|
|
|
?

s g T e

OVALLING OSCILLATIONS OF SHELLS IN CROSS FLOM:
AN ANALYTICAL AND EXPERIMENTAL INVESTIGATION

by

SION-YIANG ANG

A Thesis Submitted to the Faculty Of Graduate
Studies and Research in Partial Fulfillment
of the Requirements for the Degree of
Master of Engineering

Department of Mechanical Engineering
McGill University
Montreal, Quebec, Canada

August 1983 ©




T it T S

—

VS

ABSTRACT

This thesis investigates and aims to uncover the cause of ovalling
oscillations of cylindrical shells in cross flow.

Experiments were conducted with thin-walled cylindrical shells
clamped at both er;ds and subjected to cross flow. The natural freguencies
and modal damping of the system were measured. A systematic investigation
of the wake characteristics of a rigid cylinder, in the presence of a
splitter plate, confirmed that the splitter plate is effective in
suppressing periodic vortex shedding, but not in suppressing ovalling
oscillations. Experiments on a cylindrical shell with a glued-on imsert
and another shell with a "wake eliminator" in place have clearly
demonstrated the importance of wake flow on the stability of the system.

A refined quasi-static aeroelastic theory was developed, to
predict the threshold for ovalling oscillations of a clamped-clamped shell
in cross flow. It was found that the system may develop oscillatory
instabilities associated with negative aerodynamic damping. Consistently
with experimental observations, the theory also shows the importance of
pressure fluctuations in the wake, in predicting the threshold flow
velocities for ovalling.

Lastly, utilizing measured pressure distributions of (static)

deformed shell shapes and the, phase relation between shell vibration and

the induced pressure, an entirely new analytical model was developed for

predicting the onset of ovalling; it was shown that the system is capable

of extracting energy from the flow field, and a reasonably good prediction
of the threshold flow velocity for ovalling was obtained.

P



P

o LS, A S R 3 1w

. e ———

it

SOMMAIRE

Cette thdse analyse et vise & trouver les causes du flottement
des coque"‘s cylindriques soumises 3 un écoulement transversal.

Des essais ont 8té conduits sur des coques cylindriques mimes
fixées aux extrémités, et soumises & un écoulement transversal. Les
fréquences naturelles et 1'amortissement modal du systdme ont aussi &té
mesurés. Une &tude systématique des charactéristiques du sillage d'un
cylindre rigide en pvésence d'une ailette séparatrice, a confirmé que
celle-ci est efficace pour la suppression du décrochement tourbillonnaire
périodique, mais non & prévenir le flottement de la coque. Des essais sur
une coque cylindrique munie d'un piadce insérée collée ainsi que sur une
autre munie d'un "suppresseur de sillage" ont clairement démontré
1'importance de 1'écoulement dans le sillage sur la stabilité& du systéme.

Un mod2le th&orique quasi-statique amélior& a &t& développé pour
prédire le seuil du flottement poﬁr des coques fixes aux extrémités,
soumises & un &coulement transversal. On a ainsi constaté que des
instabilités oscillatoires associées 3 un amortissement aérodynamique
négatif sont possibles. Conformément aux observations expérimentales, le
moddle théorique démontre aussi 1'importance des fluctuations de pression
dans le sﬂlage quand 8 1a prédiction du seuil des vitesses de flottement.

Finalement, en utilisant des distributions de pression expérimentales
sur des coques déformées (statiquement), ainsi que la relation de phase
entre 1a vibration de la coque et la pression induite, un moddle analytique
entidrement nouveau a €té dév;}oppé pour pré&dire le seuil du flottement;
11 fut démontré que le systdme peut extraire de 1'énergie de la zone

d'écoulement, et une prédiction raisonnabiement bonne du seuil du flottement

a été obtenue. :
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/ NOMENCLATURE

. Unless otherwise specified, the notation used is as follows:

12

Shell radius
Shell diameter
Young's modulus for the shell material

Ovalling frequency of the shell without an insert in the
(n,m)-mode ,

Ovalling frequency of the shell with an insert in the (n,m)-mode
Yortex shedding frequency

Normalized tangential surface flow velocity, (v9/U)|r=a
Wall thickness of the shell

Length of the shell

Axial mode number

Circumferential mode number

Mode {identification, for a mode with n circumferential waves
and m axial half waves

Pressure )

Ratio fn’m/fvs for the shell withlout an insert
ratdo 1;1"“‘/1\,s for the shell with an insert
Mean approach flow velocity

Threshold flow velocity for the onset of ovalling of thé
shell (without an insert) for the mode occurring first with

" increasing flow

Threshold flow velocity for the onset of ovalling of the
shell (with an insert) for .the mode occurring first with

increasing flow

Threshold flow velocity for the onset of a particular mode of
ovalling of the shell (without an insert) - but not necessarily
the first to occur with increasing flow



ix

Threshold flow velocity for the onset of a particular mode of
ovalling of the shell (with an insert) - but not necessarily
the first to occur with increasing flow.

Displacements of the shell middle surface in the axial,”
circumferential and radial directions, respectively

Tangential, radial and axial flow velocities

"Energy extracted from fluid flow, per cycle

Energy dissipated by structural damping, per cycle ~ ,
psaz(]-\)z)/E

Modal 1ogar?thm1’c decrement for dissipation in the shell
without an insert, in the (n,m)-mode ,

a

Modal logarithmic decrement for dissipation in the “shell
with an insert, in the (n,m)-mode

(h/a)2/12 \

Poisson's ratio ‘ .

Density of the fluid

Density of the shell material

Total velocity potential of the fluid . ,
Velocity potential of the mean %1ow AN
Perturbation velocity potential

mth axial comparison function of the shell/

.




CHAPTER 1

INTRODUCTION ~

. 7 M
1.1 Preliminary Remark

After erection of thin metal chimney stacks in Moss Landing,
California in the 1950's, ovalling oscillation {a relatively new phenomenon)
was seen to develop in a steady wind of moderate velocity. Unlike the
more common swaying oscillation of chimney stacks, "breathing™ or "ovalling”
vibrations are characterized by periodic deformation of the cross-sectional
shape of the stack. TKe/ deformed shape at any cross-section may be
described by its radial component which varies circumferentially
proportionately to cos n8, where 6 is the usual (azimuthal) angle and n
is the circumferential wave number; 7.e., n is equal to the number of
full sinusoidal waves around the circumference, so that the number of nodal
points are twice n (see Figure 1.1). For example, beam-er‘swaying
motion is characterized by n=1, whilst for n=2, the second mode of ovalling,
there are four nodal points and two full sine waves around the périphery
of the stack. In common usage, "ovalling™ refers to all shell modes of
oscillation for which n 2 2, but strictly speaking it should be restricted
to the second circumferential mode.

The Moss Landing incident prompted Dickey and Woodruff [1] and
Dockstader ¢t al. [2] to investigate the cause of the vibration; they
conducted some on-site full scale tests on the stacks. In their stu’a{es.
the vortex shedding frequency was inferred by assuming a) Strouhal number

(S = fvsD/U) of S = 0.22, rather than being actually measured. They found

]




that the second-mode ova‘l‘l\,ing, frequency occurred at, or close to, the
natural frequency of the stack and that it corresponded to approximately
twice the vortex shedding frequency. Since it is well established that
swaying oscillation of chimneys 1s caused by the alternating forces
induced by the periodic shedding of vortices in the wake of the stack,

. Dockstader et al. proposed that a similar mechanism was responsible for
ovalling oscillation, where now periodic vortices would excite ovalling
at double their own frequency, such that the chimney would go through two
cycles of oscillation for each pair of vortices shed.

Having questioned [3] the necessity of a 2:1 relationship between
the ovalling natural frequency and the vortex shedding frequency, Sharma
and Johns [4) conducted an extensive series of wind tunnel experiments
on metallic cylindrical shells. They concluded that ovalling oscillations
were induced subharmonically by vortex shedding {5], such that there was
a more general integral relationship (ratio) between the ovalling frequency
and the vortex shedding frequency, and that this integral ratio, r, ranged
from 1 to 6. Again it should be noted that Sharma and Johns also did not
measure the vortex shedding frequency, but calculated it by assuming a
constant Strouhal number of either S = 0,20 or S = 0.166. They then
extended the Dockstader et al. argument, and proposed a mechanism whereby
a cylindrical shell would undergo a number of full cycles (for r = 2, 4,
6, respectively), or a number of healf cycles (for r odd), of oscillation
for each vortex shed. Since the vortex shedding frequency was not known
precisely, the hypothesis that ovalling was induced subharmonically by
vortex shedding ‘could not be said to have incontrovertibly been established.
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Tﬂhtest this hypothesis further, Paidoussis and Helleur [6]
conducted experimefits in which they measured both the vortex shedding and
ovalling frequencies. They found that an integral relationship between
the two existed only close to the onset of ovalling. With increasing flow,
beyond the threshold of ovalling, there was no form of lock-in or
synchronization between_the vortex shedding frequency, fvs’ and the shell
ovalling frequency, fo‘ in contrast to what is usually found in the case
of swaying oscillations. Hence it was tentatively concluded that, although
vortex shedding may trigger the ovalling oscillation, it is not essential
for the maintenance of the oscillation. Nevertheless, further experiments
with a long splitter plate mounted behind the cylindrical shell, to suppress
periodicity in the wake 7], showed that ovalling still occurred. This
suggested periodic vortex shedding neither initiated nor sustained ovalling!

The dispute over the cause of ovalling led to a series of
investigations by Aaron [8], Wong [9], and Suen [10]. They confirmed that
ovalling was a phenomenon independent of periodic vortex shedding. Other
findings by the three authors, similar to those reported in Ref, [6], were:

-(1) ovalling occurred at essentially one of the shell natural frequencies;
(i1) there was no lock-in of the vortex-shedding frequency to the shell
frequency, of the type common in the swaying type of oscillation; (iii) at
'onset, it was not always true that fo/fvs = integer. Hence, these
investigators concluded-that even the sub-multiple relationship between

f . and fo is not an essential prerequisite for the onset of ovalling.

Vs
Experiments conducted by Wong on a clamped-clamped cylindrical
"shell spanning the height of the working section of the wind tunnel showed

that ovalling could occur in two-dimensional flow. Paidoussis and Wong
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[9,11] then developed an analytical model for the aeroelastic instabi]if}
of an infinitely long cylindrical shell in cross flow. It was found that,
at sufficiently high flow velocity, certain types of shell motion lead
to flutter, of the single-degree-of-freedom, negative-aerodynamic-damping
type. The mode shapes+ leading to instability as predicted by theory
agree with experimental observations; however, quantitative agreement between
predicted and measured thresholds of instability is poor.

By utilizing three-dimensional shell equations, the theory was
extended to deal with cylindrical shells of finite length and clamped ends

-

{10,12]). Even though the new theory gave a betﬁer representation of the

actual experimental system [10,29], it was found to still greatly over-
estimate the critical flow velocities-for the onset of ovalling.

Everything so far indicated that alternate vortex shedding was
not the cause of ovalling. However, one last possibility remained: that
of synchronous symmetric vortex shedding, such as that observed for in-line
oscillations of cylinders {[13]. However, in a'specia1 study of this
question with shells in cross flow, no symmetric vortex shedding was
detected, either before or after the onset of ovalling [14]. The sané
study‘a1so ruled out acoustic coupling as a mechanism for initiating or

sustaining ovalling oscillation.

1.2 The Present Thesis

It seems that the mechanism underlying ovalling is far more complex
than had previously been supposed. Hence, the objective of this thesis is

1'I.c., the orientation of the modes vis-3-vis the upstream flow-velocity vector.




to further examine and hopefully uncover the "true® cause of this intriguing
phenomenon.

The experimental part of this thesis includgs modal damping measure-
ments and wind tunnel tests involving a clamped-clamped cylindrical shell
in cross wind. The apparatus is described in Chapter 2. An improved and
refined technique, as described in Chapter 3, was developed for measuring
shell damping, which is an essential prerequisite for the theory to
predict the threshoid flow velocity for the onset of ovalling instability.

Chapter 4 describes a specific set-up where shell motion was
restricted over part of the shell circumference, the ultimate aim being to
immobilize that part of the shell which lies in the wake; this would then
correspond better to the theoretical model of Refs. [9-12], where the wake
ws viewed as a dead region and as having no effect on the stability of the
system - thus enabling a better comparison of the analytical and
experimental results. To evaluate the e;fectiveness of the splitter plate,\
the periodicity in the wake of a rigid circular cylinder with and without
a splitter plate was thoroughly investigated. As will be seen in Chapter 4,
the experimental eyidence indicates that wake flow does play an important
role in precipitating ovalling oscillation. For this reason, a special
wake eliminator was constructed, and further tests were conducted, as will
be described in Chapter 5. In the same Chapter, the problems encountered
while attempting to simulate a fully potential flow around the cylindrical
shell will be discussed.

Chapter 6 presents an analytical model for the aeroelastic
instability of a clamped-clamped shell in cross flow. The theory of
references [10,12] was extended to account for a moving fluid-solid
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boundary and the pressure fluctuations in the wake due to shell motion.
Chapter 7 is devoted to the calculation of energy input to the

system from the air-stream. The calculation is based on quasi-static

analysis, utilizing measured time-average pressures of certain permanently

deformed (static) shell shapes. For this analysis, the phase difference

between the perturbation pressure field and the shell displacement has

to be known. The determination of this phase is discussed in Appendix E.
Finally, the major findings of this work are discussed and

summarized in Chapter 8.
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CHAPTER 2

DESCRIPTION OF THE APPARATUS

A number of different experiments were designed to explore the’
mechanism of ovalling oscillations of a thin cylindrical shell in cross
flow. In this Chapter, only the main experimental set-up and instrumentation
will be described; other special set-ups which serve specific functions
will be described in subsequent Chapters, which makes for more meaningful

and interesting reading.

2.1 The Wind Tunnel

The e;(periments were conducted 16 a low speed, open return wind
tunnel (see Figure 2.1) with a closed working section of 0.91 m (3.0 ft.)
wide and 0.61 m (2.0 ft.) high. The wind speed range is about 0-45 m/s
and the longitudinal turbulence is certaimy less than 0.5% [15]. The
boundary layers on the top and bottom walls of the tunnel working section
are about 31.8 mm (1.25 in.) thick while thos_e on the side walls are
about 50.8 mm (2.00 in.) thick.

The flow velocity was determined by measuring the pressure
difference between the atmospheric pressure and a reference pressure,
upstream of the working section. With this pressure difference, the actuail
wind speed at the working section was inferred from a calibration curve
[15). When the model was in place, the wind speed was- corrected for
blockage effects [16]. For a circularwcylinder of 76.2 mm (3.00 in.) in

diameter, spanning the height of the tunnel, a 5% correction was calculated.
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2.2 The Epoxy Shell

The test shells were spin-cast from low viscosity epoxy material.
The dimensions and geometry of the shells tested are tabulated in Tablé 2
Measurements”around the periphery of the cylindrical shell indicated that
there was approximately a 5% variation in wall thickness.

In some tests, the test models uéed (as shown in Figure 2.2) had
an aluminium insert glued onto th% inner surface of the shell. The

purpose of the insert, which has the form of part of a cylinder, was to

.1.

restrict the motion over that portion of the flexible shell. The ultimate

aim was to have a rigid body in the wake, with only the front part,
lying in the unseparated flow region, being flexible. This would then

ﬁrovide a crucial test for the thgory, where ‘the flow in the wake was

‘ignored, as will be explained in due course.

2.3 Basic Experimental Set-Up

The flexible cylindrical shell (of length approximately 584 mm

(23.0 in,), see Table 2.1) was mounted at the center of the working section,

spanﬁing the height of the wind tunnel, as shown diagrammatically in

Figure 2.3. It was clamped at both end$, resulting in an effective length

of 533 mm (21.0 in.); precautions were taken to avoid any axial loading
on the shell.

Shell vibration caused by wind excitation was sensed by a fibre-
optic "fotonic" sensor. Not}ng that ovalling in the second mode occurred
with a node facing the free stream, while in the third mode there was an

‘
sntinode facing the flow, for most experiments the fotonic sensor was
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posifioned at an angle of 45° to the flow-velocity vector and 127 mm
(5.00 in.) above the tunnel floor.. The light beam emitted f;om the fotonic
probe was first projected onto a mirror and then(reflected onto the
cylindrical shell (see Figure 2.3). The intensity of the ray reflected
from the shell surface back onto the sensor determines the instantaneous
position of the surface. A shiny metallic tape acting as a reflector was
attached to the shell surface.

The periodicity in the wake was sensed by a hot wire anemometer.
The hot wire was positioned near the free shear layer and a few diameters
downstream of the cylinder (typically in between positions\15 and 16 of
Figure 4.6), and at a height of 203 mm (8.00 in.) above the tunnel floor.

Both the hot wire and fotonic sensor signals were processed by
a Hewlett-Packard 5420A FFT signal analyzer. The dominant frequencies
could be identified and measured from power-spectral-density analysis of
the signals. =

.The type and make of instruments used are listed in Appendix A.

2.4 Experimental Procedure

To study the.wind effects on the cylindrical shell, the procedure
was to start the wind tunnel at a low fTow velocity, approximately 2 m/s,
and gradually increase the wiqd speed in steps of roughly 2 m/s, up to
around the critical velocity for the onset of ovalling. From then on, the
flow velocity was- increased 1n\sma11er steps of about 1 m/st The behaviour
of the shell was observed from the top and through a side window in the
working section, and tﬁus the ovalling mode shape could be identified with
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the aid of a stroboscope. For each flow condition, the wind speed, shell
response, and vortex shedding frequency were recorded. The flow velocity
was then incremented and the same procedure repeated.
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CHAPTER 3

NATURAL FREQUENCY AND MODAL DAMPING MEASUREMENTS

The main objective of the experiments presented here was to

" accurately measure the modal damping of the shell. This information is

necessary for the theory+, to be able to predict the threshold flow velocity
for the onset of instability of the cylindrical shell (see Chapter 6).
Knowing the natural frequencies of the shell will also aid in analyzing

the measured frequency spectra of shell motion.

L.

3.1 A Survey of Experimental Techniques

There are numerous methods for determiding the natural frequencies
and modal damping of a system (17-22].

The simplest experimental technique, which requires iittle
instrumentation and is easy to perform, is the so-called decay of free
vibration method. Ideally, the rate of decay of vibration of a structure
excited by a force impulse is recorded first; then the time between peak
amplitudes gives the period t, and the amplitude ratio gives the
logarithmic decrement & (damping). However, this approach will only yield
reasonable results for simple structures, as in the case of axial,
‘torsional or bending motions of a bar. Moreover, only the fundamental
mode of the system may be determined, and difficulties associated with

. \
beating arise if two frequencies are close together. {

The theory suggests that for certain modes of oscillation, the motion is
aerodynamically negatively damped; instability then occurs wher this negative
damping is equal to the internal dissipative (positive) damping of the
shell; hence the need to know the latter.
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. | Resomance testing is a more elegant method, where the structure to

be %kudied is excited harmonically by a force, and the displacement (response)
.is %onitored Qs a function of frequency. Hence, in principle, any mode

of Ahe system may be determined. The most common form of resonance testing
jsfthe peak amplitude method, where the natural frequ;ncy and damping are
dq&uced from a "response curve" of total displacement amplitude (or, ,
béttec yet, the ratio of response to excitation) plotted against the driving
frequency. As the name suggests, the resonance is defined, very simply,

to occur when the response reaches a maximum. The logarithmic decrement

is given by "*(fz'fI)/fn where f1.f2 are the frequencies associated with
theuha1f-power (1/vZ of the amplitude) points and o is the natural
fre&uency. The advantage of this technique is that no phase information
(between response and excitation) is needed. However, this phase information
can, in fact, lead to enhanced accuracy. A second shortcoming of this

method is that it is limited to lightiy damped systems having no closely-
gpaced natural frequencies. Two closely-spaced natural frequencies may
contribute to the amplitude at an intermediate frequency, resulting in the

erroneous détermination of frequency and damping of only one (pseudo) mode.
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Be'in“aware' of the possible defects generated by the techniques
mentioned above, it was then decided to perform the tests for the present '
study by the method of Kennedy and Pancu [20,21]. This approach is capable
of providing reliable results, even when the damping is high and the *
frequencies are close to one another; as such, it has proven particularly
suitable for shell-type structures. This is a sophisticated method which
requires the driVing frequency to be precisely controllable, also the
frequency and phaée of the excitation force, as well as tﬁe response, must

be measured accurately. The method itself will be described in terms of

sample results in Section 3.4.

3.2 Description of the Experiment

The experimental set-up is shown schemética]ly in Figure 3.1. The

shell was excited acoustically by a small loud-speaker, placed near its

upper end; the excitation frequency could be precisely controlled through
an oscillator. Measurement of the inpyt force (pressure) was made via a
microphone, and the shell vibration was monitored by the fotonic sensor.

Both measurements were made on the same level above the tunnel floor.
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3.3 Testing Procedure

\ ' 2
The natural frequencies and modal da?ping for the second and third

modes of ovalling were measured in still air. Before the actual testing
was conducted, it was neéessary to ensure that the "excitation force" was
stab1e+ and sinusocidal in nature. This is essential, as the quality of the
measurement depends largely on the stability of the driving frequency, and

a very small variation in frequency may give rise to very large fluctuations
in the response levels when measuring near a resonance. Figure 3.2 shows
the power spectral density of the excitation signal registered by the
microphone. It is seen that only one prominent peak was reco}ded, suggesting
that only the fundamental forcing frequency was exciting the she]lg. The
frequency spectrum of the shell vibration, as shown on Figure 3.3, also
contains one dominant frequency peak.

' The general experimental procedure was to first monitor (on the
oscilloscope) the shell response due to the acoustic excitation, while
sweeping the excitation frequency through a specified frequency range; in
this way a rough value of the natural frequency could be obtained. Then,
the actual measurement was optained by initially setting -the forcing
frequency around 10 Hz bélow this value and slowly increasing the fregquency,
up to about 10 Hz above it, concentrating more measurements in the neighbour-

hood of the resonance frequency. Both the excitation and response sigdals

*buring the early stages of the experiment, it was discovered that both the
oscillator and fotonic sensor units had "drifting” problems; z.e., the
oscillator frequency might shift by 0.5 Hz per half hour, and a zero shift
of about 50 mV (typically 2% on the set value) on the fotonic sensor unit
could also occur. This was overcome by allowing the instruments to warm up
for a sufficiently long time (about 2 hours).

§The small circles on the peak and on the abscissa are, respectively, at the
fundamental frequency and at (absent) harmonics.
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were processed in the transfer function mode of the'FFT dynamic signal

¥

analyzer. As it takes“some time for the system to achieve a steady-state

value whenever the frequency was varied, readings were taken when two

consecutive sample sets (25 averages each) of the signals produced sensibly

th® same results. N

3.4 Results and Discussion

, ' - . g
The data reduction technique for the Kennedy-Pancu method is to

plot the complex impedance of the system at different frequencies on an

_Argand diagram. Ideally, the data points for a one-degree-of-freedom

system form an exact circle (see Figure 3.4). The resonant frequency Jies
at the absolute maximum of the circle on, or paraliel to, the imaginary axis.

The logarithmic decrement is thén given by [22]

"

§ = 2m(f,-F ([ (tan ¢, + tan ¢,)],

where fz. f‘, ¢2 and ¢, are defined in Figure 3.4 and fo is the natural
frequency. For a multi-degree-of-freedom system, such as the Shells used in
the experiments, if sufficient points are available to draw a circle in

the complex impedance plane, then the modal logarithmic decrement, 6n

-

m!
is given by

Sn.m = Zw(fz-f])/[fn’m(tan ¢ + tan ¢2)1.

where fn m is the natura1‘frequency associated with the nth circumferential

and mth axial number. Ideally, ¢], ¢2, f] and f2 are the angles and

b —— - -
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frequencies associated with half-power points, but could simply correspond”
‘to any two points on e"ither side of the maximum.

f. only

As the shell response to the acoustic excitation is very low
a very sensitive instrument, such as a fotonic sensor, is capable of picking
up the vibration. )

The circumferntial mode number, corresponding to any given natural
frequency, is identified with the aid of a stroboscope, with the shell
excited into ovalling by the wind. Moreover, since the present experimental
set-up resembles that of Suen's [10], the corresponding axial mode number
of the clamped-clamped shell is based on his findings.

Iiesu'lts will now be presented for shells with and without a gluded-on
insert (see Section 2.2).

r In the course of the experiment, some technical difficulties were
encount;ered with shell A when an insert was utilized; it was observed that
the glue (LiquiSilk), which was usefi to hold the insert into position, reacted
with the shell surface. As a r\*eﬁdlt\pockets of a'iV\r bubbles were formed
between the insert and the shell. Th"i.f;‘glue was chosen as it was readily
dissolved by acetone, and the original idea was to salvage the shell after
the experiment, by dissolving the glue. Because of the difficulties with
the air bubbles, the experimental results for shell A vere viewed with some
suspicion; they will e presented in Appendix B.

The same experiment was repeated with shell B. i This time epoxy
glue, which has the same chemical properties as that of the shell, was used.
Epoxy glue also provides a better bonding between the metal insert and the

shell.
-

FThe amplitude of vibration is of the order of 1 mm.




17

Figures 3.5 and 3.6 show the mechanical properties of shell B
(without an insert). It is seen that the experimental points fall almost
exactly onto the locus of a perfect circle; the effect of the other modes,
has slightly displaced the origin of the modal circle away from the’imaginary
axis (comparing with the plot for a single mode, Figure 3.4). The natural
frequencies and modal damping of the second and third modes of ovalling are
respectively: fz’] = ‘166.1 Hz, 62.] = 0.051; f3'] = 216.0 Hz, 63’] = 0.052.

The repeatsbih‘ty of the measurements is excellent (compare Figures 3.5-3.6

"and 3.7-3.8); the discrepancy for the resonant frequencies and modal damping

between two different measurements, done on different days, are approximately
0.2 and 4 percent, respectively. o
The effect on the Nyquist plot of having an aluminium insert qlued
onto the inside surface of the shell (preventing motion of about 20% of the
shell surfac"e) is shown in Figures 3.9 and 3.10. It is seen that for the
n=2 mode, the natural fr;equency increases to 209.0 Hz (an increase of
approximately 26%) and modal damping increases to 6;’] = 0.053 (an increase
of 4 to 8%); while for the n=3 mode, f;" = 227.7 Hz (an increase of 5%)
and 5;', = 0.144 (an increase of 175%). The distor®ion of the Nyquist plot
(see Figure 3.10) to a non-circular locus may be caused by the presence of
another (yet to be identified) mode. The repeatability of the n=2 mode is
good (compare Figures 3.11 with 3.9) whilst it is poor for the n=3 mode
(compare Figures 3.12 with 3.10). The poor repeatability of the n=3 mode
may be, because of the higher damping, the loud speaker used is incapable
of providing consistent excitation for this particular mode.
Another shell, shell C, was used for the second phase of wind tunnel

testing. The natural frequencies and modal damping in this case are




et

e e W g YA BTTIATY T RO RMTT R T T

18

(

. (»} ‘ determined from Figures 3.13 and 3.14. For the n;Z mode, f"2 1" 163.8 Hz,

62’] = 0,032, and for the n=3 mode, f3’] = 226.1 Hz, 63'] = 0.036, were
obtained. )
The mechanical properties of the three shells are summarized in

Table 3.1. It may be seen that the present experimental set-up and

procedure, using acoustic excitation, appear to be ideal for any shell-type .

structure witl) logarithmic decrement less than or equal to 0.05. For higher
'/?hmping, the method is probably still good, but a more powerful loud speéker
5 would certainly have to be used. Another advantage of the set-up is that

it provides a source of "multiple-point™ excitation, as compared with a

single-point excitation of a mechanical exciter, where the chances of missing

a vibration mode are greatly reduced.
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CHAPTER 4

FIRST PHASE OF WIND TUNNEL TESTING

4.1 Preliminary Remarks

In this Chapter, experiments to examine the behaviour of a
cylindrical shell with and without an insert are described. Before presenting
the results, one of the difficulties of these experiments will be discussed,
namely that of pinpointing th91ve10city for the threshold of ovalling. This
difficulty arises because the shell response, as registered by the fotonic
probe, does not increase abruptly from zero at the onset of instability,

as is indicated by linearized theory but, in fact, a more gradual increase

“in amplitude is obtained. Therefore, a "tangent method™ was used to define

the threshold flow velocity for the onset of ovalling. This method proceeds
as follows: (a) a tangent is drawn from the curve of vibration amplitude
versus flow velocity, at the point where the amplitude change becomes
distinct; (b) to compensate for the increase in amplitude with flow due to
buffeting induced by the turbulence, a second tangent is drawn at a small
angle to the x-axis (flow-velocity axis); (c) the intersection of these two
tangents then defines the threshold of instability; see the following sketch.
The fotonic sensor used to minitor shell response was calibrated
and set to operate within a predetermined range, in which it behaved in
an almost linear manner; the calibration factor could then be detemined
from the calibration curve (Figure 4.1). Care was taken to ensure that the
shell amplitudes were never large enough to cause the fotonic sensor to

depart from its linear range.
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4.2 Ovalling Results for the Insert-lLess Clamped-Clamped Shell

Since the main objective of this work is to investigate the
mechanism of ovalling oscillation, and since it is reasonable to presume
that the same mechanism would be responsible for all modes of ovalling, the
only types of ovalling to be studied here are restricted to the second and
third circumferential modes.

Typically, the dynamical behaviour of a test shell with increasing
wind speed is as follows. The first observed instability is in the second
circumferential mode (n=2), followed by the third circumferential mode
(n=3) - always in the first axial mode (m=1). For the n=2 mode, the shell
deformation is such that the positions of maximum vibration (antinodes)
are located at 45 degrees to the flow; for the n=3 mode, the shell vibrates
with one of its three antinodes facing upstream. An interesting feature
of third mode ovalling is that it is accompanied by a loud acoustic noise
and that (by visual inspection) it has a larger amplitude of vibration
than the second mode.
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‘A typical experimental result, for shell B, is »shown in Figure 4.2.
The Strouhal number is v .18 for flow velocitjes of less than 20 m/s,
beyond which it decreases to ~ 0.16. The n=2 mode (fz’] v 167 Hz)
instability begins at Uy = 21.2 m/s, and at this flow velocity the ratio,
r, of ovalling frequency to vortex shedding frequency r = 3.4-3.5; the
uncertainty in r arises from the corresponding difficulty in pinpointing

Uep-  The n=3 mode (f3 v 223 Hz) was precipitated at a slightly higher

- wind speed of Uthr s 22,9 m/s. It is noted that, beyond this flow, third

and second-modes ovalling take place concurrently; it would be reasonable
to suppose that, in that flow range, the third mode vibration is coupled
with that of the second mode in some way.

The same experiment was repeated on another date and the result is
presented in Figure 4.3. ‘Simﬂar results for a nominally identical shell
(shell A of Table 2.1) will be given in Appendix C. Finally, the results
for shells A and B are summarized in Table 4.1. The repeatability of the
results for the same shell is good, as may be seen from a comparison of
Figures 4.2 and 4.3, for instance. Small differences between the two
nominally identical shells may arise from manufacturing discrepancies and
differences in clamping.

These results confirm the conclusion arrived at previously ([8-10]
that, at the onset of ovalling, the ratio fn /f . need not be an integer.

oM VS

4.3 Shell with an Insert

In these experiments the test model was oriented in three different

ways with respect to the on-coming flow, as shown in the diagram below;
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I ' II ' I11

to facilitate discussion of the results for the three different configurations;
they will be referred to as configurations I, ‘II and III, respectively,
According to the theory proposed by Paidoussis et al. {11,121,
the wake region is considered to be effectively stagnant, so that an insert
in arrangement I should have 1ittle effect on ovalling, whilst in
arrangements II and III it might., The purpose of these experiments, it is
recalled, was to test this hypothesis.
The following observations were made with increasing wind speed.
In orientation I the system was seen to be stable at all flow velocities,
up to U = 50 m/s! For the model orientated at configurations II and III,
on the other hand, ovalling was eventually precipitated, although at a higher
flow velocity. than without the insert, and the familiar acoustic noise
was heard when the amplitude of vibration became large. The ovalling mode
shape looked like a truncated n=2 mode, with a node at 270° for orientation
II, and at 180° for orientation III.
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Here it should be noted that it was not too surprising that no
instabﬂ\ity was observed for the n=3 mode, in none of the configurations
tested, because the increase in modal damping in this mode after affixing

the insert is high (6:‘; 1> 0.100) and presumably inhibits the onset of

ovalling, whilst this is not the case for the n=2 mode (6; ] = 0.052). -

It is seen (Figure 4.4) that the onset of instability for shell B
with an insert, has a lower critical flow velocity, U;r x 27.0 m/s

(f; 1 ~ 212 Hz; ri = 3,3-3.4) at oritentation II than orientation III with

Uti:r = 28.7 m/s’ (f; ]~ 214 He r' = 3.2-3.3). For both configurations II
i

and III, Ucr

partly due to the higher mechanical damping and partly due to the higher

is higher than that of a shell with no insert; this may be

ovalling frequencies when an insert is utilized. In any case, “the effect
of aerodynamic forces on a body which is partly rigid is quite different
from that of a cylindrical shell. The same effect may also explain the
difference in the onset of instability for a shell with an insert at
configurations Il and III. The results of the same experiment, repeated
after the system had been dismounted and remounted on another date, are
shown in Figure 4.5; once again repeatability is good.

SimiTar experiments were conducted also with shell A and are discussed
in Appendix C. A summary of the resul;s is given in Table 4.2. The repeat-

ability of the results for different tests on the same shell is reasonably good.

1‘Thmv'e is some doubt as to ther the onset of ovalling in that mode actually
occurs at this flow speed (Ul. = 28.7 m/s), as this could correspond to the
onset of instability of another mode (the symmetric, as opposed to the anti-
symetric second mode) as shown below; (a change of ovalling mode shape was
observed in a clamped-free shell with no insert [10,29]); alternatively, it

— O
c?uld simply be that the onset of instability is at a higher flow speed
Ucr = 35 l/S (Pi ~ 206"2.7)0




Finally, the experimental results for the second mode of ovalling

(with and without an insert) are compared in Table 4.3. It may be seen

" that for a shell with an insert, the orientation of the model does play an

1mportant role in precipitating ovalling oscillation. An interesting

feature of these results is that, at the onset of instability, the ratio r
i i .

and r j(fZ,llfvs and fZ,I/fvs) falls in the range of 3.1 to 3.5.

Here it is recalled that the original expectation was that a small

insert at the back of the shell (such as the one used in these experiments)

‘would have a small effect on ovalling and that only for larger inserts the

effect would be pronounced. The results found here, however, have been
contrary to these expectations and they have already permitted the tentative

conclusion that wake flow does considerably aid in precipitating ovalling

(or, far that matter, that it is entirely responsible for it). Partly for

this reason and partly because it was believed that the addition of a
larger insert would further increase the modal damping and natural
frequencies of the system (such that it would be stable within the flow

speed of the wind tunnel), these experiments were terminated at this stage.

4.4 Wake Characteristics Without and With a Splitter Plate

Since all previous experiments with a long splitter plate {6,8—10,]4]*

were carried out with a narrow gap between the shell and the plate placed
downstream of the shell, it could be ar§ued that this gap may provide a
comunication path between the two sides in the wake of the cylinder; thus,
it could be argued, some organization of the wake may take place in this way,

*omnng oscillation does occur, albeit at somewhat higher threshold flow
velocities, even when periodic vortex shedding has been suppressed by a long
splitter plate.




resulting in organized periodicity after all. Moreover, a more recent
study [23] suggested that, although a splitter plate of length at least SD+
(L/D 2 5), would inhibit the formation of regular periodic vortex shedding,
nevertheless some traces of a time-varying vortex shedding frequency appear
to be present still. The frequency of a periodic component, f&s’ if it
exists in such circumstances need not be the same as the fvs without a
splitter plate. Hence, if periodicity does exist, one could still have
fn'm/f\"S = integer, overturning the conclusion reached in Section 4.2.

For this reason, a hot wire probe was systematically traversed
in the base region of a rigid cylinder, to investigate the existence of
periodicity of the wake, without and with a splitter plate. Figure 4.6
shows the locations of the hot wire probe.

Typical frequency spectra of the wake at a flow speed U = 18.0 m/s
(Re = 9.10x104) both with and without a splitter plate for some represent-
ative locations af the hot wire probe are shown in Figures 4.7-4.11.

It may be seen that in the absence of the splitter plate, ;Ae
vortex shedding frequency is recognized as the dominant peak in the wake
signal; for this flow velocity, fvs s 43.8 Hz, giving rise to $ = 0.185.
Moreover, not too surprisingly when the probe was located close to the
centerline of the system (at positions 3, 17 and 23), and in the absence
of a splitter{plate, vortices on the other side of the wake are also
sensed to some extent, giving rise to the peak at vas = 87.5 Hz.

However, with the splitter plate in position, hard as one tried,
no periodic signal was detected in the domain of investigation. It is seen

TL is the length of the splitter plate and D is the diameter of the cylinder.
In the experiments [6,8-10,14], the ratio of L/D is approximately 4.7.
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that, in most cases (Figures 4.7-4.11), the dominant peak recorded is the
60 Hz electrical noise generated by the instrumentation. Perhaps it is
worth mentioning that the diagrams in the Figures 4.7-4.11 are not plotted
on the same scale, but rather on a normalized scale dictated by the
largest peak, whatever its nature. In order to fully appreciate the power
spectral density of the wake, the diagrams of Figure 4.11 (randomly chosen)
are replotted on the same scale in Figure 4.12, showing conclusively that
there is no discernible vortex shedding frequency when a splitter plate
is positioned in the wake. )

Hence, the conclusions arrived at previously [6,8-10,14) that a
splitter plate suppresses periodic vortex shedding but not ovalling are
valid. With this firmly established, the second phase of wind tunnel

experimeftation could then proceed.
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CHAPTER 5

SECOND PHASE OF WIND TUNNEL TESTING

Earlier experimental findings demonstrated the importance-of, the
uke. in determining the onset of ovalling and, indéed, whether ovalling
occurs or not. The important role played by the wake would further be
demonstrated if it could be shown that no ovalling is possible when the
wake is entirely eliminated. Hence, a specially built "wake eliminator",
in the form of a wake bubble, as shown in Figure 5.1 and Figure 5.2 was used
in the second phase of the experimental work. The purposé of the wake
eliminator, as implied by the name, is to reduce, if not totally eliminate, -
the effect of the wake region. ‘

The set-up was later modified to have some coherent flow in the
back of the cylindrical shell (see Figure 5.3), by suckiné air through the
holes in the suction device attached to the wake eliminator. The suction
wis generated by a constant-rpm blower fan and the amount of suction at
different wind speeds is shown in Figure 5.4, The ultimate aim of this
apparatus was to create a fully potential flow around the complete
circumference of the model. This experiment could then be used to further
test the theory, which predicted that no ovalling would occur in an ideal
flow field [12].

5.1 Flow Around the Shell with Wake Eliminator

The effect of the wake eliminator on the flow field around the test
shell was difficult to predict. In order to gain some basic understanding

R 4B Y FeR
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of the flow field, the static pressure distributions of a rigid cylinder+,

both with wake eliminator and suction were measured. It should be noted
that these measurements were taken without "boundary layer guards"§.

Pressure distributions for each configuration were measured at

Y < Re < 2.0x10°.

three wind speeds, giving a range of Reyno]ds'number 3.5x10
It had been checked that the measured pressure was symmetric about the
centerline of the cylinder and uniform over most of the span. In fact,
this was not so when suction was applied through the wake eliminator, in
whiéh case the pressure in the base region seemed to vary along the length
of the cylinder. )

Pressure distributions in terms of Cpkat U=17.5ms (Re = 3.80x104)
for a circular cylinder, with wake eliminator, and with or without suction,
are shown in Figure 5.5, Cp being defined as P-R”/ipUz. The pressure
measurements were taken at approximately mid-span of the cylinder.

In the case of no suction, it is seen that from 6 = 0° to 40°, the
wake eliminator has little effect on the pressure distribution; nevertheless,
it seems to cauée earlier separation of the flow (at 6 = 70°) from the

cylinder. Also, the pressure in the base region is much higher than that

of a circular cylinder with no eliminator, with the pressure coefficient

+A rigid cylinder was used in place of a flexible shell because the
instrumentation for the former was simple, and it was believed that before
the onset of instability, shell motion was small and would have negligible
effect on the static pressure distribution.

»
+Even though the effect of boundary layer guards on base pressure measurements
is profound {24], they are not employed for two main reasons. Firstly,

- a comparison of the pressure field between a rigid cylinder, with wake
eliminator, and (with wake eliminator plus) suction, should provide enough
insight into the velocity field, so that the absolute magnitude of the
pressure was not important. Secondly, considerable modification would have
had to be made to the present set-up to accommodate the boundary layer
quards.
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from 6 = llﬂé‘to 180° being almost constant at -0.35. This suggests that
there may be little (if not zero) flow in the back of the cylinder.
When suction was applied from the wake eliﬁinator (so as to attempt
to simulate a coherent back flow), the pressure distribution becomes quite
complicated, and is far from close to that of a fully potential flow
(with € = 1-4 sin%e).
Increasing the wind speed to U = 18.0 m/s (Re = 9.10 x 104) causes
the pressure coefficients for a cylinder with and without a wake eliminator
to become quite similar for the forward part of the cylinder (see Figure 5.6);

a slightly lower base pressure (Cp = -0.42) is recorded for the former

- configuration. Comparing the Cp curves of a cylinder with and without

suction (always with wake eliminator), it is seen that the suction device

becomes even less effectiwe at this higher wind speed.
PR

The pressure distributions at an even higher flow velocity,

U= 36.0m/s (Re = 1.82 x 105), are shown in Figure 5.7. The measured Cp

' curves of a cylinder with wake eliminator and suction follow closer to that

without suction. For the latter case, there seems to be some residual
f[ow at the back of the cylinder.

% The geheration of coherent flow at the back of the cylinder whén
suction;was applied is further complicated by the existence of variations
of pregsure distribution along the span, as showg in Figure 5.8. This
problem had been anticipated, as there is a préssure drop along the length
of the suction device which, in turn, would be expected to cause a
variation of volumetric flow rate through the holes. The attempted remedy,*
=t the design stage of the device, was to vary the size of the holes from
top to bottom, with the larger holes being at the bottom. However, as may
be seen from Figure 5.8, this does npt seem to have been successful.
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5.2 Wind Effects on the System

»

The f-eSults for the response of the shell when subjected to cross

flow for the three different configurations referred to earlier will now
be presented.

Shell C was used for these measurements which had an average wall
thickness 15% smaller than that of the shells used previously. It is seen
(Figure 5.9) that the system becomes unstable in the second mode at a lower
wind speed (as compared to shells A and B) of Uy = 18.0 m/s (fz.] ~v 167 Hz,
r = 3.8-3.9), while the threshold flow velocity for the onset of third-
mode ovalling remains about the same, at Upr * 22.7 m/s (f3,] v 234 Hz).

Figures 5.10 and 5.11 show the behaviour of shell C with wake
eliminator, with and without suction at the back of the cylindrical shell.
The system is stable for both configurations.

One intriguing finding of these experiments is that flow periodicity+

was detected at some wind speeds, even in the presence of an extended splitter

\ splaté (L/D = 6). On closer examination, however, it is noticed that the
" " calculated Strouhal numbers, based on a cylinder of 76 mm (3.0 in.) diameter,

range from 0.14 to 0.15, which are much lower than the usual value for a
circular cylinder (S = 0.18-0.19). It is seen (Figure 5.1.2) that at the
same flow velocity, the vortex shedding frequency for a cylindrical shell
is higher without the wake eliminator. A reasonable explanation then
emerges for this wake periodicity: that it originates from the wake
eliminator, which, together.with the shell, in effect acts like a bluff
body of larger effective diameter, reducing the ratio of L/D and hence

rendering the splitter plate ineffective in suppressing periodicity.

TThe hot wire probe was located at 254 wm (10.0 in.) downstream and 165 mm
(6.5 in.) away from the center of the cylinder.
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It should be noted that the magnitude of the above-mentioned vortex
shedding signal, when the wake eliminator is in place, is very small.
Figure 5.13 coﬁpares the power spectral density of the wake for the three
different configurations at one selected flow velocity of U = 15.5 m/s.
This may best be appreciated by replotting the same diagram on the saﬁe
scale as shown in Figure 5.14. '

The experimental evidence collected in this phase of wind tunnel
testing, together with the previous results of a sh¥11 with an insert
(Chapter 4), have clearly and forcefully demonstrated that the near wake
flow plays a crucial role, insofar as the stability of the system is

N,
concerned.
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CHAPTER 6

'FLUTTER ANALYSIS OF A CLAMPED-CLAMPED SHELL

The theory formulated by Suen [10,12] to study the stability of a
thin elastic cylindrical shell clamped at both ends, provides remarkable
qualitative agreement with experimental observations; nevertheless, the
quantitative performance of the theory is poor. It should be remarked
here, in view of the findings of the previous two Chapters, that in Suen's
analysis, the flow field within the wake is assumed to be zero - i.e. the
wake effect on the stability of the system has been ignored.

The goal of the present study is to improve the quantitative aspect
of the original theory [10,12] - Z.e. to obtain a better prediction of
threshold flow velocities of ovalling. The theory will be modified in a
manner proposed by Paidoussis [25]. Firstly, the change in radial flow
velocity, due to shell displacement, will be allowed for in the fluid-solid
boundary condition. Secondly, the variation of the base pressure in the
wake, induced by shell deformation, will be incorporated into the theory.

The flow field around the cylindrical shell is assumed to be
quasi-irrotational. The wake is separated from the outer flow by a dividing
streamline. Within the wake, a constant flow velocity is assumed to exist /
(in a time-averaged sense), the magnitude of which i‘s dictated by the
base-pressure in the wake. It is further assumed that the flow field is
comprised of the superposition of the mean flow and the perturbation flow
field induced by shell vibration. Further, it is assumed that the positions
where the mean flow separates from the body surface are unaffected by shell
motions, which are considered to be small.
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The method of analysis is briefly as follows. Firstly, the
time-varying flow field associated with shell vibration at a typical
cross section is determined, and then, utilizing strip theory aerodynamics,
the resultant pressure fluctuations on the shell are calculated; if thgse
pressure fluctuations are such as to attenuate or amplify the initial

vibration, then stabiiity or instability, respectively, is indicated.

6.1 Equations of Motion

The shell is treated as purely elastic, homogeneous, isotropic and
thin, and its motions are described by disp]acwnts U, vand w of the
middle surface of the shell from its initial position in the cylindrical

coordinate system x, 8 and r (Figure 6.1).
The equations of motion of the shell are taken as given by Fliigge

1

(261, Z.¢.,

’ 02§;+]7‘3-:-§§+a1?-%:—z+w%+x{%!~:—:§-a3§§ »'
+.‘;_’.£§§2} - v%—i{,, (6.1)
a%“—-%é‘-e-+-:§-§+ az%3$+%+n{%lz(l—v)—:-:%
(32 a:’:a ) - ,.?5; S (%)
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3w
+ 2 + 2 +w = -y &—72 }
%02 307 2 at?  Pgh

where x = hZ/lZaz, Yy = psaz(l-vz)/E and q = Pi-Pa» Py and p, being,
respectively, the internal and external pressure on the shell surface,
h and a the shell wall-thickness and radius, respectively, P the shell
density and E the modulus of elasticity; v is Poisson's ratio.

These equations are linear, and, thus, q, may be separated into
two components - ar(e)’ which is due to the static loading of the mean
flow, and q;(x,e,t), which is due to the perturbation associated with the
deformation with components u*(x,8,t), v*(x,0,t) and w*(x,8,t). Considering
the effect of static loading, ﬁr, on the dynamics of the system to be
negligible, equations (6.1) to (6.3) may be vie;ed as relationships among

u*, v*, w* and q;.

6.2 The Fluid Pressure on the Shell

Assuming the induced flow in the x-direction to be small, a two-
dimensional velocity potential may be defined as

¥ 9, .1
L} -F.Va -r-“ and V 50. (6.4)

where Vr. Va and V‘ are, respectively, the radial, tangential and axial
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flow velocities; (the last of the three relationships above makes the use
of ‘strip theory aerodynamics possible).

Furthermore, because of the linearity of the velocity potential,
® can be represented by a superposition of the mean flow potential

¢o(r,e)+ and the perturbation flow potential ¢*(r,6,t), so that

<b(x,r.6,t) = ¢°(r96) + ¢*(r’e:t) ’ (605)

where the latter is entirely associated with shell motions.
Using the condition of impermeability of a stationary shell, the

mean surface velocities in the radial and tangential directions are

3% 1
| =03 " Ufe), (6.6)

where U is the free stream velocity and f(6) may be determined empirically
from the pressure distribution around a circular cylinder.
Unlike previous analysis [10,12], the effect of changes in the

velocity field as a result of the instantaneous radial displacement,

described by

r = a+ wte,t),

1‘Hore it is realized, of course, that the true mean flow is not derivable from
a potential, as it is viscous; nevertheless, it is found convenient to
suppose the existence of ¢o, which will eventually yield the empirically
determined mean pressure on the shell surface from the front stagnation point
to the separation points.

G 5 AN
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are taken into account when calculating the surface velocities; thus,

and

= szz(ﬂ) +2 ——(--Hf.e -35%:

v, "
v , =V +
rlr-aw* rlraa ar r=a
2
3¢
3 *l 0 «
= + ——2— w (6-7)
% r=a A ..,
oy
0
=Y + — w*
e|r=a I lrag

Therefore, the total velocity is given by

ut(e) l%’etl 1 74 w13 L
= Uf(e) + < + = - .
: a8 798|, a2 0y
| (6.8)
uf(e) 32‘0 . 2 Uf(o M, -
+2 - R
rea a8 3rad r=a a r=a
(6.9)

with higher order terms being neglected.
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The Bernoulli equation for unsteady flow may be written as

2 , 3 L ,, Po ;
.g.+ } Ve 4+ 3F - (!+(i)xr).go - (6.10)

where the term (v+uxr)- V¢ arises from the non-stationary fluid-solid

~ o o~

boundary condition (Appendix D). As the fluid s assumed to be irrotational,

w=0and v = 3;: e + = av é Thus, utilizing the above expression for

the velocity, the surface pressure becomes

* a2 ¢
P = by - ol + 4 VPe(e) + UTE) 24T D) o e

l’ﬂ;—) 2w - urte) 3| (6.11)
r=a

6.3 Boundary Condition

The perturbation potential may be related to shell displacement

.by the boundary relationship

/

where D/0t denotes the convective derivative; comparing this with tion
(6.7) gives ‘

w*
‘w’:

»|—

?;.l +3._‘z°_ w o %‘{.+W(o)
r=a )
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ow* ow* |1 3¢* aw*
where second-order terms, V -, aV¥_/3r w* , = -
g N T v/ Ir_a ar *a 'a%‘ rea 90

1

and r

T RPN

ava/ar' w* %5; have been neglected; the above equation may be
r=a

PR,

rearranged as

2
a%s
3* - Oow* _ Uf(0) ow* 0
’f‘rlm 3%t a éae w2 I (6.12)
r=a

6.4 Determination of the Velocity Potential

Using Roshko's measurements [27), f(9) which defines the mean
surface flow velocity on the shell, may be represented by the polynomial

f(e) =-1.6073]e| + 0.5700/6| - 0.93940|3 + 0.1714]0|% for 0 5 |o| s 5, ,

(6.13)
and, in an attempt to incorporate the correct wake pressure into the
stability analysis (as explained below),

° f(e) = - f(eg) for [6| > o, . (6.14)
¥

% Thus, to obtain a constant base pressure in the wake, f(8) is set to
—f(es) in the back (downstream side) of the shell. This formulation
effectively sugéests that there is a quasi-coherent reverse flow on the
surface of the shell in the wake region. Of course, physically there is
{ no evidence to suggest that this is so. This formulation has however
been introduced here for the following reason: 1{f it is assumed that f(e)=0

———
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in the wake (as was previausly done [{b,lZ]), then the mean pressure
there is wrong; whilst, if f(g) = -f(es) is assumed, the mean pressure is
cqrrect,’at the expense of a doubtful assumption regarding surface flow
velocity in the wake. In what follows, calculations will be made with
both of these partially incorrect assumptions and tﬁg results compared to
the experimental stability data.

It may be shown [9,11] that for harmonic shell motions with an
antinode facing the free stream, the perturbation velocity potential,

which must satisfy the Laplace equation, has external and internal components

of the form
¢t = ¢ 3 () rdos e, (6.15)
A=0 )
¢F = elut T E() r* cos a0 . (6.16)

A=Q

Using a simplified solution, where circumferential coupling between
modes is considered to be inconsequential (where it had been shown in
reference [12] there is little loss in accuracy), the shell displacements

may be expressed as ©

- iwt n [
u* e -Z] A, cos ng |

v - olut z.] Bysinnoy, , ) (6.17)
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. jut ¢
w* e mzl C, COS N8 Y (6.17)

where wmsx) are comparison functions fc;r the axial mg&e shape of the shell;
the prime denotes differentiation with respect to x.

To solve for ¢;, which is the velocity potential outside the
shell, the mean-flow velocity potential ¢° has to be determined first; as
a first approximation, solely for evaluating taerms in equations (6.11) and
(6.12) involving cpo, an idealized fully potential flow is assumed, in
the absence of measurements for the velocity gradients in the real (viscous)
flow field'.

Then ¢° may be writtgn as

: 2
¢, = - Ulr cose + !F cosg) , (6.18)

for |8] < 1.484 rad (B5°), which is the point of separation, and ¢ * 0
for 1.484 rad < |6]| < =.
! Substituting equations (6.15), (6.17) and (6.18) into (6.12) gives

1

-3 ab)a M cosae ¢ ¥ C,{iw cos ne - %"— £(8) sin no
A0 m=1

}

[

+ & cose cos ne} 4 , (6.19)

fﬂlis is a first approximation. If the addition of these terms ;mduces
::::resting results, then-a more refined evaluation of them would be
cated.
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multiplying both sides by cos jo and integrating from O to n, noting that
R
i n
f .cos A8 cos jo do = 5 if x = j,
(]

= 0 if A = 3,

and that the integration for the last term on the right hand side of
equation (6.19) is only applicable from O to B yields

Q

=1|N

o(j) = (-3—) { Cal-1w &y

%-[ f(e) sin no cos jo de
0

0
Z_U_I S cos0 cos né cos jo del ¢
a L]

=l|N

e

forj =1,2, 3, ..., where § is the Kronecker delta. Defining

F(n,j) = ]’ f(e) sin ne cos jo de
+)

2] 4
= s f(6) sin ne cos jo de - ]e f(e‘) sin n6 cos jo de , (6.20)
s

&5,

where equation (6.14) has besn 'utilized, the foregoing expression may then
be rewritten as '
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6.5 Pressure Fluctuatiohs

-~ T
. A
- 42
FTO ) sin(1+ntj)e
D(j) = (aj_) m§1 Cm{-1\m ‘Snj + 2'2—2 F(n,j) - ?Ua_ L T+n¥] s

sin(1+n-3)8,  sin(1-n+j)8,  sin(1-n-j)e ‘
g F TRt Ty e (621)

N R

In 2 similar manner, inside the shell, where there is no flowing‘

+ fluid, the consta;t E(j) is given by

v J oo . '
E(j) = ) mzl'iw Co an Yy -« (6.22)

Finiﬁ]y, ¢; and‘¢$ may be expressed as

4

o = "t ) + 321 D(3) I cos joI . (6.23)
o = e (E(0) + T E(3) ¥ cos jel , (6.24)

=1

where D(0) and E(0) are arbitrary constants, since only the derivative

of ¢* is specified at the boundary (see equation (6.12)).

-

The pressure fluctuations on the shell outer surface are conveniently

specified separately in two distinct regions: p3 associated with the
- ¥
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g flow ahead of the separation point, and p; associtled with the flow after
the separation point (in the wake). From equation (6.11) the pressure

fluctuation ahead of separation is given by

AN
»

g , Uf(e) % , Uf(e) 2 4’ Uf(e) av*
=ttt - T"' uf(e) 51 ra

for 0 s |9 S8 »

-
' where the static components haye been filtered out.

Applying now equations (6.23) in conjunction with (6.21), the

above equation gives

,_mt'acose‘:“ 2 Yoi _ ‘
P pe jzl{___ri_.zl Cale 8p5 * 252~ " Flnu)

uui,“““"‘*j)es sjn(lm—j)ﬂs Sin'(l-n"j)ﬁs sin(l-»n—j')e‘
) R £ e £ T e < A P~ ¥ ’]*-

oy

U sin(!*ﬂrl;j)as

. ‘ . T u J i
. | - sin jo uf(e) .Z' C'[-iu an t2.on F(n,j) - ;.-(—m—

"

~ sin(1+0-7)6, sin(1-n+j)o sin(l-m-j)e
.l n"“—jj S "I;n#j “lt ﬁf(e)side { q.as ne ¢,

f .

°

-» u ‘ -
- Uf(e) .5 B (e st nely, | o' tun(0) , _ | (6.25)




i
C where the term 32¢o/3rae -= 0 in accordance with the assumption that ¢°
r=a :
is approximately given by equation (6.18). ]

Within the wake region, it is presumed that shell motions would

‘r

cause variations of flow pattern around the body, and consequently changes

in base pressure. Hence, equation (6.10) may be written as i
4 L ; "y
| 2 4 \!2 ¢ 30 (vwxr).v® = l{h + 3pb ("—.-) e'w'] ’
o at "Il piPp W, 2 ’

9 (T)

where the ters pr/a(w*/a)](ﬂla)e'“' has been introduced to account for
the cMngés in base pressure, which are here taken to lag behind the
shell displacements, as suggest‘ed by experimental evidence. The measure-
ments of changes in base pressure and of the phase lag y, will be presented
in Chapter 7 and Appendix E, respectively. ¢

To simplify the analysis, the base pressure variations and ¢ are

\ L a'gssumed to be independent of 8 within the wake, and the calculation is \

based on the values measured at 0 = 180°. The measured base pressure
coefficient may then be approximated by a first order polynomial, as shown
in Figures 6.2 and 6.3 for the n=2 and n=3 modes of ovalling with an anti-
node facing the free stt;ea. at Re = 3.80 x 10‘. Hence,

nr

LT AR

mu,-umm; thus,
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Substituting into the pressure expression as before, but with °o = 0 and

\

i es replacing 0, yields

a¢r Uf(e.) a¢*
s of—8._.__ 8 e V¥ H 2 (w* -1y
Pe Ty a 26 +Uf(es)_a'f:-]qu+2"u F)e

fwt | facos jo v 2 Ui N
= -pe jz] { S .Z] C.lw Gﬂj + 2 "1‘,_a" n F(";J)

ot (sin(l+n+j)es . sin(l'l-n-,j)es . s'in(l-n+j)es . sin(l-n-j)as ]*
L& TH+] +n-] T-n+] T-n-J ]

. o« U U siﬂ(“’ﬂ"'j)es
+ sin jo uf(e.) .Zl C.[-iw byt 2™ F(n,j) - 5 ( Tone3

sin(1n-§)6_  sin(1-mj)e, Stn(l-n-)o,
vt )]"-

- mz - -
+ Uf(as) .21 B, [lw sin noly, - 5 e v .Z_] C- cos no t-}
- ¥t i, p(0) for [of > o . (6.26)

Equations (6.25) and (6.26) may be cosbined inte 2 more gemeral form
>
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‘ ® 2 © »
. . ~olut wa cos no Uud cos jo
| ppom -t T{C T2 R 5 0535 F(n,gh
cos i6 sin(1+n+j)es sin(l‘m-j)es sin(1-n+j)6 s1n(l -n- j)es
- i(jzl B £ I £ i =)}

uf(e) Glhw sin ne[B_-C.1 +2 c‘[ { F(n,J) sin jo

© . sin(l+n+j)es sin(]*n-j)es sin(l-—n+j)e sin(l n-j)es
*‘JZI sth JO(—ym—* — Ty T=Re) T-n-3 )]

2 .
U Wl -iy
2 - €, f(8) sino j:os n 6, - 5o e " C_ cos no 63} Vg

et iy 0(0) § - (6.27)

uheref(e)al f(8) ,éz-land63-6 if Oslelsos.

-f(eg), §, = 0and 53 =1 if 8] > 8,

(o) &,

{

Proceeding in a similar manner, gives

- 2 '
o = - pelt I {5, wacosmdy et juE0) . (6.28)
L

lhace.ﬂnnrndyn.ictemq:-p?-p:hm
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ot 3] 2 8, , i [ o cos jo
o = e z{c_{zﬂu;é_L+zT[nJ§l¢’ F(n.J)

sin(l+n+j)e sin(1+n-J)o sin(l—m-.j)e sin(] n-j)e
- ’“— cosl‘ Tt TR T ) )]

Uf(e) &, {iw sin no(B-CJ + 2 % c_[n ;{'] F(n,j) sin jo

&
»

o sm(lﬂrl-,j)es sin(lm-j)es sin(l-m-j)e sin(]-n--j)es
- 3 jzl sin 38—y — Ty T T-n-3 )
UZ 2

2--C f(8) sind cos nd 52 —Z-—ewc cos no 63}0

oe'“t i (0(0)-E(0)} . - (6.29)

+

6.6 Solution of the Equations

Substituting equations (6.17) and (6.29) into the shell equations
yields the following set of equations:

T {2 2, . '
'g‘{{. v - 4 n2(1u) (Il lcos ne A + (3 an(+v)v)icos ne B,

+ {av t.' - .3‘ t:- } lﬂzlt“—\’)“)m no c- .

: +~,u2¢;m @eu.} -0, (6.30)
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.21{{- 4 an(1+v) yalsin ne A + (- n° y_ + § aZ(1+3c)(1-v) yalsin ne B,

+ {-n vt 'Y azn x(3-v) ¢;}sin ne C-

+y mz Ya sin né B-} = 0, (6.31?

T " z - 3 1V
.Zl<{-av e + 3§ ank(1=-v) Vg * ATk vy } cos neo A.

+ {-n Yoy + 4 azmc(g-v) w;}cos né B.

P

+ (-w-- a‘nc wi + Zaznzn 1;" (nz-l)zuc v.}cos né C. +y mzv.,_g.os noé C.

2 ao .
q 8, U i 8
+ > {'2 w ancos n w J,}, cos F(n,j) - i(jzlcos

sin(l+n+j)es sin(H-n-J)as sin(l-mj)e sin(l n-,j)es
af £ e £7 = e 7 ) Ca

yf(o) 61““’ sin nB[B'-Cn] + 2 ?rui C'[n ;i‘ F(n,j) sin jo

- sin(1+n+j)e, sin(l+n-j)o sin(\'m»j)e sin(!-u J)e
*(121 R L O T e = | e [

2
zyiz-c-f(e) siné cos ne &, - %'WC C"’"BGJ} }

L

cont inued
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+ £ w1 (D(0)-E(0)} = 0. (6.32)
s

Using a variant of Galerkin's method, equations (6.30) and (6.32)
are multiplied by cos no and (6.31) by sin n@ and integrated from 0 to .
Next, equation (6.30) is multiplied by ¥, and equations (6.31) and (6.32)
by ¥y o and then integrated from 0 to L, yielding

{{lzgk. -4 n? (1-v) (14x) fom * ywz fiml Ag * (3 an (1+v) L 8-

+ {av f, - 'a3.< Oy - § 3N’k (1-v) £} c_} -0,  (6.33)
'f{{ (14v) ) Ay + (- nfa, + 4 a2 (143)(1-v) ¢ + w2} B
. -} an ckn“n - Nt $a )(1-v) ¢ + Yo ap ) B
- nag + b el (3-v) o) ¢ ) - (6.34)
’2' {{- e, +} an’c (1-v)e, + aXx e }. + {-ma_+} lznx(3-u)c )18
4 kn - mAa kn -

’
+ {-ab-l4|< ot ? aZndx o " (n2-1)? "‘b’w'b 'q\‘__"'hm-
Py

sin(l+2n)e sin o sin(l-Zn)es
+B% """F("'""“—'WI + 2 ——* 1 N

cont inued .
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+F(n,n) oy, (€8} - 5 (=) {n T F(n,g) F(3,n)
s rwa =1
- sin(‘l+n+,j)g sin(1+n-j)o_ sin(1-n+j)o, sin{1-n-j)o
- ’( ( ]+n+3 s+ ‘IM_J’ s+ T'n+j s+ ',_“_j s) F(j ’n))

3=
+ 7 F(1n,n) + g He ™™ (roog - b sinzne 1) a ¢ b= 0, (6.35)
where

) ;
F(3,n) = { s f(e) sin jo cos no do - ]" f(eg) sin jo cos ne do ,
0 0
s

0
F(l,n,n) = | s f(o) sind ‘cos ne cos nd do ,
0

L
Y ") bt dx T Loy,

.
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-
»
<
B
<
-3
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the analytical expressions for the above integrals, [T to Uym® MY be
found in reference [28]. The summation over m 1s truncated at M.

For convenience, let now

C = 4%‘1F(n.n) .

¢y = 452“§n ng F(n,J)E{3.n) ,

. usin(l+2n)95 sin es sin(1-2n)o
L N 2'_[ Al Y2t n(l—!n)i‘ »

© sin(1+n+3)0_ sin(i+n-3)0_ sin(1-n+3)6_ sin(1-n-j)6
[ s+ Ten=]d s"' T-n+] s”' T_"-j s}‘F(jnn) ’

=4

. Cg

6 " Oﬁ;"f—F(l.n.n) .

¢ - %:-Ho‘“‘ LR -z';sin 20} .

Then, the equations of motion (6.33)-(6.35) may be written in
the following matrix form:




i { 1 1T
1 '(\ L -th 0 0 %
é 2 0 T, 0 B, +
j
; 0 0 - - C!a C
5. L 755 1 e | | T
r o
0 0 %
i 4] 0 B. re
v
0 - a {c: C
Py 7 T pg G .4
x u? 05 an(1w)f,_ ) avf,_ - ax
Sim an ™ ion Fiom
-k n2(1v) (1) ) - % anPx(1v)1 )
(- % m(M)c_) {- nzah _ {- na,

{- ey {- na, {- ah-a Ke *Zaznzxch c_
+y anzx(l-v)cb + g nzm(z-v)ch) - (n -1 )znb
+ a'cey) . - -,-,l"-h-(cg-cgmgwiuh} J
= {0} ’ (6.36)
or
- Lpuyiq) + feicl{q} + K1{q} = (0} . (6.37)

+ a2(1+3x)(l-v)ch} + azm(s-v)ch}

To adtatn 2 ulutin./ht

g (s s G ARSI N

52 .

i s e n e =
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By} = {qre't

@ = twlq)e'™ and G} = - Lige™t.

Substituting the above into (6.37) gives

; MG €+ G = 0. (6.38)
Defining the square partitioned matrices and partitioned vector as

01 M) -1 10} oy
A} = 1, m = and (2} = .
M [C} 0] § {y}

equation (6.38) may then be written as

Mz} + @){z} = {0} . (6.39)
To so_lzg this equation, let

a} = @)t (6.40)

Aeie,

Appiying now esmation (6.40) into (6.39) ylelds
5y
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AUz} + BIHz} - (O},

i
- @ {zo} = A[A) {lo} R
which is of a standard eigenvalue form and may be solved numerically.

Perhaps it should be mentioned that the specific expressions
shown above pertain to the case of ovalling with an antinode facing the

free stream. The present theory may easily be modified, however, as outlined

in Appendix F, to obtain equivalent expressions for the case of a node
facing the free stream.

A listing of the xcomputer programs to perform the foregoing
numerical calculations is given in Appendix G.

6.7 Theoretical Results

The following results are computed with the series of equations
(6.17) truncated at m=1 (Hll)* and the parameters (as listed in Table 6.1)
used in the computations are close to those corvesponding to the

upcrimts’ .

Since a number of modifications have been introduced in this
theory, vis-a-vie its originmal form [10,12], the effect of each new term
on the stability of the system will be studied.

N

1t has been verified [12] that there is little loss in accuracy
truncating the series at M=1, i.¢., a much simplified (ump'lul)

solution.

SThere are small variations in parmmeters for the various shells used in
the experiments.

J e st
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( Case 0: _original amlysis [10,12] with no modification

Figures 6.4 and 6.5 show the results of the n=2 and n=3 modes

" of ovalling, vibrating, respectively. with an antinode and a node facing

the fm stream. For convenience, an 1nstabﬂity threshold zone is also

i bfined and plotted on the same graph; it is based on the measured -
‘(Clupter 3) natural frequency, Re(f), and logarithmic decrement, 5, of

shells A and B, and may be related to Im(f) as
In(f) = 3 & Re(f) ,

where Re(f) and Im(f) are, respectively, the. real and imaginary parts -
of the complex frequency. | ' )
As internal dissipation (material dupipg) has not been included
in the theoretical model, the eigenfrequencies of the shell are wholly
real at U = 0. For U > O, the eigenfrequencies become complex. It is
seen that second-mode oscillation is associated with negative aero- ‘
dynamic damping, i.e. Im(f) <0 - if a node faces the free stream. On
the other' hand, when an anfinode faces the free stream, the motion is
amdynaicaliy positively damped. The opposite is true for the n=3—-
mode ovalling. ‘
With increasing flow velocity, the vibration frequencies, i.e.
Re(f), remain almost constant, indicating little effect from the
*aerodynamic stiffness” terms. The system would eventually become unstable, ‘
at sufficiently high flow velocity, when the negaéive aerodynamic damping
exceeds the positive dissipative modal damping of the shell {(i.¢. the
computed Im(f) for certain U crosses the -imhbilitx threshold zone).
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As was stated at the outset, the original theory provides poor "
quantitative agree;nent with experimental data. Ir; 1ts; original form, ™
the theory predicts the threshold flow velocities of second and third
mde+ of ovalling at U that are very much greater than 28 m/s, wherea's
the experimental threshold flow velocities for the n=2 and n=3 modes of '

ovalling are approximately 21.5 m/s and 23.5 m/s, respectively (sée

Table 4.1).

Case 1: Effect of moving boundary condition in unsteady

Bernoulli equation ' ‘ B

,b

The non-stationary fluid-solid boundary condition at the shell
surface will give rise to an additional term, (!“BXC)'Y‘D’ in equvétion
(6.10). As shown in Figures 6.6 and 6.7, the addition of this temm,

slightly increases aerodynamic damping, as compared with Case 0 - more

for" the n=2 mode of vibration. However, agreement is only slightly improved

by this refinement to the theory.

Case 2: Effect of imposing a coherent reverse flow in the wake region

As explained in Section 6.4, a quasi-coherent reverse ﬂc;w is
imposed on the ghell surface in the wake region, so as to obtain a correct
mean pressure in the wake. The complex frequencies f2,] and 'f3'] for an
antinode and a node facing tihe free stregm are plotted in Figures 6.8

and 6.9. Comparing with Case 0 (Figures 6.4 and 6.5), it may be seen that

.

"'If. for these flow velocities, the neg;tive aerodynamic damping were in
the experimental instability zone, then perfect agreement with theory

would have been obtained.
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the aerodynamic damping of the n=3 mode is more than tripled; om the -
other hand, the aerodynamic damping of the n-Z mode has marginally been
decreased. ' ’ '

Case 3: Effect of applying the boundary condition at r = atw*

As shown in equation (6.11), additional terms —fﬂ)- (9 00131‘36)1'__. w*
f(6
and ——‘2—1 (3¢ /ae)l'_,a w*, arise from applying the boundary condition
at v = atw*, in the derivation of the pressure expression. There is also

r=a
perturbation potential to shell displacement.

an extra term, (az%/arz)' w* (in equation (6.12)), in relating the

Complex frequency plots of fz’] and f3.“u1th an antinode and a
nodé facing the free stream, with ¢, approximated by a fully potential
flow fumction (equation (6.18)), are shown in Figures 6.10 and 6.11.
 The effect is very strong: the originally unstable medes, n=2 with a
node and n=3 with an antinode facing the free stream have now been
stabilized. Presuming that this modification to the theory is tndeed
correct, then the fault likely ies with the use of.the potential function,
¢°; using ¢, possibly tends to overestimate the effect of applying the
boundary condition at r = a+w*. Perhaps, this is not too surpris{ng, ’
if one compares the flow pattern of an inviscid ideal flow around a
circular cylinder with that of the act:.ua‘l flow. In a real flow there is
a growth of bou\dary' layer thickness ;long the circumference of the
cylinder and flow separation from the surface; hence, the flow ahead of
sNe—;;ration would be more like that of a flow over an elongatpd bluff
‘ body, .and consequently the fluid would follow a path gdth less gmature

than that prescribed by an ideal flow. The grester the curvature of the

.
u
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- Ideal flow _ ~ Actual flow

fluid flow, the greater will be the pressure gt'aldient'r in the norwal
directior; of the flow, and consequently a larger velocity in the normal
direction too. Thus, the idealized potential function ¢ ., would tend to
overestimate the fluid flow in the normal direction. The pressure

- cggfficient, C., on a circular cylinder of potential flow and that of

p*
R?;?shko's experimental results are compared in Figure 6.12. It is seen that
* the agreement between the ideal and actual flow is"onl,y”good up to' @ = SO‘.
whilst for the purposes of this analysis, it is used ;or up to 6 = es'
In view of the poor agreement ru‘ith experiment, on the one han_d,
o and the strength of this gffect, on the other, a better representation

of 00 must be sought. The proper and most accurate method to procced would

+For an elementary fluid element flowing in a curvature path of radius R,
. . R Py it'may be shown that




" be to actually messure the flow field in the wind tunnel by means of hot

wire anemometers. However, an easier approach would be to comstruct the
function LI using an electrical analogue méthod.

“

Case 4: Effect of base pressure variations due to shell defomtilon

The term associated with variatfohs in base pressure induced by
shell vibration may be found in Section 6.5. The measured base pressure
coefficient as a function of (w*/a) at € = 180°, for the n=2 and n=3 mdes‘
of ovalling with an antinode facing the free stream, are shown

_respectively in Figures 6.2 and 6.3. For ovalling with a node facing

the free stream, sim;e_ the displacement at 6 = 180° is zero, the base
pressure coefficient is based on 0 = 175 for the n=2 mode (Figure 6.13)
and & = 170° for the n=3 mode (Figure 6.14). The phase lag ¥ was measured
experimentally (Appendix E); it is 40° for the n=2 -ode‘vibrating with
a node and 270° for the n=3 mode vibrating with an antinode facing the
free stream. |

The results are presented in Figures 6.15 and 6.16. It may be
seen that the base pressure variations play a dominant role on the
stability of the system. In its present form, the thresiwld flow velocities
for ovalling are slightly more than 28 m/s for the n=3 mode (antinode
facing the free stream) and 26 m/s for the n=2 mode (node facing the free
stream). Thus, inclusion of this effect improves agressent between

theory and experiment.

.
,

Case 5: Combination of all the forsgoimg effects

Figures 6.17 and 6.18 show the combined effects of Cases 2-4 en




e

system subﬂit/y. For«vibntf(m with an antinode facing the free st@.
the n=2 mode is stable, while the n=3 mode becomes unstable at
approximately U = 25 m/s. For vibration uéth a node facing the free |
stream, the n=2 mode is issociated with positive aerodynamic damping at
low flow velocity (U < 6 m/s) and it becomes negative as U increases
beyond B m/s; in this case, the n=3 mode is stable.

As suggester‘l in the discussion of Case 3, the approximation of 00
by inviscid ideal flow would overestimate the effect of applying the

.boundary condition at r = a+w*., It is then of interest, to ignore this

effect (Case 3) - i.¢. to apply the boundary condition at r-a instead,
and investigate the combination of the other effects on the improved theory.

Case 6: Combination of all the effects, but with the boundary
condition applied at r=a c

The results are shown in Figures 6.19 and 6.20. The threshold

"flow velocities for the two unstable modes are approximately 19 w/s for

the n=3 mode and 24 m/s for the n=2mode, which are not far off the
experimental threshold flow velocities of approximstely 21.5 m/s for the
n=2 mode and 23.5 m/s for the n=3 mode.

Finally, a quantitative cnq;urism is sussmarized in Table 6.2,
in which the negative aerodynamic dasping -6 , at the (experimental)
threshold of flutter is compared to the modal demping 6_.; according to
the theory, the two should be equal. It is seen that, the theoretical
and experimental ovalling frequencies are reasomably close.
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CHAPTER 7

EMERGY INPUT TO THE éHELL

7.1  Preliminary Remarks

According to the experimental evidence presented in Chapter 4 and
‘Chapter S, vortex shedding is not the cause of ovalling oscillation.
' Mence, an alternative physical explanation must be sought for the under-
lying mechanism of the above mentioned intriguing phenomenon. It has been
shown analytically that the cylindrical shell may become unstable due to
the negative aerodynamic damping (arising from interaction of shell motion
and the mean flow) exceeding the mechanical damping. S0, a plausible
sechanisa for ovalling oscillation may be an aeroelastic oscillatory type
of instability, where the oscillation is initiated and sustained by
aerodynamic forces induced by the elastic shell itself. Consequently,
if at a certain wind speed, the mode and frequency of oscillation of the
system are such that energy can be absorbed from the free stream by the
_cylindrical shell, and if the energy absorbed is larger than that
dissipated by structural damping, the amplitude of vibration will increase
and the system will become unstable. This, indeed, has been the under-
_lying philosophy of the original theoretical model of references (10,12],
which has been refined in Chapter 6. However, in what follows, a more
direct approsch will be taken to assess the emergy balance, and thus define
the threshold of instability.

Ideally, the dynamic pressure around the shell vibrating in n
_clrcuaferential mode should be measured and the work done by the aerodynsmic

th
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forces then computed for one complete cycle of oscillation. If this work
done {s positive, then there will eventually be an instability.

However: it is an extremely difficult, if not impossible, -task to
obtain the fluctuating pressure on a vibrating thin cylindrical shell
without causing some change to the shell mode shape. Thus, before
initiating an extensive program to measure these dynamic pressures, a
pnlilinary‘set of experiments was done to investigate the feasibility of
such measurements. A commerically available miniature piezoresistive
pressure transducer (Endevco, model 8515) was selected for making these
measurements. This transducer is of a flat-pack design with dimensions of
0.500" x 0.200" x 0.035" (12.7 mm x 5.10 mm x 0.90 mm) and weighs only
0.3 g. It was selected because of its small size and weight and also
because it may be flush-mounted on the shell surface. However, before
purchasing the transducer, a piece of metal with the same dimensions and
weight was bonded onto the shell surface, and wires attached as would .
be the case for the real pressure transducer. The shell was then tested
dynamically in the wind tunnel. Although the ovalling frequencies and the
critical flow velocities at which the shell became unstable remain
approximately the same as for a shell without the "simulated” transducer,
the observed ovalling mode shape was severely distorted by its presence.
As a result of these preliminary tests, it was decided to postpone the
dynamic pressure measurements until a better technique could be found.

An alternative but not so elegant method for the energy calculations
is to undertake quasi-static measurements. In doing this, it is tmplicitly
assumed that the aerodynamic characteristics of the shell at different .
stationary deformations, in the correct mode of ovalling (with a parﬂcular
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fixed orientation with respect to the on-coming flow), are equal, at any

instant of time, to the actual instantaneous values of a shell vibrating
harmonically, taking correct account of the resultant velocity vector.

Thus, the need to measure the dynamic pressures is removed.

7.2 The Energy Expression

' Consider a small element of length &s along the circumference of
the shell, subtending an angle 40 at the center. For smsll amplitude

vibration, w* << a, one may write
’ & = (atwe)so , - (7.1)

where 2 is the shell redius, and w* is the radfal displacement of the
middle surface of the shell, positive in the outwerd direction.

The instantaneous pressurg force per unit length, F, acting on
the element at any instant of time my then be approximated by

F e mpy(8t)ple.t(enedso s, g2

uhere pi(a.t) and p‘(e.t) are, respectively, the internal and external
préssum act?ng on ihe shell, and y is the phase lag of the induced
pressure (pi'pe) to shell deformation. In general the angle ¢ depends
on the non-dimens fon2l ("reduced™) ovalling frequency, fod/u. and the
Reynolds number; here, ¢ will be approximated more simply in the manner
discussed in Appendix E. '
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The total energy, per unit length, transferred to the shell during

a cycle of oscillation is given by , '
[ F dw*
'Jz'/% ! Re(F] e de dt
B A "sr'
25/u_ 2v
= Yo f h[(pf-p.)(w)c'“) h(%';—] dodt, (7.3)
o 0

where the physical quantities are represented by the real parts of the

complex mmbers.

In order to pinpoint the critical flow velocity for the onset of
instability, the (positive) energy dissipated by the shell has to be
calculated. The system will then become unstable if the energy absorbed
from the free stream is larger than that dissipated by structural damping.

Since the experiments are conducted in air, it is reasonable
to assume that external (fluid) damping is insignificant compared with
internal (modal) damping. Thus, to estimate the dissipation energy, a
hysteretic damping model is assumed, with the damping force (per unit |
length) give by

AEE o

: . , - ‘
where b is ;{ hysteretic damping coefficient, and u, is the ovalling

Y on




frequency in rad/S. .
For harmonic motion, the hysteretic damping coefficjeit may

conveniently be modelled by an equiévalent viscoelastic damping coefficient
{30] which results in the same energy being dissipated pér cycle; the

relation is

e b
Ceq g * | (7.5)

and consequently the damping force may be rewritten as

nr*
Fo = Coq 3t
- wt ,
& R4 “0 = (7.6)

-

where m is the modal mass per unit length, and £ is the non-dimensional -

dasping ratio. ) |
For a lightly damped system, the lognritl-ic’ decrament , 3. may be

related to £ as ’

. | § = ¢ 3 \
substituting into-equation (7.6) ylelds
e b, W ’ :
. F‘ .-iﬂo-“- . ‘ . ] (’.7)
“\
( \
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Ignoring the added (virtual) mass of the fluid, the energy per
unit length dissipated per cycle may be written as
Wy = [ Re[Fy) Refdw*]
. KI -
en/w_ 2n o
. [ f Relogah £ u) 3T Re3T) do dt , (7.8)

0
where pg» @ and h are defined in the nomenclature.

7.3 Static Pressure Measurements
R L

A

Special experiments were conducted, the purpose of which was to

~measure the static pressure around cylindrical models with cross-sectional

shapes corresponding to shapes of a flexible shell undergoing second and

third mode of ovalling, "frozen" at one instant of time. It shou&ir be

noted that only “pure circumferential™ modes of vibration of the shell were

modelled (£.¢. corresponding to infinitely long shells) and no attempt v

was made to model the axial deformation of the shell.

7.3.1 Brief description of the experimental set-up

¥
Five different models were used in the experiments. One was a

circular cylinder of 76.2 jm (3.00 in.) diameter and 292.1 mm (11.50 'Qin.)
long; ﬁis was used for reference, to compare with the results of the
defo *circular® shapes.

To simulate the second mode of ovalling at different instants of

’ -
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time, two elliptical rigid models of different sizes were constructed.
Both models represented deformed shapes of a circular cylinder of 76.2 mm

(3.00 in.) diameter. The geometry or sd}face of the ellipse may be

described by the equation R = JQazxbz)/(a251n26+b2cosze), where R is the
radius from the center; a and b are, respectively, the semi-major and
gemi-minor axis of the ellipse. The two test models had dimensions of
a =39.9mm (1.57 in.), b = 36.3 mm (1.43 in.) and a = 41.2 mm (1.62 in.),
b = 35.1 mm (1.38 in.); the deformation of these mode shapes from the
equilibrium (round) form is as shown in Figure 7.1 - which corresponds to
a maximum "frozen" amplitude of ovalling (w*) of 1.80 mm (0.07 in.) for
the first model and 3.10 mm (0.12 in.) for the second. To achieve high
precision in the manufacture of the model, it was made by an N.C. machine
,in twelve identical pieces, each 25.4 mm (1.00 in.) long; then all twelve
pieces were stacked to a final assembled length of 304.8 mm (12.00 in.).
For the two models representing the third mode of ovalling, the
surface of the deformed cylinder (see Figure 7.2) was generated by the
equation R = 1.46*(1+Pcos36)/(1+P), where the radius R is in inches and
P is a parameter corresponding to the maximum radial deformation from an
undeformed circular cylinder. One model had the dimensions corresponding
to P = 0.075 (with a maximum w* of 2.54 mm (0.10 in.)) and an undeformed
circular cylinder of diameter 69.1 mm (2.72 in.), while the other
corresponded to P = 0.100 (with a maximum w* of 3.30 mm (0.13 in.)) and
an gquivalent undeformed circle of diameter 67.6 mm (2.66 in.). This
time the model was constructed from twenty-three identical pieces of
12.7 mm (0.50 in.) long, and these were then stacked to a final assembled
length of 292.1 mm (11.50 in.).
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A1l four models were equipped with 19 pressure taps, spiralling

~equally at 10 degree intervals around one half of the circumference and

-
Lol

s —T——T—--—o “ . //

12.7 mm ;

12.7 mm (0.50 in.) apart, in the axial direction. Precautions were taken

to ensure that the pressure taps were perpendicular to thé outer surface

_of the model, such that static pressure of the flow field around the model

would be correctly measured.. Tt\is was one of the reasons for positioning
the pressure taps spirally along the length of the model.

The test rig was mounted between two "boundary-layer guards® in
the wind tunnel test section, as shown diagrammatically in Figure 7.3.
These end plates serve two purposes: (i) their main functif)n is to ensure

that the boundary layers at the base and top of the model are thin (much
thinner than the wind-tunnel wall boundary layers), hence eliminating

"the effects of boundary layer thickness on the base pressure [24];

(11) because of the short length of the test model, the plates also serve

to render the flow over the mode! and in the wake more nearly two dimensional.
The plate design was based on the optimum (most effective) plate size
suggesteq by Stansby [24]. Pos’ltiz\ed between the plates and th tumnel

L3
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walls were cylinders of 76.2 m (3.00 in:) diameter to provide nearly equal
bloclage‘for the ﬂow’throughout the working section. i

The pressure distribution around ‘the model was measured at
Re = 3.80 x 10‘+ (W = 7.5 m/s) and Re = 1.18 x 105 (U = 23,5 I/s)s. The
second of these velocities corresponds, very closely, to the velocity at
which a typical shell becomes unstable. However, by measuring the pressure
‘distribution at the lower velocity, the effect of Reynolds number cc;uld
be checked. )

)

7.3.2 Pressure coefficient of various models

The effectiveness of the boundary layer guards was verified first;
this is discussed in Appendix H. Next, the results obtained in the
experiments will be presented and discussed.

. In Figure 7.4 are shown the quasi-static pressures around the
circumference, in terms of pressure coefficients, for the second mode
shape, orientated in such a way as to yield information for'ovaning with
an antinode facing the free stream. The pressure coefficients around a
circular cylinder are also plotted on the same graph for referencg. The
pressure distributions around the same models at a hilgher Re are shown in
Fig:re 7.5. -
08 6 for the more highly 'dleforlevii -
ny2 mode model, at U = 7.5 m/s and U = 23.5 w/s, respectively. Finally,

Figures 7.6 and 7.7 show C

in order to'appreciate the effect of mode-shape deformation (static

’Fllnder ambient t:o:miﬂlt:ir in the wind tunnel, wind speed U may be vconverted

to Re as Re = 5.04 x 109 x V.

511.. higher flow speed of 23.5 m/s (Re = 1,18 x 105) may lie in the transition

range of Reynolds number. The sub-critical range of Reynolds mumber is
normally between 300 and 2 x 105.

L 4
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"“amplitude®) on the pressure distribution, the data of Figures 7.4-7.7 are

replotted in Figures 7.8 and 7.9 for-U = 7.5 m/s and U = 23.5 m/s,

<~ respectively.

It is interesting tq campare the data of the present study with
the experiments of Modi [31], which involve two eltiptical models of
eccgntricity ez=/1- (bz/az) = 0.60 and 0.80 - as comparéd to the present
experiments, where e = 0.42 and 0.52. The results for a = 0° are plotted

in Figure 7.10, where a is the angle between the major axis and the free

stream. It is seen that, in general, 2?e base pressure increases as e

-‘inéreaseél The peculiar behaviour of the measured Cp, from 6 = 60°.to 100°

at the higher Reynolds number in the predent study (see Figure 7.11) may
be a direct result of -the Reynolds number approaching the critical regime.
Figures 7.12 and 7.13 compare the Cp of the present study at

-

U=7.5ms (Re = 3.80 x 10%) ‘and U = 23.5 m/s (Re = 1.18 x 10°) for

a = 90° with those of Modi's. ﬁn]it:’;he case of a =L0°, the base

pressure here decreases as e increases. '

The pressure distributions around the test models %ith 8 = 45°
are shown in Figures 7.1@-7.17. These orientations would give information
useful for ovalling with a noderfacing the free stream. At,the Tower

Re, it may be seen (Figures 7.14 and 7.16) that the Cp curve for the

1nc]1ned e]liptipal cylinders resembles that of a circular cylinder, whereas,

\

- at higher Re (Figures 7.15 and 7.17), the C_ in the wake of the-circular

‘ p
cylinder is lower than that of the elliptital models. y
Finally, to demonstrate more fully the effects of the "deformation
amplitude” and Re on the pressure distributions, the data of Figures 7.14-

7.17 are replotted in Figure 7.18.

e e e . e
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« The same set of measurements as described above were repeated
for the n=3 mode models. In Figures 7.19-7.22 the static pressure .
distributions around the two different n=3 mode models with an antinode
facing the wind, at two different Re, are presented and compared with
the pressure distribution around a circular cylinder. It may be seen
that when the "nose” of the deformed c.:ylindetv: {(antinode) s facing the
free stream, the Cp is slightly higher(than that of a circular cylinder in

- the wake region. The reverse trend is observed when the mode! was rotated

by 180° so that the flat portion of the surface faces the wind.

The data of Figures 7.19-7.22 are replotted in Figures 7.23 and ',
7.24 to more fully demonstrate the effect of deformation Ion the pressure
distribution, at Re = 3.80 x 10" (U = 7.5 m/s) and Re = 1.18 x 10°
(U = 23.5 m/s), respectively. X

Tﬁe quasi-static pressure distributions for the n=3 uod‘é models
with a node facing the wind (Z.e. with thes"nose™ of the model tilted at
30° with respect to the on-coming flow) are plotted in Figures 7.25-7.28.
Again, to 'see more clearly the effects of deformation and Re on.

-

Cp, the data of Figures 7.25-7.28 are replotted in Figure 7.&.

. 7.4 Computation of Work Done by the Fluid Flow

S The expression for the energy flux per unit length, from the flow

field to the shell, as .given by equation (7.3), has the form

2n/w_ 2n - : .
‘ W= f 0 [ Rellpy-p ) arwt)e ViRet3p1 do dt . (1.3)
’ 0 0 . )
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Assuming that the pressure fluctustion inside the shell is
megligible and is approximately equal to Patm® the amﬁgr{c pressure,

(4

which may be further approximated by p;, the front stagnation pressure, then
\

Pi(0.t) - pofe,t) = py(e.5) - py(0.5)

El

"
-]
-}
' -
-
—
[+ -]

- | (Po-pa) - (Pg(8.) -p.)

’
re
B B

2 w*
pob? (1-C (6.5 , (7.9)

where (po-"pm)/}pu2 =1, and Cp(e,"a—*) is the static pressure coefficient,

mepsured experimentally as described in Section 7.3.
Ideally, with Pi~Pe expressed as a function of © aﬂd w*/a and y as
a function of 6, the e}\ergy input into the system in one cycle of
osci'l'la?ion may, thence, be obtained by integrating equation (7.3).
However, as a first approximation, P{~Pe will only be expressed
as a function of w*/a at each angular position, 8, and the energy for a
small segmant (a+w*)do then computed., Within each segment, all the

parameters are assumed to be constant. The total energy will then be the

*This is applicable for a suction type wind tunnel. It is found ‘
experimentally that there is an average of 6% difference between pyeq and Po*
Tul: difference arises from a drop in pressure as the air passes through

screens.
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sum of all the energy values calculated for the individual segments.
As already mentioned in the previous %ter, the msundicp

may be approximated by a filist-order polynomial as

*r

and thence

PPy = 3VC1-HL - H) . (.10)

[ 4

For a shell (of infinite length) performing ovalling oscillations

with an antinode facing the flow velocity véctor, w* may be expanded

ih Bti series form |

imot ®
wt o= e Y B, cos’(22+1)n@
=0 *

R s VIR O TN

- ju t
s e ° Bo cos né , (7.11)
e  where it had been deterwined that the modal shapes are adequately descrided

-t

by the luﬂk term in thc above series [11).

i
i
|
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Now, substitution of (7.10) and (7.11) into (7.3) yields the

Tl eb AT ‘6 - s
3

™

energy expression for 2 small segment subtending an angle 62—6‘ . 3% the

center, i.e. at o . (6‘+ez)/2. Thus ; the energy expression becomes

-9,

'

2x/w_ 8

f°] ,
o 0 -

] [N

2 k(%o@&fh -H !:-- Ho)('aw)e"*lﬁe(%Lde dt .

WZH/G 8 . 2 . Cos
ot [0 1 % Reli(1-g)a - H L+ (1-H-H v le™™ [RetE) do at

1 ~ /

2nfw, 8
2}““0}2[(] 2

H .2
-Hoa)cosw -3 Bo cos
(+] 8]

3ol né cqs(Zmdt-u:)

+ (l-H—HO)Bo cos né cos(wot-w)] *

-
.

[-mo B0 cos nd sin wot] de dt

AN

s = - 3 B2 (1-HoH ) pUPnsing (10,0, ) 45 (sin 200, - sin 2n8,)1 ,

where the properties of all the parameters will be evaluated at 6.

Procceding in an analogous manner, the equilvalent expressions for

_oscillations with a node facing the free stream are given by

N

(7.12)

"« ]
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ﬁ»ot :
w = e Bo sin nd , (7.13)

. 201 _Hot : ]
Vo0, = - B2(1-H-H,)oUZrs inp[(8,-6,) - S(sin 206, - sin 200, )1 .

P \ (7.14)

7.5 Results I .

Since experimental evidence suggests that the n=2 and n=3
circumferential modes occur with a node and an antinode, respectively,
facing the free stream; and since the phase measured in the wake region -
also pertains to these same orientations, the work done by the fluid for
only these case; will be calculated.

The following calculations were based on the measured quasi<static
Cp at Re = 3.8 x 104 W=17.5 m/s)*. Typical &sults of Cp as a fun;:tion
of (w*/a) may be found.in Figures 6.2 and 6.3. .The phase lag y (Appendix E)
and the coefficients of the first degree polynomial (Cp = Hw*/a + Ho)
are tabulated, in intervals of 10° from 8 = 5° to 175°, in Tables 7.1 and
7.2, for the n=2 and n=3 modes of ovalling, respectively.

The energy extracted from the free s‘trearr"a for the two different
modes of oscﬂ'lation,‘as a function of fwocity, is presented in
Figures 7.30 and 7.31. /

As was sta“ted at the outset (vide Se’ction 7.2), the system will
becomes unstable if the energy absorbed from the free stream is larger

than dissipated by structural damping. Using equation (7.8), the (positive)

L

TAs shown in Sectioh 7.3, the measurements at the higher Reynolds number,
Re = 1.18 x 105 (U = 23.5 m/s), seem to be unreliable.
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energy dissipated by the shell (per unit length) is given by

21w 2w

W, - ;o °';° Re[psah%mo %f’{-] ‘Re{?al"t-l o dt , (7.8)
21/w_ 2n .
5 . W o oW ;
= pslh 7 wo ‘{; o Io RE[-SF] Re[—ﬂ-] dé dt ,
. eg pah & wg ) DR (7.15)
[ Y

Using the parametérs listed in Tables 3.1 (for shells A and B)

and 6.1, the following are obtained. For the n=2 mode, assuming an

2
0

n=3 mode, with an ovalling frequency of 230 Hz, W, = 7353 Bs to 8682 Bg J/m.

ovalting frequency of 167 Hz, W, = 3973 82 to 4404 BZ J/m; and for the
The uncertainty in Nd arises from the corr:eSponding uncertainty in the
measured value of § and differences between shells A and B.

Referring now to Figures 7.30 and 7.31, it is seen that, according
to this analysis, ovalling would first develop in the second mode of
the shell Uthr 2 22.0 m/sy,’ followed by ovalling in the third mode at
Uthr £ 35.0 m/s. The theoretical Uthr‘ for the n=2 mode is relatively
close to the experimental value of 21.5 m/s. However, this the?ry
overestimates Uthr for the n=3 mode by a factor of{ 1.5 (here it must be
recalled that this theoretical model is for a two-dimensional (Iinfinite
lendth) shell, whereas the experiments were with finite length shells). !

As described in Chapter 4, the experimental observations suggest
that the system will first become unstable in the second mode. At a higher

RO o




i i w———

v e

—_— .

e i A iy ORI TR TR

- B I s

77 .

flow velocity, third-mode ovalling develops, and it is noted that, beyond

_this flow, third and second mode ovalling takes place concurrently. Here,

an additional possible reason for the discrepancy in the value of Uthr
for the n=3 mode is that coupling between the two circumferential modes
has been heglected in the present analysis - presuming that an exchange
of energy may actually take place between the two different modes of
ovalling.

Finally, the amount of energy transferred from the flow field into
the system; ahead of flow separation and in the wake region, is compared
in Tables 7.3. It is seen that more thgn half of the energy is fed into
the system through the wake region. This finding is consistent with
the experimental observations, previously made in this thesis, that the wake
region plays a very important role in the development of bva]h’ng

oscillation.
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CHAPTER 8 °

DISCUSSION AND CONCLUSION

8.1 On Vortex Shedding as the Excitation Mechanism for Ovalling

The experimental evidence of this work, suggests that periodic -

“vortex shedding neither initiates nor sustains ovalling oscillation.

Nevertheless, in many cases [29], the occurrence of an integral value
for the ratio, r, of ovalling to vortex shedding frequency at the onset.
of instability remains to be explained. -

Perhaps further insight into the role of vortex shedding may be
gained by examining the power spectral density of the shell for the
experiments with an insert. It should be noted that, despite the existence

of wake periodicity, the system is stable for configuration I and unstable

for both configurations II and III. The onset of instability for

I 11 our

configurations II and III is approximately at 27.0 w/s and 29.0 w/s,

respectively. Figures 8.1 to 8.3 compare the power spectral density plots
of the three configuratiops at flow speeds of approximately 21.5 w/s,
3 ,

-
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29.0 m/s and 37.5 w/s.

At a flow velocity below the onset of instability (U = 21.5 m/s), °
the shell is seen (Figure 8.1) to respond to vortex shedding excitation.
Other components of shell response are at 211 Hz and 305 Hz, and arise
from buffeting excitation of the turbulent flow. The former frequency is
associated with , | and the Tatter is suspected to be ] | - the first
beam 1ike mode -of the shell. On closer examination, the magnitude of
vibration, for configurations II and III, at f;’] is bigger than that for
configuration I. This points to the importance of near-wake effects on
the stability of the system.

At a flow velocity bewd the point of instability for configuration

II, it is seen (U = 29.0 m/s; Figure 8.2) that the second mode, at f; 1

B s edames .~

has become the dominant oscillation, and a change in scale of the
3 \
ordinate should be noticed. At yet higher flow ve'locy'ty (U = 37.5 m/s;

i -

Figure 8.3), beyond the point of instability for configurati/o]\ 111, f; 1

is the dominant frequency of oscillation for both confi IT and

configuration [II - whereas for configuration I, the shell remains stable,

H

mainly responding to vortex 'sheddirig excitation.

It is then interesting to study the behaviour of the shell in
configuration I, at a yet higher flow velocity, where the ratio r is
clbse to 2. Figure 8.4 shows the shell response at U,= 41.4 m/s, 45.6 m/s
and 48.2 m/s for which r = 2.2, 2.0 and 1.9, respectively. It is seen that
even though the periodic force from vortex shedding is capable of exciting

the shell at twice the vortex shedding frequency, the system remains stable*.

L]

ﬁmen the system becomes unstable, the ovalling frequency, as recorded on
the PSD diagram, is well defined by a sharp and narrow peak, as shom in
Figures 8.2 and 8.3.

-ty
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The inability of periodic vortex .shedding to act as a source of
excitation is further supported by a study of a clamped-clamped shell
without an insert at high wind speed. Owing to a restriction in the ranée
of tunnel, wind speed, the ratio r for only the second mode of ovalling
will be studied ”2,1 = 171 Hz, f o = SU/D with S = 0.18).

The shell behaviour at U = 32.0 m/s, 36.9 m/s and 38.7 w/s,
correspondimy to r = 2.5, 2.1 and Z.O‘are'given in Figure 8.5. Figure 8.6
gives the shell response, at yet higher flow velocity of: U= 40.5 m/sl,

41.9 m/s an .4 m/s which corresponds to r = 1.9, 1,8 and 1.8, respectively.
It may be m the magnitude of vibration for the n=2 mode, does not
increase even when the ovalling frequency is twice the vortex shedding
frequency, t.e., at r = 2.0. As a matter of fact, t;he vibr;ation magnitude
decreases somewhat at the higher flow velocity. /

The above findings then seem to favour the second hypothes;s
proposed by Paidoussis [29]. Ifat U = Ucr the value of r that would
pertain "naturally" at the onset of ovalling is close to an integral value,

then the onset of ovalling may organize the wake and control periodiciiy

{ y
sub-harmbnjically so as to impose r = integer.

8.2 In Search of a New Cause

Having disproved periodic vartex shedding as the underlying
mechanism of ovalling oscillation, clearly another plausible mechanism,
the true cayse of ovalling, must be found.

¥ The weight of evidence collected from this work, as well as evidence

reported in reference [6], clearly demonstrates the {mportance of wake flow
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in the occurrence of ovalling. Based on this, a hypothesis will be
proposed to explain this intriguing phenomenon.

The main-stream turbulence would excite initial small amplitude - |
vibration of the shell. When the flow velocity increases, the cavity
‘(separation bubble), originally closed, opens up and instantaneous "alley-
wgys" [32] of fluid are formed which penetrate the cavity. The stability

. 6f the system would then depend mainly on the interaction of shell motion
and the reverse flow in the alleyways. Hence, if a certain mode and
frequency of oscillation of the shell are such that energy can be
extracted from the wake flow, and if this absorbed energy is larger than
that dissipated by structural .damping, the amplitude of vibration will
increase and the system‘then become unstable. Obviously, however, this
interaction is complex; e.g., the work of Chapter 6 clearly indicates
the importance of phase lag between wake flow and pressure, on the one

hand, and shell vibration, on, the other,

8.3 Conclusion

A number of experiments were conducted, with clamped-clamped shells
in different experimental set-ups. The new technique of using acoustic
éx'm‘tatiqn in resonance testing (to determine natural frequencies and modal
damping) proved to be s}ery successful for shell-type structures of low
modal damping. The characteristics of the shells in cross flow were found
to be very similar to those reported previously, that is the cylinder under-
goes ovalling oscillation at, or ctose to, one ofhits natural frequencies.

The second and third modes of ovalling occur, respectively, with a node

f
|
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and an antinode facing the free stream vector. At thg onset of ovalling,
the ratio r = fo/fvs is approximately equal to 3.4-3.§ for the n=2 mode;
and 4.0-4.3 for the n=3 mode. ‘

The experiments to investigate systematically wake periodicity
behind a rigid cylinder, witrl or without a splitter plate, shows that,
even with a small gap between the cyh‘ncier and the splitter plate, no
periodic vortex shedding exists in the domain of investigation.

Finally, the experiments on a cylindrical shell with an insert
and an insert-less shell with a “wake-elimiegtor" demonstrate the importance
of the wake flow on the stability of the system.

A refined theory has been developed to model the aeroelastic
instability of a clamped-clamped cylindrical shell in cross flow. The
theory takes into account the non-stationary boundary condition of a
vibrating shell, and within 'the wake, a constant reverse flow velocity is
imposed such as to obtain a constant mean base pressure; further, it is
also assumed that there is a variation of base pressure associated with
shell defomgtion. |

As discussed in Chapter 6 (Case 3), the major weakness of the
theoretical model is associated with the u?i]ization of the function ¢0,
which assumes an idealized potential flow in the forward part of the
cylinder (in order to calculate some of the terms in the analysis). This
tends to exaggerate the effect of the changes in radial velocity caused
by shell vibration on the stability of the system. In view of the importance
of this effect, a new function ¢0 must be obtained, ei}her by an elgctr'ical-
analogue or by qctual]y measuring the flow field experimentally.

Ignoring the undesirable effect mentioned above (as was done in
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<3

-ﬁse 6 of Chapter ‘6), ’the‘theor'y provides good qualitative al;d quantitative -
agreement with experiment., It predicts flutter in the n=2 (even) and | |
n=3 (odd) modes occurring with a node and an antinode, respectively, -

facing the free stream, except that the sequence in which ovalling occurs

is reversed in comparison with experimental observations. The theory

(Cases 2 and 4 of Chapter 6) also indicates the impbrtance of the wake

region in determining the stability of the sysFem, which is consiste\nt’

with the experimental findings.

In view of the above findings, it .is perhaps worthwhile to venture
into a full-scale study of the near ;ake flow of a circular cylinder. IQ
order to fully understand and model the recirculating flow, some comprehensive
flow visualization experiments should be undertaken. Ideally, the surface
pressure distribution on an oscillating thin shell should also be measured.
The above-mentioned experiments would be rather difficult to perform.

However, if an attempt is made, \the theory may be further refined with
the new experimental\fi ndings. ' )

Finally, it has been demonstrated (for certain orientations of
the ovalling oscillations) that the system is capable of extracting energy‘
from the flow field (Chapter 7). The thresholds of instability are
reasonably well predicted by the energy method. Even though the expressions
for ;his analysis are rather simple, the calculations have to be
supplemented by experimental data. Firstly, the quasi-static pressure
distributions for ovalling oscillations have to be measured. Secondly, the
phase relation between the induced pressure and shell displacement has to

be calculated and measured, respectively, ahead of flow separation and in -

the wake region. Although, gathering this information has been rather —
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Table 2.1: Dimensions of the Testing Shells in Inches; (1 in. = 25.4 m).
Shell A B c
Diameter 3.00 3.00 3.00
Thickness around top circumference 0.0195 0.0185 0.0160
0.0190 0.0190 0.0160
0.0195 | 0.020 0.0165
Thickness around bottom circumference 0.0195 0.020 0.0160
0.0190 0.020 0.0170
0.0190 0.020 0.0170
Average shell thickness 0.0193 0.0195 0.0165
Original length of shell 23.00 23.00 23.00
Height of clamping position above 1.50 1.50 1.25
tunnel floor
Height of clamping position below 1.50 1.50 1.75
tunnel roof
Effective length of shell 21.00 21.00 21.00




TYabls 3.): Summary of Natural Frequencies and Modal Damping for Shells A, B and C With and Without an Insert,
n=2 n=3
(g?&t) f (Hz) f (Hz)

15t rara | 2 thiac | 15t TriaL | 2" rRiac | 15t rhiac | 2™ tiac | 1St rria | 2 TRia
A 171.0 17.2 0.047 0.046 232.1 232.3 0.046 0.046
A with fnsert |  218.7 219.4 0.058 0.057 235.7 237.2 0.113 0.134
B 166.1 165.8 0.0 0.049 216.0 215.6 0.052 0.053
B with insert |  209.0 208. 8 0.053 0.058 221.7 227.1 0.144 0.108
c 163.8 - 0.032 - 226.1 ; 0.036 .

68
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Table 4.1: Threshold Flow Velocities of Two Nominally ldentical 76.2 mm

Diameter Clamped-Clamped Shells.

Mode: (n,m) = (2,1) Mode: (n,m) = (3,1)
Shell o'
e

(deg.) | Uy fn,m fom’ Fvs Uer fn,m o ,m/ fus

(m/s) | (Hz) (-) (m/s) | (Hz) (-)
A 315 21.7 | 173 |3.4-35 | 2.4 | 236 | 4.1-4.2
A 340 2.6 | 174 |3.4-35 | 244 | 238 | 4.1-4.2
B N5 21.2 | 167 |3.4-3.5 | 22.9 | 223 | 4.0-4.1
B 300 21.2 | 168 | 3.4-3.5 ] 22.9 | 227 | 4.2-4.3

*e indicates the angular position of the fotonic sensor, measured

clockwise from the front stagnation point at a height h = 89 mm
(3.5 in.); h is measured from the lower clamping position (see Figure 2.3).




Table 4.2: Threshold Flow Velocities for Shells A and B With an Insert,
Orientation of the Model
—— — —
1 Shell
i f ' { i - i i t ] i
& L Ver [fan] T s & | Yer | T2 T2 fus| O | Ver | T2] T2,/ fus| Yor | 2.0 fus
(deg.) | (m/s) | (H2) - (dag.) | (m/s)] (Hz) (-) (deg.) ] (m/s) | (Hz) - (m/s) (-
A 0 - - - - 145 30.8 | 225 | 3.2-3.3 - -
318 - - - - 145 31.8] 227 {3.1-3.2 - -
325 - - - - - - - - - -
325 Stable - - - - - - - - - -
330 - - - - - - - - - -
8 315 225 27.0 | 212 | 3.4-3.5 135 28,7 | 214 | 3.,2-3.3| 35.0|2.6-2.7
315 225 26,7 | 216 1 3.4-3.5 135 27.81 216 | 3.2-3.3} 33.4 | 2.7-2.8

*TM: second critical flow velocity could correspond to a change of ovalling mode (from an antisymmetric to a
symmetric one); see footnote of Section 4.3,

L6



Table 4.3:

A Summary of the Results of Tables 4.2 and 4.3.

Model

(Shell)
o9 (Hz) 173-174 - 225-227
167-168 212-216 214-216
f, /f. (=) 3.4-3.5 - 3.1-3.3

2,1 vs Stable

3.4-3.5 3.4-3.5 3.2-3.3
Uer (m/s) 21.6-21.7 - 30.8-31.8
21.2-21.2 26.7-27.0 27.8-28.7
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Table 6.1: The Shell and Fluid Parameters Used in Theoretical Calculations.

(a) Shell dimensions

1]

mean radius a = 38.1 mm (1.50 in.)

0.508 mm (0.020 in.)

i

mean thickness h

0.584 m (23.00 in.)

overall length

effective length L = 0.533 m (21.00 in.)
2
h -5
K= —— = 1.48 x 10
12a
(b) Material properties of the shell
. . 3, .3
density o = 1.29 x 107 kg/m

0.28 x 10'0 n/M?

4]

Young's modulus E

0.4

Poisson's ratio v

2
- 2 (1-v) - -10 2
Y psa - 5.62 x 10 sec

& {(c) Density of air

At 20°C and 1 atmospheric pressure

3
baip = 1-208 kg/m




Table 6.2: Theory and Experiment Compared in Terms of Predicted and Measured Ovalling Frequencies; Negative

Aerodynamic Damping “8ad and Modal Damping 6 at the Measured Critical-Flow Velocities.

n,m’

: - n=2 n=3
Case
Expt Theory s (expt) -5_ ., (theory) Expt Theory s (expt) -§_ . (theory)
(HZ) (HZ) 2,] ad (HZ) (HZ) 3,] ad
0 - I 165 0.021 206 0.01
] 165 0.027 206 / 0.013
167- 0.046- 223- 0.046-
2 174 164 0.05 G.020 238 202 0.053 0.037
Positive / Positive
3 186 damping / 207 / damping
; 4 166 0.043 / 207 0.032
\
3 5 166 / 0.o0m* 203 0.056
| /
| 6 165 // 0.042 202 0.070
|

¥6



Table 7.1: Summary of the Phase Lag and Cp = Hw*/a+H,
the Free Stream.

for the n=2 Mode Vibrating With a Node Facing

Phase Polynomial Cp = Hw*/a+Hg

Angular
position | Us5 | y=10 | u=15 | u=20 | U=25 | U=30 " " 1 HeH

8 m/s m/s m/s m/s m/s m/s 0 )
E 5 165 151 138 127 118 110 2.408600 0.947070 -2.355670
L 15 166 154 143 134 127 121 2.210300 0.800840 -2.011140
c 25 170 162 155 151 148 146 1.211600 0.496170 -0.707770
0 35 176 | 174 172 17 b 17 -0.220290 0.027876 1.192414
L 45 185 189 190 180 190 189 -2.436800 -0.497190 3.933990
A 55 196 205 208 208 207 205 -3.037800 -1.019400 5.057200
T 65 210 223 228 228 227 225 -1.252600 -1.930100 4.182700
E 75 230 249 257 262 266 268 -0.042934 -1.214200 2.257134
D 85 262 280 291 300 397 313 5.232000 -1.140600 -3.091400
Z 95 276 289 307 307 300 300 0.865420 -1.116700 1.251280
$ 105 266 290 278 278 282 282 0.510740 -1.126100 1.615360
I 115 255 255 258 258 258 258 0.276180 -1,138700 1.862520
]
t 125 240 240 240 240 240 240 -0.156550 -1.163600 2.320150
A 135 228 228 228 228 228 228 -0.369860 -1.211100 2.580960
S 145 218 215 215 215 215 215 -0.427900 -1.228200 2.656100
u 155 210 210 210 210 210 210 -0.616450 -1.277400 2.893850
R 165 204 204 204 204 204 204 -0.048939 -1.323500 2.372439
13 175 160 160 160 160 160 160 2.110500 -1.344000 0.233500
D

fEstimted as a smooth progression from the last set of calculated values to the first set of the
measured ones.
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Table 7.2 : Summary of the Phase Lag and C = Hw*/a+H, for the n=3 Mode Vibrating With an Antinode
Facing the Free Stream.
Angular Phase Polynomial Cp = Hw*/a+H,
position | yus | yaro [ us15 | =20 | uvs2s | u=30
® m/s n/s m/s m/s m/s m/s H Ho 1-H-Ho

E 5 193 205 214 | 222 228 233 -0.196350 0.928000 0.268350
L 15 205 222 23 237 239 241 -1.898000 0.740400 2.157600
C 25 24 252 255 256 256 256 -9.472400 0.478800 9.993600
U 35 295 285 282 281 281 282 8.570100 0.144000 -7.714100
L 45 328 314 309 398 309 3N -1.363600 -0.367000 2.730600
A 55 350 345 344 344 346 347 -5.202000 -0,933800 7.135800
T 65 9 13 14 13 12 10 -2.7162200 -1.034000 4,796200
£ 75 3 45 50 51 50 48 -2.027100 -1.183800 4.210900
0 85 74 96 109 119 127 133 ~-0.427630 -1.243400 2.671030
E 95 135 148 160 160 170 170 2.157800 -1.212000 0.054200
S 105 200 200 198 198 204 204 1.590200 ~1.186400 0.596200
T 115 227 227 227 227 227 2217 1.356900 -1.191600 0.834700
~
E 125 205 205 205 205 205 205 1.324600 -1.216200 0.891600
A 135 164 164 164 164 164 164 1.654600 -1.254400 0.599800
S 145 125 125 125 125 125 125 4,350800 -1.302200 -2.048600
U .l 155 180 _{ 180 180 180 180 180 -4,808000 -1.356600 7.164600
R 165 278 278 278 278 278 278 -2.222600 -1.410400 4.633000
£ 175 269 269 269 269 269 269 -2.146200 -1.453600 4.599800
0

TEstimated (see footnote of Table 7.1).
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Table 7.3: Comparison of the Amount of Energy Transferred from the Flow {
Field into the System, to the Portions of the Shells Ahead

of Flow Separation and in the Wake Region. z

Energy Extracted from Free Stream
Modes Vel;;g?t Before Separation Wake Region Total Energy
M
(m/s)
0-90° % 90°-180° % 0-180° %
8 om) | () | 6Zam ) | EEam ()
5 54 30 125 70 179 100 '
10 320 39 500 61 820 100
15 805 42 1128 58 1933 100
"t 20 1457 42 2005 58 3462 100
25 2269 42 3128 58 5397 100
30 3144 9 4504 59 7648 100
5 9 7 125 93 134 100
10 64 11 499 89 563 100
15 167 13 na21 87 1288 100
" 20 344 15 1994 85 2338 100
25 504 14 3128 86 3632 100
30 789 15 4504 85 5293 100
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Figure 1.1:

Various circumferential mode shapes of breathing oscillation
of cylindrical shells.
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Figure 2.2: Top and side view of the cylindrical shell with an aluminium

insert.
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» Figure 2.3: Side view of the cylindrical shell in position in the wind
tunnel test section; typically £ = 254 mm (10.0 in.).
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Figure 3.1: Schematic of the experiment to determine the natural frequency

and damping of a clamped-clamped shell,
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Figure 3.3: Frequency spectrum of the shell vibration monitored by the fotonic sensor.
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Fig_gre 3.4:

Ideal Nyquist plot for a one-degree-of-freedom system. The
logarithmic decrement § is determined by the relationship
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Figure 3.5: Nyquist plot for shell B without an dnsert: (2,1)-mode;
fz 1 - 166.1 Hz, 62 1° 0.051. '
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Figure 3.7: -Nyquist plot for shell B without an insert: (2,1)-mode;
f2 1 " 165.8 Hz, 62 1" 0.049 - second set of measurements.
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Figure 3.8: Myquist plot for shell B without an insert: (3,1)-mode;
(* f3 1" 215.6 Hz, 63 1 ® 0.053 - second set of measurements.
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Figure 3.9: Myquist plot for shell B with an insert: (2,1)-mode;
f;‘] = 209.0 Hz, 6, ; = 0.053,
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Various locations of the hot wire probe to investigate periodicity in the wake.

o100

o7

ety .

o1}

e17
e12
13

[ DY}
el4

®15

D S O

{ B¢

18

e20

23

22

21

L2t



(a)
x v zm
3-1
. (a)
i 60 Hz
-
0 - — = = ~—d
[o] 200
HZ %\

140 4
“ 1 (b)
MAG 7 Vs ZfVS
0 v Al Al v
0
HZ
80
" 4 (b)
MAG |
0 ~r- r
0
HZ

Figure 4.7: Frequency spectra of the wake at U = 18.0 m/s (Re = 9.1 x 104) without (top) and with
cigure 3.0

(bottom) a splitter plate.

(a) At position 1; {(b) at position 3 (see Figure 4.6).
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Figure 4.8: Frequency spectra of the wake at U = 18.0 m/s (Re = 9.1 x 104) without (top) and with

(bottom) a splitter plate.

(a) At position 6; (b) at position 9 (see Figure 4.6).
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Figure 4.10: Frequency spectra of the wake at U = 18.0 m/s (Re = 9.1 x 104) without (top) and with
(bottom) a splitter plate. (a) At position 17; (b) at position 19 (see Figure 4.6).
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Figure §.1: Top view of the cylindrical shell with wake eliminator and extended splitter plate in
position in the wind tunnel test section.

(A1) dimensions are in inches; ! in. = 25.4 mm).
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Figure 5.2: Exploded view of the wake eliminator without the suction
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device, used in an attempt to create a coherent back flow.
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Volumetric flow rate through the suction device versus flow
velocity in the tunnel (1 cu. ft. = 0.03 m3).
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Figure 5.8: Comparison of the pressure distribution around a circular cylinder with wake eliminator
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(Re = 9.10 x 104); h is measured from the tunnel floor upwards.
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Figure 5.9:

Flow velocity (m/s)
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Measured vibration amplitude [at 8 = 315°, h = 94 mm (3.7 in.)],

wake flow periodicity in terms of Strouhal number S, and

r = fp m/fvs for a clamped-clamped shell (shell C) in cross flow.
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Measured vibration amplitude [at 8 = 315°, h = 94 mm (3.7 in.)],
wake flow periodicity in terms of Strouhal number S, and
r = fn w/fys for a clamped-clamped shell (shell C) with wake

elimin

ator in position.
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Figure 5.11: Measured vibration amplitude [at 6 = 315°, h = 94 mm (3.7 in.)],

wake flow periodicity in tems of Strouhal number S, and
r = fn m/fys for a clamped-clamped shell (shell C) with wake
eliminator and suction.
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Figure 6.2: The guasi-static pressure variations in the wake, Cp ve (w*/a)
at 6 = 1809 for the n=2 mode shape with an antinode facing
the free stream at Re = 3.80 x 104 (U = 7.5 a/s).
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Cross-sectional view for the n=3 mode model. The surface

is described by R = 1.46*(1+Pcos36)/(1+P) where R = R(8) is
the radius of curvature and P is a measure of the maximum
radifal displacement from the mean position. Top: P = 0.075;
bottom: P = 0.100.
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Figure 7.9: Comparison of the pressure coefficient for the two different models of the n=2 mode
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node facing the free-stream vector, at U = 7.5 m/s (Re = 3.80x10%).
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8 (degrees, from forward stagnation point)

node facing the free-stream vector, at U = 7.5 m/s (Re = 3.80x10%).
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Figure 7.26: Pressure coefficient of the ne3 mode model (P = 0.075; less deformed) with a node
) facing the free-stream vector, at U = 23.5 m/s (Re = l.l&xmgﬂ
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Figurs 7.29: Comparison of the pressure cosfficient for the two different models of the n=3 mode

6 (degrees, from forvard stagnation point)

at different flow velocities.
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APPENDIX A

AUXILIARY INSTRUMENTS

FUNCTION MAKE MODEL REMARKS
Speaker RADIO SHACK 40-248 8 ohms impedance
Beat frequency B &K 1022 Range 20 Hz - 20 KHz
Condenser Resonance frequency
microphone B&K 4145 9 KHz
L4
Precision sound "A*, "B", "C" and
level meter B &K 2203 "Lin" weighting
: _ Resonance frequency
Fotonic sensor MTI KD-100 50 KHz
Constant temperature
anemometer DISA 55001
Hot wire probe DISA 55P11
Resonance frequency
Pressure transducer PCB 112A22 250- KHz
Oscilloscope TEKTRONIX 7313
Digital multi-
meter HP 3438
Desktop computer HP 9825A

FFT analyser HP 5420A
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APPENDIX B

THE NATURAL FREQUENCIES AND MODAL DAMPING OF SHELL A

The natural frequency of shell A (without an insert) for the
second mode of ovalling is 171.0 Hz and the logarithmic decrement is

0.047 (see Figure B.1). Figure B.2 gives f3 1 = 232.1 Hz and 834 = 0.046.

Not too surprisingly, when the damping is 1ight, the repeatability of
the measurements {s excellent (see Figures B.3 and B.4).

With the insert glued onto shell A, there is, approximately,
a 2B% increase in the second-mode natural frequency (f;" = 218.7 Hz,
see Figure B.5). The modal damping 6;,] for this mode is 0.058 (an
increase of 20%). Fiqure B.6 presents the corresponding results for the
n=3 mode: f;'] = 235.7 Hz (a 1.5% increase) and 6;’1 = 0.113 (an increase

of 145%). The measurements repeated on another date are shown on

Figures B.7 and B.8.

B AR L R
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Re.
= ; B } %
-1000 - o 1000
5 ‘
41.5 .0 ™
172.1 Hz ® i 169.9 Hz
-1000 +
fz’] = 171.0 Hz
Figure B.1: Nyquist plot for shell A without an insert: (2,1)-mode;

c fzv] = ]7].0 “z. 82.1 = 0.0‘7.
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f 1 = 232.1 Hz

3,

230.4 Hz

234.0 Hz

Re.
80

-80

_80 L Im.

Figure B.2: Nyquist plot for shell A without an insert: (3,1)-mode;
f3) = 232.1 Hz, 8, | = 0.046.
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Re.

i

_560 600

o

172. Pz 169.7 Hz

Figure B.3: Nyquist plot for shell A without an insert: (2,1 )-mode;
( '2,} = 171.2 Kz, 62'] = 0,046 - second set of measurmments.
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i Figure B.4: Nyquist plot for shell A without an insert: (3,1)-mode;
1 c f3'1 = 232.3 Hz, 63’1 = 0.046 ~ second set of measurements.
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Figure B.5: Nyquist plot for shell A with an insert: (2,1)-mode;
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Figure B.6: Nyquist plot for shell A with an insert: (3,1)-mode;

- i 1
( f3.1 = 235.7 Hz, 63‘] = 0.113.
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v 1
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®
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.—Id P 55
i
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Figure B.7: Nyquist plot for shell A with an insert: (2,1)-mode;
f;.] = 219.4 Hz, 6; 1" 0.057 - second set of measurements.
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Figure B.8: Nyquist plot for shell A with an insert: (3,1)-mode;
1 i
f3 1= 237.2 Hz, 63 1= 0.134 - second set of measurements.
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| ! APPENDIX C

THE BEMVIOUR OF SHELL A (WITHOUT AND WITH) AN INSERT

Shell A was used in the preliminary stage of wind tunnel experiments
(see Chapter 4 for details), to study the shell response without and
with an insert in cross wind.
A typical result for shell A without an insert is shown in
“ Figure C.1. The average Strouhal number, S, is approximately 0.18 for
0 <U< 35m/s. The first observed instability (n=2 mode, ~ 174 Hz)
occurs at Ucr ~ 21.7 m/s and at this flow velocity the ratio r of
ovalling frequency to vortex shedding frequency is from 3.4 to 3.5; the
uncertainty in r arises from the corresponding difficulty in pinpoin‘ting
Ucr’ The n=3 mode ovalling (v~ 236 Hz) was precipitated at a slightly ‘
higher wind speed of Uthr v 24.4 in/s. The same experiment was repeated h
with the fotonic sensor monitoring the shell motion at 6 = 340° (instead
of 8 = 315°). The result is plotted in Figure C.2.

For shell A with an insert, the experiments were first conducted

with the model orientated at configuration I. The fotonic probe was

PR N
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positioned at different locations to monitor the shell response at

different angular positions. It is seen (Figure C.3) that, at orientation
I the system is stable at all flow velocities, up to U = 45 m/s.
Figure C.4 shows that the system would become unstable at

orientation III. The onset of instability for this configuration occurs

i i o
at U, 30.8m/s (fz’] N~ 225 Hz; r

was repeated on another date and the result is presented in Figure C.5.

= 3.2-3.3). The same experiment
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' APPENDIX D

BERNOULLT EQUATION FOR A NON-STATIONARY SOLID-FLUID BOUNDARY

!
i

Owing to a moving fluid-solid bour;dary surface, the fluid

properties are a function of position and time; hence, the unsteady

Bernoulli equation should be written as

Instantaneous shell
surface

“Undeformed shell
surface

Now consider two frames of reference oxyz or F, and 0'x'y'z' or

F'. At time to’ both frames are coincident and F' is mvin§ relative
(‘ to F with a motion described in F as a velocity v and an angular velocity w.

o
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' Let B,g be the velocities of the fluid particle P as seen by
an observer in F and F', respectively. The term 5[-){- may then be

rewritten as

' - 5t ¢ (Rey-wr)ve

To express the rate of change of & as seen by an observer in
fixed space, one sets R = 0.

Hence, the unsteady Bernoulli equation reduces to

i
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APPENDIX E

PHASE RELATION BETWEEN SHELL DEFORMATION AND THE INDUCED PRESSURE

It is presumed that due to viscous effects, there is a phase
difference between the perturbation pressure field and shell deformation.

The experimental set-up allowed the phase to be measured only
over a portion of the shell in the wake region (6 = 120° to 240°). Hence,
the phase from the forward stagnation point to the point where the flow is
assumed to separate from the cylindrical shell is estimated analytically.
The phase relation from 8 = 85° to 120° lies in the so-called 'grey'
region; phase values therein have been obtained by interpolation from

those calculated and measured, respectively, fore and aft of this region.

E.] Experimental Set-Up to Measure Phase

The experiment was set up in accordance with Figure E.1. The
cylindrical test shell and the fibre optic probe were mounted in the same
manner as described in Chapter 2. A PCB pressure transducer (type 112A22)

was placed in the wake behind the shell to picﬁ up the pressure signal

induced by shell motion. The signals from the fotonic sensor and pressure
transducer were then fed into a FFT signal analyser (HP 5420A). A
transfer function was then used to find the phase and any other pertinent
relation between the two signals.

The experiment was conducted with the wind speed set at 21.5 m/s
and 25.5 m/s. At these respective flow velocities, the second and third
mode of ovalling were seen to have large amplitudes of vibration.

o he
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E.2 Experimental Results

It is reasonable to presume that the presence of the pressure
t‘.ransducer-r in the region before the boundary layer separates from the body
will disturb the mean flow and consequently the phase measured in that
region would be unreliable. For this reason, the experiment was restricted
to a small region of the wake where it was assumed that the pressure
transducer had little effect on the measurement.

Initial tests were done with the pressure transducer traversing
around the periphery of the shell from 6 = 120° to 240°, at 15 degree
intervals. The transducer was positioned such that the center of the
sensing surface (diaphragm) was 9.50 mm (0.375 in.) away from the shell
surface and was parallel to the mean flow velocity vector. The fotonic
sensor was set at 8 = 315° and on‘the same height (120 mm (4.90 in.) above
the tunnel floor) as the transducer.

Figures E.2 and E.4 show the frequency spectra of the shell
vibration (top) and the induced pressure (bottom) for the second and third
modes of ?v,aning. It should be noted that the n=2 mode is-vibrating
with a node facing the free stream vector, whilst the n=3 mode has an ’
antinode facing the flow.

The top diagrams of Figures E.3 and E.5 show the phase plot of
the cross spectral density between the shell displacement and the
perturbation pressure induced by shell motion. It is seen that there is
8 nice 1ittle plateau centered around the frequency of interest, which
is approximately 167 Hz for the n=2 mode and 235 Hz for the n=3 mode - even

*The pressure transducer plus the holder has a dimension of 14 mm (0.55 in.)

diameter.
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though the pressure signal recorded is very weak and only just above the
electrical noise level generated by the instrumentation. The validity
of these results is enhanced by measuring the coherence between the two
signals (see Figures E.3 and E.5, bottom): 1t is seen that it is close
to one at the frequencies of interest. To further support this claim,
a cross correlation function between a sinusoidal s1‘gnal'r and a random
white noise was determined. In this case, it is found (see Figures E.6
to E.8) that at the frequency of interest there is no definite phase
formed and the coherence between these two signals is practically zero.
The phase relation between the shell displacement measured at
8 = 315° and the induced pressure at various angular positions are
'plotted on Figure E.9 for the second mode and on Figure E.10 for the third
mode of ovalling.
In order to fully interpret the above results, some further
measurements were needed. Firstly, it was necessary to express the
phase between the induced pressure and the shell displacement at the point
where the pressure was measured. For example, considering the n=3 mode,
in which the shell ovals with an antinode facing the wind, the shell motion
on the part of the shell surface described by 8 = 330° to 30° is in phase

LN

>

*he sinusoidal signal is used here to simulate the shell vibration
signal.
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with that described by both 8 = 90° to 150° and 6 = 210° to 270°. However,
it is 180 degrees out of phase with the parts of the shell for which

8 = 30° to 90°, & =150° to 210° and 6 = 270° to 330°. Hence, it is
possible to obtain the "actual phase" at any point on the shell from that
measured with the fotonic sensor set at 6 = 315°. The above method

of extrapolation was verified by performing another set of experiments,
with the fotonic sensor positioned at 6 = 0°. It was found that, by
making the appropriate compensation, the phase obtained is close to that
measured in the earlier experiments.

Secondly, it was necessary to determine whether the phase measured
by the analyser indicated that the induced pressure was leading or lagging
the shell motion. This could be easily done by del’aying a second signal
by a certain fraction of time period with respect to the first signal.
Both signals were then processed through the spectrum analyser. The
conclusion drawn from this test is that the measured phase should be
interpreted as a phase lag of the induced pressure with respect to the
shell displacement.

Finally, the fully compensated phase angles versus © are presented
in Figures E.11 and E£.12. It is seen (in Figure E.11) that the measured
phase for the second mode is not symmetric about the 0-180 degree 1ine.
However, the reliability of the measurements from 6 = 195° to 240° is
questionable, as indicated by the coherence in this region not being as
good as that in the region 6 = 120° to 180°. For instance, the measured
phase at © = 210° has a coherence of only 0.33. Hence, the phase
measurements for 8 = 195° to 240° are disregarded. For the third mode

of ovalling (see Figure E.12), the amplitude of vibration is three times
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larger than for the second mode and, consequently, the induced pressure
signal is stronger. The coherence between shell vibration and the induced
pressure is nearly one and the phase measured is symmetric about the 0-180

degree line.

E.3 Calculation of Phase for 6 = 0 to 85 Degrees

The method used to estimate the phase for 8 = 0° to 85° will
briefly be outlined in this section. As suggested by experimental evidence,
it is assumed that there is a phase lag ¥ between the induced pressure
and shell vibration. The expression for the induced pressure will be
formulated analytically by utilizing strip theory aerodynamics, as
described in Chapter 6. As will be seen in due course, ¢ is determined,
once the expression for the induced pressure is specified.
i

As a first approximation, equation (6.11) and (6.12) may be

simplified to

Jo* B ad*
o by - o G+ wigf(e) + WL XY (E.1)
r=a
and
ap* aw* . Ug(6) aw*
or r=a e o (E.2)

for convenience, f(8) is replaced by g(6) and the effect of (v+wxr)-vo

TAs shown in Chapter 6, the choice of an idealized fully potential flow
for ¢o tends to overestimate the effect of applying the boundary condition
at r = atw*. For this reason, it was decided to apply the boundary
condition at r = a in this analysis.
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in equation (6.10) has been ignored.

Since the aim of this analysis is to estimate the phase ahead of
the separation point, it is reasonable to ignore the flow within the
wake and to assume g(8) =0 for 6 > 65.

As the quasi-static pressure was measured by neglecting the axial
deformation of the shell, and the energy calculations (in Chapter 7) '
are based on a shell of infinite length, w* may be expanded in a series
form

wt = elot ) Bl cos(2e+1)nd
2=0

= emt B, cos né , (E.3)

where the oscillations are symmetrically disposed about the (6=0, 6=m)-
plane; as suggested by the previous work [11], Bo »> B], By, ..., ete.

may safely be assumed.

Proceeding in a similar manner to that described in Chapter 6,
it may be shown that for harmonic shell motion with an antinode facing

the free stream, the external flow potential is given by

% = el (o) + 321 p(3) rJ cos jo1 , (E.4)
where
ajﬂ Un
D(j) = (T) [- fw an +2 o G(n.j)lBo g (E.5)
and
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Bs ‘
6(n,J) = [ " g(8) sin n® cos-jO dé . (E.6)
| o
. Physically, one would expect Q; +0asr +o, This implies
D(0) = O in equation (E.4), or
¢ - et 7 o(y) rJ cos jo . (E.7)
i=1 T
Hence,
A
C 2 %
pr n -0 5+ W0 8
r=a
= - e“"t P8, {jzl wz nj 2 cos jo + 2 -- wi Z _TL G(n,j)
- Ug(®) (- wi Zl sin j8 6.5 + 2 ¥ s { sin jo G(n.j)}}
J’:
= DB {-“’2‘ cos n8 - iw [ZU" Z —TLG(nj)+ug(e) sin nf)
o 3
+ "z" g(e) { sin jo G(n,j)} . (E.8)

In general, p; may be expanded in a series form as

Lo

pr -« &' L fa,0)e ™Y |




A - .
RGO O R N TN T TG ATV NG riock A o o m e aqPemnt e e g AT e, TR, A e oy e o e

225

pr = et I AW) f(a.0) [cosy - 1 sinv] (E.9)
j=

where it is assumed that the induced pressure is lagging the shell
vibration by an angle ¥.

Equating both real and 1mgfnary parts of equations (E.8) and
(E.9) gives

o 2 a
jZ] A(j) f(a,8) cosy = p {- 52,;9- cos n® + 2 -‘iT“ g(8) ,Z] sin j8 G(n,j)} ,
= J=

(E.10)

and

- jz‘ A(3) f(a,8) sip = - olw {g(6) sinne + 22 _):1 cos 38 ¢(n,i)3 .
= J=

(E.11)
Dividing (E.11) by (E.10) yields
(- g(e) sinne - 22 £°-°‘j—1ﬂ G(n,j))
- tand = Uu —p A . (E12)
- 9—'1—"’— cos no + 2 %—aﬂg(e) .): sin j6 G(n,j)

J=1

The foregoing analysis pertains to the case of oscillations with
an antinode facing the free stream. Proceeding in a similar manner, the
equivalent expression for oscillations with a node facing the free stream

is given by

B . "L
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. woa el B, sin n® , (E.13)
oz = et § (4) rd sin go , (E.14)
3=
where
had
D(3) = (5)- tu 8,5 - 2 Wa(gm)l (E.15)
and
O
6(j,n) = f = g(8) sin j6 cos nb db . (E.16)
o \

The external fluctuating pressure and the phase lag, in terms

of tan y, may then be written as

pp = el paO{- oa S+ dw 2§ L 6(40n) + Ug(e) cos nel
j:

2 [
+2 9;;'1 9(8) _X] cos j8 G(j.n)} , (E.17)
JS

-

and

(+ g(e) cos no + 2 gj'z'] 2in I8 G(J,n))

-ta’#’ = UU i 2 .

- (E.18)
(_ wa sin ng + 2 yi-s'-'- g(e) jz] cos joO G(j)"))

n
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E.4 Results

The phase angles were computed in 10° intervals from 6 = 5° to
85°. The listing of a computer program for the calculation of ¢ may
be found in Appendix G.

Figures E.13 to E.15 show the results for the n=3 mode vibrating
with an antinode facing the free stream, for flow velocity U = 5 to
30 m/s in steps of 5 m/s. The computation is based on an ovalling
frequency of 230 Hz. To facilitate the presentation of the data, any
phase lag ¥ greater than 360° is reset to ¢-360°. The experimentally
measured phases (from 6 = 120° to 180°) are also plotted on the same
diagrams. The phases between & = 85° to 120° may then be interpolated.

For the n=2 node ovalling with a node facing the free stream,
the ovalling frequency is assumed to be 167 Hz. The results are plotted

in Figures £.16 to E.18.
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Figure E.5: Cross-correlation spectrum-phase (top) and coherence ratio
(bottom) of shell vibration and induced pressure for the

n=3 mode at U = 25.5 m/s.
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TRIGGER FREE RUN , CHNL 1
CENT FREQ » 2.8 HZ
BANDWIDTH » 408. 880 HZ
TIME LENGTH « 6540. 808 =S
AF 1. 56258 HZ AT & 625. 888 S
ADC CHNL  RANGE AC/0C DELAY CALC(C1/C2
» 1 Sy AC 8.8 8 1. 80000
* 2 250 mV AC B.8S 1. 88800
INPT 1 #As 1 EXPAND
INPT 2 #Ax 1 EXPAND
2.8 SEC 18. 009
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Figure E.6: Typical setup state for phase measurements (top) and

oscilloscope traces (bottom) of a sinusoidal signal (input
and a random white noise (input 2).
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Figure E.7: Frequency spectra of a sinusoidal signal (top) and a random
white noise (bottom).
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i (bottom) of a sinusoidal signal correlated with random

white noise.
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the n=2 mode at U = 21.5 m/s.
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positions 8, for the n=2 mode at U = 21.5 w/s.
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APPENDIX F

THEORY FOR OVALLING WITH A NODE FACING THE FREE STREAM

The analysis remain‘s\ﬁa]t\ered and‘as described in Chapter 6,
except that the flow potentials and shell displacements assume different
forms. Hence, only the major derivation procedures will be outlined
and the final results will be presented directly.

For harmonic shell vibrations with a node facing the free stream,
it may be shown that the external and internal perturbation flow

potentials may be expressed as

¢* = eiwt I D(A) r* sin A0 . (F.1)
o1 = et T £ ¢} sinne, (F.2)
A=(

and the shell displacements may be assumed to have the forms

I

u* it [ A, sinno Vi *
m=1

v o= et [ B cosnbw, , (F.3)
m=]

R 7
w* e "Z‘ C, sinmd ¥_ .
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Substituting equations (F.1) and (F.2) into the boundary condition

- equation (6.12) - an expression for D(\) of ¢; may be obtained:

.

»

U sir1(1+n+j)eS sin(Hn-j)GS Sin(l-n+3)es Si"“m-‘”es,:w.

M S £ il o7 i BT S, purv S P
(F.4)
Similarly, E(j) for ¢1 is given by
E(j a4y 7 iwC 6 F.5
(J)‘(T)mz]wmnj*m- (-)
Thus, ¢; and ¢’i‘ may be expressed as
" - ei“’t [(D(0) + Z] D(J) rJ sin jel , (F.6)
j:
o = et ®0) + § o) ) singer . (F.7)
J=

With equations (F.6) and (F.7), in conjunction with (F.4) and

(F.5), the external pressure p; and internal pressure p;’, respectively,

may be written as follows:
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wt" in né
8 g = -eet T cm,u.sn_n._ 2 Wi
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Z —E-J—F(j ,n)

n o sin(1+n+j)65 sin(1+n—j)95 sin(]-n+j)es sin(l -n- j)e

- ¢ si (
”(jg C I Y

+

uf(6) s, {- iw cos n8 [B,+C.) -

-3~ T3 S)]

na G [ Z F(j,n) cos jo

® sin(14n+j)8, sin(1+n-3)8, sin(]-n+j)és s1n(1 -n- J)Bs
i li(jzl cos j8( T+n+§ T-3 T-n4j ¥ )l}
P £(8) sind sin nd & -"-Ufe”’c sin nd &, %y
a "m S sin 2 2a 3('m
- pelt 4y p(0) , (F.8)
where
f(0)s, = f(8) , 8, =1 and &3 =0 if 08| <o,
f(e)s, = -f(6.), 6, =0 and &3 =1 if 8] >6.;
and
- 2
. pj = -ee’t [ (- L2SINRe, oot E(e) . (F.9)
.___1 n n m

Hence, the aerodynamic term q;

= p"’i-p"e becomes

O B T i s St ]
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© 2
@ - peiwt ) {cm ‘zmasin né Uurl[n 2 m Je F(j,n) .

m=1 f

n esin(‘l+n~l>j)9 sin(1+n—j)65 sin(l-n+j)es sin(1-n-j)6

+ ’5(2 s T+n+] - T+n-] - T-n+] * T-n-j S))]

-

- UF(8) 6, {1u cos o [B+C ] + 2 o C, [n Z F(j.n) cos jo

sin(1+n+j)65 sin(1+n-j)65 sin(]—n+j)95 sin{(1-n-j)@

s
- &,( 2 cos jO( T+nt] T T4n-] ST 104 A P )]'
u2 H? iy
-2 3 C, f(6) sin sinnd 5, - e Cp Sin nd S3¢ ¥m
jwt
pe - iw {D(0)-E(0)} . (F.10)

& AR AT i et

Substituting equations (F.3) and (F.10) into the shell equations,

e L

. and using a variant of Galerkin's method (as in:Chapter 6) yields the

following set of equations:

m§1 ta? Om = 204+ vole_JA+ (- dan(14v)f, 1 B

+ {avfy, - a% g, - anle(lv)f 3t = 0, (F.11)

E'] {oan(1+v)c )AL + (n? a + s?(1936) (1:v) ¢ + Twla, ) B,
n= *

continued
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2
+{na . - % ank(3-v)e ) Cm} =0, , (F.12)

'24 {-avc +15an2n<(1-\))c + adke } A '+{ - %aan(3-v)c }B

i1 km km © 2 F€q’ fp T M km’ Pm
2
4 2.2 2 142 2 PY 2w a

) {-akm-aKekm+2an|<Ckm-(n-])Kakm+Ywakm+p—S-h- km}c

k s1’n(l+2n)9S sin 85 sin(]-—2n)6

pY 2V
*ps—hT“’i“'F("'“)*‘i( ) R ¢ vy e S L

v

2
- F(n,n)a, [B +C 1} - % n I F(n,j) F(i,n)
km™"m “m } DS 7l a { JE]

) sin(1+n+j)es s1'n(1+n—j)9$ s1'n(1-n+j)9s sin(1-n- j)e
- *(jzl e e s e o e B
+ﬂF'(1nn)+"He'w [T-6_ + ] sin 2ne_J]}a, C ¢= 0 (FA13)
i B s 2n s km “m ’ .
where
95 w
F(n,j) = [ ~ f(e) sin n6 cos jo do - [ f(6,) sin n® cos jo do ,
0 fs
eS U W | ¢
F(3.n) = [ f(8) sin jo cos né d6 - [ f(6,) sin j6 cos ne do , .
o es LA
and

' 64
F'(l,n,n) = [ £(8) sind sin n® sin nd d6 .
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‘Letuou
. o8
o - 2.
¢ = -4ZFan,
wz -
2 = 4 F(n J)F(3.n) .,
= ;2;“ 321 nJF(3.n
sin(l+2n)6 sin 6 sin{1-2n)e -
G * S - I R
wz sin(lﬂﬁj)e siﬂ(‘l't-ﬂ-j)es sin(l-nﬂ)ﬂs sin(1-n-3j)0

G '2:2—12 Fndt =y — -3 - — =% *‘ﬁﬂ_%

ot

cé = ‘—‘;"‘F'(l,“.ﬂ) » i o ¢

~

oo oo -t )
C7 = g He [‘l-esi»ﬁsin 2";’ .

Hence, the equations of motion (F.11)-(F.13) may be written in the
following matrix form

[ r
-uz 0 T 0 B. +
¥
0 0 %'5}5 Ci Yem C.-J 5
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A e
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\ . r [ 1
8- o 0 I [A
fw 0 0 ‘B- +
é y Q ot
0 FF T bn Ei‘l\'[cz‘cﬂ‘u Cm
[ 2 3 N N
Ll N - han(T)f LA R Y s
- ﬂz(‘-“)(‘*)f_ - i mzx(l-\o)fb
2
iy an(l*-v)ch - . B-
o 5221431V, - halm(3v)e,
- mh na, D - ah-a‘xemﬁaznzxcu C.
+ X anzuc(lw)ch - azmt:(:«l--\a)cb - (nz-] )Z“h:
3 Y [ ] 1 ] ]
+ avxe - p—‘,’—[f::’-C.‘;*-CG«"C]]ak’ll
| . ] L J
= {0} (F.18)
"
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APPENDI X G

LISTING OF THE €OMPUTER PROGRAMS :

Program I: AEROTERM |

This program calculates the values of the aerodynamic terms

F(nan), I F(n,j)F(j.n),
j=1

[sin(HZn)ﬁS/n(HZn) + 2 sing/n + sin(1-2n)8 /n(1-2n)],

o gin(1+n+j)e sin{1+n-j)6 sin(1-n+j)e sin(1-n-j)6@
¥ 1 — 35 4 S 4 — 4 jeF(j,n)
je1 T -] T-m3 -5 e

1 ,
F(1,n,n) and [v - 65 - oy Sin Znes} .

As defined in Chapter €

L
65  §
F(n,j) .= [~ f(8) sin 8 cos j6 d6 - | f(e,) sin n8 cos jé de ,
0 , O

8 |
F(4d.n) = J ° F(8), sin jé cos né d@ - ]o £(5,) stn J0 cos nd @0 , -
0 )

&

8g - )
F(l,a,n) = [ £(8) sin® cos n8 cos né 46 .
o

ey P B 3w e Anr e




*BATCH WATFIV ME15102 SYANG
SWATFIV ,TIME=60,PAGES=20

A ek e e e e e Ak am e v e e em me me o e e e e = em wn e e e i - e e W e e e e T e e e e A e e -

TO EVALUATE THE AERODYNAMICS TERMS
COMMENT: F(N,N} FOR C2 & SUM F(N,C)*F2(U,N) FOR C3
--- WITH CONSTANT BACK FLOW ---
1.E. F(THETA-S)=CCONSTANT / DEL2=!
: CONSTANTS FCR Ci4, (% & CB
==+ WITH MOVING B0UNTARY CONDITION ---
I1.E. R=h+w"
: PI-(THETA-S -SIK - ZN'THETA-S!)/2N FOR C7
--- W]TH BASE PRESSURE VARIATIDONS ---
1.E. DPF-E ZiW* A * (W* A) * EXP(-1 PHI)
FILE NAME-AERCTERM ,

LR BN NN BN B BN BN BN NE BN B 3

IMPLICIT REARL*B A-H,D-1)
DIMENSION B'g ,C19,,BS{(9)
COMMON 7 BS . FS . P

DEL2= .

ODOOAAOOOOOOOOOO0ON

C---- - - e e e e e &
¢ INPUT O LLEER® OF FURCTION F(THETA) *
C ANGLE _F BS “:SEPERATION ANGLE .

£ (CtI,1=2,81
REATZ <E,* {(Ctl’,1=6,9)

7 FORMAT: "', . ,2X, THE COEFFICIENTS FOR THE POLYNOMIAL F(THETA)',

BS(: :=sANGLE**:
K=:-"
PRINT " K,C(1) .
1 FPORMAT: CLI12K,'C(', 11, )= D20.12)
10 CONTINUE
P1=C 1+C 2i*BS{:)+C{(3)*BS{(2)+C(&)*BS(3)+C(5)*BSY¥u)+C(6)*BS(5)
P2=C'7,*BS:6'+C BI*BS{7)+C(9)*BS{8B)
PS=F "~F:
PRINT ' FS
12 FORMAT ' 2%, 'F{THETA-S: =',F10.5)
I 300 Ne [
PRINT & N
FORMAT: . . ,'OX,'N=",13)

EVALUATION OF F(N,N}) POR C2

NOO W

RN=N
TWON=N*2
CON= (DCOS(TWON®PI ) -DCOS(TWON*BS (1)) )*FS /4 /N
PNN=FSIN(TWON)*0.5+CON*DEL2

PRINT ', FNN

FORMAT' = ',, *,'2X,'F{(N,N) FOR C2 =«' ,F10.5)

EVALUATION OF SUMMATION F(N,U}*F(U,N) POR C3

L3

NOO -

&
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SUM=0.0
O=1.
Ni=N-1
DO 56 J=1,N!
X1=0.50*(FSIN(N+U)+FSIN(N-U))+CONST(RN,U)*DEL2
X2=0.50*(FSIN(U+N)+FSIN(U-N))+CONST(U,RN)*DEL2
X=X1*X2
SUM=SUM~X
] PORMAT: ' ',/ ", 12X, NO. OF TERMS=',P6.2,5X, 'SUMMATION OF C3 =",
S F20.81
56 U=U+ 1.

X1=0.50*FSIN(TWON)+CON*DEL2
X2=0.50*FSIN(TWON)+CON*DEL2

X=X1*X2 Ty
SUM=SUM+ X

U=y~ 1,

55 CONTINUE
X1=0.50*  FSIN(N+U)+FSIN(N-U))+CONST(RN,U)*DEL2
X2=0.50* ' FSIN(U~N)+FSIN{U-N) ) +CONST(U,RN)*DEL2
X=X1*X2
OLDSUM=SUM
SUM=SUM+ X
TOL=SUM- ZLDSUM .
IF(DABS'TZL).LE. ' .0D-05) GOTO 65 i
Us=U~" :
IF (U.GE.300) GOTO 66
GOTC 55

65 PRINT 4,U,SUM
GOTC ‘00

66 PRINT 67

67 FORMAT' ',/ SX, THE SERIES DOES NOT CONVERGE')
PRINT «,U,SUM

100 CONTINUE

C EVALUATION OF SIN((1+2N;{THETA-S})/N{1+2N) + 2*SIN(THETA-S)/N +
C SIN({*~-2N/ t THETA-S))/N( " -2N} FOR C&
C

CFOR'=DSIN:1 {{~TWON *BS. ", N (' ~TWON;~2*DSIN(BS(1))/N
CPORZ=DSIN{ ! -TWON *BS ' N ¢ -TWON]
CFOR=CFOF " +CFoR:

PRINT : CFLR

FORMA " ,2X,'CONSTANTS FLR Tu =' ,F10.%)

EVALUAT. 2N  SIN{I1+N+U)*THETAS ), { 1 *N+U)+SIN{( 1+N-U)*THETAS)/( 1+N-U) +
OF SIN{{1-N«UI*THETAS) . { 1 -N+U)+SIN{ (1 -N~U)*THETAS)/(1-N-0U) *
SUMMAT ON F{(U,N) POR CS

NOANON W

SUM=( . C
U=,
DO '06 5= N
Y1=DSIN/{ ' +N+U)*BS{ )} /(1+N+U)+DSIN{(1+N-U)=BS{1))/{1+N-U)
IF(J.EC.N'; GOTO 98 ;
Y2=DSIN (' -N+U)I*BS{ "} ) /(1~N+U}+DSIN{(1-N-U)*BS(1))/(1-N-U)
GOTO 9%
98 Y2=BS{ ' +DSIN(  "-N-U)*BSt1) )/ {1-N-U)
99 Y320 .50* {FSIN'  U+NI+FSIN(U-N)1+-CONST({,RN)*DEL?2
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Y=(Y1+Y2)*Y3
SUM=SUM+Y
106 U=U+1.

Y1=DSIN({1+N+U)*BS(1))/(1+N+U)+DSIN((1+N-U)*BS(1))/(1+N-U)
Y2=DSIN({1-N+U)*BS(1))/(1-N+U)+DSIN((1-N-U)*BS(1))/(1-N-U)
Y3=0.50*(FSIN(TWON))+CON*DEL2

Y=(Y1+Y2)*Y3

SUM=SUM+Y

U=U+1.

Yi=DSIN({(1+N+U)*BS(1))/(1+N+U)+BS(1) ¥
Y2=DSIN((1-N+U)*BS(1))/(1-N+U)+DSIN((1-N-U)*BS(1))/(1-N-U)
Y3=0.50*(FSIN(U+N)+FSIN(U-N) ) +CONST(U,RN)*DEL2
Y=(Y1+Y2)*Y3

SUM=SUM+Y

U=U+1,

105 CONTINUE
Yi=DSIN({ (1 +N+U)*BS (1)) /(1+N+U}+DSIN((1+N-U)}*BS(1}))/(1+N-U)
Y2=DSIN({(1-N+U)*BS(1))/(1-N+U)+DSIN((1-N-U)*BS(1))}/(1~N-U)
Y3=0.50*(FSIN(U+N)+FSIN(U-N) )+CONST(U,RN)*DEL2
Y={Y1+y2)*v2
OLDSUM=SUM
SUM=SUM~+ Y
TOL=SUM DOLDSUM
IF(DABS«TCL.LE.'.0D-05) GOTO 115%

U=+t
IF(U.GE. 300 GOTO 116
GOTO 108
115 PRINT 120,U,SUM
120 FORMAT!' ' ,//,12X, 'NO. OF TERMS=' ,F6.2,5X, 'SUMMATION OF C5 =",
S F20.5%)
GOTC 50

116 PRINT 67
PRINT '120,U,SUM

150 CONT1NUE

C

C EVALUATION OF F1NN FOR C6

C
FINN=O.S*(FSIN(1,0D0)+0.5*FSIN(1.0+TWON)+0.5*FSIN(1.0-TWON))
PRINT 175,F INN

175 PORMAT(' ',//,12X, ' F(1,N,N) FOR C6 =',F10.5)

C

C EVALUATION OF PI-(THETA-S)-SIN(2N{(THETA-S))/2N

C
CSEVEN=PI-BS(1)-DSIN(2*N*BS(1))/2/N
PRINT 180,CSEVEN

180 FORMAT(' ', //,12X, 'CONSTANT FOR C7 =',F10.5)

300 CONTINUE

PRINT 10!

101 FORMAT(" ')

STOP
END

»

C
Cc FUNCTION SUB-PROGRAME TO BVALUATE THE INTEGRAL
C FROM 0 TO THETA-S SIN(A*THETA)*F (THETA) *
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C AND FROM THEAT-S TO PI :- *
C THETA-S*F (BS(1) )*SIN(N*THETA ) *COS (U*THETA) ®
]

S e .
REAL FUNCTION FSIN*g(A)
IMPLICIT REAL*8(A-H,0-1)
DIMENSION B(8),C(9),BSs(9)
COMMON C,BS,FS,PI
APHI=A*BS (1)
A2=A%%2
A3=A%*3
AG=ptry .
AS=A%%S
AG=A%*E
AT=A**7
ABr=At%g
A9=A**g
SIN21=(C(2)+2*C(3)*BS(1)+3*C(4)*BS(2)+u4*C(5)*BS(3))/A2
SIN22={(S*C(6)*BS(4)+6*C(7)*BS(5)+7*C(8)*BS{6)+8*C{93)*BS(7))/A2
SINGI=-{6*C{4)+24*C{5)*BS{1)+60*C(6)*BS(2)) /A4
SINU2=-(120*C(T7)*BS{3)+210*C(8)*BS(6)+336*CI{9)*BS(5))/A4
SING6={120*C(6)+720*C(7)*BS(1)+2520*C{E)*BSI 7 +€12n*C(91*BS(3))/A6
SINB=-(5040*C{B)+40320*C{91*BS(11) AR
SIN=SIN21+SIN22+SINLI+SINL2+SINE+SINE
COS 1=~ {C{1)+C(2)*BS{1)}+C(3)*BS{2)+ClwI1*BS( 3 «C{5*BS{u;}/A
COS12=-(C{B6)*BS(5)+C(7)*BS{(6)+CI(B)*BS 7))+ {9 ,*BS(8)) A
COS31=(2%C(3)+6*C{4J*BS(1)+12%2C{5)*BS{2)+20*C(6)*BS{(3)}/A3
COS32={30*C(T7}*BS(4)+u2*C{8)*BS{5)+56*C{(9)*BS(6)},’A3
COSS51=-(24*C(51+120%C(6)*BS(1)+360*C(7)*BS(2)+840*C(8})*BS(3))/AS
COS52=-{1680*C{9)*BS(4)/A5}
COST=(720*C{1)+5040*C(8)*BS(1}+20160*C{9)*BS{2)) /A"
COS=COS11+COS12+4COS31+4C0S832+COSS1+C0S52+-COS7-40320%C(9),A9
CONST=C{ 1) /A-2%C(3),/A3+24%C(5) /AS-T20*C(T)} ‘AI+L0320*C(9) /A9
FSIN=DSIN(APHI ) *SIN-DCOS{APHI ) *COS+CONST
RETURN
END
REAL FUNCTION CONST*8(RI,RJ)
IMPLICIT REAL *8(A-H,0-2)
DIMENSION B(8),C(9),BS(9)
COMMON C,BS,FS,PI ,
Ci1=(DCOS((RI+RJ)*P] ) -DCOS((RI+RJ)*BS(1)))/¢RI+RJ)
C2=(DCOS{(RI-RJ)*PI1)-DCOS((RI-RJ)*BS(1))})/(RI-RJ)
CONST=FS*{C1+C2)/2
RETURN
END

SDATA

0.D0,1.6073D0,0.5700D0,-0.9394D0,0.1714D0

0.D0,0.D0,0.D0,0.D0

$
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. THE COEFFICIENTS FOR THE POLYNOMIAL F(THETA)

c(o)= 0.000000000000D0 00
C{(1)= 0.160730000000D 0!
c(2)= 0.570000000000D 00
C(3)= -0.939400000000D 00

C(g)= 0.171400000000D OO ¢
C(5)= 0.000000000000D 00
c(s)= 0.000000000000D 00 o)

C(7)= 0.000000000000D 00
C(8)= 0.000000000000D 00

F(THETA-S) =  1.40201

F(N,N) FOR C2 = -0.17526

NO. OF TERMS= 48,00 SUMMATION OF C3 = -1,62763
CONSTANTS FOR C4 =  0.92584

NO. OF TERMS= 32.00 SUMMATION OF C5 =  0.3935%
F(I,N,Nf'FOR C6 = 0.47440

CONSTANT FOR C7 = 1,74357

N= 3
P(N,N) FOR C2 = 0.31774
( NO. OF TERMS= 72.00 SUMMATION OF C3 = -3,18603

\

CONSTANTS FOR C4 = 0.68554
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NO. OF TERMS= 24,00
P(1,N,N) FOR C6 =

CONSTANT FOR C7 =

@
“«
kS

Rl SN iy v, HE ety

SUMMATION OF C5 =

0.63744

1.57473

W wa

0.27018

s IR
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Program I1:- ACOM3DFLTER

This program calculates the eigenvalues and aerodynan;ic damping
L
of the theory presented in Chapter 6, for different flow

velocities and different circumferential mode shapes of a

clamped-clamped shell.

~



//ME15102 JOB (ME15

//STEP!

//FORT.SYSIN DD *

O 06

11

OO0 -

FILE NAME

aNeNeNeNeEnioNeNaNeNaNeRs e Xe XX a ke XaKe Ko

________________________________________________________ I DR,

FLUTTER ANALYSIS OF 3D (CL-CL,L=21") SHELL IN CROSS FLOW
VIBRATING WITH AN ANTINODE FACING THE FREE STREAM
COMMENT+t CASE 1:

CASE 2

CASE 3

CASE 4

ACOM3DFLTER
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,102,008,0050,0000,20,, ¥), "SYANG'

EXEC FPORTRAN

EFFECT OF (V+(OMEGA) CROSS (R)) DOT GRAD(PHI)
IN BERNOULLI EQUATION

1.E. -~UF(THETA) DV/DT |: DEL!=!
PLUS --~
¢ EFFECT OF CONSTANT BACK FLOW IN THE WAKE
I.E. F{THETA-S!=CONST. FOR (THETA).GT.(THETA-S)
|: DEL2="
PLUS ---
: EFFECT OF MOVING BOUNDARY CONDITION
1.E. R=A+W* |: DEL3=]
PLUS -- : i

: EFFECT OF BASE PRESSURE VARIATIONS
I1.E. DP-B,DI(W*’A) * {(wW*/A) * EXP(-1 PHI)

WHERE PHI=PHASE LAG |:DEL4=1

FOR N=2,PHI=270; N=3,PHI=270

IR IR I IR IR IR IR IR IR I I N N EENRE N

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION D(6

)

COMPLEX*16 RA(3,3),RB(3,3),RC(3,3),Y(6,6),YY(6,86)
COMPLEX*16 WK(6,12),V(6,6) ,EIGA(6) ,EIGB(6),IMAG,C7

PROPERTIES INPUT

READ(5,*) A,TH

,RHS,POI ,YUN,RHO,RL

PRINT 1
FORMAT('1',///,8X, 'PROPERTIES OF THE SHELL')

PRINT 2,A

FORMAT(' ',/,5X, 'MEAN RADIUS =',F10.5,' M')

PRINT 3,TH

FORMAT(' ',4X, 'THICKNESS =',F10.5,' M')

PRINT 4,POI

PORMAT(' ',4X, 'POISSONS RATIO =',Fi10.3)

PRINT 5, YUN

FORMAT(' ' ,4X,'YOUNGS MODULUS =',D10.3,' N/M**2')
PRINT 9,RHS

FORMAT(' ',4X,'DENSITY =',F10.t!,' KG/M**3')

PRINT 8,RHO

FORMAT( ' ' ,4X, 'DENSITY OF AIR ="', F10.4,' KG/M**3')
PRINT 11,RL

FORMAT(' ' ,4X,'LENGTH =',F10.5,' M')

PRINT 12

FORMAT(' ' ,4X,'NO. OF COMPARISON FUNCTION = 1',/)

DEL1=1.0
DEL3=1.0
DEL4=1.0

IMAG=(0.0,1.0)

DEFINE THE CONSTANTS
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100

78

77

anNOon

52

53

54

BETAJ=4,73004074/RL
ALPAJ=0.982502215

AJJ=RL
CJJI=ALFAJ*BETAJ* (2. -ALFAJ*BETAJ*RL)
EJJ=BETAJ**4*RL

FJJI=~-CJJ

GJJ=-EJJ

PI=DARCOS(-1,0D0)
RK=(TH/A)**2/12.0
GAMA=RHS*A**2* (1, 0-POI**2)/YUN
z=(1.D0O-POI)/2.D0O

CONTINUE

READ(5,78) N

FORMAT(I13)

IF(N.EQ.0) GOTO 999

PRINT 77,N

FPORMAT(' ',///,8X,'MODE NO. N = ',IS)
IF(N.EQ.2) GO TO 51

IF(N.EQ.3) GO TO 52

IF(N.EQ.4) GO TO 53

IF(N.EQ.5) GO TO 54

CONSTANTS FROM PROGRAME FILE: AEROTERM

G2=-0.17526
G3=-1,62763
G4=0.92584
G5=0.39354
G6=0.47440
G7=1.T74357
H=3.7879
PHI=270*P1/180
GO TO 56
G2=0.31774
G3=-3.18603
G4=0.68554
G5=0.27018
G6=0.63744
G7=1.57473
H=-2,377¢6
PHI=270*PI1/180
GO TO 56
G2=0.0

G3=0.0

G4=0.0 \
G5=0.0

G6=0.0

G7=0.0

H=0.0

PHI=0.,0

GO TO 56
G2=0.0

G3=0.0 ‘ »

G4=0.0 .
G6=0.0
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G7=0.0
H=0.0
PHI=0.0
56 PRINT 32,G2 ‘
32 FORMAT(' ',/,5KX,'FP(N,N) FOR C2 : ',F10.5)
PRINT 33,G3
33 PORMAT(' ',4X,'SUM OF F(N,J)*F(J,N) FOR C3 : ',F10.5)
PRINT 34,G4 “ .
34 PORMAT(' ',4X,'CONSTANT FOR C4 : ',P10.5) .
PRINT 35,G5 .
35 FPORMAT(' ',4X,'SUM OF SIN (N,J)*F(J,N) FOR CS : ',F10.5)
PRINT 36,G6
36 FPORMAT(' ',4X,'F(1,N,N) FOR C6 : ',F10.5) ~ .
PRINT 38,G7 .
38 PORMAT(' ',4X,'PI-(THETA-S)-SIN(2N(THETA-S)/2N FOR C7 : ',
$ F10.5)
PRINT 39,H,PHI ,
39 FORMAT(' ',4X,'H FOR BASE PRESSURE VARIATION : ',F10.5,/,
S 16X, 'WITH PHASE LAG PHI : ',F5.2,' RAD.')

INITIALIZE THE MATRICES RA,RB,RC,Y,YY

00N

DO 24 I=1,3 v

DO 24 J=1,3
RA(1,J3)=(0.0,0.0)
RB(I1,J)=(0.0,0.0)
RC(1,3)=(0.0,0.0)
24 CONTINUE )
DO 29 I=1,6 .
DO 29 J=1,6 -
¥(1,3)=(0.0,0.0)
YY(1,3)=(0.0,0.0)

29  CONTINUE . ) ~
C i \
'‘C  CALCULATE MATRICES RA,RB,RC .
(o
RA(1,1)=-GAMA*FJJ
RC(1,1)=A**2%GJJ-E*N**2*FJJ-RK*Z*N**2*FJJ
RC(1,2)=A*(1.+P0OI)/2.*N*FJJ
RC(1,3)=POI*A*FJJ-RK*A**3JXGJJ-RK* ZXN**2AFJJ*A
RC(2,1)=-A*(1,+POI)/2.*N*CJJ
RA(2,2)=-GAMA*AJ]
RC(2,2)=-N**2*%AJJ+A**2*%2*CJJ+3 , *RK*2*A**2%CJJ
RC(2,3)=-N*AJJ+(3.-POI) /2. *RRK*A**2*N*CJJ .
RC(3,1)=-POI*A*CJJ+RK®*AXZXN**2*CJJ+RK*A**3*EJJ .
RC(3,2)=-N*AJJ+RK*(3.-POI)/2.*A**2*N*CJJ
¢ ‘
U=0.0
DO 58 KKK=1,16 : .
10 FORMAT(' ',///,5X,'FREESTREAM VELOCITY =',FS5.2,' M/S',4X, .
S ' PERFORMANCE INDEX =',P6.3,/)
C 7
. C1=2.0*RHO*A/N!
C2=4,0%*RHO*U*G2/PI
C3=4.0*RHO*U*U*N*G3/PI/PI /A
C4=RHOM[J*G4 /PI *DEL3

C5=2.0*RHO*U*U*G5/PI/PI/A*DEL3
C6=4*RHO*U*U*G6/PI /A*DEL3
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C7=RHO*U*U*H* (DCOS ( PHI ) -IMAG*DSIN(PHI))*G7/2.0/P1 /A*DEL4

" RA(3,3)=-GAMA*AJJ-C1*GAMA*AJJ/RHS/TH
RB(3,2)=-GAMA*C2*AJJ/2,0/RHS/TH*DEL1
RB(3,3)=GAMA*(C2-C4)*AJJ/RHS/TH
RC(3,3)=-AJJ-RK*A**4*EJJ+2 *A**X 2*RK*N** 2¥CJJ-RK¥*N**4*AJJ
S +2 . *RK*N**2*AJJ~-RK*AJJI- (C3-C5+C6+C7) *GAMA*AJJ/RHS/TH
C TRANSFER TO MATRICES Y & YY
DO 49 I=1,3
K=1+3
DO 49 J=1,3
KK=J+3
Y(I,KK)=RA(1,J) .
Y(K,J)=RA(1,J)
Y(K,KK)=RB(I1,J) '
YY(1,J)=RA(1,J) s
YY(K,KK)=-RC(I,J) '
9 CONTINUE

FIND THE EIGENVALUES ) -

nonNe

CALL EIGzC(YY,6,Y,6,6,2,EIGA,EIGB,V,6,WK,INFER,IER)
PER=DREAL(WK(1,1))
PRINT 10,U,PER
DO 94 I=1,6 : -
EIGA(I)=EIGA(I)/EIGB(I)/2.0/PI - -
EIGA(I)=-IMAG*EIGA(I)
REAL=DREAL(EIGA(I))
IF(REAL.EQ.0.0) GOTO 94
D(1)=2.*PI*DIMAG(EIGA(I))/DABS (REAL)
PRINT 6,EIGA(1),D(I)
94 CONTINUE ‘
6 FORMAT(' ' ,6X,2F15.4,8X,'DAMP.="' ,F8.4)
U=U+2. . . v
58 CONTINUE
. C
GOTO 100
999 CONTINUE
STOP .
END -
//GO.SYSIN . DD * -
0.0381,0.00051,1290,0.4,.28D10,1,204,.53340
. 2 -
. 3
0
//
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PROPERTIES OF

MEAN RADIUS =
THICKNESS = 0.
POISSONS RATIO =
YOUNGS MODULUS =

THE SHELL

© 0.03B10 M

00051 M
0.400
0.280D+10 N/M**2

> DENSITY = 1290,.0 KG/M%*3

DENSITY OF AIR =
LENGTH = 0.533

1.2040 KG/M**3.
4o M .

NO. OF COMPARISON FUNCTION = 1

MODE NO. N = 2
_F(N,N) FOR C2 : -0.17526
SUM OF F(N,J)*F(J,N) FORC3 : -1,62763
CONSTANT FOR C4 :. 0.92584
SUM OF SIN (N,J)*F(J,N) FOR C5 : 0.39354
F(1,N,N) FOR C6 :, 0.47440 .
PI1-(THETA-S)-SIN(2N(THETA-S)/2N FOR C7 : 1.78357 -
H FOR BASE PRESSURE VARIATION : 3.78790 '

WITH PHASE LAG PHI : 4.71 RAD.

S\

FREESTREAM VELOCITY = 0.0 . M/S

14993.8765
7873.4100
-14993.8765
-7873.4100
166.1963

\ -166.1963

FREESTREAM VELOCITY = 2.00 M/S

-14993.8765
-7873.4100
14993.8765

7873.4100
-166.1875
166.1875

FREESTREAM VELOCITY = 4.00 M/S

-14993.8764
=7873.4100
14993.8764

- 7873.4100
-166.1610

PERFORMANCE
-0.0000 DAMP , =
0.0000 - DAMP.=
0.0000 DAMP . =
-0.0000 DAMP . =
0.0 DAMP . =
0.0 DAMP. =

PERFORMANCE

0.0140 " DAMP.=
0.0008 DAMP , =
0.0140 DAMP. =
0.0008 DAMP. =
0.1145 DAMP, =
0.1378 DAMP, =
PERFORMANCE

0.0279 DAMP. =
0.0017 DAMP. =
0.0281 DAMP . =
‘ 0.0017 DAMP . =
0.2058 DAMP . =

INDEX = 0,053

-0.0000
0.0000
0.0000

-0.0000
0.0
0.0

INDEX =

0.0000
0.0000
0.0000
0.0000
0.0043
0.0052

INDEX =

0.0000
0.0000
0.0000
0.0000
0.0078

0.091

0.975
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166.1610

FREESTREAM VELOCITY = 6.00 M/S

-14993.8763
-7873.8100
18993.8763

7873.4100
—-166.1168
166.1168

PREESTREAM VELOCITY = 8.00 M/S

-18983.8761
-7873.4100
18993.876!1

7873.4100
-166.0550
166.0550

PREESTREAM' VELOCITY =10.00 M/S

. ~14993.8759
-7873.4100

. 18993.8759
7873.4100
-165.9756
165.9756

PREESTREAM VELOCITY =30.00 M/S

14993.8714
7873.4096
-14993.8714
-7873.4096
164,2183
-164.2183

e AN 7
0.2988 DAMP . =
N .
PERFORMANCE
‘ 0.0817 DAMP . =
0.0025% DAMP ., =
0.0823 DAMP . =
000026 DAHP - =
0.2739 DAMP . =
0.4830 DAMP . =
PERFORMANCE
0.0555 DAMP . =
0.0033 DAMP . =
0.0565 DAMP . =
0.0034 DAMP-. =
0.3186 DAMP. =
0.6906 DAMP . =
PERFORMANCE
0.0693 DAMP. =
0.0042 DAMP . =
0.0708 DAMP . =
0.0043 DAMP. =
0.3400 DAMP . =
0.9215 DAMP. =
| b
$ | . |
) .
| !
' !
! !
PERFORMANCE
0.2167 DAMP. =
0.0132 DAMP, =
0.2034 DAMP, =
0.0122 DAMP, =
4.5370 DAMP, =
-0.7525

0.0113

INDEX = 0.679

0.0000
0.0000
0.0000
0.0000
0.0104 N
0.0183 v

-

INDEX = 0.97!

0.0000
0.0000
0.0000
0.0000
0.0121
0.0261

INDEX =.1.224

0.0000
0.0000
0.0000
0.0000
0.0129
0.0349

INDEX = 0.470

0.0001
0.0000
0.0001
0.0000
0.1736

DAMP.= -0.0288
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MODE NO. N = 3
P(N,N) FOR C2 : 0.31774 —
SUM OF FI(N,C '*F{(C,N) FOR C3 : -3.18603
CONSTANT FCR Cu& : ‘0.68554 .
SUM OF SIN (N,J)*F(J,N) FOR C5 : 0.27018 : pa
FP(1,N,N' FCR CE€ : 0.6274u
PI-(THETA-S -SIN{2N(THETA-S)/2N FOR C7 : 1,57473
" H FOR BASE PRESSURE VARIATION : -2.37160
WITH PHASE LAG PHI : 4,71 RAD.

FPREESTREAM VELOCITY = 0.0 M/S PERFORMANCE INDEX = 1.600

21247 .4735 0.0000 DAMP.= 0.0000
11375.1295 0.0000 DAMP.= 0.0000
-21247.4735 -0.0000 DAMP.= -0.0000
-11375.1295 -0.0000 DAMP.= -0.0000 -
208 . 1264 0.0 DAMP.= 0.0
-208. 1264 0.0 DAMP.= 0.0

PREESTREAM VELOCITY 2.00 M/S PERFORMANCE INDEX = 0.727

5

-21247.4735 0.0119 DAMP.= 0.0000 b
-11375. 1295 0.0001 DAMP.= 0.0000 i
21247.4735 0.0119 DAMP.= 0.0000 %
11375, 1295 0.0001 DAMP.= 0.0000 B
-208.0950 -0.0578 DAMP.= -0,0017 ‘
208.0950 ~0.0698 DAMP.= -0.0021 )

| | | i

i i i ]

| | | - 3

: - - 1

[ | g i
oo + -

FREESTREAM VELOCITY =30.00 M/S PERFORMANCE INDEX = 0.068

21247.4663 0.1772 DAMP.= 0.0001
11375.1292 0.0008 DAMP.= 0.0000
-21247.4663 0.1799 DAMP.= 0.0001
-11375.1292 0.0009 DAMP.= 0.0000
200.9289 -2.3586 DAMP.= -0.0738
~200.9289 0.4438 DAMP.= 0.0139
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#rogram [11: APHASE3

This program calculates the phase between shell defo
the induced pressure, for 8 = 0° to 85° at different '{ou -\
velocities.

The phase angle v is as defined in Appendix E (equations (E.12)
and (E.18).



*BATCH WATFIV ME15102 SYANG
SWATFIV ,TIME=60,PAGES=20 :

C
C
C PROGRAME : EVALUATICN OF PHASE LAG PHI

C FOR N=3 MODE(ANTINODE) VIBRATION
C -~ PHASE FROM O TO 85 DEG. --

C FILE NAME=APHASE3

C

C

» % % % » »

IMPLICIT REAL*B8(A-H,0-1)
DIMENSION B(8),C(9),BS(9)
DIMENSION STOP(9),SBOT(9)
COMMON C,BS,PI
PI=DARCOS(-1.D0O)
ANGLE=85*P] /180
C
C INPUT COEFF., OF FUNCTION G(THETA) * .
C ANGLE OR BS(1):SEPERATION ANGLE *
C
READ (5,*) (C(

READ (5,*) (C(
PRINT 7

L B ]
— —
-
—
non
N —
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7 FORMAT('V',///,1X, ' THE COEFFICIENTS FOR THE POLYNOMIAL G(THETA)',

s//)
DO 10 1=1,9
STOP(I1)=0.0
SBOT(I)=0.0
BS(I)=ANGLE**I
K=I-1
PRINT 11,K,C(1I)
11 FORMAT(' ',11X,'C(',11,"')=",F10.5)
1 CONTINUE
PRINT 14

14 FORMAT(' ',/,1X,'THE PHASE LAG .PHI FOR N=3 MODE(ANTINODE) VIBRATIO

SN',//,3X,'OVALLING FREQUENCY = 230 HZ',/)
N=3

DEFINE THE CONSTANTS

anan

W=2*PI*230
V=5
Q=5

EVALUATION OF NUMERATOR : TOP
-~G(THETA)*SIN(N-THETA) - 2*N/PI* SUM COS(J-THETA)/J*G(N,J)
AND ,
EVALUATION OF DENOMERATOR : BOT
2*V*V*N/PI /A*G(THETA)* SUM SIN(J-THETA)*G(N,J) -
Wx*2%xpA /N*COS(N-THETA)

QAOO0O00O0O00n

DO 100 J=1,9
T=Q*PI1/180
TOLTOP=1.0
TOLBOT=1.0 . ‘e
SUMTOP=0.0 ’
SUMBOT=0.0
U=1.

ol
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58

66
67

65

© 100

270
Ni=N-1
DO 56 KJ=1,N1
GNJ=0.50* (GSIN(N+U)+GSIN(N-U))
XTOP=GNJ*DCOS(U*T) /U
XBOT=GNJ*DSIN(U*T)
SUMTOP= SUMTOP+XTOP
SUMBOT=SUMBOT+XBQOT
U=U+1.

TWON=2*N
GNJ=0.50*(GSIN(TWON))
XTOP=GNJ*DCOS (U*T) /U
XBOT=GNJ*DSIN(U*T)
SUMTOP=SUMTOP+XTOP
SUMBOT=SUMBOT+XBOT .
U=U+1.

CONTINUE
GNJ=0.50* (GSIN(N+U)+GSIN(N-U))
IF(DABS(TOLTOP).LE.1.D-05) GOTOS7
XTOP=GNJ*DCOS (U*T) /U

OLDST=SUMTOP

SUMTOP=SUMTOP+XTOP s *
TOLTOP=SUMTOP-OLDST '
IF(DABS(TOLBOT).LE.1.D-05) GOTOS58 .
XBOT=GNJ*DSIN(U*T)

OLDSB=SUMBOT

SUMBOT=SUMBOT+XBOT

TOLBOT=SUMBOT-OLDSB

IF(DABS(TOLTOP).LE. 1.D-05.AND.DABS(TOLBOT) .LE.1.D-05) GOTO 65
U=U+1, *

IF(U.GE.250) GOTO66 ,

GOTOS5

PRINT 67,0

FORMAT(' ',//,5X, 'WARNING ! THE SERIES DOES NOT CONVERGE',SX,
$ 'FOR THE ANGLE THETA=',F5.1)

STOP(J)=SUMTOP
SBOT(J)=SUMBOT .
Q=Q+10 .
CONTINUE
DO 200 L=1,6
Q=5
PRINT 5,V .
FORMAT(///,3X,'FLOW VELOCITY =',F5.2)
PRINT 2
FORMAT(' ',/,5X,'ANGLE THETA', 3X,'PHASE LAG IN DEG.', 5X,'NUMERAT
SOR' ,6X, 'DENOMERATOR' , /)
DO 150 J=1,9
T=Q*P1/180
G1=C{1)+C(2)*T+C(3)*T**2+C(4)*T**3+C(5)*T**4+C(6)*T**5
G2=C(7)*T*x*6+C(8)*T**7+C(g) *T**g
G=G1+G2
TOP=W*V* (-G*DSIN(N*T)-2*N*STOP(J) /PI1)
BOT=2*VAV*N*G*SBOT(J) /PI/0.0381-W*W*0.038 1*DCOS(N*T) /N
TANPHI=TOP/BOT
PHI =DATAN ( TANPHI )
PHI=PHI*180/PI -
PRINT 82,Q,PHI,TOP,BOT .
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FORMAT(' ' ,8X,F5.1,8X,F8.2,9%X,F12,4,6X,F12.4)
Q=Q+10 .

CONTINUE
V=V+5

CONTINUE

PRINT 220

FORMAT("1") Yt

STOP

END

FUNCTION SUB-PROGRAME TO EVALUATE THE INTEGRAL *

WHERE THETA-S=ANGLE OF SEPERATION bod

$DATA
0.DO,

C

C

C FROM O TO THETA-S SIN(A*THETA)*G(THETA) *
o

C

REAL FUNCTION GSIN*8(A)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION B(8),C(9),BS(9)

COMMON C, BS,PHI .
APHI=A*BS (1)

A2=A%**2 ‘

A3=A**3

Ab=A*x*y

AS=A**5

A6=A**g

AT=A**7

AB=A**g ~

A9=A**g
SIN21=(C(2)+2*C(3)*BS(1)+3*C(4)*BS(2)+4*C(5)*BS(3))/A2
SIN22=(5*C(6)*BS(4)+6*C(7)*BS(5)+7*C(8)*BS(6)+8*C(9)*BS(7))/A2"
SIN41=-(6*C(u)+24*C(5)*BS(1)+60*C(6)*BS(2))/AlL
SIN42=-(120*C(7)*BS(3)+210*C(8)*BS(4)+336*C(9)*BS(5))/AlL
SING=(120*C(6)+720%C(7)*BS(1)+2520*C(8)*BS(2)+6720*C(9)*BS(3) ) /Ab
SIN8=-(5040*C(8)+40320*C(9)*BS(1))/A8
SIN=SIN21+SIN22+SIN4 1 +SIN42+SIN6+SINS
COS11=-(C(1)+C(2)*BS(1)+C(3)*BS(2)+C(u4)*BS(3)+C(5)*BS(u4))/A
COS12=-(C(6)*BS(5)+C(7)*BS(6)+C(8)*BS(7)+C(9)*BS(8)) /A
COS31=(2*C(3)+6*C(4)*BS{1)+12*C(5)*BS{(2)+20*C(6)*BS(3)) /A3
CO0S32=(30*C(7)*BS(4)+42*C(8)*BS(5)+56*C(9)*BS(6))/A3
COS51=-{24*C(5)+120*C(6)*BS(1)+360*C(7)*BS(2)+840*C(8)*BS(3))/AS
C0S52=-(1680*C(9)*BS(4)/A5)
COST7=(T720*C(7)+5040*C(8)*BS(1)+20160*C(9)*BS(2))/A7
COS=COS11+C0OS12+C0S31+C0832+C0OS51+COS52+COST-40320*C(9) /A9
CONST=C(1)/A-2*C(3)/A3+24*C(5)/A5-720*C(7)/AT+40320*C(9) /A9
GSIN=DSIN(APHI)*SIN+DCOS(APHI )*COS+CONST

RETURN

END

1.6073D0,0.5700D0,-0.9394D0,0.1714D0

0.00,0.D0,0.D0,0.D0

$
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’

THE COEFFICIENTS FOR THE POLYNOMIAL G(THETA)

C(0)= 0.00000
c(1)= 1.60730
c(2)= 0.57000 -
C(3)= -0.93340
C(4)= 0.17140 /
c(5)= 0.00000
’ c(6)= 0.00000
c(71)= 0.00000
c(8)= 0.00000

THE PHASE LAG PHI FOR N=3 MODE(ANTINODE) VIBRATION

OVALLING FREQUENCY = 230 HZI

FLOW VELOCITY = 5,00

(24

ANGLE THETA

FLOW VELOCITY

ANGLE THETA

5.0
15,0
25.0
35.0
45.0
55.0
65.0
75.0
85.0

PHASE LAG IN DEG.

12.99
25.37
61.12
-64.63
-31.84
-10.46
8.77
30.87
73.79

=30.00 *

PHASE LAG IN DEG.

52.55
60.87
75.59
-78.25
-49.50
-12.85
10.31
47.92
-47.01

NUMERATOR

-5819.9679
-9043.4614
-13117.17110
-15185.5590
-12422.0794
-5314.8362
4473.6352
11976. 2206
14958.8870

1
1
{
)
'
!

\

NUMERATOR

-35519.8074
-54260.7681
-78703.0263
-91113.3539
~74532.4765
-31889.0169
26841.8111
71857.3238
89753.3219

DENOMERATOR

—-25663.1126
-18073.3405
-7235.6741
7200.1310
20001 .9532
28790.5288
29004 .9831
20035.7538
4349.6933

\

DENOMERATOR

—-27205.5286
—30234.8015
—-20223,1951
18943 .6433
63664 .8592
139792.5112
147512.8651
64881.6832
-83672.1117
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APPENDIX H

EFFECT OF BOUNDARY LAYER GUARDS

Some initial tests of a cylinder both with and without boundary
layer guards were conducted to ;heck the effects of the plates on the
symmetry of the pressure distribution with respect to the velocity
vector and the two dimensionality of the measurements. The results show
that the measured pressure is the same on both sides of the cylinder
and is uniform over most of the span.

Figure H.1 compares the pressure coefficient, (p—gn)/%puz, of
4

PO 7 SR

a circular cylinder with and without end plates at Re = 3.80 x 10

(U =17.5m/s); Roshko's 27t experimental data at a lower Reynolds

j

number are also plotted on the same graph, for reference. It is seen
< X

that the measured pressure distribution for a cylinder (without end

plates) vertically spanning the working section resembles closely that

P

reported by Roshko, whereas the pressure coefficient of a cylinder with

"

end plates is lower than the "classical" value in the wake region, but

in this area Cp is also known to be strongly Re- and surface-roughness- :

dependent.

The pressure distribution for the cylinder at a higher flow velocity
is shown in Figure H.2. Again the suction coefficient in the base region
of the cylinder with end plates is substantially lower than that of a
cylinder without end plates. Comparison of Figures H.1 and H.2 shows
that the pressure coefficient in the wake of a cylinder with end p?ates

increases with Re, but the opposite effect is found for the cylinder

+End plates or boundary layer guards were not used in Roshko's experiment.

.
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without end plates.

Since boundary layer guards were used for the pressure measurements
of the "deformed" circular shape models (see Chapter 7), it was necessary
to check the validity of the experimental set-up. It was thought (referring
to Figure 7.3) that because of the orientation of the bevelled p]ates+
in the present set-up, the flow might be accelerating towards the test

{
models, explaining thereby the discrepancy of the pressure measured in

the wake.

To study this effect, the end plates were inverted such that the
flow would not be accelerating towards the model. The pressure
coefficient in the wake region (see Figure H.3) at an intermediate

4 (U=18.0 m/s) Ties between the value measured from earlier

Re = 9.1 x 10
(original) experiments at a Tower Re = 3.8 x 104 (U=7.5m/s) and a
higher Re = 1.18 x 105 (U =23.5m/s). This suggests the orientation of
the end plates does not influence the pressure measurements.

Another two parameters which may affect the results were the
roughness of the cylinder surface and the length to diameter ratio of the
cylinder. To study these, the original cylinder of Tength 609.6 mm
(24.00 in.) was re-surfaced, so as to have a smoother surface. The test
(see Figure H.4) shows that roughness of the cylinder does not play a
crucial role in the pressure distribution in the wake. e

Recalling that the length of the cylinder used in thg\experiments
with end plates was 292.1 mm (11.50 in.), to study the aspect ratio effect,
the pressure distribution around a cylinder ,of length 508.0 mm (20.00 in.)

was measured, with the end plates in position. It is seen (Figure H.4)

'
TA bevelled plate is needed to avoid flow separation at the leading edge.

" PN
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that even though the rdatio 2/D was now almost double that in the previous
test, the pressure’coeffizient does not change significantly.

Thus, it may be concluded that the experimental set-up is good
and that the orientation of the end plates, the roughness of the cylinder
surface, and the aspect ratio, all within the ranges of these experiments,
do not play an importantirole in determining the pressure coefficient.
Perhaps the above findings are not too surprising; they support
experimental evidence by Stansby [24] where suitably designed end plates
added to a circular cylinder spanning a wind tunnel remove the effects
of the tunnel wall boundary layers and enhance the two-dimensionality of
the flow. The addition of such plates, in Stansby's measurements also,

caused a substantial reduction of base pressure.
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Pressure distribution around a circular cylinder with the boundary layer guards in original

and inverted ‘configuration; & is the length of the cylinder.
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