Resource Discovery in
an Internet Environment

Peter Deutsch,
School of Computer Science,
McGill University, Montreal,

June, 1992,

(c) Peter Deutsch, 1992.

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment
of the requirement of the degree of Master of Science.

P

Abstract

This thesis examines issues relevant to the design of distributed resource location
systems capable of functioning in a multi-user, muiti-computer internet environiment. Cen-
tral to this work is the concept of “resource discovery”, that is, the act of discovering the
existance of classes of resources, locating specific instances of such classes, and accessing
these instances.

The problems of resource discovery in a network of hundreds of thousands, or
cven millions of computers are fundamentally different from those encountered in a local
area network environment. In this thesis, an architecture for a resource discovery service is
proposed that allows individr.al users to locate and access arbitrary co”.ections of
resources throughout a large-scale internet. Resources served by this system may be typed
and treated as individual objects in a distributed, automatically maintained information

system,

Cette thése examine la création des systemes facilitant la localisation des
ressources sur les réseaux de grande envergure. Le probléme adressé, la localisation des
ressources, est composé de trois problémes individuels: trouver des serveurs des
ressources, trouver des ressources individuelles, ainsi que procéder X I’accés aux
ressources trouvées.

Les problémes de localisation des ressources sur les grands réseaux (qui consistent
des milles, ou meme des millions d’ordinateurs) ne sont pas lzs mémes que ceux rencon-
trés sur les réseaux locaux (les “LAN"). Cette thése présente I’ architecture d’un service
des réseaux qui permet aux utilisateurs de trouver et manipuler des ressources sur les
réscaux des réseaux (les “internets”). Dans cette architecture, les ressources sont traitées
comme des objects qui sont automatiquement ramassés dans les bases des données dis-
tribuées. L'utilisateur peut ansi poser des questions aux bases des données.

LI

Acknowlegements

I would like to thank Alan Emtage for the many valuable conversations we have
shared over the past three years. The indexing services portion of the Resource Discovery
architecture presented in Chapter 4 is based in part upon ideas that grew out of our collab-
oration on the archie system and its follow-ons. Alan’s implementation of the original
archie system provided a vaiuable testbed for trying out our ideas and continues to provide
a valuable service to the Internet.

I would also like to acknowlege the cooperation of Prof. Clifford Neuman of 1S,
Prof. Mike Schwartz of the University of Colorado, Prof. Peter Danzig of USC, Tim Bemn-
ers-Lee of CERN, Mark McCahill of the University of Minnesota, Ed Vielmetti of MSEN
Inc., and Brewster Khale of Thinking Machines Corp., all of whom shared conversations,
insighis and information about their individual projects that permitted me a better under-
standing of the issues addressed in this thesis.

My gratitude goes to ihe staff of the School of Computer Science at McGill for
their valuable cooperation and support. In particular I'd like to thank Luc Boulianne, Bill
Heelan, Wanda Pierce and Christopher Rabson of the School’s technical staff for their pro-
fessionalism and friendship over the years. I'd also like to thank Vicki Kierl and Lorraine
Harper of the School’s administrative staff, both of whom helped me in many ways to see
this through.

Finally, my wife France and my children Jessica and Jérémy deserve much of the
credit for helping me to see that this work was completed. Their support sustained me
throughout and I own more to them than I can repay.

FE

Table of Contents
ADSEIACLooeiiiicecienen ereee ettt ee st ettt st essresebe e e b srebasesne s s e s neasseesesnn i
ACKNOWIEZEIMENLSocevviiiieeeeeriiiiieeeeeeeriirsinreaeseesresissssnessesarassvssessennnsssasssssess ii
Chapter 1 Introduction and Statement of the Problemcc.couvnnnee. 1
Chapter2: Related WOIKcooiieieeniiiriiceeeeenereiereccet e terese e e e s neeveaseees 8
Chapter3: Design ISSUESccoovvveermmerrniires et eesnnanens 19
Chapter4: The Resource Discovery Architectureoocviveeeeeecvinnen. 32
Chapter 5: Conclusion and Summary of Contributionscccecevvine. 48
REFEIENCESviviiviiieeceeriiies ettt e st retes et s se s ebe s ess e e aassrenrens 50

Chapter 1
Statement of the Problem

Introduction

This thesis examines 1ssues in the design of distributed resource location and
access systems capable of functioning in a multi-user, multi-computer internet envirun-
ment. Central to this work is the concept of Resource Discovery, that is, the act of discov-
ering the existence of classes of resources in an Internet, locating spccific instances of
such resources, and accessing those resources. Such resources include but are not limited
to files, active processes, hosts and peripherals.

As collections of computers scale up from small collections of machines on single
networks (so-called local area nets, or LANSs) to large-scale collections of netwoiks (wide
area networks, or WANSs) the problems of resources discovery change. In particular, the
broadcast or multicast techniques that suffice to advertise, locate and access resources
such as file servers and printers or other peripherals break down in an environment of hun-
dreds of thousands ot hosts spread across thousands of networks [Blaze90].

There are a number of reasons for this. On many collections of networks broadcast
message packets are nnt forwarded through router gateways, thus discovery techniques
that rely on such broadcast messaging will not work. Also, polling or scarching tech-
niques, in which a user must search through each potential resource provider, become
infeasible when there are hundreds of thousands or even millions of resource providers.

Given that it is not possible to detect the availability of services and other
resources using a traditional broadcast message paradigm in such environments, new tech-
niques are needed to allow users to find and utilize resources.

In this thesis, an architecture for a resource discovery service is proposed that
allows individual users to interactively locate and access arbitrary collections of informa-
tion throughout a large internet. The proposed architecture uses a registry paradigm featur-
ing proactive data-gathering to verify the existence and availability of resources. This
maodel presumes a reliable network transport layer, but is independent of underlying tians-
port protocols and can be used either interactively or through automated software tools.

One component of this new system allows arbitrary users to publish information
and other resources through the use of information brokers. Such information brokers sim-
plify the problems of resource discovery and access by providing a database of attributes

F e

for individual resources that can be queried by users and also by other components of the
system,

The proposed design allows a high degree of information hiding and automated or
software assisted discovery of information not explicitly stored within the system. It also
permits non-privileged users control over their published information while limiting expo-
sure of the host machine to unauthorized access. This architecture also addresses a number
of security considerations; in particular, the user of such a system need not be granted gen-
cral access to the host machine to access the information being served.

What is the Internet?

The term internet can refer to any network of networks. The so-called DARPA
mternet, or more commonly simply the Internet, began as a research project for the U.S.
Defense Advanced Research Projects Agency (DARPA) in the early ‘70s [Tanenbaum88].
It is now a collection of networks spanning the globe, with a large number of research,
educational and commercial networks connected together into a single global internet. The
Internet now serves as both a live testbed for on-going networking research and a daily
communica:ions tool for thousands of users in fields far removed from networking and

computer science.

Estimates of the number of machines connected to the Internet vary, depending
upon the definition of connectivity used. Some machines are capable only of exchanging
clectronic mail mezsages, and yet may be described as Internet connected. Some hosts
gateway onto the Internet from networks using differing protocol suites, so offer only a
minimal subset of shared functionality. The majority of networks of computers connect to
the Internet using the TCP/IP protocol suite [Comer91] and machines thus connected have
available the full range of Internet protocols and services. Such machines are often

described as fully connected internet hosts.

Onc easily computed measure of connectivity is the count of host address records
within the Domain Name System [Mockapetris87] [Mockapetris87a)]. Using this metric,
the current Internet is now estimated to consist of at least 730,000 machines coupled to
several thousand distinct networks, with current growth running at about 30 percent every
three months [Lottor92].

The Internet as Service Provider

In the early years of development, the Internet was used primarily for remote login,
clectronic mail and remote file transfer. Such protocols have been available for some time.
Remote login usually uses the telnet protocol described in [Postel&Reynolds 83], elec-

#

tronic mail is usually transported using the SMTP protoco! described in [Postel82). File
transfer from remote archives is usually accomplished using the FTP protocol described in
[Postel&Reynolds8S5].

By necessity much of the early design effort for the Internet concentrated on such
low level issues as development of needed communications protocols and hardware, with
little time or energy left for the more abstract problems of providing specific user-level
services in the new distributed computing environment that was being developed.

This situation is now changing and a wide range of network services is now avail-
able. Services offered to users include distributed file systems, distributed bulletin board
services (such as the Usenet news service) [Quarterman86], a variety of on-linc library
catalogues and an extensive network of file archives [Martin91]. More recent additions
include distributed Hypertext systems [Berners-Lee92] and distributed information sys-
tems [Strauss89] [McCahill92].

With the growth of the Internet, the need has also arisen for distributed information
storage and retrieval systems. Such systems allow users to make available information to
others, increasing productivity through “cooperative work tools” [Ackerman90] or offer-
ing a way to share resources and coordinate work among multiple users [Kracmer88]

Distributed information systems also find use in system-level support tasks. The
Domain Name System (DNS) is used throughout the Internet to translate machine names
to addresses [Mockapetris87]. The Simple Network Management Protocol (SNMP)
allows network administrators to monitor and operate equipment from across a wide arca
network [Case89].

Other applications already deployed include multimedia filing systems {Gitbs87)
and a variety of distributed computing environments [Champine90], [Peterson90] and
[Ousterhout88].

The Resource Discovery Problem

As the number of users and hosts continue to grow both individual users and
potential service providers have come to recognize that a major challenge exists in identi-
fying the existence and location of information, service providers and other resources in a
distributed environment of this size. This problem, the so-called “Resource Discovery
Problem”’, must be adequately addressed if we are to move towards a true Internct-wide
model of resource delivery. In this thesis, a survey of current research that addresses com-
ponents of this problem is presented. Following this, the design of an information discov-

[§

cry and access system is presented that is intended to address specific components of the

Resource Discovery Problem.

Modeling tise Problem
Several researchers have attempted to model the problem of locating and accessing
information in an Internet environment. Yeong, addressing the problem of networked
information retrieval, speaks of “Discovery, Searching and Delivery” [Yeong91] while
Schwartz defines the problem in terms of “Class Discovery, Instance Location and
Access” [Schwartz91]. Other researchers provide tools te ease the burden of information
management while also providing additional uccessing tools [Neuman92] [Kahle89].

Combining these views, and building upon Schwartz’ taxonomy of the problem,
for this thesis the Resource Discovery Problem is decomposed into the four subproblems
of Class Discovery, Instance Location, Instance Access and Information Management.

Class Discovery

The act of Class Discovery refers to the identification of a specific class of
resources in a larger community of such resources. Thus a user, in searching for a specific
class of service providers, might wish to locate all those service providers offering “anon-
ymous FTP archive sites”. Such archive sites are Internet hosts that provide universal
access to their collections of information using the File Transfer Protocol (FTP) through
the convention of a special user code that requires no user authentication. Such sites cur-
rently offer a wide range of information, including technical reports and other publica-
tions, software and data and provide one of the few universal methods for sharing

information currently available on the Internet.

The result of such a Class Discovery query would be a set of resource providers
capable of providing the specified type of resources.

User Views and Resource Provider Views

The above view of Class Discovery is based upon a naming model centred upon
host and access method. Such a naming model can be considered an extension of what
Neuman has referred to as Hosr-Based Naming [Neuman92a). Host Based Naming refers
to the identification of resources, and in particular files, by naming them relative to the

host on which they reside.

Examples of host-based naming systems include IBIS [Tichy & F.uan 84] and to
some extent Sun’s Network File System [Sandberg et al 85].

The problem with such an approach is that, as Neuman notes:

While relatively simple to implement, host-based naming makes it difficult to orga-
nize and to locate information: the first part of a file name (the host) usually has little or
no relation to the topic, and as a result, logically related information stored on different

hosts ends up scattered across the name space.” [Neuman92a, p.19]

One altemative is to provide Global Naming, in which all resources are named as
part of a single namespace. without specifically naming the host. Such a naming scheme s
used in the .andrew File System [Howard88] and Coda [Satyanarayanan90)].

The problem with this approach is that resource naming relies upon the name pre-
fix to be unique to identify the appropriate resource server in a distributed environment.,
Resources that are logically related raust presumably also share some compoaent of the
naming prefix and this constrains where resources can be stored in an Internet cnviron-

ment.

As a third alternative, it is possible to adopt a naming scheme in which we allow
the user to name specific classes of resources based upon how the user wishes to organize
the information being sought. Such User Centred Naming forms the basis of such distrib-
uted systems as Amocba [Tanenbaum90] and Prospero [Neuman92].

With User-Centred Naming, we allow users to group together classes of iesources
such as “services related to the genome project”, or “information services related to Maod-
ern Music”. The system would then provide access to the component resources while
shielding the user from the specifics of resource location and access method This User-
Centred Naming of services parallels the User-Centred Naming used in the Prospero File
System.

Ideally, an information location and delivery service would provide support for a
mapping between these multiple approaches to naming. Thus, there would be a micans fo
allowing the user to specify a search on the topic of *Modern Music”, which would be
translated automatically to a search among an “appropriate” serics of tnformation servers
indexed by resource providers on the Internet. Alternatively, if the user knew in advance
that a particular resource is available via anonymous FTP then queries could be con-
strained and a search limited only to “appropriate” FTP sites. A mechanism for doing this
is described in this thesis.

One technique for Class Discovery is described in [Danzig et al 914, In this papet,
Danzig describes a technique for distributed indexing that provides a mechanism for
building autonomous databases that specialize in particular topics and types of querics. In

&

effect, such a system partitions the potential namespace using a variation of user-based
naming to reduce the total namespace to be scarched. Such partitioning techniques hold
out great potential for reducing the size of the namespace that must be searched when
making queries to an entire Internet of resource providers. An alternative approach to par-

titioning is presented in Chapter 4.

Instance Location

Once the existence of a specific class of resource has been established, a user can
proceed to Instance Location. The objective here is to resolve a nser resource query to spe-
cific instances of resources that satisfy the conditions of the query. If the result is to be
nsed for Instance Access (see below) then a mechanism must exist to map such instances,
if provided as user-centred names, to an appropriate host and access methed. The archie
system, an indexing service that allows such instance searches to be done rapidly, has been
described in [Emtage & Deutsch 92}

The archie system proactively builds a database of information, gathered from
multiple sites across an Internet. Users of the system search this database through a variety
of access methods by sending queries to a database query engine running on the same host

as the database.

The archie system is a resource intensive method for providing Instance Location
(the current version does not support a distributed database mechanism, so all information
1o be searched resides on a single host). Still, it has Gemonstrated the feasibility of such an

approach for scarching mullions of records in the Internet.

Work has also been done in the pilot archie system to provide database mirroring
(in which multiple copies of an identical database are made available at multiple sites). To
date, this has proved an effective mechanism for coping with rising demand. The mecha-
nisms to do this are still in their infancy and would benefit from further research. Tech-
niques for maintaining loosely distributed network-wide databases are discussed in
|Golding91].

One alternative approach to such automated instance location techniques currently
cemployed by Internet users is to interactively browse through individual information
delivery systems, such as Gopher [McCahill 92], WWW [Berners-Lee92] or WAIS
{Kahle91]. Such an interactive approach does not scale well.

Other techniques include chaining (i.e. the passing of a query from one search
engine to another for resolution) or multicast query generation, in which a single query is
sent simultaneously to multiple query engines. Both of these techniques were proposed for

the X.500 Distributed Directory Service. [CCITT88] An overview of the X.500 Dircctory
Service is presented in [Deutsch88).

Given the projected growth of information providers on the Internet, more rescarch
will be needed to develop additional techniques for limiting the information space to be
searched.

Instance Access

Instance Access refers to the application of an underlying access method to access
an instance of a resource. There are a wide variety of access methods available on the
Internet (as stated, much of the early Internet research revolved around creating the needed
protocols and paradigms for resource access). These include traditional file transfer proto-
cols such as FTP [Postel&Reynolds85], distributed file sharing protocols, such as are used
in NFS [Sun89] or the Andrew File System [Satyanarayanan90a] and distributed informa-
tion search and delivery protocols, such as Z39.50 (used in the WAIS system) [Davis90] o
Gopher [Alberti92].

The work presented in this thesis is primarily concerned with addressing the indi-
vidual subproblems of Class Discovery and Instance Location. The Resource Discovery
Architecture that is proposed in Chapter 4 is capable of providing the user with needed
host and access method information. The knowledge of how to apply such access methods
is assumed to reside in the user clients.

PREIN

g

Chapter 2
Previous Work

This chapter summarizes research relevant to the various components of the
resource discovery problem. In particular, it examines the design and implementation of a
number of specific user services now available on the Internet.

Research in this area in recent years has concentrated on tools offering facilities for
instance discovery, instance access and information management. These include:

The Domain Name System (DNS)
The Domain Name System (DNS) [Mockapetris87] was an early example of a net-
work-wide distributed database system. The DNS was designed to translate between vir-
tual hostnames and corresponding 32 bit Internet Protocol (or IP) addresses.

At its heart, DNS consists of a naming taxonomy that partitions a namespace of
virtual hostnames (such as quiche.cs.mcgill.ca) and corresponding host IP addresses
across a hierarchal collection of DNS servers. Each server holds a portion of the parti-
tioned database of hostname/address mappings and is capable of responding to user que-
ries on the subset of attributes and values it contains.

Primarily designed to perform translation from fully qualified domain names to 1P
addresses, the DNS could be considered primarily an instance location tool, allowing
users with only a virtual hostname to map this to the information needed for access.

In operation, the resolution of a domain name to the corresponding IP address
using DNS consists of sending a series of queries to a subset of DNS servers, each one
responsible for some portion of the corresponding fully qualified domain name. Although
normally this would be a potentially resource-intensive set of operations, such an
approach is feasible because in this case each individual query can be sent in a single
transmission packet and each query can be satisfied in the server O(1) time using a simple
table lookup. Note that not all resource discovery tasks fit this model of short, simple and
fast queries.

DNS is also used to distribute information about host hardware, operating system
configurations and electronic mail exchanger addresses, and it is possible to query the sys-
tem for wildcard matches (for example, it is possible to ask for all records of a particular
type matching a particular string). Thus, it does provide a basic, if primitive class discov-

ery mechanism, as well.

DNS has been an operational success, having expanded continuously since its
inception to now cover over 700,000 machine names. Despite this success, there are some
problems with both the basic architecture and the specific implementations now in service
on the Intemet.

Maintenance of the system is distributed, with the required information entered
into flat text files (usually by hand) at the site of each authoritative subdomain server. This
can lead to inconsistencies and errors in the database that can only be corrected through
human intervention. There is no internal consistency checking of this information by the
system itself (for example, to verify that registered hosts actually exist on the net).

Another problem can arise during operation. If the authoritative server for a partic-
ular subdomain becomes unreachable then users will find that they cannot perform host-
name to address conversion. In this case, users can find themselves unable to access a host,
even though that particular host is available.

This problem can be alleviated by the use of suitably chosen replicating servers (or
by bypassing DNS and using the IP address of a host directly, where it is known) but the
configuration and operation of these replicated servers is not automatic and is again prone
to human error.

Despite these drawbacks, DNS illustrates the feasibility of distributed database
applications in an Internet environment for appropriate applications.

Distributed File Systems

Distributed file systems such as the Network File System [Sun89], the Andrcew File
System [Satyanarayanan90a] and Prospero [Neuman92] allow site administrators to dis-
tribute file systems across multiple hosts in an Internet environment.

NFS§

The Network File System (NFS) was developed by rescarchers at Sun Microsys-
tems and in now available from a wide variety of commercial vendors. NFS is a distributed
file system that uses the UDP protocol [Postel80] and a stateless file server model to make

available information across a network.

With NFS it is possible to export and import individual disk partitions, or portions
of partitions, across a network or entire Internet. Once a partition is mounted on a local
host as part of an existing file system tree, the distributed nature of the file system becomes
transparent to the user (in terms of naming resources. Of course, response times for

accesses can be markedly poorer for network access on a heavily loaded or widely distrib-
uted system, making it obvious when a user has crossed a naming boundary).

AFS

The Andrew File System (AFS) is a distributed file system that offers location-
independent resource sharing in a distributed environment. AFS implements a single-
image file system for all users with no location dependencies, in effect providing a single
global namespace for all users on all hosts. AFS maintains performance in large internet
environments through the use of a caching/callback mechanism that substantially reduces

network traffic.

Prospero

The Prospero Virtual File System allows the user to create customized views of an
underlying collection of information. Among its features. the Prospero file system (actu-
ally one component of the larger Virtual System Model for distributed computing under
development by its author) provides the capability of creating customized views of avail-
able files through user specified links. Each link consists of a pointer to information along
with information concerning the associated access method for that information.

Prospero thus implements User-Centred Naming of the file system, with each user
offered the possibility of creating their own view onto the underlying collection of
resources. Such user views are themselves a form of value-added processing of the file
system information over and above the contents of the individual files themselves. Such a
customized view be exported and accessed by others, aiding in both the instance location

and information management problems.

It should be noted that Prospero, unlike the other systems mentioned here does not
offer its own access method. Instead, each file in tne system is maintained as a link, which
consists of location information and details of the underlying access method. The Pros-
pero implementation uses this underlying access method when accessing a specific file.

Currently, Prospero supports the UNIX file system, Network File System and
Andrew File System access methods, as well as anonymous FTP.

Prospero could thus be seen as a means for mapping from a user centred naming
system to either a host/access method centre:d system (such as anonymous FTP) or a glo-
bal naming system (such as AFS). The actual Instance Access is handled by implementa-
tion of the required access method protocols in an appropriate library.

10

-~

&

Internet White Pages Services
Internet White Pages directory services [Sollins89] are intended to provide users
with on-line access to user login names, email addresses and other contact information,
thus offering the Internet equivalent of a white pages phone book.

WHOIS

A minimal version of such a system (the WHOIS service) is currently maintained
by a number of sites, including the Internet Network Information Centre (NIC) [Hareen-
stien82]. This service provides a number of small centralized databases, each of which
covers only a small segment of the Internet user population. There is no means for locating
active WHOIS servers, and currently no mechanism ties together the set of servers to
allow a user to scan more than one server.

The current WHOIS design does not scale well and there have been several
research projects which have aimed at providing a more robust model.

X.500

A White Pages Directory Service project based upon the X.500 protocol is
described in [Rose92]. The heart of the X.500 service revolves around two components.
Directory User Agents (or DUAs) are client programs that are able to access information
providers or so-called Directory Service Agents (or DS As) using the X.500 protocol.

DS As are organized as a set of authoritative servers, connected through a single hierarchal
naming authority.

X.500 naming s organized along geographic lines, with national organizations
responsible for their portion of the name space joining the root DSA, and authority for
subtrees in this namespace controlled by and served from DSAs located throughout the
Internet.

There are a number of management concerns that confront potential information
providers in any White Pages service. These include privacy and sccurity issues, the effor
required to create and manage the needed databases and problems required in converting a
large institution to such an Internet-based services model. These problems are discussed in
[Hill92).

A particular problem for current distributed White Pages projects is maintaining
the required data in an accurate and consistent state. This is addressed in the X.500 archi-
tecture by distributing the authority for operation of the Directory across the Internet
through a name registration authority mechanism.

11

Another concern is maintaining access control and security in an Internet environ-
ment. This is addressed in X.500 through the provision of mechanisms for offering both
access control lists and data encryption techniques.

The X.500 service has been under development for some time, and a number of
public domain and commercial implementations have been developed. However, despite a
great deal of research and the deployment of a number of pilot DSA servers, to date the
system has not been an operational success.

A particular problem has been the inherent complexity and tremendous effort
required to start offering an X.500 server, especially the effort required to convert existing
information into a format suitable for existing X.500 implementations. With relatively few
operational servers, users have had little incentive to join in the pilot project. In turn, this
lack of a significant number of operational participants has limited the amount and quality
of information available.

This failure to reach “critical mass”, despite the large amount of research and oper-
ational testing that has occurred, offers a lesson to would-be designers of other potential
Internet services. To reach a wide audience such services should be available with rela-
tively little effort (at least for experimental testing by users) and should offer a variety of

useful information from the earliest opportunity.

The designers of other, more recent information systems (such as Gopher and
WAIS, described below) have addressed this problem by offering working servers that
could be accessed using a minimum of software. For example, trial access to both of these
services is available using only a telnet session.

The lack of initial information to bootstrap the service was addressed in both these
cases by providing a variety of gateways to existing Internet services such as anonymous
FTP archives and archie.

Informatior: Indexing Services

WAIS

The Wide Area Information System (WAIS) is an example of a network-based
document indexing system that has proved useful for accessing large collections of textual
data.

The WAIS system is based upon the WAIS protocol [Davis90] which is itself an
extended version of the ANSI Z39.50 protocol [NISO88). The WAIS system provides the
user with the ability 1o search for combinations of keyword strings by sending suitable

12

e e ————

b

search stings (using the WAIS protocol) to the appropriate WAIS servers. Each WAIS
server offers access to one or more collections of documents (or sources, as they are
referred to in the WAIS environment).

WALIS users can rapidly perform keyword searches on documents that can be tens
or hundreds of megabytes in size, using a combination of full-text indexing and relevance
feedback [Salton & McGill 83].

WAIS document servers build an index database for each source, allowing rapid
(O(1)) matching for keywords. All sources that contain any of the specified keywords are
returned, ranked according the distance between matching keywords in the document and
the frequency of these keywords. To speed searches and lower the chances of misleading

hits, some WAIS client programs remove short, common words such as “and”, “or”, “the”
etc. prior to sending the query to the server.

Once a user has received an initial collection of matches to a search, relevance
feedback is used to generate follow-on queries through the selection of additional search
terms from the initial replies. This technique allows the user to select additional sources
for searching based upon responses that have already been received. This leads to a suc-
cessive refinement of searches based upon relevant replies until, hopefully, the desired
information is found.

The WAIS system addresses both the instance location and information manage-
ment portions of the Resource Discovery problem, but a major shortcoming in current cli-
ent implementations is the almost total lack of support for Class Discovery. With currently
over 200 WAIS servers on the Internet, the principal mechanism for selecting sources is to
page or scroll through a single linear list of source names, selecting the desired sources on
which to perform a search. It is expected that future research on WAIS will address this
shortcoming,

The original design and implementation of WAIS was done by researchers at
Thinking Machines Corp, who have made available a prototy pe public domain implemen-
tation that runs on a number of systems. Thinking Machines also markets the only com-
mercial implementation of WAIS available in 1992. A WAIS Support Consortium has
been formed to provide additional direction and support for WAIS research.

The archie System

The archie system [Emtage & Deutsch92] is a collection of tools that, taken
together, provide another electronic indexing service for locating information in the Inter-
net environment. One identifying feature of the archie system is that the indexed informa-

posic,

e

tion is proactively gathered onto a central site from primary sources on the net by
automated tools, with this collection updated on a regular basis. Access tools are provided
that allow Internet users to query this database using a variety of access methods.

The current version of archie consists of three parts; the Data Gathering Compo-
nent, the Database Maintenance Component and the Database Access Component. The
first of these is responsible for locating and obtaining the data to be collected, copying the
information into the archie system for processing and storage. The second component is
responsible for parsing information that has been copied to the archie system and inserting
it into the appropriate archie database. The third component is used to receive and process

user queries on these databases.

Client programs are used to access the archie databases and perform searches
using a variety of access methods. The archie system does not provide an access protocol
of its own. Rather, it can accept nser queries via an interactive telnet session to a telnet
server, through queries to a Prospero server, or via electronic mail. We have recently added
support for WAIS to allow users to index and search large text databases.

Although an archie server demands a great deal of resources to operate, the model
has reduced the problem of class discovery for anonymous FTP to one of finding an appro-
priate archie server. The administrators of the archie service are now responsible for locat-

ing and tracking specific service providers for this class of problem.

The architecture of the archie system assures users that indexing information is
reasonably current and accurate at all times. The system, as currently deployed, acts as a
tool for Instance Location and has demonstrated the feasibility of indexing large numbers
of Internet sites in a proactive manner. The current implementation tracks the contents of
anonymous FTP archive sites and stores several million records gathered from several

thousand sites.

Concerns about reliability have been addressed by adopting a mirroring strategy
that duplicates the entire archie database onto multiple archie servers. Techniques to
exchange database entries are now being developed and include a partitioning strategy in
which individual archie sites gather information only on those sites that are “topologically
close™ (that is, to which the appropriate server enjoys a relatively high bandwidth network
connection). The various archie servers then exchange their information using a mirroring
algorithm that detects and automatically transfers changed files from one system to

another.

Further investigation into mirroring strategies is needed. Also needed in additional
research into the benefits of partitioning the information to be tracked, to avoid the neces-

14

-

Fg

sity of storing all informatson at all sites. This would address concerns about the scalabil-
ity of this approach to resource discovery.

Originally designed and deployed as an Instance Location service to track the con-
tents of anonymous FTP archive servers, the archie model can also be used to deploy a
Yellow Pages service by gathering the description of Internet resource providers and peri-
odically verifying the existence of such services. Used in this way, the proactive monitor-
ing model provides a potential solution to the problem of Class Discovery.

The architecture for an enhanced indexing system that provides both Class Discov-
ery and Instance Location forms the basis for the Resource Discovery Architecture
described in Chapter 4.

Distributed Information Servers

The World Wide Web

The World Wide Web project [Berners-Lee et al 92] is a distributed information
access service based upun the hypertext model of information represcntation [Bush45)
[Nelson90].

In the hypertext model information is represented as a collection of hypertext doc-
uments, which consist of conventional text augmented by Aypertext links, which are
pointer references to other hypertext documents. In the original hypertext systems all doc-
uments resided on a sing.e host, but with more recent implementations multiple docu-
ments can be distributed across an Internet [Kahn et al 90].

The WWW architecture consists of three principal components, including fiyper-
text servers, a variety of Graphics-based client programs and a set of information gate-
ways to additional resource providers. The WWW system also provides a common
naming scheme for referring to all documents in the system, a common network access
protocol (HTTP, or HyperText Transport Pictocol) and a common set of data formats for
representing information.

In WWW the information servers provide access to three kinds of hypertext docu-
ments. Real hypertext documents exist as files and can be accessed using the WWW sys-
tem directly. Index documents are actually gateway programs for accessing scarch engines
or other information service providers. These return either real hypertext documents or
virtual documents, which are created on the fly in response to a query to an Index. Real
documents consist of any collection of text and hypertext links, while virtual documents

15

LY

.L“

created as the result of queries to index gateways contain a collection of links to docu-
ments satisfying the user query.

The merging of search mechanisms with a distributed hypertext model has pro-
duced a system that is capable of addressing both Instance Location and Instance Access
in a user-accessible system, but users of WWW sometimes have difficulty in locating spe-
cific information and keeping track of where they are in the web of hypertext documents
over time. This problem, the so called “hypertext navigation problem” is a common one

for hypertext systems developed to date.

The Internet Gopher
The Internet Gopher [McCahill92] is a distributed information browsing and

access system that combines many of the features of electronic bulletin board services
such as Usenet [Quarterman88], campus-wide information services such as PNN
[Strauss89] and distributed directory services such as X.500. Developed at the University
of Minnesota, the Gopher project arose out of an operational need for a simple campus-
wide information system that could provide support across a campus. The system now
finds wide-spread experimental use across the entire Internet.

The heart of the Gopher system is a collection of Gopher servers, which offer col-
lections of information objects, organized around a hierarchal directory of menus. Each
information object consists of either a pointer to another menu (in effect a pointer to
another directory of information), a collection of text, a pointer to a service accessible
through the telnet protocol or a search engine to which the user can direct queries.

Implementation of each of these information objects is hidden from the user. Ref-
erences to menu objects can in fact point to other Gopher servers residing across the Inter-
net and the user can browse these collections of menus without being aware of the

transitions from server to server.

Gopher clients use the Gopher protocol to request access to specific raenu items.
This protocol consists of a simple query-response model. Each time the user issues a
query, the client connects to the appropriate Gopher server and sends a selector string (a
short ASClI-encoded string identified with each Gopher menu item). The server responds
with the appropriate information corresponding to that item and closes the connection.
The Gopher servers are stateless, preserving no information between queries. This makes
it simple to implement robust servers in an Internet environment. The Gopher protocol is
described in [Albertio2].

16

-

L]

L

Access to search engines is implemented as gateways to existing Internet indexing
services, including WAIS ard archie, or as separate programs to search collections of data
local to the Gopher server. The Gopher protocol (and many of the Gopher clients) are
capable of transporting and displaying graphics images and playing sound files on suitably
equipped terminals.

The Gopher protocol has deliberately been kept as simple as possible. As a result,
itis quite easy to implement a Gopher server, and thus offer an initial Gopher service.
Although first deployed in mid-1991, there were already several hundred operational
Gopher servers on the Internet by early 1992, telling contrast to the difficulties experi-
enced in deploying an operational X.500 directory service.

Class Discovery and Internet Yellow Pages Services

Internet Yellow Pages services would provide a directory of available Internet ser-
vices and service providers, analogous to conventional Yellow Pages services directories.
There have been proposals to offer such services using X.500, it is also possible to build
up such a service using distributed naming service mechanisms such as Prospero by creat-
ing an appropriate user directory containing references to such services and exporting this
view to other users. Although a Prospero view would not provide a Class Discovery mech-
anism by itself, it would allow users to perform basic instance location once a dircctory is
located. Coupled with an index of such directories, a form of Class Discovery could be
performed. Another approach for providing a Yellow Pages Directory service is described

in Chapter 4.

Despite an obvious need for Class Discovery services on the Internet, no fully
functional Yellow Fages services are yet operational. This may reflect more upon financial
and political, rather than technical considerations, as providing such a service for the
entire Internet requires a substantial commitment of resources and there is currently no
mechanism for providing such services on the Internet on a charged basis.

In addition, a number of the attached networks (including the U.S. National Sci-
ence Foundation NSFnet backbone that connects many of the U.S. mid-level network ser-
vice providers) currently prohibit commercial traffic on their portion of the Internet
through restrictive “Appropriate Use Policies” that limit or forbid such traffic on those por-
tions of the net [SRI92].

In addition to the political considerations, considerable rescarch still nceds to be
done concerning the design and operation of such services in an environment of millions
of machines and potentially millions of service providers. Such research must address

17

A

issues in both resource discovery and the design of distributed database systems that such

services will presumably deploy.

18

=

Chapter 3
DESIGN ISSUES

In this chapter I examine issues that have influenced the design of the Resource
Discovery Architecture described in Chapter 4. Of particular concern is the issue of nam-
ing, which in this thesis is used to refer to the binding of a virtual name to a speciftic
resource available on the Internet. As will be shown, each resource on the Internet can be
identified by a universal resource identifier (or URI), which describes the access method
and physical location of the resource. The successful mapping of virtual names to Univer-
sal Resource Identifiers is at the heart of the Resource Discovery Problem as it is modelled

in Chapter 1.

Also discussed is the issue of identifying the information contents of a 1csource n
an internet environment. This problem exists separately from the problem of resource
location and is important when considering, for example, the question of identifying
duplicate files with similar names in an set of multiple archives, duplicate files with infor-
mation that is encoded using multiple encoding schemes or when secking to identify files
in which the information contents are derived from a single parent file. A mechanism is
proposed (Unique Resource Serial Numbers or URSNs) that addresses these problems

This discussion in turn leads us to the concept of Virtual User, an extension of
Neuman’s Virtual System Model that allows us to more easily create logical collections of
resources in an Internet environment. Information Brokers are the component of the new
Resource Discovery Architecture intended to support both URSNs and Virtual Uscers.

Some Definitions

As used in this thesis, naming is considered to be the act of associating a name fo1
an object with a resource identifier, which is used to identify a single instance of a
resource on the Internet. These might include files, processes, hosts and other resources.

A name is a logical identifier of a resource assigned by the uscr and will normally
be expressed in a human-readable form. Examples include traditional filenames (such as */
u/peterd/thesis/chapter_1""), hostnames expressed in domain name format (such as
“opus.cs.mcgill.ca”) or service names (such as “the archie server at McGill”).

A resource identifier consists of the physical location information needed to actu-
ally access an object. This will consist at a minimum of a context (which might alterna-

19

tively be thought of as an available access method) and an associated set of attributes to

indicate a specific resource accessible through that context.

As an example, a resource identifier might refer to a specific file available through
FTP. In this case, the context would be FTP and the associated identifier would be a host-
name, a user ID, the required password and the target filename. Together these supply
cnough information to access the file using the FTP protocol.

With some access methods the hostname may be either implied or derived from
other associated information. For example, if the context is the Andrew File System
(which using a global naming mechanism) the access method would consist of some
means of identifying this as a reference to an AFS file, plus an associated AFS pathname.
The appropriate host will be located automatically by the AFS servers.

A naming system consists of a mechanism for translating names into resource
identifiers. Thus, the Domain Name System can be considered to be a naming mechanism
for mapping machine names (such as opus.cs.mcgill.ca) into the corresponding resource
identifiers (in this example, 132.206.3.3 is the corresponding 32 bit IP address, expressed
in conventional “quad byte” format).

Similarly, distributed file systems can be considered naming systems for translat-
ing between file names and specific file addresses (such as the corresponding host, parti-
tion and inode number). In most cases the file system will provide an associated access
mcthod, although in some cases (such as Prospero) the associated access method is stored
as an attribute and used separately.

The binding of name to resource identifier is considered to be the act of publishing.
Once a name has been bound to a resource identifier on the Internet, users can reference

and access that resource.

Naming

As already noted, there are a vast selection of resources available on the Internet.
These include individual resources such as files, but there also exists resource providers
that make available information about collections of Internet resources. Such resource pro-
viders include file servers, Usenet bulletin board servers, archie indexing servers and other
collections of information. If we are to provide tools for searching for and accessing such

resources, we need some way of identifying and locating such resources.

Sollins has examined distributed name management [Sollins85] and Neuman uses
User Centred Naming as the basis for his Virtual System Model [Neumann92a]. In this

20

AT

P

chapter I examine additional proposals that are currently under development for naming
and identifying Internet resources.

Virtual Hostnames and the Domain Name Service

As discussed in Chapter 2, one example of this naming problem (the translating of
virtual hostnames into host addresses) was successfully addressed with the deployment of
the Domain Name System, or DNS.

As the number of machines and users connected to the Internet continues to grow
users face a problem in specifying or naming other individual resources. A single global
namespace, although conceptually simple, would lead to collisions and difficultics in orga-
nizing and locating collections of related resources. To address this problem, DNS
imposes a single hicrarchal namespace onto the set of Internet-connected hosts and offers
a distributed database access service for translating between this naming taxonomy and

individual machine IP addresses.

Using DNS we can specify any Internet user account by combining that user’s
login name with the appropriate DNS hostname using “domain style addressing”. In this
system, a virtual name for a particular user code would take the form:

peterd@opus.cs.mcgill.ca

Taken together, this combination of “fully qualified domain name” for a host and
the user’s identifying name on that host fully identifies a specific user on a specific
machine in the Internet. This uniqueness is guaranteed through the use of distributed nam-
ing authorities to allocate domain names in a single name space.

Using the Domain Name Service it is possible to translate this fully qualified
domain name (FQDN) into an appropriate IP address. Combining this address and associ-
ated user account name with a suitable access protocol enables any user to access the files
and other resources controlled by that account.

Note that this scheme does not guarantee that we have uniquely identified a single
virtual user on the Internet. A virtual user may have multiple user accounts on muitiple
machines. In addition, under many operating systems now in use it is possible to allocate
multiple user names to a single user ID. Still, this scheme does offer a method for uniquely
specifying individual virtual user accounts in a distributed Internct environment.

21

Extending the DNS Naming Mechanism

What we need is to extend the currently available Internet naming mechanisms to
allow us to specify an arbitrary virtual naming mechanism for resources.

As a first effort, we might seek to extend the Domain Name System described
above to allow us to name individual resources (such as files) made available by a user.
Each such individual piece of information can be specified as an single resource belonging
to a particular user in the name space using a host-based naming scheme. Thus, a particu-
lar item of information could be specified as:

resource.peterd@opus.cs.mcgill.ca

Where “resource” refers to some resource made available by the user peterd on the
host opus.cc.mcgill.ca.
For example, individual chapters of a paper belonging to this user could be refer-

enced as:

chapterl.paper.peterd@ opus.cs.mcgill.ca

chapter2.paper.peterd@ opus.cs.mcgill.ca

This scheme would provide us with a naming scheme for specifying resources
such as files available on specific hosts, but it does not specify an access method that
would allow us to access the file. In addition, because it uses a host-based naming mecha-
nism it may be difficult to locate resources that are logically related, if they belong to dif-
ferent users or exist on different hosts.

Virtual Names vs. Resource Identifiers

Neuman addresses this problem in his Virtual System Model [Neuman92a],
through the use of User-Centred Naming. In this model, virtual names for resources on an
Internet are modeled as a distributed network of directories and links. Links consist of
attributes associated with that resource, including the associated access method. The Vir-
tual System Model proviacs a mechanism for translating from nam:es to specific resource
identifiers.

Namespaces in Prospero are actually bound to individual objects. In resolving a
reference in Prospero, a name and its associated namespace together are used to resolve a

reference.

2

ot

Synonyms
Using our definition of a naming system it is possible to have multiple names, or
synonyms, for a single object. It is also possible to have multiple instantiations of a single
resource on the Internet. For example, multiple copies of a particular text file may be
stored on several hosts, perhaps identified using a variety of names. Note however, that as
used here each resource identifier refers to a single instantiation of such a resource avail-
able through a single access method.

Note that this does not prevent having multiple resource identifiers referring to the
same resource. For example, a single file from a single host may be available through both
NFS and FTP. In this case such a file would have multiple resource identifiers, one per
access method.

The Resource Discovery Problem as defined in Chapter 1 can be expressed as the
problem of identifying the names of resources that satisfy a given user query and translat-
ing those names into a suitable context, host name and access method. This is a two part
problem. The first part consists of identifying appropriate resource providers for a given
search. The second part consists of searching these resource providers for individual
resources, thus translating user-supplied virtual names into the appropriate resource iden-
tifiers.

Stated in these terms, the problem appears a trivial one. It is the size of the Internet,
and thus the huge number of virtuai names and resource identifiers to be queried, that
make the problem a challenging ore.

Identifying Resources and Resource Providers
It is possible to define a universal encoding method that will permit us to specify
resource identifiers for any number of different contexts. Such Universal Resource Identi-
fiers (or URIs) would each refer to a specific instantiation of a resource on the Internet,
regardless of the access method to be used. Such URIs could also be used to refer to ser-
vice providers offering collections of such resources.

By defining a single encoding method for multiple environments we gain the capa-
bility of exchanging such URIs between a number of different information access systems.
This would be useful in systems that use a User-Centred Naming approach and do not
attempt to define an access method themselves (such as Prospero), orin systems in which
the system’s links already contain the needed context and associated access details (such
as WWW, WALIS or Gopher).

23

o

URIs would also be useful in a system designed to provide Class Discovery
through searching of collections of information made available across multiple access
methods. If the system were to return the result of searches in a single standardized format
then client programs would have the option of supporting access to a variety of resource
providers without the need to translate references from one encoding scheme to another.

At a minimum, such an encoding would consist of a context identifier to indicate
the environment in which the associated access method is relevant, plus a set of associated
attributes appropriate to that context. These attributes would depend upon the context and
would therefor have to be defined once for each context to be supported. If the URI is to be
used to identify the resource (as opposed to merely locating it) a unique author or pub-
lisher identifier would also be needed.

Current Research on URIs

Universal Resource Identifiers have been discussed by Kahle [Kahle91] and Bern-
ers-Lee [Berners-Lee92a). Kahle discusses the format of WAIS document identifiers,
which consist of a reference to an originating author, a “disposition” (which refers to the
location from which the document is available) and an address, which is a handle by
which the document is known at that site. Note, that if used as part of a more general sys-
tem, only these last two elements are needed for access, along with an indication that the
context is a WAIS document ID, while the originating author could be used as a key to
additional information, if a suitable method for storing and serving such information were
to be defined.

Berners-Lee has proposed a forim of “Universal Document Identifiers™ for the
Internet, in describing the format of WWW hypertext pointers. Under his scheme, such
pointers would consist of an access method specifier (that is, a context descriptor) and an
access-specific set of attributes. Contexts already specified include anonymous FTP,
WWW, WALS, telnet and Prospero. His proposal is extensible, and additional formats are
relatively straight forward to create. In this case, the UDI is used only for encoding access
information and doesn’t not contain enough information to uniquely identify individual
resources.

Work is now underway through the Internet Engineering Task Force (IETF) to
define asingle standard for universal resource references for the Internet. A preliminary
meeting was held at the 23rd IETF in March, 1992 and an ad hoc working group was orga-
nized to work on defining a single encoding standard for such references.

24

*

A

Any Resource Discovery Architecture developed should be capable of translating
virtual names into specific URIs capable of indicating the associated context and the nec-
essary attributes to access that resource in that context. The specific attributes will of
course depend upon the associated context, but clearly what is needed is a single encoding
method for such attributes for each context, to allow the creators of clicnts for various
information systems to share information from a single Resource Discovery Service.

The Need for Resource Serial Numbers

Another major problem that confronts the designers of a Resource Discovery sys-
tem intended to provide Instance Location is that of determining when multiple responses
generated in reply to a search query actually refer to multiple names for the same resource
(i.e. are synonyms for a single resource residing on a single host) and when they actually
refer to multiple resources that match the same query.

In other words, when are they referring to a single resource on the Internet speci-
fied by multiple URIs and when are they referring to multiple resources specified by mul-
tiple URIs?

A variation of this problem is to be able to identify when two different resources
on the Internet (for example two files stored in separate archives) actually contain identical
information, despite using different representation formats and differing URIs. For exam-
ple, one document may contain an ASCII encoding of a document, another contains the
same document encoded in EBCDIC. Except for minor differences in the encoding alpha-
bet, these two documents share the same information but would appear, at first glance, to
be completely different.

We would like to provide a mechanism that would allow users to address all of
these problems without actually forcing them to adopt such inefficient methods as copying
candidate files to their machine and to compare the contents of each in turn.

This is particularly important during the early phases of Resource Discovery, when
users are performing Class Discovery, and Instance Location. During this phase, individ-
ual user queries may result in large numbers of potentially mislcading responscs. We need
to provide users with a means for narrowing the focus of searches and decreasing the num-
ber of responses to be verified. Preferably, in most cases, actual access of a document
should come later in the identification process, if at all.

In the traditional publishing environment this need is addressed through the provi-
sion of unique serial numbers identifying each edition of a specific publication. Every

25

individual copy of an edition is identified by the same identifier (for books, this is the
International Standard Book Number, or ISBN).

For example. the book “The Complete Fawlty Towers” by John Cleese and Connie
Booth is identified as ISBN 0-413-18390-4. Each and every copy of this book carries the
same ISBN number and muitiple copies of the same book can be viewed as multiple
instantiations of the same collection of information.

Note that the need to uniquely identify the information content of a resource is sep-
arate and independent of the need for virtual names or Universal Resource Identifiers, as
described above. URIs are cencerned solely with the mapping of a virtual name to a phys-
ical access method across multiple environments. The issue here is how to determine
information about the contents of specific documents.

It is possible to avoid such problems if on satellite systems we store only pointers
to original documenits, storing the contents of documents only at their point of publication.
Unfortunately, this is usually infeasible, for a variety of reasons: we need to mirror files to
improve response time and increase availability, we sometimes wish to provide access to
the same information through differing access methods and sometimes the originating site
is no longer available to offer the information.

To ensure access in such cases we will find ourselves with multiple instantiations
of the same resource with differing URISs. In such cases having a resource serial number
that can indicate when multiple references to resources actually contain the same informa-
tion would be useful.

Unique Resource Serial Numbers
One approach to this problem is to use some form of digital signature, related to
the information content of the resource. The objective of such a signature scheme would
be to provide a “Unique Resource Serial Number” (or URSN) for each resource available
from the Internet. Note that such URSNs are intended solely for identifying the informa-
tion contents of a resource, not the virtual name, the representation, or the access method

of that resource.

In examining how such a URSN might be constructed, I note that each resource
can be modeled as an object that can be seen as having a single publisher on the Internet.
A single publisher in turn will control zero or more such resources. If we model each of
these resources as a single information object, we can specify that a URSN will be an
attribute of a resource that takes a value unique to that publisher and collection of URSNs.

26

A e Tmed TGRSR Snils

PTG oy TE L D 2 B W P

st 2 R T Sy St

A

Henaiz

e PR RS A AR SN 4% e PR, e

Wk Mk oA

T P VR e e

£ 3

Each time the publisher creates a new information object (either from scratch or by
modifying an existing information object) it would be assigned an URSN number still not
used by that publisher. Some mecl.anism would need to be provided to ensure that this
uniqueness is preserved.

If the URSN is assigned at the time of resource creation then whenever a resource
is copied the URSN should also be copied with it. Alternatively, it must be possible to
identify the publisher and compute the value of the URSN solely from the contents of the
resource.

Properly administered, URSNs worid have the property that they could identify
the information provided by resources across encoding schemes, naming schemes and file
system representations. Thus, accessing the URSN of a document interactively through
Gopher, programmatically through Prospero or through email to an anonymous FTP
archive server should always return an indication that the information content is identical,
even given multiple instantiations, provided the document has not been altered other than
in representation or encoding.

The Virtual User

In the preceding section we modeled resources as objects belonging to a single
Internet publisher.

This simple scheme could be implemented in the current Internet environment by
specifying the publisher ID as a username/hostid pair, with username corresponding to a

userid on a particular host and hostid corresponding to the fully qualif d domain name of

some Internet-connected host. This publisher ID, coupled with a simple digital signature
scheme would yield a basic URSN system that could be deployed immediately on the
Internet.

Although this would work as an initial iinplementation, this simple schecme has a
number of limitations. In particular, a user would be required to start a new series of
URSNSs each time he or she moved to a new host or a new user account.

To avoid this, we would prefer to allow each individual user accessing the Internet
(using one or more username/hostid pairs) to function as a single “resource publisher” on
the Internet, generating URSNs in the same series from wherever the user is currently
working.

One way to accomplish this is exter.d the Virtual System Model by postulating the
existence of a Virtual System User, one whose home (and information about the resources

27

o

it controls) would follow the user around the net. This would include the associated URSN
generator and other associated information.

The Information Broker
Version contro] and representation information would still be useful, and a mecha-

nism for obtaining such information is still needed.

Although we might attempt to define a method for encoding such information by
defining a suitable structure to the format of URSNS, this is not necessary if we postulate
the existence of a “user agent” or Information Broker process that can manage the Virtual

User’s resources and control access to their information.

Once it is possible to ideitify the author of any signed resource, that user’s Infor-
mation Broker can then be used to manage URSNs and track changes in those resources.
Such a broker would also have responsibility for the creation and assignment of additional
URSNSs. As a bonus, such an information broker can also act as a recipient of information
requests from the Internet to the corresponding host. We could easily have it do double
duty as both information access manager and URSN manager. Thus, for example, the
Information Broker could also serve configuration files for each Virtual User (allowing
automated establishment of a new user account anywhere that can communicate with the
Broker).

One major advantage of providing a Publisher ID with each document and using
an active process as an Information Broker (assuming we have a method for locating the
author’s Broker) is that we can always contact the Broker for needed version and represen-
tation information, when it is needed. This would allow the use of simple checksum
schemes for the actual signature (which would be used when comparing signatures for
multiple URIs to detect duplication) while allowing us access to the additional informa-
tion available from the Broker when it is needed, at the price of some additional complex-
ity.

This scheme gives us all those elements originally specified as desirable: content
identification (using the signature), version control (using the Broker) and representation
isomorphism (using a combination of the URI and URSN). All that is requircd ic that we
make available a standardized encoding method for Publisher IDs, along with a method
for generating and registering a unique serial number for each resource created. As a final
step, we need to provide a mechanism for translating the Publisher ID into the appropriate
Information Broker address. This last part is a classic White Pages problem and solutions
such as X.500 have already been proposed.

28

Once we have URSN available, users comparing the results of queries to a varicty
of resource providers could rapidly identify when multiple instantiations in fact contain
the same information without directly comparing contents. In fact, software user agents
could do that for them, sorting and even eliminating duplicates if desired.

Implementing URSNs

Schwartz has suggested using a digital signature scheme to implement URSNS,
For example, a digital encryption scheme such as MD5 [Rivest92] can be used to generate
digital signatures that, for large files, have a very good chance of being unique.

Although this approach does not guarantee the uniqueness of each digital signa-
ture, it has the advantage that such signatures can be computed solely usiny the ir.forma-
tion contents of a resource (making them easy to apply to existing archives of
information). They also do not have to be stored, as they can be recreated on demand, pro-
vided the generation algorithm is known.

Such signature schemes do not provide version control or authorship information,
but the proposed Information Broker mechanism can be used to provide this functionality.
Thus signature schemes can be used as either a transitional mechanism, or as a simple
method for providing a subset of functionality as part of a larger URSN scheme.

A naming authority would also have to be established to assign and manage unique
user ID numbers. Such a service could be performed using X.500, or alternatively uniq.e
Internet user IDs could be assigned by the Internet Assigned Numbers Authority (IANA),
which exists to issue values for those protocols or services that require unique values.

A Suggested Format for URIs and URSNs

A URSN would consist of a single Virtual User Publisher ID (uniquely bound to
that user and namespace) and an associated publisher’s serial number, unique for that par-
ticular Virtual User. Together they would be form the Unique Resource Serial Number for
that resource. Any additional information available for that iesource would be made avail-
able by querying the associated Broker for that Publisher ID.

It will probably be useful to allow multiple formats for the Publisher ID. Initially,
these might consist of one of the following: a userID/hostname pair, a valid X.500 user-
name, or a unique registration number assigned by a number authority (such as the Inter-
net Assigned Numbers Authority).

A URI would consist of three elements: the resource’s URSN, as created and
issued by the publisher, a context to indicate the namespace of the appropriate access

29

ﬁn‘»@’g A

method, and a set of access attributes appropriate for that context. It would probably be
appropriate to define the URSN as optional, as in many cases users would be concerned
solely with access information, although ideally there should always be a way to obtain
the complete reference for a document from any system on demand.

Separating out the identification and representation management functionality like
this appears to offer several advantages, not least of which is that it would be possible to
retrofit a digital signature on top of most existing resource delivery systems (including the
anonymous FTP archives serving millions of files to the Internet) without changes to their
basic functionality. This would thus allow us to deploy a partial form of URSNs immedi-
ately, as the basic signature can be supplied algorithmically. In future, publishers of
resources could deploy their own information brokers to handle the other components of
the problem, leading to a complete solution to the problem.

Proactive Discovery Techniques

Proactive discovery techniques, in which automated systems perform a task in the
background as a users’ agent, have been under study for some time. The Programmers’
Apprentice project [Rich&Waters90] used this technique to provide a programming envi-
ronment that adapted its operations to the user’s prior operating history.

Schwaurtz has used a proactive monitoring model to perform resource discovery on
the Internet. Techniques used include monitoring network traffic at specific gateways to
detect FTP traffic (and thus the existence of previously unknown FTP archive sites), mon-
itoring email traffic to detect usage patterns to locate pools of related users, and traffic
analysis to locate popular service providers. A preliminary implementation of a specific
user location service (“netfind”), is described in [Schwartz91a].

A form of proactive discovery is also used in the archie system, in that information
is gathered prior to user searches being initiated. This model has been shown to be a useful
one in those cases where the cost of individual searches is high, compared to the relative
cost of proactive information gathering (for example when attempting to search multiple

files archives for a single filename).

In contrast, in the DNS model of direct distributed database searching the cost of
individual searches is low (each query to a DNS server takes one packet and an O(1)
lookup time and the hierarchal naming scheme allows a rapid partitioning of the
namespace to be searched). In such circumstances a query across multiple distributed
databases becomes feasible.

30

£

¢ 3

Choosing the correct model to use will involve balancing the trade-offs between the cost
of gathering and searching large collections of data at a single point and the cost of performing a
number of queries at locations across the Internet.

As a final cautionary note, although proactive discovery techniques show promise, care
must be taken to ensure that the privacy of users is preserved if such techniques are used in pro-
duction systems.

3

Chapter 4
The Resource Discovery Architecture

In this chapter we present the design of the Resource Discovery Architecture. This
system is based upon a single basic information processing engine that is used to provide
the various components of a generalized resource discovery and access service for the
Internet. As part of this, I also outline the architecture for an Information Broker that pro-
vides support for Universal Resource Identifiers (URIs), Unique Resource Serial Numbers
(URSNSs) and the Virtual User Model, as described in Chapter 3.

The Information Model

In this system information is modelled as collections of typed objects, with each
object type featuring a specified collection of attributes. In particular, each object has asso-
ciated with it a corresponding Universal Resource Identifier and corresponding Unique
Resource Serial Number, plus such additional attributes as author, creation date, a brief
text description of the object, etc. The Resource Discovery Architecture provides informa-
tion about individual information objects on the Internet, including their location and
access method. Once located using this service, such objects are accessed using existing
access methods.

There are two types of servers, Resource Discovery Servers (RDS) provide infor-
mation about Internet service providers and collections of resources. Resource Indexing
Servers (RIS) provide information about individual resources. In practice, the first type
provides a basic Yellow Pages service and the second an archie-like instance indexing and
location service.

In addition, Information Brokers are used to provide the information associated
with each Virtual User. These Brokers can be queried to discover the values of attributes
associated with each resource object. In particular, information about the relationship
between objects is available (for example, whether a particular object was derived from
another object).

Although the proposed architecture does not provide any additional access meth-
ods, it does provide a means for determining all the information about the object that is
available, through dialogue with the associated Information Broker. Information about
each object (including its URI) is served from a series of information indexing servers, all
based upon the same basic information processing engine.

32

o

URSNSs are implemented as proposed in Chapter 3. Each resource has associated
with it a Virtual User’s Publisher ID (represented by an identifier unique across the Inter-
net) and each Virtual User is associated with a specific Information Broker. It is possible
for a single Broker to serve information about multiple Virtual Users.

Resource
Discovery Q
User Service ()
Access
()
Resource
EE O - O
Service
Individual

Service D
Providers Tt T

Jip Gopher Information
server server Broker

Fig. 1: Resource Discovery Architecture system overview.

The goal for this system was to provide an environment that would allow the user
to rapidly search for collections of resource providers that provide needed classes of
resources, search these individual resource providers to locate specific instances of needed
resources and provide architectural support for locating desired URIs and URSNs.

System Overview

In this section, | present an overview of the Resource Discovery Architecture. This
is followed by a description of the basic information processing engine that forms the
heart of each server within the system.

The architecture of the complete system is shown in Fig. 1 and consists of four
parts: The Resource Discovery Service (RDS), the Resource Indexing Service (RIS), a col-
lection of Resource Service Providers (RSP) and individual User Access Agents (UAAs),
which are user programs that access the other components of the systems.

3

The Resource Discovery Service

The Resource Discovery Service provides the mechanism for Class Discovery.
Based upon a proactive data gathering model, it allows service providers to register their
services with a server. Information needed to access the service (including the Internet
host address and the required access method), along with a brief description of the service,
are added to a special internal system database, where this information is used to control
the data gathering and processing components of the information engine.

Once a service is registered, its registration information and a brief description are
also added to a publicly available user database, along with the description information,
access information and the current status of the service. The RDS server then periodically
verifies the existence and availability of the services tracked, updating the user-readable
information as needed.

The system provides a selection of access methods to permit the user to search and
browse items available in the user database. Users would be able to query on type of ser-
vice, service description, or service status.

The RDS acts as a registry of resource providers available on the net, and allows
users to query a collection of resource descriptions using a variety of attributes. It is
intended to provide proactive location and verification of the existence of specific service
providers.

A primary feature of this service is the proactive verification of the information
served. Because the RDS periodically connects to each of the services in its registry to
verify the service's availability, services that do not respond can initially have their corre-
sponding database entries marked as “Not Responding”. If the service remains unavailable
for long enough, the entry would be marked for deletion from the database.

Ideally, a description of each service tracked by the RDS would be gathered
directly from each service during the verification phase, automatically picking up changes
to this information as it is made available. Thus, if a site decides to specialize in a specific
type of information, this change would be reflected once the next update is performed.

Using this proactive verification technique, users would be assured access to a rea-
sonably accurate collection of information about resource providers.

Resource Indexing Service
The Resource Indexing Service is intended to provide Instance Location. Archi-
tecturally it is almost identical to the RDS, differentiated more by the type of information

34

it serves rather than the architecture used for gathering and serving this information. the
internal system database again identifies which hosts contain information to be tracked,
along with details about how to gather that information and how to process it and store it
for access by users.

The primary difference between the RDS and the RIS in operation is that the RDS
is concerned with locating, verifying and serving of information about the existence of
Internet resource providers (that is, responding to queries about which collections of
resources or service providers exist that can be searched to satisfy a given query). In con-
trast, the RIS is intended to respond to queries concerning specific classes of service pro-
vider and responds with information about specific resources.

Both the RDS and RIS are composed of collections of autonomous servets, that are
independently maintained and operated. It is expected that in operation both scrvices will
consist of a number of individual servers which will specialize in collecting and serving
different types of information. This provides both robustness (since it permits the shadow-
ing of popular collections of information) and diversity, since it allows individual scrvice
operators to decide which information to gather. It is expected that a variety of different
selection criteria will be used at different servers.

It is expected that some RDS servers will concentrate on tracking specific types of
servers, while others will track all servers specializing in specific types of information.
Details of this specialization will be made available through the RDS itself.

Using a variety of criteria for specifying such services in this way eliminates the
need for a single large indexing service for all resources, which would be infeasible as the
Internet continues to grow. It also provides a mechanism for offering to users information
using both host-based naming and user-centred naming methods.

Note that the basic architecture of an RIS server is identical to the architecture for
an RDS server. The primary difference between the two is that RDS scrvers are intended
to track information about service providers, which will in turn provide information about
multiple resources, whereas the RIS is intended to provide information about specific
resources directly. Where the RDS must verify only that a service provider is alive and
functioning to update its database, an RIS server would be expected to copy over specific
information for insertion into the appropriate RIS user databascs.

Still, in operation the two services are similar, Each server performs discovery to
add new sources of resource information into their Internal Hosts Database and periodi-
cally connects to resource or service providers to verify the accuracy of the information in
the appropriate user database.

35

Together these two components provide a Class Discovery and Instance Location
service, delivering URIs in response to user-generated queries. Once the appropriate URIs
have been received by the user, the User Access Agent can then perform Instance Access

directly.

Resource Service Providers

In most cases, Resource Service Provider.. are existing Internet service providers,
such as anonymous FTP sites, NNTP news servers or information servers such as those
offering WAIS, Gopher or WWW services.

In general, individual service providers are tracked in the RDS and part or all of
the contents of such services are tracked in the RIS servers. In addition, Information Bro-
kers provide a new type of information service, dedicated to providing information about
individual information objects, plus other types of information relevant to individual Vir-

tual Users.

User Access Agents

User Access Agents are client programs used to initiate searches and fetch infor-
mation from individual users. If the UAA is to be used to both search and retrieve informa-
tion such clients need to speak both information engine search and retrieval protoco!ls. The
search protocol can be any such protocol supported on that information engine (note that
the architecture allows the implementation of multiple search and retrieval protocols for
accessing individual user databases). The choice of retrieval protocols available in the
user’s UAA will be what determines whether the resources located using the Resource
Discovery Architecture can actually be accessed.

Alternatively, the UAA can be used only to perform searches in the RDA informa-
tion engine. Once instances of needed resources are located, stand-alone implementations
of the appropriate protocols can be used for final access.

Note that the design of the information engine does not require the development or
deployment of a specific search or access protocol. The architecture is intended to be
extensible, supporting a variety of existing search and access protocols.

36

@

=

Registration and
Discovery module

C D

Mirroring and
Shadowigng Host Database
module Manager internal
hosts
Internet database
Resource
Providers \\
Retrieval
Manager
raw data raw data
Jiles in various files in various
formats Jformats
Parse Manager
Processed Processed
data files data files

to Input Manager
(see Fig. 3)

Fig. 2: Information Engine Architecture (Part I).

37

parsed data files parsed data files

O‘/

Input
Manager
/ | /
user accessible user accessible
databases databases

A

Note: Both the Location

Manager and the Access

Manager are called by
Location Manager User Access Agents
speaking a variety of
protocols, Each
component consists of
a number of individual
modules, each speaking
a single protocol.

Access Manager

Fig.3: Information Engine Architecture (Part II).

38

W

The Information Processing Engine

The components of the RDA are based upon a single Information Processing
Engine. The architecture for this engine is shown in Figs. 2-3. The basic architecture of
this engine supports servers for both the RDS and RIS services.

The Information Process Engine consists of six components: the Host Database
Manager, the Retrieval Manager, the Parsing Manager, the Input Manager, the Location
Manager and the Access Manager. These will each be di:scribed in turn.

The Host Database Manager

Each information engine maintains a single internal host database. This database
contains a list of all service providers known to that engine, along with the information
needed to gather and process this information. This includes the access method to use
when gathering information (specified as a program to be run by the Retrieval Manager,
see below), the time of last access, access frequency, and the type of information to be
gathered, including a brief text description for the benefit of the system operator. All
access to this database is through the Host Database Manager.

A registration and discovery module (an adjunct to the Host Database Manager)
allows the system’s administrator to enter new records into the database. Input to this
module may be through an email interface, an interactive program or from a scparate
resource discovery program. This system could process email registrations automatically
but given that such entries are not authenticated, it is suggested that they should be entered
but flagged as “not verified”. Only after the administrator has checked the entry is a valid
request and the service has been verified as existing and operational should information
about it be made available to users.

The mirroring and shadowing module is used to communicate among Host Data-
base Managers on multiple servers when they wish to use mirroring or shadowing tech-
niques to distribute the database among multiple sites.They communicate information
about each site and the information gathered to ensure that all servers have the same user

database contents.

The Retrieval Manager

The Retrieval Manager is responsible for determining which hosts should be vis-
ited to retrieve information for addition to the use: databases. It does this by periodically
querying the Host Database Manager for hosts that are due for updating, then launching an
appropriate data gathering program as a separate process, passing it the name of the target

39

host and other details as arguments. Any number of such individual data gathering pro-
grams can be provided, offering flexibility in the data gathering step.

In the case of the RDS, the data gathering programs are responsible for verifying
the availability of the service tracked, and for checking for and fetching service descrip-
tions made available from the service.

In the case of the RIS, the data gathering programs are responsible for determining
if the resources being tracked have changed, and if so, retrieving the actual information
itself.

The data gathering programs can gather the desired information using any number
of techniques. The architecture allows for multiple data gathering programs in a single
information engine. These may be anything from simple shell scripts, or simple file copies
from a remote host, to dedicated data gathering programs which include data verification
and processing routines.

These various retrieval programs are used to create raw information files, which
contain the information to be added to the user databases in any one of several standard
formats. For example, if this service is used to provide an archie-like file listing service,
the raw files would be listings in the file formats provided by UNIX, VMS or TOPS-20. If
the system was being used to automatically gather information made available via anony-
mous FTP, it need only copy over the appropriate files.

Once these files are created, the system needs to keep track of the additional pro-
cessing that remains to be done, passing this information from one component to another.
One way this could be done is to prepend a suitably formatted header file to each raw
information file created. This header which contains the information needed by the follow-

ing stages.

The Parsing Manager
Once the Retrieval system has deposited the raw information files onto the system
the Parsing Manager can select and launch one of a variety of parsing programs to process
these raw files into a standardized format for insertion into the appropriate user database.

This partitioning of the data gathering and processing steps allows the one infor-
mation engine to support a variety of data gathering and access methods. The choice of
delivery method for that information is thus left as a choice for the system administrator.

As an example, a dedicated database format would be used to provide the original
archie files listing service. This would done because the large amount of redundancy

40

fa il o s A e R T A TN R

found in file listings can be exploited to reduce the storage space needed and speed search
access over conventional database techniques. Details on how such a dedicated database
format can be built are described in [Emtage91].

The Input Manager

The Input Manager selects and launches the programs needed to take the parsed
output from the previous stage and insert it into the appropriate database. By separating
the individual database maintenance programs out in this manner, a variety of database
formats can be supported on a single host and any needed special processing can be done
on the processed data. If desired, a single collection of information can even be inserted

into several different databases.

IB
Manager

Information
Servers

Resource
Manager

includes gateways to other
resources, etc.
User Publications

Fig. 4: Architecture of the Information Broker.

41

The Location Manager

The Location Manager is used to provide Internet users with a generalized mecha-
nism for searching within the various user databases. The system provides individual
search facilities for each database access method that is supported on that information
engine.

Again note that a single information engine may provide a variety of user data-
bases accessed via a selection of access methods. The Location Manager could be seen as
providing a gateway service that allows users to specify searches on all of these databases,
as well as answering queries about the scope and type of user databases ser\ ed from that
system.

Once aresource or referenced service is located in a particular user database using
the Location Manager, the user can access these individua! references using an appropriatc
access method for that user database, through the Access Manager (see below). Informa-
tion needed to access the appropriate component of the Access Manager is returned in the
form of a URI. This URI will either point to a resource stored in one of the user databases
in the information engine or to a another resource available on the Internet.

The Access Manager
The Access Manager is responsible for a collection of programs that together pro-
vide access to the individual user databases maintained by the information engine. Each
such program would be responsible for implementing one or more access protocols and a
single site might provide a variety of such programs providing multiple access methods
onto individual databases. A site might offer access methods for such systems as Prospero,
WALIS, Gopher, SQL or even anonymous FTP.

Note that it is possible to provide multiple access methods, or even gateways from
multiple systems onto a single database. In such cases, the user need not know the under-
lying storage method used, provided suitable gateways are implemented as part of the var-
ious Access Manager processes.

In many cases the results of such a search in the Location Manager will provide all
the information needed to allow the user to access the desired resource directly. For exam-
ple, the results of an archive indexing search sent to the Location Manager of an RIS
server tracking anonymous FTP archives would be a series of URIs pointing to individual
files on specific hosts. Users do not need to pursue their search further with the RIS, as
they now have the information needed to access these files directly.

42

L

]

On the other hand, when searching for textual information served by such a sys-
tem, the Location Manager may return only the needed indexing information and a pointer
to the appropriate Access Manager access program. In this case, the actual fetching of the
information would be done using an appropriate protocol to interact with the appropriate
server in the Access Manager.

This design provides flexibility to users, as they are not forced into using a single
information service to locate and access Intemet information.

The Information Broker

Information Brokers are a special class of Individual Service Providers. Informa-
tion Brokers manage access to publications made available by a collection of Virtual Uscrs
and are responsible for assigning and managing URSNSs (unless a digital signature scheme
is being used, in which case the Information Broker would still act as a central registration
service for each Virtual User’s published objects, answering queries about all registered
resources).

Information Brokers also provide additional access control for the information
made available from a specific host. 3rokers are publicly accessible from the Internet and
can implement specific access control policies for each type of publication served.

The basic architecture of the Information Broker is shown in Fig. 4. It consists of
four components, including two types of trusted processes, including the IB Manager and
a selection of Information Servers. All of these processes require privileged access to the
host machine to install and modify. The system could also include the actual collection of
User Publications that will be made available by this site and a separate Resource Man-
ager which is responsible for managing URSNs for Virtual Users issued from this system.

The IB Manager
The IB Manager is a trusted process that controls all access to the Information
Broker system from other hosts. It acts as a “known service” to the Internet for that host.
Thus, this process will listen for connection requests on a well-known port and launch the
appropriate information server in response to appropriate user requests.

Publication Servers

Publication servers are trusted prozesses installed by the machine administrators
to handle specific types of information for that Broker. Their role is to fetch user-supplicd
publications, provide gateways to available services and launching additional programs on

43

the host as needed. They can also perform such tasks as filtering, accounting and access

control, as needed.

User Publications
User Publications are created by individual users and registered with the Informa-
tion Broker’s IB Manager process. When users register a publication with the Manager
they must specify the location of the publication and the appropriate publication server to
be used when serving it to the world. Once registered with the host Manager, these user
publications may be considered “published” and available to the network. The Manager
can now respond to queries about their attributes of these resources and make them avail-

able.

Resource Manager

The resource manager is the process responsible for the management of URSNs
for Virtual Users from this system. For each Virtual User it tracks it maintains a database
of allocated URSNs and associated information. Internet users can query the Resource
Manager for information concerning specific URSNs issued.

Additional Architectural Issues
In this final section, I examine a number of remaining issues encountered during
the design of the Resource Discovery Architecture.

Resource Provider Discovery

Before a Resource Discovery Service based upon a proactive data gathering model
can allow users to search for and discover new collections of resources, some means must
be provided for the system itself to discover such resources.

This design employs several techniques. First, we observe that such resouice dis-
covery services are themselves “well-known” resources, in the same sense that the root
DNS nameservers are well-known. We could thus allow individual users to simply register
their resources or collections with the service.

Another technique would be to proactive seek out service providers, using the
techniques described in [Schwartz9 1a). Schwartz has suggested cooperative monitoring of
network traffic to detect the existence of services, monitoring email traffic to detect usage
patterns among users, etc. [Schwartz91].

<

&

¢

¢
E
P
|

»

The architecture of the RDS has a separate registration and discovery module, which can
be used to implement both of these techniques, if desired. Registration information would come
from a variety of sources, including email and interactive input. The Host Database Manager
would then verify each entry and add it to the Internal Hosts Database. Notification services based
upon electronic mail are already used to maintain electronic mailing lists and provide access to
indexing services (such as archie) and anonymous FTP archives.

It would also be possible to use active monitoring and resource discovery techniques, such
as those proposed by Schwartz, to detect new services. Such a system could monitor network traf-
fic, Usenet bulletin board postings and electronic mail traffic to detect ncw services as they
become available.

The automated detection and registration of new archives was initially provided by the
operators of the archie service, but in certain cases the administrators of such services clected to
remain outside of the indexing service. This illustrates that in operation the administrators of such
resource discovery services must remain conscious of the privacy issues involved. It is probably
appropriate to recommend that the operators of services discovered through automated mecha-
nisms, once found, be contacted to verify that entry into the registry is desired before proceeding
with registration.

Scaling and Performance Issues

The original archie system was originally conceived as a prototype implementation of an
instance location service. Although an operational success (the existing service now handles
50,000 queries per day, at 13 distributed sites) there have been concerns expressed about the scal-
ability of such a centralized indexing services model.

To address these concerns, it is expected that in the future there will be a trend towards
more specialized indexing services. By dedicating indexing servers to specific portions of the
information space, we avoid potential bottlenecks while also limiting the search for specific types
of information, thus improving performance.

An additional benefit of such an approach is that it would permit operators to provide
information classified using a user-centred naming scheme. Thus, an indexing service might track
“Modern Music” or “Technical Reports”, storing URIs pointing to information accessible through
a variety of access methods.

When evaluating the performance of a distributed such as the one described in this work,
we must distinguish between the performance of the data gathering component and the uscr
agents. From experience with the prototype archie system we can conclude that the principal per-
formance bottleneck for this architecture would be in the database maintenance and access com-

45

o,

ponents. From initial experiments on the prototype system we conclude that he ability to enter
updates and search and retrieve the cached information occupy some 80 percent of the system and
leads to the conclusion that the current architecture is primarily bounded by system 1/O perfor-
mance.

One step that was taken in response to this observation was to reimplement the prototype
using the mmap() system call, available under SunOS, to allow the use of RAM as very fast stor-
age In effect, by mapping portions of the database into RAM we achieved significant perfor-
mance improvements with the prototype. Further experimentation in this area is expected to prove
worthwhile as we continue to tune database update and access routines.

A number of volunteers have implemented clients for the prototype system, using a library
implementing the Prospero protocol supplied as part of the Prospero virtual file system. Using this
protocol has allowed us to gained operational experience with the client-server paradigm and the
operation of real applications operating over a production Internet. From this experience we con-
cluded that under our implementation of the proposed architecture the primary performance
delays were caused by network latency. Transmission errors were not a problem, since the Pros-
pero implementation we used was based upon a reliable datagram implementation but network
congestion, especially when traffic was from outside of Canada, dominated query time.

There is a considerable amount of work still to be done further evaluating system perfor-
mance. The will to a large degree depend upon further in implementation and deployment of prac-

tical servers. Work on this continues.

Mirroring Issues

Note that the Resource Discovery Service is not a single monolithic service. Rather, it was
intended that the architecture would allow multiple competing service providers to offer multiple
views onto the collection of Internet services. This eliminates the need to coordinate a large num-
ber of distributed resource providers (which experience with X.500 has shown is difficult, if not
impossible). At the same time, it allows a form of “free market” in the partitioning and organiza-
tion of resource providers to develop, which offers the potential for providing users with a richer
and more diverse collection of resources as the number of such Internet resource providers grows.

In this system, each service provider would be able to configure their own RDS and RIS
servers to offer their own collections of resources. For example, some providers may wish to orga-
nize their information classified in terms of the services provided. Others, might wish to classify
using a form of user-centred naming, providing (for example) indexers for such subjects as *Sci-

ence” or “*Music”.

46

&4

¢ 3

Note that both types of partitioning of RIS servers can coexist within a single RDS on the
same Internet. Multiple RDS can in turn simultaneously track and provide information about
many such coilections of RIS servers. The ability to perform rapid interactive searching of large
numbers of service descriptions and suitable filtering in the UAA would allow the user to hmit the
search to the actual indexing services desired.

Given the similarity between the basic architecture of the RDS and the RIS, it is possible
to provide a similar degree of multiple partitioning of the RDS service as it grows. Root RDS
servers would be able to identify and track collections of services partitioned and identificd any
number of ways. A relatively modest number of root RDS servers would be needed to provide
information about these multiple collections of RDS servers.

This ability to provide multiple partitioning of the collections of information to be
searched in both the RDS and RIS components allows the service to scale as the system grows.
There are no single points of failure (no single server need remain available, since there may be
multiple ways to locate a single service) and the built-in mirroring support makes it relatively casy
to set up shadow services for popular servers. Thus the system is expected to be relative robust in

operation,

Class Discovery vs. Instance Location

Distributing the indexing service in this manner illustrates the importance of the initial
Class Discovery step. A functioning Resource Discovery Service is required to allow the user (o
locate and access individual Resource Indexing Service operators.

A comparison can be drawn between such indexing services and the role of magazine cdi-
tors in the traditional publishing industry. A magazine editor acts as a filter, selecting a specific
type of information for inclusion in a specific publication. Users are spared the necessity of wad-
ing through inappropriate submissions while they are granted access to a timely collection of usc-
ful information on the subject of their choice.

The Indexing Services layer is intended to perform exactly this filtering step. Individual
indexing services can be established that specialize in various information topics. This reduces the
amount of data that must be gathered and restricts the information search space, speeding

searches.

47

Chapter 5

Conclusion

Contributions

This thesis provides a model for the Resource Discovery Problem that permits the
design and deployment of a resource discovery architecture capable of addressing the
issues of Resource Discovery and Instance Location. In Chapter 1 the problem is decom-
posed into a set of subproblems that can be addressed incrementally.

In Chapter 2 1 include a survey of research activity in the field of Internet informa-
tion delivery. Included is a description of the majority of relevant projected deployed to
date.

In Chapter 3 I address the issue of naming, that is, the mapping of names to spe-
cific resource identifiers. I also noted the importance of Resource Identifiers when
addressing the Resource Discovery Problem and then presented a proposal for a “Univer-
sal Resource Identifier” that could be adopted by existing and future Internet service pro-
viders. Doing so would allow the interchange of resource identifiers between disparate
systems, easing the burden on creators of information management client software

intended to work in an Internet environment.

I also propose the deployment of Unique Resource Serial Numbers addressing the
problem of identifying maltiple instantiations of identical resources with differing URIs.
URSNSs can be used to detect such duplicate resources across multiple virtual names, mul-

tiple contexts and multiple access methods.

In Chapter 4 | present the architecture for a complete Resource Discovery Archi-
tecture that addresses relevant components of the Resource Discovery Problem as mod-
cled in Chapter 1. In particular, the new system address the Class Discovery and Instance
Location problems and allows a user to reduce the namespace to be searched when satisfy-
ing user queries through the use of class and indexing servers based upon the User-Cen-
tred Naming model. This addresses problems associated with the traditional single naming
taxonomy used in both DNS and X.500.

My proposed architecture also contains an Information Broker component that
provides an additional mechanism for making information available to the Internet with
added security and authentication capabilities. This Information Broker will also provide
an implementation mechanism for the URSNs proposed in Chapter 3.

48

bt

H
5
H
t
H
1
£
5
t

T

-

e e

Together the components of the system proposed in Chapter 4 provide a viable
model for discovering and accessing resources in an large internet environment.

Areas for Future Research

A number of important problems remain to be addressed in the field of resource
discovery and access in large internet environments. I will enumerate some of the out-
standing issues here.

In particular, more work needs to bc. done in exploring issues related to the naming
of resources. The User-Centre Naming model holds great hope for the design and deploy-
ment of practical resource naming and access services, particularly when combined with
systems such as the one described in this thesis.

A number of issues in the design and interaction of URIs and URSNs in multiple
information systems remain to be explored. In particular, operational issues related to the
deployment of a single standard need to be examined. With the potential for an Internet
consisting of millions of connected hosts we also need to develop additional mechanisins

for narrowing the focus of user queries and thus reducing the namespace to be seaiched on
each query.

Finally, research also remains to be done in the areas of mirroring and providing
consistency in distributed databases operating in a large internet environment.

49

an,

Ackerman90

Alberti92

Berners-Lee

et al 92

Blaze90

Berners-Lee92a

Bush45

Champine90

Case89

CCITT88

Comer9|

References

Ackerman, Mark T.; Malone, “Answer Garden; A
Tool for Growing Organizational Memory”’. Proc. of
Conference on Office Information Systems. April, 1990.p 1.

B Alberti, F. Anklesaria, P. Lindner, M. McCahill, D.
Torrey, “The Internet Gopher Protocol, A Distributed
Document Search and Retrieval Protocol”, University of
Minnesota Microcomputer and Workstation Networks
Center, Spring, 1992,

T. Berners-Lee, R. Cailliau, J-F. Groff, B.
Pollermann, “World-Wide Web: The Information Universe”,
Electronic Networking, Meckler, Spring, 1992, p 52.

M. Blaze, “Issues in Massively Distributed File
Systems”, Proc. 2nd Princeton University SystemsFest,
April, 1990.

T. Bemers-Lee, J-F. Groff, R. Cailliau, “Universal
Document Identifiers on the Network”, unpublished, but
available for anonymous FTP from info.cern.ch as “/pub/
www/UDLps”, February, 1992.

V. Bush, “As We May Think”, The Atlantic Monthly,
July, 1945, p 101-108.

G. Champine, D. Geer, W. Ruth, “Project Athena as a
Distributed Computer System”, Computer, September, 1990.

J. Case, M. Fedor M. Schoffstal, C. Davin, “A Simple

Network Management Protocol”, RFC 1098, University of
Tennessee at Knoxville, 1989.

CCITT X.500/1SO 9594-1, “Information processing
systems - Open systems interconnection - The Directory -
Part1-8”, CCITT, 1988.

D. Comer, “Internetworking with TCP/IP, Volumc |
(Second Edition)”, Prentice_Hall, 1991, p171.

50

&4

Crocker82

Davis90

Deutsch

Gibbs87

Emtage91

Emtage &
Deutsch92

Golding91

Harrenstien82

Hill92

Howard88

D. Crocker, “Standard for the format of ARPA
Internet text messages”, RFC822, University of Delware,
1982.

F. Davis, B. Kahle, H. Morris, T. et al 90 Salem, T,
Shen, R. Wang, J. Sui, M. Ginbaum, “WAIS interface
protocol prototype functional specification’, unpublished but
available for anonymous FTP from think.com as *“/pub/wais/
doc/wais-concepts.txt”, Thinking Machines, 1990.

D. Deutsch, “An Introduction to the X.500 Scries
Network Directory Service”, June, 1988,

S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, Y.
Yeorgaroudakis, “Muse: A Multimedia Filing System”, IEEL
Software, pp 4-15, March, 1987.

A. Emtage, “The archie System”, Masters™ Project,
School of Computer Science, McGill University, 1991,

A. Emtage, P. Deutsch, “archie - An Elcctronic
Directory Service for the Internet™, Proc. Usenix Tech Cont.
pp. 93-110, January, 1992.

R. Golding, “Distributed epidemic algorithms for
replicated tuple spaces”, Technical Report HPL-CSP-91-15,
Concurrent Systems Project, Hewlett-Packard, June, 1991.

K. Harrenstien, V. White, “NICNAME/WHOIS"
RFC-812, SRI International, March, 1982.

J. Hill, “The X.500 Directory Service: A Discussion
of the Concerns Raised by the Existance of a Global
Directory”, Electronic Networking, Meckler, Spring, 1992, p
24,

J. Howard, M. Kazar, S. Mences, D. Nichols, M.
Satyanarayanan, R. Sidebotham and M. West, “Scale and
Performance in a distributed file system”, ACM Transactions
on Computer Systems, February 1988, p. 21.

51

Jacob90

Kahle89

Kahle91

Kahn et al 90

Kill89

Kraemer88

Lottor92

Martin91

McCahill92

Mockapetris87

Mockapetris87

Nelson90

Neuman92

V.S. Jacob, H. Pirkul. “A Framework for Networked
Knowledge-Based Systems’. IEEE Trans. Systems, Man &
Cybemetics. 20 No.l, Jan/Feb. 1990, 119-127.

B. Kahle, “WAIS - The Wide Area Information
Server Concepts”, Technical Report TMC-202, Thinking
Machines Inc. November, 1989.

B. Kahle, “Document Identifiers, or International
Standard Book Numbers for the Electronic Age”, Thinking
Machines Corp., 1991.

Kahn, Pau, Meyrowitz, “Guide, Hypercard and
Intermedia: A comparison Hypertext/Hypermedia systems”,
IRIS Technical Report 88-7, Brown University, 1988.

S. Kille, “Mapping between X.400(1988)/1SO 10021
and RFC 8227, RFC1138, University College London, 1989.

Kraemer, K. and King, J., “Aids for Cooperative
Work and Group Decision Making”, ACM Computing
Surveys, Vol. 20, No. 2, June, 1988.

M. Lottor, “Internet Growth (1981-1991)”, RFC
1296, SRI Intemnational, January, 1992.

J. Martin, “There’s Gold in them thar Networks!”,
RFC 1290, Ohio State University, December 1991.

M. McCahill, “The Internet Gopher”, Proc. of the
23rd Internet Engineering Task Force, San Diego, Ca., 1992,
pp 495.

Mockapetris, P. “Domain Names - Concepts and
Facilities”, RFC 1034, November, 1987.

Mockapetris, P. “Domain names - Implementation
and Specification”, RFC 1035, November, 1987.

T. Nelson, “Literary Machines”, Sausolito, Ca.,
Mindful Press, 1990, p. .

B. Clifford Neuman, **Prospero: A Tool for
Organizing Internet resources’, Electronic Networking,
Meckler, Spring, 1992, p. 30.

52

-y

Neuman92a

Peterson90

Ousterhout88

NISO88

Postel80

Postel82

Postel&Reynolds83

Postel&Reynolds85

Quarterman86

Rich&Waters90

Rivest92

B. Clifford Neuman, “The Virtual System Model: A
scalable Approach to Organizing Large Systems”, PhDD
thesis, University of Washington, 1992. Department of
Computer Science and Erngineering.

L. Peterson, N. Hutchinson, S. O'Malley, H. Rao,
“The x-kemel: A Platform for Accessing Internet
Resources”, Computer, May, 1990, p. 23.

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson,
B. Welch, “The Sprite Network Operating System”,
Computer, February, 1988, p. 23.

“Z39.50-1988: Information Retricval Serveice
definition and protocol specification for library applications”,
National Information Standards Organization, Bethesda,
Maryland, USA, 1988.

J. Postel, ““ User Datagram Protocol’”, RFC 768, 181,
August, 1980.

J.Postel, “Simple Mail Transfer Protocol”, RFC 8§21,
Information Sciences Institute, University of Southern
California, August, 1982.

J. Postel, J. Reynolds, “TELNET Protocol
Specification”, RFC 854, 1S1, May, 1983,

J. Postel, J. Reynolds, RFC 959 “File Transfer
Protocol”, ISI, October, 198S.

J. Quarterman, J. Hoskins, “Notable Computer
Networks”, Communications of the ACM, 29(10):932-7,
October, 1986.

C. Rich, R. Waters, “The Programmer’s Apprentice”,
ISBN 0-201 52425-2, ACM Press, 1990, New York.

R. R.vest, “The MDS5 Message-Digest Algorithm”,
RFC 1521, MIT Laboratory for Computer Science and RSA
Data Security, Inc., April, 1992.

53

Rose92

Salton&McGill83

Satyanarayanan90

Satyanarayanan90a

Schwartz91

Schwartz91a

Sollins85

Sollins89

SRI92

Strauss89

Sung9

Tanenbaum88§

M. Rose, “The Little Black Book - Mail Bonding
with OSI Directory Services”, ISBN 0-13-683210-5,
Prentice-Hall, New Jersey, 1992.

G. Salton, M. McGill, “Introduction to Modern
Information Retrieval”, McGraw-Hill, New York, 1983, p
321

M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki,
E. Siegelm D. Steere, “Coda: A Highly Available File System
for a Distributed Workstation Environment™”, IEEE
Computer, April, 1990, p. 447.

M. Satyanarayanan, “Scalable, Secure, and Highly
Available Distributed File Access”, IEEE Computer, May,
1990, p. 9.

M. Schwartz, “Resource Discovery in the Global
Internet”. CU-CS-555-91, University of Colorado at Boulder,
November, 1991.

M. Schwartz, “Resource Discovery and related
research at the University of Colorado”. CU-CS-508-91,
University of Colorado at Boulder, January, 1991.

K.Sollins, “Distributed Name Management”, Ph.D.
thesis MIT/LCS/TR-331, M.L.T., 1985.

K. Sollins, “A Plan for Internet Directory Services
(White Pages)”, RFC 1107, June, 1989.

“Internet: Getting Started”, edited by April Marine,
SRI International, Menlo Park, CA, 1992.

H. Strauss, “University-Wide General-Interest On-

line Information Systems that Work - And that You Can
Afford”, ACM SIGUCCS XVII, 1989.

“NFS: Network File System Protocol Specification™,
RFC 1094. Sun Microsystems, March, 1989,

A. Tanenbaum, “Computer Networks”, ISBN 0-13-
162959-X, Prentice-Hall, New Jersey, 1988.

54

&4

¢4

Tanenbaum90

Yeong91

A. Tanenbaum, R . van Renesse, H. van Staveren, G.
Sharp, S. Mullender, J. Jansen, G. van Rossum, “Experience
with the Amoeba distributed operating system”,
Communications of the ACM, 33(12):47-63, December,
1990.

W. Yeong, “Towards Networked Information
Retrieval”, Tech Report 91-06-25-01, Performance Systems
International, 1991.

55

