
'.

•

Survey and Analysis of
Intelligent Mobile Agents

Nagi Nabil Basha

School of Computer Science

McGiII University, Montreal

March 2002

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree of Master of Science.

© Nagi Basha, 2002

1+1 National Ubrary
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A ON4
canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON Kl A ON4
canada

Your file Votre référencs

Our file NoIre référence

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, ·distribute or sen
copies of this thesis in rrri.croform,
paper or electronic formats.

The.author retains· ownership of the
copyright in this thesis. Neither the
thesis nor substantialextracts frOID it
may be printed or otherwise
reproducedwithout the author's
penmSSlOn.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conseIVe la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de cene-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-78826-1

Canada

•

•

2

Abstract

The notion of mobile agent, a software component that can move autonomously

between the different nodes of a network is gaining wide popularity in business and in

academia. The term mobile agent was first introduced in 1994. Since then, lots of

research has been carried out in various aspects of the newly intraduced paradigm. It

might even be surprising to know that a recent census reports the existence of more

than 70 mobile agent systems. Therefore, there is a need to gather and analyze what

has been done so far in this new area.

This survey reviews the field of mobile agents by summarizing the key concepts

and giving an overview of the most important implementations. Design and

implementation issues of mobile agents are analyzed in general. Some of the most

important mobile agent systems are presented and discussed. Java's support for mobile

agent development is thoroughly examined. In addition, the raie of the Common Object

Request Broker Architecture (CORBA) as a broker between mobile agents and their

enviranment is also analyzed. Most importantly, a survey of the major security concerns

is provided followed by an analysis of the currently available techniques to address

these concerns. Last but not least, a detailed analysis of the Foundation for Intelligent

Physical Agents (FIPA) standards for interoperability between heterogeneous agents

and their hosts is included. This survey will help in understanding the potentials of

mobile agents and why they have not caught on. Once pragress is made in the areas of

security, programming language support for specifie mobile agent requirements, and

standards for coordination between heterogeneous agents, it is expected that the mobile

agent paradigm will dramatically revolutionize the way the Internet is being used now.

•

•

3

Résumé

Le concept d'agent mobile, une pièce de logiciel capable de se déplacer

indépendamment à travers le réseau de relais en relais, est en pleine expansion

dans l'industrie et l'Académie. Le terme agent mobile a été introduit en 1994.

Depuis, différents travaux de recherche touchant les différents aspects de ce

paradigme sont lancés. Au fait, un récent recensement a établi l'existence de

plus de 70 systèmes d'agents mobiles, d'où le besoin de réunir et d'analyser la

recherche établie dans ce domaine.

Cette étude passera en revue le domaine d'agents mobiles en établissant

les concepts clés et en présentant une vue d'ensemble des plus importantes mis

en œuvre. Nous analyserons en général les issues majeures de conception et

de mis en œuvre d'agents mobiles. Nous présenterons certains des plus

importants systèmes d'agents mobiles. Nous examinerons l'utilisation du

langage Java pour le développement d'agents mobiles. Ensuite, nous

analyserons l'interopérabilité entre les agents mobiles et leur environnement

grâce à CORBA (Common Object Request Broker Architecture). L'étude des

soucis majeurs de sécurité sera suivie d'une analyse des techniques disponibles

pour les contre-carrer. Enfin, nous analyserons en détail les standards

d'interopérabilité FIPA (Foundation for Intelligent Physical Agents) entre les

systèmes a base d'agents. Cette étude éclaircira le potentiel des agents mobiles

et la raison de leur retard. Le progrès dans les domaines de la sécurité, et des

langages de programmation soutenant les besoins d'agents mobiles, et des

standards d'interopérabilité parmi les agents hétérogènes permettrait au

•

•

4

paradigme d'agents mobiles de révolutionner l'Internet comme nous le

connaissons.

5

• Acknowledgements

1am most grateful to God for His support and His indescribable guidance

throughout the course of collecting and analyzing the material presented in this

thesis.

Many thanks go to Professor Newborn for his immeasurable commitment

to helping see this survey through to its final completion, and his equally

generous and wise guidance during its development. His contribution to this

survey was of utmost value.

Finally, 1 would like to thank my family for ail their support and

encouragement as 1followed the twisting path. 1dedicate my thesis to the soul of

my father who departed to the heavenly kingdom on October 9th 2001 .

•

6

• Table of Contents

Chapter 1: Introduction 12

1.1 What is an intelligent mobile agent? 12

1.2 What is the difference between mobile agents and

distributed objects? 15

1.3 A comparison between mobile agent and client-server

paradigms 16

1.4 Advantages of using mobile agents 17

1.5 Applications that can benefit from the mobile agent paradigm 20

1.6 Issues to be considered when designing a mobile agent 23

Chapter 2: Analysis of Some Programming Languages Used in

Developing Mobile Agent Systems 26

2.1 Java support for mobile agents 26

2.1.1 Pros of using Java in developing mobile agents 26

2.1.2 Cons of using Java in developing mobile agents 29

•

2.2 CORBA support for mobile agents

2.3 Tel support for mobile agents

2.4 Agent oriented programming

Chapter 3: Mobile Agents Frameworks

3.1 Concordia

3.1.1 Run-time support

3.1.2 Migration

3.1.3 Collaboration

30

32

34

37

37

38

38

39

• 3.2

3.2.1

3.2.2

3.2.3

3.3

3.3.1

3.3.2

3.3.3

3.4

3.4.1

3.4.2

3.4.3

Aglets

Run-time SUpport

Migration

Collaboration

Voyager

Run-time SUpport

Migration

Collaboration

Odyssey

Run-time SUpport

Migration

Collaboration

7

40

40

40

42

42

43

43

44

44

44

45

45

3.5 Mole 45

3.5.1 Run-time SUpport 46

3.5.2 Migration 46

3.5.3 Collaboration 46

3.6 Macondo 47

3.6.1 Run-time SUpport 47

3.6.2 Migration 48

3.6.3 Collaboration 48

Chapter 4: Mobile agents and security

4.1 Security principles in designing a mobile agent system

50

51

•
4.2

4.2.1

4.2.2

Security techniques to protect hosts

Authenticating an agent by the use of digital signature

Access-Ievel monitoring and control

60

60

61

8

• 4.2.3 Code verification 62

4.2.4 Time limits 62

4.2.5 Range limits 62

4.2.6 Duplication limits 63

4.2.7 Audit Logging 63

4.3 Security techniques to protect agents 65

4.3.1 Fault tolerant techniques 66

4.3.2 Encryption techniques 67

4.3.3 Other techniques for agent protection 71

Chapter 5: Mobile agent and migration 74

5.1 Different kinds of mobile entities 74

5.1.1 Mobile data 74

5.1.2 Mobile reference 75

5.1.3 Mobile code 75

5.1.4 Mobile code and store 75

5.1.5 Mobile closure 76

•

5.2

5.2.1

5.2.2

5.2.3

5.3

5.3.1

5.3.2

5.3.3

Types of mobility control for mobile agents

Planned mobility

Spontaneous mobility

Controllable mobility

Mobile agent migration techniques

Transparent stack and program counter migration in Java

Strong mobility by adding markers in an inherently weak

mobility languages

Strong mobility by using Java's VM and the exception/error

handling mechanism

76

77

77

78

79

79

80

80

•

•

5.3.4 Strong mobility by implementing a Prolog interpreter on the

Java VM

Chapter 6: Mobile Agents and Coordination

6.1 Standards for mobile agents architectures

6.1.1 MASIF (Mobile Agent System Interoperability Facility)

6.1.2 FIPA (Foundation for Intelligent Physical Agents)

6.2 Agent communication languages

6.2.1 KQML

6.2.2 ARCOL

6.2.3 FIPA-ACL

6.2.4 ICL

Chapter 7: Future Work
7.1 A revocation mechanism for mobile agents

7.2 Law enforcement agents

Chapter 8: Conclusion

References

9

81

82

82

82

84

88

89

90

90

91

92
92

93

94

95

•

•

10

List of Figures

Figure 1: Mobility and the evolution of mobile agents 14

Figure 2: Tcl extendibility and embed-ability 33

Figure 3: The flow of control in Agent-O 35

Figure 4: Computing with encrypted functions 69

Figure 5: Abstract FIBA architecture mapped to various concrete realizations 85

Figure 6: FIPA message structure 86

Figure?: Communication between agents using any locator. 87

•

•

11

List of Tables

Table 1: Qualitative comparison between different agent frameworks 49

Table 2: Host protection techniques during an agent's life cycle 65

Table 3: Mobility control in different mobile agents frameworks 78

12

• Chapter 1:

Introduction

The field of intelligent mobile agents is emerging as a promising paradigm

for the design and development of e-commerce applications. This survey reviews

the field of mobile agents by summarizing the key concepts and giving an

overview of the most important implementations. The key concepts presented in

this survey address issues related to security, mobility, and interoperability.

Chapter 1 provides the basic definitions and technical background needed for the

rest of the thesis. An analysis of some of the programming languages that have

been used in the development of mobile agent systems is covered in chapter 2.

Chapter 3 focuses on presenting a survey of some of the frameworks available

up to the date of this thesis. A comparison between the surveyed frameworks is

also covered in Chapter 3. Chapter 4 discusses the issue of security in the

mobile agent paradigm. Without a firm understanding of the various security

aspects involved in the deployment of mobile agents, a researcher cannot realize

why mobile agents are not widely spread in the market. Chapter 5 iIIustrates the

various migration techniques used so far and the latest proposed techniques to

achieve strong migration. Chapter 6 deals with the issues related to interaction

between heterogeneous agents in multi-agent systems. A thorough analysis of

FIPA - one of the most important standards available so far for mobile agent

systems - is also given in chapter 6. FIPA's main objective was to achieve

• interoperability between different agents.

•

•

13

1.1 What is an Intelligent Mobile Agent?

It is quite hard to define what is an intelligent mobile agent in a c1ear and

unambiguous way. The definition presented by [16] and [17] is adopted

throughout this thesis. A mobile agent is

"A computational entity, which acts on behalf of

others, is autonomous, pro-active, and exhibits the

capability to learn, cooperate, and move in a

heterogeneous network. "

The term intelligent mobile agent contains three separate and distinctive

concepts: intelligence, mobility, and agency. An intelligent mobile agent is a self

contained software program that has some degree of intelligence programmed in

it [2], can move within the network autonomously, and act on behalf of the user

who has dispatched it [4] [5]. The agent chooses where to move on the network.

Agents may communicate together to achieve a common goal. An agent

marketplace is a computational system that has the ability to host agents coming

from different sources allowing them to interact together. An example of a mobile

agent marketplace is having a buyer agent and a selling agent. Each one of them

has its own negotiation skiIls and techniques. 80th of them are communicating

together to reach the best possible outcomes for their owners [2].

•
]4

Mobility

Hardware Software

Passive Data
Active Data

Mobile Code
(code)

Process Migration Mobile agents
(code+data) (code+data+authority)

•

Figure 1: Mobility and the evolution of mobile agents

Mobility can be classified as hardware and software. Hardware mobility

deals with mobile IP's, mobile networks, mobile devices, etc.. Hardware mobility

is out of the scoop of this thesis. Software mobility can be viewed as passive

data and active data. Passive data is the classical movement of raw data like

moving files from one node to another. Active data can further be divided into

mobile code, process migration and finally mobile agents. These three classes

represent the evolution of Mobile Agents [11]. Mobile code is defined as

transferring only code between nodes. Java applets are an example of mobile

code. Process migration deals with transferring the code of a certain process that

is being executed along with its data. This requires transferring the state of the

15

• process as weil. This transfer is controlled by a single centralized administrative

domain [11]. Finally come mobile agents where the code, data and especially

authority are transferred between nodes. There is no central administration to

control movements of mobile agents. They decide to move whenever they feel it

is appropriate to do so and they have the authority to act on behalf of their

owners within the entire network.

1.2 What Is the Difference between Mobile Agents and

Distributed Objects?

For many years CORBA has utilized the concept of objects and distributed

object applications. Microsoft too has introduced its own objects (OLE, ActiveX,

COM, and OCOM) [2]. To know the differences between a distributed object

application and a multi-agent system, let's first examine a distributed object

application. An object is a mere encapsulation of data and a set of functions that

operate on these data. Objects interact together through invoking a very weil

defined set of interfacing functions. An object can use another object to achieve a

certain task. Objects do not initiate actions by themselves [2].

Where in a multi-agent system, we have N number of agents. Each one of

them has its own goal. Each agent initiates an action to achieve its goal. They

communicate together by conversation not by method invocation. Each agent

decides what to do and when to do it. An agent can say no when requested to

perform a certain action. Objects have fixed roles where agents can change their

• roles dynamically [2].

16

• 1.3 A Comparison between Mobile Agent and Clïent-Server

Paradigms

The client server paradigm requires the client to be connected to the

server during the whole course of service. The client sends a request to the

server and waits for a response. If a response is not received after a

predetermined period of time, the client has to resend the request again and wait

for a response. This scenario is very costly if we consider a mobile user who is

connected to a network (say the Internet) thraugh a wireless connection. The

client server scenario is also very time consuming. The user has to spend time to

connect to servers, request services, and wait for responses. When responses

are received fram servers, the client has to analyze them.

Considering the intelligent mobile agent paradigm, the intelligence needed

to analyze the data received fram servers can be embedded inside the agent.

Therefore, analyzing the data is done locally on the servers while the agent is

physically running on these servers. Connection time is needed only to dispatch

the agent and recollect it. For wireless users who are on the go most of their

times, this feature is quite beneficial. Ali the network traffic needed ta exchange

messages between the client and the servers in case of the c1ient-server

paradigm is replaced by just the traffic caused by the mobile agent ta move fram

one server ta another [15].

•

17

• 1.4 Advantages of Using Mobile Agents

According to [6] there are at least seven good reasons to use mobile

agents. These seven reasons are lists here in addition to some extra ones.

1. Reduction of network load

Mobile agents reduce the network load by reducing the amount of data to

be transferred over the network. Classically, data are moved from one computer

system to another where the data are processed. Mobile agents move to the data

and process them locally. Also distributed systems depend on remote procedure

calls (RPC) which are messages exchanged back and force between two or

more computing systems. By using mobile agents, conversations between the

computing systems can be packaged, sent, and processed locally [6].

2. Overcoming network latency

Critical real time systems can face a serious latency if controlled through a

network with a substantial size. For example, a robot in a factory needs to

respond in real time to changes in its environment. A mobile agent can be

dispatched from a central controller to the robot. Onceit reaches the robot, the

mobile agent can execute the central controller's directions locally on the robot

[6].

•

18

• 3. Encapsulation of protocols

Each host on a network has its protocol for encoding outgoing data and

decoding incoming data [6]. There are now a few number of protocols available

in the market. For example, there are TCP/lP, NFS, etc.. Each time a new

protocol is introduced, testing its compatibility with the ports of the existing

operating system is a tedious work [7]. Instead of extending the capability of a

network by defining a new protocol, mobile agents opened the door to

encapsulate the protocol in an agent and send it ail over the network [7].

4. Asynchronous execution

Once a mobile agent is dispatched, it can work asynchronously from the

process that has dispatched it. For example, a user may only get connected to

the Internet for few seconds to dispatch an agent. The agent will execute

autonomously and asynchronously from the process that has dispatched it.

Latter, the owner of the agent may connect again to the net to collect the agent

or to receive messages from it [6].

5. Dynamic adaptation

Mobile agents can sense their environment and adapt dynamically [6]. An

agent can be programmed to sense and react to a certain stimuli in its

environment [2].

•

19

• 6. Mobile agents are naturally heterogeneous

The Internet is a heterogeneous computing system. It has ail kinds of

different hardware and software systems. Mobile agents are ideal for integrating

these different systems together since mobile agents are generally system

independent.

7. Mobile agents are robust and fault tolerant

Due to the mobility attribute, agents running on a host that is going to be

shut down are given a warning and adequate time to dispatch themselves to

another host and resume executing on the new host [84].

8. Mobile agents provide dynamic load distribution

Mobile agents have the ability to migrate fram overloaded nodes to less

loaded ones. Sy doing that the, the overall load on a certain network can be

distributed [11].

9. Mobile agents result in better software quality

There are some software engineering benefits in using mobile agents. The

mobile agent paradigm helps software developers and designers to

conceptualize solutions better for certain problems. This will result in better code

modularity and reusability [15].

•

20

• 1.5 Applications That Can Benefit from the Mobile Agent

Paradigm

The mobile agent paradigm can particularly benefit sorne fields. Sorne of

these fields are listed below.

1. E-commerce

E-commerce applications are at the top of the list of applications that can

benefit from the mobile agent paradigm. A selling agent, a buying agent, an

auction bidder agent, and an agent that can search for information and analyze it

are just very few examples of how mobile agents can be used in e-commerce.

2. Personal assistance

Mobile agents can be very effective as personal assistants. For example a

mobile agent can be an online shopper's assistant [9]. Frustration of customers

at an online store is primary due to a failed search or the retrieval of so many

items. In [9], a mobile agent that was developed to function as a shopper's

personal assistant is proposed. This personal assistance is capable of moving to

certain online stores like Amazon and Vstore. When the agent is physically inside

the server hosting these online stores, it queries the stores catalogs, processes

the data collected, and returns a result or some suggestions that can narrow

down the number of items returned.

Mobile agents opened the door wide for so many applications as personal

• assistants. However, it is worth mentioning that designing a good helpful

21

• assistant requires studying the behavior people follow to do certain tasks. For

example, before launching an agent for purchasing anairline ticket, one should

study the consumer's behavior when shopping for a ticket [10]. What are the

factors that affect his or her decisions? What are his or her preferences?

3. Secure brokering

ln secure brokering, an agent can work as the broker of his or her owner.

For example, a mobile agent can be developed to carry out the tasks performed

by a stockbroker or insurance broker. Utilizing ail the security mechanisms

provided by encryption, special hardware devices, digital signatures, digital

certificates, and secure communication mechanisms can lead to the

development of a secure broker that can carry sensitive information about its

clients.

4. Distributed information retrieval

The autonomous mobility characteristic of mobile agents provides the

vehicle to achieve distributed information retrieval. An agent can be programmed

with a list of itineraries where it can go to and retrieve information from ail the

hosts in its itineraries and process them.

•

• 5. Telecommunication networks services

22

•

Mobile agents can perform certain tasks very efficiently in the field of

telecommunication. Some of these tasks are: load balancing, network

management, and protocol encapsulation [18]. Mobile agents are already in use

as part of the Telecommunications Information Networking Architecture (TINA).

ln [60], telecommunication services are formally specified as a set of

cooperating mobile agents. The work done in [60] is in conformance with the

Reference Model of Open Distributed Processing (RM-ODP) standards

developed by ISO.

An efficiency evaluation of a mobile agent based network management

system is presented in [61]. The results presented in [61] showed effected use of

mobile agents for network management. The use of mobile agents in network

management leads to less need for computing resources in network equipments

since mobile agents do not need computing resources in the network equipment

permanently. Aiso by using mobile agents, some of the management functions

can be executed directly on the network equipment. Therefore, the computing

load of the network management is reduced.

6. Monitoring and notification

A mobile agent can go and reside on a certain host waiting for a certain

event to happen. This event could be a sale on a certain item, the availability of a

certain server, etc.. Once this event happens, the agent is triggered to take an

23

• action. This action could be as simple as notifying its owner or as complex as

finalizing a stock purchase deal and paying the money.

7. Information dissemination

A mobile agent can be programmed to go to certain hosts and

disseminate certain messages. For example, a mobile agent can go to ail

customers of a certain company to install new updates to their systems.

8. Parallel processing

Through coordination between mobile agents, an application can be

developed as a set of mobile agents. Each one of them has a certain task to

achieve and report its result back to a central coordination point. This

coordination point (can also be an agent) receives the partial results of ail agents

and computes the final output.

1.6 Issues to be Considered When Designing a Mobile Agent

There are so many issues involved in the design and implementation of a

mobile agent system. Sorne of these issues are presented in [4]. For example,

what is the mechanism that the agent will use to move from one host to the

other? Once a mobile agent is dispatched, how can its owner locate it again?

How can an owner recollect the agent? An agent system should have a well

defined naming mechanism as weil as a reliable technique to locate an agent.

•

•

•

24

By definition, a mobile agent moves autonomously. This indicates that an

agent must be able to suspend its execution state, move to a new host, and

resume execution from the point it has stopped at. How can this be done? Do the

currently available programming languages provide ways to do so? What about

data? A mobile agent has internai data. These data need also to be transferred

to the new host as weil. Therefore, a mobile agent system must provide a

mechanism for data transfer.

Ideally, an agent developed under any mobile agent framework should be

able to communicate with any other mobile agent developed under any other

mobile agent framework. In order to achieve this high level of interoperability

between heterogeneous mobile agents, standards have to be developed and

respected by ail mobile agent systems.

Another very important issue that has to be taken into consideration is the

issue of security. A whole chapter in this thesis is dedicated to the issue of

security and how it is handled in various mobile agent systems.

Stability and performance are also important issues to be considered

when developing a mobile agent system.

As for platform dependency, of course, a mobile agent system must be

platform independent. By definition a mobile agent moves freely between hosts.

These hosts could probably be running different operating systems.

Last but not least, the issues related to ethics, legality, and society should

also be considered. If an agent causes some sort of damage to a host, who will

be responsible for that? Who will be held accountable? How will the social and

25

• business conduct be respect [12]? ln this thesis, sorne bf these issues are

surveyed and analyzed along with a presentation of the currently available

technology that handles sorne of these issues.

•

26

• Chapter 2:

Analysis of Sorne Programming Languages Used
in Developing Mobile Agent Systems

Since mobile agent paradigm is a new field, it is no surprise that the

languages that have support for it are also fairly new. Some of these languages

are Java, CORBA, Telescript, and Tel [11].

2.1 Java Support for Mobile Agents

Java is a programming language that has been developed to be used in

web-based applications. It provides some unique features for mobile agent

development. Most of the currently available mobile agent systems are Java-

based. In this section the pros and cons of using Java in mobile agent·

development are discussed.

2.1.1 Pros of Using Java in Developing Mobile Agents

2.1.1.1 Java is platform independent [1]

Thanks to the Java Virtual Machine (JVM), a Java program is processor

independent and operating system independent. For example, a Java program

developed on a Pentium Il PC running Windows 95, can be executed on a UNIX

or Sun workstation. That is because a Java program is a set of machine

•
independent byte codes. These byte codes are then interpreted (or compiled) by

the JVM to a specifie machine code. This unique characteristic (Byte code and

27

• JVM) is an excellent way to develop an agent that can run on any machine

running any operating system [14].

2.1.1.2 Java provides secure execution [1].

Since Java was built for use on the Internet, security issues were

emphasized in its design. For example, the Java security manager can check for

potentially unsafe operations such as file access or network connection [77].

Java security manager checks if a running Java program has the right to perform

certain operations or not [1]. For example, a certain agent can be granted the

right to read and write files. Another agent can be granted the right to read only

files. A third agent may not be granted any file access rights [14]. The security

features provided by Java make it safer for hosts to accept potentially not trusted

agents since agents will not be able to access private information on the host [1].

2.1.1.3 Java provides dynamic class loading [1]

This is Java's way to achieve mobility. A piece of running Java code and

its state can migrate by Java's class-Ioading mechanism. Java's class loaders

can dynamically load an application's classes either locally from the class path

directory or from a web server [14].

•
2.1.1.4 Java provides multithreading programming

By definition, mobile agents are autonomous. This indicates that each

mobile agent should be able to execute independently from the other agents.

28

• Java gives each mobile agent a "thread of execution" which enables the agent to

work independently in its space without having to depend on other agents. Java

also provides a set of synchronization primitives that enable interaction between

agents.

2.1.1 .5 Java provides object serialization

By the definition of mobility, an agent should be able to move from one

node on the network to another and resume its execution from the point at which

it has stopped. A Java-based agent uses Java's serializing 1 de-serializing

feature which provides a means for translating a graph of objects into a byte

stream and achieves migration at a coarse granularity. This implies that an agent

restarts execution from the beginning each time it moves to another host. Java

provides a very strong built-in serialization mechanism that accomplishes this

conversion and reconstruction almost transparently [14].

2.1.1.6 Java's other aspects that enable mobility [2]

The JavaBean delegation event model allows an agent to plug itself in an

already running server and unplug itself when it wants to leave. The Java.net

package allows a mobile agent to communicate with servers and send serialized

Java code and process state data over sockets. The Java Remote Method

Invocation Gava.rmi) allows an agent to cali methods on other objects across a

network. Java's rmi-registry (remote method invocation registry) can be used to

•

29

• locate remote objects by name. This enables the communication between agents

who move freely on the network.

2.1.2 Cons of Using Java in Developing Mobile Agents

Even though Java is one of the best programming languages to be used in

developing mobile agent systems, there exist sorne weak points in Java that we

have to be aware of.

2.1.2.1 Inadequate support for resource control [1]

Java does not provide a way to limit the resources consumed by a Java

object. Once an agent is running on a host, the agent can abuse the host's

resources. For example, the agent can keep consuming the host's processing

cycles, memory resources, or any other available resources. By doing that, a

mobile agent can render the host from being able to perform any other tasks. A

related issue is the ability of an agent to allocate resources external to the

program. For example, an agent can create a window as its user interface on one

host. The agent may latter decide to move to another host leaving behind its

window. Since Java does not provide a mean to bind a Java object with an

externally created resource, this window will never be garbage collected.

2.1.2.2 No protection of references [1]

The public methods of a Java object are accessible to any other object

that has references to these methods. The concept of protected references does

•

30

• not exist in Java. This means a mobile agent can never know who is accessing

its methods or why.

2.1.2.3 No object ownership of references

ln JDK 1.1, there is no ownership for references. This means the

execution thread of an agent can be taken away from it by another object. The

Java garbage collection mechanism will not free any Java object as long as it is

being referenced by another object. This causes the agent to be kept alive

against its will [1]. Weak references in JDK 1.2 provide a solution for this

problem.

2.1.2.4 No support for preservation and resumption of the execution state [1]

Java does not provide a way to keep the exact state of the execution

counter and the stack frame. Therefore, [1] claims that this will render the agent

from being able to resume execution from exactly where it has stopped. But if

Java provides such capabilities, it will no longer be machine independent. Using

the built in serialization mechanism of Java, the state of a Java object can be

packed on one platform and latter be unpacked on a different one transparently.

There is no need to know neither the execution counter nor the stack frame. The

serialization mechanism provides a reasonably sufficient mean to migrate a

running Java program from one platform to another.

•

•

•

31

2.2 CORBA Support for Mobile Agents

CORBA stands for Common abject Request Broker Architecture [58]. The

main goal of introducing CORBA to the market by the abject Management Group

(OMG) was to provide afoundation for making diverse applications work together

in heterogeneous environments [59]. Recently, a Mobile Agent Facility (MAF) is

added to the CORBA definition in order to support communication between

heterogeneous agents. CORBA is best suited as a means of interoperability

between different agent frameworks. For example, the MASIF standard (see

chapter 6 for more details) is implemented in CORBA.

The unique interoperability characteristic of CORBA has played a major

role in allowing many applications to communicate together in a transparent way.

For example, [54] proposes the architecture of a prototype system that integrates

SOMA which is a mobile agent framework and a distributed multimedia

application. By using CORBA, [54] claims that their system achieves large

accessibility and interoperability.

The Object Request Broker (ORB) component of CORBA makes it

possible to exchange messages between different applications without having to

dramatically change the implementation of these applications [57]. Therefore,

interoperability between the existing mobile agent systems can be achieved by

adding a CORBA-based. interoperability component to every mobile agent

systems. The CORBA-based interoperability component can be integrated with

the existing systems without having to dramatically change their internai

implementations.

32

• From the points presented in this section and the previous one, it is

believed that combining the benefits of both Java and CORBA can lead to the

development of a mature mobile agent framework.

2.3 Tel Support for Mobile Agents

Tcl is a high level scripting language that has several useful features for

mobile agent development. According to [56], Tel is easy to learn, highly

portable, embeddable, and extendible. It is highly portable because it is an

interpreted language. Therefore, a mobile agent that is developed using Tel can

run on various platforms. Since Tel is embeddable in other applications, those

applications can implement part of their functionality as a mobile Tel agent [56].

Tel can be extended by some user-defined commands. This allows an easy way

to integrate agent-related functions to the rest of the language. This extendibility

feature allows the host to add some Tcl functions as service functions. The Tel

interpreter is a C library package that can be incorporated in a variety of

applications. Figure 2 from [75] shows the structure of the Tel language and how

it can be extended and embedded into other applications.

•

•
Extensions

Tel Library

Built -in Commands

Application

Application Commands

33

•

Figure 2: Tel extendibility and embed-ability

The main disadvantage of Tel is that it does not provide code

modularization. This makes it difficult to write and debug large scripts [56].

Another disadvantage of Tel is the absence of a mechanism to fully capture the

complete internai state of a running script. Therefore, it is not possible for TeI

based mobile agents to migrate to a new host and resume execution from the

point where they have exactly stopped on the former host.

According to [75], Tel is good choice to develop a safe mobile agent

system due to some specifie properties. The first one is that Tel is an interpreted

language. Sinceeach line of code of a suspicious mobile agent is interpreted by

the host, it is quite feasible to add security checks and controls at any point of

time. This property makes it safer for the host to execute any agent regardless of

its source. A second property is that Tel is safe with respect to memory usage.

Tel does not support pointers, provides an automatic management for storage,

34

• and checks the boundaries of array references. This property prevents visiting

mobile agents from accessing the host's storage in an unauthorized way.

Another property is that Tel can assign an interpreter to each executing script.

This property makes it possible to Îsolate scripts from one another allowing a

host to give different security privileges to different agents.

Even though Tel is a very simple language to learn and use, it is not

considered to be a practical development language for a real life mobile agent

system. It does not provide built in facilities for migration, serialization, or

interoperability. The developer has to develop the handling for ail these aspects

almost from scratch. Having said that, one can conclude that Tel is more

appropriate for developing prototypes for mobile agent systems rather than real

life complex ones.

2.4 Agent Oriented Programming

Agent Oriented Programming (AOP) is still a premature paradigm. An

agent is viewed as a computation entity that has a set of mental states. These

mental states inelude beliefs, capabilities, choices, desires, intentions and

commitments. The rationale behind this approach in representing agents is that

humans use such concepts to represent complex systems [55]. AGENT-O is an

example of an agent oriented programming language [49] [55]. An agent in

AGENT-O language is represented by a set of capabilities that indicate what an

agent can do and what it cannot do. An agent has also a set of beIiefs,

•

35

• commitments and commitment rules. Figure 3 from [55] shows the flow of control

in AGENT-O.

Messages in

_----~----- _~L_ 13__e__Iie__v__es f-- -l

_ /~ ComnritrnenŒ r-- ~

~::::~/- 1 Abilities r-- ~

------------...
Messages out

,,,
"~

InternaI actions

Initialize

,r ,..
Update 14·::·:···
believes

.Ir

Update •.<....
commitments

,..

EXECUTE ~------

Figure 3: The flow of control in Agent-O

The idea of having mental attributes associated with a computation entity

•
is quite suitable for mobile agent development. Having a programming language

with these primitives, a developer can represent his or her agent in a way that

36

• truly simulates the real world. The field of Agent Orient Programming is very

promising. However, the lack of real life agent oriented programming languages

(either in academia or industry) makes the idea of agent oriented programming a

premature topic that needs lots of research before it is ready for real life

applications. it is believed that when the new paradigm of agent oriented

programming reaches a reasonable degree of maturity, the field of mobile agents

will be dramatically boosted .

•

37

• Chapter 3:

Mobile Agents Frameworks

Even though the mobile agent paradigm is quite new, there are plenty of

mobile agent systems that have been developed both in academia and in the

industry. A Ilst of them can be found in [8]. Most of the newly developed

frameworks are Java based. In this chapter a selection of these platforms are

presented and analyzed. The analysis of the selected frameworks covers the

techniques used for run-time support, migration, and collaboration.

3.1 Concordia

Concordiais a Java based commercial framework that was developed by

Mitsubishi. For more information about Concordia, the interested reader may

refer to Concordia's web site at [36]. Concordia was introduced to the market in

1998. According to [37] (who is working for Mitsubishi as an assistant laboratory

director), Concordia was "designed for complex, secure, reliable, real-world,

enterprise applications." The design goals of Concordia as outlined [62] are:

Flexible agent mobility

Support for agent collaboration

Reliable agent transmission

Persistence agent state

- Agent security

• - Ability to add intelligence

38

• 3.1.1 Run-time support

The Concordia system consists of several integrated components. The

main component is the Concordia server. The Concordia server is the

component that is responsible for providing the communication infrastructure for

mobile agents. It manages the life cycles of visiting agents as weil as enables

them to be transmitted and received by nodes on the network [62]. Each server

has a set of "managers" responsible for providing support for agent mobility,

security, communication and persistence [34].

3.1.2 Migration

Concordia's agents migrate only by having a predefined set of itineraries

[34]. Each itinerary contains a host name and the function name to be executed

at this host (host name, function name). This makes it possible to decouple

mobility code from the application code. When an agent decides to migrate, it

invokes a migration request method in the agent manager. The agent manger will

then suspend the execution of the running agent and create a persistent image of

it. Then, the agent manager will check the agent's itinerary object to determine

the host to which the agent wants to migrate. The persistent image that has

already been created will be sent to the new host. The new host will save the

received image of the agent and then send an acknowledgment to the old host.

The new host will then unpack the image to reconstruct the agent and give it a

thread of execution to carry out its tasks.

•

•

•

39

3.1.3 Collaboration

The interaction between Concordia's agents is achieved by asynchronous

distributed events and collaboration [34]. Events provide a direct mean of

communication between agents. Collaboration isprovided by Concordia's

framework by utilizing a distributed Java object as the collaboration point

between agents. The JAVA RMI system allows object running on one Java

Virtual Machine (JVM) to invoke methods on an object running on another JVM.

Each agent submits its result to the collaboration point by invoking appropriate

methods. The collaboration point will then collaborate ail the results together and

compute a final result. The final result is communicated back to the agents by

invoking the appropriate methods in the agents. Concordia uses the SSLv3

(Secure Socket Layer) to ensure security for ail the transmitted data [62].

According to [34], Concordia is "not sufficiently adequate to deal with

complex coordination patterns." The only way of communication provided by

Concordia is using Java RMI. Concordia does not support a universal agent

communication language. Therefore, Concordia's agents cannot communicate

with .other agents that have been developed under any other mobile agent

framework. Concordia's agents cannot communicate complex forms of

knowledge. For example, Concordia does not support exchanging knowledge in

the Knowledge Interchange Format (KIF) or any other similar knowledge-based

format. KIF is a special format designed to represent knowledge in a standard

format that can be shared by different applications (see chapter 6 for more

details).

40

• 3.2 Aglets

Aglet is IBM's Java~based framework for mobile agents [1][2)[34)[62].

Aglet is developed in IBM's Japan laboratories. It was first released in 1998.

Each aglet has a set of methods that handle predefined events like creation,

cloning, dispatching, retraction, activation, deactivation, disposai, and

messaging. The programmer of an aglet can override these methods to provide

his or her own coôe for handling these events [34]. Each aglet has a "proxy"

object. The proxy object provides a shield that protects an aglet's internai public

methods from being abused by the host. The proxy also provides a secure

mechanism to communicate with the other agents running on the host [1].

3.2.1 Runtime support

The run time support for aglets is provided by having a "context" assigned

to each aglet upon its arrivai to the host. The context is assigned by a

preinstalled Tahiti server which is an aglet server program. The Tahiti server

listens for incoming aglets and accepts them into the host. The context is the

execution environment for aglets. It alsoplays the role of a security shield for

hosts from malicious aglets [34]. Each context has a graphical user interface to

monitor and control a running aglet. The context provides an interface for aglets

to get access to the necessary computing facilities available on the host such as

CPU cycles, memory, and file access rights.

•

41

• 3.2.2 Migration

An aglet migrates from one host to another by invoking its dispatch

method. On completion of executing the dispatch method, ail threads created by

the aglet are kiHed. The dispatch method takes a URL as its input [1]. For

example,

Agent.dispatch (new URL ("atp://somehost.com"))

•

An aglet programmer has to code handles for some events to achieve

successful migration of the aglet. Forexample, the aglet programmer needs to

implement methods to be invoked when the onDispatching and onArrival events

occur. Handling onDispatching allows the programmer to make the aglet finish

what it is supposed to do right before migration to a new host [1]. Coding a

method to be invoked onArrival, provides a way to initialize the aglet on its new

host. The onArrival method is also the single entry point of execution of the aglet

on the new host [1]. The protocol used for the transportation of aglets is the Aglet

Transfer Protocol (ATP). The ATP is developed by IBM as an application-Ievel

protocol for distributed agent-based systems [62].

The ATP provides a mechanism for retracting an agent by invoking the

agent's "retract" method. An aglet programmer can implement a method to be

invoked when the aglet receives the onRetracting event. In this method, the

developer can implement whatever the aglet needs to do before it returns back to

its owner [1].

42

• Currently, the ATP transfers ail the aglet's classes when the aglet is

dispatched. The ATP does not check if certain classes are in the destination

cache or not. If some of the aglet classes are already on the destination, then

there is no need to transfer these classes with the aglet. The aglet can use the

classes that are already on the destination host. Optimizing the transfer of

classes can result in improved transformation and downloading time [62].

3.2.3 Collaboration

Aglets interact with each other through messages. A message is a Java

object that can be sent in synchronous or asynchronous mode [34]. The aglets

communication mechanism is based on a simple callback scheme. Each aglet

has to have handlers for the kinds of messages it can understand. Messages are

sent to aglets through proxies. One of the benefits of using proxies is that it

provides a location independent interface for sending messages to aglets.

Multicasting is supported by Aglet's framework by a technique called

message subscribing. The basic principle is that aglets subscribe to one or more

multicast messages and implement handlers for these messages [1].

3.3 Voyager

•

Voyager is an abject Request Broker (ORB) framework for developing

mobile agents [34]. Voyager is implemented in Java based on CORBA.

Therefore, it supports both CORBA and Java RMI. The ORB provides the

capability to create objects on remote systems and to invoke methods on those

43

• objects. Voyager adds agent capabilities to the traditional ORB. Voyager isa

commercial framework package developed by Recursion Software, Inc. One of

the main features of voyager is that the target object cannot only be a host but

also a program or a Java object. Once the agent is on the host, it can obtain a

reference to the target object and start communicating with it locally [34].

Another unique feature of voyager is that it allows a transparent method

invocation in mobile agent. That means if you are an owner of a mobile agent

and you have dispatched it from your PC, you can continue invoking functions on

the agent as if the agent is still residing in your machine. The voyage mobile

agent leaves a forwarder in each location it visits. An invocation of one of the

agent's methods will be transparently forwarded to the new location.

3.3.1 Runtime support

Voyager system includes a set of mangers that control the execution of its

mobile agents. One of these managers is the security manager [2]. The role of

the security manager is to protect the host from malicious agents. It can restrict

the operations that a visiting agent can perform on the host. Voyager also

includes other managers that control the serialization and migration processes of

agents.

•
3.3.2 Migration

Voyager's agents migrate by invoking a moveTo method. The moveTo

method takes the destination and a method to be invoked once the agent

44

• reaches its destination. Voyager supports a multiple entry point execution for its

agents by associating a method to be invoked with every host an agent plans to

visit.

3.3.3 Collaboration

Interaction between voyager's agents can be either by synchronous or

asynchronous messages. Voyagers agents can also communicate between

themselves and their environment by remote method invocations. According to

[34], Voyager communication support is very strong but it is somewhat limited in

open distributed systems because it is not possible to know the interface of an

agent in advance. This pre-knowledge of an agent's interface is required in order

to support direct communication between agents.

For the latest information about Voyager, the interested reader may check

[38] for up to date details.

3.4 Odyssey

General Magic [39] was the first company to work on mobile agents using

the Telescript language [34]. When Java was introduced to the market, General

Magic decided to develop Odyssey which is a Java-based mobile agent system.

•
3.4.1 Runtime support

The Odyssey framework is characterized by its support for Microsoft

OCOM and CORBA 1I0P in addition to Java RMI. An Odyssey's agent can move

45

• to a "place". The "place" is defined byan Odyssey's developer. This makes the

Odyssey framework very flexible.

3.4.2 Migration

For migration, Odysseysupports itineraries as weil as a goO method that

takes a place to go to. Initially, an agent may start its trip with a predefined list of

places to visit. At any point of time, an agent .has the ability to decide to go to a

particular place that was not originally in its itineraries. This feature gave the

agent the ability to adapt according to particular conditions in its environment.

3.4.3 Collaboration

Agents interact between themselves and their places by remote method

invocation and also by exchanging references to objects. Odyssey. does not

provide any means of synchronization between the participants [34]. This could

be considered as a limitation in the collaboration technique used by Odyssey. A

sophisticated distributed system would probably require a more powerful

collaboration mechanism.

3.5 Mole

•

Mole is a research mobile agent system developed by the University of

Stuttgart. The Mole project started in 1994 and is still going under the supervision

of Professor Rothermel [40]. One of the interesting features of Mole is the

detection of Orphan agents. An Aglet will never be automatically garbage

46

• collected unless it destroys itself. This is because an Aglet has its own thread of

execution. Mole implemented an algorithm to detect an "orphan" agent and

remove it from the system.

3.5.1 Runtime support

Mole's runtime support is attained by having stationary agents on Mole's

hosts. A stationary agent on. a host provides the interfacing functions that a

visiting mobile agent may need to access the resources available on that host.

These stationary agents can be viewed as managers. Each one of them has a

particular role and set of responsibilities.

3.5.2 Migration

The migration mechanism supported by Mole does not support itineraries.

A go like method is used to initiate a migration request to a particular host. Like

an Aglet, a Mole mobile agent can only have a single point entry [34]. Therefore,

a Mole mobile agent cannot specity a certain method to be invoked on a

particular host.

3.5.3 Collaboration

The interaction between agents relies on exchanging messages. These

messages are of the form of objects. The stationary agents publish their services

on a common dictionary. The visiting mobile agents can then look up the offered

•

47

• services in order to determine how they will achi.eve their tasks. Mole does not

support any advanced support for coordination between agents [34].

For the latest news, publications, talks, and thesis (in German) about

Mole, the interested reader may visit Mole's home page at [40].

3.6 Macondo

Macondo is a mobile agent framework developed in the University of

Bologna, Italy [34]. The main design goals of Macondo were simplicity and

flexibility. Macondo stands for Mobile Agents and Coordination for Distributed

applications [41]. Macondo is developed using both Java and MJada

programming languages. MJada is based on Java but it includes extra

mechanisms that provide enhanced support for mobility and coordination.

3.6.1 Runtime support

Macodo utilizes the notation of "agent server" to provide runtime support

for its agents. The agent server receives a visiting agent upon its arrivai to the

host. The agent server is responsible for providing the necessary resources

requested by an agent. Once an agent decides to migrate, it is the role of the

agent server to insure a safe and secured migration for the agent. Therefore,

Macondo's mobile agents move from one agent server to another [34].

•

48

• 3.6.2 Migration

Macondo's support for migration relies on a goO method that takes the

name of a hast, the host's port number and a method name to be invoked when

reaching the host. By doing that, Macondo supports a multiple entry code for

execution for its mobile agents. Itineraries are also supported giving an agent the

flexibility of having a fixed list of hosts to visit sequentially.

3.6.3 Collaboration

Macondo framework uses the notation of "tuple space server" as a mean

of interaction between agents and their hosts. The "tupie space" as a concept is

defined as a feature of the Jada programming language. A tuple space server is

a container of nested tuples that can be manipulated by agents to communicate

with each other.

For the latest information and news about Macondo, the interested reader

can check [41 J.

•

•

•

Feature Ag lets Concordia Voyager

Multicast support No No Yes
Agent persistence support No Yes Yes

Remote agent creation No No Yes
Proxy update on MA Yes No Yes

Migration
Messaging modes Synchronous Methods Synchronous

between MA Asynchronous Asynchronous
Java messages to MA Transparent No No

Garbage collection No No Yes

Table 1: Qualitative comparison between different agent frameworks [63]

49

50

• Chapter4:

Mobile Agents and Security

By definition, the basic characteristic of a mobile agent is its ability to roam

freely on a heterogeneous network such as the Internet. On one hand, there is a

possibility that an innocent agent would visit some malicious hosts. On the other

hand, an innocent host could be visited by a malicious agent. This dictates the

need to have new security measures for both agents and hosts. The mobile

agent paradigm has introduced new concerns that were never thought of before

in other distributed system environments like the clientlserver paradigm. Before

having mobile agents, no one has ever thought of how to protect a running piece

of code from being tampered by its execution environment. The security

concerns that arose from deploying the clientlserver paradigm were totally

different from the ones introduced by mobile agents. In case of a c1ientlserver

application, there are at least two separate computation entities: a client and a

server. In most real life cases the client would be running on another machine

than that used by the server. They communicate together by exchanging

messages over the network. The client and the server, each of them is running

on a trusted computing environment.

ln this chapter, a thorough survey of the principles and techniques used to

achieve a reasonable level of security for mobile agent systems are discussed.

•

51

• 4.1 Security Principles in Designing a Mobile Agent System

How can one evaluate whether a particular mobile agent system pravides

a good security system or not? If a new mobile agent system is to be developed,

what are the security principles that need to be addressed in the system? What

are the questions to be asked to determine the level of security pravided by a

mobile agent system? ln this section, a comprehensive list of security principles

is surveyed fram the literature up to the date of this thesis. Each security principle

has a rationale behind it. The goal of respecting these principles is to prohibit

some security threats such as masquerading, unauthorized access, unauthorized

disclosure, and unauthorized modification. It is quite challenging to meet ail the

principles listed below in one mobile agent framework.

•

Principle 1:

Mobile agents and hosts cannot be assumed trust worthy [4] [20] [73].

This principle is quite obvious. Neither the agent nor the host should trust

one another. The agent should expect that the host will try to access and reveal

its private information. The host should also expect that the agent would try to

abuse the system resources or gain access to private information that the agent

is not allowed to access. This principle is vital to achieve a practical foundation

for mobile agents over a wide area network Iike the Internet. Sorne limited

applications may not consider this principle. For example, consider a mobile

agent whose task is to visit sorne network nodes and display .a message

reminding the person who is sitting at this node of attending a meeting or paying

52

• a bill, or something similar. This agent may just ignore the fact that the host it is

visiting might be malicious sincein this particular case the agent would not be

carrying sensitive or important information.

Therefore, a good mobile agent system should be flexible enough to allow

a user to create mobile agents with different levels of security. In the case where

an agent is not carrying sensitive information, there is no need to overload the

code of an agent with tight security algorithms and techniques. However, in case

of a buying mobile agent that carries credit card numbers and bank account

information of its creator, a very tight and sophisticated security techniques would

be a must.

Principle 2:

Ali critical decisions that need to be made by an agent should be done on a

trusted host [4] [20] [23] [73]

At the time of writing this thesis, there was no practical secure solution for

protecting an agent from a malicious host [67]. Therefore, this principle can be

viewed as a work around solution for the lack of confidence in making a decision

on an un-trusted host without worrying that this host may affect the process of

decision-making in an unauthorized way [23]. Hopefully, as research proceeds in

the direction of developing flawless security techniques, this principle would

eventually be removed for good.

•

53

• Principle 3:

An agent must be able to seal sorne of its critical state cryptographically [4]

[20] [24].

Consider a bidding agent who goes to auctions and bid on behalf of its

owner. This agent has the authority to buy an item for its owner. This implies that

the agent is carrying very sensitive information about its owner. It may be

carrying his or her credit card numbers, bank account numbers, etc. A practical

mobile agent should be able to hide and seal such information so that it can

never be accessed by anyone who does not have the authority to access it

Unfortunately, almost ail cryptographie techniques known so far have

serious flaws. In [67], some of the known cryptographie protocols were analyzed

and shown how vulnerable they were to malicious attacks. For example, the

multi-hops protocol proposed by [68], the chained digital signature protocol

proposed by [69], and even a protacol based on using a trusted secure co

processor proposed by [70] were ail broken by some attacks. No doubt,

cryptography is and will be an Integral part of any mobile agent system. But at

the time of writing this thesis, a flawless cryptographie protocol is still an

unachieved goal.

•

54

• Principle 4:

A mobile agent should be able to protect itself from malicious hosts [23]

[24] [71].

As mentioned in the previous principle, an agent should be able to hide

some sensitive information from being accessed by unauthorized parties. The

agent must also be able to protect itself from being manipulated by the host. Let's

consider an intelligent bidding agent. This agent bases its decisions on its

programmed intelligence. A malicious host may try to manipulate it by changing

its intelligence in a way that forces the agent to make a decision that is beneficial

to the host rather than to the creator of the agent. Achieving this principle is quite

difficult since the host provides and controls the computational environment in

which the agent operates [23].

Principle 5:

A host should be able to protect itself from mal.icious agents [23] [24] [73].

A mobile agent-enabled host must always have security system that is

capable of protecting it against attacks from malicious agents. A typical host

security system can be subdivided. into three basic subsystems whose tasks are

authentication, authorization, and accounting [21].

Authentication can be defined as the ability to rank the credibility of a

visiting agent. Based on this rank, the host may accept or reject the agent. In

[72], a technique called proof-carrying code can be used at the authentication

•

•

•

55

stage to make sure that the agent is a safe one. Basically, the technique ensures

that the code of the agent will not harm the host in any way.

Authorization can be defined as granting a visiting mobile agent access

rights to some resources on the host. The host should be able to give different

access rights to different agents. Some agents may be granted full access to ail

the resources of the system. Some other agents may only be granted very limited

access rightslike having a read only right for few files.

Accounting is the ability to define different quotas for different agents and

being able to charge them if applicable. For example, a host should be able to

assign a certain CPU quota to a certain agent. Assigning quotas is not only

important for billing purposes, but it also guarantees that a malicious agent will

not be able to abuse the hosts by totally consuming its resources rendering it

from being able to carry out other tasks.

ln [23], a model of a security-enhanced agent is proposed. In this model,

an agent is carrying a passport. This passport specifies the security

characteristics of the agent. The passport is checked by the host and according

to the information inside the passport, the host can determine the type of actions

that the agent can perform on its computational environment and what actions

the hostcan perform on the agent. The informationstored in the passport

includes: a unique identifier for the agent, an authentication certificate from its

creator, time stamp of the agent creation, lifetime span, and list of privileges

given to the agent. by its creator. The idea of having "passports" is quite

interesting. It gives mobile agents an identity on the network. This identity is very

56

• useful since it will allow the host to know whether the agent is a high risk one or

not. For example, If 1 run a mobile agent-enabled host, 1would not be afraid to

accept mobile agents who have been created by IBM, McAfee, Microsoft, TD

Bank, Royal Bank, Canadian Government etc.. etc.. But, 1will be carefu1when 1

receive an agent from a no name source or a source that has already been

flagged as high risk.

Principle 6:

An agent should be able to protect itself from other agents [24].

ln a typical mobile agent marketplace, there will be more than one agent

sharing the same computation environment. Each agent needs to communicate

with other agents in order to achieve its goals. Therefore, an agent should be

able to protect itself from other malicious agents. This principle is very similar to

the principle where the need for an agent to protect itself· from its host was

addressed. The difference is that the host should also play a role in providing a

secure environment for agents to communicate and work together. It is like

providing law enforcement personnel in a marketplace. So, to realize this

principle, an agent must be equipped with techniques to protect itself from being

tampered by other agents and a host must also be able to provide sorne degree

of protection to ail agents running on il.

•

57

• Principle 7:

The migration of an agent from one host to the other should be protected

against unauthorized disclosure or modification [23].

The migration of an agent can be considered as the most vulnerable state

in the agent Iife cycle. During this state, the agent suspends its execution and

transforms itself into a shippable form. This shippable form should be able to seal

whatever information it carries. A key solution to this problem is the use of

sophisticated flawless cryptographie techniques.

Principle 8:

A host should be able to make sure that the agent is really who it is claimed

to be [23] [73].

The access rights granted to an agent depend on whom the agent is. For

example, le1's assume that an agent is created to apply for a credit card on

behalf of its owner. T0 achieve this task, the agent will have to migrate to a bank,

fill ina credit card application form, and sign it on behalf of its creator. The bank,

which is the host in this case, should be able to determine for sure whether this

agent does truly represent the individual that it claims to belong to or not. The

bank should be able to verity that the agent was not created by someone who is

trying to steal the identity of someone else.

•

•

•

58

Principle 9:

An agent creator should be able to kill or revoke an agent.

ln some cases, the creator of an agent may need to terminate or cali back

the agent that has been dispatched. For example, assume that an agent was

created and dispatched to book a flight ticket to a certain destination on a

particular date. Thereis a possibility that the creator of the agent may decide to

cancel the task of booking a ticket. A mobile agent system must provide a way to

revoke the agent or at least to inform the agent that the task it has been

dispatched to achieve is no longer wanted. Revoking an agent could mean

ceasing it to represent its owner. In this case, when a host tries to authenticate

the agent, it will figure out that this agent is no longer a representative of its

owner. In [23], it is stated "there is no easy solutions when it comes to distribution

of revocation state to agent bases (hosts) in a large network environment. It is

believed that it is impossible to distribute revocation state to hosts." At the very

end of this thesis, an authentication idea is proposed. The implementation of this

idea will be done in the future.

Principle 10:

A host should be able to detect whether a visiting agent has been

maliciously modified by another host or not [23].

One of the principles mentioned earlier was the need for an agent to

protect itself from malicious hosts. But what if a host managed to modify the code

of an agent? The agent is still capable of migrating to hosts and it is.still carrying

59

• the true identity of its creator. A good agent could turn into a malicious one just

by tampering its code. The problem here is that changing the code of an agent

will change its behavior but will not change its trustworthiness. Therefore, a host

must be able to verify that the code of an agent was not modified in a host that

the agent has visited previously. In the model proposed by [23], the checksum

methodis used to ensure the code integrity of an agent. There are also some

other techniques that can be used to achieve the same goal. For example, the

proof-carrying code proposed by [72] can also be used for that same purpose.

Principle 11:

Communication between agents should be secured from being maliciously

manipulated by thehost [29].

Basically, the whole idea behind the mobile agents paradigm is to have

computation entities that are capable of communicating together to achieve

certain goals. If the messages between agents were modified by the some other

entities, the agents would not be able to achieve their goals in the best possible

way since they would make decisions based on tampered information. Therefore,

a reliable mobile agent system should provide secure communication channels

between the agents. Agents also should be able to detect whether a message

received from another agent has been tampered with or not.

•

60

• Principle 12:

Avoid risky hosts and risky agents.

When it comes to security, the best policy ever is the one used in real life;

as much as possible, if Vou are an agent, do not go to untrusted hosts. If Vou are

a host, do not receive suspicious agents. But this policy is not very practical and

cannot be followed blindly. But still, It has to be considered and thought of when

designing and deploying a mobile agent or when creating security policies for a

mobile agent-enabled host. For a mobile agent, it would help very much if the

agent could have list of known malicious hosts so that it avoids going there. Aiso

for hosts, it could be very useful to have a watch list of unwanted agents or agent

sources so that a host can reject an agent just by knowing its identity or its

creator.

4.2 Security Techniques to Protect Hosts

ln this section, a survey of the currently available security techniques used

to protect hosts from malicious agents is presented. Even though the literature

has plenty of these techniques, securing a host still needs a lot of research.

Some of the efforts done in this area can be found in [21] [23] [24] [27] [71] [72]

[73].

•
4.2.1 Authenticating an agent by the use of digital signature

Digital signatures can be used to verify the identities of the creator and the

sender of a mobile agent. They can provide information on where and when the

61

• agent was sent. There are a number of algorithms for digital signature. The most

widely used one is a public key signature algorithm [24]. Java and Agent-Tel

provide a number of algorithms for digital signature.

Digital signature does not guarantee that that agent is harmless. It only

authenticates the identity of its creator and its sender. Digital signature can also

be used to make sure that the code of an agent has not been tampered with

previously. Therefore, digital signature can be considered as a first line of

defense. Some other techniques should be used in conjunction with digital

signature in order to protect a host in case the authenticated digitally signed

agent attempts to harm the host in some way.

4.2.2 Access-Ievel monitoring and control [24]

ln this technique, a mobile agent-enabled host uses a monitoring manager

that has the authority to grant access rights to mobile agents as weil as to keep

monitoring them from accessing any resources that they are not allowed to

access. One of Java's components is calied the "security manager". Its

equivalent in Safe-Tcl is the "master interpreter" [75]. These components can be

used to monitor the running agents. If one of the running mobile agent attempts

to read a file that it is not authorized to access, it will be stopped by the

monitoring manager. The monitoring manager has the right to control access to

files, communication ports, peripheral devices, and so on. IBM Aglet's framework

also provides a restriction on the number of times a resource can be accessed.

•

62

• 4.2.3 Code verification [24]

ln this technique, the binary image of the mobile agent code is scanned. If

the code verifier finds iIlegal instructions in the code of the agent, the agent will

be rejected and will not be allowed to execute on the host. The byte-code verifier

in Java can perform this task. It can detect illegal instructions such as writing out

of the agent's memory space. Since most mobile agents are Java based, this

technique is quite useful. In the contrary, the Safe-Tcl execution layer does not

require code verification [75].

4.2.4 Time limits

ln this technique, the host decides how much time to be given to an agent

to execute on its environment. This time could depend on the identity of the

agent or the task it needs to achieve.

A host could also determine whether an agent is allowed to execute after

its lifetime has expired or no. Some agents have a lifetime span and expiry time.

When a host detects that an agent has exceeded its time span, the host may

terminate the agent or send it back to its creator.

4.2.5 Rangelimits

ln this technique, a host determines the maximum number of destinations

or network hubs a mobile agent can visit before it arrives to the current host. The

more hosts a mobile agent visits, the higher the possibility that its code has been

•

63

• tampered with. A host may also decide to reject a mobile agent if the agent has

visited a high-risk host in its way to the current one.

4.2.6 Duplication limits

A host can control the number of times an agent is allowed to duplicate

itself (clone itself). Cloning is a technique used in mobile agents to divide a big

task into a set of smaller ones. Each smaller task is assigned to a cloned agent

to achieve. Cloning is al50 used when an agent wants to access a particular and

this resource is not available on the current host. But the agent may not have

finished its task on the current host and it may not want to migrate to another

host yet to access the needed resource. A clean solution would be the creation of

a new cloned agent. This cloned agent is then sent to the host where the needed

resource can be found [76]. Cloning is also used to achieve persistence in agent

migration. So, the cloning technique is quite good and very useful to divide and

conquer a task. But what if a malicious agent keeps on cloning itself endlessly? It

could easily swamp the hosts on a network. Therefore, hosts need to put a limit

for agent cloning. The limit should be set wisely so that a good agent should be

able to clone itself to achieve its task. A bad agent will be forced to stop cloning

itself when it reached the limit.

•
4.2.7 Audit Logging

ln this technique the host keeps log files of ail the activities carried out by

ail the visiting agents. Whenever an attack on a host occurs, these log files can

•

•

64

be used to detect which agent is responsible for the attack and how exactly it did

it. This technique does not protect the host but it allows it to determine who does

what. The next step that should be established in the mobile agent communities

is to have governmental or even better international laws that govern the

behavior of mobile agents and their hosts. For example, there is a need to have a

law that clearly indicates a punishment for a creator of an agent if his or her

agent attempts to attack a host's security system. There is a need to have a set

of agreed upon rules. It will make a huge difference in the development of mobile

agents if a legal system to control the actions of agents and hosts is put in place.

The owners of malicious entities should be held accountable for their actions. In

conclusion, even though the audit logging technique does not provide a direct

protection to hosts, it is believed that audit logging is one of the most important

techniques that should exist in any mobile agent system.

Table 2 is a modified version of the one presented in [24]. It summarizes

the different techniques that can be applied to mobile agents at each phase of

their life cycles on a host. Sorne of the techniques are more suitable to be

applied at the moment an agent is received by a host. For example,

authenticating the credentials of the agent, verifying its code, checking its life

time expiry date, checking how many host it has visited before, and logging its

arrivai in the audit log are ail very suitable techniques to be applied to an agent

upon receiving it. When an agent is in its execution phase, the host may keep an

eye on it and monitor its action to prevent it from accessing any resources that

65

• the agent is not entitled to access. The host may also keep track of the expiry

date of an agent as weil as how many times it has c10ned itself. Ali activities done

by an agent may always be logged in the audit log file. When an agent decides to

depart, the host may just check the expiry date of the agent and log its departure.

Arrivai Execution Departure

Authenticating credentials Yes

Code verification Yes

Access-Ievel monitoring and
Yes

control

Audit logging Yes Yes Yes

Time limits Yes Yes Yes

Range limit Yes

Cloning limits Yes

Table 2: Host protection techniques during an agent's Iife cycle

4.3 Security Techniques to Protect Agents

Protecting an agent is not only concerned with malicious hosts but also

unreliable ones. In addition to that, an agent should also be protected from

unreliable network connections. Fault tolerance techniques are used in order to

pratect agents fram unreliable hosts and unreliable network connections. When it

•

66

• comes to protecting agents from malicious hosts, encryption techniques are

used. In this section, an analysis of the currently available techniques is provides.

4.3.1 Fault tolerant techniques

Fault tolerant techniques are used ta make sure that the agent will survive

a hardware problem or a network problem. A hardware problem could be

something like a crashed host where a network problem could be a damaged

network path.

4.3.1.1 Persistence

•

ln this technique, once a host receives a mobile agent, it keeps an image

of the agent's execution state saved on a persistent storage device (a hard

drive). If the host crashes, the mobile agent will not be lost. When the host comes

back to service, it will restart ail mobile agents from its persistent storage [24].

This technique is used in the Concordia framework to ensure the persistence of

its mobile agents [37].

It could happen that a host was down for quite a long period of time. When

it comes back to life, it will restart ail agents in its persistence storage device. If

these agents do not have expiry dates, they will resume their executions. But

since the host was down for a long period of time, then most probably these

agents are too old to be of any valuable use ta their creators. Their owners would

have probably lost hope to get them back. Therefore, a mobile agent system

should provide a way to revoke an agent. Otherwise, a lost and forgotten agent

67

• could suddenly come back to life and start acting on behalf of its original creator

in an unwanted manner.

4.3.1.2 Redirection

Practically, one cannot assume that ail parts of a network will always be

up and running. Therefore, an agent needs to be programmed to try to find

alternative paths or ways of communication channels to reach its destination.

Sometimes, parts of the network are down. Some other times an agent may fail

to establish a certain type of communication channel like Ethernet. In such

cases, the agent should be able to find out other alternatives. It should be able to

redirect its path to avoid the damaged part of the network. It should also be able

to establish another communication channel such as packet radio instead of

Ethernet [24].

•

4.3.2 Encryption techniques

The encryption techniques are basically used to protect an agent from

being tampered with by a malicious host. Practically, an agent carries sensitive

information that needs to be hidden fram hosts as weil as from other agents. The

area of cryptography has been a very active research field in the past few years

due to the need for secure transactions over the Internet. Ali the work done in the

field of cryptography can be used and applied to protecting agents' code and

data from hosts and other agents. In this section, a survey of the commonly used

encryption techniques that have been used in mobile agents is presented.

68

• 4.3.2.1 Siiding data encryption [24] [25] [79]

ln this technique a mobile agent uses a public key to encrypt the data it

has acquired from hosts. The encryption key is public which means it is known to

hosts as weil as other agents. Once the data is encrypted using the public key,

they can only be decrypted by another private key that corresponds to the public

key. The Concordia framework uses this technique to protect the data acquired

by its agents [37].

4.3.2.2 Function encryption

Sorne functions of a mobile agent code are required to be hidden from

hosts and other agents. For example, if the mobile agent's role is to buy an item

for its creator, then the code of the agent must include a signing function that will

be executed to sign documents to purchase the required item. This function and

the private key of the agent's creator must be protected. In [28], a special class of

polynomial and rational functions are proposed to be used together with

encryption schemes to hide a function inside a mobile agent code. This hidden

function can then be executed in a non-interactive protoco!. This technique

protects the signing function from being abused by a malicious host.

Figure 4 from [28] explains how encrypting functions works in mobile

agents.

•

•

•

69

Alice 6
....-------------~------ E(J) (x)

.. ...
/(x) • ...

1
2 5

• Bob

3,
1 4

P(J) (x) P (E(/)) (x) .- ----- x

Figure 4: Computing with encrypted functions

ln this example Alice represents a mobile agent and Bob represent a host.

The protocol for non-interactive computing with encrypted functions looks like

this:

1. Alice encrypts f

2. Alice creates a program P (E(f» which implements E(f)

3. Alice sends P(E(f» to Bob

4. Bob executes P(E(f» at x

5. Bob sends P(E(f» (x) to Alice

6. Alice decrypts P(E(f» (x) and obtains f(x)

•

•

70

4.3.2.3 Trail obscuring [24] [25] [78]

Sometimes it is important for a mobile agent ta hide its identity and its path

throughout the network. For example, a bidding agent may want ta hide where it

has been before. It may also like ta visit the same hast more than once without

being detected that it is the same agent. In [78], a technique ta hide the identity

of the agent by changing its own binary image is presented. This technique can

only be used if the hast is willing ta accept anonymous agents. By changing its

binary image, the mobile agent makes it harder for the hast ta track it by simple

pattern matching since each time the same agent visits the hast, the agent will

have a different binary image. This technique is just making it harder for hasts ta

track an agent.

4.3.2.4 Code obfuscation [24] [79]

On one hand, a hast needs ta verify the code of an agent in arder ta make

sure that the agent will do no harm ta the hast. On the other hand, an agent

needs ta protect its code from being exposed ta a hast. An agent needs ta have

privacy on the tasks it is doing. Code obfuscation is a technique that can be used

by mobile agents ta make it harder for a hast ta reverse engineer its code. There

are many forms of code obfuscation. Blackbox security [26] [29] is one

implementation of code obfuscation. In the balckbox security mechanism the

code of an agent is encrypted. The agent roams the network with a special

execution layer attached to it. This execution layer acts as an interface between

71

• the encrypted agent and the host. The host has to execute the mobile agent in an

exhaustive loop with different input parameters in order to be able to exploit the

functionality of the agent's internai code. To totally eliminate the possibility that a

host can reverse engineer and agent, [29] proposes an enhanced version of the

blackbox security. He named it time limited blackbox security. In this version, the

agent is given a predefined period of time during which the agent may function.

When this period of time is over, the agent stops to communicate with any other

entities in its environment. In addition to that, the agent does not migrate to any

other host. Despite the fact that the agent will not complete its task, it will keep its

internai data and code safe and secured from being exposed to a host or to other

agents.

4.3.3 Other techniques for agent protection

ln the last two sections, agent protection by fault tolerance techniques and

encryption techniques was presented and analyzed. There are some other

techniques that can also be used to protect agents from being maliciously

modified by hosts or other agents.

4.3.3.1 Detection and proof of modification attacks

This approach does not focus on hiding or encrypting information. Its main

concern is to have a legitimate framework for mobile agents and hosts. If a

mobile agent can prove that a host has maliciously modified its data, code, flow

•

72

• of control or communication with other agents, the owner of the agent can use

legal or organizational ways to get the damage refunded [30].

4.3.3.2 Tamper proof hardware

ln this technique, a special piece of hardware is attached to every mobile

agent-enabled host. This piece of hardware is used by the agent to prove

whether or not it has been modified [27] [31]. In [33], a set of processors that can

be added to hosts to execute mobile agents in a totally sealed environment from

the host is proposed. This technique is so powerful and so secure but it requires

dedicated and expensive pieces of hardware. The associated high cost renders

this technique from being applicable to a wide range of hosts. When cost is not

an issue and a very degree of security is needed, this will definitely be the

technique to be used.

4.3.3.3 Execution tracing

An execution trace is a log file of the history of the agent's execution on a

host. These execution traces are collected, analyzed, and compared to a

"supposed history of execution". In case, that the code, data, or flow of execution

of a mobile agent is tampered, the agent's owner can prove that his or her agent

could have never performed the actions it performed [27] [32]. Since it is believed

that having some sort of a regulatory system that governs the relationship

between agents and hosts will boost the deployment of mobile agents, having

•

•

•

73

such a technique in place will facilitate the construction of a mobile agents court

system.

74

• Chapter 5:

Mobile Agents and Migration

Seing autonomous is definitely the most attractive feature of mobile

agents. Their ability to move freely from one node to another on a network is

what makes themvery interesting and very appealing. In this chapter, a survey of

the mobile entities in computers and computer networks is presented. Followed

by a discussion of the different types of mobility control. The advantages and

disadvantages of the different mobility control types are analyzed. Finally, the

chapter is concluded by an up to date survey of the techniques proposed to

achieve strong migration. Strong migration is defined as the ability to resume

execution from exactly the point where an agent has stopped on a previous host.

5.1 Different Kinds of Mobile Entities

5.1.1 Mobile data

Data are the most commonly known mobile entity. Downloading a file from

a certain computer is actually a form of data mobility. The file or at least copy of it

is moved from one location to the other. Receiving an html page from a server is

also a form of data mobility [34]. Mobile data are probably the most commonly

known mobile entities.

•

•

•

75

5.1.2 Mobile reference

When surfing the Internet, moving from one web page to another can be

viewed as a movement of a reference from one page to another. It is like having

a pointer that is pointing to a particular location. When this pointer moves, ail

what happens is that it starts to point to another location. This kind of movement

is analogous to passage by reference in a conventional programming language

like C++.

5.1.3 Mobile code

Thé most commonly known form of mobile code is a Java applet. A Java

applet is a piece of code that can be downloaded on demand from a remote

server. Once the applet is downloaded to a user's computer, it starts to run

without having to preinstall itself [34].

5.1.4 Mobile code and store

ln this form of mobility, the mobile entity consists of code, stored values of

internai data variables, and possibly an execution entry point. In other words, it is

a running program in a particular state. Having the state of execution transferred

along with the code allows the running program to resume its execution once it

reaches its destination. This form of mobility is the one offered by most Java

based mobile .agent systems [34].

•

•

76

5.1.5 Mobile closure

Closure is defined by [34] as "the complete run time description of a

computation which includes code representation and mapping betwéen language

identifiers and resource values." This form of mobility does not lose a network

connection during migration because a network connection is usually

represented by an identifier. A mapping of the connection identifier will be moved

with the closure. Therefore, the network connection will be restored once the

closure reaches its destination. Obliq [35] is one of the languages that support

closure migration.

5.2 Types of Mobility Control for Mobile Agents

According to [34], there are three basic categories of mobility control for

mobile agents. The mobility of an agent could be preplanned. So, before the

agent is dispatched, its owner decides exactly where the agent will go. Another

form ofmobility control is to have no control at ail. The agent decides where to go

based on the information it gets from the servers it visits. So, an agent may start

by going to a directory site. From the directory site, the agent can collect sorne

information about the services provided by sorne other sites. Then it will decide

where to go from there in order to achieve its task. The third form of control is to

kick an agent from one host to another. It is simply forcing the agent to migrate to

a particular host. In this section, a description of these forms of mobility control is

provided.

•

•

77

5.2.1 Planned mobility

ln this type of mobility control, the agent is provided by an itinerary before

it starts its trip. The itinerary lists ail the sites that the agent will need to visit. In

sorne cases, the itinerary also associates a particular function with each site an

agent will visit. Having a predefined set of hosts to visit, an agent will not worry to

compute its targeted sites. Therefore, the mobility code can be decoupled from

the application code. Concordia, Aglet, Odyssey, and Macondo support this type

of mobility control.

5.2.2 Spontaneous mobility

ln this type of mobility, the agent calculates what hosts it needs to visit at

run time. This type of mobility control facilitates developing an intelligent mobile

agent. Assume that the task of a mobile agent is to get the best possible deal for

booking an air ticket to Paris. As an agent owner, it should not be my

responsibility to tell the agent where to go to get me the best possible deal. 1 am

willing to provide it with a couple of directory sites but not a comprehensive list of

ail relevant sites. My agent should be intelligent enough to go to these directory

sites, query about travel. agents' sites, airlines sites, and any other sites that may

be useful. Then it should go to these sites and fetch me the best possible deal.

Furthermore, in order to achieve network load balancing, this kind of

mobility control has to be supported. If an agent is running on an overloaded

node on a network, the agent should be smart enough to detect a less loaded

node, migrate to it, and resume its work on the new node.

•

•

78

Ali Aglet, Voyager, Odyssey, Mole, and Macondo frameworks support

spontaneous mobility control. It is worth noting that for certain type of

applications; the preplanned itinerary is more efficient than the spontaneous

mobility. Therefore, a practical mobile agent framework should sport both types

of mobility control.

5.2.3 Controllable mobility

ln some cases, an owner of an agent or the host that is running an agent

needs to force the agent to move to another site. The agent does not migrate

voluntarily but it is forced to move as per a request from some authority. For

example, collecting an agent back is a form of controllable mobility. The owner of

an agent forces its agent to come back to its home.

Table 3 from [34] provides a comparison between the different mobile agents

frameworks and their support to the different types of mobility control.

Type Of Mobility Concordia Aglet Voyager Odyssey Mole Macondo

Planned Yes Yes No Yes No Yes

Spontaneous No Yes Yes Yes Yes Yes

Controllable No Yes Yes No No Yes

Table 3: Mobility control in different mobile agent frameworks

79

• 5.3 Mobile Agent Migration Techniques

ln this section, a survey of the latest migration techniques for mobile

agents is presented. Transparent and reliable migration has always been a goal

to realize in any commercial or academic mobile agent framework. In particular,

strong migration is definitely the most challenging goal to achieve. As mentioned

in chapter 3, most mobile agent frameworks are Java-based. Java does not

directly support strong migration. Basically, this is why strong migration was not

an easy task to fulfill. The content of this section is an attempt to gather some of

the latest and most promising migration mechanisms.

•

5.3.1 Transparent stack and program counter migration in Java

ln [80], a mechanism is proposed for transparent stack and program

counter migration of a Java thread. Ali mobile agents in ail Java-based

frameworks are Java programs that have their own threads. Using the Java

Platform Debugger Architecture (JPDA), [80] could access and capture the stack

frames, the local variables, and the program counter of a Java program. Once

captured, these pieces of information could be packed and shipped with the

migrating agent. When the agent reaches its destination, can set back the

program counter along with ail the other information in the new host computation

environment using the JPDA. Setting this information is done either at the byte

code level or at the portable parts of the virtual machine. Since the JPDA is part

of Virtual Machine Specification of Java, the approach proposed by [80] is

portable to different operating systems and different version of JDK.

80

• 5.3.2 Strong mobility by adding markers in an inherently weak mobility

languages

Strong mobility is defined by [81] as "the movement of code and of the

execution state of a thread to a different site and the resumption of its execution

on arriva!." Where weak mobility is defined as "the dynamic linking of code

arriving from a different site". Strong mobility is better than weak mobility

because the agent will be able to resume its execution from exactly the same

point it has stopped at on its previous host. In [81], a generic algorithm is

proposed to traverse the code of a running agent and insert a unique marker at

every location where a migration cali may be executed. These markers are

shipped along with the code and data state of a migrating agent. The agent will

resume its execution at the marker where the migration cali was executed. By

doing that, the agent will resume its execution from exactly the point it has

stopped. This technique is language independent. It can be applied to any

programming language that supports weak mobility.

5.3.3 Strong mobility by using Java's VM and the exception/error handling

mechanism

ln [82], a very interesting technique is used to capture and transfer the

execution state of a Java program by just using a preprocessor and Java's

exception/error handling mechanism. When a migration cali is executed by a

Java-based agent, its internai execution state can be captures as follows:

•

•

•

81

The preprecessor inserts a special try/catch statement for each method

that might initiate a migration request in arder to save its local variable.

When a migration request is initiated, the method that has initiated it will

save its local variables and then throw an errer

The errer will keep on propagating through out ail methods in the stack

allowing them to save their local variables.

5.3.4 Strong mobility by implementing a Prelog interpreter on the Java VM

ln [83], a Prelog interpreter is implemented on the Java VM in arder to

capture the agent's current execution stack image. The prelog interpreter allows

capturing the execution state of a running Java pregram by using the serialization

techniques for Java objects. The technique presented in [83] enables agents to

reactively and autonomously migrate from one location to another. In addition to

that, the MiLog, implements streng migration of agents in prelog .

82

• Chapter 6:

Mobile Agents and Coordination

It is clear that in most real. life cases, heterogeneous mobile agents need

to communicate together to achieve their tasks. Most current mobile agent

systems are not compatible with each other. A mobile agent that has been

developed on one framework cannot coordinate with another mobile agent that

has been developed on anotherframework [42]. Solving this problem can be

achieved by having standards for mobile agents' communication. MA81F and

FIPA are two successful attempts to standardize the architecture of mobile agent

systems. FIPA was developed by a collaborative work exerted by various

organizations. The main goal of setting standards is to have interoperable

architectures of different mobile agent systems. In this chapter both standards

are analyzed and examined. It is believed that setting standards is vital to

increase the usability and usefulness of the mobile agent paradigm.

The development of agent specifie communication languages was also a

very positive step towards interoperability between different agents. The second

part of· this chapter is dedicated to survey and analyze some of the very

promising agent communication languages that are available in the market up to

the date of this thesis.

•

83

• 6.1 Standards for Mobile Agents Architectures

6.1.1 MASIF (Mobile Agent System Interoperability Facility)

The OMG (Object Management Group, Inc) proposed the MASIF [43]

specification for mobile agent architectures. MASIF defines a set of interfaces

that facilitate the interoperability between mobile agents developed on different

frameworks. MASIF is a CORBA based standard. The goal of MASIF is to

achieve interoperability between existing mobile agent frameworks without

forcing any radical changes to the implementation of the existing systems [45].

Basically, MASIF proposes a standard for agent names, agent system names,

agent system types, and location syntax [45]. MASIF consists of two main

interfaces: MAFAgentSystem and MAFFinder. The MAFAgentSystem provides

operations for the management and transfer of agents where MAFFinder

provides operations for the localization of agents. The MASIF MAFAgentSystem

interacts internally with the mobile agent system service functions and provides

the visiting agent with the equivalent CORBA interface. In other words, the

mobile agent framework specifie functions are wrapped into a standard CORBA

interfaces. Therefore, an agent developed using any MASIF-compliant

framework can operate on and interact with any other MASIF-compliant mobile

agent system.

IBM Aglets have recently announced their intention to be a fully MASIF

compliant in the near future. Grasshopper framework [46] is also MASIF

compliant. Therefore, in the near future, Aglets will be supported by any

• Grasshopper host and vise versa.

84

• MASIF proposes a very comprehensive set of standards for agent

management, agent tracking, and agent transport. But when it comes to

communication between heterogeneous agents, MASIF does not indicate how

this kind of communication can take place [45]. The lack of standards in agent-to

agent communication makes MASIF a limited standard to address the issue of

interoperability in a complete way. MASIF sets some rulesto make a host handle

different agents coming from different platforms. But there is no way for these

agents to communicate together. Standards to establish an agent community or

a marketplace are not provided by MASIF. The basic advantage of MASIF is that

being MASIF compliant does not require dramatic changes to the current

implementations of the frameworks. That easiness to be MASIF compliant makes

it feasible for current commercial frameworks like Aglets to announce that they

will be MASIF compliant in the near future.

•

6.1.2 FIPA (Foundation for Intelligent Physical Agents) [44]

FIPA was formed in 1996 as a forum of international companies with a

strong interest in telecommunication [47]. The official mission statement of FIPA

is: "The promotion of technologies and interoperability specifications that facilitate

the end-to-end inter-working of intelligent agent systems in modern commercial

and industrial settings" [47]. FIPA provides a set of standards that can be

realized in a number of commercially available software development

environments. Figure 5 from [48] shows the abstract architecture and its mapping

to concrete realizations.

•

•

85

Abstract Architecture

Messaging IDITectory lE
."

Concrete realization: CORBA Elements

"
Concrete realization: Java Elements

1

ACL
1

EMessaging Directory

Figure 5: Abstract FIPA architecture mapped to various concrete realizations

FIPA focuses on the definition of general standard languages and

protocols for communication, coordination, and management of heterogeneous

agents [45]. FIPA proposes an Agent Communication Language (ACL) as part of

its standard. This language is used as a mean of communication between FIPA

compliant agents. FIPA also focuses on how agents can communicate with other

entities such as humans, non-agent software, and the physical world [45]. FIPA

has three basic components: the Agent Management System (AMS), the

Oirectory Facilitator (OF), and the Agent Communication Channel (ACC). AMS

provides operations for mobile agent management. The OF is used by mobile

agents to advertise their own services and search for available ones. The ACC

86

• enables communication between agents. Each message exchanged between

two FIPA-compliant agents has to have a certain structure. This structure is

iIIustrated in Figure 6 [48].

Sender: Agent name
Receiver: Agent name

Expressed in a
Content language

Figure 6: FIPA message structure

The content of each message has to be expressed in a content language.

FIPA approved the following languages as content languages: SL (Semantic

language), RDF, KIF (Knowledge Interchange Format), and CCL.

The Directory Facilitator contains a list of entries; one entry for each

agent. Each agent has a unique name, a set of locators, and a set of attributes.

•
Locators are used by other agents to send messages to the agent. These

locators are particular forms of message transport such as 1I0P, SMTP, or

•
87

HTTP. For example, Agent ABC can specify the following locators as means of

communication with it:

locators:

Type Specifie address

HTTP http://www.AgentABC.ca/

SMTP AgentABC@SomeAddress.ca

Figure 7 fram [48] shows how locators can be used in communication between

agents

Query

- -.- ----- ---1
1
1
1
1
1
1
1
1
1
1

___________ J

eAddress.ca

entXYZ
cts ABC to

mmunicate
h

-----------1
1

essages can 1

e sentby :
1 elther address :
,_...; - _ ... - - - - - - - __1

..
r----
1 AgDirectory Service 1.. AgentXYZ
1

seleDirectory ., 1
1

Entry
: co
1 wit

.U 1
1
l ____

Registered in

To: To:
http://www.AgentABC cal AgentABC~ Som

Agent ABC
1 Message 1 1 Message 1

1- --

.4 .. 1 M1
1

b1
1
1

•
Figure 7: Communication between agents using locators

88

• Few FIPA compliant frameworks have been developed so far. JADE and

FIPA-OS are examples of FIPA compliant frameworks. JADE (Java Agent

Development Framework) [50] is an academic agent framework development

environment that is designed and implemented having FIPA standards in mind.

JADE is an open source project that can be downloaded from [51]. As its name

indicates, JADE is developed using Java.

FIPA-OS is another open source system originally developed by Nortel

Networks [2]. FIPA-OS platform supports communication by using the FIPA

agent communication language standards. It provides a set of services that are

specified by FIPA agent standards such as an agent management system for

life-cycle management, a directory facilitator, and an agent communication

channel for FIPA-compliant messaging and interaction protocol. The latest

information about FIPA-OS and the latest code can be found at [65] and [66].

6.2 Agent Communication Languages

Ideally, ail agents - regardless of their implementation environment

should be able to communicate using a single universally understood language.

But this statement is like saying ail people on the universe should speak the

same language. Realistically, it will never happen that ail mobile agents will adopt

the same language. Basically, there are two types of agent communication: direct

and mediated [49]. The direct type is achieved by using one of the sets of

standardized languages such as KQML, ARCOL, FIPA-ACL, and ICL. Ali these

• are well-defined languages that can be adopted (or supported) by any mobile

89

• agent framework. The second type of communication relies on having a facilitator

layer between the heterogeneous agents. This facilitator layer acts as a

translator (mediator) between the heterogeneous agents. It communicates with

one agent using one language, translates the agent's message to another

language, and sends it to the other agent. CORBA with ail its brokering facilities

is considered one of the most promising languages to implement the facilitator

layer. In this section sorne of the most widely known agent communication

languages are presented.

6.2.1 KQMl

The Knowledge Query and Manipulation Language (KQML) is a general

purpose language that facilitates the communication between several agents [49]

[53]. KQML is the result of a research done by the Knowledge Sharing Effort

(KSE). This research group designed the Knowledge Interchange Format (KIF)

as a common language to represent the content of the messages exchanged

between agents [49]. The KQML language has a set of reserved words that can

be used to share meaning between agents. For example, tell is one of the

reserved keywords. When an agent A send a tell message to agent B, then the

meaning is:

Agent A wants to tell agent B that the content of the message is in

agent A's knowledge base.

•

90

• Another reserved word is error. When agent A sends an error message to

agent B, then agent B can understand that:

Agent A considered agent B's previous message as ill-formed

6.2.2 ARCOL

ARCOL is the agent language developed by the France Telecom for their

ARTIMIS agent technology framework [49]. ARCOL uses the Semantic

Language (SL) to represent the content of its messages. ARCOL has a set of

primitives for communication. For example, Inform, Request, and Confirmation

are ail predefined primitives that are used to exchange messages between

agents.

6.2.3 FIPA-ACL

•

FIPA-ACL language is inspired by both ARCOL and KQML. As mentioned

earlier, the content of the message can be represented by a number of well

defined languages such as KIF or SL. FIPA's ACL has a very precise and formai

set of primitives. These primitives are categorized into three main sections:

action primitives, information primitives, and negotiation primitives. Agree,

Refuse, Cancel, and Propagate are examples of action primitives defined by

FIPA ACL. Where Inform, Inform-if, and Disconfirm are some of the information

primitives. Negotiation primitives include Propose, Accept-proposal, Reject

proposaI, and Query-if. Since FIPA is an organization that is composed of

91

• several parties in industry and academia, its standard language has a very weil

defined formai semantics foundation [49] [53].

6.2.4 ICL

The Open Agent Architecture (OM) is designed by SRI International [52]

in order to integrate heterogeneous agents in a distributed system. To achieve

this goal, SRI developed a logic-based dedarative language called InterAgent

Communication Language (ICL) [49]. This language uses facilitators to achieve

communication between different agents as weil as between software and agents

and humans. Requests (from software agents or humans) are processed byan

ICL kernel and represented in ICL expression format. This means, the ICL

language has a natural language processing component that is capable of

transforming a natural language request like "Send a Merry Christmas message

to ail my friends" to a formai ICL expression like send_message (email, 'ail',

[subject (Merry Christmas)]). ICL uses a prolog-like language as a language to

represent the content of its messages. The main drawback of ICL is that it is tied

to one particular agent architecture; this architecture is the OM [49].

•

92

• Chapter 7:
Future Work

ln this chapter, a new idea for revoking an agent is proposed. The

implementation of the revoking mechanism presented in this section will be done

in the future. The need to regulate the relationships between agents and hosts,

setting rules, enforcing laws, tracking and catching malicious agents or hosts is

emphasized. The existence of a legal system that governs and sets the rules for

both agents and hosts will make it safer and easier for mobile agents to widely

spread without having to implement very tight security mechanisms for hosts and

agents. Lots of research in various areas such as sociology, law, and of course

computer science is needed to realistically establish a legal system for the new

paradigm of mobile agents.

7.1 A Revocation Mechanism for Mobile Agents

ln chapter 4, one of the security challenges was how to revoke a mobile

agent. Revoking a mobile agent means ceasing it to represent its owner. The

development of a mobile agent registry server is believed to be a possible

solution for this problem. The mechanism may go as follows: When a mobile

agent is created and dispatched to the network, its owner has to register it on a

known and trusted mobile agent registry server. The creator of an agent can un-

•
register it at any point of time. The agent should check its registration every now

and then. The owner of an agent sets the frequency according to which an agent

will check the registry server. If the agent finds out that it has been unregistered,

93

• it must report back to its owner and kill itself immediately. The authentication

process that a host performs on an agent to verify that the agent is really what it

has claimed to be may include checking the mobile agent registry server. If the

agent's registration is confirmed with the registry server, the rest of the

authentication process may take place. Otherwise, the agent has to be rejected

and sent back to its owner.

7.2 Law Enforcement Agents

It is believed that one of the best ways to establish a secure environment

for both hosts and agents is to have sorne law enforcement agents. These very

special agents will play the role of e-policemen in the new world of e-agents and

e-markets. Even though it sounds like a science fiction idea, most of the

Ingredients to establish such an environment are already there. Hosts can keep

logs of the activities performed by agents (please revise chapter 4). These logs

can be used as documents to prove or disprove that a particular agent has or has

not commitled a wrong doing act. These logs can be digitally protected from

being forged or modified by an unauthorized party. Having such a tracking

system, the notion of trust between agents and hosts can then be introduced. An

agent will always be considered friendly unless proven otherwise. Once an agent

is proven to be malicious, its owner will be persecuted and will be held

responsible for whatever damages his or her agent may have caused.

•

94

• Chapter 8:
Conclusion

The contribution of this thesis to the research community is to provide an

up to date survey of the currently available technologies for mobile agents in

different aspects along with an analysis to show the pros and cons of the

currently available techniques. No doubt, the mobile agent paradigm is an

extremely promising field. It is expected to revolutionize the Internet sorne day.

However, there exist sorne barriers for this developing paradigm to be overcome.

Security comes at the very top of the barriers list. Followed by the need to have

standards for collaboration so that agents coming from different frameworks can

communicate and cooperate together. Then the need to have programming

languages support for sorne specifie mobile agent aspects such as the need for

strong migration support, the need to have constructs to adequately represent

the agent's believes, the need to have strong security mechanisms for both the

running code and its data, and the need to have a high degree of interoperability.

Last but surely not least, people need to be socially prepared to accept and trust

electronic intelligent mobile agents that can make decisions on their behalf. Until

progress is made in these areas, the field of mobile agents will remain somewhat

limited.

•

95

• References:

[1] Danny B. Lange and Mitsuru Oshima: Programming and Deploying JAVA

Mobile Agents with Aglets. Addison-Wesley, 1998.

[2] Joseph P. Bigus and Jennifer Bigus: Constructing Intelligent Agents Using

JAVA: Second Edition. JohnWiley & Sons, Inc. 2001.

[3] Xiabo Fan: Applying Mobile Agents to Implement to Authentication in

Large Scale Networks. McGill University, 1999.

[4] Vu Anh Pham and Ahmed Karmouch: "Mobile Software Agents: An

Overview." IEEE Communications Magazine, July 1998. P. 26-37.

[5] Ahmed Karmouch: "Mobile Software Agents for Telecommunication."

IEEE Communications Magazine, July 1998. P. 24-25.

[6] Danny B. Lange and Mitsuru Oshima: "Seven Good Reasons for Mobile

Agents." Communications of the ACM, March 1999. Vol. 42, No. 3. P. 88

89.

[7] Bill Joy: "Shift fram Protocols to Agents." IEEE Internet Computing,

January-February 2000. P. 63-64.

[8] http://www.agent.org

[9] Partha Sarathi Dutta, Sandip Debnath, and Sandep Sen: "A Shopper's

Assistant." ln Praceedings of the 5th ACM International Conference on

Autonomous Agents, Montreal, Quebec, June 2001. P59-60.

[10] Joan Morris, and Paul P. Maglio: "When Buying On-line, Does Price

Really Matter?" MIT Press 2000.

•

•

•

96

[11] Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and

Songnian Zhou: "Process Migration." ACM Computing Surveys, Vol. 32,

No. 3, September 2000. P241-299.

[12] Detlef Schoder and Torsten Eymann: "The Real Challenges of Mobile

Agents." Communication of the ACM, Vol. 43, No. 6, June 2000. P111

112.

[13] David Chess, Colin Harrison, and Aaron Kershenbaum: "Mobile Agents:

Are They a Good Idea?" Research Report, IBM Research Division, T. J.

Watson Research Center, Yorktown Heights, NY. Mar., 1995;

www.research.ibm.com/iagents/publications.html.

[14] David Wong, Noemi Paciorek, and Dana Moore: "Java-based Mobile

Agents." Communications of the ACM, Vol. 42, No. 3, March 1999.

[15] Ravi Jain, Farooq Anjum, and Amjad Umar: "A comparison of Mobile

Agent and Client-Server Paradigms for Information Retrieval Tasks in

Virtual Enterprises." IEEE Proceedings on the Academial Industry

Working conference, 2000. P209-213.

[16] Do van Thanh: "Using Mobile Agents in Telecommunication." IEEE

Proceedings of the 1ih International Workshop on Database and Expert

Systems Applications, 2001. P685-688.

[17] B. Pagurek, A, Bieszczad, and T. White: "Mobile Agents for Network

Management." IEEE Communication Surveys, September 1998.

[18] Ahmed Karmouch: "Mobile Software Agents for Telecommunications."

IEEE Communications Magazine, July 1998. P24-25.

97

• [19] Y. Yemini: "The OSI Network Management Model." IEEE Communication

Magazine, May 1993, P20-29.

[20] W. M. Farmer, J. D. Guttman, and V. Swarup: "Security for Mobile Agents:

Is~ues and Requirements." Proceedings of the 19th International

Conference on Information System Security, Baltimore, MD, October

1996. P591-597.

[21] Sebastian Fischmeister, Giovanni Vigna, and Richard A. Kemmerer:

"Evaluating the Security of Three Java-Based Mobile Agent Systems."

Lecture Notes in Computer Science 2240. Springer-Verlag, May 2001,

P31-41.

[22] Moses Ma: "Agents in E-commerce." Communications of the ACM, Vol.

42, No. 3, March 1999. P79-80.

[23] Vijay Varadharajan: "Security Enhanced Mobile Agents." Proceedings of

the i h ACM Conference on Computer and Communication Security 2000.

P200-209.

[24] Michael S. Greenberg, Jennifer C. Byington, and David G. Harper: "Mobile

Agents and Security." IEEE Communications Magazine, July 1998, P76

85.

[25] A. Young and M. Yung: "Sliding Encryption: A Cryptographic Tooi for

Mobile Agents." Proceedings of the 4th International Workshop on Fast

Software Encryption, 1997.

•

98

• [26] Fritz Hohl: "Protecting Mobile Agents with Blackbox security." Proceedings

of Mobile Agents and Security Workshop, University of Maryland, October,

1997.

[27] Hock Kim Tan, and Luc Moreau: ''Trust Relationships in a Mobile Agent

System." Lecture Notes in Computer Science 2240. Springer-Verlag, May

2001, P15-30.

[28] Tomas Sander, and Christian F. Tschudin: "Protecting Mobile Agents

Against Malicious Hosts." Lecture Notes in Computer Science 1419.

Springer-Verlag, February 1998, P44-60.

[29] Fritz Hohl: "Time Limited Blackbox: Protecting Mobile Agents From

Malicious Hosts." Lecture Notes in Computer Science 1419. Springer

Verlag, February 1998, P92-113.

[30] Giovanni Vigna: "Protecting Mobile Agents Through Tracing." ln

Proceedings of the third ECOOP Workshop on Operating System Support

for Mobile Object Systems, 1997.

[31] U. G. Wilhelm, S. Staamann, and L. Buttyan: "Introducing Trusted Third

Parties to the Mobile Agent Paradigm." Lecture Notes in Computer

Science 1603. Springer-Verlag, February 1999.

[32] Giovanni Vigna: "Cryptographic Traces for Mobile Agenst." Lecture Notes

in Computer Science 1419. Springer-Verlag, February 1998, P137-153.

[33] U. G. Wilhelm. "Cryptographically Protected Objects." Technical Report,

Ecole Polytechnique Federale de Lausanne, Switzerland 1997.

•

99

• [34] Paolo Ciancarini, Andrea Giovannini, and Davide Rossi: "Mobility and

Coordination for Distributed Java Applications." Advances in Distributed

Systems, Lecture Notes in Computer Science 1752. Springer-Verlag,

2000, P402-425.

[35] L. Cardelli: "A Language with Distributed Scope." Proceedings of the 22nd

ACM Symposium on Principles of Programming Languages, 1995. P286

298

[36] Concordia framework: http://www.concordiaagents.coml

[37] Reuven Koblick: "Concordia." Communications of the ACM, Vol. 42, No. 3,

March 1999. P96-97.

[38] Voyager home page:

http://www.recursionsw.com/products/voyager/orb.asp

[39] Odyssey home page: http://www.genmagic.com/

[40] Mole home page: http://mole.informatik.uni-stuttgart.de/

[41] Macondo home page:

http://www.cs.unibo.it/~cianca/wwwpages/macondo/

[42] Myeong-Jae Yi, Yang-Woo Yu, Jin-Hong Kim, Yang-Soo Park, and

Myung-Joon Lee: "SMART: A CORBA Based Mobile Agent System

Supporting the OMG Specification." IEEE Communication Magazine,

2000. P70-74.

•
[43] Dejan Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan

Covaci, Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono,

Mitsuru Oshima, Cynthia Tham, Sankar Virdhagriswaran, and Jim White:

100

• "MASIF: The OMG Mobile Agent System Interoperability Facility." Lecture

Notes in Computer Science 1477. Springer-Verlag, 1998, P50-67.

[44] Foundation for Intelligent Physical Agents - FIPA '99 version 0.2

http://www.fipa.orgl

[45] Paolo Bellavista, and Cesare Stefanelli: "CORBA Solutions for

Interoperability in Mobile Agent Environments." IEEE Proceedings on the

International Symposium on Distributed Objects and Applications, 2000.

P283-292.

[46] IKV++ - Grasshopper 2, http://www.ikv.de/products.

[47] Stefan Poslad and Patricia Charlton: "Standardizing Agent Interoperability;

The FIPA Approach." Lecture Notes in Computer Science 2086. Springer

Verlag, 2001, P98-117.

[48] FIPA: "FIPA Abstract Architecture Specification." http://www.fipa.orgl,

Document number XC00001J. August 2001.

[49] Mamadou Tadiou Kone, Akira Shimazu, and Tatsuo Nakajima: "Critical

Review: The State of the Art in Agent Communication Languages."

Springer-Verlag, Knowledge and Information Systems, Vol. 2 Issue 3,

2000. P259-284.

[50] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa: "JADE: A

FIPA2000 Compliant Agent Development Environment." ACM

Proceedings of the Fifth International Conference on Autonomous Agents,

June 2001, Montreal, Quebec, Canada. P216-217.

• [51] JADE project home page: http://sharon.cseltit/projects/iade.

101

• [52] Open Agent Architecture by SRI International home page:

http://www.ai.sri.comJ~oaa

[53] Yannis Labrou: "Standardizing Agent Communication." Lecture Notes in

Artificiallntelligence 2086. Springer-Verlag, 2001, P74-97.

[54] Paolo Bellavista, Antonio Corradi, Domenico Cotroneo, and Stefano

Russo: "Integrating Mobile Agent Infrastructures with CORBA-based

Multimedia Applications." IEEE Proceedings of the 9th Euromicro

Workshop on Parallel and Distributed Processing, 2001. P121-128.

[55] Michael Wooldridge: "Intelligent Agent." Multiagent Systems: A Modem

Approach to Ditributed Artificial intelligence. Edited by Gerhard Weiss. The

MIT Press, London. 1999.

[56] Robert S. Gray: "Agent TCL." Dr. Dobb's Journal March 1997.

[57] Herald Kosch: "CORBA, Web and Databases." IEEE Proceedings on the

International Symposium on Distributed abjects and Applications, 2000.

P674.

[58] Steve Vinoski: "Introduction to CORBA.", ACM Proceedings of the 2000

International Conference on Software Engineering, 2000.P822.

[59] abject Management Group 1999. The Common Object Request Broker:

Architecture and Specification. Revision 2.3.1.

FTP://ftp.omg.org/pub/docs/formal/99-10-07.pdf. Framingham, MA:

abject Management Group.

[60] Marie-Pierre Gervais, and Alioune Diagne: "Enhancing

• Telecommunications Service Engineering with Mobile Agent Technology

102

• and Formai Methods." IEEE Communications Magazine, July 1998. P. 38

43.

[61] Kiminori Sugauchi, Satoshi Miyazaki, Stefan Covaco, and Tianning Zhang:

"Efficiency Evaluation of a Mobile Agent Based Network Management

System." Lecture Notes in Computer Science 1597, Springer-Verlag,

1999. P527-535.

[62] George Samaras, Marios D. Dikaiakos, Constantinos Spyrou, and

Andreas Liverdos: "Mobile Agent Platforms for Web Databases: A

qualitative and Quantitative Assessment." The IEEE Proceedings of the

Third International Symposium on Mobile Agents, 1999. P50-64.

[63] Rahul Jha and Sridhar Iyer: "Performance. Evaluation of Mobile Agents for

E-commerce Applications." Proceedings of 8th International Conference on

High Performance Computing, Hyderabad, India, Lecture Notes in

Computer Science 2228. Springer-Verlag, December, 2001. P331-340.

[64] Marios Dikaiakos, Melinos Kyriakou, and George Samaras: "Performance

Evaluation of Mobile-Agent Middleware: A Hierarchical Approach."

Proceedings of the 5th International Conference on Mobile Agents, Atlanta,

GA, USA, Lecture Notes in Computer Science 2240. Springer-Verlag,

December, 2001. P244-259.

[65] FIPA-OS: http://fipa-os.sourceforge.net/

[66] Nortel Networks: FIPA-OS:

http://www.nortelnetworks.com/products/announcements/fipa/

•

103

• [67] Volker Roth: "On the Robustness of Some Cryptographic Protocols for

Mobile Agent Protection." Lecture Notes in Computer Science 2240.

Springer-Verlag, December, 2001. P1-14.

[68] A. Corradi, R. Montanari, and C. Stefanilli: "Mobile Agents Protection in

the Internet Environment." Proceedings of the 23rd Annual International

Computer Software and Applications Conference, 1999. P80-85.

[69] G. Karjoth, N. Asokan, and C. Gulcu: "Protecting the Computation Results

of Free-Roaming agents." Proceedings of the Second International

Workshop on Mobile Agents, Lecture Notes in Computer Science 1477,

Springer-Verlag, September 1998. P195-207.

[70] G. Karjoth: "Secure Mobile Agent-based Merchant Brokering in Distributed

Marketplaces." Lecture Notes in Computer Science 1882. Springer-Verlag,

2000. P44-56.

[71] Ciaran Bryce, and Jan Vitek: "The JavaSeal Mobile Agent Kernel." The

IEEE Proceedings of the Third International Symposium on Mobile

Agents, 1999. P103-116.

[72] George C. Necula and Peter Lee: "Safe, Untrusted Agents Using Proof

Carrying Code." Lecture Notes in Computer Science 1419. Springer

Verlag, February 1998, P61-91.

[73] Shimshon Berkovits, Joshua O. Guttman, and Vipin Swarup:

"Authentication for Mobile Agents." Lecture Notes in Computer Science

1419. Springer-Verlag, February 1998, P114-136.

•

104

• [74] Gunter Karjoth, Danny B. Lange, and Mitsuru Oshima: "A Security Model

for Aglets." Lecture Notes in Computer Science 1419. Springer-Verlag,

February 1.998, P188-205.

[75] John K. Ousterhout, Jacob Y. Levy, and Brent B. Welch: "The Safe-TCL

Security ModeL" Lecture Notes in Computer Science 1419. Springer

Verlag, February 1998, P218-234.

[76] Onn Shehory, Katia Sycara, Prasad Chalasani, and Somesh Jha: "Agent

Cloning: An Approach to Agent Mobility and Resource Allocation." IEEE

Communications Magazine, July 1998. P58-67.

[77] Dennis Volpano and Geoffrey Smith: "Languages Issues in Mobile

Program Security." Lecture Notes in Computer Science 1419. Springer

Verlag, February 1998, P25-43.

[78] A. Young and M. Yung: "Sliding Encryption: A cryptographie Tooi for

Mobile Agent." ln Proceedings of the Fourth International Workshop on

Fast Software Encryption, 1997.

[79] James Riordan and Bruce Schneier: "Environmntal Key Generation

Towards Clueless Agents." Lecture Notes in Computer Science 1419.

Springer-Verlag, February 1998, P15-24.

[80] Torsten IIImann, Tilman Krueger, Frank Kargl, and Michael Weber:

"Transparent Migration of Mobile Agents Using the Java Platform

Debugger Architecture." Lecture Notes in Computer Science 2240.

Springer-Verlag, May 2001, P198-212.

•

105

• [81] Lorenzo Bettini, and Rocco De Nicola: "Translating Strong Mobility into

Weak Mobility." Lecture Notes in Computer Science 2240. Springer

Verlag, May 2001, P182-197.

[82] Hong Wang, Guangzhou Zeng, and Shouxun Lin: "A strong Migration

Method of Mobile Agents Based on Java." ln Proceedings of the Sixth

International Conference on Computer Supported Cooperative Work in

Design, 2001. P313-318.

[83] Naoki Fukuta, Takayuki Ito, and Toramatsu Shintani: "An approach to

Building Mobile Intelligent Agents Based on Anytime Migration." Lecture

Notes in Artificiallntelligence 2112. Springer-Verlag, 2001, P219-228.

[84] Gian Pietro Picco: "Mobile Agents: State of the Art and Research

Opportunities." Lecture Notes in Artificial Intelligence 2182. Springer

Verlag, 2001, P247.

•

