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A. Baker 

Cameron L. Stewart 

Abstract 

In this report l intend to survey the theory 

of transcendenta1 numbers and investigate its most 

important recent resu1t. That resu1t is A. Baker's 

theorem, "Linear Forms in the Logarithms of 

A1gebraic Numbers" first pub1ished in 1966. 

l have divided my thesis into three chapters. 

In chapter l l out1ine the history of transcendenta1 

numbers and prove sorne of the more important resu1ts 

in the field. In chapter II l prove A. Baker's 

theorem. Fina11y in chapter III l discuss sorne of 

the applications and consequences of A. Baker's 

theorem. 
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Nombres transcendants et un théorème de 

A. Baker 

Cameron L. Stewart 

Résumé 

Dans cet ouvrage je me propose de donner une 

vue d'ensemble des nombres transcendants et du 

résultat le plus récent qui s'y rattache. Ce 

résultat, dû â A. Baker parut pour la première fois 

en 1966 sous le titre "Linear Forms in the Logarithms 

of A1gebraic Numbers". 

Ma thèse comprend trois chapitres. Le premier 

chapitre esquisse l'histoire des nombres transcendants 

et prouve quelques résultats de la plus haute import­

ance. Dans le chapitre deux je prouve le théorème 

de Baker. Enfin dans le chapitre trois je discute 

quelques applications et conséquences du théorème de 

Baker. 
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Notation 

Z the integers 

z+ the positive integers 

~ the complex numbers 

Q the rational numbers 

1 lai 1 - the maximum of the absolute value of aIl the 

conjugates of a. 

lai - the absolute value of a 

N(a) - the norrn of a 

H(a) the height of a, the maximum of the absolute values 

of the relatively prime integer coefficients in a's 

minimal defining polynomial. 

[a] - denotes the greatest integer less than or equal 

to a. 

g(x) = O(f(x» If(x) 1 < Mg(x) for a constant M > 0 

f(n)(z) the nth-derivative of fez) 

n! 

(n-m) !m! 
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A SURVEY OF THE THEORY OF TRANSCENDENTAL NUMBERS 
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1.1 Transcendental Nurnbers 

In this chapter l will attempt to outline the main 

developments in the field of transcendental nurnbers. l will 

prove in detail both the Gelfond-Schneider theorem and 

Schneider's theorem. l hope to bring the reader to a position 

of appreciating the significance of a recent theorem of A. Baker 

[1] in the theory of transcendental nurnbers. 

While A. Baker's result is applicable to a wide range 

of problems it is of particular importance to the theory of 

transcendental nurnbers for it gives the natural generalization 

of the Gelfond-Schneider theorem. The Gelfond-Schneider theorem 

states that if a is algebraic and not 0 or l, and if b is 
b algebraically irrational then a is transcendental. As a 

consequence of Baker's theorem we have the following: 

If al, ••• ,an denote algebraic nurnbers that are neither 0 or 1 

and if bl, ••• ,bn denote algebraic nurnbers with l, bl, ••• ,bn 

linearly independent over the rationals then is 

transcendental. 

Before commencing it might be in order to remind the 

reader that an algebraic nurnber is a nurnber that satisfies a 

polynomial equation f(x) = amxm + ... + alx + ao = 0 where the 

ai are rational integers and am~ O. A complex nurnber that 

is not algebraic is transcendental. We see irnmediately that 

the algebraic nurnbers are countable. 
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1.2 Liouville's theorem and its improvements. 

The first result in the theory is due to Liouville. 

He determined an estimate for how weIl a real algebraic number 

can be approximated by a rational number. 

Liouville's Theorem. If r is a real algebraic number 

with minimum polynomial of degree n>l over Q, then there 

exists an m > 0 depending 

P 

only on r such that for aIl 

rational numbers - , q > 0 q we have that 1 r - ~ q 

The theorem is very easily proved using only the mean 

value theorem. (Hardy and Wright, The Theory of Numbers, P 161) .[2] 

This theorem now gives us a criterion for determining certain 

transcendental numbers. A Liouville number is a number riQ such 

that for aIl n there exists a rational number P /q n n such 

that 1 r - Pn/qn 1 «~~n. A Liouville number is transcendental 

and examples of such numbers are 
00 

I: 
k=O 

1 , 

Liouville published two papers in 1844 and 1851 ['3] on the 

subject and thus launched the study of transcendental numbers. 

It should be observed that almost aIl transcendental 

numbers are not Liouville numbers. Both ~ and e are not 

Liouville numbers with 

for q > 2. [4] 

~ satisfying -42 
> q 

A simple generalization of Liouville's theorem appears 
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in Joseph Liprnan's book,"Transcendental Nurnbers". [5] • It 

is theorem I. 

Theorern I. For any algebraic nurnber r of degree n, there 

is a positive nurnber C(r) depending on r such that wh/:mever 

s ~ r is an algebraic nurnber of degree d and height H then 

Ir - si > C(r)d 
Rn 

From the aforementioned theorem Lipman is able to deduce 

theorem II. 

Theorem II. Let r be an algebraic nurnber with Irl > 1. Then 
00 

F (z) = r 
k=O 

k z is an entire function which assumes a trans-
KT r 

cendental value at every non-zero algebraic z. 

The preceding nicely suggests the intimate relationship 

between entire functions and the study of transcendental nurnbers. 

An irnprovement on Liouville's theorern for the determinat-

ion of transcendental nurnbers is the following. 

Thue-Siegel-Roth theorem 

If r is an algebraic nurnber and e > 0 then the 

inequality 
p 

1 
1 is true for aIl but a finite number r - - > "2+ q q e: 

p 
of -q 

This theorem allows one to prove that certain nurnbers 

defined by a sequence of rational approximations less rapid 

than that of Liouville nurnbers are transcendental. 

(e.g. 

'j 
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1.3 The theorems of Hermite and Lindemann 

Twenty-two years after Liouville's paper was published 

the next advance in the subject was made. In 1873 Hermite 

published a proof that e was transcendental. [6] 

Hermite's proof involved the use of continued fractions. 'His 

approach stimulated Lindemann who modified Hermite's techniques 

and was able to establish Hermite's result as an immediate 

corollary of his famous theorem. Hermite's proof deserves the 

recognition it receives because it was the first proof of the 

transcendence of a naturally occuring number of analysis. 

Hermite's proof was altered and simplified by later mathemati-

cians like Hilbert and Hurwitz. Elementary proofs can be 

found in Hardy and Wright "An Introduction to the Theory of 

Numbers", pp 172-173 [2] and Ivan Niven's "Irrational Numbers", 

pp 2 5 - 2 6 [7 ] • 

After Hermite's breakthrough there was a 9-year pause 

before Lindemann gave a proof, in 1882, of the transcendence 

of ~ [8] • While Lindemann's objective was a proof of the 

transcendence of ~ he proved the following: 

L'in'd'emann" 's' 'th'eorem: B 

If al, ••• ,an are distinct algebraic numbers then 

al a 
e , ••• ,e n are linearly independent over the rationals. 

If ~ is algebraic then ~ i is algebraic. ~ i 

and 2 ~ i are distinct yet ~i e =-1 are not 

linearly independent over the rationals. We conclude that 
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T is transcendental. 

Lindemann's original statement of proof may be 

reformulated. 

Lindemann's Theorem A. 

If al, ••• ,an are algebraic numbers linearly independ-
al an 

ent over the rationals then e , ••• ,e are algebraically 

independent over the rationals. 

We see that the two formulations are equivalent. 

Assume B, then if al, ••• ,a
n 

are linearly independent over Q 

alrl a 2r 2 anrn 
~ Cee .•• e r = 0 where r = ( r, , ••• , r ) , cr € Q _ n and 
r 

and the sum is taken over only a finite number of r then 

alrl + ••• +anrn are distinct algebraic numbers for different 

n-tuples by linear independence and thus 

o . 

This contradicts B. 

Now assume A then let al' •• ' ,an disti·nct algebraic 

numbers, be written as linear combinations of a set of algebraic 

numbers bl, ••• ,bt 

rationals, i.e. 

Now 

which are linearly 
t 

a. = t dkbk ~ k=l 

independent over the 

which contradicts the algebraic independence of 

A generalized proof of Lindemann's may be found in 
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Ivan Niven's book "Irrational Numbers" [7] pp.117-l30, and 

an elementary proof of the transcendence of ~ may be found 

in Hardy and Wright, "Introduction to the Theory of Numbers" 

pp.173-l76 [2] •. Niven proves: Given distinct algebraic 
al a 2 am 

numbers al, ••• ,am the values e , e , ••• ,e are 

linearly independent over the field of algebraic numbers. 

Some immediate consequences of the generalized 

Lindemann theorem are the transcendence of e a , sin a, 

cos a, tan a, as weIl as the hyperbolic functions like sinh 

with argument a where a is a non-zero algebraic number. In 

addition, log a , arcsin a and generally the inverse functions 

of those above are transcendental when a is algebraic and 

a ~ 0, 1. These conclusions are aIl possible because of the 

above functions connection with the function 
z e e.g. Let 

a be algebraic, a 1 O. We then have cosh a = !ea + !e-a =a . 

If a is algebraic then !e~+ !e-a- aeO = 0 contradicting 

the generalized Lindemann theorem. Therefore a is transcendental. 

1 • 4 S'i'e'ge"l" 's' E'-'fun'c'tions 

In the years following Lindemann's paper transcendence 

results were confined to simplifications of the proofs of 

Lindemann and Hermite. The results depended upon the specific 

behaviour of the function e Z and could not be generalized 

to a broader class of functions. Siegel in 1929 did generalize 

the theory by looking at functions that had an addition theorem 

.. , 
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f(x+y) = f(x) • f(y) and satisfied a differential equation 

similar to f(t*) • f(x). He then conside:red functions 

satisfying only one of the above conditions. Siegel did 

considerable work on functions of the latter type, for example 

the E-functions. Definition fez) is an E-function if 

fez)· 
00 n 

z t cn -
n=O n! 

with 

1) AlI coefficients cn belonging to the s·ame algebraic 

field of finite degree over the rational nurnber field. 

2) If € is a positive nurnber then 

as n -+ 00 • 

3) There exists a sequence qo' ql •••• of positive 

rational integers such that qn ck is integral for k = O,l, ••• n 

and n = 0, 1, •••• and that 

We have that the derivative of an E function is an 

E-function, that the E-functions forro a ring and that e Z, 

J (z)= L' (_l)n 
o n=O 

(n!) 2 

any polynomial and the Bessel function 

are E-functions. Siegel proved that Jo(z) and J~t~) are 

transcendental and algebraically independent if z is non-zero 

and algebraic. 

1.5 Hilbert's seventh problem 

In 1900, 29 years before Siegel began his study of 

E-functions, Hilbert drew up a list of 23 problerns for which 

' .. 
J 
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there appeared no suitable approach to a solution. problem 

seven was to prove that if a and b- are non-zero algebraic 

numbers with a r 1 then log b is either rational or 
log a 

transcendental. This is equivalent to the Gelfond-Schneider 

theorem stated earlier. No progress was made on the problem 

until 1929, when a partial solution was given by A.O. Gelfond. 

Gelfond showed that if a and b are algebraic, a r 0, 1, 

with b an imaginary quadratic irrationality then ab is 

transcendental. In 1930 Kuzmin extended the proof to the case 

where b was a real quadratic irrationality. Thus the 

transcendence of e~ = (_l)-i and 2/2 were established by 

1930. Finally in 1934 A. Gelfond, [10] and in 1935, Th. Schneider, 

[11] published independent complete proofs of Hilbert's seventh 

problem. l will prove the theorem by two methods, one due to 

Gelfond [12] and the other due to Siegel [13] • 

1.6 Siegel's arithmetical lemmas 

Before commencing the proofs l will prove two arith­

metical lemmas due to Siegel. The first lemma will be used in 

proving Baker's theorem. 

LEMMA 1. If n, mare integers such that n > m > 0 and 

D 

.1: 

j=l 

a .. x. 
~J J 

= 0 i = 1, ••• , m 

with integer coefficients a .. 
~J 

is a system of linear equations 

such that l a. . 1 < A , then 
~J -

there exists a non-trivial integral solution xl, ••• xn such 

(nA) 
ml (n-m) 

that Ix j l ~ 



-10-

We will consider the negative and positive 

separately to obtain the required estimate for B. 

a .. 's 1J 

Pf: 

We consider x ~ (xl' ••• ,xn ) ~ (0, ••• ,0) with 

o < x. ~ B. 
J 

Let _ Di = sum of the negative 

of the positive a .. 's. 1J 

a .. 's 1J 

n 

and 

Then": D. B < 
1 

Ea .. 
j 1J X

J
. < Ei B so that Y.= E a .. x. 

1 j=l ~J J 

E. = the sum 
1 

can assume 

only (D. + 
1 

E. ) B + 1 ~ nAB + 1 values and therefore 
1 

y = (Yl, ••• ,Ym) can assume only (nAB+l)m values. There are 

(B + l)n_l different arguments x = (xl' ••• ,xn ) that are 

admissible. Therefore if (B + l)n -1 ~ (nAB + l)m we will 

" have either two distinct arguments x and x with the same 

value under M(a .. ) 1J or a non-~rivial solution. The first case 

" also gives rise to a solution, let x = x - x and by linear-

ity we have a non-trivial solution such that IXjl ~ B. 

To complete the lernma we check that B = (nA) m/(n-m) 

satisfies (B + l)n/m > nAB+l and this is irnmediate. 

LEMMA 2. Let K be a finite algebraic extension of Q of 

degree h. 

If n, m are integers such that n > m > 0 and 

n 
E a .. x. = 0 

j=l 1J J 
i = i, ••• ,m is a system of linear equations 
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a.. in I k , the integral closure of 
1J 

Z in K, such that lia .. Il < A, then there exists a non-
1.J 

trivial solution x = (xl, ••• ,xn), xi e I k , for the system 

of linear equations such that Il x. 1 1 < C (C nA) m/(n-m) 1. 

where C is a constant depending only on K. 

Pf: Let wl, ••• ,wh be an integral basis for K. Thus given 

n 
E 

j=l 
a .. x. = 0 

1.J J 
i = l, ••• m we may write 

h 
X.= E b k · w

k J k=l J 

where the bkj are rational integers. Therefore we have 

i=l, ••• ,m 

We may now write a.. wk= Llg. '-K ",. where the 1.J r= 1.) r r 

rational integers. We are thus trying to solve 
n h h 

gijkr 

o = E E E bkJ, giJ'kr wr i=l, ••• ,m. But as the 
j-l k=l r=l 

w 
r 

n h 
linearly independent this reducesto 0= E E bkJ· gijkr 

j=l k=l 

are 

are 

i = l, ... ,m ~ =l, ••• ,h and by lemma 1 this has a non-trivial 
m 

solution for IbkJ.1 _< (hnB)n-m where B" max 1 g 1 i,j,k,r ijkr' 

We observe now that if 
h 

a = "E" 
i=l 

( 

w1l) ••• 

· · · · • (1) wh- ___ _ 

M(h) 
""1 

. 
~(.h) 

h 

g.w. 1. 1 

= 

then we have 

(2) (h) (a, a , ••• ,a ) 

We assume w(l) • w. , j = 1 , ••• ,h 
J j 

, j 
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where the superscript denotes a conjugate. The 

integral basis. The determinant of M(w~i» is 
J 

w. form an 
~ 

non-zero and 

so the g. can be expressed as linear combinations of the 
~ 

(i) 
a • Therefore gi ~ cIllai 1 where Cl depends upon K 

and the choice of basis. Therefore 

m -
(Co nA)n-m and finally we may conclude that we have non-

trivial solutions x = 

llx. Il 
J ~h.max t Iwkll. 

k m 

(Xl'···,X) m n -
(ConA) n-m • 

such that 

This implies 

< C (CnA)n-m where the constant C depends only on 

the field K and choice of basis. 

1.7 The Gelfond-Schneider theorem 

Theorem 1. If a is algebraic and ! 0 or 1, and b 

is algebraically irrational then ab is transcendental. 

Pf: We will assume that is algebraic and we will 

assume that a, band calI lie in an algebraic number field K 

of degree h over Q. Let d be a rational integer such that 

da, db and dc are algebraic integers in K. 

We now construct an entire function f(z) which by 

judicious use of Lemma 2 will have a large number of zeros 

and which will allow us to bring into play a, band c. We 

revert to the exponential function with its useful addition 

and differential properties. 
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We define f(z) as: 

N N elog a·(i+jb)z f(z) E E r .. 
j::l i:=l ~J 

N N iz abjz 
E E r. , a 

~J 

j-l i=l 

We let log a be an arbitrary fixed determination of the 

logarithm, then z z log a a = e The r .. 
~J 

are algebraic 

integers in ~ which will be defined in such a way that 

f(z) has a large number of zeros. 

(I) Gelfond's proof: 

Gelfond uses lemma 2 to define r. ' such that 
~J 

f (k) (t) = 0 , 0 < k < [N
2J and t = 0, l, ••• , 

l!ogN] 
N2 

with 1 Ir, ,II < do for sorne rational integer 
~J 

To see how this is done note that 

[! 10gN] = t 
1 

d , O<i,j<N. 
0--

N N 
f (k) (t) = 1: E (1 ) k(, 'b)k log a(i+jb)t r., og a ~+J • e 

~J 

Therefore 

a (k, t) = 

= 

= 

where the 

j:=l i:=l 

k 3N2 
(log a) - d f (k) (t) 

N N 
(i+jb)k it 't 

E E r .. a c J 
~J j=l i=l 

N N 
t E r. , f, , 

t .. )" . 1 ~J ~J 
J= 

3N2 . d 

f. , 
~J 

are algebraic integers by definition of d. 
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By lemma 2 1 1 ri j 1 1 ~ U(UnA)m/n-m where m 
[N

2.l. [! log N] , 

l!og!!l 

2 
n=N and A = ~a~ 1 1 fi j 1 1 • But m < ! N

2 and 
2 

n-m ~ ! N 

therefore 

A < 

1.,J 

IIr··1I < 1.J We now estimate A. 

[N .. ! [logN] 
. IIcll 

for sorne rational integer do. We therefore 

have defined our entire function fez) up to our choice of N. 

The function has a large number of zeros and we will now show 

that it must have many more zeros at rational integer arguments. 

We note that the function is not identically zero however as 

that would imply that f(k) (z) = 0 for 0 < k < N2 

N N 
Specifically (log a)-kf(k) (0) =.E E 

J::1 i::1 
r., (i+jb) k = 0 

1.J 

o < k < N2 • This implies that matrix M 

1 • • • • 1 

M= l+b 
( . 'b) k • • •• 1. +J ••• has determinant . . . 

• N2-l: : N2 1 
(l+b) •••• (n~b) -

This is so as the coefficients r. , 
1.J are not aIl o • 

But M is a Vandermonde matrix and therefore 

o . 

. J 
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But b is assurned to be irrational so this is impossible. 

Therefore fez) is not identically zero. 

To that b can not be algebraic we will show prove a 

that our function fez) satisfies f(k)(z) = 0 ,0 < k < N
2 

and thus by the above argument we will arrive at a contra-

diction. 

We now show that the number of integral zeros of fez) 

and their multiplicity may be increased by a consideration 

of the following integral form for f (k) (t~1 • 

Let Cl be a circle containing t and C2 he a circle containing 

Cl. Then 

f(k) (t) = k! 
2ni 

f (z) 

(z_t)k+l 
d z 

k! 

(2'11'i) 2 

l dz 
Cl 

(z_t)k+l 

!Jl1. dy 

y-z 

by repea'ted application of 

As fez) has zeros 

t = O, ••• ,t l we have that 

Cauchy's integral formula. 

of multiplicity [N2 J = u 
~og ~ 

at 

t l 
h(y) = II 

rd) 
(!=E.) u f(y) is still an entire function 

\y-r 

of y with h(z) = fez). Thus we have that 

~ dy y-z ffi1. 
y-z 

dy 

and it is this fact that enables us to show that our original 

· ; 
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function must have zeros of multiplicity u for t=O, ••• ,[/N1. 

Let Cl be Izl =N3/
4 and let C2 be lyl_N then 

f (k) (t) = k! f C 

(2'11'i) 2 1 

!:!.ll.L d (y) 

y-z 

for tdl, ••• , [IN 1 and k:=O , ••• , u • 

d 3N2 

where 

We can now estimate the algebraic integer a(k,t)= 

(log a)-k f (k) (t) 

3N2 _k 
(N3/ 4 _ IN )-(k+l ). N7/ 4 

< d (log a) k! D • - ;-:-2 
1T1 

D = 

(
N 3/4 + [, log N].' u • 

N - [! log N1j 
max 1 f (y) 1. 1 

< 

< 
1 N2 

-'8 · '2 N 

Iyl = N N- [! log ~ 

for large enouqh N. But we know 

that the absolute value of the norm 3N2 ( ) a(k,t) = d (loga)-kf k (t) 

must be 0 or greater,than or equal to 1. We will now show that 

the no~~ ~ust be zero. 

N N 
(log a) -k f (k) (t) Il ~ I: I: Il r .. Il 

[N2 l i"l j "1 1J 

N2 3N2 rrOg~ ~g:î NIN 
do • d (2Ny Il b 1.1 • i1 Ill! 1 • Il cil 

Ilf .. 11 1J 

< 

< for sorne constant d 2 • 
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N2 N2 

Therefore IN(a(k,~)1 ~ (h-l) d 2 • d* N 

< 1 for N sufficiently large. 

The basic ideas of the proof have now been revealed. We 

will now use the Cauchy integral forro for f(k) (z) again, 

this time to reveal that fez) must have a zero of multipli­

city N2 at o. 
[i'N] 

f (k) (0), .... k! 1 1 dz ! II 

(21Ti) 2 cl zk+l 
c 2 r=û 

where Cl = Iz 1 = 1 and C2 = l § 1 =N 

Thus we have the algebraic integer 

2 
< d3N. (log a)-k 

(~~. N -
N-l N-I 

N2 2 o N2 
N < d 3 N • -

u 

(~) 
§-r 

k! 

IN 

9. 
-i NT 

f (§) d § 

§-z 

• 1 • max f ( § ) • 

1 § 1 -N 

2 
But we may estimate 1 {a (k, 0) Il = Il d 3N (log a) -k fk (o} Il by 

considering the original definition of f (z) • We have 

2 N2 

Il a(k,O) Il < (N+l) 2 • d3N (d4N) -
< dS 

N2 N2 
N 

So that 9 2 

IN (a(k,o»I< (h-l) N2 N2 N2 -iN 4' N2N 
dS N • d 3 N 
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and this approaches 0 as N ~ m so that for N sufficiently 

large we have that the norm of a{k,O) 

hence fk{O) = 0 for 0 < k < N2 • 

is less than 1 and 

But by the argument we 

Therefore ab is have given earlier this is impossible. 

transcendental. 

Gelfond gives an elementary proof of the transcendence 

of ab for a, b real and algebraic, a ~ 0, 1 and b not 

rational in the book Elementary Methods in Analytic Number 

Theory. [14] The only analytic tool he brings into play is 

Rolle's theorem. Using Rolles theorem we see that we would 

have the above theorem after the first application of Cauchy's 

integral form in the preceding proof. By Cauchy we concluded 

that f(x) had [ IN] • ~ zeros. With the above assumptions 

we may 

and 

most 

k = 1. 

d > n-l 

. logN 

write f(x) 
N ak x 

the distinct E Bk e where ak are 
k=.l 

are real for 2 
k 1, ••• ,N • Then f(x) has at 

zeros. Pf: By induction on k. True for 
n . 

Assume true for k < n. Then if E Bkeakx has 
k=:O 

d e-aokf(X)=nËl Yk e (ak-ao)x • 

ëiX k=Û 
zeroes then we consider 

By Rolles this has > n-2 zeroes contradicting our induction 

hypothesis. Therefore when N is sufficiently large 2 N -1· 

[1 N] • [N
2 J 

l].ogriJ 

is less than and we have a contradiction. 

This proves the theorem for a, b real. 

Siegel adapted Gelfond's method and was able to give 
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a shorter proof. Siegel uses the same function as Gelfond 

but he needs to use Cauchy's integral form only once to 

obtain his solution. Siegel does not prove that fCz) has 

a zero of high mUltiplicity at o. He iBstead deduces a 

contradicti.on by consideri~g the norm of a number obtained 

from the first non-zero valued derivative of fCz) at an 

integer that is a zero of high multiplicity. 

II Siegel's proof. 

We will retain aIl the assumptions for the theorem 

made before the Roman numeral l indicating the start of what 

was specifically Gelfond's proof. We shall again use lemma 2 

to de termine r" such that fCk) Ct) = 0 this time for 
N2 1.J 

k=O, ••• , 4h+4 - 1 and t=O, ••• ,2h+1 We first define rn=2h+2 

N2 

and n:::;= 2'in where we assume that N2 is an integral multiple 

of 2m and that N > m. Then we have 

dn- l +2mN -k f Ck) Ct) 
N N 

(loga) E E r, , C' 'b)k (i+jb)t 
j==1 id. 1.J 1.+J a 

• 
dn- I +2mN 

N N 
E E r, , f, , where the f, , are 

j=1 i=l 1.J 1.J 1.J 

algebraic integers by definition of d. 

By lemma 2 we can find r, , such that f (k) Ct) = 0 k=O, ••• n-l 
1.J s -

and t=O, ••• m-l with Ilr .. 1I ~ V(VuA) u-s where U...N2 , 
1.J 

s~n Therefore IIr .. 1I < V2N2A where A max 
IIf .. 1I - i,j as 1.J 1.J 
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before and A < N2 an-I+2mN (N -fN Il b Il ) n. Ilall
mN 

• Ilcll
roN -

n n 
< d n 1 n = d n '2 
- l . l n 

n 
Therefore Il r .. 1-1 < d n ~ and fez) is not identically n 

~J - 2 

zero by the same argument we gave in the proof after Gelfond. 

We now choose the integer p such that f (p) (t )fO 
o 

for sorne to: 0 ~ to ~ m-l where f(k) (t)= 0 for aIl k<p 

and aIl t :O~t~m-l. We consider the nurnber a=(loga)-Pf(P) (to). 

We know 

us that 

Il all
rnN 

that d p+2roN 
l a is an algebraic 

IN (a) 1 

Ilcll
mN 

• 

-P 
> dl • Also 

d n 
2 

n n/2 

< d P P 
- 3 P 

Il a Il < -

integer and this gives 

N2 dP-I+2mN (N -IN lib 1 1 ) P 

As in the previous proof we will make use pf the fact 

that 1 al· Il a Il h-l ~ IN (a) 1 • 

This time we will show lai is so small that a contradiction 

must arise. To estimate lai we consider the entire function 

h (z) • h(z) = 
p! fez) 

(z-t ) P o 
(~)P and a = (loga)-P h(to ). 

NB. f (z) 

z-r 

(z-t )p fP(t) + { terms in (z-t )p+i i > 0 } 
000 

p! 

by expanding f in a Taylor series. 

>. 

~, 1 
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Now we use Cauchy's integral formula to give us 

l h (z) 
z=t o 

dz 
where 1 z 1 = ~ encloses O, ••• ,m-l. 

E. 
Izl = N 

Remembering that lezl < e lzl 
n 

f(z) < N2 • d~ n 2. d 4
P 

< 

1 z-r 1 > 
E. 
2N = > 

We therefore have that 

max Ih{z) 1 

Izl= e 
N 

< d~ P 

we estimate 

E. P 
P 2 d S 

p.m 

< d P 
6 

p (3ïm) p 

and this irnplies that 
(3;m)p 

lai ~ d~ P 

E. 
f(z) on Izl= N • 

(rn-l) pm 

3-m 
(~h-l) P ( p p\ h-l 

This is aIl we need. We now have IN{a) 1 ~ p • d 3 P 1 

IN{a) 1 < 

and therefore as 
1 
2 and so dg> P • 

< 

-p 
IN(a) 1 > dl 

But P > n 

(3;m+h_l) p. p 

p 

1 
- 2 p 

1 
P 2 p 

we have that dg > P 

and dg is independent of 

n and p. As we may choose n arbitrarily large we have a 

contradiction and the theorern isproved. 

.i 
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1.8 Schneider's theorem 

We thus have seen two methods of proof for Hilbert's 

seventh problem. An english translation of Schneider's proof 

may be found in Siegel's monograph "Transcendental Numbers". 

Schneider' s proof depends on the constrtlction of an entire 

function out of the sum of products of polynomials and powers 

of x a • This falls nicely into the scheme of Siegel's mono-

graphe 

The proofs of the Gelfond-Schneider theoremall fol1ow 

a general pattern. By ski11fu1 use of Siege1's arithmetic 1emma 

we can force a specia11y chosen entire function to have a large 

number of zeros. We can then choose a non-zero a1gebraic number 

defined from our entire function. We then use the Cauchy integral 

formula to determine the abso1ute ya1ue of our number. By 

consideration of the function we can determine the maximum of 

the absolute value of the conjugates of our number. Fina11y we 

use the fact that the norm of a non-zero algebraic number is 

greater than or equa1 to 1. By suitable comparison of these 

quantities we may establish our theorem. 

Schneider was able to genera1ize this process and thus 

make the next large step forward in the field. He accomp1ished 

this with his paper in 1949. [15] In the years 1934-1949 Schneider 

had proved a number of interesting and important results on 

elliptic functions, periodic functions and e11iptic integrals. 

His theorem of 1949 managed to conso1idate these resu1ts, the 

Gelfond-Schneider theorem and the transcendence of e and ~ • 

~ . 
i • 
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Schneider's proof may be found in English in the mono-

graph by Lipman. [5] Before commencing the proof l will define 

the order of an entire and a meromorphic function. 

Definition Let fez) be an entire function, then fez) is 

of order < u if there exists a constant c > 1 such that for 

aIl large R 

1 f (z) 1 for Izl ~ R • 

Defintion A meromorphic function is of order < u if it is 

a quotient of entire functions of order < u • 

Schneider's theorem 2 Given fl(z), f 2 (z) two meromorphic 

functions of order < u and given distinct numbers zl, ••• ,zm 

which are not poles of fl(z) or f 2 (z) and if the following 

conditions are satisfied: 

(1) AlI f(n) (zk) (k=l" ••• ,m, x 1,2 and n= 0,1, ••• ) 
x 

are algebraic and lie in a field K of degree s over the 

rationals. 

There are natural numbers b, c and a constant 

v > 0 such that 
(n) 

(2) b n +l fx (zk) is an algebraic integer. 

(x=l, 2, k=l, ••• ,m , n=O, 1, 2 ••• ) 

(3) Ilf(n) (zk)11 < n+l vn x c n 

then if m:> 2u ( (s-l) (2v+l) + v+~ ) the functions fI (z) 

and f
2

(z) are algebraically dependent. 
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Pf: We will assume the hypotheses of the theorem and that 

f 1 (z) and f 2 (z) are a1gebraical1y independent over Q. 

We now define the meromorphic function G(z). 

r r i j 
G(z) = I: ! a ij fI (z) f 2 (z) 

i=o j =0 
r = (2mt 

t>2m is picked so that {2mt is an integer. 

As before we choose the coefficients a .. 
1.J 

so that G (z) 

has zeros of high mu1tip1icity at zl, ••• zm. But here our 

derivatives are more comp1icated than in the case of the 

derivatives of the function defined in the Ge1fond-Schneider 

theorem. 

where 

G (n) (z) 
r r 

fi fj 
(n) 

1: I: a .. (z) (z) ) 
i=O j=O 1.J 1 2 

(fi(z) j (n) 

= e~o(~) (fi (z» (e) (fj (z) ) (n-e) f 2 (z) ) 
1 1 2 

with ek > O,k = 1, ••• i. 

We may consider the conditions G(n) (zk) = 0 k~, ••• ,m 
n=o, ••• ,t-1 

as a system of mt 1inear equations with a1gebraic coefficients 

in (r+1) 2 unknowns a.. • To emp10y 1emma 2 we must have our 
1.J 

ff ' . 1 b . . h . bn +1fx en) (zk) coe 1.C1.ents a ge ra1.C 1.ntegers. By hypot es1.S 

is an a1gebraic integer (x=l, 2, k=l, ••• ,m , n=Ü, l, 2 ••• ) 

Thus bn+2r G{n) (zk) = 0 k 1 . t f t = , ..• ,m 1.S a sys em 0 m 
n=O,.~~,t-l 2 

1inear equations with a1gebraic integer coefficients in (r+1) 

unknowns a ..• 
1.J 

, , 
"' 
~ 
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By lemma 2 we may choose our unknowns a.. such that 
mt ~J 

Il a .. Il < C (C (r+l) 2 A) (r+l) 2 - mt 
~J 

< c2 (r+l) 2 A where C is a constant 

depending only on K. 

Il (fi f j) 
(n) 

bn+2r A= max (zk) Il 
n,i,j,k 1 2 

We now de termine A. 

A < bt +2r • (2r)t t+2r c • 

k 
where n. 

~ 
< t 

by the hypothesis that Il f~n) (zk) Il n+l vn 
< c n 

x=1,2 , k=l, ••• ,m n=O, 1, 2, ••• , • 

Therefore 

A < (2r) t t+2r tvt • c • 

(2r) t 

This finally shows us that we may choose our a.. as algebraic 
~J 

integers such that 1 la .. 1 1 ~ d 2
t t(!+v)t and such that 

~J 

G (n) (z ) • 0 k = l, ••• ,m , n=O, ••• , t-l •. 
k· 

with this knowledge we may now precede as we did in the 

proof of the Gelfond-Schneider theorem • 
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We consider the first non-vanishing derivative say 

the th P , of G (z) for z=zk k eJ 1, ••• m} such that 

for O~n < P and k=l, ••• ,m. We observe that 

P ~ t. We may assume without 10ss of genera1ity that G(p) (zl)fO 

We may assume that P exists because we have assumed 

that f 1 (z) and f 2 (z) are a1gebraica11y independent and thus 

that G(z) is not identica11y zero. 

We will now estimate 1 1 G (p) (z 1) 1 1 ,IN (G (p) (z» 1 and 
l 

Il G (p) (zl) 1 1 to estab1ish a bound on m. 

First IIG(p) (z ) Il < (r+1}2 • d
2

t t (!+v)t • 
1 -

max Il (fI i f..,j) (p) (zk) Il 
i,j,k ~ 

and Il (fI i f j) (p) (z ) Il < 
2r+p vp (2r) p • max c p 2 k -

i,j,k 

< dP p(!+v)p - 3 

as r < kt! < k p' • 

Thus 

Il G (p) (zl) Il 
p t(!+v)t • p <!+v)t < d4 • -

< d4
P 

• 
(1+2v)p 

- p 

We easi1y get an estimate for 1 N(G(P) (zl» 1 as we have that 

b 2r+p • G (p) (z ) 
1 

is an a1gebraic integer with norm f 0 • 

Thus we have 1 N(G(P) {zl»-1 > 
1 

b(2r+p)S 
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We now estimate 1 G(p) (zl) 1. We wish to use Cauchy's 

integral forrn so that we must convert G(z) to an entire 

function. As f l and f 2 are meromorphic of order ~ u 

there is an entire function h(z) of order < u such that 

hfl and hf2 are entire of order ~ u. We may assume that 

h(zl) ~ O.Thus h 2r (z) G(z) is an entire function and we have 
m 

that H(z) = h 2r (z) G(z) • TI (z-Zk)-P is an entire function 
k=l 

also. By expanding G(z) in a Taylor series in powers of 

(z-zl) we are able to conclude that 

G (p) (z ) = p! 
1 

2r 
h (zl) • 

and therefore G(p) (zl) < H(zl) 1· 

< 

d p(m-l) d 2r 
5 6 

We now estimate 1 H (zl) 1 by means of the Cauchy integral 

formula. 

l H(z) dz 
C z-zl 

where C is the circle Izl = R , R > 2 max Izkl 
k 

Then 

h2r (Z).G(z) IH (zl) 1 < R . 1 max . - • 
2R Izl=R 

u 
1 

(2R) -pm < ! .d 2rR '. max G (z) . - 8 Izl=R 

m 
TI (z-zk)-PI 

k=l 

'; 
" 



-28-

u 
rRu 

and max 1 G (z) 1 < Il a .. Il (r+1) 2 d,rR • d10 max . · 9 i,j 1.J 
Izl=R 

rRu 
d t t (,+v) t < • d11 - 2 • 

We used in the ab ove the fact that and 

order u. We can therefore conc1ude that 

-
We now let R = r u This is va1id if we assume 

f r 
2 

t 

enough (~v)p 2 -~ 
P r 

Then 1 G (p) (z 1) 1 < u 
P d12 • d13 • r -
(~v)P -~ 

< • di4 
2u 

- P • P 

had 

is large 

We now have an estimate for IN(G(P) (zl» I~I IG(p) (zl) 1 Is-1.IG(p) (zl) 1 

':!lm 
2u 

d 
P (s-l) (1+2v) P (s-l) (~v) P P 

~ 4 • P • P • d14 • P 
(2r+p) s 

Comparing this to 1 N (G (p) (z 1» 1 > (b -1) and 1et,ting 

t, and thus p, approach =we rnay conc1ude that 

3 ( 1+2v) (s-l) + (~+v) - rn > 0 
~ ru -

or in other words 

m < 
. 3 

2u ( ( 1+2v ) .(s-l) + (- * V:,». 
2 

This conc1udes our theorem. 

1.9 Coro11aries of Schneider's theorem 

We will ~ow derive sorne of the resu1ts mentioned ear1ier 
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as corollaries to this theorem. 

Corollary 1. 

If a is algebraic ~O,e~is transcendental. 

Pf: Given an algebraic number a assume that e a is algebraic. 

This means that a and e a lie in same field K of degree s 

over the rationals. We use the additive property of z e and 

and the differential property of e Z to state that fI (n) (ka), 

f(n) (ka) belong to K for k=l, ••• and n=O, 1, ••• if 
2 

we let 

functions of order o and 1 respectively. 

are meromorphic 

z and z e are 

algebraically independent. To see this we assume 

m 
f(z) - ~ Pk (z) ekz=û for sorne non-zero polynomials Pk(z) 

k-O 

with rational coefficients. Let the maximum degree of the 
(s) 

Pk(z) be 

(s) m 

f (z)~- ~ 
k-l 

in the forro 

s. We then consider f (z) • It has the forro 

1 kz 
Pk (z) e =O. Dividing by z 

e 

r-l 1 kz 
~ P (z) e =O. Where the 

k=O k+l 

we may write it 

pl(z) are non-zero 
ktl 

polynomials with rational coefficients. We can continue this 

process until we have the absurd statement that a non-zero 

polynomial is zero. 

We have that bk f 2 (n) (ka) is an algebraic integer if 

bea is an algebraic integer. b may be assumed rational. We 
(n) 

aiso have that Ilfx (ka) Il < (ck ) • nO for sorne rational 

integer c. 

The ka, k = 1,2, ••• are distinct as aiO. 

z 
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By Theorem 2 we may only have the above conditions hold 

for k < 2 (s+l). However we can clearly let k be arbitrar­

ily large. This contradicts Theorem 2 and thus e a can not be 

algebraic for a algebraic. This allows us to conclude that 

both e and ~ are transcendental n~~ers= 

Corollary 2. The Gelfond-Schneider Theorem. 

If a is algebraic /3 algebraically irrational then a 8 

is transcendental. (a ~ 0,1) 

Pf: We consider the functions 

These functions are algebraically independent as 8 is assumed 

algebraically irrational. To prove the algebraic independence 

f e z e13z . 1 h o and we argue as we d1d in corollary • We s ow 

the algebraic independence of z and z13 and then specialize 

z 13z to e and e • Both fl(z) and f 2 (z) are entire functions 

of order < 1. 

Now let a be an algebraic number, not 0 or l, and con-

sider log a for sorne fixed determination of the logarithm 

(à 8=e 13 log a for our determination of log a.) We assume 

Q (a,13,a 13 )= K is a field of finite degree s over the rationals. 

We let zk~ log a,k=l, ••• ,m and note that the zk are 

distinct. 

(1) We have that f~n) (z)=fl(z)~z and f~n1~13ne8Z 
and thus aIl f(n) (z ) (x=l, 2, k=l, ••• ,m and n=D,1,2, ••• ) are x k 

algebraic and lie in K. 
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(2) where are 

leading coefficients in the minimal defining polynomial of ~, 

S and aS respectively. We then have that bm is a natural 

number such that (bm) nit-l f (n) (z ) 
x k is an algebraic integer 

then 

( x l, 2, k-l, ••• ,m, n=O, 1,2 ••• ) 

(3) Let c = max 

Il f(n) (zk) Il < (c+l)n+l • nO.n 
x 

By Schneider's theorem we have that m ~ 2s+l. m was 

arbitrary, however, and we thus have a contradiction. 

Therefore aS must be transcendental. 

l will now derive sorne results concerning the trans-

cendence of values of the Weierstrass p function from an 

alternate form of Schneider's theorem. Serge Lang proved the 

following theorem [16] in 1962. 

Theorem 21 • Let K be a finite extension of the rational 

numbers. Let fl, ••• f N be meromorphic functions of order 

~ p. Assume that the field K (fl, ••• f N) has transcendence 

degree ! 2 over K, and that the derivative D = ~ maps 
dz 

the ring K (fl, ••• ,fN ] into itself. Let wl, ••• wn be 

distinct complex numbers not lying among the poles of the f. , 
~ 

such that fi(wv)€K for aIl i=l, ••• ,N and v=l, ••• ,m. Then 

m ~ lOp [K:Q]. 
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Theorem 21 may be derived from Schneider's theorem 

quite easily. It is a somewhat more tractable form of the 

theorem. 

The weierstrass p function is defined as 

p(z) = ~2 + E (~2· l2~ where n is a discrete sub-
z ooên-{O} (z-w) 00 1 

group of the complex numbers with a base 001' 002 of vectors 

where lm (:~1 > O. The p-function is doubly periodic and 

meromorphic and in fact every n periodic function is of the 

form F (p (z» + G (p (z» p (1) (z) where F and Gare 

rational. 

We have the following relation between p (1) (z) and 

j!) (z) 
(1) 2 

3 (p (z) ) = 4 (p(z» - 60a2 p(z) - l40a4 

where E 1 
E 1 a 2 "4 a 4 = b ooên 00 ooen 00 

oo;!O 00/=0 

Corollary 3: 

If b, a 2 and a 4 are algebraic and b is not a pole 

of p (z) then p (b) is transcendental. 

Pf: We assume that b is not a pole of p(z) and therefore 



-33-

a1so not a pole of p(l) (z) 

CU. 
We assume that b, al' a 2 , p(b) and,p (b) are 

a1gebraic. Therefore K = Q (al' a2 , b,p(b) ,p(~) (b» is a finite 

extension of Q. We have that p(z) and z are algebraic-

a11y independent over K and thus that K (z, p(z) ,p (1) (z) ) 

has transcendence degree > 2 over K • 

As p(2) (z) = G (p(z) )2 - 30a2 we have that the 

derivative D maps the ring K [z, -'p (z), p (1) (z)] into itse1f. 

(1) (1) 
We may write p (z) = - (0 (Z») 

o (z) 
where 

~~ ( ! )2 
o(z) ~ z • TI (1 -~) e w ~ w ~17] from which we 

we:Q-(O,O) 

may conc1ude that pl (z) and p(l)(z) are meromorphic of order 2. 

We now use the addition formula for p(z) to reach a 

contradiction to theorem 2 1 • 

# 
(

p (2) (b»)2 p (2b)= - 2p(b) + i 
p (1) (b) 

= - 2p(b) + i (~(e(b»2-3'oa2\2 ,let l/J = !(p(2b)+2p(b»!. 
\ p (1) (b) J 

Therefore p(2b) e: K and in fact p(2nb)e: K,ne:z+ • 

We have an addition formula for pel) (z) a1so, mere1y take 

derivative of #. 

2p (1) (2z) = -2 p (1) (z) + 1/1 (p (1) (z)2. 12p (z) - (Gp (z) 
(p{l)(z» 2 

+ 
We thus have that p(l) (2~) e: K for n e: Z If 2~ is a 
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pole for n=n o then for aIl 

then 2~+1 is not a pole so by using the 

P(zl+z2) and (1) 
p (zl+z2) we find that 

n elements of for n e: z+ • P (2 b+l) are K 

is a pole • But 

addition formula for 

p (1) (2n b+l) and 

From Theorem 2 1 we have n ~ 10·2 [K : Q]. Therefore 

either p(b) or p(l) (b) is transeendental. But we have that 

(p (1) (z) ) 2 = 4 (p (z» 3 - 60a2 p (z) -140a4 • As we assumed that 

and were algebraie we have that both p (b) and p (1) (b) 

are transeendental. 

l will state without proof 3 more eorollaries of Sehneider's 

theorem. [17] 

Corollary 4. The 5 numbers a 2 , a 4 , b,p(e) , eeb are not aIl 

algebraie. 

Corollary 5. If ~ is algebraie and not imaginary quadratie 

then J(~) is transeendental. If ~ is imaginary quadratie 

then J(~) is algebraie. 

J is the elliptie modular funetion. 

Corollary 6. At least one of the seven numbers 

* * * a2 , a 4 , a 2 ' a 4 ' b, p (e), p (be) is transeendental 

* if e and be are not poles of p and p and if p(z) and 

* p (bz) are algebraieally independent. 

1.10 Transeendenee measures 

Sellneider' s theorem was the last major result in the 

field prior to A. Baker's paper. Sinee 1950 the subjeet has 

4 , , .. 
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been generalized and problems in the field have now been 

forrnulated using algebraic varieties and p-adic numbers. 

A. Brumer proved the p-adic generalization of Baker's 

theorem. [18] A great deal of work has been do ne on the 

measure of transcendence of a nurnber by N. Feldman, A. Gelfond, 

K. Mahler, Morduhai-Boltovski, Siegel and others. 

Definition A transcendence measure of a number a is a 

function g(x,y) such that g(H,d) ~ Ip(a) 1 where P is 

a non-zero polynomial with integral coefficients of height ~ H 

and degree ~ d. 

Definition A measure of mutual transcendence of the nurnbers 

al, ••• ,an is a function g (x, Yl, ••• ,Yn ) such that 

g (H, dl' ••• ,dn) ~ 1 P (al'·.· ,an) 1 where 

P(xl, ••• ,xn ) is a non-zero polynomial in n indet~rminates 

with integral coefficients of height ~ H and degree 

< d. i=l, ••• , n in the x., i = 1, ••• , n respecti vely. The 
- 1 1 

measure of transcendence of a nurnber gives us a quantitative 

criterion for the transcendence of that nurnber. A. Baker's 

theorem gives us a modified mutual measure of transcendence 

for the numbers log al, ••• ,log an where are 

algebraic nurnbers not equal to 0 or 1 and log al,· •• ,log an 

are linearly independent over the rationals. It is "modified" 

as we only consider the polynomials P(xl, ••• xn ) = 

b., i 1, •• n are algebraic 
1 

nurnbers, not aIl 0, with degrees at most d and height at most 

H. If A. Baker's theorem gave an unmodified transcendence 
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measure we wou1d have the a1gebraic independence of the 

logarithms of mu1tip1icative1y independent a1gebraic numbers. 

The theory of transcendenta1 numbers is in its infancy 

despite its chrono1ogica1 age of over 125 years. In review­

ing those years l have discussed what l fe1t were the most 

important resu1ts. In the next chapter l intend to prove 

A. Baker's resu1t. His theorem gives us the most recent 

important advance in the study of transcendenta1 numbers. 

A. Baker's theorem, however, is applicable to prob1ems outside 

the rea1m of transcendenta1 numbers. l will discuss this in 

Chapter III. 



CHAPTER II 

A ,. BAKER' S THEOREM 

"LINEAR FORMS IN THE LOGARITHMS OF ALGEBRAIC NUMBERS" 
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2.1 Baker's theorem 

In this chapter l will prove A. Baker's theorem. l 

will follow his papers "Linear Forms in the Logarithms of 

Algebraic Numbers" (I) and (II). [191 l have mentioned 

Baker's theorem in the context of the study of transcendental 

numbers up to this point. It should be observed however, that 

his theorem on transcendental numbers is derived from the 

following theorem. 

Theorem 3. If are non-zero algebraic numbers such 

that log al, ••• ,log an (n > 2) are linearly independent over 

Q, and if q > 2n+l and d is any positive integer, we have 

that there is an effectively computable number 

c=c ( n, al,···an 
, q, d) > 0 such that for aIl algebraic 

numbers bl,···,bn not aIl 0 with degrees at most d, we 

have b l log al + •••• + b log an 1 
-(log H)q where H >Ce 

n 

denotes the maximum of the heights of bl, ••• ,bn • 

Some of the consequences of this theorem will be discuss­

ed in Chapter III. In this chapter l am oilly interested in 

the extension of the Gelfond-Schneider theorem which may be 

obtained with Theorem 3. l will show this now. 

2.2 The extension of the Gelfond-Schneider theorem 

We have the following theorem as a weakened form of 

theorem 3. 

Theorem 4. If al, ••• ,an are non-zero algebraic numbers 
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such that log al"'" log an are linearly independent over 

the rationals then they are linearly independent over the 

field of aIl algebraic numbers. 

From theorem 4 one may now derive the following extension 

of the Gelfond-Schneider theorem. 

Theorem 5. If al, ••• ,an denote algebraic numbers other than 

o or 1 and if bl, ••• ,bn denote algebraic numbers with 

• .an 

linearly independent over the rationals then 
b 

n is transcendental. 

Pf: The proof will be done by induction. For n = 1 this is 

merely the Gelfond-Schneider theorem. 

Assume the theorem is true for n = k-l 

We will now assume it is not true for n = k and reach a 

contradiction. Throughout the argument we will take suitable 

determinations of elements of the form ab if zb is a 

multivalued function (i.e. b b log a for determinat-a =e sorne 

ion of log a.) 

Assume 
b l bk 

al • • • ak == ak +l where ak +l is an algebraic 

number. 

We then have 

Note that bl, ••• ,bk+ l are linearly independent over Q by 

assumption. 

We now use tae eonqerse of theorem 4 to as sert that 

for rational numbers c. , 
~ 

i=l, ••• ,k+l 
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with not aIl the ci=Û. We may assume that c k +l ~ 0 by 

permutation of the subscripts if necessary. 

We have that the di are linearly independent over Q. This 

is because bl, ••• b k +l are linearly independent over Q. 

We also have 

b l bk+l ck+l 
1 = (a •• • ak +l ) 

c c -b dl dk ( 1 k+l) k+l 
al • • • a k +1 = al • • • a k 

Finally let e. = -d. , i 1, ••• , k-l 
1. 1. 

Ok 
We have that 1, el, ••• e k _ l are linearly independent over Q 

and that 

This contradicts the induction hypothesis and the proof is complete. 

2.3 A simplified form of Baker's theorem 

The rest of this chapter will be devoted tQ proving 

theorem 3. The theorem is quite complicated and for clarity 

it is split into 7 parts; a preliminary simplification, 5 

lemmas, and the final proof. Rather than prove theorem 3 we 

will prove the following theorem. 

Theorem 6. With the assumptions of theorem 3 we may conclude 

that there is a number C:J.. - Cl (n,al' ••• ,an,q,d)! 1 such that 

for aIl algebraic numbers bl, ••• ,bn _l with degrees at most d 

we have 
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-(logH)q 
> e 

where H is a number not less than Cl and the heights of 

Theorem 6 is a simplified form of theorem 3. To show that 

Theorem 6 implies theorem 3 we need two minor lemmas. 

Lemma III. If èl is an algebraic number of degree d and 

height H then 1 a 1 < dH. 

Pf: a has minimal polynomial o and 

either a 1 < 1 in which case we are do ne or 

< d H. 

Lemma IV. If a and b are algebraic numbers with degrees at 

mést d and heights at most H, then ab has degree at , 
d 2 , 10gH 2 most and height H where < 4d (1 + log d) , if -, 2 10gH 

H > 2 and log H > 2d logd if H = 1 • -
Pf: Let 

(i) ( ') a ,b J denote the conjugates of a,b and 

let c and e be the leading coefficients of their minimal 

polynomials. We then have that ab is a solution of 

d 2 

(ce) • II 
i,j 

with integer coefficients. 

Thus ab has degree 

We also have that ab has 
, 

using lemma 3. Thus H < -

(i) (j) 
(x - ab), a polynomial 

at most d 2 • 
2 2 

height H < (ce) de (dH) 2) d by -2 2 
(ce)d (d2)d • (H2) d 

2 
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1 < d 2 log H - (log ce + 2 log d + 2 log H) 

and for H > 2 
1 

log H < d 2 ( 2 +2 102 d + 2 ) -log H log 2 

< 4d2 ( 1 + log d) 
1 

while for H = 1, log H < 2d2 log d . 

Pf: 

and 

for 

most 

-
We now show that theorem 6 implies theorem 3. 

Given b l , • •• bn a1gebraic numbers of degree at most 
1 -b. height at most H with bn 1= a we define b. = ~ 
~ 

i == 1, •.. n-l • 
1 

Then by lemma IV the b., i 
~ 

d 2 and height at most HI 

bn 

= l, ••• ,n-l have degree at 
1 

where 102 H ~ 4d2 (1+log d) 
log 11 

d 

= C3 (d) if H >2 and log HI < 2d2 log d = C; (d) ~ C3 (d) if 

H = 1. 

By theorem 6 we can state that 1 
" )q 1 1 

1 
-(log H b l log a 1+····+ bn- 1 log a - log an > e n-l -

" {H' 1 ,C~ 2q:; = q where H = max and + 2n + 1 • 

Thus 1 
1 (bl log al + ••• • + bn- 1 log a + b loga ) - T-

Dn n-l n n 

" 
1 

-(log H ) q 
> e - l 

1 1 Ibnl 
- (log H") q 

So bl log a 1+··· + bnlog an > e -
" 1 

> (dH) -1 -(log H )q e -
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" 1 

e-(log H )q 
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, 1 
> e-(log H )q 

1 
-(log C )q 

e 1 
1 : 1 

H )q 
> 

-C
3

(d)q -(C3 (d) e • e 

1 
log H)q 

we can state that 

Ibl log al + ••• + bnlog an 1 :: C 
, 1 

-1 -CC (d)log H)q 
(n,al' ••• ,an,q,d).H e 3 

" and if we let C (d,q) of l2u -le-(C3 (d)log H)q be the minimum '='n 

e(log H)q considered as a function of H , H > l, we have 

, " 
1 b l log al+ ••• +bn log an 1 > C .C (d,q) • 

2.4 The proof of Baker's theorem 

l will now restate Theorem 6 in full 

-(log H)q 
e 

1 

Theorem 6. If al, ••• ,an are non-zero algebraic nurnbers such 

that log al, •• log an are linearly independent over the 

rationals (n ::2) and if q > 2n+l and d is a positive integer 

we have that there is an effectively computable nurnber 

Cl = cl(n,al, ••• ,an,q,d) > 0 such that for aIl algebraic nurnbers 

bl, ••• ,bn _l with degrees at most d we have 

where H = max {Cl' H(bi , } • 
i 

-(log H)q 
> e 

Theorern 6 will be proved by assurning that there exists 

algebraic nurnbers bl, ••• ,bn _l with degrees at most d such 

-(log H)q 
that (I)"' b l log a l + ••• +bn - l log a n- l - log an 1 < e 

and deducing a contradiction. We will assume the hypotheses 

of theorem 6 as weIl as the above assumption in the proof of 
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the 5 lemmas preceding the proof of the theorem. The lemmas 

represent certain stages of the proof. They are not independent. 

Prior to lemma 3 l will state the following identities. 

ldentity 1. For z e ~ we have lez - 11 = 

< 1 Z 1 eizi 

Then by (l) we have 
b l bn- l 

al ••• a n- l - an 

ldentity 2. For any 

n 

a that satisfies a polynomial equation 

d x + ••• +dlx +d =0 n . 0 
we may write 

(d
n 

a) j (j) + (j) 
go gl a + •••••• + 

where 1 g ~ j) 1 < ( 2H (a) ) j for aIl i 
l. -

To see this we define the g. (j) 
]. 

recurrence relation. 

g(j) n-l 
n-l a 

by the following 

= d g(j-l) 
n i-l 

g(j-ll) d. 
n- l. 

( 0 < i < n-l , j 

with 

Note that 

(i) (dna) j 

(j-l) 

g-l o .. 
(j-l) (j-l) 

= dna (go + gl a+ •• • 

+ d ang (j-l) 
n n-l· 

> n) 

and (ii) n-l n-2 
= -dn_la - dn_2a ••• - do 

Combining (i) and (ii) we verify the recurrence relation. 
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The recurrence relation gives our original inequality. 

We are now ready to proceed with out theorem. As in 

Chapter l our approach will be the construction of a complex 

function, this time of several variables, which we will make 

small at integer values of the derivative of the function for 

partial derivatives of finite order, by judicious use of 

lemma 1. We do not make our main function and its derivatives 

zero for small integer values as in the Gelfond-Schneider 

theorem but instead make an auxiliary function that is very 

similar to our main function zero under the aforementioned 

conditions. Because of this similarity we can employ identity 

1 to conclude our main function must be small. Our function 

and the conditio.ns imposed upon it are more complicated than 

in the Gelfond-Schneider theorem as we are now working wi th .. a 

complex function of several variables. Lemma 3 merely shows 

that it is possible to define our function in the manner we 

described. 

Lemma 3. Assume the hypotheses of theorem 6 and 

(I) then there are integers p(Àl, ••• ,À n}, not aIl 0, with 
2hk \p(Àl, ••• Àn} \ ~ e such that the function 

where 

where 

t. 
~ 

h= 

15 l-e: 
À i + Àn b i and L = [ [h] ] 

[log H ] , 15 =! (1 +..3..-) 1 

2n+l 
e: = 

1 
1 - iS 

2n 
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satisfies 

( 1) 1 f m m (R, , R, , ••• , R, ) f < e -! hq 
1, •.• , n-l 

for aIl integers 1 ~ R, ~ h and aIl non-negative integers 

ml,···,mn_l with ml+ ••• +mn_l ~ [h~ 

Note that f m (zl'···'z -1) 
ml'··· n-l n 

and that 
t.Z 

a.~ 
~ 

t.Z log a. 
e ~ ~ for sorne fixed determination of 

log a .• 
~ 

Pf: For simplicity we denote 

to the function 

Ô 
[h] =k. We will apply lemma 1 

for 1 < R, ~ h and ml +·· .+m 1 < k n- -
with m. > 0 • 

~ 

n-l m. 
II t.~ 

i=l ~ 

After we have solved for the p(Àl, ••• Àn ) we will show that 

this implies the lemma. We must therefore reduce the equations 

g(R,l ml,· •• mn_l ) = 0 to equations in integers only. 

We let cl, ••• ,cn and dl, ••• ,dn_l 

coefficients in the minimal polynomia~of 

denote the leading 

respectively. We assume that the 

are non-zero. We 

(c.a.)j "'" 
~ ~ 

then 
d-l 

I: 
r=û 

have that 
(j) r 

V. a. 
~r ~ 

j 
(d.b. ) 

~ ~ 

d-l 
I: 

u 0 = 

and 

c. 
~ 

and 

(j) u 
W. b. 
~u ~ 

b. 
~ 

· ; 
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(j) (j) j 
where 

(j) 
V. 1r 

(j) 
W. 

1U 
+ 

€ Z and V < c j 
. 5 , W. < (2H) 1r 1U 

from identity (2). 

Now consider 

m m 
C~~) (dp 

m -ll II 
Writing (d t ) P LP À ) P P (À n 

db) P 
P P - P P P 

IIp''''O 

j j 
and substituting for (c. a.) 1 1 and (d.b. ) 1 1 we have that 

F 

(

' n-l 
• II 

r=l 

== d-l d-l d-l 
L . . . L :li 

rI=() r=O n gl=O 

where 
L L 

G = L . . . L 
À=O l Àn=O 

n (L-À . ) R. 
II 1 

J == c. 
i=l 1 

n-l 

d-l . . . L 
g - 0 n-l 

(L-À. ) R. d-l 1 ., 
c. • L 

]; r.=O 
1 

G 
rI 

al ... 

(À.R.) r. 
1 1 v. a. 1r. 1 
1 

r gl gn-l a n b l ••• bn- l n 

ml m n-l 
P (ÀI,···Àn ) L ... L JK 

=0 lln-ro II 
l 

(À i R.) 
V. 1r. 1 

m -ll 

(~~) 
llr (llr) 

II (dr 
À ) r r Àn W 

and K = r rgr r=l 

if the 

We therefore have that F = 0 and thus g{R., ml, ••• ,mn_1)-o 

2n-1 d equations G=O hold for the stated range of the 
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variables 1, ml, ••• ,mn _l • But these are linear equations in 

the p(Àl, ••• ,À n ) with integer coefficients. We prepare to 

use lemma 1 by estimating the absolute value of 

m n-l 
I: JK , the coefficients of p(Àl, ••• Àn ) • 

We 

and 

IKI 

and thus 

J.I = 0 n-l 

have 

n-l 
< II - r 1 

n-l 

IJI < -

2 
mr 

< II 4 HL -
< 

r=l 

( 4HL )k 

ml mn- l 
li ••• 'E-

loi =0 1 

L1n Lhn 
C6 < C6 as -

m -loi loir loi 
(HL) r r L (2H) r 

m 
) r 

JK 1 

(ml+l) •••• (mn_l+l) • c~hn. (4HL)k 

< (8HL)k • c Lhn 
6 

< 

1 < h . -

We have at most (k+l)n-l h • d 2n- l different equations 

G=O corresponding to the (k+l)n-l. h distinct sets of integral 

values for 1, ml, ••• ,mn _l • 

n We also have (L + 1) unknowns p(Àl, ••• Àn ) • Observe 

that (L + l)n > Kn - nE > 2 (k+l)n-l. h.d2n- l if H is 

assumed large enough. For this is true if hl+~nE differs 

from h Ô 

we have 

by a power of 

1 + ônE =1 + ô-l 
2 

inequality. 

h. In fact by our choice of ô and E 

< ô and we have our required 
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By lemma l, therefore, with N = (L+l)n , M=(k+l)n-l. h •d2n-l 

and with A = (8HL)k. c~hn we have that there exists a non­

trivial integral solution in the p(Àl, ••• Àn ) to the equations 

G = 0 under consideration such that 1 p(Àl, •• ,Àn)1 ~ N·A. 

We have that N = (L+l)n < - (kl-e: +1) n < kn - , that 

log H <~ and that nLh < nkhl-~e: 

nkhl -
~-l 

< 2Ïi and therefore that -
2h k Lhn 

NA kn (8ke 2 < . ) C6 -

for sufficiently large H. 

We will now check that our function g(t,ml, ••• ,mn_l ) 

vanishing for aIl non-negative integers t such that 

1 ~ t < h and ml' ••• ,mn_l wi th ml + ••• + mn_l < k implies 

that f(zl, ••• ,zn_l) satisfies (1). 

We note that 

is the same as 

b l bn - l 
al • • • a n- l 

f m m (t,t, ••• ,t) if we substitute 
l'···' n-l 

for an in g (t,ml, ••• ,mn_l ) • We have that (3) 

b l bn_l Ànt À t 
1 1 1 ( ) n l_< E = al ••• an- l -an 1 

L 
q 

.t. lanle-(log H)~l ( lanl+l)Lt 

from identity l, (3) and the inequality 
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À À 1 1 1 1 À-l À-II x - y = x - y • x y+ ••• +xy 

À 

< À 1 x - yi ( 1 yi + 1) for 1 xl < 1 y 1 + 1 • 

As Itil ~ 2dLH we have 

ml mn - l À11 Àn_11 ml 
ID 1 = 1 (log al) ••• (log a n - l ) al" .an - l t l . . . 

k+L1 k 
< C

7 
(2d LH) 

2hk 
< e if as before, we assume H is 

sufficiently large. 

Now 1 f m m ( 1 , ••• , 1) 1 
l'··' n-l 

n-l 

m n-l 
tn-l l 

Ifm m (1,1, •• 1) - g(1, ml,···,m _l)'II (loga.) 
= l' • •• , n-l n i=l J. 

(L + 1) n 2hk 2hk Lh -hq 
< • e • e • C e - 6 

< -! hq 
for sufficiently large H e as -

Lh h k 
l+ô 

< h q 
< < h . Q.E.D • -

In lemma 3 we defined our function f(zl" •• zn_l) and 

showed that its partial derivatives were subject to certain 

restrictions on their absolute value for integral values. In 

lemma 4 we determine a bound for the absolute value of 

f(Zl, ••• zn_l) for certain of its partial derivatives while 

considering f as a function of one variable z. 

,. 
1 

m. 
J. 

1 
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(i.e. zl = z2 = ••• =zn-l= z). We also estimate f(zl"",zn_l) 

and certain of its partial derivatives for zl= ••• =zn-l= t where 

1 is an integer bounded above by certain value. We did this 

in lemma 3 of course but in lemma 4 therange of 1 is extended. 

Over this extended range of 1 we prove that If (1,1, ••• t) 1 
ml' • • • ,mn- 1 

is either bounded above by a number or bounded below by a larger 

number. These two possibilities arise from the fact that 1 N ( ) 

of an algebraic number is either 0 or greater than or equal to 1. 

This technique of course was used repeatedly in Chapter I. The 

difference in this case is, as in lemma 3, that the algebraic 

number under consideration comes not from the function f{zl""zn_l) 

but from the auxiliary function g(1, ml, ••• ,mn- l ). We obtain 

our result by employing identity 1. We will use the results of 

lemma 4 in estimating integrals that will arise in lemma 5. 

Lemma 4. Assume the hypotheses of theorem 6 and (I) then for 

any non-negative integers ml"" ,mn- l with ml +m2 + •• 0+ mn- l :: k 

and any complex number Z we have 

(2) If m (z, ••• ,z) ~ 
ml"'" n-l 

4hk c.L Izi 
< e 9 

and for any integer 1 with 1 < 1 < hq- ô + !EÔ either 

-!hq 
( 1) f ( 1, •• , 1 ) 1 < e or 

ml' • • • ,mn- l 

(3) 
6hk L 2. -d 2n-l 

(1, ... ,1)1> (e Clol 

Pf: 
ml mn- l L L 

( z, ••• , z) = (log al) ••• (log al) • À I: •• "", I: 0 
n- 1=.0 .An= 
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t.z a. 1. 
1. 

n-l 
II 

i=l 

m. 
1. t. 

1. 

From lemma 3 we recall that Ip (Àl, ••• Àn ) < e 2hk and that 

It.1 < 2dLH. We need only find an estimate for 
1. 

n-l 
II 

i .... l 

t.z 
1. a. 

1. 
By our assumption (I) we have that 

< 1 z 1 (1 log an 1 + 1 ) 

and therefore that 

blz b 2z 
1 al a 2 . . . 

We can now conclude that 

Ifm m (z,z, ••• z) 1 
1"'" n-l 

a bn- l z 1 < e 1 z 1 (jlog an 1 + 1) • 
n-l 

< 
4hk c Lizi 

e 9 

We have thus proved our first statement. To prove our 

second statement we consider an algebraic integer defined by 

our function g(t, ml, ••• ,mn_l ). We let cl, ••• cn and 

dl, ••• dn_l be defined as in lemma 3. We then have that 

algebraic integer. 

n-l 
II 

id. 

We note that S is always in the field 

is an 

Q (al, ••• ,an , bl, ••• ,bn- l ) and thus we may conclude that 

the degree of S is less than or equal to 2n-l d • As any 



-53-

conjugate of S has absolute value at most 

we may conclude that either S - 0 or 

1 S 
6hk LR. _d 2n- l + 1 

1 ~ (e C ) 
10 

This is just because if S r 0 then 1 N(S) 1 > 1 • 

n-1 
II 

1-1 

We a1so have that 

t.R. 
a. 
~ 

~ 

< 

n-1 m. n 
II t. ~ II -

i=l ~ i=l 

n-l À.R. n-1 
II a. ~ II 

i=l ~ i=1 

a. 
~ 

m. 
t. ~ 
~ 

À.R. n-1 ~ 
II 

i 1 

n-I 

1 • 1 II 
i-1 

m. 
t. ~ 

1 ~ 

b. Àn~ 
a.~ 
~ 

and reca11ing the proof of 1emma 2 and our estimate for E 

we conc1ude the above is 

LR. k LR. 
~ CIl (2dLH) C12 

LR. 
< C 2hk -hq 

13 e e 

As 
ô (l-È:) 

L < h and by assumption R. ~ hq+cS€!-ô, we 

have L R. < hq-~€Ô and hk ~ h l +ô • We thus have that the 

above is < 
-4' hq 

e for 

If we let 

sufficient1y 

LR. n-1 
P = (cl ••• cn ) . II 

~ 1 

n-l 
o = II 

i=l 

m. 
~ (log a.) 

~ 

then we have 1 0-1 f m
1 o• om

n
_

1 3 e.-"lI" q 
< (L+l)n e 2hk ~ h < 

large 
m. 

d. ~ 
~ 

h • 

and 

/, 
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Now if S = 0 we have that 

< 1 0 1 

and we have (1) the first of our two alternatives. If S f 0 

then we have 
-5 q 

~ f (SI., ••• ,SI.)- S 1 < Ipi e~ 
o ml'·· .mn- l 

-5 q 

1 S 1 - 1 pie ih· < 1 ~ 1 1 f ( SI., ••• , SI.) 1 
- 0 ml,···,mn_l 

-5 q 

12.1 ( 1 S 1 - 1 pie 'g" h ) ~ 1 fm m {SI., ••• , SI.) 1 
.t" 1'··· n-l 

LSI. 
(dH) +k By observing that Ipl < c • - 16 

0 -LSI. 
(dH) -k 

-k 
and p- I > c c 

16 17 

we may conclude that 

This then gives us (3) and the proof of the lemma is complete. 

We now have the necessary estimates required for lemma 5. 

In lemma 5 we show that by increasing our restrictions on the 

partial derivatives of f(zl, ••• ,zn_l) we may relax our 

restrictions on the integer values f(z, ••• ,z 1) assumes such n-
that with these restrictions f is small. By small l mean 

that f satisfies condition (1) of Lemma 3. We can, by this 

argument, then lb ok at the function at integer values where we 
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have no partial derivatives of the function to consider and 

thus show that our function is small for a large number of 

integer arguments, with the restriction that 

Zl -Z2 = ••• =Zn-l. We have ventured into the field of several 

complex variables to strengthen our estimate on f. Lemma 5 

allows'us to collapse to consideration of a function of a 

single complex variable again. 

We prove lemma 5 by induction and Cauchy's residue 

theorem. 

We observe that the hypotheses of lemma 4 are 

satisfied for our induction step and to complete our induct­

ion step we show that assumption of the second of the two 

alternatives of lemma 4 leads to a contradiction. 

With lemma 5 we are able to conclude a modified version 

of Baker's theorem. In this version we must assume that 

log al, ••• ,log an and 2wi are lineraly independent. We 

use an argument involving a Vandermonde determinant which is 

reminiscent of Gelfond's proof of the Gelfond-Schneider theorem. 

The inclusion of 2wi weakens the theorem and we can conclude 

only the following version of theorem 5. 

, 
Theorem 5 If al, ••• ,an denote positive real algebraic 

numbers other than 0 or 1 and bl, ••• ,bn denote real algebraic 

numbers with l, bl ••• ,b linearly independent over the 
b l B 

rationals then al ••• a n n is transcendental. 

The exclusion of 2wi from our hypotheses forces us to 
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prove 2 more pre1iminary 1emmas before we can fina11y prove 

our theorem. l will discuss this fo11owing the proof of 

1emma 5. 

Lemma 5. Assume the hypotheses of theorem 6 and(I) then let J 

be any integer satisfying 0 ~ J < T where 

T = 2€-1 { ~) -1 } + 1 

ô 

then condition (1) ho1ds for a11 integers ~ with 

!€J 
1 ~ ~ ~ hk and each set of non-negative integers m1 , ••• ,mn _1 

with ml +. • .+mn - 1 < k 
-

2J 

Pf: We will use induction. From 1emma 3 we have that for 

J = 0 our 1emma is true. We now let N be an integer such 

that 0 < N < T-1 and we assume that the 1emma is true for -
J = O, ••• ,N. We will now prove that the 1emma is true for 

J N+1 

r !€Nl 
I.3k J and We let S 

~+1 = 
We now need on1y prove that 

for integer ~ with ~ < ~ ~ ~+1 and any non-negative 

integers ml' ••• ,mn - 1 with ml + •• 0+ mn - 1 ~ S we have condition 

(1) satisfied. 

We a1so define 

f (z) f (z, ••• z, ••• ,z) 
ml' • •• mn - 1 

and thus we have 
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(m) 
f (z) = 

m m 
! • • • • E 

j 1=O jn=t 0 
f m +j m +_j (z,z, ••• ,z) 

j1! ••• jn-1! 1 1'···' n-l n-1 

m! 

'+ +' JI ••• J n-1 =m 

We therefore conc1ude that 
(m) m -!hq 

f (R.) 1 < n .e for 

1 < R. ~ ~ and 0 < m < S • This is so as 

which means that 

1 f m +J' m +J' (R., ••• ,R.) 1 < by the induction 
1 1···' n-1 n-1 

hypothesis. 
S+l 

We now define F(z)= ( (z-l) •••• (z-~» and we 

let C and Cr be circ les in the comp1ex plane described in 

the posi"tive sense, such that C is defined by 1 z 1 = ~+1 log h 

and Cr is defined by Iz-rl =!. By Cauchy's residue theorem 

we have 

and 

1 1 œ) dz= llil. + 
2'ITi C (z-R.)F(z) F (R.) 

l fez) 1 dz=2'ITi C ( Z-R,) F (z) s! r 

eva1uated at r. 

= ~ S (S) f (i) (z) 
S ito i 

R 
1 N 

l f (z) - E 
Cr 

dz 
2'ITi r=l (z-R.) F (z) 

d S ( )s+l z-r f (z) -
dzS (z-R.) F (z) 

(z-R.) F(z) 

eva1uated at r, by Liebnitz's ru1e for the derivative of 

a product. 

= 
S 
E 

i==û 

i 
(z-r) J'Jo. 
(z-R,) F(z) 
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We note that we are able to use Cauchy's theorem because 

the function 

is entire for a fixed determination of t l log al+ ••• +tn_l log an_le 

We now derive our lemma by comparing estimates of both 

sides of the equation 

(5) 1 
~ 5 

J f (z) dz=.tl&) +1 1: L 

C (z ... R.) F (z) F (R.) 2'ITi r==l i=O 

We have that as R. < R < hk,€(N+l) 
N+l 

f(i) (z) 1 

• 1 
1. Cr 

< hk,€T < h1+'Ô€T < h,€ô+q-ô 

either (1) 1 f(R.) 1 or (3) If(R.) 1 

i (z-r) dz 
(z-R.) F(z) 

by lemma 4. We will use the above equation to show that the 

second possibility leads to contradiction. This will suffice 

to prove our lemma. 

Assume (3) therefore, in what follows. 

We then have that the absolute value of the double sum in (5) 

denote it by A satisfies. 

k -,hq 
lAI ~ ~ • (5+1) • n. e • max (z-r) i 

(z-R.) F(z) 

49+1 



-59-

for sufficient1y large h. 

We now estimate f(JI.) 

F(JI.) 
the first term on the rig~t 

side of (5) • We have 

< JI. ~ (S+l) ~(S+l) 
IF (JI.) 1 < ~+1 -

and reca11ing that RN+l < hq-ô+!e:ô we check -
that ~(S+l) is 1ess than or equa1 to h-~ • hq where 

1 hq 

~ > 0 to conc1ude that 1 F(JI.) I~ e 8 for h sufficient1y 

large. 

We thus 

Now by 

and sa 

!e:N+1 
We have ~ (S+l) ~ hk 

= hq -~ where ~ . h 
1 hq 

conc1ude IF(JI.) 1 < e 8 
-

(3) 

> o. 

2n-1 
f ( JI. ) 1 > (e €hk L ~+1 )-d 

CIO 

1 

f(JI.) 

F (JI.) 

> 

> 6hk hq-!e:ô _d2n- 1 
(e C ) 

1 10 
-'8 hq 

> 2 e 

If(JI.) 1 

IF(JI.) 1 

This shows us that the right side of (5) has abso1ute value 

at 1east ! !f(JI.) 
F (JI.) 



-60-

We now will estimate the left hand side of (5). Let 

V be the upper bound of If(z) 1 and W be the lower bound 

of IF(z) 1 on the circle C. Then as 2 IZ-11 is gEeater 

than the radius of C for z on C we have 

or 

Now we have 

W > 

and therefore 

2V > l 
W 2 

1 f (1) 1 

1 F (1) 1 

4V If(1)1 -1 > W IF(1)1 -1 

~(S+l) 
( ! ~+l log h) 

W 1 F(1) 1 -1 ~ 
~ (S+l) 

(! log h) 

V < e 

From the first assertion of lemma 4 we have 
4hk L ~+l log h 

C9 

and therefore V 
-1 

1 f (1) 1 
~k LRn+l log h) 

( 6u C 
~ e 18 

d 2n- l + 1 

Combining the three preceding results and taking 

logarithms we find 

log 4 + '(d 2~-1 1) ( 6hk + L~+l log h log C18 ) 

> ~ (S+l) ( - log 2 + log log h) 

or for sufficiently large h either 

(i) C19 L ~+l log h ~ ~ (S+l) log log h or 

( . ~ , ~"'I C19 hk > ~ (S+l) log log h depending on whether 

N > 0 or N = 0 respectively. 

But and 
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< 

whi1e 

substituting these quantities into either equations (i) or 

(ii) we reach a contradiction. We have thus proved 1ernma 5. 

As was mentioned ear1ier, 1emmas 3, 4 and 5 suffice 

to prove theorem 5' • We need, however, two additiona1 1emmas 

to prove theorem 3. Lemma 6 contains the resu1t that will be 

used to prove our theorem. Lernma 7 is a simple 1ernma that is 

not connected with the chain of 1ernrnas that cu1minate in 

1ernma 6. In 1ernma 7 we emp10y the 1inear independence of 

log a1 , ••• ,10g an and the fact that IN ( ) lof a non-zero 

a1gebraic integer is > 1 to derive an estimate we will use 

once in the final proof of theorem. 

In 1ernrna 6 we use 1ernma 5 and the techniques of 1ernma 5 

to improve our estimate on g(z) = f(z, ••• ,z) at certain 

integer values of z. We then use Cauchy's residue theorem to 

estab1ish an estimate for the derivatives of g(z) of high 

order at the point z = O. The estimate will be sufficient1y 

strong for us to estab1ish a contradiction and thus our theorem. 

Lernma 6 is the fourth step in the improvement of our estimate 

on the behaviour of the function f(zl, ••• ,zn_1). It fo110ws, 

as do the others, from the 1ernmas preceding it. 

Lernma 6. With the hypotheses of theorem 6 and(I} we have 

log Ig(j) (0) 1 < - h
q

/10g h for l ~ j ~ kn 
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Pf: We define X = [~hq-ô] and Y = [k/(8q log h)] 

and we note that [hk~~N] > X and [k/2N]~ Y where 

• > N > [.l if • is not an integer or N = .-1 if • is 

an integer. 

We therefore have from lemma 5 that 

1 f m1 ' ••• ,mn -1 ( R. , ••• , R. ) 1 
-!hq 

< e for non-negative integers 

1 < R. < x and m1+· •• +m 1 < Y. n- -

This a110ws us to conclude that as 

= (L.+ ... + _a_ r f(Zl'·"'Zn_l) 
aZ I aZ

n
_

1 

9 (m) (R.) 

evaluated at R.. We have 

for integers m,R. such that l ;: R.< X and o < m < Y • - -
We proceed as in lemma 5. We consider circles in the 

comp1ex plane, described in a positive sense, wh~re C, 

Co' and Ci' i = l, ••• , X are I:z 1 = X logh, 1 Z 1 = i, and 

Iz-il = ! respectively. We also define the function 
y+1 E(z) = ( (z-l) ••• (z-X» • 

Our purpose is to ca1cu1ate an upper bound for Ig(y) 1 

where y e: Co • 

As in lemma 5 we have from Cauchy's residue theorem 

x y 
(z_i)m dz 1 1 2(z) d z ...; 2..!l1. +.l- I: L gm (i) 1 

C C. 2'11'i (z-y)E(Z) E (y) 2'11'i i l m=O m! 1 (z-y)E(z) 

and designating the double sum by B we have 
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-lhq 
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We let S be the maximum of Ig(z) Ion C and T 

be the minimum of E(z) on C. We thus have that 

By lemma 4 condition (2) we have 

Isi < e 4hk c9LXlogh 

We also have that ITI ~ (! X 10gh)X(Y+l) for h large 

enough and IE(y) 1 < (X+l)x(y+l) 

~ (2X) (X{Y+l) 

by inspection. 

Therefore we have 

1 g (y) 1 < 2 e 4hkc LX logh (1 logh) -,x,(y+l) - 9 
_:J.'hq 

(2X)2XY + fa 4-.& • 

and as L X ~ hô(l-e).! hq - ô< h q-ôe 

and X(Y +1) ~ 

Ig(y) 1 

2 X Y log 2X < hq-~ h Ô .(q-ô) log h 
8q log fi 

< hq/8 

--i X (Y+l) jh
q 

Iq(y) 1 < (log h) +e So 

< (log h) -'X (Y+l) 

We now will specialize our estimate to g(j) (0) by using 

Cauchy's residue theorem. 
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~ dy - g(j) (0) and for 0 < j < kn 

yJ -rI 
we have 

But 

as 

Thus 

for 

Ig(j)(o)1 < 

< 

j! 4 j (log h) -lX (y +1) 

kkn+l(lOg h)-!X(Y+l) 

! X (Y+l) log log h > 

l28Qlogh 

> 2ôh ô (n+l) log h ~2kn+l log k 

Ô (2n+l) < Q by assumption • 

• loglog h 

o < . < kn J _ and the lemma is proved. 

Lemma 7. Assume the hypotheses of theorem 6. If tl, ••• t n 

i 
It·1 1. 

< T, then are non-zero integers with max 

1 1 
-T t l log al+ ••• +tn log an > C2l 

Pf: As in lemma 3 we let cl, ••• ,cn represent the leading 

coefficients in the minimal defining polynomials of al, ••• ,an 
t l tn t l tn . 

respectively. We then consider a = cl ••• cn (al ••• an -~), 

an algebraic integer of degree at most 2n-l d • 

We have that the absolute value of any conjugate of a 
T _(d~D-l)T 

is less th an c
22

0 Thus, if a r 0 ,lai> C22 L by 

consideration of the norm of a ° If a=O we have that 

Itl log al+ ••• +tn log anl is a non-zero multiple of 2'1l'i 

from the linear independence over the rationals of log al,ooo,logan • 

This case clearly yields our theorem. 

j 
1 
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As leZ_li ~ 21z1 for Izi ~! we have 

t l tn 
laI ••• an -11 < 2 1 t l log a l +··· +tnlog an 

for 1 t l log al+· •• +tn log an 1 ~! . 

Therefore 
2n-l 

C -(d-l )T < 1 ~ 
22 

2CT 
1 tIlt 1 1 < og a l + ••• + og a 

23 n n 

and thus the lemma is complete. 

We are now ready to finish the proof of the theorem. 

For the final proof we shall need lemmas 6 and 7. We will 

show that the assurnption (I) must be false. We will estimate 

a Vandermonde determinant whose elements are of the form 

(tl log ~ + ••• +tnlog an)j in two ways to arrive at our 

contradiction. We derive one estimate with the aid of lemma 7. 

Our second estimate cornes from consideration of certain surns 

of the original elements of the Vandermonde determinant. These 

surns will have values close to g(j) (0) • We can then employ 

our estimate for g(j) (0) and the property of determinants 

that a multiple of one row of a determinant added to another 

row leaves the determinant unchanged. We are thus able to 

procure our contradict~on and the theorem will be proved. 

The proof of Theorem 6 and thus also of Theorem 3. 

Pf: We order the P(~l" •• '~n) by associating them with 

r -~n~n-l •• '~l'OO number expressed in base L+l. We let 

Pr =P(~l'···'~n)' er=~llog a l +· • '+~n log an and 
R j l)n_l 0. = 1: Pr e 0 < j < R where R = (L + . 

J r .. ,o r - -
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We consider 

( ( t l logal + ••• +t 110gan- l ) J 
n-

- (À l log al + ••• +Àn log an) j ) 1 

Note that (a+.b)j - (a+c)j 

-( ~) (b-c) (a+c) j-l 

we conclude that 

= (a+C+b-c)j - (a+c)j 

~~)(b-C)2 (a+C)j-2 ••• +(b-c)j 

I(tl logal+···+tn_l 10gan_l)j-(ÀllOgal+···+ÀnlOgan)j 

R -hq 
< (C 25L) • e for sufficient1y large h by 

emp10ying (I) and estimating 6 r by 1 6 r 1 < C24L • 

Thus we have 

1 9 (j) (0) - e. 1 < 
J 

n 2hk R -hq (L+1).e • (C
25

L) .e 

< 
l+ô ( nô q 

(hô (1-€~1)n.e2h .(C h Ô 1-€) lh e-h 

and so 

which 

< 

1 e. 1 < e -! h q + 1 
J 

gives log e. 
J 1 < 

We now define f:, as 

e 
-!hq 25 

g(j)(O)1 

-!hq/10g h 

the Vandermonde determinant of 

order (L+l) n with 6 j in the (r+1) -th row and (j +1) r 
co1umn. Thus f:, = II ( 6s - 6r ) • 

0 < r<i~R -

-th 
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From lemma 7 and the assumption that log al, ••• ,log an are 

linearly independent over the rationals we have 

1 1 
-L (R+l)2 

/), > (C
26 

) -
and thus log /), 1 > "';C

27 
L (L+l) 2n -

> ~ C hl'l ( 2n+l) - 27 

We now derive an upper bound for log 1 Il 1 • We know 

that at least one of the Pr 

then 

/), p. 
l. 

-1 

1 

1 

e 
0 

1 

is non-zero. 

1 

ai 

e 1 

a 
R 

. . . . 

Assume p. 

1 

al 

e R 

a 'Il 
R 

l. 

R 

= p. 
l. 

-1 

i= 0 

* /), 

as the determinant of a matrix is unchanged if a multiple of 

one row is added to another row. The i th row of /),* is 

obtained from the 

and then adding p. 
J 

i th row of /), by multiplying first by 

times the jth row to the i th row 

for j = O, ••• R, j ~ i • 

As 1 S'r 1 < C28 k and log 

we have 

1 1 
-1 ' n 

log /), ~ log Pi + log «L+l) !) 

+ R log (C2Sk) - i hq/log h 

p. 
l. 

n l'ln 
and as (L + 1) n! < knk < hl'lnh and q > l'l (2n~) we have 
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that 

log 1 6 1 ~ - i hq/1ogh if h is sufficient1y large. 

But comparing this with our previous estimate for log 

1 6 1 we see that we have 

-c hô (2n+1) < - i hq/1og h 
27 

But we have that q > ô(2n+l) by assumption and thus we have a 

contradiction. The theorem is complete. 

N.B. The constant C referred to in Theorem 3 is effectively 

computab1e. The ca1cu1ation of the constant has been omitted 

from the proof. We have instead assumed our estimates ho1d 

for h sufficient1y large. We can, however, determine those 

values exp1icit1y. 



CHAPTER III 

CONSEQUENCES OF A. BAKER'S THEOREM 
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3.1 Applications of Baker's theorem 

In this chapter l will briefly outline sorne of the 

improvements and consequences of A. Baker's theorem. 

"Linear Forms in the Logarithms of Algebraic 

Numbers" has evolved in four stages. The third stage [20] 

gives us the inhomogeneous form of Theorem 3. It serves 

to settle further questions in the field of transcendental 

numbers. l will discuss this in more detail shortly. The 

fourth version [21] of the original theorem was intended 

to sharpen the estimates that were likely to arise in the 

solution, obtained with Theorem 3, of certain Diophantine 

equations. Its statement follows. 

Theorem 7. If n > 2 are non-zero algebraic 

numbers with heights and degrees less than H and d 

respectivelyand if rationals integer bl, ••• ,bn exist, 

with absolute values at most T such that 

where log ai denotes the principal value of the logarithm 

and o < ô < l then 

2 2 
T < (4n ô- l d 2n logH) (2n+l) 

To illustrate the efficacy of theorem 7 A. Baker 

in conjunction with H. Davenport used it to prove that 

the only solutions in positive integers x, y, z of the 

equations 3x2_2=y2, 8x2-7=z2 are given by x=l and 

x=ll. [22] 
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A. Baker has succeeded in emp10ying theorem 3 or 

a variation of it in the deterroination of upper bounds 

for the integra1 solution of the fo11owing diophantine 
232 equations, y = ax +bx +cx+d [23] , more specifica11y 

2 3 
Y = x +k [24] , more genera11y 

and final1y f(x,y) = m [~6] where f is an irreducible 

binary forro of degree at 1east 3. The preceding diophantine 

equations are assumed to have integra1 coefficients. Whi1e 

Thue, Siegel or Roth had worked with the diophantine 

equations mentioned and had proved that the equations cou1d have 

on1y a finite number of integra1 solutions their methods 

shared at 1east one property, non-effectiveness. The importance 

of the effective1y computab1e constant C in theorem 3 is 

now brought to 1ight. It is the effective nature of theorem 3 

that a110ws Baker to exhibit explicit upper bounds for the 

integra1 solutions of the aforementi.oned equations. This in 

princip1e reduces the above prob1ems to a finite amount of 

computation. The bounds obtained however, are general1y 

astronomica1 and without refinement :they 1eave computation 

that can' t feasib1y be done even wi th the aid of a n'l'\puter. 

By fo11owing Baker's method, adapting it to the specifie case 

under consideration and emp10ying certain 1emmas from the 

study of diophantine approximation or continued fractions 

the bounds can, however, be reduced to a more practica1 size. 
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This was done, for examp1e, by W. J. E11ison, F. E11ison, 

P. Pesek, c. c. Stah1 and D. S.Sta11 [27] in determining 

the integra1 solutions of the equation y2 = x 3-28. 

As a particu1ar consequence of Baker's work on the 

diophantine equation f(x,y) = m, where f is an 

irreducib1e binary form with integer coefficients and degree 

at 1east 3, we have the first effective improvement on the 

accuracy with which a ra'tiona1 number can approximate a rea1 

a1gebraic number since Liouvi11e's theorem of 1844. 

Fina11y "Te have that theorem 3 can be used to 

determine an upper bound for deZ+ where Q (/-d) is an 

imaginary quadratic field of c1ass number 1 or with the 

added restriction d t 3(mod8) c1ass number ? [28] 

This set.t1es the conjecture of Gauss that Q(/-d) 

with d = 1,2,3,7,11,19,43,67,163 are the on1y imaginary 

quadratic fields of c1ass number 1. H. Stark and K. Heegner 

a1so proved the above conjecture for c1ass number 1. Their 

method invo1ved the use of e11iptic modu1ar functions. 

Their proof has been adapted by Kenku and Weinberger to the 

case of c1ass number 2. Baker uses Theorem 7 to show that 

if d t 3 (mod 8) then d < 10500 for c1ass number 2. The 

cases where d < 10500 were tested by E11ison, Pesek, StaIl 

and Lunnon [29] and the fields of c1ass number 2 were then 

given by d = 5, 6, 10, 13, 15, 22, 37, 58. 
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3.2 An effective improvement of Liouville's theorem. 

While Liouville~s theorem has gone through many 

improvements culminating in the Thue-Siegel-Roth theorem 

these improvements are aIl non-effective. We invoke the 

following theorem of A. Baker, [26] which is a develop­

ment of the theorem 3, to establish the first generally 

effective improvement of Liouville's theorem. 

Theorem 8. If f(x,y) = m ip, an irreducible binary form 

with integer coefficients and degree + then aIl n ~3,me:Z 

integer solutions x,y of f(x,y) - m satisfy 

max (lxl,lyl) < 
(logm) q 

Ce where q >n and C is an 

effectively computable number depending only on n, q and 

the coefficients of f. 

This enables us to prove theorem 9. 

Theorem 9. If a is an algebraic number with degree n > 3, 

then there exists a constant C = C (a,q) > 0, where q > n, 

such that l/q 

a - ~I > C e (logS) 

Sn 

where PIS e: Q and S > o. 

p-I=. -. We let f (x) be the minimal polynomial of a • We then 

have that 

J. i 
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where Cl(a) is effectively computable by the mean value 

theorem. We now note that m = sn 1 f (~) 1 is an irreducible 

binary forro of degree n > 3 with integer coefficients 

and thus by theorem 8 we have that 

* 
-1 la 

p 
where m Cl (a) < - 5 -sn 

S < C2 (a,q) e (logm>: 

1 1 -Thus q q 
m > e(logS-log C(a,q» >C

3 
(a ,q) e (logS) 

where C3 (a,q) is computable. Substituting for m in * 

we have our desired inequality. 

Despite the very powerful result we used, our 

inequality has not been very significantly improved from 

Liouville's theorem. We would like an effective equivalent 

of the Thue-Siegel-Roth theorem. 

3.3 The integral solutions of 2 3 
Y = x - 28 

We have, from the result of Baker mentioned earlier 

[24] , that aIl integral solutions of y2 + k = x3 satisfy 
10 10 4 

max {Ix l, 1 yi} ~ exp {IO Ik 1 }. Thus with a finite amc.>unt 

of computation we could discover aIl the integral solutions 
2 3 of Y = x -28. We can simplify the computation by the 

following method [27] which l shall outline. 

We reduce y2 + 28 = x3 to the following. 
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Thue equations: (i) ± 4 = 3X y + Xy2 _ y3 

(ii) x3 - l2Xy2 - l2y3 = ± 1 

by considering y2+28=(y+2/-7} (y-2/-7) 

Q (/-7). We note that a prime in Q(/-7} 

(y+2/-7) and (y- 2/-7) must be either 

in the field 

which divides 

1-7, 1+ 1-7 
2 ' 

1 - 1-7 
2 

This yields the ab ove 2 equations. Case (i) 

gives the two solutions x = 37, Y = ±225. We will use 

Baker's result [21] to de al with case (ii). 

We let f (x, y) X3-l2Xy2_l2y3 and we work in 

Q(a) where f(a,l} = O. An integral basis of Q(a) is 

2 {l, a, a /2} and a pair of fundamental units are 

nI - -7-4a + 3a
2
/2 

a, b € Z such that 

and n =11 + a- a 2 • Then if we have 
2 

f (a,b) = ±l then (a-a (l)b) (a-a (2) b)· 

(a-a(3)b)=±1, where the bracketed superscript indicates a 

conjugate. We thus have that (a-a (l)b) is a unit and 
dl d 2 so -±n1 n2 for dl' d

2 
€ z. It is this representation 

that is crucial for we then have 

log 
( .:) d log 1 nl(i) 1 + d 2 log 1 n2(i) 1 

a -a ... b 1 = 1 

for 1 ~ i ~ 3. Letting H=max 

able to deduce that 

where m = 

H > 20. 

a(R')-a(j} 

a (k) -a (R,) 
for {R"j,k} = {l, 2, 3} and for 
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To apply Baker's theorem, theorem 7, we calculate 

the heights and degrees of n (j) (j) and m. 1 ' n 2 
;ro- :lk") 

1 n2 

We have that the maximum height is 27236 and the maximum 

degree is 6. From theorem 7 we then conclude that H < 10563 • 

This is an immense improvement over our initial inequality 

10 104 
max { Ixl, Iyl } ~ exp {IO 1281 } but it is still 

impractical. To reduce our upper bound for H we use the 

following lemma of Davenport. This result from diophantine 

approximation theory was also used in [22] • Accordingly 

l will quote it. 

Lemma 8. If e and a are given real numbers andm,B > 6 

are given integers and if p,q 

1 < q ~ BM, 1 eq-p 1 < 2 (BM) -1 

are integers such that 

then if 1 Iqal 1 ~ 3B-
l 

there is no solution 

in integers 

By letting 

of the inequality 1 b
l 

e + b 2-a 1 

with log(B
2

M) / logK ~ Ibll ~ 

n(j) n(j) 
e = log 1 -iRT 1 / log 1 -iKT1 and a 

M. 

0.404 
K=e , M = 10563 and and applying our 

lemma twice we find Idll~ 44. This is now an easily handled 

upper bound and we can de termine aIl integral solutions of 

~3_l2Xy2_l2y3 = ± 1. These in turn give the integral solutions 

(x,y) = (4, ± 6) and (8, ± 22). Combining these with 
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(x,y) = (37,± 225) from case (i) we have aIl the integral 

solutions to 2 3 Y = x -28. 

3.4 The inhomogeneous forrn of theorem 3. 

The final topic l will discuss in this report is the 

following generalization of Baker's theorem. [20] 

Theorem 10. If al, ••• ,an and bo ' bl, ••• ,bn are non-zero 

algebraic nurnbers, then 

b
o 

+ b
l 

loga
l

+ ••• + b
n 

loga
n 

1 > ce-(109H)q 

where q > n + 1, d and H are respectively the maximum 

of the degrees and heights of bo ' bl, ••• ,bn and 

c = C (n, al, ••• ,an , q, d) is an effectively computable 

number. 

N.B. The theorem holds for any determination of the logarithrn 

of ai' i = l, ••• ,n but the constant C depends on those 

deterrninations. 

Baker's method of proof of theorem 10 follows quite 

closely his proof of theorem 3. It applies to the case b~ o 

if we strengthen out hypotheses slightly. We thus can state 

the following improvement of theorem 3. 

Theorem Il. If al, ••• ,an and bl, ••• ,bn are non-zero 

algebraic nurnbers with either log al, ••• ,log an or bl, ••• ,bn 

linearly dependent over the rationals then 

-(logH)q 
1 b l logal+··.+bn loganl > Ce 

· d 
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where q > n, d and H are respectively the maximum of the 

degrees and heights of bl, ••• bn and C = C (n,al, ••• an,q,d»O 

is an effectively computable number. 

As with theorem 3, theorem 10 gives us two substantial 

results in the theory of transcendental numbers. We have that 

if al, ••• ,an and bl, ••• bn are non-zero algebraic numbers 

then b l log al+ ••• +bn log an is transcendental or zero. 

From this we May conclude that ~ + log a = i log (-1) + log a 

is transcendental if a is a non-zero algebraic number. We 

thus have dx = 
1+x3 

1 (log 2 + 1I-) 
3 /3 

is a transcendental 

number and this settles a question raised by Siegel. [13] 

We can also say that if al,· •• ,an , bo' 
bo bl are non-zero algebraic numbers then e al ••• 

transcendental. If it were algebraic we would have a 

contradiction to theorem 10. 
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