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Abstract

In this report I intend to survey the theory
of transcendental numbers and investigate its most
important recent result. That result is A. Baker's
theorem, “Linear Forms in the Logarithms of

Algebraic Numbers" first published in 1966.

I have divided my thesis into three chapters.
In chapter I I outline the history of transcendental
numbers and prove some of the more important results
in the field. 1In chapter II I prove A. Baker's
theorem. Finally in chapter III I discuss some of
the applications and consequences of A. Baker's

theorem.
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REésumé

Dans cet ouvrage je me propose de donner une
vue d'ensemble des nombres transcendants et du
résultat le plus récent qui s'y rattache. Ce
résultat, 4@ & A. Baker parut pour la premiére fois
en 1966 sous le titre "Linear Forms in the Logarithms

of Algebraic Numbers”.

Ma thése comprend trois chapitres. Le premier
chapitre esquisse 1l'histoire des nombres transcendants
et prouve quelques résultats de la plus haute import-
ance. Dans le chapitre deux je prouve le théoréme
de Baker. Enfin dans le chapitre trois je discute
quelques applications et conséquences du théoreéme de

Baker.
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Notation

the integers
the positive integers

the complex numbers

the rational numbers

the maximum of the absolute value of all the

conjugates of a.

the absolute value of a
the norm of a

the height of a, the maximum of the absolute values
of the relatively prime integer coefficients in a's

minimal defining polynomial.

denotes the greatest integer less than or equal

to a.
O(£(x)) - |£f(x)|] < Mg(x) for a constant M > 0
th . .
(n) - the n "-derivative of £f(2)
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CHAPTER 1

A SURVEY OF THE THEORY OF TRANSCENDENTAL NUMBERS



1.1 Transcendental Numbers

In this chapter I will attempt to outline the main
developments in the field of transcendental numbers. I will
prove in detail both the Gelfond-Schneider theorem and
Schneider's theorem. I hope to bring the reader to a position
of appreciating the significance of a recent theorem of A. Baker
[1] in the theory of transcendental numbers.

While A. Baker's result is applicable to a wide range
of problems it is of particular importance to the theory of
transcendental numbers for it gives the natural generalization
of the Gelfond-Schneider theorem. The Gelfond-Schneider theorem
states that if a 1is algebraic and not 0 or 1, and if b is
algebraically irrational then ab is transcendental. As a
consequence of Baker's theorem we have the following:
If al,...,an denote algebraic numbers that are neither 0 or 1

and if bl,...,bn denote algebraic numbers with 1, bl""’bn

b b

linearly independent over the rationals then a, l...an n is

transcendental.

Before commencing it might be in order to remind the

reader that an algebraic number is a number that satisfies a

polynomial equation £(x) = amxm tooot agx + a, = 0 where the

a; are rational integers and anl# 0. A complex number that

is not algebraic is transcendental. We see immediately that

the algebraic numbers are countable.



1.2 Liouville's theorem and its improvements.

The first result in the theory is due to Liouville.
He determined an estimate for how well a real algebraic number

can be approximated by a rational number.

Liouville's Theorem. If r is a real algebraic number

with minimum polynomial of degree n>1 over Q, then there

exists an m > 0 depending only on r such that for all

rational numbers g , @ >0 we have that | r - % | > Eh .
g

The theorem is very easily proved using only the mean
value theorem. (Hardy and Wright, The Theory of Numbers, P 161).[2]
This theorem now gives us a criterion for determining certain
transcendental numbers. A Liouville number is a number r#Q such
that for all n there exists a rational number Pn/qn such

that | r - Pn/qn | <(é—)n . A Liouville number is transcendental
n

) 1 " (—'l)k
and examples of such numbers are pX r I ——

Liouville published twe papers in 1844 and 1851 [3] on the
subject and thus launched the study of transcendental numbers.

It should be observed that almost all transcendental
numbers are not Liouville numbers. Both 1 and e are not
Liouville numbers with r satisfying | = - P/q[ > q_42
for g > 2. [4]

A simple generalization of Liouville's theorem appears



in Joseph Lipman's book,"Transcendental Numbers". [5] . It

is theorem I.

Theorem I. For any algebraic number r of degree n, there

is a positive number C(r) depending on r such that whonever

s ¥ r is an algebraic number of degree d and height H then

lr - s} > C(r)d

Hn

From the aforementioned theorem Lipman is able to deduce
theorem II.

Theorem II. Let r be an algebraic number with |r| > 1. Then

o

k . . . .
F(z) = z is an entire function which assumes a trans-

k=0 ;k'"
cendental value at every non-zero algebraic =z .
The preceding nicely suggests the intimate relationship
between entire functions and the study of transcendental numbers.
An improvement on Liouville's theorem for the determinat-
ion of transcendental numbers is the following.

Thue-Siegel-Roth theorem

If r is an algebraic number and € > 0 then the

inequality | r - g | > _%1E is true for all but a finite number
P q

Of - .
q
This theorem allows one to prove that certain numbers

defined by a sequence of rational approximations less rapid

than that of Liouville numbers are transcendental,
1

—)

0 k
10

118

(e.g.
k



1.3 The theorems of Hermite and Lindemann

Twenty-two years after Liouville's paper was published
the next advance in the subject was made. 1In 1873 Hermite
published a proof that e was transcendental. [6]

Hermite's proof involved the use of continued fractions. His
approach stimulated Lindemann who modified Hermite's techniques
and was able to establish Hermite's result as an immediate
corollary of his famous theorem. Hermite's proof deserves the
recognition it receives because it was the first proof of the
transcendence of a naturally occuring number of analysis.
Hermite's proof was altered and simplified by later mathemati-
cians like Hilbert and Hurwitz. Elementary proofs can be
found in Hardy and Wright "An Introduction to the Theory of
Numbers", pp 172-173 [2] and Ivan Niven's "Irrational Numbers",
PP 25-26 [7] .

After Hermite's breakthrough there was a 9-year pause
before Lindemann gave a proof, in 1882, of the transcendence
of m [8] . While Lindemann's objective was a proof of the

transcendence of 1w he proved the following:

Lindemann's theorem B

If ajre..423, are distinct algebraic numbers then

a a
e l,...,e N are linearly independent over the rationals.

If rw is algebraic then 7 i is algebraic. = i
* 21Tl=1 are not

and 2 7 i are distinct yet e™ --1 and e

linearly independent over the rationals. We conclude that



¥ is transcendental.
Lindemann's original statement of proof may be

reformulated.

Lindemann's Theorem A.

If ayree.,3, are algebraic numbers linearly independ-
a a

ent over the rationals then e ~,...,e T are algebraically

independent over the rationals.
We see that the two formulations are equivalent.

Assume B, then if ay7+..,a, are linearly independent over Q

alrle a2r2 anrn

and I cr e ce.@ = 0 where r = (rl,...,rn), C.€ Q

r
and the sum is taken over only a finite number of r then

a;ry +... ta r are distinct algebraic numbers for different

n-tuples by linear independence and thus

a.r vee,a_rY
e 171 + + n'n 0

r
This contradicts B.

Now assume A then let ayreee,ay distinct algebraic
numbers, be written as linear combinations of a set of algebraic

numbers bl""’bt which are linearly independent over the

rationals, i.e. a, = § d,b
i kTk
k=1
n n t d,b
Now z c ear =0 or I c me kk = 0
r=1 "r r=1 “r k=1

b b
which contradicts the algebraic independence of e 1,...,e t.

A generalized proof of Lindemann's may be found in



Ivan Niven's book "Irrational Numbers" [7] pp.117-130, and
an elementary proof of the transcendence of 1~ may be found
in Hardy and Wright, "Introduction to the Theory of Numbers"

pp.173-176 [2]. Niven proves ; Given distinct algebraic
a

2 a2 m
numbers a;s...,a, the values e ,y € T, eee,e are
linearly independent over the field of algebraic numbers.
Some immediate consequences of the generalized

Lindemann theorem are the transcendence of &% , sSin «,
cos o, tan o, as well as the hyperbolic functions like sinh
with argument o where o is a non-zero algebraic number. 1In
addition, log a , arcsin a and generally the inverse functions
of those above are transcendental when o is algebraic and

o ¥ 0, 1. These conclusions are all possible because of the
above functions connection with the function e? . e.g. Let

o be algebraic, o # 0. We then have cosh o = 3e* + 3e™% =a .

If a is algebraic then 31e%+ 3e™% ae0 = 0 contradicting

the generalized Lindemann theorem. Therefore a is transcendental.

1.4  Siegel's E-functions

In the years following Lindemann's paper transcendence
results were confined to simplifications of the proofs of
Lindemann and Hermite. The results depended upon the specific
behaviour of the function e? and could not be generalized
to a broader class of functions. Siegel in 1929 did generalize

the theory by looking at functions that had an addition theorem



f(x+y) = £(x) . £(y) and satisfied a differential equation
similar to f(%&) = f(x). He then considered functions
satisfying only one of the above conditions. Siegel did
considerable work on functions of the latter type, for example

the E-functions. Definition f(z)is an E-function if

iy
c. = with
n!

f(z)= n

48

n=0
1) All coefficients ch belonging to the same algebraic
field of finite degree over the rational number field.

2) If e is a positive number then ||cn|| = 0 (n"%)
as n -+ « ,

3) There exists a sequence or Apeeee of positive
rational integers such that q, S is integral for k = 0,1,...n

and n =0, 1,.... and that q, = 0 (n"€).

We have that the derivative of an E function is an

E-function, that the E-functions form a ring and that ez,
any polynomial and the Bessel function Jo(z)= r (-1° (%)2n
n=0
7y 2

(1)

1
are E-functions. Siegel proved that Jo(z) and Jo(z) are
transcendental and algebraically independent if 2z is non-zero

and algebraic.

1.5 Hilbert's seventh problem

In 1900, 29 years before Siegel began his study of

E-functions, Hilbert drew up a list of 23 problems for which



there appeared no suitable approach to a solution. Problem
seven was to prove that if a and b- are non-zero algebraic

numbers with a # 1 then log b 1is either rational or
Tog a

transcendental. This 1is equivalent to the Gelfond-Schneider
theorem stated earlier. No progress was made on the problem
until 1929, when a partial solution was given by A.0. Gelfond.
Gelfond showed that if a and b are algebraic, a #¥ 0, 1,
with b an imaginary quadratic irrationality then ab is
transcendental. In 1930 Kuzmin extended the proof to the case
where b was a real quadratic irrationality. Thus the

i

transcendence of e’ = (-1)

and 2”2 were established by

1930. Finally in 1934 A, Gelfond, [10] and in 1935, Th. Schneider,
[11] published independent complete proofs of Hilbert's seventh
problem. I will prove the theorem by two methods, one due to

Gelfond [12] and the other due to Siegel [13] .

1.6 Siegel's arithmetical lemmas

Before commencing the proofs I will prove two arith-
metical lemmas due to Siegel. The first lemma will be used in

proving Baker's theorem.

" LEMMA 1. If n, m are integers such that n > m > 0 and

D
L aij xj =0 i=1,..., m 1is a system of linear equations
j=1
with integer coefficients a;, such that Iaijl < A, then
there exists a non-trivial integral solution XyreeoX, such

that Ile < (nA) m/ (n-m)
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We will consider the negative and positive aij's
separately to obtain the required estimate for B.
Pf:

We consider x - (xl,...,xn) # (0,.0.,0) with

j -
Let__Di = sum of the negative aij's and Ei = the sum
of the positive aij's.
n

Then-D.,B < Za,. X. < E, B so that y = I a,, x. can assume
1= 571 "3 - 71 1 4=1 *3 3]

only (Di + Ei) B+ 1< nAB +1 values and therefore
Yy = (yl,...,ymf can assume only (nAB+1)m values. There are
(B + l)n-l different arguments x = (xl,...,xn) that are
admissible. Therefore if (B + 1)™ -1 > (naB + 1)™ we will
have either two distinct arguments x' and x" with the same
value under M(aij) or a non-crivial solution. The first case
also gives rise to a solution, let x = x' - x" and by linear-
ity we have a non-trivial solution such that Ile < B.

To complete the lemma we check that B = (na) m/ (n=m)

satisfies (B + l)n/m > nAB+1l and this is immediate.

LEMMA 2., Let K be a finite algebraic extension of Q of

degree h.

If n, m are integers such that n >m > 0 and

=0 is=i,...,m is a system of linear equations

[ R-]
W
]

)
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with coefficients aij in Ik’ the integral closure of
% in K, such that || 3; 4 || < A, then there exists a non-
trivial solution x = (xl,...,xn), x; € Ik’ for the system
of linear equations such that || xill < C (C na) m/ (n-m)
where C 1is a constant depending only on K.
Pf: Let Wyreee Wy be an integral basis for K. Thus given
n h
z a.. x. =0 i=1,...m we may write x.= I b,.w
jo1 1373 I x=1 ¥J 'k

where the bkj are rational integers. Therefore we have

n

h
0=z Z a.-b .W i=1’oo¢’m
jel k=1 3 K3 ﬁ
We may now write aij wk=r)=31gijkr v, where the gijkr are

rational integers. We are thus trying to solve

n h h
0 =1t pX I b,.. g.. w i=1,...,m. But as the w are
jul k=1 r=1 *%J “ijkr 'r ! Com r
linearly independent this reducesto 0=3§1 kzl bkj gijkr

i=1,0e,m 2=z=1,...,h anqhby lemma 1 this has a non-trivial

max

. =y .
solution for Ibkjl < (hnB)N~M  where B i,3.K,r | 93 jkr

h
We observe now that if a = & W then we have
P =1
(g1' e o ’gh) WJ(-l) e o wih)
s . = (a, a (2) ,...,a(h) )
: (1) *(h)
who oo e wh

We assume w(l) « w. ', j=1,...,h

3 J
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where the superscript denotes a conjugate. The LA form an

integral basis. The determinant of M(wgl)) is non-zero and

so the g; can be expressed as linear combinations of the

al) | Therefore g; <0 |lal| where C, depends upon K

and the choice of basis. Therefore B < C,A implies |bkj|
m

(Co na) ™ ang finally we may conclude that we have non-

trivial solutions X = (xl,...,xn) such that
m

lllel <h.max ||w |]. (Con.l\.)n_m . This implies
m

||xj|| < C (cna)™™ yhere the constant C depends only on

the field K and choice of basis.

1.7 The Gelfond-Schneider theorem

Theorem 1. If a is algebraic and # 0 or 1, and b

is algebraically irrational then ab is transcendental.

Pf: We will assume that c¢ ==ab is algebraic and we will
assume that a, b and ¢ all lie in an algebraic number field K
of degree h over Q. Let d be a rational integer such that
da, db and dc are algebraic integers in K.

We now construct an entire function £(z) which by
judicious use of Lemma 2 will have a large number of zeros
and which will allow us to bring into play a, b and c¢. We

revert to the exponential function with its useful addition

and differential properties.



We define £(z) as:

N N _p
f(z) = I I P elog a(i+jb)z
3=1  i-l ]
N N . :
iz _bjz
_ I Iorgjgaa
je=l  i=1

We let log a be an arbitrary fixed determination of the

2~ e log a, The r,. are algebraic

1]
integers in <X which will be defined in such a way that

logarithm, then a

£(z) has a large number of zeros.

(1) Gelfond's proof:

Gelfond uses lemma 2 to define rij such that

2
£ ¢y =0, 0<x < |8 and t =0, 1,..., [} logN] =t
2 logN

Il < a for some rational integer d_, 0<i,j<N.

with ||r
o

ij
To see how this is done note that

N N

£® () = T I r..(log a)f(i4smF, o109 2(IHIDIE
j=1 i=1 J
Therefore 5
o (k,t) - (log a) F a3V (k) (4
N N . . 2
_ = or. (igp)F att It o
j=1 i=1
N N
- I Ior,, fi.
o I T
where the £, are algebraic integers by definition of d.

ij
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By lemma 2 ||r

2
N
141 £ vEaA)™?™ vhere m - l:l—- . [% log N] ,

ogN
n =N° and A - max llfijll . But m < % N° and n-m > % N2
i,j
therefore |lrij|| < W N2 A. We nowestimate A.
bt
2 N. % [logN]
1
A < @HY . v en|p| DRI M [a]]
[N +3[logN]
- el
N2
<4y for some rational integer d,. We therefore

have defined our entire function £(z) up to our choice of N.
The function has a large number of zeros and we will now show
that it must have many more zeros at rational integer arguments.

We note that the function is not identically zero however as

that would imply that f(k)(z) =0 for 0 <k < N2

k. (k) N N X
Specifically (log a) °f 0) = £ 2 r.. (i+jb)” =0
pecifi y (log a) (0) i 13 '

0 <k < N° ., This implies that matrix M

1 .‘ . . [ ] l
M| 1*b ...(i+jb)k..: has determinant 0 .
-2 : 2
(1"'b)N ol. [] . (nmb)N 1
This is so as the coefficients rij are not all o0 .

But M is a Vandermonde matrix and therefore
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But b 1is assumed to be irrational so this is impossible.
Therefore £(z) is not identically =zero.

To prove that ab can not be algebraic we will show
that our function £(z) satisfies f(k)(z) =0,0 <k < N2
and thus by the above argument we will arrive at a contra-
diction.

We now show that the number of integral zeros of f(z)

and their multiplicity may be increased by a consideration

of the following integral form for f(k)(t).

Let Cl be a circle containing t and C2 be a circle containing
Cl' Then
e® ey o k! I, £(2) g &F
m™1 1 (Z-t) +
- k: , 1 gz I £(y) dy
(27i) €1 (z-t)kt1 2 y-z

by repeated application of Cauchy's integral formula.

2
As f(z) has zeros of multiplicity [N ] =u at
1 N

og
t = 0,...,tl we have that

t
1
h(y) = 1 z-r\ f(y) is still an entire function
r0 y-r '
i

of y with h(z) = £(z). Thus we have that

! h y
CZ —;‘?_’—;' dy == fc2 f;—; dy

and it is this fact that enables us to show that our original
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function must have zeros of multiplicity u for t=0,...,[YN].

Let C; be |z] = N/%  and let C, be ly] _N then
(k) ' a
V() =kt o dz fo hly) d(y)
(21ri)2 1 (z-t)k"'l 2 y-z

for t=0'..l, [/N] and k=0,...'u L4

We can now estimate the algebraic integer a(k,t)=
2

a3 (109 a) 7k £(K) (¢
2
< & (log @)™ . k@t -l pL 774
21ri2
where
; log N
D = (N 3/4...[5 1ogN]\“' E‘g_:l max | £(y)]|. 1
N - [} log N]/ ly| =N N—[& log Iﬂ

1A

2
2 N [3 log NI
a," . (N3/4 +[3% log N]) Eﬁi?—]

N - [% log NI

2 .
N N8 "2

IA

for large enough N. But we know

3N
that the absolute value of the norm a(k,t) =d (1oga)-kf(k)(t)

must be 0 or greater than or equal to 1. We will now show that

the norm must be zero.

2 N N
116 ogay™ ™l <z = 1|zl gl
2 il 3=l
N

2 N
AL I P L ogy , NN el e
- )0 % (X7 TYipl] Hail -
< d2N for some constant d, .
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1 N
N2 N2 )

Therefore |N(a(k,t))|s (h-1) 4, . d, . N

< 1 for N sufficiently large.
The basic ideas of the proof have now been revealed. We
will now use the Cauchy integral form for f(k)(z) again,
this time to reveal that £(2z) must have a zero of multipli-

city N2 at 0 .

fvwl
e o)kt ;1L dz g @ (E-E) £(5) 4 §
(2ri)2  ©1 _k+l €2 r—0 V¥FT/  5-p
where C; = [z| =1 and C, = {§| =N
Thus we have the algebraic integer
2 2
a3 (1og a) ¥ £W0) < @ (10g &)7K k! . l.max £(5) .
[:2 §| =N
N VN
N (1+/N\I°9N '
N-1 N-/N/
9
2 2 T
< a N . §¥N,  yg-tn
- 3
3N2 -k k
But we may estimate ||a(k,0)]|| = || @ (log a) " £ (0} || by

considering the original definition of £(z). We have

N2

3N2
(d,4M)

Il «tk,0)]] < N4 . @

So that

| N (a(k,0))| < (h-1) dsN N g N g
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and this approaches 0 as N »+ « so that for N sufficiently
large we have that the norm of a(k,0) is less than 1 and

hence fk(O) =0 for 0 <k < N2 . But by the argument we

have given earlier this is impossible. Therefore ab is
transcendental.

Gelfond gives an elementary proof of the transcendence
of ab for a, b real and algebraic, a £#0, 1 and b not
rational in the book Elementary Methods in Analytic Number
Theory. [14] The only analytic tool he brings into play is
Rolle's theorem. Using Rolles theorem we see that we would

have the above theorem after the first application of Cauchy's

integral form in the preceding proof. By Cauchy we concluded

2
that £(x) had [VN] . N zeros. With the above assumptions
- 1LogN
N O X .
we may write £f(xX) = I Bk e where the o are distinct

k=1
and Qg Bk;x are real for k=l,...,N2. Then f(x) has at
most N2—l zZeros., Pf: By induction on k. True for

n .
k =1, Assume true for k < n. Then if 1 B eakx has
k=0 K

-a_k - (e, =0 _)x .
d > n-1 zeroes then we consider d e ° f(x)==nzl Yy © k "o
dx k=0

By Rolles this has > n-2 zeroes contradicting our induction

hypothesis. Therefore when N is sufficiently large Nz-l-

is less than v N] . [Nz] and we have a contradiction.
logN

og
This proves the theorem for a, b real.

Siegel adapted Gelfond's method and was able to give
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a shorter proof. Siegel uses the same function as Gelfond
but he needs to use Cauchy's integral form only once to
obtain his solution. Siegel does not prove that £(z) has
a zero of high multiplicity at 0 . He imstead deduces a
contradiction by considering the norm of a number obtained
from the first non-zero valued derivative of £(z) at an

integer that is a zero of high multiplicity.

II Siegel's proof.

We will retain all the assumptions for the theorem
made before the Roman numeral I indicating the start of what
was specifically Gelfond's proof. We shall again use lemma 2

to determine rij such that f(k)(t) = (0 this time for

N2

k=0,..., 4h+4 - 1 and t=0,...,2h+l We first define m=2h+2
N2
and n= 2m where we assume that N2 is an integral multiple

of 2m and that N > m. Then we have

N N
n-14+2mN =k (k) .
d (loga) £ () = ji ii rij (i+jb)k a(l+jb)t
n-1+2mN

. da
N N
= z z r.. i
j=1 i=1 1]
algebraic integers by definition of Ad.

f.. where the £.. are
J 1]

By lemma 2 we can find rij such that fék)(t) =0 k=0,...n-1
2

and t=0,...m-1 with IIrijll < V(vua) 7 where uN® ,

2, 2
|| s |l

s=mn . Therefore ||r..|] < V°N“A where A = % || as
ij - 1,3

ij
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before and A < N2 & 1N (b P (lal ™ L |jc| ™Y

1A

n
dl . VY n =d

1A

n
Therefore || I < dzn nz and £(z) is not identically

zero by the same argument we gave in the proof after Gelfond.

r..
1]

We now choose the integer p such that f(p)(to)%o
for some t_ : 0 < t < m-1 where £®V(e)_ 0 for all k<p
and all t :0<t<m~1l. We consider the number u=(loga)_pf(p)(to).

We know that dlp+2mNa is an algebraic integer and this gives

us that |[N(a) | > dl—p. Also ||a]]| < N? gP~l+2mN N+ | || )P
mN N
[Hal 1™ Jle]|™ . a,® n®/2

2
n
P
<d; (/n)FP n 2
12

As in the previous proof we will make use of the fact
that [o| - [lal [P 2 N (@] ,
This time we will show |a| is so small that a contradiction

must arise. To estimate |o| we consider the entire function

m-1

! £ - P -
h(z). h(z) = R £(z) 1 to r and o = (loga) P h(t ),
( -t )P r=0 o
wB. £(z) = (2=t )F £P(t0) | ( terms in (z-to)P+i i>01
pt

by expanding f in a Taylor series.
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Now we use Cauchy's integral formula to give us

L5 bl dz e |z| =& encloses 0,...,m-1.

hit,)= 251 z-t N
B
|z2] =N

E
Remembering that |ez| < elzl we estimate £(2) on |z|=N .

013

2 n
f(z) < N7 . dy n « 4, 2p2 dg

P
) . |z-r|-p ) (ZN)
2N = = P

|z-z| >

We therefore have that

oI
max |h(z)| < p! p d5p (ZE) . (m-1)P"
21- B P
P %'p /n) ™
< d6 p . p
P (3-m)
<d; p 2 P
(3D p

and this implies that |a| < dg P

This is all we need. We now have |N(a)| <p 2 a.PpP

o 3omyy-
. p (-T*h p

(3Bh-1)p (

IN(a) | a

1A

8
1
b d8p° P
1
“P P ¥ P
and therefore as [N(a)| > 4, we have that d,% > p
1

and so dg > p7 . But p>n and d9 is independent of

nand p . As we may choose n arbitrarily large we have a

contradiction and the theorem is proved.
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1.8 Schneider's theorem

We thus have seen two methods of proof for Hilbert's
seventh problem. An english translation of Schneider's proof
may be found in Siegel's monograph "Transcendental Numbers".
Schneider's proof depends on the construction of an entire
function out of the sum of products of polynomials and powers
of a*. This falls nicely into the scheme of Siegel's mono-
graph.

The proofs of the Gelfond-Schneider theorem all follow
a general pattern., By skillful use of Siegel's arithmetic lemma
we can force a specially chosen entire function to have a large
number of zeros. We can then choose a non-zero algebraic number
defined from our entire function. We then use the Cauchy integral
formula to determine the absolute value of our number. By
consideration of the function we can determine the maximum of
the absolute value of the conjugates of our number. Finally we
use the fact that the norm of a non-zero algebraic number is
greater than or equal to 1. By suitable comparison of these
guantities we may establish our theorem.

Schneider was able to generalize this process and thus
make the next large step forward in the field. .He accomplished
this with his paper in 1949. [15] In the years 1934-1949 Schneider
had proved a number of interesting and important results on
elliptic functions, periodic functions and elliptic integrals.
His theorem of 1949 managed to consolidate these results, the

Gelfond~Schneider theorem and the transcendence of e and 7 .
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Schneider's proof may be found in English in the mono-
graph by Lipman. [5] Before commencing the proof I will define

the order of an entire and a meromorphic function.

. Definition Let £(z) be an entire function, then £f(z) is

of order < u if there exists a constant c¢ > 1 such that for
all large R

u
|£(z)| < &  for |z| <R .

Defintion A meromorphic function is of order < u if it is

a quotient of entire functions of order < u .

Schneider's theorem 2 Given fl(z), f2(z) two meromorphic

functions of order < u and given distinct numbers z;,...,z
which are not poles of fl(z) or f2(z) and if the following
conditions are satisfied:

(1) a11 £
X

are algebraic and lie in a field K of degree s over the

k) (k=l!,...,m , x=1,2 and n=0,1,...)

rationals.

There are natural numbers b, ¢ and a constant
v > 0 such that
n+l (n)

(2) b fx (zk) is an algebraic integer.

(X=l, 2, k=1,...,m ’ n=0’ 1, 2 se e )

(3) ||f(::) (z)|] < ;n#l _vn

then if m 5 2u ( (s-1) (2v+1)+v+§ ) the functions £, (2)

and fz(z) are algebraically dependent.
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Pf: We will assume the hypotheses of the theorem and that

fl(z) and fz(z) are algebraicaily independent over Q .

We now define the meromorphic function G(z).

r r i j
G(z) = I T aij fl (z) f2 (z) r = Y2mt
i=o j=0

t>2m is picked so that V2mt is an integer.

As before we choose the coefficients aij so that G(z)
has zeros of high multiplicity at ZyreseZ s But here our
derivatives are more complicated than in the case of the

derivatives of the function defined in the Gelfond-Schneider

theoren. (n)
r r . . n
(n) 1 J
G (z) = I t a.. ( £f7 (z) £2 (z) )
i=0 jo 13 1 2
. . (n) n . : -
1 53 @0 = 1 (D) e @ ] @)
1 e=0 e
and finally
. (ey) (e,) (e;)
(fll (z))(e) -Efl 1 (zl) fl 2 (z)...f1 1 (z)'ce,ce a constant,
where € + €5 +ee0 &, =€ with ey > 0,k =1,...1.
We may consider the conditions G(n)(zk) =0k=l,...,m
' n=0,--.,t-l

as a system of mt linear equations with algebraic coefficients

in (r+-1)2 unknowns a.. . To employ lemma 2 we must have our

1]
bn+l

coefficients algebraic integers. By hypothesis fx(n)(z

)
is an algebraic integer (x=l, 2, k=1l,...,m , n=0, 1, 2...)

Thus bn+2r G(n)(zk) =0 k=l,...,m is a system of mt

n=0’06'o' -
linear equations with algebraic integer coefficients in (r+1)2

owns e
unkn ] a1J
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By lemma 2 we may choose our unknowns aij such that
mt

A)(rflfz - mt

llays]] < ¢ (¢ (x+1)2

ij

C2 (r+l)2 A where C is a constant

1A

depending only on K.

: . (n) n+
A = max || (fi fzj) (z) || b 2r
n»i,j,k
We now determine A.
A < bt+2r . (2r)t . ct+2r.
vn vn vn
1 2 k
L] nl [ ] n2 L BN 3 .nk
k
where z n. < t
. i -
iml

by the hypothesis that ||fin)(zk)|| < Al vn

x=1'2 r k=l’.‘.’m n=0, 1’ 2'...' L]

Therefore

t+2r

A < b . (2r)t . ct+2r vt

. t

t vt t
< do t . (2r)

< dlt t(§+v)t

This finally shows us that we may choose our aij as algebraic
integers such that IlaijII < d2t £@*V)It 114 such that

G(n)(zk) “«0 k =1,.0.,m , n=0,...,t-1.

With this knowledge we may now precede as we did in the

proof of the Gelfond-Schneider theorem .
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We consider the first non-vanishing derivative say

the pth, of G(z) for z=2Z) k e{1,...m} such that

(n)

G(z )= 0 for Oe¢n < p and k=1,...,m. We observe that
k

p >t . We may assume without loss of generality that G(P)(zl)%o

We may assume that p exists because we have assumed
that fl(z) and fz(z) are algebraically independent and thus
that G(2z) is not identically zero.

We will now estimate ||G(p)(zl)|| | N (G(p)(z»l and
H G(p)(zl) | | to establish a bound on m.

t N (3+v)t .

. (p)
First ||c (z4) I < (r+1)2 . 4,
max Il(f1 qu)(p) (z,) 11
i,j.k “

2
Ry pvp

ana max |[|(£,% £, Pz || < (2r)P .

i,3.k

< aP . p(§+V)P

as r < kt% < k pé.

Thus

||G(p) (Zl)|l < d4p . (3t p(%+V)t

1+2v
d4p . p( )p

A

<

We easily get an estimate for | N(G(p)(zl))| as we have that

b2r+p. G(p)(z is an algebraic integer with norm # 0 .

1
r+p)s

1)
Thus we have | N(G(p)(zl))l >
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We now estimate | G(p)(zl)l. We wish to use Cauchy's
integral form so that we must convert G(z) to an entire
function. As fl and f2 are meromorphic of order < u
there is an entire function h(z) of order < u such that

hf, and hf, are entire of order < u. We may assume that

1 2

h(zl) # 0. Thus h2r(z) G(z) is an entire function and we have
m

that H(z) = hzr(z) G(z) . I (z-zk)-p is an entire function
k=1

also. By expanding G(z) in a Taylor series in powers of

(z-zl) we are able to conclude that

(p) _ T _, )P
G (zl) = p! H(zl) . g (zl zk)
k=2
hzr(zl) .
and therefore | G(p)(zl) | < | H(z)) |. oF . dsp(m-l) d62r
< | H(zl)lpp . ds for some

constants d5, dG’ d7.

We now estimate | H (z4) | by means of the Cauchy integral

formula.
H (z;) = = ! H(z) dz
271 C z-z,
where C is the circle |z| =R , R > 2 max |zkl .
k
Then
2r n -
|H (2,)] < R . 1 max | h“T(2).G(2) . 1 (z-2.) P|
1 - = k=1 k

2R |z]=R

<% .9 2R, max | G(z) | . (2r) "P°
8 IZI=R
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’u U
and max | G(z) | <max ||a,.|]| . (r+1)2 . ng . dlorR
|z] =R rd

cafe BT g

ij
rrY

11

We used in the above the fact that h2¥, flr and fzr had

order u., We can therefore conclude that

u
(p) 2rR® _-pm t _(3+v)t .rR P . P
l6*F (z)) | =< ag )" R .4, t .d77 - PT.dg
(7 +v)R u
) r \R -pm
L SP 413 - (@3 o R
We now let R =r % . This is valid if we assume t is large
enough (%+V)p r2 -pm
Then |G(p)(z )| < p .4d.FP . a .r 4
1 - 3 12 13
mp
(§+V) P P - 2u
< P « 43,4 - P

We now have an estimate for |N(G(p)(zl))|§||G(p)(zl)||S-l.|G(p)(zl)|

3 -
; i} (+v)p SR
< d4p(s.l)p (1+2v) p(s-1) p . dlz . p u
(p) -1 (2r+p) s ]
Comparing this to | N (G'P (zl))l > (b 7) and letting

t, and thus p, approach « we may conclude that

3
( 1+42v ) (s=1) + (x +v) = m > O
z I

or in other words

m < 2u ( ( 142v ) «(s-1) + (.3.4, V_,)).
2
This concludes our theorem.

1.9 Corollaries of Schneider's theorem

We will now derive some of the results mentioned earlier
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as corollaries to this theorem.

Corollary 1.

If o is algebraic #0,§;?is transcendental.
Pf: Given an algebraic number o assume that e% is algebraic.

This means that o and e® 1lie in same field X of degree s

over the rationals. We use the additive property of e? and =z

and the differential property of e? to state that fl(n)(ka),

f(n) (ka) belong to K for k=1,... and n=0, 1l,... if
2

we let fl(z)=z ’ fz(z)=ez. f1 and £, are meromorphic

functions of order 0 and 1 respectively. 2z and e? are

algebraically independent. To see this we assume

m
£f(2) = I Pk (z) e
ka0

with rational coefficients. Let t?e)maximum degree of the
s

Pk(z) be s. We then consider f (z) . It has the form

(s) m
£ (2)= kil Pi (z) ekz=0. Dividing by e? we may write it

kz=0 for some non-zero polynomials Pk(z)

. -1l 4 Xz 1
in the form I P (z) e "=0. Wwhere the P (2) are non-zero
k=0 k4l kil

polynomials with rational coefficients. We can continue this
process until we have the absurd statement that a non-zero
polynomial is zero.

We have that bk fz(n)(ka) is an algebraic integer if

be® is an algebraic integer. b may be assumed rational. We

0 .
for some rational

(n) x
also have that ||fx (ka) || < (€7) . n
integer c.

The k o« , k = 1,2,...are distinct as a#0.
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By Theorem 2 we may only have the above conditions hold
for k < 2 (s4l). However we can clearly let k be arbitrar-
ily large. This contradicts Theorem 2 and thus e can not be
algebraic for o algebraic. This allows us to conclude that

both e and = are transcendental numbers.

Corollary 2. The Gelfond-Schneider Theorem.

If o« is algebraic g8 algebraically irrational then o b

is transcendental. (o # 0,1)

Pf: We consider the functions fl(z) = e2 and fz(z)==eBz .

These functions are algebraically independent as B is assumed

algebraically irrational. To prove the algebraic independence

z Bz

of e and e we argue as we did in corollary l. We show

the algebraic independence of 2z and z®  and then specialize

to ez and eBz. Both fl(z) and fz(z) are entire functions

of order < 1.
Now let o be an algebraic number, not 0 or 1, and con-
sider log a for some fixed determination of the logarithm

B log a for our determination of log o .) We assume

(d8=e
Q (a,B,aB)= K is a field of finite degree s over the rationals.

We let zk=k log ¢,k=1l,...,m and note that the z, are
distinct.

(n)
(1) We have that £, (z)=f,(z)=e® and £ 2-p"e P2

and thus all f(z)(zk) ( x=1, 2, k=1,...,m and n=0,1,2,...) are

algebraic and lie in K .
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(2) Let b = max (al, Ay a3) where a,, a5, a3 are

leading coefficients in the minimal defining polynomial of %,
g and as respectively. We then have that b™ is a natural
number such that (bm)n‘“'l fx(n)(zk) is an algebraic integer
(x=1, 2, k=l,.e.,m, n=0, 1,2 ...)
(3) Let c—max ([l 8|l , [la ™ Il [I™)
then

¥ g(n) (z,) | < (c+l)n+1 . p0en
p 4

By Schneider's theorem we have that m < 2s+l. m was
arbitrary, however, and we thus have a contradiction.

Therefore as must be transcendental.

I will now derive some results concerning the trans-
cendence of values of the Weierstrass p function from an

alternate form of Schneider's theorem. Serge Lang proved the

following theorem [16] in 1962,

Theorem 21. Let K be a finite extension of the rational

numbers. Let fl,...fN be meromorphic functions of order
< p. Assume that the field K (fl,...fN) has transcendence

degree > 2 over K, and that the derivative D = s maps
dz

the ring K [fl,...,fN] into itself. 1ILet Wyree oW, be
distinct complex numbers not lying among the poles of the fi,

such that fi(wﬁ)EK for all i-l,...,N and v=l,...,m. Then

m < 10p [K:Q].
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Theorem 2l may be derived from Schneider's theorem
quite easily. It is a somewhat more tractable form of the
theorem.

The weilerstrass p function is defined as

p (2) = L + I L - lz where 0 1is a discrete sub-
z” wef-{0}|(2-w) w
group of the complex numbers with a base wyr Wy of vectors
W
where Im (El) > 0. The p-function is doubly periodic and
2

meromorphic and in fact every & periodic function is of the
form F (p(2)) + G (p(2)) p(l)(z) where F and G are
rational.

We have the following relation between p(l)(z) and

o (2)
(1) 2 3
(p (z) ) =4 (p(2))” - 60a, p(z) - 140a,
1 1

where = P = ¥

%2 wes ;I K wef ;E

w#0 w0
We also have o ()(z) =6(n(2))? - 30a, .
. p(l)(zl) - p(l)(zz)

and 0 (24425) == p(2y) - 0(2y) 4 } '

therefore p(2z) = ~2p(2) + % By

0

Corollary 3:

If b, and a, are algebraic and b is not a pole

22
of p (z) then p (b) is transcendental.

Pf: We assume that b is not a pole of (p(z2) and therefore
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1
also not a pole of p(l)(Z) = L Zz-mi3
we
(1)

We assume that b, ay, ay, p(b) and p (b) are
algebraic. Therefore X = Q (al, 2y b,p(b),p(;)(b)) is a finite
extension of Q. We have that p(z) and 2z are algebraic-
ally independent over K and thus that K (z, p(z),~p(l)(z) )
has transcendence degree > 2 over K .

As p(z)(Z) =6 (p(2) )2 - 30a, we have that the
derivative D maps the ring K [2,7p(2), p(l)(z)] into itself.

(1)

We may write op(z2) = - (c(l)(z)) where
o(z
z 41
z ( £ 42
o(z2) =2 . 1 (1 - 5) eV 7w [17] from which we
NEQ—(0,0)

may conclude that ¢ (2) and‘fl)(z) are meromorphic of order 2.
We now use the addition formula for ,p(z) to reach a

contradiction to theorem 21,

0 ) (1)Y?

o)

# p (2b)= - 2p(b) + i(
p (b)

2 a0 \2
= - 20(b) + } (6“’ oty 30a’-’) /let ¥ = 3 (o (2b)+20 (b)) 2,
0" ()

Therefore p(2b) ¢ K and in fact p(znb)e K,nez+ .

We have an addition formula for p(l)(z) also, merely take

derivative of # .

o ‘1) (212120 (2) - (6 (2) 2-30a32)

(1) (1)
2 (2z) =-2 p (z) + ¢
P ( (o 1) (2)) 2

+
We thus have that p(l)(znb) e K for ne 2 . 1If 2" is a
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pole for n = n, then for all n > no,2nb is a pole . But

then 2"b+l is not a pole so by using the addition formula for

p(zl+22) and o 1+22) we find that p(l)(znb+l? and

p(2nb+l) are elements of K for n ¢ 2% .

From Theorem 21 we have n < 10°2 [K : Q] . Therefore
either op(b) or p(l)(b) is transcendental. But we have that

M (z) 12 = a(p(z))? - 60a, p(z)-140a,. As we assumed that

a, and a, were algebraic we have that both p(b) and p(l)(b)
are transcendental.
I will state without proof 3 more corollaries of Schneider's

theorem. [17]

Corollary 4. The 5 numbers Aoy 841 b,p(c) , er are not all

algebraic.

Corollary 5. If 1t 1is algebraic and not imaginary quadratic

then J(1) 1is transcendental. If <t is imaginary quadratic
then J(t) is algebraic.
J 1is the elliptic modular function.

Corollary 6. At least one of the seven numbers

* * *
gy Ayr 85 4 8y b, p(c), p (bc) is transcendental
*
if c¢ and bc are not poles of p and p and if p(2) and

*
p (bz) are algebraically independent.

1.10 Transcendence measures

Schneider's theorem was the last major result in the

field prior to A. Baker's paper. Since 1950 the subject has
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been generalized and problems in the field have now been
formulated using algebraic varieties and p-adic numbers.

A. Brumer proved the p-~adic generalization of Baker's

theorem. [18] A great deal of work has been done on the
measure of transcendence of a number by N. Feldman, A. Gelfond,

K. Mahler, Morduhai-Boltovski, Siegel and others.

Definition A transcendence measure of a number a 1is a

function g(x,y) such that g(H,d) < |P(a)| where P is
a non-zero polynomial with integral coefficients of Height < H

and degree < d.

Definition A measure of mutual transcendence of the numbers

Ayreeerdy is a function g (x, yl,...,yn) such that

g (H, dy,...,d)) < | P (@greeeray) | where
P(xl,...,xn) is a non-zero polynomial in n indeterminates
with integral coefficients of height < H and degree
< di i=l,...,n in the X ,i=1,...,n respectively. The
measure of transcendence of a number gives us a quantitative
criterion for the transcendence of that number. A, Baker's
theorem gives us a modified mutual measure of transcendence

for the numbers log al,...,log a, where a,7...2, are

algebraic numbers not equal to 0 or 1 and 1log al,...,log a,

are linearly independent over the rationals. It is "modified"
as we only consider the polynomials P(xl,...xn)

by xq + b, x, +...+bnxn where the bi' i=l, ..n are algebraic
numbers, not all 0, with degrees at most d and height at most

H . If A. Baker's theorem gave an unmodified transcendence
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measure we would have the algebraic independence of the

logarithms of multiplicatively independent algebraic numbers.
The theory of transcendental numbers is in its infancy

despite its chronological age of over 125 years. In review-

ing those years I have discussed what I felt were the most

important results. In the next chapter I intend to prove

A, Baker's result. His theorem gives us the most recent

important advance in the study of transcendental numbers.

A. Baker's theorem, however, is applicable to problems outside

the realm of transcendental numbers. I will discuss this in

Chapter III.



CHAPTER II

A. BAKER'S THEOREM

"LINEAR FORMS IN THE LOGARITHMS OF ALGEBRAIC NUMBERS"
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2.1 Baker's theorem

In this chapter I will prove A. Baker's theorem. I
will follow his papers "Linear Forms in the Logarithms of
Algebraic Numbers" (I) and (II). [19] I have mentioned
Baker's theorem in the context of the study of transcendental
numbers up to this point. It should be observed however, that
his theorem on transcendental numbers is derived from the

following theorem.

Theorem 3. If 8y7...,2, are non-zero algebraic numbers such
that log ayr...,109 a, (n > 2) are linearly independent over
Q, and if g > 2n+l and d is any positive integer, we have
that there is an efféctively computable number

C=¢C {(n, Ayreeed. 4 q d) > 0 such that for all algebraic
numbers bl""’bn not all 0 with degrees at most d, we

-(log H)%

have | by log a; +....+ b log ag | >ce where H

denotes the maximum of the heights of bl""’bn .

Some of the consequences of this theorem will be discuss-
ed in Chapter III., 1In this chapter I am only interested in
the extension of the Gelfond-Schneider theorem which may be

obtained with Theorem 3., I will show this now.

2,2 The extension of the Gelfond-Schneider theorem

We have the following theorem as a weakened form of
theorem 3.

Theorem 4., If @j7++.92, are non-zero algebraic numbers
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such that log Byreces log a, are linearly independent over
the rationals then they are linearly independent over the
field of all algebraic numbers.
From theorem 4 one may now derive the following extension

of the Gelfond-Schneider theorem.

Theorem 5. If Ayreeesdy denote algebraic numbers other than
0 or 1 and if bl”"’bn denote algebraic numbers with

1, bl""'bn linearly independent over the rationals then

bl b2 bn
a; - ay ..an is transcendental.

PE: The proof will be done by induction. For n =1 this is

merely the Gelfond-Schneider theorem.

Assume the theorem is true for n = k-1

We will now assume it is not true for n =k and reach a
contradiction. Throughout the argument we will take suitable

determinations of elements of the form ab if zb is a

nmultivalued function (i.e. ab = eb log a

for some determinat-
ion of log a.)
1 . .
Assume a; "... 2 = a4 where 2, 1is an algebraic

number.

b b b
1l k k+l _
We then have ay Teeedy ak+l = 1 where bk+l= 1.

Note that bl""’bk+1 are linearly independent over Q by
assumption.
We now use the—econverse—of theorem 4 to assert that

€1 °k  Ck+1

a; ..y iy = 1 for rational numbers Cir i=1l,...,k+1
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with not all the ci=o. We may assume that Crtl # 0 by
permutation of the subscripts if necessary.

We then define 4d bk Ci v izl, ..., k.

i = Ck+1 Pyt by

We have that the di are linearly independent over Q. This

is because b b

17+ ebpyq are linearly independent over Q.

We also have

bl b

L - (a LDk+1, Skl €3 k41 "Pisa 1

k41 ) - (ag ceedp i) =8y Teeeap

Finally 1et ei = I} i=l’ LI 'k-l

-d],
e
We have that 1, €ys.+08 4, are linearly independent over Q
and that
e e
1 k-1 _
al *» .ak_l - ak

This contradicts the induction hypothesis and the proof is complete.

2.3 A simplified form of Baker's theorem

The rest of this chapter will be devoted to proving
theorem 3. The theorem is quite complicated and for clarity
it is split into 7 parts; a preliminary simplification, 5
lemmas, and the final proof. Rather than prove theorem 3 we

will prove the following theorem.

Theorem 6. With the assumptions of theorem 3 we may conclude
that there is a number G = C1 (n,al,...,an,q,d)zl_such that
for all algebraic numbers bl""'bn-l with degrees at most d

we have



-41-

-(lo H)q
| b, log al"'...+bn_l log a _, - log a, | > e (log

where H is a number not less than c1 and the heights of

bl'ooo'bn_lo

Theorem 6 is a simplified form of theorem 3. To show that

Theorem 6 implies theorem 3 we need two minor lemmas.

Lemma IIT. If a is an algebraic number of degree d and

height H then | a | < dH.

. s 4 . d
Pf: a has minimal polynomial a X +...4.a1x+ao== o and
either | a | < 1 in which case we are done or

a™l+ . +a a9t |

Ia a-2 o

| a |

1A

a al = lagq +a

d' Ho

IA

Lemma IV. If a and b are algebraic numbers with degrees at
most d and heights at most H, then ab has degree at
'

1
most d° and height H where logH < 4d2(l.+log d) ., if
. 2 logH
H>2 and logH > 2d"logd if H =1 .

Pf: Let a(l), b(J) denote the conjugateg of a,b and

let ¢ and e be the leading coefficients of their minimal

polynomials. We then have that ab is a solution of

a2 (1) (3)
(ce) . I (x - a b ), a polynomial
i,3
with integer coefficients.

Thus ab has degree at most d2.

' a2 .24
We also have that ab has height H < (ce) ((dH)") by
' 2 2 2
using lemma 3. Thus H < (ce)d (d2)d . (H2)d
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1
log H 2 d2 (log ce + 2 log d + 2 log H)
and for H > 2

L
log B . 4?2 (2 +21ogd +2)

log H log 2

< 4d°

(1 + log 4d)
: '
while for H =1, log H < 2d2 log 4 .

We now show that theorem 6 implies theorem 3.

Pf: Given bl""bn algebraic numbers of degree at most d
and height at most H with b £ 0 we define bi _ by
b

n
for i=1,... n-1 .

]
Then by lemma IV the bi’ i=1,...,n~1 have degree at

]
most d° and height at most H  where log H < 4d2(1+log d)

log H
] ]
= ca(@) if H 32 and log H 5 2a° log d =C,(d) < c,(d) if
H=1,
By theorem § we can state that 1
"
: - -(log H )1
| b; log aj4eeeey b, _, loga , -loga, | 2e g
where H - max {g',c} and qu =qg +2n + 1 .
11] l
- q
> e (log H )
1] ql
(log H )

so | by log aj+... t+ b loga | > |b | e
1

_ _ llq
> (dH) 1 o~(log H )
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n ql ' ql ql
- - H -(log C,)
As we have e (log H ) > el(log ) . i (log 1 1
1
- q - q - 1og H)Z
as C1 >1 and e (log H ) > e Cy(@* o (C5(d) log )
we can state that 1

-1 -(C,(d)log M) <
|b1 log a1+...+-bnlog anl > C (n,al,...,an,q,d).H e ( 3( ) log
1

g
! . -1 - d)log H .
and if we let C' (d,q) be the minimum of %H le (CB( )1log H)

q
e(log H) considered as a function of H , H > 1, we have
] n -(log H)q
] b, log aj+...+b, log a | >c .c (d,q) . e
-(1 )9
> C (n,a;,e0052,, q, d) . e (log H)

n

2.4 The proof of Baker's theorem

I will now restate Theorem 6 in full

Theorem 6, If @j7e+esa, Aare non-zero algebraic numbers such
that log al,..log a,6 are linearly independent over the

rationals (n >2) and if gq > 2n+l and d is a positive integer
we have that there is an effectively computable number

Cl = Cl(n,al,...,an,q,d) > 0 such that for all algebraic numbers
byseeeyb, _; with degrees at most d we have

_ - (log H)1
| b, log a; +... 4+b _; log a _;,-log a |z e

where H = max { Cys H(by) 1 .
i

Theorem 6 will be proved by assuming that there exists
algebraic numbers bl""'bn-l with degrees at most d such

| -(log H)?
that (1) | b, log a;4...4b,_; log a _; - log a, | < e

and deducing a contradiction. We will assume the hypotheses

of theorem 6 as well as the above assumption in the proof of
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the 5 lemmas preceding the proof of the theorem. The lemmas
represent certain stages of the proof. They are not independent.

Prior to lemma 3 I will state the following identities.

Identity 1. For z ¢ ¢ we have |e% - 1| =
< |z | el®l

Let z = b1 log a1+...+bn_l log a1~ log a,

Then by (I) we have

1 bn—l

- q
| a; “e.a BTt -a | < |ale (log H)3+1

n

Identity 2. For any a that satisfies a polynomial equation

L _ .
dnx +u..+d1x-fdo =0 we may write

n—

where Igij)l < ( 2H(a) )3 for all i

To see this we define the gi(J) by the following

recurrence relation.

(3) (j-1) (3-1) . .
gi = d, 952, 927 4; (0<ic<n-l,3j2n)
(3-1)
with 0
9, =
Note that '
_ 3 j-1 (3-1) (3-1) (3-1,_,
(1) (dna)u - (dna) (dna) =d.a ( 9o +* 91 @+ees gy o2 )
n_(j-1
+ dna gézl.)
. n _ n-1 _ n-2 _

Combining (i) and (ii) we verify the recurrence relation.
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The recurrence reliation gives our original inequality.

We are now ready to proceed with out theorem. As in
Chapter I our approach will be the construction of a complex
function, this time of several variables, which we will make
small at integer values of the derivative of the function for
partial derivatives of finite order, by judicious use of
lemma 1. We do not make our main function and its derivatives
zero for small integer values as in the Gelfond~-Schneider
theorem but instead make an auxiliary function that is very
similar to our main function zero under the aforementioned
conditions. Because of this similarity we can employ identity
1 to conclude our main function must be small. Our function
and the conditions imposed upon it are more complicated than
in the Gelfond-Schneider theorem as we are now working with.a
complex function of several variables. Lemma 3 merely shows
that it is possible to define our function in the manner we
described.

Lemma 3. Assume the hypotheses of theorem 6 and

(I) then there are integers p(i;,...,A ), not all o0, with

lp(xl,...xn) | < e?PX  such that the function
L L t.2z t ]
-1 %n-
f (Z]_,-..,Zn_l) = Z e s Z' p(ll,co’kn) al 1 lo.oanl;ll n l
)\1=0 Kﬁo
§ 1-¢

where ti = Ai*'ln bi and L = [[h ] ]

1
where h = [logH], 6§ =3 (L+43—), e=1"7F
2n+l 2n
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satisfies

(1) | £ (2, %,000,0 )] <e 2bd

ml’ LI ) ,mn-l

for all integers 1 < 2 < h and all non-negative integers

ml’ [} 'mn_l With ml+. . .+mn_l i [hdl
M, +. M
5 1l n-1 £(z )
Note that £ (Zyseee,2. 4) = 1’°°*2n-1
m ,on.m l n-l
1 n-1 m m
1l n-1
321. [} -‘3zm
n-1
and that
tiz tiz log a;
a; = e for some fixed determination of
log aj.

Pf: For simplicity we denote [h6] =k . We will apply lemma 1

to the function

A A_ & n-1 mi
. I t.

g (emy,..m _4) =
1 n ji=1 *

A
to solve for p(xl,...kn) such that g(z,ml,...,mn_l)= 0

for 1 < % <thand m+e.e4m, 4 <k with m, > 0.

i
After we have solved for the p(Al,...xn) we will show that

this implies the lemma. We must therefore reduce the equations

g4y my,..em _4) =0 to equations in integers only.

We let CyreessCp and dl,...,dn_l denote the leading

coefficients in the minimal polynomials of Byyeeerdy and

bl""'bn—l respectively. We assume that the c; and bi
are non-zero. We then have that
-1 () 5 41 () u
J _ I W, b,
(c;ja;)” o T Vi oay (d;b.) a0 iu’i

r=0 =
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(3) (3) N 3 (3) j
where Vip ¢ Wiu e 2 and Vir < C5 ' Wiu < (2H)

from identity (2).

. LL | Mh-1
Now consider F = (cl cz...cn) d; T...d g g(z,ml,...,mn_l)
m m m m_-u u
s s p P ( P) a 2 P P (2 anbn p
Writing (dptp) = I M5 ( p p) (A P p)

H p=0

J J
and substituting for (ciai) and (dibi) we have that

L L n (L-Ai)& d-1 (Aiz) r,
F = z ¢ o z p(A s e A )c H C. . Z V. a.
Ay=0 A_=0 e A r,=0 *fi %
1 n i
n-1 m m_-y a-1 () g
N gt (mr)(drxr) TT AL oy gr p T
r=1 ur=0 Mo gr=o r9, r
- d-1 d-1 d4-1 d-1 r g g._
5 ... I I ... I G all oo a bll...b fll
=0 r =0 g,= g.=,0 n n
1 n 1 n-1
where
L L ™ P pa1
G = z L I ] 2 p ()\l,.-okn) Z LN z JK
11=0 An=0 ul=ﬂ ”n-TO
n
I (L-Ai)l (Aiz)
i=1 i
n-1 m-u_ M (u..)
d K = . W (dr Ar) vE Anr Wrgr
an r=l ur r

We therefore have that F = (0 and thus g/(%, ml,...,mn_l)=0

2n-1

if the d equations G=0 hold for the stated range of the
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variables &, Mysees M _q- But these are linear equations in
the p(Al,...,An) with integer coefficients. We prepare to

use lemma 1 by estimating the absolute value of

?1 ?n-l JK , the coefficients of p(ll,...kn) .
“1-0 PnT1
Lin Lhn
We have la| < Ce < Cg as & < h .
and
n-1 m m_ -y u u
k] <« 1 2% @ ¥ F ¥ @2m*
r=1
n-1 m
< I (4HL) T
r=1
< ( 4HL )k
M M1
K70 unfg
Lhn k
< (m1+l)'°"(mn-l+l) . Cg .« (4HL)
< (8HL)k . Cghn

We have at most (k+1)™ 1 n . @™l gifferent equations

G=0 corresponding to the (k+l)n-1.h distinct sets of integral

values for g, Myseee,m 4
We also have (L + l)n unknowns p(Al,...An) . Observe
2n=l ¢ g is
l+68ne

that (L + 1% > ¥ 2 x1)? L. n.a

assumed large enough. For this is true if h differs

from h6 by a power of h. In fact by our choice of § and ¢

- + .
we have 1 + éne =14-621 = 621 < § and we have our required

inequality.
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By lemma 1, therefore, with N = (L+l)n ’ M=(k-i-1)n_]'.h.d2n'—1

Lhn
6

trivial integral solution in the p(Al,...An) to the equations

and with A = (8HL)k. Cc we have that there exists a non-

G = 0 under consideration such that | p(Al,..,An)| < N°A,

We have that N = (I+1)® < (k17+1)® < k¥ , that
log H < 3h and that nLh < nkh' %€

1 §-1
< nkh 2 n and therefore that
. 2h k Lhn
ma < k" . (8ke %) . ¢
< eth

for sufficiently large H.
We will now check that our function g(z,ml,...,mn_l)
vanishing for all non-negative integers & such that

1<% :<h and my,...,m , with my+eeetm ;2 k implies

that f(zl,...,zn_l) satisfies (1).

my Mh-1
We note that (log a;) "... (log a _,) g(a,mqeee,m _4)

is the same as £ (2,2,...,2) 1f we substitute

b b ml’ L) 'mn_l

1 n-1 .

a; Teeed g for a, in g (2,m1,...,mn_l) . We have that (3)

bl bn-l
|al ceva 7| < la,| + 1 from identity 1 and that

b b AL AR 9
1 n-1,"n n”, L - +1
lE] =] (8 ceedy 7)) T-ag t< L. |an|e (log H) T+ |an|+1)L“
- v
< CGLZ e h

from identity 1, (3) and the inequality
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A X A= -
| x* = y* | =1x -y . 2" ype s gxy? T

A
< A x=-y| (|yl+1) for x| < |yl+1.

As [t;| < 2dLH we have

m m AL A 'A m m
- 1 n-1 1 n-1 1l n-1
D] | (1og a;) “...(log a__,) CHERTRL S tn-ll
ktL& k
s G (2d LH)
2hk
< e if as before, we assume H is
sufficiently large.
NOW |f (2,...,2)'
ml'ooomn_l
| ( n-1 my
f 2,%,4.2) - g4, Mm,...,m__.)'I (loga.)
== ml’ocn,mn-l ’ ’ ! l l i=l 1l |
Pt o] Iz
< L .. |p (Ay..ax))].|D].|E
A;=0 A =0 1"""'n
n
-h4d
< (L-+1)n . e2hk. eth. Lh e h
6
-3 n9 . .
< e for sufficiently large H as
+
Lh < hk < n'"% < nd . Q.E.D.

In lemma 3 we defined our function f(zl,...zn_l) and
showed that its partial derivatives were subject to certain
restrictions on their absolute value for integral values. In
lemma 4 we determine a bound for the absolute value of
f(zl,...zn_l) for certain of its partial derivatives while

considering £ as a function of one variable =z .
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(i.e. Zg T Zy T ee. T2 = z), We also estimate f(zl,...,zn_l)

n-1
and certain of its partial derivatives for Zim s Zp_j= % where
2 1is an integer bounded above by certain value. We did this

in lemma 3 of course but in lemma 4 therange of ¢ is extended.

Over this extended range of % we prove that |f (2,%,...2) |
mll LI ,mn_l

is either bounded above by a number or bounded below by a larger
number. These two possibilities arise from the fact that | N ( ) |
of an algebraic number is either 0 or greater than or equal to 1.
This technique of course was used repeatedly in Chapter I. The
difference in this case is, as in lemma 3, that the algebraic

number under consideration comes not from the function £(z,,...z _,)

but from the auxiliary function g(2%, ml,...,mn_l). We obtain
our result by employing identity 1. We will use the results of

lemma 4 in estimating integrals that will arise in lemma 5.

Lemma 4. Assume the hypotheses of theorem 6 and (I) then for

any non-negative integers Myreee M _q with ml+m2+u.,+mn_l < k

and any complex number 2z we have

(2) [£ m (Zyoearz) | < et hk CgL 2]

1rce My
and for any integer ¢ with 1< ¢ < nd"¢ * 328 ojiher

-%hq

(1) | f (2,0042) I < e or

ml’-oo,mn_l

2n-1

(3) | £ 0 (2,000,0)] > (50K 42

l'uoo’ n_l 10
PE: £ ( 1 ! Mp-1 ¥ D
= tmyseeem Zyeees2) (log al)...(log a,_;) - 1155'?;£0
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n-1 t.z n-1 m,
p (ll'...’kn) « I ai i "o I t.
i=1 i=1 1
From lemma 3 we recall that |p (Al,...xn) | < e2hk and that

Itil < 2dLH. We need only find an estimate for

n-1 tiz
I a, . By our assumption (I) we have that
i=1
-(1 Hq
|z| | by log ajtesutb _; loga ;| < |z|( |log an|+e (logH) %
< |z| (| log an|+l )
and therefore that
b,z b,z b Z
1 2 -1 z lo +1) .
| a, a, cee anEl | < e lz] (jlog anI )
We can now conclude that
k N zhk L|z k
£ +
| myseeem ) (2,2,...2) | < c @1 eyt (2amm)
< o4hk C9L|z|

We have thus proved our first statement. To prove our
second statement we consider an algebraic integer defined by

our function g(&, My,eee/m ). We let cy,...c  and

dyree.d, 4 be defined as in lemma 3. We then have that

n-1 m.

L2 1

s = (cl...cn) . i d.

N i . g (g, ml"'°mn—l) is an

algebraic integer.

We note that S is always in the field

and thus we may conclude that

the degree of S 1is less than or equal to d2n-l. As any

Q (al,...,an, bl,...,bn_l)
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conjugate of S has absolute value at most

(L+1)n e2hk CLL (2dLH)2k < e6hk CLz
10 10
we may conclude that either S = 0 or
2n-1
! s | > (ethc Lz)—d +1

10
This is just because if S # 0 then | N(S)| > 1 .

We also have that

n-1 t.2 n-1 m, n AR m,
| 1 oa;* 1 tt- 1 at ngl £ |
i= i=1 i=1l i=1
n-1 A.2 n-1 m, n~l b, A_2 AR
< | = a; i ty Yoo ail no. ann |
i=1 i=1 i=1

and recalling the proof of lemma 2 and our estimate for E

we conclude the above is
Le k L2 _,4q L

-h4
$Cqp (2a) ¢, e < c13 o2hk _-h
§ (1-¢)
As L <h and by assumption & < hq+66555, we
have L 2 < hq—§€6 and hk < n'™® . We thus have that the
- q
above is < e Tn for sufficiently large h .

L2 n-1 m.

i
If we let P = (cl...cn) .E di and
i=1l

n-1 m,
0= 1 (log a,)

. i

i=1

-1 -1
then we have | 0 = £ m (2,00.2) =P ~ 8 |
l.. [ ] n-l

5.4
e T he g h
< (@P o2hkeT h o 8
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Now if S = 0 we have that
_g hq -%hq
| £ ... (2,..2) | < ] Oo]e < e

and we have (1) the first of our two alternatives. If S # 0

then we have

-5 g
| P¢ (2y000,2)= 8 | < |P] egh
0 mlpcuomn_l
-5 q
gt P
|s| - |ple <1z Hfmlr-"'mn-lu'""m
0 [:]
S - P f e s e
gl CIsl-lpl e ) <| My yeeem_Ereee®)]
L3 e
By observing that |P| < C . (dH)
16
-L2 -k
and | g >c  @m*. c
16 17
we may conclude that
: _d2n-l
£, L) |2 (e8P M if S % 0.
1rece M, 10

This then gives us (3) and the proof of the lemma is complete.
We now have the necessary estimates required for lemma 5.
In lemma 5 we show that by increasing our restrictibns on the
partial derivatives of f(zl,...,zn_l) we may relax our
restrictions on the integer wvalues f(z,...,zn_l) assumes such
that with these restrictions £ is small. By small I mean
that f satisfies condition (1) of Lemma 3. We can, by this

argument, then look at the function at integer values where we
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have no partial derivatives of the function to consider and
thus show that our function is small for a large number of
integer arguments, with the restriction that

z2y=2, =... =2__;. We have ventured into the field of several

1 72 n
complex variables to strengthen our estimate on £ ., Lemma 5
allows us to collapse to consideration of a function of a
single complex variable again.

We prove lemma 5 by induction and Cauchy's residue
theorem.

We observe that the hypotheses of lemma 4 are
satisfied for our induction step and to complete our induct-
ion step we show that assumption of the second of the two
alternatives of lemma 4 leads to a contradiction.

With lemma 5 we are able to conclude a modified version
of Baker's theorem. In this version we must assume that
log al,...,log a, and 27i are lineraly independent. We
use an argument involving a Vandermonde determinant which is
reminiscent of Gelfond's proof of the Gelfond-Schneider theorem.
The inclusion of 27i weakens the theorem and we can conclude

only the following version of theorem 5.

Theorem 5' If Ayreeesd denote positive real algebraic

n
numbers other than 0 or 1 and bl""'bn denote real algebraic
numbers with 1, 21"°’bg linearly independent over the

n

rationals then all...an is transcendental,

The exclusion of 2wi from our hypotheses forces us to
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prove 2 more preliminary lemmas before we can finally prove
our theorem. I will discuss this following the proof of

lemma 5.

Lemma 5. Assume the hypotheses of theorem 6 and(I) then let J
be any integer satisfying 0 < J < 1t where
- -1
T = 2¢ { (g-1) -1} +1
§

then condition (1) holds for all integers & with

2ed
1l <2 < hk and each set of non-negative integers m;,...,m _;
2J

Pf: We will use induction. From lemma 3 we have that for
J =0 our lemma is true. We now let N be an integer such
that 0 < N < t-1 and we assume that the lemma is true for
J =0,...,N., We will now prove that the lemma is true for

J = N+l
. %e]_ﬂ
k
We let 8 =| ’ = | hk and
] =
e (N+1
RN+1 = hk . We now need only prove that

for integer & with Ry < % < Ryyy and any non-negative

integers my,...,m _, with m;+..a4m , < S5 we have condition

(1) satisfied.

We also define

f(z) = fml""mn-l (Z)eoeeZyene,2)

and thus we have
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{m) m m '
£ (2) = Fueesel me f

D . : ]
31—0 jn_lo Jl!...jn_l.

(2,2,¢04,2)

ml+j1, c oo ,mntijn-l

3.+ 4+ =
Jpteetiy =m

(m) m -3h9
We therefore conclude that | £ (2)] < n.,.e for

s . This is so as

IA

1 <2 < Ry and 0 <m

. . k
My + JpdeeetM 1+, 7 S 28 < ;ﬁ which means that

-3n9 . .
£ . . (L7000,2) < e 3 by the induction
I m1+jl...,mn_l+jn_l ’ l Yy
hypothesis.
S+1
We now define F(z)= ( (z-l)....(z—RN) ) and we

let C and C. be circles in the complex plane described in

the positive sense, such that C is defined by |[z|= Ryyy log b

and C_ is defined by |z-r| = 4. By Cauchy's residue theorem
we have
RN
_]; I f(Z) dz= f(l) + 1 5 j‘c f(Z) dz
27i C (z-2)F(z) F(2) 27ri r=1 r (z-2) F(2)
+
and [ £(z) dz=27i l d_-_S’ (z-r)S 1 £(z)

qr (z=2) F(z) S: azS (z-2) F(z)

évaluated at r.

(s-1i)
= i S ( S. ) f(i) (Z) (Z-r)s+l B
v 3Ly i (z=2) F(z)

evaluated at r , by Liebnitz's rule for the derivative of

a product.

S . .
= z (1) () 1 (z-x) * d=.
i=0 17 Cr (z=-2%) F(2)
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We note that we are able to use Cauchy's theorem because

the function
m.

f(z) =(logal) ..(logan_l) 2 ees I p(Al,...,An):n £
Al=0 A =0 i= :
n

ez.(tl log a;+...t _, log a _,)

is entire for a fixed determination of t, log ajtee.tt 4 log a,-1°

We now derive our lemma by comparing estimates of both

sides of the equation
Ry ¢ . .
(5) L 5 £8) azg(n+l T 3 £0(@ 5 (zn)’ dz
2ri C(2+2)F(2) F(2)oni rol i—g ib c, (z-2) F(2)

We have that as & < R < hiki€ (N+1)

N+l
< hkéer < hl+§651 < h566+q-6

éhq d2n-1

or (3) |£()| > (

either (1) | £(2)| < e eSPke Ez)

1

by lemma 4. We will use the above equation to show that the
second possibility leads to contradiction. This will suffice
to prove our lemma.

Assume (3) therefore, in what follows.
We then have that the absolute value of the double sum in (5)

denote it by A satisfies.

-3ip9 i
|al < Ry . (S+1) . ok e73h7 max (z-r)*t
| z=x | =4 (z-2) F(z)
-3n9
< hkdET | (kel) L nf L e7ERT | 4841

-31p4d
e ih

1A
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for sufficiently large h.

We now estimate £(2) the first term on the right
F(2)
side of (5). We have
(5+1) (s+1)
HOIRT < RN,,lRN

hd-8*t3ed Lo check

1A

and recalling that RN*I-

that Ry(S+l) is less than or equal to h"% . h? where

1,9

£ >0 to conclude that | E(2)|< e° for h sufficiently
large.
ieN4+ 1
We have Ry (S+1) < hk
_ pl+6de(t = )48 6%e (N-(r-1)
=n? . nt where ¢ > 0.
1,4
3 h
We thus conclude |F(2)| < e .
Now by (3)
2n-1
| £(0) | >(efPF T Ryn y~d
10
>(e6hk . hq-%e& d2n—1
10
-7 K4
> 2 e§ h
—1nd
and so | £()| , |£)] , 273
F(2) |F(2) |

This shows us that the right side of (5) has absolute value

£(2)
F(2)

at least 3 ,
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We now will estimate the left hand side of (5). Let
V be the upper bound of |£(z)| and W be the lower bound
of |F(2)| on the circle C. Then as 2 |z-%| is greater

than the radius of C for 2z on C we have

2v , 1 £
W 2 |F(2) |
or av | £() | l.w |F(2) | -1
Now we have
RN(S+1)

1)

tv

( 3 Ry, log h)

-1 Ry (s+1)
and therefore w | F(o)| > (3 log h)

From the first assertion of lemma 4 we have
v < othk LRy logh
< e c .
] 2n-1

+ 1
LR log h
eehk n;l

-1
and therefore V [£(2)]| < ( C

18
Combining the three preceding results and taking

logarithms we find

1l

log 4 +43 “¥1 1) ( 6hk + LRy ; log h log Ciq)

> Ry (s+l) ( - log 2 + log log h)
or for sufficiently large h either

(1) C L Royq log h > Ry (S+1) log log h or

19

(ii) c hk > Ry (S¥l) 1log log h depending on whether

19
N >0 or N =0 respectively.

1+s

But hk < h and LRy, < h 8§ (1-e)y 1483 (N+L)
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h1+6'*6§ e (N-1)

while Ry (S+1) > % mk**N, x . 271

1ts+81eN
> h
2 %o

substituting these quantities into either equations (i) or
(ii) we reach a contradiction. We have thus proved lemma 5.

As was mentioned earlier, lemmas 3, 4 and 5 suffice
to prove theorem 5' . We need, however, two additional lemmas
to prove theorem 3. Lemma 6 contains the result that will be
used to prove our theorem. Lemma 7 is a simple lemma that is
not connected with the chain 6f lemmas that culminate in
lemma 6. In lemma 7 we employ the linear independence of
log al,...,log a, and the fact that |N ( ) | of a non-zero
algebraic integer is > 1 to derive an estimate we will use
once in the final proof of theorem.

In lemma 6 we use lemma 5 and the techniques of lemma 5
to improve our estimate on g(z) = £(z,...,2) at certain
integer values of z. We then use Cauchy's residue theorem to
establish an estimate for the derivatives of g(z) of high
order at the point 2z = 0. The estimate will be sufficiently
strong for us to establish a contradiction and thus our theorem.
Lemma 6 is the fourth step in the improvement of our estimate
on the behaviour of the function f(zl""'zn-l)‘ It follows,

as do the others, from the lemmas preceding it.

Lemma 6. With the hypotheses of theorem 6 and(I) we have

log |g(j)(0)| < - hq/log h for 1 < j < k"
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Pf:  We define X = [4 h%% and v =[k/(8q log h)]
and we note that [hkiﬁN] > X and [k/ZN]z Y where

T >N>[t] if <t 4is not an integer or N = t-1 if 7 is
an integer.

We therefore have from lemma 5 that

-%hq

Ifml,...,mn_1 (L,eee,2) | < e for non-negative integers

MygecerM _qs 2 such that 1 < & < x and my+e.tm 4 < Y.

This allows us to conclude that as

(m) "

g () =13 + + 9 ) £(zyreverz_q)
azl an_l

evaluated at %2, We have

|g(m) (2) l < nm e—%hq < nke-éhq

for integers m,% such that 1 < %< X and 0 <m< Y,

We proceed as in lemma 5. We consider circles in the
complex plane, described in a positive sense, where C,
C,, and C; i =1,...,X are |z| =X logh , |z|=}, and
lz-i] = % respectively. We also define the function

+

E(z) = ( (z-1)...(z-x) ) ¥,

Our purpose is to calculate an upper bound for |g(y) |
where vy ¢ Co .

As in lemma 5 we have from Cauchy's residue theorem

X Y
1 ! g(2) dz ogy) 4l I I g (i) ! (z-9)" dz
211 ©  (z-y)E(2z) E(y) 27i i=l m=0 Wl — Ci (z-y)E(2)

and designating the double sum by B we have
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-1nd
|B| < X(Y41) nk o737 | Y2
119
< (4n)k""2 . h? . e th
-1n4d
B

We let S be the maximum of |g(z)|jon C and T
be the minimum of E(2) on C. We thus have that

h4

1, e-} ) |E(y) |

lgly) | < ( 2.8.T

By lemma 4 condition (2) we have

|Sl < e4hk CgLXlOgh

We also have that |T| > (3} X logh)x(Y+l) for h large

enough and |E(y) | yX (y+1)

IA

(x+1)%

1A

(2x)2%Y

1A

by inspection.

Therefore we have

lgty)| ¢ 2 e4hkch"X logh (3 10gn) %(¥*1)
-1n9

and as L x < h8(17€) 3 pa=8, ,a-Se

and x(v +1) > 3h%% 1%/ (16q 10g h) > h%/ (64q 1og h)

3
- X(¥+1) _1.9
lg(y)| < (log h) 1 +e 3B (2x)2x¥
2XYlog2x < 9% _p’ .(g=8) log h
8q log h
< h9s
3 | 1.q
' . -7 X (y+1) _ ®h
So |g(y)| < (log h) ) te 8
-3X(¥+1)

A

(log h)
(3)

We now will specialize our estimate to g (0) by using

Cauchy's residue theorem.
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Ej%. I gly) dy = g(j) (0) and for 0 < j < k"
mi Co yJ+1

we have

Ig(j)(o)l < j! 43 (log h)'ix(Y+1)
n+l

< kK5 (log h)-¥X(Y+1)
But
3 X (Y+l1) loglog h > h9 . loglog h
12891ogh
> 26n S+l 154 n > k™ 10g k
as § (2n4l) < ¢q by assumption .
Thus

for 0 < j < k® and the lemma is proved.

Lemma 7. Assume the hypotheses of theorem 6. If tl,...tn

are non-zero integers with max |ti| < T, then
i

-T

21

Pf: As in lemma 3 we let Cpree.sC, represent the leading

l t; log a;+...+t log anl > C

coefficients in the minimal defining polynomials of Ayreessdy
t1 tn tl tn .
respectively. We then consider o« = €y TeeeCp (a1 ceely -1),

an algebraic integer of degree at most d2n-l‘
We have that the absolute value of any conjugate of a

- (@32 g

is less than ng. Thus, if « # 0 ,|a| > C,, by

consideration of the norm of « . If a=0 we have that
|t1 log aj+...+t, log anI is a non-zero multiple of 27i
from the linear independence over the rationals of log al,...,logan.

This case clearly yields our theorem.
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As |e®-1| < 2lz| for |z| < % we have

t1 tn
Ia1 ...l -1] < 2 | t; log aj+... +t log a, l
for | t; log a;+...+ log a | <3 .
Therefore
2n-1
t t t t
-{(d-1 T 1 1 n

T
< 2c | t, log a;+...+t 1log a |
23
and thus the lemma is complete.

We are now ready to finish the proof of the theorem.
For the final proof we shall need lemmas 6 and 7. We will
show that the assumption (I) must be false. We will estimate
a Vandermonde determinant whose elements are of the form
(t1 log a14«..+tnlog an)j in two ways to arrive at our
contradiction. We derive one estimate with the aid of lemma 7.
Our second estimate comes from consideration of certain sums
of the original elements of the Vandermonde determinant. These
sums will have values close to g(j)(O) . We can then employ
our estimate for g(j)(O) and the property of determinants
that a multiple of one row of a determinant added to another
row leaves the determinant unchanged. We are thus able to

procure our contradict.on and the theorem will be proved.

The proof of Theorem 6 and thus also of Theorem 3.

f: We order the p(Al,...,An) by associating them with
r =in1n_1...kl.00 number expressed in base L4l. We let
P, = p(xl,...,kn), 6r=Allog al+...+xn log a and

0

_ R J . _ n
s = pIo P 0. 0 <jJ<R where R= (L4 1)-1.
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We consider

. L
Ig(J)(O) - o;|=|, z.. {5 P(Ayseeer)
j Xl=6 xé=0 1’ "n

3
( ( tl 1ogal+...+tn-%ogan_1)

_ J
(A; log a;+...H 1log a )- ) |

Note that (a+b)3 - (a+c)j = (a-;-c+b-c)J - (a-;-c)j

J s J ‘ .
=(l) (b-c) (a+c))~t 0<2>(b—c)2 (a+c)I72... +(b-c)3

and letting a = Allog Aqtecetr, log a _1

b = An(b1 logal+...+bn_l logan_l) and ¢ = An 1ogan

we conclude that
J_ J
|(t1 loga;+...+t _, loga _,) (Allogal+...+knlogan) |

—hq

< (C25L)R . € for sufficiently large h by

employing (I) and estimating ¢, by | 6, | < c, L -

Thus we have

- a
| ¢43) (0) - o5 | < (1+1) . ehk h

S (1-€),ym e2hl+‘S § (1-¢) )hnse-hq

R -
.(C25L) .e

< {C h
. 25
< eih
-3h9 :
and so | g | < e L | g(j)(O)I
which gives log | o | < -3h%/10g h

We now define A as the Vandermonde determinant of
order (L+l)n with 6 9 in the (ryl) -th row and (j+l1) -th

column. Thus A =
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From lemma 7 and the assumption that log al,...,log a 6 are

linearly independent over the rationals we have

~L, (R+1)2
| a ]2 (€
: 2n
and thus log | & | > -C,, L (I+1)
. §( 2n+H)
27 Gy

We now derive an upper bound for log | 4

. We know

that at least one of the P, is non-zero. Assume P; # 0

then
l l * ¢ o8 1
R
l e.!. o0 00 el
- . . . _ *
A = p, o * ) = P; Lo
1 0 h R
o 1 e o o0 R
1l ) 8 R
R-... R

as the determinant of a matrix is unchanged if a multiple of

*
one row is added to another row. The ith row of A is

obtained from the ith row of A by multiplying first by P;

and then adding pj times the jth row to the ith row

for j=0,...R, j#1.
As | & |< Cpg k and log loj|< -3h9/10g h

we have

1

log | & | < log p;”" + log ( (L+1)" !)

+ R log (Chgk) - % hY/10g h

n én
nk < hGnh

and as (L +1)7 ! <k and q > §(2n4l) we have
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that
log | A | < - 3 h%logh if h is sufficiently large.
But comparing this with our previous estimate for log

| A | we see that we have

~c,, h® 22 < — 3 110 h

But we have that ¢q > §(2n+l) by assumption and thus we have a

contradiction. The theorem is complete.

N.B. The constant C referred to in Theorem 3 is effectively
computable. The calculation of the constant has been omitted
from the proof. We have instead assumed our estimates hold

for h sufficiently large. We can, however, determine those

values explicitly.



CHAPTER IIIX

CONSEQUENCES OF A. BAKER'S THEOREM



-70~

3.1 Applications of Baker's theorem

In this chapter I will briefly outline some of the
improvements and consequences of A. Baker's theorem.

"Linear Forms in the Logarithms of Algebraic
Numbers" has evolved in four stages. The third stage [20]
gives us the inhomogeneous form of Theorem 3. It serves
to settle further questions in the field of transcendental
numbers. I will discuss this in more detail shortly. The
fourth version [21] of the original theorem was intended
to sharpen the estimates that were likely to arise in the
solution, obtained with Theorem 3, of certain Diophantine

equations. Its statement follows.

Theorem 7. 1f a;,...,a, n 2 2 are non-zero algebraic
numbers with heights and degrees less than H and d
respectively and if rationals integer bl""’bn exist,
with absolute values at most T such that

-8T
0 < Ibl 1oga1+....+bnlogan| < e

where log a; denotes the principal value of the logarithm
and 0 <6 <1 then

2
T < (4n 5 1 d2n 1ogH)(2n+l)

2

To illustrate the efficacy of theorem 7 A. Baker
in conjunction with H. Davenport used it to prove that
the only solutions in positive integers x, y, z of the
equations 3x2-2=y2 ’ 8x2-7=z2 are given by x=1 and

x=11l. [22]
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A. Baker has succeeded in employing theorem 3 or
a variation of it in the determination of upper bounds
for the integral solution of the following diophantine

R 2
equations, y= = ax3 +bx2+cx+d [23] , more specifically

n -
y2 = x3 +k [24] , more generally ym-anx +an_lxn l+...+ao [25]

and finally £(x,y) = m [2.6] where f 1is an irreducible

binary form of degree at least 3. The preceding diophantine
equations are assumed to have integral coefficients. While

Thue, Siegel or Roth had worked with the diophantine

equations mentioned and had proved that the equations could have
only a finite number of integral solutions their methods

shared at least one property, non-effectiveness. The importance
of the effectively computable constant C in theorem 3 is

now brought to light. It is the effective nature of theorem 3
that allows Baker to exhibit explicit upper bounds for the
integral solutions of the aforementioned equations. This in
principle reduces the above problems to a finite amount of
computation. The bounds obtained however, are generally
astronomical and without refinement they leave computation

that can't feasibly be done even with the aid of a ~mputer.

By following Baker's method, adapting it to the specific case
under consideration and employing certain lemmas from the

study of diophantine approximation or continued fractions

the bounds can, however, be reduced to a more practical size.
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This was done, for example, by W. J. Ellison, F. Ellison,
P. Pesek, C. C. Stahl and D. S.Stall [27] in determining
the integral solutions of the equation y2 = x3—28.

As a particular consequence of Baker's work on the
diophantine equation f(x,y) = m, where £ is an
irreducible binary form with integer coefficients and degree
at least 3, we have the first effective improvement on the
accuracy with which a rational number can approximate a real
algebraic number since Liouville's theorem of 1844.

Finally we have that theorem 3 can be used to
determine an upper bound for dez+ where Q (/-d) 1is an
imaginary quadratic field of class number 1 or with the
added restriction 4 # 3(mod8) class number 2. [28]

This settles the conjecture of Gauss that Q{(v/-d)
withd =1,2,3,7,11,19,43,67,163 are the only imaginary
quadratic fields of class number 1., H. Stark and K. Heegner
also proved the above conjecture for class number l. Their
method involved the use of elliptic modular functions.

Their proof has been adapted by Kenku and Weinberger to the
case of class number 2, Baker uses Theorem 7 to show that

500

if 4 Z 3 (mod 8) then d < 10 for class number 2. The

500 were tested by Ellison, Pesek, Stall

cases where d < 10
and Lunnon [29] and the fields of class number 2 were then

given by 4 = 5, 6, 10, 13, 15, 22, 37, 58.
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3.2 An effective improvement of Liouville's theorem.

While Liouville's theorem has gone through many
improvements culminating in the Thue-Siegel~Roth theorem
these improvements are all non-effective. We invoke the
following theorem of A. Baker, [26] which is a develop-
ment of the theorem 3, to establish the first generally

effective improvement of Liouville's theorem.

Theorem 8. If f(x,y) = m is an irreducible binary form
with integer coefficients and degree n > 3, mg z¥ then all
integer solutions x,y of £(x,y) = m satisfy

: g
max (|x|,|y]) < Célogm)

where g >n and C 1is an
effectively computable number depending only on n, g and
the coefficients of £.

This enables us to prove theorem 9.

Theorem 9. If 4 is an algebraic number with degree n > 3,
then there exists a constant C =C (a¢,q) > 0, where q > n,
h
such that 1/q
| o - §l > ¢ o109
gl
where P/S ¢ Q and S > 0.
P£: We let f(x) be the minimal polynomial of o« . We then

have that

eG | = 1£@ - 2@ =€ @ |a-F| <c;(a) |a-F
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where Cl(a) is effectively computable by the mean value
theorem. We now note that m = §” If(g)l is an irreducible
binary form of degree n > 3 with integer coefficients

and thus by theorem 8 we have that

* m_ Cl-l(a) < |a = g | where
n
S
g
Thus L L
1l -1 C ) 4 (1 S)q
m > e(10gS-log Cla,q)) >y (a,q) e ©9

where Cy (e,q) 1is computable. Substituting for m in *
we have our desired inequality.

Despite the very powerful result we used, our
inequality has not been very significantly improved from
Liouville's theorem. We would like an effective equivalent

of the Thue-Siegel-Roth theorem.

3.3 The integral solutions of y2 = x3 - 28

We have, from the result of Baker mentioned earlier

[24] , that all integral solutions of y2 + k = x3 satisfy

4
10|k|10 }

max {|x|,]y|} < exp {10 . Thus with a finite amount

of computation we could discover all the integral solutions

of y2 = x3-28. We can simplify the computation by the

following method [27] which I shall outline.

3

We reduce y2 + 28 = x to the following.
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Thue equations: (i) *+ 4 = 3X Y + XY2 - Y3

(1) % - 12x¥% - 12¢¥° =+ 1
by considering y>+28=(y+2/-7) (y-2/-7) in the field

Q (/-7). We note that a prime in Q(v¥-7) which divides

(y+2v/-7) and (y- 2/-7) must be either V=7, li7£:l ’

1 - /-7 This yields the above 2 equations. Case (i)
T

gives the two solutions x = 37, y = #225, We will use
Baker's result [21] to deal with case (ii).

We let £(X,¥) = x°-12xXy>-12Y°> and we work in

Q(6) where £(6,1l) = 0. An integral basis of Q(&) is

{1, e, 92/2} and a pair of fundamental units are

2

= -7-40 + 36%/2 and =11 + 6- 8%, Then if we have

M1 N2
= _q (1) _g (2) .
a, b € gz such that £(a,b) ¥]1 then (a-® b) (a-6 b)
(a-e(3)b)=tl, where the bracketed superscript indicates a
conjugate. We thus have that (a-e(l)b) is a unit and
d d
so -tnl 1n2 2 for dl, d2 e Z, It is this representation

that is crucial for we then have

() — 4, log] nft| + &, loginy®)]

log | a -¢
for 1 <i £3 . Letting H = max {|d1|, |d2|} we are
able to deduce that

(3) (3

n
1 2 -H + (.404)
d, lo |+ a, 1o |- log |m| |<e
| 4, log] TRy 1+ 4, log ln(k) g |m| |
1 2
where m = 6(2)-e(j) for {%,j,k} =1{1,2,3} and for
e(ES_e(z)

H > 20.
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To apply Baker's theorem, theorem 7, we calculate

the heights and degrees of n{j) ’ néj) and m.
(k) (k)
M n2

We have that the maximum height is 27236 and the maximum

degree is 6. From theorem 7 we then conclude that H < 10563.

This is an immense improvement over our initial inequality
4

max { |x|,|y| } < exp { 1010|28 but it is still

impractical. To reduce our upper bound for H we use the
following lemma of Davenport. This result from diophantine
approximation theory was also used in [22] . Accordingly

I will quote it.

Lemma 8. If © and B are given real numbers and m,B > 6

are given integers and if p,q are integers such that

1

1<qs<eM, | 6g-p | < 2(BM)™! then if ||qg|] > 387"

there is no solution of the inequality Ible-+b2-6| < K lbl|

in integers b,, b, with log(BzM) / logk < |b1| < M.

1 log M /log "z and
By letting 6 = log 1 / log and 8 = log [m
| =%y | | =%y "S'LTjTl

n
n n 2
1 2 log
o)
0.404 563 33
K=¢e , M =10 and B = 10 and applying our

lemma twice we find Idllg 44. This is now an easily handled
upper bound and we can determine all integral solutions of
X3'12XY2-12Y3 = + ], These in turn give the integral solutions

(x,y) = (4, £ 6) and (8, * 22). Combining these with
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(x,y) = (37,+ 225) from case (i) we have all the integral

solutions to y2 = x3-28.

3.4 The inhomogeneous form of theorem 3.

The final topic T will discuss in this report is the

following generalization of Baker's theorem. [20]

Theorem 10, If Byreeeray and bo’ bl"“’bn are non-zero

algebraic numbers, then .-

- (logH) 9

| b, + b, loga;+...+ b loga | > ce

1
where g >n+ 1, d and H are respectively the maximum

of the degrees and heights of bo’ bl""’bn and

cC=¢C (n, Qyrevesays d, d) 1is an effectively computable

n
number.
N.B. The theorem holds for any determination of the logarithm
of as i=1,...,n but the constant C depends on those
determinations.

Baker's method of proof of theorem 10 follows quite
closely his proof of theorem 3. It applies to the case bo=0
if we strengthen out hypotheses slightly. We thus can state

the following improvement of theorem 3.

Theorem 11. If @yrecerdy and bl""’bn are non-zero

algebraic numbers with either 1log al,...,log a, or bl""'bn

linearly dependent over the rationals then

- (logH) @
] b; loga;+...+b 1ogan| > Ce g



-78-

where g > n, 4 and H are respectively the maximum of the
degrees and heights of bl""bn and C =2C (n,al,...an,q,d)>0
is an effectively computable number.

As with theorem 3, theorem 10 gives us two substantial
results in the theory of transcendental numbers. We have that
if Ayreeesdy and bl""bn are non-zero algebraic numbers
then bl log al+...+bn log a, is transcendental or zero.

From this we may conclude that = + log a = 1 log (-1) + log a

is transcendental if a is a non-zero algebraic number. We

1
thus have I dx = l (log 2 + l—) is a transcendental
° l+x V3

number and this settles a question raised by Siegel. [13]

We can also say that if Ayreeesdn, bo’ bl""’bn

bo Py Pn

are non-zero algebraic numbers then e 17 eee @5 is

transcendental. If it were algebraic we would have a

contradiction to theorem 10,



(1]

[2]

[31]

[4]

[51]

[6]

[71

[8]

[9]

[10]

Bibliography

A, Baker, Linear Forms in the Logarithms of Algebraic

Numbers, Mathematika 13 (1966) , pp.204-216.

G. H. Hardy and E. M. Wright, The Theory of Numbers,

Oxford, 3rd edition 1954.

J. Liouville, Sur les classes trés &té&ndues de quantités
dont la valeur n'est ni algébrique ni méme ré&ductible
d des irrationelles algébriques, Comptes Rendus Acad.
Sci. Paris 18 (1844), 883-885, 910-111 ; Journal Math.

Pures et Appl., 16 (1851), 133-142,

K. Mahler, On the Approximation of « .

Proc. Akad. Wetensch. Ser. A. 56, (1953), pp.30-42,

J. Lipman, Transcendental Numbers, Queen's Papers in

Pure and Applied Mathematics - No. 7, 1966.
C. Hermite, Oeuvres Volume III, pp.150-181.

I. Niven, Irrational Numbers, The Carus Mathematical

Monographs, Number 11, 1956.

F. Lindemann, Ueber die Zahl 7, Math. Annalen, 20

(1882), pp.213-225,

R. Kuzmin, On a New Class of Transcendental Numbers,
Izvestiya Akad. Nauk SSSR Ser. matem., 7 (1930),

A. Gelfond, On Hilbert's Seventh Problem, Doklady



[11]

[12]

[131]

[14]

[15]

[16]

[17]

[18]

[191]

[20]

Th. Schneider, J. reigne angew. Math., 172 (1935)

pp. 65-69.

A. Gelfond, Transcendental and Algebraic Numbers,

translated by Leo F. Boron, Dover, New York, (1960).

C. L. Siegel, Transcendental Numbers, Annals of Math.

Princeton (1949).

A. O. Gelfond and Yu V. Linnik, Elementary Methods
in Analytic Number Theory, Rand McNally and Company,

(1965) , pp.232-239.

Th. Schneider, Ein Satz uber ganzwertige Funktionen
als Prinzip fur Transzendenzbeweise. Math. Annalen

121, pp.131-140 (1949-50).

Serge Lang, Transcendental points on group varieties,

Topology, (1963).

Th. Schneider, Einfuhrung in die Transzendenten Zahlen,

Berlin, Springer-Verlag, (1957).

A. Brumer, On the units of algebraic number fields,

Mathematika 14, pp.121-124, (1967).

A. Baker, Linear Forms in the Logarithms of Algebraic

Numbers, II, Mathematika 14 (1967), pp.102-107.

A. Baker, Linear Forms in the Logarithms of Algebraic

Numbers, III, Mathematika 14 (1967) pp.220-228.



[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Baker, Linear Forms in the Logarithms of Algebraic

Numbers, IV, Mathematika 15 (1968), pp.204-216.

A. Baker and H. Davenport, Quarterly J. Math. Oxford (2),

20 (1969), pp.129-137.

A, Baker, The Diophantine Equation y2 =ax3+bx2+¢x+d

J. London Math. Soc. 43, pp.l-9.

A. Baker, Contributions to the theory of Diophantine
Equations, IT The Diophantine Equation y2 = x3+k.

Phil. Trans. Royal Soc. London A 263, pp.l193-208.

A. Baker, Bounds for the solutions of the hyperelliptic

equation, Proc. Comb. Phil. Soc. (1969), 65, pp.439-444,

A. Baker, Contributions to the theory of Diophantine
Equations, I On the representation of integer by
binary forms. Phil. Trans. Royal Soc. London A 263,

pp.173-191.

W. S. Ellison, F. Ellison, J. Pesek, C. E. Stahl and
D. S. Stall, The Diophantine Equation y2+k=x3, J. Number

theory 4, (1972) pp.107-117.

A. Baker, A remark on the class number of gquadratic

fields, Bull. London Math. Soc. 1 (1969), pp.98-102,

W. J. Ellison, J. Pesek, D. S. Stall and W. F. Lunnon,
A postscript to a paper of A. Baker, Bull. London Math.

Soc., 3 (1971), pp.75-78.



