
• 

Resource Discovery in 
an Internet Environment 

Peter Deutsch, 

School of Computer Science, 

McGill University, Montreal, 
June, 1992. 

(c) Peter Deutsch, 1992. 

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment 

of the requirement of the degree of Master of Science. 



l 

f .. 

Abstract 

This thesis examines issues relevant to the design of distributed resource location 
systems capable of functioning in a multi-user, muhi-cumputer internet environment. Cen
trai to this work is the concept of "resource discovery", that is, the act of discovering the 
existance of c1alises of resources, locating specifie instances of such classes, and accessing 
these instances. 

Tht! problems of resource discovery in a network of hundreds of thousands, or 
even millions of computers are fundamentally different from those encountered in a local 
urea network environ ment. In this thesis, an architecture for a resource discovery service is 
proposed that allows individl.al users to locate and access arbitrary co=~ections of 
resources throughout a large-scale internet. Resources served by this system may he typed 
and treated as individual objects in a distributed, automatically maintained information 
system. 

Cette thèse examine la création des systèmes facilitant la localisation des 
ressources sur les réseaux de grande envergure. Le problème adressé, la localisation des 
ressources, est composé de trois problèmes individuels: trouver des serveurs des 
ressources, trouver des ressources individuelles, ainsi que procédt'f lI' accès aux 
ressources trouvées. 

Les problèmes de localisation des ressources sur les grands réseaux (qui conshtent 
des milles, ou meme des millions d'ordinateurs) ne sont pas les mêmes que ceux rencon
trés sur les réseaux locaux (les "LAN"). Cette thèse présente l'architecture d'un service 
des réseaux qui permet aux utilisateurs de trouver et manipuler des ressources sur les 
réseaux des réseaux (les "intemets"). Dans cette architecture, les ressources sont traitées 
comme des objects qUi sont automatiquement ramassés dans les bases des données dis
tribuées. L'utilisateur peut ansi poser des questions aux bases des données. 

- 1-



1 Acknowlegements 

1 would like to thank Alan Emtage for the many valuable conversations we have 
shared over the past three years. The indexing services pOition of the Resource Discovery 
architecture presented in Chapter 4 is based in part upon ideas that grew out of our collab
oration on the archie system and its follow-ons. Alan 's i mplemcntation of the original 
archie system provided a vaiuable testbed for tl'ying out OUI' ideas and continues to providc 
a valuable service to the Internet. 

1 wou!d also Iike to acknowlege the cooperation of Prof. Clifford Neuman of ISI, 
Prof. Mike Schwartz of the University of Colorado, Prof. Peter Danzig of use, Tim Bern
ers-Lee of CERN, Mark McCahill of the University of Minnesota, Ed Vielmetti of MSEN 
Inc., and Brewster Khale of Thinking Machines Corp., ail of whom shared conversations, 
insights and information about their individual projects that permittcd me a better undcr
standing of the issues addressed in this thesis. 

My gratitude goes to i:he staff of the School of Computer Science al McGiIl for 
their valuable cooperation and SUpp0l1. In pmticular l'd like to thank Luc Boulianne, Bill 
Heelan, Wanda Pierce and Christopher Rabson of the School's tcchnical staff for thcir pro
fessionalism and friendship ovel' the yeal's. l'd also Iikc to thank Vicki Kierl and Lonaine 
Harper of the School's administrative staff. both of whom helpccl me in many ways to see 
this through. 

Finally, my wife France and my children Jessica and Jérémy dcscl've much of the 
credit for helping me to see that this work was completed. Thcir SUppOll sustained me 
throughout and 1 own more to them than 1 can repay. 

-ii-

, 

-



{ 

Table of CQntents 

Abstract ........................................................................................................... i 

Acknowlegements ........................................................................................... ii 

Chapter 1: Introduction and Statement of the Problem .............................. 1 

Chapter 2: Related Work ............................................................................ 8 

Chapter 3: Design Issues .......................................................................... 19 

Chapter 4: The Resource Discovery Architecture ..................................... 32 

Chapter 5: Conclusion and Summary ofContdbutions ............................ 48 

References ..................................................................................................... 50 



1 .. 

,-. 

Introduction 

Chapter 1 

Statement of the Problem 

This thesis examines Issues in the design of distributed resource location and 

access systems capable of functioning in a multi-user, l11ulti-computer internet envirun

ment. Central to this work is the concept of Re.mura Di.r;;('ol'el)'. that is, the aet of diseov

ering the existence of classes of resources in an Internet. locating specitie instances of 

such resources, and accessing those resources. Such resources incIude but arc not Iimitcd 

to files, active processes, hosts and peripherals. 

As collections of computers scale up from small collections of llIuchines on singk' 

networks (so-called local area nets, or LANs) to large-scale collections of nctwot ks (wide 

area networks, or \VANs) the problems ofresources discovery change. In pm1iclilar, the 

broadcast or multica'it techniques that 'iuffice to advertise, locate and access resources 

such as file servers and printers or other peripherals break down in an environment of hun

dreds of thousands 01' hosts spread across thousands of networks [Blaze90], 

There are a number of reason:; for this. On many collections of networks hroadca1>1 

message packets are "nt forwarded through router gateways, thus discovcry techniques 

that rely on such broadcast messaging will not work. Also, polling or searching tech

niques, in which a user must search through each potential resourcc providcr. hecolllc 

infeasible when there are hundreds of thousands or even millions of resollrcc providcrs. 

Given that it is not possible to detcct the availability of services and other 

resources using a traditional broadcast message paradigm in such envlronmcnts, ncw tcch

niques are needed to allow users to find and utilize resourccs. 

In this thesis, an architecture for a resource discovery servicc is proposcd that 

allows individual users to interactively locale and access arbitrary collections of informa

tion throughout a large internet. The proposed architecture uses a rcgislry parmligm fcalur

ing proactive dala-gathelÏng to verify l'he existence and availability of rcsourccs. This 

model presumes a reliable network transport layer, but is independent of underlying tlal11>

port protocols and can he used either interactively or through automated software tool~. 

One component of this new system allows arbitrary users to publish information 

and other resources through the use of information broken •. Such information brokcrs sim

plify the problems of resource discovery and access by providing a database of attributcs 



l 

{ 
~ .. 

for individual resources that can be queried by users and also by other components of the 

!o.ystem. 

The proposed design allows a high degree of information hiding and automated or 

softwart: a<;sisted discovery of information not explicitly stored within the system. ft also 

permits non-privileged uscrs control over their published information white Iimiting expo

sure of the ho",t machine to unauthorized access. This architecture also addresses a number 

of security considerations; in particular. the user of such a system need not œ granted gen

cral access to the host machine to access the infonnation being served. 

What is the Internet? 
The term internet can refc!r to any network of networks. The so-called DARPA 

II/ternet, or more commonly simply the Internet. began a<; a research project for the V.S. 

Defense Advanced Research Projects Agency (DAR PA) in the early '70s [Tanenbaum88]. 

Il is DOW a collection of networks spanning the globe, with a large number of research, 

rducational and commercial networks connected together into a single global internet. The 

Internet now serves as both a live testbcd for on-going networking research and a daily 

communica·:ions tool for thousands of users in fields far removed from networking and 

computer sCÎenl..e. 

Estimates of the number of machines connected to the Internet vary. depending 

lIpon the definition of conncctivity used. Sorne machines are capable only of exchanging 

dectronic mail mt.ssages, and yet may be described as Internet COflnected. Sorne hasts 

gateway onto the Internet from networks using differing protocol suites, so offer only a 

minimal subset of shnred functionality. The majority of networks of computers connect to 

the Internet using the Tep/IP protocol suite [Comer9l] and machines thus connected have 

availahle the full range of Internet protocols and services. Such machines are often 

describcd aS/LIlly cOI/Ilected Intempt hosts. 

One easily computed measure of connectivity is the count of host address records 

within the Domain Name System [Mockapetris87] [Mockapetris87a]. Using this metric, 

the CUITent Internet is now estimated to consist of at least 730,000 machines coupled to 

several thousand distinct networks, with CUITent growth running at about 30 percent every 

three months [Lottor92]. 

The Internet as Service Provider 

ln the early years of development. the Internet was used primarily for remote login. 

r1cctronic mail and remote file transfer. Such protocols have been available for sorne time. 

Rcmote login usually uses the telnet protocol described in [Postel&Reynolds 83], elec-

2 



l 

tronic mail is usually transported using the SMTP protoco! described in [PosteI82]. Fik' 

transfer from remote archives is usually accomplished using the fTP protocol deserilx'd in 

[Postel&Reynolds85) . 

By necessity mu ch of the early design effort for the Internet concentratcd on sudl 

low level issues a~ development of needed communications prolocols and hardware, \Vith 

IiUle time or energy left for the more abstract problems of pfOviding specifie uscr-Ievcl 

services in the new distributed computing environ ment that was bcing devclopcd. 

This situation is now changing and a wide range of nelwork services is now 'lVail

able. Services offered to users include distributed file systems, distributed hulletin board 

services (such as the Use net news service) [Quarterman86), a variety of on-tine lihmry 

catalogues and an extensive network of file archives [~,t1artin91). More recent additions 

include distributed Hypertext systems [Bemcrs-Lee92] and distributed information sys

tems [Strauss89] [McCahi1l92]. 

With the growth of the Internet, the nced ha" also arisen for distributcd information 

storage and retrieval systems. Such systems allow users to make available informatiun to 

others, increasing productivity through "cooperative work lools" [Ackerlllan90] or ofll'r

ing a way to share resources and coordinate work among multiple users [Krael11cr88) 

Distributed information systems also find use in syskm-Ievel support lasks. The 

Domain Name System (ONS) is used throughout the Internet to translate machine IHIIII\.'~ 

to addresses [Mockapetris87). The Simple Network Management Protocol (SNMP) 

allows network administrators to monitor and operate equipment from across a wide arca 

network [Case89). 

Gther applications already deployed include multimedia filing systems [Gitos871 

and a variety of distributed computing environments [Champine90), [Pctcrson90J and 

[Ousterhout88]. 

The Resource Discovery Problem 

As the number of users and hosts cont;nue 10 grow both individual uscr~ and 

pOlential service providers have come to recognize that a major challenge cxi),ts in idcnll

fying the existence and location of information, service providers and other rcsourccs in " 

distributed environment of this size. This problem, the so-called "Resourcc Discovcry 

Problem", must be adequately addressed if we are to move towards :} truc fntcrnct-widc 

model of resource delivery. In this thesis, a survey of current rescarch that addre~scs COIIJ

ponents ofthis problem is presented. Following this, the design of an information di),cov-

3 



( 

cry and access system is presented that is intended to address specifie components of the 

Rc~ource Discovery Problem. 

Modeling tl .. e Problem 
Several researchers have attempted to model the problem of locating and accessing 

information in an Internet environ ment. Yeong, addressing the problem of networked 

information rctrieval, speaks of "Disco very, Searclzing and Delivery" [Yeong9J] while 

Schwartz defines the problem in terms of "Cfas:; Discovery. Instance Location and 

Access" [Schwartz91). Dther researchers provide tools to ease the burdel'l of information 

management whiJe also providing additional .tccessing tools [Neumran9:l) [Kahle89]. 

Combining these views, and building upon Schwru1z' taxonomy of the problem, 

for this thesis the Re~ource Discovery Problem is decomposed into the four subproblems 

of Class Dücovery. Instance Location. Instance Access and Information Managemefll. 

Class Discovery 
The act of C/ass Discovery refers to the identification of a specifie c1ass of 

rcsources in a larger community of such resources. Th'JS a user, in searching for a specifie 

class of service providers, might wish to locate ail those service providers offering "anon

ymous FTP archive sites". Such archive sites are Internet hosts that provide universal 

access to their collections of information using the File Transfer Protocol (FTP) through 

the convention of a special user code that requires no user authentication. Such sites cur

rcntly offer a wide range of information, including technical reports and other publica

tions, software and data and provide one of the few universal methods for sharing 

information currently available on the Internet. 

The resuh of such a Class Discovery query would be a set of resource providel's 

capable of providing the specified type of resources. 

User Views and Resource Provider ltiews 
The above vicw of Class Discovery is based upon a naming model centred upon 

host and access tllcthod. Such a naming model can be consid(:red an extension of what 

Neuman has referred to as Host-Based Naming [Neuman92a). Host Based Naming refers 

10 the identification of rcsources, and in particular files, by naming them relative to the 

host on which they reside. 

Examples ofhost-bascd naming systems include IBIS [Tichy & LIan 84] and to 

somc cxtcl1l Sun's Network File System [Sandberg et al 85). 



The problem with such an approach is that. as Neuman notes: 

While relatively simple to implement. I/Ost-baud IlClming mllkes il t!ifficlilt (0 01:s.:(/

nize and to locate in!ormluion: the jirst pa,., of il file "ame (the "ost) usually Iw.\' little or 

no relation to the tOpiC. and as Cl result. logiClllly relaret! information .Horetlo" cI!/kn'lII 

hosts ends up scattered a('ross the "ame space." ! Nellf1uw92a. "./9 J 

One alternative is to provide Global Nllmillg, in which ail rcsourccs arl' nallll'd a~ 

part of a single namespace. without specifically naming the host. Such a naming sdu:l1ll' I~ 

used in the .~ndrew File System [Howard88] and Coda [Satyanarayanan90). 

The problem with this approach is that rcsource naming relies upon lhc name prl'

fix to he unique to identify the appropriate resource server in a distributcd cnvironllll'ni. 

Resources that are logically related must presumably also share some compOitCnl of 1 hl' 

naming prefix and this constrains where resources can he stored in an Intcrn: .. l cnviron

ment. 

As a third alternative, il is possible to adopt a nanllng scheme in whlch we :lIlow 

the user to name speci fic classe~ of resources ba<;;ed upon how the user wishes 1 () organ i Il' 

the information being sought. Such User Centred Naming forms the basis of sud distrih

uted systems as Amo.:;ba [Tanenbaum90] and Prospero [Ncuman92 J. 

With User-Centred Naming, we allow users to group logether classes of ICSOlll'l'l' ... 

such as "services related to the genome projecl", or "informalion services l'elaled 10 Mod

ern Music". The system would then provide aecess 10 the componenl resoUlce:-- while 

shielding the user from the specifies of resourcc location and aeeess Illelhod This U~er

Centred Naming of services parallels the User-Ccntred Naming used in Ihe Pro"pcro File 

System. 

Ideally, an information location and delivery service would provide suppol1 for a 

mapping between the se multiple approaches to naming. Thus, thcre would he a mcnn:-- fOI 

allowing the user to specify a search on the topic of "Modem Music", which would he 

translated automatically to a search among an "appropriale" serics of III formai ion serve ..... 

indexed by resource providers on the Internet. Alternativcly, if the user kncw in advancl' 

that a particular resource is available via anonymous FTP lhen qucries could he COIl

strained and a seareh limited only to "appropriate" FTP sites. A rncchanism for doing thi ... 

is described in this thesis. 

One technique for Class Discovery is describcd in [Danzig ct al 91 J. In lhis papcl, 

Danzig describes a technique for distributed indexing lhat providcs a meehanism for 

building autonomous databa"ics that specialize in partieular topie~ and lypes of queric:--. III 

5 



1 
l 

( 

dfect, such a system partitions the potential narnespace using a variation of user-based 

narning to reduce the total namespace to he searched. Such partitioning techniques hold 

out great potential for reducing the size of th~~ namespace that must he searehed when 

llIaking queries to an entire Internet of resource providers. An alternative approach to par

titioning is prcsentcd in Chapler 4. 

Instance Location 

Once the existence of a specifie class of resource has been established, a user can 

proceed to Instance Location. The objective Ilere is to resolve a liser resource query to spe

cific instances of resources that satisfy the conditions of the query. If the result is to be 

IIsed for Instance Acces.\' (see bclow) then a meehanism must exist to map such instances, 

if provided as user-centred narnes, to an appropriate host and access metho~. The arc hie 

system, an mdexing service that allows such instance searches to be done rapidly, has been 

described in (Emtagc & Deulsch 92J. 

The archie system proactively builds a database of information, gathered from 

multiple sites across an Internet. Users of the system search this database lhrollgh a variety 

of acccss methods by sending queries to a database query engine running on the sa me host 

as the dalabase. 

The archie system is a resource intensive method for provlding Instance Location 

(the CUITent version does not support a distributed database mechanism, so ail information 

to he searched resides on a single ho~t). Still, it has oemonstrated the feasibility of such an 

approach for searching l1ullions of records in the Internet. 

Work has also been do ne in the pilot archie system to provide database milTOIing 

(in which multiple copies of an identical database are made available at multiple sites). To 

date. this has proved an effective mechanisrn for coping with rising dernand. The mecha

nisms to do this are still in their infancy and would henefit From further research. Tech

niques for maintaining loosely distributed network-wide databases are discussed in 

IGoiding91 ]. 

One alternative approach to such automated instance location techniques currently 

~mploycd by Intemet users is to interactively browse through individual information 

dclivery systems. such a..-.; Gopher [McCahill 92], WWW [Berners-Lee92] or WAIS 

1 Kahlc91]. SlIch an interactive approach does not scale weil. 

Other techniques include chaining (i.e. the passing of a query From one sea:'ch 

~ngine to anothcr for resolution) or l11ulticast query generation, in which a single query is 

sent simult.mcously to multiple query engines. Both ofthese techniques were proposed for 

6 

-------------------~ -~~- --~ 



1 
the X.500 Distributed Directory Service. [CCI1T88] An overvicw of the X.500 DireetOly 

Service is presented in [Deutsch88]. 

Given the projected growtlt of infonnation providers on the! Intemet. more rescan:h 

will be needed to develop additional techniqut':s for limiting the information spacc to he 

searched. 

Installee Aceess 

Instance Access refers to the application of an underlying acccss method to acccss 

an instance of a resource. There are a wide variety of access rncthods availahle on the 

Internet (as stated, much of the early Internet research revolved around creating the nceded 

proto cols and paradigms for resource access). These include traditional file transfcr plOto

cols such as FTP [Postel&Reynolds85], distributed file sharing protocol~. such as arc lI!\l'd 

in NFS [Sun89] or the Andrew File System [Satyanarayanan90al and distrihuted informa

tion search and delivery protocols, such as Z39.50 (used in the WAIS system) 1 Davis90) 01 

Gopher [Alberti92]. 

The work presented in this thesis is primarily conccrned with addressing the indi

vidual subproblerns of Class Discovery and Instance Location. The Resource Discovcry 

Architecture that is proposed in Chapter 4 is capable of providing the user with needed 

host and access rnethod information. The knowlet:lge of how to apply sueh access Illcthods 

is assumed to reside in the user clients. 

7 



( 

Chapter 2 

Previous Work 
This chapter surnmarizes research relevant to the various cornponents of the 

rcsource discovery problern. In particular, it examines the design and implementation of a 

nurnber of specific user services now available on the Internet. 

Research in this area in recent years has concentrated on tools offering facilities for 

instance discovery, instance access and information management. These include: 

The Domain Name System (DNS) 

The Domain Name System (ONS) [Mockapetris87] was an early exarnple of a net

work-wide distributed database system. The ONS was designed to translate between vir

tual/lOstnames and corresponding 32 bit Internet Protocol (or IP) addresses. 

At its he art, ONS consists of a naming taxon orny that partitions a namespace of 

virtual hostnames (such as quiche.cs.mcgill.ca) and corresponding host IP addresses 

across a hierarchal collection of DNS servers. Bach server holds a portion ofthe parti

tioned database of hostname/address mappings and is capable of responding to user que

ries on the subset of attributes and values it con tains. 

Primarily designed to perform translation fromfully qualified domaill names to IP 

at/dresses, the DNS could he considered primarily an instance location t(\ol, allowing 

users with only a virtual hostname to map this to the information needed for access. 

ln operation, the resolution of a domain name to the corresponding IP address 

using ONS consists of sending a series of queries to a subset of ONS servers, each one 

rcsponsible for some portion of the corresponding fully qualified domain name. Although 

normally this wou Id he a potentially resource-intensive set of operations, such an 

approach is feasible because in this case each individual query can he sent in a single 

transmission packet and each query can be satisfied in the server 0(1) time using a simple 

tahle lookup. Note that not ail resource discovery tasks fit this model of short, simple and 

fast queries. 

ONS is also used to distribute information about host hardware, operating system 

configurations and electronic mail exchanger addresses, and it is possible to query the sys

tem for wildcard matches (for example, it is possible to ask for ail records of a particular 

type matching a particular string). Thus, it does provide a basic, if primitive class discov

cry I11cchanism, as weil. 

8 



ONS has been an operational success. having expanded continuously since its 

inception to now coyer over 700.000 machine names. Despite this success. thcrc are somc 

problems with both the basic architecture and the specifie implcmentations now in servin' 

on the Internet. 

Maintenance of the system is distributcd, with the required information entercd 

into flat text files (usually by hand) at the site of each authoritative subdol1lain scrvcr. This 

can lead to inconsistencies and errors in the database that can only he corrected throllgh 

human intervention. There is no internaI consistency checking of this information by the 

system itself (for example. to verify that registered hosts actually exist on the net). 

Another problem cao arise during operation. If the authoritative server for a pm1Ï1:

ular subdomain becomes unreachable then users will find that they cannot pcrform host

name to address conversion. In this case, users can find themselves unable to access a hosto 

even though that particular host is available. 

This problem can be alleviated by the use of suitably chosen repl icating servcl's (or 

by bypassing ONS and using the IP address of a host directly. where it is known) bllllhe 

configuration and operation ofthese replicated servers is not automatic and is aguin prone 

to human error. 

Oespite these drawbacks. DNS iIIustrates the feasibility of distributcd dutabase 

applications in an Internet environment for appropriate applications. 

Distributed File Systems 
Distributed file systems such as the Network File System [Sun89]. the Andrew File 

System [Satyanarayanan90a] und Prospero [Neuman92] allow site administrators to dis

tribu te file systems across multiple hosts in an Internet environ ment. 

NFS 

The Network File System (NFS) wa'i developed by researchers at Sun MicJ'osy'i

tems and in now available from a wide variety of commercial vendors. NFS is a distributcd 

file system that uses the UDP protocol [PosteI80] and a statcless file server model to makc 

available information across a network. 

With NFS it is possible to export and import individual disk partitions, or portion'i 

of partitions, across a network or entire Internet. Once a partition is mounlcd on a local 

host as part of an existing file system tree, the distributed nature of the fi le system hcco/llc~ 

transparent to the user (in terms of naming resources. Of course. response times for 

9 



1 

( 

( 

L 

accesses can he markedly poorer for network access on a heavily loaded or widely distrib

utcd system, making it obvions when a user has crossed a naming boundary). 

AFS 

The Andrew File System (AFS) is a distributed file system that offers location

independent resource sharing in a distributed environment. AFS implements a single

image file system for ail users with no location dependencies, in effect providing a single 

global namespace for ail users on ail hosts. AFS maintains performance in large internet 

environments through the use of a cachinglcallback mechanism that substantially reduces 

network trafflc. 

Prospero 
The Prospero Virtual File System allows the user to create customized views of an 

underlying collection of information. Among its features. the Prospero file system (actu

ally one component of the larger Virtual System Model for distributed computing under 

development by its author) provides the capability of creating customized views of avail

able files through user specified links. Each Iink consists of a pointer to information along 

with information concerning the associated access method for that information. 

Prospero thus implements User-Centred Naming of the file system, with each user 

offered the possibility of creating their own view onto the underlying collection of 

resources. Such user views are themselves a fonn of value-added processing of the file 

system information over and above the contents of the individual files themselves. Such a 

customized view he exported and accessed by others, aiding in both the instance location 

and information management problems. 

It should he noted that Prospero, unlike the other systems mentioned here does not 

offer its own access method. Instead, each file in tile system is maintained as a link, which 

consisls of location information and details of the underlying access method. The Pros

pero implementation uses this underlying access method when accessing a specific file. 

Currenlly, Prospero supports the UNIX file system, Network File System and 

Andrew File System access methods, as weil as anonymous FTP. 

Prospero could thus be seen as a means for mapping from a user centred naming 

system to either a host/access method centr/!d system (such as anonymous FTP) or a glo

bal naming system (such as AFS). The actu:.d Instance Access is handled by implementa

lion of the required access method protocols in an appropriate library. 

10 



Internet White Pages Services 
Internet White Pages directory services [Sollins89] are intended to provide users 

with on-Hne access to user login names, email addresses and other contact information. 

thus offering the Internet equivaJent of a white pages phone book. 

WHOIS 

A minimal version of su ch a system (the WHOIS service) is currently mainlaincd 

by a number of sites, including the Internet Network Infonnation Centre (NIC) [Harcen

stien82]. This service provides a number of small centraliz\!d databases, each of which 

covers only a small segment of the Internet user population. There is no means for locat ing. 

active WHOIS servers, and currently no mechanism ties together the set of servcrs 10 

allow a user to scan more than one server. 

The current WHOIS design does not scale weil and there have been several 

research projects which have aimed at providing a more robust model. 

X.500 

A White Pages Oirectory Service project based upon the X.SOO protocol is 

described in [Rose92]. The heart of the X.500 service revolves around two componcnts. 

Directory User Agents (or DUAs) are client programs that are able to acccss informatioll 

providers or so-called Oirectory Service Agents (or OSAs) using the X.SOD protocol. 

DSAs are organized as a set of authoritative servers, connected through a single hierarchal 

naming authority. 

X.500 naming aS organized along geographic Hnes, with national organizations 

responsible for their portion ofthe name space joining the root DSA, and authority for 

subtrees in this namespace controlled by and served from DSAs locatcd throughout the 

Internet. 

There are a number of management concerns that con front potential information 

providers in any White Pages service. These include privacy and sccurity issues, the effort 

required to create and manage the needed databases and problems required in convcI1ing 11 

large institution to such an Internet-based services model. These probJems are discusscd in 

[Hill92]. 

A particular problem for current distributed White Pages projects is maintaining 

the required data in an accurate and consistent state. This is addressed in the X.500 archi· 

tecture by distributing the authority for operation of the Directory across the Internet 

through a name registration authority mechanism. 

Il 



( 

( 

( 

Another con cern is maintaining access control and security in an Internet environ

ment. This is addressed in X.500 through the provision of mechanisms for offering both 

access controllists and data encryption techniques. 

The X.500 service has been under development for sorne lime, and a number of 

public domain and commercial implementations have been developed. However, despite a 

great deal of research and the deployment of a number of pilot DSA servers, to date the 

system has not been an operational success. 

A particular problem has been the inherent complexity and tremendous effort 

reqllired to start offering ail X.500 server, especially the effort required to convert existing 

information into a format suitable for existing X.50D implementations. With relatively few 

operational servers, users have had Iittle incentive to join in the pilot project. In tum, this 

lack of a significant number of operational participants has limited the amount and quality 

of information available. 

This failure to reach "critical mass", despite the large amount of research and oper

ational testing that has occurred, offers a les son to would-be designers of other potential 

Internet services. To reach a wide audience such services should be available with rela

tively )jule effort (at least for experimental testing by users) and should offer a variety of 

useful information from the carliest opportunity. 

The designers of other. more recent information systems (such as Gopher and 

WAIS, described below) have addressed this problem by offering working servers that 

cOllld be accessed using a minimum of software. For example, trial access to both of these 

services is available using only a telnet session. 

The lack of initial information to bootstrap the service was addressed in both these 

cases by providing a varlet y of gateways to existing Internet services such as anonymous 

FTP archive~ and archie. 

Information Indexing Services 

WAIS 

The Wide Area Information System (WAIS) is an example of a network-based 

document indexing system that has proved useful for accessing large collections of textual 

data. 

The WAIS system is based upon the WAIS protocol [Davis90] which is itself an 

extended version of the ANSI Z39.50 protocol [NIS088]. The WAIS system pro vides the 

user with the ability 1.0 search for combinations ofkeyword strings by sending suitable 

12 



1 

1 

search stings (using the WAIS protocol) to the appropriate WAIS scrvers. E..'lch WAIS 

server offers access to one or more collections of documents (or sources, as they arc 

referred to in the WAIS environment). 

WAIS users can rapidly perform keyword searches on documents that cOIn he tcns 

or hundreds of megabytes in size, using a combination of full-text indexing and rclevance 

feedback [Salton & McGiII 83]. 

WAIS document servers build an index database for each source, allowing mpid 

(0(1») matching for keywords. AlI sources that contain any of the specified keywords "re 

retumed, ranked according the distance between matching keywords in the document and 

the frequency of these keywords. To speed searches and lower the chances of misleuding 

hits, sorne WAIS client programs remove short, common words such as "and", "or", "the" 

etc. prior to sending the query to the server. 

Once a user has received an initial collection of matches to a search, relevancc 

feedback is llsed to generate foIlow-on queries through the selection of additional sem'ch 

terms from the initial replies. This technique allows the user to select addition,,1 sources 

for searching based upon responses that have already been received. This Icads to a suc

cessive refinement of se arches based upon relevant replies until, hopcfully, the desircd 

information is found. 

The WAIS system addresses both the instance location anJ information manage

ment portions of the Resource Discovery problem, but a major shortcoming in CUITent cli

ent implementations is the almost total Jack of support for Class Discovery. With cUfI'Cl1lly 

over 200 WAIS servers on the Internet, the principal mechanism for selecting sources is to 

page or seroll through a single linear list of source names, selecting the desired sources on 

which to perform a search. Il is expected that future research on WAIS will addre~s this 

shortcoming. 

The original design and implementation of WAIS was donc by researehers at 

Thinking Machines Corp, who have made available a prototype public domain implelllen

tation that runs on a number of systems. Thinking Machines also markets the only com

mercial implementation of WAIS available in 1992. A WAIS Support Consortium has 

been formed to provide additional direction and support for WAIS research. 

The archie System 

The archie system [Emtage & Deutsch92] is a collection of tools that, taken 

together, provide another electronic indexing service for locating information in the Inler

net environment. One identifying feature of the archie system is that the indexed informa-

13 

.. 



.{ 

( 

tion is proactively gathered onto a central site from primary sources on the net by 

automated tools, with this collection updated on a regular basis. Access tools are provided 

that allow Internet users to query this database using a variety of access methods. 

The current version of archie consists of three parts; the Data Gathering Compo

nent, the Database Maintenance Component and the Database Access Component. The 

first of these is responsible for locating and obtaining the data to be collected, copying the 

information into the archîe system for processing and storage. The second component is 

responsible for parsing information that has been copied to the archie system and inserting 

it into the appropriate archie database. The lhird compone nt is used to receive and process 

user queries on these databases. 

Client programs are used to access the archie databases and perform searches 

using a variety of access methods. The archie system does not provide an access protocol 

of its own. Rather. it can 'jccept liser queries via an interactive tel net session to a telnet 

scrvcr, through queries to a Prospero server, or via electronic mail. We have recently added 

support for WAIS to allow users to index and search large text databases. 

Although an archie server demands a great dea} of resources to operate, the model 

has rcduced the problem of c1ass discovery for anonymous FTP to one of finding an appro

pria te archie server. The administrators of the archie service are now responsible for locat

ing and tracking specific service providers for this c1ass of problem. 

The architecture of the archie system assures users that indexing information is 

reasonably current and accurate at ail times. The system, as cureently deployed, acts as a 

tool for Instance Location and has demonstrated the feasibility of indexing large numbcrs 

of Internet sites in a proactive manner. The cureent implementation tracks the contents of 

anonymous FTP archive sites and stores severa} million records gathered from several 

thousand sites. 

Concerns about reliability have been addressed by adopting a mirroring strategy 

that duplicates the entire archie database onto multiple archie servers. Techniques to 

cxchange database entries are now being developed and inc1ude a partitioning strategy in 

which individual archie sites gather information only on those sites that are "topologically 

c1osc" (that is. to which the appropriate server enjoys a relatively high bandwidth network 

connection). The various archie servers then exchange their information using a mirroring 

algorithm that detects and automatically transfers changed files from one system to 

another. 

Further investigation into mirroring strategies is needed. Also needed in additional 

rcscarch into the benefits of partitioning the information to be tracked, to avoid the neces-

14 



r 
sity of storing ail information at ail sites. This would address concerns about the scalubil

ity of this approach to resource discovery. 

Originally designed and deployed as an Instance Location scrvice to tl'U~;k the con

tents of anonymous FrP archive servers, the archie model can also be uscd to deploy u 

Yellow Pages service by gathering the description of Internet resource providcrs and peri

odically verif)ing the existence of such services. Used in this way, the proactive monitor

ing model provides a potential solution to the problem of Class Discovery. 

The architecture for an enhanced indexing system that provides both Class Discov

ery and Instance Location forms the basis for the Resource Discovcry Architccture 

described in Chapter 4. 

Distributed Information Servers 

The World Wide Web 

The World Wide Web project [Berners-Lee et al 92] is a distributed information 

access service based upun the hypertext model of information represcntation [8ush45] 

[Nelson90]. 

ln the hypertext model information is represented as a collcction of hYPCl1cxt dOl:

uments, which consist of conventional text augmented by .'typertext Iink. .... which are 

pointer references to other hypertext documents. In the original hypcrtext systems ail doc

uments resided on a sing:e host, but with more recent implementations multiple docu

ments can he distributed across an Internet [Kahn et al 90]. 

The WWW architecture consists of three principal componcnts, including hypn

text servers, a variety of Graphics-based client program.'î and a set of information f.:il1e

ways to additional resource providers. The WWW system also provides a cornillon 

naming scheme for referring to ail documents in the system, a common network acce'iS 

protocol (HTTP, or HyperText Transport PlOtocol) and a common sct of datu formats for 

representing information. 

ln WWW the information servers provide access to three kinds of hypcl1ext docu

ments. Real hypertext documents exist as files and can he accessed using the WWW sys

tem directly. Index documents are actually gateway programs for acccssing scarch cnginc~ 

or other information service providers. These return either rcal hypcrtext documents or 

virtual documents, which are created on the fly in response to a qucry to an Index. J{cal 

documents consist of any collection of text and hypertext links, while virtual documents 

15 



· \ 

( 

created as the result of queries to index gateways contain a collection of links to docu

ments satisfying the user query. 

The merging of search mechanisms with a distributed hypertext model has pro

duced a system that is capable of addressing both Instance Location and Instance Access 

in a user-accessible system, but users of WWW sometimes have difficulty in locating spe

cifie information and keeping track of where they are in the web of hypertext documents 

over time. This problem, the so called "hypertext navigation problem" is a common one 

for hypertext systems developed to date. 

The Internet Gopher 

The Internet Gopher [McCahill92] is a distributed information browsing and 

access system that combines man y of the features of electronic bulletin board services 

such al\ Usenet [Quarterman88], campus-wide information services such as PNN 

[Strauss89] and distributed directory services such as X.500. Developed at the University 

of Minnesota. the Gopher project arose out of an operational need for a simple campus

wide information system that could provide support across a campus. The system now 

finds wide-spread experimental use across the entire Internet. 

The he art of the Gopher system is a collection of Gopher servers, which offer col

lections of information objects, organized around a hierarchal directory of menus. Each 

information object consists of either a pointer to another menu (in effect a pointer to 

another directory of inforf11ation), a collection of text, a pointer to a service accessible 

through the telnet protocol or a search engine to which the user can direct queries. 

Implementation of each of these information objects is hidden from the user. Ref

erences to menu objects can in fact point to other Gopher servers residing across the Inter

net and the user can browse these collections of menus without being aware of the 

transitions from server to server. 

Gopher clients use the Gopher protocol to request access to specific menu items. 

This protocol consists of a simple query-response model. Each time the user issues a 

query. the client connects to the appropriate Gopher server and sends a selector string (a 

short ASCII-encoded string identified with each Gopher menu item). The server responds 

with the appropriate information corresponding to that item and closes the connection. 

The Gopher servers are stateless, preserving no information between queries. This makes 

it simple to implement robust server:> in an Internet environmenl. The Gopher protocol is 

dcscribed in [Albcrti92]. 

16 



Access to search engines is implemented as gateways to existing Internet indexing 

services, including WAIS ard archie. or as separate programs to search collections of data 

local to the Gopher server. The Gopher protocol (and many of the Gopher cli,:nts) arc 

capable oftransporting and displaying graphics images and playing sound files on slIitnhly 

equipped terminais. 

The Gopher protocol has deliberately been kept as simple as possible. As" reslIlt. 

it is quite easy to implement a Gopher server, and thus offer an initial Gopher service. 

Although first deployed in mid-1991, there were already several hundred operational 

Gopher servers on the Internet by early 1992, telling contra.~t to the difficllities expcri

enced in deploying an operation al X.500 directory service. 

Class Discovery and Internet Yellow Pages Services 

Internet Yellow Pages services would provide a directory of available Internet ser

vices and service providers, analogous to conventional Yellow Pages services directories. 

There have been proposais to offer such services using X.500, it is also possible to huild 

up such a service using distributed naming service mechanisms such as Prospero hy creat

ing an appropriate user directory containing references to such services and exp0l1ing this 

view to other users. Although a Prospero view would not provide a Class Diseovery Illech

anism by itself, it would allow users to perforrn basic instance location once a directory is 

located. Coupled with an index of su ch directories, a forrn of Class Discovery could he 

performed. Another approach for providing a Yellow Pages Directory service is descrihed 

in Chapter 4. 

Despite an obvious need for Class Discovery services on the Internet, no fully 

functional Yellow Pages services are yet operational. This may reflect more upon finnnCÎal 

and political, rather th an technical considerations, as providing such a service for the 

entire Internet requires a substantial commitment of resources and there is currently no 

mechanism for providing such services on the Internet on a eharged basis. 

ln addition, a number of the attached networks (including the U.S. National Sci

ence Foundation NSFnet backbone that connects man y of the U .S. rnid-Ievcl net work ser

vice providers) currently prohibit commercial traffic on their portion of the Internet 

through restrictive "Appropriate Use Policies" that Iimit or forbid sueh trame on thm;c por

tions of the net [SRI92]. 

ln addition to the politieal considerations, considerable research still nceds to be 

done concerning the design and operation of sueh services in an environmcnt of millions 

of machines and potentially millions of service providers. Such rescarch must addre~s 

17 



( 

( 

issues in both resource discovery and the design of distributed database systems that such 

services will presumably deploy. 

18 



.. 

Chapter 3 

DESIGN ISSUES 

In this chapter 1 examine issues that have influenced the design of the Resourcc 

Discovery Architecture described in Chapter 4. Of particuhr concern is the issuc of '/tIIII

ing, which in this thesis is used to refer to the binding of a ;irtualllllme to a specifie 

resource available on the Internet. As will he shown, each resourœ on the Intcrnet can hl' 

identified by a un;versal resource ;delllifier (or URI), which describes the acccss Illclhod 

and physicallocation of the resource. The successful mapping of virtual nalllcs 10 lJnivl'l

sai Resource Identifiers is at the he art of the Resource Discovery Problcm as il is modcJlcd 

in Chapter 1. 

Also discussed is the issue of identifying the informatioll cOI/lents of a lesourcc III 

an internet environment. This problem exists separately from the problcl1l of rcsourcc 

location and is important when considering, for example, the queslion of idclllifying 

duplicate files with similar names in an set of multiple archives, duplicate files wilh infor

mation that is encoded using multiple encoding schemes or when sceking 10 idclllify file .. 

in which the information contents are derived from a single parent file. A I1lcchanislIl i~ 

proposed (Unique Resource Seriai Numbers or URSNs) Ihat addresses thcsc plOhlelll~ 

This discussion in turn leads us to the concept of Virlual User, an extension of 

Neuman's Virtual System Model that allows us to more ealiily create logical collections of 

resources in an Internet environ ment. J1ljiJrmat;o1l 8rokers arc the componcnt of the new 

Resource Discovery Architecture intended to support both URSNs and Virtual U'icrs. 

Sorne Definitions 
As used in this thesis, Ilaming is considered to be the aet of associating a "lIlIIe fOI 

an object wilh a resource identifier, which is used to identify a singlc instance of a 

resource on the Internet. These might include files, processes, hosts and othcr resourcc!-.. 

A Ilame is a logical identifier of a resource alisigned by the uscr and will normally 

he expressed in a human-readable form. Examples include traditional filcnalllc!-. (~ueh a!-. "1 

ulpeterdlthesislchaptecl"), hostnames expressed in domain mlmc format (such a ... 

"opus.cs.mcgill.ca") or service names (such ac; "the arehie server at McGill"). 

A resource ide1llifier consists of the physicallocation information ncedcd to aet u

aUy access an object. This will consist at a minimum of a contexl (whieh might altcl'l1a-

19 

~~ ~ ~~--~ - - ~~~-------' 



{ 

{ 

tivcly he thought of as an available access method) and an associated set of attributes to 

indicate a specific resource accessible through that context. 

As an examplc, a resouree identifier rnight refer to a specifie file available through 

FT'P. In this ca'\e, the eontcxt would he FTP and the associated identifier would be a host

name, a user ID, the required pa'\sword and the target filename. Together these supply 

cnough information to aceess the file using the FTP protoeol. 

With sorne aeeess methods the hostname may he either implied or derived from 

other a'isociated information. For example, if the context is the Andrew File System 

(whieh using a global naming meehanism) the access method would consist of sorne 

mcans of identifying this as a reference to an AFS file, plus an associated AFS pathname. 

The appropriate host will he located automatically by the AFS servers. 

A "tlming system consists of a meehanism for translating names into resource 

idcntifiers. Thus, the Domain Name System can he eonsidered to be a naming mechanism 

for mapping machine names (sueh as opus.cs.mcgill.ca) into the corresponding resouree 

identifiers (in this example, /32.206.3.3 is the corresponding 32 bit IP address. expressed 

in conventional "quad byte" format). 

Sirnilarly, distributed file systems can he considered naming systems for transJat

ing bctween file narnes and specifie file addresses (such a'i the corresponding host, parti

tion and inode nurnber). In most cases the file system will provide an associated access 

Illcthod, although in sorne cases (such as Prospero) the associated access method is stored 

as an attribute and used separately. 

The bindillg of name to resource identifier is eonsidered to he the aet of publishing. 

Once a name has been bound to a resource identifier on the Internet, users can reference 

and access that rcsource. 

Naming 

As already noted. there are a vast selection of resourees available on the Internet. 

Thesc include individual resourees such as files, but there also exists resource providers 

that make available information about collections of Internet resources. Such resource pro

viders include file servers. Use net bulletin board servers, archie indexing servers and other 

collcctions of information. If we are to provide tools for searching for and aceessing sueh 

rcsourccs, we need sorne way of identifying and loeating sueh resources. 

Sollins has examined distributed name management [Sollins85] and Neuman uses 

User Ccntred Naming as the basis for his Virtual System Model [Neumann92a]. In this 

20 



chapter 1 examine additional proposais that are currently under development fol' naming 

and identifying Internet resourccs. 

Virtual Hostnames and the Domain Name Sen'ice 
As discussed in Chapter 2, one ex ample ofthis naming problem (the translnting of 

virtual hostnames into ho"t addresses) was successfully addressed with the dcployment of 

the Domain Name System, or DNS. 

As the number of machines and users connected to the Internet conlinucs 10 grow 

users face a problem in specifying or naming other individual resourct.,'. A single glohal 

namespace, although conceptually simple, would lead to collisions and diffkuhics in orga

nizing and locating collections of related resources. To addrcss Ihis problclll, DNS 

imposes a single hicrarchal namespace onto the set of Internet-connccled hosts and offcrs 

a distributed database access service for translating between this naming taxonomy and 

individual machine IP addresses. 

Using ONS we can specify any Internet user account by combitling Ihat uscr's 

login name with the appropriate ONS hostname using "domain stylc addressing". In Ihis 

system, a virtual name for a particular user code would takc the form: 

peterd@opus.cs.mcgill.ca 

Taken together, this combination of "fully qualified domain name" for a hosl and 

the user's identifying name on that host fully identifies a specifie user on a spccifle 

machine in the Internet. This uniqueness is guaranteed through the use of distribuled nalll

ing authorities to alloeate domain names in a single name space. 

Using the Domain Name Service it is possible to translate this fully qualified 

domain name (FQDN) into an appropriate IP address. Combining Ihis address and associ

ated user aeeount name with a suitable access protocol enables any user to access Ihe file~ 

and other resources controlled by that account. 

Note that this scheme does not guarantee that we have uniquely idcntified li single 

virtual user on the Internet. A virtual user may have multiple user accounts on Illulliple 

machines. In addltion, under many operating systems now in use il is possible to allocale 

multiple user names to a single user ID. Still, this scheme does offer a method for uniqucly 

specifying individual virtual user accounts in a distributed Internet environ ment. 

21 



( 

( 

Extending the DNS Naming Mechanism 
What we need is to extend the cUlTently available Internet naming mechanisms to 

allow us to specify an arbltrary virtual naming mechanism for resources. 

As a first effort, we might seek to extend the Domain Name System described 

above to allow us to name individual resources (such as files) made available by a user. 

Each such individual piece of information can he specified as an single resource belonging 

to a particular user in the name space using a host-based naming scheme. Thus, a particu

lar item of information could he specified as: 

resource.peterd@opus.cs.mcgill.ca 

Where "resource" refers to sorne resource made available by the user pete rd on the 

host opus. cc. mcgill. ca. 

For example, individual chapters of a paper belonging to this user cou Id be refer

cnecd as: 

chapter 1.paper.peterd@opus.cs.mcgill.ca 

chapter2.paper.peterd@opus.cs.mcgill.ca 

This scheme would provide us with a naming scheme for specifying resources 

such as files available on specifie hosts, but it does not specify an aecess method that 

would allow us to access the file. In addition, hecause it uses a host-based naming mec ha

nisl11 it may he diffieult to locate resourees that are logically related, if they belong to dif

terent users or exist on different hosts. 

Virtual Names vs. Resource Identifiers 

Neuman addresses this problem in his Virtua) System Model [Neuman92a], 

through the use of User-Centred Naming. In this model, virtual names for resources on an 

Internet are modeled as a distributed network of directories and link.s. Links eonsist of 

attributes associated with that resource, including the associated access method. The Vir

tuai System Model proviot:s a mechanism for translating from names to specifie resource 

idcntifiers. 

Namespaces in Prospero are actually bound to individual objects. In resolving a 

rcfercnce in Prospero, a name and its associated namespaee together are used to resolve a 

rcference. 

22 



Synonyms 
Using our definition of a naming system il is possible to have multiple names, or 

synonyms, for a single object. It is also possible to have multiple instantiations of a singk' 

resource on the Internet. For example, multiple copies of a particular text file muy he 

stored on several hosts, perhaps identified using a variety of names. Note however, that LIS 

used here each resource identifier refers to a single instantiation of such a rcsource avail

able through a single access method. 

Note that this does not prevent having multiple resource identifiers retcl'I'ing to the 

sarne resource. For example, a single file from a single host may he available through ho.h 

NFS and FTP. In this case such a file would have multiple resource identifiers, one pcr 

access method. 

The Resource Discovery Problem as defined in Chapter 1 can he exprcssed as the 

problem of identifying the Dames of resources that satisfy a given user query and translat

ing those names into a suitable context, host name and access method. This is a 1 wo part 

problem. The first part cODsists of identifying appropriate rcsource providcl's for a given 

search. The second part consists of searching these resource providers for individual 

resources, thus translating user-supplied virtual names into the appropriate rCSOUl'ce iden

tifiers. 

Stated in these terms, the problem appears a trivial one. ft is the size of the Internet, 

and thus the huge numher of virtuai names and resource identifiers to he qucricd, that 

make the problem a challenging one. 

Identifying Resources and Resource Providers 
It is possible to define a universal encoding method that will permit us to spccify 

resource identifiers for any numher of different contexts. Such Ulliversai Re,wm/'ce /del/I;

fiers (or 1 TRIs) would each refer to a specific instantiation of a resource on the Internet, 

regardless of the access method to he used. Such URIs could a)so be used to rcrer to ser

vice providers offering collections of such resources. 

By defining a single encoding method for multiple environments wc gain the capn

bility of exchanging such URIs between a number of different information acccss systems. 

This would he useful in systems that use a User-Centred Naming approach and do not 

attempt to define an access method themselvcs (such as Prospero). or in systcms in which 

the system's links already contain the needed context and associated access details (such 

as WWW, WAIS or Gopher). 

23 



.. 
(. 

{ 
" 

URls would also he useful in a system designed to provide Class Discovery 

through searching of collections of information made available across multiple acce~s 

methods. If the system were to retum the result of searches in a single standardized format 

then client programs would have the option of supporting access to a variety of resource 

providers without the need to translate references from one encoding scheme to another. 

At a minimum, such an encoding would consist of a context identifier to indicate 

the environ ment in which the associated access method is relevant, plus a set of associated 

attributes appropriate to that context. These auributes would depend upon the context and 

would therefor have to be defined once for each context to he supported. If the URI is to be 

used to identify the resource (as opposed to merely locating il) a unique author or pub

lisher identifier would also he needed. 

Current Research on URIs 
Universal Resource Identifiers have been discussed by Kahle [Kahle91] and Bern

crs-Lee [Berners-Lee92a]. Kahle discusses the format ofWAIS document identifiers. 

which consist of a reference to an originating author, a "disposition" (which refers to the 

location from which the document is available) and an address, which is a handle by 

which the document is known at that site. Note, that if used as part of a more general sys

tem, only these last two elements are needed for access, along with an indication that the 

context is a WAIS document ID, while the originating au th or could he used as a key to 

additional information, if a suitable method for storing and serving such information were 

to he defined. 

Berners-Lee has proposed a fonn of "Universal Document Identifiers" for the 

Intcrnet. in describing the format of WWW hypertext pointers. Undcr his scheme, such 

pointers would consist of an access method specifier (that is, a context descriptor) and an 

acccss-specific set of attributes. Contexts already specified include anonymous FTP, 

WWW, WAIS, telnet and Prospero. His proposai is extensible, and additional formats are 

l'clativcly straight forward to create. In this case, the UDI is used only for encoding access 

information and doesn 't not contain enough information to uniquely identify individual 

rcsources. 

Work is now underway through the Internet Engineering Task Force (IETF) to 

tlefine a single standard for universal resource references for the Internet. A preliminary 

mccting was held at the 23rd IETF in March, 1992 and an ad hoc working group was orga

Ilized to work on defining a single encoding standard for such references. 

24 



,r Any Rc~source Discovery Architecture developed should be capable of translating 

virtual names into specifie URls capable of indicating the associated context and the ncc

essary attributes to access that resource in that context. The specifie attributes will of 

course depend upon the associated context, but c1early what is needed is a single encoding 

method for such attributes for each context, to a1low the creators of clients for various 

information systems to share information from a single Resource Discovery Service. 

The Need for Resource Seriai Numbers 
Another major problem that con fronts the designers of a Resource Discovery sys

tem intended to provide Instance Location is that of determining when multiple rcsponscs 

generated in reply to a search query actually refer to multiple names for the saille resoul'Cl' 

(Le. are synonyms for a single resource residing on a single host) and when they actuully 

refer to multiple resources that match the same query. 

In other words, when are they refening to a single resource on the Internet spcci

fied by multiple URIs and when are they referring to multiple resources spccificd by mul

tiple URIs? 

A variation of this problem is to be able to identify when two dirfcrent l'esoul'ces 

on the Internet (for ex ample two files stored in separate archives) actually contain identical 

information, despite using different representation formats and differing URIs. For eXUlIl

pIe, one document may contain an ASCII encoding of a document, anothcr contains the 

same document encoded in EBCDIC. Except for minor differences in the encoding alpha

bet, these two documents share the same information but would appear, at first glancc, to 

be completely different. 

We would Iike to provide a mechanism that would allow users to address ail of 

these problems without actually forcing them to adopt such inefficient methods as copying 

candidate files to their machine and to compare the contents of each in turn. 

This is particularly important during the early phases of Rcsource Discovcry, when 

users are performing Class Discovery, and Instance Location. During this phase, individ

ual user queries may result in large numbers of potentially mislcading rcsponscs. Wc necd 

to provide users with a means for narrowing the focus of searches and dccreasing the nUIlI

ber of responses to be verified. Preferably, in most cases, actual access of a documcnt 

should come later in the identification process, if at ail. 

In the traditiona) publishing environment this need is addrcssed through the proVI

sion of unique seriai numbers identifying each edition of a specifie publication. Evcry 

25 



( 

( 

( 

individual copy of an edition is identified by the same identifier (for books, this is the 

International Standard Book Number, or ISBN). 

For example. the book "The Complete Fawlty Towers" by John Cleese and Connie 

Booth is identified as ISBN 0-413-18390-4. Each and every copy of this book carries the 

same ISBN number and mUltiple copies of the same book can he viewed as multiple 

i nstantiations of the sa me collection of information. 

Note that the need to uniquely identify the information content of a resource is sep

arate and independent of the need for virtual names or Universal Resource Identifiers, as 

dcscribed above. URls are concerned solely with the mapping of a virtual name to a phys

ical access method across multiple environments. The issue here is how to determine 

information about the contents of specific documents. 

It is possible to avoid such problems if on satellite systems we store only pointers 

to original documents, storing the contents of documents only at their point of publication. 

Unfortunately, this is usually infeasible, for a variety of reasons: we need to mirror files to 

improve response time and increase availability, we sometimes wish to provide access to 

the same information through differing access methods and sometimes the originating site 

is no longer available to offer the information. 

To ensure access in such cases we will find ourselves wjth multiple instantiations 

of the same resource with differing URIs. In su ch cases having a resource seriai number 

that can indicate when multiple references to resources actually contain the same informa

tion would he useful. 

Unique Resource Seriai Numbers 

One approach to this problem is to use sorne form of digital signature, related to 

the information content of the resource. The objective of such a signature scheme would 

he to provide a "Unique Resource Seriai Numher" (or UR SN) for each resource available 

l'rom the Internet. Note that such URSNs are intended solely for identifying the i1lforma

tioll contents of a resource, not the virtual name, the representation, or the access method 
of Ihat rcsource. 

ln cxamining how such a URSN might be constructed, 1 note that each resource 

can be modeled as an object that can be seen as having a single publi~her on the Internet. 

A single publisher in turn will control zero or more such resources. If we model each of 

thesc rcsources as a single information object, we can specify that a URSN will be an 

attribute of a resource that takes a value unique to that publisher and collection of URSNs. 

26 

1 
1 

1 
~ 
j 
,~ 



1, 

Each time the publisher creates a new information object (either from scratch or hy 

modifying an eJtisting information object) it would he a.~signed an URSN number still not 

used by that publisher. Sorne mecl.anism wou Id need to be provided to ensure that titis 

uniqueness is preserved. 

If the UR SN is assigned at the time of resource creation then whenevcr a rcsoUl'Cl' 

is copied the URSN should also he copied with il. Alternatively. it must be possible to 

identify the publisher and compute the value of the URSN solely from the contents of thl' 

resource. 

Properly administered, URSNs wOI!!d have the property that they could identify 

the information provided by resources across encoding schemes, naming schemes and lite 

system representations. Thus, accessing the URSN of a document interactively through 

Gopher, programmatically through Prospero or through email to an anonymous vrp 
archive server should always retum an indic~tion that the information content is idcnticnl. 

even given multiple instantiations, provided the document has not been altercd other thlln 

in representation or encoding. 

The Virtual User 
In the preceding section we modeled resources as objects belonging to a single 

Internet publisher. 

This simple scheme cou Id be implemented in the current Internet environmcnt hy 

specifying the publisher ID as a usernamelhostid pair, with username corresponding to a 

userid on a particular ho st and hostid corresponding to the fully qualifl d domain name of 

some Internet-connected host. This publisher ID, coupled with a simplt~ digital signaturc 

scheme would yield a basic URSN system that could he deployed immedialcly on the 

Internet. 

Although this would work as an initial implementation, this simple schcl11e has li 

numher of limitations. In particular, a user would he required to start a new series of 

URSNs each time he or she moved to a new host or a new user account. 

To avoid this, we would pre fer to allow each individual user accessing the Internet 

(using one or more username/hostid pairs) to function 3.1; a single "rcsource publislter" Oll 

the Internet, generating URSNs in the sa me series from wherever the user is currcntly 

working. 

One way to accomplish this is extend the Virtual System Model by postulating the 

existence of a Virtual System User, one whose home (and information about the rcsourcci. 

27 



it controls) would follow the user around the net. This wou Id include the associated URSN 

gcnerator and other associated information. 

The Information Broker 
Version control and representation information would still he useful, and a mec ha

nism for obtaining such information is still needed. 

Although we might attempt to define a method for encoding such information by 

dcfining a suitable structure to the format of URSNs, this is not necessary if we postulate 

the existence of a "user agent" or Information Broker process that can manage the Virtual 

Uscr's rcsources and control access to their information. 

Once it is possible to identify the author of any signed resource, that user's Infor

mation 8roker can then he used to manage URSNs and track changes in those resources. 

Such a broker would also have responsibility for the creation and assignment of additional 

URSNs. As a bonus, such un information broker can also act as a recipient of information 

rcquests From the Internet to the corresponding host. We could easily have it do double 

dut y as both information access manager and URSN manager. Thus, for example, the 

Information Broker could also serve configuration files for each Virtual User (allowing 

automated establishment of a new user account anywhere that can communicate with the 

Broker). 

One major advantage of providing a Publisher ID with each document and using 

an active process as an Information 8roker (assuming we have a method for locating the 

author's Broker) is that we can alwaYf contact the Broker for needed version and represen

tation information, when it is needed. This would allow the use of simple checksum 

schemes for the actual signature (which would be used when comparing signatures for 

multiple URls to detect duplication) while allowing us access to the additional informa

tion available from the Broker when it is needed, at the price of some addltional complex

ity. 

This scheme gives us ail those elements originally specified as desirable: content 

identification (using the signature), version control (using the Broker) and representation 

isomorphism (using a combination of the URI and UR SN). Ali that is requirt:J il: th~t we 

make available a standardized encoding method for Publisher IDs, along with a method 

for generating and rcgistering a unique seriai number for each resource created. As a final 

stcp. we necd '0 provide a mechanism for translating the PubIisher ID into the appropriate 

Information Broker address. This last part is a classic White Pages problem and solutions 

such as X.500 have already been proposed. 

28 



.... 

... 

Once we have URSNs available, users comparing the results of que ries to a variety 

of resource providers could rapidly identify when multiple instantiations in fact contain 

the same infonnation without directly comparing contents. ln fact, software user agcnts 

could do that for them, sorting and even eliminating duplicates if desired. 

Implementing URSNs 

Schwartz has siJggested using a digital signature scheme to implemcnt URSNs. 

For example, a digital encryption scheme such as MD5 [Rivcst92] can be uscd to gcnerall' 

digital signatures that, for large files. have a very good chance of being unique. 

Although this approach does not guarantee the uniqueness of each digital l':igna

ture, it has the advantage that such signatures can be computed solcly usin~ the ir. forma

tion contents of a rcsource (making them casy to apply to cxisting archives of 

information). They also do not have to be stored, as they can he recreatcd on dCllulad, pro

vided the generation algorithm is known. 

Such signature schemes do not provide version control or authorship infornuttioll, 

but the proposed Information Broker mechanism can be used to provide this functionality. 

Thus signature schemes can he used as either a transitional mcchanism. or as a simple 

method for providing a subset of functionality as part of a larger UR SN scheme. 

A naming authority would also have to be established to assign and manage unique 

user ID numbers. Such a service could be performed using X.SOO, or alternatively uniq •• c 

Internet user IDs could he assigned by the Internet Assigned Numberli Authol'Îty (IANA>, 

which exists to issue values for those protocols or services that require unique values. 

A Suggested Format for URIs and URSNs 

A URSN would consist of a single Virtual User Publisher ID (uniquely hound to 

that user and namespace) and an associated publisher's seriai number, unique for th~1I par

ticular Virtual User. Together they wou Id he form the Unique Resource SeriaI Numbcr for 

that resource. Any additional information available for that iesource would hc made avail

able by querying the associated Broker for that Publisher ID. 

It will probably be useful to allow multiple formats for the Publisher ID. Initially. 

these might consist of one of the following: a userlDlhostname pair, a valid X.500 uscr

name, or a unique registration number assigned bya number authority (such as the Intcr

net Assigned Numbers Authority). 

A URI would consist ofthree elements: the resource',fij URSN, as crcated and 

issued by the publisher, a context to indicate the namespace of the appropriate acccss 

29 



mcthod, and a sel of access allribules appropriate for that context. It would probably be 

appropriate to define the URSN as optional, as in many cases users would be concerned 

solely with access information, although ideally there should always he a way to obtain 

the complete reference for a document from any system on demand. 

Separating out the identification and representation management functionality Iike 

Ihis appears to offer several advantages, not least of which is that it would be possible to 

rctrofit a digital signature on top of most existing resource delivery systems (including the 

anonymous FTP archives serving millions of files to the Internet) without changes to their 

hasic funetionality. This would thus allow us to deploy a partial form of URSNs immedi

ntcly, as the basic signature can he supplied algorithmically. In futur'!, publishers of 

rcsources could deploy their own information brokers to handle the other eomponents of 

the problem, leading to a complete s\>lution to the problem. 

Proactive Discovf',ry Techniques 

Proactive disco very techniques, in which automated systems perform a task in the 

haekground as a users' agent, have been under study for sorne time. The Programmers' 

Apprentice project [Rich&Waters90] used this technique to provide a programmmg envi

ronment that adapted its operations to the user's prior operating history. 

Schwtlrtz has used a proactive monitoring model to perform resouree discovery on 

the Internet. Techniques used include monitoring network traffle at specifie gateways to 

dctect FTP traffle (and thus the existence of previou31y unknown FrP archive sites), mon

itoring email trafflc to detect usage patterns to locate pools of related users, and trafflc 

nnalysis to locale popular service providcrs. A preliminary implementation of a specifie 

user location service Cnetfind"), is deseribed in [Schwartz91 a]. 

A form of proactive discovery is also used in the archie system, in that information 

is gathered prior to user searehes being initiated. This model has been shown to be a useful 

one in those cases where the cost of individual searches is high, compared to the relative 

cost of proactive information gathering (for ex ample when attempting to seareh multiple 

lites archives for a single filename). 

ln contrast, in the DNS model of direct distributed database searching the cost of 

individual searehes is low (each query to a DNS server takes one packet and an O( 1) 

lookup time and the hierarchal naming scherne allows a rapid partitioning of the 

namespace to be searched). ln sueh circumstances a query across multiple distributed 

databases becomes feasible. 

30 



' .. 

Choosing the correct model to use will involve balancing the trade-offs between the cost 

of gathering and searching large collections of data at a single point and the cost of performing a 

number of queries at locations .. cross the Internet. 

As a final cautionary note, although proactive discovery techniques show promise, COlre 

must be taken to ensure that the privacy of users is preserved if such techniques are used in pro

duction systems. 

31 



{ 

Chapter4 

The Resource Discovery Architecture 
ln this chapter we present the design of the Resource Discovery Architecture. This 

system is based upon a single basic information processing engine that is used to provide 

the various components of a generalized resource discovery and access service for the 

Internet. As part ofthis. 1 also outHne the architecture for an Information Broker that pro

vides support for Universal Resource Identifiers (URls), Unique Resource SeriaI Numbcrs 

(URSNs) and the Virtual User Model, as described in Chapter 3. 

The Information Model 
ln this system information is mode lied as collections of typed objects, with each 

objecllype fealuring a specified collection of attributes. In particular, each object has asso

ciated with it a corresponding Universal Resource Identifier and corresponding Unique 

Rcsource Seriai Number, plus such additional attributes as author, creation date, a brief 

text description {'f the object, etc. The Resource Discovery Architecture provides informa

tion about individual information objects on the Internet, incJuding their location and 

access method. Once located using this service, such objects are accessed using existing 

access methods. 

There are two types of servers, Resource Discovery Servers (RDS) provide infor

mation about Internet service providers and collections of resources. Resource Indexing 

Servers (RIS) provide information about individual resources. In practice, the first type 

providert a basic Yellow Pages service and the second an archie-like instance indexing and 

location service. 

ln addition, Information Bmkers are used to provide the information associated 

with each Virtual User. These 8rokers can be queried to discover the values of attlibutes 

associated with each resource object. In particular, information about the relationship 

bctween objects is available (for ex ample, whether a particular object was derived from 

another object). 

Although the proposed architecture does not provide any additional access meth

ods, it docs provide a means for determining ail the information about the object that is 

available, through dialogue with the associated Information Broker. Information about 

each object (including its URI) is served from a series of information indexing servers, ail 

based upon the same ba~ic information processing engine. 

32 



URSNs are implemented as proposed in Chapter 3. Bach rcsource has associull'd 

with it a Virtual User's Publisher ID (represented by an identifier unique across the Inter

net) and each Virtual User is associated with a specific Information Broker. It is possible 

for a single Broker to serve information about multiple Virtual Users. 

User 
Access 0 
Agents 

Resource 
Discovery ~ 0 
Service "---.-J' ... 

Resource 
Indexing ~ 0 
Service "---.-J" .. 

Individual 

0 0 C) Service 
Providers 

ftp Gopher Information 
server server 8roker 

Fig. 1: Resource Discovery Architecture system overview. 

The goal for this system was to provide an environment that would allow the lIscr 

to rapidly search for collections of resource providers that providc needcd c1asscs of 

resources, search these individual resource providers to locate specifie instances of nccdcd 

resources and provide architectural support for locating desired URls and UHSNs. 

System Overview 

In this section, 1 present an overview of the Resource Discovcry Archilect ure. This 

is followed by a description of the basic information processing engine that forrns Ihe 

heart of each server within the system. 

The architecture of the complete system is shown in Fig. 1 and consisls of four 

parts: The Resource Discovery Service (RDS), the Resource Indexing Service (RIS), a col

lection of Resource Service Providers (RSP) and individual User Access Agents (UAAs), 

which are user programs that access the other components of the systems. 

33 



{ 

The Resource Discovery Service 
The Resource Discovery Service provides the mechanism for Class Discovery. 

8ased upon a proactive data gathering model, it allows service providers to register their 

services with a server. Information needed to access the service (incIuding the Internet 

host address and the required access method), along with a brief description of the service, 

are added to a special internai system database, where this information is used to control 

the data gathering and processing components of the information engine. 

Once a service is registered, its registration information and a brief description are 

also addcd to a publicly available user database, along with the description information, 

access information and the current status of the service. The RDS server then periodically 

verifies the existence and availability of the services tracked, updating the user-readable 

information as needed. 

The system provides a selection of access methods to permit the user to search and 

browse items available in the user databa.'1e. Users would be able to query on type of ser

vice, service description, or service status. 

The ROS acts as a registry of resource providers available on the net. and allows 

users to query a collection of resource descriptions using a variety of attributes. It is 

intended to provide proactive location and verification of the existence of specifie service 

providers. 

A primary feature of this service is the proactive verification of the information 

scrved. Because the ROS periodically connects to each of the services in its registry to 

verify the service's availability, services that do not respond can initially have their corre

sponding database entries marked as "Not Responding". If the service remains unavailable 

for long enough, the entry would be marked for deletion from the database. 

Ideally, a description of each service tracked by the ROS would be gathered 

directly from each service during the verification phase, automatically picking up changes 

to this information as it is made available. Thus, if a site decides to specialize in a specifie 

type of information, this change would be retlected once the next update is performed. 

Using this proactive verification technique, users would be assured access to a rea

sonably accurate collection of information about resource providers. 

Resollrce lndexing Service 
The Re,muree Indexing Service is intended to provide Instance Location. Archi

tecturally it is almost identical to the RDS, differentiated more by the type of information 

34 



" 

.. 

,,~, 

it serves rather than the architecture used for gathering and serving this information. thl' 

internai system databa~e again identifies which hosts contain infol'lJlation to be tracked, 

along with details about how to gather that information and how to proccss it and store it 

for acce~s by users. 

The primary difference hetween the RDS and the RIS in operation is that thl~ RDS 

is concemed with locating, verifying and serving of information about the existence of 

Internet resource providers (that is, responding to queries about which collections of 

resources or service providers exist that can he searched to satisfy a givcn query). In COIl

trast, the RIS is intended to respond to queries conceming specific classes of scrvice pro

vider and responds with information about specific resources. 

Both the RDS and RIS are composed of collections of autonomous serVCIS, that arc 

independently maintained and operated. It is expected that in operation both services will 

consist of a number of individual servers which will specialize in collecting and scrving 

different types of information. This provides both robustness (since it pcrmits the shadow

ing of popular collections of information) and diversity, sincc it allows individual servll:c 

operators to decide which information to gather. It is cxpected that a vnriety of differcnt 

selection criteria will be used at different servers. 

It is expected that some RDS servers will concentrate on tracking specifie types of 

servers, while others will track ail servers specializing in specifie types of information. 

Details of this specialization will be made available through the RDS itself. 

Using a variety of criteria for specifying such services in this way eliminates the 

need for a single large indexing service for ail resources, which would be infeasihle as the 

Internet continues to grow. It also provides a mechanism for offering to uscrs informatioll 

using both host-based naming and user-centred naming methods. 

Note that the basic architecture of an RIS server is identical to the architecture for 

an RDS server. The primary difference between the two is that RDS servers are intendcd 

to track information about service providers, which will in tum provide information about 

multiple resources, whereas the RIS is intended to provide information about specifie 

resources directly. Where the RDS must verify only that a service provider is alive and 

functioning to update its datab~l\e, an RIS server would bc expectcd to copy over spcei fic 

information for insertion into the appropriate RIS user databases. 

Still, in operation the two services are similar. Each server pcrforms discovery to 

add new sources of resource information into their InternaI Hosts Database and periodi

cally connects to resource or service providers to verify the accuracy of the information in 

the appropriate user database. 

35 



( 

( 

( 

Together these two components provide a Class Discovery and Instance Location 

service, delivering URls in response to user-generated queries. Once the appropriate URls 

have been received by the user, the User Access Agent can then perform Instance Access 

directly. 

Resource Service Providers 

ln most cases, Resource Service ProvideT .. are existing Internet service providers, 

such as anonymous FTP sites, NNTP news servers or information servers such as those 

offering WAIS, Gopher or WWW services. 

ln general, individual service providers are tracked in the RDS and part or ail of 

the contents of such services are tracked in the RIS servers. In addition, Information Bro

kers provide a new type of information service, dedicated to providing information about 

individual information objecfs, plus other types of information relevant to individual Vir

tuai Users. 

User Access Agents 

User Access Agents are client programs used to initiate searches and fetch infor

mation from individual users. Ifthe UAA is to he used to both search and retrieve informa

tion such clients need to speak both information engine search and retrieval protoco)s. The 

search protocol can he any su ch protocol supported on that information engine (note that 

the architecture allows the implementation of multiple search and retrieval protocols for 

accessing individual user databases). The choice of retrieval protocols available in the 

uscr's UAA will he what determines whether the resources located using the Resource 

Discovery Architecture can actually be accessed. 

Altematively, the UAA can be used only to perform searches in the RDA informa

tion cngine. Once instances of needed resources are located, stand-alone implementations 

of the appropriate protocols can he used for final access. 

Note that the design of the information cngine does not require the development or 

dcployment of a specific search or access protocol. The architecture is intended to be 

extensible, supporting a variety of existing search and access protocols. 

36 



Internet 
Resource 
Providers 

rawdata 

Registration and 
Discovery module 

0--...... 
Mirroring and 
Shadowing 
module 

Retrieval 
Manager 

files in various 
formats 

Parse Manager 

Processed 
data files 

to Input Manager 
(see Fig, 3) 

Host Database 
Manager ;IIIemal 

"(lsts 
databa.\'e 

raw data 
file,fi ;11 va,.;ous 

L..-,..--' format,fi 

Processed 
data files 

Fig. 2: Information Engine Architecture (Part 1). 

37 



( 

(~ 

( 

parsed data files 

user acce!isible 
databases 

parsed data files 

use r accesrible 
databases 

Location Manager 

Note: Both the Location 
Manager and the Access 
Manager are called by 
User Access Agents 
speaking a variety of 
protocols, Each 
component consists of 

Access Manager 

a number of individual 
modules, each speaking 
a single protocol. 

Fig.3: Information Engine Architecture (Part II). 

38 



1 

The Information Processing Engine 
The components of the RDA are based upon a single Informat;on Pmcessitlg 

Engine. The architecture for this engine is shown in Figs. 2-3. The basic architecture of 

this engine supports servers for both the RDS and RIS services. 

The Information Process Engine consist~ I)f six components: the Host DlIlabase 

Manager, the Retrieval Manager, the Pars;ng Managt'r, the Input Manager, the /'ocal;oll 

Manager and the Access Manager. These will each he dt:scribed in tum. 

The Host Database Manager 

Each information engine maintains a single internaI host databasc. This dntnhase 

contains a list of ail service providers known to that engine, aJong with the information 

needed to gather and process this information. This incIudes the access method to use 

when gathering information (specified as a program to he run by the Retrieval Manager. 

see below), the time of last access, access frequency, and the type of information to be 

gathered, including a brief text description for the benefit of the system operator. Ali 

access to this database is through the Host Database Manager. 

A registration and discovery module (an adjunct to the Host Database Manager) 

allows the system's administrator to enter new records into the database. Input to this 

module may he through an email interface, an interactive program or from a separate 

resource discovery program. This system could process email registrations automatically 

but given that such entries are not authenticated, it is suggested that they should be entered 

but flagged as "not verified". Only after the administrator has checked the cntry is a valid 

request and the service has been verified as existing and operational should information 

about it he made available to users. 

The mirroring and shadowing module is used to communicatc among Host Data

base Managers on multiple servers when they wish to use mirroring or shadowing tech

niques to distribute the database among multiple sites. They communicate information 

about each site and the information gathered to ensure that ail scrvcrs have the same user 

database contents. 

The Retrieval Manager 

The Retrieval Manager is responsible for determining whict. hosts should he vis

ited to retrieve information for addition to the use.' databa..c;;es. Il docs this by pcriodicall y 

querying the Host Database Manager for hosts that are due for updating, then launching ml 

appropriate data gathering program as a separate process, passing it the name of the target 

39 _1 



( 

ho st and other details as arguments. Any nurober of such individual data gathering pro

grams can be provided, offering flexibility in the data gathering step. 

ln the case of the ROS, the data gathering programs are responsible for verifying 

the availability of the service tracked, and for checking for and fetching service descrip

tions made available from the service. 

ln the case of the RIS, the data gathering programs are responsible for determining 

if the resources being tracked have changed, and if so, retrieving the actual infonnation 

itself. 

The data gathering programs can gather the desired information using any number 

of techniques. The architecture allows for multiple data gathering programs in a single 

information engine. These may be anything from simple shell scripts, or simple file copies 

from a remote host, to dedicated data gathering programs which include data verification 

and processing routines. 

These various retrieval programs are used to create raw informationfiles, which 

contain the information to he added to the user databases in any one of several standard 

formats. For ex ample, if this service is used to provide an archie-like file listing service, 

the raw files would be listings in the file formats provided by UNIX, VMS or TOPS-20. If 

the system was being used to automatically gather information made available via anony

mous FTP, it need only copy over the appropriate files. 

Once these files are created, the system needs to keep track of the additional pro

ccssing that remains to be done, passing this information from one component to another. 

One way this could be done is to prepend a suitably formatted heacler file to each raw 

information file created. This header which contains the information needed by the follow

ing stages. 

Tile Pars;ng Manager 
Once the Retrieval system has deposited the raw information files onto the syslem 

the Parsi1lg Ma1lager can select and launch one of a variety of parsing programs to process 

these raw files into a standardized format for insertion into the appropriate user database. 

This partitioning of the data gathering and processing steps allows the one infor

mation engine to support a variety of data gathering and access methods. The choice of 

delivery method for that information is thus left as a choice for the system administrator. 

As an example, a dedicated database format would be used to provide the original 

archie files listing service. This would done because the large amount of redundancy 

40 



~ 
1 

1 , 

1 

'.' 

found in file listings can be exploited to reduce the storage space needed and specd sem'ch 

access over conventional database techniques. Details on how such a dedicated datahasc 

format can he built are described in [Emtage91). 

The Input Manager 

The Input Manager selects and launches the programs needed to take the parsed 

output from the previous stage and insert it into the appropriate database. By separating 

the individual database maintenance programs out in this manner, a variety of databnse 

formats can he supported on a single host and any needed special processing can bc donc 

on the processed data. If desired, a single collection of information can evcn he inscI1cd 

into several different databases. 

Information 
Servers 

includes gateways 10 other 
resources, etc. 

User Publications 

lB 
Manager 

Fig. 4: Architecture of the Information Broker. 

41 

Resource 
Manager 



( 

( 

( 

The Location Manager 

The Location Manager is used to provide Internet users with a generalized mecha

nism for searching within the various user databases. The system provides individual 
search facilities for each database access method that is supported on that information 

engine. 

Again note that a single information engine may provide a variety of user data

bases accessed via a selection of access methods. The Location Manager could be seen as 
providing a gateway service that allows users to specify searches on ail of these databases, 

as weil as answering queries about the scope and type of u~er databases sen ed from thal 

system. 

Once a resource or referenc('!d service is located in a particular user database using 

the Location Manager, the user can access these individu:!! references using an approprialc 

nccess method for that user database, through the Access Manager (see below). Informa

tion needed to access the appropriate component of the Access Manager is retumed in the 

forrn of a URI. This URI will either point to a resource stored in one of the user databases 

in the information engine or to a another refiource available on the Internet. 

The Access Manager 

The Acce.\'.\' Manager is responsible for a collection of programs thnt together pro

vide access to the individual user databases maintained by the information engine. Each 

such program wou Id he responsible for implementing one or more access protocols and a 

single site might provide a variety of such programs providing multiple access methods 

onto individual databases. A site might offer access methods for such systems as Prospero, 

WAIS, Gopher. SQL oreven nnonymous FTP. 

Note that it is possible to provide multiple access methods. or even gateways from 

multiple systems onto a single databa..~e. In such cases, the user need not know the under

Iying storage method used, provided suitable gateways are implemented as pat1 of the val'

ious Access Manager processes. 

ln many cases the results of such a search in the Location Manager will provide ail 

the information needed to allow the user to access the desired resource directly. For exam

pie, the results of an archive ;ndexing search sent to the Location Manager of an RIS 

server tracking anonymous FTP archives would be a series of URIs pointing to individual 

files on specific hosts. Users do not need to pursue their search further with the RIS. as 

they now have the information needed to access these files directly. 

42 



On the other hand, when searching for textual information served by such a sys

tem. the Location Manager may retum only the needed indexing information and a poinh.'1' 

to the appropriate Access Manager access program. In this case, the actual fetching of the 

information would be done using an appropriate protocol to internet with the appropriute 

server in the Access Manager. 

This design provides flexibility to users, as they are not forced into using a single 

information service to locate and access Internet information. 

The Information Broker 
Information Brokers are a special clalis of Individual Service Providcrs. Inform<1-

tion Brokers manage access to publications made available by a collection of Vil1ual USCI'S 

and are responsible for assigning and managing URSNs (unless a digital signature schcl1lc 

is being used, in which case the Information 8roker would still act as a central registration 

service for each Virtual User's published objects, answering queries about ail registcred 

resources). 

Information Brokers also provide additional access control for the information 

made available from a specifie host. Drokers are publicly accessible from the Internct and 

can implement specific access control policies for each type of publication scrved. 

The basic architecture of the Information Broker is shown in Fig. 4. Il consists of 

four components, including two types of trusted processes, including the lB Manaller and 

a selection of Information Servers. Ali of these processes require privileged access to the 

host machine to install and modify. The system could also include the actual collection of 

User Publications that will he made available by thÎs site and a separate Resource MUIl

ager which is responsible for managing URSNs for VirtuallJsers issued from this system. 

The lB Manager 

The lB Manager is a trusted process that controls ail access to the Information 

8roker system from other hosts. It acts as a "known service" to the Internet for that hlJst. 

Thus, this process willlisten for connection requests on a well-known port and launch tht! 

appropriate information server in response to appropriate user requests. 

Publication Servers 

Publication servers are trusted processes installed by the machine administrators 

to handle specifie types of information for that Broker. Their role is to fetch uscr-supplicd 

publications, provide gateways to available services and launching additional prograrns on 

43 



( 

( 

( 

the host as needed. They can also perform such tasks as filtering, accounting and access 

control. as needed. 

User Publications 
User Publications are created by individual users and registered with the Informa

tion 8roker's IR Manager process. When users register a publication with the Manager 

they must specify the location of the publication and the appropriate publication server to 

he used when serving it to the world. Once registered with the host Manager, the se user 

publications may be considered "published" and available to the network. The Manager 

can now respond to queries about their attributes ofthese resources and make them avail

able. 

Resource Manager 
The resource manager is the process responsible for the management of URSNs 

for Virtual Users from this system. For each Virtual User it tracks it maintains a database 

of allocated URSNs and associated information. Internet users can query the Resource 

Manager for information conceming specific URSNs issued. 

Additional Architectural Issues 

In this final section, 1 examine a number of remaining issues encountered during 

the design of the Resource Discovery Architecture. 

Resource Pro vider Discovery 
Refore a Resource Discovery Service based upon a proactive data gathering model 

can allow users to search for and discover new collections of resources, sorne means must 

he provided for the system itself to discover such resources. 

This design employs several techniques. First. we observe that such resource dis

covery services are themselves "well-known" resources, in the same sense that the root 

ONS nameservers are well-known. We could thus allow individual users to simply register 

their resources or collections with the service. 

Another technique would he to proactive seek out service providers, using the 

techniques described in [Schwartz91a]. Schwartz has suggested cooperative monitoring of 

network trafflc to detect the existence of services, monitoring email trafflc to detect usage 

patterns among users, etc. [Schwartz91]. 

44 



," 

1 

, 
~ 
1 

! 
1 

The architecture of the I!DS has a separate registration and discovery module, which can 

be used to implement both of these techniques, if desired. Registration information would COIlll' 

from a variety of sources, including email and interactive input. The Host Datllbuse Mmmger 

would then verify each entry and add it to the Internai Hosts Database. Notification services hascd 

upon electronic mail are already used to main~ain electronic mailing lists and provide acccss to 

indexing services (such as archie) and anonymous FTP archives. 

It would also he possible to use active monitoring and resource discovery techniques, such 

as those proposed by Schwartz, to detect new services. Such a system could monitor IlctwOl'k tmf

fic, Usenet bulletin board postings and electronic mail trafflc to detect ncw services us they 

become available. 

The automated detection and registration of new archives was initially providcd hy :hc 

operators of the archie service, but in certain cases the administrators of such services clected 10 

remain outside of the indexing service. This iIIustrates that in operation the administrators of such 

resource discovery services must remain consCÎous of the privacy issues involvcd. It is prohably 

appropriate to recommend that the operators of services discovered through automuted Illecha

nisms, once found, be contacted to verify that entry into the registry is desired bcfore procceding 

with registration. 

Scaling and Performance Issues 
The original archie system was originally conceived as a prototype implcmcntution of Ull 

instance location service. Although an operation al success (the existing service now handlcs 

50,000 queries per day, at 13 distributed sites) there have been concerns expressed ubout the seul

ability of such a centralized indexing services model. 

To address these concerns, it is expected that in the future there will he a trcnd towurds 

more specialized indexing services. By dedicating indexing servers to spccific portions of thc 

information space, we avoid potential bottlenecks white also Iimiting the search for specifie typc~ 

of information, thus improving performance. 

An additional benefit of such an approach is that it would permit operators to providc 

information classified using a user-centred naming scheme. Thus, an indexing service might track 

"Modem Music" or "Technical Reports", storing URls pointing to information accessible through 

a variety of access methods. 

When evaluating the performance of a distributed such as the one describcd in this work, 

we must distinguish hetween the performance of the data gathering component and the uscr 

agents. From experience with the prototype archie system we can conclude that thc principal per

formance bottleneck for this architecture would be in the database maintenance and access COJlI-

45 



( 

( 

ponenls. From initial experiments on the prototype system we conclude that he ability to enter 

updHles and search and retrieve the cached information occupy sorne 80 percent of the system and 

Icach. 10 the conclusion that the current architecture is primarily bounded by system 1/0 perfor-

lIIance. 

One slep that was taken in response to this observation was to reimplement the prototype 

lIsing Ihe mmapO system cali, available under SunOS, to allow the use of RAM as very fast stor

lige ln cffcct, by mapping portions of the database into RAM we achieved significant perfor

malice improvements with the prototype. Furtherexperimentation in this area is expected to prove 

worlhwhile as we continue to tune database update and access routines. 

A number of volunteers have implemented clients for the prototype system, using a Iibrary 

illlplcmcnting the Prospero protocol supplied as part of the Prospero virtual file system. Using this 

plolocol has allowed us to gained operational experience with the client-server paradigm and the 

opcl1Ilion of real applications operating over a production Internet. From this experience we con

cludcd that under our implementation ofthe proposed architecture the primary performance 

dclays were caused by network latency. Transmission errors were not a problem, since the Pros

pero implementation we used was based upon a reliable datagram implementation but network 

congesl ion, especially when traffic was from outside of Canada, dominated query time. 

There is a considerable amount of work still to be done further evaluating system perfor

mance. The will to a large degree depend upon further in implementation and deployment of prac

t ieal scrvcrs. Work on this continues. 

Itlirroring Issues 

Note Ihat the Resource Discovery Service is not a single monolithic service. Rather, it was 

inlcndcd that the architecture would allow multiple competing service providers to offer multiple 

vicws onto the collection of Internet services. This eliminates the need to coordinate a large nUIll

her of distributed resource providers (which experience with X.500 has shown is difficult, if not 

iJllpossible). At the same time, it allows a form of "free market" in the partitioning and organiza

lion of rcsource providers to develop, which offers the potential for providing users with a richer 

and more diverse collection of resources as the number of su ch Internet resource providers grows. 

ln this system, each service provider would be able to configure their own ROS and RIS 

~l'I'\'CrS to offer their own collections of resources. For ex ample, sorne providers may wish to orga

lIi/C Ihcir information c1assified in terms of the services provided. Others, might wish to c1assify 

lIsing a forlll of user-centred naming, providing (for ex ample) indexers for such subjects as "Sci

l'nce" or "Music". 

46 



Note that both types of partitioning of RIS servers can coexist within a single RDS on Ihl.' 

same Internet. Multiple ROS can in tum simultaneously track and provide information about 

many such collections of RIS servers. The ability to perform rapid interactive searching of lurge 

numbers of service descriptions and suitable filtering in the UAA would allow the user to IImit Ihl.' 

sem'ch to the actual indexing services desired. 

Given the similarity between the basic architecture ofthe ROS and the RIS, il is possible 

to provide a similar degree of multiple partitioning of the RDS service as it grows. Root R DS 

servers would he able to identify and track collections of services partitioned and identilied uny 

Humber of ways. A relatively mode st numher of root ROS servers would he needed to provide 

information about these multiple collections of RDS servers. 

This ability to provide multiple partitioning of the collections of information to he 

scarched in both the ROS and RIS components allows the service to scale as the systcm grows. 

There are no single points of failure (no single server need remain available, since there mOly bc 

multiple ways to locate a single service) and the built-in mirroring support makes it rclalivcly cusy 

10 set up shadow services for popular servers. Thus the system is expected to he relative robusl in 

operation. 

Class Discovery vs. Instance Location 

Distributing the indexing service in this manner iIIustrates the importance of the initial 

Class Discovery step. A functioning Resource Discovery Service is required to allow the user tu 

locate and access individual Resource Indexing Service operators. 

A comparison can be drawn between such indexing services and the role of magazinc edi

lors in the traditional publishing industry. A magazine editor acts as a filler, selecting a specifie 

type of information for inclusion in a specific publication. Users are sparcd the necessity of wad

ing through inappropriate submissions while they are granted access to a timcly collection of lISC

rul information on the subject of their choice. 

The Indexing Services layer is intended to perform exactly this filtering stcp. Individual 

indcxing services can he established that specialize in various information topies. This rcduccs Ihe 

amount of data that must he gathered and restricts the information search space, spccding 

sem·ches. 

47 



( 

{ 

Contributions 

Chapter 5 

Conclusion 

This thesis provides a model for the Resource Discovery Problem that permits the 

design and deployment of a resource discovery architecture capable of addressing the 

issues of Resource Oiscovery and Instance Location. In Chapter 1 the problem is decom

posed into a set of subproblems that can he addressed incrementally. 

ln Chapter 2 1 include a survey of research activity in the field of Internet informa

tion delivery. Included is a description of the majority of relevant projected deployed to 

date. 

ln Chapter 3 1 address the issue of naming, that is, the mapping of names to spe

cifie resource identifiers. 1 also noted the importance of Resource Identifiers when 

addressing the Resource Discovery Problem and then presented a proposai for a "Univer

sai Resource Identifier" that could be adopted by existing and future Internet service pro

viders. Doing so would allow the interchange of resource identifiers between disparate 

systems, easing the burden on creators of information management client software 

intended to work in an Internet environment. 

1 also propose the deployment of Unique Resource Seriai Numbers addressing the 

problem of identifying multiple instantiations of identical resources with differing URls. 

URSNs can he used to detect such duplicate resources across multiple virtual Dames, mul

tiple contexts and multiple access methods. 

ln Chapter 41 present the architecture for a complete Resource Discovery Archi

tecture that addresses relevant components of the Resource Discovery Problem as mod

cled in Chapter 1. In p3l1icular, the new system address the Class Oiscovery and Instance 

Location problems and allows a user to reduc.e the namespace to be searched when satisfy

ing user queries through the use of c1ass and indexing servers based upon the User-Cen

tred Naming model. This addresses problems associated with the traditional single naming 

taxonomy used in both ONS and X.500. 

My proposed architecture also contains an Information Broker component that 

provides an additional mechanism for making infornlation available to the Intemet with 

addcd security and authentication capabilities. This Information Broker will also provide 

an implementation mechanism for the URSNs proposed in Chapter 3. 

48 



1 
1· 

" , 

1 

i 

· .' 

1 

Together the components of the system proposed in Chapter 4 provide a vinble 

model for discovering and accessing resources in an large internet environment. 

Areas for Future Research 
A number of important problems remain to be addressed in the field of resource 

discovery and access in large internet environments. 1 will enumerate sOllle of the out

standing issues here. 

ln particular. more work needs to bt, do ne in exploring issues relaled 10 Ihe naming 

of resources. The User-Centre Naming model holds great hope for the design und deploy

ment ofpractical resource naming and access services, particularly when combincd with 

systems such as the one described in this thesis. 

A number of issues in the design and interaction of URls and URSNs in llIultiple 

information systems remain to be explored. In partieular. operational issues rclated 10 1 Ill' 

deployment of a single standard need to be examined. With the potential for an Internet 

consisting of millions of conneetcd hosts we also nced to dcvelop additionul Illcch:misl\Is 

for narrowing the foeus of user queries and thus reducing the namcspacc to bc sem ched on 

eaeh query. 

Finally, researeh also remains to he donc in the areas of mirroring and providing 

consistency in distributed data bases operating in a large intentet environment. 

49 



References 
( 

Ackerman90 Ackerman, Mark T.; Malone, "Answer Garden: A 

Tooi for Growing Organizational Memory". Proc. of 

Conference on Office Information Systems. April, 1990. pl. 

Albeni92 B Alberti, F. Anklesaria, P. Lindner, M. McCahill, D. 

Torrey, "The Internet Gopher Protocol, A Distributed 

Document Search and Retrieval Protocol". University of 

Minnesota Mi,,:rocomputer and Workstation Networks 

Center, Spring, 1992. 

Berners-Lee T. Bemers-Lee, R. Cailliau, J-F. Groff, B. 

et al 92 Pollermann, "World-Wide Web: The Information Universe", 

Electronic Networking, Meckler. Spring, 1992, p 52. 

Blaze90 M. Blaze, "Issues in Massively Distributed File 

Systems", Proc. 2nd Princeton University SystemsFest, 

April, 1990. 

'1 1 
Berners-Lee92a T. Bemers-Lee, J-F. Groff, R. CailJiau, "Univcrsal 

Document Identifiers on the Network", unpublished, but 

available for anonymous FTP from info.cern.ch as "/pub/ 

www/UDI.ps", February, 1992. 

Bush45 V. Bush, "As We May Think", The Atlantic Monthly, 

July, 1945, p 101-108. 

Champine90 G. Champine, D. Geer, W. Ruth, "Project Athena as a 

Distributed Computer System", Computer, September, 1990. 

Case89 J. Case, M. Fedor M. Schoffstal, C. Davin, UA Simple 

Network Management Protocol", RFC 1098, University of 

Tennessee at Knoxville, 1989. 

CCITT88 CCITT X.500/IS0 9594-1, "Information processing 

systems - Open systems interconnection - The Directory -

Partl-8", CcrIT, 1988. 

Comer91 D. Corner, "Intemetworking with TCP/IP, Volume 1 

( 
(Second Edition)", Prentice_Hall, 1991, pl71. 

50 



Crocker82 

Davis90 

Deutsch 

Gibbs87 

Emtage91 

Emtage& 

Deutsch92 

Golding91 

Harrenstien82 

HilI92 

Howard88 

D. Crocker, "Standard for the format of ARPA 

Internet text messages", RFC822. University of Dclw.trc. 

1982. 

F. Davis, B. Kahle, H. Morris, T. et al 90 Snlcm. T. 

Shen, R. Wang, J. Sui, M. Ginbaul11, "WAIS interface 

protocol prototype functional specification", unpllblishl'd hut 

available for anonymous FTP from think.com as "/plIh/wais/ 

doc/wais-concepts.txt". Thinking Machines. 1990. 

D. Deutsch, "An Introduction to the X.SOO Scries 

Network Directory Service", June, 1988. 

S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantus. Y. 

Yeorgaroudakis, "Muse: A Multimedia Filing Systcm". IEEE 

Software, pp 4-15, March, 1987. 

A. Emtage, "The archie System", Mnstcrs' Projecl. 

School of Computer Science. McGiII University, 1991. 

A. Emtage, P. Deutsch, "archie - An Electronic 

Directory Service for the Internet", Proc. Usenix Tech COIlf. 

pp. 93-110, January, 1992. 

R. Golding, "Distributed epidemic algorithms for 

replicated tuple spaces", Technical RCp0l1 HPL-CSP-91-1 S. 

Concurrent Systems Project, Hewlett-Packard. June, 1991. 

K. Harrenstien, V. White, "NICNAMElWI-IOIS" 

RFC-812, SRI International, March, 1982. 

J. Hill, "The X.500 Dircctory Service: A Discussioll 

of the Concerns Raised by the Existance of n G10hal 

Directory", Elcctronic Networking, Mccklcr, Sprillg, J 992. P 

24 .. 

J. Howard, M. Kazar, S. Menees, D. Nichols, M. 

Satyanarayanan, R. Sidebotham and M. West, "Scalc and 

Performance in a distributed Ille system", ACM Transnctiom, 

on Computer Systems, February 1988, p. 21 . 

51 

--- , 



Jacob90 V.S. Jacob, H. Pirkul. "A Framework for Networked 

{ Knowledge-Based Systems". IEEE Trans. Systems, Man & 

Cybernetics. 20 No.l, JanlFeb. !990, 119-127. 

Kahle89 B. Kahle, "WAIS - The Wide Area Information 

Server Concepts", Technical Report TMC-202, Thinking 

Machines Inc. November, 1989. 

Kahle91 B. Kahle, "Document Identifiers, or International 

Standard Book Numbers for the Electronic Age", Thinking 

Machines Corp .• 1991. 

Kahn et al 90 Kahn, Pau, Meyrowitz. "Guide, Hypercard and 

Intermedia: A comparison HypertextlHypermedia systems", 

IRIS Technical Report 88-7. Brown University, 1988. 

KilI89 S. Kille, "Mapping between X.400(1988)/ISO 10021 

and RFC 822", RFCII38, University College London, 1989. 

Kraemer88 Kraemer, K. and King, J., "Aids for Cooperative 

Work and Group Decision Making", ACM Computing 

Surveys, Vol. 20, No. 2, June, 1988. 

( Lottor92 M. Lottor, "Internet Growth (1981-1991)", RFC 

1296, SRI International, January, 1992. 

Martin91 1. Martin, "There's Gold in them thar Networks!", 

RFC 1290, Ohio State University, December 1991. 

McCahill92 M. McCahill, "The Internet Gopher", Proe. of the 

23rd Internet Engineering Task Force, San Diego, Ca.. 1992, 

pp 495. 

Moekapetris87 Mockapetris, P. "Domain Names - Concepts and 

Facilities", RFC 1034, November, 1987. 

Mockapctris87 Mockapetris, P. "Domain names - Implementation 

and Specification", RFC 1035, November, 1987. 

Nelson90 T. Nelson, "Literary Machines", Sausolito, Ca., 

Mindful Press, 1990, p .. 

Neuman92 B. Clifford Neuman, "Prospero: A Tooi for 

Organizing Internet resources", Electronic Networking, 

( Meckler, Spring, 1992, p. 30. 

52 



t , 
l 

~, 

~ 

'--
....... 

Neuman92a B. Clifford Neuman. "The Vil1unl Systcm Model: A 

scalable Approach to Organizing Large Systems", Ph)) 

thesis, University of Wa~hington, 1992. Departlllcnt of 

Computer Science and Engineering. 

Peterson90 L. Peterson, N. Hutchinson, S. O'Malley, H. Rao, 

"The x-kemel: A Platform for Accessing Internet 

Resources", Computer, May. 1990, p. 23. 

Ousterhout88 J. Ousterhout, A. Cherenson, F. Douglis. M. Nelson, 

B. Welch, "The Sprite Network Operating Systcm", 

Computer, February, 1988, p. 23. 

NIS088 "Z39.50~ 1988: Informntion Retrieval Servcice 

definition and protocol specification for library applications", 

National Information Standards Organization. Bcthcsda, 

Maryland, USA, 1988. 

Postel80 J. Postel, " User Datagral11 Protocol", r~FC 768. ISI, 

August, 1980. 

Poste182 J.Postel, "Simple Mail Transfer Protocol", RFC ~21, 

Information Sciences (nstitute, University of SOllthern 

Califomia, August, 1982. 

Postel&Reynolds83 J. Postel, J. Reynolds, "TELNET Protocol 

Specification", RFC 854, ISI, May, 1981 

Postel&Reynolds85 J. Postel, J. Reynolds, RFC 959 "File Trunsfcr 

Protocol", ISI, October, 1985. 

Quarterman86 J. Quarterman, J. Ho~kins, "Nolable Computer 

Networks", Communications of the ACM, 29( 10):932-7, 

October, 1986. 

Rich&Waters90 C. Rich, R. Waters, "The Programmer's Apprenlicl''', 

ISBN O~201 52425~2, ACM Press, 1990, New York. 

Rivest92 R. R."est, "The MD5 Message-Digest Algorithltl", 

RFC 1 jll, MIT Laboratory for Computer Science and RSA 

Data Security, Inc., April, 1992. 

53 



Rose92 M. Rose, "The Little Black Book - Mail Bonding 

( with OSI Directory Services", ISBN 0-13-683210-5, 

Prentice-Hall, New Jersey, 1992. 

Salton&McGiII83 G. Salton, M. McGiII, "Introduction to Modern 

Information Retrieval", McGraw-Hill, New York, 1983, p 

321 

Satyanarayanan90 M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki. 

E. Siegelm D. Steere, "Coda: A Highly Available File System 

for a Distributed Workstation Environment"", IEEE 

Computer, April, 1990, p. 447. 

Satyanarayanan90a M. Satyanarayanan, "Scalable, Secure, and Highly 

Available Distributed File Access", IEEE Computer, May, 

1990, p. Q. 

Schwartz91 M. Schwartz, "Resource Discovery in the Global 

Internet". CU-CS-555-91, University of Colorado at Boulder, 

November, 1991. 

Schwartz91 a M. Schwartz, "Resource Discovery and related 

research at the University of Colorado". CU-CS-508-91, 

University of Colorado at Boulder, January, 1991. 

Sollins85 K.Sollins, "Distributed Name Management", Ph.D. 

thesis MIT/LCSrrR-331, M.I.T., 1985. 

Sollins89 K. Sollins, "A Plan for Internet Directory Services 

(White Pages)", RFC 1107, June, 1989. 

SRI92 "Internet: Getting Started", edited by April Marine, 

SRI International, Menlo Park, CA, 1992. 

Strauss89 H. Strauss, "University-Wide General-Interest On-

Hne Information Systems that Work - And that You Can 

Afford", ACM SIGUCCS XVII, 1989. 

Sun89 "NFS: Network File System Protocol Specification", 

RFC 1094. Sun Microsystems, March, 1989. 

Tanenbaum88 A. Tanenbaum, "Computer Networks", ISBN 0-13-

162959-X, Prentice-Hall, New Jersey, 1988. 

( 

54 



'.' -ti 

Tanenbaum90 

Yeong91 

A. Tanenbaum, R . van Renesse, H. van Stavercn. G. 

Sharp, S. Mullender, J. Jansen, G. van Rossum, "Expericnce 

with the Amoeba distributed operating system", 

Communications orthe ACM. 33(12):47-63. Decembcr. 
1990. 

W. Yeong, "Towards Networked Information 

Retrieval", Tech Report 91-06-25-0 l, Performance Systcms 
International, 1991. 

55 


