE;I.

Il. is Ilot obvious, but this has i-th column

APi - W2k+1'si+l (e2i - e2i-d

- 'si+l (qi - Ui), i =l, ... , k

~qk - Uk +1/'sk+1Apk

C cA C- Uk - Cik Pk'

The induction praof (115) is complete, showing that in theory these algo­

rithms not only compute the sa.me iterll.tes, but also several of the inter­

mcdiate qllantitics are identical. However the algorithms are c1carly not

idcllticiLl. ilS the use of dilTcrent vectors shows, and may have differcnt nu­

lIIcrical bchaviours. This suggcsts a matrix developme:Jt of CGS would he

11>'.,[111. but wc leave this for future work.

Hcfcrcllcc: [501189)
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• 4.9 BiConjugate Gradients Stabilized (BiCGSTAB)

IVlot.ivat.ion

Th,! IliConjugalc Gradienls Stabilized (BiCGSTAB) method wa.~ sa

lIatlwd hecallsc il increa.~cs the convergence of BiCG but in a more sta·

hl,' ll'ay t.hall hlindly "squaring" the rcsidual vectors ri a.~ in CGS. Inste/ld

II't' r01'l1l ri = :,:'i(A)Oi(A)ro, II'here 0;(0) == (l-w;O)O;_1 is an ith degrcc pol;'·

nomial dcscribing a stccpcst dcsccnt update - W; is à.~n ta minimize the

!Iorm of ri - in the hope that thcse new iteratcs will converge more reg·

1I1arly lhan lhe Io'?(A)ro of CGS. Here is our new variant of BiCGSTAI3.

Using Io'i == Io'i(O) from § 4.8, define

00 == l, O. = (1 - w.O)O._h k ~ l,

r BCS - ro,

,.!!CS - Io'.(A)O.(A)ro, k~ 0,•• BCS Io'.(A)O._I(A)ro, k ~ 1,s. -
and u~cs - "'.-1 (A)O.(A):"o, k~ 1.

Then (rBCS)TsfcS - r'[",.(A)O._I(A)ro

- rf(O._I(A)ro) = 0

smcc r. .L 0._1(A)ro E ,c·(A; ro) .

(ilS)

(119)

Thesc nell' polynomials, 10'._10..",.0._1 and Io'.0/r, may he constructcd re­

clIrsivcly nsing (93) and (118). From thesc expressions wc give the corre­

sponding rt..cllrrenccs for r~cs,s~cs and u~cs.

•

= (1 - w/rO)"'/r_IO/r_h k ~ 1

= (I - w/rA)1~s, k ~ 1.
1 1

- {J, (0 - od'f'o0o, or s~cs=,,: .. .ol/)ro,

1
= -fJ[(0 - O/r)Io'/r_IO/r_1 - 7/r"'/r-20/r-1], k> 1

1<+1
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• nes 1 [(A J) Bes Bes] k> 1.or "k = P - Ok rk_1 - ikUk_1 ,
k+l

'",,000 = l, or r Bes - ro - 0,

"'kOk = (1 - WkO)'PkOk-h or r:es = (1- WkA)S:es, k ~ 1.

As ill (;G5, ok,l3k and ik arc scalars from the unsymmetric L~c:zos·BiCG

id,!!.oritlllJl iLJld rniLY he computed from the BiCGSTAB vectors by expanding

Llo" polYlloflliiLls jllvolved and using the simple fact

for iLIIY polynomial ..pj of degree j < i.

i i
Dcfill(~ Si - I1Pj+h Wi == IIWje

j=1 j=l

Pi = -T -T ( 1 Ai-l . )Ti_l Ti_l = Ti_1 p- Ta "'t •••
i-l

• = 1 -T Ai-I i ~ 1.p-Ti_t Ta,
i-l

pres = (i:Bes)TrfJes.-1

= (rBes)T"'i-l(A)Oi-l(A)ro

-T (- Ai-I + )= Ti_l Wi-l TO···

= - -T Ai-I""-i-l Ti_t ro-

~Pi - pBesI(w' p. )i .-1 .-1 .

•

il - 0

ii = P 1 - BesI( Bes ) i> 1.iPi pi-l - Pi Pi-l Wi_l ,

Now (rBes)T(Ar!3es _ i'u!Jes)1-1 • 1-1

= (rBesjT(A'Pi_I(A)Oi_l (A) - ii"'i-2(A)Oi_l(A»ro

= (rBesjT(Pi+l"'i(A) +Cl'i(A)'Pi_l(A»Oi_l(A)ro

- Pi+1TrOi_l(A)ro +Cl'iif-1Oi_l(A)ro

0+ -T (- Ai - l + )- QiTi_l Wi_t TO· ••
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•
(120)

•

Finally;3z =-al and ;3;+1 =-(0;+'Y;), for i > 1, arc immcdiatcly available.

We can now combine the above expressions to give the full computa·

t.ion for the rfcs, s~cs and u~cs vectors - wc cali this the "BiCGSTA 13

proccss~ - without yet showing the computation for the solution, which is

given Inler..
N,·w BiC(;STAB methoci

Prohlcm: Solve Ax = b for x when Ais gencral nonsingular.

BiCGSTAB Proccss: We drop the superscript SCS from Sj and Uj, and

write i. == FRCS = roi Vj+1 == rfCS, j;::: 0, and for more efficient computa­

tion dcnne 'II == Av!; '1j == AVj - 'YjUj-1 for j > 1 and tj == ASj for j ;::: \.

:\gain. 1/00 =o.

Po - 00, "'"lt == 00, 'YI == 0, Uo == 0

•

VI = ii =b

for j - 1,2, ...

Pj = iiTVj

'1j = AVj - 'YjUj_1

-T /Oj = v '1j Pj,

tj = ASj

w- - tTS"/tTt­J-JJ JJ

S5

(121 )

(122)

(12.1)

(124)



• u - v· -w·Av·J - J J J

Notice LhiLt, ilS required in (119),

13 -T -T -T 0
i+IV Sj =V qj - 0jV Vj =OjPj - CrjPj = , j ~ 1,

(125)

(126)

fol!ows immediately from the jth stcp.

\\1'(: are again obligcd to warn the reader that what follows is "work

ill progrcss", iLnd the matrix rcprcscntation is somewhat complicatcd, and

prOhidJly not optimal.

Matrix Representation

If we lise (122) and (125) substituted into (124) for the odd columns and

( 1:!G) .,)r the cven columns the BiCGSTAB proccss becomes, in matrix form

\~:!k [ VI SI ... Vk Sk ]

• ;\ Ç;k(;1k
- 1 T- (127)= VZ/cFZk - -Vk+l~/c = V2/c+1 F2k+t,Zk

Wk

[ 1
1 ] ,

G2k- 2 Wk-tik

wherc Gz - GZk = 0 k>l

1

1

Fz [ Q, J.-
~

FZk- Z "'fk

/-ik - 0 , k>l (128)

l
_...l- Ok"'.-1

~k+l .l-

• w•
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• F~k+l.~k -

Usiug (12i) and solving for F2k fi2k = el! we consider iterates Xk é\S in (lOi),

=> rk - b - AXk =b - AX2k =b - A~kG2kY~k

- b - (V2kF2k - ...!..Vk+lCrk)Y2k
"'lk

- 1 T
- V2k(el - F2kfi2d + -Vk+l C2kY2k

"'lA:

Y2k::k
- --Vk+l'

"'lk
(129)

•
Sl1bpl'Oblem: Solve F2kihk = eb where F2k i5 upper Hessenberg '~'i in (128).

This does not have a solution if F2k is singular, i.Uld a.l lha.t time this im­

plemcntation of the BiCGSTAB rncthod would fajl. Howcvcr, wc continue

nssuming that this 1S not thc casc.

Implementation: This may bc solvcd using an LOU dccomposition F2k. The

01l(~ which suits our purposcs i5 shawn be1ow.

F2 -

=

F2k -

( 130)

•

/.2k =
-1 1

-1 1
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• Ü2k-'l -~

{j'Jk = Wk-t"1k

1

1

__1-

"'''-1

o
-(;1,: + ,8k+.)

,8k+1

Om T1orma!izers ,8j+l are now vcrificd by equating the right sides of the

aho\'e cqualions with F2 and F2k. So

• 01 - -,82; Ok = -(;k + 8:':+1)' k> 1

::;.,82 - -01; f3k+l =-(Ok + Îk), k> 1. (131)

This was the choice of J3k+l that we made in § 4.6. As long as it is nonzcro,

it is a satisractory norrnaIizcr for the process, and Ü2k+2 exists. For case of

(~alcll!al.ioTl, wc make the following definitions.

•
50 our system is transforrncd te;

8S

(132)



• Solvillg

r
-l'-il
- t -

132(1 +~(2

t - -
-~(2 - /h(3

•

t - -
- ~(2k-2 - Pk+l (2k-l

- 1 -
1'1.:+J(21.:-t + ;:;1.:(21.:

=>() - -1/1'2, (2=Wl

- 1-
(21.:-1 - - l' (21.:-2, k> 1

k+1 WI.:-l
- Wk -

(21.: - -PI.:+1W k(2k-l = -(2k-2 = Wk, k> 1
Wk-l

1
(2k-l - -~, k> l.

.lJ1.:+l

COTlsicier the odd and cvcn columns of W2kÜ2k = 'V:z.kG2k.

102k-1 - ""k-IÎk(Vk-1 - Sk-l) +Vk + ;:lÛ2k- 3 , k> 1

l'V:!k - :;k~ k ~ 1.

(1aa)

(1:1,1 )

This CéUIS(.'S us 10 redcfinc W2k =: [Pl SI ••• Pk Sk] and rewrite (l:Ja)

itud (l :1'1) as

k> 1.

sa this BiCGSTAB proccss produccs vectors Vj+1 which are the rcsidual

vcctors rj of the method.•

Now

and

Y2k,2k (2k
rI.: - -- = -Vk+l = Vk+l

Wk Wk

:rlc - W2k- 1Z2k-2 + (2k-l~k-l + (2k~1c
1

- :rk-l - ~Pk+WkSk
,..,k+l

(13(;)
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•

•

Il. Tl~rnaillH to examine under what conditions {3;+1 can be zero. Supose

(12"", {3J obtained from (131) are nonzero. The with eT == [1, ... ,1], wc

1 1
= [0'oo.,-----,Otj+1ï]

Wj_l Wj_1

= [0, ... ,0, Otj + '"fj],

which willl bc nonzero if F2j_1 is nonsingular. However if Otj + '"fj = 0

I.hcll [o'2j_1 iH Hingular, and both this and the standard CGS method fails.

Ol.hcrwiHc il. iH c1ear that the L2kÏJ2kÜ2k 'factorization' is possible. However

Htnall rh CCluid cause large clement growth in Ü2k'

Equivalellce of this method with the vector form: The BiCGSTAB method

~ Hlightly altered from 'Templates' - is as follows.

r = ru

(01' i = 1. 2, ...

(' - r-Tr'1-1 - 1-1

if ("-1 = n. tncl.hod fails

if i = 1

l'i = ri-I

c1HC

/1i _ 1 = (pi-dPi_2)(Ot._dwi_d

l'i = ri_l +{3i-I(Pi-1 -Wi-IWi-d

Wi = Al'i

0ï = Pi_11fT Wi

check norm of s; if small enough: set Xi =Xi-I +OtiPi and stop

li = A.,,;

.. -tT'·ltTt·
"'"' - i'" i t
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•

.r; = ;l'j_1 + OiPi + /.4.·jSj

clteek for cOllvergencc; continue if ncccssary

for contilluation it is neccssary that Wi =F 0

end

To avoid COli fllsion wc will lise the superscript B to distinguish 'Templates'

"el'lIlS from .. ltose here, where it will a.Iso make life casier if wc rc-index two

of lhe 'Templates' terms as follows:

pp _ 'Templatcs'pi_t,

pp _ 'Templatcs'pi_l'

W,· II()\" write the algorithms side by side for comparison, where ill this new

lliCGSl'AIl algorithm we replace Vi+! by ri, sec (135). To handle the i = 1

•

lliCGSTAB

(Iff = l,cre = O,w~ = 0

l'ff = 0

'l'ltell for i = 1,2,3, ... we have

lliCGSTAB

(,R = FBTrB t
l ,-

if i = 1

B~ = 0

dsc

i1f = (pp / pf-d(c.rf_l/wf3-d

l'f = rfl-. + P[1(lJf-1 - Wf3-1 Apf-.)

91

new BiCGSTAB

Po = l'PI = l,wo = 0

Va = 0, sa == 0, Po = 0, ua = 0

new BiCGSTAB

if i = 1

"YI = 0

cise

.,.
Pi = ri_1 + i!;Pi-1

+Wi_l"Yi(ri_2 - si-il



•
~n =rR _ cr R Ap8
• 1 1-1 • 1

'I:R = ...R + ",fJ p8 +WRSP
• 1 "'1-1 ... , 1 • 1

Qi = iJT(Ari_1 - "YiUi-d/Pi

/3i+1 = -(Qi +"Yi)

Si = (Ari_1 - Om-1 - "Yiui-I}I/3i+l

Wi = (ASifSi/(ASi)T(ASj)

There arc f10ticcablc &!rcrcm:.cs bctwecn the two algorithms - thc new

1iiCC:STA B algorithrn has more complicatcd expressions for Pi and Si and

;t1SIJ fOl'llls an illtcrrncuiatc veetor Uj, which the 'Templates' algorithm docs

Ilot., 1I()\\'('\"(~r rdationships cxist betwcen the two; the exact equivalenccs

ii/Pi = f3p, i> 1

• Pi
B -l//3i+! = of, Wi =wr- Pi ,

Pi B S· -s~ Uj = rf3-1 - wj Arf3-t- Pi , 1 - .'

B r' - rB (13i)Xi - Xi , 1 - i·

A straightforwaru cxamination shows this is true for i = 1. Suppose il is

truc for i ~ 1,2, ... , k - 1. Then it is clear that

_ B
Pk - Pk'

•

Tlw following will he uscful in proving the l'est.

12k- 2,k-1

wherc 12k.k -

1

o
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•
.1;:1.;-1,1.;-1

= \41.:+1

•

Tu ~h()w JI~ =:: flP. ~ cOIlsidcr the i·th column of (139).

Pk - r,l:_J +Wk-l"Yk(rt,,-2 - sk-d +11.:/l3kPk-J

= rf_, - ,..:f_IÎk/PI.:Apk-J +p:pr-I
B B (.JB A.J3 (.JB B _ 8

- Tk_ 1 - Wk-I~k Pk-I +~k Pk-I - Pk'

"1'0 show -1/131.:+1 =:: o~, consider the sca.lar product of ù with (1-10)

- -pïl3i+h i = 1,2, ... ,k.

(110) lJIakes il. casy lo provc SI.: = sp.

Fiflally~ it i5 obvious that

'.' - t .•
B Xk - xB

.... ,1: - .... ,1:, - k,

•
The induction proof (137) i5 complete, showing that in th(~ry th*~~ algo­

riLlims not only compute the same itcrates, bu~ also several of the illt(~r­

mcclialc CJuantitics arc idcntical. However the algorithms arc clcarly not
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•

identicnl, as the use of dilTcrcnt vcctors shows, and may havc dilTcrcllt liU­

TIlcrical behaviours. This suggcsts a matrix dcvclopmcnt of DiCGSTA Il

woulcl bc \lsdul, but wc leavc this for future work.

Ildcrcncc: [vdV!J2]
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• 5 Conclusion

•

•

From the point of view of developing the research, the most interesting and

sat.isfactory applications of the formalism stated in § 1.1 were to the mcthods

,l COlljllgate Gradients and BiConjugate Gradients. In these, connedions

wil.h 1.1", underlying syrnrnetric and unsymmetric Lanczos processes respec·

t.ively wcre exposed. In each case two methods were developed - one with

ullit norrn vectors spanning K;k(Aj b) and one which produced the residual

ve<:1.ors of the method to span the Krylov subspacc. In the case of BiCG,

t.he Krylov process which produccd the residual vectors was rather surpris­

illgly shown to use the same coefficients in the formation of the "shadow

residuals~, as opposed to the familiar ultsymmetric Lanczos proccss which

"t.ransposed" the coefficients. It was the second method in cach case which

WiLS shown to be mathematically equivalent to the "vector" form, since the

resulting algorithm more c10sely rescmbled the vector fonn. An understand­

illg of the quantities used in the vector form of the algorithm was obtained

aud in general the algorithm was c1arified.

The mdhods of SYMMLQ, MIN RES, LSQR, and GMRES were origi­

lIally implicitly devcloped using the formalism. Thus the Krylov processes

and iLssociated subproblems were easy to determine for these and there was

no dilference between the a1gorithm derived from the matrix development

and t.he corrcsponding vector form.

The mcthod l'f Quasi-Minimal Residuals as developed in [FN91] a1so

itnplicitly uscd the formalism. The Krylov process and subproblem were

obvious and implcmentation details were also given in the paper. However,

the 'Templatcs' version ofQMRdiffers from that in the original paper - al·

though tilcoretically the two are the same, the vedor fonn has been derivcd

from a subproblcm whose solution implementaion is less strightforward, in
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•

th" in1.el'ests of lime and stomge of the algorithm. As future work, a ma·

Il'ix c1eve1oprnenl of that 'Templales' vector form of QMR to dctermine the

I\l'ylo\' pl'ocess and subproblem and hence show the rcsulting method is

QM H. woulcl rnake § 4.7 more complete.

Atlempts to apply the formalism to CGS and BiCGSTAB, algorithms

which donbic the complexity of BiCG in an attempt to halve the time,

l'eqnil'ed a small modification to the approach suggested in § 4. Since these

1.11'0 rncthods produce residual vectors which are clements of every other

1\ rylov subspace, it was necessary to consider auxiliary vectors, clements

of t.he missed subspaces, as wcll. Using both sets of vectors, we achieved a

matl'ix c((nat.ion of the form

AVf(G1\ = V1\+l F/(+l.1\

=> AiiT( - VK+1 HI(+1./( (141 )

where Ih'+l.1\ - F1\+l.KGï/ is upper Hessenberg

and J( - 2k.

The form of (141) is exactly the same as for the general Krylov proccss (3)

in § 2.

The next difference came in the iterates we used. The original idea was

t.o forro itemtes Zk = VkYk, but here we chose

Zk - XK= VKGKYK

- VKYK

where Y1\ - GKfiK,

(142)

(143)

•
lll1ls a simple matter of relabelling (142) gives (143) just as (47) in § 4.

\vit.h t.his slightly different approach, attempts to reveal the process and

snbproblcm were successful although not as e1egant as rnight have been
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•

"0l'"d. I\s was slaled in those two subsections, the work done is really

··wOI'k in l'rogrcss ff and certainly further improvements may be made.

On li,,: whole the formalism appears to be very useful in the analysis of

algoril"rns and definitely makes the more mysterious "vector" forms much

casier lo lInderstand and learn. Unfortunately, as was observed in the cases

or CGS and BiCGSTI\B, it appears somewhat difficult in the more complex

aigorilllllls lo determine an optimally clear, simple and elegant division into

l'roccss and problem.
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